SMITHSONIAN INSTITUTION. UNITED STATES NATIONAL MUSEUM.

PROCEEDINGS

OF THE

UNITED STATES NATIONAL MUSEUM.

> Volume XVI. 1893.

PUBLISHED UNDER THE DIRECTION OF THE SMITHSONIAN INSTITUTION.

WASHINGTON:
1894.

ADVERTISEMENT.

The extension of the scope of the National Museum during the past few years and the activity of the collectors employed in its interest have caused a great increase in the amount of material in its possession. Many of the objects'gathered are of a novel and important character, and serve to throw a new light upon the study of nature and of man.

The importance to science of prompt publication of descriptions of this material led to the establishment, in 1878 , of the present series of publications, entitled "Proceedings of the United States National Museum," the distinguishing peculiarity of which is that the articles are published in panphlet form as fast as completed and in advance of the bound volume. The present volume constitutes the sixteenth ot the series.
The articles in this series consist: First, of papers prepared by the scientific corps of the National Museum; secondly, of papers by others, founded upon the collections in the National Museum; and, finally, of facts and memoranda from the correspondence of the Smithsonian Institution.

The Bulletin of the National Museum, the publication of which was commenced in 1875, consists of elaborate papers based upon the collections of the Museum, reports of expeditions, etc., while the Proceedings facilitate the prompt publication of freshly-acquired facts relating to biology, anthropology and geology, descriptions of restricted groups of animals and plants, the discussion of particular questions relative to the synonymy of species, and the diaries of minor expeditions.

Other papers of more general popular interest are printed in the Appendix to the Annual Report.

Papers intended for publication in the Proceedings and Bulletin of the National Museum are referred to the Advisory Committee on Publications, composed as follows: T. H. Bean (chairman), A. Howard Clark, R. E. Earll, Otis T. Mason, Leonhard Stejneger, Frederick W. True and Lester F. Ward.
S. P. Langley, Secretary of the Smithsonian Institution.

TABLE OF CONTENTS.

Page.
Abbott, Dr. W. L. Notes on the natural history of Aldabra, Assumption, and Glorioso Istands, Iudian Ocean 759-764
Adler, Cyrus. The Shofar-its use and origin (with Plates xlvi-XLIX) 287-301
Allen, 耳Iarrison, DI.D. Introduction to a monograph of the North American bats 1-28

- Notes on the genera of Vespertilionida 29-31
Bean, Tarleton II. Description of a new blennioid fish from California 699-701
New GenUs: Plagiogrammus.
NeW SPECIES: Plagiogrammus hopkinsi.
Benedict, Eames E. Notice of the crustaceans collected by the United States scientitic expedition to West Africa 535-541
NeW VARIETY: Callinectes tumidus gladiator.
Blatchley, W. S. On a collection of batrachians and reptiles from Mount Orizaba, Mex ico, with descriptions of two new species 37-42
NeW SPECIES: Spelerpes orizabensis, S. gibbicaudus.
Cook, (F. Notes on Myriapoda from Loanda, Africa, collected by Mr. Heli Chatelaine,including a description of a new genus and species703-708
New genus: Ctenoiulus
New species: Ctenoiulus chatelainei.
Dall, William Healey. A subtropical Miocene fauna in Aretic Siberia (with Plate LVI), 471-478
New species: Semele stimpsoni, Siphonaria penjinae, Conus okhotensis, Cerithium cyma-tophorum, Diloma (Chlorodiloma) ruderata.
Land shells of the genus Bulimulus in Lower California, with descriptions of severalnew species (with Plates LXXI, LXXII)639-647
New spectes: Bulimulus (Scutalus) baileyi, Bulimulus (Leptobyrsus) zeledoni, B. (L.)veseyianus.
Eigenmann, Carl II. Catalogue of the fresh-water fishes of Central America and south- ern Mexico 53-60
Fontaine, William MIorris. Notes on some fossil plants from the Trinity division of the Comanche series of Texas (with Plates xxxvi-xLiIf) 261-282New species: Equisetum texense, Brachyphyllum texense, Pagiophyllum dubium, Fren-
elopsis varians, Sequoia pagiophylloides, Williamsonia texana, Carpolithus obovatus, C.harveyi.
New VAriety: Diconites Buchianus rarinervis.
Gilbert, Charles H., and Jordan, David Siarr. Note on the wall-eyed pollack (Pollachius chalcogrammus fucensis) of Puget Sound 315,316
Cill, Theodore. The proper generic name of the tunnies 693-694
Hay, W. P. Observations on the blind crayfishes of Indiana, with a description of a new subspecies: Cambarus pellucidus testii (with Plates XLIV, XLV) 283-286
New subspecies: Cambarus pellucidus testii.
Sordan, David Stari. Description of a new species of cyprinoid fish, Couesius greeni,from the head waters of Frazer River in British Columbia313,314
New Species: Couesius greeni
Jordan, David Stari, and Tilbert, Charles H. Note on the wall-eyed pollack(Pollachius chalcogrammus fucensis) of Puget Sound315,316
Eony, P. L. Notes on birds of central Mexico, with descriptions of forms believed to be new 771-791
New subspecies: Catharus melpomene clarus, Psaltriparus melanotis iulus, Spinus psaltria croceus.
Knowlton, F. H. Notes on a few fossil plants from the Fort Union group of Montana, with a description of one new species (with Plates I, II)
McMurrich, J. Playtaiv. (Scientifie results of explorations by the U. S. Fish Comms-
sion steamer Albatross. No. xxins.) Report on the Actinie collected by the U. S. Fish Com-
MeMurrich, J. Playtaiv. (Scientifie results of explorations by the U. S. Fish Comms-
sion steamer Albatross. No. xxin.) Report on the Actinie collected by the U. S. Fish Comission steamer Albatross during the winter of 1887-'88 (with Plates xix-xxxv)
New genera: Oractis, Halcurias, Myonanthus, Pyenanthus, Cymbactis, Chitonanthes, Cradactis.
New species: Edwardsia intermedia, Oractis diomeded, Halcurias pilatus, Peachia koreni, Anemonia variabilis, A. (?) inequalis, Myonanthus ambiguus, Bolocera occidua, B. pamosa, B. brevicomis, Paractis vinosa, Actinernus plebeius, Actinostola excelsa, A. pergamentacea, Pycnanthus maliformis, Cymbactis facculenta, Sagartia lactea, S. sanctimathei, S. paradoxa, Adamsia (?) involvens, Stephanactis hyalonematis, Leiotealia badia, Oubactis californica, Cradactis digitata, Cerianthus vas.
New Names: Actinia infecunda, Actinauge verrilli, A.fastigata.
Mann, Albert. List of Diatomaceo from a deep-sea dredging in the Atlantic Ocean off Delaware Bay by the U.S. Fish Commission steamer Albatross .
303-312
Mason, Otis T. Throwing-sticks from Mexico ant California.................................. 219-221
Montandon, A. L. Notes on American Hemiptera Heteroptera.............................. . 45-52 NEW species: Cosmopepla comuleata, C. uhteri, Dendrocoris pini, Sinea rileyi.
Peck, James I. (Scientific results of explorations by the U.S. Fish Commission steamer Albatioss. No. xxvi). Report on the Pteropods and Heteropods collected by the U. S. Fish Commission steamer Albatross during the voyage from Norfolk, Va., to San Francisco, Cal., 1887-'88 (with Plates Lill-LV)..
Penhallow, 1D. P. Notes on Erian (Devonian) plants from New York and Pennsylvania (with Plates IX-xiv).

New genus: Dictyotites.

New species: Haliserites lineatus, H. chondriformis, Dictyotites fasciolus, D. maximus, Psilophyton grandis.
New vabety: Haliserites dechenianus lineatus.
Notes on Nematophyton crassum (with Plates XV-Xviri)
Kathbur, Mary J. Catalogue of the crabs of the family Maide in the U. S. National Museum (with Plates III-viil) 63-103
New genus: Lepteces.
New species: Chionacetes tanneri, Colocerus grandis, Lepteces ornatus, Hyastenus caribbeus.
(Scientitic results of explorations by the U. S. Fish Commission steamer Albatross. No.
xxw.) Descriptions of new genera and species of crabs from the west coast of North America and the Sandwich Islands.
New genera: Ericerus, Erileptus, Ediplax, Cryptophrys, Scleroplax, Opisthopus.
New species: Ericerus latimanus, Podochela tenuipes, P. (Coryrhynchus) mexicana, P. (Coryrhmchus) lobifrons, Evileptus spinosus, Anasimus rostratus, Inachoides magdalenensis, Cyrtomaia smithi, Collodes tenuirostris, Euprognatha bifida, Sphenocarcinus agassizi, Pugettia dalli, Neorhynchus mexicanus, Lambrus (Parthenolambrus) exilipes, Mesorhoea gilli, Lophozozymus (Lophoxanthus) frontalis, Oycloxanthus californiensis, Nanthodes minutus, Micropanope polita, Menippe convexa, Pilodius flavus, Pilumnus gonzalensis, Neptumus (Hellenus) iridescens, CDdiplax granulatus, Speocarcinus granulimamus, Carcinoplax dentatus, Gelasimus gracilis, G. latimanus, G. coloradensis, Pachygrapsus longipes, Brachynotus (Heterograpsus) jouyi, Pinnixa occidentalis, P. californiensie, Cryptophrys concharum, Scleroplax granulatus, Opisthopustransversus, Mursia hawaiiensis, Platymera californiensis, Ebalia americana, Myra townsendi, M. subovata, Randallia distincta, Nursia tuberculata, Ethusa lata, Cymopolia jragilis, C. zonata.
Deseriptions of new species of American fresh-water crabs (with. Plates LxxinLxXvii).
649-661
NEW species: Pseudothelphusa jouyi, P. dugesi, P. terrestris, P. verticalis, P. xantusi, P. colombianus, P. lamelligrons, P. richmondi, Potamocarcinus nicaraguensis, Epilobocera haytensis, E. gramulata, Trichodactylus quinquedentatus.
Richmond, Charles, W. Ona collection of birds from eastern Nicaragua and Rio Frio, ${ }^{\text {T}}$ Costa Rica, with notes; and a description of a supposed new Trogon New species: Trogon ehrysomelas.
Kidgway, Robert. Description of two supposed new species of swifts.
New species: Chatura laurencei, Cypseloides cherriei.
Description of a supposed new species of Odontophorus from southern Mexico
Descriptions of some new birds collected on the islands of Aldabra and Assumption, northwest of Madagascar, by Dr. W. L. Abbott
New srectes: Buchanga aldabrana, Foudia aldabrana, Rougetius, aldabranus, Ibie abbotti, sula abbotti, Turtur sathratus.
New subspecies: Ixocincla madagascariensis rostrata. rence

On a small collection of birts from Costa Rica

 609-614New species: Buthraupis caruleigularis.
(Scientific results of explorations by the U. S. Fish Commission steamer Albatross. No. xxvis) Catalogue of a collection of birds made in Alaska by Mr. C. H. Townsend during the cruise of the U.S. Fish Commission steamer Albatross, in the summer and autumn of 1888.

A revision of the genus Formicarius, Boddaert
Description of a new storm petrel from the coast of western Mexico 687, 688
New species: Oceanodroma tovonsendi.
Description of a now Geothly pis from Srownsville, Texas
NEW subspecies: Geothlypis poliocephala ralphi.
Riley, C. V. Scientific resulta of the United States eclipse expedition to Wrest Africa, 1889-'00. Report on the insecta, arachnida, and myriapoda (with Plate Lxx)

New aenus: Machomenus.
New species: Pamphila (?), Diplax dilatata, Libellula (Orthetrum) capensis, Lycosa brevipes, Pardosa valida; Selenocosmia nigroventris, Cydrela brunnee, C. maculata, Machomenus allidus, Selenops browni, Epeira ectipsis.
scollick, J. W. On the making of gelatin casts
Simpsor, Charles T. On some fossil unios and other fresh-water shells from the drift at Toronto, Cauada, with a review of the distribution of the Unionida of northeastern North America
Stearna, Robert E. C. Preliminary report on the molluscan species coltected by the United States scientific expedition to West Δ frica in 1889-90.
On rare or little known mollusks from the west coast of North and Sonth Δ merica, with deacriptions of new species (with Plate L)

341-352
New species: Ohicorcus palma-rose mexicana, Tectarius atyphus, Uvanilla regina.
New variety: Ohlorostoma gallina multifilosa.
(Scientilic results of explorations by the U. S. Fish Commission steamer Albatross, No. xxv.) Report on the mollusk-fauna of the Galapagos Islauds, with description of new species (with Plates Li, Lil)
New species: Onchidium lesliei, Nitidella incerta, Littorina (Tectarius) galapagiensis.
Notes on recent collections of North American land, fresh-water, and marine shells, received from the U. S. Department of Agriculture

743-755
Stejneger, Leonhard. On the status of the gray shrike collected by Capt. Blakiston in Yezo, Japan

217, 218
Diagnosis of a new Californian lizard 467
New species: Xantusia henshawi.
Notes on a third installment of Jupanese birds in the Science College Maseum, Tokyo, Japan, with descriptions of new species

615-638
New species: Edstrelata longirostris, Accipiter pallens, Locustella hondoensis.
New subspecies : Emberiza ciopsis ijime.
Desoription of a new species of blind snakes (Typhlopida) from the Congo Free State. 709, 710 New species: Typhlops prceocularis.
On some collections of reptiles and batrachians from East Africa and the adjacent islands, recently received from Dr. W. L. Abbott and Mr. William Astor Chanter, with desuriptions of new species.

New specres: Diplotactylus inexpectatus, Phelsuma abbotti, Eremias sextaniata, E. hoehneli, Mabuya chanleri, Typhlops mandensis, Simocephalus chanteri, Causus nasalis Hypogeophis alternans.
New subspecies: Abepharus gloriosus.
Remarks on Japanese quails
True, Frederick W. Description of a now species of fruit bat, Pteropus aldabrensis,
from Aldabra Island
5333, 534
NEW species: Pteropus aldabrensis.
___ Notes on a small collection of mammals from the Tana River, East Africa, with deseriptions of new species

631-603
New species: Eliomys parvus, Mus tana.
Description of a new species of mouse (Sitomys decolorus) from Central America.....
689,690
NEW SPECTES: Sitomys (Rhipidomys) decolorus
On the relationship of Taylor's mouse, Sitomys taylori.
757, 758
Webb, DeWitt. The shell heaps of the east coast of Florida (with Plates LxxvinLxxxiv)

695-698
Weed, Clarence IM. A descriptive catalogue of the harvest spiders (Phalangidae) of Ohio (with Plates Lwh-Lxix)

LIS＇T OF ILLUSTRATIONS：

TEN＇T FIGURES．
Patzcuaro throwing．sticks 2．2
Vancouver throwing－stick 20
Vanconver retrieving spar とこ1
Tlingit throwing－stick 301
Bird and tish harpoon of Makah Indians $2 \because 1$
Liobumam ventrjeasam 5． 51
Abdomen of Diplax dilatata $5 \times$
Genitaliat of Diplax dilatata 58：
Gonitalia of Libellala capensis 5xil
Genitalia and ulvat of Libellula 55
Genitalia of Libollula erythriea and $\mathrm{I}_{\text {：}}$ edwardsi 5815
Eprery 587
l＇lagiogranmus，new blennioid fish． 699
1）LALES．ぼィcing pago
I．Popuina maedsi 31
II．I＇terospormites chpaniodey 36
III．Myas lyratha 104
IV．Chionoretes tammeri，（＇opilio． 104
V．Colocerva gratudis． 10.4
VI．Lepteces ormatus，Hyastentas earibbenas 101
VII．II yastenna longipes． 101
VIII．Eurynome longimana，Cyelax（Cyelomaia）suborbiculacis 101
1X－XIV．Erian plates from New York and lennsylvania． 114
XV－גVIII．Fossil plante（Nomatophyton crassum） 118
X1XースエスV．Aetiniae of Albatross explorations． 216
XXXVI－NLIII．Fossil plants from Texas －8．
XLIV－XLS゙．Blimel eraytish，Cumbaras pelluchens texti 286
XLVI－XLIX．Shofars and war horns． 302
L．West American！mollusks 35
1．I．Mollusks of tho Galapagos Ishames 450
L．II．Map of the Cialupagos Istands 4．0）
LIII．Collecting stations of stemmer Albatrosy 466
LIV－LV．l＇teropralab of A lbatrons explomations 4 fifi
LV゙L．Siberian tropical Miocene fonsils 478
LVII－INIX．Harvest spiders（Phatanglida）of Ohio． 56
LA．Arachnida of Eelipsen expedition $5!0$
IXXI－I，XXII．Lower Cabliornian Inalimulus． 648
LXXIII－L．X゙XII．New species of fresh－water crabs $66:$
LXXVIII．Porforated shells from shell mombes 69 s
L．XXIX．Drjaking whells from Floridn 69
LAXX－LAXXII．Pottery from shell mounds 69 x
LXXXIII－LİエIV．Views of shell moumeds 6！

DAIES OF PUBLICATION OF ARTICLES.

Nos. 919,920 , June 13,$1893 ; 921$, July $27 ; 922,923,924,925,926$, June $13 ; 927,928$, 299, July $26 ; 930$, July $29 ; 931$, June 6; 932, July 19; 933, July 12; 93t, October 6; 935, September 28; 936, October 7; 937; 938,939, July $19 ; 940,941$, September $28 ; 942$, Soptember $29 ; 943$, September $30 ; 944,945$, July $21 ; 946$, September $30 ; 947$, October $4 ; 948$, atrance sheets, July 14, regular edition, October 21; 949, October 9: 950, October 25; 951, October 23; 952, 953, 954, 955, October 25; 956, October 28; 957, October 30; 958, 959 , November 23; 960, November 24; 961, November 28; 962 , November 24.

Nos. $963,964,965$, Fobruary $5,189 t ; 966$, April $9 ; 967$, February 10; 968, February 7; 969, February $5 ; 97$, February $7 ; 971$, February 8; 972, February 7; 973 , February 9; 974, February 13; 975, April 18.

LIST OF CORRECTIONS.

Pago 289, line 2t, for three reat the.
Page 289, line 25, for six read the; for teqia read teru'a at end of line.
Page 2×9, line 26 , for siyhs or moans real disconnected notes.
P'age 339, line 33, for Cephalopods 5 read Cephalopods 3 .
Page 329 , line 34 , for 122 read 120 .
Page 359, line 7, for (ante, page 一) read (ante, page 356).
Page 359, line 12 , for 257 read 267.
Page 369 , line 45 , for cyclone read cyclones; for hurricane read hurricanes,
l'age 401, line 13, for antiquatus read antiquata.
Page 401, line 19, for barbatus read barbata.
Page 603, line 33, for Denkhardt read Denhardt.
Page 690, line 30, for surmichrasti read sumichrasti.

PROCEEDINGS

(1) TII:

UNITED STATES NATIONAL MUSEUM

FOR 'LHE YFAR 1893.

Volume XVI.

INTRODUCTION TO A MONOGRAPH OF THE NORTH AMERICAN BATS.*

BY

Harrison Allen, M. D.
The bats constitute the order Cheiroptera. Unlike related groups which are equally extensive, the bats do not vary in sufficient degree to be confounded by any possibility with other creatures. By an untrained observer shrews might be mistaken for mice or voles, some of the smaller marsupials for minks or weasels, conies for marmots. But the popular impression of a bat is accurate, since this creature is the only mammal adapted for true flight, and no other mammal resembles it. If any mammals exist or have existed that are half bats and halt moles, half bats and half lemurs, half bats and half marmots, they are quite unknown to the naturalist. Paleontology is silent as to the origin of the bats, though comparison of their bony framework with those of the Insectivora, Lemuroidea, and Rodentia suggest that they may have arisen from the mammalian stem not far from the points at which the differentiation of these branches began.

MEMBRANES.

Let us examine the mondissected bat, and endeavor to establish thereby general conceptions of the creature and of some of the signs of the superficies by which its varieties can be named. It is at once seen that the anterior extremities are furnished with greatly elongated fingers, the intervals between which are occupied by two layers of skin. Goldsmith uses a happy phrase when he says "the fingers serve like masts that keep the canvas of a sail spread and regulate its motions."

[^0]Layers of skin thas make up the wing membrano. They are continuous fiom the last finger and the thmmb, or some aljacent surface, to the sides of the body, the neek (both above and below the arm and forearm), and the outer side of the posterior extremity. Bach wing membrane reaches below the knee and from this point, in varying degrees, to the ankle and the loot. The space between the posterior extremities is also oceupied, as a rule, by two adjoined layers of integument which constitutes the interfemoral membrane. This structare as opposed to the above is less eonstant in form and dimensions. It may be guided by a long tail quite to its tip, it may allow the tip to project in different degrees beyond its free marein, it may greatly exceed in size that of the stunted tail, it may be detined as a hem along the inmer border of the limbs, or it may be entirely absent.

It follows from these statements that all bats are provided with a batek and a front skin-oxpanse from thesides of the body to the extremiities in a constant manner, but from the tail to the posterior extromities in in inconstant manmer, the last named presenting modifications determined by degrees of ontgrowth of the tail itself.

The membranes present many details with respect to tho manner of their attachment to the sides of the body and to the varions parts of the limbs. lnteresting variations of plan are seen where the skin erosses joints. In the elbow joint the skin may be attached entirely to the epicondyle, so that the joint lies quite to the under side of the wing, as in the African fox-bat, Epomophorus; or it may be attached midway, namely, to the olecranoil, as in many forms, but perhaps best seen in the neotropieal American Suceopterys; or it may be attached entirely to the epitrochlea, so that the joint lies quite on the upper surface of the wing, as in Rhinolophus perersoni and Taphozous. At the wrist distinctions are seen in the manner in which the tendons of the extensor capi ulnatis and flexor eapi ulnaris are disposed at the angle which is formed between the radius and the fitth metararpal bone. When this angle is marked, and skin folds are eonspienous over the tondons mamed, a radio-metacarpal pouch is defined. The knee always lies on the upper surface of the membrane. It is most free in Mucrotus and least so in the Molossi.* The membrane attached to the ankle may lie entirely to the pollieal side of the joint, but is disposed to cross it by an oblique raised fold amb be secured to the minimal, i. c., little toe side.

I have fomm it eonvenient to employ a momber of names for the subdivisions of the dermal expanse.

The membrame which extends from the sides of the trunk to include the anterior extremity is the wing membrane ("bat wing," patagium).

The membrane between the legs is the interfemoral membrane (uropatagium).

[^1]The wing membrane above the arm and forearm is the prebrachium (antebrachial membrane, propatagium).

The wing membrane below the arm and forearm would become antithetically the postbrachium. But since the postbrachium could not be separated from the sides of the trunk and the legs, it has been found necessary to discard it.

The part of the wing membrane lying between the body, the humerus, the lower extremity, and a hypothetical line drawn downward from the elbow and intersecting the free margin of the membrane, is the endopatagium.

The boundary at the elbow is often fised by the vertical terminal branch of the intercosto-humeral line. The subordinate lines (probably platysmal in origin) in the endopatagium incline obliquely either toward the humerus or the trunk.

The part of the wing membrane which is limited by the line at the elbow as above given, by the forearm, and the fifth metacarpal bone and phalanges, is the mesopatagium.* Within the mesopatagium the subordinate lines incline either toward the forearm or the manus.

The part of the wing membrane limited to the manus becomes the ectopatagium (dactylo-patagium). The subdivisions of the ectopatagium are the first, second, third, and fourth interspaces. These are named from the pollex toward the quintus. The series of bones which is embraced in the metacarpal and phalangeal lines being conspicuons in the bat, it is desirable to possess a name in referring to each series taken as a whole. The name digit will be used for the rod of segments embracing the metacarpal element. The nerve which appears at the anterior margin of a digit becomes predigital, and that of the posterior margin, postdigital.

The cartilaginons tip to the terminal bony phalanx, respectively, of the third, fourth, and fifth fingers will receive the name of the third phalanx when three phalanges are present, and of the fourth phatanx when four phalanges are present. The shapes of the terminal phalanges are of interest and some of these will be described.

I have examined a sufficient number of genera to suggest that an account of the markings of the wing membranes and of the shapes of the terminal phalanges enter into all discriminating studies.

The division of the wing membrane into the parts endopatagium, mesopatagrum and ectoöpatagium is sustained by what is observed in Taphozous muritianus, since in this species the endopatagium is of a dark color while the rest of the membrane is white, excepting the extreme tip of the end of the third finger. Now when the animal is at rest the surfaces above named are those only which are exposed to the light. In all young bats which cling to the mother, without exposing any other portions of the membrane than those named, it is evident that for a

[^2]long period the endopatagimm has functions which are not exacted of the rest of the wing membrane, and in consequence, in my judgment, it is easy to see how this portion of the wing expanse should be distinguished from those portions which are used only in tlight.

The digits on their palmar aspect may be shapply defined as in the Phyllostomida and Corynorhinus, or they may be obscured by the membrame or the upper part in the forepart of the hand, namely, in the region of the second, third, and fourth digits, as in Molossi, Vespertilionide and the genus Antrozous. The membane may lie chietly on the upper aspect of the digits, as in most bats, or at the lower. That in the second interspace may be attached to the upper border of the second and to the lower border of the third metacarpal bone.

The skin is much more loose about the legs than the arms and on the interfemoral membrane than the wing membrane. The membranes are attached to the lower border of the first two or three candal vertebre, thus permitting them to be seen distinctly abore, and to the upper borders of the remaining vertebrix, thus permitting them to be seen more distinctly below.

The skin of the two sides of the body unite in such wise as to permit a very narrow interval to exist between the two layers. The upper layer of the wing membrane is extending directly outward on a level with the back of the chest and of the loin, but the lower layer is variable. It may extend outward as in the upper layer, but a disposition exists for it first to conform to the curve of the side of the trunk and join the upper layer near the union of the side with the upper surface of the trunk. In one remarkable instance, Chilonycteris daryi, the under layer extends quite to the middle line of the back, and thence is deflected in an acute angle outward to join the upper layer. The region of the axilla is greatly depressed in bats, owing to the inclination for the under skin layer to extend upward and backward. This space is so large as to suggest the adaptation of the pouch thas formed for the protection of the young. In Cheiromeles it must have another significance, since it here constitutes a huge bag-like involution which extends as far as the middle line of the back.

TIIE WING MEMBRANE AT REST.

The bat when at rest folds the fingers by a movement of the root of the hand (carpus) downward on the wrist end (distal end) of the forearm. This movement is characteristic and wheu completed brings the fingers in a compact bundle (like the ribs of a closed umbrella) under the forearm and parallel to it. The hand is thus tucked up toward the rest of the anterior extremity, and as the forearm (in the same movement) is sharply flexed on the arm the entire extremity presents the greatest possible contrast to what it exhibited when prepared for flight. The bat now supports the body in one of two ways. It is prone, i. c., with the front of the body downward on the plane of support, or it is pendant, $i . c$., hung by the claws of the hind feet. If it is prone the base of
the thumb and wrist supports the body and is furnished with a hardened pad of skin (callosity) for the purpose, the thamb being held at the same time well out of the way, and the posterior extremity taking the position nearly the same as that of terrestrial quadrupeds. The best example of those that scurry* when the wings are folded are the Molossi. In this group the phalanges of the third and fourth digits are now no longer held in axial line with the metacarpals as in flight, but are drawn upward and to the side, though well out of the way. The tail in all prone forms remains extended and the tip tonches the plane on which the animal rests. If the bat is pendant in rest the base of the thumb and wrist do not support. The thumb is without callosity, is more engaged in the wing membrane, and is drawn more or less in toward the under surface of the wing. In this event the foot is furnished with sharper and more recurved claws, since they are now prehensile. The leg assumes a position quite at variance with the terrestrial position and is different in this regard from all mammals, the sloth alone excepted. The tail in the pendant form, at least in our red bat, is drawn well forward and rests on the lower part of the trunk. It is readily seen that very long digits of the anterior extremity would be more or less in the way in the prone forms, while they might be extended to any degree in the pendant forms, without interference. In fact the first named have smaller digital elements than the last and the wing expanse is correspondingly more restricted. \dagger

THE WING MEMBRANE IN FLIGHT.
While interesting characters are thus observed in the bat when at rest it is in the use of the limbs in flight that the chief peculiarities are noted. The intervals between the digits vary greatly in the different genera. As already remarked the under surfaces of the second and third digits are boldly outlined or are covered with membrane so as to obscure their outlines. In the forms in which this obscuring is noticed the fifth finger is supported by a little rod of cartilage.

The opening of the wing exerts a powerful influence over the posterior extremity. It pulls it outward in the forms in which an interfemoral membrane is present and thus makes tense this membrane. The entire limb is abducted from the terrestrial position and the foot is turned with its plantar surface forward.

[^3]The wing membrane may be said to be redundant when the expanse above the arm and forearm extends fieely to the carpus and embraces the small thmmb to a point beyond the first phalanx of the thumb; when it extends down to the foot beyond an oblique muscle line which extends upward and outward from the lower part of the leg; when the space between the second and third digits is ample, and that between the thumb and second digit is provided with a well-defined hem of membrane.

Skin folds are often disposed along the lines represented by the palmar fascia, at the proximal end of the fifth digit.* The flexor tendons at the radio digital angle are often covered with similar dispositions of the skin.

The membranes are supported not only by the parts of the skelatal frame-work, as these parts are usually defined, but by a number of special adaptations. An aceessory cartilage at the somad margin of the terminal tith digit has been already named (Molossi and Vespertilionidie, except Plecoti). The interfemoral membrane is supported at the free margin by a special cartilage (calcar) from the tarsus in all bats excepting the Pteropi, Rhinolophidix, and the Stenodermida. The calear may have a process from its under margin, as in Noctulinia noctula. The terminal joint of the tail may be spatulate, as in Nycteris. Terminal cartilages of the third and fourth digits are present except in Pteropidie, Rhinolophidar, and Emballonuride. They are of varying shapes, the whole arrangement having for its object the support of the free margin of the wing membrane. These cartilages, as a rule, are deflected ontward, thongh they may remain axial, as in Phyllostomida and Plecoti.

All things remaining the same, the degree of strain may be measured by the extent and variety of these special supports, and may be said to be in the line of specialization for acrial movements. Hence, in forms in which they are absent the membranes are broad and may be said to exhibit more of a parachute arrangement than in other types in which they are present, and the motion of the wings to be like that of a slow faming rather than a rapid, varied flight.

Strain on the membranes is also shown in the angle form between the portions of the wing farthest away from the body, namely, the region of the second and third digits. These are pulled away from the fourth and tifth digits, which remain nearly passive by the traction of the muscles which extend these bones (extensores carpi radiales longior et brevior), and the whole membrane becomes tense. The contrast between the shapes of the wing in this regard is considerable when such forms as Artibens, N'yctinomus, and Atchapha are compared.

When the wing of a bat is held up between the eye of the observer and a bright light the membrane is seen to be translucent. The delieate comentive tissue lines (trabecule) are seen uniting the varions
parts of the bony framework, and the positions of the nerves, blood vessels, and muscle-fascicles are displayed. The paths of the nerves and blood vessels constitute one system and may be spoken of together, but the traceule and muscles are distinct from these and in some degree from each other. As in the case of the relation which exists between the skin and the bones, so in the arrangement of the parts just named the degrees of strain to which the wing is subjected account in the main for the difference in the various genera. The muscle-fascicles are most numerous in the membrame near the body, and are better developed in the narrow-pointed winged forms, such as Molossi and Atuluphu, than in the broad, parachute-like forms. The muscle element in the wing is especially weak in the Pteropide, Rhinolophide, and Vespertilionide.

The fibrous lines which extend across the membranes are not without system. Many of them are excessively attenuated tendons; such, for example, are the fibres of the palmar fascia, already mentioned. Others are the fibres which conneet the joints of digits; more of them yet appear to be parts of a true derm. The nerves and blood vessels pursue the same courses. Since the directions of nerves are of more importance in morphological study than the vessels, the former will be alone named. In each interdigital space a nerve tends to enter at its proximal end and, dividing into two branches, incline along the sides of the opposed metacarpal bones. The departures from this plan are numerous, and are so constant in groups of generic and even specific limitation that they constitute a valuable addition to diagnoses.

The wing membrane, when expanded, exhibits differences in the width of the interdigital spaces. These differences relate in an intimate manner with the behavior of the parts in flight, and consequently with habit. The subjoined table indicates some of these distinctions:

Manal (pteral) formula of the widths of second, third, and fourth interspaces.

	Species.	II.	III.	IV.	Forearm.	Ditference between III and IV.	
		mm.	$m m$.	mm .	mm.	$n \mathrm{~mm}$.	
Lophostoma		7 3	17 16	$\stackrel{18}{21}$	49	$\frac{1}{5}$	
Macrotus.		2	15	2	44	7	
Desmodus.		2	21	37	53	10	
Vampyrops		3	17	27	36	10	
Chilonycteris.		$1 \frac{1}{2}$	15	17	40	12	
Hemiderma .		- 5	20	32	26	9-12	
Vampyrus.		16	41	53	105	12	
Loncheglossa.		3	19	32	33	12	
Monophyllus..		3	17	34	32	14	
Artibeus		4	- 21	39	51	18	
Bracliyphylla		3	- 25	43	64	18	
Mormops.....		3	16	35.	50	19	
Phyllostoma.		4	29	62	81	45	
Rhyuchonyeter		5	16	$\because 5$	40	9	
Cynopterus*.		10	18	27	58	9	
Vespertilio \dagger.		$\stackrel{1}{2}$	11	31	59	10	
Epomophorus \ddagger		13	21	39	83	11	
Rhinopoma...		3	13	30	64	17	
Molossus §.		$9^{\frac{1}{2}}$	5	35	46	30	
Noctilio...		2	13	58	145	45	
Pteropus \|			18	17	69	145	52

[^4]${ }^{+}$E. franqureti.
|| P. edwardsii.
§M. rufus.

This list is seleeted in the main for comparisom in members of a single family, viz, the lhyllostomida. The last efyht torms are from families other than the one first named.

It is believed that these distinctions may be conveniently included in the characteristic proportions of bats.

In flight the thmmb is extended in Vespertilionider, but partially flexed in Phyllostomidar (excepting Desmodus and Diphylhe) and in Plecoti. The degree of indosure of the thamb in the membane answers to the amplitude of the membranes generally and when extensive tends to draw the thumb slightly toward the pahm, the space between the thumb and index finger being moderately oceupied by a skin expansion.

It is a tendency under certain conditions for all growth processes to dominate functions other tham those which are essential to their own activities. The best general conception of the mamer of extending at fold of skin between the limbs is seen in the Batrachia. In the water newts a longitudinal ridge is often seen extending along the sides of the trunk. This is continuons along the hinder border of the anterior extremity (well developed in Mcnopoma) and reaches as tar as the tip of the fifth digit. This fold is supplied by the unar nerve, which appears to be in its earliest expression a newe for the skin of the posterior border of the forearm, of the fifth digit, and the museles found in these regions. The phenomena of a fold ot skin extending between the toes is one already familiar, so that the general plan of the skin expanse in a ereature so low as the Menopome prefigures that of so highly specialized a form as the bat without violence and without leaving a single line obseured. Difference of degree and not of kind separates them.

The very exeeptional disposition in the bat for the skin from the trunk to extend the entire lengths of the limb, and in the case of the anterior extremity to form enormons webs between the produced dig. its, is associated with an inclination for the ears to become greatly expanded and for cutaneous ottshoots to appear at the muzzle, chin, and the sides of the fare. Even the prepuce is disposed to be redundant. Together with this inclination, dermal structures are highly specialized, so that the sebareous glands, hair follicles, and tactile bodies are well developed. It can be readily surmised that special adaptations for a variety of purposes ocegre in this group of structures, so that secondary sexual chameters are fomd in the gland masses of the skin of the neek, and of the skin folds, the details in the ears, the pouches of skin, ete., are available for purposes of classitication.

THE WXTERNAL FAR.
In this comeretion let us glanee at the peenlarities of the external ear. The external ear is markedly moditied from the type usual in quadrupeds. Its simplest expression is seen in the Pteropidar and the Rhinolophidar. In these familes the widely separated amricular carti-
lages are elosely enwapped by integment and the tagus is absent. In such an ear the terms inner and outer borders and tip, exhanst the list which are demanded in their deseription. In the ears of the re. maining families it is far different. The amiele here is expanded to degrees which bring the outer parts to a greater or less degree downward and forward on the upper parts of the neck and rearla the region of the month, or eren the chin, while the imer border, being guaded by a skin fold which comnects the ear to the crown, is disposed to be united with the corresponding part of the ear of the opposite side and extend in varying degrees toward the shout. Skin lap pets arise from both inner and outer borders. Those from the inner border from a long appendage which lies in advance as defined in the simple ear and becomes the internal hem. As a rule it ends as a free lobe interiorly, which thus becomes the internal basal lobe. The line of the true internal border being always discernible becomes the internal ridge. The external border, which is distinguished from the true external border which now becomes the external ridge is also disposed to form a hem (external hem), which, however, in contrast to the imer is apt to be divided into an upper and a lower part; the upper part forms the first scallop, and the lower the seambl seallop. The free lower end of the outer border becomes the external basal lobe, which may be separated from the lower scallop by a deep basal noteh, or the second scallop may extend across this notel and the external basal lobe and becomes continuous at various distances with the fare or that over the lower jaw. These parts will not receive distinctive names. In most examples the anticle is also conveniently divided into an anterior and a posterior part, the anterior part is marked, if marked at all, by lines repating that of the internal border, while the posterior part is marked, if marked at all, by conspicuous transverse lines or strie. The hair when it extends upward on the ear from the crown is usually of the color and chameter of that of the crown, while that of the posterior is of the color and character of that of the neck.
The tragus varies exceedingly in form. The following terms are employed in its description, viz, the inner and outer border, the tip, the notch, which is near the base of the outer border, and the busal Iobe, which lies below the notch. The tragus is said to be absent in Pteropide and Rhinolophide, but in some examples of the family last named a rudimental tragus can be discerned. The tragus always arises from the ridge which lies in front of the auditory meatus and comerts the inner and outer auricular borders. It is of interest to observe that while this connection with the borders is imperfectly defined in most bats that in the reeently discovered Euderma it is markedly so united and tends to constrict the basal parts of the enomons auricle.

Not ouly is this the case, but the ears are often united by a band (inter auricular membraue) which extends obliquely forward. In (orynorhinus and Macrotus it is on the face, and in Promops perotis reaches quite to the snout.

In illustration of the value of the ear in classification the following talle is drawn up from the members of the bats described in this memoir.

Phyllostomide.-Dxternal ear withont internal basal lobe. External ridge rudimental or absent. External basal lobe not marginal, but lies well within the large serond scallop, which is continued well in front; tragus prorect, coarsely crenulate or spinose on outer border.

Molossi.-Lars without intermal basal lobe. Internal ridge proluced forming a "keel." Extermal ridge marginal, produced, bounding external basal lobe. Extermal basal noteh open, i. e., not covered by lower seallop; tragus rudimental.

Tespertilionide.-EAas with internal basal lobe. Internal and external ridges rudimental, not produced. Lxternal basal lobe marginal (except Plecoti), not touching extermal basal ridge. External basal noteh occupied by produced lower seallop. Tragus obscurely eremulate on outer border, or smooth.

SECONDARY SKIN DEVELOPMENTS.

At the muzzle the skin folds are median and lateral. The margins of the nostrils expand above and at the outer side while they are separated by a groove or a ridge in the middle line, as is seen in Brachyphylla and Iyctinomus. Or the two lines of perinarial expansion may meet below in the space between the nostrils and the lip to form a swollen ridge as in Glossophaya or a lappet as in most l'ampyri, while the intemarial ridge is contimous with a vertical leatlet. This is the type seen in most of the Plyylostomide as exemplified in this memoir in Artilenes and Lecerotus. The nostrils may remain simple with upper border advanced upon lumen of the opening so as to divide it into two cornua as in most Yespertilionider or the lumen may be oval as in Euderma

The lower lip is firmly held to the grm of the lower incisor teeth, as in Vespertilio, or it is free and forms a protrusile, membranous fold as in Atchluphe. It may be entire or divided in the center so as to form two chin plates as in Macrotus and as a variation in Tycticecius. In Atalupha a distinct lappet extends entirely across the chin and in degrees of development distinguishes the sexes. The chin itself and the space directly back of it is adorned with seattered warts in all forms, but in Phyllostomider, as shown in Artibens, the entire chin is conspicuonsly adorned with verruce arranged in median and lateral gronps. In Chilonycteris and Alormops these are the sites of eurionsly complex leatlets.

The sides of the face are furnished with skin folds of varions lengths, which are contimons with the external border of the auricle, or a large wart lies directly back of or below the angle of the mouth, while the sides of the muzale are apt to be more or less thickened by swollen gland-masses, which tem to embrace the side of the nose-leaf as in

Artibeus and Macrotus, or ascend toward the vertex of the fare, where they either approach earh other on the top of the mazale as in Autrozous, or end free as in Corynorhinus.

IIAIR.

The hair of the body is arranged in regions having well-defined boundaries. The crown of the head, the region directly in front of the ear, the neck, especially the side and back, inclusive of a line arross the top, of the chest, the shoulder itself, the sides of the under surface of the body, the rump, aml pubis are all regions which are ofteu separately colored, or clothed with hair of distinct texture, or rate of development than that of the other portions of the body. The sides of the neek are always furnished with longer hair than is the front and ordinarily than is the back. The hair of the pubis is more woolly than that seen elsewhere. The hair extends farther on the dorsum of the face in Vespertilio than in most genera. The same region is maked in Alelonycteris. The shoulders are occasionally furnished with shades of color contrasting with that of the rest of the body.

The membranes are clothed with hair in varying degrees. The greater area is naked. The interfemoral membrane is more thickly clothed on the upper than the lower surface, a tendency reaching its maximum in Atalapha, while the lower surface of the wing membrane between the body and the border of the manus-a tendeucy also marked in Atalapha, but most marked in the Asiatic form of the noctule bat (Noctulina noctula lasiopterus). As a rule the fur from the under surface of the body extends from the upper third or half of the arm to the knee. The presence of a clump of hair on the dorsum of tie forearm is a good peripheral character for Atalaphe cinerea. The interfemoral membrane as a rule is covered with an extension of hair from the rump to the basal third in most Vespertilionide. In Vespertilio an interesting character is noted in this clump, not being well defined, but straggles downward in an irregular manner and is lost near the ankle. This disposition is especially developed in Tespertilio capaccini and in the Nevadan variety of Vespertilio nitidus ciliolabrum. The lower border of the membrane is constantly fringed in some forms of Vespertilio, but as an individual variation in the North American species. It is rare to have the lower border of the wing membrane from the foot to the manus fringed as in Pteropus, but Tespertilio, as seen in North America exhibits a singularly constant, minute bristle which overlies the membrane at the tip of the fifth finger. The cars are apt to be sparsely haired on the inner surface near the anterior border, on the outer surface at the basal third or half, and on the external basal lobe. On the whole the bats which take the prone position in rest are less lieavily furred than those which are pendent. In one of the most marked forms of the former group (Cheiromeles) the skin is nearly naked. Interesting contrasts can be made in this way between the haunters of
caves, attics, and old tree trunks and those which are caught hanging from the smaller branches and twigs of trees and bushes.

Bristles (seter) usually sumome warts (verruce). They are best developed on the face of Molossi, though they may be fomd in the group last named on the upper surface of the interfemoral membrane. The very long hairs of the sides of the muzzle, which are so conspicuous in many of the small mammals of other orders, notably the Rodentia and Carnivora are absent. The best examples are met with in Vespertilio and Chocromycteris. Fringes of bristles adorn the margins of the toes in Molossi.

In describing bats in this mamer the attention which has been given to the details of the coloring and the markings on membranes require an exact use of terms.

When hair arises from the membrane it will be seen that the clumps follow the directions of the trabecule and are detected in the trans. lucent wing as minute black dots arrauged in rows. These must not be confounded with pigment spots which dot the naked spaces of the wing in some species.

GLANDS.
The skin glands are best developed on the sides of the face directly back of the muzzle. In Molossi a large, median, coarse sebaceous gland lies on the under surface of the neck. It is best developed in the male. The mammax are large during the lactating period when the nipples are projecting and the areolar space naked. At other times the nipple disappears and the gland is reduced to the smallest possible proportions. In Sacoopteryx and its allies the wing membrane above the anterior extremity is furnished with a sack which is lined with folds which yield a fetid secretion. The position and size of this sack furnish excellent characters to distinguish geuera as well as sexes of individuals.

COLORATION.

It is necessary to state that the colors for the most part are described from alcoholic specimens which have been removed from the spirit and permitted to dry. Mr. F. W. True writes in the Smithsonian Report for 1888 that alcohol disturbs the color scleme of a mammal. The character of alcohol is not especially here named and the remark is undoubtedly correct for specimens which have been preserved in wood spirit. However, none of the specimens used for study have been preserved in other than commercial alcohol which has been varionsly diluted with water. I have observed no differences of the kind named between the few living individuals I have seen, the fur of the dried skin prepared in the usual way with arsenic and in skins dried after prolonged immersion in commercial spirit. It must also be remembered that since all the material available for my study has been preserved
in the same medium the comparisons are sufficiently exart for purposes of identification of museum alcoholics. It is barely possible that the color description may require some modification as contrasted with these drawn up from living specimens.

SKELETON.

Skull.-In describing the skull in bats, I have borne in mind that the form of the brain gives expression to the shape of the brain-case to a far greater degree than is the case in other mammals. The divisions of the brain are readily outlined externally, and yield convenient boundaries, since the shapes of associated parts harmonize in some degree to them. Thus the region of the proëncephalon, of the mesencephalon, and of the meteucephalon are defined. In like manner the impressions made by the lines of attachment of the temporal and masseter muscles, the former on the cranium, the latter on the lower jaw, are valuable. For the temporal muscles I have named the median line betweea the two the sagittal crest or line, and the anterior and posterior temporal impressions the anterior and posterior temporal ridges or lines.

On the under surface of the skull the size and direction of the process (sphenoidal tongue) which extends backward and outward from the basisphenoid is worthy of notice. As compared to other mammals, the cochlea is unusually large at the base of the skull, and is, as a rule, but partially concealed by the tympanic bone.

The otic capsule varies in the degree in which bony laminie occupy the spaces created by the semicircular canals. On the side of the skull the surface (opisthotic) which adjoins the squama in mammals generally is in bats crossed by a process of the squama uniting with one from the exoccipital, as in Atalapha, or the surface is free as in Nyctinomus. The old-world genus Hipposideros resembles Nyctinomus in this particular. When the otic capsule falls out, as it is apt to do in the overmacerated skull, a foramen or a notch is always defined between the squama and the occipital bone. Sometimes a foramen of the same significance, viz, one occupied by the opisthotic during life, is seen on the occiput.
The otic capsule in Pteropide alone is inclosed in bone, to form a triangular wedge comparable to the os petrosa of other mammals. As a rule, the form of the cochlea and semicircular canals are outlined as though in the human skull the encapsuling petrosal bone had been chiseled away, the degrees in which thin plates of bone fill in the semicircular canals being alone subject to change. The horizontal loop in all forms examined is filled with bone.

The following scheme of the otic element will be found useful: External loop entirely occupied with bone:

[^5]Extemal loop almost entirely ocenpied with bone:

> Antrozous. Vespertilio. Adelonycteris (A. J'uscus).

External loop and superior loops not oerupied with bone:

> Noctilio.
> Macrotus (occasionally uxcepted). IIcmiderma. Chilonyeteris.

The tympanic bone is sometimes incomplete, as in Tespertilio, at its upper are, where it limits the zona tympanica superiorly. The bone eonstitutes the bulla, which presents various degrees of extension over the cochlea or forward along the side of the glenoid fossa. The width of the origin of the sterno-mastoid muscle is much greater than in mammalia gensrally. This interval in Artibeus equals one-seventh of the greatest length of the skull, which in Canis it equals one-nineteenth.

Seen from above, the face is described as forming a vertex. This extends from the region of the proencephalon to the upper border of the anterior nasal aperture. On the side the region of the face is equal to the length of the dental series. The orbit is, strictly speaking, trat portion of the skull which accommodates the eyeball; but this is much smaller than the space as defined by the bony limits, as seen in many other mammals. Since custom has sametioned an acceptance of an orbital region which would be limited posteriorly if a process were present extenting from the anterior temporal ridge towat the zygoma, a similar region so restricted is held to be a valid one in all bats. In some genera, indeed, as those of the Emballommidar, the post-orbital process is constantly present, and in the Pteropide varying degrees of posterior limitations of the orbital region are seen. The fare, inchating a part of the frontal bone, is intlated at the side in bats. I have called this the fronto-maxillary intlation. It forms a ridge or swelling at the upper border of the orbit. The intlation of the skull at the anterior part of the frontal bone to form the frontal simus is much less conspicuous in the Cheiroptera than in some other orders, but the maxillary inflation is greater. This peculiarity gives the face a broad effect at its junction with the brain-rase and monlites the shape of the orbit. The ethmoidal plates variously ehange the shape of the inner wall. As a rule, the frontal bome here permits the ectoturbinal parts to be in part defined. The region of the latelymal bone appears to resist the disposition to intlation: hence the peculiarities of the intlation give char. arter to this portion of the eranium. On the vertex the intlation canses the face to widen from the proencephaton to near the anterior nasal aperture, where it is abruptly narowed, and to create depressions of incoustant kinds in the line of the eonjoined nasal bones. The extent to Which the recession of the nasal bone from the anterior nasal aperture occurs, as well as of the palatal noteh, due to the rudimentary state of
the premaxille, afford bases for some characters of minor value. The length of the infia-orbital canal and the peeularities of the outer wall of the eanal are of interest. In Artibeus the canal is long and for the most part smooth externally, as in Canis, while in the fama generally it is short, as in Felis, and is often elevated.

The hard palate may be either in the main axis of the skull, as in most forms, or deffected upward and forward. The characters furnished by the pterygoid processes, the palatal plates, are here as useful as in other mammalian groups. The premaxilla are rarely firmly united to one another. When they are so mited, as in Phyllostomida and Molossi, the median incisors are disposed to be contiguons. When they are not united, a large median interspace separates them and is continuous with the vacuity which in other mammals represent the incisorial foramen. The presence or absence of the spheno-palatine foramen is used in some groups, as Molossi and in Plecoti, in separating genera. The disposition of the turbinals is also of interest, the peculiarities of the arrangement being definitive of the families as established on other structural characters. If in mammals generally an outer and an inner turbinal group is recognized, then in the bats we have a median lamina which bears upon its inner surface one or more scrolls (endoturbinals), and an outer lamina with much simpler accessorics (ectoturbinals). The simplest arrangement of the turbinals is seen in the Nycteride and Rhinolophide, the most complex in Pteropide. In Natalus alone is the ectoturbinal rudimental or absent. (Bull. Mus. Comp. Zool., Fel., 1880.)

In aldition to the peculiarities of the masseteric impression on the lower jaw, already noticed, characters are furnished in the height of the coronoidprocess and the degree of deffection as well as the size and shape of the angle. The post-symphysal spine which is conspicuous in some extinct forms has not been seen by me in any of the extaut forms, and I have examined most of the genera of the order.
The shortening of the face, pari passu, with reduction of teeth, is seen in Carnivora. The tendency is seeu in Vesperugo, and in bats generally. In Tespertilio the shortening of face is accompanied by displacement inward of the premolars. In a mechanical sense it amounts to the same as reduction in number. In pteropine bats a remarkable persistence of facial length remains, while the disposition to reduction is evident. One may conclude from the instance last named that the shortening of face and reduction of teeth are independent. The same is true of the Ungulata.

In Atclaphet the lower jaw closes in front of the upper. The lower canines articulate with the anterior surfaces of the upper laterals their entire length. The upper canines are free, i. e., do not articulate with anything.

Vertebral column.-The vertebral column is without large processes other than the hamopophyses which are well developed in the cervical region.

16

The athas is bromlest in Pteropide. In both P'teropus and E'pomophores the bone extends downward posteriorly and at the sides so as to conceal the lower opening of the canal for the vertebral canal. The upper border of the conjoined lamine is boldly rugose. In Artibeus, a member of agroup in the New World analogons to the foregoing, the atlas is greatly reduced in the proportions of the lamine and the transverse process, the lower opening of the canal for the vertebral canal is exposed on the posterior aspect of the bone, while the upper border of the conjoined lamine is sareely rugose. In the vespertilionines, molossines, and phyllostomines minor pecoliarities distinguish the atlas. These are given in the diagnosis of genera and species. In a general way it may be said that the pteropines are broadly separated from all the other bats by the characters presented by this bone. In I'teropus and Epomophorus the axis possesses a large neural spine which almost equals the length of the body inclusive of the eylindroid odontoid process. In Artibeus the spine is but one-half the length of the body inclusive of the tubercle-likeodontoid process. The remainingportion of the cervical is curved more or less antero posteriorly. This is less marked in the pteropine and phyllostomine genera than in the vespertilionine where the curve is so great as to bring the occiput almost to the first dorsal vertebra. The sacrum, at its upper portion, exhibits a compressed projecting ventral surface. The spinous processes are flat, distinct, and increase in size from above downward in molossines and Atalapha, but they are low and contluent in many forms as in the pteropines. The first cocergeal verteba in tailed forms is large and resembles those of the sacrum. The caudal vertebra below this are eylindroid. They vary greatly in length, especially at the begimning of the series.

Ribs.-The ribs are that, broad, with wide intercostal spaces (coalescent in Vatalus and Hipposideros for the region of the first and second ribs). The other interspaces are also well detined in Pteropida, but as a rule they are narrow, and in Noutulus and Hipposideros are practically obliterated. The costal cartilages are relatively inelastic and are disposed to become early calcified. Indeed, the entire chest is rigid, and the ribs often become anchylosed to the spine, and in some forms, as in old individuals of Tespertilio murinus, the contiguons ribs to each other. Hence the respiratory movements are for the most part performed by the diaphragm and the tlank museles.
sternum. -The sternm possesses a massive, broad prosternum and a narrowed mesosternum and metasternum. The prosternum sends a conspicnous process forward into the neck (as in many terrestrial mammals) in molossines; all the others are without this process. The first joint is usually conspicmously keeled, and in Preropider this keel is divided by a deep notelh. The mesosternm in the same family is also keeled its entire length, but in the other groups it is barely ridged or smooth.

Anterior limbs.-The claricle is present in all bats. It is firmly attached at both the acromial and the sternal end. The last named
effects an important articulation with the cartiage of the first rib and in the sterno-claviculocostal joint; in Molossi, at least, it is of enormons strength. The scopulu, as in other claviculate forms, with few exeeptions, in which the large anterior extremity is not supported on the ground, possesses an infraspinatus fossa very much larger than the supraspinatus. The bone lies well up on the side of the nerk in the forms in which the cervical series of vertebree is bent forward. Excel lent characters are yielded by the coracoid process. It is always longand slender, simple, and gently curved in varions ares in Pteropide, Rhinolophide, Emballouuridx, and Phyllostomider, but bifid in most Vespertilionide. It is interesting to find the genus Vespertilio aberrant in this respect, the process being simple and curved quite as in the larger groups first named. The posterior tubercle is prolonged to form an oblique posteriorly-directed process in the molossines and in Chatinolobus.

With the exception of the tuberosities of the humerus no check processes exist anywhere in the bones of the limbs, thus presenting marked contrasts with the limbs of birds. The trochlear end of the humerus yields in the shape and direction of the epitrochlea valuable claracters. This process conforms to the terrestrial type, $i . c$., it is transversely inclined in pteropines and the genus Saccopteryx; is deflected downward parallel or nearly so to the shaft in phyllostomines, but is absent in vespertilionines. In vespertilionines again the articular surface is axial, i.e., is in the middle line of the humerus, but in phyllostomines it is thrown well off to the outer side. Narrow-winged forms, as the molossines and the genus Atculapha, exhibit large tubereles on the humerus and wide trochlear surfaces. Thus these characters harmonize with rapid flight. On the other hand, the forms with smaller tubercles and narrow poorly defined trochlear surfaces have broad wings and presumably slow flight.

The radius constitutes the main support of the forearm and presents few variations from a single type. As a rule it is nearly straight, but is much bent in Hipposideros. It is always obliquely grooved by the tendon of the extensor ossi metacarpi pollicis. The size of the large deep fossa for the insertion of the biceps flexor is variable. Since the ulna does not enter into the composition of the anterior are of the trochlea, and its place is here taken by the radins in addition to the work this bone does in articulating with the humerus at its outer half, it is easily seen that the radius is provided with two facets at its proximal end, and that the main ridge on the distal articular surface of the humerus fits in between these two radial facets. So far as the degree of invasion of the radius into the trochlea has been noted it appears to correlate with the degree of activity of the prone form in scurrying: It is thus marked in Cheiromeles and Molossus, and is small in Kerivoula.

Proc. N. M. 93-2

The ulna is more inconstant in form than the rarlins; in all it is incomplete and is eomposed of a proximal and a distal rudiment. The proximal rudiment is free at the weak olecranon, which resembles the pats in the sloth, and is contimous in most genera with an arehed rod-like shat of miform width, which is ossified, as a rule, with the radius at about its proximal third. Exceptions are noted to this arangement in some of the vespertilionine genera, e. !., Ňetophilus and Viniopterus, as well as in the molossine Promops, in which a small anchylosed olecramon mites by a filiform shaft to the proximal thind of the ulua. Bat the vespertilionine forms as a rule (Harpiocephalus not examined) retain a free olecranon which is contimuons with a filiform tapering shaft, which ends fiee in the museles of the forearm. Corynorhimus, Nyctophilus, Chalimolobus are exceptions even to this arrangement, for here the shaft is entirely absent, the rudimental tixed olecranon constituting the entire proximal end. The tendon of the triceps muscle as it is inserted into the uhat is ocenpied by a sesamoid bone. No other animals possess a bone in this situation. It is either a separate ossicle developed in the tendon, or the disjuncted epiphysis of the uhat. This relatively unimportant bone receives the muscle which alone extends the powertul foream. The extensor carpi uhar is-a muscle as constant in this group as in others-arises from it. All the relations of the ulna, therefore, are with the extensors. The distal end is anchylosed to the radios at the wrist. The form may be that of a quadrate plate which is usually entire, thongh it may retain a minute foramen of insulticiency, as a rule, in the respertilionines. The plate may be absent when a hook-like process directed proximally, as in molossines and Itulapha; it may projeret nearly at right angles to shaft. and be conoidal, as in phyllostomines, rhinolophines, and the genera Succopterys and Notalus; or it may be absent, as in the pteropines.

The carpus of bats exhibits some valuable characters. In all forms the first row of bones is composed of two bones only-viz, a large bone which constitutes the sreater part of the row and will here receive the name of the scapho-lunar, and a small separate bone at the ulna border of the scapho-lumar which appears to be the cuneiform.

The second row is composed of the trapezimm, trapezoid, os magnum, meiform, and pisiform. The os magnum and unciform always unite to form a convex surface for articulation with the second row. With the exception of the pisaform all these integers are easily recognized. The carpus on the whole is simple, since the first, second, and thind metacapal bones are in axial articulation with trapezium, trapezoid, and os magnum, respectively, while tho fourth and fifth metacarpal bones articulate with the unciform.

In pteropines the trapezium and os magnum are greatly larger tham atre the other bones of the second row, and give a peculiarly massive appearance to the canpus when the wing is folded. The bone first named is without nodosity on the palmar aspeet. Wedged between
the two bones last named is the insignificant trapezoid. Owing to the abiruptly curved line formed by the heads of the metacarpals the second and fifth bones lie at the level of the plane, which would unite the ends of the curve, while the third and fourth form the bottom. The cavity defined by the curve as indicated is almost entirely occupied by a large hatchet-shape prolongation of the os magmom. Thus the os maguum, beside its axial attachments, is held on the one side to the second and on the other to the fifth metarapal bone. The heads of these bones are so disposed as not ti) approach cach other. The pisi form is absent umless it is represented in the palmar prolongation of the os magnum.

In rhinolophines the plan is that of pteropines. Though the bones are less massive than in that group, the methods of artionlation are the same, and the pisiform is also apparently absent.

In Artibeus the palmar part of the os magnum articulates with a separate but much smaller element, which occupies the place of the hatchet-shape plate in Pteropus. The heads of the metacarpals are scarcely curved, and those of the second and fith are disposed not to approach each other.

Among the vespertilionines we notice the following: Corynorhimus closely resembles Artibens. In Adelonyeteris the trapezium possesses a tubercle on the palmar aspect; the os magnom is without palmar plate either united or separate. The heads of the second and fifth metacarpals approach each other and almost touch. In Atalaphe the tubercle to the trapezium is retained, while the palmar extension of the os magnm is absent. Articulating on the pollical side of the fifth metacarpal bone is a separate ossicle, which appears to take the place of the part last named. It is elongated and much larger than any of the carpal elements. I have named it the pisiform. Antrozous is much the same as Atalapha; the ossicle by the side of the fifth metacarpal bone is triangular in shape. The phate of bone which is continuous with the os magnum on its palmar aspect in pteropines appears to be the same as the separate ossicle in the same situation in Artibeus.

The bone which articulates by its base with the fifth metacarpal bone in Atalapha and Antrozous would appear to be identical with the above plate, since when it is present the os magnum ends in a simple mamer toward the palm. It would appear to be the pisiform, since in Atelaphe it was observed to receive the tendon of the extensor carpi ulnaris.

Sesamoid bones.-The sesamoid bones are fomd in locations where great motion is permitted on the side opposite to which the bones are lodged-the purpose being apparently to prevent stretching of the muscles which carry the sesamoids. At the point at which stretching would begin the bones lock with the joint surface and takes the strain. They are best developed on the dorsum of the carpus in phyllostomines.

The tendency above noted for the second and fifth metacarpal bones to incline toward one another on the palmar aspect of the carpus, and
as a result for the second bone to lie in front of the third and for the fifth to lie in from of the fourth, is a notable feature in the manus of. the bat. Minor differences are seen in the relative lengths of the bones. They are shortest in pteropines and rhinolophines. The second metacarpal is usually slightly shorter than the others, but in IIipposideros it is much shorter. The fifth metacarpal bone is apt to be the largest, as in P'teropus, but in Hipposiderons and in the molossines it is the shortest. In the group last named and the related genus A talaphe the bones are marked by grooves for the powerful metacarpo-phalangeal flexors. The third metacarpal bone is commonly the largest, the fifth the shortest, the fourth being intermediate, get in North American species of Vespertilio the fourth bone, being slightly shorter than the fifth, is sometimes an individual variation. Megodermon is remarkable for having the above order reversed-the fifth metacarpal is the largest and the thind is the shortest. Viewed as a whole the manus, notwithstanding its enormons longitudinal development in the third, fourth, and fifth elements, is singularly mimportant in the first and serond. The second, however, while unsupported by elongated phalanges, has strong architectural functions at the line of its union with the carpus.
The phalanges present few points of contrast. They are uniformly elongated rods. As a rule the second digit possesses a single rudimentary phalanx which may be fiee or semimehylised to the metacarpus. The highest degree of development is attaned in the pteropines and in the genus Rhinopomu, the former having three and the latter two phalanges. In the pteropines the third is ordinarily furnished with a claw. They vary greatly in the range of motion, those of the second and fifth digits being the least mobile; in their relative lengths in the pteropines and the genera Noctilio and Miniopterus, these forms being remarkable for the degrees present of lateral and dorsal tlexion. It has been noted on p. - that the disposition and relative sizes of the phalanges vary in the scurrying and pendant forms. In the position of tlight the row of first phalanges is thexed downward, but the row of second phalamges is at the same time deflected laterally; i.e. toward the body. In the position of rest the parts either remain axially disposed or the row of the first phalanges is laterally or dorsally flexed, as in the molossines and emballanourines. The terminal cartilages are apparentlyabsent in pteropines and rhinolophines. When present they remain in axial line with the phalanges, as in phyllostomines (excepting V'ampyrus), or they are deflected from that line, as in vespertilionines and molossines. These little rods appear to be indices of the amount and direction of strain to which the membranes are subjected, and point, therefore, to distinctions in methods of flight. It may be said that they are absent, or, if present, axially disposed in the broad-winged forms, but are deflected in the narrow winged. In vespertilionines and molossines (excepting herirould (?) and Antrozous) the fifth digit is proyided with an aceessory cartilage, which lies to the outer side of the
terminal cartilage. It slightly projects from the margin of the wing membrane.
The much greater length of the third digit, as compared with that of other digits, is a noteworthy feature of the bat wing. Its relative length in different forms serves as a guide to generic and sometimes to specific distinctions.

The peculiarities of the thumb are so marked that they can be best considered apart from the other manal parts. The thmmb, as a rule, is free from membrane beyond the basal third of the first phalanx, but may be almost entirely inclosed, as in Thyroptera. The extent of the enwrapping membrane determines the size of the little fold of skin which lies between the thumb and the second metacarpal bone. The thumb is relatively large in pendent forms, since it is here of value in prehension; per contra, in Thyroptera, in which geuus a suctorial disk takes the place of a prehensile thmmb, this digit is also small, thongh the animal is unadapted to activity in the prone attitude. It has been already noted (p. 5) that the thumb is bent downward and the under surface of the first metacarpal bone fairly well outlined in the pendent forms. It is not known how Desmodus and Diphylle, which process with large projecting thumbs, support the body when at rest. The claws on the feet are weak, and the animals are probably not pendent at rest. With these exceptions, the phyllostomines possess the semiflexed thumb, as do all the other families excepting the molossines and vespertiliones.

Posterior limbs.-The innominate bone always exhibits a narrow rodlike ilium which occasionally projects slightly above the line of the iliosacral articulation, but as a rule is level therewith. The dorsum of the ilium is flat, in most forms, but it may be concave and broad, as in molossines, Atuluphu and Chilonyoteris. The pubis is, as a rule, defined in the males, but is absent and has a wide interval defined between the imnominate bones anteriorly in the females. The shape of the ischium and of the thyroid foramen is subject to slight variation in genera and even in species. The imominate bone is in most forms distinct from the vertebral column. In molossines, Chilonycteris, and in rhinolophines, it is anchylosed, both at the sacro-iliac junction and the ischiosacral or ischio-coccygeal juctions. Chilonycteris is an instance of the uniou last named. In all bats a disposition exists for the tuberosity of the ischium to approach the vertebral column, thus presenting a marked contrast to that seen in terrestrial quadrupeds. Antrozous exhibits a facet between the tuberosity and the first joint of the coccyx. The sloth is the only animal I can recall which exhibits a fixation of the ischinm similar to that found in the bats. The ilio-pectineal spine is marked; often a large tubercle, it may be a needle-like spine. In Hipposideros it is of enormous length and is anchylosed to the ilimm near its upper border.

The interest which attaches to the osteology of the hind extremity has led me to give in more detail the following:

In pteropines the ilium is curved ontward to a slight degree at the crest. The ridge from the upper border of the acetabulum is inconspicnous and does not extend entire length of ilium; this the ventral and dorsal surfaces are not separated and there is no special external border near the crest. The tuberosity of the ischium is deflected markedly from the line of the ilium and lies against the coccyx. The pubis is thickened inferiorly; the pectincal spine is absent or searcely discernible.

In Hipposideros among the rhinolophines the ilium is expanded and is concare on both dorsal and ventral surfaces. The broad crest extends outward and unites by a hroad thin flange to the tip of the long pectineal spine. Tuberosity of the ischium not projecterl barkward; nealy the entire pubis and ischium converted into a broad plate of bone at the expense of the thyroid foramen. Symphysis pubis long, entire. The trochanters of the femur are drawn backward and approximated; the inner trochanter is the longer; the outer side of the shaft below the head furnished with a tlange. The condyles small and separated by a wide notch. In the tibia the spine for hamstrings compressed. Internal tuberosity prolonged; no mallelus.

In phyllostomines the ilium is noto deflected at crest. As seen in Artibeus the ridge above the acetabulum rudimental as in pteropinesthe ventral and dorsal surfaces therefore scarcely distinguished. The external border below the crest is rugose and enormonsly thickened. The ischium is turned but slightly toward the coceyx. The inferior border of the pubis produced inward as a long blunt process and the upper border forms a long acicular process (pectineal eminence) which extends one-half the length of the ilimm. The trochanters of the femur not carried back, the outer not separated from the head by a notch. The inner is much longer than the outer. The shaft at its inner side at the proximal fifths exhibits a conspicuous crest. The condyles are of equal size. Above them posteriorly is a depression (best marked over inner condyle) to receive in forced flexion the posterior border of the articular surface of the tibia. Intercondylar notele pit-like. Proximal end of the tibia with scarcely any inward projecting process; malleolus none; tubercle for insertion of hamstrings markedly developed; surface for articulation with the fibula rugose.

In Hemidermu the imominate is much as in Artibens, but the pubis not projecting or thickened; the pectineal spine lont one-third the length of the ilium. The femur quite as in this genus, but the outer trochanter separated by a noteh from the head. In Macrotus the innominate bone much the same as above, but the pectineal spine over one-half the length of the ilim. The trochanters of the femur approximated and carried well to the back of the shaft. The fibula ouly half the length of the tibia.

In Mormops the ilium is greatly compressed between the ventral and dorsal surfaces; first joint of the tail very long. The femur and tibia as in Mlacrotus. Chilonycteris in like mamer exhibits a compressed ilium ossified to sacrum with broad lugose external border adjoining crest. Dorsal surface slightly concave and expanded. In both Mormops and Chilonycteris the tuberosity of the ischinm is anchylosed to the sacrum. The pubis in the male of Jormops is bony and entire; in Chilonycteris it is less firmly defined. The peetineal spine in Mormops is two-thirds the length of the ilium. In Chilonycteris daryi it is remarkable for being nearly as long as this bone and bound by fibrous tissue to the vertebra. In both of the genera of Lobostomidia the trochanters of the femur are approximate, confluent, and carried well back of the head. Tibia and fibula much as in Macrotus.

In Molossus the imominate bone is compressed, expanded. It is concave dorsally with narrow iliae upper border slightly projecting. Pectineal spine one-third the height of the ilium. Pubic symphysis entire, bony. Tuberosity of the ischim projects well backward, but is free from the sacrum. The imer trochanter much larger than the outer; truncate with a downward projecting projecting spine, not carried backward. The outer trochanter separated from the head by a slight notch. Condyles equal in size; notch wide, shallow. Tibia straight with large malleolus.

In Promops the pelvis entire as in Molossus; characters much the same as in this genus, but the upper border of the ilium without spine and the tuberosity articulating with the sacrum, but not anchylosed thereto. Femur and tibia of the same character-the distal epiphysis of the femur narrower than the expanded shaft. In Nyctinomus the ilium as in Molossus, but the pubic bones tree; femur and tibia the same.

In Atalapha the ilium is quite as in Molossus, but is not anchylosed to the sacrum. The pectineal spine blunt, rudimental; tuberosity of the ischium lies in the same line with ilium approaches sacrum, but is not articulated therewith. Both trochanters of the femur are carried backward as in Vampyri, but are not approximate; i.e., they are visible from in front; the inner is the narrower, thongh they are of the same length. Condyles high and narrow, the inner scarcely the wider; notch narrow, deep. Tibia curved with mediauly projecting inner tuberosity, malleolus scarcely discernible. Fibula entire; upper portion membranous. In Antrozous the ilium is anchylosed to the sactum and in the male at least the symphysis pubis is well defined; the tuberosity of the ischinm extends back of the line of the ilium and almost touches the sacrum. The pubic bone without a thickened iaferior border. The femur and tibia much as in Vespertilio.

In Vespertilio the ilimn is narrow, not expanded above and not concave posteriorly; the outer border scarcely thickened near the crest. The pectineal spine low, compressed, directed slightly forward, blunt,
swarely higher than the aretabulum. The inferior horder of the pubie bone greatly thickenod near the symphysic line in the mate. The innominate bone is lightly held to the sarrum and at the symphysis pubis. The inner troe hanter of the femmer equals the external. Both are small and the gluteal crest is searcely larger than a flage which mites the inner trochanter to the shaft, thus making the femur unique. The inner comdyle is slighty the larger and the notch narow. The tibia with large projecting median spine at the proximal emd; malleons distinet.

In Adelongeteris and Lasionyeteris the parts quite as in Vespertilio, the pectineal spine slightly longer: the shaft of the femur just below the head less expanded.

Corynorhinus much as in Fespertilio, but the upper part of the femmur much less expanded, the shaft near the trochanter sarcely at all.

The femur is without neck. The outer and imner trochanters are subequal, and of large size, the outer tending to become the larger as in the molossines. The outer side of the shatt below the trochanter is often marked by a flange in position of the third trochanter. Hipposideros and all phyllostomines show an inclination to the development of a conspicuons thange on the inner side of the shaft near the inner trochanter. This is most marked in Chilonycteris, Mormops, and Natulus. In the genera last named the trochanters are drawn backward, lie on the posterior surface of the bone, and are in close relation (resembling, with the head, the anterior end of a geometric larva), while as a rule they are on lines which answer to the lateral ligaments of the knee joint. The eondyles are appoximate markedy unequal with a narrow intercondylar noteh, the inner condyle being the larger, as is the rule, or wide apart with small condyles, as in molossines and rhinolophines. The tibia may be shorter than the femur, as in Artibeus and Molossus, but it is, as a rule, longer than that bone. The inner tuberosity is furnished with a horizontally-projecting process in vespertilionines; this is an excellent character defining the tamily. The tuberele for insertion of the hamstrings is most marked in strictly arboreal forms, as the pteropines. The malleolus is often rudimentary or absent, as in phyllostomines and rhinolophines. The fibula is uniformly imperfect above save in the molossines, where it is complete, or in Antrozous, where a membramoms tillet continues the form of the bone to the inner tuberosity of the tibia.
The toes retain two phalanges to the first toe; all the others have three, but differ in their relative lengths. The inst phalanx of the first toe is, so far as examined, longer than that of the other toes. In I'teropus the lengths of the toes from the second to the fifth gradually diminish. In Chilonycteris they abruptly increase, that of the second tor being one-third shorter than the fifth. In all bats the tarsus and calcancum are elongate and exhibit the general character of these bones in mammals, in which little or no weight is borne upon the posterior extremities. Both bones are so disposed that the larger end of eath is
directed proximally. In Rhinolophus the calcanemm enters into the ankle joint. In other forms the calcanem is independent of the joint. In Phyllostomider, including Tutalus, as well as in the genus Rhychonycteris, the calcar* is placed in axial line with the calcaneum. In other families it joins the calcaneum to its outer side at a well-defined angle. As a rule the astragalus and calcanemm are nearly of one size, but in the genus last named the calcanem is notably the smaller (Am. Naturalist, Feb., 1886, 176).

GENERAL PLAN OF ANTERIOR EXTREMITIES IN FLYING VERTEBRATED ANIMALS.

From the above consideration it will be seen that the wing membranes possess various features which can be used in distinguishing the members of the order. Bat after what manner are the flying mammals distinguished from other flying vertebrates?
There are two distinct types of modification which the vertebrate skeleton has undergone in adapting the animal for flight, both of which depend upon some peculiarity in the structure of the anterior extremities; and in order to obtain a correct opinion of them we propose to cast a glance at each in turn.

Plan of bony structure of the wings of flying vertebrate animals.
I. Wing membrane supported by all fingers.

Bats (Vespertilio), order of Mammalia.
a. Bones of ecarpus ununited distinct; flight maintained ly dermal expanse.
II. Wing membrane supported by the fourth finger only (which is immensely developed), the others remaining free.

I'terodactyles, order of Reptilia.
III. Bones of metacarpus, two to three in number; feathers not radiating. flight maintained loy dermal appeudages.
b. Bones of carpus mited;
Living birds (Aves)-class.
IV. Bones of metacarpus, four in number; feathers radiating.
I. The Bat, in which the humerus is long and slender, with a small pectoral ridge. Ulna rudimentary. The radius constitutes the bulk of the forearm; carpus composed of six bones; the metacarpal bones, five in number, separate and distinct; the phalanges generally, two in number ; thumb, and in some genera the index finger, surmounted by a claw.
II. The Pterodactyle, in which the humerus is short and straight, very broad at head, with angular and prominent pectoral ridge; ulna and radius distinct, of nearly equal size; carpus composed of five bones; metacarpus of four bones, separate and distinct; first finger with three joints, second with four, third with five, fourth with four joints, all provided with claws. with the exception of the fourth, which is remarkable for the extraordinary development of its several joints. It is from this last-mentioned finger to the base of the foot that the skin was stretched by which the animal was enabled to fly.
*The calcar is an element of doubtful homology. It supports the free border of the interfemoral membrane, and is of the same significance as the aecessory cartilage of the fifth manal digit.

III．The Bird，in which the humerns is curved，more or less slender；pectoral ridge prominent，not angular；uha large，curved，not united with the slender and more diminutive radius；carpus or two bones；metacarpus of two，sometimes of three bones－the first heing small and cylindrical，the other two of larger dimensions and united so as to form a bone resembling Hose of the foream；ulnar phalane of one joint，united to the radial， which is composed of two．

Thepower of sustaining light not dependent upon the expansion of skin， but upon the excessive development of dermal appendages（feathers）．
W．The Areheoptersa agrees with the typical bird in geremal particulars，but differs in the number of metacarpal bones，which are here four in number： the tirst and second are slender，free and separate from one another；the third amd fourth bear considerable resemblance to those of extant birds，in being large，stont，and closely approximated；butare not，however，united．

Flight is supposed to have been maintained in the same manmer an in living birds．
In addition to the instances already given，certain fishes，as the Exocetus and Dectylopterus，possess the power of sustainig true dight． The medhanism that lifts the body of the fish from the water，and up－ holds it for a short timo in the air，is obtained in the pectoral fins， which，in these animals，are enormonsly developed．The structure of these fins is homologous to that of the anterior extremities of other vertebrates－their form alone being moditied to adapt the animal to the medium in which it is placel．Thus we have，in each great subdi－ vision of vertebrate animals，areresentative eapable of sustaining tlight．

Another somewhat similar moditication of the animal economy is met with in a few animals of aboreal habits．Here a peculiar arrange－ ment of the skin is observed，whieh enables the possessor to break the force of downward leaps．In the Flying Lemor（ Galeopithecus），in the Flying Syuirvel（Iterom！s），and in the Flying Opossum（Petanista）， the furred skin extends laterally from the sides of the body，and is attarhed to anterior and posterior extremities at the metacarpal and metatarsal regions respecticely．The only instance of osteological development is obtained in the Dragon（Draco rolams），a small lizard from Namatra，in which long，thanserse processes from either side of the lumbar vertebrar support a thin membramous growth which is capable of being opened and shat by means ot museles attached to the bouy frame－work．

TWETH．

In describing the teeth the nomenelature of Prot．H．F．Osborn will be followed．The diagram herewith presented is copied fiom this writers paper in the Ameriean Naturalist，lecember，15Ss，p．10ヶロ．

V！口にな MOL．ALS．

Antero-e	rotoconid. pr ${ }^{\text {d }}$
Postero-external cusp	Hypocouid. Ly ${ }^{\text {d }}$
Antero-internal cusp	Paraconid. pa^{4}
Intermediateorantero	Metaconid, med
ostero-inte	Entoconid. end

The upper molar in most bats presents to an extraordinary degree depressions on the onter or buceal surface of the crown. Such depressions receive the name of "flutings" and are seen in the teeth of many mammals other than the bats, as for example in the moles and shrews among the Insectivora, in the Ungulata, and in at marked degree in an extinct genus described by Prof. Cope, Lambiotherium. "Flutings," while of no homological significance, furnish systematic characters, and will therefore be noted in the descriptions. Disposed so as to define two V-shaped figures the "flutings" extend as a sinuate commissure between the paracone and the metacone. Of the two V s an anterior and a posterior will be distinguished. Each V has two limbs, a first and a second. In the third molar various degrees of loss of the system of flutings occur. Commonly the anterior V is retained while the second is lost, excepting the buccal half of the first limb, as in V fuscus, or the "fluting" is reduced to the anterior V', the palatal half" of the second limb being lost, as in Nacrotus and Atalapha. In the Bats of North America the least reduced last molars are seen in Nyctinomus and I. hesperus.

The tri-tubercular tooth which results from the presence of the three cusps, the protocone, the paracone, and the metacone, may be conrected with a triangular figure by bands which mites the cusp-points. : These bands will be named in this monograph the commissures. In the molars of the bat such a triaugle is seen whose apex is palatal and constituted of the protocone and whose commissure extends from this cusp to the paracone and metacone. Its base is the extraordinarily sinuate ("fluted") buceal surface of the crown. A careful search must be made for the true positions of the sides of this triaugular figure for they lie on the opposed sides of the teeth and are inconspicuous. The crown at the "flutings" is of great vertical extent and dwarfs even the proportions of the protocone. When seen in profile the proportions between the size of the "columns" of the two V's and the "cusp" of the protocone afford materials for interesting comparisons in the different genera. The hypocone presents excellent subordinate characters. It is a development of the cingulum. Usually that, as in Mucrotus, it may be a sharply defined as in Promops perotis, or provided with a sharp cusp as in the exotic genus Noctilio. The cingulum can be traced as a delicate ridge which lies basal to the sides of the tritubercular triangle. It varies greatly in extent, being best developed in Nyctinomus.

In the lower molar searcely any fluting is present and the plan of the tooth is simple. The protoconid, paraconid, and melacouid are united
by commissures. The apex of the triangular figure is buccal. The hee or hypoconid is large. It is mited to the triangle by a commissure at the lingual side. Such a commissure is provided with a sharp cusp in l '. jerotis, but as a rule it is smooth.

KEY TO GENERA.

1. Bats withmedian appendage tonose, four incisors in lower jaw... PhYulostomide,
a. Body massive, auricle shorter than heal, not united with its fellow...Artibens,
a. Body slender, auriele as large or longer than head, united with its fellow
II. Bats without median appendages to nose.
b. Nostrils circular, wings narrow and pointed; tail tong, produced far beyond interfemoral membrane; marginal toes fringed with coarse hair. Molossi. Lips growved.. Lips not grooved. Iromops.
b. Nostrils elliptical, wings broad, amplo; tail as long or only slightly longer than the broad interfemoral membrane; marginal toes naked \qquad
VENDERTHIUNID.E.
c. 'Two incisors in upper jaw.

+ Six incisors in lower jaw.
* Interfemoral membrane more or less hairy.

Premolars $\frac{1}{2}$	maspiplerus.
Premolars ${ }^{\circ}$	Alcalapha.

* * Interfemoral membrano not hairy* Nycticejus.

c . Four incisors in upper jaw.
\dagger Premolars $\frac{1}{2}$; greatest width of tragus at hase equals one-half of imer boriter. Idelomycleris. +1 Premolars $\frac{2}{2}$.
* Greatest width of tragus equals much less than one-half inner border; nose simple, cars separate
lesperugo.
* * Greatest width of tragus equals one-third height of imer border; auricles united.
fi Nose with lateral club-shaped gland-masses Cor!morhinus. If Nose without lateral chuh-shaped gland-masses............. . . Euderma. $\dagger \dagger \mid$ Premolars $\frac{2}{3}$; greatest width of tragus at middle and equals two-thirds height of inner border Lasionycteris.
$\dagger \uparrow \dagger+$ Premolars $\frac{3}{3}$, lips whiskered, dorsum of face furred...... Vespertitio

NOTES ON THE GENERA OF VESPERTILIONIDA.

By Harrison Allen, M. D.

At the conclusion of a study of this family I venture to place on record my views respecting the position of the genera Antrozous, Corynorhinus, Synotus, Noctulinia, and Kerivoula.

Antrozous.-Antrozous is a composite genus. It is not specially related to Corynorhinus and Plecotus. In the incomplete tympanic bone, in the absence of the palatal plate to the premaxilla, in the markings on the fourth digital interspace, in the shape and relation of the ulna, in the possession of a tubercle on the palmar surface of the trapezium, in the details of the molars, in the arrangement of the nasal scrolls, and in the deflection of the cartilage of the fourth digit toward the thumb, Antrozous is in alliance with Vespertilio. It is distinguished therefrom by the absence of the accessory cartilage to the fifth digit. Affinity with Corynorhinus is suggested by the shape of the muzzleglands. Antrozous resembles Atalaphe in the shapes of the last molars as well as in the proportions of the hypoconid, but in the presence of four incisors in the lower jaw, ${ }^{*}$ in the free lower lip, in the head not being in axis with the body, in the manal formula, in the disposition for the nostril to bear a vertical internarial ridge and the upper border of the muzzle a constant transverse outgrowth, in the presence of a hem of membrane on the pollical side of the second metacarpal bone, recalls the Phyllostomidæ.

Corynorhinus.-This genus is in close relation to Euderma and I'lecotus, so the term Plecoti adopted by Dobson is a useful one to be employed in this restricted sense for the genera above named. I would exclude from the group Antrozous and Synotus. Nyctophilis and Otonycteris I have not studied. Corynorhinus differs from Antrozous in the greater development of the hypocone in the upper jaw and its equivalent in the lower jaw. The points of the cusps are more produced than in the genus last named. The thumb is semiffexed (thus denotive of free motion in the carpo-metacarpal joint), the callosity is rudimentary. The palmar aspects of the manal digits are well defined at the proximal ends, being thes without the radiated raised folds of the skin seen elsewhere in the family. The terminal cartilages of the digits

[^6]are axially disposed to their respective phalanges, a character not seen in Antrosons or in the Vespertilionidar other than in the Plecoti. The third metacarpal bone is relatively short, a character often met with in the l'hyllostomidir. The traperium is without a pahmar tuberele, again a character of the family last named. The sphenoid foramen lies at the bottom of a deep recess. The interphalangeal joint of the fifth digit is freely movable. Corynorhinus thas shows characters which distinguish it from the respertilionine group and relate it to the Phyllostomide.

Synotus.-Synotus exhibits the tubercle at the base of the traperium; the terminal cartilage of the fourth digit is not axial, as in Corymorhimus, but is detlected toward the thumb. In like manner the first metacapal bone is not freely movable at the carpometacarpal joint, as in Antrosous and the Vespertilionide generally. The interphalangeal joint of the fifth digit is semianchylosed. These chatacters indicate an increased strain on the wing membrame as compared with Corynorhinus, where the joint movements are freer, and places the genns in close alliance to Adelomycteris, Vesperugo, and Vespertilio, while removing it from the Plecoti.

Aoctuliniu.-This genus was established by J. E. (inay (Amn, and Mag. N. II., 1st2, x, 250). Jerdon (Mammals of Ludia, 1867) considers the genus valid, though zoologists generally have followed Keyserling and Blasius (Wiegm. Archiv, 1839, p. 317), who include the noctule bat in their gemus Vesperugo. I propose to rehabilitate Noctulinia. It is quite distinct from Vesperugo, notwithstamding the similarity in the number of the teeth.* A rudiment of a biceps musele is present in

[^7]Gon. Noctulinia, (iray.

Feet quite free from the membrane, which is attached to tho ankle only; otherwiso as in Scotophilus. Incisors, $\frac{1}{16}$; molars, $\frac{5-5}{5-5}$; by age, $\frac{1-1}{1-1}$; with a very small false molar.

Noctulinia moctula.

Fespertilio apud Schrober.-F. lasioptcrus, Schrober.-V. altirolans, White,-F. lubiata, Hodgson-Blyth, C'at. 89.

The Noctule Bat.

Description.-Wars remote, oval-triangular, or romeled. wide, extending nearly to the angle of the month; tragus short, broad, curved, ending in aroad romeded head; muzzle short, blunt, mude; lips somewhat tumid; fir dark, roddish brown, both above and below.

Length, $4 \frac{1}{5}$ to 5 inches, of which the tail is nearly $2 ;$ oxpanse, 14 to 15 inches; forearm, 1 ?"。

This the hat has heen sent trom Nepal hy lodgsom, who states that it is fomb in the central hills of Nopal. It is not uncommon in England, and its thight is lofty.
['The above extract includes the short statement of Gray regarding the mamer of the attachment of the wing to the ankle and the indieation of athinty of the genus to Scotophilus. It remains clear that my diagnosis as now riven is the dist offered of the srenus Foctulinia. I have not studied lisperugo leisleri, which is placed in the same group with the noetule bat. H. A.]
the thigh. The penis is provided with a bone. The muzzle is separated from the upper lip by a naked, smooth space. The lower border of the muzzle is not continuous with the upper border of the muzzle, but ends upon the sides of the face to form the lower border of a groove, the upper edge of which constitutes a distinct ridge at the side of the muzzle.

The lower lip presents a well-defined triangular mental plate; at the side the lip forms a thick rounded border. A deep groove lies below this border, which is limited in part by a low fold of skin almost joining the auricle as it ends near the angle of the mouth.

The proximal uhar rudimentis anchylosed to the radins, and provided with a filamentous shatt. The pisiform bone is massive and lies parallel to the fifth metacarpal bone. Both the above characters are present in Atalapha and Dasypterus. *

Noctulimiu and Atuluphu and its allies (I would place here Miniopterus) are thus seen to possess molossine affinities. The disposition for all the forms named to possess hairy wing membranes and the tragus to be of the same general character are also in evidence that they incline to form an alliance.

Kerivoula.-J. E. (iray showed good judgment in separating this genus from Vespertilio. The more the forms are studied the wider the interval will become which removes them from one another. In a study of \boldsymbol{K}. harduckiii I found no trace of a phalanx in the second digit. The phalanges of the third digit were of the same length; those of the fourth digit were very unequal, the second being the shorter, while in the fifth digit the second phalanx was almost the length of the first. There was apparently no accessory cartilage at the side of the end of the fifth digit. There was no oblique tibial line on the wing membrane. I know of nothing similar to this in the family. Seven rugae were seen on the hard palate. The ulna was anchylosed to the shaft at its middle, a character broadly contrasted to V'espertilio but but resembling that seen in the majority of the order. The first metacarpal bone was bound down its entire length to the second matacarpal and its callosity covered the entire palmar surface. A fleshy wart was found on the dorsal aspect of the forearm at the elbow.

[^8]
NOTES ON A FEW FOSSIL PLANTS FROM THE FORT UNION GROUP OF MONTANA, WITH A DESCRIPTION OF ONE NEW SPECIES.

BY
F. H. Knowlton.
(With Plates I-II.)

The material which is the basis for the following notes was obtaned by exchange from the University of Minnesota through Prof. ('. W. Hall, the professor of geology in that institution. It consists of a single slab which bears no less than nine beautifully preserved leaves upon its surfaces. It was collected by Prof. A. D. Meeds, also of the University of Minnesota, duins the summer of 1884 , and is labeled "Southern Montana;" but, from the nature of the matrix as well as from the species of plants preserved upon it, it is more than probable that it came from the Yellowstone River, not far from the town of Glendive, Mont.

The first material from this part of the country was obtained by Dr. F. V. Hayden, while attached to an expedition made by Lieut. G. K. Warren, of the U. S. Army, in the summer of 1856.* This expedition proceeded from St. Louis to the mouth of the Yellowstone, at which point they arrived July 10, 1856. They intended navigating the Missowi River from this point to Fort Pierre in a small boat; but, as this could not be procured for some weeks, they spent the intervening time (until September 1) in exploring the Yellowstone as far up as the mouth of the Powder River.

Plants were also probably obtained during the years 1859 and 1860 by Dr. Hayden, who accompanied the exploring expedition under Capt. (later General) W. F. Raynolds to the Yellowstone and Missouri rivers. \dagger The plants obtained at these times were described by Dr. J. S. Newberry in $1867 . \ddagger$ This material had come, according to Dr. Newberry, fiom various points on the Missouri River, at Fort Clarke, Red Spring, Fort Berthold, and from 100 miles below old Fort Union, at

[^9]the mouth of the Yellowstone, and on the Yellowstone, at O'Fallon's Creek, 100 miles above where the Yellowstone joins the Missouri, and in the valley of the Fellowstone between this point and its mouth.

Much additional material from the same general region was obtained by Dr.C. A. White and Prof. Lester F. Ward, of the present Geological Survey, during the years 1881-1883. Prof. Ward's material came from the Yellowstone in the vicinity of Glendive, Mont., and the results of a preliminary examination of it are published in the Sixth Annual Report by the Director for the year 1884-'85 (pp. 542 et seq.) and also as a special bulletin (Types of the Laramie Flora, Bull. U. S. Geological Survey No. 37). Prof. Ward's material, it will be observed, is from practically, the same region as much of that obtained by Dr. Hayden, aud, as shown both by the matrix and by the species represented, some of the material must have come from practically the same spot.

DESCRIPTION OF THE SPECIES.

Thuya interrupta Newby.

Later Extinct Floras, p. 42; Illustrations of Cret. and Tert. Plants, Pl. xi, Figs. $5,5 a$.
This beantiful species has not before been obtained, so far as I know, since the original specimens were collected by Dr. Hayden, near Fort Union. The slab obtained by Prof. Meeds bears a single small, but highly characteristic branch of this conifer.

Populus Meedsii, sp. nov.

$$
\text { 1’l. i, Figs. 1, } 2 .
$$

Leaves short-petioled, 12 to $20^{\mathrm{cm}} \mathrm{long}, 3$ to 7^{cm} broad, long-lanceolate, usually being bradest in the middle, from which point they taper gradually downward into a welge-shaped base and upward into a similarly shaped, rather acute apex; lower third of margin smooth, remainder provided with very short outwardly pointing teeth separated by shallow sinuses; midrib strong, straight; secondaries, 12 to 14 pairs, alternate or subopposite, emerging at an angle of 45° or 50°, running straight toward the margin, along which they arch, forming a nearly regular series of quadrangular meshes, and from which slender branches enter the weak teeth; tertiaries strong, forming lattice-like bars nearly at right angles to the midrib or in some cases more nearly at right angles to the secondaries; ultimate nervation fine, quadrangular.

This beatiful species, which I take pleasure in naming in honor of Prof. Meeds, the collector, seems to find its nearest living analogue in Populus angustifolia James (P. balsamifera var. angustifolia Watson), a species still living along streams from New Mexico and Colorado to California and Washington. The living speries differs merely in having the leaves more nearly orate-lanceolate and in being cremate-serrate with numerous fine teeth. The nervation is quite similar in both, being, however, less regular and with the secondaries at a more acute angle

Populus meedsii, new species.
in I '. angustifolia. It is certainly quite remarkable that the fossil and living species should be so intimately associated, and seems to warrant the supposition that P. Meedsii represents an undoubted ancestral form of the living P. ingustifolia.

Populus Meedsii is also evidently related to P. Hecrii Sap).* from the Eocene at Florissant, Colorado. This latter species has the leaves longpetioled, ranging in size from 5 to 30^{cm} in length and 2 to 12^{cm} in width. They differ slightly in shape, being in general broadest below the middle, and have sharp upward-pointing teeth, separated by acute sinuses. The nervation is nearly the same in both. It is probable that P. Hecrii is even more closely related to the living P. angustifolia than is P. Meedsii, which accords well with its geological position. If this view of the relationship between them be correct, our present knowledge of the development will stand as follows:

Populus Meedsii sp. nov. Fort Union Group. Lower Eocene.
Populus Hecrii Sap. Green River Group. Upper Eocene.
Populus angustifolia James. Living.

Quercus Dentoni Lx.

Cret. and Tert. Floras, p. 224, Pl. xlviif, Figs. 1, 11; Ward, Types of the Laramie Flora, p. 26, Pl. x, Fig. 1.
The type specimens of this species were obtained by Prof. William Dentou from the Bad Lands of Dakota, but probably not far from the mouth of the Yellowstone, therefore practically in the same region.

The single partly broken leaf on the slab obtained by Prof. Meeds differs slightly from the figures given by Lesquerewx, being broader and having the secondaries less arched. It is more like the leaf referred to this species by Prot. Ward from Point of Rocks, Wyoming.

Dryophyllum, ef. D. aquamarum Ward.
Types of the Laramie Flora, p. 26, Plo x, Figs. 2-4.
The type of this species came from Point of Rocks, Wyoming. The leaf under consideration is much broken and it is impossible to make a positive ideutification.

Pterospermites Cupanioides Newloy. sp.

Pl. ir, Fig. i.

Phyllites Cupanioides Newley., Later Extinct Floras, p. 74; Illustrations of (ret. andi Tert. Plants, Pl. xxvi, Figs. 3, 4 (wrongly identified by Lesquereux as I^{\prime}. venosus).
Pterospermites Whitei Ward, Synopsis of the Flora of the Laramie (troup, p. 556, Pl. lvi, Figs. 5, 6; Types of the Laramie Flora, p. 94, Pl. xvi, Figs. 5, 6.
Leaves large, 12 to 13^{cm} long, 7 to 8^{cm} broad, fleshy, ovate, elliptic in outline, roundel or heart-shaped at base, subacute at summit,

[^10]margins coarsely and ohtusely sinnate-toothed above, simple or waved below; petiole 1 to $6^{\circ} \mathrm{m}$ long, straight, very thick; nervation pimate; very strong; midrib straight or slightly Hexnose; lateral nerves about six pairs, somewhat crowled below, more remote above, alternate, hasilar pair usually short and simple and uniting above with the tertiary branches of the second pair to form a marginal festoon; middle secondaries cach bearing one or two, ramely three, branches near the summit, upper ones generally simple: tertiary nervation very distinct, forming lattice-like bars connecting the secondary nerves at right angles.

The above description is, with slight modification, the one given by Dr. Newberry (loc. cit.) for this Phyllites ('upanioides, the changes being simply relatively unimportant details afforded by later and in some respects more perfect material than he evidently had at his disposal. It will also be observed that this deseription does not differ essentially from that given by Prof. Ward for his Pterospermites Whitei. A comparison of the figures of the latter species with those given by Newberry and also with the ones under discussion shows that they agree essentially, the differences being insufficient to permit a generic or even a specitic separation. The leaves figured by Prof. Ward are a little less strongly toothed and more markedly heart-shaped at base. The nervation is the same in both.

