

SMITHSONIAN INSTITUTION.

 UNITED STATES NATIONAL MUSEUM.
PROCEEDINGS

UNITED STATES NATIONAL MUSEUM.

Volume XII. 1889.

ADVERTISEMENT.

The extension of the scope of the National Museum during the past few years, and the activity of the collectors employed in its interest, have caused a great increase in the amount of material in its possession. Many of the objects gathered are of a novel and important character, and serve to throw a new light upon the study of nature and of man.

The importance to science of prompt publication of descriptions of this material led to the establishment, in 1878, of the present series of publications, entitled " Proceedings of the United States National Museum," the distinguishing peculiarity of which is that the papers are published in pamphlet form as fast as completed, and in advance of the bound volume. The date of publication being plainly expressed on each article the ready settlement of questions of priority is assured. The present volume constitutes the twelfth of the series.

The articles in this series consist: First, of papers prepared by the scientific corps of the National Museum ; secondly, of papers by others, founded upon the collections in the National Museum; and, finally, of facts and memoranda from the correspondence of the Smithsonian Institution.

The Bulletins of the National Museum, the publication of which was commenced in 1875 , consist of elaborate papers based upon the collections of the Museum, reports of expeditions, etc., while the proceedings facilitate the prompt publication of freshly-acquired facts relating to biology, anthropology, and geology, descriptions of restricted groups of animals and plants, the discussion of particular questions relative to the synonymy of species, and the diaries of minor expeditions.

Other papers, of more general popular interest, are printed in the Appendix to the Annual Report.
Papers intended for publication in the Proceedings and Bulletins of the National Museum are referred to the Committee on Publications, consisting of the following members: T. H. Bean, A. Howard Clark (editor), Otis T. Mason, John Murdoch, Leonhard Stejneger, Frederick W. True, and Lester F. Ward.

S. P. Langley, Secretary of the Smithsonian Institution.

TABLE OF CONTENTS.

Page.
Alphabetical index... 652-686
Allen, IIarrison. Description of two new species of Bats-Nyctinomus europs and N. orthotis
635-640
Ashmead, William II. Descriptions of new Ichneumonidæ in the collection of the U.S.
National Museum ...
Eristicus minutus, E. erythrogaster, E. apicalis, E. basilaris, E. binotatus, E. cinctus,
Ichneumon xanthopsis, I. xanthogrammus, I. fulvopictus, I. leucopsis, Amblyteles contractus, A. cookii, Phaogenes gelechice, P. missouriensis, P. hemiteloides, P. ruficornis, \boldsymbol{P}. montivagus, Ischnus americanus, Nematomicrus coloradensis, Colpognathus euryptychice, C. annulicornis, Herpestomus plutellce, Stilpnus texanus, Exolytus gelechie, Hcmiteles belfragei, H. melitcea, H. coleophorce, H. variegatus, H. nigriceps, H. gracilarice, H. bucculatricis, H. hydrophilus, H. annulatus, H. columbianus, H. rileyi, H. bicornutus, H. annulicornis, H. alliscapus, H. mellicornis, H. hemerobii, H. texanus, H. virginiensis, H. rubricornis, H. townsendi, H. syrphicola, H. pallidus, Mesostenus erythroga 8 ter, M. leucopus, M. leucocoxa, Cryptus violaceipennis, C. coloradensis, C. leucopus, C. alamedensis, O. monticola, O. texensis, O. armatus, O. nigripennis, O. californicus, C.ferrugineus, O. brevicauda, O. nebraskensis, Brachycentrus fasciatus, Crypturus texanus, O. albomaculatus, Nematopodius texanus, Orthopelma bedellice, O. erythropa, O. minutum, O. bimaculatum, O. occidentale, O. roscecola, O. californicum, O. coloradense, O. disastrophi, Ischnocerus montanus, Catalytus pallipes, Cremnodes californicus, Pezolochus bucculatricis, Pezomachus flavocinctus, P. californicus, P. alaskensis, Thyreodon texanus, Nototrachys annulicornis, Anomalon xanthopsis, A. eureka, A. simile, Agrypon puparum, A. boreale, Faniscus texanus, P. nigripectus, Oharops annulipes, Exochilum texanum, Schizoloma confusa, Oampoplex texanus, Oasinaria texana, Limneria melanocoxa, L. nigricincta, L. nolce, L. erythropus, L. brachyura, L. ferrugineipes, L. occidentalis, L. gelechice, L. solenobice, L. enurce, L. sessilis, L. erythrogaster, L. pattoni, L. eurycreontis, L. consimilis, L. perafinis, L. belfragei, L. pterophorce, L. flavicincta, L. œdemasice, L. eureka, L. salicicola, L. cupressi, L. noctuce, Metopius xanthostigma, M. terminalis, Bassus \&yrphicola, B. orbitalis, B. xanthopsis, B. enura, B. virginiensis, Prinoda scutellata, Trematopygus, cultriformis, Adelognathus texanus, Orthocentrus californicus, Ischyrocnemis carolina, Exochus rufigaster, Chorincues Jlavifrons, Coleocentrus texanus, Pimpla yukonensis, P. pterophori, P. gossypii, P. xanthothorax, P. aplopappi, P. enurce, P. lithocolletidis, Polysphincta rufigaster, Olistopyga pulchripicta, O. pleuralis, Glypta leucozonata, G. xanthozonata, Lampronota puritana, Tylonomus rileyi, X. pulcher, X. floridanus, new species.]
TBean, Tarleton II. (Sctentific results of explorations by steamer Albatross.) No. ViriDescription of a new Cottoid fish from British Columbia.
641,642
[Synchirince, new subfamily; Synchirus gilli, new genus and species.]
Bollman, Charles HEarvey. (See Jordan and Bollman.) Descriptions of new species of fishes
(See Howard, L. O.) Myriapoda of Albatross explorations
[Mesops cylindricus, new species; Dadrotettix monstrosus, new genus and species; Ochrilidia (?) crenulata, O. cinerea, Mermiria texana, 11. maculipennis, Syrbula acuticornis, new species; Eritettix variabilis, E. abortivus, Boötettix argentatus, new genera and species; Pedioscerteles pulchella, Psoloessa buddiana, P. eurotice, Arphia saussureana, Aulocara scudderi, Mestobregma pulchella, Donozoa texana, C. albolineata, C. koebelei, Trimerotropis cyaneipennis, T. azurescens, T. bifasciata, T. californica, T. modesta, T. thalassica, T. pacifica, T. perplexa, Circottetix lapidicolus, C. shastanus, Edipoda (?) occidentalis, Thrincus (?) avidus, T. maculatus, Haldemanella robusta, new species.]
Cope, E.D. (Scientific results of explorations by steamer Albatross.) No. H1.-Report on the Batrachians and reptiles collected in 1887-'88.
[Zacha'nus roseus, Paludicola frenata, Phyllodactylus leci, Tropidurus lemniscatus, new species.](with Plates V -xiv)
[Malletia goniura, M. (Tindaria?) colata, M. (Tindaria) agathida, M. (Tindaria) acinula, M. (Tindaria) virens, Foldia scapania, Yoldia pompholyx, Leda cestrota, Leda platessa, Leda pontonia, Nucula callicredemna, Oryptodon barbarensis, Oryptodon fuegiensis, Callocardia albida, Cytherea encymata, Cymatoica occidentalis, C. orientalis, Bushia panamensis, Lyonsiella radiata, Verticordia perplicata, Ouspidaria (?) monosteira, O. (Luzonia) chilens2s, Poromya cymata, Poromya microdonta, Dermatomya mactroides, Dentalium megathyris, Cadulus albicomatus, Actcon curtulus, A. perconicus, Scaphander interruptus, Terebra benthalis var. nodata, Leucosyrinx goodei, L. (goodei var. ?) persimilis, Pleurotoma exulans, Calliotectum vernicosum, Pleurotomella cingulata, P. argeta, P. (Gymnobela) agonia, P. suffusa, P. (agassizii var.) permagna, Mrarginella cineracea, Volutilithes philippiana, Conomitra intermedia, Mesorhytis costatus, Buccinum viridum, Chrysodomus amiantus, O. griseus, C. aphelus, O. (Sipho) testudinis, Nassa townsendi, Columbella permodesta, Murex (Chicoreus) leeanus, Scala pompholyx, Alaba conoidea, 1 deorbis sincera, Cocculina pocillum, Halistylus columna, Calliostoma platinum, C. rï̈ensis, Turcicula bairdii, T. macdonaldi, Sol riella oxybasis, S. actinophora, Rimula erecta, new species.]

 [Salmo mykiss macdonaldi, new subspecies.]Faxon, Walter. Notes on North American Crayfishes, family Astacidr. 619-634
[Cambarus evermanni, Cambarus hylas, new species.]
Gilbert, Charles III. Notes on the occarrence of Gillichthys y-cauda at San Francisco...
Howard, H.O. (Scientific results of explorations by steamer Allatross.) No. V.-Annotated catalogue of the insects collected in 1887-'88
\squareArachnida.-By George Mars, M. D185-216[Linyphia (Dyplostylum) magellanii, Loxosceles galapagoensis, Thanatus antarcticus, Tegenaria morsitans, Amaurobius frigidus, Drassus pacificus, Gayenna rosea, Clubionabrevipes, Zora californica, Zora latithorax, Lycosa fallax. L. fuegiana, L. ornata, Ctenusobscurus, Menemerus galapagoensis, Segestria galapagoensis, Filistata oceanea, newspecies. 1
Myriapoda.-By C. H. Bollman211-216
[Spirobolus sanctce-lucice, new species; Pectiniunguis americanus, new genus and species;Scolopendra macracanthus, S. microcanthus, S. galapagoensis, new species.]

Fordan, David starr. (Scientific results of explorations by steamer Albatros8.) No. IX.-Catalogue of tishes collected at Port Castries, St. Lucia, by the steamer Albatros\&, November, 1888645-652
[Corvula sanctce-lucice, new species.]
 plorations by steamer Albatross.) No. IV.-Descriptions of new species of fishes collected at the Galapagos Islands and along the coast of the United States of Colombia, 1887-88.... [Raja equatorialis, Discopyge ommata, Urolophus goodei, Synodus evermanni, S.jenkinsi, Ophisoma nilens, Ophichthus cvionthas, O. rugifer, Menidia gilberti, Stromateus palometa, Diplectrum euryplectrum, Prionodes stisbostigma, Kuhlia arge, new species; Xenocys jessice, new genus and species; Larimus pacificus, Polycirrhus rathbuni, Katheostoma averruncus; Bollmannia chalmydes, new genus and species; Scorpcena russula, Prionotus quiescens, Prionotus albirostris, Prionotus xenisma, new species; Runula azalea, new genus and species; Porichthys nautopeedium, Otophidium indefatigabile, Leptophidium prorates, Bregmaceros bathymaster, Azevia querna, new species; Engyophrys sancti-laurentii, new genus and species; Symphurus atramentatus, S. leei, new species.]
 finned trout of Twin Lakes, Colorado 453,454
[Salmo mykiss macdonaldi, new subspecies.]
Knowlen, FF. IT. A revision of the genus Araucarioxylon of Kraus, with compiled descriptions and partial synonomy of the species
Lucas, Frederic A. Description of some bones of Pallas's Cormorant (Phalacrocorax perspicillatus)88-94
Marx, George. (See Howard, L. O.) Arachnida of Albatross exploration 207-211
96-570Aqueduct shaft 26, Ner York City; and from near Easton, Pennsylvania595-600
Tage.
Ridgway, Hobert. A review of the genus Xiphocolaptes of Lesson. 1-20
[Xiphocolaptes sclateri, X. virgatus, X. ignotus, X. cinnamomeus, now species; and X.major castaneus, new subspecies.]
A review of the genus Sclerurus of Swainson 21-31
[Sclerurus lavrencei, new species.]
(Scientific results of explorations by steamer Albatross.) No. I.-Birds collected on theGalapagos Islands in 1888 (text figures)101-128
[Nesomimus macdonaldi, N. personatus, new genus and species; Certhidea cinerascens, Geospiza media, Oactornis brevirostris, O. hypoleuca, Oamarhynchus townsendi, O. pau- per, Pacilonetta galapagensis, new species.](Scientific results of explorations by steamer Albatross.) No. II.-Birds collected onthe Island of Santa Lucia, West Indies; the Abrolhos Islands, Brazil; and at the Straits ofMagellan, in 1857-'8s199-139
[Geositta longipennis, Upucerthia propinqua, new species.]
Smish, Dohn EB. Contribitions toward a monocraph of the Noctuida of Temperate North America-Revision of some Tæniocampid genera (with Plates XXII-XXIII) 455-490
Stejneser, Econbard. Description of two mew species of snakes from Califormia 95-99
[Lichanura orcutti, L. simplex, new species.]
Notes on a third collection of birds made in Kauai, Hawaiian Islands, by Valdemar
Knudsen377-386
[Oreomyza wilsoni, new species.]Description of a new lizard from Lower California643,644
[Cnemidophorus labialis, new species.]
Sitejneger, Weonharal, and Lucaw, w. A. Contributions to the matural history of theCommander Islands. X.-Contribution to the history of Pallas's Cormorant (with Plates(I-IV)83-91
Vasey, Dr. George. (Scientific results of explorations by steamer Albatross.) .No. VI.- List of the plants collected in Alaska in 1888 217, 218
Walcott, Charles D. Descriptive notes of new genera and species from the Lower Cam- brian or Olenellus Zone of North America 33-46[Archoocyathus (A.) dwighti, Ethmophyllum meeki, Planolites annularius, new species;Kutorgina labradorica var. swantonensis, new variety; Obolella atlantica, Oamercllaminor, new species; Coleoloides typicalis, new genus and species; Hyolithes terranovi-cus, H. similis, new species; Helenia bella, new genus and species; 4 gnostus desidera-tus, Microdiscus helena, new species; Avaloria manuelensis, new genus and species;Zacanthoides eatoni, Solenopleura harveyi, S. howleyi, now species.]Description of a new genus and species of inarticulate brachiopod from the Trentonlimestone365,366
[Conotreta rusti, new genus and species.]
Wilson, Thomas. The Palwolithic period in the District of C....nhin(with plates XVII- XXI) 371-376

LIST OF ILLUSTRATIONS.

TEXT FIGURES.

Page.
Three views of Lichanura orcutti, a new species of snake 96
Views of Lichanura simplex, a new species of snake. 97
View of Lichamuratrivirgata 97
Head of Nesomimus macdonaldi, a new species of bird 103
Head of Geospiza conirostris, a new species of bird 106
Head of Geospiza media, a new species of bird 107
Head of Cactornis lrevirostris, a new species of bird 108
Head of Camarhynchus townsendi, a new species of bird 111
Head of Camarhynchus pauper, a new species of bird 111
Views of Conotreta rusti, new genus and species of inarticulate brachiopod from the Trenton limestone 366
Location of shell heaps of the Lower Potomac 368
PLATES.
I. New North American Acrididæ: Dracotettix monstrosus, Thrincus aridus, Bö̈tettix argentatus, Psolocssa Buddiana, Edipoda occidentalis, Eritettix abortivus, Pedios- certetes pulifhella, 11 crmirice tixenna $\delta 2$
II. Bones of Pallas's Cormorant; rostrum, mandible, and metacarpals 88
III. Bones of Pallas's Cormorant; pelvis 88
IV. Bones of Pallas's Cormorant ; coracoid, sternum, femur, tarsus, and tibia 88
V. Gastropods; Chrysodomus (Sipho) Rushii, Nassa scissurata, Conomitra intermedia, Co- lumbella permodesta, Mesorhytis costatus, Chrysodomus griseus, Pleurotoma exulans, Calliotectum vernicosum, Terebra benthalis var, nodata, Chrysodomus amiantus, Mangiliertutonia 362
VI. Gastropods ; Leucosyrinx Goodei, Pleurotomella cingulata, Leucosyrinx persimilis, Pleu- rotomella (Gymnobela) agonia, P.argeta, Fusus ceramidus, Chrysodomus aphelus, Nassarina columbellata, Buccinum viridum 362
VII. Gastropods; Murex (Ohicoreus) Leeanus, Calliostoma platinum, Turticula Bairdii, Gaza Rathbuni, Fusus cepynotus, F. alcimus, Turcicula MacDonaldi 362
VIII. Pelecypods: Verticordia perplicata, Pecten glyptus, Poromya cymata, Cuspidaria mono- steira, Poromyanicrodonta, Lyonsiellaradiata, Poromya (Dermatomya) mactroides, Cryptudon herimerensis 362
IX. Gastropods and Scaphopods: Dentalium megathyris, ovicapsule of Scapella brasiliensis, Solariella infundibulum, Volutilithes Philippiana, Scaphella magcllanica, Iralis- tylus columone, C'viuhlus" alluicamutus. 32
X. Pelecypods: Callocardia (Vesicomya) Smithii, Lophocardizm Annettce, Callocardia guttata, C. (Callogonia) Leeana, Malletia goniura, Cymatoica occidentalis, C. orien- tulis 362
XI. Gastropods and Peleeypods: Pteronotus phaneus, Pecten (Pseudamusium) strigillatum,Euplcurch Stimpsoni, Crassatella jloridana, Benthonella gaza, Marginella cineracea,Mitra Bairdii, Ncala babylonia, Pecten effluens, Peristichia toreta, Cyclostrema cis-troniume.362
XII. Gastropods: Haliotis Pourtatesii, Adcorbis sincera, Calliostoma Coppingeri, C. Riö- ensis, Solariella oxybasis, Actceon perconicus, Solariella actinophora, Nassa Town- sendi, Pleurotomella sufjusa, Scaphander interruptus. 362
XIII. Pelecypods: Nucula cymella, Thracia Stimpsoni, Jalletia (Tindaria) virens, II. (Tin- daria) acinula, Ledz pontonia, Yoldia scapania, Leda cestrota, Foldia pompholyx. Nucula callicredemna, Malletia (Tindaria) agathida, Cythcrea encymata, Myonera pancistriata, Cuspidaria (Luzonia) chilensis 362

VIII

LIST OF ILLUSTRATIONS.
Page.
XIV. Pelecypods: Oryptodon pyriformis, C. fucgiënsis, C. ovoidens, Nucula Verrillii, Semele nuculoides, Incina leucosyma, Veneriglossa vesica, Limcea Bronniana, Limatula setifera, Lucina sagrinata, Veneriglossa vesica, Lucina sombrerensis 362
XV. Ethnological Map of the Middle Atlantic Slope. Location of Indian tribes in 1607 368
XVI. Examples of fabrics impressed upon Pottery of the Potomac Valley 367
XVII. Map of the District of Columbia, showing ancient village sites, ete 370
XVIII. Rude chipped implements from the District of Columbia (half natural size) 370
XLX. Rude chipped implements from the District of Columbia (half natural size) 370
XX. Paleolithic implements from the District of Columbia (half natural size) 373
XXI. Paleolithic implements from the District of Columbia (half natural size) 374
XXII. Harpe and clasper of species of Tæniocampinæ 496
KXIII. Harpe and clasper of species of Tæniocampinæ 496

DATES OF PUBLICATION OF ARTICLES.

Nos. 761-772, February 5, 1890; 773, March 7, 1830; 774, Marc.. 4, 1890; 775, March 4, 1890, adrance sheets issued December 10, 1:83: 776, 777, March 7, 1890; 778, March 8, 1890; 779, A pril $\because 1,1890 ; 780$, April 21, 1890, adrance sheets issued January 20, 1890; 782-786, May 22, 1890; 757-789, June -, 1890; advance sheets of 787 issued March 4, 1890.

LIST OF ERRATA.

Page 85. The fourth paragraph should read: Dr. Theodor Pleske kindly writes me in regard to the specimens in St. Petershurg: "Our museum possesses two excellent specimens of this species, both fully adult. One specimen was collected in Bering Island by Wrangell, the other is of unknown origin."
Page 369, line 3, for "Plates XVI, XVII" read "Plates XVIII, XIX."
Page 369, line 13, for "Plate XVIII" read "Plate XVII."
Page 369, line 34, for "Plate XIX" read "Plate XVI."

PROCEIDINGS

OF THE

UNITEI) STATES NATIONAL MUSEUMI

Volume XII.

A REVIEW OF THE GENUS XIPHOCOLAPTES OF LESSON.
BY
Robert Ridgway, Curator of the Department of Birds.

Two specimens of an manown species of this genus, from Costa Rica, having been sent to me for identification by the director of the Costa Rica National Museum, I found myself led into an investigation which, contrary to my expectation or desire, has involsed a rery considerathe amount of labor and researeh. Fortuately, the National Museum collection, re-enforced by specimens in the collections of the American Mnsemm of Natural History, in Ner York, the Boston Society of Natural History, and the Museum of Comparative Zoology, in Cambridye, has afforded me fair material to mork upon, and my thanks are due to the officers of those institutions who have kindly placed this material in my hands for study.

Somemhat to my surprise, the existence of a much greater number of clearly-defined forms than have been recognized by leading authorities soon became apparent; and a strict regard for the principles of geographical distribution and variation has left me no other resumree than to describe a considerable number as new to science, even though by so doing the number of the latter exactly equals that of those which have hitherto been recognized as valid.

Until the two Costa Rican specimeus above mentioned were obtained no representative of the genus was known to occur in any portion of the continent lying betreen Cuatemala and the interior of Colombia, and there are still extensive regions in Sonth America of which the same may still be said. Consequently, it is quite certain that when more extensive collections have been made in those regions and the birds of other portions of the "great bird continent" are better known, the number of forms will be considerably further increased.

It is also very likely that more material will show that sereral of the forms now ranked as distinct species actually intergrade, thas being entitled only to trimomial instead of binomial appellations.

Genus Xiphocolaptes Lesson.

 © Heine, Mus. Hein., if, 1859, 35, 36.-Scl., Cat. Am. B., 1861, 16:3, 164 (excl. X. perrotii,=Dendrexetastes perrotii).-Scl. \& Saly., Nom. Neotr., 1873, 68.

Dendrocolaptes (part) Lafr., Rev. et Mag. Zool., 1850, 98-104.
" Dendrocopus Renb., 1853 (nee Vieill., 1815)."
Gen. Char.-Size, largest of the family, exeept genera Nasicle and Drymornist (total length abont 11.00-13.00, wing 4.7(0-6.00); bill, from rictus, nearly twice the length of the tarsus, slightly curved, much compressed; tarsus longer than middle toe, the onter toe equal to the midble; wing longer than tail, third to sixth quill lougest (fourth or tifth a little longer than third and sixth), the primaries exceeding the secoudaries by much less than length of tarsus ; tail graduated, the feathers hard, with rery rigid, sharp-pointed shafts. Color: Remiges and rectifees chestmat or cimmamon-rufous, the inner webs of longer primaries tipped with dusky ; rest of plumage brownish (chiefly cinnamon-rufous in . I. mojor), the hreast, etc., with more or less distinct streaks of paler, the pilemm and hind-neek (rarels the bate) usually also straked.

The genera most nearly allied to Tiphocolaptes are Nosice Lesson, Dendrexctustes Eyton, $\frac{\ddagger}{7}$ and I endrocolaptes Deermann.§ They are all readily distinguished, however, by the following characters :
n^{1}. Bill much compressenl, its width at gonyleal angle little if any more than half its height at same place.
b^{1}. Bill extremely long, its length from nostril more than twice the length of the fansus

Nasica.
b^{2}. Bill moderately long, its length from nostril less than one and a half times the length of the tarsus

Siphocolaptes.
a^{2}. Bill not compressed, its with at gonydeal angle nearly equal to its lueight at same place.
b^{1}. Bill from nostril longer than tarsus
Dendrocolaptes.
b^{2}. Bill from nostril not longer than tarsus Dendrexetastes.
HAB — Sionthern Mexieo to Argentine Republir, Paragnay, and Peru.
KEY TO SPECLES.
(Omitting those which I have not seen, excenting I. simpliciceps Lafr.) a^{1}. Back and scapulars brown, very different from the cinnamon-rufous or chestnut of remiges and tail.
b^{1}. Pileum and hind neck streaked with paler.
c^{2}. Pileum and hind neek sharply (though sometimes very narrowly) streaked, the ground color more or less darker than the back.

[^0]d^{1}. Belly and under tail-coverts distinctly barred with dusky.
e^{1}. Bars on belly, etc., very distinct and continuous; pileum black, broadly streaked ; tail dark chestnut. Hab., Brazil.
X. albicollis (Vieill.) (p. 3).
e^{2}. Bars on belly, etc., less distinct, in places more or less concealed or interrupted; pileum dusky brown, narrowly streaked; tail clear chestnut. Hab., Southern Mexico
X. sclateri Ridgw. (p. 6).
d^{2}. Belly and under tail-coverts not distinctly barred with dusky.
e^{1}. Middle of belly with very faint bars or transverse spots.
f^{1}. Breast very narrowly streaked. Hab. Guatemala.
X. emigrans Scl. (p, 7).
f^{2}. Breast broadly streaked. Hab. Costa Rica.
X. emigrans costaricensis RIDGW. (p, 8).
e^{2}. Whole belly spotted with black (the spots in two rows on each feather, separated by a more or less distinct bufty streak).
f^{1}. Pileum broadly streaked (streaks much broader than shafts of the feathers).
g^{\prime}. Brown of lower parts, back, ete., of a ruddy or tawny hue; bill slender, blackish; wing-coverts withont streaks. Hab. Colombia.
N. promeropirhynchus, Less. (p. 10).
$g^{\text {a }}$. Brown of lower parts, back, etc., of an olive hue; bill stouter, light horn-color; lesser and middle wing-coverts streaked with buff. Hab. unkuown
X. virgatus Ridgw. (p. 11).
f^{2}. Pileum very narrowly streaked (streaks nearly or quite confined to the shafts).
g^{2}. Rusty-brown above, tawny-brown below, the tail clear rufous, like wiugs. Hab. Ecuador..................... . . ignotus Ridgw. (p. 13).
g^{2}. Rich umber-brown above and below; tail very dark chestnut, much darker than deep chestnut wings. Hab. Ecuador to Peru.
I. compressirostris Taczan. (p. 18).
c^{2}. Pileum indistinctly streaked, and not darker than back. (Pileum and back cinnamon-brown, the former narrowly and indistinctly streaked with pale cinnamon or rusty buff; beneath pale wood-brown, streaked with light buff.) Hab. Northeastern Brazil (Bahia).
X. cinnamomeus Ridgw. (p. 15).
b^{1}. Pileum and hind-neck without streaks (otherwise much like I. compresirostris). Hab. Bolivia simpliciceps Lafr. (p. 13). a^{2}. Back and seapulars bright cinuamon-rufous, like wings and tail.
b^{1}. Beneath pale cinnamon, with broader buffy streaks, the throat much paler; under tail-coverts light cinuamon-rufous; above cinuamon-rufons. Hab. Paraguay and Argentine Republic ... Vieill. (p. 16).
b^{2}. Beneath deep cinnamou-rusty, with much narrower buffy streaks, the throat much duller but scarcely paler; under tail-coverts bright chestnut; upper parts bright chestnut. Hab. Bolivia major castaneus Ridgw. (p. 17).

Xiphocolaptes albicollis (Vieili..).

Dendrocopus albicollis Vieill., Nour. Dict., Xxtit, 1~12, 117; Enc. Méth., 1893, 625 (Brazil).-Reicrr., Handb., I, 1850, 189, pl. 539, fig. 3692.
Dendrocolaptes albicollis Gray, Gen. B., I, 1849, 140.-Bonap., Consp., I, 1850, 287.-Lafr., Rev. et Mag. Zool., 1850, 98.

Xiphocolaptesulbicollis Cab. \& Heine, Mus. Hein., ir, 1-59, 36 (Brazil).-Scl., Ibis, 1859, 118 ; Cat. Am. B., 1861, 163 (S. E. Brazil).-Scl. \& Salt., Ex. Orn., I, 1869, 72 ; Nom. Neotr., 1873, 63.-von Berl.,J. f. O., 1873, 253 (Sta. Catarina).White, P. Z. S., 1852, 613 (Misiones, Arg. Rep.).-von Berl \& von Jaering, Zeitschr. fiir Ora., 1885, 146 (Taquara and Arroio Graude, Prov. Rio Grande do Sul),-Scl. \& Hudson, Arg. Orn., 1, 1888, 200 (Misiones).

Dendrocolaptes decumanus Licht., Ahh. Ak. Berl., $1=20$, 256 , pl. 1, fig. 1 ; Verz. Doubl., 18:3, 16.-Spix, Av. Bras., I, 18:24, 86, pl. 87 (Arapacu).-Burm., Syst. Ueb., III, 1856, 10.
Niphocolaptes decumanus Less., Rev. Zool., 1840, 269.
Dendrocolaptes crassirostris Such, Zool. Jour., 18:26, ir, 115.
Dendrocops crassirostris Lafr., Rev. et Mag. Zool., 1851, 325.
Dendrocolaptes suttatus MLx., Beitr., 1il, 1831, 11:20 (Rio de Janeiro, Capo Frio, and Espiritu Santo ; nec Licht.).
Hab.-Eastern Brazil, north to Bahia, south to northern portion of Argentine Republic (Misiones, etc.).

Sp. Cirar.-Pileum and hind-ueck black, rather broadiy streaked with butf'; whole belly, thighs, anal region, and muler tail-coverts distinctly and regularly barred with blackish; chiu and nearly whole throat white or pale buil ; tail dark or dull chestnut, contrasting with color of upper tail-coverts.

Adult (No. 36770 , Rio de Janciro, Brazil; Natural History Museum of Rio).-Pilemin and hind-neck black, broadly streaked with buff, some of the streaks of guttate form ; back and scapulars raw-umber, outer surface of closed wings similar, but browner (uearly a mummy-brown hue); upper back narrowly streaked with buff; lower back tawny brown or mummy brown, deepening into rusty chestnut on rump and upper tailcoverts; tail dark chestnut, the shafts still darker; inner webs of remiges clear light chestmut, the terminal portion, however, dusky. Lores, suborbital region, ear coverts, and narrow superciliary stripe pale buff, narrowly and indistinctly streaked (except the first) with dusky; upper portion of auricular region blackish, streaked with buff, forming a broken postocular stripe; malar region brownish black, marked with guttate spots or streaks of buff. Chin and throat plain buffy white; rest of under parts light raw-umber, tiuged with tawny, brighter and deeper on sides and flanks, paler and more tawny on belly, thighs, anal region, and under taileoserts (the latter more rusty), which are distinctly and regularly barred with blackish; chest, breast, and sides narrowly striped with pate dull buff, the streaks becoming much narrower posteriorly, those along the median line, quite to the white of the throat, margined with small dusky-brown spots. Under wing coverts pale tawny or light ochaceons, barred with black. Upper mandible brownish black; lower mandible brownish in middle portion, dark grayish basally, blackish at tip and horn-whitish on gonys; legs and feet olivedusk.y. Length (skin), 11.90; wiug, 5.30; tail, 5.10; culmen, 2.10 ; depth of bill at angle of gonys, 40 ; tarsus, 1.22 ; middle toe, 1.00 .

Young.-Accorling to Cornt von Berlepsch (l.c.), the young have shorter bills and broad rusty yellow guttate spots, instead of streaks, on the top of the head.

Among the eight adult examples of this species which have been examined in comection with the present review, are some notable variations of color, correlated with difference of locality, which if shared by
additional specimens would necessitate the recognition of at least two geographical races in aldition to the typical form. The specimens examined are as follows:
a. No. 36770 , U. S. Nat. Mus., Rio do Jauciro; Natural History Museum of Rio
b. No. 36769 , U. S. Nat. Mns., Rio de Janeiro; Natural History Mnseum of Rio.
c. No. 24016, U. S. Nat. Mus., "South America (Cruise of the Delaware) Dr. G. R. Horner."
d. No. 24035, U. S. Nat. Mus., Sta. Catarina ; Lemnel Wells.
e. No. 116630, U. S. Nat. Mus., Sta. Catarina; Lemuel Wells.
f. No. 14726, U. S. Nat. Mus., Buenos Ayres; J. K. Townseud.
g. No. 17966, Mus. Comp. Zoology, Thayer expedition. (Locality not given.)
h. No. -, Am. Mus. Nat. Hist., "Brazil?"; Lawrence collection.

Specimens a, b, c, and h are typical T. albicgllis, having the rump and upper tail-coverts rusty-chestnut (the lower back, even, tinged with the same), and the under surface strongly tinged with tawne.

Specimens d and e (from Sta. Catarima) have the rump and upper tail-coverts olivaceous-russet, only slightly tinged with rusty (this tinge confined to upper tail-roverts in specimen (), the muler parts much less tawny, the butfy streaks on pileum slighty narrower and paler, and the bill decidedly smaller and more slender, and uniform brownish black in color, instead of having the under mandible (and sometimes terminal portion of the upper) mostly horn-colored.

Specimen g is nearly intermediate, having the more tawne moler parts of true T. ulbicollis, the small, slender, wholly blatk bill of Sta. Catarina specimens, and the color of the rump and upper tail coverts intermediate between the two, or russet, hecoming deeper on upper tailcoverts.

Specimen f (from Bumos Ayres) is pariculaly difurent in color from true T. albicollis, and unless the peculiar coloration may be due, more or less, to exposure to the light (it having been mounted for many years) is different enongh to be considered specifically distinct. The ground color of the pilemm and hind-neck, instead of being blaek is dull sepia-brown, with the streaks dull butfr-whitish; the back, scapulars, and almost the whole of the outer surface of the closed wing are dull grayish-brown or pale sepia, the lower back, sump, and upper tail-coverts browner, but not approaching rusty, thongh the upper tail coverts have a tinge of light Mars-brown. The tail and the inner webs of the remiges are dull chestunt, much lighter as well as duller than in typical I. al. bicollis ; the ground color of the under parts of the body is light gray-ish-brown or broccoli-brown, the streaks dull whitish. Should other examples from Buenos Ayres prove to be similar to this one, I propose that the bird be called Xiphocolaptes argentinus or X. albicollis urgentinus.

The measurements of these specimens are as follows:

	Total length.	Wing.	Tail.	Culшอュ.	Depth of bill.	Tarsus.	$\begin{aligned} & \text { Mid. } \\ & \text { toe. } \end{aligned}$	
a.	12.10	5.30	520	2.00	. 42	1. 22	1.02	
b.	11.90	5. 30	5. 10	2.10	. 40	1.22	1. 00	
c.		5. 20	5. 00			1. 25	1.02	Bill broken off near base.
d.	11.50	4. 70	4. 50	2.05	. 32	1.20	1.08	
c.	11.20	5. 05	4.55	1.95	. 35	1.18	1. 05	
f.	(11.50)	5. 30		2.08	. 38			Middle tail-feathers wanting.
g.	11.75	5. 20	5. 05	2.03	. 40	1. 23	1.05	
h.	12. 40	5. 30	4.90	2.18	. 38	1.18	1.05	

It will thas be seen that not only do the two Sta. Catarina specimens (d and e) have smaller or more slender bills, but they also have shorter wings and tails than those from other localities.

Xiphocolaptes sclateri, sp. nov.
"Xiphocolaptes albicollis (Vielle.)?" Scl., P. Z. S., 1857, 202 (vicinity of Jalapa).
Xiphocolaptes emigrans (part) Scl., Ibis, 1859, 118 (Jalapa).-Scl. \& Salv., Ex. Orn., pt. v, December, 1867, 69 (part).-Sumichr., Mem. Bost. Soc., I, 1869, 554 (Vera Cruz).
Sp. Cmar.-Similar to I. albicollis (Vieill.), but larger, with longer bill, narrower streaks on pileum and hind neek, and less distinct bars on abdomen.

Hab.-Southeastern Mexico (mountains of Vera Cruz).
Adult (type, No. 3744^{2}, Orizaba, Mexico; Prof. F. Sumichrast).-Pileum brownish black, each feather with a sharply-defined narrow mesial streak of pale buff; hind-neck, back, and scapulars olive-brown, the first streaked like the pilemm, the upper back with much narrower streaks or shaft-lines; rump and upper tail-coverts bright cinnamonrufous, the lower back tinged with the same; wings slightly pater cin-namon-rufous, the exposed portion of the coverts mostly light olivebrown, the primaries and secondaries indistinctly edged with the same; tail clear chestunt, with shafts of the feathers mostly dusky. Sides of head streaked with dak olive brown and pale buffy, the latter prevailing on supereiiiary and orbital regions and ear-coverts, the former on upper portion of ear coverts and on malar region. Chin and upper throat buffy white, deepening into light buff on lower throat; foreneck, sides of neck, chest, and breast light olive brown, inclining to raw-umber, each feather marked with a distinct mesial streak of buffy whitish; sides and flanks raw-umber, tinged with cinnamon-tawny, the first with very narrow paler streaks; belly and under tail-coverts light olive-tawny, barred or transversely spotted with dusky, the feathers with very fine paler shaft-streaks; axillars and under wing-coverts ochraceous, barred with dusky. Upper mandible dark horn-color, lower bluish dusky (plumbeons in life?) ; legs aud fect greenish dusky (dark olive in life ?). Length (skin), 12.j̃o; wing, .s.60; tail, 5.60; culmen, 2.30; depth of bill at angle, . 40 ; tarsus, 1.30 ; middle toe, 1.12.

An adult from Orizaba in the collection of the Museum of Comparative Zoology, Cambridge, Massachusetts (No. 31s:37), is iike the one deseribed above, but is slightly more olivaceous beneath, the uper belly somerhat tinged with tawny, and the onter surface of the remiges (except tertials) more strongly washed with brown. The bill is also somewhat paler, being tinged with horn-whitish on terminal portion of the culmen, and on the gonys. Length (skin), 13.00; wing, 5.55 ; tail, 5.30 ; culmen, 2.35 ; depth of bill at angle, .40 ; tarsus, 1.32 ; middle toe, 1.12.

I am less surprised that this rery distinct species should have been at first referred to X . albicollis than that it could afterwards have been considered the same as the Guatemalan X. emigrous.

Xiphocolaptes emigrans ScL.

Tiphocolaptes emigrans Scl., Ibis, April, 1859, 118, $1: 27$ (Guatemala) ; Cat. Am. B., 1861, 163.--Cab. \& Heine, Mus. Hein., i1, 1859, 36.-Scl. \& Salv., Ex. Orn., r, 1869, pl. 35 (part; Guatemala) ; Nom. Neotr., 1873, 68 (part).
Sp. Char.-Pileum bistre-brown, narrowly streaked with pale buffy; lower parts raw-mmber, the belly without distinct markings, the throat striped with pate buff or dull buffy white, and chest very narrowly streaked with the same; malar region dark bistre, narrowly streaked with pale tawny.

Hab.-Guatemala.

Adult (Lawrence collection, Am. Mus. Nat. Hist., Guatemala; J. G. Bell).-Pilemm dark bistre, each feather with a narrow mesial streak of pale buffy; hind-neck similar, but paler brown, with still narrower streaks; back and scapulars plain brown (intermediate between bistre and mummy brown), the wing-coverts similar, but tinged with rinsty, the inner web of greater and primary corerts rusty chestnut ; remiges clear chestnut, the outer web of primaries mostly light mummy brown, and terminal portion of inner web of five outer quills dusky; lower back, rump, and upper tail-coverts rusty chestunt; tail deep chestnut, with shafts darker (dusky on middle feathers except toward tips). Lores dull brownish whitish; superciliary region broadly streaked with pale dull buffy; suborbital region and auriculars (except along upper margin) dull brownish whitish streaked with dark brown; malar region deep bistre, narrowly streaked with pale tawny. Chin brownish white or pale dull buffy tinged with brown; upper throat similar, broadly streaked or striped with raw umber; rest of lower parts raw-umber brown, the lower throat broadly and chest narrowly streaked with pale buffy, the breast and anterior portion of sides with very narrow shaftstreaks of the same; belly, anal region, and under tail-coverts marked with small, indistinct, transverse spots of grayish brown ; axillars and under wing-coverts pale tawny or ochaceous barred or tramsversely spotted with bankish brown. Bill horn-color, paler on terminal half of upper mandible, the basal half of lower mandible grayish or bluish
horn-color; feet greenish horn-color, the claws pale brownish. Length (skin), 10.60 ; wing, 5.50 ; tail, 5.00 ; culmen, 2.10 ; depth of bill at gonydeal angle, 40 ; tarsus, 1.18 ; middle toe, 1.05.

Xiphocolaptes emigrans costaricensis RIDGW.

Xiphocolaptes emigrans costaricensis Ridgw., Proc. U. S. Nat. Mus., xi, 1889, 541.
Sutbsp. Oifar.-Similar to I. emigrans Scl., from Guatemala, but slightly larger, and with streaks on breast, etc., broader.

Нab.-Costa Rica (Naranjo, Cartago).
Adult mule (type, No. 115041, U. S. Nat. Mus., Naranjo, Cartago, Costa Rica, Augnst, 1sisg, J. O. Zeledon).-Pileum dusky sepia brown, each feather with a rery distinct mesial streak of pale dull buffy, the gromed color gradually changing on occiput, hind-neck and back into raw-umber, tinged with rusty, the streaks at the same time becoming narrower until they disappear altogether about the middle of the upper back; lower back, rump, and upper tail-coverts light reddish chestnut; remiges and rectrices rather deeper, or clear chestunt, the shafts of the latter becoming hackish basalls; wing-coserts and outer webs of primaries and their coverts light raw-umber. Sides of head streaked with pale dull bulfy and dark sepia, the latter prevailing on malar region, the former immediately above, forming two ill-defined, rather broad, stripes; chin aud uper throat plaiu pale dull buffy; rest of lower parts rawumber, tinged with rusty or tawny, the chest, upper breast, and sides of neek rather broadly and very distinctly streaked with very pale buffy, the other lower parts much more narrowly and indistinctly streaked with the same; middle portion of lower belly marked with a few tramserse spots of blackish, arranged transversely, but uot forming continuons bans; under wing-coverts light ochraceous, transversely spotted with blackish, these spots on both webs of the feathers, but those of opposite webs separated by a median space of ochraceous. Bill light grayish horn-color, darker basally; feet dusky horn-color; "iris dark." Length (skin), 10.90 ; wing (quills woru at tips and some of them moulting), 5.50 ; tail (middle feathers not full grown), 5.10 ; culmen, 2.20 ; bill from nostril, 1.53 ; depth at angle of gouys, . 40 ; tarsus, 1.30.

Immature fomale (No. 2006, coll. Costa Rica National Museum, same locality, ete.).-Pilemm dull black, changing to bistre-brown on occiput, each feather marked with a distinct mesial streak of pale brownish buff; hind-neck and upper back lighter and clearer brown* than oceiput, but similarly streaked, thongh the streaks become much narrower on the back; scapulars and lesser wing coverts similar in color to the back, but withont streaks; midtle and greater coverts similar, but tinged with rusts; remiges clear, rather light, chestnut, the primaries edged with light bistre; primary corerts light bistre, with median portion

[^1]chestnut; lower back, rump, and upper tail-coverts bright reddish chestnat; tail clear chestnut, with shafts becoming blackish basally. Sides of head streaked with dark bistre and light dull buffy, the latter prevailing on orbital region and ear-coverts, the former on malar region; chin and upper throat phain pale grayish bulfy, the lower throat similar but indistinctly spotted or mottled with brownish ; sides of neek, chest, and under parts generally, raw-umber, more rufesceut on sides and lower tail-coverts; sides of neck narrowly streaked with pale brownish buffy; chest and upper breast broadly streaked with a paler and duller tint of the same, each streak margined laterally by a narrower dusky streak; lower breast and belly with similar but much narrower and less distinct streaks, the middle and lower portion of the latter marked with small transverse spots of dusks, in transverse series, but not forming continuous bars; under tail coverts very indistinctly streaked with paler and faintly spotted with dusky. Bill horn-color, feet dusky, "iris dark." Length (skin), 11.75; wing, 5.50 ; tail, 5.30; culmen, 1.90 .

Compared with a typical example of J. emigrons. Scl., from Guatemala (in the Lawreuce collection, American Muscum Nat. Пist.), the resemblance is so rery close as to leave no doubt as to their specific ideutity, such differences as are observable being not more than sufficient to characterize a local race. These consist, in addition to those mentioned in the diagnosis, in the longer, rather narrower bill (culmen 2.20 iustead of 2.10 , depth at gonydeal angle .40 instead of .42), longer wing (5.70 instead of 5.45) and tail (5.10 instead of 4.85), much broader streaks on chest, etc., and absence of distinct brown stripes on the throat.
'When the two specimens described above were first received I was able to compare them only with two specimens of so-called I. cmigrans from Southern Mexico (Jalapa), from which they were so very different that I considered them specifically distinct. It the same time I was greatly puzzled by several very marked discrepancies between Mr. Sclater's and other) descriptions oí I. emigrens aud the characters of the Crizaba specimens, the latter having the belly distinctly barred with dusky instead of having this feature entirely absent, the tail 4.70 to 5.00 inches (measured from insertion of the middle feathers) instead of 4.50 , and the bill mainly dusky instead of "a dirty horn-colored white." The matter was quite cleared up, howerer, when I receised (from the anthorities of the American Mnseum, in New York) a specimen of the true I . emigrans, from Guatemala, agreeing entirely with Dr. Sclater's description, and so different from all Mexican examples I hare seen that I can not avoid considering them specifically distinct.*

The immature bird described above, with its rather darker colors, smaller and darker bill, and dusky margius to the pale buffy streaks on the breast, etc., presente a rather close general resemblance to I. promeropirhynchus, from Colombia, four specimens of which are now before me. But the bill is much deeper, as well as less curved, the rump much

[^2]more extensively chestunt, the throat whiter, and the belly much less distinctly spotted. The adult does not at all resemble X. promeropirhynchus.*

Xiphocolaptes promeropirhynchus (Less.).

Dendrocoluptes promeropirhynchus (Less.), Rev. Zool., 1-40, 270.-LaFr., Rev. et Mag. Zool., 1850, 99 (Colombia).-Scl., P. Z. S., 1855, 142 (Bogota).
Dendrocoptes promeropirhynchus Reicu., Handb., I, 1850, 190, pl. 536, fig. 3678.
Xiphocolaptes promeropirhynchus Cab. \& Henne, Mus. Hein., iI, 1859, 36 (New Granada).-Scl., Cat. Aim. B., 1861, 163 (Bogota).-Scl. \& Salv., Ex. Orn., r,1869, 72 (part); Nom. Neotr., 1873, 63 (part).
Picolaptes promeropirhynchus Gray, Gen. B., I, 1840, 140.
Sp. Char.-Pilemu bistre-brown, very narrowly streaked with light tawny; chin and throat dull light tawny or brownish-buff ; rest of under parts raw umber-brown, broadly streaked with brownish-buff or light tawny, these streaks usually (?) with indistiuct dusky margius ; belly brownish-tawny, streaked with paler, and spotted with dusky. Bill dasky, smaller than in any other member of the genus 'culmen not more than 2.00 , usually much less).
Hab.-Colombia (vicinity of Bogota).
Adult (No. SSt.57, Bogota; obtained from Count ron Berlepsch).Pilemm deep bistre, this color gradually fading on hind-neck, back, scapulars, and lesser and middle wing-coverts into raw-umber brown, with a slight tawny tinge, the pilem and hind-neck rery narrowly streaked with buff, the upper portion of the back with still narrower streaks of the same; lower back russet, deepening into chestunt on rump and upper tail-coverts; tail deep chestnut, the shafts brighter or redder, becoming darker basally; outer webs of greater and primary wing coverts tawn brown or raw-umber, like back, their inner webs chestunt (a little lighter than tail), the onter webs of exterior primaries inclining to raw-muber, the terminal portion of imer webs of seven outer quills dusky brown. Lores, suborbital region, and auriculars buff, the latter sparsely streaked with dark brown, this more extended along upper portion, producing an indistinct postocular stripe, bortered above hy a stripe of hroad buil streabs; malar region dark bistre marked with guttate streaks of buff. Chin dull brownish-white, deepening into brownish-buff on throat; rest of under parts raw-umber, becoming paler and more tawn on belly; the chest, breast, and anterior portion of sides rather broadly streaked \dagger with buff, the belly with wider but less sharply defined serrated streaks margined on each side by a row of lusky spots; under tail-coverts mummy-brown, with pale tarny shaft-streaks; axillarsand under wing-coverts tawny ochraceous, spotted

[^3]with dusky. Bill blackish, horn-color, feet grayish-black. Length (skin), 10.50 ; wing, 5.60 ; tail, 5.50 ; culmen, 1.50 ; depth of bill at gonydeal angle, . 35 ; tarsus, 1.27 ; middle toe, 1.10 .
Three adults from Bogota in the collection of the American Museum of Natural History (Lawrence collection) are essentially similar, but have the streaks on lower parts broader and extending quite to the belly and flanks, and indistinctly margined along each side with dusky; the belly more heavily spotted with dusky or blackish; two of them haring the under tail-coverts spotted.

They measure as follows:

	Total length.*	Wings.	'Tail.	Culmen.	Denth of bill at angle.	Tarsus.	$\begin{gathered} \text { Middle } \\ \text { toe. } \end{gathered}$
a.	10. 30	5. 70	5. 50	2. 00	. 35	1.27	1.03
b.	9.70)	5.35	5.15	1. 75		1.25	1.00
c.	10.60	5. 60	5.25	2.00	. 37	1. 25	1.10

This species may very readily be distinguished from its allies by the very small, dark-colored bill (smaller than in any other member of the genus), and from all except I. compressirnstris Taczan., by the very deep coloration, with distinctly spotted belly: All the skins examined are of the well-known "Bogota" make.

It is hardly possible to determine from the description (Rer. Zool, $1840,270 t$) what species Lesson intended to deseribe under the name Dendrocolaptes promeropirhynchus, the uncertainty being rendered still greater by the fact that he gave no locality: Lafresnaye, howerer, redescribed the species (Rev. et Mag. de Zool., 1850, 1p. 99, 100), and assigned to it the habitat "Colombia" (" satis frequs"ns") ; and, presuming that he had examined Lesson's trpe, I follow the general custom of identifying Lesson's name with the Bogota bird.

Xiphocolaptes virgatus, sp. nov.
Sp. Char.-DIost like I. promeropirhynchus (Less.), hat paler and grayer on anterior upper parts, the back conspicuonsly streaked with pale buffy; under parts much less tawny, with stripes broader; bill stouter, light grayish horn-color, dusky only at base.

Нав.-Unknown.
Adult (tspe in Coll. Am. Mus. Nat. Hist., withont number, locality, or other data). - Pileum dull, dusky olive or olive-bistre, dis-

[^4]
12 REVIEW OF THE GENUS XIPHOCOLAPTES-RIDGWAY.

tinetly streaked with pale bnfirs (streaks abont as wide as in T. promeropirhynchus); hind-neck and back light oive-brown, narrowly but very distinctly streaked with pale buffy; lesser and middle wing-coverts and anteriorseapulars similar, but the more anterior lesser coserts tinged with. rusty; posterior scapulars, greater and primary corerts, and lower back plain raw-umber brown, becoming more insset posteriorly, the rump and upper tail-corerts inclining to rusty chestunt; tail chestunt (lighter than in X. promeropirhynchus), with shafts becoming blackish in middle portion; remiges and inner webs of primary and greater coverts dull cinnamon-rufous or light chestunt (much less bright than in X. promeropirhynchus), the outer webs of secondaries and five or six onter primaries washed or orerlaid on edges with light raw-umber (appearing nearly uniform on the closed wing); inner webs of primaries dusky at tips, this color extending for about 1.50 inches on second quill, from which gradually but decidedly decreasing in extent toward innermost quill. Band on side of head from (and including) lores beneath eyes and across lower half of amriculars light buff, the posterior portion sparsely streaked with dusky; upper portion of ear-coserts more broadly streaked with dusky, forming a broken postocular stripe; above this a stripe of pale buff extending from above the eyes to the occiput, broken by a few namow, clusky streaks; malar region dusky brown, marked with longitudinal broad spots or streaks of light buff. Chin and upper throat pale bufi, the latter with sereral dashes or iregular streaks of light olive-brown; fore-neck and sides of neek light olive brown, broadly streaked with pale butf, the streaks on fore-neck margined laterally with dasky; chest, breast, and sides colored and maked like the fore-neek, but hut streaks broader (areraging about .15 of an inch) and more distinctly maresined with blackish; flanks raw-umber brown, less distinctly streaked; belly tawny-brown, marked with broad, sermated streakis of hofi, maremed on each side by a low of distinct black, deltoid spots; under tail-coverts somewhat similarly marked, but streaks more regular and spots much less distinct; under wing-coverts ochraceous, with obliquely transverse spots or interrupted bars of blackish. Bill light grayish horn-color, dusky at base; legs and feet grayish black. Length (skin, neek stretched), 13.30 ; wing, J.St ; tail, $\overline{3} . \overline{.7}$; culmen, 2.00; depth of bill at gonydeal angle, .40 ; tarsus, 1.25 ; middle toe, 1.05 .

With almost exactly the pattern of coloration eharacterizing X. promeropirhynchus, this species has a closer general resemblance, on account of the prevalent olivaceous coloring, to I . albicollis; but the latter differs conspicuously in the dechided black ground-color of the pileum, rery much. narrower streaks on breast, ete., bars on abdomen, darker chestnut of the tail, and several other characters. It does not require comparison with any other speries except T. ignotus, nobis, which is much more rufescent, has the stripes on the breast, etc., much less regular, the throat whiter, etc.

Xiphocolaptes ignotus，sp．nov．
Sp．Cinar．－Similar to I．virgutus，but much more rufescent，streaks on pileum and hind－neck much narrower，those on breast，etc．，much less regular，throat whiter，belly less distinctly spotted，and under tail－coverts barred with dusky．

Пalb．－Ecuador．
Youny male（type，No．5263，Am．Mus．Nat．Mist．，Ecuador；Verreaux collection，No．3s684）．－Pileum，hind－neck，back，and scapulats mummy－ brown，the first two narrowly streaked with light hrownish or tawny buff，the upper back with a few narrow shaft－lines of the same；wings （includiug lesser and middle coverts），lower back，rump，upper tail－cov－ erts，and tail，deep cimamon－rufons or hazel，the outer webs of greater wing coverts，primary coverts，and primaries more like the color of the back，and terminal portion of immer webs of six outer primaries dull dusky brown．Sides of head streaked with light buff and deep brown， the latter prevailing on mper portion of amicular region，the former predominating clsewhere ；the two colors in about equal amount on makar region．Chin and upper throat phain dull white ；rest of under parts light tawne hrown，the chest，breast，amb sides broally streaked with pale buff，each streak margined laterally with a blackish line； middle of lower breast with similar but more irregular streaks，with the blackish margin broken into spets，the belly similarly marked，but the paler streaks less defined amb the general color more tawn；under tail－coverts broally bared with blackish，the bars intermpted，how－ ever，by a marow pate fawny streak along the shaft of each feather． Bill horn－color，becoming brownish white at tip；legs and feet dusky horn color．Length（momed specimen），abont 1000 ；wing，5．75；tail， 4.50 ；culmen， 1.87 ；depth of bill at gunydeal angle， 40 ；tarsus， 1.25 ； middile toe，1．12．

The specimen deseribed is undoubtedly a roung bird，thongh fully grown，except perhaps as to the bill．The adult would dombtless be somewhat different in phmage，but，jndging from other species，could not be so much different as to render its identity with any other species with which it has been compared at all likely．

Xiphocolaptes compressirostris Taczan．

？Niphocoluptes promeropirhynchus Scl．，P．Z．S．，1859， 140 （Pallatanga，Lenador）．－ Scl．\＆Saly．，P．Z．S．，1873， 780 （Huasampilla，Peru）．
Xiphocolaptes promeropirhynchus？Taczan．，P．Z．S．，1879， 231 （Tambillo，Peru）．
Siphocolaples comprensirostris Taczan．，P．Z．S．，Jan，3，1及－2，ご（ Rayumana and Tam－ billo，N．E．Pern）；Orn．du Péron，iI，188．4，172．－Taczan．and von Berl．， P．Z．S．，1885， 90 （San Rafael，Ecuador）．

Hab．－Northern Perı and Southern Ecuador．

Sp．Cinar．－＂Similar to I．promeropirh？nchus，but bill shorter，more compressed，and pallid；fulvous streaks of the pileum and hind－neck narrower；back unicolored；throat fulvous，with two longitudinal stripes
of brown; middle of belly broadly ochracenus, spotted with black; stripes of the breast margined with black lines; under tail-coverts brownish rusty, varied with black; wings and tail darker." (Taczan., P. Z. S., 1882, 28; translation.)

Adult mulc.-"Entirely similar to T. promeropirhynchus, but differing in several details, particularly in the general coloration of the plumage being deeper; the rusty on the top of the head and neck much narrower, reduced to the shaft alone, and slightly enlarged on the barbels on the tip; the front part of the back would be almost unstriped did not the yellowish shafts of the feathers of this part produce some indication of stripes; throat uniform fulvous, crossed for whole length by two stripes formed hy a series of brown spots; on the lower part of the throat, the breast, the mper abdomen, and the flanks rusty stripes, bordered on both sides ly a welldefined black line; the middle of the abdomen mostly covered ly feathers of an ochreous fulrons, of which each one is rariegated by a series of black transerse stripes interrupted in the middle, so as to fom a pronomuced spotting; the under tail-coverts deeper and more rnsty than the preceding [belly] and equally variegated with black; size somewhat larger [than N. promeropirhynchus], bill less long, more elevated and more compressed. U'pper mandible of a homy-gray, with the tip black, lighter along the tomia, the lower one horn-blackish, passing gradually into plumbeous-gray towards the base; feet of an olive-plumbeous; iris deep brown.
"Total length, $342-3.30^{m i n} \quad$ [13.42-13.78 inches]; extent, $458-460$ mm [18.00-18.11 inches]; wing, $15{ }^{2}$-mm [5.94 inches]; tail, $13 \mathbf{5}^{\text {m"m }}$ [5.31 inches]; bill, $5 \sim^{2 m}$ [2.00 inched; height of bill opposite nostrils, $12^{\text {num }}[.47$ inch];
 [1.10 inches]." \Taczan., Orn. du P'érou, i, 188!, pp. 172, 173 ; trauslation.)

I refer with some doubt to this species a fine specimen from Guayaquil, Ecuador, in the National Museum collection (No. 101287, 1854, Dr. William II. Jones, U. S. Nary). It agrees with the above descrip)tion so far as colomation is concerned, except that the back has narrow, pale, sbalt-strealss, and the throat has four instead of two brown stripes. But the bill, instead of being shorter and more compressed than in X. promeropirhynchus, is longer and every way thicker, the culmen measuring 2.20 , the depth at gouydeal angle . 40 , while it is also much more decurved.

Should this bird prove to be distinct from .. . compressirostris, it might be appropriately named . . suturatus ; and in view of the possibility of this proving to be the case, I appond the following description:
Adult (No. 101287, Guaỵaquil, Ecuador, 1884; Dr. William II. Jones, U. S. Nary).-Pileum rather deep bistre (paler than in most examples of X. promeropirhynchus), each feather with a rery fine mesial line or shaft-streak of buff; hind-neck and upper back similar, but rather lighter and brighter, with the streaks still narrower; seapulars, wing.
coverts, and middle back Vandyke-brown; lower back, rump, upper tail coverts, and remiges deep chestnut, the imer wehs of longer primaries with terminal portion abruptly dusky (for the distance of 1.50 on third quill); tail very dark chestnut or chocolate. Supra-auricular region buff, streaked with deep brown; upper portion of amricnlars deep brown narrowly streaked with brownish butf; a broad band of nearly plain buffi on side of head, extending from lores beneath eyes over lower half, or more, of auriculars; beneath this a broad malar stripe of dark brown, streaked with buff; chin and throat dull bufis, the lower portion of the latter with several lines of dark brown ; rest of lower parts deep raw-umber (inclining to burnt-umber laterally and posteriorly), the chest and breast very broadly streaked with buff, each butf streak margined on each side by a narrower streak of hack; whole belly spotted with black, the median portion of each feather deep buff; under tailcoverts lighter burnt-mmber, less distinctly spotted with dusky and streaked with buffy or light rusty. Bill deep homecolor, strongly decurvel; feet dusky: Length(skin), 10.20 ; wing, 5.50 ; tail, 4.60; culmen, 2.20 (exposed part 1.90); bill from nostril, 1.5.) depth of bill at angle of gouys, 40 ; tarsus, 1.2S.

Speaking of a "female from San Rafael [Echador] collected on the 1st of March," Taczanowski (P. Z. S., 1855, pr. 98, 99) says:
This bird is intermediate between those collected in Peru and the X. promeropirhynchus (Less.) from New Granada, but more nearly allied to the former in many respects. It has the two brownish stripes on the throat well pronounced. The middle of the abdomen is equally strongly spotted in its whole extent up to the breast, on the midtle of which, evon, there are also some hack spots. The bill is intermediate, almost as high as in the Peruvian birds, but not quite so compressed. It seems to be even broader than in the six birls from New Granada (musenms of Warsaw and von Berlepsch), with which it has been compared. The color of the bill is also intermediate, darker than that of the bill of the Peruvian hird, but not black as in . . . promeropirhynchus.

Xiphocolaptes cinnamomeus, sp. nov.

Sp. Cinar.-Smallest of the genms (wing 5.20, tail 4.30). Pilemm cm-namon-brown (not very different from color of the back), narrowly streaked with cimamon-buffy ; lower parts light wood-hrown, broadly streaked with pale dull buffy, the belly marked with small, rather indistinct transverse spots of dall grayish-brown, the breast with a few similar markings; chin, upper throat, lores, supra-auricular stripe, and broader stripe beneath eyes, buff.

Hab.-Eastern Brazil (Bahia?).
Athult (Type, No. 78 is, Mus. Comp. Zool,, "Bahia, Brazil; A. de Lacerda"*).-Pilemm and hind-neck cimamon hrown, each feather with a narrow and not very distinct mesial streak of pale cimamon or cin-namon-buffy; back and scapulars cimmon-hrown, tinged with rusty, the former with narrow shaft-streaks of pale cimamon-buffy; lower

[^5]back, rump, and upper tail-coverts clear cimamon-rufous; wings light cinnamon-rufous, outer webs of wing-coverts chiefly cimamon-brown, and edges of remiges (except tertials and inner primaries) inclining to the same ; tail deeper cimamon-rufous, inclining to pale chestunt, the shatts of ten middle feathers blackish excent towards tips. Lores, narrow supra-auricular stripe, and broader stripe from beneath ese across lower half of auriculars, plain dull buffy; a postocular stripe (occupying upper half of auticulars) and broad malar stripe dull cinnamonbrown, very indistinctly streaked with paler; chin and upper throat plain pale buffi: ; rest of under parts light wood-brown (or pale buffy cinnamon-brown), the lower throat, chest, breast, sides, and flanks, rather broadly streaked with pale buffy (streaks narrower on sides and flanks), some of the streaks, especially on breast, margined on each side with small spots of darker brown than the general color; belly with slmilar but more numerous spots, becoming nearly obsolete posteriorly; muler tail-coverts light cinnamon, streaked with pale buffy; axillars and under wing-corerts light ochaceons marked with narrow transrerse spots of dusky. Upper mandible dark horn-color, fading into pale horn-color terminally; lower mandible pale horn-color, paler and more yellorist on gonydeal angle, dusky horn-color basally; legs and feet horn dusiky. Length (skin), 10.90 ; wing, 5.20 ; tail, 4.30 ; culmen, 2.00 ; depth of bill at gonydeal angle, . 40 ; tarsus, 1.1 s ; middle toe, 1.00 .

With the single exception of ... major (Vieill.), this is by far the most strongly characterized species that I have seen, and scarcely needs comparison with any other.

Xiphocolaptes major (Vieill.).

Dendrocopus maor Tieill., Nour. Dict., xxvi, 1818, 118 (Paraguay; ex Trapadore Grande Azara) ; Enc. Méth., 1823, 624.
Dendrocolaptes major Bonap., Consp., I, 1850, 207.-Lafr., Rev. et Mag. Zoul., 1850, 103.
Xiphocolaptes major yon Berl., J. f. O., Jan., 1887, 15 (Paraguay).-(?) Salvin, Ibis, 1880, 359 (Tucuman, Arg. Rep.).-(?) White, P. Z. S., 1882, 613 (Salta, Arg. Rep.).-(?) Scl. \& Hudson, Arg. Orn., I, 1888, 201 (part; Oran, Arg. Rep. ; not the description!).
Demdrocoluptes rubiginosus Lafr., Mag. de Zool., 1~33, Ois., pl. 16 (Buenos Ayzes; tspe examined!).
Sp. Cinar.- Above clear cimamon-rufons, much paler on head and neck and darker on tail; ear-coverts light chestnut ; chin and throat pale cinnamon streaked with buffy whitish; other under parts deeper cinnamon, streaked with pale butfy, the sides, flauks, and under tailcoverts rusty.

Hab.-Paraguay and Argentine Republic.
Adult male (No. 16327, Parakuy, June, 1859; Capt. T. J. Page, U. S. Nary).- Head and neck cinnamoneolor, the chin and throat much paler and streaked with buffy; car-coverts light chestnut; lores mixed dusky and dull buffy-whitish. Upper parts (except head and neck) clear cinnamon-rufous, deepening into chestunt ou tanl. Cuder surface of body
light cinnamon, tinged with rusty, streaked with pale buffy, the middle of the belly barred with brownish; sides, tlanks, under tail coverts, and under wing-corerts uearly uniform cinuamon-rufons or rusty. Bill horncolored basally, horn-whitish ou terminal half; legs and feet dusky.* Length (skin), 12.00 ; wing, 5.80 ; tail, $\pm .50$; culmen, $2 . .32$; tarsus, 1.30 ; middle toe, 1.07.

The type of Dendrocolaptes rubiginosus Lafr., now before me, agrees closely in coloration with the specimen described above, and undonbtedly belongs to the same species. It has the chin and throat a little paler, however, and the ear-coverts less distinctly chestnut, and the bill almost wholly horn-whitish. Length (mounted specimen), 11.50 ; wing, 6.00 ; tail, 4.50 ; culmen, 2.52 ; depth of bill at angle, .42 ; tarsus, 1.40 ; middle toe, 1.12.
Speaking of specimens from Lambaré, Paraguay, Count ron Berlepsch remarks as follows (J. f. O., 1887, 15) :

The female collected on the 8th of Jannary has blackish edges on the tips of the feathers of the crown, of which markings the other female shows no trace. The other has conspicuously red-brown cheeks [auriculars] and seems to be an older, more highly-colored bird. This bird also agrees essentially with a specimen in my collection from Tucuman.

It should be noted that in Vieillot's description of this species is an important error, in the statement that the under parts are streaked with black, whereas they are streaked with whitish. Since Vieillot expressly says that all the other species of the genus are streaked with white, it would seem that the mistake is not a mere "slip of the pen," thus rendering it probable that Azara himself, inadvertently perhaps, committed the error.

Xiphocolaptes major castaneus, subsp. nov.
Xiphocolaptes major Scl., Cat. Am. B., 1~iti, 164 (Bolivia: mee Dentrocolaptes major Vieill.).-Scl. \& Saly., Ex. Orn., pt. v, Jan., 1868, '71 (excl. syu.), pl. 36 (Bolivia).-Scl. \& Hudson, Arg. Orn., I, 1888, 201, part (description).
Sp. ('har.-Similar to X. mujor (Vieill.) of Paragnay and Argentina, but much deeper colored, especially on the head, neck, and under parts, the chin and throat dull russet-brown, instead of cinnamon-bulfe, the light streaks of breast, etc., much narrower, bars on belly obsolete, aud under tail-coverts deep chestnut.

Hab.-Bolivia.
Atult female (type, No. 33648, Am. Mus. Nat. Hist., Piedra Blanca, Bolisia, April 20, 1886; H. П. Smith).-Head russet-brown (scarcely paler on chin and throat), the ear-coverts chestnut, and the lores duskr; hind-neck chestnut-russet, deepening into bright rufous chestunt on other upper parts, the upper tail-coverts being deep chestnut and the tail dark chestnut, with dusky shafts; feathers of pileum, hind-neck, upper back, chin, and throat with very narrow and indistinct paler shaft streaks. Color of the under parts gradually brightening from brownisl: russet

[^6]on the throat through deep russet on the under surface of the body, where strongly tinged with rusty chestunt to deep chestnut on the under tail-coverts; chest, breast, upper belly, and anterior portion of sides with narrow mesial streaks or shaft-streaks of pale tawny, the middle of the belly showing a few, hardly discernible, faint bars of dull brownish; axillars and under wing-coverts rufous-tawny. Bill horn color, paler at tip and on tomia and gonys; legs and feet horn-dusky. Length (skin), 12.50 ; wing, 5.70 ; tail, 4.70 ; culmen, 2.20 ; depth of bill at augle, .38 ; tarsus, 1.30 ; middle toe, 1.08.

There can be no doubt of the distinctuess of the Bolivian bird from that of Paraguay and Buenos Ayres, at least as a well-marked geographical race. The description and colored plate in the Exotic Ornithology, "taken from a specimen in Sclater's collection, believed to be from Bolivia," agree very closely with the example described abore.

The following species I have not seen:

(1) Xiphocolaptes simpliciceps Lafr.

Dendrocolaptes simpliciceps "Pucheran et Lafresnaye, in Mus. Parisiense," Lafr., Rev. et Mag. Zool., 1850, 100 (Yungas, Bolivia).
Sp. Char.-" A bove immaculate olive-bromn, the head and neck unicolored; wing, rump, and tail cinnamon, the tail more intense; beneath same color as the back, but paler, the whole throat, superciliary stripe, another beneath the eyes, and extremely narrow oblong spots on the upper lateral portion of the head and on the breast, white, slightly tinged with ochraceous; mitdle of the belly and anal region paler, spotted with black, as if banded; the under wing-coverts yellowish ochraceous, distantly streaked with black; remiges brown or chestnut, black at tips.
"Habit.-Yungas, collected by MI. d'Orbiguy." (Lafí, l. c.; translation.)

The most obvious character of X. simpliciceps consists in the eutire absence of streaks on the pileum and hind-neck, in which respect it differs from every other known species of the genus excepting the otherwise rery diflerent I. mujor and ...cestuncus; otherwise it seems to agree quite: wearly with I. compressirost "is,* in which the streaks on the head and neck above are narrower tham in allied species.

(2) Xiphocolaptes lineatocephalus Gray.

Dendrocolaptes lineatocephalus Gray, Gen. B., I, 1847, pl. 43.
Dendrocops lineatocephalus Boxap., Consp., I, 1850, 207.
Xiphocolaptes lineatocephalus Gray, Hand-1., 1, 1869, 176, No. 2.87.
No description is given of this bird, neither is any liabitat assigued to it. In the "Hand-list," however, the habitat is givenas Bolivia, while "promeropirhynchus, i ., Sclat." is given as a synougm. It is doubtless one of several forms included by some authors under the compreheusive

[^7]specific title of promeropirhynchus, but is probably different from the Colombian bird to which the name properly belongs. Since the type is doubtless in the British Museum, it should be easy to ascertain its true status.

(3) Xiphocolaptes procerus CAB. \& Heine.

Tiphocolaptes moccrus Cab. \& Henne, Mus. Hein., ir, Sept. 10, 1859, 36 (Caracas).Scl.,Cat. Am. B., 1861, 163 (Venezuela).-Scl. \& Saly., Ex. Orn., I, 1869, 72; Nom. Neotr., 1873, 68.
? Siphocolaptes promeropirlyynchus ScL. \& S.llv., P. Z. S., 1868, 117 (Venezuela).
Sp. Char.-"Similar to the following [X. promeropirhynchus] but larger, paler, bill longer and pale horn-color, throat sellowish-white, immaculate, aud streaks and spots of under parts more indistinct.Total length, $1^{\prime \prime} 6^{\prime \prime \prime}$; wing, $5^{\prime \prime} 11^{\prime \prime \prime}$; tars., $1^{\prime \prime}$; tail, $5^{\prime \prime}$.
"These specimens from Caracas seem to be intermediate, so to speak, between X. emigrans and I. promeropirhynchus. The head is lighter olive-brown, wing and tail lighter cinnamon-brown than in X. promeropirhynchus, while in X. emigrons the contour feathers are still more olive and the markings on the belly almost entirely obsolete. Whether X. lineatocephulus Gray belongs to this or to the following species [I. promeropirhynchui:] it is not possible to determine with certainty from the figure alone withont description and locality:" (Cab. \& Heine, l. c.; translation.)

This species is tuknown to me except from the above description.
(4) Xiphocolaptes fortis Herne.

Xiphocolaptes fortis Heine, J. f. O., May, 1860, 185 (hab, ignot.).
Sp. Char.-"The whole upper suface is exactly as in X. procerus, to which, on the whele, it is most nearly relaten; but the wings and tail are somewhat darker cimamon red brown, and the head is a little lighter colored and lighter striped; the muder side may almost be said to be redbrown, and does not show the slightest tinge of the olive-colored admixture so very prominent in .i. cmigrous, less so in I. procerus, and also entirely wanting is I. promeropirhynchus. The color of the throat is brownishyellow, between the yellow of I. procerus and the brownish of I. promeropirhynchus. The fore neck is but very narrowly striped, almost more so than in X . emigrens. The blackish spot markings which in X. procerus and A. promeropirhynchus almost extend over the whole breast, in the present species hardly take up more space than in I. emigrons, and hardly more distinct than in the latter species, and are restricted to the very middle of the belly. Total length, 12 inches; wing, $5^{\prime} 8^{\prime \prime}$, tail, $4^{\prime} 9^{\prime \prime}$; culmen, $1^{\prime} 9^{\prime \prime}$; tarsus, $1^{\prime} 1^{\prime \prime}$; middle claw without claw, 1^{\prime} $1^{\prime \prime}$; hind toe without claw, $5^{\prime \prime}$.
"It is tolerably intermediate between the three nearly related species, X. emigrans Scl., from Guatemala, I. promeropirhynchus (Less.), from New Granada, and 1. procerus Cab. dt Heine, from Veneznela; and judging from this it might, perhaps, have come from Cartagena or Sta.

Marta. In size and coloration it reminds one particularly of the two latter. The stripes and spots of the uuder side are almost as obsolete as in the first mentioned, and the red-brown of the under side is almost as intense as in the Bogota bird, while the head is lighter than in all three." (Heine, l. c.; translation.)

This species would seem to be somewhat closely related to X. emigrans costaricensis, but to differ in the more rusty hue of the less distinctly streaked under parts and the lighter ground color of the pileum.
Smithonlan Institution, June 29, 1889.

A REVIEW OF THE GENUS SCLERURUS OF SWAINSON.

BY
Robert Ridgway, Curator of the Department of Birds.

The following attempt at a revision of the species of this difficult genus was brought about by the necessity of determining certain unnamed specimens in the National Museum collection. It has proved a difficult task, rendered particularly so by the confusion of synonyms which had to be unraveled, caused, in part, by the unnecessary "lumping together" of forms which, on comparison of specimens, are found to be perfectly distinct, although it is probable some of them will require a trinomial title when they shall have been found to intergrade with others. For the exact purposes of modern ornithological science it is necessary to recognize such forms by name, their habitat being as well defined as that of perfectly distinct species, and their distinctive characters often, within a given area, as marked.

I have fortunately been able to examine a number of specimens kindly lent for the purpose by the authorities of the American Nuseum of Natural History, in New York City, to whom my thanks are due, as well as to Dr. P. L. Sclater, of London (now engaged in the preparation of the catalogue of the birds of this family in the British Museum), for the loan of an example of S. albogularis (Swains.), from Tenezuela.

Genus Sclerurus Swainson.

Sclerurus Swains., Zool. Jour., 1897, 356 (type, S. albogularis Swains).
Scelurus Bura., Th. Bras., III, 1856, 45.
Tinactor Max., Beitr., iII, 1831, 1106 (type, T. fuscus Max.).
Oxypyga Ménétr., Mém. de l’Acad. St. Petersh., vi ser., Sci. Nat., i, 1835, 519 (type, O. scansor Ménétr., = Myiothera umbretta Licht.).

Generic Char.-Similar to Furnarius, Vieill, but tail-feathers with very stiff, acuminate-pointed shafts, wing more rounded, tarsi shorter and much more compressed. Bill slender, nearly straight to near tip, where rather abruptly decurved; nostrils exposed, oval, with small overhanging membrane ; third, fourth, and fifth quills longest, the first shortest; tail decidedly shorter than wing, much rounded or graduated; tarsus about equal to exposed culmen (sometimes a little louger, sometimes a little shorter), much compressed, distinctly scutellate; middle toe (without claw) decidedly shorter thau tarsus; lateral claws vers unequal in length (outer much the longer); hind toe rery stout (about equal to the outer in length), with claw rery large. Color: Plain
brownish, the rump and upper tail-coverts usnally more rusty, sometimes bright chestnut; under parts paler than upper, the throat sometimes whitish ; no superciliary stripe, and inner webs of primaries unicolored.

Pange.-Southern Mexico to Argentine Republic.

KEY TO THI SPECIES.

a^{1}. Lower rump and upper tail-coverts chestmut, distinetly different from color of back.
b^{1}. Chin and throat whitish or grayish, distinctly $\overline{\text { ifferent from color of chest. }}$
c^{l}. Chin and throat uniform dull white or grayish white, the feathers margined or tipped with dark grayish or dusky. Hab., Brazil, sonth of the Amazon Valley S. umbretta (Licht.) (p. 22).
c^{2}. Chin and upper throat white, lower throat gray, the feathers without distinct (if any) darker tips or margins.
d^{1}. Chest olive-tawny or raw-umber, the belly, etc., grayish olive ; upper parts olive, the lower rump and upper tail-coverts bright chestnut. Hab., Venezuela and Tobago S. albogularis (Swains.) (p.24).
d^{2}. Chest chestnut-brown or burnt-umber, the belly, etc., dull slate-color tinged with dark rusty ; upper parts dark umber-brown, the lower rump and upper tail-coverts dark chestnut. Hab., Costa Rica.
S. canigularis Ridgw. (p. 24).
b^{2}. Chin and throat bright russet or rufous-tawny, like color of chest. Hab., Southern Mexico to Peru and Lower Amazons S. mexicanus ScL. (p. 25).
a^{2}. Lower rump, and upper tail-coverts similar in color to back, or ouly slightly more rufescent.
b^{1}. Chin and throat tawny or russet, like chest. Hab., Guiana:
S. caulacutus (Vieill.) (p. 27).
b^{2}. Chin and upper throat with basad portion of feathers whitish or very pale brownish, their tips or terminal margins clark brown or dusky.
c^{1}. General color umber or sepia brown.
d^{1}. Throat brown, with basal portion of feathers dull brownish-white or pale brownish. Hab., Upier Amazons...........S. fuscus (Max.) (p. 28).
d^{2}. Chin and upper throat white, the feathers tipped or margined with brown or dusky.
e^{1}. Chest without spots or distinct streaks of tawny, and general coloration lighter brown.
f^{1}. General color deep chocolate-brown ; smaller (wing, 3.30-3.40; tail, 2.102.30). Hab., Colombia.......................... S. brunneus ScL. (p. 29).
t^{2}. General color vandyke-brown, more olivaceous on under parts, the sides of head and neck and upper chest brownish-tawny; larger (wing, 3.95 ; tail, 3.10). Hab., Eastern Brazil (Bahia).
S. laurencei Ridgw. (p. 29).
e^{2}. Chest with distinct spots or streaks of tawny, and general color much darker brown. Hab., Southern Mexico to Panama.
S. guatemalensis Hartl. (p. 30.)
c^{2}. General color olivaceous. Hab., Western Peru.......S. olivascens Cab. (p.31).

Sclerurus umbretta (Licht.).

Myiothera umbretta Licht., Verz. Donbl., 1893, 43, No. 471 (Bahia).
Myioturdus umbretta Ménétr., Mém. de l'Acad. St. Petersb., vi ser., Sci. Nat., I, 1835, 468 (Bahia).
Formicarius umbrettus Gray, Gen. B., I, 1840, 211.
Sclerurus umbretta Scl. \& Salv., Nom. Neotr., 1873, 6¿.-Scl. \& Huds., Arg. Orn., I, 1888, 174 (Misiones, Arg. Rep.).

Myothera centacuta Lafr., Mag. de Zool., 1833, pl. 10 (Brazil; nee Thumophilus raudecutus Vieill.)
Sclerurus caudacutus Burmr., Verz. Mus. Hal. - , 45 ; Th. Bras., iif, 1856, 45 (New Freiburg; "Scelurus").-Сab., Mus. Hein., II, 1859, 25 (Brazil ; excl. syn. atbogularis Sw.).-Scl., Cat. Am. B., 1861, 149 (Brazil; excl. syn. pt.).-Pelz., Orn. Bras., if Arb., 1869, 86 (Registro do Sai, Rio August, Ypanema, and Borba).-Wiite, P. Z. S., 1882, 610 (Misiones, Arg. Rep.).-Taczan., Orn. du Pérou, it, 1884, 114 (Peru, ex Tscriudi).
Oxypyga scunsor Mínétr., Mém. Ac. St. Petersb., vi ser., Sci. Nat., i, 1835, 520, pl. 11, (Rio de Janeiro and Minas Geraes).
Tinactor fuscus Max., Beitr., int, 1831, 1106 (part ; female only !).
Sp. Char.-Above clear brown, beroming bright chestnut on rump and upper tail-coverts; beneath paler, more olive, brown, becoming bright russet on chest (where usually paler shaft-streaks), the throat whitish, with dull brownish margins to feathers; tail dusky.

Hab.-Brazil, south of the Amazon; west to eastern Pern.
Adult male (No. 32796, Brazil; Ed. Verreaux).-Above clear mummybrown, duller (more bistre) on pileum, the rump and upper tail-coverts bright chestnut; wing coverts margined with rusty brown; tail choco-late-brown basally, deepening towards tip into brownish black. Sides of head similar to pileum, Dut slightly paler; chin aud upper throat dull brownish-white, the feathers indistinctly margined with brownish; lower throat light tawny-brown, the feathers with paler shaft-streaks; chest bright russet, with similar lighter shaft-streaks; other under parts olivebrown or raw-umber, tinged with brighter brown on sides and flanks and changing to more ruddy brown, or light burnt-umber, on lower tailcoverts. Bill dusky brown, the basal half of under mandible paler; feet dusky brown. Length (skin), 7.70; wing, 3.85; tail, 3.30 ; exposed culmen, .90 ; tarsus, .00 ; middle toe, .75 .

Adult female (No, 32795, Brazil; Verreaux). -Similar to the male described above, but smaller. Length (skin), 6.70 ; wing, 3.50 ; tail, ऍ.s0; exposed culmen, .90 ; tarsus; .90 ; middle toe, .72 .

There are before me nine examples of this species, six of which have no more definite locality attached to them than "Brazil," while one of them has no indication whatever of locality. The other two are, respectirely, from Rio Grande do Sul (No. S.453, U. S. Nat. Mus., H. von Jaering, collector), and Chapada, Matto Grosso (No. 33762, Am. Mus. Nat. Hist., H. H. Smith, collector).

Tinactor fuscus Max., which is quite universally cited as a synonym of Myiothera umbretta Licht., is so in part only. The two types, belonging to the American Museum of Natural History, are now before me, and are evideutly the identical specimens from which the descriptions in the "Beiträge" were taken. The specimen described as the female is true S. umbretta, but that described as the male is identical with the Rio Napo bird, identified by Messrs. Sclater and Salvin with S. brumnens Scl., and if not really the latter must stand as a distinet form, s. fuscus Max. (See remarks under S. fuscus, on page 28.)
S. umbrefte is a strongly characterized species, easily distiuguished from its nearest allies by the combination of bright chestnut ramp and upper tail-coverts, with bright russet or tawny-rufons chest and olivebrown under parts, and is apparently entirely confined to Brazil south of the Amazon.

Sclerurus albogularis Swanss.

Sclerurus alboguluris Swains., B. Bras., 1834-'41, pl. 87; Zool. Jour., 1897.-Jard., Anu. and Mag. N. H., xix, 1847, 80 (Tobago).-Scl. \& Salv., P. Z. S., 1868, 627, 630 (Venezuela).
Sp. Char.-Somewhat like S. umbretta, but lower throat plain light gray, upper throat and chin dull white, without distinct squamations, chest olive-tawny, and other under parts dull grayish olive.

Нав.-Venezuela and Tobago.
Achut (coll. P'. L. Sclater, Venezuela, 1868; Goering).-Pilenm and hind-neck, brownish olive ; back similar, but slightly browner, becoming clear bistre posteriorly and changing to bright chestnut on rnmp and upper tail-coverts; tail dull brownish black, browner basally, especially on edges of the feathers. Chin and upper throat dull white, some of the feathers with very faint darker margins; lower throat plain dull light gray, the cheeks similar, but tinged with olive-brown; chest tawnyolive, approaching raw-umber; rest of under parts grayish olive, the under tail-coverts rusty brown (intermediate between vandyke-brown and burnt-umber). Upper mandible black, the tip and edges brownish; lower mandible with basal half whitish, terminal half brownish; legs aud feet dusky brown. Leugth (skin), 6.50; wing, 3.40; tail, 2.50; exposed culmen, .80 ; tarsus, .85 ; middle toe, .77 .

A specimen in the U.S. National Museum collection from Tobago (No. 74584 , April, F. A. Ober) agrees exactly in coloration with the Veneznela specimen described above. It measures as follows: Length before skiming, $7.2 \overline{5}$; skin, 6.30 ; wing, 3.50 ; tail, 2.50 ; exposed culmen, . 82 ; tarsus, .80 ; middle toe, .70 .

Sclerurus canigularis, Ridgw.

Sclerurus canigularis Ridgw., Proc. U. S. Nat. Mus., xi, 1889, 542.
Sp. Char.-Somewhat like S. umbretta (Licht.), but much smaller and darker in color, the chest dark chestmut and the throat, abruptly, deep dull ash gray, fading into grayish white anteriorly.

Нав.-Costa Rica.
Adult mule (type, No. 115038, U. S. Nat. Mrus., Turrialba, Costa Rica, August, 1886 ; J. J. Cooper).-Prevailing color of upper parts plain dark sooty brown, overlaid on hind-neek, back, scapulars, wing-coverts, and tertials, with a wash of burnt-umber, this changing to dark chestnut on rump and upper tail-coverts; tail brownish black. Sides of head dull grayish brown, this changing gradually to dull grayish white ou chin and upper throat and to dull ash gray on lower throat ; chest deep chestnut brown (abruptly defined agaiust gray of throat), this changing
gradually into dull dark sooty brown on rest of muder parts; lower tail-corerts tinged with dark chestunt. Upper maudible black, lower chiefly light colored; legs and feet brownish black. Length (skin), 6.00 ; wing, 3.45 ; tail, 2.55 ; exposed culmen, .S5; tarsus, . 5 J.

Since the abore was written I have received a specimen of S. albogularis Scl. from Dr. P. L. Sclater, who writes me that my S. canigularis, the type of which was submitted to him for examination, is the same species. I can not, however, see why he shonld hold this view, since, placing side by side the type of S. canigularis, Dr. Sclater's S. albiguTaris (from Veneznela), and any one of several specimens of $\mathrm{S} . \mathrm{um}$. bretta (Light.) (from Brazil), it is at a glance obvious that S. canigularis is much more different from S. albigularis than the latter is from S. umbretta, though the two latter are distinct enough.
S. canigularis is altogether a darker-colorea bird than S. albogutaris, of which the U.S. National Musem possesses an example from Tobago (No. 74884, F. A. Ober, collector), agreeing very closely with Dr. Sclater's Venezuelan specimen.

The differential characters of the three species may be expressed as follows:
a^{1}. Feathers of throat tipped or broadly margined with olive-brownish.
Under parts light bistre-brown, tinged with olive, becoming russet-brown on chest. Hub. Brazil
S. umbretta.
a^{2}. Feathers of throat withont brownish tips or margins.
b^{1}. Uuder parts dull grayish olive, becoming tawny-olive on chest ; back and scapulars bistre-brown tinged with olive ; lower half of throat dull light gray; upper half, including chin, dull white. Hab. Venezuela and Tobago.
S. albogularis.
b^{2}. Under parts dark slaty, tiuged, on tips of some feathers, with bright mammybrown, the chest deep burnt-umber brown; lower half of throat deep grayish; upper half, including chin, paler, but scarcely approaching white; back and ecapulars deep vandyke-brown. Hab. Costa Rica..........S. canigularis.

Sclerurus mexicanus ScL.

? Sclerurus ruficollis Swains., "Birds Braz.," in [" 1834-1841"], Tb. 79.
Sclerurus mexicamus Scl., P. Z. S., August z, 1856, 290 (Cordova, Vera Cruz, Mexico) ; 1859, 365 (Jalapa) ; 1864, 175 (city of Mexico) ; Cat. Am. B., 1861, 149 (Cordova, Mexico ; Coban, Guat.).—Scl. \& Salv., Ibis, 1860, 35 (Coban) ; P. Z. S., 1867, 574 (Capim R., Lower Amazon), 750 (Yurimaguas and Chyavetas, E. Peru) ; Nom. Neotr., 1873, 62 (Mexico to Amazonia).-Lawr., Aun. Lyc. N. Y., vii, 1862, 465 (Panama).-Salvin, P. Z. S., 1867, 14 (Veragua).-Sumichr., Mem. Bost. Soc., I, 1869, 555 (Vera Cruz.).-Taczan., Orn. du Pérou, if, 1884, 115 (Yurimaguas).
Selerwor gautemalensis (sic) Lawr, Ann. Ly̌. N. Y., Vir, May, 1-6:3, 4 (Isth. Panama).*

[^8]? Sclerurus rufiguluris Priz., Orn. Bras., il Arb., 1869, 161 (Maribatanas; ex "Tinactor rufigularis Natterer Catal. mse.").*
Sp. Char.- Abore plain deep brown, duller (bistre) on head, changing to bright chestnut on rump and upper tail-coverts; tail dusky; throat and chest tawny or tawny-chestunt, the chin sometimes paler; rest of under parts similar to back, etc., but rather paler. Length (skin), about 6.00.

Hab.-Southern Mexico to Eastern Perı and Lower Amazons; Bahia?

Adult male (No. 42144, Protrero, Vera Cruz, February 20, 1866; F. Sumichrast).-Abore bistre-brown, duller anteriorly, brighter on lower back, and changing to chestuut on rump and upper tail-coverts; tail dusky ordull blackish brown terminally, more brown basally, the feathers edged, except near tips, with the color of the lower back; edges of greater wing-covert and secondaries more rusty brown than back. Throat light russet or rusty cimamon (chin paler), deepening on chest and upper breast into chestuut-russet; rest of under parts plain brown (intermediate between mummy-brown and bistre), the under tail corerts more rusty. Upper mandible blackish brown, lower pale brownish or brownish white, becoming dusky terminally ; tarsi clear brownish, toes darker. Lengrh (skin), 6.00 ; wing, 3.15 ; tail, 2.40; exposed culmen, .95 ; tarsus, .85 ; middle toe, .70.

Adult female (No. 42120, Mirador, Vera Cruz; C. Sartorius).-Similar to the male described above, but colors brighter, the entire throat, chest, and breast bright chestunt-tamb, lower parts more tinged with the same, and chestunt of rump and upper tail-coverts brighter. Length (skin), 5.90 ; wing, 3.20; tail, 2. 40 ; exposed culmen, . 95 ; tarsus, .80 ; middle toe, .70 .

Immature male (coill. Am. Mus. Nat. Hist., t Panama, 1862; J. Me-Leannan).-Similar to adults, but colors rather duller, especially on the throat and chest, where the color is paler or more tawns, some of the feathers with very indistinct duil brownish tips or margins and paler shatt-streaks.

An arlult (sex not determined) from Guatemala (No. 30771, Coban, Vera Paz, March, 1560 ; O. Salvin), is much deeper colored than either of the Mexican skins described abore, the upper parts being a very deep vandyke brown, and the throat a bright chestnut. Length (skin), 5.90 ; wing, 3.20 ; tail, 2.35 ; exposed culmen, .88 ; tarsus, .50 ; middle toe, 72 .

An adult male from the Isthmus of Panama (No. 41585, Lion Hill, near Aspinwall, J. McLeaman) is almost identical with the preceding in coloration, but is somewhat smaller, measuring as follows: Length

[^9](skin), ז. 60 ; wing, 3.10 ; tail, 2.35; exposed culmen (bill broken); tarsus, .S5; middle toe, . 72 .

A specimen said to be from Bahia, in the collection of the American Museum of Natural History (Lawrence collection), agrees exactly in all essential features with the Panama and Guatemala specimens mentioned above. It measures as follows: Length (skin), 6.35; wing, 3.40; tail. 2.70; exposed culmen, .85; tarsus, .85; middle toe, .75.

I have been mable to refer to the "Birds of Brazil" in order to ascertain whether the Solerurus ruficollis of Swainson is the same as this species; but a specimen in the Lafrasnaye collection (No. 2323 ter.), kindly lent to me by the authorities of the Boston Society of Natural History, labeled "Nclerurus ruficollis Swains., Brazil," is so much like examples of s. mexicamus that I can not distinguish it satisfactorily. The only differences that I am able to find consist in the shorter bill (the exposed culmen measuring only $S 2$ against $90-1.60$ in C'entral American specimens), and rather lighter color of the pilemm and hind-neck; but these differences are so slight that I am not inclined to regard them as of any importance or as representing more than a moderate extent of individual rariation.

Sclerurus caudacutus (Vieill.).

Thumnophilus caudacutus Vieill., Nous. Dict., ift, 1816. 310 (Guiana); Enc. Méth., 1823, 742.
? Myiothera caudacutu Lafr., Mag. de Zool., 1-3:3, pl. 10.-Gr.my, Gen. B., I, 1846, 210.

Sclerurus caudacutus Bonap., Consp., 1, 1850, 210.—Scl. \& Salv., P. Z. S., 1867, 573 (Capim R., Lower Amazon) ; Nom. Neotr., 1873, 62 (part).-Salvin, Ibis, 1885, 419 (Br. Guiana).
? Sclerurus cuuducutus, var., Pelz., Orn. Bras., II Arb., 1869, 86^{*} (Maribatanas).
Sp. Char.--Plain raudyke-brown, rather lighter beneath, where becoming russet on chest and tawuy or ochraceous on throat; rump and upper tail-coverts more ruddy brown or burnt-umber; tail dusky brown.

Hab.-Guiana and Lower Amazons.
Alult (specimen in Lawrence collection, Ain. Mrus. Nat. Hist., from Cayeme).-Above uniform clear randyke brown, becoming chestnutbrown or burnt-umber on rump and upper tail-coverts; tail dusky brown, lighter basally; sides of head and neck, chest, and lower throat russet-brown, the under surface of the body, including under tail-coverts, similar in color to back, but paler, more of a mumme-brorm hue. (Upper throat and chin apparently tawny or ochraceons, but the feathers of these parts wanting.) Bill brownish black, the basal half of the lower mandible brownish whitish; legs aud feet brown. Length (skin),

[^10]6.70 ; wing, 3.75 ; tail, 2.90 ; tarsus, .87 ; middle toe, 75 . (Bill with tip broken.)

Sclerurus fuscus (Max.).
Tinactor fuscus Max., Beitr., III, 1831, 1106 (part; male, but not female).
? Sclerurus ctuducutux Scl. \& SALI., P. Z. S., 1 667,750 (Yurimaguas and Chyavetas, E. Peru.)

Sp. Char.- Cniform randgke or mummy brown, slightly paler and more tawny on sides of head and neek and under portions of the same, and slightly more rufescent on rump and upper tail-coverts; feathers of chin and upper throat indistiactly paler basally.

Нав.-Upper Amazons.
Adult mule (No. 6807, American Mus. Nat. Hist.; type of Tinactor fuscus Max.!)-Uniform bright vandyke-brown, inclining to mumms. brown on under parts, the rump and upper tail-coverts inclining to burnt-umber, and the forehead, sides of head and neck (especially on malar region) lighter and more tawn, this color extending indistinctly around hind-neck; chin and upper throat dull brownish white, but this nearly hidden by broad brown tips to the feathers; lower throat and chest mummy brown, like under parts of the body, but slightly tinged or mixed with tawny. Tail dark dull brown, less dusky toward base, especially on edge of feathers. Upper mandible with basal half blackish, terminal half and entire edge brownish; lower mandible whitish, brownish terminally. Leugth (mounted specimen), 6.50; wing, 3.55 ; tail, 2.90 ; exposed culmen,.80.

Young mule (No. 32797, Rio Napo; maisou Verreanx).-Uniform ran-dyke-brown, becoming burnt-umber on lower rump and upper tail coverts, lighter vandyke-brown, or almost mummy-brown, on chest, the throat and sides of head still slightly paler, the feathers of chin and upper throat pale brownish or dull brownish white basally ; tail blackish brown terminally, more brown basally and on edge of feathers. Upper mandible brownish black, browner terminally and on edges ; lower mandible dusky brown, paler at base; legs and feet dusky brown. Length (skin), 7.40 ; wing, 3.50; tail, 2.75; exposed culmen, .80; tarsus, . 87 ; middle toe, .75.

The type of Tinuctor fuscus Max., described above, is certainly speefifically identical with the immature Rio Napo skin labeied by Verreaux "Scler"urus brumeus Scl., jus. o." In fact, the two are absolutely alike in coloration, though the difference in the texture of the plumage shows at once that one is an adult and the other a young bird.

While there is considerable resemblance to S. brumeus Scl., the size is considerably greater, and there is no admixture of white on the throat, the latter showing distinctly eren in a young bird of S. brunneus, from the Rio Ingador, Colombia. (See remarks on the latter, p. 29.)

The specinen described by Maximilian as the female of T. fuscus (Beitr., III, p. 1109) is a typical specimen of S. umbretta, and was probably from a different locality. Unfortunately Prince Maximilian does
not specify the localities where his specimens were obtaiued, merely remarking that he obtained T. fuscus (including, of course, both species under this name) first in the forests of the river Itabapuana, between the parallels of 21° and 220 sonth latitude, apparently a tributary of the Paraguay, and afterwards in the forests of the river Belmonte, in Eastern Brazil (province of Minas (reraes). If he met with these birds at only these two localities and obtained only the two specimens which formed part of his collection, it seems very probable that the type of T. fuscus came from the former localits, thus considerably extending the range of the species.

Sclerurus brunneus Scl.

 B., 1862, 149 (part).-Salvin, Ibis, 1835, 419.

Sp. Cmar.-Uniform reddish-brown or chocolate, the ehin and upper throat white with brown or dusky margins to the feathers.*

Hab.-Colombia.
Young (No. 17505 , Mus. Comp. Zool., Rio Ingador, near Pacitic coast, Colombia; A. Schott).-Prevailing color deep chocolate-brown, the under parts paler and duller (intermediate between lisht randrkebrown aud bistre) ; tail brownish-black; feathers of chin and upper throat white, broadly margined with blackish-hrown; chest tinged with burnt-umber, the feathers with indistinct shaft-streaks of pale tawny. Wing, 3.30 ; tail, 2.30 ; exposed culmen, .77; tarsus, .s3; middle toe, .72 .

I hare not seen an adult specimen of this speeies, which Mr. Salrin regards as valid (cf. Ibis, $1855, p .419$), which opinion is certainly decidedly indicated by the single immature example now before me. According to Dr. Sclater (I. \%/. S., 1857, 1). 1s), it differs from its nearest allies as follows: "From S. cunducutus of Brazil [i. e., N. umbrettre (Licht.)] and S. mexicemus * * * of Mexico and Guatemala it differs in the want of the bright rufous coloring in the rump and foreneck. In this respeet it would seem to resemble Hartlanb's s. guatemalensis * * * but that bird is said to be of the size of S. coudacutus, to which the present species is inferior in dimensions."

Sclerurus lawrencei, sp. nov.
Sp. Char.-Similar to S. guatemalensis (Hartl.), but much larger (wing, nearly 4.00 ; tail, 3.00 or more ; the coloration of lower parts in the adult exactly as in the young of that species.

HAB.-_ Bahia" (but locality probably erroneous).
Adult female (Coll. Am. Mus, Nat. Hist., "Bahia"; Litwrence collec-tion).-Above, warm bistre-brown, changing to burnt-umber on rump

[^11]and upper tail-coverts; tail brownish-black, browner at base; sides of head and neck light cinnamon-brown, indistinctly clouded or broken by dark, duller brown; chin and throat white, the feathers indistinctly margined with dull brown; chest dull tawny-brown (much like color of malar region and sides of neek), gradually changing into light bistre, tinged with raw-umber on other under parts. Bill dusky, with lower mandible chiefly pale brownish; legs and feet dusky brown. Length (skin), 7.30 ; wing, 3.95 ; tail, 3.10 ; exposed culmen, .80 ; tarsus, .93 ; middle toe, 78 .

This species, of which I have seen only the specimen described above, differs from S. umbretta in the brown instead of bright-chestuut color of the rump and upper tail-coverts, absence of reddish-brown on chest, and more distinctly white throat. It is also larger, though some specimens referred to S. umbretta approach it very closely in size.

Sclerurus guatemalensis (Hartl.)

Tinnactor guatemalensis Hartl., Rev. Zool., 1844, 370.
Solerurus guatemulensis Scl. \& Salv., P. Z. S., 1864, 354 (Panama) ; Nom. Neotr., 1873, 62 (Guatemala).
Scleurus [sic] cunducutus (Vieill.) Lawr., Anu. Lye. N. Y., vif, 1:61, 320 (Panama; nec Thamnophilus caudacutus Vieill.).
Sp. Char.-Similar to S. umbrette (Light.), but darker, with rump and upper tail-coverts deep vandyke or bistre brown instead of bright chestnut, feathers of throat much more distinctly margined with dusky, and chest much less russet, as well as (usually) streaked or flecked with light tawny.

Hab.-Gnatemala to Isthmus of Panama.
Adult mule (Ň. 116ゴ59, Jiménez, Costa Rica, April, 18S6; Anastasio Alfaro).- - bove miform very deep vandyke-brown, somewhat brighter on wings and upper tail-coverts; tail brownish black. Chin and throat white, the feathers broadly margiued with dusky; rest of under parts bistre or sepia, brighter on chest, where feathers have a central space (including shaft-streak) of light tawny. Bill blackish, basal half of lower mandible whitish; feet blackish brown. Length (skin), 6.60; wiug, 3.50 ; tail, 9.60 ; exposed culmen, .85; tarsus, 90 ; mitalle toe, 75.

Adult jemule (No. 648:2, Sibuhue, Talamanca, Costa Rica, May, 1873; J. C. 'Keledon). -Similar in plmmage to the male, as deseribed above. Length (skin), 6.20 ; wing, 3.50 ; tail, 2.60 ; exposed culmen (bill broken); tarsus, . 87 ; middle toe, .75 .

Young femule (Coll. Am. Mus. Nat. Mist., P'anama, 1862 ; J. McLean-nan).*-Similar to the adult, but under parts much more uniform, the white of throat duller and with much less distinct squamations, the chest unform mummy-brown, with only a few fine shaft-streaks of paler.

In addition to the three specimens described above, there are now before me a joung female in transition plumage from Panama (No. 53806, McLeamman) and an adult male and two young birds (one a male) from

Costa Rica, belonging to the Costa Rica National Museum. These show a cousiderable amount of individual variation, the two young birds from Costa Rica being particularly unlike, one resembling the Panama specimen described, though considerably darker above and less tinged with tawny beneath, while the other (No. 2334, male, San Carlos, December 25,1888 , A. Alfaro) is very much darker throughout, the under parts being mainly of a dark sepia-brown.

Sclerurus olivascens Cabanis.

Sclerurus olivascens Cab., Jour. fiir Orn., Jan., 1873, 67 (Monterico, W. Pern).-Taczan., P. Z. S., 1874, 526 (Monterico) ; Orn. du Pérou, II, 1884, 115.

Hab.-Western Peru.

Sp. Char.*-" Nearly uniform olive-brown ; the breast more olive; throat whitish, undulated with olive; tail black." (Taczan., Orn. du Pérou, II, 1884, 115 ; translation.)
"Female adult.-General plumage of a dusky fuliginous-olive, the olive clearer on the under parts, especially on the breast; middle of the throat whitish, undulated with olive. Wings of the same color as the back ; tail blackish. Bill brown, the lower maudible paler, whitish underneath; feet brown; iris deep brown.
"Length of the wing, 95 ; tail, 70 ; bill, 24 ; tarsus, 23 millimeters."
"Observations.-A form similar to the preceding [S. umbretta], the bill shorter and straighter, the general color more miform, the rump concolor with the back." (Taczanowski, l. c.; translation.)

Shithsonian Institution, June 29, 1889.

[^12]DESCRIPTIVE NOTES OF NEW GENERA AND SPECIES FROM THE
LOWER CAMBRIAN OR OLENELLUS ZONE OF NORTH AMERICA.*
BY
Charles D. Walcott,
Honorary Curator of the Department of Invertebrate Fossils.
The types of the new genera and species described in this paper are in the collection of the National Museum, and may be identified by the Museum catalngue number given with the description of each species. The illustrations of the species will be published in the Tenth Ammal Report of the Director of the U. S. Geological survey for the year ending June 30, 1889.

CORALS.

It has been an open question for many years whether the forms referred to the genus Archerocyathus, Billiugs, were corals or sponges (see Bull. U. S. Geol. Survey, No. 30, 1886, p. 78-80). Dr. G. J. Hinde has recently reviewed the genera aud species, t and concluded that "the Archeocyathince form a special family of the Zoantharia scherodermata, in some features allied to the group of perforate corals." Although previously inclined to consider the forms under notice sponges, I am now of the opinion that Dr. Hinde is more nearly correct in referring them to the corals.

Protopharetra Bornemann.

See Geol. Zeitschr., 1883, p. 274.
Protopharetra sp. ?
This is a form related to P. polymorphe Bornemann. \ddagger It varies in form of growth from round stems to flattened fronds, in which the structure is rety irregular. It is an open question if Spirocyathus utlantious is not generically identical with Protopharetra.

Locality.-Silver Peak, Nevada.
Nat. Mus. Cat. Invt. Foss., No. 15303.
Spirocyathus Hinde.
See Quart. Jour. Geol. Soc., London, 1889, vol. 35, p. 136.
This genus is proposed to include the original type of the genus Archeocyathus, Billings. As the change to another type was made

[^13]Proceedings National Museum, Vol, XII-No. 7tis.
Proc. N. M. $89-$ - 3
by Mr. Billings and no good result can now come from urging the use of the name Arbluocyathus, as originally proposed, it appears best to accept Dr. Hinde's generic name.

Nat. Mus. Cat. Inrt. Foss., No. $1468 \mathrm{~s}^{\circ}$.
Coscinocyathus Bornemani:
See Zeitschr, d. deutseh. geol. Gesellsch., 1884, p. 704.
Coscinocyathus billingsi Walcott.
Archeocyathus billingsi Walcott, 1886. See Bull. U. S. Geol. Survey, No. 30, p. 74.
By the subdivision of the semus Ardurocyathus this species is referred to Coscinocyathus.

Nat. Mus. Cat. Invt. Foss., No. 15302.
Archæocyathus (A.) dwighti sp. nov.
This species difters from A. (A.) rensselucricus in having in the outer wall a double row of pores and then a raised space upon which no pores have been detected. Interior structure unknown.

Localities.-Troy, N. L., and near School-honse No. S. Greenirich, Washington County, New York.

Nat. Mus. Cat. Invt. Foss., No. 18352.
Ethmophyllum meeki sp. nov.
This form differs from E. whitueyi, with which it is associated, in having stronger radiating septa, mumerous dissepiments, and large pores in the onter wall.

Locality.-Silver Peak, Nevada.
Nat. Mus. Cat. Invt. Foss., No. 18358.

```
TRAILS, BURROWS, AND TRACKS OF ANLMALS.
```

As far as known to me there are no true Alger fonnd in the rocks of the Lower Cambrian. That such forms exisient, there can scarcely be any doubt, but, after a carefal sudy of all the repmoted species, I think that they can be refered to trails of worms or mollusks with more propriety than to the Algæ. .

> Planolites Nicholsox.

Planolites Nicholson, 1873. Proc. Roy. Soc. Lundon, p. 28\%).
Planolites annularius sp. nov.
The cast of a burrowing worm that shows numerous annulations.
Locality.-At the Reynolds Imu loeality, of olenellus asuphoides, one mile west of North (reenwich, Washington County, New York.

Nat. Mus. Cat. Invt. Foss., No. 18360.
Planolites congregatus Billings.
Palceophycus congregatus Billings, 1861. Bull. Geol. Survey Canada, p. 2.
This and the following species were referred to the Algie by Mr. Billings. The reference may be correct, but the species impress une as
being the easts of worm-borings ; and there is nothing in the speeimen to imblate their regetable arigin. This form of east is fomm in sandy argillaceous deposits all through the sedimentary rocks.

Type in the Mrusemm of the Geological Survey of Ciantula.

Planolites incipiens Billings.

Paleophycus incipiens Billings, 1861. Bull. Geol. Survey Cavada, p, 3.
This character of worm-boring is common in the sandy shales ne:tr Swanton, and at Parker's Quarry, (ieorgia, Vermont. It is assoriatmb with Otenellus asephoides. It is impossible to determine whether the tials on the slate were made hy the same spectes of animal as that making the trails referred to I^{\prime}. con!megutus. As the two forms hate received specific names they are retained for the present.

Type in the Musenm of the Geological Survey of Canada.

Helminthoidichnites litch.

Melminthoidichnites Fitch, 1850. Trans. N. Y. State Agric. Soc. for 1849, p. 868.
Compare Nemertites Nicholson, 1873. Proc. Roy. Soc., Londou, p. 289.
Helminthoidichnites marinus Emmons (sp.).
Gordia marina Emmons, 1844. Taconic System, p. 67, pl. 1, fig. 2.-Itlem, 1846. Agric. N. Y., vol. 1, p. 68, pl. 14, fig. 2.-Idem, Hall, 1847. Pal. N. Y., vol. 1, p. 264, pl. 71, figs. 1, 2.

Palcophyous rectus Fitch, 1850. Trans. N. Y. State Agric. Soc. for 1849, p. 862.
Compare Fucoides ylexuosa Emmons, 1844. Taconic System, pl. v, fig. 3.
Helminthoidichnites temuis Fitch, 1850. ${ }^{0}$ Traus. N. Y. State Agric. Soc. for 1849, p. 866, figure in text.
Dr. Fiteh proposed the genns I/clminthoidichnites for frectis resemminy those of worms, and figured this specoes as a very narmow trail on an arenaceons shate. I have seen fragments of a similar trail in the arenaceons slates of the Olenellus zone, and also in the C peper Ciambian shales of the (irand Canon of the Colorado, Arizonat. Those fom the latter locality aftorn the best illustration, and a figure is wiven of a small portion of the surface of the arenaceous shate, showing the trat upon if.

This type of boring or trail is rery abondant in the purple, seren, ant dark slates, and in the arenaceous shales of the Olemellas zone similar traik may have been made by maty diftern! spectes dmims all the geologic epochs down to the present day.

Nat. Mus. Cat. Invt. Foss., No. 18359.
Cruziana d'Orbigny.
Bilobites DeKay, 1823. Am. Lyc. Nat. Hist., New York, vol. 1. pp. 45-49.
Not Bilobites Linn., 1775.
Cruziana d'Orbigny, 1842. Vosage d'Amérique Mérid., inf.
Rusophycus Hall, 1852. Pal. N. Y., vol. 2ै, 1. 23.
Cruziana sp. ?
I eareful examination of a latee series of specimens of the trails ame

me to consider that they are all of animal origin, and that many of the so-called species were formed by one species of animal. Also, that specific differences in the animals making them would not generally be shown in the casts of the burrows and trails.

In a paper on the genus Cruziana and allied forms I will give my reasons for consideriug them burrows and trails of animals, and not the casts of fucoids.

Kutorgina labradorica var. swantonensis var. nor.

A comparison of a series of specimens of K. labradorica, from Newfoundland, with a series from near Swanton, Vermout, shows constant differences. The strie on the Swanton shells are finer and more regular, and the valves are less transverse in proportion to the leugth, and the beak of the ventral valve is less elevated.

Formation and locality.-Lower Cambian. East of Swautou and Highgate Springs, Vermont.

Nat. Mus. Cat. Invt. Foss., No. 15329.

Obolella atlantica sp. nov.

This is a small species of Obolella that occurs in great abundance in Newfoundland and also (less frequently) at North Attleborough, Massachusetts * It is of the type of Obolella crussa, but differs in the details of the interior surface aud the average smaller size.

Localities.-Manuel's Brook, Topsail and Brigus Heads, Conception Bay, Newfoundland.

Nat. Mus. Cat. Iuvt. Foss, No. 18322.
Camerella minor sp, nov.
Shell small, moderately convex ; valves about equal in depth. Ventral valve convex on the umbo, with the beak slightly incurved; cardinal slopes nearly straight from the beak to the rounded sides; the posterior or umboual third of the valve is usually more or less tumid, a ridge of growth separating it from the anterior portion of the shell. Dorsal valve shorter than the ventral valve; transversely oval, most prominent at the umbo; beak very small and terminating at the cardinal margin.

The casts of the surface show ouly concentric lines of growth. Usually a marked line or ridge separates the tumid umbonal portion of the shell from the auterior part.

The casts of the interior of the ventral valve have a small pit just in front of the termination of the beak, from which two narrow depressions extend forward aud separate off a short, narrow, central ridge

[^14]and two lateral pointed projections, which extend forward to the line of the base of the central ridge, and are detined, laterally, by sharp, narrow depressions. This form indicates that two lamelle or plates extended out from the beak on each side of a narrow central depression and then curved outward towards the margin, somewhat as in Pentame. rus. In one cast two slight ridges extend from the base of the lateral projections a short distance anteriorly. In the interior of the dorsal valve a transverse depression, just in front of the beak, corresponds to a transverse ridge on the interior of the valve.

Owing to the imperfect casts of the interior the generic reference to Camerella is tentative.

In company with Prof. William B. Dwight I found this species associated with heads and fragments of a trilobite that is referred to Olenellus asaphoides.

Formation and locality.-Lower Cambrian. In the quartzitie sandstones of Stissing Mountain, near Stissingrille, Dutchess County, New York.

Nat. Mus. Cat. Invt. Foss., No. -.

Coleoloides gen. nov.

Shell slender, elongate, cylindrical, straight or slightly curred, ap)parently thin.

Surface marked by very fine, slightly oblique, longitudinal striee in the only species known.

In form this shell is like that of Hyolithellus micans, but the surface markings are unlike those of either Hyolithellus, Billings, or Coleolus, Hall.
Coleoloides typicalis sp. nov.

Straight, slender, elongate, eylindrical shells that taper so gradually that the diminution in size is only apparent in long pieces of the tube and then observable only by the closest examination. Shell apparently. very thin.

Surface marked by rery fine, slightly oblique, longitudinal strix that are a little irregular in their course, as shown by a strong magnifier. The strix make one revolution around the tube in a length of sisteen diameters of the tube.

The longest specimen found has a length of $23^{\text {mun }}$ and is about onehalf a millimeter in diameter. It is broken off at each extremity.

I do not know of any related species.
Formation and locality.-Same as Hyolithes terranoricus.
Nat. Mus. Cat. Invt. Foss., No. 18326.

Hyolithes terranovicus sp, nov.

Form an elongate subtriangular pyramid, gradually and regularly tapering to an acute extremity. The angle of tapering of the dorsal side is very nearly 15°. Transverse section subtriangular or semi-
elliptical. Dorsal face slightly convex and curring gently from the extremity to the anterior subspatulate portion. Ventral face strongly and regulaly convex transversely; the dorsal and ventral faces meet to form the rombed lateral angles of the shell. Aperture oblique, the margin extending on the dorsal side; the peristome of the rentral side is slightly curved backward. Operculum unknown. Shell thick and strong.

Simface of the shell transversely or concentrically striated; on the donsal surface the striar are faintly defined and on the rentral suface strongly makied and aiso cancellated by raised lines with finer strise between.

The largest specimen collected has a width of $16^{m m}$ at the aperture and a length of about $5.5^{m m}$ is indicated, the portion preserved being $48^{m \mathrm{~mm}}$ in length.

I do not know of any identieal speries, althongh the surface markings are like those of Hyolithes nobilis Barrande.*

The presence of a septum near the extremity of the shell is very distinct in one species where the point is broken off.

Formation and hocality:-Lower Cambrian. This species is fomd in irregular masses of limestone resting on and among the bowders of gneiss forming the base of the Olenellus zone on Mannel's Brook, Conception Bay, Newfoundland.

Nat. Mus. Cat. Invt. Foss., No. 18319.
Hyolithes similis sp. nov.
Form an elongate subtriangular pyramid, gradually and regularly tapering to an acnte extremity. The angle of tapering of the dorsal side is about 13°. Transverse section subtriangular. The ventral angle is sharp and the lateral angles rounded. Dorsal face slightly arched longitudinally, transversely nearly flat, except at the sides, where it curves slightly to meet the two planes of the ventral face, which is strongly angular at the center. Aperture oblique; the peristome is indented at the center of the rentral side and arched orer the subspatulate extension of the dorsal face. Operculum unknown. Shell comparatively thin.

Surface of the shell marked by transwerse or concentric strice that arch forward on the dorsal lace. The rentral face is further marked by four raised lines on each side of the central angle, and between the raised lines loy very fine longitudinal strie.

The portion preserved of the largest specimen collected has a length of $43^{m m}$. When entire it was abont $50^{m m}$ in length; it has a width at the aperture of 13^{mmin}, and a depth of 7^{mm}.

In general form this shell is closely related to H. americanus. It differs in the strongly marked ventral surface.

Formation and locality.-Same as H. terranovicus.
Nat. Mus. Cat. Invt. Foss., No. 18317.

[^15]Helenia gen. nov.
Shell an elongate, narrow, flattened, curved tube; transserse section and aperture elliptical. Surface marked by transverse, concentric, imbricating lines of growth.

Helenia bella sp. nov.

Shell an elongate, narrow, flattened, curved tube. The plane of the flatened smfaces is slightly twisted, so as to throw the lateral margins about one-quarter of a turn aromed and to incline the upper and lower faces nearly 45° at one extremity, as compared with the other. The curvature is nearly semicircular. The rosssesection is an elongated ellipse. The form of the aperture of the larger extremity, as indicated by the strie of growth, has the peristome arching forward on one of the flattened sides and curving slightly backward on the opposite side. As far as I am able to determine the shell was open at the smaller end, as in Dentulium, or the extremity was decollated in all the specimens rollected. I am inclined to think that it was open at both ends, and hence should be referred to the Dentalide.

Surface marked by irregular, transverse or concentric, imbricating lines of growth that vary in number and size on the same specimen and in different specimens.

Helenia bella is provisionally referred to the Dentalide on account of its form and the apparent opening at both extremities.

Formation and locality.-In a pinkish-colored limestone of Lower Cambrian age, in association with Hyolithes princeps, Olenellus brioygeri, etc. In a railway cut north of Manuel's Brook, ('onception Bay, Newfoundland.

Nat. Mus. Cat. Invt. Foss., No. 18324.
Agnostus desideratus sp. nov.
Cephalic shield about as broad as long, broadly romded in front, sides curving in rery slightls towards the posterior margin; posterior margin sloping obliquely inward from the postero lateral angles to the median lobe. A narrow raised rim extends all around the margin except across the base of the glabella or median lobe. The space between the rim and the glabella is slightly convex. Glabella less than two thiths the length of the head, narrow, subeylindrical, and with a small tubercle on the posterior third. Surface smooth. A pygidium associated with the head on the same piece of rock has a prominent median lobe bordered by a narrow convex space between it and the marginal rim. The median lobe does not show any indication of lateral or transverse furrows. An elongate median tubercle is the only ornament.

This type of Agnostus oceurs in the Middle Cambrian zone of the Atlantic Basin as A. parrifrons, Limarsson, and A. Urexifons, Limarsson, of Sweden, and A. tessella, Matthew, and A. umbo, Matthew, of New Brunswick.

Formation and locility.-In the upper portion of the Lower Cambrian rocks, a short distance northeast of Salem, Washington County, New York.

Nat. Mus. Cat. Inrt. Foss., No. 18327.

Agnostus sp.?

This species is represented by tro imperfect heads of the type of Agnostus fallux Linnassson, of the Middle Cambrian of Sweden, or A. acadicus Hartt, of New Brunswick. It is found at the same locality with A. desideratus and also two miles south-southeast of Grauville, in Washington County, New York.
Nat. Mus. Cat. Invt. Foss., No. 18328.

Microdiscus helena sp, nov.

Heai conrex, bordered all around by a continuous marginal rim that is narrow at the back and sides and broad in front. Three small nodes occur on the anterior lateral portion of the rim, the center one being on the line of the frontal margin of the glabella. Glabella prominent, cylindro conical, tumid posteriorly; two furrows cross the middle third so as to separate a narrow central lobe, an anterior lobe nearly twice as long as the central lobe, and a tumid posterior lobe that equals the anterior lobe in length. Dorsal furrows strong; the furrow within the margin is broad and well detined all around except at the occipital furrow crossing the glabella, where it is very narrow; it curves backward inside the very narrow rim at this point. Cheeks tumid, and overhang. ing the outer marginal groove.

The pygidiee associated with the heads are strongly courex; the median lobe, at the center, is a little more than one-third of the entire width of the pygidium ; it is crossed by five transserse furrows that divide it into five segments, and a short, terminal segment just inside the strongly defined marginal groove; dorsal furrows strong; marginal rim narrow; lateral lobes slightly convex, smooth.

The head of this species is related to that of M. meeki and M. lobatus. The tumid posterior lobe of the glabella serves to distinguish it from them and also all described species. The associated pygidium differs from that of M. bella marginatus in being more convex and in having five instead of nine segments in the median lobe.

Formation and locality.-Lower Cambrian. In a decomposed limestone, 600 meters west of Mauuel's Brook, Conception Bay, Newfoundland.

Nat. Mus. Cat. Invt. Foss., No. 18361.

Olenellus Hall.

See Bull. U. S. Geol. Surver, No. 30, 1886, p. 162.
Thinking that Olenellus succeeded the genus Paradoxides in time, and accepting the interpretation given by Mr. Ford to the embryonic characters of O. asaphoides, I argued in favor of the descent of Ole-
nellus from Paradoxides. It was an error, as the finding of Olenellus beneath Paradoxides abundantly proves.

The discovery of more perfect specimens of 0. asaphoides shows that that which I had identified as the facial suture is a raised line in the cast of the interior of the shell that fills a depressed line occupying the position of the suture. I have since found this raised line in many specimens, but in none is there a true suture cutting through the shell, as in Paradoxides and most other genera of trilobites.

Subgenus Mesonacis Walcott.

See Bull. U. S. Geol. Survey, No. 30, 1886, p. 158.
With the discovery of entire specimens of Olenellus asaphoirles, O. lijerulfi, O. mickwitzia, and O. brogyeri, it appears that Mesomacis rermontuna is to be grouped with them, and all referred to Mesonacis as a subgenus, on account of the peculiar prgidium of Olenellus thompsomi, the type of the geuns, as compared with that of O. (Mesonacis) rermontana, the type of the subgenus \boldsymbol{O}. (1l.) vermontana.

> Olenellus (Mesonacis) asaphoides Emmons (sp.).

See Bull. U. S. Geol. Survey, No. 30, 1886, p. 168.
The discovery of entire specimens of this species shoms that it has eighteen segments in the thorax, and a small, transverse pygidium, of the Paradoxides type. On each of the five, short posterior segments of the thorax there is a long, slender spine that projects back orer the prgidinm. The entire specimens were found at the original Iccality of the species, near the old Reynolds Inn building, one mile west of North Greenwich, Washington County, New York.

Nat. Mus. Cat. Invt. Foss., No. 18350.

Olenellus (M.) bröggeri Walcott.

Oleneltlus bröggeri Walcott, 1223. Name proposed on exhibition of specimens at the International Geological Congress, London. Name used in "Nature," vol. 38, p. 551, 1888.
General form ovate, the length and breadth nearly as 3 to 2 in comparing the length of the entire body with the width of the head. Head broad, semicircular in outline and moderately conves when preserved in the limestone, but very much compressed in the shales. Margin rather broad, but varying in width one - balf in different individuals ; it is slightly rounded and separated from the frontal limb and cheeks by a shallow groove and narrow, low ridge; posteriorly it terminates in a comparatively short, strong spine. The posterior margin of the head, between the glabella and postero-lateral spine, is broken just within the latter by a deep noteh and a short spine that corresponds to the "interocular" spine (Ford) of Olenellus asuphoides and the spine at the plearal angles of the posterior margin of the head of O. lijeculti : a low ridge extends from back of the eye, next to the glabella, out to the
spine, much as in 0. Kijernlfi ; the spine varies in size and direction, from the yomg individnal, where it is directed backward, to the large adult, in which it extends obliquely outward. The under side of the mareinforms a broad "doublure." It is slightly arched downward and natrows towards the posterolateral angles of the head. A slight, curved indentation occurs at the point of attachment of the hypostoma. It is a very common occurrence to find the "doublure" on the reflected nuder margin lying free from the other parts of the heal, in the shale, and with the hypostoma attached. This lact leads to the conclusion that a suture may pass around nearer the frontal margin in the same manner as Holm describes it in O. Kijerulfi.*

Gilacha clavate, narrow at the base, reaching its gleatest width just bark of the anterior termination of the eye lobes; it narrows rapidy towards the rather sharply rounded frontal margm. Three pairs of glabellar furrows oceur as shallow depressions, the anterior one opposte the point where the eye lobe merges into the frontal lobe of the glabedla: the furrows on the opposite side extend in, but do not unite. Oecipital furow shallow and extending back from each side towards the center. Occipital ring narow at sides and increasing rapidly in width to the center. Where it supports a long, stro:g spine that curves back over the thoma ; mone of the speeimens show the entire spine, but I think it extemds back in the adult fully one-half the length of the thomas. Eye lohes crescentiform, narrow, elongate, arching from the base of the anterior lobe of the glabella, into which they merge, back to a line with the oceipital furrorraud some distance from the glabella; visual surface unknown. The area between the glabella and eye lobe is slighty depressed, a narrow, shallow furrow extending along the inner edge of the eye lobe. The frontal limb and cheeks slope gently to the ridge within the outer margin. No traces of facial sutures ohserver, although on some of the casts of the inner side of the shell a depressed line in the shell is indicated by a raised line on the cast. This line follows the direction I should theoretically give to the suture. Hypostoma moderately consex, hroad in front and narrowing towards the posterior margin. \dagger One specimen is $18^{\text {min }}$ across the greatest width, and 12 across the posterior end. The anterior margin shows a rounded, smouth edge that fits into the slight, curred recess of the "donblure" of the head except laterally, where it extends out to meet the side margin of the anterior wings to form a blunt point; back of the anterior wings the margin is raised to form an elevated rim and then curres under; the rim extemts aromed to and across the posterior margii, becoming most prominent at the postero-lateral angles; the warginal rim is separated from the body by a sulcus that disappears on the anterior wings; the posterior groore, in front of the marginal sulcus, is well defined and

[^16]arches backward from side to side, although very shathow at the cemter. and it leaves a prominent ridge on each side between it and the poss terior marginal sulcus; the anterior grooves are short and swarely more than pits just back of the main body of the hypostoma. Thes hypostoma differs from that of 0. (M.) lijerutif and (). (.M.) (1ssuphevides in being natrower anteriorly, more elongate, and with a smooth instrand of spinose posterior margin.

Thorax with eighteen segments.* Axial tobe consex ; the center of each segment bears a short, strong, curved spine, the base of which reaches longitudinally across the segment. Plenal lobes dlattened, about three fifths of the distance from the axial lobe to the onter edere, and then gently curving to the ends of the remaining falcate portion of the plemae. The narrow, median plemal gromese extem outward to the begimning of the enrvature of the broad falcate extremity of the plenra. Prgidium small, transverse, almost quadrangular in outline.

None of the examples show the details of structure with sulficient clearness to describe them.
The surface of the head and thoracie segments is ornamented with the peculiar, inosenlating, fine, raised fretwork that, as lar as limown, is confined to the genus Olenellus.

Itimensions.-O. hroygeri and O. thompsomi are the two largest speceies of the genus ret described. Fragments of O. liögyeri now before me indicate a length of et centimeters. One head has a length of of centimeters. A bed of greenish argillaceons shate 6 inches in thickness is almost entirely formed of fragments of large shells.

The associated fana includes some well-known Olenellus fanma species and others not heretofore described. As known now it embraces fourteen genera, twenty-three species, and six varieties.

Formation and localities.-Lower Cambrian. The best sperimens were secured in a reddish-brown argillaceous shale, in a railroad ant, about 1 mile west of Manucl's Brook Bridge, on Conception Bay, New. foundland. It was also fonnd in the limestones beneath Topsail Head and on Brigns Head, on the same bay; at the base of the Mannel's Brook section, where it ranges through sofeet of strata, and in the decomposed limestone 400 yards west of the brook, in a railroad cut. Stratigraphically its position is 300 feet beneath the Paradoxides zone in the Mannel's Brook section.

Comparison. - The great occipital spine, small "plenral" spine, inomd falcate extension of the plemre, and short, transwerse prodium dis tinguisin O. brëg!geri from O. kijerulfi and O. miclateitian of Europe. With the exception of the form of the pleura the same charactens sep. arate it from O. asuphoides, O. thompsoni, (). (1I.) rermontunu, and (). gilberti. The head of O. iddingsi is quite distinct.

[^17]The species of Olenellus found in Shropshire, England, and given the provisional name of O.callarei by Prof. Charles Lapworth,* is very closely allied to, if not identical with, O. bröggeri.

Nat. Mus. Cat. Invt. Foss., No. 18331.

Avalonia gen. nov.

Avalonia manuelensis sp. nov.
As the types of the genus and species are the same, one description only will be given.

The genus and species are founded on the central portions of the head of a trilobite that differs from any described species known to me in the form of the dorsal and ocular furrows and fised cheek.

Head, semicircular, moderately convex. Glabella, subquadrangular, slightly convex, sides parallel ; three pairs of narrow, shallow furrows divide the glabella into four subequal lobes; the two posterior furrows extend about one third the distance across the glabella; the anterior pair are very short and indistinct. Occipital ring narrom, transverse, and separated from the glabella by a strong furrow. The dorsal furrows are well-defined grooves, extending from the posterior margin to the frontal rim. Fixed cheeks, broad, very slightly consex; the anterior fourth is separated by a narrow furrow that starts, at a slight deflection, in the glabellar suture, and extends outward and backward to the facial suture, where it passes into what, in many of the trilobites, is the furrow or eye lobe. This furrow or groove occupies the position of the ocular ridge, from the dorsal furrow to the facial suture, in the genus Ptychoparia. The extension of the furrow backward joins the one extending from the occipital furrow outward, just inside the posterior margin. Frontal margin of medium width, and separated from the glabella by a strong furrow; posterior rim of head narrow, rounded, and separated from the fixed cheek by a strong furrow that unites at the postero lateral angle with the furrow on the outer edge of the fised cheek. The eye lobe is not distinctly shown in any of the specimens. If present it is probably long and narrow, as in the genus Centropleura, of Augelin, or Anopolenus, of Salter.
Free cheeks unknown. From the form of the fixed cheeks they were evidently long and narrow.

The broad tixed cheek with its furrows on the lateral and posterior margins recalls the cheek of Anopolenus, while the quadrangular glabella is that of the geuns Olenoides. As far as knorn to me the depressed ocular furrow is peculiar to the genus.
Formation and logality.-Lower Cambrian. In railway eut, about 600 meters north of Manuel's Brook, Conception Bay, Newfoundland.

Nat. Mus. Cat. Invt. Foss., No. 18333.

[^18]This species differs from Zacunthoides leris in having the glabella clavate instead of subeylindrical; also in the more elongate form of the head. Pygidium unknown.

Formation of Locality.-Upper portion of the Olenellus zone in Washington County, New York.

Nat. Mus. Cat. Iuvt. Foss., No. 18362.
Solenopleura harveyi sp. nov.
Of this species only the central portions of the head have been found. These belonged to a very large species, as the heads vary in leugth from 40^{mm} to 45^{mm}.

The glabella is conical, about twice as long as the width, and separated from the slightly rounded occipital ring by a shallow furrow. Two very shallow furrows extend obliquely backward from the dorsal furrow on each side; they scarcely indent the smooth, consex surface of the glabella; an anterior pair of furrows are indicated by a short, shallow depression on a line with the anterior margin of the eye lobe; the glabella is separated from the fixed cheek aud froutal limb by a shallow groove on the sides, and in front by the difference in the slope of its surface and that of the frontal limb. Frontal limb broad and gentiy convex down to the slight depression separating it from the relatively broad, depressed margins; laterally it passes into the broad, smooth, free cheeks. The frontal margin of the eye lobe is at about half-way between the posterior and anterior margins of the head ; it is of nedium size; a well-defined ocular ridge extends obliquely backward across the fixed cheek from the glavella to the eye lobe. The posterior margin of the head is separated from the main part of the fixed cheek by a broad, shallow groove.

With the material at hand for study the species is provisionally referred to Solenopleura.

The specific name is given in honor of Rev. MI. Harrey, the author of the best work yet pablished on Newfomudland, and the enthasiastic helper of every scientific studeut who visits the colouy.

Formation and locality.-Lower Cambrian. About 600 meters north of Manuel's Brook, Conception Bay, Newfoundland.

Nat. Mus. Cat. Invt. Foss., No. 18338.
Solenopleura howleyi sp, nov.
A second large species is referred to solenopleura. It is associated with S. harveyi, and is much nearer the type of the genus Solenopleuru than the latter species. It is known only by the central portion of the head and a few segments of the thoras.

The glabella is elongate, conical, convex, and marked by three pairs of shallow furrows that penetrate obliquely backward one thim the distance across the glabella; oceipital ring rounded and well detined
from the glabella by a deep furrow; a small node occurs at the renter; the glabella rises rather abruptly from the broad, slightly conrex fixed cheeks and narow, frontal limb, a shallow, dorsal furrow serving to give it more prominence. The broad, fixed cheeks are crossed by a narow, ocular ridge that passes obliquely outward and backward from a point on the dorsal furrow opposite the anterior margin of the eye lobe, where it unites with the outer rim of the rather large, prominent eye lobe. Anterior rim of the head of medinm width, rommed and separated from the frontal lobe by a narrow, distinct furow. The posterior rim or margin is more romded than the anterior, and the furrow defining it is deeper. The short, postero-lateral limb of the fixed cheek slopes abruptly down to its half-truncated margin.

Surface strougly granular or pustulose.
Formation and locality.-Associated with Solenopleura? harreyi.
The specifie name is given in honor of Mr. James P. Howley, geologist of Newfoundland.

Nat. Mus. Cat. Invt. Foss., No. 18336.
Smitusonian Institution, June $1,1889$.

NEW NORTH AMERICAN ACRIDID \mathbb{E}, FOUND NORTH OF THE MEXICAN BOUNDARY.

By
Lawrence Bruner.
(With Plate I.)
During the early part of 1854 Dr. C. V. Riley and the writer began the preparation of a conjoint Monograph of North American Acrididar. For various reasons the publication of this work has heen delayent, and, at the suggestion of Dr. Riley, and as a result of that coujoint work, the following new North Ameriean Acridide are herewith chatacterized in adrance, in order that others who may be desirous of studying the same family of insects can have the benefit of the madeseribed material in this group contained in the collections of the National Musemm. This material has been steadily increasing ever since the publication of Int. Thomas" Synopsis of North American Acridide by the U'mited States Geological survey. At present this collection contans typical suecimens of nearly all of the descibed forms, hesides matay that are new to the comntry morth of the Mexican frontier. Inr. Riley will probably soon publish descriptions of the new species belonging to the gencrat Melenoplus, Pezotettix, Hespotrotettix and allies, to which he has paid especial attention on account of their economic relations to agriculture. The writer wishes here to acknowledge his aid in different ways while engaged on the work, and for having the accompanying illustrations prepared.

In the preparation of the present paper so special efforts have been made towards a natural classification of the species represented by the material herein described. The conocephalids have, however, heen placed together-an arrangement which seems more matmal than that sometimes adopted heretofore by writers treatmg of the family of locusts. The division into sub families is that followed hy the more recent European specialists.

The following new species and genera are described in the present paper:

```
Acridinæ.
    Mesops cylindricus.
Pyrgomorphinæ.
    Dracotettix geu, nov.
        Dracotettix monstrosus.
Tryxalinæ.
        Ochrilidia crenulata.
                cinerea.
    Mermiria texana.
                maculipennis.
    Syrbula acuticornis.
    Eritettix gen. nov.
        Eritettix variabilis.
        abortivus.
    Boötettix gen. nov.
        Boötettix argentatus.
        Pedioscirtetes pulchella.
Edipodinze.
    Psoloessa Buddiana.
        (?) eurotic.
    Arphia Saussureana.
```

Acridine.
Mesops cyliudricus.
Pyrgomorphinæ.
Dracotettix geu, nov.
Dracotettix monstrosus.
Tryxalinæ.
Ochrilidia crenulata. cinerea.
Mermiria texana. maculipennis.
Syrbula acuticornis.
Eritettix gen. nov.
Eritettix variabilis. abortivus.
Boütettix gen. nov.
Boötettix argentatus.
Pedioscirtetes pulchella.
Edipodinz.
Psoloessa Buddiana.
(?) eurotic.
Arphia Saussureana.

Aulocara (?) Scudderi.
Mestobregma pulchella.
Conozoa texana. albolineata. Koebelei.
Trimerotropis cyaneipeunis. azurescens. bifasciata. californica. modesta. thalassica.
(?) pacifica. perplexa.
Circotettix lapidicolus. shastanus.
(Edipoda (?) occidentalis.
Thrincus aridus.
maculatus.
Haldemanella Saussure.
Haldemanella robusta.

Sub-family ACRIDIN出.

Mesops cylindricus sp, nov.
Very similar to M. wyomingensis Thos. in structure and general appearance, but differing from that insect in color and its considerably larger size.

Head long, considerably longer than the pronotum; the face very oblique, straight; cone of the vertex horizontal, the margins raised, the center sulcate and furnished with a well defined medan carina in both sexes; frontal costa expanding below, sulcate to the labrum. The sides sharply defined. Antenna ensiform, triquetrus, rather heavy, and somewhat exceeding the length of head and pronotum combined; occiput gently rounded, slightly expanding posteriorly. Pronotum subcylindrical. The anterior edge slightly expanding, lower lateral edge a very little upwardly arcuate in the middle; the anterior and posterion extremities gently rombled, median cariua distinct throughont, most prominent on last lobe, which is slightly granulate; last transverse impressed line fitint, to the rear of the middle. Tegmina and wings very delicate, a little more than one-half as long as the abdomen, and furnished with few veins, their apices rounded. Posterior femora slender, gently and evenly tapering, abont two-thirds the length of the abdomen in both sexes. The abdomen rather long and cylindrical, in the male terminating with a long wedge-shaped last ventral segment or process. Valves of the lemale ovipositor very short and nearly obscured by the overlapping anal processes.

General color a nearly uniform redulish-hrown or grayish-fawn color, marked only by a bright white line reachine from the base of the antennae along the lower edges of the pronotum to hase of middle mat of legs; antenure, face, and eyes fermginous.
 of pronotum, $\hat{\delta}, 35^{\mathrm{mm}}, \circ \uparrow, \tilde{v}^{\mathrm{mm}}$; of teginina, $\hat{\delta}, 12^{\mathrm{mm}}, ~ ㅇ, 14^{m \mathrm{~m}}$; of hind femora, o , 10.35^{mm}, 우, 13^{mm}.

Hab.-Valentine, Nehr., along the norih side of Keya Paha Creek, also on the blufts south of Chadron, Nebr., (L. Bruner).

This rery interesting grasshopper was seen for the first time, by me, during the month of August last, while on a collecting trip into the northwestern part of the State. Belonging, as it does, to a sub family of locusts that are particularly noted for their mimiery to certan forms of regetation, it can be readily seen how it has so long escaper the eyes of collectors. This insect lives upon the stems of sereral species of the tall grasses of that region, to which it clings so closely that it is difticult to see it maless first distmbed. Even then it sometimes succeeds in eluding its would-be captor. Its actions are slow, as would naturally be supposed from the form of its jumping legs and the smallness of its winge. It is more of a climber or walker than a jumper.

Sub-family PYRGOMORPHIN 狌.

Dracotettix gen. nov.

Composed of rather large aud clumsy insects of dull eolors, in which the tegmina and wings are somewhat shorter than the abdomen. The rertex of the head, broad and projecting; the pronotum large, cristate, and quadrilobed; the prosternum strongly spined, and the legs as in the Eremobince. Females fully twice the size of the males.

Entire surface of body and limbs rery rough, having a grammatr appearance. Antemue rather short, crassate, subtriquetrons, 17 -jointerl, the joints somewhat thattened, punctate, the apex blant. Vertex broad and projecting considerably in front of the eyes, of nearly equal width throughont, almost horizontal, the lateral edges pojecting, but gently sulcate, fumished in the middle with a blunt, longitudinal carina; the fastigitm hroadly rombled ; lateral foveolae elongate, scareely suleate; frontal costa narrow and very prominent above, suddenly contracting to ordinary height at the ocellus, where the walls are deeply ent hy a profound transerse sulcus, rather deeply suleate throughont, the walls below the ocellus slightly divergent and quite heary ; lateral fand carinee moderately prominent and mited below by a trancreve carina with the carina of the frontal costa, making two walled emplosmest Eyes, moderately large and rather pominent, sub-glohalar: Pronotum large and broad, with strongly maked lateral (arinte, which are erenly divergent posteriorly, the disk menly flat, the front amb hate mbes ant gulate, the latter greatly prolonged, as in the gemms Ifchldemathella: the

Proc. N. M. 89——4
median carina tectiform, cristate, strongly quadrilobed; posterior lateral edges oblique, the lower angle rounden. Tegmina and wings somewhat abbreviated, the axillary field in the latter very large, especially in the males, where it occupies fully one-third of the entre area. Posterior femora moderately robust, with the upper and lower carime but little elevated; posterior tibie gently tortuous; the spines few, stout, and those on the inner edge nearly twice the length of those outside and curved; tarsi of anterior pair of legs very short; pulvilli between claws very minute, almost obsolete. Abdomen strongly compressed, tectiformly carinate, tapering rapidly near its apex; the last rentral segment of male conical ; the supra-anal plate triquetrous, the upper edge narrowly but quite deeply sulcate. Prosternal spine quite large, pyramidal, the front edge flat, the hind edge rounded.

As indicated from the above description and by reference to the figure of D. monstrosus, it will at once be seen that the insects comprising the genus Dracotettix form a very distinctly marked group among the Acridians of the world. Like most all of the otherlarge robust forms of the family, these locusts are also inhabitants of semi-desert, or desertlike regions, for the rigors of which ther are eminently fitted.

Their dull color is protective, their shield like pronotum and leathery tegument a safety against the attacks of lizards and other reptiles, while their rugosity is in unison with their surroundings. Being denizens of a rough country their general "make-up" partakes of a like rough nature. Like some of the reptile forms that frequent these regious these locusts also bear a rery striking resemblance to the pictured dragons of mythological lore, hence the name "dragon locust."

Dracotettix monstrosus sp. nov. [Pl. I, Fig. 1.]

Dull, dirty white, gray and brown, with a few flecks of black along the carius of face, pronotum, and posterior femora; the latter black inside; posterior tibie and tarsi red inside, gray outside. Antemio reaching only to last transverse sulcus of pronotum.

Vertex between the eyes about as broad as their longest diameter (δ) or fully twice as broad as their shortest diameter (of), horizontal, gently tapering anteriorly, the fastigium broadly rounded, the median carina rather blunt but distinctly visible throughout, the lateral walls converging posteriorly to the hind edge of the eyes, where they suddenly approach nearly to the median carina; occiput furnished with two supplementary carime or rugosities, commencing at the upper posterior edges of the eyes and reaching backwards and inward until they are lost from view beneath the iront edge of the pronotum. Face in front and on cheeks rugose. Pronotum large; the surface tuberculate, granulate; the crest or median carina tectiform, high; the last transrerse sulcus a little in advance of the middle, the anterior portion trilobed, the three lobes together arched, the front one nearly or quite as long as the other two; the crest on the posterior lobe a little lower and
evenly arched, as in the genus Acrolophitus, lateral carime continuous, increasing in size backwards, and forming overhanging blunt walls to the lateral lobes; posterior extremity acute angled, with the tip up. turned and strongly margmate. Tegmina lanceolate-ovate, in the female about half as long, and in the male only a trifle shorter than the abdomen; wings shorter than the tegmina, the humeral field rery narrow, the axillary equal to the post-axillary or tadial field and bordered with very heary reins, like this portion of the wing in Khomalea and Temiopoda, and like these are evidently used as musical organs.

General color, dirty grayish-white, with a slight rusty tinge to the sides of the pronotum and thoras. Lower half of tegmina brown. Inuer face and lower sulcus of posterior femora black nearly to the knee; inner edge of posterior tibiae bright rermilion, outside grayishwhite. Carine of face, pronotum, and posterior femora tlecked with dark brown and black. Tips of antenne infuscated, remainder grayish. Spines of posterior tibie testaceo cinereous in the middle, their bases and tips black.

Described from two specimens, male and female.
Hab.-Los Angeles, Cal., March 5 and 27 (D. W. Coquillitt).

Sub-family TRYXALIN届.

Ochrilidia (?) crenulata sp. nor.
Related to O. occidentalis (Stenobothrus occidentelis Thos.), from which it differs in its smaller size, shorter occiput, and in its markings.

Occiput rather short and slightly romding; the vertex between the eyes about as wide as the length of the basal antenual joint, the front margined by a blunt carina, forming at the fastigium a right angle, with the apex, gently rounded ; lateral foreoke missing; frontal costa prominent above, where it is very narrow, widening eveuly below, sulcate thronghont, the literal walls sharp. Eyes pyriform, not prominent. Face straight, very oblique. Pronotim short, nearly as broad as long, the lateral carine greatly bowed, faint ; median carina visible throngh. out, severed about the middle by the last transverse impressed line; anterior edge slightly ascending upou the occiput; posterior edge broadly rounded. Tegmina narrow, the anterior edge bowed, the posterior edge straight ; the veins of the disk not uniting and forming cells. Posterior femora slender, in the female just reaching, but in the male surpassing, the tip of the abdomen about one-third of their length. Interior apical spines of the posterior tibie fully twice as long as those on the outside, the lower one much the longest. Autennie long, with the basal joints somewhat flattened, and the apex acuminate.

General color light testaceous, striped, and marked with hrown. Frontal costa and a quite broad median line reaching from the fas-
tigiam to the firnt eage of the pronotum, a similar one extending from the lower edge of each eye down the face to the corner of the elypens ; in some specimens this line is separated into two by the very nar. row yellow front border of the cheeks; there is a third line or band of the same color directed batekards from the middle of the eyes, widen. ing as it goes, and continued upon the sides of the pronotum, of which it covers a little more than the upper half. This last band is partially intermpted on the tront edge of the pronotum by a peinted streak of ychow which reaches nearly to the lateral canime. Disk fermginous, with two lateral triangular bown spots on the posterior lobe, that appear as if separated from the foloring of the sides by the narrow yelLow lines along the carine. Tegmina with the disk brown to the apex, the anterion edge of which is much the darkest and deeply cremmate or waved, remander grayish, becoming somewhat transparent apically. Wings pelludid, with the reins and nerves of the apical third infuscated. The posterior femora, with the upper carina and the upper half of the onter face bown, also with indications of two dusky bands on the upper edge. Posterior thbe dirty grayish yellow, becoming infuscated apically. Venter dull yellow. Antenne testaceons, in some specimens inclining to lavender.

Length of body, $\hat{\delta}, 13^{\mathrm{mm}}$, ㅇ, 18.5^{mm}; of antennæ, $\hat{\delta}, 9^{\mathrm{mm}}$, ㅇ, 7^{mm}; of pronotum, $\hat{\delta}$, 2^{mm}, 우, 2.92^{mm}; of tegmina, $\hat{\delta}, 9^{\mathrm{mm}}$, ㅇ, , 12.5^{mm}; of hind femora, $\hat{o}, 8.6^{\mathrm{mm}}$, $\frac{f}{}, 11^{\mathrm{mm}}$; of hind tibise, $\hat{\delta}$, 7.65^{mm}, ㅇ 10^{mm}.

Hab.—silver City, N. Mex. (Chas. H. Marsh): Vellowstone Valley, Mont., Helena and Fort Bentom, Mont., and from sereral points in northern Wyoming, southmest Jakota, northwest Nebraska (Bruner).

This trim little locust is quite common throughout the regions above indicated, where it is to be met with among the short bunch grasses of the plans; and espectially is it partial to localities where the surface is somewhat strewn with gravel and small stones.

Ochrilidia (?) cinerea sp. nov.
Somewhat larger than (). crennlete amd O. oceipitelis. Dull, dirts, grayish-yellow, with the tegmina evenly mottled throughout.

Differing from the speces just described in the somew hat longer, more achte vertex, which expands a little in alvance of the eves and is quite deeply hollowed; also in the presence of rather plain, elongate, triangular lateral foreoler. P'ronotum as in oceipitulis. Tecumma with the discal cells closed at about two thirds the distance to the apex, and the marginal field somewhat expanding on the basal half. Anteunar a little heavier and more flattemed than in oceipitalis. Posterior femora as in that species to which it is most closely related.

General color cinereotestaceons, with fant indications of the brown markings of the head and thoras, as seen in the other two speries. Tegmina evenly motted thenghont, with small fuseons quatrate spots. Posterion femora crossed by two fatat, dusky, oblique hands, plathest
abowe. Postorior tibia testareons, the spimes batk-tipped. Antemak grayish-brown.

Length of body, ह, $15.5^{\mathrm{mm}}, ~$ ㅇ, 21^{mm}; of antennr, ô, $S-10^{\mathrm{mm}}$, of 9^{mmm}; of pronotum, ô, $2.45^{m \mathrm{~mm}}$, ㅇ, 3.35^{mm}; of tegmina, ô, 11.5^{mm}, ㅇ, $14^{\text {mun }}$; of hind femora, $\hat{\delta}, 9.25^{\mathrm{mm}}$, 오, 11.2^{mm}; of tibie, $\hat{\delta}, 8^{\mathrm{mm}}$, ㅇ, 10^{mm}.

IIsb.-Fort MeKimey, Wro., Bireh Creek, Haho, and Buleigh County, Dak. (Bruner), northwest Nebraska (Bruner).

This and occipitalis are frequenters of the mometain slopes and fixothills, and especially so where these localities ate some what sandy: Like crenulutu, they are most partial to partly hare surfaces, and are very ace tive in their morements. The present specees reminds one mot a little of the different members of the genas Mermiria in its general appear. ance and actions.

Mermiria texana sp, nov. [P1. I, Fig. 11.]
A rather robust species with comparatirely short hind legs. Dark brown, testaceons, and dirty white or pale lavender.

Head moderately short, the vertex short (though not quite so short as in M. bicitteta), namow, rommed in font, with but very slight trates of rased lateral carine and no median carina ; frontal costa plainly visihe throughout but not prominent, straight, narow abore and sradually widening below (ot , or with the sites parallel (\&) , sulcate thonghont. Eyes large and moderately prominent, elongate pyriform-as long as that portion of the cheeks immediately below them. Antemne rather narmw, reaching one thind of their length beyond the hime extremity of the pronotum. Pronotum short and broat, the sides nearly parallel, rombled above on the anterior and nearly flat on the posterior lobe, which is rather coarsely punctate; median carina quite prominent, severed back of the middle by the last fanserse impresed line: lateral carine nearly obsolete; anterior margin slightly concare; poste. rion margin vers broally ronded. Tegmina broat, the apes rommed, with the reins quite prominent, reaching beyond the tip of the body in both sexes. Posterior femoral shorter and heavier than usual, not quite reaching (ㅇ) or a trifle surpassing (δ) the tip of the abobonen; tibie heary, with rather short, stont spines. Last ventral sesment of the male abdomen less elongate than in $I I$. bivittotu ant.$I V$. ulueris.

General color light grayish-brown, heavily lined and marked with dark brown, and testaceons. A broad brownish hand, commenceing at the tip of the rertex and extending bat kwards along the midnle of the oeciput and pronotum to the middle of the dorsal edge of the closed tegmina; another reaching from the eyes backwats along the uprer half of the sides of the pronotum upon the tegmina, the entire sides of which (sare a narrow costal line of testaceons) it corers. These lines are darkest on the pronotum, where the color is nearly hate. There is ako a continuation of this color on the upper portion of the frontal costa and also a narrow line down the inneredges of the lateral facial carmie,

These brown lines are much darker in the male, where the antenne and the anterior and middle legs are also of this color. The dark lines are broadly bordered with testaceous, of which color are also the antemme of the female, a line along the upper and lower edges of the posterior femora, and also the tarsi of the posterior pair of legs. There are also lines of the brown along the upper carina and upper edge of the outer face of the posterior femora, which terminate at a rather wide preapical amulus of the testaceous color. Posterior tibie bright red, in some specimens inclining to purplish at the immediate base and towards the apex; the spines black-tipped.
 of pronotum, $\boldsymbol{\delta}^{\circ}, 4.85^{\mathrm{mm}}, ~$, 6.45^{mm}; of tegmina, $\delta, 23-26^{\mathrm{mm}}, ~ \&, 35^{\mathrm{mm}}$; of hind femora, ô, $15.5-17^{\mathrm{mm}}, ~ ㅇ, 21-24^{\mathrm{mm}}$; of hind tibie, ${ }^{\hat{\delta}}, 14.5-16^{\mathrm{mm}}$, ㅇ, $20-21-5^{\mathrm{mm}}$.
IIab.-El Paso, Tex.; also Lerdo, in the State of Durango, Mexico, during November (L. Bruner).

This locust was only met with among the sisal producing plant (a sort of Agave, I believe) growing upon the rocky hills back from the rivers. It is very active, wild, and difficult to capture, and when disturbed tlies great distances, invariably alighting among the thomy, rigid, and fleshy leares of the plant above referred to. Whether or not it feeds upon the leaves of this plant I was unable to ascertain.

Mermiria maculipennis sp. nov.

Large and robust, with the tegmina more or less mottled. Testaceous and brown.

Head large and wide, the occiput shorter than in $I I$. neo-mexicana and M. alacris; face straight, less oblique than in those species; eyes large, quite wide, and prominent ; vertex not quite so wide as in the species just mentioned, short and broadly rounded in front, not sulcate; lateral foreole lmate and small; frontal costa moderately prominent above, slightly widening and fading below, gently sulcate above the ocellus (if) or thronghout (o). Antenne long, of medium width near the base, apex acuminate. Pronotum broad, without lateral carinæ, subeylindrical above, the posterior lobe expanding; anterior margin nearly straight, posterior margin subangulate. Tegmina extending just beyond the tip of the abdomen, with the nerves and reins prominent. Posterior femora robust, reaching past the tip of the body and wings in boilh sexes. Posternal spine quadrate, short, bluntly acuminate, directed gently to the rear.

Dull testaceous, in some specimens inclining to ferruginous, with the usual dark band along the sides of the head and pronotum, which extends upwards upon the edges of the disk of the latter; occiput furnished with two rather narrow, somewhat interrupted central brown stripes inclosing a still narrower one of yellow. Median carina of the pronotum sometimes occupied ly a narrow brown stripe. Tegmina with
a subcostal and dorsal yellow lines, remaining portion brownish cinereous, becoming translucent beyond the basal third ; veins and crossveins brown. There are also a number of rather large dim fuscous blotches arranged along the middle field and a few smaller ones above and below. Posterior femora with the upper half of the outer face, together with the upper inner face, dusky ; there is also a row of small dark spots along the lower outer edge; apex fuscous above; posterior tibie light red, inclining to pinkish in the female, their spines black on the outer half. Antemae testaceons, lightest in the female. Besides the markings already mentioned there are, in some specimens of the female, small cresent-shaped black marks on the face below the ocellus, and interrupted bands of brown reaching from the lower edge of the eyes down the cheeks. Also a dim broad band just below the lower lateral edges of the pronotum.

Length of body, ô, $36^{\mathrm{mm}}, \circ, 46-52^{\mathrm{mm}}$; of antenne, $\frac{\text { on }}{}, 21^{\mathrm{mm}}, ~ \circ \frac{1}{}, 15^{\mathrm{mmn}}$;

Hab.-San Autonio, Tex., in June (M. Newell); Carrizo Springs, Dimmit County, Tex., also in June (A. Wadgymar).

Syrbula acuticornis sp. nov.

Very closely resembling S. admirabilis (Uhl.) in its general appearance and size, but differing from that species in its somewhat slenderer form and in several other respects.

Antenure acuminate, the basal joints flattened and wider than long, reminding one not a little of the different members of the genus Mermiria, not quite as long as the head and pronotum combined. Vertex between and in adrance of the eyes as in admirabilis, but with the cariure much more strongly developed; the lateral foreola inconspicuous; frontal costa of only medium width, the sides straight and diverg. ing but litile towards their lower end, continuons to and upon the clypeus, sulcate at upper end and below the ocellus; lateral facial carinte straight and nearly parallel with those of the frontal costa; eyes similar in form to those of admirabilis, but larger and slightly more prominent than there. Pronotum with the lateral carine greatly arcuate, heavier and more prominent than the median, all three severed by the single transverse impressed line upon the disk a little back of the middle, the lateral lobes slightly deeper than in the other species. Tegmina and wings as in admirabilis. Posterior femora moderately heary, reaching slightly beyond the tip of the abdomen.

Geueral color grass-green, marked upon the pronotum and tegmina as in admirabilis, with this possible difference, that these member:s, together with the wings, are more deeply infuscated here than there.

Length of body, \circ, 34^{mm}; of auteuuse, 8.5^{mm}; of pronotum, 5.75^{mm}; of tegmina, $24-25^{\mathrm{mm}}$; of hind femora, 22^{mm}.

Described from 3 female specimens. Male not known to me.
Нab.-Southwestern Texas (F. G. Schaupp).

Related to the genera O.ycoryphus, and stenobothrus of Fischer in the general make up of the body; but differing from these in having the occiput tricarinate, which carine are continnous upon the disk of the pronotum as the mediau and two supplementary carinar, these latter about midway between the median and lateral carine which are common to all the other genera of the sub-family Trusalinae. Vertex nearly horizontal, only moderately broad, increasing but little and extending in advance of the eyes about as far as the distance which separates them, the aper romdly augulate. Antemme with the joints more or less flattened towards the base, the apex clubbed to buntly acuminate, of moderate length, not reaching the posterior extremity of the pronotum; face oblique, slighty arcnate ; the fromtal costa prominent and hroad, with its sides greatly divergent below, shallowly sulcate at the ocellus; the lateral facial earine rather fiant, areuate. Pronotum short to medium in lengeth, somewhat tmid at the sides below, the front elge nearly straight, the pesterior enge round? angulate above; median carina rather mominent, straight the lateral but gently (carinatus, tricarmathes, cirgutus, and coriabiiis) or considerably arcmate (nbortions) : the last transerse impressen! line faint, nearly in the middle. Tegmina from one-half to as long as the abdomen, when the latter jast reachung (f) or slightly smrpassing the tip of the abtomen (of). The anterion or costal area of the former but gently inflateri. Valves of ovipositor short and blunt. Posterior femoma stont, smpassing the tip of the abdomen.

Second internal tibial claw almost twice as long as the first. The two sexes very une gual in size, the female leing much the largest.

All the species of this genns of locnsts, so far as 1 :m aware, live through the winter as larso or pupe, and mature very canly in spring, in that respect reminding one of the genera Chowtophayde, ©himarocophate, Psoloessse, and a few of the representatives of the genera Hippiscus and Arphit among the (Edipertine and the Tettigime.

Eritettix variabilis sp. nov.

Very similar in size and general structure to Stenobotirus corinatus Thos., and like that insect also very variable as to color. In this latter species the antemme are ammate instead of clavate, the vertex is narrower between the eyes, and the supplementary carina of the pronotum and occiput are less prominent than there.
Size and color of carinatus.
Hab.-Silver (ity, A. Mex., in the month of May (Chas. II. Marsh).

> Eritettix abortivus sp. nov. [Pl. I, Figs. 8, 9.]

Short and compact with aborted wings. In general appearane resembling the gemus : xyent plus, but belonging with aid. curimulus. No. tricarinatus, and St. virgatus in a distinct genus; very varnable in color, ranging from bright grass-greeu to dull wood-brown.

Terter triangular, ahout as wide as the smaller diameter of the eros: the margins but gently raised. furnished with a well-definell lomsitudinal carina, which, with two supplementary (aninar, wxtend barkward across the oceiput to the front enge of the promotum, where the lateral supplementary ones are more or less intermpted, hut iphear again upon the disk of the posterion lohe. Face oblique, neaty straight, the frontal costa prominent, evenly widening below where it reathes the clypens, sulcate at the ocellas (9) or from the antemne nearly to the lower end (δ) ; lateral facial catint minute, straight, antemnte with the joints slighty flattened but not ensitorm. i'tonotum shont and rather broad, the median carina rery prominent; lataral carimar much curved, the disk provided with a pair of supplementary carinit, one on either side and parallel to the merdian, as mentioned above; anterior edge nearly straight, posterior edge broadly amgnlate: posterior impressed line back of the middle, faint. Tegmina abortive, fumished with rather prominent nerves, acuminate, not quite (?) or a little more than half as long as the abdomen (δ). Posterior femora large, compressed, just reaching (8) or considerably surpassing the tip of the abdomen (δ) ; posterior tibie with the midelle terminal claw more than twice as long as the others.

Tery rariable in color, like the other species of the wans, varying from dull wood-brown to mearly wholly green. Lateral warina of the pronotum, together with a median lateral line, of bright fellow, alsw the disk and rather wide lower lateral bomer of testameons, a dusky hand on disk, just inside of lateral carinte, crossing to ont side in middle, and recrossing at hind extremity; also one on michle of sides, somewhat intermpted near the hind margin. Antenne fermsinons on darker.

Leugth of body, ô, 9^{mm}, ㅇ, 16^{mm}; of antemm, $\hat{\text { o }}, 3.5^{\mathrm{mm}}$, ㅇ, , 4^{mm}; of

HAb.-Central Texas (Schaupp) ; Washing゙ton ('ounty, Texas (Bruner).

Found quite plentifully in closely grazel pastures during the month of April, when the sexes were taken in coitu.

Boötettix gen. nov.
Comprising insects of medium size, somewhat related to Pedioserptefes Thos, in the form of the pronotum and posterion femora, hut otherwise approaching (fomphocerves aut Ntenoiothrus. IIeads of merlium size, oeciput rather short; the eyes moderately pominent, rommed hehind, nearly straight in front; vertex bowl, neaty lonizontal, wiangular, shallowly suleate, with a minute merlian lonsitulial camina, the lateral margins sharp, fastigitum rery pointed; face mather ohfighe, straiwht, the frontal costa pointed above, hombest between the amtemat. plain.
 divergent in the female. Ancomat ahont 20 -jomterl, slizhtly flatemed
near the base and apex, the latter pointed; in the female rery short, reaching only to the front edge of the pronotum, in the male a little beyond its posterior extremity. Pronotum rather short and moderately broad, depressed in the middle, rounded above on the anterior lobe, from which point it expands rapidly posteriorly; lower lateral edges nearly straight, the sides deep, the lower posterior angle square, thepoint rounded; anterior edge slightly rounded, posterior margin broadly rounded. Tegmina and wings reaching beyond the tip of the abdomen in both sexes, rather narrow in the female, the costal field considerably dilated in the male as in Chlö̈altis and Arcyptera. Posterior femora long and slender, reaching (\circ) or extending past the tip of the body (ठ). Prosternum armed with a large, very low, quadrate process.

Boötettix argentatus sp. nov. [P1. I, Figs. 4, 5.]
Light green marked with deep ferruginous, brown and black. A series of silvery blotches along the sides and beneath is a distinguishing character. Body and limbs hirsute. About an inch in length.
lertex between the eyes quite broad, nearly as wide as the shortest diameter of the eyes; fastigium pointed, triangular, very shallowly sulcate and furnished with a minute central longitudinal carina, lateral margins sharp, abrupt; lateral foveclee elougate, narrow, fading away along their lower edge where the surface is rather coarsely gramulate ; lateral ocelli very large and situated lower down the face than ordinarily. Front coarsely punctate, the costa widest above between the antennae, not sulcate, but punctate throughout. Antemer slightly flattened, nearly trrice as long in the male as in the female. Pronotum glabrons, with the anterior lobe equal, rounded above, the posterior lobe rapidly expanding, nearly flat above, well shouldered; front edge gently adranced upon the ocsiput, posterior edge broadly rounded, marginate; transverse impressed lines well defined, continuons, rather sinuous, the last about the middle; median carina visible throughout (8) , or only on the posterior and on the front edge of the anterior lobe. Tegmina long and narrow, the apex rounded, reaching besond the tip of the abdomen in both sexes; the costal margin considerably dilated in the male, forming the stridulating organ, or rather the "sound board," as in the genus Gomphocerus. Posterior femora long and slender; the tibixe as long as the femora, the spines slender and more numerous than usual. Metasternum furnished with two couverging keels which terminate near the center at the front edge and are united by a strong crosspiece. Prostermum armed with a short, blunt, quadrangular process. Terminal segment of the male abdomen elongate, wedge-shaped; supraanal plate elougate cordate, roundly scooped out, the sides bent down so as to clasp the underlying processes. Cerci a little more than twice as long as broad, tapering, blunt.

General color light transparent green, with a metallic luster. Lateral foreole and fastigium of the vertex black, changing to plain brown
above; occiput with a rapidy widening median brown band; median carina of the pronotum furnished with a similar band commencing in front with the carina alone, but spreading evenly posteriorly until corering the entire upper surface just before reaching the posterior extremity, where it changes to a bright rust brown. There is also a large patch of this color down the sides of the pronotum in adrance of the last transrerse impressed line, and another on the sides of the head back of each eye. Tegmina furnished with a row of rather large fuscous blotches along the posterior edge, also a few smaller ones along the disk which vary in size and number in different individuals; wings dull trausparent green, with the principal reins and the cells, on the outer third of the posterior field fuliginous; anterior or humeral field, with the veins greenish and the cells clear. Sides of meso and metathorax brown, inclining to black. Posterior femora with four broad fuscous bands, apex ferruginous; tibiee furnished with a narrow basal annulus of black, followed by a rery broad one of greenish yellow; below this they are dull red, more or less infuseated at the apex and in the middle, brightest in the male. Anterior and middle femora brown, banded in the middle with greenish. The most striking feature in the coloration of this insect, and one which readily distinguishes it from all other North American locusts with which I am acquainted, is a series of pearly or bright silvery markings situated as follows: A rather wide line commencing , just below the lateral angle and following down the front edge and around the corner to the middle of the lower edge of the pronotum; a large blotch upon the side just above the insertion of the middle pair of legs, a third just below the base of the wings, and a fourth on the trochanter of the posterior legs. There is also a rery conspicnous one along each of the two metasternal carinae mentioned above; besides these, each of the middle and posterior femora has a rather conspicuous blotch of this color on the middle of its outer face. Immersion in alcohol does not erase these. Antennae and tarsi ferruginous; tibial spines tipped with black. Eyes alternately lined with perpendicular lines of yellow and brown.

Length of body, $\hat{\delta}, 19^{\mathrm{mm}}, ~ ㅇ, 23.5^{\mathrm{mum}}$; of antenuæ, $\hat{\delta}, 7.75^{\mathrm{mm}}$, 오, 4^{mm}; of pronotum, 子, 3.92^{mm}, ㅇ, 4.5^{mmm}; of tegmina, $, 15^{\mathrm{mmm}}, 9,19 \mathrm{~mm}$;
 12^{mmn}.

Hab.-Arizona and El Paso, Texas, (G. W. Dumn) ; Lerdo and Comancho, in the State of Durango, Mexico, duriug the month of November (Bruner).

Described from numerous specimens of both sexes.
This peculiar and gatudily colored locust is entirely "arloreal" in its habits, and lives upon a peculiar evergreen shrub ('eunothus) among the small smooth oval leares of which it readily conceals itself. During the middle of the day when the sun shines hot it is very artive. and by jumping and flying from bush to bush easily eludes the pur-
suer. When the sky is orereast with clouds and during early morning it is reer sluggish and can readily be taken. Its presence is easily detected by the sharp stridulating sound produced by the males, which dosely resembles that produced by some of the Stenobothri and allies. Although of medium size, so closely does its color resemble the phats upon which it lives that it is difticult to find, even though you are a ware of its presence upon a particular plant that is quate isolated.

Pedioscertetes pulchella sp, nov. [Pl. I, Fig. 10.]

Olivaceons, rariegated with pinkish-yellow streaks and mottlings. The middle two tifths of the wings crossed by a fuliginous band. Exceedingly hirsute.

Occiput moderately long, ascending rapidly to the fastiginm of the rertex, which is arute: vertex between the eyes a triffe broader than the shortest diameter of the pyriform eyes, convex; frontal costa very narrow and prominent above the base of the antenne, where it sudtenly diminishes in height, sulcate throughont, the lateral walls gently and evenly diverging, continuons to the clypeus. Antemat somewhat flattened, rather heary, considerably louger than the head and pronotum combined. Pronotum short, the posterior lobe greatly divergent ; anterior lobes nearly equal, rounded above; transierse impressed lines rather faint, the posterior one about the middle; median carina distinct throughont; lateral carine present ouly on posterior lobe as sharp shoulders; anterior margin rounded, ascending upon the oceiput ; posterior margin also rounded, marginate. Tegs slender, somewhat heaviest in the female : posterior femora a little surpassing (δ) or not quite reaching the tip of the abomen ($\%$); posterior tibit as long as the femora, gently bowed downwad, the spines minate, slember. Tegmina of moderate wilth, hroalest in middle, the anterior elge somewhat arcuate, posterior edge nearly straight; wings rather narow, the crossreins unsually faint and distant. Last rentral segment of male abdomen acuminate: the preceding segment furnished beneath with a cordate depression, which is margined by shamp carina that meet and continue as a median ridge to the apex of last segment. Valres of the oripositor rather large and exserted.

Gencral color olive green, the male somewhat infightest, streaked and mottled with duli pinkishrellow. The entire insect covered to a greater or less descee with a whitish powder, which, together with the haircovered surface, gives it a sort of hoary appearance. The pinkish lines are arranged as follows: On the back of the head one on each side; another from the lower edge of the eyes obliquely hackwards to the back margin of the cheek, where it continues as a border to the lower corners, the carine of the face, and borders of the clypens and labium; on the pronotum as an entire border, on cach side of the disk in place of the lateral carina. and a short hackward projection from the middle of front edge of sides to first transreme impressed line; on the teg.
mina along the two principal veins, the front and back margins with others joining these, thereby giving the wing the appeamere of beme heavily and irregularly marked with dark olivaceons hotehes. P'os. terior femora with three oblique lines each of the olivaceons and pinkish yellow ; posterior tibie, with the under surface and anterior and middle legs testaceons; the former with the hase and midnle somewhat infuscated, giving them an obseure banded appearance: spines without dark tips. Wings with the hasal fourth (o) or fifth (है) tinged wery slightly with dull yellow, the apical fouth hyaline with the principal reins and some of the cross reins black; remaining portion of the wing fuliginons, at rather broad shoot extending nearly to the hase along the costal margin. Antenme ferruginous.

 posterior femora, ${ }^{\text {b }}, 10.5^{\mathrm{mm}}, ~$,, 13^{mm}; of tibiæ, ${ }^{\circ}, 10.5^{\mathrm{mm}}, ~$ ㅇ, 13^{mm}.

Habs.-Birch Creek, Idaho (Bruwer).
A single pair taken in August, 1s8:3, upon the small thomy pant known as (irayia polyguloides. Other specimens might have been secured had there not been a heavy frost the preceding night, therehy cansing most of the locmsts to seek shelter for the time being. The only time we could spare herefor collecting was early morning before the heat of the day.

This species differs considerably from the description and figures of P ' necadensis Thos., in its rariegated color, the much shorter pronotum which is rombled instead of troncate in front, and in the romded anterior edges of the tegmina.

Subfamily CEDIPODINF.

Psoloessa Buddiana sp. nov. [Pl. I, Fig. 6.]

In size and general structure very similar to P. ferminine Scondd., but differing from that species in the rolomation, which here is very decided.

Vertex rather deeply sulcate in the form of a new moon, withont indications of a median carina; the lateral canime quite prominent ; frontal costa plain above, gently suleate just helow the ocellus; lateral facial carine arcuate, mited at their upper and lower emblis bosis carinae with those of the frontal costa, forminge elongate walled fidmes. as it were, in the center of each of wheh is a lunate depmession dimectly opposite to the lower edge of the ocellus. Pronotum with its latemal carine arenate, the median carina prominent throughont, straight. Tegmina narrow, a little surpassing the tip of the abdomen. Posterion femora a little stouter than in fermuinea, reaching just past the aholomen.

Face, sides of pronotum, under side, and abdomen sellowioh white; the former with a few brown dots along the ensta and carima. 'pmer side of pronotum, oceiput, and anterior half of tegmina testaceols, the
atter with a few dots along the overlapping edges. Posterior femoral testaceons, with the usuat markings of brown, though less conspicuous than common. The characteristic marking is, however, a dark-brown band commencing at the eyes and extending back to the sides of the pronotum, the upper edge of which it covers and continues across the sides of the meso and meta thorax to the tegmina, the lower or anterior halves of which it follows almost to their tips. On the pronotum this band is broadly deflected near both edges, sending down an anterior and posterior shoot nearly to the lower edge. Above, this dark band is edged with a narrow one of bright yellow.

Length of body, $\circ, 20^{\mathrm{mm}}$; of antennex, 6^{mm}; of pronotum, 4.1^{mm}; of tegmina, 17.5^{mm}; of hind femora, $13^{\text {mm }}$.

Hab.--'outhwestern Texas, Carrizo Springs (A. Wadgymar).
Named for my friend H. S. Budd, of El Paso, Tex., from two female specimeus.

Psoloessa ? eurotire sp. nov.

A beautiful species that resembles the highly colored Mestobregma pulchelle Bruner in its general color and markings. In structure and size very similar to P. coloradensis Thos.

Head rather small; the vertex depressed, of moderate width, the sulens quite deep with the bounding walls sharp and arcuate, the median carime slight; lateral foreolie large, subquadrate (of or triangular (of). Face gently arcuate, the frontal costa moderateiy broad, evenly expanding and shallowly suleate thronghout. Pronotum short, the lateral carine greatly bowed, the last trausverse impressed line cuttiug all three carine a little in advance of the middle; posterior margin very obtuse angled. Tegmina slightly surpassing (©) or not quite reaching ($\%$) the tip of the abdomen. Posterior femora moderately heavy, not quite reaching the tips of the tegmina. Antenne rather heavy, joints $4-5$ about equal, a little shorter than the others.

General color creamy white with a greenish tinge, conspicuously marked with very dark brown and black spots and bands. On the head the mouth parts, antenual sulci, a narrow circle around each eye, and a band directed backwards from the middle of the eyes black; on the pronotum a band of medium width along the upper lateral edges which cross over to the disk back of the sulcus, also the lower anterior fourth of the same color; on the thorax all but a narrow white stripe reaching from near the base of the wings to the base of the posterior femora black. Tegmina with a median line of elongate blackish spots and the two edges and apical half infuscated. Posterior femora marked above with three spots and the apex black, the middle spot the largest and continned over to the inner and outer faces. There is also a slight basal blotch and a few smaller dots of the same color along the lower edge of the outer face. Posterior tibiæ pale gellowish-red more or less iufuseated; spines with their outer half black. Antemne brunneus inclining to fuliginous.

 of hind femora, $\delta, 8^{\mathrm{mm}}$, $\uparrow, 9.5^{\mathrm{mm}}$.

Hab.-Laramie River, just inside of the Colorado line during early July, at an elevation of about 8,000 feet above sea-level (Bruner).

This is one of the few of our North American locusts that is known to have a particular food-plant. In this instance the plant is Eurotict lanata or the sweet sage of the West, which is also known as "winter fat" and several other local popular names. It certainly is an interesting fact to know that Mestobregmu pulchella, a species found in quite a different region, that is also partial to the same food-plant is likewise similarly marked - showing the tendency of mimicry in color between an insect aad its surroundings.

Arphia Saussureana sp. nov.

Smail and rather slender; with the wings bright vermillion, which with the general appearance at the first glance reminds one of a diminutive A. tenebrosa Scudd.

Vertex between the eyes broad, the sulcus broadly prriform and furnished with a strong median longitudinal carina which is severed in the middle by a deep trausverse areuate depression; bounding walls rather prominent; occiput rugulose, with two quite large semi-triangular depressions, one on either side of a slight median carina; frontal costa broad, a trifle expanding at the ocellus, very coarsely granulated and punctate throughout, slightly sulcate in the male with a heary median carina reaching from the fastigium to the ocellus; antemir rather heavy, a third longer in the male than the female. Disk of the pronotum tuberculate, the median carima subcristate, notched about the middle by the last transverse impressed line; posterior angle nearly square. Tegmina of medium width, reaching (9) or extending nearly one-third of their length beyond the tip of the abdomen (δ).

General color dull brown, heavily mottled with dark brown aud dull black. Wings bright vermillion or roseate, with the outer third and a rather broad tapering ulnar ray reaching nearly to the base dark fulig. inous. Posterior femora obscurely faciate with fuscous; the tibia with a wide basal annulus of dull testaceous, remainder more or less infuscated.

 hind femora, ${ }^{\circ}, 10^{\mathrm{mm}}, \frac{\circ}{}, 11^{\mathrm{mm}}$; of hind tibie, of, $9^{\mathrm{mm}}, ~ ํ, 10^{\mathrm{mm}}$.

A large series of both sexes.
Hab.-On the hills lying back of San Francisco, Cal., during the latter part of October (Bruner, Koebele).

Aulocara Scudderi sp, nov.

About the size of A. decens Scudd., from which it differs in its more robust form and in having the posterior tibiar red instead of blue.

Fertex between the eyes rather broan, the fastigium either right-anglell (\%) or slightly obtuse (\&), not so deeply suleate as in Elliottio and decens; latemal foreone rather large and prominent, a little elongate, the upper and lower edges parallel, the latter not quite horizontal; frontal costa contimons to the clypens, but gentiy sulcate in the male, scarcely deperssed at the ocellus in the female. Eyes rather large, not promin at, rombled behind, nearly straight in front. Pronotum as in the other species, exeept that here the median carina is but once severed by the transerse sulei. Tegmina and wings about as long ($£$) or a trifle surpasing the tip of the ablomen (ह) . Posterior femora stont, just reaching the tip of the body in the female but surpassing it in the male. Posterior tibia with the second inner terminal claw long and strong, much as in the genus Scyllina.

General color dull brown, in some specimens inclining to ferruginons, the tegmina usially very heavily and evenly mottled with dark brown fuadrate spots, sometimes only confined to the disk. Some specimens have a light testaceons hand reaching from the vertex backwards across the middle of the oeciput and pronotum to the tips of the tegmina. Posterior femora marked as in the other species, but plainer; hind tibie bright coral red with a whitish basal ammlus, the knee deep black; antemse ferroginous, testaceous or lavender-usually the latter in living specimens. Lower surface dirty jellowish-white.

Length of body, $\hat{\delta}, 14.5^{\mathrm{mm}}, ~$ ㄱ, 20^{mm}; of antennæ, $\hat{\text { o }}, 10^{\mathrm{mm}}, ~ ㅇ, 77^{\mathrm{mm}}$; of pronotum, $\hat{\delta}, 3.1^{\mathrm{mm}}, ~ ㅇ ㅗ, 3.45^{\mathrm{mm}}$; of tegminal, $\hat{\delta}, 11^{\mathrm{mm}}$, ㅇ,, $12-14^{\mathrm{mm}}$; of hind femora, of, $10.5^{\mathrm{mm}}, \circ, 11.65^{\mathrm{mm}}$.

Iiab- Nebraska, Dakota, Colorado, Wyoming, Montana, British America in Saskatchewan Valley (Bruner); Kansas (F. W. Cragin).
This is a very common species throughout the region west of the Mississippi River.

Mestobregma pulchella sp. nov.

A beautiful greenish-white species marked with black and gray; wings hyaline, without a band as in M. kimen. Distinct from all other North Americau species in habits and appearance.

In general form and size most closely related to . II. liono, but differing from that species in its somewhat smaller size, the proportionately lnoader lower face, the smaller eyes, and generally smoother surface of head and pronotum.

The general color is a beantiful greenish white, in imitation of the plant upon which it feeds; heavily marked with the characteristic markings belonging to sembs, which in the present instance are black and quite sharply defined. These latter are arranged as follows: A narrow transerse line comnecting the upper extremities of the eyes, another but broader extending from the edges of the frontal costa immediately below the base of the antemme backand across the lower half of the eyes upon the sides of the pronotun to the first transverse impressed line;
on the pronotum nearly the entire sides of the anterior lobes, also the front half of the disk along both sides of the median carina; on the meso- and metathorax the entire pleure except two short narrow anteriorly directed oblique blotches of the light color. The tegmina have the dorsal or posterior half free firom marks, save at the immediate base, where they have the narow converging fuseons dashes; on the lower half are three rather large black biotehes, the first with its onter margin defining the basal fourth, the secoud about the middie, and the third just beyond; apex and base also containing a few small seattered quadrate spots; apical third more or less hyaline, the principal veins black. Wings hyaline, with the faintest possible yellowish tinge at the immediate base; reins on the outer third and along the costal margin more or less dusky. Autenne piceous, becoming greenish white, in some specimens obscurely annulate. Posterior femora with three deep back patches above, which continne over to the inner face; lower outer carina furnished with a few dusky dots, outer face somewhat clouled. There is also an obscure clouded or marbled appearance noticeable throughout. the greater portion of the greenish upper surface. Posterior tibie glatucous, the apex aud a narrow band just beyond the base infuseated, t^{\prime} :e spines black; anterior and middle legs quite regularly anmulate with dark brown or black. Sites of abdomen marked with a row of dusky dots, which are plainest in the male.

 femora, oे, $11^{\mathrm{mm}}, ~ ㅇ, 12.3$; of tibix, 수, 9^{mm}, ㅇ,, 10.85^{mm}.

Нab.-Yellowstone Valley, Montana, between Livingston and (iardiner ; also at Glendive, below the mouth of Powder River (L. Bruner).

This interesting species has been observed to feed upon the foliage of the "Sweet Sage" (Eurotia lanata) to the exclusion of all other plants; and although so far as at present known, is local in its distribution, ret, not at all rare. Why it should be confined to the valley of the Yellow. stone is not known, for certainly the same plant oceurs at other localities in far greater quantities. In Colorado, on the Laramie River, there is another locust found with a similar habit, which also very singularly possesses almost identical markings, although belonging to a different geuns. This latter species is also new and described here for the first time.

The preparatory stages of pulchella, like the mature insect, are so characteristically marked and so closely resemble the perfect specimens that there can be no mistaking their identity. These also feed upon the same plant.

About the size of C. sulcifrons and C. albolineata, to the latter of which it is most nearly related, but differing from it in genemal conoration, in the shorter and more robust hind femom, in the shomer anterior lobes of the pronotum, and in the lager more ghatalar eyse.

Proc. N. M. S9——5

Vertex deeply and roundly sulcate, the bounding walls continuous with those of the frontal costa, the fastigium furnished with a rather deep V-shaped depression, from the apex of which a median carina exteuds backwards through the sulcus and across the occiput; lateral foreole rather large and shallow ; frontal costa quite prominent, widening below. The sides a little contracted just below the ocellus, deeply sulcate throughout. Pronotum rather smooth. The auterior lobes combined about one-half as long as the posterior lobe; median carina twice notched, nearly equal throughout; posterior extremity about a right angle; lower lateral tooth less elongate than in C. clbolineata. Tegmina long and narrow, reaching about one-fourth their length beyond the tip of the abdomen. Posterior femora rather robust, with the carinæ inconspicuous.

General color cinereo-testaceous, profusely and heavily mottled with dark brown and black. Antemne black, amnulate with testaceous. Tegmina testaceous on lower or auterior half, dirty white above, very heavily and profusely mottled with black. These spots not congregating in bands. Wings sulphur-yellow on basal half, crossed by a broad, arcuate, black band that sends a wide ray half way to the base near the anterior edge; : pical third hyaline, with two pretty well defined longitudinal black rays reaching from the extreme tip nearly to the outer edge of the band, most apparent in male specimens. Posterior femora light testaceous, with two dark patches above and an outer face, also some dots of same color along the cariual ; posterior tibie pale coral red with a wide white basal annulus.

 hind femora, ô, $11.8 \tilde{5}^{\mathrm{mm}}, \quad \frac{9}{}, 13^{\mathrm{mm}}$.

Hab.-El Paso, Tex. (G. W. Dunn).
Conozoa albolineata sp. nov.
Rather slenderer than the other species of the genus. Grayish-brown streaked with white.

Vertex somewhat elevated; fastigium as in C. sulcifrons, continuous with the deeply sulcate frontal costa, which expands evenly and gradually to the clypens; eyes of medium size, slightly prominent, separated above by about their width; antemme as long as the posterior femora; pronotum quite smooth in comparison with that of (\because sulcifrons and $(:$ walluht, considerably depressed at last transrerse sulcus, from which point it expands and ascends quite rapidly posteriorly: median carina not prominent but visible throughont, twice notcherl, anterior portion most elevated, lateral carnise slight, only noticeable on the posterior lobe, posterior angle a little less than a right-angle. Tegmina extending about one-fourth their length beyond the tip of the abomen, slender.

Geueral color grayish-brown above streaked with white, yellowish
beneath. Head white, slightly tinged with ferruginous on the sides and front, somewhat obscured with the general color on the oceeput; lateral carine of the fastigiam more or less marked with black; antenna reddish-brown, the basal joint whitish. Pronotum with a rather broad white stripe extending along the outer edges of the dorsitm, a quadrate spot of the same color on the front edge opposite the lower angle of each eye and another in the middle of the sides; there is also a narrow border of white about the lower anterior angles. A white streak also extends oliquely backward from the base of the tegmina to the insertion of the posterior femora, also one from the middle of the back edges of the lateral lobes of the pronotum to that of the middle legs. Tegmina with the costal edge streaked with white three-fifths of their length; central field clouded with brown, not forming definite bands; nerves of apical portion dusky. Wings dull lemon-yellow at the base, crossed about the middle by a light fuliginous band of medium width, which is parallel to the body when spread; nerves of apical portion, which is vitreous, dusky. Posterior femora whitish, with the apex and two sery oblique bands black externally and two ordinary ones internally ; posterior tibis yellow with backthperd spines, the extreme base also black. Abdomen citron yellow at base, becoming paler apically.
 tegmina, $22^{\text {m"n }}$; of posterior femora, $13^{\text {m"n }}$; of posterior tibite, $12{ }^{2 \prime \prime \prime}$.

Described from a single \quad.
Нив.-Los Angeles, Cal. (D. W. Coquillett).
Conozoa Koebelei sp, nov.
A little smaller than C. wallula Seudd. Light gray, marked with dirty white and brown. Hind tibiee deep blae with a black hase and quite wide sub-basal light-colored annulus.

Vertex between the prominent, nearly globular eyes a little wider than in C. colluld, deeply and broadly suleate, the lateral walls gently diserging anteriorly to the middle and then converging to nearly onehalf of the greatest width at the fastigiom ; frontal costa moderately broal, somewhat constricted above the antemme, where it is plain, gently widening, and sulcate below. Pronotmm smooth abow, the median carina slight, twice notched, the anterior portion the highest ; posterior extremity nearly a right-angle; lower lateral angles more rounded than in wellule. Tegmina extending past the tip of the abdomen about one-fourth their length. Posterion femona a little heavier than in wallula, which inseet it most nearly resembles in si\%e.

General color light einerens with the usual markings of the genas fuscous. There are two rather broat diagonal bands of dirts white oxtending from the lower edge of the lateral carina of the promotnm in the middle forwatd along the side of the head, just below the eyes and meeting in the front upon the elypens; there are also two others atong
the outer edges of the disk of the posterior lobe of the pronotum, and the dorsal edges of the tegmina are also of this color. Wings greenish sellow on the basal half, followed by a rather broad indistinct fuliginous band which sends the usual tapering shoot along the preanal area nearly to the base, and continues aronnd the outer elge nearly to the anal angle. Veins and nervules of the apical half dark, also those near the edge of the anal angle. Posterior femora dimly banded; posterior tibiæ deep blue with pale basal annulus.

A single male specimen.
Hab.-Placer Counts, Cal., in September (Koebele).
Trimerotropis cyaneipennisn sp. nor.
Color of posterior wings very dark blue crossed by a moderately broad dark fuliginous baud, as in T. similis Scudd.

In size and general structure this insect is very similar to T. cinculata, but differs from that species in the more nearly equal size of the sexes, in the slightly larger head with larger and more prominent eves, the slightly longer and deeper sulcus of the vertex, which here has the lateral carine nearly parallel and quite prominent, and also the froutal costa deeply sulcate throughont. Besides these differences already mentioned there is a general resemblance in cyaneipemis to the varions species of ('ircotettix, and especially the slenderer ones. In the mottling of the tegmina cymeipennis resembles T. corruleipennis Bruner, from which it is quite distinct in the structure of the rertex and anterior lobe of the pronotum, the latter being plain abore in cyaneipemnis, while in ceruleipennis it is greatly elevated and tuberculate. The posterior femora are also much heavier in that species than iu this.

General color dark gray with a rusty tinge above in some specimens, profusely mottled and marked with fuscons. Face, cheeks, and occiput gray, profusely mottled below and above between the eyes with brown; also two diverging bands of the same color on the occiput and another backwards from the middle of each eye. Pronotum with the disk bordered on the sides by a rather wide lighter band, also a mesial ray from the front edge and a central quadrate spot of the same color on the sides. Tegmina profusely mottled with rather large quadrate brownish spots, which in most specimens are congregated into three patchesthe first occupsing the basal thitl, the second the center of the middle, and the third the outer third of the wing-most profuse on the basal and middle areas, but not forming definite bands as in most of the other spereses belonging to the genus. Wings very dark blue on their hasal half, crossed beyond by a rather wide fuliginous band that does not contiate aromud towards the anal angle; apical third hyaline with the veins and nerres black. Posterior femora crossed externally by three
moderately broad oblique brown bands, internally with the basal half and a single band in advance of the light yellow preapical annulation black. Posterior tibie deep cerulean blue with light basal anmulation, spines black-tipped. Abdomen deep blue above in some specimens, inclining to greeuish along the sides; dirty white to gray below. Antemme brown, darkest at the apex, with faint ammataions of a lighter brown.

 femora, $\hat{\text { o }}, 12^{\mathrm{mm}}, ~ ㅇ, 13.75^{\mathrm{mm}}$; of hind tibiæ, $\hat{\delta}, 10^{\mathrm{mm}}, ~ ㅇ, 11.25^{\mathrm{mm}}$.

Hab.-Salt Lake Valley, Utah, near the month of Ogden Cañon, just at the upper shore-line of the ancient Lake Bomeville (Bruner, I Dodge).

Numerous specimens both male and female. -
The present species differs greatly in its habits from those of corruleipennis and azurescens, which latter are only to be met with upon almost bare alkali flats and slopes. T. cyaneipennis, on the other hand, frequents rather well-clothed surfaces among the rocky tulus of momutain sides, where it is found in company with Pycnorlyctia Wheeleri? Thos., also a blue-winged Edipodini.

Trimerotropis azurescens sp. nov.

This form differs from T. coculcipennis Bruner, with which it has hitherto been confounded, in the entire absence of all traces of the band on the wings, as also in the structure of the pronotum. it is also a slenderer and longer winged insect than that species.

Vertex between the eyes very broad, depressed, and quite deeply sulcate, with the median carina nearly as prominent as the bounding walls; the pit at the extreme vertex rery weli defined but not quite so deep as in coruleipennis. Eyes not quite as prominent as in that species, and with the frontal costa not so deeply sulcate as there. Pro notum with the anterior lobe plain above, the median carima nearly equal throughont; posterior edge a little less than a right-angle. Wings a little more ample than in coruleipemis, with the nerves of the outer half of the post-axillary field very irregular. Posterior femora shorter and narrower than in that species, and the antemie a little heaver and longer than there.

General color light grayish selloss varied with brown. The teg. mina usuaily quite evenly flecked with quadrate fuscous spots, which in some specimens have a tendeney of gathering into groups as in cerru. ieipennis. Wings very delicate diaphanons corulean blue on the immediate basal portion from which point the color gradually falles ont ward, without the slightest indication in cell or rein of the usual dusky band-being the only species of the genns entirely without a trace of this character; veins and cross veins black except at the immediate base and a small space on the axillary field towards the apex. Ponte. rior femora dimly banded externally; internally, alternately rellow and
black. Posterior tibie and tarsi yellow, with black spines. Anterior and middle legs mottled and handed with fuscons. Abdomen and under side dull whitish yellow or cream-color. Antemne very markedly anmulate.

Length of body, ชิ, $20-23^{\mathrm{mm}}$, ㅇ, $29-31^{\mathrm{mm}}$; of antemre, ช , 10.5^{mm}, ㅇ,
 32^{mm}; of hind femora, $\widehat{\text { o }}, 11^{\mathrm{mm}}, ~ ㅇ, 13^{\mathrm{mm}}$; of hind tibix, $\hat{\delta}, 9^{\mathrm{mm}}, ~ ㅇ, 11^{\mathrm{mm}}$.

Hab.-Fort Benton, Mont., U. S. National Park, Wyoming, and Lemhi or Salmon River, Idaho (Bruner); Alkali Stage Station, Green River, Wyoming (S. H. Scudder).

The present species is what might well be termed a barren ground locust from its habit of frequenting only desolate alkali flats and the dried-out beds of shallow saline lakes, where it mantains its almost solitary existence upon the few dwarfed and straggling Chenoporlincio that manage to draw a scant sustenance from the strongly impregnated soil.

Trimerotropis bifasciata sp. nov.
Having the general appearance of T. pseudofasciatu Scudd., and probably that species as determined by Sanssure [Prodrom. Cedipod, 1. 172]. It differs from it, however, in several important characters.

Head rather short and broad, eyes wider apart than usnal in the genus, not prominent, fastiginm bounded by well defined carina and separated from the sulcus of the frontal costa by a Λ 'shaped carina, the apex of which continues as a median carma that divides the fastigium into two longitudinal furrows that are interrupted about the center by a lateral triangular projection from the front edges of the eves; pronotum rather short and broad, deeply cut by the last transverse sulcus, anterior lobe tuberculate, rather prominent, glossy, posterior lobe ronghly gramulose, median carina distinct, twice notched, lateral carine forming well defined shoulders to posterior lobe, posterior angle obtuse.

General color ferruginous and ochraceous.
The tegmina are rather shorter than usual and very distinctly bifasciate. The basal fourth dark chocolate brown, darkest at outer edge, and the second band a rather broad one of same color with its inner edge just about the middle of the elytra, and reaching entirely across; beyond this the remaining portion is hyaline with a few inconspicnous spots confined to the upper and lower edges, veins and cross-veins dark. Posterior femora with the apex black internally and brown externally, followed below by a rather broad yellowish-white annulation and below this by one of black, giving it the appearance of that of Hadrottetix trifasciatus. Posterior tibie with the basal third yellowish and the remainder deep plumbeons. Wings with the basal half very light greenish sellow crossed by a rather narrow, interrupted, arcuate, fuliginous band, with the inner edgeabout the middle; beyond this band the wing is hraline with dusky nerves and cross-reins. Priucipal nerves of basal portion greenish.

Size of T. cyaneipennis.

Hab.-Los Angeles, Cal. (D. W. Coquillett).
This locust has something of the appearance of a species rery common in the vicinity of Ogden, Utah, that I have referred to T. citrina Scudd., but is much heavier in its structure. it and T. pacificus were taken upon a sandy, rather barren soil, judging from their glossy appearance.

In addition to these there is a third species of this genus, which appears to be new. The specimens here described were received from the same gentleman.

Trimerotropis californica sp. nov.

In size and general appearance this insect comes very close to T. coruleipennis Brmer, from which, however, it is quite distinct as the color of the posterior tibie and wings will at once indicate. It is also a somewhat slenderer species than the one named above.

Vertex between the eyes moderately broad, fastigium as in T. carr. leipennis, partly closed in front by the meeting of the lateral carine which separate it from the rather deep quadraugular pit at the upper extremity of the froutal costa. Frontal costa nearly equal to (o) or expanding considerably (() below the ocellus; not very deeply sulcate. Antennee normal, not annulate, nearly black. Pronotum with the anterior lobe somewhat elevated, though much less so tinan in the species above referred to, rather coarsely grauulose; median carina well defined, posterior border a right angle, lower posterior lateral angles acute. Tegmina and wings moderately long and narrow, surpassing the abdomen nearly one-third of their length in the male, and about one-fourth in the female. Posterior femora nearly (8) or quite (δ) reaching the extremity of the body, somewhat slenderer than in T. cœurteipennis.

General color above dirty yellowish gray profusely flecked with dull brown and black spots and dots. Tegmina with these brown spots congregated into three irregular, dim bands, situated as in T. cinculutu. Wings yellow on the basal half, crossed in the middle by a moderately broad, dark, fuliginous band, which sends a humeral ray nearly to the base as well as along the humeral vein almost to the apex: apical portion hyaline, with the median, axillary and subaxillary reins black. Posterior femora crossed externally by three slightly oblique dusky bands, internally by the one nearest the apex; basal half and apex also black. Posterior tibire with the base black, followed by a moderately wide annulus of whitish yellow, below which they are a bright coral red; tarsi also red. There is also a reddish hue upon the upper side of the abdomen-most decided in the male-rellowish white beneath.

Length of body, $\delta, 22^{\mathrm{mm}}, \circ, 24^{\mathrm{mm}}$; of antennee, $\delta, 11.25^{\mathrm{mm}}, ~, ~, ~, 9^{\mathrm{mm}}$: of
 femora, ô, $11.75^{\mathrm{mm}}, ~$ ㅇ, 13^{mm}; of posterior tibie, of, 11^{mm}, \& 12.15^{mm}.

Described from two males and a single female.
Hab.-San Louis Valley, Cal. (D. W. Coquillett).

Trimerotropis modesta sp. nov.

Pale tile color inclining to gray, with two rather narrow dusky bands upon the tegmina. Posterior tibie red; the wings with a wide, light, fuliginous, arcuate band just beyoud the middle, the basal portion dull yellow.

Yertex of moderate width, shallowly sulcate, partly closed in front with the median carina faint; frontal costa not prominent, the sides a tritle constricted just below the ocellus, plain above, sulcate from the anteune down. Face distantly and shallowly punctate, slightly oblique. Pronotum with the disk nearly tlat, the anterior lobe much the same as in T. thulussict; posterior lobe coarsely granulated and furnished with a series of medium sized tubercles arranged in a similar manner with those of T. pistrinariu and T. laticincta Sauss. Tegmina as long as the body, extending abont one-fourth of their length beyoud the tip of the abdomen. Posterior tibice and femora heary, as long as the abdomen.

General color pale rust brown inclining to gray, lightest beneath. Tegmina furnished with two narrow converging brown bands and a few scattered quadrate spots on the basal part of the apical third; wings pale yellow, crossed by a wide but not very dark fuliginons band shaped as in T. cinculutu, save that the distal ray reaches nearly to the base of the wing in the present species. Apical portion hyaline, with the principal veins infuscated. Posterior femora with but a single dusky band ontside, and two black and three yellow ones inside. Posterior tibise light coral red. Antenne rery dark brown on the apical third and of the color of the body on the basal portion.
 of pronotum, $\hat{\delta}, —^{\mathrm{mm}}, ~ ㅇ, 5.5^{\mathrm{mm}}$; of tegmina, $\hat{\delta}, —^{\mathrm{mm}}, ~ ㅇ, 26^{\mathrm{mm}}$; of

Described from two female specimens.
Hab.-Silver City, N. Mex. (Charles H. Marsh).
There is some resemblance between this insect and the one known as Conozor Behrensii Sanss., but a comparison of the two will at once show their distinction. The main cause of their resemblance is their color, and this resemblance becomes less apparent upon a slight cemparison.

Trimerotropis thalassica sp. nov.

About the size of T. cinculatu Sculd. Varying in color from dark to griseo-testaceous, with the colored portion of the wings sea-green. Wings and tegmina but dimly banded. I'osterior tibie deep corulean with basal annulus of dirty whitish.

Head, when seen from in front, as broad abore as below, a little longer than common with the species of the genus; the eyes rather large and prominent, separated above by the tlat (8) or slightly sulcate (δ) vertex, which in both sexes is furnished with a faint median carina that terminates in front without perceptibly branching and uniting with the
lateral carine ; frontal costa of nearly equal width throughout, suleate only at the ocellus. Face minutely punctate, the puncte brown or black. Antenure of the normal length, light testaceons, with very faint anmulations of a darker color. Pronotum somewhat smoother than usual, the anterior lobe but gently raised above; the median carina rather faint and nearly equal; posterior angle slightly acute in the male, about a right angle in the female; posterior lateral edges furnished with a minute tooth-like downward projection as in T. californicuand T. pacifica, the lower angle with the apex minutely rounded. Tegmina molerately narrow, the veins and cross veins not prominent, the latter more numerous than usual on the apical third. Posterior femora normal, reaching the tip of the abdomen in both sexes; posterior tilnie in the single female specimen examined greatly sinuous.

General color dark gray (ô specimen) to testaceons gray (o specimen), evenly and minutely flecked with dusky dots, therehy giving the surface a granular appearance. Tegmina very dimly (f) or with the hands moderately well defined, brown and arranged as in T'. vinculata (os). Wiugs deep sea-green, a little the lightest in the female, with a very faint fuliginous arcuate band just beyond the middle in the male, hut in the female indicated only by the infuscation of the nerves belonging to that region; apical portion hyaline with most of the reins dark. Posterior femora black internally with a preapical yellowish amnulus, externally without any bauds, but furnished with a! upper and lower elongate black spot in adrance of the pale annulus. There is also at faint greenish tinge on the basal portion of the abdomen above.

 femora, $\widehat{\delta}, 10.5^{\mathrm{mm}}, \quad$ ㅇ, $13.8 \mathrm{~m}^{\mathrm{mm}}$; of hind tibiæ, ơ, $9^{\mathrm{mm}}, ~ ㅇ, 12.15^{\mathrm{mm}}$.

Hab.-Los Augeles, Cal., in September and October (A. Kivebele).

Trimerotropis pacifica sp. nov.

Size and markings similar to those of T. vinculata. Pronotum quite long and smooth. Head deeper than usual in the genus.

This locust has a slight general resemblance to one form of Hatro. tettix trifasciatus Say, and, if it were not for other chararters which forbid its being placed there, I should feel inclined to refer it to that genns.

Head and thorax deeper than usual in the genns, with the carinae and angles well defined, but otherwise appearing smooth and glossy to the naked eye. The magnifying glass, however, reveals mumerous small pits or poculi that are evenly distributed thronghout the face as well as the anterior lobes of the pronotmm. Fastigium of the vertex flat, slop ing gently forward and devided into two lateral halves by a rather prominent median carina, with the lateral edges rather hout but plamly visible, continnons with the carine of the frontal costa, expanding slightly but evenly downward, fading before reaching the clypens, deeply sulcate. deepest at the ocellus, bounding walls prominent but romblent,
smooth. Ocellus and lateral ocelli very romed and shining, ferruginous. Autemix a trifle longer than usual in the genus, somewhat flattened. Pronotum deeper thau usual, expanding slightly downward to the lower edges anteriorly so as to make them nearly parallel; posterior lowerangles more acute than in any other species with which I am acquainted; dorsum with the median carina risible and nearly equal throughout, twice notched; the middle lobe very short, expanding rapidly posteriorly, lateral cariua visible as rounded shoulders on the posterior lobe; posterior edge a little more than a right-angle. Tegmina and wings as in T. vinculata.

Gencral color light cinereous, with a plumbeons tinge about the head and pronotum, mottled with dark brown. Head dirty bluish white, darkest above, the pits appearing as specks of dust; anteme dark ferroginous, ammated with ochraceons, eyes ferruginons; pronotum cincreons with a central quadrate whitish spot upon the lateral lobes, posterior margin marked with a series of dark brown spots. Tegmina marked with dark brown, much as in T. vinculatu, save the middle band, which here only reaches two-thirds across the wing, and if anything the apex is less mottled than in that speeies; wings with the base very light yellow, crossed by a rather narrow fuliginous band, which is divided into two parts bey the sellow homeral reius; humeral portion extending nearly to the base of the wing, the portion beyond the dusky band hyaline with the nerves whitish except at the extreme tip, where they are fuliginons. Positerior femora as in T. cinculutu, posterior tibiee yellowish wih blacktipped spines.

Length of body, $23^{m m}$; of antemne, 14^{mm}; of pronotum, $6^{\text {m"n }}$; of teg. mina, $2^{-3^{m n}}$; of posterior femora, $9^{m n \prime}$; of posterior tibia, $8^{m m}$.

Described from a single male.
Hab.-Los Angeles, Cal. (D. W. Coquillett).

Trimerotropis perplexa sp. nov.

A peculiarly perplexing form belonging to the group of nou-banded winged species and resembling to a certain extent the Tr. usurescens of the extreme west and northwest, but from which it is to be distinguished by its more robust form, shorter and broader tegmina and wings, and in the much heavier posterior femora.

Vertex between the large moderately prominent eyes, broad, smooth and quite deeply sulcate, with well defined lateral and longitudinal median cariuse, the latter brabching at the apex of the fastigial depression and uniting with the lateral in front and continuing posteriorly upon the occiput almost to the front edge of the pronotum; frontal costa moderately broad, with well detined edges, quite deeply (o) or more shallowly (\circ) sulcate, not continuons with the sulcus of rertex. Pronotum nearly as broad as long, the surface finely rugose, the disk nearly flat, the anterior lobes quite smooth and but gently raised above; the median carina nearly equal and quite plain throughout;
lateral lobes with the anterior and posterior edges almost parallel. The lower posterior angle evenly rounded; first and last transverse impressed lines continnous, the latter considerably in adrance of the middle; posterior extremity more than a right angle. Tegmina mather broad, and shorter than in the allied forms, reminding one of these members in the genus Circotettix, and especially those of ' '. maculutus, not reaching more than one-fifth of their length beyond the tip of the abdomen. Wings nearly as broad as long in some specimens. The radial or aual field full and furnished with strong radial reins, the cross-veins few and quite irregular in their arrangement. Posterior femora robust, almost reaching the extremity of the abdomen in both sexes. Abdomen a little heavier than usual in members of the genus. Body without the pruinescens or hairs usual in other species found in like localities.

General color light gray, varied and mottled with dull or plain brown; in some specimens inclining to pale fawn or testaceons. Treg. mina more or less densely mottled with pale brown quadrate spots that show a tendency to congregate into three patches, the one oerell pying the basal third, the second the middle, and the third the outer third of the wing ; remainder of wing light gray. Wings without any indication of transverse dusky band, the basal portion very pale dull yellow, inclining to greenish when seen as folded. The veins and cross. reins of apical half (save near the anterior edge where thev are white) dusky. Posterior femora with the usual dusky markiugs outside, and with inner face and lower sulcus chiefly black; the posterior tibie pale greenish yellow with black spines. Antenne faintly annulate.

 of hind femora, $\hat{\delta}, 11.5^{\mathrm{mm}}$, $\circ, 14.15^{\mathrm{mm}}$.

Described from 4 male and 7 female specimens.
Hab.-Bad Lands, about fise or six miles to the north of Chadiron, Nebr., during the month of August (L. Bruner).

This peculiar locust, like all of the allied forms, is partial to mearly bare surfaces, and especially to such as have the soil more or lesis strongly impregnated with alkalies. It is a noisy insect and produces a very decided clatter when upon the wing, showing that it is not distamtly removed from the various members of the genus Cirentettix, as many of its structural characters would also indicate.

Circotettix lapidicolus sp, nov.

Dark grayish brown, profusely mottled with dull black. Wings hotthe.green without a well-defined dusky band; nerves and crosi-reins of apical half more or less infuscated. Posterior tibiar glancous with light basal annulus.

Head of moderate size, the eyes quite prominent, giving the u,per portion a square appearance. Vertex between the eyes of moderate
width, somewhat narrower, with the sulcus of the fastigium also a trifle deeper than in C. undulatus, the bounding walls sharper and better defined than there and continuous with the lateral carine of the frontal costa. The latter and also the lateral facial carine much more prominent than in undulutus. It also differs from that species in its smoother body, more graceful and slenderer form, its louger and broader wings, and shorter antenne, which are very slender and thread-like. The chief and distinguishing characteristic of this species, however, is in the venation of the hind wings. Instead of there being but a single vein along the middle of the axillary field there are two of nearly equal promineuce; the secondary or auxiliary vein being a branch of the first radial which in the female unites with the primary rein several millimeters before reaching the outer margin, but in the male continues parallel withor a little divergent from it to the edge. The radial veins here are no hearier in the male than in the female, and the cross-reins of the humeral area are irregular, while in undulatus they are very regularly scalariform. There are also other slight differences in the renation of the wings between the two species, as there is also in the margin. Lal apidicolus the margiu is even more undulate or lobed than in undulatus.

General color dark-brownish cinereous, very profusely mottled with rather small quadrate fuliginous spots, giving the insect a dingy black color in imitation of the rocks among which they were taken. Wings bright bottle-green or greenish yellow with a very faint indication of the usual fuliginous band on the humeral field in some specimens, wanting in others; apical portion with the veins and cross-veins black. Posterior tibiee glancous, furnished with a moderately broad, light, testaceous, basal annulus; tibial spines black; tarsi testaceous. Antemne dimly annulate.

 of wing, $\hat{\delta}, 21^{\mathrm{mm}}$, $9,18.5^{\mathrm{mm}}$; length of posterior femora, o and 9 , 14.5^{mm}; of tibie, $\begin{gathered}\text { o and } \\ \circ\end{gathered}, 12^{\mathrm{mm}}$.

Нав.-Salmon City, Idaho (Bruner).
This locust was observed at but a single locality in the Salmon River range of mountains, west of Salmon City. It occurred amoug the fine rocks forming the talus at the foot of a high precipice facing the south. Although local, it is quite cominon, and was found in company with several other locusts, such as Arphia tenebrosa, Cireotettix cerruculutus, etc. In habits it is very similar to those of its allies, and during the hottest, brightest hours of noonday is to ine seen and heard in the air, producing its clattering music, which is anything but soothing.

Circotettix shastanus sp. nov.

A moderately sleuder species about the size of or a little larger than C. verruculatus Kirby, but more closely related to C. undulatus Thos. Wings with the disk yellow, brightest near the posterior outer edge.

Structure and markings of head, pronotum, and tegmina as in C. lapidicolus Bruner, but differing from that species in the venation and coloring of the wings. There is but a single axillary vein present is the male of this species, while in verruculatus and lapidicolus there are two; undulatus also has the secondary rein present, although much obliterated. Besides this difference in the axillary field there is also a difference in the remation of the radial field-the present species having the cells of the onter edge very regular, short and wide, and the radial veins very strong. Posterior tibie glancous, the spines black. Apical portion of the wing hyaline, with dark veins and cross veins preceded by a slight indication of a fuliginous band.

 hind femora, $\hat{\delta}, 12^{m \mathrm{~mm}}$, ㅇ, $^{\mathrm{mmm}}$; greatest breadth of wing, $\hat{\delta}, 17^{\mathrm{mm}}$, \%, - ${ }^{\mathrm{mm} \text {. }}$
Described from a single male specimen.
Hab.-Hazel Creek, Shasta County, Cal., in the month of August (Jas. Behrens).

CEdipoda (?) occidentalis sp. nov. [Pl. I, Fig. 7.]
Resembling rather distantly the various members of the genns Circotettix, but with much shorter tegmina and wings. Dirty grayish brown, the mottlings on the tegmina gathered into obscure bands. Wings light greenish yellow, without the usual fuliginous band in most specimens, apical half hyaline with the nerves and cross-reins dark.

Head short and broad, widening but gently below, the face straight, perpendicular. Antenne of medium length, a little heavy, with the joints somewhat flattened, the apex acuminate in the male. Vertex considerably depressed, between the rather prominent, almost globular, eyes nearly ($\hat{\delta}$) or quite as broad as their shortest diameter (\circ), the sulcus irregular, a little expanding in front, quite shallow, furmished with a distinct longitudinal median carina that divides in front and after joining with the lateral carinæ continues down the face as the walls of the froutal costa; froutal costa rather wide, a little constricterl at the upper end and just below the ocellus, from this latter point expanding and reaching the clypens, a rather deep Λ-shaped pit at its upper extremity, plain between the antenne, sulcate at and below the ocellus. Face coarsely pitted aud transversely wrinkled. Pronotum short and broad, rapidly widening posteriorly; anterior lobe short, rounded above, nearly equal, coarsely wrinkled transversely and severed from the front edge of the posterior lobe by the deep last transverse impressed line; posterior lobe coarsely and closely granulate, with well-defined shoulders; median carina slight, twice severed, the last only one-third the distance from the front edge; posterior extremity nearly ($\%$) or quite (o) a right-angle; anterior edge slightly allaniced
upon the oceiput; lower lateral edges rather more rounded than in the allied forms. Tegmina moderately broad, and rery closely reticu-lated-so much so as to give the ummagnified surface a sort of granular appearance-most of the cross-veins as heary as the veins, extending a little beyond the tip of the body in both sexes. Posterior femora ample, with heary carinx, considerably longer than the tibix, reaching the tip of the abdomen in both sexes.

General color dirty grayish brown, inclining to ferruginous in some specimens, lightest beneath. The tegmina mottled with small quadrate fuscous spots, which are gathered into groups forming two dim bands, the one with its outer edge defining the basal third, and the escond across the middle of the wing; there are also a few seattered spots on the apical third; all the nerses and veins of the tegmina are brownish testaceous, darkest near the base, the wing itself being dull dirty yellow becoming more or less transparent apically. Wings light greenish sellow on the basal half, usually without any well-defined fuliginous band, but in some specimens represented by a very faint cloudiness in some of the cells just beyond the middle of the wing; reins and cross-reins of the apical half of the wing black, which on the middle of the humeral field reach nearly to the base. Posterior femora with the basal half of the inner face and lower sulcus black, the former followed by a narrow yellow then a black band; externally crossed by two faint dusky oblique bands; posterior tibie glaucous with a rather wide dull yellow anuulus just below the kuee; spines black. Antemne dark, obscurely annulate.

 hind femora, of, 10^{mm}, of, $12^{m m}$; of hind tibie, , , 8.35^{mm}, \&, 9.75^{mm}.

IIab.-On high stony hill-tops to the sonthwest of San Francisco, Cal., late in October (Koebele, Bruner).

Thrincus (?) avidus sp. nov. [Pl. I, Figs. 2, 3.]

Considerably larger than Thrincus californicus Thos., with the tegmina and wings much longer than these. Cinereo-testaceous, profusely mottled with dull rust brown and black.

Head proportionately broader and longer than in T. californicus, and less sunken into the front edge of the pronotum than in that species. Vertex between the eyes a very little broader ($\begin{gathered}\text {) }) \text {, or nearly twice as }\end{gathered}$ broad (9) as the diameter of the basal antenual joint, depressed, roundly sulcate, rather shallowly in the female but deeper in the male, the lateral carine parallel, reaching trom near the posterior edge of the eyes deflecting and meeting in front in a right angle; frontal costa rather narrow abore, expanding below and fading just before reaching the clypens, geutly sulcate throughont in both sexes. Face, sides of head and thorax coarsely pitted and wrinkled, giving the surface a very rough appearance. Pronotum short and broad, the auterior lobe with
the sides neariy parallel, rounded above; posterior lobe rapidly expanding, the disk nearly flat, coarsely granulate ; median catina aimost obsolete; posterior edge forming a rather obtuse angle with the apex cut off. Tegmina aud wings extending about one-third (d) or only onefifth of their length beyond the tip of the abdomen (8). Posterior femora rather heavy, just reaching of, or slightly surpassing the tip of the abdomen $\begin{gathered}\text {; posterior tibia with the spines few, long, and stont. }\end{gathered}$

General color cinereo-testaceous, profusely mottled with dull rust brown and black, darkest above. The face and sides of pronotum and body thinly covered by a whitish, mealy powder or pruinescens. Tra. mina irregularly mottled with numerous quadrate brown spots which arrange themselves in rows along the dorsal edges; wings pellucid on the basal third, beyond this hyaline inclining to pale fuliginons anically, the reins and cross-veins of the outer two-thirds for the most part dusky. Posterior femora marked externally in the middle with a faint and preapically with a nearly black fascia; tibiae inclining to light blue-gray aloug the bases of the spines which latter are back tipped; anterior and middle legs mottled, the mottliugs congregating into obscure bands. Antenne testaceous, a little infuscated apically, in some specimens anuulate.
 of pronotum, $\widehat{\delta}, 3^{\mathrm{mm}}, ~ ㅇ, 5.15^{\mathrm{mm}}$; of tegmina, $\hat{\delta}, 17^{\mathrm{mm}}$, ㅇ, 25^{mm}; of
 greatest width of thorax, ${ }^{1}, 4.85^{\mathrm{mm}}, ~ \&, 8^{\mathrm{mm}}$.

Hab.-Arid slopes back of Albuquerque, N. Mex., in May (H. Bruner).

> Thrincus (?) maculatus sp. nov.

The female quite large and robust; grayish, heavily mottled with dark brown or dull black; posterior femora with lower sulcus on inner face deep purple-red ; tibie with inuer edge also of same color.

Vertex between the eyes moderately wide, shallowly sulcate, with a rather prominent median longitudinal carina that extends from the apex across occiput to front edge of pronotum ; there is also a more or less distiuct transverse ridge just about the middle that divides the suleus into four nearly equal subquadrate fields, the two posterior ones with their surface smooth and well defined, the anterior two, rough and dim in outline; lateral foveala obsolete, and their place occupied by a raised triangular field, in the center of which are situated the large lateral ocelli; frontal costa quite broad above, a little contracted just above the antemax, and terminating immediately below the ocellus, at which it is a trifle depressed; lateral facial carine tortuous, rather dim; eyes large and prominent, reniform, fully as long as that portion of the cheeks just beneath; antenne filiform, nearly as long as the head and pronotum combined. Pronotum widening posteriorly, rugose tubereulate, the disk nearly flat; the three transverse impressed lines nearly enmally. plain, continuous, the last a little in advance of the middle; anterion
edge nearly straight, posterior edge a little acute angled, with the apex romuled, entire pronotum strongly marginate. Tegmina straight and moderately broad; reaching fuliy one fourth their length beyond the tip of the abdomen ; the veins moderately well defined, wings normal. Posterior femora, with their base not greatly inflated; the carine and pimse of outer and inner disks strong, but not prominent, extending slightly beyoud the tip of the abdomen. Tibie strong, few-spined and somewhat hirsute; anterior and middle femora with their apices inflated beneath externally.

General color dirty grayish white, inclining to a pale testaceous in some specimens, very heavily blotehed and mottled with dull black or dark brown, most heavily upon the tegmina, which in some specimens are almost entirely obscured with the darker color. Posterior femora and tibiee with their imer face deep purplish red. Antemme fuscous, ammulate with testaceous. There is usually a more or less distinct proinescens upon the entire upper surface of the insect, which in conjunction with its dull color would render its detection exceedingly difticult in the desert.

Leugth of body, $9,45^{m m}$; of antennæ, 12^{mmm}; nf pronotum, $9.5-10.25^{\mathrm{mmm}}$; of tegmina, $35-37^{\text {min }}$; of hind femora, $20^{\text {mm }}$; greatest width of thorax, 11^{mm}.

Described from four female specimens.
Hab. - Needles, California (Wickham).

Genus Haldemanella Sauss.

In a recent work* Mr. Henry de Saussure establishes the genus Huldemanella for the reception of certain large locusts that inhabit the arid regions of Arizona and New Mexico. Of these two species have been described by American authors, viz: Ephippigera tschivavensis Haldemann and L'remobia magna Thos. In 1572, Mr. 'Townend Glover figured au insect muder the manuseript name of Phrynotettix verruculata Uhler, which also belongs here [Illustr. Amer. Entom. Orthopt., Pl. vi, tigs. 25,25 side riew]. This latter eridently is synongmous with Haldemam's tschicatensis; while Thomas'insect is distinct, as can be seen by comparing the two descriptions and figures.

I herewith add a third to these toad-like locusts of the deserts.
The geuus Haldemanella cau be characterized as follows:
Body very obese, depressed, rugose, somewhat pubescent.
Antenne filiform, moderately long. The head not large; the face vertical, broadening a little below; the vertex between the eyes broad, declivant in front ; the eyes rather large and prominent; the frontal costa quite wide and prominent above between the antennæ, fading below the ocellus. Lateral foveolæ nearly obsolete, in the female, minute in the males, where they are triangular. Lateral ocelli transparent.

[^19]Pronotum broad and shield-like; the front lobe strongly coarctate above, the hind lobe broad and dattened and drawn out to a prolonged point behind. Tegmina aud wings abbreviated; the former in the temale lateral, about as broad as long, the apex broadly rounded, in the maless sometimes fully two-thirds as long as the abdomen and meeting on the back. Abdomen heary at the base but tapering rapidly backwards, not carinate. Tip of male abdomen strongly upturned, the last rentral segment small and entire. Posterior femora robust, pubescent, the upper and lower carine destitute of teeth; the tibie bowed, heary. Eutire surface with au earthy or dirt-covered appearance.

Haldemanella robusta sp. nov.

A rery distinctly marked species that differs considerably from both H. tschicatensis and H. magnu. White, testaceons, and fawn color. Female very large and robust; the male more graceful.

Pronotum, head and sides of thorax rery rough-being ridged, pitted and "warty" in appearance, reminding one very much of the skin of our roughest toads. Vertex between the eses very wide, equaling that of the shortest ($\hat{\delta}$) or fully equal to the longest diameter (\circ) of the moderately prominent eyes; in the female plane, but broadly aud ather deeply sulcate in the male; the apex greatly depressed and closed in front by a transverse carina; frontal costa very irregular, sulcate above and below the antenne but plane between them, the sides somewhat contracted just below the fastigium and strongly pinched below the ocellus where they terminate, the costa continuing to the clypeus as a swelled ridge; antemur rather heavily filiform, reaching only to middle of pronotal shield, 22 -jointed. Pronotum very large and shield-like, the surface very coarsely and irregularly rugose and tuberculate; the anterior lobe without lateral carine, the middle and posterior lobes with these strongly marked ; anterior edge slightly advauced in the middle; the posterior lobe greatly but broadly elongate, its edges undulate and toothed; the median carime perceptible only on posterior lobe; transcerse sulci profound, continuous, the third in advance of the middle. Tegmina and wings abortive; the former, which are broadly rounded in the female, only reaching to frout edge of second abdominal segment, in the male three-fifths as long as the abdomen, tapering; wings fully as long as the tegmina-both these and the former densely reticulate. Abdomen tapering rapidly in the female, but less so in the male, rery faintly carined above; the apex of male quite strongly upturned, the last rentral segment conical ; ralses of the oripositor exserted, short, strong, and unusually blunt.

Posterior femora coarse and heary, the carine of the outer disk rather inconspicuous, and the pinure distant and fers ; posterior tibie heary. bowed, the inner spines much the longest and heariest, arcuate, very sparsely hirsute as is, in fact, the entire insect.

Proc. N. M. 89—— 6

General color (dried after remaining for a short period in alcohol) dirty white below; testaceous, marked with streaks and blotches of light reddish-brown above. The brown markings are arranged somewhat as follows: Sides of frontal costa, the margin of clypeus, middle of cheeks, nearly all of occiput; on the pronotum along the line of lateral carine, a pair of stripes upon the disk that cross each other at first transverse sulcus, and four elongate dashes on disk of posterior lobe; also a median lateral band with a shorter one above near the posterior edge. Sides of thoracic and abdominal segments, anterior and middle femora and upper half of posterior femora also more or less mottled ; all of the tibre fasciate with brown and testaceous. Tegmina with the veins and a few mottlings of the brown, remainder testaceous. Markings of the female less conspicnous than those of the male.

Length of body, of 32^{mm}, ㅇ 46^{mm}; of antennæ, ${ }^{\circ} 11.5^{\mathrm{mm}}$, 오 14^{mm}; of pronotum, ô 16^{mm}, $\uparrow 92 \mathrm{~mm}$; of tegmina, o 14^{mm}, ㅇ 8.5^{mm}; of hind femora, of $17^{\mathrm{mm}}, \Varangle 20.5^{\mathrm{mm}}$; greatest width of pronotum, $\delta 9.75^{\mathrm{mm}}, ~$ \& 15^{mm}.

Described from two males and two females.
Hab.-Collected in southern Arizona during the summer of 1887 by G. W. Dunn. Received from the curator of the museum of the California State University (Bruner).

Like the other two described North American representatives of the genus this locust is also a denizen of the deserts, for which life it is eminently fitted, both as to structure and coloration.

CONTRIBUTIONS TO THE NATURAL HISTORY OF THE COMMANDER ISLANDS.

BY
Leonhard Stejneger and Frederic A. Lucas.
(With Plates II-rv.)

A.-CONTRIBUTIONS TO THE HISTORY OF PALLAS' CORMORANT.

BY
Leonhard Stejneger, Curator of the Department of Reptiles and Batrachians.

About forty jears ago the Great Auk (Plautus impennis) of the Northern Atlantic became exterminated. A rigorons search has been made for it and its remains; fabulons sums have been paid for skins and eggs; and monographers, among whom some of the most pominent ornithologists, have collected together the most minute facts bearmg upon its history, and discussed in extreme detail the number of specimens extant as well as their individual history, so that the latest account of this remarkable bird fills a quarto volume of quite respect. able dimensions. There are now on record about eighty mounted specimens, or skins, serenty eggs, and countless bones as being preserved in the various museums of the Old and the New World.

Within the same period another large water bird has become extiuct in the North Pacific, without having as yet attracted the attention of the monographers. It is so rare in collections that only four specimens are known to exist in museums, while noborly is the prond possessor of its eggs, and no bones had been found or preserved until I was so fortumate some jears ago as to rescue a few of them. Yet, this bird was the largest and handsomest of its tribe. Aud so little has been known of it that there is not yet printed a detailed and good deseription of it. The bird which has fared so badly is Pallas's Cormorant, or the Speetacled Cormorant, Phalacrocorax perspicillatus Pall.

I have recorded elsewhere (Proc. U. S. Nat. Mus., Vi, 1883, p. 6ї, and Bulletin U.S. Nat. Mus., No. 29, Res. Orn. Expl. Kamtsch., p. 180) my reasons for considering this species extinct and the canses which led to its extermination. It seems as if the very causes which terminated the existence of the Great Auk worked the same result in Pallas's ('or' morant, and it is even probable that if the latter, at some earlier period,
also inhabited the other Aleutian Islands, as is most likely, volcanic eruptions may have played a rôle in this drama as well as in that of the Great Auk. True, the latter was entirely deprived of its power of flight, but it is evident both from the measurements of the skins as well as of those of the bones, given below, that the wings of this cormorant were disproportionately small. Steller speaks of its great bulk of body and its weight, which varied between twelve and fouteen pounds,* so that one single bird was sufficient for three starving men of the ship. wrecked crew.

With this bulk it combined an unusual "stoliditas," but it is pretty clear that this stupidity, which made them such au easy pres, was due more to their slowness of locomotion on land and in the air than to any special temperament or dullness of iutellect. The natives of Bering Island inform me that the meat of this species was particularly palatable compared with that of its congeners, and that consequently, during the long winter, when other fresh meat than that of the cormorants was mobtainable, it was used as food in preference to any other. In brief, all the circumstances combined to make short work at exterminating this bird at its last refnge, for there is no evidence that it has ever been found during historical times in any other locality than Bering Island. The result was that Pallas's Cormorant, which was found by Stelier and his shipwrecked comrades on that desolate island in 1741, and which at that time-that is, before man erer visited its rocky shores-occurred there in great numbers, "frequentissimi," as Steller says, became extinct in about a hundred years from its discovery. The history of this bird forms an interesting parallel to that of the great northern sea-cow (Rytina gigas).

Up to 1837 or 1839 Steller seems to have been the only naturalist who had seen this bird, for, although naming it in his Zongraphia, all Pallas knew of the species was derived from Steller's observations, whose description he merels quotes. It is, then, safe to conclude that it was not among the many water birds collected by Billings's expedition, which brought home such rich spoils from the Kuriles and the Alentian Island, but which did not touch at Bering Island. In the above-mentioned sear Captain Belcher, with the Sulphur, visited Sitka, and was there presented by Kuprianoti, the Russiau goveruor, with one of the specimens of this bird in his possession. This specimen is eridently the one now in the British Muscum, while the others went to the St. Petersburg Academy, from which one was again secured by the Leyden Museum. Although obtained from the governor in Sitka, there is nothing to indicate whence came the specimens; but inasmuch as Bering Island at that time belonged to the administrative district of Sitka, at which port all the furs were received from that island before being shipped to Europe,

[^20]all vessels from Bering Island consequently first stopping at Sitka, there is every probability that the specimens in question were collected on that island. This conclusion is corroborated by the mamer in which P. perspicillatus and Leucosticte griseogenys are mentioned together.

So far as known, these are the only specimens in existence, viz: Two in the museum of the Imperial Academy of Sciences in St. Petersburg; one in the British Museum, London; one in the "Rijks Museum," Leyden, Holland.

Several pictures of Pallas's Cormorant have been published. A large colored plate by Wolf, from the British Museum specimen, is in Elliot's Birds of North America, a reduced wood engraving copy of which is given in the Standard Natural History (or Riverside Natural History), vol. Iv, p. 192. The same specimen is also figured in two different positions by Gould in the Zoology of the royage of the sulphur, and poorly copien in Reicheubach's "Natatorum Novitie." In Schlegel's "Dierentium," p. 281, there is a wood-cnt, probably taken from the Leyden specimeu. According to Dr. Fiusch (Abh. Natur. Hist. Ver. Bremen, int, 1872, p. 20) this species, undonbtedly from one of the St. Petersburg specimens, is represented on plate V, Fig. 4, of Brandt's "Icon. Ar. Ross," a work which was never published.

Dr. Theodor Pleske kindly writes me in regard to the specimens in St. Petersburg:

Through the kind offices of Dr. Pleske I have received from Professor Brandt's heirs that part of the manuscript of his umpublished monograph of the Cormorants, which relates to the species in question, with permission to publish it. The description is very full, and being the only accurate and detailed description of the species I take great pleasure in printing it in full. In order to aroid any errors I deem it best to publish it in the language in which it was originally written. I have preceded this description with as synonymy which is thought to be nearly exhaustive.

Phalacrocorax perspicillatus Pall.

1806.-Phalucrocorax perspicillatus Pallas, Zoogr. Ross. As. if, p. 305.-Gocld, Zool. Sulphur, p. 49, pl. xxxii (1844).-Bonaparte, Consp. Av. if, p. 167 (1855).-Id., Compt. Rend., 1856, xliif, p.-Taczanowski, Orn. Faun. Vert. Sibir., p. 66 (1877).-Id., Bull. Soc. Zool. France, 1877, p. 41.-Ridgway, Nomencl. N. Am. P., p. 51 (1881).-Id., Man. N. Am. B., p. 81 (1887),-Coues, Check L. and Dict., p. 118 (1882).—Id., Key, 2ed., p.-(18-).-Id., Auk, 1854, p. 144.-Id, Key, 3 ed., p.-(18-).-Stejneger, Pr. U. S. Nat. Mus, vi, 1883, p. 65.-Id., ibid., x, 1887, p. 138.-Id., Auk., 1884, p. 173.-Id., Oru. Expl. Kamtsch., pp. 180, 318 (1885).—Id., Stand. Nat. Hist., 1r, p. 191, Fig. 92 (1885).—Baird, Brewer, \& Ridgway, Water B., N. Am., II., p. 164, fig. (1884).-A. O. U. Code and Check L., p. 351 (1886).
1858.-Graculus perspicillutus Lawrence, in Baird, B. N. Am., p. $8 \pi 7$ (1858).-cceridgel, Mus. P.-Bas, Pelec., p. 17 (1863).-Id., Dierentuın, p. 281, fig. (1871).Elliot, B. N. Am., pt. -, pl. 50 (-).-Gray, Hand-1., III, p. 127 (1871).Coues, Key, 1 ed., p. 304 (1872).-Id., Check L., p. 101 (1873).
 Gmel.) (Cf. Bonaf., Consp. Av. i, p. 168, and A. B. Meyer, Iudes Reichenb., p. 44; no name on the plate!)

Brandt's description, here published for the first time, is literally as follows:

DESCRIPTIO.

('arbo perspicillatus specierum generis Carboumm hucusque notorum maximam sistere videtur. Corporis enim mole Carborem cormoranum superat.
liostrum robustum, satis altum, modice elongatum, nigrum, apice summo albicanticormo, basi marginibusque tamen corneo. Culminis basis supra rotundata, convexa, medium supra subrectum. Culminis margine anterioris subrecti apex supra dertri basin haud prominens sed angusta sutura distinctum. Culminis superior facies nec non paratonorum atquo gnathidiorum apice uncato, acuto, elongato, gonydem in rostro clauso longe superante. Exterior facies tenuiter per longitudinem subelevatostriata, striis teneris plus minusve parallelis. Dertrum in baseos faciei superioris lateribus sulco arcuato satis profundo exaratum, in facie laterali antem sulcis parum distinctis, transversis, obliguis, subparallelis 2 vel tribus instructum. Gonys subrecta et in medio vix prominens. Myxa apice truncato rotundata.

Front is antica pars, genae, regio ophthalmica, spatium angustum pone oris angulum. mentum et gulao summum initium unda cinnabarina, albo et coeruleo varia ut in gallopavone (Steller). In genis peunae brevissimae, solitariae, sparsae. Oculi annulo membranacco, nudo, elevato, subelliptico, lato, albo, perspicillum quodammodo aemulante, ciucti. Inter oculi aunulum et superiorem oris anguli marginem calvum spatium triangulare pennis brevibus obsessum.*

Alae complicatae vix ad uropygii posteriorem extremitatem porrigentes.
Cauda inverti subspathulata, basi angustior, e pennis 12 composita.
Tarsi pro magnitudine admodum breves.
Color in miversum ater. Capitis anterior pars cum gula initio violaceonitens. Capitis posterior pars, collum, pectus, abdomen, dorsum, crissum et uropygium obscure vel aureo viride nitentia luce angulo plus minnsve recto in olservatoris oculos reflesa plus minusve obscure violasentia. Penuat parapterii et humerales nee non tectrices alarum supra e subpurpurasesnte violaceo-nitidae, anguste nigro-marginatae, rotundatae rel obtuse subacuminatae, apice fere subellipticae. Remiges primariae et tectrices alarmm inferiores e subfuscescente nigrae. Remiges secundariae uigrae, limbo externo plus minusve subuitide purpurascente violaceae. Cauda cum tectricibus atra, subopaca. Rectricum scapi supra ad apicem uscue albi, marginibus nigricantibus, apice autem cum inferiore facie nigri. Frontis posterioris partis et verticis pennae dilatatae medio atrae marginibus sulpurpureo-violascente vel interdum subviresceute nitidulae in cristam subtetragonam antice angustiorem basi latam, suberectan retrorsum spectantem, postice subtruncaiam, $3^{\prime \prime}$ fere longam apice ${\underset{\sim}{\prime \prime}}^{\prime \prime}$ latam insignem elevatac. In oceipitis postrema parte et cervicis summo crista alia $9^{\prime \prime}$ longa "2 $2^{\prime \prime}$ lata, tlabelliformis, basi angustior e peunis satis latis atris margine virescentibus media plus minusve subpurpurescentibus formata, retrorsum spectaus conspicitur. In frontis medio supra oculos, in temporibus et in lateribus superioris partis colli pennae candidae angustae $\frac{1}{4}$ ad $\frac{3}{4}$ lineae latao elongataf, $1-3^{\prime \prime}$ longae, lineares, acutae, fere subsetaceae, subsolitariae sparsae invenientur, quarum quae in fronte suut breviores, interdumpollicares vel paulo ultra; quas vero in collo observare licet multo longiores, $\ddot{\sim}-3^{\prime \prime}$ longi evadunt. Praeterea vero etian in temporibus et collo penunlae albae breves penicilliformes apice tantum radiolatat. In femoribus matula candida triangularis a quovis hypochondrio late incipiens et ad crus nsque angulo acuminatio extensa o pennis longis, valde acuminatis apicibus radiolis rarioribus compositis formata. Pedes atri unguibus obscure corneis.

Feminae Stellero auctore et cristis et membrana perspicilliformi, alba oculos late cingente carent.

Pondus Stellero anctore 12-14 librarum.

[^21]
Mensurae avis adultae in Museo Academico servatae.

A rostri apice ad caudae apicem $39^{\prime \prime}$
ad frontem :3 $i^{\prime \prime \prime}$
ad oris angulum 4" ${ }^{\prime \prime}$
A fronti ad candae basin 27111
dorsi initıum $14^{\prime} \quad 7$
Ab alarum angulo humeali ad remigum apicem $13^{\prime \prime} \quad 3^{\prime \prime}$
Caudae longitudo i"
Tarsi longitudo $\stackrel{6}{6}$
Longitudo digiti interni ad unguis basin $1^{\prime \prime} 3^{\prime \prime \prime}$
secundi $\because^{\prime \prime} 1^{\prime \prime}$
tertii $3^{\prime \prime} 1^{\prime \prime}$
quarti seu externi $4^{\prime \prime} \quad 2^{\prime \prime \prime}$

I have thought it useful to tabulate the measurements given by the various describers reduced to millimeters:

I have already stated that no bones of this species have been preserved in museums until I was so fortunate as to find a few fragments evidently belonging to this bird. These Mr. Frederic A. Lucas has kindly undertaken to describe and illustrate in the second part of this paper.
The conditions under which they were found I have already described elsewhere (Deutsche Geograph., Bla'tte viri, p. 272), but a brief account may not be out of place in the present connection.

During my circumuarigation of Bering Island I landed on September 1,1882 , at Pestshanij Mys near the northwestern extremity of the island. Ascending the steep coast escarpment which is here about 35 feet high, I found near the edge of the terrasse a rather extensive deposit of bones of various mammals and birds arranged in thin layers of sand and sod alternating. The average thickness of the deposit was about 2 feet, and the present area covered in the neighborhood of 600 square feet, though it was evident that it was formerly of much greater extent, the ocean having encroached upou the land and carried away great portions of the terrasse. The bones were in fairly good condition, some of the smaller and more delicate ones eveu excellently well preserved, and none of them showed signs of violence. There were bones of the Aretic Fox, the Sea-otter, the Sea Lion, aud other species of seals, as well as various
kinds of water liirds. Among the latter a particularly large pelvis of a Phalacrocorax at once attracted my attention, and as I had had Pallas's Cormorant on my mind since I started from Washington I was not slow in concluding that I had to do with the bones of this bird. Had I had time to dig out the whole deposit I should probably have obtained more bones, but with the above suspicion I did as much digging and collected as many bird bones as the circumstances would allow.

A full account of this find is given by Mr. Lucas in his report which forms the remaining portion of this article.

B. -DESCRIPTION OF SOME BONES OF PALLAS' CORMORANT (PHALACROCORAX l'ERSPICILLATUS.)

BY
Frederic A. Lucas, Assistant Curator of the Department of Comparative Anatomy.

Dr. Stejneger has rery kindly placed in my hands for description the bones above mentioned. They are as follows:

Rostral portion of cranium in advaнce of the fronto nasal hinge, with attached palatines.

Lower mandible.
Right ramus of lower mandible.
Two nearly complete sterna.
Right coracoid.
Right humerus.
Left humerus of another individual.
Right ulna.

Right fused metacarpals, very imperfect.

Three pelves, lacking pubic bones.
Left femur.
Two left tibiz.
Right tibia.
Two left tarsi.
Second cervical vertebra.
Thirt cervical vertebra.
Ninth (?) cervical vertebra.

Right fused metacarpals.
The more important of these are figured on the accompanying plates, all figures being of natural size, and drawn by the anthor.

The bones, although stained, are in a good state of preservation, being but slightly weathered, and all are from thoroughly adult individuals.

For the better and briefer description of these bones they have been compared with those of an aduit Phulacrocorat curbo, and the opportunity has been taken to test, to some extent, the value of the subgenera Crile and Phatucrocorux, by comparing at the same time the corresponding bones of P. urile and P. dilophus.
The former bird is, for the species, large and the latter somewhat undersized, although adult.

The rostrum of perspicillatus is nearly as long as in curbo, but much more slender, and is readily distinguished from it by the deep, lateral, longitudinal groove characteristic of the sub-genus Urile.

The under surface of the rostrom is less grooved, longitudinalls, than that of carbo and much less so than that of I '. urile.

The palatines are as long as those of corloo, anteriorly narrower and

Bones of Pallas's Cormorant-natural size. (Page 88.)

1. Ventral aspect of rostrum.
2. Lateral aspect of rostrum
3. Right ramus of lower mandible, external aspect
4. Right ramus of lower mandible, internal aspect.
5. Right metacarpals

Bones of Pallas's Cormorant-natural size. (Page 8s.)

1. Left lateral aspect of pelvis
*. Dorsal aspect of pelvis.

2. Right coracoid, ventral aspect
3. Stermum, ventral aspect.
4. Femur, anterior aspect.
5. Tarsus, anterior aspect
6. Tibia, anterior aspect.
posteriorly wider, conforming in pattern very nearis to those of wile, while dilophus resembles carbo in this respect.
The trans-palatine angle is more rounded than in cerbo, muth more than in urile, resembling in this dilophus.
The inner portion of the post-palatine is less produced ventrally than in carbo, and the pterygoid articulation wider and flatter than in crerbo, the palatine thus lacking the keel present in carbo.
The same differences are found between the same parts of urile and dilophus.

The maxillo-jugal bar is as long as that of carbo but more slender.
The lower mandible is slightly shorter and decidedly weaker than that of carbo, and the lower mandible of urile is proportionately still weaker than that of dilophus.

The dentary portion of the mandible is more deeply grooved along the inner surface than that of carbo, being comparatively the same as in urile.

The cutting edges of the mandible are comparatively straight as in carbo and dilophus, but urile differs from all three in having the mandible distinctly recurved.

The sternum is transversely flatter than that of catbo, being a trifle more flattened even than that of urile. The carina is also shorter than in urile, but in size and general appearance the sterna of perspicillatus and urile resemble oue another very closely.

From manubrium to meso-xiphoid the sternmm is $1: 3{ }^{m m}$ shorter than that of carbo, being exactly as long as that of urile.

The proportion of carina to total length is shorter than in either carbo or urile, the sternum from anterior end of carina to meso-xiphoid meas. uring $2^{\text {mm }}$ less than that of carbo and $4^{\text {m"n }}$ less than that of wile.

Between the costal borders the stermum is slightly wider than in either carbo or urile.

The rudimentary manubrium, like that of urile, lies in the plane of the body of the sternm, while in carbo and dilophus the manubrium lies in the plane of the keel.

If a line be drawn between the costal processes it will be fomud that the coracoid articulations project less be gond this line and form a more obtuse angle with one another than they do in carbo, and the same is true of urile as compared with dilophus. The sternum is non-pmenmatic, as in wrile, but in curbo and dilophus good-sized foramina pierce its dorsal face just back of the ridge formed by the coracoidal groove.

It is certainly interesting to find the sterna of these two representatives of the sub-genera Phalacrocorux and C'rile, respectively, agreeing with one another in these slight structural points.

Articulations are present for five pairs of ribs, the same number as in carbo. One specimen of wrile has four pairs of articulations, another has five on the left side and four on the right, and dilophus has but four pairs of costal facets.

The number of ribs articulating with the sternum is, however, subject to slight rariation, especially among water birds, and without an extensive series of specimens it is a little difficult to be sure of the normal number.

The coracoid is of the same length as that of carbo, 10^{mm} longer than in urile; but, while the proximal end is but little heavier than in carbo, the shaft and especially the distal end are much more massive.

The epicoracoid is prolonged upward into a sharper hook than in any of the other species at hand, but this process is subject to considerable variation with age or in various individuals.

One humerus is a little Ionger than that of carbo, the other is of exactly the same length; both are much stouter, especially in the proximal half.

The humerus is practically non-pueumatic, the foramina being rery minute, while the pneumatic foramina of carlo, thongh not large, are readily seen.

The humerus of urile differs from that of ditophus precisely as that of perspicillatus from carbo.
The ulna is distinguishable from that of carbo only by its greater weight, and the same may be said of the humerus of urile as compared with that of dilophus.

The fused metacarpals are slightly shorter and slightly stouter than in corbo, and here again the same differences are observable between the metacarpals of urile and dilophus.

The "sacrum," as a whole, is as long as that of carbo, but its component parts are more heavily built.

It comprises six pre-sacrals, two true sacrals, and nine post-sacrals, and the three "sacra" of perspicillatus agree with one another in these particulars.

Phalacrocorax carbo has six pre-sacrals, two true sacrals, and nine or ten post-sacrals. P. urile has six, two, eight, and dilophus sis, two, nine.
The hypapophyses of the anterior three rertebre have been broken off, but although the compressed centra are larger than in carbo, the hypapophyses seem to have been smaller.

The six presacrals present few salient characters, but the dia. pophyses of the fourth rertebre lie at right angles to the vertebral colmm, while in the three other species the diapophyses of this rertebra are directed forward.

The sacral and immediate post-sacral vertebre vary in the develop. ment of their parapophyses in all four species under consideration.

In all three specimens of perspicillatus the two true sacrals bear no parapophyses, while the two succeeding vertebra have them extended to, and ankylosed with, the ilium.

The diapophyses and parapophyses of these rertebre are united by a thin plate of bone, but that this is due to age is shown by the condition obtaining in the other species.

These latter also indicate that the canal formed by these processes, the centra of their rertebree, and the ilium, is larger on the right side than on the left, and that it is first obliterated on the left side.

In curbo neither the sacrals nor the second post-sacral bear parapophyses, although these are present on the first post-sacral, uniting it firmly with the ilinm.

In one example of urile, slender, but well marked, parapophyses connect the two sacrals with the ilia.

In another and much smaller specimen the second sacral has a parapohysis on the left side, there being no parapophyses on the first sacral.

In both specimens of urile the first, but not the second, post sactal bears parapophyses. Finally, ditophus has strong parapophyses on the second sacral and tirst post-sacral, but none on the second post-sacral.

The variation in the sacral region of these specimens is not only interesting in itself, but interesting from the fact that it is unusual for parapophyses to be present at all on the true sacral vertebre of birds.

Vierred from abore the ridge formed by the contluent spinous processes of the "sacrals" is wider than in carbo, and the interpophysial foramina are nearly closed, while in carbo thes are very open.

Although these characters depend to some extent on age, they do not entirels, and the same differences exist between the "sacra" of urile and dilophus as between those of perspicillatus and carbo.

The pelvis is much more rugose than in carbo, all attachments for muscles being strongly emphasized.

The anti-trochanter is placed farther back than in curbo, and is much more rounded, thus affording more play to the femur.

Just back of the anti-trochanter the outer edge of the ilium is raised and thickened, forming a flat, subtriangular spot about au inch in length.

This peculiar flattening of the ilia, taken in comnection with the size and rugosity of the pelvis, is sufticient to distinguish it from that of other species.

The slium of urile has a flattened spot, but proportionately smaller thau is perspicillatus.

Back of this flattened portion the dorsal edge of the ilimm is bent outward, making this part of the ilium outwardly concave, where in curlo it is conrex.

The post ilia of carbo and ditophus round gently outrard and downward thronghout their entire length from their junction with the diapophyses.

Viewed from the side the dorsal outline of the "sacrum" is slightly. decurved, while that of carbo is very nearly straight, and the same difference exists between urile and dilophus.

The acetabulun is slightly larger and forms more nearly a perfect circle than in carbo.

The ilio ischiatic foramen is subelliptical and wide, the longitudinal
diameter being nearly twice the vertical, while in carbo this foramen is more pointed posteriorly, and narrower, the length being more than three times the height.

In consequence of the size of this foramen the distance from the dorsal edge of the ilimm to the ventral edge of the ischimm is much greater than in carbo.

The bar of the ischinm bounding the obturator space is sharp-edged, rugose, and concare exteriorly on the posterior portion, while the corresponding portion of the ischium in carbo is comparatively smooth and slightly convex posteriorly.

The posterior border of the ischium is straighter than in carbo and the ilio-pubic articulation one-third shorter.

The femur is $5^{m m}$ longer than that of carbo, in every way mach more massive, and with all the muscular ridges more pronounced, while curionsly enough it is more pneumatic, having several foramina in the rentral aspect of the neek that are lacking in carbo.

There is nothing to distinguish the femur of urile from one of dilophus of the same length, and of the two that of dilophus is slightly the heavier.

But in the specimen of urile in which the humerus corresponds in length to that of dilophus, the femur and tibia are both longer and heavier than in dilophus, and the tarsus a little lighter.
The phalanges, again, are more massive in wile than in dilophus.
The smallest of the three tibix is slightly longer than that of carbo, the cnemial crest is more expauded, and the cnemial ridges farther apart an'l more pronounced.
The distal extremity of the tibia is also wider than in carbo, but at its smallest diameter the shaft is no larger.
The muscular ridges and grooses are more marked than in carbo, but in the absence of more material and making due allowance for individnal variation, it is difficult to point out characters which definitely distinguish the tibia of the two birds.
The tarsus is of the same length as in carbo, but much wider, and, as throughout, with all the ridges more prononnced.

Little can be said conceruing the three cersical vertebrae, except that unlike the other bones they are less strongly built than the corresponding bones in carbo.

From the foregoing notes it will be seen that the differences existing between corresponding bones of perspicillatus and carbo also exist between the same bones of urile and d lophus, and that conversely perspicillatus and wile agree with one another as do carbo and dilophus.

The sub genera Phaluciocorar and Lrile, therefore, seem to rest on good structural fomblations, each heing characterized by internal as well as external characters.

Unfortunately no skull of perspicillutus is to be had, but the crania of carbo and dilophus agree with one another, while differing strikingly from the cranium of urile.

From the harmony of the other parts it is not assuming too much to suppose that the skull of perspicillatus would resemble that of urile.

With the exception of the sternm the greater size of the bones dis. tinguishes those of perspicillatus from those of wrile, while well-marked differences of shape or proportion exist between the corresponding bones of perspicillatus and carbo.
P. perspicillatus appears to have been a much heavier bird than carbo, and a bird of weaker tlight; with more robust and muscular legs, and a more slender and more feeble head and neck.

In comparing the following tables of measurements it must be said that they do not adequately consey the impression produced by a comparison of the bones themselves. Thus, in the measurements of the lower mandible the greatest rertical width is comparatively as great as in carbo, but from this point the ramus tapers rapidly either way so that as a whole the mandible is much weaker than that of carbo.

So too with the humerus, where the greatest proximal width is ouly 2^{mm} greater than in car'mo, although the bone in its entirety is much more stoutly built.

Measurements. (in millimeters) of corvespondiny bones of Phalacrocorax perspicillatus, carbo, urile, and dilophus.
[All measurements are in a direct line and not along curves.]

	P. perspicillatus (National Museum, 17041).	P. carbo (Tale College Museum, 535).	P. urile (National Museum, 12502)	P. dilophus (Natioual Museum, 18050).
Rostrum:				
Tıp of mandible to extremity of maxillo-jugal bar.	134	140	108	105
Maxillo-jugal bar	68	- 69	56	56
Tip of mandible to posterior end of palatine.	109	- 117	91	86
Width across nasals, at fronto-nasal hinge....	21	20	13	14
Lower mandible:				
Length of ramus.......	139	144	112	110
Greatest height of ramus	13	13	9	12
Sternum:				
Anterior end of carina to meso-xiphoid.	104	119	97	91
Manubrium to meso-xiphoid.	83		. 81	76
Depth of carina....................	28	33 66	31	26
Width across articulations of fourth rib....	61 63	66 59	64	51
Coracoid:				
Length.	84	87	71	
Breadth of sternal articulation	25	25	24	20
Humerus: ${ }^{\text {a }}$				
Length Greatest proximal breadth	170	170	140	140
Greatest diameter midway between extremities.	111	28 9	25 10	23 8
Greatest distal breadth.............................	21	20	18	
Greatest proximal ineadth..........................	21	18		
Greatest diameter of shaft midway between extremities	8			
Pelvis:				
Greatest length of ilimm	151	152	12	12)
From anterior border of ilium to external angle of anti-trochanter	72			
Greatest width of ilia in adrance of acetabula.	48	44	48	48
Least width of ilia in advance of acetabula....	23	$23+$	19	18
Width between outer extrenities of anti-trochanters	43		37	33
Length of ilio-jschiatic space,	42	41	32	38

Measurements (in millimeters) of corresponding bones of Phalacrocorax perspicillatus, carbo, urile, and dilophus.
[All measurements are in direct line and not along curves.]

	P. perspicillatus (National Museum, 17041).	P. carbo (Yale College Museum, 535).	P.urile (National Muspum, 12502).	P. dilophus (National Museum, 18050).
Pelvis-Continued:				
G: eatest width of ilio-ischiatic space.............	18	13	13	10
From dorsal edge of ilium, above the ilio-ischiatic foramen, to ventral edge of ischium.	28	23	23	19
Length of ilio pulic artıculation	21	28	$15+$	23
Between posterior terminations of ischia	46	40		40
Femur:				
Length	74	70	66	55
Greatest proximal width.	21	19	16	15
Greatest diameter midway between extremities.	11	10	9	8
Greatest distal width.............	22	18	16	$15+$
Tibia:				
Lengtb	140	127	117	102
Width aeross enemial ridges	15	13	11	10
Width at distal end of articulation with fibula..	15	13	11	13.
Least transverse diameter of shaft................	8	8	7	7
Distal width........................	16	15	12	13
"Tarsus:"				
Proximal transrerse width.	19	16	14	14
Distal width	20	18	15	14

DESCRIPTION OF TWO NEW SPECIES OF SNAKES FROM CALIFORNIA.

BY
Leonhard Stejnegfr, Curator of the Department of Reptiles and Batrachians.

In 1861 Prof. E. D. Cope established the genus Lichanura for L. trivir. gata, which at the same time he descrubed as new, from specimens in the Smithsonian Institution and the Philadelphia Academy of Sciences. Of the types in the former, collected by J. Xintus at Cape St. Lucas, Lower California, only one specimen now remains (U. S. Nat. Mus., No. 15502), and since then only one additional specimen has been received, viz, No. 12602, which was collected by Mr. L. Beldiug at La Paz. For this genus Prof. Cope, in 1868 (Proc. Ac. Philada., 1868, p. 2), instituted the family Lichamuridu, but afterwards, having been able to study the anatomy of these and allied forms, he referced Lichomur" to the Boidre. Its external distinctive characters are given as: Tail prehensile, [though in but a slight degree]; scales smooth; no labial fossie; muzzle and front scaled ; uasal plates meeting (Bull. 32, U. S. Nat. Mus.).

To the type species the same author, in 1868 (l. c.), added two more species, L. myriolepis and L. roseofusca, the type specimens of which appear to be in his private collection. The distinguishing characters were derived from differences in the number of scale rows, labials, and scales composing the orbital ring, as well as in the coloration. These two species which, like the type, came from Lower California, are entirely overlooked by Bocourt in his great work on the Reptiles of Mexico (Mission Scientif. au Mexique, Rech. Zool, etc., 1882), while Garman (North Amer. Rept., Ophid, 1883) simply enumerates them as synonyms of the original type species. Besides the short description of L. trivirgata in Jau's Iconogr. génér. Ophid., $2^{\text {e livr., }} 1865$ (pp. 69 and 70), reproduced in Bocourt's work already referred to (p. 514), nothing of importance seems to have been published in regard to these interesting snakes. It should be remarked, howerer, that Professor Cope still adheres to the distinctness of the species described by him (see Bull. 1, U. S. Nat. Mus., 1875, p. 43, and Bull. 32, 1887, p. 65).

From the above it wall be seen that the genus Lichumura, the only North American genus of the family Boide, has hitherto not been recorded from the United States. It was, therefore, vers interesting to receive from Miss Rosa Smith a Lichamura, from San Dieso, and from Mr. C. R. Urentt another from the same locality, as well as a third one collected in the Colorado Desert. Upon examination the latter proved
to be quite different from the species hitherto described, and I propose to call it* Lichanura orcutti.

Lichanura orcutti sp. nov.

Dinginosis.- Sicales in 33 to 35 rows; eye encircled by 9 or 10 seales; loreals $\dagger 4$; labiahs $\frac{13}{13}$; gasterosteges 232 ; anal entire; urosteges 45 , entire.

Hab.-Colorado Desert, Sau Diego County, California.
Type.-U. S. National Museum, No. 15503; C. R. Oreutt coll., April, 1889.

Description of type specimen.-Rostral plate very prominent, recurved, pentagonal, its nasal border twice as long as its labial; eye surromoded by a ring of scales of nearly equal size, 10 ou the right side, but only 9 on the left; between the posterior uasal and the middle preoc:lar two large loreal scales, and under the posterior one, wedged in between it, the middle and lower prefrontals, and fourth, fifth, and sixth supralabials, a somewhat smaller subloreal; orer the posterior loreala superloreal of medium size; nasal divided, the anterior plate meeting the one of the other side; back of these a pair of rather large anterior prefrontals followed by four smaller posterior prefrontals, or what corresponds to these plates where a frontal exists, the outer ones being larger than those in the middle; posterior to these the head is covered with numerous rather irregular scales; supralabials 13 , the first four highest ; infralabials 15 , gradually diminishing in height from the pair joining the triangular mental; mental fissure separating four pairs of scales; scales of body smooth, in 33 to 35 longitudinai rows, the inferior on each side slightly larger than the rest; gasterosteges narrow, 232; anal small, eutire; tail short, blunt; urosteges 45, entire.

Fig. 1.-Lichanura orcutti.
Itimensions.-Total length, $870^{m u n}$; length of tail from anus, $110^{\text {mim }}$; diameter of eye, $3^{\text {man }}$; from tip of muzzle to anterior border of eye, $11^{\text {mun }}$; proportion of last two measurements $=1: 3.7$.

Colorution.- (iround color light bluish gray, with a light brownish wash on the upper surface; three longitudinal ill defined, zigzag bands of a pale raw umber brown ruming the whole length of the body, the

[^22]middle one starting between the eyes running to the end of the tail, the lateral ones starting on the temporal region becoming obscure on the tail; top of muzzle and occasional blotches between the bands of the same color; whole underside, except the gulars, mottled irregularly with blotches of a dark neutral tint.

Of the forms which compose this genus the present species appears to be the most highly differentiated, the most distinctive feature being the elongation of the snont and the prominence and shape of the rostral. From the L. trivirgata, myriolepis, and simplex group, it differs more particularly by the low number of scale rows and loreals. In theserespects it seems to agree verg well with roseofusea, from which it differs in the greater number of seales composing the eye riug as well as in coloration. There may be other and more important distinctions, but not having seen a specimen of the latter species, I have to rely solely upou Professor Cope's origiual description, which is very meager indeed.

A specimen collected atSan Diego, Cal., received from Miss Rosa Smith can not be identified with any of the other forms hitherto recognized though combining characters of some of them in such a manner as to make it probable that additional material will prove it to be only a subspecies of L. myriolepis. It may be characterized as follows:

Lichanura simplex sp. nov.
Diagnosis.-Scales in 40 rows; eye encircled by 7 or 8 scales; loreals 6 ; labials $\frac{13}{13}$; gasterosteges 232; anal entire ; urosteges 39, eutire.

Hab.-San Diego, Cal.
Type.-U. S. National Museum, No. 13810; Miss Rosa Smith, coll., March 5, 1884.

Fig. 2.-Lichanura simplex.

Fig. 3.-Lichanura trivirgata.

Description of type specimen.-Rostral plate as in the other species, except L. orcutti, pentagonal, its nasal border but slightly longer than its labial; eye surrounded by a ring of 8 scales (on the left side, but 7 ouly on the right side, the two posterior superorbitals having become fused) the anteorbital being very large; three true loreals, abore which two smaller supraloreals; on the right side two rather large subloreals, being the detached upper portions of the fourth and fifth supralahials, while on the left side only part of the fifth is thus separated; nasal divided, the anterior portion meeting the one of the other side; posterior to these are two pairs of rather regular prefrontals followed by the usual small irregular frontal seales of the genus; supralabials 13 , the first three (four) highest; infralibials 15; mental small, triangular, mental fissure separating four pairs of scales; seales of body smootl, hexagonal, imbricated, in 40 longitudinal rows, the lower one largest; gasternsteges 232; anal small, entire; urosteges 39, entire.

Proc. N. M. $89-7$

Dimensions.-Total length, 765^{mu}; length of tail, from anus, 80^{mm}; diameter of eye, $2.5^{m m n}$; from tip of muzzle to anterior border of ere, 10^{mm}; proportion of last two measurements $=1: 4$.
Colowtion.-Uniform drab-brown above, fading into whitish on the under parts.
In spite of the fewer scales forming the eye ring, a feature which seems to he of less importance, the present form appears to agree better with 1. myrinepis than with roseofusen. The scale rows are ouly two less than in a specimen labeled L. myriolepis by Cope himself (U. S. Nat. Mus., Ľo. 14129: San Diego; Charles Oreutt, coll.), and in the numerous lon eal seales it also agrees better with the latter. The diameter of the eye shows the same ratio to the distance from the tip of the muzzle in thess two forms, thereby differing considerably from L. trivirgata, in which the eye is comparatively much larger. From L. orcutti the new form differs in the much less produced muzzle aud rostral, in the number of scale rows, loreals, and scales composing the eye ring, in the still smaller eye, as well as in coloration.

So far as can be made out from the scanty material there are at least five species, or varieties, the differences of which may be tabulated as follows :
a^{1}. Eye ring of 9 to 10 scales, or else more than 4 loreals.
b^{1}. Eye large, its diameter more than one-third the distance from anterior canthus to tip of muzzle; gasterosteges about 218; color whitish with three blackish-brown longitudinal bauds in strong contrast.

1. L. trivirgatu.

b^{2}. Ese smaller, its diameter less than one-third the distance from auterion canthus to tip of muzzle ; gasterosteges about 232; color brownish or bluish above, with or without longitudinal bands, which, when present, contrast but little against the ground color.
c^{1}. Scale rows 40 to 45 ; loreals 5 to 7 .
d^{1}. Eye ring of 9 to 10 scales; scale rows 42 to 45 ; color bluish gray above, with three longitudinal light-brownish bauds.

உ. L. myriolepis.
d^{2}. Eye ring of 7 to 8 scales; scale rows 40 ; color uniform; brownish drab above.
3. L. simplex.
c^{2}. Scale rows 33 to 35 ; loreals 4 (eye ring 9 to 10 scales).
4. L. orcutti.
a^{2}. Eye ring of 7 to 8 scales and 4 loreals.
5. L. roseofusca.

It is more than probable that additional material will alter the above results and necessitate the moditication of the "key," which is somewhat clumsy because of our ignorance of the character of the rostral,
the size of the eye, the number of gasterosteges, etc., in L. roseofuscu. The manifest great variability of the characters derived from the number and shape of seales and plates in these snakes makes it quite likely that some of the forms here recognized, in the future will be recognized only as varieties. The number of gasterosteges, on the other hand, seems to be rather constant, and the large size of the eye in L. trinirgata, as well as the prominence of the rostral in L. oroutti, are appareutly also features of considerable diagnostic importance.

SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U. S. FISH COMMISSION STEAMER ALBATROSS.

[Published by permission of Hon. Marshall McDonald, U. S. Commissioner of Fisheries.]
No. I.-BIRDS COLLECTED ON THE GALAPAGOS ISLANDS IN 1×88.

BY
Robert Ridgway.
Curator of the Department of Birds.
The collection of birds made by the Fish Commission Steamer Albatross having been placed by the Commissioner of Fisheries in my hands for identification and report, the following list of the species is herewith given, classified according to locality, and accompanied by such notes as seem necessary or desirable.

The collection was made by Prof. Leslie A. Lee, naturalist of the expedition, assisted by Mr. Charles H. Townsend and Mr. Thomas Lee, and would doubtless have been much more extensive had not other duties, more closely comnected with the main olyjects of the cruise, prevented.

In compliance with instructions from Professor Baird, then Commissioner of Fisheries and Director of the National Iuseum, the writer prepared for the use of the naturalists of the Albatross memorauda of "suggestions as to what localities lying along or contignous to the proposed route" of that vessel were "most worthy of special ornithological exploration," besides naming the more important and special desiderata; while Mr. Leonhard Stejneger, Assistant Curator of the Department of Birds, furnished memoranda of "suggestions for the exploration of the avifauna of the Galapagos Islands," which gave, besides recommendations regarding future explorations, a review of what had already been accomplished in that interesting group by previous explorers.

It is much to be regretted that so little attention was paid to the collecting of specimens of the Procellarialle, for obtaining which unusual opportunities must have been afforded, siuce numerous species of this pelagic family of birds are involved in great confusion, and it is equally unfortunate that no notes accompany the specimens; but doubtless this apparent oversight was caused by want of necessary time, or other circumstances over which the naturalists of the expedition had no control.

The collection of birds from the Galapagos archipelago is of speeral interest for the reason that two islands are represented upon which no collections hare previously been made, several new species being thus
added not suly to the archipelago, but to science, while other islands have been more carefully explored, thereby adding very materially to our knowledge of the remarkable endemic bird-fana of these remote and highly interesting islauds.*

The general character, relationships, and significance of the Galapagoan bim Chasa have been so thoroughty and ably disenssed by Mr. Oshert Salvin, in his admirable monograph entitled "On the A vifanna of the Galapagos Archipelago" \dagger that it would not be desirable to here enter into an elaborate discussion of the subject.

A complete list of the species collected on the Galapagos by the naturalists of the Albutross is given on the following pages, with such comments as seem necessary or desirable, and following this list is a tabmar statement giving all the species which have been taken, to date, on or among these islands, and indicating those upon which each species has been found; also, a list of the species which have been taken on each island, together with other matter intended to further eheidate the subject, to properly understand which Mr. Salvin's very important monograph, before mentioned, should be at the same time consulted.

Family MIMIDE.

1. Nesomimus \ddagger melanotis (GouLD).

James Island, deven specimens; Chatham Island, five specimens; Indefatigable Island, three specimens.

Owing to the circumstance that none of the specimens are in perfect plumage, I am unable to ascertain whether there are ary coustant differences of coloration according to locality. Examples from James Islaud, however, appear to have longer, slenderer, and more curved bills than those from Indefatigable Island, which have the bill more as in N.parvulus. All the specimens from Chatham Island are, unfortunately, young birds.

2. Nesomimus parvulus (Gould),

Albemarle Island, three specimens.
Closely allied to N. melenotis, but readily distinguished by the dis. tinctly asly breast, even in the much worn phunage, when other as cribed characters fail. It is somewhat singular that this character lias

[^23]Type, Orpheus melanotis Gould.
not before been mentioned. I am unable to distinguish the young in first plumage from that of N. melanotis. The specimen described by Mr. Sharpe in P. Z. S., 1877, p. 65, is undoubtedly a young bird, the adult having no spots on the breast.

3. Nesomimus macdonaldi sp , nov.

Sp. Char.-Similar to N.trifasciutus (Gould), but much grayer above, much more black on side of head, the bill much longer, and the tarsi much shorter.

Fig. 1.-Nesomimus macionaldi.
Hab.-Hood Island, Galapagos.
Adult male (type, No. 116066, Hood Island, Galapagos, April 7, 1is8: U. S. S. Albutross): Above brownish geay, more ashy anteriorly and on lesser wing coverts, becoming decidecily hrown on rump, each feather with a central or mesial space of dusky, thesé markiugs largest on back and seapulars, nearly obsolete on lower back and hind-neek; wings (except lesser corerts) dull black, the posterior row of lesser coverts, middle coverts, and greater coverts, broally margined at tips with white, forming three bands across the wing; greater coverts and tertials broadly edged with drab or grayish brown, the latter margined terminally with white; primaries and their coverts narrowly edged with pale browish gray or dull whitish; tail blackish dusky, the outer feather with an illdefined pale brownish-gray space near tip of inner web, next to edge, the second with a mere edging of the same color in corresponding position. A narrow and poorly detined superciliary stripe of white, bordered beneath by a blackish stripe covering lores, extending beneath eye, and thence along upper edge of auricular region, the rest of the latter dull light gray mixed with black, especially on lower posterior portion; a broad white malar stripe, bordered beneath by a narrow interrupted stripe of dusky along each side of throat. Under parts white. tingel with pale drab across chest, where sparselg spotted with hrownish dusky; upper part of breast immaculate, thrming a rather distinct broad band or belt, this succeeded by bromat latema patches (nearly or quite meeting ou middle of breast) where the fathers are faintly tingel with brownish-gray and marked with large central, more or less U-shaped spots of dusky; sides and flanks broadly streaked with dusky. Bill black, slightly brownish on basal portion of lower mandible: legs and feet brownish-black. Length (sikin), 10.50; wing, 4.90; tail, 4.80; (middle feathers not grown out) : exposed culmen, 1.25; bill to rictns. 1.60; tarsus, 1.50 ; middle toe,, 90 .

Adult female (No. 116004, Mood Island, Galapagos, April 7, 1898): Similar to the mate described abore, but slightly smalier, bill straighter, and under parts more tinged with brown, as well as more distinctly spotted across chest. Length (skin), 10.00 ; wing, 4.55 ; tail, 4.25 ; exposed cuimeu, 1.23 ; bill to rictus, 1.58 ; tarsus, $\mathbf{1 . 4 5}$.

Four additional adult males agree essentially in coloration with the one described, and measureas follows: Lengtin (skin), 10.00-10.50; wing, 4.60-5..05 ; tail, 4.40-4.60; exposed culmen, 1.27-1.35; bill to rictus, 1.5ั-1.65; tarus, 1.50.

This fine new species is named after Cul. Marshall McDonald, U. S. Commissioner of Fisheries.

4. Nesomimus personatus sp. nov.

Sp. Char.-Similar to N. melanotis (Gould), but much larger and darker, with sides and flanks more tinged with brown.

Hab.-Abingdon Island, Galapagos.
Adult male (type, No. 11609s, Abingdon Island, Galapagos, A pril 16, 1888; U. S. S. Albatross): Pileum, hind-neck, back, scapulars, wings, and tail* dull blackish, the feathers indistinctly margined or edged with dull grayish brown, these edgings much wider and more distinct on wing and tail feathers; feathers of hind-neck ash-gray beneath the surface; lower back, rump, and upper tail-coverts dull grayish brown, the feathers darker centrally, forming indistinct streaks; middle and greater wing.coverts broadly tipped with dull white, forming two distinct bands across wing; remiges rather broadly margined at tips with dull light brownish gray (more brownish on tertials); three outer tailfeathers broadls tipped with pale grayish brown (fading into dull white exteriorly), this color confined to the imner web on third feather; fourth feather with a more restricted and less definite lighter terminal space, and two madde pairs merely fading at tips into dull grayish brown edged with dull whitish. A supereiliary stripe of dull grayish white, narrower, whiter, and more sharply defined over lores; lores, suborbital region, and auriculars dull black, forming a conspicuons patch along side of head; malar region, sides of neck, and lower parts white, the first speckled with dusky, the secoud spotted with same posteriorly, and the latter tinged with light brownish, except on chin aud throat, the sides and flanks very distinctly washed or suffused with brown, the latter broadly streaked or striped with dusky. Bill black, inclining to horn-color at tip of upper and base of lower mandible; legs and feet brownish black. Length (skin), 9.30 ; wing, 4.51 ; tail, 4.15; exposed cnlmen, 1.00 ; bill from rictus, 1.35 ; tarsus, $1.43 ;$ mid?le toe, .87 .
Adult female (No. 116099, same locality, ete.): Essentially like the

[^24]male in coloration,* but smaller. Length (skin), 9.00; wing, 4.10; tail, (feathers much worn), 3.90 ; exposed culmen, 1.07 ; bill from rictus, 1.40 ; tarsus, 1.35 ; middle toe, . 80 .

Six additional adult males agree in all essential characters with the type.

Family MNIOTILTIDA.

5. Dendroica aureola (Gould).

Indefatigable Island, one specimen ; Charles Island, four specimens; James Island, two specimens; Chatham Island, four specimens.

Family HIRUNDINID.E.
6. Progne concolor (Gould).

Indefatigable Island (Edeu Rock) ; one adult female.
Family CGEREBID E.
7. Certhidea olivacea Gould.

Chatham Island, two specimens; James Island, two specimens.
8. Certhidea fusca Scl. and Salv.

Abingdon Island, six specimens.
9. Certhidea cinerascens sp. nov.

Sp. Char.-Similar to C. fuscu, Scl. and Salv., but much less olivaceous above, whiter beneath, and bill smaller.

Нab.-Hood Island, Galapagos.
Adult male (type No. 116069, Hood Island, Galapagos, April 7, 1885; U. S. S. Albatross): Above plain dull brownish gray, beueath wholly dull grayish white, faintly tinged with buty; especially along sides. Bill black, basal half of lower mandible horn-color; legs and feet deep black. Length (skin), 3.85 ; wing, 2.00; tail, 1.40; exposed culmeu, .37; bill from rictus, 45 ; tarsus, .73; middle toe, . 43 .

Family FRINGILLIDA.

10. Geospiza strenua Gould.

Abingdon Island, two specimeus; Charles Island, one specimen.
The specimen from Charles Island is a male (in rariegated plumage), and is quite undistinguishable from examples from Abingdon Island.

I am not satisfied as to the propriety of considering the specimens from Bindloe Island referred by Mr. Salvin to this species as really the same form, but believe that they represent a lucal race, all of the three examples in the U. S. National Museum collection having the bill decidedly broader and relatively shorter, as well as lighter colored. I have not seen specimens from James or Chathani Islands, the orginal localities.

[^25]11. Geospiza conirostris sp. nov.

Fig. 2.-Geospiza conirostris.
Sp. Ciar.-Similar to G. strenua Gould, hut bill much more elongated, much narrower, and culmen less arched.

Hab.-Hood Island, Galapagos.
Alult male 'type, No. 116070, Hood Island, Galapagos, April 7, 1888; U.S.S. Albatross): Uniform black, the longer under-tail coverts margined (rather broadly) with white; bill, legs, and feet wholly black. Leugth (skin), 5.70 ; wing, 3.30 ; tail, 2.10; culmen, .95; gouys, .52 ; width of lower mandible at base, .51 ; depth of bill at base, .70 ; tarsus, .95 ; middle toe, . 72 .

Adult female (No. 116076, same locality, ete.) : Much duller black than the male, or dull slate-dusky, broken on the belly, flanks, ete., by dull whitish streaks (edgings to feathers); all the under tail coverts margined with dull whitish; under mandible dull brownish in middle portion; legs and feet dull black. Leugth (skiu), 5.50; wing, 3.10 (quills worn at tip); tail, 1.75 (feathers very much worn at tip); culmen, .90 ; gonys, .50; width of under mandible at base, .48; depth of bill at base, .62; tarsus, .95; middle toe, .68.

Immature (?) male (No. 116075, same locality, etc.): Similar to the adult female as described above, but rather more sooty, and lower mandible pale brownish, with base and tip dusky. Length (skin), 5.75; wing, 3.15 ; tail, 2.00 ; culmen, .90 ; gonys, .50 ; width of under maudible at base, .48 ; depth of bill at base, .68; tarsus, .93 ; middle toe, .70 .

Immature(?) female (No.116077, same locality, etc.): Above dull sooty; anterior lower parts similar, but indistinctly streaked with pale grayish buffy, this gradually increasing posteriorly until it becomes the prevailing color and the sooty reduced to broad streaks. Length (skin), 5.70; wing, 3.10 ; tail, 2.00 ; culmeu, .89 ; gonys, .50); width of lower mandible at base, .47 ; depth of bill at base, .62 ; tarsus, .92 ; middle toe, .67 . Bill intermediate in color between that of adult female and immature male described above.

The additional adults (two of them males, the third with sex not determined) agree minutely in form and size of bill and other measurements with the adult specimens described, one of the males being like the type in coloration while the other corresponds in plumage with the adult female described.
12. Geospiza media, sp. nov.

Sp. Char.-Similar to G. conirostris, but slightly smaller, with bill much smaller and less elongated.

Hab.-Hood Island, Galapagos.

Fig. 3.-Gcospiza media.
Adult male (type, No. 116072, Hood Island, Galapagos, April 7 , 1888; U.S.S. Albatross): Uniform dull black, the muler tail-coverts broadly margined with buffy white; bill, legs, and feet wholly black. Length (skin), 5.50 ; wing, 3.10 ; tail, 2.10 ; culmen, . 80 ; gonys, .42; width of lower mandible at base, .45 ; depth of bill at base, .62 ; tarsus, .90 ; middle toe, . 65.

While loath to describe a new species from a single specimen, I am forced to do so for the reason that it can not be made to fit in with any of the recognized species represented by specimens now before me. It has the bill shaped exactly as in G.fortis (represented by 37 specimens, from seven islands), but the bird is in every way much larger.

13. Geospiza fortis Gould.

Charles Island, two specimens; Chatham Island, six specithens; Indefatigable Island, two specimens; Abingdon Island, nine specimens; James Island, six specimens; Albemarle Island, four specimens.

The specimens from Albemarle Island appear to be clearly referable to this species, and agree most closely in form and size of the bill with those from James, Charles, Indefatigable, Abingdon, aud Bindloe Islands; those from Chatham Island hare the bill decidedly larger, and should be separated as a local race.
14. Geospiza fuliginosa Gould.

Chatham Island, eight specimens; James Island, two specimens; Indefatigable Island, two specimens; Duncan Island, ten specimens: Charles Island, one specimen; Hood Island, one sperimen; Albemarle Island, three specimeus; Abingdon Island, one specimen.
15. Geospiza parvula Gould.

Abingdon Island. seven specimens.
16. Geospiza difficilis Sharpe.

Geospiza difficilis Sharpe, Cat. B. Brit. Mns., xif, 1888, 12 (Abingdon and Charlew Islands).

Abingdon Island, one specimen.
17. Cactornis scandens Gould.

Charles Island, four specimens; Iudefatigable Island, six specimens.
18. Cactornis abingdoni Salv.

Abingdon Island, four specimens.
I am very doubtful whether the distinctness of this bird from C. scandens can be maintained. The two adult males have the same miform black plumage as those of C. scondens, while of the five adult males of the latter (three from Indefatigable and two from Charles Islands), three have the bill entirely black, the other two having merely a bloteh of paler color on the under side of the lower mandible (barely perceptible in one of them). The specimens from Abingdon Island have the bill slightly larger than those from the other islands above mentioned, but the difference in this respect between them and the specimens from Indefatigable Island is not greater than between the latter and those from Charles Island. In short, if the uniform black specimens from Charles and Indefatigable Islands are true C. seandens, I should unhesitatingly consider C. cllingdoni a synonym of that species. The U. S. National Museum does not, however, possess a specimen from James Island, the original locality of C'. scandens, and I am therefore uuable to form a more definite opinion on the subject.

19. Cactornis brevirostris sp. nov.

Sp. Charr.-Similar to C. scandens in color, but bill very different in form, being much shorter and deeper, and with decidedly arched culmen.

НАв.-Chatham Island.

Fig. 4.-Cactornis brevirostris.
Immature male (trpe, No. 115920, Charles Island, Galapagos, April 8, 1s88; U.S. S. Albatross): Dull sooty blackish, uniform on head, neck, and chest, elsewhere broken by lighter margins to feathers; these edgings dull light grayish brown on upper parts, dull brownish white on lower parts; sides and flanks washed with pale brown; under tail-corerts dull buffy white, with concealed mesial streaks of dusky. Bill entirely black; tarsi deep brown; toes brownish black. Length (skin), 4.50 ; wing, 2.70 ; tail, 1.8 . ; culmen, . 00 ; gonys, .40 ; width of lower mandible at base, .37 ; depth of bill at hase, .45 ; tarsus, .82 ; middle toe, .62 .

The form of the bill in this sjeecies is very nearly intermediate between that of Cactornis and Geospiza, though decidedly more like the former.
20. Cactornis pallida Scl. and Salv. ? (C. hypolenca, sp. nov... if distinct.")

A single specimen from James Island seems to come very near to C. pallida Scl. and Salr., but it is apparently larger and lighter colored, C. pallida being described as having the upper parts olive brown and the lower parts pale ochraceons, whereas the bird in hand is light, grayish olive above and dull white beneath. M. Sharpe, however, in describing the type specimen says (Cat. B. Brit. Mus., xir, p. 20) that it is "pale olive-brown" above and the " cheeks, throat, and under surface of body white, slightly washed with olive yellow, with a few dusky streaks on the chest," which very nearly agrees with the James Island specimen. The difference in measurements is shown below:

21. Camarhynchus psittaculus Gould?

Indefatigable Island, one specimen; James Island, one specimen, an adult male, very doubtfully referred to this species. Its characters are as follows:

Adult male (No. 116006, James Island, Galapagos, A pril 11, 1888; U. S. S. Albatross): Head, neck, and chest uniform sooty blackish; rest of upper parts dull grayish olive, darkerauteriorly, where gradually blending into blackish of hind-neck, paler and more olivaceous on rump and upper tail coverts; wings and tail dull grayish brown or dusky, the feathers edged with paler grayish brown; under surface of body (except chest) dull buffy white, the breast mixed with blackish and sides indistinctly streaked with the same; under tail-coverts pale dull buffes. Bill black, more brownish on gonys; legs and feet dark brown. Lengtin (skin), 5.25 ; wing, 3.00 ; tail, 1.90 ; culmen, .62; gonys, .32; bill from rictus, 55 ; depth at base, 47 .

The specimen from Indefatigable Island is a male in light colored (immature ?) plumage, something like the example described and figured in the Zoölogy of the Beagle, but has the bill much darker, the upper parts graser, and lower parts whiter. Length (skin) 5.30; wing, 2.90; tail, 1.90 ; culmen, .57 ; gonys, .28 ; bill from rictus, .50 ; depth at base,

[^26].45. It will be observed that while these two specimens agree closely in measurements they are decidedly larger than C.psittaculus, as described by Messrs. Gould aud Salvin.

22. Camarhynchus crassirostris Gould.

Charles Island, two specimens; Indefatigable Island, two specimens; Chathan Island, one specimen.

In attempting to identify this species I am much puzzled by important discrepancies in the descriptions given by Messrs. Gould, Salvin, and Sharpe, all of which purport to be taken from the type specimen. Thus, Gould says of the under parts: "The throat and breast cinereous olive, with the middle of each feather darker; the abdomen, sides, and under tail-coverts cinereous tinged with straw color." Mr. Salviu's description of the same parts, translated, reads as follows: "Beneath Whitish, each feather of the throat and upper breast black in the middle." Then comes Mr. Sharpe, who says that the species "differs from C. curiegutus in its uniform under surface* not being mottled with brown streaks." The measurements given by these three authors vary no less remarkably, as the following will show:

	Total length.	Wing.	Tail.	Bill.	Tarsus.	Remarks.
Gould	5. 50	3.75	2.00	. 50	1. 13	(Tarsus, $1 \frac{1}{8}$; height of bill, $\frac{1}{3}$.
Salvin	5. 20	3. 00	1. 90	$\left\{\begin{array}{l} \text { to rictus } \\ 0.50 \end{array}\right.$	$\} 0.85$	
Sharpe.	5. 30	3.05	1.90	$\left\{\begin{array}{l} \text { culmen } \\ 0.60 \end{array}\right.$	$\} 0.90$	
Aluatrosi specimens	$\left\{\begin{array}{l} 5.50- \\ 5.60 \end{array}\right.$	$\begin{aligned} & 3.40- \\ & 3.50 \end{aligned}$	$\} 2.41$	$\left\{\begin{array}{l} \text { to rictus } \\ 0.60- \\ 0.65 \end{array}\right.$	$\left\{\begin{array}{l} 1.00-\rangle \\ 1.12 \end{array}\right\}$	Tail measured to extreme base.

Our specimens from Charles Island agree best as to coloration with Mr. Salvin's description, though they resemble fairly the colored figure in the Koölogy of the Beagle (pl. 41); as to measurements, they correspond best with those given by Gould.
23. Camarhynchus prosthemelas ScL, and Salv.

Chatham Island, two specimeus; Charles Island, two specimens; James Island, four specimens.
24. Camaryhnchus habeli Scl. and Salv.

Abingdon Island, two specimens.
25. Camarhynchus townsendi, sp. nov.

Sp. Cilar.-Similar to C. psittuculus, but paler and with a differently shaped bill, the culmen broader and less arched, and commissure straighter.

Hab.-Charles Island.

[^27]

Fig. 5.-Camarhunchus townsendi.
Adult (?) male (No. 115915, Charles Island, Galapagos, April 8, 1888; U. S. S. Albutross): Above light brownish-gray, decidedly tinged with olive on hinder scapulars, lower back, and rump; middle and greater wing coverts broadly but not very distinctly tipped with pale dull butty; superciliary stripe and entire under parts dull buffy whitish, the breast and sides tinged with brownish gray, the sides of the former showing very indistinct broad streaks of the same; under wing-coserts and broad margins to imner webs of remiges nearly pure white. Upper mandible dark brown, lower mandible palei; legs and feet dark brown. Length (skin), 4.50; wing, 2.80; tail, 1.55; culmen, .58; gonys, .31; bill from rictus, .51 ; depth at base, . 45 ; tarsus, . 88 ; middle toe, .60 .

Adult (?) female (No. 115914, same locality, etc.): Similar to the male as described above, but very slightly whiter beneath. Length (skin), 4.70; wivg, 2.90; tail, 1.80 ; culmen, .55; gonys, .29; bill from rictus, .50; tarsus, .90 ; middle toe, . 65 .

It is not unlikely that the full-plumaged male of this species has the head and neck blackish, like C. habeli and the supposed C. psittuculus described above.

I see no other way to dispose of these specimens from Charles Island than to describe them as a distinct species. Viewed laterally, the bill is shaped much like that of C. habeli, except that it is shorter; viewed vertically, it is seen to be less compressed, especially on the culmen, which does not present a well defined ridge as seen in C. habeli.

This new species is named for Mr. Charles II. Townsend, one of the naturalists of the Albatross, and an accomplished ornithologist.

26. Camarhynchus pauper sp . nov.

Sp. Char.-Similar to C. townsendi but slightly smaller, with the bill very much smaller and with straighter culmen, the legs and feet much more slender, and the under parts more tinged with buffy.

Hab.-Charles Island.

Fig. 6.-Camarhynchus pauper.
Adult (?) female (type, No. 115913, Charles Island, Galapagos, A pril 8, 1888; U. S. S. Albatross) : Above grayish olive, the feathers of the head
and back slightly darker centrally, the olive color paler on the rump; wings and tail dull grasish dusky with lighter olive-grayish edgings, these dull buffy on middle and greater wing coverts; supmaloral space and malar region pale dull grayish buffy ; chin and throat similar but paler and more grayish; rest of under parts paie buffy fading into nearly white on belly; sides and tlanks tinged with grayish olive, and chest very faintly flammulated with the same. Bill wholly grayish black; legs and feet dusky brown. Length (skin), 4.60; wing, 2.70; tail, 1.65 ; culmen, .50 ; gonys, .30 ; bill from rictus, .50 ; depth at base, . 35 ; tarsus, . 85 ; middle toe, . 58.

Family TYRANNIDA.

27. Pyrocephalus nanus Gould.

Indefatigable Island, one specimen; James Island, five specimens; Charles Island, six specimens; Chatham Island, two specimens; Abing. dou Island, two specimens.

There are some very marked differences of coloratiou and measurements betweeu specimens from different islauds, which will probably necessitate the recognition of several forms; but most of the skins I have for examination are either in very worn or molting plumage, so that a satisfactory comparison is out of the question.

The two examples from Chatham Island, both adult males, are much the smallest, the wing measuring only 2.30 , the tail 2.00 , the exposed culmen .40, and the tarsus . 65 , while those from other islands measure, wing 2.50-2.65, tail 2.15-2.25, exposed culmen .45-.50, and tarsus .65-.75 (averaging more than . 70). As to color, they are of a lighter brown above, and paler red beneath, although the crest is as intensely colored as in other specimeus.

The two adult males from Abington Island differ conspicuously from all the others, those from James Island included, in the hue of the red, which ou the under parts is of a decided orange cast, or intermediate between orange-chrome and flame-scarlet,* while on others the hue is a rich vermilion.

The adult female from James Island has the muder parts, except chin and throat, which are white, clear naples yellow, deepest on the belly, the breast very narrowly and indistinctly streaked with grayish brown, while in the two from Charles Island the under parts are buff-yellow, a female from Indefatigable Island being very similar. These females (from last two localities) agree very well in color with the figure in the Zoïlogy of the Beagle (plate 7), althongh the deseription in that work says the under parts of the female are "pale buff."

The locality from which the types of P. numus were obtained is unfortunately not known, and I am not able to ascertain from descriptious whether the ordinary or most widely distributed larger form or the diminutive Chatham Island race are to be considered the same as true I.nanus. It is probable, however, that the larger form may be properly

[^28]cousidered to be P. nanus, and if this prozes to be correct, I would propose for the Chatham Island bird the provisional name of Pyrocephulus minimus.
28. Myiarchus magnirostris (Gray).

Chatham Island, two specimens; James Island, five specimens; Indefatigable Island, one specimen; Abingdou Island, two specimens; Duncan Island, four specimens; Hood Island, two specimens; Charles Island, four specimens.

There are apparently some differences between specimens from difierent islands, but most of the skins being in poor plumage, I am not able to make a satisfactory comparison. The single adult from Abingdon Islaud, for example, has scarcely a trace of rufons on the inuer webs of the tail feathers (very decided in all the others), the imer webs of these feathers being pale broccoli-brown, becoming dark hair-brown next the shaft.

Family CUCULIDA.

29. Coccyzus melanocoryphus Vieill.

Chatham Island, one specimen; Ciarles Island, one specimen.
These specimens, both adnlts, I am unable to distinguish from mainland examples, though that from Charles Island has the bill cousiderably deeper, and broader at the base, than any I have seen.

Family BUTEONID E .

30. Buteo galapagoensis (Gould).

Indefatigable Island, two specimens; Abingdou Island, one specimen.
This bird is so closely related to B. swainsoni that there can be little doubt that it is merely a local form of that species, slightly differentiated by long isolation from the parent stock. It differs chiefly, if not entirely, in its heavier bill and feet.

Family PELECANIDA.

31. Pelecanus californicus Ridgw.

Pelecamus fuscus Sundev. P. Z. S., 1871, 125.-Salv. Trans. Zool. Soc. Lond., Ix, pt. Ix, 1876, 496.
Pelecanus californicus Ridgw. Water B. N. Am., iI, Aug., 1884, 143.
Chatham Island, two specimens; also one specimen withont label.
The single adult example (No. 11596t) is in the white-necked or postnuptial plumage, and agrees exactly with Californian specimeus, excepu that the lower parts are darker and more distinctly streaked with white, each feather having a very distinct though narrow mesial streak of this color. The pouch, in the dried skin, is light brown basally, and the bill is chiefly orange-reddish, the sides of the uader mandible with only a slight blackish mottling toward the base.

Proc. N. M. $89-$ - 8

No. 115965 is apparently a female, and is in transition immature plumage, the brownish chestnut of the neck being interspersed with white feathers.

The third example (No. 116297) is a young bird, probably a male, of the preceding year, and agrees exactly with a specimen from California. In this the sides of the under mandible are mainly blackish, becoming orange-reddish terminally and whitish basally; the pouch light brownish basally, as in the preceding.

The measurements of these specimens are as follows:

Catalogue number.	Locality.	Wing.	Tail.	Culmen.	Tarsus.	Middle toe.
115964.	Chatham Island	22.75	7. 80	14.00	3.30	4. 50
115965. do	21. 25	6.00	12.25	3.15	4. 05
116297.		22.00	6.25	14. 00	3.35	4.25

Family SULIDE.
32. Sula gossi Ridgw.
? Sula cyanops SALv. 'Trans. Zool. Soc. London, IX, pt. IX, 1876, 496.
? Dysporus cyanops SUNDEV. P. Z. S., 1871, 125.
Chatham Island, one specimen. This example I am unable to distinguish from the types of S . gossi. Its measurements are as follows: Wing, 17.50 ; tail, 10.00 (graduated for 4.70) ; culmen, 4.55; depth of bill at base, 1.37 ; tarsus, 2.30 ; middle toe, 3.05 .

Family ARDEIDA.

33. Ardea herodias (LINN.) ?

Duncan Island, one specimen.
I am not quite satisfied of the absolute identity of this bird with the true A. herodias, but the single specimen in the collection being not fully adult a satisfactory comparison can not be made.
34. Butorides plumbeus (SUNDEV.).

Mood Island, three specimens; James Island, two specimens; Duncan Island, one specimen; Abingdon Island, one specimen.

There is much variation in intensity of coloration among the adults in this series, but since the two specimens from James Island represent nearly the extremes, it is probable that the variation is of an individual character.
35. Nycticoraz pauper Scl. and Salv.

Hood Island and Indefatigable Island; two specimens.
Family PHCENICOPTERID E.
36. Phœenicopterus ruber Linn.

James Island, two specimens; Charles Island, four specimens.
After very careful comparison, I am unable to find any constant difference between these birds and examples of P. ruber from Florida,

Yucatan, and the Bahamas. The series of the latter a vailable for comparison is, however, very meager. A very young bird may be described as follows:

Downy young: Grayish white, becoming nearly pure white on forehead, cheeks, median line of back, whole rump, and median moder parts; bill pale brownish, dusky terminally ; naked lores dusky; legs and feet brownish black. Bill nearly straight.

Family ANATIDE.

37. Pœcilonetta galapagensis sp . uov.

Pecilonitta bahamensis Gould and Darwin, Zool. Beag., ini, 1841, 135. Anas bahamensis Sund., P. Z. S., 1871, 126.
Dajila bahamensis Scl. and Saly., Trans. Zool. Soc. Lond., IX, pt. Ix, 1876, 499.
Sp. Cirar.-Similar to P. buhamensis (Linn.), but white on sides of head thickly speckled with brown instead of being quite immaculate, and top of head grayer brown.

Adult male (type, No. 115931, Charles Island, Galapagos, A pril 8, 1888; U. S. S. Albutross): Pileum, sides of head down to below the eyes, and hiud-neck, pale sepia-brown or hair-brown, speckled with dusky, these markings larger on pileum ; back and anterior scapulars dusky grayish brown, the feathers with paler grayish brown margins; lower back and rump plain dusky grayish brown ; posterior scapulars dusky grayish brown, margined with dull buffy ; wing-coverts plain brownish slate, the greater sharply tipped with deep cinnamon-butí; secondaries metallic green, washed with copper-bronze, crossed about midway of the exposed portion by a narrow band (about . $12-.15$ wide) of velvety black, the succeeding portion deep cinnamon-buff; tertials broadly edged with paler cimamon buff; primaries dusky brownish slate. Upper tail-coverts and tail pale pinkish buff (middle tail-feathers nearly white), the concealed portions of the feathers more grayish. Chin, throat, and fore neck immaculate white, this separated from the brown of sides of head and neek by a speckled space about. 40 of an inch wide; rest of under parts pale brown (intermediate between fawn-color and isabella-color), thickly spotted with dusky, the flanks pale farn-color, with larger spots, and the under tail coverts plain pale fawn color, the longer ones with dusky mesial streaks; asillars white, the terminal portion, mesially, mottled with dusky; under wing-coverts plain brownish slate, the last row white. Bill blackish, with a large space on lower basal portion of upper mandible reddish; legs and feet dusky brownish. Length (skin), 16.75; wing, 8.10 ; tail, 3.70 ; culmeu, 1.78 ; greatest width of bill, 72 ; tarsus, 1.48 ; middle toe, 1.62.

Adult female (No. 116143, same locality, ete.). Similar to the male but smaller, lower fore-neck speckled with dusky brown, tail-coverts spotted with dusky, and reddish space at lower base of upper mandible
much smaller. Length (skin), 16.00 ; wing (quills molting); tail, 3.15 ; culmen, 1.60 ; greatest width of bill, . $6 \mathbf{5}$; tarsus, 1.42 ; middle toe, 1.55.

Specimens of P. bathomensis with which the above examples have been compared, and from all of which they differ in the characters mentioned in the diaguosis, are from the West Indies (Bahamas, 1 ; Guadeloupe, 3 ; Barbuda, 1); Buenos Ayres, 1; and Chili, 2.

Family COLUMBIDE.

38. Zenaida galapagoensis Gould.

Indefatigable Island, four specimens; Duncan Island, two specimens; James Island, five specimens; Hood Island, four specimens.

Family HeMATOPODIDA.

39. Hæmatopus galapagensis Ridgw.
? Inamatopus palliutux scl. and Salv. P. Z. S., 1870, 323 (Indefatigable Islaud).Sundey. P. Z. S., 1871, 125.—Salv. Trans. Zool. Soc., Ix, pt. ix, 1876, 502 (do.).
Humatopus gulapagensis Ridisw. Auk. int, July, 1886, 331 (Chatham Island) ; Proc. U. S. Nat. Mus., Ix, Oct. 19, 1886, 325.

James Island, one specimen.

Family ARENARIID.

40. Arenaria interpres (LinN.).

Hood Island, one specimen.

Family RECURVIROSTRID \nrightarrow.

41. Himantopus mexicanus (Miill.)?

James Island, two specimess in imuature plumage.

> Family SCOLOPACIDE.
42. Heteractitis incanus (Gm.).

Hood and James Islands, two specimens.

> Family LARIDE.
43. Anous stolidus (LinN.).

Chatham Island (Dalrymple Rock), one specimen.

44. Anous galapagensis SHARPE.

Anous galapugensis Sharpe. Philos. Trans., Clxvin, 1879, 469.
Hood and Chatham Islands, two specimeus. (Certainly distinct from A. stolidus.)

45. Larus fuliginosus Gould.

Indefatigable Island, two specimens; James Island, one specimen; Chatham Island, one specimen.
46. Creagrus furcatus (Nе́в.).

Chatham Island (Dalrymple Rock), two specimens (adult male and female in perfect summer plumage).

This fine species, from its great rarity and the uncertain history of the type specimen, is worthy of somewhat extended discussion. Although a special genus, Creayrus, was instituted for it by Bonaparte, it has hy most recent writers been referred to the genus Sema, Leach; but this is a view of its affinities in which I can not concur, since, beyond a similarity in the color of the bill and to a less extent in that of the plumage and in the shape of the tail, I see no particular resemblance. In fact, Crcagrus seems to me to be one of the best, if not the very best, characterized of all the genera or subgenera of Larinu, excepting only Gacia, Rissa, and Rhodostethia.

From Tema, the points of difference are many and decided. The bill is very peculiar in shape, being much deeper at the base than elserwere and strougly decurved at the tip; that of Nema being much smaller proportionally, much straighter, and wuch deeper through the angle than at the base. The tail is relatively much longer and much more deeply forked, being nearly half as loug as the wing and forked for about one-third of its length, while that of Xema is much less than half as long as the wing and forked for not more than one-eighth of its length. As to coloration, there is even greater difference, Creagrus having the dark "hood" descending much farther down over the neek, and instead of being very abruptly terminated by a black border has no very definite outline except on the fore neck; while the white patch at the base of the upper mandible and the very conspicuous white stripe margining the exterior scapulars are entirely peculiar features. Moreover, the plumage of the young is quite distinct in its character from that of Xema.

Compared with Xema sabinii, Creagrus furcatus is a large gull, about the size of Larus delanarensis, while the former is hardly so large as I. philadelphia, and with its dark colored head, deep red feet, and deeply forked tail ought to be very easily identified at a considerable distance.

The perfect summer plumage of the adult may be described as follows:

Adult male, breeding plumage (No. 115967, Dalrymple Rock, Chatham Island, Galapagos, April 6, 1888; U. S. S. Albutross): A white patch at base of upper mandible, crossing anterior portion of forehead, and areraging about .35 of an inch in width ;* a very small white spot on the apex of the malar region; rest of head, with upper half of neek uniform slate-color, \dagger this rather abruptly terminated on the fore-neck, but posteriorly fading gradually into the lighter gray of the hind neck;

[^29]lower neck, all romen, pate gray,* below extending over the sides of the breast, and fading gradually into the pure white of the middle of the breast and other under parts, but above gradually deepening into the uniform medium grayt which covers the back, scapulars, wing-coverts (excent the lower greater and those along the margin of the wing), tertials, and rump ; upper tail-coverts and tail entirely pure white, this abruptly contrasted with the deep gray of the rump. Exterior scapulars broadly and abruptly margined with pure white, forming a continuons and conspicnous narrow stripe along each side of the dorsal region; marginal wing-coverts, alulæ, lower greater coverts and upper secondaries, pure white; lower secondaries with outer webs rery pale gray; four innermost primaries very pale gray, narrowly margined with white; sixth sim:lar, but with a blackish bloteh near the tip, extending quite across the inner web and for some distance along its edge; iffth quill mostly pale gray, with dusky shaft, the terminal portion (for about 1.30 inches along the shaft, black, this color much more extensive, however, along both edges), but with a small white apical spot; fourth quill with black much more extensive (extending nearly 5 inches from tip on outer web or 1.75 to nearest point on the imner), with still smaller white apical spot, the rest of the inner web white, becoming gray next to the shaft; thidd quill with black extending about 6.80 from the tip, or almost to the coverts on outer web, and 2.00 to nearest point on the inner, the white portion separated from the shaft by a dusky stripe ; second quill similar but with the whole exposed portion of outer web black, but the black on iuner web a little more restricted; first quill similar, but black near tip of inner web more restricted, thongh the stripe along the shaft is broader. (The three outermost quills have the white apical spots reduced to minute specks, which would entirely disappear with a very slight wearing of the feathers.) Bill, black, with a little less than the terminal third (or for about .70 of an inch from the tip) yellowish horn-white or pale olivebuff; rictus and broad, tumid eyelids, orange-red; iris, carmine; legs and feet, deep red; claws, deep black. Length (mounted specimeu), about 20.00 ; wing, 16.25 ; tail, 7.40 (forked for 2.50); exposed culmen, 1.90 ; depth of bill at angle, .50 ; at base of culmen, .68 ; tarsus, 2.00 ; middle toe, 1.s0.

Adult female in breering plumage (No. 115968, same locality, etc.): Sumilar to the male, but with the slate-colored "hood" even less distunctly defined (approaching abrupt definition only on the fore neck), and white patch at base of upper mandible more restricted (averaging uot more than .25 wide), the white spot on the malar apex also smaller (almost obsolete on one side). Length (mounted specimeu), about 18.00 ; wing, 15.75 ; tail, 7.60 ; (forked for 2.60) ; exposed culmen, 1.90 ; depth of bill at angle, .47 ; at base of culmen, . 65 ; tarsus, 1.98 ; middle toe, 1.70.

[^30]
Family SPHENISCIDE.

47. Spheniscus mendiculus Sundev.

Albemarle Island, one specimen.

The following list of species includes all that have hitherto been found in the Galapagos Archipelago, and shows upon which islands each has been taken. Genera and species printed in italics occur elsewhere than in the Galapagos, all the others being, so far as known, peculiar to those islands. The * in the spaces representing different islands indicates that the species was credited to those islands in Mr. Salvin's monograph. The letter S indicates an additional locality on the authority of Mr. R. Bowdler Sharpe (Cat. B. Brit. Mus., vol. xir, 1888, pp. 6-20); the J indicates that the species was ootained by Dr. William H. Jones, U. S. N., as verified by specimens in the U. S. National Musenm, while the \times represents additional localities resulting from the Albatross exploration :

Following is a summary of the species foum to date, on each island, with authorities for their occurrence. Species printed in heary facerd type are peculiar, so far as known, to the island to which the list in which they occur pertains, while those preceded by a * were first found there by the naturalists of the Albatross.

In designating the authorities, the name of the collector is given instead of that of the person publishing the record, except in the case of the Albatross collection, which was made by several persons, thas rendering necessary the following explanation: The birds collected by Mr. Darwin were reported on by Mi. John Gonld, in the "Zoology of the Voyage of the Beagle," pt. in ; those collected by Dr. Kinberg (surgeon and naturalist of the Swedish frigate Euifenie), by Prof. U. J. Sundevall, in the "Proceedings of the Zoological Society of London," 1871, pp. 124-130; those obtained by Dr. Habel, by Mr. Salvin, in his monograph so often mentioned on the preceding pages, while nothing has hitherto been published concerning the small collection made by Dr. William H. Jones, U. S. N. (surgeon of the U. S. S. Wachusett), on Chatham Island, in 18St, except a description of the new oyster-catcher (Hematopus galapagensis) which he obtained there. ${ }^{1}$

I. Species found on Chatham Island.

1. Nesomimus melanotis. Darwin; Kinberg; Albatross.
2. Dendroica aureola. Darwin? ; Kinberg? ; Joues ; Albatross.
3. Certhidea olivacea. Darwin; Albatross.
4. Geospiza magnirostris. Darwin ; Allatross.
5. Geospiza strenua. Darwin.
6. Geospiza dubia. Darwin.
7. Geospiza fortis. Darwin; Albatross.
8. Geospiza nebulosa. Kinberg;
9. Geospiza fuliginosa. Darwin ; Albatross.
10. Geospiza parvula. Kinberg;
11. Geospiza dentirostris? (Fide Sharpe, Cat. B. Brit. Mus., vol. xır, p. 12.)
*12. Cactornis brevirostris. Albutross.
*13. Camarhynchus crassirostris. Albatross.
12. Camarhynchus prosthemelas. Kinberg; Albatross.
?15. Pyrocephalus nanus. Darwin?; Albatross \%2
13. Myiarchus magnirostris. Darwin; Kinberg; Albatross.
*17. Coccyzus melanocoryphus. Albatross.
14. Buteo galapagoensis. Darwin? ; Jones.
*19. Pelecanus californicus. Albalross.
*20. Sula gossi. Albatross.
15. Butorides plumbeus. Jones.
16. Zenaida galapagoensis. Jones.
17. Hæmatopus galapagensis. Jones.
18. Anons stolidus. Kellett and Wood; Albatross.
*25. Auous galapagensis. Albatross.
*26. Larus fuliginosus. Albatross.

[^31]27. Creagrus furcatus. Kellett and Wood; ${ }^{1}$ Albatross.
28. Estrelata phæopygia. Kellett and Wood.

II. Species found on Charles Island.

1. Nesomimus trifasciatus. Darwin.
2. Nesomimus melanotis. Darwin; Kinberg ; Albatross.
3. Dendroica aureola. Darwin ? ; Kinberg ; Albatross.
4. Progne concolor. Néboux. ${ }^{2}$
5. Geospiza magnirostris. Darwin.
*6. Geospiza strenua. Albatross.
6. Geospiza fortis. Darwin; Kinberg ; Albatross.
7. Geospiza nebulosa. Darwin; Kinberg.
8. Geospiza fuliginosa. Kinberg; Albatross.
9. Geospiza dentirostris. Markham. (Fide Sharpe, Cat. B. Brit. Mus., vol. xir, p. 12.)
10. Geospiza difficilis. Markham. (Fide Sharpe, Cat. B. Brit. Mus., vol. xir, p. 12.)
11. Cactornis scaudens. Néboux; ${ }^{2}$ Kiuberg; Albatross.
*?13. Camarhyuchus crassirostris. Darwin? ; Albatross.
12. Camarhynchus prosthemelas. Kinberg; Albatross.
*15. Camarhynchus townsendi. Albatross.
*16. Camarhynchus pauper. Albatross.
7*17. Pyrocephalus nanus. Darwin? ; Albatross.
13. Myiarchus magnirostris. Kinberg ; Albatross.
*19. Coccyzus melanocoryphus. Albatross.
*20. Phœnicopterus ruber. Albatross.
*21. Pæcilonetta galapagensis. Albatross.
14. Larus fuliginosus. Darwin?; Kinberg.
15. Zenaida galapagoensis. Néboux ; ${ }^{2}$ Jones.

III. Species found on Indefatigable Island.

1. Mimus melanotis. Kinberg; Habel; Albatross.
2. Dendroica aureola. Habel; Albatross.
*3. Progne concolor. Albatross.
3. Certhidia olivacea. Habel.
4. Geospiza strenua. Habel.
5. Geospiza fortis. Habel ; Albatross.
6. Geospiza fuliginosa. Habel; Albatross.
7. Cactornis scandens. Habel ; Albatross.
8. Cactornis pallida. Habel.
9. Camarhynchus psittaculus. Habel ; Albatross.
*11. Camarhynchus crassirostris. Albatross.
10. Camarhynchus prosthemelas. Habel.
11. Pyrocephalus nanus. Darwin?; Kinberg; Habel; Albatross.
12. Myiarchus magnirostris. Habel ; Albatross.
13. Asio galapagoensis. Habel.
14. Strix punctatissima. Habel.
15. Buteo galapagoensis. Darwin?; Habel; Albatross.
16. Ardea herodias. Habel.
17. Butorides plumbeus. Habel.
18. Nycticorax pauper. Habel; Albatross.
19. Phœnicopterus ruber. Habel.
20. Pœcilonetta galapagensis. ${ }^{3}$ Habel.

[^32]23. Zenaida galapagoensis. Darwin?; Habel ; Albatross.
24. Porzana spilonota. Habel.
25. Egialitis semipalmata. Habel.
26. Hamatopus galapagensis. Habel.
27. Himantopus mexicanus. Habel.
28. Arenaria interpres. Habel.
29. Heteractitis incanus. Habel.
30. Tringa minutilla. Habel.
31. Numenius hudsonicus. Habel.
32. Larus fuliginosus. Darwin ? ; Kinberg; Habel ; Albatross.

IV. Species found on James Island.

1. Nesomimus melanotis. Darwin; Kinberg; Albatross.
2. Dendroica aureola. Darwin ? Kinberg ; Albatross.
3. Progne coucolor. Darwin ; Kiuberg.
4. Certhidea olivacea. Darwin; Albatross.
5. Geospiza strenua. Darwin ; Kinberg.
6. Geospiza fortis. Kinberg; Albatross.
7. Geospiza fuliginosa. Darwin; Kinberg; Albatross.
8. Geospiza parvula. Darwin.
9. Cactorius scandens. Darwin ; Kinberg.
"10. Cactorius pallida? ? ${ }^{1}$. Slbatross.
10. Camarhynchus psittaculus. Darwin; Albatross.
11. Camarhynchus prosthemelas. Kinberg; Albatross.
12. Dolichonyx oryzivorus. Darwin.
13. Pyrocephalus nanus. Darwin?; Kinberg; Albatross.
14. Myiarchus magnirostris. Kinberg; Albatross.
15. Asio galapagoensis. Darwin.
16. Strix punctatissima. Darwin.
17. Buteo galapagoensis. Darwin?
18. Butorides plumbeus. Kinberg; Albatross.
*20. Phœuicopterus ruber. Albatross.
19. Zenaida galapagoensis. Kinberg; Albatross.
20. Porzana spilonota. Darwin.
*23. Hæmatopus galapageusis. Albatross.
*24. Himantopus mexicanus. Albatross.
*25. Heteractitis incauns. Albatross.
21. Larus fuliginsous. Darwin ; Albatross.
22. Spheniscus mendiculus. Kinberg.

V. Species found on Bindloe Island.

1. Dendroica aurenla. Darwin?; Habel.
2. Certhidea fusca. Habel.
3. Geospiza strenua. Habel.
4. Geospiza fortis. Habel.
5. Geospiza parvula. Habel.
6. Cactornis scandens. (Fide Sharpe, Cat. B. Brit. Mus.)
7. Cactornis assimilis. Habel.
8. Camarhynchus variegatus. Habel.
9. Camarhynchus habeli. Habel.
10. Pyrocephalus nanus. Habel.
11. Myiarchus magnirostris. Habel.
12. Zenaida galapagoensis. Habel.
13. Arenaria interpres. Habel.
14. Calidris arenaria. Habel.
VI. Species found on Abingdon Island.
*1. Nesomimuc personatus. Albatross.
15. Dendroica aureola. Habel.
16. Certhidea fusca. Habel; Albatross.
17. Geospiza strenua. Habel; Albatross.
18. Geospiza fortis. Habel ; Albatross.
19. Geospiza fuliginosa. Habel; Albatross.
20. Geospiza parvula. Habel ; Albatross.
21. Geospiza difficilis. Habel; Sharpe ; Albatross.
22. Cactornis abingdoni. Habel ; Albatross.
23. Camarhynchus variegatus. Habel.
24. Camarhynchus habeli. Habel ; Albatross.
*12. Pyrocephalus nauns. Albatross.
25. Myiarchus magnirostris. Habel ; Albatross.
26. Strix punctatissima. Habel.
27. Buteo galapagoensis. Habel; Albatross.
*16. Butorides plumbeus. Albatross.
28. Heteractitis incanus. Habel.
29. Larus fuliginosus. Habel.
VII. Species found on Albemarle Island.
30. Nesomimus parvulus. Darwin ; Albatross.
*2. Geospiza fortis. Albatross.
*3. Geospiza fuliginosa. Albatross.
*4. Spheniscus mendiculus. Albatross.

VIII. Species found on Duncan Island.

*1. Geospiza fuliginosa. Albatross.
*2. Myiarchus magnirostris. Albatross.
*3. Ardea herodias? Albatross.
*4. Butorides plumbeus. Albatross.
*5. Zenaida galapagoensis. Albatross.

IX. Species found on Hood Island.

"1. Nesomimus macdonaldi. Albatross.
*2. Certhidea olivascens. Albatross.
*3. Geospiza conirostris. Albatross.
*4. Geospiza media. Albatross.
*5. Geospiza fuliginosa. Albatross.
*6. Myiarchus magnirostris. Albatross.
*7. Butorides plumbeus. Albatross.
*8. Nyticorax pauper. Albatross.
*9. Zenaida galapagoensis. Albatross.
*10. Arenaria interpres. Albatross.
"11. Heteractitis incanus. Albatross.
"12. Anous galapagensis. Albatross.

X. Species found on Tower Island.

1. Fregata aquila. Habel.
2. Phaëthon rethereus. Habel.

XI. Island not specified.

1. Sula leucogastra. Kinberg.
2. Sula cyanops. Kinberg.
3. Querquedula rersicolor. Kinberg.
4. Procellaria tethys. Néboux.

Mr. Darwin collected the following species in the Galapagos Archipelago, but did not specify the particular islands upon or near which they were obtained :

1. Pyrocephalus nanus. Several of the islands.
2. Dendroica aureola. Not uncommon on these islands.
3. Geospiza dentirostris. Galapagos Archipelago.
4. Cactornis assimilis. Galapagos Archipelago.
5. Zenaida galapagoensis. Galapagos Archipelago.
6. Egialitis semipalmata. Galapagos Archipelago.
7. Ardea herodias. Galapagos Archipelago.

ع. Nyeticorax pauper, Galapagos Archipelago.
9. Heteractitis incanus. ${ }^{1}$ Galapagos Archipelago.
10. Tringa minutilla. Galapagos Archipelago.
11. Arenaria interpres. Galapagos Archipelago.
12. Porzana spilonota. Galapagos Archipelago.
13. Pœeilonetta galapagensis. ${ }^{2}$ Galapayos Archipelago.
14. Anous stolidus. Galapagos Archipelago.
15. Fregata aquila. Several islauds.

The following, obtained by Dr. Kinberg, zoologist and surgeon of the Swedish frigate Eugenie, are given in Prof. Sundevall's list (P. Z. S., 1871, pp. 124-130), without special locality :

1. Buteo galapagoensis.
2. Nycticorax pauper. (Given as Ardea violacea, L. var.?)
3. Hæmatopus galapagensis? (Given as H. pallialus.)
4. Anous stolidus.
5. Pelecanus californicus? (Given as P. fuscus.)
6. Sula cyauops. (Perhaps S. gossi.)
7. Sula leucogastra.
8. Pocilonetta galapagensis? (Giveu as Anas bahamensis.)
9. Querquedula versicolor. (Given as Anas maculirostris.)

The species common to two or more islands may be grouped, according to our present knowledge, as follows:
Common to Chatham and Charles Islands.

1. Geospiza magnirostris.
2. Geospiza nebulosa.
? 3. Geospiza dentirostris.
Common to Chatham and Hood Islands.
3. Auous galapagensis.

Common to Chatham, Indefatigable, and James Islands.

1. Certhidea olivacea.
2. Hiematopus galapagensis.

Common to Chatham, Charles, Indefatigable, and James Islands.

1. Nesomimus melanotis.
2. Camarhynchus prosthemelas.
[^33]Common to Chatham, Indefatigable, James, and Abingdon Islands.

1. Buteo galapagoensis.

Common to Chatham, James, Bindloe, and Abingdon Islands.

1. Geospiza parsula.

Common to Chatham, Charles, Indefatigable, James, and Abingdon Islands.

1. Spheniscus mendiculus.

Common to Chatham, Charles, Indefatigable, James, Bindloe, and Abingdon Islands.

1. Dendroica aureola.
2. Geospiza strenua.
? 3. Pyrocephalus nanus.
Common to Chatham, Indefatigable, James, Abingdon, Duncau, and Hood Islands.
3. Butorides plumbeus.

Common to Chatham, Indefatigahle, James, Bindloe, Duncan, and Hood Islands.

1. Zenaida galapagoensis.

Common to Chatham, Charles, Indefatigable, James, Bindloe, Abingdon, and Albemarle Islands.

1. Geospiza fortis.

Common to Chatham, Charles, Indefatigable, James, Bindloe, Abiugdon, Duncan, and Hood Islands.

1. Myiarchus magnirostris.

Common to Chatham, Charles. Indefatigable, James, Abingdon, Albemarle, Duncau, and Hood Islands.

1. Geospiza iuligioosa.

Common to Charles and Abingdon Islands.
?1. Geospiza difficilis.
Common to Charles and Indefatigable Islands.

1. Pœcilenetta galapagensis.

Common to Charles, Iudefatigable, and James Islands.

1. Progne concolor.

Common to Charles, Indefatigable, James, and Bindloe Islands.

1. Cactornis scandens.

Common to Indefatigable and Jawes Islands.
71. Cactornis pallidac
2. Camarhyuchus psittaculus.
3. Asio galapagoensis.
4. Porzana spilonota.

Common to Indefatigable, James, and Abingdon Islands.

1. Strix punctatissima.

Common to Indefatigable aud Duncan Islands.

1. Nycticorax pauper.

Common to Biudloe and Abingdon Islands.

1. Certhidea fusca.
2. Camarhynchus variegatus.
3. Camarhynchus habeli.

The following species of birds which have been collected in the Galapagoan Archipelago were not obtained by the naturalists of the Albatross :

1. Nesomimus trifasciatus (Gould). Charles.
2. Geospiza magnirostris Gould. Charles; Chatham.
3. Geospiza dubia Gould. Chatham.
4. Geospiza nebulosa Gould. Charles; Chatham.
5. Geospiza dentirostris Gould. Abingdon.
6. Cactornis assimilis Gould. Bindloe.
7. Camarhynchus variegatus Scl. and Salv. Bindloe; Abingdon.
8. Dolichonyx oryzivorus (Linn.). James.
9. Asio galapagoensis (Gould). James; Indefatigable.
10. Strix punctatissima Gray. James; Indefatigable; Abingdon.
11. Sula leucogastra (Bodd.). ("Galapagos.")
12. Sula cyanops (Sundev.).' ("Galapagos.")
q13. Fregata aquila (Linn.). ${ }^{2}$ ("Galapagos.")
13. Phaëthon setherens Liun. Tower Island.
14. Querquedula versicolor (Vieill.). ("Galapagos.")
15. Porzana spilonota (Gould). James; Indefatigable.
16. Egialitis semipalmata (Bp.). Indefatigable.
17. Calidris arenaria (Linn.). Bindloe.
18. Tringa minutilla Vieill. Indefatigable.
19. Numenius hudsonicus Lath. Indefatigable.
20. Procellaria tethys Bp.(?).
21. Estrelata phæopygia Salv. Chatham.

Species added to the Galapagoan avifauna by the naturalists of the Albatross are the following:

1. Nesomimus macdonaldi, sp. nov. Hood Island.
2. Nesomimus personatus, sp. nov. Abingdon Island.
3. Certhidea cinerascens, sp. nov. Hood Island.
4. Geospiza conirostris, sp. nov. Hood Island.
5. Geospiza media, sp. nov. Hood Island.
6. Cactornis brevirostris, sp. nov. Chatham Island.
7. Camarhynchus townsendi, sp. nov. Charles Island.
8. Camarhynchus pauper, sp. nov. Charles Island.
9. Coccyzus melanocryphus Vieill. Chatham and Charles Islands.
i10. Sula gossi Ridgw. ${ }^{3}$ Chatham Island.
Additional localities for species previonsly taken on the Galapagos: are as follows:
10. Progne concolor (Gould). Indefatigable Island.
11. Geospiza strenna Gould. Charles Island.
12. Geospiza fortis Gould. Albemarle Island.
13. Geospiza fuliginosa Gould. Charles, Abingdon, Albemarle, Duncau, and Mood Islands.
14. Genspiza difficilis Sharpe. Abingdon Island.
15. Cactornis pallida Scl. and Salv. James Island. ${ }^{+}$
16. Camarhyuchns crassirostris Gould. Chatham, Charles, ${ }^{\text {b }}$ and Indefatigable Islands.
17. Pyrocephalus nanus Gould. Chatham ?," Charles, and Abingdon Islands.
18. Myiarchus magnirostris (Gould). Charles, Duncan, and Hood Islands.
19. Ardea herodias Linn.? Duncan Island.
20. Butorides plumbeus (Sund.). Abingdon, Duncau, and Hool Islands.
21. Nyeticorax pauper Scl, and Salv. Hood Island.
22. Phonicopterus raber Linn. Charles and Janes Islands.

[^34]14. Pœcilonetta galapagensis Ridgw. ${ }^{1}$ Charles Island.
15. Zenaida galapagoensis Gonld. Duncan and Hood Islands.
16. Hamatopus galapagensis Ridgw. ${ }^{2}$ James Island.
17. Himantopus mexicanus (Miill.). James Island.
18. Arenaria interpres Linn. Hood Island.
19. Heteractitis incanus (Gm.). James and Hood Islands.
20. Larns fuliginosus Gould. Chatham Island.
21. Spheniscus mendiculus Sundev. Albemarle Island.

The following species have definite localities for the first time assigued them:

1. Pelecanus californicus Ridgw. ${ }^{3}$ Chatham Island.
2. Anous stolidus (Linn.). Chatham Island.
3. Anous galapagensis Sharpe. Chatham and Hood Islands.

The following species were obtained from new localities by Dr. William H. Jones, U. S. N., in 1884:

1. Buteo galapagoensis (Gould). ${ }^{3}$ Chatham Island.
2. Butorides plumbeus (Suudev.). Chatham Island.
3. Zenaida gaiapagoensis Gould. Chatham Island.
4. Hematopus galapagensis Ridgw. Chatham Island.

It is very evident from the above showing that the arifanna of the Galapagos Archipelago is by no means exhansted as a field for promis. ing research in the problem of the "derivative origin of species." Future explorations will no doubt add new species and extend the range of those already known. The largest island of the group, Albemarle, is still almost mutouched, only four species haring as yet beeu collected there; two islands (Wenman and Culpepper) have not been explored at all, while it can safely be said that on none of the islands has auything like a thorongh insestigation of the birdfanna been made. The many interesting problems yet to be worked out will require a careful exploration of every island, by some one competent to study carefully and intelligently each species in relation to its congeners and its couditions of enviromment; its differences of plumage according to sex, age, and season, and to what extent, if ans, migration from one island to another takes place. Many changes in the birdfama of these islands have doubtless been wrought by the hand of man, through destruction of birds for food, and disturbance by the introduction of domestic animals; therefore, it is earnestly to be hoped that the subject mas receive the careful attention which its importance merits before these changes have gone so far as to render investigation more difficult and its results less satisfactory.

[^35]SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U. S. FISH COMMISSION STEAMER ALBATROSS.
[Published by permission of Hon. Marshall McDonald, Commissioner of Fisheries.]
No. II,-BIRDS COLLECTED ON THE ISLAND OF S.INTA LUCIA, WEST INDIES, THE ABROLHOS ISLANDS, BRAZIL, AND AT THE STRAITS OF MAGELLAN, IN 1887-'88,

BY
> Robert Ridgway, Curator of the Department of Birds.

A.-Island of Santa Lucia.

Family MIMIDE.

1. Margarops montanus (Vieill.).

Port Castries, December 2; one specimen.

Family MNIOTILTIDAE.

2. Leucopeza semperi Scl.

Port Castries; December 1; one specimen.
3. Dendroica delicata (Ridgw.).

Dendroica adelaide delicata Ridgw., Pr., U. S. Nat. Mus., v, 1832, 525.
Dendroica delicata Sharpe, Cat. B. Brit. Mus., x, 1855, 306.

Family CEEREBID雨.

4. Cœrebamartinicana (Reich.).

Seveu specimens. Four of these have the superciliary stripe wholly white, and three bright yellow passing into white anteriorly, thus showing that my Certhiola finschi (Pr. U. S. Nat. Mus., viir, September 20, 1885,25) is untenable.

Family VIREONIDE.
5. Vireo calidris dominicana (Lawr.).

Two specimens.
Family FRING1LLIDE.
6. Loxigilla noctis sclateri Allen.

Three specimens.
7. Euetheia richardsoni (Cory).

Loxigilla richardsoni, Cory, Auk, III, 1836, 3-2; Ihis, 1:3i, 472. 475; B. West Indies, 1889, 290.
One specimen.
Proc. N. M. $89-9$

The bill of this species is so very difterent in shape from that of any specties of Lowifilla, that it should either be made the type of a new genus or referreal to E'uctheia, the latter alternative being my preference.
8. Euetheia bicolor (LiNx.).

Tro specimens.

> Family ICTERIDA.
9. Icterus laudabilis ScL.

One specimen.
10. Quiscalus inflexirostris Sw.

One specimen.

> Family TYRANNIDÆ.
11. Tyrannus rostratus ScL.

One specimen.
12. Elainea martinica (LIN..).

One specimen.

> Family TROCHILID天.
13. Eulampis holosericeus (Liñ.).

Two specimens.
14. Bellona cristata (Linv.).

Four specimeus.

Family CUCULIDE.

15. Coccyzus minor (GM.).

Two specimens.
B.-Abrolhos Islands.

Family PHAËTHONTID

1. Phaëthon æthereus (LinN.).

Five specimens.
Family SULIDE.
2. Sula cyanops (Suxd.).

One specimen.
3, Sula leucogastra (Bodd.).
Two specimens, adult male and female. These are alike in plumage, but have the feet very differently colored, those of the male being dull greenish while those of the female are clear pale sellow. It would be interesting to know whether this difference is constant.
4. Arenaria interpres (LiNy.).

One specimen.
Family CHARADRIIDA.
5. Ægialitis semipalmata (Br.).

One specimen.
C. -Straits of Magellan.

Family TURDIDA.

1. Merula magellanica (King).

Laredo, Port Otway, and Port Churruca, four specimens.

Family TROGLODYTIDAE.

2. Troglodytes hornensis Less.

Laredo, four specimens.
3. Cistothorus platensis (Lath.)?.

Gregory Bay. An adult female, apparently this species, but very much paler than two adults from Santiago, (hili (July). The difference in color may be seasonal, the Gregory Bay specimen hating the plumage considerably worn and evidently faded ; hut it may prove to belong to a different race or subspecies.

Family MOTACILLIDE.
4. Anthus correndera (Vieill.).

Gregory Bay, one specimen; Point Elizabeth. two young (full. fledged).

Family HIRUNDINIDA.
5. Tachycineta meyeni (Bonap.).

Laredo Bay, one specimen.
6. Atticora cyanoleuca (Vieill.).

Port Elizabeth and Gregory Bay, two specimens.
Family FRINGILLIDA.
7. Spinus barbatus (MoL.).

Sandy Point, two specimens, male and female. Laredo, one specimen, young.
8. Phrygilus formosus (Gould), $=$ P. gayi (Eyd. aud Gerv.) Auct.* Sandy Point, one specimen.

[^36]9. Phrygilus gayi (Eyd. and Gerv.).

Gregory Bay, two adults; Laredo Bay, two soung. (Cf. Proc. U. S. Nat. Mus., vol. x, 1887, pp. 431-433.)
10. "Zonotrichia" canicapilla Gould.

Gregory Bay, two specimens; Elizabeth Island, two specimens.

Family ICTERID A.

11. Trupialis militaris (Linn.).

Gregory Bay, two specimens; Laredo Bay, one specimen.
12. Curæus curæus (MoL.).

Port Churruca and Laredo Bay, two specimens.

> Family TYRANNID用。
13. Tænioptera pyrope (Kittl.).

Laredo Bay, four specimens; Port Otwas, one specimen.
14. Muscisaxicola mentalis D'Orb, and Lafr.

Sandy Point, one specimen; Latitude Core, one specimen (5oung); Mayne Harbor, one specimen.

Mr. Sclater has recently (Cat. B. Brit. Mus., XIV, p. 56) referred this species to M. maclovianu (Garn.) of the Falkland Islands, but seems to be not quite convinced of their identity, since he states his inability to see how they "can be fuirly separated." The doubt expressed by the word "fairly" (not italicized in the original) would seem to imply that some difference exists, and until they can be proven identical I prefer to keep them separate, as the safer course.
15. Centrites niger (Bodd.).

Gregory Bas, four specimens; Elizabeth Island, two specimens.
16. Elainea albiceps (D'Orb. and Lafr.).

Laredo Bay, three specimeus; Sandy Point, three specimens; Port Otway, one specimen; Port Churruca, one specimen.
17. Anæretes parulus (Kittl.).

Sandy Point, two specimens; Mayne Harbor, one specimen.

Family DENDROCOLAPTIDÆ.

18. Oxyurus spinicauda (Gmel.).

Laredo Bar, four specimens; Port Otway, one specimen.
19. Synallaxis anthoides (King).

Laredo Bay, one specimen.
20. Cinclodes patagonicus (Gmel.).

Gregory Bay, Elizabeth Island, and Port Otway, three specimens.
21. Cinclodes fuscus (Vieill.)

Gregory Bay, Laredo Bay, and Elizabeth Island, three specimens.
22. Geositta antarctica Landb, ("Weigm. Archiv., Jahr. 46, 1,275 ") ?

Elizabeth Island, one specimen.
This bird is referred, with doubt, to G. antarctica for the reason that it does not agree with either of the six species given in the Nomenclator Avium Neotropicalium (four of which are in the National Musemm conlection), nor with any of the species not therein mentioned, with the possible exception of G. antarctica, a description of which I have not been able to consult.*

Compared with G. cunicularia (Vieill.), G. crassirostris Scl., G. isubellina (Ph. and Landb.), G. fasciata (Ph. and Laudb.), (r. frobeni (Ph. and Landb.t), and G. maritima LAFr. and D'OrB., with all of which it has been directly compared, the bird in question is found to differ strikingly from them all in much longer wings and tail and shorter bill, which raises the suspicion that it may not be a Geositta at all, though it certainly cannot be referred to the allied genus Cinclodes, or any other thus far characterized. Of the species named above it comes much nearest to G. cunicularia, both in size and coloration; but the bill is not more than two thirds as long, the wing about .70 of an inch longer (with primaries . 85 of an inch longer than longest tertials, instead of barely exceeding them in length), and the tail .40 of an inch longer. The coloration is, at first glance, very similar to that of G. cunicularia, the upper tail coverts being of exattly the same buffy whitish; but the upper surface is more ashy, the tail-feathers much darker, the breast very faintly instead of heavily marked, and the inner webs of the primaries a dull isabella color instead of bright cimnamon, while the secoudaries (except tertials) are wholly uniform drab, without the broad subterminal dusky band of G. cunicularia.

Should the species prove to be distinct from G. antaretica, I propose to name it G. longipennis. \ddagger

[^37]23. Upucerthia propinqua sp. nov.

Sp. Char.-Sinilar to L^{\prime}. dumetoria Geoff. and D'Orb., but much grayer above, less tinged with brown beneath, the squamate markings on the breast much more distinct, tail-feathers (except middle pair) much blacker, with ochraceons more restricted, inner webs of secondaries decidedly dusky for terminal half, tawny spaces on iuner wehs of primaries much more sharply defined against much darker color of terminal portion, aud the bill shorter and proportionally broader at the base.

Hab.-Straits of Magellan (Gregory Bay).
 C.s. S. Albutross) : Above hair-brown, somewhat darker on pileum and hrowner (hroceoli-brown) on middle tail-feathers; alula, terminal portion of primaries and their corerts, and outer webs of six outer primaries, execpt at hase of tifth and sixth, dusky: outer webs of secondaries (facept tertials) and fomr iuner primaries, and basal portion of the fifth and sixth, dull russet or tamer-hrown, the basal half (approximately) of immer trebs of secondaries and extensive wedge shaped spaces on inner webs of primaries clearer tamny; three onter tail-feathers dull black, tipped with ochnaceons-buff, this broadest on exterior feathers, Where extending along onter web nearly an inch from tip; fourth feather dull black terminally, fatling into broceoli-bromnish basally, the tip narrowing and indistinctly (hull whitish; fifth feather broccolibrown suflused with dusky near tip. A broad superciliary stripe of dull brownish white sparsely streaked with dusky; auriculars grayish brown streaked with dusky ; cheeks and entire under parts dull white, the former, with chest, hreast, and anterior portion of sides marked with squamate edgings of dull blackish or dusky, these largest on pectoral region; feathers of throat tiped with blackish; longer moler tail-coverts pale brown, tipped with whitish; axillars and under wing. coverts pale cinnamon-buff. Bill black, under mandible more brownish basally; tarsi dusky horn-color ; feet brownish black. Length (skin), 7.90 ; wing, 3.95 ; tail, 3.3.7 ; exposed culmen, 1.08 ; tarsus, 1.02 ; middle toe, 68 .

The specimen described above difters equally from each of the four

[^38]examples of C. dumetoriu from Chili (Santiago and Talley del Yeso) with which it has been compared. All the latter also show quite distinct paler streaks on the hind neek, which are not observable in the Gregory Bay bird.

Family PTEROPTOCHID.

24. Hylactes tarnii King.
l'ort Otway; two specimens.
25. Pteroptochus rubecula Kittl.

Port Otway ; four specimens.
26. Scytalopus magellanicus (Lath.) ?.

Otter Bay, one adult female; Port Churruca, tro young.
I am unable to determine whether these specimens are s. magellanicus or S. obscurus (King). Accorling to I)r. Sclater (Ibis, 157t, 11). 192194), these two species are "easily distinguishable," the latter "by its larger size, more cinereons color, longer tail, and the faint bars across the rump and lower belly." Yet the alleged difference of size is by no means shown by the measurements which Dr. Sclater himself gives, which are as follows:
S. magellanicus ("smaller"). Wing, 2.20; tail, 1.50.
S. obscurus ("larger"). Wing, 2.00; tail, 1.60.

The adult female from Otter Bay measures: wing, 2..00; tail, 2.30. On the other hand, an adult female from Santiago, Chili, determined by Dr. Sclater as S. mayelleniens, has the wing 1.95 and the tail L.6e, while it has the hinder parts of the body, both above and below, distinctly barred with dusky-a character said to distinguish s. obscurus.

It is rery erident that the birds of this genns need careful revision : but lacking sufficient material I am unable to give them further atteution at present.
27. Scytalopus albifrons (LaNdB.).

Port Otway, two specimens, adult female and roung, the former agreeing minutely with a specimen from Valdivia, Chili. received from the National Museum of Chili.

This species is certainly distinct from S. mayellanicus, as Mr. Allen hats already shown (Bull. Am. Mus. Nat. Hist., vol. if, No. ᄅ2, p. (99).

Family TROCHLLIDE.

28. Eustephanus galeritus (Mol.).

Port Otway, two specimeus.

Family PICID \mathbb{E}.

29. Dryobates lignarius (MoL.).

Laredo Bay, one specimen.
30. Campephilus magellanicus (King).

Laredo Bay and Sandy Point, two specimens.
31. Ceryle stellata (Meyen).

Port Otway and Port Churruca, two specimens.

$$
\text { Family ARID } x .
$$

32. Pyrrhura smaragdina (Gimel.).

Sandy Point, three specimens.

> Family BUBONID※.
33. Glaucidium nanum (King).

Laredo Bay, two specimens.
34. Bubo magellanicus (GM.).

Gregory Bay, one specimen.

$$
\text { Family FALCONID } \not .
$$

35. Falco peregrinus Tunst.

Elizabeth Island, one specimen (adult male).
36. Falco sparverius cinnamominus (Sw.).

Sandy Point, one specimen (young female).
37. Polyborus tharus (MoL.).

Elizabeth Island, two specimens.
38. Milvago chimango (Vieile.).

Laredo Bay, three specimens.

Family BUTEUNID E.

39. Geranoaëtus melanoleucus (Vieill.).

Elizabeth Island, one specimen.

$$
\text { Family H } \mathbb{M} \text { MATOPODIDÆ. }
$$

40. Hematopus ater (Vielle.).

Elizabeth Island, two specimens.
41. Hæmatopus leucopus (Garv.).

Elizabeth Island, one specimen.

Family CHARADRIIDA.

42. Belonopterus chilensis (MoL.).

Gregory Bay, one specimen.
43. $\boldsymbol{\text { Fgialitis falklandica (Lath.). }}$

Laredo Bay, one specimen.

44. Zonibyx modesta (Licht.).

Port Otway, one specimen.
The single specimen obtained appears to be the true modesta and not the Chilian form, distinguished by Mr. Seebohm (Geog. Distr. Charadriida, p. 106) as Churadrius modestus rubecola (ex Charadrius rubecola Vig., Zool. Jour., Iv, 1829, p. 96).

Family SCOLOPACID压.

45. Gallinago paraguayæ (Vieill.).

Gregory Bay and Laredo Bay, two specimens.
46. Tringa fuscicollis Vieill.

Gregory Bay, one specimen.
47. Totanus flavipes (Gmel.).

Gregory Bay, one specimen.

Family RALLID.E.

48. Fulica leucoptera Vieill.

Sandy Point, one specimen; certainly referable to this species rather than to F. leucopyga Licht.

Family ARDEID E.

49. Nycticorax obscurus Bonap.

Port Otway, two specimens.
In the "Water Birds of North America" (rol. r, p. 56), I hare expressed my inability to distinguish satisfactorily this form from the ordinary American bird (N. nycticorax mevius); but the specimens obtained by the naturalists of the Albatross show that the examples (eight in number), on which that statement was based, were not the true or typical N. obscurus, as was supposed.

Neither of the two Albatross specimens is adult, though one is very nearly so. This oue (No. 116282 , obtained February 10) is wholly of a dark sooty color, approaching black on the head and neck, and the back glossed with greenish bronze. The under surface of the body is nearly as dark as the upper, but rather more brownish in hue. The younger specimen (No. 116283 , of, same date) is essentially similar in color except that the throat, fore neck, under parts, back, scapulars, and wing coverts are narrowly streaked with buff, these streaks broadest on the under surface of the body.

Without having seen adult specimens, I can not, of course, express a decided opinion as to whether the present bird should rank as a species or subspecies; but, considering the marked individual variation in color among the eight examples examined when the remarks above referred to were written, I am at present inclined to the belief that the true N. obscurus is simply an extreme variation, or melanism, of the same form as the lighter colored birds from Chili and other parts of southern South America.

Family ANATIDex.

50. Chloephaga magellanica (Ginel.)

Elizabeth Island, one specimen (adult female).

51. Chloephaga antarctica (Gmel.).

Two specimens (male and female), without labels.

52. Tachyeres cinereus (Gimel.).

Elizabeth Island, one specimen. Also two specimens without labels.
53. Pœcilonetta cristata (Gmel.).

Elizabeth Island, one specimen (adult female).
54. Nettion flavirostris (Vieill.).

Port Famine, two specimens; Sandy Point, one specimen.
55. Querquedula versicolor (Vieill.).

Gregory Bay; one specimen.

Family PHALACROCORACIDE.

56. Phalacrocorax vigua (Vieill.)

Port Otway, one adult female, in nearly full nuptial plumage.
This species is the P. brasilianus (Gmel.) of authors, based on Puflinus brusiliensis Brisson, the latter based on the Mujayue of Pison; but it is almost incomprehensible how such an identification should have been made, Pison's bird being described by Brisson as having the feather's of the throat or lower neek yellow ("qua partem colli inferiorem obtegunt, sunt flare") and if a Phalacrocora. at all cannot possibly be ideutified with this or any other known species. On the other hand, Vieillot's "Le Cormoran rigua, Hydrocorax vigua" (Nouv. Dict. Hist. Nat., viri, 1817 , p. 90) from Paraguay, is unquestionably this species, and probably the oldest name for it.* Vieillot's description coincides rers minutely with the Albatross specimen, except that the latter lacks the lengthened whitish tilamentous feathers behind the eyes, which, being exceedingly temporary, have probably been lost, or possibly not yet assumed.

Phalacrocorax vigua (Vieill.) is very closely allied to P. mexicanus (Brandt); so closely, in fact, that the differences are not readily expressed, being, in fact, not greater than between the different races of P. dilophus, as, for example, the true P.ditophus and P. dilophus floridamus. The only differences which I am able to discern consist in the somewhat smaller size of I. mexicanus, and somewhat paler and browner central areas of the wing-coverts, seapulars, and interseapulars, rendering

[^39]the black borders to these feathers rather more distinct．But I rery much doubt whether these slight differences in coloration would prove constant were a series of specimens of the two forms compared．In short，it seems almost certain that l＇．mexicanus is simply a smaller in． tertropical race of P ．viguu，in which ease it should be called P ．viguu mexicanus．
57．Urile magellanica（Giel．）．
San Martin Island，one specimen．
58．Urile albiventer（Less．）？
San Martin Islaud，ove adult female．
This is apparently the species called Phatacrocorax ulbiventris by Sclater and Salsin（Voy．Chullenyer，Zoölogy，vol．if，pt．rin，p．121，pl． 25 ，fig．2），but the erest is different both as to position and form from that indicated in both the deseription and figure cited，since it springs directly from the forehead insteal of the middle of the crown，and the feathers are quite straight instrad of being distinctly recurved．

Family LARID压．

59．Larus dominicanus Licnt．
Sandy Point，six specimens；Elizabeth Island，one specimen．
60．Larus glaucodes Meyen．
Port Otway，three specimens．
61．Sterna hirundinacea Less．
Elizabeth Island and Point Grappler，tro specimens．

> Family STERCORARIIDE.

62．Megalestris antarcticus（Less．）．
St．Peter and St．Paul Island，one specimen．

Family DIOMEDEID雨．

63．Diomedea melanophrys Texm．
One specimen，without label．

Family PROCELLARIID．

64．Puffinus major FABr．
＂Off Patagonia，＂one specimen．
Family COLYMBID．
65．Colymbus rollandi（Quov and Gain．）．
One specimen ；locality not given．
Family SPHENISCID正．
66．Spheniscus magellanicus（Forst．）．
Two specimens，without labels．

SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U. S. FISH COM. MISSION STEAMER ALBATROSS.

[Published by permission of Hon. Marshall McDonald, Commissioner of Fisheries.]
NO. III.-REPORT ON THE BATRACILANS ANI REPTILES COLLECTED IN 1887-'88.

H
E. D. Cope.

The contents of the following list are arranged in accordance with the localities risited by the Albatross, and in the order in which they were reached in a voyage from Washington to San Francisco via Cape Horn.
I. West Indies.

1. Bufo agua Daud.

Santa Lucia.
2. Anolis alligator D. and B.

Santa Lucia.
3. Liophis ornatus Garman.

Dromieus ornatus Garman, Proceeds. Amer. Philos. Societr, 1887, p. 251
Santa Lucia, No. 15084.
This species is clearly a Liophis, and it resembles no other species of the genus. The scuta of the only specimen are $195,1-1,88$. The color differs a good deal from the type as described by Garman, in the dark color of the sides. This is not clearly distinguished as a band, and it is interrupted by light vertical spots of irregular outlines.

4. Bothrops caribbæus Garman.

Trigonocephalus caribbus Garman, Proceeds. Amer. Philosoph. Proc., 1357, p. 285.

Santa Lucia, Nos. 15082-3.
This species is nearly allied to the B. atrox, but differs very much in the coloration.

II. East Coast of Brazil.

5. Taraguira torquata Wied.

Abrolhos Islands, Nos. 15107-19.

III. Argentine Confederation.

6. Nannophryne variegata Günther.

Tro specimens, 15123-4, from Mayne Harbor, Patagonia. l'rof. L. A. Lee.

The genus Xiannophryne difters from Bufo in the entire absence of the concm tympeni and Eustachian tubes. It is identical with Ollotis Cope, aud the name proposed by criinther must be retained as it was published in 1si.3, while ollotis was not proposed until 1875. Xannophryne (IMlotis) corruleseens Cope is from the Cordilleras of Costa licica.

In the Zuchemus roseus, described below, the auditory organs, though present, are minute. From the same region two other genera with imperfect auditory organs are known, Alsodes Bell and Eusophus Cope (= Cacotus Gthr.). I have already called attention to the tendency to this peculiarity among the Salientia which inhabit momatanons regions.: Cophous, Iatrachophrynus and Telmatolius are from the Perutian Andes, and C'repidophryne, Cronophryne, and Namnophryne from the Cordilleras of Central America.

7. Zachænus roseus sp. nor. Cystignathidarum.

Head and body rather short; hind legs elongate. Width of head entering length of head and hody, two and a half times, and equal the length of the head measured on the side to the middle of the trmpanic drum. Heel of extented hind leg reaching a point between the orbit and the nostril. Head depressed, muzzle but little prominent in profile; nostril but little nearer end of mnzzle than to eye. Tympanie disk a vertical oval, not defined below, but, if completed, measuring less than half eye-fissure. Interorbital space flat, wider than ere-fissure. Tongue a longitudinal oval, hut little free, and slightly notched posteriorly. Yomerine teeth in two fascicles near each other, and just posterior to the line comnecting the posterior borders of the internal nares. Internal nares minute.

Skin smooth above and below; the abdominal integument forming a disk, the anterior fold of which extends from axilla to axilla. A narrow glandular fold from the posterior part of the eyelid to just abore the axilla. Digits with slight tubercles below, and the inferior surfaces of their extremities thickened. First finger shorter than second. Toes rather short, with indistinct dermal borders. An internal, but no exterual solar tubercle. No tarsal tubercle ; the thin imer edge turned upwards.

Color, pale rose gray above, dirty white below. A black band extends from the end of the muzzle along the canthus rostralis, and follows the glandular fold to its end above the axilla. A brauch descends, and, crossing the tympanic drum, stops a short distance in front of the shoulder. Limbs with very indistinct dusky cross-bars. Tarsus dusky below. Two large brown spots on the front side of the fore-arm. Two similar spots on the proximal half of the front of the tibia.

Length of head and boty, 23^{mm}; of head to posterior edge of tympanum (axial), $7.5^{\text {man }}$; width at canthus oris, $9^{\text {man }}$; of fore leg, 14^{mm}; of fore foot, 6^{mm}; of hind leg from rent, 37^{mm}; of hind foot, 15.5^{mm}; of tarsus, δ^{mmn}; of tibia, 11.5^{mm}.

[^40]One specimen, No. 15126, from Port Otway, Patagonia. Dr. L. A. Lee.

This species is the second of the genus Zuchanus, the typical one being the Z. pervulus Crimat from near lio Janciro. The Z. rosens is of less robost form than the Z. pervenus, has no dermal folds on the back, and the prefrontal bones are widely separated, and the vomerine teeth are not in arched series. Zuchernus has a simple cart ilaginous sternum, and the terminal phalanges are simple. These characters, with the complete frontoparietal bones, place it in the group Contophrydes. where it forms the approach to the group Hylodes.
8. Batrachyla leptopus Belle, Zowhogy of the Vogage of the Beaghe, int, p. 43, pl. 18, fig. 5. Hylodes leptopus Boulenger, Catal., Batr.-Sal. Brit. Mus., 1882, p. 219. No. 15125.

The genus Butrachyla may be now correctly defined for the first time. It enters the group Hylodes of the family ('ystignuthirle. That is, it has the external metatarsals united, the terminal phalange with a transverse terminal branch, and the sternum a simple eartilaginoms plate. A frontoparietal fontanelle, romerine teeth, and Enstachian tube. Toes free.

This genus in its cranial fontanelle approaches mearer to Mralnchylodes Cope (founded on a Mexican spectes) than to ant other genns of C'ystignuthide. It differs from this form in the presence of vomerine teeth. In its membraneons cranial roof it possesses a character of inferiority, as all the Batrachian forms of Patagonia do in some respect or other, as compared with their allies elsewhere.

9. Leptodactylus ocellatus.

Buenos Ayres, Nos. 14859-94.
10. Hydromedusa tectifera Cope.

Buenos Ayres, No. 15189.

IV. Chili.

11. Paludicola frenata sp. nov.

Well developed inguinal glauds. No tarsal tubercle; metatarsal tubercles two, both of conic form, the internal the larger. Toes free, like the fingers without dermal lateral ridge or wing. Heel of extended hind leg reaching to posterior border of orbit. Skin with a few small low tubercles.

Muzzle obtuse, projecting a little beyond lip-border, narrowed above. Nostril.nearer orbit than lip border. Tympanm hidden. Vomerine teeth in obligue fascicles between nares. Choana and ustial pharyngea small. Tongue very slighty emarginate. First tinger longer than fourth, and much longer than the second, which consists of the metacarpal only. Third and fifth toes subequal. Skin without definte folds above or below. Posterior face of femur tubercular.

Ground-color gray. A row of six or seven blackish-light-bordered spots on each side of the median line. One of these pairs is between the orbit; one on the interscapular, and one on the sacral regions, and four or five small ones on each side of the urostyle. Tro spots posterior to each orbit, the inferior much the larger, and extending posteriorly to the humerns, and in line anteriorly with a band on the canthus rostralis which extends to the upper lip. A dark triangular spot below the eve. Inguinal gland anteriorly light, posteriorly black. Limbs cross-banded (four bands on tibia); inferior surfaces immaculate.
M.
Length of head and body 029
Length of head to canthus oris 0075
Length of head to canthus oculi anterior 0035
Width of head at canthus oris 010
Length of fore leg 016
Length of hind leg from vent 040
Length of hind foot 020
Leugth of tarsus 007

The extreme reluction of the second anterior digit is a remarkable feature of the individual which represents this species. The character appears to be normal, but the first finger on one of the hands is also abbreviated, though to a less degree than the second digit. This is clearly abuormal, since it is unssmmetrical, but it may be an imperfect expression of the temdency so distinctly marked in the second digit.

From Lota, No: 15129.
12. Liolaemus chilensis Lesson.

Tomé, No. 15128.
13. Liolæmus tenuis BeLL.

Lota, No. 15127.
14. Opheomorphus chamissonis Wieg.

Coluber chamissonis Weig. C. temminckii Schleg.
Dromicus temminckii D. and B.* Aporophis temminckii Cope.
The species referred to Aporophis m ., are generally more slender than the typical forms of Opheomorphus m., but they can not be retained in a distinct genus. Lota, 15130.

V. Pacific Coast.

15 Gonatodes albigularis fuscus Hallow.
Panama, No. 15132.
16. Anolis pentaprion Cope.

Panama, No. 15131.
17. Pelamis bicolor Daud. 15188.

V1. Galapagos Islands.

18. Phyllodactylus tuberculosus Wiegm.

Chatham Island, Nos. 14949 and 14956 . The first record of the occurrence of this species on the Galapagos.

19. Phyllodactylus galapagoensis Peters.

The single specimen of this species differs from the deseription given by Peters in the decidedly larger abdominal scales, but it agrees with that of Boulenger in the British Museum Catalogue.

20. Phyllodactylus leei sp, nov.

Scales of the superior surfaces of equal size, one-fourth as large as the abdominals, convex. Scales of belly numbering 43 between the transcerse lines connecting the axillie and the groins. Digital pallets wider than digits. Scales of upper surface of fore limbs and feet, and of upper surface of tibia and hind feet, as large as those of the abdomen; those of the feet more or less sermate. No row of seuta on inferior side of tail. Auricular meatus small, but little larger than a digital pallet. Superior labials six to front border of pupil; inferiors larger, $4 \frac{1}{2}$ to the same point. Symphyseal large, urceolate, followed by two seuta, behind which the scales become gradually smaller.

Color above brown with a reddish tinge, marked with indistinct darker speckles. Sides of head paler than top, a dark band passing from end of nose through efe, above atricular meatus to near shoulder. Limbs speckled above. Below, cream-color, brownish on throat.

Measurements.
Total length.. 80
Length to vent.. 41
Length to canthus oris...
Width to cauthus oris... 7
Length of fore leg.. . . 11
Length of hind leg.. 16
Length to axilla.. . . . 19
Chatham Island, No. 14957. Deriicated to Prof. Leslie A. Lee, the naturalist of the expedition.
21. Tropidurus grayi Bell.

Nos. 14897-924, James Island; 1492(6-930, Gardner's Island, 14931-40, Indefatigable Island; 15003-13, Albemarle Island; 15014-26, Hood Island.

A variety with a dark lateral band, not very distinct, from Dunc:an Island, 14941-44. The most aboudant reptile of the Archipelawo.
22. Tropidurus lemniscatus sp. nov.

Scales of regularly graduated size from dorsal to ventral region, those of the sides a little larger than those of the belly and the dorsat a little larger. Dorsal scales in rows which converge posteriorly;

Proc. N. M. S9—— 10
laterals in vertical rows. Fifty rows of rentral seales between lines of axilla and groin. Dorsal crest low, becoming more elevated on the proximal caudal region. Toes of extended hind leg reaching to orbit. A strong fold bordered with a few large seales in front of the humerus and an open pocket in front of it lined with granular scales. Amicular meatus three quarters the length of the eye, bordered in front by a few acmminate seales. Frontal scales divided longitudinally. Seales of top of muzzle more divided than in T. groyi, the six large seales of the latter represented by nine or ten. One row of large and two or three rows of small superciliary scales. Nostril subvertical in direction.

Color dark olive with a light greenish or brownish gray band extending from the orbit to the base of the tail. The dark olive of the back is dark bordered; the light band is more or less brown speckled, and the dark of the sides is more or less light cross-barred, and it is frequently bounded below by a second light longitudinal band. Integument within prehumeral fold black. Top of head and limbs nearly uniform brown; lower surfaces light yellowish.

The females are smaller than the males, and like those of the other Galapagos species differently colored. The longitudinal bands are wanting; the sides are vermilion red, and there is a red half-collar on the inferior half of the neck.

As compared with the T. grayi, its nearest relative, this species differs in the large size of the lateral scales, in the subdivision of the seales of the muzzle, and in the coloration. The dorsal crest is lower. The females differ in the distribution of the red. In T. grayi the sides of the head are red in the female, and in the T. pacificus the entire top of the head is rusty red.

It is worthy of notice that in this genus, differently from Sceloporus, it is the females that possess the bright colors instead of the males, and that red takes the place of blue on the throat a ad sides of the belly.

	Measurements of δ.	Mm.
Total length.		190
Length to vent		70
Length to axilla		30
Length to canthus oris		14
Width at canthus oris		14
Length of fore limb.		30
Length of fore foot.		14
Length of hind leg		51
Leugth of hind foot.		25
	Mcasurements oft f.	
Total length...		153
Lengtin to vent		
Length to axilla.		21
Leugth to canthus oris		10
Width at canthus oris.		

23. Tropidurus pacificus Sterndacheer.

Abingdon Island, 14966 to 15002 .
24. Amblyrhynchus cristatus Bell.

Abingdon Island, 14965, 1518:-4; Duncan Island, 15176, 15179-81; Hood Island, 15177; James Island, 15178, 15157; Gardner's Island, 15185 ; Chatham Island, 15186.

14 lis. Opheomorphus chamissonis Wizgm.,
James Island, 15027, 15080.
25. Testudo nigrita Less.

Albemarle Island, 15190-91.

ViI. Lower California.

18 bis. Phyllodactyles tuberculosus Wiecim.
26. Sceloporus zosteromus Cope.
27. Uta stansburiana B. and G. 14896.
28. Callisaurus dracontoides De BL, 14895.
29. Cnemidophczus tessellatus tessellatus SAy.
29. Cnemidophorus tessellatus tigris B. and G.
30. Cnemidophorus sexilineatus Linn.
31. Chilomeniscus cinctus Cope.

A living specimen of this species from Tucson, Ariz., preserved in the zoological garden of Philadelphia, was observed by my friend A. E. Brown, the superintendent, to possess extradinary burowing powers. It penetrated and traversed soil with almost as great rapidity as it moved on the surface of the ground. 15158.
32. Pityophis vertebralis De BL. 15157.
33. Bascanium laterale Hallow.

A variety without bands, and of a nearly uniform dark brown color. 15135-6.
34. Crotalus adamanteus atrox B. and G. 15134.

Viil. Pacific Coast of Nortif America.

35. Xantusia riversiana Copp.

Several adults in tine comrlition fiom San Clemente Island. Nos. 15166-75.
36. Gerrhonotus multicarinatus principis B. and G.

Bıitish Columbia, No. 15194. MISSION STEAMER ALBATROSS.
[Published by permission of Hon. Marshall McDonald, Commissioner of Fisheries.]
No. IV.-DESCRIPTIONS OF NEW SPECIEN OF FISIIES ('OLLECTED AT TIIE (A ALAPAGOS ISLANDS ANI) ALONG THE COAST OF THE INITED) NTATES OF COLOMBIA, 1887-'88.

BY

David Starr Jordan and Charifs Harvey Bollman.

In the winter and spring of 1885 the steamer Albatross mate a cruise from Norfolk, Va., to San Francisco, in the service of the United States Fish Commission.

Extensive collections of fishes were made at varions points off the coast of Central and South America. One of the most valuable of this series of collections was that from the region between the Galapagos Islands and Panama. This collection has been placed in our hauds for study. In it are found the thirty-one new species mentioned in the present paper. These are deseribed in advance of the appearance of the general report, by the consent of Mon. Marshall Melonald, U. S. Commissioner of Fisheries, and of Mr. Richard Rathbun, assistant in charge of the department of scientifie investigation. The following is a list of the species which seem to be as yet undescribed:

Rajidæ:

1. Raja equatorialis.

Torpedinidse:
2. Discopyge ommata.

Dasyatida:
3. Urolophus goodei.

Synodontidx:
4. Synodus evermanni.
5. Syuodus jeukinsi.

Congrida:
6. Ophisoma nitens.

Ophisuride:
7. Ophichthus evionthas.
8. Ophichthus rugifer.

Atherinide:
9. Menidia gilberti.

Stromateide :
10. Stromateus palometa.

Serranide:
11. Diplectrum euryplectrum.
12. Prionodes stilbostigma.
13. Kuhlia arge.

Sparida:
14. Xenocys jessiæ.

Scienide:
15. Larimus pacificus.
16. Polycirrhus rathbuni. Uranoscopide:
17. Kathetostoma averruncus. Gobiide:
18. Bollmannia chlamydes. Scorpanide:
19. Scorpæиа russula. Triglide :
20. Prionotns quiescens.
21. Prionotus allirostris.

थ2. Prionotus xenisma.
Blenniida:
23. Rumula azalea.

Batrachide:
24. Porichthys nantopredinm. Ophidiide:
25. Otophidium indefatigabile.
26. Leptophidium prorates. Gadide:
27. Bregmaceros bathymaster. Pleuronectide:
28. Azevia querna.
29. Engyophrys sancti-laurentii.
30. Symphurus atramentatus.
31. Symphurus leei.

1. Raja equatorialis sp. nov.

Dlagnosis.-Related to Regu inornutu Jordan and Gilbert, from which it is at once distinguished by having four rows of spines below eyes, a series of stont spines on each side of tail in the mate and no prickles on back except the median series and the spine on each shoulder. The size is much smaller (length, 14 inches), it being one of the smallest of the rays.

Type : No. 41,132, U. S. National Museum.
IIntr.-Pacitic Ocean, off coast of the United States of Colombia. $8^{\circ} 06^{\prime} 30^{\prime \prime} \mathrm{N} . ; 78051^{\prime} \mathrm{W}$.

Description.-Disk to posterior base of pectorals one-third broader than long, the breadth exceeding the length by a distance equal to suont and ese; the breadth somewhat longer than length of tail (measured from vent); anterior margin concave in front of eyes. Snout produced at a rather acute angle, its tip rounded, its length from eye $3 \frac{2}{2}$ in length of disk. Interorbital space rather strongly concave, its width $2_{5}^{\%}$ in snout. Eye not much larger than spiracles, 3 in snont. Width of month $1 \frac{1}{2}$ in prenasal part of hean ; masal flaps at angle of mouth deeply fringed. Pectorals reaching middle of ventrals, which are as long as from tip of suout to posterior border of spiracle. Claspers in typical example 1% in disk. Dorsals small, their length 2 in suont. Caudal small, not longer than eye. Snontabove, with two rows of spines besides smaller asperities; a row of about 12 before and above eye and spiracle; a row of strong spines along line of back from posterior border of spiracle to second dorsal, these alternately large and small on the tail; a row of similar spines on cach side of tail commencing just behind posterior base of ventrals and extending to caudal; a single spine on the shoulder on each side; four or fise irregular rows near the anterior margin of the disk opposite the eyes; the length of this patch not as long as snout. Pectorals with the usual strong retrorse spines characteristic of the males of this gemus. Small prickles present along the outer anterior margin of pectorals, interorbital area, oa top of shout and along its margin for a distance equal to three-fourths of snout and beneath from tip to opposite posterior teeth, the anterior prickles strongest; a small patch in front of eyes. Teeth $\frac{42}{40}$.

Color, light brown, spotted with paler; the back with obseure reticulations of the ground color, forming honey-combl like markings, surrounding paler, an obscure romblish dusky bloteh at middle of base of pectorals, and a darker one near their posterior base. Edges of ventrals, pectorals, and snout pale. Dark markings on interorbital area and below ere. No markings belor.
This species is known from a single male specimen 14 inches in length dredged at a depth of $3: 3$ fathoms, at station 2797 , off the west coast of Colombia, between Pamama and the (Balapagos lslands.
2. Discopyge ommata Jordan and Gilbert sp. nov.

Dingnosis.--Separated from Inscopyge tschudii by the spiracles having coarse fringes.

Type: No. 41,133, U. S. National Museum.
Hab.—Pacific Ocean off coast of Colombia, $8^{\circ} 066^{\prime} 30^{\prime \prime}$ N.; 788° 万1 1^{\prime}.; also taken by Professor Gilbert at Panama in 1882.

Description.-Disk wider than long by ${ }_{5}^{3}$ interorbal width. Peetorals extending backward covering base of rentrals. Snout broadly rounded, not at all exserted, its length $4 \frac{1}{2}$ in length of disk. Eye small, not quite half length of snout. Interorbital space slightly concave, its width $1 \frac{1}{2}$ in snont. Spiracle smaller than eye, its margin fringed with S to 10 papillie. Edge of nasal valve raguely crenulate. Width of mouth $1 \frac{2}{3}$ in preoral part of head; its anterior margin crenulate; preoral part of snout with distinct pores. Tail from rent to tip of caudal, very slightly shorter than rest of body from rent to tip of snout ; a fold of skin on each side of tail extending to opposite posterior margin of first dorsal. Second dorsal narrower and higher than first, its length about equal to snout. Upper margin of caudal equal to snout and eye; its margin like that of dorsal, rounded. Ventrals large, adnate behind, with scarcely any antero-posterior margin.

Color brown, irregularly mottled and spotted with lighter and darker, these markings more pronounced nearer the margins of disk and on sides of tail ; center of disk with a large blackish ocellated spot equal to length of snout, the darker center surrounded by a narrow pale eircle, a pale spot in the center ; snont pale. Posterior edge of pectoral and entire edge of rentrals pale, the lower posterior part of peetorals spotted. Dorsals and caudal pale, marbled with darker.

This species is known from a single female specimen dredged at a depth of 33 fathoms at Station 2795. A specimen was also obtained by Dr. C. II. (iilbert at Panama in 1882. This specimen was destroyed by fire before a description was published.

3. Urolophus goodei sp. nov.

Diagiosis.-Approaching V'rolophus hulleri aud nebulosus, from which it is separated by the presence of a strong spine on the middle of the back, by the more angular outline, the narrow ventrals, and the phain coloration.

Type : No. 41,150, U. S. National Museum.
Hab.-Pacific Ocean, off coast of Colombia: so $06^{\prime} 30^{\prime}$ N., $78251^{\prime} \mathrm{W}$.
Description.-Disk (to posterior base of pectorals) broader than loug by a distance equal to snout and half eye; anterior margins of disk very slightly convex from in front of eyes outwards, Suout with its tip exserted and sharply pointed, its length $3 \frac{3}{4}$ in disk to base of pectorals. Eye about equal to spiracle, $3 \frac{1}{1}$ in snout. Margin of spiracles not denticulated. Interorbital area scarcely concave, its width 2 in snout. Width of mouth \because in preoral part of head. Nasal fold con-
cave behind, its edge fringed. Ventrals projecting considerably beyond disk, then length (from anterior margin of vent backwards) $1 \frac{1}{4}$ in their breadth. Caudal spine large, its length equal to snout and half eye, its margin with s-10 sharp forward-projecting spinules; its insertion anterior to middle of tail measured from pectorals, its tip reaching front of caudal. Caudal fin (measured from end of spine) equal to snont and eye. Length of tail greater than that of disk by a distance equal to eye and spiracle. Body (in young specimens) entirely smooth except for the presence of one (or two) sharp spine on middle of back. Color plain brown, paler toward margins of disk; no spots or distinct markings ; under side not mottled ; candal dark above, margined with pale.

The above description was taken from a young female specimen 7 inches long. This specimen has the snout wholly smooth. Auother about an inch shorter has two spines on middle of back and the snout prickly. Both specimens were dredged at Station 2795, with the preceding species. The snout is wholly smooth in the type. We have named this species for Dr. G. Brown Goode, Director of the U. S. National Museum.

4. Synodus evermanni sp. nov.

Diagnosis.-Related to Synodus. poeyi Jordan, but the snout shorter, the interorbital space broader; the pectorals reaching middle of veutrals, which are 1_{5}^{3} in head ; coloration, dark above ; lining of gill cavity and of shoulder girdle, black.

From other related species the present one may be known by the large size of the scales.

Type: No. 41,144, U. S. National Museum.
Hab.-P'acitic Ocean, off coast of Colombia, from $8 \circ 6^{\prime} 30^{\prime \prime}$ N., 78051^{\prime} W., and $7{ }^{\circ} 57^{\prime}$ N., $78^{\circ} 55^{\prime}$ W. Stations 2797 and 2795.

Description.- Head, $3 \frac{1}{3}$ to $3 \frac{3}{3}$ in length ; depth, $6 \frac{1}{2}$ to 7 ($7 \frac{1}{2}-8 \frac{1}{4}$ in total). D. 1,10 ; A. 1, 10. scales, 4-47 to 49-5.

Body terete, rather robust; suout short, rounded rather than pointed, 4 in head. Mouth large ; maxillary 1_{3}^{3} in head. Interorbital area concave, rugose, its least width 5_{5}^{2} in head; supraorbital ridge prominent, finely striate.

Urigin of dorsal nearer adipose fin than snout by three-fourths width of interorbital area.

Anterior rays of dorsal coterminons with posterior when depressed; the last rays not filamentous; the free edge of the fin little concave; dorsal fin higher than long by nearly an eye's diameter, its length $2 \frac{1}{5}$ in head. Lower jaw barely projecting. Lateral line with a blunt keel. Tip of ventrals reaching half way to vent (farther in young); their length $1_{\frac{1}{5}-1 \frac{1}{5}}$ in head. Pectorals extending to near middle of ventrals, $1 \frac{3}{5}-1 \frac{1}{5}$ in head. Lobes of caudal equal.

Color, dark above, pale below ; s to 10 dusky greenish oblong spots along lateral line; between which and below lateral line are traces of
smaller spots. A dusky whade over opercle; skin tining opercle and shoulder girdle dark, the hack markings surrounded by yellow. Adipose fin dark, edged with pale; candal not barred, immer mas dusky; pectorals and dorsal somewhat dusky; other fins pale. 'Tip of chin scarcely dusky.

This species is known from numerons specimens dredged at a depth of 33 fathoms in Stations 279 and 2797 . The largest are about 8 inches in length.

It is named for Prof. Barton W. Evermann.

5. Synodus jenkinsi sp. nov:

Diagnosis-Closely allied to Synodus: sritulicep.s Jordan \& (rilbert, but the head larger, $3{ }_{i}^{3}$ in body ; rentrals 18 in head and 6 rows of seales on cheeks.

Type: No. 41,171, U. S. National Museum.
Hab.-Pacific Ocean, oft coast of Colombia; Stations 279.) and 2802 : $8^{\circ} 6^{\prime} 30^{\prime \prime} \mathrm{N} ., 75^{\circ} 51^{\prime} \mathrm{W}$., and $8051^{\prime}(?), 79031^{\prime} 30^{\prime \prime} \mathrm{W}$.; also from (inaymas.

Description.- Head about $3: 3$ to 4 in length to base of candal; depth,

Body slender, subterete, depressed. Snout broadly triangular, little pointed, $3 \frac{1}{3}$ in head, its length about equal to its breadth at base. Mouth large; maxillary $1 \frac{2}{3}$ in head. Interorbital area concave, rugose, slightly broader than eye, $5!$ in head ; supraorbital, finely striate, with serrulate edge.

Origin of dorsal midway between adipose fin and anterior margin of pupil ; free margin of fin concave; anterior rays of dorsal not extending so far as the last when depressed ; last ray filamentous and half length of largest; fin higher than long by an eye's diameter.

Lower jaw included; teeth moderate. Lateral line without a keel. Tip of rentrals reaching slightly more than half way to vent; their length $1_{7}^{\frac{3}{7}}$ in head. Pectorals reaching root of ventrals, $\because 2$ in head, and longer than snout and eye in larger specimens. Upper lobe of caudal the longer, $1 \frac{1}{2}$ in head.

Color, brownish olive, white below ; seales on back with paler specks; a few rows of scales below lateral line with mumerous black dots; head not marbled; jaws not spotted, tip of lower black; inside of opercles dark; lining of shoulder girdle yellow. Pectorals and candal dusky, former tipped with pale. Adipose fin dark, margined with paler; lower fins pale.

This species is known from numerous specimens, dredged at Station 2797 in 33 fathoms and at Station 2s02 in 16. The largest is 133 inches in length. Specimens were also obtained by Jenkins and Everman at Guaymas. The species is named for Dr. Oliver P'. Jenkins.
6. Ophisoma nitens sp, nov.

Diagnosis.-Related to Ophisoma lueterognuthus (bleeker), but with the body (head and trunk) contained $\frac{22}{3}$ times in tail ; eye, 7 in head.

Type: No. , U. S. National Museum.
11ab3.-Pacitic Ocean, off coast of Colombia, $88^{\circ} 47^{\prime}$ N., $799^{2} 29^{\prime} 30^{\prime \prime} \mathrm{W}$.; dredged in 14 fathoms, at Station 2801.

Description.-Head $1 \frac{1}{7}$ in trunk, $5 \frac{1}{3}$ in tail; interorbital area 2 in the large eye; snont $4 \frac{1}{4}$ in head, very soft; eye very large, 7 in head, $1 \frac{2}{3}$ in snout; cleft of mouth 3_{5}^{1} in head, extending slightly behind middle of cye; lower jaw considerably shorter thau upper.

Body slender; tail compressed, $2 \frac{2}{3}$ times as long as head and trunk.
Pectoral long and narrow, $2 \frac{1}{5}$ in head, 13 times as long as gill-slit; dorsal begimning slightly in adrance of root of pectoral.

Color olivaceons, upper parts of head and body with numerous fine black dots; a silvery shade across opercles and below lateral line.

Peritonemm bright silvery, giving the belly a pale exlor. Dorsal and anal with a narrow black margin, below which are a few small spots; pectoral pale.

This species is known from a single foung example, 9 inches long, dredged at Station 2801, between the Galapagos and Panama.

7. Ophichthus evionthas sp. nov.

Disgasosis.-Approaching Ophichthus bonepertio (Kanp), but having the head, body, and tail covered with numerous round or oval black spots, separated by a yellowish ground-color, and which, at about 15 places, are larger, and tend to form cross-bands.

Type: No. 41,476, U. S. National Museum.
Hab.-Hood Island, Galapagos Archipelago.
Description.-Head 4 in trunk; about 8 to 10 coarse wrinkles on opercles and throat; snout 4 ! in head ; eye small, $2 \frac{2}{3}$ in snout, much nearer angle of mouth than tip of snont; cleft of mouth $2:$ in head, extending slightly beyond eye; lower jaw considerably shorter than upper; teeth small, subequal, acute, recurved, all except anterior vomerine uniserial.

Body rather stout ; tail very slightly longer than trunk.
Pectoral quite small, $9 \frac{1}{3}$ in head, equal to eye, and slightly shorter than gill-opening; dorsal begimning about twice length of pectoral behind tip of latter.

Color, light olive, the entire body covered with mumerous round or oval black spots, which are separated by a yellowish ground-color, at intervals. In about 15 places these spots are considerably enlarged, tending to form dusky cross-bands. At these points the spots extend farther down on the belly ; spots most numerous and smallest on head, especially across jaws, behind angle of mouth, and across opercles; those which tend to form cross-bands on borly and tail are the largest, especially the lowermost, which are brownish and more diffused; an irregular series along middle line of belly, this becoming a double sertes along base of anal; lower side of head profusely spotted.

Pectoral with two obscure spots on 1ts anterior side; dorsal with 3
or 4 rows of spots, those of the upper row elongate ; anal pale, the row of' spots along each side extending slightly on fin.
'This species is known from a single specimen, 19! inches long, taken at Hood Island. It is a female, full of eggs.

8. Ophichthus rugifer sp. nov.

Diagnosis.- (losely allied to Ophichthus triserialis (Kianp), but differing as follows: (xill-opening, 2_{-1}^{3} in the long pectoral, which is $9 \cdot 9$ in head ; dorsal beginning over middle of pectoral ; head and entire body corrugated; no black occipital band; dorsal with a submarginal row of spots; anal pale; spots on under part of head not distinct; a dark shade extending from gular region across opereles. In other respeets it agrees fully with the description of O. triseriulis, as given in Jordan \& Gilbert, Synopsis Fishes of North America, p. 359.

Type: No. 41,428, U. S. National Museum.
Нав.-Charles Island; Galapagos Archipelago.
Description.—Head, $\underset{2}{3}$ in trunk; eye, $3 \frac{2}{3}$ in gape, $1 \frac{1}{2}$ in snont: gape, 2_{5}^{3} in head; tail, more than ${ }_{3}^{1}$ longer than head and body; teeth, small, acute, biserial in both jaws and on front of vomer.

Color light olive, a row of rather large, round spots along lateral line; a series of smaller spots on each side above the lateral series and alternating with it; a row of submarginal spots on the dorsal fin, irregularly alternating with the second series. Top and sides of head with smaller spots; a dusky shade near the middle of each pectoral ; lower parts pale except the jaws and throat.

This species is known from a single female example, 212 inches in length, taken at Charles Island.
9. Menidia gilberti sp. nor.

Diagnosis.-Distiuguished from . IV. pachylepis and gmatemalensis (Giinther) by the much smaller scales.

Type : No. 41,165, U. S. National Museum.
НАв.-Panama.
Description.—Mead, $\left.4_{3}^{2}-4 \frac{1}{5}(5)-5\right)_{3}^{2}$ in total): (1epth, $5 \frac{1}{3}-5_{3}^{2}\left(6 \frac{1}{3}-6{ }_{5}^{3}\right)$. D. VI-I, 9 ; A. I, 21 or 29. Scales, $1-48$ or 49-4. Length, 4 inches.

Body rather slender, elongate, compressed, especially below: Heat sh rt, its upper surface slightly convex. Snout larger than eye, 3 to 3 . in head. Maxillary, $1 \frac{1}{2}$ in snout. Lower jaw included. Ese moderate, 3 to $3 \frac{1}{2}$ in head, 1_{6}^{1} to $1_{\frac{1}{4}}^{1}$ in interorbital space. Teeth in jaws small, not close set, none on vomer or palatines. Gill-rakers long and slender, about 20 dereloped below angle.

Origin of first dorsal midway between posterior margin of head and base of candal, its posterior margin opposite front of anal. Its longest spine $4 \frac{1}{5}$ in head. Insertion of second dorsal midway between base of eaudal and fifth scale in front of first dorsal, opposite middle of anal, its longest ray equal to snont. Distance between origin of second

15(; ALBATROSS EXJLORATIONS, RISIES-TORDAN AND BOLLMAN.
dorsal and base of candal equal to a distance from tip of smont to two thinds an eye's diameter beyond upper angle of pectorals. Origin of anal midway between base of candal and posterior base of pectorals, the base equal to distauce from tip of snout to base of pectorals; longest ray equal to snont and eye. Pectorals reaching beyond origin of rentrals, $1 \frac{1}{7}$ to $1_{1 ;}^{1}$ in head. Ventrals reaching half way to rent, $1 \frac{5}{7}$ to 2 in head, their origin midway between front of anal and edge of preopercle. Vertical fins nearly or quite scaleless. Scales large and firm; those above with the edges distinctly crenate.

Color greenish, the back rather pale, the ssales thickly dusted with brown dots: a karow rertebral band, which is anteriorly accompanied by at short line on each side; this band is broarlest posteriorly. A bluish-silvery lateral band, bordered by dark above, upper parts dotted with black; sides and belly paler than back, the upper two rows of scales below lateral band anteriorly with a few dots.

Tip of snont, head between eyes, and A-shaped area on top of head, dark: from the occipital mark a streak of dots extend to base of pectorals; only a few dots on top of opercles: lower jaw dusky ; lining of opercle dark; fins all pale.

Of this species mmerous specimens, the largest about t_{1}^{1} inches long, were obtained by the Albutioss at Panama. Numerous specimens were also obtained at Panama in 185\%, hy Dr. Gilbert, for whom we have named the species.

The species lately described from Guaymas, by Jenkins and Erer mann, under the name of Atherinu surdinu, is also a .Menidiu, and should stand as Menidia sardina.

10. Stromateus palometa sp, nov.

I)iagnosis.-Allied to Stromatene merlius Peters, but distinguished hy the greater mumber of dorsal and anal rays (I). III, tj to 47 : A. III, $45)$, and by its larger head. (Head 23 to 3 in length.)

Type.-No. 41,136, U. S. National Museum.
Hab.-1'acific Orean, off' coast of Colombia: $S^{\circ} 16^{\prime} 30^{\prime \prime}$ N., $79035^{\prime} 45^{\prime \prime}$ W. Station 2804.

Description.-Head 2:3 to 3 ; depth 2. I). III, 4.5 to 47; A. III, 45. Length of type, $2: 3$ inches. Body ovate, compressed, rather deeper than in S. triacunthus; rentral outline most arched; profile erenly convex to nostrils, where it abruptly descends, rendering the snont very blunt. Mouth small: maxillary reaching middle of pupil, 3 in head. Jaws equal. Teeth comparatively long, slender, and close-set, especially in the lower jaw, where they form an even cutting edge. No teeth evident on romer or tongue. Snont shorter than eye, $4 \frac{1}{2}$ in head. Eye rather large, 3 to $3!$ in head (young). Gill-membranes entirely separate. Gill-rakers long and slender, the longest about half eye, about 17 developed helow angle. Dorsal and anal spines subequal, the longest not half eve; distance from tip of snout to first soft ray
of dorsal less than depth of body by two-thirds diameter of eye. Base of anal slightly shorter than base of dorsal (berhaps longer in the adult). Pectorals as long as head. No trace of ventrals, the pubic bone ending in a sharp spine; the usual antrorse spines before dorsal. Region above lateral line withont evident pores. (ireatest width of head $\frac{21}{2}$ in its length : cheeks sealy: operele naked : hody covered with very small scales.

Color, silvery, bluish above: hody with mumerons small black dots, which are most numerous along bases of fins, caudal peduncle, top of head, and snout, and largest along base of anal. Vertical fins covered with small hatek dots, those on dorsal and anal larger than those on caudal. Pectorals dotted.

Numerons specimens of this species, the largest ${ }_{3}$ inches long, were dredged in station 2804, at a depth of 47 fathoms.

11. Diplectrum euryplectrum sp. nov.

Diagnosis.-Allied to Diplectrum radiale and I). macropoma, distinguished from the former hyaring the fascible of preopereular spines much wider, wider than eye: from the latter hy having smaller seales, those on cheeks in 8 or 9 rows.

Type.-No. 41,141, U. S. National Museum.
Mabs- Pacific Ocean, oft coast of Colombia, from so $106^{\prime} 30^{\prime \prime}$ N.,
 2797, 2795,2505 . Head (to end of opercular spine) $2=$ to 23 ($3 \frac{1}{3}$ to $3 \frac{1}{2}$); depth $3 \frac{2}{\overline{2}}$ to $3 \frac{1}{2}\left(4_{3}^{\frac{1}{3}}\right.$ to $\left.4_{2}^{2}\right)$. D. N, 12 : A. III, S. Scales s-50 to $5 \tilde{5}-18$.

Iescription.-Body moderately elongate, heary through shoulders; the back not much elevated; anterior profile convex, nearly straight above eyes; mouth large, maxillary reaching posterior border of eye, 2 in head; snout blunt, $3 ;$ in head; eye large, slightly shorter than snont, 4 in head. Interorbital space appearing slightly concave, $1 \frac{2}{3}$ in eye. Tecth as in II. radiale. Preopercular process rery wide, its width $1 \frac{1}{4}$ times diameter of eye ; spines long and slender, 15 to 20 developed ; the lower angle not so strongly projecting as in D. macropomu. Operenlar spine rather sharp, embedded. Gill-rakers rather long, stout as inother species, $\bar{X}+1 \ddot{\text {. Scales small, rather firm ; smaller than in }}$ other species ; 8 or 9 rows on cheeks; seales on operele smaller than in D. radiale or D. macropoma.

Dorsal spines weak, pungent ; second 18 in third: fourth and fifth almost equal, 3 ! in head; first soft ray 3 in head, shorter than next the last. Cpper lobe of candal longest, $1 \frac{3}{5}-1 \%$ in head, lower lobe $1 \frac{3}{3}-1$ in head. First anal spine $1!$ in second, which is strongest and $1 \frac{1}{2}$ in thited, latter a in head; soft rays showing a convex margin: the longest :3 in head. Pectorals broad; their posterior margin trumeate-concare, their length 1 in in head. Ventrals 1% in hede. Color, brownish above, as in I) radiale, becoming more yellowish and silvery below: sides with about 5 pairs of iaterrupted black bars; a large black bloteli at lass of cat.
dal. Markings on preorbital and cheeks rather indistinct; a large black spot above preopercular angle on opercle; lips bluish. Spinous dorsal dusky above; a small pale spot under tip of spines; soft dorsal plain olive, dark at base; imer rays of candal tipped with dusky, a few lower rays pale; pectoral and anal pale; rentrals dusky.

This species is known from numerous specimens dredged by the Albutross at stations 2795 and 2797 , at a depth of 33 fathoms, and at station 2805 at a depth of $51 \frac{1}{2}$ fathoms. The largest of these is about 7 inches long.

Taken with this species is another equally abundant and very closely related, distinguished chiefly by the larger scales. This seems to be Iniplectram macropoma (Centropristis macropoma Giinther), originally described from Panama. The thirl species of this type, Diplectrom radiale, was obtained by the Albatross at Pamama. In this species the breadth of the fascicle of preopercular spines is notably less, while in the fourth species, I). formosum, this fascicle is, in the adult, divided into two.

12. Prionodes stilbostigma sp. nov.

Diagnosis.-Allied to Prionodes luciopercanus (Poey), but the coloration entirely different, and the body deeper.

Type.-No.-, U. S. National Museum.
Нab.-Pacitic Ocean, off the coast of Eeuador, $0^{\circ} 50^{\prime} \mathrm{S} ., 89^{\circ} 36^{\prime} \mathrm{W}$. ; depth, 45 fathoms; station, 2809.
 7. Scales, 8-5̌-18.

Length of type, $7 \frac{1}{4}$ inches.
Body elongate elliptical, less slender than in P. luciopercanus; back not much elerated; anterior protile straight from tip of snout to front of dorsal. Snout sharp, $3 \frac{1}{2}$ in head, lower jaw considerably projecting, mandible $3 \frac{1}{2}$ in head. Mouth rather large; maxillary reaching nearly to middle of pupil, $2 \frac{3}{i}$ in head. Eye large, a little shorter than snont, 4 in head. Interorbital space very slightly concave, ridged. Teeth small, aaterior teeth of front row in both jaws slightly eularged; posterior teeth of lower jaw also eularged; vomerine teeth in a $\boldsymbol{\Lambda}$-shaped patch. Preopercle finely serrate, the lower teeth a little coarser, the margin evenly rounded. Operele ending in three spines of which the midale one is considerably the largest; membrane extending beyoud spines. Gill-rakers moderately long and sleuder, about 9 developed.

Scales small, firm, ctenoid; 11 rows on cheeks; 11 vertical rows on opercle to base of spines; 2 rows on interopercle.

Spinous dorsal rather low, not notched; first spine about $1 \frac{1}{2}$ in second, fourth very slightly longer than third, as long as from tip of snout to middle of eve, $2!2$ in head; soft dorsal not elevated, first ray 23 in head. Upper lobe of caudal the longer, $1_{\overline{3}}^{\circ}$ in head; lower lobe, $1_{7}^{\frac{3}{7}}$ in head. Second anal spine strongest, hardly as long as third, which is $3 \frac{3}{3}$ in head; first, $1 \frac{5}{7}$ in second; first anal ray, 3 in head; penultimate longest, $2 \frac{1}{5}$
in head; last somewhat shorter. Pectorals pointed, 1\% in head, reaching beyond tips of ventrals to rent. Ventrals $1 \frac{1}{3}$ in head. Soft dorsal and anal with a few scales. Scales on breast and belly small.

Color reddish (prolfably crimson in life), becoming paler beneath, breast somewhat orange. A few small, round, pale spots on cheeks and opercles; occiput rather dark ; lower jaw dusky ; aslight bluish shade on preorbital. Anterior part of back with small indistinet light and dark specks; large, quadrate, inky-black spot larger than eye at base of soft dorsal, which involves the basal half of several rays, and extends downward almost to lateral line; in this blotch are traces of thee darker spots; behind this, three much smaller, romdish, black spots, which extend ou fin; below these a row of about 10 round black spots smaller than pupil, on median line of side extending from opposite front of large dorsal spot to base of caudal; below this series some fainter irregular spots of black; extending obliquely upwards and backwards from above tip of ventral fin to lateral line a large elliptical creamy or silvery blotch which is about as wide as interorbital and as long as snont and eye; this spot does not reach middle line of belly. Spinous dorsal with three rows of diffuse, confluent, black spots separated by pale streaks; soft dorsal marked with several black spots, which extend upward from body; above these a pale median longitudinal streak. Upper half of caudal red, with a few small black spots, lower lobe inky-black, with some pale edgings. Onter half of ventrals and anal dusky. Pectorals pale.

A single specimen was dredged at 45 fathoms at Station 2809 , off the coast of Ecnador. It is a very interesting species, allied to Prionondes luciopercanus, but quite peculiar in color, having, among other things, the peculiar oblique cream-white band found in Prionodes phobe and P. brasiliensis.

13. Kuhlia arge sp. nov.

Diagnosis.-Closely allied to Tuhlit twniura (Covier and Valenciemnes), an East Indian species, from which it is distinguished by its smalier eye, which is $3 \frac{1}{3}$ to $3 \frac{1}{2}$ in head.

Type: No. 41,169 , U. S. National Museum.
Нив.-Chatham Island, Galapagos Archipelago.
 A. III, 11. Scales $7-50$ to $52-12$. Lel. eth of type 6 inches. Body oblong, strongly compressed; back elerated above pectorals; the anterior profile straight and rather steep; caudal peduncle long, com. pressed. Month rather small, very oblique, the lower jaw considerably projecting; maxillary reaching anterior margin of pupil, $\sum_{\overline{3}}^{2}$ to \sum_{1}^{3} in head. Eye moderate, slightly longer than snout, 3_{5}^{2} in head. Teeth very small, in narrow bands, those on womer in a Λ-shaped patch. Preorbital very narrow, its edge anteriorly with strong retrorse sempe, the moderately broad maxillary not sheathed by it. The strmeture in this regard resembles that of serranidee, not that of spuridu. Least width of preorbital $3 \frac{1}{2}$ in ege. Serre of 1 reopercle sharp and fine, well devel-
oped below angle. Gill-rakers long and slender, about $\mathrm{X}+21$. Scales rather small, ctenoid, firm, 3 or 4 rows on cheeks, 2 rows on interopercle. Jaws, snout, and top of head naked. Opercle with two strong spines, the lower the larger and nearly as long at pupil. Lateral line anteriorly mather sharply curved upward, concurent with the back. No accessory rentral scale. Nostrils very small, romnd, close together. 1)orsal spines high and pungent, hardly flexible, the first half as long as the secoud, the fifth longest, 1% in head, reaching tip of eighth when depressed. Dorsal fins very slightly comnected by membrane. Soft dorsal $1 \frac{\%}{3}$ in anal, first ray 2 in head. Candal deeply forked, as long as head, its inner rays not quite half as long as outer. First anal spine $1: 3$ in second, which is strongest and equal in length to thind ; free margin of anal slightly concave, first soft ray $-\frac{8}{4}$ in head. Pectorals short, pointed, $1 \ddot{5}$ to $1 \underline{2}$ in head. Ventrals moderate, reaching vent, $1 \frac{3}{5}$ in head. Soft dorsal and anal free from scales; a sealy sheath along base of both dorsals.

Coloration, bluish above, sides brilliant silvery; soft dorsal with a black obligue bar across its anterior rays; median rays of caudal black, lobes tipped with white, and crossed by two oblique black bars, which are separated by cream-colored bands, which are brightest on inuer rays ; outer bar largest. In other words, caudal with two black and three white cross-bands on each lobe, these convergent backwards; lower fins pale; axil of pectoral dusky on the inuer side.

In spite of the resemblauce of Thulia to Xinistins, the former is evidently Serranoid, the latter Sparoid in its affiuities.

Several specimens of this beantiful fish were obtained by the Albatross at Chatham Island, in the Galapagos. This species is exceedingly close to the East Indian K. treniuro, scarcely differing from Bleeker's description of the latter except in the smaller size of the ese.

Xenocys* geu. nov.
Diagnosis.-Closely allied to Kenistius, Jordan and Gilbert, from which it differs, in having the dorsal fins entirely separated, the spinons part of nine species, its base containing that of soft dorsal $1 \frac{1}{2}$ times; nostrils smaller and closer together than in Tenistius; teeth smaller; the fins more densely sealed and the occipital crest lower.

Type.-Xenocys jessice Jordan and Bollman.

14. Xenocys jessiæ spl. nov.

Type: No. 41,166, U. S. National Museum.
Hab.-Charles Island, Galapagos Archipelago.
Head, $3 \frac{1}{2}\left(4 \frac{1}{2}\right)$; depth, $3 \frac{2}{3}\left(4 \frac{2}{3}\right)$. D. X-1, 13; A. III, 11 . Scales, $8-51-15$. Length of type, $8 \frac{1}{2}$ inches.

Description.-Body narrowly but regularly elliptical, compressed; back little elevated. Mouth rather large, somewhat oblique; lower jaw
somewhat projecting; maxillary rather broad, reaching nearls to middle of pupil, 2_{7}^{3} in head Eye large, its diameter greatest obliquely downward and backward ; equal to suout, 3% in head ; longitudinal diameter shorter than snont, $3 \frac{1}{5}$ in head. Preorbital rather marrow, its narrowest place 2_{3}^{2} in eye; its edge entire, sheathing the edge of the maxillary for its whole length. Teeth very small, bands wider than in Ienistius californiensis; those on vomer in a $\boldsymbol{\Lambda}$-shaped pateh, hut very small. Nostrils minute, close together, the anterior rombl, the posterior oblong. Serrae of preoperele at angle blunt, rather flat, nome below, those on asceuding limb smaller and sharper. Gill-rakers long and slender, about $\mathbb{X}+$ 23. Operele without spines. Cheeks and top of head with small scales; lower jaw and snout with rudimentary scales; maxillary naked. Seales small, firm, ctenoid. Dorsal fins entirely separate, the interval between them about $\frac{1}{5}$ diameter of eye. Dorsal spines rather high, slender, and pungent ; the first short, the third and fourth of equal length, 22 in head, reaching when depressed to the tip of eighth; the second $\frac{2}{3}$ of third. Soft dorsal louger than anal, its base about \% of an eye's diameter shorter than that of spinous dorsal. Second anal spine noticeably shorter than third, which is almost 4 in head; longest soft ray 2^{3} in head. Suft dorsal, anal, and base of rentrals closely covered with small scales. Candal deeply forked, its peduncle slender, its upper lobe $1 \frac{1}{7}$ in head. Pectorals long, pointed, $1_{5}^{\prime \prime}$ in head; ventrals reaching slightly more than threefifths distance to rent, 1_{5}^{3} in head; axillary scale of ventrals well developed.

Color grayish-black above, silvery below, with abont 7 distinct, black, straight, parallel stripes on back and sides which extend across opercles aud cheeks, those above lateral line indistinct in old specimens. The upper stripes are about as wide as the interspaces, the lower narrower; top of head with distinct stripes; fins dusky, except the rentrals.

Numerous specimens of this beautiful and most graceful fish were obtained at Charles Island. The species is named for Mrs. Jessie Knight Jordan.
15. Larimus pacificus sp. nor:, (Larimus brericeps of anthors, from the Pacific coast).

Diagnosis.-Separated from the Atlantic species Latimus breviceps Cuvier, by the shape of the mouth, which is less oblique and similar to that of L. fasciatus, by the small amal spine, 3 in head, and by the distance between origin of ventrals and anal, which is more than depth of body, so that the ventrals do not reach vent.

Type.-No. 41,168, U. S. National Museum.
 $79^{\circ} 31^{\prime} 30^{\prime \prime}$ W. Also taken at Panama, P’unta Aremas, and Mazatlan.

Description.-Head, $3\left(3_{4}^{33}\right)$; depth same; D. N-I, $\stackrel{2}{2} ; ~ A ~ I I, ~ 6 . ~ S c a l e s, ~$ $6-50-8$. Length of type, $5 \frac{1}{2}$ inches.

Body compressed, formed as in other species; back elevated, regularly rounded from snout to last dorsal ray ; rentral outline most arched
anteriorly, base of anal obique. Profile of head depressed very slightly before dorsal and above eyes. Snout short, 43 in head. Eye moderate, equal to width of interorbital, 4 in head. Mouth rather large; maxillary reaching posterior border of eye, $2 \frac{1}{5}$ in head. Premasillary opposite middle of pupil. Width of preorbital oue-third eye.

Pores of shout and chin as in other species of Larimus.
Preopercle with a narrow, crenulate, membranous border; scapular scale with well-developed membranous teeth; opercle, with three graduated, stiff, membranous spiues above aud another below. Gill rakers, long and slender, longest equal to length of eye; about 20 developed below angle.

Scales on head and anterior part of breast cycloid; bases of membraues of fins scaly. First dorsal spine inserted over base of pectorals; fouth spine longest, $2 \frac{1}{2}$ in head. Anterior and posterior soft rays of dorsal subequal, 3 in head. Second anal spine, 3 in head; second anal ray, $2 \frac{1}{2}$ in head. Distance between origin of rentrals and anal one fifth more than depth of body. Pectorals $1 \frac{1}{4}$ in head, reaching anus. Ventrals not reaching vent by almost half eye, $1 \frac{2}{5}$ in head.

Coloration essentially similar to that of Larimus breviceps, silvery, with confluent dusky spots forming dark streaks along the rows of scales; numerous black dots from snout to caudal below lateral line; opercle appearing dusky externally, because the skin lining the region around pseudobranchiee is inky black; dorsal, caudal, anal, and pectorals somewhat dusky; soft dorsal pale at base, then with a dusky and a pale longitudiual streak, the distal half dusky; general coloration less fellow than in breviceps and the streaks along scales more prominent.

The specimens referred by us to Larimus breviceps were taken by the Albatross at the island of St. Lucia. The type of the present species was drer!ged in 16 fathoms at Station 2802, between the Galapagos Islands and Panama.

Other specimens apparently of the same species have been taken by Dr. Gilbert at Mazatlan, Punta Areuas, and Panama.

16. Polycirrhus rathbuni sp . nov.

Diagnosis.-Related to Polycirrhus peruanus (Steindachner), from which it is separated by its shorter pectoral ($1 \frac{2}{3}$ to $1 \frac{3}{4}$ in head), shorter dorsal spines (longest, $2 \frac{1}{3}$ in head), longer suout (33 in head), and more dorsal rays (D X $-\mathrm{I}, 29-30$) ; a large black humeral spot.

Type.-No. 41,170, U. S. National Museum.
Нав.--Panama.
 Lateral line, 53-55. Leugth of type, 7 inches.

Body elongate, compressed; back elevated, profile from snout to dorsal straight or slightly S shaped; rentral outliue gently arched, base of anal oblique ; caudal peduncle short and compressed.

Head low, little compressed. Shout short and blunt, 3 in in head,

Mouth small; maxillary shghtly longer than in permenus, reaching pupil, 3 in head. Eye shorter than snout, $4 \frac{1}{2}$ in head. Teeth small, villiform, outer enlarged, those of upper jaw largest.

Preopercle with a crenulate membranous border; least wieth of preorbital 6 in head. Gill-rakerss short and rather thick; $5+10$ present, lower much smaller.

Scales on snout, below eyes, and on anterior part of breast, eycioid : caudal sealy; dorsal and anal nearly sealeless, with a sealy sheath at base.

First dorsal spine rery short, inserted over base of pectorals; third and fourth equal, 2! in head. Anterior dorsal rays 3 in head, posterior 21. Second anal spine 3 in head, longest ray, 2 . Distance between bases of ventrals and anal, 3 in body. Pectorals not extending beyond ventrals, $1 \frac{2}{3}$ to $1: 3$ in head. Ventrals not reaching rent, $1 \frac{2}{2}$ to $1 \frac{3}{3}$ in head, outer ray filamentous. Longest caudal ray $1 \frac{1}{\text { in }}$ in head, fin shaped as in peruanus, the median ray's longest, the uper lobe slightly truncate and slightly concave, the lower cut off still more obliquely.

Color bluish-silvery, more sellow beneath; seales from base of pectorals to candal with larger dots. Back with four or five vers faint broad dusky cross-bauds, the one at end of spinons dorsal largest; a black spot larger than eye near origin of lateral line. Membrane of spinous dorsal thickly dusted ; soft dorsal with a pale streak through its middle. Anal, outer half of rentrals, and nearly all of pectorals dusky; candal rusty at base, followed by a pale area and then a dusky one.

Several specimens of this species were obtained by the Albatross at Pauma. It is named for Mr. Richard Rathbun of the U. S. Fish Commission.

17. Kathetostoma averruncus sp, nov.

Diagrosis.-Allied to the Australian species Kathetostoma lece, differing in the smaller number of dorsal rays and perhaps in coloration.

Type: No. - , U. S. National Museum.
Hal3.-Pacific Ocean, off coast of Columbia; so 57^{\prime} N., $79031^{\prime} 30^{\prime \prime}$ W. (Station 2800).

Description-Mead, $2 \frac{2}{3}\left(3 \frac{1}{3}\right)$; depth, $3 \frac{3}{4}\left(4 \frac{1}{2}\right)$. D. 13; A. 13. Length of type, $4 \frac{1}{2}$ inches.

Body short and robust, its width behind base of pectorals equal to length of top of head. Head very large, its width at preoperele less than its leugth loy half length of eye. Mouth large, vertical; maxillary 2 in head. Snout 1% in eye. Eye rather small, 5 in head. Teeth of lower jaw largest, imner row of both jatws enlarged aud movable. Lower jaw without tentacle. Interorbital space slightly concave, $1 \frac{1}{2}$ times length of eye. Premaxillary groove as broad as long, $1 \frac{1}{2}$ in eye; obtuse behind, extemding barkward just past middle of pupil. Distance between bases of humeral spines $1 \frac{1}{1}$ in top of heal. Preorbital with three spines in front directed forward and downward. Preopercle with three spines below angle directed downward and forward. Two antrorse
spines on mandible, and two on breast before rentrals. Bones of top of head coarsely gramular, striate, no naked area above except premaxillary groove; two peints on oceipital region whence granular ridges radiate; opereles and orbital bones coarsely granular, but not striate. No trace of scales or of spinous dorsal. Base of dorsal equal to base of anal, 1% in head; longest ray equal to depth of cheeks. Pectorals half eve, length greater than that of top of head. Ventrals reaching more than half way to vent, their length equal to that of top of head.

A few small depressions resembling imbedded scales on region before dorsal and above head.

Color, blackish-brown, mottled with paler; lower parts pale, dusted with brown; lips and gular region black. Dorsal dusky, with five indistinct, partly coufluent, whitish spots along its base. Anterior part of anal pale, posterior thickly dusted with blackish, tips of rays pale. Pectorals blackish, faintly harred; axil dusted outside, iumer pat very pale. Ventrals pale. Candal with three irregular oblique dark bars. Floor of mouth pinlish; tongue dusted with dark speeks.

A single specimen of this remarkable form was dredged at Station 2800 , at a depth of seven fathoms.

18. Bollmannia Jordan gen. nor.

Diagnosis.--This new gemus differs from Lepidogobius by having no fleshy processes on inner elge of shoulder girlle, the interorbital area narrower and without trace of median keel, and by the very large etenoid scales. From Golrius proper it is distinguished by the presence of 7 dorsal spines and by the presence of large scales on the cheels.

I have named this genus in houor of my late colleague, Mr. Charles Harrey Bollman, whose untimely death while engaged in the exploration of the rivers of Crorgia, took place while this paper was passing through the press.-D. S. J.
18. Bollmannia chlamydes* Jordan, sp. nov.

Type: No. 41,158, U. S. National Museum.
Hab.- Pacific Ocean off coast of Colombia; Station 2800, $8^{\circ} 51^{\prime} \mathrm{N}$. , $79^{\circ} 41^{\prime} 30^{\prime \prime} \mathrm{W}$. ; and Station $2805,7 \circ 56^{\prime} \mathrm{N} ., 79 \circ 41^{\prime} 30^{\prime \prime} \mathrm{W}$.
 Scales in a longitudinal series about $28 ; 8$ or 9 in a cross-series at rent. Length of type 43 inches. Body rather robust, compressed. Mead large and heavy, its profile evenly curved. Mouth very large, oblique; the fower jaw projecting; maxillary reaching to opposite pupil, $2 \frac{1}{5}$ to $2 \frac{2}{7}$ in head. Teeth small, sharp, in several series, the outer, especially in lower jaw, somewhat enlarged. Eye longer than smont, 3 to 4 in head. Interorbital area very narow, concave, its least width about one-third
of eye or almost equal to pupil. Seales very large, romoid; little reduced on breast and nape; about s before dorsal, where they are little smaller than on body ; top and sides of head with large scales; scales on chceks in four rows; two rows on upper part of opercles. The scales on head lost in some of the specimens. Dorsal spines slender, filamentous, fifth longest, $1 \frac{1}{5}$ in head ; first 2 in head, last 3.12 to 4. First soft dorsal ray $2 \frac{2}{5}$ in head, the ante penultimate longest and about equal to head. First anal ray equal to snont, the ante-penultimate $1 \frac{1}{1}$ in head. Middle caudal rays rery long, somewhat more than half length of body. Pectorals $1 \frac{1}{5}$ in head. Ventrals $1 \frac{1}{3}$.

Color, olivaceons, darkest above; scales with a ferr black dots, some of the posterior occasionally dark-edged. Sides with s to 10 obscure dusky vertical bars, which are narrower than the interspaces and in some specimens wholly obsolete. Suout bluish; opercles with a dark shade; lips, gular region, and anterior branchiostegals very dark in males. Upper part of spinous dorsal darkest, with a few lighter darkedged oval spots, a well-marked black bloteh between last two spines; soft dorsal dusky, usually with about three well-developed rows of lighter, darkedged oval spots. Aual dusky, crossed by two narrow bluish streaks. Some of the last rays occasionally have a few spots similar to those on dorsal. Candal, pectorals, and ventrals dusky, tinged with blue; ventrals edged with pale.

Many specimens of this abundant species were dredged at Station 2800 in seven fathoms and in Station 2805 in tifty-one and one-half fathoms.

19. Scorpæna russula sp. nov.

Diagnosis.-Allied to Scorpena fernanteziena Steindachner and Scorponu sonore Jenkins \& Evermann. It is distinguished from the former by its naked opercles and pale ventrals and anal, from the latter by having no coronal spines; the maxillary \sim in head and no large black spots on spinous or soft dorsals.

Type: No. 41,160, U. S. National Museum.
H Δ b.-Pacific coast of Colombia, Stations 2797 and $2792, S^{\supset} 6^{\prime} 30^{\prime \prime}$ N., $75^{\circ} 51^{\prime} \mathrm{W} .$, and $7057^{\prime} \mathrm{N} ., 75^{\circ} 55^{\prime} \mathrm{W}$.

Mescription.-IIead $2!3$ to $2 \frac{1}{2}\left(3\right.$ to $\left.3 \frac{1}{6}\right)$; (lepth $: 3 \frac{1}{3}$ to $3 \frac{1}{3}\left(4\right.$ to $\left.4 \frac{1}{4}\right)$. D. XI, I-10; A. III-5. Lateral line, 45 to 47 . Length of type, 6 inches.

Body robust, compressed; hack little elewated, profile very gently arched from snout to origin of spinons dorsal. Mouth large; maxillary reaching posterior margin of pupil, 2 in head. Snout 4! in head. Eyes large, $3 \frac{1}{2}$ in head. Interorbital space narrow, concare, its width a little less than one-third eye. Oceipital and suborbital pits absent. Crillrakers short and thick, 5 or 6 developed.

Nasal spines short and sharp, not longer than length of nostrils. Preocular spine very prominent, larger than others on top of head. Suprazocular spine not so strong as postocnlar and tympanie, which are close
together, the latter followed by a low striate ridge which hears the low occipital and nuchal spines. No coronal spines.

Temporal ridge prominent, ending in a spine, and with two blunt spines in front ; below these, and about half way to suborbital stay, is another small and blunt spine. Dreorbital with two large forward projecting spines in front; suborbital stay with a prominent ridge which bears a small spine below anterior margin of pupii, and two more behind posterior margin (in the roung the first of these two is absent). Preopercle with four distinct spines, hesides some four smaller projections, the largest spine with a small one immediately below. Opercular spines two, large and sharp, the lower the longer.

Scales small, searcely ctenoid, those on belly much reduced; breast and region in front of pectorals and rentrals sealed; antedorsal region with 3 or 4 rows of imbedded scales; temporal region with a few imbedded scales; cheeks with about 4 rows of large scales below the suborbital stay; membrane of opereles with a few scales, the opercle itself maked. Scales of body withont fleshy flaps. Supraorbital tentacle dereioped in the foung, disappearing in the adult. Dorsal spines not as high as soft rays, the fin deeply notehed; first spine 2 in eye, second $1 \frac{2}{5}$, third almosi equal to eye, fourth aud fifth almost equal, 3 in head, twelfth $3 \frac{1}{1}$ in head. Longest soft ray of dorsals $2 \frac{1}{2}$ in head. First anal spine $-\frac{1}{4}$ in second or 2 in eye, second anal spine longer than third and equal to eye; longest soft ray equal to that of dorsal. Pectorals long. $1 \frac{1}{2}$ in head. Ventral reaching vent, very slightly more than 2 in head, Caudal equal to pectoral.

Color, dark brown above, probably crimson in life, pale below level of upper half of pectorals. Upper half of head dark but withont any distinct spots, the back more or less mottled with dusky. Spinous dorsal with a dusky band at base and another across its middle; soft dorsal dark at base and with three or four irregular rows of small, obscure brownish spots. Caudal tipped with black, traces of a narrow dark bar across its middle. Pectorals slightly tipped with black, the middle slightly mottled. Ventrals and anals pale or with traces of black on tips of rays.

Numerous specimens were dredged at a depth of 33 fathoms in Stations 2795 and 2797.
20. Prionotus quiescens sp, nov.

Diagnosis.-Related to Prionotus stephanophrys Lockington, but the interorbital area concave ; the bones of head much striate and grannlated, and the caudal differently colored. It also bears some resemblance to the Atlantic species Prionotus stearnsi.

Type: No. 41,153, U. S. National Museum.
Hab.-Pacific Ocean off coast of Colombia; from Station 2800, $8^{\circ} 51^{\prime}$ N., $79031^{\prime} 30^{\prime \prime}$.W.; Station 2305, $70^{\circ} .50^{\prime}$ N., $7!\supset 41^{\prime} 30^{\prime \prime} \mathrm{W}$. ; Sta. fion 2801, $8 \circ 4 \tilde{6}^{\prime} \mathrm{N} ., 79 \circ 23^{\prime} 30^{\prime \prime} \mathrm{W}$. ; and Station $2803,8 \circ 35^{\prime} \mathrm{N} ., 79031^{\prime}$ $30^{\prime \prime} \mathrm{W}$.

Iescription.-Head $2 \frac{1}{2}$ to \sum_{2}^{3} ($3 \frac{1}{5}$ to 3_{3}^{1} with caudal) ; depth 4 to $4 \frac{1}{2}$ (5 to 6). D. X -12 ; A. 11. Scales, in lateral line, 50 to 55 ; in a longitudinal series, 60 to 70 . Length of types about 5 inches. Body rather slender, compressed, not much narrowed above, the width of the nape between the occipital spines 4 to $4 \frac{1}{5}$ in head. Head moderately elongate, not elevated ; eyes not prominent, the profile from snont to nape almost straight or slightly conver. Snout broad, of about equal length and breadth, 2.2 to $2 \frac{2}{3}$ in head; anterior margine marginate; preorbital littie projecting, its edge with about 15 to 20 fine serrae, the anterior strong. est with the exception of the last one, which is directed backwards.

Surface of bones of head smoother than usual in this genus and with fine radiating gramular strie, those on opercles, cheeks, and top of head most strongly developed.

Mouth rather large, maxillary $2 \frac{1}{2}$ in head, reaching slightly beyond anterior orbital rim.

Band of palatine teeth narrow. Ese moderate, $4 \frac{1}{3}$ to 5 in head. Orbital rim not especially elevated, its edges granulated, especially anteriorly, preorbital and postorbital spines small and blunt. Interorbital not deeply concave, rather wide, its least width $4 \frac{2}{3}$ to 5 in head. No groove across top of head behind orbital rim. Occipital ridges present, the inner very low, ending in a very small spine ; outer large, ending in a moderate spiue, the pair diverging, their inner edges serrulate, the spines extending to nearly opposite first dorsal spine. Temporal region with a slight elevated roughish ridge, but no spine. Preopercular spine long and sharp, its anterior edge somewhat serrulate, no smaller spine below it and none on suborbital stay. Opercular and humeral spines well developed sharp. No trace of spines on suborbital or preorbital. There are but three distinct spines on each side of the head, occipital, opercular, and preopercular. Membranous tlap of opercle with a few scales. Gill-rakers long aud slender, about equal to half diameter of eye, 8 to 10 well developed.

Scales quite small, those on breast (between rentrals) larger than those on belly or throat; scales extending beyond base of pectorals to istlmus; about 12 to 15 rows between occiput and front of dorsal.

Spinous dorsal rather low; first spine not strongly serrulate, ${ }_{i}^{3}$ length of secoud, which is $2 \frac{1}{2}$ in head; first ray of second dorsal weakly serrulate at base; longest ray shorter than snout and slightly less than 3 in head. Longest anal ray $3 \frac{1}{2}$ in head. Candal lunate, $1 \frac{1}{2}$ to $1 \frac{2}{3}$ in head. Pectoral reaching last dorsal ray, a little more than half body. Ventrals reaching vent, $1 \frac{2}{5}$ to $1 \frac{1}{2}$ in head.

Coloration inspirits, grayish, unspotted, more dusky abore; spinous dorsal dusky, a distinct black spot between fifth and sixth spines: soft dorsal with three rows of diffuse spots. Caudal dusky on the outer three-fifths and base. Pectorals mostly black, with faint pale cloudings. Ventrals and anal pale. Coloration perhaps red in life.

This smali speceles was dredged in large numbers in 7 fathoms depth at Station 2800 ; in 14 fathoms at Station 2801 ; in 16 fathoms at Station 2502 ; and at $51 \frac{1}{2}$ fathoms at Station 2805 . Probably none of the specimens examined are fully grown.

21. Prionotus albirostris sp. nor.

Diagnosis.-Approaching Prionotus quiescens in technical characters, but very different in appearance; easily distinguished by the form, armature, and coloration of the head.

Type: No. 41,162, U. S. National Museum.
IIAB.-Pacifie Ocean, off the coast of Colombia; Station 2795; 7c $57^{\prime} \mathrm{N} ., 78^{\circ} 55^{\prime} \mathrm{W}$.

Description.—Head 3 in length ($3 \frac{3}{4}$ with caudal); depth $4_{2}^{\frac{1}{2}}$ ($5 \frac{3}{4}$). D. $\mathrm{X}-12$; A. 11. Pores along lateral line 50 to 55 . Length of the type 5_{2}^{1} inches. Body moderately elongate, little compressed, narrowed above, the witth of the mape between the occipital spines being $4 \frac{1}{2}$ in head. Head rather short and high; eyes prominent, the anterior profile regularly concare, the eres and forehead less prominent than in the next species. Snout broad, its breadth at angle of month almost equal to its lemgth, 21 in head ; its anterior margin not produced, but slightly emarginate, serme short and even, bluntish, about 20 well developed ; whole edge of preorbital with fine serre. Anterior nostril with a large back flap. Surface of bones of head with strong ratiating striee, those in front of eyes most broken up into gramulations. Mouth moderate, maxillary $2:$ in head, not reaching front of ere ; band of palatine teeth rather broad. Eye rather large, $4 . \frac{1}{2}$ in head. Interobital space narrow, deeply concare, smoother than rest of head, its least width $6 \frac{1}{2}$ in head. Orbital rim elevated, with coarse spine-like strite in front, inner largest, forming the preocular spine; upper margin with moderately strong serrie ending behind in a large, supraocular spine. No groove across top of head behind orbital rim. Oceipital ridges strong, the inner pair with a few asperities at base, ending in a compressed spine; the outer with stronger serme at base and extending to opposite first dorsal spine. Temporal ridge slightly crenulate, with two bluntspines. Preopercular spine withont a smaller one at base, its edge sermbate; suborbital stay with an rlevated sermbate ridge but no spine. Opercular spine small and blunt, smaller than the strong Inmeral spine. No spines on suborbital or preorbital. Membranons flap of operele scaly. Gill-rakers bather long and slender, longer than interspaces, about equal to one-third of eye, five most strongly dereloped. Scales small, those on belly smaller than those on breast, not extending before a line drawn between base of pectorals and rentrals; about seven seales between oceiput and dorsal; spinous dorsal moderately high, the first spine rery strongly serrulate in front, shorter than second, which is one-haif head; first ray of second dorsal sermbate at base, the longest ray very slightly longer than snout.

Longest anal ray 3 in head. Candal subtruncate, $1_{: 3}^{1}$ in head. Pectorals long, reaching to the last dorsal ray or even farther in young specimens, $1 \frac{10}{10}$ body. Ventrals reaching thind anal ray, 1 in head.

Coloration in spirits grayish, unspotted, darkest alowe, and with darker cross-shades. Snout and jaws white; the tip of both jaws, a bar across both jaws, and one behind angle of mouth, black. A black bar on anterior and another on posterior part of interorbital, the latter extending across the cheeks. First dorsal dusky, vaguely clouded with darker; second, irregularly spotted, its posterior half' dusky. ('amdal, broady black at base and tip; its middle part yellowish. Pectorals dark, with a slight riolet shade, and traces of darker mottlings. Middle of anal dusky. Veutrals dusky on upper surface.

This species is known from several specimens, the largest 5 ? inches long, dredged at Station 2795, at a depth of 33 fathoms. In its concave profile and prominent eyes it resembies the next speefes, but its aftinities are with the large-mouthed forms, the allies of Irionotres croluns.
22. Prionotus xenisma sp. nor.

DiAgrosis.- Approaching Irionotus punctutus U. © V., from which it is at once separated by the form of the smont and the outline of the profile. It a pproaches still more closely to I^{\prime}. birostrutus, from which it is separated by the presence of a smaller spine at the base of the spine on the preopercle. The latter species has also smaller scales and the humeral spines smalier than the spine on the opercle.

Type: No. 41,151, U. S. National Museum.
Habs.-Pacific Ocean, off coast of Colombia, at Station 2795.7055^{\prime} N., $78^{\circ} 55^{\prime} \mathrm{W}$.
 41). D. VIII-11; A. 10. Scales in a longitndinal series, fol to \quad il ; about 4: oblique series, between gill opening and tail : 3π to 40 pores in lateral line. Length of type, 4 inches.

Body short and robust, little compressed, the width of the nape, between occipital spines, 6 to 6.1 in head. Mead, short and high; eyes, prominent ; the profile angulated, concare before eye, convex above it. Snoat short and broad, its brearth greater than its length, which is $2 \cdot \frac{9}{3}$ in head ; its anterior margin deeply emarginate, the weorbital produced on each side into a broad triangular spiniferous lobe, which is nearly equal to half diameter of eye.

Surface of bones of head finely and densely sramular striate. Mouth small, maxillary 3 to $3 ; 3$ in head, not reaching front of eye. Band of palatine teeth rather broad.

Eye large, t in hearl. Interorbital space narow, deeply concare, and granular striate, its least width of to $6 \frac{1}{2}$ in head; orhital rim elevated. its edges granular serrate: no distinct preorbital spine, whole edse of preorbital finely sermbate a groove across top of head hehind the blunt supraorhital spine. Oecipitail ridges present, the outer grammar
and not spinous; the imer rather sharply elevated into a short spine; the onter rather wide, extending to second dorsal spine. Temporal region with an elevated roughish ridge, on which are two bluntish prominences. Preopercular spine large and strong, with a smaller one at its base. Opercular spine long and sharp; humeral spine usually larger than opercular. No spines on suborbital.

Membranous tlap of opercles not scaly. Gill-rakers short, slender, longer than interspaces, and about equal to three-fifths of pupil. Naked skin of throat with numerous papilla. Scales rather small, of about equal size on breast and belly; extending beyond base of pectorals, anterior margin forming an obtuse augle; 3 or 4 rows of rudimentary scales between occiput and dorsal. Spinous dorsal high, the first spine longest, $1 \frac{3}{4}$ to 1_{5}^{4} in head; anterior margin of first three spines with numerous granuke; second spiue slightly more than two in head, all the spines stout; longest ray of secoud dorsal shorter than snout, $3 \frac{1}{6}$ in head. Longest anal ray $3 \frac{2}{3}$ in head. Caudal slightly lunate, $1 \frac{3}{4}$ in head. Pectorals quite short, reaching fifth ray of second dorsal, 3 in body. Ventrals reaching anal, $1 \frac{2}{5}$ in head.

Three short granular interspinal bones projecting through the skin between first and second dorsal, the anterior less robust than others.

Coloration in spirits grayish (probably red in life); dusky above and irregularly mottled; a distinct dark spot before base of caudal. Dorsal dusky, with a large black ocellated spot between fourth and fifth spines; dorsal spines with a row of dark spots on their anterior margin ; soft dorsal with three rows of dark spots. Pectorals blackish, a few of the upper rays pale on the iuner side. Ventrals and anal pale. Caudal barred with dusky.

Very many specimens of this small species were dredged at Station 2795 at a depth of 33 fathoms.

At Station 2805 another species was obtained which resembles this very closely. It is, however, a little more elongate, with rather smaller scales, the candal fin spotted, and no distinct dark spot at base of candal. In this species there is no trace of a second spine at the base of the large preopercular spine, and the humeral spine is rather smaller than the opercular. Both have the snout birostrate, the forehead and eyes very prominent, and the pectorals very short. One of these is probably Prionotus birostratus of Richardson, and both agree with the short description of the latter given by Dr. Cxiinther. In view of this doubt, we have identified the species with the smaller scales as P. birostratus, as Richardson says "Scales very small." Besides the four species mentioned in this paper, specimens were obtained of Prionotus miles Jenyus at Charles Island, and of P. horrens Richardson at Station 2802.

Runula* genus novim. (Blemnidae.)
Allied to Petroskirles Riippell, but with the small, inferior mouth destitute of eanines; body slender; dorsal fin contimons, its species and soft rays indistinguishable; gill openings reduced ; seales none.

Type.-Runula azalea sp. nov.

23. Runula azalea sp. nov.

Type : No. ——, U. S. National Museum.
Insb.-Indefatigable Island, Galapagos Archipelago.
Description.-Head $4 \frac{1}{2}$; depth $6 \frac{1}{5}$; D. about 40 , the count uncertain; A. about 22^{2}, the count uncertain. Length of type, 2 inches.

Body moderately elongate, not much compressed; head rather long, its upper ontlines convex; snont short and very bhut; month entirely inferior, transverse, each jaw provided with long, slemder, close-set curved teetl: no evident posterior canines; upper jaw rather behind nostril; eye moderate, equal to suout and nearly equal to interorbitai width, 4 in head; no tentacles on head; gill membanes fully united to the isthmus, the gill opening reduced to a rertical slit, its lower edge opposite middle of base of pectoral; no scales; lateral line very high, concurrent with the back. Dorsal fin very low, continuons; the feeble spines and soft rays indistinguishable, the tin begimuing at occiput; anal similar to soft dorsal. Candal lunate behind, free from dorsal and anal. Pectorals and ventrals small, each about 1_{5}^{4} in head.

Color reddish brown, silvery below; a black spot surrounded by paler at base of caudal; dorsal with about (6 hack cross-bars; anal with four; other fins pale.

A single specimen 2 inches long, taken at Indefatigable Island, in the Galapagos.

24. Porichthys nautopædium +sp . nov.

Diagnosis.-Similar to Porichthys maryaritutus, diftering chiefly in color. Top and sides of head and space above pectorals with numerons round black spots, which behiud pectorals form 6 to s vertical half crossbars; dorsal not margined with black, but with s to 10 black sulmarginal spots; anal, with the exception of a few posterior myss, pale; caudal black at base and tip; pectorals with a few dots at base and on upper rays; a romdish white blotch below eye, below this a jet black crescent; head $3 \frac{1}{3}$ to $3 \frac{2}{3}$; depth $4 \frac{1}{3}$ to $5 \frac{1}{2}$. I). II, 37 ; A. 33 . P'alatine teeth small, one or tro slightly enlarged. Series of shining spots arranged as in l '. margaritatus.

Type: No. 41,145, U. S. National Museum.

[^41] N., $7 ., 31^{\prime} 30^{\prime \prime}$ W., and Station $2795,7057^{\prime}$ N., $78^{\circ} 55^{\prime}$ W.

This species was obtained in large numbers at Station 279\% at a depth of 33 fathoms, and at Station 2802 at a depth of 16 fathoms. The largest specimens are about $4 \frac{1}{2}$ inches long. It may prove to be merely a colorvariety of the northern P. margaritatus.

25. Otophidium indefatigabile sp. nov.

DIAGNOALS-Allied to Otophidium taylori (Girard), but with fewer gill rakers, smaller teeth, and somewhat different coloration.

Type: No. ——, U.S. National Museum.
Hab.-Indefatigable Island, Galapagos Archipelago.
Description. - Head $4_{5}^{2}\left(4 \frac{1}{2}\right)$; depth $5_{3}^{2}\left(5 \frac{5}{7}\right)$. Length of type 4 inches.
Body rather short, compressed, width of nape 2.2 in head. Mouth large; maxillary reaching to opposite posterior margin of pupil, $1 \frac{1}{5}$ in head. Onter row of teeth of each jaw very slightly enlarged. Snout shorter than eye, 4 in head. Eye large, 3 in head. Interorbital space 2 in eye. Interorbital area with a thin crest under the skin, this ending in two compressed spines, one tumed forward, the other backward, over front of eye, these spines concealed by the skin. Gill-rakers short and thick, less than half pupil four developed. Iorsal beginning at end of anterior third of pectorals, longest ray $3 \frac{1}{2}$ in head. Pectorals 2 in head. Inner rentral filament longest, $\because 2$ in head. Air-bladder short and thick, with a foramen. Scales very small, more or less imbricated on body. Head naked. Opercle with a sharp, partly concealed spine. Pseudobranchiæ present.

Color, pale yellowish-brown, silvery on belly and sides of head. Back with about twelve irregular dark cross bands, the alternate ones being narrower and broken up into spots, two before dorsal; a few scattered spots about as large as pupil on sides, these most distinct about the shoulder. Dorsal pale, first rays black, and with three or four other black blotches on upper part. Anal black, margined with white. Pectorals pale, axil dusky. Candal and posterior part of anal pale. Chin pale.

The single specimen which is type of this species was obtained at Indefatigable Island, in the Galapagos. Its nearest relative seems to be the Californian O. taylori.

26. Leptophidium prorates sp. nov.

Diagnosis.-Closely allied to the Atlantic species, I. brevibarbe (Cuvier), the scanty descriptions of the latter species being insufficient for comparison.

Type: No. 41,149, U. S. National Museum.
Hab.-Panama and Station 2801, $8 \circ 47^{\prime} \mathrm{N} ., 79^{\circ} 29^{\prime} 30^{\prime \prime} \mathrm{W}$.
Description.-Head 4_{3}^{1} to $4_{3}^{2}\left(4_{3}^{2}\right.$ to $\left.4_{4}^{3}\right)$; depth $7 \frac{1}{3}$ to $5_{6}^{1}\left(7 \frac{3}{5}\right.$ to $\left.8_{2}^{1}\right)$. Length of type 10 inches. Body moderately elongate, compressed, con-
siderably stouter than in L. profundorum. Mouth large; maxillary reaching about half pupil's length beyond posterior border of eye, $2 \frac{1}{4}$ in head. Uuter teeth slightly enlarged, a little movabe, those of upper jaw largest. Snont shorter than eye, $\overline{\text { jon }}$ in head. Eye large, 4_{2}^{1} in head. Interorbital space $1 \underset{5}{3}$ in eye. Gill-rakers rather long and slender, onefourth length of eye; four developed. Tip of snont with a strong spine directed forwards and slightly downwards. Opercle without spine, ending in a flat projection covered by skin. Dorsal begioning over middle of pectorals, longest ray 4 in head. Pectorals $\ddot{-}_{3}^{1}$ in head. Inner ventral filament shortest, the longer 2_{3}^{2} in head.

Scales regularly imbricated but very small, about $2 \mathrm{~g}_{\mathrm{a}}^{\mathrm{n}}$ in a longitudinal series; seales on top of head extemding forward to base of ethmoid spine; sides of head covered with small scales. Lateral line not reaching end of tail.

Color, oliraceous, paler helow; scales rather profusely dotted with black. A pale shade across opercles. Lower jaw, sular region, and anterior bratuchiostegals dusted. I orsal and anal margined with black, the band on anal the broader; pectorals pale.

Air bladder oblong-lanceolate.
Specimens of this species were obtained at Panama and at Station 2S01, south of Panama.

27. Bregmaceros bathymaster sp. nov.

Dragnosis.-Closely allied to Ibregmaceros macelellandi, but apparently differing in the larger size of its scales and in the shorter ventrals. Type: No. 41,137, U. S. National Museum.
Hab.-Pacitic coast of South America, taken at Station 2804 , so 16^{\prime} $30^{\prime \prime}$ N., $79^{\circ} 37^{\prime} 45^{\prime \prime} \mathrm{W}$.

Description.- Head 5_{5}^{2}; depth $6 \frac{2}{3}$. D. about I, $18,2 y$, the small rays so broken that the count is uncertain. A. about. $18,22+V .4$ or 5 . Scales about 50 , the count very uncertain. Length 2 inches.

Body moderately elongate, compressed, the form somewhat as in Ophidion, the back not elevated. Head short and small, moderately compressed ; bones of head thin, without serratme or spine; eye moderate, 3 in head; interorbital space ridged, about as lowad as eye; snout blunt, rather shorter than eye; mouth very oblique, the jaws subequal; maxillary reaching to beyoud middle of eye, $2 \frac{1}{3}$ in head; gower jaw flattish, curved uфward; teeth in both jaws moderate, slender, close set, recurved, apparently in a single series. Tongue conspicnous; no teeth evident on vomer or palatines; branchiostegals 7 or S ; gill membranes separate, free from the isthmus; no evident psendobranchir; gill-rakers obsolete; no barbels about jaws.

Body with rather large, thin, carlucous, scales (nearly all of them fallen in the typical specimens so that they ean not be counted).

Dorsal fin begimning with a single long and very slender spine on occiput, this nearly one-third longer than head. Behind this, for a dis-
tance about equal to its length, the rudimentary rays, if present, do not rise above the sheath on each side. Nearly opposite the rent begins the dorsal proner, the distance of its first ray from snont being about twofifths length of body; about 12 rays are moderately elevated, about three fourths length of head. The others are gradually shorter and more slender, becoming too small to count, until just hefore caudal, where the tin becomes conspicuous again, this posterior lobe not half so high as the anterior. Anal opposite dorsal and similar to it, the first ray close behind vent; candal free from dorsal and anal, the caudal peduncle truncate at its base. Ventrals of 3 long rays, with a fourth at the immer base of the third; this fourth is probably a rudiment of two. The rentrals are jugular in position, the rays very long and filamentous, the longest abont half the body, reaching end of anterior lobe of anal, but not to the middle of the fin. Pectorals inserted high, somewhat shorter than head. Yent slightly behind end of anterior third of total length.

Color brown above, sides and below silvery; back and base of anal closely dotted with dusky. Dorsal mostly dusky; caudal pale, dusky at base, with a narrow white cross-bar; lower fins pale. The dark markings on front of back assume something of the form of lengthwise streaks.

Two specimens of this species, $1 \frac{3}{4}$ and 2 inches in length were dredged at Station 2804 , in 47 fathoms depth. The species is very close to the Chinese Bregmaceros mucclellandi. It seems, however, to have larger scales and rather shorter ventrals.

28. Azevia querna * sp. nov.

Dragnosis:-Distinguished from A.panamensis (Steindachner) by baving much smaller cycloid scales on eyed side and by its platin coloration.

Type: No. 41,159, U. S. National Museum.
Hab.-Pacific Ocean off coast of Colombia; from Station 2802, $8^{\circ} 38^{\prime}$ N., $79^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{W}$., and from Station 2800 , s० $51^{\prime} \mathrm{N} ., 79 \circ 21^{\prime} 30^{\prime \prime} \mathrm{W}$.

Description.-Head $3 \frac{1}{3}$ to $3 \frac{3}{3}\left(4\right.$ to $\left.4_{5}^{2}\right)$; depth $2 \frac{1}{3}(23)$ D. 91 to 95 ; A. 73 to 75 . Scales aloug lateral line 90 to 95 . Length of type S inches.

Body shaped as in Azevia panamensis. Mouth large; maxillary $1 \frac{4}{5}$ in head. Teeth as in panamensis, in single series, rather long and slenter, the anterior somewhat more enlarged. Snout 5 in head, its tip hooked over the lower jaw, so that the outer canines project. Interorbital space rather narrow, slightly concave, with a few small seales, its width a little less than pupil, one-third diameter of eye. Eyes moderate, $5_{2}^{\frac{1}{2}}$ in head, the upper somewhat in adrance. Gill-rakers short and broad, as in panamensis, each with 3-4 strong teeth.

Scales small, eyloid on both sides, those below peetorals more reduced than in ponamonsis ; about 65 in a cross-series; anterior part of lateral Tine bent slightly upward, this portion about $3 \frac{1}{2}$ in straight part.

[^42]Dorsal begiuning above and between the nostrils, the anterior rays short, but with free tips ; longest ray $2 \frac{2}{2}$ in head. Pectorals of eyeri side $1 \frac{1}{5}$ to 24 in head, of blind side $2 \frac{1}{3}$ to $2 \frac{1}{2}$. Ventrals subermal, both 6 rayed, $2 \frac{4}{5}$ in head, extending one-third their length heyond rent.

Color plain brown, unspotted. Fins dusky, thickly punctulate; young with two large oval indistinct dark spots on dorsal and anal, three on caudal, of which the middle is much larger.

Numerous specimens, the largest about 8 inches in length, were dredged in 7 fathoms at Station 2800 , and in 16 fathoms at Station 2802 . The closely related species, Azeria panamensis, was obtained at Station 2757. Azevia querna is probably the species obtained by Professor Gilbert at Mazatlan in 1882. (See Jordan \& Goss, Review I'lenronectide, 1889, p. 271.)
29. Hippoglossina macrops* Steindachner.