Dr: 'Newberry's specimens are labeled "Fort I'nion, Dakota," which is in the vicinity of the mouth of the Vellowstone; but, as the Fort t'nion group is exposed in practically identical material from above the mouth of the Powder River to the Missouri at the mouth of the lellowstone, they are shown to be from similar if not identical beds. Several of Dr. Newberrys types are in the collections of the United States National Musem and are seen to agree exactly with the present and other material from the Yellowstone.

Viburnum asperum Nowby.
Later Extinct Floras, p. 54; lllustrations of Cret. and Tert. Plants, Pl. xur, Figs. 8,9 .
A sitgele, considerably broken leaf seems to belong to this specees. The type specimens were obtained by Dr. Hayden near Fort Union.

Pterospermites cupanioides Newberry, sp.

ON A COLLECTION OF BATRACHIANS AND REPTILES FRON MOUNT ORIZABA, MEXICO, WITH DESCRIPTIONS OF TWO NEW SPECIES.

W. S. Blatchley.

While a member of the Scoville expedition to Mount Orizaba, Mex., in the summer of 1891 , the writer made a small collection of batrachians and reptiles, which furnishes the basis of the present paper.

The collection was made about the city of Orizaba at a height of 4,000 feet above sea level, and on the southwesteru slope of the mountain between the heights of 8,000 and 14,000 feet.

No special effort was made to secure specimens of either class, only such being taken as came reddily to hand while collecting insects. The collection is not to be viewer, therefore, as a representative one for the localities mentioned.

My thanks are due to Dr. O. P. Hay, of Irvington, Ind., for the loan of books and other aids, and to Mr. Leonhard Stejneger, of the U.S. National Museum, for the loan of sperimens for comparison. The types of the new species have been deposited in the U. S. National Museum.

BATRACHIA.

Urodela.

PLETHODONTIDAE.

SPELERPES Rafinesque, 1832.
Spelerpes bellii Gray.
"Cat. Brit. Mus., 1846, 46," Boulenger, Cat. Batrach. Grad. Brit. Mus., 1882, 68. Cope, Batrach. N. A., 1889, 161.
This was the most common salamander on the slope of the mountain, numerous specimens having been taken from 8,000 to 14,000 feet, at which latter height it was frequent beneath stones and the bark of logs. At 12,000 feet three specimens were taken which were uniform plumbeous above, the series of yellow spots usually present being wholly obsolete. These were the largest specimens secured and measured respectively 146,153 , and 167^{mm} in total length. Among the others the young had the series of spots most distinct, but in all the spots in life were yellow, not red, as stated by both Boulenger and Cope.
U. S. National Musium; Nos. 19263-19265.

Spelerpes orizabensis, sp. nov.

Palatine teeth, separated from parasphenoids by a wide interspace; extending externally beyond the nares. Parasphenoid patehes separated, searcely diverging posteriorly. Head long and narrow, but little wider than body; greatest width, which is at angle of jaws, contained one and three-fourth times in distance from snont to gular fold. Snout short and blunt; nostrils and eyes small. Body cylindrical, elongate, measuring fiom three to three and a half times the distance from snont to gular fold.* Limbs weak, the digits slender and margined, but not webbed at hase. Tail cylindrical, tapering gradually to a point, slightly restricted at base, a little shorter than head and body. Gular fold distinct; twelve costal grooves.

General color, alter immersion in aleohol, phumbeons; the body with a broad reddish-brown dorsal stripe which is blotehed here and there with small dark spots and margined below by a band of gray which extends from angle of jaw to base of tail and is broken into patehes by the black costal grooves.

In lite, the dorsal stripe was a bright red and mbroken, very similar to but brighter than that of P'lethodon cinerens erythronotus Green. In alcoholic specimens the darker blotehes appear.

Measurements: Total length, 96^{mm}; snout to cloaca, 50^{mm}; snout to gular fold, $1^{2 \mathrm{mmm}}$; width of head, 7^{mm}; length of fore limb, $11^{\text {min }}$; of hind limb, $12.5^{\text {mun }}$; of tail, $46^{6^{m m}}$; distance from axil to groin, $32^{m m}$.
N. orizabensis differs from N. leprosus Cope in possessing a notably longer and narrower head; a blunter snout; a much less divergence of the parasphenoid patches: a more elongate body, the distance from axil to groin being exactly one-third the total length, whereas in leprosus it is reryslighty more than one-fourth; a shorter tail; more slender and less depressed digits, and in color.

Three specimens were taken from between the bark and wood of a large spruce log, at the height of 11,000 feet on the slope of Mit. Orizaba.
U. S. National Museum, Nos. 19266-19267.

Through the kindness of Mr. Leonhard Stejneger, a bottle containing five specimens of spelepes, belonging to the I's. National Musemm, and taken at Orizaba by Prof. Sumichast, was forwarded to me for comparison. In a letter acompanying the specimens Mr. Stejneger expressed the opinion that one of them was an modescribed species. This, atter a caretul examination, I tind to be the ease, and, with the consent of Mr. Stejneger, the following description is herewith inserted:

Spelerpes gibbicaudus, sp. nov.
Palatine teeth in two nearly straight series, extending externally beyond the nares; separated from the parasphenoids by a wellmarked interspace. Pamaphenoid patches long, separate, diverging

[^11]but slightly posteriorly. Mead narrow, but little wider than body, not depressed; greatest width contained one and a half times in distance from snout to gular fold. Body cylindrical, elongate, measuring over three and one-half times the distance from snout to gular fold. Fingers and toes short, not webbed at base. Tail cylindrical, shorter than head and body, and of almost the same diameter of body for three-fourths of its length, then tapering rapidly to a blunt point. Skin not wrinkled, but very closely pitted, the pits, beneath the lens, resembling eircular seales. Gular fold distinct. Twelve costal grooves. Color uniform brown; the center of the dermal pits on dorsal surface of body and ventral surface of tail yellow, giving those regions the appearance of having been sprinkled with yellow dust. This appearance may be due to the action of alcohol.

Measurements: Total length, $85^{\text {mm }}$; snout to cloaca, 46^{mm}; suout to gular fold, 10^{mm}; width of head, $6_{\overline{3}}^{2 \mathrm{mmm}}$; length of fore limb, 10^{mm}; of hind limb, 11^{mm}; of tail, 39^{mmm}; distance from axil to groin, 31^{mm}.

From S. leprosus Cope, this species may be known by the straighter palatine teeth; the less divergence of the parasphenoids; the narrower head; the proportionally more elongate body; the unwebbed toes, and the shorter and much stouter tail.

One specimen, U. S. National Museum, No. 19255, collected at Orizaba, Mexico, by Prof. Sumichrast.

Anura.

BUFONIDE.

BUFO Laurenti, 1768.
Bufo intermedius Giinther.
Boulenger, Cat. Batr. Sal. Brit. Mus., 1882, 307.
A single specimen of Bufo, taken from the gutter in a street of the city of Orizaba, varies from the description given by Boulenger, loc. cit., as follows: The hind limb is longer, as, being carried forward along the body, the tarso-metatarsal articulation reaches the anterior border of orbit, instead of "to the eye." The color of intermedius is given as "olive above, with irregular, sometimes confluent, dark spots; belly immaculate or with slight spots." The specimen in hand is dark olive above, with a narrow ash gray (white in life), dorsal line extending from snout to anus. On top of the head this line widens, forming an ashen cross-band which extends across the anterior half of eyelids and the intervening frontal space. Sides and belly white with numerous small dark spots. Limbs with many large olive spots; front ones immaculate beneath. Length, 42^{mm}.
U. S. National Museum, No. 19268.

hiflidet.

HYLA laurenti, 1768.
Hyla eximia Baird.

1. S. anū Mex. Bomud. Surv.. if. 2!? Pl. xxtrint, Figs. \&-10. Boulenger, Cat. Batr. Sal. Brit. Mus., 188:, :378.
Several specimens of this handsome tree frog were secured from the leaves of bushes in the gardens about Orizaba. When on the leaves the general color was a bright pea green, instead of olive as given in the descriptions, loc. cit.

Hyla miotympanum Cope.

Proc. Acad. Phil., 1863, 47." Boulenger, Cat. Batr. Sal. Brit. Mus., 1882, 400.
This species was quite common about the city of Orizaba, on tall grass and the leares of shrubs. One specimen was also taken at a height of 8,000 feet, near San Andres.

REPTILIA.

Lacertilia.

> IGUANID※.

SCELOPORUS Wiegmann, 1828.
Sceloporus variabilis Wiegmann.
Herp. Mex., 1834, 51. Boulenger, Cat. Liz. Brit. Mus., ir, 236.
Frequent at Orizaba and as high as 14,000 feet on the mountain. About the city it was most often seen on the stone walls surrounding the gardens, especially in the suburbs. A single specimen, a of measuring $146^{m m}$ in length, was secured there, and three others on the mountain slope, all of which were smaller.

Sceloporus æneus Wiegmann.
Herp. Mex., 1834, 52. Boulenger, Cat. Liz. Brit. Mus., ir, 233.
Three specimens of this lizard, two of 3 and a $\%$, were taken from the slope of the mountains at a height of 12,000 feet, and another, a 5 , at a height of 14,000 feet. (Others were seen, but could not be captured, on aceount of their swiftness.

Measurements-adult ô :

Total length	Millimeters. $\text { } 91$
Length of head	11
Length of body	35
Length of tail..	. 45

In the field it is difficult to separate aneus from variabilis, as from above they are quite similar in appearance. When captured, however,
the larger size of the lateral scales, the greater prominence of the femoral pores, and the brilliant blue mottlings on the ventral surface of the $\hat{\delta}$ of encuis easily distinguish them. Moreover, aneus, when full grown, is a smaller species than variabilis.

Sceloporus microlepidotus Wiegmann.

Herp. Mex., 1834, 51. Boulenger, Cat. Liz. Brit. Mus., ir, 232.
The small-scaled lizard was the most abundant species on the slope of the mountain from 9,000 to 14,000 feet. They were continually seen along the pathway, and when pursued took refuge beneath fallen rocks or in the clumps of dense bunch grass. One was surprised at a height of 14,000 feet, with a half-eaten beetle, a species of Lachnostermu, in his mouth, and was chased quite a distance before he dropped his prey.

The species is at once known by the small size of the dorsal scales, there being on an average about seventy-five between the occipital plate and the base of tail. Four males, five females.

PHRYNOSOMA Wiegmann, 1828.

Phrynosoma orbiculare Wiegmaun.
Herp. Mex., 1834, 53. Girard, Stansb. Rep. Grt. Salt Lake, 1852, 359. Boulenger, Cat. Liz. Brit. Mus., Ir, 241.
This, the only species of "horned toad" taken, was common in the fields about San Andres, between 7,500 and 9,000 feet, but was seen at no other locality. Those secured evidently belong to the variety Cortezii Bocourt, as the occipital spines are shorter than the longest temporal ones and the head is broader than long.

Measurements-adult o :

ANGUIDA.

GERRHONOTUS Wiegmann, 1828.
Gerrhonotus imbricatus Wiegmann.
Herp. Mex., 1834, Pl. x, Figs. 2, 5. Bouleuger, Cat. Liz. Brit. Mus., ir, 272.
A single specimen of this genus was captured on the slope of the mountain at a height of 11,000 feet. It was creeping slowly through the bunch grass, which, at that height, covered the soil, and when discovered made but little effort to escape, but darted forth its tongue rapidly after the manner of a snake.

The ventral seales are in twolve longitudinal series; but in the outer row on both sides several seales have been divided, giving thirteen to fourteen scales in some of the transverse series. The fore limb, when oppressed, reaches the posterior instead of anterior corner of eye; otherwise it agrees fully with the description cited.

Measurements: Total length (tail defective), $216^{\text {mm }}$; length of head, $29^{\text {m" }}$; of body, $94^{m w}$; of tail (reproduced), $93^{w n}$; of fore limb, $27^{\text {mwn }}$; of hind limb, 35^{mmm}.
U. S. National Museum, No. 19262.
high Shhool biogogical laboratory.
Terre Hunte, Indiana, september 14, 1892.

H
Robert Ridgway. Curator of the Department of Birds.

Chætura lawrencei, sp, nov.
Sp. Char.: Similar to C.gniunensis Ifartert, bat smaller, longer upper tail-coverts darker (outer web almost wholly glossy blackish), aud flauks paler slate-gray, in marked contrast with the glossy black under tail-coverts. Wing, 3.85-4.20; tail (to base of spines), 1.35-1.45.

Habitat: Grenada, West Indies; also, Tobago, and Trinidad, or Venezuela?

Type, No. 84841, U. S. National Museum, 9 adult, Grenada, May 7, 1881; J. G. Wells. (Length, $\frac{13}{2}$ inches, extent of wings, 10 inches.)

An example in the collection of Messrs. Salvin and Godman, of uncertain locality (labeled "Yenezucla!") is quite identical with the type in coloration, but is considerably smaller, the length of the wing and tail being the minimum of those given above. It is labeled "Chectura salvini Hartert" (mpublished synonym of C. guiunensis IFartert); but, having a typical specimen of the latter for comparison, from British Guiana, and also five good specimens from Costa Rica and Nicaragua, I feel quite certain it is different, all of the six specimens of C. guiunensis having wholly gray upper tail-coverts and much darker flanks, the dark gray color of the breast gradually shading into the glossy black of the under tail-coverts.

The two forms are closely allied to (. cinereiventris Scl., of Brazil, and the three should probably be considered geographical races of one species rather than distinct species, a more exact idea of their relationship being expressed by the following nomenclature:

1. Chetura cinereiventris Scl. Brazil.
2. Chatura cinereiventris guianensis (Hartert). Guiana to Nicaragua.
3. Chatura cinereiventris laurencei Ridgw. Grenada; also, Tobago, Trinidad, or Venezucla?

The three forms may be distinguished by the following characters:
a^{1}. Belly and flanks light gray, like breast, abruptly contrasted with glossy black of under tail-coverts.
b^{1}. Upper tail-coverts black, or with only inner webs oldged with gray; rump, lighter gray; larger (wing 4.20-4.30). Hab., Brazil......... C. cinereirentris.

Cypseloides cherriei, sp. nov.

Sp. Cinar: Adult (No. 127069, I. S. National Musemm, Volean de Irazú, C'osta Rica; George K. Cherrie). Similar in size and general form to (. brumneitorques (Lafr.), but tail quite truncated, with feathers less rigid and only very minutely mueronate. Color, uniform sooty black (much darker than in C. brunncitorques), the under surface some. what paler, especially anteriorly, where becoming light grayish on the chin. A large, sharply defined, spot of silky white on each side of the forehead, immediately over the lores, and a short streak of the same color immediately behind the eye; lores velvety black, in very sharp contrast with the white spot above them. Length (skiin), 5 inches; wing, 6; tail, 1.87 ; tarsus, 0.50 .

This apparently new species needs no comparison with any other, the peculiar white markings of the head being sufficient to at once dis tinguish it.
The type specimen was generously presented by the authorities of the Costa Rica National Museum.

NOTES ON AMERICAN HEMIPTERA HETEROPTERA.

BY
A. L. Montandon.*

I.

Contributions to a knowledge of the species of the genus COSMOPEPLA STÂL.

This genus of the subtamily Pentatomina, as constituted by the eminent Prof. Stal: O. V. A. F., 1867, p. 525, has the following characters:

Corpore latiuscule obovato, sulbtus sat convexo; capite valde deflexo, thorace breviore, parviusculo, ante oculos utrimque leviter sinuato, antesinus vix angustato, apice rotundato-fruncato, jugis et tylo ieque longis, marginibus sub-acutis; bucculis sat elevatis, postice altioribus; ocellis inter se quam ab oculis fere triplo longius remotis; rostro paullo pone coxas posticas extenso, articulo primo bucculas superante, articulo secundo apicalibus duobus ad unum vix breviore; antennis mediocribus, articulo primo apicem capitis equante vel vix attingente, secundo tertio breviore; thorace anterius sat declivi, marginibus lateralibus obtusis, callosis, integris, angulis lateralibus rotundatis, haud prominulis; scutello mediocri, apice lato et rotundato, frenis ultra medium scutelli hand extensis; venis membrane simplicibus; mesosterno leviter carinato; ostiis odoriferis paullo elevatis, in sulcum haud continuatis; tibios teretibus, sulco destitutis.

The important characters of this long diagnosis have been summed up by M. Distant, in Biol. Cent. Amer., p. 52, as follows:

The lobes of the heard are of equal length, the scutellum broad and rounded at the apex, the lateral angles of the pronotum are rounded * * * and the nervures of the membrane are longitudinal and simple.

Up1 to this day five species were placed in this genus, in which Stall, in his great work Enumeratio Hemipterorum, 2, 1872, pp. 18, 19, enumerated three already described species: Cimex carnifex Fabr., E. S., Suppl., 1798, p. 535 ; Eysarcoris decoratus Hahn, W. I., 1r, 1834, p.117, Fig. 198; Eysarcoris conspicillaris Dallas, List of Hemipt., I, 1851, 1. 225, and diagnosed Cosmopepla cruciaria Stal. Recently M. Distant added to these Cosmopepla binotata Dist., Biol. Ceutr.-Amer., Hemipt. Heteropt. Suppl., p. 327, Tab. xxxi,Fig. 7.
*SIR: I have the honor to submit for publication the accompanying "Notes on North American Hemiptera Heteroptera," by Mr. A. L. Montandon, of Bucharest, Roumania. The notes are of authoritative value and Mr. Montandon has based them to a certain extent upon Museum material which I have sent over to him from time to time.

Respectfully,

> C. V. Rilex,
> Honorary Curator of the Department of Insects.

Mr. F. W. True,

Important material received trom many parts of the Ameriean continent enables mo to add two new species.
The symoptic table and the following descriptions will enable one to identify easily the seven species of the genus Cosmopernle known at present:
A. Sentellum vory obtusely rommed at the oxtremits; fromm very short, not quite one-thisd the longth the sentellam; shape of the body broally oval.
15. Apical margin of seutellum yoflowish ofhracoons; abdomen beneath with a regular, narrow edge, extending to the stigmata; body abose slightly and sparsely punctured.
O. I'ronotum with a transvorso fascia and a loggitudinal contral spot reaching from the anterior margin back to near the posterior margin; thotax obhacoos, shining, and impunctured,
C. cruciaria Stal.
C. C. Ironotum with a transerse ofhacoous fascia, but without the longithdinal spot; the disk of the pronotum punctured at the middle as at the sides betore and behind. the transverse fascia....................................... cerveater Montami. 13. 13. Apical margin of sentellum concolorons, not yellowish ochraceous, body above thiokly punctured.
1). Soutchum with a red spot on each side noar the apex; transwerse taseia and longitudinal contral spot of the pronotum narrow linear; abdomen ahove narrowly edged with red, (C. carnifex l'abr.
1). 1). Sentollum cutirely concolorons, transverse fascia of the pronotum irregular, broadened in the middle, slightly elevated; athiomon boneath broally odged with yollowish ochaceous; this margin inwardy simated opposito each stigma,
© , wheri Montand.
A. A. sombllum less ohtusely rounded at the witromity; fremm reaching ahmost one-hati of the length of the sontelmes; the body a little longer than that of the preceding group; above slighty brassy and thiokls punctured.
E. 'lranswerso gellowish ochaceous laseia of the pronotum irregular, slightly elevated; seutellum punctured to the anex; narrowly edsed with yellow at the apex; abdomen beneath broadly edged with yellow: vellow margin deoply sinate on cach segment; stigmata black ...C. conspicillaris Dallas.
E. E. Transwerse gellowish ochaceons fascia of the pronotum shining. regular; apex of scutellum more broadly edged with sellowish ochaceous.
V. Seutellum punctured near the apex on the seltowish ochraceous part: transierse fascia of the pronotum extended batekwasd to near the base of the pronotum; two dark spots in the middle of the fiseia; ablomen beneath with the lateral margins bobally pale ochaceons; a segmental series of small, dark, rombed spots corering the stigmata.
C. binotate Distant. F. F. Ipex of sentellum shining, impmetate on the yollowish ochateons part: tramserse tiscia of the pronotmon not extemded backwad, impmetate, slightly elevated: abobmen bensath with palo ochaceous hateral maryin of equal wielth including the stigmata
C. decorutu Hahn.

Cosmopepla cœruleata, sp. nov.
Several entomologists have given me this species with the name C. decorutu Hahn, which is manifestly incorrect. These two speries, however, are almost alike with regard to the disposition of colors, and on considering only Mahn's figure, W. I., Tab. Lxv, Fig 198, one may be led to confusion. Here is the description of the author, loce cit., in, p. 117:

Schwar\%, blaugrianlich, glinzend, punktirt; die Neitemrander und ein breites glattes Querhand iiber die Mitte des Riiekenschildes bleichgelh, die Spitze des schildchens gelhrotlı; die Ränder des ohern Theils der Halbdecken schmal, die des Hinterleibes breit bleichgelb; Länge 3 Lin.; Breite 1 星.

Now, in the species that I describe, the color is not blue greenish, but polished dark blue; the abdominal yellow edge is not so broad as in Hahn's species, and the respective proportions are different; O. cervereta Montand. is broader (4 to $42^{1}{ }^{1 \mathrm{~mm}}$) proportionally to the length ($5 \frac{3}{4}$ to $6 \frac{1}{2}{ }^{\mathrm{mm}}$).

Hahn gives Mexico as the native country of his species, and indeed I have received and studied many examples from that region (Durango; Etats du Centre, Dugès) which were surely (. decorıtィ Hahm. But specimens of the C. carulentu. Montand. have been received from Venezuela (collection Fallou and my own); Costa Rica (Van Patten) (collection of National Museum, Washington, and my own); Costa Rica, Alajuela (Sec. Orozeo); San José (I. Biolley), in my collection.

Notwithstanding this superficial resemblance this species deviates very much from the real (. decorata Hahn in the broader shape of the body, the broader scutellum at the extremity, with a shorter fremum, the more delicate and not so dense punctation, and by just these characteristics C. cceruleate Montand. is closely allied with C. cruciaria Stal, as described by the author (Enumeratio Hemipt. II, p. 19):
Carulescente nigra, nitida, remote punctata, marginibus lateralibus anticis, fascia media vittaque percurrentibus thoracis * * * flavescentibus, lovigatis.
C. cruciaria Stal differs only in the longitudinal ochraceous shining line on the middle of the pronotum, when is very apparent and does not exist in C. caruleata Montand., in which the disk of the pronotum is entirely punctured before and behind the transverse fascia; in the blue color of C. caruleata Montand. (not dark violaceous, as C. crucierír Stal), and by the relative length of the fifth joint of the antenna, which is shorter than the second and third conjointly in C. cervecta Montand., whilst the fifth joint is a little longer than the second and third together in C. cruciaria Stal. But whether this last character is constant or not, can only be settled by an examination of a larger number of specimens.

Stal's species is mentioned by the anthor from Bogots, New Grenada (Mus. Holm.), and I possess in my collection two specimens from Canca, Colombia; so that these two allied species live in the same countries and constitute the more southern forms of the geuus.

Castaneous, with some metallic reflection, especially on the head, and the anterior part of pronotum; above densely punctured. The lobes of the head are equal in length, the central lobe a little narowed at the apex. Pronotum with the lateral margins and one transverse fasciat ochraceots, the latter slightly elevated, with unequal callosities, simmated before and behind, inclosing four castaneous, finely punctured spots, two on earh side impressed and a fifth similar spot on the middle before the line of the four just mentioned. This fifth spot tends to disappear in the examples, in which the transverse, ochraceous fascia gives forth a central longitudinal ochraceous line extending irregularly forward, and reaching sometimes to the anterior margins of the pronotum. Scutellum broadly rounded at the apex, uniformly colored, castaneous, punctured to the extremity without any yellowish ochraceous edge. Elytra castaneous, punctured, with a somewhat shining interval to the internal angle ; the exterior margin with an ochraceous callosity. Membrane of the same color as the elytra with $\overline{5}$ to 6 nervures. Connexifom above ochraceous, with a castaneous spot at the base of each segment, arising from the exterior margin of the elytra. Body beneath with blue greenish reflection, especially on the disk of the abdomen. Breast with small pale spots punctured with black at the base of each of the legs. Ostiolar eanal ochraceous. Lateral margins of the prostethium ochaceous, with a spot of the same color on the middle of the margins." Lateral margins of the metaplema callous, ochraceons, with the posterior margins narowly edged with ochraceons. Abdomen beneath broadly edged with ochraceons, this edge inwardly cremulated by a small extension of the color to the middle of each segment, opposite to the stig. mata. The latter rather dark; the larger part of the genital segment brownish. Extremity of the femora, tibie broadly to the middle, and first joint of the tarsi, yellowish brown. Sometimes, however, the legs are entirely darkish.

Length, $5 \frac{1}{2}$ to $6^{m m}$; breadth, $\mathbf{B}_{2} \frac{1}{2}$ to $t^{m m}$. California, one example (collection Lethierry). Nevada, two examples in my collection.

It affords me special satisfaction to dedicate this species to Prof. Whler, who thought that it constituted only a variety of C. comspicillaris Dall., from which it is, bowever, very distinct from the broader and proportionally shorter body and the more broadly rounded apex of seutellum, which is not edged with ochraceous as in specimens of the true ($\%$. conspicillaris Dall. The anthor of this last species gives this character in his diagnosis (List of the specimens of hemipterous msects in the collection of the British Masemm, l'art 1, 1851, 1. 2:20): "Sontellum narowly edged with yellowish white at the apex."
C. Ihleri Montand. differs also in the brownish spots on the commexivum which is here exposed, whilst in (. comspicilleris l)all. the commexivom, hidden under the margin of elytra, is narowly edged with yellowish and without spots; also in the inward cremulation of the abdominal
edge, which is produced by a smatl extension of the darkened abdominal disk, covering the stigmata in C. conspicillaris I)all., whilst whe edge is crenulated with a small extension of the color of the edge opposite to the stigmata in C. Uhleri Montand., the edge covering the stigmata being slightly darkish in this last species.

Prof. Distant (Biol. Centr.-Amer., Tab. 5, Fig. S), gives a very good figure of Conspicillaris Dall., probably the type of the author, preserved in the British Musemm. It is one of the darkest and least shining species, almost black, slightly bluish, with metallic bronze reflections. It is larger than C. Uheri Montand., and measures in length $6-7^{\text {minn }}$. My collection contains one example from Vancouver Island, and by the fitvor of Prof. C. V. Riley I have studied two specimens from Los Angeles, Cal., which are in the collection of the National Museum at Washington.

Every entomologist knows C. carnifex Fabre, which is widely distributed throughout the United States and British America. It does not deserve special mention.
C. binotata Distant is very well described by the author (IBiol. Centr. Amer., Suppl., p. 327) and figured (Tab. 31, Fig. 7) in the same work. The color of this figure does not appear to me dark enough, but the distinguishing characters are well shown. I also have seen two specimens of this species, one from Durango, Mexico, which is in my collection, and another from Wisconsin, in the collection of Prof. Lethierry.

II.

SYNONYMICAL NOTES ON NOME NOIRIL ATELICAN SPECIES OF THE GENUS Λ LIUUS 1 MBR.

Alydus conspersus Montandon.
=Calcaratus Uhler, nee Limé.
Grayish above, sparsely hairy on the head and the anterior part of the pronotum; head black, anterior margin and a longitudinal spot on the middle of the anterior part of pronotum black, the middle of this black spot sometimes with a very small longitudinal pale line. The posterior part of the pronotum and the elytra grayish with fine punctures, with castaneous and numerous irregular black spots. Membrane pale vitreous with darkish nervures and numerous round sots irregularly scattered on the surface; the greater part of the bate of the abdomen red, base and extremity black. Comexivum black with a pale spot at the base of each segment. Body beneath lilack with metallic bronze reflections, especially on the abdomen. Antenna dark brown, with the basal two-thirds of the second, and third joints pale. Leg's black, the tibie brownish, with the base and extremity darkish. First joint of the tarsi brownish, with the extremity black. Length, io to 11^{mm}.

$$
\text { Proc. N. M. } 93-4
$$

I have received this species from Constantine, Mich.; Burlington, Iowa; Massachusetts; Colorado; and Dakota.

Of the same dimensions and color as the European species, A. cilcot. rutus Lin., with which at first sight it is very easily confounded. It differs in the more sparse hairs, which are almost wanting on the disk of the pronotum; in the small, dark, rounded spots on the posterior part of the pronotum and the elytra; and especially in the whitish diaphanous membrane, with the nervures darkish and the numerous, small, rounded spots scattered on the surface. It is closely allied to the following species:
Alydus eurimes Say=ater Dallas.
This species is larger than A. conspersus (12 to $13^{\text {mm }}$), darker in every way, being most frequently entirely black, with very small, pale, almost imperceptible spots at the base of the segments of the comexivum; the hair of the head and surface of the pronotum very dense and black. Some pale varieties have the elytra grayish, but the membrane is entirely infuscated and the back of the abdomen is darker than in A. conspersus Montand., sometimes entirely black.

It is as aboudant as the preceding species, and my collection contains numerous examples from Iowa, Connecticut, Massachusetts, and Florida.

Prof. Uhler has correctly placed it in his Check List of the HemipteraHeteroptera of North America, 1s86. Of this species Say gives the following diagnosis: "Body blackish, huiry, punctured; thorax densely punctured, mutic" (Deseription of New Hemipterous Insects collected in the Expedition to the Rorky Monntans, 1se4). It can not be confounded, as was done by Stal (Enumerat. Hemipter., Part i, 1870, p. 213), with A. pilosulus, I. S., which is not of the same form, having the lateral angles of the pronotum prominently acute, as well represented in II. Schaeffer's figme 870, which gives a clear idea of this last species. Consequently the synomymy should be corrected thus:
Alydus pilosulus II. S. =eurinus Stâl nee Say.
The small, lateral, pale edge of the porotum rembers this species easily recognizable and it is also very common. I possess specimens from St. Lonis, Mo.; Florida; and Massachusetts. From the lateral acuminated angle of the pronotum this species could be placed in the subgemus Megalotomus Fieb, but it has not the long antemie, the first joint not being longer than the second, nor the broad hollow at the base of the pronotum, as in the following species, which it ipproaches:

Alydus (S. G. Meyalotomus Fieb.) quinquespinosus Say=crucntus II. S.

This last species is widely distributed throughout North America, and my collection contains specimeus from Canada, Massachmsetts, Wisconsin, New York, and Florida.

III.

DESCRIPTION OF TWO NEW NORTI AJERICAN SPECIES OF HETEROP'TER Λ.

Dendrocoris pini Montandon.
Oval; pale yellow ochraceous; above coarsely and densely, beneath more finely punctured, concolorons. Head as long as broad (including the eyes), the vertex moderately convex. Antemne brownish red, with the third joint twice as long as the second, shorter than the first and second together; joints 3,4 , and 5 equal in lengfh. Pronotum, with a short longitudinal callus, smooth to the middle of the anterior margin, with the cicatrices of each side at the anterior part of the pronotum slightly elevated and partially smooth; the lateral margins of the pronotum straight, anterior angle very slightly notched, humeral angle obtuse, not prominent; margins of the scutellum with small, shining, and slightly elevated pale spots. Elytra with a small impunctate portion in the middle of the disk, lateral margins occasionally with pale spots like those of the margin of the scitellum. Membrane reaching the extremity of the body, concolorons, with the body and with the nervures very slightly apparent. Comexivum separated from the elytra, concolorous and densely punctured; the segmental sutures slightly elevated. Rostrum brownish red, reaching the posterior coxre. Extremity of the femora and of the tibire and tarsi more or less reddish brown.

Male and female: Length, 5 to 6^{mm}; width, $3 \frac{1}{2}$ to $3 \frac{3 \mathrm{~mm}}{4}$. Found upon Pimis monophylla in the Argis Mountains, Cal. Collection of the U. S. National Museum and my own.

The genus Dendrocoris Bergroth (Revue d'Entomologie, 1891, p. 228) has been substituted for the genus Liotropis Uhler, preoccupied.

I am of the same opinion as Prof. Bergroth, who says that this genus should not be placed in the subfamily Asopina, in which Prof. Uhler has put it, aud it evidently belougs to the subfamily Pentatomina, near the genus Lopadusa Stail.

The new species just described is easily distinguishable from the two which are recorded in this genus, D. humeralis Uhter and D. fruticicola Bergroth, by its smaller dimeusions, the lateral obtuse augle of the pronotum not prominent, and the pale color of the body with concolorous punctures.

Sinea Rileyi Montandon.

Ferruginous brownish with a grayish pubescence, very short and not so dense upon the elytra, denser beneath, especially on the breast. Posterior and middle femora in the middle and all tibies in the middle paler than the body. Head a little shorter than the pronotum, with a double row of three short spines; before the eyes, the anterior spines longer than the posterior, and behind the eyes on each side two
tubreres before and behind the oereli. Nexk not spinoms. Anterior part of the pronotum roverd with small, not very acute tubereles, more robsist at the midalle, the aterion part ome-forth shorter than the posterion which is examblose; disk much swollen, with a slight longitudinal impression at the middle; lateral angle slightly acmminated; posterior mangin mamowly pale with two small teeth alongside the sedtellam. bilyt a paler at the base, the lateral margins and the small ghadranglat diseoidal cell near the membrane; brownish on the disk amd at terminal exterior angle. Membrane pale vitreous with a bownish blats soot at the interior angle, divided and continued upon the nervores and reaching to the extremity of the membrane. Ab. domen much broader than the elyta (δ and of) , laterally mangins largely rombled in the two sexes, especially of, with a broad pate fascia at the extremity of earh segment. Jbobomen beneath fermginous, paler in the middle. Anterior femora as in all speedes of the genus Sinea, with somethes whitish amd very slender hats. Superior spine at the extremity of the femora robust and pale as the spines of the inferior part. Antenne wanting in the specimens before me.
 dominal width, $t^{\prime \prime \prime}$. Panamint Valley, California. Collection of the U. S. National Maseum and my own.
 sent it to me. At tinst sight one may identify this speries by its proportionatly ereater breath that in the other speries of the genus; by the rounded shape of the abdomen; by the palde spots on each segment of the commexisum, by the greatly swollen pronotmen posteriorly, aud by the very plain brownisin mark of the whitish membrane.

CATALOGUE OF THE FRESH-WATER FISHES OF CENTRAL

 AMERICA AND SOUTHERN MEXICO.BY
Carl H. Eigenmann, Professor of Zöllugy, Indiana University.

In this paper I have endeavored to complete the enumeration of the tropical American fresh-water fishes. The species inhabiting this region should have been enumerated with the South American species* with which they are closely related. The list was omitted because several works bearing on these fishes could not be examined before the South American catalogue went to press.
The region covered by this catalogue embraces the fresh waters north of the Isthmus of Panama to the Tropic of Cancer.

[^12] Nat. Hist., July, 1892.

PETROMYZONTIDA.

LAMPETRA Gray.
Lampetra spadicea Bean. Guanajnato, Mexico. Proc. U. S. Nat. Mus., 1887, 374, Plax, Fig. 6.

GALEORHINID.A.

EULAMIA Gill.
Eulamia nicaraguensis (iill Rio San Juan. Proc. Acal. Nat. Sci. Phila., 1877.

LEPIDOSTEIDAE.

LEPIDOSTEUS Lacepède.
Tepidosteus tropicus (iill. Mexico, Gnatemala. Proc. Acad. Nat. Sci. Phila., 1863, 172.

SILTRRID压.

AMIURUS Rafinesque.
Amiurus dugèsii Bean. Rio Turbic, Guanajuato, Mexico. Proc. U. S. Nat. Mus., 1879, 304.

ICTALURUS Rafinesque.

Ictalurus meridionalis (Guenther). Rio Usumacinto, Guatemala, Cat. Fish. Brit. Mus., v, 102, 186.

RIfAMDELLA Eigemmann and Eigemmam.

Rhamdella parryi E. \& E.-Rio Zimaleneo near Tonala, Chiapas, Mexico. Proc. Cal. Acad. Sci., $2 d$ ser. 1, 130.
Rhamdella petenensis (Guenther) Lake Ieten, Chiapas, Mexico. Cat. Fish. Brit. Mus., v, 126.
Rhamdella brachyptera (Cope). Mexico. Trans. Am. Philos. Soc., xif, 404.
Brachychalcinus retrospina Bonlenger. Santa Cruz, Matto Grosso. Loc. cit., 12. "Intermediate between Tetragonopterifs Cuv. and Lietkenia Strlr. * * * Differing from both in having a movable spine, directed forwards in front of the dorsal fin.
Pseudocorynopoma doria Perngia. Arroyo Miguelete. Ann. Mus. Genova (2), x, 1891, 646, fig. (April.) Bergia altipinnis Stoindachner. (July, 1891.)
Piabuca melanostoma Holmberg. Argentina. Bol. Ac. Cordóba, 1887.
Xiphorhamphus jenynsii Guenther. This is said to be a good species.
Xiphophorusheckeli Weyonherg. Primero River. Versl. Ak. Amst. (2) vint 291, 18-.
Haplochilus balzanii Perugia. 653.
Orestias bairdi Cope. Titicaca. J. Acad. Phila., 1876.
Orestias ortoni Cope. Titicaca. Loc, cit.
Orestias frontosus Cope. Titicaca. Loc. cit.
Iherdeoides raillami Thominot. Bolivia, Magdalena. Bull. Soc. Philon. (7), viri, 150, 1884.

I'ercichtlys rinciguerve Perugia. Loc. cit., 610.
Crenicichla punctata et polysticta Hensel=C. lacustris (Castelnau).
Geophagus balzenii Perugia, 632. Prio Paraguay, Matto Grosso.
Geophagus rhabdotus, bucephalus, labiatus, scymnophilus, it py!mous Hensel.=G. brasiliensis Quoy and Gaimard.
I wish to aclanowledge my indebtelness to Dr. von Ihering, of Rio Graude Do Sul, for suggesting many of the above corrections.

Rhamdella baronis milleri（Troschel）．Pacifie const of Mexico．Mueller，Wier－ belth，Mexico，1865， 102.
Rhamdella guatemalensis（fiuenther）．Huamuchal，（inatemala，Nicarasua，Cat． Fish．Brit．Mus．，v， 122.
Rhamdella salvini（Guenther）．Rio San Geranimo，Guatemala．Loc．（it．． 130.
Rhamdella policaulus（Guenther）．Rio San Geranimo．Loc．cit．， 131.
Rhamdella managuensis（6ucnther）．Lake Managua．（iuenther，Fishes Central America， 393 and 476， 1866.
Rhamdella hypselurus（Guenther）．Mexico．Cat．Fish．Brit．Mus．，v， $1 \because 6$.
Rhamdella motaguensis（Guenther）．Rio Motagua．Loc．cit．， 127.
Rhamdella laticauda（Heckel）．Mexico．Loc．cit．， 127.
Rhamdella nicaraguensis（Gnenther）．Lake Nicaragna．Loc．cit．， 125.
Rhamdella micfopterus（Gnenther）．Rio San Geronimo．Loc．cit．， 124.
Rhamdella godmani（Guenther）．Lower Vera Paz，Mexiro．Loc．cit．，124．

CATOSTOMID．E．

ICTIOBUS Rafinesque．

Ictiobus meridionalis（fuenther）．Rio I＇sumacinta．（Guenther，Fishes（＇entral America，486， 1866.

MOXOSTOMA Ratinesque．
Moxostoma austrina Beau．（xuanajnato．I＇roc．（＇．S．Nat．Mus．，1878，302．

CYPRINIDA．

ALGANSEA Girard．
Algansea australe Jorlan．Lake Tupataro，Guanajuato，Moxico．Proc．U．S．Nat． Mus．，1879， 300.

NOTROPIS Rafinesque．

Nctropis altus Jordan．Lake Tupataeo，Guanajuato，Mexico．Loc．cit．， 301.
Notropis sallæi Guenther．Cuernavaca，Mexico．Cat．Fish．Brit．Mus．，vr，if， 481.
Notropis nigrotæniatus Guenther．Altisco，Mexico．Loc．cit．， 485.

CHARACINID压．

TETRAGONOPTERUS Cuvier．

Tetragonopterus fasciatus Cuvier．Mexico，Cuatemala，Rio（hisoy，Vera Paz，Rio Guacalate，Rio San Juan ontlet of Lake Niearagna．
Tetragonopterus microphthalmus Guenther．Pacific coast of Guatemala．Cat． Fish．Brit．Mus．，v． 324.
Tetragonopterus panamensis Guenther．Guatemala；Panama．Loc．cit．． 324.
Tetragonopterus brevimanus Guenther．Yzabal and Rio San Geranimo．Guate－ mala．Loc．cit．， 324.
Tetragonopterus petenensis Guenther．Lake Peten．Loc．cit．， 326.
Tetragonopterus ．．neus Guenther．Rio Frijoli；Oaxaca，Mexico．Loc．cit．， 326.
Tetragonopterus humilis Guenther．Lake Amatitlan，Guatemala．Loc．cit．，327．
Tetragonopterus mexicanus Filippi，Lake Mexico，Izucar．Steinil．，Ichth．Not．， 1x，1869， 11.
Tetragonopterus scabripinnis Jenyns．Xamap：a，Mexico．Gnenther，Cat．Fish． Brit．Mns．，v， 325.
Tetragonoptems belizianus Boconrt．Belize．Bocourt in Amn．Sc．Nit．，1ی6ヶ，ix，6ュ．

Tetragonopterus cobaneusis Bocourt. Rivers of Coban. Loc. cit., 62.
Tetragonopterus finitimus Bocourt. Orizaba. Loc. cit., 62.
Tetragonopterus fulgens Bocourt. Province of Cuemavaca. Loc. cit., 62.
Tetragonopterus nitidus Bocourt. De Tasco. Loe. cit., 62.
Tetragonopterus oaxacanensis Bocourt. Oaxaca. Loc, cit., 62.
Tetragonopterus argentatus Baird and (iirard. Arkansas to Mexico.
bRyCON Miillor and Trosehel.
Chalenopsis Kuer.
Brycon denex (inenther. Lake Nicaragna, Rio Motagnai, Rio Usmmacinto, Vzabal. Cat. Fish. Brit. Mus., v, 337.

ROLSTES Ginenther.
Rostes guatemalensis (Gnenther). Huamuchal, Lake Niearagua. ('at. Fish. Brit. Mus., v, 347.

BRAMOCHABAX Gill.

Bramocharax bransfordi (illl. Lake Nicaragua. Proc. Acad. sei. Philad., 1877, 187.

DOROSOMID居.

. DOROSOMA Ratinesque.
Dorosoma petenensis Guenther. Lake Peten. ('at. Fish. Brit. Mus., vir, 408.

CYPRINODONTID.

CIIARACODON Guenther.

Characodon ferrugineus Bean. (inanajuato, Mexico. Proc. U. S. Nat. Mus., 1887, 372.

Characodon variatus Bean. Guanajuato, Mexico. Loc. cit., 370.
Characodon lateralis Gnenther. Central America. Cat. Fish. Brit. Mns., vi, 308.
Characodon bilineatus Bean. Guanajuato. Proc. U. S. Nat. Mus., 1887, 370.
Characodon furcidens Jordan and (iilbert. Streams tributary to the Gulf of California and southward. Proc. U. S. Nat. Mus., 1882, 354.
Characodon atripimis Jordan. Guanaguato. Proc. U. S. Nat. Mus., 1879, 3 3:4.
GLRARDINICHTIIYS Bleeker.
Girardinichthys innominatus Bleeker. Noar City of Mexico. Giinther, Cat. Fish. Brit. Mus., Vi, 309.

ZXGONECTES Agassiz.

Zygonectes dovii (Gmenther. Pmota Arena. Costa Rica. (at. Fish. Brit. Mus., $\therefore i, 316$.

FUNDULUS Lacépède.

Fundulus labialis finenther. Riosan Geronimo, Yzabel, Guatemala. Loc. eit., 319.
Fundulus punctatus Gnenther. Chiapan. Loc. cit., $3 \geq 0$.
Fundulus guatemalensis (iunther. Lakes lneñas and Amatitlan, Rio Guacalate, (Western Eenador). Loc, cit., 321.
Fundulus pachycephalus (inenther. Lake Alitlan, (inatemalal. Loe. cit., 322.
Pundulus dugèsi Bean. (inanajuato, Mexioo. I'roc. U'. S. Nat. Mus., 1847, 373, 11. xx, Fig.

PSEUDOXIPHOPHORUS Bleeker.
Pseudoxiphophorus bimaculatus Heckel. Cordova, Mexico, Guenther, Cat. Fish. Brit. Mus., vi, 332. Pociliodus bimaculatus Steindachner.
Pseudoxiphophorus reticulatus Troschel. Mexico. Guenther, Cat. Fish. Brit. Mus., vi, 333.

BELONEsOX Kuer.

Belonesox belizanus Kner. Lake Peten, Honduras, Guatemala, Mexico. Guenther, Cat. Fish. Brit. Mus., vi, 333.

GAMBUSIA Poey.

Gambusia episcopi Steindachuer. Obispo. Ichthyol. Beitr., vi, 11, 1878.
Gambusia nicaraguensis Guenther. Lake Nicaragua. Guenther, C'at. Fish. Brit. Mus., vi, 336.
Gambusia gracilis Heckel. Orizaba, Mexico. Guenther. Cat. Fish̉. Brit. Mus., vi, 336.

ANABLEPS Linneus.
Anableps dowei Gill. Chiapam, Guatemala. Guenther, Cat. Fish. Brit. Mus., vi, 338.

PECCILIA Bloch and Schneider.
Pœciliamexicana Steindachner. Chiapam, Rio Chisoy, Vera Paz, Lake Amatitlan. Guenther, Cat. Fish. Brit. Mus., v, 341.
Pœcilia thermalis Steindachner. San Salvador, warm springe. Giinther, loc. cit., 341. P. modesta Troschel.

Pœcilia chisoyensis (inenther. River Chisoy, Vera Paz. Cat. Fish. Brit. Mus., v, 342.

Pœcilia petenensis Guenther. Lake Peten. Loc cit., 342.
Pœcilia sphenops Cuvier \& Valenciennes. Mexico, Vera Cruz. Guenther, Cat. Fish., Brit. Mus., vi, 343.
Pœcilia dovii Gnenther. Lake Nicaragua, Mexico. Loc. cit., 344. ? (r. plumbea Troschel.
Pœcilia spilurus Guenther. Central America. Loc. cit., 345.
? Pœcilia couchii Girard. Rio San Juan, Province New Leon. Loc. cit., 346.
Pœcilia fasciata (Miller \& Troschel). Mexico. Guenther. Loc. cit., 339.
Pœcilia butleri Jordan. Mazatlan. I'roc. U. S. Nat. Mus., 1883, 330.
MOLLIENESIA Lescur.
Mollienesia petenensis Guenther. Lake Peten. Guenther, Cat. Fish. Brit. Mus., vi, 348.
Mollienesia formosa Girard. Palo Alto, Mexico. Guenther. Loc. cit., vi, 349.
Mollienesia jonesi Guenther. Hummantla, Mexico. Ann. and Mar. Nat. Hist., xiv, 370, 1874.

XIPHOPHORUS Heckel.

Xiphophorus kelleri Heckel. River Chisoy, Cordova, Mexico. Guenther, Cat. Fish. Brit. Mus., vi, 345.

PLATYPCECILIUS Guenther.

Platypœcilius maculatus Guenther. Mexico. Loc. cit., 350.

GLliAlidinus poey．

MUGILID．E．

Agonostomats bemoti．

 clongatus Kiner © Steindachnor．
Agonostomms monticola（Bancroft）．Mexico（West Indies）．Lare ceit．，I6．1．
Agonostomns globiceps finenther．Vera（ruz．（inenther，Amm，and Mag．Nat． llist．（1），Xiv， 370.
Agonostomus microps（inenther．Lio（inamalata．（＇at．Fish．Brit．Mus．，11，162．

ATHERINIDA

CHllo
 Brit．Mus．，It，40t．A．vomerina，C．© V．
 299.

Chirostoma estor Jordan．Lake Chapata，Moxico．Loc，eit．，1870， 298.

CICHLID 㞋。

As＇TRONOTUS Swainsom．
＇Theraps．
Astronotusirregularis（Gmonther．（inatomala．（＇all．Fish．Mrit．Mus．，iv， 28.4.
Asthonotes．
Astronotus rectangularis אtwindachmer．Moxieo．Sleind．，（liromilen Mejuros．
Astronotus bifasciatus Sloindachor．Moxico．Loo．cit．，I．
Aatronotuslentiginosus Steinlachmer．Mexico．Lac．eit．， 6.
Astronotus maculipimis Stoindachnor．Ximmpa livor．loo．cit．， 13.
Astronotus gibbicops Steinhachor．＇Toapar River，Moxico．Toc．dit．，12．
Astronotus rostratus（iill di Bransforl．Lake Niearagna，lrow，Mead．Nat．Sei．， lhilad．， $1877,181$.
Astronotus balteatus（iill N limasford．Lake Nicaragua，Loo，eil．， 18.

Astronotus basilaris Gill © Bransford．Rio San Juan．Loc．cit．， 182.

Astronotus pavonacous（iarman．Monclavia，（＇oalmila，Bull．Mıs．（＇omp．Zoül．， 1881，9：3．
Abtronotus cooruleopunctatus knw d Nteimbachmer．Rio（＂hagres（Western Slope Audes）．Bair．Ak．Wiss．，1N（b．t．16．1＇lo，Fíg． 3.
Astronotus pama（imenther．X：mapa liver，Mexico．（＇at．Fish．Mrit．Mun．，iv， 285.

Astronotus margaritifer（Guenther，Lako Polen，Manomi．Loe，cit．， 287.
Astronotus melanopogon Stumlathmer．（＇untral dm．Steiml．，Chromialen Mejicos， 16.

Astronotus melamurus（imenther．Lakn l＇ofon，（＇at．V゙ish．Mrit．Mus．，iv，ask

Astronotus macracanthus Guenther. Chiapan \& Huamuchal. (i, Fish Contral America, 451.
Astronotus spilurus Guonther. Rio Motagra, Guatemala. Cat. Fish. Brit. Mus., iv, 289.
Astronotus cyanoguttatus Baicl \& (irard, Texas, Mexico. Guenther. Loe, cit. 290.
Astronotus nigrofasciatus Guenther. Atitlan and Amatitlan. Fishes Central America, 45ッ.
Astronotus multispinosus Guenther. Lako Managua. Loc, cit., 453.
Astronotus longimanus Genther. Lake Niearagnad. Loe. eit., 154.
Astronotus helleri Stemblaner. Teapa River, Tabasco, Mexiro. Steind., Chromi den Mejicos, 8.
Astronotus urophthalmus Guenther. Lake P'eten. Cat. Fish. Brit. Mus., iv, 291.
Astronotus troscheli Stempheher. Mexico. Iehthyol., 1v, 12.
Astronotus aureus Guencher. Mexico, Guatemalia, Rio sau Juan, Rio Motagna, Yzahal. Cat. Fish. Brit. Mus., iv, 292.
Astronotus affinis Guenther. Lake Peten. Loc. cit., 292.
Astronotus labiatus Guenther. Managna. Fish. Central Amorica, 455.
Astronotus erythræus (inenther. Managua. Loc. cit., 457.
Astronotus lobochilus Guenther. Managna. Loc. cit., 457.
Astronotus citrinellus Ginenther. Nicaragua. Loc. cit., 459.
Astronotus altifrons Kuer \& Steindichmer. Westem Veragua. Guenther, fishos of Contral America, 459.
Astronotus friedrichthalii Heekel. Lake Peten, Rio Nim Juan. Guenther, Cat. Fish. Mrit. Mus. iv., 294.
^stronotus salvini Guenther, Lake Peten, Yzabal. Loc. cit., 291. Heros trigramma, Steindachner.
Astronotus trimaculatus (xuenther. Chiapam, Huamuchal. Fishes of Central America, 461.
Astronotus dovii Gnenther. Lake Nicaragua. Loc. cit., 461.
Astronotus motaguensis Guenther. Motagna. Loc. cit., 462.
Astronotus managuensis Guenther. Managua. Loc. cit., 463.
Astronotus microphthalmus (Guenther. Rio Motagua. (Gat. Fish. Brit. Mus., iv., 295.

Astronotus oblongus (Guenther). Rio Motagna; Fishes of Central America, 461.
Astronotus nicaraguensis Guenther. Nicaragua. Loc. cit., 46à.
Astronotus deppii Ileckel. Mexico; G. Cat. Fish. Brit. Mus., iv., 296.
Astronotus montezuma leckel. Mexico; G. Loc. cit., 296.
Astronotus godmanni Guenther. Cahatom River, (xuatemaha. G. Loc. cit., 297.
Astronotus nebulifer Guenther. Mexico. Loc. cit., 297.
Astronotus sieboldi Kner \& Steindachner. Now Granada; G. Fish. Central America, 466.
Astronotus irregularis Guenther. Rivers Chisoy, San Geranimo, and Santa Is:tbel, Loc. cit., 467.
Astronotus intermedius (Guenther. Lake Peten; G. Cat. Fish. Brit. Mus., iv., 298.
Astronatus angulifer Guonther. Santa Isabel River. Loc. cit., 298.

petyenia.

Astronotus splendida Guenther. Lake Peten. Loc. eit., 301. Heros insidiator Heckel.

NEETROPLUS Guenther.
Neetroplus nicaraguensis Gill \& Bransford. Lake Niearagua. Proc. Acad. Nat Sci. Philad., 1877. 186.
Neetroplus nematopus Cinenther. Managua; Fish. Central America, 170.

GOBIID雨.

GOBIOMOROS Lacepide.
Gobiomorus lateralis (iill. Lia I'residia, Mazallan, P'mama. (imenther, ('at. Fish. Brit. Mus., 14, 12:
Gobiomorus domitator Lamperde. Mexico, Lakr Niearama. Gumther, loce wit., 119. (i. Iongiceps Guenther.

DORMITATOR Gill.
Dormitator maculatus (Bloch.) Anamahal, Corlova. Gnenther, loe cit., 557.
ELEOTRLS Bloch and schmeider.
Eleotris pisonis (Gmelin). lio Bayano. Gnenther, loc. cit., 122.
Eleotris aquidens (Jordan (i) (iibert). Mazatlan, Colimat Proc. U. S. Nat. Mun., 1881, 461.

> sICYOPTERUS Gill.

Sicyopterus gymmogaster (irant. Mazatlinn. l'roc. Zoïl. Soc. Lond., 1884, 158.

CHONOPHORUS Poos.

Chonophorus taiasica (Liehtenstein). Both Coasts of Mexico, entering rivers. Guenther, Cat. Fish. Brit. Mus., HI, 59, as Gobius bumat.
Chonophorus mexicanus (Guenther). Enstern slope of Mexico. Loc. cit., 61.
GOBIOIDES Lacópede.
Gobioides broussoneti (Lacopnde). Mexieo, Steindachmer, Zur Fischfama des Canca, ote., 43, 1879.

The following marine species have also been found in fresh water:*
Tachisurus jordani Vignemman id Ligemmam. Rio Presidio, Mazatlan.
Tachisurus guatemalensis (Guenther). Rio P'residio.
Tachisurus cœrulescens (Guenther). Rio P'residio.
Centropomus robalito Jordan \& Gilhert. Rio Presidio.
Bairdiella icistia (Jorlan © (iilbert). Rio l'residio.
Gerres peruvianus Cur. © Val. Rio Presidio.
Gerres lineatus (Humboldt). Rio i'residio.
Bloomintiton, Indo, September 19, 1892.

$$
\text { *See I'roc. U. S. Nat. Mus., 1888, } 329 .
$$

Nome-Dr. Theo. dill has kimdy called my attention to the following paper and list of new species: Ilolmberer, 1 . Sobre alsmos Peces mievos o poco conocidos do la hepublica Argentima in liev. Arg. Hist. Nat., 1, 1800-193, 1891.

 иісия, $\mathbf{p}, 198$.

ON THE MAKING OF GELATIN CASTS.

13 Y
J. W. Scollick, Preparator.

In undertaking the preparation of a series of the various breeds of domestic fowls for the U. S. National Musemm, it was neesssary at the outset to solve the problem of replacing the natural combs by atificial ones since the natural combs when dried are so much distorted from shrinkage as to seriously detrate from the appearance of the monnted specimens.

Since no modeling, however skillinl, cat wive the rxat apparane and pattern of the papillar with which the comb of a fowl is covered, it semed desirable that the artificial combs should be ("ast in a mold made from the natural one. Fior the cast itself some durable material was needed that could be readily worked and easily colored, and was capable of resisting changes of temperature.

While wax possesses the iinst two qualifications, amd is, from its translacent character, very effective for combs and wattles, yet cold renders it brittle and the heat of a Washington summer canses it to soften and lose shape. It is, therefore, unsuitable for the purpose.
lreparations with glue (or gelatin) for their basis having been used suceessfully for anatomical models, cast of fishes, ete., it seemed prob)able that this substance could be employed with advantage for artificial combs. After considerable experinenting the following combination was found to give good results:

Best Irish glue.	Omues.
Gelatin*	2
Glycerin...	. 4
Boiled linseed oil	. 1

The glue and gelatin should he softemed in 60 per eent aleohol, only enough being used to barely cover thein. The objed ol this is to introduce as little water as possible into the compound. \dagger

The glue should then be melted and the glycerin stimed into it, fogether with a few drops of carbolic acid or oil of cloves.

Casts made of the above material have latin exposed to the sull for

[^13]all entire summer and been kepl in a wam, dry room tor the rest of the year without shrinkage or othor change of torm.

Owing to the small proportion of water, this componme is so dense amd dries so rapidl! that it is with dillionlty pomed into a mold, and in making casts of combes it best to watm the mold, fill each hatlo with the melted mixture, amd press the hatses firmly together.
'The comb of a fowl is, af comber, cut oft betore being moleded. 'The attiticial comb is attached hy applyine a coat of the gelatin compormat to the remimm, wamming the hase of the romb with a hot modelines fool, and immediately pressing the comb in place.

Mold matis amd other imperfertions are to be removed by dimming With shatp sefssors athl ranting over the places with a wam iron modeling tool, but some litto prate iee is needed in order to do this woll.

By slight moditeations in the proportions of elte and water and by Vallimg the method of manipulation, casts maty be mate of ateat
 for gelatin mokds.

It must be botme in mind that the addition of more water, while insreasiog the llaidity of the melted mass, also incereases the amomet of shtinkage of the cast, sime sobome ber later, the water most dey out; still, in mose instamere, a small amom, of shomkeng is of litile consequence.

Another method of making a east is to till the mold with small pieces of the eompound which have been melted athd dried, plate the mold in a stean oven with a ressel contabing a litte water, abd subjert it fo a contanoms heat. The moisture podtered by the evapomating water finthes the melting of the eltes, and eath be driven off by exposime to dey heat. The objeetion to this medhod is the rapid deteriosation of a plaster mold mader lonserontimed heatims, but where only one cast of to tew to be mato this is of no consequence.

While this is the best method of heating an mold and keeponge it.
 $\ddot{-2}$ or 3 inches of sathd.

In making latee easts, or even those of moderate size, a womber borek of core maty be nsed not only as atmator ofomomy, but to permit the more rapid drying ot the mass, to lessen the chathere of shomkate, atel to wive atim base for the attarhment of suppots. 'Thin dessts, like the wattles of atowl, may be strengthened with wise cloth or with bolting cloth.

I Erombl coler may he given forelatin dasts hy the use of dry or

 Master casts, ame it maty be satid that all oatmeal pot of the ertazed

CATALOGUE OF THE CRABS OF THE FAMILY MAIIDAE IN THE

 U．S．NATIONAL MUSEUM．13
Mary J．Rathiun， Dipartment of Marine Invertcorates． （With Platen，111－vini．）

In the following catalogne the same gemeral plan has been followed as in the author＇s＂Catalogue of lericeridar＂published in the Proced ings of the Musemm for $1 \mathrm{~s}^{2} \mathrm{~g}$ ，No．901．Of the 34 known genera，but 19 are represcoted in the collection and by a9 speeies only．This includes one new gemus and 5 new species described below．Of the ： $3:$ species， 6 are European； 17 are North American，of which 7 are fomm only on the east coast，and 8 on the west coast，while d extend by the way of the Aretie：Ocean from the Athatie to the Parife； 1 speces is from the east coast of South America，\sim are confine to Japan， while 13 are fomd in varions localities thoughout the Indo－Pacife． At the close of the catalogue a list of 100 speries and varieties not in the collection is wiven in the hope that they may be obtained in the future throngh gilts and exchange．
－In an appendix are added deseriptions by Dr．William Stimpson of Maide collected by the North Paditic Lixploring Expedition．Illas trations of \ddot{a} species not hitherto figured are published，the orimimal drawings having been endareed by Mr．A．H．Baldwin，who furnished also the other drawings for this catalogne．

MAII）た。

Maioid brachyuraus with eyes retractile in distinctly defined orbits which are often more or less incomplete below or marked with open fissures in their upper and lower maroins．Dasal antemal joint always more or less enlarged．

> KにY TO SUBRAMHMEK.
Λ^{\prime} Carapace usially suhtriangular．Rostrum well developed．Anterior legs in male usually cularged；lingers not excavato at tips \qquad
$\Lambda^{\prime \prime}$ Carapace broadly trimurnlar or oval or nearly circular．Rostrum very short or obsolete．Anterior logs in male small，slemer；fingers usablly excavate at tips
schizoph！？！sine

Abstract

$\mathbf{A}^{\prime \prime \prime}$ Carapace subohlong. \mathcal{E}. bobad, lamellate. Fingors acuto at tips. Basal antemal joint very much enbarged. Eye peduncles long, geniculated, and laterally projecting... Micippine

- KEV TO GENERA.

Maiinte.

A' Lostrum verically compressed and bitid or motehed at tho extremity. Orbits shallow and very open above; eyes when retracted visible from above; oye peduncles short and thick.
13^{\prime} Ambulatory logs oxtremely long and slender.
\mathbf{C}^{\prime} (Orbits with two fissures above ind below) Efferiat
$\mathrm{C}^{\prime \prime}$ (Orbits with one fissure above and below).............................. Chorilibinia
[3". Ambulatory legs of moderate length.
(') Ambulatory legs with the merns joints dilated in winglike exprasions. . Hemus
C" Ambulatory legs compressed and flattened.................................. Chionecetes
C." Ambulatory legs subeylindrical.
1)'Second joint of antemma dilated

Hyas
$\mathbf{D}^{\prime \prime}$ Second joint of antenna slender, subcylindrical.
E^{\prime} Rostrum with lateral margins involuted . Caloccrus
$E^{\prime \prime}$ hostrum with lateral margins not involuted............................ Merbstia
A' Rostrum composed of two more or less distinct divergent spines. Orbits dep; eyes when retracted, concealed; oyes small; oye peduncles slender.
$\mathbf{1 B}^{\prime}$ Orbits large, directed forward, usually very incomplete below; upper margin usually prominent, with two deep fissures and long spines.
\mathbf{C}^{\prime} Flagellum of antema arising within the orbital cavity Maía
("/ Flagellam of antenna arising within the orbital margin, and separated from the eavity of the orbit by androw process of the basal joint.
D^{\prime} Carapace pyriform.
E' (Rostral spines short)-. .-. Ihycodes*
E/" (Rostral spines long) .. Oplopisa
D $^{\prime \prime}$ C'axapace subtriangular.
E' Merus joint of outer maxillipeds notehed for the insertion of the next joint.
F^{\prime} Ambulatory logs spinose
Chlorinoides

$\mathbf{E}^{\prime \prime}$ (Merusjoint of outer maxillipeds with anterior marginentire). Iconthophrys
I3" Orhits smal], directed outward. Orbital margin not prominent, with one or two hiatuses above and one below.
(${ }^{\prime}$ First ambulatory logs very long.
()' Spines of rostrum with an aceessory spinule near the extremity

Naxia
(${ }^{\prime \prime}$ Spines of rostrum withont an accessory spinule.
E^{\prime} Basal antemal joint narow, with or without a spine at tho anteroexternal angle

IIyastenus
$\mathrm{E}^{\prime \prime}$ (Basal antennal joint dilated and unarmed externally, unidentate posterionly and in the middle) Le.pidonaxia
(") First ambulatory legs of moderate length.
D' I'reocular spino present.
E^{\prime} Rostral spines parallel or in contact to near their extremities l'isa
$\mathrm{E}^{\prime \prime}$ Rostral spines divergent.
$\mathrm{F}^{\prime \prime}$ Cheliperls much smaller than tho ambulatory legs
Lepteces
$\mathrm{I}^{\text {/" }}$ Chelipeds as large as the ambulatory legs
(i' Ambulatory legs armed with spines
Nibilia
(i" Ambulatory leas marmed.
${ }^{4}$ There is some doubt as to the proper position of this genus.
II' Second and third joints of antemse dilated
$11^{\prime \prime}$ Second and third joints of antemm not dilated.
K^{\prime} (Palms elongated) Vololopas
Rochinit
$\mathrm{D}^{\prime \prime}$ Preocular spine absent.
E^{\prime} Basal antemal joint elongated, its distal portion visible from above.peliat
$\mathbf{E}^{\prime \prime}$ Basal antemal joint with its distal portion not visible from above.
F^{\prime} (Spines of rostrom sulparallel) P'in, ides.
$\mathrm{F}^{\text {// }}$ Spines of rostrum laminato at base, slightly divergent Eurynome
$\mathbf{F}^{\prime \prime \prime}$ (Spines of rostrum deflexed): Micippoides
Schizophrysine.*
Λ^{\prime} (Fingers acute at tipsi) Trimnonotus
$\Lambda^{\prime \prime}$ Fingers excavate at tips.
1^{\prime} Spines of rostrum with one or more accessory spines Schizophry.s
$B^{\prime \prime}$ (Spines of rostrum simple) Cyciax
Micippine.
Λ^{\prime} Orbits very incomplete, defined above, open below.
13^{\prime} Orbits tubular.
$C^{\prime \prime}$ (Precocular spines small) (riocarimis

$13^{\prime \prime}$ Orbits not tubular I'seudomicipipra
$\mathrm{A}^{\prime \prime}$ Orbits narrowly oval, well defined Iaramicippa
KEY'G SPECIES EXAMDNED.
Нетия.
Ambulatory lege with the merns joints dilated in winglike expansions ...er $\begin{aligned} & \text { ertulipes }\end{aligned}$
Hyas.
\mathbf{A}^{\prime} Carapace subtrangular; hepatic region not dilated laterally. Basal antemaljoint subtriangular.$\Lambda^{\prime \prime}$ Carapace lyrate; hepatic region dilated laterally. Basal antemal joint withsides nearly parallel.
13' Posterior angle of hepatic projection rounded. Basal antemul joint without alarge tubercle at the antero-external anglecoarctatus
$13^{\prime \prime}$ Posterior angle of hepatic projection subacnte. Basal antemull joint with atlarge tubercle at the antero-exterual angle.lyratus
Chionocctes.
A^{\prime} Carapace tuberculose; branchial regions flattened opilio
$\mathrm{A}^{\prime \prime}$ Carapacespinose; branchial regions dilated tanneri

Herbstia.

A^{\prime} Inferior orbital margin not toothed. Legs not spinose.......................ondyliate. $\mathrm{A}^{\prime \prime}$ Inferior orbital margin toothed. Legs spinoso......... (Iferbstiella) camptacantha
*The genus Pleurophricus, A. Milne Edwards, which Miers places in this division of the Maider, is classed by Ortmann among the Corystoidea,

Proc. N, M, 93-5

Coloceros.

Campace wifh six modian spines. !/randia

Main.

Abstract

A'Carapacos npinose above. Chelipeds in malo onlaryed squincalo $\mathbf{A}^{\prime \prime}$ Carapace thberenlose above. (hbotipads ntonder. vervitoosa

I'aramilhras.
A^{\prime} Chmlipeds in male chlarged; hamd compressed; eabpas with two longitudmal ridgos, the outer usmally obliquo Subgrenus I'aramithrax

13" Carpus wiht ridges spimulose.... .. eduardsii
13"1 Cirpue with imor ritgo ont into lohes . latroillei
13""1 Carpms, including ridgos, Ex:mmlose . stermocostulatus
$\Lambda^{\prime \prime}$ ('helipeds in male olongated; hand amb carpus subeylindrical; earpus not ridgod Subgontes Liplomilhorx
13' Caxapaco, morиs, and carpus spimuloso renstralis
$13^{\prime \prime}$ Carapater, merits, and carpus covored with llattenod tuboreles lom!jimantis

Chlorimoides.

A' Rostral home bitmeate $^{\prime}$
-spatulifer
$\Lambda^{\prime \prime}$ liostral horns not bitimeate.
lon!ispimus

Pise.

 abils.
 mecting along their inner edges.
tribulas

Lepteces.

Cholipods much smallor than tho mabulatory loge
armelus

My/antemus.

 $\lambda^{\prime \prime \prime}$ Carapace thberenlose or spinulose. Vrsochlar angle wilh a sharp spine.

13'Subhopatio rogion with is pominont snino.............................. Myastenus, sp,.
$13^{\prime \prime}$ Subhopatio rogion without a prominont spaino.
lonyipes

Na.rie.

('ampate cowod with strong spines. hostral horms paralled for hatf their lometh
robilludi

Vrymor.

Campaco with in tubere at the postoro-latoma angle
aculifrons

I:ur!nome.

Irlia.

Nibilia.

Schizupherys.

Caxapace covered with gramules and small spines
asperat

Iseudomicipur.

Carapace with prominont tubereles. Stornmm whthont gramalated crests ...corions

Micippa.

Λ^{\prime} Rostrim terminating in four spines
mascraremica
$\Lambda^{\prime \prime}$ Rostrmm teminating in two lobes.
13' Lohes romed externally, with the antero-intemal angles acuto........spinosa
13" Lobes narrow or spinous .
Hemus cristulipes A. Milno Lidwards.
Miss. Sci. an Moxiquo, pt. 5, 1, p. 88, pl. xvi, fig. 1, 1875. Miers, Jour. Limn. Soc. Loudon, xiv, p. (bïl, 1879. Aurivillius, K. Sv*. Vet.-Akad. Hand., Bd. 23, 1, p. 15, pl. 3, fig. 6, 1889.
 fathoms, whito rock, coral; station ":3G3, U. S. Jish Commission steamer Albatross, 1885; one female (15167).

Length, 7 ; greatest width, 5.7 mm .
Previously recorded fiom the Gulf of Mexico and Central Americia.

Hyas araneus (Limnó).

Cuncer aranous Limbr, (Syst. Nat., ed. 12, p. 1044, 1766).
Hyas aramens Loach (Mal. Podoph. Brit., pl. גxi A, 1815) ; 'Trans. Limn. Soc. London, XI, 1, 328, 1815, and symonymy. Stimpson, Ami. Lye. Nat. Hist. N. Y., Vif, 1. 179, 1860. Packard, Mom. Boston Soc. Nat. Hist., I, p. 302, 1867 (aretuea). Smith, Trans. Conn. Acad., v, p. 4is, 1879. Carrington and Lovett, Zoölogist (3), v, p. 114, 1881. Miers, Challenger Rept., Zoöh., xvir, 1. 47, 1886 (aranea), and synonymy. Scott, (ith Aun. Ropt. Fishery Board for Scothand, pt. HI, p. 205, 1888. Aurivillius, K. Sv. Vet.-Akad. Hand., Bd. 28, 1, 1. 45, pl. 1, figs. 1-5, 1889. G. Y. aud A. F. Dixon, Proc. Roy. Irish Acid. (3), II, 1. 30, 1891 (habits).

Bjomen＇s Bay，Spitabergen， 7 to 10 fathoms；Dr．Eeckstein，IT．S．Nays，IV．S．S．．Allance， Augnst 10， 1881 （4514）．
Kivlerbucht，Germany ；K．Möhius（3304）．
Hebrides；A．M．Norman（6317）．
Greenland；Dr．Pary，Howgato Expedition（3571）．
Disco，Godhavn Harbor，Greonlant；Ensign II．G．Dresel，U．S．Navy，July，1883 （14990）．
Labrader；W．Henry（16280）；L．M．＇Turner，November，1882（5844）．
L＇Anse an Loup and Fortean Bay，Lahmator， 50 to 25 fathoms，sand，kelp，and dirt； W．A．Stearns， 1882 （5212，10031）．
St．Johns，New foumdland；IT．S．Fish（＇ommission， 1885 （10138）．
Gulf of Mane；U．S Fish Commission（3826）．
（iloucester，outer hatbor，Mass，\＆to 10 fathoms；U．S．Fish Commission（exsti）．
Ofl C＇ape Cod，Mass．， 15 to 106 fathoms；U．S．Fish Commission．
Eastern coast of New England；N．M．Johnson and Bro．（33i！？）．
Northeast coast of North America；U．S．Fish Commission steamer ．llbatross，1N8： and 1886：

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Sta－ tion．	Lat．N．	Long．WV．	Betiom．			Dato．	Remarks．
				Fiath．	Temp．	Materials．		
		－＂	－＇ 1		\bigcirc			
1021，	$\because 131$	430000	5．） 4730	129	33.5	yl．S．bk．Sp．．．．．	June 23	
10120	2437	433630	500050	37	35.8	crs．brk，Sh．lrk，st．		
$10 \geq 21$	2438	$43: 3600$	500380	37	36.8	gn．S．bk，Sp．brk．Sh．	31	
10222	$2 \cdot 439$	433700	4956 19 15	36	37.8	wh．s．bk．Sp．．．．．．．	91	
1022	244	455900	4945	39	34.4	wh．s．brk．sh．．．．．．	0.5	
1029	2445	460930	49 48：30	39	33.5	brk．Sh．	$\because 5$	Abundant．
102．26	－ 446	$4 t_{1} 3000$	495200	10	35． 3	brk．Sh．	\％	Sbuudant．
1103	$\underline{-42}$	470400	504800	89	29．7	the gn．s．	－6	
112゙30	2461	454700	$5413: 30$	59	30	fre．S．bk．Sp．．．．	July ：	
11031	216：3	45 ＋4 00	542700	45	30	brk．Sh．．．．．．．．．．	－3	Abundant．
10以	$\because 464$	454000	544100	4	32	wh．bk．S．brk．Sh．	3	Abundant．
1103	2465	453500	550100	67	30	Lk．gy．S．	3 3 3	
10234 10235	3468 3167	－ 452900	5．5 2100	${ }^{67}$		Lo．．．．．．．．．．．．．．．．	3 3	Abundant．
10236	2667							3 fromstomach of cod．
10337	346	451130	55.5130	12	33	tne bkis	3	
1023＊	242	442730	571045	137	40	ers．	4	
1039	2174	44.830	571045	133	40	hred．	4	
1020	2890	458730	58.3745	50		G． 1	6	
10241	3192	452200	584345	75	33.3	wh．S．	6	Almbiant：
10245	2496	450730	592745	4	$3 \pm .2$	crs．yl．S l＇	7	Stomach of cod．
10247	2iv3	44230	610015	17	35			Stomath of cod．
11867 11865	2608 2699	450700 4504		90		雒，S．bk．Sp．P．		Abundant．
11570	2701	＋45600	55 29：30	75		Iy．S．	2－	

Gloncester donations，U．S．Fish Commission．

Grand Bank（3781）．
St．Peters Bank（14456）．

Bancuerean， 50 fathoms．

South of Banquerean，＂000 to 350 fathoms；one female with egrgs（3790）．
Off Little Hope Light，Nova Scotia，沙 to 60 fithoms（ 3783 ）．
The largest speeimen is that presented by N．M．Johnson \＆Bro．，the exart lowality manown．Length of carapace，！ 4 ：width， $7=$ millimeters．
besides the range indicated above，this species has been recorded from Framee，Norway，Iceland，and the sea of Okhotsk，by various allhors（Smith，loc．cit．）．

Hyas coarctatus Leach.
Hyas coarctatus Leall, (Mala. Pooloph. Brit., pl. Xxi 1, figs. 1 and 2, 1815); Trans. Linn. Soc. London, XI, p. 329, 1815. Leidy, Jour. Phila. Acal. (2), 11I, p. 17, 1855. Stimpson, Boston Jour. Nat. Hist., vi, p. 450, 1857. Packard loc. cit. (couretata). Smith, Rept. U. S. Fish Comme. for 1871 and 1872 (1871), p. 518; Trans. ('omm. Acal., v, p. 13, 1879; Rept. U. S. Fish ('omme. for 1882 (1884), p. 317 ; for 188: (1887), p. 626 . Lockington, Proc. Cal. Acad. Sei., yif, p. 65, 1876. Carrington and Lovett, Zö̈logist (3), v, p.415, 1881. Miers, Challenger Rept., Zoiil., xvir, p. 48, 1886, (coarctata), and synonymy. Scott, op. cit., p. 256. Aurivillius, op. cit., p. 46, pl. 1, fig. 6.
Myas latifroms Stimpson, Proc. Plila. Acad. Nat. Sci., Ix, p. 217, 1857. Lockington, op. cit., p.6t. Smith, Trans. Conn. Aead., v', p. 45, 1879. Murdoch, Rept. of̂ Exped. to Point Barrow, Alaska, p. 137, 1885. Aurivillins, op. cit., p. 46, (Greenland).
Stimpson's species latifroms is based chieHy on the shorter, broader, less acute rostrum, the closed orbital fissures, and the broader anterior portion of the carapace as compared with coarctatus. A large number of specimens from many different localities along the Jthantic and Pacific coasts have been examined and the following observations made: In the specimens 2 inches or more in length from the Atlantic, ranging from Nova Scotia to Greenland and from shallow water to 81 fathoms, the rostral horns are short and blunt and the orbital fissures are closed, or in a few specimens very narrowly open, varying in different individuals from the same locality. The width of the anterior portion of the carapace is from 0.76 to 0.87 of the branchial width. From Bering Sea and the Arctic coast of Alaska vast numbers of large specimens have been obtained by various collectors, including an interesting series from off Bristol Bay collected by the Fish Commission steamer Albatross during the summer of 1890 . They are not only variable in width, but the orbital tissures, while usually closed, are not uniformly so. The rostral horns are always rather short, broad, and obtuse. The width of the anterior portion of the carapace varies from 0.69 t., 0.85 of the branchial width, the narrowest specimeus being larger than any that have been obtained from the Atlantic. The two series of large specimens from the Atlantic and Pacific coasts are absolntely indistinguishable, as the minor characters mentioned by Stimpson, the swollen cal"upace, the number of tubercles, and the obtuseness of the angles, all vary with the individual.

In smaller specimens the orbital fissures are usually open, the rostrum proportionally longer than in larger forms, and the anterior width is greater, varying from 0.86 to 0.92 of the branchial widtin. The only Emopean specimens which I have at hand are seven from the Shetland Islauds and one from Kielerbucht. The former are from 1 to $1!$ inches in length, have ia very long rostrum, wide orbital fissures, and are of medium width anteriorly. The merus joints of the ambulatory legsare unusually long. This form, whirh is probably the typical cocrectetus, we find reproduced in large numbers on the Atlantic coast of

North America, exept that the merns joints are rarely as long Ocea. sional specimens of small size, however, have a shorter rostrum and fissures narrow or almost elosed. Small specimens from the Paeific coast, while having, as a rule, the orbital fissures open (this chameter being present even among stimpson's types), mors often exhibit narrower fissures than do individuals from Europe and Lastern North America. This variation of many of the small Pacific forms from the nomal type is of no special significance, as the same variation oceurs even on the Atlantic side. Specimens from Greentand, three fourths of an inch long, with fissures very slightly open, are identical in firm with others of the same size from liering Sea; while it is impossible to separate specimens with open fissures found on Georges Bank from others found north of the Alaskan Peninsula.
Length of largest sperimen, s0; greatestwidth, 64.5 ; length of cheli ped, about 144 millimeters.

The following tables show the comparative width of the anterior and posterior portions of the carapace in varions males from the Atlantic and Pacitic oceans:

ATLANTIC.

Locality:	Branchial wiilth.	Hepatic witth.	Ratio or mranchial to hepatic wittl.
Greenland.	18.5	37	1: . 76
Station 2460.	48	39	1: . 5 !
Arichat, Nova Scotia	43.5	37	1:.s.
Labrador.	33.5	97	1: . 8
Station 945	32		1:. 57
Shetland	29.	18.:	1: .x
Ofl Cape Cod	19	16.7	1: .8is
	19	16.5	1: 81
Off Georges Bank.	17 16	15.6	1: $1: .92$
Off Cape ${ }^{\text {dinu }}$	12	10.8	1:.9
Grand Manam	10.5	9	$1: .86$

PACIFIO

IRECORD OH SLECLMENS WXAMINED.

Shetland; A. M. Norman (6319, 9060).
Kielerbucht, Germany; K. Möbius (16286).
U. S. Fish Commission :

Off Chesapeake Bay, 18 to 373 fathoms.
Off Martha's Vineyard, 26 to 158 fathoms.
Off Nantucket Shoals, 18 to 62 fathoms.
Off Georges Bank, 35 to 906 fathoms.
Le IItve Bank, 45 fathoms.
Off Cape Cod, Massachusetts, 16 to 90 fathoms.
Massachusetts Bay, 45 to 90 fathoms.
Off Cape Ann, Massachusetts, 7 to 42 fathoms.
Gulf of Maine, 23 to 98 fathoms.
Grand Manan, New Brunswick.
Off Halifax, Nova scotia.
Arichat IIarbor, Cape Breton, Nova Scotia, 30 fathoms, stomach of cool ; W. A. Stearns (15289).

Henley Harbor, Labrador, shallow water; W. A. Stearns (5210).
Greenland; Dr. Pavy, Howgate Expedition (5239).
Disco Harbor, Greenland; Ensign II. G. Dresel, U. S. Navy, (ireely Relief Expedition (13988).
Lat. $70^{\circ} 20^{\prime}$ N., long. 56° W., 90 fathoms; Ensign C. S. MeClain, U. S. N., U. S. S. Alert (13759).
Stations of the U. S. Fish Commission steamer Llbatross, 1885 and 1886:

Cat. No.	Sta- tion.	Lat. N.	Long. W.	Sottom.			Date.
				Fiath.	Temp.	Materials.	
		- 1 11	- 11		\bigcirc		
10208	2455	472100	513830	81	30	br. S	Jume 26
10209	2456	472900	531800	86		G	July ${ }^{\text {a }}$
10212	2460	455000	540600	67	30	\underline{y}. S. Sh	3
10213	$\because 463$	454400	512700	45	80	brk. Sh.	3
16287	2466	452900	55.200	(i)	30	Co.	3
10214	2490	452730	$58 \quad 2745$	50		(i). P	6
10215	2498	445400	594645	05		tine br. s	(i
10316	2503	442230	$6100 \quad 15$	47	35		7
10217	2509	443000	6:3 1800	43	34.8	crs. S	8
10248	25 ± 5	414900.	654930	73	43.6	S. Gr. brk. Sh	13
11872	2692	465000	443500	73		gy. S. sml. bk. St	Ang. 11
11873	2694	465230	445430	86		gy. S. bk. Sp . . .	11

Arctic and Pacific Oceans:

Cat.	Locality.	Depth.	Materials.	Cullector.
7852	Cape Smyth, Alaska.	Beach.		U.S. Signal Service.
7878	10 mites west of Point Franklin	$13 \frac{1}{2}$	1'. S. lrk. Sh.	Do.
14728		19		R. S. Co
13590	$65^{\circ} 49^{\prime} 15^{\prime \prime}$ N., $169^{\circ} 04^{\prime} 30^{\prime \prime} \mathrm{W}$	20		Do.
14729	Off Point Mope, Alaska.	2.5		1).
14732	Arctic Ocean			10.
14738	Oif Cape Sabine, Alaska	13		W. H. Dall.
14743	$66^{\circ} 45^{\prime} 00^{\prime \prime} \mathrm{N} ., 166^{\circ} 35^{\prime} 00^{\prime \prime} \mathrm{W}$	10		Do.
14739	Cape Prince of Wales, Alask	23		Do.
14737	l3ering Strait.	13	G	Do.
14741	12 miles east of Kings Isl	17		1) 0.
$\begin{array}{r} 17740 \\ 5241 \end{array}$	Plover 13ay, Siberia...	10-25		$1{ }^{1} 0$.
14744	East Cape. Siberia	15-20		1)r. Ro. White.
14735	$63^{\circ} 37^{\prime \prime} 00^{\prime \prime} \mathrm{N} . .165^{\circ} 10^{\prime} 00^{\prime \prime} \mathrm{W}$	12		Liont. George M.
14734	$62^{\circ} 54^{\prime} 00^{\prime \prime} \mathrm{N} ., 166^{\circ} 38^{\prime \prime} 00^{\prime \prime} \mathrm{W}$ W.	22		Stoney, U. S. Nary. lo,
14733	$60^{0} 22^{\prime \prime} 00^{\prime \prime} \mathrm{N} ., 168^{2} 45^{\prime} 00^{\prime \prime} \mathrm{W}$ W.			
2100	Bering Sea (types of latifrons)			North Pacific Exploring Expedition.

Bering Sea；I．S．F＇ish Commission Steamer Jlbaboss，1890 and 1891：

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Station．	Lat．N．	Long．W．	Bottom．			Datc．	limarks．
				J゙uht．	Temp．	Materials．		
		－	－＇ 1		\bigcirc			
1550	3246	58230	1613600	$17 \frac{1}{4}$	38	Gr．	June 9	
1：5：31	3218	583115	1029200	$\because 1$	43.	the cry．S． C	－ 13	
158：	3259	581130	163 （12） 15	171	46． 2	ry．S．．．．．．．．	13	
1．57：	（251	573550	1640500	25	37.5	fine．gy．	14	Abumbant．
1587.	325	578380	164 2t 40	29.	4.8	bk．M	14	
1．5\％	325	570550	1642715	36^{-}	35	M．S．	14	
15：76	3278	561230	16321300	17	38.8	fne gy S．	$2{ }^{2} 1$	10．
1．5：77	3279	562540	1623915	41	37	the gy s s	23	
1：378	3280	569700	1620800	36	41	fine my S．	$\underline{38}$	
15\％79	3281	561.100	$161+15$	36		gy．S．bk．Sp	28	
15×80	3288	$56: 3045$	1615015	53	38.2	fite．S．sn．M	$\because 9$	1 Do
15.581	3283	562800	$16116: 30$	39	40.3	fro． y y． s ．	29	
15：3\％	328	505 $16: 30$	16．） 51300	25	43	the 6	2.3	
1，insm	3286	563930	160.2900	37	415	the．gy，s．sh．	July 17	Do．
13sis．t	$32+8$	569630	16．） 19000	15	45.5	bk．${ }^{\text {a }}$	17	
15055	3291	565830	1591100	26	41.3	bk．S．G	18	
1．5isil	3ッツ	571400	1593500	32		bk．S．G	18	
155×7	：393	573000	15933300	30	40	fine cry	18	
15．88	3294	571645	1590330	30	41	bk．${ }_{\text {a }}$	18	
1．5xs	3297	573800	15.0730	26	41.5	［5．S．	19	
1，5890	3302	574545	1601215	30	40.2	the r y． S	21	
1，5491	：303	$572 \overline{70}$	1602330	33	39.5	bk．S．	21	Do．
15893	3304	580230	161134	28			21	
15.59	3305	575130	1614000	23	41.8	fine gy ${ }^{\text {d }}$	$\underline{2}$	
1589.	：3306	572430	1611700	33	38.9	fine Ey S	43	Do．
12047	34：88	570630	170	$\because 0$		me．wr s．sh	Ang． 3	
17078	3439	570600	1703500	41	4	fne bk．S．．．	3	

Hyas lyratus Dina．

Plate 11.
Amer．Jour．Sci．（2），xi，p．268，18ä1；Crust．U．S．Expl．Exped，i，p．86，pl．i，fig．1， 1852．Stimpson，Jour．Boston Soc．Nat．Hist．，vi，p． 450,1857 ．Lockington，Proc． Cal．Acad．Sci．，vis，p．64，1876．Miers，Challenger Rept．，Zö̈l．，xvif，p．47， 1886.
Large specimens of this species show characteristies somewhat differ－ ent from the example figured by bana．The carapace is very broad posteriorly，strougly tuberoulate．The tuberele at the middle of the posterior margin is large and romded．There is a subacute tuberele on the posterior matgin of the wing－like expansion．The tuberele at the antero extermal angle of the basal antemal joint is large，smooth， amd constricted at base．Chelipeds long and strong；merus and carpus tubereulate；merus with a ridge of large，irregular tubereles above； hand slightly compressed，ronshly grambate，ridged above．Ambula－ tory legs，slighty phbescent exerpt the dactyls，which are densely so．

Dimensions of three largest males．

$\begin{aligned} & \text { Y:at. } \\ & \text { No. } \end{aligned}$	lemeth．	$\begin{aligned} & \text { Bramehial } \\ & \text { width. } \end{aligned}$	Hepatic： willh．	lengeth of cheliped， about－	Lemerth of lirst ambu－ latory les． ibout－	Length of fourth ambu－ latory leg， abont－
58is	10.7	80	61	260	189	134
On $\%$	100	78	（i）	200	189	132
15023	85	$6{ }^{7}$	49． 5	159	129	99

The collection in the Maseum ranges from the extreme end of the Alentian lisands eastward and southwad to Puget Sound．Stimpson
says this species＂inhabits deep water on the coast of Oregon，where it was found by the E＇nited States Vxploring Expedition．＂Hana，on the contrary，in desmibing the drastacer fom that expedition，records this species only fiom Puget Sount．

Stations of the U．S．Fish Commission steamer Albatross， 1888 and 1890：

Cat． No．	Station．	lat．N．	Lomg．WF．	Buttom．			1）ats．	lemarks．
				Fath．	＇femp．	Materials．		
		，	－＂1		－			
15：31	2811	541800	16.55500	56	41	1 ．	Wuly 23	
15.5133	2812	511500	16630300	72	41		2 23	A bumblant．
16532	28.43	535000	16555000	45	43.5	hrk．Sh．P＇．．		
$15.50: 78$	2814	5350600	1654000	54	43	\％y．S．．．．．	28	
15512	28.17	550100	1601200	48	42	fine．gy．s	31	
15534	2818	51000	1601800	110	41	gil．M1	： 31	
15535	2819	551600	1602800	69	13	gri．M	Ang．	
15043	2851	545500	1595200	85	44.8	Hy．s．ink．Sh	4	
15538	2853	551500	1593700	58	41.8	hik．s．	1	
15540	285.4	565500	1530400	（0）	42.8	hk．S	10	
15806	2855	570000	1531800	69	44	gh．M	10	
${ }_{15}^{151364}$	2855	580700	1513600	（i8）	4.4	Hy．S．bk．Alp．	Aug．	
15897	2857	580500	1504600	51	41.6	brk．Sh．gy－${ }^{\text {S }}$	－${ }^{2}$	
15898	3213	541000	1625730	41		11k．S	May 21	10．
15899	3216	542030	$16: 33700$	61		bk．s．M	31	
15900	3219	5.41 .400	165	59	38	lok．S．${ }^{\text {d }}$	23	
15.901	3220	541500	1650000	3.1		（i，brk，Sh．	哭	
15902	328	5.42006	165.3009	511	39.7	bk．S．P．St	29	［1）．
15903	$3 \mathrm{BL3}$	512615	$165: 3200$	51.	39	bk．『	2	
15901	32.31	5×8.500	157	12			小ии\％	
15905	3232	5×3130	1573115	104		1＇st		
15906	3233	5883845	15742.45	T1	11.5	A．1＇	\because	
15.107	3235	$5816: 30$	$1581: 300$	11		bk．s	7	
15908	3236	5181100	1580538	$14.1{ }^{3}$	39	（i，S．Sh	7	
15609	32.1	$58: 3830$	159333383	1.1	： 18	hk．M	8	
15910	3857	544900	1653000	：11	39	ry．S． C	\cdots	
15911	3258	5．4 4800	$10.51: 38$	70	39	bkst	\cdots	
15913	1329	544050	1650583	11	10． G	bk．S．${ }^{\text {a }}$	$\because 1$	
1591：3	1267	5is 2330	$16: 3: 900$	：	11	hke．s	号	
15914	：27\％	55.31810	1630700	11	4	bk，rd．S	27	
15915	3277	55.588	161.4630	18	－ 43.6	fi．s． E ．	－	
15996	3278	56813.30	1621380	17	36． 8	mo．gy－s	！	
15917	：279	560	16838	41	37	fueg y	$\underline{28}$	
15918	3280	$56: 700$	1630800	336	11	lue．Hy＇s	28	

Nitations of the ('. S. Fish Commission stemmer Ihbatross, 1888 and 1890-('ontinned.

Chionœcetes opilio (O. Fabricins).

Pl. ハ, Figs. 5-7.

Cancer Ihalamgium O. Fabricins, (Fama (irenl., p. 234, 1780).
Coneer apilio O. Fabrieins (Kongelige Danske Vid. Selsk. Nkr. nye Saml, int, 181, plate, 1788).
('hionactes opilio Krörer, Natur. Tidskritt (1), 2., p. 249, 1838 (in Gaimard, Voyages en Semdinavie, ote., Crust., pl. 1, 1839). Dana, Crust. U. S. Expl. Exped., I, p. 78, 1859. Miers, Jour. Lim. Soc. London, xir, p. 6ist 1879. Smith, Trans. Comm. Acatlo, v, p. 41, 1879, and synonymy. Murdoch, Rept. of tho International Polar Lepedition to l'oint Barrow, Alaska, p. 137, 1885̈, and synonymy. Aurivillins, K. Sr. Vet.-Akad, Hand., 23, 1, p. 46, 1889.
Chionacetes behringianus Stimpson, Proc. Boston Soe. Nat. Hist., vi, p. 84, 1857; Jour. Bostou Soe. Nat. Hist., Vi, p. H49, 1857; Proc. Acad. Nat. Sci, Phila., ix, p. 217, 18:7. Loekington, Iroc. Cal. Acall. Sci, vi, p. 64, 1876.
 (April, 1857).
This well known species is represented in the eollection by a large series ranging from the tishing banks ofl Newfoudland northwat to Greenland, and from the Aretic eoast of Alaska southwad through Bering Strait and along the eastern and western shores of Bering Sea to the Alentian lslamds, where it is fomm in abundance, and thence eastwad and southwad along the Alaskan coast to british Columbia. It ranges in depth from shallow water to 206 fathoms on the Athantic eoast and 121 fathoms on the l'aeitice. In many of the lots collereted by the steamer Albutross along the Alaskan peninsula the spines of the ambulatory legs are sharper than in typical specimens. This is, however, the only difference observed.

The largest seremen is from southeastern Alaska (16292$)$ and has a span of $9 \underline{2}$ fect with the following dimensioms: Length, 127; width, 1:3i; length of cheliped, about בab; length of first ambulatory leg, about :30 millimeters.
brot. N. I. Smith reeords this speceies on the Athantue coast as far south as oft Caseo Bay, Maine.

RECOHD OF NPECLMENS EXAMINEI).

Fishing banks off Newfommtland; U. S. Fish Commission steamer Albutross, 1885 and 1886:

Cit. No.	Stal tion.	Lat. N .	Long. Wr	Bottom.			1)ate.
				Fath.	T'ın¢.	Materials.	
		- ' 11	- 11		\bigcirc		
-10207	2453	471000	510200	82	29.7	gn. M. fne. S	June 26
10206	2457	471300	52 2t 00	86	29.5	gy.S....	July
102304	3459	462300	524500	88	29.5	crs. isy	先
10205	2461	454700	541330	59	30	fne S. bk. Sp	3
11884	2697	474000	473530	20		g11. M. bk. Sp	Aug. 12

Greenland to Bering Sea and British Columbia:

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Locality	Fathoms.	Materials.	Collector.
13770	Godhavn, Greenland			Linsign C.S. Mcclain, U. S. N.
13784	Greenlaml			Do.
9233	Waigatt Chamel, N. Greenland			
16308	Greentand			Copenhagen Museum.
7879	10 miles west of I't. Franklin, Alaska.	131	S . .	U.S. Signal service.
14699	Aretic Ocean S. R. S. Corwin.
14697				${ }^{16} 1$
14700 14698	Ofr Point lope, Maska..............	19-30		Do. (1) O.
14696	$65^{\prime} 25^{\prime}$ to 28^{\prime} N., $171^{\circ} 11^{\prime}$ to $26^{\prime} \mathrm{W}$.	61-11		1) 0.
14031	lering strait (types of behringianus)..			North Pacifie Expl, Exped.
14701	$63^{\circ} 37^{\prime} \stackrel{\text { N., }}{ } \mathbf{N} 165^{\circ} 19^{\prime} \mathrm{W}$	12		Lient. (reo. At. Stones, C. S. Do,
14695	$60^{\circ} 22^{\prime} \mathrm{N} ., 168^{\circ} 45^{\prime} \mathrm{W}$			Do.
14680	Mouth of Port Clarence, Bering Strat.	7-12		W'. II. Dali.
1.4683	Port Provitence, siberia	$8-20$		D_{0}).
1.168.	Kyska Ilarbor, Alask	9-12	sidy. m	Do.
13114	Bay of Islamds, Adaki	9-16		$1{ }^{1}$
14776	Nazan Bay, Atka.	10-16		Do.
13140	Captains Bay, Unalaska.	Heach	Sh., ete	Do.
14689 14675	Eider Village anchorage, Captains bay Captains Hirbor..................	0-16		Do.
$1: 3123$	Captains ILar., bet. S. Flat and WV. Hil	30	S.	Do.
14685	Captains Harbor, inside of ridge . . .	60-8)	s.	1 o .
13133	Captains Harbor, rillge	80		-1)
14692	Captains Harbor, ontside of ridge	25-75	(crs.s	1) 0.
11774	Iliulink Harbor, Unalaska	10	Shingle	Do.
13113	Iliuliuk.	1013	M.st	Do.
13119	lliuliuk, oft village	15	gy. ${ }^{\text {s }}$	50.
14773	Port Levashefi, Unalaska	20-30	N1. Sh	Do.
13138	between l'innacle and Ula	16		So.
3512	Tnalaska.	Bearl		1\%.
14679	Coal Harbor, Ung			1 o .
14686	10	;	Shingle	1 O.
146ix'2	do	$8-9$	SSt	10.
14681	Off Round Island, Coal Harbor	CB_{8}	M	Do.
14687	Popoff Strait, Shumagins.			Do.
14674	Sanborn ILarbor, Nagai		Under stones	Do.
13121	Chiachi Islands.	20	M	Do.
13128	Chignik Bay.	7-18		Do.
12526	Chajafka Cove, Kınliak.	LiT-20	${ }^{\text {c }}$	Do.
14677	Chajarka Cove, Kadiak	12-1.4	M. S	10.
14688	Kachekmak Bay, Cooks Inlet	$20-60$	sily. M.	10.
14691	Port Etches	12-18		Do.
1475	Port Nulyrave, Yakutat Bay	6-10		${ }^{\text {Do. }}$
$\begin{aligned} & 14772 \\ & 35+73 \end{aligned}$	Sitka Llarbor Kadiak	15	(1. M	Do. If S. Fish Commission.
5795	Wrangel			1)r. iF. H. Jones, U.S.N
16292	Southeastern Alaska			
9353	Wrangel.			Lient. Comitr. II. E. Nichols, U.S.N.
5862	13ritish Columbia			Do.