Н Δ b.-Pacific Ocean off coast of Colombia ; at Station $2805,7 \circ 56^{\prime}$ N., $79^{\circ} 41^{\prime} 30^{\prime \prime}$ W.

Description.-Head 3 ($3 \frac{3}{4}$ to $3 \frac{4}{5}$) in length; depth $2 \frac{2}{3}$ to $2 \frac{3}{9}$ ($3 \frac{1}{3}$ to $3 \frac{1}{2}$.) D. 60 to $63 ;$ A. 47 to 49. Scales along lateral line 70 to 75. Length of type 7 inches.

Body regularly elongate, elliptical, dorsal aud rentral outlines equally curved; orbital rim euteriug anterior protile, which is equally curved before and behind eyes; greatest depth of body above pectorals. Mouth rather large, the maxillary reaching about to middle of pupil, 213 to $2 \frac{2}{5}$ in head. Teeth equally developed on both sides, small and equal, uniserial. Snont 5 in head; the premaxillary spine prominent. Interorbital space a narrow, sharp, nakel ridge; eyes large, the lower slightly in advance of upper, 3_{3}^{2} to 4 in head. Gill-rakers moderately long and slender, the longest 3 in length of rentral of eved side; 9 developed, the last 2 much shorter.

Scales small, firm, strongly ctenoid, those below pectoral much reduced, about 40 in a cross series; arch of lateral line strongly marked, $2 \frac{2}{3}$ to $2 \frac{4}{5}$ in straight part.

Dorsal beginning above middle of pupil of upper eye, its anterior rays low, its longest rays $2 \frac{1}{7}$ in head. A strong antrorse spine before anal. Pectoral of eyed side 2 in head, that of blind side $\frac{21}{2}$ to $\frac{2}{3}$ in head. Ventrals subequal, both 6 rayed, 4 in head, extending more than half their length beyoud anus. Both are lateral, lout that of eyed side nearest ridge of abdomen, and a little behind its fellow. Last ray of left rentral joined to abdomen alongside of anal spine. Caudal acute, its peduncle long.

Color greyish brown, a row of six romud, bluish spots, smaller than pupil, along base of dorsal, four similar spots along base of anal, and a few indistinct smaller ones on rest of body and heal. Body with six

[^43]iarge black spots somewhat smaller than eye ; these are regularly four below dorsal aud two abore anal, the first of dorsal abore arch of lateral line, the second above anterior third of straight part, the third at base of last rays and almost forming a cross-bar with the one at base of anal rays.

Dorsal, anal, and caudal dusky, with small whitish spots; a pale spot at base of last four dorsal and anal rays ; a small black spot at base of outer caudal rays on peduncle. Pectorals and ventrals dusky, but not spotted. Right side immaculate.

Numerous specimens were dredged at Station 2505 , at a depth of $51 \frac{1}{2}$ fathoms.

Engyophrys gen. nov.

Allied to Platophrys (Swainson), but having the interorbital space rery narrow and armed with a spine, and the scales of moderate size and eycloid. Gill-rakers obsolete. No anal spine. Gill-membranes entirely separate.

It is nearest the genus Engyprosopon Ciinther, but in that group the interorbital space is broader, the scales ctenoid, and the gill-rakers developed.

Type : Engyophrys sancti-laurentii.

30. Engyophrys sancti-laurentii ${ }^{*}$ sp. nov.

DiAgNOSIS.-This peculiar species is distinguished from species of Platopluys and Engyprosopon by its very narrow interorbital ridge; from the species of Armoglossus by the form of the body, the short gillrakers, etc.; and from all related species by the peculiar coloration of the blind side.

Type: No. 41,155, U. S. National Musenm.
Hab.-Pacific Ocean, off coast of Colombia; from Station 2805, 70 56^{\prime} N., $799^{\circ} 41^{\prime} 30^{\prime \prime}$ W., and Station 2795, $7 \circ 57^{\prime} \mathrm{N} ., 78^{\circ} 55^{\prime} \mathrm{W}$.

Inescription.-Mead 2% to $2 \frac{4}{7}\left(3\right.$ to $\left.3 \frac{1}{2}\right)$; depth $1 \frac{3}{3}$ to $2\left(2\right.$ to $2 \frac{1}{3}$). D. 7 s to 85 ; A. 68 to 72. Scales 60 to 68 , along lateral line. Length of type $4 \frac{1}{2}$ inches.

Body broadly ovate, much compressed, the greatest depth over peetorals; dorsal and ventral ontlines equally curved; profile searcely concave before eyes. Mouth very small, oblique, the maxillary reaching opposite pupil of lower eye, 4 to $4 \frac{1}{2}$ in head. Teeth present on blind side well developed, close set, and even; none on vomer. Snout short, $4 \frac{1}{2}$ to $\tilde{3}$ in head. Interorbital space a rery narrow, sharp, scaleless ridge, the ridge forking above pupil, leaving a very narrow concavity anteriorly; lower ridge armed with a strong spine, turned backward, inserted just above pupil of lower eye. Anterior orbital rim of upper eye rather hig!, entering profile. Eyes large, lower in advance

[^44]of upper, 3 to to 4 in head. (xili-rakers almost obsolete, represented by 5 or 6 small fleshy papillæ.

Scales morlerately small, cycloid, and not very tirmly attached ; small seales on rays of dorsal and anal fins; arch of lateral lime short and small, but abrupt, \pm to. i times in straight part. Dorsal hegiming on blind side just behind posterior nostril and in front of eve. Pertoral of colored side 2 in head, that of blind side es in head. Ventrals of col ored side slightly longest, 3 in head; that of colored side with 6 rays, of blind side with 5 or 6 rays.

Color of left or eyed side blackish-brown, with seattered white and black spots, the latter most prominent along hase of dorsal and anal fin. Three large back non-ocellated blotehes on straight part of lat eral line, the first at begiming, second at midhle, thim on peduncle. Fins dusky; dorsal and anal with seattered white and black spots; caudal with five back spots arranged in a curved series. Blind side with five or six curved parallel dusky bands as wide as eye, the first beginning on interopercle and curving across cheeks to along base of dorsal; second begiming at throat and curving along posterior margin of preopercle, and extending on back, parallel with the first from vent; third curving aromed in front of pectorals, across posterior part of opercle, and extending to base of dorsal tin behind the middle; rest behind peetorals. All of these bands fade out behind midde of bods, so that the posterior portion is immaculate. In young examples the se bands are very faint or obsolete.
Numerons specimens, the largest about $4 \frac{1}{2}$ inches long, were dredged at Station 2795 , at a depth of 33 fathoms. and at station 280.5 at a depth of $51 \frac{1}{2}$ fathoms.

31. Symphurus atramentatus sp. nov.

1)incivosts.-Related to Symphurus utricauda (Jordan \&i (rilbert), but distinguished by having ;-6; black oblong hlotehes on posterior part of dorsal and anal; the general coloration darker; the seales and eyes larger.

Type: No. 41,157, U. S. National Museum.
Hab. -Station 2795 , ofí the Pacific coast of Colombia, τ Ni' N., 75° $55^{\prime} \mathrm{W}$.

 type $4 \frac{1}{2}$ inches.

Body more elongate than in S. atricauda.
Eyes larger than in s.atricunde, the upper in adranee of lower, vertical diameter of both $3 \frac{1}{2}$ to 4 in head. Cleft of month somewhat more curved than in S. atricauda, otherwise similar.

Scales larger than in s. atricandu, 95 to 100 in a longitndinal series, 38 in a cross-series ; spines on posterior margin not so strong.

Ventral fins (measured from angle of gill-opening) 路 to 3 m head.
Proc. N. M. 89-- 12

Color light brown, irregularly barred and matrbled with darker; several irregular grayish bars most distinct on posterior parts, a distinct narrow dark bar behind gill-opening. Anterior part of dorsal and anal fins pale, posterior dark; anterior part with 4 to 7 dusky oblique areas, posterior part with 3 to 6 roundish inkyblack spots. Caudal black narrowly tipped with white. All the scales with a narrow dark edge.

This small sole is very closely related to the others of the genus. We are, howerer, unable to identify it with either of the two species, S. atricauda and S. elongatus, found on the Pacitic Coast, and therefore give it a new name. Many specimens were dredged at a depth of thirty-three fathoms at Station 2795.
32. Symphurus leei sp. nov.

Diaginosis.-Related to Symphurus atricuuda (Jordan \& Gilbert), but the body with four wide black cross-bands, and the form more elongate.

Type: No. 41,134, U. S. National Miuseum.
Hab.-Station 2804 , off the Pacific coast of Colombia, $8^{\circ} 16^{\prime} 30^{\prime \prime}$ N., $79^{\circ} 37^{\prime} 45^{\prime \prime} \mathrm{W}$.

Inescription.-Head 4 to $4 \frac{1}{2}$ ($4 \frac{1}{3}$ to $4 \frac{2}{3}$); depth $3 \frac{4}{5}$ to 4 ($4 \frac{1}{5}$ to $4 \frac{1}{3}$). D. 95 to $100 ;$ A. 80 to 85 . Scales 80 to 90,35 to 38 in a cross-series. Length of types $4 \frac{1}{4}$ iuches.

Body more elongate than in S. atricauda or S. utramentatus, approaching that of S. elonyctus; ontline of under part of head more oblique than in the other Pacific Coast species.

Eyes larger than in the preceding species, the upper in advance of lower, their vertical diameter $\tilde{5}$ to $5 \frac{1}{2}$ in head. Cleft of mouth extending slightly farther back than in S. atricauda or atramentatus, bat not beyond eye as in S. clongatus ; maxillary reaching posterior border of eye 3_{3}^{2} to 4 in head. Snout $5 \frac{1}{5}$ to 5_{3}^{2} in head.

Opercular flap larger than in other Pacific species.
Scales comparatively large, not so firmly imbedded as in S. atricauda or atramentatus; those on opercles rather large.

Ventrals $3 \frac{1}{3}$ to $3 \frac{1}{2}$ in head.
Color light brown, speckled with darker, and with three or four broad black cross-bands, width of mediau bands $2 \frac{1}{2}$ to 3 in head, the posterior band widest. Candal and the posterior $\frac{2}{5}$ of the dorsal and anal black; no black spots on dorsal. Scales thickly punctulate, but with no distinct darker edgings.

Many specimens of this species were obtained at Station 2804 at a depth of 47 fathoms. It is evidently very different from S. atramentatus, and needs comparison only with S. clongutus, from which it seems to be sufficiently distinct. We have natnel the species for Prof. L. A. Lee and Mr. Thomas Lee, naturalists on board the Albutross when the species was discovered.

The following is a complete list of the species obtained at Panama, at the Galapagos Islands (Charles, Chatham, Hoorl, James, Indefatigable, Albemarle, and Abingdou), and at the various dredging stations off the west coast of the United States of Colombia. These stations are numbered 2794 to 2809 . The following table gives the location and depth of water of each:

Dredging stations.

Galeorhinide :
Eulamia lamiella (Jordau \& Gilbert). Chatham.
Galeocerdo maculatus (Ranzam). Panama.
Galens dorsalis (Gill). Panama.
Rajidæ :
Raja equatorialis Jordan \& Bollman. Station 2797.
Torpedinidæ :
Discopyge ommata Jordan \& Gilbert. 2797.
Dasyatidæ:
Urolophus goodei Jordan \& Bollman. 2797
Siluride:
Tachysurus platypogon (Giinther). 2795.
Thachysurus elatturus (Jordan \& Gilbert). (Var.?) 2800.
Albulide: :
Albula vulpes (L.). Panama.
Clupeide:
Pellona panamensis Steindaciner. Panama.
Clupea sp. (very young). Indefatigable.
Stolephorida :
Cetengraulis mysticetns (Giiuther). Panama.
Stolephorus poeyi Giinther. Panama.
Stolephorus ischanus Jordan \& Gilbert. Panama.
Synodontida:
Synodus evermanni Jordan \& Bollman. 2805, 2797, 2795.
Synodus jenkinsi Jordan d Bollman. 2797, 2800, 2799.
Murenidie :
Murwna lentiginosa Jenyns ($=$ M. pinta Jordan de Gilbert). Charles.

Ophisuride:
Ophichthus evionthas Jorlan © Bollman. Hlood.
Ophichthus rugifer Jordan \& Bollman. Charles.
Congridt :
Ophisoma nitens Jordan \& Bollman. 2801.
Murtenesox coniceps Jordan \& Gilbert. 2795. Panama. Cymrinolontide:

Pucilia clongata Günther. Panama. Exocetide:

Exocætus cyanopterus C. \& V. James.
Halocypselns evolans (L.), $6{ }^{2}$ south of equator.
Fodiator acutus (C. \& V.). Panama.
Hemiramphus unifasciatus Ranzani. Panama.
Hemiramphus roberti (C. \& V.). Indefatigable. Chatham.
Tylosurus stolzmanni (Steindachuer). Indefatigable; Panama.
Fistularide:
Fistularia depressa Günther. Panama.
Mugilide:
Mugil curema C. \& V. Panama,
Mugil cephalus L. (rammelsbergi). Chatham; Hood.
Mugil species nova (?).
Cheuorugil proboscidens (Giinther). Panama.
Querimaua harengus (Günther). Panama.
Atherinide:
Menidia gilberti Jordau \& Bollman. Pauana.
Polynemide:
Polydactylus opercularis (Gill). 2304. Panama.
Polydactylus approximans Lay \& Beunett, 2800. Panama.
Trichiuride:
Trichiurns lepturus L. Panama.
Scombride :
Scomber colias Gmelin. Albemarle.
Scomberomorus maculatus (Mitchill). Paname.
Caraugide:
Oligoplites altus (Günther). Pauama,
Oligoplites saliens (Bloch \& Schneider). Panama.
Decapterus hypodus Gill. Charles.
Caranx latus Agassiz. Panama; Chatham.
Caranx hippos (L.). Panama.
Vomer setipinnis (Mitchill). 2800, 2801, 2797, 2202, 204. Panama.
Chloroscombrus orqueta Jordan \& Gilbert. Panama.
Seriola dorsalis Gill (?). Albemarle.
Stromateidio:
Stromatens palometa Jordan \& Bollman. Q804.
Centropomide:
Centropomus armatus Gill. Panama.
Serranide:
Rypticus nigripiunis Gill. Panama.
Epinephelus labriformis (Jenyns). Iudefatigable; Charies.

Serranida－Continmed．
Epinephelus aualog us Gill．Charles；Panama．
Mycteroperca olfas（Jenyus）．Abingdon；Charles．
Paranthias furcifer（C．\＆V．）．Albomarle ；Chatham；Hood ；Charles．
Paralabrax albomaculatus（Jenyns）．Albemarle；Charles．
Prionodes stilbostigma Jordan \＆゙ Bollman ご09．
Prionodes fasciatus Jenyns．ILood；Albemarle；Charles．
Diplectrum radiale（Quoy \＆Gaimard）．2800．Panama．
Diplectrum macropoma（Giinther）．2795，2797，2800，2799．J’anama．
Diplectrum euryplectrum Jordan \＆Bollman．2795，2805，2797．
Cratinus agassizi Steindachner．Charles．
Kuhlia arge Jordan \＆Bollman．Chatham．
Sparide ：
Xenichthys xanti Gill．Pauama．
Xenocys jessie Jordan \＆Bollnı．．u．Charles．
Lutjanus inermis Peters．Panama．
Lutjanus guttatus Steindachuer．Panama．
Hemulon scudderi Gill．Panama．
Anisotremus bilineatus（C．\＆V．）．Hood．Iudefatigable．
Anisotremus teniatus Gill．Panama．
Pomadasis panamensis（Steindachner）．2305，2800，2801．
Pomadasis macracantlus（Giinther）．Panama．
Ponadasis leuciscus（Giuther）．Panama．
Pomadasis elongatus（Steindachuer）．Panama．
Orthopristis chalcens（Giinther）．Panama；Albemarlo；Chatham；Charles．
Calamus taurinus（Jenyns）．Charles．
Archosargus pourtalesi（Steindachner）．Chatham．
Mullide：
Upeneus grandisquamis Gill．2800．Panama；Chatham．
Sciæmudr ：
Archoscion remifer（Jordan \＆Gilbert）．Pauama．
Cynoscion reticulatus（Gïnther）．Pauama．
Cynoscion stolzmanui Steindachuer（？）．Panama．
Cynoscion phoxocephalum（Jordan \＆Gilbert）．Panama．
Nebris microps C．\＆V．Panama．
Larimus argenteus（Gill）．Panama．
Larimus pacificus Jordan \＆E Bollman．Panama．
Bairdiella ensıfera（Jordan \＆Gilbert）．Pauama．
Bairdiella armata Gill．Panama．
Bairdiella chrysoleuca（Güntber）．Panama．
Stelliferus oscitans Jordan \＆Gilbert．Panana．
Stelliferus ericymba Jordan \＆Gilbert．Panama．
Sciæna typica（Gill）．Pauama．
Sciæna imiceps Jordau © Gilbert．Panama．
Micropogon altipiunis Giinther．Panama．
Polycirrhus rathbuni Jordan \＆Bollman．Panama．
Polycirrhus dumerili Bocout．Panama．
Menticirrhus nasus（Giinther）．Panama．
Gerridx ：
Gerres gracilis（Gill）．Panama．
Gerres californiensis（Gill）．Panama．
Gerres ciuerens（Walbamm）．Chatham．
Gerres pernvianus Cuv．\＆Val．Panama．

Chætodontida:
Chatodon humeralis Giinther. Panama.
Ephippidw:
Chætodipterus faber (L.). Panama.
Pomacentrida:
Pomacentrus sp. (very young). Indefatigable.
Labridæ:
Platyglossus nicholsi Jordan \& Gilbert. Charles.
Platyglossus dispilus Giinther. Panama
Malacanthidæ:
Caulolatilus princeps (Jenyns). Charles; Albemarle.
Scorpæaidæ:
Scorpæna histrio Jenyns. Hood; Charles; Panama.
Scorpæna russula Jordan \& Bollman. 2797, 2795.

Triglidæ:

Prionotus horrens Richardson. 2800.
Prionotus miles Jenyus. Albemarle; Charles.
Prionotus quiescens Jordan \& Bollmau. 2800, 2801, 2804, 2805, 2795.
Prionotus albirostris Jordan \& Bollman. 2795.
Prionotus birostratus Richardson. 2795.
Prionotus xenisma Jordan \& Bollman. 2805, 2795.
Gobiidæ:
Gobius soporator C. \& V. Panama.
Bollmannia chlamydes Jordan. 2804, 2805, 2803, 2802, 2800.
Blemniidæ :
Runula azalea Jordan \& Bollman. Indefatigable.
Unanoscopidæ:
Kathetostoma averruncus Jordan \& Bollman. 2800.
Batrachidæ:
Batrachoides pacifici (Günther). Panama.
Porichthỵs nautoprediun Jordan © Bollman. Iudefatigable, 2796, 2795, 2802, 2805.

Thalassophryne dowi Jordan \& Gilbert. 2800.
Ophidiidæ:
Leptophidium prorates Jordan \& Bollman. 2801. Panama.
Otophidimm indefatigabile Jordan \& Bollman. Indefatigable.

Gadidæ:

Bregmaceros bathymaster Jordan \& Bollman. 2804.
Pleuronectidæ:
Paralichthys adspersus (Steindachner). Panama.
Paralichthys sp. nov.? adspersus aff. Panama.
Syacium ovale (Giunther). (Including S. latifrons, of of same species.) 2800. Panama. 2795, 2797.
Azevia panamensis (Steindachner). 2797.
Azevia querna Jordau \& Bollman. 2800, 2801, 280\%.
Citharichthys spilopterus Günther. Panama. 2803.
Etropus crossotus Jordan \& Gilbert, 2802. Panama.
Etropus species nova?, 2802, 2803.
Engyophrys saneti-laurentii Jordan \& Bollman. 2805, 2795.

Pleuronectidie-Continued.
Platophrys coustellatus Jordan, :2795, 2797, 2796.
Platophrys leopardinus (Giinther). Chatham.
Hippoglossina macrops Steindachner. 2805, 2804.
Achirns fonsecensis (Giinther). Panama.
Symphurus atramentatus Jordan \& Bollman. 9795, 2797, 2805.
Symphurus elongatus (Giinther). 2804.
Symphurus leei Jordan \& Bollman. 2800, 2802, 2803.
Balistidre:
Balistes capistratus Shaw. Chatham.
Tetraodontide:
Spheroides fuirthi (Stoindachner). 2800.
Spheroides politus (Ayres). Panama.
Spheroides annulatus (Jenyns). Indefatigable; Aibemarle; Panama; Chatham. Spheroides angusticeps (Jenyns). Chatham; Charles; Panama.
Tetraodon erethizon (Jordan \& Gilbert). Panama.
Lophiidæ:
Lophius sp. (very young). 2804.
Malthidre:
Malthe elater Jordan \& Gilbert. Panama.
The Indiana University, June 27, 1889.

〔Published by permission of Hon．Marshall McDonald，Commissioner of Fisheries．$]$
No．V．－ANNOTATED CATALOGUE OF THE INSECTS COLLECTED IN 1－がーが，
H
L．O．Howard， Acting Curator of the Depariment of Insects．

INTRODUCTION．

Upon assuming charge of the Department of Insects，after Dr．Riles＇s departure for Europe in April last，I found this collection awaiting re－ port，and learned that the Myriapode and Arachnide received with the ILextpodd，under Accession Number 21699 ，had been sent to specialists for report．After a review of the material，and notitication from the office of the Assistant Secretary in charge of the Museum that a speedy report was desirable，I decided that the most expeditions and satisfac－ tory method of determining the collection would be to call upon the hest known specialists in the country for assistance．I therefore sent the Hemiptera of the collection to Prof．P．R．Uhler，of Baltimore，Md．；the Orthoptera to Mr．Lawrence Bruner，of Lineoln，Nebr．；the Diptera to Dr．S．W．Williston，of New Maven，Comn．；the Lepidoptera to Rev．W． J．Holland，of Pittshurgh，Pa．；and the Mallophayce to Prof．Herbert Osborn，of Ames，lowa．All of these gentlemen very kindly sent in prompt and satisfactory reports，and each is wholly responsible for the determinations in his sroup．The remainder of the material was deter－ mined by the Aid of the Department，Mr．M．L．Linell．

The method of arrangement adopted was deemed most desirable as giving at a glance an idea of the collections made in each general local－ ity，but at the same time it rendered it impossible to publish each report by itself．

The Arachnida have been determined by Inr．（ieorge Marx，of the Department of Agriculture，and it has been deemed best to place his report in its entirety at the end of the Hexaporle．IIis report includes certain manuseript names，and the specific deseriptions aceompanying will be published elsewhere．

The Myriapoda were submitted to Mr．Charles M．Bolhman，of Bloom－ ington，Ind．，who finds lut eight species represented．It is report is so short that his descriptions of new species are included．

The material as a whole is of great interest, and presents a strong argument in faror of future collections by the Fish Commission steamers and other Government ressels. From our standpoint the collections are surprisingly small, and but little time has evidently been given to these three classes. Conspicuons species have in most cases been preferred, and in all of the localities an hour's industrious sweeping of the herbage with a beating-net would have infinitely enriched the collections.

HEXAPODA.
CLEMENTE ISLAND, CALIFORNIA.
COLEOPTERA.

Family CARABID风.
Besides fragments of the common Californian Anisodtactylus brunneus Dej., a new species of Colosoma was collected here. 2 \boldsymbol{o}° o. Size of O. palmeri Lee. from Guadeloupe Istand, but different in form and seupture.*

Family TENEBRIONIDE.

Eulabis grossa Lee.
One specimen.

Eusattus robustus Lec.

Three specimens.
These two species seem to be peculiar to the island.
Eleodes dentipes Esch.
One specimen. Occurs abundantly in South California.

LEPIDOPTERA.

Family BOMBYCIDE.
One larva of Spilosoma sp.

> LOWER CALIFORNIA AND PANAMA.

COLEOPTERA.

Family TENEBRIONID无.
Asida morbillosa Lec.
One specimen. Ballenas Bay.
Asida obsoleta Lec.
Fragments of a variety of this Californian species were taken on St. Margarita Islaud.

[^45]Eleodes quadricollis Esch.
Thirty-seven specimens. St. Margarita Island. Oceurs also abmudantly in Southern California.

Eleodes militaris Horn.
Eleodes dentipes Esch.
Eleodes acuticauda Lec.
Fragments of these three species found at Ballenas Bay.
Cryptoglossa sp.?
Fragments. Ballenas Bay.
Cerenopus costulatus Horn.
A female and fragments of another specimen of this rare species found at Ballenas Bay.

Argoporis, new species.
Six specimens. St. Margarita Island.

> Family MELOIDE.

Tegrodera erosa Lec.
Four specimens. St. Margarita Island. A species well known from Southern California.

Family CERAMBYCIDE.

Megaderus stigma Lin.
One specimen. Panama.

ORTHOPTERA.

Family ACRIDIIDE.
Schistocerca vaga Scudd.
A simgle female specimen from Ballenas Bay belongs here.
Thrincus californicus Thos.
A single pupa of this species is contained in the collection from Cerros Island.

Fire specimens of a rather large Acridiid were collected at Cerros Island. This insect is a rather peculiar one, since from its general appearance it can easily be mistaken for one of the (Edipodince. I casual glance will, howerer, be sufficient to show its relationship with the Rinomaleans on the one side and the Truxalids on the other. It is one of comprehensive forms sometimes met with among insects. The strongly spined prosternum forbids its being placed either with the Fedipodince or Truxalina, while the structure of the pronotum gives its piace with the Tropidinotians. It may be new, but from want of the proper refer-ence-books I refrain from describing it as such.

Family BLATTIDE.

Blabera limbata (Burm.).
A single specimen from Panama belongs here.
Nyctobora ? holosericea? K1.
Two immature specimens of a cockroach from Panama are placed in the gemus Nyctobora and referred to holosericed Kl. with doubt.

HEMIPTERA.

Tetyra farcta Germar, (Pachycoris). Zeits. I, p. 92.
No. 20. Pachycoris guttipes Walker, Brit. Mus., Cat. Hem., r, p. 47, No. 11.
One female from Panama. It has the antero-lateral margins of the pronotum a little more expanded than in the normal Mexican specimens, and the black dots much reduced in size.

Augocoris sexpunctatus Fabr. (Cimex), Spec. Ins., 11, p, 339, No. 7.
Augocoris sexpunctatus Stal, Enum. Hemipt., I, p. 18, No. 2.
Two males were taken on board the ship at electric light, latitude $4^{\circ} 18^{\prime}$ N., longitude $85^{\circ} \mathrm{W}$. The smaller one is suffused with rose color on the upper side, and it is evidently immature, with the exterior integmment imperfectly oxidized, and consequently it wonld have been dark colored if allowed to reach maturity. It is remarkahle for having the rostrum very nearly as long as the body. The tip of this organ as now resting reaches almost to the end of the anal segment, but if set Hat against the veuter it would reach quite to the extremity of that segment.

Augocoris ehrenbergii Germar, Zeits., I, p. 140, No. 2.
One male firom Panama, captured on hoard ship, March 6. It is only in deference to the views of my friend, the late Dr. Carl Stal, that I retain this species as separate from the preceding. The length of the rostrum is now observed to be of no value in separating the species of this genus.

Family COREIDE.

Catorhintha guttula Fabr. (Lygeus), Ent. Syst., rv, p. 162, No. 92.
A single immature female was collected at Panama. It is larger than the typical specimens from the West Indies and Central America, has the antenniferous spine longer and more curved, and one of the spines is wanting on the right-hand side.

MALLOPHAGA.

(On Diomedea exulans).
Two species of Lipeurus.
Lipeurus taurus Nitsel.
Many specimens of males, females, and young.

Lipeurus diomedeæ F. \}, f, juv., and eggs.
Fabricius's description is rem meager. Infour deseribed it fully as did Giglioli from 1). brachywra. Piaget thinks L. firox of (iiebel from I). melanophrys the same, but makes diomederd the synonym. The identity of the forms from the ditherent species of Jommerler is supported by careful comparison of these specimens with the descriptions of various authors and with a from the D. bruchyuri in my possession. The eggs inclosed in the vial with these and L. tumus probably (almost
 shape is peculiar, reminding one of the valres of a barmacle, thattened, attached by a short pedicel, the ontline as a whole semicordate, the straight line romming from pedicel to apex and the opposito sides curved. Black lines run along the margin and on each face paratlel to these, and a short, transverse line near the center ; hetween this and the base are two irregular spots or expansions of the dark lines.

(On Phaïton atherens).

No species have been described from this bitel to my knowledge, and if so it must have been since the publication of Piaget's " Les Pediculines"

Docophorus sp.

An undescribed species, $\mathcal{Z}^{m m}$ long, with triangular heat, narrow clypens which is deeply emarginate. The color is inown, and the trausserse bands of the abdomen run n ithout intermption the width of the segments. Differs decidedly from I). hexagomus (iiebel described from Phaton phonicurus, in having the clypeus deeply cont instead of evenly truncate. Approaches D. breviuntennutus P'iaset, which oceurs on Sula unstralis, but appears to be slightly smaller and lighter colored, while the abdominal bands are not intermpted in the middle. Three specimens. If desired to designate by name it may be called Iocophorus phatonus.

Menopon sp, near fuscofasciatum Piag.
Agrees very closely with fuscofasciutum described from Lestris pomurima except that it appears somewhat more robust than shown in Piaget's figure. Whether the difference is sufticient for formation of a new species is doubtful without comparison with specimens of that species.

Colpocephalum sp. near angulaticens Piaget.
Agrees more closely with ('. amyulaticeps from Fregutu minor than with C. incisum from Pheton flacirostris. A very minute speceses, of which there was a single specimen in the vial with other lice from I'heton retherens, and this was mfortumately lost by acoident, an involuntary coogh carrying it from the slide while placed under the microscope for dry examination.

NEUROPTERA,

Family LIBELLULIDE.

Anax junius Drury.
A specimen of this widely distributed species was caught on board on the Pacific coast. It also occurs in our Sonthern States.

Family TERMITINA.

A colony of Termites was collected at Panama, but no winged specimens. The species cousequently can not be determined.

LEPIDOPTERA.

Family NYMPHALIDE

Heliconius apseudes Hiilm. (Sicyonia A.), Zutr. Ex. Shmett., Figs. 141, 142.
One example; δ. Panama.
Elnia vanessoides Blanch. Gay, Faun. Chil., vir., p. 28, Pl. v, Fig. 5, 6.
One very badly worn female specimen, ticketed "Panama."
Family SPHINGID』..
\#llopus titan Cram. Pap. Exot., Pl. 142, Fig. F.
One example, ticketed "Off" Taboga, Bay of Panama."
Family SESIIDE.
Isanthrene crabroniformis Stand.
One example; $\%$; labeled "Panama."
HYMENOPTERA.
Family MYRMICID※.
Cremastogaster lineolata Say.
A specimen from Balleuas Bay shows that this, our common species, has a wide distribution.

> Family POMPILIDE.

Pepsis formosa Say.
Of this Arizona species a specimen was collected on St. Margarita Island.

Family VESPIDE.

One poor specimen of the genns Polybia, from Panama.
A light-colored specimen of Polistes from St. Margarita Island, somewhat different from any of our sonthwestern forms, and two specimens of an obscure species of the same genus collected at Panama.

DIPTERA.

Family TABANIDE

One specimen of a species belonging to the gemms Tabumus from Pauama. It resembles T. (Atylotus) insuctus: O. S., though difiterent.

GALAPAGOS ARCIIPELAGO.

COLEOPTERA

Family CARABIDAE.

Calosoma galapagoum ? Hope, Trans. Ent. Soc., 1838.
Fifty-eight specimens (2, Duncan Island, 41 , Charles Island, and 12, Chatham Island) were collected of a ('olosomat that is of a shming bronze-green color and has the elytral intervals distinctly carmated, with the third, seventh, and tenth broken up by large punctures. The male has three tarsal joints strongly dilated and spongy beneath. Hope describes his species above as black and smooth, with three rows of punctures on the elytra. Still it is likely to be the same species. Together with all the following Galapagos beetles described by Hope and Waterhouse, it was first collected by Charles Darwin during the famous Beagle expedition.

Pœcilus calathoides Waterh., Ann. Nat. Hist., xvı, 1845.
A pair was found on Charles Island: the mate is shining, the femate opaque.

Selenophorus galapagoensis Waterb., Ann. Nat. Hist., 1845.
Five specimens from Charles Island.

Family PTINIDA.

One specimen of the genus Tetrapriocerca was collecteri on Indefatig. able Island. Although of the same habitus it is probably different from our Florida species, T. longicornis Oliv., which is known to have a wide distribution in Central and South America..

Family SCARABEIDE.

Oryctes galapagoensis Hope, Ann. Nat. Hist., 1845.
One specimen from Chatham Island. It is 1 inch long, shining chest-nut-brown.

Family CERAMBYCIDE.

Mallodon sp.?
Thirteen specimens were collected on Chatham Island and one on Duncan Island. As no species of this conspicnous genns had been previously recorded from this island group, it will be highly interesting to see whether it is a new species, peculiar to the archipelago, or whether it belongs to a continental form. This can not be settled at the present time. All the other Coleoptera from this locality are not found elsewhere.

Eburia amabilis Bohem., Eugen. Resa, 1859.
One specimen of this elegant species was captured on C'harles Island.

> Family CISTELIDÆ.

Two specimens of a species of Allecula, probably new, from Charles Island.

Family TENEBRIONID.E.

Stomion galapagoensis Waterh., Ann. Nat. Hist., 1845.
Stomion helopoides Waterh., I. c.
The series collected is sufficient to prove the identity of these two species, and it is interesting to notice the same variabolity in senlpture that characterizes our western Tenebrionidre. Thirteen specimens from Charles Island and five from Chatham Island.

Ammophorus bifoveatus Waterl.
One specimen from Charles Island.

Family CURCULIONIDE.

Three specimens of a form belonging to this family were collected on Chatham Island.

ORTHOPTERA.

Family FORFICULIDE.

Anisolabis maritima? Bou.
A single earwig, collected on Chatham Island, is donbtfully referred to this species. It agrees more closely with A . aztecu. Dohrn. in general color than it does with maritima, but in size it approaches more nearly the latter.

Family GRYLLIDE.
A cricket of the genus Gryllus, of which there are eleven (immature and mature) specimens, one collected on Albemarle Island, the others on Chatham Island; bears a close resemblance to the common Gryllus domesticus, if it is not that species. My material is scant in this group, and especially ir foreign forms ; and not wishiug to rely entirely upon comparisons with deseriptions in so difficult a group as this is, I have hesitated to decide further.

Family LOCUSTIDE.

Bucrates? cocanus? Boliv.

The species which is referred to the above-named genus and species with doubt, is represented by a single very young larva. In addition to its youth, it is alcoholic as well as somewhat mutilated.

Anaulocomera cornucervi? Brunner.

There is also a pair of small katydids, one from Chatham Island and one from Indefatigable Island, belonging to the genus Andulocomero.

Althongh the specimens are alcoholie, the long stag-horn-like eerei of the male will hardly leave room for doubt as to its identity with cormu. carvi of Brunner.

Family ACRIDIIDE.

Schistocerca melanocera Stail.

There are thirty eight specimens of this beatitul large locust (col-lected-sixteen on Indefatigable Island, tifteen on Charles Island, three on James Island, fonr on Abemarle Island, and six on Ibnean Island). They are somewhat larger than our omericome and the oriental peregrina, with the wings longer and more ample. It is therefore well equipped for long tlights, which it evidently sometimes takes.

There are also four specimens, from Chatham lsland, of a much smaller locust belonging to the same genus with the preceding. Whether or not it is a described species 1 am unable to say until after I have had the opportunity of examining several works upon these inseces that I do not have in my library. It is a diminutive of americana in many respects, the females being only a tritle orer 1 inches in length, while the males are even smaller.

In addition to the specimens abore enumerated the collection also contains four pupar of some member of the same semms, and perhaps of the preceding species, since they too were taken on Chatham istand.

Among the others from Chatham Island are two specimens of Acridii belonging close to the genus Pezotettix, but I do not care to definitely place them, since one is immature and the other has no abdomen. The tegmina and wings of the mutilated one are rudimentary, and it evidently measured $25^{m m}$ in length. The posterior femora are marked with three moderately broad, dusky bamos, both internally and externally.

A small specimen, a male, of a locust that at first glance reminds one of the lined Stemobothri on account of the trivittate coloring of the head, pronotum, and tegmina, but which, upon a closer inspection, is found to be an Acridiol, is placed in the genus Enprepocmemis. It is probably an undescribed form. Indefatigable Island.
Trimerotropis placida? Stit.
Two specimens of a small Primerotropis are placed here, althongh Satussure in his "Prodromms (Edipodiormm" makes it a synonym of Ti. ochureipemis (Blanch.). Length of bots, \&, $\because 0$ to $\because \cdots$ millimeters. James Island.

> Family BLATTID£.

Periplaneta americana Linn.

Ten specimens of this cosmopolitan cockroach were collected on Chatham Island.

Proc. N. MI. $89-13$

Periplaneta australasiæ Fab,

Also widely distributed. Three mature specimens and three mature larve from Charles Island.

Leucophæa surinamensis (Lin.).
This rather widely distributed species of cockioach is represented in the present collection by three mature and nine immatmre specimens. Of the former one, a rather darker form than usual is from Bahia, Brazil ; three young are from the Island of Abrolhos. The remaining specimens are from the Galapagos Islands.
Nauphœta bivittata Brunner.
Three specimens from Chatham Island are referred here.
Nauphœta lævigata? (Pal.).
The Galapagos Islands material also contains three immature specimeus of a second Nurphota, which is evidently the Blatta laviguta of Palisot de Beauvais.

> HEMIPTERA.
> Family PENTATOMIDE.

Nezara viridans Stal., Freg. Eugenie Resa. Ins., p. 2:88, No. 21.
Two specimens were secured on Chatham Island.
Family HYDROBATIDE.
Halobates wuellerstorfi Franenf.. Verh. Zool. Bot. (iesell., v. 17, 45\%. B. White, Challenger Exped. Zool., v. vir, p. 40, pl. 1, fig. 1.
Numerous specimens were collected from the surface of the ocean near the Galapagos Islands and south as far as latitude $2: 3 \circ$, and also in the Caribbean Sea. A variety of the female at Chatham Isiand.

NEUROPTERA.

Family LIBELLULIDE.

Four specimens of the genus Eschna from Chatham Island and one specimen of the genus Tramea from Albemarle Istand. No species of the Libellulider are described from the Archipelago, but these strong flyers may belong to the continental species.

LEPIDOPTERA

Family NYMPHALIDE.

Agraulis vanillæ Linn. var. galapagensis Holland.
The form of A. vanithe in the collection ticketed "Chatham Island" differs in some respects so decidedly from the typical form as to well deserve a varietal name. It is characterized by its smaller size, by the darker and more fuscous tint of the basal half of the wings, by the great increase in breadth of all the black markings on both surfaces, and the almost entire obliteration of the white dots by which the spots in the
cell on the upper surface of the primaries are pupiled in typical specimens.

One specimen, Galapagos, Chatham Island.

Family PAPILIONIDA.

Callidryas eubule Lin. (Pap.e.), Syst. Nat., I, 2, p. 764.
Four $\boldsymbol{\delta}$ t $\boldsymbol{\delta}$; one 우. Chatham Island.
Two of of Charles Island.
Differs in no respect from the forms taken commonly in the Southern United States and West Indies.

Family HESPERIDE.

Thymele sp. nev. ?
Near T. santiago Lucas (Eudamus s.), Sagra Hist. Cuba, vir, p. 623; but differing decidedly on the under surface.
The specimen is in very poor condition. Labeled "Chatham Island."
Family SPHINGIDE.
Deilephila lineata Fab., Ent. Syst. MII, 1, p. 368, 39. Smith-Abbott, Lep. Ins. Georgia, pl. 39.
One example, ô. "Galapagos, Charles Island."
(The collection contains a specimen of the genns Protoparce labeled "Galapagos, Charles Island," which is too badly worn to permit of a proper description, but which is sufficiently well preserved in part to indicate that it is not referable to any species known to the writer. A careful examination of the "Species (iénérale" and ot Mr. A. (i. Butler"s revision, and a reference to all of the subsequent literature accessible, fails to disclose a description or a figure applicable to the species. It comes near to Ochus, Klug, ret seems to be distinct. Uolland.)

Protoparce cingulata Fabr., Syst. Ent., 545.
(A very badly worn female of this species is contained in the collec. tion and labeled, "Galapagos, Chatham Island." The species is distributed from Canada to Uruguay, and from Massachusetts to the Hawaiian Islands. Its occurrence in the Galapagos is an interesting fact. Holland.)

Protoparce calapagensis sp. nov. (Holland.)
Upper surface.-Anterior wings white, traversed by double, undulate, black transverse anterior, posterior, and submarginal lines, the latter terminating near the exterior angle in a conspicuons black spot. A row of marginal black spots, those nearest the apex protracted in the form of dashes; the second from the apex, coalescing with the sub). marginal line, further ornaments the wing. Fringes white, interruptel at the end of the nervures hy bark. The discal dot is pure white, large, narrowly margined with back. Upon the costa, near the base, is a black dash, followed by some confused "frepper and silt " markings
near the transverse anterior line. Posterior wings gray, sbading into white at anal angle, and traversed by three black bands, of which the two on the discal space are narrow, while the submarginal band is broader, widening rapidly from the anal angle toward the anterior margin. Head, antemse, and thorax white. Patagia white, marked in the middle with a deep black curved line extending from the insertion of the anterior wings about two-thirds of their length. Abdomen light gray, almost white, ornamented by two large tufts of black bair at base, and by a narrox dorsal line consisting of a black dash mon each segment. Each segment is further margined by a transerse line of back at its insertion, and the second, third, and fourth are marked by lateral spots of pale sellow surrounded with black.

Under surface.-Palpi, thorax, and abdomen snowy white. Upper euds of tibie and tarsi light brown, ringed with white. Wings gray, obscurely marked, and banded as on upper surface.

Expanse of wings, 90^{mm}.
Described from one female specimen in fair condition, labelled "Galapagos, Charles Island."

Also five Sphingid larvir of as many different species, of which three are from Chatham Island, one from Duncan Island, and one from Inde fatigable Island.

Family BOMBYCIDE.

Utetheisa bella Linn. var. ornatrix Lim.
One damaged example labeled "Galapagos, Chatham Islaud."
Family NOCTUIDE.
Two examples of the genus Pseudaylossu, one defective specimen of the genus Zanclognathe, and three examples of another genus of this family were collected at "Galapagos, Chatham Island."

There are three lavie belonging to a species of Cutocula from Duncan Island, also eight larvar of a species near Alysia, one larva near Prodenia, and a Noctuid pupa from Chatham Island, and one larva near Hydrocia, from Indefatigable Islaud.

Family PYRALIDE.

One example of the genus Crombus from "Galapagos, Chatham Island."

The collection also contains a specimen from Chatham Island, denuded of scales, and so torn as to be wholly indeterminable.

Family GEOMETRIDE.

[^46]
HYMENOPTERA.

Family FORMICIDE.
A dark-colored species of the genus C'tmponotus was collected, one male from Albemarle Island, numerous males and two females from Charies Island.

Of a light-colored speries of the same genms seven males were taken on Charles Island, and one male on Albemarle Island.

Family APIDE.

Two females of the genus lylocope of a pmole blatk color, even the wings, were taken on Indefatigable Island. (In this island was also collected a male specimen that may be of the same species. It has transparent wings, and the body is covered with pale rufons hairs.

DIPTERA.

Family CULICID.E.
Twelve specimens of the genus Culer were collected, of a luteons color, with blackish mesonotum.

CHILI AND STRAITS OF MAGELLAN.
 COLEOPTERA.

Family CICINDELID※.

Agrius fallaciosus Chevr., Ann. Fr., 1854.
A specimen was collected on Elizabeth Island of this rare and exceedingly interesting form. It occurs only at the strats, and is the only South American representative of the group to which our genera Amblych ila and Omus belong.

Family CARABIDE.

Carabus suturalis Fab.

Three specimens from Sandy P'oint, and one from Laredo Bar, of this species. It oceurs also in Chili, and is of a graceful form and brilliant color, like the other Chilian species of (arabus. Some anthors separate them into the genus Ceroglossus.

Migadops ovalis Waterh., Ann. Nat. Hist., 1842.
One specimen from Laredo Bay. The genus is peculiar to Patagonia and the Falkland Islands.

Six different species belonging to the genus Antarctia were collected. Two specimens of one species were caught on hoard near Chiloe, another pair: of a different species on board a long distance southwest from Chiloe. At Sandy Point were taken nineteen specimens of three species, and at Laredo Bay two specimens of the sixth species. The species are so nearly allied, and so large a number have been described from (hili and Patagonia, that it is not sate to identify them without comparison
with the types. In the far soath they replace our Amaras and resemble them greatly, but are easily distinguished by having two impressed punctures on the apieal half of the elytra, while the Amaras have none.

Agonum gayi Sol., Gay Hist. Chil., Iv.
Three specimens from Sandy Point of this Chilian species.
Pristonychus chilensis Gory, Ann. Fr., 1833.
One specimen from Lota, Chili, of this form considered a variety of the European Pr. complanatus Dej.
Tetraodes lævis Blanch., Voy. Pole Snd, 1853.
Four specimens from Gregory Bay, and two from Sandy Point, of this large, shining, Broscus-like species, which is peeuliar to the straits.

Family DY'IISCIDE.
Lancetes præmorsus Er.
One specimen from Sandy Point of this Chilian species. The gems Lancetes occurs in southern South America and Australia.

Family SILPHID ※.
Necrodes biguttulus Fairm., Rev. ? Zool., 1859.
One specimen from Elizabeth Island of this fine species which is perculiar to the straits.

Family ELATERID年.
Agriotes magellanicus Blanch., Voy. Pole Sud, 1853.
One specimen from Sandy Point.
An Elaterid larva was found at Port Churnca, and a Lampyrid larra at Latitude Cove, Patagonia.

Family COCCINELLIDE.

Adalia angulifera Muls.

One specimen, Tomé, Chili.

Family LUCANIDÆ.

Sclerognathus femoralis Guér., Rer. Zool., 1839.
Fourteen specimens from Sandy Point of this interesting Iorcons form, which also oceurs in Chili.

Family SCARABEIDE.

Macrosoma giaciale Fab.
One specimen of this species, peculiar to the straits, from Sandy Point. Maypa viridis Sol., Gay. Hist. Chil.

Six specimens from Samdy Point of this brilliant Chilian species. At Gregory Bay was found a specimen of a liutelinid which can not safely be identified without comparison.

Also three Lamellicorn larver from Sandy Point.

Family CERAMBYCIDE.
Microplophorus magellanicus Blanch., Voy. Pole Sud, 1853.
A Prionid, resembing our Tragosoma. One specimen from Sandy Point.

Family TENEBRIONIDA.
Phaleria gay Lap., Hist. Nat., Ir.
Four specimens from Lota, Chili.
Nyctelia multicristata Blauch., Voy. Pole Sud, 1853.
Eight specimens from Gregory Bay, and one from Elizabeth Island, of this large, beantiful species, found only at the straits.

Emalodera obesa Gnér., Rev. Zool., 1841.
Nine specimens Gregory Bay, three Elizabeth Island, and one from Sandy Point-peculiar to the straits.

Platesthes depressa Guér., Rev. Zool., 1841.
One specimen of this curious little species from (regory Bay.
Family CURCULIONIDE.
Cylindrorrhinus angulatus Guér., Rev. Zool., 1841.
Thirteen specimens of this large, interesting species were captured at Gregory Bay. Peculiar to the Magellan region.

Rhyephenes lævirostris Sol., Aun. Fr., 1839.
Two specimens from Sandy Point of this Chilian species.
Eublepharis (Lophotus) vitulus Fab.
Sandy Point, four specimens, and one from Laredo Bay. It is a very conspicnous species.

A specimen of a smalier species of the genus Lophotus was obtained at Sandy Point.

Three other species of Rhyncophorus beetles were collected at Sandy Point, nine specimens of one, and one specimen of each of the two others. As they have no other striking peculiarities they can not very well be identitied from the old descriptions alone in this extremely difficult group.

ORTHOPTERA.

Family FORFICULIDむ.
Anisolabis chilensis? Blanch.
Here is placed, with some doubt, a mutilated specimen collected at Gregory Bay. Books of reference for this group of insects are not numerous, many of the species being withont descriptions, ocemring only in catalogues.

```
Family LOCUSTID.E.
```

Stenopelmatus chilensis? Sauss.
A single male specimen of a large, cricket-like Locustidn, from Lota, Chili, appears to belong hpre. The structural character of the prosternum will, however, necessitate its remoral from that genus as limited.

Family AClRIDIIDIE.

Bufonacris terrestris Walk.

The most remarkable orthopterous insect among the lot is the large wingless Bufonacris tervestris of Walker. Not only is it of interest on account of its odd appearance, but also from the fact of its having been feconded a second time from the Straits of Magellau. Samssure, in his "Addıtamenta ad Prodromum (Edipodiorum" (p. 160, foot note), discredits Walker's citation of the habitat of this locust. It is a barren ground form, and is closely allied to our genus Haldemanella. Its oceurence at a point so widely removed from the subtropical region certainly is an anomaly, Four specimens from Gregory Bay.

Another exceedingly interesting form from Gregory Bay is represented by six specimens of a small Truxalid belonging to a genus very closely related to Oxycoryphus in its general appearance, but differing greatly from that gemus in being entirely apterous, and in having the borly ridged or cormgared as in the geuns Phrynotettix Sauss. among the Eremobites.

HEMIPTERA.

Family PENTATOMID风.

Ditomotarsus hyadesi Signoret, Aun. Soc. Ent. Fr., 1885, p. 64.
An immature male specimen from Sandy Point.

> Family ARADIDむ.

Isodermus patagonicus Stâl (Mezira?), Eugenie Resa, Ins., p. 260, No. im.
One specimen, a male, was collected at Sandy Point. It has fully developed wings.

NEUROPTERA.

Family ODONATA.

Æschna diffinis Ramb., Histoire des Neuroptéres, 1842.
Two specimens of this species were caught at Island Iarbor, Patagonia.

One specimen collected at Latitude Cove belongs to the genus Diplax. At Mayue ILarbor, Patagonia, was taken a Libellulid pupa.

$$
\text { Family LIMNOPHILIDÆ Ramb. } 1842 .
$$

Halesus hyadesi J. Mabille, Mission Scientif. du Cap Horn, 1888.
One specimen eaptured at Gregory Bay. Abore named French expedition in 1853 records also only one specmen (from Orange Bay): and
the species must be considered sulticiently rare, only one specimen for each hemisphere.

LEPIDOPTERA.

Family NYMPHALIDE.

Argynnis cytheris Drury (I'ap. C.), Ill. Ex. Ent., if, pl. iv, fig. 3, 4. A. siga Hiibn., Zutr. Ex. Schmett, fig. 677, 67ヶ. d. anna, Blanch., Gay Faun. Chili, vir, p. 23, ㅇ. A. lathonioides Blanch., Gay Fann. Chili, vir, p. 22, pl. n, fig. 1, 2.
I give what appears to me to be the correct synonymy of this species 'The specimens of amma, and its female, lathonioides, in my collection, which were determined for me by Dr. Staudinger, and which agree with Blanchard's description, certainly agree also with the figure of Drury's cytheris as elosely as possible, and Drury's figure is admitted by Mr. Kirby, in his Synonymic Catalogue, to represent the same inseet figured at a later date by Hiibner as siga.

Five males (Amua), and one female (Lithomioides), labeled "Straits of Magellan, Gregory Bay."

Family PAPILIONIDE.

Pieris xanthodice Lucas, Rev. Zoolog., 1852, p. 3:37.
One specimen, of, "Straits of Magellan, Gregory Bay."
A dozen larve of a Diurnal were taken at Sandy Point.
Family BOMBYCIDE.
Saturnia rubrescens Blanch.
One female, labeled "Western Patagonia."
Hemileuca hyadeti Mabille. (Saturnia hyadeti.)
One male, labeled "Western Patagonia."
Ecpantheria indecisa Walker. E. bomariensis Boisd. Oberthiir, Etudes Ent. Vi, pt. iv, p.111, pl. xviir, fig. 4 and 7.
One male, labeled "Straits of Magellan, Gregory Bay."
Family NOCTUIDE.
Six examples representing five species of the gemus Agrotis are labeled as collected at "Western Patagonia," "Lota, Chili," and "Straits of Magellau, Gregory Bay."

There is also one example of the genus Mamestra and three examples of the genus Leucania from "Straits of Magellan, Gregory Bay."

Three larve of a Noctuid near Plusin are from Sandy Point, also two Noctuid pupie were collected at the same place.

```
Family PYRALIDE.
```

Botys tedra? Cram., Pap. Exot., pl. 6, 312.
One example. "Lota, Chili."
Three examples of the genus Ciambus are from "Strats of Magellan, Gregory Bay."

The coilection contains besides these a specimen from Gregory Bay demuded of seales and so torn as to be wholly indeterminable.

HYMENOPTERA.

Family ICHNEUMONIDむ.

A specimen of the genus Amblyteles and a brilliant colored specimen of a stilpmus were found at Gregory Bay.

> Family FORMICIDE.

A female specimen of the geuns Camponotus was captured at Lota, Chili.

Family POMPILIDE.

Three specimens of a Pompilus were found at Gregory Bay.
Family APIDE.

Bombus chilensis Spin., Gay, Hist. Chil.
Of this very large Chilian species two specimens were taken at Borja Bay.

Family VESPIDA.
Odynerus vespiformis Halid.
One specimen from Sandy Point.

DIPTERA.

Family TIPULIDE.

Two specimens of the genus Pachyrhina were taken at Straits of Magellan.
Family TABANIDE.

Tiro specimens, each of a different species of Tabanus are from the Straits of Magellan.

> Family ASILIDE.

Two females and one male of the genus Asilus are from the Straits of Magellan (Gregory Bay). The species would be located in the genus Philodicus, save for the absence of spines at the tip of the very short conical ovipositor. The abdomen is brownish gray, with three rows of rounded brown spots; the wings hyaline, with small clouds on the basal cross-veins, anterior cross-vein, and furcation of the third.
Family SYRPHIDE.

Dolichogyna nigripes Bigot, Anu. Soc. Ent. Fr., 1884, 346, Chili.
One female specimen from the Straits of Magellan. The description applies sufticiently well, but it is not impossible that the form is only a variety of I. fiesciutu, Macq., heseribed from this region by Bigot, as
 The legs are deep black, with the extreme tip of the femomand the basal third of the tibia yellow. The antemnar are black throughont, and the inner mesonotal stripes are slender. It is a little queer that two such allied species should have so wide a hathitat in common.

Family SARCOPHAGIDE.

Tro small specimens, each of a different species of the genus sarcophago and of the ordinary types, are from the Straits of Magellan.

The collection also contains a specimen of a Thchinid from the Straits of Magellan that I can not locate in any genus known to me.

Family MUSCID※.

Lucilia (Compsomyia) macellaria Fabr. Scrw-worm fly.
The synonomy of this species is as follows:
Musca macellari Fabricius, Syst. Ent., 776, 14; Ent. Syst., iv, 319, :28; Syst. Antl., 292, 42; Olivier, Encyel. Méth. viii, 14, 14; Wiedemann, Auss. Zw. Ins., ii, 405, 36; Macquart, Dipt. Exot., ii, 3, 147, 28, pl. xvii, f. 9 (Lucilia); Ljnch, Arribalzaga, El. Nat. Agr., i, 187 (Calliphora) ; Anuales Soc. Cient. Arg., x, 70, et seq. (Compsomyia) ; ibid., 218, et seq. (id.).
Lucilia vitatta Macquart, Dipt. Exot., ii, 3, 141, 10, pl. xvii, f. 10.
Caliphora fulvipes Macquart, Dipt. Exot., ii, 3, 132, 13, pl. xvi, f. 3; Blanchard in Gay's Hist. de Chile, vii, 434, 4; Schiner, Nov. Exped., 309.
Chrysomyia bata Walker, List, etc., iv, 875.
combrea Walker, op. cit., 876.
fasciata Walker, Dipt. Saundurs, 330, 337.
lyrcea Walker, List, etc., iv, 873.
verena Walker, List, etc., iv, 874 .
caruca Walker, List, etc., iv, 87\%.
gametia Walker, List, etc., iv, 878.
Lucilia rubrifrons Macquart, Dipt. Exot., 4. Suppl., 250, 56, pl. xxiii, f. 5; Rondani, Dipt. Merid. Am., lecta P. strobeli, 3, 10.
Lucilia hominivorax Coquerel, Ann. Soc. Ent. Fr. (3), vi, 1858, 17̈3, pl. iv, f. 9; vii, 1859, 233, pl. vi, f. 1 ; Laboulbéne, Bull Soc. Ent. Fr. (4), viii, 1860, 36; Lueas, ibid., 40.
Calliphora infesta Philippi, Zeitschr. f. Ges. Naturw., xvii, 513.
Calliphora amulipes Philippi, Zeitschr. f. Ges. Naturw., xvii, 514.
Chrysomya vividula R. Desvoidy, Essai sur les Myod., 445.
affinis R. Desvoidy, 1. c.
tibialis R. Desvoidy, op. cit., 446.
lherminieri, l. c.
alia R. Desvoidy, op. cit., 447.
cœrulescens R. Desvoids, l. c.
socia R. Desvoidy, l. c.
decora R. Desvoidy, op. cit., 48.
plaei R. Desvoidy, l. c.
lepitla R. Desvoidy, l. c.
fulvicrura R. Desvoidy, op. cit., 416 .
Somomya annulipes (? Lucilia) Phil. Rondani, Areh. per la Zool., etc., iii, 30.
Calliphora anthropophaga Conil, Act. Ac. N. C. Ex., iii, 41, 1878.

The above synonomy of this interesting fly is reproduced almost wholly from "Lyuch Arribalzaga." I have compared a considerable number of the deseriptions, and have found no reason to serionsly doubt any, though it is true that an exhaustive stuly of the allied forms from both North and Sonth America may possibly entitle a few of the names to specific rank. The red or reddish hind femora and tibiee have furnished ground for some of these names, and Lynch recognizes two varieties, which may properly be called Macellaria gemuina and Macellaria fultipes Maequart. These lightercolored specimens occur among the material from both Montevideo and the United States. Among these ten specimens there is a great difference in size, agreeing in this respect also with those from North America. I have seen the species from all parts of the United States, and from Canada and Mexico, as well as Brazil. It seems to oceur over the whole of both continents. Twentyseven specific names is rather an unusual number for a tly to be burdened with.

MONTEVIDEO AND URUGUAY.
 COLEOPTERA.

Family CARABIDE.
Calosoma bonariense Dej.
A single broken specimen of this species. It resembles our C. sayi in habitus, but belongs to a different group of the genus.

Platysma striatulum Fab.
One specimen. A large, smooth, and greenish species.
Family STAPHYLINIDE.

Staphylinus tristis Blanch.
One poor specimen.
Family TENEBRIONIDA.
Two specimens of a large species belonging to the tribe Blaptini.
HEMIPTERA.
Family PENTATOMIDE.
Nezara armigera Stal., Freg. Engenie, resa. Ins., p. we9, No. 24. Enum. Hemipt., ir, p. 43, No. 19.
Two specimens were collected.

NEUROPTERA.

Family ODONATA.

Six specimens of a species belonging to the genus Cynacantha were captured.

Family HEMEROBIIDE.
One specimen of the genus Chrysopa.

LEPIDOPTERA.

Family NYMPHALIDE.

Junonia genoveva Cram. Var, hilaris Fehler, Reise Nov., Lepidoptera, irr, p. 400.
A fragmentary specimen of the female ticketed "Montevideo."
Family LIPARIDA.
There are two examples of a moth structurally near to Orgyiu Ochs., but unknown to me, and which, without mach labor, I could not determine. Thase are labeled "Montevideo."

HYMENOPTERA.

Family ICHNEUMONIDE.
One specimen of the genus Anomalon.

> Family VESPIDI.

Odynerus argentinus Sauss.
One specimen collected.

BRAZIL (BAHIA AND ABROLHOS ISLANDS).
 COLEOPTERA.

Family ELATERIDA.
Two specimens of an Elaterid larva were collected on Abrolhos Islands.

ORTHOPTERA.

Family GRYLLIDE.

Scapteriscus vicinus Scudd.

There is a specimen of a mole-cricket belonging to Scudder's genus Scapteriscus which is chatacterized chietly by having two claws mpon the tibia, instead of four to the front or digging feet. This specimen from Bahia and another specimen from St. Lucia are of the species called vicinus Scudder.

Family ACRIDIIDE.
Rhomalea miles Drury.
Nine specimens of this highly-colored locust were taken at Bahia. They are all immature.
Scyllina peregrans Stal.
There are also three specimens of a locust that is made out to be this insect. It is a much slemderer species than the Soyllime ciutoria Siassi, and approaches our Syrbula admirabilis (Chler) in its general appearance. Two mature individaals and one pupa from Abrolhos Islamds, off the east coast of Brazil,

Conocephalus subulatus? Boliv.
The collection contains a single larva of a Conocephalus from Abrolhos Islands which is probably subulatus Bolivar.

LEPIDOPTERA.

Family BOMBYCIDE.
A Bombycid larva was taken at Bahia.

Family NOCTUIDIE。

Erebus odora Linu.
()ne bittered example of this gigantic Brazilian moth "came on board ship in the night after leaving the Abrohos Islands, December $28,1857.0$ It is a strong flyer, and is sometimes taken as far north as New York City.

A Noctuid larva, near Aletia, was collected at Bahia.

HYMENOPTERA.

Family APIDE.
There is a very poor specimen of a bee belonging to some one of the genera peculiar to South America, collected at Bahia.

DIPTERA.
Family HIPPOBOSCID A.
One specimen of the genus Olfersia bears the label "Abrolhos Islands, December 2 S . This insect flew on board when we were three miles from the island." It had probably escaped from some bird flying in the vicinity.

ST. LUCIA.
COLEOPTERA.
Family STAPHYLINIDA.
One specimen of the genus Lathrobium.

> Family LAMPYRIDE.

One specimen of the genus Pyractomena.
Family SCARABÆIDÆ.

Ligyrus tumulosus Bur.
One specimen.

ORTHOPTERA.

Family GRYLLIDE.
G:yllotalpa hexadactyla Perty.
Fifteen specimens are referable to this species.
Scapteriscus vicinus Scudd.
One specimen,

NEUROPTERA.

Family ODONATA
Lestes simplex Hagen.
One specimen.
One specimen of the genus Libellula.

LEPIDOPTERA.

Family NYMPHALIDE.
Anartia jatrophæ Lin. (Pap. j.), Mus. L. U. R., p, 289.
Two defective specimens labeled "Port Castries, St. Lucia."
Family SPHINGIDE.
A larva collected that belongs here.

HYMENOPTERA.

Family FORMICIDE.
Numerous male specimens of an undetermined specie of the genus Lasius. A portion of a nest of a tree-ant was also taken.

Family POMPILIDE.
Pepsis ornata Say.
One specimen:

> Family APID※.

One specimen of the gevus Xylocopa

ARACHNIDA.

BY GEORGE MARX, M. I)
The steamer Albutross collected Arachnidu at the following five principal points :
(1) Abrolhos Islands, off the Brazilian coast, December 28.
(2) At the Straits of Magellan at three points: Gregory Bay, January 18; Laredo Bay, January 2e ; and Sandy Point, January 27.
(3) At the Galapagos Islands, as follows: Chatham Island, April 4; Charles Island, April S; Albemarle Island, April 10; James Island, April 11; Indefatigable Island, April 12; and Duncan Island, April 13.
(1) In Lower California : St. Margarita Island, May 2 ; Balenas Bay, May 3 ; and Cerros Island, May 5.
(5) In California: Clemente Island.

The total result of these collections was thirty-seren species of Areneat and six species of Scorpions.

The following list contains the Aranere, arranged accordmg to their classification:

Family EPEIRIDE.

1. Gasteracantha insulana Thor.
2. Gasteracantha caneriformis Liu.
3. Gasteracantha velitaris Koch.
4. Argiope argentata Fabr.
5. Epeira cooksonii Butler.
6. Epeira flaviventris Nicolet.
7. Epeira labyrinthea Hentz.

Family THERIDIDE.
8. Linyphia (Dyplostylum) magellanii nov. sp.
9. Latrodectus scelio Thor.
10. Latrodectus mactans Walk.
11. Latrodectus apicalis Butler.

Family SCYTODIDA.
12. Loxosceles galapagoensis sp. nor.

Famly THOMISIDE.
13. Thanatus antareticus sp. nov.

Family SPARASSIDE.
14. Selenops aissa Walk.
15. Heteropoda venatoria Lin.

Family AGALENIDE.
16. Agalena (immature).
17. Tegenaria morsitans sp. nov.

Family AMAUROBIDAE.
18. Amanrobius frigidus sp. nov.

Family DRASSIDE.

19. Drassus pacificus sp. nov.
20. Gayenna rosea sp, nov.

2'. Clubiona brevipes sp. nov.
22. Zora californica sp. nor.
23. Zora latithorax sp, nov.

Family LYCOSID.E.
24. Lycosa fallax sp. nov.
25. Lycosa fuegiana sp. nov.
26. Lycosa ornata sp. nov.

Family CTENIDE.
27. Ctenus obscurus sp. nov.

Family ATTIDE.
28. Phidippus morsitans (found on board of the ship).
29. Menemerus galapagoensis sp, nor.

Family DYSDERIDE.
30. Segestria galapagoensis sp . nov.

Family FILISTATIDÆ.

31. Filistata capitata Hentz.
32. Filistata hibernalis Hentz.
33. Filistata oceanea sp. nov.

Family THERAPHOSIDE.
34. Cyclosternum schmarde Auss.
35. Cyrtanchenius similis L. Koch.
36. Lasiodora striatipeṣ Auss.
37. Eurypelma rapax Auss.

The spiders collected at the Abrolhos Istaads bear a general South American character; they are eight species, five of which are known and have been previously described; one, the Epeira labyrinthea Mentz, is of special interest, for it is an inmate of the Enited States, where it is found as high north as the State of Maine, and is, as far as our knowledge of the geographical distribution of Arachnida in the United States goes, confined to the Atlantic States, from Maine to Florida. It has also been collected on the Bermoda and West India lslands and in California.
The following are the names of the spiders collected at Abrolhos Islands :

1. Epeira labyrinthea Hentz.
2. Cyclosternum schmardie Auss.
3. Cyrtauchenius similis L. Koch.
4. Lasiodora striatipes Auss,
5. Eurypelma rapax Auss.
6. Tegenaria morsitaus sp. nov.
7. Zora latithorax sp, nov.
8. Cteuus obscurus sp. nov,

The spiders collected at the Straits of Magiblan represent a new and strange fana, and, althongh on two former orcasions collections have been made in the same region and the material described, we find in our material that seven ont of the ten species are new to science. The three already described are Epeira flativentris Nie., which has been described by Simon from a collection from Cape Horn and which was originally deseribed by Nicolet from Chili in Gay's Hist. tisica y polit. de Chili. We find here also the Epeiralabyrinthen Hentz. mentioned above. It is hardly recognizable, for its color has greatly changed; the dorsal folium is nearly obliterated, only two lighter spots at each side remain, and the whole body is covered with a long and dense pubescence. The third known species is the cosmopolitan form Latrodectus mactans Walck., oceuring, as it seems, everywhere aromed the globe below a certain degree of latitude. The following is the list of species from the Magellan Straits :
a. Gregory Bay

1. Epeira flaviventris Nic.
2. Latrodectus mactans Walck.
3. Amaurobius frigidus sp. nov.
4. Lycosa ornata sp. nov.
5. Thanatus antarcticus sp. nov.
6. Clubonia brevipes sp. nov.
b. Sandy Point:
7. Lycosa fuegiana sp. nov.

Sandy Point-Continued.
8. Lingphia magellanii sp. nov.

Latrodectus mactans Walck.
c. Laredo Bay :
9. Guyenna rosea sp, nov.
10. Epeira labyrinthea Hentz.

Lycosa fuegiana.
Epeira llaviventris.

The collection from the Galapagos consists, unfortunately, of only ten species taken in the niue days the Albatross was present in that region. These ten species are representatires of eight families and therefore suggestive of a rich fama. What a pity that more time could not be spent in collecting at such interesting points; but we are glad for the opportunity of a mere glimpse at the very interesting fana of that group of islands.

The Galapagos Islands have been risited before, and iI. M. S. Petrel collected natural history specimens extensively in 187.\%. Among these were the following seren Arachnida, which were described and delineated by Mr. Butler in the Proc. Zoöl. Soc. London, 1877:

1. Audroctonus americus Linn.
2. Lycosa indomita Nic.
3. Gasteracantha insulana Thor.
4. Theridium carolinum Butler.
5. Latrodectus apicalis Butler.
6. Epeira cooksouii Butler.
7. Thomisoides utriformis Butler.

Of these, three are represented in our collection, viz, Gusterucontha insulana, Epeira cooksomii, Latrodectus apicalis. Two more specimens, previously described, were found among the species, viz: Latrodectus scelio Therell (the renowned "Katipo" of Sew Zaaland) amd Heteropoda venutoria, a cosmopolitan in the equatorial and troppical regions.

Proc. N. M. $89 —$ - 14

A species which seems to live in great abmonace on these islands is the Epeire cooksonii Butler; it is related to on domiciliorum, which has undergone on the Pacific coast already a change in its form and coloratio:1, so that Dr. Me ook has described it as new-Epr. vertebrata. In Ep. cooksonii this change is increased, lut still the relationship is preserved by the structure of the epigynum.

The following is a list of the material collected at the Galapagos group:
a. Chatham Island :

1. Gasteracantha insulana Thorell.
2. Epeira coolsonii Butler.
3. Segestria requatoria sp. nov.
b. James Island:

Gasteracantha insulana Thorell.
Epeira cooksonii Butler.
c. Charles Island:
4. Latrodectus scelio Thorell (Katipo) (young).
5. Agalena (immature).
6. Loxusceles galapagoensis sp, nov.

Charles Island-Continued.
7. Filistata oceauea sp, nov.
8. Heteropoda venatoria Lin. Gasteracantba insulana Thorell. Epeira cooksonii Butler.
d. Albemarle Island:

Epeira cooksonii Butler.
Heteropoda venatoria.
e. Indefatigablo Island:
9. Menemerus galapagoensis sp, nov.
10. Latrodectus apicalis Butler.

In the collection from Lower California we meet again with a majority of well-known specees, as our Epeiral labyrinthea Hentz; Gisteracentha cancriformis, also fomm in the Sonthern States of the United States and in California: Aggope argentete Fabr., frequentig eollected in southern Florida, Texas, and California; Gasteracontha velitaris Koch, the crab spider of the sonthern Atlantic States; Selenops aïssa Walck., found in Key West, Fla., and the West Indies; Filistata hibernalis Hentz., from Alabama. The two new species are Diassus pacificus and Zora californica.
a. Cerros Islands :

1. Drassus pacificus sp. nov.
2. Epeira labyrinthea Hentz.
b. Ballenas Bay:
3. Gasteracantha cancriformis Lin.
4. Argiope argentata Fabr.
c St. Margarita Island :
5. Gasteracantha velitaris C. Koch.
(i. Selenops aïssa Walck.
6. Filistata hibernalis Hentz.
7. Zora californica sp. nov. Epeira labyrinthea. Argiope argentata.

The material from Clemente Island, California, comprises four species, of which only one is new :

1. Filistuta capitutu IIentz., a common form in the Sonthern States.
2. Latrodectus matuns Walck., a species which had been caught also at the Straits of Magellan by the Albatross, and which is cosmopolitan.
3. Argiope argentata, several times mentioned above,
4. Lycosa fallax, a new species.

Résumé.

The scorpions collected on this oceasion are six in number of species, and belong to the three families into which the order of sheorpions is divided.

> Family BUTHIDE.

1. Centrurus biaculeatus Luc.

From Pamama: a species, cosmopolitan, and frequently fomud in comutries bordering the Atlantic Ocean below 2.5 morth latitude.
2. Centruroides exilicauda Woort.

From St. Margarita Islamb, Lower ('aliformia; a common suecies in that region.
3. Centruroides luctifer sp, nov.

From Indefatigable Island, Calapagos; a very interesting species.

> Family PANDINIDE.
4. Vejovis galapagoensis sp. nov.

From Chatham Island, Galapagos.
5. Broteas formosus sp. nov.

From St. Margarita Islaud, Lower California.
Family BOTHRIURIDE.
6. Timogenes niger sp, nov.

A mutilated and broken specimen from Montevider, Uruguay.
This is, so far, the result of my investigation, and I hope to have an opportunity to deseribe and figure the hew speces of this interesting collection.

MYRIAPODA.

BY C. 11 . motiman.

1. Spirobolus sanctæ-luciæ sp. nov.

Diagnosis:-Allied to spirobolus surimumensis Bollman; bat the horse-shoe-like markings only pominent along the mindle line of segment; no deepsulens behind repugnatorial pore: legs light ? dhow.

Type.-No. 590.
Hab.-Port Castries, St. Lucia, Windward Islands.
Description.-Segments dark brown, posterior horders liwhter; ante.
rior margin of first pale; head and first dorsal plate greenish ; antenna pale brown ; legs very light yellow (pale), probably red in life.

Rather slender, anterior segments attemuated.
Venter slightly reticulated, sulcus very indistinet; clypeus not deeply excised, foveolæ $2+2$, distant, sulens shallow.

Antenna slenderer than in surimumensis, hardly reachng second segment.

Ocelli about 40, in a series, patch suboval.
Segments shining, rather smooth, especially posteriorly ; anterior ten segments with distmet concentric strise on basa! part; posterior part, espectally on anterior segments, sulcate bencath; division of segments not evident, a hollow depression along which are horseshoe like depressions; these are scattered orer the dorsal part of segments, hat are small and shallow ; the posterior four segments almost destitute of markings.

First segment narrowed laterally, anterior margin concave, a strong marginal sulcus.

Anal segment obtusely anglerl, not surpassing valres; anal valres narrowly margined, reticulated ; anal scale very slightly romded, almost transverse.

Repugnatorial pore large, situated in hollow on anterior part.
Legs extending slightly beyond sides of body.
Segments 50.
Length of borly $45^{\text {mm }}$; width $3.4^{\prime m m}$. This speecies is described from an adult femalo; in the same vial is a rery young specimen, showing only 41 segments. In Kiarsch's ". Vine Juliden de's Bevliner IUuseum" this species would stand near špirobelus biconicus from danritius.
2. Himantarium tæniopse (Wood).

No. 599, Margarita Island, Lower California; ㅇ.
A young specimen. Pairs of legs, 148 .
3. Pectiniunguis americanus gen. et sp. nov.

DiAciNOsis.-Related to Schemlyler cximia Meinert ; but the anal pair of legs jointed and the claw of maxillary palpus pectinate along its entire under side.

Type.-No. 598.
Hab, - Pichiliugue Bay, Gulf of California.
Description.-Orange, darkest anteriorly; legs pale.
Robust, scarcely attenuated anteriorly, more posteriorly.
Segments not polished, very finely reticulate; spansely pilose.
irehensorial legs not reaching base of antemare ; stermum almost twice as wide as long, anterior margin slightly callons; coxal of about equal length and width, unarmed, anterior maroin not much sinuate.

Cephatie plate slightly longer than wide; hasal plate three times as wide as long ; prehasal plate exposed. Antemme filiform, rather long.

Dorsal plate manifestly bisuleate.
Spiracles subovial, lougitudiual, auterior largest.

Veutral plates not sulcate: porous atea suboval, much smaller on posterior segments; last rentral plate rery wide, pilose, sides converging.

Posterior pleuræ large, pilose; pores large, concealed.
Anal pair of legs 6 jointed, moderately crassate, joints all large, densely pilose ; unarmed.

Pairs of legs $\& 6 \tilde{5}$.
Length 50^{mm}; width 1.55^{mm}.
This species is described from an adult female.
According to Memert's diagnosis of the genns sehemtyla this species would be included mader that genus; but the three known species may be separated by the following generic characters:
a. Claw of maxillary palpus not pectinate, outer part of first pair of maxillæ without a trace of a lateral process; labrum entirely united, teeth 20-22, equal ; anal legs fi-jointerl

Vemorensis.
aa. Claw of maxillary palpus pectinate; onter part of first maxillo with a small lateral process; labrum free in the middle.
b. Anal pair of legs 5 -jointed; claw of maxillary palpas only pectinate under the apex; labral teeth about 15, equal ; first joint of anal legs almost coalesce with secome
. Erimir.
bb. Anal pair of legs 6-jointed; claw of maxillary palpns. pectinate for its entire leugth; labral teeth $8+10+8$, the outer eularged; first joint of anal legs mot eoalesered with secomd \qquad
On account of these generic differences between the three species, especially hetween the finst and the last tro, I have thonght it best to place americanus and eximin under the new genus Pectininnguis, of which americanis is the type, restricting Schendyla to nemorensis.

The generic differences between americanus and eximia are no doubt worthy of subgeneric rank, and I therefore propose the name Nonnopus for the reception of eximia.

4. Scolopendra macracanthus sp. nov.

Diag.osis.-Allied to scolopendre subspinipes Leach; but the femora of anal legs armed beneath with three spines, of which the two anterior are rery large, the superior-interior sutace armed with six spines; the first nine dorsal plates immarginate.

Type.-No. 165F.
Hab. - Pacific coast, some place between Lower Califormaand Straits of Magellan.

Description.-Brownish-green; tip of antemie and lateral parts of dorsal plates green; head and first dorsal plate darker.

Rather slember, smooth, ouly lighty punctate anteriorls.
Head suborbicular, punctate, not sulcate.
Antenne, 18 jointed ; articles moderate, the first six not hirsute.
Prosternal teeth $5+5$, the imer two small and eoalesced ; coxal tooth large, apex carinate, nodule present.

Dorsal plate, except the first nine (10), marginate ; sulci begimning at the third and indistinct on the posterior; posterior border transversely wrinkled.

Sulci of ventral plates distinct; last ventral plate long and narrow, sides converging, posterior border rounded.

Second torsal joint of all the legs, except anal, armed beneath with a spine.

Anal legs long, slender'; femora, with six spines on the superior-interior surface, arranged in three series; three beneath, uniseriate, the auterior two largest; apical process bifid.

Posferior pleura densely porose; angular process small, bifid.
Leugth 120^{mm}.
In the collection is a specimen without a more definite locality than "Pacific coast."

The following key will help to separate it from the related species:
Femora of penultimate pair of legs unarmed; first dorsal plate without a transverse furrow ; tarsal joints armed.
a. Femora of anal legs unarmed beneath, two spines within; the first 6-11 dorsal plates immarginate; last two tarsal joints marmed............... . Dehaani. act. Femora of anal legs armed beneath.
b. Spines of femora of anal legs 4-6, always two beneath; the first four or five dorsal plates immarginate ; the last or the last two tarsi unarmed.

Subspinipes.
bb. Spines of femora of anal legs 9,3 beneath; the first nine dorsal plates immarginate ; the last tarsal joint unarmed Macrocanthus.

5. Scolopendra microcanthus sp nov.

Diagnosis.-Allied to Scolopential pernix Kohbranseh, but the anal pair of legs slender, spines small, and more numerous.

Type.-No. 600.
Hab.-St. Margarita Island, Lower California.
Description.-- Pale green, posterior border of segments dark; prehensorial legs orange.

Slender; smooth, very lightly punctate.
IIead suboral, punctate; sulci absent.
Antenme $25-39$ jointed, long, basal not rery crassate, the first 3 or 4 smooth.

Prostermal teeth $4+4$ imer coalesced ; coxal tooth large, imner margin unarmed.

The first 15 dorsal plates immarginate: suldi well developed, and commencing at transverse suture of first plate and dividing them into three planes.

Sulei of rentral plates shallow, last plate short and wide, sides converging, rounded, posterior margin emarginate.

Second tarsal joints of all legs, except anal, armed.
Anal pair of legs slender as in heros ; splnes very small; 8-12, in 3 or 4 series on the superior-interior surface; 4 or 5 in 2 series on the
inner surface; beneath $10-12$ in $\check{2}$ or 3 series; apical process large and blunt, armed with 9-11 small spines.

Posterior plema narrow ; apex long, armed with 7-9 spines, posterior margin concave; a marginal spine.

Length 75^{mm}.

Described from one specimen of which the anal pair of legs is broken off.
This new species is separated from heros. puchypus, nictratyensis, and viridis by the large number of spines of apical process of femora and the well-marked sulei of first dorsal plate.

6. Scolopendra galapagoensis sp. nov.

Diagnosis.-Related to Scolnpendra rividicomis Newport, but the spines of apical process of femora of amal legs, $6-8$: spines of apee of posterior plemae, 9-12 ; spines of femora of $2-20$ pairs of legs, 4 or 5 .

Type.-No. 594.
Hab.-Chatham, James, and Albemarle Islands, Calapagns Arcinipelago.

Iescription.-Very dark brown, more yellowish posieriorly; under parts more brown than upper ; the first five or six antemal joints dark blue, rest msty ; tarsi brownish, rest of legs bluish-brown, exerpt base of femora, which is more brown, like rentral phates; posterior pleurae and femora of anal legs reddish-brown.

Robust, smooth, all parts very slightly punctate.
Head suboval; two longitudinal sulci, which break up posteriorly, and send a branch along lateral margin.

Antemme long, 17 jointed, anticles long, hasal subcrassate, the first four or five not hirsute.

Prosternal teeth $3+$;, large inmer coalesced ; a transwerse sulcus along anterior part of sternum.

The first four dorsal piates immarginate: posterior borders trams. versely wrinkled; crest of anal segment weak, only extending threefourths of the way.

Sulci of rentral plates mistinct ; last plate rather short, narrow, posterior border rounded.

Second tarsal joint of all the legs, except anal pair, armed. Anal legs rather long and stont; $10-1: 3$ spines on the superior interior surface of femora aranged in 3 series; within are or or: misertate spines; beneath $7-9$ spines arranged in $2 \sim$ or 3 series; apical process with 6-8 spines.

Femora of $\because-20$ pairs of legs, armed with 4 or $\begin{gathered}\text { spines at their exte. }\end{gathered}$ rior apex, the posterior usually with in spines: femora of pemultimate pair of legs armed above with $1-3$ spines.

Posterior pleure with 9-1シapical spines and 1 or 巳2 marqinal; above on margin of dorsal plate are 2 small spines.

Length of largest specimen 160^{mm}.

This species is described from two adult and one young specimen from Chatham Island, one young individual from James Island, and another from Albemarle Island. The type is au adult from Chatham Island.

The five species belonging to this group of Scolopendra may be separated as follows:

Femora of penultimate pair of legs armed; first dorsal plate with a trausverse sulcus.
a. Ventral plates not sulcate; tibiæ of anal legs armed with spines Prasina. $a a$. Ventral plates with two longitudinal sulci.
b. Last dorsal plate without a median carina.
c. Femora of last three pairs of legs armed; tibiæ of anal legs unarmed... Falida.
cc. Femora of all legs armed; tibiæ of anallegs armed.......................... Gigas.
$b b$. Last dorsal plate with a median carina.
d. Femora of penultimate pair of legs not armed above; spines at apex of femora of $2-20$ pairs of legs, 2 or 3 ; spines of apical process of anal legs, 1-3; spines of apex of anal pleuræ, 1-3 ... Tiridicornis.
$d d$. Femora of penultimate pairs of legs with 1-3 spines above; spines of apes of femora of $2-20$ pairs of legs, 4 or 5 ; spines of apical process of femora of anal legs, $\hat{6}-8$; spines of apex of anal pleuræ, 9-12 Galapagoensis. .

7. Scolopendra sp. 9

No. 591, Abrolhos Islands, Brazil.
A very young specimen and unidentifiable.

ع. Henicops chilensis Gervais.

1847.-Henicops chilensis Gervais.

Aptères, iv, 239 (Chile).
No. 593, Port Churruca, Straits of Magellan.
One young mutilated female.
Prosternal teeth, $4+4$.
[Published by permission of Hon. Marshall McDonald, U. S. Commissioner of Fisberies.]
No. VI.-LIST OF THE PLANTS COLLECTED IN ALASKA IN 1888. BY

Dr. George Vasey.

Ranunculaceæ.

Aconitum Kamtschaticum, Willd. Ounalaska, Kodiak, and Itumboldt Harbor. Anemone narcissiflora, Linn. Hnmboldt Harbor. Rauunculus occidentalis, Nutt. Onnalaska.

Geraniaceæ.

Geranium erianthum, D. C. Eagle Harbor, Ounalaska, Humboldt Harbor, Kodiak.

Leguminosæ.

Lathyrus palustris, Linu. Humboldt Harbor, Kotiak.
Lupinus Nootkatensis, Donv. Onnalaska, Kodiak.

Rosaceæ.

Fragaria Chilensis, Duchesne. Kodiak.
Geum calthifolinm, Smith. Humboldt Harbor.
Potentilla palustris, Scop. Kodiak.
Rubus chamæmorus, Linn. Humboldt Harbor.

Saxifragaceæ.

Henchera glabra, Willd. Humboldt Harbor.
Parnassia palustris, Linu. Humboldt Harbor, Kodiak.
Saxifraga Hureulus, Linn. Humboldt Harbor.

Crassulaceæ.

Sedum Rhodiola, D. C. Eagle Harbor.
Onagraceæ.
Epilobinm spicatum, Law. Eagle Harbor, Humboldt Harbor, Kodiak.
Epilobinm affine, Bongard. Humboldt Harbor.

Umbelliferæ.

Ligusticum Scoticum, Linn. Omalaska.
Selinum Hookeri, Watson. Onnalaska, Kodiak.

Cornaceæ.

Coruus Canadensis, Linn. Ounalaska.

Araliacere.

Fatsia horrida, B. \& H. Kodiak.

Capıifoliaceæ.

Sambucus racemosus, Linn. Kodiak.

Valerianaceæ.

Valeriana capitata, Pall. © Humboldt Harbor.

Compositæ.

Achillea millefolium, Linn. Kodiak, Eagle Harbor, Onualaska, Humboldt Harbor.
Aster Sibiricus, Linn. Kodiak.
Erigeron salsuginosuz, Gr. Onnalaska.
Prenanthes alata, Gr. Kodiak.
Senecio pseudo-arnica, Less. Ounalaska.
Senecio resedifolias, Less. Humboldt Harbor.
Solidago lepida, D. C. Kodiak, Humboldt Harbor, Ounalaska.

Campanulaceæ.

Campanula Scheuchzeri, Vill. Humboldt Harbor, Kodiak.
Campanula lasiocarpa, Cham. Ounalaska.

Ericaceæ.

Bryanthns taxifolius, Gr. Middleton Island.
Pyrola rotundifolia, Linn. Humboldt Harbor.
Rhododendron Kamtschaticum, Pall. Ounalaska, Humboldt Harbor.
Gentianaceæ.
Sisertia pereunis, Linn. Ounalaska.
Scrophulariaceæ.
Castilleia pallida, Kunth. Humboldt Harbor, Ounalaska.
Mimulus lutens, Linn. Ounalaska, Humboldt Harbor, Kodiak.
Pedicularis Chamissonis, Stev. Onnalaska.
Pedicularis verticillata, Linu. Humboldt Harbor.
Polygonaceæ.
Polygonum viviparum, Linu. Ounalaska, B. C.
Rumex occiceutalis, Watson. Middleton Island.

Salicaceæ.

Salix reticulata, Linn. Ounalaska.

Orchidaceæ.

Cypripedium guttatum, Swartz. Ounalaska.
Habenaria dilatata, Gr. Humboldt Harbor.

Iridaceæ.

Iris Sibiricus, Linn. Ounalaska, Humboldt Harbor, Kodiak.

Liliaceæ.

Fritillaria Kamtschatcensis, Ker. Humboldt Harbor.
Streptopus amplexifolius, D. C. Humboldt Harbor.

Cyperaceæ.

Eriophorum vaginatum, Linu. Kodiak.
Eriophorum polystachyon, Lim. Humboldt Harbor.
Eriophorum angustifolium, Linn. Ounalaska.
Eriophorum russeolum, Fries. Ouvalaska.
Carex limosa, Linn., var. stygia, Bailey.

Gramineæ.

Calamagrostis (Deyeuxia) Alentica, Trin. Middleton Island.
Calamagrostis (Deyenxia) Langsdorfii, Trin. Middleton Island.
Deschampsia cæspitosa, Beauv. Middleton Island.

Filices.

Adiantum pedatum, Lind. Ounalaska.
Aspidium acrostichoides, Swz. Ounalaska.
Asplenium felix-fœmina, Bernh. Ounalaska, Hunboldt Harbor.

Lycopodiacer.

Lycopodium clavatum, Linu. Onnalaska.
Washingtox, D. C., March 27, 1889. COMMISSION STEAMER ALBATROSS.
[Published by permission of Hon. Marshall McDonald, Commissioner of Fisheries.]
No. VII-—PRELIMINIRY REPORI ON THE (OLLE('TION OF MOLLUSCA AND BRACHIOPODA OBTAINED IN 1887-'88.

BY

> Willian Healey Dall, A. M., Curator of the Department of Mollusks. (With Plates V to XIV.)

Before proceeding to discuss the particular specimens obtained on the voyage of the U. S. Fish Commission steamer Albatross from Fortress Monroe in Chesapeake Baỵ to Magellan Straits and northward to California, it may not be improper to say a few words on the conditions under which the deep-sea Mollusks exist, and the reasons why a study of these animals is important for science.

In order that their existence may be maintained, the abyssal mollusks require oxygen to aerate their circulation, food to eat, and a foot-hohd upon which they may establish themselves. It is necessary that the conditions should be such as will not prevent the development of the eggs by which suceessive generations are propagated. That they do permit it may be assumed from the very fact that mollusks in large numbers have been shown beyont all guestion to exist on the oceanic floor wherever it has been explored.

Formerly, when dredging with the usual appliances in small boats, 100 fathoms $(600$ feet) was considered extremely deep. If one stands at the foot of the great Wishington obelisk and looks up, the idea of collecting a satisfactory representation of the insects and plants on the ground at its base by dragging a 6 foot trawl or dredge by a line let down from the apes of the monmment strikes one as preposterons. Yet the monument is less than 100 fathoms high. Nultiply this height ten or fifteen times and the idea seems, if possible, stil! more unreasonable; yet it is a fact that suceessful dredging has been done from a height above the sea bottom of not less than twenty-five times the height of the Washington Monnment. Living ammals have been seented from a depth equalling the distance from the Capitol to Lock Creek, or from the Washington Monmment to the Mansion at Arlington-that is to say, about $2 \frac{1}{2}$ miles.

It is therefore evident that in speaking of dredging we must revise our terms and define them so as to conform more nearly to the new conditions under which such work is done.

The waters immediately adjacent to the shores were long ago divided by Forbes and other pioneers in marine exploration into zones or areas, aceording to the conditions characterizing them; as, for instance, the Laminarian zone or region of brown kelp, the Coralline zone or region of stony algar, ete. But for general purposes and to contrast the areas of the whole sea one with another, according to their chief characteristics, we may now divide the eutire sea bottom into three regions.

The first is that to which light can penetrate, and therefore where marine regetation can exist. This is the Litoral Region, and in a general way, moditied by special conditions at particular places, it may be regarded as extending from the actual shore ont to the limit of 100 fathoms. Beyond this it is practically certain that the light reaching the bottom is insufficient for the growth of sea-weeds. Outside of this the borders of the continents slope gradually to the bottom of the ocean, which is fomd usually at a depth of about 2,500 fathoms.

On the upper parts of these continental slopes the conditions are often very farorable for marine life. Currents of comparatively warm water, like the (inlf Stream, sweep along, bringing fresh pure water and supplies of food to the amimals along their trate. The division between the abysies and the slopes is rather a matter of temperature than of mere depth, but the temperature itself is somewhat dependent on the depth. The influence of the great warm enrents rarely extends below 700 or sol fathoms, and this depth corresponds ronghty to a temperature of ahout $4(10$ Fahr. Below this it diminishes as the depth increases at the rate of about one-tenth of a degree to 100 fathoms, until the freezing point is reacherl, though there is no reason to suppose that the abyssal water ever actually becomes congealed.

To this cold, dark area of the ocean bottom has been applied the name of the Benthal or Abyssal Region.

To the region chicfly on the continental slopes, between the Litoral and Abyssal regions, I gave, some years ago, the name of the Archibenthal Region.

These divisions have been recognized by varions mriters and have had several terms applied to them. Those I have mentioned seem to me as characteristic as any, and, in some respects, more consenient than any I have heard used.

Let ns now comsider the conditions under which life exists in the Abyssal and Archibenthal regions. It may be premised that the differences between them are largely of degree and not of kind and do not require that the two regions should be considered separately.

The chief chamacteristies reside in the composition of the sea water, including its contained gases; in the dynamic status of the deeps, especially in relation to temperature and pressure ; in the mechanical quali-
ties of the materials of which the oceanic floor is composid : amd, lastly, in the food supply.

As determined by physicists and chemists, the water of the deep sea varies in the proportions of mineral salts, carbonice andol, and air comtamed in it rery much as does the sumfere water. In gemeral, at the surface the warmer water of the tropies has the more salt and the lesis nitrogen. When caried herments to the Potar requons and coobed this tropical water sinks to the bottom carring its exoms of salt along with it. The Polar waters are less saline ant contan more nitwgen. The proportion of atmospheric air in the water is fomm strictly related to the temperature, the pressure at great depths being regarded as hasing no bearing on the question. The amount of oxyen in the sea water diminishes gradually as we descend from the surtare motil ahout :300 fathoms is reached, when it ceases to chauge, or, at most, increases slightiy until the bottom is attained.

Carbonic acid, according to Tornoé, does not exist in a free state in sea water, but only in the form of carbonates, or, 10 a less degree, of bicarbonates. Unless the decomposition of animal matter in some manner sets free the carbonic acid, this conclusion is one which can mot be adopted withont question, especially when we consider the great difficulties which are encountered in any attempt to obtain, or when olb. tained to amalyze, alyssal water. The effect of erosion on the shells aredged from the deeps, eren when they contain the living animal, is so strongly marked, the devices for protection against mosion are so recognizable in varions specees, that the biologist may well call the physicist to a halt, while the latter re examines his data. It is certain that erosive agences, of which the effeets are indistimgishathe from those known to be due to carbonice acid in other inst meses are extremely active in the deeps.

In general, it seems as if we might safely assume that the eomposition of alyssal sea water shows no very important differences from that of other sea water, and that the animals existing in it are not exposed to any peculiar influences arising from this source alone.

This can not be said of the physical conditions. Eray one knows how oppressive to the bather is the weight of the sea water at only a few feet below the surface, and how difticult it is to dive still more to remain on the bottom, if only for a few seconds.

But it is difficult to consey any adequate idea of the pressure at such a depth as 2,000 fathoms, or about \because miles below the surfice Rope made impervious by tarrins is sad to have become redtued one-third in its diameter by a descent into these depths. Any hoblow object not pervions or elastic is at once crushed. There is mo donlet that at some points on the ocean floor the pressure maty amomet to sectavl tons to the square inch. If we recatl that the aremge pressure in steam hoilers is probably much less than 100 pommes to the sumare inch, it mas help towads an appreciation of the abyssal conditions.

The ineritable conclusion is, therefore, that all the animals living under these conditions mast hase their tissues so constituted as to permit the free permeation of the water throngh every part in order that the pressure may be equalized. How this is possible without putting an end to all organic functions is, perhaps, the greatest mystery of abyssal life. How can a large egg, like those of rarions deep-sea animals, pass through the stages of segmentation and development, with every molecule of its structure in actual contact with ordinary sea water and every solid particle subjected to a pressume of, say, a thousand pounds to the square inch? Such questions are much easier to ask than to answer ; in fact, no attempt at an answer has, so far as I am amare, ever been offered to biologists.

The looseness of tissue necessary to such a permeation is conspicuous in abyssal animals, whose flaboy and gelatinous appearance when they reach the surface is notorions. It is, perhaps, most noticeable in the fishes, which, nevertheless, are often armed with formidable teeth; but, under the great pressures of the deeps, it is quite conceivable that each of these loose and half-dissolving museles may be compressed and reduced to a condition resembling steel wire, and that the organization thus sustained may be as lithe and sinewy in its native hames as its shallow. water relatives are in theirs.
It is well known how great an influence on the distribution of shallow water species is exerted by the temperature of the water in which they live. No doubt the differences of temperature affect the nerrous system, the rate of muscular contraction and the motions of the cilia, by which in mollusks many of the functions of life are aided or wholly carried on.

But it is probable that the influence of temperature is far more effectively exerted upon the development of the ova, and hence upon the propagation of the species, than directly upon the parents. It is probable that most adnlt mollusks could endure a very wite range of temperature if the individuals were subjected to the changes by extremely slow degrees; but it has been shown that a difference of one or two degrees below a certain point on the thermometric: scale will destroy the embryos of Ostrea or prevent their development, so that they perish. In this way the spread of the species may be effectually checked, though the adult shell-fish may flourish without difficulty in the same region.

In the shallower parts of the Archibenthal Region a fer great currents like the Gulf Stream may reach, for a small part of their course, the ocean floor, and sweep, it clean of sediment and detritus if not entirely of living beings. Such mechanical effect as is produced must be of a rather steuly and uniform nature for considerable periods and in no respect resemble the crushing and grinding which take place on every exposed beach on which the sea rolls up. In fact, regarded as individuals, the mollusks in the path of the Gulf Stream and other
great currents have little or mothing to fear from the mechanical attrition which phays so large a part in the shallows. On the other hamd, wherever the force of the stream is not sufficient to sweep the bottom clean, the supplies of oxygen and food bronght by it to the colonies along its path so far exceed the normal for quiet waters that the animals thus favored flourish and multiply in a maner never seen in quiet deeps.

The intluence of darkness upon the inhabitants of the Abysal Region has often been expatiated upon. The absence of vismal organs, or their preternaturally excessive development beyond the normal of the groups to which the individuals belong, is evidence enongh that the deeps are markedly darker than the shallows. But this evidence proses ton much for the claim that the deeps are mathematically dark. Whaterer notions may be cutertained or conchasions deduced by the physicist from the premises, the presence of large and remarkably developed eges in many abyssal amimals shows that light of some sont exists even on the oceanic floor. It is inconceivable that these organs shonld be developed without any light, and if the experiments and reasoning of the physicist result in the apparent demonstration of absolute darkness in the depths, the facts of nature show that in his premises or his experiments there lurks some vitiating error. It seems absurd to suppose that the phosphorescence of certain anmals or parts of animals in the deepsea fauna is a factor of sufficient importance to bring about the development of enormous and exquisitely constructed eyes in a multitude of deep-sea species. A greater or general phosphorescence, such as would amount to a general illumination, has never been clamed by any seientific liologist, and, as a theory, requires a mass of proof which seems unlikely to be forthcoming.

In general, then, we find the physical conditions simpler than those of the shallows and yet much more energetic. The effect of temperature is marked in the distribution of life over cold and warmer areas of sea bottom. The relative importance of the effects of pressure, partial darkness, and of the quietness of abyssal waters, our knowledge is yet too imperfect to allow us to precisely estimate. All, doubtless, have their effect; some of the effects are more obvions than others, but it is by no means certain that the most obvions are necessarily the most important to the organisms concerned.

The mechanical character of the sea bottom is of greater importance than is generally realized. In a very small proportion of its extent the sea bottom is composed of bare, or nearly bare, rock. A way from the shores such a bottom is usually situated in the trongh of some great current like the Gulf Steam, and then seems to be nearly bare of animal life. In other cases it may be found on the walls of submarine cliffs, which, for obvious reasons, can hardly be explored for marine life with our present appliances.
The rest of the bottom consists of solid matter in different stages of
subdivision, from something which may be described as calcareons gravel to an impapable mol which may or may not be dotted with concretions of manganese, iron, or other mineral matter. The gravels are chiefly continell to the Archibenthal Region; the true deeps are gemprally carpeted with a vised layer of the finest possible calcareons mud or clay. The latter formation is meager in its fama as clay is when it occurs in shallow water.

Certain forms of mollusk life flomish in a soft bottom, especially the Neculder and their allies, which are notably abmodant in the depths as well as in the mmdyy shallows of the Litoral Region. Uthers require some solid substance upon which to perch, a stone, a bit of wood, a spine from some deal echinoterm, somming they must have for themselves and for their eggs which shat raise them above the muddy floor. In regions where such objects are rare or absent on the sea bottom such mollusks are equally rare or wanting. Most ingenions are the shifts made in many cases. as when we time Iopetclla sately housed in the tubes of dead ammelids or Hydroids, and Choristes taking refuge in the empty ovicapsules of rays or sharks. Small hermit crabs take to the tooth shells (Inentulinmi) or to the tubular P'teropods (C'urierina), or Amulthee ronst: on an Echinus spine and builds for itself a platform as it grows, recalling the arboreal honses of some Oriental savages.

In the Archibenthal Region there is a more or less constant drift of Cebris from the aljacent shallows which gradually forms banks of considerable magnitule. The action of erosion and solution for some reason seems less potent here than in either the shallower or the deeper parts of the sea. In the shallower parts the exeess of motion, in the deeps the excess of the eroling agent, may account for this. The fact is known to me from the study of many specimens from both regions and is beyond question.

A feature in forming certain of these banks, to which attention has hitherto not been directerl, is worthy of mention. This is the habit of certain fishes, which exist in rast mmbers, of frequenting certain areas where they eject the boken shells of mollusks, comals, barnacles, and other creatures which they have cracked, swallowed, and cleansed of their soft tissues hy digestion We have learned from Darwin of the marvelous work of the earth-worm in Britain. The ejectamenta of a single fish of moderate size in one day would far exceed the accumulations of many earth-worms for a much longer time. Now, in examining critically large guantities dredged from the bottom, I have found the material from certain areas almost entirely composed of these ejectamenta. In the interstices some small creatures hide, but the tooth marks of the tish were upou nearly every fragment. As, for a pint of fragments oí a given species, this hotom stuff would rarely contain half a dozen specimens which had heen taken alive by the dredge (most frequently the spectes did not oreur at all living in the material so dredged), it was ubviously impossible that the shells could have been
captured and afterward woided on the same spot. It seemed more likely from all the facts that these fishes, after feeding to repletion, repair in large schools to certain areas to enjoy the pleasures of diges. tion. There wonld be nothing improbable in the fish of a limited region preferring some special locality for this purpose, and the result might be the accumulation of a veritable bank, of which nearly the whole had at some time or other passed through the intentine of a fish. At all events, whaterer explanation he offered of them, it is certain that such acemmations do oceur at certain localities, as shown by the dredgings of the Fish Commission off the eastern coast of the United States.

The last condition remaining to be considered is that of the food supply. It has long since been pointed ont that marine regetation ceases to exist within a limit of 600 feet below the surface. Whaterer light exists in the depths it is not of a nature to meet the needs of regetation. Whether any other factor joins with the absence of light to discourage algal growth is yet makown, but not intrinsically improbable. The molluskis which belong to groups known as phytophagons in shallow water, in the deeps appear to live chiefly on foraminifera which they swallow in immense quantities. The results of this diet are evident in the greatly increased caliber of the intestine relative to the size of the animal, in the diminution of the masticatory organs, teeth, and jaws, and in the prolongation of the termination of the intestine as a free tube to a length whith will carry the faces out of the nuchal commis. sure, and thus free from their injurions effects the branchial organs, which are usually seated in this space. The quantity of mutriment in the protoplasm of foraminifera is so small that a much larger mass in proportion of these organisms must be swallowed, and their remains consequently ejected afterward, than if the food consisted of the tissues of algæ.

But the great mass of abyssal mollusks are members of those groups which in shallow waters are normally carnivorous, and to a great extent prey upon one another. In the deens, however, this reciprocal destruction is unnecessary.

Those who have beeome familiar with surface collecting on the sea, alone can realize the immense quantity of organsms wheh exist in the water on or near the surface. These are frequently numerons enongh to reduce the water to the consistency of soup for miles in extent and to a considerahle depth. Millions of these creatures are constantly sinking from the region where they naturally belong, either from injury or exhanstion, and thus raining slowly but constantly upon the hottom. This fact is not new and is admitted to be unduestionable by all biologists. Hence in many regions of the sea bottom the resident fanna have, as it were, only to lie still and hold their mouths open.
One of the facts which attracted my attention when I first hegan to study deep.sea mollusks was the singularly small number which showed signs of having been drilled or attacked by other mollusks. Apart from
those showing the marks of tish teeth, or the dental machinery of echinoderms, it is extremely rare to fimd drilled bicalses or mivalves such as make up the great mass of the jetsam on every sandy beach. Such cases occur, but the occurence is always exceptional and the holes which are most often found in abyssal shells are those which are due either to the friction of some hermit crab or to the erosive properties of the secretions of certain anmelids which tix their irregular tubes upon the onter surface of the shell. These injuries cam not easily be confommel $/$ with the circular dirill-holes of carnivorous gastropods. Having hamed more deep-sea mollusks than any other naturalist now living, and spent, probably, more time over material procured by the dredge from shallow water than any one che of my acquantance, I do not feel that I am presumptnons in affirming the remarkable difference which obtains in this respect between the dead material from the Litoral and from the Extra-Litoral Regious, respectively.

This brings me to a conclusion which I have elsewhere published with less detail. The anmals belonging to the mollusea which are foun I in the Arehibenthal and Abyssal regions, especially the latter, do not live in a perpetmal state of contlict with one another. A certain amomet of contention and destruction donbtless goes on, but on the whole the struggle for existence is against the peculiarties of the enviromment and not between the individual molluskis of the area concerned. It is an industrial community, feeding, propagating, and dying in the persons of its members, and not a scene of carnage where the strong preys upon his molluscan brother who may chance to be reaker. Depredations on this community are donbtless committed by deep-sea fishes and echini, perlaps by other organisms, lut the inroads are not so important as to serionsly modify the cousse of evolution and influence specific characteristics.

Hence the course of evolution and modification, thongh still complex, is certainly much less so than in the shallower parts of the ocean. For this reason we may hope to penetrate more deeply into its mysteries with deep sea animals than with those less fortmately situated. In this opportunity, it seems to me, lies the chief importance of research into the biology of deep sea mollusks. Nowhere else may we hope to find the action and reaction of the contending forces less obscure, and modification in most cases has not extended so far that we can not compare the deep sea forms with their shallow-water analogues and draw valuable conclusions.

While we are not ret in a position to formulate conclusions covering all the details of abyssal mollusk-life, in certain instances results suggest themselves.

Deep-sea mollusks, of course, did not originate in the deeps. They are the descendants of those renturesome or unfortmate individuals who, by circumstances carried beyond their usual depth, managed to adapt themselves to their new surroudings, survive, and propagate.

Many species mmst have been eliminated to begin with. (Others more plastic, or more numerons in individuals, survised the shock and have gradually speat over great areas of the oreanie floos. In aceortance with these not mureasonable assumptions we shond expeet to time at least among the newer comers, some thatacters which were assumed mader the stress of the struggle for existence in the shallows, and wheh, throngh specifie inertia, have not berome wholly obsolete in the new enviromment. We shomka aks expect to timd a certain properthon of arehibenthal species in any given area, identical with or chosely related to the analogons Litoral Region forms of the adjacent shores.

In the Abysial Region alone should we expeet to find that any eonsiderable propertion of the fama has lost all its litomal characteristies, assumed chatacters in keephg with its enviroment, and become dis. seminated over the ocean bottom throughout a large part of its extent. These expectations in the main are failly satisfied by the facts as far as the latter are positively ascertained.

With the lesser need of protection from enemmes amd competitors would necessarily be related a less vigoroms elimimation of characters Which in struggle and competition might prove sonres of weakness. The limits of minjurions variation would be relaxed at the same time and to the same extent We find, as we should expect, that the deepsea mollusks are more variable in their ornamentation and other superficial chatacters than those from shallow water. In some species the balance of characters is fairly well mantamed, in ofthers sariation runs riot, and it is imposibible to say what amonnt of it shond constitute a basis for specific subrlivisions a mong individuals.
In general, deep-sea shells present pate or delicately tinted color-patterns, are white or owe their color to the tinting of the epidermis. This may be due dimetly to the absence of light. Sumbigh, when present, seems to have a stimulating effect in developing colors as is shown by the greater brightaess of tropical litomal shells whatever their colors. It operates indirectly by pomotmg the development of eohor in algae which are fed upon by phytophagoms molluskis and affect the coloration of the latter direetly through the assimilation of the coloring matter of the food, mechanically. Indieetly, thromg the influence of protective mimicry, the coloration of shells which frequent beds of se sweed or rocks covered with stony algar is often modified in harmony with the enviromment eren when the species is not pintophagons. In the deeps these influences are wanting, and the development of color is necessarily the result either of uneradieated hereditary tendene?, or of some physical features of the enviromment which operate mechanically and are not jet understood.

The colors chiefly atfected by deep-sea mollusks ate pink or reddish, straw-color, and varions shates of brown. These are fomed in the shefl and are more or less permanent. The eppdermis of deep sea shells is usually pale yellowish, but frequently is of a delicate apple ereen such
as is seen in many fresh-water species; and sometimes of a beautiful rich dark chestnut-brown, a color also not rare among land and freshwater species. The most common pattern when any exists is that formed by squarish dark spots, which oceasionally become fused into bands. Among the arehibenthal species tomed in depths from 100 to 300 fathoms this pattern of brown squarish spots arranged in spiral series is notable in such forms as scaphella junomia, Aurinia dubia, Halia priamus, Conus mazei, etc. Instances of the green epidermis are afforded by the various species of Siuculidue, Turcicula, and Buccinide.

The thick and solid layers of aragonite, of which many shallowwater species are chiefly built up, are represented in deep-water forms by much thimer layers, while the nacreous layers are, if not more solid in abysisal shells, at least more brilliant and conspichons, perhaps because less masked by aragonitic deposits. A very large proportion of the deep-water shells are pearly and derive their beanty from the brilliance of their nacre.

In the matter of sculpture the mechanical effect of the pressure operates against the development of weight and thickness in benthal shells since the whole must be permeable. It is probable, too, that the soft and sticky character of the abyssal ooze would put the possessor of an unusually heary shell at a considerable disadrantage in getting about on the bottom. Any impermeable shelly structure on the ocean floor would have to be strong enough to sustain without crnshing a weight hardly less than that borne by the rail under the driving-wheel of an ordinary locomotive. It is sufficiently obvions from a mere statement of the case that none of them can be impermeable.

The heary knobs or arborescent varices of shallow-water Murices are represented in their deep-water congeners by extremely thm and delicate spines and slember processes. These are probably all reminiscences of shallow-water ancestors, as it is difficult to imagine any cause which in the abysses would lead to a development of such defenses de novo.

The sculpture most ustal on deep-water shells is of a kind which serves to strengthen the structure, much like the ridges which give rigidity to corrugated-iron work, or the curves used by architects in wrought-iron beams. Spiral or longitudinal hollow riblets, a transverse lattice work of elevated lamine such as are developed for similar reasons on the frail larval shells of many gastropods, a recurvature of the margin of the aperture in forms which in the Litoral Region never develop such recurvature - these are instances in point.

Besides these there are small props and buttresses developed which serve the same purpose of strengthening the frail structure at its points of least resistance. Such are the garlands of little knobs so commonly found in front of the suture in abyssal shells of many and diverse groups.

It is not intended to suggest that the methods above indicated have
not been dereloped also in shallow-water forms and for similar reasons. The distinction which I would point out is that in litoral species, as a rule, these devices are subsidiary to the much simpler course of strengthening the shell by adding to 1ts thekness. In the abyssal forms, for reasonsalready explained, this mode is not practicable and consequently we have the one without the other. The opereulum is generally horny in abyssal mollusks, frequently disproportionately small, compared with that of congeneric litoral species, and in a remarkably large number of cases is absent altogether.

As might be expected of descendants with modification, the resemblance is greater between the larval shells of benthal species and those of their shallow water relatives than between the parts of the shell of later growth. There is one notable difference, however. In the deepwater forms the nuclens is frequently larger than in their litoral analogues. It would seem as if the condition of the depths were such that of a small number of large larve more are more likely to survive than of a large number of small ones; or at least that this form of reproduction is more useful to the species. These details will serve to show the multiplicity of facts to be accounted for and the opportunity for adrancing science by a study of abyssal conditions and their effects upon the animals sulyjected to them. Without claming any mique importance for the theories adranced in the foregoing remarks it may still be said that the subject is one of the very greatest interest. Perhaps experiments upon shallow-water forms, artificially subjected to pressure, may at some future time enable us to penetrate more deeply into the mysteries of life in the abysses.

It now remains to take up the collections made by the Albutross party ou their royage.

Beginning the chumeration at Santa Lucia in the West Indies, and terminating it at San Franciseo, Califorma, it appears that the register of operations includes one humdred and forty dredging stations and forty anchorages, besides smulry surface collections. From the inspec. tion of the collection of mollusks, which is almost entirely preserved in alcohol, it seems that mollasks were collected in eighty of the casts of the dredge or trawl, and at twenty-seven of the anchorages, distributed as follows:

On the Atlantic coast of America and in the Straits of Magellan, sixteen stations and eleven anchorages are represented, of which eight casts were in water over 100 fathoms deep.

On the Pacific coast of South America from the Straits of Magellan to Pamama and to the dalapagos Islands mollusks were collected at thirty-nine stations and twelve anchorages. At eleven American stations and three near the Galapagos Islauds the depth was over 100 fathoms.

On the Mexican and Central American coast north of Panama mol-
lusks were obtamed at twonty stations and six anchorages, none of which were in more than 100 fathoms.

Lastly, on the coast of C'alhforma at five stations, of which two were in more than 100 fathoms, and at three anchorages, mollusks were collected.

Altogether the dredgings on arehibenthal grounds amounted to twenty-fonr, all told. The mollusk collection made at these stations was very small in bulk, though important in its nature.

The collections can be roughly divided into two classes. The first, from the Litoral Region, is of ralue as indicating the distribution of the species, and as affording rare specimens with the soft parts in condition for study. The full value of this pant of the collection will not be evident until the whole has been thoroughly studied, compared, and named, whith will necessarily be a work of eonsiderable duration.

The secomb portion of the collection is that contaning the deep water species whose interest is of a wider sort, for reasons already discussed. Being so much smallow in buik it can be readily handed and discussed, espectially in combection with previons work dome in the region between Chesapeake Bay and the not thern shores of Sonth America.

I shall therefore in this report, which is arowedly of a wholly preliminary nature, confine my attention chiefly to the deepsea forms of both oceans and the Athantic shallow-water species; rombining with those collected on the royage from ocean to orean a few, obtained by the Albatross in previons work on our southeastern eoast, which maturally fall into the same category, and including with the mere! descriptive matter a diseussion of some puints in regard to the amatomy and biography of these species. A suppiementary report on the shallow-water forms of the Pacifie collected on the voyage is in preparation by Dr. R. E. C. Stearns.

In a general way, hefore alismissing the shallow water collections from consideration, I may peint ont that the collections from the eastern shores of the two Americas are of great rabue as extending our knowledge of the geographical distribution of mans species. Thus we find that a good many of the forms common to the shomes of Florida and the Gulf of Mesico, as well as the Antilles, extend the the Abrolhos Islands or even to lion Janeiro, while, mixed with them, are a few which seem to find their nomal gengraphical center near the sonthern extremity of South Ameriea. Un the west const of Sonth Ameriea the shome collec. tions offer nothing mexpected and the collections from the shores of the Galapagos Istands are mfortmately meager. Those from moderate depths of water off the coast of Lower Calitomia, on the other hand, show glimpses of a fama apparently as rich as that of the Antilles and which has so far been little investigated.

The archibenthal fama ofi the eoast of Alta Califormia, like that off the shoals of Nantucket and Martha's Vineyard in New Englam, shows an almost eutirely distinct facies from that of the shallower water near
the shores, and in the future will donbtless afford a rich harrest of novelties to the natmalists who investigate its treasures. The present contribution to that branch of the subject is a mere begimning in a line which promises rich results when more effectively explored.

In conclusion I would express my appreciation of the facilities offered by the anthorities of the Fish Commission, the National Musenm, and the Smithsonian Institution in the preparation of this report.

NOTES ON THE SPECIES COLLECTED.
 Class BRACHIOPODA.

The collection of Brachioporde made on the voyage was small and of little interest. Only one :ipecies, represented hy two specimens, was an addition to the Museum collection. The localities and data have a certain value for students of the group.

```
Family EUDESIIDA.
Eudesia venosa Solander.
```

This species was obtaned from latitude 45^{2} south, off the east coast of South America, hear Point Mabaspina southwarl to Magellan strats, in 20 to 80 fathoms, the temperature varying from 47° to $57^{\circ} \mathrm{F}$. The

> Eudesia fontaineana Orbigny.

Terebratula fontaineana Orb. Voy. Am. Mer., v., p. 675, No. 78:, ix, pl. 85, figs. 30, 31. Waldheimia venosa (pars) Dall, Proc. Acad. Nat. Sci., Phil., p. 183, 1873, not of Solander.
Mab.-Station 2783, off the west coast of Patagonia, in south latitude $51^{\circ} 2^{\prime}$, in 122 fathoms mul ; bottom temperature 470.9 F .

This interesting species appears to be rery rare; the only other specimens I have heard of are the original types of Urbigny, in the L'ar Museum, which I have never seen. His tigure is excellent, but rather too inflated, which led me in 1 sis to refer the speceies, thongh with some doubt, to E. renosa as a synonym. An examination of the present specimens leares no doubt of the validity of the species. Externally it much resembles a large, smooth speecimen of Terebratulinu caputserpentis var. septentrionalis. The ramifications of the sinnses are white and form two bhant rather short chamels on each side of each valve. They have no small attemmated divarieations as m E. remoser. The exterior is mostly of a russet-brown color, but this may pussibly be extraneous. The soft parts amb apophyses do not differ fom the msmal type in this genus.

> Terebratella dorsata Gmelin.

This species was, on the east coast of South America, not whtained north of south latitule \ddot{z}°, near Cape Virgins, but elsewhere was ansociated with E. cenose and obtaned through the same range of depth and
temperature at Stations $2702,2775,2775,2778,275$ and at rarious points in Magellan Straits.

Bouchardia rosea Mawe.
Special search for this species was enjoined in the instructions to the collectors of the expedition, as the soft parts are not yet known and the shell is very peculiar. The only results were the dredging of a number of valves and dead shells at Station 2763 , in south latitude $23^{\circ} 08^{\prime}$ aud west longitude $41^{\circ} 3^{\prime 2} 4^{\prime}$, east of Rio Janeiro in 59 fathoms mud and gravel; bottom temperature 570.1 F .

Family TEREBRATULIDE.

merebratulina cailleti Crosse.

This well known Antillean species was obtained at Station 2750, off St. Bartholomew, West Indies, in 496 fathoms sand, and at Stations 2752 and 2753 in 281 fathoms sand ofr Santa Lucia, the bottom temperatures ranging from $44^{\circ} .4$ to $48^{\circ} \mathrm{F}$.

Family LINGULID尤.

Glottidia albida Hindw.
This species was dredged in न fathoms mud, oft the coast of Lower California, in north latitude $26^{\circ} 42^{\prime}$.

Family CRANIIDA.
 Crania pourtalesii Dall.

HAB.-Station 2,781 in south latitude $51^{\circ} 5^{2}=W^{\prime}$ est, longitude 730 41^{\prime} on the west coast of Patagonia in 345 fathoms mud ; bottom temperature $50^{\circ} \mathrm{F}$.

This species had previonsly been obtained only from the Florida reefs and in the Antiliean region in deep water. The discovery of it at the present locality not only carries it southward to the Strats of Magellan but to the western coast of South America, where this genus has not hitherto been known, either as recent or fossil.

Class PELECYPODA.

GENERAL CONSIDERATIONS.
The attempt to divide the class Pelecypoda or Lamellibranchiata into orders has so far been unsuccessful, or, at least, the subdurisions adopted have from time to time been fomm unsatisfactory on accomnt of the discovery of forms which combine in their organization characters which had previously been regarded as diagnostce ol important subdi visions, such as orders.

This has resulted from the selection of characters as diagnostic which are not really fundamental in the evolutionary history of the minor
groups. As we gradually beeome acguanted with the mutability of the adductor muscles, the gills, the arrangements for retracting the siphous and other factors in the mechanics of these organisms, the classification based upon their mutations has gradually ceased to satisfy students, though one phase or another of it may still retain a place in ordinary text-books.

To cite a few examples: It whll be remembered that the most persistent of the eanly systems for classifying these animals was hased on the number of adductor muscles or the seans upon the shell bey which they might be traced. At first the groups of Monomyarians, or forms with one adductor like the orster, and Dimyarians with \dagger wo adduroms, like the ordinary edible clam, seemed sufficiently well distinguished. Later when transitional forms like the mussel and its allies were carefully studied, a new group, Heteromyaria, was erected for those which would not fit into either of the others.

But when it is considered that there are forms like Inimyn, in which with a monomyarian organization two distinct adductons are fomed, one at each end of the shell; that in Chlamydnementin we have a spectially modified animal with no adductors at all: that in Mrelloria we have the young (not larval) animal trpicalls dimyarian yet beooming in its adult stage as typically monomyarian in its musular apparatus as an orster; then it is sufficiently evident that better and more fundamental diagnostic characters should be found or the so-called orders given up.

Again, an attempt has been made to use the chamacters of one of the most mutable parts of the whole organism, namely the gill, as a basis for primary divisions of the group. I have shown elsewhere, I venture to think conclusively, that this selection is ill-advised amd can mot successfully solve the problem.

The simplicity or sinuation of the pallial line has been regated an a character of high importance a mod has heen used as diagnostice of divis. ions of primary importance. I have recently shown that, in certain groups, long siphons may exist with a simple pallial line, as in Cuspidavia; that in species withont long siphons, members of the same family Poromyide, and perhaps of the same gemus, may show a simple or a strongly sinuated pallial line according to the modifications of certain muscular elements which certainly can not be clamed to have any high systematic importance.

The question is further complicated by the fact that certain characters which in general are molicative of very early evolutionary divergencies, may be simulated or assumed as rery modern special moditications brought about in animals of diverse groups lis natural seleetion under the influence of special cincminstances. Species thas: monlifed will rery naturally be classed with those who hear the same or similar characters as the early result of very ancient ancestral divergencies, amb, as a consequence, other characters not harmonizing, the systems are thrown into confusion. These are the difficulties among which the sum total
of the organic characters must be our guide in attempting to decide. Only too often we mas find, as knowledge increases, that our first judg. ment was more or less in error.

In reflecting upon the origin of the complicated mechanical arrangements in bivalres which we call the hinge, I have come to the conclusion that here, as in the cases of the mammalian foot and tooth, elaborated so clearly by Cope and Ryder, we have the result of influences of a mechanical nature operating upon an organ or apparatus in the process of development.

The hinge of a bivalve, reduced to its ultimate terms, consists of two more or less rigid edges of shell united by a flexible membrane or ligament.

The ligament may be wholly external or may be supplemented by an internal addendum (called the cartilage), which exerts a stress in the same direction, within certain limits. The movements of the hinge are dependent upon the elasticity of the ligament and cartilage and upon force exerted by one or more adductor muscles connecting the valves.

The rigid edges or cardinal margins of the valves may be simple or modified by the presence of interlocking processes, known as teeth. whose purpose is to regulate the direction of the valres in opening and closing.

There are three fundamental iypes of hinge: (1) The simple edentulons margin ciosing by simple apposition of the edges of the two valres; (2) the binge in which the teeth are developed in a direction transverse to the cardinal margin; and (3) the hinge in which the direction of the teeth is parallel to the margin.

The mechanical features of the second and third types may be more or less combined in a single hinge, but the affinities of the particular form in which this may oceur are usually not difficult to determine on a general survey of all its organic characters.

I am disposed to think that the time relations of the different types are those of the order in which I have cited them; the most perfect hinge, morphologically speaking, would be one which shouk combine the most effective features of the second and thisd types.

The architypal form of bivalse may be imagined as small, with nearly equilateral, symmetrical, subeircular valses with edentulous cardinal margin and a short external ligament nearly central between the umbones. This is the character of many larval bivalves at the present day, though it is probable that many of the forms now edentulous in the adult state, have passed through an evolutionary stage in which they had a more or less denticulate hinge margin, while their present condition is one in which the hinge has diminished in complexity, or, in other words, undergone degeneration.

Very feir of the earliest known bivalves appear to have hinge teeth, though this may be on account of our imperfect lnowledge of many of them, since they are often represented by fossils in which no evidence
of the hinge structure is disermible. It is high! probable that the evolution of binge tecth closely followed the differentiation of the Pelecypod class.

The first bivalses are all minute, as far as linown, when compared with a majority of their descemdants. They are msually I imyarian, as I assume the architype to have been. It is highly probable that they possessed a developed foot and that their sills were either lamelliform on either side of an arterial stem, as in Nuculer, Solenomyn, and many Gastropods, or filiform, as in I Fimyu and certain P'ectens. The siphons were probably little developed and the lobes of the mantle rather widely separated, or perhaps entirely free.

As long as the shell rematned small and subglobular the ligament short and wholly internal, the imperfect character of the hinge was of less importance. With the essential difference between the anterior and the posterior halves of the animal, and especially with ans material increase in the magnitude of the adult, more or less discrepaucy would develop itself between the two ends of the shell, the subghbubar form would disappear, and certain other consequences would follow. Either the ligament must increase with the size of the shell and beeome longer or its power would become inaderuate for the proper performance of its functions.

Here I will turn aside for a moment from the direct line of argument to describe the mechamical relations of ligament and shell, a preper understanding of which is very neecestary to the comprehension of the whole question.

With a wholly extermal ligament the operation of the ralves is that of two appendages to the free rmbs of a C-shaped spring. The action of the muscles in pulling the valres together includes the bringing nearer to each other of the two extremities of the ligatment, which the latter by its elasticity resists; consequently the opration of the ligament is in the direction of opening the valres to a errain distance. Beyond this distance the separation of the values tembls to compress the ligament, which again tesists, and therefore beyond the normal distance of separation the action of the ligament tends to prevent the valves from opening. This very simple matter may be observed by any one who will examine an ordimary clam with the ligament in fresh condition and whose adductor muscles have been severed.

When the ligament, in hamony with the elongation of the cardinal margin, becomes elongated it must be either straight or angulated. For obvions reasons a ligament forming a come or the are of a cibele is mechanicaly impossible. This any one (an prove to their own satisticetion by putting two light woolen sancers edge to edge, convexity outwad, and attaching a leather or paper ligament by cement. A curved ligament, when the valres opren, will tear or break at once either itself or the edge to which it is fixed. In other worls, the axis of motion of the hinge must be a straight line. If any part of the ligament diverges
from the axial line it must cease to take part in the axial motion and must be capable of stretching to an extent which will neutralize its angulation, or it will be broken or torn away. But if the thickness of the ligament increases ventrally, as may be the case, when it is situated between the valves rather than as an arch above them, a certain portion may extend to and beyond the axial plane in a downward direction. The portion thus projecting will then partake of the axial motion in an opposite semse to that portion which remains above the axial line. It will be compressed when the latter is stretched by the closing of the valves and will expand as the opening of the valves allows the extermal portion to contract. This change may be brought about by a downward angulation of one end of the ligament (as in Solenomya) or as a simple downwatd growth, which may be central as in Neilonella or Gulonmma). The former mode may be the result of an angulation of the hinse margin consequent on elongation or ventral exteusion. Its result is to separate a longitudinal segment of the original ligament, which may be totally detached or remain physically comected, while in either case its mechanical function has undergone a reversal of direction.

The second mode likewise removes a segment, but in a vertical direction. This segment may be physically continuous throughont its upper portion with the lower portion of the superjacent ligament. It may be wholly detached, or it may be attached by one extremity while the other is separated. In the last case its direction will be oblique, or at an acute angle with that of the original ligament. This detached segment, whatever its position, has always similar mechanical relations to the movement of the hinge, and is called a cartilage. The separation of the cartilage from the ligament is generally either central or toward the shortest end of the hinge, which is usually the auterior, owing to the fact that when the size of a lamellibranch increases, the siphons, the oraries, the visceral mass, or the gills are the organs where proportionally increased growth is most likely to occur, and these are ustally central or posterior to the umbones. In Solenomya, which is exceptional in having a posterior cartilage, the posterior portion is the shortest.

The amount of shifting required to put part of the ligament on the rentral side of the axis of hinge motion, or cardinal axis, is extremely small. All stages of the changes involved may be observed in the Nuculacea, even to one, not hitherto mentioned, where the cartilage has been dereloped and has subsequently become obsolete or altogether disappeared (Ifulletiot), while leaving some traces of its former presence in the shape of an empty and degenerate fossette (Pleurodon). It is noterorthy that this suborder, which gives us so many hiuts as to processes which we may imagine to be of great antiquity, should, on other gromuds, be regarded as among the few which best retain traces in the soft parts of archaic stages of development.

With the lengthening and angulation of the cardinal margin the lig. ament gradually shifted to a point where it became posterior to the beaks. Perhaps it would be better to say that the portion in front of the beaks either became segmented off as a cartilage, or became obsolete and vanished, while the portion on the posterior side gradually elongated, as the elongation of the posterior hinge-margin rendered a longer ligament more useful. It has already bern pointed out that a curved ligament would involve stresses leading to its own destruction. The curvature of the cardinal margin, now the common property of a rast majority of bivalves, was inevitable with increase in size and asymmetrical development of the anterior and posterior ends of the borly. Consequently, that the ligament should be shifted was at meehanical necessity unless the evolution of the gronn was to be contined within extremely narrow limits as regards hinge characters.

The infolding of the ligament, and the development of a cartilage and its supports, would be especially likely to oceur in forms with a thin edentulous hinge, where the least shifting wouk be necessimy (Solenomya, Anatina), rather than in those with a broad, flat hinge margin. In harmony with this proposition, we find the archaic forms, with internal cartilage, hare generally a narow edentulous cardimal borier, the exceptions belonging to the more recently suecialized types (Anctro, Apondylus), while the groups withont an internal carthlage contain the broadest and heaviest types of hinge (Pectunculus, Vencrinte).

The infolding of a cartilage which arose by longitudinal segmentation would leave a line of weakness in the arch of the umbones. In thin shells with strong adductors there would be a tendeney to fracture here. This singular feature has been perpetmated in what may be termed the normal umbonal fissure of Solenomy, Periplomu, and similar forms. Traces of it are evident in Throciu, while the minaletured suture itself is visible in Isocardia, Pachyrisma, and Pecchiolia.

In the thin-shelled C'uspidariade a special buttress is often developed to support the shell at this weak point. In the Isocordiarle an independent cartilage was possibly never developed, but the infolding of the anterior part of the ligament went far enough to leare permanent traces on the shell. That it did not result in a cartilage, if this was the case, may possibly be due to the fact that, owing to the great size and spiral character of the umbones, the anterior part of the ligament was turned up instead of downward, and therefore did not tend to shift toward the interior. If it is not clear how the thickening or vertical extension of the ligament below the cardinal axis should canse its separation into two parts, I need ouly recall the familiar experiencer of every one in breaking off a wire or piece of tin by bending it back ward and forward on the line of the desired fracture. The mechanical principles and results in the two cases are precisely similar.

When finally developed in the same individual the ligament amb cartilage work in identically the same manner but in different directions.

The resistance of the ligament to compression prevents any straining of the adductors by a too wide opening of the valves. The same resistance in the cartilage prevents the ventral margins from ernshing each other by sudden and violent contractions of the adductors when the animal is alarmed and closes its valves. The nymphie, or processes to which the ligament is attached, and the fossette or socket of the cartiage have been strengthened and regulated by the development of various buttresse's and other devices, varymg in different gronps. The cartilage in turn has its rigidity and strength increased in many species by the special development of shell substance linown as the ossiculum.

To return to the development of the cardinal margin. The assmmetry of the shell and ligament, relatise to a vertical tramscerse plane passing through the umbones, would be promoted not only by the natmaldiserepancies bet ween the anterion and mosterior halves of the body, but by the mechanical effees of the projecting umbones. Where a shell opens laterally in the strict sense of the wom, unless the beaks are very inconspictous, or are separated by a wide projection of the cardinal border (as in trea note), they will strike against and wear ont one another. This abmormal or acecidental result is rery comstantly observable in many Anutisider, sach as our own Thrucin conrudi. But it must be a source of weakness and danger to the amimal. If the ligament is shifted posterionly, the valses must open more obliquely, with the result that this dangerous friction will be avoided in most cases.

In a protective armor like the values of bisalves, other things being equal, it will be obvionsly beneficial, if not absolutely essential, that it should offer as few weak joints or open spaces as possible. Burrowing amimals, who serve themselves of their burow as a supplementary defense, may be able to perpetuate gaping shells and exposed siphons without serions danger from their enemies. Those animals which burrow but slighty, or live in material which enemies may also easily penetrate in their forays, will unguestionably benefit greatly by an aceurate and exact closme of the ralves. The intrusion of solid bodies can be to some extent guarded against by the action of the cilia or processes of the mantle margin, but such intrusion would be greatly facilitated by any organization of the hinge which wonld permit an independent rocking motion of the ralves with respect to each other. The sudden closing which danger incites leaves no time for clearing out obstructions, and the gap is especially liable to the incursion of gravel, ete., in species which live with the plane of junction of the ralses in a rertical direction. In certain brachiopods, such as Glottidien and Discina, such a semirotary motion of the valves exists, but is less dangerous to them since the plane of juncture with them appears to be generally horizontal.

To avoid these dangers and to guide the motion of the valves in closing and to prevent their sliding upon one another after closing, nature through natural selection aud physical stresses has developed these cardinal processes which are buown as teeth.

Attention has already been called to the fact that there can be but three fundamental types of hinge, which may be called the anodont, prionodont, and orthodont, the latter term being used to indicate the forms in which the cardinal margin has become longitudinally plicate. Actually the pure orthodont type hardly exists; in nearly all forms traces of the prionodont characters are mingled with it. For those forms, in which the archaic anodontism still persists as the characteristic of chief importance, thongh frequently modified hy speceial mechanieal contrivances which to a certain extent mask the type, ! have proposed the term Anomalodesmaced. The fossette, enilleron, or spoon-shaped process for the cartilage is a separate development, serving a special purpose. Though influencing the teetl, if any exist, in its vicinity, it must not be confounded with them. The weakness of the anodont type has left an oprening for the speciadization and perfection of this process, which, to a considerable extent, in this group, assumes the functions which in groups without a cartilage are the speecial office of the teeth.

For those forms in which transverse plication of the hinge is the chief characteristic, though rarely wholly exclusive of the orthodont influence, I have used the term Prionodesmacca. In some cases what may seem to be the chief features of the hinge as regards size and strength are orthodont, yet these I believe to be comparatively modern specializations illustrating the general tendency of evolutionary processes toward a teleodont hinge. In cases of doubt the sum of the characters will enable us to decide on a proper place for a given genus. It must not be supposed that, because the names suggested by a single set of characters are used to denominate the proposed orders, therefore that set of characters is to be our sole criterion. Such too hasty assumptions are a relic of the days when the immutability of species was an orthodox dogma in biology, and doom to failure any system founded upon them.

For those forms in which the rarious types of hinge have become harmoniously combined, thongh in varying proportion contributing to the final mechanism, I have selected the designation of Teleodesmacea. These may be regarded as the highest and evolutionally the most perfect in type of hinge, though this perfection shows itself in a variety of forms. Priongdont traces remain with most of them, but are never characteristic of the type.

The three groups I propose to call orders. It is difficult to say whether they can be compared in systematic value with orders in other classes. All that can be said is that these three divisions are discernible in the very compact and homogeneons class which includes them, and it contains no other groups of equal value or significance.

Each order as it now exists contains archaic and modern specialized types. Each indicates a tendency toward an ideal of fitness to the environment, which results in a certain parallelism of minor characters
common to minor group) in each of the three orders. In each (we are coming to regard it as ine vitable) certan members show affiiations with members of the other orders. In each there are certain groups which represent a relatively modern spectalization carried so far as to be quite peculiar.

Pearliness or a truly macreous character of shell-substance is a sourer of weakness. This kind of shell is more fully permeated with animal matter, is more liable to decay and exfohation, and is more readily drilled by enemies than the aragonitic type of shell-substance which conchologists call porcellanons. The extemal prismatic later which usually accompanies a pearly intetior layer, as in Nucula, Trigonia, L'hio, ete, is very easily disintegrated. The temdency of evolution is to promote the porcellanous type. The older groups (l'rionodesmacea and Anomulodesmacen) contain all the pearly Pelecypods. Among the Teleorlesmacell there is not a single one. Furthermore, in the two former orders the most specialized and, developmentally, the most modern forms are preferably porcellanous; those which we may reasonably regard as of more ancient trpe tend to pearliness. For example, in the Anometorlesmucer the most striking instances of specialization are the Pholats, Tubicole and certain Myacen, all are earthy, or at least not pearly. The Anutinucen, which jaleontologically are very ancient, are largely pearly. The l'rionoresmacea have few porcellanous groups, but those which show this character, such as Ostrea and Pecten, generally stand at the nearer end of a long line of progressive modification. There are exerptions to this, such as Tinduria, in the Nuculacen, which is obtrusively porcellanons. Letu and Solenomy/e, which retain so many archaic features in their soft parts, have almost lost the pearly layer while still falling short of the porcellanons character conspicuons in most of the Teleodesmacen. The Areas, couspicuonsly earthy in their shells, are modern in their total characters compared with the pearly Nuculas. Turning to Gastropoda for a moment, we find that Pleuroto. maria, one of the very earliest types of that class which can be recognized in the now existing fauna, is extremely pearly. On the whole, the relation between the two types of shell-substance if not constant enough to be called a rule, is sufficiently so to be extremely suggestive.

I have already suggested the mechanism of the infolding which resulted in the cartilage and its supporting socket. It is a very difficult task to accomet for the initiation of all the types of teeth. A few sug. gestions may be ventured upon.

The radiating or transverse corrugations which we see in ribbed shells are not merely ormamental. They serve to add strength, while they do not increase the weight, as would a corresponding thickening of the sheli. A familiar example of the same principle is afforded by the corrugated sheet metal so frequently used by builders. The ends of these ribs impinge on the margin of the shell and crenulate it when the shell is thin. Crencllu is a notable example. Many Mytilacea ex-
hibit a similar structure. These cremulations of the hinge-line and margin are not to be distinguished from mascent teeth, and have frequently been described as such by maturalists. Nuculocardia of Orbigny is a well-known instance. The cremulations of the margin are useful in securing a close fit between the closed ralses, whether at the cardinal or the basal margin. But they would be more useful at the cardinal margin, becanse there they would prevent siding of the valses upon one another before they were completely closed, as do the long teeth of the Nuculacea. Hence it is probable that they would be perpetuated and specialized there even if the ribling disappeared from the exterior of the valves. (ireat sitessarising from friction and pressure resisted would tend toward the thickening, widening, and even buttressing of the cardinal margin until the hinge-plate became developed and sufficiently strong to perform its functions with success. This is one of the ways in which a l'rionodont hinge might be initiated.

The Anodont hiuge, to reiterate, is a weak and unsatisfactory type. Its defects could hardly continue to exist except in a burrowing and tubicolons generation. To some extent its weakness has been made up for byan asymmetry in the valres, which permits a smaller valve to fit into a larger one. This is a rery suceessful device, as there can be, as long as the larger margin remains iunhroken, no question of failure to close the valves. But the projecting margin of the larger valse is a weak feature, much more likely to get fractured than the convex combined edges of two. Once fractured, the mollusk would be defenselesis until he could mend the breach Noreover, in moving about - a practice more common with Pelecypods than is genmally realized-the asymmetry of the valves would be a misance, always tending to shift the traveller out of the line he might desire to take. We find, as we should expeet, that the Anodont hinge is persistent with tribes which are borers, tube-dwellers, or burrowers-for the most part very sluggish creatures. In eases where the ventral margins of the valves do not meet, there is, of course, no especial call for a dentiferous hinge, as the valves play the subordinate part of a dorsal shich. This is the case with colenomya, where the ventral hiatns is partly Shielded by projecting epidermis. Most of these forms depend apparently quite as much on their activity and the protection of the walls of their burrow as they do on that afforded by the values of the shell. A reversion of the process is seen in the case of some grouns, like Anodonta, in which the edentulous hinge is the result of degeneration from a dentiferous type, such as Unio. The dentiferons forms retain their teeth in the streams and rivers, where they are subject to mmerons casualties and much knocking about, while in the still water and soft mud of silent ponds the teeth vanish and the protective shell reaches its limit of practicable tenuity.

One type of "cardinal" (as opposed to the so-called "lateral") teeth would arise through the modification of an Orthodont or a Prionedont Proc. N. M. 89—— 16
hinge at one end (as in Macrodon), so that part of a row of teeth originally similar would come to differ from the rest. Many Nuculacea show stages of such a mode of change.

Another type wonld arise from the plications of the hinge parallel to and induced by the formation of a fossette or process for the internal cartilage. Such teeth or plications may be observed in most Pelecypods haring an internal cartilage. All stages in development of this type may be observed from the barely traceable parallel ridges of Cuspidarin, for instance, to the highly specialized cardinal teeth of Mactra.

Thus, it will be observed, the teeth called cardinals in Pelecypods are by no means all necessarily homologons, and it is eren conceivable that cardinals of both tspes might come to be united in the same hinge.

The development of lateral teeth from transrerse teeth is a very easy process, of which a full exhibit might be made by arranging in a contimous series the valves of selected A reaceu and Nuculacea. It is probable, howerer, that not all Orthodont dentition originated in this way. The thickening of the cardinal margin rendered necessary by the stresses involved in the mechanical operation of cardinal teeth or stroug external ligaments would render parallel plication of the thickened area along the margin not only casy, but almost ineritable in some cases. The infolding of the edge of the mantle necessarily accompanying the production of a strong specialized socket for an internal cartilage would lead incidental!? to oceasional deposition of shelly matter in ridges parallel with the longer edges of such sockets. The greater efficiency in griding the valves to effective closure in proportion to the increased distance from the umbonal region of such interlocking plications would tend through natural selection to the perpetuation of favorable variations and to their gradual removal farther and farther from the beaks until the most useful distance was attained.

When we consiler the remarkable uniformity in hinge characters attained by the spectiss with more perfected forms of hinge, through long series of individmals, it seems almost incredible that these results should he brought about by the action of a thin, soft film of secretive tissue which, unaiderl, conld not hold itself erect. It is only when we remember that the result, in the man, is brought about through the action and reaction of certain definite mechauical stresses, propagated through the hard valvular skeleton, and constantly imposed upon the softer tissues, that any adequate reason for the marvelous miformity presents itself. There are certain groups, such as the Isocardiide, in which the hinge seems still to be in what may be termed a transition state. With these no such strict miformity prevails. While the differences are not excessive, yet the hinge of each individual specimen compared with others of the same ase will show individual characteristies, and the changes which the hiuge undergoes in the same individual between adolescence and old age are greater than one would ordinarily find in
the whole membership of a species, saly of the Venerider, taking all ages, above the larval stage, into account.

We may now proceed to comsider the grouns of which these orders should be made up.

To the Anomatodesmaceal I refer the Anatinasen, the Syacect, the Ensiphonucen or Thubicole, the solcatomynew, and the Aldesmucen.

In the first three groups or sulumbers we have foms whene relationship will hardly be questioned, ambaring also some instances of the most remarkable specialization of chanacters. To reter to a few, I may mention Aspergillum, C'lucuyclle, f'uspidarion, and I'oromyur, using these names in their widest sense.

From several characters of the gills and other soft parts paralleled in the Nuculacee, solenomyu was at finst athiliated by me with the Prionodonts.: On mature consideration, while admitting that the last word on this subject has not yet beeu put on reemed, I an inclimed to believe that this genus is an Anodont which has retainel certain archaic features of the soft parts, and represents in the Anomalondesmacect a survival analogous to that of the Nuculuece among the Prionodonts.

From a very early period the solenaced have been associated with the forms now gathered in this orter. Drofessor Verrill has called attention to the fact that Tugelus curiberes and its allies have the organization of Tellinaces, and I have remored them to the vicinity of P'semmobia, in my Check-list of the Marine Shell-hearing Mollusks of the southeasteru coast of the United States. (Bull. U. S. Nat. Mus., No. 37.) Butare the Solenide to be leit behind? After due consideration I can see no sufficient reason for such at course, and conclude that the mited siphons and burrowing habit, with its resulting specialization, do not warrant it. I have therefore excluded them.

In the Adesmacea or Pholudnen we have the most remarkable specialization of the hinge known in the whole clase. The relations of the parts are best understood by a study of the open-shelled forms like Zirphaca crispata or Barnca constatat and the young of the closed Pholads. In the adult forms of the latter, specialization has proceerded so far that the true relations of the parts are more or less masked. In Burnea costata we have the anterior dorsal margin of the valves reflected dorsally until the anterior adductors following the sholl pass the axis of motion of the hinge and pull at the shom end of the lever, tending to open the valves, instead of to close them. The postemion adductors pull in the normal way and balance the anterion ones. The ligament is reduced to an ineffective film. The cantilage momens ans a smrvival, but reduced to such dimensions ats to be practically of no use. Its elastie properties are lost and it merely serves to commet two little processes, the feeble remnants of the original fossattes. An alpendage analogous

[^47]to and possibly homolngous with an original ossiculum has (that viers being taken) revolsed around the cantilage, taken its place outside of the axis of motion of the linge, and instead of keeping the valves from crushing each other by checking the closing stress of the adductors as in Verticordiu or Ziushicu, aud other Anatinucen, it accomplishes the same end by locking ower the reflected edges of the shell on the dorsal surface, acting like the anterior adductors on the short instead of the long arm of the lever, and, as before, in a sense opposed to the action of the adductors. Though greatly spectialized and modified, this appendage retains something of the buttertly shape of a broad ossiculum.

An appendage, sometimes called the styliform process or apophysis, with its proximal end attached in the hollow of the beaks, has been homologized by Deshayes with the cardinal teetlo. In Pholas costata it supports the postermor oral palpus, which is very massive, and some of the internal viscera, If one of the mmbonal laminat of Callocardia were detached from its comection with the cardinal margin and allowed to project into the carity of the valre it would somewhat resemble the apophysis of I'keles. But on this view I am at a loss to explain the present comections of this process, about the development of which little of nothing is known. How a cardinal tooth should come to be situated insude the mass of the body would seem to be hard to explain.
The enviroment of the Iholads is of a very special character, and the modifications of the organization march with the pecular circumstances under which it exists. To cuter into their mutual reactions would take much space and obsemre the more general questions to which these remarks are addressed.

It may be added that in this order, as well as the others, the particular constituener of each of the suborders, even the number and scope of the families, mast be regarded as tinget with uncertainty from the magnitude of our ignorance. To properly ascertain and correlate the data in regand to the different genera and the families of whel they are the members is a labor worting of derotion, but which will yet require a large amount of original research.

In the Prionodesmaten the Nuswlacel represent an archaie type in many of their features. Sio far as the linge is concerned Area (now and related speceies) is perhaps the most fully and typically developed instance of Prionodent dentition. The Natades declare in stoatha and Iridina their I'rionomont origin, traces of which are to be seen in the transverse striation of the teeth of many species of Conio, even when lateral teeth have become well developed and pre-eminent. The same is true of Trigomiu, which has many points in common with the Naiades and may perhaps be the descembant of a common ancestry. To the latter immediately. Ihulleria bears such a relation in its adult state as do the Monomyarian Pecten and osiren to the rest of the Prionodesmacen as a whole. The i'rionotont character of the Mytilacen will not be
questioned. Through them we pass to the Pectinacea, in which in spondylus we have the finest instance of a Pronotom hinge with few teeth, as Arca is of one with many teeth.

The original transterse grooving of the hinge is visible on the very young valves of many species of lecten, Jonira, ete. The Ostrocen are the last term of specialization in this line: the Inomincen are bronght in by the total of their characters, thongh so far modified as to indicate little, by the hinge, of what I sumpose to be their migin. Above all it must be admitted that the Monomy/rinand Ineterommervia represent not fundamental types of structure hut special moditications, though some of them are geologically ancient.

The remaining forms representing the mareh of progress toward a mechanical perfection in hinge characters, though retaining traces (as in the striated teeth of some Mactras) of Prionolont ancestry which once dominated the dentition, constitute the onder Teleonlesmuctu.

In the main, in the combination of hinge characters which they present, the most striking features are the effective mamer in which the orthodont laterals and prionodont cardinal teeth are subordinated to and supplement each other's action, the occasional introduction of the internal cartilage in happy combination with the others, and the general absence of a prismatic layer and of nacre in the shell-structure and of archaic characters in the soft parts.

It is a question whether the lindistes are to be considered a group apart, or, like the Pholuducen among the Anomalodesmacen, merely an erratic special development of forms related to the Chamucen. Leaving the question to be settled by the special studies its difficulties call for, I conclude this paper with a tabular view of the orders and suborders into which the class is divided. One group, the Leptonucee, stands much in need of thorongh study, without which its component families and even its permanent standing must remain doubtful. With our present knowledge it is yet impossible to determine the number of families of which each suborder should he composed, or eren how many groups are entitled to rank as families. But in the major groups I feel a certain amount of confidence that the present arrangement is in most respects more harmonions and in aceord with the balance of characters than any of the systematic armagements of the class which have been hitherto proposed.

Supplementary note.-When I first began to consider the relations of the teeth and other parts of the hinge I natmally remembered the brief abstract of the important paper on the hinge of bivalves by M. Nemmay r, which I had seen in the Zoological Record for 18s.3. I intentionally deferred a careful perusal of Nemayr's essay until I had entirels completed my own. Then a careful examination of his original afforded me great pleasure. It showed that in the matter of the intluence of ribbing in promoting nascence of teeth : in the diserimination
of lateral plications, arising in connection with the fossette of the eartilage from the true cardimal feeth; in the influence of the enviromment on the degencration of hinge characters; in the estimate of the characters of the primitive bivalves, and some minor points, we had arrived indepemdently at the same conclusions, and eren illustrated them by identical or nearly identical examples. This is certainly strong presumptive evidence of the eorrectness of those inferences. In the points in which we differ it seems to me that the differences arise from the fact that Nemmayr has approached the subject more from the paleontological stand-point. and has less considered or has given less weight to biological considerations, not imprinted on the shell; while in my own case, from the mature of my previous studies, I have been led to attack the problem from the other side. Recent investigations, a arailable only since the date of Semmarrs paper, have thrown much light on the inosculation of characters not before known to interlace. Neumayr, also, from my stand point, has insufficiently grasped the importance of the different processes in:olved in the production of the internal cartilage and its shelly coefficients on the one hand and the denticulation of the hinge margin on the other. These two processes, though they must often have proceeded simultancously in the same genns, were not necessarily comected, exefpt in so far as by resulting stresses each might react on the hinge-product of the other. So instead of having a Desmodont type of hinge as opposed to a Prionodont, and, as Nemmayr would say, a Heterodont (Toleodont) type, we may have either an Anodont (Paleoconch), a P'rionodont (Taxodont), or a Teleodont (Heterodont) type of hinge, either with or without an internal cartilage and its accessories.

By the elaboration of this riew, as attempted in the foregoing discussion, it seems to me the discrepancies so evident in Neumayr's system have been avoiden, the thpes of hinges assigned their proper weight in the system, while those biological relations which are not fully reflected in the shelly parts have not been slighted; though ineritably numerons improvements in detail will suggest themselves to students, or be effected by a future expansion of our innowledge.

As regards the Rudistes, if, as clatmed by Woodward and others, they possesseed an internal cartilage, it is probable that they must form a specially modified and extraordinary ramification of the Chamacen. If, howerer, as is clamed by some authors, there was no interual cartilage or external ligament, no hinge, properly sjeaking, and the smaller ralve simply rose and fell rertically under the control of adductor mus. cles, guided by interlocking processes, it is evident that this would establish an inter-relation between the valves, unlike ansthing among the Pelecypods, and only comparable, perhaps, with that of certain operculated corals. In the latter case the Rudistes would have to be regarded as ranking at least among the subclasses, if as Mollusea at all. My own impressions are that the first-mentioned view is the more probably correct one.

The opinion is occasionally expressed in scientifie literature that the shell is a " mere secretion of the mantle." This uswally proceeds from some persou who has not well studied the molluscan shell, or who is of the age wheu one knows more than at any subsequentoperiod.

Such a statement is one of those half-truths which are more dangerous than pure error, since the ballast of truth they contain will enable the error to navigate some distance, while the mineighted error would capsize at once.

The shell is in one sense the product of secretion from the mantle, as the mammalian tooth is derived from the ectorlerm of the jaw, or the skeleton from the periosteum and cartilages. Both are that aud much more. It would be as reasonable to say that a stem-boiler, in process of construction, is the product of the boy inside who holds the rivetheads, as to claim that the shell has no more significance than is implied in the term "secretion of the mantle."

The original theoretic protoconch may have been so, hut as soon as it came into being its development was governed by the physical forces impinging upon it from all sides, and through it intluencing the growth and structure of the soft parts beneath. The Gastropod shell is the result of the action and reaction betreen the physical forces of the enviromment and the evolutionary tendencies of the organic individual. In the Pelecypod we have the mechauical stresses and reactions of one valve upon the other added to the category of influences. To a considrable extent it is donbtless as true that the animal is molded by its shell as it is that the shell is shaped by the soft parts of the auimal. This results in that correlation of structure which has enabled students to, in the main, correctly judge of the relations of mollusks by their shell characters, when the latter were intelligently studied and properly appreciated.

Class PELECYPODA.
I. Order Anomalodesmacea.

Suborders.

1. Solenomyacea.
2. Anatinacea.
3. Myacea.
4. Ensiphonacea.
5. Adesmacea.
II. Order Prionodesmacea.

Suborders.

1. Nuculacea.
2. Arcacea.
3. Trigoniacea.
4. Naiadacea.
5. Mytilacea.
6. Pectinacea.
7. Anomiacea.
8. Ostracea.

III. Order Teleodesmacea.

Suborders.

1. Tellinacea.
2. Solenacea.
3. Mactracea.
4. Cardiacea.
5. Carditacea.
6. Chamacea.
7. Tridacnacea.
8. Leptonacea?
9. Lucinacea.
10. Isocardiacea?
11. Veneracea.
? Rudista.

DESCRIPTIONS OF THE SPECIES.

Order PRIONODESMACEA.

Suborder PECTINACEA.

Family PECTINIDA.

Genus PECTEN Miiller.
Pecten glyptus Verrill. Plate viii, Figs. 2, 3.

Pecten glyptus Verrill, Trans. Conn. Acad. Sci., v, p. 580, July, 1882.
Pecten Tryoni Dall, Bull. Mus. Comp. Zoölogy, xviri, p. 438, June, 1889.
Hab.-U. S. Fish Commission Station $260 \geq$, north latitude $34^{\circ} 38^{\prime}$, west longitude $75^{\circ} 33^{\prime}$, off the coast of North Carolina in 124 fathoms, sand; bottom temperature $61^{\circ} \mathrm{F}$. ; and off Martha's Vineyard in 85 to 120 fathoms.

Shell large, thin, both valves about equally convex, right ralre more brilliantly colored; ears subequal, hinge line straight; beaks small, pointed, not prominent; orb of the shell somewhat oblique, anterior portion produced down ward and forward, margin simple, entire, sharp; sculpture of wide little-elevated ribs, about serenteen in number, each with a central keel which is sharp and slightly sermate over two-thirds of the surface but becomes obsolete toward the margin; this keel is colored more deeply than the rest of the rib, and the color may be alternately concentrated at the prominences and fainter between them. In the specimens observed it is either deep rose color or a warm orange-brown, fading gradually on each side of the keel of the ribs, while the interspaces are pale or white, with faint narrow radiating lines of the color; on the right ralre, except along the hinge line, the auricles are pale; the minute sculpture consists, on this valve, of fine radiating grooves, abont a dozen between the carine of each pair of ribs, across which are carried in fine scallops sharp little-elevated lamellie; these lamellæ are easily felt, but visible only with some maguification; the left valve shows (in a rose-colored specimen) rery little color, and that a mottled orange-brown confined chiefly to the ribs of the apical third; the ribs
are keeled for a shorter distance than in the right valve, are generally fainter, while the microscopic seulpture is composed only of fine concentric incremental lines which have a silky apperance; the hinge line of the left valve slightly overrides that of the other valve and is serrate by fine transserse scales; the ears are subequal, the byssal noteh shallow and rounded, withoit a pectinium; there are a few elevated radiating lines on these ears; internally the hinge line is nearly smooth, the cartilage pit small and narrow, two short, stont auricular lire radiate from it; the interior of the shell is white; the interspaces between the external ribs are defined by fourteen or fifteen pairs of elevated lire strougest distally and ending elose to the margin. Maximum altitude of shell 60.0 ; maximum longitude 60.0 ; longitude of hinge line 25.0 ; diameter of closed valses 11.0 mm .

This fine species was not at first recognized from Professor Verrill's rather brief diagnosis, which was not accompanied by a figure; and in this way a new name was applied to the species in a preliminary notice of it. More mature consideration, though without comparison of specimens, leads me to the belief that Professor Verill's name applies to the shell before me.

Although a ribbed species, the internal lire are very much like those of Amusium, and this shell adds one more to the links which connect the various groups of the old genus Pecten together. A careful comparison has been made with European species, and there can be no doubt of the distinctness of this from any of them.

Pecten exasperatus Sowerby.

The collections made on the voyage contain a valve of Pecten exasperatus Sowerby (P. fuscopupureus Conrad) from Station 2762, in 59 fathoms, mud, off Rio Janeiro. This considerably extends the southward range of this species beyond the localities previously known.

Pecten effluens Dall.

Plate xi, Fig. 9.

Pecten effuens Dall, Bull. Mus. Comp. Zoöl., Xir, p. 219, September, 1886.
This hitherto untigured and very delicate little speeies was originally dredged off Harana by Sigsbee in 127 fathoms. Since then it has been obtained in 300 fathoms off Cape San Antonio, Cuba, by Dr. Rush and at U.S. Fish Commission Station 2646 , in 85 fathoms, sand, off Cape Florida.

The valves may be pale or even bright lemon-jellow, orange or scarlet, always somewhat translucent. The surface presents an excellent example of the microscopic Camptonectes striation. The specimen fig. ured is $26.0^{m m}$ in length.

> Gection PSEDDAMISIUM H. \& A. Adams.

> Pecten (Pseudamusium) strigillatum Dall.
> Plate xi, Fig. 2.

Preudamusium strigillatum Dall, Bull. Mus. C'omp. Zoiil., XVYir, p, 492, June, 1889.
Shell small, white, thin, rounded, with a straight hinge-margin; left valve inflated, the posterior auricle narrow, separated by a deep narrow byssal noteh from the rest of the margin; right valve flatter, the posterior auricle well defined, small; both valres similarly seuptured with nearly equidistant thin lamelle, which, when perfect, curve forward and touch the rising curve of the next succeeding lamella; an absolutely perfect specimen would therefore present it series of equal, smooth, concentric wares, falling almost vertically from the anterior hinge margin and curving in a subcircular sweep around to the depression which marks off the posterior anriele in either valve. Practically, however, the fragile lamella never retain more than traces of their perfect state and present a series of rers sharp elevated concentric lamine following the lines of growth and separated by narrow nearly equal intervals, averaging on the whole four or five to the length of a millimeter, radially measured; the umbones are small and prominent, reaching slightly above the cardinal margin; the interior is smooth and polished; there is no radiating scupture ; the ligament is small and subcentral ; there are no transverse ruga on the hinge margin, and no internal lire. Jaximum altitude of the shell 9 ; maximum latitude 8.5 ; diameter, 4.4^{mm}.

Hab.-U. S. Fish Commission Station 238:3, in 1,181 fathoms, mud, between the delta of the Mississippi and Cedal Kers, Gulf of Mexico; bottom temperature 390.5 F .; Station 2751 , off St. Kitts, in 657 fathoms, ooze ; and 2760, 90 miles north of Ceara, Brazil, in 1,019 fathoms, temperatures $39^{\circ} .9$ and $39^{\circ} .4$, respectively.

This rery simple and ret rery characteristic little species seems to stand in need of no comparisons, as it is not sufticiently similar to be easily mistaken for any of the known species.

Family LIMIDA.

Genus LIMA Bruguière.
Sulgenus LIMATULA S. Wood.
Limatula setifera Dall.
Plate xiv, Fig. 10.
Limatula setifera Dall, Bull. Mus. Comp. 'Zoül., xif, p. 224, 1886.
Hab. - From North Carolina to Barbados in 50 to 450 fathoms, collected by the Albatross at Stations 2612 and 2646.

Genus LIM届A Bromm.
Limæa Bromniana Dall.
Plate xiv, Fig. 9.
Limaa Bronniana Dall, Bull. Mus. Comp. Zoü1., גII, p. 226, 1896.
Hab.-North Carolina to Barbados in 15 to sot fathoms, U. S. Fish Commission Stations 2596,2612 , and 2619 being among the localities.

Suborder MYTILACEA.
Family MYTILIDA.
Genus CRENELLA Brown.
Crenella (decussata var.9) divaricata Orbigny.
Crenella decussala (Montagu) Dall, Bull. Mus. Comp. Zoül., ix, p. 116; xir, p. 235, 1886.

Nuculocardia divaricatu Orbigny, Moll. Cuba, 11, p. 311, Pl. xxvif Figs. 56-59, 1845.
This little shell-described from the Antilles by Orbigny, aud indistinguishable from specimens of C. Alecussuta of the same size, except that it is msually whiter-never reaches the size of northern specimens of C decussata. The latter is found as far south as Catalina Island, off the coast of Santa Barbara County, California. The prescree of a fresh specimen of ('. divuricatu containing the animal, in dredgings at Station 2805 , in 51 fathoms, mud, Panama Bay, was therefore not altogether surprising. It is the first record of the Antillean form on the west coast of America and adds to the probabilities of its being merely a tropical race of O. decussata.

Suborder NUCULACEA.
Family LEDIDA.

Genus MALLETIA Desmoulins.

Malletia goniura sp, nov.

$$
\text { Plate x, Fig. } 10 .
$$

Shell small, rather full, with a brilliantly polished olivaceous epidermis, and faint seulpture of incremental lines; umbones not prominent; anterior end rounded ; base nearly straight ; posterior extremity bluntly truncate with a double tlexure, caused by two well-marked ridges extending from the beaks to the extremity of the shell : lumule and escutcheon linear or none; ligament external, short, back; hinge line straight behind the beaks, descending slighty in front of them, with nineteen anterior and twentr-five posterior, small, short V-shaped teeth, the two series separated by a short edentulous space; interior polished, slightly iridescent ; muscular scan's rather large, faint; the pal-
lial line obsenre, with a large romed sinus; margins simple, smooth. Longitude of shell 15.5 ; altitude, 9 ; diameter, 6^{mm}.

Hab.—U. A Fish Commission Station 2793 , off the coast of Ecuador in 741 fathoms, mud; bottom temperature 380.4 F .

This species is most like MI. arruanu Smith from the Arru Islands, but that species has the upper posterior corner beveled off aud no longer angular, which makes a marked difference in the outline of the shell. 11. obtusa, which has somewhat the same form, wants the marked furrows of the posterior end of this species.

> Malletia (Tindaria?) æolata sp. nov.

Shell small, thickish, pale straw color, subrectangular; surface smooth and polished at the umbones, gradually becoming strongly concentrically ridged with rounded narrow ridges separated by mostly linear interspaces; anterior end longer, nearly evenly rounded, a little produced below; posterior end shorter, longest above, obliquely truncate with a concave wave betweeu the upper point and the beginning of the little-curved base; beaks full, not prominent; no visible lunule or escutcheon; hinge margin broad, with eleven anterior and eight posterior \mathbf{W}-shaped teeth, of which four or five on each side are not dereloped; ligament central under the beaks, small, wholly external to the tooth line; interior polished, scars and pallial line rather obscure. Maximum longitude 4.5 ; altitude 3; diameter 2.5; rertical of beaks from anterior end 2.8^{mm}.

Hab.-Station 2754, in 880 fathoms, ooze, east from Tobago ; temperature $37^{\circ} .9 \mathrm{~F}$.

Nearest to the young of M. "ustralis or the adult M. excisa, but of different form from the latter, stouter and more rectangular and less deeply notched.

> Malletia (Tindaria) amabilis Dall.

Malletin (Tindaria) amabilis Dall, Bull. Mus. Comp. Zoöl., xvin, p. 438, Pl. xl, Fig. 8, June, 1889.
This species was obtained from Stations 2751 and 2754, in 607 fathoms, ooze, off St. Kitts, and s80 fathoms, ooze, east from Tobago; temperatures $39^{\circ} .9$ and $37^{\circ} .9 \mathrm{~F}$, respectively.

Malletia (Tindaria) agathida sp. nor.
Plate xiII, Fig. 10.
Shell small, stout, white, with prominent umbones; produced and rounded before, shorter and pointed behind, with close, strong, subequal, uniform concentric ridges; base rounded, slightly concavely waved in front of the angle of the rostrum, corresponding to a marked depression in front of an equally prominent ridge which extends from
the umbo; the concentric ridges are about equal to their interspaces; there is a pale yellow concentrically finely wrinkled epidermis; the tips of the umbones are full, smooth, aud polished; there is a lanceolate, smoothish lunule bounded by an obscure ridge, and a shorter and narrower esentcheon bounded by a faint ridge, outside of which is a faint depression; on either side of the bealis is a marrow, flattened area, recalling that of Limopsis, but much smaller and narrower; in the middle of this, just under the beaks, is a rery small socket for the ligament, which is wholly external to the line of the teeth, just as in Pelleoneilo; there are eleven developed and three obsolete anterion teeth and about. twelve posterior teeth, of which two or three are very small; the two sets are separated by a very narrow, smooth space, hut there is no cartilage; the muscular scars are deep, the pallial line obscure, the margin simple, and the valves rather thick; maximum longitude of shell 5.5 ; maximum altitude 4.5 ; diameter $3.1^{\text {m"m }}$; the heaks are over a point on the line of maximum length, which is $3.25{ }^{m n}$ from the anterior end.

Hab.-Station 27.51, south from St. Kitts, in (is7 fathoms: and 2754 , east from Tobago, in 880 fathoms; temperatures 375.9 to 390.9 F .
This species has much the outline of Modiolatca esilis II. and A. Adams (see Zool. Kerguelen Id., Mollusca, by E. A. Smith, 'Transit of Venus Expedition, Zool., Plate ix, Fig. 24), and resembles in stontuess and sculpture Lefla Brookiei Hamley, as figured in the Thesaurus.

Malletia (Tindaria) acinula sp. nov.
Plate xili, Fig. 4.
Shell small, subquadrangular, white, with the anterior end shortest, and the surface seulptured with strong, close, subequal, rounded conceutric waves, separated by linear interspaces: base produced in the middle, romuded; anterior end short, romnded: posterior end longer, with a romeded point, but not rostrate; beaks apical, but not promineut; lumule and escutcheou subequal, small, narrow, impressed, wather short, with no bounding elerated line or groove ; ligament small, longer thau high, directly under the beaks, external to the tooth line, and visible externally in the closed shell; anterior jart of the hinge with eight, posterior part with ten, \mathbf{V}-shaped teeth, of which two or three on each side are very small; sears well marked, impressed ; pallial line obseure, arcuated in front of the posterion adductor; margin of the valses plain, interior polished, shell rather thick; maximum longitude of shell 5.0 ; maximum altitude, 4.2 ; diameter 3.5: distance of vertical, drawn from the beaks, from anterior end, 1.5^{mm}.

Hab.-With the last and also at station 2760 , in 1,019 fathoms, brown clay, ninety miles north from Ceara, Brazil; temperature : 39 P .4 F .

This shell has much the outline of L Ledu quadsenumbaris I) all, but is proportionally higher and shorter, with more prominent and regular concentric sculpture,

Malletia (Tindaria) virens sp. nov

Plate xili, Fig. 3.

Shell small, inflated, thin, closely, minutely, concentrically ridged, with a green or olive-green epidermis; anterior end shorter; base evenly rounded, beaks full but not prominent; outline of the shell recalling Callistn; anterior end evenly rounded, posterior produced, with a very obtuse rounded point, not rostrate; ligament under the beaks, but extending further behind than in front of them, wholly external to the tooth line, which is contimons below it ; anterior teeth eight, posterior ten, with three or four undereloped additional teeth under the beaks on each side; teeth prong.shaped; sears obscure, pallial line invisible; shell very thin, cardinal margin very weak and narrow. Maximum longitude 4.5 ; altitude 3.5; diameter 2.5 ; rertical of the beaks, $2^{\text {mm }}$ from the front margin.

Ha13.-Stations $2781,2782,2783$, and 2785 , in 122 to 449 fathoms, mud, on the west coast of Patagonia; temperatures 47° to $50 \circ \mathrm{~F}$.

This species is exceptional for its thin shell aud very green epidermis I have not beeu able to distinguish any lunular area or escutcheon.

Genus YOLDIA Mörch.

Yoldia scapania sp. nov.

$$
\text { Plate xin, Fig. } 6 .
$$

Shell elougated, polished, smooth, whitish with a pale yellowish epidermis, the beaks very inconspicuous, hardly raised above the level of the slightly angulated hinge line; base nearly stmaght; the anterior end romded above, more oblicue toward the hase; the beaks slightly more than one-third of the way from the anterior to the posterior end; posterior end bluntly rounded as in a Siliqua; interior smooth, white, with a deep rounded pallial sinus and rather large rounded musenlar scars; hinge with about twenty-eight very small V-shaped posterior and twenty-five anterior teeth, the anterior ones being crowded more closely; there is a greater difference in the length of the hinge-line on each side of the ligament pit than the numbers would imply; ligament wide, low, subtriangular, wholly internal; margins of the valves smooth, sharp; maximum longitude of shell 18.2 .5 ; altitude 9 ; diameter 5.6^{mm}.

Hab.-U. S. Fish Commission Station 276:, east of Rio Janeiro, in 59 fathoms, mud; bottom temperature $57^{\circ} \mathrm{F}$.

This species is remarkahly soleniform, gaping slightly at either end, mostly at the posterior end ; it is very evenly mflated and the beaks are so inconspicuous as to be practically almost indiscernible. It is most like I. solenoides Danl, which is smaller, has the posterior end less blunt aud slightly narrower; is a smaller shell, with more central umbones and a few concentric grooves near the base. In the present
species, as in the I. solenoides, there is a marow lumule and esenteheon bounded by a shathow groow, but in the latter this growe indents the anterior margin, while in 1 . sconfuniu it does not. There are a few obscure radiations, and the incremental lines are more conspicuous toward the middle basal part, but the sculpture, if such it can be called, is hardly noticeahle. The teeth are larger in \bar{I}. solenoides, though it is a much smaller shell.

Yoldia pompholyx Dall.

$$
\text { Plate xili, Fig. } 8 .
$$

Toldia pomphotyx Dall, Bull. U. S. Nat. Mus. No. 37, p. 44, No. 151, 1889.
Shell small, rounded, polished, inflated, smooth except for incremental lines, covered with an extremely thin grayish green epidermis; subtranslucent when fresh, ashy or white when weathered ; a pair of very faint ridges in front of and behind the beaks indistinctly indicate areas corresponding to lumble and escutcheon; beaks romded, incouspicuous; shell entirely closed when the ralves are shut; ligament nearly central, its uppersurface slightly exposed extermally between the valves; interior smooth; hinge line narrow, roundly arched with seven anterior and eight posterior teeth of normal form and a well-marked pit or fossette central between the beaks; margins smonth; maximum lougitude of largest valve $4^{\text {man }}$; longitude of another (pair) 3.5 ; altitude 3; diameter 2^{mm}.

Hab.-U. S. Fish Commission Station 2668, in 294 fathoms, gravel, off Feruaudina, Fla.; temperature !f . 3 I. Also by Dr. W. II. Rush, U. S. Nayy, off Havana in 1,03t hathoms, mud, and off the Fowey Rocks, east Florida, in 205 fathoms.

This curious little spereies has much the external form of Jeffreys' Glomus, but has the regula hinge of the small rounded Yoldias.

Genus LEDA Schmmacher.
Leda cestrota spl, nov.
Plate $x i l y$, Fig. 7.
Shell thin, compressem, elongatenl. rostrated, translucent white, with a pale gray or olive epidermis, which is gunerally mostiy lost ; umbones hardly raised above the hinse !ine, pointen, inconspicnons, compressed; base forming is shathow reversed arch, meting the anterior curve of the upper edge in a tombled pint; posterio: unper margin nearly straight, becoming slighty emeave foward the eme of the rostrum; rostrum longest abore, oblichet! trmmate, its hasal margin slightly concave, then swelling into the cume of the base; sculpture of numerons thin, sharp, elevated concentric lamelle, prominent anteriorly and near the base, less so on the cherls of the valves and obsolete near the rostrum;
radiating sculpture of a ridge boundiug the lunule over which the lamellie pass, becoming finer and then obsolete toward the pouting cardinal margin; also, a ridge bounding the escutcheon, and a second less obvious thread from the leak of each valse to the lower angle of the rostrum ; the former shows by small elevated, pointed seales the influence of the lamellie, slight traces of which also appear on the second ridge; the escutcheon is long, narvow, and smooth, with pouting lips, and there are no developed lamella between the ridges outside of it; shell internally polished, showing no scars; there is no mesial ridge in the rostrum; cartilage large, black, triaugular, posteriorly inclinel, wholly intermal; teeth small, about forty anterior and fifty posterior to the beaks, of which seven to nine on each side are undeveloped; on the anterior side, between the anterior margin of the fossette and the toothline proper, is a flat space orer which these undereloped teeth are widened out as transverse, but little elevater, ridges; maximum longitude of shell, 25.5 ; longitude from vertical of beaks to end of rostrum, 17 ; maximum altitude of shell, 8.75 ; diameter, 3.75^{mm}.

Hab.-Station 2145, near ('olon (Aspinwall), in 2.) fathoms, mud.
This is nearest L. concinna Adams, from New Zealand, but is proportionally more elongated aml pointed posteriorly, and more compressed.

Leda platessa sp. nor.

Shell thin, flat, smooth, whitish, nearly straight; sculpture only of faint incremental lines; epidermis pale straw-eolor, trauslucent, polished; beakis small, bulbous, but inconspicuons, or hardly elevated above the hinge line; lumule so narrow as to be obsolete; escutcheon extremely narrow, long, bordered by a faint thread, below which is a still fainter one; base arcuate; anterior end evenly rounded, short; posterior end straight, stuarely, not obliquely, rounded-truncate; interior polished, rostrum with a mesial septum most elevated distally, nearly central; fossette narrow, elongated, parallel with the cardinal margin; teeth very small, anterior series with four undereloped and seven elevated teeth; posterior series with about twenty-five developed and eight or nine (?) undereloped arched teeth; interior of shell polished, not showing the sears. Maximum longitude of shell 10.3 ; altitude 4.4; diameter $\stackrel{2}{2}$; vertical of the heaks from anterior end $3.25^{m m}$.

Шив.-Station 2762 , east from Rio Janeiro, in 59 lathoms, mud; temperature $57^{\circ} \mathrm{F}$.

The nearest relative of this shell is Leola Carpenteri Dall, from the eastern coast of the United States and the Antilles. The latter has the rostrum much more sleuder and more recurved, the lunule, and especially the escutcheon, wider and better defined, and the curve of the anterior end more pointerl in the middle. The central part of the base below the beaks is also, in harmony with the general curvature of the shell, proportionally more produced. The namber of teeth on the
hinge-line is smaller, the fossette shorter and wider, and the rostral septem more dorsally situated.
This species recalls, to some extent, Leda Bushiana Verrill, but that species is more elerated and has sparse, prominent concentric lamellio over part of its surface.

Leda pontonia sp, nov.
Plate xili, Fig. 5 b.
Shell stout, strong, inflated, with a thin ochre-yellow or pale olive epidermis aud recurved, pointed, posterior end; beaks approximate, full, incurved, not high, slightly anterior; anterior end evenly romded, produced; posterior end vertically compressed, produced, recurved, pointed but not rostrate; base eveuly arcuate; radiating sculpture of occasional faint microscopic striations near the ends of the shell, usually absent, and a marked but not sharp-edged ridge in each valve, extending from the beak to the posterior point and bounding the pos. terior dorsal area in each valve; concentric sculpture of numerous fine regular continuous rounded threads, separated by narrower grooves; this sculpture, however, becomes suddenly obsolete on the cheeks of the valses and in front of the ridges above mentioned; the threads are stronger above and behind the ridges, but fade out in a central cordate area which, though not impressed, may be taken to represent the escutcheon ; there is no obrious lunule ; interior polished, muscular and pallial scars faint, the former small ; pallial sinus shallow, small, and terminal; teeth V -shaped, anterior sixteen, posterior thirteen, all dereloped; fossette internal, deep set, subtriaugular, short; maximum longitude of shell 14.5 ; altitude 10 ; diameter 6.8 ; vertical of beaks behind the anterior end 6.25^{mm}.

Нab.-Stations 2807 and 2808, in 812 and 634 fathoms, mud and sand, near the Galapagos Islands, Pacitic Ocean ; temperatures $35^{\circ} .4$ and $40^{\circ} \mathrm{F}$.

This is a remarkably plain, stout, and simple species, notable for its recurved tip, broad, flattened posterior dorsal area and areuate base. It has somewhat the form of I. chuva Gray, but is proportionally longer and has a different sculpture.

Family NUCULIDA.

Genus NUCULA Lamarck.

Nucula Verrillii Dall.

Plate xiv, Fig. 4.
Nucula Vervillii Dall, Bull. Mus. Comp. Zoül., xviir, p. 248, 1886.
Nucula trigona Verrill, Trans. Conn. Acad., vi, p. 438, 1885, not of Bronn, 1849, or Seguenza, 1877.
Hab.-Off Nantucket at Station $219 \pm$ in 1,440 fathoms, and off the coast of Maryland at Stations 22.2 and 22.29 in 1,582 and 1,423 fathoms

Proc. N. M. S9—— 17
(Verrill). Also at station $2 \pi 54$ in north latitude $11^{\circ} 40^{\prime}$ and west longitude $55^{\circ} 33^{\prime}$ east from Tobago in sist fathoms, ooze, and station 2760 , 90 miles north from Ceara, Brazil, in south latitude $1: 0{ }^{\prime}$ and west longitude $37^{\circ} 1 \overline{7}^{\prime}$ in 1 , 019 fathoms, broken coral hottom ; temperatures 370.9 to $39^{\circ} .4 \mathrm{~F}$.

This species recalls the Miocenc N^{\prime}. dolubellu Ii. C. Lea from Virginia.

> Nucula crenulata A. Adlams.

Nucula cremulate A. Adams, P. Z. S., 1860, p. 52.
N. culebrensis E. A. Smith, Chall. Rep., Lamellibr, p. 228, Pl. Nviri, Figs. 11, 11a, 1855.
N. crenulata Dall, Bull. Mus. Comp. Zoöl., Ix, p. 123, 1881, Xif, p. 247, Pl. Vir, Fig. 2, 1886.

Hab-GGulf of Mexico and Antilles, also Station ᄅ̄̈sü, in south latitude $48^{\circ} 9^{\prime}$ and west longitude ito 36^{\prime}, on the west coast of Patagonia in 449 fathoms, mud; temperature 460.9 F .

This locality greatly increases the southward range of this species and carries it into the I'acilic. The identification seems satisfactory.

Nucula cancellata Jeffreys.

Nucula reticulata Jeffreys, 1876, not of Hinds.
N. cancellata Jeffreys, P. Z. S., 1851, p. 951. Verrill, Trans. Conu. Acad., vı, 231, 1884.

Hab.-Europe, Azores, New England, near Georges' Banks and southward to Martha's Vine and. Also at station 2 Tht, east from To. bago, in 880 fathoms, onze, temperature 370.9 , north latitude $11^{\circ} 40^{\prime}$ and west longitude $55^{\circ} 33^{\prime}$.

The known sonthward extension of this species is greatly enlarged by the specimens dredged as above mentioned.

Nucula cymella Dall.
Plate xiil, Fig. 1.
Nucula cymella Dall, Bull. Mus. Comp. Zuöl., Xu, p. 246, 1886.
Hab.-Yucatan Strait in ito tathoms. Florida Straits. Also at Station 2135, in 250 fathoms, hand coral bottom, soutin of Cuba, in lati-
 Tobago, in 880 fathoms; and Station 2760,90 miles northward from Ceara, Brazil, in south latiturle 1207^{\prime} and west longitude $37^{\circ} 17^{\prime}$, in 1,019 fathoms, broken coral ; temperature 380.4 F .
The last station extends the known range of this species nearly 2,000 miles to the southward of previous stations.

Nucula callicredemna sp, nov.
Plate xili, Fig. 9.
Shell rather large when adnlt, thin, compressed, with a polished yel-lowish-olive uniform epidermis. radiating and concentric sculpture; form of adult ovoid, recalling Nuculd niponica E. A. Smith (Chall. Rep.,

Lamellibranchs, I'l. xvin, Fig. S) hut proportionally higher; beaks prominent, recurved, frequently eroded; radiating sempture of munerous fine, rather distant, sharp theads, more crowded near the beaks, broader and less sharp near the anterior and posterior basal margin, not dichotomons ; concentric senlpture of narrow, rather short, discontinnous and irregularly placed ripples, strongest and more irregular near the base, more crowded and reqular and much less prominent near the beaks, sometimes altogether or nearly ahsent, expecially in the young; lunular region impressed but not ciremmseribed, rather short and broad, with a shallow flexure just outside of it ; escutcheon long, narrow, obscure ; interior nacreons, polished, the hasal margin closely, deeply, and sharply fluted, at all ages; anterion tooth-line concavely curved with nine teeth, all developed; posterion series consexly moderately curred with nineteen dereloped teeth rather conical and sparsely set; fossette shaped like the operenlum of Fusus, curved in harmony with the dorsal margin, wholly internal ; maximum longitude of adult 12.5 ; altitude ! ; diameter 5.5 ; vertical of healis from anterior

Пab.-Station 2754 , east of Tobago, in siso fathoms, ooze; temperature $37^{\circ} .9 \mathrm{~F}$.
This elegant shell is quite noticeable for its thin and light character, its continnous fine sharp radii, and its marow though mot flattened form. The young are more triangular, smoother, amd proportionally more plump, some of them recalling at first sight the adult N. Terrillii Dall. The internal fluting is particularly marked and sharp and has suggested the specific name. There is no sipecies which closely resembles this form, though it belongs to the groun, which contains N . crenulata, cancellata, decussata, etc.

> Suborder ARCACEA.
> Family ARCID E.

Genns ARCA Linné.
Arca jamaicensis Gmeliu.
Arca barbata Linné.
The above species were collected at the Abrollons islands off the coast of Brazil near Bahia.

> Arca Noæ Linné.
> Arca reticulata Gmelin.

Arca Adamsi Shuttleworth.
The three preceding species were collected at station $2 \pi=3,90$ miles southeast from Cape San Roque, Brazil, in ご) fathoms, shelly bottom, about 419 miles south of the equator. A. reticuletu and .1. Aliumsi were also obtained at the Abrolhos Islands.

Arca glomerula Dall.
A. glomerula Dall, Bull. Mus. Comp. Zö̈l., Ix, p. 121, 1881 ; Xif, p. 241, Pl. viri, Figs. 9, 9a, 1886.
A. incquisculpta E. A. Smith, Chall. Rep., Lam., p. 267, Pl. xvir, Figs. 8a-8c, 1885.

This species was obtained at Station 2750 , in 497 fathoms, sand, off the island of St. Bartholomew, West Indies; temperature 440.4.

Arca pectunculoides var. orbiculata Dall.
A. var. orbiculala Dall, op. eit., IX, p. 121, 1881; xir, p. 210, Pl. vini, Fig. 5, 1886.

This species was obtained at Statiou 2751 in 657 fathoms, globigerina ooze, south of St. Kitts, West Iudies; temperature 390.9 F .

Genus PECTUNCULUS Lamarck.
Pectunculus undatus Linne.
P. undatus (Liuné) Dall, Bull. Mus. Comp. Zö̈l., XII, p. 238, 1886.

This species wats obtained at Station 2755 , ! 00 miles southeast from Cape San Roque. Brazil, in 20 fathoms, shelly bottom. South of this station where the gemms ocemred it was represented by the Patagonian form which oceurs on both coasts of the southern part of South America.

Order TELEODESMACEA.
Suborder CARDITACEA,
Family CRASSATELLID AE.
Genus CRASSATBLLA Lamarck.
Crassatella floridana Dall.
Plate xi, Fig. 4.
Crassatella floridama Dali, Bull. Mus. Comp. Zö̈l., ix, p. 131, 1881; xir, p. 256, Pl. vi, Fig. 12, 1886.
Hab.-Gulf of Mexico and southeastern coasts of the United States at U. S. Fish Commission Stations 2372, 2409, 2410, $2595,2596,2597$, $2598,2604,2606,2607,2608,2610$, and among the Florida Keys in 3 fathoms, living, by Lieut. J. F. Moser, U. S. Nary. The species ranges in depth from 3 to 50 fathoms, is commonest in about 25 fathoms, and has been found in temperatures of $73^{\circ} .5$ to $80^{\circ} \mathrm{F}$.

This fine species was originally described and figured from a young shell. The adults obtained as above by the U. S. Fish Commission enable me to figure the atlult. The largest valve obtained measured 78^{mm} long and $57^{m m}$ high. The complete shell must have had a diameter of abont 31^{mm}. Then fresh it is covered with a bright redidish brown epidermis, which beeomes fibrous after leath amd maceration or in very aged specimens. The margins are smonth at all ages. In aged specimens the outside longitudinal grooving becomes obsolete near the mar-
gin. The interior in iresh specimens is pink, white, or pinkish chocolate, darker behind; sometimes of at rich salmon color. The species does not agree with any of Combads Tertiary speries, and is entirely dis. tinct from the C. antialamm lioeve, the only other recent speries of the true Crassatellas yet known to inhabit this reqion. It has not yet been found in the southeastern Antilles.

Family ASTARTIDA.
Genus CIRCE Schmmacher.
Subgenus GOULDIA C. B. Adams.
Gouldia cerina C. B. Adams.

This species was collecterl at Station 27 os, ? miles sontheast from Cape San lioque, Brazil, in 20 fathoms, shelly bottom. This is by far the most southern habitat for the species yet recorded.

Suborder LUCINACEA

Family UNGULINIDE?

Genus CRYPTODON Turton.
Cryptodon barbarensis Dall.
Plate viir, Fig. 9.
Shell white, superficially chalky, rather compressed, rounded below, the beaks uot very prominent; the surface is senptured only with incremental lines; there is a rather laree impressed lomalar area not circumscribed by a line; behind there isan upper, narrow and deep radial depression with a lower, wider and less marked second one, which make corresponding flexuosities of the posterior margin; a narrow rather deep groove runs near the margin outside the ligament marking off a narrow elongated escutcheon; interior white, umpolished; hinge edentulous. Maximum longitude of shell 17 ; altitu?e 17 ; diameter 10^{mmm}.

Hab.-U. S. Fish Commission Station 28:10, of the Santa Barbara Islands, California, in 276 fathoms, green mud.
This fine species is neares C. sarsii than any other, but has decidedly more elevated and narrower heaks. It is promble that all these shells should be called Axinus, as there can lie hitile doubt that his fossil type really belongs to this group. As hong as even that little exists, how. ever, it is a question whether Sowerny's name should he adopted.

Soft parts.-The foot is extremely shender ($0.5^{m i n}$), with a small spin-dle-shaperd dilation at the distal end, cirembaly rugose, and abont 40 man long, as contracted in alcoloh. The gills are as long as the shell, or nearly; the stem has a dorsal aml a rentral lamina, and the dorsal lamina is reflected ontward and downward, mith it: lower margin is on a level with the stem. There is only one pallial and hanchial opening,
with the edges posterionly thiekened or infolded but nearly smooth. The anal opening has no tulx, but forms a simple long ovate slit. The gills are free, except poximality, over two thirds of the whole length is mattacher. The mouth is small, with a narrow raised edge like a Polyzoon epistome, but wo palpi. The ovarian and hepatic lobules are attached on each side of the foot and ramify from a central area of at. tachment in a very large number of short stont spongy lobules, recalling the digitations of some keratose sponges. The ora are minute and rellowish. The hepatic gramules are dark brown or grayish. The whole mass of the genito hepatic organs nearly fills the mantle eavity, and is larger than all the rest of the soft parts put together. These lobules are mot iike the priform projections of Myonera, each of which projects singly from the romuded surface of the visceral mass, and probably subsides after the period of ovulation. In Cryptodon the whole mass on each side arises from a single small area, and digitates afterward.

Cryptodon fuegiensis sp. nov.

Plate Xiv, Fig. 2.

Shell large, white, thin, suborbicular; concentrie senlpture of incremental lines; radiating scul j_{i} ture of one sharp groove near and paraliel with the posterior hingemargin, its termination indenting the margin, and a wider shatlow sulens helow it also cansing a flexuosity on the posterior margin; an oiseme groove anterionly bomads a lunular area, and there are several faint indications of other radii near those above mentioned; surface of the valves microseopically gramulons, covered with a mostly dehiscent pale straw colored epidermis; valses only moderately inflated; lig̣ament 'ong, back, deep-seated; hinge edentulous; interior of shell faintly ratiately striate; scars distinct, with rather irregular outlines; margin sharp, simple; maximum longitude of shell 25 ; altitude 21.5 ; diameter 14.4 ; rertical from the umbones behind the anterior end 7^{mm}.

मab.-Station $27 \pi!$, in the Straits of Magellan, in $77 \frac{1}{2}$ fathoms, ooze, temperature 460.9 F .

This spletadid spectes is one of the largest reeent forms known, and was diseoverel in fragments which amitted of reconstruction.

There does not appear to be any fossil species on the coast of South Americal which is nearly related to (c. fuegiensis, but it may be mentioned that the Fonns bisectu:: Comad (Wilkes Exploring Expedition, Dana (ieological leport, 1. 721 , pl. 17, fig. 10), afterward referred by Comrad to ('yprimu (Am. Jour. (onch., 1, p. 1.33, 186.5) is a fine species of Cryptorton or Arimus. I hope before long to publish a revised list of these Oregonian fussils refimed by Conrad to the Eocene, some of which appear to be closely related to some of those forms figured from the Tertiary of (Chile hy the renerable Dr. Philippi in his latest works.

Cryptodon pyriformis Dill.
Plate xir, Fig. 1.
Cryptodon pyriformis Dall, Bull. Mus. Comp. Zoül., Nul, p. 267, 1886.
Habs-U. S. Fish Commission Sititions 2616 and 267 , ofí the eastern coast of the United States, from ('ape Fear to Florida, in 8.5 to Fi31 fathoms ; also by the Blatie in 640 fathoms in Yucatan Strait.

Cryptodon ovoideus Dall.
Plate xiv, Fig. 3.
Cryptodon oroideus Dall, Buil. U. S. Nat. M1us., No. 37, p. 50, No. 211, 1889.
 miles off Cape Fear, North Carolina, temperature $40^{\circ} \mathrm{F}$.

The shell is yellowish-white and somewhat carthy, and measures 25 be 20^{mm}, with a diameter of $1 . \mathrm{t}^{\prime \prime \prime}$. The suffare is somewhat malleated and the lunule short, wide and deep.

Family LUOINIDE:
Genus LUCINA Bruguière.
Ltrina sombrerensis Dall.
Plate xiv, Fig. 13.
Lucina sombrerensis Dall, Bull. Mus. Comp. Zö̈l, Nir, p. 264, 1886.
 off Cape Elorida. Also in the Ciulf of Mrxien and ofi Sombrero Island, West Indies, by the Blake, in 50 to 72 fathoms.

> Lutcina leucocyma Dall.
> Plate xiv, Figs. 6, 7:

Lucina leucocyma Dall, Bull. Mus. Comp. Zoül., Nit, p. 264, 1886.
Hats.- Off the pastern coast of the L'mited states, the (xulf of Dexico and the West Indies, in from is to 6 活 fathoms: ('ollected by the Alba-

Lucina sagrinata Dall.
Plate xiv, Fig. 11.
Lucina sagrinata Dall, Bull. Mns. Comp. Zoül., xıt, p. 26ī, 18Е6; xvim, p. 439, 1889.
 fathoms; also in the (inle of Jexieo hy the liblie in 182 to 300 fathoms.

The above-mentioned species of Lucina were obtained at Station 2758, 90 miles southeast from Cape San Roque, Brazil, in 20 fathoms, shelly bottom. I. pecten was also collected at the Abrolhos Islands, off the coast of Brazil, near Bahia.

Family DIPLODONTID风.
Diplodonta soror C. B. Adams.
Diplodonta semiaspera Philippi.
The above species were collected at Station 2766, off the Rio de la Plata, in $10 \frac{1}{2}$ fathoms, sand.

Diplodonta subglobosa C. B. Adams.
This species was collected at Station 2755 with the species of Lucina above mentioned.

Suborder CHAMACEA.
Family OBAMIDA.
Genus CHAMA Bruguière.
Chama sarda Reeve.
This well-characterized species was collected at the Abrolhos Islands, Brazil.

> Suborder CARDIACEA.
> Family CARDIIDA.
> Genus CARDIUM Linne.

Subgenus LOPHOCARDIUM Fischer.
Lophocurdium Fischer, Man. de Conchyl, p. 1038, 12nz. Type C. Cumingi Adams \& Reeve.

Lophocardium Ȧnnettre Dall.
Plate x, Fig. 4.
Lophocardium Annettce Dall, Nantilus, 1). 13, June, 1889.
Shell thin, inflated, subovate, longer than high; color rose red with a tinge of salmon-color; sorered with a thin dehiscent paprraceons epidermis produced on the edges of the elevated sculptme; umbones in-
flated subeentral with the color deeper than on the rest of the shell; sculpture of tine rery mumerous ratiating grooves with broater flat interspaces or tlattened riblets, crossed by tine concentric, slightly irres. nlar narrow ridges made more prominent by the slightly projecting epidermis; on the posterior sixth of the shell the radiating riblets are coarser and slightly rounded, crossed hy rather distant more elevated concentric lamine fringed with epidermis; the posterior area separated from the rest of the surface by a slightly elevated somewhat curved radial lamina which is minutely frilled or puckered in such a way that its edge where mbroken is delicately notched. Posteriorly the shell gapes a little; the anterior margin is evenly rounded, below evenly arched, posteriorly subtrucate and everywhere simple and sharp; the cardinal margin is reflected and elerated before the umbo, more depressed behind it with a delicate ligamentary insertion plate; there are no lateral teeth in either valve; in the right ralre the inner edge of the hingeplate is continmed as an elevated line abore which the upper posterior margin is produced vertically, making this valre a tritle larger than the other, and more angular at the upper end of the truncation; in the right valve are two slender curved cardinal teeth, the longer notched near its tip, in the left ralve a single tooth excavated above. Lougitude of shell 29 ; altitude 2.) ; maximum diameter 20^{mm}.

Hab.-Coast of Lower California at Station 2828 in moth latitude $24^{\circ} 11^{\prime}$ and west longitude 1090 j.5' in 10 fathoms; fragments were collected at Stations 2823 and 2826 , in 8 to 27 fathoms, shelly bottom, within a few miles of the preceding and also in material dredged near Sau Clemente Island in 25 fathoms.

The soft parts of this species resemble those of other Cardiums, except that the siphonal septum is prodnced forward to and around the foot, completely separating the anal and branchial chambers. This septum is thin, membranons, and imperforate except for the foot. The siphonal oritices are profusely papillose and most of the soft parts are of a pinkish color.

This shell differs from all other Carditms, recent or fossil (except C. Cumingi), in the total absence of lateral tecth The section Lophocardium of Fischer was based on the prominent radial lamina of (\%. Cumingi, but an examination made at the British Museum by the courtesy of Mr. E. A. Smith, at my request, showed that that species partakes of the same hinge characters. For this reason I raised the section to the rank of a subgenus under Dr. Fischer's name.

From C. Cumingi, which was obtained from the same region, the present species difiers in form, in details of senlpture, and in the less elevated radial lamina. It is one of the most leantiful shells of the genus, but so fragile that it is extraordinary that even a single specimen was obtained in a perfect state.

The soft parts resemble in the main those of other ('ardinms except in regard to the siphonal septum. A partial siphonal septum is com-
mon among Pelecypods, especially short-siphoned forms, where the internal septum may, to a certain extent, make up for the absence of the long and complete division between the passages in those forms with long siphons. The septum is usually a mere subtriangular thin membranous shelf, the posterior extension of the tissues which separate the two siphous, while from near its lateral corners radiate the muscles which in those forms with a pallial sinus serve to retract the siphons. Below it is the more fleshy languette or curtain-valve which closes the incurrent siphonal opening when required. Among those forms in which we may find the septum especially well developed are the different groups of Cardium. In C. edule a short septrm is present, and is figured by Deshases (Moll. Algerie, Pl. xcvir., Fig. 6), in which an opening appears above and behind the valsular languette. I suspect this to be due to lesion, as I have not found such an opening in any of the species of Cardium I have examiued. In another species, C. hicus (n p). cit., Pl. xcyi., Fig. 2), the septum is considerably extended forward. The present species has the ordinary gills of Cardium well developed, with their posterior anchorage high up and near the siphonal septom at its origin. The septum thin, slightls fibronc, but nowhere fleshy, extends forward to the foot and on each side of it. In this case there is no orifice above the languette, or elsewhere in the partition. Doubtless an exbaustive search would find many other grouns in which certain members exhibit a siphonal septum, more or less completely dividing the peripedal chamber. Until the character has become more partienlarly specialized and permanently established, it is evident it can have but a minor value as a guide to the systematist, or a test of his classification.

Suborder ISOCARDIACEA?
Family ISOCARDIIDE.
Genus CALIOCARDIA A. Adams.
 Zoöl., xis, 1. 272, 1886. Type C. guttuta A. Adams.
To the kindness of Mr. Edgar A. Smith, of the British Museum, I owe a careful drawing of the interior and hinge of the unique left valse of Adams' type of Callocterdid. This is repmoduced here, having never been figured. Meincardia П. \& A. Adams difters firm Cullocardia not only in the shape of the shell but in the form of the cardinals, the principal lamella of which is externally carinated, the carima ruming down and outward below and coiling into the spiral monho. The teeth in the whole of this family are peculiar, they seem appressed against rather than to rise from the cardinal margin and are separated by deep sockets or pointed holes ; the teeth themselves seem to be composed of one or two lamellie, springing from the umbonal hollow and termi-
nating fan-like in several seallops or subsidiary flat denticles. The groups related to this genus are as follows:

PALLIAL LINE SIMPLE.
Kelliella (miliaris) Sars. Teeth well fignred by G. O. Sars. Size small ; teeth small, short, angular, ligament largely interual.
Vesicomya (atlantica) Dall. Size variable to large, teeth lamelliform, long, very flat, the middle one hardly curved, hardly separable from the thin long posterior lamella, deeply severed from the anterior and largest lamella ; ligament wholly external.
Callocardia s. s. (C. guttata) Adams. Cardinal teeth arehed in the left valve, short; ligament in a deep groove, chiefly external ; posterior lamella separate, thin, rather long.

PALIIAL LINE DEEPLY SINUATED.
Callogonia (Leeana) Dall. Anterior cardinal and middle lamella continnons, angularly bent like a flattened M; postorior lamella short, high, separate; ligament inset but wholly external. Right valve with middle tooth strong deeply angulated, posterior lamella absent or represented by a spur or point just below and behind the posterior limb of the middle tooth; above this a socket for the reeeption of the posterior lamella of the other valve. The anterior lamella thin, concave upward, its edge somewhat irregular, sometimes faintly notched.
It is almost impossible by words to describe comprehensisely these curions lamellar teeth; the reader may, howerer, with the- aid of the figures, understand faily well how they are armaged. The teeth of Kelliella are less lamellar than those of the other groups, are shorter and more triangular. The genume fiy of Isoctrdia cor, with which Jeffreys confounded Telliclla miliuris, has much thinner, Hatter, more parallel teeth, very like those of Vesicomya, plus it lateral tooth.

The gronp named by me Vencriglossa in 1856 (1 topodonta of ('ossman, 1887) may belong here, and in that case would follow ('allogomio, hav. ing a moderately sinuated pallial line.

The species known to belong to the gromps above mentioned are as follows :
I. Kelliella miliaris Philippi (+abyssicola Sars).
II. Vesicomya subquadrata Jeffreys sp.; V. atlanticu, I. pacifica, and V. Adamsi Smith; V. pilula and V. vemusta Dall.
III. Callocardir guttata A. Adams, (. alloidu and ('. smithii Dall. The last was, before it was thoroughly studied, referred ly me to Tesicomya.
IV. Callogonia Leeana Dall.

Subgenus CALLOCARDIA s. s.
Callocardia guttata A. Adams.
Plate x, lig. 5.
Callocardia guttata A. Adams, Ann. Mag. Nat. Hist. xil, p. 30z, 1864.
The figure above referred to is reproduced for comparison from the drawing of the unique left valve in the British Inseum, for which I am
imbehted to Edgar A. Smith, esq., assistant, British Maseum, in charge of the collection of Mollusca. It was found near one of the Japanese islands, Quelpart, in the Kurile chain, in 48 fathoms, and externally is smooth, white, lightly maculated with yellowish spots.

Callocardia albida sp. nov.
Shell small, inllated, white, with a very thin pate dehiscent epidermis; sculpture of rather coarse, somewhat irregular concentric lines and grooves, in harmony with the incremental lines; beaks high, stont, intlated; shell almost exactly the shape of Cytherea albida; lunule short, wide, marginated by a distinct groove; ligamont short, wholly external; escutcheon none, or undefined by any ridge; anterior end rounded, posterior eud slightly more pointed; interior white smonth, the musenlar scars faint, the pallial line simple, indistinct; teeth in the left valve two; one representing the fused middle and anterior tooth is formed by the rentral margin of the hinge-plate projecting laterally in a squarish elongate lamina showing two short curves concare downward and meeting each other at a slight ridge, at the termination of which is a small indentation in the profile of the lamina; the other tooth is close to the dorsal side of the hinge-plate, wholly separated from the other lamina, than which.it is lower and less curved; it lies directly under the ligament; altitude of shell 8 ; longitude 9 ; diameter 7^{mm}.

Hab.-U. S. Fish Commission Station 2762, in 59 fathoms, mud, east from Rio Janeiro; bottom temperature $57^{\circ} \mathrm{F}$.

A single left valve was ohtained. This species is quite near C. Adamsi from Siera Leone, but has fuller and stouter beaks and a more elongated and Cuthered like outline; the lumule is also smaller and proportionately broader ; the teeth differ in small details, being stont and curved, not flat and low as in the typical Vesicomya.

Callocardia Smithii Dall.

$$
\text { Plate x, Figs. 1, 2, } 3 .
$$

Callocarlia (Fesicomya) Smithii Dall, Bull. Mus. Comp. Zoäl., xvili, p. 439, Jıne, 1889.
Shell pale straw color or yellowish white, glistening, seulptured with fine somewhat irregular, rounded concentric incremental ridges, hardly elevated above the general surface; valves full, evenly rounded below and behind, with a few, inconstant, extremely faint, radiating impressions behind the beaks which do not essentially modify the margin or the sculpture; beaks rather anterior, full, not bulbons; a feeble impressed line proceeding fron them marks the boundary of the lumule; above and below this are two other slight flexmes not concentrated into lines, of which the lower one coincides with an extremely faint wave on the margin; interior white, polisheel ; muscular scars narrow, the pallial line simple with an extremely faint flexure just before it joins the posterior adductor scar; sear of the pedal muscle just above the anterior
adductor, small, elongate-friangular, deep; margin smooth simple. Longitude of shell 28 ; altitude 22 ; diameter $15^{\text {mim }}$.

Hab.-U. S. Fish Commission Station 2754, east of Tobago, in 850 fathoms, globigerina ooze; hottom temperature 370.9 F .

A number of loose valves of this interesting species were obtained as above stated, but no specimens containing the soft parts.

On a cursory examination this species was referred to the Tesicomya section of the genus, but from a more thorongh study it became evident that it was more nearly allied to the typical Collocurdiu. The ligal ment is delicate and thongh somewhat inset is wholly external. The anterior dental lamina in the right valse has an elevated equilateral triangular point; the upper lamina is also triangular, but has a short anterior side and a long gradual posterior slope, the edge of which is slightly undulated and grooved above, so that, while really continuons with the posterior lamina which is slightly thicker, a vertical view as in Fig. 2 gives the impression of two teeth. The anterior lamina is the largest. Close to the outer margin of the ligamentary furrow is a well marked ridge which forms the boundary of the escutcheon, but is hardly visible in a profile view of the shell.

Subgenus CALLOGONIA Dall.
Pallial line with a deep narrow sinus.
Callogonia Leeana Dall.
Plate x, Figs. 6, 7, 8, 9.
Callocardia (Callogonie) Leeana Dall, Bull. Mus. Comp. Zö̈l., xvin, p. 440, June, 18-9.
Shell narrow, elongated, slightly compressed, white, with a pale yellowish epidermis and a sculpture of fantly elevated fine concentric lines coincident with the lines of growth; umbones not prominent; anterior end rounded; posterior end moderatels, obliquely subtruncate rounded off above, slightly pointed below; there is no line circumscribing a lunular space, and the ridge, if any, bordering the ligament is so fused with the margin of the ligamentary groove that the shell may bo said to have no escutcheon; there are a few irregular extremely faint radiating lines, and a rounded ridge hardly defined extends from the beaks to the lower posterior angle. Internally the shell is smooth, white; the adductor sears larger proportionally and rounder than in C. Smithii, the pedal scar deep but relatively smaller; the pallial line is broad, with a deep angular sinus; the marein simple, smooth; in the right valve the anterior lamina is longest and is concave upward with a rounded profile; the middle lamina is strongly bent with the angle upward and is higher than the others; to it is attached the short thin posterior lamina which is the lowest of the three with a sort of socket above for the corresponding lamina of the other valse; the posterior
lamina is strengthened by a buttress from the rentral edge of the hinge; below the middle lamina is a deep pit; another pit is found above the anterior lamina : the ligamental groove is well marked. In the left valve the middle tooth is thick and bent but with no pit below it ; a deep nowh separates it from the anterior lamina; behind or above these two is a deep irregular groove; the posterior lamina is independent, straight, short, with a deep groose between it and the surface to which the ligament is attached. The altitude of a young but perfect specimen is 20 ; the length $2 s$; and the diameter 12^{mmm}. Fragments show that the species attains nearly twice this size.
hab.-U. S. Fish Commission Station 2754, east of Tobago, in 880 fathoms, globigerina ooze; bottom temperature 370.9 F .

Figures 8 and 9 show the hinge of a well grown specimen. A view from below of the hinge of the right valve, from a fragment of a still larger specimen, shown by Fig. 7, will assist in making clear the complicated mechanism of the hinge.

This species, compared with the typieal Callocardia, shows how short is the interval which in some cases separates species with a deep pallial sinus from species with none; another instance is the relation of Veneriglosse Dall (Atopodontu Cossman) with Cytherea. It is probable that neither of the Callocardiw have long siphons, though one has retractor muscles and the other none, or none to speak of. These characters are like the branchice, essentially adaptive and relatively superficial, and can no longer be regarded as of high systematic importance, except when correlated with other more fundamental features.

It is rather curions that a close inspection shows that the cardinal teeth of a young Isocterdice en. L. are more like those of Vesicomya than like those of Kelliella miliaris, with which Jeffreys confounded the young of the first mentioned species, to say nothing of helliella having not the slightest trace of a lateral tooth.

This species is named in honor of Prof. L. A. Lee, in charge of the scientific work on the Albatross.

VENERIGLOSSA Dall.

Feneriglossa (subgeuns of Cytherea) Dall, Bull. Mus. Comp. Zoöl., xır, p. 275, 1886. Atopodonta Cossman, Mem. Soc. Roy. Mal. Belg., Xxi, p. 110, 1887.

Veneriglossa vesica Dall.
Plate xiv, Figs. 8, 12.
Cytherea (Feneriglossa) vesica Dall, op. cit., p. 275, xviif, 1. 440, 1889.
Hab.-Gulf of Mexico and West Indies, in 81 to 100 fathoms. This problematical shell is figured here for comparison with the preceding species of Isocardiacea.

Suborder VENERACEA.
 Family VENERID E.
 Genus VENUS Linné.
 Subgenns CHIONE Muhlfeldt.
 Chione cancellata Linné.

This well known species, which ranges north to Cape Matteras, was collected at P'ort Constries, Santa Lucia Island, West Indies; at Station 2755 , 90 miles southeast from (apee San Roque, Brazil, in 20 fathoms, shelly hottom ; and at the Jhrolhos Iskands, ofl the coast of Brazil, near Bahia.

Chione rugosa Gmeliu.
This speecies, which is known from Matteras south to Rio Janeiro and on both coasts of Central America, Was obtaned at Station 2758.

Subgenus ANAITIS Römer.
Anaitis varicosa Sowerby (1853).
This species, which is abmotant off Hatteras and fossil in several of our tertiary strata (umber various names), was collected at Station 2755. It is very close to if not identical with Vonus alveate Courad, 1831.

Genus CYTHEREA Lamarek.
Cytherea hebræa Lamarck.
Young specimens of this species were obtained at Station 2758.
Cytherea eucymata, sp. nov.
Plate NiII, Fig. 11.
Cytherea sp. (No. 290) I all, Bull. U. S. Nat. Mus., No. 37, pp. 5f, 57, August, 1889.
Shell thin, inflated, concentrically ribbed, waxen white or pale brown, with clonds amd zigzag fluctuations of madder brown, polished; adult with about fifty rounded slightly thattened concentric waves with a short dorsal and long rentral slope, separated by narrow sharp grooves; these waves become fused in pairs or altermately obsolete and raised into more thin and elevated lamelle near the posterior dorsal margin ; radiating seulpture none, except a narow ridge bordering the ligamental furrow and the groove which ciremmscribes the lanceolate lumule; there is no escutcheon; margin elegantly rounded, a little straighter along the ligamental horder, outline ovate; beaks full, not prominent; hinge of the enens; the lateral tooth conic in the foung, compressed in the adult; margin rommed, smooth; pallial sinus not quite reaching the rertical from the beaks, rounded or subtruncate at
its immer part. Adult, maximum longitude 40, altitude 32, diameter 26 , vertical from the heaks behind the anterior eind 10 ; young, maximum longiude 14.5 , altitude 11.5 , diameter 7.5 , vertical 4.5^{mm}.

Liab.-Station 2402, between the Mississippi delta and Cedar Keys, in 111 fathoms, muddy bottom; stations 2604 and 2606 , off Cape Hatteras, North Carolina, in 25 to 34 fathoms, sand; west of Florida, in 50 fathoms (U. S. S. Bache); statiou 2640 and 2646 , off the southern part of Florida, in 56 to 85 fathoms, sand ; and station 2758,90 miles southeast from Cape San Roque, Brazil, in 20 fathoms, shelly bottom; temperatures 77° to 790.1 F .

This remarkably elegant species has about the form of Dione Kingi Gray as figured by Reeve (Conch. Icon. Dione, Pl. Ix, Fig. 36a) with somerrhat the sculpture of I. grata and D. erycine. It recalls in its coloration Tapes turgida Lamarck and T. lirate Philippi, minus their dark radiating bands. It is like none other ou the east coast of America and has been for several years recognized by me as undescribed, from the specimens in the National Collection.

Subgenus CALLISTA (Poli) Mörch.
Callista maculata Limé.
This species was collected at Station 2758.
Suborder TELLINACEA.
Family TELLINIDA.
Genus MACOMA Leach.
Subgenus CYMATOICA Dall.
Shell telliniform, without lateral teeth, with two small grooved cardinal teeth in the right valve, one in the left valve, and no laterals; with the external surface covered with wary senlpture not in harmouy with the direction of the incremental lines; with the anterior portion of the shell longest, the posterior strongly flexed, and with the pallial sinus deep but free from the anterior adductor sear in both ralves.

Cymatoica occidentalis sp. nov.

$$
\text { Plate x, Fig. } 11 .
$$

Shell small, thin, white, moderately full in front, compressed and strongly twisted to the right, behind; anterior part of the shell the longer, sloping from the beaks, gently rounded toward the base; beaks small, pointed, not inflated; posterior portion of the valves rapidly attenuated, compressed, rostrated and somewhat obliquely truncated; sculpture of small, narrow, rounded, nearly equidistant waves, not in harmony with the incremental lines and showing in different specimens slight differences of prominence and direction; in general they have a longitudinal direction, rising as they pass backward ; those near the
margin are sometimes broken up into short segments, and on the opposite valres of the same specimen there are usually pereeptible but not constant differences in the sculpture, which is fully reflected on the polished interior of the delicate valses; ligament thin, short; lumbar area long, very narrow, smoother than the rest; rostrum transrersely striated with two or three obscure radial ridges, the most anterior of which forms the bommary behind which the waved sculpture does not pass; interior polished, scars of adductors obseure; pallial sinus deep, rounded, reaching to or into the anterior third of the shell : teeth small, .short, simple in the young, groored on their outer surface in the adult, the siugle tooth in the left valve showing the grooving most strongly. Maximum longitude of shell, 12.5 ; altitude, 6 ; diameter, $3^{\text {mum. }}$

Hab.-U. S. Fish Commission Station 2823, in latitude $24^{\circ} 18^{\prime}$ N., longitude $110^{\circ} 22^{\prime}$ W., off the coast of Lower California, in $26 \frac{2}{2}$ fathoms, fine sandy mud.

This interesting little shell gapes, if at all, but slightly and only at the tip of the rostrum.

Cymatoica orientalis sp. nov.

Plate x, Fig. 12.

Shell white, thin, resembling the last species, but with the beaks more central and less pointed, the posterior end broader at the more vertical truncation and less rostrate, the valves slightly thatter and the wary sculpture distinctly angulated at an oblique line radiating from the beaks somewhat forward; there are no visible radii on the rostrum, but the wary sculpture does not pass forward of a diagonal from the beak to the lower posterior angle-of the shell; the lumuar area is wider and more deeply impressed than in C. occidentalis, and the posterior end of the shell is less strongly flexed. Maximum longitude, 9.5 ; altitude, 5.5 ; diameter, 3^{mm}.

Mab.-Samana Bay, Santo Domingo, in 16 fathoms, mud, Conthouy; also in the same depth at Cardenas, Cubat, from T. II. Aldrich, esq.

This little shell has been many years in my hands awaiting a name. When an analogous species appeared in the Fish Commission collections from the Pacific it seemed a suitable occasion to put them on record together. The wary sculpture in this species is sometimes a good deal broken up anteriorly.

Subgenus MACOMA s. s.

Macoma brevifrons Say.

Tellina brevifrons Say, Am. Conch., vir, Pl. 64, Fig. 1, 1834.
The shell, which I have identified as the true brerifions of Say, though with some hesitation, agrees well, when young, with Mr. Say's description and passably well with his figure. The latter is usually on the phate colored so that it coes not agree with the text, which was published after Mr. Say's death. The adult shell is proportionally longer

Proc. N. M. S9- 18
than the above-mentioned figure, and is characterized by a suffusion of dull rufons or orange color in the interior and toward the beaks, the tips of which, howerer, are usually paler. Stimpson, from a comparisou with Say's specimens, named the specimens found by him in Charleston Harbor T. brevifrons, and I have followed him.

The shell is rare in South Carolina, extends to Florida and Tezas, is reported from the West Indies in several localities, and has been erroneously identified with T. candeana Orbigny.

Its southward range is now extended by the U. S. Fish Commission to Station 2764 , in 11! fathoms, off the Rio de la Plata, in south latitude $36^{\circ} 42^{\prime}$ aud 'west lougitude $56^{\circ} 23^{\prime}$, on a saudy bottom.

Family SEMELIDA.

> Genus ABRA Leach.
> Abra longicallus Scacchi.

This well-knorn abyssal shell was collected at Station 2751, south of St. Kitts, in $6: 37$ fathoms, ooze: Station 2754 , east from Tobago, in 880 fathoms, ooze; and Station 2760, 90 mites north from Ceara, Brazil, in 1,019 fathoms ; temperatures 370.9 to 390.9 F .

Geuus ERVILIA Turton.

Ervilia concentrica Gonld.
This species was collected at Station 2758,90 miles southeast from Cape San Roṇue, Brazil, in 20 fathoms, shelly bottom.

Genus SEMELE Schumacher.

Semele reticulata Gmelin.
This species was collected at Station 2758; at Stations 2765 and 2766 , off the Rio de la Plata, in $10!2$ fathoms, sand ; and at the Abrolhos Islands, off the Brazilian coast, near Porto Allegre. It ranges northward to Virginia and the Bermudas.

Semele cancellata Orbigny:

This rery characteristic species was enllected at Station 2758, which greatly eularges its known sonthward range. Its northern limit as far as known is the vicinity of Cape Hatteras, North Carolina.

Semele nuculoides Conrad.

$$
\text { Plate xiv, Fig. } 5 .
$$

Semele nuculoides Dall, Bull. U. S. Nat. Mus., No. 37, p. 62 ; No. 371, August, 1889.
? Amphidesma muculvides Conrad, Am. Jomrı. Sri., xli, p. 347 ; Miocene Foss., p. 73, Pl. 41, Fig. 6.
Hab.-Stations 2597, 2602, 2607, 2608, 2610, 2611, 2612, 2615, $2617,2619,262$, and somth to the West lndies, in 2 to 124 fathoms, ex. tending north to Cape Hatteras.

This curions little shell is probably the same as Comad's Miocene fossil ; at all events it is fossil in the Miocene. I havereceived it under the name of Montacuta lirulatu Carpenter, from the West Indies. It is yellowish, sometimes radiated with red, closely concentrically waved and quite compressed. It differs from most species of Semele in its small size and erect beaks, but in nothing else so far as the shell is concerned. Semele cancelluta, both in size aml attitude of the umbones, forms a transition from this little member of the group to the ordinary type.

Order ANOMALODESMACEA.
 Suborder ANATINACEA.

Family ANATINIDE.
Genus ASTHENOTHARUS Carpenter.

Sulgenus BUSHIA Dall.

Bushia (elegans var?) Panamensis Dall.
Shell resembling B. elegans in all respects except that the single valse collected is proportionately higher, the umbo more central, the anterior end more evenls rombled and the posterior end shorter and more vertically trumeate. Maximum longitude of (right) valve 14 ; altitude 11.3; (semi) diameter 4 ; rertical of beaks behind anterior end, $8^{\text {mum }}$.

Hab.-Statiou 2805, in 51 fathoms, mud, in Panama Bay.
It is vers interesting to fimd Bushia on the west coast as Asthenotherus was found in Florida, each having first been described from the opposite shore of the continent.

Genus THRACIA Blainville.

Thracia distorta Montagl:

 Marin3 Mollusks, U. S. Nat. Mus. Bull., 37, 1. 64, No. 383, 1889.
This species has already been reported from Honduras as well as European seas, and was collected by the Allublows at Station 276. , in $11 \frac{1}{2}$ fathoms, sand, off the Rio de la Plata.

Thracia Stimpsoni Dall.

Plate NHI, Fig. 2.

Thracia Stimpsoni Dall, Bull. Mus. Comp. Zö̈l., XII, p. 307, 1886.
This fine spectes was collected hy the Alhatross in 25 fathoms in the Gulf of Mexico, on the line between Tampa and the Dry Tortugas, at U. S. Fish Commission Station No. 2410. Its nearest relatire is T. convexa Wood, from which it differs in proportions and senlpture. With the exception of the northern T. 'omrudi, it is the largest American species.

Family LYONSIIDA.?

Genus LYONSIELLA Sars.
Lyonsiella radiata Dall.

$$
\text { Plate viil, Fig. } 7 .
$$

Lyonsiella radiata Dall, Bull. Mus. Comp. Zoül., xviri, p, 442, June, 1889.
Shell large, thin, pearly, recalling L. gemmu Verrill (= insculpta Jeffr.t coostate Seguenza), but very much larger, higher, less rounded anteriorly, less pointed behind, aud more prodnced and rounded rentrally; hinge simple, undulated, with a rather large, arched ossicle; exterior Whitish, with a thin olivaceous epidermis raised over five ribs into rather high distant radiating ridges, to which mud adheres tenacionsly; incremental lines distinct, silky, sometimes prominent; lunule in the right valve impressed, produced laterally, not marginated; interior pearly, with faint radiating sulci, corresponding to the exterual ridges; maximum altitude of shell, 13; longitude, 11; diameter, $8.5^{1 m m}$.

Hab.-In Magellan Straits, at U. S. Fish Commission Station 2780, in 369 fathoms, mud; amd at Station 2785 , off the west coast of Patagonia, south latitude 1809^{\prime}, in 449 fathoms, mud; temperatures $46^{\circ} .9 \mathrm{~F}$. in both cases.

There are a large number of acephalous mollusks, not necessarily nearly relatel, in which a true brancbial septum exists. In a young Pernu, supposed to be P. cphippium L., the inner edges of the ctenidia are united to each other their whole length behind the foot. The outer edges are attached to the mantle, or viscesal epiderm, so as to form a complete chamber, like that of Cuspideria, but of which the derivation is radically difterent. In Morliolure trotesinu Lam., from Cape Horn, the ctenidia, from below the anal siphonal orifice to and around the foot, are united as in Pornc. The chamber thus constituted is crammed with the young fry at the proper season. In Lyonsia beana Orb. the united ctenidia are attached abore the rndimentary siphonal septum, extend formard to and around the foot. They are attached to each other and to the mantle, or to the rentral surface of the visceral mass, by their edges and form a most complete chamber, a true ctenidial septum. There are, howerer, no orifices in this or in any of the species with a strictly ctenidial sentum corresponding to the septal perforations in Poromya or Ouspidaria.

In Lyonsia rudiuta we have a similar state of aftairs, except that the anterion inner erlges of the gill are not so closely united around the foot. The part played by the siphonal septum in this species is insignificant; it is in fact hamdly perceptible. The infolding of the mantle edge around the siphon is very wide; its outer edge is nearly plain. Within this edge a short distance is an elevated ridge, with a single row of small, rounded, ocellus-like tubercles on each side of it. A wide space sep-
arates this range of processes fom the margin of the branchat or ifice, which is profusely papillose with arborescent papillar. A lumate depression lies between this and the much smaller, plan-edged, nearly linear anal oritice, while in front of it the pedal opening forms a minute narrow slit, with granulated margin. In this form the palps are represented by a slightly mised edge anomd the mouth, not produced or elongated at the sides. A languette or chatain vaire hangs behind the branchial orifice below the narrow septum.

The balance of characters will perhaps carry Mytilimeria and Iyonsiella to the Anatinide, or a family by themselves, rather than to the Terticordiide, where I first placed them. But they are transitional in their relations, and in spite of the relations between the form of the gills in Lyonsielle and Lyonsia, I am still inclined to think the former almost equally close to Verticordia. A supposed discrepancy, noted byy Pelsencer, arises from the fact that, instead of comparing Ly/fnsiella with a genuine Terticordiu, like ucuticostutu, as I did, he compares it with a species of Poromya, which is, of course, a rery different thing.

Family VERTICORDIID A.

Genus VERTICORDIA Wood.
Ferticordia (Wood) Dall, Mus. Comp. Zö̈l. Bull., vol. Xir, p. 285, 1886.
Verticordia acuticostata Philippi.
F. acuticostata Dall, op. cit., pp. 285, 288.

Hab.-Cuba, Barbados, and Gulf of Mexico, Blatie expedition; Mediterranean, Philippi; North Atlantic, Jeffreys; Japan, A. Adams, U. S. Fish Commission Stations 2659, off Cape Canareral, in j09 fathoms, bottom temperature 4.50 .2 ; and 2750 , of ${ }^{\circ}$ St. Bartholomew, West Indies, in 496 fathoms, sand, temperature $44^{\circ} .4$.

This species grows to a considerable size, the two Fish Commission stations affording valves 19 and 20.5^{m} in height respectively.

Soft ports.-Another specimen, and a re-examination of the one reported on in 1886, confirm the description then given. There are no palpi, the anterior pair are wholly umepresented, the posterior or lower pair may be represented by two small romded hardly elevated tubercles between the mouth and the anterior ents of the gills. The foot is relatively extremely large, romm, and stopper-like. The gills in the secoud specimen are clearly adnate, as in Pelseneer's figure of Iyonsiclle papyrace Smith (Chall. Rep, Anat. Moll., Il.1n. Fig. 1), except that they are underlaid by the solid fleshy siphotial septom, and do not serve to supplement that septum as they are alleged to do in Lyonsiclla chysssicola. They are propertionately rery much smaller, hardly reaching behind the middle of the foot. I suspect that the free end of the gill in my first specimen was separated by a lesion, and is not normal, but that the gill is always aduate in the adult condition.

The septum is thick and theshy，quite destitute of perforations or orifices except that in which the foot stands．

Verticordia（Trigonulina）ornata Orbigny．
This species，aheady known from widely separated regions，was col－ lected 90 miles southeast of Cape San Roque，in 20 fathoms，at U．S．Fish Commission Station 2755.

Verticordia perplicata sp．nov．
Plate VIII，Fig． 1.
Shell large，strongly plicated radially，with the hinge of Terticordia （restricted）and a coarsely gramulous finely wrinkled external surface of a dark bown color；anterior surface with two or three strong and several smaller ohseme radiating ribs which undulate the margin；be－ hind these is the strongest hroad rib with a rounded top followed by a wide sulcus，then by two somewhat smaller and one still narrower rib with increasingly narrower interspaces；then a wider，stronger，and shorter rib，a deeper sulcus，and lastly liy the rombded posterior area； with these principal radii are traces of much finer ones，differing in dif－ ferent individuals，while the eight primary radii seem pretty constant in position and relative size ；lunule very small and deeply impressed； behind it in the right ralue is a single strong conical or slightly exea－ rated tooth，convex below and short；immediately in frout of the beaks the hinge line is narrow with a narrow groore for the cartilage and a short，wide，subtriangular ligamentary basis；beaks small，incurved； underneath and a little in front of the cardinal tooth is a small，deep， museular sear；anterior adductor sear large，not deep；posterior ditto even less impressed；margins of the ralves thin，undulated by the seulpture，not cremulated ：interior pearly white，grooved in harmony with the external seulpture；maximum longitude of shell， 33 ；max－ imum altitude， 35 ；diameter，（about） 28^{mm} ．

Hab．－I．S．Fish Commission Station ご依，in s12 fathoms，mud，near the Galanagos Islands；bottom temperature $38^{\circ} .4 \mathrm{~F}$ ．

Two nearly complete right values，fragments of several others，and fragments of two left ralves were collected as above stated．When perfect this must be one of the finest species of the genus．The surface is ery finely，irregulaly wrimkled，with an abondant supply of rather minute pustules，rounded in the specimens but perhaps more pointed in the perfect shell．A more minute description of the linge must await material in better condition ；the data now given are quite sufficient to identify the species．

Family CUSPIDARIDDA．
 Genus CUSPIDARIA Nardo．

Cuspidaria Nardo，Revue zoöl．，1．30，Jan．， 1840.
Neera Gras（1834），not of Robineau Desvoidy（1830）．
Cuspidaria Dall，I3ull．Mus．Comp．Zoül．，xir，p．299，Sept．，1886．
Cuspidaria patagonica Smith．

HAB．—U．S．Fish Commission Station ご．うl，in（isi fittaoms，ooze，off St．Kitts，West Jndies，temprerature 40 F．Station ごす！こ．oft Manta， Ecuador，in 401 fathoms，mud，temperature 43° ，etc．

A fine specimen of this species，measuring $44^{m m}$ in length and I 4^{mm} in transverse diameter，was dredged off Manta；othrr sferimens were found in dredgings from the whole eastern coast of Somth America，the western coast of that continent，and northward as far as Lower Califor－ nia．The larger specimen afforded the following notes．

The siphonal septnon，by which name I shall refer to the dividing septum of the peripedal chamber，extends forwatrl from the proximal end of the siphons to the anterion adductor．It is divisible into three areas，a longitudinal central muscular area occupying ahont two－thinds of the whole septum，and on each side a less muscular，thin，and tense， membranous strip，which is connected with the inside of the valres＇und leaves the imprint on the shell which would ordinatily he taken for the outline of the＂6allial simus．＂The central muscular ateat is attached by a bundle of muscular fibers above each adductor on eatell side of the median line．All four points of attachment leave well－marked scacs on the shell．I have shown elsewhere that these museles，if not homolo－ gous with，at least perform the functions of the siphomal retractors of ordinary Pelecypods，and in forms like I^{\prime} orom！m mociroints，where the usual retractors are present，the siphonal septum is destitute of museu－ larity，or possesses it only to an inferior regree．＇The posterior septal muscles are smaller and rounder in section，more rertical in direction， and more widely separated from each other than the anterion bair．The latter are narrow and elonsated on their surface of insertion，and but for the separation of the valves would nearly tonch in the median line． The principal body of fibers on the plane of the septum is longitudi－ inally arranged ；another series crosses the septum in an archerl man－ ner toward its extremities，especially behind，while there are zndi－ cations of still smaller series of more or less ratliating fibers linitting the whole fabric together and to the shell．

The siphonal septum in this species divides the cavity of the shell unequally，the upper portion beino smaller than the lower．In the mp． per，sustained especially by a median fibrous mesenteric band，is sus－ pended the risceral satc．Viewed from above，it is sulncordate in pro－ file；from the side it seems acutely ovoid．It oecmpies，as contracted by alcohol，about haif the cavity abore the septum．The valre of the
amal siphon is represented above the septum by a thin rertical wall of membrane pierced by a relatisely small simple central orifice. The valse of the branchial siphou below the septum is composed of three rather thickish processes, one hanging vertically is short, wide, and represents the languette in Cardium; the lateral processes are somewhat longer and obliquely set, the whole forming a large subtriangular opening with three partially overlapping curtains. Passing backward on the rentral surface of the septum, aside from the streakiness due to the fibrous coarse muscular tissue, there is a distinct narrow median depression behind the foot, except just behind the edge of the foot, where the surface in all the forms with a muscular septum is elevated like a wave rising abont a solitary rock. The foot is slender, elongated, slightly geniculate, with a small byssai groove behiud. Immediately in front of it the surface is depressed about the small and inconspicaous month. Iiere the anterior palps are aimost wanting, but the posterior, though abmormally small, are elevated above the surface and strongly transversely striate. In front of the papps is a strong ridge of tissue, behind the anterior commissure of the lobes of the mantle. Here a narrow horny or chitinous gusset strengthens the commissure, above which is a sort of pocket or shallow indentation, above which the external margin of the mantle finally joins. The gusset is narrow, concave in the middle, with its euds spatuliform and shows brown through the white tissues, like the jaw of a Gastropod.

If the surface of the septum near the foot be closely scrutinized there will be seen on each side four slight prominences. The anterior pair are on each side of the month, the second and third pairs by the sides of the foot, the fourth behind the foot, all situated in the thickest part of the musenlar portion of the septum. The posterior pair have two lips, the others three to each prominence, and on gentle pressure with a fine probe it will be found that a small circular orifice passes somewhat obliquely through the septum and commonicates with the upper chamber.
These passages are not always complete, howerer; for by means of careful sectionizing I found the third pair imperforate in a fairly grown specimen of C. rostrata, while in sereral young specimens the two posterior pairs seemed imperforate. In a specimen of C.arctica var. glacialis I found five orifices on each side, showing that the number is not inrariable.

The lips to these orifices are not prominent, much less so, indeed, than in Cetoconchu or Poromya. The oflice of a gill must, therefore, as suggested in 1886, by me in the first part of ms Blakie report (p. 303), be performed by the surface of the septum or by the lobes of the mantle. This is a very different view from Dr. Pelseneer's idea that the septum is itself homologous with the ordinary gills of Pelecyporls.

By cutting the lobes of the mantle away, and carefully turning back the septum as a whole, extracting the foot from its socket, we see the
simple obligue upper embs withereptal wifiees. What eath their office be? I suppose that they serve to arlmit liesh water to the upper chamber, which I believe to be utilized in some, if not all, instances as a marsupium. It is pobahle that by suitable museular contractions, the septum will operate somewhat like the washer of a plump valre, and that the upper chamber can be filled or emptied of its contained water at will.

I believe the sentum in Cuspidariato lo homolowons with the ordimary siphonal septum, only more polonged ; and that its muscular tissue is the equivalent of the siphomal retactors of ordinary Pelecypods. I do not regard it as in any manner homologons with the normal ctenidia.

Cuspidaria (?) monosteira sp, nov.

Plate viII, Fig. 5.

Shell small, inflated, stont and strong, with a single strong vertical keel and much fanter concentric sculpture: color white, with a very thin, pale epidermis: umbones nearly central, anterior end evenly romnded from the beak to the basal end of the keel; posterior end rostrate, the rostrum short, wide, abruptly truncate; concentric sculp. ture of rather strong incremental lines, which at tirst are varied by regularly spaced, rather sharp, distaut, elevated lines; later these become obscured in the stronger, more crowderd, and rather irregular incremental lines; a faint ridge extends fiom the beak to the lower angle of the rostrum, the only other radial seulpture is the exaggerated, high, flat topped, vertical keel; this projects from the rommed base and interrupts its curve; interior smooth, scars hardly pereeptible; in the left valse the hinge-line is arched or rather angulated in the middle; there is a strong posterior lateral tonth, no anterior lateral or any cardinal teeth; the fossette is small, posteriomly inclined, and contimous with the margin of the hinge ; maximum longitude of shell 5 ; altitude 4.25 ; diameter 5^{mm}.

Hab.-U. S. Fish Commission Station 2760, ! 10 miles north fiom Ceara, Brazil, in south latitule 1207^{\prime}. West longitude 37516^{\prime}, in 1019 fathoms, bottom temperature $39^{\circ} .4^{\prime} \mathrm{F}$.

Only a left valve of this remarkahle and rery chamaterististic little shell was obtained. As the left valve is the uncharacteristic one as regards the hinge, it is not practicable to say to which section of the genus this species should be assigned, hut its characters agree with those of the left valve of Necera pulchella H. Adams.

Cuspidaria (Cardiomya) striata Jeffreys.

This species which ranges northward to the Aretic seas and whose sonthermmost known range was Florida Strait, wats collected cast from Rio Janeiro, at Station 27fis, in $5!$ fathoms, muddy bottom. This gives an immense extension of its southward range.

Subgenus LUZONIA Dall \& Smith.
Both valyes without lateral teeth, right valve with an anterior cardinal tootb, left valce edentulous; exterior concentrically striate; fossette narrow, parallel with the cardinal margin under the apex. Trpe Newrd philippinensis Hinds, from Luzon and Mindanao, Philippine Islands.

This is Section II of Smith's arrangement of 1885, in the Report on the Challenger Lamellibrauchs, p. 37.

Cuspidaria (Luzonia) chilensis sp. nov.

Plate xiif, Fig. 13.
Shell white, thin, polished, under a rusty brown, dull, caducous epidermis; beaks not prominent, nearly central; anterior hinge-margin thin, sloping evenly and then evenly rounded to the arcuate base; posterior hinge-margin declining somewhat less, nearly straight, at the end of the rostrum evenly rounded over, the end of the rostrum being rouuded, not truncate. On the rostrum is an obscure ridge extending to the umbo; in front of this ridge is a wide shallow sulcus by which the basal margin at the begioning of the rostrum is rendered a little concave; there is a faint ridge or thread close to the posterior hinge margin in the left valve, but none in the right; sculpture of fine silky concentric lines, bat no radii ; interior polished, with a few fine radiating strie; pallial line simple, not sinuated, vertically truncate at the begimming of the rostrum; hinge margin thin, edentulous except for a small triangular lamina in the right valve in front of the fossette; fossette narrow, directed backward, parallel with the hinge margin; ligament thin, stout, brown, re-enforced below with a narrow elongate-triangular ossiculum; maximum longitude, 11; altitude, 8 ; diameter, 6.6 ; vertical of beaks behind the anterior end, 6^{mm}.

HAB.-Station 2791, off the southwest coast of Chili, in 677 fathoms, mud; temperature 370.9 F .

This species has the mantle margin simple, the siphons extremely short, retracted by the septal muscles; the ova project into the anal chamber from the surface of the visceral mass in rounded lobules, much as in Myonerd; a number of the dehiscent ora were retained in the anal chamber. There were four septal orifices on each side; their apertures simple, oval aud oblique; the septum was rather muscular, but not solidly so as in Cuspidaria; its surface was heaped up in sundry wave-like prominences behind and on each side of the foot. The palpi were extremely small, the lower ones nearly absent; the foot was short, stout, and subconical; the anal chamber quite small.

Genus MYONERA Dall.
Myonera paucistriata Dall
Plate xiir, Fig 12.
Myoncra paucistriata Dall, Bull. Mus. Comp. Zoöl., xir, p. 302, 1886.
Neera paucistriata Dall, Bush, Trans. Conn. Acad., vir, p. 473, 1885.
Hab.-Florida Keys and Windward Istands, in $3: 39$ to 464 fathoms, bottom temperature $41^{\circ} .5$ to $45^{\circ} \mathrm{F}$. U. S. Fish Commission Stations 2644, 2678, 2751 , and $275 t$, ranging from ('ape Fear, North Carolina, to Tobago, in 193 to 880 fathoms, temperatures $27{ }^{-9} .9$ to 43 ค. 4 F.

To the description already published of the soft parts of this extremely fragile and delicate form several points can be added from the examination of the fresh specimen. The only correction to the original description relates to the opening of the anal siphon, which is aminute cirenlar orifice in a delicate membranons area which in life probably projects in a dome-like manner, but in alcohol appear's tense and flat. The opening is into the upper portion of the peripedal chamber, of course, as in the other species. That which I took for the anal opening in the first specimen examined was an accidental lesion, while the true anal opening from its minuteness was overlooked.

The month, as stated in 1886, is a simple opening withont palpi. The latter are represented, if at all, by a delicate slightly elerated ring of tissue which surrounds the circular month. The absence of gill laminie is fully confirmed. The septal orifices on the rentral surface are hardly observable without the closest scrutiny, though easily visible on the dorsal surface of the septum. There are eight, as in the Cuspidaria patugonica, and their lips slightly elevated, usually appear triple, so as to give a triangular aspect to their junction. When sounded by a delicate probe they appear subtubular.

The muscular tissue of the septum is concentrated in two bunches of coarse fiber-bundles, which radiate from the posterior outer corners of the septum, suggesting that the fibers, usually deroted to retracting in a nearly rertical plane the siphons toward their angular insertion (pallial sinus) on the shell, are here spread in a horizontal plane. Beside the fasciole of fibers at the corners, there is a loosely arranged central bundle behind the foot, while the rest of the septum is more thin and fibrons, and the vertical roots of the septal museles far less strong and prominent in proportion than in Cuspiddria. 'The arrangement of the fibers of the muscular tissue is singularly loose, and in the central area irregular; quite different from the solid tissue of the septum in Verticordia, or the compact bands observable in Cuspiduriu.

The most noticeable feature in this specimen was the condition of the ovaries. These ramified over the posterior part of the visceral mass, terminating in bifurcated or trifurcated sacs, largest at their distal extremity, and somewhat fig shaped. These were crammed with ova and projected from the surface of the visceral mass into the upper chamber
above the septum. All were turgid; some had already burst and partly discharged their contents into the chamber; otherss seemed on the point of doing so; the alcohol hat coagulated the escuping ora in sitn, in the most perfect mamer, the whole process thens being displayed. It is probable, as suggested by me in 18ss, that the chamber serves to some extent as a marsupium or shelter for the ova and young, and that they are not discharged into the suromang element at once. This is undoubtedly the case in Modiolarca.

Family POROMYID A Dall.

Poromyide Dall, Bull. Mus. Comp. Zö̈l, xir, p. 230, 1836; xvili, p. 452, June, 1889.
The characters of this family are peculiar ant exhibit an extreme specialization in the matter of the siphonal septum and the development of new breathing orgaus upon it, while the normal ctenidia have become obsolete. As the matter has been discussed with, as I believe, erroneous conclusions and assumptions by 1)r. Panl Pelsencer in his account of the A natomy of Mollusks in the series of reports on the scientific results of the Challenger expedition, it seems well to include here the data an 1 conclusions to which a study of the Fish Commission and other material has conducted the writer. This has already been stated elserhere, in the appendix to my Report on the Blake Mollusea, Part in, but as that publication is likely to be somewhat restricted in its audience, compared with the U. S. Fish Commissioner's reports, it is hardly necessary to apologize for introlucing the same matter here; especially as it is based directly on the Albutross collection. Part of the data will be found under the heads of the several species, the rest is here assembled for reference.

In 1886 I separateal from Poromya the forms which, when adult, have the hinge teeth obsolete, under the name of Cetoconchu. This group included not merely those with a double posterior row of moditied septal orifices on each sid', such as ('. bulla, the type, and C. margarita, but also certain species of Poromya, in which the hinge teeth are feeble or obsolete in the adult, while in the typical Poromyu they continue strong. I called attention to the fact that the soft parts of these species did not differ essentially from Poromya, but hardly felt justified in separating them from the typical Cetoconchu. It is probable that it would be better for them to form a section of Poromye which may be called Cetomya; while the typical Cetoroncho may perhaps be generically separated from Poromy. The group in question was named Silenia by Mr. E. A. Smith, in his report on the Challenyer Lamellibranchs, but that name had already been used in zoölogical nomenclature, and so was preoceupied. The observations of Pelseneer on the anatomy of silenia leave no room for doubt that it is identical with Cetoconche, as represented by its type and by C. murgurita. Now that wider research has shown more clearly the characters of Poromya and Cetoconche, the attempt of 1.586 to diagnose both forms in a single detiuition seems confused, but
with this explanation it should be clear enough that the facts were observed and recorded in members of each group, and that the apparent confusion in the diagnosis resulted from a feeling of conservatism in the matter of subdividing genera; a proceeding which has, of late years, on some occasions been so shamefully abused.

The researches of the U. S. Fish Commission have added some most interesting and peculiar species of this family, which are more fully described in anotiner part of this report. The forms not so described have been grouped together here.

Cetoconcha bulla was described rather fully by me in 1ssif, and that description merely requires the addition of the statement that the lamelle described are subtubular and form the lips to the septal orifices. In using the term "rentral surface" at that time for the under side of the septum and "body cavity" the reader will not be misled into the supposition that the risceral mass was the "body" intended; for, though the words may have been ill chosen, the relations of the visceral mass were clearly stated, although the very important relation of the upper chamber to the anal siphon was not molerstood at the time.

There is in this species a distinct bunching of the muscular fibers at the posterior outer corners of the septum, from which points they extend in a somewhat radiating manner. The soft parts, though more rotund and with a different number of septal orifices, resemble sufticiently those of Cetocomche Sursii Smith, as digrammatized by Pelseneer. For each orifice two lamella are usually counted in the report of 1886 , as the lips of the septal orifices generally appear paired and arched, forming a segment of a circle. In C.bulla, in the anterior series, there are five orifices on each side; the inner posterior series have three to five and the outer posterior series two, or possibly three, orifices each. The number of posterior orifices is not the same in the two specimens of C. bulla examined.

In none of the specimens of Cofoconcha examined by me were the inner ends of the four posterior series so widely separated as in Pelseneer's Fig. 9 of Silenia Norsi. They always seemed closer together, and more evidently radiating from a central elevation on the septum behind the foot. But too much stress must not be laid on the diserepancies of his diagrams, which are not and do not appear to be intended for exact and complete portraits. In this species a trace of the lateral arrangement of the siphonal muscles remains, while compared with Cuspidaria the septal muscles are still in a trausitional state.

Cetomya elongate Dall. In the single specimen of this form the branchial areas are composed of lamellae, between which at their bases are narrow fissures, bridged longitudinally by slemder fibers, which act as regulators. In this speceses the two areas are similar, and resemble those of Cetomya tornata Jeffreys, as figured by Pelseneer.

Cetomya albida Dall. In young specimens of this and other species
the membranes of the septum, etc., are extremely delicate. The use of too concentrating hardening agents or the incautions tonch of a probe © will produce lesions which may be indistinguishable from normal fissures. To make sure that nothing of this sort shall happen, it is necessary to float the soft parts in a cup of water and turn them about with delicate forceps. This is not convenient in all respects for observation, but with time and patience the characters may be made out.
loung specimens of this species show the lamellar areas as usual, with the depressions abore them, in the floor of the upper chamber, but the fissures are not open; a fact which leads me to believe that they appear ouly with maturity. A rery delicate membrane seems to hold the distal margins of the lamellie together, so that a delicate probe passes over without separating them.

General considerations on the nature of the septum in Poromyide and Cuspidaridde.-The facts above and others elsewhere stated indicate that the septum in these grouns is esseutially a prolougation forward and a specialization of the ordinary siphonal septum. The septum, as pointed out in Curdinm, may be so prolonged, while the normal gills are fuliy developed and unconnected with it. In Verticordia it may be so prolonged, and may have acquired a conspicuonsly fleshy testure without fissures, while the gills lie prone upon it, more or less aduate. The museular apparatus by which the siphons are retracted, and whose normal points of origin are at the side of the ordinary septum, appear to be shifted to its surface. Different species show this process in different stages of completion; and in the only case among the Poromyas, where the fibers follow the normal direction in other Pelecypods, the septum is destitute of the muscular structure which is so prominent in the other Poromyas. In the specialization of the septum the masculation develops from behind. When branchial lamine are situated upon the septum, and are not simply the ordinary etenidia in an aduate condition, the addition of a second series is made at the posterior end, and all the branchial areas appear to receive their blood supply from behind.

There is not a particle of evidence to prove that the septal branchial lamellee of Poromya and Cetoconchat are homologons with the etenidia of Verticordia, Lyonsiella, l'erna or C'ardium. The fact that C'uspidaria has neither etenidia nor any speciatized laminer on the septum lends probability to the assmmption that the two series represent a parallel among these Pelecepols to the ctenidia and the peripedal lamine in Acmece, securvic, and Petelle, among the Iocoglosse. That is, that the septal laminte are a new and spectial development, which functionally replace, but are not homologons with, the original ctenidia. If this riew is doubted, the burden of proof lies upon those who call it in question.

It may be askel whether any hypothesis can be suggested by which this peeuliar specialization may be accomed for. The law of economy
in development, which calls for the maximum of function with the minimum expenditure of tissue, and the other rule, which associates with greatest vigor of life the most suceessful oxygenation of the hood, together with the obvious benefits to bederived from temporary protection of the newly hatched larvie, will enable us to suggest an answer.

The prolongation forward of the siphonal septum, especially in forms with short siphons, like Poromya and Iyonsiellu, will evidently promote successful acration of the blood by cutting off from the branchial chamber the water of the anal chamber, fouled more or less by the effete products discharged into it. A certain amomit of fibrons tissme must be developed to form this septum. It is clear that an economy of tissue would result from the transfer of retractorial functions to the septum and the obsolescence of the lateral retractile museulature. A further economy would result from the utilization of this large sheet of tissue for branchial purposes, and a diminution of the tisiste previonsly expended in the mass of the ctenidia. The habit of the larvar, so common amoug Pelecspors, of nestling for safety in the branchial folds, would lead directly to the utilization of the chamber as a refuge. But a close chamber such as we see in Terticorlia would, from the less pure character of its contained sea-water, be less favorable than one into which the water could be more freely admitted by any means which would not imply an admixture of the foul water with that of the branchial chamber below. A system of orifices like those of . Myonere would accomplish this. A subsequent development of the muscular tissue of the septum, so that it could operate somewhat after the fashion of a pump and voluntarily frequently renew the water in the anal chamber, would obrionsly be beneficial. By the effect of stimulation the margins of the orifices thas sulyjected to repeated strong currents of fresh water would be likely to undergo a specialization of respiratory funetions as compared with the rest of the surface of the septum, which would result in something like the tubular gills of Cetoconche, or the lamellæ of Poromya.

The gradual diminution of the ctenidia and increase of the area of the siphonal septum is illustrated by such a series as: Iyonsiu, Lymonsiella, aud Verticordia, all of which possess true ctenidia.

The gradual specialization for branchial purposen of the septum after the extirpation of the ctenidia would be illustrated by the series from Myonera and Cuspidaria to Cetoconcha and Poromya.

While the above chain of hypothesis harmonizes with the observed facts in a satisfactory mamer, it is stated merely as a possible hypothetical explanation, and not as a theory to which the writer must stand permanently committed.

General summary.-Premising that in this article the word ctenidium is employed to desiguate the normal typical gill of Pelecypors, in any of its modifications, as opposed to temporary or local branchial organs of different origin, the facts just reviewed may be briefly summarized.
(1) In many grouns of Pelecypods the ctenidia are more or less united behind the foot, so as to divide the peripedal chamber into an upper or anal and a lower or branchial portion. In these cases (Permu, Modiolarea, for example) there is no important modification of the structure of the gills, and the septum is truly branchial in character, and the siphonal septum takes no part in the formation of the partition.
(2) In other forms, the siphonal septum is extended formard to form a partition either (A) ummodified (C'ardium), (B) thickened without orifices (Vertienrdia), (C) assuming a retractile function (C'uspidaria) with orifices, (D) only partially retractile (Dermatomynt) with single lateral series of orifices, or (E) with an incomplete donble lateral series of orifices (Cetoconchict). In these cases the breathing organs may be (A) ummodified ctenidia, (B) depauperated adnate ctenidia, (C) the general surface of the septum withont etenidia or specialized lamellae, (D) with only specialized flat lamelle, or (E) with spectialized sabtubular mornliferations. In these cases the structure of the septum appears to be wholly independent of the ctenidia, though in Verticordia they are adnate upon its surface.
(3) There is one form (Lyonsiella abyssionla) in which the siphonal septum and the ctenidia are stated to be mutually attached, so that the septum may he said to be of a compound formation, though in another species of the same gemus (l. rultutu) the septum is of the kind deseribed in paragraph 1. The first statement stands in need of confirmation.
(4) The orifices in the septum of I'oromyu seem to be closed, or partly closed, in youth, and open with the attaimment of sexual maturity.
(5) The anal chamber, as indicated in 1856 , seems to till the office of a marsupium.
(6) The tissues of the septum may therefore be derived from structures diverse in their origin, in some cases ctenidial and anterior, in others siphonal and posterior.
(7) Finally, from these facts it is evident that Dr. Pelseneer's as sumption, that the septum is essentially ctenidial in its origin, is unwarranted, and his gromp Septibranchia, as detined by him, is founded on an error of observatiou. While as a group-name it may be used to indicate features of strincture whose origin he misunderstond, yet, from the purely adaptive nature of these features and their variations in forms otherwise closely related, the name has no claims for adoption either in a strictly genealogical or an eclectic system of classification. It may be added, that the "proof" that Poromya and Silenim ($=$ Ceto. conchat are more nearly related to each other than to Cuspidaria, which Dr. Pelseneer claims to be his work (op. cit., 1. 25), had been published by me more than two years previons to the appearance of his paper, and exemplified in the clasisfication I then proposed: a classification which nothing since published has pretembed in any way essentially to
modify. This classification, angmented by the new discoveries of the past three years, may be expressed in brief as follows:

Family Cuspidariide: abranchiate, siphoseptate, soptum foraminate.
Genus Cuspidaria (etc.) with long siphous; oral palpi obsolete. Genus Myonera, short siphons; oral palpi absent.
Family Poromyida: septibranchiate, siphoseptate.
Genus Poromya: teeth strong; oral palpi large; foramina of septum slit-like, between the close-set lamelle arranged in two interrupted longitudinal series; pallial sinus obsolete ; surface of shell granular.
Subgenus Dermatomya: shell not granular; pallial siuus developed; hinge strong.
Sulgenus Cetomya: shell granulous; pallial sinus obsolete ; hinge teeth obsolete in the adult.
Genus Cetoconcha: hinge teeth. obsolete in the adult; pallial sinus obsolete; siphoseptum foraminate, the foramina arranged in four longitudinal series, solitary, the subtubular lips filling the office of gills.
Family Verticordider: siphoseptate with small adnate ctenidia: oral palpi almost obsolete; septum imperforate.
Lyonsia and probably L!yonsiella may be called branchioseptate, and should be referred elsewhere.

Geuns POROIVIYA Forbes.
Poromya cymata sp. nov.
Plate viil, Fig. 4.
Shell small, orate, inequivalve, the right valve most inflated and larger; hinge of the normal Poromya like P. gramuluta; umbo in the right valve high, inflated, prominent; anterior end rounded; posterior end with a narrow, sharp keel ratiating from the umbo between two shallow, wide, gently excarated furows which undalate the margin; surface covered with rather sparsely set gramules, coarser toward the margin, finer on the umbo and posterior Waves and disposed in radiating lines; left valve (as in Corbulu) proportionately longer and less high and with deeper excavations where the furows come to the margin; the furrows are also wider and extend further forward on the valve. which is less inflated than the right valre; the gramulations, too, seem more close set and a little more irregular; there is no lumule or escutcheon; the epidermis is pale yellowish, muler which the surface seems iridescent; the interior is brilliantly pearly; the muscular scars are faint, the pallial line simple, with some flexusity near the posterior scar, but too irregular to be termed a sinns; the whole interior shows indications of rarliating striar which appear as marked grooves or crenugations on the hasal marsin of the valves. Right valve, altitude 10 ; longitude 9 ; diameter 3.imm. Left ralre, altitude s.i); longitude 11 ; diameter 3 mm . These valves are not pairs.

Hab.-At U. S. Fish Commission Station 276 , east of Rio Janeiro, in 59 fathoms, mud botom; temperature 570.1 F .

Proc. N. M. $89-19$

Onls detached valves of this handsome and strongly sculptured species were obtained. Its nearest relative is a Korean species represented by an imperfect valve collected by Captain St. John, in the Jeffreys collection. The Korean shell is less strongly furrowed and the furrows are more longitudinal than in the present species. P. cymata is motable also for the cremulation, or rather the vertical grooving of the internal hasal margin, a feature I do not remember noting in any of the other species. The pallial line is more irregular as it nears the posterior adductor scar than in the type of the genus, but it does not show a definite sinns as in Dermutomy. The species is evidently rery near the border line and its septum will probably be found to bo less muscular than in such species as P. granulata.

Subgenus CETOMYA Dall.
Poromya microdonta sp. nov.
Plate vili, Fig. 6.
Poromyat subleris Dall, Bull. Mus. Comp. Zoül., xvin, p. 4.18, 1829; not of Verrill.
H.ab.-1. S. Fish fommision Station 2゙こ3, in 1,685 fathor:s, ooze, about $1=\tilde{j}$ miles eastwad from ('hesapeake Bas, bottom temperature not taken, but that of the next station, near by, was $36^{\circ} .3 \mathrm{~F}$.

In this species, by carefully dissecting away the septum, which presented much the same appearance as that of P. gramulate in Pelseneers diagram (op. cit., 11. mi. Fig. $\overline{7}$), several interesting facts were disclosed. The posterior lamelle were not separated by fissures at their base. This seemed evident on an external view, but was made more certain by an inspection of the upuer surface of the septum, where these openings, when they exist, are always conspicuous. The anterior areas were fissured, especially near the foot, but less so behind, so that when I first examined this species, taking the extreme delicacy of the membranes into accome, and the apparently imperforate character of the posterior areas, I suspected that the fissines were due to tearing or incantions probing. A reversal of the septum and an examination of other species showed, howerer, that there are variations in this respect, and that Pelseneer had correctly described the conditions which exist in some of them. An interesting feature disclosed by the examination of the septum under transmitted light was, that the blood-ressels which supply the branchial lamelle appear to reach them from behind, a separate ressel starting from the vicinity of the siphons and running a somewhat irregular course to each of the lamellar areas on each side. There seemed to be no continuation of these ressels anteriorly in front of the areas which they serve. The ovisacs are not lobulated, as in Myonera, but more evenly spread orer the posterior surface of the visceral mass. The ripest egss were latge and conspicnous. There was no evidence of their extrusion through the covering of the visceral mass, as in Nyonera, though this may take place later.

Maximum altitude of shell, 11.7); maximum longitude, 10.5; diameter, $9^{m \mathrm{~mm}}$. This form has almost exactly the outline and size of P. subleris Verrill, to which I at first referred it. But that species has the trpieal teeth of Poromya, while in this the only tooth in the right valve is a single slender spur-like cardinal, and the left, valve is almost edentulons. In its teeth this species agrees much more nearly with P. (Cetomya) tornata than with any of the normal species, and, like that, has a twist in the posterior rostrated part of the shell which I have not observed in any genuine Poromya, and which is not mentioned hy Verrill in his description of P. sublevis, of which I have not had an opportmity of seeing specimens. I cau hardly (after seeing many specimens of Poromya) believe that such differences in the hinge are not of specific value.

Subgenus DERMATOMYA Dall.

Dermatomya Dall, Bull. Mus. Comp. Zö̈l, xviII, pp. 449, 452, June, 1889.
Dermatomya mactroides Dall.
Plate viri, Fig. 8.
Poromya (Dermatomya) mactroides Dall, Bull. Mus. C'omp. Zoül., xvir, p, 449, June, 1889.

Shell large, stont, strong, with a strong epidermis, olive gras toward the beaks, paler, inclining to greenish, toward the margins in the adult; epidermis raised into wrinkles on the posterior area and folding in over the bisal margins; foung shell with a few sparse granulations near the anterior and posterior margins, adult without visible granulations, the epidermis mostly shining and the shell showing indescent throngh it; the young are subrhomboidal, the adults have the beaks prominent, high, subcentral; the anterior end rounded, the posterior very slightly produced; surface seulptured only with more or less evident incremental lines; lunule and escutcheon are visible on a close scrutiny, thongh not marginated by a line; the former is cordate, the latter narrow and long; hinge of Poromya, strong; ligament short, half internal; interior faintly iridescent, pallial and muscular sears distinct but not emphatic; the pallial line is deeply and rather marrowly simated; the hasal margin is perfectly plain; altitude of adult shell, 16 ; longitnde, 18 ; diameter, 12^{mm}.

Mab.-UT. S. Fish Commission Stations 27心1, 2783, and 2785, on the West coast of Patagonia, on a muldy bottom in 12.., : 345 , and 449 fathoms; bottom temperature 46.9 to 49 อ. 9 F . Aso at Station 2793 , in 741 fathoms, mud; bottom temperature 35 . 4F, ofl the eobast of Eenador.

The superficial resemblance to a small Mactra presented hy this shell needs no further comment. It is sufficiently evident.

This fine species differs from the typical form of the semus in the absence of the superficial grambations, and in the presence of a deep and strong pallial sinus, which characters indicate that it should form a special section of the group. The hinge is also remarkably coarse and strong.

In the type of Pormmy the pallial sinus is obsolete; its retractor muscles are either mainly incorporated in the septum, the muscular contractions of which serve to move the siphons, or they are replaced by the septal muscles. In the present species, however, there is a large and strong pallial simus with its usual museles, and the septum is consequently only very slightly furnished with muscular fibers, and does not serve to retract the siphons. The valve to the branchial siphon is large, and the palps are enormous. The anterior edges of the anterior palps are notched or papillose toward the median line, a condition not observed in the other species. The foot is pointed and slightly geniculate. Thereare seven anterior and eight or nine posterior gill lamellæ; the two areas are rather narrow, and their ends closely approach one another near the middle of the foot on each side. In front of the ridge which precedes the large branchial valve, and between it and the foot, are four or five quite prominent elevations of the surface, closely resembling the branchial lamellæ, but with their length in the axial direction of the animal. There are no fissures between these, bat they seem very like branchial lamelle in process of development. Both the longitudinal branchial areas on each side are tissured, and their bloodvessels reach them from behind.

Suborder MYACEA.

Family CORBULID 太.

Genus CORBULA Bruguière.
Corbula Dietziana C. B. Adams.
This species was obtained at the Abrolhos Islauds, near Porto Allegre, Brazil. It extends northward to Cape Hatteras, and was previously known to extend southward ouly among the Antilles.

Corbula Barrattiana C. B. Adams.
Corbula disparilis Orbigny.
Corbula cymella Dall.
The above mentioned threo species were collected at Station 2758 , 90 miles sontheast from Cape San Roque, in 20 fathoms, shelly bottom, off the Brazilian coast.

Family SAXICAVIDA:
Genus SAXICAVA F. de Bellevue.
Saxicava arctica Linné.
This well known shell, indistinguishable from Greenland specimens, was collected at Stations 276 and 276 , off Cape Delgado and Spiring Bay, eastern Patagonia, in 43 and 58 fathoms, sand.

Class SCAPHOPODA.
 Order SOLENOCONCHIA.
 Genus DENTAIIUM Linne.
 Dentalium megathyris sp, nov.
 Plate Ix, Fig. 1.

Shell remarkably stout and solid, moderately curved; surface, when not eroded, shining; color vellowish white, generally with some dark extraneous matter lodged in the grooves of the seulpture; anal end circular, small, simple, with a sharperge, about 2mm in diameter; toward this end the shell is more curved than anteriorly; surface with strong flattened longitudinal threads about $1^{\text {min }}$ from center to center, the interspaces sharply grooved in rather deep square-sided channels; about the middle of the shells the rilos begin to bifurcate so that the anterior sculpture, thongh of the same character, is some two or three times as fine as the posterior; in old age the sculptue is interrupted around the aperture; transverse senlpture only of fine incremental lines; oral aperture sharp edged, a little obligup, nearly circular, slightly flatteued in an antero-posterior sense; interior milk-white; texture of the shell porcellanous with an exterual chally stratum under the smooth exterior, which is frequently much croded even in life; maximum longitude of shell, 95 ; diameter of aperture, 15.5 ; antero-posterior diameter of same, 15.5^{mm}.

Hab.-U. S. Fish Commission Station 2S07, near the Galapagos Islands, Pacific Ocean, in S12 fathoms, globigerina ooze, bottom temperature $38^{\circ} .4 \mathrm{~F}$.; also off Chiloe Island and south west Chili at Station 2788 and 2,789 , in 1,050 and 1,342 fathoms; temperatures 360.9 and $35^{\circ} .9 \mathrm{~F}$.

This is one of the finest species of the genns known, and was taken alive in some numbers. The young recalls D. cerus Watson, but the shell changes in rate of increase and form of longitudinal ribs as it grows. It is a little straighter near the anal end, and the adult is more fumel shaped, with flatter ribs than in D. ceras.
 wide, subrectangular, arched a little in front. The laterals on each side have a projecting stont cusp; the uncini are flat rhomboidal plates. The whole radula bears a strong resemblance to that of L'ntulis striolata, as figmed by (r . O. Sars. (Moll. Reg. Aret. Norv., t. I, f. 1, 1u-c.) The arsophagus is short; the stomach short and cordate, stuffed with foraminifera. The soft parts, asis peserved in alcohol, seem ridiculously small and out of proportion to the massive shell.

```
D. callithrix Dall, Bull. Mus. Comp. Zoöl., xviry., p. 427, Pl. xxvrr., Fig. 10, June, 1889.
```

This species was collected at Station 2751, south of the island of St. Christopher or St. Kitts, in the West Indies, in 6st fathoms, ooze; temperature at the bottom 39.9 F ; and at Station 2754 , east from the island of Tobago, in SSO fathoms, ooze; temperature 370.9 . It has also been found among the dredgings made at Rio Janeiro many years ago by the Wilkes Exploring Expedition.

Dentalium ensiculus Jeffreys.
 Fig. 12, 1889.
D. didymum Watson, 1879.
D. sigsbeeanum Dall, 18 ± 1.

Collected at Station 264t, off Cape Florida, in 193 fathoms, sand; temperature $43^{\circ} .4$.

This species is common to the north Atlantic, but so far has not been found south of the Antilles.

Dentalium ceras Watson.
Collected at U. S. Fish Commission Station 2763, in 671 fathoms, globigerina ooze, temperature $: 30.9,240$ miles east from Rio Janeiro. This locality helps to bridge the gap between the Paritic station west of Valparaiso, where the (lhallengor found it, and the stations in the Antilles and the Gulf of Mexico, where it was obtained by the Blake.

Dentalium candidum Jeffreys.

This species was found with the preceding and also at Station 2760, 90 miles north from Ceara, Brazil, in $1,01!$ fathoms ; temperature $39^{\circ} .4 \mathrm{~F}$. It was obtained by Jeffiress in the northeast Atlantic, in 110 to 1,750 fathoms, and on the northeast coast of the Chited States, on the Carolina coast and north ward, by the U. S. Fish Cummission, in 843 to 1,309 fathoms. The present localities greatly extend its southward range.

This is the D. solidum of Verrill, and I have reecived it from a correspondent in Emope, under the name of 1 , cruastricum Fischer, from deep water in the Bay of Biscay.

Dentalium perlongum Dall.

Collected at Station 2751 , off St. Kitts, West Indies, in 687 fathoms, ooze, temperature 390.9 ; at Station $275 \frac{1}{2}$, east from Tobago, in 880 fathoms, temperature 370.9 ; ancia at Station 2760,90 miles north of C'eara, Brazil, in 1,012 fathoms, coral, temperature $39 \supset .4$ F. It ranges northward to the Carolina coast.

Dentalium Gouldii Dall.

D. Gouldii Dall, Bull. Mus. Comp. Zoül. xviri, p. 124, Pl. xxyi, Fig 4, June, 1889.

This extends from South Carolina to the Antilles and southward to Station 2762, east from Rio Janeiro, in 5!) fathoms, mud; \{emperature 570.1 F.

Genus CADULUS Philippi.
Cadulus albicomatus sp. nov,
Plate Ix, Fig. 8.
Shell resembling C. spectubilis Verrill, but larger, with a less prominent equator, more compressed in an antero-posterior direction, and with the anal opening produced at the sides and roundly excavated in front and behind instead of notehed laterally and produced medianly. Color milk-white; incremental sculpture iudicated only by more or less translucent rings in the shell substance; longitudinally seulptured by extremely fine sharp grooves with equal interspaces which cover the whole of the shell; curvature moderate, nearly mitorm, slightly more marked near the anal end; the whole shell distinctly eompressed thongh not flattened, except below the oval aperture, where the shell is impressed, making a shallow suleus extemling backward nearly two millimeters, and in front arching the margin so that the perfect aperture is distinetly reuiform with sharp thin edges. There is no swollen equatorial girdle; the greatest diameter is near the posterior end of the above-mentioned sulcus, whence the shell tapers evenly backward ; aperture slightly oblique; anal aperture neary circular, concavely arehed, but not notehed in front and behind; longitude of shell on its dorsal chord, 24 ; perpendicular to the chord, 2 ; diameter of oval aperture, 3 ; autero-posterion diameter, $1.5 ๊$; diameter of anal aperture, 1 ; maximum diameter of shell, 3.4 ; antero-posterior diameter of shell, 3^{nm}.

Hab.-U. S. Fish Commission Station 2792, in 401 fathoms, mud; of ${ }^{\circ}$ Manta, Ecuador; temperature 420.9 IF.

This speeies was obtained about 10 miles south of the ergator in west longitude 81°. It is one of the largest and finest speceies of the gemms, and the only one known to me which is distinctly longitudinally seulptured.

Cadulus quadridentatus Dall.

Found at Station 2765 in $10!$ fathoms, sathe, oft Pio de la Plata. It extends northward to Cape Matteras and has alio heen found at Fernando Norounha and the west eonast of Florila in $\overline{7}$ to 50 fathoms.

Cadulus tumidosus Jeffress.
Dredged at Station 2760, 90 miles north from Ceara, Brazil, in 1,019 fathoms, broken coral, temperature 30.4 F . It has been dredsed in deep water in several parts of the North Atlantie, the lBaty of lisc:ay, and near the Canaries. The specimens have been compared with those in the Jeffress collection.

Class GASTROPODA. Subclass ANISOPLEURA.

 Superorder EUTHYNEURA.

 Superorder EUTHYNEURA. Order OPISTHOBRANCHIATA.

 Suborder TECTIBRANCHIATA. Family AOT ÆONID $\underset{\text {. }}{ }$ Genus ACTAON Montfort. Actæon delicatus Dall.A. delicatus Dall, Bull. Mus. Comp. Zö̈l., גviit, p. 41, Pl. xvil, Fig. 5, 1889.

This Antillean specieswas obtained at Station 2771 , of Point Callegos, Castern Patagonia, in ju! fathoms, samd, temperature 4!?.t. This discovery carries its known range sonthward nearly the whole length of the continent of South America.

Actæon curtulus sp. nov.
Shell small, short, subglobular, white, not polished; surface corered with sharp, deep, close set, spiral groves, minutely pumetate at hot tom; whorls three, beside the pominent, polished, smooth, slobular, sinistral nucleus; suture distinct, not chammeled; onter lip) thin, simple; body with a thin wash of callus; pillar short, thin, very much twisted, so that its onter edge presents a plait-like appearance. while the shell seems almost canalioulate, though the pillar is continnons with the basal margin; above the twisted edge and separated from it by a deep channel is a second less prominent plait; altitude of shell, 3 ; diameter, $2^{\text {num. }}$.

Han.-West coant of l'atagonia, at Station 2783 , in 122 fathoms, mithe, temperature $48^{\circ} \mathrm{F}$.

This little shell is mostly comprised in the last whorl and appears mature. It recalls stilific, or a small smow-white Pedipes, as much as anything, and is different from any recent speries of the group I have seen.

Actæon perconicus sp. nov.

Plate xir, Fig. 7.

Shell pear-shaped or conic, with rather acnte spire, polished icory white, with four whorls besible the melens; transverse senpture of incremental lines; spiral seapptare of three to five close-set, sharp, punctate groores in front of the sutme, more distant anteriorly, and a similar but more numerous and uniformly spaced series just behind the
pillar, behind which agata are fome or fore widely separated similar grooves, the posterion mear the periphery; hetween them and near the periphery, as well as behind it, are no srooves or hut faint spiral obsolete strie; suture distinct !ht not chammed ; last whorl much the largest; outer lip straight, simple, slightly thickened; hody with a moderate deposit of callus; pillar as in A. coltulus, but lesss strongly twisted and with the phat and recurvel margin suberual ; althongh the margin is continuons, there is a mather deep sulens behimel the anterior end of the pillar, corresponding to a groove, which hounds the columella callus; longitude of shell, 5 ; latitude, : ; longitule of aperture, 3^{mm}.

Пab. Near the (balapagos Islands, in the P'acilie, in sle fathoms, ooze; temperature 380.4 F .

This shell and the last speeies seem to stand in an intermediate position betwern Artaron of the typical kind and Cimulia. If the mater lip should erentually become much thickened, of whirh, howerer, there is no satisfactory evidence, these shells might be referred to ('inulia. If the A. curtulus reealls I'erlipes mirabilis Muhlfeldt in its form and sculpture, A. perconicus recalls P. elongatus Dall.

Family TORNATINIDA.
 Genns UTRICULUS Brown.

Utriculus domitus Dall.
Collected at Station 2751, south from st. Kitts, in fisf fathoms, ooze; temperature, $39^{\circ} .9 \mathrm{~F}$,

Family SCAPHANDRIDE.
Genus SCAPHANDER Montfort.
Scaphander nobilis Verrill.
 temperature 30.9 F . It extends nothwand to belaware liay, in deep water.

Scaphander interruptus sp. nov.
Plate xII, Fig 12.
Shell in mans respeets resembling is. ligmarius and hest deseribed by comparison with it ; shell of a livich or grayish statareolor, not the yellow or reddish brown of lightions: the tip of the spire is smaller in proportion and more pointed ; the axis is pervions as in lifmerius, hat the perforation is more eylindrical aml does not become fummel-shaped as the shell enlarges to matmity; the shell arerages more slemele the callus on the body is not refleceded so far and especially on the anterior part of the pillar; the grooves of the strface in s. lignurius, without
exception, are continuons, the punctures heing arranged along their channels; in N. interruptus the spiral senp;ture is composed of rows of short or longer punctuations or grooves, which do not muite to form a continuons line except close to the columella in front, and here rather as the result of crowding and over-lapping; these short grooses are not punctate at bottom as in S. lignurins, but are apt to alternate stronger and weaker, and are more close-set than in lignarius of the same size ; maximum longitude of shell, 33 ; maximum latitude of shell 17.5 ; of aperture, 13.5^{mm}.

Пab.-Station 2788, west coast of Patagonia, in 1,050 fathoms, mud, temperature $37{ }^{\circ}$; and Station 2.507 , near the Galapagos Islands, in 812 fathoms, ooze, temperature 380.4 F 。

The specimens have been carefully compared with a rery large series of S. lignarius in the Jeffreys collection.

> Subgenus SABATIA Bellardi.
> Sabatia bathymophila Dall.
S. bathymophila Dall (1851), Bull. Mus. Comp. Zö̈l. xvir, p. 53, Pl. XV́ur, Figs. 9, 9b. 1889.
This species, which was previonsly known to extend in deep water as far morth as Fernandina, Florida, was obtained at Station 2744, 100 miles east from Delaware Bay, in 5ju fathoms, mud; and at Station 2754 , east from Tobago, in 850 fathoms, ooze ; temperatures 380.9 and 370.9 F .

> Geuns CYLICHNA Lovén.
> Cylichna Verrillii Dall.

This species was also obtained at Station 2754.
Genus ATYS Montfort.
Atys Sandersoni Dall.
A ? Sandersoni Dall (1881), op, cit. xviif, p. 54, Pl. xvir, Fig 7.
This species was collected at Station 2755,90 miles sontheast from Cape San Roque, in 20 fathoms, shelly bottom, temperature 790.1 F .

Family BULLIDA.
Genns BULLA Linne.
Bulla Krebsii Dall.
B. Krelsii Dall, op. cit., Xvili, p. 56, 1889.

This species described from Guadalupe, West Indies, was collected at Station 2754, east from Tobago, in 880 fathoms, ooze; temperature 370.9 F .

Order PULMONATA.
Suborder BASOMMATOPHORA.
Superfamily PHIRROPEILA.
Family SIPHONARIIDE.
Gemus SIPHONARIA Sowerby.
Siphonaria ferruginea Reeve.
This species, which reaches as fir north as Verat Cruz, Mexico, was obtained at the Abrolhos Islands, off Porto Allegre. Brazil.

Suborder STYLOMMATOPHORA
Superfamily GEOPHILA.
Family HELICIDA.
Genus HELIX Linné.
Helix lactea Miiller.

This well known South European species, being an article of diet with the Italians, has been introduced into those parts of Sonth America where Italian emigration has been direcegd. At Montevideo it was collected in great abundance, not differing from Mediterranean specimens, except that the shells areraged somewhat darker in color, on the upper portion, than the European specimens with which I was able to compare them.

Superorder STREPTONEURA.

Order CTENOBRANCHIATA.
Suborder ORTHODONTA.
Superfamily ' $O X O X L O S S A$.
Family TEREBRIDA.
Genus TEREBRA Lamarck.
Section ACTS H, \& A. Adams.
Terebra (Acus) benthalis Dall, var. nodata Dall.
Plate v, Eig. 9.
Shell small, slender, polished, yellowish white, with a blunt, somewhat inflated nucleus, and thirteen (or more) somewhat flattened whorls; suture distinet, appressed, the presutural band narow, bounded in front by a rather wide, shallow suleus and ornamented by obseure romided pustules, from ten to fifteen on each whorl; immediately in front of the
sulcus is a mow of langer and more prominent nodulations, the number on each whorl being the same as on the band ; there are also a few transierse, sometimes sharp but generally obscure, ridges crossing the whorls; spiral sculpture of fine obscure lines, often obsolete, but pretty evenly distribated over the surface; aperture (broken) narrow, outer lip simple; pillar simple, without any marginal keel ; canal narrow, not exhibiting any fasciole; base attenuated in front, gently rounded to the periphery. Maximum longitude of shell, 18.5; maximmm latitude, $4^{\text {mom. }}$.

Пab.-U. S. Fish Commission Station 2750, off St. Bartholomer, West Indies, in 496 fathoms, fine gray sand; bottom temperature $44^{\circ} .4 \mathrm{~F}$.

The first three apical turns of this shell are smooth, then the sculpture above described begins. The soft parts were not obtained. It resembles the shell described in the Blatie Report under the name of benthatis and is doubtless a rariety of it, in which the longitudinal sculpture has become faint and the nodulations intensified.

Family CONID.

Genus CONUS Linné.
Conits Cleryi Reeve.
This species mas collected at station 2762 , east from Rio Janeiro, in 59 fathoms, living; and at Station 2.65 , oft the Rio de la Plata, in latitude $36^{\circ} 43^{\prime}$, in $10 \frac{1}{2}$ fathoms, sand; temperature $59{ }^{\circ} .1 \mathrm{~F}$.

The examination of these specimens leats me to believe that my sug. gestion in the Blake Report that C. Villcpinii, F. \&\& B., might be identical with C. Cleryi, is not likely to prove correct. Thes seem much more distinct than the figures of the species would indicate.

> Family PLEUROTUMIDA.

Genus PLEUROTOMA Lamarck.
Subgenus LEUCOSYRINX Dall.
בeucosyrinx Goodei sp. nov.

$$
\text { Plate vr, Fig } 1 .
$$

Shell large, thin, white, with a tiuge of pale orange in the throat and on the pillar; whorls eight (or more), nuclens wanting in the specimens; surface generally slighty eroded, olistening wheu perfect ; spiral sculpture below the periphery of narrow shallow grooves separating wider, half obsolete threads; at the periphery is an obtuse carina which is sharper on the early whorls; behind this is a wide shallow sulcus, behind which the whorl rounds to the distiuet but unchamelled suture; on the upper or posterior part of the whon the fine spirals are perceptible but fainter than in front of the periphery ; transverse sculpture only of incremental lines; aperture elongated moderately wide; anal
notch wide, rounded ; fasciole slightly raised, not strongly differentiated ; bods with a thin transparent glaze; pillar strong. obliquely trmeate, flaring, almost pervions, anteriorly more or less tinged with pale orange; canal long, thin, shallow, slighty recured ; outer lip prominent below the periphery, thin, sharo; maximum longitude of shell, so ; maximum latitude, 35^{mm}.

Operculum at first shaped like that of Volutopsis, the muclens apical but the succeeding growth showing a tendency to a slight spirality; With subsequent growth this becomes inclosed by alditions marle all around the margin, and the adult operculum appears buccinoid, having a buccinoid outline, in the lower right hand part of which the nuclear part is inclosed. This singulan form of opereulum is not a deformity, but is common to several of the species of Lercosyrin, in which I have been able to examine this appendage. It is a feature which by gradnal stages, represented by different species, appoaches the normal Pleurotomoid operculum.

Hab.-U. S. Fish Commission Station 2-sis. in 1,0.⿹0 fathoms, green mud, off the northwest coast of Patagonia, south latitude 4.5035^{\prime} ' west longitude $75^{\circ} 55^{\prime}, \therefore$ degrees south of Chiloe Island; bottom temperature $36{ }^{\circ} .9 \mathrm{~F}$.

This fine species recalls, in its general form and appearance, the inoperculate Mangilia (Aforia) circinata Dall, from Bering Strat and the Arctic Ocean. The soft parts were destrosed by desiccation before reaching me.

Leucosyrinx (Goodei var.?) persimilis sp, nov.

Plate vi, Fig. 3.

Shell resembling the preceding species except in the following particulars: It is more slender and of pure white, the peripheral carina is more anterior, the anal notch consequently wider, and the fasciole is not elevated; the peripheral carina is narrower and more distinct, but the sulcus behind it is much fanter ; the pillar is thimer and so coiled as to be axially pervions to the very apex; the canal is not quite so shallow, and there is no color on the pillar or in the throat ; the spiral sculpture is tiner and more distinct. Naximum longitude of shell, so : maximum latitude, 30^{mm}.

Operculum slightly more elongate, but in structure like that of the preceding species.

Шab.—U. S. Fish C'ommission Station 2791, latitude $3 S^{2}$ s' S., longitude $75^{\circ} 53^{\prime} W^{F}$, of the southwest coast of Chili, in 67 fathoms, mud; bottom temperature 370.9 F ; and Station 2793 , in 741 fathoms, off the coast of Ecuador, in inorth latitule $100: 3^{\prime}$, west longitude soo 1.5': bottom temperature 380.4 F .
This species is remakiably like the L. (inodei, but in a fair series the differences seem constant emongh to deserve a mame. The soft parts are whitish; the tentacles stont and hlunt ; there are no eres or pedi-
cels; the foot is wide and double edged in front, romiled behind; there is a well-marked purpuriferous gland on the dome of the mantle; the penis is very large and of the usual form, with the terminal papilla retractile; the gills prominent aud normal as well as the osphradium.

Leucosyrinx tenoceras Dall.

L. tenoceras Dall, Bull. Mus. Comp. Zö̈1., xviri, p. 76. Pl. xxxyi, Fig. 5, June, 1889.

This species, which extends northward to Cape Fear, North Carolina, was collected by the Albatross', at Station 2751, south of St. Kitts, in 687 fathoms, ooze; at Station 2754, east from Tobago, in 880 fathoms, ooze; and at Station 2763,240 miles east by south from Rio Janeiro, in 671 fathoms, ooze; temperatures 370.9 to 390.9 F .

Leucosyrinx Verrillii Dall.

L. Terrillii Dall (1881), op. cit., XViri, p. 75, Pl. x, Fig. 5, 1889.

This fine species, which has the same northward range as the preceding, was found with it at Station 2751, and also at Station 2761, 150 miles south from Bahia, Brazil, in 818 fathoms, ooze; temperature 380.9 F。

Subgenus PLEUROTOMA s. s.
Pleurotoma exulans sp . nov.

$$
\text { Plate v, Fig } 7 .
$$

Shell solid, of a yellowish chocolate brown, strongly sculptured, with eight or nine whorls, the tip eroded in all the specimens; whorls rounded, the region of the fasciole in front of the closely appressed suture flattish, constricted, and polished; transverse seuppture in front of the fasciole (on the penultimate whorl) of about fourteen short, stout, obliquely set riblets, which coronate the whorl and do not reach the suture in front; spiral sculpture of rather narrow shallow grooves, separating slightly-raised flattish, rather wider, threads; the last are finest on the fasciole and somewhat coarser near the canal, but tolerably uniform over the entire surface; notch rather wide, not very deep, rounded, and half way between the suture and the posterior ends of the peripheral riblets; onter lip thin, simple, produced in the middle; canal rather well defined, not very long; pillar obliquels trimmed off in front, of a creamy brown, with a thin polished glaze; axis not pervions; canal rather deep, tharing a little anteriorly. Maximum longitude of shell, 32 ; maximum latitude, 133^{mm}.

Operculum elongate pyriform, thin, straight, with an apical mucleus, somerrhat concave.

IIab-U. S. Fish Uommission Station 2808, near the Galapagos Islands, in the Pacitic Ocean, in 634 fathoms, coarse saud; bottom temperature 390.9 F .

This fine species borders on the subgenus Lencosyrin. , but has the operculum, solid habit, and strong seulpture of I'leurotoma as iestricted.

Subgenus GENOTA H. \& A. Adams.

Section DoLhenotoma Bellardi.

Genota Carpenteriana (Gabb).
Pleurotoma (Surcula) Carpenteriana Gabb., Proc. Cal. Acad. Sci., ini, p. 183, 1865.
Hab.-Monterey, Gabl. Santa Barbara Islands, Cooper; U. S. Fish Commission Station 2838 , in 44 fathoms, mud, off Cerros Island, Lower Califoruia.

This interesting species, of which but few specimens are known, belongs to the section Dolichotoma, of which the type is the fossil Pleurotoma catapheracta of Brocehi. This form has a mather thick, stout, blackish operculum, recalling that of C'omus, but of which the apical point is frequently broken or worn away. The scar on the immer side of the operculum is concentric and strong, but covers only the wider part of the appendage. This section of the Plenotomider is frequently furnished with obscure thickened ridges on the pillar; they can be found in most specimens by cutting into the apical whorls even if the shell has no indication of ridges at the aperture.

The foot of this species is narrow, donble edged, and truncate in front, not auriculate, moderately pointed behind ; the sides of the foot and surface of the body are irregularly doted with small, and larger, round pustular elevations. The amimal has a purpurferous gland, and in the ease before me, in dying, the fluid expelled from this gland appears to have dyed the whole body of the animal deep purple, which, under the action of the alcohol and time, has become largely brownish. The tentacles are wide and small, with a smali, well detined ege on the outer angle. The verge is small, suberlindrical, except near the tip, which is (naturally or otherwise) somewhat thattened, clavate, and decidedly phalliform, terminating in a large subenic smonth papilla with a thickened girdle at its base. The gills and osphradium as usual. The prohoseis is short, much attemated anteriorly. There is a large poison gland situated as in Bela, and the individual teeth are much like those of Beld ; for instance, those of 73 . Gouldii as figured by Verrill (Trans. Comn. Acad., v, Pl. lyif, Fig. (íc), but with the base of insertion less deeply notched than in that species, and with a slight augulation, not a darb, near the point.

Genus DRILLIA Gray.
Drillia Harfordiana Reeve.

This species, which reaches at least as far north as Vera Cruz, Mexico, was collected at the Abrolhos Islands, near Porto Allegre, Brazil.

Drillia pagodula Dall.

D. pagoduta Dall, op. cit., XViil, p. 90, Pl. xir, Fig. 6, 1889.

This species was also collected at the Abrolhos Islands. It is common to the Antilles and the Ginlf of Mexico, and has besu found on the west coast of Florida, in 50 fathoms.

Genus MANGILIA (Risso) Fisclier. Subgenus MANGILIA Risso.
 Mangilia antonia Dall.

$$
\text { Piate r., Fig. } 11 .
$$

Mangili: antonia Dall, Bull. Mus. Comp. Zö̈l., ix, p. 59, August, 18:1; Xvinf, p. 116, Pl. x, Fíg. 4, Pl. xi, Fig. 11, 1889.
Halb - Gulf of Mexico to the Antilles, in deep water. Station 2751, south of St. Kitts, in 687 fathoms, ooze; and Station 2754, east of Tobago, in north latitude $11^{\circ} 40^{\prime}$, west longitude $55^{\circ} 33^{\prime}$, in s80 fathoms, ooze; temperatures 380 to $40^{\circ} \mathrm{F}$.

The figures of this species heretofore given haring all been made from soung and immature specimens, it was thought well to tigure the complete adult shell from some fine specimens collected near St. Kitts.

The specimen figured measures $18^{\text {sum }}$ iu length; the largest (but not perfect) specimen obtained must have reached a length of $\because 33^{m m}$.

Mangilia exsculpta Watson.
M. exsculpta (Watson, 1882) Dall, op. cit., x'ini, p. 117, Pl. xi, Fig. 9, 1889.

Antilles, Challenger and Blukie, collected by the Albutross at Station 2750, off St. Bartholomew, West Indies, in 496 fathoms, sand ; Station 27.51 , south of St. Kitts, in (i87 fathoms, ooze; aud Station 2754, east from Tobago, in 880 fathoms, ooze; temperatures 370.9 to 440.4 F .

This is a very peculiar looking shell. The specimen figured in the Blake report is only a young specimen. Those obtained by the Albatross were much larger and finer.

Subgenus CALLIOTECTUM Dall.

Shell with a vernicose epidermis, short, undifferentiated canal and no anal notch or fasciole; operculum with apical muclens, increasing like that of Fusus, but curved instead of straight, thongh not coiled; animal blind, with a short sac like proboscis, with no teeth or poisou gland. Type C. vernicosum Dall, abyssal.

Calliotectum vernicosum, sp. nov.

$$
\text { Plate v, Fig. } 8 .
$$

Shell slender, finsiform, eovered with a brilliant chestnut-brown, closely adherent epidermis; whorls seren, withont the nuclens, the tip, more or
less eroded in all the specimens, thongh living when taken; whorls slightly rounded, not inflated; sculpture chiefly of fine, subequal, Hattened, narrow, slightly Hexnons transerse plaits, which on the earlier whorls reach forward to the suture, but on the later ones become obsolete near the periphery, and tend to disappear altogether near the aperture on the last whorl of the adult shell; these plaits are separated by narrower, rather deep grooses, and end at the suture behind rather blustly, though they can hardly be said to coronate it ; there are thirt y five or forty of the plaits on the penultimate whorl; suture rery distinct, slightly chameled, but not deep; there is no anal fasciole; the aperture is shaped like a melon-seed, the outer lip evenly arched, projecting somewhat in front of the periphers, not thickened or reffected, and with no constriction for a canal; body and pillar without callus; the columella straight, very slender, not recurved; siphonal notch extremely shallow, hardly differentiated from the aperture; interior of the aperture polished, smooth, dark brown, the pillar livid white or flesh color; siphonal fasciole, none; lines of growth not prominent, the surface showing obscure faint spiral strite or scratches, but no spiral sculpture. Maximum longitude of shell, 48; maximum latitude, $19{ }^{\mathrm{mmm}}$.

Hab.-Station 2793, off the coast of Ecuador, in 741 fathoms, mud, and Station 2807, near the Galapagos Islands, in the Pacitic, in 812 fathoms, coral mud; temperatures in both cases $3 \vdash^{\circ} .4 \mathrm{~F}$.

The first mentioned specimen was collected with Leucosyrinx persimilis and Pleurotomella cingulata.

There is between the internal aragonitic layer and the epidermis a rather thick layer of a cretaceous nature easily eroded, and the action of solvents upon this eren in living specimens is extremely marked. The operenlum is thin, yellowish brown, with strong growth lines and a large surface of attachment. It reaches a length of 10 min and a breadth of 6^{mm}. It is shaped like that of Fusus, hut more curved, and varies somewhat in form in different specimens. The nuclens is apical.

The soft parts are mostly yellowish white. There is a purpuiferons gland alongside the distal part of the intestine which ejects a dark rose-colored dye. The head is wide, the tentacles broad, flattened, and connate at the median sinus. The gills, osphradium, and siphon are as usual. The foot is wide, rounded-acute behind, double-edged and slightly auriculate in front. The proboscis is small and short, with large salivary glands whose axis carries a greenish streak. There is no poison glaud or dental sac. The animal appears to be edentulous. The verge is large, stout, a little flattened, with its tip oblipuely truncate, leaving a granulous oval area at the upper extreme of which is a small conical papilla. The anal orifice is not prominent. The surface exudes an abundant sticky mucus.

This rery beantiful aud remarkable shell is Pleurotomoid in its characters, though it wants the anal notch and fasciole. Althongh the operculum is arcuate it is not coiled upou itself. The figure, though accu-
rate as far as the form is concerned, gives very little idea of the beauty of the brilliant brown epidermis and sharply incised sculpture.

Subgenus PLEUROTOMELLA Verrill.

Pleurotomella cingulata sp , nov.
Plate vi, Fig. 2.
Shell large, fusiform, of a rich reddish brown, deepest on the pillar, with a closely adherent, vers thin, polished epidermis; whorls seven, without the mucleus, which is lost in the specimen, while the outer coat of the apieal whorls is much eroded; whorls full and rounded, suture distinct, not appressed or chameled ; transverse senpture only of fine inconspichous lines of growth; spiral sculpture of two sorts: first, a fine, sharp, slightly irregular striation, which covers the whole surface; secondly, of revolving elevated cinguli, of which three on the periphery are more widely and deeply separated and more elevated than the others; these three have interspaces equal to or wider than themselves; on the last whorl in front of the periphery the cinguli are flat-topped little elevated wide bands with narrower interspaces, this sculpture becoming obscure toward the canal; abore the periphery is one well-marked cingulum slightly turreting the whorl which inclines from it to the suture in a flattened mamer ; aperture pointed in front, wider behind; pillar simple, perfectly straight, anteriorly attenuated; body and pillar with a thin dark brown glaze; outer lip rery thin, sharp, creunlated by the outside seulpture, which also grooves the interior; noteh shallow, wide; fasciole hardly risible ; canal short, wide, hardly differentiated, straight. Altitude of shell 73 ; maximum diameter 30^{mm}.

Hab.-U. S. Fish Commission Station 2793, off the coast of Ecuador, in 741 fathoms, mud; bottom temperature $38^{\circ} .4 \mathrm{~F}$.

The soft parts of this species were preserved, but had been so hardened that the shell was nearly ruined in the effort to extract them. The surface is rather rugose, of a rusty brownish color; the foot is narrow, double-edged, and slightly auriculate in front, rather pointed behind. The tentacles are very short and stout, with no traces of ejes or peduncles.

The proboscis and all its appendages are absent, probably, being ex. tended at the moment of capture, they were torn out by the edge of the dredge. The gill and osphradium are as usual.

I may mention here that in this, as well as nearly all the other cases of abysial shells with well marked coloration, the specimen, though kept in the dark, has laded rapidly. It is now mostly of a pale choc-olate-and-milk coisir, exetht at the points where it tomehes the botom of the paper tray in which it is kept, or on the colmmella under the glaze.

Pleurotomella argeta sp. nov.
Plate vi, Fig. 5.
Shell polished, short-fusiform, suow white, eight-whorled; nucleus eroded in the specimen; whorls full, appressed in front of the suture, elsewhere gently rounded; transverse sculpture of delicate incremental lines; spiral sculpture of obscure almost microscopie strise and a few close set extremely fine threads on the canal; aperture elongated; anal notch rery shallow, rombled; leaving ouly a faint slightly flattened fasciole; outer lip sharp, simple, arched well forward, especially anteriorly; body without callus; pillar thin, white, short, slightly twisted; canal short, very wide, hardly differentiated; maximm longitude of shell 43; maximum latitude 20^{mm}.

Hab.-U. S. Fish Commission Station 2807, in S19 fathoms, mul, near the Galapagos Islands; bottom temperature 380.4 F .

The characters of this species are as simple as possible, yet a more elegant and delicate shell can hardly be imagined.
The soft parts are yellowish brown and agree externally in all respects with those of the preceding species. Like that, it was impossible to extract them without wholly destroying the shell, as they had been placed in alcohol so strong as to make them as hard and tough as soleleather. In most Pleurotomide there is very little if any muzzle between the tentacles; at least when the proboscis is wholly retracted the inner bases of the tentacles, somewhat rertically flatteued, are commate at a shallow sinus in the middle line. In the present and the preceding species, however, the tentacles are widely separated and cylindrical, and there is a muzzle which is longer than the tentacles, when both are contracted in alcohol, into the center of which the proboscis is retracted and which has a flattish end almost as in Litorinc. Something of the sort is found in Conus if the figures are to be believed. More investigation in regard to this character is required.

Pleurotomella (Gymnobela) agonia sp. nov.

Plate vi, Fig. 4.

Shell small, thin, bright yellow-brown, with six full and rounded whorls, the uucleus lost, but without doubt of the Simusigera type; spiral scupture in front of the fasciole of numerous sharp elevated threads with wider interspaces, between each pair of which, except on the canal, are one or two smaller interealary theads; on the fascento there are only a few comparatively faint thrents, which in mot tiso above the tramserse seuppture, white on the boly the spieal seulpuro is predominant thongh minately umblated he theother : the transeveso

 arched ripples on the anal thaciole, beyom whioh they bowomo faintor,
closer, and obscure, being over-ridden by the spirals which they minutely undulate; the fasciole is slightly impressed and extends to the suture, which is distinct but not chameled; the notch is shallow and gently rounded; the outer lip arched formard, sharp; the body covered with a thin glaze, in the aperture; the pillar thin, twisted, not pervious; canal short, distinct; maximum longitude of specimen 16 ; maximum latitude 8^{mm}.

Mab.-Stations 2807 and 280 , near the Galapagos Islands, in the Pacific, in latitude $0 \circ 24^{\prime}$ south and longitude $89 \circ 6^{\prime}$ west, in 812 and $63 \pm$ fathoms, globigerina ooze and coral sand ; bottom temperature $38^{\circ} .4$ to 390.9 F .

This pretty little species is much like P. engonia Verrill, from deep water off the New England coast, but differs from it in having a finer and more elegant sculpture, rounder whorls, without the prominent angle on the shoulder of P. engonia, a narrower fasciole inclined to the suture at a greater angle, and a narrower and more differentiated canal. In P. engonia the ripples on the fasciole are strongest near the suture and are not very regular, while in the present form their regularity is conspicnous and they extend without weakening entirely across the fasciole.

Pleurotomella Agassizii Verrill, var. permagna.

Hab.-Station 2734, 124 miles southeast of Delaware Bar, alive, in 841 fathoms, soft mud, temperature 380.5 ; and Station 2754 , east of Tobago, in 880 fathoms, onze, north latitude $11^{\circ} 40^{\prime}$ and west lougitude $58 \circ 33^{\prime}$; temperature $37 \circ .9 \mathrm{~F}$.

This fine form resembles Plenrotomella Agassizii in general characters, and even in the rosy brown tint of the colmmella, but in a specimen of each, with the same number of whoms, we fiml P. 1 gassizii has a length of 28 and a maximum heatth of $12 . \tilde{5}^{\mathrm{mm}}$, while the variety permagna has a length of 35 and a breatth of 17.5 mm . Some specimens of P. permagna reach a length of ti and a breadth of $22^{\text {mm }}$. The number of transrerse riblets on the last whonl varies in both species; in P. permugnu there are eighteen to thirty: I have not seen any of the trpical P. Agassizii with more than twenty ribs.
P. permatua differs from P. Baimlii in just the characters, except size, that P. Agassizii does, and from P. Agussizii it is distinguished only by its much greater size. The two may be distinct species or they may be $t \pi=$ races of one species. Knoming the great variability of abyssal shells, I prefer to take the latter vien for the present.

$$
\begin{aligned}
& \text { Pleurotomella suffusa sp. nov. } \\
& \text { Plate xir, Fig. } 10 .
\end{aligned}
$$

Shell small, slender, fusiform, the pillar suffused with yellowish pink, the exterior white, with a thin, pale epidermis and seren or eight whorls, without counting the uncleus; specimen somewhat eroded on the upper
whorls, with indications of a shoulder or carina on the three whorls following the nucleus; suture slightly irregular, appressed, distinet, not chauneled; spiral sculpture of fine threads, alternately larger and smaller, pretty uniform over the whole surface, with narrower interspaces, this sculpture fainter on the sutural side of the fasciole ; trausverse sculpture of faint, irregular, sharpedged plications, strongest near the suture and on the obscure angle just in front of the fasciole, elsewhere nearly obsolete; fasciole very slightly impressed; notch very shallow ; aperture long, narrow, pointed behind ; outer lip sharp, arched forward; canal distinct, wide; pillar rosy, attenuated in front; axis almost perrious; body with a thin glaze over a slightly excavated space; nucleus lost; soft parts of the subgenus; maximum longitude of shell, 31.5 ; maximum latitude, 11.5^{mm}.

Hab.-Station 2807, near the Galapagos Islauds, Pacific Ocean, in 812 fathoms, mud; temperature $38^{\circ} .4 \mathrm{~F}$.

This spectes, though more slender and much more finely striated, recalls the slender varieties of P. Agassizii, thongh altogether destitute of the strong ribbing and sutural plications. None of the P. Agassizii have quite such a taper spire, yet in a general way the two forms belong to the same section of the group. Only one lising specimen of the P. suffusa was obtained.

Subgenus GLYPHOSTOMA Gabb. Glyphostoma gratula Dall.

G. gratula Dall (1881), op. cit., xviif, p. 110, Pl. xif, Fig. 10.

Pleurotoma (Drillia) incilis Watson.
Collected by the Albatross at Station 2750, off St. Bartholomew, West Indies, in 496 fathoms, sand; temperature $44^{\circ} .4 \mathrm{~F}$.

Genus BORSONIA Bellardi.
Subgenus CORDIERIA Rouault.
A finely spirally striate, white Cordieria, with two plaits, an undulated anterior border to the anal fasciole, the canal long and slemder, with a constriction in front of the short body whorl, was collected with the preceding. The last whorl measured 17.5 by 5.5 mm. The spire was entirely deficient, so that it can not be described, though the ocemrence of the species is worth noting.

> Superfamily RHACHIGLOSSA.

Family OLIVIDE.
Genus OLIVELLA Swainson. Olivella floralia Duclos.

Collected at Station 2758, 90 miles southeast from Cape San Roque, Brazil, in 20 fathoms.

Olivella jaspidea Gmelin.

Collected at Stations 2764,2765 , and 2766 , the southernmost being off the Rio de la Plata and the depths 10 to 12 fathoms.

Olivella bullula Reeve.

Collecterl at Stations 2754, 2756, and 2768, the southermmost being off Cape Delgado, easteru Patagouia, and the depths varying from 43 to 850 fathoms. The specimen from shallow water was dead.

Genus ANCILLARIA Lamarck.
Ancillaria Tankervillei Swainson.
Young and dead specimens of this species were collected at Stations 2762 and 2764 , in $11 \frac{1}{2}$ to 52 fathoms, off the coast of Brazil and the Rio de la Plata.

Family MARGINELLID雨.

Genus MARGINELLA Lamarck.

Marginella cineracea Dall.
Plate xi, Fig. 6.
M. cineracea Dall, Bull. IT. S. Nat. Mus., No. 37, 1. 106, No. 298, Pl. 42, Fig. 6, 1889.

Shell thin, opaque, ashy (when living perhaps trauslucent whitish), oval, smooth, four whorled; spire low, dome-like, not glazed over with callus; suture distinct, not chameled, slightly appressed: surface smooth, marked only by faint incremental lines; body whorl at the ap. erture thinly glazed but not callons; plaits oblique, distinct, three in number, the posterior weakest, the anterior continuons with the outer lip as it curves around the canal; siphonal fasciole, none; outer lip thin, very slightly reflected at its. outer edge and scarcely thickened within, not denticulate; the onter margin of the lip is arched forward and outward; aperture wide, with a shallow anterior simus and a narrow posterior commissure ; maximum longitude of shell 14; maximum latitude 8^{mmin}.

Hab.-U. S. Fish Commission Statiou 2678, in 731 fathoms, ooze, off Cape Fear, North Carolina; bottom temperature 380.7 F .

This is a remarkably thin, simple, yet elegantly formed species. It is notable, among other things, for haring but three plaits, for its absence of callus, and for its perfectly smooth outer lip. I do not recall any species of its own size with which it should be compared. There is a much smaller and probably unnamed species, dredged in deep water in the latitude of Fernandina, Florida, which has a very similar form. The thinuess of the shell recalls M. fauna Sowerby and Volvarina pallida.

All the specimens obtained are of a yellowish ash color, hut it is possible that when alive they were more translucent, if not whiter.

> Marginella avena Valenciennes.

This species was eollected at the H brolhos Islands, on the Brazilian coast, near Porto Allegre.

Marginella succinea Conrad.
Marginella lactea Kiener.
Persicula catenata Montagu.
The three species above enmmerated were obtained at Station 2755 , 90 miles southeast from Cape San lioque, Brazil, 419 miles sonth of the equator, in 20 fathoms, shelly bottom.

Family VOLU'TID风.

Genus SCAPHELLA Swainson.
Scaphella magellanica Sowerby.
Plate IX, Figs. 5, 6.
Scaphella magellanica Dall, Bnll. Mus. Comp. Zoül., xvini, p, 452, June, 1889.
Voluta magellanica Sowerby, Thes. Conch., I, 204, Pl. 54, f. 99, 1847 ; not of Chemnitz, Conch. Cab. x, p. 139, 1788.
ПAB.—Strats of Magellan and the eastern consts of Sonth America
 from 10 to 80 fathoms; temperature $4: 0$ to $50{ }^{\circ} \mathrm{F}$.

In disenssing the peculiar nuclens of the shell of Nexpletle abont a year ago, I suggested that the form of the apex indicated the presence in the young larva of a membranots, or at least partly membranous, protoconch to which the normal shell was added and which, after the formation of the normal shell, decayed or was lost. I suggested that the small sharp point characteristic of the tip in certain recent and fossil species of Scaphella was probably formed by the deposition of the first shelly matter along the line of the pillar of the membranous larsal shell. It was therefore with a great deal of interest that I fomed in the Albutross collection, contamines the larval fonng, several ovicapsules of Nerphella magellanicut fom the coast of l'atagonia.

These ovicapsules are cireular, about an inch (2swn) in diamoter, with a flat base attached to dead Pectens; the uner part consists of a rounded dome, about 12 man high, wather more lenticular than hemispherical, but varying somewhat in different sperimens. It is externally exactly like the ovicapsule of Folutop::i: fiom Alaskia, antl, like that, contains two to four surviving larval shells. These remain in the capsule until they hare three or four shelly whorls. The apical point is acutely conical, slightly twisted, and in the yomgest specimens (two-whorled) still retains some shreds of the extremely fragile mem-
branous protoconch adhering to the first whorl. As suggested by me from a study of the nuclei of Aurinia, the pillar of the protoconch and the apical spor of the larval shell coincide. The shape of the protoconch could not be ascertained, but its aperture was probably oval, from its traces left on the shelly surface. The apex is at first very sharp, but it loses substance even in the ovicapsule, and three-whorled specimens had it quite blunted, while shells escaped from the capsule show unally a mammillary tip at all stages. The largest larva obtamed, though it had just heguu to make part of the shell showing color pattern, was still without cephalic tentacles, eyes, or siphonal appendages. It had no trace of an operculum or epipodium. The shell showed two plaits on the columella. The confirmation of the existence of the suspected protoconch is particularly gratifying. The larval characters emphasize the differences between Foluta proper and scaphella, and leave no doubt of the propriety of their generic separation. The turbinate, shelly, peculianly seulptured larval shell of toluta is entirely different from anything we find in Scaphella.
The ovicapsules containing young larvie were dredged from a depth of about 80 fathoms. The larval shell figured had attained a length of 11^{nm}.

This species, described by Sowerby, is not the Toluta magellanica, ete., of Chemnitz, a non biuomial author. Chemuitz states in his synonymy that his shell is the Volutu ancilla of Solander, in the Catalogne of the Portland Collection ; and that he is right is contirmed by his excellent tigure, which agree perfecily with Sowerby's figure of V. ancilla. Sowerby does not refer to Chemnitz, who, not adopting the Limean nomenclature, was in no case entitled to priorits. The S. magellanica is much like the S. ancilla, from which it is chiefiy distinguished by its smaller size, more slender form, and usually fewer plaits.

Scaphella? brasiliana Solander. Plate Ix, Fig. 2.

The most extraordinary oricapsule in the Albatross collection also belongs to the Folutide, and after careful study I am disposed to refer it to the species generally known as Scaphella brasiliana Solander.

This ovicapsule is oblate-spheroidal in shape, a view from above gising a perfectly circular outline, while from the side the protile is a symmetrical oval. It is yellowish in color but nearly tramsparent, thin, with a smooth, polished surface like that of wet gelatine, and possesses considerable rigidity. It is sufficiently rigid to retain its form perfectly under considerable pressure, and would probally ernsh rather than bend to a force too great to be resisted. It was filled with a fluid, probably not very different from sea-water, and contained a single bubble of air, which, by its lightness remaining in the dome of the capsule, just about comnterbalanced the weight; so that, without rising to the surface, the capsule would float in the sea at a moderate depth. This
novel craft was freighted with the larval shells of some form belonging to the Volutide, but in which the calcification appears to proceed equally and simultaneously from the peristome of the protoconch, so that the apex, while indicating that a protoconch had existed, did not present a raised point due to calcification along the columella of that protoconch, as in Scaphella magellanica. From careful comparisons, I find the only known species belonging to the region where this ovicapsule was obtained which is not excluded by the character of its nucleus from identification with the larve contained therein, is s'. brasiliuna, which has two plaits; and I have little doubt that to that speeies it should be referred. About twenty-five larral shells were contained in it, each showing two plaits.

This remarkable ovicapsule measures about 55^{mm} in horizontal diameter and 50^{mm} in vertical height. It was collected at U. S. Fish Commission Station 2766 , in $10 \frac{1}{2}$ fathoms, sand, off the Rio de la Plata, in south latitude $36^{\circ} 47^{\prime}$ and west longitude $56^{\circ} 2: 3^{\prime}$. Its specific gravity is almost equal to that of the alcohol in which it is preserved, and consequently it is somewhat lighter than sea-water. Whatever may have been its original condition, the contained air bubble would have made it practically lighter than the water around it, though very slightly so.

According to H. \& A. Adams, in the Genera of Recent Mollusea, Orbigny states that "the ovicapsule of s. brasiliant is 3 inches in length." As I am unable to refer to Orbigny's work and thus determine how certainly the ovicapsule he refers to was identified with its parent, the question remains donbtful how far it is to be depended upon. It would seem singular to call a circular hemispherical capsule, like that of Scaphella, "long," and that adjective wonld indicate some error oí identification. Howerer that mas be, if the present ovicapsule, undoubtedly belonging to the rolutider, does not come from s. brasiliana, I am entirely at a loss to conjecture to what mollusk of this region it can be referred.

Genus VOLUTILITHES Swainson.
This genus is the Eocene parent of the recent genera of the Volutide. The V. abyssicola Adams \& Reeve is not a typical species, but belongs to a small subsidiary group, having a dentate outer lip. The type of Volutilithes is the Voluta spinosa of Lamarck.

Volutilithes Philippiana sp. nov.
Plate IX, Fig. 4.
Shell (not fully adult) small, elongated, fusiform; color rather dark olivaceous-ash color with a pale band in front of the suture; muclens superficially eroded, small, apparently not mammillate or intlated when perfect; whorls six, when adult probably with one or two more, ap. pressed at the suture, somewhat constricted in front of it ; sculpture of rounded grooves, coarser on the constricted band in fiont of the suture,
finer and almost linear anteriorly on the last whorl, and slightly coarser again on the canal; the interspaces are flattened, narrow, but always wider than the groores; there are also some fine, irregularly distributed spiral striep; transverse sculpture of numerous little elevated, narrow, slightly flexnons waves, which on the pemultimate whorl extend from the suture back to the constricted part, where they become obsolete; on the last whorl they are more irregular, fainter, and barely pass the periphery; in a perfectly adult shell they would probably be obsolete on the last whorl; these waves average somewhat less than two millimeters from crest to crest at their most prominent part a little behind the periphery on the earlier whorls; the lines of growth are fine, regular, distinct under a lens and minutely decussate the spirals; aperture narrow, pointed behind, rather wide in frout, with no constriction for the canal; outer lip thin, slightly receding near the suture, not lirate within; inuer lip slightly excarated, white, with a polished film of glaze over the part from which the limy layer has been absorbed; pillar thin, sharp, nearly straight; canal wide, not differentiated; there is a single prominent, fine, sharp plait just behind the edge of the pillar, and a little further back two smaller subequal plaits closer to each other than the anterior one of the pair is to the larger anterior plait; all are very oblique. Longitude of shell, 36.5; maximum latitude, 14.5; longitude of aperture, 19.5^{mm}.

Нab.-Station 2791, in sonth latitude $35^{\circ} 05^{\prime}$, and west longitnde 75° 53^{\prime}, of the southwest coast of Chili, in 675 fathoms, mud; botom temperature 370.9 F .

This miqueshell belongs to a group of which the other known representatives appear to be extinct. V. D'Orbigmyana, V. Domeylioana and T. gracilis Philippi, V. indurate Comrad as well as V. triplicate Sowerbs, all from the tertiary strata of Chili and the western coast of America, are members of it. The Tolutu grucilis (Philippi, 1887; not of Lea, 1833, or Swainson, 1842) is perhaps its uearest relatise, and probably in a large series would prove to be hardly specifically distinct. The name gracilis bemg several times preoccupied, I have therefore applied the name Philippiana to the present species, so that if future researches shonld indicate it to be identical with the tertiary fossil the name will extend to that also. It is intended as a slight compliment to Dr. Philippi, of Santiago, whose labors for nearly three quarters of a century have so much ameliorated malacology.

The west American tertiary group in question may turn out to be, as a whole, equivalent to but one species, in which case r. triplicata of Sowerby was first described. But until I have seen specimens of the rarions named forms, I would lay no stress on this observation sug. gested by the rather indifferent figures. The present species appears, more nearly than any other recent form, to represent the typical Tolutilithes, while the 「. ubyssicicolu is shown by Mr. Watson, from the adult Challenger specimens, to be more nearly related to Lioderma Courad.
T. Phitippiana and its fossil precursors represent a step in the line of descent from the Cretaceons forms of Volutider toward scophelle and Aurinitu as well as Volutu proper. Seaphella is probably descended from older representatives of the present gronp, while Voluta proper came through the line of forms like Lyria, so abundant in the Eocene. It is trie that the present species is not spinose at the shoulder like the types of the genus, but even those are frequently smooth, and the Chilian and Oregonian fossils are frequently modose and almost spiny at the shoulder.

The soft parts of this species were preserved. The exterior of the body is of a yellowish color and, as contracted in alcohol, rather rugose ; the foot is moderately pointed behind, in front anriculated at the corners and double edged; there is no operculum or rudiment of an opercular gland; the head is wide, with rather long, rounded, moderately stont tentacles with an expansion at the outer bases, but no eyes in the specimen before me. The siphon is long and has an appendix near its base on each side of the gutter; the gill and osphradium are as usual; the anus is simple, not free or prominent; near it are a purpuriferous and a large slime-gland, on the dome of the mantle; the verge is small, clavate, with a smaller conical tip, not tlattened, ahout as long as one of the tentacles but thicker. It is sitnated immediately behind the right tentacle.

The characters of the group as far as can be judged from present data are as follows: Shell transversely ribbed and spirally striated; nucleus minute, not conspicuonsly difierentiated from the immediately succeeding whorls ; plaits few, moderate, oblique; animal devoid of an operculum and blind.

Scaphella proper has a membranous larval shell and a styliferous nucleus, and the surface of the adult is usually smooth; Fulgorariu has a similar or at least a swollen mammillary nuclens and spirally striated and ribbed. whorls with strong plaits.

A careful study of the nuclei in well preserved recent and fossil Fot. utide will do much toward elucidating the relations of its suhordinate groups. In my report on the Floridian Pliocene, a begimning has been made in this direction. The present species came in very opportmely to assist in determining the characters of the soft parts. An empty ovicapsule dredged with it resembles those of scaphella maycllanica, but was only about $10{ }^{\mathrm{mm}}$ in diameter at the base.

Family MITRIDA.

Genus MITRA Lamarck.
Mitra Bairdii Dall.
Plate XI, Fig. 7.
Mitra (Turris?) Bairdii Dall, Bull. Mus. Comp. Zö̈l., Xvin, p. 161, June, 1-*).
Shell waxen gray or greenish, elongated, acnte, with ten or eleren flattened whorls; nuclens ? (wanting); sculpture consisting on the
earlier whorls of up to fourteen little raised hardly flexuous transverse waves extending clear across the whorls, rounded, equal throughont their length, and separated by shallow slightly wider interspaces; this trausverse sculpture becomes gradually fainter, and entirely obsolete on the last whorl, which in the adult seems only marked by the fine and slightly irregular incremental lines which give to the thin, smooth, pale brown, and slightly fibrous epidermis a silky appearance; spiral sculpture of numerous rery fine, close, half obsolete groores or scratches, and six or seven deeper, stronger grooves encircling the canal; whorls mostly flattened, the last slightly rounded; suture distinct, appressed; aperture white, the onter lip thin, sharp, with no lire in the typical specimen; column with three plaits, the anterior one faint; canal short, nearly as wide as the aperture, hardly recurved; siphonal fasciole distinct; soft parts whitish, with no operculum. Longitude of shell (nuclear whorls lost), 35 ; of last whorls, 17 ; of aperture, 12 ; maximum latitude of shell, 9^{amm}.

Hab.-Une living specimen, at Station 2628,100 miles southeast by sonth half south from Cape Fear, North C'arolina, in 528 fathoms, Jellow mud; bottom temperature 380.7 F .

The soft parts are so contracted that they could not be extracted without breaking the shell. This species looks a good deal like a Terebra in form. None of the described species at all resemble it.

Mitra Hanleyi Dohrn.

This species was dredged in 20 fathoms, 90 miles southeast from Cape San Roque, Brazil, at Station 2758.

Subgenus CONOMITRA Conrad.
Conomitra intermedia sp, nov.

$$
\text { Plate v, Fig. } 3 .
$$

Shell elongated, white, polished, fusiform, with a large smooth shelly nucleus and seven or more whorls; suture distinct, not channeled; whorls with a slight shoulder a short distance in from of the suture, on which are a series of short, narrow, irregularly spaced little-elevated riblets, which, except on the earliest whorls, become almost immediately obsolete; other transerse sculpture only of incremental lines; spiral sculpture of microscopic spiral strix, often obsolete, and a few fine faint threads on the canal; aperture narrow, elongated; outer lip (broken) thin, not internally lirate; pllar and body with a thin glaze of polished enamel plaits four, sery horizontal, the posterior the highest; pillar straight, attemuated in front; caual short, hardly differentiated from the aperture ; maximmm altitude of shell, 15.5 ; maximum latitude, $5.7^{\text {mun }}$.

Hab.-U. S. Fish Commission Station 2750, off St. Bartholomerr, West Indies, in 496 fathoms, sand; bottom temperature $44^{\circ} .4 \mathrm{~F}$.

This curious little shell very nearly bridges the gap between Conomitra aud Mitra. The large inflated nuclensi is a common characteris-
tic of deep water species of many diverse groups; the typical Conomitra has a small but also rather bulbous nuclens. It is possible that the whiteuess of this shell is due to its dead condition, but it has the unmistakable abyssal facies and is probably colorless iu life. Only two dead specimens, one a mere fragment, were obtained.

Family FASCIOLARIIDÆ.

Genus FASCIOLARIA Lamarck.
Subgenus MESORHYTIS Meek.

> Mesorhytis costatus sp. nov.

Plate v, Fig. 5.
Shell small, thin, slender, the axis slightly bent, of a pale cinerenus or buff color, with six or seven whorls; unclens large for the size of the shell, rather inflated and loosely coiled, polished white; spiral seulpture on the early whorls from four to six little-elevated flattish threads with subequal interspaces; between the suture and the periphery on the later whorls these spirals disappear but persist on the periphery and between it and the succeeding suture or the end of the canal; on the last whorl these threads become faint or obsolete, but on the preceding whorls do not eularge in crossing the ribs; transverse sculpture on the earlier (except the first two) whorls, of eight to eleven rather stout narrow ribs or costre, extending from a little in front of the suture orer the periphery, where they are strongest, to the next suture, and overrun but not nodulated by the spirals; on the last whor the transerse as well as the spiral sculpture becomes obsolete; suture distiuct, somewhat appressed; whorls noderately romded; canal slemder, slightly tortuous and distinctly recurved ; aperture elongate, pointed before and behind, the canal distinct; onter lip thin, simple, not internally lirate; pillar slender, twisted, with a thin glaze; one shorter anterior and two posterior strong transwerse plaits. Maximum longitude of shell, 14 ; máximum latitude of shell, 4^{mm}.

Hab.-U. S. Fish Commission Station 2751, south of St. Kitts. West Indies, in uorth latitude $166^{\circ} 54^{\prime}$ and west lougitude $63^{\circ} 12^{\prime}$, in 687 fathoms, globigerina ooze; bottom temperature 390.9 F .

This species, like M. Meekii Dall, was taken without the soft parts. It is a minute fusiform Fuscioluriu with the transrerse plaits of a Mitra. In Ptychatractus, which seems to be its northern representative, the plaits resemble those of Fasciolaria and not those of Mitra. The group was first differentiated by Meek as a Cretaceous fossil. Buth the recent species inhabit the deep waters of the Antilles. A fragment of still another species, or a Cordicria, insufficient for deseription but evidently nerr, was dredged in 496 fathoms, at Station 2750, near St. Bartholomew, West Indies.

Genus LATIRUS Montfort.

Subgenus LEUCOZONIA Gray.
Leucozonia cingulifera Lamarck.
Leucozonia ocellata Gmelin.
These two species were collected at the Abrolhos Islands, near Porto Allegre, Brazil.

Genus FUSUS Lamarck.

Fusus ceramidus Dall.
Plate vi, Fig. 6.
Fusus ceramidus Dall, Bull. Mus. Comp. Zoöl. xviri, p. 171, June, 1889.
Shell of a waxen or brownish yellow color, of a peculiar waxen subtranslncency, uine-whorled, strongly transrersely ribbed, with obscure spiral sculpture, and an imbricated band in front of the suture. Nucleus white, smooth, small but swollen. Transverse sculpture of seven or eight rounded ribs, stouter and more promivent on the early whorls, and on most of them not quite reaching the suture; also sharpish lines of growth which in front of the suture are elevated into flattish, somewhat irregular imbricated scales, forming a narrow band in front of the suture. Spiral sculpture of primary and finer secoudary threads, one or two of the former near the periphery becoming sharper and more prominent as they pass over the ribs; on the later whorls all the spiral sculpture has a worn or partially obsolete appearance. Aperture large, canal moderate, curved to the left; outer lip not much thickened, interually lirate; a callous ridge on the body, near the outer lip; the inner lip smooth, or with a few lire near the canal. Maximum longitude of shell, 46.5 ; of last whorl, 32 ; of aperture and canal, 26 ; maximum latitude of shell, $18.7 \mathrm{~mm}^{\mathrm{mm}}$.

Hab-Near Barbados, in 73 to 103 fathoms, sand; bottom temperature 60° to $71^{\circ} \mathrm{F}$.

Fusus æpynotus Dall.

Plate vir, Fig 5.

Fusus cpynotus Dall, Bull. Mus. Comp. Zoöl., xviri, p. 169, June, 1889.
Shell small, slender, white, eight-whorled; nucleus milk-white, strongly transremsely plicate below, above smooth, rounded; spiral senlpture of (on the hast whorl eighteen) strongrounded threads of which four or five are visible on the upper whorls ; these are slightly swollen, but not keeled, where they pass over the ribs ; hetween these are nmmeros fine chose set thembs slishty matied by imeonspicuous lines of growth. The imanserse suthtum cousists of (on the last whorl ten) rounded, rather close, stout ribs, which pass clear over the whorl and are straght
and slightiy larger behind ; suture appressed and wavy, conspicuons; canal stout, slightly twisted, aperture subovate, marginated: outer lip internally lirate with two or three strong denticles anteriorly; muer lip smooth, or slightly granulous. Maximum longitude of shell, 24 ; of last whorl, 16.5 ; of aperture and canal, 12.5 ; maximum latitude of shell, 9 mum.

Шab.-U. S. Fish Commission Station 26:18, off Cape Florida, in 84 fathoms, greeu mud; also at Blakie Station 36, in 84 fathoms, Gulf of Mexico ; off Sombrero, in 70 fathoms.

This species recalls F. Bocugei Fischer, dredged by the Travailleur in about 500 fathoms; but that speecies, from an authentie specimen, is shorter, stouter, with only seven transverse rilss and three principal spiral threads on the spire. The fine spirals in F. Boctyei are also more conspicuous. F. apynotus has a little the aspect of F'usus. carolinensis Verrill, especially the young ones, while differing in many details, especially the number and straightness of the rilhs. Its nearest relative would seem to be a form named by Borson Fusus lumellosus, from the Tertiary of Modema ; but this is merely the young of F. rostrutus, and the adult has very different characters.

Fusus alcimus Dall.

Plate vii, Fig. 6.
Fusus alcimus Dall, Bull. Mus. Comp. Zö̈l., XviII, p. 170, June, 1889.
Shell resembling F. eppynotus, but shorter and more acute at both ends, with only six much more oblique and proportionally stouter ribs, coarser revolving spirals, and none of the fine spiral striation which exists between the primary threads of F. apynotus. It has eight whorls; the nucleus is strongly plicate below; the interspaces between the ribs are deep, and in them the spirals are much closer together than they are on the summit of the ribs; on the last whorl there is sometimes an intercalary single fine spiral thread. The color is jellowish, with touches of dark bromn; the canal is very short; the aperture is contracted, the lips much thickened, the outer one strongly internally lirate, the inner one smooth; the suture is inconspicuons and very much waved; maximum longitude of shell, 15; of last whorl, 9.2 ; of aperture aud canal, 7 ; maximum latitude of shell, 7 mm .

Hab.-Gulf of Mexico, in 9 fathoms, 100 miles north of Yucatan.

Fusus alcimus var. Rushii Dall.

Fusus (alcimus var.?) r'ushii Dall, op. cit., p. 170, 1889.
Shell smather, pure white, mtelens hatly phicate depmeswions hefween
 8.5 ; latitude, 4^{mm}.

FAMILY BUCCINIDE.

Genus BUCCINUM Linné.

Buccinum viridum sp. nov.
Plate vi, Fig. 9.
Shell delicate, thin, inflated, six-whorled, with a delicate greenish gray, slightly fringed, dehiscent epidermis ; spiral sculpture of numerous subequal flattish threads, with narrower rounded interspaces and no intercalary threads; these threads are, as usual, slightly coarser on the base and tiner behind the shoulder of the whorl near the suture; at the shoulder a siugle more promineut but not much larger thread slightly turriculates the spire; whorls full and rounded, especially on the base; suture distinct but not channeled ; aperture wide, outer lip somewhat patulons in front, receding toward the suture ; canal wide, short, hardly discriminated from the aperture, very slightly recurved ; fasciole distinct but not promiuent; pillar thin, twisted ; inner lip smooth, white, slightly excavated, or the limy outer layer of the shell is there absorbed aud the space covered with a thin wash of polished glaze; except for the epidermis the shell is pure white. The outer lip is very thin and but slightly reflected. The nuclens is eroded on the surface so that its character is not determinable. Masimum longitude of shell, 46 ; of aperture, 24 ; maximum latitude of shell, 29^{mm}.

Hab.-Station 2s39, off Santa Barbara Islands, California, in 414 fathoms, sand.

The operenlum is oval, slightly pointed towards the extremities, thin and normal, the nuclens being near the margin about three eighths of the distance from one end toward the other. The soft paris are whitish, the tentacles moderate, the swelling for the eye present, but usually unpigmented, though a trace of the color seems to remain in some speecmens. The gills and osphradimm are as nsual. The rerge is as long as the foot, stont, geniculate, razor-blade shaped, the thin edge being to the right or when recurved and turned under, as is generally the ease, to the left ; the distal end is squarish, rounded at the corners, the thicker augle terminating with a small acorn-shaped papilla. The dentition recalls that of B. undatum, but the central tooth has fise sharp, spike-shaped, subequal denticles, the two inuer cusps of the laterals, while smaller than the outer cusp, are more nearly its size, the middle one of the three tends to be smaller and to have one or even tro minute denticles, one on each side in the latter case, wear its base. The formula would be $\frac{1}{3} \cdot \frac{1}{5} \cdot \frac{1}{3}$ and the full formula of a fully developed lateral would be $1+\frac{1}{1} 1$. None of the specimens were fully mature, thongh the one figured had formed the begiming of the reflected lip, so that its shape could be ascertained ; but it is probable that fully mature specimens would have the retlection wider and stronger.

Genus CHRYSODOMUS Swainson.
Chrysodomus amiantus sp, nov.
Plate v, Fig. 10.
Shell large, thin, white, with six whorls and a small bat prominemt
 rommed narrow ridges, of which part are larger than the others ; on the early whorls two or thee of the primaries are conspichoms on the periphery, with one or two finer ones intercalaterl; later the peripheral spirals meree with the other primaties, as to saze and prominemer, and on the last whorl there are four or tive interalary threats between the primaries, the space between the latter, from center to center, averaging 2. $5^{m a n}$ to eath set; transerse senhture shows only in fine, slightly irregular lines of growth; the whors fom and including the third are inflated, aud the suture, thomgh not chameled, is strongly marked; the canal is short and recorved, the siphomal fasciole indistinct; the aperture is wide, the onter lip, prominent in the midile, receding toward the suture and the camal, smooth not thickened, whitish internally; inner lip concave, with a thm glaze of polished cellus. slighty brown tinted ; pillar twisted and the axis minntely pervions; the aperture longer than half the shell; operenlum hown, moderately stout, apically pointed; maximum longitude of shell, 76 ; maximum latitude, 43 ; longitude of aperture, 45 m.

Ifab. Station 2839 , near the Santa Bathara Islands, oft the coast of California, in 114 fathoms, sand; bottom temperature not taken.

This fine speces does not require any compramons to inticate its distinctness foun torms alreaty known. Several specimens of difterent ages were obtained, all the adnlts showing more or less strongly the effect of carbonic acid or other eroding agency on the upper whorls, though living when obtained.

The soft parts are whitish externally: The foot double-edged in front, but not auriculate, the tail-end gently rounded; the tentacles. as contracted 11 alcohol, are subtriangular and somerphat flattemed; there is no pigmented organ of vision nor any distinet vestige of such an organ without pigment. The gills and osphtadinm are as ustrat; also the female matipatons shand which fumishes the material for the ovicapsules; the rent projects slightly, but is not free; the penis is not remarkably large, but is genienlate as msual, its tront edge thick and rounded, its hinder edge shatp and transversely winkled, slightly projecting distally behind a stome, short, conical papilla. The male, as usual, is smaller than the females. The dentation resembles that sif C'hrysodomus recpertus, as figumed by Frime (Moll. Norske Nordh. Exp.,
 from which it difters by the outer donticle of the laterals beins poome tionately a little longer, and ihe thee denticlasen the rhachinhan bemes Proc. N. M. S! - 21.
more slember，closeset，and longer in proprortion to the Gase：the base itself is of a yellow－henw tinge；the laterals and the cusps of the me－ dian teeth are of the usual pale－amber color．

I do not remember to have seen attention called to the very general dark color of the＂false＂or＂supplementary gill，＂or osphradium，as compared with the other soft pars．It is always darker than the true gill ；the latter is msmaly darker than the general surtace of the mantle， though not so dark as the substance of the liver．

Chrysodomus griseus sp．nov．

Plato r，Fig． 6.
Shell thin，solid，rather acutels pointed when perfeet，but almost in－ variably croded at the tip，eight whorled，covered with an olive gray epidermis，the substratum，pillan，throat，and reflected lip mulk－white； nuclens eroded，small；suture distinet，not appressed or chameled； whorls full and rounded ；transerse sumpture of twenty to twenty－five， narrow somewhat irregular archated ware like ribs，which on the earlier whorls oiten reach from suture to sutme but are strongest on the periphery some specimens have them faint，others the ma－ ©ority have them strong，but in all they become more or less obso－ lete on the last whorl ；spimal senlpture of rather coarse，rombled，not much elevated cinguli，with namaw interspaces，slighty reticulated by the incremental lines；rariable in strength but ustally covering the whole surface；in fise roung specimens the surface orer the seuphture is somewhat polished，in ：dults it has a more rmbe appearance；aper－ ture oval，wide；the onter lip flexuons as in Imecinum，more or less（in some specimens very much）reflected；margin simple，smooth；body polisheed，the surface slighty excarated and glazed ；pillar thin，simple， twisted；the axis widely pervions in the yong，mimuely or mot at all in the adult；canal nhort，wide，slightly reenered；there is no siphomal fasciole；opertalum large，thin，oroid，slightly curven，with an apical nuclens．Maximum longitnde of shell， 32 ；maximun latitude， 1 s＂me．

Hab．一U．S．Fish C＇ommission Station ごS3！，near the islamds off Santa Banbara，California，in 414 fathoms．srey samd temperature not re－ corded．
Animal whitish，with a little sray abont the head and tentacles． General form aud details as in（＇．amiontus，except that the tentacles are longer and more eqlindrical and the reme is proportionately larger， more cylindrical，with the termination swollen，slightly hood－shapert， with a gramular depressed oval area set obliquely at one site and no visible terminal papilla．I an uncertain how much of the difference noted in this organ between difterent species is due to its different de－ grees of extension when phaced in aleohol and differences in eomtracton taking plate under the influence of alcohol．

The dentition agrees with that of C ．cmicutus，but is of course on a

in the previous spectes, the femates being gemerally somewhat more ros. bost and having the concave wave in the outer lip somewhat mone ponomed. The operentum of the extremely gomg is huecinoid, lut this character is lost very early. I'erbaps this may be found to be the case throughout the genus.

Chrysodomus aphelus sp. nov.

Plate vi, Fig. 7.

Shell small, buceiniform, six whomed, smonth, memed with a greenishegray epidermis; muclens minute, eroded: whents finl, well rombled; sufure distinct, not deep nor chameled: sculpture only of faint incere mental lines and a few obseme spisal traces ; aperture monkate, the outer lip thin, rery slightly reflected, flexums; hody and pillar lips white, polished, without callus; pillaw short, strong, cumed, obliquely truncate anterionly, well reemed; canal shome wide, well dedined, and recurvel ; throat smooth, white; axis not pervions: opereulum normal. Maximum longitude of shell, 30 ; maximum latitude, $15^{\text {mm }}$.

Habs. -Station 2ssis, in $41+$ fathoms, off the coast of santa Barbana county, California.

The soft parts of this species agree with those of the precerting, (. !frisens, except that in the sole mate spectmen a blunt papila protrudes from the oral depressed areat at the end of the verge, and a little more than one fouth the way from the external hases of the tentacles toward their tips are sitnated eyes of musual size amd batekness. The dentition does not differ from that of ('. grisens. Here we have the interesting fact of two speceses of the same gromp, nearly related, from the same identieal spot in the arehibenthal region of the Pacitic, in one of which the enviromment has induced hlindness, while in the other the eyes have been retained and beeome larger, and in all pobability tiore semsitive. This seems to me to indicate the existence of a certain amount of light on the sea bottom at over 400 fathoms.

This modest little shell presents few salient characters, but its very simplicity is notable and attanctive. With the preedinge specese it belongs to a pecoliarly baceinitorm gronp, which are charactorized hy a strongly reflected lip, short canal, and minute muclens in the shell, but which, so far as the solt parts are concemed, present mo bibious points of difference having systematic value fom the lamer and, so far as the shell is concerned, more nomal speces from shallow water.

Subgeuus SIPHO Mörch.
Chrysodomus (Sipho) Rushii Dall.
Plate V, Fig. 1.
Chrysodtomus (Sipho) Riushii Dall, Bull. Mlus. C'omp. Zoül., Xviri, p. 1755, June, 1F89.

spirally striate: whonls well romeded: suture distinct; spiral seupture of (between the surmes five) primary threads, with a smaller thread in the intervals and finer ones on the atherior part of the last whorl and eanal; these are consed by fine flexums lines of growth which decussate the thrads, or give them, in strongly soulptured specimens, a somewhat beated look; there are also twelse to fifteen faint flexuous ribs: conssing the whon, tending to become obsolete on the last half of the last whon, and more marked onsome specimens than on others; these are quite concare at and behind the periphery ; canal short, narrow, twisted to the left; columella wather concave; aperture entirely: simple, with no visible callus; operenlum rather wide and short. Maximmm longitude of shell, 11 ; of last whonl, 7.5 ; of aperture and canal, 5.5 ; maximum latitude of shell, 4.5 ; of apert ure, 1.25 mm .

Habs.-Station 2644, off C'ane Florida, in 19.3 fathoms, samd; bottom temperature 43.4 F ; Station $266 \mathrm{~S}_{\mathrm{S}}$, ofí Fernandina, in 294 fathoms; also in 205 fathoms, of Fowey laseks, in the Straits of Florida; by Dr. W. H. Rush, U. S. Nary.

This is a delicate amd preti! little shell, which is, in its general charateres, very much like the vomos state of Tritomidea limbeta Philippi (+ Fusus: pulchellus P'fr: now P'hii.); hat that is more strongly sculptured and has a different muclens, beside being clouded with color.

Chrysodomus (Sipho) testudinis sp. nov.

Shell short, stont, white, with five or mone whorls; apex eroded ; the last two whorls show about fifteen short, stout, trabserse ribs, which do not reach the suture and become olsolete a little in front of the periphery; they are most prominent at the shombler of the whorl; bee himl them there is a monemate constriction and the whom is strongly appressed in frost of the summe; heside the ribs, the tramsserse seulpfure emsists of irregulat, strong. incemental lines; spiral seulpture of monerons coarse, close-set, monded threads, mostly alteruating larger amd smaller or more and less pominent near the sutme; these are a little grambated by the incemental lines ; these is a thin, pate yellow. hispidepidermis; aperture ebongate, onter lips slightly thickened with a bated of livid pink gust inside the sharp simple margin ; hody and pillar with a solid, also slightly pinkish, callus; pillar a little tortuous, attemated in fiont ; canal rather shont and wide, somewhat recurved, not well differentiated from the rest of the apertme Maximmen longitude of (decollate) shell, sin; of last whorl, $2 \cdots .5$; of aperture, 1s; diameter, 15^{mm}.

Habs.-Station 2rata, in s12 fathoms, ooze, near the Galapagos Islands, Pacific Ocean; temperature 380.4 F .

This is a very strongly marked species, but the specimens were
 the canal or near the apex.

It has the presutmal ehammel of some of the !henemomoid forms, but there is no notelor fasefole. Ther solt parts are as msual; the ane imal possessed small pismented eyes and the operenlum offered no peenliarities. I do not know any shaceres which greally resembles it.

Gunns PISANTA Bivona.

Pisania pusio Linne.

Genus ENGINA Gray:
Engina turbinella Kiener.
Collected at the Abrolhos Islands.

Genus NASSARIA Link.

Sulgenus NASSARINA Dall.
Nassarina columbellata Dall.

$$
\text { Plate vi, Fig. } 8 .
$$

Nassarina columbellata Dall, Bull. Mus. Comp. Zoül., Xvilt, p. 189, Junc, 1889.
shell pure white, attemated anteriomy, mather actlely conical hebind, with right whorls. Nacheus two-whorled, polished, smoth, mills white.
 Whorls with about five strong, close set, equal threads, most anospicolous: in the interspaces between the mamernes (on the last whond eighteen) flattened transverse ribs, which (woss the whonk but stop) shont before the sutmes, giving a groover ashet to the latter, which is inereased by the existence of a peripheral line or spare wider than any of the others, between the two spisals neamest the peophers; last whorl attenwated toward the long eanal, but not comstrimed, as in I. Bushii [Dall;
 ¡nterrupted only by the canal, which is reanved mear its fermination ; outer lip with four or five internal teeth: inner lip with five of six fines. smaller ones ; whorls mot sommed above. Maciman longituhe of shell,

 tan, in 124 fathoms, sand.

The upper whons of this shed ane thattemedi and senhntured murht like those of Columbella similis or transtirate. The species of this group seem to bear much the same sort of a relation to Nassuria proper as Strombina does to the typical Columbella.

Family NASSIDN．

Genns NASSA Lamarck．
Nassa scissurata Dall．
Plate v，Fig． 2.
Nasez scissurafa Dall，Bull．Mus．Comp．Zö̈l．，Xviri，p．185， 1889.
isucll short，conical．glistening，white，clonted with light brown as buff；whorls stont，well rounded；muclens of two translucent turns． smonth，or transsersely slighty winkled；remainter，comprising five or six turns，separated by a deep but bot chameled suture：senlpture of（on the last whorl about fourteren）stout，rommed ribs，with wirler interspaces，eompletely crossing the whorls，and fine incremental stria； spiral seulpture of（on the last wholl about ten）revolving didges，fant in the interspares，stronsly ovally modnled on the ribse three rows showing on the＂म保 whorls；ribs interlocking at the sutures：aper－ fare pommed，with its edge contimmos amb raised，contracted in front of a stont varix．lirate on！both sites；a stont tooth on the bory and athother at the sase of the pillar：a deep spowe hehind the siphomal fascoole ；camal siont，strongly twisted；operenhme sermate at the sifes． Lontsitulu of shell，1ご；of last whorl，ぶ；of apertue，\quad ；maximum lati－ tude of shell， 7.5^{mm} ．
 bottom；bottom temperature 580.5 to $65^{\circ} \mathrm{F}$ ．
 nearest relative，by the chamatere of the sutmes，which are mot chan－ neled，by its fewer stronsly motulated ribs，and by the come of the ribs，which in Ifotessieri，as in most ribhed mivalyes，ate convex for－ Wand on the periphery，and then emere a little batewath，while in N ．
 paring two speremens．The total conve is mot seat，but thitesutiocent to form a marked distinction．

This speries has the laght waxen luster of a deep－water sinell，and
 calls that of N ．spimulosa Phil．

Nassa Townsendi sp．nov．
Plate XII，Fig． 9.
Shell small．short，rery stont，Jellowish white，with six whorls；me
 fow biblets．which extend from suture to suture，bat on the last whorl fade away in fiom of the periphery ；the interspaces are nearly twice ats wide as the ribse which in front of the suture have two or three small，
 of as many spinal theads，which，howero！，are faint or obsolete in the
interspare ; ineremontal lines not prominent : sital souppore of (in adidition (t) the presutmal (hacals ahowe mentioned) mumeroms rathere faint theads on the base of the last whon and on the eamal : surtace somewhat polished with a resy thin epidomis: aperture shome wide. with a thin, simple onter lip, berhaps thickemed hater; no intermal lizar: immer lip with a smooth, moderately thick, white callus: camal wers short and slightly recorval : chlen of the pillar mised and sham. Max imum longituke of shelt (without mellan whoms), 10; diameter, (fom.
 ooze; temperature $35^{\circ} .4 \mathrm{~F}$.

This spereies is neamest to N. buthyturen Watsom, from hear the Philip. ine Islambs, amd like that has a chrsondomoid operembum. It is, how: ever, stouter, with a moportionately shorere spire, compared with the last whom and is mote indated. The operenhm is also mone ehomated.

This species is named in honor of Mr. U. H. Tomnsend, of the U. S. Fish Commission, one of the inatmalists :ommeted with the Albutross in her later explorations.

Family COLUMBELLID 太.

Genns COLUMBELIA Lamarck.

Section Astiris If. © A. Adams.

Columbella permodesta sp. nov.
Plate v, Fig. 4.
Ghell smat, thin. pulished. with fixe momded whoms, a pale yeltowish
 obly of fatnt incremental lines ; spisal senlpture of fine spiral threatison the hase of the shell, whonlete of absent hetween the sutmes : apertore wite, oval; outer lip thin, simple refy slightly reflected : axis pervious: fanal wide, extremely shomi, hardly difterentiated : pillar smootlo,
 clens momath, slighty thatemed, exherally roded. Maximmm longitude of shell, 14; maximum latitude, 7 mm .
 276 fathoms, mud.

The solt parts of this athimal are of : greenish white color: The foot
 distinctly auriculate in front. The tentacles are rery short, stout,
 than laterally fom the heat? : He hasal part is swollen out wathly and there are pigmented eyes, hut so halden berneath the reltirle as for
 The sides of the foot are smooth, they are marginated below as in
 The whole animal exmles an abmalamt mones. The mohose is is stont. its oprening noteher below: The wills are rather latge, hut otherwise
as usual. The osphratium also presents nothing unusual. The verge is extremely long, slemder, nearly eylindrical, situated on the right side a little distance behind the right tentacle; as contracted in alcolol it was about $7^{m m}$ in length, tapering gently to a subconical point, without papillie or appendages of any sort. The dentition resembles that of C. IÏ̈lbollii as figmed by Lorem, and the species evidently belongs to the same section of the genns, though with a more buecinoid shell than any of the others. The median tooth is a wide, flat, areuate, edentulous phate without anything resembling a cusip. The laterals have the usual form and two rather romded denticles near the tip.

The opereulum recalls that of Nissu, but is romoded at the corners with an entire erge, the muclens within the margin at the smaller end and a lunate ridge of yellowish translueent callus bomading the sear internally.

A large number of specimens of this species were taken, living at the locality indicated. All were more or lesis eroded at the tip and were incrusted with a sealy combination of calcareous matter and iron of a rusty color.

> Section commbela s. s.
> Columbella mercatoria Lamarck.

Collected at the Abrollios Islands.

> Section ANaCIIS Adams.
> Columbella Saintpairiana Caillet.

Columbella Verrillii Dall.
C. (dstyris?) Terrillii Dall, Bull. Mus. Comp. Zö̈l., xtimi, p. 192, PI. xix, Fig. 8.

Follected at Station 2̈न6, in 391 fathoms, sand, off the P'ara River. Brazil.

Section Nitidella swainson.
Columbella moleculina Duclos.
Golloctod at Stations 2-6.t amd 2765 . off the Lio de la Plata, in $10 \frac{1}{2}$ fathoms, saud.

> Subgenus AESOPUS Gould.

Aesopus Metcalfei (Reeve) Dall.
Aesopus Metcalfei Dall, op. cil., xtitt, p. 194, 1889.
Terebra Mctcalfei Reeve.
Oollected at Sitation 2764 , otf the Rio rle la Plata, in $10 . \frac{1}{2}$ fathoms, sand. It was previously known from Santo Domingo.

Family MURICID.E.

Subfamily MURICIN届.

('enns MUREX Linne.
Murex (Chicoreus) Leeanus sp, nov.

Plate vir, Fig. 1.

Shell strong, stont, pale yellowish bown. with thee varices to each whorl, and a faint intervarical note hotwean math pais of varces: the varices toward the apex fall shghtly short of completing a whole whorl, so that they are slighty spirally armaged; the defecit on the whole shell of six and a half whors (excluding the mothens) is about one-quarter of at turn, so that the great varieal spines on the spire are mot durectly over one another; nuclens mimete (lost in the sueceimen); first whorl on two with eight or ten small spiny or sealy nodes; at the thimel whor the spines begin to take on the characteristie biabate :mamgement; spiral senpture of rather fine, rounded therads, almosit mifoment. dis. tributed, slightly coarser in front of the periphery and on the vaniees. amb in front of the sutme for a shot distanee meaty ohsolete; the in terspaces are narrow grooses, with very ranely an interealary thread; there are also fine microscopic spial stria; thiss spiral simbture, with the qualifications noted, eovers the whole shell; transwerse semperme of intervarical notes obsolete of obsemer on the hasi whon, growing stronger and sharper toward the apex: apart from the variess the on? other senpture, in a transwerse sense, is due to irregularitios of growith or fatut incremental lines; the rarices on the last whon are slighty elevated, rounded ridges, extenting from the sutwe fo the emol of the canal; behind the periphery the whot is thathest: at the potphery or shoulder of the whon each varix is extembed in a strong. smon, singls hollow spine, rounded behmi, deeply namowly growed on fiont. chive ing slightly upward and mome strongly hackwam towath itu hiviah end the aperture is orate, rommed hehind, a little pointed in fiom, whth : thin, raisel edge, white or waxen internally dme withont demtembations: the camal is elosed, long, stont, oblignely thaneato in fiont. showing two wher termini at the iffo beside the one in actual hase. Vasimam lonst
 aperture, 13.5 ; iongitude of aperture, 20^{mm}.
 oms, mud.
The only species with which this fine Marer mom? herompaned is M. centrifugus: Hinds, a member of the same fanmal mgion, whelt also wat

 and M. centrifugus of the same size is seen in the varical processes. In .1. Lectumes a section of these pmotesses all any age is oval, wilh a
deep smoteron the anterion side which is widest internally sine the

 varical spines are triangular in section, the anterior mowins do not approath one another, and a shallow methan sulens on the front of the sbine is the only representative of the sroove of h. Lepemus. Below the matn spine on eath varix in .7f. centrifugus are three smaller that spines: on . $1 /$. Lefon is the larix is rounded and without spines. The intervarisal norle in . M. Lemmus is obsolete or ohsempe and rommede : in M. centrifugus it is much mone mominent in poportion and fimms an ablique rather narow sib with a kime ot clow at the periphery. The most prominent chatacter of M. Lectuns is the rommed, root-like, sheek varical spine.

It is named in honor ol Prof. Leslie A. Lee, of Bowdoin donlleser, in charge of the sedentite work of the. llmetross paty dmong the voyage.

The seecimen was a temale. The loot is amrenlate and dowhle edge el in fromt, short, rommed hehime, with heaty smooth sides. The eges
 and thick, the distal part beyond the eyes much more slender.

The dentition is typueally mutent, the radula small ant marow, the rentral tooth rery wide, vely shont, and with theme inconspienons den-
 Murex brandaris L.

Subgenns PTERONOTUS Swamson.
Pteronotus phaneus Dall.
Plate XI, Fig. 1.
Pleronotus phianeus Dall, Bull. Mus. Comp Zoül., NriII, p. 201, June, 1839.
Shell ashy white, rlo!suled, thin, six-whorled. Nathens tramslucent, smooth, polished, of about one athe a hall whoms; whorls sleghtly cons.

 backwaed into a little wing-lik point with dentate edges: on the las whorl the lines of amoth imbleate that the thin marem was rommen
 on the last two whorls at the periphery three short little narrow pinched
 of these there are nine or ten on the last varix. Aperture elongatewal, intemally white, thickener, smonth; camal rather lons, open,
 aperture, 5 ; maximum latitude of aperture, 3 ; of shell, δ^{mm}.

 $29 \pm$ fathoms.
 having thee mervarical ribs, while the Athantie sperees hitherto
 Dall than to any hitherto described, as far as : have heemabie to asemp tam. The bed! of the shell is inot mblike that of P ? ene dismei Watson. figmed in the Challemger report, hut the present specemes has nome of the semitubular spunes which give the Anstraliata shell the leok of e:
 like point of the rariees present onf all of them. It is probable that there is a good deal of variation in these small details.

Genus Eupleura H. \& A. Adams.
Eupleura Stimpsoni Dall.

$$
\text { Plate xr, Fig. } 3 .
$$

Eupleura Stimpsoni Dall, Bull. Mus. Comp. Zoül., XTHI, p. 204, Jnne, 1889.
Shell small, thin, whitish, not polished, with fome variees to the whom amb fise whots ; molenss smooth, white ; spiral sculphtre of extremely fine faint stria and of (on the last whorl) tivelow keels, most pominent on the back of the variees. The posterior keed is prochaed at the shombler as a spene, whele on the front side of the ratis looks as if it were holding up the wobbing of the varix ats a tent-pole holds a tont : the other keets are representeit on the foront of ther varix only ly shat low gronves. The transierse senloture is fomposed of well-matied mcremental lines; above the spine on the last when the wels of the varis extembs to the difth precerling ramix: below the spine it follows the ontline of the aperture nearly, and temminates midway down the canal :

 canal; there are fonm teeth insiole the onter lip in font of the spine and thres near the front of the inner hip: the canal is slighty recured. the end of the antecedent mand prepecting from it at the left: sutme well maked. Maximmm longituke of shell, 12: of hast whonl, !: of aperture, 3 : of camal, 4 : maximum latitude of apertmee. $2 .-$: of the varix at the spine, 2.8 ; of the shell, 7 mm .
 soft parts were lost before the specimens were received.

Subfamily PURPURINIE.
Genus PURPURA Bruguière.

> Purpura deltoidea Gmelin.

Purpura hremastoma L. var. trinidadensis Guppy.
 coast of Brazil.

Subfamily CORALLIOPHILIN狌.

(Fonti CORALEIOPEITA Attams.
Coralliophila abbreviata Lamarck.
Collecoted at the Abrolhos Islands. It is frequently ealled C. ggetert Sthemnitz, but that anthor did not use the Limnean nomenchature.

Suborder STREPTODONTA.

Superfarnily PTENOGLOSSA,
Family SCALID I.
Genus SCAIA (Humphrey) Auct.
Section ACRHLLA A. Adams.
Scala pompholyx sp, nov.
Shell thin, eonimal, inthated, white, with a pale yellow epplermis, stmooth, prolisher, glassy muchens, and nite or more whorls: spiral
 interspaces. cosoring the whole sumfoe, and at singlestonter threat marshimatite the base, on which the sutume runs; transrerse sentpore of rather inegulat rombtel winkles following the incomental lines when present, but often absent. to some extent rationlating the stronger
 on the last whonl: these are a little more clevated in the viefnity of the sutuse and a little fanter on the hase : suture distinet, not deep; base imperforate : apatare subeirenlar, a liitle angulated helow. Naximmm Iongitmle of shell, 14 ; of last whon, s; maximmm diamoter, $7.6^{\text {mom. }}$
 temperature, 380.4 F .

This sperios is remarkathe fir its faint reticolated senlutme, its thin
 any closely related species to compare it with.

Scala babylonia Dall.

$$
\text { Plate XI, Fig. } 8 .
$$

Scalt babylonia Dall, op. cit., p. 311, June, 1889.
Ghe-l| thin, white. clonsate, with fitteen rombled whorls (muclens lost), each ommanmad with about twenty-tive thin shaty ravices, eath of Which has a shall triangular sharp point half-way from the suture to the berphery ; hehmel these the interspaces are smooth to the sutme ; in front of the varical points the surface is soulpotured with raised flattopped threads with winer interrals between them and mumerons still finer spiral strise : the spimal senlpture does not eremblate the rarices; shell impertinate, withont hatoll liskor emplon ; apertme small; lip, thin, namow, hambly rethetmi, tothuns, and a little pathlons at the anterior
 6.5^{mm}.
 bottom temperature, 380.7 F .

The specimen poemed was fresh, hut without bee solt pants. This

 from deep water are much like it.

Scala denticulata Sowerby.

Genus ACLIS Lovèu.
Aclis nucleata Dall.
Aclis mucleata Dall, Bull. Mus. Comp. Zoöl., xviir, p. 325, Pl. ximi, Fig. 7, June, 1889.

First collected hy the lilelic at Sit. Vincent. Weat !mbes: then hy the
 Albatross still farther extembe the list of localities hy athling station
 ture $44^{\circ} 4 \mathrm{~F}$.
 4. S^{mm} in maximum diameter.

Genus PERISTICHIA Dall.

Peristichia Dall, Bull. Mrus. Comp. Zoöl., Avint, 1). 339, 1889.
Shell elongated, wote, many-whorled, destral, whit at smati, smistral

 the apertme on the boty between the pilat and the outer lip: apotare anteriorly a little edfuse, hut not chammeled in fromt of thr pillar: onter lip varicoid in the adult, internally with a few very strong lire; solt parts?

Type, Peristichia toreta Dall.

 It is like an Oscilla without colmm:rlan plaits. of like a Malhilin with a

 indicate the passage between Mathilde and Oscilla.

Plate xi, Fig. 10.

Peristichia toreta Dall, Bull. Mus. Comp, Zö̈l., xvme, p. 340, June, 1889.
Shell skender, rellowish white, thintern-whorled; muclens minute, glassy, set on coge, having abont two turbinate whorls; spire with the suture distinct, marked by a plain or slighty undulate threarl hehind it : behind this is a strong motulated spiral, with round modules, then a little interval and two more, slightiy smaller, similar nodalons spirals, adjagent to each ofler and to the suture behind them; the last whorl would show abont thirty fom nothles in its cirent ; transwerse sculpthe of ele ated rideres, visible in the interspaces following the line of the modules ateross the whorl: on the rombled base they appear as stronge ladii ; hase with one stmong eord, with a deep sulens outside of it, and the space between it and the pillar somewhat excavated; aperture ovate; pillar straisht, forming almost a right-angle with the lpp in frome of it ; outer lip with thee strong internal liae ; body with the basal comb projecting, slightly covered with emancl ; onter lip swollen, varicose amd whiter thath the rest of the shell, its marem modnlated by the extermal seulpture ; callus joining the piilar and onter lips distinct and continuons. Maximum longiturle of shell. 10.75 ; of last whorl, 3 ; maximum latitude of shell, 3^{mm}.
H.AB.-Coast of North C'arolina, at I. S. Fish C'ommission Stations

 oms, weedy buttom; Dall. Key West, between tides; H. Hemphill.

This is an extremely elegant shell, in which the relative strength of the transwerse and the spiabl sentotme varies somewhat in different imlividuals. The sides of the spite are stanigit, but the whorls are distinetly masked.

The color in rery fresh speeimens is a milky white, more or less elouded with pale yellowish brown on the base or sides.

```
Superitumily TAENIOGLOSSA.
```

Family TRITONIDDA.
Genus TRITONIUM Link.
Subgenus RANULARIA Schumacher.
Ranularia tuberosa Lamarek.
Collected off the lioo de lat Plata, in 10.2 fathoms, sandy bottom:
Family OÖCORITID A.
Genus OÖCORYS Fischer.
Oöcorys sulcata Fischer.
Ö̈corys sulcata Dall, Bull. Mas. Comp. Zoöl., XVIII, 1). 228, 1889.
 fathoms, ooze; temperature, 390.9 F .

Family TRIFORID.E.
Geuns TRIFORIS Deshayes.
section mastonia minds.
Triforis pulchella C. B. Adams.
 Brazil, in 20 fathoms, shelly bottom.

Family CLRITHIID AE.
Gents CERITHIUM Bruguière.
Cerithium semiferrugineum Lamarck.
This species, which ranges thomghont the Antilles and its lan month as St. Ausustine, Florida, was celieqted at l'ort ('astries, siantal Lacia, and at Station 2758 , off the Brazilian coast, in 20 fathoms.

Family SEGUENZild.E.
Geuns SEGUENZIA Jeftreys.
Seguenzia monocingulata Seguenza.
 mud and ooze; temperatures 370.9 to $40^{\circ} .4 \mathrm{~F}$. The sonthermmost
 and west longitude $37^{\circ} 17^{\prime}$.

Seguenzia trispinosa Watson.
 at Stations 2751 and 2760 , with the preceding species.

Family VERMETIDE.
Genus VERMETUS Mörch.
Subgenus PETALOCONCHUS Lea.
Petaloconchus irregularis Orbiguy.
Abundant at the Abrolhos Islands, Brazil.
Family LITORINHDE.
Gentrs IITORINA Parnssac.
Section MELARAI'IE Muhbfeldt.
Litorina angulifera Lamarck.
 Ot the two series of color mathking those connected 1 C ith the spitat striae were the least conspienons.

Family LIIIOPID.E.

Genus $\operatorname{ALABA} A$. Adams.

Alaba conoidea Dall.
Alnba conniden Dall, List of Marine Mollusks, etc., Bull. U. S. Nat. Mus., No. 37, p. 146, 1809.

Shell small, conical, subtramslucent white, with six whorls; apex rather blant; unclens not differentiated; whorls polished, seulptured only wioh obseure incremental lines, suture distinct, a little channeled; sides of the spire thattened, th? who: ls hardiy rommed ; the base almost carimate or blantly rombled; apertore lozenge shaped, angulated at the emd of the carind, pointed bluntly in front and behind; body and pillat somewhat eallous ; opereulum nomal ; the shell has hut one or two not very conspictonis varices, all on the last whorl. ILaximum longitude 3.3 ; diameter 1.6^{mm}.

Hab. -Station 2.595 and 2596 , off Cape I Iatteras, North Carolina, in 49 to $1 ;$ fathoms, saml ; Station 2612 , in $\tilde{5}_{2}^{2}$ fathoms, sand, off Cape
 Fernandinat. Filorida : and hy Dr. W. IF. Rash, of U. S. S. Blake, on the C'ampeche Bank, in 200 fathoms; temperatures 46 to 50 F。

Family SOLARLIDE

Genus SOLARIUM Lamarck.

Solarium bisulcatum Orbiguy.
 It extends morthwad ta the arehibenthal areat off Martha's Vineyard, where the yotng was deseribed by Professor Verill under the name of S. boreale.

Family RISSOIDE.

Genns BENTHONELLA Dall.

Hela Jefiress, 1870 (ex parte) not of Miinster, 1830.
Benthonclla Dall, Bull. Mus. Comp. Zoöl., xviif, p. 281, June, 1889.
In the fitth volume of his British Concholoss (1. 201 , pl. 101, f. 7, 1869) , Jr. Jeflreys deseribed a Lacena tenella dredged by Ios. Carpenter and Thomson, in the North Ithantic, at a clepth of 180 to 6.50 fathoms. The types are in the Jeftress collection now in the U. S. National Musemm. In July, 1s70. in the "Ammals amd Manazine of Natmal Mistory," he proposed a gemas ICla for these shells, which he still retained in the vicenity of Latenm. The name Mele, however, hat been preocempied in ('rustacea for many rears. In the proceedings of the Zoological
 Possur"s, proposed bỵ Arthmr Dhams (D. Z. S., 1Sti; , p. 110). An exammation of three speceies of Cithme, sent hy Mr. Alams to Ihr. Jefferse,
convinces me that 'illnn Alams, is not a member of the family Letere nider nor allied to Fosserms, meither is the dapamese gemus the same as the Itele of Jeffreys. Imbeed. ('ithond Allams, with its small pointed arex and contimoms peritreme does not ontir any very good chatacters which might separate it from '"ingnle or Littorindle. (Owing to the lact
 nelle, I did not at first recognize that the sherls. which I callem Bremblumelle were of the same gemus as those tirst mamed Ifele, ley Jefrieys. After the Blake Repert was in type it suddenly oeemped to me that it was remarkable that Itele diel not appear in the drealgimes of the Pixh Commission, or the Blatie. A reexamination of Dre. Aefliedse material revealed the fact that his original type, amd also the ('illmen merguritifere of Watsonshould he referred to Benthonellu. This grans I beward as a thin-shelled deepwater member of the Rissmider, with a blma :1pex. turbinate brownish nuclear shell and a thin pancispiral opmentian. The umbiliens is always small, bounded hy a mone or less evident rithe or angle at the base, the shell is always thin and polished, the apentme simple and shaperged, the peritreme intermpted by the lowly whor, and the pillar lip arenated or passing insemsihly into the moment hase. The opereulum is like that of Lithoglyphus, as figured ly II. © L. Adams, thin, transhuent horn eolor, without any proess intemall!. The epridermis, if any exists, is so thin and close as to sem atosent. The speeies which may be referted to Benthonella :are, B. temello (. Jeftieys), B.
 shell named tenelle, ly Jefferes, firom the Zanclean formation of Calabria, is not IEche tenella Jeffreys, but is possibly a Renthomella. The only specimen in the Jefleress collection is somewhat almomal. A specimen marked It lu infletu Anontersato, seems to he a lithinella: it was dredged by Nares, in the Mediterranean, in こ(0) fathoms. II. fulcu Jeftreers, from Korea (st. John), is not a Benthonella. Cithnu

 of Adams. They resemble Vitrinella as much as anything eise.
A careful serutiny of the surecimensi in the Jeftreys collention shows that I. tenella was collected by the Porcupine in 1stis at stations I. .2.3,
 was also dredged in the Meditemanean be Spmath and Nates in :9to (i0) fathoms. IB. maryarritifera (which is vers like B. Fiweloci. hat
 $16,17,17$ (t, and 22; also in Setubal Bay and off Cape Espichel.

The three 1 ese Athatic forms seem miformly larew than these from the Aediteramean and Eastern Athatic. All the specees ame elowedy related and differ in details of form, size amd propertion rather than by more salient characters. The dried animal remains in cane of the
 later to examine the dentition of it.

Benthonella gaza Dall．

$$
\text { Plate xI, Fig. } 5 .
$$

Benthonellx gaza Dall，Bull．Mus．Comp．Zoöl．，XVii，p．282，June， 1889.
Shell elongated，glistening opaque white，extremely thin，with two and a half larval and tive later whorls．Nucleas trochitorm，hrown， polished，with a single carina above the periphery；other whorls full， rommed，the earlier ones marked with a few fant flexnous transverse waves，the rest with only lines of growth．The whorls are full and romded，the suture distinct；base full，rounded，with a small umbilicus， in front of which is reflected the thin inner lip；aperture rombled，lip slightly reflected，not thickened．Longitude of shell，s；of last whorl， 4 ；maximum latitude of shell， 4^{mm} ．

Hab．—Station 235° ，west of Cuba，in 443 fathoms，coral；also at Sta－ tion 2394 ，between the delta of the Mississipni and Cedar Keys，Florida， in 420 fathoms，mud；temperature 41 万．；Station 255，sonth of St． Kitts，West Indies，in 6si fathoms，ooze：temperature 3！？．9 F．Station 275t，in 880 fatboms，ooze，east from Tobago；temperature 37 ．9；and Sitation 2760,90 miles north from Ceana，Brazil，in 1， 019 fathoms，broken coral；temperature 390.4 F ．

This species may be regatded as the type．Its polished white rounded simple whorls and brown tip present an elegant appearance．

Family ADEORBID．E？

Geuns ADEORBIS Wood．
Adeorbis sincera sp．nov．

Plate XII，Fig． 2.

Shell small，depressed，white，with a deep olive epidermis，four－ whorled；muclens not differentated，smooth，regular；surface of shell polished．seuptured only by incremental lines；whorls full and regu－ larly descending；after the first whorl nearly all specimens have a flat－ tened area in front of the suture，strongest in the apical whorls，where it is usually bombed in front by a sharp carina or angle on the whorl； this decreases and is nearly obsolete on the last whorl ；in the same way the umbiliens is generally hounded by a well marked angle which is visible eren on the margin of the aperture，amd is less prominent on the alult than in the young ；other specimens have the whorls evenly rounded；umbiliens wide；aperture complete，continuons，nearly cir－ cular，except at the mper eud of the onter lip where it joins the hody， where there is a slight angle；young and strongly carinate specimens show angles in the margin corresponding to the carina．Maximum diameter， 3.25 ；minimum diameter， 2.5 ；altitude， 2.6^{mm} ．

Hab．－Station 26 （fis，of Fernamtina，Florita，in 291 fathoms，shelly bottom ；and Station ご堿，off the Patal liver，Ibazil，in 391 fithoms， sand ；temperature $40^{\circ} .4$ to 460.3 F ．

This shell is reay like labeate sincern, thomeh smaller and of an olivaceots brown when perfect. The aperture is sometimes slighty thickened inside, so it may move to be a IMïllorie. I have not seen the operculum and the generic reference is merely provisional.

I regard the gemas . Lederbis an elosely related to shenea. with which it may possibly be necessary to mute it. Jint though the type is Rissoid,
 Troehoid gronps mat have beed befereal to it in the absence of the soft parts.

Family CALIPTREID E.

Genus MITRULARTA Schmmacher.

Mitrularia equestris Limué.
Collected at the Abrollos Islands, Brazil.
Geuus CREPIDULA Lamarek.
Crepidula (Sandalium) aculeata Gmelin.

> Family CAPULID.E.

Genus CAPULUS Montfort.
Capulus incurvatus Gmelin.
Collected at the Abrolhos Islauds, Brazil.
Family AMALTHEID E。
Genns AMALTHEA Sehmmeher.
Amalthea effodiens Carpenter.
Collecteal at Station 2-5s, 9! miles southeast from Cape sian lioptue, Brazil, in 20 fathoms, gravel.

Amalthea antiquata Limné.
Amalthea costellata Carpenter.
The preceding two species were fombe at the Ahmolhos Lslambs, near Porto Allegre, North Brazil.

Family NATICIDA.

Genms NATICA Lamarck.
Natica canrena Lamarck.

 $57^{\circ} .1 \mathrm{~F}$ 。

Natica maroccana Dillwyu.
 West Indies. Probably adreutitious from shallower water.

Subgeuus LUNATIA Gray.

Lunatia fringilla Dall.

Natica fringilla Dall, Bull. Mas. Comp. Zoül., IX, p. 93, Soptember, 1881.

 tures 370.9 and $40^{\circ} .4 \mathrm{~F}$.

```
Superfamily DOCOGLOSSA.
```

Family ACMADDA.
Genus ACM届A Eschscholtz.
Acmæa melanoleuca Gmelin.
Collerted abmmantly at the Ahrolhos Istambs, near Porto Allegre, North Brazil. It extends northward to Florida.

```
Superfamily RHIPIDOGLOSSA.
Family COCCULINIDE.
```

Genus COCCULIINA Dall.
Cocculina Beanii Dall.
 temperature 370.9 F . Tectura adunca Jeffreys, as far as one can tell from an exammation of the shell alone, is a synomyn of thas species.

Cocculina pocillum sp. uov.
Shell small, stout, short, hish, arehed in front, hluish white, with a dark beown rpidermis: emts evenly pombled, sides nearly stabight on
 about three finer interalary ones, shathty sealloped by the very tine slishty mased ineremontal lises; over all where the surfare se perfed

 stmmit arehed slightly above it : interion hluish white, polished: maximum longitule, $\overline{3}, \overline{3}$; latitule, $3 . \bar{A}$; altitule, $3 . \overline{5}$; apex in liont of himber margin, $1.5^{m m}$.

Hab.-With the precediug species.
This species is mot munh like an? of those merionsly described. Two
 from the right tentarele. It hats mon postorion epipmelial filaments, and therefore should be placel in the section on sulgemas ('oceopygia.

Family TURBINIDAE.
Genus Astratium Link.
Astralium americanum Gmelin.
 northward to Florida.

Family TROCHID E.
Genus OMPHALIUS Philippi.
Omphalius fasciatus Born. (var.)
Collected at the Abrolhos Islands.

Genus CANTHARIDUS Montfort. Subgenus HALISTYLUS Dall.

Shell small, ertindrical, holostomate, polyehmomatic: oquerculum multispiral, coriaceous; dental formula $\frac{1}{x+1 .+5}$; type, Π. columna Dall.

This gromp differs from Leiop!!rgen in its holostomate aperture and absence of spiral sculpture.

Halistylus columna sp. nov.
Plate ix, Fig. 7.
Shell small, suberlindrical, hant-tipmet, polished; yellow, bown. salmon-colored, bluish gray. or streaked or hambed with these eolors: seren whorded ; apex hattish; muelens not difierentiaterl, small: whorls. after the second, nearly eytar! in diameter; suture muth appressed, the whorl somewhat constricted in font of it : senlpture only ot faint incere mental lines; base rounded; aperture rounded ovate, slightly whligue: onter lip eontinnous whth the pillar, which is rased. arehed in hamons with the lip, but not reflecterl; uo umbiliens: lip simple, handly thiskened; a little callus on the body and in the posterion angle betweer the lip and body; throat simple, resy slighty peatly; ope"culum dimenta. externally shaggy, with many whorls; amimal with lonse slember tentarles; the eyes black, on separate rather long perlmoles; epipulial line imlicated hy four or six short stout papillar: foot short and hoad; muzzle rather large and long, a litte indemed in the midhle line; median and admedian teeth simple, with marow stratht stems, and simple. wide, mushroom-like cuspos; unfini mumerous, illiform : almedian teeth four, the onter ones the larger ; stems and lases of the midnle part of the radula so small aml thin as to be dilfornlt to disthentish; :maximum longiturle of shell, ís; maximum latitmte, 1.9 ; lonsuitmle of aperture. $1.2 m$.

 oms, sand.

This singular little shell appears to be the only representative on the shores of America of the Anstralasian Bankivia. The tentacles did not appear ciliated, nor conld I olserve any cephatic lappets between them. The difficulties of observation, however, are so great with so minute an object that their absence can mot be dogmatically affirmed merely from an examination of alcoholic specimens.

Genus GAZA Watson.
Gaza Watson, Jour. Linn. Soc., A7v, p. 601, 1879; Challenger Gastr., p. 93, 1885. Type G. dedala Watson.

Gaza Rathbuni Dall.
Plate vil, Fig. 4:
Gaza Rathbuni Dall, Bull. Mus. Comp. Zö̈l., Xviri, p. 354, June, 1839.
This spectes differs from its nearest ally among those already linown (f.stherbal Dall) by being more depressed, with stronger spiral grooving. a slightly smaller umbiliens, and more thattened wrer the sutures. The single specimen ohtained has not yet formed the redected lip and callus orer the umbilicus. Naximum altitude of shell, 24 ; maximm latitude, 38^{mm}.

Opereulum of about seren whorls, thin and polisherl, slightis centrally concare, with a narow thimer bamd marsinating the coil. It has a maximum diameter of 16^{mm}.
 bottom temperature $44^{\circ} \mathrm{F}$.

As the specimen of this tine species is not quite mature it has been figured in a position which will emable it to be compared with G. superber and other species of the gems. The soft parts recall those of (i. superitu Dall, but the mazzle seems shorter and there are seren slender, rather longe epipodial filaments on the right side, instead of five as in G. superber. The intestine is crammed with toraminifera. The pointed tail-end of the foot, in the contracted anmal, is turned directly down and in. so that the angles of the fold stand out and at first give the impression that the foot is bifid, behind.

Subgenus CALLOGAZA Dall.

Callogaza Watsoni Dall.

C. Tatsoni Dall, Bull. Mus. Comp. Zoül., IX, p. 50, 1831 ; XYiri, p. 356 ; Pl, Xxir, Figs. 7, $\overline{\text { Tu, }} 1889$.

Hab.-Antilles, between Florida Strait and Barbarlos, in st to 640 fathoms, Blate experlition. Station ご..tt, in 391 fathoms, sand, of the Para River, Brazil ; temperature 400.4 F .

This extends the known range southward about 1,000 miles.

Calliostoma platinum sp. nov.

$$
\text { Plate vir, Fig. } 2 .
$$

Shell large, thin, polished, irideseant white, with sewen whorls beside the nuclens; mullens minnte, lost: sulnempent whoms slightly that tened behind the periphery, fall and romeded on the hase: longitudinal sculp. ture of ohscure spisal lines behind the periphery and somewhat stronger flattish threads, separated by shallow grooves, on the hase: at the periphery is a single pominent theand, in mediately in front of which is the suture, the suceeding whol heing apmessed aganst the flated : the single specimen oltained has a second prominent thead about two milimeters behind the peripheral one on the last whorl, but it is prohable that the development of this threat was stimmated loy an injurs of which traces are plainly visible just before the secomd thead begias; base full and romded; aperture rombed gnadrate; the onter lip thin and sharp, its plame oblique and slightly flexnoms: body with a very faint wash of callus; pillar slender, peanly, slighty arehed, very little reflected, simple; interior polished, irdeseent, without lirar ; the external sculpture faintly perceptible oring to the temnity of the shell. Maximum longitude of shell, 32 ; maximum latitude, 29 mum.

Hab.-Station 己sis!, near the Sama Barlana Islands, California, in 414 fathoms, sand; with Thercicula Bairdii.

The operculum of this species has about fondern very namow whorls, is polished internally and somewhat rough externally from the profect ing margin of the coils. It beats abont the same proportion to the aperture as in the shallow water speceres. The shell itself is less at tractive than most of the group, but imblicates that some individuals of the species may have a delicate pale itidesemene. The exterior of this specimens shows little pearliness and is chiefle of a somewhat livid white, like the eye of a boiled fish.

The soft parts are whitish: the head and the sides of the foot helow the epipotial line are profinsely grambese : among the gramule rise pointed larger papilla, also rery gramulose, so as to appear almost arborescent. The epporlial line projects moderately, with a findy: fringed edge. There are two moderate sized tilamems in tront of the operculam and two smaller ones beneath it. The foot is long, rather narrow, double-edged, and somewhat amiculate in front, with a wide transersely rugose median channel behim the operedum about the tail. The oral surface is grambons, the eomers are a little produced. The tentacles are long and slemder, the eges very large and hack. There are no palmettes. The gill resembles that of Thereculc. hant is less trangular as a whole. The mante margin is finely papillose. The jaws are small and not renarkable. The dentition was mot examimed.

Trochus temiatus Weod，Ind．Test．Suppl．，Pl．v，Fig．12，1828；Phil．Mon．，Trochidx， p．251，t．37，Fig． 12.
Trochus bicolor Lesson；Voy．Coq．，p．345，t．16，f． 3.
Hab．－Falkland Islands（Philippi）．Station 2770，in js fathoms， Samb，off Spring Bay，east coast of Patagonia，and also at Station 2̈T1， off Point Gallegos，in 50 fathoms，samd；temperature 49 ． 4 F．

This species is referred to Photimula by II．d．A．Adams，hut appeats to be simply a smooth Cailiostomu．There is no umbilical callus as in I＇hotimula corulescens，which was also obtained by the Ilbutross at Sta－ tions 2770 and 2771.

Calliostoma Coppingeri Smith．

$$
\text { Plate xiI, Fig. } 4 .
$$

Trochus（Ziziphinus）Coppingeri E．A．Smith，Ann．Mag．Nat．Hist．，Ser．5，Vol．vi， No．34，p．320，Oct．， 1880.
Shell glistening，small，thattened at the periphery，seren－whorled； color pale waxen white，with pinkish nace ；the exterion on the spiral sculpture more or less articulated，with elongated brown spots；these are sometimes wholly absent，but disappear last on the carinal threads； nuclens white，small，subglobular，polished，not senptured；early whorls spirally threaded，the two threads next in front of the suture granu－ lous；these and all the others become flattened out and obsolete on the last whorl or two of the alult in most eases，hat are exepptionally re－ tained：the periphery of the whorls is angulated but not keeled；in front of it is another angle on which the suture is laid；the space be－ tween is flattened and nearly rertical，becoming more inclined on the last whorl；transerse sen！pture of inconspicuons incremental lines， rarely emphasized：base moderately eonrex ；the monbilical region im－ pressed and surromuded by three or four coarse，oftera articulated spiral threarls；onter lips thin，sharp，rombling to the columella without no－ ticeable interruption；pillar somewhat areherl，pearly，rather strong； hody with a fatint wash of callus；operculum amber－colored，thin，mui－ tispiral．Maximum altitude of shell， 10 ；diameter， 11 mm ．

Hab．－Stations ごす（i．），2i6ti，in 10 tathoms，sand，off the Riode la Plata， and 2768 ，off Cape Delgado，in 43 fathoms，sand．

This shell was at tirst supposed to be new，but it is probably the un－ fisured species described hy Mr．Smith from $2 \boldsymbol{S}$ fathoms off the mouth of the Rio de la Plata in latitude $36^{\circ} 47^{\prime} \mathrm{S}$ ．

This sperees has much such a surface as C．yucutecamum Dall，which， howerer，is umbilicated．There is a small swelling，hamelly a tooth，at the end of the pillar．Its eolors locis rashed ont ；otherwise they also recall those of（＇．！ncutecemmm．There are no lise in the throat．Ocea－ sional speremens have the spital sentpture emphasized；in such cases the dhattening of the periphery heromes less pominent．Now and then
one of these strongly sempthed forms has all the theads behind the perphery undulated or grambons, forming a variety which may be called C. Coppingeri var. cymatum.

Calliostoma riöensis sp, nov.
Plate xir, Fig. 5.
Shell of a waxen color, nearly obsemed hy chomis, llammules, and articulations of lighteror deeper fiesh color: whols wipht, sume what flattened above, angulated awom the hase. shially ghambestly theadent; apex pointed; muclens small, white, dextral: spisal sempture of altermately larger and smaller threads, of which at the mewimine of the hast whorl there are six each hetween the sutures: the pairen threat on which the suture rum and the next primary behim it are distinetly: wider than the other primaries; all are set with close momded gramules, which are only molerately prominent: the interspaces are about as wide as the secombary threads; the base has about a dozen mather strong spirals, with subergal interspaces, but mo secombary finer threads: transreme senpture only of lines of growth: the whors and hase are only slightly consex ; aperture subpuadhate, the onter lip sharis: pillar stomt, short, a little angulated at its anterion point. pearls. and hamely reflecterl over the imperforate umbilical region. Maximan altitme of shell, 1.5: maximum diameter of base, $14^{m \mathrm{~mm}}$.

Mabs- Rio Janciro, on the Emomados Isletis, IT. S. Exphoring Expedition. Albutross Expedition at istation 2.6ゃ, uff Rio, in 59 Rathoms,
 to 12 fathoms, sand.
 englyptum Adams, from Florda, hut is sullicimely distimet from eithei. It is less elegantly painted than ('. jucementum, and the same may be said of its relation to the finer speecimens of C. . cmglyptum, which also has its whorls more rounded and its flammules more regular.
 mens are free from them. The operculum and solt parts ane as usual in the group.

Genus MARGARITA Leach.
Subgenus TURCICULA Dall.
Turcicula Dall, Bull. Mus. Comp. Zö̈l., 1x, p. 42, 1881.
This group is remarkable among Trochide for its large si\%e and thin shell with delicate green epplermis athe refleeted peristome like at lathl shell. The type of the gromp is small eompared with the others now known, but has the chatacteristice sulite sentpume amb lomat, thonsh no perfecty adult and complete specimen has set conse to hathe. 'The
 belonging to this eroup, which are perhatpe the limest mollashon eolle ered during the voyage.

Turcicula Bairdii Dall.

Plate Vir, Fig. 3.
Turcicula Bairdii Dall, Bull. Mus. Comp. Zö̈l., Xviri, pp. 376-378, June, 1889,
Shell large, fombinate, elerated, thin, inflated, with form and a half or five whorls, of which the last is moch the largest; surface apt to be eroded, but where perfect covered with an extremely thin dense rernicose pale apple-green epidermis; whorls inflated; suture deep, notchanneled; apes moderately pointed; spiral sculpture of (1) mumerous fine fatut rather irregular seratehes or impressed lines; (2) sparse slightly elevated revolving bands which are usually more or less nodulous, the nodules when prominent being sharp and laterally flattened as if pinched up; of these there are on the upper whorls uswally three series between the sutures, of which one at the periphery is the most prominent and persistent, the next one behind it, half way between the periphery and the sutme, being the least marked ; on the base the einguli are six or seven in number, becoming narrower towad the axis, smaller than those behind the suture, with smaller, less prominent, romuler amd more numerons nodules: there is some variation in number and strength of all the cinguli, but that on the periphery is the most prominent and constant; the whorls are particularly round and intlated above and below, so that the outline of the aperture is often nearly cireular ; interior of the aperture brilliantly peaty, a thin wash of callus on the boily ; the outer lip rery slightly thickenel and distinctly retlected in the adult; pillar thin, simple, arehing roundly into the curse of the base without any interuption, angle, or tooth ; axis imperforate the external senpture showing through the thin shell. Altitude 50 ; maximum diametrr $4{ }^{2}$ "m. Maximum diameter of opereulum $1 S^{\text {mm }}$, with abont twelve whorls. The operculum is extermally polished, smooth and deeply concave; the inner side presents a minnte central rounded elevated point; the margin is very thin but entire.

Mab.-Station $2-839$, off San Clemente Island, California, in 414 fathoms, sand; bottom temperature not registered.

Noft ports.-The sides of the foot below the epipodial line are grannlons; above the line the surface is rather smooth. Much of the surface is apt to be corered with a layer of blackish or clivaceous substance, like soiditied mucus or paint, which seems to belong to the amimal, get is wholly external to the cuticle. The foot is broad, not very long, bluntly pointed behind, the tront edge straight, donble, the lateral angles pointed; the upper layer of the edge is smooth and turgid in most of the specimens ; it is not indented in the median line.

The muzzle is stout, circularly wrinkled, a little expancled at the disk; the oral disk is not maromated ; its sumfee is funcls granulose; it is angulated at its lower outer corners and medially indented below. There are no oral palps or tactile appendages.

The cephalie tentarles, for the size of the amimal, are small ami shart. At their inner bases are small "palmettes" or erphalie eppoplial limger, not quite meeting in the middle line. They ate romaded, with papillose edges. At the outer bases of the tentacles ite the eres, large, olivitorm, motnted on short pedieels. The pigmented portion itself is ovoid amd not hemispherical. In some specimens the pigment serms to he more extensive on the umber side. in whers the reverse and still others have
 able. At the right side, behind and on a level with the ere is a short tubular verge. The anterior epipodial side lapret does not apr ar to
 son. These lappets are meaty symmetrical. Their bases ame thoned 11p a little on each side behiml the eyes and the lappets are rather who They extemb backward about two-thinds of the way to the operewhm, with a finely papillose extge. Then comes a single tentarnlar filament. less than half as long as a rephatis tentacle. There is another stretel of edge fringed with only small papillar ; mbler the operealum there are three long filaments, of which the posterion is longest. liehime the operculum the epiporlial lines of the two sifes appoteh eath other and bound a median fumow, coansely tramsersely ridgent (as in I'leniato. maria), which extends to the end of the foot.

The mantle edge is smooth or vory sparsely papillate. slightiy thitkened. The free end of the intestine projects on the right side over the neck, with its termination constricterl by a sphincter, amb then expantal into a eup-shaped cireular forament. On the beft side is the will, consisting of a central, somewhat muscular, ensiform haseraent, fom which depend two sets of elongate triangular lamelar, separatted hy a narrow ridge. The lefthand set are slighty the longer. Nost of the sill is free. Its distal end is pointed amb the lamella hangs side hy site, with the ridge between the two series, as in Nucrela. The intestine takes a eure to the left side, where the renal glam is visible between it and the gill. I observed no osphradium.

The month is small. I short distance behime it is a deer badular diverticulam. The jaws are small, triamular, and dark bown. The gullet opens almost directly into an elongate, large, lomgitudinally wrinkled stomach. Behind it the rery Large intestine, with longitmbinally striated walls, extends backwatd about half a whom, then tums upward and forward for a thitd of a whorl ; then back again upon itself about the same distance; then forward to its anal termination, above described.

The liver and seminal glamd appear to resemble those of modinary Trochids.

The operenlum is amber-eolored, polished, thin, athl contrally depressed. It has about a dozen whorls. The operenlat pat is oroid and rather small.

The radula is quite small and the anterior part dark browne. The
intestine, in all the spmeimens, is crammed with a greenish mud, cont sisting of disintegrated foraminifera.

The dentition recalls that of C'alliostomu, Solarielle, Jurgaritu, ete., and presents nothing very characteristic.

The central tooflo has a broad thin base, subrectangular, and a little wider at the anterior corners. The stem of the cusp and the cusp are narrow. The latter is simple, rather small, short, and recorved. It is not dentienlate. There are three or fome admedian or lateral teeth, rather long, with imall hases, rather broad, simple, moderately enved bownish cospls. There are about twenty-five uncini, half of which spring from loznges shaped hases, looking like a parement : are longs, naroor, sember, morlerately eurver, with spatuliform tips. Dne edge of these tips is microseopieally sermate, amb below the sermate part, on the same side, is a single larger denticle, standing out like a short thumb.

The external mueini are thin, hat, wide, and hardly eurved. Their distal ends are that and broml, with the edge simple and entire. These teeth grathally diminish in size and wielth, as wsual in Trodkele. The formulat would be $2.9+3+\frac{1}{2}+3+2 \pi$, or very nearly that ; but time has been wanting in which to mobertalie the laborions task of an exact emmeration of these minnte amd tangled ohjects, of which the general features have just been recorded.

Ill the specimens of Turcicula previousty obtained were incomplete and deprived of epidermis.

The eapture of this and the following species, besides adding to onr eatalognes two of the finest deep sea mollnsks known, has enabled me to fally deseribe the (hanaters of the group) and detemme its plate in the system of classification.

Turcicula Macdonaldi sp. nov.
Plate Vir, Fig. 7.
Shell rery arge, thin, clevated. with ahont six whorls, flattened, alme appressed above and rombled holow. It differs from T. Bairdio in the poportionally narower cinguli of which only that at the periphery is nodulons, in the more mumerons (nine totoll) sharper and more elevated basal cingul, in the flatter posterior surface of the whorl and its being appressed at the suture, in its duller more olivaceots epplermis, more angulated and hess reflected onter hip. Alhongh living it was a goml deal eroded, espeefally at the tip. Altitude of decollate shell, 7 ; maximmm diameter, form. 'The operculum has nine whorls, is of the same shape as in the preceding species, but of a darker brown, with a maximum diameter of 29^{num}.

IAAB-Station -792 , ofl Manta. Eenador, in 401 fathoms, mul; bottom temperature, $43^{\circ} \mathrm{F}$.

The single specimen of this magniferent shell eontained the amimal, which does not appear to differ materially from the T. Baiddia. It is
 missioner, under whose direction the voyage was carried out.
 tacles are proportionally larger than in Z. Imatio amd have smooth atm not fringed edges. The rerge is simila but monnted sn an onion-shaped expanded base. There is one very shont, small. epipodial tibment in front of the operenlam on eath side ; mater the operenlum are two very small, instead of three lone tilaments ats in T. Radidio, on catcl! side.

 rectum shortly before the latter beomes attathed to the surfate of the mantle.

Subgenus SOLARIELLA A. Adams.
Solariella infundibulum Watson.
Plate IN, Fig. 3.
Trochus (Margarita) infundibutum Watson, Challenger Gastr., p. 84, Pl. v, Fig. 5 ; Dall, Nautilus, p. 2, May, 1889; Dlake Gastr., p. 380, June, 1889.
The presence of a verge on intromittrat mate onqath, has hitherto, among the Rhiphoglossate Mohbsks, heeni recomed only in Neritime
 Neriter is so short and olssenge that its fanction and even its existencer has been called induestion. When I showed its revistence in the mather
 sea limpets, it was questioned whether they were not peculianly mondified Trenioglossa.

Since then, in sereral deep-sea mollusks, such as Rimula, Murguritu, and others indisputahly belonging to the Fihipidoylossen. I have foume a Well-developed rerge ; and there is little dotaht that the ammesons of this group, as well as of the Tanioylo:s", were se provisleft, and that somse of these deep seat forms have retained the organ now wencally whiolete in their shallow-water eonsencrs. In combination with this survival, oms

 on the right side, which appenss worthy of partienlar attention.

The soft parts of this sereetes aftord sereral hotes of interest. The

 contrated in alcohol, must hate heren somewhat pointed ow Prolaced at its anterior comers in life. The ailles of the font are nearly smooth below the epipodial line.

The mazale is small and slemder at it: broximal end, enlarmal and transwersely semi-hmar at its distal extremity. The oral surfate of the muzzle is smooth, the mouth very small: the omat disk is flat and prodaced on either side into a thin linguiform latapen, with simphe amb

the oral tentacles of the Lepetider, or the morlo smather lappet of A Aemere When not feeding or seeking food, these lappets would seem to be apphed to the sides of the foot below the epipodium. The oral disk is entire, but is slightly indented in the median line below a fintow running up toward the mouth.
The cephalie tentacles are rery stout and large, very elongate, conical, with moderately pointed tips. The are situated above, and not, as in most Trochider, on either side of the muzzle. Theminner bases are comate; and there is no inter-tentacular "reil," or any tuberenkar traces thereof.

The eges are large, strongly pigmented, oroid, and sessile on the onter bases of the tentacles, or perhaps: I should say, just hy the outer bases. They are not pelunculated or elevated on pedicels in any of the specimens examined, and I am ruite confident that this is not caused by contraction due to alcohol, but is normal to the speces.

The eppipodial apparatus is complicated, and exhibits it certain amomet of sariation bet ween different individuals in the situation and number of its processes. In the males, it is subjected to a remarkable moditication for sexual purposes. The epipodinm begins immediately behind the ese and a tritle below it. In the females it is prodnced into a large broadly linguiform process, half as long as the cephatic tentacles and fringed with closeset, uniform, small, printed papille or tilaments. This process exists in the males on the left side. The pusterior margin then curves in toward the side of the foot ; it beemes duite narrow and shows two lateral tentacles of moderate size ; then a racant space ; then at the front emo of the operenlum two or thee filaments, small, but larger than any in the vacant space; then another hut larger one ; and finally another, which is behimd the midde of the operenium, and is the last on that side. The epiporlial line is continned to the end of the foct, the dorsal surface above it being transersely rogose and with a linear median furrow. On the other (right) side we tind a small, a large, two subequal small, and another large filament, followed by a slight gap, and then a still larger tentacular process. The flap, which corresponds to the fringed process on the left side, is remarkably mudified in the male.

Behind and close to the right eye is a small tubular, longitudinally striate, cellimdrical rerge, not exceeding (in akcohol) two millimeters in length. Below it the epipotial flap is emomomsly produced, and its front edge is rolled upward and backwad upon itself, forming a tube into the proximal opening of which the end of the rerge may project.

The flap is rolled so that it makes nearly two layers, and thes a rery capable erlinder, which, when umrollen and released, will immediately coil itself up again. This calinder is of suberual diameter throughout, and is as long as. and somewhat stonter than, the cephalie tentacles. Extermally, near its hase, it is nearly smoth ; further out, it is spirally: striate; wear its estremity, it beeomes thicker and rather deeply ex-
termally grooved longitudinally, with shont, even, closp-set, slightly spiral grooves. The opening at the distal emed is frineed with short, equal papillae, each our corresponding to the thickened moterpate be. tween two of the groores. These maised folds or interspatees are abso finely transersely striate. At the base of the eylinder the epipurlinm extends backward to the dirst lateral filament, and the margin of this part is perfectly entire and simple, showing neither finge nor wranulation. The object of this apmaraths is selfevident. 'The cylimder
 it may be employed in ath actual expulation is donhtral: it mat merely serve to spread the seminal matter over the equs at they are deposited by the female. I am not arare that anything of this sont has been oh. served in any other gastropod $u p$ to the present time.

The edge of the mantle is smonth, entire and slightl! thickenet. Within the muchal chamber the anms is visible on the right side. The end of the intestine for a considerable distance is free form the mantle and projects like a tentacle. The termination is slightly constrieterl, then enlarged into at cup or trmupet-shaped ending, wheh hearly reathes the mantle-edge.

The intestine itself, after leaving the stomatch, is much comvoluter, but in the mane rises and is bromght forward nearly to the mantle edge above the stomach; then turns bark and is carred far into the viserral coil before it is agatin bronght forwat and terminated as abose described. The food cousists of Foraminifera.

The gill is free, exeept at its base, and consistss of a very chonsiate-triangular fomblation, from which depent triangulat lamella without at raphe and widest at their hases. These got harger fuximally.

The operculum is thin, polisherl, ambereoblomed, centrally depressed, having a central projection or nipple on its maler sille, and ronsists of about four whorls.

The specimen aftording the ahore notes has been itlentited with Mr. Watson's type specimen, and is mow deposited with it in the british Museum.

The diagram upon Plate $1 \times($ Fig. io) illustrates the leatume deseribet, thongh crudely drawn. The finge on the lett anteriorepipodial bapert is too coarse and irregular. The animal is represented ats if crawling. The central obliguely lined area represems in section the pertion which would extend into the shell, which hatter has heen omitted to show the parts more clearly. la fiont on the right, hehind the eye is sem the verse, behind that the distal free end of the intestine. The persterior epipodial filaments may be traced through the operculum.

 Philippi, seems to be: without this cerrions sexual moditiotion.

I am aware that this examination doess mot agree in all respects with the aceount of Dr．Pelsemeer in the Challenger Report on the Anatomy of Mollusks，but that accome appeass to have been somewhat hastily prepared，while the figure of the amimal is evidently a diagtam and not a portrait．There is，of course，a possibility that some error of identi－ fication may have oremoreh，amb that the animal sent to Dr．Pelseneer was mot that of the s．infundibulum．The specimen here deserihed has been emmpared with the original type of infunditutum，and i suppose there can be ne question as to its ahsolute inlentity specifically．

Solariella amabilis Jeffreys．
（Gollectel at Station ご．う！，east from Tolago，in S80 fathoms，ooze．
Solariella clavata Watson．
 ooze，south of St．Kitts．

Solariella oxybasis sip nov．
Plate XII，Fig． 6.
Shell closely related to s．Othoi．var．regulis J．\＆S．，from which it difters most obvionsly hy its more acute and elevated spire，smabler umbilicus，angular peripherg，and aperture angulated in front by the juncture of the pillar with the ent of the umbilical carina；shell thin， pearly，with a bake，thin ephlermis and six（or more）whoils without the muclens；maclens lost ；spire acote，the last whorl enbaring dispro－ portionately ；spinal soulpture of，on the spire，three revolving threats， the most anterion strongest amd peripheral，the midfle one least eri－ dent；the base has six suberual，strong，granulat threats and two smaller ones，the latter just within the umbiliens；transerse senlpture off，on the last whorl，abont exthteen shatp ratio，extenting to the periphery and forming sharp notules at the interseretions of the sup－ rals；the nothles on the beripheral spital are the most prominent and are almost spinose on the last whorl；heside this the whole shell is corered with a fine，silky，transrepse，slightly irregular striation；sn－ ture distinct，rumbing on the finst has：al spiral，not ehameled；mbilieas very narrow，its marsin suhangnlose；aperture rimabate，subangulate at the periphery，in front，behind，amf at the jumetion of the pillar with the body；boty withat wash of pean？mangin continuous with the pillar； shatp，thin，refleeting the sempture；pillar slightly areherl，thiu，re－ Hected a little behimd；base full amd rommed，produced in the middle near the umbilicus；altitude 13.5 ；maximum diameter $1: .5$ ；minimum diameter $10{ }^{\mathrm{mm}}$ ．

Mab．－Station シsis？in 41 \＆fithoms，sand，off the Santa Barbara Islands，California．

The soft parts reeall those of s．Otloi Phil．This sperees helongs to

ferent from either of them. The stulpture, though more spinose, and the form of the aperture recall Watson's figure of his Bembix colu in the Challenger report (Gastr., Pl. vir, Fig. 1:), which, however, has the details of sculpture differently arranged. I should suspect fiom this that Bembix would include this particular group of Solariellu, all of which have the peculiar silky surface and the same general type of sculpture. The size and cariuation of the umbilicus, and consequently the form of the aperture, are variable factors in this group of shells.

Trochus alwince Lischke has been referred to Tiembi,c, but I can see no reason, from the description and excellent tigures, why it should be separated from Calliostoma. T. aryenter-nitens of the same author is much like Watson's Bembix as was pointed out by him, though doubtless specificaliy distinct.

Apropos of Bembix, the name was given long since by De Koninck to a remarkable cretaceons land shell like a subspherical decollate Cylindrella; the type was examined by me very lately in the Museum of Comparative Zoology at Cambridge, Massachusetts. I have not, so far, had an opportunity of looking up the reference to the descrip. tion, but according to Fischer (Man. conchyl. 1). 827) the name was used and the shell figured in 1861 by Ryckholt. In the form Bembyx the name was used by Fabricius for Hymenoptera in 1775, who also printed or misprinted it Bembex. It would seem as if the name Bembix, as applied by my friend Watson, must be given up. This, however, is of less importance, as the characters given for the gronp are not sufticient to distinguish it from Solariella, or even possibly Turcicula. That it may prove, when we know the soft parts, to be distinct, is quite possible, but as yet the characters given for separating it from such species as Solariellu infundibulum and its allies do not seem very weighty.

> Solariella actinophora sp. nov.

Plate xii, Figs. 8, 11.
Shell with a prominent pointel apex, but generally depressed, pearly, with a pale greenish epidermis and six whorls; unclens glassy, polished, swollen, and slightly tilted; spiral scupture on the spire of three sharp narrow elevated threads, a finely granular or almost smooth peripheral keel or thread on which the suture runs: on the base three similar less prominent threads, on the anterior of which the pillar lip revolses around the umbilicus, and lastly a very sharp keel, with many strong, sharp nodules, carinating the umbilicus; transwerse sculpture on the spire of numerous sharp, elevated, narrow radii, which reach the second spiral counting formard from the suture nodulating both; some of the radii appear to reach the third spiral, but most of them do not, and the nodulations on the third usually alternate with those on the second thread; the nodules are small and pyramidal, the rectangles formed by the reticulations are flattened; beside the primary adii numerons smaller ones start from the suture between the primaries, but rarely

Proc. N. M. $89-23$
extend beyond the first spiral, except on the last whorl, where they disappear toward the periphery; these secondaries are elevated and sublamellose, very regularly spaced, and re-appear on the base within the two anterior spirals, then overrm the carina and assend the umbilicus in a vertical direction; whorls full and roumed, except as modified by the sculpture; surface polished; suture deep but not chameled; apical part of the spire rather pointed; base full, angulated at the umbilicus, which is large and deep, with nearly rertical, scalar sides; aperture wide, outer lip rounded, thin, sharp; base angulated by the umbilical carina, strietly continuous with the pillar and outer lip; pillar thin, sharp, not reflected, a little concave above the middle, not anywhere thickened : body without callus; maximum diameter of shell, 9 ; minimum diameter, 7.25 ; altitude, 7.25^{mmm}.

Hab.-Station 2751, south of St. Kitts, in 657 fathoms, ooze; Station 2754, east from Tobago, in 880 fathoms; and Station 2760,90 miles north of Ceara, in 1,019 fathoms, broken coral ; temperatures 370.9 to $39^{\circ} .9 \mathrm{~F}$. It has also been found at Guadalupe in 769 fathoms, sand.

This is nearest B. cegleis Watson, which is more conical and has a different sculpture, and especially a much more funicular umbilicus. S. actinophora is a larger shell than S. ayleis, and attains larger dimensions than are here given, judging from fragments among the dredgings.

Genus BASILISSA Watson.
Basilissa alta Watson.
Collected with the last species at Stations 2751,2754 , and 2760 .
Family DELPHINULID \mathbb{E}.
Genus LIOTIA Gray.
Liotia Riisii Dunker.
Collected at Station 2758,90 miles sontheast from Cape San Roque, in 20 fathoms, shelly bottom.

Family CYCLOSTREMATID AE.

Geuns CYCLOSTREMA Marryat.
Cyclostrema cistronium Dall.
Plate xi, Fig. 11.
Cyclostrema cistronium Dall, Bull. Mus. Comp. Zö̈l, xvirr, p. 394, June, 1889.
Shell small, white, with a polished nuclens, one and a half rounded and as many more carinated whorls; spire depressed; radiating sculpture of fine, close, flexuous threads, which appear chiefly in the interspaces of the spirals, giving the surface a minutely punctate appearance; these extend orer the whole surface except of the nuclear whorls; spiral sculpture of, on the summit, seven or eight, between the carine six or eight, and on the base ten or fifteen extremely fine threads, even
and miform, with about equal interspaces, some a little granular from the radiating seupture; beside these there are three very strong carina; one forms the margin of the nealy flat spire, the second extends horizontally just below the periphery, the space between them deeply excatated; the third forms the edge of the funcular narrow deep umbil. icus. The base is conical, exeavated just within the peripheral carina; it rises to the edge of the umbilicus, which is marked by a strong thread, and within is vertically striated. The last whorl descends from the phane, and finally becomes separated from the body whorl; the margin is simple, sharply angulated by the carinations, otherwise the aperture would be orate, with the columellar side somewhat excavated. Altitude, 1.6; maximum diameter, $2^{\text {m"n }}$.

Hab.-Off the coast of North Carolina, in 22 to $6: 3$ fathoms, sand and gravel, at U. S. Fish Commission Stations $2595,2595,2605^{2}, 2610$, and 2612 , the temperature varying from 67° to $78 \circ \mathrm{~F}$.

This is a rery strongly marked species, in its sculpture recalling U. Ferreauxi Fischer, which is larger, less elevated, with a proportionally larger umbilices, and has not the deflected aperture. The latter recalls the characters of Tubiola divisa J. Adams, which is otherwise very different.

Cyclostrema pompholyx Dall.
C. pompholyx Dall, Bull. Mus. Comp. Zö̈l., X'int, p. 394, Pl. x'in, Fig. 9, June, 1889.

This splecies was originally obtained in the Gulf of Mexico, in soj fathoms, by the Blulie expedition, and Dr. Rush obtained a young specimen in 750 fathoms, mud, off Cuba. A specimen with a maximum diameter of 6 and a height of $4.5^{\text {mm }}$ was dredged by the Albutross at Station 2754, in 850 fathoms, ooze, off Tobago; bottom temprerature, 370.9 F . This considerably extends the known range sonthwaml.

Cyclostrema valvatoides Jeffreys.
Collected at Station 2760,90 miles north from Ceara, Brazil, in 1,019 fathoms, brokeu coral; temperature $39^{\circ} .4$ F.

Cyclostrema diaphanum Verrill.
Obtained at Station $275 \pm$, off Santa Lucia, in $28 t$ fathoms, sand ; temperature $48^{\circ} \mathrm{F}$.; and also at Station 2760 , with the preceling.

Superfamily ZYGOBRANCHIA.
Family HALIOTIDA.
Genus HALIOTIS Linné.
Haliotis Pourtalesii? Dall.
Plate XII, rigs. 1, 3.
II. Pourtatesii Dall, Bull. Mus. Comp. Zö̈l., ix, p. 79, 1881; xyiri, p. 395, 1-89.

Shell small, of a pald brick red color, with white dots on some of the spirals, rather elevated, with about two and a half whouls; apex small,
prominent; holes abont twentr-five, of which five remain open, the margins of these rather prominent; outside the row of holes the usual sulcus is strongly marked; about midway from the suture to the line of holes is a raised rib, rather obscure, but differing in different individnats and corresponding to an internal sulcus; between the central ridge and the suture there are no undulations or transverse ridges of consequence; sculpture of well marked, rather flattish, spiral, close-set threads, sometimes with a single finer intercalary thread, overlaid by smaller rather compressed transverse ridges, in harmony with the incremental lines; on top of the spirals the ridges bulge like the threads of worsted on canvas embroidery; spire sitnated well forward and with subrertical sides; interior pearly, the coil of the spire rather close and the margin of the pillar flattemed. Longitude of shell, 23 ; latitude, 18 ; altitude, 11.5 ; nucleus behind the anterior end, $17 \mathrm{~mm}^{\mathrm{mm}}$.

Hab.-Station 2815, in 33 fathoms, saud; near Charles Island, of the Galapagos group, in the Pacific.

The nearest relative of this shell is I. parva, from the Cape of Good Hope, which differs from our specimens chielly in the greater prominence of the central rib, aud in being a little more circular in outline.

The shell from the Galapagos agrees so exactly with what we know of H. Ponvtalesii and with my own recollection of the type specimen destroyed in the Chicago are, that I am unwilling to separate it, though the distance between the two localities is so great.

The occurrence of this shell at the Galapagos is of great interest apart from its supposed comnection with the Floridian species. No species of Haliotis is kuown from the west coast of South America, of Central America, or of North America sonth of northern Mexieo. There are one or two small not nearly related species in the Melanesian Islands and north Anstralia. So the present spectes is remarkably isolated. Nothing of the sort has been previously recorded from the Galapagos. Two specimens were obtained, neither containing the soft parts. The original trpe of H. Pourtulesii contaned the auimal. It woutd probably be referred to the section Padollus.

Family FISSURELLID E.

Genus PUNCTURELLA Lowe.
Puncturella circularis Dall.
Collected at Station 27.5t, in Ss0 fathoms, ooze; east from Tobago; temperature 370.9 F .

Puncturella falklandica A. Adams.

Collected at Station 2755, in 449 fithoms, mul, ou the west coast of Patagonia; temperature $47^{\circ} \mathrm{F}$.

This species is amazingly like P. nonchinu: the only differences I have been able to see in the shells are that in P. nocchinct the fissure is generally longer, tho septum longer and less vertical, and the apex more
posterior. The scupture seems essentially similar. I have not been able to give the time necessary for a critical examination of the soft parts of the two forms. The animal of P. fullikundica was remarkable in one respect. Among the specimens collected at this station, all of which possessed the soft parts, some had well pigmented black eyes, while in others the pigment was absent and the organs therefore must have been useless. The males possess a well marked rerge in the wicinity of the right tentacle, thas adding to the now rery respectable list of Rhipidoglosst which possess an intromittent male organ.

Subgenus FISSURISEPTA Seguenza.
Fissurisepta triangulata Dall.
Puncturella (Fissurisepta) rostruta Watson, Chall. Rep. Gastr., p. 4s, Pl. iv, Fig. 10, 1885. Not of Seguenza.

Fissurisepta triangulata Dall, Bull. Mus. Comp. Zoöl., xvin, p. 404, June, 1889.
Пab.-Station 23.5 , off Cozumel Island, coast of Yucatan, in 222 fathoms, coral; and Station 2668, oft Fernandina, Florida, in 294 fathoms, gravel ; temperature, $46^{\circ} .3 \mathrm{~F}$.

This species is more triangular and erect, less elerated and longer than Seguenza's original rostrutu, with typical examples of which the present species has been carefully compared.

Subgenus RIMULA Defrance.
Puncturella (? Rimula) erecta Dall.
P'uncturella erecta Dall, Bull. U. S. Nat. Mus., No. :37, p. 170, No. 107i, Angust, 18-9.
Shell stout, erect, high, rather short, white or grasish, reticulated; apex minute ; muclens smooth, of a single whorl ; radiating sculpture of three series of threads, the strongest altermating with the secondaries and these with the tertiaries, which last are almost hidden under the concentric seulpture, which consists of romnd, even, uniform, equally. spaced threads clinging closely to and passing orer the ratii like cords over a rod; apex at the posterior third, from whicb the posterior slope is straight and steep; auteriorly the top is arched, then falls steeply to the front edge; slit elongate, with its onter edges raised, a suture in front continued to the front edge, corresponding to an internal groove which does not indent the margin; perforation long and narrow, con. tained in the upper half of the anterior donsum; internalls there is no true septum, but a rim of shells matter like a collar is pushed back behind the orifice as if the latter had been made ber pushing a pin in from the outside and pressing it backwarl; interior of shell white, musenlar impression strong, margin of shell slightly erenulated by the senlpture; maximum longitude of shell, 10 ; latitude, $7 . .5$; altitude, $6.5{ }^{5 m n}$.

Пab.-Station 2601, in 107 fathoms, offi Cape Hatteras, North Carolina; temperature, $67^{\circ} .4$.

This is one of those intermediate forms which bridge over the gaps between subgenerd. It has exactly the sculpture of some varieties of Cranopsis asturiana, but its apex is smaller and more close-set, the form of the shell differeut, the perforation nearer the apex of the shell, and the shell itself is solid and strong, while the C. asturiuna is delicate and thin. It is difficult to say whether the present species should be called a Puncturella (s. s.), a Cranopsis or a Rimula.

Subgenus CRANOPSIS Adams.
Cranopsis asturiana Fischer.
Collected at Station 2666, in 270 fathoms, sand, off Fernandina, Florida; and at Station 2750 , in 496 fathoms, off St. Bartholomew, West Indies ; temperature $48^{\circ} .3$ and $44^{\circ} .4 \mathrm{~F}$.

Genus EMARGINULA Lamarck.
Emarginula tumida Sowerby.
Collected at Station 2758,90 miles southeast from Cape San Roque, Brazil, in 20 fathoms.

Subgenus SUBEMARGINULA Blainville.
Subemarginula octoradiata Gmelin.
Collected at Port Castries, Santa Lucia, West Indies, and at the Abrolhos Islauds, near Porto Allegre, North Brazil.

Genus FISSURELLA Bruguière.
Fissurella alternata Say.
Not rare at the Abrolhos Islands, Brazil.
Subgenus GLYPHIS Carpenter.
Glyphis barbadensis Gmelin.
Collected at the Abrolhos Islands, Brazil.
Genus FISSURELLIDEA Orbigny.
Fissurellidea limatula Reeve.
Collected at Station 2765, in $10 \frac{1}{2}$ fathoms, sand, off the Rio de la Plata, from whence it ranges northward to the coast of North C'arolina.

EXPLANATION OF PLATES.

When an asterisk is attarhed to a digure it indicates that the species was obtained in the Pacific Ocean. All those withont an asterisk are Atlantic species. The figures following the name indicate tho longest dimension of the actual shell represented as figured, in millimeters.

Plate V.
Fig. 1. Chrysodomus (Sipho) Rushii Dall, 11.0; p. 323.
2. Nassa scissurata Dall, 12.0 ; p. 326.
3. Conomitra intermedia Dall, 15.5 ; p. 316.
4.* Columbèlla permodesta Dall, 14.0; p. 327.
5. Mesorhytis costatus Dall, 14.0; p. 317.
6.* Chrysodomus griseus Dall, 32.0; p. 322.
7.* Pleurotoma? exulans Dall, 32.0; p. 302.
8.* Calliotectum vernicosum Dall, 48.0; p. 304.
9. Terebra benthalis var. nodata Dall, 18.5; p. 299.
10.* Chrysodomus amiantus Dall, 76.0; p. 321.
11. Mangilia antonia Dall, 18.0; p. 304.

Plate Vi.

Fig. 1.* Leucosyrinx Goodei Dall, 80.0; p. 300.
2.* Pleurotomella cingulata Dall, 73.0; p. 306.
3.* Leucosyrinx persimilis Dall, 80.0 ; p. 301.
4.* Pleurotomella (Gymnobela) agonia Dall, 16.0 ; p. 301.
5.* Pleurotomella argeta Dall, 43.0 ; p. 307.
6. Fusus ceramidus Dall, 46.5; p. 318.

7:* Chrysodomus aphelus Dall, 30.0; p. 323.

* 8. Nassarina columbellata Dall, 12.2; 1. 325.
9.* Buccinum viridum Dall, 46.0; p, 320.

Plate vif.

Fig. 1.* Murex (C'hicoreus) Lecamus Dall, 70.0; p. 329.
?.* Calliostoma platinum Dall, 32.0; p. 343.
:3.* Turcicula Bairdii Dall, 50.0 ; p. 346 .
4.* Gaza Rathbumi Dall, alt. 24.0 ; p. 342.
5. Fiusus epynotus Dall, 24.0; p. 318.
6. Fusus alcimus Dall, 15.0 ; p. 319.
7.* Turcicula Macdonaldi Dall, 75.0 ; p. 348.

Plate viif.

Fig. 1.* Verticordia perplicata Dall, $33.0 ;$ p. 278.
2. Pecten glyptus Verrill, right valve, 60.0 ; p. 248.
3. The same, interior, showing radii.
4. Poromya cymata Dall, 9.0 ; p. 289.
5. Cuspidarie monosteira Dall, 5.0; p. 281.
6. Poromya microdonta Dall, alt. 11.5 ; p. 290.
7.* Lyonsiella radiata Dall, 13.0; p. 276.
8.* Poromya (Dermatomya) mactroides Dall, 18.0; p. 291.
9.* Cryptodon barbarensis Dall, 17.0 ; p. 261.

Piate ix.
Fig. 1.* Dentalium megathyris Dall, 95.0; p. 293.
2. Floating ovicapsule of Scaphella ? brasiliensis Sol. ; 50 by 55^{mm}; p. 312.
3. Soluriella infundibulum Watson, 子, eularged diagram of the soft parts, with the shell removed; the operculuin in situ; p. 349.
4.* Volutilithes Phitippiana Dall, 36.5 ; p. 313.
5. Scaphella magellanica Sowerber, larval shell, from ovicapsule dredged at Station 2779, enlarged ; 11.0; p. 311.
6. Scaphella magellanica sowerbs, ovicapsule on valve of Pecten. The diameter of the base of the capsule is about $28.0 ; p .311$.
7. Halistylus columna Dall (much enlarged), 5.8; p. 341.
8.* C'adulus albicomatus Dall, 24.0; p. 295.

Plate x.

Fig. 1. C'allocardia (Tesicomya) smithii Dall, interior of left valve, 2s.0; p. 26\%.
2. The same, hinge of right valve.
3. The same, exterior of left valve.
4.* Lophocardium Annette Dall, 29.0; p. 264.
5.* Callocardia guttata A. Adams, 17 by 17.5; from a drawing by Mr. Edgar A. Smith of the unique type in the British Mnseum; p. 267.
6. Callocardia (Callogonia) Leeana Dall, 20.0; p. 269.
7. The same, hinge of right valve from below, old specimen, 35.0.
8. The same, left valve.
9. The hinge (Fig. 7), viewed from the left, right valve.
10.* Malletia goniura Dall, 15.5 ; p. 251.
11.* Cymatoica occidentalis Dall, 12.5 ; p. 272.
12. Cymatoica orientalis Dall, 9.5 ; p. 273.

Plate xi.

Fig. 1. Pteronotus phaneus Dall, 17.0; p. 330.
2. Pecten (Psendamusium) strigillatum Dall, 9.0; p. 250.
3. Eupleura Stimpsoni Dall, 12.0; p. 331.
4. Crassatella floridana Dall, $50.0 ;$ p. 260.
5. Benthonella gaza Dall, 8.0; p. 338 .
6. Marginella cineracea Dall, 14.0; p. 310.
7. Mitra Bairdii Dall, 35.0; p. 315.
8. Scala babylonia Dall, 30.0; p. 332.
9. Pecten efluens Dall, 26.0; p. 249.
10. Peristichia toreta Dall, 10.75 ; p. 334.
11. Cyclostrema cistronium Dall, alt. $1.6 ; 1$ p. 354.

Plate xif.

Frif. 1.* Hatiotis lourtalesii Dall, upper surface, a calcareons foraminifer adhering near the margin of the aperture ; 23.0; p. 355.
2. Adeorbis sincera Dall, 3.25 ; p. 338.
3.* Haliotis Pourtalesii Dall, front view; 23.0; p. 355.
4. Calliostoma Coppingeri Smith, $10.0 ;$ p. 344.
5. Calliostoma Riöensis Dall, $15.0 ;$ p. 345.
6.* Solariella oxybasis Dall, 13.5 ; p. 352.
7.* Actaeon perconicus Dall, 5.0; p. 296.
8. Solariella utinophora Dall, alt. 7.25; the aperture is somewhat broken on the base ; p. 353.
9.* Nassa Townsendi Dall, 10.0 ; p. 326.
10.* Pleurotomella suffiusa Dall, 31.5; p. 308.
11. Solaviella actinophora Dall, view from above; maximum diameter, 9.0. In the figure the radiations lying between the suture and the first spiral rib are not represented as sufficiently numerous or conspicuons on the last whorl ; p. 353.
1:.* Scaphander interruptus Dall, 33.0 ; p. 297.

Plate xiif.

Fig. 1. Nucula cymella Dall, 51.0; p. 258.
こ. Thracia Stimpsoni Dall, 65.0; p. 2\%5.
3.* Malletia (Tindaria) virens Dall, 4.5; p. 254.
4. Malletia (Tindaria) acimula Dall, 5.0 ; p. 253.
5. Leda pontonia Dall, from above, 14.5; p. 25%.
56. Leda pontonia Dall, sido view, 14.5; p. 257.
6. Foldia scapania Dall, 18.25 ; p. 254.
7. Leda cestrota Dall, 25.5 ; p. 255.
8. Foldia pompholyx Dall, 4.0 ; p. 255.
9. Nucula callieredemna Dall, 12.5; 1. 258.
10. Malletia (Tindaria) agathida Dall, 5.5; p. 252.
11. Cytherea encymata Dall, 40.0 ; no attempt has been made to reproduce the color-pattern in this figure, which was drawn from a bleached specimen; p. 271.
12. Myonera paucistriata Dall, 10.0 ; p. 283.
13. Cuspidaria (Luzonia) chilensis Dall, 11.0; p. 282.

Plate xiv.

Fig. 1. Cryptoton pyriformis Dall, $14.0 ;$ p. 263.
-. Cryptodon fuegiënsis Dall, 25.0 ; p. 262.
3. Cryptodon ovoideus Dall, 25.0 ; p. 263.
4. Nucula Vervillii Dall, 5.0; p. 257.
5. Semele nuculoides Conrad, 5.0 ; p. 274.
6. Lucina leucocyma Dall, from above; p. 263.
7. Lucina leucocyma Dall, 6.5; p. 263.
\therefore Teneriglussa vesica Dall, front view of right valve, 21.0; p. 270.
9. Limea Bronniana Dall, 3.5; p. 250.
10. Limatula setifera Dall, $9.0 ;$ p. 250.
11. Lucina sagrinata Dall, 7.6; 1. 263.
1.. Feneriglossa vesica Dall, alt. 21.0; p. 270.
13. Lucina sombrerensis Dall, 6.5; p. 263.

INDEX TO THE GENERA AND sUBGENERA?

Abra, 274.
Aclis, 333.
Acmæa, 340.
Acrilla, 332.
Actreon, 296.
Adeorbis, 338.
Aesopus, 328 .
Alaba, 336.
A malthea, 339.
Anachis, 328.
A naitis, 271.
Ancillaria, 310.
Arca, 259.
Asthenothaerus, 275.
Astralinm, 341.
Astyris, 327.
Atys, 298.
Basilissa, 354.
Bembix, 353.
Benthonella, 336.
Borsonia, 309.
Buccinum, 320.
Bulla. 298.
Bushia, 275.
Cadulus, 295.
Calliostoma, 343.
Calliotectum, 304.
Callocardia, 266.
Callogaza, 342.
Callogonia, 267, 269.
Callista, 272.
Cantharidus, 341.
Capulus, 339.
Cardium, 264.
Cerithium, 335.
Cetoconcha, 289.
Cetomya, 289, 290.
Chama, 264.
Chicorens, 329.
Chione, 271.
Chrysodomus, 321.
Cithna, 336.
Cocculina, 340.
Columbella, 327, 328.
Conomitra, 316.
Conus, 300.
Coralliophila, 332.
Corbula, 292.
Cordieria, 309, 317.
Cranopsis, 358.
Crassatella, 260.
Crenella, 251.
Crepidula, 339.
Cryptodon, 261.
Cuspidaria, 279, 289.
Cyclostrema, 354
Cylichna, 298.

Cymatoica, 272.
Cytherea, 271.
Dermatomara, 2:9, 291.
Dentalium, 293.
Diplodonta, 264.
Drillia, 303.
Emarginula, 358.
Engina, 325.
Ervilia, 274.
Eupleura, 331.
Fasciolaria, 317.
Fissurella, 358.
Fissurellidea. 358.
Fissurisepta, 357.
Fusus, 318.
Gaza, 342.
Geuota, 303.
Glyphis, 358.
Glyphostoma, 309.
Gouldia, 261.
Gymnobela, 307.
Haliotis, 355 .
Halistylus, 341.
Hela, 336.
Helix, 299.
Kelliella, 267.
Latirus, 318.
Leda, 255.
Lencosyrinx, 300.
Leucozonia, 318.
Lima, 250.
Limea, 251.
Limatula, 250.
Liotia, 354.
Litorina, 335.
Lophocardium, 26.4.
Lucina, 263.
Lunatia, 340.
Luzonia, 282.
Lyonsiella, 276.
Macoma, 272, 273.
Malletia, 251.
Mangilia, 304.
Margarita, 345.
Marginella, 310.
Mesorhytis, 317.
Mitra, 315.
Mitrularia, 339.
Murex, 329.
Myonera, 283, 289.

Nassa, 326.
Nassaria, 325.
Nassarina, 325.
Natica, 339.
Nitidella, 328 .
Nucula, 257.
Olivella, 309.
Omphalius, 341.
Oöcorys, 331.
Pecten, 248.
Pectunculus, 260.
Peristichia, 333.
Persicula, 311.
Petalocouchus, 335.
Pisania, 325.
Pleurotoma, 500, 302.
Pleurotomella, 3et.
Poromya, 284, 289.
Pteronotus, 330 .
Puncturella, 356.
Purpura, 331.
Ranularia, 334.
Rimula, 357.
Sabatia, 298.
Saxicava, 292.
Scala, 332.
Scaphander, 297.
Scaphella, 311.
Seguenzia, 335.
Semele, 274.
Sipho, 323.
Siphonaria, 299.
Solariella, 349.
Solarium, 336.
Subemarginula, 358.
Terebra. 299.
Thracia, 275.
Tindaria, 25 .
Triforis, 335.
Tritonium, 334.
Turcicula, 345.
Utriculus, 297.
Venus, 271.
Vermetus, 335.
Verticordia, 277.
Vesicomya, 267, 270.
Voluta, 311.
Volntilithes, 313.
Yoldia, 254.

(Explanation of plate on pages 359 .)

(Explanation of plate on page 359.)

Gastropods and Scaphopods.
(Explanation of plate on page 360.)

PELECYPODS.
(Explanation of plate on page 360.)

Explanation of plate on page 360.)

GASTROPODS.

(Explanation of plate on page 360.)

Pelecypods.
(Explanation of plate on page 361.)

4

6

10

13

(Explanation of plate on pages 361.)

NOTES ON THE OCCURRENCE OF GILLICHTHYS Y-CAUDA AT SAN DIEGO, CALIFORNIA.

BY

Charles H. Gilbert.

Professors Jenkins and Erermam have recently described from Guaymas, Mexico, a very interesting Goby (Gillichthys y-cuuda), distinguished, among other points, by having but tive dorsal spines. The extension of the range of this species to include the entire Gulf of Calfornia region was to be looked for, but its discovery as far north as San Diego was unexpected. On examining recently a bottle of small Gobies (No. 24566), labeled Gillichthys mirabilis, collected by Jordan and Gilbert in 1880, at San Diego, I found the collection to consist in equal parts of Gillichthys y-cauda and Lepidogolius gilberti, the latter a species recently described by Mr. C. П. Eigenmann from San Diego Bay.

A secoud lot (No. 34904), collected by Mrs. C. H. Eigenmann, contains the same tro species, which must be about equally abundant at San Diego.

In all specimens of G. y-cauda examined, including the types, I find the dorsal Y-15 or 16, the aual 14 or 15. G. guaymasiee Jenkins and Evermann, also from Guaymas, has the same number of fin rays, the types in the Museum showing D. V-16; A.14. I can discover no important difference between the two species in general proportions, or in size of eye and month, and am in some donbt as to their distinctness, although they seem to differ somewhat in coloration.

An examination of the types of Gobius tornsendi Eigenmann and Eigenmann, has shown it to be based on the young of Gillichthys mirabilis. In the largest specimens the elongation of the maxillary has become erident. The fin-formula of mirabilis is D. V I-12 to 14; A. 12 or 13.
U. S. Fisil Commission, August $28,1889$.

DESCRIPTION OF A NEW GENUS AMD SPECIES OF INARTICULATE BRACHIOPOD FROM THE TRENTON LIMESTONE.*

BY
Charles D. Walcotit, Honorary Curator of the Dipartment of Inevertebrate Fossils.

Among the fossils collected hy Mr. W! illiam I'. Finst, in the vicinity of Trenton Falls, Dew Lork, I diseorered two specimens of a small eon ical shell closely relared in form to Acontictu subconica Klloreat.t The study of these in connection with one that I found at the same locality in 1574 leads me to consider the shell of belong to a new gemns and spectes of the family siphonotictidn. For it I propose the mame comor treta rusti.

CONOTRETA gen, nor.

In external form the conical or domsal ralre is similar to that of a cou trete gemmu. The that ralve is unknown. In Acootrete there is an elongated muscular scar extembling from each side of the siphomal tube obliquely forward. In Conoticen fire narows ridges radiate from the aper towards the front, as shown in figmes 1 and 2. . The rentral ridge joins the thickened apex, which, judging from the same chameters in Acrotreta gemme, was perforated hy a siphonal tube. Structure calcareo corneous.

Type, Conotreta rusti.

Conotreta rusti sp. nov.

Larger or dorsal ralve more or less atentely ennical, romnded-subtriangular at the maryin of the ralve: fatse anal nearly lat, narow and grooved at the center by a longitmainal. nanow, - lallow funow: pob). ably perforate at the anex. Surfare matiod ly roncemtro lines of growth that pass mintermptedly orer the false area.

The cast of the interior of the conteal value shows six natow, elongate ridges radiating fiom the apex, that velatate fire depmessons on

[^48]the sides and front of the shell. With this structure the interior of the shell would hare five radiating ridges gradually widening out from the apex and becoming hollow towards their onter ends. The cast of the interior of the shell, near the apex, shows that one of the ridges joined a thickened portion of the shell that was probably the support of the siphonal tube, as in the genus Acrotreta.

1. Side view of the partial cast of the interior. Greatly enlarged.
2. Summit view of fig. 1, to show the character of the cast of the interior surface exposed. The apex is broken off.
3. Front view of another specimen that shows the cast of the ridges on the interior of the shell, and the thickened apex.
4. A more acutely conical shell, associated with the preceding.

The conical form varies cousiderably. One of the specimens is relatively one-third broader at the base than the other that otherwise is identical with it.

Two of the specimens are in the U. S. National Museum collections ; the third is from the Museum of Comparative Zoology, Cambridge, Massachusetts.

The specific name is given in recognition of the long-continned services of Mr. William P. Rust, in collecting the Trenton fana of central New York.

Nat. Mus. Cat. No. 18443.

Types of Form, Pottery of the Potomac Valley.

Examples of Fabrics impressed upon Pottery of the Potomac Valley.

THE ARCH ÆOLOGY OF THE POTOMAC TIDE-WATER REGION.

BY
Otis T. Mason, Curator of the Department of Ethnology:

(With Plates xy-xin.)
The U. S. National Museum has undertaken to publish a series of bulletins upon the natural history of the region around Washingten. Already the birds and plants have been studied and the results given to the world.

The natural history of any region includes its human fanna, and the series of bulletins under consideration would be incomplete without an account of the peoples that have here resided. Our business in this brief introductory chapter is with the aborigines. And, since it is not possible to confine the inquiry to the ten miles square called the District of Columbia, the Potomac drainage shall be the ground covered. Eren this region mist be narrowed, for wo shall ascend no tributary further than those rapids that mark the limit of tide-water, and mark also the logation of the principal cities, such as Georgetown, Fredericksburgh, Richmond, etc.

In time, our limit shall be the end of the first half of the seventeenth century on the hither side, but the other limit shall be pushed far enough back to admit all of those geological inquiries that bave become involved with the history of man.

It is possible to commence our study at either limit, taking up, first, either the geology of what is called the Columbian period or studying the last Indian tribes that left this arena just after the settlement of the royalists in Virginia and the Catholics in Maryland. For the purposes of elimination the latter plan will be adopted.
The tribes of Indiaus along the Potomac tide-water region have been well studied by Mr. James Mooney, aud his map, which is here produced (see Plate xv), shows their locations and boundaries.

The central portion of the area was the home of the Powhatan confederacy, belonging to the great Algonkin stock, which rivaled in extent the domain of Charles the Sixth. On the north and the sonth they were hard pressed by members of the Iroquoian stock, while on the
west and just above the line of cascades wandered the Mamahoacs and Monacans, of unknown stock, but for many reasons believed to belong to the Dakotans.

Only a few years after the white occupation of the Potomac Valley did the Indians remain. Save such miserable remmant as are now to be seen at Pammkey, in Virginia, they were driven off by the early settlers, leaving but two foot-prints-the shell-heaps and the dwelling sites. The Chesapeake Bay is salt water and is the home of the oyster, where the supply of this valuable food product is still abundant. The brackish water of sufficient saltness to suit the oyster extends up the Potomac River to within 50 miles of Washington. Consequently, from the point named to the month of the river, wherever there was a cove adapted to the abmodant growth of the oyster, there camped the Iudians and left shell-heaps, which in some places are of enormons extent. It is fortunate that we have among our scieutific explorers in Washington Dr. Elmer Regnolds, who has lost no opportunity in examining the Potomac shell-heaps. A map of a portion of the Potomac, prepared by Dr. Reynolds to show the frequency of the shell-heaps along those portions of the river favorable to the growth of the ofster, is here given.

In the fresh-water portion of the lower Chesapeake drainage-that is, in the region between salt water and the cataracts-stone implements are found in the greatest profusion. It is casy to account for this, when it is remembered that the whole country hereabonts furnished abundant natural food supply: All the old local historians go into ecstasies over the shad, herring, sturgeon, wild duck, turkey, and deer, not to mention the great rariety of small game, grain, fruit, and maize. To one accustomed to exploration among the momeds of the Ohio Valley or in the West Indies the stone implements are in appearance disappointing. While here and there polished axes are foumd, the polished implement is the exception, not the rule, especially on higher gromm.

1. Nacochtank (Anacostia).
2. Tauxenent (Mt. Vernon).
3. Moyaones.

Again, comparing the chipped implements with those from regions abounding in flint, obsidian, and the finer varieties of the silex group, a large collection of them has a somewhat rude appearance. (Sce Plates xvi and xvir.) All this is due, however, to the material. The ancient Potomac dweller was restricted in his material to bowlders of quartzite found in quantities inexhaustible all orer his area, to reins of milky quartz outcropping here and there, and to an oceasional quarry of soapstone. It is not meant to he here asserted that all l'otomace implements are made of these materials and are rude, becanse there exist in some of our local collections specimens of exquisite workmanship from finer substances.

A map, originally prepared for the Smithsonian Institution by Mr. Louis Kengla, is herewith appended. (See Plate XVini.) This has been perfected to date for the writer by Mr. S. V. Proudtit, who is most familiar with the location of camp-sites, workshops, ete., around Washington.

In addition to the collection of the Smithsonian Institution there are many private cabinets of great value illustrative of this part of the subject, notably those of Mr. Mam S. Valeutine, in Richmond ; J. I). McGuire, esq., of Ellicott City; Mr. O. N. Bryan, of Piscataway, Mu.; and in Washington, of Mr. S. V. Proudfit, Dr. Elmer R. Leynolds, Dr. W. J. Hoffman, Hallet Phillips, esq., Messis. Ernest Shoemaker, De Lamey Gill, F. D. Finckel, and Nathaniel S. Way.

Our knowledge of the culture status of the peoples of this region is considerably enlarged by the discovery of earthenware which, thomgh mostly in a fragmentary state, serves perfectly, when placed beside the ceramic products of other sections of the comntry, as an index of comparative adrancement. A study of the distribution of the varieties of ware promises to assist materially in settling questions of tribal distribution.

Mr. W. II. Holmes has made a careful study of this field, and has, in addition, by takiug easts from impressions upon the pottery, restored a number of the primitive woven fabrics of the tide-water people. Plate xix gives a number of illustrations of the forms and ornaments of the pottery and four examples of the weaving.

The most serions problem that faces the archarologists in this area has been proposed by Mr. Thomas Wilsou, of the Smithsonian Institution. It is no other than that of existence of two periods of oceupation in the Potomac region-the one palaeolithic and ancient, the other neolithic and modern. As the present writer molerstands the question, the facts are as follows: While the camp-sites along the water-courses yield abundance of finely-chipped arrow-heads, spear-heads, knives, etc., and also polished implements, soapstone ressels, and pottery, the hills back from the river are wanting in the smaller, finer forms, but abound in coarser, tlaked artefactu, mixed with broken implements and spalls.

Proc. N. M. $89 —$ - 24

To render the question more intricate, the coarse "turtle-back" or "paleolith" is also found among the tiner implements of the low lands, and the finer implements occasionall are found in these upland sites thought to be palæolithic.