Alaska; U. S. Fish Commission stemer Albutross, 1888, 1890, and 1801:

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Station.	1.at. N.	Long. W.	Bottom.			Date.		Remarks.
				Fathoms.	Temp.	Materials.			
		$\therefore 11$	- '"						
15172	H. 1166	540000	1634500	45	11.7		Julv		Stomach of cod.
15171	2344	535600	1634000	5	12	y. S....		"u	
15475	2847	550100	1601200	48	42	the gris		31	
:5467	2818	551000	1601800	110	41	${ }_{4} \mathrm{HL}$ M ${ }^{\text {M }}$		81	Ahmmiant.
15469	28.9	551600	1602800	69	43	g11. M . . .	Aurs.	2	
15476	2851	545500	1595200	35	11.8	gre s. brk. sh		4	
15470	2852	551500	1593700	58	41.8	bik.s. M		4	
15468	2355	570000	1531800	69	4	91. M		10	
158:6	3216	5t 2030	$16: 33700$	61		bk. S. M	May	211	Very abmmant.
$158: 7$	3219	541400	16.4 3500	59	38	hk. S. ${ }^{\text {d }}$		2918	
$158: 8$	322.	53 42 50	1653370	121	38.7	bk. S. ${ }^{\text {(}}$		22	
15829	32-5	544830	1654900	85	38.6	hk.s		22	Almulant.
15830	3231	573550	1640500	$25 \frac{1}{2}$:17.5	fine.	June	14	Do.
158:31	3252	57220	$16+2+10$	993	44.8	lk. 1		14	Very abundant.
15832	3253	570550	$16+2715$	36	35	m. S		14	Do.
15833	3255	563330	1643140	43	37	gn. M. S.....		14	Abundant.
15859	3056	561800	1043410	49	35	mn. M. brk. Sh		14	Do.
15834	3257	54.4900	1653200	81	39	H5.S.		$\because 4$	10.
15835	3258	544800	1651330	70	39	bk. S.		24	
15836	3259	$5+4050$	1650580	41	40.6	bk. S.		24	
15837	3こ63	550400	1650400	61	39.5	bk. M		31	Do.
15838	32 \%	553140	1630700	31	42	bk.ru.		27	
15839	3278	561230	1621300	47	38.8	the.gy. S		$\underline{28}$	
15840	3279	562510	1623915	41	37	fne. gry. S		28	
15841	3280	562700	1620800	36	41	fre.gy. S.		28	
15842	3231	561400	16141.5	36				28	
15843	3282	563045	1615015	53	38.	trie. S. gn. M .		29	Vers abundant.
15844	3280	563930	1609900	37 15	41.5	fne. wy.S. Sh. bk. G	July	17	
15845 15846	3388	562630 572483	1600000 1611700	15	45.5 38.9			17	
15847	33109	565600	1725500	71	37.9	gn. M	Aug.	4	
15848	3310	535651	1662853	58	41.5	tne. rlk.S. M		15	
15849	3311	535936	1662943	8.5	41	gn. M		15	Do.
35850	3312	53 5911	1668509	45	43	fne. S. M		15	
15851	3313	540151	1662738	68	+2. 7	fine. bk. S		15	Abuntant.
15852	33:1	5333330	16781540	5.4	41.5	dk. ML		18	
15853	3333	535335	1663015	19	43.9	Hn. ML		20	Very abundant.
15854	33334	535020	1669915	50	42.6	I. S		2	
17073	3438	5170630	170	20		fne gr: S. Sh	Ang.		
1707.	3449	570600	1703500	41	4	fno. bk.s		3	Nbundant.
17075	3440	570500	1704100	48		bk. M. Sh		3	
17076	34.41	5704%	1705230	51	39	bk. M. Sh		3	
17097	34.42	571000	1704715	47	40	hk. M. Sh		3	

Chionœcetes tameri, sp. nor,
Plato iv, Figs. 1-4.
There exists in the deeper waters on the Pacifie coast of North America from Bering Sea to the southern extremity of Califonia a species of chionacetes closely allied to opilio, hat possessing striking differences.

The eatapace is much swollen at the branchial regions, whieh are distended both vertically and laterally, comealing the lateral margian of the earapare. between the two hamehial regions along the median line there is a deep, namow, triangular depression which widens out anteriorly and joins the depressions between the gastric and branchial regions. The carapace is covered with spines instead of gramules or fubereles. The most eomspidous spines on the canapace are arranged in irregular rows, one of whichextends transersely across the anterior part of the gastrie region; a secomd row extems from behind the orbits diagonally batward amoss the branchal region: a third row extends from near the inner angle of the bamehiad region almost transversely
to the outer margin, from which paint a row of long spines extembs forward along the lateral margin amd is continued on the perygostomian regions. This marginal row of long spines, while forming the apparent lateral margin, really overhangs and conceals the real margin. This is a conspicuons difference between this suecies and opilio, in which the branchial region is dattened out so that the postero lateral margin is visible in a dorsal view to a point jusi back of the cheliped. From the lateral row of long spines a small row of three or four spines extends up on the carapace near the anterior part of the branchial region. Small, sharp spines border the orbits, the outer margin of the postocnlar teeth-and the infero-lateral and posterior margins.

The rostral horns are longer and narrower than in opilio, leaving a widely V-shaped notch between.
The second segment of the abdonen of the male is bent downward at the extremities in almost a right angle. There is a transverse ridge of spiny tubercles on the sternum in front of the abdomen. Anterior to this ridge the sternum is deeply excavated.

The posterior margin of the epistome is strongly deflexed in the center and arched at the sides. The external maxillipeds when in place do not fit closely into the buccal cavity as in opilio; merus joints strongly spinose on the margins. On removing the carapace from specinens of tanneri aid opilio of equal size, the gills in the former are seen to be much larger than in the latter, being about two-fifths longer in tumeri. There are corresponding differences in the maxillipeds. The saphognathite of the second maxilla is very much larger (pl. iv, figs. 2 and 5), and also the endopodite of the first maxilliped (figs. 3 and 6). The foliaceous part of the flabellum has about twice the area of the same in opilio (figs. 4 and 7).

The legs are armed with spines longer and stouter than those of opilio. In adult specimens the ambulatory legs are longer than in opilio, especially the merus joints, which are much narrower and in the males do not widen out at the proximal end as in opilio. The ambulatory legs of the female are shorter than those of the male, as is the case in opilio. In comparing young specimens of both species the difference in the length of the ambulatory legs and in the width of the merus joints is not evident.

The specimen figured is a very large one, in which the spines are more worn and blunt than in medium-sized specimens.

Table of measurements.

RECOR1) OR SPECLMENS LEAMINEI).
Bering Sea to southern California; U. S. Fish Commission steamer Albatross, 18881893 (stations arranged from north to south):

Herbstia condyliata (Herbst).

Cancer condyliatus Herbst, Natur. der Krablen und Krehse, I, p. 246, pl. xvin, figs. 99 А, 1, 1790.
Herbstia condyliata Milne Edwards, Hist. Nat. Urust., I, p. 302, pl. xiv bis, fig. 6, 1834, and synonymy. Miers, Jour. Linn. Soc. London, xuv, p. 6.5., 1879; Challeuger Rept. Zö̈l., גVir, p. 49, 1886. Aurivillius, K. Sv. Vet.-Akad. Hand., Bd. 23, I, p. 47, 1889.
Naples, Italy; A. M. Norman (14509).
This Mediterranean species has also been recorded from the Canaries and Azores.

Herbstia (Herbstiella) camptacantha (Stimpson).
Herbstia parvifrons Stimpson, Ann. Lyc. Nat. Hist. N. Y., ViI, p. 180̈, 1860 (not Randall).
Herbsticlla camptacantha Stimpson, op, cit., x, p. 94, 1871.
Herbstia camptacautha A. Milne Elwards, Miss. Sei. au Mexique, pt. 5, I, p. 78, pl. XViII, fig. 3, 1875.
Mithrax? armatus Lockington, Proc. Cal. Acad. Sci., vir, p. 70, 1876.
Herbstia (Herbstiella) camptacantha Miers, Jour. Linn. Soc. London, xiv, p. 6ă5, 1879; Challenger Rept., Zö̈l., XVIIf, p. 49, 1886.
The specimens agree very well with Stimpson's description, except that instead of the blunt tooth near the base of the dactyl the edge is minutely serrulate along the gape.

The largest specimen is 13.5 millimeters long and 11 wide.
RECORD OF SPECLMENS EXAMINED.
Catalina Harbor, Cal. ; beach (16320) ; 30 to 40 fathoms, saudy mud (16321); W. H. Dall.
Southern California; W. H. Dall (16322).
San Diogo, Cal. ; C. R. Orcutt (16323).
Off Magtalena Bay, Lower Cal.; U. S. Fish Commission, 1889:

Cat. No.	Station.	Lat. N.	Long. W.	Bottom.			Date.	Sex.
				Fath.	Tomp.	Materials.		
		- 1 1	$\bigcirc 11$		0			
163:6	$\because 988$	$24 \quad 58 \quad 30$	$115 \quad 5230$	34	63.9	Coralline	Mar. 2	1 ¢ with
13345	2389	$\begin{array}{llll}2 \pm & 58 & 15\end{array}$	$115 \quad 5300$	36	61.3	Coralline	2	18

Previously recorded from Acapulco, Mazatlan, and Cape Saint Lucas.

> Cœlocerus grandis, sp. nov.

Plate v .
The carapace is oval-orbicular, very convex, armed with many stont, blunt spines, between the spines smooth, finely punctate; regions distinct. There are six spines on the median line, two on the gastric, one on the genital, two on the cardiac, and one on the intestinal region. There is an additional spine on the gastric region on either side and in advance of the first median spine. There is one spine on the upper
sumber of the hepatic region and seven on each hanchat wegom, arramed as follows: 'Two latee, widely separated, in a lime with the
 arvanged almost hogitmlatally: (wo forming almost a parallelogram with the hatter: and one near the posterior margin. There are tive latorat spines, dereasing in size fom the latze, stronge hepatie spine to the hast one of the hamehial region. On the right side them is an ad ditional small spine above the last lateral spine.

Rostrom bood, mpturned; magin thick, impolated. In the speri-
 of the antemas. Prave ular tooth promment. L'pere oblatal tissure chosed at its anterior cod. Postombar angle dilated omtwatly in a stont looth. Basall amtemat joint thick, bobdest postertiong, bearing fou teeth out the arhit and two toeth helow these, of which the paster. rion one points down wad, but wad, and lowsad, and the amterion one. situated at the amterosederior angle is wey stom, romeded at the emb, and propects homiantally forward and slighty inwad. In a lime with these las two treth is om below the postocelar thoth, pointing downward and amother at the angle of the buedal eatity. There are boo spines of the subhepate region, arranged amost homitudinally.

Abdemen of femate with a beod carina thengh the eromere a median spine on the tirst and seeome segments, and a broad median tuberelo on the thite. It each end of the seromd segment theme is a broad tuberes, the distat hatf of which is Ilattemed homzontally.
Chelipeds of the femate not so hong as the fiest pair of ambmbatory
 sutime. C'apus wifh two or three sping tubereles. Pahas compressed, ahout friet as lomg as boad, tapering slightly towad the distal emb.
 stom, derreasing regulaty in length, unarmed exept for a tuberele at the upper distal end of the meral joints.

The masillipeds. lower edze of the eampace margins of the stemm and ablomen, and espectally the aterior pertion of the stermum ane frimed with long hair. Lags hairy except the distal two-thisde or the dactshs.
 longth of cheliped about 104 millimeters.

Maia squinado (Herlst),

 1Nin:

Cornwall, England; A. M. Norman (15337).
Chamel Islands; Edward Lovett (6548).
Jorsey; A. M. Norman (6773, 6774).
Grecee (1488)..
Locality unknown (1537.1).
Maia verrucosa Milne Edwarde.
Cancer squinado Herbsi, op, cil., I, p. 214 (pars), pl. xiv, figs, 81, 85, 1790.
Maid squinado Bosc, (Hist. Nat. Crust., b. 1, pl. vif, lig. 3?). Audonin, (Crust, de l'Egypte, par M. Savigny, pl. vi, lig. 1).
Maia verrucosa Milne Edwarde, Hist. Nat. Crust., I, p. 328, pl. 111, 1833. White, Crust. Brit. Mus., p. X, 1817. Capello, dor. Sci, Lisboa, p. (2), 1873. Aurivillinn, K. Sv. Vot.-Akatl. Hand., Bal. 233, 1, 1. 47, pl. iv, fig. '2, 1889.
Two male sperimens of this Mediteramean speries are contatned in the collection, with the exact locality maknown; received from Heny A. Ward (16281).

Paramithrax peronii Milno Edwards.

Hist, Nat. Crust., I, p. 33.1, 1833. White, op. cit., p. 7. Jaçuinot ot Lucas, Voy. an Poles Sud, Zoïl, M, Crust., p. 10, pl. i, lig. 3, 189̈3, Miers, Am, Nat. Hist., (1),
 Soe., N. S. Wallen, N, 1. 440, 1879; Amm. Mar, Nat. Hist. (5), v, p. 146, 1880 ; Cat. Austral. Crust., p. 13, 188^{2}. Filhol, Bull. Soc. Philom., 1x, p. 26, 1885. Aurivillins, K. Sv. Vet.-Akad. Hind., Bd. 23, 1, p. 18, 1H. iv, fig. 3, 1889.

Bluff llarbor, New Kealand; three males (16277). New Kealand; Otago Museum, one male (16284).
lound also in Australia.

Paramithrax edwardsii (de Hain).

Maja (Paramilhrax) edurardsii do Hatm, Fimmat Japonic:ı, p. 92, pl. xxı, fig. 2, 1839. I'aramithrex cdwardsii Adams and Whito, Voy. Samarang, p. 1.1, 1818.
Praramilhrax (Leptomithrex) edmardsii Miors, Amn. Nat. Hist. (4), xソn, p. 220, 1876.
Japan; II. Loomis; two males (16:72).
Miers places this speeies in the subgenns Leptomithrax. The chelipeds, however, are not wratly elongated now the palm subeylindrieal. The carpus is similar in shape to those of peronii and latreillei, has two ridges, and is spinulous. In the larger specemen the fingers meet along their innor edges when closed; in at spesimen about one and a hall inches long, they are giping at hase, with a tooth on the dactyl. Our specimens of longimumus and austrolis have fingers gaping at base. This, therefore, can not constilute a subgeneric chanacter. Ledwardsie is allied also by the form of its carapace to the subgems lermmithrox, in which the riparame is oblong ovate, while in heptomithrax the caname is triangularovate. In edwordsii the eyes reach the postocular spine, as in Leptomithrax.

$$
\text { Proc. N. M. } 93-6
$$

Paramithrax latreillei Miers.

Paramithrax burhicomis Miers (not Latreillo), Am, Mag. Nat. Hist., (1), Xvir, p. 219, 1876 (Cat. Crust. N. Z., p. 6, pl. 1, lig. 2, 1876); Amn. Mag. Nat. Hist., (5), w, p. 8, 1879. Haswell, Proc. Lim. Soe. N. S. W., N, p. 440, 1879; Am, Mag. Nat. 11 ist., (5), v, p. 146, 1880; Cat. Austral. C'rust., p. 13, $188^{2} 2$.

 $2, p .358,1886)$.
Fithol (Bull. Soe. Philom.) shows that the specimens which in 1876 Miers refered to burbicornis are not identieal with that species, and proposes for them the name eristatns, apparently not aware that Miers, in his preliminary deseription (Amm. Mag. Nat. Hist. (1), xvit, p. D19, 1s76), designates the species as latreillei, if it should prove distinet from Latreilles barbicornis.

New Zealand; Otago Museum; two males (16283).

> Paramithrax sternocostulatus A. Mihe Elwards (leste Miers).

Paramithrar sternocostulatus A. Milme Balwads. Miors, Amb. Mag. Nat. Hist. (5), N, p. 9, 1879. Haswell, Proc. Lim. N. S. W., IN, P. 410, 1879; Am. Mag. Nat. Hist. (5), v, p. 146, 1880; Cat. Austral. Crust., p. 18, 1882.

I'aramithrax !umardii Miers (not Milne Edwards), Cat. Crust. N. Z/., p. 6, 1876.
Port dacksom, Australia; Justralian Maseum, Nydmey; male and fomale (17013).

Found also in New Kealand.

> Paramithrax (Leptomithrax) australis (Jacquinot).
 p. 11, 185\%.
 1876; (C'at. Crust. N. Ka, 1876).
One male sperimen has been reerived fom the Otago University
 the tip of the rostrum and s.. wide, without spines. The chelipeds are extremely long, about exs millimeters; the hands are very long ant strong.

> Paramithrax (Leptomithrax) longimanus Miers.

Dumedin, New /ealand; Otago Masemm; theo males (160ふ2).
Thespecimens do not asmee exactly with Miors's deseription. Midway on the marein of the bramehial resion is athort, stout, blunt spine corved lomward. The campare is tuberedons rather than sramons. 'The length of the rostrom is only a little greater than hatf the width between the probrbital angles. Merus and carpus of cheliped tuberenlous; manus comspichonsly sramulous inside, mimutely so outside.

Chlorinoides longispinus (de Haan).

Main (Chorimes) longispina de Haan, Fama Japonica, p. 9f, pl. Xxur, fig. 2, 1839. Chorinus longispinus White, Crust. Brit. Mus., p. 123, 18.7. Adams and White, Voy. Samarang, p. 12, 1848
Chlorinoides longispimиs Mievs, Challenger Rept., Zoöl., Xvif, p, гі, 1886.
Enoshima, Japan; P. L. Jony (12:345). Japan; II. Lomis (16:574).

Chlorinoides spatulifer (Hiswell)

I'a'amithrax spatulifer Haswell, Proc. Limm. Soc. N. S. W., vi, p. 5it), 1881; Cat. Austrill. Crust., p. 14, 1882. Miors, Crust. Mlert., p. 191, 1884.
Chlorinoides spatulifer Miors, Challenger Rept., Koöl., xvir, p. $22,1886$.
Port Stevens, Australia; Australian Museum, Syduey; one female (17014).

Pisa tetraodon (1'emmant).

Cancer te'raodon Pemmani (British Koölogy, IV, pl. viri, fig. 15).
Pisa tetraodon Leach, (Malac. Vodoph. Brit., pl. 20, 1815). Milne Edwards, Hist. Nat. Crust., I, p. 30', pl. Xiv bis, fig. 1, 1834, and synonymy. Bell, Brit. Crust., 1. 22, 1853. Carrington amd lovett, Koölogist (3), y, p. 358, 1881. Miers, Challenger Rept., Koïl., Xvir, p. 5l, 1886. Aurivillius, K: Sv. Vet.-Akad. Hand., Bd. $23,1,1,49,1889$.
Weymouth; A. M. Norman (6339). Channel Islamds; Edward Lovett (6549). Locality unknown (16278).

Found also in the Mediterranean, Portugal, the Azores, and Teneriffe, 50 to 90 fathoms, and at Aden.

> Pisa (Arctopsis) tribulus (Linme).
? Cancer tribulus Limé (Syst. Natt.; ed. 12, p. 1045, 1766).
l'isa gibbsii Leach, Trans, Linn. Soc., xI, p. 327, 1815. Carrington and Lovett, Zoölogist (3), v, p. 360, figs. 1 and 2, 1881.
Pisa (Arctopsis) tribulus Miers, Challenger Rept., Koïl., xvis, p. 55, 1886, and synonymy.

Chamel Islands; Eaward Lovett (6532). (iuernsey; A. M. Norman (6315).

Found in the Mediterranean to 75 fathoms, and ranging to the Cape Verde Islands, 38 fathoms.

LEPTECES, gen, nov.
Carapace subpyriform on triangulate, slighty convex, tuberoulous. Prieocular spine present. Rostral horns divergent. Orbits with two hiatuses above and one below. Abdomen in both sexes seven jointed. Antenne with a spine at the antero-external angle of the basal joint, the flagellum visible in a dorsal view at the sides of the rostrum. Exterior maxilliped with the antero-external angle produced and rounded, the inner angle notehed. Chelipeds more slender than the ambulatory legs; palms very long and slender; fingers meeting along their inner edges. Ambulatory legs of moderate length, the anterior pair much the longer; joints spinous.

Lepteces ornatus, fp. nor.
Plate vi, Fig. 1.
Fintire suldare, exeept the hands, wabulous. ('arapace ormamented with tubereles of two kinds; first and most prominent, raised mushroom like tubereles, each surmounted by a that, circular disk, grautlous and spimulous out the margins. Tubereles of this character, with disks overlapping, surroum the cardiace region and outline the inner margin of the branchial rewion; there is one on the posterior edge of the gastric, four follow the postero-lateral margin, two are aranged transversely on the intestinal region, while a line of four rus almost transwersely aross each hepatie region and up on the wastric. There are many additional smaller tuhereles of this character. The second variety of tuberele is smaller, hut slightly more elevated than the first, spherodal at the summit, gramulous, and sumounted by a few long hairs. There are four such tubereles on the gastrie region, two of which are on the median line, six on the branchial region, two or three on the eardiac region, and three on the posterior margin. The entire surface betwern and bemeath the raised tabereles is crowded with stellar granules, varying in size.

The rostrum is composed of two regulanly tapering, divergent spines, with long hatis, especially on the inmer margins. Pravocular spine strongly couved upwat, at all angle of about 45 with the rostrum; acute, bening a tew long hats near the tip.
basal joint of antenna with the outer margin convex and tuberen lous; a stout spine at the antero-lateral angle, pointing forward. Flagellum exceding the rostram. D'osterior margin of the epistome directed abruptly backward wear the center, then turning again almost fransersely to form athallow V at the median line. The depressions between the ablominal segments in the male are continued in grooves on the stermum.

Chelipeds in both sexes weak, slender, much shorter than the first pair of ambulatory legs; merus strongly and irregularly tubereulose; carpus feobly so; hamds smooth, extemely slember, tapering to the fingers, which are in eontact; prehensile edges finely dentate. Ambubatory legs stout, somewhat angled; anterior pair much the longest, atmed with an irvegular row of long spines above, a series of shorter spines on the inferior outermargin, and a few sattered spines. Proximal half of dactyls spinulose, extremities horny.

Length, inchding rostrm, 17; width, 9 millimeters.
Tho males and six females of this unique form were collerted by the I. A. Fish Commission steamer I Ibutross off Arowsmith Bank, Vucatan, lat. $\because 0^{\prime} 29^{\prime} 30^{\prime \prime}$ N.. long. $86^{\circ} 23^{\prime} 45^{\prime \prime}$ W., 130 fathoms, coral, station 2351,1855 (9516)。

Hyastenus diacanthus (de Haan).

P'isa (Naxia) diacantha de Maan, F'amna Japoni'a, p. 96, pl. xxiv, fig, 1, and pl. Ce, 1839. Naxia diacantha White, Crust. Brit. Mus., 1p. 6, 1847. Adams and White, Voy. Samarang, Crust., p. 19, 1848. Stimpson, Proc. Acad. Nat. Sci. Phila., 1x, p. 218, 1857. Heller, Reise Fregatte Novara, if, 3, p. 3, 1868. Aurivillius, K. Sv. Vet.-Akad. Hand., Bd. 23, 1, p. 51, ph. 11, fig. 5, 1889.
Hyastenus diacanthus A. Milne Edwards, Nouv. Archiv. du Mus., Vifi, p. 250, 1872. Miers (Cat. Crust. N. Z., p. 9, 1876) ; Proc. Zoöl. Soc. Londom, p. 26, 1879; Crust. Alert, pp. 194, 182, 1884; Challenger Rept., Zoöl. xvii, pp. 56,57, 1886. Haswell, Proc. Linn. Soc. N. S. Wales, Is, p. 442, 1879; Cat. Austral. Crust., 1). 20, 1882. Walker, Jour. Limn. Soc. London, xx; p. 109, 1887. De Man, Areh. f. Natur., liII, p. 220, 1887. Cano, Boll. Soc. Nat. Napoli (1), iIt, p. 178, 1889.
Hyastenus verveauxii A. Milne Edwards, loc. cit.
Japanese seas; U. S. S. Palos; two females (16288, 16289).
Japan; H. Loomis; three males, five females (16273).
Sydney Harbor, New South Wales; William E. Langley (5740).
Distributed throughout the Indo-Pacific region.

Hyastenus caribbæus, sp. nov.

Plate vi, Fig. 2.
Carapace triangular-ovate, with a stout spine on the summit of the posterior portion of the branchial resion, and another on the intestinal region just above the posterior margin. Regions distinct. There are three inconspienons tubereles on the gastric, and one at the inner angle of each branchial region. Carapace covered with a short, close pubes. cence, with scattered bunches of hair. Rostrum nearly as long as the carapace, entire for about one-fourth its length; horns slender, slightly divergent; margins hairy. Basal antennal joint without a spine. Flagellum not so long as the rostrum.

Chelipeds slender, unamed; mexus subeylindrical; manus long, compressed, narowest near the carpus, widening slightly to the base of the fingers; dactyl arehed, with a tooth near the base; fingers gaping at the base when closed. Ambulatory legs very slender, the first pair longer than the chelipeds.

Length of carapace, exchnsive of rostrum, 13 ; width, 10.5 ; length of rostrum, 9.5 ; length of cheliped, about 24 millimeters. A specimen with a total length of 14 millimeters has comparatively a much shorter rostrum and spines than the one described above.

Sabanilla, United States of Colombia; U.S. Fish Commission steamer' Albatross, 1884; two males (16315). This is the first speries of Hyustenus recorded from the Atlantic Ocean.

Hyastenus longipes (Dana).

Plate vir.

Chorilia longipes Dana, Amer. Jour. Sci. (2), xi, p. 269, 1851; Crust. U. S. Expl. Exped., I, p. 91, pl. 1, fig. 5, 1852. Stimpson, Jour. Boston Soc. Nat. Hist., vi, p. 455, 1857. Lockington, Proce, Cal. Acal. Sci., vir, p. 69, 1876.

Hyastenus (Chorilia) longipes Miers, Jonr. Linn. Soc. London, xiv, p. 65̄8, 1879; Proc. Zoül. Soc., London, p. 27, 1879.

Hyastenus japonicus Miers, Proc. Zö̈l. Soc. London, p. 27, 11. 1, fig. 2, 1879; Challenger Rept., Zö̈l., xVif, p. 56, 1886.
Hyastenus longipes Miers, Challenger Rept., Zoül., xvif, p. 56, 1886.
This species ranges from 57° north latitude, off Kadiak, Alaska, to 32° north latitude, off San Diego, Cal., and in depth from 27 to 603 fathoms. It exhibits wide variations from Dana's types, especially in more southern latitudes, where, as a rule, the carapace is very much swollen at the branchial regions, making the width much greater in proportion to the length; the second and third joints of the antennse are much more slender; the hepatic region is furnished with a sharp spine; and, lastly, the tubercles of the carapace are more mumerons and some of them spinous. These characteristics, if uniform, would be specitic, but the two extremes intergrade to such an extent as to render impossible even a varietal separation. The broad form is with one exception confined to deep water; the typical longipes ranges from 27 fathoms in the north to 456 in the south. Variations exist in specimens from the same locality; for example : The broad forms may possess a hepatic spine or a tubercle; the antemal joints are narow in some individuals and wide in others. Occasional specimens of the narrow form have a sharp hepatic spine. An examination of the branchie of the broad and narrow forms shows that they are larger in the former. Corresponding differences exist in the size of the maxillipeds, the flabella being larger, as well as the scaphognathite of the second maxilla. The endopodite of the first maxilliped, however, which is seen to be so different in the two species of chionocetes, is the same size and shape in the two forms of Hyastenus longipes.

The width of the typical form ranges from 0.71 to 0.8 of its length; of the wider form, from 0.8^{2} to 0.9 of its length; the length being measured from between the bases of the cornua. The measurements are taken of male specimens, with one exception. In the following tables the stations are arranged from north to south:

Table of moasurements.

RECORD OF SPECLMENS RXAMINED,
From Kadiak to Sau Diego; U. S. Fish Commission steaner Albatross, 1888-1891:

					Bott	ош.		
o.	Station.	Lat. N.	Long. W.	Fath.	Temp.	Materials.	Date.	Remarks.
		- ' "	- '"		\bigcirc			
15196	2855	570000	1531800	69	44	gn. M .	Aug. 10	Typical form:
15497	2362	504900	1273630	-38	44.7	gy. S. 1	sept. 1 -	Do.
15495	2877	483300	1215300	59	45.5	lok. S. M	Sept. 25	Do.
15499	2874	483000	1245700	27	50.3	R. Sh	Sept. 24	Do.
17081	3449	482940	12.4010	135			Alıg. 28	Do.
1708.5	3454	482750	1244340	153	14.2	gy. S. rkj	Sept. 1	Do.
171083	3451	48.2510	$12+3750$	106	45	G. St.	Ang. ${ }^{\text {a }}$	Do.
17086	3459	482420	1242440	123	44.5	gy. S. P	Sept. ${ }^{\text {a }}$	Do.
17088	3466	481830	1232300	56	48.5	my. S.Sil. rky	Sept. $\frac{3}{7}$	1\%.
17080	345	481600	1234505	100	44	rky	Aus. 27	130.
15494	286.5	481200	1224900	40	51.7	P'	Sept. ${ }^{6}$	Do.
15498	2883	460900	12+2230	${ }^{63}$	45.8	9	Oct. 13	DO_{0}
17626	3085	44×930	1241700	42	46	fre. g	Sept. ${ }^{2}$	Do.
1676	2889	435909	-1245600	46	47.7		Uct. 19	Typical form, but with hepatic spine.
16030	3350	385810	12:37 57	75	48.4	fne. S. Mr.	Sept. 25	Typical form.
15515	3112	370800	1224700	296	41.8	fine. gy	Mar. 12	
15512	3114	370600	1233200	62			Mar. 12	Do.
15514	${ }^{3} 205$	365510	122 2350	240	43.7	10k. s. İ	Apr. 12	Do.
15516	3126	364220	1221230	450	53.8	M	Mar. 13	Intermediate in width, otherwise typical.
16777	3187	301400	1215840	298	41.1	yl. S. M	Apr. 3	Typical form.
15511	3193	352550	1210910	160	44.4	g11. M.	Apr. 5	
15596	2893	341230	1203230	145	48.6	fne.gy S.als	Jam. 5	Do. Intermediate in width,
15508	2960	341045	1201645	267	48	gn.	Feb.	Intermediate in width, otherwise typical.
15507	2956	335730	1201830	52	53.1	fue	Feb. 8	Typical form.
16031	2979	335630	1192230	388			Feb. 12	Broad form.
15509	2896	335530	1202800	376	43. 8	N1. M	Jan. ${ }^{6}$	Typical form.
15502	2980	334945	1192430	603	38.9	gn. 3	Fcb. 12	Broal form; 9 specimes. with hepatic spine, 1 without.
15510	2982	332445	1190700	178	40.7	S. M	Feb. 13	Broad form.
15505°	2937	330 ± 30	1174200	464	46.5	¢	Fel. 4	Do.
$\begin{aligned} & 155012 \\ & 15500\} \end{aligned}$	2936	324900	1172730	359	49		Felb. 4	Broad form. Second article of antenna wide in some specimens.
15504	2928	324730	1181000	417	41	bk.s.	Jan. 23	Do.
15503	2927	324300	11751.00	313		gn. M	Jan. 23	Broad form. Some specimens with hepatic
15506	2934	323330	1171600	36	58.2		Jan. 26	Do.

Hyastemus japonicus Miers (loc. cit.) is apparently identieal with longipes, as the length and divergence of the rostral spines, the length of the antemal spines, and the spines on the merus are variable characters in longipes.

Fiyastenus, sp.

Two small and immature sperimens from Lower California have been referred to this genms. The species is distinct from longipes, but its characters can not be distinctly determined without larger and more numerous specimens. The surface is pubescent. As in lompipes the carapace is tuberculous and spinulous, but broader anteriorly. The epibranchial spine is slemter. There is a prominent hepatie spine as in the southern form of lomgipes; the postorbital spine is slender and between it and the hepatic spine there is a shorter subhepatic spine visible from above. Praorbital spine present. The front is broader than in lomgipes, the slender rostral horns not so divergent, fringed with long hairs on the inner margin. Basal antemal joint with a slender
spine at the antero external angle, and a spimule finther back on the margin. The larger specimen, a femate, has s!ender ehelipeds; merus amd rappus spimuliferous, as is also the manns on the upper margin near the earpos. Ambulatory legs slender; meral joints spinulous above, dactyli spimulous beneath.

Length, incholing rostrum, s; width 4.5 millimeters. The smaller specimen is only 5 millimeters long.
 eoralline; station ${ }^{2} 959$, U.S. Fish Commission steamer A lbatross, 1859 (17380).

Naxia robillardi Miers.

Proc. Zö̈l. Soe. Lomdon, p. 339, pre, fig. 1, 1882; Challenger Ropt., Zö̈l., xvit, pp. 60, 61, 1886; Pocock, AmI. Mag. Nat !list. (6), v, p. 79, 1890.
Manritius; II. A. Wiad; one femalde (16316). This species has been taken, at 30 fathoms, ofl Manritios.

Scyra acutifrons Dana.
Amer., ,our. Sci. (2), xi, p. 269, 1851; Crust. U. S. Expl. Exped., i, p. 95, pl. if, fig. 2 , 1859. Stimpon, Jour. Boston Soc. Nat. Hist., vi, p. 153, 1857; Lockington, Proc, Cal. Acad. Sei.. vit, p. 69, 1876. Miers, Jour. Limm. Soc. London, xiv, p. 663, 1879; Challenger Rept., Zö̈l., xvi, p. 62, 1886. Smith, Rept. Geol. Survey Canada for $1878-79$, p. 21013 (1880).
A large series of specimens serves to confirm Prof. Smith's supposition that Dama's deseription was based on immatme individuals. In large males the carapace is very nodulous, the rostrme wide, and the chelipeds strongly developed. In females the regions are much less elevated, the gastrie region evenly rombled, withont tubereles.

RECORD (HF゙ SPECIMENS EXAMENED,
Kadiak, Alaskal ; W. G. W. Harford (14801).
Vietorita, B. C.; Dr, U, F. Neweombe (15793).
Port Orchard, Puget Soma; O. B. Johmson (14966).
Puget sound; D. S. Jordin (3099).
Monterey, Cal.: D. S. Jordan (1te911); Dr. Cantiehd (34t9).
Southern Catifornia; W. II. Dall (162! 0).
From Vameonver Istand to Santa Barbara, Cal.; V. S. Fish Commission steamer Allatross. 1888-1890:

Following out the suggestom of Mr. Miers, I have placed Scema umbomate Stimpson among the Inachidie.

Eurynome aspera (Pemnant).
Cancer asper Pemnant (Brit. Zö̈l., iv, t. x, f. 3, p. 13).
Eurynome aspera Leach (Malac. Brit., t. xvif, 1815). Guérin, Icon. Règne Anim., ir, pl. vir, fig. 4. Milne Edwards, IIist. Nat. Crust., I, p. 351, ph. x y, lig. 18, 1834, and synonymy. Bell, Brit. Crust., p. 46, fig., 1873. Miers, Jonr, Linn. Soc. London, xiv, p. 659, 1879. Carrington and Lovett, Zö̈logist (3), v, p. 418, 1881. Scott, 6th Ann. Rept. Fishery Board for Scotland, pt. ili, p. 256, 1888. Aurivillius, K. Sv. Vet.-Akad. Haud., Bd. xxiri, 1, p. 51, pl. ı, figs. 7, 8, 1889. C'ano, Boll. Soc. Nat. Napoli (1), 1H, p. 178, 1889. Osorio, Jor. Sci. Lisboa (2), 1, p. 53, 1889.
Eurynome spinosa Hailstone, Mag. Nat. Hist., vint, pp. 519, 638, 1835.
Gnernsey: A. M. Norman (6314). Channel Islands: Edward Lovett (6567).

Recorded from the British Isles, France, and the Mediterranean.

Pelia mutica (Gibhes).

Pisa mutica Gibbes, Proc. Amer. Assoc. Alv. Sci., III, p. 171, 1850.
Pelia mutica Stimpsou, Ann. Lje. Nat. Hist. N. Y., vir, p. 177, 1860. Smith, Rept. U. S. Commr. of Fisheries for 1871 and 1872, p. 548 (1874). A. Milne Edwards, Miss. Sci. an Mexique, pt. 5, 1, p. 73, pl. xvi, fig. 2, 1875. Kingsley, Proc. Acad. Nat. Sci. Phila., xxxi, p. 385, 1879.
I find this species extremely variable in the divergence of the rostrum and in the anteroexternal angle of the basal joint, which is sometimes unarmed and sometimes armed with a small spine. The species ranges from Vineyad Somud to the west coast of Florida, and the more northern specimens, that is, from Vineyard Sound to Beaufort, are those most likely to present the antemal spine, while the sonthern forms have usually a blunt angle at that point. There is no constancy in this occurrence, however, and no accompanying characteristic that is invariable.

```
RECORD OF SPECLMENS EXAMINED.
```

Vineyard Sound, Mass., low water to 12 fathoms; U. S. Fish Commission. Virginia (Union College Coll.). Beaufort, N. C. (Union College Coll.). Calibogue Sound, S. C.; U. S. Fish Commission (16350, 16773). Florida:

Florida Bay (Union College Coll.).
Marco; H. Hemphill (16999). Charlotte Harbor; W. II. Dall (17002).
Sarasota Bay; H. Hemphill (16208).
Goodland Point; H. Hemphill (17000).
Cedar Keys; Licut. J. F. Moser, U. S. Navy (16207) ; H. Memphill (6119), on coral, one fathom (17001).

Pelia rotunda A. Milne Edwards.
Miss. Sci. an Mexique, P't. 5, I, p. 74, pl. xvi, tig. 4, 1875.
Two males from oft the Rio de la Plata, one in lat. $36{ }^{\circ} 42^{\prime}$ S., long. $56{ }^{\circ}$ 23^{\prime} W., $11 \frac{1}{2}$ fathoms, sand, broken shells, station 2764 , U. S. Fish Commission steamer Albatross, 1888 (16347), and the other in lat. $366^{\circ} 47^{\prime} \mathrm{S} .$, long. $56^{\circ} 23^{\prime}$ W., $10 \frac{1}{2}$ fathoms, sand, broken shells, station 2766 (173:21).
A. Milne Edwards records this species in the text as rotumdu, while in the description of the digure it is designated as rotumdatu. The types are from off Patagonia and Brazil.

In characterizing the two specimens at hand, I have compared them with specimens of mutice of equal length from South C'urolina, and have made the following observations: The width at the branchial regions is the same, but rotumd is wider at the hepatic regions. The gastric and cardiac regions are a little more swollen in this species. The rostrum is the same length in both species, but in mutiea the horns are strongly divergent, while in rotunde the outer margins are subparallel. The rostrum is more deflexed and wider at the base in rotumde and there is a corresponding width underneath across the basal antemnal joints. The tingers do not differ essentially from those of mutien. It is very probable that a large series of specimens of rotumda would show that the above-mentioned characters are not constant, but offer individual variations as in mutica.

Pelia pacifica A. Milme Edwards.
Miss. Sci. au Mexirqu, 1’t. 5, 1, p. 73, pl. XVi, fig. '3, $18 \overline{7}^{5}$.

> RECORD OF SPECDMENS EXAMINED.

California:
Catalina Harbor; W. H. Dall (16204).
Southern California; W. H. Dall (16.03) ; many specimens.
San IVego, 10 fathoms; H. Hemphill (6385). ('. R. Oreutt (1620\%, 16206) ; Rosa Smith (16998).
Gulf of California; U. S. Fish Commission, 1889:
Ofí Adair Bay, Mexico, lat. $31^{\circ} 22^{\prime} \mathrm{N}$, , long. $114^{\circ} 07^{\prime} 45^{\prime \prime} \mathrm{W} ., 17$ fithoms, gravel, boken shells, temperature 6.2 , station $3026(16: 39)$; one female, with rostral horns a littlo more divergent tham in typical specimens, but otherw iso corresponding.
The types are from the Bay of Panama.

Pelia, sp.

Much like pacifica. The single male specimen, however, has chelipeds very strongly developed. Manus wide and swollen, fingers arehed. The first ambulatory leg is longer than in pucifica, the merus joint nearly reaching the extremity of the rostrmm the penult joint is longer and more slender than in pacifica. The rostrm has its horns converging, but is deformed, as the two sides are of unequal length.

Off Magdalena Bay, Lower ('alifornia, lat. $2 \mathfrak{t}^{\circ} 5 \mathbf{s}^{\prime} 15^{\prime \prime} \mathrm{N} .$, long. 115° 63^{\prime} Wr., 36 fathoms, coralline, temperature 64.3°; station 2989 U. N. Fish Commission steamer Albatross, 1889 (16348).

> Nibilia exinacea A. Milne Edwards.*

Hevbsfia Schramm (Crust. do la Guateloupe, p. 17, pl. vir, fig. 23, 1867).
Nibilia erinacea A. Milne Edwards, Miss. Sci. an Moxique, Pt. 5, 1, p. 133, pl. xxv, 1878. Smith, Rept. Commr, of Fisheries for 1885, p. 627 (1887).

* Nibilia armata A. Milne Edwards belongs properly among the Inachide.

IRECORI OF SPECIMENS EXAMINE1).
Off Cape Hatteras, N. C., and Gulf of Mexico; U. S. Fish Commission steamer Albatross, 1884-1885:

*With eg.g.
Recorded from the Caribbean Sea.
Schizophrys aspera (Milue Elwards).
Milhrax asper Milne Edwards, Hist. Nat. Crust., I, p. 320, 1834. Dana, Crust. U. S. Expl. Exped., I, p. 97, pl. 1ı, fig. 4, 1852.
Maja (Dione) affinis de Maan, Fauna Japonica, Crust., p. 94, pl. xxir, fig. 4, 1839. Adams and White, Voy Samarang. p. 15, 1848. Stimpson, Proc. Acad. Nat. Sci. Phila., ix, p. 218, 1857.
Schizophrys serratus White, Crust. Brit. Mus., p. 9, 1847 ; Proc. Zoöl. Soc., Lomdon, xv, p. 223, fig., 1847; Ann. Mag. Nat. Hist. (2), ir, p. 283, fig., 1848. Adams and White, op. cit., p. 16.
Schizophrys spiniger White, loc. cit. Adams and White, op, cit., p. 17.
P? Mithrax quadridentatus Mac Leay, in Smith, Annulosa, Zoïl. South Africa, p. 58, 1849.

Schizophrys affinis Stimpson, Amer. Jour. Sci., xxix, p. 133, 1860.
Schizophrys aspera Stimpson, loc. cit. A. Milne Edwards, Nouv. Arch. Mus. Hist. Nat., vili, p. 231, pl. x, figs. 1-1 f, 1872. Miers, Jour. Linn. Soc. London, xıv, p. 660,1879 ; Crust. H. M. S. Alert, p. 197, 1884; Challenger Rept., Zoöl., Xvif, p. 67, 1886. Haswell, Proc. Linn. Soc. N. S. W., Iv, p. 447, 1879; Amı. Mag. Nat. Hist. (5), v, p. 147, 1880; Cat. Austral. Crust., p. 22, 1882. De Man, Jour, Limn. Soc. London, xXif, p. 20, 1887; Archiv fiir Natur., Lili, p. 226, 1887. Walker, Jour. Linn. Soc. London, xx, p. 113, 1887. Aurivillins, op. cit., p. 51. Cano, op. cit., p. 179.
Schizophrys servata Stimpson, loc, cit.
Schizophrys spinigera Stimpson, loc, cit.
Mithrax spinifrons A. Milne Edwards, Ann. Soc. Entom. France (4), vir, p. 263, 1867.
Mithrax affinis Capello, Jor. Sci. Lisboa, p. 264, pl. Hina, fig. 4, 1871.
Mithrax (Schizophrys) triangularis Kossmann, (Crust. Reise Küsten. Rothen Meeres, pp. 11, 13, 1887).
M. (S.) triangularis var. africamus Kossmann, (op. cit., pp. 11, 14).
M. (S.) triangularis var. indicus Kossmann, (loc. cit.).

Japan; H. Loomis; four males and one female (16319) of the typical form, and corresponding to the figure by de Haan.

Samoa; H. A. Ward; one male and one immature female (1.6318) of the variety spinifions (A. Mine Edwards).

This species is widely distributed throughout the Indo-Pacitic region.

Pseudomicippa？varians Miers．

Amn．Mas．N．H．，（弓），iv，p．12，pl．1x，fig． 8,1879 ；Crust．Mert，pp．182，197， 1884 ； Challenger hopt．，Zoül．，xvir，p．6א， 1886.
I＇ont Jackson，Australia；Australian Musemm：ome lemale（17015）．
Micippa mascarenica（Leach）．
Micipua philyra Leach（not llerbst），Zoïl．Misc．，m，p．16，1817．Guéxin，Ieon． Crust．，pl．Vilf bis，fig．1．Mihe Edwards，llist．Nat．Crust．，1，p． $330,1834$. Adams and White，Voy．Samarang，p，15，1848．A．Mine Edwards，Nouv．Areh． Mus．Mist．Nat．，VH1，p．239，ph．ג1，lig．2，1872．Richters，in Möbius（Meres－ fanna Mamritins u．Seychellen，1）．14；，pl．xv，figs．6，7，1880）．Miers，Cmst． Alert，pp．198，18：2， 1881.
Micippa philyravar．mascarenica Kossmann，（op．cit．，1．7，pl．ur，lig．2），Len\％amd

Micippa superciliosa Haswell，lroc．Linn．Soc．N．S．W．，IV，p．L46，pl．XXI，lig．2． 1879；Amn．Mag．N．H．（5），v，p．147，1880；C＇at．Austral．Crust．，p．25，1882， var．Miers，op．cit．，p． 199.

Micippa mascarenica Miers，Amı．Mag．Nal．Hist．（亏），Xv，p．7，188亏；Challenger Rent．Zö̈l．，גvir，p．69，1886．Walker，Jomr．Lim．Soc．London，xi，p．109， 1887.
Anuritius；H．A．Ward；one male specimen of the typical form （ $16: 317$ ）．Lemgth to base of mostum， 1 s millimeters；withth， 16 ；length of rostrum， 9 ；length of rheliped，about 20 ；length of first ambulatory leg，abont $2:$ millimeters．
（＇helipeds smooth，rovered with indistinet，light－colored spots．I＇alm slishtly eompressed，not dilated．Fingers with a very narrow hiatus at base when closed．

A common Last Indian species．

Micippa spinosa Stimpson．

Micippa spinosa Stimpson，Proc．Acad．Nat．Sci．Phila．，Ix，p．218，18ä7．Maswell， Cat．Austral．Crust．，p．26，1882．Miers，Am，Mag．N．11．（b），Nv，p．8， 1885 ； Challenger Ropt．，Kö̈l．，xvir，p．70，pl．vin，fig．®̈， 1886.
P＇aramicippe spinosa Miers（Cat．Crust．N．Z．，p．9，1876）；Crust．Mlert，pp．182，199， 1884．Haswell，I＇oe．Limn．Soe．N．S．W．，IV，p．447，1879；Ann．Mag．N．II．（5）， V．p．147，1880．
lort Jitekson，Instralia；two males and two females；Iustralian Museum，Syducy（17016）．

Inhabits New $/$／ealand also．
Micippa thalia aculeata（Bianconi）．
Jisa（Micippa）thalia de Maan，l＇auma Japon．，Crust．，p．98，yl．xxur，tig．3，and pl．G， $18: 39$（non Cancer thatia llewhst）．
Micippa aculeata Bianeoni（Mem．Acead．Bologna，III，p．10：3，ph．x，fig．2，1851）；Hil－ qendorf，Monats，K．Ak：d．W＇iss．Berlin，p．7xi，1878．
Micippe humii Stimpson，Proc．Acat．Nat．Sci．，Phila．，p．217，1ג̈ন ；de Man，Jour． Limn．Soe．Lomlon，xxif，P．20， 1887.

Micipm thatian var．hami Miers，（hust．Alert．Pp．524，517， 1884.
dapatn：H．Laomis．Recoteled also from（＇hinese Neas and Indian Oen：1n．

LIST OF SPECIES OF MAIIDÆ NOT REPRESENTED IN THE COLLECTION OF THE U. S. NATIONAL MUSEUM.

EASTERN ATLANTIC OCEAN.

west coast of norti america.
Chorilibinia angusta Lockington..

(Herbsticlla) tumida (Stimpson)-......................... . . Manzanillo, Mexico
(Horbstiella) parvifrons Randall West Coast of America, Cape St. Lucas
Notolopas lamellatus Stimpson
Panama: Manzanillo

WEST COAST OF SOUTH AMERICA.

EAST INIIAN REGION.
Egeria arachnoides (Rumph).. Anstralian, Indian, Malaysian, and ('hinese sems, to 19 fathoms.
Chorilibinia gracilipes Miers.
N. and NE. Ausiralia; New Guinea
Herbstia crassipes (A. Milne Edwards) .. Australia
Maia spinigera do IIaan. .. East Indies
\qquad
? rosselii Audouin - . - - . - . Virypt
Paramithrax ursus (Herbst) .. "South Se'a"
verrucosipes (Adams and White) :..................................
barbicornis (Latreille)
Australia; New Ifolland
I'aramithrax animardii Milne Lidwards Now Zealand
spinosus Miers Norfolk 1sland
mimor Filhol. Cook Strait, Now Zealand
(Leptomilhrar) austruliensis Miers(Leptomithrax) brevirostris Miors Locality unknown(Leptomithrax) compressipes Miers(Leptomithrax) spimutorns Haswell..... Tasmania; King (ieorge's Sound
Chlorimoides longispinus biluberenlatus Miors. Amisante amd l'vovidence
sromps, 19 to $2 \mathscr{y}$ dathoms
acanthomolus (Alams and White) Borneo
aculcutus (Mine Lidwawls) Seas of Asia
aculeatus urmethe (Miers).......... N. aud NE. Australiat, is to 11 fathoms
halimoides (Miers) Oriental seas
eоpиingeri (Haswell). N. and E. Australia; Japantemerostris (Haswelh)filholi (A. Milne Edwards).
Acanthophrys cristimanns A. Milne Lidwirds. pencispine Miers.
Noukahiva; Marquesas Ovalan, liji lskamels
Torres strait
Stowart Island
Pisa brevicornis A. Milne Edwards Madamasear
evetifrons A. Milno Edwavels. Vamzilar
Hyastenus arics (Latreille) Coromandel
spinosus A. Mihne Edwards Archipel Viti; Mozambique
sebre White................................ Dhilippines; Amboina; Indian Oceanplanasius (Adams and White)...... Chineso Seas; N. and NE: Australia;Ningrapore.pleione (llerbst)Oriental Seas; Morgui Arehipelagoory. A. Mihe Edwards....... Ihilippines; Australia; New Caledonia;Ningapore; l'rovidence 1sland.gracilirostris Miors.Fiji lslands
oratus (Dana).. Sandwieh Islame ; African or Eagle lslands, 10 fathoms;Poive laland or lale des loches.sinope Adams and WhiteChina Sea; lhilippine lslands
comrexus Miers. lort Molle, N. F. Australia, 14 fiathoms
hilgendorfi do Man Morgui Archipelago
brockii de Man Amboina
temuicornis l’ocock. k.
Chima soa, 95 to 30 fathoms
fascionlaris (Kramss) Natal
Lepidonaxia defilippii Targioni-Tozzotti Java
Scyra compressipes Stimpson dapar, 6 to 50 fathoms
Naxia serpulifera Milno Edwards N. and W. Australia N. and W. Australia
hirta A. Milne Edwards. East Atrica; Indian Ocean East Atrica; Indian Ocean
hystrix Miers Moluceas, Amboina, 100 fathoms
clegans (Miers) Near Kii lslamds, 140 fathoms
taw'us locock. (Chima sea, 32 fethoms
Micippoides angustifroms A. Milno Edwarts. Fiji
longimantes Haswell. Port Jackson, Australia
Eiurynome longimana Stimpson.Cape of Good llope, 10 fithoms
erosd A. Milne Edwardsstimpsonii MiersIrovidence Reef, Masearenes
Schizophrys damat (Herbst) ?W. Anstralia; PAmerica
Cyclax perv!i Dana litts Island, Kingsmill Group
spinicinctus Heller.lied Sear
(Cyclomaia) sreborbicularis (Stimpson) Gaspar straits(Cyelomait) merguritata A. Milne Edwards.. W. Australia; Now Caledonia;Sandwich and Viti Islands.

Paramicippa tuberculosa Milne Edwards.
S. Australia

EXTRACT FROM AN UNPUBLISHED REPORT OF IOR. WHIIIAM STIMPSON, ON THE CRUSTACEA OF THE NORTH PACIFIC EXPLOLING EXPEDITION, 1853 TO 1856.

> Leptopus longipes (Herbst) Latreille.*

Cancer longipes Herbst (non Lin.).
Leptopus longipes Latreille; Guérin, Icon., pl. x, fig. 3.
Ligeria herbstii Milno Edwards, Hist. Nat. des Crist., I, p. 292.
Egeria longipes Adams and White, Voy. Samarang, Crust., p. 7.

Among a large number of examples of this species collected by the expedition there are two adnlt males which differ so much in the size and character of the chelopoda from the specimens ordinarily found and those hitherto figured and described, that they might well be taken for a distinct species. The carapax of one of these specimens is 1 inch long and 0.8) inch broad. Proportion of breadth to length, $1: 1.17$. The chelopoda are large and robust, 1.8 inches in length. Hands much inflated; fingers gaping posteriorly; movable one with a large tooth at its inner base.

In nine-tenths of the male specimens taken, many of which are at least two-thirds as large as that above described, the hands are slender and weak, like those of the female; this (immature) form is that represented by Guérin's figure. In the sterile females, which occurred in equal numbers with the ordinary females and the males, the abdomen is flattened and only two-thirds as wide as the sternum.

In all of our specimens the preorbital tooth is very small; the orbits are intermpted above by two deep fissures, and below by one wide fissure divided into two by a small tooth. The projections of the carapax are rather tubercles than spines. In color, the body is light reddish above, mottled with white; below, white; feet, whitish annulated with red. The figure given by Milne Ldwards in the "Regne Animal" is less characteristic of our specimens than that of Guérin.

Dredged in the IIarbor of Hong Kong, China, on a muddy bottom, at the depth of 6 fathoms.

[^14]
Chioncecetes Behringianus stimpson.

Chionactes behringianus stimpson, l'row. bost. Soo, Nat. Hist. v1, St, Fob., 1857; Bost. Jour. Nat. Hist., V, H9, 18:7.

Gersterker has given :m exellent tigure of this speries in the . Irehiv tior Naturgesehthte for Lsiti, hut his paper does mot appear to have been published before . Ipril, 1 Siन; our mame has therefore priority. The entomolowist of berlin does mot seem to have been acopuinted with kroyen's gemus (hionocetes, to which the speries certamly belongs; In fact it is most closely allied to the type C. opilio.

This speces was found in behring stratis, and morthward as far as the expedition penetrated; matng specimens having been dredged by Capt. Rodgers. It also oceurred to southward of the strate, as far as Mativi lslamd. It is found ouly in deep water, and on bottoms more or less modey. In a livinss state it wats of a light briek red color above, otten irdescent: below, yellowish-white: sides of teet shining white. 'The posterior teet are short. 'The dimensions of the carapan of a large

In Gerstercers tixume the surdace ot the caraphe posteriorly, and the upper sides of the ambulatory feet, are represented as much more rugose than in atho of our specimens.

Chiometertes is evidently nearest allied fo Myas, although probably a higher form. In fomms speomens the resemblate to $/$ I! noticed. H!ges chilemsis should probably belong to it. It has considexable resemblane in seneral appearamere to selacia of the opposite extremity of the Imerie:an continent, ot which it may be considered the analogne.

Hyas latifrons Stimpson. \dagger

Hyas cometutus stimpson (non Leach), Bost. dour. Nat. Hist., vi, pr, 4en), 18:37.
This speceies difters from 11 . contretetus of the Noth Athatio in the tollowing ehatacters, which are found to he eonstant upon examination of momerous sperimens of both torms. The body is thicker atud much broader anteriorly across the post-orbital apophyses; the angles ate all more ohtuse. The dorsal surfare is maked with fewer tubereles, which are also much latger atmi more obtuse, most of them being rather swellings than warts. The rostrom is shorter and less acote; and the supertor tissure of the orbit is always elosed, its margins owerppping.

It is subject to comsidemble ramiation in some of its chataters, pardernamy in the ereater or hess appoximation of the forks of the rostoum, which maty be so chosel! appressed against eath other as to overlat. of may diserge so as to leave a bamow V-shaped space between. They diveree most in the young. The lect and interior surtace ot the bedy aredensely hirsutem some individuals and quite smonth in others.

The color is a dusky brick-red above; whitish below. 'The dimmsions of a male from the Aretice Ocean, north of Jering Straits, are: Length of carapax, 2. 85 ; greatest breadth, 2.12 ; greatest post-onbital breadth, 1.75 ; brealth at constriction, 1.59 inches.

This species was fomd by us in great mombers in all parts of the North Latefice Ocean north of the parallel of 50?. The following localities may be mentioned: Sea of Ochotsk; Avatseha lay and off Chepoonski Noss, coast of Kamstshatka; off Matwi Island; in hehring Straits, and in the Aretic: Ocean. It ocemred on all kinds of bottom, from low-water mark to a depth of 50 fathoms or more. Among several hundred specimens of this species, not one of $I I$. aroneu was fomed, although this latter speries is said by brandt to ocour in the seat of Ochotsk.

The specimens from the waters of Λ vatscha Bay, which are somewhat brackish, do not differ from those taken in the open sea.

Brandt, in the Koölogy of Middendorft's Reise in den Sibiriens, Part 1, page 78 , describes a $H y / 1$ firom the Sea of Ochotsk, which he considered a variety (alutrecus) of $I I$. coarctatus. He states, however, that it differs from the A thantic form in the somewhat more strongly granmlated (stairker chagrinirte) upper sufface of the carapax ; in the broader posterior side of the body, and in the broader hands. These characters are certainly not those of our species, and for this reason we have not applied to the Pacific form the name alutacens. In some of the larger specimens the surface is indeed grambated to some extent, particularly at the summits of the swellings; but specimens of ordinary size are always much smoother than any from the Λ tlantic. It is not impossible, therefore, that there is still another species in the North Pacific.

Genus MICROPISA Stimpson.*
It has been found necessary to institute a new genus for the reception of a small lisu like crustacean which was taken in comsiderable numbers at the Cape de Verde Islands. It has a short and broad ovate carapax and flattened rostrum. The orbits are much less complete than in Pisa, and have a single fissure above. It resembles seyru in many respects, but the external antenne are not concealed beneath the rostrum. The outer maxillipeds resemble somewhat those of I'isa; but the outer angle of the almost heart-shaped third joint is strongly projerting, and there is no noteh for the reception of the fourth joint; the palpus is broad.

> Micropisa ovata Stimpson.

Proc. Acad. Nat. Sci., Philit., Ix, p. 217, 1857.
In this little crab the carapax is rather depressed, and but little longer than broad. The regions are sufficiently prominent, but generally smooth and rounded; there are, however, three inconspicuous pro-

[^15]tuberances on the genital, and three on each branchial region. Surfice pubescent, the more prominent portions often surmounted by a few arred setid. The antero-lateral marqin is swollen, but without teeth, except that immerliately behind the postorbital tooth, amd a small conical one at the lateral extremity of the branchial rewion. The chebopoda of the adult male are robost; the merus toothed along the angles; the hand smooth, somewhat compressed, amd sumomed abose by a ridge. Posterior four pais of feet pubescent, the merus with a small tooth at the smmit and one on two near the base. Length of carapax, 0.4 ; width, 0.38 inch.

Several specimens were taken in the harbor of Porto Praya, Cape de Verde lstands. They were dredged on a nullipore bottom at the depth of 20 tathoms.*

Micippa spinosa Stimpson. \dagger

Body depressed; proportions of the carapax, breadth to length, as 1 to 1.3 ; upper surfare meven, crowdedly tuberentated and setose. Spines of the back few in mumber, but long and slender, with blunt extremities. There are three spines on the median line, two of which are on the gastrie region, and one, the largest of all, on the eardiace. A large spine on each side on the branchial region, between which and the postorbital tooth on the lateral margin, there are nine spines, irregular in size and distance. Posterior margin spinulose, three or fome spines near the middle being larger than the others. Rostrm inclined at an angle of 45° and bent at its extremity into the vertical plane; it is dilated at the extremity, the corners being broadly rounded amd mimutely crembated; at the midde there are two diverging teeth. Ocular pedumeles rather short, in length little more than twice their diameter. Orbit with two fissures above, the inner one closed, the outer open, separating the postorbital tooth. The pterygostomian (regions) are finll convex, tuberenlated, and not setose. The third joint of the outer maxillipeds is sreatly expanded at its antero-exterior angle; the serond joint is marked with a longitudinal furrow near its outer margin. The basal joint of the onter antenne is very broad, its anterior tooth short, with nearly smooth margin; second joint oblong, compressed, with the margin eiliated with long hairs. Chelopoda equalling the carapax in length, smooth and glossy, fawn colored, with white bases; carpus and hamd minutely and obsoletely granulated; fingers with black tips. Ambulatory teet eompressed, thickly hairy, the merus with a small terminal spine abose. Color of the boty pale reddish, rendered indistinct by an aceumulation of sordes retatined by the setare.

[^16]Dimensions: Length of the carapax, 0.75; ©reatest breadth, 0.59; distance between tips of postorbital teeth, $0 . \mathrm{f}^{\circ}$; length of first pair of ambulatory feet, 0.86 inch.

Specimens of this species were dredged on a muddy bottom in 6 fathoms in the harbor of Sidney or Port Jackson, Australia.

Micippa hirtipes Dana.
Micippa hirtipes, Dana; U. S. Exploring Expedition, Crust. I, p. 90, pl. 1, fig. 1, 1832.
The following deseription is drawn up from suee imens preserved in spirits; it may be useful, as Itand's specemens were dried: The body is moderately depressed; carapax minutely and somewhat unegually tubereulated above, without spines, exept a small one at the bramelial region on each side and a marginal one in front of this; these are contimmons with the series of teeth on the antero-lateral margin. The posterior margin is denticulated with gramular tubereles somewhat larger than those of the surface; the merlian two leeing larger and dentiform. The antero-lateral margin corves upwarl a little and shows nine minute teeth, two of which in the depression between the hepatic and branchial regions are much larger than the others. The superior margin of the orbit is two fissured. The eye peduncles are exposed throughout their length and fully reach the tips of the teeth formed by the external angle of the orbit. Rostrum broader than long; its upere surface with two convex ridges; extremity broader than the base and four-toothed, the middle teeth being short, triangular, and blunt, the lateral ones sharp and curved upward. The movable part of the antemate is at the base of the rostrum, separated from the orbit only by the narrow projecting terminal erige of the basal joint, whieh, seen from above, forms a slender tooth. Below the surface of this basal joint is smooth.

The upper surfae of the body is hairy, the ambulatory feet densely so; hectognathopoda also hairy. First pair of ambulatory feet long. Dactyli much curved. The dimensions of a female specimen are as follows: Length of the carapax, 0.59 ; greatest beadth, 0. . S inch; proportion, $1: 1.23$; length of first pair of ambulatory feet, 0.64 inch.

Our specimens differ somewhat from Datats figure in the greater prominence of the tooth of the basal joint of the antemme, which projects so as to appear conspicuonsly above. The speries is, however, undoubtedly the same. It approaches M. philyra in character, hat is more hairy, the margins with smaller teeth, the teeth of the rostrum shorter and the outer ones recurved, and the movable part of the antema not widely separated from the orbit. It has also some resemblance to M. platipes Ruppell, but has not the sharp terminal rostral teeth of that species.

Our specimens were taken at the islands of Loo Choo and Ousima. Those of the Exploring Experlition are hrom Tongatabu.

The dapanese specimens of this species are said by De Haan to differ from the original sperimens of ('ancer thalia described by Herbst in wanting the two spines on the posterior masin of the carapax, and in having a spine on the merus of the ambulatory feet near its superior extremity. In all of our specimens from the Chinese Sea the characters are the same as those found in De Hatn's ligure and deseription, while none present the above-mentioned characters of C. thatia. Nor do they agree with the deseription of Herbst's specimen given by Gerstecker in the Archiv fiir Naturgesehichte, vol. xint, p. 109. Under these circumstances we have been led to consider the species distinct, and to propose a new name for De Haan's crustacean.
II. thaliu Krauss, which iuhabits the coast of South Africa, seems also distinct from the Herbstian species.

Naxia dicantha De Hatn.t

In living specimens of this species the body is eovered with sordes; when cleaned it is found to be of a yellowish-brown color above and below, the feet ammated with pale puplish-brown. There is a great diversity in the size of the hand and the shape of the fingers, shown between large males and those of ordinary or small size, as mentioned by De Haan.

The diversity in the shape of the rostrum in Sexia serpulifera and 1. dicauthe does not seem of sufficient importance to warant a generic separation. The deep orbits, with peculiar fissures widening at the bottom, are characteristic of both; although in N. dicantha the inferior fissure is much broader than in the other species. There is, however, in the Japanese species a notch in the margin of the merus of the hectognathopod at the insertion of the earpus; while in N. serpelifere, judging from Guérin's figure, that margin is entire.

Taxiel diconthe was taken by the experlition at the following localities: llong Kong I Iarbor, aboudant on shelly bottoms in 10 fathoms; northern China sea in 20 fathoms; Kagosima Bay, Japan, in 20 fathoms, shelly bottom.

Scyra compressipes Stimpson.

Proc. Acad. Nat. Sci. Philit, ix, p. 218, 1837.
Carapax irregularly orate, proportion of breadth to length 1:1.27 (rostrum and lateral spines included). It is rather depressed posteriorly, well contracted between the hepatic and branchial regions. Gastric region ample, rounded above, and nearly smooth, with the exception of two or three minute tubereles along the median line and

* Equivalent to Micippa thalia aculeata (Bianconi). See page 92.-M. J. le. † See page 85.
one on either side posteriorly. There is a sharp tubercle on each side at the hepatic region, and a short, sharp spine, extending horizontally and somewhat curving forward, at the summit of each branchial region. Cardiac and intestinal regions rather small and only moderately elevated. Posterior margin with a slightly prominent tubercle at the middle. Rostrum scarcely as long as broad, laminiform, scarcely contracted at base; horns shorter and less acuminate than in S. acutifrons. Preorbital tooth prominent and acute, but rather short. Parts about the head below much as in S. acutifrons. The tooth forming the external angle of the orbit is deeply concave below, leaving the orbit at that point widely interrupted. Margin of the pterygostomian region with three small, obtuse, lobe-like teeth; a deep sinus separates this margin from that of the side of the carapax. Feet all much compressed. Merus of chelopoda four-sided or prismatic, obtusely tuberculated along the angles; superior edge with blunt teeth near the base, and one prominent sharp tooth near the extremity, being one of three large teeth surrounding the insertion of the carpus. Superior and inferior edges of ambulatory feet somewhat setose; the penultimate joints of these feet, however, are smooth and slender. In this and the other known species of the genus the sete are stout and clavate in form. The dimensions of a sterile female are: Length of carapax, 0.65; greatest breadth, 0.51 inch.

This speeies was dredged in the IIarbor of Hakodadi, Island of Jesso, Japan, on a bottom of weedy sand, at the depth of 6 fathoms.

Only one other species of the genus is known, S. acutifrons Dana, which inhabits the opposite coast of the North Pacific.

Dione affinis de Haan.*

The only specimen taken is young; the dimensions of the carapax being, length, 0.57 ; greatest breadth, 0.41 ; breadth between preorbital spines, 0.35 inch. Proportion of this interorbital breadth to the length, $1: 1.63$. This proportion, in de Haan's figure, is $1: 1.93$. Our specimen differs from those described by de Haan in its more depressed form, its narrower and smoother carapax and broader front. There is no tooth within at the base of the movable finger, and none on the outer base of the hand. The horns of the rostrum are longer than in the adult I). affinis, and the abdomen of the male is not dilated near the base.

Having no opportunities of comparing our specimen with the young of the species to which it is here referred, we do not venture to consider it distinct.

It was taken in a harbor on the northwest coast of the Island of Ousima.

[^17]
Mithrax suborbicularis Stimpson.*

> Plate vin, Fig. 巳.

Proc. Acad. Nat. Sci. Phila., ix, p. ㄹ18, 1857.
This speries belongs to the division Mithrox tronscersenur of Milne Edwards. The following deseription waken fiom aterike female, the only specimen found: Carapax rounded, not narowed anteriorly; length and breadth equal; margins dentated with teeth of moderate size. Ciastrie region broad and convex. Cpper surface with about thirty small, nearly equidistant, prominent warts, the interspaces granulated. Rostrum formed of two small, sharp, triangular, diverging horns, outside of which on either side project three slender spines belonging to the anterior manwin of the basal joint of the antemne. Eyes large. Superior margin ot orbit with two deep lissures, and three teeth, the middle one of which is short, truncate, with a trifid clove-like apex. The tooth at the external angle of the orbit is rather long and shamp, curving forward; immediately behind this there are two teeth on the antero-lateral marsin just in fiont of the hepatic constriction. Behind this comstriction on the lateral margin of the carapax there are six teeth, the posterior ones very small, and paced rather above than on the margin. At the posterior extremity of the shell there are two small, blunt submarginal teeth. Outer pterygostomian regions with gramulated surface upon which arise a few tubercles. Hectognathopoda and the adjoining triangular surface smooth and ungramulated. Fossae of the imer antennar excavated in the inferior side of the horns of the rostrum. Chelopoda small, slender, smooth, and glossy. Ambulatory feet hairy above; three of the joints spinulose; below smooth. Those of the posterior pair nearly smooth above.

The color in the preserved specimen is white, tinged with reddish brown. Dimensions: Lengeth of carapax, O.s; greatest breadth, the same: breadth between tips of the langer spines of the antemae, 0.t; between tips of the spines at outer angle of orbit, 0.57 inch.

It was taken at Nelio Lslamd, Ciaspar Straits, Dy Mr. L. M. Squires of the steamer John Hancock.

Eurynome longimana Stimpson.
plate viif, Fig. 1.
Proc. Acad. Nat. Sci. Phila., is, p, 200, 18 Bī.
('arapax with the regions distinet but not deeply separated; proportion of breadth to length, 1:1.3s. Vpper surfare rugose, the rugosities consisting of rommed, thattened warts, somewhat irregular in size, and sometimes contluent. I large triangular tooth behind the orbit at the hepatie rewion: five teeth on the banchial region, four of which are

[^18]marginal or submarginal, and one erect at the center of the regionTwo small spines on the gastric region. Cardiac region rather prominent, oblong. Posterior margin with a slight protuberance on each side. Rostrum deeply bifid; horns long and sharp, somewhat divergent. Orbits and antemna much as in 5 . aspera, exeept that the superior orbital fissure is not open. Hectognathopoda roughly gramulated. Chelopoda of male nearly twice as long as the carapax, granulated and somewhat spinous; hand rather slender, with three or four stout spines toward extremity on superior inner margin. Pincers deflexed. Ambulatory feet bicarinate above, the carima most distinct on the merus, where they are each 3-4 toothed.

In the female the carapax is pubescent and more convex than in the male; the chelopoda are very short, and the hand scarcely twice as long as broad.

Colors: Carapax above dull red; feet whitish, or variegated with pale red. Eyes small, black. Dimensions of ô, length of carapax, 0.47 ; breadth, 0.34 ; length of rostrum, 0.12 ; of chelopod, 0.8 inch; of \circ, length of carapax, 0.39 ; of chelopod, 0.3 inch.

Dredged in 10 fathoms, on a rocky bottom, among Gorgonis, etc., in False Bay, Cape of Good Hope.

Hyus lyratus Dana, ơ, $\times \frac{1}{2}$.

Fig. 1. Lepteces ornctus, gen. et sp). nov. of \times 號.

Fig. :. Cyclax (Cyclomata) subortricularis (Stimpson), f, \times 。.

NOTES ON ERIAN (DEVONIAN) PLANTS FROM NEW YORK AND PENNSYLVANIA.

BY
D. P. Penhallow, I. R. S. C., McGill College, Montreal.
(With Plates IX-XIV.)
Among a large number of Erian plants submitted to Sii William Dawson and myself by Mr. C. S. Prosser, of the U. S. Geological Survey, were several which seemed to admit of ready identification. The larger part were, however, of a doubtful character, in small firagments, or appeared to be hitherto undeseribed, and thus demanded special examination. The results obtaned by me are embodied in the following notes:

The history of the specinens, as derived from Mr . Prosser, is as follows:

Nos. 3, 6, and 7 are fiom Skumemunk Mountain, Orange County, N. Y. The rocks from which they were obtained are designated simply as Devonian.

No. 45 is from the same locality, but derived from the collection of Prof. D. S. Martin, of New York City.

Nos. $8,9,19$, and 36 are from the Upper Chemung of Lanesboro, Susquehanua County, l'a., and are deposited in gray mica slate.

Nos. 15,28 , and 32 are from the Ifamilton Group of West IIurley, Ulster County, N. Y.

Nos. 21, 24, 27, 37, 38, 39, and 41 wre from the Genesce shale of Lake Canandaigua, N. Y.

Nos. 25 and 42 are from the Genesee Shate of Pemn Yan, N. Y., while No. 20 is from the Marcellas Shales at Union Springs, Cayuga Lake, New York.

Owing to the very imperfect nature of much of this material I have deemed it expedient to separate all such from the more determinable, and have thus brought the whole under the two general heads of (1) dubious species and (2) determinable species.

DUBIOUS SPECIES.

A number of the specimens consist of small fragments and show either so little structure or so complete an absence of it as to render it inexpedient to assign any definite positions to them at the present time, more particularly as they can not be made to harmonize with any
previonsly described species, althongh in one or two cases there are certain general resemblances which may prove to have greater significance when more complete material is secured. It will, therefore, be sutficient to place their descriptions on record.
No. $\because 4$ is a fragment of a small, branching plant of very imperfect preservation and obseme characters.

No. 45 is a flagment of some large plant, which shows a number of coarse, parallel strie, the fragment being too small to exhibit their terminations. I should be inclined to refer this to Calamites transitionis Giopp, or to some closely allied species.* Comparison should be made with C'alamites ramosus Artis., and C. pachyderma Brongn.; \dagger also with Bornia radiata Brong. \ddagger and B. serobiculata Sternb. \S

Nos. 6 and 7 are probably structures of the same nature. They represent aggregations of similar, simple, straight filaments about 1.5 to $2^{\text {min }}$ in diameter, disposed in a parallel manner. They were originally structures of considerable volume, as their transverse section is nearly romid. It is not unlikely that they represent roots, but it is impossible to assign them to any particular plant.

Nos. 27 and 37 are fragments of similar linear, branching stems, 11 and $12^{2 \mathrm{~cm}}$ long by 3 and 5^{mm} wide. They show no structure whatever and can not at present be referred to any species.

No. 38 is a fragment of a stem without branches, 8^{cm} long and 1.5^{cm} wide. It shows no structure beyond four longitudinal and parallel ridges or nerves, which are about equidistant. It is probable that this may be a fragment of the same species as No. 25.

No. 41 is a narrow stem 1 2"m long and $3^{m m}$ wide, showing no lateral members for a distance of $\boldsymbol{f}^{\text {cun }}$ beyond which there appear, on opposite sides, what are either the stmups of branches, or more probably, perhaps, the basal portions of leaves. They are distant 3^{cm}. The specimen bears a slight resemblance to Parke decipiens, but the relation can not be satisfactorily established.

Nos. $\because 3$ and 40 are of the same nature. Each is a small fragment of a stem showing near one end a pair of branches or leaves, of which ouly the basal portions remain. The stem is $4^{m m}$ wide. The specimens are altogether too fragmentary to admit of their reference to any species, but in this comection reference should be made to Colamites radiatus $\|$ Brongn. (Arehcoculamites, Sternb.), as it is quite possible these fragments may be parts of this plant.

[^19]Nos. 21 and 39 are two short fragments 7^{mm} wide and 7.5^{emn} long. Wach shows near its base a short stmop of a lateral membre, and alternately with this at the top, a lateral member which is $3.5^{\text {ein }}$ long and $4^{m m}$ wide. The surface shows no structmal makings beyond three longitudinal strixe. It is very probable that these are fragments of a fern stipe of species similar to No. 25, although it is also to be observed that they bear a certain resemblance to highly altered specimens of Psilophyton nerve recently brought under my notice.

No. 25 is an imperfect specimen, of which one side is wholly wanting. It is 1.5^{em} wide and 22^{cm} long. On one side it shows the basal portions of five pimae with enlarged articulations. They are distant 3.5 cm and 6^{cm}. The surface shows two coarse longitudinal ridges and numerons fine strite. This is an undoubted Cyclopteris,* and closely resembles it specimen in the Peter Redpath Museum of McGill College, marked U. Acadica.

No. 26 consists of narrow, leaflike filaments $\mathscr{y}^{\text {mun }}$ wide at the base, but broadening upward to 4^{mm}. At a total length of 9^{cm} they are incomplete. They show no structure beyond two nerves. They are strongly suggestive of the leaflets of a Cycadaceous plant. They are also equally suggestive of the leaves of schizoneura paradoxa Sch.t or of S. Meriuni Sch. \ddagger with which comparison should be made. |PI. Ix, Fig. 3.]

No. 3 consists of linear filaments 2 to $4^{\text {mm }}$ wide, with a somewhat conspicuous midrib or axis. A small fragment on the opposite side of the stone shows a branching similar to that of Ineliserites, but as it is not repeated it might also be that of a root. It is a very problematical specimen, which requires further material for determination. It is not unlikely that it represents a poorly preserved specimen of IIaliserites Dechenianus. [Pl. Ix, Fig. 4.]
No. 42 consists of a tuft of narrowly linear, simple filaments, apparently leaves, about $0.75^{m m}$ in diameter and upwards of $14^{\text {con }}$ long. No structure is apparent, and the specimen is altogether too incomplete to admit of reference to a particular species. [Pl. x, Fig. 5.]

DE'EREMINABLE SPECIES.§
Specimens numbered $8,9,16,17,18,19,20$, and 36 present many features in common. They all agree in their regular dichotomous divisions and linear ramuli. None of them show signs of fructification, while some are distinctly costate and others are not.

[^20]G pon an informal examination I was inclined to regard them as altogether distinet from Indiserites Incehenianns (iäpp), to which certain of them hid been refered: lout, alter carofally deseribing eareh separately and comparing them with one amother, it became evident that a generie relationship existed between them, while repeated examinations only tended to strengthen the view that some at least eombld be identitied with Maliserites, while others mast be nearly related. In order to ascertain their proper relationships it will be desirable to examine the chataeters of the gemus Heliserites as employed by Nternberg and Couppert and compare this gemus with the modern genera Heliseris and Dictyoter in order to aserdain upon which it was based.

Sternberg* applied the following characters to the gemus Haliserites:
Frons plana, membamacoa, costata, sporangia capsularia in lamina fromedis ad costam coacorvata.

Göppert, t in assigning the species Dechemiomus to this gemus, describes it in the following terms:

Fronde phamatemuatim dichotome ramosa, ramis ramulisemo linearibus costatis arqualibus apice quadodue circinatis, costis mediis.

From this description, as also from his tigures, it seems probable that he confombled Isilophyton with Haliserites. In latet some of his plants refered to the latter have been shown to belong to the former. With respect to what belong properly to Haliserites, he elsewheref speaks of both broad and narrow forms. It is therefore most probable that this genus was based upon the modem species Haliseris didhotoma Sprengel, sas it shows also both narrow and broad forms, and the agreement with Haliserites is very close thonghont, but the Haliseris dichotoma of sprengel is now Iotyoter dichotome of Lamoureoux, a fact which it is important to keep in view, while we should also not lose sight of the fact that certain species of Dictyota. e. g. I). dimaricata. Agh., show reebred terminations, which, with the dichotomous division, give the plant the appeatance of many specimens of Psilophyton. Hatiseris and Dictyota difter in their external characters, apart from the fruit, in the faet that in the former there is a distinct midrib and the terminations of the ultimate ramifeations aro simple, while in the latter the ramuli are not costate and their terminations are gemerally bitid. Both agree in having a regularly dichotomons trond with more or less linear divisions.ll This, together with the transter to Psilophytom of a number of plants originally refermed by (iöppert to Maliserites, seems to render it desimble to wive a fresh dedintion of the charaters which distinguish this latter genus.

[^21]In the light of these data, it becomes possible to separate our fossils into two groups. Nos. $8,9,16,17$, and 36 are rostate throughout and show single terminations of the ramuli. Their affinities are thus clearly with IFrliseris and they must, therefore, be referred to the genus Haliserites. Nos. 18, 19, and 20 are not costate and the terminations of the ramuli are distinctly bifid. Their affinities are with Dictyote and they consequently should be referred to a related genus.

Brongniant* formerly referred a large number of fossils of diverse chatacter to the gemus Fucoides, some of which he bronght under the division Dictyotites from the general resemblance they bore to Dictyota. These have since been variously distributed among different genera, so that the name Dictyotites has lost its function, and so far as I am aware it is now altogether obsolete. It therefore seems admissible to reintroduce the name as a gencric one, under which specimens 18,19 , and 20 may be described.

Haliserites Dechenianus Göpp. Plı, x, Fig. 6.

This species is represented in No. 17 by an imperfect plant answering to the following:

Froud dichotomous; divisions linear $3.5^{m m}$ wide; angle of divergence 40°; midrib prominent throughout, margin wavy.

The specimen shows no normal terminations of any of the ultimate divisions, but its general characteristios are otherwise so well defined that it is quite safe to refer it to the above species. Mr. Prosser informs me that this fossil was identifier by Lesquereux as a fruiting frond of II. Dechenianus. This I consider inadmissible. The parts mistaken by Lesquereux for fruit are, as the specimen clearly shows, nothing else than alternate elevations and depressions in the marginal portions of the ramuli canserl by a wavy margin such as is not uncommon among membranaceous alge.

Haliserites Dechenianus (iöpp., vir. lineatus Pn., nov. var. Pl, x, Fig. 7.
In No. 8 the frond is regularly dichotomous throughout; divisions linear, sometimes somewhat narrower at the base, chiefly 2.25^{mm} broad. The divergence of members is from 30° to 44°, chiefly about 40°. Midrib well defined throughout, but small. Margins regular.

This appears to correspond to the narrow form of (xöppert's H. Dechenitums and, according to Mr. Prosser, it was so identified by Lesquereux. It would seem better, however, in view of the conspicuous differences between it and the preceding, to distinguish it by a varietal name, for which I would suggest the one given above.

This is represembed by the /wo sperimens, Nos. 16 and 36 , whieh are mblouhtedly ouly forms of the same sperios. In No. Iti, tho fromd is

 Gostato thronghout, maruins strict.

In No. abthe fomel is dichotomms, divisions limear. lrimeipal rammi

 bato throughont, masins regular.
 irmms, but I think the difterence too ereat.

No.! is a sperimen which presents, at lise sight, very peroliar feallores. If is somewhat remathable for the wide diveremere of its prompal members, for an :pparent stipe and the peralar form of one of its chadedivisions. On chose cabmination, it is seem that the otherwise regulat division of the ford is distorbed by at abomomatewth ill obe of ifs primeipal segments. 'Therapparent stipe resolves itself into the midrih, fom which the materimat pats haw been mote or hess eomphetoly separated hy deosy, as is obsoms from detached fratments
 pressed lime, showing the collapse of what was oriminally a somewhat

 a dichotomons trond, divisions limear, somedimes boadening upwate

 if the basal portions. Marwin regular.

 leri, which shows the same narrow, stipe like base with the Chomdriformis divisions of the primeipal part of the trond.

In No. I! fhe fomis are dichotomoms, divisions mumerous and nar-
 divisions for the most pat obseme lat obvionsly bitid, the lobes short and rommded.

In this fossil the natrow rammli are so massed ats to bbseme the mormal division, but fom the termintatons of the ramme it is probably
 almit of detominime the meseme of a midrib. Its whold aspert is so
strongly suggestive of Dictyotu fusciol/ Lamour.* that I have deemed it advisable to assign it the above name.

In No. 18 we also have a plant which is in all probability the same species.
Fronds dichotomons, ramuli narowly linear, 1 to 1.5 mm wide and not costate, aggregated in tufts. This is a very imperfert specimen, but I think there ean be lit tle doubt as to its identity with the preceding.

$$
\text { Dictyotites maximus, sp. nov. I'l. XI, Fig. } 11 .
$$

No. 20 is a fragment of a plant so imperfectly representing important details of structure as to render its proper relationship extremely problematical.

Fronds regularly dichotomous, divisions linear, 2.75 to 3.5 mm wide. Divergences of members 55° to 60°. Midrib none, margins regular.

In this specimen there are no normal terminations of the rammi, and the state of the preservation is such as to render it impossible to dede termine if the plant was originally costate. At each bifureation, a third member is seen, but from their relative positions 1 am fed to consider themparts of :mother plant accidentally associated. The plant is certainly either Haliserites or Dictyotites, but whieh is doubtful. I will, therefore, refer it provisionally to Dietyotites maximus as indicative of its obviously large size.

The material comprised in Nos. 15, 2s, and 32 is all of the same character and obviously fragments of plants of the same species. No. 15 shows on one side mumerous fragments of narrow stems of the same size and character as in No. 32. On each side of the main axis thereis a row of compactly arranged acute seales $1^{\text {mon }}$ broad at the base in a vertical direction and $2^{\text {man }}$ long. There is also a circinate termination of a bramch, which measures $1^{\text {em }}$ in diameter. The opposite side of the same slab shows two fragments of stems. These are $18{ }^{\circ} \mathrm{mm}$ long and 1.5^{cm} wide, each. They show a somewhat carbonized mass, but no welldefined surface markings. The margins show well developed seales. These are 2^{mm} broad at the base-measured vertically-and are dis. tant, from center to center, $\mathrm{r}^{\text {minn }}$. They are all more or less broken off, but a prolongation of their sides shows them to have been lanceolate, acute, slightly curved upward, and $5^{m m}$ long.
In No. 2s there are on one side of the slab fragments of bramehing stems 6^{mmm} to 8^{mmm} wide, with lateral rows of closely arranged seales of the same dimensions as in 32 and 15 . None of these stems show welldefined surface markings.
On the oppositeside of the slab are dichotomously branching stems of all sizes, evidently parts of the same or of similar plants. Nearly all

[^22]these stems show more or less well-defined and perfect hateral rows of scales which are triangular, acote, 1 mu boad at the base and gmm long. In the latger stems the seales berome somewhat lager. There are few surface markings, but where they oceme they are the same as in No. 32. No. $3: 3$ is chiefly represented by aranehing stem $5^{m m}$ wide and 21 "m long. The brameh separates fom the main stem by a somewhat marrow ansle, a feature which chatraterizes nearly all the firaments on these therespabs. Lateral pows of sates ate prominent. These are triangular, atente, $1^{\text {man }}$ long by $0.5^{m \prime n}$ broad at the base, and are chosely armaned. This stem does not show any well-defined surface markings.

There are atso momerous short firgments of stems. One of these is [m" broad and bramehing, and is an moloubted l'silophyton. Other pieces show somewhat obserme superticial markings in the form of pits similar to those in Psilophytom robustins and l^{\prime}. primepes. Others again show distinct transverse markings, which are triangular, arente, $1^{\text {man }}$ broad at the base and 2 mun long. They are madoubtedly to be regarded as the seales of the stems tumed over and lattened down upon it transersely to its axis. From their relative positions, it is probable that the seales are disposed spirally.

From these details it would seem rear that the plant in question must be ar Psilophyton, but differing materially from those already despribed,* chiefly in point of size and in the size and agoregation of the seales. I would, therefore, propose for it the name of I silophyton !randis, as it was obvionsly a plant of much lanere dimensions than any of the hitherto known species.

Itpon the data thes presented, the following classitieation becomes admissible.

(ímus HALISERITES Sternb).

Fromds phane, membramacoms, costate and dichotomous throughout; the more or less lanear ramuli with simple termanations. Sporangia in groups lateral to the midrib.

Haliserites Dechenianus Gäpp.

Fromds regulary diehotomoms; the divisions limear, $3^{m+\prime \prime}$ or more wide; margins regular or was, terminations striet. Angles of divergence about 40°. Wqually and strongly costate throughout.

Haliserites Dechenianus (iöpp., var. lineatus, nov. var.
Frombs regularly dichotomons thronghout; divisions linear, often somewhat narower at the base, 2.2.mm brath. Divergence of members 40^{2}, matginsregular, midrib well defined throughout, but not prominent.

[^23]Fronds dichotomous thronghout; divisions linear, the larger members upwards of $4^{\prime \prime \prime \prime}$ broad, the terminal ramuli $1^{\prime \prime \prime \prime \prime}$ or less, and strict. Divergence of members from 14° to 50°. Costate throughout, costa not prominent; margin regular.

Haliserites chondriformis, sp. nov.
Fronds dichotomons; divisions linear, the larger members sometimes exhibiting an umsual form. Ultimate ramuli 2 to $3^{\text {mum }}$ hroad, strict. Priucipal angles of divergence 90°, those of the smaller members, 40° to 55°. Midrib obvious, becoming very prominent below; the base of the frond contracted into a narrow stipe; margins regular.

The general aspect is that of Chondrus.
Genus DICTYOTITES, gen. nov.
Fronds plane, membranaceons, and regularly dichotomons, the ultimate ramuli generally bifid. Midrib none, margins regular

Dictyotites fasciolus, sp. nov.
Fronds dichetomous, divisions narrowly linear, 1 to $1.5^{\text {mon }}$ wide, and generally aggregated in tufts.

Dictyotites maximus, sp. nov. $?$

Frond regularly dichotomous, the divisions linear, about $3^{\text {mm }}$ broad. Divergences of members about 60°. Margins regular.

Genus PSILOPHYTON Dn.

Psilophyton grandis, sp. nov.
Stem $1.5 \mathrm{~s}^{\mathrm{cm}}$ in diameter, branching dichotomonsly into slender ramifigations; angles of divergence narow; terminations of branchlets circinate. Leaves in the form of spirally arranged, lanceolate, and acute seales curved slightly upward, those of the main stem $2^{m m}$ broad at the base and $5^{\mathrm{mm}} \mathrm{long}$, distant 5^{mmm}; those of the branches becoming smaller and more closely aggregated, finally $1^{m m}$ broad and $2^{m m n}$ long. Surface markings as poorly defined pits or short longitudinal strice. Fruit none. Plants chiefly found as impressions, rarely carbonized.

EXPLANATION OF FIGUREs. Plates ix-xiv.

No. 1. Fragment of a fern? Similar to No. 25. Natural stze.
No. 2. Fragment of a fern? Rhachis \times ?
No. 3. Leaves of Schizoneura? or some allied plant. Natural size.
No. A. Roots or possibly Maliserites, Natural size.
No. 5. Grass-like leaven of undeterminable character. Natural size.
No. 6. Frond of Haltserites Dechenianus Göpp., showing a waty margin, Natural size.
Proc. N, M, 93- 8

No. 7. Frond of Maliserites Dechenianhs (iöpp., var. lincatus, I'on. Natural sizo.
No. Set. Frond of Halisertes lineatus Pen. \times 资.
8b. A frond of the samo species. Natural sizo.
No. 9. Haliseriles chondriformis l'en. Natural size.
No. 10a, b. Fronds of Dietyotites laseiolus Pen. Natural size.
No. 11. Partial frond of Dictyotiles maximus: Pen. Natural size.
No. 12. Various portions of Prilophyton aretudis Pon, showing eircinato termination, ramitieation, leaves, ote.
(a) Showing various portions of hanching stems which also oxhibit the seales. Natural size.
(b) Portions of the large stems showing the seales. $\times \frac{13}{2}$.
(c) A branching stem showing tine seates. Natural sizo.

NOTES ON NEMATOPHYTON CRASSUM.

BV
D. P. Penhallow, B. Sc.; F. K. S. C., McGill University, Montrcal.
(With llates xv-xvir.)

In a former paper* Í had the oceasion to describe certain fossils from the middle Erian of New York, and referved them to Nematophyton arassum, len., althongh originally described by Sir Willian Dawson under the name of rellulorylon primeromm. This transfer was based upon indirect evidence and was regaded by me as reguiring confirmation. It was, therefore, a matter of sperial congratulation when, during the past winter, firsh material was plared in my hands, which seemed to substantiate the correctness of my original determination.

In Jamary last (1892) Prof. F. H. Knowlton, of the U. S. National Museum, informed me that new sperimens of N. crassum (Celhuloxylon) had heen fomblin New York, and later transmitted three slides of sections, together with the stem from which they were taken, and also a slide of the type specimen of Celluloxylon. This latter was, therefore, from the same specimens as those originally deswibed by me and upon which Sir William Dawson hased the gemns of that name. Arditional comments mon this are not ralled for at this time, but reference should be made to my former description of its structure.

The other specimens forwarded by Prof. Knowlton were collected by Mr. C. S. Prosser, of the U.S. (reological Survey, from the Cooley Quary on the sonthern extremity of Skumemme Monntain, Orange Comety, New York. According to information received from Mr. Prosser the horizon is to be regarded as in all prohability middle Erian. It agrees, therefore, in its position, with that of Celluloxylon, which was obtained from the Hamilton Group in ISopewell, near Canandaigua.

The section of stem measures about 3 inches in diameter and shows no external evidence of structure beyond a band of prominent, longitudinal strite on one side, and detached masses of carbonaceous matter on the opposite side. From this specimen three slices were cut in surh a manner as to represent as nearly as possible the three usual directions of section. I shall, therefore, distinguish them by the usual terms.

TRANSVERSE SECTION.* $\frac{114 \mathrm{c}}{218}$

The thanserse section as a whole shows considerable diversity of structure, obviously due to alteration in the process of decay and the subserguent formation of siliceots erystals. In one part the cell walls and all cell cavities aresharply defined. The cells are fairly unform in size, ranging from 23μ to 46μ, with an average of $3+\mu$. The walls are very batek and 3.8μ thick. The cells are, as a rule, rather remote, being distant $3 . \mathrm{S} \mu$ to 49.1μ, thus wiving to the structure, as a whole, a very loose, open character. There is very rarely an indication of intereellular tilaments where now and then a large one, rumning transversely, has survived the otherwise weneral disintegration of the hyphe. All the intereelhan spaces are ocoupied by a fine cellular appearance, due to the disposition of a very thin layer of the altered cabonaceous substance upon the surfaces of small crystals of silica.
 but the walls have become thickened in an irregular manner and have lost their sharp outlines in a marked degree, while they are commonly connered with one another by eonse lines of carbonaceons substance in such a way as to make the intercellular spaces appear like large and imperfectly formed parenchyma cells with irregularly thickened walls. All the intercellular spaces are ocrupied by a mass of fine crystals, having the appearance of a very fine cellular tissue.

In yet a thind area (see Fig. 5), 114, , the round cells of the first have abmost absolutely disappeared. Only here and there can a trace of one be foum. They have been wholly replaced by typical Celluloxylon structure, indistinguishable from that found in the original type specimens of that gemus. That these three conditions do not represent normal structures is at once obvious from the transitional conditions to be found within the same section.

RADIAL? SECTION ($\frac{1}{5} \frac{1}{5} \frac{5}{7}$)

In this the Cellulorylon structure is very prominent. In many places it shows derivation from tubular cells, the position of these latter being very obvions under a low porfer. As in the transverse section, there is no evidence of intercellular filaments. Rarely, obscure indications of open areas are met with.

TANGENTIAL? SECTION ($\frac{1}{5} \frac{1}{5} \frac{6}{9}$).

The general structure is the same as in the radial section except that we here meet with well-tefined evidence of open areas. These are irregnlar in form, somewhat numerous, and tilled with a mass of very fine erystals of silica, about which carbonaceous matter has boen deposited,

[^24]so that the whole presents the aspect of a very fine eelhular tisue similar to that which is found occupying the intercellular spaces of transverse sections. Into these open areas the large tubular colls are found to project in a vermicular manner, precisely as in perfectly preserved specimens of Nematophytom Loyami and other species examined by me. The tubular cells are in no case perfect, but sufficiently so to indicate their original character. No evidence of intercellular filaments could be found.

Comparing these specimens with the type of Nemutophyton crossum,* we find they agiee with it in all respects except the absence of intercellular filaments from the former and their presence in the latter. But this difference may safely be attributed to the operation of greater alteration in one case than in the other, and it is therefore ardmissible to consider that my reference of (elluloxylon primaerum to Nemutophyton crassum was not ouly correct, but that it receives striking confirmation from these specimens.

It may also be well to place on record a few observations made during my examination of this material, as bearing upon the alteration of organic structure by decay and crystallization.

The extent of alteration appears to depend in the first instance upon the extent of decay in the organie structure at the time when crystallization of the infiltrated silica becomes pronounced, and thus upon the conditions favorable or adverse to freedom of growth in the arystals. This is clearly shown by the transitional forms of the structure as already described, which, in turn, also show that the imperfect tubular structure seen in longitudinal section and the large parenchymalike cells of the typical Celluloxylon are derived, not from the tubular cells of the original structure, but from the spaces surounding and lying between them; that is to say, crystals on gioups of crystals form in the intercellular spares anl, finally, in the cell cavities in such a way as to crush the tubular cells into shapeless masses of carbon, which afterwards become more or less broken up or remain as large and irregular masses of carbon at the angles of the Celluloxylon cells.

Three stages in the conversion of the normal structure may be noted:
(a) Conversion of the intercellular hyphe, the medullary structure remaining largely intact. This results in the formation throughout the intercellular spaces and in the open tracts of a fine Cefluloxylon structure, due to the aggregation of numerons small crystals of silica, upon the surfaces of which the carbonaceous products of decay are deposited. This gives to the present specimen the peculiarities of structure which distinguish it from the typical N. crassum.
(b) Conversion of the intercellular hyphee and partial conversion of the medullary structure the tubular character of which is nevertheless evident. There is also in this condition a partial formation of the

[^25]typieal C'elloloxylon structure, as determined by the development in the
 range themselves in gromps of corresponding size.
(c) Complete comversion of all the organie structure, which is now replaced by the typical ('ellulorylon structure. Here the filaments of the medulla are hoken up both ransversely and longitudinally in such a way that the resulting (elluloxylon cells form long series oceupying the intercellular spaces and having the aspect of vermicular filaments similar in position to those of the medulla, but having a comsiderably greater diameter. Batween these three principal conditions all degrees of transition are to be noted.

KXPLANATION OF PLATES.
PLATE XV.
lig. 1. Seetion fom type specimenot Celluloxylon primavem, showing ehanacteristic structure. $\times 15 \mathrm{~F}$.
Fig. 2. Section of Nematophyton Logani, showing typical Celluloxylon structure. The same preparation oxhibited typical Nemutophyton strncture. $\times 1.4$.

PIATE NVI.

Fig. 3. Section of Nematophyton chassum, showing largo cells ot medulla, intercellular filaments, and :n open area. $\times 151$.
lig. 4. Longitudinal section of the typo specimen of Celluloxylon primucum from Prof. Knowlton, showing the disposition of the crystals fo conform the position of the tubular eells of the original structure. $\times 50$.

I'ATE: NVII.

 the carbonaceons mather very mach massed. Also showing remathts of oceasional cells of the original strueture $\times 100$.
liig. 6. Transverse section from the same slide ats the preeeding, showing nomal structure of the latge tubular eells, bat replacement of the intereclular filamente by fino erystats. Also showing an opon areat. $\frac{1141}{50 \mathrm{n}} \times 100$.

Phate XVIII.
Fig. 7. Transverse section from the same slide as the two preceding, showing conversion of the nomal structure into Cellulorylon structure. $114 \mathrm{~F} \times 100$.
Fig. 8. Longitudinal section, showing the tendency of the erystals to form along lines conformably to the original structmre, and thas essentially the same as in Fig. 4. $\stackrel{1150}{20 \%} \times$

5

[Published by permission of IIon, Marshall McDonald, Commissionor of Fisherios.]

Abstract

No. XXIII-REPORT ON TILE A (OTINLE (OLALETED) BY TILE UNITED STATES FISI COMMISSION STEAMER ALBATROS'S DURING THE WINTER OF 1887-1888.

BY

> J. Playfair McMurricif, M. A., l'if. I),
> [With Plates xix-xxxvo.]

The collection which forms the subject of this report was forwarded to me soon after its arival in Washington, and I gladly availed myself of the opportunity thus presented of contiming the investigation of the deep-sea Actinians, which was so admirably inangurated by Prof. Richard Ifertwig. The studies of this distinguished naturalist have resulted in the establishment of a new and more correct basis for the classification of the Actinise, by calling to the aid of the somewhat uneatain external peculiarities, the more reliable characteristies revealed by a thorough anatomical study of each speeies. 'The revision of the Actinians in aceordance with this new system of elassification founded by Prof. Hertwig has been caried on by myself for the Actinise of the West Indies and by Prof. Jaddon for the forms oceurring on the coasts of Great Britain. Much has been added to our knowledge of many forms, and many errors have been correded, and it has been my hope that the present study would rlear away still further the mists that obseure the relationships of the various Actinian groups.

The present report deals with the Edwardsiar, Protactiniar, Hexactinia, and Cerianthe obtatined by the Albatross. I hope in a finture report to give the results of my studies of the Koanthene.

I gladly acknowledge the many comrtesies I have received firom my friend, Mr. Richard Rathbun, during the preparation of this report. I am indebted to him for the opportunity of comparing several specimens in the collection with allied and occasionally irlentical forms obtained by the Fish Commission steamers off the castern coast of North America.

$$
\text { PART } I \text {. }
$$

the classification of the anthozoa, and especially of the actinif.
What may be termed an approximately correct idea of the relationships of the varions groups of animals now included under the term Anthozoa or Actinozoa can be said to have come in only with the begin-
ning of the present century, and to have had its first exponent in Cuvier. Earlier athors were led astray by the supposed vegetable ehatacter of the corals and similar forms, and later, by attaching too great im portance to the presence or absence of a hard skeleton, whereby closely related forms were widely separated. Thus Lime in the twelfth edition of his "Systema" referred the gemus Actimia to the Mollusea, the remaining Sctinozoa being refered to two groups, the Lithophytes, which inchuded the Matrepores, and Koöphytes, which, in addition to the Aleyonaria, contained also sponges, Bryozoa, sertularia, and Protozoa (Vorticella). l'allas (1766) improved this arrangement slightly by fusing the Lithophytes and Zoöphytes to a single group, but the genus Actinia he refered, along with the Edhenolerms, to his group Centronise.

Covier by the foundation of the Radiata, a group containing, it is true, very heterogeneous members, did good service in bringing together more closely than previous authors the allied Anthozoa. The third class of the Radiata, the Aealephs, contained the genera Actimia and Zoanthus with which was associated Lucernaria, while in the fourth class, that of the Polypes, were grouped together the rest of the Anthozoa under the term "Polypes corticans a polypiers." The tribes of this latter group with some of their pincipal genera are as follows:

Tribe 1 Ceratophytes-Antipathes, Gorgomia.
\because Lithophytes=Isis, Madrepora, Millepora.
3 Polypes nageurs Pemutula, Remilla, to which were added Orbulites.
4 Alcyons-Alcyonirm, Spongia.
It will be seen that the character of hardness or softness was given considerable weight in the Cuvierian system, leading to the association in the same tribe of an Alcyonarian, a Hexacorallian, and a Hydrozoon, and similaty to the separation of varions Aleyonarian genera, according to their relative consistency. The separation of the Aetinians from the Mollusea and their referenee to the Aealephs is however a step in advance, though their true relationships were unperceived.

With contemporary and succeeding systematists these two features held firm ground. Lamarek (1sls) though referring Zounthus to the Polyps with Hydru, Coryme, ete., returns to the classification of Actinia with the Echinoderms as adrocated by Pallas, being followed in this respect by Schweiger (1×20), who makes the presence or absence of a hard skeleton the eriterion according to which the /aöphytes are referred to the Z. monohyla or Z. heterohyla, the former division containing Infinsoria, Rotifera, Zoanthus, Tubularia, and the Alcyonids. The reference of the Actinians to one of the groups of the Polypes dates batck to Lamonroux (1821), who still relying on the presence or absence of a skeleton divides the Zoöphytes into (1) Polypiers thexibles, (z) Polypiers pierreux, and (3) Polypievs sarcoides, the last group containing the Actimians together with the Aleyonids and the compound Ascidians.

Notwithstanding the heterogencity of these groups, Lamomoux's classification paves the way for the more accurate systems that follow. Noticeable especially is that of de Blainville (1534), who associates together in Class III Zoanthaires of his Type Artimozoires the Actinians, Zoanthans and Madrepores, thos rutting loose from the consistency systems of his predecessors. The remaining Anthozoa, together with the Hydroids, Millepores, and Bryoza, he refers to the fourth class, I'olypiaires.

Before de Blainville, however, Rapp ("e9) had published a classification of the Polyps which, though not accepted by his successors, stands out, in the light of our present knowledge, as an evidence of the value of anatomical distinctions as a hasis for classiticatiom. In his preface Rapp says: "Bei dem Studien der mit cinem (ieriiste oder Polypenstock versehenen Polypen war dieser Theil, indem man das Thier selbst vernachlassigte, bisher hanptsïchlicher Gegenstand der Aufmerksamkeit. * * * Zwar fehlt es iber diese Thiere nicht an trefflichen Beobachtungen, welche man hanptaïchlich der nenesten Zeit verdankt, aber sie stehen bis jet/t meist noch zu isolirt, als dass sie auf die ganze Gestalt desjenigen Theils der Wissenschaft, weleher mit diesen Geschäpfen sich beschäftigt, einen durchgreifenden Einfluss gehabt hätten." To bring these isolated anatomical facts together, and to add to them was the task Rapp set himself, and as the result of his studies two important facts were brought to light. In the first place he recognized the near relationship of the Madrepores and the Artinians, and secondly he discovered the Actinian mature of the form previonsly described by him as Tubularia solitaria, now known by the generie name of Cerienthus proposed by Della Chiaje in 1832.

Rapp assumed as the basis of his classification the mone of formation of the reproductive organs. He found that some polyps produced ova on the outer surface of the body, while in otherss the "Keimkioner" had their origin in the interior; the former constitute his Exoarier, while the latter are referred to the division Endoarier. To the former division he assigned the Hydras, Corynes (including Sertularia and Tubularia) and Millepores(!), while to the latter were referred the Alcyonids, Tubipores, Corals (a group) which included 'orallinm, Gorgonia, Isis, aud Autipathes(?)*), Pematulids, Zoanthids, Madrepores, and Actinians. Bearing in mind the fact alreaty stated that Rapp associated the forms now known as Cerianthus with the Actinians, it may be seen that his division Endoarier is equivalent to the modern group Anthozoa, while his Exoarier correspmols essentially with the Hydrozoa, though he does not include within it the Hydromedusir, whose relationships to the Hydroids had not been discovered.

It is interesting to note that in this classification Rapp forestalled the Hertwigs ('79), whose proposed division of the Colenterates into

[^26]Eetocapar and Endocampe is fomded on the identieal charateristic Which liapl ehose, though the more recent anthors defthe more aterurately the place of origin of the reproductive elements in the terms of the germ-layers, structures unknown to Rapp.

I nfortmately, the systematists who immediately sucereded Rappedid not advance the position he had ocenpied. De blatinville's association of the Actinians with the Madrepores has already been noticed, a happy exeeption to the eomplicated confusion into which he falls as to other gromps. On the whole, howerer, his classification must be considered an advance as compared with that of Ehrenberg ("3t), who falls batck to the old eomsistence system, though avoiding lbe labinville's perpetmation of the earlier miseoneeption of the Bryozoa as allied to the Koïphytes. T'o Ehrenberge we owe the substitution of the term Anthoza for that of Koöphyta, emphoyed by earlier writers, and this "cirenhes" he divides into two orders whose limitations may be seen from the following synopsis:
Cireulus I.-Anthozoa.
Ordo J.-Zö̈eorallia.
Tribus I. - 'Zö̈corallia polyactinia (Actinians, Zoanthans, and Fungidie).
Tribus 1I.-Kö̈corallia oetactinia (Nenias, Tubiporids, Aleyonids, and Pematulids).
Tribus III.-Kö̈corallia oligactinia (Hydroids).
Ordo II.-Plys tocorallia.
Tribus IV.-I'hytocorallia polyactinia (Ocnlinids and Astrevids).
Tribus V.-Phytocorallia dodecactinia (Madrepores and Millepores).
Tribus Vl--l'hytocorallia octactinia (Corallinm, lsids, and (iorgonids).
Tribus VII.-Phytocorallia oligactinia (Allopera).
It will be seen fom the above that the Koïcoralla includes all those forims which are destitute of a had skeleton, or which, like Fimgia, possessing a comalhm are mot fixed, while the lhytocorallia embraces the forms provided with a hard skeleton, being at the same time fixerl. Such a classification neressatily separates dosely allied forms. as, for instance, the Fungide from the other Hexacorallia, and the Pramatulids fom the Gorgonids. The gromp, Anthozoa as conceived by Ehrenhere differs fom the modern conception of the gromp in inrluding the Hydroids and Hydrocorallinar, in whieh respeet Ehereberg falls far behind liapp, and in exolnding the Antipatharia which are in this system refered to the Bryozoa. In one particular, however, Ehrenberg smpasses his prederessors, with the exception of lapp, and that is in employing for his secondary groups chatacters which belong to the living amimals. 'The namber of the tentacles is a leatme which within certain lmits has been lomal to be associated with the featmes which mark out the various groups as now recognized.

The association of the vanious eight-tentacled foms into a single group was ome of the important steps which now followed. Acoording to a statement made by Dama (dtat) this was first done by Mine Ed-
wards,* who divided his group of the Polypes parenchymates into three groups:

Sertulariens. Zoanthaires. Alcyoniens.

Of these the first group corresponds to the Iydroidea, the second to the Actiniaria and Hexacorallia, and the last to the Alcyonaria.

A most important classification appeared in 1846 as the result of the extended study of the Zoijphytes of the Wilkes exploring expedition by Prof. James D. Dana. His groups are as follows:

I. Order. Actinoide:a.
I. Suborder. Aetinaria.
I. 'Tribe. Astracacea-including the Aetinians with which Lucernaria was associated and the Astreid and Fungid corals.
I1. 'ribe. Caryophyllacea-inchuding besides the Caryophyllids and Cyathophyllids, the Zoanthee.
III. Tribe. Madreporacea-inchuding Madreporids, l’avositids, to which are referred the Millepores and loritids.
IV. Tribe Antipathacea.
II. Suborder. Alcyouaria.
II. Order. IIydroidea.

It will be seen from this that the order Actinoidea is practically equivalent to the group Anthozoa of to-day, and that a clear distimetion is made between the Actiniaria and the Aleyomaria. The former group includes all the Ilexacorallia and the Actiniaria of later authors, as well as the Antipathacea, and it is interesting to note that Dama insists upou the unimportance of the stony corallum, grouping together, as De Blainville had done before him, the non-skeletogenons Actinians and the skeletogenons Hexacorallia.

One of the principal groups of the Anthoma, the Aleyomaria, being thus delimited, and a second, the Antipatharia, also marked out, though not considered of ergal value, it will be well to go back some distance and note the gradual diseovery of varions forms recognized now as distinet groups, but included so far as known in the first two tribers of Dands Actinaria.

The earlier anthors recognized a single genus of Actimia only, though other names,-ce. g., Cretica, Mydra, and Priapus-had been proposed. In 1801 Lamarek separated the genus Zoonthus for the form deseribed by Ellis as Actinio societe, and thms paved the way for the distinction which later authors made between this and similar forms and the Actinis proper. Cuvier also recognized the genus Minyes, referring it, however, to the Holothurians, its the position not being recognized until later by Lesueur ('17). A further division of the gemus Actinia was inaugurated by Oken in 1815, who estoblished the genera Metridium and Cereus, and set the example for the more accurate generic

[^27]elassititation found in later athors. The large number of forms bromeht to notice by the sementite votates of this predod increased noticeably the momber of Letinian senera, and in the elassitieations of De Bhainville and Ehrenberg we tind a considerable mumber of genera established.

Attention has already been called to the diseovery of the Aetinian "hamater of (erienthus by Rapp (29), the subsequent appleation of the seneric name by which it is now known by Della (hiaje. In 1841 Guatreftges (+1), in a paper which is a model of aceurate observation and despription, established the genus Ederardsia on essentially the same basis as that on which it now rests, thomeh more recent observations have added rertain partieulars which the methods of mieroseopic investigation of the day have brought to light.

The year 1811 marks therefore the establishment of most of the groups of Actinaria which are now recognized, so fir as they possessed generice value, but for some time ('erienthas and Edecerdsief were considered of equal taxomomic value with Actinia, Thalassienthus, Discosoma, and other simply generic terms. The Zornthus group formed to some extent, however, an exception to this rule, probably on account of their colonial habit of life and the power some possessed (I'dlython, ('articifera) of encrusting themselves with calcameons or siliceous particles, recalling by their consisteney skeletogenous forms. Their wemmiparous reproduction induced Dana to gromp them apart from the rest of the Aetinians, and associate them with the Caryophyllid corals.

To sive a resme then of the state of Anthozoan taxonomy at the middle of this century it may be sad that the gromp was definitely delimited, the bryozod having been exeluded in aceodance with the observations of Milne-Edwards. The Aleyonarian forms had been grouped tose ther from their earlier separation into a mumber of groups eachequivalent to the Hexacomallia, Aetiniae, ete. The Antipatharia were refermed to the Anthozoa, and eren constituted aspoup of slightly less value than the Aleyonaria. And lastly, the Aetinial had been divided into a momber of genera and associated with the Hexacorallia, the similarity of strubture of the animals themselves being eonsidered of ereater moment than the possession or absence of a corallum.

A new era in Anthozan classitication was introduced by the publi Cation in 1 sit of the first two volumes of Milne-Edwards' Histoive mutwrelle des Coralliaires. In some respects. notably in the severance of the Madrepores from the Aetinians.a backwad step was taken which has been maintained up to a comparatively recent date, but on the other hamd, a decided advance was areomplished in the more acenrate delimitation of several groups, and in the recognition of groups of genera among the Actinians.

Milne-Edwatds recognized Lenckart's division of the Cuvierian Radiata into the two gronps Eehinodermata and Coelenterata, and divided the latter into two classes, the dealephs, inchang three sub-classes,
i.e., the Medusie, Siphonophores, and Itydroids, and the Coralliaires. The Coralliaires he again subdivider as follows:

Class Coralliaires.
Sub-class Cnidaria.
Order Alcyonaria.
" Zoantharia.
Sub-order Zoantharia malacodermata or Actinaria. Zoantharia sclerobasica or Antipatharia.
Koantharia selerodermata or Madreporaria Sub-class Podactinaria ($二$ Lncernaria).
It will be seen from this that Mine Edwards's class Corallaires is equivalent to Dama's order Actinoidea, and his sub-class Cuidaria to Dana's Actinaria minus Lucernuriu, a step toward the separation of this genus from the Anthozoa, and its reference to the modern group of the Seyphozoa. In his, division of the Zoantharia, however, Milne-Edwards retrogrades towards the older consistence systems of Lamouroux aud Ehrenberg.
Sofar as the Actinaria are concerned Milne-Edwards did excellent service in delimiting the varions genera that had been proposed, in dividing these up in some cases, and establishing new genera, such as I'rractis, I'hymactis, Oulactis, etc., and in grouping similar genera together, forming families, sub-families, etc. His larger divisions are as follows:

1. Family Actinidre.
2. Sub-family Minadie.
3. Sub-family Actinine.
4. Sub-family Thalassianthinae.
5. Sub-family Phyllactines.
6. Sub-family Zoanthine.
7. Family Cerianthidie.

The sub-family Actinine was again subdivided into sertions, thus:

1. Actinines vulgaires-including forms with smooth walls and atherent base.
2. Actinines verruqueuses-including forms with tubercles or verruceupon the column.
3. Actinines perforees-corresponding to the fimily Sugartidae of more recent systems.
4. Actinines pivotantes-including forms which do not possess an alhereut base.

In analyzing this classification in the light of our present knowl edge of the relationships of the Anthozoan groups we note a recoguition of most of the modern taxonomic groups, with, howerer, very unequal values attached to them. Thus the Aleyonaria constitute a group equivalent to all the others taken together; the Autipatharia, another of equal value with all that still remains; the Cerianthidis are recognized as a family equal in value to all the other Actinians; while the Zoanthine are equivalent only to the Thalassianthine, ete. The Edwardsia do not have a group value, being recognized simply as a genus of Actinines pivotantes, where they are associated with Ilyanthus, ítachia, and sphenopus, the last belonging properly to the Koan-
thina. In choosing the relative consisteucy of the various forms as a basis for his division of the Zoantharia Milne-Edwards naturally falls into certain of the errors which such a classification entails, and which had been handed down from earlier days, as for instance the grouping of the Millepores with the Madreporaria. In this, however, there is neither loss nor gain, since none of his predecessors, with the conspicuous exception of Rapp, had suggested the reference of these forms to their proper position. The principal error of the classification, as already pointed out, lay in the attaching of too great importance to the presence or absence of a corallum, and in the disregard of the similarity of the soft parts of Madreporaria and Actinaria so definitely stated by Dana.
Milne-Edwards's classification had a marked influence upon later writers, most of whom adopted his lageer divisions, the principal modifications introduced by them affecting the arrangement and definition of the lesser groups. An exception to this, however, was the classification of Gosse ('60) who adhered to the arrangement laid down by Dana, but went a little further than that author in dividing certain of the tribes of Actinaria into families, thus:
Suborder Actinaria-
Tribe I. Astreacea:
Family $\begin{aligned} & \text { I. Metridiade }=\text { forms with compound tentacles. } \\ & \text { II. Sagartiade }=\text { with simple tentacles, adherent base, and column } \\ & \text { pierced by cinclides. }\end{aligned}$
III. Antheade $=$ column smooth and imperforate, margin simple.
IV. Actiniade $=$ margin beaded.
V. Bunodide $=$ column warted.
VI. Ilyanthide $=$ base non-adherent, rounded, simple.
VII. Minyadide $=$ base non-adherent inclosing an air chamber.
Tribe II. Caryophylliacea:
a. Without a corallum.

Family 1. Capueada $=$ simple
II. Zoanthide $=$ compound.
β. With a corallum, certain corals divided into four families.
The coralligenons Astramea Gosse does not classify, none of the genera being British, nor does he divide the Madreporacea or Antipathacea intofamilies, for the same reason. The Lucernariadie he excludes from the Actinaria, recognizing their aftinities to the Meduse.

On comparing this classification with that of Milne-Edwards, it will be seen that, independently of the association of non-coralligenous and coralligenons forms, there is a very different grouping of the genera. The family Metridiade (a name badly chosen) is equivalent to MilneEdwards's Thalassianthinte and Phyllactinae, the Sagartiadie are the Actinines perforées, and the Bunodida the Actinines verruquenses, both raised to the rank of families. The Actinines vulgaires are divided into three families, two of which, the Autheade and Actiniade belong to the Astrameea, while the third, the Capmeadie, is referred, with the Zoanthidx, to the Caryophylliacea, while Milne-Edwards's
family Cerianthide is abolished, Cerianthus and Arachnactis being associated with his Actinines pivotantes to form the family Ilyanthidie. These comparisons refer to the broad features of the groups, there being differences in detail in some. Many new genera were established by Gosse, as for instance, Bolocera, Bunodes and Aiptasit, and this, as well as his disregard for the most part of non-British forms, renders it difficult to make a detailed comparison between the two authors.

By the exclusion of the Lucernariadie the Anthozoa obtained the limitations which they now possess, except that the Hydrocorallines still continued to be referred to the group. Agassiz indeed upheld their hydroid character, but it was not until Moseley's brilliant observations ('78) were made, that they were definitely assigned to the position long before pointed out for them by Rapp.
As already stated, subsequent authors were more influenced by MilueEdwards than by Gosse in drawing up their classifications, though the division into smaller groups was not mulike that proposed by the latter. Gosse's smaller divisions were more or less adopted and subordinated to Milne-Edwards's system. It will be altogether umecessary to refer to all the classifications presenting these features, but still it will be convenient to give one or two examples, choosing those which present most historical value.

One of these may be the classification proposed by Verrill in 1865, which outdoes even that of Milne-Edwards in placing inordinate importance upon the corallum. Verrill divides the Cuidaria or Polypi into 3 orders, i.e., (1) Madreporaria, (2) Actinaria, (3) Alcyonaria, the increase from the number proposed by Milne-Edwards being accomplished by raising the Madrepordria from the subordinate position they ocenpied in the order Zoantharia and making them of equivalent rank with the Alcyonaria. The division of the Actinaria which Verrill proposed was as follows:

> Suborder I. Zoanthacea.
> Families. Zoanthide and Bergide.
> Suborder II. Antipathacea.
> Families. Antipathide and Gerardide.
> Suborder III. Actinacea.
> Families. Actinidex,Thalassianthidse, Minyide, Ilyanthid:e, Cerianthidee.

This arrangement is important in giving the Zoanthids a greater importance than had hitherto been assigned to them, and in separating the Cerianthide from the Ilyanthide, though they do not receive the same position that Milne-Edwards gave them. The family Actinide Verrill divided in various subfamilies, differing somewhat from the equivalent groups of Gosse and Milne-Edwards, a subfamily Phelliure being established for the genus Phellia. Milne-Edwards' Phyllactinse and Thalassianthinæ he unites together in his family Thalassianthide, which is subdivided into the subfamilies Phyllactinæ, Thalassianthina, Heterodactylinæ and Discostominæ (Verrill, '68), the members of
the last named subfamily having the tentacles aranged in padiating rows, more than one tentacle commonicating with an intermesenterial space. The establishment of this peroliarity is important, as it is a chatater which appoximates the Aetimaria with the Madreporaria.

To the Diseostomine Verill refermed the senera Discosome and Corymatis, classed by Milne-Edwards with the Actinines volgaires, and G'upmed and . Ine

The classification of Khmzinger ($\because 7$) may now claim our attention as showing a fur ther step towat a correct diflerentiation of the groups. The classification is to a very large extent similar to that of Verrill, but entains certan important imovations. The Madrepores are, following Milne Edwards, eomsidered a separate gromp, and the remaining groups are as follows:

> 1 Or. Alcyonaria.
> II Or. Antepatharia.
> III Or. Zoantharia-including the Zoanthide.
> IV Or. Actinaria.
> 1. Family Aetinider.
> 1. Subtamily Actinina.
> 2. Subtamily Phellinar.
> 3. Subtamily Sagartine.
> 1. Subfamily Bunodine.
> \because Pamily llyanthider.
> 3. Family Cerianthida.
> 1. Vamily Discosomide.
> 5. Family Thalassianthider.
> 1. Subfanily Phyllactinu.
> 2 . Subfamily Thalassianthine.

The first moticeable feature of this classitication is the separathon of the Antipatharia and Koantharia from the Aetinamia, and the elevation of their rank to that of groups equivalent to the dleyonamia. Furthermore among the lesser groups there is the separation of the Discosomidar from the Thalassianthide, with which Verrill associated them, the ratiate armagement of the tentacle being the characteristic feature of the family. Klunzinger, however, faled to associate the genus Corymuctis with Discosomu, stating deftuitely that its tentacles alternate with eath other. The other families and subfamilies are essentially the same as those of Vemill, except that mo mention is made of the Minyadie.

We come now to the monograph of the Detiniaria by Andres ("sis), which must ever remain a monment to the industry of its author, to whom all atetinologists are indehted for phacing in their hands such a carefully collated and complete list of the Aetinians known up to 1880 . Unfortumately for our purpose, dudres does not express his ideas as to the relationships which his Aetinaria bear to the Aleyonaria and Antipatharia, hut confines his attention solely to the Zoantharia male-
codermata of Milne Edwards. He divides the group into seven families, thus:

Edwardsine.	Zoanthine.
Actinine.	Cerianthine.
Stichodactyline.	Minyadinze.
Thalassianthine.	

The mames of the majority of these gromps indicate their limitations; the greatest innovations are the separation of the Edwardsias from the Actininte and the establishment of the Stichodactylina. This family possesses for its distinguishing character the feature upon which Klunzinger based his family Discosomide, i. e., the radiate arrangement of the tentacles, but at the same time it is made much more comprehensive, the Phyllactince of Khuninger being associated with Discosoma, Capnea, Aureliant. Phymanthus and other genera, all of which possess radially arranged tentacles. The Thalassianthine is, consequently, poor in genera compared with Klunzinger's Thalassianthida, containing only a few forms with large compound tentacles. Four of Andres' groups are certainly well established, namely, the Edwardsinx, Actininre, Zoanthinse and Cerianthina. He was influenced, however, too much by the arrangement and structure of the tentacles in making the Stichodactyline and Thalassianthine equivalent to these four; they should more properly be made subgroups of the Actinine. The same remark applies, perhaps, to the Minyadinte, though we are still in ignorance as to the structural peruliarities of itsmembers. The fact that some of the species evidently have their parts arranged on a hexamerous plan favors this view, and the occurence of others possessing a decamerous arrangement can not be considered as of great weight in favor of keeping them distinct, in view of the same symmetry occurring in the Halcampide, for instance, and in other sporadic instances in which there can be no question as to the advisability of associating the forms with their hexamerous relatives in the Actinina. In fact, it seems probable that the Minyadine are not even to be given a value equal to the Stichodactyline, but are rather to be referred to the Haleampider, a family or subfamily of the Actinince.

The disappearance of the Ilyanthida from the list of families is an important point also. Andres has diminished the importance of trivial characters in accomplishing this, and has emphasized the importance of the numerical relations of the parts as a basis for classification in separating from them the Edwardsias and referring the thas restricted groups to the Actininae.

Audres enters into a much more minute division of his families into subfamilies, many of which are well founded, but it will not be convenient to criticise them here.

With Andres the second period in the history of the classification of the Anthozoa may be said to close. The period was marked by a gradually growing tendency to divide the group into a number of Proc, N, M, $98=9$
equivalent subgroups, and, so far as the Actinians are concerned, by the increase in the number of rerognized genera and their division into families, subfamilies, ete. The distinguishing chatacters of the various groups were drawn for the most part from external characters; importance, for instance, being placed upon the presence or absence of a corallum, whether the base is adherent or not, in the shape of the tentacless, ete. Comparatively little was done toward attaning a thorough know ledge of the anatomical relationships of the varions parts, or perhaps it would be better to put it in this way, that the anatomical knowledge that had been acquired was not suticiently extensive to be employed for systematic purposes. The names of Itollard, Quatrefages, Hame, Therell, Teale, schneider and Roteken, Stoliozka, ete., recall important additions to our knowhedge of Aetinian morphology, hat the observations were not sufficiently extended to have suggested the importance that should have been attached to them.

We are now in the third period, so brilliantly introduced by the brothers Hertwig with their monograph on the Actinians (r9). The period in its begiming overlaps, consequently, the second period. The fundamental characterintic of Aetimian classification at present is the foundation which it possesses on anatomicalam phylogenetic features. The arrangement of the mesenteries and their ontogenetic succession are the eriteria which serve to separate the larger groups, and these eriteria have been extended, so far as our present knowledge allows of it, to the group Anthozoa as a whole. The first step in this direction, as stated, was made by the Hertwigs (r9), who, as a result of their observations on a mumber of Actiniaria, arrived at the following conclusion:

Bei der Eintheilung der Anthozoen sind die Septen in erster Reihe zu beriicksichtigen, aber weniger die Zahl als vielmehr der Ban, die Anordnung derselben um das Schhadrohr und ihre Entwicklung. Wenn wir von dieser Grundlage ausgehen, werden die Anthozoen voraussichtlich in mehr als 2 Ordnungen \%u zerfallen sein. Nit Erfolg aber kam ein neues System erst dam aufgestellt werdon, wenn die verschiedenen Familien der Zoantharien, der Fleischpolypen sowohl als der Korallen, anf die Morphologie iher Septen, ibur die wir vielfach noch gar nichts wissen, nach allen lichtungen untersucht sein werden.

The Hertwigs reeognize tive groups of Anthozoa, based on the characters indicated in the above quotation, viz, the Aetinide, Edwardsia, Zoanthider, Cerianthidir, and Alcyonaria. As regards the Madreporaria, they do not comme themselves detinitely, recognizing the paucity of the information with regard to their anatomical pecularities at their disposal: at the same time, however, they consider it probable that when the required information is acquired the gromp of the Zoantharia selerodemata will be split up, a large part of the corals being associated with the Actinide, others, perhaps, with the Zoanthime, and others with Edwardsia, while others, again, may show an artagement and structure of the mesenteries peculiar to themselves.

The idea brought forward in this work was elaborated more fully by Richard Hertwig in his report on the Challenger Actiniaria ('s2), in which the structural pecularities of the various forms are employed, not only to distinguish the principal gromps, but also to define in an accurate manuer the various families of the Hexactinie. In some particulars the idea was caried a little too far, owing to the absence at that time of anatomical studies of a large series of forms, Hertwig being obliged to rely entirely on his own observations in deciding as to the relative importance of a character. Omitting the Alcyonaria and Antipatharia from consideration, Hertwig recognizes six tribes of Actiniaria, which correspond in tasonomic value to Andres's famlies. These tribes are (1) Hexactinix, (2) Paractiniar, (3) Monanlex, (4) Elwardsix, (5) Zoanther, and (6) Cerianthea, and all are chamaterized by the arrangement of the mesenteries. Three of these orders correspond to families of Andres' 'lassifisation; other three of Audres' families, viz; Thalassianthins, Stichodactyline, and Minyadine are grouped with his Actinina to form the tribe Ifexactinis, while two other tribes, not represented in Andres' system, are instituted for forms presenting au arrangement of the mesenteries not previonsly recognized. In comparing the systems of Hertwig and Andres, however, it must be re membered that the two works were so nearly contemporaneons that the respective systems were antirely indepeudent one of the other. Andres, it is true, had the advantage of the earlier work of the brothers Hertwig ('79), which no doubt influenced rousiderably his ideas as to the relationships of certain of the groups, but had no cog. nizance of Richard Hertwig's later observations.

The introduction into the classification of the Anthozoa of a system based upon anatomical peculiarities, instead of one resting entirely on variable characters, readily subject to modification in atcordance with external conditions, was very important. There yet remained to be taken the further step of adding to anatomical characters the information derived from embryological investigation, a step the importance of which the Hertwigs had recognized and contributed to, to a certain extent. Some of the necessary information was contributed later by Boveri ('90) and myself ('91), and as the result of these observations I drew up a classification of the Anthozoa founded upon structural and embryological characteristies. Either of these classes of facts, taken by itself, is liable to leal to errors; it is only by combining both that a true knowledge of the phylogenetic relationships of the varions groups can be obtained. For instance, relying entirely on embryological data, the Hexactinie could be separated into three distinct groups, one including those forms in which the mesenteries appear according to the succession described by Lacaze-Duthiers; a second, in which the mesentery succession is that described by the Hertwigs ('69); and a third, in which it is that deseribed by Haddon ('s7), H. V. Wilson ('88), and myself ('91). I have shown, however ('91 a), that the third
methed is to be regarded as the typical one and that the orders of sucession deseribed by Lamaze Whthiers and the Itertwigs are seconday moditications of this, called forth by peruliar conditions; and, fiurthermore, anatomical investigation of forms developing in these various mamers shows so mueh similatity in them all as to do away with any idea of classing them in three distinct groups.
The classification which I proposed diflees from that of Hertwig in two particulars. In the first place I disregard his tribe Paractiniad, which I have shown to be muatual and mitenable, and I group the form upon which his tribe Monaulese was founded with the Cometinim, long before described by Sats and later studied more thoroghly by Blochmann and Higer (*s), and with the Oructis Diomedede, described in subsequent pages of this report, forming thus a tribe, the Protactiniar, the members of which I take to represent stages in the phylogeny of the Hexactinia. Strictly spaking.perhaps cach of these thee forms should constitute an order, but is seems to contribute to the comenience of the classification, without introducing any comfusion, to group them together. I recognize the following tribes of Anthozoa:

1. Rugosie.	5. Cerianthear.
\because - Antipatharia.	6. Koanthere.
3. Aleyonaria.	7. Protactinie
1. Edwardsier.	8. Hexactiniar.

The propriety of considering the Rugose as forming a tribe equivalent to the Aleyonaria, for instance, is open to question, since we natmally know nothing as to their soot parts and can only form an exceedingly uncertain idea of how they were aranged from the arrangement of the septa in the corallum. The Antipatharia form a natural group, apparently, thongh it is uncertain what their affinities with the other gronps may be. The remaning tribes seem to have their phylogenetic relationships fairly clearly defined.*

[^28]A detailed eriticism of the varions families which have been proposed is not necessary, since this will be entered into in the desmptive portion of the report, so far as certain families of the Hexactinia are concerned. Andres ('8:') added an considerable number of families to those which had previonsly been recognized, and the majority will, no doubt, stamb. Hertwig too has added a number of new families, and at the same time has given an interesting "riticism of Andres' 'lassitication and a comparison of it with his own. Many of the families Andres recognized are more acourately defined, and atteution has been called to the eriteria upon which families should be based. One of the most recent classifications, is that of Danielssen ('90), which is essentially that of Hertwig ("82), confused, and withont the corrections, which Hertwig ('8s) sulsequently introduced. In fact, it must be acknowledged that Damielssen's work is a great disappointment, in that the deseriptions are given in such a mamer as to preelude confidence in their acruacy, while the figures illustrating them are beantifnl examples of "how not to do it." The tribe Egireze, which Danielssen proposes, certainly requires further study before being atcepted, and the same remark applies to his families Sideractide, Madoniactidæ, and Andvakide.

I shall content myself with stating the families whichi I believe to be worthy of recognition, making some brief remarks on their limitations, and on certain somewhat doubtful forms.

I think it convenient to consider the mode of arrangement of the tentacles of classificatory importance, and to recognize two subtribes of the Hexactinise to which Andres' name may be applied: Actinime to those to which the tentacles are arranged in cyoles, and Stichodactyline to those in which they are arranged radially. To these two I added ('89) a third, the Dendromelinar, which is hardly of equal value, and which it will be better to reduce to the rank of a family. It inchudes forms which possess dendritic or globular processes or arms projecting from the colum wall below the margin, such as are fomd, for instance, in Leebrunea, Ophiodiseus, and Viatrix*

The Thalassianthina I would not, however, adopt as a subtribe, since they differ from the Actinine only in the compound chatacter of their tentacles, and a passage to them is furnished by the member of Audres' subfamily Heteractidre. This family is, however, not altogether natural since the genus Ragactis must be removed from it and referred to the

[^29]Sagartida, as was demonstrated to me by the late Dr. d. l. Northrup, who discovered the Sagartian character of h. lucidu, an observation I have since been able to contirm.* The genus Eloactis aiso proposed by Audres ("s:3) for the Ilyanthus mazeli of dourdan ("s0) seems to belong rather to the Italeampidar, E. Mreseli being apparently nearly related to H. producta of Stimson.

The following is the classification I suggest:
A.

Tentacles arranged in eycles. Actininte.

sphineter mododermal; tentacles decidnous Boloceridir.

Sphincter meso- (No ateontia Paractidar. glatal | Acontia...............Sagartidae.
 chmserihed. (Acrorhagi foliate. Phyllactide.

Tentacles warty or branched $\left\{\begin{array}{l}\text { Tentaclessimple }{ }^{\text {Pentaches }}\end{array}\right.$ compound. Thatassianthilde.

Tentacles reduced to stomidia................... $\left\{\begin{array}{l}\text { Polyopidar. } \\ \text { Sicyonidie. }\end{array}\right.$
('olmon provided in its upper part with br:mbehed
or globmlar processes
Free-swimming forms
Minyadie.
B.

Tentacles arranged lalitally.
Stichodactylinte.

Tentacles all of one form.	```T Tentacles few, capitate....Corallimorphidar- Tentacles mmmeroms, cylin- drical ..-.-................ Discosomidse. C'Tentaeles nodulated Amrelianide.```
Tentacles of two forms.	Marginal tentacles eylin- drieal; dise tentacles wart-like, bramehed, or foliate Rhodactide. Marginal tentaclespinnate, dise tentacles wart-like. Plymanthide.

Tentacles of viarlous forms, not cylindrical... (riptodendridae.

I have chosen the term Italcampida in preference to that of Ilyamthide becanse we are at present ignomant of the anatomical chatace teristies of Ilyanthus; it will, however, probably prove to be similar to Halcomp, in many respects, in which case the older term should be restored. The Siphonactinidir, I think, shouht be fused with the Malcampidae, the presence or absence of a conchala not being of sutticient moment for family distinction.

The Boloceridat is a new tamily, for whose existence reasons will be given in Part II. The Antheomorphidar of Hertwig (*2) I include

[^30]for the present with the Antheade. My reasons for placing the Phyllactida among the Actinine have been given in another place ('s9a). Hertwig's Polyopide and Sicyonide I have placed in the Actinine, not recognizing his tribe, Paractinia. These forms require further study. The Liponemide are toomuch open to suspicion to be accepted, as will be seen from what is said in Part in concerning Bolocera brevicornis, Liponema recalling strongly a Bolocera, while Polysiphonia recalls Actinernus.

Under the Sagartide is included the Phellidse, which may be regarded as a subfamily under IFardon's name of Chondractinine, and the Amphianthide, which are probahly all referable to the Sagartidse and to the subfamily Chondractinine.

The Minyadie are inserted with the Actinine as a family, but little is as yet known of their anatomical peculiarities.

The classification of the Stichodactyline hardly calls for comment, except to point out that, of the Aurelianide and Criptodendride very little is known, nothing indeed as to anatomical characters. I have employed the form of the tentacles, following Andres with modifications, as a basis for the classification; but in those groups members of which have been studied it has been found that more or less definite anatomical features are associated with the varions tentacular moditications.

This classification is, it most be understoon, intended to be purely tentative and to take cognizance only of families which seem well authenticated. No doubt the changes and additions which will be required to make it at all accmate are numerous-how numerous future observation will determine.

Part II.

DESCRIPTIVE.

Tribe EDWARDSI Æ, Hertwig.

Actinozoa not forming colonies; with eight mesenteries, three of which on each side have their longitudinal muscles upon their sulcar faces, while the other two, situated at the sulcar surface, have these muscles on their sulcular faces. Tentacles simple, usually more numerous than the mesenteries.

Genus EDW ARDSIA, Quatrefages.
With the characters of the tribe.
I do not consider it necessary at present to divide the Edwardsias which we know into two genera, as Andres ('83) has done, much less to make the number of the tentacles the feature upon which to base such a division, since this is a character liable, to judge from the descriptions of species which we possess, to numerous gradations. When a thorough dnatomical study has been made of a number of different
species, it may be found advantageous to make a division; at present it does not seem advisable.

1. Edwardsia intermedia, sp. nov.

> Plate xix, Figs. 1-4.

No. 704. Station 2783. Lat. $51^{\circ} 02^{\prime} 30^{\prime \prime} \mathrm{S}$. ; long. $74^{\circ} 08^{\prime} 30^{\prime \prime} \mathrm{W}$. Depth 122 fathoms. 1 specimen.

The single specimen for which I propose the above name was strongly contracted, the entire capitulum being introverted. In this contracted condition (Pl. xix, Fig. 1.) it measured 1.7^{cm} in height, and its greatest diameter is 0.45^{cm}.

The physa is rounded and translucent, allowing the mesenteries to show through. The scapus is covered by a thin, brown, chitin-like "epidermis," resembling, apparently, that covering E. Claparedii, but unlike it, being almost smooth. It is quite translucent and consists of two layers (Pl. xix, Fig. 4); on the outside is a thin layer of foreign matter (f), consisting of very fine sand particles, spicules, etc., and below this a cuticle-like layer (cu) covering the ectoderm (ec) and sending here and there into that layer prolongations which seemed occasionally to unite with the mesogloes. The arrangement is very similar indeed to what I have described for Zoanthus sociatus ('89), though it is not so certain in this case that the cuticle is really a portion of the mesoglea. The ectoderm (Pl. xix, Fig. 4, ec) consists of cells, not at all columnar, as is usually the case in the Actinozoa, and shows no trace of either gland cells or nematocysts.

The scapus is marked by eight longitudiual furrows, corresponding to the insertions of the mesenteries, and the intervals between these furrows are ocenpied by numerous irregularly scattered clear spots, which recall the tubercles described by Andres ('so) and Danielssen ('90). Their structure is, however, somewhat different from what these authors have described. The ectoderm over a small area is slightly thickened and projects through the covering investment, but no nematocysts were to be found in it. The tramsparent appearance which is so characteristic of the tubereles is due to a comparatively large oval cavity in the mesogla a, lying below the tubercle and always separated, apparently, by a very delicate layer from the ectoderm, though a small collection of gramules and, in some eases, a few cells are to be found in the cavity. (Pl. xix, Fig. 4).

In transverse sections it is seen that a portion of the seapus is introverted as well as the entire capitulum; sertions taken at a little more than $3^{\text {man }}$ from the upper extremity of the contracted animal show the cuticular investment which is characteristic of the scapus. In this introverted region, however, the layer of foreign material (Pl. xix, Fig. $2, f$) is very much thicker than on the outer surface of the body, and, furthermore, in each interval between the insertions of two mesenteries a
strong ridge, formed principally of mesoglora, pojects, and as the capitulum is approached cavities appear in the ridge, giving it in crosssection a club-shaped outline.

The capitulum is apparently very short and is destitute of any investment. The number of the tentacles I could not ascertain, but they seem to be few, perhaps eight, almost certainly not more than sixtern. They project down into the stomatodaum in the manner described by Quatrefages ('41).

The stomatodieum is short and is slung by the eight mesenteries, whose musculature has the usual arrangement. All the mesenteries are gonophoric and possess mesenterial filaments. Since Andres ('80) has stated that in E. Claparedii the respiratory portions of the filament are wanting, I may state that in the species here described they are ummistakeably present, though short. The bases of the mesenteries at their insertion into the column wall are furnished with pimnately arranged musele processes (Pl. xix, Fig. 3 l m). The longitudinal muscles are strong, resembling in transverse section those of E 。 tecta as figured ly Haddon ('אa).

It is impossible to identify this form with any of the species that have been described. Within recent years a number of Edwardsias from deep water have been described by Moseley ('ã), Manion ('S2), R. Hertwig ('88), and Daniclssen ('90), but the descriptions are not in all cases sufficiently detailed to permit of a correct idea of the morphological characteristics. The structural features which are of im portance for elassificatory purposes seem to be the tubereles, the shape of the longitudinal and basal muscles of the mesenteries, the presence or absence of longitudinal ridges on the columm, and, what is probably of less importance, the number and arrangement of the tentacles.
E. intermerlia agrees, as already stated, with E . tecta (Hardon, " $\times 9$) in the structure of the longitudinal muscles, hut differs from it in possessing tubercles and in the shape of the basal muscles of the mesenteries; it approximates E. fusea Danielssen (90) in the number of the tubercles, though they are not arranged with anything like the regularity which they have in Danielssen's figure, and in addition the shape of the longitudinal muscles is altogether difterent; it rescmbles E. carnea (Haddon, '8!) in the possession of longitudinal ridges on the capitulum and upper part of the sapous, but difiers from it altogether in the shape of both longitudinal and basal museles.

In consequence of its possessing certain of the characteristics of each of these three species I have named the form here described E. intermertia.

Tribe PROTACTINIÆ.

Anthozoa with twelve primary mesenteries, of which eight at least are perfect, and which are arranged in pairs, the longitudinal mesenteries of each pair being on the fares of the mesenteress which are turned
towards the intramesenterial spare exerpt in the rase of two pairs, the directives, situated at the extremities of the sagittal axis of the stomatodienm, whose longitudinal museles are on the faces of the mesenteries which look towards the adjacent intermesenterial space. In addition to these primary mesenteries secondary mesenteries are also present; of these there may be one on each side, situated in the sulculo-lateral intermesenterial space, or a pair on each side in the same intermesenterial space, or two pairs on each side in the sulculolateral and lateral intermesenterial spatces. The development of the mesenteries is upon a bilateral plam.

Genns ORACTIS, gen. nov.
Protactinise with twenty mesenteries, twelve of which are primary, and two pairs on eath side, in the sule ulo-lateral and lateral intermesenterial chambers respertively, secombary. Only the eight primary mesenteries corresponding to the Eflourdsia mesenteriess are perfect, gonophoric, and provided with mesenterial filaments.
2. Oractis Diomeder, sp. nov.

Plate xix, Figs. ঢ̆-s; Plate xx, Figs. 9-11.
No. 72\%. Station 2839. Lat. $3: 30$ N. 08^{\prime} Nong. $118^{\circ} 40^{\prime} \mathrm{W}$. Depth, 114 fathoms. sevoral specimens.

All the specimens are contracted extensively (Pl. XIX, Figs. itand 6), and measure in this comdition it to smu in heipht and 10 to $13^{3 m m}$ in diameter. The base and column are colorless and translncent, allowing the internal organs to show throngh, but sections show that the disd and tentades have yellow pigment gramules in their ectoderm, and probably in the living condition they had a more or less decided yellow color.

The base is more or less rounded (ll xa, Fig. j) and passes directly into the colmm, there being no limbus. The column is marked by twenty longitudinal grooves corresponding to the insertions of the mesenteries. It the summit of the contracted amimal ten tuberele-like proesses ${ }^{\text {baln }}$ be seen sumommling the entrance into the cavity contaming the contracted tentacles, and in sections these tubereles may be seen (ll. Nx, Fig. 11, tu) to be due to thickenings of the mesogked. In some of the sperimens they appear to be intolded along with the tentacles. The evoderm of the columu wall has entirely disappeared. The mesoglara is thin, and more or $!$ ast tibrillar in struetme with compatatively few cells. The sphancter muscle is ot the dittuse type (Pl. xx, Fig. 11.), its mesoslaral processes being long and mumerous, so that a fairly strong musele is produced.

The tentacles appear to be ten in number. They are rather short, rylindrical, obtuse. In transverse seetions it is seen that their longitudinal museles are contined to the ertoderm, and for the most part are
of moderate strength, but towats the base t wo regions are to be found upon the outer surtare of the tentade where the musele processes reath an excessive development (Pl . XIN, Fig. 7.) In sections which pass throngh the point of origin of the tentarles, just where they arise from the dise (I'l. XX, Fig. 10), it can be seen that these two musele bundles (m) are continued upon the dise, forming strong musdes lying immediately over the mesenteries, one bundle of earch tentacle coming from the mesogloa over each of the mesenteries which limit the intramesenterial space to which the tentacle belongs. These musele bundles are not, however, contimed to any extent upon the dise towards the mouth opening, but appear to be contined to the peripheral region where the tentacles arise.

The stomatodam (I'l. xix, Fig. st) is rather short, and has only one siphonoglyphe which is deep, its mesogla being mach thicker than it is elsewhere on the stomatodemm. The remainder of that structure is marked by six longitudinal ridges, each of which corresponds to the insertion of a mesentery.

As is indicated by the furrows of the exterion of the column there are twenty mesenteries. Light of them are perfert, gonophorie, and provided with mesenterial filaments, while the remaining twelve are imperfect, sterile, and destitute of filaments. The armagement of the mesenteries is exceedingly interesting (Pl. xin, Fig. ふ). There are two paiss of directives, having the characteristic armagement of the longitudinal muscles; that pair (III) which is attached to thesiphonoglyphe marks the sulcar surfee of the body On each side of the sulear directives is an imperfect mesentery (V) with its longitudinal muscle upon its suleular surface, and surereding this comes a perfere mesentery (I) forming with the imperfect one a par. Then follow a pair of imperfect mesenteries (VII), then a pair formed by a sulear imperfect (VI) and a suleular perfect mesentery (II), then a pair of imperfect mes. enteries (VII), and finally the suleular directives.

It must be stated that the figure I have given is to a certain extent diagrammatic, inasmuch as in a seetion through the stomatodamm the Jongitudinal museles of the imperfect mesenteries could not be readily made ont, while further up, the colmm, in sections which passed thromgh the column and dise, they were well developed. I have representer therefore the arangement as regards the perfectuess or imperfectuess of the mesenteries as seen in a section passing through the stomat todieum, but the musenlature as seen in sections passing throngh the column and dise.

The longitudinal muscles are not strong, and in the perlect mesen teries occupy the greater part of the surface (I'l. xx, Fig. !). The endoderm of the mesenteries presents a rather peroliar vacoolated appearance, reminding one of the structure which it presents in (erianthus. The mesenterial filaments which are developed only on the eight perfect mesenteries appear to lack the "Flimmerstreifen" but I can not be
ertain that they are mally absent. The rontraction of the specimens remders it difionalt to malerstand the exad struetme of the tilaments. The ova are lare and contan a considerable amount of food-yolk.

The signifeane of the artangement of the mesenteries of this form I have elsewhere pointed out (9). The eight prefeet mesenteries evidently eorespond to the eight Lefredred mesenteries; the imperfert mesenteries which form paisw whth adjacent perfed ones (I and II), are evidently the mesenteries which comsert the octameral into the dodecameral condition with paired mesenteries. The imperfect patis V'll and V'll are serombary mesenteries and arise in pairs in the two intermesenterial chambers nearest the sulcular directives.

If we omit pair vil we have the arrangement whichoceurs in Gonartimia (Blochmamn and Hilger, 'sS), and if the suleular member of pair va be omitted the condition ohtaining in Neytophorses (Hertwig, 'S2) willappear. It seems that these fwo forms, together with oroctis, represent threr links in the chain by wheh the ancestor with twelve mesenteries, all of which atose simgly and bilaterally, becomes romverted into the llexartinite, in which the muscies arise in pairs and radially. In Neyfophorus the original method of tormation is carried over into the formation of the single secondary mesentery. In fomactimia the pared mode of formation is begimning, in Oractis it is thoroughly established, but in both these forms the bilateral mode still holds. Finally, in Haloompot the mesenteries atise in pairs amd radially.

It will not be necessary to enter into the details of this idea here, sinee it has been treated of elsewhere in connection with some other facts (9 (a) . It may be woll, however, topoint out that there is embryologidal evidence to show that the secomdary mesenteries of the Itexatetimie make their appearance in the suleno-lateral ehambers earlier than in the others, and those of the lateral chambers develop before those of the suleo lateral ones (Dixon, 'S!), a sucerssion which exactly corresponds with the phylogenetio development seen in the Protactinia.

Tribe HEXACTINIAE.

Aetinozoa with six, eight, of ten pairs of perfect mesenteries, which form a principal cerele, and to which maty be added a varying number of additional efeles, perfeef or imperfect, the mesenteries of which develop in pats and radially, appearing almost simultameonsly in all the intermesenterial spates. 'The longitudinal museles of each patir are on the faces which look towards the intramesenterial spaces, exeept in the ease of two (ocrasionally one) pars, the directives, which are attarhed to the f wo (ocrasionally one) siphonoglyphes, and whose longifudinal museles are on the laces which are turned towards the adjacent intermesenterial spaces.

The above defintion dithers considerably from that wiven by Hertwig

within it not only hexamerous forms, but also ortamerous and decamerous Actinians. In other words, I finse with the original Ilexactinite Hertwig's tribe I'arationite, which is altogether artilicial and umeres. sary. My reasoms for this opinion have been given at length elsewhere and need not be repeated (959,91).

Order ACTININ AL, Amires.

Hexactinis in which the tentarles are armaged in eyrles, only a single tentacle communicating with each endocol.

Fimily HALCAMPIDAL

Actinina with asmall momber of mesenteries, six, ton, or twelve pairs being all that are present; longitudinal muscle pennons narrow, hut strong; no sperial sphincter musele; conchula presentor absent; base usually rounded and vesicular.

In his monograph, Andres ('s:3) divided the lamily Ilyanthidare, which had been previonsly limited by the exchsion of the 'rrianthea and Edwardsia, into thee distinet families, or, as he termed them, subfamilies. One of these, the Ilalcampidar, contamed the gemms Ialermpa, the Ilyanthide inelnded only the gemus Ilyanther, while for those forms which possessed a comelona the family Siphonactinide was established.

A more rerent author, Haddon ('s9), seems to regard this last family with umeertainty. λt all events he removes from it and associates with the Haleampidar the semus Penchin, recognizing, however, the the possible neressity for the establishment of a separate family for it.

The uncertanties which interfere with the delimitation of the family Halcampide are manly two. Are forms which possess a conchulato be associated with others which do not have this strueture, bat whose mesenteriak arangement is similar? And are decamerons to be associated with hexamerous fomms". I believe that both these questions should be answered aflimatively. The forms belonging to the family Siphonactinder, so far as they are known, agree in certain important features, viz, in the usual abseme of an adherent hase, the absence of a sphincter, the small number of mesenteries, and the strong though namow longitudinal museles, with the members of the genns Ialcompre, and differ from them only in the possession of a eomehnla, a structure of probably comparatively little morphological importance. As regards the arrangement of the mesenteries, even if we separate the forms with a conchula from those without it, it will be neeessiry to associate together hexamerous and decamerons species, unless we wish tomultiply families beyond convenienceand necessity. Inalcampa eudromitata, etc., are hexamerous, and $I I$.producte is decamerous among the IValeampidie; and among conchala-bearing forms Penchia hestutw is decamerons, while Biridium parasiticum is hexamerous, possessing twelve pars of mesenteries.

I think that the purposes of classitication will be better served by Hentings these and similar forms into a single family, for which the name Hallamphide, atrealy used ith this sense by Itaddon ('Sa), may be comploged, athl to reognize in thas lamily several genera. The gemus Heldamper soms to be well charactorized by its hexamerism and the distinction into capitulum, seapus, and phys: II. protuctu, of the east coast of North America, athl II. cepensis Verr., II. brecheornis (Stimpson), alld 11. N(impsenii Vervill ('65), decamerons forms, may be pelemed to another wenns, thoush pobably it will be well to separate 11. producta from thoother three and refer it to a sepatate gems. The
 chosely related, and 11 . pooluch mas be refered with it to the genus Elodedis proposed by Ambes (ㅇ.si).

In addition to these three genera, sime Andres' gemus Ihatermpella and Danielssen's Ihtermpoides ("90) do not seem neeessary, there will be of the conchala beabing forms Peachin, which is decamerous, and bicidinm, which is hexameroms. The semas tetimopsis, which is asso ciated with these two gemera by Andres, presents certain external chataters which make ome hesitate somewhat to retain it in the group. Until an anatomical study of it has been made it will probably he as well to leave it where it is.

Among the Allotross material I find two speces which may be refered to the limity thas emended. One of these is a leathiar the other must, I think, be referved to a mew semus related to Matampa or Relonetis.

(Gешин HALCURIAS, моп. пом.

Haleampida with all adherent base: colmon cylindrical; tentaches bumerous amd short; ten pains of mesenteries, all of which are perfect, Homsh form patss situated in the suleotateral and lateral iatermesenterial spaces areless extensively developed than theother six. No conclula.
3. Halcurias pilatus, sp. nov:

 Thrers spevimems.
The base is lat and adherent, one of the spedimems being soated
 much wrinkled from contraction, but ipparently possessing no wats or thberches. It measmes a.ism in heisht, while its diameter at the
 preeded, but they are exeedtingly obscome and conld not be discovered (111 : 11 the sperimets.
'The matrin is smooth and forms a very distimet parapet around the bases of the tentacles. These aro momerous, amounting to about seventy in one specimen in which they were combed, and are aramged
in about three cycles. They are simple, cylindrical and taper to a point, and cover almost the entire disk. There being no sperial sphincter muscle, the tentacles are not covered in contraction.
There is no conchula, and only one siphonoglyphe, which is neither very deep, nor well defined. The surface of the stomatorderm possesses numerous ridges, which are high (Pl. xxi, Fig. 14, st.) and may bifurate at the extremity or give off secondary ridges. They are more numerous than the mesenteries, and do mot seem to stand in any very definite relation to them. The mesenteries are twenty in number. They are arranged in pairs, two of the pairs being directives, and are all perfect. Below, however, it is seen that four of the pairs, as in Peachic, are much narower than the other six, these narrow pairs being situated in the sulco-lateral and lateral intermesenterial spaces. The mesenteries are thin; at the base there are pimately arranged mosele processes (Pl. Xx, Fig. 13, bm.), and separated from these by a region in which the mesentery is exceedingly thin are the longitudinal muscles. These are very strong (P1. xx, Fig. 13), but at the same time narow, forming a strong protuberance upon the surface of the mesentery. Above, however, they widen out (I'l. xxi, Fig. 14) and the processes are not so high.

All the mesenteries bear reproductive organs.
There are a few points in the histology of this speres which are interesting. The mesoglea is fibrillar, especially towards its inner surface, and contains very numerous cells. It is in the ectoderm however, that the most interesting peculiarities appar. The ectorlerm of the column wall is high and contains, as usual, many gland cells. In addition to the usual elements, however, it also contains ummerons nematocysts (I'l. xxi, Fig. 15, n) lying in its outer portion, sometimes very closely crowded together. Immediately external to and resting upon the mesoglera, roundish bodies-or, rather, bodies appearing round in cross-section ($m f$.)-which stain somewhat deeply, can be perceived. These seem to be muscle fibres, having a longitudinal direction. They have all the appearance of muscle fibres, but I was not able to render their nature certain by the study of maceration preparations. Futher evidence for their muscular nature is, however, to be found in the presence, exterior to them, of a thin layer of fibrilla having all the appearathe of a nerve layer.

Longitudinal muscles and a nerve layer are, as a rule, absent in the column wall of the Hexactinie; but, on the other hand, are well dereloped in the Cerianthere, and it seems probable that the more primitive Actinozoa likewise possessed them. Hitherto they have been found among the Hexactinie only in Corynactis? sp? and Corallimorphus obtectus, in which forms they have been described by Hertwig' ('88). The fibres of Halcurias resemble those of Corallimorphus in being poorly developet, and are apparently fewer in number. In Corynactis? on the other hand, they seem to reach a fair degree of development.

A few words are neressary regarding the affinities of this form. It diflers from all other semera of the Halcampidar by its adherent base and by the large number of tentacles which it possesses. Aetinopsis possesses the same charateristics, although the tentacles are much longer in proportion, but diftersin having a conchula. There is reason to doubt, however, whether Actimpsis can be referred to this family. Among the members of the family, however, indications of an adherent base are found, as 10 Elonetis producte, and the importance of this chararter seems to be fill outweighed by the small number of the mesenteries and the stometure of their museles. It seems tolerably certain that the llatrampids are the simplest and probably the most primitive of the Hexactinite, and the presence of longitudinal muscle fibers in the ectoderm of the column wall of Malcurias is a primitive characteristic. I think, on the whole, that it is to be regarded as much more nearly related to the Halcampids than to any other family of Hexactinixe.

Gienus PEACHIA, Gosse.

Daleampide, with rather short tentades, few in mumber; with four paiss of natow sterile mesenteries, situated in the lateral and suleolateral intermesenterial spaces, and six pairs of perfect fertile mesenteries; and with a single deep siphomoglyphe. Longitudinal muscles of the mesenteries strong. Conchula present.
 Halcompe chrysanthellum, later on, however ('os), removing the latter form to the gemus to which it is now universally assigned. Andres ($8: 3$) employs, instead of Cosse's name, that proposed by Koren and I anielssen ('Jb), Niphomatiniu, but the term proposed by Gosse has undonbtedly the prionity, as Haddon points out ('st). In his revision of the British Artinite, Haddon ('s9) gives a definition of the genus someWhat more predise than that given above, including certain peculiarities Which seem likely to prove sperific rather than generic. If they are retained the form deseribed helow and siphonactinia Boeckii would be ex-- huled from the gemms, to which they seem maturally reterable. Rather thatr establish a mew emms for their reception, I prefer to extend somewhat the limitations of the genus Peachia.

4. Peachia koreni, sp. nov.

11. Nxi, Fig. 16.

No. 951. Station, 2764. Lat.. $366^{\prime \prime}$ S., long., 5623^{\prime} W. Depth, $11 \frac{1}{2}$ fathoms. One specimen.
The single specimen of this speries (Pl. xxi, Fig. 16), which I dedicate (o) I'of. Koren, towhom, in collaboration with Prof. I anielssen, we owe the Famma Litoralis Nomeqiar, is evidently "losely related to l'. (Siphon(actimia) Bocklii (Kor. et Dan.). I regret that I can not eive as complete a description of it as I should like to do, owing to a disinclination to motilate the sole example obtained.

The base does not seem to have been adherent, but it is somewhat mutilated, so that it is not possible to berertain of this. No distinetion, however, into capituhm, somphs, amd physa is possible. The rolmm is eonsiderably wrinkled by contraction and shows no trace of thbereles or warts, and is not covered with foreign substances. 'Joward its lower part longitulinal grooves, marking the insertions of the mesenteries, are to be sem, but they ran not be traed upwand toward the margin for any distance. The height of the column is $1 . \mathrm{l}^{\mathrm{c}} \mathrm{m}$ and its diameter 0.sem.

The margin is simple, and in the eontrated sperimen covers the bases of the tentacles. 'These are only eighi, in momber and are short and stout.

The eonchula, formed by the prolongation of the lips of the single siphonoglyphe, is as long as the tentacles. On earla side of the matn portion of the conchula is a lobe rising only fo about hald the height of the former, and at the sulcular extremity of the mouth is a still smaller unpaired lobe.

By cutting across the column until it, was almost divided I was able to aseertan the arrangement amd momber of the mesenferies without appreciahly mutilating the sperimen. There is only one siphonoglyphe, which is long and deep, with thirlk and firm walls, almost cartilaginoms in their consistency. The mesenteries ane twenty in mumber, arranger in ten pairs; two of these are rlirectives, and in addition to these there are fon other perfect paiss of abont equal width, making altogether a principal cyele of six pairs of meserteries. 'The remaning four pairs are imperfect and murh narrower, and are situated in the suleo-lateral and lateral intermesenterial spaces. The longitudinal museles are strong.

The arangement of the mesenteries is the same as that fonm in Peachin hustatu, but, as arready stated, the general appearance of the animal, the form of its tentacles, and the possession of a well devel. oped conchula bring it very close to I^{\prime}. (Siphomertinia) Bockii. Whether the latter has also ten pairs of mesenteries remains to be seen. It has twelve tentacles, which would lead one to suppose that it was hexamcrous, but the species here described shows, as does also I'rachiothestata with twelve tentacles, how little can be ascertained as to the mumber of the mesenteries from the momber of the tentacles. It is possible that the specimen of P. Koreni examined was young and had not de veloped its full quota of tentacles. I can mot make any statements with regard to the presence or absence of reprodustive elements, not having made microscopical preparations of the mesenteries.

I think, however, that there ciun be no doubt as to the specilice distinctuess of this species from that obtained on the Norwegian coast. The form of the conchula is entirely diferent, a fact in itself suliceient, in the present state of our knowherlge of the amatomy of the ronelnala bearing Ifaleampidir, to warrant the establishment of a distinct species.

Proc. N. M. $93-10$

Fimmily AN＇Tll心AI）．

 isfactory and will bo adopted here．

（inmis ACTINIA，Lim．

It seoms doubthil whether such definitions as Ablres（＇sis）proposes eat be mantained for the generat Aetimin and Amemonia．It may be， perhaps，better to mite all the forms of these genera which possess acrothagi mater the gemus detimia，leaving those destitute of such structures and withont adistinet collar and fosse in the genns Amemo－ ＂ilı．

5．Actimia infocunda，nom．now．

llald Axi，ドig． 17.

Nos．6\％7，1734，Abrollos Inlamds．＇Two speceimous．
The resemblane of those forms to that deseribed by Hertwig as （ommetis thatellifert is very ereat，and it seroms almost certath that they are blentieal with it．They are somewhat smatler，measming 0．20＂m in

 only in beins a litthe boathe，and the radial monseles of the disk have the（＇erianthat ：
 have as ushal diredive mesenteries connected with them．
 are cleaty marked ont in seetions below the middle of the stomate
 all of whioh ate about tho sallo width，se that a pair of broall mesen teries allemates regulaty with a narow patir．I fombl indications of mproductive organs，but the ova were fow in mumber，though faity laree，and appeared to oredr in at few of the larwer perfect mesentories．
 men ho cxamined，and eonsidered it therefore to be immature．Simee， however，the specimens which I have stodied possess ova ath yef ate smaller that llortwises speromen it seme pobable that the lalter is to be considered mature．

One interesting histolosical peraliatity I hate observed in this form may be mentioned．If is in eonne etion with the strmeture of the upper part of the mesenterial ditaments．＇The mesoglaz has as at oule only at liew seattered cells，but in the proerses which support the median and latoral portions of the titament in its upper pat the erells berome ex

(Pl. xxi, Fig. 17, mg). I have not met with such an arangement in any other forms, and it forms a very striking peonlanity.

As already stated there seems litite room for dombt hat that hais
 lifer". The external apparance is the same and the anatomieal pecularities are so simitar that I do mot believe a separation of them would be justifiable. Nevertheless, 1 have mot followed themwing his identification of the form. It was with some hesitation that he associated his form with Dana's Iclimin flymelliferm, reengnizing the great difference betwern his sperimen and the figme given by bana ('46). We regarded Vervills aceome ('ri6) of the atomolie specimens as furnishing a seemeiliation of the discrepaneses, motwithstanding the paucity of the facts which Verill contributed. Johnson ('6it) has, however, studien the seat anemones of the region where Danars Kom was collecterl, mamey, Madeira, and ronvineod limself that, it was in reality identical with the commen Envopean Anemonin sulenta, which view is aceepted by Audres. For this reason it seems advisable to separate Itcrtwig's Comuctis muler a new name.

> Gemin ANEMONIA, Kisso.
6. Anemonia variabilis, sp, nov.

> (See Appentix I'.)
> Plato xx1, Fins. 18, 19.
 oms. Nиmeroин вресіmens.

 and 0.5 to 1^{c} win diameter at the hase. They were seated upon sponges or oceasionally umon Tubularian stems, the hase of the es etmans in the latter cases surrounding the stem.

The colum is somewhat wider at the base than higher mp and has therefore a slighty comial shape. The erodedem for the most part has been marerated away, leaving the slighly tramshernt mesogha exposed, and allowing the insertions of the mesenteries to be seen through the wall as fine longitndinal stria. The mensoghat is rom paratively thin and almost perfectly homognoms, comtaining very fow mesoghoal cells. No verruca or acoohagi are present.

The tentarles are shom and mumerons, llstally appoathing one hum deel, but varying in momber in the varions sperimens. One tentarlecom munieates with each exo-and eath condoced, and therir mumber depends upon the momber of mesenteries present, in any one individual. Fthe the majority of cases they are completely exposind, the sphincter musele of the column being endodermal and diffinse and very wakly developed, as is the case with the general musculature thronghout the body. The
ectodermal muscles of the tentacles and disk form a simple layer, the mesoglea not being raised into supporting processes.

The stomatolienm is clongated, but without well-marked siphonoslyphes. Its ectodermal lining is thrown into very promomed folds, supported by delicate thomgh high longitudinal ridges of mesoglea (I'l. xxı, Fig. 19).
The mesenteries are irregular in mumber. In sections of three specimens, for example, there were respectively $2 x, 3: 3$, and 36 pairs. As a rule a perfect and an imperfect pair atternate, but this aramgement is not intrequently intermpted by the suce ones, or of three or two pairs of imperfect ones. There are two pairs of directive mesenteries, and the number of mesenteries intervening between them on each side is usually the same, thongh there are exeeptions to this rule. In the specimen of which a section is figured on Pl. xxi, Fig. 19, it will be seen that only cleven pairs of mesenteries interrene between the two directives (I) on one side, while there are as many as twenty-one on the other side. This section represents the condition as seen towards the level of the lower extremity of the stomatoderm. Higher up two pairs of mesenteries are to be found which are not represented at the level figmed, and these increase the number of mesenterial pairs of one side of the body to fourteen-i. e., thirteen pairs intervene between the two directives. Even in the uppermost sections, however, there is mot equality in the number of the mesenteries of either side. That the irrgularity which is fomd in the succession of perfect and imperfect mesenteries is not an artiticial production is shown ly the relation of the perfect pairs on either side of the two (x) and three (y) imperfect paits of the figure. It is there seen that these perfect pairs are attarched to the stomatombum opposite successise mesogleal ridges, and this relation of the ridges to the insertion of mesenteries, though not constant, is of sufticient frequence to warrant the assumption that the groms of mesenteries $, x, y$ are truly imperfect.

The mesoglua of the mesenteries is considembly thicker a short distance from their insertion into the column wall than elsewhere and is raised into only very low muscle processes. Consequently the muscle pemons are almost wanting, the longitudinal muscles forming little more than a simple layer over the surfate of the mesogleat. None of the specimens examined were mature; immature ova were observed, however, in the endoderm of some of the perfect mesenteries and in that of the directives.

The habits of this form sugyested identity with that deseribed by Verrill ('83) as Sotyartion spongicola. Examination of' specimens of the latter showed at once that the two forms were very different, S. spongicola, for example, possessing strong musale pemnons on the mesenteries attached by a slight pedicle in a manner recalling the conditions described by Hertivig ('s's) for Lecotealia nymphea.

7. Anemonia (!) inequalis sp, nov.

Plate xxxiy, Figs. 114-115.

No. 742. P'ichilinguo Bay, Lower California. Littoral. Two specimens.
The two specimens which represent this species are contracted, though the tentacles are not completely concealed. The base-was adherent. In height the largest specimen measures $0.7^{* m}$, with a diameter of $1.3{ }^{\circ} \mathrm{wn}$. The column wall is thin and soft to the touch, and shows 72 longitndinal lines which mark the insertion of the mesenteries. The ectoderm is completely macerated away. The mesoglea is fairly thick and is homogencons in appearance, with numerous cells scattered through the matrix. A sphincter is present; it is endodermal and of the "diffuse" variety, forming, however, a not very compact mass and being rather weak. (Pl. xxxiv, Fig. 114.)
The tentalles are short, and apparently thirty-six in number, arranged in a single cycle. Their ectodermal muscles are weak and are not embedded in the mesoghea.
The stomatodienm is ridged longitudinally and possesses at least one shallow siphonoglyphe. In half the circunference of one specimen examined eighteen pairs of mesenteries were present, from which it may be concluded that thereare altogether thirty-six pairs, a number which corresponds with the number of longitudinal lines seen from the outside. Their arrangement is very peculiar. All are perfect above, but below they are evidently divided into three cycless, each consisting of twelve pairs. If the first cycle be considered to represent two primitive cycles, the apparent second cycle will really represent the third cycle, while the apparent third will be the fourth, in which, however, only half the proper number of pairs has developed (IPl. xxxiv, Fig. 115.). The mesoglara of the mesenteries resembles that of the column wall, being homogeneons and tolerably thick. The longitudinal muscles are not very strong and cannot be said to form a circamseribed pemom. The parieto basilars form folds mpon the surface of the mesenteries, the dge of the fold sometimes, however, uniting with the mesentery and so producing one or more cavities enclosed within the mesogloa of the mesentery near the insertion into the column wall. No ripe reproductive elements were present, but I succeeded in finding a few very young mother cells, the macerated condition of the internal parts preventing, however, an accurate determination of their distribution. Some certainly occurred on one of the mesenteries of the secomd actual cyele and I thought I could distinguish others on some merenteries of the third and fourth cycles, but of this I can not be certain.

I assign this form provisionally to the genus Anemonio. It differs materially, however, from the typical forms of the gromp, as, for instance, in the short and not numerous tentacles. The abnormal arrangement
of the mesenteries is not, I believe, of sulficient importance to be generic and in the general structure there are undoubtedaffinities to the Antheadir. As to the presence of acrorhagi nothing ean be said, on areonnt of the absence of the ectorlerm, and the macerated condition of the internal parts prowed a deaded obstacle to a thorough study of the specimens.
(iemus CONDYLACTIS, Wheh, et Mich.
The gemus (ondylatis was established in 1866 by I Hehassaing and Micherowt (eta) for the reception of the common West Indian form C. passiflora. I have shown elsewhere ('89) that this form is in all respects an Anthead, and that it agrees elosely in general characteristice with the form described by Bella Chiaje as Actinia aurantiact, subse. quently assigned by Andres ('S:3) to the genus Cereactis, which is referred to a special family. The senerie name poposed by Durhassaing and Micheloti hasemoloubted priority and must replace that proposed by Andres. I see no good reason for separating Condylactis from the other Antheads, from which it is distinsuished by the absence of acrorhagi and by the presence of a fosse between the margin and the bases of the tentacles, as well as by the usual presence of minnte verruce upon the column wall.

> 8. Condylactis cruentata (Dama).
> Plate xx, Figs $20-21$.

Synonyms: Actimia cruentula, Dana (18.16) ; C'rens crucutatus, Milne-Edwards (1857) Funodes crucntute, (iosse (1860).

No. 736. Sandy Point, Straits of Magellam. Littoral. Four specimens.
All the specimens (IPl. XXI, Fig. 20) are contracted, the tentacles being concealed; in this comdition the height and diameter of the column are about the sime $.05 \mathrm{~cm}^{\mathrm{cm}}$. The preserved specimens show no coloration, but in sections brown gramules of pigment are formd in the endoderm of the disk and telit..! les.

The base is adherent. The colmmn wall is thrown into strong folds, and towad its upper part are rows of repuca to which particles of sand are strongly adherent. The veruce cease at the well-marked margin, between which amd the bases of the external tentacles there is a well-maked fosse, which is made especially evident in contracted specimens hy being drawn down by the strong longitudinal museles of the mesenteries. ('ireular museles are developed upon the column wall hat are wanting at the margin; internally to this, however, a few small musele proresses are found which represent the sphincter. It is very weak and can have only little effect in producing the eoncealment of the tentacles; this is mainly hought about hy the longitudinal muscles of the mesenteries.

The tentarles are not very momerous; their longiturinal museles, like the radiating muscles of the dise, are not imbedded in the mesoglata.

The stomatodieum possesses well-developed siphonoglyphes with smooth walls, the rest of the stomatodieum being longitudinally ridged. There are only sixteen pairs of mesenteries, all of which are perfect, eight losing comnection with the stomatodemm, however, somer than the others. The longitudinal muscles are strongly developerl, forming a strong pennon (Pl. xxi, Fig. 21), and the parieto-basilar (pbm) forms a strong fold upon the surface of the mesenteries. The reproductive organs are borne hy the mesenteries of the first cycle, wi:1 the exception of the directives. No acontia are present.

There is necessarily some doubt as to the correctness of this identification. The external structure agrees well with Dana's species, as does also the habitat; as to the coloration nothing can be said. In referring it to the gemus Condyluctis, I have separated it widely from the genera to which it has previonsly been assigned. The nature of the sphincter and the arrangement of the mesenteries indicate a relationship to the Antheade, and of existing genera of this family, by its possession of verruce, and of a fosse, and ly the absence of acrorhagi, it comes nearest to Condylactis. It differs from the deseribed forms of this genus in its size and in the prominence of the verruce, but it seems advisable for the present to include it in the genus.

9. Myonanthus ambiguus, gen. et sp. nov.

Plate xxi, Fig. 20; Plate xxir, Fig. 23.
No. 731a. Station 2839. Lat., $3308^{\prime} \mathrm{N}$. ; loug., $80^{\circ} 15^{\prime} \mathrm{WV}$. Depth, 414 fathoms. Many specimens.
In looking over the collection soon after it reached me I noticed that in the bottle which contained the species described below as Paractis vinosa, there were a large number of examples of a form which, while resembling the specimens of P. vinosa in general form and size, yet differed decidedly in color. On submitting them to anatomical examina tion I found that very decided structural differences existed, and that I had to do not only with a distinct species, but even with a member of a distinct family. After much uncertainty as to the family to which it should be assigned, I determined to insert it in this report as an appendix to the Antheade. My reasons for so doing will better be understood after a description of the specimens has been given.
They are all more or less contracted, some having the tentacles completely contracted, while in others they remain more or less exposed (Pl. xxy, Fig. 22). The color of the column and tentacles is pale pink or flesh color. In height the less contracted specimens measure about 1^{cm}, their diameter ranging from 1.3 to 1.5^{cm}.

The base is adherent, and in many specimens is more or less covered by a dark brown, somewhat granular cuticle. Its diameter is as a rule somewhat greater than that of the column; in the specimen from which the measurements given above were taken its diameter was about

2em. Its mesogloa is rather thin, allowing the straw-yellow color of the reproductive organs to shimmer through.

The colum wall is smooth for the most part, except for the slight folds calused by contraction. In the more intensely contracted specimens in the uper part twenty four longitudinal folds were more or less distinct, terminating abruptly at the margin; twelve of the folds are smaller than, and alternate with, the other twelve. The ectoderm has been to a large extent macerated away from the column wall, but where present it has the same color as the mesogloa. No trace of verruce or tubercles could be discovered. The mesogloa is much thicker than that of the base and has a fibrous structure. It is not, however, stiff and parchment-like to the touch, but on the other hand rather solt and tongh. Just at the margm, where the longitudinal folds of the contracted specimens terminate, is a well-deveroped endodermal sphincter (Pl. xxif, Fig. 23). It can hardly be classed either as "circumseribed" or "diffinse," since, though well detined, it is not comected to the column wall by a distinct pedicle. It is rather intermediate between these two varieties of sphincter, and resembles closely that form of muscle which I have elsewhere ('sa a) described for a species of l'hylluctis. I would suggest the application of the term "aggregated" for this variety of muscle. Its appearance in cross section may be understood by a reference to Plo xxir, Fig. 23. It is to be observed that anastomes between the muscle processes are not unfrequent, so that bundles of muscle fibers beeme enclosed within the mesogloat. Immediately adjacent to the sphincter the ordinary circular museles of the colum are hatdy developed, but bower down they hecome stronger, without, however, forming a second sphincter.

The sphincter seems to ocemr just at the margin, and apparently a slight fosse exists between this and the outermost tentacles. No acrorhagi could be detected. The tentacles are numerous and artanged in several cyeles, but 1 could not aseertain their actual number. Their color is the same as that of the colum and they are of fair length and rather slender. Their longitudinal musculature is not imbedded in the mesoglera, resembling in this respect the radial muscles of the dise.

The stomatodam possesses two siphonoglyphes whose lower ends are prolonged apprently some distance beyond the lower opening of the stomatodarum. In consequence of this the directive mesenteries are attarhed to the stomatodarm throughont a greater extent of their length than are the other perfer mesenteries. Thereare, altogether, four cycles of mesenteries, of which only the six pairs forming the primary cycle are perfect. The mesenteries of the fourth eycle are small, and hardly project beyond the endoderm. All the mesenteries exepht those of the fourth cyele and the directives are somphorie. The reproductive organs are very evident in disseded specimens, owing to their bright orange color due to the preseme of numerons oil globoles in the ova and sperm mother cells. The mesenterial filaments are not deeply colored, as in I^{\prime}. vinosa. This forms a simple point of distinction be-
tween the two associated species. The longitudinal museles are only moderately developed, and do not form a well-marked pemon. The parieto-basilar seems to be weak. No acontia occur.

From the above description it may be seen that this form is not readily referable to any of the recognized families. On the whole, however, it seems to approach more nearly the Antheade than any of the others. The smooth column wall and the distribution of the reproductive elements are points of similarity, but on the other hand the sinall number of perfect mesenteries and the strong sphincter are decided differences. The sphincter, however, is practically an endodermal one, and the definition given by Hertwig ('82) for the Autheadse does not exclude the existence of a recognizable sphincter. In fact, in Actinia infecunda, which he recoguizes as an Anthead, a sphincter is present of such a form that an excessive amount of differentiation would not be ealled into play to transform it into such a muscle as we find in Myonanthus.

I think, accordingly, that it is advisable to refer this form to the family Antheade, regarding it as a somewhat aberrant form, which has the power of completely retracting the tentacles, owing to the possession of a well-defined sphincter, a character which has suggested the generic name I have applied to it (μ úv $=$ a knot of muscles).

Family BOLOCERIDA.

Actininæ with usually stout nonretractile tentacles, strongly constricted immediately above their insertion into the disk, and hence readily deciduons. Sphincter muscle endodermal, diffuse, or in some forms approaching the circumscribed type; the tentacles and disk fully exposed in the contracted condition. With more than six pairs of perfect mesenteries.

Bolocer tuedia discovered, in 18:32, by Johnston, and later referred by him ('47) to the geuns Anthe may be taken as a typical example of this family. Gosse ('60) established for it the genus Bolocera, and separating it from the Autheade, with which Johnston and Milne-Edwards ('57) associated it, placed it among the Bunodidie, in which chassification he has been followed by Andres ('\$3). A study of the form occurring in the deep water off the eastern coast of the United States, and which has been identified by Prof. Verrill with B. tuedice, as well as of other species of Bolocer fiom the Albatross collection, has demonstrated that, so far as their anatomical peculiarities are concerned, these forms are very different from the Bunodidie, but stand in relatively close affiliation to the Antheadre. The nature of the tentacles, however, and other structural characters, seems to be of sufficient importance to warant the establishment of a distinct family for them.*

[^31]Plate xxif, Figs. 24-27.
 oms. 'Two sperimens.
No. 701. Station 2779 . Lat. $53^{\circ} 00^{\prime} \mathrm{S} \cdot$; long. $70^{\circ} 40^{\prime} 30^{\prime \prime} \mathrm{W}$. Wepth, $77 \frac{1}{2}$ fathoms. Three specimens.
 specimens (young).
The base is evidently adherent, and is slightly smaller than the cod umm. It is maked with tine radiating ridges, which are contimued over the limbus upon the column.

This is mearly eylindrical, expanding slightly above, and in the con tracted comblion can not be satid to possess vermare or wats, thongh the entire surface is maked ont into smatl quatramgular areas by the (rossing of vertical amd "imulat furows, poresses of mesoglexa sup poiting the ectoderm of the elevated areas (Pl. Nxir, Fig. 른). In the largest sperimens the height and diameter of the column are abont 3 . Near the margin, in most of the specimens, complicated structures conld be seen which, on examination, poved to be mesenterial filaments protruding fom openings formed by the falling of of the tentades.

The magin is tentaculate. The tentacles are large and stont, covering the greater portion of the disk. They are aramged in about form eycles, of which the two inner eydes each possess twelve tentacles, the third eycle twenty-fom, and the fomth forty eight. The tentarles retain their cylindrical shape in the preserved sperimens and are phanly furowed (Ill. xxif, Fig. 66). At their insertion into the dise they sumdenly diminish in diameter, so that they are attached by a short and natrow pediele; they are thickest immediately above the pediele, where the inner tentades in the largest sperimen measured 0.9^{cm} in diameter, and from that taper gradually towards the extremity, which is somewhat obtuse. The length of the tentacles of the immermost eycle in the largest specimen was 5^{mm}.

In consequence of their mamer of insertion into the dise the tentacles are readily broken off, leaving a dieular opening upon the dise which indicates their former position. The opening, however, is diminished by a circular fold of mesoglora, covered by endoderm, which eneroaches upon it (Pl . xxif, Fig. $27, t s p$); the free edge of the fold is thrown into mumerons masele processes, and it seems probable that by the approximation of the edges of the fold the opening may be completely closed.*

[^32]The circular muscles of the tentacles and disk are erotodermal and comparatively weak.

The lips are prominent, and are marked by delicate and numerous stria, which are continued down the stomatodirm and apparently correspond approximately to the mesenteries. 'Two siphonoglyphes are present and are deep, the directive mesenteries being comparatively narrow.

Thesphinctermuscle (Pl. xxif, Fig. 24, sph) is endolermal and diffise, the endodermal mascle processes of the colum being more numerous and somewhat higher just below the margin than elsewhere.

The mesenteries are arranged in three cycles. The first cycle consists of twelve perfect mesenteries, includiug two directives, the second cycle likewise of twelve mesenteries, which are imperfect, however, and the third cyole of twenty-four mesenteries, which are quite narow and imperfert. All the mesenteriss of the first and second cycles, with the exception of the directives, are gonophorice. The lon giturinal muscles of the mesenteries are faily well developed, tha supporting process covering the entire non-gonophoric region of the mesentery and being of almost uniform lieight throughont. (Pl. xxif, Fig. 25.) There is no sperial development of the paricto-hasilar muscle.

In its general appearance B. occidua resembles very closely B. twidire. I have been able, however, to examine some preserved speamens of the latter obtained from the deeper water off our eastern coast, and can state that there are marked differences in the anatomy of the two speries. For instance, I. tuedia has the tentacles arranged in only three cyrles, and the parieto-hasilar muscles upon the mesenteries show a condition similar to what ocruts in I. pannosf, to be deseriberl below.

It is possible that the form here deseribed may be identical with Studer's ('7S) B. Rerguelensis, whirh is desrribed as having the ten tacles arranged in several cycles. We possess, however, no atcount oi the anatomical peculianities of this form ; and since the gencral shape of the body difters decidedly from that of B. occintu, and there are said to be seven cycles of tentacles in large specimens, I have considered it advisable to separate the two forms. I believe that in a case of doubt it is preferable to consider the newer form a distinct speries; the mion of forms improperly separated is a much simpler matter than the separation of forms erreneously identified.

A third form, with which B. occidua might possibly be identified, is B. multicornis, of Verrill ('79). Andres ('83) places this form among the donbtful Bunodida, not being able to determine firom Verill's deseription whether it is truly a Bolocera or not. I have been able to examine a specimen of it, however, and can confirm Verrill's assignment of it to that genms. The greater mumber of its tentacles and their much smaller dimensions show that it is distinct from B. occiduc.

11. Bolocera pamnosa, sp. nov.

$$
\text { Platexxir, Figs. } 28 \text { and } 29 \text {. Pl. xxir, Fig. } 30 .
$$

No. 729. Station 2839. Lat. $33 \cup 08^{\prime} \mathrm{N} . ; \operatorname{long}, 1180^{\circ} \mathrm{W}$. Depth, 114 fathoms. Light specimens.
This form, in its preserved condition, presents at the first glance only a remote similarity to other species of Bolocera. One misses the robust appearance and the large, stout tentacles, and finds instead a rasged mass. (loser observation reveals, however, many points of similarity to B. tuedie, and it is neressary to comsider both as belonging to the same family, and probably also to the same gemus.

The base is oval and attached. In average specimens it measured 7^{cm} in length and 3.5^{mm} in breadth. It is thin, especially toward the center, allowing the mesenteries and the dark, wine-oolored pigment of the mesenterial filaments to le indistinctly perceived. Towand the periphery radiating and concentric grooves are readily made ont, marking off the surface into small quadrangular areas.

The column is low; in none of the sperimens does it exceed $0.7^{\mathrm{cm}} \mathrm{in}$ height, and it is folded back upon itself, so that the bargin and limbus are nearly in contact. Immediately below the region where the bending back oceurs is a relatively strong, circumsoribed endodermal sphincter, which is, no doubt, the ranse of the reversion of the margin. This sphincter (ll. xxinf, Fig. 30) consists of a mainmesogloal process projecting out almost at a right angle to the colmm wall and giving rise to mumerons secondary processes manly on its marginal side, other processes arising below it directly from the column wall and grading off into the ordinary circular muscle processes. This sphincter, it will be noticed, is situated low down on the column wall, some distance away from the margin. Muscle processes supporting circular muscles occur above it, but they are not specially aggregated to form a sphincter. The sphiucter which is present is to be regarded as a lower sphincter, the marginal sphincter not being developed.
'The surface of the column is divided into small quadramgular areas by longitudinal and circular lines corresponding to the radiating and concentrice sroves of the base. No warts or veruca, howerer, seem to be present, nor are there any very decided mesogldal processes supporting the quadrangular areas as in B. occidur.

The entire anmal is of a pale rosy tint, or in some cases salmoncolored, the mesenterial filaments being of a deep wine purple. Probably in life the colors were more pronomed, resembling the coloration which seems usual to the Bolocerida.

The margin is tentaculate. The tentacles are mumeromsand strongly entacmabos, armaned apparently in about seven rycles, 6, 6, 12, 24 , $45,96,192$. The inner tentates measure abont 3.7^{cm} in length, and apparently are not capable of being contracted to any very great ex tent. In their general structure the tentacles resemble those of B. tue-
dire, being constricted just at their insertion into the dise, being widest just distal to the constriction; consequently they readily fall off, leaving a round opening in the disc. These openings are, however, partially closed by a museular fold of mesoglexa arising from their margius, atul similar to what has been already described for F. occidu.* Notwith standing their close similarity in the structure, the tentacles have a very different appearance from those of the species just mentioned. Instead of being plump, turgid, and robust, they are flaceid, flattened, and rather slender, aud give to the preserved specimen a very ragged and torn appearance. It is on this aceount that I have bestowed upon the species the name pannosa.

The musculature of the tentacles is weak, the ectodermal museles not being imbedded in the mesogloa (Pl. xxif, Fig. "8), but supported by hardly noticeable mesoglaral elevations. The longitudinal ridges of mesogloea which give to the tentacles of the Boloceridec their theted appearance are readily to be seen in the tentacles of the inner cyeles, but they are not so well developed as in other species of Bolocera.

The dise is almost entirely covered by the tentacles, only a relatively small area around the mouth being naked. Its ectodermal muscles are weak, though the endodermal circular system is fairly well developed; less so, however, toward the margin.

The stomatodieum is prominent and possesses two siphonoglyphes. The mesenteries are numerous, there being probably about ninety-six pairs, of which twenty-four are perfect and non-qonophoric (t wo of them being directives), twenty-four well developed, though not perfect, and forty-eight relatively small. All the imperfect mesenteres are gonophoric. The museulature of the mesenteries is not particularly strong, but presents a very peculiar arrangenent. If a transverse section of a mesentery of the first cycle be examined (Pl. xxi, fig. 29) it will be seen that at its attachment to the column wall it is comparatively thin; it soon, however, becomes thicker, and numerous cavities, containing apparently the degenerated remains of cells, are seen in the mesogloa. The exocolic face of this portion of the mesentery bears muscle processes which are cut transversely ($p b m$), and therefore give support to longitudinal muscles, or rather to the oblirque muscles forming the parieto-basilar muscle. The imer edge of this muscle is to a slight extent free from the mesentery, and it seems as if the cavities had been produced by the fusion at intervals of the mesogla'a of this free edge with that of the mesentery during the growth of the animal. Beyond the region of the parieto-basilar muscle the mesoglara becomes thinner, and its exocelic surface is covered by a simple layer of muscle cells whose fibres internal to the parieto-basilar region run longitudinally, then became transverse, and finally near the insertion of the mesentery into the stomatodrum become again longitudinal, being now supported

[^33]On short processes of mesoglari. On the endocolic face of the mesentery near its insertion into the colnmon wall are muscle processes bearing longiturlimal muscles ($/ m$), but the greater portion of the surface is covered ly a well-marked layer of transverse museles (tm), amongst which, howerer, some Jongitudinal fibres may le detected. This tramsverse layer covers about two-thirds of the surface, but the thind adjacent to the stomatodieum is occupied ly the morlerately developed longitudinal musele-perinom (lim). The armagement appears at first sight to be the normal relations reversed, so far as the faces of the mesentery are concerned, and to a cerfain extent this is the case. The greater portion of what normally would be exocolic transverse musculature has beeome longitudinal, white the embocelic longitudinal musculature has to a large extent become transverse. The longitudimal muscle-pemon, amd the paricto-basilar muscle still, however, retain their normal relations.

A histological point was well shown in the preparations of this form, on aceount of the specimens having undergone a certain amount of maceration in the preserving alcohol. Delicate mesogloal filaments can readily be seen to extend from the musele processes out between the cells, both of the ectoderm and the endoderm. I have called attention to this fact in the case of Cerianthus americanus (90), and have since observed it in momerous forms, so that it is probably a normal arrangement.
12. Bolocera brevicornis, sp. nov. (Sce Appendix, p. 209.) Pl. xxill, Figs. : :11-33.

No. 730. Station 2839. Lat, 3808^{\prime} N., lowg. 118 40' Wr., 414 fathoms. Two specimens.
This interesting form wasdredged in the same locality as R. pamosa. It is reprecented in the collection by two specimens, one of which is apparently full grown, while the other is evidently young. The base is circular in outlime and adherent. It measures in the large specimen 2 cm .

The colum wall is bent downwards, so that the margin is almost level with the base, and the whole expanse of the disk is exposed. The eolumn is marked by mumerons longitudinal lines, extending from the limbus to the marein, where they terminate in a well matked eiredar fold. Apparently the uper portion of the column is furnished with verruea, but owing to the somewhat imperfect peservation of the column ectoderm it is impossible to he erdain on this point. The mesoglea of the cohmm is moterately thick, and on its imber suffae is richly folded, so that the cimalar maseulature is relatively strong. In the region of the eireular fold, which forms the margin, the musele processes are longer and more closely aggregated than clsewhere, forming a wellmarked endodermal sphincter of the difluse type (IPl. xxin, Fig. 31). Below the sphincter the wall is thimer than elsewhere, and has the ap-
pearance of being pouched, the pouches perhaps corresponding to verrucie. Below this thin region the muscle processes are somewhat longer than further down, suggesting a second sphincter.