The question is now fairly up for examination and discussion, and it is being discussed with all the zeal which the adrocates of the two theories can exert. It is to be seen whether Piney Branch hill and the other hill finds are workshops and the rude suburbs of the more wealtiyy and refined lowlauders, or whether in the presence of these rule, flaked pieces we are looking upon the earliest devices of a people that existed and passed from .this valley many thousands of years before it was inhabited by John Smith's Indians.
The last problem to be taken up is that which relates to geology. We are fortumate in this matter to have the guidance of Prof. W. J. NeGee, who is both geologist and arcineologist and has studied quaternary formations especially. As yet the question of relies deep down in the gravels has not arisen here. The problem of pateolithic man is rendered the more difficult by the fact that the formation of the crust compels us to look for his relics on the surface or in the loam, and not as in other locations beneath the soil.

Combining the researches of the geologist, the prehistoric archrologist, and the historian, it is designed by the technical section of the Anthropological Socicty to reconstruct the aboriginal record of the Potomac tide-water as the introductory chapter to the occupation of the region by the whites.
Note.-While this paper was passing through the press Mr. William H. Holmes mate an extended investigation of the so-called Palaolithic Hill on Piney Branch, and his results will be found in the January number of the American Anthropologist for 1890 .

To render the question more intricate, the coarse "turtle-back" or "pabeolith" is also found among the finer implements of the low lands, and the finer implements oceasionall ∇ are found in these upland sites thought to be palæolithic.

The question is now fairly up for examination and discussion, and it is being discussed with all the zeal which the adrocates of the two theories can exert. It is to be seen whether Piney Branch hill and the other hill finds are workshops and the rude suburbs of the more wealtiy and refined lowlanders, or whether in the presence of these rule, thaked pieces we are looking upon the earliest devices of a people that existed and passed from this valley many thousands of rears before it was inhabited by John Smith's Indians.

The last problem to be taken up is that which relates to geology. We are fortumate in this matter to have the guidance of Prof. W. J. McGee, who is both geologist and archeologist and has studied quaternary formations especially. As yet the question of relies deep down in the gravels has not arisen here. The problem of pabeolithic man is rendered the more difficult by the fact that the formation of the crust compels us to look for his relics on the surface or in the loam, and not as in other locations beneath the soil.

Combining the researches of the geologist, the prehistoric archrologist, and the historian, it is designed by the technical section of the Anthropological Society to reconstruct the aboriginal record of the Potomac tide-water as the introductory chapter to the occupation of the region by the whites.
Note.-While this paper was passing through the press Mr. William H. Holmes made an extended investigation of the so-called Palaolithic Hill on Piney Branch, and his results will be fonnd in the Janary number of the American Anthropologist for 1890 .

Map of the district of Columbia, showing ancient Village Sites, etc.

l)

Rude chipped Implements from the District of Columbia.

b

RUDE CHIPPED IMPLEMENTS FROM THE DISTRICT OF COLUMBIA.
(Half natural size.)

THE PALæOLITHIC PERIOD IN THE DISTRICT OF COLUMBIA.*

BY
'Homas Wilson, Curator of the Department of Irehistoric Anthropology.

(With Plates xvil-xxi.)
During the thousands of years covered by the historic period the world has remained in ignorance of the prehistoric races of man which occupied the territory now belonging to our civilization. Although prehistoric implements and monuments were widely disseminated, and to be seen on every hand, jet they remained unrecognized.

In the first decade of the nineteenth century the Danish sarants, in their study of the Runic characters belonging to the earls history of their comntry, discovered evidences of a human ocenpation earlier than any previonsly known. Their insestigations developed facts which were accepted by the world at large, and the prehistoric ages of man were soon classified as the ages of stone, bronze, and iron. The Stone Age was afterwards subdivided into the palaolithic or ancient and neolithic or recent periods. In the United States the Iron Age belongs entirely to history, and the Bronze Age, as such, had noexistence. Our American Indian when found by the European was in the neolithic stage.

The question to be briefly considered heret is the existence of the palieolithic perion of the Stone Age in the District of Columbia.

It is not every chiped stone that belongs to the palaolithic period. The implements of this period are of a particular type and have individuality of form, so that the expert can distinguish them from implements of subsequent epochs or periods eren when of similar material and mode of manufacture.

The question under discussion is one of great importance, for it involves the existence of a people quite unknown, and their occupation of our comntry at a period in antiquity hitherto unsuspected. I grant that evidence of this period in Europe does not prove a like period in America. The problem in each continent must be worked out from

[^49]independent evidence. No mere theory governing this conclusion in Europe should govern in America; but if the evidence that has proved the proposition in Europe is found in America, then it should be entitled to the same weight.

It is a fact, important in this discussion, that in those European countries most occupied by palæolithic man implements kindred to those found in the river gravels and belonging to the same epoch have been found on the surfuce associated with objects of subsequent periods.

In investigating evidence of the existence of a palieolithic period in America the first question is-admittiug, as we must, the existence of such a period in Europe-do we know any reason why it might not have existed in America? I can see no reason. If similar implements are found in America and in Europe, if they are found in similar positions and under similar conditions, I know of no reason why they should not establish, or at least point to, the same conclusion in America as in Europe.

In America, as in Europe, our only knowledge concerning the palæolithic period is necessarily derived from the implements themselves and from their position and surromudings when fomd. We have neither oral nor written evidence, nor have we tradition, concerning the implemeuts or the people who made and used them. They belong to a period of geologic time which our most deñnite knowledge in America conneets, as at Trenton, with the second glacial epoch.

Palicolithic implements have been found in the United States which correspond in every particular with those of Western Europe-correspond in form, appearauce, material, mode of maufacture; in short, they are the same implements in every essential. They have been found under substautially the same conditions-sometimes on the surface, sometimes deep in the river gravels. We have heard from Mr. MeGee how these implements were embedded in the river gravels at Trenton, and his opinion is that their antiquity dates to the glacial epoch.* Little Falls, Minnesota; Jackson counts, Indiana; Claymont, Delaware; Loveland, Ohio, and other localities tell the same story and furnish the same evidence.

These finds of proved antiquity are in great numbers, and they demonstrate both the existence and the antiquity of a palaolithic period in America. This can not longer be donbted. It is the conclusion of all the scientists who have studied the question. I have mentioned Professor McGee. It goes without saying that Dr. Abbott believes it. Professor Putuam was one of its earliest believers. Professors Wright and Haynes have given it their adhesion, and so have all the geologists who have examined the localities where the implements have been found. Professor Haynes, of Boston, prepared Chapter vi, entitled "The Prehistoric Archeology of North America," and just published in the Narrative and Critical IIistory of America, page 329. He, with Pro-

[^50]

PalaOLithic Implements from the District of Columbia.
fessor Putnam, recognized the great importance of the finds of these palaeolithic implements by Dr. Hilborne T. Uresson at a depth of several feet in the undisturbed ancient gravel terrace of the Delaware River, near Claymont, Newcastle comuty, Delaware. The artificial origin of these implements appears upon inspection. They repeat (Plates xyinf, xxi) the punch marks (fig. e, Plate xx) the hammer strokes, the conchoidal fracture, all of which combine to shape them for a general purpose and to show conclusisely that they are the work of man. It is the repetition of these items of testimony in hundreds and even thousauds of specimens that makes the evidence so convincing.

Mr. McGece, in his article on "Paleolithic Man in America," in Popular Science Monthly, xxxiv, 1888, speaking of the Trenton implements, gives his opinion thus: "When examined collectively the correspondence in form and mode of manufacture between symmetric 'turtlebacks,' 'failures,' 'spawls,' 'chips,' and miscellaneous fragments compels the cantions geologist to question whether any are demonstrably or even probably natural ; the series is not from the certainly natural to the doubtfully artificial, but from the certainly artificial to the doubtfully natural." (The italics are my own.)

Implements similar to those referred to have been found by thousauds in the District of Columbia, as well as all over the United States, and I have rentured to call them palieolithic. True, they bave been found principally upon the surface or in the alluvium which is its equiralent. They are not presented as furnishing complete proof of the antiquity of the paleolithic period, but they have been found in situThey are part of the res !jeste, and must be accepted as evidence in the case tending, at least, to establish the existence of a palæolithie period in the District of Columbia.

That the implements found in the District of Columbia and the Potomac Valley, illustrated in Plates xvii to xxi were of buman manufacture, and that they belong to the palaeolithic period, can be demonstrated by comparing them, first, with one another; second, with like implements found in the river gravels in the United States; third, with like implements found in other countries, both in the gravels and on the surface.

The details of this comparison would extend to-
Form and appearance; material; mode of fabrication ; use and purpose.

In contrast to the similarity of palaolithic implements will be found an equally marked dissimilarity of implements belonging to the neolithic period, whether of Europe or of America, extending to details of appearance, mode of fabrication, material, and purpose. The wider the geographic range of this comparison and the more minute its details, the more conclusive it becomes. For instance, if, instead of confining our comparison to palieolithic implements from the District of Columbia, we include those from all over the United States; and if, instead of com-
paring them with like implements from England and France, we extend our comparison to those from Africa and India, we find them all alike, and consequently all are true palieolithic implements.

Palizolithic implements from the District of Columbia, indeed from all over the United States, are always chipped, never polished; are almondshaped, oral, or sometimes approaching a circle; the cutting edge is at or towards the smaller end, and not, as during the neolithie period, towards the broad end. They are frequently made of pebbles, the original surface being sometimes left unworked in places (see b and c, Plate XNi), sometimes at the butt for a grip, sometimes on the flat or bottom side, and sometimes, in cases of these pebbles, on both sides. The differences between the natural and artificial portions are readily distinguishable.

These implements are exceedingly thick compared with their width, so much so as to make it apparent that they were never intended to have a shaft or handle after the fashion of either the axe or the arrow or spear head. This statement does not apply solely to the larger implements, weighing several pounds; for there are small ones of varying sizes, perfect in themselves, with an evidently intentional protuberance which renders hafting impracticable.

The above-noted features bring into greater prominence the important fact that the implements are all of a common type. Thoy are all alike, and yet not alike. They are not copies, yet there is no mistaking their likeness to each other. When this likeness is found to extend to thousauds of implements, coming from every part of the United States, it produces in the mind of the examiner a conviction impossible to escape.

The palieolithic implements found in the District of Colambia compare favorably with those collected by Dr. Abbott at Trenton, and they are equally if not more like the Chelleen implements found in Europe and Asia.

The greater portion of palæolithic implements from Europe are of flint. Flint is scarce in the United States, and we have but few flint implements in any prehistoric epoch. We have, however, some of these flint paleoliths from Texas and more from Utah and New Mexico, and I invite a comparison of them with the Chelleen implements of flint from western Europe.

The palieolithic implements of the United States were mostly made of quartzite. I invite a comparison of specimens of the same material from the Bois-du-Rocher, from Toulouse, from the caverns of Creswell Crags, Derbyshire, England, and those from the laterite near Madras, in India.

The culture of the neolithic period spread over the world, and the implements are well defined and known to all archrologists. The American Indian belonged to this period of culture, and the majority of his implements are similar to those in other parts of the world. Their dissimilarity from the palieolithic implements now under consideration

PROCEEDINGS, VOL. XII PL. XXI

is evident on first inspection and becomes more apparent the closer the scrutiny.

They differ in form and thickness; are differeutly manufactured; are made of different material, and have a different appearance. The cutting end of the implement is reversed, being at the broad end.

The distinct type of implement called palroliths is not known to have been used by the American Indian. The palæoliths are not Indian axes, nor hatchets, nor scrapers, nor knives, nor spear or arrow heads. Of the thousands of Indian mounds, cemeteries, graves, or monuments of whatever kind which have been explored, not one has ever yielded these palæolithic implements. In circular No. 36 from my office I propounded the question whether palæolithic implements were found in mounds, tombs, or other ancient structures, or associated with other ancient implements. In the hundreds of responses received from every part of the Uuited States there is no affirmative answer. They may have been found associated with other implements on the surface, but in Indian mounds or graves never.

Whether the particular piece chosen by the prehistoric workmen for the manufacture of these implements was a rounded and smoothed pebble or a rough block, his mode of procedure appears to have beeu the same. He struck off the tlakes by blows, probably with a hammer stone. The fracture left a conchoid of percussion, locating the point of blow with certainty. In many of the larger and ruder implements it would appear as if the work was begun and the heavier flakes knocked off by the aid of a punch, probably a stone punch, of which the marks are at times risible, and by means of which the stroke could be confined to a single spot (Fig. 2, Plate xx). In many cases the smaller flakes have been struck from one side and then from the other until the implement was brought to an edge. Not infrequently the edge shows evidences of use, sometimes being battered rough and at other times being worn smonth. None of them are polished, as were the implements of the neolithic period.

Palæolithic man, whether of Europe or of New Jersey, employed for his implements material which possessed certain qualifications. It was necessary that it should be hard, that it might not break or crumble; tough, that it might hold an edge; homogeneous, or at least approximately, so that it might be flaked in any direction; and it was usually of such substance as to break with a conchoidal fracture.

The materials of the implements found in the District of Columbia and throughout the United States possess in a surprising manner the above requirements. They are usually quartz, quartzite, and argillite, and for the most part were pebbles, frequently water-worn.

On the other hand, the North American Indian and his prehistoric ancestors of the neolithic period used all sorts of eruptive rocks for his implements. He made many also out of clay, rocks, slate, shale, and the like, any material serving him which would grind to a smooth sur-
face and make a clean edge, whether capable of being chipped or not. He also used largely the peculiar material chert, which closely ap. proaches the European flint, and, like that rock, may be shaped by a distinctive mode of chipping quite different from that exhibited by the palæoliths.

The line of demarcation can be plainly drawn between the two classes of implements.

It is my opinion that the palæolithic implements of the United States correspond in use and purpose, as they do in their other qualities, with the Chelleen implement of France, which was the representative implement of that period.

These comparisons might be continued indefinitely, and the more thorough the comparison the greater will appear their similarity to other palæolithic implements and their dissimilarity to neolithic implements.

When I compare implements found by the thousand on the hills and in the valleys around the city of Washington with those, also found by the thousand, distributed ever the United States from the Atlantic to the Pacific, and find them to be substantially the same implement; when I compare those from America with the equally great number from Europe and the Eastern hemisphere, and find them all substantially the same implement ; and when again, comparing them with the implements of the neolithic period, whether European or American, I find them to be unlise except in a few and insignificant details-when I review all these facts I am forced to the conclusion that the implements I exhibit from the District of Columbia are of the same paleolithic type as those found in the gravels at Trenton and elsewhere, and that they tend to prove the existence of a paleolithic period in the United States.

NOTES ON A THIRD COLLECTION OF BIRDS MADE IN KAUAI, HAWAIIAN ISLANDS, BY VALDEMAR KNUDSEN.

BY
Leonhard Stejneger, Curator of the Department of Reptiles and Batrachians.

A new colsection of birds just received from Mr. Valdemar Knudsen in Kauai, Hawaiian Islands, is in many respects as interesting as any of those previously sent, and deserves more than a passing notice.

> Puffinus cuneatus Salvin.

Knudsen's Shearwater.
Nau Kane.
1888. -Puffinus cuneatus Salvin, Ibis, 1888 (July 1), p. 353.
1888.-Puffinus linudseni Stejneger, Proc. U. S. Nat. Mus.. xi, 1888 (Nov. 8.), p. 93.

The additional four specimens receised from Mr. Kuudsen do away with those differences which I imagined to exist between the Hawaiian Islands bird and the description of Salvin's P. cuneatus published only a few months before my own, and as the name given by him consequently has the priority, P. linudseni becomes a synonym of the former.

Three of these specimens (Nos. 116764-116766) agree closely with the type, except that the sides of throat and neek are distinetly mottled with grayish.

The fourth specimen (No. 116767), although agreeing with the others in dimensious and coloration above, differs considerably in having the whole under surface, including under wing-coverts, of a uniform brownish slate gray (very much like Ridgway's " mouse gray," Nom. Col., pl. II, fig. 11), only slightly paler on middle of chin and throat, and somewhat darker on flanks and under tail-coverts.

Coming, as it does, from the same locality, and agreeing with the others minutely in every other respect, I feel but little hesitation in pronouncing this uniformly colored specimen the dark "phase" of the typical bird with the white under side. In fact the two birds seem to bear the same relations to each other as the dark and the light specimens of P. sphenurus figured by Gould. He takes the latter to be the young bird, but there seems to be no good reason for believing that the difference is one attributable to age.

Measurements.

$\begin{aligned} & \text { U. S. } \\ & \text { Nat. } \\ & \text { Mus. } \\ & \text { No. } \end{aligned}$	Collector.	Locality.	$\begin{aligned} & \text { E } \\ & =0 \end{aligned}$			突			Remarks.
116764	Knudsen	Kauai, Hawaiian Islands.	290	149	39	46	54	58	
116765	. dodo..	295	145	37	47	55	55	
116766	. 10	do	285	137	40	47	54	50	
116767	. do	do	294	142	40	46	57	50	
:13445	...do	do	287	138	37	46	51	49	Type of P. knuiseni.

Bulweria bulweri (Jard. \& Selb.).
Bulwer's Petrel.
I have but iittle doubt that the two birds received from Mr. Knudsen since the rest of this paper was submitted to the printer really belong to this species. They make a rery unexpected addition to the Hawaiian fauna.

As far as coloration is concerned they agree minutely with B. butweri, the greater wing-coverts being lighter than the rest of the wing, in this respect differing from the original description,* and, so far as I know, the only one, of B. macyillicrayi. Nor are the bills larger; on the contrary, they are somewhat slenderer; nor do the dimensious or proportions differ, as the appended measurements show. The only doubt is caused by the difference in shape of the nasal tube, which in the single specimen of undoubted B. bulueri at my command is swollen almost to the base, while in Kundsen's two specimens it is compressed from about the middle backwards. This difference may be entirely unesseutial, however.

The occurrence at the Hawaiian Islands of this species, which has hitherto been recorded only from the Eastern Atlantic, and as occasioually occurring in Greenland and the Bermudas, is very interesting, especially as we might have expected to find B.macgillivrayi tbere, and raises the question whether the latter, of which I think only one specimen is known, may not simply be an abnormal individual of B. bulweri.

Measurements.

*"Like T. Bulueri, but with the bill rather larger; and it is without the sootybrown ou the wings," Gray, Cat Birds, Trop. Isl. Pac. Oc., p. 56 (1*59). This diagnosis, with slight additions and measurements, is reproduced in Finsch \& Hartlaub, Bẹitr. Fauna, Central Polynes., p. 242 (1867).

Four specimens of this comparatively rave species, which is here attributed to the Hawaiian Islands for the first time. I have carefully compared them with Peale's type of the species and with a good series of S. ancethetus and can vonch for the accuracy of the identification. It is closely allied to the latter species, but is easily distinguished by its much grayer mantle, this being in S. lunuta of a shade corresponding to Ridgway's "Gray No. 6," while in N. cuncthetus it is brownish slate. The bill of S. lunata also averages considerably longer.

This raises the question as to the S. ancethetus reported from the Hawaiian Islands (Dole's S. panaya ex Hartl. © Finschi). So far as I can see this record rests solely upon the identification of Bloxham's S. oaluensis being the same as S. ancethetus. Bloxham's description, how. ever, is that of a young bird, and is clearly referable to S. fuliginosa and not to S. ancethetus, as indicated by the following sentences: "Head, neck, and breast, black; * * * belly, and under the wings, dusky white;" while in the young S. ancethetus the whole under parts are light, this making the chief color distinction of this bird as compared with s.ofuliginosa, the young of which is colored exactly as described by Bloxham.

Measurements.

U. S. Nat. Mus. No.	Collector aud No.	-	Locality.	品			\%		Remarks.
116759	Knudsen	Ad.	Kauai, Hawaiian Islands.	275	172	45	20	27	
116760	...do .	Ad.do. .	276	180	43			
116761	.. do	Ad.	do	272	168	4			
I16762	P. do	Ad.	do	265	167	41			
15744	Peale, 725..	Ad.	Vincennes Island	255	150	40			Type.....

Sterna fuliginosa Gmel.
Sooty Tern.
Ewaewa.
1788.-Sterna fuliginosa Gmelin, S. N., I, p. 605.
1826.-Sterna oahuensis Bloxhand, Voy. Blonde, App., p. 251.
1869.-Sterna panaya Dole, Proe. Boston Ae. (nec Auct.) ; Id., Haw. Alm., 1879, p. 56.

These quotations only refer to the Hawaiian fama, and are not intended for a complete synonymy. They are explained under the foregoing species.

The occurrence of S. fuliginose in the Đawaiian Archipelago does not rest on the identification of Bloxham's S. oahuensis alone, for in Mr. Kundsen's collection there is an adult bird of this species, which can not be very rare on the islands, as Mr. Knudsen seems well acquainted with it, for he says that "the Ewaewa is rery much like the Pakalakala, but is always black on the back."

Measurements．

U．S． Mus． No．	Collector．	¢	Locality：	808			产	
116763	Knudsen ．．	Ad．	Kauai，Hawaiian Islands	280	170	45	23	27

Gallinula galeata sandvicensis（Streets）．
Hawaiian Gallinule．
Alai ula．
The tarsus of these birds are decidedly red．In every respect they bear out the remarks which I have made on a previous occasion（Proc． U．S．Nat．Mus．，1887，pp．78－80）．

Measurements．

Charadrius dominicus fulvus（Gmel．）．
Pacific Golden Plover．
Kolea．
Two in winter plumage and one（No．116768）with the tower surface black．The yellow of the upper parts is very rich，and with the meas－ urements given below corroborate the correctness of the previous iden－ tification of the Plover visiting the Hawaiian Islauds．

Measurements．

U．S． Nat． Mus． No．	Collector．		Locality．	㬉		号
116768	Knuisen．	Ad．	Kauai，Hawaiian Islands．	164	63	
116769	．．．．do ．．．．	Ad．		163	64	24
116770	．．do ．．．．	Ad．	do	167	62	25

Arenaria interpres（LINN．）．
Turnstone．
Akekeke．
Two specimens．

Himantopus knudseni Stejn．
Knudsen＇s Stilt． Aeo．
The black mesial stripe on the rump and the broad black tips to the tail－feathers are well developed in both examples sent．No． 116777 has the entire fore neck mottled with black all across．The dimensions agree well with those of previous specimens，though the wing is rather longer and the tail shorter．The bill，however，is fally up to the stand－ ard，but No． 116776 has a remarkably short tarsus．The characters of the new species are thus pretty well established．

Measurements．

U．S． Nat． Mus． No．	Collector．	Sex and age．	Locality．	它			离	
$\begin{aligned} & 116776 \\ & 116777 \end{aligned}$	Knudsen ．．．．	¢ 9 ad．	Kanai，Hawaiian Islands	$\begin{aligned} & 233 \\ & 232 \end{aligned}$	77 79	75 77	104 112	43 44

Heteractitis incanus（Gmel．）．
Wandering Tattler．
Ulili．
Three specimens，two of which（Nos．116773，116774）with the whole under surface barred．Bill grooved for two－thirds of its length．

Measurements．

$\begin{aligned} & \text { U. S. } \\ & \text { Nat. } \\ & \text { Mus. } \\ & \text { No. } \end{aligned}$	Collector．	\％	Locality．	它				
116773	Knuilsen ．．	Ad．	Kauai，Hawaiian Islands	167	72	41	26	
116774	．．do	Ad．		172	79	41	29	
116775	．do ．．．．			163	69	39	27	

Nycticorax nycticorax nævius（Gmel．）．
Black－crowned Night Heron．
Auku kohili．
Adult and young confirming previous identification．
Measurements．

$\begin{gathered} \text { U. S. } \\ \text { Nat. } \\ \text { Mus. } \\ \text { No. } \end{gathered}$	Collector．	$\xrightarrow[4]{4}$	Locality．	这	
$\begin{aligned} & 116780 \\ & 116781 \end{aligned}$	Knudsen . . do	Ad． Jun．	Kauai，Hawaiian Islands． ．．．．．．．do	310 295	115 110

Sula piscator (LinN.).
Red-footed Booby.
A.

One specimen, adding a new species to the Hawaiiau list. Bill and feet red.
"The other day, when the men were out fishing, this bird came up to the canoe and tried to take the fish off their hooks." (Kinudsen in litt.).

Phaëthon rubricauda BoDD.
Red-tailed Tropic Bird.
Ula.
Four specimens of this species, which has already been noted by S . B. Dole as common.

Chasiempis sclateri Ridgw.
Sclater's Spotted-winged Flycatcher.
Amakahi.
A single specimen, marked as female; differs in no way from the other four previously received. The basal half of the lower maudible is waxy yellow, as in these, and the white on the tail likewise restricted, especially on the other webs, and suffused with tawny.

Measuremenis.

U. S. Nat. Mus. No.	Collector.	$\begin{aligned} & \text { Sex } \\ & \text { aud } \\ & \text { age. } \end{aligned}$	Locality.	$\stackrel{8}{8}$		会 H
116783	Knudsen ...	¢ ad.	Kauai, Hawaiian Islands. .	67	64	24

Chasiempis dolei Stejn.
Dole's Flycatcher.
Apekepeke.
Two specimens, male and femate, agreeing in all essential points with the original specimens, thus confirming the validity of the species. No. 1167 s , the supposed male, differ's slightly in the tinge of the tawny of the fore neek and chest, it beng in this specimen more purplish and less yellowish, while the white wing markings are slightly suffused with the same color round their edges.
The material now before me shows plainly that the entirely black bill and the more extended and pure white on the tail-feathers are additional characters separating Ch. dolei from Ch. sclateri, inhabiting the same island.

A third specimen (No. 116782), also marked male, has even a stronger wash of tawny on the wing spots than the one mentioned above, and even the back and rump are suffused in the same way, but bill and tail are typical ('h. dolei. The differences may be due to age, although the specimen shurs no indication of being immature. It should be remarked, however, that this specimen exhibits considerable abrasion of the wing-feathers, while the others are quite fresh. It is therefore
probably collected at a different season, which may account for the difference.

Measurements.

Phæornis myadestina Stejn.

Flycatching Thrush.
On.
The two specimens of this bird are rery interesting, not only because they bear out the characters of the species, thus confirming its validity, but especially because both are young. No. 116766 agrees closely with one of the original specimens, which, at the time, I noted as immature (l. c., 1. 71), having the characteristie semilunar spot of buffy white bordered by a blackish friuge at the tip of the wing coverts. The other specimen is still younger. In this the feathers of the rump and the upper tail-coverts belong to the first plumage, having the buffy subapical spot and the black terminal fringe; moreover, all the feathers of the lower surface are margined terminally with gravish or blackish, giving those parts a scaly appearance; tertiaries and imner secondaries are margined apically with whitish. Placing this bird alongside a Myadestes townsendi in corresponding plumage, no one would doubt that the characteristic wing pattern, the peculiar structure of the bill, the booted tarsus, and the almost identical appearance of the young plumage are more than superficial similarities. In fact, were it not for the different proportions of wing, tail, and legs, the two birds could hardly be separated generically. It should also be borne in mind that the proportions vary greatly within the gemms Myadestes itself, and that by selecting our species we can find some in which these proportions differ less from Phoomis, than do the most extreme species of Jyudestes inter se, as will be seen from the following tables:
I. Ratio between tail and wing.

III. Ratio between tarsus and tail.

In the first table the difference between Phoromis and the nearest Myadestes is 0.10 , that between the extreme species of Myadestes 0.13 ; in the second the same differences are 1.13 and 1.37 , respectively; while in the third they are 1.20 and 1.16.

The other parts of the structure agree as well. The bill, with nostrils and bristles, is identical, though somewhat stouter and stronger in Pheornis; the wing-formula is the same in Ph.myadestina and II. cenezuelensis ; and the tail of these two species is likewise identical in shape. I am also unable to detect any difference in the structure of their feet.

I am now fully satisfied that the two genera are very closely allied, and shall include them both in the group Myadestere which I established several years ago (Proc. U. S. Nat. Mus., v, 1882, p. 482).

The relationship of Pheornis to Myydestes is of very great interest, as it is the only instance of a peculiar Hawaiian geuns of Passerine birds being related to birds exclusively American in their present distribution.

Measurements.

$\begin{aligned} & \text { U. S. } \\ & \text { Nat. } \\ & \text { Mus. } \\ & \text { No. } \end{aligned}$	Collector.	Sex and age.	Locality.	$\begin{aligned} & \dot{\varepsilon 0} \\ & \text { 日 } \end{aligned}$			-	
116786 116787	Knudsen ..	t imm.	Kauai, Hawaiian Islands	99 101	78 79	13	31 32	25 26

Hemignathus stejnegeri (Wils.).
Green Sickle bill.
Iwi.
The tivo Hemignathus sent this time differ very decidedly from those previously (Pr. U. S. Nat. Mus., 1887, 1. 93) designated by me with doubt as Hemignathus obscurus (GMEL.) aud afterwards described by Mr. Scott B. Wilson as H. stejnegeri (Ann. Mag. Nat. Hist., 6 ser., vol. i , Nov., 1889, p. 400). In the first place they are larger; wing S8-89mm against $76-82$; chord of culmen $57-58^{\text {min }}$ against 43-53. They are, moreover, much more brightly colored, having the entire upper surface bright yellow-olive (something between Ridgway's "olive green," Nomencl. Col., pl. x, fig. 18, and "wax-yellow," pl. VI, fig. 7), several shades brighter than the rump in those received before; the under surface from chin to breast, as well as the flanks of the same color, only somewhat lighter, shading into "canary yellow" (pl. Vi, fig. 12) on the abdomen; lores, black; superciliary stripe, yellow; tibia, white. The birds of the
previons collection are olive gray on the back, the rump being distinctly yellowish olive, as are also the flauks; sides of head and neck are also grayish like the back, while the whole middle line from chin to anal region is pure yellow. According to Kmudsen each collection contained a pair, but the difference seems much less likely to be one of age than of sex. There seems to be no good a priori reason against the assumption of the existence of two closely allied species of Hemignathus on Kanai, as the differences which I have pointed out above are but little less marked than those which separate Himatione parra from my socalled II.chloris (nec Uab.). For the present, however, I think it better to assume that the specimens have been erroneonsly sexed, and that the brighter and larger specimens are the males of the present species.

Measurements.

Two adults and two young hirds of this species, the latter particnlarly interesting.

No. 116793 has not ret commenced to moli. It is of a dull ocher-yellow, brightest on fore neck and chest, duller and more olise on back, tips of feathers more or less distinctly bordered with hack; almost the whole of the immermost tertial and the inner web and tip of the next one light gray, the first mentioned feather somewhat darker in the outer web; hill horny yellow, except culmen which is blackish; legs dark horuy brown. No. $1166^{2 \%}$ is apparently a little older. Red feathers, mostly still in their sheaths, are protruding all over the hody; the bill is reddish orange, dusky at base of upper. mandible, and the legs have become a light rellowish brown ; the tertials are colored as in the foregoing specimen. This point is well worth mentioning, as Sharpe (Cat. B. Brit. Mus., x, p. 7) deseribes a young female from Hilo, Island of Mawaii, as having the imner webs of the tertiaries white. It is quite possible that the foung birds from the varions islands show tangible differences which may become obliterated in the old ones as they assume the red plumage.

Oreomyza bairdi Stejn.
Akakane.
One specimen (No. 11679 a) agrees rery closely with the types. It measures as follows: Wing, 69m" tail-feathers, $44^{\text {mun }}$; exposed culmen, 12.5^{mm}; tarsus, 20^{mm}; midhle toe. with claw, $16^{\mathrm{mm} \mathrm{\prime}}$; himd toe, without claw, 10^{mmm}.

Besides this there is another Oreomyza which, in spite of its great resemblance to O. bairdi, I must regard as a distinct species. I propose to call it

Oreomyza wilsoni sp, nov.

Diagnosis.-Similar to O. bairdi, but with the forehead, supercilia, and ear-coverts white suffused with a delicate tinge of pale olive buff; under wing-coverts suffused with sulphur yellow; first primary (from edge of wing) equaling the seventh in length.

Dimensions (type specimen).-Wing, 69^{mm}; tail-feathers, 43^{mm}; exposed culmen, 12.5^{mu}; tarsus, 20^{mm}; middle toe, with claw, 16.5^{mm}; hind toe, without claw, 10^{mm}.

Habitat.-Kauai, Hawaiian Islands.
Type.-U. S. Nat. Mus., No. 116794. V. Knudsen, collector.
The differences exhibited by this specimen are so many, and of such a character, that they can not be supposed to be due to sex, age, or season. In addition to those pointed out in the diagnosis, the type oif this form (with which I wish to associate Mr. Scott B. Wilson's name, in recognition of his ornithological work in the Hawaiian Islands) is browner above, darker olive on the flanks, and less yellow on the chest than the three specimens of O. bairdi before me.
? Psittirostra psittacea (Temm.).
Ou polapalapa.
The two specimens sent, both marked as males, agree closely with those previously recorded from Kauai (Proc. U. S. Nat. Mus., 1887, pp. 389-390), except that in No. 116797 fore neck and chest are distinctly gray, with hardly a tinge of greenish.

> Moho braccata CASSIN.

One specimen (No. 116800) agrees closely with those previously recorded (Proc. U. S. Nat. Mus., 1887, pp. 100-102). Three others differ somewhat trom these in being larger and of deeper, more saturated colors, as well as by absence of light shaft streaks on the interscapulars. The latter may be either the males or the fully adult birds, the former representing females or immature birds. I am inclined to think, however, that the difference is due to sex and not to age.

Measurements.

$\underset{\text { Nat. }}{\text { U. }}$ Mus. No.	Collector.	$\begin{aligned} & \text { Sex } \\ & \text { and } \\ & \text { age. } \end{aligned}$	Locality.	$\begin{aligned} & \text { 官 } \\ & \text {. } \end{aligned}$				
116800	Knudsen		Kauai, Hawaiian Islands .	94	81			
116798	.. do	 do	98	85	29		
116799	... do			97	85			
116801	. . . do		do	161	88	28		

DESCRIPTIONS OF NEW ICHNEUMONID \notin IN THE COLLECTION OF THE U. S. NATIONAL MUSEUM.*

BY

William H. Ashmead.
This paper represents the results of a continuation of the work mentioned in the introduction to the previous paper by the writer, on the new Braconide in the collection of the Museum, published on pages 611-671 of the Proceedings for 1888. It is prepared at Dr. Kiley's instance, and is based upon the collections donated by him and upon his recent rearings at the Department of Agriculture, including, as before, a large number of bred species. Where source is not indicated, it is from Dr. Riley's collecting.

Subfamily 1CHNEUMONIN E.

ERISTICUS Wesmael.

This genus is confined to Europe and no species has yet been described in it from North America. The species described in it below agree with the definition of the genus very closely, but may possibly be separated subsequently upon comparison with authentic European types.

All the species but one are smooth, highly polished, and were taken in Wisconsin.

The following table will aid in determining the species:

2. Abdomen not entirely fertuginous. 3

Abdomen entirely ferruginons; scutellum, postscutellum, and a spot on the disk of metathorax, yellow. ㅇ.. rufigaster sp. nov.
3. Scutellum and postscutellum, yellow. Metathorax, entirely black.

Three basal abdominal segments, red, the following black, δ.
E. apicalis sp. nov.

Two basal abdominal segments, red, the following black. if.
E. basilaris sp. nov.

Second abdominal segment, only red. \& cinctus sp. nov. Metathorax with two yellow spots.

Second abdominal segment and apex of third, res. ${ }^{2}$... E. binolatus sp. nov.

[^51]Eristicus minutus sp.' inov.
Female.-Length, Smen. Ifead and thorax dark ferruginous, opaque, finely punctulate, tro spots on the mesonotum anteriorly and the scutellum and post-scutellum, vellow; antenner short involuted, the three or four basal joints of flagellum about twice as long as thick, a little narrowed basally, the joints berom fourth or fifth, transverse; scutellum flattened, troncate behiud: metathorax areolated, the posterior face is centrally hollowed, side areas black, the spiracles linear, about two and a half times as long as wide; legs ferruginous, all the femora somewhat swollen, the posterior cosat with a large yellowish spot above vasally; abdomen highly polished, ferruginous, the four terminal seg. ments black, gastroculi shallow, almost obliterated, ovipositor slightly exserted.

Wings fusen-hyalive; stigma yellowish, areolet pentagonal, the upper side being half the length of the lower outer side, the cubital nerrure geniculated at about the middle but without a stump ol'a rein.

Habitat.-Wisconsin.
Described from one female specimen.

Eristicus erythrogaster sp. nov.

Female.-Length, $13^{\text {mun. }}$. Head and thorax black, polished; head with a few punctures, a spot on orbits below antennee and two above at summit of eyes, yellow; clypeus and mandibles, except apex, reddishrellow ; antemie black, insoluted, first joint of flagellum about two and a half times as long as thick, the three or four following joints hardly twice as long as thick, the joints beyond these shorter; tegule ferruginous; upper margin of the prothorax interrupted auteriorls, two moderately large spots on mesopleura, spot on disk of mesonotum, scutellum, post-seutellim, a quadrate spot on disk of metathoras, and a spot on metapleura, lemon-sellow; metathoras areolated, truncate posteriorly, the face not hollowed, the spiracles as in previous species; legs ferruginous, all cosie and first joint of all trochanters, black. Abdomeu ferruginous, smooth, highly polished, gastroceli obsolete, or only indicated by a slight transserse scar in the highly polished surface. Wings hyaline, with a very faint fuscons tinge; stigma and veins piceous, the stigma paler along the inner margin.

Habitat.--Wisconsin.
Described from one specimen:

Eristicus apicalis sp. nov.

Mate,-Length, 13"m. Ifead, antennie, thorax, all cose and four terminal abdominal segments, black; a spot on scape beneath, face, clypeus and mandibles, except tips, a small dot at summit of eyes and a spot at middle of post-orbits, tegule, costie, scutellum and post-scutellum, yellow; legs and three basal abdominal segments, ferruginous.

The antennte are porrect, gradualiy acuminated towards apex; the head and thorax shining, with some seattered punctures; metathorax areolated, spiracles long, linear, contracted at middle; abdomen highly polished, the petiole somewhat conically produced above at the bend just in front of the spiracles, gastrocoli distinct, transverse. Wings snbhyaline; stigma and parastigma black, veins brown.

Habitat.-Wisconsiu.
Described from four male specimens.

Eristicus basilaris sp, nov.

Female.-Length, 12m. Hearl, thorax, and abdomen, except the two basal segments, black, polished; the head and thorax show a few scattered piactures; there is a small yellow spot at summit of eyes and another one at the middle of the post-orbits; the clypeus and mandibles wholly black; the antemne are involuted at tips, black, the first joint of flagellum about twice as long as thick, the following gradually become shorter and shorter to the seventh, from thence they are transverse shorter than wide; scutellum and post-scutellum, yellow; metathorax areolated, spiracles linear about five times as long as wide; legs ferruginots, all coxir and the first joint of anterior and middle trochanters and the posterior trochanters, black; abdomen highly polished, the petiole blackish basally, gastrocoli nearly obsolete, only indicated by a transverse roughmess in the polished surface; ovipositor very slightly exserted. Wings subhyaline; stigma and veins brown-ish-yellow, the costal edge black.

Habitat.-Wisconsin.
Described from two specimens.

Eristicus cinctus sp. nov.

Female.-Length, $14^{\prime \prime m}$. Black, polished; a line beneath tegulæ and the scutellum lemon-yellow; legs and second abdominal segment tharoferruginons; coxil and first joint of trochanters, tips of posterior femora, extreme tips of tibie, and first joint of maxillary palpi, black.

The head and thorax, althongh polished, show a distinct scattered punctuation ; the metathorax is distinctly areolated, the surface of the areas more or less rugulose, the spiracles very long and linear; the gastrocœli are long, slightly oblique, deep. Wiugs fusco-hyaline; stigma yellowish, veins black.

Habitat.-Wisconsin.
Described from one specimen.
Eristicus binotatus sp. nov.
Male. - Length, about 16^{mm}, the abdomen being incurred and an exact measurement can not be made. Black; lower orbits commected with two oblique marks on face beneath the antemur, a spot on scape beneath, pupil on tegulie and a line beneath, the scutellum, a lateral spot
on metathorax, and anterior and middle legs, yellow; posterior legs, second abdominal segment, and the apex of the third, ferruginous; all coxæ and first joint of trochanters black, the apical half of posterior femora and the apex of tibie black, their tarsi from apex of first joint fuscous.

The whole insect is polished, but the head and thorax are sparsely punctulate; the gastrocosl large, distinct, with three or four raised lines at bottom, and the apex of petiole is aciculated. Wings fuscohyaline ; veins piceous, stigma paler.

Habitat.-Wisconsin.
Described from one specimen.

ICHNEUMON Linn.

Ichneumon xanthopsis sp. nov.

Male,-Length, $S^{\text {mmm }}$. Head and thorax black, subopaque, finely punctulate ; face, clypeus, mandibles, palpi, orbits narrowly to summit, then interrupted and followed by a dot and a slight dot at middle of post-orbits, yellow; antemie porrect, black, scape beneath and a spot above, yellow; tegulie and a short line beneath, scutellum and a dot on metascutelium, yellow; legs yellow; all coxie, first joint of trochanters, a loug streak on anterior and middle femora beneath, posterior femora entirely, apex of their tibiee and the tarsi, black. Abdomen black, moderately finely punctulate; apex of petiole, the second seg. ment, except gastrocoli, third segment, except narrowly at base and apical two-thirds of fourth segment, yellow; gastrocoli rather large and deep, black, with some raised lines, the space between them reddish and aciculated. Wings, subbyaline; veins brownish; the cubital nerrure is broken at about the middle with the stump of a vein; the areolet is pentagonal, the upper side about as long as the lower side.

Habitat.-St. Louis, Mo.
This species is very close to I. parvus Cr., but it is slightly smaller and a little differently colored; the sculpture of the secoud abdominal segment in I. parrus is coarser, more strongly aciculated, the aciculations extending nearly to the middle of the abdomen, and the discal areolet has the upper side only about half the length of the lower outer side.

Ichneumon xanthogrammus sp. nov.

Male.-Length, $8^{\text {mmm. }}$. Black and yellow; face, clypeus, mandibles palpi, orbits widened ou cheeks, a broad ring on antennæ, superior margin of prothorax, a line on sides and spot beneath, two lines on disk of mesothorax, a short line on the shoulders, tegule, and a line beneath, a large spot on mesopleura, spot beneath insertion of hind wings, apical half of metathoras, apex of all the abdominal segments and a large spot above on last segment, all yellow; legs yellow, the posterior pair tinged with ferruginons, the coxie with a large black spot at sides.

Wings hyaline, very slightly tinged with fuscous; reins piceous, the stigma with a fulvous spot at base.

Habitat.-Texas.
Described from one specimen in Belfrage collection.
Ichneumon fulvopictus sp. nov.
Mate,-Length, 17^{mm}. Black, opaque, confluently punctate; face, clypens, mandibles, except tips and the palpi, sellow; post-orbits and base of cheeks, ferruginous. Anteune porrect, gradually acuminate toward apex, ferruginous. Apical half of scutellum, yellow. Metathorax rugose, areolated, spiracles very large, linear, more than four times as long as wide; legs fulvous and ferruginous, anterior and middle coxie and first joint of trochanters above, black, the middle femora with a black spot behind rear apex; posterior cosie as well as the first joint of trochanters above entirely black, the femora ferruginous with a black streak beneath and widened and almost encircling the apex above, tibix and tarsi fulvons or yellow, the apex of tibie dusky. Wings fuliginous, the costæ, parastigma and stigma, fulvous; veins black. Apex of second abdominal segment and sutures of fourth and fifth and the following segments fulvous.

Habitat.-Missouri.
Described from one specimen in Riley collection.
Ichneumon leucopsis sp. nov.
Mute.-Length, $8^{\text {mm }}$. Head and abdomen black; thorax and legs, ferruginons; the face, clypens, mandibles, except tips, palpi, orbits, interrupted behind, scape beneath, tegula and line in froat, a short one beneath and anterior and middle coxe and trochanters, white; the antenne are porrect, acuminate towards apex, black. The head and thorax are minutely punctulate; sides of prothorax, sutures of thorax, lines in parapsidal grooves anteriorly, space surromding insertion of wings and around the sentellum and posterior face of metathorax, black; scutellum red with a whitish posterior margin; metathorax areolated, the spiracles linear. Abdomen loug, minutely punctate, opaque, black, the extreme apical edges of the secoud and the following segments red; gastrocoli rather large, distinct. A pex of posterior femora abore, black; tibie and tarsi more or less fuscous. Wings hyaline; stigma and veins dark brown; at base of stigma and between it and the parastigma is a small whitish spot; the areolet is pentag. onal, the upper side being short, hardly one-third the length of the lower outer side.

Habitat.-Alameda, Cal.
Described from a single specimen, reared in March, from an unkworn Tortricid pupa found on oak.

This species seems to be very distinct from any of our described forms and I know of no species with which it can be compared.

Female-Length, $7^{\text {mm }}$. Head and thorax black; palpi, clypeus, spot on face, anterior orbits, antenuie, mesonotum, sentellum, legs and ababdomen, ferruginous; all coxie black. The head and thorax are moderately punctulate; metathoras miuntely rugose, distinctly areorated, the spiracles ovate. Abdomen a little longer than the head and thoras together, the apex of petiole bent, aciculated, the two following segments finely punctulate, the segments beyond almost smooth, and at apex of the third segment is a strong constriction or deep transrerse groore. Wings subhyaline; stigma and reius pale yellowish-brown; the cubital nervire has a little stump of a rein at about its middle; areolet pentagonal, the upper side being about the same leugth as the lower outer side.

Habitat. - Alaskia.
Described from one specimen. The species may be at once recognized by the strong constriction at the apex of the third segment.

Amblyteles Cookii sp. nov.

Femule.-Length, 11^{mm}. Fermginous ; antenual joints S to 15 , yellow ; suture of thoras, posterior femora and apex of tibiæ aud the five terminal abdominal serments, back, the serenth with a large spot above and the extreme margin of eighth, yellow. Wings subhyaline; the areolet large, pentagonal, the upper side being the same leugth as the lower outer side, the cubital nervare with a distinct stump) of a rein at about the middle. The antenuse are moderately slender, the first joint of flagellum twice the length of the second, the following a little longer than wide. The second abdominal segment is moderately punctnate, the third less distinctly punctulate, the following being smooth aud shining; gastroceli distinct, but neither large nor deep.

Habitat.-Lansing, Mich.
Described from one specimen received from Prof. A. J. Cook.

PHROGENES Wesmael.

Phæogenes gelechire sp, nov.
Male and femule.-Length, 7 to $S^{m m}$. Black, polished, sparsely punctulate; clypeus, mandibles, two basal antemal joints beneath and legs, in male, ferruginous, in the female the disk of elypens is black, the antenus ferrginous, except toward apex above, while the collar has a ferruginous blotch in the middle above. Thorax in both sexes exhibits indications of parapsidal grooves anteriorly, the sides of collar and pleurie with some raised lines and punctures; metathorax distinctly areolated, the surface of the areas being rugose, except the lateral areas anteriorly, these are smooth with a few scattered punctures; the middle
discal area is obcordate, the long area of the oblique, posterior face being concave and transersely fined or coarsely transversely acienlated.

Abdomen about one-third longer than the head and thorax together, shaped as in P. uter Cr.; in the female highly polished with a few scattered punctures on the second and third segments, the apex of petiole smooth and the segments apically narrowly margined with red; in the male all the segments are punctulate and covered with a fuscons pubesence, the base of the second and third segments red, and the apical margin of all the segments, except the petiole, more broadly margined with red than in the female, the two terminal segments being entirely black; in this sex the posterior coxir and first joint of the trochanters are black, the anterior and middle pairs being dusky. Wings hyaline, pubescent, iridescent; stigma and veins piceo-black.

Habitat.-New Hampshire.
Described from two specimens, one male, one female, received from Mrs. Mary Treat, reared in August, 18s0, from Gelchhin solidnginis Riley.

Phæogenes missouriensis sp. nov.

Female.-Length, 5 mm. Black, polished, the head and thorax with a few small, seattered punctures; clypens, mandibles, palpi, antemie (dusky toward apex), and legs, ferruginous. The antemee are short, stout, involuted at tips. Collar at sides and pleure with raised lines; metathorax distiuctly arcolated, the areas rugose, posterior face coneave, trausversely lined. Abdomen longer than head and thorax together, swooth, polished, except the apex of petiole, which shows some short, grooved lines, and the second segment, which has some minute, seattered punctures; the base, apex and sides of second seg. ment, the posterior lateral corners, and apical margin of third, and the extreme apical edges of the following segments, ferrnginons; tip of ovipositor exposed. Wings hyaline; stigma and reins brown; areolet pentagonal, the upper side the shortest, the others about equal.

Habitat.-Missouri.
Described from a single female iu Riley collection.
Phæogenes hemiteloides sp. nov.
Female.-Length, 3.3mm. Black, polished, the head and thorax with a few scattered panctures. Antemar ferroginous, gradually becoming dusky toward apex, the flagellum beneath much paler; clypeus, mandibles, paipi and legs, pale ferruginous, the posterior cosee being dusky basally. Collar, metathoras and seulpture, as in I. missouriensis. Abdomen polished, black, apical margins of second and third seg. ments narrowly, and the extreme apical elges of the following segments, reddish-yellow, the petiole microscopically shagreened, the second segment with a few minute punctures, scattered over the polished surface. Wings hyaline; stigma and reins pale brown, areolet complete, the submedian cell a little longer thau the median.

Habitat.-Washington, D. C.

Described from one specimen reared Mareh 12, 1884, from a sawfly on black birch.
This pretty little species, as well as the previous described species, looks much like an Hemiteles, but the complete areolet, absence of parapsidal grooves, the subexserted ovipositor and rounded metathoracie spiracles show that both belong to the Ichneumones Pneustici, but the mandibles could not be critically examined and they may belong to one of the other genera in this group.

Phæogenes ruficornis sp. nov.

Femule.-Length, 3.6^{mm}. Black, subopaque, moderately closely punctulate ; antenne moderately stout, involuted, brown, the scape a little paler beneath; clypeus, mandibles and legs ferruginous; palpi and tegule sellow; abdomen rather closely punctulate, the apical margins of all the segments after the petiole, narrowly ferruginous. the petiole with distinct punctures, the reuter ferruginous; ovipositor slightly exserted. Wings hyaline, very faintly tinged; stigma and reins pale brown, the costre to parastigma, yellow.

Habitat.-St. Louis, Mo..
Described from one specimen in Riley collection.
Phæogenes montivagus sp. nov.
Male.-Length, 6^{mm}. Black, polished, sparsely covered with a whitish pile; face minutely punctulate, with a somewhat prominent \mathbf{V}-shaped ridge, the sides of which exteud to the base of each antenna; middle of mandibles, palpi, spot on scape beneath, legs, second abdominal segment, except extreme basal lateral angles and four spots on disk, third segment wholly, most of the disk of fourth, and a spot at base of fifth, ferrugmous; basal lateral angles and four spots on second segment, all cosie and first joint of trochanters, middle tarsi, spot at base and the apex of posterior tibice and tarsi, black; metathorax areolated, the middle discal area hexagonal, spiracles round ; the petiole and basal twothirds of secoud abdominal segment, longitudinally aciculated. Wings subhyaline, iridescent; tegule yellow; stigma and reins brown-black, the cubital nervure with a stump, of a vein before the middle.

Habitat.-West Cliff, Custer County, Colo.
Described from one specimen received from Mr. T. D. A. Cockerell.

ISCHNUS Grav.

Ischnus americanus sp. nov.
Female.-Length, S.75 mm. Black, smooth, polished; mandibles, except tips, palpi, legs and abdomen, ferruginous; the petiole along the sidesand at base, black. Antenur 20 -jointed black, when extended backwards reach to about the apex of the metathorax, and are covered with black pile, the third joint long, about one-third longer than the follow.
ing joint, the following joints gradually become shorter and shorter, to the last joint, the six or seven apical joints not being longer than wide, the last being fusiform and about twice as long as the penultimate. Thorax with parapsidal grooves indicated anteriorly, the collar with raised lines on the sides, the scutellum high, convex; metathorax obliquely truncate posteriorly, distinctly areolated, the upper surface very short, the lateral posterior angles rather prominent, spiracles very large and round. Abdomen rather long, pointed fusiform, the venter not retracted but convex, the whole surface, except the petiole, smooth and highly polished, the petiole gradually bent with large round spiracles between the middle and the apex; on the disk is a central, longitudinal groove abbreviated before attaining the apex, and on both sides of the groove are some raised longitudinal lines. Wings hyaline, stigma and reins brown-black, the areolet pentagonal, the upper side the shortest.

Habitat.—Kansas.
Described from one specimen. The large round metathoracic spiracles and the high convex scutellum will enable this species to be at once recoguized.

NEMATOMICRUS Wesmael.

Nematomicrus coloradensis sp. nov.

Female.-Length, $6^{\text {mm. }}$. Black, smooth, highly polished; palpi, legs and abdomen, ferruginous. Antenuæ short, rather stout with close set joints, three or four basal joints of flagellum submoniliform, the first joint beiug not much longer than thick; the seape rery stont, oval. Head subquadrate; thorax without parapsidal grooves, the disk flattened; scutellum flat; metathorax distinctly areolated, punctate, the spiracles round; legs rather short, stout, the femora especially so, particularly the posterior pair, posterior coxe aud first joint of trochanters, black, the middle and posterior tibise armed at apex with two divergent spines, and the apices of all the tibie are surrounded by numerons short, stont spines. Abdomen pointed, fusiform, highly polished and sparsely pubescent, the oripositor rery slightly exserted; the petiole is black, broadened posteriorly, and with some longitudinal striee before the apex. Wings hyaline; stigma and veins brown-black, the areolet pentagonal, all the sides equal.

Habilat.-Custer County, Colo.
Described from one specimen, receised from Mr. T. D. A. Cockerell.
COLPOGNATHUS Wesmael.
Colpognathus euryptychiæ sp. nov.
Female.-Length, $8^{\text {mun. }}$. Dark ferruginous, shining, the apex of abdomen only slightly dusky, similar in stature to C. heleus Cr., but slightly more robust. The antennie are 26 -jointed, involuted, dusky towards apex, with the joints 10 to 13 more or less distinctly jellow, the second,
third and fourth joints of the flagellum cach being longer; scape stout, swollen. Head and thomas finely punctulate; head subquadrate, as broad as the broulest part of the thoras, the face sparsely pubescent; metathorax very slightly longer than high, truncate behind and distinctly areolated, the spiracles small, oval. Ablomen about half again as long as the head and thorax together, microscopically shagreened, the petiole longitudinally aciculated, the ovipositor slightly exserted. Wings subhyaline; stigma and veins brown-black, a pale spot between parastigma and stigma, the areolet large, pentagonal, the sides nearly equal, the outer nervure being delicate and pale.

Habitat.-Washington, D. C.
Described from two specimens, reared August 18, 18st, from Euryptychia saligneana Clem.

The uniformly darker color, stonter form, more prominent ovipositor, sculpture, and antemal characters at once distinguish this species from C. helvus Cr .

Colpognathus annulicornis sp, nov.

Female-Length, 5.5 men. Pale fermginons, similar to C helrus Cr., but smaller; the antemat brown wit! ammus in the middle, the joints nine to thirteeu being yellow, joints one, two and three of flagellum being about equal in length, the tourth and tifth being slighty shorter. The punctuation of the thorax and abdomen is rather coarse, nearly contluent, here differing decidedly from both C'. helves and ('.con'yptychice. Wings hyaline, stigma and reins ferruginots, the stigma paler basally; areolet pentagonal, the upper side the same length as the lower outer side.

Habitat.-Bayon Sara, La.
Described from one specimen taken by Mr. E. A. Schwarz, in February, 1879.

HERPESTOMUS Wesmael.

Herpestomus plutella sm. nov.
Mate.-Length, 5.tmu. Back, polished; antenna dark brown above, fulvo-ferruginoms beneath; head and thorax sparsely finely punctulate, the latter anteriorly with a few transwerse wrinkles, the plenre more distinctly punctate, the metathorax strongly areolated, the surface of areas transversely wrinkled; spiracles smanl, romed; mandibles outwardly black, inwardly ferruginous, the inmer tooth shorter than the outer and situated its length below the outer tooth; palpi and legs, ferruginous, all tarsi, apex of middle tibie, streak inmardly on posterior femora, the base and apex of tibie, dusky, posterior cosie and first joint of trochanters, black. Abdomen black, shagreened, the gastroceeli large, distinct, and distant from the basal margin; they, as well as the apical margins of the second, third and fourth segments, are red, the basal margin of thim narmoly, and a slight tinge on the extreme
apical edge of the filth segment is also red; the petiole is shining black, minutely longitudinally aciculated. Wings hyaline, strongly iridescent; tegulæ yellow; stigma and veins brownisl-black.

Habitat.-Lafayette, Ind.
I escribed from two specimens, reared by Mr. Fi. M. Webster, from Plutella cruciferarum.

Subfamily CRYPTINAE.
STILPNUS Grav.
Stilpnus texanus sp. nov.
Female.-Length, $\overline{\text { on }} .6^{m m}$. Head, thorax, petiole, a narrow streak at base of second abdominal segment, the fourth and following segments, except an oblique lateral bloteh on the fourth and extreme apical edges of this and following segments, black, the second and third segments and the apical edges of the other segments, rufous. Legs, rellowishred, the posterior tibie black at base and apex, tarsi fuscons. The head and thorax are polished, covered with a white glittering pile, which is deuser on the face; metathorax rugose, areolated, the spiracles small, round. Mandibles red, palpi yellow. Antenne 22-jointed, black, scape with a reddish blotch beneath, the first joint of tlagellum is the longest, althongh only slightly longer than the second. Thorax with distinct parapsidal grooves. The abdomen is oral, with a loug petiole, the petiole being but slightly wider at the apex than at base, ouly slightly bent and with two longitudinal keels above and two along the sides, the spiracles being placed at about the middle; the body of abdomen is composed of only fise segments, the first three comprising the greater part of it and moderately minutely punctate and pubescent; the ovipositor short, harlly as long as the three terminal segments. Wings, dusky hyaline; tegule fellowish; stigma and reins, brownblack; the cubitue is broken much before the middle by a stump of a vein, the areolet pentagonal, the lower onter side being a little shorter than the upper side, while the other sides are about of an equal length.

Habitat.-Texas.
Described from one specimen in the Belfrage collection.

EXOLYTUS Förster.

Exolytus gelechire sp, nov.

Male-Length, 5^{mm} : black, suboparue, minutely shagreened, the apical margin of the second and lateral and apical margins of the third abdominal segments and the renter, yellowish-red. Antennie 29 -jointed, black, the scape beneath and the thiml joint at base, red; palpi, white. Legs, reddish-yellow; the coxie and trochanters, black. Thorax with parapsidal grooves distinct anteriorly; metathorax scabrons, areolated; the spiracles small, round. Abdomen 7 -jointed, elongate, the petiole widened at apex and longitudinally acieulated, the small spiracles are
somewhat prominent and situated a little beyond the middle; the second segment is about two-thirds the length of the petiole and slightly longer than the third; the third and fourth are nearly of an equal length, broader than long, the three following being shorter and gradally subequal. Wings, dusky hyaline, strongly iridescent; tegula and costie basally, yellow; stigma and veins dark brown, the stigma very large, triangular, and with a yellowish spot at base; the cubitus is broken just before the middle by a stump of a vein; the areolet is pentagonal in position, but the outer nervure is wanting.

Habiest.-Alameda, California.
Described from one specimen received from Mr. Albert Kœbele, reared during the month of November, 1887, from a larva of a moth, Gelechia sp., found feeding on raw potato.

HEMITELES Grav.
Table of new species.
Wings not banded, hyalino or dusky ... 5
Wings bauded; metathorax not spined.
Antenne less than 24 -jointed
Antenne 24-jointed.
Black; apex of fifth and the following abdominal segments, white.
H. Belfragei sp. nov.
2. Antenua less than 23-jointed ... 3

Antenna 23-jointed.
Brown; apical abdominal segments black....................... melitax sp. nov.
3. Antenne less than 22 -jomted 4

Antenna 2\%-jointed.
Brownish-yellow... coleophore sp. nov.
4. Autenna 18 jointed.

Brownish-yellow, variegated with black................... . . . variegatus sp. nov.
5. Wings hyaline... 6

Wings fusco-hyaline.
Yellow-ferruginous; head black.................................. nigriceps sp. nov.
Black; abdominal segments broad!y margined with red; antennare9 jointed.
H. humeralis Prov.
6. Pale yellow-ferruginous species ... 9

Species not entirely black..................... .. . 7
Species entirely black.
Antennæ 24-jointed compactus Cr.
Antennæ 23-jointed... gracilarice sp. nov.
Antenme 21 -jointed... II.bucculatricis sp. nov.
7.Abdominal segments not banded with red or white.. 8

Abdominal segments banded with red or white.
Antenne 22-jointed; apical margins of abdominal segments narrowly red.
H. hydrophilus sp. nov.

Antenne 24-jointed.
Extreme apical margins of second and third abdominal segments red ; coxe
first joint of trochanters and femora, black (male)... H. columbianus ep. nov.
Antenne $2 \overline{5}$-jointed (male); abdominal segments two and three, red basally.
H. Rileyi sp. nov.
8. Metathorax spined.

Black; the second and third abdominal segments, except apex, red.
H. bicornutus sp. nov.

Black; abdomen red, blackish at apex, the last segment with a large white
spot above ; antenne 25 -jointed, ringed with white...... II. annulicornis sp. nov. Metathorax not spined.
Abdomen with the second and third segments, except lateral margins and a blotch at base of fourth, red, the rest black; anteune 26 -pointed (n-ale).
H. albiscapus sp, nov.

Abdomen with the second and third segments, including lateral margins red-
dish fellow; antenne 29-jointed............................... II. mellicornis sp, nev.
Abdumen red, the petiole black.
Antenne female 21-jointed, male, 25-jointed.
Petiole and second abdominal segment aciculated......... H. texamus sp, nov. Antenna (? broken.)

Petiole and abdomen granulated, apex black.......... H. virginiensis sp. nov. Petiole aciculated, rest of abdomen smooth polish.....H. rubricornis sp. nov. Antenne, male, 23-jointed, petiole aciculated, rest of abdomen smooth.

Hemiteles Belfragei sp, nov.
Female.-Length, 5 to 6^{mm}; ovipositor, 1^{mm}. Robust, black, shagreened, opaque, pubescent; the abdomen beyond the second segment smooth, polished; the lateral membranous part at apex of petiole, a large spot at apex of fifth segment, and the sixth aud seventh segments, white; the petiole lias two keels on tLe disk abbreviated posteriorly; palpi and antennæ ferruginous, the latter 24 -jointed; thorax with the parapsidal grooves strongly indicated anteriorly for one-third the length of the mesonotum, then entirely obliterated; metathorax strongly areolated, the surface of the areas being more or less wrinkled or rugulose; the spiracles round; legs ferruginous. Wings hyaline, with two transverse smoky bands, one narrow at abont one-third the length of the wing, the other wider, taking in the upper part of the stigma and all of the marginal cell; tegule yellow; stigma and veins black, the former with a yellowish spot basally; the cubitus is broken at the middle by a small stump of a vein; hind wings hyaline.

Habitat.-Texas.
Described from two specimens in Belfrage collection.

Hemiteles melitææ sp, nov.

Female.-Leugth, 5^{mm}; ovipositor, $\mathbf{1}^{\mathrm{mm}}$. Yellowish-brown, shagreened, opaque; the thorax has tbree black streaks posteriorly; the metathorax above basally, a median line on the posterior face, streak on petiole, and the terminal abdominal segments are more or less black. Antennze 23 -jointed, filiform, the first three joints of flagellum being long; thorax
without parapsidal grooves; metathorax areolated, the spiracles small and round. Wings hyaline, with two trausverse smoky bands, the first across the basal nervure, the other taking in the upper two-thirds of the stigma and all of the marginal cell, the marginal cell thongh has a clear space next the stigma and there are two or three small clear dots in the areolet; stigma and reins black, except a spot at base of stigma, the median and submedian nervures, the first recurent nervure and the portion of the cubitus in the clear space betreen the bands, which are yellow; the cubitus is without a stump of a vein at the middle; hind wings hyaline.

Habitat.-Alameda, California.
Described from three specimens received from Mr. Albert Kœbele, reared in July, 1857, from Meliteca chalcedon. This species is allied to H. utilis Norton, but its darker color, more robust form, and the number of joints in the antennæ readily separate it.

Hemiteles coleophoræ sp. nov.
Female.-Length, 3 min; oripositor, 0.6 mm. Yellow-ferruginons, opaque, shagreened, the sutures behind the scutellem alone being black. The anteunæ are 22 -jointed; wings as in H. melitcere.

Habitat.-Los Angeles, California.
Described from one specimen received from Mr. Albert Koebele, reared during July, 1886, from a case-bearing Tineid, Coleophora sp. found on willow.

This might easily be confounded with H. utilis Norton, but the paucity of joints in the antennie and the uniformly colored abdomen will at once distinguish it.

Hemiteles variegatus sp. nov.
Female.-Length, 2.4 ${ }^{\mathrm{mm} \mathrm{\prime} \mathrm{\prime}}$; oripositor, 0.4mm. Brownish-yellow, raried with black, minutely shagreened and opaque; the head is large transverse, wider than the thoras, stemmaticum blackish; autenne 18 jointed; thoras without parapsidal grooves, and with three black blotches posterionly; metathorax areolated, the disk black; petiole more or less black, a blotch on disk of second and third segments, and the following segments black. Wings hyaline, with two transverse dusky bands.

Habitat.-Alameda, California.
Described from two specimens receised from Mr. Albert Kobele, reared October $14 t h, 185 \pi$, from a Bucenlutrix found feeding on Querous agrifolic. The paucity of joints in the antemmand its minute size will readily distinguish this pretty little species. It looks very much like a winged Pezomachus.

Hemiteles nigriceps sp. nov.
Female.-Length, $4^{\text {mm. }}$; ovipositor, $1^{\text {m"n. }}$. Yellomish-red ; the head, a spot on the metaplenra and the apex of abdomen, black. Wiugs fusco-
hyaline; stigma and reins brown, the stigma with a large yellowish spot at the base. The whole surface of this insect is smooth and polished.

Habitat.-Martinez, California.
Described from a single specimen, received from Mr. H. W. Turner, December 13, 1882.

The antenne are broken off and the number of joints can not be determined, but its peculiar color, smooth polished surface, ought to enable the species to be at once recognized.

Hemiteles gracilariæ sp. nov.

Female.-Length, 34^{mm}; oripositor, 0.6^{mm}. Black, shining, shagreened; the abdomen from apical half of third segment smooth, polished, the petiole longitudinally aciculated. Antemme e3-jointed, pale ferruginous, above slightly dusky, the first three joints of thagellum of about an equal length; mandibles and legs, including cosie, reddishyellow; palpi white; thorax with parapsidal grooves indicated anteriorly. Wings hyaline, iridescent; stigma and reeins pale brown.

Нabitat.-Kirkwood, Missouri.
Described from a single specimen received from Miss Mary Murtfeldt, reared August 17, 1886, from Graciluria puckardella. This species is closely allied to IF. aletice Riley, but the number of antennal joints and the slight difference in sculpture of abdomen will distinguish it.

Hemiteles bucculatricis sp. nov.

Female.-Lengtl, 2^{mmm}; ovipositor, 0. 6^{mm}. Black, shagreened, the thorax opaque, the head and abdomen shining; the abdomen beyoud the third segment is smooth polished, the petiole finely aciculated.

Antemar 21-jointed, ferruginous; thorax with parapsidal grooves indicated anteriorly; tegula yellowish-white; legs honey-jellow, hind cose, femora, and a spot near base and at apex of tibie ferruginous; wings hyaline; stigma and veins pale brown.

Habitat.-Washington, D. C.
Described from one specimen, reared August 19, 1884, from a Bucculatrix found on oak.

Hemiteles hydrophilus sp. nov.
Female.-Length $4^{\text {mm. }}$; ovipositor 1.2 nmm. Black, shagreened; the apical edges of abdominal segments red. Antenne 22.jointed, black, the suture between second and third joints red; thorax with parapsides indicated anteriorly; tegule white; metathorax distinctly, areolated, the spiracles round. Legs yellowishred, posterior tibie and tarsi fuscous. Wings hỵaline, iridescent, stigma and reins brown, the submedian cell a little longer than the mediau.

Proc. N. M. S9——26

Habitat.-Nova Scotia.

Described from one specimen, labeled "Dipped from the surface of the ocean, 94 miles from Nova Scotia, July 3, 15s7." This occurred amongst numerous species so collected by the U. S. Fish Commission schooner Grampus, lat. $42^{\circ} 50^{\prime} \mathrm{N}$. , long. $67^{\circ} 29^{\prime} \mathrm{W}$.; current from the north.

Hemiteles annulatus sp. nov.

Male.-Leugth $4^{\text {mm }}$. Black, shagreened; the apical edges of abdominal segments reddish-yellow, the petiole and second and third segments aciculated.

Antennie 23 -jointed, black, scape beneath, suture between second and third joints and mandibles, reddish-yellow; palpi white; thorax with complete parapsidal grooves; tegule Jellowish-white; metathorax areolated, the surface of areas with raised lines; legs honey-yellow, the posterior pair ferruginous, the posterior cosie, apex of tibie and tarsi, black. Wings hyaline, iridescent; stigma and reins brown, the median and submedian cells of equal length.

Habitat.-Los Angeles, Cal.
Described from a siugle specimen received from Mr. A. Kubele, reared from an unknown Tortricid pupa, in April, 1887.

Hemiteles columbianus sp. nov.

Male.-Length 3.2mm. Black; head and thorax smooth, polished, the parapsides only faintly indicated anteriorly; metathorax minutely rugose, areolated; abdomen shagreened, the extreme apical edges of second and third segments, red. Antennæ 24-jointed; legs dark honeyyellow, all coxie, first joint of trochanters and femora, except tips, black. Wings hyaline; stigma and reins brown, the median and submedian cells of an equal length.

Habitat.-Washington, D. C.
Described from one specimen, reared from an unknown case-bearing Tineid, Coleophora sp.; no date of rearing is given.

Hemiteles Rileyi sp. nov.
Male.-Length $5^{m m}$. Black; basal two-thinds of second, basal onethird of third, and extreme apical edges of second, third, and fourth abdominal segments, red; the abdomen is punctate. Antenne 25 jointed; the scape beneath, mandibles, palpi, tegule, anterior, and middle coxie and trochanters white; anterior and middle legs, honeyyellow, posterior legs fermginous, coxe black, extreme apex of femora, tibiæ and tarsi fuscous. Metathorax rugose, stroiigly areolated. Wings hyaline, iridescent; stigma and reins brown, the cubitus with a stump of a vein at the middle.

Habitat.-St. Louis, Missouri.

Hemiteles bicornutus sp. nov.

Male.-Length, 5 mm . Blask, polished ; apex of petiole, second and basal two-thirds of third abdominal segment, red. Antemne broken; mandibles and palpi ferruginons; thorax with the parapsidal grooves distinct anteriorly for two-thirds the length of mesonotum; metathorax areolated, the posterior lateral angles prominently produced; legs red-dish-yellow, all coxre and first joint of trochanters basally, black; the petiole has two parallel keels its entire length, the spiracles being prominent. Wings hyaline, irideseent; tegula yellowish; stigma and veins brown, the median and submedian cells of an equal length, the cubitus slightly geniculated just before the middle with a bulla just behind, but without a stump of a vein.

Habitat.-St. Louis, Missouri.
Described from one specimen.

Hemiteles annulicornis sp. nov.
Female.-Length, 5^{mm}; oripositor, $1^{\text {m"m. }}$. Head and thoras black, shagreened; legs and abdomen yellow-ferruginous; knees and apex of posterior tibie dusky ; apex of abdomen and ovipositor black, the sixth abdominal segment having a large white spot above. Mandibles, except teeth, aud palpi ferruginous. Antenne $2 \tilde{5}$-jointed, dark ferruginons, joints $.8,9$, and 10, white. Thorax with complete parapsidal grooves; the pleure and metathorax finely rugose, the latter with two transverse keels and the posterior lateral angles produced into small but prominent spines, the spiracles round. Wings dusky hyaline, probably due to cyanide bottle; stigma and veins brown, the submedian cell shorter than the median.

Habitat.-Texas.
Described from a single specimen in Belfrage collection. This may not be an Hemiteles, although the areolet is open along the outer side.

Hemiteles albiscapus sp. nov.

Mate.-Length, 6^{mm}. Black, polished and covered with a whitish pubescence; the disks of the second and third and the basal portion of the fourth abdomiual segments, rufous. Head subquadrate; mandibles and palpi white. Antemme 26-jointed, filiform, black, the scape yel-lowish-white. Thorax with only slight indications of parapsidal grooves anteriorly ; a curved carina extends from tegule to basal side of scutellum; tegule white ; metathorax areolated, the spiracles round. Legs reddish-yellow, the anterior and middle coxe and trochanters white, apex of posterior tibis and their tarsi above, dusky. Wings hyaline; stigma and veins brown.

Habitat.-Texas.
Described from one specimen in Belfrage collection.

Hemiteles mellicornis sp. nov.
Female.-Length, $3.4^{\text {mm }}$; owipositor, $1^{\text {mm }}$. Black, shagreened; abdomen polished, black, the petiole longitudinally acienlated, second and third segments piceons, the third paler at base, the lateral margins honeyyellow. Antemæ, ご-jointed, dark honey-jellow; mandibles pale; palpi and tegule, white; thorax with parapsidal grooves indicated only anteriorly; pleurie almost smooth, polished; metathorax areolated; wings, hyaline, iridescent; stigma and reins pale brown, the submedian cell a little longer than the median.

Habitat.-Washington, D. C.
Described from one specimen, captured Tray 18, 1832.

Hemiteles hemerobii sp. nov.

Male.-Length, 3 mm. Black; minutely conftuently punctate; abdomen, black, sparsely punctate; the basal half of second and third segments and the apical edge of third, reddish-jellow. Antennx, 22-jointed, black above, dull ferruginous beneath; the scape white beneath; thorax with parapsidal grooves only slightly indicated anteriorly; tegulre, white; pleura, smooth, polished in the center, with coarse punctures aloug the sutures; metathorax, short, coarsels areolated, the areas rugose; legs, reddish-yellow, trochanters white, apex of posterior femora and their tibis for more than the apical half and tarsi, dusky; wings hyaline, iridescent; stigma and veins brown, the former with a yollowish spot at base; the cubitus is broken before the middle by a rather long stump of a vein ; the median and submedian cells of an equal length.

Habitat.-Grand Ledge, Michigan.
Described from a single specimen reared from an Hemerobius cocoon in July, 1881.

Hemiteles texanus sp. nov.
Female.-Length, $5^{m " \prime \prime}$; oripositor, $1^{n " \prime \prime}$. Head and thorax black, polished; legs and abdomen, except the black petiole, ferruginous. Head subquadrate ; antenner, 21 -jointed; thorax without grooves ; metathorax distinctly areolated, the spimacles small, romd. Wings hyaline, iridescent; reins brown, the cubitus without a stump of a vein at the middle; the submedian cell louger than the median.

Habitat.-Texas.
Described from one specimen.
Hemiteles virginiensis sp. nov.
Femalc.-Length, $4^{\text {m" }}$; ovipositor, 1.6mm. Black, opaque, shagreened; legs and abdomen, except petiole aud apex, ferruginons. Autenna broken at tips, the basal portion honer-yellow, beeoming dusky toward tips. Thorax without grooves; pleure and metathorax shagrecned,
the metathorax areolated but the ridges delicate. Wings hyaline, iridescent; stigma and reins brown, the median and submedian cells of an equal length, the cubitus being without a stump of a vein.

Habitat.-Virginia.
Described from one specimen.

Hemiteles rubricornis sp, nov.
Female.-Length, $3^{\text {minn }}$; oripositor, $1^{\text {min }}$. Black, smooth, polished; antenne, legs, and abdomen reddish-yellow, the petiole black, longitudinally aciculated. Thorax without grooses; metathorax distinctly areolated. Wings hyaline; stigma and reins fellowish, the submedian cell slightly longer than the median.

Habitat.-Virginia.
Described from one specimen.

Hemiteles Townsendi, sp. nov.

Mate.-Length 5. $t^{\text {men }}$. Head and thorax Wack, polished, pubescent, sparsels punctate; antenne 23-jointed, brown hlack, two basal joints, palpi and mandibles ferruginous. Thorax without groores; collar with raised lines at sides; mesoplemre smooth, polished, excepting some rased lines and punctures along the sutures; tegule pale sellow; metathoras areolated, the surface of areas with short raised lines and wrinkles. Legs and the abdomen, except the black petiole, ferruginous; the posterior legs are rather long, the tips of tiba and the tarsi slightly obfuscated. Wings hyaline, iridescent; the stigma and veins brown.

Habitat.-Michigan.
Described from one specimen received from Mr. Tyler Townseud.

Hemiteles syrphicola, sp. nov.
Male.-Length $4^{\text {mun. }}$. Head and thorax black, opaque, minutely shagreened and with some punctures seattered on the surface. Antemne 24 -jointed, sellow-ferruginous, gradually becoming dusky beyond the middle. Thorax with parapsital grooves indicated anteriorly, pleure aciculated, metathorax strongly areolated, the surface of areas minutely rugose ; tegule yellowish-white; legs reddish-yellow, posterior femora at apex, tibie and tarsi dusky. Ablomen ferruginons, the petiole and basal two-thirds of second segment longitudinally aciculaterl, the rest of the abdomen smooth, polished. Wings hyaline; stigma and reius brown, the cubitus not broken at the middle by a stump of a rein, and the median and submedian cells of an equal length.
Habitat.-Washington, D. U.
Described from one specimen; reared August 3, 185t, from a Syrphid puparium, Alesograptu obliqua Sar, found on wheat, the larra of which preys on Siphonophora avence.

Hemiteles pallidus, sp. nov.
Male.-Length $3^{\text {mun. }}$. Sleuder, pale yellow, ferruginous, smooth, shining; head quadrate; autenur slender (broken); metathorax longer than high, shagreened, delicately areolated, the upper basal areas almost obliterated. Wings hyaline, iridescent; stigma and reins pale brown, the former with a pale spot at base, the third discoidal cell is longer than usual, the cubitus nearly straight, median and submedian cell of an equal length.

Habitat.-Texas.
Described froun one specimen in Belfrage Collection. This little species at first sight looks much like an Hecabolus in the fimmily Bracon$i d e$, on account of its quadrate head.

MESOSTENUS Grar.
 Mesostenus erythrogaster, sp. nov.

Male.-Length, 10^{mm}. Black; mesopleure, metathorax, legs and abdomen ferruginous; face, anterior orbits to summit of eyes, lower part of cheeks, clypens, mandibles, palpi, sp ot on scape beneath, joints 11 to 17 of antenna, line on forepart of collar and a line above extendiug from tegule but interrupted medially, tegule, a liue beneath, pectus, anterior and middle cosie and trochanters, and all tarsi except base of first joint of hind tarsi, dirty white. The thoras is moderately coarsely punctate, some of the punctures being contlueut, the parapsidal groores distinct, the middle lobe prominent with a yellowish spot behind the middle ; metathorax rugose without prominent lateral projections, with two transverse carime, the second one being deeply inwardly sinmated medially, spiracles large long-oval. The posterior tibice have a spot at base and the apical half black. Wings dusky hyaline; stigma and reins dark brown, the areolet ciosed, quadrate, the second recurrent nerrure interstitial with the outer nervure of the areolet.

Habifat.-Wisconsin.
Mesostenus leucopus, sp . nov.
Male.-Length, $10^{\text {mun. }}$. Black, shining, the thorax rather coarsely punctate ; antenne 36 -jointed, black; the anterior and posterior orbits, interrupted behind the summit of eye, face, clypeus, mandibles, except teeth, palpi, a line on collar at sides anteriorly and a line above, interrupted medially, a spot on disk of mesonotum, scutellum, tegular, a line beneath, a long band across middle of mesoplenra, band at base of posterior wings, a line on metapleura, a line on each side of the metathoracic truncature, and the posterior tarsi, except basal joint at base and the apical joint, which are black, all white.

Legs ferruginous, anterior and middle tarsi paler, the posterior femora and tibia fuscous, the first joint of trochanter black, abdomen long, linear, black, the petiole elongate, slender, reddish, blotched with black above at the bend, all the other segments apically are broadly
margined with red. Wings hyaline; stigma and reins brown, the areolet quadrate, the second recurrent nervure entering it a little beyond the middle.

Habitat. - Normal, Illinois.
Described from a single specimen, reared by Mr. F. M. Webster, June 17, 1886, from a sawfly found on wheat.

Mesostenus leucocoxa, sp. nov.
Male.-Lengh 9^{mmm}. Black, opaque, including the abdomen rather coarsely punctate; face, clypeus, anterior orbits, lower part of cheeks, scape beneath, triangular spot at base of mandibles, palpi, anterior margin of collar and the upper hinder margin interrupted medially, a round spot on disk of mesonotum, scutellum, post scutellum, tegule and a line beneath, spot on mesopleura, hinder lateral posterior angles of metathorax, including the prominent spines, and anterior and middle coxie and trochanters and the posterior cosie and trochanters, black; the posterior coxie have an oval white spot above; anterior and middle legs reddish-yellow, the terminal joint of middle tarsi black; posterior legs black, the femora rufous basally, the tibee with a white ring at base and the tarsi white, except apical joint and basal half of the basal joint, which are black, the basal portion, however, with a narrow white ring. Wings hyaline; stigma and reins black, the areolet large, quadrate, the second recurrent nervure entering it between the middle and apex, the submedian cell shorter than the median.

Habitat.-Cadet, Missouri.
Described from one specimen receised from Mr. J. G. Barlow.

CRYPTUS Grav.

Table of new species.

Wings hyaline, or fusco-hyaline 2
Wings black, or black with strong violaceous reflections.Wings black.Metathorax unarmed.
Head, thorax and legs, black; abdomen rufous...... C. coloradensis, sp, nov.Head, thorax, legs and abdomen ferruginous. C. californicus, sp. nov.Head, thorax and abdomen mahogany brown C. nigripennis, sp. nov.Metathorax armed.Head and thorax black; legs and abdomen rufous; antennie ringed withwhiteC. armatus, sp. nov.
Wings black with strong violaceous retlections.
Head, thorax and legs black; abdomen rufons C. violaceipennis sp. nov.2. Wings hyaline3Wings fusco-hyaline.Head and thorax black; abdomen rufous.Superior margin of collar white; legs rufous........... C. alamedensis sp. nov.Superior margin of collar black; hind legs black......... C. monticola sp. nov.
Head, thorax and abdomen black; legs (except black trochanters, hind coxa,tibixe and tarsi), redC. hirtifions, sp. nov.
Head, thorax, abdomen and legs, ferruginous C. ferrugineus sp. nov.
3. Head and thorax not black 4
Head and thorax black.
Metathorax unarmed : ablowen and legs rufous, the apes of abdomen sometimes black and white.
Scutellum, superior margin of collar and line beneath tegulæ, white; antennæ ringed with white, apex of abdomen black and white.. C. texensis, sp. nov. Scutellum and collar entirely black; antenna black; legs, except the four terminal joints of hind tarsi which are white, black...... C. leucopus, sp. nov. Metathorax armed; abdomen rufons, black and white.
Clypeus, orbits, mandibles, line on collar before and behind, scutellum, spots on pleura, metathorax, and ring ou antemne, white .. C. nebraskensis, sp. nov.
4. Wholly pale ferruginenus : antemal joints s to 12 white....C. brericauda, sp, nov.

Cryptus violaceipennis sp. nov.
Male and Female.--Length $1: 3$ to $14^{\text {min }}$; ovipositor $6^{m m n}$, stature of C. robustus Cr. Entirely black, except the four terminal joints of posterior tarsi and the abdomen, which are rufous, the petiole being black. There is a pale dot on orbits opposite the base of the antemne, another at summit of eye and a narrom pale post-orbital line. The head and thoras are punctate, the parapsidal grooses complete, deeply defined; the sentellum is profoundly foreated at base with lateral keels anteriorly extending as a ridge in front of the tegula ; pleure aud meta thorax rugose, opaque, the latter with a central area, the superior edge of the oblique truncature being keeled. Tarsi strongly spinons, the second, third and fourth joints of auterior pair short and strongly lobed; the base of the claws with two teeth, the himider tooth being small and difficult to make out. The abdomen shows a delicate alutaceous sculpture, the petiole being smooth. Wings black or violacenus black; stigma and veins black, the cubitus with a stump of a rein a little before the middle, the areolet large, pentagonal.

Habitat.-Colorado.
Described from four specimens.
Cryptus coloradensis sp, nov.
Female.-Length 7.4^{mmn}; ovipositor, 4^{mm}. Head, thorax, and legs black; ablomen rufons, alutaceous. The antemne are loug, slender, and black, the first joint of the flagellum being a little shorter than the second and third joints combined. Head above antemne concare and ronghened with irregular lines; the rertex minutely confluently punctate; palpi piceous; thorax with deep, complete parapsidal grooves, punctate; plema and metathorax finely rugose, the latter with two transverse keels. Wings black, slightls riolaceous at base; stigma and reins hack; the areolet pentasonal, the upper side the shortest, the upper outer side and the upper inner side of an equal length, the lower outer side being slightly shorter than the inner side; the cubitus with a stump of a vein at the middle.

Habirat.-Powder River, Colorado.
Described from one specimen.

Allied to C. americamus (P ., hat at more distinguished from it and the closely allied forms by the black wings.

Cryptus leucopus sp. nov.
Mate.-Length 14^{mm}. Eutirely black: the anterior legs beneath and anterior and middle knees rufous; a line on anterior trochanters beneath, and extreme base of all the femora, and the apex of second joint of all trochanters, yellowish; the four terminal joints of posterior tarsi, white. Head, trausverse, puactate, the forehead concave, rugulose; the anterior orbits from base of antemie to base of mandibles, the clypens, mandibles, except at base and the teeth, the second joint of labial palpi outwardly, and a line on the third joint, yellowish-white. Thorax punctate, with deep, distinct parapsidal grooves; the pleura and metathorax rugose, the latter without any distinct lieels. Abdomen, except petiole, dark rufous, alutaceous. Wings hyaline or slightly discolored; stigma and veins black, some of the reins being dark piceons; the areolet is large, pentagonal, the cubitus with a stump of a vein at the middle.

Нabitat.-Colorado.
Described from one specimen.
This species, in stature, resembles C. robustus ('r., but the color of the legs and abdomen readily distinguish it.

Cryptus alamedensis sp. nov.

Female.-Length $10^{m m}$; ovipositor, $4^{m m}$. Stature and general appearance of C. limatus Cress. Head, thorax, antennæ, ovipositor, all coxæ, the first joint of all trochanters, and the terminal joint of all tarsi, black; legs and abdomeu rufous ; the anterior tibize are very short and abnormally thickened, constricter at base, the posterior tibie behind and the basal joint of tarsi fuscous. Head transverse, punctate, below the ocelli more coarsely confinently punctate; posterior orbits, anterior orbits, interrupted opposite the antennie, and the clypeus, sellowish; palpi mostly black. Thorax punctate, the parapsidal grooves not sharply defined; the upper margin of collar lined with white but widely intermpted in the middle; tegulie, except a white spot at base, black; a dot beneath the tegula and the post-scutellum, white; pleura and metathorax rugose, covered along the sides with a white, glittering pubescence, the metathorax is romnded off behind and has but one poorly defined transverse keel. Wings hyaline; stigma and reins piceous black; the areolet pentagonal, the cubitus without a stump of a vein, and the submedian cell shorter than the median.

Habitat.-Alameda, Cal.
Described from one specimen receired from Mr. Albert Kœbele, reared during April, 1887, from an unknown lepidopterous cocoon.

Although this species could easily be mistaken for C. limatus Cress., the short submedian cell, absence of a stump of a vein on the cubitus and other characters will at once separate it.

Cryptus monticola sp. nov.

Female.-Length $8^{\text {mm }}$; ovipositor $2^{\text {mm }}$. Stature of C. similis Cress. Head and thorax anteriorly, black, punctate; the head more confluently punctate; the parapsides indicated only auteriorly. The abdo. men is piceorrufous and much darker than any of the closely allied forms. All the coxa, trochanters, and hind legs are black, the anterior and middle legs being rufous, the femora more or less dusky basally. The pleura and metathorax are rugoso-punctate, pubescent; the metathorax has two transrerse keels, the narrow space between the first and the post-scutellum being smooth and polished; the other keel is sitnated along the superior margin of the truncature, it is nearly obliterated medially but becomes sharply defined and prominent at the lateral angles. Wings fusco-hyaline; stigma and reins black; the areolet is large, pentagonal, the two outer sides being equal while the other three sides are longer and of an equal length; the cubitus has no distiuct stump of a vein, but where it usually exists is a thickened dot; the submedian cell is slightly longer than the median, and the third discoidal cell is much narrowed at base.

Habitat.-Veta Pass, Colorado.
Described from a single specimen. The color of the abdomen and wings and the vemation sufficiently distinguish this species. It might be placed in Walsh's genus Joppidium.

Cryptus texensis sp. nov.
Male, -Length 10^{mm}. Similar to C. Iophyri Norton, but larger and more robust. Head and thorax black, closely punctate; orbits interrupted abore, joints 8 to 19 of antenne, upper margin of collar, interrupted medially, line beucath tegule and most of the scutellum, white. Legs, except cosie, trochanters and hind tibiee and tarsi which are black, rufous, the anterior and middle pairs being paler. Apical margin of scutellum black, striate, rest of the scatellum punctate and covered with a long, very fine pubescence. Metathorax coarsely areolated, the surface of most of the areas rugose, transversely wrinkled or transversely lined, the posterior face being coarsely, transversely lined. Abdomen broadly ovate, rufous, segments four and five, black, margiued at apex with white, the following segments very short, white. Wings hyaline; costal vein to stigma black, stigma and the other veins brown, the areolet pentagonal, the cubitus kneed at the middle.

Habitat.-Texas.
Described from a single specimen in Belfrage collection; the species looks very much like an Ichneumon.

Cryptus armatus sp. nov.
Female.-Length 12^{mm}; ovipositor 3^{mm}. Head and thorax black, minutely couthently punctulate; legs and abdomen rufous; anteune black, tip of joint sixth and joints seven to eleven, white, the three basal joints of flagellum very long and gradually subequal, the fourth hardly half the length of the third, the joints beyond being very short and only a little longer than thick.

Thorax with the parapsidal grooves obliterated posteriorly ; the metathorax is armed at the posterior lateral corners with a prominent, compressed, acute yellow spine, the posterior face being coarsely rugose with irregular raised lines and ridges, while at the base on the sides it is densely confluently punctate; there is but one trausverse carina which is near the base which curces laterally outwardly and then inwardly inchuding inside the curre the oval spiracles. Wings fuliginous; stigma and veins piceo-black; areolet pentagonal, but the outer nervure is uanting; the cubitus is without a stump of a vein.

Habitat.-Texas.
Described from one specimen in Belfrage collection.
This species may not belong to the genus Cryptus, on recount of the open areolet, but as I know of no other genus into which it could be placed it may remain here for the present.

Cryptus nigripennis sp. nov.

Female.-Length 17^{mm}; ovipositor 4^{mm}. A large, robust, mahogany brown species. It is confluently punctate; the sixth to eleventh antennal joints are yellow; the parapsidal grooves only slightly indicated anteriorly; metathorax somewhat trausversely rugose, with two transverse carines; all the tarsi are more or less fulrous. Wings black; areolet large, pentagonal, the cubitus without a stump of a vein.

Habitat. - New Jersey.
Described from a single specimen.

Cryptus hirtifrons sp. nov.

Male.-Length 5.4mm. Black; head and abdomen smooth, shining, the extreme apical edge of second abdominal segment red; thorax punctate, face and cheeks covered with rather dense white pubescence; palpi jellowish; parapsidal grooves distinct; metathorax longer than high, sloping, areolated and pubescent; anterior and middle coxie and all femora red, the posterior femora black at apex, rest of the legs black. Wings fusco-hyaline; stigma and veins piceous; areolet pentagonal, the cubitus without a stump of a vein.

Habitat.-Texas.
Described from one specimea.
Cryptus californicus sp. nov.
Female.-Length $12^{\text {mm }}$; ovipositor $4^{\text {mm }}$. Ferruginous; ejes, antenuæ and wings, black; scape beneath red. Face rather long with two paral-
lel grooves extending from the base of each antema to clypens; the clypeus separated. The thorax is sparsely punctate, shining, the parapsidal grooves distinct; pleura and metathorax rugulose; abdomen alutaceous; legs structurally as in C. violaceipemis. The wing areolet is large, pentagonal, the cubitus with a long stump of a vein.

Habitat.-Placer County, Cal.
Described from a single specimen received from Mr. Albert Kœbele.
Cryptus ferrugineus sp. nov.
Female.-Length 5. $4^{\text {mm" }}$; ovipositor 1.6^{mm}. Ferruginous; eyes and teeth of mandibles alone black. Wings dusky hyaline. The antenne are rather stout and the joints close set, the scape being large oral, the third joint being a little longer than the fourth. The surface of the head and thorax, although smooth and shining, exhibits a few small, scattered punctures; parapsidal grooves indicated ouly anteriorly; tegule yellowish-white; pleura smonth; metathorax rugoso-punctate, areolated; abdomen alutacens. Areolet pentagonal, the cubitus without a stump of a vein, the stigma and veius dark brown.

Habitat.-Placer County, Cal.
Deseribed from a single specimen received from Mr. Albert Kébele.
Cryptus brevicauda sp. nov.
Female.-Length 7.4^{mm}; oripositor 1.4^{mmm}. Yellow ferruginous, smooth, and shining: eyes and antemme black. Anteune involuted, subclavate, two basal joints, gellow, joints 8 to 1^{2}, white. Thomax slightly stained with brown, withont grooves; metathoras areolated, the middle area small, elougated, contracted at base. Abdomen smooth, except the second segment, which is roughened basally. The legs are rather short and stout. Wings hyaline, with a slight yellowish tinge; stigma yellow, veins pale brown; the areolet is peutagonal, closed; the outer nervure, however, is pale.

Habitat.-St. Louis, (?) Mo.
Described from one specimeu in Riley collection.
Cryptus nebraskensis sp, nov.
Female.-Length 7^{mm}; orıpositor, 2.4^{mm}. Black, confluently puuctate; spot on scape beneath, tip of joint S and joints 9 to 11 and base of joint 12 of antenne above, orbits, two dots on face, elypeus, mandibles, palpi, two lines on collar, two short lines on disk of mesonotum, the sentellum, tegule, and a line bencath, a large spot on mesopleura, spot at base of posterior wings, line on metathorax, including the spine, anterior and middle coxie and trochanters, and posterior tarsi, except basal portion of the first joint, all white. The mesosternum and sides of metathorax are brown; legs red; there is a black dot on anterior and middle coxie and trochanters; the abdomen is rufous at base and black beyond the middle of second segment, the apex of the segments all
margined with white. Wings hyaline; stigma and reins black; areolet pentagonal.

Habitat.-West Point, Nebr.
Described from one specimen received from Mr. Larrence Bruner.

BRACHYCENTRUS Tasch.
Brachycentrus fasciatus sp. nov.

Female.-Length $7^{\text {mum }}$, oripositor $4^{\text {mun }}$. Ferruginous; a large quadrate spot extending from ocelli to base of antember, antemme (except joints S to 11), prosternum, anterior coxie and first joint of trochanters, sutures of thoras and apical tip of abdomen, black. Head and thorax punctate, abdomen, alutaceous. The head is large, rpmadrate 2 cheeks full. Antenne slender, the joints very long, apex of joint 8 and joints 9 to 11, white. Parapsidal grooves distinct, complete, the surface anteriorly transversely striate, metathorax romnded off posteriorly with two transverse keels, the last being indistinctly detined medially, aithough laterally it is quite distinct. Wings hyaline, iridescent, with a transrerse dusky baud extending from stigma across the wing; stigma and reins black; the submedian cell is a little shorter than the median.

Habitat.-Texas.
Described from one specimen in Belfrage collection.

CRYPTURUS Grav.

Crypturus texanus sp. nov.
Mate-Length $10^{m u n}$. liobust, hack; orbits, lower cheeks, face, elypens, the anterior margin and posterior angles of collar, two lines on mesonotum, disk of scutellum, a spot ou the lateral ridge extending from side of the scutellum, another one in front, tegulia, a spot beneath, a large oblong spot on mesopleura, post-scutellum, bloteh at base of hind wings, two dots at base of metathoma, the suiprominent posterior lateral angles, and a large spot ou metapleura, all yellow.

The surface of heal and thorax is somewhat coarsely confluently punctate; the parapsides are not indicated; metathorax reticulate with coarse forea. Antenaie black (broken); palpi white; legs, including coxa, reddish-yellow ; the posterior legs are abnormally lengthened, the tibio at apical two-thirds and the tarsi, black.

Abdomen oblong oval; all the segments broadly margined at apex with yellow; the petiole rather long, slender, a little widened at apex, yellow with a black subapical blotch. Wings hyaline; stigma and veins piceons, the areolet quadrate, the outer nervure wanting.

Habitat. - Texas.
Described from one specimen in Belfrage collection.
This curious insect, the first of the genus to be detected in the United States, has the gencral appearance of an Arotes and might readily be confused with that genus but for the venation.

Crypturus albomaculatus sp. nov.

Male.-Length $9^{\text {mm }}$. This species bears a superficial resemblance to that just described, but it is slightly smaller and the markings, although arranged similarly, are white, the legs being decidedly different. The anterior and middle coxie and trochanters are white, immaculate; the posterior coxe being white with a large black spot on the inner and outer side near base and another above the openings for the trochanters; the anterior and middle legs are yellowish, the posterior femora rufous with a black spot at apex, apical half of tibie black, tarsi, ex. cept terminal joint, white. Wings slightly dusky; renation as in previous species.

Habitat.-Michigan.
Described from two specimens received from Mr. Tyler Townsend. This genus is parasitic on Polistes. Kirchner in his Catalogus Hymenopterorum Europe records having reared the European species Cryp. turus argiolus from the pupe of Polistes gallica Liun. The only Cryptid reared in this country from Polistes is Mesostemus arvalis Cr. and and both of these genera are closely allied structurally.

NEMATOPODIUS Grav.

Nematopodius texanus sp. nov.

Mate.-Length 6^{mm}. Black, opaque, shagreened, sparsely covered with glittering white hairs, especially on the face and along the sides of the body. Antennae black, filiform, the third joint the longest; mandibles and palpi pale; inner margin of eye slightly sinuate. Thorax not grooved; metathorax a little longer than high and not areolated; there are two delicate abbreviated keels at base just back of postscutellum and a faint one just over the spiracles, the latter evidently the remuants of the first transeerse keel. Legs rather slender, brown, the posterior pair dark, the anterior pair more yellowish; the anterior and middle coxie (except anterior pair basally and a lateral spot on the middle pair), and second joint of all trochanters, yellow; the apical tibial spurs on middle and posterior legs are unusually long and divergent. Abdomen long, linear, the apical margin of third and fourth segments testaceous; the petiole is only slightly wider at apex than at base, the spiracles being situated between the middle and the apex. Wings hyaline; stigma and veins brown; areolet pentagonal, closed, the submedian cell slightly longer than the median.

Habitat.-Texas.
Described from one specimen. This insect closely resembles certain males in the Ophionid genus Limneria with the exception of the pentagonal areolet, and which is the principal reason for my excluding it from that genus.

It is placed doubtfully in the genus Nemutopodius, as it does not agree in all the characters of this genus detined in Mr. Cresson's

Synopsis, as Mr. Cresson says the areolet is rectangular. On referring to Gravenhorst, however, I find he says "areolet rectangular, rarely pentagonal," and under these circumstances it can be placed here for the present.

ORTHOPELMA Tasch.

Table of species.

> Head and thorax black; abdomen not wholly black.. Head, thorax, and abdomen black.

Male.-Antenne 23-jointed ; abdomen linear; legs yellow-testacenus.
O. bedellie sp. nov.

Mate.-Antennæ 17.jointed; abdomen oblong oval; legs reddish-testaceous.
O. erythropa sp. nov.
2. Abdomen not entirely ferrugiuous

Abdomen and legs ferruginous; petiole and hind coxie only black. Female.
o. minutum sp. nov.
3. All cosir black

4
All coxir and legs ferruginous; ablomen testaceons, brownish towards apex, the petiole black; antenne, female 22 -jointed, male 25 -jointed.
O. diastrophi sp. nov.

Anterior and middle coxit more or less red or yellow; hiud coxar and petiole black.
All legs yellow-testaceous; abdomen piceo-black, most of the disk of second segment and a spot at base of third gamboge yellow; antenne 18 -jointed.
O. bimaculatum sp. nov.

Hind legs brown; abdomen brownish-red, gradu lly becomiug black towards apex, sometimes at and surrounding the sutures more or less testaccous.
Antennee, male, 19 jointed; female, 16 -jointed................ O. rosacola sp. nov.
Antennæ, male, 27 -jointed; female, 22 -jointed............. O. occidentale sp. nov.
4. Abdomen piceo-black; hind legs dark-brown or black.

Apex of abdominal segments and base of second flavo-testaceons: autemat broken.
O. colorallense sp. nov.

Apex of abdominal spgments not margined, the base of secoud and third flavotestaceous; antennae, male and female, 19-jointed.... O. californicum sp nov.

Orthopelma bedelliæ sp. nov.

Male.-Length 2. 8^{mm}. Black; antenna brown, 23-jointed, two basal joints and base of third, yellowish; leg's ferruginous, hind coxie black, apex of posterior femora and the tarsi dark-brown. The head and thorax are minutely seulptured; mandibles, palpi, and tegula, white; the parapsidal grooves are indicated anteriorly half the length of the mesonotum; metathorax areolated. Abdomen linear, longer than the head and thorax together, the petiole, second segment, and basal part of third, minutely sculptured, or somewhat aciculated, the other segments smooth; the petiole is not quite three times as long as thick, and of the same thickness throughont. Wings hyaline, iridescent; stigma and veins pale orown, the submedian cell is slightly louger than the median, while the areolet is wanting.

Habitat--St. Louis, (?) Missouri.
Described from one specimen, reared March 24, 1874, from a Tiueid, Bedellia somnulentella Zell, in Riley Collection.

This insect is certainly not a true Orthopelma, the abdomen and an. teunal characters being different, but it is so closely related to it that temporarily it may remain here, or until the female is discovered and its true position ascertained.

Orthopelma erythropa sp. nov.

Mate.-Length $3^{\text {min }}$. Black; antemmie black, 17-jointed, the four basal joints yellowish, the terminal joint fusiform, more than twice the length of the penultimate; legs, including all coxie, ferruginous; the apical portion of posterior tibis and tarsi dusky. The head and thorax are alutaceous, the humeri smoother; tegule vellowish-brown; the parapsidal grooves are not defined, although there are slight depressions in the surface of the mesonotum, where they should be; the maxillary palpi are long, pale brown, metathorax short, areolated. Abdomen oblong-oval, with the petiole as long as the head and thorax together; the petiole is nearly four times as long as thick, the same thickness throughont, minutely sculptured, the spiracles before the middle, the rest of the abdomen smooth, sinining. Wings hyaline, iridesceut; stigma and reins pale brown, the submedian cell not longer than the median, the first branch of the radius as long as the first branch of the postmarginal, or the outer margin of the marginal cell.

Habitat.—Virginia.
Described from a single specimen.
Orthopelma minutum sp. nov.
Female.-Length 2.4"""; oripositor, 0.6^{mmm}. Black, the abdomen and legs ferruginous, hind coxie and petiole back. Antenne 16 -jointed, dark-brown. The head is smooth, polished, sparsely pubescent; thorax polished but sparsely punctate, without grooves; metathoras areolated. Abdomen long-oval, smooth, ferruginons, brownish towards apex, the petiole linear, more than four times longer than thick, the spiracles placed much before the middle. Wings hyaline, iridescent; stigma and reins brown, the first branch of radins less than half the length of the first branch of the postmarginal.

Habitat.-Jamaica Plains, New York.
Described from one specimen, reared May 21, 1884, from a Rose-gall, Rhodites sp., received from Miss Cora Clarke.

> Orthopelma bimaculatum sp. nov.

Male.-Length $3^{\text {mun. }}$. Black; antenne 18.jointed, dark brown, scape black, the terminal joint fusiform, one-third longer than the penultimate. Thorax very minutely sculptured, without grooves; tegulie yel-lowish-white; metathorax aciculated. Legs rellow-testaceons, the hind coxar black. Alodomen piceo-black, most of the disk of the second segment and a large spot at hase of the third gamboge yel!ow, the petiole
long, linear, black, aciculated, about eight times as long as thick, the spiracles situated at about the middle. Wings hyaline, iridescent; stigma and reins brown ; first branch of the radius not quite as long as first branch of the postmarginal.

Habitat.-La Fayette, Indiana.
Described from a single specimen, received from Mr. F. M. Webster.
Orthopelma occidentale sp. nov.
Male-LLength $4^{\text {mun }}$. Black; antennex 27 - jointed, black, the seape and perdicel beneảth red; legs ferruginous, the posterior pair darker, all cose hack. The head and thoma are smooth, polished; parapsidal grooves slightly indicated anteriorly; anterior edge of clypens, mandibles, and palpi red; metathoras areolated. Abdomen oblong-oval, brownish-red, obfuscated or blackish towards apex ; petiole black, slightly more than four times longer than thick and linear, the spiracles placed much before the middle. Wings hyaline, iridescent; stigma and veins brown; the first branch of the radius a little longer than half the length of the first branch of the postmarginal nervure.

Habitat.- Hams Fork, Green River, Wyoming Territory.
Described from one specimen, reared November 28,1583 , from a liusegall, Rhodites similis Ashm, received from Mr. L. Bruner.

Orthopelma rosæcola, sp. nov.
IHale and female.-Length 3.5 to $4^{\text {min }}$; oripositor, $0.6^{\text {mmm }}$. Black; antemse, female 16-juinted, male 19-jointed, black, apical edges of the scape and pedicel yellow; legs yellow-ferruginons, the posterior pair dark-brown, the femora sometimes black, all cose black. The head aud thorax are shining, but distinctly minutely punctured, the parapsidal grooses not at all indicated; clypeus piceons; mandibles hack; palpi yellow; metathorax areolated. Ablomen oblong-oval, longer in the mate, rarying in color from a brownish-red to piceous, the male being the darker, and the apex is always dusky, the sutures and more or less of the basal part of the segments are testaceons; the petiole is linear, black, nearly five times as long as thick, the spiracles placed before the middle. Wings hyaline, iridescent ; stigma and veins brown, the first branch of the radius is about half the length of the first branch of the post marginal nervure.

Habitat. - (?) Colorado.
Described from thirteen individuals, reared April 23th to 2sth and June 13, 1882, from the Rose-gail Rhodites ignota O.S.

Orthopelma califomicum sp. nov.
Mrule and female. -Length 3.6 to $3^{m n n}$; oripositor $1.4^{m m}$. IBlatk: antenne 19 jointed in both seses, in the male the longer; legs sellowferruginons to ferruginons, the posterior pair being dark-hrown, the

Proc. N. M. $89-27$
thighs sometimes black, all coxie black. The head and thorax are smooth, polished, the parapsidal grooves slightly indicated anteriorls; clspeus, mandibles, and palpi yellow-ferruginous; tegulie whitish. Abdomen piceo-black, the petiole aud apex black, the base of the second and third segments rellow testaceous; the petiole is linear, about four times as long as thick, the spiracles placed anteriorly about onethird its length. Wings hyaline, iridescent; stigma aud reins brown, the first brauch of the radius not half the length of the first branch of the postmarginal rein.

Habitat.-Alameda, California.
Described from three females, one male specimen, reared in May, 1S87, from a Rose gall ; received from Mr. Albert Kebele.

Orthopelma coloradense sp, nov.
Female.-Length $4^{\text {mun }}$; oripositor $1.4^{\text {min }}$; black, polished; thorax punctate, the parapsidal grooves slightly iudicated anteriorly and between them a short median line. Legs ferruginous, the posterior pair darkbrown or black, the femora black; tegule and costie yellow; abdomen black or piceo-black: the base of second segment and apex of all the segments narrowly flaro-testaceons; wings hyaline, iridescent : stigma and reins brown; the tirst branch of the radius is more than half the length of the first branch of the postmarginal.

Habitat.-West Cliff, Custer County, Colorado.
Described from one specimen, received from Mr. T. D. A. Cockerell.
Orthopelma diastrophi sp. nov.
Mele und Female.-Length $4^{\text {mun }}$; oripositor $1.6^{\text {mmn }}$. Head and thorax black, shining, punctate; legs, including all coxa, and abilomen, ferruginous; base of second segment and all the sutures testaceons, the apex more or less dusky, the petiole black.

Antemie female 22-jointed, dark brown, the three basal joints paler; clypens, mandibles and palpi ferruginous; metathorax minutely rugose, areolated; petiole linear, nearly tive times as long as thick, spiracles placed before the middle; wings hyaline, iridescent; stigma and reins brown, first branch of the radins about two-thirds the length of first hranch of the postmarginal. The male has very loug, 25-jointed antennæ, the two basal joints ferruginous.

Habitat.-Probably Missouri, and Waterbury, Comecticut.
Described from four specimens in Rile collection, also from several specimens in my collection reared by Mr. HI. F. Bassett, from galls, Diustrophus radicum Bass., at Waterbury, Coun.

ISCHNOCERUS Gravenhorst.
 Ischnocerus montanus sp. nov.

Female.-Length $7^{\text {mum }}$; ovipositor $1 . S^{\text {mum }}$; hlack, sparsely corered with a short, white, glittering pubescence; head and thorax opaque, minutely sculptured

Autennæ black (broken); palpi and tips of mandibles sellorish; mesopleura impressed at the middle, the metathorax areolated, the spiracles round; legs jellow-ferrnginous, all the coxe and the first joint of posterior trochanters black, the claws pectinate; abdomen shining, alutaceons; the petiole expanded and curred at apex, the spiracles small, round, placed behind the middle and on about the middle of the expanded part; wings hyaline, iridescent; stigma pale brown, the reins piceous black, the areolet entirely wanting.

Habitat-West Cliff, Custer County, Colorado.
Described from one specimen, received from Mr. T. D. A. Cockerell.
The position assigned this insect is uncertain; it may belong to the Tryphonine on account of the pectinated claws. My reason for placing it hese is, that it has a distiuct ovipositor and the spiracles of the abdominal petiole are behind the middle and nearer to each other than to the aper, aud, except in the pectinate claws, it agrees with the definition of this geuus. The pectinate claws seem to ally it to the Tryphonid genus Ctenopelma.

CATALYTUS Förster.

Catalytus pallipes sp. nov.

IHale and Female.-Length, 3^{mm}; oripositor very slightly exserted. Black, polished, sparsely pubescent. The antenne are filiform, 16 jointed in the female, 14 jointed in the male, brown, the two basal joints pale, especially beneath, the third joint is the longest. L'alp, chpens, face, and orbits to middle of forehead, testaceons. Thorax with indications of parapsidal grooves anteriorly; plemee smooth; metathorax very short, polished, withont any keels, excepting at slight one separating the metapleura, the spiracles round.

Legs, including coxie, pale-yellow testaceous; the posterior tibier are thickened and contrast with the slemder anterion and middle pairs, the tibial spurs minute, the tarsi not longer than the tibiæ.
Abdomen oral, black, polished, the renter and the extreme apex testaceous, the petiole from the base is gradually broadly dilated to apex, with a depression on each side, the spiracles are small, placel a little be hind the middle, but on account of the width of the petiole are wider apart than they are to the apex. Wings hyaline, iridescent, tegula yellow; stigma and reins brown; the areolet is pentagonal in position but open along the outer side ; the submedian cell is longer than the median, the cubitus being slightly bent in the middle.

Habitat.-Georgetown, D. C.
Described from is specimeus-1 male, $\overline{0}$ females, of which the follow. ing is recorded in the note-book of the Department Lis Mr. Pergande:
Found near the Aqueduct Bridge, Georgetown, D. C., on May 19, 1881, two sawfly larve which were infested with parasitic larvo; they fed on the saw-fly larve externally in the same manuer as Euplectrus larvie, but were not clustered in a group like the latter.

They were of a dirty brownish gray color, very much resembling slugs, i. e., the segments were not. well separated, the dividing sutures only being visible under a strong lens. They, together with the saw-lly larve, were placed in a small vial. Or the second day they left the saw-fly larve, which had become mere skins, and wandered about in the vial; the third day they spun cocoons on the surface of the soil and attached to the side of the vial. About ten days later imagos emerged; no Inrro were preserved.

CREMNODES Förster.

Cremnodes californicus sp. nor.
Female.-Length $\underbrace{\mathrm{mm}}$; ovipositor only slightly exserted. Dark ferrusinous, densely mieroseopically punctate, and covered with a short tine sericeous pubescence. Itead subquadrate, slightly darker colored than the thorax: the face a litte prominent medially and roughened; clypens separated from the surrounding surface by a groove at the sides; th soove extemts from base of ere to the hase of mamelibles: tecth or tips of mandibles black; palpi short, piceons; antemme 15-jointed, a little longer than the head aud thorax together, slightly subclarate, the three basal joints pale, the flagellum brown. Thorax slemer, about thrice as long as wide, the mesonotum separated from the motanotum by a deeptramserse sroose; noscutellum; metanotumsmooth. Viewed from the side the thoras is trilobed, a pair of legs being attached to eath lobe. The abdomen is ovate, the petiole the length of posterior roxit and trochanters united, and hut slighty widewed at apes; oripositor one-third the length of petiole, black.

Habitat. - Los Angeles, California.
Described from ons specemen revered firom Mr. Albert Kabele.

PEZOLOCHUS Förster: Pezolochus bucculatricis sp. nov.

Inale and Femate-Lenth 1 .; man: oripositor the length of petiole. Black to brown black. demsaly microseopically punctate: the face, collat ahove and at silles. dis! of mesonotum. bloteh on metanotum, legs amb a streak at base of the petiole, pale yellow fermomons, the postrrior coxar amb femoma, daker ; in the mate all rhe legs are darker than in the female and in one specimen the thorax is wholly darkbrown, without the pale ferraginoms spots: the apex of the petiole, in both sexes, is yellow.

The head is sibhumbrate, the face greatly shotemed; palpi long, rellowish: antembie in female sliwhtly sublarate, 19-jointed. pale-brown, yellowish basaly, and reaching to hase of the second abdominal segment: in the male, mueh longer. filiform, 20.jointed, reaching to the middle of the abdomen.

The mesmotum is sepratated fiom the metanotum by a deep) con-
 of the metamotum, is mote elevated, and with a delicate transperse kee on the superion edge of the ohlighe posterion tate duite distmet at the midale in the make but subobsolete in the lemate. Abdomen orate,
black, eseept the petiole, which is pale basally and margined at apex with yellow; the hypopygium in the male is pale yellow.

Eabieat.-Washington, D. C.
Described from three specimens, reared April 18, 1855, from a Bucculatrix found on the trunk of a beech tree.

Pezomachus flavocinctus sp. nov.

Female.-Length $4^{\text {mm }}$; oripositor $1^{\text {mmn }}$. Head, thorax, antemme, abdominal petiole, and legs ferroginous ; abdomen piceo-hlack, the petiole and second segment margined at apex with vellow. The whole insect is densely minutely punctulate; head transverse, narrowed behind; clypeus transverse, separated; mandibles terminating in two black teeth ; anteme more than 23 -jointed (tips broken ofif), nearly as long as the whole insect. Anterior lobe of thorax longer than the posterion lobe; metanotum smooth without auy keels; body of atodomen long oval, densely covered with a short sericeous pubescence.

Habitat.-Texas.
Deseribed from one specimen in Belfrage collection. This species approaches nearest to l '. mentilis Cress., but it is much larger.

Pezomachus californicus sp. nov.
Female.-Length 2.4m" ; oripositor 0.6mm. Head and abdomen, except the petiole, black; thorax, petiole, legs and antennie dark-brown. The insect is densely minutely punctured, the head and abolomen shining. The antemme are short (broken at tips), and evidently slightls subclarate ; mandibles, except the black teeth and the palpi, are pale. The two lobes of thorax are about equal, the metanotum showing slight traces of a keel at the sides of the posterior face. The sutures of the trochanters and the suture betreen the petiole and the second abdominal segment are pale-yellowish.

Habitat.-Los Angeles, California.
Described from a single specimen receired from Mr. Albent th bele.
Pezomachus alaskensis sp. nov.
Female.-Length $9.6^{\mathrm{mm} m}$; aripositor the length of the petiole. Brown back, the head black, and the extreme apical edges of the abdominal segments pireons Densely minutely punctured. shining: antenuse broken, pale brown, palpi and legs yellow fermginons: The hind lobe of the thomax is a little longer than the front iobe, the obl. ligue face having a delicate carina along the superior edge. Abdomen ovate, covered with a fine, short, sericeons pubescence.

Habitat.-Nushagak River, Alaska.
Described from one specimen collected by McKay.

Subfamily OPHIONINÆ.

THYREODON Brullé.

Thyreodon texanus sp. nov.
Male.-Length 25 min. Brownish-yellow; the face, palpi, antennæ and legs more yellowish. Wings fuliginous; the stigma as in Ophion, rellow; the third discoidal cell one-third longer than in T. morio. Head impunctured; clypeus separated at the sides by deep forea at base, the anterior margin arcuate; mandibles terminate in two black teeth. Thorax moderately deusely punctulate; scutellum with lateral keels; metathorax gradually sloping off behind, rugose, the disk posteriorly a little concave and the rugosities more transverse; there is a transrerse keel at the base and the spiracles are large, linear, and surrounded by a groove.

Habitat.-Texas.
Described from one specimen, easily recognized by its peculiar color and the fuliginous wings. It comes nearest to Thyreodon ornatipennis Cr. deseribed from Orizaba, Mexico. The large stig:na might exclude it from the genus Thyreodon.

NOTOTRACHYS Marshall.
(?) Nototrachys annulicornis sp. nov.
Female.-Length 1シ to 14^{mm}; oripositor $2^{\text {mmm }}$. Wale 17^{mm}. Ferruginous, coarsely rugosely punctate, the face and sides of body covered with a white pubescence; the face, cheeks, and anterior and middle legs yellowish, the middle tibice at apex armed with two spines and an abbreciated or short one; the second joint of hind tarsi white. The autemar are porrect, slender, filiform, the length of the insect, the apical two thirds back; in the female joints $2 t$ to 31 are white or yellow; in the male usually only joints 28 to 31 are so marked, although one of the males has joints 25 to 31 sellow. The apex of metathoma is produced into a neck tro-thirds the length of the hind coxie, at the base are tro semicireular areolets, the rest of the surface is rugose. The abdomen is thrice the length of the head and thorax together, strongly compressed and rery slender in both sexes, the petiole and second segmentare slender, linear, the second segment a little longer than the petiole. Wings hyaline; stigma and reins dark-brown, the venation as in Ophion.

Habitat.-Texas.
Described from four specimens, two male, tro female, in Belfrage Collection. On aceount of the two apical spurs on middle tibie, this species does not properly belong to the genns Nototrachys, and it is placed here only temporarily.

ANOMALON Gravenhorst.

Anomalon xanthopsis sp. nov.
Male.-Length $16^{\text {min }}$. Fermginous; rertex, sides of collar, mesopectusp mesopleurie, except a broad band across the middle and the piece at base of hind wings, black; face, orbits, interrupted above, three basal joints of antemue beneath, mandibles, palpi, anterior amd middle legs, and posterior tarsi, yellow. Antenne fulrous, the three basal joints above black; the third joint two and a half times as long as the fourth. Head and thorax punctate; metathorax rugoso-punctate, reticulate, with three or four longitudinal keels in the midulle. Abdomen as in A. apicale Say. Wings hyaline; stigma and reins brown; the submedian cell is considerably longer than the median, the discoidal cell long, rectangular, not contracted at base.

Habitat.-Placer Countr, Oalifornia.
Described from one specimen.
This species approaches nearest to A. californtcum Cress.

(?) Anomalon eureka sp, nov.

Female.-Length $14^{\text {mm }}$. Brown ferruginous; a hloteh on vertex of head inclosing the ocelli, prosternum, collar, and apex of the posterior tibie black; the upper margin of mesopleurie dusky. Antennae are about half the length of the body, the third joint about thrice as loug as the fourth, the following joints a little longer than wide. Head and thorax punctate; the cheeks the wilth of the eye; the scutellum yellow-fermginous; metathorax rugoso-reticulate. Tarsi fulvous; the first joint of hind tarsi about the length of the second joint. Abdomen strongly compressed, slender, and of a uniform color, the second segment being longer than the petiole; the spiracles of the petiole are large and situated far from the apex.

Wings fuscous; stigma pale brown, the veins darker; the submedian cell is distinctly longer than the median, the discoidal cell not contracted, rectangular, the upper apical angle of the first discoidal cell obtuse.

Habitat.-Placer County, California.
Described from one specimen received from Mr. Albert Kiobele.

Anomalon simile sp. nov.

Female.-Length $1: 3^{m m}$. Brown ferrnginons, exactly similar to A. eurek but may be separated from it by the following differences:

The third antennal joints is only about twice as long as the second, the following joints being wider than long ; the first joint of hind tarsi a little more than twice as long as the second ; the tips of hind femora, as well as the apical tips of the tibie, are slightly dusky; the abolomen, when viewed from tho side, is broader than in A. ewrekid, the second segment having a black streak above, the apical segments aloug the
sides being more or less fuscous; the spiracles of the petiole are large and oval, and situated close to the apex. Wings fuscous, but the costre and stigma are yellowish; the submedian cell is but slightly longer than the median, the discoidal cell not contracted, rectangular, the upper apical angle of the first discoidal cell being rectangular.

Habitat.-Los Angeles, California.
Described from one specimen receised from Mr. D. W. Coquillett.

AGRYPON Förster.

Agrypon puparum sp, nov.

Female.-Length 8 m". Black, punctate; face, clypeus, lorrer portion of cheeks, a dot at summit of eyes, scape, palpi, and hind tarsi yellow; sides of mesonotum, sentellum, and metaplenare rufons, the parapsidal grooves wanting. Anterior and middle legs yellowish red; posterior legs rufous, cosee, first joint of trochanters and the second joint at base above, a streak along the upper edge of femora, and the apical thirl of the tibie black; the basal joint of the tarsi is about thrice as long as the second joint. Detathoras finely rugose, without areolets basally. Abdomen pale ferruginous, the second segment about as long as the petiole, the petiole above at apex and the second and following segments abore all black, the black color on the apical segments being extended somewhat along the sides. Wings hyaline; stigma vellowish; the reins piceons ; the submedian cell is longer than the median, the upper angle of first discoidal cell obtuse, the thind discoidal cell long, rectaugular, not contracted at base.

Habitat.-Alameda, Califoruia.
Described from one specimen receised from Mr. Albert Koebele, reared from au unknown Noctuid pupa.

Agrypon boreale sp. nov.

Femule.-Length 10 mm . Plack, punctate; face, clspeus, mandibles, lower portion of cheeks, a dot at summit of eye, scape beneath, palpi, tegule, dot on apeex of posterior angles of collar, anterior and middle legs, and posterior tarsi, yellow; posterior legs rufous, cosa, first joint of trochanters and second joint above, base of femora, and apee of tibie black, the basal goint of tansi two and a half times as long as the second. Parapsidal grooves present; scutellum quadrate, transversely rugose as well as the surace of the mesonotum just in front of it and not separated from the mesonotum by a groove, the sides delicately keeled. The collar has grooved lines at the sides and the mesopleure, and the metathorax are rugoso-reticulate, the latter with two large areolets at the base.

Abdomen pale vellow-ferruginous, the upper surface of the second, third, fourth, and obliquely shading off on the fifth segment, black, the aper black. Wings pale fuscous: veins brown, stigma paler; the sub.
median cell is a little longer than the median, the upper apical angle of the tirst discoidal cell obtuse, the first recurrent nervure being very short, the third discoidal cell very long and contracted at base.

Habitat.-Fort McLeod, British Columbia.
Described from one specimen.
To this Försterian genus also belongs innomalon melleum Cr.
PANISCUS Gravenhorst.
Paniscus texanus sp, nov.
Female. -Length 9^{mm}. This species has probably been confused in our collections with P. geminatus Say ; but besides its much smaller size it can be readily separated by the following differences:

The third joint of the antenne is only slightly longer than the fourth; the mesonotum is smooth withont parapsidal grooves; the lateral keels of the sentellum become delicate posteriorly; the spiracles of the petiole are placed just anterior to the middle; the second abdominal segment riewed from above is trapezoidal but slightly longer that wide and only half the length of the petiole; the basal joint of hind tarsi only twice the length of the second ; the submedian cell is as long or slightly longer than the median cell, the iength of the transrerse median nevore; while whereas, in P.geminatus there is always a distinct stump of a rein at the middle of the cubitus, in P. texcenus it is entirely wanting or only the base remains.

Habitat.-Texas.
Described from one specimen in Belfrage Collection.
Paniscus nigripectus sp, nov.
Female.-Leugth 16mm. This species is much more closels allied to P.geminutus than is I^{2}. texumus, and structurally it is almost identical, but the mesonotum, mesopectus, stigma, and reins are black; the lateral ocelli tonch the eye; the stump of the rein at the middle of the cubitus is wanting, and the submedian cell is ouly one-thind the length of the transrerse median nervare longer than the median cell: the second abdominal segment is two-thirds the length of the petiole, the spiracles situated at about one-third its length.

Habitat.-Texas.
Described from one specimeu in Belfrage Collection.
CHAROPS Holmgren. Charops amulipes sp. nov.

Male.-Length 7^{mm}. Kead and thorax black, oparue, minutety deusely punctate, covered with white pubescence. Antenmie black, the scape pale beneath. Eyes emarginate within. Anterior and middle legs, including coxe, nale•vellow, tibie and tarsi white; hind legs black, the sutures between trochanters and an annulus at base of tibie
and the spurs white. Metathorax sloping, prolonged at apex beyond the insertion of the hind coxie. Abdomen long, slender, about twice the length of head and thorax together, the petiole slender, knobbed at apex, as long as the posterior trochanters and femora combined, pale in the middle, black at base and apex, the second segment is not quite as long as the petiole; black abore, the third, fourth, and fifth segments ferruginous, dusky abore, the following segments black: Wings hyaline, iridescent; stigma and reins piceous.

Habitat.-Missouri.
Described from oue specimen in the Riley Collection.
EXOCHILUM Wesmael.
Exochilum texanum sp, nov.
Male.-Leugth $19^{\text {min. }}$. Head and thorax brown, punctate, corered with a tine black pubescence; face, clypens, and palpi yellowish; au. tenner orange-vellow, the first three joints black above; parapsidal grooves distinct, converging and meeting before attaining the scutellum; anterior and middle legs reddish-yellow; posterior legs black, the cosie brown at hase, hasal tro-thirds of tibiee and the tarsi yellowish, the basal joint of the tarsi about thrice as long as the second. Abdomeu black, the petiole and a small spot at base of the second segment brown.

Wiugs glossy blask; the discoidal cells equal, rectangular.
Habitat.-Texas.
Described from one specimen.
SCHIZOLOMA Wesmael.
Schizoloma confusa sp. nor.
Femule.-Length 27 min. Black; the petiole, most of the second abdominal segment, and the basal half of the third above red: anterior orbits beyond insertion of antemme, a dot at summit of eyes, posterior orbits, face medially, clypens, except the anterior margin, the prominent protruding labrum, a line on inuer side of mandibles and the palpi sellow.

The head and thoma are punctate, vertex rugoso-punctate, covered with black hairs; parapsidal grooves wanting; scutellum profoundly foreated at base, the posterior portion being very high, cushionshaped; metathorax coarsely rugoso-reticulate and somewhat hollowed medially.

The anterior and middle legs, excepting cosie and the posterior tarsi, are orange rellow, all coxie, the hind femora toward the aper and tibie black; the basal joint of hind tarsi is less than four times as long as the second.

Trings black; tegular and a slight streak along basal part of coste orange-yellow: the submedian cell is longer than the median; the first
discoidal cell narromer at base than at apex ; the third discoidal cell rectangular, not narrowed at base.

Habitat.-South Carolina.

This large and beautiful species bears a superficial resemblance to E.xochitum mundum Say, Heteropelma flacicorne Brullé, and Anomaton flaricorne Sas, but its much larger size, the difference in the color of the legs, length of the basal joint of hind tarsi, prominent exserted labrum, absence of parapsidal groores, and the renation of the anterior wings will at once distinguish it.

CAMPOPLEX Gravenhorst.

Campoplex texanus sp. nor.

Female.-Length 13^{mm}. Black, covered with white pile; abdomen and hind legs rufous; tibie and tarai black; auterior and middle legs honeryellor, their tibia and tarsi white; middle and hind cosie black. Head and thorax contluently punctate, the head thin antero-posteriorly, the cheeks flat, antemie black; the gastrocmeli deep, oblong, placed a little before the middle of the second abdominal segment. Wings hyaline, the apex dusky; areolet petiolate, triangular.

Habitat.-Texas.
Described from one specimen in the Belfrage Collection.

CASINARIA Holmgren.
 Casinaria texana sp. nov.

Female.-Length $7^{m m}$. Black, densely punctate, corered with a white, glittering pubescence; antenne black, ferruginous toward apex, the scape pale at base beneath; mandibles, palpi, tegula, and anterior and middle legs, including coxin, pale yellowish-white: posterior, legs, and abdomen rufous. Eyes emarginate within; metathorax sloping behind and prolonged at apex beyond insertion of posterior coxit; the disk has a longitudinal depression medially, finely transrersely rugose; there is a transperse keel near the hase and the sides are areolated, but the middle and apex are not areolated. Oripositor short, the sheaths black. Wings hyaline, iridescent; the lanceolate stigma and the reins brown; the submedian cell is a little longer than the median; the discoidal cell long, slightly contracted at base; the areolet petiolate, triangular.

Habitat.-Texas.
Described from one specimeu in Belfrage Collection.

LIMNERIA Holmgren.

Table of species.

Species trithout an areolet 9
Species with an areolet.
Hind legs banded with white and black 5
Hind legs not banded with white.
Head and thorax black; abdomen not entirely black 3
Head, thorax, and abdomen, except venter, black.
Hind cosæ only black2
All coxae black, or at least black basally.
Areolet large, sessile; wings subhyaline; size large.Hind tibire black, except at base L. melanocoxa sp. nor.Areolet triangular, petiolate; size small or moderate.Hind femora and tibix ringed with black; wings hyaline; size small.L. nigricincta sp. nov.
Hind legs rufous; wings dusky hyaline ; size moderate.. L. nole sp, nov.
2 Legs rutons; anterior and middle coxid aud trochanters pate: seape pale beneath.
L. erythropus sp, nov.
3. Abdomen entirely rufous, except sometimes the petiole basally 4
Abdomen more or less black.
All coxre rufous or pale.
Cheeks swollen.Hind legs rufous; anterior and middle pairs pale ferruginous; petiole andsecond abdominal segment at base, black; rest of abdomen rufons.
L. brachyura sp. nov.

Cheeks not swollen.
Abdomen black, except a red spot on third segment. L. ferrugineipes sp. nor.
Abdomen black, except blotches of red on second and third segments.
L. ruficoxa Prov. (?)

Abdomen black, except blotch on sides towards apex of second segment and the extreme apical edges of the third and fourth segments.
L. occidentalis sp, nov.

Abdomen black, except apical third of second segment, apical two-thirds of third, the sides of fourth, connected by a line on disk, and the sides of fifth near the venter, whicli are red
L. oxylus Cress.

Hind cose only black.
Apex of second segment ouly red; middle and anterior legs honey-yellow; hind legs rufous.
Base and apex of posterior tibire dusky; scape black; ovip. short.
L. hyalina Prov.

Base of posterior tibire ringed with honey-jellow, the apex dusky; scape and second antenual joint pale.beneath; ovip. long.... L. gelechice sp. nov.
Apex of second and the following segments broadly margined with red.
Face covered with a dense silvery pubescence; posterior tibiz rufous, the tarsi dusky
L. argentifrons Cr .

Face not so covered; posterior tibic black, with a reddish streak in the middle aloug the upper surface.
L. dubitata Cr.

Apex of second and third abdominal segments and oblique blotches on sides of fourth and fifth segments rufous; auterior and middle legs white.
L. solenobice sp . вuw.

Aprex of the second and third abdominal segments aud the following wholly rutoms.
L. subrubidus Cr.

Apes of seend and most of third, except a blotech at base and the following segments rufous, the of having black blotches at base of all the segments.
L. euure sp. nov.

Middle and hind coxa black, the middle pair sometimes pale at apex.
Abdomen of iq dilated below at fifth segment, the ovipositor spriuging from its base and directed obliquely forward.
Abdomen, except obscure rufous blutches on sides of the third and fourth segments, black; scape pale beneath
L. obscura Cr. (?)

Abdomen of or rufous, base of petiole and second and third segments obscurely black, gastrocoli large, deep, placed just before middle of segment.
L. corrupta Cr.

Abdomen of a rufous, petiole, second segment and a bloteh at base of the third, black; gastrocœli almost obliterated; areolet triangular petiolate.
L. obscura Cr.

Abdomen of \circ mostly rufous, the base of petiole, second segment, except apex, and a spot at base of third, black; gastroceli large, shallow; areolet triaugular, sessile
L. sessilis sp. nov. (?)

Abdomen of \circ mostly intomi lase of petiole, a long blotch on disk of second segment, and the extreme apical edge and a blotch at base of third segment, black; gastroceli long; areolet triangular, petiolate.
(?) L. erythrogaster sp, nov.
Abdomen of o black, a small spot on the second and the sides of the following segments rufous; gastrocœli poorly defined, close to base of segment; areolet, triangular, petiolate...........................L. Pattoni sp. nor.
Abdomen of q dilated below at eighth segment, the ovipositor springing from its base and directed obliquely backwards over the back.
Apex of third and the sides, as well as the sides of the following segments, rufous.
L. eurycreontis sp. nor.

Abdomen of q dilated below at seventh segment, the ovipositor springing from its base and usually slightly curved upwards.
Apex of the second, third, and fourth segments broadly margined with rufons, the extreme edges of the following segments tinged with red; first joint of all trochanters black; scape black \qquad L. consimilis sp. nov.

Petiole and base of second segment black, rest of abdomen rufous; first joint of hind trochan'urs only black; sape pale beneath .. L. peraffinis sp. nov.
All coste ferruginous.
Petiole and second abdominal segment basally black; the folloring segments more or less dusky above; scape pale beneath; areolet subsessile.
L. oligice sp. nov.
4. Hind coxe black.

Abdomen wholly ferruginous, size large
L. Belfragei sp, nov, All coxie rufous.

Petiole black basally, ovip, slightly exserted ; areolet petiolate: seape pale heneath
L. vivalis Cr .

Petiole concolorons with the abdomen; orip, not exserted L. lophyri Riley.
5. All coxit pale

Hind cosit only hack
All cosz black, sometimes anterior and middle pairs pale at apes.
Abdomen entisely black.
Large ; metathorax medially sulcate; wings dusky L. valida Cr .
Small; metathorax not medially sulcate ; wings hyaline L. tibiator Cr.
Abdomen not eutirely black.
Extreme apical margins of abdominal segments, except petiole, obscurely tinged with red, lateral blotches on second and third segments, and frequently on the following, red ; metathorax not sulcate.
rar. L. Hibiator Cr .
Apical one-third of petiole, all of secoud and basal two thirds of third abdominal segments rufous; metathorax sulcate medially .. L. dimidiata Cr .
6. Abdomen not entirely black 7Abdomen eutirely black.Anterior and middle coxæ and trochanters, white.Middle area of metathorax narrow; ovip. shortL. annulipes Cr .Middle area of metathoras wide ; ovip. long, half the length of abd.
L. pterophnre $\mathbf{1} . \mathrm{sp}$.
7. Abdomen more or less rufous.
Anterior and middle cose and trochanters, white.
Apex of petiole and second and third abdominal segments and the greater por-tion of the following rufous; scape pale beneath; ovip. as long aspetiole
L. fura Cr.
Apex of all abdominal segments, except petiole, and oblique dilated blotchesat sides of the segments after the second, orange yellow ; scape black;areolet subsessileL. flaricincta sp. nov.
Anterior and middle coxee and trochanters, rufous.Apex of petiole aud second abdominal segment and the greater portion of thefollowing segments, except black blotches at base, rufous; scape rufousbeweath.8. Abdomen entirely black; ovip, hardly exserted.
The small area behind the postscutellum triangular. L. fugitiva Say.
The small area behind the postscutellum quadrate. L. cedemasics sp. nov.
9. Abdomen not wholly black 10
Abdomen wholly black; hind coxe black.
Scape black: hind tibie with dusky blotch at base and apex ; tarsi dusky but the joints pale at base.. L. rufipes Prov.
Scape pale beneath.Hind femora with a blotch beneath at base; base and tips of tibiæ and thetarsi, except first joint basally, black................. L. eureha sp. nov.
Hind femora withont a blotch at base beueath; the tip of tibiæ and tarsaljoints dusky10. Apex of second abdominal segment and hlotches on sides of fourth, fifth, andsometimes the following segments, red ; scape pale beneath.

Hind cosie black; posterior legs dark brown ; the second joint of trochanters and a blotch on widdle of tibiz, pale ; abdomen mostly black; ovipositor long... L. cupressi sp. nov.
Hind cosir biatk; posterior legs ferrnginous: a dusky bloteh at base and apex of tibiæ; anterior and middle coxæ and trochanters white; abdomen with the apex of second and sides of all the segments, red; ovip. long.. . L. obliterata Cr.
Hind coxe and legs ferruginous ; the tibie with a dusky bloteh at base and apex; tarsi dusks; auterior and middle legs pale, their coxa and trochanters white; sides and apices of abdominal segments red.
L. noctue sp. nov.

Limneria melanocoxa sp. nov.

Female-Length, $9^{\text {mm }}$; oripositor, $2^{\text {mm. }}$. Black, punctate; mandibles, except the black teeth, palpi and legs, ferruginous; the posteriur tibie and tarsi dusky; tibial spurs and base of first tarsal joint, sellowish; all coxa and first joint of trochauter's, black. Metathorax finely rugose with a median sulens. Wings subhyaline; tegulie sellowish; costie and stigma, black; reius brown; the areolet is large, triangular, sessile.

Habitat... Texas.

Described from a single specimen in the Delfrage collection.

Limneria nigricincta sp . nov.
Female.-Length, 3.8mm oripositor, 1.4 $4^{\text {mm }}$. Black; head and thorax deusely confluently punctate; mandibles and palpi, pale; antenux black; the antemal tubercles and the suture between the second and third joints, pale; tegule white; legs ferruginous; all coxae and the first joint of hind trochanters, black; the posterior femora with a dusky spot at base and their thbie with a black ring at base and apex. Metathorax sloping posteriorly and distinctly areolated. Abdomen black, alutaceous, pubescent; the ovipositor long, a little more than half the length of the abdomen. Wings hyaline; stigma and reins pale brown; the areolet triangular, petiolated.

The male differs from the female only in haring the scape pale beneath.

Habitat.-Washington, D. C., and North Carolina.
Described from six specimens, one labeled North Carolina, tro reared from a small Tineid on black bireh, April 14, 183t, and the others reared March 15, 1884, from saw-fly larvæ on black birch.

Limneria nolæ, sp. nov.
Mule and female.-Length, 6 to 6.5^{mm}; oripositor, 2^{mm}. Agrees with L. nigricincta, except it is much larger and the posterior legs are entirely rufous, the scape in the male entirely black.

Habitat.-Los Angeles, Cal.
Described from two specimens, one male and one female, received from Mr. Albert Koebele, reared during the summer of 1586 from a Nole found on willow.

Limneria erythropus sp, nov.

Male.-Length, $S^{m m}$. Black; mandibles, except teeth, and scape ani second antennal joint beneath, ferruginous; palpi, tesulae, and anterior and middle cosa and trochanters, yellowish-white; legs rufous, posterior pair dark red, their cosie blak. Head and thorax opaque, punet ulate, the face sparsely covered with silvery pile. Metathorax distinctly areolated, sloping behind and somewhat produced at apes. Abdomen compressed toward apex, black; the first three segments deusely, tinely, opaguely seulpured; the following smoother and shin. ing with a sparse pubescence. Wings hyaline, iridescent; stigma amd Veins brown; the outer edge of coste and stigma black; areolet triangular, petiolated.

Habitat.-Texas.
Described from one specimen in Belfrage collection.

Limneria brachyura, sp. nov.

Female.-Length, $5^{\text {mom }}$. Black; head and thorax chosely, confluentiy punctate; mandibles, except teeth and the scape bent uh, fermsinous; anteunæ brown, blackish at base; palpi and tegule, white; cheeks
swollen or lonecate; legs, including cosix, rufous, anterior and middle pairs pater or ferruginous, the apices of joints of posterior tarsi, black. Abdomen subcompressed, rufous; the petiole and second segment at base, black; the oripositor hardly exserted. Wings dusky hyaline; the reins dark brown; coste, excent at base, and stigma black, costre at base pale; areolet oblique, petiolate.

Habitat.-Michigan.
Deseribed from one specimen received from Mr. Tyler Townsend.

Limneria ferrugineipes sp, nov.

Mate-Length, 5 mm . Black; head and thorax subopaque, very finels, conthently punctate; face and thomax covered with sparse white pubes. sence; mandibles, palpi, and tegule, white; legs yellow-ferrnginons; the trochanters and tarsi pale yellowish; the first joint of posterior trochanters, dusky: apex of posterion tibiex and the apices of the tansal joints, dusky. Metathorax not longer than high, romded behind and areolated. Abdomen black; the gastroceli and a blotch on side of third segment rufons. Wings hyaline; stigma and reins brown, the former with a pale spot at base; areolet rather large, oblique, and petiolate.

Habitat.-Texas.
Described from one specimen in Belfrage collection.

Limneria occidentalis sp, nov.

Female.-Length, $5^{m m n}$; ovipositor, 1.5mm. Black; head and thorax densely, fincly, conflumtly punctate; mandibles, palpi, and tegulx, white; antennar, hack; legs, including coxae, rufous; posterior tarsi, except base of first joint, dusky. Metathorax areolated, the small area just back of the postscutellum quadrate, the central median area large, hexagonal. Abdomen, except a red bloteh on the second seg. ment towards apex and the extreme apical edges of third and fourth segments, black. Wings hyaline; stigma and reins pale brown; areolet large, triangular, petiolated.

Habitat.-Central Missouri.
Described from one specimen in Riley collection.

Limneria gelechiæ sp, nov.

Female.-Length, 6^{mmn}; oripositor, $2.4^{\mathrm{mmn}} ;$ male, 5^{mm}. Black, sub)opaque, punctate, sparsely covered with a white pubescence; scape and seeond antemal joint beneath, mandibles, palpi, tegula, trochanters. and tarsi, yellowish-white; the last joint of all tarsi and pulvilli and claws black; anterior and middle legs, reddish yellow; posterior legs rufons, their tibia with a rellowish annulus at hase; anterion and middle ensar pale: the midhle pair harkish hasally ; posterior cosae Whek. Metathorax sloping behime a little produced at apex, dis-
tinctly areolated, the central median area open behind. Abdomen, except the red apical margin of second segment, back. Wings hyat line, iridescent; stigma and reins brown; areolet petiolate. In the male the middle and posterior cosa are black.

Habitat.-Kirkwood, Mo.
Described from two specimens, one male, one female, received from Miss Mary Murteded, reared from Gelechin celtisella, Angust 19, 1s84.

Limneria solenobiæ sp. noт.
Mate-Length. 4.4mm. Black, suboparque, densely, timely, conthently punctate ; antenne broken off at base; palpi, mandibles, tegule, anterior and midale legs, including cox:e, yellowish-white; hind legs, sellow ferruginous, the coxie black. Metathomax shoping of behind, areolated, the small area just back of the postscutellum triangular, the central middle area wanting. Abdomen back; the apical matwin of the second and the third segments and oblique spots on sides of the fourth and the fifth, red. Wings hyaline, iridescent, almost deroid of pubescence; stigma brown; veins pale yellowish; areolet oblique, petiolated.

Habitat.-Kirkwood, Mo.
Described from one specimen, receised from Miss Mary Murtfeldt reared from Solenobia walshella, July 27, 1887.

Limneria euuræ sp. nov.

Male and female.-Length, $4^{\text {mm }}$. Black, subopaque, closely, finely punctate; scape and second antennal joint beneath, clspens, mandibles, palpi, tegulæ, and legs, yellow-ferruginous; hiud coxa black; the tips of hind tarsal joints black. Metathorax areolated, the areas not as distinct as usual. Abdomen rufous, the petiole basal, two-thirds of second segment and a blotch at base of third, black; oripositor moderately long, curving upwards. Wings hyaline; stigma and reins piceons; areolet oblique, petiolate. The male has black blotehes at the base of all the abdominal segments.

Habitat.-Pareah, Utah.
Described from four specimens, reared April 16, 1881, from a saw-fly, Euura sp., found on willow.
(?) Limneria sessilis sp. nov.
Female.-Length, $S^{\text {mm }}$. Black; head and thorax rather coarsels, confluently punctate; tro basal joints of antemie beneath, mandibles, palpi, tegula, and anterior and middle legs, yellowish; the anterior and middle coxa black at base ; the posterior pair wholly black; posterior legs rufous; the trochanters, a ring at base of tibie, and the tibial spurs sellowish; the tibie and tarsi more or less obfuscated. Metathorax sloping behind, produced slightly at apex, covered with white pubescence but not areolated, and with oval spiracles. Abdomen rufous; Proc. N. M. $89-28$
the base of the petiole, hasal two thirds of second segment, except the gastroculi, and a spot at base of third segment, black; oripositor rery short. Wings dusky hyaline; stigma aud coste black; veins brown; the areolet large, triangular, sessile.

Habitat.-Washington, D. C.
Described from a single specimen captured October 17, 1852. The species seems more closely allied to the gemus Campoplex, and is placed here doubtfully.

(?) Limneria erythrogaster sp . nor.

Female.-Length, $7^{m m}$. This species is an exact counterpart of L. sessilis, hut may be at once separated by its triangular, petiolated areolet aud the paler posterior tibiz and tarsi.

Habitat.--Selma, Ala.
Described from one specimen receised from Mr. W. П. Patton. It is doubtful whether the difference in the areolet will hold to separate this species from sessilis, but until more specimens are taken and the value of this character detinitely determined it is probably adrisable to consider them distinct.

Limneria Pattoni sp, nov.

Mhte-LCength, 6 mm. Ilack; heal and thorax finely, confluently punetate; the disk of the thomax rugose : scape beneath and mandibles fermoinous; palpi. tegnlar, anterior coxar aml all troclanters, excent the first joint of the posterior pair which is hatek, white; middle and posterior cose hatk; less mufous, the anterior par slishtly paler, the posterior tibie with a black spot at base and apex amd their ta:s dusky. Metathorad sloping beinind, areolated, the spiracles rers small, round. Abdomen black, a small spot at sible of the secomd segment near apex and the sides of the following segments, rutons; the gastroceli poorly defined and sitmated close to the base of the second segment. Wings hyaline: stigma and reins brown; the areolet triangular, petiolated.

Habitat.-Selma, Ala.
Described from one specimen, received from Mr. W. H. I'atton.

Limneria eurycreontis sp. nov.

Femule.-Leugth, $6^{\text {mam. }}$. Black, subopatue, finely, confluently punctate : the disk of thorax somewhat rugose : scape beneath, tomards apex, and the mandibles, fernginons: palpi, tegulae, anterior coxie and trochanters, rellowish-white; legs, yellowish-red; middle and posterior coxa, and sometimes the first joint of hind trochanters, black; posterior tibiae at base and apex, and their tarsi, dusky. Metathorax sloping behind, areolated, the midale central areat alsent. Abdomen compressed, dilated below at eighth segment, and from which issues the ovipositor that in its natural position is obliquely directed backwards over the back, black; the apex of the third segment and the
sides of the following segments, red. Wings hyaline; stigma and reins, brown ; areolet, triangular, petiolated.

Habitat.-Kellogg, Cowley County, Kaus.
Described tiom several specimens, reared from pupa of Eurycreon rantalis, found on corn and sent to the Department by Mr. Jacob Nixon.

Limneria consimilis sp, nov.

Female.-Length, $6^{\text {amm. Black, suboparute, rery tinely, confluently }}$ punctate; antemme, black; mandibles, palpi, and tegule, yellowishWhite; legs, rufous or ferruginous; anterior coxir pale, middle and posterior paiss, black; first joint of all trochanters, hack. Metathorax not louger than high, distinetly areolated, the central middle area hexagonal. Abdomen black; the apex of secomd, third, and fourth segments broadly margined with rufous; the extreme margins of the following segments tinged with red. Wings slightly dusky; stigma aud veins, brown ; areolet, large, triangular, petiolated.

Habitat.-Texas.
Deseribed from one specimen in the Belfrage collection.

Limneria peraffinis sp, nov.

Femule.-Length, $6^{\text {mom }}$. Differs from consimilis in haring the seape beneath and the first joint of anterior and middle trochanters pale, and the abdomen, except the petiole and basal half of second segment, wholly rufous, while the areolet is large, ohlicue, and petiolated.

Habitat.-Texas.
Described from one specimen in the Belfrage collection.

Limneria Belfragei sp , nov.

Male.-Length, $9^{m m}$. Closely allied to L. erythroguster, but larger and the abdomen proportionally longer. Lblack, densely, morlatately, coarsely punctate, and covered with a white pubescemee; the mandibles, except teeth, palpi, tegule, and anterior and middle legs, rel-lowish-white ; the middle coxe black at base; posterior legs and ab. domen, rufous; hind cosie, black. Wings, hyaline; stigma ant reins, brown; the costa outwards black; areolet large, subtriaugula, petiolated.

Habitat--Texas.
Described from one specimen in the Belfrager collection.
Limmeria pterophoræ sp, nov.
Female.-Length, $t^{\text {man }}$; ovipositor, O. $\mathrm{s}^{\text {mim }}$. Black, subopaque, mimutely, densely, contuently punctate; antemute black; manlibles, palpi, tegulat, anterion and middle trochanters and tarsi, yellowishwhite, rest of legs yellowish-red ; hind coxie, first joint of trochanters and base and apex of the tibie, black ; the middle of the tibie and
spurs, white; tarsi, except hasal portion of the first joint, dusky. Meta. thomax indistinctly areolated, the middle area greatly widened behind. Abdomen black, pubescent ; oripositor about half as long as the abdomen, slighty curved. Wings hyaline. iridescent; stigma and reins brown; the areolet oblique, petiolated.

Habitat-alameda, Cal.
Deseribed from one sperimen, received from Mr. Albert Kabele; reared in August from a Pteroph ra on apple.

Limneria flavicincta sp. nov.

Male.-Length, 4^{mm}. Black, opaque, densely, finely punctate; face covered with dense white hairs; antemne hack; mandibles, pappi, tegulae anterior and middie coxa and trochanters, and the second joint of posterior trochanters, yellowish-white; legs reddish-yellow; posterior femora ringed at base with hack; posterior tibie with a small white ammlus at base and a broader one at the middle, and a subbasal anmulus and the apex, black; their tarsi black; the extreme base of first joint, and the tibial spurs, white. Abdomen cylindrical, hardly compressed, the apex of all segments, except petiole, and oblique dilated blotehes at sides of segments after the second, orangevellow; renter yellowish-white, with black spots on third, fourth, fifth, and sixth segments. Wings hyaline, strongly iridescent; stigma and veins brown ; areolet petiolated.

Habitat.-Lafayette, Iud.
Deseribed from two specimens received from Mr. F. M. Webster.

Limneria œdemasiæ sp. nor.

Wale and femate.-Length, 7^{mmm}. Stature and general appearance of L. fugitirn Say, and in color and markings the same, hut at once separated from it hy the areas of metathoras and the difference in the areolet of anterior wings. In fugitica the small area just back of postseutellum is triangular, and the areolet is oblique, petiolate, stigma and reins hrown; in ocdemasio this area is quadrate, the areolet oblique, sessile, stigma and reins back or piceous-black, and the extreme hase of the first joint of hind tarsi only white, while the tarsi are a little longer and more sleuder.

Habitat.-Washington, D. C.
Described from several specimens, reared August 5, 1889, from Eilemasia concinnu. Both of these species probably belong to the genus Meloboris Holmgren.

Limneria eureka sp, nov.

Mate-Length, 4.6 6^{mm}. Black, subopaque, finels, confluently punctate: scape and second antemal joint beneath, mandibles, papi, tegulx, anterior and middle coxie, and trochanters, yellowish-white; legs ferruginous, the hind pair darker; the coxe and first joint of tro-
chanters, black; there is a large, dusky blotch at hase of posterior femora beneath, and the base and tips of tibia and the tarsi, except first joint basally, are black. Abdomen black, pubecent; the renter yellowish. Wings hyaline, iridescent ; stigma amd reins brown; the areolet entirely wanting.

Habitat.-Los Angeles, Cal.
Deseribed from one specimen taken by Mr. Albert Kabele in May, 1886.
Limmeria salicicola sp. nov.

Female.-Length, $4^{\text {min }}$; oripositor, 0.6"m. Black, opaque. tinely, confluently punctate; the abomen shining hatek. It agrees well with the description of L. eurekied, exeept that there is no bloteh on hind femora beneath, and the tibie are only faintly dusky at hase and tip, the tarsal joints being dusky at tips.

Habitat.-London, Ontario.
Deseribed from a single specimen reared March $14,187=$, firm a Gelechia found on willow.

Limneria cupressi sp. not.

Female.-Length, 3 ;'min; ovipositor, abont 1 "mm. Black, densely finely punctate ; scape and second antennal joint beneath, mandibles, palpi, and anterior and middle trochanters, rellowish-white: anterior and middle legs, reddish-yellow; the tarsi from apex of first joint, dusky; middle conal hack hasally, the apex of middle tibia dusky; him coxar and tirst joint of trochanters, black ; legs hark hrown ; vibia pale at the midnle, the spurs white. Metathorax areolated. Abdomen back, the lateral rentral edges of second segment and the whole remter sellowish: oripositor a little longer than the petiole, slightly conven upwarks. Wings hyaline, strongly irdescent ; stigma and reins palebrown, the areolet absent.

Habitat.-Marin County, Cal.
Inseribed from one speecimen recerved from Ir'. Albert Kinhele, teared

Limneria noctuæ sp, nor.

Mule.-Length, 5 min. Black, oparge, punctade: lace covered with a dense white pile: seape and the second antemal joint. except a dusky spot above, clypens, mambles, palpi, tegulis, amb anterior amd midhle coxal and trochanters, rellowish-white; hind cosat and legs fermoimons, the anterior and midde pairs heing slightly paler; posterior thbie at base and apex, and their tarsi, except the base of tirst joint, dusky; base of tirst joint ame tibial spurs, white. Metathorax areolated. Abdomen hack, the sides and apices of the segments, reed. Winges hya line, iridescent ; stigma and veins brown ; areolet absent.

Babitat.-Washington, D. U.
Described from a single specimen reared July 12,1 sist, from an unknown noctuid pupa found on black hirch.

Subfamily TRYPHONINE.

METOPIUS Panzer.

Metopius xanthostigma sp. nor.
Thute-Length, $14^{\text {mom }}$. Black; comsely punctured and sparsely cos. ered with fuscous pubescence. Auteunie brown black, not reaching to the middle of the abdomen. Face yellow, with a central, longeval hack spot: the face is separated from base of antemme and surromeled hy a sharply detined keel. Palpi dusky; the second joint of labial palpi rellow. A line on mpper margin of collar, interrupted medially. the posterior half of the quadrate scutellum, a dot at base of the lareral keels of same, spot helow tegule and a dot below this, a dot on lower posterior angles of mesoplemat, large spot on metaplemat, the sutmes between joints of trochanters, extreme apes of femora and anterior and midhle tibie and tans amd posterior tibie at base, the apical lateral comers of the tirst abdominal serment. and the apical maroins of second. third, fourth, and tifth segments, brioht yellow. The middle tibie beneath and posterior tibia and tarsi, rufous, rest of the legs, black. Ahdomen rery coarsely, irmoularly pitted, the first segment short. bicarinated. Wings fusoons, the stigma and inner margin of coste jellow, the outer margin and veins black.

Habitat.-North Carolina.
Deseribed from onf specimen. This species approaches nearest to .II. pollinctorims Sity. hut it is somewhat difierently colored and at once distinguished fom tat speries hy the absence of medial carinte on the seeond. third, and fomth abdominal segments and by the yellow stigmal.

Metopius terminalis sp. nov.

Mule.-Lemgth, stmen. Black. polisher? and hont sparsely punctured. Antemat bown, the two hasal joints black, pale beneath. Face pubescent. not sumomded by a keel. Clypens, mamdibles, and middle and antarion legs, fermginous; the clypens is transrersely prominent or ridere-like ; the fore and middle enxie black at base; hind legs rufons, the coxie entirely black, the tibie and tarsi obfnscated. Scontellnm quadrate kerled at sides aud with a slight carina on the middle posteriorly. Metathorax distinctly, coarsely areolated. Abdomen rufons. the first amb three terminal segments, except the extreme margins, black. Wings dusky hyaline; the stigma and veius brown.

HABLTAT-Missomri.
Deseribed from one speemen in Riley collection. The non-keeled face of this speres is entirely difterent from all other Metopii known to me.

BASSUS Fallen.
Bassus syrphicola sp. nov.
Female.-Length, 7^{mm}. Black, shiuing; head and metathorax densely punctured. A spot on face, elspens, mandibles. except teeth, palpi, most of the mesoplemre, except the portion just beneath anterior wings, mesosternum. the suture dividing the mesonleure from the metathorax, metapleure and legs, ferroginous; the apes of posterior tibie and their tarsi, black; lateral margins of mesothoras, tegular, a spot in front and beneath it, a central line on sentellum and a transerse line on postsentellum, white. Metathoma without keels. Abdomen slightly compressed at apex, the three basal segments sculptured, the following segments almost smooth, shining, but showing a fine reticulate puncthation; all the segments are namowly edged at apex with white amb from the third the white color is o diquely dilated at the sides. Wings hyaline, irdescent: stigma and reins hrown-black, the stigma with a pale spot at base; areolet wanting.

Male.-Length, $6^{\text {man }}$. Agrees with the female except the face wholly and the anterior orbits to summit, the antenne beneath, clypens, mandibles, palpi aml the whole under surface of the thorax, except a black spot beneath wings, and lateral hook-shaped marks on mesonotum, are wholly white or yellowish-white.

Habitat. - San Francisco, Cal.
Deseribed from one male and two fermales receised from Mrs. L. A. Burkholder, reared Δ pril 29,1581 , from a puparium of a Sirphus-1ly found on rose.

Bassus orbitalis sp. nov.

Female.-Length; 5.4^{mm}. Black, shining, punctate. Anterior orbits, lower part of cheeks, clypens, mandibles, palpi, prosternmm, a hookshaped mark on mesosternum, anterior and middle coxar and trochanters, a boad bam on posterior tibia lateral margins on mesothorax. tegnie, a spot in front and beneath it, a spot at insertion of pensterion wings and extending along the ridge separange the mesothome from the metathorax, two short lines on disk of mesomotnm, a broad medial line on scatellum, and the postsentellum, white. Metathomas with a transverse keel on the upper margin of posterior face and with triangular areas laterally. Legs fermginous; the posterion thbia, except the broad white band at the middle, and their tassi, black. Ablomen compressed at tips, rugulose, the apices of midhe serments and the two or three terminal segments, smonth; the first segment is bicarinated at basal half, and the apex in the midhle exhibits a small white stain or line. Wings hyaline ; stigma and reins brown ; the stigma at base and the costie basally are pale.

Habitat.-Alameda, Cal.

Described from one specimen, received from Mr. Albert Kæbele, labeled "Taken ornpositing in a Syrphus larva feeding on cabbage aphis."

Bassus xanthopsis sp. nov.

Male. -Length, .jmm. Black, shining, sparsely punctate. Face, anterion orbits, scape beneath, chpeus, mandibles, palpi, lateral margins of mesothorax, prosternum, posterior lateral angles of collar, anterior margin of mesosternum, a large spot on mesopleure below, and anterior and midde legs, including cone, lemon-g ellows. Itind legs rufous, the conel black, their apices and trochanters yellow. Metathorax closely punctate, without keels. Ablomen black, the apex of the second segment, the thith wholly, and the apical margins of fourth and fifth, sellow-ferrugimos; the first segment is longer than wide, with very prominent lateral tubercles near the base, it, as well as the second segment, seuptured, opaque. Wings hyaline; stigma and veins brown : the coster to near the stigma and a spot at base and apex of stigma, yellow.

Habitat.-Alameda, Cal.
Described from one sperimen, received from Mr. Albert Kixbele, reared from a Syrphus feeding on Aphis brassice.

This speries may he the male of orthitulis, but its different color, absenee of kerls on metathoma, and the difference in the sealpture of the abomen, make it quite improbable and justify me in considering it a different species.

Bassus euturæ sp. nov.

Male - Length, 5. $4^{m m m}$. Statmer similar to B. ugilis Crr. Black, shiuing. A V-shaped mark on face, chypens, mamblbles, except teeth, palpi, tegula, a spot in front and bencath, hook-shaped marks at sides of mesonotum, seutellum and postsentellum, white. Legs, including coser, the sternum and pleme below, fermginoms the posterion tibie. except toward hase, and the tassi, hack. The parapsidal grooves of mesonotum are slighty indicated anteriorly ; metathorax keeled. Abdomen entirely black, the thee basal segments rngulose, subopapue, the first being bicarinated on disk at base, the terminal segments smoother and polished. Wings hyaline, the stigma and reins dark bown ; between the stigma and parastigma is a pale spot: areolet absent.

Habifat.-Placer County, Cal.
Deeribed from one sperimen, received from Mr. Albert Kubele, and reared from a saw-fly on willow.

Bassus virginiensis sp, nov.

 lower part of cheeks, mandibles, palpi, pro-and mesosternum, lower part of mesoplente, cosie, trochanters, posterior lateral angles of collar,
tegula, a spot beneath it, and a spot on the disk of sentellum, fellowishwhite. Anterior and middle legs, yellow-fermginous; the middle tarsal joints tipped with black; posterior legs rufous, their coxie with a lare black spot at base abore, their tibia towards apex and the tarsi, black. The parapsidal grooves are slightly indeated anteriorly ; metathorax keeled, the two middle keels close together and converging toward each other at base forming a triangular area. Ablomen black, delicately sculptured, the extreme apical edges of the segments showing a little white; the disk of the first segment heing bicarinated for two-thirds its leagth. Wings hyaline; stigma amd rems brown, the inner margin of costre and basal nervures, yellowish; areolet absent.

Habitat.-Virginia.
Described from a single specimen. This species comes neanost to B. coure, but is reatily separated fiom it and other specees by colonational details.

PRIONOPODA Holmgren.
Prionopoda scutellata sp, nov.
Female.-Length, $\boldsymbol{i}^{\text {mom }}$. Robust, yellgor-fermginons; stemmaticum and anteriorly to base of antembe, disk of mesothorax, exeept pale parapsidal lines two-thirds the lemgth of mesonotum, disk of metathorax, disk of first abdominal segment, and the apex of posterior thbise and their tarsi, bata. Antennar longer than the whole insert. gradually acominated towards apex, black, the scape ant thagellum beneath. fermonous. Scutellum fermginous. Head amb thorax densely, finely punctured. Metathoras strongly areolated. The head is latse, subquadrate, the cheeks as wide as the ere ; palpi and anterion and midde coxar and trochanters, rellowish-white; claws pectinated. Ablomen. except the petiole, which is punctate and broadly widened posterionly: smooth, polished. Wing's hyaline; stigma black, reins brown-blatek; areolet triangular.

Haitat.-Washington, D. C.
Described from one specimen taken at large in August.
TREMATOPYGUS Holmgreu.
(?) Trematopygus cultriformis sp, nov.
Female.-Length, $5^{m m}$. Black, shining. Seape hemeath, a mominence on middle of tace, and legs, incluling cosir, ferroginons. Tegulte, a line beneath and an abbreviated line at sides of mesonotum, yellow: flagellum brown; mesopectus obsemely rufous. Metathomax rugose areolated. Abdomen sessile, heyomb the seeond segment strongly rompressed, cultriform, the first segment more than twice as long as wide rugulose, the sides keeled above: second segment about as long as its width at base, when riewed mom above of at triangular shape, the sides being compressed towards apex: the ovipositor is slightly exserted,
a little recurved. Wings hyaline, iridescent; stigma and veins pale brown, the costre to stigma jellowish; areolet absent.

Habitat.-Nebraska.
Described from one specimen received from Mr. L. Bruner. The peculiar shape of the abdomen of this species is remarkable, approaching closely to the Cynipid genus Ibalia, and it is probable the type of a new genus, although some of the chatacters seem to agree with the genus Trematopygus, in which it is placed temporarily.

ADELOGNATHUS Holmgren.

Adelognathus texanus sp. nov.
Female.-Length. 6. $\boldsymbol{i}^{n m}$. Robust, black, punctite. The scape torards apes bencath, second antennal joint heneath, mandibles, palpi, apical tips of femora, bases of tibiar, tegula and a line bencath, a large, broad, irregular spot at sides of mesonotum anteriorly, spot at apex of seutellum, postscutellum, and apical margin of all abdominal segments, rellow. The head is transerse: cheeks as wide as the eye : clypers rombled before and projecting over the mandibles: antemne 31 - jointed. as long as the head and thorax together. back, the first joint of flagellum athout three and a half times ans long as wide, the following joints gradually becoming shorter and shorter until they are wider than fonger. Mesoplemar rugose ; metathorax areolated. Legs rufous; coxip, except tips and posterior femora, hate; tips of cosie, tips of femora, bases of thbia, and base of first joint of posterior tarsi, sellow. Abdomen sessile, coarsely punctate, the first segment bicarinated on disk for two-thirds its length, apical margin of all segments, lemonyellow; renter yellow; the three terminal rentral segments, black, their apical edges narrowly edged with yellow: ovipositor rery short. Wings hatine; stigma and reins brom, the costar towards base yel. low: the submedian cell is much longer than the median, the cubital nervire ahmptly bent before the middle: areolet subpentagonal.

Habieat. - Texas.
Described from tiro specimens in Belfrage collection.

ORTHOCENTRUS Gravenhorst.
Orthocentrus californicus sp. nov.
Female-Length, $3.4^{\text {min. }}$. Polished back. The swollen face tramsrersely aciculated: a triangular white spot on anterior orbits, just above hase of antemat. Antemir brown, the scape rery loug, black. Metathoras areolated, the disk punctate. Legs red, the trochanters rellowish. Abdomen from the middle towards apex compressed, black, polished, the suture between second and third segments and the renter, sellowish, first segment subopaque, minutely rugulose, with two
longitudinal keels on disk. Wings hyaline, stigma and vems pale brown, tine areolet subpentagonal, the secoud recurrent nervire interstitial with the inner rein of the areolet.

Habitat:-Placer County, Cal.
Described from a single specimen, taken hy Mr. Albert Kebele in August.

ISCHYROCNEMIS Holmgren.
Ischyroonemis carolina sp, nov.
Mate.-Length, $7 f^{\text {mom. }}$. Black, shining, sparsely pubescent. Two basal joints of antemar, legs, tegule, upper margin of collar, petiole of abdomen, except a black spot between the spiracles, apical half of second and thind segments, apieal one thind of fourth and the sixth and seventh entirely, rellow. The flagellum, sentellum, postscutellum amb sutures, metathoma, except a black spot at base amb the metaplenre, and the prosterntim, fermginoms. The face is only slighty swollen, suboparue, phatate; eyes emarginate opposite base of antemme; metathomas smooth, polished. All femoma sirollen, the positerior pair the stoutest, as in gemus Errochus ; claws strongly bent: the coxae of posterion legs have a lage hark soot bemeath, the femona are mostly black, the tibie with a dusky spot at apex, the spurs stont. Wings yellowish-hyalne; stigma and reins brown: the submedian cell is slightly longer than the med ian ; the areolet triangular, petiolated.

Habitat.-North Carolina.
Deseribed from a single specimen. This is the first species in the genus to be detected in our fauna.

EXOCHUS Gravenhorst.

Exochus rufigaster sp, nov.
Female-Length, $s^{\text {minn}}$. Black, polished, sparsely punctured. The face is but slighty prominent, closely punctured, with a small red spot between base of antemae. Antenme reach to aper of first abdominal segment, back; beneath, towards apex, brown. Metathoras longer than wide, areolated, the spiracles large, linear. Legs, inchuding coxie, rufous. Abdomen one-thied longer than head and thomax together, dark rufons, except the first segment hasally and the three apical segments, which are black; the first segment is bicarinated for half its length. Wings hyaline, the stigma and rems bromen.

Habitat.-Texas.
Described from one specimen in Belfrage collection.
This speciesapproaches nearest to E. semirufus Cr., but in that species the abdomen is entirely rufous.

CHORINAEUS Holmgren.

Chorinaeus flavifrons sp, nov.
Female.-Leugth, $\boldsymbol{\sigma}^{\text {man }}$. Black, polished, sparsely punctate, the ab). domen more densely puncture!, the punctures coarser, and covered with a whitish pubescence. Face and mandibles yellow-ferruginous; palpi yellowish-white; scutellum with lateral keels, the postsentellum bifurcated; metathorax with six Iongitudinal carine, spitacles longoval. Legs, including coxit, rellowish-red. Abdomen a little longer than head and thoras together, rather coarsely pmetured; the first segment with four longitudnal keels its entire length, and between the two midde keels are two slight chamels; the serond segment has three keels its entire length : the third with a slight middle keel near its base. Wings hyaline; stigma and reins hown, the second recurrent nervure bent at the middle.

Habitat.-Wisconsin.
Described from one specimen.
This species is nearest to ('. colviniger Wralsh, but is readily separated from it by the number of keels on metathorax and abdomen.

Subfamily P[MPLIN.E.

COLEOCENTRUS Gravenhorst.
Coleocentrus texanus sp. nov.
Female.-Length, $11^{\text {min }}$: oripositor, $21^{\text {man }}$. This species raries from a pellow-fermginous to rufo fermginous; it is polished, the head and thomas with a few seatered punctures. The flagellum is black or hrown-hack, sometimes pale bemeath, joints is to 10 , inclusive, white. the three basal goints very long: sompe and perlicel always ferruginoms. Tips of mandibles hack. Panapsidal grooses strongis, deeply impressed. Metathoma a liffle longer than high, sloping off posterionty, rugulose and areolated : just behim the postsentellum is a small quadrate area and on each si .e of it a large semicirentar anea inclosing the spiracles: the central midele area poorly defined. Leess slender, the hime pair very much longer than the anterior pair; the anterion tansi are twice as long as the tibia, the first joint abone being as long as the tibie; terminal tarsal joints, claws and tips of joints 2 and 3 of persterior tarsi, black. Wings fusco-hyaline: stigma and reins brown, a sellow sone bet ween the stioma amp parastigma; the submedian cell is shorter than the median; the areolet marowed, the secomd recoment nervure joining it towards the apex.

Habitat.-Texas and Columbia, S. O.
Deseribed from two specimens. One specimea is in the Belfrage conlection and is the paler one ; the other was receised from Prof. G. F. Atkinson from Sonth C'arolina, and atthongls much darker iu color is structurally identical.

PIMPLA Fabr. Pimpla yukonensis sp. nov.

Female.-Length, $9^{\text {wm. }}$. Robnst, subopaque, black; head and thorax finely alutaceous with an exceedingly tine punctuation; abolomen tinely transersely acioulated, the apical segments smonther. Antemat black, joints 8 and 9 yellowish. Palpi brown. Tequle yellowishwhite. Metathorax quadrate, roundedly trumeate hehind, with a transrerse keel. Legs rufons, tips of femora dusky, midulle tibiee and tarsi obfuscated; posterior tibie and tarsi black; the anterior tibie are short, the basal third strougly constricted. Abdomen shaped as in I '. pertulis, the apical edges of segments narrowly white, the owipositor being about as long as the posterior tibie. Wings hyaline: stigma and reins black or brown black, the areolet quadrate, the second recurrent nervuse joining it at the middle.

Habitat.-Fort Yukon, Alaska.
Described from one specimen taken by Mr. L. H. Turner in 187\%.

> Pimpla pterophori sp. nor:

Female-Length, $9.4^{m m}$; oripositor, $4^{m m}$. Black, smooth, shiniug; the abdomen with coarse punctures, the apical margins of segments smooth. Antemne black, becoming pale towatds apex. Palpi yellowish, the two basal joints of labial palpi, black. Tegular and coster of wings, yellow. Legs, including coxie, uniformly reddish yellow, the pulvilli and claws, black. Metathorax slightly rugulose at sides, smonther above, the disk bicarinated. Abdomen as in I '. cmmulipes Br., the punctures on first segment reticulated, on the disk of the second segment is a rather large, irregular, opaque depression, the surface of which is wrinkled, the surface of the segment surombling this depression punctured, as are the following segments. Wings hyaline; stigma and reins brown black, a spot between the parastigma and stigma and the extreme apex of the stigma and the postmarginal rein, yellowish; areolet oblique, quadrate.

Habitat.-Los Angeles, Oal.
Described from a single specimen, reared hy Mr. Albert Kirbele, in March, from a Pterophorus living in stems of Buccheris pilularis. This species approaches nearest to P. temuicornis Or., but its slightly smaller size, smoother bicarinated metathorax, differently sculptured abdomen and the clear wings, readily distinguish it.

Pimpla gossypii sp, nov.
Female.-Length, $\tilde{5}^{m n}$; ovipositor, $3^{m m}$. Black, shining; the head and thorax with a few scattered punctures ; abdomen with distinct, coarse punctures. l’alpi, trochanters, tibie and tarsi, white; the middle and posterior tarsal joints tipped with black ; the posterior tibie
with the apex, and a subbasal ammulus, back; rest of the legs reddishyellow; the apex of posterior femora dusky. Antemare black, flagellum beneath fermginous. The parapsidal grooves are indicated anteriorly: Metathorax smooth, the sides slightly punctured, the disk with a small, shallow forea in the middle. Abdomen black, the disks of the segments obseurely rufous, the first segment a little longer than wide, keeled. Wings hyaline, iridescent ; stigma and reins brown, the costie and a spot between the parastigma and stigma, white ; areolet oblique, narrowed at apex.

Habitat.-Selma, Ala.
Deseribed from one specimen, reared March 7, 1879, from a Tortricid, which feeds in cotton-bolls.

Pimpla xanthothorax sp. nov.

Femule.-Length, S. $4^{\text {mm }}$; oripositor, 8^{mm}. Head and abdomen black; thorax, except metathoras which is black, orange-jellow. Palpi and legs, rellowish-white. All femora and middle and posterior coxa and trochanters with a black stripe beneath, the posterior knees and joints of the tarsi tipped with black. Antenne long, black, the aper of the seape and the perlicel, vellowish. Metathoma smooth, with some sparse punctures. Abdomen coarsely punctured, the segments slightly contracted behind the midnle, the first segment a little longer than wide, without keels. Wings haline; stigma and reins brown ; spot at base of stigma and postmarginal rein, rellow The male is but $6^{\left(\mathrm{m}^{m m} \text {. } \text {. long, }\right.}$ and agrees with the female, except the seape and pedicel are white, the hack stripe is wanting on anterior femora and on the muddle cosae, trochanters and femora, and the apical tips of posterior tibise and the middle and posterior tarsal joints are tipped with black.

Habitat.-Kirkwood, Mo,
Deseribed from one female and one male, received from Miss Mars Murtfeldt, reared February - 4,1572 , from Eunco s-nodus Walsh, found on willow.

Pimpla aplopappi sp. nov.

Mate.-Length, $7^{m m m}$. [il- F shining; head and thoras with some sparse, fine punctures : ablotuen coarsels, closely punctured : face cor. ered with it white pulescence. Palpand anterior legs, except femora, white. Anterior femora and the other legs, reddish-yellow; the posterior tibie with a long white stripe in the midale of the outer face, a sub basal spot aud the apex, hack; the posterior tarsal joints tipped with black. Metathoras smooth, with two indistinet longitudinal carine on the disk bassally. First abdominal segment one and a third times as long as wide, carinated. Wing's hyaline, stigma and reins brown, a pale spot at base of stigma.

Habitat.-Los Angeles, Cal.
Described from a single specimen receised from Mr. D. W. Coquillett, reared from a lepidopterous gall on Aplopuppus squamosu.

Pimpla euuræ sp. nov.

Female.-Length, $6^{2 m m}$; ovipositor, $4^{m m}$. Itead and thomax black. polished; metathorax and abdomen rufous. the mesopleura obscurely rufons. In one specimen the thomax is almost entirely rufons. Antennte 21 jointed, slender, cylindrical, brown. P'alpi and tegular white. Parapsidal grooves indicated anteriorly. Letathorax with two longitudinal parallel carine on disk. Legs howes-jellow, the posterior trbia whitish along the upper face. Abdomen rather coarsely punctured, rufous, the apical edges of segments obsedred or blackish, first segment broader than long, keeled, sheaths of owipositor hack, rers bairy. Wings hyaline, iridescent, the stigma and veins pale-hrownish, the areolet oblique, a parallelogram. The male is but $f^{\text {mon }}$ long, the thorax wholly black, the abobmen smoother than in the female, the punctures smaller and less deeply impressed, the abdominal segments much longer, the first is one and one half times as long as wide. The antemar in this sex are 20 -jointed, otherwise it agrees with the female.

Habitat.-California.
Described from two females and six males, reared september 9th, 1885, from Euura on Salix californica.

Pimpla lithocolletidis sp. nov.

Make-Leneth, $e^{\text {mmm. Black, smooth, shining; the metathorax and }}$ abdomen sparsely punctured. Antemme lisjointed, bown, the two basal joints black above. Metathorax longer than high, gradually sloping off posteriorly, punctate, the disk with two indistinct longitudinal keels. Legs brown, the coxie and posterior femora black, the base and tips of posterior tibia and terminal joints of tarsi, dusky. Wings byaline, iridescent : stigmat and reins brown, areolet ohlique. narrowed at apex, the second recurent nervore interstitial with the outer nervure of the areolet.

Habitat.-Alameda, Cal.
Described from a single specimen received from Mr. Alhert Kathele, and reared from a Tineid, Lithocolletiss sp., found on (irindelia robusta. This species is the smallest species known.

POLYSPHINCTA Grav.
Polysphincta rufigaster, sp. nov.
Female.-Length, 7^{mm}; ovipositor, 2.5^{mm}. Black, shinins: lower portion of mesopleure, mesopectus, metathorax, except the hasal twothirds of the disk, and abdomen, excent the two terminal segments, rufons. Antennat brown abore, yellow beneath. P'alpi and tegulae, yellowish-white. Parapsidal groores indicated anteriorly. Metathorax quadrate, the apex emarginately groosed near the posterior lateral angles, leaving the angles obtusely prominent. Legs reddish yellow, the
middle and posterior tibia banded with white in the middle, the apex and a subbasal ammulas on the posterior tibia, black, posterior tarsi pale, the joints tipped with black. Abdemen similar to P. texana Cr., only a little wider at the mildle, the hasal five segments rufons, the punctuation finer and more confluent, the segments transverse with subnotose prominences. Wings fusco-hyaline; stigma aud veins brown, the areolet entirely wanting.
il.mitat.-Texas.
Described from one specimen in Belfrage collection.

CLISTOPYGA Grar. Clistopyga pulchripicta sp, nor.

Female.-Length, $7^{\text {min }}$; oripositor, 1.4mm. Black; face, except a line down the middle, anterior orbits to begond the summits of the eyes, elypeus, mandibles, except tips, base of cheeks, palpi, two basal joints of antema beneath, tegule, a broad line in front and a short line below, a line on collar above, tip of scutellum postscutellum, auterior legs and middle coxid and frochanters, and extreme apical edges of the abdominal segments, white. Antemit 30-jointed, brown, blackish basally. Thorax: mesonotum trilobed, the lobes, mesopleura, except a spot at insertion of wings, metapleura, and oblong spots on metathorax abore, rufous; metathorax finely, transversely aciculated. Legs, with the above-mentioned exceptions, reddish-rellow. The abdonen is much longer than the head and thorax together, sparsely, finely pmetured, and finely pubescent, the first segment longer than wide, the three following segments with oblique grooves laterally as in Glypta, and comected with a transverse groove or depression towards the apex, forming disk-like prominences on these segments. Wings hyaline, the stigma aud reins brown; no areolet.

Habitat.-Texas.
Described from one specimen in Belfrage collection.

Clistopyga pleuralis sp. nor.

Mate-Length, $7^{m m}$. Head, except disk of rertex inclosing the ocelli, and the occiput, sides of mesonotum, collar, except a line above, scutellum, all pleurie, sternum, legs, and extreme apical edges of the abdominal segments, white. There is a large red bloteh on the disk of the white sides of the mesonotum, another at the base of the mesoplenre, and a triangular red spot on the scutellum. Middle of mesonotum, metathorax and abdomen black. There is a black dot on the middle coxa and a black stripe on hind coxa; base and apex of hind trochanters, tips of hind tibie and subbasal aunulus, black; the hind tarsi, except the joints basally, dusky. The head and thorax are smooth, polished; metathorax minutely transversely rugulose and then punctured, much longer than high and gradually sloping off behind.

Abdomen linear, finely, transversely aciculated, the first segment abont thrice as long as wide and a little wider at the apex than at base, the following segments gradually subequal; the seventh, quadrate. Wings hyaline, iridescent; the stigma and reins brown; the stigma is lanceolate; areolet absent.

Habitat.-Kirkwood, Mo.
Described from two specimens received from Miss Mary Murtfeldt, reared April 5th, 187:3, from the locust leafroller (fielechir mbinicefoliella?). A very beantiful and distinct species, not at all related to any of the other described species in our fauna.

GLYPTA Grav.
Glypta leucozonata sp. nov.
Mutc.-Length, $s^{\text {mum. }}$. Yellowish-white; vertex of head and the oeciput, mesonotum, hand on middle of collar, spot on mesonotum, two lengitudinal bands on metathorax, band acrosis midde of first abominal segment and bands at base of the following segments, black. The first 9 joints of the flagellum are fermginoms, joints 10 to 14 , black, joints 15 to 25 , white, the following joints black. Head smooth; thorax moderately closely punctured, the parapsidal grooves indicated anteriorly; metathorax delicately rugulose and faintly areobated. Legs yellow-ferrugiuous ; the anterior and middle coxar white; all the tarsi white, the first joint of posterior tarsi at base and the tibial spurs, dusky. The abdomen is punctured, the oblique lines on the segments, so characteristic of the genns, become obselete after the fifth segment. Wings hyaline, iridescent ; stigma pale, veins dark brown.

Habitat.-Kirkwood, Mo.
Deseribed from a single specimen, received from Miss Mary Murtfeldt, reared from Grapholitha interstinctana July 12 th, 1857.

Glypta xanthozonata sp. nov.
Male.-Lengtb, 6^{mm}. Yellow ; antenme above, stemmaticum, bloteh on occiput, three longitudinal bands on mesonotum confluent at base, a spot on proplenre, two spots on mesopleura, base of metathorax dilated towards lateral comers, large spot on posterior coxie, apex of posterior tibiae, tramsverse band across the middle of the first segment of the abdomen, and bands at the base of all the following segments, black. The antenna are 28 jointed. On the mesonotum and metathorax are some scattered punctures. The scutellum hish, convex. The abdomen is sparsely punctured; the apices of segments smooth, impunctured; all the segments but the last two, in addition to the oblique groores laterally, have a transrerse groove towards the apex, forming, with another transverse groove or depression towards base, small shield-like convex prominences on the disk of these segments. Wiugs hyaline, stigma and veins brown, the areolet absent.

Proc. N. M. 89

- 29

Habitat.-Kirkwood, Mo.
Described from a single specimen, received from Miss Mary Murtfeldt, reared from an undetermined Tortricid on oak.

LAMPRONOTA Curtis.

Lampronota puritana sp. nov.

Female.-Length, 12 mm ; ovipositor, 14^{mm}. Stature similar to L. americuna Cr. Entirely black, subopaque, punctate and finely aciculated ; the metathorax more closely punctate and laterally the punct. ures are contluent, the surface slightly rugose; the abdomen is transversely aciculated and with only a few scattered punctures on the first and second segments, some of the segments showing obseme rufons stains. The anterior and middle tibie and tarsi and posterior tarsi dusky-ferruginous, the rest of the legs black. Wings fuscous; renation similar to L. cmericanu, only the areolet is subpetiolated and the cubitus is not so strongly curved as in that species.

Habitat.-Boscorem, N. H.
This species is close to L. americana Cr., but readily separated by the color of the legs and abdomen and the subpetiolated areolet.

XYLONOMUS Grav.
Xylonomus Rileyi sp, nov.
Female.-Length, $15^{\text {man }}$; oripositor about $12^{\text {mum }}$ (broken). Black, subopaque; head smooth, shining, with only a few, fine, scattered punctures; the face rugoso-punctate. Antemie as long as the anterior wing, black, joints 13 to 16 white. Thorax trilobed, somewhat coarsely punctured, the middle lobe posteriorly transversely rugulose; the prothorax above with prominent lateral comers, but not so prominent as in K. humerulis Say; pleure smooth, polished; metathorax punctatorngulose, areolated, the posterior lateral corners subacute. Legs, except a white amolus at base of all tibia, entirely black. Abdomen but slightly longer than the head and thorax together, transversely aciculated, the first and second segments finely rugulose, fourth, fifth, and sixth segments very short, the fourth emarginated at the middle above, the seventh with a longitudinal groove down the middle. Wings hyaline; venation as in X. stigmapterus Say.

Habitat.-Missouri.
Described from one specimen in Riley collection.

> Xylonomus pulcher sp. nov.

Female.-Length, 9^{mm}; oripositor, 5^{mm}. Head and thorax black; all pleure, metathoras, legs, and abdomen, rufous. Anterior orbits, not reaching to summit of eyes and interrupted opposite the base of antenuse, posterior orbits dilated on cheeks, large oval spot on face,
palpi, apical half of antenual joint 10 and the following joints to 14 inclusive, sutures of coxie aud trochanters, knees, ammlus at base of all tibie and under surface of anterior tibia, tegulie, line beneath and the apex of scutellum, white. Tarsi yellowish; two terminal joints of posterior tarsi and the terminal joints of anterior and middle tarsi, black. The head is smooth, polished, finely punctured ; thorax densely punctured, longitudinally striated just in front of the sentellum; scutellum and plemrae finely rugulose; metathorax distinctly areolated. The apex of abdomen beyond the fifth segment blackish; basal segments minutely rugulose; the segments beyond fourth tramsersely aciculated. Wings hyaline; a small, faint, dusky cloud below the stigma; the stigma, except basal half which is white, and the veins, dark-brown.

Habitat.-Cadet, Mo.
Described from one specimen, received from Mr. J. G. Barlow.

Xylonomus floridanus sp. nov.

Femule.-Length, $18^{\text {mun }}$; ovipositor, $16^{\text {m"nn }}$. Obseure rufous; antemme, mandibles, anterior legs except tibia and tarsi, middle legs except tarsi, and posterior legs except coxa above insally, and the tarsi, black. All the tibies at base are annulated with white ; anterior tarsi yellowish, the apical half of the first joint and the last, dusky; middle tarsi black, except the basal half of tirst joint and joints 3 and 4, whicin are white; posterior coxit above basally rufous; the tarsi, except first joint basally and the third and fourth joints which are yellowish, dusky or black. The seulpture of this speeies is almost exactly as in ... stigmopterus Say, and like that species the posterior lateral angles of the metathorax is prolonged into a projecting prominence or tooth. Wings fusco-hyaline ; stigma and veins brown, the stigma with a white spot at base.

Habitat.-Archer, Fla.
Described from one specimen.

DESCRIPTION OF THE YELLOW-FINNED TROUT OF TWIN LAKES, COLORADO.*

BY

David Starr Jordan and Barton Warren Evermann.

Salmo mykiss macdonaldi sulsp. nov.
Type No. 41730 , U. S. Natigual Museum.
Head, 4 to 4_{10}^{1} in length ; depth, $4 \frac{1}{6}$ to 5 ; I). $2,12$. A. 1, 11. B. 10, Scales, $40-184-37$, about 125 pores. Length of type, 10 inches; other specimens from 5 to 8 inches.

Body more elongate and more compressed than usual among the trout; head long, compressed, the snont moderately pointed; mouth rather large, the jaws subequal, the maxillary extending beyond the eye, 1_{4}^{3} to 2 in head; hyoid teeth present, small; opercle longer than usual, its greatest length $4_{3}^{\frac{1}{3}}$ in head, somewhat greater than eye, its posterior margin strongly convex. Eye $5_{3}^{\frac{1}{3}}$ in head; snout $4 \frac{1}{5}$; gill rakers short, $x+10$.

Scales quite small, and regularly piaced. Pectoral fin moderate, $1 \frac{2}{3}$ in head; ventrals ". Candal moderately emarginate, the lobes equal. $1 \frac{2}{3}$ in head.

Color silvery-olise, a broad lemon-yellow shade along the sides; lower fins bright golden yellow in life; no trace of red, except the usual crimson dash umder the lower jaw, never wanting in salmo mykiss.

Body posteriorly and on dorsal and candal fin profusely speekled with small pepper like spots, smaller than the nostril, and smaller than in any other of the forms of Salmo myliss. Occasionally these spots are numerous on the anterior part of the body, and even on the hearl, but usually they are very sparse before the dorsal fin. A round dark diffuse blotch on cheek behind eye.

Pyloric cœeca about 40.
Stomach containing some regetable matter, bones of suckers, and what appears to be a very large flat white worm, apparently swallowed as part of its food.

About ten specimens of this species were taken with the fly in the lower Twin Lakes, about 15 miles southwest of Lealville, a beantiful mountain lake tributary to the Arkansas River.

Most of the specimens were taken by Mr. Crorge li. Fisher, of Leadville, a very enthusiastic and very well informed angler who tirst mate

[^52]known to us the existence of the species, and accompanied our trip in seareh of it.

There are two kinds of trout native to this lake, the yellow-fin or "Salmon Trout," above deseribed, and the smaller "Greenback Trout," also found in the Arkansis and Platte, Sulmo mykiss stomias.

The yellow-fin trout lives largely on the gravels and about the north or sumy side of the lake. It reaches a weight of 7 to 10 pounds, the very large fish being usually taken with the spear; specimens of 13 pounds' weight are reported. The species never leaves the lake except to spawn, and most of them spawn in the lake. It has never been seen in the river, and rarely in very deep water.

This fish feeds freely on young suckers and even on young trout. It spawns in spring, and the suckers infest its spawning beds, devouring the eggs.

The flesh of the yellow-fin tront is very pale, and more watery than that of the other trout of Colorado. In flavor, its flesh is not inferior to the other species. The eolor of the flesh may be due to the fact that it feeds on fishes rather than on crustasea. The "Greenback Trout" (S. m. stomias) feeds on crustacea and has very red flesh.

We have taken pleasure in naming this species for Hon. Marshall MeDonald, U. S. Commissioner of Fisheries, in recognition of his services in spreading the range of Salmonide in America.

University of Indiana, January $10,1890$.

CONTRIBUTIONS TOWARD A MONOGRAPH OF THE NOCTUID\& OF TEMPERATE NORTH AMERICA-REVISION OF SOME T ÆNIOCAMPID GENERA.

BY
John B. Smith.
(With plates Xxit-xxim.)

Of a somewhat distinctive habitus is a series of genera gronped about the genus Teniocampa. Withont any isolating oharacters, they form an intermediate sexies allied to Mamestra on the one hamd, and to the xyliniform genera on the other, witi little spurs in all directions-eren to the Meliothine through Trichoclect. All of them have haty eyes, and they constitute a large part of the hairy-eged genera in our fanar. As a whole the forms treated in this paper are easily separable from all the other hairy eyed genera by the habitus-that peenliar feature which is appreciated at sight, but which often defies description. As a rule the species are hairy, or, if the vestiture is scaly, it forms no distinct tuftings. The sole exception of the genera treated here is Baruthra IIbn., which distinctly helongs to the earlier series, and is included here simply from motives of conrenience. From like motives Vephelodes is omitted, though it belongs more nearly here than where it stands in Mr. Grote's list. It is an important link in the series connecting Teniocompa with Mamestra. From Andrta, the roand eyes distinguish this series; from Leuconia the color and maculation, which is never pale, strigose. The other hairy-eyed genera are distinguishen in my synopsis of genera (Bull. Bkln. Ent. Soc., Aug.. 1882, vol. v.). The possession of round hairy eyes and a habital resemblance to Terniocomper determines the reference here. It is not intendel to convey the idea that there is any such association between the genera treated here as to anthorize any definite terms expressing family or tribal relation.

Buruihra Hbn. has already been said to resemble habitally the genus Mamestra. It is our only hairy-eyed genus with a distinct claw terminating the anterior tibia. The front is not modified. There are two American speeies occurring at opposite sides of the eontinent.

Trichocled is peculiar by the rough, full clypens, and the peculiar armature of the fore tarsi which have the outer side furnished with a series of claw-like spines. The habitus is like Trenincompo, and yet is not unlike some of the Heliothid genera.

Scotogramme contains large species with powdery squammation, dark-gray colors, aud a strong resemblance to Mumestra in habitus. It has none of the tuftings, however, and the characters are megative rather than positive. Mr. (rmote has refemed two of the species to

Ancritn despite the romid eyes, while Moeschler referred his phoca to Dianthrecia.

C'lolonche contains small species with trigonate primaries and weak characters, save as to the genitalia, which are alike in all the species. The genus contains a Mumestra, a Taniocampu, and a species deseribed as new, but which I shall not be much surprisel to recognize eventually as a described species of Orthosia.

Himella is a typical Trenioctmpid genus with reddish, luteous, or dusky colors, closie, smootl, glistening vestiture, and rather wide, large wings, compared with the body.

The composition of the genns is quite different from that proposed by Mr. Grote, intractutu being assumel as the type, since furfurall is a Teniocampa.
('rocigrophen is recognizable by the retracted anal angle of primaries, the wings being also rather elongate.

Orthodes contains species with rather small, broad or obtuse winged primaries and generally more or less glistening vestiture. The mader side of primaries in the male has the cell rather densely clothed with fine, long, silky hair.

Toniocumpu contains species rarsing quite considerably in wing form, vestiture, and general habitus, several types of genital structure being apparent. Six groups are recognizable, mainly held together by their distinction from orthodes, vi\%, the cell not clothed with silky hair.

Perigraphen is distinctive. The fore wings have the apices marked, acute, the thoma has an anterior divided crest, and a larger, truncate, basal tuft, while in most of the species the ordinary spots are conflaent, or at least contignons.

In order to bring out somewhatemore comprehensisely the relationships or differences in the genera, and the groups of Tarniocompu, the following table is added:

Fore tibie with a claw at tip: thorax tufted; hahitus of a Mamestra; front smooth. barathea.
Fore tarsi with a series of long spines or claws ontwardly; habitus of a Tienio-

Fore legs entirely unarmed, save the ordinary spines of tarsi.
Antennae of male simple or slightly serrate ; not bristled.
Primaries trigonato with well-marked apices and oblique outer margin.
Moderate or rather large-sized species with ample wings, usually dark-gray colors and powdery squammation.
. Scotogramia.
Small species, shorter winged, the harpes of of long, slender, subequal, with irregular long spinules at tip; clasper long, curved, slender.. Uloloncue. Moderate-sizel species with large primaries, rather frail bodies; close, smooth, glistening vestiture ; harpes of a narrow, not spinulose at tip, clasper long and stout.

Himella.
Primaries elongate, subequal, hind angle retracted................. Crocigrapha.
Primaries obtuse, apices and outer margin rounded.
Cell of of primaries beneath clothed with long, fine, silky hair..... Orthodes.
Cell of of primaries beneath not so clothed Teniocampa.
Harpes of $\mathrm{o}^{\text {a }}$ truncate at tip; color white. Group palilis.

Harpes of σ^{2} bent near tip; colors dark.......................... Group furfurata.
Antenne of o serrate and bristled. T.
Primaries obtuse, outer margins rounded Group rufula.
Primaries with marked apices and oblique outer margin............... Group alia.
Antemno of ot bipectinate.
Primaries obtuse; onter margin rounded Gronp oviduca.
Primaries with oblique or angulated outer margin, rectangular apices, abdomen untufted Group incincla.
Primaries with apices extended, snbfaleate, outer margin rounded ; abdomen with a large, truncate basal tuft ; thorax with an anterior divided crest.

Perigrapila.
The slides of genitalia made during the progress of my studies on this group are all in the I. S. National Musem, ats are also the types of most of my sipecies, together with goon series of most of the specimens. The material in this collection has servel as the base upon which this work has been built.
The species not noticed here in any way do not belong to the genera to which they are referred in the lists. Mir. Morrison's species Tamiocampa vegeta and T. carina are samples of such

I believe that I know all the species save orobial Harey and cuyrotijormis Grt., which I have never identified in collections.

BARATHRA Hbn.

Verzeichniss, 218.
Copimamestra Gret., Aun. and Mag. N. II. [London], 1883, 54. Tr. Kans. Ac. viil, 55.
Eyes hairy, tibia not spinose, anterior with a single long curved claw at tip. The front is smooth, the vestiture rather coarse, sealy; head somewhat retracted, palpi not attaining the rertex. Thoracie vestiture dense, scaly, giving the thorax a somare ontline; a divided anterior, and somewhat truncate posterior tuft. Dorsim of the abolomen tufted, and in the male there are small lateral fufts. Antemne of male simple, or slightly ciliate. Primaries eiongate, widening outwardly; apices distinct; onter margin obligute. The genitalia of the male are peculiar. The harpes are suddenly constricted toward tip, and then modified into a deeply excarated shell with imegular outlines. Toward the outer margin this shell is densely clothed with spinnles. The clasper is a very short beak-like projection at the point of constriction of the harpes.

This genus is very like Mramestra; so like, indeed, that the European entomologists do not recognize in their specess lowssicue, a distinct generic type. The character-armed thbia, combined with hairy eyes, is, however, so musial, that it obtains consideralle value amb, added to the very peculiar genitalia of the male, seems to anthorize the gemms.

IIibner first proposed the generic term Barathed in the verzeichniss, and Mr. Grote afterward described the genus Copimamestra with the same type.

There are two species thas fiar discovered, which may ultimately
prove races of the one. The male of one is manown to us, and an examination of the genitalia is required to make certain. Both species are closely related to the European brassicue, but are distinct in genital structure, thongh, maculation alone considered, they would be correctly classed as varieties of one species. The male specimens of brassicue have on the under side of the abdomen, near the base, two long, thin, brushes of yellow hair, which are wanting in the American forms. Occidentu (irt. comes from New Mexico; curialis Simith from Maine, strikingly illustrating the remarkable character of the fama of the latter State.

Occidentu has the ordinary spots well marked, whitish, the s. t. line preceden by a white shade; there is a greenish patch near base. The male I have not seen.
('urialis has the ordinary spots less definel; the reniform white marked; orbicular concolorons, almost obsolete. The green patch is wanting. The male only is known.

Brassicae of Europe differs from both the American forms by the paler ground, and the more evident transverse maculation. The genitalia and the yellow tuftings of the male, however, furnish the important characters.

Barathra occidenta Grt.

Ann. and Mag. N. II. [London], 1883, 54. Trans. Kans. Ac. viil, 55, Copimamestra.
Sordid fuscous brown, with black, scaly irromation. Transverse lines indistinct, but traceable; geminate. Basal line distinct, geminate, black; the included space pale. T. a. line upright, scarcely irregular. In the inferior portion of sub-basal space is a mossy-green patch. T. p. line outwardly bent over reniform, strongly incurved below. S. t. line white, irregular, with strongly marked W on reins 3 and 4 , preceded by a broad grecnish slade which extends to and includes the apex. S.t. space else concolorous. Terminal space narrow, powdery. A row of black terminal lunules. Claviform, narow, rather short. Orbicular, moderate in size, with pale filling. Reniform, rather large; white. Mead and thorax concolorons with primaries. Secondaries at base pearly whitish, outwardly blackish. Beneath pale, powdery, with incomplete common line and faint discal spot. Expands 1.60 inches (40^{mmL}).

Habitat.-New Mexico.

The species has at first sight a casual resemblance to M. odjuneta, from which, however, it is readily distinguished by the generic characters.

Barathra curialis Smith.

> Proc. U. S. Nat. Mus., 1887, x, 470, Copimamestra.

Blackish fusenns, with a reddish tinge through hasal and s. t. space, slightly marked als', through centre of median space. Basal line geminate, indistinct, intermpted. T. a. line upright, hardly traceable.
T. p. line single, black, strongly dentate, its course as a whole nearly parallel with outer margin. S. t. line whitish, interrupted, its couse somewhat irregular ; a prominent W mark on veins 3 and 4 . A row of distinct terminal lumules. In the sub-basal space inferionly is a faint greenish tint, resembling that of B. oceidentu, but much less marked. Claviform outlined, concolorous. Orbicular barely ontlined, concolorous, its outer margin tonching the t. a. line. Reniform moderate in size, white, with a central dark lumule which has the margins irregular, intermpting the white in esery direcion. S. t. space paler than batance of wing, strigate and irrorate with ground color' datkest at costa. Terminal space outwardly pale powdered. Head and thorax concolorous with primaries. Secombries smoky, fuseons, ontwardy darker. Beneath dark gray, powdery with incomplete extra diseal line and distinct diseal spot. . The genitalia are deseribed ; the differences between those of this species and of brassiche are shown in the figures. Expands 1.70 inches (43^{mm}).

Habicat.-Kittery Point, Me.
The type is a perfect male in Mr. Thaxter's collection. It is barely possible that this is a variety or race of occidenta, but the probabilities are that it is a good species and it is so described.

I have since seen a specimen of this species, taken at Franconia, N. H., by Mrs. Slosson.

TRICHOCLEA GRT.
Papilio, 3, 30, 1883.
Eyes hairy; front full, subglobose, rough, scarcely tubereulate. The head is not retracted, the restiture rather close, not divergent; mixed scales and hair. Body robust, the vestiture mixed or hairy, forming none or but an indistinct tuft at base. Legs moderate, the tibix not spinose anterior usually armed at outer side of tip with a stont curved spine; sometimes there are tro spines, one above the other. The first joint of anterior tarsi has a series of three or four stont curved spines, of which the terminal is largest, the secomd joint has a similar series, which are shorter and straight. Primaries moderately elongate, outwardly wideuing, the apices rectangular, outer margin obliquely rounded. Abdomen untufted. The male genitalia resemble those of the liquida group of Mramestra, the harpes being suddenly and nearly rectangularly bent toward tip. In detail they are distinct, and will be separately described for each species. The colors in the species thus far known are luteous or gray. The armature of the anterior tibia and tarsi is peenliar and somewhat variable; the permanent feature is the terminal long curved spine on first and second tarsal joint, and two longer spines near base of tirst joint. They are easily broken, and the apparent discrepancy in my material may be accounted for in this way. Mr. Grote in his deseription fails to mention this armature, and erroneously says the eyes are lashed.

Two species are thus far known-decepta Girt. which has the front very full and bulging, the restiture scaly and ondinary spots distinct, and educurdsii, which has the front scarcely full, the restiture hairy, and the ordinary spots indefinite. The latter is a more robust species and has the abdomen indistinctly tufted. The male antenne in bothare simple. This peculiar genns resembles in armature Jfycteroplus of Europe, which, however, has maked eyes. Its affinities are with Mamestra rather than Troniocompu, and the species are not unlike some of the pale agrotids in habitus.

Tricholea decepta Grt.

$$
\text { Papilio } 3,30,1883 .
$$

Luteous gray, more or less irrorate with black. Median lines indistinctly geminate; t. a. upright, waved, included space somewhat paler; t. p. crenulate, its comse nearly parallel with the outer margin. Basal line distinct, geminate, blackish. A distinct, rather marrow, dusky shade through outer portion of median space, darkening the reniform. S. t. space darker than gromm color, defining the rather evenly dentate s. t. line. A terminal row of back lumbes. Claviform variable in size, but nsually distinct, narrowly black lined. Orbicular round, small, concolorous, black ringed. Reniform moderate, black ringed, inferiorly dusky. Secondaries pearly white with broad dusky outer margin, and sometimes a tramsverse row of venular points. Beneath white, outwardly powdery ; a distinct, dotted, common lme, rather large disal dot on both wings. The genitalia are distinctive. The harpes are abruptly bent toward the tip, which is rounded, and inwardy spimmose. There is a short, stout, acute corneous basal process; near to the bend of the harpes is a rather long, curved, corneons hook, and between the two a broad, Hat, somewhat spatulate, semi-membraneons procesis. Expands 1.12 to $1.2{ }^{2}$ inches (25 to $32^{m m}$). Habitat.-Arizona.
Several specimens are before me. A single rubbed female from California indicates a new species. The front is much as in decepta, but with an added smali tubercle. It is rather larger, paler in ground color, but more densely powdered with black. Pending the discovery of the male I leave it undescribed.

Tricholea edwardsii Suith.

Proc. U. S. Nat. Mus., 1887, x, p. 478.
Powdery ash gray; terminal space distinetly paler. Basal line indicated by a geminate hack spot on median vein. T. a. line marked on costa only, and by a small brownish dot in place of claviform. T. p. line marked by a series of dark vemular points, and an incomplete line of white scales. Median shade marked on costa. S. t. line marked by the pale terminal space, and a row of dusky spots. A row of small
bata terminal lumules. Orbicular very large, obsolete, marked only by two curved dusky spots (), inticating the outer margins. Reniform faintly outlined, inferiorly dusky. I Lead and thorax concolorous. Secondaries white, with broad blackish outer margin, fringes white. Beneath, primaries white with darker powderings, reproducing very fantly the maculation of upper side. Secondaries immaculate, white. The genitalia are of the same type as decepto, hut the hasal projection is wanting; the slemder hook is replaced ly a short beak-like clasp, and the spatalate projection is moch larger and more prominent. Expands 1.40 inches (35^{mm}).

Habitat.-California.
A single perfect male in Mr. Edwards's collection. 'This species differs very evidently from decepte as well in structure as in maculation, but is perfectly congeneric. The front is not so full; the body is shonter, more robust; the vestiture hairy, long, and the primares are somewhat more pointed. The pale terminal space well distmonishes it at a glance. Many additional specimens have been since seen, and several are in the collection of the Museum, taken by Mr. Koebele.

SCOTOGRAMMA Smith.

Proc. U. S. Nat. Mus. 1887, x, 469.

Eyes hairy, tibio marmed, restiture either hairy or sealy. Antemme of male simple. Form moderate, wings ample; primaries trigonate, with marked apices and oblique outer margin. The head is retracted, the palpi well developed, always exceeding front. Thorax with usualiy more or less obvious anterior and posterior tufts.

This genns has no strong characters and is almost entirely a negative one. Two well-marked groups are formed in it, of which the first is the more typical, sulmurimu being typical of the group and geuns. It is the only species of which the male is known to me.

This first group is characterized by hairy vestiture and rather smoothly clothed front.

Submarina is luteous gray, without s. t. line, but distinct, single median lines, the s. t. crenulate. The orbicular is wanting, the reniform indistinct. The male genitalia are hereafter described.

Phoca, of which promulsu is a symonym, is neaty allied to the preceding, but the s. t. line is distinct. In the Latnador form (phoca) the color is paler, more whitish; in the Colorado form (promulsu) there is a fuscous suffusion.

Perplexa is an evenly powdered gray form with all the maculation present, but obscured; the presence of the claviform distinguishes it from either of the preceding.

The remaining species belong to the second section, which is characterized by sealy restitme, quadrate thoras and front with superimposed scaly tufts.

Inconcinnu is a dark fuscous species, in which the last rentral segment is foveate on each side, and the edges form an incurved margia to the dorsal surface of the abdomen.

Umbrose is a smaller species, dark, blackish gray in color, and with the last segment of abdomen simple. In both the species the normal noctuid markings are present, and essentially alike, so that it is difficult to tind any difference in ornamentation. The ground color seems constant, however, as does also the difference in size, and the peculiar difference in the terminal segment of female abdomen.

In tabular form the species are as follows:

[^53]These species are nearly all represented in the Museum collection.

Scotogramma submarina Grt.

Can. Ent. 15, 4 (Amerta); Smith, Proc. U. S. Nat. Mus., x, 1847, p. 469, Scotogramma.
Pale luteous gray, with black powderiugs. Median lines distunct, single, black. Basal line marked. T. a. line upright, or somewhat outwardy oblique; outwardly curved in submedian space, and dentate on rein one. T. p. line strongly cremulate, its course about parallel with the oblique outer margin, the median space thus considerably narrowed inferiorly; s. t. line wanting; a row of small, lumate, terminal spots. A variably distinct, somewhat diffinse shade line crosses outer portion of median space, obscuring the reniform, which is hardly detined ; orbicular obsolete; secondaries smoky fuscous, whitish toward base. Beneath pale, powdery, with more or less complete, somewhat punctiform onter line, and small diseal spot. Head and thorax concolorons, vestiture, with flattened hair intermixed, forming indistinct fore and aft tufts. The genitalia of male have the harpes and clasper equally curved, and nearly equal in length, i. e., the clasper reaches to the tip of the harpe, though arising hardly one fourth from that point. Both are obtusely terminated, the clasper corneous, the harpes membrancous, and set with fine hair. The last segment of the female is also somewhat peculiar. On the under side it is cariuate, at the middle deeply foreate, each side broader than the dorsal portion of same segment and forming an incurved margin. The segment is broader thau those immediately preceding it. It is furnished with a tuft of hair. giving additional prominence. Viemed from above, when clothed with restiture, it has the appearance of a deep fovea at each side. This
structure is not peculiar to this species, but has not been previonsly described. Expands 1.10 to 1.24 inches (28 to $31^{\text {mim }}$).

Habient.-Arizona, Montana, Oregon.
A rery distinct species, recognizable by the pale color and distinet black lines. How Mr. Grote ever persuaded himself that this speecies could be referred to Anarta is one of those mysteries that will prob). ably never find a solution.

Scotogramma phoca Moesch1.
W. E. M. 8, 197, pl. 5, f. 15 (Dianthecia) ; Grt., Can. Ent. 13, 130 (Mamestra.)
promulsa Morr. Ann. Lyc. 1875, 97 (Mamestra); Grt. C. E. 1875, 7, 22.3 (Anarta) id., 1881, 13, 127 (Anarta); Stett. Eut. Zeit. 1876, 37, p. 135 (Anarta); Smith, Bull. Bklu. Ent. Soc. 1882, 5, 68, Mamestra.
Sordid, pale lateous gray, with fine powderings. Median lines, fine black, sometimes indistinct, single. T. at line upright, outwardly angulate in s. m. space; t. p. line parallel with outer margin, irregularly dentate. S. t. line marked by a series of preceding fuscons spots, more or less connected, and sometimes forming a dark shade. An indistinct mediau shade. Stigmata obsolete or but very faintly outlmed. Secondaries even pale luteo fuscous. Beneath powdery, with faint discal lunule. Expands 1.20 to 1.40 inches (30 to 35^{mm}).

Habitat.-Labrador, Colorado.
A comparison of types leaves no doubt of the identity of phoct and promulsa. The former is paler, more whitish, the latter with a fuscous tinge throughout. The maculation and habitus is, howerer, the same. Unfortunately no males have been seen, so that the matter could have been settled finally.

Scotogramma perplexa Smith.
Proc. U. S. Nat. Mus., 1887, x, 469.
Dull, fuscous gray, with blackish powderings, all the maculation indistinct. Median lines barely traceable; t. a. angulated; t. p. dentate. S. t. line marked by faint pale powderings, not defined. Orbicular large, oval, with pale powderings. Reniform searecly traceable, marked by a few seales. The claviform is faintly indicated. Secon daries evenly fuscous. Beneath dark, powdery, without line or spot. Head and thorax concolorous with primaries, abdomen with secondaries. Expands 1.50 inches (37^{mm}.)

Habitat.-Colorado.
The type is a unique female in the collection of Mr. F. Tepper. The thorax is rather slight, the restiture divergent, loose. The unform dark powdery gray primaries sufficiently characterize this species.

Scotogramma inconcinna Smith.
Proc. U. S. Nat. Mus., 1887, x. 469.
Dark fuscous, with black powderings, all the lines and spots dis tinct. Basal line geminate, black. T. at line obsoletely germinate,
inner porcion faint. Slightly arcuate, outwardly curved in the interspaces. T. p. line geminate, parallel with outer margin, with dents on the veins, followed by pale points. S. t. line irregular, pale, punctiform, accompanied by blackish shades. A row of black terminal lunules. Secondaries blackish fuscous, witi pale fringes. Beneath dark, powdery, with indistinct discal lunule. Heal and thoras concolorons with primaries; the thorax with indistinct fore and aft tufts. Abdomen with a distinct, truncate tuft at the first segment. The terminal segment of female is as in submarina. Expands 1.40 inches ($3 \overline{J i m u n}^{\text {min }}$).

Habitat.-Colorado.
The type is a female in fair condition. Ultimately it mas prove referable elsewhere, when the male is studied, but its habitus and general structure seem rather to place it with submarina, and the structure of the last segment of the female abdomen confirms the reference. The restiture is a mixture of seales and flattened, hair, and the thorax in form is quadrate. The frontal vestiture forms two superimposed tufts. The species seems thas more nearly allied to Mamestra, while differing obviously from any species known to me.

> Scotogramma umbrosa Smith.

$$
\text { Proc. U. S. Nat. Mus., 1887, x, } 470 .
$$

Dark, hackish gray, powdered with white scales. All the maculation present, though not prominent. Median and basal lines geminate, the defining lines faintly marked, the included space powdered with white. T. a. line outwarlly oblique, with inward dentations on veins. T. p. line abont parallel with outer margin tolerably even. S. t. line irregular, pale, punctiform, somewhat obscured by the pale powderings which are most numerons in the s. t. space. An interrupted dark terminal line. ('laviform distinctly outlined; concolorons. Orbicular moderate, round, with white powderings. Reniform large, upright, pale powdered, well defined. Secomdaries blackish, paler toward base. Beneath variably dark, powdery, with outer dark lme and small discal spots. Head and thorax concolorons, with primaries. Expands 1.20 to 1.30 inches (30 to 32^{mm}).

Habitat:-Arizona, Colorado.
Three female specimens are before me. The vestiture is scaly, and the tufts of thorax, abdomen, and front are like those of inconcinna. There is no special modification of the last segment of the abdomen.

Scotogramma stretchii Edw.

$$
\text { Hy. Edw., Can. Ent., 1887, xix, } 146 .
$$

"W With much of the general appearance of Perigea falsa, Gr., but said by Mr. J. B. Smith to belong to his new genus Scotogramma. Dark stone drab, the lines blackish, all much confused, and the ground color of the wing covered with brownish irrorations. Basal half line
indistinct. T. a. line nearly straight, with a deep tooth anteriorly pointing toward the base. T. p. line dentated, ontwardy joining the reuiform in a darker cloud. Marginal line lost in a row of dark clouds. Intronervule spaces, pointed with black lunules. The basal, median, and submarginal spaces are pale by contrast with the dark lines. Lower wings a dull stone drab, a little paler toward the base. Underside uniform stone drab, with very distinet darker discal spots and a median band common to both wings. Margins also dark. Thorax and abdomen concolorous. Exp. wings $32{ }^{2 n m}$. One female, two males. Colorado Desert. R. H. Stretch."

This species is a distinct one, but having no specimens at hand, I can not place it exactly. I give, therefore, Mr. Edwards's original description, which will be sufficient to enable the species to be recognized.

ULOLONCHE SMITH.

Proc. U. S. Nat. Mus., -1887, x, 471.

Eyes hairy, tibie not spinese or in any way armed. The body is plump, stout, rather densely clothed with hairy or mixed vestiture on thorax, forming a more or less obvious divided anterior crest and distinct posterior tuft. Abdomen rather elongate, slemder, untufted. Head somewhat, or considerably retracted, the palpi well developed, reaching the middle of front. Primaries rather small, short, trigonate, with marked apices and oblique outer margin. The genitalia are practically alike, differing only in minor details. The hapes are narrow, slender, elongate, subequal, terminating in an obliguely romnded tip, which is inwardly furnished with long spinules. The clasper is long, slender and curved, subequal throughout, and obtuse at tip. The male antennæ are simple.

Tirree species are referred to this genus. Niveiguttuta, which differs from others by the more retracted head, plump form and small wings, is also easily distinguished by the distinct geminate white spot on dise of primaries just beyond and tonching the inferior portion of reniform. There is no possibility of mistaking this species.