The dise is very broad, measuring 6^{m} in diameter. Its whole surface, with the exception of a small area immediately surounding the mouth, is covered with tentacles, or with openings which correspond to them. The tentacles must have been exceedingly numerous when all were present, having been arranged in as many as fourteen or fifteen cycles. They are short, very short, when compared with those of B. tuedice, those of the inner cycles, a few of which persist in the large specimen, measuring only $1.6^{c=1}$ in length. In other respects, however, they have all the characteristics of the Bolocerid tentacles. They are attached to the dise hy a narrow neek, the mesoglara of which is very thin. They are readily deciduous and they are fluted. In character they resemble the tentacles of B. pomoso rather than B. tuedia, being somewhat flaceid. Above the neck of the tentacle there is a sphincter-hearing fold of mesogloea, projecting into the cavity of the tentacle, as in other Bolocerids.

The mouth is slightly prominent and two well developed siphonoglyphes are present. It is dificult to estimate the number of mesenteries present. I judge that there are about forty-eight pairs of perfect mesenteries. Between each pair of perfect mesenteries there are three well defined series of mesenteries of gradually diminishing size and belonging to three different cycles, so that if the estimate of forty-eight is correct for the first cycle, there will be in all three hundred and eight-fou pairs of mesenteries, arranged in four regular eycles. This number does not, however, at all compare with the number of tentacles, and if the column wall berlosely examined a number of minnte ridges may be seen between the pairs of mesenteries, hardly, if at all, rising above the level of the endoderm, and not apmarently arranged in regular pairs or separable into definite cycles. These seem to be somewhat irregularly formed abortive (or incipient?) mesenteries, an attempt being apparently made to preserve the relation of mesenteries to tentacles which is usually found.

The specimens examined show no trace of reproductive organs, but from the general appearance of the mesenteries it is presumable that the ova or spermatozoa are borne by the imperfect mesenteries of the secoud, third, and fourth cycles.

The musculature of the mesenteries is weak and presents no such peculiar appearance as has been described for B. pamosa. The muscles on the endocolic face, however, appear to he transverse in the region near the column wall, but form a low and diffinse longitudinal muscle pennon covering the inner three-quarters of the muscle bearing region of the mesentery (Pl. xxim, Fig. 33). The parieto-basilar muscle is present (I'l. Xxim, Fig. 32), as shown liy the direction of its fibres, but it produces no such cavities in the mesoglad of the region of mes-
 rest of the exerelic surface is for the most pat oblique, becoming for a short distame tramserse, amd finally, as in B. promost, beeming longitudinal. The general arangement of the mosenatme therefore aspers closely with that of B. parmosa, the matn difference being the absence of cavities in the mesogloa of the parieto-basilar region.

This form is one of considerable interest. When I tirst saw it inglaneing over the eollection, I beliaved I had hefore me a serimen of Hertwig's Liponemu multiporum. ('88). The presence of the tentacles, however, induced me to believe that I was wrong in this supposition, but the general similarity in appearance susgested the idea that possibly Hertwig's specimens were identical yith this, but had last all their tentarles. When I had finished my study of the anatomy of B. brevicormis, I pereeived that this idea was not quite comed, but that though the two forms can not be considered identical specifically, fet they are so closely related as to warant the eomelnsion that they belonged to the same gems, and that Liponemo multiporom is a Bolocere which has lost all its tentacles.

To anyone who has followed my deseription carefnlly and has compared it with that of Liponema, I think the similaty between the two forms will be apparent. There is the same germal apprarance, the same folding back of the voluminous disk, the same "stomidia" almost covering the disk (though in the Ilbutross form these are normally surmomed by tentacles), the same circular fold at the margin, the same longitudinal lines on the column, a simila double endodermal sphineter, the two museles being separated by pouchings out of the column wall, thesame diserepancy between the number of mesenteries and tentacles (or stomidia), and a close similarity in the arrangement of the perfect and imperfect mesenteries.

These similarities are, I think, sufficient to mark the two forms as belonging to the same gemus. The different shape of the marginal sphincters and the slight difference in the arrangement of the mesenteries leads to their assigmment to distinct species.

It is worthy of note, too, that Hertwis deseribes a sphincter fold closing the openings on the disk, the "stomidia." This reminds me strongly of the muscular fold in the tentacles described in the preceding speries of Bolocere. Taking all the facts into consideration, I helieve that Ilertwig's Liponema multipormm should henceforth be known as Bolocera multipora.

Family PARACIIDAE, R. Hert.

Actiniar ushally with mumerons perfect mesenteries; cirenlar musele strong, imbedded in the mesogloa: acontia wanting.

The family Paractide was established by R. Hertwig ('心2) on anatomical wronds, the forms belonging to it having been previously associated for the most part with the Antheadre. In the above defini-
tion I have modified somewhat that given ly Hertwig, thereby extending the limits of the family so as to include certain forms with short, stout, non-retractile tentacles. I consider the presence of a strong mesogloeal sphincter and the absence of acontia the two most marked characteristics of the family, the number of mesenteries being of less importance, for although the majority of forms to be assigned to the family possess numerous perfect mesenteries there are nevertheless some in which only the mesenteries of the first cycle are perfect. These are, however, so closely related to those with numerons perfect mesenteries that it seems to me injudicious to separate them.

Audres ('83) independently established a family Paractidre, which probably is identical with that of Hertwig. The definition was, however, founded altogether on external characters, which are undoubtedly of less value in Actinian taxonomy than are anatomical features.

Genus PARACTIS, M.-Edw.

Paractide with smooth body-surface, without papille or marginal spherules; tentacles, slender, not exceptionally numerous, nearly equal in length and strength; margin not lobed. Sphincter widening somewhat abruptly in its upper part, and occupying near the margin nearly the entire thickness of the mesogloea. This is the definition which Hertwig ('82) gives of the genus, with the exception that he includes in the definition the presence of "numerous longitudinal furrows of the wall," which it appears to me limits the genus too narrowly, and by what is probably a more or less trivial character. He himself points out the possible alliance of his P. excavata to the Aetinia peruviana of Lesson, in which the longitudinal furrows, are wanting, except near the base, the column wall being described as smooth.

In the Albatross collection there are two forms which must be assigned to the genus as here limited, although they differ greatly in certain respects. In one, the column wall, though not particularly thick, is leathery, while in the other it is of a much softer consistency; and again in one the radial museles of the dise and longitudinal muscles of the tentacles are imbedded in the mesogloa, while in the other they are ectodermal. Whether this latter feature is one sufficient for generic distinction can only be determined by the examination of a large number of Paractide. I propose to place both the forms provisionally in the genus Paractis, leaving it for future workers to decide as to the advisability of their separation. There is one feature in which they both agree, and that is in the shape of the sphincter muscle, which from being very narrow below gradually widens as it nears the margin, and has consequently a somewhat club-shaped form. Apparently I '. e.rert vata has a similar sphincter, though Hertwig has given no figure from which its form may be accurately determined.

Proc. N. M. 93-11

13 Paractis lineolata (Dana) M.-Edw.

Ilate xxilf, Figs. 34-36.
No. 719. Station 2804. Lat. $8^{c} 16^{\prime} 30^{\prime \prime}$ N.; long. $7937^{\prime} 45^{\prime \prime}$ W. Depth, 47 fathoms. Eight specimens.
The species to which I refer the form about to he described was first mentioned by Dana ('16) as Actinia lineoluta, and was subsequently referred by Mihne-Edwards ('57) to his genus I'aructis. Verrill ('68), however, removed it from that genus and placed it in the genus Sagartia, and Andres ('S4), assuming it to be a Sagartid, assigned it to Nemactis. In its general appearance the "Albatross" specimens seem to agree with Dana's description, and the absence of acontia show that they are to be replaced in the gemus Paractis, as it is here understood.
The individuals are small (Pl. xxin, Fig. 34), and, for the most part, contracted to a hemispherical shape, the tentacles being entirely concealed, as a rule, though in some specimens they are not perfectly infolded. The base, which is adherent, measures in the contracted specimens 0.5^{cm}, and the height of the contracted column is about $0.6 \mathrm{~cm}^{\mathrm{cm}}$.
The colum is pale in color and is marked with irregular chocolatebrown spots arranged distinctly in rows, and giving the effect of longitudinal bands of brown on a pale ground. There is some variation in the width of the bands, hat I could not make out a regular alternation of three narrower bands with a wider one, such as Dana describes. The column wall is perfectly smooth: its mesogloa below is rather than, but near the margin it thickens rather suddenly. In this thickened region the sphincter muscle (Pl. xxin, Fig. 36) is imbedded. It oceupies in its upper part nearly the entire thickness of the mesoglea, being separated from the endoderm on the one side, and the ectoderm on the other, by only a small band of mesogloa. In its lower part it tapers off, and lies nearer the endodermal than the ectodermal surface. The mesoglea throughout the column wall has a fibrous appearance, and the slightly oval muscle cavities appear to be separated by fine fibrous partitious in transverse sections.

The tentacles are short aud obtuse; in one specimen in which they could be seen they were numerons, probably numbering ninety-six, while in another there seemed to be only forty-eight. In this respect the form here deseribed differs from Dana's A. lineoluta, which is deseribed as hating only twenty four tentacles, aranged in two eyeles. The longitudinal museles of the tentacless, and the corresponding radial ones of the dise, are rather weakly developed and are entirely ectodermal in position. The tentacles seem to cover a large portion of the dise, though, owing to the contracted condition of the specimens, this could not be accurately ascertained.

The mesenteries are few in number, and are arranged in four eycles. The six pairs of the first eycle are alone perfect, those of the second and third eycles are gonophoric, while those of the fouth cyele are
quite small and are destitute of mesenterial filaments. This was the arrangement in a specimen which had about forty-eight tentacles. It will be seen from this that we have an arrangement of the mesenteries which Hertwig cousiders typical for the Sagartida, but a careful seareh, both in dissected specimens and in sections, for acontia failed to reveal their presence. The longitudinal muscles of the mesenteries form a distinct, though somewhat narrow, pennon (Pl. xxin, Fig. 35), but the parieto-basilar appears to be very weak.

14. Paractis vinosa, sp. nov.
Plate xxif, Figs. 37-40; Plate xxiv, Fig. 41.

No. 731. Station 2839. Lat. $33^{\circ} 08^{\prime}$ N.; loug. $118^{\circ} 40^{\prime}$ W. Depth, 414 fathoms. Many specimeus.
The majority of the specimens were contracted, many, however, showing the tentacles protruding (Pl. xxin, Fig.37), while in others they were not at all infolded. In the latter the height of the column was 1.4 to 1.6^{cm} and its diameter 1.2 to 1.6^{cm}.

The base is adherent and thin, allowing the insertion of the mesenteries and the dark color of the mesenterial filaments to be seen through it. In some specimens it is covered by a somewhat granular membrane, which is very friable and easily removed in fragments, and seems to be equivalent to the firm basal membrane oceurring, for instance, in L demsia palliata.

The column is of a leathery consistence, quite thin near the base, where it is marked with vertical inurows corresponding to the mesenteries, and fading out rapidly above. In color the column wall is white, owing to the absence of ectoderm, the few fragments of this which persist being of a pale brown color. The mesoglota has a finely gramular appearance in sections and is thickest near the margin. The sphincter muscle (Pl. xxiv, Fig. 41) oceupies the greater part of this thickened region and is strong. Below it tapers off slowly, extending a long distance down the column wall, lying immediately below the eudoderm and passing gradually into the ordinary endodermal circular muscles which are well developed and borne on strong processes. (Il. xxin, Fig. 40.)

The margin is smooth, although in some more contracted specimens it may be thrown into a few folds. The tentacles are arranged in about four cycles, and their number appears to be sixty-four They are white and translucent, but probably this is due to the ectoderm having been macerated away from their exposed surfaces, since in some of the strongly contracted specimens the ectoderm of the tentacles contains granules of reddish pigment. The dise is of a deep wine color, as is also the stomatoram, the pigment gramules being so abondant in the ectodermal cells as to completely obscure their structure. The ectodermal muscles of the tentacles and disk are imbedded in the mesogloa,
oceuring in the tentackes at about the middle of that layer. (I'l. xxin, Fig. 38.)

The stomatodienm is thown into strong tolds, borne on rather stout longitudinal elevations of the mesoglea. The siphonoglyphes are deep with smooth walls, and the ertodermal cells lining them have the pigment contined to their outer ends and not scattered through their entire thickness as happens elsewhere and on the stomatodxum.

The mesenteries are thirty-two in number, sixteen being perfect and sixtere imperfert. The longitudinal muscles are failly well developed (Pl. Xxhf, Fig. 39), covering the greater portion of the surface of the perted mesenteries; the parieto basilar is not, however, particularly strong. Only the imperfect mesenteries are sonophotic, and the reproductive organs are very conspictous on account of their bright orange color due to the presence of lare oil globules in the ova and spermatozoa mother cells. The mesenterial thaments are, tike the dise, of a deep wine color, the general endoderm being colorless.

In its coloration, so far as this can be determined, this form comes close to I'tractis rubus ohtained by the Wilkes Exploring Expedition at Valparaiso. The very different habitat of the Ilbotross form, which is an inhabitant of deep water and the uncertainty of an indentification of an alcoholic specimen with a form described as seen living and without any characteristic anatomical features, has induced me to consider for the present the Albatross form as distinct.

(ienus ANTHOLOBA, Hertwig.

Paractide with a large number of short tentacles covering the greater portion of the disc; margin of the dise lobed as in Metridimm. Sphincter strong, prolonged a long distance down the wall.

Hertwig ('82) established this grmus for a form previously referred to the gemus Metridimm, and which bears strong resemblance to the forms properly belonging to that group, at least in so far as the margin and the tentacles are concerned. On the other hand, Hertwig has shown that in this case the extemal similarity is acompanied by such differences in internal organization that the establishment of a new gemus and the reference of this to the family Paractida is necessary.
15. Antholoba reticulata, (Dana) Hert.

Synonyms.- Actinia reticulatr.-Dana U. S. Expl. Exped., 1846.
Metridium reticulatum.-Milne-Edwards, 1857. Verrill, 1868.
Ictinoloba reticulata.-Gosse, 1860. . Intholoba reticulata.-R.Hertwig, 1882.
Nos. 737, 738. Station: Port Otway, Patagonia. Littoral. Two specimens.
No. 739. Station: Lota, Chile. Littoral. One specimen.
No. 740. Station: Charles Island, Galapagos Archipelago. Littoral. One specimen.
I have very little to add to the deseription Hertwig has given of this form. I do not find, however, that the margin of the dise is "swollen like a pad," but on the contrary the uppermost portion of the column
wall is in some specimens thimer than it is farther down. The presence of a pad may be due to contraction.

The sphincter muscle, as Hertwig pointed out, extends from the upper to the lower end of the wall. Its shape may be of generic importance, since it does not present the sudden widening near the margin which is to be seeu in the forms I have referred to the genus Paractis, but tapers off very gradually indeed as it passes down the column.

The specimens I examined did not possess reproductive organs, so that I can not decide the question Hertwig has raised regarding the hermaphroditism of this form.

Genus Actinernus, Verrill.

Paractide with thick column wall; margin lobed; tentacles short, situated near the margin, the mesoglea thickened toward their bases, so as to give them a more or less bulbons appearance. Sphincter muscle rather weak (sometimes absent?).

The genus Actinernus was established by Verrill ('r9) for a deep-sea form obtained off the more northern portion of the east coast of the United States. Verrill's definition and deseription speak of the margin below the tentacles being "divided into acute lobes or teeth continuous with the body wall," the tentacles beeing adnate to these teeth. This is the appearance which Actinermus nobilis presents, but I have preferred to speak of the teeth as thickenings of the mesoglea of the bases of the tentacles, siuce this more nearly describes what obtains in A. plebeius, and probably also in A. saginatus. The sphincter muscle is quite weak in A.plebeius, as will be seen from the following description, and apparently is wanting in A. nolilis, being indistinguishable with a powerful leus. This character offers a marked difference, independent of the nature of the tentacles between this genus and Antholoba.

The similarity which the figure of Polysiphonia tuberosa given by Hertwig ('82) shows to an Actinermus is very striking and suggests its possible reference to the latter genus. The lobed margin, the basally swollen tentacles, the dise marked with radiating grooves, the chalice-like shape of the column, are all similarities which attract attention. The sphincter muscle, too, though differing in shape from that of A. plebeius, to be described below, is nevertheless mesodermal and by mo means powerful. The principal characteristic upon which Hertwig relies in the establishment of the genus is found in the rather large openings at the tips of the tentacles. Such openings are known to be of frequent occurrence, and their enlargement within certain limits, maccompanied by a marked abbreviation or other alteration of the tentacles, can not be considered sufficiently distinctive for the formation of a new genas. It seems to me that a reference of Polysiphonia tuberosa to Verrill's genus Actinernu.s will place it with forms to which it is far more closely related than it is to Polystomidium. (See Appendix, p. 209.)
16. Actinernus plebeius, sp. nov.

Plate xxiv, Figs. 4D-4す。
No. 711. Station 2791. Lat. $3808^{\prime} \mathrm{S}$; long. 7\% 5: W' Depth, 677 fathoms. One specimen.
The body is calyeilorm and measures about $5^{-\mathrm{mm}}$ in height, with a diameter of about \boldsymbol{g}^{-m} at the dise. The base on the other hand measures only 9.5 .m in diameter. It was probably adherent, though from its great distortion in the single specimen it is dificult to be certain what its character may have been.

The column wall is rather soft in consistency, though relatively thick, and its surface being somewhat torn into thread 'tas a rather raged appearance. The ertoderm is almost entirely macerated away, but the few fiagments that remain show that it was of a chocolate brown color. The sphincter is embedded in the mesogloa, not far from its endodermal surlace. It exteuds some distance down the colum wall, but is very namow. In sertions (Pl. xxiv, lig. 43) it is sern to consist of a series of eavities phaced one above the other, for the most part in a single row, each cavity being separated from its meishbor by a distinct partition of mesoglara. Nath eavity is oceupied by a mesogloal network of fine fibre, in the circular or oval interstices of which the masele cells are arranged.

The margin is tentaculate and wary or lobed in ontine. The tentacles are about ninety-six in momber and are arranged in two or three cycles at the margin. They are of a purplish-brown color and are short and slemder, dach being provided at the outer surface of its base with a marked mesogloal thickening (Pl. xxry, Fig. 42), which extends a shot distance upwards towards the tip upon the onter surface of the tentarle. The longitudinal muscles are weak and are not embedded in the mesogloa.

The dise is concave and of a wine-purple color and is marked with radiating ridges, due to the roofs of the inter and intra-mesenterial spaces being pouched out. The radiating mascles are ectodermal and not at all embedded in the mesogloa.

The mouth forms an elevation at the center of the dise. It is provided with two well-marked siphonoglyphes. The stomatodieum is longitud$i_{\text {nally }}$ ridged, the walls of the deep siphonoglyphes being on the other hamd smooth. The ectoderm of the stomatoditum is of a deep winepurple color.

The mesonteries are arranged in fomr recles, though indications of a fifth and sixth eyele were present, neither of them being, howerer, perfeet. In a sextant of the wall examimed only one pair of mesenteries of the sixth eycle was present, and five pairs, instead of eight, of the fifth "ycle. Only the six pairs of mesenteries of the first cyole are perfect, and only the mesenteries of the thind and fourth eycles are gonophorie. The masculature, both longitudinal and parieto-basilar, is very weak. What corresponds to the musele pennon is very low, the mesoglara being raised into short, bhut processes which carry the muscle cells and give
to the surface of the mesentery on which they occu a crenate appearance in transverse sections (Pl. xxiv, Fig. 44). The endoderm of the mesenteries and that of the body wall is of a purplish-brown color, pater than the stomatodimum, while the mesenterial filaments, in whole or in part, have the same deep wine color which has been desuribed for stomatodrum and dise. The mesoglata of the reproductive region of the gonophoric mesenteries is much thickened, as is shown in Pl. xxIv, Fig. 45.

Genus ACTINOSTOLA, Vervill.

Paractide usnally of large size, with firm, leathery wall, which may be somewhat corrugated or folded, but is not furnished with veruca. The margin is not lobed and is tentaculate; the tentacles are short and stout, fluted and with their longitudinal musculature embedled in the mesoglœa. Sphincter well developed, extending a considerable distance down the column wall and not expanding abruptly above.

The genus Artinostola was established by Yrerill ('83) for a species which he had previously ('S") described as Trticimu cullosa. In his description of the gemus he states that the column is "covered with large, irregular tubercles not having the power of adhering to foreign substances," and in the description of the species ('S3) he says: "The surface of the column is usually more or less covered with low, irregular, often flattish veruce, which become more and more prominent and sometimes form longitudiualferies or crests on the upper part, but farle out to mere wrinkles toward the base." In specimens of A. callosa, which I have, through the kindness of Mr. Rathbun, been able to examine, I could find nothing that could be properly termed verruce, or even tubercles, though the surface of the column wall was more or less corrugated, resembling in some specimens beaten silver, and bore irregular ridges of mesogloea near the margin. The Albatross specimens present the same appearance, though in one case the corrugations are sufficiently strong to give an almost warty appearance to the column.

Verrill considers the gemus Actinostola to be allied to Bolocera, Urticina, and especially to Actimauge. What the gems Urticina, may embrace remains to be seen, but the other two genera mentioned have certainly only very remote affinities with Actinostola, Bolocera being related to the Antheadre, and Actimauge one of the Sagartid genera.

17. Actinostola callosa, Verrill.

$$
\text { Plate xxuv, Fig. } 46 \text {; Plate xxv, Figs. } 47-52 .
$$

Synonym:- Vrticina callosa, Verrill. 1882.
Nos. 714-715. Station 2792. Lat. $0{ }^{\circ} 37^{\prime}$ S. ; long. $81^{\circ} 00^{\prime}$ W. Depth, do1 fathoms. Fonr specimens.
No. 721. Station 2807. Lat. $0^{\circ} 24^{\prime} \mathrm{S} . ; \operatorname{long} .87^{\circ} 06^{\prime} \mathrm{W}$. Depth, 812 fathoms. Two specimens.
No. 723. Station 2818. Lat. $0^{\circ} 29^{\prime} \mathrm{S} . ;$ long. $89^{\circ} 54^{\prime} 30^{\prime \prime} \mathrm{W}$. Depth, 392 fathoms. One specimen.
The Albatross specimens denoted above I can not distinguish from Verrill's A. callosa, with authentic specimens of which I have carefully
eompared them. They measmre about $S^{\prime m}$ in height, with a diameter of 5.5^{em}. Nost of the specimens (Pl. xNV, Fig. 47) are only partially contracted, allowing the tentares to partially protrude, lout in some they are entirely concealed from view.

The base is flat, marked with fine radiating lines, and has the limbus folded back ower its edges in all the specimens. The column is nearly cylindrical, and slightly smaller above than below. Its wall has a firm, parchment-like consistency, and is variously corrugated, in part owing to contraction. In the more fully expanded specimens the surface has somewhat the appearance which beaten silver or other soft metal presents, while in others the corrogations may be sufficiently pronounced as abmost to justify the designation of irregular tubereles. There are, however, no indications of verncar. Below the margin the mesoglat is rougher than elsewhere, and is raised into irregular ridges. The column wa!l has a snowy white appearance, the ectoderm in all the specimens having almost disappeared; the fragments of it which remain in some specimens seem to indicate that it was of a pale, brown-ish-purple color. The sphincter (Pl. Xxv, Fig. J1) is well developed and extends a considerable distance down the column wall. In its upper part it does not oceupy the entire width of the column wall, but liesthroughout its course nearer the endodermal surface than the ectodermal, its cavities passing, in fact, directly into the ordinary circular musculature of the endoderm. It does not expand suddenly above, but its upper part, though larger than the middle region, tapers off very gradually as it is traced downwards. In its upper part the closely packed musele cavities show a tendency to be arranged in longitudinal bands (Pl. XxV, Fig. 5z) separated from one another by streaks of nearly homogeneous mesoglata, and recalling the arrangement which Hertwig ('S2) has described for his Dysactis crassicornis.

There is no well-defined margin, the tentacles being inserted uponit. They are rather mmerous, situated close to the margin, and are short and stout, with well-marked pores at their extremities. They have a more or less decided pink or salmon color, and are rather indistinctly longitulinally fluted. Their longitudinal museulature is imbedded in the rather thick mesogla:a (Pl. xxy, Fig. 48), as is also the radial musculature of the dise. This portion of the body is smooth and concave and has the same pinkish color which oceurs in the tentacles. The mouth is wide, and the stomatodiemm is about half the length of the body. It is longitudinally ridged, and has two well-marked, deep siphonoglyphes with smooth walls, which are contimued down below the lower edge of the stomatodixum, almost to the base.
'Twenty-four pairs of mesenteries rach the stomatodenm, but twelve of them are united to the stomatodam to a less extent than the other twelve. In addition to these there is another cyele of twenty-four imperfect pairs, which may be comuted as the fourth cyele, while the fifth cycle of forty eight pars, also imperfect, presents the amomalous con-
dition of one mesentery of each pair being much more highly developed than its fellow (Pl. xxv, Fig. 46). One of each pair is quite small, without reproductive organs and mesenterial fiaments, and hardly projects above the column endoderm, while its fellow is fairly broad, and carries reproductive organs and a mesenterial filament. A similar disparity, though less marked, is to be found in the pairs of the fourth cycle, but I could not distinguish it in the third cycle. The relation of the small to the large mesentery of each of the unequal pairs seems to be constant, and is shown m the diagrammatic figure (P l. xxiv, Fig. 46). It will then be seen that in the fifth cycle (V) the small mesenteries are those nearest the mesenteries of the fourth cycle (IV), while in the fourth cycle the strongest mesenteries are those nearest the pairs of the first and second cycle. A few irregularly disposed mesenteries of the sixth cycle could also be seen. The mesenteries of the fourth and fifth cyles are gonophoric.

As regards the musculature of the mesenteries, it is not very strongly developed. At the base of each mesentery (Il. xxv, Fig. jo) there is a strong development of muscle processes on both sides, producing a basal muscle (bm) similar to what occurs in the Edwardsite, and to a less extent in many Hexactinians. In the mesoglota of the basal region of the mesenteries of the first three cycles some cavities are to be observed similar to, but less highly developed, than those already described for Bolocera occidua, and like those developed in commection with the parieto-basilar muscle (plm), which forms a slight projection on one side of the base of the mesenteries. The longitudinal muscles cover all the muscular portion of the mesenteries in an almost uniform layer, only toward the inner edge of the muscular region becoming longer and forming a rather weak muscle penuon (I'l. xxv, Fig. 49). The muscle processes, especially in the pemon, show a tendency to be arranged in groups on more or less distinct blunt processes of mesogloa.

Amongst the Challenger material Dysuctis crassicornis presents certain features of marked similarity to Actinostola cellosu. The general arraugement of the musele cavities of the sphincter muscle seems to be identical in the two forms, and the peruliar arraugement of the mesenteries of the younger cycles shows interesting similarities. There are, however, certain differences in the arrangement, which have made me hesitate to identify the two forms, thongh I am inclined to believe that Dysactis crassicormis is to be properly referred to the genus Actinostoln, and that it is even probable that it may be identical with A. cullosa. There can be little question that its reference to Milne-Edwards' genus Dysactis is incorrect, since we know that two at least of the forms referved by its author to it, D. amuulatre (Lesuemr) and I. biserialis ($=$ Aiptasia conchii Gosse), are sagartids, while D. chilensis is also referred to that family by Verrill and Andres. If, therefore, the forms referred to Milne-Edwards' genus are Nagartids it
ran scareely be proper to associate with them Paractids. In cases like this where the definition is imperfect we have to interpret the genus from the forms which have been assigned to it and not vice versâ, and a more perfect definition of the genus Dyscectis will include a mention of the oceurence of acontia and cinclides. (See Appendix p. 209.)

18. Actinostola excelsa, sp. nor.

Plate xivi, Figs 53-56.
No. 696. Station 2770 . Lat. 1837 S. ; long. $67^{\circ} 46^{\prime} \mathrm{W}$. Depth, 58 fathoms. One specimen.
No. 698. Station 2771 . Lat. $51-34 \mathrm{~S}$; long. $6 \times 00^{\prime} \mathrm{W}$. Depth, $50 \frac{1}{2}$ fathoms. Two specimens.
This very striking form (Pl. xxvi, Fig. 53) measures about 6 cm in height and from 5.5 to 6 cm in diameter. The base is evidently adherent and the limbus is not folder over it, as was the case in A. cullose.

The colnmm is eylindrical, narowing slightly towards the margin, and is apparently capable of little contraction. Its walls are firm, and for the most part smooth, though in contracted specimens irregular longitudinal ridges are to be seen below the margin; these, however, seem to be due to the state of contraction. The ertoderm of the colmm has a pale brown or buff color; where it has been macerated away the sub. jacent mesogloa is seen to be cream white. The sphincter muscle (I'. xxvi, Fig. 54) is fairly strong, but nevertheless is unable to overcome the resistance offered by the firmness of the column mesogloa, so that in nome of the specimens are the tentacles concealed from view. In shape the sphincter differs markedly from that of A. callosa. It forms a delicate network, occupying almost the entire thickness of the mesoglara in its upper half, and its imer surface passes into the general circular musculature of the column wall. There is no tendency for the muscle cavities to arrange themselves in longitudmal rows as in A. callosm, but rather in horizontal lines perpendicular to the surface of the column. The column wall is less thick in its uppermost part than a little lower down, and consequently the thickest portion of the sphincter is below its appermost edge, in fart almost half-way down. In its lower part it is thin, lying elose to the endodermal surface of the mesogloa, and is prolonged downwards some distance in this condition, gradually becoming lost in the muscle processes of the cirenlar musculature of the column wall.

There is no definte marsin, the tentarles oceurring at the jumetion of the dise and column wall. They are rather numerous, numbering perhaps one hundred and ninety-two, and are short and stout, with pores at theirextremities. They are longitudinally fluted, and also transversly grooved, so that the suface seems much corrugated. The mesoglea of the tentacles is almost entirely occupied by the longitudinal museles
(I'l. xxvi, Fig. 56); in the elevations which give rise to the flutings, however, it has a very delicate structure resembling greatly typical areolar tissue with its connective tissue corpuseles.

The mouth is large; the stomatodemm is irregularly ridged longitudinally, and the siphonoglyphes are deep and prolonged below the lower level of the stomatodienm.
The mesenteries are arrauged in ninety-six pairs, of which only those of the first two cycles, twelve in all, are perfect. These, together with the mesenteries of the third cycle are sterile, the reproductive organs occurring only on the mesenteries of the fourth and fifth cycles. The longitudinal musculature (Pl. xxvi, Fig. 55) is fairly strong but does not form any distinct pennon upon the surface of the mesentery. The muscle processes show a tendency, especially in the basal portion of the mesentery, to be grouped upon low elevations of the general mesoglua. The parieto-basilar muscle (p / m) is well developed and forms a decided projection upon the basal portion of the mesenteries, which portion, where the parieto-basilar occurs, contains a number of cavities, eridently developed, as in B. occidua, in connection with the growth of the muscles.
19. Actinostola pergamentacea, sp. nov.

$$
\text { Plate xxvi, Figs. } 57 \text { and 58; Plate xxyn, Figs. 59-63. }
$$

No. 695. Station 2769. Lat. $45^{\circ} 22^{\prime} \mathrm{S} . ;$ longe $64^{\circ} 20^{\prime} \mathrm{W}$. Depth $51 \frac{1}{2}$ fathoms. Five specimens.
These specimens (Pl. xxvi, Fig. 57), which seem to belong to the genus Actinostola, are very much macerated, the tentacles having dissolved into shreds, so that it is impossible to ascertain their shape or structure. The specimens measure 3^{mm} in height and $2^{\prime \prime m}$ in diameter.

The base is evidently adherent and larger in diameter than the column. This is almost cylindrical, enlarging somewhat at the margin and limbus. Its walls are smooth, firm, and parchment-like, being brittle rather than tough, and readily broken. It is pure white in color, the ectoderm, however, being entirely absent. The sphincter Pl. xxvir, Fig. 59) resembles in general appearance that of A. excelse, but is by no means as strong. None of the specimens show the slightest trace of the margin being infolded over the tentacles, and this is not remarkable, considering the stiffness of the column mesoglcea.

The tentacles seem to have been numerons, perhaps one hundred and ninety-two, though this is merely an estimate, since they are too badly macerated to allow of a count. Their longitudinal museulature is imbedded in the mesogloa in a number of small cavities (Pl. xxvir, Fig. 60). The dise is roughened by radiating rows of small tubercle-like elevations, and the radial musculature resembles that of the tentacles, though in one specimen the cavities were elongated and separated by narrow trabeculæ of mesogloa, presenting the appearance shown in Pl. xxvi, Fig. 58.

The month is prominent. The siphonoglyphes are deep and longer than the stomatodarmm. All the mesenteries, with the exception of the youngest reve, are pertert; there are apparently tive cycles, the mesenteries of the thind and fourth eroles being gomophoric. The muscle processes of the longitmbinal museles are developed over the entire muscle-bearing surfae of the mesentery, increasing slightly towards the imme edge of this surface to form a weak pemon. In the upper part of the mesenteries, above the region where the parietobasilar ocems the paretal pat of the mesentery is somewhat thickened, and the muscle processes in this thickened region are somewhat more numerous and more slender that elsewhere (Pl. xxVif, Figs. 62-63). Over the gemeral surface of the mesenteries the processes are comparatively stout (ll. xitir, Fig. (61). The parieto-basilar muscle presents essentially the same chamateristics as in A. rallosa, the mesogloa in the region ocenpied ly it having small cavities enclosed in it. As in A. cellosa also a basal musele is present (Pl. xxym, Fig. 6:), but it has relatively but a slight development.

(iemus PYCNANTHUS, gen. nov.

Paractide of moderate size, with thick, though rather soft, column wall; no tubereles or vermer, thongh the upper portion of the colmm is marked by more or less distimet longitudinal ridges rumning to the bases of the tentarles. Margin tentaculate, not lobed; tentarles short, but slemder, not swollen at the base. Sphincter musele rather weak, lying close to the endoderm.

I have established this semas for the reception of a form which does not seem to be assignable to any of the semera of l'aractide as they are here understood. The woak sphineter and slender tentacles exchade it from the gemus . I timostold; the absence of a marked dilatation of the sphinfer and the oerurence of ridges upon the upper part of the colnmm, rmming to the bases of the tentacles, show it to be distinct from the gemus Paratis. The ridges are hollow, with rather delicate walls, and resemble those fombl in certain Sagatids which possess a capitulum. 'The absence of acontia, howerer, prechudes the association of the form about to be deseribed with the Sagartide.

20. Pycnanthus maliformis, sp. nov.

Pl, xxvin, lige. 6!-67; Pl. xxvin, Fig. 68.
No. 728. Station 2839. Ist. $38^{\circ} 08^{\prime} \mathrm{N} . ; \operatorname{long} .118040^{\prime} \mathrm{W}$. Depth, 414 fathoms. Fourtern specimens.
 3.3 "m in diameter. All are eontrated, the tentacles and upper portion of the column being infolded. The alcohol in which they are preserved is stained a very distinct yellow, and when specimens are phaced in fresh aleohol this quickly assumes the same coloration. The pig.
ment seems to saturate the alcohol quickly, fresh alcohol contiming to extract more of it even after several changings.

The base is thin, allowing the mesenteries to be seen through, when the more or less membranous brown coating which covers it is removed. The margin of the base in all the specimens is concealed by the limbus being reflected over it.

The column is white, the ectoderm having been entirely removed, and is irregularly corrusted; wo tubereles or verruce are present, however. The mesoglua is very thick, measuring in one specimen at a point a short distance above the limbus as much as 3.5 mm in thickness. It is not, however, hash or resistant to the touch, lout on the contrary is rather soft, and in structure is almost homogeneous or hyaline, with small cells scattered through it. Towards its upper part are a number of ridges, which are hollow and thin-walled, and pass to the bases of the tentacles of the outer row. The sphincter muscle extends a considerable distance down the column wall (Pl. xxvit, Fig. 6án), but is throughout thin. It lies throughout its entire extent close to the endodermal surface of the mesogloa, passing into the circular musenature of the column wall. Above it is very slighty thickener, but not at all as in I'aractis. The muscle cavities for the most part show little tendency towards any regular arrangement (Pl. XxVir, Fig. 66), though towards the lower edge of the muscle they are somewhat elongated, and arranged in lines nearly perpendicular to the surfare of the mesogloa.

The margin is tentaculate. The tentacles are arranged in four cycles, $12,12,24,48$. The ridges upon the upper surface of the column run to the bases of the outer tentacles, and from the bases of the inner ones ridges extend outward, but only for a short distance, losing themselves before they reach the outermost cycle of tentacles. The mesogloa of the bases of the tentacles is only very slightly thickened, and the longitudinal muscles of the tentacles are imbedded in the mesoglora. In the dise the radial muscles are mesogloral and are arranged in a very characteristicmanner (Pl. xxvin, Fig. 68), recalling what. I Iertwig has figured for Dysactis crassicornis. Opposite the insertions of the mesenteries into the dise the radial musculature is interrupted so that it is divided into radial bands, cach separated from its neighbors by a depression on the surface of the disk. Wach radial band appears to be a single flattened cavity, traversed by perpendicular, somewhat branch. ing, fine trabecula of mesoglata, which divide the large cavity into a great number of smaller ones, in which lie the musele cells.

The stomatodieum is longitudinally ridged and is continned downwards almost to the base. The siphonoglyphes are deep, and near their lower extremities two transverse folds, lying one above the other, project across the cavity of each, closing it below.

The mesenteries are arranged in ninety-six pairs, the youngest cycle of forty-eight pairs being indistinguishable to the naked eye. The twelve pairs of the first two cycles are perfect, the twelve tertiaries
also reaching the stomatodidum，but being united to it to a less extent than are the primaries amb serondaries．The reprodnctive organs are borne non the mesenteries of the third and fourth eyeles．The lon－ gitudinal muscles of the mesenteries do not form a distinct pennon， （I＇l．xxvir，Fig．67）．In the perfeet mesenteries the processes which sup－ port the musele cells arise in bunches from stont elevations of the mesogla：The pariefo－basilar maseles extend only a very short dis－ tance up from the base，and in sections throngh the middle of the colnmm are not to he distinguished．No acontia appear to be present． The endorerm is comsiderably macrated，so that the form of these structures，if they existed，could not be made out；I base my state－ ment as to their absence in the absence of nematocysts in the tissues lying in the body cavity，the marerated remans of the mesenterial filaments．

（ienus CYMBACTIS，\＆en．nov．

Panactider of moderate size，crateriform in shape，with the mesogloea of the cohmm wall rather thick but solt；surface of colmmerngose in contrated forms，but without verucia or warts；no capitulum with longitudinal ridges．Sphincter musele relatively weak，lying rose to the endoderm：margin mot lobed，tentarnate；tentacles mumerous， situated close fo the margin，short，slemer，not bubous at the base．

The form for which 1 establish this gemus appoaches somewhat in appearance an I etimermus，having the short tentacles concentrated near the margin as in that gemus，a large portion of the dise being left un－ povered．The absence，however，of any bulbous enlargements or thick－ ening of the mesogla at the bases of the tentacles induces me to place the form in a separate gemms，which，from the cup－shaped form of the specimens to b．referred to it，I name Gymbatis（hí川及ッ—a drinking （cup）．

21．Cymbactis faeculenta，sil．nor．
llate xxvir，Figs．69－71．
 sperimens．

All the sperimems seem to be immature，as 1 did not succeed in find－ ing reprothetive rells in those I examined．The largest specimen measured $\because \mathrm{cm}$ in height，with a diameter at the marwin of 2.5 cm ，and at the base of 1.3^{3}＂＇u．

The base is atherent．The colmm which gradually enlarges from the hase to the margin，producing a more or less crup or vase shaped form，
 mesogha：mot being of fibrons strutwe lut hyaline．The ertoderm hats materated away fom all the sperimens，but when a trace of it is
left it may be seen to be of a chocolate brown color. In eonsequence of the absence of ectoderm the column is white, though in some of the smaller specimens, in which the mesoglasa is thinner, the color was a dark slate blue, due to the dark pigment of the endoderm showing through. The column wall is very rugose, probably due to contraction, and shows no signs of possession of verruce or permanent warts. 'The sphincter (Il. Xxvin, Fig. 70) is weak, compared to what it is in most Paractids, and is for the most part confined to a thin layer immediately external to the endoderm. 'Toward its upper part a few swattered and isolated cavities are to be seen deeply imbedded in the mesoglara, apparently undergoing degencration.

In the contracted sperimens the tentacles are concealed partially by an infolding of the margin, but this infolding is not carriod far monsh to conceal the dise and the wide mouth. The tentarles are situated close to the marein in about five cycles, and are apparently about nine-ty-six in mumber. They are short, acuminate, and slemeler. 'Their eetoderm and that of the dise seems to be of the same color as that of the column. The radial museulature of the dise and the longitudinal muscles of the tentacles are imbedded in the mesoglara. The month is wide and leads into a stomatodarum which reaches nearly to the base. The siphonoglyphes are well developed.

The stomatodeal ectorlerm and the endoderm throughout is of a dark wine color; the pigment oceurs in the form of gramules seattered through the eells, and is insoluble in alcohol, turpentine, and xylol. The mesenteries appear to number twenty four pais', half of which are perfect. Their mesoglera is thick, and there is no special muselepemon, the longitudinal muscles being comparatively weak (Pl. xxvin, Fig. 71). No reproductive organs could be made out.

Family SAGARTIDAE.

Actinine with sphincter muscle imbedfed in the mesoglfert, nsually with only a few perfect mesenteries; fumished with acontia.

Aceording to the above definiton the Sagartide will form a group parallel to the Paractide, and distinguished from them by the presence of acontia. Whether this is a chatacter of sufficient importance for a family diagnosis and indieates phyletie affinity of all the forms Whichpresent it future observation must retermine. It seems at present convenient to associate all Actininar with acontia in a single family, thongh it may be necessary to recognize in the family varions sul, families, as several authors have already done. Haddon ("s9) has discussed the fimitations of the family as they have been plated by various authors, and aceordingly it will be unneressary to reperat such a discussion here. The same author has established a new subfamily Chondractininae, which may, for the present, be alopterl, thomeh it seems not improbable that it is practically identical with the sub-
family, Phellinat, which was separated from the sagartide by Verrill (67), and recogrized by Andres ("83) and Hertwig ('88). I have in a previons paper (1ss9) proposed the seqaration of the Sagartide into the subfamilies Sagartine and Phelline, but since Haddon's subfanily is somewhat more extensive than and probably may include the genus l'helliu, it seems advisable to adopt it.

Subfamily Sagartinde.

sagartide with the ectoderm naked, the acoutia being emitted from the suouth and through the colum wall, in which definite openings (cinclides) are present (always!) for their emission.

(ienus SAGARTIA.

Sagartinar with smooth column destitute of vernce and with no special arrangement of the cinclides; margin tentaculate; tentacles concealed in contraction, the sphincter being fairly strong.

In alcoholie specimens it is not always possible to be certain as to the arrangement of cinchdes, and some of the forms which I assign to this gems may possibly be more properly referable to some other Sagartian geuns. The absence of verruca, the tentaculate margiu, and the concealment of the tentacles in contraction are points which assist in determining the assigmment of a form to this genus.

22. Sagartia lactea, sp. nov.

$$
\text { Plate xxvif, Figs. } 72-75 \text {; Plate xxix, Fig. } 76 .
$$

Nos. $710-956$ Station 2785 . Lat. $18009^{\prime} \mathrm{S} \cdot$; long. $7436^{\prime} \mathrm{W}$. Depth, 449 fathoms. Numerons specimens.
The sperimens were adherent to a dead coral, and were for the most part strongly contracted, forming a low rounded cone with a widely expanded base (Pl. xxini, Fig. 72). In these the tentacles were completely concealed, but in a few forms the contraction was not so great, and the tentacles were partly visible. Such specimens measured from 1.1 to 1.3 "m in height, with a diameter at the upper part of the column of about $1.1^{\text {"wn }}$ and at the base of abont 1.5 or "em".

The base is provided with a brown membranons covering, evidently a secretion of its ectoderm cells. The ectoderm in all the specimens has been entirely macerated away from the mesogloa of the column wall, which has a milky white color. It is tolerably firm and parchment like, though not very thick, and is for the most part smooth, though in some seecimens more or less wrinkled by contraction. In the upper part of the column delicate longitudinal ridges can be seen, which become stronger as they approach the margin and recall the capitular ridges of Actimume; they are not, however, visible in the less fontracted specimens, and seem to be produced by the contraction of the sphincter, and to be due to a certain extent to the pergamentaceous
consistency of the mesogloea. The sphincter muscle (Pl. xxvin, Fig. 73) is fairly strong and in its upper part occupies nearly the whole thickness of the mesogloea, being separated from the ectoderm and endoderm by thin layers of mesoglea. It is composed of very numerous more or less circular (in section) cavities lined with muscle cells, and so closely arranged as to be separated only by very narrow bands of fibrous mesoglea (Pl. Xxix, Fig. 76). In consequence of their arrangement this portion of the column wall, under low magnification seems to have a reticular structure. The sphincter extends a considerable distance down the colums, becoming thinner aud having the cavities more separated in its lower part, until finally they are scattered singly or in pairs in the lowermost portions.

The tentacles are slender and acuminate, and their number I estimate at slightly below one hundred, though I was unable to make a definite count. They have a cream-white color. Their longitudinal musculature is cetodermal, and the mesogloal supporting processes are fairly strong. Large numbers of nematocysts occur in their estoderm.
The disc has strong radiating ridges corresponding to the endocoels of the first and second cycles of mesenteries, and las its radiating musculature ectodermal, like the longitudinal museles of the tentacles. In the ectoderm of the disk are munerous oval or spherical bodies, of a granular structure, which stain deeply with borax carmine. I could not detect a nuclens in any of them. Their abundance and gencral appearance seem to preclude the idea that they are foreign bodies, and the only explanation as to their siguificance which suggests itself is that they are glandular bodies. The preservation of the ectoderm was not sufficiently perfect, however, to allow of any certainty on this point.

The stomatodrum is rather small in diameter, and possesses about ten longitudinal ridges; in some specimens there was ouly a single siphonoglyphe, but whether this is a characteristic arrangement I can not say. Julging from the observations of (G. F. and A. Y. Dixon on various species of Sagartia ('S8) and my own ('91) on Metridium marginatum, it is more probable that there is a variation in the number of siphonoglyphes, some specimens possessing only one and others two. As in the case of Metridium and Sagartia remustu, there is only one pair of directives in those specimens of S. lactea which possess at single siphonoglyphe.

The mesenteries are arranged upon the decamerous plan, there being in all ten pairs of perfect mesenteries, all ow which, with the exception of the directives, are gonophoric. I was in hopes that it might be possible, from the distribution of the reproductive organs upou the mesenteries, to ascertain which of the mesenteries of the second cycle it was which had failed to develop, the normal hexamerous arrangement being thus converted into a decamerous one; but in this I was disappointed. Counting the ten perfect pairs of mesenteries as representing two cycles, one of which, the second, is not quite complete, there is present

$$
\text { Proc, N. M. } 93-12
$$

a third rycle of ten pairs, all sonophorie: a fourth one of twenty pairs destitute of reproductive organs, and indicalions in some exocols of a tifth pair, which is, however, imeomplete. The mesenteries are thin, and their musculature not very makedly developed (I'l. xxtur, Fig. 7. $)$. 'The acontia are faily momerous and show a largedevelopment of gland
 mainly hy nematorysts, bef were which a few seatered coarsely grame lar whad eells oferr, while immediately below the mematoeysts these cells are very abondant, as they likewise are at the sides and towards the concave sultare. For the most part they stain deeply with borax carmine, thongh many-pobably those in which the slandular products are more completely elaborated-refuse to tahe the stain and show a yellow color. In one specimen I foum the acontia protruding from the month, but could not tind any emitted throngh the columu wall, although in sections through the wall tine canals can be readily observed which have no appearame of being artefacts, and probably are cinclidal. I could diseover no definite arangement of these canals.

There are thre interesting features about this Sagartid: (1) Its decamerism. There are ten pairs of perfect mesenteries, and the imperfect mesenteries are aranged symmetrially to these ten, those of the next subordinate cercle developing in the exocoels between adjacent paiss of perfect mesenteries. I have abrady sugested (ow) that this condition probably atises by the suppression of a pat of mesenteries of the typical second "ycle, so that this cycle consists of four patis only instead of six. Whether or not it is the satme pair that is suppressed in each case in which deeamerism occms can nothestated at present. In the decamerons Ilakempids it has been seen that it is the mesenteries on either side of the sulcular directives that have disappeared, hat it is not impossible that in sporadie cases of decamerism, surh as we have in s. Iacten, that it is the mesenteries on either side of the sulear directives that hate disappared, or even the lateral mesenteries of the second eycle. Howerer that may be, it is certain, I think, that we must regard the ten pertert mesenteries of a dequmerons form as equivalent to the birst and secomel corles of a hexamerous form. It follows from this (吴) that we have in N. Inctet another instance of a Nagartid in which more than the six primary mesenteries are perfect. Hertwig ('SZ) assumed as a chatater of his family Nagatidar the presence of only six perfect mesenteries, which were also sterile, but von Heider ('ra) had already shown that there were momerous perfect mesenteries in fereas pedumerlatus, and F. Dixon ("S) has since shown that in those sagartias which (iosse considered typieal species of the genus there are more than six pairs of perfert mesenteries. It is certainly a flat that the majority of Sagartids whose anatomy we know possess only six pairs of perfert mesenteries, but too many exreptions exist for this peruliarity to be inchuled in the delinition of the gemus. But not only does \mathbb{S}. lacted have the mesenteries of the second arde perfect, but (3) the
mesenteries of the first cycle, with the exception of the directives, are not sterile. Here again we have a feature which places this form outside the pale of Hertwig's genus sayartia, but it shares this distinction together with Aiptasiasp? and Aiptasia pallide, whose peculiarities in this respect I have already pointed out (' 89 a).

I have considered the form described in the following pages to be the representative of a new speries. I do so, however, with considerable hestiation. Several Sagartids have been described from the west coast of America, by Lesson ('30), Dana ('46), Gay ('04), Verrill ('65), and Ridley ('81), but unfortunately the descriptions firmish no sufficient basis for the identification of alcoholic material. The form "hich Verrill ('68), with some reservations, refers to Lesson's detinia nive seems to be rather closely related and may be identical, though I should be inclined to doubt, without good evidence, the identity of a shallow water form with one living at a depth of 450 fathoms. It is doubtful, too, whether Verrill's form is really Satgartia (Act.) nirea, since Lesson expressly states that in this form "'enveloppe est tres-lisse, tres-douce au toucher et seument marquée de quelfues ondes on plissures verticales;" while Verrill's form has the "integument thin but firm," more nearly resembling S^{\prime}. lacted in this respect. It is on account of this mucertainty of definition that I have prefered to consider the Albatross form a new species.
23. Sagartia Sancti Matthrei, sp. nov.

Plate xix, ligs. 77 and 78.
No. 954 a. Station, 2764. I att. $36^{\circ} 42^{\prime} \mathrm{S}$; long. $56^{\circ} 23^{\prime} \mathrm{W}$. Depth, $11 \frac{1}{2}$ fathoms. Three specimens.
The three specimens differ somewhat in external appearance. One is quite small, while the other two were larger, measuring about $0.5^{\text {mo }}$ in height and 0.6^{cm} in diameter. One of the specimens was colored, the column being chocolate-brown in color, the tentacles much darker, but of about the same color. The other two specimens showed no traces of this coloration and may possibly be different species. The anatomical details given below were derived from the study of one of the colorless specimens.

The base is adherent and not much larger than the column (Ill. xxix, Fig. 77). This is somewhat wrinkled by contraction, but hears no warts or verruce. Its wall is zather thin, soft, not parchment-like. In one of the specimens an acontium protruded throngh the wall, but no cinclides were elsewhere visible. The sphincter (${ }^{\prime}$ 'l. xxix, Fig. is) is marrow, but well developed. In its upper part it ocempies the greater part of the thickness of the column wall and tapers off gratually below. In section the muscle-cavities in the uper part are clongated perpendicularly to the surface of the colum, becoming gradually more circular towards the lower edge of the muscle.

The tentades are exposed to anderater less extent in all the specimens; they are short, and pointed at the apex. They are strongly entamatens and their mumber is probably less than one hunderd. Their longitudinal musentature is ectodermal and is fairly developed.

The mesenteries, as in the precoting speries, are armaged upon at deameroms plan. There are ten pairs of perted mesenteries constifuting the first and second cycles; the third eycle is imperfect, but well developed, while the fouth cyele is considerably smatler. Here and there paits of mesenteries of the tifth cyele cam be seen, hut this cyele is not complete. No reproductive organs were present. The longitulinal museulatme is fairly well developed on the larger mesenteries, the mesogleal processes increasing gradually in size fowards the imer margin of the musele and there abruptly diminishing.

24 Sagartia paradoxa, sp. nov.

> Plate xxix, Figs. 79-81; Plate xxx, Fig. 81.
 soveral speeimens.
In this form (Pl. xxax, Fig. T^{9}) the base is atherent. The column is longitudinally ridged with fine devations, and does not bear any tuber cles or vernea, nor were any cinclides observable, acontia being emilted from the moult, however, in several specimens. Nearly all the specimens have the tentacles and dise perfectly unretracted, and the stomatodedm is more or less evaginated in many. The specimens have an areage height of about 0.s.me and a diameter of about 0.9 m . The sphineter musele (P . xxis, Fig. sot) is very well developed, not withstanding the nonretraction of the tentacles. It occmpies the entire thickness of the mesogla:a, and is thickest about the middle, tapering oft above and below. The musele cavities are very momerons, and are separated only by very thin traberelie of meseghata, so that the column wall in the region of the sphancter has an openly reticulate apmeaname in longitudinal section.

The tentaches orempe the margin and are very mumerons, short and acmomate, and decidedly entamarons. Their longitudinal museulature and the radial musedature of the disk is edodermal, the musele processes being fairly well developed. The dise is smooth. The stomatodicum is longitudinally ridged, and has two siphonoglyphes, one of which, however, seems to be mudh decper and more distinct than the other.

The mesemeries present a bather perdiar aramement in the two speremens of which all amatomical stmly was made (Pl. xix, Fig. st). They are arranged on an ortamerons phan. If we consider for comsenience in deseription eight pairs as constituting the first cyele, then the first three eyeles $(1,15,41)$ are all pertect, the mesenteries of the thited eycle losing their comection however with the stomatoderum about
half-way down. A fourth cycle of imporfect mesenteries is present, but it is not complete. There are two pairs of directives (I), one of which, connected with the deeper siphonoglyphe, is much stronger than the otlier. The regulatity of development of the mesenteries is somewhat interrupted on either side of these smaller directives. Disregarling the rudimentary mesenteries of the forth eycle, a pair of mesenteries (x) which are perfect succeed on cach side these directives, and next there comes a pair (y) belonging to the second eycle, which consists of one perfect and one imperfect mesentery, the latter being nearest the directives. This arrangement oceurred on both sides of the directives, and in both the specimens examined, and aceordingly is probably normal.

Acontia are present, as above stated. All the mesenteries except those of the fourth cycle and the directives are gonophoric. The longitudinal musculature is well developed (Pl. xxix, Fig. S), a marked pemmon being present, the various mascle processes of which arise in dependently from the mesogloa.

25. Sagartia crispata (Bradley) Verrill.

No. 718. Station, 2799. Lat., $84^{\circ} 44^{\prime}$ N.; long., $79^{\circ} 09^{\prime}$ W. Depth, 29 fathoms. One specimen.
Thes S. crisputa described by Verrill ('GS) was dredged in from to 6 fathoms in I'anama Bay, and ocemred upou the shell of a large Murex (Phyllonotus). The specimen which I identify with it with some hesitation, was found in slightly deeper water in the same locality, and also occured upon the shell of a good sized Prosobranch, apparently one of the Muricidar. It is very much lattened in contraction, the margin and tentacles being completely concealed. The base measures about 2.7^{cm} in diameter, and firmly clasps the surface of the shell, which was inhabited by the living mollusk and not by a Pagurd. The colum is wrinkled and somewhat roughened by mimute elexations produced by contraction, but does not seem to possess any verrurae. Acontia are emitted through the colmm wall a short distance above the limbus, but no series of cinclidal tubereles conld be made out. The colum is maked by numerous, inegularly wavy, longitudinal lines of a rhocolate brown color, which are very distinct upon the white ground.

Not wishing to destroy the single specimen 1 can give no particulars regarding the internal structure.

From the fact that the acontia are emitted a short distance above the limbus it is possible that this form is an Arlamsia. Its identification with N. crisputa is necessarily uncertan, owing to there being no opportunities for a thorough comparison of the two forms. The differences between the coloration in this form and Verrill's description of $\mathrm{S}^{\text {. }}$ crispata may be due to preservation.

(icmus ADAMSIA Forbes.

Sagartina with allherent hase, the ectoderm of which secretes a membrane; colnmm without warts or verucar, but provided with one or two horizontal series of cinclidal tubereles a short distance above the limbus; margin tentaculate.

26 Adamsia (?) involvens, sp. nov.

Plate xxix, Figs. 82 and 83 ; Plate xxx, Fig. 85.
No. 716. Station, 2793 . Lat. 1003^{\prime} N.; long. $80^{\circ} 15{ }^{\circ}$ W. Depth, 741 fathoms. Twelve specimens.
Every specimen is fully contrarted and completely incloses a dasteropod shell, being wrapped around it in such a manner as to conform itself more or less to the shape of the shell (Fl. xxix, Figs. S2 and 83). On this aceount it is difticult to give any aceurate measurement of the height of the Actinian, but this may be averaged for the contracted specimens at about 1.5 to 2 cm , and the diameter at from 1.25 to 1.5 mm . The colmm is of a pale thesh color, but hecoming thinner toward the limbus it has a darker shade, amd is here longitmbinally streaked with white lines, indicating the lines of insertion of the mesenteries on the column wall. In this thimer region, too, the internal organs shine through. The tentarles are of a salmon color, this tint depending, to a certain extent, and mohably entirely, on the bright reddish orange pigment which orems everywhere in the emboderm. The coloration Which these preserved specimens present is entirely independent of any colors which may have been present in the ectoderm, since this byer has entirely disappeared from the surface of the column.

The hase incloses the gasteropod shell, and, as it were, forms the opening of the hathation of the mollask. Its ectorerm secretes a very well manked chitinous layer, not only over the region in contact with the shell, but also over that which is free from it.

The column wall is smooth throughout and has a parchment-like consisteney, the mesoglata being very fibrous in structure, though rather thin. No cinclidal fubereles could be pereeived. The sphincter muscle (I'l. xxx, l'is. Sis) is well developed, though not very broad. Toward its upper margin the musele cavities are in section more or less cirenlar in outline and distinctly separated fom one another, but lower down they are more elongated and are separated by narrower partitions, cirrular seatered cavities lying upon the outer surface. it is separated thonghont from the endodermby thin layer of mesoglasa. The cirenlar muscles of the emboderm ate only slightly developed, the cells being arramged in an almost smooth layer and not supported on well-developed processes of mesoglata.

The marein is tentarulate, and the tentares are armaged apparently in three cyrles, though their exam amangement it is difticult to ascer-
tain on accome of the contraction of the specimens. They seem to be ninety-six in mumber, and to be arranged in two rerles of twenty- four each, and one of forty eight. Their longitudinal museulature is well developed and is entirely ectordermal, supported on strong mosogldal processes. The mesoglota of the tentacles does not partake of the fibrous structure of that of the column wall, but is hyaline.

Two siphonoglyphes are present, apparently, and two pairs of diredives. There are forty-eight mesenteries, onty the six primary pais being perfect. The secondary and tertiary paiss bear the reprorlnctive elements, those of the fouth ryche heing quite small amil restitutr of mesenterial filaments. The longitulinal masele poresses are fairly well developed, but do not form a very distinct muscle pemmon. Acontia are present; in some of the specimens they were emitted from the mouth, but in none did $[$ find them protmoling from the colnmm wall.

On accont of any falume to diseover cinclides it is of comse dombtful if this form is correctly refered to the gemms Alrmsior. The shape of the sphincter is deeidedly different from that of I domsia parasitict, and A. polypus as described by Hortwig, but does not, however, rliffer so materially from that of Allumsin sol ol on eastern coast. My principal reasons for considering A. involrens a possible Admesia is its hab). itat on gasteropod shells and the secretion of a stronge chitinons membrane by the ectorlerm of the base, features which are, howerer, of comparatively small value.

Subfamily Cmondracrininas, Haddon.

Sagartidie with thick column wall, usitally with the upher portion (capitnlum) different in character fom the lower (scapus) and capable of being entirely invected; the seapus povided with an external cuticle and usually modulated on warty; the sphinder strong and imbedded in the mesoglda; only the six mimary paiss of mesenteries perfect and at the same time nomgonophoric: a arontia emitted by the month only, there being no cinclides.

Genus ACTINAUGE, Verrill.

Chondractinine in which the eapituhm is provided with longiturinal ridges; seapus strongly tuberculate or molntate, the tubereles; near the junction of the scapus and capituhum being usually stronger than those lower down; cach tentarle with a bulloms thickening on the outer surface at the base.

This genus was establisherl ly Verrill ('s:i) to reeeive a form which he believed to be identical with the Actinim modose of Falnicins. The definition given above contains the essential points of Verrill's definition, with the addition of a mention of the presence of a bulbous enlargement at the base of the tentarese, a feature to which Maddon ('89) bas ralled attention, and made an important factor in the limita-
tion of the gemus. In the definition given by Haddon the eapitalar ridges are limited to twolve, while Verill expressly states that they are as momerous as the tontaches. From an examination of specimens of the type speries I can state positively that thereare forty eight eapitula ridges in it, one ridge comespomding to each of the twenty fome more or less distinct rows of thberdes, while a smatler ridge intervenes between earlo par of these latger ones. Haddon likewise limits the bulbous chlargements to the bases of the threainmer cireles of teatacles, but in the type speries there is mo such limitation in their distribution, all the tentarles possessing the enlargements. The momerieal limitations of the ridges ath bulbous enlatgements musf be regated as of specitic but not of generie value.
27. Actinatuge Verrillii, แov, nom.

 (sp.) ?, Haddon (188:)
 Soven spreimens.
 Ome specimen.
 Six specimens, yobug.
 Ono sperimen (much torn).
1 have been atole, by direet comparisom, to identify the spereimens marked No. T1: with speromens ot A. Verpillii from the eastern coast of North Ameriea amel shatl give a detailed aeeonnt of the strmeture of these sperimens. 'The sperimen No. oill presents some diferenees firom the typieal a. lerrillii, amd it is possiblethat it may belong to amother
 and will content myself with wivine a deseription of its external peenl-

 hrief deseription. Fimally, No. Fot is referped to this speres with some hositation; it is vory murle distorted and torn, so that it is impossible to examime it satistitetorily. It is possibly the tuberembose variedy which Vervill has described as al distinct sperios, lout nothing eath ho said conrernins it.

All the sperimens of No. 712 aro thomoughly contracted, the tentacles
 drical, and rovered with well-marked, lare tuhereles, thiekenings of the mesoglera, which ate esperially high in the upper part ot the colamm, where they ate somewhat square in outline, and arranged mome or less drlinilely in horizontal and longiturlinal rows, there being about twonty fome ot the latter. Law de down upont the colume the
tubercles berome much llater, and lowat the base they are represented by slight transersely elongated, narow elevations, the lomgitudinal armagement heing nearly lost. The limbus is smooth, the elevations fading out a short distance above it.

The base is much smaller than the eolomm and is fereply coneave, a guantity of mul, which evidently served to anchor the animal, beine inclosed in the concavity.

The upper part of the eolnmen or eapitnlom does mot possess any tubereles, these being limited to the seaphs. 'The "ppermost hober cles are ustally more promounced than those lower down, and form a more or less distinct coromal series (Pl. xxs, Fig. s! ror), comsisting of twenty four thberoles. From each eorohal tuberele a ridge (e. r.), ex. tends across the rapitulam toward the bases of the tendarles, abd be tween each pair of these coronal ridges a smaller ridge intervenes, so that the capitulum bears in all forty eight ridges. 'They are deededty prominent, with thin walls, the cavities which they contain commm, cating with the endocols. Before reaching the level of the bases of the outermost tentames abch ridge somewhat suldenly inereases in height, and more suddenly diminishes, giving rise to a pouch like structure. The ridges terminate at the bases of the tentacles of the four inner cycles, the tentacles of the outer cyclo being situated upon the sides of the intermediate smaller ridges, in the manner indieated in the scheme given on l'l. xxxv, Jig. 121.

When the cutiele is preserved the colum has a dark brown color, but the tubereles are white for the most part, owing to the rutiche hav. ing been rubbed off. The eapitulum in the alcoholis specemens is colorless; the dise and tentacles, however, are orange or sabmon colored, while the stomatodiemm is brown.

The mesogla:af of the column wall is thick and delicately fibrous in structure, with a few eells seattered though it. The echoderm, where present, is covered hy the thick cuticle, to which partickes of foreign matter adhere. The tubereles are solid elevations of the mesogloa. The sphincter muscle (Pl. xxx, Fig. 86) is farly strong, but varies somewhat, both in its thickness and width, in different speremens, the differences not being due to age, as in some cases I have foum the muscle much weaker in a large specimen than in smaller ones. It oceupies the entire capitular region, and extends a varying distance below the comonal tubereles. Throughont its entire widf it is widely spparate from the endodermal surface of the column and lies in the seapus very close to the ectoderm. In transverse sertion (Il. XXX, Jig. S8) it is sern to consist of more or less circular cavities, haversed by irroular partitions of mesoglea, though in some cases the cavities aremoremumerous and smaller, and almost destitute of partitions. 'Toward the lower edge of the muscle the cavities ane in one or two series, but they become more mumerons above, but, there is mo well materl, sulden thickening of the muscle in its upper part. A carions arrangement is foumb
in the upper part, in some forms at least; the musele fibers and the eavities instead of being ent arross by a thanserse - seetion through the musele, give the appearame of being cot paralled to their comse (Ill. Axx, Pig. st) and the section has the appearance of a horizontal or tramserse sedion throgh the mper part of the colum wall. Fiuthermore, the cavities, hamehing and amastomosing with each of her, pass toward the extodermal surtace of the mesoghe: and apparently in some cases come into contact with the eetoderm. This arangement, as I have said, is not so distinct in some specimens as in others, but is more or less marked in all my preparations.
The tentacles are ninety-six in number and are aramged in five eydes. They are rather shom, hot slender and pointed. At the outer surface of the base of each there is a bulbous swelling (Pl. ※x. Fig. S9), formedprineipally of thickemed mesoghat (Il xxxi, Fig.91). The ectodermal musenlature, both of the tentacles and of the dise, is mather weak, the mesogla al process for its support being only slightly developed.

The stomatodamin is long, extending, in the contrated specimens, almost to the base. It has two siphomoglyphes, whichare well developed though not particularly deep.
There are twenty-four paiss of mesenteries aranged in fom eycles. Only the six mesenterial pairs of the tirst cycle are perfect. The mesenteries of the secomd eycle, thongh imperfect, resemble thase of the first eyele in heing nongonophoric, the reprotuctive organs being borne altogether by the mesenteries of the third (Plo xxxa, Fig. 90) and fouth eycles. In the region of the mesentery oremped by the reproduetive elements in female individuats the mesoghea is greatly entarged (ll. Xxat, Fig. 90), the ava (or) being imbedded in the entargement. This does not ofem in the mesenteries of male individuals from the Atlantic coast of North America; all the Allatross specimens I examined for this point proved to be lemates. The lomgitudinal museles of
 and there isnociromseribedpembon. The low mesegleaprocesses tend somewhat to be arranged in bunches of a tew arising from a common basis. At the bases of the mesenteries, i, e, at their attachment to the colum, there is a well manked pimate parietal musele. The aconta are not alommant.

No. 73, , as stated abore, differs in some respects from No. 712. Its base is not deeply concave as it is in No. 7 I?, nor does it seem to have inclosed mud or samd for an anchor, bat appeass to have been adherent. The tuhereles of the column are somewhat more distimet and romaded than in No. The, and are all covered by enticle. The sphineter has essentially the same structure as No. t 12, but 1 did not disseet the speetmen sulliciently to determine if the likeness extemded to all the parts. I think, howerer, that there is lithe reason for dishelieving in the specific identity of the speeimen with No. 71 ..

The specimens Nos. 733 and 735 , obtaned in the same dredging as No. 73.4, are both small, and white or pale brown in color, the cuticle being only very slightly developed. The hase is only slightly concave and seems to have been adherent. The upper part of the colum is marked by twenty four longitudinal ridges, which show more or less distinct traces of transverse grooves, dividing each ridge more or less perfectly into a series of fubercles. I see no reason for supposing that these are other than young individuals of the same species as No. 734.

In changing the name of this species I have followed the suggestion made by Prof. Haddon ('89), and have named it after the distinguished naturalist who first deseribed it. Verrill identified it with the Actinien modosa of Fabricins, but the more recent observations of Haddon ('s9) and Daniclssen (${ }^{\prime} 90$) show that the two forms are quite distinet, and the former has assigned Fabricius' form to the genus Chomliuctinic proposed for it by Liitken (90). This being the case, it seems advisable, for the avoidance of the confusion which might ensue from two so closely related forms possessing the same specific name, to change the name of Verrill's species.
28. Actinauge fastigata, nom. nov.

Plate xxxt, Figs.93-97.
Synonym.-Actinange nodost, var. coronatu, Verrill (1883).
No. 713. Station 2791. Lat. $38^{\circ} 08^{\prime} \mathrm{S}$.; long. $73^{\circ} 53^{\prime} \mathrm{W}$. Depth, 677 fathoms. Seven specimens.
It is customany, when a fom originally deseribed as a variety is advanced to the dignity of a species, to employ the varietal designation as the specific: name. I have thonght it well in the present case to depart from this precedent, since the specific tem coronatw has ahrady been applied to a form belonging to the genns Chitonctis, which is nearly related to Actinaurge.

The specimens of A clinauge fastiguta, obtained by the Abutross from the same locality as most of the sperimens of A. Verrillii, are in all resperts similar to those described by Verrill ('S:') from deep water oft the St. George's Banks.

The specimens measure from 3.5 to 4.4^{cm} in height, with a diametre at the upper part of the column of from 2 to 2.5^{cm}.

The base is somewhat smaller than the columm and, apparently, is adherent; one of the specimens clasps the tube of a IIyalimaria. In none of the specmens is it deeply concave, inclosing mud or sand, as is the case with A. Verrillii. The limbus is smooth, and in nearly all the specimens is destitute of cuticle and is rather thin, allowing the insertions of the mesenteries to show through.

The column is cylindrical (Pl. xxxi, Fig. 93), gradnally increasing in diameter towards the upper part, the capitulum being, however, completely infolded in all the specimens. The lower part of the column is covered with low and small warts, aranged, more or less distinctly, in
rows, and giving the ofolum almost a gramular appearance in some specimens. They become smaller as they appoach the limbus, and fade out a short distance above it. A dark brown enticle covers this portion of the eolumn. Just below the capitulum, and forming therefore the summit of the contracted colamn, are two cireles of very prominent tubereles, tipped with blant chitinons points. There are twenty-four such tubereles, arranged in two horizontal rows of twelve each, so that there may be said to be twelve longitudinal rows of these bage tubercles, each row consisting of two tubereles. Between each pair of longitudinal rows there is ustally to be seen a row of small tubercles, so that there are in all twenty-four longitudinal rows of tubereles, twelve of them being very large and prominent, and twelve smatl and almost hidden by the larger ones. The capitulum is essentially the same as that of A. Vervilli, possessing forty eight longitudinal ridges which run to the bases of the tentacles. It is destitute of cuticle and tubercles. The sphincter (1ll, xxxi, Fig. 94) resembles that of A. Verillii closely. It is tolerably wide, hat not thick, being only slightly thicker in its upper part than it is lower down. In section it appears as a number of more or less circular cavities, traversed by delicate partitions, which support the muscle cells. In the lower part (Pl. xxin, Fig. 95) there is only one such cavity to the thickness of the muscle, but above (Ploxxxt, Fig. 96i) there may be three or four, or even more, since the cavities tend to become smaller in the upper part. Throughout its whole width the musele is separated by a broad bind of mesogle:a from the endodermal surface of the column, lying nearly midway between the two surfaces.

The tentacles are ninety-six in number, as calculated from the number counted in a sextant. They are decidedly entacmarous, and are arranged apparently in four eveles, it being dithent to distinguish those of the first two eyeles by their position. Wach tentacle possesses at its base a bulbous enlargement similar to that deseribed for A. lowillii. The longitudinal museles of the tendacles are weak. The tentacles, dise, and stomatodam seem to have been of a salmon or flesh color.

The stomatodiem is provided with two rather shallow siphonoglyphes.

The mesenteries are arranged in three cyeles, there being only twenty-four pairs in the specimen examined. Probably, however, a fourth rycle is present in larger specimens. since the number of tentacles would lead one to expect forty-eight pairs of mesenteries. The mesenteries of the first cyele are pertect and nongonophoric, those of the other two cycles being imperfert and at the same time gonophoric. The longitudinal museulature is well developed (PI. xxxi, Fig. 97), there being a strong muscle pennom situated near the outer elge of the mesentery and having a somewhat abrupt inner edge, beyond which, however, are a number of much lower muscle procesies gradually di-
minishing in size and linally disapmearing a little internal to the mid. longitudinal line of the mesentery.
As stated above, Verrill originally deseribed this form ats a variety of A. Vervillii, stating that intermediatestates between it and thenomal form are not rare. The Albatross specimens do not show any such intermediate gradations, though hoth the presumed variety and the type species were obtained from the same locality. Leaving out of comsideration the possibility of an appoximation of the arrangement of the tubercles in the two forms, there are yet other characters which, it seems to me, are of sufficient importance tonecessitate the separation of the two forms as distinct species. These may be briefly summed ul as follows: (1) The proportion of the diameter to the height of the column in A. Justigute is considerably less than in A. Verrillii, the latter having consequently a much more robust form than the former; (2) the base in A. Jestigate is adherent, while in A. Verrillii it is derply concave and incloses a mass of mud or sand which serves as an anchor; (3) the relations of the nongonophoric and gonophoric mesenteries differs in the two forms; (4) the longitudinal musculature of A. Verrillii is weak, whereas in A. fastigate it is strong and forms a well-developed pemon.

Gemus CHITONANTHUS, gen. nov.

Chondractinime in which the capitulum is provided with longitudinal ridges; the seapus, especially in its upper portion, with strong pointed tubereles not arranged in any definite order, or else with a single circle of cormal tubereles; the cuticle strongly developed upon the tubercles; tentacles without any bubons enlargement at the base.

I suggest this genus for two forms already deseribed by Itertwig ('S2, 'ss) as P'hellia pectinutu and I'hellie spinijera. There can be wo dombt that it is advisable to remove them from the genns I'hellin, the typical members of which have a smooth capitulum. If the definitions which Haddon ('89) has proposed for the varions genera of Chondractinide be accepted, Hertwig's Phellia spinifera finds no place among them. It comes close to Chitonactis, but differs in possessing ridges upon the capitulum. It is to be noticed that haddon has ass signed the form deseribed by Hertwig ('sz) as I'hellia pectinalle to the genus IIormathian of Gosse. It this be correct, Phellia spinifera must be referred to the same genns whose definition will require to be amended so as to include forms possessing tubercles scattered irregularly over the scapus. However, if the figure given by dosse ('60) of his Iformathia maryferite be correct, its eapitulum is smooth and it would perhaps be as well, especially when we consider how little is definitely known regarding the type species of the genus, to reserve Hormathe for those forms in which the capitulum is smooth and which possess only a coronal row of tubercles, associating the I'lellin perfinata of Hertwig and the Hormathia andersoni of Haddon ('ss), which
possess only coronal tubereles but have a ridged capitulum with Hertwig's Phellite spinifere in the new genus Chitomanthes. It is of course a question as to whether the presence or absence of capitular ridges is worthy the importance which this aramgement gives it; but it must be recognized that the classification of the (homdractinime is at present more a question of convenience in identification than of phylogenetic relationship, and that what may be trivial characters have been raised to the elevation of senerie distinctions. Thus, to judge from Haddon's definitions of the genera, the prineipal feature which distinguishes Chomdractimin from Chitonurtis is that the tubercles in the latter are pointed, while they are mostly low and nodule-like in the former. (See appendix p. 209.)
29. Chitonanthus pectinatus (Hertwig).

> Plate xxxif, Figs. 98-10\%.

Srnonym: Phellia pectinata Hertwig (1882) ; Phellia spinifera Hertwig (1888).
No. 703. Station 2780 . Lat. 5301^{\prime} s.; long. $73^{\circ} 42^{\prime \prime} 30^{\prime \prime} \mathrm{W}$. Depth, 369 fithoms. Three specimens.
The three specimens which represent this species have a very different appearance from one another. One (Pl. xxxif, Fig. 98), which may be considered the most typieal, is seated upon a detached valve of a Lamellibramoh shell by a broad, flat disk. Its columm was much contracted and thrown, to a certain extent, into folds. It measmed $2.1^{\circ} \mathrm{m}$ in height and 1.9^{m} in diameter, and was covered with irregularly seattered tubereles which were low and that near the base, but sharp and prominent above, where they become more mumerous. The upper tubercles owe their sharpuess to a strong development of cuticle over them, and it is possible that in the lower ones this cuticular point has been lost. Though seattered irregularly over the column for the most part, yet they show a tendency to arange themselves above in twelve longitudinal rows.

The second specimen, the one which I chose for detailed study, is larger than the first, measming 3.5^{mm} in height and 3^{m} in breadth. Its base is broad and flat, like that of the tirst suecimen, hut had been detached from its support, only particles of a shelly nature being attached to it. The column is almost smooth and white in color, the brown cutirle, which covered the first specimen, having disappeared, except in the immediate neighborhood of the limbus. The general smoothess of the column is, however, relieved by a few molule-like clevations (Pl. xxxif, Fig. 99), and some rarer, more prominent nodules tipped with brown cuticle. Towarl the summit, howerer, one finds twelve strong ridges, eath more or less broken into rows of tubereles and terminating above in a strong tuberele tipped with a prominent thickening of cuticle.

The third sperimen measured $\mathfrak{D}^{\mathrm{m}}$ in height and 2.5^{cm} in breadth, and was seated upon the valve of a Lamellibranch shell. Like the second specimen it was white in color, only a few isolated patches of cuticle
persisting. It differs from both the others, howerer, in being utterly devoid of tubereles, the only indication of any such structures being the occurrence of about fwelve ridges at the npper part of the column, which eud abruptly at the junction of the capitulum and seapus, but are not tipped with a cuticular thickening.

The external apparance of these three forms is so dissimilar that one might suppose them to be distinct species. Their occurrence in the same locality, the similarity of their support, in each case a Lamellibranch shell, and the gradations which they show led me to believe that they were identical. I made a detailed study of only one, the second, and consequently can not speak as to the identity throughout of the internal structure, but so far as this could be examined by slitting the specimens longitudinally there was perfect similarity and I hase little doubt but that all three ought to be assigned to the same species.

The infolded capitulum in all the specimens possesses twelve longitudinal ridges and, as in Hertwig's Phcllia pertinnta, the ridges towards their upper termination are divided by a longitudinal furrow which may be extensive enongh to give the apparance of twenty-four ridges. In the first and second (Pl. Xxxir, Fig. 99) specimens a few tipped tubercles are found on the infolded portion of the colum, resting in the lower portion of the ridges, and each is more or less distinctly cleft into two parts. The strong sphincter (Pl. xxxir, Fig. 100) has the general appearance figured by Hertwig for 1 ', pectimuta. In its lower part it is thin and composed of cavities which are circular in section, but in its upper part (Pl. Xxxin, Fig. 101) it thickens somewhat and the cavities are clongated in a direction perpendicular to the surface of the mesogloa, some scattered round cavities occurring upon the outer surface of the muscle. I did not find in the mesogloxa of the column wall any of the concrements which Hertwig describes in I ' pectinatu. These seem to have been absent in his P. spiniferu and are probably accidental foreign inclusions.

The tentacles (Pl. xxxir, Fig. 99, t) are rather short and sleuder and do not appear to have a bulbous enlargement at the base. They are arranged in about three cycles aud appear to number forty-eight. The first two cyoles correspond to the ridges of the capitulum, regarding each of these as really representing two, while the third cycle tentacles alternate with the ridges. The longitudinal muscles of the tentacles are fairly well developed and are notimbedded in mesoglora. In color the tentacles seem to have resembled the dise, which was of a porplish brown color. Its radiating muscles present the peculiarity already described by Hertwig in P. spinifera.

The stomatodatum is long, reaching to below the middle of the internal cavity (Pl. xxxir, Fig. 99, st.), and is of the same purplish brown color which marked the tentacles and disc. The broad but shallow
siphomostyphes are, however, not pigmented, and eonsequently are very notieatble when the animat is opened longitudinally.

There are form e?cles of mesenteries, of which the primary eycle is atome pertect, and at the samo time sterile; the fouth eycle mesenteries are small and are not gonophorice, the reproductive elements developing only in the mesenteries of the second and thind eycles. The longitudinal musculature is well developed (Pl. xxxu, Fig. 10:3), but eall hard! be termed "rerystrong." The pennon is not wide, the musele processes artsing in bumehes from one to three stout elevations of the mesoglara; it is much more marked in the upper portions of the mesenferies than it is lower down, where it beeomes lower and at the same fime broader. I did not observe any extensive folding of the transverse museles, nor could 1 find in sections any parieto basilar musele. Acontia are present, lying in bunches in the lower portion of the internal cavity.

I identify this lorm with Hertwigs Phellia spinifern, with which it agrees closely. I have, however, areepted the possibility which Hertwigs suggests, that his I. spimifere may be a variety of his I. pectimuta, deseribed in his tirst report ('s.) The dissimilarity in the arrangement of the tubereles in the two forms is to a certain extent, as he remarks, bridged wer by the sperimen obtained from station 320 , and the second and third dlbatross specimens help to bring the two forms into closer eomection. If the difference in the nature of the dise musculature in the two forms holds thronghout, it may be necessary to consider them distimet, but, since in all other particulars they shade into each other so closely, I think it better to consider them for the present identical.

Gemus Stephanactis, Hertwir.

Chondractinina in which the body is clongated in the transverse axis, the base inclosing a eylindrical body, such as ath Neyonatian stem; colnmon with thick wall, but not covered by a well marked euticle; capitulum smooth, sepatated from the smooth seapus by a well marked circular swelling.

In his report on the detiniaria, obtained by the Challen!er, Hertwig (*゚ロ) established a family. Amphianthidar for two generat Imphienthus athd stephancedis, both of which were chanaterized by the body being tramsersely clongated, the base clasping and inclosing the stem of a
 that in the aramgement of the mesenteries, and in the presence of a sphincter muscle imbedded in the mesoglo:a, there was a great similarity to a Nagartid, hut he failed to diseover arontia, atthough cinelidal openings piowed the column wall. Previously to Hertwig's disoovery of these forms, fon Koeh ("F) had deseribed an Actinian, adherent Io and cmbrateins ly its base the stem of I sis clonguta, and in this he fancied he hat fomd a clue to the ancestry of the Intipatharia. This
form, which von Koch named Gephyra dohrmii, Hadrlon ('s!) has invesigated, and finds that "it belongs to the series of typiral Sagartians." Danielssen ('90) again has described at form Korenie mar!/eritacea, probably more correctly assigmable to Herfwig's genns Amphi anthus, concerning which hestates that "the gastral filaments are richly besct with nematocysts," a remark which sugesests the presence of acontia. He, however, finds that there are twent y-four perfect mesenteries, though acknowledging apossibilityofernorin this determination. Mention must be made also of Verrill's Actimenge uexilis ('s:'), at superficial examination of which leads one to the conclusion that it is a Chondractinian, though I have not been able as yet to deteet the ocemrence of acontia, the single specimen in my possession not being satisfactorily preserved, and consequently not suitable for accurate observation. A study of sections, which, unfortunately, I have not yet been able to make, may reveal these structures. (Goncerning this form I believe, too, that it is identical with stephanuctisaby!ssicold finst described by Moseley ('75). It is undoubtedly a Stephunartis, and the superficial resemblance to Moseley's form is so close that, relying on the external characters, which are all in reality that we lave to base a judgment upon, one would have little hesitation in pronouncing in fitwor of the specific identity of the two forms. Finally, Chitonuctis marioni Haddon ('89) resembles Ntephumuctis in the elongation of the transverse(?) axis, and the clasping nature of the base, and is, fide Haddon, a Sagartian belonging to the subfamily Chondractinine.

In view of this evidence, which it most be acknowledged is by no means conclusive, I think it is alvisable to abolish the family Am phianthide and include stephomectis and Amphianthus under the sub family Chondractinine. Furthermore, it seems not improbable that it may be necessary to disregard the clasping habit, and the consequent elongation of the body to the transverse axis as generic characters, since, as in the case of Chitonactis marioni these features may be assumed by species belonging to genera not characterized by them.

Independently, however, of these features depending on the habitat, the genus Stephanactis is suticiently well marked out from other Chondractinidæ to warrant its retention.

30. Stephanactis hyalonematis, sp. nov.

Plate $\mathrm{Xxxir}, \mathrm{Fig} .103$.
No. 720. Station 2807. Lat. $04^{\prime} \mathrm{S}$; long. 89006^{\prime} W. Dopth, 812 fathoms. One specimen.
The single specimen I was plywilling to mutilate any more than was absolntely necessiny, and consequently am unable to give an accurate description of its structure; nor can I even determine from it whether or not acontia are present.

Proc. $N, M, 93-13$
 gins of the base coming intoclose eontact, bat still being separatbe by the use of a little force. 'The animal (lol. sixa, Fig. 10:3) is much elongated in the direction of the asis of the bumel! of tibres to which it is attarhed, amd is low. 'The eolmm wall is rematable on aceome of its britt lemess. It is hard and bittle, like parehment, and is much wrinkled by contadetion. In seetions thoteh a small piece of the watl no eetoderm or cotiele could be observed, but the mesogla was boud to have been altered into a chitin-like substance, not taking the stain (borax(amme) exept on the outer and inner sumtaes to al slight extent. A distinet thekemed rimes sumombls the uprer part of the eolum separ rating the seapos from the eapitalum. The latter has a slightly irreqular surfare, hut is mot fuberoulate, abl ditfers thom the seapme in lacking the chitin-like induration of the mesoglad. I could diseover no trace of cinclides. I strong sphineter imbedded in the mesoglata is present, but I can give no aceont of its shape in transierse sections.

The tentacles are completely comeated, and my preparations do not thow any light upon the number or arsagement of the mesenteries.

Fimily liUNOBHDA.

Aetinine with mumerous perfeet mesenteries, and with a strong, eircumseribed endodermal sphincter. Colnom wall frequently provided with tubereles, vermea, ete.; margin frequently with complicated acrorhagi. No acontia.

(iomas LEIOTEALIA, Heriwig.

Hertwig ('s3) established this gemos for a form whieh differed fiom all forms which had previously been assigned to the timily bumodida by lacking the tubereles or vermed which had been considered characteristic of the family. 'The internal arrangements of the C'hellenger specimen showed it, howerar, to be closley related to the fermeose forms, with which Hertwig very propery associated it, substituting for previons detinitions of the family, which he named 'realidar, a more acemate one fombled upon an amatomical basis.
 or acrorhagi, and perhaps to this may be added the pimate arangement of the muscle processes constituting the sphincter.

31. Leiotealia badia, sp, nov.

I'ate xxxir, loig, 104; 1'ate xxxill, Fig. IOt.
 Ono specimen.
The base is firmly adherent to a large ambelid tube. The column is contracted to a somewhat conical shape, and measmes 2 m in height with a diameter midway between the base and margin of $2.3{ }^{\circ} \mathrm{m}$. It is
wrinkled transversely by rontraction, and also is roushemed by numerous small elevations, which, however, do not represent tubereles or vertucar. 'The sperimen is one of the few of the collection which have retaned to a certain extent their colonation, the retoderm of the columm wall being of at dark brick-red color. A moticeable fatme is the realiness with which the thick ectoderm separates from the mesoglata in latge pieces; an explanation of this is fomm in the peentiar structure of the lower layer of the extoderm. 'The onter layer of the ectoderm contains a feew small nematorysts and a large mumber of gland cells, some of which statn very deeply with catmine, whileothers hardly stain at all. Below these there is a gramular layer which stains rather deeply, and next to the mesoglasa, ocenpying the rewion, where, in the tentacles, for instance, the nerve layer is found, is a broad, slightly stained, fibrillar layer, in which are mumerons delicate spindleshaped cells. It seems probahle that this layer is more or less nervous in its nature, but whether it is to be regaded as entioly nervons can not be determined. It is in this layer that the rupture takes plate, when portions of the ectoderm detarh themselves, the structure of the layer being delicate and maceration of it easily brought about.

The region of the colum immediately above (or internal to) the margin is mush depressed, appearing to represent a distinct fosse, and at the bottom of the depression there is present it strong diremmeribed endodermal sphincter (I'l. xxxis, Fig. 10.f). In section it resembles closely that which I have described ('s?) for Discosomu chmone, consisting of' acentral axis from which processes arise, producing a more or less pimuate appearance.

There being only a single specimen of the form, I cut out only a small portion of it for the examination of the sphincter, a piece of the excised portion being eut transersely for a study of the museulature of the mesenteries. I can not acoorlingly give any facts as to the tentacles, dise, or stomatodaum, or even regarding the armagement of the mesenteries. A few tentacles were cut in making sections of the sphincter, and it was evident from these that their longitudinal muscles were very weak.

The small portion which was sectioned for the purpose of ascertaining the nature of the musculature of the mesenteries contaned representatives of three cycles of mesenteries. Two of these bore reproduetive orgaths, while the third was sterile. Approximately the excised portion represented one-twelfth of the circumference, and it may be computed that there are at least twelvesterile (and perfect?) pairs of mesenteries and twenty-four pais that are gonophorie(and imperfect). The mass of the mesenterial filaments is very great, but no acontia could berecognized. Themusculature of themesenteries is laty strong, gradually increasing in thickness from near the parietal edge to about the middle of the mesentery, where itabruptly diminishes (Pl. xxir, Fig. 106); the parieto-basilars ($p \mathrm{bm}$) form distinct folds upon the surfaces
of the mesenteries, and momerons eavities are inclosed between the mesoglasa of the fold and that of the mesentery proper, asin A timostole eallosa.

Owing to the lack of more complete data with regard to this form, 1 at first hesitated to classily it. It seems, howerer, to belong fo Hextwig's gemus Leioferlit, though without some kowledge as to the arvangement of the tentacles, the corretness of this reference must remann uncertain; the probability seems to lie in favor of a cyclical arrangement of the tentaces. The form recalls somewhat that described
 the "few, slightly prominent, inconspichous verwce" could not be detected.

Family I'HYLLACTLIDA.

Itexactinia with simple conical tentacles at some distance from the apparent margin; between them and the magin are low tentacular or foliose structures (fronds). Sphincter endodermal, more or less ciretmseribed, lying in the interval between the tentacles and the frondose or tentacular structures. From two to several cycles of mesenteries perfect.

I have elsewhere ('89a) disensicd the question as to whether this family should be refered to the suborder Stichodactylimer, as Andres (心3) has done, or placed in the suborder Actininie, and have decided in favor of the latter position. Itpon this view the fronds are to be regarded as differentiated acrorhagi.

Gemis OULACTIS, M.-Edw.
Phyllactidid in which the column is provided with longitudinal rows of verruce in its uper part; the fords are foliose. Sphincter musele more or less circumseribed.
32. Oulactis californica, sp. nov.

Plate xxxis, Fig. 105; Plate xxxil, Figs. 107-108.
No. 741. Pichilingue Bay, Gulf of California. Two specimens.
The base is adherent and rather thin, allowing the insertions of the mesenteries to be seen through it. The column (I'j. xxxir, Fig. 105) is eylinhleal, and in the alcoholie specimens shows no trate of color. The two specimens measure, respectively, 3^{cm} and 3.5^{em} in height, with a diameter near the upper part of the column of gem and near the base of $1.5^{\text {man }}$. Toward the upper part of the colmm are verucar arranged in forty eight longitudinal sows, eath row being composed of from eight to ten verucare The uper portion bearing the fronds is not concealed. The fionds occupy the marein and extend inwards to the bases of the tentares, which sumoum the month; they are foliose, apparently becoming thickly so toward their external extremity, aml appear to be fortyeight in momber, corresponding to the rows of verruce, but owing to
their close approximation in the preserved speeimens their exact number could not be accurately determined. On the endodermal surface of the region which intervenes between the fronds and the tentarles is the sphincter, whose form may be better understood from the figure (I'I. xxxin, Fig. 108) than from a verbal description. It will be seen that it approarhes the circumscribed type, but still has a considerable attachment to the colum wall. It may, however, be fairly termed circumseribed.

The tentacles are simple and few in number. They appear to be arranged in two cycles, there being six in each cycle, but it is difificult to make them out satisfactorily in the preserved specimens.
The stomatodiem is provided with longitudinal ridges supported on elevations of the mesoglea. The siphonoglyphes are deep, with smooth walls, and with the mesoglora much thickened. There are twenty-four pairs of mesenteries, twelve of them being perfect. The longitudinal muscles form a broad, well-defined musele pemnon(Pl. xxxin, Fig. 107), and a well-developed parieto-basilar muscle is present. No reproductive elements could be discovered.

This form may have some relationship to the form described by Verrill ('6s) as Lophuetis orncta, as in that form the fronds are more foliose near their outer ends than toward the bases of the tentacles. They seem, however, to be more numerons, though, as stated above, it was difficult to decide upon the exact number, owing to their confinsion with one another in the contracted preserved specimen; perhaps twenty-four would be more correct, each showing indications of a division into two toward the outer extremity and so giving the appearance of forty-eight. It seems probable that it is unnecessary to separate Verrill's gemus Lophactis from Oulactis, though very decided differences exist between the present form and his L. ornata, with which one might be inclined to identify it.

Genns CRADACTIS, gen. nov.

Phyllactide with the fromds represented by bunches of simple or slightly branched, short, tentacle-like structures. Sphincter aggregated or circumscribed. Column with verrute.

Among the actinise which I described from the Bermuda Islands ('59a) was one which I referred to the genus Oulactis as O. fasciculuta. I propose here to unite this form, which differs markedly from Oulactis in the structures of its fronds, with a form in the Albutross collection, in the above new genns. An objection to this may be found in the very different nature of the sphincters in the two species, that of the one being almost diffuse, while the other is typically circumscribed. The structure of the fromds has been a generic character hitherto for the Phyllactidx, and it is convenient for the present to retain it as such. When the anatomy of a larger number of species is known, it can be determined whether a classification upon this. basis can be retained.

33. Cradactis digitata, sp. nov.

Plate xxxim, Figs. 109-112.
No. 692a. Station 2766. Lat. $36^{\circ} 47^{\prime}$ S.; long. $56^{\circ} 23^{\prime}$ W. Depth, $10 \frac{1}{2}$ fathoms. Three specimens, two of which, however, are small.
The three specimens of this species were contained in the same bottle which held the forms deseribed above as Sagartia paradoxa.

The base of the single adult specimen was injured, so that it is impossible to say whether or not it was adherent originally. The column is eqlindrical, and measmes in the adult specimen em in height and $1.5^{\text {em }}$ in diameter. The base is somewhat smaller than the column. Numerous, somewhat seattered, vermea ocem on the eohum wall, being much more distinct near the apparent margin than lower down. The fronds consist of humehes of short, bhat, tentacle like processes (Pl. XxXne, Fig. 110), each of which divides, near its extremity, into two short ams. The endoderm of the fromds is colored with brown pigment. The sphincter (I'l. xxxnt, Fig. 111) is very strong and is ciocumscribed, resembling closely that form of sphincter which is characteristice of the Bunodidae.

The tentacles are short and slout, and each has apparently a pore at the tip (I'l. xxxir, Fig. 109\%). They seem to be armanged in about two rycles, and are not momerons, probably not exceeding fortyeight. Their endoderm rontans brownish pigment similar to that of the fronds.

The stomatodarm in all the sperimens is considerably evaginated. It possesses two well developed and deepsiphonoglyphes, whose mesoglata is clecidedy thickened amd smooth, that of the rest of the stomatodiem being raised into longitudinal ridges.

There are twenty-four pairs of mesenteries, twelve of which are perfeet. The longitudinal muscles (Il. xxxin, Fig. 112) are well developed, forming a broad penmon, similar to that of Gulartis califormice; the parido-basilat masele is ako woll developed, forming a fold upon the surface of the mesenteries. No reprotnctive organs were observed.

OmernTICIIODACTVLINAE.
Hexatiniar in which the tentarles are arranged radially, more than one communicating with some or all of the endocols.

Family CORALAMMORIPIIDAE.

Stichodactylinte, with a marginal corona of tentacles, and intermediate tentarles similar to those of the margin arranged in radial series, each series consisting of from one to many tentacles. Musculature thoughout weak; no specially developed sphineter.