Modesta and fasciatu are closely allied, less robust, and with somewhat more ample primaries. They agree also iu the type of maculation : in both, the onter portion of median space being darker, somewhat \mathbf{V} shaped. In fusciata, howerer, the contrast is great, glaring, the large yellow reniform adding to the definition and distinguishing the species, while modesta is a quiet mouse-gray form, with no strong contrasts of color, and concolorous or slightly darker reniform.

Like most of the surrounding genera, this has no prominent distinguishing feature, unless the genital structure is so regarded. The hab. itus, wing form, and proportions of body combine to form the necessary generic characters.

To again present the differences between the species, we add the following table:
Stonter, shorter winged; primaries with a geminate white spot below and bejond

Less stout; primaries somewhat more ample, outer portion of median space darker. Very pale gray, dark portions blackish, reniform contrasting, yellow Fasciata Monse gray, dark portions umber brown, reniform concolorous or slightly darker, MODESTA

Ulolonche niveiguttata Grt.

Buf. Bul. 1, 140, pl. 4, f. 16, Mamestra.
Sordid fuscous brown, powdery, the median lines irregular, interrupted, indistinct. S. t. line prominent, pale, ontwardly diffuse, marked with yellow and white seales. A row of pale terminal dots. An indistinct dark hasal streak. Claviform small, black marked. Orbicular large, irregular, concolorons, imperfectly defined in black. Reniform large, upright, concolorons, out wardly marked with yellow; inferiorly the outer angle is invaded by a large geminate white spot, characterizing the species. Secondaries dark backish brown. Beneath dusky, powdery, without lines or spots. Head and thorax concolorous. Expands .90 to 1 inch (23 to 25^{mm}).

Habitatt.-California, Arizona.

An easily recognizable form; the distinct geminate white spot or: primaries, and diffuse pale s. t. line are characteristic. A specimen from Arizona differs in having a rosy shate through primaries. The underside is paler, with distinct onter line and diseal spot.

> Ulolonche fasciata Smith.
> Proc. U. S. Nat. Mus., 1887, x, 471.

Gray in basal and s. t. space, with fuscous powderings; in median space even, with a bluish tint ; terminal space darker. Basal line evident, geminate. I. a. line geminate, brown, straight from costa to submedian interspace, then with a long inward, followed by an equally long outward toot!. T. p. line geminate, eren, outwardly bent over reniform, then evenly oblique to hind margin. S. t. line marked at inception by a dark preceding costal shade, thence indefinite, and traceable only by the faint contrast between s. t. and terminal space. A black shade fills the onter portion of median space, making a somewhat V-shaped blackish shate in wing. Orbicular obsolete. Reniform large, contrasting, yellow, oblong. Secondaries blackish, paler at base. Beneath pale, with black irrorations, an incomplete outer line and a broad powdery median fascia. Head and thorax concolorous, bluish gray. Expands 1 iuch ($25^{\mathrm{mm})}$.

Habitat.-New Mexico. (Prof. F. H. Snow, No. 51.)
A very bright and distinctly marked species. The dark \mathbf{V}-shaped outer portion of median space, with the large, yellowish reniform, is characteristic and distinctive.

Ulolonche modesta Morr.
Pr. B. S. N. H., 1874, 144 (Dianthocia); (irt., C. E., 1879, xı, 27 ((iraphiphora), id., 1881, xili, 126 (Teniocampa).

Mouse gray, rarely more reddish, more often with a blue-gray powdering; outer portion of median space darker, umber brown; terminal space usually somewhat paler, more bhash gray. Median lines generally distinct, umber brown. Basal line angulated. T. a. line geminate, the inner part of line often wanting ; its course outwardly oblique, strongly angulated. 'T. p. line geminate, usually rather faintly marked, its course parallel with the outer margin. S. t. line marked by an irregular preceding shade, which is sometimes broken into spots. The orbicular is obsolete; reniform absorbed in the outer dark shade, usually traceable, the inferior portion blackish. Secondaries fuscous, even, fringes paler. Beneath dark fuscons, powdery, with a more or less incomplete outer line and variably distinct discal spot. Head and thorax concolorous. Expands 1.10 to 1.20 inches (28 to $300^{\text {mum }}$).

Habitat.-New England, Middle States, Canada.
A quietly marked species, distinguished by the darker brown coloring of the exterior portion of median space. Two femate specimens from Arizona are referred here, but may ultimately prove specifically distinct. The gray is more luteons, powdery. There is little or no contrast between the inner and onter portions of median space, and the primaries seem more elongate. Pending the discovery of the male, it would be unsafe to describe it as distinct.

HIMELIA GRT.

Pr. Ac. N. Sc. Ph. 5, 200.

Eyes hairy, tibie unarmed; restiture of flattened hair with intermingled seales. Frontal vestiture rather smooth, even. Palpi well developed, reaching to or exceeding middle of front. The antenne of male have the joints bead like, furnished with lateral tufts of bristles. The body parts are slight, smoothly scaled, without tufts, the abobomen elongate, especially in the male. The primaries are large, trigonate, with rectangular apices and roundedly oblique outer margin. The harpes of the male in intractata are narrow, elongate, with a rounded tip. Clasper long, stout, corneous, reaching nearly to the end of the harpe and resting in a groove.

Two species are known which are referable to this genus, and separable from Taniocampa by the frail form, large wings, and smooth, somewhat glistening vestiture. They are easily distinguished.

Intractata is fawn colored, with large, pale-ringed, ordinary spots, faint median and distinct s. t. lines.

Thecata is dark, blackish-gray, with obsolete ordinary spots, distinct median lines and withont s. t. line. The genitalia of the male of this species will probably be found much like those of intructutu.

Himella thecata Morr.

Pr. Ac., 1875, 59 (Mamestra); Grt., C. E., 1880, 12, 186 (Graphiphora), ibid., 1881, 13, 126
(Teniocampa).
contrahens Grt., Bul. Surv. 4, 180; C. E., 1880, 12, 186 (pr. syn.).
Dark fuscous gray, with blackish powderings. The ground color is luteus, and is variably distinct, so that sometimes a specimen is evenly dark gray, while another is irregularly blotehy. Median lines always distinct, geminate, the defining lines concolorous, the included space discolorous, pale luteous. S. t. line obsolete. Apex usually pale, and sometimes this pale shade invarles the s. t. space. A diffuse, darker shade through outer portion of median space, darkening the reniform, which is outwardly defined by a few pale scales. Orbicular obsolete. Secondaries pale luteous, glistening; outwardly smoky; a black terminal line, and a faint dusky median line and discal spot. Beneath white, with black powderings, broad black outer lines and distinct discal dots. Head aud thorax concolorous. Expauds 1.10 to 1.30 inches (28 to 33^{mm}).

Habitat.-New York, New Hampshire, Nebraska, Colorado.
Easily recognized by the dark glistening primaries and the pale median lines. The species is widely distributed, but is nowhere common. Oddly enough, the females only seem to be captured. I have seen but a single male and that lacked the abdomen.

Himella intractata Morr.

Pr. B. S. N. H., 1874, 160 (Taniocampa).
fidelis Grt., Pr. Ac., 1374, 201 (Himella), C. E., 11, 27 (Graphiphora).
Grayish fawn color, somewhat powdery. Basai line interrupted, marked by black scales on costa and in s. m. space. Median lines geminate, very faintly marked; t. a. upright, somewhat sinuate, outwardly marked opposite orbicular, and in s. m. interspace by black spots. T. p. line parallel with outer margin, inwardly marked on s. m. interspace with black. S. t. line distinct, pale, sinuate inwardly, black marked. Ordinary spots large, concolorons, distinctly pale ringed. Secondaries pale fuscous gray, ontwardly darker. Beneath pale, powdery, with incomplete, interrupted dusky line and a distinct discal spot on secondaries. Ilead and thorax concolorous, with primaries. Expands 1.20 to 1.40 inches (30 to 35^{mm}).

Habitat.-New York, Massachusetts, Missouri.
A very distinct species, not readily confused with anything else known to me. The bright fawn color, clearly pale ringed ordinary spots, and the black spots on the trausverse lines in s. m. interspace, are all peculiar features.

CROCIGRAPHA GRT.

Can. Ent., 7, 57, 1875.

Eyes hairy, tibix marmed. Vestiture hairy, with few scales intermixed. Thorax with an inconspicuous divided crest. Abdomen untufted. Primaries elongate, subequal, the hind angle strongly retracted. Habitus of Teniocompe genuina, from which it differs principally by the retracted hind angle of primaries and the more or less evident divided thoracic crest. The male antenuæ are simple.

The single species belonging to this genus can be immediately recognized by the wing shape and the pale median lines. The harpes of the male are subequal, the tip oblique and fringed with spines. The clasper is rather short curved, hook like, tapering to an acute point. This gems is very unsatisfactorily separated from the typical genus Teniocampa, but where the characters for generic separation are so searce, even those which elsebhere would not be recognized must be used to prevent unwieldy assemblages of species. Especially is that necessary in this group of hairy eyed genera.

Crocigrapha normani Grt.

 1875, 7, 57 (Crocigrapha) ; id., 1875, 7, 227, pl. 1, f. 13.
Varies from reddish luteous to rather deep red brown, always more or less powdery; the saperior portion of median space often darker, especially between the ordinary spots. Median lines geminate, erem, the included space pale, bluish gray; the defining lines not much darker than ground color. T. a. line evenly and slightly outwardly oblique. T. p. line curved over reniform, then strongly incured, nearly parallel with the outer margin. S. t. line obsolete, or defined only by the slightly darker terminal space. In dark specimens the apex is pale and the line is marked at that point. Stigmata large, concolorons, reniform inferiorly black marked; ontlined by pale scales; orbicular often obsolete. Secondaries soiled, whitish, outwardly darker. Beneath pale, with more or less evident punctiform onter line and a discal dot on secondaries. Head and thorax concolorons, with primaries. Expands 1.30 to 1.60 inches (33 to 40 mm).

Habifat.-New England aud Middle States.
The genitalia are described in the description of the genus, and there is nothing to add to the remarks there made.

ORTHODES Gn.

Noct. I, 371. Morr. Can. Ent., 6, 251 (list and char.).
Eyes hairs, tibix unarmed. Thorax without tufts, or with only an indefinite anterior crest and posterior bunch of loose hair. Abdomen untufted. Primaries short, broad, with rectangular or obtuse apices, and rounded or nearly straight outer margin. Froutal vestiture rather
coarse, mised. Palpi well developed, reaching to middle of front. Second joint, club shaped; third distinct, cylindrical. On the under side of primaries the cell is clothed with long silky hair, somewhat more dense in the males, and in some species forming brushes or tufts in that sex. The antennæ are simple in both sexes.

From Teniocampa this genus is distinct by the wing shape, which is characteristic, by the silky hair on cell beneath, and by the longer, better developed palpi. Some of the species have been heretofore classed as Teniocampu, and the genera are very closely related.

Infirma and cynice differ from all others by having the clasper of the male genitalia double, and superficially by the pale ringed ordinary spots, the orbicular being large and oblique. Infirma is easily distinguished by a triangular black spot at the middle of the collar, the two lobes of which are inferiorly separated. The median lines, too, are narrow and pale, while the ground color is rather a dark mouse gray. Cynica is more reddish, and the median lines are irregular and black; the males have a very distinct tuft of appressed hair beneath.

The remaining species never have the ordinary spots pale ringed; the orbicular is often obsolete, and the reniform rarely distinctly defined. The median lines are often more or less obsolete, while the s. t . line is always marked.

Vecors, or enercis (why Gnenee changed the name I do not know), is usually red brown, with fairly evident median lines, obsolete orbicular and usually white marked reniform. The s. t. line is usually marked ouly by an irregular dusky shade, which is often interrupted. The species is decidedly variable, and yet not easily confounded with any other.

Tirgula is similar, but is a more slender species. The median lines when visible are dark, and very strongly and irregularly dentate. The s. t. line is characteristic, and is marked only by a series of sagittate dashes, one of which usually crosses the s.t. space. It is a sordid dark, blackish-brown species, in which the ordinary spots are rarely traceable and never clear'y defined.

Irrorate is a brown-red species, sprinkled with coarse black atoms, the median lines distinct, accompanied by broad luteous shades. S. t. line pale, diffuse, preceded by a dark shade.

The three preceding forms agree in essential gentital structure. The harpes are more or less obliqnely terminated, and the clasper is hollowed out or somewhat spoon-shaped; in virgula and irrorata moderate in size, in enervis curionsly exaggerated.

Puerilis differs from all others by the pale luteous color, the clean white reniform, and distinct whites. t. line. The male genitalia are also peculiar, the harpes being very pecuiarly terminated, while the clasper is single, hook-like, acute. The genitalia of all the species are hereafter more particularly described.

In tabular form, the differences are shown as follows:
Ordinary spots, large, pale ringed; orbicular oblique.
Lobes of collar inferiorly separated, leaving a triangular black patch; median lines narrow, pale
. NFIRMA
Lobes of collar not separated; median lines black \qquad crixica Ordinary spots more or less indefinite, never pale ringed.
S. t. line marked by a dark preceding shade, median lines when visible, fairly even ; reniform usually clean, white marked ; color usually brown red,
enerievis
S. t. line precedel by long, sagittate dashes; median lines when visible very irregular, dentate ; reniform obsolete or dirty white marked; sordid dark brown

S. t. line distinct, pale, somewhat diflise outwardly; red hown, hlack powdered: median lines distinct, accompanied by broad pale shades.............. irrorata
Luteous, pale ; median lines never accompanied by paler shades........... . . puerilis
Orthodes infirma Gn.
Gu., Noct. I, 1~5e, 3\%5; Walk. C. B. Mus., Het. x, 416, Orfhodes; Morr. (: E., 1-if, 6, 252 ; Harv. Buff. Bul., iII, 9.
Eren monse gray, with a more or less obvions reddish tinge. All the lines distinct, narrow, pale, even. Ordinary spots pale ringed, sometimes connecterl. Basal half-line rigid, upight. T. a. line evenly obligue, with a narrow, dark onter shatling. 'T. p. line angulate over reniform, then evenly inwarlly obligue to hind margin, preceded by a row of black venular dots. S. t. line very distinct, even, rarely with accompanying darker shate. A row of dark terminal lunules, margined by a zigzag terminal line. Orbicular large, oblique; reniform broad, kidney shaped. Secondaries even, fuscous, variable in shate from yellowish to blackish. Beneath dull smoky. Secombaries with outer line and discal spot. Head and thorax concolorous. Lobes of collar inferiorly separated, leaving a triangular space, filled by a black patch. There is a faint thoracie crest, and loose, indistinet abobominal tufts. The genitalia of the male are peenliar by the tuft of long silky hair on the harpes; the latter are broad, marowing to an irregular, obtusely pointed tip. The clasper is donble, eonsisting of a curverl, beak-like process, behind which is a straight, corm ons process, squarely truncate at tip. Expands 1.20 to 1.40 inches (30 to 355^{mm}).

IIAbitat. - New England and Midele States, Missouri, Texas.
An easily distinguished form, common in the Middle States. The triangular black patch at hase of collar and the Jengthily tufted larpes of the male are distinctive.

Orthodes cynica Gn.

 nimia Gin., 1852 , I, 3\%6; Wlk. C. B. Mus. Het. x, 443, an sp. dist.; Morr. C. E., 1874, 6, 252 (pr. syn.).
candens Gn., 1852, I, 376 ; WIk. C. B. Mus. Het. x, 444, an sp. dist. prec. ; Morr. C. E., 1874, 6, 252 (pr. syn.).

Monse gray to bright brownish red; the vestiture somewhat "squammose." Median lints darker, usually black; t. a. line pre-
ceded, t. \downarrow. line followed by a pale shade. Both lines are slightly arenate and more or less dentate or angulate on veins, but in this respect the variation is so great that it is useless to attempt deseription. Usually the lines are rather close together, but eren this is not constant. The t. p. line is followed by a row of distinct vemular points. S . t . line pale, hardly simate, preceded by a somewhat darker shade. A row of dark terminal lomules, often faint or obsolete. Ordinary spots concolorous or slightly darker, narrowly bale ringed, orbicular very oblique. Secondaries yellowish, fuscons. Beneath, powdery. Secondaries with indefinite outer line and diseal spot. Iteal and thorax concolorons. Harpes of male broal, slightly marowing to the obtusely rounded tip. Clasper double, a curved, somewhat beak-like hook, and behind is a much longer corneons process, slightly bent only at tip and nearly attaining the tip of harpes. Expands 1.16 to 1.2 S inches (29 to $322^{m \mathrm{~mm}}$). Habitat.-Northern United States, Nova Scotia, and Canada.
The broad primaries, with usual:y approximated and distinct black lines, distinguish this species. In the male there is also a dense pateh of fine hair on the muderside of primaries, just beyond and below the middle. This is in addition to the silky hair clothing the discal cell.

Orthodes enervis Gn.

Gn., Noct. 1iI, $4 \geq 0$; id. I, 3\% (reents) ; Whk. C. B. Mus. Lep. Het. x, 444; Morr. C. E , 18\%4, 6, 253 (Pseudorthodes).

Tar griseocincta Harv., Buff. Bull., 1-73, 2, 12); Morr., C. E., 1874, 6, 253 (pr.var.); nitens Grt. Papilio 1883, 11I, 31.
Red brown, varying greatly in shade, often powdered with white seales. Median lines rarely distinct, often obsolete; blackish. T. a. line ontwardly oblique, lunate. T. p. line cremulate, parallel with and rather close to outer margin ; often accompanied by a pale shating. A dusky shade through outer portion of median space, angulate below reniform. S. t. line marked by a preceding black shade, often emphasized by pale seales, never distinct. Orbicular wanting. Reniform usually marked by white scales, rarely paler red. Secondaries smoky finscons, fringes pale. Beneath, powdery, with common onter line, usually incomplete on primaries, and a distinet discal lunule on secondaries. Head and thomax concolorons. Harpes of male sube.jnal, somewhat curved, obtusely rounded at tip. The clasper is a long, broad, curved, somewhat spoon-like process, milike any other form known to me. Expands .90 to 1.25 inches (23 to 32^{mm}).

Hibitat.-Atlantic States to District of Columbia.
A remarkably variable form, easily known by the obsolete orbicular white marked reniform, and the dark shade preceding s.t. line. Griseocincte I have not seen, and am not certain it is properly referred as a variety. Both Mr. Grote and Mr. Morrison so place it, and they are probably right.

Orthodes virgula Grt.

Papilio 3, 76 (Teniocampa).

Sordid smoky or blackish brown, median lines variahly distinct, broad, blackish, sometimes obsolete. T. a. line outwardly oblique, with a long, inward tooth on vein 1. I'. p. line geminate, cremulate, not quite parallel with outer margin; more uprght. S. t. line interrupted, marked by pale seales, preceded by back sagittate dashes, one of which usually crosses the s. t. space opposite the cell. A faint median shade line. Orbicular ravely defined. Reniform obseletely marked by a few dirty white scales. Secondaries smoky fuscous. Beneath powdery, with rariably distinct outer line and discal spot. Head and thorax concolorons. The harpes of the male are broader toward tip, oblique, inwardly fringed with stiff hair. The clasper is a small, spoon-shaped process, with a small, curved tip. Expands 1 to 1.10 inches (26 to 28^{mm}).

Habitat.-Arizona, Colorado.
An obseure, sordid species, defined by the sagittate black marks preceding s. t. line. The thoracic restiture is rather loose and long, the abdomen of male long and slemder. The primaries have the costal margin somewhat concave at middle, the apices rectangular, outer margin straight to below middle, then very obliquely romuded to hind margin.

Orthodes irrorata Smith.

Proc. U. S. Nat. Mns., 1887, x, 478.

Red brown, powdery ; median lines distinct, accompanied by broad, luteous shades. T.a. line waved, with a wide outward bend at middle. T. p. line cremulate, nearly parallel with outer margin. S. t. line inoad, diffuse, pale, preceded by a dusky shade. An intermpterl terminal line; fringes pale, dotted at base. A more or less indistinct shade line through outer portion of median space. (Orbicular small, indefinite, luteous. Reniform narmo, upright, indefinite, luteons. Secondaries blackish, paler in some specimens. Beneath, powdery, with a broad, diffuse outer shade, black. A distinct diseal spot on secondaries. The harpes of male gradually narrow to an obtuse tip, inwardly frimged with hair. The chasper is concare, somewhat curved, the tip corneous, acute. Expands 1.10 to 1.20 inches (27 to 300^{mm}).

Habitat.-State of Washington.
Readily recognizable by the pale shades accompanying the transverse lines, as well as the coarsely powdered primaries. The broad, diffuse onter line of under side sems also chamateristic. The types are with Messrs. Graef (female) and Hy. Edrards (male).
 (Teniocampa).
Reddish luteous, sometimes with a blackish suffusion, often powdered with white scales. Median lines indistinct, irregular, often entirely wanting. T. a. geminate, rariably sinuate, sometimes only a narow pale line. T. p. geminate, more or less intermpted or punctiform. S. t. line always distinct, pale, tolerably even, preceded by a darker shade. A row of pale terminal spots. Orbicular obsolete or punctiform. Reniform usually white marked, rarely reddish. Secondaries fuscous to blackish, with paler outer margin anl fringes. Beneath with a more or less distinct outer shade line; secondaries with discal spot. Mead and thorax concolorous. Marpes of male with superior margin irregular, but straight; inferior margin gradually and evenly curved to meet the superior margin in an obtusely rounded angle. Clasper rather long, curved, corneous, acutely terminated. Expands 1 to 1.20 inches (25 to 30^{mm}).

Habitat.-Califormia.
Fasily recognized by the pale colors and the very distinct pale s. t . line. Some sperimens of virgula approach this species in maculation, but are separable by the spots, which in the former precede the s. t. line. In merilis the line is either distinctly pale throngh a darker ground or it is preeeded by a darker shade. The thorax has an anterior crest and a distinct posterior tuft.

T届NIOCAMPAGn.

Essay p. 477; Noct. I 346.

Eyes hairy, tibie unarmed, vestiture hairy or mixed, never entirely scaly, on thorax forming loose fore and aft tufts, or smooth, even, without tuftings. Abdomen antufted. Front with fine woolly clothing, palpi usually short, hardly attaining front, drooping; rarely well dereloped and ascending. Antenna of male simple, serrate, or pectinate, the species dividing naturally into gromps on this character. Primaries ample, or short, obtuse.

The gebus Toniocampuas above defined embraces a number of groups easily distinguished, and yet with the same general habitus. The species are usually reddish luteons, or some combination of brown, red, and fellow, and either have rather short, obtuse primaries, or rather large wings with marked apices and oblique outer margin. The groups, though well defined, hardly deserve elevation to generic rank, and can be distinguished by the following table:

[^54]By this course tolerably compact groups are formed, all easily united under one generic term, and all confusing or exceptional material is excluded. By the order of groups adopted, the species follow maturally: the species classed as Orthodes, and as naturally lead to Perigrapha, though, perhaps, the opposite method of cataloguing would be more natural.

The species belonging to group furfuratu agree not only in wing form but in the genital structure. The harpes are broad, suddenly bent and narrowed near the tip, which is somewhat dilated, lappet-like, and fringed with spinules. The angle formed by the bend is usually produced or acute. The species referable to this group are separable as follows:
Vestiture entirely hairy.
Lateous, irrorate with blackish ; no median shade............................ Vestiture, with scales intermixed.

Dark red brown . .iferbbunnea
More reddish; heavily black marked, orbicular distinct \qquad
Dark mouse gray; all the maculation obsolete, orbicular wanting....... Uniformis
There is little danger of mistaking these species, and further distinctions here seem unnecessary.
Group rufula contans species less closels allied in genital structure than those of the preceding group, but resembling each other so closely in habitus that ther relationship is obvious. It joins naturally to the preceding as the table shows.
Vestiture flattenea hair, front not evenly clothed.
Median lines narrow, dark, barely visible
COLUMBIA
Vestiture hairy.
Median lines very distinct, pale, even; t. a. very oblique.

Very pale yellow .. CONSOPITA

Columbia is at once distinct by the vestiture; it has also an inconspicuous tuft on abdomen, and reverts to the Mamestra type.

Morlifica and consopita are probably races of one species. The maculation is alike, and only the difference in ground color separates them. As no male of consopitu is available for examination, a final conclusion can not be reached.

Rufula is easily recoguized. Mr. Grote has named perforutu, what is probably a color variety of this species, and which is again referred to hereafter.

Group ociduca contains but two species ; the type of the group, and utahensis, readily distinguishable as follows:

Though there is no remarkable agreement in genital structure among the species in the two last preceding and the following grouns, set it is worthy of note that there is everymhere, though not in each species,
a tendency to a domble clasper, or rather to an additional corneous process, varying from a mere rudiment to a stout spatulate process or large hook. No generalizations are attempted, and the attention of the student is called to the plate, where he can make his own comparisons.

Group incinctu is less compact than any of the preceding. The antemne are bipectinate, the primaries with marked apices and oblique outer margio.

Incinctu and sutfiusu are comparatively slight species, with elongate, slemder abdomen. The former is rather obscure luteous brown, the s. t. line preceded by a dark shade, the stigmata concolorons, rather faint. The latter is more gray, brighter, yet not sharply marked, the s. t. line folloned by a dusky shade, the stigmata large, distiuct, pale.

The remainder of the species are plump, heavily-built insects, with usually short, conic abdomen.

Obtust is a small, broad-winged form, very dark gray, maculation obsolete, secondaries white. It fits nowhere, very naturally, and is wedged in here as being most easily recognizalle at this point. The other species are large insects with dirty fuscous or luteous secondaries.

Pectinata is reddish-luteous, powdered with back seales, the lines interrupted, pectinations of antemme very long. It is an easily recognized species, the peculin color and rery regular black speckles giving the appearance of thinly scaled wings.

Terminata is a pale luteons form, with darker s. t. space, which renders the terminal space paler by contrast ; it is, howerer, a shade paler than ground color at any rate.

Subfusentu is aberrant in color, and indeed somewhat in habitus, but is after all best placed here. The primaries are ash gray, the median space somewhat darker, and the transverse lines are distinet, black, dentate. Mr. (rrote placerl the species in Anarta, but it seems to have pittle in common with that genus. In tabular form the differences appear as follows:
Slender, slight species, abdomen elougate.
S. t. line preceded by a dark shade, orlinary spots coneolorons, indistinct. incincta
S. t. line followed by a dark shade, ordinary spots distinct, pale.......... SUFFUSA Stout, robust species; abdomeu shorter.
Small, primaries short, hroml, dark gray, maculation obsolete, secondaries white, OBTUSA
Large species; secondaries not white.
Reddish luteons, puwdered with black; lines interrupted; peetinations of male antenne very long . pectinata
Pale luteons; s. t. space darkest, relieving and rendering prominent the pale terminal space .terminata
Ash gray, median space darker, transverse lines distinct black, dentate,
SUBFUSCULA
Tailing off the genns is the group alia or incerta. For a long time alia was considered synonymons with the incerta of Europe, and so Mr.

Grote catalogues it in his new list, referring pacifich also as a synonym. A careful study of the forms has led to the conviction that not only is alia distinct from incerta, and pacifica from "lia, but there is also a third species closely related bat entirely distinct from alia. This 1 name subterminata. It is perhaps more common th a ulie, and is very generally confused with it in collections.

The species are separated by the following table:
Paler species.
S. t. line consisting of a row of black, lunate spots . Artirolita
S. t. line continuous, preceded by a darker shade.

Line even \qquad
Lino sinuate.
. PACHFICA
S. t. line followed by a darker shade, darker sCDHERMHNATA
Dark, blackish brown species.
Terminal space paler, collar concolorous
-GARMANI
Terminal space concolorous, collar reddish, pale preses
All agree in general habitus and the serrate and bristled antemme. Arthrolita is distinguishable at a glance by the peculiars. t. line. Pacifica is difficult to separate from "in on color characters, and reference is made to the detailed descriptions hereinafter contained. Alia is a powdery form, with the maculation rather indistinct, except that the terminal line is well marked and preceded hy a darker shade. It is a rery constant species. Subterminata is brighter in colo", the maculation distinct, outer portion of median space darker; s. t. line followed by a darker shade. It is an exceedingly variable species. Gurmani and preses are allied to Perigraphet indeed the latter species was deseribed as belonging to that genms. They differ from all the others in the group by the dark-brown ground color. In Germent the collar is concolorous, the terminal space discolorons. In Preses the exact reverse is the case. There is thus no diffeulty in distinguishing them.

Tæniocampa furfurata Grt.

Pr. Ac. 5, 201, 1874 (Mimella) Can. Ent. 11, 27, 1879 (Ciraphiphora), New List 1e89 (Toniocampa).

Luteous, powdered with blackish scales. Median lines geminate, blackish. T. a. line arcuate, but slightly dentate. T. p. line often more or less interrupted, outer line often punctiform; nearly paraliel with outer margin. S. t. line concolorons, slightly simate, marked by a preceding dusky shade and the darker s. to space. Ordinary spots concolorons or somewhat darker, pale inged. Orbicular rather small, round. Secondaries pale fusco-luteons, lighter toward base. Beneath powdery, with more or less complete outer line, and distinct discal spot. Head and thorax concolorons. The superior angle of the bend of the harpes is rounded, the tip dilatel, inwardly spinulose. The clasper is moderate, not much curved, acutely terminated, rather slen-
der. Expands 1 to 1.20 inches (25 to 29^{mm}).

Habitat.-Cyalifornia, Colorado, Arizona, Illinois, New York.
Widely distributed but nowhere common. It resembles a small rufula, but the antenne are simple in the male. It is the only species in its group with hairy vestiture and luteous color, so that it is readily recognized.

Tæniocampa perbrumnea Grt.
Can. Ent. 11, 28, 1874, Graphiphora.
"** * In color recalling Hadenu fractilinea, but more reddish. Veins black. Reniform narrow, black, bordered outwardly by a white streak. Median space superiotly shaded with black. T. p. line even, angulated on rein 5 , opposite the disk, followed by venular dots. Orbicular indistinct, concolorons, defined by black scales. Fringes black, with white venular dots. Veins broadly marked with black on terminal space. S. t. line shaded anteriorly with brown. Ground of the wing bright reddish brown. Uind wings blackish, with contrasting pale reddish fringes. Thorax reddish brown, abromen blackish, with reddish lateral and anal hairs. Beneath pale, with distinct exterior common line, even on fore wings, dentate on secondaries, which latter show the discal dot distinctly." The harpes of male have the superior angle of the bemd acutely produced. The tip is but slightly enlarged, inwardly spinulose. The clasper is short, very stont, beak-like and corneous. Expands 1.20 inches (30^{mm}).

Habitat.- California.
Mr. Grote's description is transeribed because the specimens before me are not sufficiently perfect to deseribe from. There is no danger of confusing this with any other species of this group.

Tæniocampa peredia Grt.
Papilio 3, 32, 1883.
Reddish luteous, with carmine and black powderings. Basal line distinct, geminate. T. a. line ontwardly arenate and sinuate, geminate. 'T. p. line outwardly curved over reniform, inwardly curved beneath; inner line narrow, black, continnous, onter line punctiform. $\mathrm{S} . \mathrm{t}$. line tolerably even, concolorous, marked by the somewhat darker terminal space and a faint dusky preceding shade. A distinct dusky shade darkening the outer portion of median space. Orbicular moderate, romm, slightly paler. Reniform invaded by the dusky shade, which is inferiorly more distinct; a few white scales serve to define the spot at this point. Secondaries pale, soiled, fusco-luteous. Beneath pale, powdery, with an intermpted onter line, punctiform on secondaries, and a distinct diseal dot. Head and thorax concolorous with primaries. The male harpes are inferiorly lobed, superiorly the margin is concave and the angle of the bend strongly and acutely produced; the tip is but little dilated, and rather sparsely spinulose. The clasper is reduced to a flattened obtuse protuberance; the curved, somewhat
thickened, upper margin of side piece serving the same purpose. Expands 1.10 inches (28^{mm}).

Habitat.-Maine (Kittery Point).
Easily recognized by the distinct round orticular. The frontal vestiture is rather coarse, scaly, and there is a distinct divided tuft behind collar. This species is closely allied to Mrumestrol, with the batance of characters in favor of Teniocampa.

Tæniocampa uniformis Smith.

Proc. U. S. Nat. Mus., 1857, x, 472.

Rather dark monse gray, powdery; median lines obsolete, barely traceable. T. p. line marked by a row of venular dots. S. t. line slightly sinuate, concolorous, marked by the somewhat dasker terminal space and a preceding dusky shade. Reniform marked by a dusky patch, orbicular wanting. Secondaries soiled white, out wardly darker, an indistinet discal lumule. Beneath with incomphete onter line, a dis. tinct discal lmone. Mead and thorax concolorons, with primaries. The harpes have the superior margin thickened, corncous, obtusely produced at the angle of bend, and forming the clasper. The tip is somewhat dilated and densely spinulose at inner side. Expands 1 inch (25^{mm}).

Habitat.-Arizona.
Closely related to percdia, but sufficiently distinct by the dark color, obsolete maculation and small size. In this specees the clasper is not separate, but formed of the superior margin of side piece, which is thickened. There is an indistinct thoracic tuft behind collar.

Tæniocampa columbia Smith.

Proc. U. S. Nat. Mus., 1887, x, 479.
Luteous reddish, powdery, terminal space somewhat darker, reins slightly darker. Median lines single, obsolete or but little darker. T. a. outwardly arcuate, inwardly toothed on rein 1. T. p. line parallel with outer margin. S. t. line slightly paler, defined principally by the slightly darker terminal space. Ordinary spots obsolete, or rery faintly traceable, the reniform marked loy a slightiy darker inferior shade. Secoudaries dirty fuscous, paler toward base. Beneath rusty, powdery, with a common onter line. Antemat of male serrate and bristled. Head and thorax concolorous. Harpes of male narrowing beyond middle, somewhat dilated at tip, and inwardly fringed with spines. Torard base is a stout, strong corncons hook, which is obtusely terminated. Near to tip is another, slender, semi-membraneous and but slightly curved hook. Expands 1.15 to 1.25 inches (29 to $311^{\prime \prime n}$).

Habitat.-Northwestern British Columbia.
This species is one of those collected by Captain (ieddes in 1881, and the types, male and female, are in Mr. Nemmagen's collection. It is
one of those perplexing forms that it is difticult to classify properly. The restiture consists of flattened hairs. There is an incomplete basal tuft on thorax, and in the male a distinct tuft near base of abdomen. The male abolomen is also laterally tufted. The front is clothed with a mixture of scales and hair, and the palpi reach nearly to the middle of the front in the male. All these characters indicate a Mamestra, but the habitus of the inseet is so like Teniocampa, and the male genitalia are so closely allied to those of rufulu, that provisionally at least, I refer the species here.

Tæniocampa modifica Morr.

Pr. B. S. N. H., xvir, 1874, 150.
consopita Grt. Papilio 1, 154, 1881, Graphiphora.
Luteous to very pale yellow, with darker powderings, median lines very distinct, even, pale, with somewhat datker margin. T. a. line evenly outwatly oblique. T. p. unusually close to, and entirely parallel with, onter margin. S. t. line rarely distinct, not complete in any specimen [have seen, sinuate, pale. A narrow, pate terminal line. Ordinary spots pale ringed, concolorons, or very slightly darker. Orbicular punctiform. Secondaries soiled whitish, or luteous, paler toward base. Beneath powdery, with a complete dark outer line and discal spot on all wings. The male harpes are subequal to the obliquely rounded tip, which is inwardly irregularly set with long, slender spinules. The clasper is a long, slender, rather abrupty bent hook. Near to the inferior margin a short, tlattened, obtase, corneons prozess. Expands 1.20 to 1.40 inches (30 to 35^{mm}).

Mabitat. - New York, Massachusetts, District of Columbia.
The varicty consopita Grt. is much paler yellowish, but otherwise precisely like the type form. It is from Arizona.

Since the manascript of this genus was first completed I have seen a number of specimens from other localities, without, unfortunately, noting them. They prove absolutely the identity of modifica and con sopitu, the gromud color being not geographical as I had at first supposed. I have left the manuscript as originally written.

Taeniocampa rufula Grt.

Buf. Bul. 2, 64, 1874 (Dianthoccia). C. E., 11, 26, 1879 (firaphiphora), id. 13, 126, 1881 (Taeniocampa).
Pale clay-yellow to brick-red, powdered with white scales. Median lines faint, usually only the pale included space visible. T. a. line outwardly oblique, sinuate. T. p. line sinuate, usually followed by a row of black venular dots. S. t. line distinct, pale, irregularly sinnate, preceded by a darker shade. A narrow, pale, terminal line. Ordinary spots pale ringed, concolorous or but little darker. Secondaries soiled whitish, outwardly darker. Beneath, pale, powdery with distinct discal dots, and incomplete, punctiform outer line. Head and thorax con-
colorous, the latter inconspienously tufted. Abrlomen with indefinite, loose, hairy tufts at base. Male harpes rather abruptly narrowed toward tip, which is somewhat dilated and inwardly spinulose. There are two, moderately curved, rather long corneous hooks forming claspers. Expands 1.20 to 1.25 inches (29 to $32^{\text {mm }}$).

Habitat.-California.
This species, though very variable in ground color, is yet tolerably constant in maculation, and readily known by the phmp appearance and faint irregular median lines combined with the group characters.

Taeniocampa perforata Grt.

$$
\text { Papilio 3, 73, } 1883 .
$$

"Of a peculiar grayish-fuscons or stone color, and allied to the Californian rufula. The s.t. line is accented by three or fom preceding black points opposite the cell; the median space darker than the rest of the wing; the median lines and stigmata illegible; the reniform stained and blackish; claviform outlined. Lines marked by double costal streaks, with paler, inclosed shades. T. p. followed by minute points ; fringe a little darker." * * * "Concolorous gray fuscous, smooth. Hind wings pale at base, with pale fringes and soiled veins. Beneath paler, gray, irrorate, with dark denticulate common line; suffused discal shade on fore wings and blackish discal point on hind wings." Expands 1.15 to 1.20 inches (29 to $30^{\mathrm{mm})}$).

Habitat.-Arizona.
Mr. Grote compares the species to rufulu and says it may prove a color variety. Three female specimens are before me, and have a somewhat different appearance from rufulu, but without any marked character to distinguish them. Compared with Californian rufula they are darker, the t. a. line is more marked, and the reniform is more distinctly blackish, pale ringed. The claviform is not distinct in Mr. Grote's types, which are females. The male requires study to settle the question.

Taeniocampa oviduca Gn.

1, 357, 1852 ; Wlk. Cat. B. Mus. x, 429.

capsella Grt. Pr. Ac. 1874, 201. New List (? oviduca var).
Somewhat luteous red brown, often with a yellowish-gray suffusion. Median lines narrow, approximate, variably distinct, often subobsolete, sometimes narrow and pale, the defining lines wanting, or geminate with concolorous included space. T. a. evenly arpuate, tonehing orbicular. T. p. outwardly bent over reniform, inwardly curved below that spot. A row of venular dots follows the t. p. line. S. t. line broad, pale, slightly sinuate; usually diffuse outwardly; inwardly limited by a slightly darker shade. Ordinary spots paie ringed, usually darker than ground color; orbicular rather large, and somewhat oblique. Secondaries sordid fuseoluteous. Beueath, powdery with a variably

Proc. N. M. S9--31
complete outer line ; secondaries with a diseal spot. Head and thorax concolorous. Harpes of male suddenly constricted, aud slightly bent beyond middle, broadening into an obliquely rounded lappet which is spinulose at inner side. The clasper is double, or rather there are two projections forming the clasper. One is short, stout, somewhat beaklike, pointing downward ; the other is longer, dilating toward tip, terminating in an acute point. Expands 1 to 1.20 inches (25 to $30^{\text {mim }}$).
\#abitat.-Atlantic States to Florida, west to Mississippi.
Rather a variable species, yet easily known by the heavily bipectinate antenne of the male, combined with the obtuse rather stumpy primaries. The vestiture is mixed scales and hair.

> Taeniocampa utahensis Smith.
> Proc. U. S. Nat. Mus. 1887, x, 473.

Luteous red brown, with blackish powderings. Median lines indistinct. T. a. very faint, outwardly arcuate. T. p. nearly parallel with outer margin, faintly geminate, the iucluded space marked with pale scales. S. t. line obsolete, barely traceable by a few pale scales. A pale line at base of friuges. Terminal space darker shaded. Orbicular small, round, marked by a few pale seales. Reniform narrowly black marked, defined by a few pale scales superiorly; inferiorly black filled. Secondaries pale, fusco-luteons, outwardy darker. Beueath, powdery with an outer line, punctiform on secondaries; the latter also with a discal spot. The harpes of male are curved, gradually narrowing until dilated into the lappet-like tip, which is inwardly spinulose. Near the base is a long, slender, curved corneous process. Nearer to tip is a thick, more membraueous process, regularly tapering to a point. Expands 1.20 iuches (30^{mm}).

Habitat.-Utal.
A very distinct species. Its nearest ally is oriduca, from which it is readily distinguished by the shorter pectinations of the male antenne, by the obsolete s.t. line, the small inconspicuons orbicular, and the inferiorly black filled reniform. The species was collected by Capt. D. H. Murdock, U. S. Army, near Fort Thornburgh, and I hare never seen another specimen. The type is in the National Museum.

Taeniocampa incincta Morr.
Pr. B. S., N. H., 1574, M1II, 133, 156 (Mamestra); Grt. Buf. Bul. 2, 215, 1874; Can. Ent. 13, 126, 1881 (Taniocampa).
Pale, reddish luteous, with black porderings. Median lines indistinct, geminate. T. a. slightly oblique, ontwardly curved between veins. T. p. interrupted, nearly parallel with outer margin, onter line punctiform ; the dots veuular. S. t. line pale, but little sinuate, preceded by a series of sagittate black spots, longest opposite the cell. A narrow, pale terminal line. Orbicular moderate, concolorous, faintly outlined by a pale shade of ground color. Reniform upright, darker,
faintly pale ringed. Secondaries pale fusco-luteous, darker outwardly, with a distinct discal lunule. Beneath, powdery : a variably distinct outer line ; secondaries with a discal spot. Heat and thomax concolor. ous. Harpes of male broad, curved, modified into the usual lappetlike tip, which is in wardly spimulose. A long, moterately stout, eurved corneous hook near center of side piece. Near to tip is a thick, semimembraneous, beak-like process. Expands 1.10 to 1.20 inches ($\because \sim$ to 30^{mm}).

Habitat.-Massachusetts, Illinois (Morr.), Colorado.

The type from Professor Riley's collection bears a resemblance to oviduca; the Colorado specimens, which are unquestionally the same, have longer, more trigonate wings and less distinct maculation. The essential feature of the species is the prominent blank shade composed of more or less distinctly sagittate spots, which precedes the s. t. line.

Tæniocampa suffusa Smith.

$$
\text { Proc. U. S. Nat. Mus. 1887, x, } 474 .
$$

Pale, somewhat carneous gray, blackish powdered. Median lines indistinct. A short black basal streak. T. a. line blackish, traceable ouly for one-half its course, very oblique. Median space, with a rosy tint most distinct in the cell just beyoud claviform. T. j. inconspicnous, nearly parallel with outer margin, marked rather by the paler s. t. space than otherwise. A darker shade on costa in s. t. space. S. t. line marked by the slightly darker terminal space, and further emphasized by a row of black spots folloneing the line. An interrupted terminal black line. Fringes interlined. Claviform partly outlined in black. Ordiuary spots large, pale, defmed by black seales. Secombaries grayish white. Beneath very pale, hardly powders, with indis. tinct outer line. Head and thorax concolorons, collar paler, with a darker line near tip. Harpes of male somewhat bent at middle, tip obliquely rounded, with a fringe of spinules at inner side. At middle is a broad, somewhat spoon-shaped corneous process, with an acute point; behind this is a more slender, eylindrie, slightly curved hook, obtusely terminated. Expands 1.20 to 1.2 S inches (30 to $32 \mathbf{D}^{2 m+1}$).

Habitat.-Colorado, Arizona.
A remarkable species, differing by the delicate tintings of gray and rosy red and by the presence of the claviform from all its allies. The wing form is that of incincta, from which this species is additionally separated by the dark shade following, instead of preceding, the s. t . line. The genitalia are very like those of oviduca.

> Tæniocampa obtusa Smith.

$$
\text { Proc. U. S. Nat. Mrus., 1887, x, } 474 .
$$

Dark blackish gray, powdery, all the lines lost. The narrow clariform is fairly well defined by black scales, and is somewhat yellowish. The orbicular is also yellowish and farly well defined, small, S. t.
iine indicated by faint yellowish dots. A row of small, terminal black points. Secondaries white. Beneath, whitish gray, powdery aloug the costa and apices of all wings. Head and thorax concolorous. Harpes of male somewhat bent, the tip lappet like, obliquely romuded, in wardly spinulose. Near the base is a long, curved, moderately slender, tapering, corneous spur, behind which is a stout, short beak-like projection. Expands 1.10 inches (27^{mm}).
habitat.-Arizona.
A species peculiar by the short broad primaries, the outer margin oblique, and by the contrast in color between the two pairs of wings. The antemme of the male are heavily bipectinate, the vestiture of frout is rongh, and the thoracic vestiture is scaly, dense, forming an indistinct median crest. The palpi are well developel and attain the vertex. The genitalia are like those of its near allies in character. It is a decidedly puzzling species. Mr. Graef has the male type, which is in fair condition except that it lacks the fringes.

Tæniocampa pectinata Smith.

$$
\text { Proc. U. S. Nat. Mus., 1887, x, } 475 .
$$

Reddish luteous, densely irrorate with backish powderings. Basal line faintly geminate; rather well marked. T. a. line obsolete. T. p. line rather close to onter margin; crenate, intermpted, onter portion of line punctiform. S. t. line very faintly paler, slightly sinuate. A row of more or less evident black spots just before outer margin. Reniform marked; mright, narrow, either paler or darker than ground color. Orbicular obsolete. Secondaries reddish gray; irrorate; a more or less evident discal spot. Beneath, reldish, powdery, with punctiform outer line and distinct discal spots. Head and thorax concolorons. Harpes of male bent, the lappet-like tip larger, oblique, inwardly spinulose. Clasper a rather long, curven, corneous hook; at base of this hook is a short, stout, beak-shaped process. Expands 1.35 to 1.50 inches (34 to 38^{mm}).
habitat.-California.
A large, robust species, with an appearance as though the wings were very thinly scaled. The very heavily peetinated and long antenne are prominent. The vestiture is loose, loug and hairy, forming indefinite tufts. Mr. Edrards has the type, which is somewhat battered but very recognizable.

In the Coll. U. S. Nat. Mus. are a number of fine specimens of this species collected by Mr. Kioebele for Professor Liiley, and by him donated to the Museum. They vary somewhat in ground color, and with good specimens at hand it is seen that there i i, a slight angulation at middle of outer margin of primaries, showing a close relationship to Perigrupha.

Tæniocampa terminata Smith.

Proc. U. S. Nat. Mus., 1887, x, 475.
Sordid sellowish gray, powders; s.t. space somewhat darker, terminal space somewhat paler than the rest of wing. Median lines faintly marked, pale, interrupted. T. p. line followed by a row of back venular points which are ontwardly limited by a pale dot. The s. t. line is defined by the strong contrast in shade between s. t. and terminal spaces; irregularly dentate. A row of distinct black spots close to outer margin, but not quite terminal. A ways, pale, terminal line. A diffuse, dark median shade. Orhicular obsolete; reniform marked by a lunate yellow streak, apparently forming the outer margin of the spot. Secondaries blackish, with whitish fringes. Beneath whitish, powdery, with punctiform outer line and distinct diseal spots. Head and thorax concolorons. Harpes of male equal to tip, where the superior angle is somewhat drawn out and the inferior angle rounded. Clasper corneous, moderately long, but slightly curved; at the base is another smalier hook, elosely united with and apparently forming a part of the larger hook. Expands 1.60 inches (40^{mm}).

Нabitat.-Sonthern California.
The collar is somewhat produced centrally, there is an obvious though not prominent thoracic crest, and a truncate tuft on basal seg. ment of abdomen. The species is therefore closely allied to Perigraphe, but has not the wing form of that genns, and the male antemme are much more shortly pectinated. The type is a unique male in Mr. Tep. per's collection.

Tæniocampa subfuscula Grt.

Pr. B. S. N. H. 16, 244, 1873 (Anarta), Buf. Bul. 2, pl. I, f. 7, 1874, Anarta; Smith, Proc. U. S. Nat. Mus., 1887, x, 474, Toniocampa.
Ash gray, dark; powdery ; median space more or less completely filled by a sordid blackish fuscous shade. Median lines distinct, hack, single. T. a. line upright or out wardly oblique, irregularly curved and tonthed on reins. T. p. line crenate, parallel with onter margin. Basal line distinct, geminate. S. t. line marked by a preceding irregular dusky shade, more or less interrupted. A row of black terminal spots. A pale line at base of fringes. Claviform rather small, but distinct, black marked; orbicular round, pale, sometimes with a central spot. Lieniform upright, more or less ohserured by the dusky shade; incompletely black ringed, and with rather a few white defining seales. Secondaries even, smoky fuscous. Beneath dull smoky gray, with variabls complete outer line and distinct diseal spot. Itead and thorax concolorous. Harpes of male narrowing toward tip, which is ohlique, with obtusely rounded angles; fringed inwardly with stout spinules. Toward base there is a curved corneous hook, moderate in length; half way to tip is a straight, somewhat flattened, process, broadening
tomards tip, where it is truncate. Expands 1.32 to 1.45 inches (33 to 36^{mm}).

Habitat.-Oregon, Montana.
The thorax is cuadrate, the restiture somerwhat flattened, learing a somewhat prominent collar, and an indistinct basal tuft. The species has nothing in common with Anarta, to which Mr. Grote referred it, while it is somewhat aberrant placed here. Yet it agrees better with this gemns than any other, and, until it finds closer allies, is better referred here.

Tæniocampa arthrolita Harr.

Buf. Bul. 2, 275, 1874 (Graphiphora).

Thorax and primaries are a light brownish drab, with a jellowish shade ; the t. at line is black but fatint ; the median shade more marked, most distinct just inside the reniform spot on the cell, making tro angles, out warlly and inwardly; the t. p. line geminate, above rounded ontwardly. below inwardly. The onter component line very distinct and waved; the s. t. and terminal lines a series of black dots; the reniform spot concolorous, with a pale ammus; the orbicular spot hardly percentih'e. leneath dusky, an arcuated line on both wings; a diseal spot on the secondaries.

Expands 1.40 to 1.55 inches (34 to 38^{mm}).
Habitat.-California.
Dr. Uarvey's description is copied beeanse the specimen before me, thongh certainly this species, is somewhat farled. The punctiform s. t. line will serve to at once distinguish the species. The male antemme are said to be somewhat moniliform, the joints ciliate-my specimen is a female.

Tæniocampa pacifica Harv.

Buf. Bul., 2, 120, 1-it (traphiphort); (irt., C'an. Ent., 7, 45=incerta; Smith, Proc. U. S. Nat. Mus., 1887, x, 476, an sp. dist.

Obscure luteous gray, with black transerse striga and irroration, maculation obseure, mediau lines usually obsolete. T. p. line when present, with a defined angle opposite the reniform, then evenly oblique to hind margin. S.t.line concolorous or slightly paler, marked by a darker preceding shade, most evident on costa. A row of small terminal dots. Sometimes there is a distinct median shade parallel with the s. t. line. Orbicular nsually obsolete, rarely pale ringed, always concolorous. Reniform large, pale ringed, usually darker, hlackish. The secondaries are powdery, pale, with the diseal spot of under side faintly reproduced. Beneath pate, powdery, an incomplete onter line and distinct discal spots on all wings. Head and thorax concolorons with primaries, the latter densely clothed with long hair. The harpes of the male narrow abruptly near tip, the inferior angle of tip produced into a rather long, curved process, acute at tip. The clasper is irregularly curved, some-
what dilated beyond the middle and rather obtusely terminated. A very distinct stont supplementary corneous process at base of clasper. Expands 1.40 to $1.60\left(35\right.$ to 40^{mm}).

Habitat.-Colorado, California.
This species has been referred as a variety of the eastern alia, but incorrectly. It closely resembles it in maculation, but has a more robust thorax and slightly different habitus. The genitalia are also different. More extended comparisons are made further on.

Tæniocampa alia Gn., 1, 354, 1852.
incerta Grt., Lists and Lit.; Dimmock,* Psyche, 1885, Iv, 273 ; instabilis Fitch, Tr. N. Y. Agr. S., 16, 343 (Orthodes); Grt., Buf. Bul., 2, 23.
confuens Morr., Pr. B. S. N. H., 1874, 159; Grt., C. E., 12, 187 (pr. syn.).
Varies in ground color from pale luteous gray to dark grayish brown. Median lines obsolete or very faint; t.p. line usually punctiform. S. t. line irregular, pale, preceded by a darker shade. A row of black terminal dots. Ordinary spots large, pale ringed, reniform usually darker, at least inferiorly. Secondaries pale fuscous, powdery. Beneath powdery, with more or less complete common line and distinct discal spot. Head and thorax concolorons. The harpes of the male are suddenly narrowed and eurved toward tip, which at its inferior angle is produced into a long, straight, acute process. The clasper is long, slemder, regularly curved and acutely terminated. At the base there is an additional small, slender corneous process. Expands 1.40 to 1.60 inches (35 to 40^{mm}).
Habitat.-Northern, Middle, and Eastem States; Missomi.
This species has been confomded with the European incertu (instubilis) and it closely resembles that species in maculation. It is perhaps possible to match specimens from both continents very closely, but the American form is distinguished by a different habitus, mot easily definable, and also by the decidedly different genitalia. In the European form the harpe narrows gradually, and the tip is obliquely cut from each side, leaving the middle slightly projecting. The three species, pucifica, alia, and incerta, are very closely related, but are undoubtedly distinct. Compared with pacifica, ulia is less robust, the thoracic clothing less dense, while the wings are apparently more heavily clothed with scales.

Mr. Morrison's species confluens is based on a specimen in which the ordinary spots are confluent, and the primaries have the costa more convex. The trpe is a female from Missouri and I have heen mable quite to match it with a male, though specimens of alia with confluent spots are not rare. It is possible, but I think hardly probable, that a good species is covered by Mr. Morrison's name.
*This species is among those found by Mrs. Dimmock on Betula,

Tæniocampa subterminata Smith.
Proc. U. S. Nat. Mus., 1857, x, p. 476.
Pate jellowish gray to deep brown red, varying to every possible intermediate shade. Median lines usually distinct, geminate, rarely obsolete. T. a. line outwarlly oblique, waved. T. p. line nearly parallel with onter margin, very even ; included space paler, outer part of line punctiform. S.t. line always very distinct, pale, outwardly shaded by some darker color than the rest of the wing, in dark specimens with black. Claviform large, concolorous, more or less completely outlined, always traceable. Ordinary spots large, pale ringed, usually concolorous, sometimes paler, rarely darker than ground color. An upright datk shade crosses the median space, beyond which the wiug is usually darker to t. p. line. Secondaries as variable in shade as the primaries. Beneath, pale, powdery, with heary dark onter line and large discal spot on all wings. Heal and thorax concolorons with primaries. Harpes of male elongate, sides sinuate, subequal, tip oblique and inmardy spinulose. Toward the base are two corneous beak-like processes, arranged Y shape, that form the clasper. Expands 1.4 to 1.6 inches (35 to 40^{mm}).

Habitat.-Maine, New Hampshire, New York.
This very strongly marked species has been heretofore confounded with alia, from which it differs so strongly that it is surprising it has not been heretofore described. It is more common than alia, and is the form usually in collections as "incertu." An obvious difference is that in alia the s. t. line is preceded, while in the new species it is followed by a darker shate. The genitalia differ very markedly.

Tæniocampa garmani Grt.
Can. Eut. xi 23, 1879.
Deep dark brown, irrorate with black, terminal space paler. Median lines faint, pale. T. a. line regularly areuate, t. p. sinuate. S. t. sinuate, marked by a black preceding shade. Ordinary spots subequal, slightly paler, somewhat indefinite. Secondaries yellowish fuscous, with obvious discal spot. Beneath, reddish luteous, powdery; discal spots distinct. Head and thoras concolorons. Harpes of male slightly curred, subequal, obtusely rounded at tip. Clasper a stout, curved, corneous hook of moilerate leugth. Expants 1.5 inches (33^{mm}).

Habitat.-Illinois, Iowa.
A robust species, very different from any of the others in this section, and readily distinguished.

Tæniocampa præses Grt.

Bull. Surv. 5, 202 (Perigrapha).
Dark blackish brown, with a carmine shade, powdered with black. Median lines rery faint, slightly paler than ground color. S. t. line somewhat paler, preceded by a darker shade, its course slightly sinu-
ate. Ordinary spots pale ringed; in the specimen before me confluent. Probably this is the exception and not the rule. Secondaries with a carmine tinge, blackish powdery, a distinct discal spot. Beneath powdery, with broad onter line and large diseal spot. Head and thorax concolorous, collar paler, yellowish red. Harpes slightly curved, squarely cut off at tip, the angles somewhat prominent. The clasper is a curved, corneous hook of moderate length. Expands 1.40 inches (35 ${ }^{\mathrm{mm}}$).

Habitat.-California.
This species is readily recognized by the discolorous collar. It is closely allied to garmani and perfectly congeneric with it The thorax has a small anterior crest, and there is a truncate posterior tult, and these probably caused Mr. Grote to refer the species to Perigrapha. The same features to a less degree are visible in gurmani, but neither hare the heavily pectinate antemme of Perigrapha nor its wing shape.

SPECIES UNKNOWN TO ME.

Tæniocampa agrotiformis Grote.

Can. Ent., xiri, 14, 1881, Graphiphora.
"Female.-This form reminds one of 1 grotis collaris or versipellis. Eyes hairy, tibis unarmed, tuftings obsolete. Hore wing blackish brown to the continuous, black, upright, uneven subterminal line; beyond with the fringes brownish. Median lines geminate, faint. Orbicular round, paler than the wing. Reniform moderate, ontwardly excavate, upright, pale ringed, with dark center. The cell between the spots black shaded. The stigmata are comparatively small. No trace of the clariform. Hind wings pale brownish fuscons, concolorous; fringes a little lighter and more reddish. Beneath secondaries paler, with discal dot aud uneren exterior line; fore wings dark fuscuous to terminal space, which is pale with the fringes dark. Mead and thorax like the fore wings; collar a little paler. Body rather slender; costa of primaries a little depressed ceutrally. Colorado, expands $3 \ddagger^{m m}$. Differs from the described species quite strongly; from Mamestra by the untufted body parts."

Quite a distinct species from the description, and quite unlike anything I have seen. The type of ornamentation would seem to relate it with garmani.

Tæniocampa orobia Harv.
Can. Ent. viil, 154, 1876 Mamestra ; Grt., Can. Ent. Xili, 12f, 1~21, Teniocampa.
"Eyes hairy; antenne pectinate. Thorax and wings grayish fuscous, color of trifolii ; basal half line white, t. a. line gemiuate, widely separated ; t. p. line consisting of a series of white points; subterminal irregular, terminal line black. Orbicular spot large, white ringed
with dark center ; reniform constricted at the center, white margined with a dark filling. Subterminal space shaded light. Beneath of a lighter shade, discal spot and a faint trace of the t. p. line. Secondaries shining fuscons, fringes whitish, beneath lighter, discal spot black, very evident. Expanse 20^{mm}. Texas. (O. Meske.)"
"This speries is allied to trifolii. The antennæ are pectinate, while in trifolii they are simple. In orobia the darker costal edge shows the white do's distinctly."

This is not now in the Meske collection. Mr. Grote referred it in 1851 to Temincampa, Liarvey having described it as a Mamestra. The pectinated antenne wonld seem to ally the species either to rufula or to incincta, according to the wing form, which is not described.

PERIGRAPHA Led.

Noct. Eur., 1857, 136.

A free translation of Lederer's description of the genus Perigrapha is as follows: "In habitus and the hairy eyes these insects resemble Tenioctmpa; but the collar is excavated at the sides and joined at the middle in a sharp edge ; the thorax is somewhat produced at the sides, and behind the collar there is a distinct crest. On the basal segment of abdomen there is a large truncate tuft of hair. Antenue in both sexes pectinated, in the female the pectinations shorter. Primaries ash or brown gray, the usual spots unusually large, confluent, somewhat paler than ground color, deep black margined."

Except in one particular our species agree perfectly with the essential portions of this diagnosis, i. e., in none of the species known to me are the antenne in the female pectinated, but serrated in some. The character is an unusual one, and an important one for that reason; but, as otherwise, the species are so close to the European forms they had better be retained as congeneric-for the present, at least.

The head is strongly retracted, the palpi searcely reaching or hardly exceeding the front. The body is robust, obtaining a somewhat clumsy appearance from the thick, rather loose, restiture. The abdomen, compared with the large thoras, is small and short; little or not exceeding the hind angle of secondaries. In addition to the large truncate basal tuft, the males are furnished with smaller lateral tufts. The genitalia are rarious and separately described for each species. The primaries are proportionately rather long and wide, the apices acute, but slightly prolonged; outer margin obliquely rounded, learing the middle somewhat prominent. The wing shape will serve to at once distinguish the genus.

Two well-marked groups are recognizable in our species; the first, and most typical, with the ordinary spots confluent. In this also the thoracic restiture has scales and capitate hairs intermixed. The second, with the spots normal, separate and not unusually large. The thoracic
vestiture is entirely hairy or at least with but a few capitate hairs intermixed.
Normatis heads the list in the first group, and is our largest species. It lacks all maculation save the pale, deep black ringed, ordinary spots, and is thus readily recognized. The genitalia are unique.

Inferior is a small species of a dull ash-gray color, densely irrorate with black seales; the ordinary spots are barely defined and hardly paler in ground color.

Plusiiformis is a handsome species, larger than the preceding and paler ash gray in color. The ordinary spots are distinctly outlined and the s. t. line is marked. In genital structure this speeies agrees in essential characters with inferior and muricina, the pecoliar feature being a broad comeons plate, which at tip is emarginate, the projectiug edges variably curved to form the clasper.

Muricina and Behrensiand differ from all the preceding hy having the terminal space much paler than the other portions of the wing. The former is a pale, grayish brown, the lines obsolete or indistinct. The latter, which is unknown to me in nature, is said to be dark brown, coarsely irrorate with black, costal margin carneous, transverse lines distinet, pale.
The remaining species belong to the second group in which the ordinary spots are not confluent.

Pulchella is rery readily recognized by the deep red brown ground color, and the pale, blue gray terminal space. The transverse lines, so far as traceable, are also pale.

Erythrolita and transparens differ in not having the terminal space paler, or discolorous. The former is rariable in gronnd color, and has the s. t. line well marked, though not continuous. Transperens is a dull red brown, with the s. t. line wanting and all ornamentation subobsolete.

Per. preses Grt. seems to me better referred as a Temiocampu.
The species are Western and seem not common usually.
A more comprehensive division of the genus is as follows:
Ordinary spots confluent, large, pale. Vestiture with scales or capitate hairs intermixed.
S. t. space concolorons.

Dark fuscous brown; all liues wanting; ordinary spots, pale ringed, black shaded. NORMALIS
Ash gray, dark, uniform, maculation obsolete inferior
Paler, with a rufous tint ; s. t. line marked, ordinary spots outlined.
PLUSIIFORMIS
S. t. space paler.

Pale gray-brown; transverse lines obsolete \qquad .auricina
Dark brown, coarsely irrorate with black, costal margin carneous.. BEIRENSIANA Ordinary spots normal, not confluent; vestiture hairy.
Terminal space discolorous, pale.
Deep red-brown ; transverse lines and terminal space bluish gray pulchella
Terminal space concolorons.
Mouse-gray to leather-brown; s.-t. line markerl.
ERYTIIROLITA

Buf. Bul., 187: 2, 162 (Acerra) ; List, 1575, pl. f. 4; C. E. 1879, 11, 27 (Graphiphora), id. 1831, 13, 133. (Perigrapha.)

Very eren mouse-gray, transverse lines obsolete. Basal line faintly indicated. Ordinary spots confluent, very large, nearly equal in size amd shape; superiorly open, else with a narrow whitish defining line, outwarly bounded by a blackish shade, which inferiorly shades into the ground color: the whole included in a very faint, pale V, which does not reach the inner margin. A row of small terminal dots, and a paler terminal line. Secondaries evenly fuscous. Beneath powdery fuscous, with a common darker line and discal spot. Head and thorax concolorous; collar slightly paler. The harpes of male are somewhat curved, and namow regularly to tip, where they are acute. Clasper moderate in length, robust, not much curved, inwardly with an obtuse tooth. Expands 1.45 to 1.50 inches (35 to 37^{mm}).

НАвitat.-Ualifornia.
This is an easily recognizable form. The lack of all maculation, except the large confluent ordinary spots, forms a distinctive feature.

Perigrapha inferior Smith.

$$
\text { Proc. U. S. Nat. Mus. 1887, x, } 477 .
$$

Dark ash gray, all the maculation obsolete. Ordinary spots fused, slightly paler, but hardly defined. The primaries are crossed by fine brown strigie, hardly visible except on close examination. Secondaries uniformly fuseous. Beneath powdery; secondaries with a large diseal spot. Hear? and thorax concolorous with primaries ; collar inferiorly with a reddish tint. The male genitalia are most nearly like muricina, but the inferior branch of clasper is very short, and acutely terminated. Expands 1.20 inches (30^{mm}).

Habitat.-California.

Easily distinguished by the almost uniformly dark gray color, the fused ordinary spots scarcely paler. The male type is with Mr. Edwards.

Perigrapha plusiiformis H. Ed.

Pr. Cal. Ac. Sci., v. 267 (Stretchia); Grt. New List (Perigrapha).
Pale ash gray; ordinary spots slightly paler, confluent; the reniform with a rusty central shade. A short basal black dash. Basal line rather faint, but discernible. T. a. line fine, marked only above the middle. T. p. line punctiform. S. t. line eren, narrow, pale, marked by preceding brown scales. Secondaries uniformly brown fuscous. Beneath, somewhat purplish with black irroration; a black diseal spot on all wings. Head and thorax concolorous, tegule black. tipped, collar inferiorly purplish. Harpes of male broad, at tip trunc-
ate and bisinuate. Clasper as in muricina. Expands 1.28 inches $\left(32^{\mathrm{mm}}\right)$.

Habitat.-Nevada.

Apparently a close relation of muricinu, but at once separable by the concolorous terminal space. A single male specimen (the type) is in Mr. Edwards's collection.

Perigrapha muricina Grt.

Buf. Bul., 1875, 3, 85 (Acerra); C. E., 1879, 11, 27 (Graphiphora); id., 1881, 13, 1833 (l'erigrapha).

Pale brown, with grayish suffusion in basal, s. t. and lower part of median space. Terminal space gray. Ordinary spots confluent in the form of a wide V ; whitish gray, reniform with a rusty shade line; outline inferiorly and at sides, black. Basali line distinct, single, brown. A short brown basal dash. T. a. line narrow, single, outwardly curved between veins. T. p. line faint, slightly marked on veins, but hardly traceable except for the faint difference in shade between median and submedian space. S. t. space narrow, sharply defined outwardly by the even gray terminal space. S. t. line irregular, interrupted, brown; best marked at costa and internal margin where it bounds the pale terminal space. A row of slender brown terminal lunules. Secondaries even, fuscous. Beneath reddish, powderr, secondaries with extra discal line. Head and collar brown, the latter with darker tip. Tegule and tuftings gray, with brown tips. The harpes of male are slender, gradually enlarged into an obtuse lappet, which is inwardly sparsely spinulose. Clasper bifurcate, the inferior branch straight, stout, regularly tapering to tip; the superior branch curved, subequal. Expands 1.30 inches ($33^{\text {num }}$).

Habilat.-Oregon.
Readily distinguished by pale brown color, and the contrasting terminal space. The type is with Mr. Edwards.

Perigrapha Behrensiana Grt.
C. E., 1875, 7, 71 (Graphiphora), id. 1881, 13, 133 (Perigrapha).

" * * * The fore wings are coarsely irrorate with black, of a dull brown ground color, darker to the pale subterminal line, beyond which they are paler, with the veins pale marked. The costal edge is carneous. The lines are pale, tolerably appoximate on internal margin, rather even, with blackish margins. The t. a. line outwardly oblique, the t. p. line flexuous. Ordinary spots large, pate margined, fused, so that there is a resemblance to some species of Gluen. Hind wings soiled white, sparsely irrorate, with it discal dot, concolorons fringes and a broken terminal line. Beneath whitish, a continnous line on primaries, dotted ou hind wings ; diseal marks double on fore wings ; very distinct on secondaries,"

Expands $35{ }^{\mathrm{mm}}$.
Habitat.-California.
This species is unknown to me, but seems allied to muricina by the pale terminal space. The impression given by the deseription is that the ordinary spots are concolorous, which, with the distinct transverse lines, would separate this species from all others with confluent spots.

> Perigrapha pulchella Harv.
> C. E., $1876,8,54$ (Graphiphora).

Deep rel-brown ; terminal space bluish gray. Superior portion of basal space, costa between ordinary spots, and a small pateh at the inception of t. p. line also gray. T. a. line narrow, pale, upright. T.p. line unusually near to and nearly parallel with onter margin. Gray, with a precediug dusky shade, followed by a row of black venular dots which are ontwardly shaded with gray. S. t. line marked only by the contrast betreen s. t. and terminal space. Ordinary spots slightly darker, narrowly pale lued, moderate in size. Secoudaries uniformly fuscous. Beneath reddish, powdery with distinct common line and discal spots. Head and thorax of ground color. Expands 1.40 inches (34^{nm}).

Habitat.-California.
A single female specimen. .The type is in Mr. Edwards' collection. The species is a striking one, and not easily mistaken for anything else. The deep red-brown color and contrasting blue-gray terminal space are characteristic.

Perigrapha erythrolita Grt.

C. E., 1879, 11, 208 (Graphiphora) ; id. 1881, 13, 133 (Perigrapha).

Mouse-gray to a bright leather-brown; color very even. T. a. line obsolete; t. p. line obsolete, or marked by a geminate row of faint black dots. S. t. line interupted, yellowish, preceded by a dark brown shade, its course oblique, eren. Ordinary spots moderate, very narrowly pale ringed, slightly darker than ground color. Orbicular round, reniform rather narrow, upright. Secoudaries smoky, outwardly darker. Beneath gray, powdery, with variably distinct outer line and discal dots. Head and thorax concolorous. The genitalia differ from all of the other species. The harpes are curved and bent, enlarged at tip and terminating in three lobes. The clasper is stont, curved and corneous, single. Expands 1.20 to 1.30 inches (30 to 35^{mm}).

Habitat.-California.

This is a somewhat variable species in ground color, but readily recognizable always by the even oblique s. t. line, marked by an interrupted brown shade. The male genitalia are distinctive and differ from the other known forms.

Perigrapha transparens Grt.
Bull. Surv., 6, 583.
Even, rather deep red brown at base, with a carmine shade, maculation obsolete. The reniform is slightly darker and faily well defined. The t. p. line is iudicated by a geminate row of faint blackish dots. Secondaries fuscous. Beneath reddish, powdery; secondaries with a discal lunule. Head and thorax concolorous with primaries. Expands 1.50 inches (37^{mm}).

Habitat.-Washington.
The female type is the only specimen I have seen. There need be no difficulty in identifying this very simply marked form, which seems thinly scaled, and is more powdery than usual, the atoms very fine and not apparent.

PLATE XXII.

1. Harpe and clasper of Perigrapha normalis.
2. Harpe and clasper of Perigrapha inferior.
3. Harpe and clasper of Perigrapha plussiiformis.
4. Harpe and clasper of Perig apha muricina,
5. Harpe and clasper of Perigrapha erythrolita.
6. Harpe and clasper of Orthodes infirma.
7. Harpe and clasper of Orthodes cynica.
8. Harpe and clasper of Orthodes enervis.
9. Harpe and clasper of Orthodes virgula.
10. Harpe and clasper of Orthodes irrorata.
11. Harpe and clasper of Orthodes puerilis.
12. Harpe and clasper of Himella intractata.
13. Harpe and clasper of Cocigrapha normalis.
14. Harpe and clasper of Ulolonche niveiguttata.
15. Harpe and clasper of Ulolonche fasciata.
16. Harpe aud clasper of Ololonche modesta.
17. Harpe and clasper of Scotogramma submarina.
18. Harpe and clasper of Trichoclea edwardsi.

18a. Fore tibia and tarsal joints of Trichoclea edwardsi.
19a. Fore tibia and tarsal joints of Trichoclea decepta.
19. Harpe and clasper of Trichoclea decepta.
20. Harpe and clasper of Barathra brassicer.
21. Harpe and clasper of Barathra curialis.

21a. Fore tibia of Barathra curialis.

PLATE XXIII.

1. Tceniocampa furfurata, harpe and clasper.
2. Teniocampa perbrunnea, harpe and clasper.
3. Teniocampa peredia, harpe and clasper.
4. Tonniocampa uniformis, harpe and clasper.
5. Teniocampa columbia, harpe and clasper.
6. Teniocampa rufula, harpe and clasper.
7. Teniocampa modifica, harpe and clasper.
8. Teniocampa utahensis, harpe and clasper.
9. Teniocampa oviduca, harpe and clasper.
10. Teniocampa incincta, harpe and elasper.
11. Teniocampa suffusa, harpe and clasper.
12. Teniocampa obtusa, harpe and clasper.
13. Teniocampa terminalis, harpe and clasper.
14. Teniocampa pectinata, harpe and clasper.
15. Teniocampa subfuscula, harpe and clasper.
16. Taniocampa incerta, Hufn. (European) harpe and clasper.
17. Teniocampa pacifica, harpe and clasper.
18. Teniocampa alia, harpe and elasper.
19. Teniocampa subterminalis, harpe and clasper.
20. Teniocampa garmani, harpe and clasper.
21. Taniocampa preses, harpe and clasper.

Genital Structure of the Teniocampine.

Genital Structure of the Teniocampine.

CATALOGUE OF THE DESCRIBED ARANE\& OF TEMPERATE NORTH AMERICA.*

BY
Dr. George Marx.

INTRODUCTION.

During the last few years I have prepared for my private use a card catalogue of the Aranete of temperate North America as described by both American and European authors. I derive constantly so much benefit from this work that, with the thought that it will be equally useful for my colaborers in American arachnology, I herewith present it in the form of a catalogue.

In the arrangement of the families I have adopted Professor Thorell's new system as offered in his important work, "On I)r. Bertkan's Classification of the Order Aranere" (Annals and Magazine of Natural History for April, 1886).

I have, however, made such changes in this arraugement as seemed necessary to me.

I first added to the suborder Tetrapneumones the tribus Uinbellitelarice for the family Hypochilide, for as Hypochilus possesses four distinct lamelar trachere or lungs, each provided with a separate stigma, it must be placed amougst the four-lunged spiders; but, as this geuus (constituting at preseut alone the family Hypochilid(e) differs so widely in its morphological and anatomical characters from any Tetrapmeumonic form, I found myself obliged to establish a separate tribus for this family-the Umbellitelarie, a name suggested to me by Professor Thorell.

The next change I have made is to separate such primitive families as the Filistutide aud Dysderide from the lowest tribus, the Tubitelarice of the second suborder Dipmeumones, and I have provided for these

[^55]families a new and separate tribus-the Filitelarice; I have, however, added to it the family Scytodide, a family which by its characteristic features belongs rather to the lower types than to the so much higher developed group-the Retitelaric. Professor Simon, in his "Arachn. de France," has already placed this family near the Dysderide.

I have further adopted, for the family Pholcider, Dahl's new tribus Plagitelarice, and removed it from the Retitelarice to near the preceding tribus, as the structural characters of this family, the weak extremities, and trophies, the peculiar form of the body, the arrangement of the eyes, and the peculiarly constructed male palpi, indicate in my opinion, a lower grade of development than that of the other Retitelarian families.

The American families treated in this catalogue now present the following scheme:

Order ARANEÆ.
Suborder I. TETRAPNEUMONES.
I. Tribus Territelarise. Family Calommatidæ. Family Theraphosidæ. Subfamily Eriodoutina. Subfamily Theraphosinæ.
II. Tribus Umbellitelarle. Family Hypochilidæ.

Suborder II. DIPNEUMONES.
III. Tribus Filitelarie.

Family Filistatidæ.
Family Dysderida.
Family Scytodidæ.
IV. Tribus Plagitelarie.

Family Pholcido.
V. Tribus Tubitelarie.

Family Drassidæ.
Family Dictynidæ.
Family Urocteidæ.
Family Clubionidæ.

Family Catadysidæ. Family Agalenidro. Family Dinopida.
VI. Tribus Retitelarie. Family Prodidomidæ. Family Theridiiæ.
VII. Tribus Orbitelarle.

Family Epeiride. Family Tetragnathidæ. Family Uloboride.
VIII. Tribus Laterigrade.

Family Thomisidæ. Subfamily Thomisinæ. Subfamily Philodrominæ.
F'amily Sparassidz.
IX. Tribus Citigrade.

Family Lycosida.
Family Oxyopidæ.
Family Podophthalmidæ.
X. Tribus Saltigrade.

Family Attidae. Subfamily Attinæ. Subfamily Lyssomaninæ.

Note.-The asterisk before a name signifies that this species has been described also from a foreign country. The reference notes are at the end of the catalogue.

Order ARANEA.

Suborder I Tetrapneumones.

Tribus I TERRITELARIA.

Family CALOMMATIDE.

1869. Subfamily Atypince Thorell. On Europ. Spid., p. 164.
1870. Subfamily Atypince Ausserer. Beitr. z. K. d. Territel., pp. 123, 129.
1871. Subfamily Atypince Id. Zweiter Beitr. z. K. d. Territel., p. 132.
1872. Atypide Bertkau. Vers. e. nat. Anordn. d. Spid.; Archiv. f. Naturg., XLIV, I, p. 362.
1873. Calommatoide Thorell. Primo Saggio sui Ragni Birmaui Anu. museo cir, Genoa, 1887-'88, p. 8.

ATYPUS.

Latreille. Nouv. Dict. d'Hist. Nat., xxiv, p. 133, 1804.
1805. Oletera Walck. Tabl. d. Aran., p. 7.
1832. Atypus Hentz. Am. Journ. Sc. and Art, xxi, p. 100.
1842. Atypus Id. Jourv. Bost. Soc. Nat. Hist., Iv, p. 223.
1861. Atypus Blackwell. Spid. of Gr. Brit., I, p. 14.
1869. Atypus Thorell. On Europ. Spid., p. 165.
1871. Atypus Ausserer. Beitr. z. Kenntn. d. Territel., pp. 125, 131.
1875. Atypus Id. Z weiter Beitr. z. K. d. Territel., pp. 133, 139.
1875. Atypus Hentz. Spid. of the U. S., ed. by Burgess, p. 19.
A. bicolor Lucas. Quelques observ. s. 1. genre Atypus. Aun. Soc. Ent. France, v. p. 216, pl. 5, fig. 5.
A. niger Hentz. Journ. Bost. Soc. Nat. Hist. Iv, p. 224. Id. Sp. U. S., ed., Burgess, p. 19, pl. 2, fig. 1. Mass. Md. D. C. Va.

Family THERAPHOSIDE.

1817. Territeles Latr. Cuvier's Règne Anim. iII, p. 79.
1818. Terrestres Sund. Gen. Aran. sinec., p. 10.
1819. Tetrapneumones Latr. Fam. Nat. du Règne Anim., p. 312.
1820. Theraphose Sund. Sveusk. Spindl. beser.
1821. Theraphosoide Thoreli. On Europ. Spid., p. 161.
1822. Theraphosoide Ausserer. Beitr. z. K. d. Territel. Eriodontiva Theraphosine.
1823. Theraphosoide Id. Zweiter Beitr. z. K. d. Territel.

Subfamily Eriodontine.

1871. Ausserer. Beitr, z. Kenntn. d. Territel., p. 134.

ANTRODI用TUS.

Ausserer. Beitr. z. Kenntn. d. Territel., p. 136. 1871.
1875. Ausserer. Zweiter Beitr. z. Kenntn. d. Territel., p. 133.
A. unicolor Hentz (Mygale) Journ. Bost. Soc. Nat. Hist., iv, p. 56. Id. Spid, U. S., ed., Burgess, p. 18, pl. 1, fig. 5. Ala.

Ausserer, Beitr. z. Kenntn. d. Territel., p. 136,

Subfamily Theraphosine.

1869. Thorell. On Europ. Spid., p. 164.
1870. Ausserer. Beitr. z. Kenntn. d. Territel., p. 136.

PACHYLOSCELIS.

Lucas. Sur un nouv. genre. Anu. Soc. Ent. France, ini, p. 361. 1833, ad part.
1833. Cratoscelis Lucas ibid.
1837. Sphodros Walck. Ins. Apt. I, p. 247 ad part.
1837. Actinopus Lucas. Observat. s. 1. Aran. Ann. Soc. Ent. France, vi, p. 369,
1842. Sphodros Walck. Ins. Apt. II, p. 437.
1864. Sphodros Simon. Hist. Nat. d'Araign., p. 89 ad part.
1871. Pachyloscelis Ausserer. Beitr. z. K. d. Territel., pp. 125, 138.
1875. Pachyloscelis Id. Zweiter Beitr. z. K. d. Territel., p. 133.
P. rufipes Lincas. Sur un nouv. genre, etc. Ann. Soc. Ent. France, ini, p. 361. Philad'a.
——Ausserer. Beitr. z. K. d. Territel., p. 139.
Cratoscelis rufipes Luc. Ann. Soc. Ent. France, iif, p. 361, pl. 7, fig. 1.
Sphodios lucasi Walck. Ins. Apt., I, p. 250.
Actinopus rufipes Luc. Ann. Soc. Ent. France, vi, p. 376.

ACTINOPUS.

Perty. Delect. anim., ete., p. 198. 1834.
1833. Pachyloscelis Lucas. Ann. Soc. Ent. France, III, p. 361 ad part.
1837. Sphodros Walck. Ins. Apt., I, p. 250 ad part.
1837. Actinopus Lucas. Observ. s. l. Aran. Ann. Soc. Ent. France, vi, p. 377.
1864. Sphodros Simou. Hist. Nat. d'Araign., p. 89 ad part.
1871. Actinopus Ausserer. Beitr. z. K. d. Territel., pp. 126, 140.
A. pertyi Lucas. Ann. Soc. Ent. France, vi, p. 377.

CHLOSTEROCHILUS.

Ausserer. Beitr. z. Kenntn. d. Territel., pp. 125, 141. 1871.
1875. Ausserer. Zweit. Beitr. z. Kenntn. d. Territel., pp. 130, 131, 134.
1833. Pachyloscelis Lucas. Ann. Soc. Ent. France, iif, p. 361 ad part.
1837. Sphodros Walck. Ins. Apt., I, p. 247 ad part.
1841. Mygale Hentz. Journ. Bost. Soc. Nat. Hist., Iv, p. 56 ad part.
1864. Sphodros Simon. Hist. Nat. d'Araign., p. 89 ad part.
C. gracilis Hentz (Mygale). Journ. Bost. Soc. Nat. Hist., IV, p. 56. Id., Sp. U. S. ed. Burgess, p. 17, pl. i, fig. 4. Ala.
———Ausserer. Beitr. z. Kenntn. d. Territel., p. 142.

THERAGRETES.

Ausserer. Beitr. z. Kenntn. d. Territel., p. 142. 1871.
1837. Sphodros Walck. Ins. Apt., I, p. 247 ad part.
1837. Actinopus Lucas. Ann. Soc. Ent. France, vi, p. 377 ad part.
1864. Sphodros Simon. Hist. Nat. d'Araign., p. 89 ad part.
T. walkenærii Lucas (Actinopus). Ann. Soc. Eut. Frauce, vi, p. 377. Ga.

Sphodros abbotii of Walck. Abbot Ga. Sp, Ins. Apt. I, p. 247.

MADOGNATHA.

Ausserer. Beitr. z. Kenntı. d. Territel., p. 143. 1871.
1837. Sphodros Walck. Ius. Apt. I, p. 247 ad part.
1837. Actinopus Lucas. Aun. Soc. Ent. France, vi, p. 377 ad part.
1864. Sphodros Simon. Hist. Nat. d'Araign., p. 89 ad part.
M. abbotii Walek. (Sphodros) of Abbot Ga. Sp. Ins. Apt., I, p. 247.

Sphodros Milbertii đ Walck. Ibid., p. 249.
Actinopus Abbotii Lucas. Aun. Soc. Ent. France, vi, p. 37\%. (Here did Lucas show that Sphodros milbertii Walck. of was the male of Sphodros dbbotii and that Sphodros Abbotii Walck. क belonged to a different species, which he named Actinopus walkenterii.)

CYCLOCOSMIA.

Ausserer. Beitr. z. Kenutu. d. Territel., p. 144. 1871.
1841. Mygale Hentz. Journ. Bost. Soc. Nat. His., iv, p. 55, ad part.
C. truncata Hentz (Mygale). Journ. Bost. Soc. Nat. Hist., IV, p. 5\%. Id., Sp. U. S., ed. Burgess, p. 16, pl. I, fig. 1, Ala.

PACHYLOMERUS.

Ausserer. Beitr. z. K. d. Territel., p. 145. 1871.
1886. Atkinson. Entom. Americana, iI, p. 133.
P. carabivorus Atkinson. Entom. Americana, If, p. 1333, pl. v, figs. 1, 4, 20, N. C.,
——Id. Am. Naturalist, xx, p. 583, pl. 23, fig, 1-7; pl. 24, fig. 1-8.
P. carolinensis Hentz (Mygale). Journ. Bost. Soc. Nat. Hist., iv, p. 56. Id., Sp. U. S., ed. Burgess, p. 17, pl. 1, fig. 3, N. C., Ala., D. C., Va.
——Ausserer. Beitr. z. K. d. Territel., p. 147.
——Atkinson. Entom. Americana, II, p. 135. pl. 5., fig. 2, 3, 20.
Mygale solticialis of of carolinensis, Heutz. Journ. Bost. Soc. Nat. Hist., Iv, p. 56. Id., Sp. U. S., ed. Burgess, p. 17, pl. 1, fig. 2.

Pachylomerus solsticialis (not* 1) Ausserer. Beitr. z. K. d. Territel., p. 147.
Pachylomerus solsticialis Atkinson. Entom. Americana, II, p. 135.
P. emarginatus Atkinson. Ibid., p. 134. (A variety of carabivorus, N. C.)
P. quadrispinosus Atkinson. Ibid., p. 136, N. C.
P. solstitialis Hentz (Mygale), đ of carolinensis.
P. turris Atkinson. Entom. Americana, iI, p. 92, pl. 4, fig. 15, 16, N. C.
——Id. Ibid., p. 109.
Id. Ibid., p. 136, pl. 5, fig. 5.

NIDIVALVATA.

Athinson. Entom. Americana, II, p. 129.
N. angustata Atkinson. Ibid., p. 130, N. C.
N. marxii Atkiuson. Ibid., pp. 111-116, 130, pl. 5, fig. 8, 9, 10, 13, 23, N. C.

MYRMEKIAPHILA.

Atkinson. Eutom. Americana, II, p. 131.
M. foliata Atkinson. Ibid., pp, 113, 116, 131, N. C.

CTENIZA.

Latreille. Hist. Nat. du Règne animal, p. 315. 1825.
1825. Mygate Walck. Fanne Franc. Aran., p. 4.
1829. Cteniza Latr. Cuvier's Règne animal, ed. ıv, p. 230.
1840. Actinopus Westwood. On Trapioor Spid., p. 175.
1864. Mygalodonta Simon. Hist. Nat. d'Araign., p. 75.
1869. Nemesia Thorell. On Europ. Spid., p. 166.
1871. Cteniza Ausserer. Beitr. z. K. d. Territel., p. 151.
1875. Cteniza Id. Zweiter Beitr. z. K. d. Territel., pp. 130, 131, 134.
C. californica Cambridge. Specitic. descr., etc., p. 260-264, pl. 15, fig. B. California.
-_ Ausserer. Zweiter Beitr. z. K. d. Territel., p. 148.
EURYPELMA.
C. Koch. Uebers. d. Arachn., Systems V, p. 73. 1850.
1850. Lasivdora C. Koch. Ibid., p. 72.
1869. Avıcularia Thorell. On Europ. Spid., p. 168.
1871. Eurypelma Ausserer. Beitr. z. K. d. Territel., p. 208.
E. californica Doleschall (Theraphosa). MSS., p. 8. California.
——Ausserer. Beitr. z. K. d. Territel., p. 214.
E. hentzii Girard (Mygale). Marcy's Expl. of the Red Riv. of La., 1852, p. 251, pl. 16, fig. 1-3, La., Tex., Kans.

- Cragin. Contrib. to Knowl. of Arachn. of Kansas. Bull. Washburn Coll., i, No. 4, p. 145.
E. leiogaster Doleschall (Theraphosa). MSS., p. 14. California.
--Ausserer. Beitr. z. K. d. Territel., p. 214.
E. mordax Ausserer. Beitr. z. K. d. Territel., p. 211. Texas.
E. rileyi Marx. Proceed. Entom. Soc. Washington, I, p. 116. California.
E. steindachnerii Ausserer. Zweiter Beitr. z. K. d. Territel., p. 199, pl. 7, figs. 43, 44. N. Mex.

BRACHYBOTHRIUM.

Simon. Bull. Soc. Zool., IX, p. 313. 1884.
B. accentuatum Simon. Ibid., (p. 3). N. C.
B. pacificum Simon. Ibid., p. 313; p. 2, Wash.

HEXURA.

Simon. Bull. Soc. Zool., Ix, p. 316. 1884.
H. picea Simon. Ibid., p. 3. Wash.

ATYPOIDES.

Cambridge. Proceed. Lond. Zool. Soc., p. 354. 1883.
A. riversii Cambridge. Ibid., p. 355, pl. 36, fig. 2. California.

Mygale Walck (Note :) .
M. carolinensis Hentz $=$ Pachylomerus carolinensis.
M. fluviatilis Hentz. Journ. Bost. Soc. Nat. Hist., VI, p. 286. Id., Sp. U. S., ed. Burgess, p. 159, pl. 17, fig. 15. Ala.
M. gracilis Hentz $=$ Chlosterochilus gracilis.
M. notasiana Walck. Ins. Apt., I, p. 230. Port Jackson, Louisiana.

Mygale inedite de la Nouv. Orleans. Latreille Nouv. Dict. d'Hist. Nat., xxrv, p. 133.
M. solstitialis Hentz $=$ § of Pachylomerus carolinensis.
M. truncata Hentz = Cyclocosmia truncata.
M. unicolor $\mathrm{Hentz}=$ Antrodietus unicolor.

Tribus II UMBELLITELARIE.

Family HYPOCHILIDE.
Marx. Entomologica Americana, Iv, p. 160. 1888.

HYPOCHILUS.

Marx. Entom. Americ., Iv, p. 160. 1888.
H. thorellii Marx. Ibid., p. 160, pl. 1, fig. 1-13. Tenn., Ga.

Suborder II Dipneumones.

Tribus III FILITELARIE.

Family FILISTATIDA.

1867. Ausserer. Die Arachn. Tirols, i, p. 140.
1868. Thorell. On Europ. Spiders, p. 158.

FILISTATA.

Latreille. Consid. gén. sur les Crust., les Arachn. et les Ius., p. 121. 1810.
1832. Hentz. Am. Journ, of Science and Art, Xxi, p. 101.
1839. Teratodes C. Koch. Die Arachn., v, p. 6.
1812. Filistata Hentz. Journ. Bost. Soc. Nat. Hist., iv, p. 2:6.
1869. Filistata Thorell. On Europ. Spid., p. 160.
1875. Filistata Hentz. Spid. U. S., ed. by Burgess, p. 2\%.
F. capitata Hentz. Journ. Bost. Soc. Nat. Hist., 1 y, p. 228 . $I \vec{a} ., \mathrm{Sp} . \mathrm{U} . \mathrm{S} .$, ed. Burgess, p. 24, pl. 2, fig. 7.
——Keyserling N. Sp. a. Am. I Verh. d. z. bot. Ges. Wien, 1879, p. 345 (55), pl. 4, fig. 33.
Theratodes depressus C. Koch Die Arachn., Ix, p. 103, fig. 755.
F. hibernalis Hentz. Journ. Bost. Soc. Nat. Hist., iv, p. 227. Id., Sp. U. S., ed. Burg ss, p. 23, pl. 2, fig. 6.
———Keyserling. N. Sp. a. Am. I Verh. d. z. b. Ges. Wien, 1879, p. 348 (58).
Family DYSDERIDE.
1837. Dysderides C. Koch. Uebers. d. Arachn., Syst. 1, p. 20.
1869. Dysderoide Thorell. On Europ. Spid., p. 152.
1890. Dysderide Emerton. Trans. Comi., ac. viri., p. 36.

DYSDERA.

Latreille. Nonv. Dict. d'Hist. Nat., Xxiv, p. 134. 1804.
1832. Hentz. Am. Journ. Sc. and Art, Xxi, p. 101.
1837. Walck. Ins. Apt. i, p. 261 (les Agones).
1842. Hentz. Journ. Bost. Soc. Nat. Hist., IV, p. 224.
1869. Thorell. On Europ. Spid., p. 157.
1875. Hentz. Sp. U. S., ed. Burgess, p. 20.
*D. crocata C. Koch. Die Arachn., v, p. 81, figs. 392-394, Mass., Md., D. C., Va.
Interrita Hentz. Journ. Bost. Soc. Nat. Hist., iv, p. 224 ; Id., Sp. U. S., ed. Burgess, p. 20, pl. 2, tig. 1.

- Emerton. N. Engl. Drass., Agal. and Dysd. Trans. Conn., Ac. vini, 1890, p. 36, pl. 8, fig. 2. Mass.
D. interrita Hentz = crocata.

ARIADNE.

Sav. et Aud. Descr. de l'Égypte, ed. 2, xxir, p. 308. 1825-'27.
1869. Thorell. On Europ. Spid., p. 155.
1842. Pylarus Hentz. Jouru. Bos. Soc. Nat. Hist., IV. p. 225.
1875. Pylarus Id. Sp. U. S., ed. by Burgess, p. 20.
A. bicolor Hentz (Pylarus). Journ. Bost. Soc. Nat. Hist., iv, p. 2e5; Id., Spid. U. S., ed. Burgess, p. 21, pl. 2, fig. 3. Ala., Fla., Ohio, Va., D. C., Md., Pa., R. I. Mass.
———Emerton. N. Engl. Drass., Agal. and Dysd. Trans. Co in., Ac. viil, 1890, p. 37, pi. 8, fig. 3. Mass., Conn., L. Isl.
A. pumilis Hentz (Pylarus). Ibid., p. :26; Id., ilid., p. $\because 2$, pl. 2, fig. 5. N. C., Ala.

Family SCYTODID※.

1864. Scytodiformis Simon. Hist. Nat. d'Araign., p. 43.
1865. Seytodide Blackw. Spid. of Gr. Brit. ir, p. 379.
1866. Scytodoide Thorell. Ou Europ. Spid., p. 103, ad part.
1867. Scytodoide Keyserling. Verh. d. z. b. Ges. Wien, p. 205.
1868. Scytodine Emerton. N. Engl. Terid., Trans. Cona. Ac., vi, p. 31 ad part.

SCYTODES.

Latreille. Nouv. Diction. d'Hist. Nat., xxiv, p. 134 ad part. 1804.
1869. Thorell. On Europ. Spid., p. 103.
S. cameratus $=$ thoracica.
*S. thoracica Latr. (Aranea). Tabl. Meth. d. Ins. in Nouv. d'Hist. Nat., xxiv, p. 134. Mass., Ala., D. C.
-_ Thorell. On Europ. Spid., p. 103.
—— Emerton. N. Engl. Therid., Trans. Conn. Ac., vr. p. 31, pl. 6, fig. 4. cameratus Hentz. Journ. Bost. Soc. Nat. Hist., vı, p. 35 ; Id., Spid. U. S., ed. Burgess, p. 141, pl. 15, fig. 17.

LOXOSCELES.

Hein $\oint^{\text {E }}$ Lowe. Desc. of two sp. of Aran., Zool. Journ, v, p. 321, 1831.
1833. Omositcs Walck. Mem. s. une nouv. Classif. d'Aran., p. 438.
1837. Scytodes Walck. Ins. Apt., I, p. 270 ad part; two Fam. (les Deprimées).
1864. Omosita. Simon Hist. Nat. d'Araign., p. 50.
L. rufescens Dufour. Descr. de ving Arachn. Ann. (ieneral d. Science Phys., iv, p. 204. Fla.
L. unicolor Keyserling. N. Spid. a. Am., vif, Virh. d. z. b. Ges. Wien, 18oi, p. 474, pl. 6, fig. 46. N. Mex.

Tribus IV PLAGITELARIA.

Family PHOLCIDE.

1850. Pho cides C. Koch. Uebers d. Arachn., Syst. v, p. 31.
1851. Phalangoidiens Simon. Hist. Nat, d'Araignées, p, 43.
1852. Pholcine (subfam.) Thorell. On Europ. Spid., p. 101.
1853. Pholcide Simon. Arachn. de France, I, p. 254.
1854. Scytodine Emerton. N. Engl. Therid. Trans. Conn. Ac., vi (ad partem), p. 30.

PHOLCUS.

Walck. Tabl. d'Aran., p. 80 (ad part.), 1805.
1832. Hentz. Am. Journ. Sc. and Arts, xxi, p. 103.
1850. Id. Journ. Bost. Soc. Nat. Hist., vi, p. 284.
1875. Id. Spid. of the U. S., ed. by Burgess, p. 157.
1884. Emerton. N. Eugl. Therid., Trans. Conn. Ac., vi, p. 30.
P. atlanticus $\mathrm{Hentz}=$ phalangioides.
P. cornutus Keyserling. N. Sp. a. m., viI. Verh. d. z. b. Ges. Wien, 1887, p. 475, pl. 6, fig. 47. D. C.
P. gibbosus Keyserling. Amerik. Phole., Neytod, and J)ysterid. Verh. d. z. b. Ges. Wien, 1877, p. 208. Ariz.
*P. phalangioides Fuessl. (Aranea). Verz. d. Schweizer Insekten, 1775. U. S.
——Blackw. Spid. fr. Canada. Ann. and Mag. of Nat. Hist., xvif,p. 77. Canada.
——Emerton. N. Eugl. Therid., Traus. Conn. Ac., vi, p. 30, pl. 6, fig. 2.
atlanticus Hentz. Journ. Bcst. Soc. Nat. Hist., VI, 1. 284. Id., Sp. U. S., ed. Burgess, p. 157, pl. 17, fig. 7.
P. pullulus Hentz (Theridium). Journ. Bost. Soc. Nat. Hist., vr, p. 2~2. Id., Sp. U. S., ed. Burgess, p. 155, pl. 17, fig. 5. Ala., Colo., D. C.

Thorell. Arachn. Coll. in Colorado, Bull. U. S. Geol. Surv. Terr., ini, No. 2, p. 48 r

SPERMOPHORA.

Hentz. Am. Journ. of Sc. and Arts, xli, p. 116. 1841.
1869. Thorell. On European Spiders, p. 102.
1850. Oophora Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 285.
S. meridionalis Hentz. Am, Journ, of Seiences and Arte, Xli, p. 116. Ala., D. C. Conn., Mass.
-_Emerton. N. Engl. Therid. Trans. Conn. Ac., vr, p. 31, pl. 6, fig. 3.
Oophora meridionalis Hentz. Journ. Bust. Soe. Nat. Hist., vi, p. 285. Id., Sp. U. S., ed. Burgess, p. 159, pl. 17, fig. 9.

Tribus, V TUBITELARIE.

Family DRASSIDA.

1833. Drassides Sundev. Conspect. Arachn., p. 17 ad part.
1834. Drassiformis Simon. Hist. Nat. d'Araign.
1835. Drasside L. Koch. Dio Arachn. fam. d. Drassiden.
1836. Drassoide Thorell. On Europ. Spid., p. 137.
1837. Drasside Simon. Arachn. de France, iv, p. 1.
1838. Drasside Emerton. Trans. Conn. Ac. viir, p. 1.

MICARIA.

Westring. Foerteckn., etc., p. 46. 1851.
1832. Herpyllus Hentz. Am. Journ. Sc. and Arts, p. 102 ad part.
1861. Micaria Westring. Aran. Suecic., p. 330.
1864. Micaria Simon. Hist. Nat. d'Araign., p. 112.
1866. Micaria L. Koch. Draissiden, pp. 2, 52.
1869. Micaria Thorell. On Europ. Spid., p. 146.
1878. Micaria Simon. Arachn. de France, iv, p. 5.
M. aurata Hentz (Herpyllus). Journ. Bost. Soc. Nat. Hist., v, p. 459 ; Id., Spid. U. S., ed. Burgess, p. 96, pl. ir, fig. 15, Ala., Fla., La. Tex.
M. longipes Emerton. N. Engl. Drass,, Agal. and Dysl. Trans. Coun. Ac., virl, 1890, p. 3, pl. 3, fig. 1. Mass.
M. montana Emerton. Ibid., p. 4, pl. 3, fig. 2. New Hampshire.

DRASSUS.

Walck: Tabl. d'Aran., p. 45. 1805.
1832. Herpyllus Hentz. Am. Journ. Sc. and Arts, p. 102 ad part.
1861. Drassus Blackw. Spid. Gr. Brit., I, p. 104 ad part.
1866. Drassus L. Koch. Drassiden, pp. 2, 76.
1869. Drassus Thorell. On Earop. Spid., p. 147.
1878. Drassus Simon. Arachn. de France, iv, p. 101.
1890. Drassus Emerton. Trans. Conn. Ac., Viri, p. 14.
D. capulatus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 621. Ga.
D. coloradensis Emerton. Append. to Thorell's Deser. of Arau. coll. in Col.; Bull. U. S. (ieol. Surv. Terr., iir, No. 2 , p. 528. Colo.
D. diversus Blackw. Spid. fr. Montreal, Ann. and Mag. Nat. Hist., vini, p, 4:9. Canada.
D. hunterae Blackw. Ibid., p. 429. Canada.
D. neclectus Keyserling. N. Spid. a. Am., vif ; Verh. d. z. b. Ges. Wein, 1887, p. 434. N. America.
D. nocturnus Walck. Ins. Apt., I, p. 615. Canada.
-_Blackw. Spid. from Canada; Ann. and Mag. Nat. Hist., xvir, p. 41.
D. robustus Emurton. N. Engl. Drass., Agal. ani Dysel. Trans. Conn. Ac., viri, 1890, p. 15, pl. 4, fig. 4. Mass.
D. saccatus Emerton. I luid., p. 14, pl. 4, fig. 7.
D. ocellatus Walck. Abbot Ga. Sp.; Ius. Apt., I, p. 621. Ga.
D. vasifer Walck. Abbot Ga. Sp.; Ins. Apt., II, p. 620. Carolina.
——Blackw. Spiders from Canada. Ann. and Mag. Nat. Hist., xvir, 1840̂, p. 41. Canada.

Blackw. Spiāers from Montreal. Ibid., viir, 1871, p. 429. Canada.

TEMINIUS.

Keyserling. N. Sp. a. Am., vir. Verh. d. z. b. Ges. Wien, p. 421. 1887.
T. continentalis Keyserling. Ibid., p. 423, pl. 6, fig. 2. Utah.

PYTHONISSA.

C. Koch. Uebers d. Arachn., Syst., I, p. 16. 1837.
1861. Westring. Aran. Suec., p. 350.
1864. Simon. Hist. Nat. d'Araign., p. 120.
1874. Callilepis Westr. Bem. Arachu., v, Thorell, p. 43.
1878. Pythonissa Simon. Arachn. de France, Iv, p. 192.
P. clara Keyserling. N. Sp. a. Am., Vif. Verh. d. z. b. Ges. Wien, 1887, p. 429, pl. 6, fig. 6. Utah.
P. imbecilla Keyserling. Ibid., p. 427, pl 6, fig. 5. Ky.
—— Emerton. N. Engl. Drass., Agal., and Dysd. Trans. Conn. Ac., viil, 1890, p. 13, pl. 4, fig. 6. N. H., Mass.

PROSTHESIMA.

L. Koch. Aptera a. d. fr. Jura.; Abh. d. Nat. f. Ges. Nuernbg., v, p. 13. 1872.
1832. Herpyllus Hentz. Am. Journ. Sc. and Arts, p. 102 ad part.
1833. Melanophora C. Koch. Herr-Schaeff. Deutschl. Ins., 120, 20, 30.
1866. Melanophora L. Koch. Drassiden, pp. 2, 142.
1866. Melanophora Menge. Preuss. Spinn., p. 303.
1869. Melanophora Thorell. On Europ. Spid., p. 149.
1878. Prosthesima Simon. Arachn. de France, rv, p. 37.
P. atra (Herpyllus). Journ. Bost. Soc. Nit. Hist., v, p. 45i. Id., Spid. U. S., ed. Burgess, p. 91, pl. 11, fig. 3. Pa., N. Engl., Ohio, D. C., Va., Md., Utab, Colo., Cal.
——Emerton. N. Engl. Drass., Agal., and Dyst. Trans. Conn. Ac., viri, 1890, p. 8, pl. 3, fig. 6.
funesta Keyserling. N. Spid. a. Am., viI. Verb. d. z. b. Ges. Wien, 1887, p. 431, pl. 6, fig. 6.
melancholica Thorell. Aran. coll. in Colo. Bull. U. S. Geol. Surv., Terr., in, No. 2, p. 493.
P. bicolor Hentz (Herpyllus). Journ. Bost. Soc. Nat. Hist., v, p. 456. Id., Spisl. U. S., ed. Burgess, p. 91, pl. 11, fig. 4. N. C., Ala., Ohio, Va., D. C., Md.
P. bimaculata Keyserling. N. Spid. a. Am., vir. Verh. d. z. 1. Ges. Wien, 1887, p. 433, pl. 6, fig. 9. Mass.
P. depressa Emerton. N. Engl. Drass., Agal. and Dysi. Trans. Conu. Ac., viri, 1890, p. 9, pl. 3, fig. 8. Mass.
P. ecclesiastica Hentz. Junrn. Bost. Soc. Nat. Hist., v, 455. Id., Spid. U. S., ed. Burgess, p. 90, pl. 11, fig. 2. U. S.
———Emerton. N. Engl. Drass., Agal., and Dysil. Trans. Conn. Ac., viri, 1890, p. 9, pl. 3, fig. 7.
propinqua Keyserling. N. Spid. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 430, pl. 6, fig. 7.
P. funesta Keyserling = atra.
P. melancholica Thorell $=a t r a$.

GNAPHOSA.

Latreille. Nouv. Dict. d'Hist. Nat., xxiv, p. 134. 1804.
1832. Herpyllus Hentz. Am. Journ. Sci. and Arts, p. 102, ad part.
1866. Menge Preuss. Spinn., p. 301.
1866. Pythonissa L. Koch. Drassiden, p. 6, ad part.
1869. Gnaphosa Thorell. On Europ. Spid., p. 143.
1878. Gnaphosa Simon. Arachn. de France, iv, p. 163.
G. brumalis Thorell. Spid. fr. Labrador. Proc. Bost. Soc. Nat. Hist., xvir, p. 497. Labrador, Mass., Colo., N. H.
——Emerton. N. Engl. Drass.; Agal., and Dysd. Trans. Conn. Ac., viri, 1890, p. 11, pl. 3, fig. 5.
scudderi Thorell. Arav. coll. in Colo. Bull. U. S. Geol. Surv., Terr., inf, No. 2, p. 491.
G. conspersa Thorell. Aran. coll. in Colo. Bull. U. S. Geol. Surv., Terr., iri, No. 2, p. 489. Colo., N. Engl., N. Y.
——Emerton. N. Engì. Drass., Agal., and Dssd. Trans. Conn. Ac., viil, 1890, p. 12, pl. 4, fig. 4.
giganthea Keyserling. N. Spid. a. Am., viI. Verh. d. z. Ges. Wien, 1887, p. 424, pl. 6, fig. 3. N. Y.
G. fontinalis Keyserling. Ilid., p. 428, pl. 6, fig. 4. Ky.
G. giganthea Keyserling = conspersa.
G. scudderii Thorell. = brumalis.

PGECILOCHROA.

Westring. Bemerk. u. d. Aracln. Abl., v, Thorell. 1874.
1878. Simon. Arachn. de France, iv, p. 157.
1890. Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., viri, p. 10.
P. bilineata Mentz (Herpyllus). Journ. Bost. Soc. Nat. Hist., r, p. 456. Id., Spid. IT. S., ed. Burgess, p. 92, pl. 11, lig. 5. N. C., Ala., D. C., Va.
-_ Emerton. N. Engl. Drass., etc. Trans. Coun. Ac., vini, 1890, p. 11, pl. 4, fig. 3.
P. montana Emerton. Ibid., p. 11, pl. 4, fig. 2.
P. variegata Hent\% (Herpyllus). Journ. Bost. Soc. Nat. Hist., v, p. 458. Id., Spid. U. S., ed. Burgess, p. 94, pl. 11, fig. 12. Mass., N. C., Ky., N. H., Conn., D. C., Pa., Va., Utah.

Emerton. N. Engl. Drass., etc. Trans. Comn. Ac., vili, 1ベ90, p. 10, pl. 4, fig. 1.

HERPYLLUS (Note 4).

Hentz. Amer. Journ. of Science and Arts, Xxi, p. 102. 1832.
1847. Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 454.
1875. Hentz. Spid. U. S., ed. by Burgess, p. 90.
H. alarius Hentz $=$ Phrurolithus alarius.
H. ater Hentz = Prosthesima atra.
H. auratus Hentz = Micaria aurata.
H. bicolor Hentz = Prosthesima bicolor:
H. bilineatus Hentz = Pocilochroa bilineata.
H. crocatus Hentz $=\delta$ Tharguliu crocata.
H. cruciger Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 458. Id., Spid. U. S., ed. Burgess, p. 95, pl. 11, fig. 11. N. C.
H. descriptus Hentz $=$ o Thargalia crocata .
H. dubius Hentz = Phrurolithus dubius.
H. ecclesiasticus Hentz = Prosthesima ceclesiastica.
H. longipalpis Hentz = Thargutia longipalpis.
H. marmoratus Hentz = Thargalia marmorala.
H. ornatus Hentz = Thargulia ornata.
H. parcus Hentz = Phruolithis parcus.
H. pygmœия Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 459. Id., Spid. U. S., ed. Burgess, p. 96, pl. 11, fig. 16. Ala.
H. ramulosus Hentz. Ibid., p. 459. Id., ibid., p. 95, pl. 11, fig. 14.
H. trilineatus Hentz = Thargalia trilineata.
H. variegatus Hentz $=$ Pacilochroa variegata.
H. vespa Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 45s. Id., Spid. U. S., ed. Burgess, p. 95, pl. 11, fig. 13. Ala., Tenu., D. C., Va.
H. zonarius Heutz=Tharqalia zonaria.

Family DICTYNIDE.

1840. Ciniflonide Blackw. Trans. Linnean Soc., xvini, p. 4, p. 601.
1841. Tubicola Dolesch. Syst. Verzeichu., etc., p. 14 ad part.

18ti. Ciniflonide Blackw. Spid. of Gr. Brit., 1, p. 139.
1869. Amaurobine Subfam. Thorell on Europ. Spiders, p. 121.
1870. Dictynide Simon. Arañ. nouv. du midi de l'Europe.
1872. Dictynide Cambridge. Gen. list. of Sp. fr. Palestine and Syria, pp. 212, 260.
1874. Dictynides Simon. Arachn. de France, r, p. 175.
1888. Ciniflonida (Note 4) Emerton. Trans. Conn. Ac., vii, ad part.

DICTYNA.

Sundyvall. Consp. Arachn., p. 16. 1833.
1840. Ergatis Blackw. The diff. in the n. of Eyes, etc., p. 608.
1840. Operaria Blatkw. Proceed. of the Linn. Soc., I, p. 66.
1847. Argus Walek. Ins. Apt., iv, p. 500 (ad max. part).
1888. Dictyna Emerton. N. Engl. Ciniflon. Trans. Conn. Ac., vir, p. 444.
"D. annulipes Blackw. (Ergatis). Spul. from Canada. Anm. and Mag. of Nat. Hist., xvir, p. 42. Canada.
D. arundinaceoides Keyserling. N. Sp. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 665 (19), pl. 21, fig. 14. Col.
D. borealis Keyserling. Ibid., vir, ibid., 1837, p. 473 (53), pl. 6, fig. 34. Point Barrow, Alaska.
D. bostonensis Emerton. N. Engl. Cinitlonide. Trans. Conn. Ae., vir, p. 447, pl. 9, fig. 3. Mass.
D. cruciata Id. Ibid., p. 448, pl. 9, fig. 6. Mass., Conn.
D. diligens Blackw. (Ergatis). Spid. fr. Montreal. Amn, and Mar. Nat. Hist., viII, p. 429. Cañada.
D. foliata Keyserling. N. Sp. a. Am., Iv. Ver. d. z. b. Ges. Wien, 1882, p. 216, (24), pl. 15, fig. 15. Colo.
D. frondea Emerton. N. Engl. Cinitl. Trans. Comn. Ace, vif, p. 44, pl. 9, tig. 9. N. Engl.
D. longispina Id. Ibid., p. 446, pl. 9, fig. 4. Mass.
D. minuta Id. Ibid., p. 447, pl. 9, fig. 5. Conn., R. I.
D. muraria Id. Ibid., p. 445, pl. 9, fig. 1. N. H., Mass., N. Y., Conn. (probably arundinaceoides Ksl.).
D. pallida Keyserling. N. Sp. a. Am., VIf. Verh. d. z. b. Ges. Wien, 1887, p. 472 (52), pl. 6, fig. 33. D. C., Va.
D. rubra Emerton. N. Engl. Cinifl. Trans. Conn. Ac., vir, p. 448, pl. 9, fig. 7. Conn., Mass.
D. sedentaria Keyserling. N. Sp. a. Am., ir. Verh. d. z. b. Ges. Wien, 1880, p. 515 (29), pl. 16, fig. 20. Md., D. C.
D. vittata Keyserling. N. Sp. a. Am., V. Ibid., 1883, p. 663 (17), pl. 21, fig. 12. D. C.
D. volucripes Keyserling. N. Sp. a. Am., iII. Ibid., 1881, p. 286 (20), pl. 2, fig. 2. Mass., D. C., Md.
-_Emerton. N. Engl. Cinifl. Trans. Conn. Ac., vir, p. 446, pl. 9, fig. 2, pl. 2, fig. 3.
D. volupis Kerserling. N. Sp. a. Am., III. Verh. d. z. b. Ges. Wien, 1881, p. 285 (19), pl. 2, fig. 10. Mass., D. C.
——Keyserling. N. Sp. a. Am. v. Ibid., 1883, p. 663 (18), pl. 21, fig. 13.
Emerton. N. Engl. Cinifl. Trans. Conn. Ac., vif, p. 448, pl. 9, fig. 8.

AMAUROBIUS.

C. Koch. Uebers. d'Arachn. Syst., I, p. 15 ad part. 1837.

1841. Ciniflo. Blackw. The differ, in the numb. of Eyes, etc., p. 607.
1842. Ciniflo Id. Sp. of Gr. Brit., r, p. 139.
1843. Amaurobius Emerton. N. Engl. Cinifl. Trans. Conn. Ac., vir, p. 450.
A. bennetti Blackw. Spid. fr. Canada. Ann. and Mag. of Nat. Hist., xvif, p. 41. Canada.
*A. claustrarius C. Koch. Die Arachn., xı, p. 114, fig. 830. D. C., Dak., Pa., Colo., Wro., Oregon.
*A. ferox Walck. (Clubionu). Ins. Apt., I, p. 606. N. Eugl., Pa., D. C., Cal., Dak., Mont.
——Emerton. N. Engl. Cinifl. Trans. Conn. Ac., vir, p. 451. Mass., R. I., C'onn.
A. nevadensis Simon. Bull. Soc. Zool., Ix, p. 12, sep. Nev.
A. pictus Simon. lbid. Wash.
A. severus Simon. Ibid. Wash.
A. sylvestris Emerton. N. Engl. Cinifl. Trans. Conv. Ac., vir, p. 451, pl. 10, fig. 1. N. Engl., (probably claustrarius).
A. tibialis Emerton. Ibid., p. 452, pl. 10, fig. 3. N. H.

TITANGECA.

Thorell. On Europ. Spid., p. 124. 1869.
T. americana Emerton. N. Eugl. Cinifl. Trans. Conn. Ac., vii, p. 453, pl. 10, fig. 4. Conn., N. H.
T. brunnea Emerton. Ibid., p. 453, pl. 10, fig. 5. Conn.

Family UROCTEIDE (Note 5).
1869. Thorell. On Europ. Spid., p. 110.
1875. Simon. Arachn. de France, ir, p. 1.

THALAMIA.

Hentz. Jouru. Bost. Soc. Nat. Hist., vi, p. 31. 1850.

1875. Id. Spid. of the U. S., ed. by Burgess, p. 140.
T. parietalis Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 31. Id., Spid. U. S., ed, Burgess, p. 141 pl. 15, fig. 16. Ala.

Family CLUBIONIDE.

1878. Clubionince (subfam.) Simon. Arachn. de France, iv, p. 208. 1889. Marx (Note 6).

ANYPHENA.

Sundev. Sv. Spindl. Bescr. Vet. Akad. Handi., p. 125. 1831.
1866. L. Koch. Die Arachn. fam. d. Drassiden, pp. 2, 194.
1869. Thorell. On Europ. Spid, p. 143.
1875. Simon. Arachu. de France, iv, p. 265.

187\%. Bertkan. Vers. e. nat. Anordn. d. Spinn. Arch. f. Naturgesch., xliv, p. 379.
1890. Emerton. N. Engl. Drass., Agal., and Dyst. Trans. Coun. Ac., viri, p. 21.
A. agrestis Hentz (Clubiona). Journ. Bost. Soc. Nat. Hist., v, p. 453. Id., Spid. U. S., ed. Burgess, p. 88, pl. 10, fig. 21. Ala., Va., D. C., Md.
L. Koch. Die Arachn. fam. d. Drassiden, p. 224.
A. argentata Becker. Ann. Soc. Ent. Belgique, xxif, p. 54, pl. 1, figs. 12, 13, 14. New Orleans, La.
A. calcarata Emerton. N. Engl. Dras., etc. Trans. Conn. Ac., viif, 1 ~ 90, p. 23 , pl. 6, fig. 3. Conn., N. Y.
A. conspersa Keyserling. N. Sp. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 453 (33), pl. 6, fig. 23. Ky.
A. fallens Hentz (Clubiona). Journ. Bost. Soc. Nat. Hist., v, p. 451. Id., Spid. U. S., ed. Burgess, p. 86, pl. 10, fig. 17. Ala., Va., D. C.
—— L. Koch. Die Arachn. fam. d. Drassiden, p. 24.
A. gracilis Hentz (Clubiona). Ibid., p. 45. Id., ibid., p. 8if, pl. 10, fig. 19. N. C., Ala., Va., D. C., Md.
——— L. Koch. Die Arachn. fam. d. Drassiden, p. 195, pl. 8, fig. 130.
A. incerta Keyserling. N. Sp. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 452, (32), pl. 6, fig. 22. Mass.

Emerton. N. Eugl. Drass., etc. Trans. Conn. Ac., vili, 1890, p. 22, pl. 6, fig. 2.
A. inclusa Hentz (Clubionu). Journ. Bost. Soc. Nat. Hist., v, p. 451. Id., Spid. U. S., ed. Burgess, p. 85, pl. 10, fig. 18. S. C., N. C., D. C., Va.
L. Koch. Die Arachn. fam. d. Drassiden, p. 224.
A. pectorosa L. Koch: Die Arachn. fam. d. Drassiden, p. 19n, pl. 8, fig. 131. Md.
A. rubra Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., viri, 1890, p. 22, pl. 6, fig. 1. Mass., Conu., N. Y.
A. saltabunda Hentz (Clubionu). Journ. Bost. Soc. Nat. Hist., v, 1. 453. Id., Spid. U. S., ed. Burgess, p. 89, pl. 10, fig. 23. Ala., Mass., D. C., Va., Conn., Pa.
Emerton. N. Engl. Drass., etc. Trans. Comn. Ac., vili, 1890, p. 23, pl. 6, fig. 4.
A. striata Becker. Ann. Soc. Ent. Belgique, xxir, p. 84, pl. 2, fig. 8. Miss.
A. sublurida Hentz (Clubiona). Journ. Bost. Soc. Nat. Hist., v', p, 513. Id., Spid. U. S., ed. Burgess, p. 88, pl. 11, fig. 1. Ala., D. C., Va.
L. Koch. Die Arachn. fam. d. Drassiden, p. 224.
A. velox Becker. Aun. Soc. Entom. Belgique, xxif, p. s.3, pl. 2, figs. 5, 6, 7. Miss.

CLUBIONA.

Latreille. Nouv. Dict. d'Hist. Nat., xxiv, p. 134. 1804.
1832. Hentz. Am. Journ. Science and Art, xxi, p. 102 ad part.
1847. Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 449 ad part.
1861. Blackw. Spid. of Gr. Brit., $\mathbf{~}$, p. 121 ad part.
1866. L. Koch. Die Arachn. fam. d. Drassiden, pp. 2, 291.
1869. Thorell. On Europ. Spid.. p. 144.
1878. Simon. Arachn. de France, iv, p. 210.
1890. Emerton. N. Engl. Drass., Agal., and Dysd. Trans. Conn. Ac., viri, 1890, p. 15.
C. abboti L. Koch. Die Arachn. fam. d. Drassiden, p. 303, pl. 12, fig. 193. Md.
C. agrestis Heutz $=$ Anyphana agrestis.
C. albens Hentz=Chiracanthium albens.
C. canadensis Emerton. N. Eugl. Drass., etc. Trans. Conn. Ac., viII, 1890, p. 17, pl. 5, fig. 4. N. H., Canada.
C. celer Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 452. Id., Spid. U. S., edu. Burgess, p. 87, pl. 10, fig. 20. N. C., Ala.
C. crassipalpis Keyserling. N. Spid. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 438 (18), pl. 6, fig. 13. Mass., Coun., R. I., N. Y.
-- Emerton. N. Engl. Drass., etc. Traus. Conn. Ac., viil, 1890, p. 16, pl. 5, fig. 1.
C. excepta L . Koch = pallens.
C. fallens Hentz=Anyphana fallens.
C. frigidula Thorell. Spid. fr. Labrador. Proc. Bost. Soc. Nat. Hist., Xvir, p. 496. Labrador.
C. gracilis Hentz=Anyphana gracilis.
C. immatura Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 453. Id., Spid. U. S., ed. Burgess, p. 88, pl. 10, fig. 22. Ala.
C. inclusa Hentz= dnyphena inclusa.
C. minuta Emerton. N. Eugl. Drass., ete. Trans. Conn. Ac., viri, 1e90, p. 17, pl. 5, fig. 11. Mass.
C. mixta Emerton. I bid., p. 16, pl. 5, fig. 2. Mass.
C. obesa Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 450. Id., Spid. U. S., ed. Burgess, p. 84, pl. 10, fig. 14. Mass., N. C., Ala., D. C., Mich.
C. ornata Emerton. N. Engl. Drass., etc. Trans. Conn. Ac, viII, 1890, p. 19, pl. 5, tig. 9. N. H., Mass.
C. pallens Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 449. Id., Spid. U. S., ed. Burgess, p. 83, pl. 10, fig. 13. Ala., N. C., D. C., Md., Va.
excepta L. Koch. Die Arachn. fan. d. Drassiden, p. 300, pl. 12, fig. 191. Md. Emerton. N. Engl. Drass., etc. Traus. Conn. Ac., viir, 1890, p. 19, pl. 5, fig. 10.
C. piscatoria Hentz. Journ. Bost. Soc. Nat. Mist., v, p. 450. Id., Spid. U. S., ed. Burgess, p. 84, pl.10, fig. 15. Ala.
C. pusilla Emerton. N. Engl. Drass., ete. Trans. Conn. Ac., Vin, 1890, p. 17, pl. 5, fig. 5. Mass.
C. riparia L. Koch. Die Arachn. fam. d. Drassiden, p. 294, pl. 12, fig. 187. Md.
C. rubra Keyserling. N. Sp. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 436 (16), pl. 6, fig. 12. Mass., Conn., N. C.
Emerton. N. Evgl. Drass., etc. Trans. Conn. Ac., vill, 1890, p. 18, pl. 5, figs. 5, 6, 7.
C. saltabunda Hentz=Amyphena saltabunda.
C. sublurida Hentz = Amyphena sublurida.
C. tranquilla Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 450. Id., Spid. U. S., ed. Burgess, p. 89, pl. 10, fig. 16. U. S.

CHIRACANTHIUM.

C. Koch. Die Arachniden, vi, p. 9. 1839.
1861. Westring. Arancac. Suec., p. 377.
1869.. Thorell. On Europ. Spid., p. 145.
1866. L. Koch. Die Arachu. fam. 1. Drass., pp. 2, 231.
1878. Simon. Arachin. de France, iv, 1. 240.
C. albens Hentz (Clubiona). Journ. Bost. Soc. Nat. Hist., v, p. 454. Id., Spid. U. S., ed. Burgess, p. 89, pl. 10, fig. 24. Ala., Va., D. C., Md., Pa., Ga., Fla.
-_L. Koch. Die Arachn fam. d. Drassiden, p. 270.
C. viride Emerton. N. Engl. Drass., ete. Trans. Conn. Ac., viri, 1890, p. 20, pl. 5, fig. 12. Mass.

TRACHELAS.

L. Koch. Die Arachn. fam. d. Drassiden, p. 2. 1866.

1869. Thorell. On Europ. Spid., pp. 139, 142.
1870. Simon. Arachn. de France, iv, 281.
T. ruber Keyserling. N. Sp. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 439 (19), pl. 6, fig. 14. Mass., Pa., Md., D. C., Va., Ga., S. C., N. C., Ala.
-_ Emerton. N. Engl. Drass., etc. Trans. Conu. Ac., viri, 1890, p. 20, pl. 5, fig. 13.

HILKE.

Keyserling. N. Sp. a. Am., vif. Verh. d. z. b. Ges. Wien, p. 444 (24). 1887.
H. trivittata Keyserling. Ibid., p. 444 (24), pl. 6, fig. 17. Cal.

THARGALIA (Note 7).

Kursch. Zeitschr. f. ges. Naturw., LIII, p. 374. 1880.
Corinna C. Koch. Die Arachn. Ix, p, 20, etc., ad part.
Geotrecha Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., viir, 1890, p. 4.
T. amœna C. Koch (Corinna). Dio Arachn., ix, p. 21, tig. 705. Carolina, Fla., Tex., Utah.
T. bivittata Kerserling (Castianeira). N. Sp. a. Am., vir. Verb. d. z. b. Ges. Wien, 1887, p. 442, pl. 6, fig. 16. Mass.
———Emerton (Geotrecha). N. Engl. Drass., etc. Trans. Conn. Ac., viil, 189C, p. 5 , pl. 3, fig. 3.
T. cinculata C. Koch (Corinna). Ibid., p. 22, fig. 706. Pa., D. C., Md.
T. crocata Hentz (Herpyllus). Journ. Bost. Soc. Nat. Hist., v, p. 457. Id., Spid. U. S., ed. Burgess, p. 93, pl. 11, fig. 8. Ala., Ohio, Mass., Conn., N. Y., D. C., Va.
descriptus Hentz (Herpyllus). Ibid., p. 456. Id., ibid., p. 92, pl. 11, fig. 7. N. C., Ala., Mass., Pa., D. C.

Agreca crocata Keyserling. N. Sp. a. Am., vir. Verb. d. z. b. Ges. Wien, 1887, p. 436.
Geotrecha crocata Emerton. N. Engl. Drass., etc. Trans. Coun. Ac., viir, 1890 , p. 7, pl. 3, fig. 3.
T. descripta Hentz = crocata $\begin{gathered} \\ \text {. }\end{gathered}$
T. longipalpis Hentz (Herpyllus). Journ. Bost. Soc. Nat. Hist., v̌, p. 4:7. Id., Spid. U. S., ed. Burgess, p. 93, pl. 2, fig. 9. Ala., Ga., Fla.
T. marmorata Hentz (Herpyllus). Ibid., p. 4is8. Id., ilid., p. 94, pl. 11, fig. 10. Ala.
Proc. N. M. $89--33$
T. ornata Hentz (Herpyllus). Ibid., p. 456. Id., ibid.; p. 92, pl. 2, fig. 6. N. C., Va., D. C.
T. pinnata Emertou (Geotrecha). N. Engl. Drass., etc. Trans. Conn. Ac., virr, 1890, p. 6, pl. 3, tig. 4. Mass., N. Y.
T. tricolor C. Koch (Corinna). Die Arachn., ix, p. 24, fig. 707. Pa., Colo., Utah, Nebr.
T. trilineata Hentz (Herpyllus). Journ. Bost. Soc. Nat. Hist.. v, p. 460. Id., Spid. U. S., ed. Burgess, p. 97, pl. 2, fig. 18. Ala., Ga., D. C., Va., Ohio, Ind.
T. zonoria Hentz (?) (Herpyllus). Journ. Bost. Soc. Nat. Hist., v, p. 460. Id., Spid. U. S., ed. Burgess, p. 97, pl. 2, fig. 17. Ala., Ga., Tex.

AGRGECA.

Westring. Aran. Suec., p. 311. 1861.
1868. L. Koch. Die Arachn. fam. d. Drassiden, p. 2.
1869. Thorell. On Europ. Spid., p. 135.
1878. Simon. Arachn. de France, iv, p. 298.
-A. crocata Keyserling = Thargalia crocaia.
A. tristis Keyserling. N. Sp. a. Am., vir. Verh. d. z. b. Ges. Wien, p. 436 (16), pl. 6, fig. 2. Md.
A. walsinghamii Cambridge. On New Drass. Proc. Lond. Zool. Soc., xxv, 1874, p. 416. Oregon.

PHRUROLITHUS.

C. Koch. Die Arachn., vi ad part, p. 110. 1839.
1851. Westring. Fœrteckn., etc., p. 46.
1864. L. Koch. Die Arachn. fam. d. Drass., pp. 2, 224.
1890. Emerton. N. Engl. Drass., Agal., and Dysd. Trans. Conn. Ac., viir, p. 24.
P. alarius Hentz (Herpyllus). Journ. Bost. Soc. Nat. Hist., v, p. 461. Id., Spid. U. S., ed. Burgess, p. 98, pl. 11, fig. 20. Ala., Ga., D. C., R. I., Mass., Ohio.
-_Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., viri, 1890, p. 25, pl. 6, fig. 5. P. dubius Hentz (Herpyllus). Journ. Bost. Soc. Nat. Hist., v, p. 461. Id., Spid. U. S., ed. Burgess, p. 98. S. C., D. C.
P. parcus Heutz (Herpyllus). Ibid., p. 461. Id., ibid., p. 97, pl. 11, fig. 19. Ala., Ga.
P. pugnatus Emerton. N. Engı. Drass., etc. Trans. Conn. Ac., viri, 1890, p. 24, pl. 6, fig. 6. Mass., Coun., D. C., Va., Colo., Utah, Wash., Oregon. Geotrecha Emerton = Thargalia .
bivittata Emerton $=$ Thargalia bivittata .
crocata Emertou $=$ Thargata crocala,
pinnata Emerton $=$ Thargalia pinnata.

Family CATADYSID※ (Note 8).
Thorell. On Europ. Spid., pp. 42, 43. 1869.
Bertkau. Vers. e. Nat. Anord. d. Sp. Archiv. f. Naturg., xli, I, p. 361.

CATADYSAS (Katadysas.)

Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 287. 1850.
1869. Thorell. On Europ. Spid., pp. 43, 161.
1871. Ausserer. Beitr. z. K. d. Territel., p. 123.
1875. Id. Zweit. Beitr. z. K. d. Territel., p. 131.
1878. Bertkau. Vers. e. nat. Anord. d. Sp. Archiv. f. Naturg., xli, p. 361.
C. pumilus Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 287. Id., Sp. U. S., ed Burgess, p. 160, pl. 17, fig. 16. Ala.

Family AGALENIDE.

1837. Agalenides C. Koch. Uebers d. Arachn. Syst., I, p. 13 ad part.
1838. Tubicola Doleschall. Syst. Verzeichn, p. 14.
1839. Agalenide Thorell. On Europ. Spid., p. 127 (subfam.).
1840. Agalenida Simon. Arachn. de France, ir, p. 13.
1841. Agalenide Emerton. N. Engl. Drass., Agal., and Dysil. Trans. Coun. Ac. viil, p. 26.

AGALENA.

Walck. Tabl. d'Aran., p. 51. 1805.
1832. Hentz. Amer. Journ. Science and Arts, xxi, p. 103.
1847. Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 464.
1875. Hentz. Sp. U. S., ed. Burgess, p. 102.
1890. Emerton. N. Eugl. Drass., etc. Trans. Conn. Ac., viII, p. 33.
A. americana Keyserling. Spinn. a. Uruguay u. a. Geg. Am. Verh. d. z. b. Ges. Wien, 1878 , p. 599 (31), pl. 14, figs. 20, 21. N. A.
A. hentzii Becker. Ann. Soc. Ent. Belgique, xxir, p. 81, pl. 2, tig. 1-4. New Orleans, La.
A. nævia Walck. Bosc. MSS. Ins. Apt., if, p. 24. U. S.
——Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 465. Id., Sp. U. S., ed. Burgess, p. 102, pl. 12, fig. 1, pl. 20, fig. 20 .
——Cragin. Contr. to Knowl. of Arachn. of Kansas. Bull. Washburn Coll., I, No. 4, p. 146.
-_ Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., viil, 1890, p.33, pl. 8, fig. 1.
Agelena pennsylvanica C. Koch. Die Arachn., x, p. 111, fig. 828.
Agelena potterii Blackw. Sp. fr. Canada. Aun. and Mag. Nat. Hist., xvir, p. 43.

Agalenopsis albipilis Giebel. Spinn. a. Illinois. Zeitschr. f. ges. Naturw., xXxiII, p. 250.
A. pennsylvanica \mathbf{C}. $\mathrm{Koch}=$ navia
A. plumbea Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 465. Id., Sp. U. S., ed. Burgess, p. 103, pl. 12, fig. 2. N. C., Ala.
A. potteri Blackw. = navia.

TEGENARIA.

Latreille. Nouv. Diction d'Hist. Nat., xxiv, p. 134. 1804.
1832. Hentz. Am. Journ. Science and Arts, xxr, p. 102.
1837. I'hiloica C. Koch. Uebers d. Arachn. Syst., I, p. 13.
1847. Heutz. Jouru. Bost. Soc. Nat. Hist., v, p. 46%.
1869. Thorell. On Europ. Spid., p. 129.
1875. Hentz. Spid. U. S., ed. by Burgess, p. 99.
1890. Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., Viri, 1890, p. 29.
T. arboricola Walck. Abbot Ga. Sp. Ins. Apt., 11, p. 6. Ga.
T. brevis Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., vili, 1890, p. 30, pl. 7, fig. 5. N. H., Mass., Conn.
T. civilis Walck. $=$ derhami Scop.
T. derhami Scopoli. Entom. Carnioli, p. 400.

- Emerton. N. Engl. Drass., ete. Traus. Conn. Ac., Viri, 1890, p. 29, pl. 7, fig. 6. Araneus domesticus Clerk. Sv. Spibdl., p. 76, pl. 2, tab. 9, fig. 2.
Aranea domestica Linn. Syst. Natural Ed., x, I, p. 620.
Tegenaria civilis Walck. Tabl. d'Aran.
Tegenaria civilis C. Koch. Die Arachn., viri, p. 37, figs. 618, 619.
Tegenaria civilis Blackw. Spid. of Gr. Brit., I, p. 166, fig. 107.
Tegenaria civilis Id. Sp. fr. Canada. Ann. Mag. Nat. Hist., xvir, p. 76.
Tegenaria medicinalis Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 462. Id., Sp. U. S., ed. Burgess, p. 99, pl. 11, fig. 21, pl. 20, fig. 19.
T. flavens Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 464. Id., Spid. U. S., ed. Burgess, p. 101, pl. 11, fig. 22. Ala.
T. medicinalis Hentz $=$ derhami.
T. nemorensis Walck. Abbot Ga. Sp. Ins. Apt., II, p. 10. Ga.
T. persica Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 462. Id., Spid. U. S., ed. Burgess, p. 101, pl. 11, fig. 23. Ala.
T. philosteichos McCook. On Webs of New Spec. of Spid. Proc. Ac. Nat. ScPhila., 1876, p. 201.

CICURINA.

Menge. Preuss. Spinn., p. 271. 1871.
1875. Simon. Arachn. de France, II, p. 20.
1890. Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., viil, 1890, p. 31.
C. arcuata Keyserling. N. Sp. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 460 (40), pl. 6, fig. 25. Colo., Ill., Minn., Va., D. C., Lake Superior, Pa., N. H.
C. complicata Emerton. N. Engl. Drass., efe. Trans. Conn. Ac., viri, 1890, p. 31, pl. 7, fig. 7. Mass.
C. nevadensis Simon. Comptes Rend. Soc. Ent. Belgique, xx, No. 70, p. 59. Nevada.
C. pallida Keyserling. N. Sp. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 462 (42), pl. 6, fig. 26. D. C.
C. robusta Simon. Comptes Rend. Suc. Ent. Belgique, xx, No. 70, p. 60. Colo.
C. simplex Simon. Ibid., p. 59. Wash.
C. tersa Simon. Ibid., p. 58. Wash.

CYBAESS.

L. Koch. Die Arachn. gatt. Amaur. Cocl. u. Cyb., p. 46. 1868.
1869. Thorell. On Europ. Spid., p. 127.
1875. Simon. Les Arachn. de France, if, p. 16.
C. morosus Simon. Comptes Rend. Soc, Ent. Belgique, xx, No. 70, p. 57. Wash.
C. pusillus Simon. Ibid., p. 57. Wash.
C. reticulatus Simon. Ibid., p. 56. Wash.
C. signifer Simon. Ibid., p. 56. Wash.

CGELOTES.

Blackwall. The diff. in the number of eyes, etc. 1841.
1868. L. Koch. Die Arachn. Gatt. Amarob. Colotes and Cybiens, p. 12.
1869. Thorell. On Europ. Spid., p. 128.
1890. Emertou. N. Engl. Drass., Agal., and Dysd. Trans. Conn. Ac., viri, p. 27.
C. calcaratus Keyserling. N. Spid. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 470 (50), pl. 6, fig. 32. D. C., Colo., Wyo., Minn.
C. hybridus Emerton. N. Engl. Drass., etc. Trans. Comm. Ac., viri, 1890, p. 29, pl. 7, fig. 4. N. Y.
C. juvenilis Keyserling. N. Spid. a. Am., iII. Ibid., 1881, p. 288, pl. 11, fig. 13. Ky.
C. lamellosus Keyserling. N. Spid. a. Am., vir. Ibid., 1887, p. 469 (49), pl. 6, fig. 30. Va., Pa., Lake Superior.
C. Iongitarsus Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., Viii, 1890, p. 28, pl. 7, fig. 2. Conn.
C. medicinalis (Note 9) Emerton. Ibid., p. 27, pl. 7, fig. 1. N. Y., Mass.
C. montanus Emerton. Ibid., p. 28, pl. 7, fig. 3. N. Y., Conn.
C. urbanus Keyserling. Ibid., vir. Ibid., p. 467 (47), pl. 6, fig. 31. D. C.

HAHNIA.

$$
\text { C. Koch. Die Arachn., vinI, pp. 23, 61. } 1841 .
$$

1869. Menge. Preuss. Spinu., p. 251, ad part.
1870. Thorell. On Europ. Spid., p. 131.
1871. Simon. Arachn. de France, II, p. 129.
1872. Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., viti, p. 31.
H. agilis Keyserling. N. Spid. a. Am., vir. Verb. d. z. b. Ges. Wien, 1887, p. 465 (45), pl. 6, fig. 29. D. C., Dak., Pa.
H. bimaculata Emerton. N. Engl. Drass., etc. Trans. Comn. Ac., viII, 1890, p. 32, pl. 7, fig, 8. Mass., Conn., N. H.
H. cinerea Emerton. Ibid., p. 33, pl. 7, fig. 9. Mass., Conn.
H. magna Keyserling. Ibid., p. 464 (44), pl. 6, fig. 28. W yo.
H. radula Emerton. N. Engl. Drass., etc. Trans. Conn. Ac., viri, 1890, p. 32. N. H.
H. riparia Keyserling. Ibid., p. 463 (43), pl. 6, fig. 27. Utah.

HAMALATIV国 (Note 10).
Keyserling. N. Spid. a. Am., vir. Verh. d. 7. b. Ges. Wien, p. 4.57 (37). 1887.
H. crisea Keyserling. Ibid., p. 458 (38), pl. 6, fig. 24. Fla., Va.

Family DINOPIDむ.

1839. MacLeay. On s. n. forms of Arachn. Ann. and Mag. of N. H., if, p. 6.
1840. Dinopides C. Koch. Uebers d. Arachn. Syst., v, p. 41.
1841. Dinopoide Thorell. On Europ. Spid., pp. 43, 198, 204.
1842. Taczanowski. Hor. Soc. Ent. Rossice, x, p. 99.
1843. Cambridge. Proc. LoLd. Zool. Soc., p. 573.
1844. Karsch. Exot. Araneol. Zeitschr. f. g. Naturw., p. 331.

DINOPIS (Deinopis).
MacLeay. Ann. and Mag. of Nat. Hist., II, p. 9. 1839.
1869. Thorell. On Europ. Spid., p. 43.
1877. Cambridge. Proc. Lond. Zool. Soc., p. 573.
1878. Karsh. Exot. Araneol. Zeitschr. f. g. Naturw., p. 332.
D. spinosus Marx. Proc. Acad. Nat. Sci., Philadelphia, 1889, p. 341, pl. 11, fig. a. m. Fla., Ala.

Tribus VI RETITELARIE.

Family PRODIDOMIDÆ (Note 11).
1875. Miltioide Thorell. On Synonyms, p. 602.

PRODIDOMUS.
Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 466. 1847.
1869. Miltia Simon. Revue and Mag. de Zoologie.
1875. Hentz. Spid. of the U. S., ed. by Burgess, p. 105.
1884. Simon. Note Synon. s. l. g. Prodidomus. Compt. rend. Soc. Ent., Belgique, p. 302 (6).
P. rufus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 467. Id., Spid. U. S., ed. Burgess, p. 105, pl. 12, fig. 3, pl. 18, fig. 9. Ala.

Family THERIDIDE.

1837. Theridides C. Koch. Uebers. d. Arachu. Syst., v, p. 6, ad max. part.
1838. Theridida Emerton. Trans. Conn. Ac., vi, p. 1.
1839. Therididde Keyserling. Die Spinn. Am., Theridiidæ.

THERIDIUM.

Walck. Tabl. d'Aran., p. 72, 1805.
1832. Theridium Hentz. Am. Journ. of Sc. and Arts, xxi, p. 99.
1850. Theridion Id. Journ. Bost. Soc. Nat. Hist., vi, p. 271.
1875. Theridion Id. Spid. U. S., ed. Burgess, pp. 5, 142.
1882. Theridium Emerton. N. Engl. Theridide. Trans. Conn. Ac., vi, p. 8.
1884. Theridium Keyserling. Die Spinn. Am., Theridiidæ, p. 3.
T. amputatum Keyserling. Die Spinn. Am., Theridiide, I, p. 90, fig. 58. Fla.
T. anglicanum Hent\%. Journ. Bost. Soc. Nat. Hist., vi, p. 275. Id., Spid. U. S., ed. Burgess, p. 146, pl. 16, fig. 6. Ala.
T. ansatum Walck. Abbot Ga. Spid. Ins. Apt., II, p. 320. Ga.
T. antonii Keyserling. Die Spinn. Am., Theridiide, r, p. 54, fig. 31. Texas.
T. atrilabrum Walek. Bosc. Ins. Apt., II, p. 319. Carolina.
T. blandum Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 278. Id., Spid. U. S., ed. Burgess, p. 150, pl. 16, fig. 20. Ala.
T. boreale Hentz = Steatoda borealis.
T. brassicæ Fitch. Thirteenth Report Trans. N. Y. St. Agric. Soc., xxvir, p. 563. N. Y.
T. cancellatum Hentz = Argyrodes cancellatus.
T. catenatum Walck. Abbot Ga. Spid. Ins. Apt. II, p. 289. Ga.
T. cruciatum Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 275. Id., Spid. U. S., ed. Burgess, p. 147, pl. 16, fig. 8. Ala.
T. differens Emerton. N. Engl. Therid. Trans. Coun. Ac., vi, p. 9, pl. 1, fig. 1. N. H., Me., Mass., Conn., Va., D. C.,-Fla., Tex.
——Keyserling. Die Spinn. Am., Therid., I, p. 54, fig. 30.
T. fictilium Hentz $=$ Ariamnes fictilium.
T. flavonotatum Becker. Aun. Soc. Ent. Belg. XXir, p. 79, pl. 1, figs. 7, 8, 9. Miss., D. C.
T. foliaceumb Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 277. Id., Spid. U. S., ed. Burgess, p. 149, pl. 16, tig. 14. Ala.
T. frondeum Hentz. Ibid., p. 275. Id., ibid., p. 146, pl. 16, fig. 7. Ala., N. Eugl., Md., Ill., D. C., Va., N. Y., Pa.
———Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 15, pl. 3, fig. 1.
—— Keyserling. Die Spinn. Am., Therid., I, p. 69, fig. 42.
T. funebre Hentz = Euryopis funebris.
T. glaucescens Becker. Amn. Soc. Ent. Belgique, xxir, p. 81, pl. 1, fig. 11. Miss.
T. globosum Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. '279. Id., Spid. U. S., ed. Burgess, p. 151, pl. 16, fig. 23. Ala., Mass., Conn.
—— Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 14, pl. 2, fig. 3.
———Keyserling. Die Spinn. Am., Therid. I, p. 91, fig. 59. Ill.
T. hypophyllum Fitch. Thirteenth Rep. Trans. N. Y. St. Agric. Soc., Xxvir, p. 564. N. Y.
T. incissuratum Walck. Abbot Ga. Spid. Ins. Apt., II, p. 307. Ga.
T. intentum Hentz. Journ. Bost. Soc. Nat. Hist., Vi, p. 278. Ld., Spid. U. S., ed. Burgess, p. 150, pl. 16, fig. 19. Ala.
T. kentuckyense Keyserling. Die Spinn. Am., Therid. r, p. 78, fig. 47. Ky., Pa.
T. laticeps Keyserling. Ibid., p. 96, fig. 63. Wyoming.
T. leoninum Hentz = Ero furcata.
T. lilliputanum Keyserling $=$ nicoleti.
T. lineatum Hentz $=$ Lathrodectus mactans.
*T. lineatum Clerk (Araneus). Svenska Spindl., p. 60, pl. 3, tab. 10.
——Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 16, pl. 3, fig. 2. Mass.
T. lyra Hentz. Journ. Bost. Soc. Nat. Mist., vi, p. 279. Id., Spid. U. S., ed. Burgess, p. 150, pl. 16, fig. 21. Ala., Fla.
———Keyserling. Die Spinn. Am., Therid. 1, p. 50, fig. 28.
T. lyricum Walck. Abbot Ga. Spid. Ins. Apt., II, p. 288. Ga.
T. marmoratum Hentz $=$ Lithyphantes marmoratus.
T. marxii Keyserling. Die Spinn. Am., Therid. r, p. 68, fig. 41. Ibid., n, p. 231. fig. 285. Alaska.
T. montanum Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 10, pl. 1, fig. 3. N. H.
T. morologum Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 277. Id., Spid. U. S., ed. Burgess, p. 148, pl. 16, fig. 13. Ala.
T. murarium Emerton. N. Engl. Therid., Trans. Conn. Ac., vi, p. 11, pl, 1, fig. 5. Mass., Conn., R. I., Ill., Colo., Pa., Md., D. C., Va.
—— Keyserling. Die Spinn. Am. Therid. 1, p. 17, fig. 5.
T. nicoleti Keyserling. Ibid., p. 88, fig. 56. D. C.
lilliputanum Keyserling (not Nicolet). Ibid., p. 88, fig. 56.
T. opulentum Walck. Abbot Ga. Spid. Ins. Apt., II, p. 322. Ga.
T. orix Walek. Bose. IVid., p. 313. Carolina.
T. ornatum Walck. Abbot Ga. Spid., ibid., p. 329. Ga.
T. oscitabundum Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 2\%\%. Id., Spid. U. S., ed. Burgess, p. 147, pl. 16, fig. 9. Ala.
T. pallidum Walck. Abbot Ga. Spid. Ins. Apt., II, p. 321. Ga.
T. partitum Walck. Ibid., p. 323. Ga.
T. pascagoulensis Becker. Ann. Soc. Ent. Belgique, xxir, p. 80, pl. 1, fig. 10. Miss.
T. pertenne Hentz. Journ. Bust. Soc. Nat. Hist., VI, p. 283. Id., Spid. UT. S., ed. Burgess, p. 155, pl. 17, fig. 6. Ala.
T. pictipes Keyserling. Die Spinn. Am., Therid., I, p. 64, fig. 38. Fla.
T. placens Keyserling. Ibid., p. 71, fig. 43. Wash.
T. pullulum Hentz=Pholcus pullulus.
T. punctosparsum Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 12, pl. 1, fig. 6. N. Eng., Colo., D. C., Va., Fla.
-- Keyserling. Die Spinn. Am., Theri!?, I, p. 14, fig. 3.
T. quadripunctatum Walck. Abbot Ga. Spid. Ins. Apt., II, p. 293. Ga.
——Blackw. Spid. fr. Canada. Aun. and Mag. of Nat. Mist., xvir, p. 76. Canada.
T. roscidum Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 277. Id., Spid. U. S., ed. Burgess, p. 149, pl. 16, figs. 15, 16. Ala., Mass.
T. rupicola Emerton. N. Engl. Therid. Trans. Conn. Ac., VI, p. 14, pl. 2, fig. 2. Mass., Coun.
T. serpentinum Hentz =Teutana triangulosa.
T. sexpunctatum Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 12, pl. 2, fig. 5. Mass., N. H.
T. sisyphoides Walck. Abbot Ga. Spid. Ins. Apt., II, p. 321. Ga.
*T. sisyphum Walck. Blackw. Spid. fr. Canada. Ann. and Mag. of Nat. Hist., Xvir, p. 77. Canada.
T. spherrula Hentz=Theridula sphorula.
T. spirale Emerton. N. Eng. Therid. Trans. Conn. Ac., vi, p. 10, pl. 1, fig. 2. Mass., Conn., Md., Va., D. C., Pa., Lake Superior.
—— Keyserling. Die Spinn. Am., Therid., 1, p. 56, fig. 33.
T. studiosum Heutz. Journ. Bost. Soc. Nat. Hist., Vi, p. 274. Id., Spid. U. S., ed. Burgess, p. 145, pl. 16, fig. 5. Ala., S. C., Miss., D. C., Va., Pa., N. J.
——Keyserling. Die Spinn. Am., Therid., I, p. 20, fig. 7.
T. sublatum Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 276. Ld., Spid. U. S., ed. Burgess, p. 147, pl. 16, fig. 10. Ala.
*T. tepidariorum C. Koch. Die Arachn., viir, p. 75, figs. 647, 648. U. S.
tepidariorum Enerton. N. Engl. Therid. Trans. Conn. Ac., VI, p. 13, pl. 2, fig. 1.
tepidatorium Keyserling. Die Spinn. Am., Therid., 1, p. 9, fig. 1.
vulgare Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 271. Id., Spid. U. S., ed. Burgess, p. 142, pl. 16, fig. 1.
T. trigonum Hentz=Argyrodes argyrodes.
T. unimaculatum Emerton. N. Engl. Therid. Traus. Coun. Ac., vi, p. 15, pl. 2, fig. 4. Mass., Conn., Pa., Md., D. C., Fla.
——Keyserling. Die Spinn. Am., Therid., I, ํ. 40, fig. 21.
T. ventillans Keyserling. Ibid., p. 84, fig. 53. Fla.
T. verecundum Hentz=Lathrodectus mactans.
T. zelotypum Emerton. N. Eugl. Therid. Traus. Conn. Ac., vi, p. 11, pl. 1, fig. 4.
——Keyserling. Die Spinn. Am. Therid., I, p. 25, fig. 10.

GAUCELMUS.

 Keyserling. Die Spinn. Am., Therid., I, p. 99. 18884.G. augustinus Keyserling. Ibid., p. 99, fig. 65. Fla.

ACH 屋A.
C'ambridge. Proc. Lond. Zool. Soc., p. 428. 1882.
1884. Kesserling. Die Spinn. Am., Therid., I, p. 100.
*A. ignota Keyserling. Ibid., p. 112, fig. 73. 'D. C

STEATODA.

Sundevall. Conspect. Arachn., p. 16 ad part. 1833.
1836. Eucharia C. Koch. Herr-Schaeff. Deutchl. Ins., 134, 8-11.
1837. Eucharia C. Koch. Uebers d. Arachn., Syst., I, p. 7.
1869. Eucharia Menge. Preuss. Spinn., p. 260.
1882. Steatoda Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 18 ad part.
1884. Steatoda Keyserling. Die Spinn. Am., Therid., I, p. 114.
S. borealis Hentz (Theridium). Jomrn. Bust. Soc. Nat. Hist., vi, p. 274. Id., Spid. U. S., ed. Burgess, p. 145, pl. 16, fig. 4. U. S.
———Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 19, pl. ${ }^{\text {4, fig. }} 1$.
——Keyserling. Die Spinn. Am. Therid., I, p. 119, fig. 77.
S. corollata Emertou=Lithyphantes corollatus.
S. guttata Emerton=Crustulina sticta.
S. marmorata Emerton=Lithyphantes marmoratus.
S. nigra Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 21, pl. 4, fig. 4. Mass., D. C.
S. triangulosa Emerton=Teutana triangulosa.

TEUTANA.

Simon. Arachn. de France, v, p. 161. 1881.
1884. Keyserling. Die Spinn. Am. Therid., I, p. 121.
*T. triangulosa Walck. Faune Paris, II, p. 207.
—— Keyserling. Die Spinu. Am. Therid., r, p. 122, fig. 78.
Theridium triangulifer Walck. Ins. Apt., ir, p. 324.
Theridium venustissima C. Koch. Die Arachn., Iv, p. 114, fig. 322.
Theridium serpentinum Heatz. Jouru. Bost. Soc. Nat. Hist., vi, p. 273.
Id. Spid. U. S., ed. Burgess, p. 144, pl. 16, fig. 2.
Steatoda triangulosa Emerton. N. Engl. Therid. Trans. Conn, Ac., vi, p. 22.

NESTICUS.

Thorell. On Europ. Spid., p. 88. 1869.
N. carteri Emerton. Spid. fr. caves in Ky., Va. and Ind. Am. Natural., 1x, p. 279, pl. 1, fig. 28. Ky.
N. pallidus Emerton. Ibid., p. 279, pl. 1, figs. 22-27. Va.

LITHYPHANTES.

Thorell. On Europ. Spid., p. 94. 1869.
1882. Steatoda Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 21 ad part.
1884. Lithyphuntes Keyserling. Die Spinn. Am., Therid., 1, p. 128.
${ }^{*}$ L. corollatus Limn. (. Iranea). Syst. Nat. Ed., x, I, p. 621 Mass., N. Y., Colo., Pa., Utah, Dak., Lake Superior.
Thorell. Bull. U. S. Geol. Surv. Terr., III, No. 2, p. 487.
Keyserling. Die Spiun. Am., Therid., I, p. 129, fig. 81.
Theridium maculatum Walck. Tabl. d'Aran., p. 74.
Theridium albomaculatum Hahn. Die Arachn., I, p. 79, fig. 59.
Phrurolithus corollatus C. Koch. Ibid., vr, p. 100, figs. 504-505.
Eucharia albomaculata Menge. Preuss. Spinn., p. 264, tab. 155.
Sleatoda corollata Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 21, pl. 4, fig. 5.
L. fulvus Keyserling. Die Spinn. Am., Therid., r, p. 142, fig. 89. Utah, Tex.
L. marmoratus Hentz (Theridium). Journ. Bost. Soc. Nat. Hist., Vi, p. 273. Id., Spid. U. S., ed. Burgess, p. 144, pl. 16, fig. 3. Ala., Mass., Pa., Va., D. C., Md., Colo.
——Keyserling. Die Spinn. Am., Therid., I, p. 136, fig. 84.
L. tectus Keyserling. Ibid., p. 138, fig. 86.

Steatoda marmorata Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 20, pl. 4, fig. 3.
L. pulcher Kerserling. Die Spinn. Am., Therid., I, p, 137, fig. 85. Wash.
L. septemmaculatus Keyserling. Ibid., p. 141, fig. 88. Colo., Fla.
L. tectus Keyserling $=$ male of marmoratus.

LATHRODECTUS.

Walck. Tabl. d'Aran., p. 81. 1805.
1884. Keyserling. Die Spinn. Am., Therid., I, p. 144.
*L. mactans Fabr. Entom. Syst., 11, p. 410. Pa., Ohio, Colo., Utah, Southern States.
———Walck. Ins. Apt., I, p. 648.
——Keyserling. Die Spinn. Am., Therid., p. 145, fig. 91.
formidabilis Walck. Ins. Apt., I, p. 647.
variolus Walck. Ibid., p. 647.
doiatus C. Koch. Die Arachn., vin, p. 115, fig. 683.
mactans C. Koch. Ibid., p. 115, fig. 682.
Theridium verecundum Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 280. Id., Spid. U. S., ell. Burgess, p. 153, pl. 17, figs. 1, 2.
Theridium lineatum Hentz. Ibid., p. 281. Id., ibid., p. 154, pl. 17, fig. 3.
Tetragnatha zorilla Walck. (Bose. MSS.). Ins. Apt., II, p. 221.
${ }^{*}$ L. geometricus Keyserling. Die Spinn. Am. Therid., I, p. 148, fig. 92. Cal.

CHRYSSO.

Cambridge. Proc. Lond. Zool. Soc., p. 429. 1882.
1884. Keyserling. Die Spinn. Am., Therid., I, p. 150.
${ }^{*}$ L. albomaculata Cambridge. Proc. Lond. Zool. Soc., p. 429, pl. 30, fig. 6. Fla., Ga., Ariz.
——Keyserling. Die Spinn. Am., Therid., I, p. 152, fig. 94.

HILDBOLDA.

Keyserling. Die Spinn. Am., Therid., 1, p. 157. 1884.
H. simonii Keyserling. Lbid., p. 157, fig. 97. Mass.

ARIAMNES.

Thorell. On Europ. Spid., p. 37. 1869.
1857. Ariadne Dolesch. Bijdr. t. d. Kenn. d. Arachn.
1872. Rompheca L. Koch. Die Arachn. Austral., p. 289.
1882. Argyrodes Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 24 ad part.
1884. Ariamnes Keyserling. Die Spinn. Am., Therid., I, p. 167.
A. fictilium Hentz (Theridium). Journ. Bost. Soc. Nat. Hist., vi, p. Ud'? Id., Sphd. U. S., ed. Bargess, p. 155, pl. 17, tig. 4. Mass., D. C., Va., Fla.
——Keyserling. Die Spinn. Am., Therid., i, p. 170.
Argyrodes fictilium Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 24, pl. 5, fig. 2.

SPINTHARUS.

Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 156. 1850.
1875. 1d. Spid. U. S., ed. Burgess, p. 156.
1882. Emertou. N. Eugl. Therid. Trans. Conn. Ac., vi, p. 23.
1884. Keyserling. Die Spinn. Am., Therid., I, p. 176.
S. flavidus Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 284. Id., Spid. U. S., cd. Burgess, p. 157, pl. 17, fig. 8. Ala., Fla., Va., D. C., Md., Pa., N. Y., Mass., Conn.
———Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 28, pl. 5, fig. 2.
Keyserling. Die Spinu. Am., Therid., I, p. 176, fig. 107.

ARGYRODES.

Simon. Hist. Nat. d'Araign., p. 253. 1864.
1882. Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 23.
1884. Keyserling. Die Spinn. Am., Therid., I, p. 179.
1881. Conopistha Karsch. Diagn. Arachn. Japon. Berl. Ent. Zeitschr., Xxv, p. 39.
*A. argyrodes Walck (Linyphia). Abbot Ga. Spid. Ins. Apt., II, p. 282. Me., Conn., N. Y., D. C., Va., S. C., Fla.
—— Keyserling. Die Spinn. Am., Therid., I, p. 181, fig. 109.
Theridium trigonum Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 280. Id., Spid. U. S., ed. Burgess, p. 152, pl. 16, figs. 24, 25, pl. 19, figs. 117, 131, pl. 21, fig. 14.
Argyrodes trigonum Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 23, pl. 5, fig. 1.
A. cancellatus Hentz (Theridium). Journ. Bost. Soc. Nat. Hist., vi, p. こ̌. . Id., Spid. U. S., ed. Burgess, p. 149, pl. 16, figs. 17, 18. Ala., D. C., Conn.
—— Keyserling. Die Spinn. Am., Therid., II, p. 243, fig. 297.
Lasseola cancellata Emerton. N. Eugl. Therid. Trans. Conn. Ac., vi, p. 26, pl. 5, fig. 4.
A. globosus Keyserling. Dio Spinn. Am., Therid., 1, p. 204, fig. 123. Fla.
A. larvatus Keyserling. Ibid., p. 197, fig. 118. Texas.
A. montanus Keyserling. Ibid., p. 193, fig. 115. D. C., Va.
*A. nephilæ Taczanowski. Hor. Soc. Ent. Rossice, x, 51. Fla., Ala., La.
-_Keyserling. Die Spinn. Am., Therid., I, p. 184, fig. 110.
A. trigonum Emerton = argyrodes.
A. trituberculatas Becker. Ann. Soc. Ent. Belgique, xxif, p. 79. pl. 1, figs. 1, 2, 3. Miss.
———Keyserling. Die Spinn. Am., Therid., 1, p. 203, tig. 122.

EPISINUS.

Latreille. Gen. Crust. et Insect., Iv, p. 371. 1809.
1884. Keyserling. Die Spinn. Am., Therid., I, p. 205.
*E. truncatus Walck. Latr. Gen. Crust. et Ins., Iv, p. 371. D. C., Va.
——Keyserling. Die Spinn. Am., Therid., I, p. 209.
Theridium angulatum Blackw. Spid. of Gr. Brit., Ir, p. 202, pl. 15, fig. 133.

COLEOSOMA.

Cambridge. Proc. Lond. Zool. Soc., p. 426. 1882.
1884. Keyserling. Die Spinn. Am., Therid., I, p. 211.
*C. blandum Cambridge. Proc. Lond. Zool. S̄oc., 1~~ㄹ, p. 427, pl. 29, fig. 3. Fla.
-_ Keyserling. Die Spinn. Aw., Therid., I, p. 219, fig. 127.

BELLINDA.

Keyserling. Die Spinn. Am., Therid., 1, p. 216. 1884.
B. cancellata Keyserling. Ibid., p. 216, fig. 130. Fla.

ASAGENA.

Sundevall. Conspect. Arachn., p. 19. 1833.
1882. Emerton. N. Engl. Therid. Trans. Conu. Ac., vi, p. 22.
1884. Keyserling. Die Spinn. Am., Therid., ir, p. 1.
A. americana Einerton. N. Engl. Therid. Trans. Conu. Ac., vi, p. 23, pl. 6, fig. 6. D. C., Va., Md., Pa., N. Y., Mass., Comn.

Keyserling. Die Spinn. Am., Therid., 1r, p. 2, fig. 135.

MIMETUS.

Hentz. Am. Journ. of Sci, and Arts, xxi, p. 104. 1832.
1850. Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 31.
1875. Hentz. Spid. U. S., ed. Burgess, p. 137.
1881. Simon. Arachu. d. France, v, p. 28.
1882. Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 16.
1886. Keyserling. Die Spinu. Am., Therid., II, p. 5.
1870. Ctenophora Blackw. Ann. and Mag. of Nat. Hist, v, p. 401.

Mr. epeiroides Emerton $=$ interfector.
M. interfector Mentz. Journ. Bost. Sor, Niat. Hist., VI, p. 3?. Id., Spid. U. S., ed. Burgess, p. 138, pl. 15, figs. 12, 13. D. C., Fla., Tex., Ala., Utah, N. Y., Mass., Conn., Pa., Md.
-_ Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 16, pl. 3, fig. 3.
Keyserling. Die Spinn. Am., Therid., II, p. 7, fig. 137.
epeiroides Emerton. N. Engl. Therid. Trans. Conu. Ac., vi, p. 17, pl. 3, fig. 4. tuberosus Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 34. Id., Spid. U. S., ed. Burgess, p. 139, pl. 15, fig. 14.
M. syllepsicus Hentz. Journ. Bost. Soc. Nat. Mist., VI, p. 34. Id., Spid. U. S., ed. Burgess, p. 140, pl. 15, fig. 15.
M. tuberosus Hentz $=$ interfector.

ERO.
C. Koch. Uebers. d. Arachn. Syst., I, p. 8. 1837.
1882. Emerton. N. Engl. Therid. Traus. Conn; Ac., vi, p. 17.
1886. Keyserling. Die Spinn. Am., Therid., II, p. 12.
"E. furcata Villers (Aranca). Car. Lin. Ent., IV, p. 129. Mass., Conu.
——Keyserling. Die Spinn. Am., Therid., II, p. 13, fig. 140.
Ero variegata C. Koch. Herr-Schaeff. Deutschl. Ins., 138, 5, 6.
Theridium variegatum Walck. Ins. Apt., II, p. 33:.
Theridium leoninum Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 276.
Theridium variegatum Blackw. Spid. of Gr. Brit., II, p. 203, pl. 15, fig. 134.
Ero variegata Menge. Preuss. Spinn., p. 147, pl. 28, tab. 61.
Ero thoracica Thorell. On Europ. Spid., p. 77.
Ero thoracica Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 18, pl. 3, fig. 5.

THERIDULA.

Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 25. 1882.
1886. Keyserling. Die Spinn. Am., Therid., II, p. 29.
T. quadripunctata Keyserling. Ibid., p. 32, fig. 151. Fla.
T. sphærula Hentz (Theridium). Joum. Bost. Soc. Nat. Hist., vı, p. 279. Ifl., Spid. U. S., ed. Burgess, p. 151, pl. 16, fig. 22. Ga., Pa., D. C., Va., N. Engl.
——Emerton. N. Engl. Therid. Trans. Coun., Ac., vı, p. 25, pl. 5, fig. 3.
——Keyserling. Die Spinn. Am., Therid., II, p. 33, fig. 152.

ULESANIS.

L. Koch. Die Arachn. Austral., p. 242. 1872.

1873. Oroodes Simon. Mem. Soc. R. Sc. Liege, p. 128.
1874. Stegosoma. Cambr. Proc. Lond. Zool. Soc., p. 127.
1875. Sudabe. Karsch. Verh. d. Nat. Ver. d. Rheinl., p. 103.
1876. Ulesanis Emerton. N. Engl. Therid. Trans. Conu. Ac., vi, p. 28.
1877. Ulesanis Keyserling. Die Spinn. Am. Therid., II, p. 16.
U. americana Emerton. N. Engl. Therid. Trans. Conn. Ac., VI, p. 28, pl. 6, fig.
1878. Ga., Fla., D. C., Mass., Conn.
——Keyserling. Die Spinn. Am., Therid., 11, p. 17, fig. 142.

CRUSTULINA.

Menge. Preuss. Spinn., p. 168. 1868.
1886. Keyserling. Die Spinn. Am., Therid., II, p. 36.
1882. Steatoda Emerton. N. Engl. Therid. Trans. Coun. Ac., vi, p. 20 ad part.
*C. sticta Cambridgo (Theridion). Ann. and Mag. Nat. Hist., vir, 1861, p. 432. Mass., Pa., D. C., Md., Va.
—— Keyserling. Die Spinn. Am., Therid., II, p. 37, fig. 154.
Theridium stictum Blackw. Spid. Gr. Brit., II, p. 196, pl. 14, fig. 126.
Steatoda guttata Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 20, pl. 4, fig. 2.

DIPGENA.

Thorell. On Europ. Spid., p. 91. 1869.
1868. Pachydactylus Menge. Preuss. Spinn., p. 176.
1881. Lascola Simon. Arachn. d. France, v, p. 136.
1886. Diржиа Keyserling. Die Spinn. Am., Therid., ir, p. 40.
D. buccalis Keyserling. Ibid., p. 42, fig. 157. Pa., Va., N. Y.
D. crassiventris Keyserling. Ibid., p. 41, fig. 156. Ga.

EURYOPIS.

Menge. Preuss. Spinn., p. 174. 1868.
1882. Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 26.
1886. Keyserling. Die Spinn. Am., Therid., II, p. 46.
E. argentea Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 27, pl. 5. fig. 5. Fla., Conn.
—— Keyserling. Die Spinn. Am., Therid., II, p. 50, fig. 162.
E. funebris Hentz (Theridium). Journ. Bost. Soc. Nat. Hist., vi, p. 276. Id., Spid.
U. S., ed. Burgess, p. 148, pl. 16, fig. 11. Ala., Mass., Conn., Pa., Md., D. C., Va., Utah, N. Mex., Ga., S. C.
——Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 27, pl. 5, fig. 6.
__ Keyserling. Die Spinu. Am., Therid., II, p. 49, fig. 161.

LINYPHIA.

Latreille. Nouv. Diction. d'Hist. Nat., xxiv, p. 134. 1804.
1866. Bathyphantes Menge. Preuss. Spinn., p. 111.
1866. Pedina id. Ibid., p. 125.
1866. Helophora id. Ibid., p. 126.
1866. Stylophora id. Ibid., p. 128.
1866. Lepthyphantes id. Ibid., p. 131.
1866. Bolyphantes id. Ibid., p. 134.
1866. Drapetisca id. I bid., p. 140.
1884. Bolyphantes Simon. Arachn. de France, v, p. 209.
1884. Lephthyphantes id. Ibid., p. 265.
1884. Bathyphantes id. Ibid., p. 333.
1882. Linyphia Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 60.
1882. Stemonyphantes id. Ibid., p. 64.
1882. Diplostyla id. Ibid., p. 65.
1882. Drapotisca id. Ibid., p. 65.
1882. Helophora id. Ibid., p. 67.
1882. Bathyphantes id. Ibid., p. 68.
1882. Bolyphantes id. Ibid., p. 72.
1886. Linyphia Keyserling. Dio Spinn. Am., Therid., II, 1, 51.
L. alpina Emerton (Bathyphantes). N. Engl. Therid. Trans. Conn. Ac., vi, p. 70, pl. 22, fig. 4. N. H.
L. angulata Emerton (Bathyphantes). Ibid., p, 71, pl. 22, fig. 5. Conn.
L. arctica Keyserling. Die Spinn. Am., Therid., II, p. 85, fig. 179. Alaska.
L. arcuata Keyserling. Ibid., p. 74, fig. 173. Wash.
I. argyrodes Walck. = Argyrodes argyrodes.
L. autumnalis Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 30. Id., Spid. U. S., ed. Burgess, p. 135 , pl. 15, fig. 9. Me., Mass.
L. bihamata Emerton (Bathyphantes). N. Engl. Therid. Trans. Conn. Ac., vi, p. $72, \mathrm{pl} .13$, fig. 4. N. H.
L. brevipes Keyserling. Dio Spinn. Am., Therid., II, p. 87, fig. 181. Wash.
${ }^{*}$ L. bucculenta Clerk (Avaneus). Sv. Spindl., p. 63, pl. 4, tab. 1. D. C., Mass., Conn., Va.
Aranea lineata Linn. Sjst. Nat. Ed., x, 1, p. 620.
Aranea trilineata Linn. Syst. Nat. Ed., Xir, 1, p. 1031.
Theridium reticulatum Hahn. Die Arachn., II, p. 39, fig. 124.
Linyphia reliculata Walck. Ins. Apt., II, p. 260.
Bolyphantes trilineatus C. Koch. Die Arachn., viri, p. 67, fig. 641.
Nerienne trilineata Blackw. Spid. of Gr. Brit., II, p. 279, fig. 193.
Stemonyphantes trilincatus Menge. Preuss. Spinn., p. 139, tab. 58.
Stemonyphantes bucculeutus Emerton. N. Engl. Therid. Trans. Conn. Ac., VI, p. 64, pl. 20, fig. 1.
Linyphia lineata Keyserling. Die Spinn. Am., Therid., II, p. 64, fig. 167.
L. canadensis Emerton (Diplostyla). N. Engl. Therid. Trans. Conn. Ac., vi, p. 66, pl. 21, fig. 1. Canada.
L. clathrata Sundwall = Frontina clathrata.
L. coccinea Hentz $=$ Frontina coccinea.
L. communis Hentz. Journ. Bost. Soc. Nat. Hist., Vr, p. 28. Id.,Spid. U. S., ed. Burgess, p. 132, pl. 15, fig. 4. U. S.
——Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 62, pl. 8, fig. 2.
———Keyserling. Die Spinn. Am., Therid., II, p. 78, tig. 175.
L. complicata Emerton (Bathyphantes). N. Engl. Theris. Trans. Conn. Ac., vi, p. 72, pl. 24, fig. 8. N. H.
${ }^{*}$ L. concolor Reuss. Zool. Mise. Arachn., p. 261, pl. 18, fig. 3. D. C., Mass., Conn., Canada.
Keyserling. Die Spinn. Am., Therid., II, p. 81, fig. 177.
Theridium filipes Blackw. Spid. of Gr. Brit., I, p, 206, pl. 16, fig. 136.
Stylophora concolor Menge. Preuss. Spinnf., p. 128, pl. 24, tab. 51.
Diplostyla concolor Emerton. N. Eng. Therid. Trans. Conn. Ac., vi, p. 66, pl. 20, fig. 3.
Bathyphantes concolor Simon. Arachn. d. France, v, p. 336.
L. conferta Hentz. Journ. Bost. Soc. Nat. Hist., Vi, p. 30. Id., Spid. U. S., ed. Burgess, p. 135, pl. 15 , fig. 7. Ala.
L. costata Hentz $=$ phrygiana.
L. digna Keysering. Die Spinn. Am., Therid., II, p. 68, fig. 169. Wash., Cal.
L. drassoides Emerton (Bolyphantes). N. Engl. Therid. Trans. Conn. Ac., vi, p. 72, pl. 23, fig. 5. Conn.
L. emertonii Thorell. Spid. fr. Labrador. Proc. Bost. Soc. Nat. Hist., XVI, p. 494. Labrador.
I. fructuosa Keyserling. Die Spinn. Ain., Therid., If, p. 72, fig. 171. Utah.
L. galbea Keyserling. Ibid., p. 83, fig. 178. Ga., D. C.
L. grandæva Keyserling. Ibid., p. 92, fig. 185. Pa.
L. incerta Emerton = Willibaldia incerta.
${ }^{*}$ L. insignis Blackw. Linn. Trans, xviri, p. 662. Pa., Mass.
——Keyserling. Die Spinn. Am., Therid., if, p. 80, fig. 176.
Helophora pallescens Menge. Preuss. Spinn., p. 227, tab. 50.
Helophora insignis Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 67, pl. 21, fig. 3.
L. lemniscata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 263. Ga.
L. lineata Keyserling $($ Linn $)=$ bucculenta .
L. litigiosa Keyserling. Die Spinn Am., Ther:d., II, p. 62, fig. 166. Wash.
L. mandibulata Emerton. N. Engl. Therid. Trams. Conn. Ac., vi, p. 64, pl. 19, fig. 2. Me., N. H., Mass., N. Y., Pa., Md., D. C., Va., Lake Superior.
*L. marginata C. Koch. Herr-Schaeff. Deutschl. Ins., 127, 21, 22.
-—Emerton. N. Engl. Therid. Trans. Coun. Ac., vi, p. 61, pl. 18, fig. 1.
—— Keyserling. Die Spinn. Am., Therid., II, p. 58, fig. 164.
Araneus triangularis Clerk. Sv. Spindl., p. 71 ad partem, pl. 3, table 2.
Linyphia triangularis Walck. Ins. Apt., II, p. 140.
Linyphia marginata C. Koch. Die Arachn., xII, p. 118, figs. 1041, 1042.
Linyphia marmorata Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 29. Id., Spid. U. S., ed. Burgess, p. 133, pl. 15, fig. 5.
Linyphia scripta Hentz. Ibid., p. 24. Id., ibid., p. 134, pl. 15, fig. 6.
Linyphia triangularis Blackw. Spid. of Gr. Brit., II, p. 212, fig. 139.
i. marmorata Hentz=marginata.
L. micaria Emerton (Bathyphantes). N. Engl. Therid. Trans. Conn. Ac., IT, p. 71, pl. 22, fig. 6. Conu.
*L. minuta Blackw. Charact. of s. undeser. gen., etc. Lond. and Edinb. Phil. Mag., 3 Ser., iII, p. 191. Mass.
Leptyphantes musciola Menge. Preuss. Spinn., p. 133, pl. 25, tab. 54.
Bathyphantes minuta Emertou. N. Engl. Therid. Trans. Conn. Ac., vi, p. 68, pl. 21, fig. 4.
*L. nebulosa Sundevall. Sv. Spindl. Beser. in Vet. Akad. Handl., 1899, p. 218. Ga., D. C., Mass., Conn.
———Keyserling. Die Spinv. Am., Therid., II, p. 75, fig. 174.
furcula C. Koch. Die Arachn., xii, p. 116, fig. 1040.
circumflexa C. Koch. Ibid., p. 128, fig. 1050.
vivax Blackw. Spid. of Gr. Brit., II, p. 221, fig. 146.
Lepthyphantes crypticola Menge. Preuss. Spinn., p. 133, pl. 25, tab. 54.
Lepthyphantes nehulosa Thorell. On synonyms, p. 54.
lathyphantes nebulosus Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 69, pl. 22, fig. 1.
Lepthyphantes nebulosus Simon. Arachn. d. France, v, p. 273.
L. neophita Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 31. Id., Spid. U. S., ed. Burgess, p. 136, pl. 15, fig. 10. N. C.
${ }^{*}$ L. nigrina Westring. Foertecku., etc., p. 3s, 1851. N. II., Mass., R. I., Md., D. C.
pulla Blackw. Spid. of Gr. Brit., II, p. 234, fig. 156.
Bathyphantes terricolus Menge. Preuss. Spinn., p. 112, pl. 19, tab. 38.
Diplostyla nigrina Emerton. N. Engl. Therid. Trans. Coun. Ac., vi, p. 65, pl. 20, fig. 2.
L. orophila Thorell. Bullet. U. S. Geol. Surv. Terr., 1iI, No. 2, p. 480. Col.
${ }^{*}$ L. phrygiana C. Koch. Die Arachn., in, p. si, figs. S29, 2:30. N. Engl., Atlantic, Middle, and Southeru States.
———Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 63, pl. 19, fig. 1.
——Keyserling. Die Spinu. Am., Therid., II, p. 60, fig. 164.
costata Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 31. Id., Spid. U. S., ed, Burgess, p. 136, pl. 15, fig. 11.
*L. pusilla Sundevall. Sv. Spindl. Beser. Vet. Akad. Haudl., 1829, p. 214.
——Keyserling. Die Spinn. Am., Therid., Ir, p. 55, fig. 163.
Theridium signatum Hahn. Die Arachn., II, p. 40, fig. 125.
Theridium ampulaceum Walck. Ins. Apt., II, p. 336.
Linyphia fuliginea Blackw. Spid. of Gr. Brit., II, p. 216, fig. 142.
L. pyramidea Walck. Abbot Ga. Spid. Ins. Apt., II, p. 261. Ga.
L. radiata Walck. Ibid., p. 262. Ga.
L. reducta Kejserling. Die Spinn. Am., Therid., II, p. 73, fig. 172. Wash.
L. rufa Walck. Abbot Ga. Spid. Ins. Apt., II, p. 284. Ga.
L. rubrofasciata Keyserling. Dio Spinn. Am., Therid., if, p. 66, fig. 16s. Wash.
I. sabulosa Keyserling. Ibid., p. 70, fig. 170. Utah.
L. scripta Hentz $=$ marginata.
L. sitkænsis Keyserling. Dio Spinv. Am., Therid., if, p. 86, fig. 180. Alaska.
${ }^{*}$ L. socialis Sundevall. Sv. Spindlar Bescr. Vet. Akad. Handl., 183:, p. 260 . N. H., Mass., D. C.
annulipes Blackw. Charact. of s. undescr. gen., etc., p. 348.
tigrina Reuss. Zool. Misc. Arachn., p. 256, pl. 17, fig. 11.
sepium C. Koch. Uebers d. Arachn. Syst., I, p. 10.
bucculenta Walck. Ins. Apt., II, p. 274.
Meta tigrina C. Koch. Die Arachn., ViII, p. 130, figs. 1051, 1052.
Linyphia socialis Blackw. Spid. of Gr. Brit., II, p. 222, fig. 147.
Drapetisca socialis Menge. Preuss. Spid., p. 141, pl. 27, tab. 59.
Drapetisca socialis Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 67, pl. 21, fig. 2.
L. subalpina Emerton (Bathyphantes). N. Engl. Therid. Trans. Conn. Ac., vi, p. 70, pl. 22, tig. 3. N. H.
L, subterranea Emerton $=$ Phanetla subterranea.
L. textrix Walck. Abbot Ga. Spid. Ins. Apt., II, p. 281. Ga.
L. weyeri Emerton. Spid. fr. Caves in Ky., Va., Ind. Am. Natural., Ix, p. 279. pl. 1, figs. 7-12. Va.
—— Packard. The Cave Fauna of N. A. Nation. Ac. Sc., IV, mem. 1, p. 57.
I. zebra Emerton (Bathyphantes). N. Engl. Therid. Trans. Conn. Ac., Vi, p. 69, pl. 22, fig. 2. Masi., Conn.

Stemonyphantes Menge = Linyphia.

Preuss. Spinn., 138, 1866.
S. bucculentus (Clerk.) Emerton =Linyphia bucculenta.

Diplostila Emerton =Linyphia.
N.Engl. Therid. Trans. Conn. Ac., vi, p. 65.
D. canadensis Emerton $=$ Linyphia canadensis.
D. concolor (Reuss.) Emerton $=$ Linyphia concolor.
D. nigrina (Westr.) Emerton $=$ Linyphia nigrina.

Drapetisca Menge = Linyphia .
Preuss. Spinn., p. 140.
D. socialis (Menge) Emerton $=$ Linyphia socialis.

Proc. N. M. $89-34$

> Helophora Menge $=$ Linyphia.
> Preuss. Spinn., p. 127.
H. insignis (Blackw.) Emerton $=$ Linyphia insignis.

Bolyphantes C. Koch $=$ Linyphia .

Uebers. d. Arachn. Syst., I, p. 9.
B. drassoides Emerton $=$ Linuphia drassoides.

Bathyphantes Menge $=$ Linyphia .
Preuss. Spinn., p. 111.
B. alpina Emerton $=$ Linyphia alpina
B. angulata id. =Linyphia angulata.
B. bihamata id. = Linyphia bihamata.
B. complicata id. = Linyphia complicata.
B. formica id. = Erigone formica.

B, micaria id. = Linyphia micaria.
B. minuta (Blackw.) Emerton = Linyphia minuta.
B. nebulosa (Sund.) Emerton =Linyphia nebulosa. -
B. subalpina Emerton $=$ Linyphia subalpina.
B. zebra Emerton = Linyphia zebra.

IABULLA.

Simon. Arachn. de France, v, p 261. 1884.
1886. Keyserling. Die Spinn. Am., Therid., II, p. 93.
L. altioculata Keyserling. Ibid., p. 94, fig. 18t. Wash.

FRONTINA.

Simon. Arachn. de France, v, p. 206. 1884.
1886. Keyserling. Die Spinn. Am., Therid., II, p. 96.
F. adstricta Keyserling. Ibid., p. 116, fig. 199. Utah.
*F. clathrata Sundevall (Limyphie). Sr. Sivindl. Bescr. Vet. Akad. Handl., 1829, p. 218.
——Keyserling. Die Spinn. Am., Therid., II, p. 98, fig. 187.
Linıphia luclıosa C. Koch. Die Arachn., XiI, p. 111, fig. 1037.
Nerienne marginata Blackw. Spid. of Gr. Brit., II, p. 299, fig. 167.
Linyphia clathratra Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 62, pl. 18, tig. 3.
F. coccinea Mentz (Limyphia). Journ. Bost. Soc. Nat. Hist., vi, p. 30. Id., Spid. U. S., ed. Burgess, p. 135, pl. 15, fig. 8. Mass., D. C., Va., Ill., Pa. Keyserling. Die Spinn. Am., Therid., If, p. 100, fig. 188.

ANTROBIA.

Tellkampf. Wiegm. Archiv. f. Nat. Gesch., p. 318. 1884.

1875. Emerton. Notes on Spid. fr. eaves, etc. Am. Natural., Ix, p. 278.
1876. Keyserling. Die Spinn. Am., Therid., II, p. 121.
A. mammouthia Tellkampf. Wiegm. Arch. f. Nat. Gesch., 1884, p. 31~, pl. 8, figs. 13-17. Mam. Cave, Ky.
—— Emerton. Spid. fr. caves in Ky., Va. and Ind. Am. Natural., 1x, p. 280, pl. 1, figs. 1-6.
——Keyserling. Die Spinn. Am., Therid., ni, p. 122, fig. 903.
———Packard. The cave fauna of N. A. Nation. Ac. Sc., iv, mem. 1, p. 58.

WILLIBALDIA.

Keyserling. Die Spinn. Am., Therid., II, p. 1シン. 1886.
W. cavernicola Keyserling. Ibid., p. 12:3, fig. 204. Resnolds' cave, Ky.
W. incerta Emerton (Linyphia). Spid. fr. caves in Ky., Va., and Ind. Am. Nat., 1x, p. 280, pl. 1, figs. 13-21.
——Packard. Cave fauna of N. A. Nation. Ac. Sc., Iv, mem. 1, p. 57.

PHANETTA.

Keyserling. Die Spinn. Am., Therid., II, p. 124. 1886.
P. subterranea Emerton (Linyphia). Spid. fr. caves in Ky., Va., and Ind. Am. Natural., Ix, p. 279, pl. 1, figs. 29-31. Ky. caves.
—— Keyserling. Die Spinn. Am., Therid., II, p. 125, fig. 205.
—— Packard. The cave fauna of N. Am. National Ac. Sc., iv, mem. 1, p. 57.

PEDANOSTETHUS.

Simon. Archn. de France, v, p. 195. 1884.
1886. Keyserling. Die Spinn. Am., Therid., II, p. 126.
1866. Ctenium Menge Preuss. Spinn., p. 292.
P. lividus Blackw. (Verienne). Lond. and Edinht. Phil. Mag., is, ser. vir, 1. 46\%. Alaska.
*P. lividus Blackw. Spid. of Gr. Brit., II, p. 486, tig. 169.
———Keyserling. Die Spinn. Am., Therid., if, p. 126, fig. 206.
Erigone livida Thorell. Ou Synonyms, p. 131.
Erigone truncorum L. Koch. Beitr. z. Arachn. Fauna Tyrols., if, p. 261.
P. riparius Keyserling. Die Spinn. Arn., Therid., ir, p. 265, fig. 313, Lake Superior.

SATILATLAS.
Keyserling. Die Spinu. Am., Therid., II, p. 127. 1886.
S. marxii Keyserling. Ibid., p. 127, fig. 207. Alaska.

PHOLCOMMA (Note 13).
Thorell. On Europ. Spid., p. 98. 1869.
1882. Emerton. N. Eng. Therid. Trans. Conn. Ac., vi, p. 29.
1881. Simon. Arachn. de France, v, 1, p. 134.
P. hirsutum Emerton. N. Engl. Therid. Tra's. Conn. Ac., vi, p. 29, pl. 6, fig. 6. Conn.
P. rostratum Emerton. Ibid., p. 30, pl. 6, fig. 5. Mass.

ERIGONE (Note 14).

Sav. and Aud. Descr. de l'Egypt, ed. 2, xxif, p. 319. 1825-'27.
1882. Emerton. N. Engl. Therid. Traus. Coun. Ac., vi, p. 58.
1886. Keyserling. Die Spinn. Am., Therid., II, p. 134.
1864. Nerienne Blackw. Spid. of Gr. Brit., II, p. 248.
1864. Walkenaera id. Ibid., p. 289.

18:33. Savignia id. Char. of S. undeser. gen., ete. Lond. and Edinb. Phil. Mag. No. 3, ser. v, p. 187.
1864. Micryphantus Simon. H. Nat. d'Araignées, p. 193.
1867. Micryphantes Ohlert. Aran. d. Prov. Preussen, p. 34.
1868. Tmeticus Menge. Preuss. Spinn., p. 184.
1868. Ceratina id. Ibid., p. 170.
1868. Platyopsis id. Ibid., p. 178.
1868. Gonatium id. Ibid, p. 180.
1868. Gongylidium id. Ibid., p. 183.
1868. Dicymbium id. Ibid., p. 193.
1868. Lophocarenum id. Ibid., p. 198.
1868. Lophomma id. Ibid., p. 209.
1868. Phalops id. Ibid., p. 218.
1868. Dicyphus id. Ibid., p. 221.
1868. Elaphidium id. Ibid., p. 224.
1868. Cornicularia id. Ibid., p. 226.
1868. Mioroneta id. Ibid., p. 227.
1868. Micryphantes id. Ibid., p. 236.
1868. Leptothryx id. Ibid., p. 240.
1882. Ceratinella Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 32.
1882. Ceratinopsis id. Ibid., p. 36.
1882. Spiropalpus id. Ibid., p. 39.
1832. Grammonota id. Ibid., p. 38.
1882. Cornicularia (Menge) id. Ibid., p. 40.
1882. Lophomma (Menge) id. Ibid., p. 43.

188:. Lophocarenum (Menge) id. Ibid., p. 45.
1882. Tmeticus (Menge) id. Ibid., p. 52.
1882. Gonatium (Menge) id. Ibid., p. 60.
1882. Microneta (Menge) id. Ibid., p. 73.
*E. atra Blackw. Edinb. Phil. Mag., iII, No. 15, p. 195. Mass.
———Cambridge. N. Erigone fr. N. Am., I. Proc. Loud. Zool. Soc., 1874, p. 429.
E. atriceps Cambridge. Ibid., p. 436, pl. 55, fig. 7. Mass., Conn., D. C., Va. Ceratinella atriceps Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 34, pl. 7, fig. 5.
E. auranticeps Emerton (Cornicularia). Ibid., p. 43, pl. 8, fig. 6. Mass., N. H.
E. autummalis Emerton. Ibid., p. 5s, pl. 17, fig.8. Mass., Conn., Va., Md., D. C. —— Keyserling. Die Spinn. Am., Therid, II, p. 171, fig. 232.
E. bidentata Emerton (Tmetieus). N. Engl. Therid. Trans. Conn. Ac., vi, p. 56, pl. 17, fig. 2. N. H.
E. bostonensis Emerton (Tmetichs). Ibid., p. 56, pl. 17, fig. 1. Mass.
E. brevicornis Emerton (Cornicularia). Ibid., p. 42, pl. 11, tig. 5. Coun.
E. brunnea Emerton (Ceratinella). Ibid., p. 36, pl. 8, fig. 3. N. H., Mass., Conn.
E. bulbosa Emerton (Ceratinella). Ibid., p. 33, pl. 7, fig. 3. Conn.
E. bulbosula Keyserling. Die Spinn. Am., Therid., II, p. 183, fig. 243. Md.
E. cacuminum Thorell. Bullet. U. S. Geol. Surv. Terr., III, No. 2, p. 483. Colo.
E. calcarata Keyserling. Die Spinn. Am., Therid., 1f, p. 1~1, fig. 릉. Lake Super.
E. castanea Emerton (Lophocarenum). N. Engl. Therid. Trans. Conn. Ac., vi, p. 45, pl. 12, fig. 1. Mass.
E. clavicornis Emerton (Cornicularia). Ibid., p. 43, pl. 8, fig. 7. N. H.
E. collina Marx. (Note 14.)

Tmeticus montanus Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 55, pl. 16, fig. 3. N. H.
E. coloradensis Keyserling. Die Spinn. Am., Therid., II, p. 168, fig. シ30. Colo.
E. communis Emerton (Cornicularia). N. Engl. Therid. Trans. Coun. Ac., vi, p. 41, pl. 11, fig. 3. N. H., Mass., Conn.
E. concava Emerton (Tmeticus). Ibid., p. 57, pl. 17, fig. 3. Conn.
E. contortus Emerton (Tmeticus). Ibid., p. 54, pl. 15, fig. 5. Mass.
E. cornupalpis Cambridge. New Erigone fr. N. A., Ir. Proc. Lond. Zool. Soc., 1875, p. 401, pl. 40̈, fig. 8. Mass., Conu.
Microneta cornupalpis Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 74, pl. 23, tig. 2.
E. crassimanus Emerton (Microneta). Ibid., p. 75, pl. 24, fig. 3. N. H.
E. crenatum Emerton (Lophocarenum). Ibid., p. 51, pl. 14, fig. 7. Mass., Conn.
${ }^{*}$ E. cristata Blackw. (Walkenera). Spid. of Gr. Brit., if, p. 309, tig. 224. Mass., Canada.
——Cambridge. New Erigone fr. N. A., I. Proc. Lond. Zool. Soc.: 1874, p. 438.
Lophomma cristata Emerton. N. Engl. Therid. Trans. Conu. Ac., vi, p. 44, pl. 10, fig. 1. N. H.
E. decemoculata Emerton (Lophocarenum). Ibid., p. 46, pl. 12, fig. 4. N. H.
E. dentigera Cambridge. Now Erigone fr. N. A.. I. Proc. Lond. \%ool. Noc., 1sït, p. 429. Мавs.
——Cambridge. New Erigone fr. N. A., iI. Proc. Zool. Soc., 1875, p. 394, pl. 46, fig. 2.
———Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 59.
E. depressa Emerton (Lophocarenum). Ibid., p. 50, pl. 14, fig. 6. N. H.
E. directa Cambridge. New Erigone fr, N. A., I. Proc. Lond. Zool. Sioc., 18\%4, p. 439, pl. 55, fig. 9. Mass., Conn., D. C., Va.
Cornicularia directa Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p.40, pl. 11, fig. 1.
Erigone provida Cambridge. New Erigone fr. N. A., II. Proc. Lond. Zool. Soc., 1875, p. 398, pl. 46, fig. 5.
E. discolor Emerton (Microneta). N. Eugl. Therid. Trans. Conn. Ac., vi, p. 75, pl. 24, fig. 1. Mass., Conu.
E. elongata Emerton (Lophomma). Ibid., p. 44, pl. 10, fig. 2. Mass.
E. emertonii Cambridge. New Erigone fr. N. A., I. Proc. Lond. Zool. Soc., 14.t. p. 435 , pl. 55, fig. 6.
———Keyserling. Die Spinn. Am., Therid., if, p. 178, fig. 237.
Ceratinella Ęmertonii Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 32, pl. 7, fig. 1.
E. erigonoides Emerton (Lophocarenum). Ibid., p. 50, pl. 14, fig. 3.
E. fabra Keyserling. Die Spinu. Am., Therid., if, p. 167. lig. 299. Ala., Texas.
E. falsifica Keyserling. Ibid., p. 139, fig. 259. Aleutiau Islands, Alaska.
E. famelica Keyserling. Ibid., p. 186, fig. 246. Alaska.
E. famularis Keyserling. Ibid., p. 198, fig. 258. Alaska.
E. famulatoria Keyserling. Ibid., p. 182, fig. 242. Lake Superior.
E. fissiceps Cambridge. New Erigone fr. N. A., I. Proc. Lond. Zool. Soc., 1874, p. $4: 38$, pl. 55, fig. 8. Mass., Conn., D. C., Va., Md.
———Keyserling. Die Spinn. Am., Therid., II, p. 155, fig. 221.
Ceratinella fissiceps Emerton. N. Engl. Therid. Traus. Conn. Ac., vi, p. 33, pl. 7, fig. 2.
E. florens Cambridge. New Erigone fr. N. A., if. Proc. Lond. Zool. Soc., 1575, p. 403, pl. 46, fig. 10. Mass., Conn., Pa., Md., D. C., Va.
——Keyserling. Die Spinn. Am., Therid., 11, p. 158, fig. 223. Lophocarenum florens Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 46, pl. 12, fig. 3.
E. formica Emerton (Bathyphantes). Ibid., p. 71, pl. 22, fig. 7. Conn., D. C.
E. furcata Emerton (Microneta). 1 bid., p. 76, pl. 24, fig. 5. N. H.
E. fusca Marx (Note 14).

Tmeticus brunneus Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 58, pl. 17, fig. 7.
E. humiliceps Ke5serling. Die Spinn. Am., Therid., ur, p. 148, fig. 214. D. C.
E. indirecta Cambridge. New Erigone fr. N. A., I. Proc. Lond. Zool. Soc., 1874, p. 440, pl. 55, fig. 10. Mass., D. C.
E. indirecta Keyserling. Die Spinu. Aı., Therid., II, p. 146, fig. 213.

Cornicularia indirecta Emerton. N. Engl. Therid. Trans. Conn. Ac, vi, p. 41, pl. 11, fig. 4.
E. infernalis Keyserling. Die Spinn. Am., Therid, if, p. 180, fig. 239. Reynolds' Cave, Ky.
E. inornata Emerton. N. Engl. Therid. Trans. Conu. Ac., vi, p. 39, pl. 10, fig. 5. Conn., Mass.
E. interpres Cambridge. New Erigoue fr. N. A., I. Proc. Lond. Zool. Soc., 1874, p. 430, pl. 55, fig. 1. Mass., Conn., D. C., Va., Tex.
———Keyserling. Die Spinn. Am., Therid., 11, p. 144, fig. 21\%.
Ceratinopsis interpres Emerton. N. Engl. Therid. Trans. Coun. Ac., vi, p. 37, pl. 9, fig. 1.
E. læta Cambridge. N. Erigone fr. N. A., i. Proc. Loml. Zool. Soc., 1874, p. 433, pl. 55, fig. 4. Mass., D. C., Md., Va.
—— Keyserling. Die Spiun. Am., Therid., if, p. 176, fig. 236.
Ceratinella lata Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 35, pl. 8 , fig. 1.
E. lætabilis Cambridge. New Erigone fr. N. A., I. Proc. Lond. Zool. Soc., 1874, p. 435, pl. 55, fig. 5. N. H., Mass., Conn.

Ceratinella latabilis Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 35, pl. 8, fig. 2.
E. lata Emerton (Lophocarenum). Ibid., p. 50, pl. 14, fig. 4. Mass.
E. laticeps Emerton (Ceratinopsis). Ibid., p. 37, pl. 9, fig. 3. Conn.
E. latidens Emerton (Microneta). Ibid., p. 76, pl. 24, fig. 4. Conu.
E. longibulba Emerton (Microneta). Ibid., p. 76, pl. 24, fig. 6. Mass.
E. longipalpis Emerton = simillima Keyserling.
E. longisetosa Emerton (Tmeticus). N. Engl. Therid. Trans. Coun. Ac., vi, p. 54, pl. 16, fig. I. Comn.
E. longitarsis Emerton (Lophocarenum). Ibid., 48, pl. 13, fig. 4. N. H.
E. longituba Emerton (Lophocarenum). Ibid., p. 49, pl. 13, fig. 6. N. H.
E. marxii Keyserling. Die Spiun. Am., Therid., in, p. 15\%, fig. 218. Lake Superior.
E. maxima Emerton (Tmeticus). N. Engl. Therid. Trans. Conn. Ac., vi, p. 55, pl. 16, fig. 5. N. H.
E. micropalpis Emerton (Ceratinclla). Ibid., p. 36, pl. 8, fig. 5. Mass.
E. microtarsis Emerton (Tmeticus). Ibid., p. 57, pl. 17, fig. 4. N. H.
E. minuta Emerton (Ceratinella). Ibid., p. 36, pI. 8, fig. 4. Coun., Mass.
E. minutissima Keyserling. Die Spinn. Am., Therid., if, p. 219, fig. 276. Tex.
E. monoceros Keyserling. I bid., p. 156, fig. 222. Wash.
E. montana Emerton (Lophocaremum). N. Engl. Therid. Trans. Conn. Ac., Vi, p. 45, pl. 12, fig. 2. N. H.
E. monticola Marx (Note 14).

Tmeticus tibialis Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 56, pl. 16 , fig. 6.
E. montifera Emerton (Lophocarenum). Ibid., p. 47, pl. 13, fig. 2. Mass.
E. multesima Cambridge. N. Erigone fr. N. A., In. Proc. Lond Zool. Soc., 1875, p. 402, pl. 46, fig. 9. Mass.
E. nigriceps Emerton (Ceratinopsis). Ibid., p. 37, pl. 9, fig. 2. Conn., Mass.
E. nigripalpis Emerton (Ceratinopsis). Ibid., p. 38, pl. 9, fig. 4. Conn.
E. olivacea Emerton (Microneta). Ibid., p. 77, pl. 24, fig. 7. N. H.
E. ornata Cambridge. New Erigone fr. N. A., II. Proc., Lond. Zool. Soc., 1875, p. 395, pl. 46, fig. 3. Mass.

Grammonota ornata Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 39, pl. 10, fig. 3.
E. pallens Marx (Note 14).

Lophocarenum pallidum Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 48, pl. 13, fig. 5.
E. pallescens Marx (Note 14).

Tmeticus pallidus Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 55, pl. 16, fig. 4.
E. pallida Emerton (Cornicularia). Ibid., p. 42, pl. 11, fig. 7. Conn.
E. paullula Marx (Note 14).

Cornicularia minuta Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 42, pl. 11, fig. 6.
E. percisa Keyserling. Die Spinu. Am., Therid., II, p. 153, fig. 219. Md.
E. perplexa Kesserling. Ibid., p. 190, fig. 250. Wash.
E. persimilis Cambridge. New Erigoue fr. N. A., ir. Proc. Lond. Zool. Soc., 1875, p. 394, pl. 46, fig. 1. Mass.
E. persoluta Cambridge. Ibid., p. 400, pl. 46, fig. 7. Mass., N. H.

Microneta persoluta Emerton. N. Engl. Therid. Trans. Conu. Ac., vi, p. 74, pl. 23, fig. 3.
E. pertinens Cambridge. New Erigone fr. N. A., If. Proc. Lond. Zool. Soc., 1875, p. 399, pl. 46, fig. 6. Mass.

Tmeticus pertinens Emerton. N. Engl. Therid. Trans. Coun. Ac., vi, p. 45, pl. 16, fig. 2.
E. pictilis Cambridge. New Erigone fr. N. A., If. Proc. Lond. Zool. Soc., 1875, p. 396, pl. 46, fig. 4. New Engl.
——Keyserling. Die Spinn. Am., Therid., II, p. 194, fig. 254.
Grammonota pietilis Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 38, pl. 10, fig. 4.
E. plumosa Emerton (Tmeticus). Ibil., p. 53, pl. 15, fig. 3. N. H., Mass., Canada.
E. polaris Keyserling. Die Spinn. Am., Therid., ir, p. 148, fig. 215. Alaska.
E. præpulchra Kesserling. Ibid., p. 172, fig. 233. Aleutian Islands, Alaska (Peru).
E. probata Cambridge. New Erigone fr. N. A., I. Proc. Lond. Zool. Soc., 18\%4, p. 431, pl. 55, fig. 2. Mass., Ky., Conn.
—— Keyserling. Die Spinn. Am., Therid., II, p, 166, fig. 22e.
Tmeticus probatus Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 52, pl. 15, fig. 1.
E. provida Cambridge $=$ directa ㅇ.
E. purpurescens Keyserling. Die Spiun. Am., Therid., if, p. 187, fig. ᄅ48. Fla., Ga.
E. pygmæa Emerton (Ceratinella). $\overline{\mathrm{N}}$. Engl. Therid. Trans. Conn. Ac., vi, p. 34, pl. 7, fig. 4. Conn.
E. quadricristata Emerton (Lophocarenum). Ibid., p. 48, pl. 13, fig. 3. N. H.
E. quinquedentata Emerton (Microuta). Ibid., p. 75, pl. 24, fig. 2. Mass., N.H., Canada.
E. relexata Keyserling. Die Spinn. Am., Therid., if, p. 154, fig. 220. Md.
E. rostratula Keyserling. Ibid., p. 186, fig. 247. Md.
E. rostrata Emerton (Lophocarenum). N. Engl. Therid. Trans. Conn. Ac., Vi, p. 49, pl. 14, fig. 1. Conn.
*E. rubens Blackw. (Nerienne). Spid. of Gr. Brit., II, p. -. N. Engl.
Gonatium rubens Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 60, pl. 23 , fig. 6.
E. shumaginensis Kesserling. Die Spinn. Am., Therid., II, p. 182, fig. 241. Aleutian Islands, Alaska.
E. scopulifera Emerton (Lophocarenum). N. Engl. Therid. 'Trans. Conn. Ac., vi, p. 49, pl. 14, fig. 2. Mass.
E. siberiana Keyserling. Die Spinu. Aw., Therid., if, p. 189, fig. 249. Commander Island, Siberia.
E. simillima Kesserling. Ibid., p. 170, fig. 231. Aleutian Islands, Alaska.

Longipalpis Emerton non Cambridge.
E. simplex Emerton (Lophocarenum). N. Engl. Therid. Trans. Conu. Ac., vi, p. 50, p1. 14, fig. 5. Mass.
E. solitaris Keyserling. Die Spinn. Am., Therid., Ir, p. 179, fig. 238. Cave, Ky.
E. spinifera Cambridge. New Erigone fr. N. A., I. Proc. Lond. Zool. Soc., 1874, p. 432, pl. 55, fig. 3. Mass.

Lophocarenum spiniferum Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 47, pl. 13, fig. 1.
E. spiralis Emerton (Spiropalpus). Ibid., p. 39, pl. 10, fig. 6. Mass., Conn.
E. strabo Thorell. Bull. U. S. Geol. Surv. Terr., ini, No. 2, p. 483. Colo.
E. terrestris Emerton (Tmetious). N. Engl. Therid. Trans. Comn. Ac., vi, p. 57, pl. 17, fig. 6. Mass.
E. tibialis Emerton (Cornicularia). Ibid., p. 41, pl. 11, fig. 2. Mass.
E. tricornis Emerton (Cornicularia). Ibid,, p. 43, pl. 11, fig. 8. N. H.
E. tridentatus Emerton (Tmeticus) Ibid., p. 53, pl. 15, fig. 2. R. I., Conn.
E. trilobatus Emerton (Tmeticus). Ibid., p. 53, pl. 15, fig. 4. Mass., Conn.
E. truncatus Emerton (Tmeticus). Ibid., p. 57, pl. 17, fig. 5. N. H.
E. ululabilis Keyserling. Die Spinn. Am., Therid., 1I, p. 184, fig. 244. Alaska.
E. umbraticola Keyserling. Ibid., p. 195, fig. 255. Aleutian Islands, Alaska.
E. umbratilis Keyserling. Ibid., p. 201, fig. 261. N. C.
E. urusta Keyserling. I bid., p. 193, fig. 253. Aleutian Islands, Alaska.
E. usurpabilis Keyserling. Ibid., p. 193, fig. 253. Alentian Islands, Alaska.
E. vacerosa Keyserling. Ibid., p. 200, fig. 260. Md., Aleutian Islands, Alaska.
E. vernalis Emerton (Lophocavemum). N. Eug. Therid. Trans. Coun. Ac., vi, p. 51, pl. 14, fig. 8. R. I.
*E. viaria Blackw. (Nerienne). Spid. of Gr. Brit., ir, p. 255, fig. 171.
-_Cambridge. N. Erigone fr. N. A., II. Proc. Lond. Zool. Soc., 1875, p. 403. Mieroneta viaria Emerton. N. Engl. Therid. Trans. Conn. Ac., vi, p. 73, pl. 23, fig. 1.
E. xanthippe Keyserling. Die Spinn Am., Therid., II, p. 192, fig. 251. Ill.
E. zonaria Keyserling. Ibid., p. 196, fig. 256. Ga.
E. zygia Keyserling. Ibid., p. 197, fig. 257. Ga.

Ceratinella Emerton = Erigone.
N. Eng. Therid. Trans. Conn. Ac., vi, p. 32.
C. atriceps (Cambr.) Emerton $=$ Erigone atriceps.
C. emertonii (Cambr.) Emertou = Erigone emertomii.
C. brunnea Emerton = Erigone brunnea.
C. bulbosa Emerton = Erigone bulbosa.
C. fissiceps (Cambr.) Emerton = Erigone fissiceps.
C. leta (Cambr.) Emerton = Erigone leta.
C. latabilis (Cambr.) Emerton = Erigone latabilis.
C. mieropalpis Emerton = Erigone micropalpis.
C. minuta Emerton = Erigone minuta.
C. pygmea Emerton $=$ Erigone pygmea.

Ceratinopsis Emerton=Erigone.
N. Engl. Therid. Trans. Conn. Ac., vi, p. 36.
C. interpres (Cambr.) Emerton = Erigone interpres.
C. laticeps Emerton $=$ Erigone.laticeps.
C. nigriceps Emerton $=$ Lrigone nigriceps.
C. nigripalpis Emerton $=$ Erigone nigripalpis.

$$
\text { Grammonota Emerton = Erigone } .
$$

N. Engl. Therid. Trans. Conn. Ac., vr, p. 38.
G. inornata Emerton = Erigone inornata.
G. ornata (Cambr.) Emerton = Erigone ornata.
G. pictilis (Cambr.) Emerton = Erigone pictilis.

Spiropalpus Emerton = Erigone.
N. Engl. Therid. Trans. Conn. Ac., vi, p. 39.
S. spiralis Emerton $=$ Erigone spiralis.

Cornicularia Menge $=$ Erigone .
Preuss. Spinn., p. 226.
C. auranticeps Emerton = Erigone auranticeps.
C. brevicornis Emerton = Erigone brevicornis.
C. clavicornis Emerton = Erigone clavicornis.
C. communis Emerton = Erigone communis.
C. directa (Cambr.) Emerton $=$ Erigone directa .
C. indirecta (Cambr.) Emerton = Erigone indirecta .
C. minuta Emerton = Erigone paullula.
C. tibialis Emerton = Erigone tibialis.
C. tricornis Emerton = Erigone tricornis.

> Lophocaremum Menge = Erigone.

$$
\text { Preuss. Spinn., p. } 198
$$

L. castaneum Emerton = Erigone castanea .
L. crenatum Emerton = Erigone crenatum.
L. decemoculatum Emerton = Erigone decemoculata.
L. depressum Emerton = Erigone depressa.
L. erigonoides Emerton = Erigone erigonoides.
L. florens (Cambr.) Emerton = Erigone florens.
L. latum Emerton = Erigone lata.
L. longitarsis Emerton = Erigone longitarsis.
L. longitibus Emerton = Erigone longitibus.
L. montanum Emerton = Erigone montana.
L. montiferum Emerton = Erigone montifera.
L. pallidum Emertou = Erigone pallens.
L. quadicristatum Emerton = Erigone quadricristata.
L. rostratum Emerton = Erigone rostrata.
L. scopuliferum Emerton = Erigone scopulifera.
L. simplex Emerton $=$ Erigone simplex.
L. spiniferum (Cambr.) Emerton = Erigone spinifera.

> Lophomma Menge = Erigone.

$$
\text { Preuss. Spiun., p. } 209 .
$$

L. cristata (Blackw.) Emerton = Erigone cristata.
L. elongata Fmertou = Erigone elongata.

> Tmeticus Menge = Erigone.

Preuss. Spinn., 1. 184.
T. bidentatus Emerton = Erigone bidentata .
T. bostonensis Emerton $=$ Erigone bostonensis.
T. brunneus Emerton = Erigone fusca.
T. concavus Emerton = Erigone concava.
T. contortus Emerton = Erigone contorta.
T. longisetosus Emerton = Erigone longisetosa.
T. maximus Emerton = Erigone maxima.
T. microtarsis Emerton = Erigone microtarsis.
T. montanus Emerton = Erigone collina.
T. pallidus Emerton = Erigone pallescens.
T. pertinens (Cambr.) Emerton = Erigone pertinens.
T. plumosus Emerton = Erigone plumosa.
T. probatus Emerton=Erigone probata.
T. terrestris Emerton $=$ Erigone terrestris.
T. tibialis Emerton = Erigone monticola.
T. tridentatus Emerton = Erigone tridentata.
T. truncatus Emerton = Erigone truncata.

$$
\text { Gonatium Menge }=\text { Erigone. }
$$

Preuss. Spinn., p. 180.
G. rubens Emerton $=$ Erigone rubens.

> Microneta Menge = Erigone.
> Preuss. Spinn., p. 227.
M. cormupalpis Emerton = Erigone cemupalpis.
M. crassimamus Emerton = Erigone crassimanus.
M. discolor Emerton = Erigone discolor.
M. furcata Emerton = Erigone furcata .
M. latidens Emerton = Erigone latidens.
M. longibulbus Emerton = Erigone longibulbus.
M. olivacea Emerton = Erigone olivacea.
M. persoluta (Cambr.) Emerton = Erigone persoluta .
M. quinquedentala Emerton = Erigone quinquedentata.
M. viraria $($ Blackw.) Emerton $=$ Lrigone vivaria .

Tribus VII ORBITELARIE.

Family EPEIRID.

1817. Orbiteles Latreille. Cuvier's Règne Anim. R., iII, p. 86.
1818. Retiarix Sund. Gen. Aran. Suec., p. 15.
1819. Orbitela Latr. Fam. Natur. du Règne Anim., p. 317.
1820. Epeirides. Sund. Conspect. Arachn., p. 13.
1821. Epeirides C. Koch. + Mithraides Uebers. d. Arachn. Syst., v, pp. 8, 15.
1822. Epeiroide Thorell. On Europ. Spid., p. 47.
1823. Epeiride Emerton. N. Eng. Epeirid. Trans. Conn. Ac., vx, p. 296.
1824. Euetrioide Thorell. Ragni Birmani. Ann. Mus., Civie., d Genoa, xxv.

GASTERACANTHA.

Latreille. Cours. d'Entomologie, p. 530. 1831.
1833. Sund. Conspect. Arachn., p. 26.
1837. Plectana Walck. Ins. Apt., ir, p. 150 ad part.
*G. cancriformís Linn. (Aranea). Syst. Natur. Ed., xi, p. 1037. Fla., Ala., Tex., Ariz., N. Mex., Cal.
Plectana elipsoides Walck. Abbot Ga. Spid. Ins. Apt., II, p. 155.
Plectana cancriformis Walck. Ins. Apt., II, p. 151.
Epeira cancer Hentz. Journ. Bost. Soc. Nat. Hist., vı, p. 23. Id., Spid. U. S., ed. Burgess, p. 126, pl. 14, fig. 13.
G. elipsoides Walck. (Plectana)=cancriformis.
*G. pallida C. Koch. Die Arachn., xi, p. 60, fig. 881. Cal.
G. preciosa Marx. Keyserling Die Spinn. Amerikas Iv, Epeiridæ.
G. rufospinosa Marx = velitaris.
*G. velitaris C. Koch. Die Arachn., IN., p. 33, fig. 269. Fla., Ala., Ga., La., Miss., S.C.
Plectana velitaris Walck. Ins. Apt., i, p. 152.
Casteracantha rufospinosa Marx. Entomologica Americana, II, p. 25.

ACROSOMA.

Perty. Delect. anim. artic., III. 1834.
1833. Micrathena Sundev. Conspect. Arachn., p. 12.
1837. Plectana Walck. Ins. Apt., II, p. 150 ad part.
1863. Acrosoma Keyserling. Beschr. n. Orbitel. Sitz. d. Isis, 1863, p. 63.
1865. Acrosoma Id. Beitr. z. Kenntn. d. Orbr. Verh. d. z. b. Ges. Wien., p. 800.
A. gracile Walck. (Note 15) (Plectana). Ábbot Ga. Spid. Ins. Apt., ir, p. 193. Fla., Ga., La., Ala., Va., Md., Pa., D. C., Ind., Conn., N. Y.
A. matronale C. Koch. Die Arachniden, XI, p. 68, fig. 887.

Epeira rugosa Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 21. Id. Spid. U.S., ed. Burgess, p 124, pl. 14, fig. 10.
Acrosoma rugosa Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 326, pl. 38 , fig. 10.
A. matronale $\mathrm{C} . \mathrm{Koch}=$ gracile.
A. mitrata Emerton = reduvianum.
A. reduvianum Walck. (I'lectuna). Abbot Ga. Spid. Ins. Apt., II, p. 201. Conn., N. Y., Pa., Md., D. C., Va., N. C.