This family was established by Hertwig ($\times 2$) for the repeption of the two lorms deseribed by Moseley (‘ar) under the generic term

Corallimorphus. In the "Supplement" Itertwig ('ss) added to this genus, as another member of the family, the genus Corynactis. Previous to this, however, Andres ('83) hard defined the family Corynactidx, splitting up Gosse's family Capneadar, which he had previously accepted ('soct), though recognizing that it was not altogether natural, and agreed with Hertwig in incorporating in his new family the genera Corynactis and Corallimorphus, adding also the genus Copmea. The name proposed by Andres is preferable to that of Hertwis, both on account of the greater antiquity of the genus, which serves as its sponsor, as well as on account of Hertwig's mame carrying with it a significance which might give rise to mismoderstanding. Hertwig's mame has, however, the priority in publication, and it is therefore proper to retain it.

Cienus CORALLIMORPHUS, Moseley.

Corallimorphide, with capitate tentacles, there being only one intermediate tentacle in each radial series; some of the marginal tentacles have no intermediate tentacles corresponding to them.

34. Corallimorphus profundus Moseley (1877)

No. 7317. Station 2839. Lat. $33^{\circ} 04^{\prime} \mathrm{N} . ; \operatorname{long} .118^{\circ} 40^{\prime} \mathrm{W}$. Depth, 414 fathoms. Two specimens.
These two sperimens I found in abottle which contained also specimens of Myonanthus cmbiguts and Paructis vinosa. Both were in a very poor state of preservation, so that I can add nothing to the anatomical description given hy Uertwig ('s's). One of the specimens was attached to a fiagment of a gasteropod shell. The column measured 1^{cm} in height and the disk had at diameter of $2.5^{m m}$. There were no indications of any tendency to infold the marein, and sections demonstrated the absence of any sphincter.

The marginal tentackes were forty eight in muber, twelve being decidedly larger than the other thirty-six, and there were twelve intermediate tentacles corresponding to the lares marginal ones. The capitate nature of the tentarles could be made out only with dificulty, but they certainly possessed that character. There appeared to be a slight thickening of the dise mesoglow at the base of each of the intermediate tentacles.

Family DISCOSOMIDE.

Stichodactyline with tentacles of only one form, short and tentacular, and covering the greater portion of the surface of the disc. Sphincter muscle strong and eircminseribed, not emberded in the mesoglara.

(iomis DISCOSOMA.

Discosomidar in which the column is not covered with tubereles, thongh verruca may be present in the upper part. Tentacles short and fingerlike.
35. Discosoma fuegiensis (Dana) M.-Edw.

Plato tixiv, Figs. 113 and 114.
Synouyms: Actimia fuegicnsis, Dana (1816); Discosoma facgiensis, Milne-Edwards (18575) ; Sayustia fuçiensis, (iosse (1860); Coreus fuegiensis, Vervill (1868).
 specimens.
There is a certain amount of doubtfulness in this identification, since it is not possible to be certain as to whether the form deseribed by Dana (46) is really a Discosoma. Milne Edwards (\%a) considered it to be such, and Andres ("B:3) places it among the donbtful species of the same genus. So far as the description goes the Albatross specimens agree fairly well, and come from a station not especially remote from the locality in which Dana's form was found and from comparatively shallow water.

The four specimens differ considerably in size. The largest measures 2.5 mm in height, and $4.5 \mathrm{~m}^{\mathrm{m}}$ in diameter, while the smallest is 1 cm in height, with a diameter of 3.5^{cm} at the base. Three of the specimens are only partially contracted, the prominent lips of the mouth, and the outer eycles of tentacles being visible, while one of the smatler forms is completely contracted, the tentacles and mouth being entirely concealed, and the body having the form of a cone, sloping gradually upward from the flat base.

The base is adherent and has attached to it fragments of a brown cuticle. The mesoglea is thin and in some specimens has been mop tured, allowing the mesenterial filaments to protude.

The ectoderm of the column has been macerated away for the most part, the few fragments that persist towards the limbus having anding white color in the preserved specimens, and presenting a reticulate apparamere. The exposed mesogla has a cream-white color, and is smooth. In some of the specimens it has been considerably macerated, espectally towards the upper part of the colnm, where the mesenteries are exposed. Owing to the absence of ectoterm, it is impossible to determine whether or mot vernear may have been present in the upper part of the column. The sphincter musele (lloxxar, Fig. 113) is strong and is of the circmiseribed combormal variety, resembling greatly that oecmring in certain Bumodida.

The margin appears to have been lobed. The tentacles are momerons and short, and are arranged in madial series. Their ectoderm is very richly suppled with nematorysts. Their longitudinal musculature and the comerponding maseulature of the dise is well developed, and is not imbedded in the mesoglea.

The month is very prominent, and shows indistinct traces of a dark, slate-gray pigment. The mesogloa of its lips is thickened, the thickening gradually thiming out, both towards the dise and towards the stomatodeum. This is marked with longitudinal ridges, supported by mesogloal elevations, and possesses deep siphonoglyphes.

There are ninety-six pairs of mesenteries. Twelve of them, representing the first two cycles, are perfect, the rest imperfect, the fifth eycle of forty eight pairs being very small, hardly projecting above the eadoderm. Reproductive organs are borne upon the forty-eight mesenteries composing the third and fourth cycles. . No acontia are preseut. The longitudinal museles of the mesenteries (Pl. xxxiv, Fig. 114) have a moderate degree of development, forming a rather diffise pennon. The parieto-basilar is, however, strong, forming a well-marked pouch upon the surface of the more developed mesenteries.

Very decided differences exist between this form and I). anemone previonsly studied by me ('s9), but nevertheless a general similarity is well marked, showing itself in the shape and structure of the tentacles, the character of the sphincter muscle, and the deep siphonoglyphe. The musculature of the mesenteries has, however, a very different arrangement, and the relationship of the perfect and imperfect mesenteries is quite different. These points, however may be justly regarded as specitic.

Tribe CERIANTHE \nrightarrow. Hert.

Anthozoa, with a large number of unpaired mesenteries, and with a single siphoncglyphe; the eight Edwardsiau mesenteries are situated, four on each side, at the sulcar surface, and new mesenteries are added at the sulcular surface, being interposed, one on each side of the sagittal plane, between those immediately preceding them in time of formation. The base is not adherent and is usually provided with a pore opening into the body-cavity. Column walls, with strong ectodermal mus. culature.

Family CERIANTHIDE.

With the characters of the tribe.

Genus CERIANTHUS, Della Chiaje.

Whether the form described below be correctly referable to the genus Cerianthus is questionable, inasmuch as it seems to differ in several particulars from any of the forms litherto referred to the genus. Andres (' 83) divided the forms assignable to the family Cerianthide into three genera (not including Arachnactis), but the characters upon which these genera were based hardly seem at present of sufficient importance to be cousidered generic. It seems to me preferable, at present, to assign the specimen described below to Della Chiaje's genera rather than to establish a new genus on insufficiently understood characters.

36. Cerianthus vas, sp. nov.

11, xxxiv, ligs. 117-119; 11. xxxv, Fig. 120.

 specimet.
'The single Cerianthid which I found in the collection gave so murh promise of interesting results that l determined to sateritice it to an anatomical investigation. Unlortmately, however, it did mot prove to be well preserved, and many points on which I had hoped to obtain definite information rematned obseme partly owing to the preservation and partly to the ditienlties in the way of obtaining all the neressary data from a single specimen. A portion of the upper part I cut in lougitudinal sertions in the embearor to obtain, it possihle, definite information as to the absene of temtarles, and was thes prevented fiom making a thorongh stmdy of the artamgement of the mesenteries.

The speeimen (I' xxxis, lig. 117) measured 2.0 ${ }^{\circ} \mathrm{m}$. in length and about $0.9^{c m}$. in diameter, and had a decided vase-like appeatane. The margin was slightly redected, atm there was a distmet meek like comstrietion a little below it. The column was eylindrical, tapering Eradally below, where there was a latere, widely open pore commonicating with the interior eavity. The ertalerm had a pale brown color, athd its museulature was ridhly developed in the manner chatacteristie of the Cerianthidae.

No tube aceompanied the specimen, nor have I any information as to whether there was one when it was bomd.

A remarkable perulianty which attracted my attention at once was the apparent abseme of tentares. Neither at the margin nor upon the dise eould any of these strmetmes be fomme. It is possible that they may have fallen away, an idea to which the fact that any seetions throush the marein did not show contimnity of the colum wall and dise, exerpt in one or two cases, wives support. It seems hatrelly passibe, however, that if they had been present they could have disappeared so completely as they seem to have done, and I am rather inclined to believe that they were absent or redued to mere rudiments.

The stomatordemm was mow, extembing only a shot distance into the interior eavity. The portion which I used for longitudinal sections probably contained the siphomoglyphe Itpon the other side of the stomatodarm no siphonoglyphe oremed.

In a seetion thromgh the midhle of the colnmo (ll, xxxy, Vig. 120) twenty-two mesenteries conld be combed. 'They showed a tembery to be armaged so that boad and marow mesenteries should alternate with one amother, hat this arratsement was frequently mared by a broad mesemter ocemring in the plate of a matow ome, and vie versat. It is evident, lowever, that two grates of mesenteries are represented in the section, one consisting of abont twelve mesenteries quite wide and bearing reproductive organs as a rule, and ome whose mesenteries

Were much narower and were also destitute of reproductive organs. Whether, as I am inclined to believe is the case, athiod grade is present, extending only a short distance below the stomatodirm, is uncertain. I was not able to prepare a satisfactory series of sections which would demonstrate this point, but sections made through a small portion of the columm wall at a level with the stomatodiemm seem to show a greater number of mesenteries than oreme in a portion of the same size lower down.

The eharacter of the mesenteries attached to the sulear diredive I did not diseover. Opposite the suleular end of the stomatomberm I found a single mesentery (I'l. xxxiv, Nig. 11s, mes) which rapidly dimin ished in size as it passed barkwad, and "xon at the lavel of the lower edge of the stomatedermm was redued to the merest rudiment. 'This I take to be a newly formed mesentery, its fellow of the opposite side not having appeared.

A decided abmomality was seen in sertions taken about the midille of the colum (Pl . xxxv, Fig. 120), whirh involved two mesenteries situ ated at or mear the sulear surfare(*). 'Thess had mited to form aband from which two lamellas extended into the body eavity. A little higher these lamella were likewise united so that a ravity was inclosed by the mited mesenteries.

I was not able to distinguish any acontia in the region where they usually oceur in Cerianthids, though mesenterial filaments ocerored on all the mesenteries. They ware very imperfertly preserved, however, and did not allow of am accurate study.

The reprodurtive organs are borne by the widest mesenteries, whirh extend the greatest distance down the rolumn. Both ova and spermatozoa seem to be borne by each mesentery. (I'late xxiv, Fig. 119, or and te.) Ova are certainly present and oremring with them, inclosed in the mesoglath, bodies which I take to be spermatozoa. They (le) vary much in size, occasiomally being many times larger than the ova, and consist of a deeply staining wall erowded with small molei, a cavity ocemomg in the center of the larger ones and contaning mumerous murlei, attached to which I rould in some rases discover dolieate appendages. They do not resemble the spermatoroa bundes of the Ilexactiniad, but bear a close resemblance to the testes of ('. membrameras, figured by the Hertwigs. Cerianlhus vas is arrordingly most probably one of the hermaphoolite Cerianthids.

The endoderm covering the mesenteries presents the same characters as that found in the same regions in c'. americanus, which I bave described elsewhere (90).

UNIDENTIFIED FORMS.
No. 725. Station $28^{\circ} 25$. Lat, $24^{\circ} 22^{\prime} 15^{\prime \prime} \mathrm{N}$. ; long. $110^{\circ} 19^{\prime} 15^{\prime \prime} \mathrm{W}$. Depth, 7 fathoms. One specimen.
No. 955. Station 2765. Lat. $36^{\circ} 43^{\prime} \mathrm{S}$; long. $56^{\circ} 23^{\prime} \mathrm{W}$. Depth, $11 \frac{1}{2}$ fathoms. One specimen.

Paet 111.

geograiohical and bathymetrical distribution of the actiniaria.

To anyone who has studied the habits of Aetimians the dependence of the varions species umon their suromalings is very evident. Some are to be found only on rocky shores, others prefer samdy bottoms, while others again make their homes only in muldy lats. Some bury themselves in the samd or mud so that only the disk and tentacles protrude, others are to be found only on gasteropod shells inhabited by Hermit Crabs, while others again tirmly chasp stems of Gorgonians. In other words, nearly every species has a more or less definite habitat.

Furthermore, as a rule the various specties have a more or less detinite distribution, so that it is possible to mark ont more or less detinite gengraphical regions characterized by their Actinian fama. Thus the eastern coast of the I'nited States presents three fairly well defined regions so far as the Aetimian fama is concerned. North of Cape Cod we have what may be termed the loreal region, characterized by the ocenrence, among other forms, of Tealia crassicornis, Metridiam marginatum, and Cerianthus boreatis Verr. Secondly, there is what Verrill has called the Virginian region, which includes the Virginian and Carolinian coasts, and probably (ieorgia to the south, and Delaware and part of New dersey to the north, characterized by the presence of Phy. mactis carernata, Adumsia sol, and Cerianthus umericanus among others; and lastly, there is the Florida region, chamaterized by forms identical with those of the West Indies. Northem New Jersey and Long Island Somed constitute an intermediate region possessing forms such as Metridium mar!inutum, reaching their most perlect development in the Boreal regiom, and others, such as blouctis (Halcomper) producta and P'aractis rapiformis, which belong properly to the Virginian region.

When the distribution of gemera is considered, however, this detiniteness, as might be expected, becomes more or less indistinct, though even with some of these distinet areas of delimitation can be established. With the larger groups the same holds true, and even when the orders are considered a certain amome of limitation of their distribution can be determined. The Aetinina, it is true, have a worddwide distribution, hut, as I have pointed out (89), the Stichodactylinar. thongh of wide distribution, have their headquarters in the l'acitie and West Indian regioms, aml it may be satid in the regions of coral formation.

Our kowledge, however, of the Aetinian fama of a great deal of the Pacitic and ludian Oeems and of the South Atlantic is as yet very slight, and it is hardly time to enter into an exhanstive disenssion of the geographical distribution of the larger sromps, families, and orders of the Actinaria. So far as the Albutross collection is concerned, there
is only one point that deserves special mention in this comection, and that is the very wide distribution which it reveals for certain deepsea species.
Actinange verrillii and Actinange fastignta have been obtained by the U. S. Fish Commission at various localities off the eastern eorast of the United States. The former is recorded from varions stations from off the coast of Nova Scotia in the north to off Cape Itatteras in the sonth, from depths ranging from 30 to 506 fathoms. A. fastigutu has been recorded from off Martha's Vineyard from a depth of 300 to 980 fathoms. In the Albutross collection these forms were obtained from the following stations:
A. verrillii: Stations 2791, 2818, and 2839.
A. fastigata: Station 2791.

Station 2791 was off the coast of Chile; station 2818 off the roast of Ecuador, in the neighborhood of the Galapagos Islands; and station 2839 off the coast of California.

Another form, Actinostola cullosa, has likewise been obtained at varions stations on the eastern coast, ranging from the Grand Banks of Newfoundland on the north to Cape Fear, N. U., on the south, at depths varying from 50 to 640 fathoms. This form likewise occurs upon the west coast of America, having been obtained by the Albatross at stations 2792,2807 , and 2818 , all of which are off the coast of Ecuador, and vary in depth from 392 to 812 fathoms.

Since we have seen that species of Actinise are to a great extent dependent upon external conditions, this wide distribution of these deep-sea species is interesting. It seems improbable that they are wanting in the deep water of the southwestern Atlantic; or, in other words, that they occur sporadically upon the east and west coasts of America. Future observations will probably reveal their occurrence off the east coast of South America, a portion of the ocean whose Actinian fauna is still to be studied, and it seems probable that they orcur over the sea bottom of the western trough of the Atlantic thronghout its entire extent, and doubling Cape Horn extend up the west coast in deep water as far north at least as California. Since we know that the temperature at considerable depths is fairly constant and low, it may be supposed that over this wide area these forms find conditions sufficiently similar, and have thus been enabled to extend their distribution.

I wive here in tabular form the localities and depths at which the various species of the Albatross collection were obtained:

Note.-Tho species in italics are described for the first time in this report:
Hertwig (が) , as the result of his investigation of the Challenger Actiniaria, drew attention to two features presented by some deep-sea forms which matked them out from those living in shallower water, namely the retrogression of the tentacles to stomidia and the unusual arrangement of the mesenteries. The Albatross collection seems to lessen somewhat the importance of the first of these peculiarities by sugesting the propriety of doing away with the genera Polysiphomia and Liponema, but the second chatacteristic receives some support in
the diseovery of Oractis, althongh the Paractinis have heen removed from their high place. Two out of three of the genera forming the Tribe Protartinia are deepsea forms, including under this heal all those which live at depths approaching 500 fathoms.

It is doultful, however, if any such limitation can he set to distinguish derpsa forshathwater forms. What we mean by deepsat forms are forms which live under conditions as a rule only to be foum in tine deeper water, one of the most impertant of which is perhaps great and constant colld. This is a condition which may be ohtained at varions depths aceording to latitude, and it is quite possible, in fact it does happen, that forms which in more southern Jatitudes are fonud at 300 to 500 fathons, may, in higher latitudes, ocem at a depth of 30 to 50 fathoms. If, however, a limit is to be given I should suggest one much less than that proposed hy Prof. Hertwig, perhaps as little as $\mathbf{1 0 0}$ fathoms. It would he better probabiy to allow the limit to vary, considering the zone at which the conditions are practically constant throughout the year to be the limit of true deep sea forms.

There is defnite evidence of a wide bathymetrical distribution of deep sea forms. For instance, Corcllimorpheus profundus was obtained by the Challenger firom 1,375 to 2,025 fathoms, while the A lbatross sperimens were obtained from a depth of only 414 fathoms. So, too, we have seen that Actinostola callose ranges fiom $n 0$ to S12 fathoms, Actiunuge jestigutu from 300 to 950 , and A. Verrillii from 30 to 67π. Conversely also shallow water forms may extend down to depths sufficient to overlap the regions imhabited by what may be considered deep-water forms. For instance, Antholober reticulata is typically a littoral form, yet the Challemger obtained it from a depth of :3.) fathoms, a depth greater than the highest limit from which either Actinostola callose or Actinauge Vervillii has been dredged.

Making allowance for such cases, however, it is not difficult to divide the Actiniaria into such forms as are typically deep-sea dwellers and those which inhabit shallower waters. Reviewing the various families as to their peculiarities in this respect, it will be foum that certain groups may be assigned to one or other category, while others have representatives in both. Among these latter are the Edwardsie, Protactinia, Sagartida, P'aractide and Corallimorphide; among the Sagartide the Sagartine are principally shallow-water forms, though somesuchas Sugartialactea and Adamsia (?) involvensoccur indeep water, while the Chondractininie are essentially deep-water forms, though Phellia hasseveral species dwelling in the littoral zone. The Paractide, too, though containing littoral forms are apparently more abundantly represented in deep water, and it is interesting to notice that in these as well as in the Chondractinine, the deep-water forms are characterized by the thickness and firmness of the mesogloea of the column walls. The Boloceride so far as known are deep-water forms, as are al:o the genera Polystomidium, Polyopis, and Sicyonis; and, on theother hand, the Antheadie, Bunodide, Phyllactidae, Heteractide, Thalassianthide, and
in tart all the forms with abommally-shaped tentaches, excluding those in which these structures are reduced to stomidia, are essentially inhabitants of shallow water. Perhaps an exphanation of the development of fronds as in the lhyllactidir and of branching and modulose tentaces in shallow-water forms may be found in the greater or less mimicry of the plant forms, with which littoral actinians are associated, which is thus produced, and which would serve as a protection from carniv. orous enemies.

As with the geographical distribution, however, much yet remains to be done before any proper generalizations as to the signiticance of and the eatses which govern the bathymetrical distribution of the Actiniaria can be made, and the remarks here presented are simply a sketehy outline of some of the ideas that have suggested themselves during the investigation of the Albatross collection.

May, 189\%.

AIPENDIX.

Since the preceding report was completed I have had the opportunity of examining the collections of Actinians in the musemm at Berlin, and also the ('hallenger collection in the Natural History Department of the British Museum, and must express my sincere thanks at this earliest opportmity to P'rof. von Martens and Prof. Jeffrey Bell for the comresy with which they acceded to my request to examine these very valuable collections and for their great kindness in affording me every facility for studying them. I also desire to state my obligations to my friend Prof. A. C. Haddon for many valuable suggestions and much interesting information with regard to the European Chondractinime, as well as for the opportunity of examining the valuable collection of forms belonging to that group which he possesses.

As the result of my studies of these collections I have been able to confirm the correctness of certain suggestions made in the report, and also have obtained new light unon the identification of certain forms, and have thought it advisable to incorporate in this Report in the form of an appendix some of the more important of my results.

Anemoniat rariabilis (p. 147).-In the Berlin Museum are preserved the forms desrribed by Studer ('rs), which were collected by the Gazelle expedition, and among them is a form which seems to be identical with that described above as A memonia curiabilis. This is Corynactis carmet, Ntuder. In size and habitat it arrees very closely with the Albatross specimens, and the capitate character which Studer describes for the tentarles is not at all well pronounced. It was upon this character that Studer relied in assigning it to the genus Corymactis, but the tentacles are plainly armaged in cycles, a fact which uay be dednced from his statement that the tentacles are "zahhreich in zwei Reihen." The similarity is so striking that, taking it into oonsideration with the fact that both have the same habit, and come from essentially the same locality and depth, I have no hesitation in pronouncing for its identity
with the Ilbutross specimens, whose name shond conserpuently be changed to Anemonia carner (Studer).

Bolocere brecicornis (p. 15s).- In the Report I have expressed my opinion that Itertwig's Liponeme multiporum is a Bolocere from which all the tentacles have fallen away. After an examination of the challenger specimens I feel more than ever convinced that such is the case. It is, however, as I suspected, specilically distinct fiom I3. brevicormis.

Genus ictinernus (p.165).-There can be no doubt but that Hertwig's Polysiphonia tuberosa properly belongs to the genms Actinermus, though its specific distinctuess from all forms of that genus hitherto described is exceedingly probable.

It is interesting to note in connection with the extension of the geographical range of the genus from the western basin of the Atantic to the Pacifie that ILaddon* has recently noted its occurrence in the eastern portion of the Atlantic, in 750 fathoms off the southwest coast of Ireland.

Actinostola callosa (1). 167).-Hertwig's Iysactis crassicornis is undoubtedly identical with this form. The description given by Verrill of Crticina callosa was published in 'Sa, and Hertwig's report of the Chellenger Actiniaria appeared in the same year, as did also apreliminary report.t It consequently is a question as to which name has the priority. There can be no question as to validity of Verrill's generic term, and it seems probable that his original description, which appeared in the March-April number of Silliman's American Journal of Science, slightly antedates Hertwig's preliminary report. Leaving this aside, however, it seems preferable to adopt Verrill's name in its entirety, since the term crassicornis has a prior association with a member of the genus Tealir.

Genus Chitonanthus (p. 189).-In establishing this genus I have laid stress upon two features: the presence of capitular ridges and the absence of bulbous enlargements at the bases of the tentacles. The unsatisfactory nature of the classification of the Chondractinine alluded to above is principally due to the importance bestowed upon the nature and arrangement of the tubereles. The specimens of Chitonanthus pec-. tinatus in the Albutross show of how little importance this feature may be in some cases, and it seems advisable to seek for some more constant characters. It is possible that these are to be fomm in the nature of the capitulum and of the bases of the tentarles. The gemms Actimouge seems well marked off, but this is not the case with Chondractinio, Chitonactis, and Hormathio, genera established principally on the nature of the tubercles, or on their arrangement. It is not improbable that it will prove necessary to fuse these genera into.one, removing from it, however, Hertwig's Chitonanthus (Phellia) pectinutus and Haddon's

[^34]Proc. N. M. 93-14.

Hormuthia Andersoni, both of which have been refered by the latter author to the genus Hormathia.
The Chondractininar, if this suggestion prove worthy of acceptance, would then consist of the genas Iormathia characterized by the presence of tubereles and a smooth capitulum, and by the absence of bulbous enlargements at the bases of the tentacles; the genus Aetinumge possessing tubercles, a ridged capitulum, and bubons enlargements to the tentacles; Chitomanthus with tubercles, and capitular ridges, but without tentacular bulbs; and Ntephanactis, if it prove to be a "good" genus, without tuberdes, capitular ridges, or tentacular bulbs, but with a clasping base. To these it may be necessary to add Phellia without tubercles, capitular ridges, or tentacular bulbs and without a clasping base.

November 8, 189:。

HHBLIOARAPHY.

'80. Andres, A. Intorno all' Édwardsia C'lıparèdii (Halcampa Claparèdii I'anc.). Atti R. Acead. Lincei in Roma. Vol. v. 1880.
'80a. Andres, A. I'rodromus neapolitanar actiniarum fauna, addito gencralis actiniarum bibliographire catalogo. Mitth. a.d. Zool. Stat. zu Neapel. Bd. If. 1880.
'83. Andres, A. Le Altinie. Atti R. Accad. Lincei. Vol. xiv. 1883.
91. Van Beneden, E. Recherchessur le developpement des Arachuactis. Contribution àla morphologie des Cérianthides. Arch. de Biol. 'I'. xI. 1891.
'88. Blochmann, F., and Hilger, C. leber Gometinia prolifera Nars, eine durch Quertheilung sich vermehremde Actinie. Morph. Jihrls. Be. xur. 1888.
'90. Boveri, 'Th. Veber Entwicklung und Verwandtschaftsbezichungen der Aktinien. Zeit. für wiss. Zö̈l. Bd. xux, 1890.
91. Carlgren, O. Beiträge zur henntniss der Actimien-Gathun! bolocera Gosse. (Vorliutige Mitteilung). Ofvers. Kongl. Vetens.-Akadem. Forhandl. Stockholm. 1891.
'46. Dana, J. D. Zoophytes of the U. S. Exploring Expedition of 1838-42, 1846. (The Atlas was published in 1849.)
'46a. Dana, J. D. Structure and Classification of Koophytes. Philidelphia. 1846.
'90. Danielssen, 1). C. Actinide of the Norwerian North Atlantic Expedition. Christiania. 1890.
'88. Dixon, A. F. On the arrangement of the mesenteries in the genus Sagartia (Gosse). Sci. Proc. Roy. Dublin Soe. N. S. Vol. Vi. 1888.
'88. Dixon, (r. Y. Remarks on Sagartia vonusta and Sagartia nivea. Sciont. Proc. Roy. Dublin Soc. N. S. Vol. vi. 1888.
'89. Dixon, G. Y. \& A. F'. Notes on Bunodes thallia, Bunodes verncosus, and 'Tealia crassicornis. Scient. Proc. Roy, Dublin Soc. N. S. Vol. Vi. 1889.
'60. Duchassaing \& Michelotti. Mémoire sw les Coralliaires des Antilles. Mem. Realo Acead. di Torino. $2^{m o}$ série. 'T. xix. 1860.
'66. Duchassaing \& Michelotti. Suphlément au Mémoire sur les Coralliaires des Antilles. Mem. lieale Acead. di 'lorino. zme série. 'T. xxim. 186i,
'34. Ehrenberg, ('. (: Die forullenthiere des rothen Mecres physiologisch untersucht und systematisch verzeichnet. Berlin. 18:3.
'54. Gay, C. Historia fisica y política de Chile. Zoologie. 'T. vin. Paris. 1851.
'55. Gosse, I. H. On I'cachin hastata with observations on the family of Actiniada. Trans. Limnean Soc. Vol. xxi. 1855.
'58. Gosse, P. H. On the Fritish Actinia: Ann. amd Man. Nat. Hist. Brd ser. I. 1858.
'60. Cosse, 1'. H. Ictinologia Lritannica. I history of the British sea-Inemones and Corals. London. 1860.
'87. Haddon, A. C. Note on the arrangement of the mesenteries in the parasitio Tarva of Halcampa chrysanthellum ('each). Scient. Proc. Roy. Dublin Soc. N. S. Vol. v. 1887.
'88. Haddon. A. C. On the species of Actimiw from the Mergui Archipelago, collected for the Trustecs of the Indian Museam, Caleutta, by Dr. John Anderson, F. R. S., Superintendent of the Museum. Journ. Linnean Soc. Zö̈l. Vol. xxi. 1888.
'89. Haddon, A. C. A revision of the British Actinic. Part I. Scient. Trans. Royal Dublin Soc. Ser. II. Vol. iv. 1889.
'77. Von Heider, A. Sagartict troglodytes, Gosse, cin leeitrag zur Anatomie der Ictinien. Sitzungsber. d. k. Akad. d. Wissenseh. Wien. Math.-nat. Classe. Bd. lxxy. 1877.
'79. Hertwig, O. \& R. Diè Actinien anutomisch und histologisch mit besonderer Berïlhsichtigng des Nervenmuskelsystems untersucht. Jena, 1879.
'82. Hertwig, R. Report on the Actiniaria dredged by H. M. S. Challenyer during the years 1873-1876. Rep. on the scient. results of the voyage of M. M. S. Challenger during the years 1873-76. Zoölogy. Vol. vi. 1882.
'88. Hertwig, R. Supplement to Report on the Actiniaria dredged by IF. M. S. Challenger during the years 1873-1876. Report on the scient. results of the voyage of H. M. S. Challenger. Zoöl. Vol. xxvi. 1888.
'61. Johnson, J. Y. Notes on the Sea-anemones of Madeira. Proc. Zoöl. Soc. London. 1861.
'32. Johnston, G. Illustrations in British Zoölogy. Actinia Tuedier. Loudon'\& Mag. Nat. Hist. Vol.v. 1832. (This paper I have not seen.)
'47. Johnston, G. History of the British Zoöphyles. Loudon. 1847. (This work I have not seen.)
'80. Jourdan, E. Recherches zoologiques et histologiques sur les Zoanthaires du Ciolfe de Marseille. Amn. des Sci. Nat. $6^{\text {mee }}$ sér. 'T'. x. 1880.
'78. von Koch, G. Mittheilungen über Corlenteraten. Ciphyra Dohrnii. Morph.Jahrb. iv. 1878.
'56. Koren \& Danielssen. Nye fetinier Siphonactinin et -Ictinopsis. Fauna litt. Norvegie. P. If. 1856.
'77. Klunzinger, C.B. Die Corallthiere des rothen Meeres. $z^{\text {ter }}$ Theil: Die Alcyonarien und Malacodermen. Berlin. 1877.
'30. Lesson, R. P. Zoologie. Voyage antour du monde sur la Corvette do S. M. Ia Coquille pendant les années 1822-'25. P'aris. 1838 et seq.
'17. Lesueur, C. A. Observations on several species of Actinia. Journ. Acad. Nat. Sci. Philadelphia. Vol. I. 1817.
'60. Liitken, C. Noyle Bemairkinger om de rad de dunske Kiyster iaytlagne Arter af Actiniernes Gruppe. Naturhist. Foren. Vidensk. Meddelelsen. 1860. (This paper I know only through the reference to it by Haddon, 1889.)
'89. MeMurrich, J. P. The Actiniaria of the Bahama Islands, W. I. Journ. of Morph. Vol. HI. 1889.
'89a. McMurrich, J. P. A contribution to the Actinology of the Bermudas. Proc. Acad. Nat. Sci. Philadelphia. 1889.
'90. McMurrich, J. P. Contributions on the Morphology of the Actinozoa. I. Th. structure of Cerianthus Americanus. Journ. of Morph. IV. 1890.
'91. McMurrich, J. P. Contributions on the Morphology of the Actinazoa. II. On the development of the Hexactinie. Journ. of Morph. IV. 1891.
${ }^{\prime} 91 a$. McMurrich, J. P. Contributions on the Morphology of the Actinozoa. III. On the phylogeny of the Actinozoa. Journ. of Morph. v. 1891.
'82. Marion, A. F. Aetinaires Atlantiques des dragages de l'aviso "le Travailleur." Comptes Rendus. T. xciv. 1882.
'57. Milne-Edwards, H. Histoire naturelle des Coralliaires on polypes proprement dits. T. I. Paris. 1857.
77. Moseloy, 11. N. On new forms of Acliniarin dredged in the deep sea; wilh ateseriplion of erfain l'elagie sugface-swimmingspecies. 'Trans. Limman Noc. z"un ner. Kool. Vol. 1. 1877.
78. Mosely, II. N. On the stmeture of the stylasterider. Phil. Trans. Roy. Soe. 1878.
'41. do Quatrefages, A. Mémoire sur les Liduredsies (Edwardsia Nob.), now'ean genre de lat famille des feflimies. Ann. Sei. Nat., д̌me sér. T. Xvir. 1×11.
'o9. Tiapl, W. Ueber die Iolypen im Illgemeincn und die Aclinien insbesondere. Weinar. 1829).
'81. Ridloy, S. (). Account of the Cowlenterata collected during the survey of II. M. S. Allert in the Straits of Magellan and on the conse of P'alagonia. Proc. Koiil. soce Lomdon. 1881.
'78. Studer, 'T'. Anhozon polyactinit, welche während der heise S. M. Corvette liazelle um die Erdegestmmelt werden. Monatsbor. Akad. Wissonseh. Berlin. 1878.
'64. Vorrill, A. Lis. Lievision of the I'olypi of the Enstern Const of the Uniled states. Mom. Boston Koc. Nat. Hist. Vol. I. IRB6-'69.
'6a. Verrill, A. W. Classification of I'olyps: (Extruct condensed from a Symopsis of the I'olypi of the North I'acifie Explorin! Expedition, under C'aplains Ring!gold and lioderes, U. S. N.) I'roe. lissex lust. Vol. iv. 18tī.
'67. Vorrill, A. E. Symopsis of the Polyps aud Corals of the North I'acific Exploring Expedilion. under Commodore C. Linggold aml Capt. John Rodger:s, U. S. N., from 1853 to 1856. Collected by Ir. H'm. Stimpson, Naturalist to the Expedition. Proc. Exsex Inst. Vol. v. 1867.
68. Verrill, 1. L. Reriew of the Cornls amd l'olyps of the Hese Cocest of imerica. Tranns. Comedicut Acad. Aris and soi. Vol. 1. 18for.
7\%. Vervill, A. E. Exploration of Casco liny by the U. S. Fish Commissiom in 1873. Proce. Amor. Assoc. Adv. Sei. Vol. xxit. 1873.
'79. Vervill, A. E. Notice of recent edditions to the marine fieume of the Enastern Coent of N. America. Amer, Jonrn. Sci. and Art, shit ser. Vol. xvir. 1879.
'8:. Verrill, A. E. Brief contribulions to Zoütogy from the Musemm of Yale Cothage. No. L. Notice of the remarkable faume occup!ing the outer bonks off the southern

'83. Verrill, A. F'. lieport on the Juthozon, amel on some alditional species dredged by the "Blake" in 1577-1579, and by the I. s.. Fish Commission Steemer "Fish Hawh" im 1sSo-ss? Bull. Mus. Comp. Koöl. at Harvard Coll. Vol. xt. 1883.
'88. Wilson, H. V. On the development of Maniciad aroolata. Journ, of Morph. Vol11. 1888.
'90. Wilson, II. V. On wew Aotinia, Hophophoria coralligens. Studies from the Biol. Lab. Johns llopkina Univ. Voliv. 1 Is! 0.

WXIMANATION OF゙ PGATES.

ar:	:1contia.	m	musclos.
bm	hasal musclo.	mos	mesentery.
((1)	capitulum.	$m f^{\prime}$	musclo libres.
col	columb wall.	$m!$	mesoglara.
cor	coronal tuberelo.	" 1 m	nematocysts.
cr	capitular ridges.	101	V:1.
"	cuticle.	$p^{\prime \prime m}$	parieto-basilar muscle.
I)	directive masenterios.	$\therefore \mu / h=$	sphinctor muscle.
d	dise.	al	stomatodirum.
e	ectoderm.	.	tentacle.
en	endoderm.	$t \mathrm{l}$	lestis.
f	foroign incrustations on the columb wall.	$\begin{aligned} & t m \\ & t \times 1 \end{aligned}$	transverso muscles. sphineter of tentacle.
Im	longitudinal musceles.	111 -	tuberele.

Pefate xix.

Fig. 1. Edwardsia intermedia. Nat. size.
2. Transverse section through introverted seapus of E. intermedia. Zeiss A 2.
8. Transverse section through mesentery of E. intermedia. Zeiss A 2.
4. Transverse section of column wall of E^{\prime}. intermedia, passing through a tubercle. Zeiss D 2.
5. Oractis diomeder, viewed from the side. Nat. size.
f. Oractis diomedea, viewed from above. Nat. size.
7. Transverse section of tentacle of O. diomedee near its base. Zeiss A 2.
S. Trausverse section of eolnm of O. diomeder. The roman mumerals indicate the probable embryological succession of the mesenteries. (An error has been made in the reproduction of this tigure. The mesentery mumbered V should be I, and the imperfect mescutery interveuing between this and III should be V.)

Plate: xx.
Fig. 9. Transverse section of a perfect mesentery of O. diomedete. Zeiss a 2.
10. Transverse section cutting columu wall, dise and base of the tentackes of 0 . diomeder. Zeiss A 2.
11. Longitudinal section throngh margin and upher part of the colum wall of 0 . diomedere. Zeise a 2.
12. Halcurias pilatus. Nat. size.
13. Transverse section throngh mesentery of IT. pilalus. Zeiss A 2.

PIATE XXI.
Fig. 14. Transverse seetion throngh the upper part of the column of II. pilatus. a 2. 15. Transverse section through ectoderm of the column wall of I. pilatus. Zeiss 1 y 2.
16. Peachia Koreni. Nat. size.
17. Transverse section through a mesenterial filament of Actinia infecunda. Zeiss D 2.
18. Anemonia rariabilis. Nat. size.
19. Transverse section through the column of A. variabilis. x and y denote areas where the regular sequence of perfect and imperfect mesenteries is interfered with. x about 10 .
20. Condylactis cruentata. Nat. size.
21. Transversesection of primary mesentery of Condylactis cruentata. Zeiss a 2.
22. Myonanthus ambiguиs. Nat. size.

Plate xif.

Fig. 23. Transverse section of sphincter muscle of M. ambiguus.
24. Transverse section of sphincter muscle of Bolocera occidua. Zeiss a 2.
25. Portion of transverso section of primary mesentery of 1 . occidur. Zeiss A 2 .
26. Portion of transverse section of a tentacle of 13 . occidua. Zeiss a 2.
27. Basal portion of longitudinal section through a teutacle of B. occidua. Zeiss A 2 unscrewed.
28. Portion of transverse section of a tentacle of B. pannosa. Zeiss A 2.
29. Transverse section through a perfect mesentery of B. pannosa. Zeiss A 2 .

Plate xxiif.

Fig. 30. Transverse section of the sphincter mnsele of B. pannosa. Zeiss A 2.
31. Transverse section of the sphincter muscle of B. brevicornis. Zeiss a 2.
32. Onter portion of transverse section of mesentery of B. brericornis. Zeiss A 2.
l＂ig．in．Immer portion of transverse section of mesentery of 13 ．brevicornis．Keiss A2．
3．）I＇aractis limeolata．Nat．size．
，斿．＇Tramserse section ot＇imperfeet mesentory of Paractis lineolata．Yoiss a 2.
aif．＇Tramsverse section of sphincter muscle of ${ }^{\prime}$＇．lineolata．Zeiss a 2.
分．l＇araclis rimosa．Nat，sizo．
ㅇ．Transverse soetion of tentacle of l ．vinosa．Zoiss A．2．
B\％Portion of transverse section of mosentery of 1 ＇．cimosa．Koiss $\mathbf{A} 2$.
f（1）Portion of transverso section of sphincter mmsele of 1 ．vimosa．Zeiss D 2

PIATE XXIV．

Fig．17．＇Tmanverse soction of sphincter of r ．vimosa．Keiss a 2.
f？Transvorse section（nomewhat oblique）of base of a tentacle of Actinernus plebeinx．Zeiss A 2.
4．Portion of transorno section of sphincter musclo of A．plebeius．Keiss $\mathbf{A} 2$.
44．Portion of transverso section of primary mesentery of A．plebeius．Zeiss $\mathbf{A} 2$.
45．Transverso section of mesentery of A ．plebeius．Zeiss a 2 ．
4f．Section，partly diagrammatic，Hlowing the arrangement of the mesenteries of Actimostola callosa．

Phate xive

Fig．4\％，Actinostola callose．Nat．size．
4s．＇Transverso section of a tentacle of A ．callosa．Zoiss A 2.
49 amd 50 ．Transverse section of ：perfect mesentery of A．callose．Zeiss A 2.
51．Transverse section of sphincter muscle of A ．callosa．x 2.
b2．Jortion of transverso section of sphincter muscle of A．callosa．Zoiss A 2.

Phate xivi．

Fig．5i．Actimosiola excelsa．Nat，size．
if．＇Tansverso section of sphincter muselo of A．excelsa．Zeiss a 2.
55．＇Transverse section of perfect mesentery of＇A．excelsa．Zeiss a 2.
iot＇Transerso section of portion of a tentacle of A ．excelsa．Keiss a 2.
5i．Actimostola pergamentacea．Nat．size．
－5s．．＇Tangential section of portion of the disk of a specimen of Jctinostola perga－ mentacea．Koiss A 2.

l＇late dxvif．

Fig．59．＇Transverse section of sphincter musclo of A．pergamentacea．Zeiss a 2.
fio．Portion of tansverse section of a tentacle of A．perfamentacea．Koiss $\mathbf{A} 2$.
61．Portion of transverse section of mesentery of A ．pergamentacea．Veiss 1）2．
（i）．Onter portion of transverso section of mesentery of I ．pergamentacea above the level of the parieto－basilar musele．Zeiss a 2.
（is．Middle portion of same section as that from which Fig． 4 was drawn．
（i．）．I＇ycnenthus maliformis．Nat．size．
63．Transverse section of sphincter masele of l ．maliformis．$x 4$.
dif．Portion of transverse section of sphincter masele of I ．maliformis from the region indicated in V゙is．65．Zoiss 1）\because.
（i）．Transvorse section through a perfect mesentery of I＇．maliformis．Zeiss a 2.

Piate xivile．

Fig．6s．＇Tangential section throngh disk of a specimen of I＇，maliformis．Koiss A 2.
eid．Cymbactis faculenta．Nat．size．
\％o．Tramsverse section of sphincter muscle of C ．fuculenta．Keiss a 2.
「1．Tramscorse section of mesentery of first cyelo of C ．foculenta．Keiss a 2.
\therefore Sagartia lactea．Nat．size．

Fig. 73. Transverse section of sphincter muscle of S. lactea. x about 2.
74. Transverse section of of primary mesentery of S. lactea. Zeiss a 2.
75. Transverse section of acontium of S. lactea. Zeiss 12.

Plate xxix.

Fig. 76. Portion of transvorse section of sphincter muscle of S. lactea. Zeiss A 2.
77. Sagartia Sancli Mathai. Nat. size.

7S. Transverse section of sphincter of S. Sancti Mathei.
Zeiss A 2.
\%9. Sugartia paradoxa. Nat. size.
SO. Transverse section of sphincter muscle of S. paradoxa. Zeiss A 2.
81. Transverse section of a diroctive mesentery of S. paradoxa.

82 and 83. Adamsia? innolvens. Nat. size.

Plate: XXX.

Fig. 84. Semidiagrammatic section throngh the colnmn of S. paradoxa, showing the arrangement of the mesenteries. The roman numerals indicate the cycles of mesenteries, x and y the abnormal pairs.
85. Transverse section of sphincter muscle of A. imolvens.
86. Transverse section of sphincter miscle of Actimauge Vervillii. Zeiss A 2.
87. Transverse section through the upper third of the sphincter muscle of A. Vervillii. Zeiss A 2.
88. Transverse section through the lower third of the sphincter muscle of A. Vervillii. Zeiss A 2.
89. Portion of apper part of colmms of A. Verrillii, the specimen having been divided longitudinally. Nat.size.

Prate xxif.

Fig. 90. Transverse section of mesentery of the second cycle of A. Vervillii. Zeiss A 2.
91. Transverse section through the base of a tentacle of A. Verrillii. Kein A 2.

9\%. Onter portion of transverse section of a mesentery of the first cyele of A. Vervillii. Teiss A 2.
93. Actinauge fastigata. Nat. size.
94. 'Transverse section of the sphincter muscle of A. fastigata.
95. Transerse section of the low or part of the sphineter muscle of A. fastigata. Zeiss A 2.
96. Transverse section of the upper part of the sphincter muscle of A. fastigata. Keiss 42.
97. Transverse section of mesentery of the first eycle of A. fastigata. Zeiss A2.

Pidate xxxif.

Fig. 98. Chitonanthus pectinatus. Nat, size.
99. View of surface of a dissected specimen of C. pectinatus which had been divided longitudinally. Nat. size.
100. Transverse section of the sphincter muscle of C. pectimatus. $\times 4$.
101. Transverse section of portion of the sphincter musele of $\%$. pectinatus. Zeiss a 2.
102. Transverse section of a mesontery of the first eycle of r^{\prime}. pectinatus. Zeiss a 2.
103. Stephanaclis hyalonematis. Nat. size.
104. Transverso section of sphincter muscle of Leiotealia badia. Zeiss A 2.
105. Oulactis californica. Nat. size.

PIATE NXXHI.

Fig. 106. Transverse section of primary mesentory of L. badia. Yeiss A 2.
107. 'Transverso section of a mesentery of the first eyclo of O. californica.
10.5. Transverso section of sphincter muselo of O. californica. Zeiss $\AA 2$.
109. Portion of margin of Cradectis digitute, showing the tentactes and the fimmes. x 2.
110. View of frond of C. digitata. Enlarged.

11\%. 'Transverse section of directive mesentery of U U. digitatu. Keiss a こ.
IGATE XXXIV.
Fig. 11.3. Transverse section of sphineter muscle of Discosome fuegiensis. Keiss a 2.
14. 'Transverse section of the mesentery of the second eyclo of Discosoma fuegiemsis. Keiss a 2.
115. 'I'ransverso section of sphincter musele of' themomit'' inequalis. Voiss a 2.
116. 'Transverse section of a portion of the colum of A. incquelis. Koiss a 2.

11\%. Cerianthers ras. Nat, sizo.
115. Dorsal portion of transverse section of the npper part of the colum of C. ras. Keiss is 2.
119. 'Transvorso eection throngh ponophoric rogion of a mesentery of C^{\prime}. ras. Zoiss D!.

P'ATE XXXV.

Fig. 120. Transverse aection thronerh the midallo of the colnmo of ('. ras. *pointe to tho fusion of two mesenteries.
1~1. Diagram showing the relation of the tontacles to tho capitular ridges in detineuge Verrillii.

14-15. Malemrias pilatus.
18-19. Anemomue veriabilis.
16. Peetchict Kor"'7li

20-31. Conerlylactis cruentela.

23. Myonanthus ambigurs. $24-2 \%$. Bolocert occidua. シ8-29. B.pannosa.

41. Paractis vinosu.

42-45. Actinernus plebeius.
46. Actinostola callosa.

4~-5\%. Actinostola cullose

53-56. Actinostola excelsa. 5i-58. A. peryamentacea.

68. Pycnenthus maliformis.

76. Sagartia lactea. 79-81. S. paradoxa.

Ti-is. S. Sancti Muthoei.
8:-83. Adamsia (?) involvens.

81. Sagartia paradoxa.
85. Adamsia (\%) involvens.
sfo-ks. Actincenge Vervillii.

90-92. Actinauge Verrillii. 93-97. A. fastigata.

-102. Chitomanthus pectattous
104. Leiotealia budia.
103. Stephanrertis hyulonemutis 105. Oulactis californica.

120

121
120. Cerianthus vas.
121. Actinauge Verrillii.

ON THE STATUS OF THE GRAY SHRIKE, COLLECTED BY CAPT BLAKISTON, IN YEZO, JAPAN.

ISY
 Leonitard Stejneger.

A recent paper by Mr. II. E. D)resser (Remanks on Lamius expubitor and its Allies < Ibis, 1892 , py. 31 - 380), and especially his remarks on 1). 378 , on a certain sperimen of sray shrike from the island of Λ skold, near Vladivostok, in Lastern Siberia, led me to reexamine the only Jap amese specimen arer taken, viz, U. S. National Museum, No. 9613it, (Blakist., No. 1097, ㅇ ; Mohitze, Yezo, March ?, 1873). The two local ities are nearly under the same latilude ($4: 3$ and 40 N . , and almost facing each other across the Japanese Sea.

Mr. Dresser describes the Λ skold specimen "as having no tratere of vermiculations on the moler parts, nor any trace of brown in the plumage, but it las a single alar bar, and has the rump and upper tail-coverts pure white," and he considers it "extremely puraling," be. canse, as he says, "in all the large series which I have examined this is the only specimen I have mot with lacking the vermiculations on the underparts and all trace of the brown tinge in the phomage." However, it is plain from his subsequent argranent and from the way he quotes Mr. Bogdanow in regard to the American L. borealis, that he believes the latter to be more or less brownish, even the fully adult. It is evident, then, that he is not aequainted with the adult L. borentis, which is quite as pure gray as L. excubitor, and if Mr. Dresser in all the large series he has examined has not seen an adult L. borealis, one might be tempted to believe that he has not met with the adult L. major (Auctorum nee WILKEs), or L. sibiricus, as it is preferable to call it, except the Λ skold specimen.

The Japanese specimen above alluded to agrees in every particular with Dresser's description of the Askold bird. But, on the other hand, it also agrees most minutely (except onter tail-feather, which is whiter, a character of no value in these birds) with a specimen from Russia (U. S. Nat. Mus. No. 985050). Now, Dresser considers the Emopran specimens unworthy of even subspecific rank (tom. cit., p. :375), but, if so, he ought to call the Askold and the Yezo birds L. excoubitor pure and simple. I do not think he will do so; but then the Russian and the Askold-Yezo binds are most assmedly identical and indistingush-
able, even hy a splitter of so horrible a reputation as myself. What are we going to do in this dilemma?

Someone "anxions to lump" might take the horn of considering it now demonstrated that as (1) the European specimens with a single alar speculum have been "proven" to be nothing but L. excubitor, and (\because) the eastern A siatie birds are indistinguishable from these, the so-ealled L. sibiricus is also "proven" to be L. cxcubitor pure and simple; finrthermore, as (3) it has also been "proven" that L. boredis is not eren subspecifically distinct from L. sibivicus (Dresser, loc. cit., p. : 379), it follows that even the North American bird must stand as L. cxcubitor. There seems to be some logic in this, yet I doubt if anyone will be bold enough to draw the consequences.

The other horn is this: The American adult bird (L. borealis), and I wish it mulerstood that I speak of the adult birds alone, as I do not think it possible to separate all the young birds, is always* distinguished by having the moder side cross vermiculated, and has always a single wing speculum; L. sibirious also has a single wing speculum, but the fully adult bird is pure white underneath; L. excubitor, unmixed, has a donble wing speculum. L. borealis is strittly ronfined to North Ameria; L. sibiricus occurs fiom the Japanese Sea all through northern Siberia and northern Russia to Norweqian Finmark; I. carcubitor, mmixed, is confined to central and somtheastern Enrope (hroadly speaking). The boundaries of the two latter forms do now meet, or in certain places even overlap, interbreeding and consequent intermediate specimens being the result; but I have reason to believe that this meeting of the two species, in some places, at least, is of comparatively recent date.

The very ereat uniformity which L. sibiricus shows over such an enomons area, from the Pacitie to the Atlantic oceans, as evidenced by the specimens refered to above, speaks in favor of its stability and its distinctuess. And this point alone, if there were no others, is suffirent to induce me to select the latter horn of the dilemma. Whether this view of the ase is the true one I think is beyond anybody's power to say for the present, for l do mot believe that there is enomgh materind in any one musemm or eity to decide, and I even doubt that all the specimens in St. Petershurg, London, and Washington to-day, if brought together, would settle the question beyond dispute.

In the mean time I think it perfectly safe to call the speri . . in:n Askold and from Yezo Lamius sibiricus (Bogdanow).

[^35]
THROWING-STICKS FROM MEXICO AND CALIFORNIA.

HY

Otis T. Mason.

In the report of the National Muscum for 1884 I published a short paper on the Eskimo "throwing-sticks" in the Department of Ethnology" The object of the article was to show how the methods and problems of matural history are applicable to the products and appaatus of human industry. Here we had a homogeneons people in bhood and language, occupying a zoological area which we call hyperborean, and stretching out to cover Labrador, Greenland, all Aretic Canada, and the shores of Alaska, from the Mackenzie district all anomel to Mount St. Elias. It was with gemine pleasme that the author afterwards received from Dr. Seler, Mr. Murdoch, Dr. Stolpe, Dr. Uhle, Mr. Bahnson, Mrs. Nuttall, and Dr. Mortillet their own later contributions upon the same ingenious implement, with the acknowledgments that their publication was stimulated by the "Eskimo paper."*

In science, for October 30, 1891, I gave a brief description, without figures, of an example secured for me on Lake Patzouaro, Mexico, by Capt. John G. Bourke, U. S. Army. The apparatus was bought by this gentleman from a hunter, and may now be seen in the U. S. National

[^36]Musemm. The thrower is 2 feet B inches long, and has two finger- 2

Fig. 1 a, b. I'atzellaro fluew ingrestick. U.S. Nat. Mas., Cat. No. 153020. (Cant. J. (i. Bonrke, U. S. A.) holes projecting, one foom the right and one from the left side. In my paper on the Lskimo stick no case of two finger-holes occurs, and the only example in which a finger hole projeets from the side at all is from Point Barow. Since the publication, however, another epecimen comes from Cook Inlet. In Dr: stolpe's paper is the exact comberpatt of the Boarke specimen, only the latter has mo ornament and is a practical every day implement for killing ducks. The spear-shaft is 10 feet lomg, of slender cane, and has a hole at the after cond for the hook of the throwing stick. The gigeonsists of three iron barbs, for all the world like those on the Eskimo trident for water fowl.

Mr. Charles M. Read read a paper on the 10 th of March, 1591 , before the Anthropological Institute, London, beingan account of a collection of ethmological specimens found dming Vanconver's royage in the Pacific Ocean. Among the illus trations (J. Anthrop. Inst., Vol. xxi, ll. Xi, Figs, 1, la) occurs the picture of an atlutl, $\mathrm{s}_{\mathrm{N}}^{7}$ inches in length, the shortest of which we have any record. The descrintion given ly Mr. Read is as follows:
"Spear-thrower of moderately

Fig. 2. Patzciaro duck-spear. U.S. Nat. Mus., Cat. No. 153020. (Capt, J. (.). Bourke, l. S. A.) hamb, light-colored wood, piereed with two holes for the first two fingers. The liook is made of a piece of bone, rudely shaped. The whole seems to have been once covered with red color, now almost worn away. From the bone hook to the projection at the broad end of the implement is a shallow chamel, as is usually fomm.
This would seem to be the 'Samb Bathata throw-

Fifi. 3. Vanconver throw ing-stick. Hritish Muse 11\%1. (C. H. Kead.) d. Anthrop. Inst.. Lombl. 1891, pl. xl. ins.stick of the Ms. ratalogme, both fom its similaty in work to the
other Santa Barbarasuecimens, and from the fact that the other thow-ing-sticks in the collection correspond

Fig. 4. Vancouver retrieving spear. British Museum. (C. H. Read.) with their respective numbers in the catalogite."

Accompanying this specimen in the same plate is a harpoon bearing the following description (Fig. 2ٌ, P'l. XL): "Spear with loose head."
Now this Vancouver specimen is identical in every point with the one from Lake Patzonaro excepting its length, and points at this moment to the most northern limit of the type, with finger holes on either side. Anyone familiar with the apparatus will see at once that it will fit either the right or the left hand, while the northern type will fit only one hand, usually the right. In I'l. xvin of my former paper two very interesting old specimens are described from the lingit or Koloschan area about Sitka. One of these is figured in Ensign Niblack's. monograph (Smithsonian Report, P'art it, 1888, Plo xxvir, Fig. 157). These specimens are very old, are covered with totemic devices, and represent a decayed art passed into its mythic stage. Similar apparatus is shown in Mr. Read's paper (Pl. xl, Figs. 3 a, b, e, d, e).

In this connection attention is drawn to a device for throwing a bird or fish spear foumd along the west coast of the United States, which slightly recalls Mr. Read's specimen. It consists of a flat piece of wood with notches for two fingers, and it is at-

Fig. 5. T'lingit throwing ing-stick. British Museum. (C, II, Read).
 tached to the end of a long suear shaft. Historically Fig. 6. Bird amb fish harthis is not known to be either parent or descendant of the Vancouver example, but being found half way between Monterey Bay and the Tlingit area
poon statf, Makals Indians, Washingtomstate. U. S. Nat. Mus., Cat. No. 72753. (3. S. Swan.) it raises one of those inquiries which stimulate further research.

[^37]No. XXIV.—DESCRIPTIONS OF NEW GENERA AND SPECIES OF CRABS FROM TIE WEST COAST OF NORTH AMERICA AND THE SANDWICH ISIANDS.

By
Mary J. Rathbun. Department of Marine Invertcbrates.

Of the new forms deseribed in the following pages, the Sandwich Island region is represented by sevenspecies; of the west American forms all but two are found in southern California or Lower Californiat, including the Gulf coast. In all six genera and forty-six species are described, of which four genera and forty species were collected loy the U.S. Fish Commission steamer Ilbatross ; of these forty species, seven had been previously collected by other parties, but had not been deroriberl. In the Proceedings of the Museum for 1891, 1892, and 1893 have been deseribed seven new species of Panopens, Periceridae and Maiide from recent Albatross dredgings, making a total of forty-seven new species of brachyuran crustaceans collected by that vessel between July 1, 1888, and December 31 , 1891. From this calculation are omitted the results of the cruise to the Galapagos Islands in the spring of 1891 .

Family INACHIINA.

Subfamily Leptopodinna.

Genus ERICERUS.

Carapace much elevated at the cardiac region. Rostrum long and simple. Postocular spine present. Abdomen of male six-segmented, the pemultimate and termiual segments coalesced. On the sternum, in front of the abdomen, there are two spines pointing downward and forward, and situated on either side of the median line. The flagellum and a portion of the basal joint of the antenna are visible at the sides of the rostrum. Merus of the external maxillipeds with the inner Proceedings National Museum, Vol. XVI-No. 933.
angle stronsly podmed, aroble. (heripeds mbel stomer than the am
 bulonger than the palm, arehed. The ambalatory legs dmminish rapidly in trosth from the tirst tothe forth; they are stember and subeylindri eal; dactyli short and curved.

This gemms is intermediate between Mefoporhaphis athel I'odochela; it differs from the tormer in the relative length of the ambulatory legs
 and in the bowater hamds and arehed dactyls of the chelipeds; from the latter in the more elevated carapace and longer rostrum.

Ericerus latimanus.

Sulfaref earapace and legs pubeseent. On tho gistrie region thare are two small tubereles on the medtan line, the anterior the smaller; the cardiae region is amed with a prominent, blunt, well-rounded fuberele; there is a tuberele on the first abdominal segment; on the mangin of the canapace there is a minnte spine in front of the cheliperds, another on the hepato rexion, behind whel there is a thind on the ptergostomian region. The rostrum is about as lons as the postfrontal portion of the ratapater it is triangulate, atemmate, slighty "wred mpatad, hollowed moderneath for its proximal balf, fattened above between the orbits. Orbital arch thickened. Basal antennal jomt with ablunt tooth at theanteroexternal angle. Chelipeds spinulons on the imer margin, stamuate beneath; merus with the onter
 distal end; eapos one-spined above; fingers dentate within, daping exept at the tips. Jmbulatory legs hary, esperially on the pemultimate joints; dactyls slighty curved, spimulous beneath.

Length of earapace, including rostrum 26 , width 12 millimeters.
Collected by the U. S. Fish Commission steamer Albutross in the Gull of Califormia, at Concepeion Bay, Lower California, Mareh 19,
 W., II falhoms, sallad, bookell shells, gravel, temperature 6 , station 3024 , 1589 (17324)

Podochela temuipes.

 trie region rombled; eadiac promineme small, tuberenlate. Rostrum
 'The phergenstomian ridge is moderately developert. The abolomen of the mate is composed of six segments, the last two normal segments eoaldseed; first two segments visible fom above; first segment long; second very wide; from the abdomen tapers rapidly to the last segment, which is long and rounded at the extremity. The atodomen of the femate is phbescent, and lits over the thin erect laminiform expansion of the stommon. Basal antennal joint with ablunt longitudinal ridge on the posterion two-thinds of its length, whieh is a little nearer
the thin inmer edge than the thickened onter margin and is divided from them by deep grooves. Merus joint of outer maxillipeds strongly produced on the inner side, deeply ent at the antero internal angle. In adult males the chelipeds are moderately robust, pubescent; merns trihedral, curved, onter mangin spiny; the carpus hat a superior, posterior spine; palm inllated, fingers shorter than the palm, waping. In females and young the chelipeds are shender, the hands semicylindrioal. Ambulatory legs long and slender, especially the first two pains; with long hais, those on the upper surface curled; dactylifatiform, toothed, in the first pair about one-third the length, in the remaining pars about one-half the length, of the benultimate joints; these joints have no thumb processes, but in the last two pairs are slightly thickened in the distal half.

Length of male 14 , width 9 millimeters. Length of female 14 , width 10 millimeters.

Southern California; W. H. Dall (17505).
Lower California; U. S. Fish Commission steamer Albatross, 1889:

Podochela (Coryrhynchus) mexicana.
On the median line of the gastric region there are two tubercles, the posterior the longer. Cardiae and hepatic protuberances laminate, prominent. Rustrum hood-shaped, thin, ridged above, obtuse. Ridges of basal antemal joint thin, sinmous, subparallel, continued to the anterior extremity and expanded in a lobe near the posterior end. Pterygostomian ridge well developed. Chelipeds (of male) slender; palm little inflated; fingers meeting along imer edges. Ambulatory legs of moderate length; penult joints of last two pairs very slightly thickened towad the distal end; legs, except the dactyls, ornamented above with tufts of curled seta; propodal joints with long straght hairs beneath; dactyls short, of last three pairs much eurved and spinuliferons. Stermum and basal joints of legs vermiculated.

Length, 10; width, 8 millimeters; length of cheliperd, about 12 ; of first ambulatory leg, about 27; of second ambulatory leg, about 21 ; of fourth ambulatory leg, about 11.

Off Adair Bay, Mexico, in the Galf of California, lat. $31^{\circ} 91^{\prime} \mathrm{N} .$, long. $113^{\circ} 49^{\prime}$ W., 11 fithoms, sand, broken shells, gravel, temperature $6 \pi^{\circ}$, ftation 3024 , U. S. Jifh Commission steamer Albatross; one male (17330).

This species much resembles Podachela reisei of the West Indies, but is at once distinguished by the shortor legs and the prominent margins of the basal antennal joint.

Proc, N, M. $13=-15$

Podochela (Coryrhynchus) lobifrons.

('arapace pubescent. (:adiad protuberance prominent, surounded by a deep suldus; gastric region slighty swollen; lepatic prominenee with a laminate, eramulate projection. Posiocular lobe latere tor the gemus, thin and rommed. P'erygostomian ridge pominent, its lobe showing from above behind the hepatic lober P'ostocular, hepatie, and subhepatie lobes spimblos. Lostrom botad, thin, mot produced befond the antemmar fossie, slighty motehed in the midhle. The were-
 terior abd the posterior portions of the midde. Stermm deeply exar Vated in a transwerse groove hetween the chelipeds, and in two rommed grooves in allame of the chelipeds. Mate abdomen eomposed of six segments, the first of which is long and bitubrexulate on the median lime. Basal antemal joint exeredmes the rostrom, strongly angled, the anterior portion as deap as it is boad, the anterior surfae deeply grooved tor the inserdion of the liagelhm, which is half as long as the "ampace. Merns joint of the external maxillipeds hroald, trmeate at the anterior edge, strongly motehed at the antrao internal angle, the inner margin prominent. Chelipeds stont, one-hatt asain as long as the earapace, pubescent, spinulous; isehimm and merus spimulons and spinous below and on the inner surfae the spineson the matems hroad, that, and ormamented with spimbles capus strongly spimous above; manns broad and swollen, spinens on the margins, spines of the inmer margin in groups; fingers widely gaping for one half their length; a prominent tooth on the dartyl. Ambulatory legs very slender and puhescent, the first pair more than thre times the length of the carapace; dactyls of tirst two pairs about one thime, of last two pairs about one half the length of the penultimate joints; the dactyli of the last three pairs are faleiform.

Length 20.5, width 18 millimeters.
A single male specimen was taken in the trawl hy the flhetross, off Abreojos Point, Lower Calitornia, in lat. $20^{\circ} 16^{\prime} 15^{\prime \prime}$ N., long. 113043^{\prime} 15" W., 5s fathoms, waty sath, broken shells, temperature ofo, station 3044, 1889 (17331).

Sublamily Inaciminde.

(ionns ERILEPTUS.

Carapace broally tiansular; regions well detined, enomex. There is a postorbital and also a suphorbital spine. Rostrom slemder and simple. Abdomen and stermm gramulate; ablomen six-segmented. Dasal antemal joint with a slember spine at the antero-external angle. Merus of external maxilipeds with a prominent ohtuse lobe on the buner margin. Chelipeds very long, slemder, subeylindrieal; fingers shont, aremed. Ambulatory legs very slender, shorter than the eheli: peds; dactyls almost straight,

Erileptus spinosus.

Carapace spinoms; two spines on the median line, one on the posterior part of the gastrie region, and the other on the cardiace rewion; there is one long spine on the branchial region, with a small one in front of it and two on the margin; a spine on the margin of the hepatic region, and two very small ones armaged transwersely on the gas trie region; there is a slemler spine on the orbital areh. Rostrum slender, spimulous on the marinis, about one hatl the longth of the post fiontal portion of the rarapate. Postorbital spime small, at some distance behind the eye. The abomen bears an spine on the first segment. Chelipeds nearly three times as lomes as the carapace, gramulate; merns one-spined above at the anterion margin; hand slember, slighty flattened vertically, increasing in width towam the distal and; dactyl and pollex arched, gaping for one-half their length. Ambulatory legs recreasing regulanly in length from the first to the fourth; fourth pair a little more than one-hall the length of the first.

This species in the arrangement of its spines and in the rostrum resembles Amesimus rostrotus, but the carapace is mosh broader poss teriorly, the logs are different in character, and the postorbital spine is small and remote from the eye, while in Anosimus it is distinct and defines the orbit.

Length 10, width 6 millimeters; lenglh of cheliped about 2 s.
Off San Diego, California, lat $3: 33^{\prime} 33^{\prime \prime}$ N., long. $117^{\circ} 16^{\prime} W^{\prime} ., 36$ fathoms, gray saml, temperature 5s.2?, station 293t, U. S. Fish Commission steamer Albatross, 1889; two males (17341).

Anasimus rostratus.

Carapace with two median spines, one of which is on the posterior part of the gastric region and one on the cardiac region. There are two spines on each branchial region, and ahost in line with these, one on each protogastric lobe. Lateral magems spinulous. Surface pubesrent. Rostrum slemer, spimulous on the mangins, curving upwards for its rlistal hall. There is a prominent supraorbital spine. The first article of the female abdomen carries a spine; the second anticle, one much smaller. Basal antemal joint very long and narow, terminating in a spine, spimulous on the margins, withont a prominent tubercle. Cheliperls very weak in the female; margins of merus spimulous; a slender spine above near the carpus; hand gramobus; fingers nearly as long as palm, in eontact. Ambulatory legs slender, much shorter than in fugux, pubescent, deereasing in length but little from the first to the fourth pair; dactyls spinulous below.

This species is distinguishable fiom A. fugax', A. Milne Edwards, of the Antilles, by the lewer spines on the carapace, by the more slender rostrum, and the shorter ambulatory legs.

Length, 7.5 ; width, 5 millimeters.

 f, wo temales, one of which is very small (17340).

Inachoides magdalenensis.

 atow weat the matein; postorior margin with olle faberele; hepatie:
 "rate length with anterior hall stemter. I'ostorbital spines distimet,
 the matesis segmented, the sisth athl seventh segments eosaleseded, athd a spine on the first segment; ablomen of the lemale rovered with latse erammes amd lomeitulinally eathated. Spime at the outer ax-
 masillipeds strongly motehed at the antero internal angle. ©helipeds Weak, stomter but moth shorter that the ambulatory lexs, pubeseent; merns spimulons on lower outer marian; hathd slighty inllated; fingers about as long as palm, gitping at litheat the base in the male, got at all
 in length, pubescont; dactyls slighly enved.

 obbital spine, and the ambulatory less are evidenity not all longer than the cheliped, as in the spectes hero deseribed.

Length of catapace in male 11 , width s millimeters.

Cyrtomaia smithi.

 lons, limely pubeseont on the antepion poption, very convex, broally mombled at the bathehial regions; furdine mod gastric regions clevated, Hhe latler armed with lherespines pointing ohliguty forward, the posferior one on the median lime amb smater than the other two. 'There is
a subrextangular sparo between theso spines, which is falterod exorot

 and two spimmles low
 region. Rostral spines short, trianollar, ronvox, lorizonlal, with at wirle V-shapeal interspatere. Fyes lasere, stalks shonf, lathor stout, with a spimale above at the distal rextremity. Abomomen boandy oval with
 is armod with spines on its outer mareins, atm also aromal the matrein
 tennat with hasal joint amorl with therespinos on the onter materin, and one on the anterion jortion, thespincs printine downward ; serond and third joints flathenced vertic:ally, short, boarl, spinnlifisoms ont lower maroins, the third joint reachine bot, lithe beyond the rostram. Antemmale lorgen in eavities umdermeath the rostamm, fle lasal joint with its anterior margin thin and rlevalord. Jixtorion maxillipeals with
 duced into at fit, rounded projection, spinons on the manerin.
 spimous; merus about as long as the proporlus, more of less font sided, the for lows of spines on the lower materins being tho strongest; jalm widroing al lithe foward the fineres, with about six rows of spiose;

 armed with slemder spines, which ate longer in the two rows beatath, and esperially so in the last two joints, where the two mow ate slighty
 the datetyl. Secome ambulatory lex twothiols as lomag the fiosig less

 tho metus and af few spimules. Ambulatory legs slightly pubeserent,

 shande.

Immatme specimens differ fom the above descoiption in having the
 the bramohial rexion. Tha monly male in the eolleotion is ahomt las millimeters lome; the abolomen has sevall segments, the rarima is spum
ons, and also the stermm; the chelipeds are similar in chanacter to those of the females.

The largest specimen has a span of about one and a half feet.

Length of earapace49

L.ength of chelipedi about 112
L. 1 ngth of tirst ambiahtary leq ahout... 214

length of fourth imbulatory leg about.-.-......... 120
With specimens from station 3364 there is am ambulatory leg of the finst pair which is much larger than that of the largest specimen captured. The length of the last three joints is 153 millimeters, while in the specemen of which dimensions are given atowe the corresponding joints measure only 120 millimeters.

Off the Sandwich Islands, I°. S. Fish Commission ste:mer Alluatross, 1891 :

Station.	Lat. N.	lobig. W゙.	V'athomm.	biottom.	'remper. ature.	Cat. No.
	$0 \quad 11$	- , "			0	
3470	21 (18 30	15740 (30)	$34: 3$	wh.s....	43, :3	17518
3473	31150	1573000	3113	fro. gry	43.9	17519
3474	311200	157 ins 30	:375	fue.whis		175\%
3475	216800	1574300	351	fue wh.s		17521
3176	2169	1575856	298	fine whis.		17538

This speries is quite distinct from the equatorial Patife forms colbected hy the ('hallenter. (. murayi has more spines on the carapate and a prarorbital spine, while (..suhmi has longer sastrie spines and no supraoibital spine.

Collodes tenuirostris.

Campate slishtly pubeseent, conspicuonly wamalate on the bramehial regions, with a few grames on the gastrie region and several on the intestmal resion. There is a slember ereet spine on the gastrie region, one on the catdiate, and another pointine upwat and batckard on the fitst abolominal segment. These spines are slightly thickened at the smmmit. The posterior hall of the rostrmm has a roumbed ontlhe, the anterion half is a slemder poocess in character like the dorsal spines,
 tuberele at the summit. In the male abdomen the fourth, fitth, and sixth segments have the bateral outlines separately comeare: the sixth atul seronth segments are amelyyosed. Abdomen amel stermum with soattored gramules. hasal antemal joint with two smatl spines at the extremity, one helow the other: outer margin spinulous: lagellum long. Nosinteratemmatar spine. Chelipeds weak, monh shoter than
the ambulatory legs, hirsute; the ambulatory legs more strongly so, the long hairs retaining large particles of mud.

Length of carapace, 11.5 ; width, 8 millimeters.
Gulf of California; U. S. Fish Commission steamer Albatross, 1ss9:

Station.	Lat. N.	Long. W.	Fathoms.	Bottom.	'Temperature.	Cat. No.
	- 11	- ' 1			\bigcirc	
3015	291900	1125000	145	br. M	54.9	1733:
3018	301600	1130300	36	gy. S. brk. Sh	6:3. 3	17333

Very much like granosus itimpson, hut at once distinguished by the rostral spine.

With the two males from station :001s, there is a small, immature female, in an imperfect state, which also belongs to the gemus Collodes; the hasal antemal joint is one-spined, and the domal surfae is devoid of long spines; otherwise it resembles temuirostris.

Euprognatha bifida.

Lintire surface gramulate. ('arapace subtriangular, flattened behind, conspirmonsly gramulate, regions well defined. There is a spine on the gastric, the carliare, and eath branchat region; a minnte spine on the first atodomimal segment, and two alove the postrion margin; three fuberes in a trathserse row on the anterior part of the gastrie region. Lateral margins spimulons. Rostrom bifd, the interantemmalar spine being absent. Supraombital and postorbital spines distinct. Spine of lasal antemall joint thin and deep, arlvanced as far as the rostrum. Abdomen of male abruptly narowed at about the middle; of female with a central carina and densely set with large, flattened gramales. Ghelipeds of mate moderate, hand intated, fingers gaping; of femate very weak, hand slender, fingers longer than in male. Dartyli of ambulatory legs long, in lissi pair about haff the length of the penult joints and abont the same length as the antepennlt.

Length, ! ; wilth, Fimillimeters.
Gulf of ('alifornia; U. S. Fish Commission steamer Albutross, 1859:

Station.	lat. N.	Jobig. W.	Fathoms.	Bottom.	Temperature.	Cat. No.
2998	245100	110:3900	40	S. brk. Sh	64.	17334
3061	$3+5.515$	1103900	33	tne.gy.s.brk.sh.	6.4 .5	17335
3014	28.2800	1120430	99	dry.s	62.9	17336

Subtamily Acanthonychinde.

Sphenocarcinus agassizi.

Carapace tuberculate with an interrupted ridge along the median line; on the gastrie region there we three Hattened tubercles, the median one most prominent, in advance of the others and tipped ante-
riorly with a short spine: cardiac and branchial regions with irregular, lobate tubercles arraged transversely, the cardiae thbereles in advance of the branchial. Lateral margin, with threr prominent, obtuse, flattened lobes, the first on the hepatie resion; the finst and seeond with their margins more or less right-angled; the third long and prominent. Rostrmentire for more than one-fourth it: length; hop̣s sul) cylindrical, contiguons to near their extremities. There is a small but distinct prarobital lobe. The merus of the eheliped has three small spines on the uper surface, one at the distal end, two near the proximal end; otherwise the legs are marmed. The palm widens a little towards the fingers, which are gaping at base. Surfare pubescent.

Length of canpace, including rostrum, 35 millimeters; width, e3 millimeters.

Gulf of California; U. A. Fish Commission steamer Albatioss, 18s9:

Station.	Lat. N .	Lon. W'	Fathoms.	Bottom.	Temperature.	Cat. No.
	- ' 1	- ' 1			\bigcirc	
3011	280700	1113945	71	fne.gry. S. brk. Sh.	57.9	17342
3019	302800	1130630	14	bk. S. brk. sle ...	66	17343

Pugettia dalli.

Adult males: Carapace subtriangular, with a tuberele on the intestinal region, one large on the cardiac region, and two arranged transversely on the gastric region; each of these tubercles is surmonnted by a tult of seta. There are indications of two tubercles on the median line of the gastric region. Branchial regions without areotations. There is an mpturned spine on the postero-lateral margin. On the hepatie region there is a shender transverse spine, curved slightly forward. The postocular tooth is thin, obtuse, its upper surface flattened in a smooth oval plate inclined downward fom the horizontal at an angle of about 45 degrees. Rostral homs more slender than in rick ii, widely divergent. Praporbital spine aruminate. Rostrman and lateral margin of the bramehial region hairy. Chelipeds strong; merusiriherlral, with a prominent thin and irregular carina on the mper and inner margins; carpus strongly carinate above and on the imner margin, the outer and immer surfae irregularty didged; hand hage, compressed, thin, especially towad the margins; palm noaly as broad as long; fingers gaping, a tooth near the base of the dactyl, and one on the pollex near the extremity of the gape. Ambulatory legs much more slemder than in specimens of richii of equal size; first pair about as long as, or longer than, the chelipeds: three succeding pairs short, derreasing regulaty in length.

Females: These differ from the adnit males not only in the boader and more rombled carapare, but in the areolations. There are three distinct areolations corering the branchial region; the gastrie region
is much more swollen than in the male; the cheliperls are weaker, the hauds narrow, the fingers in contact for nearly their whole length.

Yomg males: These resemble the females in the weolations of the branchial regions and in the chelipeds.

Dimensions of a male in millimeters: Entire length ot earapace, 11 ; width, without :spines, 6.5 ; Iength of cheliped, about 13 ; width of hand, 3.3.

IECOH:D (HF SPECLMENS EXAMINED.

Southern California; W. H. Dall (17506).
Sim Jiego; C. R. Oreutt (17371); 10 fathoms, H. IIcmphill (4283).
Catalina Island, dredged January, 1863; J. (. Cooper (i7372).
Lat. 34° N., long. $119^{\prime} 29^{\prime} 30^{\prime \prime}$ W., 30 fathoms, pebbles, station 2945 , U. S. Fish Commission steamer Albatross, 1889 (17628).

This species is much smaller than richii, which is found in the same localities, and it is at once distinguished trom the latter by the hepatic region; in richio it is dilated in two flattened horizontal spines, while in dalli it is furnished with one slender spine and a tlattened obtuse oval tooth not horizontal.

Subfamily Neorifynchine.

Neorhynchus mexicanus.

Carapace broadly triangular, convex; regions well marked; surface granulate and tuberculate, the tubercles becoming spinons on the lateral margins and on the summit of the branchial regions. On the median line there is a spiny tubercle on the posterior part of the gastric region, a stout spine on the cardiae and on the intestinal region. There is also a shorter spine on the first abdominal segment pointing upward and backward. Rostrum triangular, apex mucronate. Postorbital spines longer than the eves, the tips pointing forward. Male abdomen with first segment long, one-spined; second, short; third, wide; next three segments gralually tapering; seventh, subtriangular, anchylosed with the sixth. Sternum conspicuonsly granulate, deeply grooved between the segments. Female abomen with large Hattened gramules, five-segmented, the first segment with a spine; the second, third, and fourth, short; the fifth, suborbicular, convex. Basal antenal joint with its onter margin prolonged in a slender spine, slightly incurved, not quite so much advanced as the rostrum. Ischimm of external maxillipeds, with the longitudinal groove deep; merns not so deeply rordate as in depressus. Chelipeds of male short, rather stout, gramulate: merus spinulons on lower margins; hand broad, inflated, with a tu bercle on the outer surfoe near the carpus; fingers nearly as long as the pahn, gaping at the base. Chelipeds of female more slemder than in the male, margins of ham parallel, fingers slightly gaping. Ambulatory legs long, sleuder, cyliudrical, granmate under the lens, slightly pubescent, gradually diminishing in size from the first to the fourth; dactyls with acute horny tips.

The median spines present in adult males berome tubereulate in femates and smatler speeimens, and the gastric tubercle is often absent.

Length of carapace $14 \frac{1}{3}$; width 12 millimeters.
Gulf of Caliomia; U. S. Fish Commission stemmer Albutross, 15s9:

Station.	Lati.N.	Lonhy. W.	Fiathomers.	butumi.	$\begin{gathered} \text { 'Kemper: } \\ \text { ture. } \end{gathered}$	Cat. No.
	, ,	' 1				,
$\because 083$	28, 23	111580	14	\#, S. S. lurk. Sh.	(i)	17345
. 3014	28.880 .4	11504 30	29	yy.s....	tie. 9	17346
300	$30: 37$	11300700	7	gy. S. bk. Sp.		17334
3022	30 ! 38.6	$11: 31715$	11	g\%, s. bk, so.	(it. 1	17348
3089	3183300	$111 \% 030$	101	fine usy. S. brk		17349
:30:30	31 0760	$11.1: 890$	$\because(1$	II	(i)	17:50
:30,31	3111645	1142815	:313	bh. M	63, 8	$17: 351$
: 30.33	3050.45	11.48	18	[61, 11	6i3. 5	1735\%
3037	27.1500	110.1500	20	\%ii. II	65.3	17353

Family PARTHENOPHDE.

Subiamily P'ARTHENOPINAE.

Lambrus (Parthenolambrus) exilipes.
Canapace about one-third broader tham hom; narrow at the hepatie regions, spreating at the banchial regums; a cavty near the margin between the branchial and the small hepatie region; a large cavity between the branchial and the cardiac and gastrie regions. Median tubercles fom, one large on the posterior portion of we gastric region, one small on the genital, one lager on the cardiad, and one small on the intestinal. There is a prominent tuberele at the smmmit of the branchial region, also a few low tubereles on the bamchial region and on the gastrie ridges leading to the rostrm. Anterolateral matin womes, about eight toothed; teeth dentienlate, beroming smaller anteriorly, the row comtinued on the sublerpatie region; footh at the lateral angle the largest. Postero-lateral margin comave, arehed upward, with tive small teeth and a large upturned spine at the summit of the arch. Posterior margin slightly eomes, tuberentate. The suprabrbital areh beasa prominent tuberde. Rostrmm hameled, subtriangulate, detlexed at an angle of about 450 . Male abdomen with seven segments. Sternum, abolomen, and merns of external maxillipeds tubereulate. Chelipeds longe, imenarly dentate on the margins, teethdenticulate, a stont tooth on the lower side of the lirst joint; faces of merus with tubercles arranged more or less longitulinally; hamd with a distimet ridge on the
 dentate on the ont side mar the hase: both fingess dentate on prehensile edges, white at tips, in the right cheliped gaping at base, in the left in contart. Ambulatory legs very short, narow, Hathened; meral, carpal, and proportal joints with a dentienlate erest above; meral joints with a marow, homitminal groow below, elges of ervose denticulate; last two joints densely hairy underneath. Surface pubescent,

Length 10, width 13 , length of cheliped about en millimeters.
Off San Domingo Point, Lower ('alifornia, lat。 $260^{\circ} 07^{\prime}$ N., long. 113° 32^{\prime} W., 74 fathoms, fine, gray sand, temperature 5os, station 3043, U. S. Fish Commission steamer Albutross, 1889; one mate (17360).

Mesorhcea gilli.

Carapace much broader than long. Surface minutely pubescent. EleVations of cardiac, gastrie, and brathehial regions angular, each prolonged in a threesided spine, that on the branchial region situated on the postero-lateral margin. The angles or ridges are more or less erenulate or tuberulate. The two gastric ridges gradually diverge from the spine and are contimed nearly to the front. The cardiace spine is longer than the others, compressed laterally so that its antrion face is natower than its lateral fares. The bramehial ridge is comed, subparallel to the antero-lateral margin and has a tuberele in the renter larger than the others. In front of the branchial ridgeare a few seat tered tubereles; and there areoneor twotnhereles on the hematieresion. Behind the branchial ridge the surfare is concave with the exeeption of the median spines. Lostrum very short, pubescent. Antero-lateral margin convex, distinctly crenulate; postero-lateral and posterior margins entire, thin, with faint impressed lines indieating the normal crenulation. I'osterolateral margin concave, about twice as long as the posterior margin, which is slightly eomvex in the middle, terminating in a triangular thattened spine at either angle. Ridge between the subhepatie and afferent chammels minntely cremulate, pubescent, continned on the subbeanchial region with several bead like tubercles. Suborbital tooth strongly ridged. Male abiomen with first segment very short; second, widest with a transverse dentienlate crest, having a larew dentide at the extremities and in the middle; thim, fomth, and fith somments anchylosed; sixth, wider than long; seventh, very short, triangular. Abrlomen and stermm smooth. Female abolomen with seven segments; first segment in large sperimen almost concealed umber the carapace; secoud, with transverse dentionlate crest; third, with a similar fant erest not contimed to the margins. Leasal antemal joint with a long trigonal spine below. Ischimm of external maxillipeds punctate, outer margin pubescent, inner margin crenulate; merus with surfare uneven, pubescent, anterion margin roncave; a groove rums diagonally forwarl and outward aross the surface; there are two tubereles on the onter side of this groove, ofe of which is at the antero exterion allere; the inner angle is strongly prodnced and bears a gramulate ridge. Chelipeds long and strong; merus trigonal, with margins irregulaly dentate or crenulate; rapus more or less fomr-sided, margins finely denticulate or erembate, a ridge fomming across the lower suffere hand long, trigonal, pubescent, upper surface slightly twisted, about ten teeth on the imes marein and thirteen smatler teeth on the outer margin, lower maggin ten-toothed; dactyl at right angles to the nuper sur-
faee of the patm with a lanee white, bead-like tuberele on the oul side at the base. Ambulatory legs compressed; thiod, fourth, and fifth joints erested on the margins.

Dimensions of largest sperimen, a female: Langth, lis.a: width, 21; length of cheliped, about is:3 millimeters.

Gulf of Calitomia; U.S. Fish Commission steamer Alhatross, $18 \mathrm{~S}_{\mathrm{B}}$ and 18s? :

Station.	l.it. N.		Fiathomes.	Botfom.	$\begin{aligned} & \text { Temper- } \\ & \text { ature. } \end{aligned}$	Cat. No.
	0	"			\bigcirc	
28.2	2t 1600	11083	21	cy. S. hrk. Sh		17.36%
3011	In 060	111 3! 4.	71	fat, gy. s. hrk. Sh.	57.9	17368
3014	28 2800	112 04 : 30	29	Mr. S.	60.9.9	17369
30:31	310645	1142815	33.3		6i3.8	$17: 370$
30:37	274500	110.1500	20	프. M	65. 2	17376

This species is apparently very murh like sexspinosa, but differs from Stimpson's deseription in the larger cardian spine, the emenger banehial
 long chelipeds.

Family CANCRIDA.

Lophozozymus (Lophoxanthus) frontalis.

Campace with the regions well maked amd erossed by faint gramulated regat; somewhat haty: slighty convex transversely, the lateral teeth somewhat uptmed; more convex longitudinally. Frontal and antero-lateral mateins samulate. Front more produced than in the other sperees of this gemus, lobes simmos, more advanced in the middle than at the obtuse onter angles; median noteh derp, but elosed. Tpper ombital margin with two lissures, the intervening tooth more prominent than the adjaerent imer portion of the orbit: external orbital ame a small tooth, widely separated from the antero lateral teeih by a slighty simmos margin. Anterolateral toeth three, thick, triamgular, acute Inferior obhal boder with a wide external dissure amd two prominent teeth, the inner more slebder and produced. Nubhepato and subbramehial regions gramulate. Ablomen of male with second segment lonser and marower than the first, and narower at its distal than at its proximal emd, exposing a very small portion of the stermm; thitd segment fouching the coxar of the tith pair of legs; pentimate boader that longe; terminal segment rombled, almost semidireulan. Cheligeds very stout; meros short, trigomons, with a row of head like thbereles on the wher marein; rarpus lage, ragose, a short, stont ppine at the inner ansle and a tuberele at the poximal end; hands whit a boad, prominent lobe on the immer side of the proximal upper matein, the lobe tmoed inwad; the pollex is curved downwad, the datyl arehed; both are inceulaly dentate whthan and gape somewhat
for their entire length, the tips hooked. The fingers are brown and mottled, the color extemding far back on the palm, looth inside and out. Ambulatory legs flattened, crested, hairy; propodal joints broad, about as long as the dactyls.

Small specimens have the carapace and upper portion of the hamds rougher and the carpus very deeply eroded.

One specimen in the Albatross collection, without label, is associated with Tenthodes taylori and P'uchygrapsus erosssipes. A serios of sperimens loaned by the ['eabody Museum of Yale University are from sin Diego, California.

Cycloxanthus californiensis.

Carapace slightly convex, thatened behind, punctate and anteriorly rugose, wider than in rithetus; regions sebarated by shathow grooves and subdivided as in vittatus, but less distinctly. Antero-lateral terth nine, besides the postorbital; the first depressed, lobate, the last two smali, the last one being absent in small specimems; margin thick, teeth short, subacute. Front produced, more advanced in the middle than at the orbits, with a deep, closed median fissure; lobes each with a shatlow sulcus, in some specimens almost straight. Abdomen broader than in vittatus, the second and penultimate joints noticeably shorter. Chelipeds with carpus and upper part of hand rugose; carpus with two blunt teeth at the inner angle; hands rather long, with upper and lower margins subparallel; fingers irregularly toothed, not gaping, grooved, light brown with white tips. Ambulatory legs hirsute on margins.

Length 24.5 , width 37 millimeters.

RECORD OF SIECLMENS JEXAMINED. -

Catalina Harbor, California; beach (17509); 30 to 40 fathoms, sandy mud (17508); W. H. Dall.

San Diego, C'alifornia; J. (i. Cooper (17536) ; C. R. Orcutt (17499) ; H. Hemphill (17531).

Guadahupe Island, Lower California; U. S. Fish Commission steamer Ilbatross, 1889 (17395).

This species is much like vittatus, but differs from it in the shorter, blunter antero-lateral teeth, in the absence of hair on the margins, in the narrower hands, as well as in the characters mentioned above.

Lockington has described a species, Tantho novem-dentatus, from San Diego and Lower California (Proc. Oal. Acad. Sci., pp. 39 and 99, 1876), which he later (in amotations) decides to be identical with Stimpson's vittutus. Lockington says that the Lower California speri mens are narrower than those from San Diego. He probably had two species, but there is nothing in his description to indicate that his type is identical with the species described above, excepting the broad carapace and the locality.

Xanthodes minutus.

(arapare tratsverse, convex anterionly. Antero-lateral margin with three teeth, besides the orbital angle; posterior tooth minute. Cins apate mimutely grambate; regions well matide the simuses between the antero-lateral teeth are continued on the darapace; there is a tubercle near the first and the second tooth. Front very broad, deflexed; the two lobes convex, with very thin marims. The grooves leading backwad foom the median and lateal motehes of the fiont are derg. Ofbits with two chosed lissures above. The basal athtemal joint just reaches the front. Chelipeds almost equal, granulate; carpus with outer sulate covered with about seven nodules, unequal in size athl shape; hands with longitudinal grooves tingers acote, dentate, bown, white at tips. Ambulatory legs pumetate, striped with light color; dactyls light, hairy; remaining joints sparingly hirsute.

Length 3 , width 4.3 millimeters.
Color in alcohol, dark purplish.
Off the Samdwich Islamds, lat. "3101.1 $51^{\prime \prime}$ N., long. $157^{\circ} 43^{\prime} 30^{\prime \prime}$ W., 11 fathoms, sathl, roral, station : $3169, \mathrm{~J}$. N. Fish Commission steamer Allmetross, 1891 ; one male (17517).

The broad front and the nodulous carpi in commection with the relatively smooth catapace suldiciently distinguish this species.

Micropanope polita.

('arapace transperse, comsex lomgitudinally, smooth amd punctate posterionly, rough gamulate amteriorly, the gramules"most prominent on the hepatid regions. Firont hoad, median notrh narow, lohes nearly straight, thin, dentienlate. Areolations distinct. Antero-lateral teeth five (with the orbital angle); a combave sims between the first and secoud; last tooth similar in character to the others, but smaller. Interior regions of the earapace amd surtare of maxillipeds wambate. Stermim and abdomen smooth athl punctate. Abdomen of mate with five segments, the first amd seromd broad, the secomd marowest at its distal emb. Basal antemal joint reaching the fiont. Anterior margin of merts of outer maxilipeds simous. Large chelped, with merus finely gramulate, dentate on the upper matain; dapus with spiny
 side: hand grambate above and near the carphs, smooth and punctate elsewhere; palm boad, comvex on lower margin; fingers brown, with lighter tips. 'The small cheliped difters in its much harower, more grambate hamd, with almost straight lowrer margin. Ambulatory legs slender, putate, spinulons above, last three joints hairy.

Length of carapace 6.2, width 9.8 millimeters.

 Fish Commission steamer Albatross, 1889 (17397).

Menippe convexa.

Carapaee more convex than in the American suedes of the senns; smooth to the eye, whermely slambate moler the lems; regions mot defined, exerpt the anterior portion of the mesonastrice region and the epigastrice lobes. Front with median bobessmall, separated by a shallow suldes, the margin sloping ohiguty from earlo lobe to the inconspicuons lobe at the inner orbital angle. Antero-lateral margin maked with at sharp ridge. Postombital angle not produred, separated by a shallow suleus fiom the first tooth, whel is the shortest a slight emargination separates the first and seoond teedh; the third is most pominent; the fourth and last has a shang ridge which extembls hack on the carapare. There are no tubereles on the inferiorsuraneof the carapare. Chelipeds as in the genus; with depressed grambes and punctures, most evident on the hamds; hambs not very deep, without stride on the inner surface.

Length, 15.5 ; width, 21 millimeters.
Honolulu; one female (1390s).
This speries in its convexity appoathes the East Indian II. Iequillonii A. Mihe Ldwards, but differs in the character of the front and lateral margins.

Pilodius flavus.

Entire upper surface covered with long, solt, orange bristles. Camapace transversely oval; areolations distinct; five antero-lateral spines composed of single, sharp, distinet spines (the tirst two the smatlest), with a few accossory spimules at their bases, the largent of which is behiud the thind spine. Canapace with spimules or sqamules near the antero-lateral magens, which are with dificalty distinguished under the covering of setae. Front with a wide median emargination, sepalating broad aromate lobes; lateral lobes small, less advatheed; margin denticulate. Chelipeds spinons; merus with inner margin spinons, the spines longer near the cappos; carpus covered with spimes, inner angle produced, two-spined; hand spinons on the outer and "pper surface, the spines becoming tubereles toward the lower margin, almost naked within, smooth and shining; fingers meeting only at the tips, spoonshaped, toothed on prehensile edges; datyls spinulous above. Ambulatory legs spinulous above on third, fourth, and tifth joints; long hairy.

Length, 6 ; width, 9 millimeters.
Color of carapace and chelipeds in alcohol, light yollow; ambulatory legs and bristles, orange; fingers, horn color, lighter toward tips.

Off the Sandwich islands, lat. $21014^{\prime} 5 L^{\prime \prime}$ N., long. $157^{\circ} 43^{\prime} 33^{\prime \prime \prime} \mathrm{W} .$, 14 fathoms, sand, coral, station 3169 , U. S. Fish Commission steamer Albatross, 1 S91; oue imıature female (17317).

Pilumnus gonzalensis.

Carapare much broader than long, stronsly dellexed in front, flattrmed hehind, covered with a shot, dense, tomsh pubescence, eath hat being regnlaty tapering, atominate, not emved. When the hairs are removed the obtlines of the mesogatrod region are distimet there are three or fome spimules near the antero lateral margin; otherwise the surface is smooth. Front spimulous and haty on the margin, with a broal U-shaped simm; the lateral lohes soancely distinct from the median, but less advanced. Orbital mangin armed with small spines. Antero-lateral marein eventy rombled, fom-spined, the spine mext the owit being double, the two parts equally laree; second spine also double, its anterior hall the langer all the antero-lateral spimes have one or more aressory spimes. Subhepatic and subbranchial regions grambous. Ridge on the embostome distinct. Lower surface of the crab with a shoter pubesconce than the upper. Chelipeds very unequal, outer surface pubescent and rough with short spines which are arranged in irregular limes on the hands. Towat the fingers and lower edge the large hamd is naked, but punctate and finely gramulous Fingers short, stout, and dentate on the prehensile edges; dactyls tubermbus above near the base. Ambulatory legs rather broad, hairy, the eapal joints longitudinally grooved on the outside.

Color in alcohol: The carapare when the hats are removed is red, mottled with pale yellowish. The hairs are yellow; the spines and fingers are brown. In addition to the hains the carapace and chelipeds of many specimens are covered with minnte algae.

Dimensions: Length 13 , width 15 millimeters.
Nan Lais Gonzales Bay, Mareh 27, 1889, Џ. S. Fish Commission steamer Albatross; aight males and thirteen females, four of which bear eggs (17415).

This species call be distinguished fiom the other described west American forms by the following characters: I^{\prime}. depressus Stimpson has the carapace flattened; I°.stimpsonii Miers=marginatus Stimpson (name preocropied hy ittimpson himself for an Oriental species) has a tuberenlate carapace, and a prominent antero-lateral marain; P. xanfrsii Stimpson is a hamow speries; P. spimo hirsutus (Lockington) has the fiont loug-spined; in l^{\prime}. limosus Smith the eatrapee is covered with tubercles.

Family ['ORTUNIDA.

Neptumus (Hellenus) iridescens.