Epeira mitrata Hentz. Jonrn. Bost. Soc. Nat. Hist., Vi, p. 22. Id. Spid. U.S., ed. Burgess, p. 125, pl. 14, fig. 11.
Acrosoma mitrata Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 3:7, pl. 38, fig. 9.
A. rugosa Emerton = gracile.
A. sagittatum Walck. (I'lectana). Abbot Ga. Spid. Ins. Apt., II, p. 174. N. Engl., Fla., Ga., Ala., Miss., La., Va., D. C., Md.
Epeira spinea Hentz. Journ. Bost. Soc. Nat. Hist., Vi, p. 21. Id. Spid. U. S., ed. Burgess, p. 123, pl. 14, fig. 9.

Acrosoma spinea Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 326, pl. 38 , figs. 5-8.
A. spinea Emerton $=$ sagittatum.

Acrosoma aculeatum (Note 16) C. Koch. Die Arachn., III, p. 58, fig. 211, Amerika.
Plectana aculeata Walck. Ins. Apt., if, p. 180.
Plectana gladiola Walck. Ibid., p. 182.
Acrosoma crassispinum C. Koch. Die Arachu., III. p. 55, fig. 209. Amerika.
Plectana crassispina Walck. Ins. Apt., II, p. 180.

Plectana Walck.

$$
\text { Ins. Apt., if, p. } 150.1837 .
$$

P. aculeata Walck. $=$ Acrosoma aculeatum.
P, cancriformis Walck. = Gasteracantha cancriformis.
P. crassispina Walck. = Acrosoma crassispinum.
\boldsymbol{P}. elipsoides Walck. = Gasteracantha cancriformis.
P. gladiola Walck. $=$ Acrosoma aculeatum.
P. gracilis Walck. = Acrosoma gracile.
P. reduviana Walck. = derosoma reduvianum.
P. sagittata Walck. = Acrosoma sagittatum.
P. stellata Walck. = Epeira stellata.
P. velitaris Walck. = Gasteracantha velitaris.

CERCIDIA.

Thorell. On Europ. Spid., p.58. 1869.
1866. Cerceis Menge. Preuss. Spinn., p. 80.
C. funebris Keyserling. Die Spinn. Am., rv, Epeiridæ. Fla.

ARGIOPE.

Sav. and Aud. Descr. de l'Egypt Ed. 2, xxit, p. 328. 1×25-27.
1829. Argyopes Latr. In Cuvier's Regno Anim., v, p. 528.
1831. Argiope Latr. Cours d'Entom., p. 529.
1869. Argiope Thorell. On Europ. Spid., p. 51.
1874. Argiope Simon. Arachn. de France, p. 27.
1884. Argiope Emerton. N. Engl. Epeir. Trans. Conn. Ac.. Vi, p. 328.
*A. argentata Fabr. (Aranea). Eutom. System, Ir, p. 414. Fla., Tex., Cal., Ariz.
Argiopes argentatus C. Koch. Die Arachn., v, p. 38, fig. 360.
Epeira argentata Walck. Ins. Apt., ir, p. 115, pl. 18, fig. 3. Penn.
A. argyraspides Walck. (Epeira). Abbot Ga. Spid. Ins. Apt., iI, p. 110. N. Y., Mass., Conn., Pa., Md., D. C., Va., N. C., Cal., Ariz., Kans.
Epeira fasciata Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 468. Id., Spid. U. S., ed. Burgess, p. 107, pl. 12, fig. 8.
Epeira fusciata Cragin. Contribut, to Knowl. of Arachn., of Kans., Bull. Washburn Coll., 1, No. 4, p. 146.
Epeira transversa Emerton. N. Eugl. Epeir. Trans. Coun. Ac., vi, p. 330, pl. $24,11 \mathrm{~g} .20$.
*A. avara Thorell. Freg. Eugenies Resa. Araner, p. 27. Ariz., Cal.
A. basilica McCook. (Epeira). Proc. Acad. Nat. Sciences, Phila., 187\%, p. 124. Tex., D. C.
A. cophinaria Walck. (E'peira). Ahbot Gal. Spid. Ins. Apt., if, p. 109. Mass., Conn., N. Y., Pa., Md., D. C., Va., La., Fla., Cal., N. Mex.
Epeira riparia Hentz. Jouru. Bost. Soc. Nat. Hist., v, p. 468. Id., Spid. U. S., ed. Burgess, p. 106, pl. 12, fig. 5.

Epeira riparia Cragin. Contribut, to Knowl. of Archn. of Kans., Bull. Washburn Coll., 1, No. 4, pl. 146.
Epeira ambitoria Walck. Ins. Apt., II, p. 112.
Nephila vestita C. Koch. Die Arachn., v, p. 35, fig. 358.
Argiope riparia Emerton. N. Engl. Epeir. Trans. Conu. Ac., vi, p. 329, pl. 34, fig. 19.
A. multiconcha Treat. Americ. Natural., 1887, p. 1120 = var. of cophinaria. N. J. d. riparia Emerton = cophinaria .
A. transversa Emerton = argyraspides.

GEA.

C. Koch́. Die Arachn., x, p. 101. 1843.
1872. Ebaxa L. Koch. Die Arachn. Anstraliens, p. 130.
G. heptagon Hentz (Epeira). Journ. Bost. Soc. Nat. Hist., vi, p. 20. Id., Spid. U. S., ed. Burgess, p. 122, pl. 14. fig. 4. D. C., Va., Ala., Fla.

ORDGARIUS.

Keyserling in L. Koch's Die Arachn. Austral., II, p. 114. 1886.
O. bisaccatus Emerton (Crytarachne). N. Engl. Epeir. Trans. Conn. Ac., vi, p. 325, pl. 34, fig. 11. Conu., D. C., Va.
O. cornigerus Hentz (Epeira). Journ. Bust. Soc. Nat. Hist., vi, p. 20. Id., Spid. U. S., ed. Burgess, p. 123, pl. 14, fig. 8. Ala., D. C., Va., La.

Cyrtarachne cornigera Keyserling. N. Spid. a. Am., r. Verhn. d. z. b. Ges. Wien, 1879, p. 300, pl. 4, fig. 4.
Cyrtarachne bicurvata Becker. Ann. Soc. Ent. Belgique, 1879, p. 77.

MAHADEVA.

Keyserling. Die Spinn. Am., Iv, Epeiridæ.
M. verrucosa Hentz (E'peira). Journ. Bost. Soc. Nat. Hist., vi, p. 19. Id., Spid. U. S., ed. Burgess, p. 121, pl. 14, fig. 2. D. C., Va., Fla., Ala.

CAREPALXIS.

L. Koch. Die Arachn. Australiens, p. 123.
C. tuberculifera Keyserling. Die Spinn. Am., Iv, Epeiridæ. Fla.

EPEIRA.

Walck. Tab. d'Aran., p. 53. 1805.
1837. Epeira C. Koch. Uebers. d. Ar. Syst., I, p. 2.
1837. Atea Id. Ibid., I, p. 3.
1837. Miranda Id. Ibid., I, p. 4.
1847. Epeira Hentz. Journ. Bost. Soc. Nat. Hist., vol. v, p. 467. Id., Spid. U. S., ed. Burgess, pp. 7, 105.
1869. Epeira Thorell. On Europ. Spid., p. 53.
1874. Simon. Arachn. de France, I, p. 46.
1884. Epeira Emerton. N. Eugl. Epeir. Trans. Conn. Ac., vi, p. 298.
E. aculeata Emerton. Append. to Thorell's Descr. of Arachu., coll. in Colorado. Bull. U. S. Geol. Surv. Terr., inf, No. 2, 1877, p. 528, fig. 18. Colo.
E. affinis Blackw. = cornuta.
E. alba Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 20. Id., Spid. U. S., ed. Burgess, p. 122, pl. 14, fig. 7. N. C., Fla.
E. alba Keyserling = leucogaster Marx.*
E. alboventris Emerton. N. Engl. Epeir. Trans. Conn, Ac., Vi, p. 314, pl. 34, fig. 5, pl. 36, fig. 12. Me., Mass.
E. ambitoria Walck. = Argiope cophinaria.
E. anaglypha Walck. Abbot Ga. Spid. Ins. Apt., II, p. 128. Ga., Cal.
E. anastera Walck. Ibid, II, p. 33. Ga.
${ }^{*}$ E. angulata Clerk (Arancus). Sv. Spid., p. 22, pl. 1, tab. 1, figs. 1-3. Mass., Ill., Oregon, Tex.
Aranea angulata Linn. Syst. Nat. Ed., xı, p. 620.
Epeira angulata Walck. Tab. d’Aran., p. 57 ad part.
Epeira eremita C. Koch. Herr-Schaeff. Deutschl. Ins., 131, 23, 24.
Epeira quercetorum Id. Uebers. d. Ar. Syst., 1, p. 2.
Epeira pinetorum Id. Ibid., I, p. 3.
Epeira angulata Id. Die Arachn., XI, p. 77, figs. 892, 893.
Epeira angulata Emerton. N. Engl. Epeir. Trans. Cone. Ac., vi, p. 299, pl. 33, fig. 12, pl. 35, fig. 2.
E. annulipes Giebel $=$ conspicellata.
E. apoclisa americana Walck. = cornuta.
E. apoclisa Giebel = cornuta.
E. apotroga Walck. Abbot Ga. Spid. Ins. Apt., iI, p. 43. Ga.
E. aproximata Blackw. Spid. fr. Canada. Ann. and Mag. of Nat. Hist., xvir, p. 80. Canada.
E. arabesca Walck. (Bose.) Ins. Apt., ir, p. 75. Ca., Ga., Ala., Fla., Tex., N. Mex., Utal, Cal., D. C., Va., Pa., N. Engl.
trivittata Keyserling. Beschr. n. Orbit Sitz. d. Isis Dresden, 1864, p. 95, pl.万, figs. 6-9.
trivittata Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 311, pl. 33, fig. 16, pl. 36, figs, 2, 3, 5, 8.
E. arenata Walck. = Mahadeva verrucosa.
E. argentata Walck. = Argiope argentata.
E. aureola Hentz. $=$ trifolium Hentz.
*E. audax Blackw. Ann. and Mag. Nat. Hist. (3), xi, p. 29 . Florida. (Dr. Neal.) meridionalis Keyserling. Verh. d. z. b. Ges. Wien, 1865, p. 810, pl. 19, figs. 19. 20.
decem tuberculata Bertkau. Verz. d. bras. Arachn. ges. v. Van Beneden., p. 91, pl. 2, fig. 33.
E. balaustina McCook. Proc. Ac. Nat. Sc., Phila., 1888, p. 198. Florida.
E. baltimoriensis Keyserling = Thaddeus.
E. basilica McCook = Argiope basilica.
E. bella Marx in Keyserling. Die Spinn Am., iv, Epeirids. Florida.
E. benjamina Walck. Abbot Ga. Spid. Ins. Apt., ir, p. 43. U. S.
domiciliorum Hentz. Journ. Bost. Sc. Nat. Hist., v, p. 469. Id., Spid. of U. S., ed. Burgess, p. 108, pl. 12, fig. 7.
domiciliorum Emerton. N. Engl. Epeir. Trans. Conn. Ac., vı, p. 312, pl. 33, fig. 17, pl. 36 , figs. $1,4$.
hentzii Keyserling. Beschr. n. Orbitel. Sitz. d. Isis Dresden, 1864, p. 97, pl. 5, figs. $10,11$.
E. bicentemnaria McCook. Proc. Ac. Nat. Sc., Phila., 1888, p. 194, figs. 1-5. Ohio, Pa.
E. bispinosa Keyserling. N. Spid.a. Am., vi. Verh. d.z. b. Ges. Wien, 188.4, p. 531, fig. 30. Cal.
E. bivariolata Keyserling. Die Spinn. Am., iv, Epeiride. Colo., Oregon., Wyo.
E. bivittata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 78. Ga.
E. bombycinaria Hentz = eustala.
E. borealis Marx in Keyserling. Die Spinu. Am., IN, Epeiride. Ounalaska.
E. calix Walck. Abbot Ga. Spid. Ins. Apt., II, p. 90. Ga.
E. californica Marx in Keyserling. Die Spinu. Am., iv, Epeiridæ. San Diego, Cal.
E. callida Walck. (Bosc. MSS.) Ins. Apt., if, p. 68. Canada.
E. canadensis Blackw. Spid. fr. Canada. Aun. and Mag. of Nat. Hist., xvir, p. 81. Canada.
R. cancer Hentz $=$ Gasteracantha cancriformis Linn.
${ }^{*}$ E. carbonaria L. Koch. Beitr. z. Kent. d. Ar. Tirols. Zeitschr. d. Ferdin, 1869, p. 168. N. H., Colo., Cal., D. C., Labr.
carbonaria Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 315, pl. 33, fig. 18, pl. 36, figs. 18, 19.
packardi Thorell. Spinn. fr. Labrador. Proc. Bost. Soc. Nat. Hist, xvir, p. 490.
E. carbonarioides Keyserling. Die Spinn. Am., IN., Epeiride. Cal., Colo., D. C.
E. caroli Hentz = Cyclosa caroli.
E. caudata Heutz $=$ Cyclosa turbinata.
E. cauta Walck. Ins. Apt., II, p. 35. N. Y.
E. cavatica Keyserling. N. Spinn. a. Am., III. Verh. d. z. b. Ges. Wien, 1881, p. 269, pl. 11, fig. 1. Ky., N. H., Me., Tenv.
cinerea Emerton. N. Eugl. Epeir. Trans. Conn. Ac., vi, p. 302, pl. 33, fig. $10, \mathrm{p}^{1 / .} 35$, figs. 7, 8.
E. cepina Walck. Abbot Ga. Spid. Ins. Apt., II, p. 37. Ga.
E. cerasie Walck. = stellata.
E. cinerea Emerton=cavatica.
E. cingulata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 40. Ga.
E. circulata Walck. Abbot Ga. Spid. Ins. Apt., ir, p. 79. Ga.
E. conchlea McCook. Proc. Ac. Nat. Sc., Phila., 1888, p. 199, fig. $6=$ Variety of Ep. eustala Walck.
E. conspicellata Walck. = marmorea.
E. cornigera $\mathrm{Hentz}=$ Ordgarius cornigerus.
*E. cornuta Clerk (Araneus). Sv. Spindl., p. 39, pl. 1, tab. 2. Minn., Ill., Wis., Mass., Conn., N. Y., Pa., Md., D. C., Va.
apoclisa americana Walck. Ins. Apt., II, p. 62.
Epeira strix Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 473. Id., Spid. U. S., ed. Burgess, p. 112, pl. 13, fig. 5.
afinis Blackw. Spid. fr. Canada. Aun. Mag. Nat. Hist., Xvirr, p. 77.
dubia Keyserling. Beschr. n. Orbitel. Sitz. d. Isis Dresden, p. 123, pl. 4, figs. 12, 13.
apoclisa Giebel. Spinn. a. Illinois. Zeitschr. f. Ges. Naturwiss, xxxmi, p. 249.
foliata Walck. Ins. Apt., II, p. 62. N. Y.
foliata Koch. Die Arachn., XI, p. 119, figs. 920, 921. Pa.
foliata Keyserling. Beschr. n. Orbitel., Sitz d. Dresden, p. 92, pl. 7, figs. 10, 11.
strix Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 305, pl. 33, fig. 5, pl. 35, fig. 12.
E. corticaria Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 300, pl. 33, fig. 14, pl. 35, fig. 9. Mass., N. Y.
E. crucifera Keyserling. Beschr. n. Orbitel., Sitz d. Isis Dresden, p. 132, pl. 6, figs. 11, 12. N. A.
*E. cucurbitana Clerk. (Araneus). Sv. Spindl., p. 44, pl. 2, tab. 4. Ga., Cauada.
——— Walck. Abbot Ga. Spid. Ins. Apt., II, p. 77.
——Blackw. Spid. fr. Montreal. Ann. and Mag. Nat. Hist., viil, p. 429.
E. decipiens Fitch. Traus. N. Y. State Agric. Soc., xv., p. 451. Id., 1 and 2. Report on Noxious Ins., p. 219. N. Y.
E. decolorata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 49.
E. deludens Marx Keyserling. Die Spinn. Am., iv, Epeir. Fla.
E. diademata Clerk (Araneus). Sv. Spindl., p. 25, pl. 1, fig. 2. Minn. (Ainsley's coll.). N. Foundl.
Cambridge. Spid. fr. N. Foundl. Proc. Roy. Phys. Soc., 1881, p. 112.
E. directa Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 478. Id., Spid. U. S., ed. Burgess, p. 119, pl. 13, fig. 21. S. C., Ala.
E. displicata Hentz. Ibid., p. 476. Id., ıbid., p. 117, pl. 13, fig. 17. Ala., Fla., Tex., Colo., Va., D. C., Md., N. Engl., Ohio, Cal.
——Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 313, pl. 34, fig. 4, pl. 36 , fig. 20.
E. dissimulata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 60. Ga.
E. domiciliorum Hentz = benjamina.
E. dubia Keyserling = cornuta.
${ }^{*}$ E. ectypa Walck. Abbot Ga. Spid. Ins. Apt., if, p. 129. Ga., N .C., Ala., Fla., Va., D. C., Conn.
———Keyserling. Beschr. n. Orbitel. Sitz. d. Isis Dresden, p. 135, pl. 6, figs. 13-16. infumata Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 19. Id., Spid. U. S., ed. Burgess, p. 122, pl. 14, fig. 4.
infumata Emerton. N. Eugl. Epeir. Trans. Conn. Ac., VI, p. 319, pl. 37, figs. $11,12,13$.
E. emphana Walck. Abbot Ga. Spid. Ins. Apt., II, p. 74. Ga.
E. ergaster Walck. Ibid., II, p. 55. Ga.
E. eustala Walck. Ibid., II, p. 37. U. S.
bombycinaria Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 476. Id., Spid. U. S., ed. Burgess, p. 117, pl. 13, fig. 16.
parvula Keyserling. Beschr. n. Orbitel. Sitz. d. Isis. Dresden, 1864, p. 131.
parvula Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 317, pl. 34, fig. 12, pl. 37, fige. 1, 2.
parvula McCook. Proc. Ac. Nat. Soc., Phila., 1888, p. 199.
E. eustalina Marx in Keyserling's. Die Spinn. Am., iv, Epeirde. Key West, Fla.
E. famulatoria Keyserling. N. Spinu. a. Am.,Iv. Verh., d. z. b. Ges. Wien, 18३2, p. 201, pl. 15, fig 6. Colo.
E. fasciata Hentz $=$ Argiope argyraspides Walck.
-E. foliata Walck = cormuta.
E. foliata Hentz = folifera Marx.
E. folifera Marx. (Note 17.)
foliata Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 475. Id., Spid. U. S. ed. Burgess, p. 116, pl. 13, fig. 14.
foliata Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 318, pl. 37, figs. 6-10.
E. foliosa Walck. Abbot. Ga. Spid. Ins. Apt., II, p. 66. Ga.
E. forata Keyserling. Die. Spinn. Am., iv, Epeiridæ.
E. formosa Keyserling = patagiata Clerk.
E. frondosa Walck. Abbot Ga. Spid., Ins. Apt., iI, p. 65. Ga.
E. fulva Walck. Ibid., II, p. 129. Ga.
E. gemma McCook. Proc. Ac. Nat. Sc., Phila., 1888, p. 193. Cal., Dak.
E. gibberosa Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 457. Id., Spid. U. S., ed. Burgess, p. 119, pl. 13, fig. 20. Ala., Fla., Va., D. C., Mass., R.I., Conn.
-_ Emerton. N. Engl. Epeir. Trand. Conn. Ac., vi, p. 317, pl. 34, fig. 1, pl. 36, fig. 17.
${ }^{*}$ E. globosa (Note 18) Keyserling. Beitr. z. K. d. Orbit. Berh. d. z. b. Ges. Wien, xv, p. 820, pl. 18, figs. 19-21.
triaranea McCook. Proc. Nat. Sc., Phila., 1876, p. 201.
globoso McCook. Proc. Ac. Nat. Sc., Phila., 1878, p. 127.
triaranea Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 315, pl. 34, fig. 9 , pl. 36, figs. 6,7.
E. glomosa Walek = Cyelosa turbinata .
E. graduata Walck. Abbot. Ga. Spid. Ins. Apt., II, p. 48. Ga., N. Y.
E. guttulata Walck. Abbot. Ga. Spid. Ins. Apt., II, p. 78. Ga.
E. hamata Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 474. Id., Spid. U. S., ed. Burgess, p. 114, pl. 13, fig. 10. Ala.
E. hebes Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 473. Id., Spid. U. S., ed. Burgess, p. 113, p. 13, fig. 7. S. Atlantic States.
E. heidemannii Marx Keyserling. Die Spinn. Am., iv, Epeiridio. Bladeusburg, D.C.
E. hentzii Keyserling = benjamina.
E. heptagon Hentz = Gea heptagon.
E. hilaris Cambr.=patagiata.
E. hortorum Hentz = Argyoepeira hortorum.
E. illustrata Walck. Abbot Ga. Spid. Ins. Apt., ir, p. 45. Ga.
E. incestifica Keyserling. Die Spinn. Am., 1v, Epeiridw.
E. infumata Hentz = ectypa.
E. insularis Hentz = marmorea.
E. iris Walck. = stellata.
E. jaspidata Walck. Abbot Ga. Spid. Ius. Apt., II, p. 59. Ga.
E. juglandi Marx Keyserling. Die Spinn. Am., iv, Epeiridr. Minn., Lake ltasca.
E. juniperi Emertou. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 313, pl. 34, tig. 6, pl. 36, figs. 14, 15, 16. Me., Mass.
E. labyrinthea Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 471. Id., Spid. U. S., ed. Burgess, p. 111, pl. 13, fig. 3. N. C., Ala., D. C., Va., N. Y., Cal., Pa., Conn., Mass.
——Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 314, pl. 34, fig. 8, pl. 36, fig. 11.
Proc. N. M. $89-35$
E. leucogaster Marx. Ky.
alba Keyserling. N. Spinn. a. Am., vı. Verh. d. z. b. Ges. Wien, 1884, p. 531, pl. 6, fig. 29.
E. limbata Walck. Abbot Ga. Spid. Ins. Apt., il, p. 81. Ga.
E. maculata (Note 19) Keyserling. Beitr. z. K. d. Orbital, Verh. d. z. b. Ges. Wien, 1865, p. 827, pl. 18, figs. 24, 27. Md., D. C., Ga., Va.
E. maesta Kesserling. Die Spinn. Am., iv, Epeirida. N. Mex.
"E. marmorea Clerk (Arancus). Sv. Spiudl., p. 29, pl. 1, tab. 3. U. S.
Aranea marmorea Fabr. Syst. Entom., p. 434.
Epeira marmorea Emertou. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 307, pl. 33 , fig. 2.
comspicellata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 58.
insularis Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 470. Id., Spid. U. S., ed. Burgess, p. 109, pl. 12, fig. 10.
insultiris Hentz Keyserling. Beschr, n. Orbitel. Sitz. d. Isis Dresden, p. 91, pl. 5, figs. 3, 5.
insularis Hentz, Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 309, pl. 33 , fig. 1, pl. 35, fig. 18.
obesa (Note 20) Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 471. Id., Spid. U. S., ed. Burgess, p. 110, pl. 12, fig. 11.
obesa Hentz Cambridge. Spid. fr. New Foundland. Proc. Roy. Phys. Soc., Edinb., p. 112. 1881.
annulipes Giebel. Spinn. v. Illinois. Zeitschr f. ges. Naturwiss, xxxinl, p. 250.
E. maura Hentz = Singa maura.
E. mayo Marx, Keyserling. Die Spinn. Am., Iv, Epeirida. Minn.
E. miniata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 39. Ga.
E. mitrata Hentz = Acrosoma reduvianum.
E. mormon Keyserling. Die Spinn. Am., rv, Epeiridx.
E. mutabilis Walck. Abbot Ga. Spid. Ins. Apt., II, p. 73. Ga.
E. nephiloides Keyserling. Die Spimn. Am., N, Epeiridic. Santa Barbara, Cal.
E. nephoda Walck. Abbot Ga. Spid. Ins. Apt., II, p. 74. Ga.
E. nicaraguensis Kerserling. N. Spinu. a. Am., vr. Verh. d. z. b. Ges. Wien, 1884, p. 532, fig. 31. Cal.
E. nivea Hentz. Joum Bost. Soc. Nat. Hist., v, p. 474. Id., Spid. U. S., ed. Burgess, p. 114, pl. 13, fig. 9. Ala.
E. nobilis Walck. = stellata.
E. nordmanii Thorell. Synom. on Eur. Spid., p. 4. N. H., Me., Mass., Pa., N.Y.
-_Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 301, pl. 33, fig.6.
E. obesa Hentz = marmorea.
E. packardi Thorell = carbonaria.
E. patagiata Clerk (Araneus). Sr. Spindl., p. 38, pl. 1, tab. 10. N. Engl., Alaska, Mont., Lake Superior, Labrador, Ill., N. Y., Pa., Md. D. C., Va.
-_Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 305, pl. 33 fig. 3, pl. 35, lig. 11.
dumectorum Hahn. Die Arachn., II, p. 31, fig. 117.
formosa Keyserling. Beitrg. z. k. d. Orbitel. Verb. d. z. b. Ges. Wien., 1865, p. 828, pl. 19, figs. 17, 18.
hilaris Cambridge. Spid. fr. New Foundland. Proc. Roy. Phys. Soc. Edinbg., 1881, p. 112.
E. partita Walck. Abbott Ga. Spid. Ins. Apt., II, p. 46. Ga.
E. parvula Keyserling = eustala.
E. pegnia Walck. Abbot Ga. Spid. Ins. Apt., II, p. 80. Ga.
E. pentagona Hentz. Journ. Bost. Soc. Nat. Hist., VI, p. 18. Id., Spid. U. S., ed, Burgess, p. 120, pl. 14, fig. 1. Ala.
E. petasata Walck. Abbot Ga. Spid. Ins. Apt., ir, p. 70, Ga.
E. phrygiata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 54. Ga.
E. placida Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 475. Id., Spid. U. S., ed. Burgess, p. 115, pl. 13, fig. 12. Mass., Coun., Pa., D. C., Va., Fla.
-_Emerton. N. I.ugl. Epeir. Trans. Counn. Ac., vi, p. 316, pl. 34, fig. 2, pl. 36 , figs. $10,13$.
E. plumipes Walck. $=$ Nephila plumipes.
E. prætrepida Keyserling. N. Spinn. a. Am., ir. Verh. d. z. b. (ies. Wien, 1880, p. 549, pl. 16, fig. 2. Ga.
E. pratensis Hentz. Journ. Bost. Soc. Nat. Hist., V, p. 475. Id., Spid. U. S., ed. Burgess, p. 115, pl. 13, fig. 11. Mass., Utah, D. C., Mo.
———Emerton. N. Engl. Epeir. Trans. Conn. Ac., vı, p. 310, pl. 33, fig. 15, pl. 36, fig. 9.
E. prompta Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 4\%2. Id., Spid. U. S., ed. Burgess, p. 112, pl. 13, fig. 4.
*E. punctigera Doleschall. Tweede Bijdrage tot de Kennis. d Arachu. Indian Archipel.
E. punctillata Keyserling $=$ scutulata .
E. radiosa $\mathrm{McCook}=$ Theridiosoma radiosa.
*E. ravilla C. Koch. Die Arachn., XI, p. 73, fig. 890. Tex., Ariz.
E. reptilis Keyserling. Die Spinn. Am., Iv, Epeiride.
E. riparia Hentz = Argiope cophinaria.
E. rubella Hentz = Singa rubella.
E. rubens Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 477. Id., Spid. U. S., ed. Burgess, p. 118, pl. 13, fig. 18. Ala.
E. rugosa Hentz = Acrosoma gracile.
E. sacra Walck. Abbot Ga. Spid. Ins. Apt., II, p. 33. Ga.
E. sanguinalis Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 47ti. Id., Spid.U. S., ed. Burgess, p. 116, pl. 13, fig. 15. Ala.
E. schwarzii Marx. Keyserling Die Spinu. Am., iv, Epoiride. Biscayne Bay, Fla.
E. sclopetaria Clerck. (Araneus). Sv. Spindl., p. 43, pl. 2, tal). 3, fig. 1. U. S.
——Blackw. Spid. fr. Montreal. Anu. and Mag. of Nat. Hist., 1871, viir, p. 429.
-_Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 303, pl. 33, fig. 4, pl. 35, fig. 10.
virgata Hahn. Die Arachn., II, p. 26, fig. 113.
sericata Blackw. Spid. of Gr. Brit., 11, p. 328, pl. 23, fig. 238.
sericea Simon. Hist. Nat. d'Araign., p. 492.
vulgaris Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 469. Id., Spid. U. S., ed. Burgess, p. 108, pl. 12, fig. 6.
E. scutulata Hentz. Journ. Bost. Soc. Nat. Hist., VI, P. 19. Id., Spid. U. S., ed. Burgess, p. 121, pl. 14, fig. 3.
punctillata Keyserling. N. Spinn. a. Am., I. Verh. d. z. b. Ges. Wien, 1879, p. 304, pl. 4, fig. 7. 111.
E. segmentata Walck. Abbot Ga. Spid. Ius. Apt., II, p. 1*0. Ga.
E. septima (Note 20) Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 470. Id., Spid. U. S., ed. Burgess, p. 104, pl, 12, fig. 9. Ala., N. C. = var. of cavatica.
——Cragin. Contrib. to Knowl. of Arachn, of Kansas. Bull. Washb. College, I, No. 4, p. 146.
E. sexpunctata Keyserling. N. Spinn. a. Am., Vi. Verh. d. z. b. Ges. Wien, 1884, p. 530 , pl. 13, fig. 28. N. Am.
E. silvatica Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 300, pl. 34, fig. 13, pl. 35, figs. 1, 4, 5, 6. Mass., N. Y., N. H,
E. solitaria Emerton. N. Engl. Epeir. Trans. Coun. Ac., vi, p. 299, pl. 33, fig. 11, pl. 35, fig. 3. Mass.
E. spatulata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 44. Ga.
E. spiculata Hentz. Journ. Bost. Soc. Nat. Hist., 1, p. 475. Id., Spid. U. S., ed. Burgess, p. 116, pl, 13, fig. 13. Ala.
E. spinca Hentz $=$ Acrosoma sagittatum.
E. spinigera Keyserling. Die Spinn. Am., Iv, Epeirida. Ariz.
E. spira Bosc. Walck. Ins. Apt., II, p. 80. Ga.
E. stellata Walck. (Plectana). Tabl. d’Aran., p. 65, fig. 54.

- (Plectana). Bose. Ins. Apt., II, p. 171.
——Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 22. Id., Spid. U. S., ed. Burgess, p. 125, pl. 14, fig. 12.
——— Emerton. N. Engl. Epeir. Trans. Coun. Ac., vi, p. 319, pl. 34, fig. 17, pl. 37. figs. 3, 4, 5.
—— Keyserling. Beschr. N. Orbitel. Sitz. d. Isis Dresden, 1864, p. 140, pl. 6, figs, 24, 25.
nobilis Walck. Abbot Ga. Spid. Ins. Apt., II, p. 119.
cerasice Walck. Abbot Ga. Spid. Ins. Apt., II, p. 119. iris Walck. Abbot Ga. Spid. Ins. Apt., II, p. 120.
E. strix Hentz = cornuta.
E. subfusca Walck. Abbot Ga. Spid. Ins. Apt., iI, p. 76. Ga.
E. sutrix Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 478. Id., Sp. U. S., ed. Burgess, p. 120, pl. 13, fig. 23. S. C., Pa.
E. tauricornis Keyserling. Die Spinn. Am., iv, Epeiridæ.
E. thaddeus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 473. Id., Spid. U. S., ed. Burgess, p. 113, pl. 13, fig. 6. Ala., Md., Conn., Mass., D. C., Va., S. C., Tenn., Fla.
-- Emerton. N. Engl. Epeir. Trans. Conu. Ac., vi, p. 309, pl. 34, fig. 9. baltimoriensis Keyserling. N. Spinu. a. Am., I. Verh. d. z. b. Ges. Wien, 1879, p. 305, pl. 4, fig. 8.
E. theis Walck. Ins. Apt., if, p. 53, pl. 18, fig. 4. Oregon.
E. tranquilla Keyserling. Die Spinn. Am., ry, Eperridie. Washington, D. C.
E. triaranea McCook = globosa.
E. triflex Walck. Abbot Ga. Spid. Ins. Apt., II, p. 60. Ga.
E. trifolium Heutz. Journ. Bost. Soc. Nat. Hist., v, p. 471. Id., Spid. U. S., ed. Burgess, p. 110, pl. 13, fig. 1. Dak., N. Mex., Ala., N. Engl., Canada, N. Y., Pa., Md., D. C., Va., Wyo., Mont., Colo.
-_ Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 306, pl. 33, fig. 8, pl. 35, figs. $13,14,21,22$.
aureola Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 471. Id., Spid. U. S., ed. Burgess, p. 111, pl. 13, fig. 2.
E. trinotata Walck. Abbott Ga. Spid. Ins. Apt., II, p. 75. Ga.
E. trivitata Keyserling =arabesca.
E. turbinata Walck. $=$ Cyclosa turbinata.
E. tytera Walck. Abbot Ga. Spid. Ins. Apt., II, p. 80. Ga.
E. venusta Walck. Abbot Ga. Spid. Ins. Apt., II, p. 96. Ga.
E. verrucosa Hentz = Mahadeva vervucosa.
E. vertebrata McCook. Proc. Ac. Nat. Sc., Phila., 1858, p. 190, figs. 6-10. Cal.
E. vivida Walck. Abbot Ga. Spinn. Ins. Apt., n, p. 54. Ga.
E. volucripes Koyserling. N. Spinn. a. Am., vi. Verh. d. z. b. Ges. Wien, 1884, p. 528, pl. 13, fig. 27. Ala., La., Tex., Ga., Tenn.
E. vulgaris Hentz. = sclopetaria.
E. vulpeculata Walck. Abbot Ga. Spid. Ins. Apt., ir, p. 69. Ga.

CYCLOSA.

Menge. Preuss. Spinn., p. 73. 1866.
1869. Cyrtophora Thorell. On Europ. Spid., p. 57 (ad part).
1874. Cyclora Simon. Arachu. de France. I., p. 36.
C. bifurca (Note 21) McCook (Cyrtophora). Proc. Acal. Nat. Sc., Phila., 1887, p. 342. Fla.
C. caroli Hentz (Epeira). Journ. Bost. Soc. Nat. Hist., vi, p. D. 4 . Id., Spid. U. S., ed. Burgess, p. 128, pl. 14, fig. 15. Ala., D. C.
Epeira caroli Keyserling. Beschr. n. Orbitel. Sitz. des. Isis Dresden, p. 137, pl. 6, fig. 17.
C. conica (Note ${ }^{2} 2$) Pallas (Aranea). Spicilog. Zoolog., i., p. 48, pl. 1, fig. 16. San Diego, Cal.
C. conica Emerton = turbinata.
C. turbinata Walck (Epeira). Abbot Ga. Spid. Ins. Apt., ir, p. 140. Mass., Me., N. Y., Ohio, Conn., Pa., Md., D. C., Va., Ala., Fla., La.

Epeira caudata Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 23. Id., Spid. U. S., ed. Burgess, p. 126, pl. 14, fig. 14.

Epeira glomosa Walck. Abbot Spid. Ga. Ins, Apt., II, p. 143.
Cyclosa conica Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 321, pl. 34, fig. 3, pl. 38, fig. 11.

CYRTOPHORA.

E. Simon. Hist. Nat. d' Araign, p. 262. 1864.

1874. Id., Arachn. de France I, p. 33.
C. bifurca $\mathrm{McCook}=$ Cyclosa bifurca .
C. californiensis Keyserling. N. Spinn. a. Am. vı. Verh. d. z. b. Ges. Wien., 1884, p. 525, pl. 13, fig. 24. Cal.
C. tuberculata Keyserling. Die Spinn. Ara., IV, Epeiridæ.

SINGA.

C. Kuch. Die Arachn., III, p. 42. 1836.
1837. C. Koch. Ubers. d. Ar. Syst., p. 6.
1871. Ausserer. N. Rad. Spinn. Verh. d. z. b. Ges. Wien, p. 815.
1884. Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 321.
S. maculata Emerton. N. Engl. Epeira. Trans. Conn. Ac., vi, p. 303, pl. 37, fig. 18. Conn., D. C., Fla.
S. maura Hentz (Epeira). Journ. Bost. Soc. Nat. Hist., v, p. 474. Itl., Spid. U. S., ed. Burgess, p. 114, pl. 13, fig. 8. Ala., D. C.
S. mollybyrneae Marx. Keyserling Die Spinn. Am., iv, Epeiride. Biscayne Bay, Fla.
S. nigripes Keysèrling. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 655, pl. 21, fig. 7. Fla., Tex.
S. pratensis Emerton. N. Engl. Epeir. Traus. Conn. Ac., vi, p. 3き2, pl. 34, fig. 15, Mass., Me., Conn.
S. rubella Hentz. Jonrn. Bost. Soc. Nat. Hist., v, p. 478. Id., Spid. U. S., ed. Burgess, p. 120, pl. 13, fig. 22. Ala., D. C.
S. van Bruysellii Becker. Aun. Soc. Eut. Belgique, xxif, 1879, p. 78, pl. 1, figs. 4, 5, 6. Miss.
S. variabilis Emerton. N. Engl. Epeir. Trams. Conn. Ac., vi, p. 3:2, pl. 34, fig. 16. Mass., Me., Conn., D. C.

LARINIA.

Simon. les Arachn. de France, 1, p. 115. 1874.
L. nigrofoliata Keyserling. N. Spinn. a. Am., v. Verh. d. z. b. Ges.Wien, 1883, p. 653, pl. 21, fig. 5. Utah.

ZILLA.

C. Koch. Herr-Schaeff. Deutschl. Ins., 125, 19. 1834.
1871. Ausserer. N. Rad Spinnen. Verh. d. z. b. Ges. Wien, p. 828.
1884. Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 323.
*Z. atrica C'. Koch (Eucharia). Die Arachn., XII, p. 103, figs. 1030, 1031 (for synouyms of European authors see Thorell. On Synonyms, p. 31). Cal., Mass.
*Z. montana C. Koch. Herr-Schaeff. Deutschl. Ins., 125, 19. Id., Die Arachn., vi, p. 146, figs. 536, 537. N. Y., N. H.
———Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 323, pl. 34, fig. 14, pl. 37, figs. 22, 23, 26, 28.
*Z. x-notata Clerck (Araneus). Sv. Spindl., p. 46, pl. 2, tab. 5.
-_Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 324, pl. 34, fig. 13, pl. 37, figs. 24, 25, 27, pl. 40, fig. 2.
Epeira calophylla Walck. Tabl. d'Aran., p. 62.
Zilla calophylla C. Koch. Die Arachn., vi, p. 148, figs. 538, 539.
Epeira similis Blackw. Spid. of Gr. Brit., II, p. 337, pl. 25, fig. 244.

ARGYROEPEIRA.

Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 331. 1884.
1837. Tetragnatha Walck. 2. Coadunatæ. Ins. Apt., II, p. 219.
1863. Tetragnatha Keyserling. Beschr. n. Orbitel. Sitz. d. Isis. Dresden, p. 144 ad part.
1865. Meta Keyserling. Beitr. z. Kenutn. d. Orbitel. Verh. d. z. b. Ges. Wien, p. 830 ad part.
*A. argyra. Walck. (Tetragnatha). Ins. Apt., ir, p. 219. Fla.
A. hortorum Hentz (Epeira). Journ. Bost. Soc. Nat. Hist., v, p. 477. Id., Spid. U. S., ed. Burgess, p. 118, pl. 13, fig. 19. U. S.
———Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 332, pl. 37, fig. 29. 32.
*A. quinque lineata Keyserling. Beschr. n. Orbitel. Sitz. d. Isis. Dresden, 1863, p. 145, pl. 7, figs. 3-6. Baltimore.

META.

C. Koch. Herr-Schaeff. Dentschl. Ins. 134, 12, 13; 135, 14, 16. 1836. Id., Uebers. d. Arachn. Syst., I, p. 6. 1836.
1869. Thorell. On Europ. Spid., p. 61.
1874. Simon. Arachn. de France, I, p. 145.
1884. Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 328.
*M. menardi Latr. (Iranea). Hist. Nat. d. Crust. et de Ins., vir, p. 266. Mass., Ky., Va., D. C.
Meta fusca C. Koch. Die Arachu., viII, p. 118, figs. 68ă-7.
Epeira fusca Blackw. Spid. of Gr. Brit., II, p. 349, fig. 252.
Meta menardi Thorell. Rem. on Synon., p. 33.
Meta menardi Simon. Arachn. de France, 1, p. 151.
Meta menardi Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 328, pl. 34, fig. 18.

NEPHILA.

Leach. Zool. Miscellany, Vol. II. 1815.
*N. clavipes Fabr. (Aranea). Ent. Syst., II, p. 420. Texas.
C. Koch. Die Arachn., v, p. 31, fig. 355.
${ }^{*}$ N. fasciculata De Geer. Mem. p. serv. a l'hist., d. Ins., vir, p. 1:4, pl. 39, tig 1. Fla., Tex.

- C. Koch. Die Arachn., v, p. 30, fig. 354.
N. maculata Fabr. (Aranea). Syst. Entom., II, p. 425. Cal.
N. plumipes C. Koch. Die Arachn., vi, p. 138, fig. 5\%9. La., Miss., Ga., Ala., S.C. Epeira plumipes Walck. Ins. Apt., II, p. 99.

THERIDIOSOMA (Note 23.).
Cambridge. Ann. and Mag. Nat. Hist., p. 193. 1879.
1884. Keyserling. Die. Spinn. Am., Theridiide, I, p. 217.
T. argentatum Keyserling. Die. Spinn. Am., Theridiide, 1, p. 218, fig. 132. Ga.
${ }^{*}$ T. gemmosum L. Koch. Verzeichn. d. bei Nuruberg beob. Artea., p. 69. Pa., Ill. Mass., Conn.
——Keyserling. Die. Spinn. Am., Theridiide, r, p. 218, fig. 131.
Theridiosoma argenteolum Cambridge. Ann. Mag. at. Hist., 194. 1879.
Micrepeira radiosa Emerton. N. Engl. Epeir. Trans. Conu. Ac., vi, p. 302, pl. 24, fig 7. Pa., Ohio.
T. radiosum McCook. Proc. Phila. Ac. Nat. Sc., 1881, p. 163.

CYRTARACHNE Thorell.
C. bicurvata Becker $=$ Ordgarius cornigerus.
C. bisaccata Emerton = Ordgarius bisaccatus.
C. cornigera Keyserling = Ordgarius cornigerus.

Family TETRAGNATHIDE (Note 24).

1866. Menge. Preuss. Spinn. Tetragnathide + Pachygnathida.
1867. Tetragnathince Simon. Arachn. de France, 1., p. 153.
1868. Tetragnathince Id. Ibid., v, p. 2.
1869. Tetragnathine. Emerton. N. Engl. Epeir. Trans. Conn. Ac., vr, p. 298.
1870. Tetragnathide Keyserling. Die Arachn. Austral., II, p. 217.

TETRAGNATHA.

Latreille. Nouv. Dict. d'Hist. Nat., xxiv, p. 135. 1804.
1843. Dinognatha White-Dieffenb. Trav. in N. Zeal., II, p. 271.
1866. Tetragnatha Menge. Prenss. Spinn., p. 90.
1874. Tetragnatha Simon. Arachn. de France, I, p. 153.
1881. Tetragnatha Id. Ibid. v, p. 2.
1887. Tetragnatha Keyserling. Die Arachn. Austral., II, p. 217.
T. armigera Blackw. Spid. from Canada. Ann. and Mag. Nat. Hist., xvir, p. 81. Canada.
T. aurata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 215. Ga.
T. casula Walck. Abbot Ga. Spid. Inst. Apt., p. 219. Ga.
T. caudata Emerton = Eucta caudata.
T. culicivora Walck. Abbot Ga. Spid. Ins. Apt., II, p. 214. Ga.
T. elongata Walck. Tabl. d'Aran., p. 69. U. S.
—— Thorell. Aran. coll. in Col. Bull. U. S. Geol. Surv., Terr., III, No. 2, p. 477.
grallator Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 26. Id., Spid. U. S., ed. Burgess, p. 131, pl. 15, figs. 1, 2.
grallator Keyserling. Beitr. z. K. d. Orbit. Verh. d. z. b. Ges. Wien, xv, p. 850, pl. 21, figs 24-27.
grallator Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 334, pl. 39, figs. 1-6.
*T. extensa Linn (Aranea). Syst. Nat. Ed., xı, p. 621. N. Y., Mass.
—— Thorell. Spid. fr. Labrador. Proc. Bost. Soc. Nat. Hist., xvir, p. 493.
-_ Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 333, pl. 39, figs. 9, 10.
T. fimbriata Walck. Abbot Ga. Spid. Inst. Apt., ir, p. 213. Ga.
T. fluviatilis Keyserling. Beitr. z. K. d., Orbitel. Verh. d. z. b. Ges. Wien, 1864, p. 852, pl. 21, fig. 10. Mackeuzie River, D. C.
T. fragilis Marx in Keyserling's. Die Spinn. Am., iv, Epeiridæ. Fla.
T. fulva Walck. Abbot Ga. Spid. Ins. Apt., II, p. 212. Ga.
T. qrallator $\mathrm{Hentz}=$ elongata.
m. illinoisensis Keyserling. N. Spinn. a. Am., I. Verh. d. z. b. Ges. Wien, 1879, p. 318, pl. 4, fig. 18. Ill.
T. laboriosa Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. :27. Id., Spid. U. S., ed. Burgess, p. 131, pl. 15, fig. 3. Mass., Conn., D. C., Md., Va., Ohio, Utah, Nebr., Alaska.
——Keyserling. Beitr. z. K. d. Orbitel. Verk. d. z. b. Ges. Wien, p. 841, pl. 20, figs. 16, 17.
———Emertou. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 334, pl. 39, fige. 7, 8, 11, 19, pl. 40, fig. 7.
T. lazerta Walck. Abbot Ga. Spid. Ins. Apt., II, p. 224. Ga.
T. lutea Walck. Abbot Ga. Spid. Ins. Apt., II, p. 217. Ga.
T. sanctitata Walck. Abbot Ga. Spid. Ins. Apt., II, p. 214. Ga.
T. straminea Emerton = Eugnatha straminea.
T. trapezoides Walck. Abbot Ga. Spid. Ins. Apt., II, p. 218. Ga.
T. vermiformis Emerton $=$ Eucta vermiformis.
T. versicolor Walck. Abbot Ga. Spid. Ins. Apt., II, p. 215. Ga.
T. violacea Walck. Abbot Ga. Spid. Ins. Apt., iI, p. 218. Ga.
T. viridis Walek. Abbot Ga. Spid. Ind. Apt., II, p. 216. Ga.
T. zorilla Walck. = Lathrodectus mactans.

EUCTA.

Simon. Les Arachn. de France, v. 1, p. 5. 1881.
Keyserling. Die Arachn. Austral., II, p. 218.
E. caudata Emerton (Tetragnatha). N. Engl. Epeir. Traus. Conn. Ac., vi, p. ふֹธ́, pl. 39, figs. 16-22. Mass., Fla., Ala., Ariz., D. C., Tex.
E. vermiformis Emerton (Tetragnatha). N. Engl. Epeir. Trans. Conn. Ac., vi, p. 333, pl. 39, figs. 12, 13, 14. Mass., Utah.

EUGNATHA.

Sav. and Aud. Descr. de l'Egypt, xxir. 1825-'27.
1881. Simon. Arachn. de France, v, I, p. 2.
1887. Keyserling. Die Arachn. Austral., If, p. 218.
E. straminea Emerton (Tetragnatha). N. Engl. Epeir. Trans. Conn. Ac., vi, p. 335 , pl. 39, figs. 15, 17, 20, 21 . D. C., Va., Fla.

PACHYGNATHA.

Sundev. Gen. Arach. Suecic., p. 16. 1823.
1866. Menge. Preuss. Spinn., p. 94.
1869. Thorell. On Europ. Spid., p. 77.
1881. Simon. Les Arachn. de France, v, r, p. 7.
P. autumnalis Keyserling. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 660, pl. 21, fig. 10. Pa., Mass., Conn.
\qquad Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 337, pl. 34, fig. 22, pl. 40, fig. 9.
P. brevis Keyserling. N. Spinn. a. Am., iv. Verh. d. z. b. Ges. Wien, p. 209 (doseribed under the name tristriata C. Koch). Conn., Mass., Canada.
——Id. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 658.
———Emerton. N. Engl. Epeir. Trans. Conn. Ac., vi, p. 336, pl. 34, fig. 21, pl. 40, figs. 8, 10.
P. furcillata Keyserling. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 662, pl. 21, fig. 11. Pa , D. C.
*P. tristriata C. Koch. Die Arachu., XII, p. 145, fig. 1066. D. C., Pa., N. Y.
-_Keyserling. N. Spınn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 656, pl. 21, fig. 8.
*P. xanthostoma C. Koch. Die Arachn., xir, p. 148, fig. 1068. Pa., D. C.
——Keyserling. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 659, pl. 21, fig. 9.

Family ULOBORIDE.

1850. Mithraides ad part. C. Koch. Uebers. d. Arachn. Syst., v, p. 15.
1851. Uloborine Thorell. On Europ. Spid., p. 64.
1852. Uloboride Cambridge. Spid. of Palest. and Syria. Proc. Lond. Zool. Soc., p. 302.
1853. Uloboride E. Simon. Arachn. d. France, I, p. 164.
1854. Uloborince Emerton. N. Engl. Cinifl. Trans. Conn. Ac., vir, p. 454.

HYPTIOTES.

Walck. Mem. s. une nouv. classif. d'Aran., p. 438. 1833.
1837. Mithras C. Koch. Uebers. d. Arachn. Syst., I, p. 6.
1847. Cyllopoda Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 465.
H. cavatus Hentz (Cyllopoda). Journ. Bost. Soc. Nat. Hist., v, p. 466. Id., Spid. U. S., ed. Burgess, p. 104, pl. 12, fig. 3, pl. 20, fig. 21. Ala., Mas8., R. I., N. Y., Me., D. C., Va., Md.

Emerton. N. Engl. Cinifl. Trans. Conn. Ac., viI, p. 456, pl. 2, fig 2.
americanus Wilder. Triangle Spid. Pop. Sci. Monthl., 1875, Sepr., p. 2. Cyllopoda Hentz $=$ Hypliotes.

ULOBORUS.

Latreille. Gen. Crust. et Ins., I, p. 109. 1806.
1855. Phillyra Hentz. Journ. Bost. Soc. Nat. Hist., vi, p. 25.
1859. Neleda Blackw. Descr. of 6 rec. discov. Spec., p. 95.
U. americanus Walck. Abbot Ga. Spid. Ins. Apt, II, p. 229. Eastern States. Phillyra mameata Hentz. Journ. Bost. Soc. Nat. Hist., Vi, p. 25. Id., Spid. U. S., ed. Burgess, p. 129, pl. 14, fig. 16, pl. 19, fig. 126.

Uloborus villosus Keyserling. N. Spinn. a. Am., III. Verh. d. z. b. Ges. Wien, 1881, p. 278, pl. 11, fig. 6.
*U. plumipes Lucas. Explor. d'Algerie Anim., art. I, p. 252, pl. 15, fig. 8.
——Emerton. N. Engl. Cinifl. Trans. Conn. Ac., vir, p. 454, pl. 11, fig. 11.
Phillyra riparia Hentz. Journ, Bost. Soc. Nat. Hist., vi, p. 26. Id., Spid. U. S., ed. Burgess, p. 130, pl. 14, fig. 17.
${ }^{*}$ U. zosis Walck. Ins. Apt., II, p. 231. Fla.
-L. Koch. Die Arachn. Austral., p. 221.
Phillyra Hentz = Uloborus.

Tribus VIII LATERIGRAD \nrightarrow.

Family THOMISID x.

1817. Laterigrades Latreille. Cuv. Règne Anim., III, p. 91.
1818. Retrograde Sund. Gen. Aran. Succ., p. 18.
1819. Laterigrade Latreille. Fam. Nat. du Règne Anim., p. 315.
1820. Thomisides Sund. Conspect. Arachn., p. 27.
1821. Thomisoide Thorell. On Europ. Spid., p. 170.
1822. Misumenoide Thorell. Ragni Birm. Ann. Mus., Civ, Genoa, xxv.
I. Subfamily Thomisine.

XYSTICUS.

C. Koch. Herr.-Schreff. Deutschl. Ins., 129, 16, 17. 1835.
1869. Thorell. On Europ. Spid., p. 185.
1875. Simon. Arachn. d. France, iil, p. 150.
X. auctificus Keyserling. Die Spinn. Am., I, Laterigradx, p. 25, fig. 10. Colo.
\mathbf{X}. benefactor Keyserling Die Spinn. Am., I, Laterigrada, p. 22, fig. 8. Colo.
X. bicuspis Keyserling. N. Spinn. a. Am., vir, Verh. d. z. b. Ges. Wien, 1887, p. 478, (58) pl. 6, fig. 38. Mont.
Z. borealis Keyserling. N. Spinn. a. Am., v, Verh. d. z. b. Ges. Wien, 1883, p. 668, (22) pl. 21, fig. 17. Sitka, Ft. Yukon, Alaska.

区. californicus Keyserling. Die Spinn. Am., I, Laterigradx, p. 37, fig. 17. Mariposa, Cal.
Z. cunctator Thorell. Aran. coll. in Colo. Bull. U. S. Geol. Surv., Terr., iII, No. 2, 1877, p. 495. Colo.
\mathbf{Z}. discursans Keyserling. Die Spinn. Am., I, Laterigradx, p. 20, fig. 7. Colo., Nev.
\mathbf{Z}. elegans Keyserling. Die Spinu. Am., i, Laterigrade, p. 31, fig. 14. Ga.
\mathbf{X}. emertonii Keyserling. Die Spinu. Am., I, Laterigradæ, p. 39, fig. 18. Ga., N. H., Mont.
X. feroculus Keyserling. N. Spiun, a. Am., III, Verh. d. z. b. Ges. Wien, 1881, p. 305 (39) pl. 11, fig. 24. Mass., D. U.
X. flavovittatus Keyserling. Die Spinn. Am., I, Laterigradie, p. 33, fig. 15, U. S.
X. funestus Keyserling. Die. Spinn. Am., I, Laterigradir, p. 10, fig. ソ. Md., Va., D. C., N. C., N. H., Colo.
X. gulosus Keyserling. Die Spinn. Am., I, Laterigradæ, p. 43, fig. 21. U. S.
X. hamatus Keyserling. N. Spinn. a. Am., vi, Verh. d. z. b. Ges. Wien, 1885, p. 521 (35), pl. 13, fig. 22. Ky.
X. labradoriensis Keyserling. N. Spinn. a. Am., vir, Verl.d.z. b. Ges. Wien, 1887, p. 479 (59) pl. 6, fig. 39. Ungava Bay, Labrador.
X. lenis Keyserling. Die Spiun. Am., I, Laterigradæ, p. 27, fig. 11. Colo.
\mathbf{X}. limbatus Keyserling. Die Spiun. Am., I, Laterigradie, p. 35, fig. 16. Colo , Tex., Ill., D. C., Va., Md.
X. locuples Keyserling. Die Spinu. Am., I, Later:gradie, p. 24, fig.9. Cal., Nev., Wyo.
X. maculatus Kerserling. Die. Spinn. Am., I, Laterigrada, p. 45, fig. 20. Ga.
X. montanensis Keyserling. N. Spinn. a. Am., vir, Verh. d. z. b. Ges. Wien, 1857, p. 479 (59), pl. 6, fig. 40. Mont., Cal.
X. nigromaculatus Keyserling. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien. 1884, p. 670 (24), pl. 21, fig. 18. Colorado.
X. punctatus Keyserling. Die Spinn. Am, I, Laterigradie p. 30, fig. 13. N. C.
\mathbf{X} quadrilineatus Keyserling. Die Spinn. Am., $\mathbf{1}$, Laterigradæ, p. 42, fig. 20 , III., D. C., N. J.
X. quinquepunctatus Keyserling. Die Spinn. Aw., I, Laterigradæ, p. 28, fig. 12. Cal., N. Mex., Fla., Va., D. C.
X. stomachosus Keyserlıng. Die Spinn. Am., I, Laterigradəs, p. 7, fig, 1. Ind., Ill., Colo., D. C., N. H., Labrador.
X. triguttatus Keyserling. Die Spinn. Am., I, Laterigradæ, p. 12, figs. 3, 6. Mass., Colo., Ga., Lake Sup., Labrador, D. C., Va.
X. variabilis Keyserling. Die Spinn. Ain., 1, Laterigradæ, p. 40, fig. 19. Ga.
X. vernilis Keyserling. N. Spinn. a. Am., iti. Verh. d. z. b. Ges. Wien, 1881, p. 304 (38), pl.11, fig. 23. Utah.

OXYPTILA.

Simon. Hist. Nat. d. Aran. 1864.
1875. Simon. Arachn. d. France, II, p. 211
O. conspurgata Thorell. Aran. coll. in. Colorado. Bull. U. S. Geol. Surv. Terr., iII, No. 2, 1877, p. 496. Colorado.
O. georgiana Keyserling. Die Spinu. Am., r, Laterigradie, p. 52, fig. 26. Ga.
O. monroensis Keyserling. N. Spinn. a. Am., v. Verh. d. z. 1. Ges. Wien, 1883, p. 671 (25), pl. 21, fig. 19. Va., D. C.
O. nevadensis Keyserling. Die Spinn. Am., I. Laterigradæ, p. 50, fig. 25. Nev.

CORIARACHNE.

Thorell. On Europ. Spid., p. 186. 1869.
C. versicolor Keyserling. Die Spinn. Am., $\mathbf{1}$, Laterigradx, p. 53, fig. 27. U. S.

SYNEMA.

Simon. Hist. Nat. d'Aran. 1864.
S. bicolor Keyserling. N. Spinn, a. Am., v. Verh. d. z. b. Ges. Wien, 188:3, p. 667 (21), pl. 21, fig.16. Fla., D. C., Va.

5 nigromaculata Kerserling. Die Spiun. Am., I, Laterigradio, p. 62, iig. 31. Md., D. C., Va., Ga.
S. obscura Keyserling. Die Spinn. Am., r, Laterigrada, p. 64, fig. 32. N. H.
S. parvula Hentz (Thomisus). Journ. Bost. Soc. Nat. Hist., v, p.447. Id., Spid. U. S., ed. Burgess, p. 80, pl. 10, fig. 8. Southern States, Cal.
———Keyserling. Die Spinn. Am., I, Laterigradæ, p. 57, fig. 28.

MISUMENA.

Latreille. Nouv. Dict. d'Hist. Nat., xxiv, p. 135 (ad part). 1804.
1869. Thorell. On Europ. Spid., p. 183.
1875. Simon. Arachn. d. France, iI, p. 241.
M. alabamensis Keyserling. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 666 (20), pl. 21, fig. 15. Ala.
M. americana Keyserling. Die Spinu. Am., I, Laterigrad:8, p. 85, fig.44. Md., Ga., Ill., D. C., Va.
M. conspersa Keyserling. Die Spinn. Am., r, Laterigradæ, p. 107, fig. 60. Cal., Ariz., Fla.
M. diegoi Keyserling. N. Spinn. a. Am., vir. Verl. d. z. b. Ges. Wien, 1887, p. 481 (61), pl. 6, fig. 41. Cal.
M. dubia Keyserling. Die Spinn. Am., $\mathbf{1}$, Laterigrade, p. 90, fig. 48. Fla., Tex., D. C.
M. georgiana Keyserling. Die Spinn. Am., I, Laterigrade, p. 86, fig. 45. Ga., D. C.
M. importuna Keyserling. N. Spinn. a. Am., in. Verl. d. z. b. Ges. Wien, 1881, p. 307 (41), pl. 11, fig. 25. Cal.
M. mexicana Keyserling. Die Spinn. Am., I, Laterigrade, p. 89, fig. 47. Cal.
M. oblonga Keyserliug. Die Spiun. Am., I, Laterigrada, p, 79, fig. 41. Md., Ill., Va., D. C.
M. rosea Keyserling. Die Spiun. Am., I, Laterigradæ, p. \&2, fig. 43. Southern States, Ill., Mo., D. C., Va., Md.
M. spinosa Keyserling. Die Spinu. Am., I, Laterigralæ, p. 81, fig. 42. Ga., Fla., Ala., La., Utah.
M. variegata Keyserling. Die Spinu. Aı., I, Laterigradæ, p. 101, fig. 55. Fla.
*M. vatia Clerk. (Araneus). Sv. Spindl., p. 128, pl. 6, tab. 5. U. S.
-_Thorell. Aran. coll. in Colorado. Bull. U. S. Geol. Surv., Terr., inr, No. 2, 1-77, p. 500.
——Keyserling. Die Spinn. Am., I, Laterigradæ, p. 101.
Thomisus fartus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 445. Id., Spid. U. S., ed. Burgess, p. 78, pl. 10, fig. 4.

DI平A.

Thorell. On Europ. Spid., p. 184. 1869.
1875. Simon. Arachn. de France, II, p. 247.
D. lepida Thorell. Aran. coll. in Colorado. Bull. U. S. Geol. Surv. Terr., iII, No. 2, 1877, p. 498. ${ }^{\text {Col. }}$

RUNCINIA.

Simon. Arachn. de France, II, p. 254. 1875.
R. brendelii Keyserling. Die Spinn. Am., I., Laterigradie, p. 127, fig. 70. U. S.

THOMISUS (Note 25).

Walck. Tabl. d'Aran., p. 28. 1805.
1875. Simon. Arachn. de France, 11, p. 249.
T. aleatorius Hentz. Jouru. Bost. Soc. Nat. Hist., v, p. 444. Id., Spid. U. S., ed. Burgess, p. 77, pl. 10, fig. 2. Ala.
T. angulatus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 537. Ga.
T. asperatus Hentz. Journ, Bost. Soc. Nat. Hist., v, p. 447. Id., Spid. U. S., ed. Burgess, p. 79, pl. 10, fig. 7. Ala.
T. bicolor Walck. Abbot Ga. Spid. Ins. Apt., r, p. 533. Ga.
T. bigibbosus Keyserling. N. Spiun. a. Am., III. Verh. d. z. b. Ges. Wien, 1881, p. 309 (43), pl. 11, fig. 27. N. H.
T. caudatus Hentz $=$ Tmarus caudatus.
T. celer Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 446. Id., Spid. U. S., ed. Burgess, p. 78, pl. 10, fig. 5, S. C. N. C. Mass., Ala., Ohio.
T. citreus Walck. Abbot Ga. Spid. Ins. Apt., r, p. 526. Ga.
——Blackw. Spid. fr. Canada. Ann. aud Mag. of Nat. Hist., xvir, p. 28.
T. conspergatus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 524. Gä.
T. cruentatus Walk. Ibid., p. 534. Ga.
T. delphinus Walck. Ibid., p. 519. Ga.
T. desidiosus Walck. Ibid., p. 501. Ga.
T. dubius Hentz = Tetragonophthalma dubia.
T. duttonii Hentz = Tibellus duttonii.
T. exaratus Walck. (Bosc. MSS.) Ins. Apt., I, p. 508. Carolina.
T. fartus Hentz $=$ Misumena vatia .
T. ferox Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 445. Id., Spid. U. S., ed. Burgess, p. 77, pl. 10, fig. 3. U. S.
T. flavescens Walek. Abbot Ga. Spid. Ins. Apt., I, p. 519. Ga.
T. formosipes Walck. Ibid., p. 504. Ga.
T. indiligens Walck. Ibid., p. 506. Ga.
T. iners Walck. Ibid., p. 530. Ga.
T. infumatus Walck. Ibid., p. 508. Ga.
T. lemniscatus Walck. Ibid., p. 525. Ga.
T. lentus Walck. Ibid., p. 508. Ga.
T. luctans C. Koch. Die Arachn., xir, p. 63, fig. 998. Pa.
T. oscitans Walck. Abbot Ga. Spid. Ins. Apt., 1, p. 510. Ga.
T. pardus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 529. Ga.
T. parvulus Hentz = Synema parvula.
T. pictus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 530. Ga.
T. piger Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 446. Id., Spid. U. S., ed. Burgess, p. 79, pl. 10, tig. 6. N. C.
T. phrygiatus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 533 . Ga.
T. purpuratus Walck. Ibid., p. 506. Ga.
T. sphericus Walck. Ibid., p. 501. Ga.
T. stigmatisatus Walck. Ibid., p. 534. Ga.
T. tenuis Hentz $=$ Tetragonophthalma tenuis.
T. transversatus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 525. Ga.

T, tumefactus Walck. Ibid., p. 502. Ga.
T. turgidus Walck. Ibid., p. 502 . Ga.
T. varians Walck. Ibid., p. 504. Ga.
T. vulgaris Hentz $=$ Philodromus vulgaris.

TMARUS.

Simon. Arachn. de France, ir, p. 259. 1875.
T. caudatus Hentz (Thomisus). Journ. Bost. Soc. Nat. IIist., v, p. 447. Id., Spid. U. S., ed Burgess, p. 80, pl. 10, fig. 9. Ala.
———Keyserling. Die Spinu. Am., I, Laterigradæe, p. 157, fig. 84.
T. floridensis Keyserling. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 673 (27), pl. 21, fig. 21. Fla., Ala., La., Tex.
T. griseus Keyserling. Ibid., p. 672 (26), pl. 21, tig. 20. Fla.
T. magniceps Keyserling. Die spiuu. Am., I, Laterigradir, p. 158, fig. 85. Cal.
T. rubromaculatus Keyserling. Ibid., p. 158, fig. 86. Ga.

II. Subfamily Philodromine.

EBO.

Keyserling. N. Spinn. a. Am., v. Verl. d. z. b. Ges. Wien, p. 678 (32). 1883.
E. latithoraz Keyserling. N. Spinn. A. Am., v. Verh. d.z. b. Ges. Wien, 1883, p. 678, (32), pl. 21, fig. 26. Va., D. C., Md., Utal.

TIBELLUS.

Simon. Arachn. de France, ir, p. 307. 1875.
1878. Metastemus Bertikau. Vers. e. nat. Anordu. d. Sp., p. 37%.
T. duttonii Hentz (Thomisus). Journ. Bost. Soc. Nat. Hist., v, p. 448. Id., Spid, U. S., ed. Burgess, p. 81, pl. 10, fig. 10. Southern States.

Keyserling. Die Spinn. Am., I, Laterigradæ, p. 194, fig. 107.
T. oblongus Walck. (Philodromus). Abbot Ga. Spid. Ins. Apt., I, p. 558. Middle States.
Simon. Arachn. d. Fr., II, p. 311, pl. 8, fig. 12.
Keyseriing. Die Spinn. Am., I, Laterigradæ, p. 196.
Thomisus oblongus Hahn. Die Arachn., 1, p. 110, fig 82.
Thanatus parallelus Koch. Ibid., Iv, p. 87, fig. 307.
Philodromus oblongus Blackw. Spid. of Gr. Brit., I, p. 100, fig. 60.
THANATUS.
C. Koch. Uebers. d. Arachn. Syst., 1, p. 28. 1837.
1875. Simon. Arachn, de France, II, p. 314.
T. coloradensis Kerserling. Die Spinn. Am., I, Laterigradx, p. 206, fig. 113 Colo.
S. rubicundus Keyserling. Ibid., p. 204, fig. 112. Ga., D. C., Lake Superior, Tex. Wyo., Labrador, Alaska.

PHILODROMUS.

Walck. Faune de France Arachn., p. 86. 1825.
P. abottii Walck. Abbot Ga. Spid. Ins. Apt., I, p. 552. Ga.
P. alaskensis Keyserling. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 674 (28), pl. 21, fig. 22. Alentian Islauds, Alaska, Nev., Oregon, Labrador, Utah.
*P. aureolus Clerck. (Arancus). Sv. Spindl., p. 133, pl. 6, tab. 6. D. C., Pa., Md., Va., Utah, Colo., Lako Superior.

- Thorell. Aran. coll. in Colorado. Bull. U. S. Geol. Surv.,Terr., iII, No. 2, 1877, p. 500.
——Keyserling. Die Spinn. Am., I, Laterigradie, p. 217.
P. californicus Keyserling. N. Spinn. a. Am., V. Verh. d. \% b. Ges. Wien, 18s3, p. 676 (30), pl. 21, tig. 24. Cal.
P. clarus Keyserling. Die Spiun. Am., 1, Laterigradr, p.214. Nev., Va., D. C., Colo.
P. expositus Keyserlins. Ibid., p. 220, fig. 121. N. H.
P. imbecilus Keyserling. Ibid., p. 224, fig. 123. Ga.
P. infuscatus Keyserling. Ibid., p. 222,.fig. 122. Md., D. C., Va.
P. inquisitor Walck. Abbot Ga. Spid. Ins. Apt., I, p. 553. Ga.
P. inquisitor Thorell. = Thorellii Marx (Note 26).
P. keyserlingii Marx (Note 27).
obscurus Keyserling. N. Spinn. a. Am., V. Verh. d. z. D. Ges. Wien, 1883, p. (i75 (29), fig. 23. D. C
P. laticeps Keyserling. Die Spinn. Am., I, Laterigradix, p. 215, fig. 118. Ga.
P. lentiginosus Keyserling. N. Spinn. a. Am., Im. Verl. d. z. b. Ges. Wien, 1881, p. 312 (46), fig. 29. Lako Superior.
P. maculatus Blackw. Spinn. fr. Canada. Ann. and Mag. Nat. Hist., Xvif, p. 39 .
P. marxii Koyserling. N. Spinn. a. Am., V. Verh. d. z. b. Ges. Wien, 1883, p. 67% (31), fig. 25. Texas.
P. oblongus Blackw. = Tibellus oblongus.
P. obscurus Blackw. Spid. fr. Montreal. Aun, and Mag. Nat. Mist., Vin, 1871, p. 429. Canada.
P. obscurus Keyserling $=$ Keyserlingii Marx.
P. pernix Blackw. Spid. from Canada. Ann. and Mag. Nat. Hist., Xvir, 1846, p. 36. Canada.
P. præceps Walck. Abbot Giv. Spid. Ins. Apt., I, p. 560. Ga.
P. prælustris Keyserling. Die Spinn. Am., I, Laterigratle, p. 209, tig. 114. Colo.
P. rufus Walck. Faun, franc. Arachn., p. 91. Id., Ins. Apt., r, p. 555. Md., D. C., Va.
——Keyserling. Die Spinn. Am., I, Laterigradæ, p. 217, fig. 119. Mass., Ill.
P. satullus Keyserliug. Ibid., p. 211, fig. 116. Colo.
P. spectabilis Keyserling. Ibid., p. 210, fig. 115. Colo.
P. thorellii Marx. Colo. (Note 29.)
inquisitor Thorell. Aran. coll. in Colo. Bull. U. S. Geol. Surv., Terr., III, No. 2, p. 502.
P. virescens Thorell. Ibid., p. 500. Colo.
P. vulgaris Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 444. Id., Spid. U. S., ed. Burgess, p. 76, pi. 10, fig. 1. U. S.
Keyserling. Die Spinn. Am., I, Laterigradæ, p. 218, fig. 120.

Family SPARASSIDE.

1874. Simon. Especes. Europ. fam. Sparas. Ann. Soc. Ent. Fr., p. 243.
1875. Simon. Arachn. de France, II, p. 331.

SELENOPS.

Latreille. Nouv. Dict. d'Hist. Nat., xxx. 1819.
1820. Dufour. Descr. de six Arachn. nouv. Aun. du Sc. Phys., v, p. 361.
1864. Simon. Hist. Nat, d'Araign., p, 420.
1869. Thorell. On Europ. Spid., p. 179.
1875. Simon. Arachn. de France, ir, p. 344.
*S. aissa Walck. Ins. Apt., I, p. 547. Fla.
——_Keyserling. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 683, pl. 21, fig. 30.

OLIOS.

Walck. Ins. Apt., I, p. 563.1837 ad part.
1864. Simon. Hist. Nat. d'Araign, p. 409 ad part.
O. abnormis Keyserling. N. Spinn. a. Am., v. Verh. d. z. b. Ges. Wien, 1883, p. 679, pl. 21, fig. 27. N. Mex.
O. concolor Keyserling. Ibid., p. 682, pl. 21, fig. 29. N: Mex.
O. giganteus Keyserling. Ibid., p. 681, pl. 21, fig. 28. N. Mex.

HETEROPODA.

Latreille. Nouv. Dict. d'Hist. Nat., xxiv, p. 135. 1804.
1830. Sarotes Sundev. Consp. Arachn., p. 28.
1837. Ocypete C. Koch. Uebers d. Arachn. Syst., I, p. 27.
*H. venatoria Limn (Aranea). Syst. Nat. Ed., x, 1, iI, p. 1037. Fla., Cal.
Aranea regia Fabr. Syst. Ent., p. 408.
Olios leucosius Walck. Ins. Apt., i, p. 566.
Olios antillanus Id. Ibid., p. 568.
Ocypete murina Koch. . Die Arachu., xir, p. 26, fig. 978.
Ocypete draco C. Koch. Ibid., p. 44, fig. 983.
Olios zonatus Dolesch. Tweed. bijdr., etc., p. 54, pl. 14, fig. 4.
Olios regius Gerstacker. V. d. Deekens R. in Ost. Africa, III, p. 482.
Heteropoda regia Simon. Ann. Soc. Ent. France, 1877, p. 63.
Sarotes regius L. Koch. Die Arachn. Austral., p. 675, pl. 56, figs. 1, 2.
Sarotes venatorius McCook. Proc. Ac. Nat. Sc., Phila., 1s78. p. 144.

MICROMATA Hentz.

Micromata carolirensis Hentz.
Micromata marmorata Hentz.
Micromata pinicola Hentz.
Micromata serrata Hentz.
Micromata subinflata Hentz.
Micromata undata Hentz.
These species are not of the geuns Micromate at ali, but belong, as Emerton first stated, to the genus Ocyale.

Tribus IX CITIGRADE.

Family LYCOSIDE.

1817. Citigrades Latreille. Cuvier's Régue Anim., iII.
1818. Cursores Sundev. Gen. Aran. Suec.
1819. Citigradex Latr. Fam. Nat. du Régne Auim.
1820. Lycosides Sundev. Conspect. Arachu., p. 23.
1821. Lycosoidce Thorell, On Europ. Spid., p. 183.
1822. Lycoside Keyserling. Aus. Citigradze. Verb, d. z. b. Ges. Wien, p. 609.
1823. Lycosidce Emertou. Traus. Coun. Ac., vi, p. 481.

LYCOSA.

Latreille. Nouv. Diction. d'Hist. Natur., xxiv, p. 135. 180
1832. Hentz. Am. Journ. Science and Arts, xxi, p. 106.
1842. Hentz. Journ. Bost. Soc. Nat. Hist., IV, p. 228.
1875. Hentz. Spid. of the U. S., ed. Burgess, p. 24.
1876. Keyserling. Am. Citigradæ. Verh. d. z. b. Ges. Wion, p. 610.
1855. Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi, p. 482.
L. animosa Walck. Abbot Ga. Spid. Ins. Apt., I, p. 331. Ga.
L. arenicola Scudler. Tube coustr. Spid. of Nantucket. Psyche, II, p. 2, 1877. Conu., N. J., Mil., D. C., Va.
——McCook. Proc. Ac. Nat. Sc., Phila., 1888, p. 333.
Tarantula nidifex Marx. Am. Naturalist, 1881, p. 396.
Lycosa nidifex (Marx) Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi, p. 487, pl. 47, fig. 4.
L. aspersa Hentz. Journ. Bost. Soc. Nat. Hist., IV, p. 389. Id., Spid. U. S., ed. Burgess, p. 30, pl. 3, figs. 11, 12. Ala.
L. avida Walck. Abbot Ga. Spid. Ins. Apt., I, p. 323. Ga.
L. babingtonii Blackw. Spid. fr. Canada. Aun. aud Mag. Nat. Hist., Xvir, p. 30. Canada.
L. canadensis Blackw. Spid. fr. Montreal. Ibid., viiI, 18ĩ1, p. 429.
L. carolinensis Walck. (Bosc. MSS.) Lns. Apt., I, p. 235.
—— Hentz. Journ. Bost. Soc. Nat. Hist., Iv, p. 230. Id., Sp. U. S., ed. Burgess, p. 27, pl. 2, fig. 9. N. Eugl., Pa., Md., D. C., Va., N. C., S. C., La., Ga., Ala., Fla.
———Emerton. N. Engl. Lycos. Trans. Coun. Ac., vi, p. 486, pl. 47, fig. 1.
L. cinerea (Fabr.) Emerton $=$ Trochosa cinerea.
L. communis Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi, p. 489, pl. 47, fig. 6. N. Eugl.
L. concinna Thorell. Aran. coll. in Colo. Bull. U. S. Geol. Surv., Terr., IIr, No. 2, p. 506. Colo.
L. grassipes Walek. Abbot Ga. Spid. Ins. Apt., I, p. 323. Git.
L. discolor Walck. Ibid., p. 332. Ga.
L. distincta Blackw. Spid. fr. Canada. Ann. and Mag. Nat. Hist., Xvir, p. 32. Canada.
L. encarpata Walck. Ins. Apt., I, p. 290. Phila.
L. erratica Hentz. Journ. Bost. Soc: Nat. Hist., rv, p. 388. Id., Spid. U. S., ed. Burgess, p. 29, pl. 3, fig. 8. Mass., Ala., Ohio.
L. fatifera Hentz. Ibid., p. 229. Id., ibid., p. 26, pl.2, fig. 8. Mass., Ala., Kan.
——Cragin. Contr. to Knowl. of Arachn. of Kansas. Bull. Washburn Coll., I, No. 4, p. 146.
L. flavipes Keyserling. Am. Citigradr. Verh. d. z. b. Ges. Wien, 1876, p. 616, pl. 7, fig. 4. Md., 111.
L. frondicola Emerton. N. Engl. Lycos. Traus. Conn. Ac., vi, p. 484, pl. 46, fig. 3. Coun.
L. funerea Hentz. Journ. Bost. Soc. Nat. Hist., Iv, p. 393. Id., Spid. U. S., ed. Burgess, p. 34, pl. 4, fig. 11. Ala.
L. furcifera Thorell. Spil. fr. Labrador. Proc. Bost. Suc. Nat. Hist., xviI, p. 499. Labrador.
Proc. N. M. $89-36$

L．fuscula Thorell．Ibid．，p．501．Labrador．
L．georgiana Walck．（Tarentula）．Abbot Ga．Spid．Ius．Apt．I，p．286．Ga．
L．georgicola Walck．（Tarentuloides）．Ibid．，p．288．Ga．
L．grœmlandica Thorell．Spid．fr Labrador．Proc．Bost．Soc．Nat．Hist．，Xvir，p． 498．Labrador．
L．gulosa Walck．Ins．Apt．，I，p．338．N．Y．
L．helluo Walck．Ibid．，p．337．N．Y．
L．impavida Walck．Abbot Ga．Spid．Ibid．，p．324．Ga．
L．impavida（Note 28）Thorell．＝intrepida Marx．
L．indagatrix Thorell．Aran．coll．in Colo．Bull．U．S．Geol．Surv．Terr．，inf， No．2，p．512．Colo．
L．infesta Walck．Abbot Ga．Spid．Ins．Apt．，I，332．Ga．
L．intrepida Marx（Note 28）．
L．iracunda Thorell．Aran．coll．in Colo．Bull．U．S．Geol．Surr．Terr．，III，No． No．2，p．514．Colo．
L．kochii Emerton＝Tarentila kochii．
L．labradoriensis Thorell．Spid．fr．Labrador．Proc．Bost．Soc．Nat．Hist．，Nrir， p．502．Labrador．
L．Ienta Hentz．Jourb．Bost．Soc．Nat．Hist．，iv，p．386．Id．，Spid．U．S．，ed．Bur－ g．ss，p．27，pl．3，figs．1－4．Pa．，N．C．，S．C．
L．littoralis Hentz．Ibid．，p．388．Id．，ibid．，p．30，pl．3，fig．9．N．C．，Ohio，D．C．， Va．，Mil．，N．J．
L．mackenziana Kesserling．Am．Citigradie．Verh．d．z．b．Ges．Wien，1ご6．p． 621 ，pl．7，tig．7．Mackenzie River：
L．maritima Hentz．Jouru．Bost．Soc．Nat．Hist．，Iv，p．389．Id．，Spid．U．S．，ed． Burgess，p．30，pl．3，fig．10．S．C．，Mass．，D．C．，Va．
L．milbertii Walck．Ins．Apt．，I，p．336．N．Y．
L．milvina Hentz．Journ．Bost．Soc．Nat．Hist．，Iv，p．392．Id．，Spid．U．S．，ed． Burgess，p．33，pl．4，fig．5．Ala．
L．minima Keyserling．Am．Citigrade．Verb．d．z．b．Ges．Wien，1876，p．614，pl． 7，fig．3．Ill．
L．modica Blackw．Spid．fr．Canada．Ann．and Mag．Nat．Hist．，Xrif，p． 33. Canada．
L．mordax Walck．Tabl．d＇Aran．，p．12．Ga．，Carolina，N．Y．
—— Walck．Abbot Ga．Spid．Ins．Apt．，I，p． 321. Aranea nissa（Bosc．MSS．）S．l＇Araign．Carol．，No．8，pl． 5.
L．nidicola Emerton．N．Engl．Lycos．Trans．Conn．Ac．，VI，p．482，pl．46，fig． 1. Mass．，R．I．，Conn．，Ind．
L．nidifex（Note 29）Emerton＝arenicola．
L．nigroventris Emerton．N．Engl．Lycos．Trans．Conn．Ac．，vi，p．4ご，pl．47，fig． 5．Mass．
L．ocreata Hentz．Journ．Bost．Soc．Nat．Hist．，Iv．，p．391．Id．，Spid．U．S．，ed．Bur－ gess，p．33，pl．4，fig．5．N．C．，Ill．，Conn．，D．C．，Va．
＿－＿Keyserling．Ain．Citigradæ．Verh．d．z．b．Ges．Wien，1876，p．611，pl．7， fig． 1.
Emerton．N．Eugl．Lycos．Trans．Conn．Ac．，vi，p．491，pl．48，fig． 6.
L．philadelphiana Walck．（Tarentuloides）．Journ．Phil．Ac．Nat．Sci．，II，pl．5，fig． 1．Philadelphia，Ga．
－Walck．Ins．Apt．，I，p． 289.
L．pictilis Emerton．N．Eugl．Lycos．Trans．Conn．Ac．，VI，p．485，pl．40，fig． 5. N． H ．
L．pilosa（iirard．Marcy＇s Explor．of the Red River，La．，1852，p．250，pl．16，figs． 4，5．La．
－Cragin．Contrib，to Knowl．of Arachn．of Kansas．Bull．Washburn Coll．，I， No．4，p． 146.
L. polita Emerton. N. Engl. Lycos. Trans. Coun. Ac., vi, p. 484, pl. 46, fig. 2. Mass., N. Y., Comn.
L. pratensis Euierton. Ibid,, p. 483, pl. 46, fig. 4. Mass., Comn., N. H.
L. propinqua Blackw. Spid. fr. Canada. Ann. and Mag. Nat. Hist., xvir, p. 31. Canada.
L. punctulata Hentz. Journ. Bost. Soc. Nat. Hist., IV, p. 390. Id., Spid. U. S., ed: Burgess, p. 31, pl. 3, figs. 16, 17. Ala., Conn., Mass., R. I., Va., D. C., Ga., Fla., 'Texas.
—— Emerton. N. Engl. Lycos. Trans. Conn. Ac., Vi, p. 490, pl. 48,fig. 1.
L. riparia Hentz. Journ. Bost. Soc. Nat. Hist., Iv, p. 389. Id., Spid. U. S., ed. Burgess, p. 31, pl. 3, figs. 13, 15. Ala, N. C., Va., S. C., D. C., Ga., W. Va.
-_ Cragin. Contrib. to Knowl. of Arachu, of Kansas. Bull. Washburn Coll., I, No. 4, p. 146.
L. rufa Keyserling. Am. Citigrade. Verh. d. z. b. Ges. Wien, 1876, p. 613, pl. 7, fig. 2. Md., D. C., Va., Iil.
L. rugosa Keyserling. Ibid., p. 624, pl. 7, figs. 9, 10. Md.
L. ruricola Hentz. Journ. Bost. Soc. Nat. Hist., IV, p. 381. Id., Spid. U. S., ed. Burgess, p. 28, pl. 3, figs. 5, 6. Ala., Carolinas, D. C., Va., Md., Pa.
L. saccata (Latr.) Blackw. Spid. fr. Canada. Ann. and Mag. Nat. Hist., Xvir, p. 34. Canada.
L. saggitata Hentz. Journ. Bost. Soc. Nat. Hist., Iv, p. 391. Id., Spil. U. S., ed. Burgess, p. 32, pl. 4, fig. 3, 4. Ala.
L. saltatrix Hentz. Ibid., p. 337. Id., ibid., p. 23, pl. 3, fig. 7. U. S.
L. saxatilis Hentz. Ibid., p. 392. Id., ibid., p. 34, pl. 4, figs. 9, 10. Ala.
L. sayi Walck. Ins. Apt., I, p. 337. N. Y.
L. scutulata Hentz. Journ. Bost. Soc. Nat. Hist., IV, p. 390. 1d., Spid. U.S., ed. Burgess, p. 32, pl. 4, tigs. 1, 2. Ala., Conn., D. C., Md., Ill., Wis., Mo., Tex.
-—Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi, p. 491, pl. 4ヶ, fig. 2.
L. sinitsra Thorell. Aran. coll. in Colo. Bull. U. S. Geol. Surv. Terr., nir, No. 2, p. 517. Colo.
L. sternalis Thorell. Ibid., p. 504. Colo.
L. suspecta Walck (Tarentula). Abbot Ga. Spid. Ins. Apt., I, p. 286. Ga.
L. tristis Thorell. Aran. coll. in Colo. Bull. U. S. Geol. Surv. Terr., III, No. 2, p. 510. Colo.
L. triton Walck. Abbot Ga. Spid. Ins. Apt., I, p. 340. Ga.
L. turricola Treat. Harpers' Monthly, April, 1880.
L. uncata Thorell. Aran. coll. in Colo. Bull. Geol. Suıv. Terr., III, No. 2, p. 503. Colo.
L. vehemens Walck. Abbot Ga. Spid. Ins. Apt., I, p. 324. Ga.
L. venustula Hentz. Journ. Bost. Soc. Nat. Hist., iv, p. 392. Id., Spid. U. S., ed. Burgess, p. 33, pl. 4, figs. 6, 7. Ala.
L. xerampelina Keyserling. Am. Citigradæ. Verh. d. z. b. Ges. Wien, 1876, p. Ge2, pl. 7, tig. \therefore Ill.

TARENTULA.

Sundeval. Conspectus Arachn., p. 24. 1833.
1848. C. Koch. Die Arachn., xir, p. 96, subgenus.
1869. Thorell. On Europ. Spid., p. 191.
1876. Keyserling. Am. Citigrade. Verh. d. z. 1). Ges. Wien, p. 6ic
T. baltimoriana Keyserling. Am. Citigrade. Verh. d. z. b. Ges. Wien, 1876, p. 632, pl. 7, fig. 16. Md.
T. inhonesta Keyserling. Ibid., p. 634, pl. 7, fig. 17. N. Am.
T. kochii Keyserliug. Ibid., p. 636, pl. 7, fig. 18. Conn., Mass.
——Emerton (Lycosa). N. Engl. Lycos. Trans. Conn. Ac., vi, p. 485, pl. 46, fig. 6.
T. lepida Keyserling. Am. Citigradre. Verb. d. z. b. Ges. Wien, 1876, p. 631, pl. 7, fig. 15. N. Am.
T. modesta Keyserling. Ibid., p. 626, pl. 7, figs. 11, 12.
T. modesta (Note 30) Thorel $=$ pudens Marx.
T. nidifex Marx $=$ Lycosa arenicola .
T. pikei Marx. Americ. Naturalist, 1881, p. 348, figs. 4, 5, 6.
T. pudens Marx. (Note 30).
modesta Thorell. Aran. coll. in Colo. Bull. U. S. Geol. Surv. Teri., nir, No. 2, p. 520.
T. scalaris Thorell. Aran. coll. in Colo. Bull. U. S. Gcol. Surv. Terr., nir, No. 2, p. 520.

PIRATA.

Sundeval. Conspectus Arachn., p. 24. 1833.
1848. Potamia C. Koch. Die Arachn., xiv, p. 98.
1867. Potamia Ohlert. Aran. d. Prov. Preuss., pp. 126, 132.
1869. Pirata Thorell. On Europ. Spid., p. 193.
1876. Pirata Keyserling. Am. Citigrade. Verh. d. z. 1. Ges. Wien., p. 610.
1885. Pirata Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi, p. 492.
P. insularis Emerton. N. Engl. Ljcos. Trans. Conn. Ac., vi, p. 492, pl. 48, fig. =. N. Y.
P. montana Emerton. Ibid., p. 493, pl. 48, fig. 9. N. Y., N. H.,
P. minuta Emerton. Ibid., p. 493, pl. 48, fig. 10. Mass., Conn.
P. piratica Clerk (Araneus). Sv. Spincll., p. 102, pl.5, tab. 4. Mass., Conn., D. C., Va.
-_Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi, p. 492, pl. 48, fig. 7. Potamia piratica C. Koch. Die Arachu., xv, p. 1, figs. 1413, 1414.
P. prodigiosa Keyserling. Am. Citigradæ. Verh. d. z. b. Ges. Wien, 1876, p. 670, pl. 8, tig. 44.

TROCHOSA.

C. Koch. Die Arachn., XIV, p. 95. 1848.

Arctosq. Id., ibid., p. 94.
Trochosa Thorell. On Europ. Spid., p. 192.
Trochosa Keyserling. Am. Citigradæ. Verb. d.z. b. Ges. Wien, 1876, p. 610.
T. avara Keyscrling, Am. Citigradie. Verlı. d. z. b. Ges. Wien, 1876, p. 661, pl. 8, figs. 38,39. North America.
T. cinerea Fabricius (Avaneus). Ent. Syst., iI, p. 423, 1793. Mass., Conn., Ind.
-_Emerton (Lycosa). N. Engl. Lycos. Traus. Conn. Ac., vi, p. 48z, pl. 47, fig. 3.
Lycosa lynx Hahn. Die Arachn., II, p. 13, fig. 104.
Lycosa halodroma C. Koch. Die Arachn., v, p. 106, figs. 410, 411.
Arctosa cinera. Id., ibid., xiv, p. 123, fig. 1358.
Arctosa lynx. Id., ibid., p. 133, fig. 1364.
T. helvipes Keyserling. Am. Citigradie. Verh. d. z. b. Ges. Wievi, 1876, p. 659, pl. 8, fig. 37, pl. 7, figs. 35, 36. Md.
T. rubicunda Keyserling. Ibid., p. 133, pl. 8, fig. 40. Mid.
T. vafra C. Koch. Die Arachn., xiv, p. 135, figs. 1365, 1366. North America.

PARDOSA.

C. Koch. Die Arachn., xiv, p. 100. 1848.
1867. Ohlert. Aran. d. Prov. Preuss., pp. 127, 136.
1885. Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi, p. 494.
P. albomaculata Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi, p. 495, pl. 48, tig. 3. N. H.
P. albopatella Emerton. Ibid., p. 497, pl. 49, fig. 2. Mass., Coun.
P. bilineata Emerton. Ibid., p. 496, pl. 49, fig. 4. Coun.
P. brunnea Emerton. Ibid., p. 495, pl. 48, tig. 4. N. H., Mass., Conn.
P. californica Kesserling. N. Spinn. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 483 (63), pl. 6, fig. 44. Cal.
P. lapidicina Emerton. N. Engl. Lycos. Trans. Conn. Ac., vı, p. 494, pl. 48; fig. 5. Mass., Coun.
P. montana Emerton. Ibid., p. 498, pl. 49, fig. 5. N. H.
P. nigropalpis Emerton. Ibid., p. 497, pl. 49, fig. 1. Mass., Conn.
P. pallida Emerton. Ibid., p. 496, pl. 49, fig. 3. N. H., Mass., Conn.
P. tristis Keyserling. N. Spim. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 485 (65), pl. 6, fig. 45. Saskatchawan River.

AULONIA. C. Koch. Die Arachu., XIV, p. 97. 1848.
1876. Simon. Arachn, de France, int, p. 358.
1885. Emertou. N. Eugl. Lycos. Trans. Coun. Ac., vi, p. 498.
A. aurantiaca Emerton. N. Engl. Lycos. Trars. Conn. Ac., Vi, p. 499, pl. 49, fig. 6. Mass., Conn., D. C., Va., Md.

OCYALE (Note 31).

Sav. and Aud. Descr. de l'Egypt, xxir, p. 372. 1825-27.
1845. Micrommata Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 192 ad part.
1861. Ocyale Westr. Aran. Suec., p. 536.
1864. Ocyale Simon. Hist. Nat. d'Araigu., p. 331.
1869. Ocyale Thorell. On Europ. Spid. p. 194.
1876. Ocyale Keyserling. Am. Citigradie. Verh, d. z. b. Ges. Wien, p. 610.
1885. Ocyale Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi., p. 499.
O. rufa C. Koch. Die Arachn., xiv, p. 112, fig. 1349. Pa., Ga.
O. undata Hentz (Micrommala). Journ. Bost. Soc. Nat. Hist., v, p, 192. Id., Spid. U. S., ed. Burgess, p. 42, pl. 6, fig. 7. Ala., Mass., Coun., Pa., Md., D. C., Va., Ga.
Emerton. N. Eugl. Lycos. Trans. Conn. Ac., vi, p. 499, pl. 49, fig. \%.
Micrommata carolinensis Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 194. Id., Spid. U. S., ed. Burgess, p. 44, pl. 6, fig. 9.
Micrommata serrata Hentz. Ibid., p. 193. Id., ibid., p. 43, pl. 6, fig. 9.

DOLOMEDES.

Latreille. Nouv. Diction. d'Hist. Nat., xxiv, p. 135. 1804.
1861. Westr. Aran. Suec., p. 534.

1861 Blackw. Spid. of Gr. Brit., I, p. 37 ad part.
1876. Keyserling. Am. Citigradæ. Verh. d. z. b. Ges. Wien, p. 610.
1876. Simon. Arachn. de France, 1iI, p. 228.
1885. Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi, p. 500.
D. ærugineus C. Koch. Die Arachn., Xiv, p. 122, fig. 1357. N. Am.
D. albineus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 189. Id., Spid. U. S., ed. Burgess, p. 39, pl. 6, fig. 7. Ala., Ga.
D. binotatus C. Koch. Die Arachn., Xiv, p. 121, fig. 1356. N. Am.
D. connexus Giebel. Spinn. a. Illinois. Zeitschr. f. ges. Naturwiss., xxxir, p. 252. Ill.
D. fontanus Emerton. N. Engl. Lycos. Trans. Couv. Ac., vi, p. 502, pl. 49, fig. 10. N. II.
D. hastatulus Hentz. Journ. Bost. Soc. Nat. Mist., Iv, p. 395. Id., Spid. U. S., ed. Burgess, p. 37, pl. 4, fig. 9. Ala.
D. lanceolatus Hentz. Ibid., v. p. 191. Id., ibid., p. 40, pl. 7, fig. 12. Mass., Ala., N. C., S. C.
D. lineatus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 347. Ga.
D. mirus Walck. Ibid., p. 35\%. Ga.
D. rufus Walck. Ibid., p. 351. Giz.
D. scapularis C. Koch. Die Arachn., xiv, p. 119, fig. 1354. Pa., La.
———Keyserling. Am. Citigrade. Verh. d. z. b. Ges. Wien, 1876, p. 676, pl. 8, fig. 49.
D. scriptus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 189. Id., Spid. U. S., ed. Burgess, p. 38, pl. 6, fig. 1. Ala.
D. sexpunctatus Hentz. Ibid., v, p. 191. Id., ibid., p. 41, pl. 6, figs. 5-6. N. C., Mass., N. Y., N. H., Pa., Mil., D. C., Va.
——Emerton. N. Eugl. Lycos. Trans. Conn. Ac., vi, p. 501, pl. 49, fig. 8.
D. striatus Giebel. Spinu. a. Ill. Zeitschr. f. ges. Naturmiss, xxxiif, p. 252. Ill.
D. tenax Hentz. Journ. Bost. Soc. Nat. Hist., IV, p. 395. Id., Spid. U. S., ed. Burgess, p. 37, pl. 5, fig. 7. N. C.
D. tenebrosus (Note 32) Hentz. Ibid., IN. p. 396. Id., ibid., p. 3*, pl. 5, fig. 10-13. N. C., Ala., Mass., Pa., Md., D. C., Va., Ga.
-_Emerton. N. Engl. Lycos. Trans. Conn. Ac., vi, p. 501, pl. 49, fig. 9.
D. urinator Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 190. Id., Spid. U. S., ed. Burgess, p. 40, pl. 6, fig. 3. N. C., Ala., Mass., Md., D. C., Va., W. Va.
D. virgatus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 358. Ga.
D. vittatus Walck. Ibid., p. 347. Ga.

Family OXYOPID※.

1869. Oxyopoide Thorell. On Europ. Spid., p. 196.
1870. Oxyopide Simon. Arachn. de France, III, p. 214.

PEUCETIA.

Thorell. On Europ. Spid., p. 196. 1869.
1858. Pasithea Blackw. Descr. of six Spid., p. 427.
P. aurora McCook. Proc. Ac. Nat. Sc., Phila., 1883, p. 276, Cal.
P. viridans Hentz (Oxyopes). Journ. Bost. Soc. Nat. Hist., v, p. 195. Id., Spid. U. S., ed. Burgess, p. 46, pl. 7, fig. 2. Fla., N. C., Ala., Miss., La., Cal.

OXYOPES.

Latreille. Nonv. Dict. d'Hist. Nat., xxiv, p. 135. 1804.
1805. Sphasus Walck. Tabl. d'Aran., p. 19.
1032.^Oxyopes Hentz. Am. Journ. of Science and Art, xxi, p. 105.
1837. Sphasus Walck. Ins. Apt., 1, p. 373.
1861. Sphasus Blackw. Spid. of Gr. Brit., 1, p. 43.
1845. Oxyopes Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 195.
1875. Oxyopes Hentz. Spid. U. S., ed. Burgess, p. 45.
1885. Oxyopes Emerton. N. Eugl. Lycos. Trans. Coun. Ac., vi, p 502.
O. arcuatus Walck. (Sphas:1s). Abbot Ga. Spid. Ins. Apt., 1, p, 378. Ga.
O. astutus Hentz. Jonrn. Bost. Soc. Nat. Hist., v, p. 197. Id., Spid. U. S., ed. Burgess, p. 48; pl. 7, fig. 1. Ala., Va.
O. fossanus Walck. (Sphasus). Abbot Ga. Spid. Ins. Apt., 1, p. 377. Ga.

1. gracilis Keyserling = salticus.
O. lanceolatus Walek. (Sphasus). Abbot Ga. Spid. Ius. Apt., 1, p, 37\%. Ga.
O. salticus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 196. Id., Spid. U. S., ed. Burgess, p. 47, pl. 6, fig. 10. Fla., Tex., La., Miss., Ga., S. C., Va., D. C., Md.
gracilis Keyserling. Am. Citigrade. Verl. d.z. b. Ges. Wien, 1376, p. 698, pl. \&, fig. 63, 64.
O. scalaris Hentz. Journ. Bost. Soc. Nat. Hist., V, p. 196. Id., Spud. U. S., p. 47, pl. 7, fig. 4. N. H., Va., D. C., Md.
Emerton. N. Engl. Lycos. Trans. Coun. Ac., vi, p. 502, pl. 49, fig. 11.
O. vittata Walck. (Sphasus). Abbot Ga. Spid. Ins. Apt., I, p. 378. Ga.

Family PODOPHTHALMID.E.

1877. Cambridge. Proc. Lond. Zool. Soc., III, p. 566.
1878. Karsch. Zeitschr. f. ges. Naturriss., Li, p. 327.

TETRAGONOPHTHALMA.

Farch. Zeitsch. f. ges. Naturwiss., LI, p. 329. 1878.
Thomisus Hentz. Journ. Bost. Soc. Nat. Hist., v, p: 443, ad part.
T. dubia Hentz. (Thomisus). Journ. Bost. Soc. Nat. Hist., v, p. 448. Id., Spid. U. S., ed. Burgess, p. 82, pl. 10, fig. 11. N. C.
T. tenuis Hentz. (Thomisus). Ibid., p. 449. Id., ibid., p. 82, pl. 10, fig. 12. Ala.
T. undulata Keyserling. N. Spinn. a. Am., vir. Verh. d. z. b. Ges. Wien, 1887, p. 486, (66), pl. 6, fig. 42. Fla.

Family CTENIDE
Keyserling. Am. Citigradæ. Verh. d. z. b. Ges. Wien, 1876, p. 680.

CTENUS.

Tralck. Tabl. d'Aran., p. 16, 1805.
1844. Hentz. Journ. Bost. Soc. Nat. Hist., Iv, p. 393.
1875. Hentz. Spid. U. S., ed. Burgess, p. 34.
C. hibernalis Hentz. Journ. Bost. Soc. Nat. Hist., iv, p. 393. Id., Spid. U.S., ed. Burgess, p. 35, pl. 5, figs. 1-4. Ala., N. Mex.
C. punctulatus Hentz. Ibid. Ahin., p. 393. Id., ibid., p. 35, pl. 5, figs. 5, 6. Ala., Tex., Ariz.

Tribus X SALTIGRADE.

Family ATTIDE.

1817. Saltigrades Latreille. Cuvier's Règne anim., III, p. 93.
1818. Saltatores Sundev. Gen. Aran. suec., p. 20.
1819. Attide Sunder. Conspect. Arachn., p. 25.
1820. Attides C. Koch. Uebers d. Arachn. Syst., v, p. 42.
1821. Attoide Thorell. On Europ. Spid., p. 203.
1822. Salticoida Thorell. Ragni. Birmani. Ann. Mus., Cry, Genoa, xxy.

Subfamily Attine.

PHIDIPPUS.

C. Koch. Uebers d. Arachn. Syst., v, p. 53. 1850.
1885. Peckham. Gen. Fam. Attidæ. Wisc. Acad., p. 298.

18ऽ7. Peckham. Attida of North America. Ibid., separate, p. 11.
P. albomaculatus Kesserling. N. Spiun. a. Am., Vir. Verl. d. z. b. Ges. Wien, 1884, p. 491, pl. 13, fig. 2. N. H., Mass., Cal.
———Peckham. Att. of N. A., p. 19, pl. 1, tig. 3.
P. alchymista Koch $=$ morsitans.
P. arizonensis Peckham (Attus). Deser. Att. U. S., p. 13, pl. 2, fig. 10. Id., Att. of N. A., p. 18, pl. 1, fig. 10. Ariz., Tex., Cal.
I'. asinarius C . $\mathrm{Koch}=$ galathea .
I^{\prime}. auctus C. Koch $=$ Philaus rimator:
P. bicolor Keyserling. N. Spinn. a. Am., VI. Verh. d. z. b. Ges. Wrien, 1884, p. 496, pl. 13, fig. 6. Utah.
P. cardinalis Mentz (Attus). Journ. Bost. Soc. Nat. Hist., v, p. 200. Id., Spid. U. S., ed. Burgess, p. 51, pl. 7, tig. 9. Southern U. S.
——Peckham (dttus). Descr. Att. U. S., p. 31, pl. 3, fig. 24. Id., Att. N. A., p. $15, \mathrm{pl} .2$, fig. 4.
P. carolinus C. Koch. Die Arachn., xili, p. 136, fig. 1194. Carolina.
P. castrensis C. Koch. Ibid., p. 140, tig. 1195. Pa.
P. clarus Kejserling. N. Spinn. a. Am., vi. Verh. d. z. b. Ges. Wien, 1884, p. 497, pl. 13, fig. 7. Md.
I^{\prime}. coloradensis Thorell. $=$ insolens.
P. concinnatus C. Koch. Die Arachu., Xiri, p. 145, fig. 1202. Pa., Md.
P. dubiosus C. Koch. Ibid., p. 144, fig. 1201. Pa.
P. elegans C. Koch. Ibid., p. 143, lig. 1200. Pa.
P. galathea Waick. (Attus). Abbot Ga. Spid. Ius. Apt., I, p. 456. Ibid., iv, p. 423. Ga., Eastern States.
——— Peckham. Att. N. A., p. 14, pl. 1, fig. 3.
Attus mystaceus Hentz. Journ. Bost. Soc. Nat. Hist., v̌, p. 355. Id., Spid. U. S., ed. Burgess, p. 58, pl. 8, fig. 9.

I'hidippus asinarius C. Koch. Die Arachn., xiII, p. 139, fig. 1197.
P. gracilis Kesserling. N. Spinu. a. Am., VI. Verl. d. z. b. Ges. Wien, 1884, p.495, pl. 13, fig. 5. Kr.
P. insigniarius C. Koch. Die Arachn., xili, p. 150, fig. 1206. Pa.
P. insolens Hentz (Attus). Jonrn. Bost. Soc. Nat. Hist., v, p. 200. Id., Spid. U. S., ed. Burgess, p. 51, pl. 7, fig. 8. N. C., Ga., Fla., Colo.
Peckham. Att. N. A., p. 23, pl 1, fig, 12.
Attus podagrosus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 35\%. Id., Spid. U. S., ed. Burgess, p. 61, pl. 8, fig. 13.

Phidippus coloradensis Thorell. Arachu. coll. in Color. Bull. U. S. Geol. Surv. Terr., inf, No. 2, p. 523.
P. johnsoni Peekham (Attus). Deser, Att. U. S., p. :2e, pl. 2, fig. 17. Id., Att. N. A., p. 20, pl. 1, fig. 14. Wash.
P. Iunulatus \mathbf{C}. Koch $=$ morsitans.
P. McCookii Peckham (Attus). Descr. Att. U. S., p. 16, pl. 2, fig. 12. Id., Att. N. A., p. 17, pl. 2, fig. 9. Pa.
P. mexicanus Peckham. Att. of N. A., p. 23, p1. 2, fig. 7. Ariz.
P. miniatus Peckham (Attus). Descr. Att. U. S., p. 15, pl. 1, fig: 6. Id., Att. N. A., p. 15, pl. 1, fig. 6. Fla., Tex.
P. morsitans Walck. (Attus). Abbot Ga. Spid. Ins. Apt., I, p. 43?. Ibid., rv, p. 419. U. S.
—— Peckham. Att. of N. A., p. 11, pl. 1, fig. 1.
Attus audax Hentz. Journ. Bost. Soc. Nat. Hist., v., p. 199. Id., Spid. U. S., ed. Burgess, p. 50, pl. 7, figs. 6, 7.

Altus tripunctatus. Id., ibid., p. 355.5. Id., ibid., p. 58, pl. 8, fig. 8.
Attus tripunctatus Peckham. Descr. Att. U. S., p. 33, pl.3, fig. 25.
Phidippus alchymista C. Koch. Die Arachu, xiII, p. 131, fig. 1190.
Phidippus lunulatus C. Koch. Ibid., p. 133, fig. 1192.
Phidippus mundulus C. Koch. Ibid., p. 137, fig. 1196.
Phidippus purpurifer C. Koch. Ibid., p. 127, fig. 1187.
Phidippus rufimamus C. Koch. Ibid., p. 132, fig. 1191.
Phidippu smrragdifer C. Koch. Ibid., p. 128, fig. 1188.
Phidippus variegatus C. Koch. Ibia., p. 125, fig. 1186.
P. mundulus C . Koch $=$ morsitans.
P. obscurus Peckham. Att. of N. A., p. 16, pl. 1, fig. 5. Tex., D. C.
P. octopunctatus Peckham (Attus). Descr. Att. U. S., p. 6, pl. 1, fig. 4. Id., Att. N. A., p. 21, pl. 2, fig.15. Mo.
P. opifex McCook (Attus). Proc. Ac. Nat. Sci., Phila., 1878, p. 276. Cal.
-_Peckham. Att. N. A., p. 20, pl. 2, fig. 11.
P. otiosus Hentz (Attus). Journ. Bost. Soc. Nat. Iist., v, p. 356. Id., Spid. U. S., ed. Burgess, p. 59, pl. 8, fig. 10. Ga., Ala. Peckham. Att. N. A., p. 25, pl. 1, fig. 15.
P. paludatus C. Koch. Die Arachn., Xir, p. 149, fig. 1205. Carolina.
P. pulcherrimus Keyserling. N. Spinu. a. Am., vi. Verh. d. z. b. Ges. Wien, 1884, p. 492 , pl. 13, fig. 3 . Fla.
P. personatus C. Koch. Die Arachn., xiri, p. 141, fig. 1199. Pa.
P. purpuratus Keyserling. N. Spinn. a. Am., vi. Verh. d. z. b. Ges. Wien, 1884, p. 489, pl. 13, fig. 1. Me., Mass., Utal.
P. purpurifer C. Koch = morsitans.
P. rauterbergii Peckham. Att. N. A., p. 22, pl. 1, fig. 8. Tex.
P. ruber Keyserling $=$ rufus.
P. rufimanus C . $\mathrm{Koch}=$ morsitans.
P. rufus Hentz (Attus). Journ. Bost. Soc. Nat. Hist., v, p. 356. Id., Spid. U. S., ed. Burgess, p. 60, pl. 8, fig. 12. U. S.
Peckham. Att. N. A., p. 13, pl. 1, fig. 2.
Altus castaneus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 353. Id., Spid. U. S., ed. Burgess, p. 55, pl. 8, fig. 4.

Plexippus rufus C. Koch. Die Arachn., xinf, p. 120, fig. 1180.
Plexippus bivittatus C. Koch. Ibid., p.120, fig. 1181.
Phidippus ruber Keyserling. N. Spinn. a. Am., Vı. Verh. d. z. b. Ges. Wien, 1884, p. 493, pl. 13, fig. 4.
P. smaragdifer C. Koch $=$ morsitans.
P. testaceus C. Koch. Die Arachu., xili, p. 160, fig. 1225. Pa.
P. togatus C. Koch. Ibid., p, 129, fig. 1189. Pa.
\boldsymbol{P}. variegatus C . Koch $=$ morsitans.

PHILI再US.

Tharell. On Europ. Spid., p. 217. 1869.
1885. Peckham. Gen. Fam. Att. Wis. Acad., p. 299.
1887. Peckham. Att. of N. A. Ibid., p. 25.
P. chrysis Walck. (Attus), Abbot Ga. Spid. Ins. Apt., I, p. 454. S. C., Ga.
-Peckham. Att. N. A., p. 30, pl. 1, fig. 20.
Attus iris Walck., $\frac{\text { f. Abbot Ga. Spid. Ins. Apt., I, p. } 455 .}{}$
Plexippus orichalcens C. Koch. Die Arachn., xiII, p. 113, fig. 1174.
P. farmeus Peckham. Att. N. A., p. 26, pl. 2, fig. 16. Tex.
P. fartilis Peckham. Ibid., p. 27, pl. 2, fig. 17. Ariz.
P. militaris Hentz (Attus). Journ. Bost. Soc. Nat. Hist., v, p. 201. Id., Spid. U. S., ed. Burgess, p. 62, pl. 7, figs. 10, 11. U. S.
-- Peckham. Att. N. A., p. 28, pl. 1, fig. 19.
Eris anrigera, ठै, C. Koch. Die Arachn., xiri, p. 189, fig. 1237. Phidippus asinarius C. Koch (Peckhan's quotation)?
P. princeps Peckham (dttus). Descr. Att. U. S., p. 18, pl. 2, fig. 14. Pa.
-_Peckham. Att. N. A., p. 31, pl. 3, fig. 21.
P. rimator Walck. (Attus). Ablot Ga. Spid. Ins. Apt., I, p. 446 Pa., Fla., Ga., Iowa.
——Peckham. Att. N. A., p. 32, pl. 1, fig. 22.
Phidippus auctus C. Koch. Die Arachn., xiIf, p. 143, fig. 1204.

PLEXIPPUS.

C. Koch. Uebers d. Arachn. Sjst., v, p. 51. 1850.

1835. Peckham. Genera Fam. Att. Wis. Ac., p. 296.
P. albovittatus C. Koch. Die Arachn., xuI, p. 118, fig. 1178. Pa.
P. bivittatus C. Koch. Ibid., p. 120, tig. 1181. Pa.
P. puerperus Hentz (Attus). Journ. Bost. Soc. Nat. Hist., r, p. 360. Id., Spid. U. S., ed. Burgess, p. 64, pl. 8, fig. 22. Cal., Tex., Fla., Ga.
——Peckham. Att. N. A., 1. 33, pl. 1, fig. 23.
Alcmena pallida C Koch. Die Arachn. xiil, p. 179, fig. 1229.
Attus agrestis Peckham. Descr. of Att. of U. S., p. 12, pl. 1, fig. 9.
P. putnami Peckham (Attus). Descr. Att. U. S., p. 1, pl. 1, fig. 1. Id.. Att. N. A., p. 35, pl. 3, fig. 24. Iowa.
P. rufus C. Koch. Die Arachn., xiri, p. 120, fig. 11 0. Pa.
P. undatus C . $\mathrm{Koch}=$ Astia vittata .

DENDRYPHANTES.

C. Foch. Uebers d. Arachn. Syst., I, p. 31. 1837.

1885. Peckham. Genera Fam. Att. Wis. Ac., p. 293.
D. alboimaculatus Peckham (Ittus). Descr. Att. U. S., p. 24, pl. 2, fig. 19. Id., Att. N. A., p. 41, pl. 3, fig. 29. Iowa, N. Y.
D. capitatus Hentz (Attus). Journ. Bost. Soc. Nat. Hist., v, p. 200. Id., Spid. U. S., ed. Burgess, p. 51, pl. 7, fig. 15. U. S.
——Peckham. Att. N. A., p. 36, pl. 1, fig. 25.
Attus parvus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 358. Id., Sp. U. S., ed. Burgess, p. 62, pl. 8, fig. 17.
Attus asticalis Peckham. Descr. Att. U. S., p. 2, pl. 1, fig. 2.
D. elegans Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 353. Id., Spid. U. S., ed. Burgess, p. 56, pl. \&, fig. 6, ㅇ. Middle, Eastern, and Southern States.
———Peckham. Att. N. A., p. 37, pl. 3, fig. 20.
Attus superciliosus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 364. Id., Spid. U. S., ed. Burgess, p. 68, pl. 9, fig. 11.

Maevia cristata C. Koch. Die Arachn., xiv, p. 70, fig. 1326.
Attus tibialis Peckham. Descr. Att. U. S., p. 11, pl. 1, fig. 8.
D. flavipedes Peckham. Att. N. A., p. 42, fig. 20, pl. 3. Canada.
D. flavus Peckham. Ibid., p. 39, p1. 1, fig. 27. N. Y.
D. multicolor Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 202. Id., Spid. U. S., ed. Burgess, p. 53, pl. 7, fig. 13. Pa., Ala.
—— Peckham. Att. N. A., p. 40, pl. 3, tig. D®.

ICIUS.

Simon. Arachn. de France, III, p. 54. 1876.

1835. Peckham. Genera Fam Att. Wis., Ac., p. 306.
I. albovittatus Kerserling. N. Spinn. a. Am., vı. Verh. d. z. b. Ges. Wien, 1884, p. 502, pl. 13, fig. 10. Mass.
——— Peckham. Att. N. A., p. 50, pl. 1, fig. 35.
I. crassiventer Keyserling. N. Spinu. a. Am., vi. Verl. d. z. b. Ges. Wien, 1884, p. $503, \mathrm{pl} .13$, fig. 11 . Mass.
I. elegans Keyserling. Ibid., p. 499, pl. 13, fig. 8. N. A.
I. lineatus C. Koch (Mevia). Die Arachn., xiv, p. 77, fig. 1332. Pa., Wis., Ga. Attus quadrilineatus Peckham. Descr. Att.. U. S., p. 19, pl. 2, fig. 15.
I. mitratus Hentz (dttus). Journ. Bost. Soc. Nat. Hist., v, p). 363. Id., Spid. U. S., ed. Burgess, p. 68, pl. 9, fig. 9. Wis., Pa., N. C., Ala., Ga., Fla.
——— Peckham. Att. N. A., p. 49, pl. 1, tig. 34.
Attus morigerus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 365. Id., Spid. U.S., Burgess, p. 69, pl. 9, fig. 12.
Mevia pallida C. Koch. Die Archn., xiv, p. 79. Pa.
I. nigromaculatus Keyserling. N. Spimn. a. Am., vi. Verl. d. z. b. Ges. Wien, 1384, p. 500 , pl. 13, fig. 9 . Utah.
I. palmarum Hentz (Epiblemum). Journ. Bost. Soc. Nat. Hist., v, p. 366. Id., Spid. U. S., ed Burgess, p. 71, pl. 9, fig. 16. N. Y., N. C., S. C., Ala., Fla., V., D. C., Md.

Peckham (Epiblemum). Descr. Att. U. S., p. 28, pl. 3, fig. 22. Id., Att. N.A., p. 46, pl. 1, fig. 33.
I. piraticus Peckham. Att. N. A., p. 49, pl. 1, fig. 35. Tex.
I. vittatus Keyserling. N. Spinn. a. Am., vı. Verh. d. z. b. Ges. Wien, 1834, p. 504, pl. 13, fig. 12. N. A.

PSEUDICIUS.

Simon. Faune Arachn. de l' Asie mer. Bull. Soc. Ent., France, p. x, 1885.
1855. Peckham. Genera Fam. Att. Wis. Ac., p. 336.
P. hardfordii Peckham. Att. of N. A., p. 51, pl. 1, fig. 36. Cal.

SADALA.

Peckham. Att. of N. A., p. 52. 1883.
S. distincta Peckham. Att. of N. A., p. 53, pl. 1, fig. 70. N. Mex.

ERIS.

C. Koch. Die Arachn., XIII, p. 189. 1846.
1850. C. Koch. Uebers d. Arachn. Syst., v, p. 59.
1876. Simon. Arachn. de France, III, p. 197.
1880. Karsch. Arachn. Bl., Vir, Zeitschr. f. ges. Naturwiss., p. 397.
1885. Peckham. Genera Fam. Att., p. 284.
E. nervosus Peckham. Att. of N. A., p. 56, pl. 1, fig. 39. N. Y.
E. octavus Hentz (Attus). Journ. Bost. Soc. Nat. Hist., v, p. 365. Id., Spid. U. S., ed. Burgess, p. 70, pl. 9, fig. 15, N. Y., Ala., N. C., Ga.
—— Peckham. Att. of N. A., p. 54, fig. 37.

HASARIUS.

Simon. Arachn. d. France, III, p. 77. 1876.
1855. Peckham. Genera Fam. Att. Wis. Ac. Sc., etc., p. 312.
H. hoyi Peckham (Altus). Deser. of Att. U. S., p. 7, pl. 1, fig. 5. Pa., N. Y., Wis.
-_ Peckham. Att. of N. A., p. 57, pls. 1, 4, fig. 40 .
Attus pinus Peckham. Descr. of Att. of U. S., p. 20, pl. 2, fig. 16.

HABROCESTUM.

Simon. Arachn. d. France, III, p. 131. 1876.
1885. Peckham. Genera Fam. Att. Wis. Ac. Sc., etc., p. 316.
H. auratum Hontz (Attus). Journ. Bost. Soc. Nat. Hist., v, p, 362. Id., Spid.

—— Peckham. Att. of N. A., p. 63, pls. 1, 4, fig. 46.
H. coecatum Hentz (Attus). Jouru. Bost. Soc. Nat. Hist., V, p. 361. Id., Spid. U. S., ed. Burgess, p. 65, pl. 9, fig. 2. Pa., N. Y., Ala.

- Peckham. Att. of N. A., p. 60, pls. 1, 4, fg. 42.
H. coronatum Hentz (dttus). Journ. Bost. Soc. Nat. Hist., v, n. 361. Id., Spid. U. S., ed. Burgess, p. 64, pl. 9, fig. 1. Pa., Ala., Iowa.
—— Peckham. Att. of N. A., p. 59.
H. cristatum Heutz (Atus). Journ. Bost. Soc. Nat. Hist., v, p. 363. Id., Spid. U. S., ed. Burgess, p. 67, pl. 9, tig. 8. N. Y., Ala., Conu.
——Peckham. Att. of N. A., p. 62, pls. 1, 4, fig. 45.
H. hirsutum Peckham. Att. of N. A., p. 64, pl. 4, fig. 47. Oregon.
H. oregonense Peckham. Ibid., p. 66, pl. 5, fig. 49. Oregou.
H. peregrinum Peckham (Lttus). Descr. of Att. of U. S., p. 17,pl. 2, fig. 13. N.Y., Conn.
—— Peckham. Att. of N. A., p. 6, pls. 1, 4, fig. 44.
H. splendens Peckham (Attus). Deser. of Att. of U. S., p. 4, pl. 1, fig. 3. Wis., Mass.
—— Peckliam. Att. of N. A., p. 65, pls. 1, 5, fig. 48.
Pellenes nigriceps Keyserling. N. Spinn. a. Am., Vi. Verh. d. z. b. Ges. Wien, 1885, p. 512, pl. 13, fig. 17.
H. viridipes Hentz (Attus). Jourı. Bost. Soc. Nat. Hist., v, p, 362 Id., Spid. U. S., ed. Burgess, p. 66, pl. 9, fig. 5. Tex., S. C.

Peckham. Att. of N. A., p. 60, pls. 1, 4, fig. 43.

SAITIS

Simon. Arachn. d. Frauce, III, p. 168. 1876.

1882. Thorellia L. Koch in Keyserling Arachn. Austral., p. 1352.
1883. Saitis. Id., ibid., p. 1434.
1884. Peckham. Genera of Fam. Att. Wis. Ac. Sc., etc., p. 321.
S. pulex Hentz (Attus). Journ. Bost. Soc. Nat. Hist., v, p. 361. Id., Spid. U. S., ed. Burgess, p. 65 , pl. 9, fig. 3. N. Y., Pa., Wis., Iowa, Teun., Ala.
—— Peckham. Att. of N. A., p. 67, pls. 1, 5, fig. 50.
Euophrys offuscatu ? C. Koch. Die Arachn., xini, p. 218, tig. 1263.
Cyrba pulex Keyserling. N. Spinn. a. Am., vi. Verh.d. z. 1. Ges. Wien, 1885, p. 509, pl. 13, fig. 15. Mass., N. Y., Pa., Wis., Iorra, Tenn., Ala.
S. notata Keyserling. N. Spimn. a. Am., vi. Verh. d. z. b. Ges. Wien, 18s5, p. 510 , pl. 13, fig. 16. Ky.

PROSTHECLINA.

Leyserling. Arachn. Austral., p. 1368. 1882.
P. cambridgii Peckham. Att. of N. A., p. 69, pls. 1, 5, fig. 51. Fla.

ASTIA.

L. Woch. Arachn. Austral., p. 1152. 1879.
1885. Peckham. Genera of the Fam. Att. Wis. Ac. Sc., etc., p. 332.
A. morosa Peckham. Att. of N. A., p. 71, pls. 1, 5, fig. 53. Cal.
A. vittata Hentz (Attus). Journ. Bost. Soc. Nat. Hist., v, p. 360. Id., Spid. U. S., ed. Burgess, p. 64, pl. 8, fig. 23. U. S.
Peckham. Att. of N. A., p. 70, pls. 1, 5, fig. 52.
Plexippus undatus C. Koch. Die Arachn., xiri, p. 123, fig. 1183.
Mevia pencillata. Id., ibid., xiv, p. 69, fig. 1325.
Attus niger Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 359. Id., Spid. U. S., ed. Burgess, p. 63, pl. 8, tig. 19.

MaVIA.

C. Woch. Uebers d. Arachı. Syst., v, p. 50. 1850.
1885. Peckham. Genera of Fam. Att. Wis. Ac. Sc., etc., p. 308.
M. annulipes C. Koch. Die Arachn., xiv, p. 80, fig. 1335. Pa.
M. aurulenta C. Koch. Ibid., p. 84, fig. 1338. Pa.
M. californica Peckham. Att. of N. A., p. 73, pl. 5, fig. 54. Cal.
M. chrysea C. Koch $=$ Homalatus cyaneus.
M. cristata C. Koch $=$ Dendryphantes elegans.
M. lineata C. Koch $=$ Icius lineatus.
M. pallida C. Koch $=$ Icius mitratus.
M. pennicillata C. Koch $=$ Saitis pulex.
M. sulfurea C. Koch. Die Arachn., Xiv, p. 71, fig. 1327. Pa.
M. tibialis C. Koch. Ibid., p. 78, fig. 1333. Pa.

CYTæA.

Keyserling. Arachn. Austral., p. 1380. 1882.
1885. Peckham. Genera of the Fam. Att. Wis. Ac. Sc., etc., p. 331.
C. minuta Peckham. Att. of N. A., p. 73, pls. 1, 5, fig. 55. Cal.

CYRBA.

Simion. Arachn. d. France, III, p. 165. 1876.
1882. Keyserling. Arachn. Austral., p. 1436.
1885. Peckham. Geuera of the Fam. Att. Wis. Ac. Sc., etc., p. 318.
C. pulex Keyserling $=$ Saitis pulex.
C. tæniola Hentz (.ttus). Journ. Bost. Soc. Nat. Hist., v, p. 353. Id., Spill. U. S., ed. Burgess, p. 56, pl. 8, fig. 5. Pa., S. C., Ala., Ga., Fla., Wis.
Peckham. Att. of N. A., p. 75, pls. 1, 4, 5, fig. 56.

EPIBLEMUM.

Hentz. Am. Journ, of Science and Art, xxi, p. 103. 1832.
1837. Caliethera C. Koch. Uebers de Arachn. Syst., 1, p. 30.
1864. Cyrtonota Simon, Hist. Nat. d'Araign, p. 324.
1876. Caliethera. Id., Arachn. de France, III, p. 62.
1875. Epiblemum Hentz. Spid. U. S., ed. Burgess, p. 11, p. 70.
1885. Epiblemum Peckham. Genera of the Fam. Att. Wis. Ac. Sc., etc., p. 311.
E. faustum Hentz $=$ scenicum.
E. palmarum $\mathrm{Hentz}=$ Icius palmarum.
E. scenicum Clerk (Araneus). Sv. Spindl., p. 117, pl. 5, tab. 13, 1757. N. A.
—— Peckham. Att. of N. A., p. 76, pls. 1, 4, fig. 57.
Aranea scenica Linn. Syet. Nat. Ed., x, p. 623.
Aranea albofasciata De Geer. Merw., vir, p. 287 ad part.
Attus scenicus Walck. Tabl. d'Aran., p. 24 ad part.
Salticus scenicus Latr. Gen. Crust. et Ins. 1, p. 123 ad part.
Sallicus scenicus Hahn. Die Arachn., 1, p., 57, figs. 43, 44 ad part.
Eipiblemum faustum Hentz. Am. Journ. Sci. and Arts, Xxi, p. 108.
Attus scenicus Sund. Sv. Spindl. in Vet. A. K. Handl., p. 202.
Calliethera scenica C. Koch. Uebers de Arachn. Syst., 1, p. 31.
Calliethera histrionica. Id., ibid.
Calliethera histrionica. Id. Die Arachn., xini, p. 42, figs. 1110, 1111.
Calliethera scenica. Id., ibid., p. 37, figs. 1106, 1107.
Calliethera aulica. Id., ibid., p. 51, figs. 1118, 1119.
Salticus propinques Lucas. Expl. Alg. Ar., p. 162.
Salticus albovittatus. Jd., ibid., p. 164.
Epiblemum faustum Heutz. Journ. Bost. Soc. Nat. Hist., v, p. 367.
Calliethera histrionica Thorell. Rec. crit. Aran., p. 68.
Calliethera scenica. Id., ibid.
Salticus scenicus Blacktr. Spid. of Gr. Brit., 1, p. 47.
Callietherus histrionicus Simon. Monogr. d'Att. d'Eur., p. 650.
Epiblemum histrionicum Thorell. On Europ. Spid., p. 211.
Epiblemum scenicum Thorell. On Syn., p. 360.
Calliethera scenica Simon. Arachn. de France, iII, p. 64.
Epiblemum scenicum Workman. Irish Spid. Belf. Nat. Hist. Soc., p. 16.

ADMESTINA.

Peckham. Att. of N. A. Wis. Ac., etc., 1888, p. 78.
A. wheelerii Peckham. Att. of N. A. Wis. Ac. Sc., etc., 1835, p. 78, pls. 1, 5, fig. 58. Wis.

HYCTIA.

Simon. Arachn. de France, III, p. 18. 1876.
H. pikei Peckham. Att. of N. A. Wis. Ac. Sc., etc., p. 70, pls. 1,4, 5, fig. 59. N. Y., S. C., Ga., Fla., D. C.

MARPTUSA.

Thorell. Ragui Malesi e Pap., 1, p. 221. 1877.
1846. Marpissa C. Koch. Die Arachn., xini, p. 56 ad part.
1850. Marpissa id. Uebers d. Arachn., Syst., v, p. 47.
1868. Marpissus Simon. Monogr. d’Attid., pp, 6, 7 ad part.
1869. Marpessa Thorell. On Europ. Spid., p. 213 ad part.
1876. Marpissa Simon. Arachn. de France, iII, p. 23.
1879. Marptusa L. Koch. Arachn. Austral., p. 1092 ad part.
1885. Harptusa Peckham. Genera of the Fam. Att. Wis. Acad. Sc., etc., p. 291.
M. californica Peckham. Att. of N. A., p. 81, pls. 1,5,6, fig. 61. Cal.
M. conspersa C . Koch $=$ familiaris.
M. familiaris Heutz (Attus). Journ. Bost. Soc. Nat. Hist., v, p. 354. Id., Spid. U. S., ed Burgess, p. 56, pl. 8, fig. 7. U. S.
—— Peckham. Att. of N. A., p. 80, pls. 1, 4, 5, tig. 60.
Marpissa undata C. Koch. Die Arache., XIII, p. 60, fig. 1127.
Marpissa conspersa. Id., ibid., p. 61, fig. 1128.
Marpissa varia. Id., ibid. p. 69, tig. 1135.
M. undata C. Koch = familiaris.
M. varia C. Koch =familiaris.

MENEMERUS.

Simon. Monogr. d'Att. de 1 'Europ. p. 6. 1869.
Peckham. Genera of the Fam. Att. Wis. Ac. Sc., etc., 1885, p. 292.
M. cruciferus Keyserling. N. Spinn. a. Am., vı. Verh. d. z. b. Ges. Wien, 1884, p. 513, pl. 13, fig. 18. S. C.
M. melanognathus Lucas. (Salticus) Hist. Nat. d'Iles Canar., if, p. 29, pl. 7, tig. 4, 1839. Fla.
——— Peckham. Att. of N. A., p. 82, pls. 1, 6, fig. 62.
Marpissa dissimilis C. Koch. Die Arachn., xint, p. 70, figs. 1135, 1136.
Marpissa incerta. Id., ibid., p. 73, fig. 113s.
Salticus contergens Doleschall. Tw. Bijdr. Ar. Ind. Archip., p. 15, pl. 9, fig. 4.
Attus muscivorus Vinson. Ar. d. Iles d.1. Reunion, p. 47, pl. 10, tig. 1.
Sttus foliatus L. Koch. Verh. d. z. b. Ges. Wien, 1867, p. 226.
Salticus nigro-limbatue Cambridge. Proc. Loud. Zool. Soc., 1869, p. 542, pl. 42, fig. 10.
Marpissanigro-limbata. Ith., Syst. list of Spid. of Gr. Brtt. aud Irel. Ibid., xxx, p. 333.

Icius (?) convergens Thorell. Studi, ete., II. Ragni de Amboina, pp. 232, 309. Marptusa marita Karsch. West Afr. Ar. in Zeitschr. f. ges. Naturwiss., Lir, p. 338.

Menemerus foliata L. Koch. Arachn. Austral., p. 1123, pl. 98, figs. 1, 2.
Attus mannii Peckham. Descr. of Att. of U. S., p. 27, pl. 3, fig. 21.
Menemerus melanognathus E. Simon. Arachn. de l' Ocean Atl. Ann. Soc. Ent. Fr. 1883, pp. 284, 306.
M. paykullii Aud. et Sar. (Atus). Descr. de. l' Egypt, xxif, p. 172, 1825-27. Fla.
——Peckham. Att. of N. A., p. 84, pls. 1, 6, fig. 63.
Attus paykullii Walck. Ins. Apt., 1, p. 426.
Attus ligo Walck. Ibid. p. 426.
Attus binus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 352. Id., Spid. U. S., ed. Burgess, p. 51, pl. 8, fig. 2
Plexippus ligo C. Koch. Die Arachn., xill, p. 107, fig. 1168, 1169.
Salticus vaillantii Lucas. Expl. de l'Algeria. Zool. r, p. 136.
Attus africanus Vinson. Ar. d' lles d.l. Reunion, etc., p. 52.
Euophrys delibuta L. Koch. Verh. d. z. b. Ges. Wien, 1865, p. 874.
Hasarius Paykullii Simon. Arachn. d. France, iII, p. 81.
Menemerus Paykullii Thorell. Studisui Ragni Malesi, etc., Ini, p. 501.
Menemerus Paykillii Koch in Keyserling Die Arachn. Aust., p. 1461.

HOMALATTUS.

White. Descr. of Araclnn. Ann. and Mag. Nat. Hist., vini, p. 476. 1841.
1848. Rhanis. C. Koch. Die Arachn., xiv, p. 86.
1869. Rhene. Thorell. On Europ. Spid.
1877. Homalattus Thorell. Ragni Malesi, etc., I, p. 289.
1879. Homalattus L. Koch. Die Arachn., Anstral., p. 1083.
1880. Homalattus Karsch. Zeitschr. f. ges. Naturwiss., LIII, p. 396.
1885. Homalattus Peckham. Genera Fam. Att., Wis., Ac. Sc., p. 281.
1888. Peckham. Att. of N. A., p. 85.
H. cyaneus Hentz (dthns). Journ. Bost. Soc. Nat. Hist., v, p. 365. Id., Spid. U. S., ed. Burgess, p. 69, pl. 9, fig. 13. Nla., Ga., Nebr.
———Peckham. Att. of N. A., p. 86, pl. 1, fig. 64.
F. septentrionalis Keyserling. N. Spinn. a. Am., vi. Ver, d. z. b. Ges. Wien, 1884, p. 515, pl. 13, fig. 19. Mass.

BALLUS

C. Koch. Uebers d. Arachn. Syst., v, p. 68. 1850.
1869. Thorell. On Europ. Spid., p. 212.
1885. Peckham. Genera Fam. Att. Wis. Ac., p. 286.
B. youngii Peckham. Att. of N. A., p. 87, pl. 1, fig. 66. Pa.

NEON.

Simon. Arachn. d. France, III, p. 208. 1876.
1885. Peckham. Genera Att. Wis. Ac. Sc., etc., p. 282.
N. nellii Peckham. Att. of N. A., p. 88, pls. 1, 6, fig. 65. Pa., Canada.

ZYGOBALLUS

Peckham. Proc. Nat. Hist. Soc. Wis., p. 81. 1885.
Id., Att. of N. A., 1888.
Z. bettina Peckham. Att. of N. A., p. 89, pls. 1, 6, fig. 68. Wis., Mo, Ga., Fla.
Z. sexpunctatus Hentz (Attus). Jourv. Bost. Soc. Nat. Hist., v, p. 202. Id.,

Spid. U. S., ed. Burgess, p. 54, pl. 7, fig. 14. N. C., Ga., Fla.
——Peckham. Att. of N. A., p. 89, pls. 1, 6, fig. 67.

AGOBARDUS.

Keyserling. N. Spinn. a. Am. Verh, d. z. b. Ges. Wien, p. 519. 1884.
1885. Peckham. Genera Att. Wis. Ac. Sc., etc., p. 338.
A. anormalis Kesserling. N. Spiun. a. Am., vi. Verh. d. z. b. Ges. Wien, 1884, p. 519, pl. 13, fig. 21. U. S.
———Peckham. Att. of N. A., p. 90, pls. 1, 6, fig. 74.

ZENODORUS.

Peckham. Genera Att. Wis. Ac. Sc., ete., p. 297. 1885.
Ephippus Thorell. Studi sui Ragni Malesi, III, p. 643.
Z. americanus Keyserling (Ephippus) N. Spinn. a. Am., vı. Verh. d. z. 〕. Ges. Wien, 1884, p. 506, pl. 13, fig. 13. Utah.

ERG:ANE.

Keyserling. Die Arachn. Austral., p. 1260. 1881.
1885. Peckham. Genera Att. Wis. Ac. Sc, etc., p. 315.
E. tæniata Keyserliug. N. Spinn. a. Am., VI. Verh. d. z. b. Ges. Wien, 1884, p. 507, pl. 13, fig. 14. N. A.

PELLENES.

Simon. Arachn. d. France, III, p. 90. 1876.
1885. Peckham. Gen. Att. Wis. Ac. Sc., etc., p. 314.
P. nigriceps Keyserling = Habrosestum splendens.

ATTUS.

Walck. Tab. 1, d. Arachn., p. 22 ad part. 1805.
Attus Peckham. Gen. of Fam. Att., Wis, Ac. Sc., 1885, p. 32\%.
Attus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 198 ad part.
Attus Hentz. Spid. U. S., ed Burgess, pp. 11, 49 ad part.
A. aestivalis Peckbam $=$ Dendryphantes capitatus.
A. agrestis Peckham $=$ Plexippus puerperus .
A. alboimaculatus Peckham $=$ Dendryphantes alboimmaculatus.
A. ambesas Walck. Abbot Ga. Spid. Ins. Apt., I, p. 452. Ga.
A. ambiguus Walck. Ibid., p. 468. Ga.

Proc. N. M. $89-37$
A. arizonensis Peckham $=$ Phidippus arizonensis.
A. aspergatus Walck. Abbot Ga. Spid. Inst. Apt., I, p. 467. Ga.
A. attentus Walck. Ibid., p. 437. Ga.
A. audax Hentz $=$ Phidipus morsitans.
A. ausatus Hentz = Harbrocestum auratum.
d. auridens Bosc. $=$ contemplator Walck.

1. binus Hentz = Menemerus Paykulli.
A. brendellii Giehel. Spimn. a Illinois. Zeitschr. f. Ges. Naturwiss., xxxni, p. 249. III.
A. cancroides Walck. = Abbot Ga. Spid. Ins. Apt., I, p. 447. Ga.
A. canonicus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 365. Id., Spid. U. S., ed. Burgess, p. 70, pl. 9, lig. 14. Ala.
A. canosus Walck. Abbot Ga. Spid. Ins. Apt., r, p. 451. Ga.
A. capitatus $\mathrm{Hentz}=$ Dendryphantes capitatus.
A. cardinnalis Hentz $=$ Phidippus cardinalis.
A. castaneus Hentz $=$ Phidippus rufus.
A. cautus Peckham. Att. of N. A., p. 93. Mexico.
A. ceruleus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 448. Ga.
A. chrysis Walek. $=$ Philcous chrysis.
A. cinereus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 440. Ga.
A. clandistinus Walck. Ibid., p. 440. Ga.
A. clavatus Walck, Ibid., p. 435. Ga.
A. coecatus Hentz $=$ Habrocestum coecatum.
A. contemplator Walck. Abbot Ga. Spid. Ins. Apt., r, p. 457. Ga., Ill. auridens Bosc. Mss. in Walck. Ibid. auridens Giebel. Spinn. a. Illinois. Zeitschr. f. Ges. Naturwiss., xxxıri, p. 248.
A. coronatus Hentz $=$ Habrocestum coronatum.
A. cristatus Hentz $=$ Habrocestum cristatum.
A. cuntator Walck. Abbot Ga. Spid. Ins. Apt., I, p. 433. Ga.
A. cyaneus Hentz $=$ Homalattus cyaneus.
A. dissimilator Walck. Abbot Ga. Spid. Ins. Apt., I, p. 453. Ga.
A. divisus Walck. Ibid., p. 443. Ga.
A. elegans Hentz $=$ Dendryphantes elegans.
A. excubitor Walck. Abbot Ga. Spid. Ins. Apt., r, p. 436. Ga.
A. explorator Walck. Ibid., p. 451. Ga.
A. falcarius Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 352. Id., Spid. U. S., ed. Burgess, p. 54, pl. 8, fig. 1. Ala.
A. familiaris Hentz = Marptusa familiaris.
A. fasciolatus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 356. Id., Spid. U. S., ed. Burgess, p. 60, pl. 8, fig. 11. S. C., Mass.
A. flavus Peckham. Deser. of Att. of U. S., p. 9, pl. I, fig. 6. Pa.
A. formosus Peckham $=$ Phileus rimator .
A. fraudulentus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 442. Ga.
A. furtivus Walck. Ibid., p. 453. Ga.
d. galathea Walck. = Phidippus galathea.
A. gerbellus Walck. Ibid., p. 435. Ga.
A. gracilis Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 359. Id., Spid. U. S., ed. Burgess, p. 63, pl. 8, fig. 20. Ala.
A. hebes Hentz. Ibid., p. 358. Id., ibid., p. 62, pl. 8, fig. 16. N. C., Mass.
A. hentzii Marx (Note 33). Ala., Mass., Ohio.
leopardus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 359. Id., Spid. U. S., ed. Burgess, p. 63, pl. 8, fig. 21.
A. hoyi Peckham = Hasarius hoyi.
A. ictaricús Walck. Abbot Ga. Spid. Ins. Apt. I, p. 452. Ga.
A. imperialis Peckham. Att. of N. A., p. 44, pl. 3, fig. 31. Cal.
A. inclemens Walck. Abbot Ga. Spid. Ins. Apt., I, p. 465. Ga.
A. infectus Walck. Ibid., p. 468. Ga.
A. inquies Walck. Ibid., p. 438. Ga.
A. insidiosus Walck. Ibid., p. 440. Ga.
A. johnsonii Peckham = Phidippus johnsonii.
A. insolens Hentz = Phidippus insolens.
A. investigator Walck. Abbot Ga. Spid. Ins. Apt., I, p. 441. Ga.
A. iris Walck $=$ Philcuus chrysis.
A. irroratus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 466. Ga.
A. lentus Walck. Ibid., p. 466. Ga.
A. leopardus Walck. Ibid., p. 457. Ga.
A. leopardus (Note 34) Hentz = Hentzii Marx.
A. locustoides Walck. Bose. Ins. Apt., I, p, 434.
A. magus Walck. Ibid., p. 453. Ga.
A. mannii Peckham $=$ Menemerus melanognathus.
A. marginatus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 466. Ga.
A. McCookii Peckham = Phidippus McCookii.
A. milbertii Walck. Abbot Ga. Spid. Ins. Apt., x, p. 433. Ga.
A. militaris Hentz $=$ Phileus militaris.
A. miniatus Peckham $=$ Phidippus miniatus.
A. mitratus Hentz $=$ Jocus mitratus.
A. morigerus Hentz $=$ Icius mitratus.
A. morsitans Walck $=$ Phidippus morsitans.
A. multicolor Hentz = Dendryphantes multicolor.
A. mutlivagus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 438. Ga.
A. multivagus (Note 35) Hentz $=$ vagabundus Marx.
A. mystaceus Hentz $=$ Phidippus galathea .
A. niger Hentz $=$ Astia vittata.
A. nubilus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 358. Id., Spid. U. S., ed. Burgess, p. 61, pl. 8, fig. 15. Ala.
A. nuttallii Hentz. Ibid., p. 352. Id., ibid., p. 65, pl. 8, fig. 4. Mass., D. C., Va.
A. octavus Hentz = Eris octavus.
A. octopunctatus Peckham = Phidippus octopunctatus.
A. opifex $\mathrm{McCook}=$ Phidippus opifex.
A. oppositus Walck. Busc. Ins. Apt., I, p. 435. Carolina.
A. otiosus Hentz $=$ Phidippus otiosus.
A. palustris Peckham. Descr. of Att. of U. S., p. $25 . \quad I d .$, Att. of N. A., p. 43, pls. 1, 3, fig. 30. Wis., Mich.
A. parvus Hentz $=$ Dendryphantes capitatus.
A. peregrinus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 445. Ga.
A. peregrinus $\operatorname{Peckham}=$ Habrocestum peregrinum .
A. petulans Marx (Note 36).
protervus Walck. Ins. Apt., I, p. 465. Ga.
A. pileatus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 450. Ga.
A. pilosus Walck. Ibid., p. 447. Ga.
A. pinus Peckham = Hasarius Hoyi.
A. pistaceus Walck. Abbot Ga. Spid. Ins. Apt., r, p. 468. Ga.
A. plumosus Walck. Abbot Ga. Spid. Ins. Apt., r, p. 455. Ga.
A. princeps Peckham $=$ Philcus princeps.
2. podagrosus Hentz $=$ Phidippus insolens.
A. protervus Walck. Abbot Ga. Spia. Ins. Apt., I, p. 443. Ga.
A. protervus (Note 36) Walck = petulans Marx.
A. provocator Walck. Ibid., p. 465. Ga.
A. puerperus Hentz $=$ Plexippus puerperus.
A. pulcher Walck. Abbot Ga. Spid. Ins. Apt., I, p. 439. Ga.
A. pulex Hentz. Saitis pulex.
A. purpurarius Walck. Abbot Ga. Spid. Ins. Apt., I, p. 446. Ga.
A. putnami Peckh. = Plexippus putnami.
A. quadrilineatus Peckham $=$ Icius lineatus.
A. quaternus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 452. Ga.
A. quinquetesseratus Walck. Ibid, p. 448. Ga.
A. rarus Hentz. Journ. Bost. Soc. Nat. Híst., v, p. 358. Id., Spid. U.S., ed. Burgess, p. 62, pl. 8 , fig. 18 . N. C.
A. retiarius Hentz. Ibid., VI, p. 288. Id., ibid., p. 161, pl. 17, fig. 11. Ala.
A. rimator Walck $=$ Philaus rimator.
A. roseus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 362. Id., Spid., U. S., ed. Burgess, p. 66, pl. 9, fig. 4. Mass.
A. rufus Hentz $=$ Phidippus rufus.
A. rupicola Hentz. Ibid., v, p. 357. Id., ibid., p. 61, pl. 8, fig. 14. Ala.
A. rusticolus Peckham. Deser. of Att. of U. S., p. 10, pl. 1, fig. 7. Wis.
A. sagax Walck. Abbot Ga. Spid. Ins. Apt., I, p. 449. Ga.
A. scinicoides Walck. Ibid., p. 440. Ga.
A. scrutator Walck. Ibid., p. 444. Ga.
3. sexpunctatus Hentz $=Z y g o b a l l u s$ sexpunctatus.
A. signatus Walck. Ins. Apt., I, p. 434. U. S.
A. sinister Hentz. Journ. Bost. Soc. Nat. Hist., Vi, p. 288. Id., Spid. U.S., ed. Burgess, p. 161, pl. 17, fig. 12. Ala.
A. smaragdinus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 448. Ga.
A. speculator Walck. Ibid., p. 456. Ga.
A. splendens Peckham. Descr. of Att. of U. S., p. 4, pl. 1, fig. 3. Wis.
A. subflavus Walck. Abbot Ga. Spid. Ins. Apt., I, p. 447. Ga.
A. superciliosus Hentz $=$ Dendryphantes elegans.
A. sylvanus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 364. Id., Spid. U. S., ed. Burgess, p. 68, pl. 9, fig. 10. S. C.
A. taniola Hentz = Cyrba tceniola.
A. tibialis Peckham = Dendryphantes elegans.
A. tridentiger Walck. Abbot Ga. Spid. Ins. Apt., I, p. 449. Ga.
A. tripunctatus Hentz $=$ Phidippus morsitans.
A. undatus Walck. Ins. Apt. 1, p. 463. Pa.
A. vagabundus (Note 35) Marx. Ala.

Attus mullivagus Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 363. Id., Spid. U. S., ed. Burgess, p. 67, pl. 9, fig. 7.
A. viridipes Hentz $=$ Habrocestum viridipes.
A. viridis Walck $=$ Lyssomanes viridis.
A. vittatus Hentz $=$ Astia vittata.

WALA.

Keyserling. N. Spinn. a. Am., vi. Verh. đ̈. z. b. Ges. Wien., p. 516. 1884.
1885. Peckham. Genera Fam. Att. Wis. Acad., p. 339.
W. albovittata Keyserling (Note 37). N. Spiun. a. Am., vi. Verh. d. 2. b. Ges. Wien. 1884, p. 517, pl. 13, fig. 20. N. A.

SYNEMOSYNA.

Hentz. Am. Journ. Sciences and Arts, xxi, p. 108. 1832.
Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 367. Id., Spid. U. S., ed. Burgess, p. 72 .
1879. L. Koch, Die Arachn. Austral., p. 1052.
1880. Karsch. Z. Kenntı. (1. Att. Zeitschr. f. Ges. Naturw., Liri, p. 395.
1885. Peckham. Gen. Att. Wis. Ac. Sc., etc., p. 278.
1888. Peckham. Att. of N. A:, p. 93.
S. ephippiata Hentz $=$ Salticus ephippiatus.
S. formica Hentz. Journ. Bost. Soc. Nat. Hist., v, p, 368. Id., Spid. U. S., ed. Burgess, p. 73, pl. 9, fig. 18. Ala., S. C., Va.
Janus gibberosus C. Koch. Die Arachn., xini, p. 21, fig. 1091.
S. noxiosa Hentz. Journ. Bost. Soc. Nat. Hist., vı, p. 288. Id., Spid. U. S., ed. Burgess, p. 161, pl. 17, fig. 10. Ala.
S. picata Hentz = Synageles picata.
S. scorpiona Hentz $=$ Synageles scorpiona.

SYNAGELES.

Simon. Arachn. d. France, iif, p. 14. 1876.
1885. Peckham. Gen. Att. Wis. Ac. Sc., etc., p. 275.
S. picata Hentz (Sunemnsyma). Journ. Bost. Soc. Nat. Hist., v. p. 37̃0. Id., Spid. U. S., ed. Burgess, n. 75, pl. 9, fig. 21.
——Peckham. Att. of N. A., p. 94, pl. 6, fig. 71.
S. scorpiona Hent\% (Synemosynu). Journ. Bost. Soc. Nat. Hist., v, p. 369. Id., Spid. U. S., ed. Burgess, p. 74, pl. 9, fig. 19.
—— Peckham. Att. of N. A., p. 95, pl. 6, tig. 72.

SALTICUS.

Latreille. Nouv. Dict. d'Hist. Nat., xxiv, p. 135. 1804.
1846. Toxeus C. Koch. Die Arachn., xiur, p. 19.
1869. Pyroderus Simon. Monogr. d'Att., p. 248.
1880. Toxeus Karsch. Z. Kenntn. d. Attidæ. Zeitschr. f. ges. Naturwiss., Liri, pp. 393, 394.
1885. Salticus Peckham. Genera Att. Wis. Ac. Sc., etc., p. 274.
S. albocinctus C. Koch = ephippiatus.
S. ephippiatus Hentz (Symemosyna). Journ. Bost. Soc. Nat. Hist., v, p. 369. Id., Spid. U. S., ed. Burgess, p. 74, pl. 9, fig. 20. Pa., N. Y., Ala.
albocinctus C. Koch. Die Arachn., Xiri, p. 36, fig. 1105.
S. borealis Blackw. Spid. fr. Canada. Ann. Mag. of Nat. Hist., Xvir, p. 35.
S. decorus Blackw. Ibid., p. 34.
S. fuligineus Blackw. Ibid., p. 36.
S. sundevallii Blaokw. Ibid., p. 37.
S. scenicus (Latr.) = Epeblimum scenicum.

MYRMECIA Walck.

M. caliginosa Walck. Abbot Ga. Spid. Ins. Apt., I, p. 388. Ga.
M. Iunata Walck. Ibid., p. 387. Ga.
M. nigra Walck. Ibid., p. 386. Ga.
M. rubra Walck. Ibid., p. 387.

JANUS C. Koch.
J. gibberosus C. Koch = Synemosyna formica.

Subfamily Lyssomanine.

LYSSOMANES.

Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 198. 1845.
1875. Hentz. Spid. U. S., ed. Burgess, p. 48.
1885. Peckham. Genera, Att. Wis. Ac. Sc., etc., p. 333.
1888. Peckham. Att. of N. A., p. 97.
1888. Peckam and Wheeler. Spid, subfamily Lyssomance. Wis. Ac. Sc., etc., p. 225.
L. viridis Walck. (1ttus). Abbot Ga. Spid. Ins. Apt., I, p. 469. Ga., Ala., Miss., Fla.
——Hentz. Journ. Bost. Soc. Nat. Hist., v, p. 198. Id., Spid. U. S., ed. Burgess, p. 49, pl. 17, fig. 3.
——Peckham. Spid. subfamily Lyssomanc. Wis. Ac. Sc., etc., p. 228, pl. 11, fig. 3, pl. 12, fig. 6.

LIST OF FAMILIES

Page. Page.
LYCOSIDE 560
OXYOPIDA 566
PHOLCIDE 505
PODOPHTHALMID.E 567
PRODILOMID.E 518
SCYTODIDE 504
SPARASSID.E 5.59
TETRAGNATHIDE 551
IHERAPHOSIDE 493
THERIDIID.E 518
THOMISID.E 554
ULOBORIDE 553
UROC'TEIDA 510

ALPHABETICAL LIST OF GENERA.

Achea Cambridge, Proceedings London Zool. Soc, p. 428, 1882, Therididere 521
Page.Acrosoma Perty, Delect. anim. artic. Fasc. III, 1834, Eperride
Actinopus Perty, Delect. anim. artic. Fasc. III, 1834, Theraphoside539
Admestina Peckham, Attidæ of North America, p. 78, 1888, Attide 575
Agalena Walckenaer, Tableau des Aran., p. 51, 1805, Agalenidce 515
Agobardus Keyserling, N. Sp. a. Am., VI, Verh. d. z.-b. Ges. Wien, p. 519, 1884, Attidoe 577
Agroeca Westring, Araneæ Suecicæ, p. 311, 1861, Olubionidce 514
Amaurobius C. Koch, Uebers d. Arachn. Syst., p. 15, 1837, Dictynida 510
Antronietus Ausserer, Beitr. z. Kenntn. d. Territel., p. 136, 1871, Theraphoside 493
Anyphena Sundev. Svensk. Spindi. Bescr., Vet. Akad. Handl., p. 125, 1831, Clubionide 511
Antrobia Tellkampf, Beschr. e. n. in d. Mam. H. aufgef. Gattung, Archiv, 1, 1844, Theridiade 531
Argiope Sar. \& Aud., Descr. de l'Egypte, XXII, p. 328, 1825-'27, Epeiridae 540
Argyrodes Simon, Hist. Nat. d'Araign., p. 253, 1861, Theridiidce. 523
Argyroepeira Emerton, N. Engl. Epeir. Trans. Conn. Ac., VI, p. 331, 1884, Epeiride 550
Ariadne Sav. \& Aud., Descr. de l'Egypte, XXII, p. 308, 1825-'27, Dysderidae 504
Ariamnes Thorell, On Europ. Spiders, p. 37, 1869, Theridiidce 523
Asagena Sundev., Conspect. Arachn., p. 19, 1833, Theridiodoe 524
Astia L. Koch, Die Arachn. Australitns, p. 1152, 1879, Attidee 573
Atrus Walckenaer, Tableau des Araneides., p. 22, 1805, Attidee 577
Atypoides Cambridge, Theraphoside 502
Atypus Latreille, Nouv. Diction. d'Hist. Nat., p. 133, 1804, Calommatidee. 493
Aulonia C. Koch, Die Arachniden, XIV, p. 97, 1848, Lycosidae 565
Ballus C. Koch, Uebers d. Arachn. Systems, V, p. 68, 1850, Attidee 576
Bellinda Keyserling, Die Spinn. Am., II, Theridiidæ I, p. 216, 1884, Theridiidce 524
Brachybothrium Simon, Bull. Soc. Zool., IX, p. 313, 188t, Theraphosidee 502
Carepalxis L. Koch, Die Arachniden Australiens, p. 123, Epeirida 512
Catadysag Hentz, Journ. Bost. Soc. Nat. Hist., VI, p. 287, 1850, Catadysidee 515
Cercidia Thorell, On Europ. Spiders, p. 58, 1869, Epeiridce 540
Chiracanthum C. Koch, Die Arachniden, VI, p. 9, 1839, Clubionide 512
Chlosterochilus Ausserer, Beitr. z. Kenntn. d. Territel., p. 122, 1871, Theraphosidce 500
Chrysso Cambridge, Proc. Lond. Zool. Soc., p. 429, 1882, Theridiida 522.
Page.
('icurina Menge, Preuss. Spinnen, p. 271, 1860, A galenidce 516
Clubiona Latreille, Nouv. Diction. d'Hist. Nat., XXIV, p. 134, 180!, Clubionidoe 511
Calotes Blackwall, Transact. Linnean. Soc., XV LII, p. IV, 1841, A galenidce. 517
Coleosoma Cambridge, Proc. Lond. Zool. Soc., p. 426, 1882. Theridiida. 521
Corlarachine Thorel, On Europ. Spiders, p. 186, 1869, Thomiside 555
Crustulisa Menge Preuss, Spinnen, p. 168, 1866, Theridiidce. 526
Cteniza Latreille Hist. Nat. du Rèzne anim., p. 215, 18:25, Theraphosidee 502
Ctenus Walckenaer, Tableau d'Aran., p. 16, 1805, Ctenidoe 567
Cybeus L. Koch, Die Arachn. Gatt. Amanrobins, Cœlotes \& Cybæus, 1868, Agalenidor 517
Crclocosma Ausserer, Beitr. z. Kenntn, d. Territel., p. i41, 1871, Theraphosidee 501
Cyclosa Menge Preuss. Spinn., p. 73, 1866, Epeirida 549
Cyrba Simon, Arachn. de France, III, p. 165, 1876, A ttidoe 574
Cirtarachne Thorell, Eugenies Resa. Araneæ novæ minusve cog., p. 10, 1868, Epeiridce 551
Crrtophora Simon, Hist. nat. d. Araign., p. 262, 1864, Epeiridce 519
Cytea Keyserling, Die Arachn. Australiens, p. 1380, 1882, Attidee 574
Dendryphantes C. Koch, Uebers. d. Arachn. Systems, I, p. 31, 1837, Attida 570
Diea Thorell, On Europ. Spiders, p. 18t, 1869, Thomiside 556
Dictyna Sunder. Conspect. Arachn., p. 16, 1833, Dictynidee 509
Dinopis McLeay, Ann. and Mag. of Nat. Hist., II, p. 9, 1839, Dinopider. 518
Dipgna Thorell, On Europ. Spiders, p. 91, 1869, Theridiida 526
Dolomenes Latreille, Nouv. Diction. d'Hist. Nat., XXIV, p. 135, 1805, Lycosidce 566
Drassus Walckenaer, Tableau d'Aran., p. 45, 1805, Drasside 506
Drsdera Latreille, Nouv. Diction. d'Hist. Nat., XXIV, p. 134, 180t, Dysderidee 504
Ebo Keyserling, N. Sp. a. Am. V. Verh. d. z. bot. Ges. Wien, p. 678, 1883, Thomisidce 558
Epeira Walckenaer Tableau d'Aran., p, 53, 1805, Epeiridce 542
Epiblemum Hentz, Am. Journ. of Science and Arts, XXI, p. 108, 1832, Attidce 574
Episinus Latreille, Gen. Crust. et Ins. IV, p. 371, 1809, Theridiidace 524
Ergane Keyserling, Die Arachn. Australiens, p. 1260, 1881, Attidce. 577
Erigone Sav. \& Aud., Descr. de l'Egypte, XXII, p. 319, 1825-'27, Theridiidce. 532
Eris C. Koch, Die Arachniden, XIII, p. 189, 1846, Attidce 572
Ero C. Koch, Uebers. d. Arachn. Systeras, I, p. 8, 1837, Theridiidce 525
Eucta Simon, Arachn. de France, V, p. 5, 1881, Tetragnathidee 552
Eugnatha Sav. \& Aud. Descr. de l'Egypte, XXII, 1825-'27, Tetragnathidee 553
Eurroris Menge Preuss. Spinnen., p. 174, 1866, Theridiidee 526
Eurfpelsa C. Koch, Uebers. d. Arachn. Systems, V, p. 73, 1850, Theraphosidee 502
Filistata Latreille, Considerat. d. genres sur l'ordre nat., etc., p. 121, 1810, Filistatidce. 503
Frontina Simon, Arachn. de France, V, p. 206, 1881, Theridiida 530
Gasteracantila Latreille, Cours d'Entomologie, p. 530, 1831, Epeirida 539
Gaucelmus Keyserling, Die Spinn. Amerika, II, Theridiidæ, I, p. 99, 1884, Theridiadee. 521
Gea C. Koch, Die Arachniden, X, p. 101, Epeiridce. 541
Gxafhosa Latreille, Nouv. Diction d'Hist. Natur., XXIV, p. 134, 1804, Drassidce 508
Habrocestum Simon, Arrachn. de France, III, p. 136, 1876, Attidoe 572
Hahnia C. Koch, Die Arachniden, VIII, p. 61, 1841, Agalenidee 517
Hamataliva Kejserling, N. Sp. a. Am., VII, Verb. d. z. b. Ges. Wien, p.457, 1887, Agalenidee 517
Hasarius Simon, Arachn. de France, III, p. 77, 1876. Attidoe. 572
Herpyllus Hentz, Journ. Bost. Soc. Nat. Hist., V, p. 454, 1847, Drassidoe 508
HeteroponA Latreille, Nouv. Diction. d'Hist. Nat., XXIV, p. 135, 104, Sparassidce 560
Hexura Simon, Bull. Lond. Zool. Soc. p354, 1883, Theraphoridce 502
Hildbolda Keyserling, Die Spinn. Amerikas, II, Therididae, I, p. 57, 1884, Theridiidee 523
Hilee Keyserling, N. Sp. a. Am., VII, Verh. d. z. b. Ges. Wien, p. 444, 1887, Olubionide 513
Homalattus White, Descr. of Arachn., etc., Ann. \& Mag. Nat. Hist., VII, p. 476, 1841, Attide 576
Hyctia Simon, Arachu. de France, III, p. 18, 1876, Attidce. 575Paze.
Hypocullus Mars, Entom. Americana, IV, p. 160, 1830, Hypochilide. 5403
Hrptiotes Walckenaer, Mém. s. une nouv. clas ific. d'Aran., p. 438, 1833, Uloboridce. 553
Ictes Simon, Arachn. de France, III, p. 5t, 1nit, fttider. 5.1
Juyts James C. Koch 551
Katadysas, vido Catadysas.
Labulla Simon, Arachn. de France, V, p. 261, 1881, Theridiide 530
Larinia Simon, Arachn. de France, I, p. 115, 1874, Epeiride 550
Lathrodectus Walckenaer, Tableau d'A ran., p. 81, 1805, Therididice. 522
Linyphia Latreille, Nouv. Diction. d'Hist. Nat., XXIV, p. 134, 1804, Therididde 526
Lithyphantes Thorell, on European Spiders, p. 94, 1869, Theridiidce 52
Loxosceles Heineken \& Lowe, Descr. of Aran. Zool. Journ.. V, p. 321, 1831, Scytodider 505
Licosa Latreille, Nour. Diction. d'Hist. Nat., XXIV, p. 135, 1804, Lycosidoe 561
Lyssomanes Hentz, Jourr. Bost. Soc. Nat. Hist., V, p. 198, 1845, Attidee. 582
Madognatifa Ausserer, Beitr. z. Kenntn. d. Territel., p. 143, 1871, Theraphosidce 501
Mevia C. Koch, Uebers, d. Arachn. Systems., V, p. 50, 1850, Attidce 573
Mahadeva Keyserling, Die Spinnen Amerikas, IV, Epeiridae, 1890, Epeiridee 541
Marptusa Thorell, Studi Ragni Malesi, etc., I, p. 221, 1877, Attidee 575
Mexemerus Simon, Monogr. des Attides de l'Europe, p. 196, 1869, Attidec. 5.5
Mefa C. Koch, Herr-Schaeffer Deutschl. Insekten, p. 134, 1836, Epeiridoe. 550
Micaria Westring, Foerteckn., etc., p, 46, 1851, Drassidce 506
Micrommata Hentz. 560
Mimetus Hentz, Am. Journ, of Science and Arts, XXI, p. 104, 1832, Theridiida 524
Misumena Latreille, Nouv. Diction, d'Hist. Nat., XXIV, p. 135, 1804, Thomisidoe 556
Mygale Walckenaer, Tableau d'Aran, p. 5, 1805, Theraphosidce Myrmecta Walck 581
Myrmeklaphla Atkinson, Entom. Americana, II, p. 131, 1836, Theraphosida. 501
Neon Simon, Arachn. de France, III, p. 203, 1876. dttidee 576
Nephila Leach, Zoölogical Miscellany, II, 1815, Epeiridoe 551
Nesticus Thorell, On Europ. Spid., p. 88, 1869, Theritlider 521
Nidivalvata Atkinson, Entom. Americana; II, p. 129, 1886, Theraphoside 501
Octale Sav. \& Aud., Descr. de l'Egypt, XXII, p. 372, 1825-'27, Lycosida. 565
Olios Walckenaer, Ins. Aptères, I, p. 536, 1837, Sparasside 560
Ordgarius Keyserling, Die Arachn. Australiens, II, p. 114, 1886, Epsiridce. 541
Oxyopes Latreille, Nouv. Diction. d'Hist. Nat, XXIV, p. 135, 1804, Oxyopidte. 567
Oxyptila Simon, Hist. Nat. d'Araign., p. 440, 1864, Thomiside 655
Pachignatha Sundev., Gen. Aran. Suec., p. 16, 1833, Tetragnathide 553
Pachylomerus dusserer, Beitr. z. Kenutn. d. Territel., p. 145, 1871, Theraphosider 501
Pachyloscelis Lucas, Ann. Soc. Ent. de France, III, p. 361, 1831, Theraphosidce 500
Pardosa C. Koch, Die Arachniden, XIV, p. 100, 1848, Lycosidce 595
Pedanostethus Simon, Arachn. de Fıance, V, p. 195, 1884, Therididee 531
Pellexes Simon, Arachn. de France, III, p. 90, 1876, Attidee 577
Peucetia Thorell, On Europ. Spiders, 196, 1869, Oxyopidce 566
Phanetta Keyserling, Die Spinn. Amerikas, II, Theridiidæ, II, p. 124, 1886, Theridïdee 531
Phidirpus C. Koch, Uebers. d. Arachn. Systems, V, p. 53, 1850, Attidre 568
Phileus Thorell, On Europ. Spiders, p. 217, 1860, Attidee 5711
Philodromus Walckenaer, Faune de France, p. 86, 1825, Thomiside 558
Pholcomma Thorell, On Europ. Spiders, p. 98, 1869, Theridiidee 532
Pholcus Walckenaer, Tablean d'Aran., p. 80, 1805, Pholcidce 505
Phrurolithus C. Koch, Die Arachn., VI ad. part, p. 110, 1839, Clubionidee 514
Pirata Sundev., Conspect. A rachn., p. 24, 1833, Lycosidce. 564
Plexippus C. Koch, Uebers d. Arachn. Systems, V, p. 51, 1850, dttidce 570
PcectiochroA Westring, Bemerk. u. d. Arach. Abh., V, Thorell., 1874, Drassida 50 s
Page.
Pronidomus Hentz, Journ. Bost. Soc. Nat. Hist., V, p. 461, 1847, Prodidomidoe 518
Prostheclina Keyserling, Die Arachn. Australiens, p. 1368, 1882, Attidoe. 573
Prosthesima L. Kock, Abh, d. Nat. f. Ges. Nuernberg, V, p. 13, 1872, Drassidee 507
Pseudicius Simon, Faune. Arachn. de l'Asie merid., Bull. Soc. Ent., Fr., 1885, Attidce 371
Pythonissa C. Koch, Uebers, 1. Arachn. Systems, I, p. 13, 1837, Drassidce 507
Runcinia Simon, Arachn. de France, II, p. 254, 1875, Thomisidee 556
Sadala Peckham, Attidæ of North America, p. 52, 1888, Attidee 571
Saitis Simon, Arachn. de France, III, p. 168, 1876, Attidee 573
Salticus Latreille, Nouv. Diction. d'Hist. Nat., XXIV, p. 135, 1804, Attida 581
Satilatlas Keyserling, Die Spinn. Amerikas, II, Theridiidæ, II, p. 127, 1886, Theridiĩde 531
Scytodes Latreille, Nouv. Diction. d'Hist. Nat., XXIV, p. 13£, 1804, Seytodidoe 504
Selenops Latreille, Nouv. Diction. d'Hist. Nat., XXX, 1819, Sparassidce. 559
Singa U. Koch, Die Arachniden, III, p. 42, 1836, Epeiridre. 549
Spermophora Hentz, Am. Journ. of Science and Arts, XLI, p. 116, 1841, Pholcidce 505
Spintharus Hentz, Journ. Bost. Soc. Nat. Hist., VI, p. 156, 1850, Theridice 523
Steatoda Sundev., Conspect. Arachn., p. 16, 1833, Theridiidce 521
Synageles Simon, Arachn. de France, III, p.14, 1876,Attidæ 586
Synema Simon, Hist. Nat. d'Araignees, p. 431, 1864, Thomisidec. 555.
Synemosyna Hentz, Am. Journ, of Science and Arts, XXI, p. 108, 1832, Attide 580
Tarentula Sundev., Conspect. Arachn., p. 24, 1833, Lycosidee 563
Tegenaria Latreille, Nouv. Diction, d'Hist., Nat., XXIV, p. 134, 1804, Agalenidce 516
Teminius Keyserling, N. Sp. a. Am., VII, Verh. d. z. b. Ges. Wien, p. 421, 1887, Drassidce. 507
Tetragnatha Latreille, Nouv. Dictionaire d'Hist. Nat, XXIV, p. 135, 1804, Tetragnathidee 551
Tetragonophthalma Karsch, Zeitsch. f. ges. Naturwiss., LI, p. 324, 1878, Podophthalmide 567
Teutana Simon, Arachn. de France, V, p. 161, 1881, Theri Ziidee 521
Thalamia Hentz, Journ. Bost. Soc. Nat. Hist., VI, p. 35, 1850, Urocteidee. 510
Thanatus C. Koch, Uebersicht d. Arachn. Systems, I, p. 28, 1837, Thomisidee 558
Thargalia Karsch, Zeitschr. f. ges. Naturw., LIII, p. 374, 2880, Clubionidoe. 513
Theragretes Ausserer, Beitr. z. kenntn. d. Territel., p.142, 1871, Theraphosidoe 500
Theridiosoma Cambridge, Ann. \& Mag. Nat. Hist., p. 193, 1879, Epeiridce. 551
Theridium Walckenaer, Tableau d'Aran, p. 72, 1805, Theridiöde 518
Theridula Emerton, N. Engl. Therididæ Trans. Conu. Ac., VI, p. 25, 1882, Theridiidoe. 525
Thomisu's Walckenaer, Tableau d'Aran.,p. 28, 1805, Thomiside. 557
Tibellus Simon, Arachn. de France, II, p. 307, 1875, Thomisidce. 558
Titanceca Thorell, On Europ. Spiders, p. 124, 1869, Dictynidee 510
Tmarus Simon, Arachn. de France, II, p. 259, 1875, Thomisida 558
Trachelas L. Koch, Die Arachn. fam. d. Drassiden, p. 2, 1866, Chubionider 513
Trochosa C. Koch, Die Arachniden, XIV, p. 95, 1848, Lycosidce 564
Ulesanis L. Koch, Die Arachniden Australiens, p. 242, 1872, Theridiidce 525
Uloborus Latreille, Gen. Crust. et Insect., I, p. 109, 1806, Oloboridoe 554
Wala Keyserling, N.Sp. a. Am., VI, Verh. d. z. b. Ges. Wien, p. 516, 1884, Attidce. 580
Willibaldia Keyserling, Die. Spinn. Amerikas, II, Theridiidæ, II, p. 122, 1886, Theridiidoe 531
Xysticus C. Koch, Herr-Schæffers Deutschl. Inseckten, p. 129, 16, 17, 1835, Thomiside. 554
Zenodorus Peckham, Genera Attidæ Proc. Wisc. Acad., p. 297, 1885, Attide 577
Zilla C. Koch, Herr-Schæffers Deutschl.Inseckten, p. 125, 1835, Epeiridce 550
Zygoballus Peckham, Proc. of the Nat. Hist. Soc. of Wisconsin, p. 81, 1885, Attıdee 57%

ALPIIABETICAL LIST OF SYNONYMS OF GENERA.

Arctosa C. Koch=Trochosa. Argus Walck. = Dictyna. Avicularia Thorell=Eurspelma. Bathyphantes Menge=Linsphia. Bolyphantes Menge $=$ Linyphia . Caliethera C. Koch=Fpiblemum. Callilopis Westr. = Pythouissa. Castianeira Kerserling=Corinna. Ceratina Menge=Erigoue. Ceratinella Emerton=Erigone. Ceratinopsis Emerton=Erigone. Cerceis Menge $=$ Cercidia. Cinitto Blackw. = I maurobius. Conopistha Karsch=Argyrodes. Cornicularia Menge=Erigone. Cratoscelis Lucas = Pachyloscelis. Ctenium Menge=Pedanostethus. Ctenophora Blackw. = Mimetns. Cyllopoda Hentz $=$ Hyptiotes. Cyrtogaster Keyserl:=Cyrtarachne.
Cyrtonota Simon=Epiblemum.
Dicymbium Menge=Erigone.
Decyphus Menge=Erigone .
Dinognatha White $=$ Tetragnatha.
Diognatha White=Tetragnatha.
Dipiostyla Emerton=Linyphia.
Drapetisca Menge=Linyphia.
Ebæa L. Koch=Gea.
Elaphidium Menge=Erigone.
Ephippus Thorell=Zenodorus.
Ergatis Blackw.=Dietyna.
Eucharia C. Koch=Steatoda.
Geotrecha Emerton=Thargalia.
Gonatium Menge=Erigone.
Gongglidium Menge=Erigone.
Grammonota Emerton = Erigone.
Helophora Menge=Lioyphia.
Janus C. Koch=Srnemosyna.
Lasaeola Simon=Dipœna.
Leptothrix Menge=Erigone.
Leptyphantes Menge $=$ Linyphia.
Lophocarenum Menge=Erigone.
Lophomma Menge=Erignne.
Madognatha Simon=Cteniza.
Marpessa Thorell=Marptusa.
Marpissa Thorell=Marptusa.

Marpissus Simon=Marptusa.
Melanophora C. Koch=Prosthesima.
Metastenus Bertkau=Tibellus.
Micrathena Sund. = Acrosoma.
Micrœpeira Emerton=Theridiosoma.
Microneta Menge $=$ Erigone .
Micryphantes C. K. = Enryopis and Erigone.
Miltia Simon=Prodidomus.
Mithras C. Koch = Hyptiotes.
Nemesia Thorell=Cteniza.
Nerienne Blackw.=Erigone.
Ocypete C. Koch = Heteropoda.
Oletera Walck. =Atypus.
Omosita Simon=Loxosceles.
Omosites Walck.=Loxusceles.
Oophora Hentz=Spermophora.
Operaria Blackw. = Dictyna.
Oroodes Simon=Ulesanis.
Pachydactyilus Menge=Dipœぇa.
Pasithea C. Koch=Peucetia.
Pedina Menge=Linyphia.
Phalops Menge=Erigone.
Phillyra Heutz= Uloborus.
Philoica C. Koch=Tegenaria.
Platyopis Menge=Erigone.
Plectana Walck. =Gasteracantha and Acrosoma.
Potamia C. Koch=Pirata.
Pylarus Hentz=Ariadne.
Pyroderes Simon=Salticus.
Phanis C. Koch=Homalattus.
Rhene Thorell=Homalattus.
Romphea L. Koch = Ariamnes.
Sarotes Sundev. = Heteropoda.
Savignia Blackw. = Erigone.
Sphasus Walck. $=$ Oxyopes.
Spiropalpus Emerton=Erigone.
Stegosoma Cambr. = Ulesanis.
Stemonyphantes Emerton=Linyphia.
Stylophora Menge=Linyphia.
Sudabe Karsch=Ulesanis.
Teratodes C. Koch=Filistata.
Thorellia L. Koch=Saitis.
Tmeticus Menge=Erigone。
Toxeus C. Koch=Salticus.
Veleda Blackw.=Uloborus.
Walckenaera Blackw. $=$ Erigone .

BIBLIOGRAPHY.

Atkinson, G. F. A new Trap-Door Spider. American Naturalist, XX, July, 1886, p. 584.
——A family of young Trap-Door Spiders (Pachylomerus quadrispinosus). Entomologica Americana, II, August, 1886, p 88.

- Descriptions of some new Trap-Door Spiders, their Nests and Food-habits. Entomologica Americana, II, September, 1886, p. 199.
Ausserer, Ant. Die Arachniden Tirols, nach ihrer horizontalen und vertikalen Verbreitung. Verhaudlungen der k. k. zoologisch-botanischen Gesellschaft in Wien, XVII, 1867.
- Neue Rad Spinnen. Verhandl. der k. k. zoologisch-botanischen Gesellschaft in Wien, 1871, p. 815. Beiträge zur Kenntniss der Arachniden-Familie der Territelariæ Thor. (Mygalidæ autor). Verhandlungen der k. k. zoologisch-botanischen Gesellschaft in Wien, 1871. p, 117.
——Zweiter Beitrag zur Kenntniss der Arachniden-Familie der Territelarie Thor. (Mygalidm autor). Verhandlungen der k. k. zoologisch-botanischen Gesellschaft in Wien, März, 1875, p. 125.
 the Lelsivpue．XX11，1si9，p．T．

－（）a the numberaml structure of the mamala employed by spiders in the process of spinning． I2ansuct．of the Limmean Seriety，Vol，XVIlI，p，2．1839．
－－The ditherence in the mumber of Eyes with which the sppiders are provided，propesed as a basis of their distribution into tribes，with desoriptions of newly diseovere I species and the char－ acters of a mow family amt thee new wemers of Spiders．Trans，of the Limnean Society XV゙111，part 4，p．（i）1，1sto．
—＿Soriee of Sphiters capturd by Professor lotfor in Canata，with descriptions by J，Blackwall． Am，ant Mag．of Nat．Hist．，RVII，pp，30，T0，1stb．
－＿Descriptious of six newly discoremd species and charactors of a new genus Arameida．Ann． and Mas．ot Xatural History，Bd serie，vel， 1.
——A history of the Spidets of tirent Ivritain and lreland，－parts，1stil－1stis．
—＿Notice of Spulers captured by Miss Humter in Montreal，Vipper Canada，with deseriptiona sup－ posed to be new to－Irachmolegists．Jan．and Mag．of Matural History， 4 serie，YIII， 1s：1，12．42y．
Camampas，（）．P．Descriptions of ten new species of Spiders lately discorered in Eaglamd．Aun． and Magr．of Natural History，YII，lsil．
—＿Dotes on some Spiders amd soorpions from St．Helena，with descriptions of new species．Pro－ cect．Lomdon Zooloz．Society，18cis．p．ミ42．
——Descriptions of sothe british Spiders new to seience，with a notiee of others，of which some are new，or for the first time reconled as liritish species．Iramsact，of the Linuedn Society， IXVII．13：1．
——General list of the Spiders of P＇alestine amt Syria．＇roceedings Loadon Zoological Society，18T2． On some new genera and speedes of－Irameide．Ibik．，1sī3．
On some new species of Drassidae．1bid．．1sit．
——On some new splecies ot Erigume from North America．Ibiz．，1si4，p．t2s．
On some new species of Erigone from Torth America，II．1bid．．18\％s，p． 393.
O＿On some new species of Arameida，with charactets of two new gemera and some remarks on the families Podophthalmides aud Diuopides，I bid．．，18\％，p，
——On some new amd rare British Spiders，with characters of a mew genus Ana．and Mag．of Nat－ ural History，18－9．n． 193.
——．On some Spilers inom Diwfoundland．Proceed．of the Royal Physieal Society，1E81，p． 112.
 CtEns，C．Svenska Suintlar．Arauez sueciei，17si．
Cablam，F．W．Contribution to the kuomledze of the Arachuida of Kansas．Bulletin of the Wash－ bura Collage，rol．I，No 4．p． 14 b ．
DIS GEEk，Clı．Mémvire pour servir it bisteire des Iusectes，vol．VII，17．s．
Dotaschall．L．Systematisehes Terseichniss der im Kaiserthum Oestreich rorkommemien Spinnen． sitzungsberieht der math．naturmiss．Classe der Kaiserl．Akademie der Wissenschatten zu Wien，ix．185\％．
——Bijuage rot te Kennis der Arachmien van deu Indischen Archipel．Natnur－knndie Tijdscbrift roor Nederlandsch Intie．Neel．NIII，séric（ I）III，1s57．
——weede Biydraze tot de Kennis der Arachniden van den Indischen Archipel．Acta Societatis Scientiarum Indo－Neerlandia．T，1：59．
Dunota，Leon．Deseription de six Araebnites nourelles Ann．géuérales des sciences physiques．Γ ． 1830．
EnEsTos．J．H．Notes on Spiders from Cares in Fentucky，Virginia，and Indiana．American Natur－ alist，rul．IJ，1：75，p．2\％s．
——Descriptions of two new Spiders fom Colorado．Addeatam to Thorell＇s Descriptions of the Iranex．collected in Colorade in 1575 by A．S．Packard．jr．Balletin of the L．S．Geologieal Surres of the Territories，vel．3，Art．NV，p，5：s， 18% ．
——En Enzland spiders of the family Therididax．Transactions of the Connecticnt deademy， vol．VI，1太心～p．p．
——New Eugland Spiders of the family Eperidix．Ibid．，VI，p．205， 1854.
Nem Fngland Spiders of the family Lyeosidee．Ibi．\％．，TI，p，481， 1855.
＿New Eugland Spliders of the family Cinitlonidev．Ibit．，VII，p．443， $1: 85$.
—— Sew England Suiders of the families Drassidx，Amalenida，andi，Dysherida，ibid．，VIII，p．1． 1390.
Fanatoms．T．C．Systema ontoruologica，sistens insectornm classes orlines，gemera，species adiectis sraonymis，locis ulesoriptiouibus et observatiouibus， 175.
Fitce，Asi．Sccoad report in Trumsactions of the New York State Agrieulmal Society，Vol．X， 1855.
——First au？Socopd Report on the Noxions Iusects， 1855 ：Thirteenth Report on the Foxious In－

Fupascis，J．C．Verzeichnias der ihm bekaunten Sehweitzeriachen Ineskten．1－75．
Cibiestabckpr．Van ier Ieeckens ikeise in（）at，Afica，III， 2.
 Vol．XXXIII，1663，p． 218.

Hans，C．W．Dis Arachniden getesu mach der Šatur abogelsidet und besshofiebogh，Vol．I anal If， 1831－1834．
Mpineckes \＆Lowe．Deneriptions of twe species of Arancilise，natives of Madeira，Zoulozical Juurnal，V， 1031.
Hemrz，N．M．On North American Spiders，Silliman＇s American Journal of Seignces ame Arts，XXI， 1832.
－Deseription of an American Spider，constituting a new bubgenns of the Tribe Inssqualits：of Latreille．Ibid．，XLI，\}). 115, 1841.
——Descriptions and figures of the Araneides of the Cnited Staten．Journal of the Buston Socisty of Natural History；Vol．IV，1812；iJid．，Vol．IV，12s3；ibid．，Voi．V， 1815 ；ibid．，Vol．V， 1856；ibid．，Vol．V，1817；ibid．，Vol．VI，1850．
－The Spiders of the United States．A Collection of the Arachonological Writings of Nieclas Mar－ cellus Hentz，M．D．，edited by Edwarl Burgens，with notes aud dencriptiobs by James II． Emerton， 1875.
Karsch，Fr．Exotisch Araneologisches，Zeitschrift fur die qesammes Naturwisachschaft，Yol．LL， III， 1878.
－Verlsaudlungen des Ňaturforschenden Vereinः der Hheinlande，1e79．
West afrikanische Arachniden－Zeitschnift fur die ges Naturwish．，Vol．LII， 12 フ̃3．
－＿Ueber Corinna C．Kock uud ibre Verwamllechalton－árachnologische Elastter，Vilf．Ibid．，Vol． LIII，18e0．
——Zur Keuntniss der Attiden Arachnologisehs Blacterer，Vill Ihid．，Fol．LIII，Ieal．
——Diagnosis Arachn．Japonic，Berliner Eutom．Zeitsehrift，XXV，y．39， 1061.
Kerabblisg，E．Beachreibung neuer und wenig bekannter Arton aus der tamilie der Oribitelae Latr． oder Epeiridss Suadev．，Sitzungshericht der Lais in Drevien，1e95．p．b．5．
———Beitraege zur kenntniss der Orbitelas Latr．，Verhaudl．der k．\＆．zoriogisch－botanischen Gobell－ schaft in Wien，1655，p． 79%.
———elser amerikanische Spinnen－irten der Untet－Orinung Citizradae．Ihid．，1s7\％，p． 699.
－Amerikanische Spiunen－Arten aus den Eamilien der Pholeoidss，Scytorioidss und Dysderaides， Itid．，187t，p． 205.
＿－Spinnen aus Cruguay und einigen andern Gegenden Amerikas．IVid．，18i7．I， 570.
－＿Neue Spinnen aus Atmerika，I．Ibid．，1679，p． 293.
－＿Nene Spinnen aus Amerika，IL．Ifiul．，18si），p． 547.
——Die Spinnen Amerikaz，I，Laterigrada，1Fes）．
——Nene Spinnen aus Amerika，IIL，Verbandl．der k．k．zool－botan．Gesellsch．Wien，lech，p． 299.
－＿Neue Spiunen aus Ameriba，IV．Ilid．，18t2，p． 195.
－Neue Spinnen aus Arnerika，V．Ibid．，18\＆\％，p． 649.
—— Neve Spinnen aus Amerika，V I．Ilid．，1e81，p． 469.
——Die Spinnen Amerikas，II，Theridides，Part I， 1 हैst
——Die Spinnen Ameribas，II，Theridiidss，Part II， 1886.
—— Neue Spinnen aus dmerika，TII，Verbandl．d．k tz zoslog．－lootan，Geacllach．，Wien，1887，p． 421.
Kocy，C．Panzers Deutscblands Iusekteu，contiuued by Herrich Scbasifer，Arachnidsn，Part III， 1829－1814．
＿—＿Eebernicht des Arachniden－Systems，T Parts，183i－1aso．
－Die Arachniden continutd from Hahn＇s work，Vol．III to Tol．XVL 1536－1833．
Focn，Ludw．Bescbreibung neuer Arachniden und Myrispodon，Verbandl d．i．k．zooloz－botan． Gesellsch．，in Wien，1e65．
－Die Arachuiden familie der Drassiden，unfinisbef， 7 parts，1sco－130t．
－Die Aracbniden Gattungen Amaurubius，Coelotes und Cybasus．Abhanil der matorbistoribols． Gesellsch．in Nueruberz． 1263.
——Beitrage zur Kenntaiss der Arachniden Fauna Tirols－Zeitsebrift des Ferdinandeams， 1369.
－Terzeichniss der bei Nuernberg beobachteten Arten．
———Die Arachniden Aubtraliens commenced 1871 cootinued by E．Kerberling aod not get Sig－ ished）．
——Apterolorisehes aus dem frankischen Jura，Ahbandl d naturforachesd Geselloblart Jiuera－ berg，18t2．
Latreille，P．A．Tahlean methodique des Insects，Nour．Dictionaire aliis：oirs Naturelie．1ej2－ 1801.

——Genera Crustaceorum et Insectorusa aecundum ordinem naturalota io fumilias disposita， 1860 － 1269.
——— Considerations qenerales sur lozdre naturel des animaux．composast ies classes des Crastacees， des Arachnides et des Insects， 1819.

Latreille, P. A. Cuvier's le Règne Animal distribue d'apres son orgavisation pour servir de base a l'histoire naturelle des animanx et d'introduction a l'anatomie comparée (Vol. III, Contenant les Crustacees, les Arachnides et les Insects par M. Latreills), 1817.
_...Cours d'Entomologio au l'histoire naturelle des Crustacees, des Arachnides, des Myriapodes et des Insects, etc., 1831.
Lesch. W. E. Zoological Miscellany, being descriptions of new and interesting animals, 1814-1817.
LinNeus, C. Systema naturae sive regna tria naturae systematice proposita per classes, ordines, geneva et species, Ellitio X, reformata, 1758.
——Ibid., Editio XII, reformata, 1767.
Lucas, II. Mémoire sur un nouveau Genre d'Aranéide de l'ordre des Pulmonaires. Ann. de la Société Entomolog. de France, III, 1834.
-- Quelques observations sur le genre Atypus et description d'une espéce nouv. appartenant a ce genre. Ann. de la Société Entomil. de France, Vol. V, 1836.
——Observations sur les Araneides du genre Pachyloscelis et Synonymie de ce genre. Ann. de la Société Entomolog. de France, VI, 1837.

- In Barker- Webb and Berthelot's Histoire Naturelle des Iles. Canaries, Vol. II, Entomologie: A rachnides, Myriapodes et Thysanoures, 1839.
_- In Exploration scientifique de l'Algerio pendant les annees, 1840, '41, 42. Zuologie l'Histoire Naturelle des Animaux articule's, 1849.
Malix, Geo: On some new tube constructing Spiders. Americ. Naturalist, 1881.
- Description of Eurypelma Rileyi from California. Proceedings of the Washington Entomolugical Society, 1887, p. 116.
- Description of Gasteracantha rufospinoso Marx of and ㅇ. Entomologica Americana, II, p. 25.
——On a new and interesting Spider from the United States. Proceedings of the Washington Entomol. Societ5, 1888, Vol I, p. 166.
——On a new and interesting Spider. Entomologica Americana, IV, 1888, p. 160.
- On the importance of the structural characters of Hypochilus in the classification of Spiders. Proceedings Washington Entom. Society, I, 1888, p. 178.
- On a new species of Spider of the Genus Dinopis from the Southern United States. Proceedings of the Academy of Nat. Sciences, Phila., 1889, p. 341.
McCook, H. C. On Webs of new species of Spiders. Proceedings of the Academy of Natural Sciences, Philadelphia, 1876.
——The Basilica Spider and her snare. Ibid., 1878.
Note on two new California Spiders and their nests. Ibid., 1883.
- Note on Cyrtophora bifurca and her Cocoons, a new orbweaving Spider. Ibid., 1887.
-_Descriptise notes of new American species of orbweaving Spiders. Ibid., 1888.
Mexif, A. Preussische Spinnen Schriften der Naturforschenden Gesellschaft in Danzig, also separate, $1866,1867$.
Ohlert, F. Die Araueiden oder echten Spinnen der Provenz Preussen, 1867.
Packard, A.S. The Cave Fauna of North America, with remarks on the anatomy of the brain and origin of the blind species. National Academy of Sciences, Vol. IV, First Memoir.
Pallas. Spicilegia zoologica Fasciculus, IX, with the following title: Spicilegia zoologica quibus novae imprimis et obscurae animalium species inconibus descriptionibus (at que) commen tarüs illustrantur, 1772.
Peckifam, G. W. and Elizabeth G. Descriptions of new or little-known Spiders of the family Attida from various parts of the United States of North America, 1883.
- On the Genera of the family Attidæ, Proceedings of the Wisconsin Academy of Sciences, Arts, and Letters, 1885.
Attida of North America. I bid., 1888.
Peckifam G. W., and Wheeler, Wm. Spiders of the Subfamily Lyssomanæ. Ibid., 1888.
Perty, M. Delectus animalium articulorum, etc., 1833.
Reuss, A. Zoologische Miscellen, Arachniden. Museam Senkenbergianum, Vol. I, 1834.
SAylgix. In Audouin's Deseription de IEgypte, Histoire Naturelle, Zoologie, Arachnides, Vol. XXII. Descriptions et planches par J. C. de Savigny, 1827.
Scupoli, J. A. Entomoloria Can nolica exhibens insecta Carniolia indigena et distributa iugenera, species, varietates, methodo Linneana, 1763.
SCuDder, S. H. The tube-constructing Ground Spider of Nantucket, Psyche, Vol. II, p. 2, 187%.
Simon. E. Histoire naturelle de : Araignées, 1864.
—— Monographie des esperes européennes de la famille des Atticies. Annales de la Société Entomol. de France, 4 Serie, Vol. VIII, 1868-69.
——Descriptions de quelques especes nouvelles de la fam. des Agalenidæ. Comtes Rendus Soc. En. tomologique de Belgique, 1886, No. 70, p. LVI.
_-Sur les Araneides de la famille des Enydes que habitant Marocoetl'Espagne. Revue et Mag. du Zoologie, XXI, 1869.
——Araneides noureaux on pen connus du midi de l'Europe. Mémoire de la Soc. Roçale de Liège, 1871.
_.. Mémoire de la Société Royale de Liège, 1873.
—— Les Arachnides de France, 1874, not jet finisheul.
——Note Synonymique sur le genre Prodidomus Hentz. Compte renitu de la Socíté Entom. de Belgique, CCCII, 1881.
——Note sur les Amaurobius do l'Amerique du Nord. Extrait du Bulletin do la Soc. Zool. de France, 1884.
—— Note sur le Groupe des Mecicobotbria. Bull. d.1. Soc. Zool. de France, 1884.
Sundevall, C.J. Specimen academicum genera Araneidum Sueciw exhibens, 1823.
-Conspectus Arachnidum, 1833.
Taczanowski, L. Les Araneides de la Guyanne Française. Horao Societetis eutomol. Rossiae, VIII, 1872.

Tellkamp. Beschreibung einiger nener, in der Mamuth Hohlo in Kentucky aufgefundener Gattuugen von Gliederthieren. Archiv. fur Naturgesch, X Jahrg., Vol. I, 1844.
Thorefl, T. Recensio critico aranearum suecicarum quas descripserunt Clerkins, Linueus, do Geerus. Nova acta Regiœ Societat. Scient., 1856.
——Fregatten Eugenies Resa omkring jorden. Veteusk. Akad. Mandling, 1868.
On European Spiders, 1869.
_Lemarks on Synonyms of European Spiders, 1870-'73.
——Notice of some Spiders from Labrador. Procee I. Bost. Soc. Nat. His, Vol. XVII, 1875.
——Descriptions of the Aranee collectel in Colorado in 1875 by A. S. Packard, jr. Bulletin of the U. S. Geological Survey of the Territories, Vol, III, Art. XV, 1877, 1. 477.
——Studi sui Ragni Malesi o Pap., 1877.
—— Primo Saggio sui Ragni Birmani. Annali do Mruseo cirico di Genoa, Vol. XXV, 1889.
-_ Stuãi sui Ragni di Amboina.
Treat, Mary. Home Stulies in Nature. Harper's Monthly, April, 1880.
——Argiope riparia varietas multiconcha. American Naturalist, Decomber, 1887.
Villiers, C. de. Caroli Linvexi Entomologia, etc., 1789.
Vinson. A raneides des Iles. de la Reunion, Maurice et Madagascar, 1863.
Walckenaer. Tableau des A raneides, 1805.
-_Faune Française-Arachn. (Araneides de France), 1806.

- Mémoire sur une nouvelle classification des Arachneides. Ann. de la Socícté Entomol. de France. II, 1833.
Walckenaer et Gervais. Histoire naturelle des Insects Apteres, 4 Vol., 1837-47.
Westerisg, N. Förteckning öfver till närrvarande tidkända, etc., 1851.
- Arane as Suecicae descriptae, 1861.

Westwood, J. O. Observations on the species of Trap-Door Spiders. Transactions of the Entomol. Society of London, Vol. II, p. 175, 1841-'43.
White, A. Descriptions of new or little known Arachnide. Ann. and Mag. of Natural History, Vol. VII, 1841.
-_ E. Dieffenbach's Travels in Nerv Zealand. Arachnida, 1813.
Wilder, B. G. Triangle Spider. Popular Science Mouthly, April, 1875.
Workman. Irish Spiders. Belfast Nat. Hist. Society, 1880.

NOTES.

1. Pachylomerus solstitialis.-The only reason I have to infer that solstitialis is the male of caro. linensis is the fact that carolinensis is described as a female, solstitialis as a male-both from the same locality; that the opposite sexes of these two species have not been found and there is nothing in their structural characters to oppose this riew.
2. The old Walckenarian generic denomination Mygale, which comprised all those spiders which are now considered as Territelurice, has gentrally been abandoned and its species have been distributed in their proper genera.

The species of our country, described under this name by various older authors, hare all been assigned their places in modern classification but two : fluviatilis, Hentz, and notasiana, Walck., which have not been observed again. I have to leave these, therefore, under Mygale.
3. Hentz united indiscriminately in his genus Herpyllus all the Drassidce (sensu strictu) and some genera of other families. I was not able to determine all his species and place them in their proper genera, but had to leave four species provisionly under the old namo Herpyllus.
4. I can not understand why Mr. Emerton has resurrected the family Ciniflonide, Blackw. Blackwall has based tliis family upon only one characteristic point, the presence of the Cribellum and Calamistrum, a feature which occured in tho most widely stparated and heterogeneous forms. This family was, therefore, never recognized by any other arachnologists.
5. Thalamia.-This spider I have not seen myself nor read any description of or remarks about it except the little that Hentz had to say. But in my endearor to recognize Hentz's spiders, I have been convinced that Thalamia belongs to the family Uroteidee rather than to any other family; the arrangement of the eyes, the long spinnerets, and the shape of the cephalothorax will justify such opinion.

The structural characters of this spider, however, are such as to separate it from the existing European genera, and I, therefore, let it stand provisionly as a new genus in the family.
6. Clubionidce.-With the same right and for the same reason that the family Agalenidee, Thorell et al., has lately been divided into Dictyniderand Agalerida, the family Drassida ought to be split. It has been acknowledged long ago that this family contained very heterogeneous elements, which had, howerer, concentrated themselves into two natural groups, one containing such forms as have the inferior spinnerets separated from each other, the maxillo impressed transversely, and which live generally on the ground, under moss and stones, and are more nocturnal in their habits, while the members of the other groups live generally on plants and trees, their habits are decidedly diurnal, the spiunerets are here contiguous, and the impressions on the maxillæ are wanting. Simon recognized the value of these characters by giving to each the rank of a subfamily. I go a step further and raise the subfamily to a family.
7. Corinna.-C. Koch, in describing (Die Arachniden, IX, p. 18, 1842) the first species of the five in his genus Corinna remarks that the species of this genus can be divided iuto two natural groups; the first has the anterior middle eyes the largest, and the four middle eyes stand in a square; the second group contains those in which the auterior middle eyes are not larger than the others, aud the four middle eyes stand in a trapez, narrower in front. To the first group belong rubripes and nigricane, and to the second memnonia, cinculata, amœna, and tricolor, species from the United States. Should we form from theso two groups separate genera, the generic name Corinna would have to be retained for the first group, as it contains the species first described, and this, of course, is the type of the genus if not otherwise stated. Corinna, then, has the anterior middle eyes largest.

Keyserling published (Verhandl. d. zool.-botan. Cesellsch. Wieu, 1879, p. 335) a new genus, Cab ianeira, closely related to Corinna, and its characterist ics are exactly those of Connna in the new definition; that is, the anterior middle ejes are the largest.

Karsch (Zeitschrift für ges. Naturwiss., Lin, p. 373) divides the genus Corinna K, into the following genera:
1 Ablomen with a horny basal shield. 2
\{ Ablomea withont a horny basal shield 3
2 S Anterior middle eyes largest, mandibles very strong, I legs longest................... Oorinna Koci
2 Anterior middle eyes not largest, mandibles small, directed back, iv legs longest. Thargulia Kansin 3 \{ leys very much the longest.. Mandume Karscir
$\left\{\begin{array}{l}\text { w legs the longest. }\end{array}\right.$ 4

4 § Mandibles and claws extremely long ..
 This later genus is Thorell's Corinna severa (Studi sui Ragni Males et Pap. 1. Anu. del mus. civ.de Genora, x, 1877, p. 481).
Keyserling, in drscribing Castiancira bivittala from Massachusetts (Verb. d. z. b. Ges. Wien, 1887, p. 442) asserts that Thargalia is synonymous with Castianeira.

Now the case stands as follows: Keyserling's first mistake was to form his genus Castiancira for Corinna, and his second to assert that Thargalia is synonymous with Castianeira. On the contrary, Castianeira is a synonym of Corinna, and has to be dropped, and C. Koch's second group is Thargalia Karsch. This latter genus contains the most common of the Unitel Stater species.

Emerton's new genus Geotrecha (New Eng. Drass., Agal., and Dysderidw, Trans. Conn. Ac., VII, p. 4) is nothing more than Karsch's Thargalia, and has to go, therefore, to the same synonyms.
8. Catadysas was found by Hentz but once-an undeveloped male-and has since not been found again. We have, therefore, to rely upon the meager description of Hentz. Fortunately, Hentz gavo us a good illustration. Thorell formed a new family for this peculiar genus, the Catadysoida, and assigned it to a place among the Territelarice on account of the vertical movement of the mandibular claws and the insertion of the maxillary pulpi into the tip of the maxillæ. Ausserer in his Beitr. z. k. d. Territel. followed Thorell in this arrangement. As the Territelarie are composed exclusively by tetrapneumonic species and form thus a natural group of distinct characters, and as Catadysas possesses only two lamellar trachem I hold that its proper place is among the Dipneumones, and as Holmberg gives his reasons in Bolet. Acad. Argentin., IV, p. 153, that Catadyoasis a Drassid, which seems to me very probable, I have placed this family near the family Clubionidce.
9. The statement of Emerton that Tegenaria medicinalis Hentz is a Colotes, and a synonym of his Coclotes medicinalis, is merely a lapsus calami.
10. Hamataliva.-This very interesting spider, of which I only possessed two specimens, both females one of which I presented to Count Keyserling, has been by this author assigned a place in the family Agalenide. Kesserling himself was in doubt as to the right place for this abnormal species, but thought that this family offered greater affinities than any other. I think, however, that we ought to form a new family for Hamataliva, the Hamatalivide. Unfortunately I have only one specimen, and this is not in perfect state. I, therefore, leave it provisionally in its old place.
11. Prodidomide.-Thorell proposed a new family in 1875 for the genus Miltia for the reason that the characters of this genus were not in conformity with the family Enyoidee to which Simon had assigned it. Thorell gave this family the name Miltioidee and placed it between the Enyoidce and

Urocteidce. In 1884 Simon discovered that his Miltia was identical with Hentz's genus Prodidomus and that consequently the name Jiltia had to be dropped for Hentz's name. I, therefore, change the name of the family in accordance with the type genus into Prodidomida.
12. mandibulata.-Keyserling erroneonsly took mandibulata for the male of pusilla, while the real male of this species is a different form; therefore mandibutata remains a good species, especially as the female has been collected in Tennessee.
13. Althongh Emerton admits that the eyes of his two species are all of the same size ho brings them under a genus which is distinguished by the minute anterior middle eses. These two species are, therefore, not Pholcomma at all, but I have to let them stay here provisionally as I have had no opportunity to study them.
14. Erigone.-By following Kerserling in not recognizing Mengo's, Emerton's, and Simon's breaking up of the genus Erigone into many smaller genera and, therctore, reuniting the species again under the oue genus Erigone, I was compelled to chauge the homonymons names of some of Emerton's species as follows: Cornicularia minuta = Erigone pauthula; Lophocarenum pallidum=Erigone paltens; Tmeticus pallidus=Erigone pallescens; Tmeticus montanus = Erigone collina; Tmeticus tilialis $=$ Erigone monticola: Tmuticus brumens = Erigone fusca.
15. Acrosoma gracile.-In regard to the use of Walekenaer's specific names mado for Abbot's illicstrations my views correspond with those of Dr. McCook as expressed in the Proceedings of the Academy of Natural Sciences, Plilatelphia, pp. 1 and 428, 1888.
16. Acrosoma aculeatum.-C. Koch gives the patria of Acr. aculeatum and crassispinum as "Amerika." The Germans generally understand by "Amerika" North America, and as the two species are closely related to gracile and sagittatum I have included them in this catalogue, but havo given them a se arate place.
17. foliata Hentz.-Walckenaer used the name foliata for Ep. cornuta; for Hentz's name I proposed folifera.
18. globosa Keyserling.-Keyserling described this Spider as globosa first in 1865. Emerton is wrong in substituting McCook's name triaranea, 1876.
19. maculata Keyserling.-This Spider, though related, is not identical with Ep, gibberosa, as Emerton erroneously asserts.
20. obesa Hentz.-This variets seems to mo to belong rather to marmorea (insularis, Hentz) than to trifolium, as the coloration of the legs, especially that of femur IV indicates.
21. septima IIentz. - Amongst a lot of Epeira cavatica Keyserling which I received from Tennessee I found a few specimens which resemble most exactly the description and illustration of Hentz's septima. As Hentz records this Spider from North Carolina and Alabama, where cavatica is quite common, there is no doubt that it is a varicty of cavatica and not of trifolium as Emerton asserts.
22. bifurca, McCook.-This is clearly no Cyrtophora. In this gouns the lateral eves are disjoined for a distance nearly equal to their diameter, which is not the case with bifurcc.
23. Oyolosa conica. - Tho Spider which Emerton rlescribed under this uame is, according to Keyserling in litt., not conica Pallas, but caudata Hentz, turbinata Walck. I have, however, in my collection the true conica Pallas, from San Diero, Cal.
24. Theridiosoma Cambr.-Dr. McCook was certainly right to place his Epeira radiosa in the family Epeiridoc. Not only do the strnctural characters, the position of the eyes near the clypeus, the form of the maxilhe, etc., but the biological fact, first discovered by that naturalist, that this Spiter constructs an orb web, of which the spiral threads are viscil, all warrant such placing. As radiosa is, however, a Theridiosoma, according to Thorell and Keyserling, we have to drop Emerton's new genus Microepeira (a barbaric name by the way) and transfer the genus Theridiosoma to the Orbitelarie, fam. Epeirida.
25. Tetragnathida.-Keyserling in Die Arachn. Australiens, No. 36, p. 218, has given us a splendid subdivision of the large genus Tetragnatha according to the following key:

```
1 \{ Space betw. LE uet inteater than that betw. AME and PSIE ... Titraynatha
1 \{ Space betw. LE greater ...................................................
```


26. Thomisus. This is not the genus Thomisus of our modern authorities as Thorell, Keyserling, Simon, etc., but the old Walckenaerean genus, which comprised once nearly all the genera of this family. I have collected all species under this name which have not yet been re-arranged, giving to these the proper synonyms which I could collect in the present literature.
27. inquisitor Thorell.-As this name is preoccupied by Walckenaer, I have substituted for it Thorellii.
2. ubscurus Koyserling. This specios namo is also preoceupicel by Blackwall, and had to he changed into Keyserlingii.

Proc. N. M. $89-38$
29. impavida Thovell.-As this specific name has been previously used for a Lycosa by Walkenaer it has to be changed to intrepida.
30. Lycosa nidifex Emerton (or rather Marx) is, as Emerton himself states, synonymous with arenicola Scudder. Why Emerton has retained my name for Scudder's older one I can not understand.
31. Tarentula modesta has been used by Keyserling previous to Thorell, therefore Thorell's motesta has to be changed into pudens.
32. Ocyale.-Looking over the many illustrations of the European species of Ocyale, it strikes me that they differ considerably from those of our country in the position of the posterior eye row. While in the European species the four posterior eyes are actually placed in two rows and the distance between them is much larger than the diameter of one of the eyes, the four eyes in the A merican species are placed in such a position that a line drawn through the superior margin of the posterior middle eyes will run through the disc of the post. lateral eyes. The position of the anterior eyes is the same as in those from Europe except that the anterior middle eyes appear a little farther removed toward the front than in the European species.
33. Dolomedcs tenebrosus Emerton.-It appears to me that Emerton, in describing the male of Dolomedes tenebrosus lientz, had under obserration the male of sexpunctatus; for the specimens of this species in my own collection and in that of Dr. W. H. Fox of this city correspond in every detail with Emerton's description of his tenebrosus. Further I hold that Emerton's D.fontanus is the real male of tenebrosus because our σ^{7} tenebrosus has all the characters of Emerton's fontanus. Now the male of what I consider sexpunctatus-tenebrosus Em.-has the markings of the female sexpurctatus in a more or less distinct degree; moreover, both sexes have been caught together. On the other hand our σ^{*} tencbrosus $=($ fontanus Em .) is fond quite frequently with the female, while the female of Emerton's fontanus is yet unknown.
34. leopardus Mentz.-As this name is preoccnpied by Walkenaer I propose the name Hentzii for it.
35. protervus Walk.-Walkenaer has used this specific name twice. For that described last I substitute the name petulans.
36. mullivagus Hentz.-This is also preoccupied by Walkenaer; I substitute, therefore, vagabandus
37. Wala Keyserling.-Mr. Peekham has made a mistake in asserting that Wala alborittata Keyse:ling is synonymous with Icius albocittatus. This author described both, and the descriptions differ so widely that it must have been an oversight of Pecknam.

NOTES ON THE SERPENTINOUS ROCKS OF ESSEX COUNTY, NEW YORK ; FROM AQUEDUCT SHAFT 26, NEW YORK CITY; AND FROM NEAR EASTON, PENNSYLVANIA.

BY
George P. Merrill, Curator of the Department of Geology.

A.-ESSEX COUNTY, NEW YORK.

That the Serpentine of the ophiolite of Thurman, Warren County, New York, was a secondary product after a lime magnesian proxene has been stated by the author in a previous paper.* Since that paper was written he has, through the kinduess of Prof. J. C. Smock of the State Museum at Albany, had an opportunity for examining similar material from Bolton and Warrensburgh, in Warren County, and from Amity, in Orange County. In all of these the serpentine is plainly of like origin. \dagger It was also stated in the paper mentioned that a part at least of the Essex County serpentine was of like metasomatic origin, but that a considerable portion was apparently after a mineral the exact nature of which had not been determined. Further investigation has not completely solved the problem, but as the matter must be dropped here for the present it is deemed best to put on record such results as have thus far been obtained. As is well known the Essex County ophiolite is the primary limestone of Emmons, and which it will be remembered he considered to be of plutonic origin. \ddagger

Concerning the composition of the rock this writer says:
This range of limestone is distinguished throughout, so far as I am acquainted with it, for its compound character, being combined or mised in several proportions with serpentine. In some parts of the rock the limestone and serpentine are in about equal proportions; in other instances the limestone predominates, the serpentine gradually disappearing, till only here aud there a small portion is discernable, when

[^56]the limestone becomes a nearly pure rock, or free from intermixture with this substance. Whenever these two substances are commingled in the same mass, it is more free from siliceous minerals either in the form of quartz, pyroxene, or scapolite. It is difficult to describe the rock in a few words as it occurs at Port Heury. It is pure limestone near the furnace, quite coarse and crystalline. The steep rock west of the public house is a mixture of yellowish serpentine and primary limestone; * * * near the dwelling of Mr. Foote, is a mixture of the same materials; the serpentine is darker and the coutrast betweeu the limestone and serpentine is greater. * * * In the same bed, in addition to the mixture already mentioned, I found those of coccolite and pyroxene in crystals, blood-red mica or mica which transmits a blood-red light, hornblende, and limestone, etc. In the midst of the bed, half a mile from the lake (Champlain), is an extensive one of calcareous spar. * * * It contains a great abundance of graphite, ete.

The typheal ophiolite as put mon the market consists of a quite even glamular abobistme of serpentine, calcite, and dolomite in particles from one-edinh to one-fourth of an inch in diameter, interspersed with smail scales of phlogopite, oceasionally graphite, and more abomdant pyrmhotite srambes. As noted hy Emmons, howerer, the texture is Variable, and, as seen by the writer at the now ababloned quaries near the villase of Port llemre, the fiernent oecmrence of large blotehes of fellow and gremish serpentine, on supentine and white pyroxene, in sizes from alm inch to a font or more in diameter, proved a serions drawbarla to the production of marketabie material. From the aban-
 the rieinity, it is easy to ohtain masses of the serpentine showing proxenic melei, and all stages of the alteration are readily traced. At the Ophite gmatry was selected what seemed a typical sample, (F00sis) and from it was picked ont the maltered prooxeme and the secondary gellowish green serpentint. These, submitted to Mr. Catlett, of the U. S. Geological Survey, for analysis, yielded as follows:

The pyroxene is therefore a very pure lime, magnesian variety, of the formula $\mathrm{CaMgSi}_{2} \mathrm{O}_{6}$, and its conversion into serpentine consists, as in the other cases deseribed, in the assmmption of water and giving up, its lime, which crystallizes out in the form of calcite. The resultant serpentine is also of exceptional purity. The origin of the large masses of the yellowish serpentine is thus readily accomuted for. It is to be noted, however, that the serpentine oceurring in small particles seattered evenly throughout the gramular portion of the rock is of
darker color, and so far as observed never showed under the microscope traces of residual pyoxene. Wherever, too, this darker variety of serpentine oceurred in patches of any considerable size it was observed that it frequently contained inclosures of graphite scales. For the study of this variety of the rocks, material was selected from the quarry of Mr. J. E. Reed, some miles west of Port Hemry. From this opening was selected four series of specimens, characteristic of the rocks as there ocemring. These were (1) the merchantable ophiolite, a gianular rock consisting apparently of about equal proportions of show-white ealcite and lark green selpentine (70082) ; (2) a similar textured rock, lout of more uniform green color, the serpentine and calcite being less distinctly differentiated, and the calcite being moreoverof a clear glassy appearance, and for this reason less notable ; (3) masses from an inch to a foot or more in diameter, consisting mainly of deep thongh dull green serpentine, and often carrying large scales of graphite (70083); and (t) samples of the same shape and mode of occurrence, but consisting of a central portion or muclens of coarse massive calcites aud graphite scales, surounded by a ring or zone of varying thickness of the dull green serpentine (700 ed 4). The last three forms oceur sporadically throughout the beds, and as their presence is olyjectionable in the guaried blocks they are often the canse of considerable waste.
Sections from the two first-mentioned varieties showed the rock to consist essentially of calcite, serpentine, and dolomite. liongh determinaticus of the relative proportions of the various constituents were made by dissolving out from weighed portions of the pulverized rocks the calcite by acetic acid, the dolomite by cold hydrochloric acid, and in each case weighing the residnes. Calculations from these results showed No. 1, the typical ophiolite, to consist of 52 per cent. calcite, 15 per cent. dolomite, and 33 per cent. serpentine; the spcond variety yielded, under like treatment, calcite 72 per cent., dolomite 2 per cent., and serpentine 26 per cent. An analysis of the dark serpentine out of the typical ophiolite (70082) from this quarry by Mr. Catlett yielded results as follows:

SiO_{2}..	39.915
$\mathrm{Al}_{2} \mathrm{O}_{3}$.	1.07
$\mathrm{Fe}_{2} \mathrm{O}_{3}$.	3.53
FeO	3.85
MgO	37. 61
NiO	none.
$\mathrm{Cr}_{2} \mathrm{O}_{3}$.	none.
MnO	trace.
H_{2}	13.65
	99.67

This material it should be noted was separated out br specific grarity and subsequent treatment with acetic acid. Under the microscope the powder was of a dirty dull green color, opaque, and showed when the stage was revolved between crossed nicols a somewhat fibrous or
felty structure, more like sundry chloritic decomposition products as seen in eruptive rocks than like pure serpentine.

In the thiu sections this variety of the rock furnishes no clew whatever to the origin of the serpentinons material. Sections of the second variety show, however, the rock to have consisted mainly of calcite and dolomite, and that the serpentine is a subsequent injection, replacing wholly or in part the calcite. Sections are readily obtainable showing the calcite granules, with only narrow and irregular veins of the serpentinons matter traversing them, through all gradations to complete replacement. It was at first thought that these granules might be dolomitic and actually undergoing alteration into serpentine, but chemical and microscopic tests showed them to be nearly pure calcite. The third and fourth varieties mentioned above were likewise found to consist of calcite (the coarsely crystalline variety mentioned by Emmons), replaced wholly or in part by the serpentinous matter. Samples were collected, and are now installed in the Musemn collections, showing these masses of graphite-bearing calcite in all stages of replacement, from the formation of a ring of serpentinous material around the outer portion (70084) through rarieties stained greenish throughont but still effervescing when treated with dilute hydrochloric acid, to compact masses of dark dull green serpentine, still at times showing traces of the calcite cleavage, and carrying as before scales of embedded graphite (70083).