This is the western representative of spinicarpus (Stimpson). It differs from that species in its more prominent ridges, in theobotuse frontal teeth, of which the median are narrower and more produced than the lateral: the efight small anterolateral teeth are less sharp and their posterior matems more convex; the inner suborbital lobe is obtuse,

There are no adult specimens in the collection. The largest sperimen is a female measuring 15 millimeters long, 35 wide ineloding spines, and 22 wide between the bases of the spines. The long eappal spine reaches nearly to the base of the spine on the manus, and is no longer in the young males. The gramulated ridge on the posterior portion of the gastrie region is triangulate instead of \perp-shaped, as in spinicarpus. There are four spines on the inner margin of the merns of the chelipeds. The postero-lateral angles are strongly upturned. The surface is iridescent.
Gulf of California and west coast of Lower California, U. S. Fish Commission steamer Albatross, 1889:

Family OCYPODIDE.
Subfamily Carcinoplacinae.

Genus Cediplax.*

Carapace very convex longitudinally, much resembling P'anopeus in general appearance. Antero-lateral margin, with four tee th besides the postorbital. Eyestalks stout, orbits large, extermal hiatus broad. Antenne and maxillipeds much as in l'anopeus. Hands clongate; ambulatory legs flattened.
This genus belongs to that section of the Carcinoplacina in which the post-abdomen of the male does not cover the stermm between the fifth pair of legs. Although the classification in this subfamily is based largely on the arragement of the segments of the abdomen in the male, it is true that there is a correspondence in the sexes in the width of the basal segments of the abdomen as compared with the width of the arjacent sterual segments. Therefore, although the species at hand is represented by females only, I feel justified in referring them to that group characterized by having only the anterior portion of the last segment of the stermm exposed. There are fow deseribed genera in this group: Euryplax Stimpson has the antenne exeluded from the orbit by the enlargement of the suborbital lobe; bucrutopsis Smith has very heavy chelipeds; in Glyptoplax Smith the merus joint of the exterior maxillipeds is triangulate, the hands are large and the front nearly horizontal. In Panoplax Stimpson there are but three distinet

[^38]Proc. N. M, 93-16
antero lateral teeth, the campate is depressed, and the orhits small, with a sliwht outer hialus.

In (EAdiplat the lirst segment of the abdomen is very wide and reaches the cosa of the tifth paid of legs; the serond segment is murh natower, exposing a lage portion of the last sternal segment; the thime aldominal serement is wider thath the seromd, but not so wide as the tirst, nor does it reach the coxer.

Ediplax granulatus.

(:abapae tramserse, brombest at the last antero-lateral teeth; depressions hetween the regions shallow, exepting the hepatic and the
 hepatie region, and almost cotirely wanting mear the posterior margin. Ablerolateral amd posterolateral borders abont equal in lemeth; an-toro-lateral teeth form, besides the postorhital, the thime the largest; terth emmalate; simms betwern the posforbital and the first tooth, and the spate below the sims dentienlate. F'tont deflexed; merlian moteh hroad; lobes slighlly simmos. Orbib with fwo fissures above; immer footh of inferior boder pominent. ('helipeds not very umequal, roughemed with sping gramules, aramged mote or less in lines; merts start, trigomal, with a stomt spime on its mpere matgin near the distal end; capos rommed above with a latese spine al its immer angle, and a smaller one at the base of the lareer datyds grambate above for half their lengith; tingers foothed within, in the larger hand gapinge, and with a large tooth at the base of the dactyl. Ambulatory legs hative merus joints spimulous on upper margin.

Length, 32.5 ; width, 46 millimetors.
 fathoms, bown mud, lempratume liz.s', station :3031, I. 太. Fish Commission sta:mer Albutross, 1 ss? ; fwo lemales, oncimmature (17465).

Speocarcinus granulimanus.

(anapare very comsex lomgundinally, almost straight transversely, decply and irventarly pumetate, obsempely sammate near the margins. The mesogatrie region is distimetly outlined; a dep sule separates the bepatie and brathehial requons fom the gastrie and cardiae regions; between the hepatie amd batmehial regions there is a deep, smooth pit. Front / wo-lohed, with a marow median eroove fom which a sulens exfonds hackward to tho mesogastrie region; lohes with almost straight maresins, sloping forwad and outwand fom the middle. Frontal, orbital amd antero lateral margins gramulate. Obhit with two tissmes abowe, the ontermost boad and open. Anterolateral marwin areuate; teeth four, not prominent, separated by very harow simses; outer matesins of the first there teeth roumded, the first (the orbital tooth) the longest, the others dermeasing sumerssively in length; last tooth small, athte, direeted outward. I'ostero hateral margins nearly stagight
and parallel. Suborbital border with an outer hiatus and a broad, rounded imner lobe. First segment of the male abdomen very short and wide; second, longer and much narrower; third, as wide as the firstat its proximal end; from this point to the distal end of the pemultimate segment the margin of the abdomen is markedly concave; the three divisions of the coalesced segment faintly indicated; terminal segment rounded, about as long as broad; abolominal appendages long, slender, and curved. Merus of external maxillipeds produced at the antero-lateral angle in an acute angle. Ghelipeds slightly mequal; merus obseurely gramuate, margins tuberculate, a smatl spine near the distal end of the upper margin; carpus gramulate with a spiniform tooth at the imner angle; hand granulate, with longitudinal rows of tubercles on the palm and on the margins; fingers broad, not gaping, deflexed, coarsely toothed within. Ambulatory legs smooth, shining, sparingly punctate; dactyls margined with hair; remaining joints sparsely hairy. The margins of the carapace and the upper margin of the hand are sparsely hairy, while the inferior portions of the carapace, the upper margin of the merus, the inner margin of the carpus, and the abdomen of the female, are thickly fringed with hair.
Length, 17 ; width, 21 millimeters.
Gulf of California; U. S. Fish Commission steamer Albatross, 1889:

Station.	Lat. N.	Long. WV.	Fathoms.	Bottom.	Temperature.	Cat. No.
	- , "	0 , "1			\bigcirc	
$30: 31$	310645	11.19815	33	bır. M.	(i3. 8	17.460
30:35	$30 \geq 160$	11.42 .515	30	Y. M	62	17461

This species can at once be distinguished from corolinensis by the less prominent antero-lateral teeth, by the shape of the front, and by the granules of the hand.

Carcinoplax dentatus.

Carapace broader than long, very convex longitudinally, less so trans versely, regions slightly marked; surface microseopically granulate and pubescent. An indistinct arcuate ridge extends transversely arows the gastric region and joins two others ruming longitudinally across the branchial resions; from these ridges the carapace slopes downward to the fiontal and lateral margins. Front about one-third the width of the carapace, nearly straight, thick, two-edged, and deeply grooved, with a faint median noteh. Supra-orbital border denticulate, with two tissures, the outer one broad. Antero-lateral teeth three, broad, separated by wide sinuses, margins denticulate; first tooth at the orbital angle, with nearly straight sides; second with outer margin comvex, inmer concave; third tcoth similar to the second, but narower. Posterolateral margins nearly straght. Male abdomen with seven segments, not entirely covering the stermum at its base; first joint no wider than the second, neither reaching the coxis; third joint very wide, touch-
ing the coxar of the fifth pair of legs; from the thind segment to the extremity the abdomen is almost triangular, the sides very litte coneave; terminal segment longer than broar, obtuse; appendages widely separated at base, terminating in long sfonder filaments crossing each other near the tips. Maxillipeds widely gaping; meral joint with anterior margin concave, inner margin convex, palpus articulating at the antero interior angle. Chelipeds equal, grambate; merns with a tooth above, one third the distance from the distal end, and one near the distal extremity of the lower outer margin. Carpus short and boad, a sharp curved spine on the inner side near the proximal end; outer surface of carpus and manus covered with long hair; hands commessed, spinulous on the lower margin, smooth inside, except for a line of spinules ruming from the lower margin near the pollex diagonally backward; upper margin with a small spine at the anterior extremity; fingers bent downwad, imegularly toothed within, not gaping, curving toward each other at the tips. Ambulatory legs long and shmere, clothed with downy hairs, which are longest on the last three joints; third pair longest.

Length, 14; width, exclusive of teeth, 16.3 millimeters.
Gulf of California; U. S. Fisish Commission steamer Albutross, 1889:

Siation.	Lat. N.	Longr. W.	Fathoms.	Buttoms.	'Lempera. tire.	Cat. No.
	- "	- 11			a	
3016	29.1000	1125700	76	gril. M	59.0	17462
3017	295180	1130100	58	${ }_{2}{ }^{\text {r1]. M }}$	6il. ${ }^{\text {d }}$	17463
3035	$30 \geq 100$	$11+2515$	-30	\#y. M	62. 0	17464

The chelipeds of this species in shape and hairiness are very like those of C. vestitus (de Haan), but that species is broader and has much smaller antero-lateral teeth, as well as other striking differences.

Subfamily OUYLODINA.

Gelasimus gracilis.

This species is the west coast representative of pugnax Smith, but is distinguished by the more ronsex carapace, much wider posterionly, the more transerse anterior margin, making the camapae more rec tangular. The front is marower and consequently the supatorbital border is longer than in memen. The mate abdomen is much natrower than in pugnur, and the second segment much shorter. The isehimm of the outer maxillipeds is very hoad and convex. The large cheliped of the make has the joints relatisely longer and more slemder than in puguner; the merns is crossed ly transerse tubereulate rugar, and the imer margin is tubereulate or denticulate; the carpas also has the immer margin tubereulate, the outer surface ronghened with lattened tubercles aranged more or less in strise, and the imer surface erossed diagomally ly tubereles; the palm is namow near its artienlation with the carpus and is very finely tuberculate or grambate, the gramules be-
coming so small on the lower half as to he searely pereptible to the naked eye; on the imner surface of the palm an oblique tuberculate ridge extends from the lower margin to the depression into which the carpus fits, and joins another tuberolate ridge ruming to the upper margin; the space between this ridge and the dar +y l is not tuberoulate aş in puynux, but smooth and shining, exeept for the 1 wo lines of tubercles near the base of the dautyl; the fingers ane longer and more slender than in pugnax, the poller with a large tuberele near its middle and the dactyl irregularly tuberwate with a large tubercle not far from the base. The meral joints of the ambulatory legs are longer and more slender than in pugnax.

Length, 10 ; width, 15 millimeters.

1:ECORD AF SPECDMENS EXAMINED.
San Diego, California; H. Hemphill, 1872 (17501).
Todos Santos Bay, Lower C'alifornia; II. Hemphill (17576).
La Paz, Lower Ctalifornia; L. Belding (462y).
San Luis Gonzales Bay, Lower California; U. S. Fish Commission steamer Albatross, March 27, 1889 (17158).

This species might perhaps be referred to Lorkington's cremutus, ex cept that he describes the outer surface of carpus and manns as shooth.

Gelasimus latimanus.

This species is represented by a single male specimen, found among a large lot of Gelasimus grucilis firm La Paz, Lower California, L. Beld ing ($\mathbf{1 7 5 0 0}$). It differs from all deseribed species except gilbosus, in hating the abdomen five-segmented; and from giblosus in the entirely different character of the hand and fingers which are short and broad. The carapace in general apparance resembles that of gracilis except that it is broader and much more convex; it is smoth to the eye; front and orbits similar to those of gricilis; eyes shorter and stouter. First seyment of abdomen very short; second arpaling the first in length; fourth, fifth, and sixth anchylosed. Maxillipeds very convex. Larger cheliped short; merus and carpus with outer surface mgose, and immer margin denticulate; propodusshorter than the width of the carapare; palm broad, outer surface closely set with distinct granules, which become tuberculate near the uper margin; imer surface with the lower proximal portion gramulate, the distal portion smooth, the two parts not separated by a sharp ridge; parallel to the base of the dactyl there are two lines of tubercles, the posterior line contimuons with the gramules on the edge of the pollex. Fingers gramulate, much shorter than the palm, broad, little gaping; the pollex rounding upward, the dactyl slightly arched and overreaching the pollex but little. Smaller cheliped with palm broad and fingers widely gaping, but not so much so as in gibbosus. Ambulatory legs with a few long hairs, especially on the last three joints.

Length, 6.3 ; width, 10 ; length of cheliped abont 18 millimeters.

This may be identical with a short-fingered specimed fiom the west coast of Lower California, which Lockington doubthully refers to stenodectylus.

Gelasimus coloradensis.

Gampare very convex, regions protuberant, smooth; there is a longitadinal groove erossing the bramehial resion, amd this groove opposite the posterior margin of the gastric region widens into a deeppit fiom which tine irregular grooves ratiate; rervieal suture deep, with a pit near the frontal margin. Front brod. Posterior or upper edge of the superior orbital border curving forward and ontward, with smooth margin; anterior or lower edgedenticulate, curving rapidly downward near the base of the ocular peduncle, then spadually romeding upward to join the posterior margin at a little distance from the antero-laterat angle of the carapace, which is arente and points forward. The lateral border is marked by a shamply upturned and finely denticulate margin which slopes inward anteriorly, so that the carapace is much narower at the anterolateral amgles than posterior to them ; and the posterior portion of the lateral margin is strongly incursed and terminates opposite the cardiae region. The interior orbital border is marked by about twentr-fom distinct tubereles. The eyestallis are slemder and do not nearly fill the orbit. The jugal region is eovered with depressed tubereles. Male abolomen broad, seeond segment much shorter than the first, sixth segment wider than the fifth; appendages slender. Ischimm of outer maxillipeds wide and smooth; merus short. The left cheliped (the lateer in the one specimen at hand) is very long; merus as long as the rarapare, rugose, imner margin finely tuberolate ; arpus also rugose, inner margin tuberoulate, the tubercles coarser towads the proximal end; inner surface with a tuberenlate ridge; palm with the uper portion tmod abruptly inward almost at aright angle but withont a sharpridge; the uper surface is depressed amd obsemrely tuberulate, the tubereles beroming large and coarse near the union with the onter surface, which is crowded with gramules which are smaller toward the tuberentate lower edge; there is a deep depression between the palm and pollex; the immer suface of the palm has a row of coarse tuberes extemding from the lower margin obliquely upand and joining at right angles the row extending to the mper surface. The row of denticles or tubereles on the inner marsin of the pollex is contimed parallel to the base of the dactyl, and between this row and the dactyl there is an additional row; the irregular depression anterior to the oblique row is smooth and shining to the naled ege, but with the lems tine seattered gramules may be seen near the gape of the fingers and contimed on the pollex; pollex nearly twice as long as palm, ahost straight, finely denticulate on the outer and immer margins of the prehensile edge, with a row of irregular tubereles between; distinctly two-toothed at the upturned extremity; dactyl overreaching
the pollex by about one-sixth of its length, slemer, similarly armed within except that the irregular tubercles are prominent nearer the palm. Smaller cheliped with fingers much longer than palm. Ambulatory legs with meral joints wide, transversely striated, and hirsute near the base; remaning joints smooth; dactyls vary slender. There are a few scattered hairs on the lower surface of the caralace, and a fringe of hairs on the inferior margin; the abdomen and stermm are also margined with very short hails; otherwise the crab is smooth.

Length, 12.5 ; width, 20 ; length of large eheliped about 57 millimeters.
Horseshoe Bend, Colorato River, Lower Calitornia, U. S. Fish Commission steamer Albatross; one male (17459).

Family GRAPSIDAL
Subfamily Grapsines.
Pachygrapsus longipes.
One small specimen of a female with eges is elosely related to P. plicatus (Milne Edwards), but differs in the smoothess of the carapace. The anterior portion of the carapace and the margins are faintly plicated transversely, but without stiff hairs. The fromtal hobes are well marked and the margin of the front is slightly convex. There is no tooth behind the postorbital. The chelipects are covered with gramules, arraged in irregular reticulations; there are several spines at the distal extremity of the merus and one sharp spine on the inner side of the carpus; a shanp longitudinal crest extends from the tip of the pollex back on the palm; the tips of the fingers are outlined with thick, bristly hair. The ambulatory legs have the meral joints trans verseiy plicated, denticulate and hary on the uper margin, lower margin with one or two spines noar the distal end; remaining joints furnished with a few hairs, very slender; propodal joints much longer than in plicatus or minutus. Color in alcohol, green, mottled; legs striped with dark.

Length, 6.5 ; width, 8 millimeters.
Honolulu, U. S. Fish Commission steamer Albutross, 1891 (17320).

Brachynotus (Heterograpsus) jouyi.

Carapace much broader than long, nearly as wide at the orbital angles as at the last antero lateral teeth; slightly conver in both directrons; punctate, pubescent, and roughened with minute, spiny granules anteriorly and on the lateral margins. Front not advanced, deflexed, seen from above almost straight; seen from in front the margin has two small median lobes separated by a slight simus, the rematinder of the edge wavy. The superior orbital border slopes outward and backward to the base of the orbital tooth. Lateral teeth three, including the postorbital, prominent, acute, the first two similar, separated by a deep sinus, the third smaller, separated from the second by a shallower,
wider sims. 'Theminal sexment of the mate abdomen math longer that wide, oblomge (belipeds in male mequal; meros amd catpos
 mot catinate, with a patch of hate on the inside extemding lion the cat pus up on the pollex atod in widh orexpying the eental half of the palm; fingex very slighlly gaping. (Shelipeds in lomale rey small: hambe with a earima on the upper matwin, and another on the outside meat the lower matein. Ambulatory legs haty, esperialty the burth and tilth joints, rather slemder; dactys very slember.
 under stones, searce."

Fimily IINNOTHERIDA\%

suhtamily l'innotureines.

Pimixa occidentalis.

Garapace teansverse, thick, hairy on the sides, surfare meren; on the
 middle as in I^{\prime}. 'ylimdriat and I ' chetopherame, but beooming lower and corving backwad towad the centor; rexions well dedined by pubeserent. suldi. Front narow, mediangroove deep. A sharp ridge rums fiom the orbit diagomally ontward and hatelwam, crossing the hepatie re gion, and lorms the antero dateral matein of the catapate. Ablomen
 from the second suture to the lemmat segment, which is more than one half as long as boad, amd rombled. The female abobmen is very bmad, the torminal segment marh hoteder than in chatopteroter or eyt. imdried. 'The serobd joint of the patpus of the extermal maxillipeds is somewhat oblong, laprering tow:ad the distal end; terminal joint sulbspatulate, oforreathing the preeding. Chelipeds stomt, setose; merus thick, tigomal: palmboad, llat, shiningen the outside: pollex short, bent downwad, mehensile edge with is stout tooth in the midhle and ab small one near the tip; dactyt moth curved, with sometimes a minnte tooth in the midhle. First pair of ambulatory legs shorter than the chelipeds, weak: secomd pair longer and stronger than the dirst third pair very long and strong, esperially the meral joint: fouth par intermediate in length betwern the first and seeome datyli as long as the propodi. Ambulatory legs setose.

In the temates the cambiad videre is much less prominent than in the mates, the thesers are less gaping or mot at all gaping, the datedie tooth is larger, and the teeth of the polles are merged into one low denticulate prominenere.

Length of latest mate. 9.5; width, 19.5; length of thimd ambulatory leg, 27 millimeters; lenglh of largest lemale。 10.5 ; with, 20.5 ; lengeth of third ambulatory leen, abont 2.4 .

RECORI) (OF SPECDME:NG W:XAMHNED.
From Ilinliuk liarbor, Unalaska, to Gray's Harbor, Washingtom; U. S. Jish Commission steamer Albatross, 1888-18!9):

Station.	Liat. N.	Lomm. W.	Fathoms.	I3ottom.	'Temper at10\%	Cat. No.
	- 11	- 1 11			- 0	
$\because 862$	504900	1273630	± 38	\#y, S. I'	44. 7	17470
2868	47 59\% 00	121410	31	gris	46,9	17471
2869	4713800	1243900	32	bik. is	48.1	17173
2870	[6) 4400	$121: 3200$	58	iky	41.5	1747:3
? $3: 16$	512030	$\begin{array}{ll}163 & 37 \\ 160\end{array}$	61	bk. S. M		17474
33111	5356936	16 if :39 4i3	85	gri. 11	41.0	17475
$331:$	510151	16663738	68	fine bk. S	43. 7	17.76
33:3	5353385	1663015	19	\&1. M	43.9	17.77

Alaska, W. II. Dall:

Locality	Fathoms.	Boltohn.	Citt. Nu.
Port Levashefir	$20-30$	M. Sh..	17513
Port Levasheft	70-80	M. Sit	17514
('hajathat 'ove, Kanliak	$1: 311$	11.s	1751\%
fort Etehen	1218		17511
Sitka Martore	15	(ir. M .	17510

San Diego, California; H. Hemphill, one male, dried (17501).

Pinnixa califormiensis.
The genus Pimnixa is represented on the coast of California by another species much resembling the one described abow, but sufficienty distinct. The carapace is shorter, the cardiac ridgestraghter thromg out its length, the antero-lateral ridge straighter and less arched, and the carapare descends more abruptly at the sides. The fiont, orbits, and maxillipeds do not differ from those of occidentatis. The abomen of the male has the margins of the second segment parallel, while in occidentat is the segment is wider at the distal than at the proximal end. In male specimens the pollex is shorter than in occidentelis, and conse quently the dactyl is more nealy parallel with the end of the patm. The chelipeds in the female and the ambutatory legs in both sexes resemble those of occidentalis.

Length of of 6 , width 13 ; length of third ambulatory leg about 17.5 millimeters.
Monterey Bay and off Point Ano Nuevo, Califomia, U.S. Fish Com mission steamer Albutross, 1890:

Station.	Lat. N.	Longr. Wr	Fathoms.	Bottom.	Tempera. ture:	Cat. No.
	- 11	- 11			\bigcirc	
3133	3364750	1214900	37	br. M....	62.3	17478
3148	370800	1222810	47	br. M....	51.3	17479

Gemus CRYPTOPHRYS.

Carapace mobroader than long, have. Front produced; orbits lodged In the sides of the from and very slighty visible from above. External maxillipeds mot large emongh to completely close the buecal ravity; ischimm rudimentar: mernstong andermed; palpas two jointed. Atale athemen with the seromd, third, and fometh articles roalessed. Chedipeds in male with pahms broad, indated. Ambulatory legs, with thisd, fourth, and fifth joints broad.

Cryptophrys concharum.

Male: Campace suhpentagonal, slightly longer than broad, smooth, rigid, a laint suldes visible behime the gastrie region. Anterior and anterolateral margins detined by a ridge of eoase setar, which are thickest and longest al the antero lateral angles. Obhits cimeular,
 Abdomen broadest mear the proximal end of the seromd segment; first segment short: coaleseed segment with the lisel two of its component anticles comex on the margin and separated by a taind lime, and the last artiche slighty concave on the margin; hiod and fenth segments boader than long: temmal segment subrectagular. Wxternal max illipeds having the merus curved on the outer magin, he distat portion almost transwerse in pesition; the palpus artienlated at its antero. external angle, two jointed: terminal goint four sided, much booder at the extremits. Chelipeds stom, margined with a row of coarse setar, as are also the remaning legs: on the palm the upper row of setar is on the imer surface just below the margin. Finst the paiss of amber latory legs suberual, the second the longest; the fourth pair the shortest, overraching the capal joint of the preeding pair: dactyli about. as long as the propedi, teminating in slemder, curved hooks.

Length, 4.7; width, 4.2 millimeters.
False Bay, Nan Diego Commy, C'alifomia; II. C. Orent, Jme I, 1sis:- trom mantle of , My, arenaria limm, two males, one of which is rey minute (17498).

In :he aldeholie specimens thesixth and seremth abominal segments are partially coalesced.

Genus SCLEROPLAX.

Gampare tramserse, hard. External maxillipeds with ischimm rudi mentary; merus honger than broad, obligue, not curved, winged on the mangins; palpus there jointed. Ambulatory hegs similar in chatacter, slender, the thind pair the lomgest, but slightly excerding the others.

Scleroplax granulatus.

Oarapare subpentagonal, hard, gramulate anteriorly and near the margins, panctate elsewhere; a grambated ridge defines the lateral margin. Front narow, produred, slighly comex as seen from above. Orbits mearly circular, eyr-stalks very short and thick; anten mules almost transverse. Merms of maxillipeds grambate, with a lomgitudinal, wing like expansion on the inner margin, and amother on the outer margin, which becomes narower at the provimal mat. Papms triarticulate, large, the pemult joint longer than the merns, the whimate joint artienlated near the proximal end of the imene margin of the pemultimate and about equal in width ta the aljaenent portion of the pematimate; both joints are lomg, with a longitudinal median depres sion, and a fringe of very long hair bordering the extremities, the last joint slightly overreaching the other. Abhomen of femate very smooth and shining, fringed with hair, bot reathing beyond the stemmen. Chelipeds in the female gramulate, weak, shorter than the ambutatory legs; hands broad, somewhat compressed; dactyls strongly raved. Ambulatory legs slember, grambate, the hiod pair longest, the seromd longer than the first, the first pate weakest the joints mamow, hat toned; the dactyls are very slemere, almost straght, and equal in length the propordal joints.

Length, $6 ;$ width, 8 millimeters.
Ensenada, Lower Cahforitia, C. R. Orwit; three fomates (179!7). In the same vial is at fragment of at male, apparently the same speries, in which the abdomen is narow, bapering very gradnally to the broad, terminal seqmen; third, fometh, and fifth segments partally and hy fosed.

Subfamily Adithenognaturne.

Family Asthenomathidat stimpsom, Proe. Acad. Nat. Set. Phita, x, p. 107, $18: 8$.
Resembling P'imotherime, but the isehimm of the external maxillipeds is longer and more distinctly developed. The last pair of ambulatory legs is not rudimentary or abortive. In this family are inchoded the genus Asthenognuthes and the forlowing

Gemat OPISTHOPUS.

Carapace usually firm and myielding; smooth, subquadriateral, regions mot defined; lateral margins regularly arenated. Epistome very short. Abdomen seven jointed, in the mate not covering the strmum between the coxa of the last ambulatory legs. Liye pedmeles shome Antemae small, sithated at the inmer onthital hiatus; hasal joint small. Antemmata obliquely plicated. External maxillipeds with the ischinm well developed, the merns broad, the palpas three jointed, the ultimate: joint articulated on the imer side of the pemultimate. Chelipeds morl crate; ambulatory legs subequal in lengith, joints flatened.

Opisthopus transversus．

Gampace transberse，comvex，thin，but not soft and vielding as in Pin． notheres，angles rommed．Fiont dellexed，almost stratght when seen fom above，with a slight mediam suleus．Jbiomen of mate natow at base，decreasing regulaty in width bo the serenth joint，which is sub quadribateral；abdomen of bemald very wide abd long，almost covering the maxillipeds．Antemmbe well developed，lodged in deep，diagomal fossar．Weterior maxillipeds with the sedhimestrong，hroad；the merns as boad as long，with the antero external amgle boadly romeded the palpus later；the ultimate joint narow，imersely spatalate，werpeath ing the permatimate joint．Chelipeds rather stout：merus boad，tri hedral；palm a litte longer than the finsers，think，slightly rompressed， matgins rombled，lower matgin comvex．Ambulatory legs similar in chatater：joints rather boad，exept the dartyls，which are curved and smatl，a little more than hati the length of the propodal joints：secomd pair of legs the longest，louth pair the shortest，reathing midway of the propodal joint of the preceding pair．
 females，the females much larger than the males．

Ioont Lomat，C＇alifomia：l＇s．Fish（＇ommission steamer Albutross， damany 2 S ， 1 ss 9 ；one female with egos（ 174 s 1 ）．

W＇idth of temale，Monterey， 1 s ：length， 14 millimeters．Width of te male，loint loma，lis；length， 11 millimeters：width of male，9．s；length， S．，millimeters．

The tront，appendages，anterior margin ot the stermum，and the ab domen of the temale，ate finged with hatr．One femate with egess，from Monterey，is entirely covered with a short，dense sponge growth．The smallest male was fomed in the bolds o！Lampind erenulate Sowerby．

Subtamily Calaprinas．

Mursia hawaiiensis．
Carapace transverse，very convex in both directions，granulate，the gramules becoming smaller on the tubereles，which are aroanged in dive more or less longitudnal rows，one of which is in the median line ；lat eral margins grambate the antero－lateral also cremulate；lateral spine very short ；rampace widest not at the base of the lateral spine，but in advance of that point ：at eath extremity of the posterior margin there is a thattemed obtase tooth；and midway betweon a laint projection or comsexity of the margin．Frontal margin litle prodned，triangular， with three smatl teeth，the median more produced and depressed thatu the others．Orbits with a rlosed lissure above，amd a deep romuded hiatus beneath；inner subocular lobe triangular；ejes oval，latge，short－
stalked, filling the orbits. Subhepatic regions deeply channeled. Abrlo men in male with five segments, the second with a thin, prominent trilobed crest, lobes minutely cremulate. Auteme long; antennules oblique. Maxillipeds as in the genus. Chelipeds granulate, very uneqnal; large cheliped with three spines on the anterior portion of the merns, the inner very small, the outer the largest and of moderate length; haul not very deep, nine-toothed above; an irregular crest near the lower margin bears a sharp spine near the merus; small cheliped with merus one-spined; hand with about eleven small irregular teeth above; both hands have the lower margin spinuliferous. Ambulatory legs with granulated lines on the upper surface of the carpal joints.

The alcoholic specimen has tinges of red on the carapace and chelipeds and an elongated patch of red on the inner surface of the hand near the dactyl.

Length, in median line, 29; width, without spines, 36 ; length of lateral spine, measured on its posterior margin, 4 millimeters.

Off the Sandwich Islands, lat. $21^{\circ} 12^{\prime}$ N., long. $1577^{\circ} 49^{\prime}$ W., 295 fathoms, fine white sand, station 3472, U. S. Fish Commission steamer Albatross, 1891; one male (17515).

This speries is nearly related to M. curtispina Miers, but differs in the shorter lateral spines and the character of the hands; in M. Lamaiiensis the hand is less deep, the crest more continnous and prominent, the simses of the upper margin narrower. The imer subocular lobe is regularly triangular and does not exceed the basal antennal joint, instead of being rounded, with a producen acuminate tip as in curtispina. The almost entire obsolescence of the median lobe of the posterior margin also distingushes this species from curtispina and con neets it with armata de Haan.

Platymera californiensis.

This speries is closely allied to P^{\prime}. gfundichurdii from the coast of Chile. It agrees with Milne Edwards's brief deseription of that species,* but differs in many respects from the figure in d'Orbigny's Atlas. 1

The antero-lateral tee th are smaller and are distinctly separated by broad, shallow simuses. The tuberonlons ridge on the palm is nearer the lower crest; the secoml and third teeth of the upper margin, counting from the carpus, are larger and stronger than in gundichnedio. The ambulatory legs are namower; this is esperially moticeable in the fourth and fifth joints; the fifth joint of the first three pairs is not so distinetly gramate as in the figme. The external maxillipeds are gramulate, efpecially the ischime, which has also strong irregular teeth on its imer margins. The raised portions of the carapace have a number of de-

[^39]pessed thbereles mot mentioned in lidwatsis deseription, but perhaps imbleated in the figus loy the red spots. There are three on the median line. In the fomge these tubereles are more promiment and the lateral and meral spines are poportionally mach longer than in allolts.

Milne Edwards sitys of gandichombio that the seroud ambulatory leg is longer than the titst. In this series of sperimens the fwo legs are very meaty equal in length, sommtimes the tiost being a little longer athd sometimes the seromd; this difterener misy oreme of opposite sides of the same individual. The variation is due to the fate that, althomgh the meral goint is always longer in the serobd pair, the carpal and terminal joints are alwass longer in the tirst patir; the propodal joints are more neaty equal, but when there is a dithereme, it is always longer in the tirst leg.

The chatacters above mentioned, which are constant in the hundred specimens examined, taken in eonneetion with the Ereal slifereme in habitat, are. I think, sumberent basis for the formation of a speries.

Length of earapace, 6.4 ; with to base of spine, 95; length of spine, 14 millimeters.

Collected by the albatross at the following stations off the coast of Calitornia:

Slation.	Litl. ${ }^{\text {N, }}$			Lorsig. W.			Fithoms.	lioflom.	Temprer afture.	Cill. N (
	,	,							,	
2918	32	こ!	:30)	$11!$	113		(i)	Inn.gy.s.	62 1	16034
$\because 2 \% 1$:32	$\because 7$	(i)	118	11	1.7	145	fine gry.s.	51.5	Itious
29930	i:	17	1.5	119	11.5	1.5	47	fue my,	$5 \% .1$	Itious
20, 03	33	17	(0)	11:)	5	15	8:	Ey. S, brk, stı		160:3
293iti	3i3	57	30	120)	18	(3)	52		53, 1	16775
?	is	$\because 0$	11	118	3i7	1i)	26	gy, s.1.si	58, 0	17167
2910	iit	$\because 0$	$\because 0$	119	37	$\therefore 1$	2!)	fue.ey.s. M	50. 1	160038
3!\%	33		(5)			1.5	14	\%y.	Fti, 5	160339
:1100	3i7	fil	\because	122			29	CTE 8	50. 4	150609
: 1100	:i7	itis	111	123	11.	: 11	17	fres, dik.s.	57.19	1 IStill
:3160	33	21					7	fimesy.		1 Seith
:3113	$3 i$	thi	81				711	fimegy.s.	1s.8	litites
: 1115	37	(1).	110	123	$\because 1$	(1)1)	$4 i 3$	fme lik. ${ }^{\text {a }}$		15604
:11:9	isti	(3)	111	12.2	01	(1)	314	今. M	4i3. 7	listita
231.11	36	0.3	$\therefore 11$				(i)	E11. M. 1	19, 5	15 tila
: 31.17	37	00	(1)	1:2			, 61	fir. 11.	19. 2	1 15till
3118	$3 i$	Us	(11)	129	-	111	17	lir, al	5,1, is	15014
3301			45				208	bk.s	11.1	15612
3207		00					10\%	Ime, my	4., 8	15603

One-half of the specimens collected are yomes. Station 320 y yelded the greatest mumber.

Family LEUCOSllD. W.

Subtamily ILANAE.

Ebalia americana.

C'arapace longer than broad, subobhioular, comvex; a distinct groove
 gramular, the small gramules crowded together, the laree ones prominent, numerous, spiny; intestinal region oblique, very much rounded,
with a median tuberele pointing backward; on the posterior margin are two triangular obtuse, laminiform spines, the space between concave; on the posterior part of the branchal region, just above the mar gin, there is a stont, somewhat nattened, recurved spine. Frontal region without large gramules; there is a cluster of gramules at the smm mit of the hepatic region. Rostrum upturned, trmeate. Male abdo men with third, fourth, and fifth segments coaleseed, last segment long, triangular; fomale abolomen with fourth, fifth, and sixth seg. ments coaleseed, oval; abdomen and stermm in both sexes gramulate. Orbits almost circular, with two fissures above and one below, besides the inner hiatus which is nearly filled by the obliquely placed basal antenaal joint. Antemular fossat oblique. Ischinm of extermal maxillipeds with a longitudinal row of large gramules; exognath with large seattered gramules, wide at the base, outer margin nealy straight, extremity romuled. There is a tuberele on the subhepatie region. Chelipeeds in male about f wo and at half, in female about one and a half times the length of the carapace; merns subeylindrical with spiny gramules; carpus and hand with tlattened gramules; hand compressed, fingers about two thirds the length of the patm, not gaping, with granulate ridges, imer edges finely toothed and hary. Ambulatory legs slender, grambate; meral joints cylindrical, of fourth pair with a row of spiny gramules below; last three joints flattened; dactyls hairy.

Length, without posterior spines, 12.5; width, 11 ; length of cheliped, about 30 millimeters.

Gulfof C'alifornia; U.S. Fish Commission stramer Albutross, 1ss8-s0:

Station.	İit. N.			Jong. W.			F'athoms.	Bottom,	'Iemper ature.	Cat. No.
	-	1	11	0	1	!				
2822		16		110	29		21	gr. S. Mrk. Sh		17386
2823	24	18	00	110	22	00	$22^{2} \frac{1}{2}$	lirk. Sh		17627
3011		07	00	111	39	45	71^{-}	fine.ty.s. brk. Sh	57.9	17387
3014		28	00			30	29	¢, y, S. .-........	62.9	17388
3037		45	00	110	45	00	30	En. M	65. 2	17389

Myra townsendi.

Carapace oval-orbicular, granulate, the granules not close together, and on the gastric region few and indistinct; margin slightly concave behind the hepatic region; "pper posterior spine at a right angle with the other two, longest; all three spines recurved; pterygostomian regions produced in a stout spine; frontal noteh widely but distinetly V-shaped. Male abdomen with the third to the sixth segments and hylosed; first three segments gramulate, remainder smooth; stermum gramulate. In young males the abdomen is gramuate for almost its entire length. Female abdomen with the fourth to the sixth segments anchylosed and oval; the first three segments and the margins of the anchylosed segment granulate. Anterior margin of buccal cavity with

 as are ahse the hand athe ditety hatod comperssed, tapering at litte
 bent down atrl, the obler matem of the pollex roncolve. Ambulatory
 Hattemed, not dilated, ristate above; datyts stylitorm, pubescent on the matreins.

This spereies is very close to lersephome.
 about til millimeters.

Myia subovata.

 with seatlered grambles depressed in pits: lal eral materin distinet ; posterior median spime mot stlleciently raised above the other two to form
 posterior matein between the spines with latge ronsporoms eramoles;
 Mate abotomen with the thisd to the sixth, amd temate abdomen with the lometh to the sixth, segments coalesced. Anterior margin of bucall eatity with a small Ushaped motels. Opbits slightly obligme.

 latesest on the posimal hall of the merns, which is thicker that the distal halt; merts subeylhdrieal; hathd slighly compressed; fingers as long or longer than the patm, timely and shatply dentate within. Ambulatory legs slemer thoughout.

Dimensions of lemalle: lengll, without spine, $2=.7$; width, 20 ; length ot cheliped, about 10 millimeters.

 steamer alloutross, 1ss: (17:

Randallia distincta.

Caname slighty longer than broad, orthentar, convex; suled defin ing the requions distinet ; miero-laterah margin thehind the hepatie region slighty indented; entire surfare grambate, the grambes varying in size, larger posteriorly, somewhat elustered on the mamins; there grambated tubereles on the magin of the anterior pertion of the bramehial rexion; one on the posterior pertion; postarior marginal terth stom, triangular; on the intestinal region there is a shome re emrver spine; hepatie region without a luberefe; pherygostomian region with a laint tuberele. Ahotomen of immature femate with fometh, fitth, and sixth segments coaleseed, the sedioms distimet, how ever, as in the yomge of ormitu. Rostrum two lobed, the bobes high and ridged above; median groove deeper than in ormen. Obhil with two fissures above, with an intervening lobe, one fissure below, and an inner hiatus. Basal antemmbar joint foming an operentum which partly closes the fossat; hasal antemal joint harger han the following joints, hat not reaching the from. The anterior margin of the buceal cavity does not form the lower wall of the orbit. The max illipeds do not cover the whole of the hemeal cavily as in ormata and granulatu, but leave an oval opening at the extremity of the exomath; endognath longitulinally ridged; ischinm longer than the merns, with smooth immer magin; merns obliguly trmated at distal extremity, atmost triangular; exognath wearly stadght on the outer margin, extremity rombled, not reaching the emd of the endognath. Chelipeds in the female mearly twiee as long as the "apapaer, shonder, grambate; merns eylindrieal with srambes spiny; hands narow, slighty compressed, magins subparaltel; fingers ridged, immer magims meven, no gape. Ambulatory legs slender, gramulate; dactyls hairy.

 fathoms, fine white sand, station 312: U. S. Fish Commission steamer Albatross, 1891; one immature female (17516).

Nursia tuberculata.

Carapace with posterior two-thits very convex, densely set with eircular tubercles, many of which are large, the space between them filled with smaller tubereles or grambes of the same chanacter; a me dian ridge extemb backward from the fromal region to the cardias region; intestinat region with a convex posterior projection somewhat bilobed. Antero- lateral magein with a slight convexity at the hematio region, a broad lobe posterior to it followed by a denticle at the lateral angle. Posterolateral margin tuberentate and slighty convex for its anterior hatf, concave for its posterior half, the intervening angle marked by a denticle. There is also a subhepatie denticle. Frome. truncate with a narpow medinn noteh, Maleabdomen broad, with the fhird to the lifth regments coalesered; pemblimate segment with a Proc, N, M, $93-17$
shot appressed spine al its prosimal emp pointing batelwarl. Interior regions tuberentate, the thbereles of the ablomen athe stermum mueh

 as the patm, strongly detlexed, tubereulate at base, with time teeth on the prehersile edges, tittinse elosely together: dacty with at shat crest. Ambulatory legs tuberenlate, except the datyls, and hairy; dactsts lons, slender and eurved.

Length of earapace, 11.5 ; greatest width, 12.5 millimeters.
Gult of Calitornial lat. 29030^{\prime} N., long. 1120 40 W., fis fathoms; lient. Commander 11. R. Niehols, l'. N. Nin!, 1sso-1sse; one male, dried (17503).

Family DORIPIDDE.

Ethusa lata.

Carapare about as boad als lons, cowered with a velvety pubescence, interspersed with longer, combed hats: a finge of long hair borders the
 batuchial sutures are well marked; depression between the cardiad and gastrie resions very deep but short. Fronf four toothed, the median teeth more widely amd deeply separated tome cath other than from the lateral. Bixtemal orbital tooth large, triamgular, mot quite so mueh adranced as the front. Eye-stallis stout. Epistome very narrow. Dises of antemmes moderately derolopod. Male aldomen tive jointed. Chelipeds in male very unequal, minutely pubescent; mews subtrisomal; carpus in larger cheliped suborbioular, preduced internally in a rombled lober hamd large, very broad, much intated; fingers short athd hoad, irregulary dentioulate on prehensile dges. ('arpus of small cheliped in males and of both chelipeds in temales, more elongate; hamds small and natow: fingers as lones as the palm. Second and thind pairs of legs very long, mieroscopieally pubescent, datyli much longer than the penntimate joints ; lourth and tith patis densely pre beswent and hairy, dactyli very short.

Lenthe of malle, 11; width, 11.a; length of secome pair of ambulatory legs, about at; of thid pair, about 14.5 millimeters. Length of female, 11.s; width, 1:3; length of male, 7.2 ; width, 7 .

In the smallest sperimen, in which the length ot the earapare is Ereater than the width, the median trontal lobes are more produced thath the lateral, while the opposite is the ease in larger specimens. (inlf of Califormia: U. S. Fish C'ommission steamer . Ilbutross, 1889;

Stationt.	Litt. N.	LAHg. W	Fathoms.	luttom.	$\begin{aligned} & \text { lempera- } \\ & \text { ture. } \end{aligned}$	Cat. N゙g.
	-				\checkmark	
3013					$\text { (i5, } 0$	
30.1	310645	$11+\div 5$	33	bn. M1.	63.8	17483

Cymopolia fragilis.
(Garapace very broarl, ornamented with folloroles as follows: two baver and berad on the frontal serion; two small and broad directly hehind

 timed on the branchial reerion ly an arenate line of fone sualler ones; betwern the fermatimats fuberefe of this row and the antorofatraal margin there are two small foberelos; there isatuberele near the imme angle of the branchial reerion, and sommetimes another rexterjor to it ; also a depressed foberele behind the onthit f there are fwo eramules on
 dered by gramules. The spare between the tubereles is covered with short seattered setar. Fiwont fomstootherl, the median lohes prontured and near togrther, the latrabl small. Supmandital margin with two treth. Anterolateral teeth five, imeluding the postorbital, the last f wo appoximating. The inforior orthital border hats two wide ents: the imner lobe is itself two-lobed, with the outer lobe the larger. Sterman and abdomen dinely pubeserat; a ridere rums on the fifth stermal segment from the seanol abomminal segment to the eoxad of the
 peds weak in both sexes, pubesesent; rarpus and manus obscourely tu-
 the of hers, the seeond the longer, more than twice as lones as the width of the canapatere moral joints of serond and thiod patiss long, thattenerd brew, with two dentateridges abowe, the margins also dentate; rampal joints with smooth ridges; proporai joints with long hairs frimging the margins, the hairs lying fat upon the joints; dactyls with hairs upon the "pper margin. F'irst ambulatory leg a litte longer than the width of the carapace, slendor, olscourely ridede ; fourth ambulatory leg very weak, about as long as the carapace.

Length, $8 . .5$; willtı, 12.2 ; length of first ambulatory leg, aforout $1: 3$; of second, 2̃.). $;$; of fourth, 8 millimeters.

Station.	L.at. N.	Jang\% W'	Fithomens.	Ibottom.	ture.	Cat. N*o.
	-111	911			2	
2963	-28.88 80	1181545	58	gy. S. brk. Sh	55.8	174n5
:31)11	280700	1118345	71	tue.gy.S.lırk.Sh.	57.9	1718f;

Cymopolia zonata.

Carapace much narower than in the precerling speries, pulbosernt; protuberances arranged as in frogilis, but eonsisting not of single tubercles, but of clusters of many small tuberrles or gramules, Front four-

Iobed, the median lohes romeded and incomspiemons, and separated by shatlew notehes from the bwad lateral lobes. 'The "pper margin of the othit beats two triangular teeth; the outer angle is shatp and much produced. In addition there are two atute antero-lateral teeth projeeting lithe beyond the masimal lime, the onter edge of the teeth neaty stratigh. 'The posterior margin of the speremen is mutilated, but there eath be disedmed near the margin a transverse line of seven thin elongated tubereles; the margin itself is very minntely sianulate, and between if and the tubereles the surface is gramulate. The hower orbital border has two fissures and the inner lobe is two-lobed at the smmmit. LBasal antemmal joint lithradvanced. Stermm and abdomen timely pubeseent; a transverse ridise on the lithe sternal sedment; ab domen of male more tapering than in frofilis; maswin of pemultimate segment with at obtuse athele; terminal segment longer than broad, rombed, reathing the immer marsin of the ischinm of the maxillipeds. Cholipeds (the right one only is preserved) weak, tuberolate, pubescent; cappas amed with many inegular sharpedged tuhereles; hand broater than in firgilis, tubereles armaged longitudinally, the two rows on the uper surfare the largest. Ambulatory lexs of moderate length; first three paiss witha prominent tooth at the upper distal end ot the meral joint; second and third pairs with a tooth near the upper distal end of the carpal joint ; the meral ridges are formed by spiny tubereles; the carpal ridees are thin, prominent, and fimely dentientate.

The sperimen in aleohol is datk colored and mottled, and the legs have broad, transverse bands of dark and light.

Lemgth, 9 ; width, 10.5; length of tirst ambulatory leg, about 11 ; of second, 18 ; of fourth, about 7.5 millimeters.

Gulf of ('alifornial, lat. al $\quad .1^{\prime}$ N., long. $110^{\circ} 39^{\prime}$ W. 40 fathoms, samd, broken shells, temperature 61 , station $2998 ;$ U. S. Fish Commission steamer Albutross, 1859; one male (17.484).

NOTES ON SOME FOSSIL PLANTS FROM THE TRINITY DIVISION OF THE COMANCHE SERIES OF TEXAS.

$13 Y$

William Morris Fontaine.

(With Plates $\left.x \times x V^{\prime}-x b I M.\right)$
The fossil plants whose olescription form the subject of this paper were collected by their diseoverer, Mr. J. W. Harvey, of Glen Rose, Texas. They ocenr in the bed of the Jaluxy liver, two miles above (den Rose. The material containing the fossils is a prety firm limestone, quite free from sand and day, and light gray in color, which was evidently a deposit formed at a considerable distance from the shore. This necessitated a prolonged immersion of the plant remains in water and their transportation over long distances. This conclusion, drawn from the nature of the sediment, is confirmed by the eondition and chameter of the phant fossils. They are very fragmentary, and comsist chielly of types that can withstame maceration. The fact that the plant remains probably did not obtain speedy entombment in sedi ments must be taken into consideration in determining the probable character of the flora of the 'Trinity epoch, for the absence of certain types may be accomnted for by the conditions attending the fossilization of vegetation.

The limestone is withont minor structure planes and cleavage. It breaks in any direction, and this fact makes it difficult to work ont, without additional comminution, the fragments preserved. An additional difficulty in seroming identifiable specimens is cansed by the fact that the vegetable matter of the fossils in many cases peals off from the stone, leaving an imprint that does not always give the true character of the relic.

Most of the fossils are in the form of small fragments. Cones of conifers and bits of twigs of the same much predominate. The twigs have usually thisk leathery leaves and a dense durable epidermis. These facts indicate that the plants and parts of plants that can withstand long drifting are predominant, becanse more perishable forms were destroyed in tramportation. Conifers of certain types are most common, probably becanse, under the existing eonditions, they were best fitted for preservation, and mot heranse they were most common in the flora. Plants fossilized after being drifted long distances can
never give so correct an idea of the flora of the time as those that are entombed where they fell. It is greatly to be desired that near-shore formations of the epoch now in question containing fossil plants may be diseovered. In that case the absence of types in the fossils would more probably indicate their absence in the flora.

While the conditions under which they were preserved indicate that the Glen Rose fossils probably give us a very imperfect idea of the thom of the time, the amount of material obtained is not large enongh to give us much confidence in any negative conclusions concerning the character of the Trinity flora. To this must be added the fact that the plants are obtaned from a single very small area in all the rast expamse of the Trinity beds. The collection was contained in five guite small boxes. The greater part of the material is in the form of duphicates of a few types, and this shows that Mr. Harvey obtained as full a representation as was possible of the forms found at the locality.

Prof. Robert T. Iill, of the U. S. Geological Survey, established the sublivisions of the Lower Cretaceons of Texas now generally accepted, after determining the true order of succession of the formations of that great state. He gives for the Lower Cretaceous the following groupings, the Comanche series forming the base of the Cretaceons:
Comanche Series. $\left\{\begin{array}{c}\text { III. Washita Division. }\end{array}\left\{\begin{array}{l}\text { 10. Denison beds. } \\ \text { 9. Fort Worth beds. } \\ \text { 8. Duek Creek beds. } \\ \text { 8. Schlonhachia beds. }\end{array}\right.\right.$

In a letter to the writer, Prof. Hill states that the Glen Rose fossil plants occur in a lenticnlar mass of fine sediment, in a chalky lime mass full of marine fossils, about 250 feet above the bottom of the Trinity Division. According to lim, there is no break between the basal Trinity sands and the dilen Rose beds. The latter represent deposits lad down in deeper waters farther from land. The Trinity basal sands were formed as the sea advanced from its present ontline across the whole state of Texas.

Attention may here be called to the similarity in the conditions at tending the formation of the Trinity beds and the Potomac beds, as foumd in Virginia, which latter hold a fossil flora nearly allied, in its wher clements, to that of the Trinity. The Potomac beds of Virgimia (the loner Potomac) contain the fossil plants in lenticular beds of clay which lie in the sands and other coarse materials, the clay beds representing eddies in the unguiet waters. The Virginia Potomae samds and gravels were latd down in shallow shore waters, in a progressing subsidence. But in the ease of the Virginia beds we have no evidence that the subsidence was sufficient to produce limestone.

DESCRIPTION OF THE SPECIES.

Equisetum texense sp. nov.
Pl. xxxvi, Fig. 1.
Stems small, 3 to 4 millimeters in diameter. Average length of internodes, 1 centimeter. Sheath swollen, average length, 5 millimeters. Character of teeth not certainly made out, but apparently they are narrow and about twelve in number. This Equisetum is much like E. Burchardti, Dunker, of the Enropean Wealden, and resembles also E. virginicum, of the Potomac formation, but it seems to have been somewhat larger than the latter. It belongs to the type of Equiseta with small stems and swollen sheaths that is characteristic of the Lower Cretaceous. These three plants, E. Burchardti, E. virginicum, and E. texense, are all closely allied and are, perhans, somewhat varying types of the same species.

Only one specimen was fomn that showed the sheaths, and in this case the preservation was not perfect enough to make fully known the shape of the teeth. There are, however, several impronts which ap, pear to have been made by portions of the stem of this plant. The tumid character of the sheaths, however, is well displayed in the more perfect specimen. The considerable length of this stem, its rigid nature, and the appearance of the sheaths, remind oue of Casuarina.

FERNS

One of the most peculiar features of the flora collected at Glen Rose is the almost total absence of ferns. Generally in any collection of older Cretaceous fossils ferms are among the most abundant forms. As these Texas fossils are preserved in sediment accumulated during a progressing subsidence, we would expect them to show a large propor tion of ferns. This, however, is not the case. Only a single imprint, with its reverse, was found belonging to this group, and this is the tip of a pinua or pinuole, which is too small to permit the character of the plant to be made out.

Sphenopteris valdensis Heer:

Pl. xxxyi, Fig. 2.

A small specimen was found of a fern of Wealden type, closely allied to, if not identical with, S. valdensis, described by Heer from the Wealden of Portugal. The specimen is too small to permit the positive determination of the plant. The fragment seems to belong to the terminal portion of an ultimate pinna. As this portion of a fern often differs much from parts lower down on the pina, it is of no value to
determise eharacter. The pinmules or lacinia have the narow elongate shape the obhgue insertion, and the firm comsistemey given for s . reldensis. The neves were not distinctly seen, but appear to be single II each lacinia or pimmule, as in the pant from lortugal. Heer* iden tities has plant wah s.. Ingleri, Ettings, and with edetmpunlia mervosa Dunk., of the Weatden of Hanover. This type of tern seems to have been a common one in the Wealden of Emope.

cycales.

The eyeads, althongh not very abundant in the Glen Rose fossils, stand next to the confers. They are in a very fiamentary combition, but stall suttice to enable one to determine, in a momber of cases, the chatacter of the plant with some certainty. Fortmately the chamacter of some of these forms is somaked that they are readily identified.

Dioonites Buchianus, var, rarinervis vir. nov.
1'l. xixvi, Figs. 3,4.
This plant agrees in all respects, exepet the nerves, with the typieal bioomutes Buchumus. It has the same thick durable ephermis, the same shape, dmensions, and mode of insertion of the leathets, and the same character of stem. The nerves are stronser, fewer in number, and more remote than in the typical form so common in the Potomate of Vngmia. They fork near the base of the leathets, but have the ultimate banches only tive to seven in momber. Fig. 3 gives a portion of a leaf of medium size and shows the insertions of leathets. Fig. 4 repre sents a terminal portion of a leatet of large size showing the nerves. A consulerable number (five to six) of specimens of this phat, were found, and if we may judge from this, it was one of the more common cycads of the Glen Rose region.

Dioonites Buchianus Schimper.
19. xxxyt, Fig.

This plant. tirst fomd in the ('apathian Creonian beds of Grodiseht, and bater seen to be distributed in sueat abomdanee in the Potomate strata of Virgina, was whthout donht present in the 'Texas 'Trimty Hora. It is, however, quite rare in the typical form as a fossil in the den Rose strata. At least two well characterized specemens of it, diftering in mo resper from the Virginia fossils, have been obtained. The speemens show the usual time choselybaced nerves of the true 1 . Buchiamus, covered with a firm durable ephermis. As I have endeavored in previous statements to show, no conclusion can be safely drawn fiom the raty of the fossuls as to the reative abundance of the form in the Trinity tlora.

[^40]
Dioonites Buchianus, var. angustifolius Font

Pl. xxxyi, Fig. fi.
In the Potomac strata of Virginia a Dioonites was fomm with leaflets much narrower than the normal fomm. As it did not graduate into the normal I). Buchianus, and apparently was not an aceidentally narowed form of that species, the writer in Monograph XV of the publications of the U. S. Ceological Survey, P'art I, text, p. 155, proposed to consider it a variety. This narow form is present in the Texas region, as is shown in one well chararterized sperimen. This specmen stows leattets exactly like those of the Virginia Potomac.

Dioonites Dunkerianus (Gïpp.) Miquel:
Pl. xxxit. Fig, 12; Pl. xxxvi, Fig. 1.
Leaves large; midrib very strong; leaflets spreading, closely placed, somewhat thickened at base, slightly and gradually narrowed toward their bases; attarhed to the sides of the midrib, as in I). Buchianus, with a slightly protracted and decurent base, narowly linear in shape, obtuse to subacute at the tips, very thick and leathery in substance, with a firm durable epidermis, attaning apparently maximum length of 15 centimeters and a width of 2 to 3 millimeters; nerves obscure, apparently five to six in number, very slender, and immersed in the thick leaf-substance.

Several fairly well preservel specimens of this noteworthy plant were obtained. They apparently belong to the middle and upper portions of the leaf, and the basal and terminal portions were not seen. The specimens are somewhat distorted, so that the angle made by the leaflets with the midrib can not certainly be made out. They seem to go off at an angle of about 45 degrees.
This plant agrees so well with I). Inankerianus (Gïpp.) Miquel, from the Wealden of Hanover, that it can not be separated from it. It clearly belongs to the same genus with II. Buchionus, wherever that may be placed, but is decidedly distinct from it. Schenk, in describing* I/. Dunkeriams, gives the length of the leaflets as 4 to $4 \frac{1}{2}$ centimeters. I do not understand how he obtained these dmensions, for on Pl. xv, Fig. 1, of the same work he gives a figure of this plant which shows leaffets 7 centimeters long with the entire length not preserved. That they were considerably longer is shown by the fact that a leaflet 7 centimeters long, with the end broken ofit, shows nodiminution in width. Schenk's figure represents the leatlets as they are shown in the Texas plant. Fig. 1, Plo xxxvir of this paper, gives a portion of a large leaf with the leaflets of only one side preserver. All of the width of the midrib is not preserved, but its great size is indicated in the sperimen. Pl. xxxvi, Fig. ${ }^{2}$, gives a specimen with a smaller midril), showing its;

[^41]entire width. In this latter specimen a number of the leatlets attached to the right-hand side of the midrib are doubled over to the left-hand side, so that with casual inspection they might give an erroneous idea of their mode of insertion. The texture of the plant figured by Schenk seems to have been similar to that of the Texas form, for both show a wrinkling at right angles with the length of the leaflets, due to shrinking in drying.

It is very difficult to see the nerves, as they appear to be very slender and are immersed in the leaf-substance. The contraction produced in the flesly leaflets gives sometimes deceptive forms. In some cases two longitudinal folds, near the center of the leatlets, appear as strong nerves, and sometimes the space between them takes on the appearance of a strong single nerve, giving the phant the appearance of a Cyeadites. At first I was led to think that the phant belonged to this gemus. I am not then surprised that Dunker* dessribed a form of this plant as Cycadites Morvisianns. Schenk correctly unites it with I). Dunkerianus, notwithstanding the fiact that Dunker's figure represents the leaflets as nearly 8 centimeters long with the ends not preserved.

Podozamites acutifolius Font.?

1'l. xxxvi, rig. 7.

Only a single speeimen was found of a plant that may be identical with Podozamites acutifolius Font, of the Potomae formation. This is represented in Ploxxyi, Fig. 7 . It is the basal portion of a small leaflet, narrowing to a pedicel at base. It has quite fine nerves that fork towards the base, the brames becoming parallel. 'The size of the leaf let and its shape towards the base agree quite well with the Potomac plant, \dagger but of course the specimen does not permit positive identification.

It should be stated that both the species here given as Podozamites may belong to the gemis Nageiopsis as determined by the writer \ddagger from the Potomac flora. There are no chatacters in the basal portions of single detached leaflets that will distinguish the two genera. The tips of detached leatlets, however, show distinctions, for in Poolozamites the nerves towards the ends of the leatlets converge and unite more or less, while in Nageiopsis they contimu parallel but are usually more closely placed towards the tips.

With referemee to the gemus Nageiopsis, it may be stated that when its determination was made from the study of the aboudant material obtaned from the Potomace beds of Virginia, the writer had not been able to see sperimens of the leaves of the Nageia section of Poblocar-

[^42]pus. Descriptions of the leaves were relied mon. Since that, owing to the kindness of a firiend residing in Japan, both the leaves and fruit of forms of Nageia have been procured. The leallets in every respect are identical with those of Nageiopsis, while the mut-like fruts closely resemble some of the smooth, rombded forms described in Monograph $x y$, as Cycadeospermum. It will be moted that similar fints are found in the Glen Rose fossils.

Podozamites species?

1'l. xixvi, Fig. 8.
A single specimen of the basal portion of a laflet was found among the Glen Rose fossils, which serms to be a Podozamiles. The leaflet narrows to the base, as if to form a pedicel. The nerves are strong, fork near the base, then become parallel. They are rather remote, and may belong to a form like P^{\prime}. distentinervis of the Potomate of Virginia, but the leaflets are much smaller than any shown by that speries.

Zamites tenuinervis Font.
Pl. xxxym, Figs. 8, 4; Pl. xxxvim, Figs. 1, 2.
A considerable number of sperimens were found of a cyearl not to be distinguished from Kamites teminervis Font. of the Potomace of Virginia. This is by far the most common cyead in the (ilen liose fossils, and it is noteworthy that it is deridedly the most common /amites in the Potomac flora. As is the rase with the Potomac fossils, the leattets are found detached, showing that they were casily separated from the stem, leaving a base with a simus. The only difference betwern the Texas and Virginia forms is found in the fart that some of the 'Texas leaflets show nerves rather more remotely placed than those seen in any of the Potomace forms. The eurving shape found in some of the Potomace fossils may he seen in some of the dilen lose forms also. Fig. 4, Pl. xxxvif, may be compared with Fis. 1, l'l. Lxx of Monograph xv of the United States (ieological Suvey. Pl. xxivif, Fig. : 3 , of this paper gives the end of a leaflet; Fig. 2 shows a portion of one of the broadest leaflets, and Fig. 1, Pl. xxxvin, repmesents portions of three leaflets that were apparently attached to the same stem. This plant is protty well characterized, and as it seems to have been well established in the Trinity flora it is important as showing a resemb'ance between that and the Potomac flora.

CONIIERS.

Conifers are, as stated before, predominant forms in the (ilen Rose fossils. They predominate in the number of speries, and esperially in the parts of certain forms rapable of withstanding long mmersion in water. The twigs of such phants as Fremelopsis, rovered with adeanse epidermis, and those of Brachyphylhm, protected by their imbricated dense leaves, the compact cones of Pagionhyllom, and the thick

Leathery leaves of Nequmin pagiophylloides are by lia the most common fossils. The more fiagile lorms, like Aphemolepidimm, latieopsis, ete, ate signifeant by their raty. Owing to the fae that the parts of the plants were probably mot covered with sediment ats they fell, it is impessible to determine from the relative abondance of the fossils any thinge comerning the mumerical relations of the plats in the thora.

Abictites Linksii (Rocm.) Inuk.

11. xxxvir, Fig. コ.

The dilen liose fossils formish two or thee specimens of a ronifer that agrees closely with Abictites Limkii as described athd ligmed by seloenk.* sehenk's ligures represent defached leares, but the Texas fossil is the Cold of an ultame twig with several leares attarhed. 'The exact mode of attarhment of the leaves is not shown, but they, mike the Cephat lotaxopsis of the Potomate, a type somewhat similar to this, are seatfered aromed the stem and taper gradmally to their bases. The leaves are very rigid, coriareons, lincar in lorm, with obtuse tips. Only one good tip was seen, and the emarginate fature mentioned by Schenk Was not obsimed. The midrib is simgle and strong. It is quite rame among the Cilen liose fossils.

Laricopsis longifolia Font.

1!. xxivi, Fig. !.

A very distinctly defined impuint of a small rylindrical stem was foumd among the dilen hose fossils. It has a distinct pilting, with small depressions that appeat to be the sears of fallen leaves or leat bundes. Attached to tho stem which is proportionally very large, are the bases of seveal very narow leaves. The leares appear to have been threadlike. 'The stem amd the leares are exatetly like some of those of Laricopsis lomp!!olin, deseribed hy the writer firom the loomate of Virginia.t All the chataters agree so well with those of the Potomate pant that, althomgh the amomit of the material is very small, I have no hesitation in regading this Texas fossil as $/$. Iomi!folia.

The nerves of the leaves could mot be made out in the Glen Rose sperimen, but there is mothing to indicate that they are not single in each leat, as in the Potomac fossil.

Sphenolepidium Stembergianum, var. densifolium Font.
I'l. xXxif, lix. 10.
Several specimens of a conifer were fomd that appear to be identified with sphemolepidiam sternbergianmm, var. demsifolimm. 'This variety was determined by the writer fom the I otomate of Virginia.

[^43]The leaves of the (dan lione plant, esperially the lateral omes, are marow, acicular, and inewved, all closely cowded. The Texas plants agree exactly with some of the Virginia forms,* resembling most those with the most delieate and crowded laves. Some of the suecimens show undeveloped leafy buds, as may be seen in some of the V'igginia forms.i The speremens are few, pobably becanse the parts of this phait could not withstand long immersion in water and transportation to a distance.

> Pinus кресіен?

I', xxxvi, fig. II.

The eollection of fossils from (ilen hose rombains at few satatered, limear, ome neved leaves, such astareshown in Plo xxxve, Fig. 11. They are more attached, and are always so broken that only show bifs are visible, which never show the tips of the leaves. They have a width of about, $1 \frac{1}{2}$ millimeters, and the longest specimens have a lengith of about 3 erntimeters. Thesir deedhons chatacher, namow, rigid form, with only one nerve, indicate that they are a speries of Pinns which can not be at present more accurately determinerl.

Brachyphyllum texense нр. nov.

> Pl. xxxvin, liign. :s-5; Pl. xxxix, l'ign. 1, la.

Trees or shrubs with alternate and pemultimate branches in one plane, spreading rather widely. The ultimate branches are usually formed by the dichotomous forking, at considerathe intervals, of the penultimate ones, but they are sometimes sparsely distributed alternately towards the terminations of the latter. The ultimate branches are short, stont, cylindrical in form, oltuse, not tapered towards their tips. All the banches were covered with closely imbricated, leathery, thick, seale-like leaves, which had a dense, very durable epidermis that in its present condition looks like enamel. The leaves vary a litthe in shape with age. The young leaves are broadly elliptical, the ofder ones broadly rhombic, less commonly more or less rommaded. Nearly all the leaves harl their ends prolonged into the form of a subacute, lancet-shaper tip, which is usnally inemered in the lateral leaves. They are strongly keeled towands their ends, and the keed rums back in the body of the leaf some distance, hut does not pass to its base. The loaves are often decussate, in four rows, but are sometimes spirally arranged.

The probable cones are narowly oval to ohlong, about 1 centimeter
 Figy. 3.

1 Ifbid, Pl, ©xxxi, Fif. 1.
 of the come $\begin{aligned} & \text { ats not mate ent. 'The probable staminate aments ate }\end{aligned}$ oblong to colindrical in form, copered with chosely appressed and im brieated seates that are elliptical in shape ame hato at their ends acote polonsations that are about hatl as lones as the boelyot the seale. 'These aments atre about $1: 3$ millimeters lonse athe is millimeters thok.
 cleatly very common in the 'ronity tho:a. Infortmately the thick corimeons hates have at seat temeleney to peel oft trom the stome, and home sperimens hamdled without irvat date are casily spoiled.
 able size. It shows what seems to hate heencommon in the plath, viz., the temeney of the twigs to diverse at titst widely trom the stems which sive them oft, and then to come upwards toward the ends of the man bratheres. 'This tigure shows also the dichotomons mote of division of tho bramehes, which seems to have been the most eommon.

I'I. xxis, litg. 1 , represents the cond of a compenmel brameh that is much smaller that that geven in Fig. \bar{i}, which is the midelle portion of the brameh.

In Pl. ※xxix, Vig. I, the arrallsement of the ultimate twigs in an alternate mammer, a less common mode, is seen. Some of the ultimate twigs in this sperimen were hroken off, so that the bltamate grouping is not fally shown. The only cone tomel whel "an with probability be re. formed to this brachophyllom is that siven in Fig. B, ll. It . Is the stome in splittins catried off the upper surface of this cone the eharate er of the seales was not made out, while its dimensions and shapeare well diselosed. The seales seem to hase heen rather thick towated their frees ends, wedgeshaped towats their base, and to have orerlapped one atoother.
 longs to this bradyphyllum, being the staminate ament. The shape of its seales agrees well with those ligured by Saporta* for Fe. grateile, but the ament from Texas is more slender or eylmbleal in shaper

Thas plant is most pobably a mew species. It is probably nearer B. Morcemammm Brongn., than any previously described species, but ditters from this in the sweater mitomity in the shape of the leaves, and 1 the constant abseme of athy mammillary promineme on their batks as well as in the more derided development of a lameet shaped tip.

It is quite difterent trom l. crassictule Font., of the Virsinia Poto. mate in showing a more sparse diehotomous hathehing, in the distinet ked. in the denser epidermis of the leaves, and in their prolongation at their tips.

[^44]Tree or shrub, with the pembltimate and ultimate twigs, which alone were seen, rigid, cylindical, and guite thick. The leaves are slightly imbricated, or overlap hy their tips, which are fhinotnd pard. ment-like, while their bases are comsiderably thickemed. They are dosely appessed to the surtace of the twigs, and show ho ked or prominence of any kind. They vary much in shane, hemin hroally friangular or hoadly elliptical, sometimes romuled subpmatriateral. All are very obthse and rommed at their tipes, and have their gratest dimensions transerse to the axis of the twig. The epidermis is thin, but apparently quite duable, and the outer sumare of the leaves is marked by limes of pits which are distimetly visible to the massisterl eye, the lines comerging toward the tips of the leaves, and being ab proximately paralle to their margins. These imprints ane exactly like those seen on the eppidermis of Fremelopsis, which is strikingly like that of the plant, new in question. The cemos, single or in pairs, at the end of short, very stomt ultimate hame hes, are small and globular in form, the largest seen leing about 10 m" in diameter, and the smallest 8m". The come bearing bathehes have, next moler the comen, leaves of different character from the nomal ones. They resemble much ab breviated peints of frenelopsis curinus. They vary in shape from the nomal kinds to those in which the colges of the leaves appear as transverse lines more or less convex upwads, and concave downwad, only one rank of leaves apparing on the anterion surare of the strm.

The scales of the cones are closely appresed, small, numerons, spirally arranged, thickened at the fieremed, proboned into an ineurv. ing spiny beak like that of Arancaria. The beak being removed leaves a sear not mulike that of Arauraria, being a rhombic-shaped depression, much elongated transversely.

The saales of the cones, when wholly removed, as they gemerally are, leave imprints that are in shape submombice to boadly efliptical, and prolonged at the tips to a more or less acute point.

This remarkable conifer is the most common fossil at the (ilen Rose locality. The fwigs are not sperially abmont, but the comes are very numerons, bering much the most abmetant fossil. They were borne on the summit of stont ultimate twigs, that geneally broke off a litfle below the base of the cone, so that nsually a short piere of the twis is found with each cone. Owing to the fact that the exterior of the fossils at Glen Rose is generally removed in breaking the steme, these portions of the twigs attached to the cones do not often show the character of the leaves, Still a considerable number of specimens are found with a few of the leaves pretty well preserved. Vofortunately none of the twigs attaghed to cones are long enongh to show more than three or four leaves. Hence the charaster of the leaves on more remote portions
of the combebamg twigs was never seen, and the gradations of the abomonal leares mext to the cones into bormal ones conld never be fraced on the same lwig. But on comparing a number of these twigs it ean be seen that there is a complete trasition from the most abormal forms to the normal ones. The leaves on most of the twigs next to the romes are so murh like very moth shortened internodes of fremd lopsis rerians that for a long time I thomght that the comes belonged to that spectes. This supposition was eonfirmed by the lace that this Frehelopsis. has, in a momber of eases, nodes on the stems that are mow shortened. The likemess to liremelopsis is increased by the prese ence of the limes of stomata, which much resemble those of that plant, and by the texture of the epidermis, which is similar to that of Fremelopsis.

The vere athle matter of the twigs of this phat is semerally in the condition of a powder, inclosed in a shell composed ol eplermal tissue. On breaking the stone the whole of the material crumbles away, and the exterior shell, showing the shape of the leares, is especially prone to be destroyed. On this arount it is very diftertt to preserve specimens with leaves. Where the thin fire tips of the leaves overlap on the thickened bases of those next above, pressure often produces the imprint of a line, so that some hint is thas siven of the shape of the leaves. The imprints thas formed, however, do not give their true shapes, as the overdpping ends aro not shown. Pl. xxxix, Fig. 2, gives the shapes produed by these lines, amd it will serve also to indicate the stontuess of the twigs, the one represented here being a penultimate one.

The leaves were proportionally very large, and of the general form of those of Brathyphylhom, but they do not possess the thick enamelhke epidermis of that pant. They have their basal portions thickened, and show rery distimet rows ol stomata. In these features they are allied to l'agiophyllum (Pachyphyllum) more closely than to any other periously deseribed comber, dand on this aceount I have, with much doubt, placed the plant in that gemus, indicating its doubtful position by the specitie name given it. It is quite probable that the phant is the type of a new gemus, nearly allied to Arancaria, and uniting in itself with features of Aramearia, some of those of brachyphylhm and Pa giophyllum. The type seems to difler from Pagiophyllum chiefly in the firm of the leaves. I'tgiophyllum (I'achyphyllum) eirizicum, as described by isapora, * asees in its leares on some of the larger twigs with this, but other forms of this species thave quite difterent leaves.

Indeed, the gems I'achyphyllum, renamed by Heer Pagiophyllum, although it can hatly be comsidered as shaply defined, has, as the more common form of leaf, one quite diflerent from any shown in the
 \dagger lbid., I'l, 1, Y Y, Figs. 1-3,
phant now in question. While some leaves, as givern by saporta, have tranversely elongated, more or less rombled, or rombie forms, they mostly appear with elliptie or rhomber shapes, elongated in the direcetion of the axis of the stem, with a considerable portion firer, more or less remote fiom the stem, often incorving, with the whole leaf much thickened. This Texas plant does not have these features.

The leaves of I^{\prime}. dubimm are very laree in proportion to the diameter of the twigs, so that a single leaf often extember aross the whole upper surface of the stem, as is shown in Pl. xxxix, Figs. 3 and 4, which represent their more common forms. The cones are nealy always single, at the tips of short, stout twiss, but Plo xxxix, Jig. J gives a pair of cones, which appear at the summit of the twig. The shape and size of the cones of this plant remind onfe strongly of those of Sequoia. The resemblane is increased when the cone suales are retained, but have lost their beak like projections. 'This sort of rome is shown in Pl. xxxix, Fig. 6. Platexxxix, Fig. 7 , shows thedimensions of one of the largest eones, and also the character of the imprints left when the cone seates are removed. 'This cone shows, at the stmmit, of the twig which bears it, abbreviated leaves, such as are represented in Il. xxxix, lig. s, other cone heamg twigs have suchleaves as are given in Pl. xxxix, Fig. 9. Figuressand ! givemagnifed portions of the twigs. Plate Xxxix, rig. 10 givessereral leaves considerably magnitied to show the lines of stomatat. Plate xxxix, Fig. 11 gives a twig to which a short cone-bearing twig is attached.

Frenelopsis varians sp. nov.

Tree or shrub with peombimate and ultimate banches alone obtained. These were originally quite long, surcolent, and rylindriat, with joints of varying length. The ultimate twigs sem to have played the part of leaves. The largest penultimate bramehes have a very small woody axis; the ultimate ones nsmally show little or no woody tissue. All the bramches found fossil appear as fat, riboon-shaped strips of vegetable matter, composed almost wholly of parchment-like, very durable, epidermal tissur, rut at, varying intervals by lines of constriction which represent the norles. The twigs are very prone to brak at these nodes, hence they usually presont the form of fragments without preservation of their summits and hases. The epidermis is marked by lines of dot-like imprints, which are not distinetly visible without the help of a lens. The internodes vary much in lengeth and often irregularly, especially in the ultimate fwigs. They sometimes appear uniformly short jointed, and then areexactly like F^{\prime}. parceromose** of the Potomate formation of Virginia, and from this canse I at first thought it identical with that plant. This mafonmly short

[^45]fointed form is shown in ll. xhi, Fix. こ. The most common form, however, shows internodes or joints areraging about 15 millimeters in length, exept towards the base of the ultimate twigs, where, near their attachment to the penultimate twigs, they miformly are much shortened, being 7 or S millimeters or less in length. These forms, which we may regard as the normal ones, have an arerage width for the joints of about 6 millimeters. This normal form is represented by l'l. Xif, Fig. 3. Other sperimem, however, show sreat iregularity, the joints varying in length according to morule, normal joints and short ones being intermixed. This is seen in Pl. xl, Fig. 1, especially in the right lower ultimate twig. The dimensions of the ultimate and penultimate twigs do not vary much. The ultimate twigs must, in some cases, have attaned a considerable length, for fragments were seen 16 centimeters long, which did not have the ends preserved and did not show any manked dimimution in diameter. The largest twig seen is a mere fragment, and is shown in Pl. Xli, Fig. 1. This shows the largest woody axis, for this axis appears to conform in size to the dimensions of the twig. The ultimate twigs seem to lave been in their attachment to the ultimate ones rather remote and seattered around them. Some short twigs were found which seem to have been undeveloped ultimate twigs. One of these is represented in Pl. xL, Fig. ㄹ. These forms show abbreviated nodes which strikingly resemble the leaves at the summit of the cone-bearing twigs of Pafiophyllum dubium.

The leaves are almost always moleveloped. The summits of the foints which should show the leaves, if they were present, almost always appear as a line of constriction which has various attitudes. It may run at right angles to the axis of the twig, or be inclined to it, in both cases being nearly straight. In other cases, and these are common, the constriction may be convex upwards or concave downward. These sutceed one another in such order as to indicate that the ends of the joints bear undeveloped teeth or leaves of triangular type. In a very few cases there are very slighty developed teeth or leaves, which have the form of very broad, low triangles. This is shown in the form given in Pl. xli, Fig. 3, where the right-hand lower ultimate twig, on the summit of the thind joint fiom the attachment, shows a leaf of this kind.

The almost universal absence of developed leaves is one of the most important points of difterence between this plant and F. parceramose, for in this latter visible leaves are quite common, and of the charaterer of those oceuring with extreme variety in the Texas plant. It should be noted, however, that in the Potomat fossil a number of specimens show only the lines of constriction, as in the case of F. curians. The leaves when present appear to be one at the summit of earh joint. While the Texas plant is most probably specilically distinct from F. parceramose, it is very near to it, heing nearer than to F. Hoheneqgeri Schenk, of the Ergonian of Europe. This latter seems to be interme-
diate in type between F. remosissime* of the Potomat formation and \boldsymbol{F}. parceramost, since it has the considerable development of woody tissue, and the whorls of three leaves on the joints, possessed by the former, with the character of jointing and general aspect of the batter.

It is interesting to note that F. pareramose ocems in the Potomac, formation of Virginia in only one locality \dagger in company with plants of a type strikingly like those associated with the Texas speries. This locality is the "Entrance to 'Trent's Reach," on James River, where Dioonites Buchianns, Brachyphyllum crassicanle, Williomsonia rigginiensis, etc., are also found. Buieropsis pluripertite wa: found at this locality, and it is probable that it will yet be found to exist in the Trinity flora.
F. varians is one of the most common fossils in the Glen Rose collection.

Frenelopsis Hoheneggeri (Ett.) Schenk.
1'1. xlif, Figs. 1, da.
The specimen given in I'l. XLII, Fix. 4 , is the only one of the kind that was found in the Glen Rose fossils. It has all the characters of Schenk's plant, and differs decidedly from the numerous specimens of F. cerians, among which it was found.

The specimens of \vec{F}. carions we black in color, white this is brown. The twigs have a larger woody axis than that fomm in the more common plant. The tubercles are larger, so that the lines formed by them are distinctly seen with the unassisted eye, which is not the case with F. varians, and the general aspect of the twigs is more rigicl. But more important than these features is the fact that the summits of all the joints bear distinctly developed leaves. These have the chatacters seen in F. parceramose and F. Moheneggeri, i. e., they are short and triangular in form. They difier from those of the former plant, add agree with those of the latter in the important feature that they oceur in whorls of three. Two of these leaves ocen on the upper fare of the lowest joint of the specimen, and are represented in Pl. Vir, Fig. ta, which gives a portion of the stem enlarged to show the chatacter of the leaves. The leaves alternate in position in the suceessive whorls, and resemble clearly those given by Schenk for F^{\prime}. Hohenergeri. $\frac{t}{\text { Sthe fig- }}$ ure of this plant, given (I'l. vi, Fig. 1) in Shchenk's work, shows on the second ultimate twig attacherl to the main stem on the lefthand side, counting fiom the bottom of the figure, a single triangular leaf, and on the joint next above these are two leaves of the same character that alteruate in position with the one below. On the joint above these there is again a single leaf. This shows that the leaves of F. Hoheneg-

[^46]geri oceur, altemately in whork of three. 'They, as wivel in this tigure, agree exactly with those of the Thexas phats.

On the speeimen of the plant found at dilen liose the epidermal tissues on mearly all the joints is too poorly preserved to show thlly the heaves, hat emobsh is preserved to indicate chatly that the pant has the chamacter wiven above.

This 'Texas sperimen has the rixid asper which is characteristie of r. Itohemegyeri. It his mbeh more wooty tisste that lager specimens of E^{\prime}. cercielles, and shows no short joints.

Sequoia pagiophylloides spr. now.

I'l. x1,1, l'igs, 1-iof.

Tree or shoub with the pembltimate amd whimate bramehes spreading in one plane, the latter atternate in position. Leaves on the obder banches spirally aroanged so as to appear as latial and lateral in position. The fatal leaves ate inconspichons, spansely seatered, elosely appessed to the stem, and much smaller that the lateral ones. They are lanced shaped or elliptian, rounded at the tips, and very
 form the only conspicuons ones. They are, as now presented, oval or triamgular in shape, rather remote, with a mbel broaler base, strongly deemrent, and stand mealy at right angles with the axis of the twig. They are very obotuse at the stmmit, and ate slighty fitleate in their upper portions. The leat substance is very thick athd is covered with a dense, firm, and durable epidermis. They have a distinet keel or mid. rib, which towad the summit is mush attemated, but toward the base is widened, so as to assume a triangular form. The younger twigs show only lateral leaves, which are similar to those on the ohter ones. 'The probable staminate aments, of which only one speecmen was fombl, oceur on a common stem arranged allernately. They are vey smatl, heing elab or pear shaped, with a maximum thickness at the summit of
 preserved well emongh to show the delats of stroture, hut aprear to be covered with thin, rounded seales. That they belong to this phant is shown by the presence of a mormal lateral leaf between two of the aments, the two lowest on the left-hand side.
l'ig. 1, Il. Xht, shows one of the most complete brathehes of this plant that was lound, and dig. Id givesamasnified potion of the matn stem of this specimen to show the tacial leaves. These do not senerally appear, as they are destroyd in splitting the stome by the meeling oft of the epidermis. l'l. xıa, lig.g. sives a specimen with lateral leaves
 portion of this enlaged to show the chatacter of the lateral leaves.
 gives a portion of it enlatged to show the normal lateral lead.

This fossil is one of the most common ones at dilen Rose. This is no doubt accomed for by the very durable chatater of the epidermal tissue and the thick chanater of the leaves. They are very prone to peel off from the stomes and leave only an imprint. The lateral leaves appear now as a leathery material, composed manly of the epidermis. This has in the renter a sharply defined keel, that looks like a pucker in the leal substance, rather than a bundle of woody tissue forming a true midnerve. The keel, however, is probably determined loy the presence of suth a midnerve inthencing the shrinking of the la at tissue in drying. No vasenlar bundle, however, was distinctly seen, and in this respect the leaves differ fom those of semoia, and resemble mowe those of Pagiophyllom. It is diflioult to detamine from the pressent asped of the leaves what was their character when living. They, however, give strong indications that they were much thickemed towards their bases, so as to have a pyramidal form, and they probably had a distinet keel, so that their cross section would be rhombie in form. This again is a chatacter of Pagiophyllum and not of Somona. Rab in Pagiophytlum, as a rule, the facial teaves are momeromand as conspicmons as the lateral ones, while in this plant they do not appear at allom the ultimate and youngest twigs, and on the odder ones they are so few, small, and closely oppressed that they are not visible muless carefully looked for. It was only atter prolonged searel that I fombla a seecimen showing them. It is true that allowance must, be made lin the greater liability of the farial leaves to be destroyed in splitting the stome, but a momber of specimens showed the onter sulares of the ultimate twigs well preserved, and in no case were facial leaves shown even in traces.

I have with great hesitation pared this plant among the sefpoias, to which it has, in general facies, a strong resemblance. It shows a blending of the reatures of that gemus and of Pagiophylhm, and is probably a new gemm with composite character, as is the case with the peruliar Progiophyllum dubium. The data at hand, however, do not suffice to fix with certanty its tme charader, and it may be provisionally regarded as a sequoia. The large angle that the lateral leaves make with the stem is totally mulike Pagiophyllum, and more resembles Sequoia, athough mo previonsly desmibed species of this gemus known to me has leaves standing so mealy at right angles with the stem. Sequoin ambigu, is mearest to it, bat its. leaves have a distinct vasenlar midnerve, are much thimer in textme, and move acnte, while they go off more obliquely.

> Abietites speries?
> Pl. xtan, lig. 4.

This undetermined cone is too fragmentary to permit its character to be made out, but enough is preserved to show that it was considerably larger than any of those of Brathyphyllum and I'agiophyllum dubium. The axis is thick and woody, the seales appear to have been long and welge-shaped, thin at their lower endsand thickened at their upper ends.
 meters long and 2 esmbeters hick. The stout stem, still attached to the base of the cone, does not show any of its extemal surface, so that the leaves can not be made out. In size and shape it reminds one of Abictites angusticurpus of the Potomare of Virginia.*

PLANAS OF UNCERTAIN AFFINITY.

Williamsonia texana no nov.

11. xom, V'igs. 1. ..

The bracts are aranged in two alternating whork, four or tive in each whorl, at the summit of apparently a large woody stem. They are lamed shaped to namowly wate, about 15 millimeters long and 4 millimeters wide in the widest portion, smooth, and with no newes apparent. Plate xtoth, Rig. I, shows some of the leaves at the smmit of a small stem. Plate xam, Fis. ロ, shows a portion of both whorls somewhat contorted, while the stem is only partially given.

This is apparently a new species of Williamsonia. It differs from II. cirginiensis of the Potomae of Virginat in being smatler, thimer in texture, smoother, and in not showing hairs. The shape of the bate is simbla to that of the two forms siven by shenk as fomd in the Wernstore heds.at and which he thimks are the male intlopeseenee of some eyead. but the stem. of the latter, especially its summit, is quite ditherent. 'This adds amother tor the similar types of plants found at Glen Rose and the entrance to Trents Reach in Virginia.

Carpolithus obovatus sp. nov.

Several sperimens were fomed. This seed is somewhat altered from maceration. It shows prethy stronge ridges, but has hem deoortieated, so that its original exterior can not now be made ont. There appears af its lower end an indication that it was at tached to a strongstem. If has an ohovate shape, being widest near the summit, where it seems to have borme a short beak. In the widest portion it measmes 14 millimeters, white the length is 3 eentimeters. It seems to have had a large amomat of woody tissue.

Carpolithus Harveyi sp. now.
Pl. xıut, Fig. :3.

Only one sperimen was fombl. The seed seems to have had a smooth surface and a large amount of woody tissue, so that the entire form is mon presered in tignite. Its shape is ellipticah, with ome margin more

[^47]convex than the other. In the widest part it measures $1: 3$ millimeters, while the length equals e? eentimeters. It is very much like (\% curvo tus* of the Virginia Potomac, the only difference being that it is not so much eurved as that. Named for Mr. J. W. Harvey, the eollector.

Cycadeospermum rotundatum Font.

l'l. ximif, Fig. 6.

Several specimens of this were seen. The seed was spherieal in form and rovered with a smooth parehment like durable epidermis, which pooks like brown emamel, and is often all that is preserved. It is about 8 millimeters in diameter. It is exactly like the seed of the same name foum in the Potomace of Virginia, t bat is more strictly globular in form, a difference that is probably due to different effects of pressure.

AGE AND AFFINITIES OF THE JRINITY FLORA.

A typical Mesozoic fiom is composed of only four elements. These are ferns, eyeads, conifers, and equiseta. The flora of this type seems to have reached its culmination in the Jumssic, but many of its plants were continued with diminishing numbers throngh the Lower Cretaceous, ending with that epoch. The Wadden of different parts of the world appears to have been the fresh-water and marsh equivalent of the lower portion of the Neocomian, which, in its typical development, represents the marine deposits of the Lower Cretaceous. The typical Wealden contains no clement in addition to the four given above, but the lower Potomac formation, as seen in Virginia, appears to coincide in age with the greater part of the Neocomian, and this gives us, so far as is yet known, the first appearance of angiosperms. The older portion of the lower Potomate contans, with a great predominance of Juras. sie types, a number of old forms of angiosperms, such as Ficophyllum, Proteaphyllum, Rogersia, ete. In the mpere beals of the same angiosperms berome more ahnondant and they are more modern in type, while the Jurassic element is much diminished. The plants found at (ilen Rose, show, so far as can be judged from so imperfect a collertion, that the Trinity floma finds its closest resemblane in the older portion of the lower Potomac. There is, however, this important difference: No trace of angiosperms, even the most arehaic, has been found in the Texas region. We have only the four elements of the typical Jurassic flora. This then makes the Trinity flora somewhat older than that of the old est Potomace. The absence of the angiosperms and the presence of the forms that are fomm indicate decidedly that the Trinity flora is not yomger than the earliest stage of the Cretaceons. The number of

[^48]phants found to be identical with rertain of those of the oldest Potomat shows that there is little difference in the age of the two formathons. The plant beaming porion of the Trinity is somewhat older than the basal Potomac strata, but the difference in ase can not be great.

There can be little doubt that additional collections from the Trinity strata will show at least some of the older forms of angiosperms found in the lotomat, but at present they are not known to exist. It will be eonvenient, for the pupose of comparison, to wive in the form of a table the phats found at dilen Rose. In it the plants will be placed in the formations in which they have been previonsly found, and where similar, but mot identical, species have been previously known they will be indiated in the proper formation. In the first colmm the perentiar speries, or those that ocemonly at dilen Rose, will be plated.

Table of lilen howe fossiln.

From this fable it will be seen that all the species of the Glen lase
 Weadden to the I reonian. The Potomate inclates both the se epochs. some of the fossils from Glen Rose have mo value for the tixing of the age of the thota heramse they are not sulticienty well chatacterized. Of such a hature are sphemopteris ruldensis?, the whteremined species of Podozamites, the species of Pinus, and the moletermined cone. Omitting these, we have nineteen species. Four of these are peculiar species, and they of comse can not be taken into comsideration when the Trin-
ity fossils are compared with known plants. Of the fiftern manaining, no less than twelve are identical with plants from the older lotomate, or are so near them that a strong presumption of the neaness in age of the two formations is established. The circumstaners under which the basal Trinity beds were laid down indieate that the fossils entombed in them form a portion of a flora that was established on the land that was emrached upon by the Trinity sea. It is probable that this same flora extended northward to Virginia, where, somewhat later, it was preserved by a simila encroachment.

The (xlen Rose, or altermating strata, in which the fossil phants are found, contain an abondant manine finma, fiom the evidence of which I'rof. Ifill had conchuled that its age is Neocomian, or basal (retaceous. No fossil plants had been hitherto found in the Comanche series, and the evidene of its age was derived wholly from the animal remains. The discovery of plants in it was then of special importance, for it enabled us to eompare the evidence of the plant life with that of the animal life. It is interesting to tind so close an agreement. This agreement adds one more prool of the value of fossil floras in fixing the age of the strata in which they are foumd.

> WXPIANATHON OF MIATES.
> PGATE XXXVI.

Fig. 1. Equisetum texense sp. nov.
rig. 2. Sphenoptoris valdensis Heer. ?
Figs. 3, 4. Disontes Buchionus, vas. Jorincrris lar. mov.
Fig. ©. Dioonites Buchiomus Schimper.
Fig. 6, Dioonites Buchianus var, angustifolius Font.
F'ig. 7. I'odozamites acutifolies l'ont.?
Fig. 8. Podozamites sp.?
Fig. 9. Laricopsis lomyifolia Font.
Fig. 10. Sphenolepidirm Sternbergianum var. densifolimm Font.
Fig. 11. I'imes sp.?
Fig. 12. Dioonites Dunkrianus ((iöpp.) Miquel.
PLATE XXXVH.
Fig. 1. Doonites Dunkerianus (Gïpp.) Miquel.
Fig. 巳. Abietites Liakii (Koem.) Dunk.
Fig. 3, 4. Zamites tenuinercis l'ont.
Plate xixvile.
Fig. 1, 3. Zamites temminervis Font,
Vigs. 3-5. Brachyphyllum texense sp. nov.
Phate xxxix.
Fig. 1, 1a. Brachyphyllum texense sp, nov.
Figs. '2-11. I'agiophyllum dubium sp. nov.
I'LATE XI..
Figs. 1, 2. Frenelopsis varians spl. nov.

Figs. 1-iu. Firenclopsis remions sp. nov.

Phate Nidi.
Fiers. 1-ibr. Sequoia patiophylloides sp. מov.
rigs. A, Ia. Fremelopsis Hoheng!eri (Ett.) schenk.
Phate xhif.
líss. 1, 2. Williamsonia lexana sp. now.
Vig. 3. C'arpolithes Hareeyi sp. nov.
Fig. 4. Abictiles sp. :
Fig. 5. Carpolithes oborulus sp. nov.
Fig. 6. Cycalleospermum rotumilutum Font.

Fossil Plants from the Trinity of Texas.

Fossil Plants from the Trinity of Texas.

Fossil Plants from the Trinity df Texas.

Fossil plants from the Trinity of Texas.

OBSERVATIONS ON THE BLIND CRAYFISHES OF INDIANA, WITH A DESCRIPTION OF A NEW SUBSPECIES; CAMBARUS PELLUCIDUS TESTII.

BY
W. P. Hay,
(With Jlater xab-xLV.)

Juring the summers of 1891 and 1892 , while visiting the caves of sonther" Indiana, an opportunity was afforded me to observe the habits and to collect specimens of the blind rayfish, Cambarus pollucidus.

The first cave visited is known as Mayfield's Cave and is situated about 3 miles west of Bloomington, Monroe County. Hare nine specimens of a peculian variety were canght and consigned to the alcohol bottle.

No more craytishes were seen until I reached bedford, in Lawrence Comaty, although it is possible that they existed in the caves between the two places. The failure to find specimens was due to the heavy antumn rains which had so muddied the subterranean streams as to obscure everything in them.

Near liedford, in Down's lave, I collected two small specimens.
At Shiloh cave, 2 miles farther to the west, they were very rommon.
This cave is a capacions one, amd is traversed by a good-sized stream which will average a foot in depth. The hottom is of gravel and full of small stones which have fallen from the reiling. Λ few crayfish were fomd here, but it was in a small branch rumbing into the large stream abont one-eighth of a mile from the entrance of the cave that they were the most abmudant. The bottom of this branch is composed almost entirely of an exceedingly fine clay, with here and there a large rock which affords a ready hiding place for the animals.

When first observed, the craytish were generally, I might almost say always, resting guietly in some shallow part of the stream on one of the banks of clay. 'They lay with all their legs extended and their longe antemae gently waving to and firo. Once or twice I siaw them on the shore a foot, at least, from the water, and one of these appeared to have been digging in the soft mod. When in the water I found it almost impossible to cateh them with the net, and after a few trials threw it aside as useless. A much sume method was to approach them slowly
with the hand and then suddenly seize them. When once tonched they started off in great haste for some protecting rock, but often in their alarm would dart out upon the bank where they would lie mable to get back to the water. They did not appear to be at all semsitive to the light. I have often tried the experiment of slowly passing my candle batk and forth a lew inches above them, of of suddenly remos. ing the light and then bringing it chose again, but with no effect whatever.

Noise has no eftect: a lond eall or a shrill whistle they do mot notice. Nor does distmbing the waters seem to affect them, and it is only when they are tonched that they manifest lear.

The larger of these cratishes could intlict a pretty serere nip with their pinehers, but they did not appear to be so strong in this regatd as the outsidespecies.

When tirst taken from the water they were of a tramsherent pinkish White color with the stomach showing though as a blue body, but immersion in aleohol soon changed the color to an opatue white and obseured all traces of the internal organs.

At my tirst visit to Shiloh ('ave I obtained sistern sperimens and on the second visit thirty-five.

I was unable to find more specimens of the blind erayfish until I reached I'abli in (Orage Combty. Near this town I visited amall cave and obtained two specimens. It Otangeville, a little north of Paoli, they are satid to be quite eommon in Lost River. It Maremgo Cave the guide informed me that a lew sperimens had been obtamed. At Wyamdote Case they are satid to be, at some seasoms of the year, quite common, but at the time of my visit I secured only one small specimen. Howerer, in a small umbamed catre, abont one fourth of a mile distant from the main eave, I obtathed three tine specimens and wbserved another, which mamaged to eseape. I was informed that they were abomdant in other cares in the vicinity.

Atter rearhing home, a rarefal examination of the collection brought out the following facts-

Ot thity sperime ns fom shiloh ('ave, fourteen were males and sixteen temales. It needed very little examination to determine that they belonged to the species ('amborus pellucidus, but rather to the variety which Prof. Cope has desserbed as the vandety inermis than to the typieal tomm. The variation in the length of the rostrum and in the general spininess is very great. A eompleto series can be formed beginning with individuals povided very liberally with lateral spines and whose rostrum bears two sets of teeth mear the abomen, and then ruming down to sperimens which have the rostral teeth represented by only a salient angle amd with very weak lateral spines. All the specimens, however, had some spines, on the sides of the carapace, postorbital ridges, or rostrim. It was in only one sperimen, a female, that the rostral spines were missing.