The writer will not attempt to fully explain the source of this dark colored aluminous serpentine, which occurs as a true replacement rather than as a wetasomatic product. If, as was first supposed, it too was derived from the colorless pyroxene, it is difficult to account for the large increase (6.03 per cent.) of iron oxides and alumina. It seems best to drop the matter here for the present rather than resort to speculations, which may not be borne out by future field observations.

Thanks are due Mr. S. E. Foote, of Port Henry, but for whose generosity in giving not ouly his own time, but also furnishing his private conveyance, it would have been impossible in the time at command to obtain for the Museum the full set of duplicate material, the collection of which was the main object of my visit.

> B.-AQUEDUCT SHAFT 26, NEW YORK CITY.

This serpentine oceurs in embedded masses in a coarsely crystalline white gramular dolomite. It plainly originates through the hydration of a white monoclinic pyroxene, showing under the microscope nearly rectangular prismatic cleavages, aud giving extinction angles as high as 44°. The alteration is accompanied with the formation of abundant secoudary calcite. The serpentinous matter itself varies from nearly white or colorless to light greenish, or occasionally nearly black; the green color is never very prononnced. The hardness of the material is a trifle under 4 of Dana's scale, being softer than the Bowenite of

Smith field, Rhode Island, which it at times resembles. Under the microscope the serpentine shows a platy, almost fibrous structure, the plates in each case lying approximately parallel with the vertical axes of the crystals from which they were derived. These plates do not extinguish simultaueously, but the alternate bands become in a general way light and dark as the stage is revolved between cronsed nicols. The dark cloud, however, sweens over in so indetinite a manner that nothing like extinction angles are obtainable. An analysis of the serpentine matter (70350) by Mr. Catlett yielded results as below:

$$
\begin{aligned}
& \mathrm{Al}_{2} \mathrm{O}_{3} \text {....-... } 08
\end{aligned}
$$

$$
\begin{aligned}
& \text { MgO . .. } 42.52 \\
& \text { CO2... } 1.64 \\
& \text { CaO } 90 \\
& \text { Moisture (at 1050)....-.. } 1.36 \\
& \text { Ignition ... } 13.26
\end{aligned}
$$

100.18

For the material examined from this locality the Museum is indebted to Mr. George F. Kunz.
C. -OLD WOLF QUARRY, CHESTNUT HILL, NEAR EASTON, PENNSYLVANIA.

This serpentine, as is well known to American collectors, is of a light oil green or sellowish color, closely resembling that of Montrille, New Jersey. As noted in the reports of the Pennsylvania Survey*, it occurs associated with calcite, gray limestone, asbestus and tremolite. The pure rarieties, such as find their way iuto the cabinets of collectors (70125), are not obtainable in masses of any size, but occur in seams or sporadically scattered throughout a massive tremolite rock which is here quarried, and, after pulverization, used as a filler in paper manufacture. A beautiful bright yellowish green vermiculite (?) also occurs here. This will be described in another paper.
The association of the serpentine with the white tremolite rock is such as to suggest a genetic relationship. Indeed, it is possible in the quarry opening to trace the gradual passage, often within the distance of a few inches, of the pure white tremolite rock into a mixed rock composed mainly of serpentine, tremolite, and calcite (specimens 70114, 70115, 70119, 70122, 70123). Thin sections of the fresh tremolite (70122) rock show a compact aggregate of white non-pleochroic, somewhat fibrous crystals, with the clearage of hornblende and giving extinctions on elinopinacoidal sections running as high as 20°. As serpentinization has set in the tremolite crystals are broken up into fibrous aggregates traversed by irregular canals of the serpentinous matter, the direction of which has been but little controlled by the clearage lines

[^57]of the mineral. The method of alteration corresponds closely to that described by L. I. Gratacap as having taken place in the amphibolic rocks lying between Fifty-fifth and Sixtieth street, New York city.*

An analysis of the tremolite, separated out from the fresh pulverized rock (70122), yielded Mr. Eakins as follows:

As abore noted, the pure compact serpentine occurs only in reins associated with snow-white calcite. The main mass of the rock is of a slull greenish hue and consists of a misture of serpentine, secondary calcite, vermiculite, and remnant shreds of tremolite.

National Museum, June, 1889.
*Am. Jour. Sci., 3. xxxiI, 1887, p. 374.

A REVISION OF THE GENUS ARAUCARIOXYLON OF KRAUS, WITH COMPILED DESCRIPTIONS AND PARTIAL SYNONYMY OF THE SPECIES.

BY
F. H. Knowlton, Assistant Curator of the Department of Fossil Plants.

Having recently had occasion to identify several species of fossil wood showing the Aranearia like structure from the Potomac formation of Virginia,* the Jurassic of Arizona and New Mexico, tand the Devonian of New lork, considelable difficulty was experienced in readily referring to the published descriptions amd tigures. As a matter of personal consenience a card index was prepared, containing references to the principal deseriptions and illustrations. The preparation of this index sugsested the ideat that other workers in the same field must have experienced similar needs, and this has led to its expansion into the following partial revision and description of the accepted species.

The literature of the suljeet may he said to date from the publication of Witham's work on the "Internal Structure of Fossil Vegetables," which appeared in 1833. From that time until the present mo:e than lifty speces have been established, the deseriptions and figures of which are seattered throngh varions foreign periodicals, or occur in the systematic works of Dawson, Göphert, Unger, Krans, Felix, and others. From these sources the principal synonymy has been compiled, together with the description of the species.

The first systematic enmmeration of species was that giren by Endlicher in 1847 in his "Sthopsis Coniferarmm." He there describes fourteen species that have since been referred to the Arancarian type. Unger, in his "Genera et Species Plantarm Fossilinm," published in 1850 , enumerates about the same number of species. The most extensise compilation is that given ber Kraus in Schimper"s "Traité de Paleontologie Végétale," Vol. in, published in 180(1)-7e. Me here established the genus Araucurioxylon, and gives a list of thirty-two speces derived from the older genera Arancarites, Dadorylon, Pissmendron, etc. None of these species are accompanied ly deseriptions, and the

[^58]synonymy is also in some cases wrong. The following paper embraces fifty species, the additional ones having beeu mostly detected since the publication of Krans's paper, although a few are evident omissions from it.

As above mentioned, it was originally intended to present in this paper only the descriptions and principal references of the well-known forms, and bring it as nearly as possible up to date, by inclnding the species that had been described since the publication of Krans's paper. But early in this work it hecame evideut that the investigation of Paleozoic woods by Grand’Eury and Renault, and later by Morgenroth, Vater, and Felix, have made certain changes necessary in the genus Aranctrioxylon as defined by Kraus. These investigations show very conclusively that it must be divided into two parts, and the later studies of Felix make it equally clear that the present state of our knowledge is sufficient to amply justify its division into three parts.

As the evidence which had led to the separation of Cordaites from Araucarioxylon is of considerable interest, it is presented somewhat in extenso.

CORDAITES Unger.

The name Cordaites was first employed by Unger in 1850.* It was founded principally upon the leaves, and Unger admitted but a single species (C'. Uorassifolius), which had previousty been described by Sternberg + ($1820-5)$, first as Flabellariat borassifolin and later as Cycallites pulmatus. \ddagger Sternberg, it will be observed, had regarded the first as a palm, the latter as a cycad.

The first to investigate the internal structure was Corda,§ who in 1845 created the Flabellariacea for the species of Sternberg. He deroted a large plate to the elncilation of the interual structure, but as his specimens had not been well preserved he fell into error in his interpretation of the histological elements. He compared them in habit to Aletris and Dracemu, but regarded the internal structure as similar to Lomutoffoyos of the Lycopodiacee, aud Unger, in his work above cited, placed Corduites in the Lycopodiacer on this account.

In 1848 Germar|| obtained a second species from Wettin in Germany, which he referred to Flabellaria observing that it was very closely allied to F. borcussifolia of Sternberg. Unger, however, regarded it as a true palm, and retained it in the genns Flabellaria, although subsequent investigation has shown that Germar was correct in regarding it as allied to Cordaites. In the following year Brongniart published his celebrated "Tableau des generes de Végétaux fossiles, fin which

[^59]he clearly for the first time dirined the true systematic relationships of these plants．He established the genus．I＇ychnophyllum for Flabel． laria borassifolia of Stemberg and placed it with the genms Focggera－ thia，in the new family Noggerathiea，which he regarded as being related on the one hand to the Cyeads and on the other to the Conifers． He placed it between these two families，and described at some length the form，nervation，and insertion of the leaves，but fell into the same error that Corda had in supposing that it was destitute of medullary rays．

There can be no doubt that this is the first correct reference of these plants to their true systematic position，and by the law of priority Brongniart＇s name，Pychnophyllum，should be the accepted one，and， indeed，Schimper＊has reinstated it，but Unger＇s mame，Cordiutes， has obtained such wide acceptance，both in this comntry and Europe， that it is not within the scope of the present paper to insist upon changing it．

Göppert \dagger was the next to take up the Noggerathiex，but he followed the older writers in relegating it to the Monocotyledons．His mention of Pychnophyllum was brief and unimportant，the main part being taken up with a description of the then known species of Niegyerathia．

In 1855 Geinitz＇s work appeared on the carboniferous plants of Saxony．\ddagger In this the Noeggerathie：e were agatin correctly referrel to the Dicotyl－ edons being placed next to the Cycads，and Unger＇s name Cordiutes was restored in place of I＇ychnophyllum，which latter name had in some un－ accountable mamer begun to be quoted as 1852 ．This would of course give Cordaites priority，and is probably the reason it has been so gener－ ally accepted．Certain it is that from this time it has been，with the exception of schimper，noted above，the accepted name，and there has also apparently been little or no question as to its dicotyledonous na－ ture，although Ettingshausen，in a paper published in the same year （1855），placed it in the Lycopodiaceæ．

Geinitz reduced the following genera to Cordaites，or rather pointed out that they were the names that had been applied to the different parts of this plant：Fiabellaria ex．p．Sternberg，Rhabrlotus Presl， Sternlergia Artis，Artisia Sternberg，Pychnophyllum Göppert 150゙っ．ふ He mentioned only two species viz：C．principalis German sp．and C． borassifolius Sternberg sp．

In his Dyas｜｜Geinitz enumerated two additional species，while Güp－ pert admitted but two from the Permian in his flora of that forma－ tion published in 1864－65．In 1870－＇72 Schimper，＊＊as stated above， restored the name Pychnophyllum，but was at that time only able to enumerate four species．In the third volume of his Traité published in

[^60]1874 , he howerer mentions * four or five additional species, that had been made known since the publication of the first notice, mostly by Darson from the carboniferous of Canada and Nova Scotia. In the latter volume he speaks of the investigations that were just being undertakeu by Brongniart on the silicified seeds of St. Etienne, and also of a verbal communication made to the Academy of Sciences by Grand 'Eury concerning the discorery of forests of Cordaites in the Loire basin.

The results of Grand'Eury's investigations were pulbished in 1877 in his now justly celebrated "Mémoire sur la Flore carbomfere du Départment de la Loire." From this copions material, fortunately discorered in Central France, he was able for the first time to supply a complete history of Cordaites, including the leaves, branches, trunks, flowers, and seeds.

As the internal structure of the trunks and branches is the primary subject under disenssion, our attention will hereafter be given entirely to this phase of the subject. The center of the trunk Gramlears found to be occuped by a rery large pith, with which he was able to connect the heretofore largely problematical organisms known as Artisia (Sternbergiu Artis). Artisiu, as generally known, consists of a struetwreless eylinder, marked on the outside by numerous ridges or wrinkles, which as long ago as 1516 D) anes had suggested might be the cast of the medullars cavity of some plant possessing a pith similar to some living members of the Juglandace:e, Euphorbiacee, ete. Dawson had also obtained specimens from the Carhoniferons of Canada that pointed to the medullary origin of Artisic, but was in doubt as to the plantsmiformly producing them, and from exceptionally well preserved specimens in England Williamson was able to establish the connection between Arkisia and an undombted Dadoxylom, but it was left for Grand'Eury to show its conuection with Cordaites. According to him the larger trunks inclosed an Artisid pith having a diameter of from .05 to .08 or eren $.10^{\mathrm{mm}}$, while in the branches it varied from .03 to $.01^{\mathrm{mm}}$.
Surromding this pith was a dense wooly zone, which was in its turn surrounded by a rery thick bark. This woody zone on its inner edge, when in contact with the pith, was composed of tracheïds which were prorided with transrerse striations and forming typical pseudo-scalariform tissue, gradually changing ontwarlly to true punctate tissue. These punctations were arranged in from one to four or fise longitudinal rows, and when in more than one row becoming alternate and hexagonal by mutual pressure. These pits were perforated by au elliptical or circular pore, the form of the inner pore depending evideutly somewhat upon age and also upon the state of preservation of the specimen. These punctations were confiued to the radial walls of the cells, and, unlike some living Conifers, each cell was alwars provided with them. Percoursing between these tracheids were numerous short medullary rays connecting the pith and bark.

This deseription coincides, it will be observed, with the deseriptions of species of Dadoxylon, particularly with what Williamson has deseribed as a typieal Ioderylon.* Indeed, there can be no doubt that some, at least, of the Paleozoic forms referred to Dudosylon really represent the wood of Corlaites.

But the classie memoir of Renault, "Structure Comparée à quelques tiges de la Flore C'arbonifere," which appeared in 15:9, must remain the most raluable contribution to on knewledge of the gemus Cordaites. From a study of the very perfectly meserved spectmens collecter in the viemity of Atm and St. Etieme, he was alhe to make out the cellular structure of the immense pith, of the medulhary rass, of the wool eells showing the hexagonal amodation, and aiso of the very thick bark. Likewise the structure of the leaves, the derelopment of the male flower, mamer of fertilization, aml wowth of the orule were clearly describol, so that we actually have a mome emmple knowledge of this longsince extimet gemas than af many living gemera. Remant propmes to phare it as a distinet fimily hetwern the Uyeads and Conifers, being related, as sochende has pminted oni, ly the mate flowers to the salishuiea, by the femate thowers to the Cyeals, while in the stmeture of the wond it mathardy he distingushed ofrom the Conifers.

It being now acknowlenged that there is a seuns showing Arancarialike structure, ret mugnestionabiy distinet femm ir, it heetomes neepssary to inguire if there are chameters which can the treal to di-tinguist! them when there is not a sulticient amonet of materal io sotule this macroscopicalls: Aceording to Grand Eury and Remank, and ako ly Morgenoth, Tater, and Felix, who have taken mp the subject within a few years, there modobhedy are charaters that may be redied upor to separate Corlaites from the other Paleoznic woods. The possession of an Artisia pith is a clear indication that the example belongs fo Cordectes, since, as stated above, (irand Eury has always fomm the Artisia pith associated with corduites when the specimen has been entirely preserved. In all the species that have been desereibed hy Remant, Felix and others as typieal. the punctations have entirely cosered the radial walls of the tracheinds. There are several other minor characters that will be enmmerated when we come to the detailed description of the species.

Having settled that Cordaites must be separated from the genns: Arcuccuriocylon of Krans, the further question arises as to what is to be done with the remaining forms. According to the best recent authorities, as Shenck, Felix, Lesquerenx, Morgenroth, and Fontaine, the true Conifers of the Arancarian type do not extem into the Paleozoic. The Araucaria first had their origin in the Jurassic, or in any case in the Mesozoic, and here the trunks ane for the first time fouml associated with undoubtel leares and cones of the Arancarian type.

The so-called Araucarites gracilis, described by Dawson from the Car. boniferous and Permian of Canada, is without much doubt a species of Walchia, a well-known Permian genus.
As the Mesozoic and Tertiary forms are manifestly the only ones that can be justly referred to Araucuria, Felix has proposed ${ }^{*}$ to confiue the use of Araucarioxylon of Kraus to woods from these formations. This seems on the whole a desirable chauge and quite in harmony with modern views.

There now remain the Paleozoic forms not included in the genus Corduites. As they can not of course be called either Cordaites or Araucarioxylon, Felix has proposedt to restore Endlicher's uame-Dudoxylon-for them. The term Dadoxylon, meaning simply ancient wood, is a very good one for these woods, inasmuch as it is non-committal, and the former may be changed from it at any time provided their true relatiouship may be made out. They are probably to be regarded as the ancestors of the true Araucarix, althongh the discovery of more perfect material may possibly show them all to be related to or included in the Cordaiter.

CORDAITES \ddagger Unger.

1. Cordaites Ouangondianus (Dn.) Göpp.

Göppert in Nachträge z. Kenntniss d. coniferenhölzer d. Paleoz. Form., 1888, p. 9. Dadoxylon Ouangondianum Dawson, Can. Nat., Vol, vi, 1861, p. 165, figs. (in text) 1-4.
Araucarioxylon Ouangondianum (Daws.) Kidston. Cat. Brit. Mus., 1886, p. 237.
Branching trunks with distinct zones of growth and a pith of Artisia (Sternbergia) type; wood cells very large, with three to five rows of contiguous alternate hexagonal areoles with oral pores; medullary rays with one to three series of cells and as many as fourteen roms of cells superimposed on each other (Dawson.)

Middle Erian (Derouian) formation, of Canada.

2. Cordaites Halli Dn. Sp.

Dadoxylon Halli Dawson. Quat. Jour. Geol. Soc. Lond., Vol. xvirr, 1862, p. 306, Pl. xili, fig. 11 ; Foss. Pl. Deronian and Silurian Formations of Canada, 1871, p. 14, Pl. I, figs. 5, 6.
Wood cells very large, with five rows of contiguous alternate hexagonal areoles; medullary rays rery frequent, and with as many as thirty rows of cells superimposed. (Dawson.)

Hamilton group, Hemlock Creek, Ontario Counts, New York.

[^61]3. Cordaites Newberryi Dn. Sp.

Abstract

Dadoxylon Neuberryi Dawson. Foss. Pl. Devonian and Upper Silurian Formations of Canada, 1871, p. 14, Pl. I, figs. 7-9; Newberry, Devonian plants from Ohio, Journ. Cincin. Soc. Nat. Hist., Vol. xir, 1889, p. 53, Pl. vi, figs. 3, $3 a, 3 b$.

Cells more slender than in the last species; areoles in two or three rows with large oblique pores ; medullary rays very numerous, of about eighteen rows of narrow cells in two series. (Dawson.)

Hamilton group, Ohio.

4. Cordaites Clarkii Dn. Sp.

Dadoxylon Clarkii Dawson. Foss. Pl. Erian (Devonian) and Upper Silurian Formation of Canada, 1882, p. 125.

Wood cells provided with two to three rows of slit-form bordered pores in hexagonal borders; medullary sheath of pseudo-scalariform and reticulated fibers; medullary rays numerous, short, and simple, with sometimes as few as four cells superimposed. (Dawson.)

Genesee shale, Canandaigua Lake, New York.

5. Cordaites Brandlingii (Lindl. \& Hutt.) Göpp.

Göppert Nachtrïge z. Kenntniss d. coniferenhölzer d. Paleoz. Form., 1888, p. 12, Pl. I, figs. 1-4.
Pinites Brandlingii Lindl. \& Hutt. Foss. Flora Great Britain, 1830, Vol. y, p. 1, Pl. I; Witham Entern. Struct., p. 73, Pl. Ix, fig母. 1-6; x, figs. 1-6; xVi, fig. 3.

Araucarites Brandlingii Göpp., in Bronn Gesch. d. Nat., Vol. III, p. 42.
Dadoxylon Brandlingii Eudlicher, Synop. Conif., 1847, p. 299.
Araucarioxylon Brandlingii Kraus, in Schimp. Pal. Vèg., Vol. II, p. 382.
Cordaioxglon Brandlingii Felix, Sitzb. d. Natf. Gesell. Leipzig, 183:, Bd. Ix, p. 6 .

Trunk branching, with large medulla; the concentric rings obsolete; tracheïds amply provided with bordered pits, which are in two to four, rarely one to fire, contiguous, alteruating series; inner pores oblong; medullary rays in a siugle or rarely in two series of two to forty superimposed cells. (Göppert.)

Very widely distributed species, occurring at Wideopen, near Gosforth; Hill Top, near Ushaw; Westgate, near New Castle; Newbeggin, Northumberland; Waldenburg, in Silesia; Saarbriicken; Central France, etc.

6. Cordiates medullosus Göpp.

Göppert in Nachträge z. Kenntness d. coniferenhölzer d. Paleoz. Form., 1888, p. 22, Pl. I, fig. 11 ; 11, figs. 12-24; 11, figs. 25, 26 .
Araucarites medullosus Göppert, Foss. Fl. d. perm. Form., 1864-65, p. 259, Pl. Lx, figs. 3-8.
Araucarioxylon medullosum Kraus, in Schimp. Pal. Veg., II, p. 383.
Trunks branching; medulla large, in the smaller branches of different ages the woody body becomes narrower, transversely septate ; concentric circles obsolete ; tracheïds pitted, the pits in one to two, rarely
three to four rows, altennating, approsimating or contiguous, small; medullary rass simple, usually of four to six, rarely one to eighteen, superimposed cells. (Göppert.)

Permian formation. Chemnitz.
7. Cordaites intermedius Grand'Eury Sp.

Tracheids procided with three or four series of hexagonal pits ; medultary rays composed of two layers of superimposed cells. (Granch'Eury.)

This species is regarded by (iramdeury as being intermediate betreen O. Brandlingii and C. Acadianum Dn. sp.

Carboniferous. Central France.
8. Cordaites Stephanense Grand'Eury Sp.

Dadoxylon Stephanense Grand 'Eury, Mém. sur la Fl. carbonif. d. Dep. la Loire, 187T, p. 265.

Trache his small. powited with one or iwo vows of pores ; medullary rays hot abumdant, short, composid of a single hayer of fom one to three small superimposed cells. (Graud'Eury.)

Carboniferous formation, Central France.
9. Cordaites Subrhodeanum Grand'Eury Sp.

Dadoxylon Subrhodeanum Graud'Eury Sp. Mém. sur la Fl. carbonif. d. Dep. la Loire, 1877, p. 266.
Tracheinds estremely small, provided with a single row of pores; medullar? raysul from ten to thirty smerimpused cells. (GranioEnry.)

Carboniferous formation, Central France.
10 ? Cordaites Acadianum Dn. Sp.
Dadoxylon Acadianum Dawson, Can. Nat. 1863, Vol. virr, p. 433. Quart. Jour. Geol. Soc. Lond., 1866, Vol. Xxir, p. 145, Pl. v, figs. 4-6.
Araucarioxylon Acadianun Kraus in Schimp. Pal. Vég., Vol. int, p. 577.
Large trees, usmally silicified or calcified, with rery wide wood cells, having thee or more rows of small hesagonal areokes, each inclosing an oral pore; eells of the medullary rays one-thind the breadth of Wood cells, and consisting of twenty or more rows of superimposed cells in two series. Riugs of growth indistinct. (Dawson.)

Middle coal-measures, Joggins, Port Hood, Dorchester.

11. Cordaites materiarum Dn. Sp.

Datoxylon materiarum Dawson, Can. Nat., 1863, Vol. viil, p. 433. Quart. Jour. Geol. Soc. Lond., 1866, Vol. xxif, p. 145, Pl. v, figs. 7-9.
Wood cells less wide than those of A. Acurliumem, witli two to rarely four rows of hexagonal pores. Medullary rays rery numerous, with
twenty or more rows of cells superimposed in one series. Rings of growth slightly marked. Approaches C. Brandlingii, but with the medullary rays much longer. (Dawson.)

Middle and upper coal-measures, Joggins, Malagash, Pictou, Glace Bay, Miramichi, etc.

DADOXYLON Endlicher.

Araucarites Presl. Araucarioxylon Kraue.

1. Dadoxylon Beinertianum Endl.

Endlicher, Syn. Conif., p. 300.
Araucarites Beinertiamus Gëppert, Foss. Fl. Schles. in Wimmer's Fl. v. Schles. ed. 2, Vol. if, p. 218; Monog. d. Foss. Conif., p. 233. Pl. xlif, fige. 1-3; xliIf, fig. 1. Araucarioxylon Beinertianum Kraus in Schimp. Pal. Vég., Vol. ir, p. 381.
Aunual rings evident ; tracheïds broad, thin walled; pores in one to four series, approximate; medullary rays in a single series of from one to ten superimposed cells. (Göppert.)

Subcarboniferous formation, Falkenburg, in Silesia.

2. Dadoxylon Tchichatcheffianum Endl.

Endlicher, Syn. Conif., p. 300.
Arancarites Tchichatcheffianus Göppert in Tchichatcheff, Voyage dans l' Altai, p. 389 ; Monog. d. Foss. Conif., p. 235.
Concentric circles distinct, broad, equal; tracheïds with one to four series of hexagonal pores; medullary rays in a single series, similar. (Göppert.)
Subcarboniferous formation, Russia.

3. Dadoxylon Buchianum Endl.

Endlichẹr, Syn. Conif., p. 300.
Protopitys Buchiana Göppert, Monog. d. Foss. Conif., p. 229, Pl. xxxyif, figs. 4-7 ; xxxviil, figs. 1,2.
Araucarioxylon Buchianum Kraus, in Schimp. Pal. Vég., Vol. II, p. 381.
Concentric circles indistivet; tracheïds prosenchymatose, rather thick-walled; pores contignous, compressed, in a single series, not observed on walls parallel to the medullary rass; medullary rays simple, of a single row of superimposed cells. (Göppert.)

Subcarboniferous formation, Frankenberg, in Hesse.

4. Dadoxylon Vogesiacum Ung.

Unger in Köchlin-Schlumb. et Schimp., Terr. de trans. des Vosges, p. 342, Pl. xxx, figs. A, 1-4.
Concentric circles apparent to the naked eye, nearly $1^{\text {mm }}$ broad; medullary rays in transerse section appear numerons; tracheïds provided with oue or two rows of pores which are contiguous and rounded when in a single series, irregularly hexagonal when in two series; medullary rays numerons, composed of a single layer of superimposed cells. (Unger.)

Grauwacke, of Niederburbach.
Proc. N. M. 89

5. Dadoxylon ambiguum Endl.

Endlicher, Syn. Conif., p. 299.
Pinites ambiguus Witham Intern. Struct., p. 73, Pl. Ix, figs. 7, 8; x, figs. 7-9.
Araucarites ambiguus Güpp. in T'chichatcheff Voyage dans l'Altai, p. 389.
Dudoxylon Unger in Köchlin-Schlumb. et Schimp., Terr. de trans. des Vosges, p. 343, Pl. xxx, figs A, 1-4.
Concentric circles evident; the medullary rays in transverse section appear numerous and large ; tracheïds provided with two to three, or rarely four, rows of contiguous hexagonal pores; medullary rays composed of two or rarely three layers of superimposed cells. (Unger.)

Carboniferous formation, Gateshead, England, and Grauwacke, Niederburbach.

6. Dadoxylon angustum Felix Sp.

Araucarioxylon angustum Felix. Stud. iiber Foss. Hölzer. Inaug. Diss. Leipzig, 1882, p. 81.
Aunual rings plain ; tracheïds provided with one or two rows of small pores on the radial walls; medullary rays moderately high, composed of small narrow cells. (Felix.)

Carboniferous formation, Lake Illawarra, south of Sidney, New South Wales.
7. Dadoxylon annulatum Dn.

Dawson, Can. Nat., 1863, Vol. viir, p. 433 ; Quart. Jour. Geol. Soc. Lond., Vol. xxil, p. 146, Pl. v, figs. 10-13.
Wood cells with two or three rows of hexagonal disks; medullary rays of twenty or more cells superimposed, in two series; wood divided into distinct concentric circles, alternating with layers of structureless coal, representiug cellular tissue or very dense wood. (Dawson.)

Middle coal-measures, Joggins.

8. Dadoxylon antiquum Witham Sp.

Pitus antiqua Witham, Intern. Struct., 1833, p. 71, Pls. III, Iv, figs. 1-7; Vil, figs. $9-12$; vili, figs. 1-3; xvi, figs. 9-10.
Pissadendron antiquum Enger, Chlor. Prot., p. 29 ; Güppert Monog. d. Foss. Conif., p. 230, Pl. xxxviir, figs. 3-6.
Concentric circles usually iudistinct; tracheïds rather thick, the radial walls reticulated with two or three series of roundish areoles, which are separated from each other; medullary rays composite, consisting or four or tive series of superimposed cells. (Göppert.)

Carboniferous formation, Lennel Braes and Tweed Mill, Berwickshire, England.

9. Dadoxylon medullare Endl.

Endlicher, Syn. Conif., p. 298.
Pinites medullaris Witham, Trans. Nat. Hist. Soc., Northumb., etc., Vol, 1, p. 297 ; Pl. xxv, figs. 3-8; Intern. Struct., 1833, p. 72, Pl. vi, figs. 5-8; VII, figs. 7, 8.
Concentric circles obsolete; tracheïds provided with two to four series of contiguous areole; medullary rays of two to four series of superimposed cells. (Witham.)

10. Dadoxylon antiquius Dn.

Dawson, Can. Nat., Vol. viri, 1863, p. 433 ; Quart. Jour. Geol. Soc. Lond., Vol. xxir, 1866, p. 146, Pl. v, figs. 1-3.

Wood cells narrow, thick-walled, provided with two to three rows of pores; medullary rays of three to four series of cells, with twenty or more superimposed, nearly as wide as the wood cells; rings of growth visible. (Dawson.)

Coal measures, Horton.

Dadoxylon Schrollianum Göpp. Sp.

Araucarites Schrollianus Göppert. Jahrb. d. Geol. Reichsanstalt. Wien, 1-5̄̆, p. 7; Foss. Fl. d. Perm. Form., p. 248.

Concentric circles evident, one-quarter to two lines broad; tracheïds ample, moderately thin-walled, the pores in a single contiguous series; medullary rays small, in a single or rarely in two serjes of from one to fifty superimposed cells. (Göppert.)

Permian formation (Grès rouge), Bohemia, Silesia, Chemnitz in Saxony, Thuringia, etc.
12. Dadoxylon stigmolithos Endl.

Endlicher, Syn. Conif., p. 300.
Araucarites stigmolithos Göppert, in Index. Paleont., Vol. I, p .120; Foss. Fl. d. Perm. Form., p. 249; Güpp. in Mougeot, Essai d'une Fl. d. Nouv. Grès Rouge, p. 28, Pl. 11I, figs. 6, 7.
Concentric rings obsolete; tracheïds broad, thin-walled, provided with oue to three series of small, strictly contiguous pores; medullary rays simple, of one to twenty superimposed cells. (Göppert.)

Permian formation, Bohemia, Saxony, and Frankreich of Val d'Ajol.

13. Dadoxylon stellare Ung.

Unger, Gen. et Spec. Pl. Foss., p. 380.
Araucarites stellaris Göppert, Foss. Fl. d. Perm. Form., p. 250.
The medulla large, stellato in outline; rings obsolete or 5 to $8^{\text {mm }}$ broad; tracheïds equal, narrow, thick-walled, provided with a single row of small, contiguous pores; medullary rays simple, of two to thirty-three superimposed cells. (Unger.)

Permian formation, Chemnitz in Saxony.
14. Dadoxylon Valdejolense Moug. Sp.

Araucarites I'aldejolensis Mougeot, Essai d'une Fl. d. Nour. Grès Rouge, p. 27, Pl. iII, figs. 1-7 ; Göppert, Foss. Fl. d. Perm. Form., p. 250.
The medulla large, round (?) in outline: rings distinct; tracheïds equal, provided with two, rarely three, rows of small, coutiguous pores; medullary rays numerous, simple, composed of one to twenty superimposed cells. (Göppert.)

Permian formation, Val d'Ajol.

15. Dadoxylon Rollei Ung.

> Unger, Der Versteint. Wald b. Cario, u. s. w., Sitzb. d. mathem-naturw. Cl. d. Akad. zu Wien, Vol. xxxiII, 1858, p. 230, Pl. II, figs. 6-8.
> Araucarites Rollei (Ung.) Göppert, Foss. Fl. d. Perm. Form., p. 250.

Concentric circles even, obscure; tracheïds ample in size, thickwalled, provided with two to three series of small, strictly contiguous pores; medullary rays simple or partly composed of two series of two to forty superimposed cells. (Unger.)

Permian formation, Erbstadt near Bönstadt in the Wetterau.

16. Dadoxylon Richteri Ung.

Unger, Der Versteint. Wald b. Cario, u. s. w., Sitzb. d. mathem-naturw. Cl., d. Akad. Vol. xxxiil, 1858, p. 230, Pl. iI, figs. 9-11.

Araucarites Richteri (Ung.) Göppert, Foss. Fl. d. Perm. Form., p. 251.
Concentric circles even, obscure; tracheïds narrow, thick-walled, prorided with one to two or three series of small subcontiguous pores; medullary rays simple, composed of one to eighteen superimposed cells. (Unger.)

Permian formation, Saalfeld in Thuringia.

17. Dadoxylon Saxonicum Geinitz Sp.

Araucarites Saxonicus Geinitz. Leit. pfl. d. Rothieg., p. 25; Göppert, Foss. Fl. d. Perm. Form., p. 251, Pl. liv ; Lv; Lvi, figs. 2-4; Lx, figs. 1, 2.

Concentric circles distinct; tracheïds large, provided with fire series of spirally disposed, hexagonal pores; medullary rays in a single series of five to thirty superimposed cells. (Göppert.)

Permian formation, Saxony.
18. Dadoxylon pachytichum Göpp. Sp.

Araucarites pachytichus Giöppert. Foss. Fl. d. Perm. Form., 1864-'65, p. 257, Pl. Lvil, figs. 6-9.
Concentric circles distinct; tracheïds with the walls so thick as to almost obliterate the lumen; walls provided with three to five series of hexagonally compressed pores; medullary rays composed of a single series of from five to twenty cells. (Göppert.)

Permian formation, Saxony.
19. Dadoxylon Rhodeanum Göpp. Sp.

Araucarites Rhodeanus Göppert in Wimmer. Fl. von Schlesien, Vol. II, p. 218; Monog. d. Foss. Conif., 1850, p. 235, Pl. xliif, figs. 6-7 ; Foss. Fl. d. Perm. Form., 1864-'65, p. 256, Pl. Lvii, figs. 1-5.
Concentric circles erident; tracheïds moderately thick walled, prorided with one to two series of contiguous pores; medullary rays simple, of oue to many cells superimposed. (Göppert.)

Permian formation, Silesia.
20. Dadoxylon Fleurotii Mougeot Sp.

Pinites Fleurotii Mougeot Essai d'une Flore du Nouv. grès rouge d. Vosges, 1851, p. 26, Pl. III, figs. 2-5.
Araucarites Fleurotii (Moug.) Göppert. Foss. Fl. d. Perm. Form., 1864-'65, p. 257.

Concentric circles distinct; tracheïds narrow, provided usually with a single row of contiguous angular pores, sometimes with two rows of alternating pores; medullary rays in a single series of from four to six superimposed cells.

21. Dadoxylon Permicum Merckl. Sp.

Araucarites Permicus Mercklin. Paleodendrol. Ross. 1856, p. 53, Pl. x, figs. 6-10; Göppert, Foss. Fl. d. Perm. Form., 1864-'65, p. 258.

Concentric circles broad, irregular, scarcely distinct; tracheids ample, usually six-sided, thin walled, provided with two to four, rarely fire, series of contiguous, hexagonal pores, with minute inuer pores; medullary rays equal, thick, mauy-pored, simple, composed of one to trenty, rarely forty, or more superimposed cells. (Mercklin.)

Permian formation, Russia.

22. Dadoxylon cupreum Göpp. Sp.

Araucarites cupreus Göppert. Monog. d. Foss. Conif., 1850, p. 233, Pl. Xliir, figs. 2-4 ; Foss. Fl. d. Perm. Form., 1864- 65 , p. 258.

Concentric circles nearly obsolete; tracheïds ample, moderately thin walled, provided with one to two series of spirally arranged pores; medullary rays tlexuous, composed of a single series of from one to ten large cells. (Göppert.)

Permian formation, Western Urals.

23. Dadoxylon biarmicus Kutorga Sp.

Peuce biarmica Kutorga, Verhandl. d. k. minerolog. Gesell., zu St. Petersburg, 1842, p. 9-11, Pl. if, figs. 4, a, b, c, d.
Araucarites Kutorga Mercklin. Paleodeudrol. Ross, 1856, p. 56; Göppert, Foss. Fl. d. Perm. Form., 1864-'65, p. 258.

Concentric rings distinct; tracheïds large, six-sided, thin walled, provided with one, rarely two, series of small four to six angled pores; medullary rays in a single series of from four to ten superimposed cells. (Göppert.)

Permian formation, Gov. Perm, Russia.
24. Dadoxylon Ægyptiacum Ung.

Unger, Der Versteint. Wald b. Cairo, u. s. w., Sitzb. d. Mathem-Naturw. Cl., 1858, p. 228, Pl. I, figs. 3-5.
Araucatites Egyptiacus (Ung.) Göppert. Foss. Fl. d. Perm. Form., 1864-'65, p. 259.

Araucarioxylon Egyptiacum Kraus. See Schenk. Foss. Hölz. d. Liby. Wüste. in Palæontographica, vol. xxx, 1883, p. 3, Pl. 1, figs, 1,2; if, figs. 3.

Concentric rings indistinct; tracheïds large, thick walled, provided with two to three series of small pores; medullary rays simple, formed of one to six superimposed cells. (Unger.)

Formation doubtful, possibly Cretaceous, near Cairo, Egypt.

25. Dadoxylon Keuperianum Endl.

Endlicher, Syn. Conif., p. 299. Arancarites Keperianus Göppert, Monog. d. Foss. Conif., p. 234.

Concentric rings obsolete; tracheïds rather narrow, thin walled, provided with one to two series of small, strictly contiguous pores; medullary rays simple or compound, of two to fifty superimposed cells in one or two series. (Göppert.)

Permian formation, Frauconia and Wiirtemberg.

26. Dadoxylon Thuringiacum Born. Sp.

Araucarites Thuringiacus Bornoman, Org. Reste. d. Lettenk. Thuring., 1856, p. 61, Pl. II, III, figs. 1-8.

Concentric rings indistinct; wood cells thick walled, narrow, lumen small; walls provided with one to two series of contiguous, round or slightly angular pores; medullary rays composed of a siugle series of from one to twelve superimposed cells.

1. Araucarioxylon Arizonicum Knowlton.

Proc. U. S. Nat. Mus., vol. xi, 1888, pp. 1-4, Pl. i.
Araucarites Mölhausianus? Göpp., in Müllhausen's Tagebuch einer Reise voms Mississippi nach den Küsten d. Siidsee. Leipzig, 1858, p. 492.

Annual ring not apparent to the naked eye, but under the microscope observed to be present, the yearly growth being separated by a layer of two to five tangentially compressed cells; tracheïds with moderately thick walls, which are provided on the radial sides with a single row of large contignous pores or rarely with two rows of alternating pores, and on the tangential sides with numerous separated, perfectly round, small pores; medullary numerous composed of a single series of one to twentytwo short superimposed cells; resin ducts none. (Knowlton l. c.)

Шabitat.-Triassic or lower Jurassic, near Fort Wingate, New Mexico; Lithodendron Creek and Chalcedony Park, Arizona.
2. Araucarioxylon Edvardianum Dn. Sp.

Dadoxylon Edrardiamum Dawson. Rept. on Geol. Struct and Mineral Resources of Prince Edward Island; Montreal, 1871, p. 45, Pl. iII, figs. 25-27.

Trunks without distinct rings of growth, and with a central Pith not observed to hare transverse laminæ. Wood cells with one, or rarely two, of contignous hexagonal areoles. Medullary rays simple, infrequent, with two to ten rows of cells superimposed.

Habitat.-Triassic, Prince Edward Island.

3. Araucarioxylon Wurtembergiacum Kraus.

Schimp. Pal. Vég. ir, p. 384.
Pinites Wïrtembergiacus Göppert. Monog. d. Foss. Conif., 1850, p. 212.
Concentric circles (nearly 10^{mm} broad) indistinct; tracheïds equal, narrow, thick walled, provided with a single series of small contiguous pores; medullary numerous, composed of one to ten superimposed cells.

Habitat.-Jurassic formation, near Wiirtemberg and Waidhofen.

4. Araucarioxylon Virginianum Knowlton.

Fossil Wood and Lignites of the Potomac Formation, Bull. U.S. Geological Survey, No. 56, p. 50, Pl. vir, figs. 1-4.

Annual ring very indistinct, about $2^{\text {mm }}$ broad; tracheïds bearing one to two rows of hexagonal pits on the radial walls, mudullary rays simple; of one to twenty-seren superimposed cells; resin ducts none.

Нabitat.-Potomac Formation, Taylorsville, Virginia.

5. Araucarioxylon Argilliacola Eichw. Sp.

Araucarites Argillicola Eichwald. Lethea Rossica, Vol. ir, 1865, p. 51, Pl. v, figs. 12-12c.

Concentric circle indistinct; tracheïds quadrate-ovate in section, small, thick-walled, provided with two, rarely three, series of angular pores; medullary rays provided with small pores.

Habitat.-Russia.

6. Araucarioxylon Dœringii Conwentz.

Sobre Algunos árboles Fosiles del Rio Negro. Boletin de la Acad. Nacional d. Cienc. en Cordoba, Vol. vir, 1885, p. 448.

Concentric circles distinct, broad, the exterior zone narrower ; tracheïds provided with a single series of contiguous or with two series of alteruate pores ; medullary rays composed sometimes of a single series of from one to sixteen superimposed cells, sometimes of two series of from five to forty cells.

Habitat.-Rio Negro, South America. (Suboligocene.)

7. Araucarioxylon Heerii Beust.

Beust, Untersuch. ii. Foss. Hölzer aus Grönland. Neue Denkschriften d. allg. Schw. Gesellsch. f. d. gesammt-Naturwiss., Vol. xxix, 1884, p. 16, Pl. I, II, iII, fig. 9.
Concentric circles less distinct, 2 to 3^{mm} broad, both exterior and interior zones composed of thick-walled cells, which are rectangular, oval, or rarely hexagonal in transverse section; pores large, hexagonal, in one to two or rarely three contiguous series ; medullary rays numerous, simple or compound, composed of one to eighty-two superimposed cells, of which one, rarely two or very rarely three, come opposite to a single tracheïd ; resin ducts none.

Habitat.-Stanekerdluk, Greenland.

8. Araucarioxylon Schmidianum Schleiden Sp.

Felix, Studien ii. Foss. Hölzer. Inaug-Diss. Univ. Leipzig; Leipzig, 1882, p. 62. Pence Schmidiana Schleideu, ueber d. Nat. d. Kieselhölzer ; Jena, 1855, p. 36. Cedroxylon Schmidiana Kraus in Schimp., Pal. Vég., ı1, p, 373.
Annual circles evident or sometimes indistinct; tracheïds provided with a single row of large contiguous pores; medullary rays two to fifty-five cells high, one to three cells broad.

Habitat.-Tiruvicary and Pattacary, near Poudicherry, India.

9. Araucarioxylon Robertianum Schenk.

Engler's Bot. Jahrb., Bd. III, 1882, p. 355.
Annual rings sharply separated by the presence of two or three layers of tangentially compressed tracheïds in the fall-wood; summerwood passing gradually into the fall-wood ; walls of the tracheïds provided with one to four rows of spirally placed pores, which are irregularly compressed or hexagonal ; medullary rays numerous, in a single row or in the middle, rarely in two rows of cells, which range in number from one or two to twenty-four, or rarely as many as forty-two to forty-four.

Habitat.-Assanole, near Ranigaudsch, India.

10. Araucarioxylon latiporosum Kraus.

Schimp. Pal. Vég., II, p. 384.
Pinites latiporosus Cramer in Heer's Flor. Foss. Arct., Vol. I, 1868, p. 176, Pl. Lx, figs. 1-8.
Annual rings distinct, 3.48 to 6.1^{mm} broad; wood-cells 1.9 to 2.7^{mm} long, 20 to 90.3 micro-millimeters thick, 46.6 to 80μ broad, provided with a single row of large contiguous pores, which have an outer average diameter of 35 by 17 micro-millimeters and an inner diameter of from 8.4 by 3 to 6 micro-millimeters; average number of pores to each wood-cell ten to thirteen, sometimes as many as forts; medullary rays composed of a single series of four to seventeen superimposed cells, the
whole ray having a height of 76.5 to 379.9μ; individual cells are 15.3 to 24.5μ (average of one hundred and ninety cells 20.64μ) in diameter, 136 to 192_{μ} (average 152_{μ}) long, and about 20μ broad; the medullary rays are provided with numerous very large, roundish or elliptical pores, which have a breadth of 10 to 64μ and a height of 10 to 20_{μ}.

Habitat.-Green Harbor, Spitzbergen.

11. Araucarioxylon Hügelianum Kraus.

Schimp. Pal. VÉg., II, p. 384.
Pinites Hïgelianus Göpp. in Bronn's Gesch. d. Nat., Vol. III, pt. 2, p. 40; Monog. d. Foss. Conif., 1850, p. 214.

Concentric circles (2^{mm} broad) indistinct; tracheïds all thick walled; pores small, in a single contiguous series or separated; medullary rays numerous, simple, of two to twenty-four narrow superimposed cells.

Habitat.-Tasmania. "Formation probably oülitic." Schimper.

12. Araucarioxylon subtile (Merckl.) Kraus.

Schimp. Pal. VÉg., ir, p. 384.
Araucarites subtilis Morcklin in Paleodendrologicon ross., 1856, p. 54, Pl. xı.
Concentric circles distinct, 5 to $7^{m m}$ broad; the cells thin walled; pores spirally disposed in tro serles, contiguous, angled, small, or in a single series, being there subrectilinear, oval and remote; internal pore very small; medullary rays numerous, in a single series of one to fifteen superimposed cells.

Habitat.-Eastern Russia. (Siberia?)

13. Araucarioxylon Möllhausianum Göpp. Sp.

Araucarites Möllhausianus Göppert, in Möllhausen's Tagebuch einer Reise vom Mississippi nach den Küsten der Siidsee. Leipzig, 1858, p. 492.
This species was not described by Göppert and consequently can not be identified. It is possibly the same as Araucarioxylon Arizonicum Knowlton (ante p. 614).

Habitat. - New Mexico.

DOUBTFUL SPECIES.

Dadoxylon Sternbergli Endl.
Synops. Conif., p. 300. Araucarites Sternbergii Göppert, in Brown Gesch. d. Nat., iII, 2, p. 41.

Araucarites Edwardianus Göpp.
See Beust Untersch. ï. foss Hölzer aus Grönland ; (Neue Denkschriften, Bd. xxıx, 1884) Ubersichts Tab. I.
U. S. National Museum, Jamuary, 1889.

NOTES ON NORTH AMERICAN CRAYFISHES-Fainily ASTACIDÆ.

BY
Walter Faxon.

The following notes are the result of an examination of the North American Astacidie receired at the U. S. National Museum and the Museum of Comparative Zoölogy and also those collected by the field parties of the U.S. Fish Commission since the publication of the first part of the author's revision of that group.* Herein are included full descriptions of all the new species discovered since the publication of that work, together with such additions as have been made to our knowledge of the distribution of these animals. The notes thus form a supplement to the Revision of the Astacidæ.

> Cambarus blandingii (Harl.).

Additional localities: North Rirer, Lexington, Virginia; Dismal Swamp, outlet of Lake Drummond, Suffolk, Virginia; Tar River, Rocky Mount, North Carolina; Neuse River, Raleigh, North Carolina. Collected by D. S. Jordan (U. S. F. C.).

Cambarus blandingii acutus (Gir.).
York, Clark County, Illinois. H. G. Hodge (U. S. N. M.).

Cambarus versutus Hag.

Additional locality: Escambia River at Flomaton, above Pensacola, Florida. D. S. Jordan, B. W. Erermann, and C. H. Bollman (M. C. Z.). A young male. The rostrum tapers a little more than in the type specimens from Mobile, Alabama, and is lightly carinate above in the median line. In these respects it agrees with the specimens from Cape Barrancas, Florida, mentioned ou page 34 of my Rerision of the Astacide.

Cambarus alleni Fax.
Caloosahatchee River, Florida. W. H. Dall (U. S. N. M.). Two males, form I, two females. In the female (now known for the first time) the chele are short and broad compared with those of the male.

[^62]In an individual 78^{mm} long the chela measures 25 by 9.5^{mm}, while in a male 71^{mma} long the chela is 35 by 9^{mm}. The annulus ventralis forms a prominent tubercle. The rostrum is subdenticulate near the apex.

Cambarus evermanni, sp. nov.
Male, form I.-Rostrum broad, triangular, smooth, moderately concave above, margins raised into sharp crests which extend well back on the carapace between the post-orbital ridges ; no lateral spines. Postorbital ridges without spines. Carapace compressed laterally, fore border hardly angulated below the eye; punctate above, granulate on the sides, no lateral spine, branchiostegian spine small; distance from the cervical groove to the hind border of the carapace scarcely one-third the length of the whole carapace; areola of moderate width. Abdomen longer than the cephalothorax; two spines on each side of the hind border of the basal segment of the telson; terminal segment of the telson shorter than the basal. Anterior process of the epistoma subtruncate. Basal segment of the antennule furnished with a spine on the inner margin of the ventral surface half way between the proximal and distal extremities. Anteme shorter than the body, spines on the second and third segments obsolescent; antennal scale broad, broadest in the middle, surpassing the rostrum aud equaling the peduncle of the antenna. Third pair of maxillipeds setose within and below. Chelipeds slender; chela long, subeylindrical, squamoso-tuberculate, inner border provided with a row of about seven dentiform tubercles; fingers as long as the haud, straight, with longitudinal ribs; carpus tuberculate on the inner side, armed with one prominent spine on the inner border; meros tuberculate on the upper margin, with two rows of spines below. Third and fourth pairs of legs hooked on the third segment; hooks of both pairs simple. Fourth and fifth pairs of legs with a flattened, laminate tubercle on the basal segment, that on the fourth pair the larger. Anterior abdominal appendages of moderate length, somewhat recurved at the end, outer part terminating in a horny truncate head with a slightly developed recurved tooth, beared anteriorly on the outer side; imer part terminating in an articulated spine obliquely placed, and not excceding the outer part of the appendage.

Length, 70^{mm}; from tip of the rostrum to the cervical groove, 22^{mm}; from the cervical groove to the posterior margin of the carapace, 10^{mm}; abdomen, 37^{mm}; cheliped, 65^{mm}; chela, 33 by 7^{mm}; width of areola in its narrowest part, 2^{mm}.

Escambia River at Flomaton, abore Pensacola, Florida. D. S. Jordan, B. W. Erermann, and C. H. Bollman (M. C. Z.).

This species belougs to group I, (type, C. blandingii). It is nearly related to C. alleni Fax. but differs in the form of the first pair of abdominal appendages (cf. the description of those parts in C. alleni, Rev. Astacidæ, p. 35), in the simple structure of the hnoks of the fourth
pair of legs, in the presence of a flattened tubercle on the basal segment of the fourth pair of legs, in the shorter metacarapace, broader areola, long spiny telson, etc. The male appendages are similar to those of C. fallax Hag., as are also the tubercles on the basal segment of the fourth and fifth pairs of legs. More specimens of the three related species C.alleni, C. evermanni, and C. viegmanni are much needed in order to elucidate the structure of the female and the two forms of the male.

Cambarus barbatus Fax.

> Astacus penicillatus Le Conte, Proc. Acad. Nat. Sci., Phila., VIr, LR55, p. 401, (nec Olivier, 1791).
> Cambarus penicillatus Hagen, Ill. Cat. Mus. Comp. Zö̈l., No. III, 18\%0, p. 53. Faxon, Proc. Amer. Acad. Arts and Sci., xx, 1884, p. 138. Id., Mem. Mus. Comp. Zoöl, x, No. 4, 1885, p. 36.

Additional locality: Escambia River at Flomaton, abore Pensacola, Florida. D. S. Jordan, B. W. Evermann, and C. H. Bollman (M. C. Z.). One male, form I; five females, five young. The ammulus ventralis of the female is divided by a deep, longitudinal furrow into two prominent tubercles, each of which is denticulate. The inner margin of the hand is serrate, but not bearded as in the male. Length, $60{ }^{\mathrm{mm}}$. After examining these undoubted specimens of Le Conte's Astacus penicillatus I an confident that the second-form males and the females from Charleston, South Carolina, referred to this species by Hagen (op. cit., p. 54; cf. Faxon, Mem. Mus. Comp. Zoül., x, No. 4, p. 37) belong to some other species.

Following the code of nomenclature adopted by the American Ornithologists' Union* (canon xxxini, p. 47), Le Conte's specific name penicillatus must be rejected, since it had been used previously by Olivier (Encyc. Méth., Hist. Nat. des Insectes, vi, 1791, p. 343), in combination. with the same generic name, for another animal (Palinurus penicillatus of recent authors).

Cambarus pellucidus (Tellk.).

This species has been reported from the following caves in Indiana, besides the Wyandotte and Bradford Caves; caves at Clifty, Bartholomew County (Dr. John Sloan); Mayfield's Cave, near Bloowington, Monroe County (C. II. Bollman). \dagger These cares are in the White River drainage. For further remarks on C. pellucidus see below under C. setosus.

> Cambarus simulans Fax.

Additional locality: Tributary of Medicine River, Barber County, Kansas. Messrs. Williams and Cragin (M. C. Z.).

[^63]
Cambarus gracilis Bundy.

Additional localities: York, Clark County, Illinois, H. G. Hodge (U. S. N. M.) ; Labette County, Kansas, W. S. Newlon (M. C. Z.).

Cambarus bartonii (Fab.).
Additional localities: St. John River, just above Grand Falls, New Brunswick, W. F. Ganong (II. C. Z.) ; head of Kemmebec River, outlet of Moosehead Lake, Maine, Edwin Faxon (M. C. Z.) ; Shenandoah River, Waynesborough, Virginia, D. S. Jordan (U. S. F. C.) ; Peak Creek, Pulaski, Virginia, D. S. Jordan (U. S. F. C.); Swanuanoa Riser, Black Mountain, North Carolina, D. S. Jordan (U. S. F. C.) ; Bloomington, Indiana, W. S. Blatchley (M. C. Z.). Prof. D. S. Jordan informs me that he has found Cambarus (C. burtonii, doubtless,) in a tributary of the Housatonic River, Berkshire County, Massachnsetts. It had been kuown previously in that county only from Williamstown. With reference to the distribution of C. bartonii in the Province of Quebec and in New Brunswick Mr. W. F. Gauong has called my attention to the fact that it was recorded by Dr. Robert Bell,* as long ago as 1859 , as abundant in the Restigouche, Matapediac, and Metis Rivers. Dr. Bell also found one specimen just below the high falls of the Ouiatchouan, a stream which empties into the south side of Lake St. John in Quebec. In 1865 Prof. II. Y. Hind* mentions a Cambarus (doubtless C. bartonii) in the Upsalquitch, a tributary of the Restigouche. Mr. Ganong* himself has lately published a paper on the distribution of C. bartonii in New Brunswick, in which attention is drawn to its occurrence at many points in the St. John River aud its affluents, from Grand Falls to Fredericton, and additional testimony is given as to its presence in the Restigouche aud Upsalquitch. Mr. Ganong was informed that it was rery abundant in the sonthwest Miramichi also, but he searched for it without success in the St. Crois. The northern limit of its distribution, then, so far as known, is the Ouiatchouan, Metis, and Matapediac Rivers, in the Province of Quebec, while the eastern limit is the Miramichi, New Brunswick.

Specimens of C. bartonii from Bloomington, Indiana, like all that I have seen from that State, are a smooth form, with very narrow areola and obsolete internal basal carpal spine.

Cambarus bartonii robustus (Gir.).
Additional locality: W ytheville, Wythe County, Virginia. Col. M. McDonald (U. S. F. O.).

[^64]
Cambarus longulus Gir.

Cambarus longulus Girard, Proc. Acad. Nat. Sci. Phila., vi, 1852, p. 90.
Cambarus bartonii (part.) ? Hagen, Mon. N. A. Astacidx, pp. 78, 79, 1870. Faxon, Proc. Amer. Acad. Arts and Sci., xx, 1884, p. 143. Id., Rev. Astacidæ, pt. I, p. $66,1885$.

Waynesborough, Virginia; Lick Run, James River, Virginia; North River, Lexiugton, Virginia; Wytheville, Virginia; South Fork of Holston River, near Marion, Virginia; Spring Creek, Hot Springs, North Carolina; Watauga River, Elizabethton, Tennessee. Col. M. McDouald and Prof. D. S. Jordan (U. S. F. C.). Specimens in the Museum of Comparative Zoölogy from Bath County, Virginia, from near White Sulphur Springs, West Virginia, and from Knoxville, Tennessee, probably belong to this species, but they are too young to determine with certainty.

It is only after examining the large number of specimens (orer one hundred, including females and both forms of the male), collected by Colonel McDonald and Professor Jordan, that I am prepared to restore this form to the full rank of a species. When the Monograph of the North American Astacide was written, Dr. Hagen had seen but one specimen (Girard's type), and he inclined to regard it as a deformed individual of C. bartonii. His description of the type specimen shows that it is the same as the form now under consideration. Compared with the typical C. bartonii from eastern Peunsylrania, the rostrum of C. longulus is much longer and narrower, deeply excavated above, the sides thickened, somewhat concave and convergent, with longer acumen ; the antennæ scale is produced into a longer spine; the carapace is more finely punctaterl, the hepatic and branchial areas smoother, the suborbital augle commonly but little or not at all dereloped; the chele are smoother and broader; the fingers more cylindrical, without the longitudinal rid ge along the upper face of the outer finger, widely separated at the base, the outer one bearded within at the base and along the margin; the basal spine of the inner margin of the carpus is absent. The beard on the hand is densest in small specimens, being more or less removed by attrition in old individuals. In specimens from Marion, Virginia, Spring Creek, North Carolina, and Elizabethton, Teunessee, the suborbital augle is prominent, as in C. bartonii. In C. bartonii longirostris Fax. (Rev. Astacidæ, p. 64), the rostrum is not so much contracted, its margins not so much thickened as in C. longulus, in fact the rostrum of spinirostris has about the same shape as that of C. bartonii robustus; the sides of the antennal scale are straight and nearly parallel to one another; the fingers are not separated more than in the typical C. bartonii and not so densely bearded as in C. Inngulus. It connects with the typical bartonii through robustus. But I have hardly enough material before me to give spinirostris a firm place as a subspecies.

Girard did not know whence his type of C. longulus came. As far as known it is found in the elevated parts of Virginia, West Virginia, western North Carolina, and eastern Tennessee, drained by the Shenenandoah, James, Kanawha, and Holston river-systems. It is thus found on both sides of the Appalachian water-shed.

Cambarus bartonii and C. longulus are both found in Reed Creek at Wytherille, Virginia, with no indication of the two forms interbreeding. But it is not ou this account that I consider them two species. I hare reason to believe that oftentimes in this genus mere rarieties, coming into contact in a given locality, are perpetuated by breeding true, when, by extending our geographical range, every intermediate condition comnecting the two forms will be found still surviving. Nowhere do we seem to come so near to seeing the process of evolution of species going on under our very eyes as in this genus Cambarus. It seems to me that the only criteria of a species must be the amount and character of the rariation, and the absence of intermediate forms not in one locality alone but over the whole area of distribution.

Cambarus acuminatus Fax.

Additioual localities: Swannanoa River, Black Mountain, North Carolina; James River, Morgantown, North Carolina; Neuse River, Raleigh, North Carolina; Reedy Fork, Cape Fear River, Greeusborough, North Carolina. D. S. Jordan (U. S. F. C.).

The specimen (a female) from Morgantown agrees with the type of C. acuminatus from the Saluda River, South Carolina, in the lack of a suborbital spine. In the others this spine is present as in the North Carolinian specimens mentioned on page 68 of the Revision of the Astacidæ.

Cambarus dubius Fax.
Additional locality: "Among the Cherokees," Indian Territory. One male, form I. James Mooney (U. S. N. M.).

This species was previously known ouly from the remote Appalachian Mountain region of Virginia and West Virginia. According to the label accompanying the specimen it is called Tsisgágili (red crayfish) by the Cherokee Indians.

Cambarus diogenes Gir.
Additional localities: Prince William Counts, Virginia, Dr. H. C. Yarrow; Kankakee River, Riverside, Indiana, C. H. Gilbert; Kokomo, Indiana, A. W. Moore (U. S. N. M.).

Cambarus argillicola Fax.
Additional locality: Lowlands bordering on Wabash River, York, Clark County, Illinois. H. G. Hodge (U. S. N. M.).
According to the manuscript label accompansiug these specimens, they were found in burrows from 18 inches to 2 feet in depth, contain-
ing from 6 inches to 1 foot of water. At the month of these burrows were mud chimneys 5 inches high. The soil was blue clay mixed with sand and gravel. At least three species build chimness, viz: C. diogenes, C. argillicola, and C. dubius.

The specimen from Kelley's Island, Lake Erie, Ohio, inadrertently referred to C. diogenes in my Revision, p. 71, is C. argillicola. I have not yet seen C. diogenes from the State of Ohio.

Cambarus setosus Fax.
Cambarus setosus Faxon, Bull. Mus. Comp. Zöol., Xvir, No. 6, 1889, p. 237, pl. r, figs. 1, 2,3, 7, pl. If, fig. 1.
Rostrum rather short, triangular, slightly concave above, terminating in a short, upturned horny tip; sides conves, raised into sharp crests; no lateral teeth except in small specimens which show a rudimentary spiny tooth on each side of the base of the acumen; margins setiferous. Post-orbital ridges obsolescent, destitute of spines. Carapace subcylindrical, flattened above, the region behind the cervical groove very long; smooth and punctate above, granulate on the hepatic and brauchial areas; a small spine on the antero-lateral border, a little way above the anterior end of the cervical groove. Areola very narrow, sides subparallel for some distance. Abdomen longer than the cephalothorax, sparsely setose; pleura rounded ; telson of moderate length, proximal segment bispinose (occasionally trispinose) on each side. Anterior process of the epistoma broadly transverse, anterior border notched or dentate. Sternum tuberculate between the first to third pairs of legs. Eyes and eye-stalks rudimentary, but not wholly covered by the rostrum. Basal segment of the antennule furnished with a sharp spine below, near the distal end. Antenne as loug as, or longer than, the body; antenual scale surpassing the rostrum, very broad, the broadest part near the distal end; outer margin setose, couvex, inflated, ending in a sharp but not very loug spine. Third maxillipeds hirsute. Chelipeds of moderate length; chela long, setose, inner and outer margins of the haud provided with blunt tubercles irregularly disposed in a double row; fingers, long, incurved, opposed edges straight, bluntly toothed near the base, finely pectinate throughout their length, tips curred, corneous and acute. Carpus armed with a prominent internal median and inferior median spine; in addition to these there are in older specimens a variable number of small spines on the inner, lower, and outer faces. Upper margin of the meros spinulose, lower face with the usual biserial arrangement of spines.

In the male the third pair of legs is hooked on the third segment. The first abdominal appendages are similar to those of C. bertonii, ending in two recurved hooks, the outer of which is corneous and acute in in form I, the inner long, slender, and membranaceous. In form II both hooks are membranaceons, short, blunt, and not so widely separated as in form I.

Proc. N. M. $89-40$

In the female the ammus rentralis is very protuberant, especially the posterior horler, and subcircular, with a deep central cavity.

In young individuals the chela and carpus are nealy destitute of the tubercles found in full grown specimens.

Length of a female, 倣"m; cephatothax 31.5mm from tip of rostrum to cervical groove, $17^{\text {mun }}$; from cervical groore to posterior margin of campace, 14.5"mi ; chela, 2Smin ; headh of chela, Smin ; movable finger, 18^{mm}; abdomen, 34^{mm}.

The arrangement of the olfactory s-tie on the outer flagellim of the antemules is similar to that in C. pellucidus, i. e., of the thinty seg. ments of the flagellum, the sixteenth to the twentr-seventh hear olfactory setie, and these setie are long, as in the other hind speries on" C'ambarus. The pecuhar pectination of the cutting edge of the fingers I have not observed in any other species.

From Wilson's Gave and wells in Jasper Comnty, Missomi. Miss IUuth Hoppin (M. C. Z.). Three males, form I; sixteen males, form II; fifteen females.

The drainage of Jasper County, which lies in the sonthwestern part of Missouri, goes to the westward and then southward by the Nensho or Grand River into the Arkansas The following accome of Wihson's Cave and the wells from which this cras fish was taken, with remarks on the habits of the ammal, is extracted from Miss Hoppin's letters printed in Mr. Sammel Garman's paper on the cave animals of sonthwesteru Missouri.*

Wilson's Cave is about 50 feet lons, nearly as wide, oven-shaped, and h gh enough to stand erect excopt aromal the sides. The farmer had enlaraed the entrance to uso the place as a creamery. A small very clear stream flowed along the left side, having a width of 2 feet and a depth of 3 , with a temperature of $+54^{\circ} \mathrm{F}$. About 10 feet from the entrance the light struck the stream in such a manuer that we could see everything in the water without a lantern. The first thmes that canght the eye were a lot of white crayfish, a dozen in all, like those I took from the wells. It seemed as if I misht takeevery oue if them. But, though hlint, they lave one or more of the other senses very keenly developed. I an very sure they, as well as the white fishes [Typhlichthys subturonens (iir.]. have the tactile smase developed in an musual degree. At the least touch upon the water they dart away. As the net cautiously follows, they eseape adroity, making no bhmbers as to the direetion of the approarhing enemy, and hide in crevices of the jutting rocks or in the muddy bottom of the stream. The mud was easily stirred so that nothing could be seen. These creatures, fish and crayfish, are only to be secured by patient waiting and skillful management. The people at the cave say the fish never bite, and can not be laken with hook and line. The crayfish were all found near the entrance, where there is considerable light. Following the stream back to a dark recess, reached by crawling on the slippery rocks, the light of the lautern revealed a school of little white fishes, such as I secured from the wells. All were very swall. I saw half a dozen or more, but secured only one. I concluded the crayfish liked the light. Perhaps they remain near the entrance becanse they find there a supply of food. We found a few snails floating about, but saw none in the dark pool where the fish were.

[^65]Miss Wilson, who was with me, thinks the erayfish devour the others. She has never seen them fogether, and sags the latter kew away from the former, though she had not noticel the erayfish catching or eating them. There was nothing to prevent the crayfish ascending the stream to where the others were.

On my first risit, the water being low, no crayfish were seen in the dark nook, the place favored by the fish. After the storm which had flooded the caves, a few were found there. Though I watched for some time, I never saw them pursue the fishes, as they might easily lave done, guided by the stir in the water. Both creatures are very sensitive to the slightest ripple. During high water a pool, "tho lake," is formsd a little way from the stream in another dark part of this cave. In low water the pool is cut off from the creek. I found both species in it, the fish in the darkest part, and saw no signs of emmity. Most of the eray lish were fombl in the lower part of the stream, in the twilight; the fishes could not be found without the lantern. At the time of the floods the cave is full, and the water rushes ont furiously.
Another proof that the craydish are more fome of the light is seen in the shallower wells. That from which most were taken was more exposed to the sun. At noon, when the light was more favorable, we could see them swimming about. No fishes have been taken from this well. They were takeu in the narrower, more shaded wells, of which the deep ones on the hills report fishes only.

As to the food of the lishes, I diseovered nothing. The mod where they were was not so deep as farther down. An examination of it the length of the care bronght to light many snails; the shells of the living ones are whiter and more nearly transparent than the floating dead unes. The largest craylish are of a dirty rusty color, and very bristly, in caves and in wells. One large one is very soft and very white ; no doubt it is newly moulted.

Both fish and crayfish were less mmerons after the freshet, and apparently less active. The disturbance of the flood may have caused them to retreat into their hiding places, ouly the weaker being left behind, or some may have been swept away hy the torrent. The smsitive creatures would soon die in the light and heat outside, where the water is full of frogs and eyed-crayfishes. * * * The specimons became oparue when thes are put into alcohol; thes are almost transparent when alive, so much so that the action of their internal organs can be observed. Repeated tests assured me the animals were blind, thongh very seusitive to the sunlight. They died soon after catching, even in water frequently changed.

The wells from which specimens have been taken are about half a mile from Center Creek, the water level in wells and creeks being nearly the same. The wells were nine or ten in number, from 5 to 80 rods apart, from 11 to 30 feet in depth, deeper in the higher gromm, and having a depth of water varying from 2 to 4 feet. In some wells the rock at the bottom had been excavated. The water is what is commonly called hard, i. e. impreguated with lime. After rains some of the wells have softer water than others, and the water stands higher in these wells, imbicating closer connection with surface drainage. All of the wells soon regain the common level. They become low in times of drouth, but never dry out entirely, as is the case with a cave spring near by, abont 12 feet above the level of the creek. The temperatures taken in the wells at low water rauger from $+52^{\circ}$ to 54° Fahr. During a storm in the well haring the highest water, the temperature rose to $+57^{\circ}$.
 54° in Wilson's Cave.

According to Miss Moppin, the yomg of C. setowus when alive are not so white as the older ones.

At first I attributed it to greater transparency, but now I am sure the color is in the shell, not that the internal organs can be seen hecanse of the transparent shell. Thes are not so dark, however, as the brook species [C. virilis] of the same size.

In connection with Miss Hoppin's observations on the crepuscular habits of this species it is interesting to note that the atrophy of the visual organs has not progressed so far as in the other blind crayfishes of the United State», C. pellucidus and C. humulatus.* In other respects, also, C. setosus is more closely related to outside, eyed species than is either of the other cave species. This donbtless results either from the twilight conditions under which it lives, or more probably from its having beeu subjected for a shorter period of time to cavern influences.

The three blind species, although belonging to two sections of the genus, resemble each other in the slenderness of the body and claws and in the width of the antenual scale. The sleuderness of the bods and claws in these species may be attributed to their life in cares, where competition is largely remored and physical power ceases to be an important factor in their existence. The width of the antennal scale is probably a variation correlated to the atrophy of the adjacent eye and ocular peduncle. In short, these points of resemblance between the three care species, like the rudimentary state of the eye and the transparency of the shell, are of little value from a taxonomic point of view, not indicating close genetic affinity, but surely appearing in widely diverse species, provided they be subjected to the same subterranean life. The closer superficial likeness between C. pellucidus and C. hamulatus, belonging to different sections of the genus, than between C. hamulatus and C. setosus belonging to the same section, may be explained by the longer period of time during which the subterranean influences have probably been exerted upon the first two species.
G. C. Broadhead (Report of the Geological Surrey of the State of Missouri, 1874 , p. 36) states that blind cray fishes are found in the care region of Christian County, uear Ozark, in sonthern Missouri. It is probable, from the locality, that they are the same species as those from Jasper County.

Cambarus affinis (Say).

Additional localities: Shenandoah River, Waynesborough, Virginia; Blackwater River, Zuni, Virginia; Patoka River, Patoka, Indiana. D. S. Jordan (U. S. F. C.).

The specimens from Patoka, Indiana (six males, form I; four females), differ from the typical C. affinis as follows: The areola is broader in the middle, there is but one lateral thoracic spine, the hepatic area is smoother (merely granulate, instead of spinous), the branchiostegian

[^66]spine is much smaller, and the hand more inflated and triangular; the cephalathorax is slenderer, the antenne longer ; the male appendages are very similar to those of the typical form, but the free tips are a little longer and slenderer. In the smoothness of the carapace and, to some extent, in the shape of the hand this form appraches C. sloanii Bundy, but the male organs and the amulus ventralis are very nearly like those of the typical C. affinis. I prefer to call it a western variety of C. affinis. The largest is 60^{mm} in length. The specimens from Lake Erie referred to C. affinis in my Revision are too small to determine with certainty.

Cambarus propinquus Gir.

Additional localities: Marshall, Michigan ; St. Mary's Lake, mouth of Battle Creek, Michigan ; Kalamazoo River, Michigan, U. H. Bollman (U. S. F. C.) ; Lafayette, Indiana, H. L. Osborn (M. C. Z.).

Cambarus neglectus Fax.
Cambarus neglectus Faxon, Bull. Washburn Coll. Lab. Nat. Hist., Topeka, Kausas, Vol. I, 1885, p. 142.
Male, form I.-Rostrum broad, slightly excarated, with a median longitudinal carina toward the apex; sides nearly parallel from the base to the lateral spines, which are very small and of a brown color; acumen of moderate length. Post-orbital ridges with very small anterior spines (sometimes none). Carapace oval, flattened above, punctate, lightly granulate on the sides, lateral spine minute or obsolete antero-lateral border angulated below the eye; anterior segment equals, at the most, twice the leugth of the posterior segment ; areola of moderate width. Abdomen longer than the cephalothorax; basal segment of the telson bi-spinous on each side of the posterior margin. Anteunæ shorter than the body ; lamina as long as the rostrum, broadest toward the distal end, apical spine of moderate length. Anterior process of the epistoma long, subtruncate. Third maxillipeds hairy within, naked below. Chelipeds short; chela broad, punctate above and below, inner margin furnished with a double row of depressed tubercles; fingers of moderate length, more or less gaping at the base, with a row of round tubercles on their opposed edges, outer margin of the movable finger also furnished with low tubercles; carpus broad, punctate abore, with a strong median spine on the internal side aud a small one near the base, no spines on the lower side. Superior border of meros armed with two obliquely-placed anteapical spines, lower face of meros with two rows of spines. Third parr of legs hooked. First pair of abdominal appendages nearly straight, reaching forward to the first pair of legs, terminating in two long, slender, pointed, horuys styles; the anterior style (outer part of the appendage) is a little longer than the posterior and slightly recurved; anterior border of the appendage carinate but not shouldered.

In the second form of the male the first abdominal appendages are cleft but a short distance. The terminal part of the appendage is stouter than in the first form, and not horny, and the tips of the rami are rather blunt.

The annulus ventralis of the female is triangular, with a deep transverse fossa homuded on all sides by a prominest wall which is bituberculate in front.

Dimensions of a male, form II : Length, 68mm ; cephalothorax, 32mm; from end of rostrum to cervical groove, $21^{\text {min }}$; from cervical groove to posterior margin of carapace, $11^{\text {min }}$; width of areola, $2^{\text {mun }}$; abdomen, 36^{mm}; chela, 25 by 10.5^{mm}.

Mill Creek, Wabaunsee County, Kansas; Republican River, near Guy, Chesenne County, Kansas; Sappa Creek, Oberliu, Kansas. (M. O. Z.).

This is the species mentioned, but not named, in my Revision of the Astacida, page 9f, under (. propinquas. When that work was written I had seem but three specimens of this maytish, all of them secomi form males, withont lecality. Uollections sent from Kansas by I'rof. F. W. Cragin sunply the first form of the mate and the female. In genemal appearance this species neanly resembles $(\therefore$ propinquus, but the fore border of the carapace is angulated under the eye, and the sexual appendages of the male are quie different, resembling those of C. rusticus placidus. The annulus ventralis of the female is different also.

The tips of the fingers in recent alcoholic specimens are orange colored, preceded by a dark aunular band.

Cambarus virilis Hag.

Additional localities: Spencer Creek, Michigan; Baruum Lake, south of Battle Creek, Michigan; Bear Creek and Hinkson Creek, Columbia, Missouri; West Fork of Black River, Reymohls County, Missouri; tributaries of Kansas River and Warlis Creek, Shatroe County, Kansas; Wrabaunsee County, Kansas; Garden City, Kansas; Sappa Creels, Oberlin, Kansas; Osage River, La Oygne, Kansas; Topeka, Kansas; Five mile Creek, tributary of spring River, Indian Territory (1 mile south of Kansas line, near Baxter Springs, Kansas). (U. S. N. M., M. C. Z., and U. S. F. O.)

Together with specimens of C. setosus from wells in Jasper Coments, Missomi, collected by Miss Ruth Hoppin, oceur two rery small specimens of a Cambarns with well developed eyes. They are too young to identify with certainty, but are probably (. rivilis Hag. The specimens from the West Fork of Black River, Missomi, differ somewhat from the typical C. cirilis, asreeing with those described on page 95 of my Revisiou of the Astacidæ, from Irondale, Missouri.

Cambarus naïs Fax.

Cambarus nä̈s Faxon, Bull. Washburn Coll. Lab. Nat. Hist., Topeka, Kansas, Vol. I, 1885, pp. 140, 141.

Male, form I.-Rostrum long, concave abore, lateral margins converging from the base to the lateral spines, which are small but distinct; acumen of moderate length, acute. Post-orbital ridges provided with a minnte anterior spine. Carapace smooth and lightly punctate abore, granulate on the sides; lateral spine small, acute; cervical groove sinuate, ebling anteriorly in a small branchiostegian spine; suborbital angle not prominent; areola very narrow, punctate, the margins parallel from the anterior to the posterior triangular fechs; the lensth of the areolat is equal to one half the distance from the tip of the rustrum to the cervical groove. Ahblomen as long as the eephalothorax. Proximal segment of the telson hispinose on each side, distal segment shorter than the proximal. Antemar longer than the body; lamine a little longer than the rostrum, broad, broalest at the middle, subtrumeate at the emb, with an external apieal spine. Thirl maxillipents densely setose within and helow. Antrrior process of the epistoma with rery convex sides. Chela broal, flattened above, punctate, external horkle marginate; inner margin of the hamd short, with a double row of dentiform tubercles; fingers longe, movable one tuberculate on the exterial border, toothed on the internal horder ; external finger tlat abore, intermal margin tonthed, and bearded at the base. Corpos armed with a row of small tubereles on the upper side, with a strong and acute internal median spine and a small one at the base; on the lower side the carpus is provided with a prominent median spine and an external one at the point of articulation with the chela; in some specimens there is a small spine on the lower face of the carpus, between the median spine aud the large one on the internal margin. Third pair of legs armed with a hooked tuberele on the inner margin of the third segment. First pair of abdominal appendages of moderate length, twisted, deeply bifid, very broad in the middle; rami slender, styliform, strongly recurved, the imer one a little shorter and more curved than the onter one, the outer one corneous. Length, 57^{m+n}; cephalothorax, 27^{mm}; from tip of rostrum to cervical groove, $15^{m m}$; from cervical groove to posterior border of carapace, $9^{\text {min }}$; abdomen, $30^{\text {min }}$; chela, 24^{mm}; width of chela, 10^{mm}.

The second form of the male differs from the first form in haring smaller chele, the tubercles on the third pair of legs less developed, the first abdominal appendages less deeply cleft, the rami stouter, blunter, and not corneous.

In the female the chela is similar to that of the second form of the male, the sternum between the fourth pair of legs is smooth, the anumlus ventralis triangular with a median longitulinal fissure.

Labette County, Kansas. W. S. Nerrlon (II. C. Z.). Five males, form I; five males, form II ; seven females.

This species much resembles C. virilis, especially the form called variety A by Dr. Hagen. It differs in the shape of the first abdominal appendages of the male. In C. naïs the rami of these appendages are shorter and more strongly curved than in C. virilis, but not so much curved as in C. immunis. The areola is narrower than in C. virilis. The first abdominal appendages are vers like those of C. palmeri Fax., as far as cau be seen by a comparison of the secoud-form males alone; but the areola is not obliterated in any part of its course in C. naïs and the rostrum is more tapering than in C. palmeri.

Cambarus immunis Hag.

Additional localities: Wabash River, New Harmony, Iudiana, D. S. Jordan (U. S. F. C.) : Lafayette, Indiaua, H. L. Osborn (M. O. Z.).

Cambarus immunis spinirostris Fax.

Additional locality: Ward's Creek, Shawnee County, Kansas. F. W. Oragin and J. B. Fields (M. C. Z.).

When I described this variety in 18St, I had not seen the first form of the male, which is included among the specimens collected by Messrs. Cragin and Fields. The lateral spines of the rostrum are distinct, as in the second-form male and in the female; the setre on the second pair of legs are well developed; the first abdominal appendages are shaped exactly as in the first form male of the typical C. immunis.

Cambarus rusticus Gir.

Additional localities: Maramee River, Dent Countr, Missouri, R. E. Call (M. C. Z.) ; Harpeth River, Franklin, Tenuessee, Gilbert and Swan (U. S. N. M.) ; Osage River, La Cygue, Kausas (M. C. Z.). All these are similar to the form placidus Hag.

Cambarus spinosus Bundy.
Additional locality: Tar River Rocky Mount, North Carolina. D. S. Jordan (U. S. F. C.).

Cambarus hylas, sp. nov.
Male, form II.-Rostrum broad, excarated, margins thickened, someWhat convergent from the base to the acute lateral spines; acumen of moderate length. Post-orbital ridges euding anteriorly in an acute spine ; carapace punctate, with a small lateral and a branchiostegian spine; antero-lateral margin notehed but not furnished with a suborbital spine; posterior segment equal in length to half the distance from the end of the rostrum to the cerrical groove; areo'a of moderate width, punctate. Abdomen longer than the cephalothorax; basal segment of the telson bispinous on each side of the posterior border.

Anterior process of the epistoma triangular, the apex truncated or eren notched. Anteune shorter than the body; scale broad, broadest near the tip. Chelipeds stout, chela broad, punctate, external margin convex, internal margin furnished with a double row of tubercles; fingers slightly gaping, costate, with longitudinal rows of ciliated dots; external margin of movable finger with a line of ciliated tubercles; tips of fingers incurved, corneous. Carpus smooth, furnished with a well developed internal median and small proximal and distal internal spines; beneath, the carpus has a well developed median anterior spine, and a rery minute external spine at the point of articulation with the chela. Meros furnished with two obliquely placed ante-apical spines; of the biserial inferior spines the outer row is represented by the two distal ones only. Third pair of legs hooked. First pair of abdominal appendages very long, reaching the base of the chelipeds, tuberculate on inner border near the base, bifid, anterior border carinate, rami straight, thick; the onter branch much longer than the inner, the tip slightly recurved, the inner branch blant at the tip, and bent a little outward and bazkward. Dimeusions: length 60^{mm}; carapace, 29^{mm}; from end of rostrum to cervical groove, 18.5^{mm}; from cervical groove to posterior margin of carapace, 9.5^{mm}; breadth of rostrum at base, $3.5^{\text {mum }}$; between lateral spines, $2.5^{\text {mum }}$; brealth of areola, $2^{\text {mm }}$; abdomen, $31^{\text {mm }}$; chela, $23^{m \mathrm{~mm}}$; breadth of chela, 10^{mm}; movable finger, 13.5^{mm}.

Female: Chela smaller, fingers not gaping, external finger slightly bearded at the base within. Sternum between the fourth pair of legs not tuberculate. Annulus rentralis large, triangular, the anterior margin obsolescent, posterior margin very prominent, projecting backirard; fossa transverse, deep, with a sigmoid sulcus.

West Fork of Black Riser, Reynolds County, Missouri, R. E. Call (M. C. Z.). Four males, form II ; two females.

This species is closely related to C. putnami Fax., but the sides of the rostrum are more thickened and more convergent from the base to the lateral spines; the antemal scale is widest near the tip (in C'. putnami it is widest in the middle); the carpus bas a well developed anterior spine, and the anuulus rentralis is very different. From C. spinosus Bunds, it differs in its longer metacarapace, shape of the rostrum, annulus ventralis, etc.

Cambarus forceps Fax.

Additional locality: Middle Fork of Holston River, Glade Spring, Tirginia. D. S. Jordan (U. S. F. C.). Four males, form I; four females The specimen from Knoxville, Tennessee, mentioned on page 121 of the Revision, surely belongs to this species.

Cambarus montezumæ Saus.
Additional locality : Guanajuato, Mexico. A. Dugés (U. S. N. M.). C. montezume is a rariable species. In the specimens from Guanajuato
the rostrum is even flatter than in the typical form, tapering, and furnished with minute ante-apical teeth.

Astacus klamathensis Stimips.

Additional localities: Sprague and Williamson's Risers, near Fort Klamath, Oregon. Dr. J. C. Merrill, U. S. Army (U.i. N. M.). Eel River, Humboldt County, California. Teste W. N. Lockhaton.* A small specimen, $37^{\text {mm }}$ lons, collected by Dr. Merrill in Klamath Lake, Oregon, is labeled "Color in life, bluish green." An adult collected by the same gentleman is accompanied by the following note: "Color when fresh, bright red, lighter beueath ; large claws darker. Common."

Astacus nigrescens Stimps.
"This species appears to be foumd in most of the larger brooks of the central counties of California, such as the Alameda Creek, Alameda County; Coyote Creek, Santa Clarai County, and San Joaquin Slongh." Lockington, l. c.

[^67]
DESCRIPTION OF TWO NEW SPECIES OF BATS-NYCTINOMUS EUROPS AND N. ORTHOTIS.*

BY
Harrison Allen.

The genus Nyctinomus includes twenty-one speeies and is of cosmopolitan distribution. Thus ten speeies are found in Africa and liadagascar; one in Europe, with a range in the northern part of Africa; two in ludia ; two in the Malay Archipelago, one each in Porynesia and Anstralia, and four in Ameriea. It is interesting to contrast this wide range with that of the other two genera of the group in which Nyctinomus is fouml, namely, ('heiromeles, which is restricted to the IndoMalayan subregion, and Mulosises, which is confined to tronical and subtropical America, excluling the U'nited States. Notwithstanding the extended range of ryctinomus, the species are closely related. With the exception of N. johononsis and N. austratis, few specialized structures are met with; and but two species-one from Namagascar (N. albiventer) and a second from Δ frica (N . acetubulosus)-depart from a single formula for the teeth. As is the case with the Cheiroptera generally, the American species are the most obscure. Of the four described species 1 have seen N. brasiliensis, N. macrotis and N. gracilis. A recent study of the materials at hand has led me to record descriptions of two new species.

Nyctinomus europs sp. nov.
Muzzle divided in middle into two parts by a rertical linear groove, the sides of which are defined by spines. These are continuons with the spines of the upper border of the muzzle. Ears united orer the face for a distance of 2 mm . The outer border of the anricle not scalloped on the line of the external basal ridge, but is uniformly roundent. The revolute margin reaches as far as the anterior border of this ridge. The inner border of the auricle retains six small marginal spines. The tragus is small-pointed or obscurely notehed on the summit, and is but one-half millmeter high. The antitragus, as wide as high, much narrower above than at base; the noteh posterior to it is well-defined and reaches half way to the base. The external basal ridge is rudimental.

[^68]The keel is not highly developed and measures 7^{mm} in length. The first and fifth toes are thicker than in N. brasiliensis.

The tip of the third phalanx of the fourth finger is without projecting lobe.

The lips and adjacent surfaces are more tumid than in N. brasiliensis. The postmental wart is especially conspicuous as compared to the same structure in that species. As in N. brasiliensis, a median ridge lies between the wart and the lower lip.

Measurements of head and ears.
Millimeters.
Distance from interauricular membrane to end of̂ muzzle........ 3
Height of auricle 13
Distance of auricle to angle of mouth................................ 2
Width and height of antitragus ... 3
In the entopatagium * the intercosto-humeral nerve divides into two terminal branches at the upper third of the wing membrane before reaching the elbow.

Four oblique lines in the positions of the intercostal nerves can be discerned.

The mesopatagium with the internal cutaneous nerses much the same as in N. brasiliensis; but the superior branches are much less numerous than in that species. The distal end of the second phalanx of the fifth finger is spatulate.

The nerves on the interspaces the same as in N. brasiliensis. First oblique band at radio-carpal angle attached at side of palmar surface of the muscle-mass of the fifth metacarpal bone and passes downward and inward at an angle to the radius for a distance of 4^{mm}. The ponch is conspicuous.

The tendon of the palmar interosseous muscle extends from the middle of the fifth metacarpal bone to the distal end of the first phalanx.

Fur on the back of a delicate farn inclining to brown at the shonlders. The back of the neck and head of a lighter shade. Back of the ear the hair is almost white and covers the posterior surface to a point just beyond the line answering to the keel. The fur of the venter is of a uniform light-brown hue, verging to white. The wing membranes and tail membrane are of a brown color and are naked, excepting along a line continuous on the dorsum from the shoulder to the middle of the thigh. A delicate line of fur extends from the upper third of the arm to the middle of the thigh. The fur of the trunk, both at the shoulder and thigh, is continuous with this line, but on the entopatagium the hair is absent alongside of the body.

On the renter the foot and the distal third of the tibia are the only parts seen of the lower extremity, the remaining parts are concealed

[^69]by a fold of skin which extends from the pubis to the lower third of the tibia.

The tail membrance with distinct pelvo-tibial line, but without the line from knee which is seen in N. braseliensis. The free margin of the membrane is without the lobe which is so well defined in the species last named.

The Cranium.-The superior angle of the occiput is more acute than in N. brasiliensis and smaller by one-half. The temporal crest is distinct throughout its entire length. In N.brasiliensis it is absent except at the anterior half. The dorsum of the face is without the groove so characteristic of N. brasiliensis. The anterior nasal aperture is ovate, not cordate, as in the species last named. The lachrymal process is conspicnous and trenchant. The zygomata are of uniform width. The mentum is recedent, the posterior border being on a line which extends between the second premolar and the first molar. The coronoid process is scarcely higher than condyloid; the augular process projects well back of the condyloid.

Measurements of cranium.

Dimensions.	N.europs.	N. brasiliensis.
	mm. 1	mm.
Length.	16	17
Width between zygomata posteriorly.	9	10
Width of cranium at narrowest part. .	3	4
Distauce from anterior edge second premolar to	$2 \frac{1}{2}$	112

The Teeth.-Inc. $\frac{1-1}{2-2}$, c. $\frac{1-1}{1-1}$, pm. $\frac{2-2}{2-2}$, m. $\frac{3-3}{3-3}$.
Upper incisors near together their entire length. Interval between them much less than in N. brasiliensis. First premolar lies to outer side of the postero-basal cingule of the canine, which also tonches the second molar. In N. brasiliensis the first premolar is in line with the cingule. This distinction is associated with a shortening of the axis of the face, from the center of the incisorial space to the first premolar.

Lower incisors equal, bilobed, not crowded.
Measurements of body.

Dimensions.	Millimeters.	Millimeters.	Milli- meters.
Length of Lead and body	53		
Length of tail in membrane.	17		
Length of tail free..	19		
Length of forearm	40		
Length of first finger, including metacarpa	8		
Length of second metacarpal.........	39		
Length of third metacarpal..	40	*19	$+15$
Length of fourth metacarpal	40	*15	+3
Length of fifth metacarpal.	23	*13	$\dagger 3$
Length of tibia..	11		
Length of foot..	7		

The deseription is based upon examination of twenty adult specimens, all females.
N. enrops resembles N. megalotis* in the shape of ears and color of fur. It differs in the shape of the antitragus. N. megalotis is a larger form, the length of the bolls and head being $75^{m m}\left(3^{\prime \prime}\right)$, and that of the forear:a $55^{\prime \prime m}$ ($2.35^{\prime \prime}$), fet the length of the second phalanx of the fourth finger is lues than $1^{m m n}\left(0^{\prime \prime} .1\right)$. This phalanx in N. curops measures 3^{mm}.

Habitat.-Brazil. Collected by Professor Harte.

Prof. B. (?. Wihler has kindly permited me to study the Cheiroptera in the musum of Comell Uuirersity. The species ahove named were secured from this collection, where the trpe specimens remain.

Nyctinomus orthotis sp. nov.
The upper margin of the muzzle is below the plave of the dorsum of the face. The rertical ridge between the nostrils seen in N. europs and N. brusiliensis is absent. The nostrils are elliptical, slightly expanded above and look directly formard. The entire region of the muzzle ahruptly cut off, and of quite peruliar physiognomy. There is no concavity in front of the ears. The upper border of the muzzle is not projectmg and without peectinate spines, but furnished with papillx, which tend orer the nostrils. The ears are erect, large, extending $4^{\text {min }}$ in adrance of the muzzle, and are united on the dorsum of the face by a band 3^{mm} high.

The gemeral form of each ear is romuded and stands out from the head as in N. brusiliensis. No spines oceur on the upper horder. The outer horder is furnished with a lap or hem of skin, which measures one filth of the riameter of the ear conch. It is slightly scalloped in the modlle and extends as far formard as the end of the external basal sidge. The keel does not reach the antitragns ; it is thickened and not r. volute. The anterior basal ridge forms a distinct projection at the notch. The notch exteuds to the base of the antitragus. The autitragus is thin, hroader than high, and slightls higher posteriorls than antebimly. A skin fohl extmols from the antitragus to the angle of the momili. The tragus is quadrate and bears a general resemblance to that in I. Irasilimsis. The sides of the face are without folds.

The fur on the dorsum is farm color with paler tints at the base. It exmmis half way me the ens. On the dorsum the proximal half of the arm, the phtopataginin near the body, and the basal fourth of the tail are toweed with hair. On the venter the color is the same as on the back, except on the face and cars, where it is of a dark chestnut. The renter, the arm, the theh, and entopatagimm half way to the elbow are covered with a thin layer of fur. The face is ocenpied be a number of stuut bristles between the ears and the muzzle. Two hairs, $1^{\text {nom }}$ long, project from the mental wart.

[^70]The following notes have been made on the terminal digits. That of the third digit of the third finger is little over $\tilde{y}^{\text {nun }}$ in length, is slightly cursed towarl the trunk at the tip. A thin membrane is seen at the distal half at the thmo side. The wing membrane extends to the tip to ward the trunk.

The terminal digit of the fourth finger is ? ${ }^{\text {man }}$ long. The membrane is not attached to the somad surface: while on the poilicad surface it is attached the eutire length of the digit. The malanx is markedly deflected on the free margin of the membane and ends in a free lobe

The terminal phatans of the fifth iis:ger is slightly curred somat. It is $3^{m m}$ long and nearly $1^{m m}$ wide at hase. The membrane is attached to the second phalans at the middle of the pollicad margin, but reaches to the tip of the phalanx on the somad side.

No entopatagial lines are seen. The internal cutaneons line exhibits a superior branch. The nerve ends ahmptly hy inferior vertical branches as in X . brasiliensis. A line is seen on the interfemoral membrane extending from the mildle of the thigh to the free margin of the membrane.

Cranium.-The cranium is of the trpe N. manotis. The farial region is high, the nasal bones at the anterior nasal aperture being the highest point of the rertex. The upper border of the aperture is defined by a transrerse line, which forms a right angle with the lateral border. A line drawn downward from the border intersects the infraorbital foramen at its posterior limit. The zygoma is without elevation. The ethmoidal stelling (by which term is meant the swelling in the orbitotemporal fossa of the frontal bone orer the ethmoid), is rommen. The palatal rugge opposite the molars abruptly angulated, the angle beiug forwards.

In contrast to the above, the skull of N. macrotis presents the following: The facial region at the anterim masal aperture is the lowest part of the rertex. The upper bonter of the aperture is A-shaped. A line prodnced downward lies in front of the infmombial foramen. The zygoma with posterior clevation. The ethmodal swelling is ridge-like. The palatal rugar opposite molars not angulatei, but slightly curred, the curve being formards.

Dental formula the same as in the preceding species.
The first maxillary premolar in N. orthotis is in the outer angle between the secomd mremolar and the canime. It is smatler than in .V. macootis. The postero-internal ansp of the first and secomet maxillary molars continuous with a single ereseentic vimpulam. The cingulam of the third molar of the same series of a single ertescentic form. Mandibuhar incisors four. The fisst mandibular momolar tonches canime.

In N. mucrotis the first maxillary prmolar is in tental arel, i. e., is neither in outer or inner angle formed by the crowhing of the canine looth and the first premolar, but is in the axis of the dental series. The postero-interual cusp of the first and second maxillary molars sep-
arate from the double crescent form of the cingulum. The cingulum of the third molar of the same series of a double crescentic form.

Measurements.

Dimensions.	Millimeters.	Millimeters.	Millimeters.
Length of head and body	68		
Height of ear	20	
Length of forearm	57		
Length of thumb..	5		
Length of second metacarpal bone	22		
Lebgth of third metacarpal bone	25	${ }^{10}$	$\dagger 9$
Length of fourth metacarpal bone	24	${ }^{+10}$	+4
Length of fifth metacarpal bone...		$\times 9$	$\dagger 3$
Lemgth of tibial	20		
Length of foot.	7		
Length of tail in membrane	25		
Length of tail iree.			

Habitat.-Jamaica. The single specimen is a skin in the collection of the National Museum (No. 9397, W. T. March), and was received from Spanishtown.

I hare been minute in the description of these new forms for the reason that diagnoses of species have hitherto been too general. Some of the characters, such as the shapes of the terminal phalanges, the patterns of the wing membranes, the depth of the notch in the auricle and the point of termination of the auricular flange or hem have not been used in studying Cheiroptera. Eren if the attempt to establish new characters should fail, it is of interest to record these novel details of structure.

SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U.S. FISH COMMISSION STEAMER ALBATROSS.

[Published by permission of Hon. Marshall McDonala, Commissioner of Visheries.]

No. VIII.—DEsCRIPTION OF A NEW (:OTT(OH) FLSH FROM BRITLSH C'O. LUMBIA.*

BY
Tarleton H. Bean, Ichthyologist, U. S. Fish Commission.

On the 27 th of September, 1585 , the U. S. Fish Commission steamer Albatross obtained in Barclay Sound, British Columbia, a remarkable little fish whose affinities are with the Cottidre, but differing from all the other members of the family in characters of such importance as to necessitate the formation of a new subfamily to receive it. The deseription is given herewith.

Subfamily SYNCEIRINAE.

Cottider with rentral fins thoracie, hut remote from the gill-opening and consisting of a rudimentary spine and several rays; with a short and well-developed spinous dorsal, which is separated loy a deep notch from the soft portion; the spines slenter; the branchial apertures wide and the gill-membrane free from the isthmms; gills $3 \frac{1}{2}$, apprarently with no slit behind the last; the pectoral fins eontinuous aromed the breast, the rays supported all around loy actinosts; the genital papilla of males capable of being received into at pit in front of the anal fin.

Synchirus gen. nov.
Body slender and moderately elongate, resembling that of Triglops; covered with thin, tough skin. Lateral line armed with spiny tubereles. Spiny scales in a series along the dorsal base. Mead subconical, with moderately pointed snout. Mouth small, very slightly oblique; the rami of the mandible a little concave bencath. Premaxillaries protractile. Jaws with slender, villiform teeth in bands. Teeth on vomer and palatines. Psendo-branchie present. (xills $3 \frac{1}{2}$, no slit behind the last. Gill openings wide, extending above the median line, the membrane free from the isthmus. Suborbital counected by a bony stay with the preopercle, which bears a strong bifirl spine at its angle. Pectorals

[^71]completely united around the breast, all the rays supported by actinosts, the membrane free at its margin. Ventrals distant from the gill-opening, the pubie bones being remarkably long, the fins diverging widely and consisting of a rudimentary spine and three rays. Dorsal long, the spinons portion low, with slender spines, and the soft portion twice as long as the spinous. Anal long. Caudal moderately elongate, its middle rays somewhat produced.

Synchirus gilli sp. nov.

$$
\text { B. VI; D. VIII-IX, 19-21; } . \geq 0 ; \text { V. I, } 3 ; \text { P. } 22 .
$$

U. S. National Museum number 41820.

The ege is about as long as the snout and one-fourth the length of the head, which is twoserenths of the total length to candal base. The depth is contaned $5 \frac{1}{2}$ times in the total length. The maxilla extends to about helow the middle of the eye. The interorbital space is not equal to the length of the eye. There is a pair of strong masal spines. The preoperele has a short and very sharp bifid spine. The lateral line contains about 11 spiny tubercles and most of the specimens have a single series of spiny scales along the dorsal base. The pectorals are nearly as long as the head and extend to about below the fourth ray of the soft dorsal. The ventrals are nearly under the middle of the peetorals and their length varies greatly. In some specimens they are scarcely half as long as the hear; in others they are as long as the postorbital part of the head. In some males the anal papilla is two thirds as long as the ventral fin of the same individual. This papilla can be received into a pit in front of the anal fin.

The spinous dorsat begins over the axil of the pectoral; the length of its base is a little greater than the post-orbital part of the head. None of its spines are much longer than the eye.

The distance of the anal origin from the head is abont two-thirds the length of the head. The rays of the soft dorsal and the anal are not much longer than the dorsal spines.

The candal is about two-thirds as long as the head and its middle rays are somewhat the longest.

The color in spirits is a pale yellowish brown. The sides show traces of several small pale blotehes and the caudal and pectoral have a few very small dark blotches, those on the caudal forming interrupted bands. Across the back are faint imlications of about five pale cross-bands.

The species is dedicated to Dr. Theodore Gill in appreciation of his researches upon the mail-cheeked fishes.

Three individuals, number 41820 , have been taken as the types of the species. The largest is 46 amd the smallest 33 millimeters in length.

DESCRIPTION OF A NEW LIZARD FROM LOWER CALIFORNIA.

> BY
> Leonhard Stejneger, Curator of the Department of Reptiles and Batrachians.

Cnemidophorus labialis sp, nov.
Diagnosis.-Nasal in contact with second supralalial ; postuasal and first supralabial not in contact; two large preanals, the largest behind; dorsal scales equal ; nostril anterior to nasal suture; eight longitndinal rows of ventral plates; femoral pores twelve to thirteen ; fronto-parietals distinct; supraoculars four ; caudal scales slightly oblique.

Habitat.-Cerros Island, Lower California.
Type, U. S. National Museum, No. 15596 ; L. Belding, coll.
Description of type specimen.-Nostril anterior to nasall suture ; three parietals ; four supraculars ; seveu supraciliares ; a freno-orbital ; two fronto-parietals; scales on middle of eyelid slightly enlarged, hexagonal ; nasal in contact with second upper labial, postnasal and second upper labial being separated; posterior gular seales small, abruptly separated from the anterior, the line of demarkation between them being emphasized by the two rows nearest the latter being markedly smaller than the rest of the posterior ones; plates of the collar rather large, in several rows, the marginal largest; dorsal granules smooth, rather large ; reutral plates in eight longitudinal and thirty-one transverse rows. Two large preanals, wider than high, the posterior plate being widest. Three rows of brachials of nearly the same size; antebrachials continuous with brachials, in two rows, the outer one hardly larger; granules along posterior edge of under side of forearm but slightly eularged. Five rows of femorals, outer largest; tibials in three rows, outer largest. Upper and lateral caudal seales slightly oblique, rather strongly keeled, and pointed posteriorly. Color above dark brown, with six longitudinal light lines and a median clay-colored band of the same shade as the top of the head; two light longitudinal lines on four limbs and three on hind limbs; under side whitish, more or less suffused with blnish, especially on tire flanks.

For dimensions, see table below.
In addition to the type, there are four other specimens which agree with it in all essential points ; two of them have thirteen femoral pores, while two have only twelve; two have thirty-three rows of rentrals, one has thirty-one, and one thirty; three have three antebrachial rows,
and in these the outer is by far the largest; two have only four femoral rows. In other respects the specimens are nearly identical.

Of all our North American Cnemidophori this seems to be the most distinct species, Cnemidophorus (Verticariat hyperythrus not even excepted. As will be seen from an eummeration of the characters by which it differs from them all, viz: the peenliar relations of the masals and anterior labials, the arrangement of the preanals, the low number of femoral pores, twelve to thirteen, brachials in three subequal rows, femorals in only four to five rows. Of these the first-mentioned character seems even to be unique in the genns, as I have seen no mention of it in the descriptions of extralimital species, and after a careful examination of about three hundred specimens of the rarious North American forms I can find no approach to the condition which is so characteristic of the present species, in all five specimens of which it is equally well pronounced. The low number of femoral pores is also well worth noting, inasmuch as it entirely destroys the usefulness of one of the sections of Boulenger's key to the species (Cat. Liz. Brit. Mus., II, pp. 360 and 361), relied upou to separate the South American species, C. ocellifer and multilineatus from the other species with eight longitudinal rows of ventral plates and the nostrils opening in the nasal. The fusion of the two posterior preanals into one wide transrersal plate seems to be another good character. It is true that this state of affairs is oceasionally seen in specimens of C. sexlineatus or its numerous subspecies, but the occurrence is rare, hardly reaching ? per cent. in the enormous series examined by me, while in the Cerros Island species it is normal siuce found equally well represented in all five specimens.

So well circumscribed is the new species that a special comparison with other forms seems entirely unuecessary.

Specimens examined.

U. S. Nat. Mus. No.	Cullector.	Locality.								$\begin{aligned} & \text { Width at post. corner } \\ & \text { of supraocul. reg. } \\ & \hline \end{aligned}$			$\begin{aligned} & 3 \\ & \text { B } \\ & \text { 3 } \\ & 0 \\ & 6 \\ & 4 \end{aligned}$		家	
						mm	$m m$	mm	mm							
15596	Belding.	Cerros Island, Lower California.	13	31	5	187	18	8	10	5.3	19.5	37	18	40	132	'тspe.
15597	. .do		13	33	5	173	17	8	9.5	5.3	18	33	18	37	123	
15598	do	do	12	33	5		17	8	10.3		20	37	18	28		
15599	. . do	. do	12	31	4		17	7.5	9.5	5.5	18	34	18	36		
15600	.do	. . . do	13	30	4	\cdots	18	8	9	19	35	19	39		

SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U．S．FISH COM－ MISSION STEAMER ALBATROSS．

［Published by permission of Hon．Marshall McDonald，Commissioner of Fisheries．］

No．IN．－CATALOGUE OF FISHES COLLECTED AT PORT CASTRIES，ST． LUCIA，BY THE STEAMER ALBATROSS，NOVEMBER， 1888.

BY
David Starr Jordan．
In the fall and winter of 1888 － 89 the steamer Albatross made a voy－ age from Norfolk，Va．，around Cape Horn to San Francisco，in the interests of the U．S．Fish Commission．During this trip large collec－ tions of fishes were made．In the present paper I wive an enumeration of the species found at Port Castries on the island of St．Lucia，in the West Indies．The specimens collected are in the U．S．National Museum．A partial series is in the University of Indiana．

IORPEDINID母．

1．Narcine brasiliensis．

STOLEPHORID雨．

2．Stolephorus browni（Gmelin）．
Abundant．
3．Stolephorus perfasciatus（Pocy）．

CLUPEID雨．

4．Opisthonema oglinum（Le Sueur）．
5．Harengula arcuata（Jenyns）．
6．Harengula macrophthama（Ranzani）．
Two species of Harengula are abmudant in this collection．These two species，and a third（II．sar：linu Poey），have been recognized by Poey and fairly well distinguished．It is probable that all the nominal species of this group in the West Indian fauna should be referred to the synonymy of these three．These may be generally recognized by the following characters：
a．Scales firm and very adherent，so that in ordinary specimens very few if any are lost．Each seale with one to four vertical strix，well defined and more or less curved；ventral scutes aiout $16+12$ ；scales on back before dorsal more or less laciniate．
b. Body deep, with the ventral outline forming an even curve from chin to vent; depth of body, 2 to 3 in length to hase of caudal ($3 \overline{3}$ to 33 with caudal); head, 3_{6}^{4} in length, $1 \frac{1}{\ddagger}$ to $1 \frac{1}{3}$ in depth of body; eye moderate, one-third longer than snout, 2_{3}^{2} in head; iusertion of ventrals nearer tip of snout than base of caudal; dark humeral spot often olscure or wanting; usually a row of dark points extending backward from it along upper part of sides of body; caudal pale. (Specimens from Cedar Keys, Key West, Havana, and St. Lucia)

Arcuata.
bb. Body more elongate, the ventral outline little convex, forming a weak arch; depth of body, 3_{5}^{2} in length to base of caudal ($4 \frac{1}{5}$ with caudal); head, 3_{7}^{3} in length, 1 to $1 \frac{1}{6}$ in depth of body; eye large, $1 \frac{1}{\sigma}$ longer than snont, 2_{3}^{2} in head; insertion of ventrals nearly midway between snout and base of caudal; dark humeral spot usually evident, sometimes wanting; above this spot a narrow dark streak extends, bounding the dark color of the back; just above this a pale streak; candal dusky; scales a little less striate than in the others. (Specimens from St. Lucia)...................Macropithalma. aa. Scales less firm and little adherent, so that many of them are lost in ordinary museum or market specimens; each scale with about four wavy vertical strice on its free edge ; ventral scutes, $15+10$; body rather elongate, the ventral outline little convex, forming a weak arch ; depth of body, $3 \frac{1}{3}$ to $3 \frac{1}{2}$ in length ($4 \frac{1}{3}$ with caudal); head, $3 \frac{4}{\frac{4}{2}} \mathrm{in}$ leñgth, $1_{1 \frac{1}{10}}$ in depth of body; eye very large, one-third longer than snout, $2 \frac{1}{2}$ in head; insertion of ventrals nearly midway between suout and base of candal; color pale; no dark humeral spot; caudal pale. (Specimens from Key West and Havana).... Clupeola.
The following seems to be the synonymy of the species, most of the earlier descriptions being so loosely drawn as to be more or less uncertain. The nomenclature is therefore throughout only provisional.

Harengula arcuata.

Sardina Escamuda.

?. Clupea areuata Jenyns, Ichth. Voy. Beagle, 1842, 134. (Bahia Blanea).
Harengula humeralis Cuv. \& Val., xx, 293, 1847. (Guadaloupe.)
Chuenhumeralis (iiinther, vil, 42?. (Bahia, Jamaica, Trinidad, Dominica, Barbadoes.)
Alosa striata Cuv. \& Val., xx, 429. (Guadaloupe.)
Harengula (?) clupeola Poey, Enumeratio, etc. (Havana.)
Clupea clupeola Jordan, Proc. U. S. Nat. Mus., 1866, 33. (Havana.)
Harengula pensacole,* Goode amai Bean. Proc. U. S. Nat. Mus., 1879, 152. (Pensacola.)
Clupea pensacole Jordan, Proc. U. S. Nat. Mus., 1884, 107. (Key West.)

harengula macrophthalma.

? Clupea macrophthalma Ranzani, "Nov. Com. Ac. Sc. Inst. Bonnn., v, 1842, 320, talb. 23 " (fide Giinther): Günther, Vir, 421. (Cuba, St. Crois, Jamaica, Barbadoes.)
? Haren!ula maculosa Cuv. \& Val., xx, 292, 1847. (Martinique.)
Marengula jaguana Poey, Repertorio, I, 190, 1~6i6. (Jagua, near Cienfuegos.)

[^72]IIARENGULA CLUPEOLA．
Sardina De Ley．

```
! ITarengula clupeola Cuv. & Val., xx, 289, 1847. (Martinique.)
Harengula sardina Poey, Memorias, II, 310, 1861. (Havana.)
Clnpea sardina Jordan, Proc. U. S. Nat. Mus., 1881, 106 (Key West); ibid., 1886, 33 （IIavana）．
Harengula callolepis Goode，Proc．U．S．Nat．Mus．，1879，159．（Bermuda．）
```

EXOCCETID无．
7．Hemiramphus unifasciatus Ranzani．

BELONID厓．

8．＇Tylosurus raphidoma（Ranzani）．
9．Tylosurus euryops（Bean）．
A single specimen，agreeing with the deseription given by Jordan and Fordice（Proc．U．S．Nat．Mus．，1886，347）．

SYNGNATHID．33．
10．Siphostoma rousseau（Kaap）．
Syngnathus elucens Poey，Synopsis，1867， 443.
A small，slember speries，with the suont one－fometh longer than the rest of the head ；top of head with a slight keel ；rings $16+3 t=50$ ． Dorsal rays 26 to $2 \mathrm{~S}^{2}$ ，the fin covering $1 \stackrel{1}{2}+\pi$ rings．Vent midway between tip of snout and twenty－third candal segment．Head almost． three times in distance from tip of snout to vent．Lateral line inter－ rupted above the vent．Head $7 \frac{1}{5}$ in length．

This specimen agrees very closely with the short aceount given by Kanp of a specimen sent by Alexandre Roussean from Martinique． The Nymynuthus clucens of Poey seems to be the same．Poey counts $1 \frac{1}{2}+4$ rings muler the dorsal．This species is close to the European Siphostoma pelagieum，but the latter is more slender，with longer snont and longer head， $6!$ to 71 in length to base of candal．The Eiuro－ pean Siphostome affussizi is also closely related，but that species is stouter than S．rousseau，with shorter snont．

MUR狌NID狌．

11．Gymnothorax funebris（Ranzani）．
A young specimen．
12．Echidna catenata（Bloch）．
Several young specimens in good condition．

MUGILID雨．

13．Mugil curema Cuv．\＆Val．

Common．

14．Querimana gyrans Jorlan \＆Gilbert．
Sereral specimens about $1!\frac{1}{2}$ inches in length．Teeth in upper jaw comparatively strong；apparentiy no teeth in the lower．Anal rays II， 9 or II， 10 ，not II， 7 or 8 ，as cominted in the original types．

15．Sphyræna guaguanche（Cuv．\＆Val．
POLYNEMIDÆ．
16．Polydactylus virginicus（L．）
SCOMMBRID屋．
17．Auxis thazard（Lacépède）．
18．Scomberomorus cavalla（Cuvier）．
CARANGID雨．
19．Oligoplites saurus（Bloch \＆Schneider）．
20．Chloroscombrus chrysurus（L．）．
21．Trachurops crumenophthalmus（Bloch）．
22．Caranx latus Agassiz．
23．Vomer setipinnis（Mitchell）．
24．Selene vomer（L．）．
25．Trachinotus falcatus（L．）．
（Tirachynotus ovatus anthors．）
HOLOCENTRID雨．
26．Holocentrus ascensionis（Osheck）．

SERRANID．7．

27．Rypticus saponaceus（L．）
28．Bodianus cruentatus（Lacépè̀de）．
29．Mycteroperca venenosa guttata（Bloch）．

SPARID雨．

30．Lutjanus jocu（Bloch \＆Sclıneider）．
31．Lutjanus caxis（Bloch \＆Schneider）．
32．Lutjanus synagris（L．）．
33．Lutjanus analis（Cuv．\＆Val．）．
34．Lutjanus vivanus（Cuv．\＆Val．）． （Lutjanus profundus Poey）．
35．Lutjanus buccanella（Cuv．and Yal．）．
36．Hæmulon parra（Desmarest）．
（IIcmulon acutum Poey）．
37．Hæmulon plumieri（Lacépède）．
38．Hæmulon flavolineatum（Desmarest）．
39．Hæmulon schranki Agassiz．
（Itamulon steindachneri Jordan \＆Gilbert．）
Not before taken north of Brazil．
40．Hæmulon chrysargyreum Giinther．
41．Hæmulon aurolineatum（Cuv．\＆Val．）．
42．Hæmulon striatum（L．）．
（Urmulon quadrilincatum Cuv．\＆Val．）
43．Conodon nobilis（L．）．
44．Calamus bajonado（Bhoch \＆Schi：eider），

MULLID.E.

45. Upeneus maculatus (Bloch).

SCIANID风.

46. Larimus breviceps Cur. \& Val.
47. Odontoscion dentex (Cus. \& Val.).
48. Corvula sanctæ-luciæe sp. nov. (Type, No, $41 i 32$, U. S. N. M.).

Allied to Corvula subuequlis (Poey), but with a larger mouth, shorter pectoral, and different coloration.

Head, $3 \frac{1}{4}$ in length; depth, $3 \frac{1}{6}$; D. XI-I, $23:$ A. II, 8 ; scales, 6-46-10. Length of type, 5_{4}^{3} inches.

Body oblong, moderately compressed, the back moderately elerated. Head rather short and blunt, the anterior profile uniform, and slightly arched. Snout short, shorter than eye, $4 \frac{3}{4}$ in head. Eye large, $3 \frac{3}{5}$ in head, a little greater than interorbital space. Mouth considerably oblique, the jaws equal, the premaxillary in front on the level of lower part of pupil, the maxillary extending to beyond line of middle of pupil, 21 in head; teeth of upper jaw in a narrow band, the onter moderately enlarged ; teeth of lower jaw moderate, not quite equal, almost in one series ; preopercle with its membranons edge finely dentate; gill rakers long and slender, about $x+15$. Scales large and firm, those above lateral line anteriorly in series parallel with the lateral line; at a point below last dorsal rays each series is suddenly bent upward, and then again becomes horizontal. Rows of scales below lateral line horizontal and nearly straight. Dorsal spines slender; soft dorsal and anal scaly at base; caudal (broken) apparently subtruncate; pectoral very short, in head, reaching about to eighth dorsal spine; anal small, inserted backward, its second spine moderate. Disstance from insertion of ventral to first anal spine one and one-fifth times depth of body. Coloration silvery, with about fourteen horizontal dark stripes, as in some other species of Corvula and Larimus. These stripes are continuous, and those above bend upward underneath last dorsal spines; fins pale yellowish, all more or less soiled with dark points ; a faint dark axillary spot; lining of gill cavity pale.

One specimen, from St. Lucia.
49. Umbrina broussoneti (Cuv. and Val.)
50. Micropogon fournieri (Desmarest.)

GERRID屈.

51. Gerres olisthostoma Goode \& Bean.
52. Gerres rhombeus Cuv. \& Val.
53. Gerres gula Cuv. \& Val.
54. Gerres pseudogula (Poey.)

Very close to the Florida species, Gerres harengulus, but a little more slender, and with rather weaker anal spines. In the paper on this
genus by Evermann and Meek (Proe. Ac. Nat. Sci., Phila., 1886, 261), Gerves harengulus, as represented by specimens from Florida and Cuba, was referred to the symonymy of the west coast Gerecs gracilis. The two species are rery closely related. A comparison of specimens show that G. harengulus has a blunter snont, somewhat larger eye, and larger anal spines than G. gracilis. Eye, ${ }^{2}$: in head ; snout, ${ }_{3}^{3}$; second anal spine, $2 \frac{2}{3}$ to $3!$ in head in G. harengulus from Key West; ($3 \frac{1}{4}, 3 \frac{1}{2}, 4 \frac{1}{2}$ in (G. gracilis from Gnaymas). It is, howerer, not always possible to distinguish G. harengulus, (r. pseudogulu, (i. !racilis and (i. dowi, and perhaps all should be regarded as varieties of one, G. gracilis.

EPHIPPIDFI.

55. Chætođipterus faber (L.)

CHATODONTIDRE.

56. Chretodon striatus Bloch.
57. Chætodon ocellatus Bloch.
58. Chætodon sedentarius Poey:
59. Chætodon capistratus L.
60. Holacanthus tricolor (Bloch).

ACANTHURID2.

61. Acanthurus hepatus (L.)
62. Acanthurus bahianus Castelman.
(Acanthurus trachus Poey.)
63. Acanthurus cœruleus (Bloch \& Schneider.)

LABRID无.

64. Halichœres maculipinna (Miiller \& Troschel.)
65. Halichœres bivittatus (Bloch).
66. Platyglossus dimidiatus (Agassiz).
67. Sparisoma flavescens (Bloch \& Schneider).
68. Sparisoma abildgaarcii (Bloch).
69. Sparisoma aurofrenatum (Cuv. \& Val.).
70. Sparisoma hoplomystax (Cope). (S. cyanolene Jordan \& Swain.)

Abundant, as is also the next species. The fact of the wide distribntion of these two species is an interesting one, as until rery lately both have been overlooked or else not intelligibly deseribed.
71. Sparisoma xystrodon Jordan \& Swain.
72. Scarus cœruleus (Bloch).
73. Scarus croicensis (Bloch).

One young specimen.
74. Scarus acutus Pocy.

One specimen．In spirits，dark abore，with a paler area extending from peetorals to base of candal．Candal subtruncate，with the angles slightly produced．No posterior canines．Scales on cheek in four rows，those of the first row largest．the third row with six or seven scales ；body rather elongate，the depth 3 in length ；snout compara－ tively sharp， 23 in length of head；eye small．

MALACANTHIDA．

75．Malacanthus plumieri（Bloch）．
GOBIID．平．
76．Gobius soporator Cuv．\＆Val．

SCORPRNID里．

77．Scorpæna plumieri Bloch．
78．Scorpæna grandicornis Cuv．\＆Val．

DACTYLOSCOPID雨．

79．Dactyloscopus tridigitatus Gill．
Dactyloscopus pocyi Gill（Proc．Ac．Nat．Sci．，Phila．，1861，266）seems to be the same species．

PLEURONECTID．AE．
80．Syacium micrurum Ranzani．
81．Platophrys Imatus（L．）．
82．Symphurus pusillus（Goode \＆Bean）．
Depth， 3 in length；scales，ss．Dark gray，with very obseure brown cross－bands．Fins，including candal，pale，with dusky blotches at short intervals．This specimen is identical with the one taken by Dr．O．P．Jenkins at Beaufort，North Carolina，mentioned by Jordan and Goss，Review Pleuron．，p，326．It is decidedly different from the common S．plagusia of the West Indies，and seems to be specifically distinct from S ．plagiusa．I may here note that the appearance of ＂keeled scales＂on Symphurus neloulosus（Coode \＆Bean）is due to a black line on the skin under the center of each row of seales．There seems to be no real keel and the species is congoneric with the other species of Sympluurus．

BALISTID7A．

83．Monacanthus pullus（Ranzani）．

TETRAODONTXDAE．

84．Spheroides testudineus（L．）．
86. Ostracion bicaudale L.

ANTENNARIID.Æ.

87. Antennarius scaber (Cuvier).

One small specimen. Body light brown, clouded with darker. Fins all with round black spots, those at the base of the dorsal somewhat larger than others. Ventrals tipped with black.

University of Indiana, December 11, 1889.

ALPHABE'IICAL INDEX.

[Pages in heavy type contain important references.]

Page.
Albatrossexplorations, plants from Alaska 217-218Albemarle Island, birds from.............. 119, 124119, 124
tish from 179
Albula vulpes. 179
Alcediunder 136
Aldrich, T. II 273
Aleutian Islands, cormorauts at 84
Allecula sp 192
Allen, Harrison, ou new species of bats 635-610
Alosa striata. 646
Alysia, larva of $1!6$
Amalthea autiquata 339
enstellata 339

- fhudiens $3: 2$
Amaltheid: 339
Amaurobida 208
Amaurobine 509
Amau:obius bennetti 510
claustrarius 510
ferox 510
frigidus, new species 1308
nevadensis 510
pictus 510
severus 510
sylvestris. 510
tibialis. 510
Amblyrbynchus cristatus 147
Amblyteles 202
contractus, now species..... $89:$
Cookii, now species 39:
Amezican Museum of Natural History 1,21
Ammophorus bifoveatus 192
Amphidesma nuculoides 274
Anachis, section. 328
Anaretes parulus 132
Anaitis varicosa 271
Anartia jatropha 207
Anas bahamensis 115, 128
Anatide 115,138
Anatinacea 247
Anatinida 275
Auaulocomera cornucorvi. 192
Anax junius 190
Ancillaria Tankervillei 310
Anemona narcissitlora 217
Anisodactylas brunueus 186
Anisolabis chilensis? 199
maritima 192
Anisopleura, subclass. 296
Anisotremus bilineatus. 181
twniatus 181
Anuulipes 529
Anolis alligator 141
pentaprion 144
Anomalodesmacea 247, 275
A nomalon eureka, new specics 42:3
simile, new species 12:3
xanthopsis, new species 423
Anopolenus. 44
Anous galapagensis $116,120,121,124,128$
stolidus 116, 120, 121, 125, 128
Artennariidre 652
Antennarius scaber 652
Anthropological Society 370,371
Anthus correndera 131
Antrobia manmouthia. 531
lage． Page．

613
（0） 7
614,617
（i） 613
612
612
612
611 ｜
fill
611
609
614
611
2.59

259
2101
${ }^{2} 60$
259
259
260
259
Areacea
Archareyathint
259

Arehioocyathus
billiugsi
dwighti，now species
rensselaericus
3．
34
Archacology of Potomac Iregion．．．．．．．．．．．． 307
Archibenthal Region
230
Archosargus pourtalesi
181
Archoscion remifer ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 181
Areidir．．． 259

15nx ．．． 561
Ardea herodias．．．．．．．．．．．．．．．．．．．．．．．．．．．． $14,120,122,124,125$
Ardeidaв ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．114． 137
Arenaria interpres． $116,120,123,121125,128,133,380$
Arenariida ．．． 116,131
Argentine Republic，Sclevurus found in．． 22
Argiope argentata．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．208，511
arøyтaspides．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．541，545

basilicia ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 511
cophinaria．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 541
multiconcha ．．．．－．．．．．．．．．．－．．－．．．． 511
transversa．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $5 \notin 1$
Argoporis，now species of Coleoptera ．．．． $1: 8$
Argus ．．． 509
Argyrodes argyrodes．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 523
cancellatus．．．．．．．．．．．．．．．．．．．．．．．．． 523
fictilium．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 523
globosus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 524
larvatus．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
montamus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $52 \frac{1}{4}$
nephilie－．．．．．．．．．．．．．．．．．．．．．．．．．．．． 52 ． 5
trigonum．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 524
trituberculaฉas ．．．．．．．．．．．．．．．． 524
Argyroepeira argyra．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 550
hortorum．．．．．．．．．．．．．．．．．．．．．．．．． 550
quinque lineata．．．．．．．．．．．．．．．． 550
Areyonis cytheris ．．．．．．．．．．．．．．．．．．．．．．．．．． 201
lathonioides ．．．．．．．．．．．．．．．．．．．．．．．． 201
siga ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 201
Ariadne．． 523
bicolor ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $50 \frac{4}{4}$

Ariadus pumilis ．．． 504

Aridas ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 136
Aıphia ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5 ．
Saussureaua，new specios of insect $48, \mathbf{6}: 3$
Asagrena amoricana ．．．．．．．－．．．．．．．．．．．．． 521
Ashmead，W．II．，on now Ichnemmonidio．．387－\＄57

obsolcta ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 186
I vilitlir．．．
Asio «ralapagoensis．．．．．．．．．．．．．．．．．．．．．．．．．120，121，122， 123
Aspidium acrostichoides．．．．．．．．．．．．．．．．．．．．．．． 218
Asple⿻⿰㇒⿻二丨冂刂⿱亠䒑⿱⺊⿱日一
Astacida，notes on ．．．．．．．．．．．．．．．．．．．．．C19－634
Astacus klamathensis ．．．．．．．．．．．．．．．．．．．．．．．．． 634
uigroscens．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $63!$

Aster Sibiticus ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 218
Asthenotherus（Bushia）．．．．．．．．．．．．．．．．．．．．．．． 275
Astia morosa ．．．．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 573
vittatar．．． 573,579
Astralium americamum ．．．．．．．．．．．．．．．．．．．．．．．．． 341
Astyris，suction．．． 327
It：it ．．．542
Atherinilie，family，now species of ．．．．．．I－1！
Atkiuson，（r．F．，on spiders．．．．．．．．．．．．．．．．．． 587
Atticora cyanolouca ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 131
Attidud．． 208,568
Aftiniะ．．． 568
Attividiv ．． 568
Attus astivalis ．．．570，577
africamus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 575

abboimaculatu8 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 577
： 1 mbesias ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 577
ambin！ 511 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578
arizonensis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578
asporqutus．．． 578
attentus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578

anratu＊．．． 578
auridens ．．．．．．．．．．．．．．．．．．．．．．．．． 578
ยіпแง ．．．576，578

cancroides ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578
canonicus．．． 578
canosus．． 578
capitatus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578
cardinalis．． 578
castanets．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 569,578
cautus ．． 573
claudistinus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578
clavatus．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578

chrysis ．． 578

creatus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578
coutemplator ．．． 578
coronatus．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578
eristatus．．． 578
cuntator ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578
cyапиня．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578
dissimilator．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 578
divisus ．． 578
olegans ．．． 578

Page. Attus excubitor.. 578
explorator 578
falcatius 578
familiaris 578
fasciolatus 578
flavas 578
foliatus 57.5
formosus. 578
fraudulentus 578
furtivus 578
galathea 578
gerbellus 578
gracilis 578
hebes 578
hentzii 578
hoyi 578
ictaricus 5 \%
imperialis 579
inclemens 579
infectus 579
inquies. 579
insidiosus 579
insolens 579
investigator 579
iris. 579
irroratns 579
johnsonii $5: 9$
lentus 579
leopardus 579
ligo 576
locustoides 579
magus 579
mannii. 576, 579
marginatus 579
McCookii 579
milbertii 579
militaris 579
miniatus 579
mitratus 579
morigerus 571, 579
morsitans 579
mullivagus 580
multicolor. 579
multivagus 579
muscivorus 575
mutliragus 579
mystaceus 568, 579
niger 573, 579
nubilus 579
nuttallii 579
octarus 579
octopunctatus 579
opifex 579
oppositus 579
otiosus 579
palustris 579
parvus 570, 579
paykullii 576
peregrinus 579
petulans 579
pileatus 579
pilosus. 579
pinus 579
pistaceus 579
plumosus 549

Attus podagrosus.............................. 568,579 Page. princeps 579
protervis 77
provocator 79
puerperus 579
pulcher 580
imulex 580
purpurarius 580
putnami 580
quadrilineatus 580
quaternus 580
quinquetesseratus 580
rarus. 580
retiarins 580
rimator 580
roseus. 580
rufus f.80
rupicola 580
rusticolus 5 50
sacax 580
scenicus 574
scinicoides 580
scrutator 580
sexpunctatus 580
signatus 580
sinistor 580
smarazdiuns 580
єpeculator 580
splendens 580
subflavus 580
superciliosus 571, 5 г0
sylvanus 580
treniola 580
tibialis 571, 580
tridentiger 580
tripunctatus 569, 580
undatus. 580
vagabundus 580
viridipes 580
viridis 580
vittatus. 580
Atylotus insuetus 191
Atypoides riversii 502
Atypu* 499
Atys Sandersoni 298
Augocoris ehrenbergii 188
sexpunctatus 188
Aulocara decens 63
Scudderi, new specles of insect $48,6: 3$
Aulonia aurantiaca 565
Ausserer, $\Delta n t$., works on spiders by 587
Auxis thazard 618
Avalonia, new genus of invertebrate fos- sil 11
manuelensis, new species 45
Avicularia 502
Azeria panamensis 174, 182
querna, new species of fish 174
B.
Baird, Pıofessor 101
Bairdiella armata 181
chrysolenca 181
ensifera 181
Dalistes capistratus 183

Black crowned Night Heron 381
Blackwall, J., works on spiders by 588
Blattidio 88, 193
618
Bolivia, bird from 17
fishes 619,620
from
1slamls. 149-183161
chlamydes, new species of
(4) 1,182
Bolyphantes530
trilineatus. 527
Bombus chilensis 202
liombyeinatia514
Bomonia (Gowlieria) -2.............. 54
Boston Society of Natural Iistory1Bothriurida211
Bothrops caribuxus 141Bouchardia rosea232
Brachiopoth, lluatrose collections of231
Brachybothrium accentuatum 502
Brachycentrus fasciatus, new species 4113Brazil, birds from129
Bregmaceros bathymaster, new species.. 17:3, 182173
British Columbia, new tish from 1
Brown, A. E 147
18.Bryan, O. N
Bryauthus taxifolius 218Bubonida136
Buccinitie ,
Bucculenta 529Buto agua141
Buforacris torestr.298
Bиtid: 298
Bnweria bulweri, measurements of 57Buteo galapagoensis.......113, 120, 122, 123, 124, 126Buteonidse .. 113, 136$122,123,124,126,128$

Centrurus biaculeatus Page. Page.
Chloephaga magellanica 138 138
Cerambycida 187, 192, 199
Ceratina 532
Ceratiuella 532,533
atriceps 537
bulbosa 537
bruunea 537
omertonii 637
fissiceps 534, 537
lata 534, 537
latabilis 537
micropalpis 537
minuta 537
pygmæa 537
Ceratinousis 532
interpres 534,537
laticeps 537
nigriceps 537
nigripalpis. 537
Cercidia funebris 540
Cerenopus costulatus 187
Cerithiido 335
Cerithium semiferrugineum 335
Certhidea cinerasceus, now species of bird 105, 119, 127
fusca. $105,119,123,124$
Certhilanda frobeni 133
Certhidea olivacea 125
Cerylo stellata 136
Cetengraulis mysticetus. 179
Cetomya, subgenus 290
albida 285
elongata 285
Chænomugil proboscidens. 180
Chætodipterus faber. 182, 650
Chictodon eapistratus 650
humeralis 182
ocellatus 650
sedentarius 650
striatus v50
Chictodontida 650
Chamacea 264
Chama sarda. 264
Chamide. 264
Charadriid: 131, 136
Charadrius dominicus fulvus 380
Charles Island, birds from 119, 122
fish from 179
Cbarops annulipes, new species 4×5
Chasiempis dolei 382
sclateri 382
Chatham Island, birds from 119,121
fisle from 179
Cheiromeles 635
Cheiroptera 638
Chili, batrachians from 143
insects from 197
Chilomeniscus cinctus 147
Chimarocephala 56
Chione cancellata 271
rugrosa 271
Chiracanthium albens 513
viride 513
Chlamydoconcba 233
Chloeplaga antarctica 138
Chloroscombrus chrysurus 648
Chlosterochilus gracilis 500180
Chorinaus tlavifrons, new species
Chortophaga 44 44
Chrysodomus amiantus, new species ofmolluskが1
aphelus, now species 3:3:5
gt iseus, new species. 3:8
(sipho) Kushii :3:3:3
tostudinis, new species 321
Chrysomya affiuis 203
alia. 203
bata 203
caruca 203
corrulescens 203
combrea 203
decora 203
fulvicrura 203
fasciata 203
gamelia 203
lepida 203
l'herminieri 203
lyrcea. 203
plaei 203
sncia. 203
tibialis 203
verena 203
viridula. 203
Clurysso albomaculata 533
Cicindelida 197
Cicurina arcuata 516
complicata 516
neradensis 516
pallida 516
robustia 516
simplex 516
tersa. 516
Cinclodes fuscus. 133
pataronicus 132
Cincrea 543
Cinitlo 510
Cinitlonida 505
Circe (Gouldia) cerina 261Circotettix lapidicolus, new species of in-sect............................... 48, 75
shastanus, new species. 48, 768,75undulatus
verruculatus 7676
Circumflexa. 528
Cistelida 192
Cistothurus platensis 131
Citharichthys spilopteras 182
Citigradx, tribus 560
Citigrades 560
Clemente Island, insects from 186
Clerk, C., work on spiders by 588
Clistopyga pleuralis, now species 148
pulchripicta, new species 44
Clubiona abboti 512
agrestis 512
albens 512
brevipes, new species 208, :309
canaderisis. 512

Clubiona celer...............................	Page. 512	Columbella permodesta, new species of	Page.
crassipalpis..	512	mollusk.....................	3:7
oxcepta	512	Saintpairiana.	328
falleus	512	Columbida	116, 139
trigidula	512	Colymbus rollatuli.	139
gracilis	512	Commander Islands, natural history of...	83-94
immatura	512	Composita.	218
inclusa	512	Congrida, new species of.	1.19
minuta	512	Conidı	300
mixta.	512	Conocophalus subulatus	206
obesa	512	Conocreta, now genus of brachiopod.....	365
ornata	512	. rusti, new species..............	36.5
pallens	512	Conodon nobilis.	615
piscatoria	512	Conomitra intermedia, new species of mol-	
pusilla..	512	lusk....	316
riparia.	512	Conopistha	59
rubra	512	Conozoa albolineata, new species of insect	48, 619
saltabunda	512	koebelei, now species of insect. .	48,67
sublurida.	512	sulcifrons	65
tranquilla	512	texana, new species of insect.	48, 65
Clubionidio.	511,592	wallula.	67
Clupea arcuata	646	Conus cleryi.	300
clupeola	646	Cook, Prof. A.J	392
sardina.	647	Cope, E. D., on Albatross batrachians and	
Clupeida	179,645	reptiles	141-147
Cnemidophorus labiatis, new species of		Copimamestra	457
lizard	6.11	Comuillitt, D. W	51
oceilifer	644	Coralliophila abbreviata	332
sexilineatus	147	Corals, fossil.	33
tessellatus tessellatus..	147	Corbula Barrattiana	292
tigris.......	147	cymella	292
(Vertecaria) hyperyth-		Dietziana...........................	292
rus.....................	644	disparilis	292
Coccinellidm	198	Corbulidie.....................................	292
Cocculina Beanii.	340	Cordaites, characteristics of...............	602
pocillum, now species of mol-		Acadianum.....................	608
lusk...........................	340	Brandlingii......................	607
Cocculinidx.	340	Clarkii	607
Coccszus melanocoryphus113, 120,	121, 122	Halli	606
minor..	130	intermedius	608
Cocigrapha normalis.	496	materiarum	608
Cerebamartinicana	129	medullosus	607
Corebide. .	105, 129	Newberryi	607
Colotes calcaratus	517	Ouangondianus..................	606
bybridus	517	Stephanense.....................	608
juvenilis............................	517	Subrhodeanum	608
lamellosus.........................	517	Coreidæ......................................	188
longitarsus.........................	517	Coriarachno versicolor	555
medicinalis.......................	517	Corinna	513, 59:
montanus	517	Cormorant, Pallas	83-94
urbanus	517	spectacleri.....................	83
Coleocentrus texauus, new species	444	Cornicularia	532
Coleoloides, new genus of fossil shells....	337	auranticeps	537
typicalis, new species........	37	brevicornis....................	537
Coleoptera......................... 186, 197,	204, 206	clavicornis	537
Coleosoma blandum........................	594	communis	537
Colombia, birds from........................	9, 29	directa	533,537
Colpocephalus sp	189	indirecta	534, 537
Colpocephalum angulaticeps	189	minata	537
Colpognathus annulicornis, new species..	396	tibialis	537
eursptychia, new species..	395	tricornis	537
Coluber chamissonis	144	Cornacer ...	217
temminckii........................	144	Cornus caualensis	217
Columbella mecratoria....................	328	Corvula sanctr-lucir, new species of fish.	649
	328	subrequalis.	649

Dadoyglon Elvarianum Page 615
Flenrotii 613
Halli 606
intermedium 608
Keuperianum. 614
materiarum 608
medullare 610
Newberrsi 607
Onangondianum 606
pachytichum 612
Permicum 613
Rhodeanum 612
Richteri 612
Rollei 612
Schrollianum 611
stellare 611
Stephanese 608
Sternbergii. 617
stigmolithos 611
Subrhodeanum 608
Tchichatcheflianum. 609
Thuringiacum 614
Valdejolense 611
Vogesiacum 609
Dafila bahamensis 115, 128
Dakota Indians $3 \in 8$
Dall, William Healey, on Albatross mo- lusca, etc 219-362
Darkness, influence of, on animals 223
Dasyatidx, family, new species of 149
Decapterus hypodus 180
Decem tuberculata 513
De Geer, Ch., work on spiders by 588
Deilephila lineata 195
Delphinulidæ 354
Dendrexetastes capitoides 2
perrotii 2
Dendrocolaptes albicollis 4
crassirostris 4
decumanus 4
guttatus 4
lineatocephalus 18
longirostris
16, 17
major
promeropirhynchus 10
rubigurosus, described 17
simpliciceps 18
temmincki 2
Dendrocolaptidx 132
Dendrocops lineatocephalus 18
Dendrocoptes promeropirhynchus 10
Dendrocopus albicollis 2, 3
major 16
Dermatomya mactroides 291
Deschampsia cxspitosa. 218
Dictyna annulipes. 509
arundinaceoides 509
borealis 509
cruciata 509
diligens 509
foliata 509
frondea 509
longispina 509
minuta 509
muraria 509
Page. 615
Page.
Dictyna pallida
Dictyna pallida 510 510
rubra. 510
sedentaria 510
vittata 510
volucripes 510
Dendroica adelaidx delicata 129
aureola105, 119, 122, 123, 124, 125
delicata 129
Dendryphantes alboimaculatus 570, 577
capitatus 70, 577, 578, 579
elegans 571, 573, 579, 580
flavipedes 571
tlavus. 571
multicolor 571, 579
Dentalium callithrix 294
candidum 294
ceras 291
didymum 294
ensiculus 294
Gouldii 295
megathyris, now species of mollusk 293
perlongum 294
Dictyna volupis 510
Dictynidae 509
Dicymbinm 532
Dicyphus 532
Dinopide 518
Dinopis spinosus 518
Diodon hystrix 651
Diodontidæ 651
Diomedea melanophrys 139
Diplectrum euryplectrum, new species offish157, 181
formosum 158
macropoma 157, 181
radiale 157, 181
Diplodonta semiaspera 264
soror 264
subglobosa 264
Diplodontidæ 204
Diplostila canadensis 529
concolor 529
nigrina 529
Diplostyla 526
Dipneumones 497, 503
Dipena buccalis 526
crassiventris 526
Diptera , 206
Discopyge ommata, new species of fish. 151, 179
District of Columbia, Palæolithic period. 371-376
Ditomotarsus hyadesi 200
Docoglossa, superfamily 340
Docophorus sp 189
Doleschall, L., work on spiders by 588
Dolichogyna nigripes 202
Dolichonyx oryzivorus 120, 123
Dolomedes albineus. 566
ærugineus 566
binotatus 566
connexus 566
fontanus 566
hastatulus 566
lanceolatus. 566
lineatus 566
Page.
Elaterido 198, 205
tenax fritit
tenebrosus 566, 504
urinator 566
virgatus Sifit
vittatus566
Dolichotoma, section 303
Domiciliorum 513
d'Orbigny, M., collected bird 18
Dotatusก…
Dracotettix, new genus of insects 8, 19
monstrosus, new species 48, 53)
Drapetisca526
socialis. 59.9
Drassidæ 208
Draseides. 506
Drassiformis 506
Drassoidæ 506
Drassus capulatus 506
coloradensis 506
diveraus 506
huntera 506
neclectus 506
nocturnas 506
ocellatus 506
pacificus, new species. 508
robustus 506
saccatus 506
vasifer 506
Dredging, dsep water 219
Drilla Harfordiana 303
pagodula 304
Dromicua ornatus 141
temminckii 144
Drymornis 2
Drsobates lignarius 135
Dubia 544
Dufonr, Léon, work on spiderz by 588
Duges, A 633
Duncan Island, birds from 119, 124
Dunn, G. W 59
Dwight, Prof. William B 37
Dysdera crocata 504
interrita 5.04
Dysderidx 208, 497, 498, 503
Dysderoidæ 503
Dysporus cyanops 11.
Dytiscidx 198
E.
Easton, Pa ., serpeniino rock from 59
Ebo latithorax 558
Eburia amabilis 192
Echidna catenata 647
Ecpantheira bonariensis 201
indecisa 201
Eixenmann, C. H 363
Elamea albiceps 132
martinica 130
Elaphidium 532
Eleorles acuticauda 187
dentipes 186, 187
militaris 187
quadricollis 187
Elnia vanessodides 190
Dmalotera obesa 193
358
Emarginula tumida
588
Ensina turbinella 325
Engjophrys, new genus of fish 176
sancti-lamentii, now species of fish 176, 182
Ensiphonacea 247
Guyonda. 592
Epeblimum scenicum 581
Epeira aculeata 542
aftinis 542
allo: 512
alboventris. 542
ambitoria 541, 542
anastera. 542
augulata 542
anaglypha $5!2$
annulipes 542,546
apoclisa americana 542
aproximata 542
arabesca 543
arenata 542
argentata 542
andax 543
aurcola 542,548
balaustina 543
baltimoriensis 543, 548
basilica 543
bella 513
benjamina 543
bicentennaria. 543
bispinosa 513
bivariolata 543
birittata 5.3
bozbyrinaria. 543
borealis. 543
califoruica. 543
calix 543
callida 543
calophylla 550
canadensis 543
санен 539
earbonaria 513
carbonarioides. 543
caroli. 543, 549
caudata 543, 549
cauta 543
cavatic: 543
cepina 543
cerasiæ 543
cinerea 543
ringulata 543
circulata 543
comehle:t. 543
conspicellata 543, 516
cooksonii 208
cornigera 513
cornuta. 544,545

Page.
Fritillaria Kamtschatcensis.................. 218
Frontinaadstricta 530
clathrata 530
coccinea 530
Fucoides floxuosa 35
Fulica leucoptera 137
leucopyga 137
Funarius 21
Furcula 528
Fusus apynotus 318
alcimus, var. Rushii 319
alcimus 319
ceramidus. 318
G.
Gadide, new species of 149
Galapagos Islands, batrachians from 145
birds from 101-128
fishes from 149, 183
insects from 191
mollusks from 257
Galtocerio maculatus 179
Galeorhiniax 179
Galeus dorsalis 179
Gallinago paraguayæo 137
Galliunla galeata sandvicensis 380
Gallimule, Hawaiian. 380
Gasteracantha caneriformis. 208, 539
insulana 208
preciosa 539
pallida 530
rufospinosa 539
velitaris 208,539
Gastre poda, Albatross collections of 296
Gaucelmus angustinus 521
Gayenna rosea, new species 265, 209
Gaza Rathbuni 312
Gea heptagon 541
Genota Carpenteriana 303
Geological Survey, fossil collections of 33
Geometridæ 196
Geophila, superfamily 299
Geositta antarctica 133
crassirostris 133
cunicularia 133
fasciata 133
frobeni 133
isabellina 133
longipennis, new species of bird $13: 3$
maritima 133
Geospiza conirostris, new species of bird $\mathbf{0 6}, 119$124, 127
dentirostris $119,121,122,125,126$
difficilis $107,119,122,12 \pm, 126,127$
dubia 119, 126
fortis ...107, 119, 121, 122, 123, 124, 126, 127
fuliginosa... $107,119,121,123,123,124,127$
magnirostris $119,121,122,126$
media, new species of bird. 107, 119, 124
nebulosa $119,121,122,125,126$
parvula 107, 119, 121, 123, 12
strenua $105,119,120,123,124,127$
Gcotreclia 513
Geraniacea 217
Geranium erianthum 217

Page.
Geranoaëtus melanoleucus 136
Gerres califoruicusis 181
cinereus 181
gracilis. 181
gula 619
olisthosloma 619
peruvianus 181
psembugna 649
rhomberas 619
Gerrhonotus multicarinatus principis 147
Gerridx 619
Gerstacker, work on spiders by 589
Geum calthifolium 217
Gentianace: 218
Giebel, C. G., work on spiders by 589
Gilbert, CLarles II., on Gillichthys 335:3
Gill, De Lancy 369
Gill, Dr. Theodore. 642
Gillichthys mirabilis 363
5 -cauda at San Diego 36:3
Girard, Charles, work on spiders by 589
Glaucidium nanum 136
Glottidia albida $2 ; 2$
Glyphis barbadensis 358
Glyphostoma gratula 309
Glypta leucozonata, new species 1.19
xanthozonata, new species 449
Gnaphosa brumalis 508
Gnaphosa conspersa 508
fontinalis 508
giganthoa 508
scadderii 508
Gobiilla. 1.19, 651
Gobias soporator 182, 651
townsendi 363
Gomphocerus 57
Gonatium 532
rubens 536,538
Gonatodes albigularis fuscus 144
Gougylidium 532
Goode, G. B., shell named for 300
Gordia marina 35
Gould, John 121
Gouldia cerina 261
Graculus perspicillatus 85
mile 85
Grallator 552
Graminero 218
Grammoneta. 532
inornata 537
ornata 535, 537
pictilis 535,537
Grand Caũon of the Colorado 35
Gratacap, L. P' 600
Great $\Delta u k$, extermination of 83
Green Sicklo-bill 384
Gryllidir 192, 205, 206
Gryllotalpa hexadactyla 206
Gryllus domesticus 192
Gymuothorax funobris 617
II.
Habenaria dilatata 218
Habrocestum auratum 572
coccatum 572, 578

Page.
Habrocestum coronatum 572, 578
cristatum 572
hirsatum 572
oregonense 572
peregrinum 572,579
splendens 572, 577
viridipes 572, 580
Hadrotettix trifasciatus 70
Hecmatopodida 116, 136
Hematopus ater 136
galapagensis 116, 120, 123, 128
leucopus 136
palliatus 116, 128
Hrmulon acutum 648
aurolineatum 648
chrysargyreum 648
flavolineatum 648
parra 648
plumieri 648
quadrilineatum 648
scudderi 181
schranki 648
steindachueri bi48
striatum 648
Haln, C. W., work on spiders by 589
Hahnia agitis 517
bimaculata. 517
cinerea 517
magna 517
radula 517
riparia 517
Hald manella robusta, new species of in- 48, 51
Halesus hyadesi 200
Halichœres bivittatus 650
maculipinna 6.50
Haliotis Pourtalesii 355
Halistylus columna, new species of wol lusk 341
Halobates wuellerstorfi 194
Halocypselus evolaus 180
Hamalative crisea 517
Hamataliva 592
Harbrocestum auratum 578
Harengula arcuata 645,646
callolepis 647
clupeola 617
humeralis 646
jaguana. 646
macrophthalma 645, 646
pensacola 646
sardina 647
Harvey, Rev. M., on Newfoundland 45
Hasarius hoyi 572, 578, 579
Paykullii 576
Hawaiian Islands, birds from 377
Heineckon \& Lowe 589
ifela tenella 337
Helenia, new genus of fossil shell 39
bella, new species of fossil shell. 39
Helicida299
Heliconius apseudes 190
Helix lactea 299
Ilelminthoidichnites marinus 35
tenuis 65
Page.
Helophilus halni 203
Helophora 526, 530
insignis 530
Hemignathus stejnegeri 384
Hemilenca lyyadeti 201
Hemiptera 188, 194, 200, 204
Hemiramphus roberti 180
unifasciatus 180, 647
Hemerobida 204
Hemiteles albiscapus, new species 399, $\mathbf{4 0 : 3}$
aunulatus, new species 398,404
annulicornis, new species. 10.5
Belfragei, new species 399
bicormutus, new species. $10: 3$
bucculatricis, new specie 101
gracilaris, new species 101
hydrophilas, now species. 101
hemerobii, new species 399, 104
melitrex, new species 399
nigriceps, new species 100
pallidus, new species 106
Rileyi, new species 103
rabricornis, new species 105
syrphicola, new species 405
texanus, new species 104
varicgatus, now species 10.5
virginiensis, now species 399, 40.4
Henicops chilensis 216
Hentzii 543
Hentz, N. M., works on spiders by 589
Herpestomus plutelle, new species 396
Herpyllus. 506, 507, 508
alarius 508
ater 508
auratus 508
bicolor 508
bilineatus 508
crocatus. 508
cruciger. 509
descriptus 509
dubius 509
ecclesiasticus 509
longipalpis 509
marmoratus 509
ornatus 509
pareus 509
pygmeus 509
ramulosus 509
trilineatus 509
variegatus 509
vespa 509
zonarius 509
Hesperita 195
Hesperotettix 47
Heteractitis incanus...... 116, 120, 123, 124, 128, 381
Heteropoda regia 560
venatoria. 208, 560
Heuchera glabra 217
Hexapoda of Albatross explorations 186
Heswra picea 502
Hilatbolda simonii 523
Hilke trivittala 513
Page.
Himantarium teniopse 212
Himantopus knudseni 381
mexicanus $116,120,123,1: 8$
Himella, characteristics of 467
contrahens 468
fitelis tis
intractata 468-496
thecata 468
Hinde, Dr. G. J., on fossil coral 33
Hinges of bivalves, evolution of 234
Hippiscus 56
Hippoboscida 301
Hipporlossina macreps 175, 183
Hirundinide 105,131
Hodge, H. G 619, 624
Hottman, W. J 369
Holacanthus tricolor 650
Holland, Rev. W. J., on lepidoptera 185
Holmes, W. II 369
Holocentride 618
Holocentrus ascousionis. 648
Homalattus cyaneus 573, 576, 578
septentrionalis 576
Hood Island, birds from 119, 124
fish from 179
Moppin, Miss, on crayfish (29
Homer, Dr. G. \mathcal{L}. 5
Howard, L. O., on insects of Albatross collection 185-216
Howley, James P 46
Hyctia pikei 575
Hydracia, larva of 196
Hydrobatida 194
Hydrocorax vigua 138
Hydromedusa tectifera. 143
Hylactes tarnii 135
Hylodes leptopus 143
IIymenoptera. 190, 197, 202, 205, 206, 207
Hyolithes americanus 38
nobilis 38
princeps 39
similis, new-species of shell 3s
terranovicus, now species of shell. 37
Hypochilidæ 497, 503
Hypochilus 497
thorellii 503
Hyptiotes caratus 553
I.
Ichneumon fulvopictus, new species 391 lencopsis, nuw species $3!1$
390
Ichneumonidw 202, 205, 387
Icius albovittatus 571
convergens 576
crassiventer 571
elegans 571
lineatus $571,573,580$
mitratus $571,573,579$
nigromaculatus 571
palmarum 571
piraticus 571
vittatus. 571
Icteridæ 130, 132
Icterus laudabilis 130
Imperial Academy of Sciences, St. Peters- c5
Indefatigable Island, birls from 119,122
fish from 179
Infumat: 54
Insects collected by Fish Commission 185-216
new North American Acridida. 17
of family Noctuidio 455
of subfamily Ichneumonidio 387
Invertebrate fossils, C, D. Walcett on 33-46
Itidacea- 218
ris Sibiricus 218
Isanthrene crabroniformis 190
Ischuocerus montanus, now species 418
Ischnus americanus, new species 39.1
Ischyrocnemis carolina, new species 143
Isocardiida 266
Isodermus patagonicus 200
Itabapuana River, Tinactor fuscus found near 29
J.
Jaering, II. von 23
James Island, birds from 119, 123
fish from 179
Janus gibberosus 581
Jenkins, Dr. O. I' 363, 651
Jorvis Island, birds from 119
Jocus mitratus 579
Jones, Dr. Wm. II. 14, 119
Jordan, Dr. D. S 619, 620
on Albatross collection of fishes 615-652
on fishes from Galapagos Island. 149-18 :
on vellow-finmed trout 453
Jordan, Jessie Knight. 161
Junouia menoreva $\because 05$
K.
Karscl, Nr ., works on spiders by 589
Kathetostoma averruncus, new species of tish. 16:3, 189
leve 377
Kanai, birds from 163
Kelliella (militaris) 267
Kengla, Louis 369
Keyserling, E., works on spiders by 589
Knowlton, F. H., on genus arancarioxslon 60t-617
Kimulsen, Valdemar, birds colleeted by. 377
Koclo, ('.. works on spiders by 583
Koch, Ludw., works on spiders by 589
Kuhlia arge, new species of fish 159, 181
taniura. 1.59
Kunz, George \mathbf{F} 599
Kutoyina labradorica, var. swantonensis,new variety36
L.
Labrida 650
Labulla altioculata. 530
Lampronota puritana, new species 450
Lamprridæ 206

Linyphia litigiosa ．． 52.
Page．
Luphommat 532
luctuosa 530
mandibulata 528
marginata． 528
marmorata 528
micaria 528
minuta． 528
nebulosa 528
neophita 528
nigriua 5：
orophila 528
phrygiana 528
pusilia $5 \div 9$
py ramidea 524
radiatat． 529
relucta 529
reticulata 507
mubrofasciata 529
rufit． 59
sabulusa 529
seripta 529
sitkaensis 529
socialis 5%
subalpina 529
textrix． 529
weyeri 529
z bit 529
Liolamus chitensis 144
temuis． 144
Liophis oruatus 141
Liotia Riisii 354
Liparida 205
Lipeurus diomedow 189
taurus 188
Litiopida $3: 36$
Litorina angulifera 33.5
Litorinidia． $3: 5$
Lithyphantescorollatus 522
fulvus 522
marmoratus 522
pulcher 5．
septemmaculatus． 522
tectus 522
Lizard，new，from Lower California 6
Locustida 192，200，206
Lophocardium Annctte，description of 2 L
Lophius sp 1．：
Lophocareнин 532
castaneum
crenatum 537
decemoculatum 537
depressuru 538
erigonoides 538
tlurens． 531，538
latum $3: 8$
longitansis 538
lonsitilus． 538
montanum 5：3
montiferum 5\％
mallidum 535， 538
quadicristatum 538
rostratum 538
scopuliferum 538
simplex 538
sииністия 536，538
cristata 533， 538
elongatia 538
Lower California，batrachians from 147
Loxigilla noctis sclateri 129
richardsoni 129
Loxosceles galapagoensis，new species 20s
rufescens 505
unicolor 505
Lat：mid：a 198
Lucas，Frederic A．，on l＇allas＇s cormorant 88－9t
Lucas，Il．，works on spiters ly 590
Lucilia（Compsomyia）macellaria 203
hominivomat 203
rubriftons 203
vitattia 203
І，нінаня： 261
Lucina costata 264
 263
pecten 264
sagrinata 263
sombrerensis． 26
squ： 264
trisculata 26
L．umint： 26.3
Lumatia friogilla 340
Lupinus Nootkatensis 217
Lutjanus analis 648
buccauella 648
cax1s 46
inermis 181
guttatus 181
jocu 648
profundus 6；4
 648
11：a111s 618
 282
L．© 0 monliatesa 218
Lycopodium clavatum． 218
Lycoside 2グか， 561
Lreusiles 561
Lycosa animosa 561
arenicola 5 fil
asprat 561
avita． 561
bahimetonii 561
c：amatrusis 561
carolinensis 561
chtrer． 561
communis 561
concinna 961
discolor 561
distincta 561
encarpata 561
entation 561
fallax，now species 305
fatifera $5 t 1$
Hlavipes 561
thandient． 561
fuegiana，now species 50s
fimerea． 561
furcifera 561
fuscula． $56:$
grorgiana 562
grassipes 561
Page.
Mavia cirysea 573
cristata 571, 573
lineata 573
pallid: 571,573
peunicillata 573
sulfurea 573
tibialis 573
Mahadeva verrucosa 541
Malacanthidas 6.51
Malacanthus phumieri 651
Malachylodes 143
Malletia goniura, new species 351
(Tiudaria) aciuula, new species of mollusk 9.5:3
(Tindaria?) æolata, new species of mollusk 25
(Tindaria) agathida, new spe- cies of mollusk 2.5
(Tindaria) amabilis 25 .
(Tindaria) virens, now species of mollusk 2.)
Mallodon sp 191
Mallophaga 188
Malthe clater 183
Mamestra from Straits of Magellan 201
Mangilia antonia $30!$
exsculpta 304
Mannalioac Indians 368
Margarita, genus 345
Margatops montanus 129
Margiuella avena 311
catenata 311
cineracea 310
lactea. 311
suecinea 311
Marpissa conspersa 575
dissimilis 575
incerta. 575
nigro-limbata 5%
undata 575
varia 575
Marpsua undata 575
varia 575
Marptusa californica 575
conspersa 575
familiaris 575, 578
marita 576
Marsh, Charles II 56
Martha's Vineyard, ocean fauna near 230
Marx, Dr. George 185, 497-594
Mason, Otis T., on archaology of Poto mac region 367
Mastonia, section 335
Mitya viridis. 198
MeCook, H. C., works on spiders by 590
McDonald, Hon, Marshall 141,$149,185,217,219,349,454,641,645$
Macellaria fulvipes 204
gentina 204
Macoma brevifrons 273
(Cymatoica)
272
370
McGee, W.J
369
MeGuire, J. D26, 30187
501 Megaleatris antare 501 Megalestris antarcticus Madognatha abbotii 139
573
Mæria annulipes
573
573
573
abrulenta
abrulenta
californica50773 | Melaraphe, scetion335
Meloide
Page. 187
Microplophorus magelianicus 199
Menemerus cruciferus 575
foliata 576
galapagoensis, new species 05
melanognathus 575, 576, 579
paykullii 576, 578
Menge, A., work on spiders by
Menidia gilberti, uew species of fish 155, 180
guatemalensis 155
pachylepis 155
Menopon fuscofasciatum 189
Mcuticirrhus nasus 181
Meridionalis i43
Mermiria alacris 53
bivittata 53
maculipennis, new species of in- sect 48,54
neo-Mexicana 51
texana, new species of insect 48, $5: 3$
Merrill, Dr.J. C 634
Merrill, G. P., ou serpentinous rocks 595-600
Merula magellanica 131
Mesonacis vermontana 41
Mesops cylindricus, new species of insect is
wyomingensis 48
Mesorhytis costatus, new species of mol lusk 317
Mesostenus erythrogaster, new species (06
leucocoxa, new species 107
leucopus, new species. 106
Mestobregma kiowa 64
pulchella, new species of in- sect 48, 6:2, 64
Meta fusca 551
menardi 551
tigrina 529
Metopius terminalis, now species 435
xanthostigma, new species 138
Mexico, new species of bird from 6
Sclerurus found in 22
Micaria aurata 506
longipes 506
montana 506
Micrepeira radiosa 551
Micrathena 539
Microdiscus helena, new species of fossil 10
lobatus 40
meeki 40
Micromata carolinensis 560,565
marmorata 560
pinicola 560
serrata 560. 565
subinflata $56(1)$
undata 560
Microneta 532
cornupalpis 533. 3 3
crassimanus 538
discolor 538
latidens. 539
longibulbns 539
olivacea 539
persoluta 535, 539
quinquedentata 539
viaria 536
vivaria $53!$
Micropogon altipinnis 181
fournieri 619
Micryphantes 532
Migadops ovalis 197
Miltioida 592
Milvago chimango 136
Mimetus epeiroides 524
interfector 525
syllepsicus 525
tuberosus 525
Mimid:t 102, 1 $\because 9$
Mimulua lutens. 218
Mntatit 54
Misumena alabamensis 556
americana 556
conspersa 556
diegoi 556
dubia 556
georgiana 556
importuna 556
mexicana 556
oblonga 556
rosea 556
spinosa 556
variegata 556
vatia 550
Misumenoidx 554
Mithraides 553
Mithras 553
Mitra Bairdii 315
Hanleyi 316
Mitrularia equestris 339
Mniotiltide 105, 129
Moho braccata 386
Mollusca and Brachionoda 219, 362
Mollusca, list of Albatross 362
Mollusks, anatomy of 240,242
characteristics of deep-water. 225
deep-sea, sculpture of 228
color of 227
development of dentition of $24:$
development of hinge of. 3.3
life conditious of deep-sea 219-248
Monaca Indians 368
Monocanthus pullus 651
Montevideo, insects from 201
Moouey, James 367
Motacillida 131
Mugil cephalus 180
curema 180, 647
Mrumilita- 617
Mullidar 649
Muræna lentiginosa 179
Мигæцеsox coniceps. 180
Mu*nиid: 617
Murex (Chicoreus)-Leeanus, new species. :3:39
Muricine, subtamily 329
Murtfeldt, Mary 401
Musca macellaria 203
Muscidia 203
Muscisaxicola macloviana 132
mentalis 132
Museum of Comparative Zoology 1, 619
Myacea, suborder 247, 292

Nesomimus, melanotis
$102,119,120,122,123$
parvulus 102, 119, 124
124,127

521 pallidus 521
Neuroptera........................ 190, 194, 200, 204, 207
Nevada, fossils from 33
Nettion ilavirostris 138
Newell, M.. 55
38
viridans 194
501
Nitidella, section 328
Noctuidæ....................................... . 196, 201, 206
North American cray-fishes 619-634
Nototrachys annulicornis, new species... 12:
Nucula callicredemna, new species....... 25\$
crenulata................................ 258
ulebrensis.............................. 258
258
-
trigona..................................... 257
Nuculacea 251
Nuculide... . 257
Nuculocardiadivaricata....................... 251
Numenius hudsonicus 120, 123, 127
Ny 199
obscurus.......................... 137
pauper 114, 120, 122, 125, 126, 127
europs, new species of bat. . 6335
johonensis 635
macrtotis 635
orthotis, new species of bat. 635
Nyctobora? holosericea?.................... 188
Nymphalidæ........................190, 194, 201, 205, 207
0. 36
Ocean depths, divisions of......................... 220
dredging in................... 220
pressure of water........... 221
crenulata, netr species of ingect 48,51
occidentalis 51,52
rufa.. 565
undata 565
Ocypete murina.................................. 560
Odonata... 200, 204, 207
Odontoscion dentex 649
Odynerus argentinus............................. 205
respiformis......................... . 202
CEdipodinæ 48, 61, 187
Edipoda (?) occidentalis, netr species of
msect........ 48, $\boldsymbol{7}$
Oblert, E., work on spiders by............. . 590
Old Wolf Quarry, Pa
Page. 599
Olenellus, age of 41
asaphoides $34,35,37,41$
bröggeri 39, 41
gilberti 43
iddingsi 43
kjerulti 41
(Mesonacis) asaphoides 41
mickwitzia 41
thompsoui 43
zone, new genera and species from 33-46
Olifersia 206
Oligoplites altus 180
saliens 180
saurus 648
Olios abnormis 560
antillanus 560
concolor 560
giganteus 560
lemosius. ᄃ16)
regius. 560
zonatus 560
Olivelia bullula 310
Horalia 309
jaspidea 310
Omosita 505
Omosites. 505
Omphalius fasciatus 341
Onagrace:. 217
Ö̈corys sulcata 334
Oophora meridionalis 505
Operaria 509
Opheomorphus chamissonis. 144, 147
Ophichthus evionthas, new species of 154,180
rugifer, new species of fish. 155, 180
triserialis 155
Ophididix, new species of 149
Ophiolite of Thurman, N. Y 595
Ophioninæ, subfamily 423
Ophisoma nitens, new species of fisl 153, 180
Ophisuridæ, new species of 14
Opisthobrauchiata, order 296
Opisthonema oglinum 645
Orbitela 539
Orbitelarix 539
Orbiteles 539
Orchidaceæ 218
Orcutt, C. R 96
Ordgarius bisaccatus 541, 551
cornigerus 541, 551
Oreomyza wilsoni, new species of bird 386
bairdi 385
Orizaba, Mexico, birds from. 6,7
Oroodes 525
Orpheus melanotis, type of genus Neso- mimns 102
Orthocentrus californicus, new species 1.14
Orthodes, characteristics of 469
candens 471
cynica 471,496
enervis 472,496
intirma 470,496
Pago.
Orthodes, irrorata 473,496
nimia 471
puerilis 474,496
virgula 473, 496
Otthodonta, suborder 299
Orthopelma, analysis of new species of. 415
bedellio, new species 11.5
bimaculatum, new species 116
californicum, new species 117
coloradonse, new species 118
diastrophi, new species 118
erythropa, new species
erythropa, new species 116 116
occidentale, new species 117
minutum, new species 116
rosæcola, new species 117
Orthoptera $187,192,199,205,206$
Orthropristis chalcens 181
Oryctes galapagoensis 191
Osborn, H. L 629
Osborn, Prof. Herbert, on mallophaga. 185
Ostracinda: 155
Ostracion bicaudale 652
Otophidium indefatigabile, now species of fish $17 ะ 182$
taylori 172
oxycoryphus. 56
Oxyopes arcuatus 567
astufus 567
fossanus 567
gracilis 567
salticus 567
scalaris 567
lanczolatus 567
vittata 567
Oxyopidæ 566
Oxyptila conspurgata 555
georgiana 555
monroensis 555
nevadensis 555
Oxypyga, genus of birds 21
scansor 21, 23
Oxyurus spinicauda. 132
P.
Pachycoris guttipes 188
Pachydactylus 526
Pachygnatha autumnalis 553
brevis. 553
furcillata 553
tristriata 553
xanthostoma 553
Pachylomerus carabivorus 501
carolinensis 501
emarginatus 501
quadrispinosus 501
solticialis 501, 591
turris 501
Pachyloscelis 500
rufipes 500
Pachyrhina 202
Pacific ocean, fishes from 149
Packard, A. S., work on spiders by 590
Packardi 543
Page, Capt. T. J., bird from 16
Palæolithic period in District of Columbia 371-370
Pergande, M., catalytus from419
Perigrapha, characteristics of ,491erythrolita494, 496muricina493, 496
normalis492,496
pulchella 494
(..... 1Peristichia, description of genus.333
toreta 334
Perty, M., or spiders
Petrophila, superfamily 299
Peuce biarmica 013
Peucetia aurora. 566
viridans120
alaskensis, new species 4flavocinctus, now species121Phaogenes gelechiæ, new species3912
hemiteloides, new species)montivagus, now species394
ruficornis, new species 4
Phrornis myadestina 383
phrenicurus 189
Phaëthontida 130Thalacrocoraciaio88
dilophus 88
perspicillatus. 83,85
vigua 138
Phaleria gayi32
Phanetta subterranea 531
alchymista 568, 569nsinarius568,568
cardinalis68
clarus. 568
coloradensis 68dubiosus568
elegans 568
gracilis 568568,579
johnsoni569

Page.
Phidippus McCookii 569,579
mexicanus 569
miniatus 569
morsitans. 208, 569, 578, 580
mundulus 569
obscurus 569
octopunctatus 569, 579
opifex 569, 579
otiosus 569, 579
paludatus 569
personatus 569
pulcherrimus 569
purpuratus 569
purpurifer 569
rauterbergii 569
ruber 569
rufimanus 569
rufus 569, 578
smaragdifer 569
testaceus 569
togatus 569
tripunctatus 569
variegasus 569
Philaus chrysis 570,578
farneus 570
fartilis 570
militaris 570
princeps 570,579
rimator $.570,578,580$
Phillips, Hallet 369
Phillyra mameata 554
riparia 554
Philodromus abottii. 558
alaskensis 558
aureolus 559
californicus 559
clarus 559
expositus 559
imbecilus 559
infuscatus 559
inquisitor 559
keyserlingii 559
laticeps 559
lentiginosus 559
maculatus. 559
marxii 559
oblongus 558, 559
obscurus 559
pernix 559
proceps 559
prelustris 559
rufus. 559
satullus 559
spectabilis 559
thorellii 559
virescens 559
vulgaris. 559
Phenicopterida 114
Phœnicopterus ruber $114,120,122,123$
Pholadacea, hinge of 243
Pholcida 498
Pholcinæ 505
Pholcomma hirsutum 532
rostratam 532
Pholens atlanticus 505Page.
Pholens cornutus 505
gibbosus 505
phalangioides 505
pullulus 505
Pholicid:e $50: 3$
Phrurolithus alarins 514
dubins 514
parcus 514
pugnatus 514
Phrygilus formosus 131
gayi $13:$
Phyllodactylus galapagoonsis 145
leei, new specios 145
tuberculosus 145,147
Picida 13.1
Picolaptes promeropirhynchus. 10
Pieris xanthodice 201
Pimpla aplopappi, new species 446
cuure, new species 418
gossypii, new species 4.1.5
lithocolletidis, now species 417
pterophori, new species 4.5
zanthothorax, new species 1.16
yukonensis, new species 1.15
Pimplinx, subfamily 444
Pinites ambiguus 610
Brandlingii 607
Fleurotii 613
Hügelianus 617
latiporosus 616
medullaris 610
Wurtembergiacus. 615
Pinnata 514
Pirata insularis 564
minuta. 564
montata 564
piratica 564
prodigiosa 564
Pityophis vertebralis 147
Pisania pusio 325
Pissadendron antiquum 610
Pitus antiqua 610
Plagitelarix 498, 505
Planolites annularius, new speries of fossil 34
congregatus 34
incipiens 35
Platesthes depressa 199
Platophrys constellatus 183
leopardinus 183
lunatus 651
Platyglossus dimidiatus 650
dispilus 182
nicholsi 182
Platyopsis 532
Platysma striatulum 204
Plautus impennis 83 83
Plectana aculeata 510
cancriformis 539, 540
crassispina 540
elipsoides 539, 510
gladiola 540
gracilis 540
reduviana 540
sagittata 540
stellata 540 540
Page,
Plectana velitaris........................... 539, 540
Plemotomella (Gymnobela) agonia, new mollusk 307
Pleske, Dr. Theodor 85
Pleuronectido. 651
Pleurotoma exulans, new mollusk 149 $30:$
(Leucosyrinx) goodei, new mollusk 300
(Surcula) carpenteriana 303
Pleurotomella agassizii, var. permagna. 308
argeta, new mollusk 307
cingulata, new mollusk. 306
suffusa, new mollusk 308
I'lenotomidar 300
Plexippus albovittatus 570
bivittatus. 569, 570
ligo 576
puerperus 570, 577, 579
putnami 570, 580
rufus 569, 570
undatus 570,573
Podophthalmide 567
Pecilia elongata 180
Pœeilus caiathoides 191
Pecilochroa bilineata 508
montana 508
variegata 508
Pecilonetta cristata 138
galapagensis... $\mathbf{1 1 5}, 120,121,122,125$
Precilonitta hahamensis. 115
Polistes 191
Polyborns tharus 136
Polycirrhus dumerili. 181
peruanus 162
rathbuni, now species of fish. 16: 181
approximans 180
opercularis 180
virginicus 648
Polygonacear. 218
Polygonum viviparum. 218
Polynemida 648
Polysphincta rufigaster, new species. 148
Pomacentrus 182
Pomadasis elongatus. 181
leucischa 181
macracanthns 181
Pompilidæ 190, 207
Pompilus. 202
Porichthys margaritatus. 171
nautopredium, new species of fish. 171,182
Poromya cymata, new species of mollusk. 289
(Dermatomya) mactroides. 291
microdonta, new species of mol- lusk 290
sublevis 290
Poromyidx, family, characteristics of 284
Potomac tide-water region, archeology of. 367
Potamia 564
Potentilla palustris 217
Porzana spilonata. 120, 123
Prenanthes alata 218
Prionodes fasciatus 181
phiebe 159Page.
Prionodes Inciopercanus 158
stilbostigma, new species offish158, 181
Prionodesmacea 240,248
archaic type of 214
dentition of 244
scutellata, new species. 111
Prionotus albirostris, new species of
fish. 168, 182
birostratus 169, 182
horrens 182
miles 170,182
punctatus 169
quiescens, new species of fish $\mathbf{1 6 (6)} 182$
stearnsi 166
stephanopbrys 166
xenisma, new species of fish. 169, 182
Pristonychus chilensis. 198
Procellaria tethys 120, 125
Procellariida. 139
Prodenia, larva of 196
Prodidomida 518, 592
Prodidomus rufus 518
Progne concolor 123
Propinqua 507
Prostheclina cambridgii 573
Prosthesima atra 507
bicolor 507
bimaculata 507
depressa 507
ecclesiastica 507
funesta 507
melancholica 507
Protoparce calapagensis, new Lepidop- tera. 19.5
cinculata 165
Protopharetra polymorpha 33
Protopitys buchiana 609
Proudfit, S. V. 369
P'soudaglossa 196
Pseudamusium strigillatum. 250
Psendicius hardfordii 571
Psittirostra psittacea 386
Psolesssa buddiana, new species of insect. 48, 61
eurotia, new species of insect $48,6 \div$
ferruwinea 61
Ptenoglossa, superfamily 33.
Pteronotus phaneus 330
Ptoroptochida- 135
Pteroptochus rubecula 135
Ptinide 191
Puflinus brasiliensis 138
cuneatus. 377
knudseni 377
major 139
Pulmonata, order 299
Puncturella circularis 356
falklandica 356
(? Rimula) erecta 357
Purpura deltoidea 331
hemastoma, var. trinidadensis. 331
Purpurine, subfamily 331
Pyenodyctia Wheeleri? 69
Pylaras 504
Pyractomena 206
Page.
Pyralidx 196, 201
Pyrgomorphina 48, 49
Pyrocephalus nanus.. $112,120,121,122,123,124,125$
Pyrola rotundifolia 218
Pyrrhura smaragdina 136
Pythonissa 50\%
clara 507
imbecilla 507
d.
Qucrimana gyrans 647
harengus 180
Querquedula versicolor $120,125,127,138$
Quiscalus inflexirestris 130
15.
Raja equatorialis, new specics of fish 150,179
inornata 150
Rajidx, new species of 119
Rallidie 137
Ranula azalea 182
Ranularia tuberosa 334
Ranunculaceæ 217
Ranunculus occidentalis 217
Rathbun, Richard 149,163
Recurvirostridæ 116
Reed,J. E 597
Retitelariz $498,518,539$
Retrogradio 554
Tieuss, A., on spiders 590
Reynolds, Elmor R 369
Rhachiglossa, superfamily 309
Rhanis. 576
Ihipidoglossa, superfamily 340
Rhododendron Kamtschaticum 218
Rhomalea miles. 205
Rhyephenes lavirostris 199
Ridgway, Robert, on Albatross collection of birds 101-139
on birds from Galapagos Islands 101-128
on genus Sclerurus 21-31
on genus Xiphocolaptes 1-20
Rijks Museum 85
Riley, C. V 47, 387
Rimula, subgenus 357
Rissoida 336
Rompliza 523
Rosacero 217
Roussean, Alexandro 647
Rubus chammmorus 21^{7}
Rumex occidentalis 218
Runcinia brendelii. 556
Rumula, new genus of fish 171
azalea, new species of fish 171
Rusophyeus 35
Rust, William P., fussils collected by 363
Iypticus nigripinnis 180
saponaceus 6.8
Sabatia bathymophila.298
Sadala distincta 571
Saitis notata 573

Saiti Page.Saitis pulex 573, 574, 580
Salmo mykiss mactonaldi, now subspe- cies 1.53
Salicacero 218
Saltatores 568
Saltionila- 546
Salticus albocinctus 581
albovittatus. 574
borealis 581
convergens 575
incorus 581
ephippiatus 581
fuligineus 581
nigro-limbatus 575
propinquus 574
scenicus. 574, 581
sundevallii 581
vaillantii 576
Saltigradio 568
Salix reticulata 218
Salvin, Osbert 102
Sambucus racemosus 217
Santa Lucia, birds from 129-139
sliells from 229
Sarcophagida 203
Sarotes regias 560
venatorius 560
Sartorius, S 26
Satilatlas marxii 531
Saturnia hyadeti 201
rubrescens 201
Saussure, Henry de 80
Savignia 532
Savigny, on spiders 590
Saxifraga Hirculus 217
Saxifragaca 217
Saxicava arctica 292
Saxicavida 292
Scala babylonia 332
denticulata. 333
pompholyx, now species of mollusk (3:3:
Scalide 332
Scaphander interruptus, new species of mollusk 997
nobilis 297
Scaphandridæ 297
Scaphella ? brasiliana 312
Scaphella wagellauica 311
Scaphopoda 293
Scapteriscus vicinus. 205,206
Scarabæidæ 191, 206
Scarus acutus 650
cerulous 650
croicensis 650
Sceloporus zosteromis. 147
Schaupp, F. G 55
Schistocerea melanecerea 193
vacia. 1×7
Schizolomat contusa, new spocios. 126
sciarnat inticeps 1s1
typica. 1s1
Scionide 149, 649
Sclater, Dr. P. L 21, 25
Scleromathus glaciale 198
Sclerurus, characteristics of. 41

Page.
22
albogularis. 21,22, 4.4
brumnens........................... 22. 29
canggularis 22,24
candacutus......................22, 23, :37,30
fnscus................................ 22, 28
guatemalensis................22, 25, 29, 330
lawrencei........................... 22,29
mexicanus22, 255, 26
olivascens............................ 22, 31
ruficollis 25,27
rufigularis....... 26
nmbretta............................22, 23, 23, 30
Scolopacidæ 116, 137
Scolopendra deliaani 214
$\begin{array}{ll}\text { galapagoensis, now species.. } & 215 \\ \text { macracanthus, new species.. } & 21: 3\end{array}$
microcanthus, new species .. 114
prasina............................ 216
subspinipes 214
ralida $2: 6$
viridicornis
216
Scomber colias 180
Scomberomorus cavalla....................... 648 maculatus 180
Scombridæ
180
Scopoli, J. A., on spiders 590
Scorpæna fernauderiana 165
grandicornis 652
histrio............................... 182
plumieri 652
russula, new species of fish... $\mathbf{1 6 5} \mathbf{6}, 182$
sonor:e 165
Scorpænidæ... 49, 651
Scorpions, collected by Albatross 211
Scotogramma, characteristics of genus... 461
inconcinna 463
perplexa 463
phoca 463
promulsa....................... 463
stretchii....................... 464
submarina 462, 496
umbrosa........................ 464
Scrophulariaceß 218
Scudder, S. H., on spiters.................... 590
Scyllina peregrans 205
Scytalopus albifrons 135
magellanicus................... . 135
obsenrus 135
Scytodes
cameratus............................. 504
thoracica............................... 504
Scytodidx 208, 498, 504
Scytodiformis...... 504
Scytodinæ .. $50 t$
Sea-bottom, character of 283
Sea-water, composition of $\mathbf{2 2 1}$
Sedum Rhodiola 217
Segestria galapagoensis, new species 205
Seguenzia monocingulata 335
trispinosa........................... . . 335
Seguenziidæ .. 335
Selene vomer....................................... 618
Selenophorus galapagoensis................ 191
Selenops aissa.................................... . . 208, 560
Selinum Hookeri

Page.
217
Semele cancellata Semele cancellata. 274
nuculoides 274
reticulata 274
Semelidx 274
Senecio pseudo-arnica 218
resedifolius 218
Sepium 529
Septum of family Poromsida 284
Seriola dorsalis 180
Serpentinous rocks of New York, etc 595-600
Serranidx 149, 648
Sesiidæ 190
Sharpe, R. Bowdler 119
Shell heaps of the Lower Potoraac. 368
Shells, deep-sea, color of 297
sculpture of 228
evolution of hinge of 234
pearliness of 240
Shoemaker, Ernest 369
Silphide 198
Simon, E., on spiders 590
Singa maculata. 549
maura. 546, 549
mollybyrner 549
nigripes 549
pratensis 549
rubella. 549
van Bruysellii 550
Sipho, subgenus 323
Siphonaria ferruginca 299
Siphonaridit. 299
Siphostoma rousseau 647
Smith, John B., on Noctuidæ 455-496
Smith, Miss Iosa, new snake from 97
Smith, H. H 17
Smock, Prof. J. C 595
Snakes, new species of 95
Solariella actinophora, new species of mol-
lusk 353
amabilis 352
clavata 352
infundibulum 349
oxybasis, new species of mol- lusk 352
Solariidx 336
Solarium bisuleatum 336
Solenoconchia 293
Solenomsacea 247
Solenopleura harreyi, new species of fos-sil.45, 46
howleyi, new species of fos- sil. 15
Solidagn lepida 218
Somomya annulipes 203
Sparidx 149, 648
Sparisoma abildgaardi 650
aurofrenatum G50
cyanolene. 650
flavescens 650
hoplomystax 650
xystroton 650
Sparassidæ 208, 559
Spasus 567
Spermophora meridionalis 505

Teminius continentalis
Page.冝Tabanidæ191, 202
Tachycineta meyeni 131
Tachyeres cinereus 138
Tachysurus elatturus 179
platypogon 179
Taczanowski, L., on spiders 591
quotation from 15
Tæniocampa agrotiformis 489
alia 487, 496
analysis of species of . $456,457,474-476$
arthrolita 486
capsella 481
columbia 479, 496
furfurata 477, 496
garmani. 488, 496
incerta 496
incincta 482,496
modifica. 480, 496
obtusa 483, 496
orobia 489
oviduca 481, 496
pacifica 486, 496
pectinata 48t, 496
perbrunnea 478,496
peredia 478, 496
perforata 481
proses 488, 496
rufula 480, 496
subfuscula 485.496
subterminalis 496
subterminata. 488
suffusa 483, 496
terminalis 496
terminata 485
uniformis 479,496
utahensis 482,496
Tænioglossa, superfamily 334
Twnioptera pyrope 132
Taraguira torquata 141
Tarentula baltimoriana 563
inhonesta 563
kochii 563
lepida 564
modesta 564
nidifex 561, 564
pikei 564
pudens 564
scalaris 564
Tectibranchiata, suborder 296
Tegenaria arboricola 516
brevis. 516
civilis. 516
derhami 516
flavens 516
medicinalis 516
morsitans, new species 208
nemorensis 516
persica 516
philosteichos 516
Terrodera erosa 187
Teleodesmacea 260
Tellinidæ 272
Tellkampf, on spiders 591

Page.
Thargalia ornata............................... 514

Theridium roscidnm Tage.

Theridium roscidnm 520
pinnata
514
tricolor............................. 514
trilineata.............................. 514
zonoria............................. 514
Theragretes walkenærii 500
Theraphosidæ..................................... 208, 499
Theraphosinæ 500
Theratodes depressus......................... 503
Therididв 518,208
Theridionoma................................... . . 593
argentatum................... 551
argenteolum................... 551
gemmosum 551
radiosum 5.5
Theridium amputatum 518
anglicanum 518
angulatum 524
aneatam 518
antonii 519
atrilabrum 519
blandum 519
boreale........... 519
brassicæ 519
cancellatum....................... 519
catenatum 519
cruciatum.......................... 519
differens 519
fictilium 519
flavonotatum..................... 519
foliaceum 519
frondeum 519
funebre 519
glaucescens 519
globosum 519
hypophyllum 519
incissuratum..................... 519
intentum 519
kentuckyense 519
laticeps 519
leoninum........................... 519, 525
lilliputanum....................... 519
lineatum 519, 522
lyricum 519
lyra................................. 519
marmoratum 519
marxii............................. 519
montanum......................... 519
morologum......................... 519
murarium 519
nicoleti............................... 520
opulentum 520
orix 520
ornatum...... 520
oscitabundum 520
pallidum 520
partitum............................ 520
pascagoulensis 520
pertenne 520
pictipes 520
placens.............................. 520
pullulum 520
punctosparsum.................. 520
quadripunctatum 520
reticulatum 520
rupicola 520
serpentimum 520
sexpunctatum.................... 520
мisyphum 520
spiral0 520
stictum............................... 520
studiosum 520
sublatum........................... 520
tepidariorum 520
triangulifer.......................... 521
trigonum............................ 520
unimaculatum 520
variegatum......................... 525
ventillans........................ 520
renustissima 521
verecundum....................... 520,522
zelotypum............................ 520
Theridula quadripunctata..................... 525
sphatala. 520, 525
Thomisidx... 20Ω
Themisides 5.5
Tbomisus .. 593
aleatorins............................ 557
angulatus............................. 557
asperatus 557
bicolor 557
bigibbosus.......................... 557
caudatus............................ 557
ctler 557
eitreus 557
conspergatus 557
crnentatus......................... 557
delphinus.......................... 557
desidiosus........................... 557
dubins 557
duttonii................................ 557
exaratus............................ 557
fartus................................. 556, 557
ferox................................... 557
flavescens 557
formosipes 557
indiligens........................... 557
iners................................... 557
infunatus.......................... 557
lemniscatus........................ 557
lentus............................... 557
luctans.............................. 557
oscitans............................. 557
pardus............................... 557
parvulus............................. 557
pictus.................................. 557
piger.................................. 553
phrygiatus.......................... 557
purpuratus 557
sphericus 557
stigmatisatus 557
tenuis................................ 557
transversatus 5.
tumefactus................................ 557
turgidus 557
varians 5.5^{-1}
vulgaris.............................. 55%
Thorell, T, on spiders......................... 591
Thracia distorta 275
Page.
Thracia Stimpsoni 275
Thrincus avidus, new species of insect 48,78
californicus 78, 187
maculatus, new species of in- sect 48,79
Thrush, Fly-catching 383
Thymele, new species 195
Tibellus dattonii 558
oblongus 558
Tigrina 529
Timogenes niger, new species of scorpion 211
Tinactor 21
fuscus 23, 28
guatemalensis 30
Tipulidæ 202
Titanceca americana. 510
brunnea 510
Tmarus candatus 558
floridensis 558
griseus 558
magniceps 558
rubromaculatus. 558
Tmeticus 532
bidentatus 538
bostonensis 538
brunneus 534, 538
concarus 538
contortus 538
longisetosus 538
maximus 538
microtarsis 538
montanus 533,538
pallidus 535, 538
pertinens 535, 538
plumosus 538
probatus 535, 538
terrestris 538
tibialis 535, 538
tridentatus 538
truncatus 538
Torpedinide 645
new species of 149
Tornatinidæ 297
Totanus flavipes 137
fuliginosus 125
Townsend, Charles H., collections by: 101
'Townsend, J. K 5
Tower Island, birds from 119, 124
Toxoglossa, superfamily 299
Trachelas ruber 513
Trachinotus falcatus 648
Irachurops crumenophthalmus 48
Trachynotus ovatus 648
Tramea from Albemarle Island 194
Treat, Mary, on spiders 591
Trematopygus, cultriformis, new species 41
Tricholea decepta 460,490
description of 459
edwardsi 496
edwardsii 460
Trichiurus lepturus. 180)
Triforidæ335
Triforis pulchella 335
Triglidx, new species of 149
Trigonocephalus caribbæus 141Page.
Trimerotropis azurescens, new species of
insect

 69, 74
 bifasciata, new species 48,70
cœruleipennis 68
californica, new species 48, 71
citrina 71
cyaneipennis 68
cyaneipennis, new species 48, 65
modesta, new species 48, 7\%
pacifica, new species 48, 73
perplexa, new species 48,74
placida? 193
pseudofasciata 70
similis 68
thalassica, new species 18, 72
vinculata. 68
Tringa fuscicollis 137
minutilla $120,123,127$
Tritoniidæ 335
Tritoniam 334
Trivittata. 542
Trochidæ 341
Trochilida 130, 135
Trochosa avara 564
cinerea. 561, 564
helvipes 56 k
rubicunda. 564
vafra 564
Trochus alwinæ 353
(Margarita) infundibulum 349
Troglodytes hornensis 131
Troglodytidæ 131
Tropic Bird, Red-tailed 382
Tropidurus grayi 145,146
lemniscatus, new species 145
pacificus 146, 147
Troy, N. Y., fossils from 34
Trupialis militaris 132
Tryreodon texanus, new species 12:
Tryphonine, subfamily 438
Tryxalinæ 48,51
Tuberosns 525
Tubicola 509, 515
Tabitelariæ 497, 506
Turbinidæ 341
Turcicula Bairdii, description of. 316
Macdonaldi, new species of mollusk 345
Turdidæ 131
Turner, H. W 401
Tylosurus euryops 647
raphidoma 647
stolzmanni 180
Trrannidæ 112, 130, 132
Tyrannus rostratus 130
U.
Uhler, Prof. P. R., on Hemiptera 185
Ulesanis americana 525
Uloboride 553
Uloborus americanus $55!$
plumipes 554
villosus 554
zosis 554
Ulolonche, characteristics of genus
Page.
fasciata 465
modesta 467, 496
Walckenaer, on spiders 591
Walcott, Charles D., on Lower Cambrian fossils 33-46
niveiguttata 466, 496
Umbelliferæ 217
Umbellitelaria 497, 503
Ưmbrina broussoneti 649
Ungulinida 261
Upenens grandisquamis 181
maculatus 649
Upucerthia dumetoria 134
propinqua, new species of bird 134
Uranoscopidæ, new species of 149
Urile, subgenera 88
albiventer 139
magellanica 139
Urocteidæ 510, 593
Urolophus goodei, new species of fish .. $\mathbf{1 5 1}, 179$halleri151
Uruguay, insects from 204
U. S. Fish Commission 101, 141, 185, 217,
$219,619,641,645$
Uta stansburiana 147
Utetheisa bella, var. ornatrix 196
Utriculus domitus 297
V.
Valentine, Mann S 369
Valeriana capitata 217
Valerianaceæ 217
Variolus 522
Vasey, Dr. George, on Alaskan plants.... 217-218
Vejovis galapagoensis, new species of scorpion 211
Veneridæ 271
Veneriglossa vesica 270
Venus (Chione) cancellata 271
Vera Cruz, bird from 26
Vermetidæ 335
Vermetus, genus 335
Verreaux collection of birds 13
Verticordia acuticostata 277
perplicata, new species of mol- lusk 975
(Trigonulina) ornata 278
Verticordidæ 277
Vesicomya (atlantica) 267
subquadrata 67
Vespida $190,202,205$
Vestiaria coccinea 385
Viellot, cited 17
Villiers, C. de, on spiders 591
Vinson, on spiders 591
Vireo calidris dominicana 129
Vireonidæ 129
Vivax 528
Voluta magellanica 311
Volutidæ 311
Volutilithes Philipiana, new species of mollusk 313
Vomer setipinnis 180,648
IV.
Wala albovittata 580, 594
Wadgymar, A 55
Walcott, C. D., on new brachiopod 365
Waldheimia venosa 231
Walkenaera 532
Way, Nathaniel s 369
Webster, F. MI 397
Wells, Lemuel 5
West Iudies, birds from. 120-139
reptiles from 141
Westering, N., on spiders 591
Westwood, J. O., on spiders 501
Wheeler, Wm., on spiders. 590
White, A., on spiders 591
Wilder, Prof. B. G 638
on spiders 591
Willibaldia cavernicola 531
incerta. 531
Williston, Dr., S. W., on Diptera 185
Wilson, Thomas 369
on Palæolithic period 371-376
Workman, on spiders 591
Worm, fossil 34
X.
Xantusia riversiana 147
Xema sabinii 117
Xenichthys xanti 181
Xenoces, new genus of fish 160
jessix, new species of fish. 160, 181
Xiphocolaptes, review of the genus 1-20
albicollis 3, 4, 7, 12
measurements of. 6
argentinus 5
argentinus. 5
cinnamomeus, new species. $3, \mathbf{1 5}$
compressirostris........3, 11, 13, 15
decumanus 4
emigrans 20
emigrans costaricensis.... $3, \mathbf{S}, 20$
fortis, characteristics of 19
general character of 2
ignotus, new species... 3, 13
major 3, 16
castaneus, new sub-
species 3, 17
procerus, characteristics. 19
promeropirhynchus. $3,9,12,13,14,19$promeropirhynchus, adultdescribed10
saturatus, description of adult 14
sclateri, new species of. 3, 6
simpliciceps. 2,3,15
virgatus 12, 13
Xylocopa 197
Xylonomus tloridanus 451
pulcher, now species 450
Rileyi, new species 450
Xysticus auctificus 554
benefactor 554
bicuspis 554
borealis 554
californicus 654

Yoldia pompholyx, new species........... 25 scapania, new species.............. $\mathbf{2 5}$

Z.

149
Zacanthoides eatoni, new species of fossil. 45
levis 45
Zanclognatha 190
Zeledon, J.C...................................... 8
Zenaida galapagoensis. $116,120,122,123,124,126,128$
Zenodorns americana 580
Zigoballus sexpuactatus..................... 580
Zilla atrica.. 550
calophylla 550
montana 550
x-notata 550
Zirphæa crispata................................. 243
Zoantharia sclerodermata.....................
Zonibyx modesta. 137
Zonotrichia canicapilla......................... 132
Zora californica, new species.............. \&0s
latithorax, new species............... 20s
Zygoballus bettina............................... 577
Zygobranchia superfamily.................... 355

r

[^0]: * Nasicn Less., Traité, r, 1831, 311 (type, N. nasalis Less., $=$ Dendrocolaptes longirostris Licht.).
 \dagger Drymornis Eyton, Jardine's Contr. Oru., 1852, 23 (type, D. bridgesii Eyt.).
 \ddagger Dendrexetastes Eyt., Jardine's Contr. Orn., 1851, 76 (type, D. capitoides Eyt., $=$ Dendrocolaptes temminchi Lafr.).
 § Dendrocolaptes Heerm., Obs. Zool., 1804, 135 (type, Picus certhia Bodd.).

[^1]: * Intermediate between the bistre and mummy-brown of my "Nomenclature of Colors."

[^2]: * \boldsymbol{I} sclateri, sp. nov., described on pp. 6-7.

[^3]: * The young specimen was at lirst, hefore the description was published, made the type, on account of its fresher plumage. It was sent for examination to Dr. Sclater, who returned it with the observation that it was the same as . .. promeropirhynchus. Had he seen the adult specimen, however, I am sure ho wonld not have made this mistake.
 † Streaks about .03 wide anteriorly, but much narrower posteriorly and reduced to mere shaft-lines on sides.

[^4]: * These measurements of total length are of course of littie value, since they depend Wholly on the " make" of the skins.
 \dagger "Bill, $.05^{m}$ (or 25 lines long), very compressed, arched, black. Tol" of head dead black, with an oblong spot of buff ("roville") in the middle of each feather. Neck above aud back reddish-olive, with a rufons yellow line in the mitdle of each feather. Wings, rump, and tail cinnamon. Chin white; front and sides of neck, thorax, and flanks yellowish-olive, with a lougitudinal streak of yellowish-white in the center of each feather. Middle of belly with three to four series of black spots. Under [tail?] coverts rufons, spotted with black and with a light stripe in the middle. Tarsi black. Total length, . 33^{m} (12 inches)." (Translation.)

[^5]: * There is probably a mistake in the locality, the skin, at very perfect one, being of the unmistakable handsome, "make" of specimens from Ceara.

[^6]: * "Iris light brown; beak pale slate, tip darker" lega and feet olire-greeth." (DURNFORD, Ibis, 1880, 359.)

[^7]: * Lafresnaye (l.c.) compares it with .I. promeropirhynchus, ... compressirostris being then unknown.

[^8]: * This reference of Mr. Latwrence's S. guatemalensis is made on the strength of his having previously mentioned the specimen to which it refers (under name of S mexi(amus) as having a rufous throat, which at once distinguishes S. mexicanus from s. guatemalensis. What is probably the very same specimen is now before mo and is labeled in Mr. Lawreuce's handwritiug " Sclerurus gautimalensis." Its locality is Lion Hill, near Aspinwall (No. 41585, U. S. Nat. Mus.).

[^9]: * Brumens, dorso inferiore rufesceute, gula et collo superiore ochraceis, pectore ferrugineo lavato, canda nigrescente. Lougit. (specim. exsicc.) $6^{\prime \prime}$, alæ $3^{\prime \prime} 1^{\prime \prime \prime}$, caudæ $2^{\prime \prime} 3^{\prime \prime \prime}$, rostri a rictn $11^{\prime \prime \prime}$, tars. $9 \frac{1}{2}{ }^{\prime \prime \prime}$. (Pelz., l.c.)
 \dagger Lawrence collection.

[^10]: *"A female and a male (from Maribatanas, April, 1831) are vers similar to Sclerurus cauducutus, thongh somewhat smaller (but not so small, however, as those of No. 999 [S. rufigularis]) ; the tail is sborter, lower back brown like upper back, only the upper tail-coverts somewhat reddish-brown (S. cauducutus has the lower lack and upper tail-coverts dark rust-colored), and the upper breast hardly a trace of ochre."
 (Pelz., l. c.; translation.)

[^11]: * The characters ascribed in the original deseription, freely trandated, are as follows: "Above, brown tinged with cimnamon; beneath, slightly paler; throat mixed with white; wings and tail-feathers with ioner welos blackish, oxternal margius similar in color to the back; bill black, the base rellowish; feet black. Total length, 6.00 ; wing, 3.40 ; tail, ${ }^{9} .10$."

[^12]: * The original description, by Cabanis (l.c.), translated, is as follows: "In general resembling the Brazilian Sc. umbrtta, with somewhat longer wings ($94^{\text {mum }}$). It differs in coloring by the want of the brownish red rump, which is uniformly colored with the other upper parts. The rusty reddish tinge to the whole plumage is replaced by a brownish olive color. Throat mixed with whitish. Hab. Monterico. Female. The male is still unkeown. The female is characterized in all the species hy the whitish throat. In the Brazilian S.umbretta the male has a rusty red throat. So. ruficollis Sws., which Gray considers identical with S. mexicanus, is the male of S. umbrette. On the other hand, the very similarly colored mexicamus is to bo considered as the male of a somewhat smaller variety."
 It may he remarked regarding the alleged sexual differences in color that, so far as I am aware, no other author appears to hold views similar to those expressed by Professor Cabanis. The circumstance that S. mexicumus inhabits the combined areas of several other species is of itself sufficient to disprove them, while even more convincing is the fact that in the serics of specimens of the two Middle American species (S. mexicanus and S. guatemalensis), buth sexes, according to the duterminations of the collectors, are represented in each.

[^13]: *Read before the Biological Society of Washington, June 1, 1889.
 \dagger Quart. Jour. Geol. Soc., Lon don, vol. 45, 1889, pp. 125-148, pl. 5.
 \ddagger Nova Acta Leop. Carol., Deutsche Acad. Naturforscher, vol. 51, pt, 1, 180tb.

[^14]: * Buli. Mus. Comp. Zool., Harvard College, vol. 16, 1888 ; Prelim. Desept. North Alileborough Fossils, p. 27.

[^15]: * Syst. Sil. Boheme, Vol. in, 1867, pl. 13, figs 22-26.

[^16]: *Aftryek vr. Geol. Foren. i Stockholm. Forhandl., Bi. ix, Haft 7, 1887, p. 16.

 + The front margin is the point of attachment to the head and the posterior margin, the margin next to the mouth of the anmal and facing the posterior margin of the head.

[^17]: * A note made in the field records eighteen segments in the only entire specimen found. Owing to fragile, decomposed rock the pygidium and five segments of this specimen were gronud to powder in transporting the large slab which contained it over the rough roads to St. John's.

[^18]: * Geol. Mag., new ser., Dec. III, vol. 5, 1888, p. 485.

[^19]: *Additamenta ad Prodromum (Edipodiorum, p. 153.

[^20]: * The average length of wing of adult Ph. perspicillatus is 355mm (see table beyon i) and the weight 12 to 14 pounds. Compare with this the fact recorded by me (Omn. Expl. Kamtsch., p. 1-(i) that Ph, wrile, the nearest ally of the present npecies, weighs only 5 pounds, with a length of wing of 300 mm .

[^21]: * Ob hancee annulum peculiarem Pallasius haud incommode speciem nostram perspicillatum nominavit.

[^22]: * The diagnosis, reprinted from advance sheets of the present article, is published in the "West American Scientist."
 + By loreals are here meant all the seales situated betweeu the posterior nasals, the supralabials, the preorbitals, and the scales correspondiug to the prefrontals, without reference to their origin; in the present case I think there are only two loreals proper, while the subloreal is only a detached portion of the fifth supralahials, and the supraloreal a part of the prefrontals.

[^23]: * The gromnd is classic ground, and the natural products of the Galapagos Islands will ever be appealed to by those oceupied in investigating the complicated problems involved in the doctrine of the derivative origin of species. Osbert Salvin.
 tOn the Avifanna of the Galapagos Archipelago. By Osbert Salvin, M. A., F. R. S., etc. <Transactions of the Zoological Society of London, vol. ix. pt. ix, May, left, pp. 447-510, pls. 84-89, with a map of the archipelago.
 \ddagger Nesomimus, gen. nov.
 Char. - Similar to Mimus Bore, but bill longer and much more compressed basally, and tarsus much longer (nearly twice as long as middle toe instead of only about onethird longer).

[^24]: * The specimen was molting when shot, though the new plamage hat been mostly assumed: consernently, in this description, the duller, faded, coloration of the old feathers is ignored.

[^25]: * The plumage is in such bad coudition, however, that a satisfactors comparison is impossible.

[^26]: * Adult (?) male (No. 115997, James Island, Galapagos, April 11, 1888; U. S. S. . 1hbutrows): Above plain light grayish olive, the pileum very indistinctly streaked with darker; wings dusky, with pale grayish olive edgings, the middle and greater coverts eflged more broadly with dull bufiy. A superciliary stripe (becoming obsolete above auriculars), suborbital and malar regions, and entire lower parts dull white tinged with pale buffy on under parts of the body, the under tail-coverts more decidedly so; sides of chest very indistinctly streaked with pale grayish. Bill pale yellowish brown (the lower mandible lighter and more Jellowish), darker at tip: legs and feet blackish brown. Length (skin), 5. 70 ; wing, 3.00 ; tail, 1.90 ; culmen, . 70 : gnyys, . $3 \times$; bill to rictus, .70; depth at base, . 40 ; tarsus, . 90 ; middle toe, . 68.

[^27]: * Not italicized in original.

[^28]: * Of my "Nomenclature of Colors."

[^29]: * This white patch does not extend as far down as the edre of the mandible.
 †Corresponding to the slate-color (No. 4, plate II,) of my "Nomenclature of Colory," but slightly browner.

[^30]: * Varsing from tints 8-9, plate ir, of my "Nomenclature of Colors."
 † Much like tint 7, plate in, of my "Nomenclature of Colors."

[^31]: ${ }^{1}$ See "The Auk," vol. III, July, 1886, p. 331; and Proc. U. S. Nat. Mus., vol. IX, 1886, pp. 325-326.
 ${ }_{2}$ The Chatham Island bird possibly distinct. (See p. 113.)

[^32]: ${ }^{1}$ Cf. Salvin, Trans. Zool. Soc. Lond., vol. ix, pt. ix, 1879, p. 506.
 ${ }^{2}$ Ibid., p. 476.
 ${ }^{3}$ No specimen seen by me, and identification therefore doubtful.

[^33]: ${ }^{1}$ Totanus fuliginosus Gould, described as a new species.
 ${ }^{2}$ Given as P. bahamensis EYT.

[^34]: ${ }^{1}$ Possibly the same as Sula gossi, and not the true S. cyanops.
 *There is a specimen of this species in the Albatross collection which had lost its label, and may have come from the Galapagos.
 ${ }^{3}$ This may possibly be the species referred to by Sundevall and Salvin as S. cyunop, (Sundev.).
 ${ }^{4}$ Perhaps a distinct species (C. hypolenca Ridgw. ; see p. 109.)
 *Doubtfully accredited to Charles Island by Mr. Salvin.
 ${ }^{\text {" Perbaps distinct (} P \text {. minimus Ridgw. ; see p. 113.) }}$

[^35]: ${ }^{1}=$ Dafila bahamensis Salv., Anas bahamensis Sundev.?
 ${ }^{2}=$ Hematopus palliatus of Salvin and Sundevall?
 ${ }^{3}=P$. fuscus of Salvin and Sundevall?

[^36]: * Cf. Proc. U. S. Nat. Mus., vol. x, 1887, pp. 431-433.

[^37]: *The reference quoted above, the source of which I have forgotten, is evidently incorrect, no stich bird being mentioned in Weigman's "Archives" for 1846.
 \dagger (r. frobeni (Certhilanda frobeni, Ph. and Landr., Weigm. Archiv., 1\&fí), fie; (icusilta frobeni Tacz., Orn. du Pérou, ar, 95) is perfectly distinet, dittering from all the other species, as correctly stated by its describers, in the distinctly white color of the hasal half of the tail, nearly the whole of the onter feather being of that color. The U. S. National Musem possesses a single, very imperfect, skin obtaiued by Mr. Walter S. Church at Andahuaylas, Ayacucho, Peru, October 14, 1864.
 \ddagger With the following characters:
 Geositta longipennis sp. nov.
 Sp. Char.- Idult female (type, No. 116173, Point Elizabeth, Straits of Magellan, Jamary 20, 1888; U. S. S. .llbatross) : Above dull brownish gray, the forehead and hind neck indistinctly spotted or mottled with pale grayish bufty: upper tat-corerts buffy whitish; general color of closed wing drab, the middle and posterier row of lesser coverts broadly but not sharply margined at tips with pale grayish buty: primary coverts dusky terminally, their tips margined with pale grayish butiy: tertials witi a wedge-shaped basal patch of cimamon-drab, succeeded ly a somewhat v-shaped patch of dusky, terminal and exterior portion drah, narrowly edged with whitish; secondaries and four iuner primaries uniform drab, the color exactly the

[^38]: same on both webs; rest primaries similar, but with a broad, abruptly black, subterminal space, succeeded hy a whitish terminal margin; six midhe tail-feathers dull hackish, passing into drab exteriorly and terminally, the edges still paler, the concealed hasal portion buff; next feather similar, but outer web chictly pale hutf; next similar, but with more buff on inner web; outer feather with exterior web wholly pale buff, the inuer web deeper buff, with an oblique dusky space near tip, follow ing curw of maryin ; a brad superciliary stripe of pate gravish buff, less distinct anteriorly ; chin and throat white ; rest of lower parts pale, dull grayish buff, or dull buffy whitish, becoming nearly pure white on belly and clear pale buff on lower tail-corerts ; hreast faintly variegated with hroad hut very indistinct edgings of grayish brown; axillars and under wing-coverts deep cinnamon-buff. Length (skin), (6.30) wing, 4.3n; tail, 2.55 ; exposed culmen, .52; bill from nostril, .38; tarsus, .88 ; middle toe, .53 .

[^39]: *Bonaparte (Consp., II. p. 172) and Schlegel (Hist. Nat. Mus. P.-B., vi, No. 21, livr. 4, Pelecani, p. 2.) make matters still worse, by including P. dilophus and other speries together with the present one under the species they call P. brasilienus!

[^40]: +Batrachia and Reptilia of Costa Rica: Journal Academy Philada., vir, p. 95.

[^41]: * Latin runa, a dart.
 †ravtoraiozov, sailor-bos, from the common name of "midshipman," given in allusion to the "buttons" on the belly of the fish.

[^42]: * Quernus, oakien, i, c., tanned,

[^43]: * Theso sperimens, at first talien by us for a distinet species, seam to lee the young of Hippoglossina macrops,

[^44]: * In allusion to the gridirou-like markings on the blind side,

[^45]: * The coleopterological fimma of Clemente Island is quite well known, and the occurrence of this conspicuous new Calosoma under this locality label arouses the suspicion that a mistake may have been made.-L. O. H.

[^46]: One specimen of a Geometrid larva collected on Chatham Islaud.
 The collection also contains an unexpanded example of some species of Eiferia, evalently killed as it was emerging from the chrssalis, and laveled "Galapagos, Chatham Island."

[^47]: *Bull. U. S. Nat. Mus., No. 37, p. 26, July, 1889.
 \dagger See Proc. Acad. Nat. Sci. Philadolphia for 1889, pp. 274-76.

[^48]: *Read before the Biological Society of Washington, November 30, 18-9. Advance sheets of this paper were distributed December $10,18 e 9$.
 +Üeber die Brachiopoden-Familie der Siphonotretata, p. 28, pl. 7, fig. i. Vorlandl. Kaiserl. Min. Gesellschaft, St. Petershuris, 1848.

[^49]: * Read before the Anthropological Society of Washington, May -, 1889.
 t'This paper is an abstract of an artide on "the Palcolithic Period in the District of Columbia," not yet published.

[^50]: * See also his article in Popular Science Monthly, xxxiv, 1888.

[^51]: * This paper has been prepated from material in the Muscmm, and the types are all in the Museum collection.-C. V. Riley, Honorary Curator of Insects.

[^52]: * Advance sheets of this paper were distributed January 20, 1890.

 Proceedings National Museum, Vol. XII-No. 780.

[^53]: Vestiture hairy.
 Luteous gray, s. t. line wanting .. . Submarina
 S. t. line present.

 Fuscous; paler or darker, claviform wauting
 . Phoca
 Ash gray ; claviform present; lines geminate .. Vestiture scaly ; front with superimposed tufts.

 Fuscous brewn; abdomen of \circ with last ventral segment foreate at sides, and

 Dark ash gray ; smaller; abdomen of o normal
 umbrosa

[^54]: Primaries with onter margins ronuded, apices obtuse.
 Anteunæ of a simple
 Group furfurata

 Primaries with apices marked, onter margins oblique.
 Antenne of ot heavily bipectinate
 Group incincta
 Antemat of 'z serrate and hrivid
 Group alia

[^55]: * Ever since the Department of Insects was established in the Musemm the arachnological material has been referred to Dr. George Marx, who has become a recognized authority thereon. The following catalogue prepared by him is based, therefore, to some extent on Musemm material, and I therefore recommend it for publication not only because it represents a great amount of careful labor, but because it is the first attempt to prepare a complete catalogne of the described Arane: of North America, and will be invaluable to arachnologists.

 C. V. Riley,
Honorary Curator of Insects.

[^56]: * On the Ophiolite of Thurman, Warren County, New York, with remarks on the Eozoon Canadense. By George P. Merrill, Am. Jour. Sci., xxxyir, March, 1889, p. 1*9.
 \dagger On account of the known occurrence of chondrodite in the limestone of Oramge County it was thought that a portion at least of the serpentine of this locality might result from alteration of this mineral. None of the sections at hand show this to be the case. The altering mineral is in all cases colorless, non-pleochroic, with well de reloped prismatic cleavage, and is insoluble in acids. Chondrodite, on the otherhand, is pleochroic in yellowish colors and shows only very imperfect cleavages, besides gelatinizing when treated with hydrochloric acid.
 \ddagger Nat. Hist. of New York: Part iv, Geology, p. 228.

[^57]: * Rep, D ${ }^{3}$, Second Geol. Survey of Pa., p. 79.

[^58]: * Bull. U. S. Geol. Survey, No. 56, p. 50, Pl. vir, figs. 2-5.
 † Proc. U. S. Nat. Mns., 1888, pp. 1-4, Pl. I.

[^59]: * Gen. et sp. Plant. foss., p. 277.
 †Versuch., r, fusc. 2, p. 27, Pl. xviIf ; fusc. 4, p. 34.
 \ddagger Op. cit., I, fusc. 4, p. 32, Pl. xL.
 § Beiträg. Fl. d. Vorweldt, p. 44, Pls. xxiv, xxv.
 || Verstein. d. Steinkohlgeb. Wettin u. Löbjun, p. 56, Pl. Xxiri.
 § In Dictionnaire univ. d'Hist. Nat., Vol, XIIf, pp. 113-115.

[^60]: ＊Traité Pal．Vég．，Vol．ir，p． 190.
 \dagger Foss Fl．d．Uebergansgeb．1852，pp．209－220．
 \ddagger Verstein．d．Steinkohenfl．in Lochsen，p． 40.
 §Steinkohlif，von Radnitz in Bohm．
 ｜｜Dyas oder d．Zechsteinform．u．d．Rothliegende，1862，pp．148， 149.
 © Foss．Fl．d．Perm．Form．，pp．159， 160.
 ＊＊Pal．Vég．，Vol．II，pp．190－192．

[^61]: *Abhandl. d. k. geol., Landes-Anstalt, Bd. vir, 18*6, p. 209. (Page 57 of reprint.) \dagger Op. cit., p. 209.
 \ddagger Felix and others write Cordä̈oxylon, but in view of what has been brought out in the preceding pages regarding the completeness of our knowledge of the life history of Cordaites, it does not seem expedient to use different generic names to designate simply different parts of the same plant. Gïppert in his last work also adopted this view and wrote Cordaites for the species founded upon internal structure, as well as for those founded upon other parts of the plants.

[^62]: *A Revision of the Astacide. By Walter Faxon. Part I. The Genera Cambarus and Astacus. Mem. Mus. Comp. Zoöl., Vol. x, No. 4, 1885.

[^63]: * The Code of Nomenclature and Check-List of North American Birds adopted by the American Ornithologists' Union; being the report of the committee of the union on classification and nomenclature, New York, 1886.
 \dagger Packard, Mem. Nat. Acad. Sci., Vol. Ix, No. r, p. 16.

[^64]: * On the Natural History of the Gulf of St. Lawrence, and the Distribution of the Mollusea of Eastern Canada. By Robert Bell, Jr., Canadian Naturalist and Geologist, iv, 1859, p. 210.
 ${ }^{*}$ Prelim. Rep. Geol. New Brunswick, p. 130.
 * The Crayfish in New Brunswick. By W. F. Ganong. Buli. Nat. Hist. Soc. New Brunswick, No. V1, pp. 74, 75, 18-7. See also The Crayfish in the Atlantic Provinces. [By W. F. Ganong.] The Educational Review, in, 95, St. John, N. B., Nor. 1, 1889.

[^65]: * Cave Animals from Southwestern Missouri. By Samuel Garman. Bull. Mus. Comp. Zoöl., vol. xvif, No. 6, 1839, pp. 225-240.

[^66]: *On the contrary, Mr. G. H. Parker concludes that the histology of the retina shows more degeneration in C. sctosus than in C. pellucidus. His researches on the subject will shortly be published in the Bulletin of the Museum of Comparative Zoïlogy. From the external morphology aloue, one would surely be justified in deeming C. setosus the least modified of the three blind species. The eye-stalk and external part of the eye are largest in C. setosus, smallest in C. pellucidus. C. hamulatus stands between the other two in this regard. For the aberrant position of C. pellucidus in other respects, see my Revision of the Astacidæ, page 18.

[^67]: * Remarks upon the Thalassinitea and Astacilea of the Pacilic const of North America, with description of a New Species. By W. N. Lockington. Aun. Mag. Nat. Hist., 5th series, Vol. II, 1878, p. 303.

 Museum of Comparative Zoölogy,
 Cambridge, Massachusetts, January 1. 1890.

[^68]: * Read before the American Plailosophical Society, October 4, 1-99, and printed in Proc. Amer. Phil. soe., Vol, Xxvi, December 3, lee9. It is hero reprinted as apper based upon a study of the collections of the National Museum.

[^69]: * For explanation of the terms entopatagium and mesopatagium see Proc. Acad. of Nat. Sci., Philadelphia, 1889, p. 314.

[^70]: * Dobson, Cat. Cheiropt., Br. Mus., 1878, p. 434.

[^71]: *Advance sheets of this paper were issued March 4. 1890 Proceerlings National Museum, Vol. NII-No. 787.

[^72]: *Specimens from Florida seem to average a little deeper in body than those from Cuba. This difference becomes, however, inappreciable on the examination of large numbers of speciaens.