Of the fourtern males, only one possessed hooks on both the third and fouth pairs of legs; the rest had them on the third pair only. In two cases, however, the hook on the fomth pair of legs is represented by a low, almost indistinguishable tuberde. This is also the case with one of the specimens fiom Wyandotte, and very close to the typical form. 'The Shiloh speremens with two pairs of hooks have the anterion ones rather strong and somewhat curved towarl the base of the legs. 'The posterior pair are about half' the length of the anterior. The hooks of the other specimens are of the same form, but are generally not so strongly developed. The sperfmens with a single pair of hooks probably belong to the second form of Hagen.

It may also be stated that, as a rule, fermberws pelluridns is smoother the finther north it ordurs. The material which I have collected myself, and all that, I have been able to obtain from others, will uphold me in this statement.

The small cave near Wyambote prodmees individuals of experding spininess, it being the exeeption to find there a comparatively smooth one.
('oming further north, fo laoli, we ean find murh smoother specimens, amd at Shiloh they are smoother still, while at Maydield's Cave, in Momoe ('omuty, ofers a fom emfirely without spines. So constant is this featme of smoothmess in the Maydeld Gave speremens and so different is its appearance from the typical pellucidns, that I think it is worthy of being characterized as a subspecies.

Cambarus pellucidus testii, sulsp. nov. IN. XLI.
Cambertes pellucidus l'atkarl. Monograph C'ave Animals of N. A., Mom. Nat, Acad. s‘i. Vol. IA. No. !., 1י. It;
Camberus pelmedus Faxon. Notes on N. A. Craytishes, I'oc. V. S. Nat. Musemm, Vol. xis, 1. 62l.
My attention was first drawn to the peruliar form of blind raydish from Mayfold's Cave, by my friend, Mr. Frederick C. Test, of the U. S. National Musemm, who sent me three siperimens collected by him in 1888.

On acoomit of the presence in these suecimens of hooks on only the third par of legs of the male, and other perembaties, I was mult inclined to think that they helonged to an entirely new and undespribed species, and it was for the express phopose of eollerting additional specimens that Mayfied's Cave was visited by me.

The craydishes are mot very abondant, only nine being taken. They ranged in length from $2 \cdot /$ to 68 millimeters. Six were malos and three females.

They differ from C. prelucidus in the great redurtion of the spines. Instead of being rough and very spiny, as the typical specimens from Mammoth Cave are described as being, they are antirely smooth. The lateral rostral spines are wholly gone, the post-orbital ridges are
smooth and romderd at the end, and the lateral spines of the carapace are at best represented by a few low, smooth tubercles.

The rostrum is shortened still more than in Prof. Cope's inermis, and instead of being "depply simated to form the acmen," rums to a point in a gradual eurve, very much resembling in this respeet ($'$. acuminutus.
The portion of the carapace in front of the cervical groove is shorter than in the areage of specimens from shiloh Cave, and conspicuonsly shorter than in specimens from Mammoth Cave. In respect to the hooks on the legs of the males I find the species variable. In none do I find hooks on both legs of the fouth pair; generally they are wholly wanting, but in some there is a small tuberele on one leg, which is missing from the other. The hooks on the third pair of legs are of a slightly different form from those of specimens from Shiloh or Wyandotte. They are shorter, blunter, and not curved.

The first abdominal appendages of the males don not differ in any respect from those of the typical C. pellucilus.

In the female the ammlus ventralis shows marked differences from the typical forms.

The antenual scales, also, are different in form, and especially in length.

Were it not for a few specimeus collected at Shiloh and one from Wyandotte, which in a few characteristics seem to approach the new variety and show an incomplete gradation into the typical form, I would feel justified in considering these Mayfield specimens as a disinct species.

More recently, Truett's Cave, a short distance from Mayfields, has afforded one specimen of the new variety.

It would thus appear that C. pellucidus testii occurs only in those caves which form the most northern and outlying part of the cave region of southern Indiana.
Following is a list of the localities in Indiana from which blind crayfish have been taken. It will be seen that they are seattered over a large part of the southem half of the State, and subsequent exploration will probably show that they exist in every cave provided with rumning water.

Truett's C'ave, Monroe County; Mayfield's C'ave, Monroe County; Shiloh Cave, Lawreme Comoty; Down's Cave, ${ }^{*}$ Lawrence County; Dumihne's Cave, Lawrence Combty; Comelly C's Cave,* Lawrence Comity; Domelsons: Cave, Lawrence Comity; cave at Clifty, Bartholomew Comen (F. C. Test, J. F. Newsom); cave near Paoli,* Orange Comoty; Marengo Cave, Orange County; Wyandotte Cave, Crawford County; small rave near and southwest of W yandoter Cave; Wild Cat Cave, near Wyandotte; ""aves in IIarrison Cometr:" "caves near Madison."

[^49]

Cambarus pellucidus testii, sp. nov.; large male. One and a half times natural size. The right chela, wanting in the specimen, is reproduced from left side.

$11)$

11

$1:$

1. Ventral surface of the thorax of C. pellucilus, showing the first joints of the legs with their hooks.
2. Same of C pellucidus testii.
3. Annulus ventralis of C. pelluciolus.
4. Antennal scale of C pelluridus.
5. Anmulas ventralis of C. pellucidus testii.
6. Antemnal scale of C. pellucidus testii.

7. 8, and 9. Rostra of C. pellucious, a semies showing different arrangement of spines. 10. Rostrum of C: pellucidues testii.

11 and 1w. First abdominal appendages of C: pellucidus tostii.
13 and 1f. First ahdominal apرendases of C. pellucidus.

THE SHOFAR-ITS USE AND ORIGIN.

$13 Y$
Cyrus Abler, Assislant Cierator of Oricntal Antiquities.

(With Plates XLVI-XIIX.)
The modern ofwish syagogut has preserved in its reremonial, among other customs, the use of the shofar, tramslated in the English version of the Bible "cornet." Several times during the service on New lear"s day, or Rosh hashamah, at the comelusion of the Day of Λ tonement, on the reventh day of the festival of Tabernacles or Sukkoth, Hoshímu Lubn, and during the antire month of Ellul, after the recital of the supplications or Nelichoth, the shofar is sombled. Its use on all these oncasions is not general and probably never was, but it still survives in many places. For the New Year's service it is the characteristic feature.

The shofar is usually made of a ram's horn, straightened and flattened by heat. All natural horns can be shaped either by heat or by cooking in oil. \dagger

The bore of the instrument is a cylindrical tube of very small caliber, which opens into a kind of bell of parabolic form. \ddagger

It is not only the solitary ancient musical instrument actually preserved in the Mosaic ritual, but is the oldest form of wind instrument known to be retained in use in the world. §

In the discussion of Wetzstein's paper, cited below, Prof. Steinthal pointed out that this was an instrument no doubt used in prehistoric times.

* In the abstract of this paper pullished in the proceedings of the American Orirutal Society, October, 1889, p. ClxMy, fil, I mate the request for the communication of additional information on the sulject, and I have been favored with some valuable suggestions from the late Prof. Paul de Lagarde, of Güttingen.
\dagger I have recently met a curious survival of the use and manufacture of a musical instrmment made of natural horn. While walking on Pemnsylvania avebue, Washingtom, Augnst 22, 1890, I saw a negro hoy about 10 years of age with a cow hom in his hand. He told me that he had cut off the end, shaped the monthpiece with a hot poker, and then seraped it with a knife. On being urged, hellew it quite casily. I endeavored to secure possession of it, but the boy declined to part with his handiwork.
\ddagger Musical Instruments IIistoric, Rare, and Unique, ly A. J. Hipkins, Edinburgh, Black, 1888, p. 12.
§ Ibid., p. 1, and South Kensington Museum Art Books, colited hy William Maskell; Musical Instrunents, by Carl Engel, London, 1875: Chapman \& Hall, p. 24.

There seems to he little doubt that it has been contimously used in the Mosaie service from the time it was established motil now．（Hip． lins，Xll）

FORM．
The shape of the instrmment varies eonsiderably．The modem ex－ amples are usbally Hat（lí，xıv，No．1）．＇Two ltalian specimens of the sevententh century preseme the form of the matmal hom；the tirst of these is in possession of the Rev．Dr．S．Morais，ot Philadelphia；it Was procured for him from Venice by lor．laaiah Lazaato，of Paduat． The second Italian specimen（II．XLN1，No．22）was eollected by Dr．H． Friedenwald，ath belongs to the National Museum collections．The salme shape is exhbited in a beatutal example figumed by Hipkius （I＇l．Xixu，No．1），preserved in the（ireat synagogne，Ildgate，London． A number of exellent specimens were brobght together at the Anglo－ dewish Historieal Exhibition，heh in London in 1ss．They are figured in the acempanying plates amd briedly deseribed in the list of illustra－ tions．Oceasionally the instrments contam Hebrew inseriptions．Nueh anone，fomm near Dessan，was exhibited before the Berliner（iesellschatt tiir Anthropolowie，Ethoologie und Lreeschichte，at the meeting of Mareh 20 ， 1 sion，and formed the subject of a valuable paper by T．（r．
 seribed instrment is in the possession of a lady in New York（IV，xLix， No．1）．The inseription reads：＂Happy are the people who know the somind（ot the shotar），＂and on the reverse，＂In the light of Thy come tenamee shall they walk．＂The inscription on the Dessan instrment consists of Isalah xwii， 13 （quoted below），and the two blessings recited by the person who blows the instrument：＂Blessed art Thou， O Lomd，our God，King of the Ghiverse，who has sametitied us with His commandments and commanded us to hear the sound of the shotar：＂＂Blessed ant Thon，O Lord，our God，King of the I＇niverse， who has comsed us to live，and preserved us，athd eathed us to reach this time．＂（Wetzstein，p．（60．）

The shofar was not the only matmal horn used by the lsmalites as a musical instrument，but no copies or representations of the other instru－ ments have come down to us．

Some commentators are of the opinion that the instrument known in the bible by the generie name of geren，was also made of rams horn， and was very nearly identieal with the shofier，the only ditherence being that the latter was more curved than the former．（Engel．，p．24．）

METHOD OF ぶOUNHIN（\％

The method of somnding the shofar has been handed down by tradi－ tion，though it varies slightly in ditherent rommunities．Three somads are employed：the shortest，or teqioa，a broken or intermpted sound，
shebrrim, consisting in the teqi"a, given three times, and torua, which is simply a prolongation of the eepi" . Tervia gedole, or the great temia, is merely an exaggeration of the simple sond of that name. The derman Jews sound the terián gedola or great teria". (Hipkins, p. xiii.)

The sound is profuced loy the ejection of a volume of air into the trumpet through the lips, which act as a reed, pressed against the ori fice of the trumpet.
According to Hipkins the embourhure of the shofar is very difficult, and but three proper tones are usually obtained from it, although in some instances higher notes ban be got. The short rythmic: flourishes are common, with mimportant differences, to both the German and Portuguese Jews, and consequently date from before their separation. These flourishes, as used in the ritual, are trai"a OC shebrerim $\mathrm{C}|\mathrm{GC}|$ GO \| Gand tería COCO \| OCOO \| COCO \| G usually a tongued ribruto of the lower mote. The gedolu is the great eqia concluding the flourishes (p. xiii). "The notes here given are those usually producel, but from the empirical formation of the embor-hure, and a pernlanity of the players lips, an octave is occasionally produced instead of the normal fifth." My own observation has led me to the conclusion that the production of the octave is fuite common. The fundamental, if obtained, is not regarded as a true shofar note.

Wetzstein gives the following musical notation.

Arcording to Mishnu Rosh hushana (iv, 9) the order of sounding the shofar is as follows: thee somend are blown thrice. the time of the duration of six teqiess is equal to that of three terius, and that of each teri" a is equal to three sighs or moans.

From this it would appear that the interrupted somd or shebarim was not known when this Mishna was written. This conclusion, however, can not be drawn with certainty.

THU SHOFAR IN THE LITURGY.

Portions of the liturgy for New Year's Day have especial reference to the sounding of the shofar. First among these is the hymn, Adonai beqol shofar, by an unknown author: "With the somel of the trumpet will the Lord publish salvation, to assemble the sattered sheep at the coming (accomplishment) of the vision of salvation. (Gorl is exalted with a triumphal shout."
"With the sound of the trumpet God canses a voice to be heard from heaven, on the holy mountan, and on Jerusalem; then shall the place be established, by Thy right hand shall be restored to its primitive state. Gool is exalted with a triumphal shout."

Proc. N. M. 93-19
"With the sound of the trumpet the Lord will reveal the period and appointed time, when He will blow the trumpet and go in the whirlwinds ol the south; then shall the wieked kingdom of Edom be destroyed. "God is exalted with a trimmphal shout."
"O Lord, with the sound of the trumpet wilt Thou blow upon the holy mountain; the beautiful dwelling of Zion wilt Thou expand; Mount Seir shall be rent; the fixed stake shall be plucked up and removed. God is exalted with at trimmphal shout."

This is followed by thymm composed of the various passages (to be disenssed later on) in the Bible, in which the use of the shofar is mentioned. The sounding of the cornet thereupon follows.

The liturgy of the German and Polish Jews contains the ten reasons for sounding the shofar stated by Saadia Gaon.*

Rabbi saadia observes that God commanded us to sound the cornet as alluding to the following subjects:

First. Becanse this day is the begiming of the creation on which God reated the world and thus began to reign over it; and as it is customary at the coronation of kings to sound the trumpets and cornets to proclaim the commencement of their reign, we, in like manner, publiely proclaim, by the sound of the cornet, that the Creator is our king, and thus says David, "With trumpets and the sound of the cornet shout ye before the Lord."

Second. As the New Year is the first of the ten penitential days, we somul the cornet as a proclamation to admonish all to return and repent, whieh if they do not, they can not plead ignorance, as having been finlly informed. Thus also we find earthly kings publish their decrees that none may plead ignorance thereof.

Thime. To remind us of the law given on Mount Simai, as it is sath, Exodus xix, 16, "and the voice of the cornet was exceedingly loud," amd that we ought to bind ourselves to the performance thereof, as our ameestors did, when they sald, "All that the Lord has satid, will we do, and be obedient."

Fourth. To remind us of the prophets who are compared to watehmen blowing the trumpets as mentioned in Ezekiel xxxin, 4, "Whosoever heareth the sound of the cornet and taketh not warning, and the sword ameth and taketh him away, his blood shall be upon his own head, but he that taketh warning shall save his life."

Fifth. To remind us of the destruction of the Holy Temple, and the terrifying alam of the enemy's warmions shouting to battle as mentioned in Jeremiah iv, 1!, "beramse thon hast heard, oh my soul, the somd of the trompet, the alarm of war," and therefore, when we hear the sound of the cornet, we ought to beseech the Almighty to rebuild the Holy Temple.

[^50]Sixth. To remind us of the binding of Isaace who willingly submitted himself to the will of Heaven; thus ought we also willingly submit even to death itself, for the sanctification of the unity of His holy name.

Seventh. That wheu we hear the sounding of the cornet we may, by the dread thereof, be induced to humble ourselves before the Supreme Being, for it is the nature of these martial wind instruments to produce dread and terror. As the prophet Amos observes, "shall a trumpet be blown in a city and the people not be terrified?"

Eighth. To remind us of the great and awful day of judgment on which the trumpet is to be sounded as mentioned, Zephaniah I, 14-16: "The great day of the Lord is near, it is near and hasteneth much, a day of the trumpet and of shouting."

Ninth. To remind us to pray for the time when the outcasts of Israel are to be gathered together, as mentioned, Issiah xxvir, 13, "and it shall come to pass in that day, the great trumpet shall be sounded and those shall come who were perishing in the land of Assyria."

Tenth. To remind us of the resurrection of the dead and the firm belief thereof, as the prophet Isaiah saith "Yea, all ye that inhabit the world, and that dwell on the earth, when the standard is lifted up on the mountain, ye shall behold when the trumpet is sounded, ye shall hear."

The Biblical passages relating to the trumpet are again employod in the additional service or Musaf, which is read on Sabbaths and holidays in place of the additional sacrifice commanded for those days.

In Mishna Rosh hashana (IV, 5) minute directions are given as to the nature of the Biblical passages to be employed.

The order of the blessings is as follows: Aboth (relating to the forefathers), qedushath hashem (relating to the holiness of God), and geburoth (relating to the greatness of God), and joined with them are the malkiyoth (relating to God as king), and the shofar is not sounded; then come texts concerning the holiness of the day, after which the shofar is sounded; then follow the zikronoth (memorials), after which the shofar is again sounded. Next follow the shofaroth (relating to the shofar), and the shofar is sounded; he then says abodth (worship), horli'ah (thanksgiving) and birkath kohanim (the priestly blessing). Suct is the opinion of Rabbi Jochanan ben Nourrie; but Rabbi Aqiba objected saying to him: "If the shofar is not to be sounded after the reading of the malkiyoth why are they to be mentioned?" But the proper order is the following: Aboth, geburoth, and qedushath heshem are said with which the malkiyoth are to be combined; after which the shofar is to be sounded, then the zikronoth are to be read, and the shofar sounded; next shofaroth and the shofar is again sounded; after which abodah, hoda'ah and birkath kohanim are said. Mishma Liosh hushume (Iv, 6) provides that no less than ten texts relative to malkiyoth, zilironoth, and shofaroth must be said.

Part of the Bible lesson of the day consists of a recitation of the sacrifice of Isaac, and there is a hymn in the service which dwells on
the incident. It is possible that it was sought to establish a basis for the sacredness of the Ram's horn from the fact that it was a ram or 'oyil which was callght in the thickets by its horns and which served as an offering instead of Isaac. In Talmud hosh hushoun we read "Ye shall blow before me with a shofar of a ram, in order that ye may be reminded of the sacrifice of Isatac, the son of Abraham."

The hymn referred to above contains the acrostic Abbas, Judah, Sammel: i. e., Judah ben Samuel ibn Abbas, a poet of the twelfth century, who traveled from Spain to the Orient, and afterward became Rabbi of Fez.*

misinic regulations.

The Mishna permitted the use of any horn. In Rosh hashana in, 3, we read: " Every kind of horn may be used because it is a qeren." Rabbi Jose remarked, are not all shofars called qeren (horn)? (doshua vi, 6.)

The shofar of New lear's day was usually the straight horn of a yatal, a kind of antelope or wild goat (chamois), the mouthpiece of which was covered with gold; while the shofar of fast days was a ram's horn whose mouthpiece was covered with silver.

The statute is found in Mishnah Rosh hushome In, 3: "The shofar of the New Year was the straight horn of a yal, the mouthpiece of which was covered with gold, and two trumpets were placed on either side. The sound of the shofar was prolonged and that of the trumpets made short, because the command of the day is for the shofar; (IV) and on fast days crooked ram's horns were used, whose mouthpieces were covered with silver and two trumpets were stationed between them. 'The sound of the shofar was made short and that of the trumpets prolonged, because the command of the day is with reference to the trumpets (V). The year of the jubilee is like the New Vear with respect to the sounding and the blessings. Rabbi dehudah, on the contrary, says: "On New Year they sound with the horms of rams, and at the Jubilee with chamois."

The instrument used in the modern synagoge has no adormments. It probably represents a more ancient form than the instrument described in the Mishua.

A shofar, which had been broken and joined together could not be employed, though its use was admissible, if it contained a hole which had been closed so as not to interfere with the sound. \dagger

In the modern synagogne the shofar is not sounded on New Year's day when it occurs on the Sabbath. This seems to have been the

[^51]ancient rule after the destruction of the temple, though it was subject to some modification. *

Mishna Rosh hashana, iv, provides that some person other than the reader shall sound the shofar. \dagger

biblical Passages.

We will now proceed to examine the biblical passages with reference to the shofar. Its use for religions exerrise is prefaced by the presence of its sound at the giving of the law. (Exodus, xix, 19; xx, 18.)

It is mentioned with other instrmments as atting amomement of the new moon. The solemn feasts were similarly announced. New Year's day was a "memorial of blowing," though it will be noticed that the passages in the Pentateuch which refer to this day, both use the word "teru"ah," or blowing, without expressly mentioning the shofar itself.
"Speak to the children of Israel as follows: In the seventh month, on the first day of the month, there shall be to you a Sabbath, a memorial of blowing, a holy convocation" (Lev., xxin, 24), while in another patssage it is simply called "a day of blowing" (Numbers, xxix, 1).

Special feasts or solemn assemblies for particular purposes were announced by the blowing of the shofar. (Joel, II, 15.)

The great year of release, which occured after the enumeration of seven times seven years, was annomeed by the soming of the shofar, not at the beginning of the year, on New Year's day, as might be expected, but ten days thereafter, on the Day of Atonement. (Leviticus, XxV, 9.)

In Isaiah's vision of the great day of judgment the shofar is blown

[^52]to assemble "those who are lost in the land of Asshur and those who are outcasts in the land of Egypt." (xxvir, 13.)

When David removed the ark to Jerusalem the somed of the shofar was heard in the procession. (II Samuel, vi, 15; I Chron., xr, 2s.)

It is mentioned along with other musical insirments as a proper acrompaniment of patmody. "Praise Him with the blowing of the shofar, praise Mim with the psaltry and the harp." (Ps., cl, 3; cf. also xevili, 6.)
Some years ago I was informed it had been introduced into opera by an Italian composer, with what snecess I do not know.

war horn.

The most ancient use of signals of any sort was no donbt to apprise a tribe of the coming of an enemy and to call together the clansmen for defense. Possibly the earliest, certanly the most frequent use of the shofar in Israel, was for military purposes.

The ancient Egyptians used a trumpet for military purposes, but it was a long, straight metallie instrument like the Hebrew haçocera. (Wilkinson, I, 104f.)

The troops seemed to have marched to its notes. (Ibid., woodcut 289, and Rawlinson, History of Ancient Egypt, Vol. I, p. 491.)

The shofar could be heardat a great distance. There is an allusion to its loudness in Isaiah (lvin, 1): "Cry with a full throat, spare not, like the shofar lift up thy voice, and declare unto my people their transgression, and to the house of Jacob their sins."

It played an important part in the imposing demonstration made before the walls of Jericho. (Joshua, vi, 4, 5, 6, 8, 9, 13, 16, 20.)

When Gideon was filled with the spirit of the Lord he assembled the outlaws who composed his army by blowing the shofar (Judges vi, 34). Each man carried one of the instruments and the noise thereof very materially contributed to the surprise of the Midianite army. (Judges, vir, $8,16,18,19,20,22$.)
In the actual narrative itself, the shofar is not as frequently mentioned as the constancy of its use for certain purposes might lead us to expect. The infrequency of its mention is in a way, however, a sort of evidence of the fiequency of its use. The blowing of the bugle is as regular a part of a charge as the horses on which the cavalry is mounted. Its picturesqueness would naturally strike the mind of a poet and so the references to the shofar in the prophetical books are numerous.

In the following nineteen passages from the prophets, the shofar symbolizes war:
"Tell ye in Judah, and publish in Jerusalem, and say, Blow ye the shofar in the land: call out, gather together, and say, Assemble yourselves, and let us go into the fortified cities." (Jeremiah, iv, 5.)
"My bowels, my bowels! I am shaken, at the very chambers of my
heart; my heart beateth tumultuonsly in me; I can not remain silent; because the sound of the shofar hast thou heard, 0 my soul, the alarm of war." (Jeremiah, Iv, 19.)
"How long shall I see the standard, hear the somd of the shofar?" (Jeremiah, Iv, 21.)
"Assemble, O ye children of Benjamin, to flee out of the midst of Jerusalem, and in Thekoa, blow the shofar and on Bethhakkerem set set up a fire signal; for evil is seen (coming) out of the north, and great havoc." (Jeremiah, vi, 1.)
"Then did I set watchmen over you, (saying) Listen to the sound of the shofar. But they said, We will not listen." (Jeremiah, vi, 17.)
"Saying, No; butinto the land of Egypt will we go, that we may not see war, nor hear the sound of the shofar, and that we may not have hunger for bread; and there will we dwell." (Jeremiah, xlif, 14.)
"Lift ye up a standard in the land, blow ye the shofar among the nations." (Jeremiah, LI, 27.)
"And if he see the sword coming over the land, and blow the shofar and warn the people." (Ezekiel, xxxir, 3.)
"And whosoever heareth the sound of the shofar and taketh no warning; and the sword cometh, and taketh him away, his blood shall be upon his own head." (Ezekiel, xxxiir, 4.)
"The sound of the shotar hath he heard, and he hath taken no waming; his blood shall be upon him. But had he taken warning he wonld have delivered his soul." (Ezekiel, xxyir, 5.)
"But if the watchman see the sword coming, and blow not the shofar so that the people be not wanned, and the sword cometh, and taketh away from among them some person, this one is taken away for his iniquity; but his blood will I require from the watchman's hand. (Ezekiel, xxxiri, 6.)
"Blow ye the shofar in Gib'ah, the trumpetin Ramali; blow the alarm at Beth-aven. (The enemy is) after thee, O Benjamin." (Hosea, v, 8.)
"Set the shofar to thiy month. (Let the enemy come) like the cagle against the bouse of the Lord; because they have transgressed my covenant, and against my law have they trespassed." (Hosea, viri, 1.)
"Blow ye the shofar in Zion, and somed an alarm on my Holy Monnt; let all the inhabitants of the laud tremble; for the day of the Lord cometh, for it is nigh." (Joel, II, 1.)
"And I will send a fire against Moab, which shall devour the palaces of Keriyoth; and Moab shall die in the tumult, in the shouting, amidst the sound of the shofar." (Amos, ir, 2.)
"Shall a shofar be blown in a city and the people not become afraid? Shall there be evil in a city, and the Lord have not done it." (Amos, Hi, 6.)
"A day of the shofar and alarm, against the fenced cities, and against the high battlements." (Zephauiah, I, 16.)
"With impatient noise and rage he holloweth (with his hoof) the
ground, and keepeth not quict when the shofar's voice (is heard)." (Job, xxinx, 24.)

OTHER USESS.

From the Talmud we learn that the use of the shofar as a note of alarm of war was transferred to other seasons of danger and distress. Famine, plague of locusts, and drought (Mishma Tanith, I, 6) occasioned the blowing of the shofar.

The shotar was employed at the public ceremony of excommunication.* (Wetzstein, p. 67.)

A very curions use of the shofar in later times was in funcral ceremonies (Wetzstein, p. (67). I agree with Wetzstein that this use of the instrument is quite apart from the usual Semitic custom aud was probably borrowed.

As a signal instrument of war it had varions uses, possibly aceording to the note that was blown. It was the signal for going out to battle, for the amouncement of a victory, and for a recall of the troops.

It was with the shofar that Ehud assembled the people. "And it came to pass, when he was come, that he blew the shofar on the momtain of Ephraim, and the children of Israel went down with him from the mountain and he before them." (Judges, int, 27.)
"And again there happened to be a worthless man, whose name was Sheba, the son of Bichri, a Benjamite, and he blew the shotar and said, 'We have no part in David, nor have we any inheritance in the son of Jesse; every man to his tents, O Isiatel." (II Samuel, xx, 1.)

Isaiah refers to this use (xym, 3) : \ddagger " All ye inhabitants of the world, and dwellers on the earth, when the risign is lifted upon the momtains, see ye; and when the shofar is blown, hear ye."

When Jonathan had defeated the Philistines in Geba, "Sanu blew the shotar throughout all the land, saying, Let the Hebrews hear," (I samuel Xin, 3,), and thus beeome aromanted with the victory.

It announced the end of the struggle between domer and Joab which succeeded the death of Saul. (II Sammel, in, 2s.)

Alter the death of Absalom, which really euded the revolt against David, doab blew the shofar and the people returned from pursuing after Israel. (II Sammel, xviir, 16, ef. also II Samuel, xx, 22.)

The shofar was employed to annome the comation of a king. This may be considered hat a feature of its use for military purposes, since, as some of the passages about to be quoted show, the coronation

[^53]of the king and the amonncement of his victory over some other tribe or faction were one and the same event.

When Absalom was engaged in the revolt against his father he sent spies among all the tribes of Israel amouncing his intentions and informing them that when they heard the shofar sombled they might say that he had become king. (II Samuel xv, 10.)

In the directions given with regard to the coronation of Solomon the nse of the shofar is expressly mentioned (I Kings, 1,34 and 39), and its sound affrighted Adonijah and guests at their banquet. (I Kings, I, 41.)

The overthrow of the honse of Ahab and the coronation of Jehu were proclaimed in the same way. (II Kings, 1x, 13.)

ETYMOLOGY.

The etymology of shofar is not at all clear. Gesenius derived it from the stem shafar" to be bright, clear, beantiful-possibly on account of its clear sound," but this is hardly satisfactory. The editors of the eleventh edition of (xesenins retain the same explanation. *

Nothing can be learned from Arabic sabburot This is simply borrowed from the Talmudic form sippura or šippar, the b in Arabic representing the Hebrew p, as the Arabic possesses no p, bat only f. \ddagger

The trumpet now used by the Arabs of Asia Minor, which they call seifur, is a metallie instrument. It is possible, however, that the word was originally applied by the Arabs to an instrument of horn.§

The Arabian Jews called the shofar šutuf. We may, however, get some light from Assyrian. If

According to Stade (Grammar, par. "18a) the Hebrew shofar stands for a form suppar, and exactly this form has been found in Assyrian. In a cuneiform list of animals (II Rawlinson, vr, 6 ed) we find, following "tûdu, "he goat," the word šaptoru, which is accordingly the name of an animal, possibly of the goat order. The word also occurs in a

[^54]bilingual incantation (V Rawlinson, 50,17 - 196) deseribing the action of the disease called nsulitiu. The passage reads: turihut inn quqquedis̃u u
 goat by its head and homs it seizes, the he goat, the sappar of the momtain, by its sappartu it seizes." Here sappurlu undoubtedy means "horn," being the feminine form used in semitie to demote lifeless objeets (Gessmins, Gammar, par. 107, :3, "1); the conclusion would, therefore, be that the shotar is so called beramse it was griginally made of the hom of the species of quat called sapper.* The Itebew shof ar corresponds to Assyrian seppartu, it being worthy of notice that shofar, althongh not possessing the feminime fermination in the singulat, ahways makes a feminine pharal.

In the disenssion on the Wetzstein paper Mr. Hartmann suggested that the peculiar shape of the horn given to it artificially was intended to imitate the shape of the hom of some wild amimal, possibly the wild sheep (Oris cyprias); not that I appehend that the suggestion is exatly correct, since, as will be seen, the shape is mot uniform. The suggestion, however, that the hom was mot that of a domesticated animal, hot of an animal more difficult to get, seems to have a extain inherent probability.

Wetzstein is of the opinion that the use of the ram's hom may have been borrowed by the lisaelites and goos back to a people who were engaged solely in the care of sheep. lisy these it was used ats a signal of alam.

SIMIL.AIE INNTRUMENTS.

Varions ancient and modern nations have used the homs of animals for wind instruments. The following specimens are preserved in the collection of musieal instruments in the U. S. National Musemm.

At the time of the Festival of the Prophet the Berbers use a horn which comsists of two rams' horns joined at the ends and provided with metal month-pieces. This instrment is mow called \%amr. The sperimen belongs to the National Musemm and was colleeted ly Mr. Talcott Williams.

The shringa, "an ancient ontdoor wind instrument of the horn specees. It is commonly known as the ladian hom. It was the tavorite instrment of the Hinduged Siva." It is a common ox or butfato how of dark color, seraped and polished, the tip cut oft and the embomehure enlarged and shaped with a hot iom. It is $12!3$ inehes in length and the diameter varies trom tise eighthe to $0 \cdot \frac{2}{2}$ inches. In form it differs in nowise from the shotir. (Plo xuvi, No. 4.)
The E'mbuchi, also known as the I'onza, I punze, and Oukpee, an Atriram trompet or war horn made of an elephant's tusk, the matural cavity

[^55]forming the bore of the horn. (Pl. xlvi, No. 10.) The embonchure is formed on the inner or concave side of the tusk, the ivory being worked away so as to leave a projecting monthpiece 35 inches long, $1 \frac{1}{2}$ inches wide and one-half inch high. The instrment itself is $21 \frac{1}{2}$ inches long; the diameter tapers from $3 \frac{1}{2}$ by 33 to three-fourthsof an inch. It is made by the Palla Balla negroes of the Jower Congo.

African war horn made of elephant's tusk, rudely carved about the mouth hole amd smaller end. It is suspended by a rodd of human hair semnit. The natmal cavity forms the bore of the horn. The embouchure is made in the concave side of the horn and is elliptic in shape. The instrument is 20 inches long, the diameter of the bell being 3. inches. There are four other war horns of clephant's tusks, made in varions parts of Afriea, which do not differ in form from the specimens described above.

The natives of Sumatra use a trimpet made of the horn of a cow.*
The earliest metal trompets were constructed on the same principle as the shofar, and in some cases the form of the instrument is plainly a copy of some hatural horn. \dagger

In one of the smatler monnds at Tello, M. de Sarzec discovered a fragment of a large bronze statue. "It was," he says, "a life-sized bull's horn of bronze plating, mounted on a wooden frame, but the wood was carbonized by the action of tire."

There is a Siamese engraved copper horn in the U. S. National Museum shaped like a buffalo horn. (Pl. xlvi, 5.) The British Mu. seum possesses a bronze Vtruscan cormu (engraved), constructed on the same principle (Engel, p. 33). Of similar pattern was the tuba. Both the cormu and the tuba were employed in war to convey signals (ibid., p. 36).

The Greeks had a curved horn, keros, made of brass, and a straight horn, salpinx, exolusively used in war (ibid., p. 32). Trumpets are often mentioned by writers who have recorded the mamers and rustoms of the Indians at the time of the discovery of America (ibid., 1. 67). No specimen of such trumpets have so far been discovered among North American aboriginal remains. A wooden wind instru ment is in use among the Carvadoo, an Indian tribe in Brazil. "With this people it is the custom for the chief to give on his war trumpet the signal for battle, and to continue blowing as long as he wishes the battle to last" (ibid., p. 69).

The metallic: descendant of the Indian buffalo horn, the shrimg, mentioned above, is the runa shringa, an outhoor instrument made of copper, formerly used in military and now miversally in religious processions throughout India, both by Hindus and Mohammedans, the

[^56]performers usally being Hindus of the lower caste. In the villages of sombern and central hadia the watchmen bow it at sumset and at certain hours of the night, like the (iemman nachtwachter. In large rities a hem-blower is always attached to the police. There is seddom a guard or detachment of mative irregular troops without one. It is employed in all processions, temple services, marriages, and other festive occasions, and at funerals.*

Another timmet of the same class is the kuma, used chiefly in religious processions, or in testivals in honor of local divinities. Only Brahmins and persons of a certan rank are permitted to use the kurna. It is esteemed by all Brahmins to be the most ancient instrument of music in existence, and the somm of it to be especially pleasing to the gods in varions particular ceremonies and at solemn parts of the sactitices (Cf. Ibid. loc. cit.).

OONCLUSIONS.

In conclusion, the following deductions, which seem to be legitimate, are drawn, though all are not advanced with equal confidence:
(1) The oldest wind instrument used by inland peoples was the hom of an animal, with a natural cavity, and a monthpiece formed by cutting off the end. Horns which required hollowing came later into use.
(\because) These horns were orginally used as siguals in time of danger and for making announcements in general.
(3) Many of these important amome ements had a religions chatarter. The antiquity of the instrument cansed its permanent adoption for sacred purposes.
(f) The shofar, speaking espeeially of the instrument of that name, was originally a wind instrument, made of the horn of a wild groat. Its sacred character may be comected with sacrificial use made of the goat.
(5) The etymology of the word is to be sought in the Assyrian sutppar, a spectes of wild goat; $\dot{\text { suppartu}}$ (the feminine form) meant orginalls the hom of the sappar, and it may afterwards have been used for hom in general.

Tribes dwelling near the sea used shells for the same purpose. Bib. lical Hehew possesses two other words for the horn of some sperial animal, feren and yolel, which were originally applied to animals. It is interesting in this commedion that Hebrew geren, Latin comn, and English horn are all used both for a wind instrument and for the horn of an :mimal.

* Cf. ('apt. Moalows 'raylor. Proceedings of the Royal brish Academy, Vol. 18, 11.1, 1. 110.

LIST ON ILLUSTRATIONS.

Plate: XLVI.

Fig. 1. Modern shofar, ordinary form. Museum collections.
2. Shofar; Italian form. Museum collections.
3. African war horn (antelope). Mnsoum collections.
4. Shringa (Imlia). Mnseum collections.
5. Sismese coppor horn. Museum collections.
6. Large African war horn of ivory, from plaster cast in National Musenm. Original in musemm of Wesleyan University, Middletown, Conn.
7. Small Λ frican war horn of ivory, from plaster cast in National Musemm. Original in museum of Wesleyan University, Mildletown, Conn.
8. Ivory war horn: Byanzi, Africa. Museum collections.
9. African war horn. Museum collections.
10. Embuchi ; ivory war horn, Pala Ballas, Africa. Museum collections,
11. Ivory war hom ; west coast of Africa. Musenm collections.
12. Ivory war horn; Byanzi, Africa. Museum collections.

llate XlVII.

Fig. 1. Shofir, of the great Synagogue, Aldgate, London. Photograph from Hipkins.
2. Shofar, exhibited at Anglo-Jowish exhibition. Supposed to belong to tho preexpulsion period (1290) of the English Jows. From a photograph. (Catalogize No. 2.)
3. Shofar, carved and with inscription. Photographed from Wetzstein's papor.

Plate Xlvifi.
Fig. 1. Shofar of the oightoonth contury, from Bagdad. Exhibited at the AngloJewish oxhibition. Enlarged from a photograph. (Catalogue 1546.)
2. Shofar, exhibited at the Anglo-Jewish exhibition. Enlarged from a photograph. (Catalogue 1537.)
3. Shofar (black from age) belonging to the great Synagogne, London. Exhibited at the Anglo-Jowish exhibition. From a photograph. (Cataloguo 1548.)
4. Shofin, oxhibited at the Anglo-Jewish exhibition. Enlarged from a photograph. (Catalogne 1536.)
5. Shofar nsed by the Bene-Israel, a colony of Jews settled in Bombay and neighborhood. It was bronght from Aden, and is said to be made of tho horn of an animal called the "cudoo." Exhibited at the Anglo-Jewish exhibition. Eularged from a photograph. (Catalogue 920.)

Plate XLIX.

Fig. 1. Shofar in possession of Miss Elizabeth F . Aaron, Now York. Photograph from the original drawing through the courtesy of the Century Company, New York.
2. Shofar belonging to the Great Synagogne, London. Exhibited at the AngloJowishexhibition. From a photograph. (Catalogue No. 1550.) Inscribed.

[^57]
$: 3$

:7.2987

$\therefore 1$ $x x^{2}$

3

1. Shofar of the Great Synagogue, Aldgate, London
2. Shofar, supposed to belong to the preeixpulsion period (1200) of the English Jews.
3. Shofar, carved and with inscription.

5

4

.

*

1. Shofar of the wighteenth century,
from Bagdad.
2. Shofar exhibited at the Anglo-Jewish exhibition.
3. Shofar (hlack from age belonging to the Great Synagogue, London
4. Shofar exhibited at the Anglo-dewioh exhibition
5. Shofar used by the Bene-Isratel.

LIST OF DIATOMACE FR FROM A DEEP-SEA DREDGING IN THE ATLANTIC OCEAN OFF DELAWARE BAY BY THE U. S. FISH COMMISSION STEAMER ALBATROSS.

BY

Albert Mann.

In presenting this list of species of the Diatomacer, accompanied with mounted specimens, which I have discovered in the first of the deep-sea Atlantic dredgings submitted to me for examination, I wish to offer some general results of the investigation.

This dredging was taken by the United States steamer Albatross at Station No. 2721, being in latitude $38^{\circ} 56^{\prime} 00^{\prime \prime} \mathrm{N}$. and longitude $72^{\circ} 11^{\prime}$ $30^{\prime \prime} \mathrm{W}$., and in 813 fathoms of water. The species found (numbering 145 , and with varieties 156) comprise not only marine forms, but a large number that are known to be fresh-water, and some found hitherto only in a fossil state.

Before treating the material with acids I carefully eximmined it as it was sent to me, preserved in alcohol, and discovered that none of the frustules contain a particle of endochrome or organic matter. This, taken in connection with the depth of water, the large number of species represented, and the before-mentioned fact that there are many freshwater and fossil as well as marine forms, makes it evident that the entire deposit is composed of fine detritus gradually sifted down upon the sea bottom and conveyed there by currents from a considerable distance.

The Delaware River has without doubt supplied most of the material of this dredging, as it empties into the ocean almost directly west of the locality where it was taken, and as most of the forms (marine and fresh) are such as are common in rivers and streams of correspondingly temperate latitude.

An interesting corroboration of this is to be found in one of the fossil species, Navicula Schultzei Kain. This diatom was originally discovered in material from an artesian well at Atlantic City, N. J., at a depth of 406 feet, by Mr. C. H. Kain, of Philadelphia, Pa., and named by him. The same stratum however, outcrops at several places along the Delaware River watershed, notably at Shiloh, N. J., and this diatom, with, perhaps, Raphoneis gemmifera Ehrb., and other of the fossil forms, could have gotten into this dredging in no other way than by being brought by the Delaware River from some of these outcrops. But there are some forms occurring abundantly in this deposit which are essentially tropical; these
may have been comvered here by the (iull Stream, which llows northward near this point.
liy laborions examination of nearly all the literature on the Diatomarear I fomb it moneressary to give a new name fo a single one of the many speces diseowered. This is really a canse for rongratalation, for, howerer entiding to the insestigator the opportunty of naming "new forms" may be, it is at thing to be avoided whenever possible. All separtments of natmal sefence are afliced with a host of umwarranted names, and none more so than that of the liatomacea, where at
 reason I have been compelled to make, in the pages following, antmber of corrections of fimiliar names.

The entire absence of new species in this wathering is an adrlitional confirmation of the statement that it is entirely the product of transportation; since diatoms found growing at so untsual a depth would havo quite certainly supplied some hitherto unkown forms.

Following is a list of gemera and species fomd, logether with referraces to the drawing and deseriptions in published works by which they were identitied.
Actinocyclus crassus W. S. (Van Iteurck's Synopsis, pl. 121, fig. 8. Smith's B. D., pl.4, lig. 41.) Very searce.

Actinocyclus Ralfsii W. S. (Van Heurek's Synop., pl. 12:3, lig. 6.) Common.
The forms here foum are somewhat intermediate between the above and A. Ehrenbergii Ralfs. In fact, these two species are known to grade into eath of her by almost indistinguishable forms; so that it is probable they should constitute only varieties of one species.
Actinocyclus Ralfsii, , :ar. sparsus ($=$ Eupodiscus sparsus, Greg.). (Iritchard's Intinsoria, p. 835; Moebius's Plates, pl. 12, fig. 17.4.) Frequent.
Actinocyclus subtilis Ralfs. (Yan Heurck's sin., pl. 124, lig. 7, pl. 125, figs. 9 and 11.) Scarce.

Actinoptychus hexagonus (irm. (Schmidis Atlas, pl. 1, lig. 1is.) Very nearce.
Actinoptychus splendens halfs. (Van Heurek's Syn., pl. 119, figs. 1-4, pl. 120, figs. 1-6.) Frequent.
Actinoptychus undulatus Ehrh. (schmilt's Atlas, pl. I, fige. 1-fi.) Common.
Amphiprora ornata Bail. (Van Heurek's Syn., pl. 29. bis, fig. 5.) Very searco.
Amphora bigibba (irm. (Schmidt's Allas, pl. 25, figs. 69-70.) scarce.
Amphora cingulata Cleve. (Schmidt's Allas, pl. 2th, tig. 17.) Very searee.
Amphora cymbiffera Greg. (Schmidt's Atlas, pl. 27, figs. 17-18.) Scarce.
Amphora obtusa (ireg, (Selmidt's Atlas, pl. 10, lig. 16.) searce.
Amphora porcellus litton (A. novee-calidonize (irum.). (Schmidt's Athas, pl. 33, tig. 15.) Scarce.
Amphora proteus (ireg. (Schmidl's Atlas, pl. 27, fig.3, pl. 28, fig. 9.) Frequent. Amphora sulcata Breh. (1'ritchard's Infusoria, p. 88:3; "The Lens," pl. 2, tig. 11, and pro. 75-76.) Very searce.
Asterionella fomosa llassal. (Van Heurek's Syn., pl. 51, fig. 22.) ('ommon.
Asterolampra Marylandica Ehrh. (Moehius's llates, pl. 32, tigs. 1-1.) Smarco.
Asteromphalus Brookei Bail. var. (Schmiltis Athas, pla : is, lig. 3.) Prequent.
Although Prof. II. I. Simith's shgestion, to mite the genus Astrom-
phalus with the former gemes, is along the lime of muth needed abrider. ment; it yet seems that, as most of the genera are now constituted,
there is sufficient difference between these two to warant their remain ing separate.
Asteromphalus flabellatus (irov. (Schmidt's Allas, pl. 3x, fig. 10; Moshins'н I'lates, pl. 21, fig. 5.) Frequent.
Asteromphalus Shadboldtianus (rrev. (Schmidt'н Λ tlan, pl. 3к, lig. 17; Moohins'н Platef, pl. 33, fig. 19.) Scarce.
Auliscus caelatus Bail. (Sehmidt's Λ tlas, pl, 32 , figs, 14-15.) Vory scarco.
'The only species found of this prolifie genus.
Biddulphia aurita Lyugh. (Schmidt'н Atlan, pl. 120, tign. 5-10, pl. 122, fign. 1-X.) Common.
Biddulphia Tuomeyii Jrehn. (Schmidt's Atlan, pl. 118, fign. 1-7, pl. 119, fign. 1-X.) Common.
Chaotoceros coarctata Land. (Landor's Jong Kong, pl. X, fig. X, page 7! ; (ilevo's Java, pl. 2, fig. 10.) Frequent.
Chaetoceros varians latmd. (Bacteriastrum varians, ete.). (Morbius'н llatr, pl. 56, figs. 1-f.) Frequent.
The genns Bacteriastrum is rightly incladed in riftefoceros; different frustules in the same filament often displaying the chanacteristies of both.
Cocconeis distans (ireg. (Pritchard's Luf., pl. 7, fig. 38, phye 870.) Scarce.
Cocconeis placentula Ehrls. (Van Henrek's Syn., pl. 30, figs. 2(i-27; Moelsins'н plates, pl. 4, fig. 1.) Prequent.
Cocconeis scutellum Ehrb. (I'ritehard's Inf., page 8i9; Van Heurek's Syn., pl. 29, figs. 1-2.) Common.
The above figures and deseription by Mr. Ralfs appear sufticient to soparate this from U. distans.
Coscinodiscus asteromphalus Ehrh. (hchmidt's Λ thas, pl. Gis, ligs. 1-2'; pl. 113, fig. 22; Van Heurck'н Syn., pl. 130, figs. 1 and 5; I'xitchard's Inf., page 828.) Frequent.
Coscinodiscus confusus Rattray. (ichmilt's Atas, ple fi3, fig. 15.) Frequent.
Coscinodiscus convexus Λ. S. (shmilt's Λ thas, pl. (60, fign. $1: 3$ and 15.) searee.
Coscinodiscus decrescens (irum. (Schmidt's Atlas, fll, 61, figs. X-10.) Freghent.
Coscinodiscus excentricus Ehrb. (Schmidl's Atlas, pl. ins, fig. 49; Van Heurek's Syn., pl. 130, digs. 4 and 8.) Common.
Coscinodiscus lineatus Ehrl. (Van Hourck'н Syn., pl. 131, fig. 3.) Frequent.

Coscinodiscus robustus Grev. (Sehmidt's Athas, pl. 62, lign. 4-fi.) Seareo.
Coscinodiscus symbolophorus (irun. (h'chmidt's Atlas, pl. 13k, tigs. 1-3.) Frequent.
Coscinodiscus symmetricus (irev. (Sclmidt's Atlas, pl.57, fig. 27.) Very common.
Coscinodiscus traduceus, var. hispida, Ratfray. (Hchmidt's Atlan, !h. 57, fig. 38.) Frequent.
Cyclotella physoplea Kg. (Ehremberg'н Mik., I'l. 33, 17, lig. 8 ; Pritchard's Inf., page 811.) Scarce.
It is very probable that this is only an inner shell of some other species.
Cyclotella striata (irm, (Van Heurck's Syı., pl.92, figs. (i-10, 12.) Frequent.
Cymatopleura solea W.s. (Van Heurek's syn., pl. 5., fign. 5-7; Pritchard's Infusoria, pl. 9, fig. 155, page 793.) Very scarce.
The six transverse undulations are absent in this variety. Inrleed,
they are so frequently absent in specimens of this form, that they Proc. N. M. 93
should be dropped as a specific characteristic. The genus ought to be included under Surivella.
Cymatosira Laurenziana Grun. (V'an Heurck's Syn., pl. far, fig. 42.) l'requent.
This genus should be as shggested ly Prof. H. L. Smith, united under Fragilaria, from which it difters in no important respect. Lyng. bye constituted the genus Fragilaria in 1819; Grunow that of Cymatosira in 1862.
Cymbella cistula Hempr. (Van Heurck's Syn., pl. 2, tigs. 12, 13.) Scarce.
Cymbella cuspidata Kg. (Van Heurck's sin., pl. 2, fig. 3.) Scarce.
Cymbella parva W. S. (Van Heurck's Syn., pl. ㄹ, fig. 14. Schmidt's Atlas, pl. 10, fig. 15.) Frequent.
This is, however, hardly W.Smith's ('. para ("Cocconema parvom"), as is seen by his figure, pl. 23 , tig. $\quad .20$, and p. 76. It should either receive a new specific name, or be classed as a small form of Cymbiformis E , from which it differs very slightly.
Denticula elegans Kg. (Van Heurck's Syn., pl. 49, tigs. 14, 16.) Scarce.
Ditylum (=Triceratium) Brightwellii West. (Van Heurck's Syn., pl. 114, figs 3-9.) Common.
This diatom is evidently a distinet genus, and should be restored with its old name, as suggested by Prof. II. I. Smith. The unscien tifie genus "Triceratium" is quite overcrowded with dissimilar forms withont this.
Encyonema prostratum Ralfs. (Van Heurck's sinn. pl. 3, figs 9-11.) Frequent.
As the growth of diatoms in gelatinous tubes or otherwise is no longer considered ground to constitute a genus, this form should be classed under C'ymbelle, from which it differs in no other respect.
Epithemia turgida Kg. (Van Heurck's Syn., pl. 31, figs 1, 2.) Frequent.
Epithemia Westermani Kg. (Vau Heurck's Syn., pl. 31, fig. 8. Kutzing's Bac., pl. 5, fig. 12.) Frequent.
This is nothing more than a close variety of E. turgidn Kg., and should not be made a separate speries. William Smith's figure of "E. Westermanii Kg." is certainly incorrect. See Smith's B. D., pl. 1, fig 11.
Epithemia zebra Kg. (Vau Heurck's Srn., pl. 31, figs. 9-14.) Scarce.
Eunotia pectinalis Rabeub. (Vin Heurek's Eyn., pl. :33. figs. 15-19.) Frequent.
Euodia ($=$ Hemidiscus) cuneiformis Wall. (Will, T. M. S., 1860, pl. 2, tigs. 3-4, p. 42. Pritchard's Inf., pl. 6, fig. 14.) Very common.

This is probably the E. gibba of Bailey. Compare with above Pritchard's Inf., pl. s, fig. $\because=2$, p. Sis. It is virtually identical with E. inormeta of Castricame. See ('hallenger Expre, pl. 12, fig. 1, p. 149. The older name Euodia (1s.5) should take the place of Hemidiseus (1860). Eupodiscus radiatus Bail. (Van Heurck's Syn., pl. 118, figs. 1, 2. Moebins's Plates, pl. 28, fig. 10. Smith's B. D., pl. 30, lig. 255.) Scarce.
This diatom is identical with ('oscimodisens radiutus E., except for the orelli of the former; and as finstules that normally have processes are often destitute of the same, these two forms are suspicionsly alike.
Eupodiscus tesselatus Roper. (Vau Heurch's Syn., pl. 118, tigs. 6-7.) Vers scarce.

There is not sufficient warrant for M. Van Heurck according to this form the generic name "Roperia."
Fragilaria capucina Desmaz. (Smith's B. D., pl. 35, fig. 296.) Common.
Fragilaria Schwarzii (irun. (Van Heurck's Syn., pl. 44, fig. 24.) Very scarce.
The difference between this and F. pacifica Grun. is too slight to warrant their separation.
Gomphonema sphærophorum Ehrb. (Van Heurck's Syn., pl. 23, fig. 30.) Scarce.
This is the same as G. lagenula Kg. See Van Heurck's Syn., pl. 25, figs. 8-9. Ralfis rightly unites the two. Pritchard's Inf., p. 889.
Grammatiphora macilenta W. S. (Smith's 13. D., pl. 61, fig. 382, p. 43. Van Heurck's Syn., pl. 53, fig. 16.) Frequent.
Hemiaulus polycistinorum Ehrh. (Schmilt's Atlas, pl. 143, figs. 23-29.) Frequent.
Mastogloia apiculata W. N. (Smith's B. D., pl. 62, tig. 3×7, p. 65.) Very scarce.
This geuus should be included under Cocconeis. It differs but slightly in the presence of marginal loculi, which are frequently quite indistinct.

Melosira ornata Grun. (Van Heurck's Syn., pl. 91, fig. 20.) Frequent.
Melosira sulcata Kg. (Van Heurck's Syn., pl. 91, fig. 18.) Frequent.
Melosira varians Ag. (Van Heurck's Syn., pl. 85, figs. 11-15.) Frequent.
Navicula abnormis Cast. (Challenger Exp., pl. 28, fig. 19, p. 27.) Frequent.
This diatom is possibly only a variety of J. apis Donk. as figured in Schmidt's Atlas, pl. 1ٌ2, fig. 17, and pl. 69, fig. 41. I have, however, found it to be very constant in form and frequent in this gathering; thus agreeing with the experience of Conte Castracane (p.27). The name, however, is unfortunate, as it had been bestowed on a totally different diatom by Grunow. See Cleve's (1880) Arctischen, pp. 46, 47. Also Cleve and Möllus Types No. 142.
Navicula Americana E., variety. (Ehrenherg's Mik., pl. 2-2, fig. 16; O'Meara I. D., pl. 30, fig. 30.) Very scarce.
Navicula aspera Ehrb. var. intermedia Grun. (Schmidt's Atlas, pl. 48, fig. 14.) Frequent.
Navicula bisulcata Lag. (Schmidt's Atlas, pl. 49, figs. 15, 16.) Scarce.
Navicula borealis Ehrlb. (Schmidt's Atlas, p1. 45, figs. 15-21.) Scarce.
Navicula caribæa Cleve. (Schmidt's Atlas, pl. 6, figs. 10-12.) Frequent. See note under next species.
Navicula clavata Greg. (Donkin's B. I., pl. 2, fig. 8; schmilt's Atlan, pl. 3, fig. 13.) Frequent.
This diatom, of which the typical form and three well-marked varieties are found in this gathering, is frequently confused with the preceding species N. cariber of Cleve. Schmidt, after giving the correct figure for N. caribar in pl. 6, figs. $10-12$, applies the same mame to the present species, as in pl. 2, fig. 17 , and pl. 70 , fig. 48. That the true N. caribat is the one figured in pl. 6, figs. $\mathbf{1 0 - 1 2}$, is proven by the fact that Cleve refers to this figure in his "Vega Diatoms," p. 496.

I must add that it wonld be better to include N. clavata with all its varieties under N. lyra Ehrb.
Navicula cluthensis Cleve. (Cleve's (1880) "Arctischen," pl. 2, fig. 49.) Scarce.
Navicula distans W. S. (Schmidt's Atlas, pl. 46, fig. 12.) Common.

This diatom is identical with the fisure above referred to, but that it should be given Smith's name of J. (Pinumlaria) distans is doubtful. That author was very strict on the point of moniliform costar, separating Nacicula from Pinmularia on this one characteristic. Hence he would never have called a diatom with the evident naviculoid matkings of this one "Pimmularia." Besides, his deseription of I. ristans states that the apices are "acute" (1 . 5 . 6), which is not the case here.
Navicula exemta A. S. (Schmirt's Atlas, pl. 69, dies. 13, 40.) rroquent.
Navicula firma ǩg.vir. tumescens Grun. (Nehmidt's Athas, pl. 49, fig. 10.) Searer. Navicula fusca Greg. var. delicata $A . \kappa$. (Schmidt's Atlas, pl. 7, tig. 1.) Scarce.

Thoush this form is analogous to N. smithii Breb., it differs in being not compound punctate in its costie, but strictly moniliform costate; also in having several rows of costat at each end of the frustule parallel with the long diameter. Ralfs distinguishes between the above in Pritchard's Inf., p. S98.
Navicula gastrum var. placentula Ehrb. (Van Heurck's Syn., pl. 8, figs. 26-28; Cleve's (1880) "Aretischen," pl. 2, fig. 36; Pritchamis Infororia, p. 900.) Scarce.
Ehrenberges N. gastrmm and J. placentula are virtually the same diatom. They are considered identical by lialfs, yet, as placentula is generally figured with narrower and more dapering apices than gastrum, I have given both names, making the later a variety of the earlier form.
Navicula granulata Breb. (Schmidt's Atlas, pl. 6, figs. 15, 16.) Seareo.
Navicula Hennedyi W. S. (Schmidt's Athas, pl. 3, ligs. 3 and 18.) Scarce.
Navicula humerosa Breb. (Van Heurck's Syn., pl. 11, tis. 20.) Frequent.
Navicula interrupta W. S. (Schmidt's Atlas, pl. 15, tig. 72; Smith's B. 1)., pl. 19, fig. 189.) Scarce.
Kutzing has given the same name to a wholly different form. See his Bacillaria, p. 100, pl. 29, fig. 93.
Navicula irrorata Grev. (Schmidt's Atlas, pl. 2, figs. 19, ⒉2, 23.) Very scarce.
Navicula lineata Donk. (?) (Schmidt's Atlas, pl. 69, tig. 31.) Scarce.
This flatom, which is accurately illustrated by the above figure, is not the real J. lineata of Donkin, as is seen by comparing the above with tig. 8 on pl. 1 of Donkin's "British Diatoms." It is similar to A.
Schmidt's N. digrediens; but might perhaps receive a new name.
Navicula lyra Ehrb. (Schmidt's Atlas, pl. 2., figs. 16, 2t-25, cte. Van Heurck's Syn., pl. 10, tigs. 1-2.) Common.
Navicula lyra, var. dilatata A. S. (Schmidt's Atlas, pl. 2, fig. 26.) Scarce.
Navicula lyra, var. elliptica A. s. (schmidt's Atlas, pl. 2, figs. 29-34.) Frequent.
These varieties of N. lyru Ehrb, are all unimportant.
Navicula major (irun. (Schmidt's Atlas, pl. 42, tigs, \&-10. Van Heurck's Syn., pl. 5, tig. 3.) Scarce.
Navicula mesolepta Ehrb., var. stauroneiformis (ireg. (Van Heurck's Syn., pl. 6, fig. 15.) Very searce.
Navicula pennata A. S. (Schmidt's Atlas, pl. 48, figs. 41-43.) Frequent.
Navicula pretexta Ehrb. (Schmidt's Atlas, pl. 3, ligs. 30-31.) Scarce.
Navicula rhomboides Ehrb, (Vin Heurck's Syn., pl. 17, fig. 1.) Scarce.
The making a new gemus "Van Hewrekia" for this diatom is to be deprecated.
Navicula rostellata Kg. (Van Heurck's syn., pl. 7, figs. 23-24.) Frequent.

This is very near some forms of N. varians Greg.; but the coste do not continue "radiant from central nodule," but midway between it and the apices become strictly transverse.
Navicula Schultzei Kain. ("Atlantic City Jiatoms" in the Torry Botanical Bulletin, pl. 89, fig. 2.) Very scarce.
This diatom, though similar to N. maculata Edw., is probably distinct. This conclusion is reached, not from drawings, but from a careful comparison and measurement of the original diatoms named.
Navicula serians Kg. (Van Heurck's Syn., pl. 12, fig. 7.) Searce.
Navicula Smithii Brel). (Van Heurek's Syn., pl. 9, fig. 12; Schmidt's Atlas, pl. 7, fig. 22.) Common.
This beautiful diatom presents several mimportant varieties in this gathering.
Navicula splendida Greg. (Schmidt's Atlas, pl. 13, fig. 32.) Frerment.
Navicula subcincta A. S. (Schmidt's Atlas, pl. 13, fig. 41.) Scarce.
Navicula suborbicularis Greg. (Schmidt's Atlas, pl. 8, figs. 1-6.) Scarce.
Navicula transfuga Grun. (Cleve's "Vega," pl. 35, fig. 15, p. 511.) Scarce.
Navicula Weissflogii A. S. (Schmidt's Atlas, pl. 12, figs 26, 32.) Very scarce.
Nitzschia amphionys Grun. (Van Heurck's Syn., pl. 56,figs. 1-6.) Frequent.
The creating anew genus, "Hantzschia," for this diatom is wholly unnecessary.
Nitzschia gracilis Hantzsch. (Van Heurck's Syn., pl. 68, fig. 11.) Freruent.
Nitzschia marina Grun. (Van Heurck's syn., pl. 57, figs.26-27.) Very common.
The variety found in this gathering differs from the type in a decidedly coarser marking, the monils being evident under a quite low power of maguification. Its apices also are more regularly tapered. It is found in an endless variety of lengths, but retains a constant width in all cases. It is probably the same as "Synedra atlanticu" of Castracane; see Challenger Exp., p. 53, pl. 25, fig. 16.
Nitzschia marginulata, var. didyma Grun. (Van Heurck's Syn., pl. 58, fig. 14.) Scarce.
Nitzschia palea W. S. (Van Heurck's Syn., pl. 69, figs. 22c. 29, 31.) Frequent.
Nitzschia panduriformis Greg. (Van Heurck's Syn., pl. 58, figs. 1-6.) Frequent.
Nitzschia punctata Gran. (Van Heurek's Syu., pl. 57, fig. 2.) Very scarce.
This is W. Smith's "T'ryblionella punctata." It very evidently belongs to the Nitzschioe.
Nitzschia salinarum Grun. (Van Heurck's syn., pl. 57, fig. 18.) Scarce.
It is doubtful if the separation of this form from Smith's N. (Tryblionella) levidensis is justifiable.
Nitzschia sigma W. S. (Van Heurck's Syn., pl. Gz, figs. 7-8.) Frequent.
Nitzschia thermalis Grun. (Van Heurck's Syn., jl. 59, figs. 15-19.) Scarce.
Pleurosigma affine Grun. (Van Heurck's Syn., pl. 18, lig. 9.) Frequent.
Pleurosigma inflatum Shad. (Mubins's P'lates, pl. 3, fig. 9. Pritchard's Iuf., p. 918.) Common.

Pleurosigma Kützingii Grun. (Van Heurck's Syn., pl. 21, fig. 14.) Frequent.
This is certainly identical with P. gracileutum Raben., but the suggestion in Habirshaw's Catalogue, and in Cleve's (1880) "Arctischen," that it is a variety of P. Spencerii Grun., is probably incorrect. Great
similarity is displayed in some figures of these two forms, as in those of Van Heurek, but an examination of the diatoms will disclose a difference too wide to admit of their bearing the same name.
Podosira compressa West. (Moebins's Plates, pl. 34, lig. 11. I'ritchard's Inf., pl. 8, fig. 34, pp. 15 and 938.) Very scarce.
This genus and Hyalodiscus need to be united.
Podosira maculata W. S. (Smith's B. 1., pl. 49, tig. 328, p. 54. Schmidt's Atlas, pl. 139, fig. 7.) Common.
Pyxilla Baltica Grun. (Van Heurck's Syn., pl. 83, figs. 1, 2.) Frequent.
Raphoneis amphiceros E. (Van Heurck's Syn., pl. 36, figs. 22-28, pl. 116, fig. 17.) Frequent.
Raphoneis amphiceros, var. rhombica Grun. (Van Heurck's Syn., pl. 36, figs. 20-21. Moobins's plates, pl. 4, fig. 10.) Scarce.
Grunow has placed the R. rhombus of Roger as a variety of amphiceros, from which it differs only slightly.
Raphoneis gemmifera Ehrlb. (Pantoesek's Hung., pl. 12, fig.104, etc.) Very common.
Raphoneis surirella Grun. (Vian Heurek's Syn., pl. 36, tigs. 26-27B.) Frequent.
Rhabdonema minutum Kg. (Van Heurck's Syu., pl. 5t, fig. 21.) Frequent.
Rhizosolenia styliformis Bright. (Van Heurck's Syn., pl. 79, figs. 1-5.) Very scarce.
Schizonema vulgare Thw. (Van Heurck's Syn., pl. 17, fig. 6.) Scarce.
Were the genus Schizonema not a fictitious one it would be well to take this form out of it, as it has no structural unity with any other members of that genus. But schizonema ought to be relegated to Navicula, where it belongs.
Stauroneis anceps Ehrb. (Van Heurck's Syu., pl. 4, figs. 4-8.) Scarce.
Stauroneis Phoenicenteron Ehrb., var. gracilis ($=\mathbf{S}$. gracilis W. S.). (Suith's
B. D., pl. 19, fig. 186. Van Heurck's Syn., pl. 4, fig. 2.) Frequent.

Stauroneis Smithii Grun. (Van Heurek's Syn., pl. 4, fig. 10.) Very searee.
Wm. Smith figures this correctly, pl. 19, fig. 193, but incorrectly calls it " S^{S}. linearis E." The latter is given by Van Heurck, pl. 4, fig. 8 , as a variety of S. anceps. Grunow has named it after the first author, giving its correct figure. It seems to be truly hyaline.
Stephanodiscus Hantzschianus (irmo. (Cleve's (1880) Arctis., pl. 7, fig. 131. Van Heurck's Syn., pl. 95, fig. 10.) Very scarce.
Stephanogonia Danica Grun. (Van Heurck's Syn., pl. 83 bis., figs. 7-8.) Scarce.
The form here found is a variety of the above, its ridged lines, radiating from the central apex, being more numerons and less plainly visible.
Stephanopyxis corona Fhrlo. (Schmidt's Athas, pl. 123, figs, 10-17.) Nearce.
Stephanopyxis turris Ralfs. (Van Heurck's Syn., pl. 83 ter., fig. 12; Schmidt's Atlas, pl. 130, figs. 42-43; Pritchard's Inf., pl. 5, fig. 74, and p. 826.) Frequent.
Surirella minuta Breb. (Van Heurck's Syn., pl. 73, figs. 9-10.) Frequent.
Surirella ovalis Breb. (Van Heurek's Syn., pl. 73, ligs. 2-4.) Common.
Surirella recedens A. S. (Schmidt's Atlas, pl. 19, figs. 2-4, pl. 24, fig. 28.) scarce.
Surirella tenera Greg. (Schmidt's Atlas, pl. 23; figs. 7, 9.) Scarce.
Syndendrium diadema E. (Moebins's Plates, pl. 8, figs. 49-52.) F'requent.
Synedra delicatissima W. S., var. mesoleia Grun. (Van Heurck's Syn., pl. 39, itg.
6.) Scarce.

Synedra pulchella Kg. (Van Heurck's Syn., pl. 41, figs. 1-8.) Frerquent.
Synedra ulna Ehrl. (Van Heurek's Syn., pl. 38, fig. 7.) Searce.
Synedra ulna, var. subæqualis (irm. (Van Heurck's syn., pl. 38, fig.13.) Searce.
This, put as a doubtful species by Vau Heurck, is, as he suggests, only a variety of uluc.

Synedra ulna, var. spathulifera Grun. (Van Heurck's Syn., pl. 38, fig. 4.) Scarce. The same is true in this case also.
Tabellaria fenestrata Kg. (Smith's B. D., pl. 43, fig. 317, p. 46.) Common. Triceratium acutum Ehrb. (Van Heurck's Syn., pl. 108, tig. 1.) Scarce.

This genus, made up principally of triangular and quadrangular forms of Bidhulphid, is so heterogeneous in character that it should be abandoned, as Prof. II. L. Smith suggests, and its forms assigned to their proper scientific genera.

Triceratium alternans Ehbl. (Schmidt's Atlas, pl. 78, figs. 9-17.) Very common.
Triceratium bicome (leve. (Schmidt's Atlas, pl. 78, digs. 24-25.; Cleve's W. Indiat Diat. pl. 5, fig. 30, p. 17.) Very scarce.
This diatom is an evident Biddulphice, as was susperted by Cleve when he named it. In general appenance it is much like the abnormal B. reticulate figured in schmidt's Atlas, pl. 78, fig. 21; but under high magnification it fails to show the reticulating secondary markings characteristic of that species.

Triceratium cinnamomeum (frer. (Moebins's Plates, pl. 47, tig 12'; schmidt's Atlis, pl. 151, figs. 23-27; Van Heurck's Syn., pl. 126, fig. 1.) Very scarce.
The specific name is variously spelled cimamomeum, cimnamoneum, and as above. Vau Heurck inchules it in Cestodiseres, to which it peresents doubtful analogies.
Triceratium inelegans Grev. (Moebius's Plates, pl. 71, fig. 21; Van Heurck's Syn., pl. 110, figs. 2-5.) Common.
See note under T. punctatum.
Triceratium ornatum Shad. (Morhins's Plates, pl. 16, figs. 10-14; Schmidt's Atlas, pl. 98, figs. 7-13.) Scarce.
This is Wrallisch's Amphitetras pentacrinus, and is essentially the same as T. biquadratum Janisch, T. junctum A. S., T. Balearicum Cleve, and a large number of unimportant varieties, as "var. hirsutu," in Challenger Exp., pl. 23, fig. 9. This diatom is remarkably variable, even in a single gathering, which is probably the reason for the number of pseudonyms created for it. The name "pentucrinus" is deceptive. Triceratium punctatum Bright. (Moebius's Plates, pl. 9, fig. 18. Van Heurck'甘 Syn., pi. 109, figs. 6, 9-10.) Very common.
The strict types of both this and T. inelegans, Grev. are found in this gathering and many intermediate forms, which make it evident that these two close species are merely varieties of one. Though the name "inelegans" is not well chosen for these forms, it should be preferred to "punctatum," as Wallisch has applied the latter to a wholly different diatom. See Moebius's Plates, 31, fig. 21.

Triceratium Weissii, Grun. (Schmidt's Atlas, pl. 95, figs. 2-12.) Scarce. Trinacria excavata Heih. Formatetragona. (Nchmidt's Atlas, pl. 152, figs. 26-28.) Scarce.
The necessity noted under Triceratiam for doing away with the genus also exists in this case. Trinacria should be united with Solium and Hemianlus and be given rither the last name, as the oldest (1840 by Ehrenberg), or Solium, as the most suggestive.

A number of sports and abormalities of some of the species named were found in this gathering, but have not been described, as they have no bearing on classification.

Newark, N. J., March, 1892.

DESCRIPTION OF A NEW SPECIES OF CYPRINOID FISH, COUESIUS GREENI, FROM THE HEAD WATERS OF FRAZER RIVER IN BRITISH COLUMBIA.

BY

David S. Jordan.

COUESIUS GREENI, sp. nov.

Head $4 \frac{1}{10}$ in length; depth, $4 \frac{1}{10}$. D. 8; A. S. Scales, 10-57-7. Teeth, 2-4-4-2. Length of largest specimen, $6 \frac{1}{8}$ inches.

Body robust, the back convex before the dorsal, the profile of head straight and rather steep, the space between eyes broad and flattish, $3 \frac{1}{4}$ in head. Snout bluntish, but rather long, $3 \frac{3}{4}$ in head; the premaxillary just above the level of the lower part of the pupil; maxillary reaching almost to the front of the orbit, 33^{3} in head; barbel well developed, not quite at the end of the maxillary; its length considerably lessthan that of pupil. Mouth moderately oblique, the lower jaw slightly included. Dorsal fin inserted behind the base of the ventrals and behind the middle of the body at a point midway between the preopercle and the base of the caudal, the fin of moderate height. Pectoral shortish, $1 \frac{1}{2}$ in head, ventrals nearly 2. Candal well forked, the lobes equal, $1 \frac{2}{5}$ in head. Scales larger than in related species, scarcely reduced forward and but little smaller on the back than on the sides; 36 scales in front of the dorsal. Color dark olive above, the sides reddish, silvery. Very slight traces of a lateral band, a dark streak below the eye undulating and extending from the side of the upper jaw to the opercle. Lining of shoulder gradually dusky. Fins without definite markings, the upper somewhat dusky.

This species is related to Couesius phumbeus of the Upper Missouri and Lake Superior region, from which species it differs in the larger size of the scales and in some details of form. The head is especially large and heavy.

Two specimens of this species were received from Mr. Ashdown H. Green, of Victoria; the larger specimen, measuring $6 \frac{1}{8}$ inches, is in the museum of the Leland Stanford Jr. University; the second specimen, measuring $3 \frac{5}{8}$ inches in length, has been sent to the U.S. National Museum. The specimens were obtained by Mr. Green in Stuarts Lake, near Fort St. James, in British Columbia. This lake is near the head waters of Frazer"s River. Mr. Green says: "I am told that this is the only lake, in that part of the country at least, where these fishes are found."

We received at the same time from Mr. Green a specimen of the small land-locked salmon, Oncorhynchus kennerlyi, obtained by him in Shawnigan Lake. This lake lies about 20 miles north of Victoria and has no comnection with the sea.

I have also received from Mr. Green the skin of a large, white sea bass, Cynoscion nobilis, taken in Sooke Harbor, 20 miles east of Victoria. The fish weighed 45 pounds. It was found on the top of the water in distress, its pectoral and caudal fins having been bitten by the dog-fish sharks. This species had not previously been taken much north of San Francisco, and its occurrence in Puget Sound is remarkable.

Palo Alto, Cal., February 1, 1893.

NOTE ON THE WALL-EYED POLLACK (POLLACHIUS CHALCOGRAMMUS FUCENSIS) OF PUGET SOUND.

BY

David S. Jordan and Charles H. Gilbert.
Mr. David H. Hume, a fisherman of Tacoma, Wash., wrote to us recently asking for information concerning a fish which he called "Walleyed cod," and which has appeared in abundance in Puget Sound about Seattle. At our request, Mr. Hume sent a number of specimens of the fish to the museum of the Leland Stanford, Jr., University, from which one has been sent to the U.S. National Musemm.

The wall eyed cod proves to be specifically identical with the common pollack of Alaska, Pollachius chalcogrammus. These specimens from Seattle, however, differ notably from any which we have seen from Alaska, in the fact that the fins are all lower, and that there are fewer rays than in the Alaskan specimens, and that the color is nearly uniformly sooty, with the dark markings of the Alaskan fish either entirely obliterated or very faintly shown.

These characters would seem at first sight to indicate specific difference; but as we find more or less variation, it is probably safe to regard the Puget Sound fish as representing a southern variety, which may be called Pollachius chalcogrammus fucensis.

In the fish from Tacoma the color is nearly plain sooty, with no cross streaks, aud with generally only a trace of a pale lateral streak along the side; on the head are some diffuse dark spots; the fins are all dusky. The dorsal fins are low, the longest ray of the first dorsal being from $2 \frac{1}{5}$ to $2 \frac{1}{3}$ in head; the pectoral is short, from $1 \frac{1}{2}$ to 1_{3}^{2} in head; candal is subtruncated, its lobes scarcely acute. The fin rays in four specimens are as follows: (1) D. 10-15-17 ; (2) D. 11-15-16; (3) D. 10-14-16; (4) D. 12-13-17; the average of all specimens, D. 11-14-16. Anal tins, (1) A. 18-16; (2) A. 19-18; (3) A. 16-19; (4) A. 19-19; the average of all specimens, A. $17 \frac{1}{2}-18$. The band of teeth in the premaxillary is wider than in the Alaskan specimens, and the band is widened at the anterior end.

In the true chatcogrammus from Alaska, taking specimens of about the same size, we find that the body is more elongated, the nose sharper, the eyes a little larger, the premaxillary band of teeth narrower and narrowed in front toward the median line, the coloration is paler, the Proceedings National Museum, Vol. XVI-No. 439.
sides being marked with pecular, short, irregular, vertieal, dark cross streaks and a mote or less obseure, pale, lateral streak irregular in form. The fins are all higher, the first dorsal averaging 1_{6} in head, the pectoral 1_{3}^{1} to 1%; the caudal is distinetly forked with sharp lobes. The fin rays of three specimens are, (1) 1). 14-17-19; (2) D. 13-15-19; (3) 1). 13-16-20; the average of all, 1). 13.2-16-191. Anal rays, (1) A. $\because 0-20$; (2) A. 19-20; (3) A. 19-20; a arerage of all, 192-20.

PRELIMINARY REPORT ON THE MOLLUSCAN SPECIES COLLECTED BY THE UNITED STATES SCIENTIFIC EXPEDITION TO WEST AFRICA, IN 1889-'90.

BY
Robert E. C. Stearns, Ph. D., Adjunct Curator of the Department of Mollusks.

By an act of Congress provision was made to defray the expense of sending a scientific expedition to the west coast of λ frica for the purpose of observing the total eclipse of the sun, occurring on December 22, 1889. In accordance with the recommendations of a board appointed by the Chief of the Pureau of Navigation to devise plans, etc., the details of the experlition were arranged. Through the courtesy of Prof. David P'. Todd, of Amherst College, Massachusetts, in charge of the expedition, arrangements were made whereby Mr. W. Harvey Brown and Mr. Arthur 1I. Brown, of the U. S. National Museum, were appointed acting and assistant naturalists, to accompany the expedition in the interest of the Museum, for the purpose of making collections of natural history objects, especially fishes and mammals.

The expedition sailed from New York on October 16, 1889, on the United States steamer Pensacola.

I am indebted to Prof. Todd for the following data as to the points touched at by the experlition, and the dates of arrival and departure:

Localities.	Arrived.	Departed.
Horta, Fayal, ${ }^{\text {azores. }}$	Nov. 2, 1889	Nov. 3,1889
Porto Grande, St. Vincent, Cape Verde	Nov. 10, 1889	Nov. 12,1889
Freo Town, Sierra Leone	Nov. 18, 1889	Nov. 20, 1889
Elinina Gold Coast	Nov. 26, 1889	Nov. 28, 1889
St. Paul de Loando, Angola.	Dec. 6, 1889	Jan. 6, 1890

Here the naturalists were in the interior for nearly a month. After leaving the latter place on the 6th of January, the next point reached was Cape Town, and the arrivals and departures were as follows:

	Localities.	Arrived.	Departed.
Cape Town, South Africa		Jan. 17, 1890	Feb. 6, 1890
St. Helena, South Atlantic		Feb. 20, 1890	Mar. 10, 1890
Ascension, South Atlantic		Mar. 16, 1890	Арг. 8, 1890
Bridgetown, Barbado		Apr. 28, 1890	May 10,1890
Berıuda		May 18, 1890	May 19, 1890

At the latter place the naturalists did not land, owing to quarantine restrictions. The expedition arrived home at New York on the $23 d$ of May, 1890.

As far as Cape Town the collections were made conjointly by the acting and assistant naturalists; at Cape Town Mr. Arthur H. Brown was detached from the expedition to go into the interior.

> Class PELECYPODA.

Order PRIONODESMACEA.
Suborder OSTRACEA.
Genus OSTREA Linné.

1. Ostrea mordax Gould.

One specimen. Ascension Island (Mus. No. 125410).
A single characteristic example.
2. Ostrea frons Linné.

Odd valves, beach. Porto Grande (Mus. No. 125318).
Also oceurs at various places in east and west Florida, Florida Keys, West Indies, and Barbados.

Suborder PECTINACEA.
Family SPONDYLID \neq
Genus SPONDYLUS Linné.
3. Spondylus grederopus Linn6.

Three valves, beach. Porto Grande (Mus. No. 125583).

4. Spondylus imbutus Reeve.

One example, dredged. Ascension Island (Mus. No. 125411)
A small, fresh specimen of the above was obtained from a depth of 40 fathoms.

Family PECTINIDA.
Genus PECTEN Miiller.
5. Pecten miniaceus Reeve.

Three odd valves. Fayal (Mus. No. 125284). A very pretty species.

Suborder MYTILACEA.
Family AVICULIDA.
Genus PERNA Bruguiere.
6. Perna perna Linne.
$i=P$. dentiferus, rar. Krauss.

Three specimens, valves. Ascension Island (Mus. No. 125403).
The dentiferus of Krauss is probably a variety of the Limnean species; it has a somewhat aviculoid shape.
7. Perna Chemnitziana Orbigny.

Several specimens, Porto Grande (Mus. No. 125355).
Variable in form, and perhaps connecting with the previous species.
Family MYTLLID※.
Genus MYTILus Linné.
8. Mytilus edulis Linné.

One specimen, Cape Town; (Mus. No. 125379).
A solitary example of small size, only 1 s millimeters in length, of this common and widely distributed form.

9. Mytilus magellanicus Chemnitz.

Several specimens. Cape Town (Mus. No. 125368).
The shells collected at this place by the expedition that I have labeled as above, upon emmparison with examples of the same size from New Zealand and Kerguelen Island, prove to be identical. The larger individuals measure 39 to 40 millimeters, from that to 9 millimeters or less in length.
10. Mytilus atropurpureus Dunker.

Many fresh specimens. Fayal (Mus. No. 125300).
These fine living examples show a rich purple seminacreous iridescence on the interior surface of the valves, unusually brilliant for marine mussels.
11. Mytilus ovalis Lamarck.

Several examples. Porto Grande (Mus. No. 125330).

Genus LITHOPHAGUS Muhlfeldt.
12. Lithophagus aristatus Solander.
$=L$. caudigera Lamarck.
Two specimens. Porto Grande (Mus. No. 125,400).
Genus DREIssensia Van Beneden.
13. Dreissensia africana Van Ben.

Numerous examples, living. Ashantee (Mus. No. 125334).
Many specimens of the above, separate, and a large colony attached to a twig, numbering probably as many as a hundred individuals.

Family UNIONIDAE.
 Gimms UNIO Rotz.

14. Unio gaboonensis Kuster.

A few examples. Cunga (Mus. No. 125417).
Specimens of this speries were detected in a pond near this place.

Suborder ARCACEA.

Family ARCLDA.
Gemin ARCA Lamarek.

Soction ARCA Lamarck.
15. Arca Noze Limé.

One right valve, beach. Porto Grande (Mas. No. 12534S).
'This is a widely distributed form. I have collected it on the west roast of Florida; it is found on the Atlantic eoast of North America as far north as Hatteras; it ocours in the Florida Keys, the West Indies, the Bermmdas, ('arthagena, and probably throughout the AntilleanCaribbean region, as well as in Lurope.

16. Arca tetragona Moli.

$9=\mathrm{A}$ narioularis Bragniere.
Porto (irande (Mus. No. 125352) ; Ascension Island (125402).
A curious and variable form, offering extraordinary inducements to mamutacturers of species. Two of the examples are from the latter locality.

Section BARBATIA Gray.
17. Arca lactea Limmé.
$P=$ A. striata heove.
One specimen (Mus. No. 125406); Ascension Island.
Reported also from the Polynesian Islands.

Section ANADAREA Gray.
18. Arca holoserica lieove.

One right valve, beach. Porto Grande (Mus. No. 125351).
This widely distributed form also oceurs in the Australasian and. Indo-Pacitic seas.

Section SCAPHARCA Gray.
19. Arca rhombea korn.

Three odd valves, beach. Porto Grande (Mus. No. 125340).

Many valves, beach; one live specimen. Iorto (xrande (Mus. Nos. 125329, 125366) ; Ashanter (Mus. No. 12:335) ; Free Town (Mns. No. 125408).

Valves only from Porto drande and Free Town. The only live example of this strongly characterized form is the Ashantee specimen. Externally it resembles a Cardita rather than an Ark-shell.

The Free Town (Simat Leone) examples, valves only, are in a semifossilized state, the surfare somewhat decomposed. The general facies is much modified and somewhat misleading through weathering; this action of the elements, however, has exposed the hinge area, which exhibits the development and final growth of the hinge teeth. The various stages may be seen between the upper line of the hinge and the under side of the beak or umbo, in close linear grooving. 'these caused me at first to think that such valves belonged to some other species.

Genun PECTUNCULUS Lamarek.
21. Pectunculus violescens Lanarck.

+ I'. stellatus Lamarck.
'Three odd valves, beach. I'orto Grande (Mus. No. 125309).
Order TELEODESMACEA.

Suborder CARDITACEA.

Family CARDITIDA.

Genus CARDITA Brugniere.
22. Cardita ajar l3ruguiere.

One left valve, beach. Porto Grande (Mus. No. 125347).
Suborder LUCINACEA.

Family LUCINIDA.
(ienus LORIPES Poli.

23. Loripes lacteus Linne.

Several odd valves. Porto Grande (Mus. No. 125301).
Family DIPLODON'IID E.
Genus DIPLODONTA Turton.

24. Diplodonta rotundata Montfort.

One right valve. Fayal (Mus. No. 135289).
Proc. N. M. $93-21$

This speries orems al mand placeson the shomes of the Meditervanean to moderately deep water ; its distribution extends northerly into British wateqs.

> Nuborder CARDIACEA.
> Family CARDIDDE.
> (icmu CARDIUM Lamark.
25. Cardium ringens Chemnit\%
 (Mus. No. 125339)
'Three perfect valves of as many individuals were found at the latter phace. The Porto diande specimen was a simgle right valve, beach.
Sumorder VENERACEA.
Family VENERIDA.
(Gomus VENUS Limḿ.
26. Venus striata Gray.

One right valve, Ashantee (Mus. No. 125321).
27. Venus rugosa Deshayes.

One lett valve, beach. Porto Grande (Mus. No. 125350).
Gemus CYTHEREA Lamarck.
Subgenus Callista Möreh.
28. Callista chione Lamarck.

One left valve of a young shell. Fayal (Mus. No. 125286).
Gems DOSINIA seopoli.
29. Dosinia fibula Revere.

+ Doxinia torvida Reove.
Several valves, beach. Porto Grande (Mus. No. 12:391).
The following , Ifrican speries are deseribed and tigured in Reeve's Monograph of Artemis = Dosinia.
A. fibula Reeve, A. "ficama Gimay, A. raliata Reeve, A. Orbigmyi Wonker, A. torvide Reeve. To these should be added A. isocardia 1)unker, and A. heputicu Philippi.

Of the foregoins fibula and torvide are the same without donbt. Orbign!!i, africema, and hepatied are also one and the satme. The three bast are chatacterized by their athors as exhibiting more or less coloration in the region of the beaks, and upon the inner side of the valves, while torvide and fibula are white only. While all of these fise alleged speries vary much in outline, there is no special difterence
otherwise than the color character above mentioned, and that is of little importance. Reeve says of his torrid, which it will be observed is oue of the all-white forms, that it is "concentrically semptured with fine cord-like stria, after the manner of A. Orbignyi." The roundness or sharpuess of the strie varies more or less in all. The depression of the lunule also varies somewhat, but is usually rather deeply sumken. In all, the closeness, definition, or sharpness of the concentric: strix, is greater toward the anterior and posterior erges of the valve than in the central portion or area. The hinge characters are the same in all, and the interior of the valves are alike in the shape or outline, angle and depth of the sinus, and muscular scars. The valves in all of these, whether young or old, large or small examples, are heavy, solid, and thick, with thick hinge margins and long and rather deeply scarped ligamental area.

The foregoing critical comparison, it will be noticed, practically unites the five so called species, the only differences being those of color, and the greater or less roundness, evemess, or shaphess of the concentric lire. Now, variation in these characters, it is well known, is a local matter dependent upon or affected by local canses or conditions, such as the character of the sea bed at the spot from which the specimens were obtained. Where the sea bed is nearly clear sand without mud, gravel, ete., the shells are whiter, more evenly and regularly sculptured, with a more porcellaneous surface than from localities where gravel, mud, and clay prevail. The presence of mur, particularly clayey mud, has much to do with the coloration or staining of the shell.

Any person who has collected the hard-shell clan Venus mercenuria of the Λ tlantic seaboard, at many or different phaces throughout the range of said species, or the Muctro or My, of the same fannal region, must have noticed the relation of color to the chanater of the sea bed. Convexity is another somewhat variable factor, some examples being more tumid than others.

Reeve's radiata is no doult a distinct form, though isocurdia is doubtfully distinct, and may hereafter, with abundant material for comparison, be regarded as a synonym.
30. Dosinia Orbignyi Dunker.
= D. africana Gray.
$=1$. hepatica Philippi.
Many odd valves. Porto Grande (Mus. No. 125385). Separable from fibula, ete., only by the color stain--no doubt the same species.
31. Dosinia isocardia Dunker.

One left valve, beach. Porto Grande (Mus. No. 125388).
Suborder TELLINACEA.
Family DONACID E.
Genus DONAX Linné.
32. Donax rugosus Linné.

Numerous examples. Sit. P'aul de Loando (Mus. Nos. 12:413, 125414, $125415,12516,125418,125119)$. Porto (irande (Mus. No. 125399).
The large number of this attractive form collected at St. Paut has enabled me to select an extensive and beatiful series. The valves are sometimes white with purple rays and zones, again white, or yellowish orange, with broad rays of puple; sometimes light purple with darker purple rays and zones, and some examples exhibit a purplish ground with a glaze of sienna yellow, overlaying and toning the color beneath. 'The interior of the valves is often white, or white rayed with purple or pink and frequently dark purple with the edge of the valves white rimmed. One beautiful example iss of a clear delicate pink, tinged slightly with yellow, hounded toward the ventral edge by a broad band of deep rose pink.

Family TELLINIDE.
Genus TELLINA Linné.

33. Tellina madagascariensis Gmelin.

Odd valves. Porto Grande (Mus. No. 125365).
One right and two left valves of this rather solid species; these valves are of a light rose-pink color intensitied toward the beaks, and the surface is souptured by tine incremental and closely set radiating lines.
34. Tellina incarnata Limé.

> One left valve. Fayal (Mus. No. 125:85).
> suborterMACTRACEA.
> Family MACTRIDE.
> (ienus MaCTRA Limné.
35. Mactra Adansonii Plilippi.

One right valve. Porto Grande (Mus. No. 125356).
This is a very pretty and extemally quite mmactra-like species, with color markings and a general facies recalling. Mactra stultorum of the Mediterrancan Sea.

Class GASTROPODA.
Subclass ANISOPLEURA.
Superorder EUTHYNEURA.
Order OPISTHOBRANCHIATA.
Suborder TECTIBRANCHIATA.
Family BULLIDA.
Gemms BULLA Limné.
36. Bulla striata Bruguiere.

Many specimens. Porto Grande (Mus. No. 125303).
Several examples; solid, heavy beach shells; a widely distributed form. Inhabits the Mediterranean, Adriatic, and Black seas; and Dronet has recorded it from the Azores. * * * Also at Faro in Algarve, where McAndrew procmed it (Jeffireys).

Family APLYSIIDA.

(iemus APLYSIA Linné.
37. Aplysia sp.

Two examples in alcohol. Porto (irande, St. Vincent.
Order PULMONATA.
Suborder STYLOMMATOPHORA.
Family LIMACIDA.
(ienus ZONITES Montfort.
38. Zonites cellarius Miiller.

One specimen (Mus. No. 125998). Fayal.
The above species also occurs in the British Isles, and is found from Finland to Algeria and Sicily, according to Jeffreys; also in Madeira and the Canaries.

Family HELICIDA.
 Genus PatUla Held.

39. Patula rotundata Miiller.

Two specimens (Mus. No. 125295). Fayal.
Ranges from the most northern extremity of Great Britain to the Channel Isles; from Russia and Finland to Sicily and the Azores. (Jefir'eys.)

Section LEPTAXIS.
40. Helix (Leptaxis) caldeirarum M. and I).

Three specimens, dead. Fayal at Horta (Mus. No. 125293). The examples, though dead, were in fair condition.

Section CARACOLINA Beck.

41. Helix (Caracolina) barbula Charp.

Two specimens, dead (Mus. No. 125294). Fayal. Found also in Portugal.

Numbrous sperimens (Mus. No. 12:509). (ireen Mountain, Ascension Island.

The above is represented by many examples, banded and otherwise, pale to dark hom eobor. This is another widely distributed form that. has almost, il not quite, "put a sirdle aromed the earth." The National collection contains momerons examples from Banbados, Mexico, Brazil at lia Janciro, I'egu, and upper Bimmah and Bombay in India; the Samdwieh Istamds, at Simginpore and the islands of Mamitins and davit in Polynesian and Indo-Pateilic waters, and from Canton, Hons kong and Whampoa in China. It has also been found at the seychelles.

Section EUPARYPIA Martman.

IIelix (Euparypha) pisana Miiller.
 (Musem No. 125393).

A widely distributed species, ocemoing in England, France, Portugal, in the C'anary Lsands, and probably elsewhere, as well as at the localities tirst wiven herein. The Fayal sperimens exhibited the usual Varietal laties and indieate its abondane on the island. From the Cape, also, there are several characteristic examples.

Section POMATIA Beck.
Helix (Pomatia) aspersa Miiller.
A few examples (Mus. Nos. 125こ83, 125287). Fayal.
A widely distributed form; a part of the above quite solid, and elevated.
"From the MeRay Firth district to the Chamel Isles. Its range extemds sonthward from Frame to Wicily as well as to Spain, Algeria, and the Azores" (deflreys).
(ienus BULIMUS Scopoli.
Section COCHLICEILA Férussac.
45. Bulimus (Cochicella) ventricosus Draparnoud.
$=1$ b ventrosus lormssac.
not b. rentricosus ('hemuit\%.
One specimen, dead (Mas. No. 195281). Fayal.
B. emtricosus oceurs in Prance, the danay Islands, and also in the Bermudas.

Vamily STCNOGERIDE.
(iomin ACHATINA Lamark.
46. Achatina balteata limer.

Four specimens (Mus, No. 12,307). Free 'rown, Sierra Leone.

Only one example of the above was an alull. This form, with its fine sedpture, is apparently related to the coarsely soupptared . I. retioulata I'fic, from Kanzibar and that region, though A. Incter live, also belong ing to the same general locality, and sugesting an intermediate and comecting variety.

47. Achatina variegata lounsy.

d. perdir Lamarek.

Several alult examples (Mus. No. 125375). Free Town.

Subgenuн LIMICOLARIA Schmmeher.
48. Achatina (Limicolaria) flammea Bruguiero.

Three specimens (Mus. No. 1933s3). Free Town.
49. Achatina (Limicolaria) numidica Reve.

Two sperimens (Mus. No. 125384). Free Town.
Family SUCOINII)N.
Genus SUCCINEA Draparnaud.
50. Succinea St. Helenæ Lesson.

Several living examples (Mus. No. 125404). Fayal.
The specimens were fomd on the leaves of plants near the top of Diana's Peak. The shells are of a beatiful deep amber color, and probably belong to the above species. The other form reported from here, S. bensoni, was not in the collection.

Superorder STREPTONEURA.
 Order CTENOBRANCHIATA.
 suborder ORTHODONTA.
 Supertamily 'IOXOCAIASNA.
 Family TWREBRIDA.
 Genu* TEREBRA Brugniere.

51. Terebra strigillata Limm'.

A single specimen (Mus. No. 125389). Porto (irande.
52. Terebra senegalensis Lamarek.

One beach shell (Mus. No. 125332). Porto Grande.
53. Terebra chlorata Lamarck.

Several beach specimens (Mas. No. 125354). Porto Grande.
54. Terebra inconstans Hinds.

A single example, beach (Mus. No. 125322). Porto Grande. Λ widely distributed form.

Family CONIDA.
(iems CONUS Limú.
55. Conns guinacus Hwass.

One beach shell, imperfect (Mns. No. 125579). Porto (irande.

Family CANOLLLARIDDA.
(femm CANCELLARIA Lamarek.
56. Cancellaria similis sowerby.

One specimen, fair condition (Mus. No. 12ma4). Porto Grande.

> Supertamily RHACHIGLASSA.

Family ()LIVIDA.
(iemus OLIVA Bruguiere.
57. Oliva flammulata Lamarek.

Two beach shells in fair condition (Mus. No. 12sint. . Porto (irande.
Gemur OLIVANCILLARIA Orhigny:
58. Olivancillaria nana Lamarek.

Several specimens (Mns. No. 125343.) Porto Grande.
Numerous examples of this pretty little shell, generally ornamented with linear, rigag markings; sometimes not showing these, but unicolored, buft or dark chocolate brown.
(ienus AGARONIA Gray.
59. Agaronia acuminata Lamarek.

Two beach shells, Porto Grande (Mus. No. 125581).

Family MITRIDAE.

(iemus MITRA Lamarck.
60. Mitra fusca swains.

Several examples, Horta, Fayal (Mus. No. 125279).
Many good fresh specimens were obtained here. In Tryon's Monograph of the Mitride, he says: "M. Ademsonii Phil, deseribed from Gaboom, in Ginmea, West Africa, appears to agree faily with this species."
61. Mitra barbadensis (imel.

One young perfect specimen, Ascension Iskand (Mus. No. 12.405). Heretofore credited to the Florida Keys and Barbados.
62. Mitra plumbea Lamarck.

One example, Porto (irande (Mus. No. 127386). In Tryon's Monograph this is in cluded in the synonymy of Mitra ebomes. I shonld not place it in such a position.

Family HASCIOLARIIIAA.
Genus Latirus Montfort.
Subgenus LEUCOZONIA Gray.
63. Leucozonia triserialis Lamarek.

One beach shell, Porto Grande (Mus. No. 125331).
Family BUCCINIDA.
Gemus PISANIA (Gray.
64. Pisania variegata Gray.

One adult, beach; two juniors, fiesh. Porto Grande (Mus. No. 125580).

Florida Keys, West Indies, Bermuda. Southerly to Trinidad on the American side.
(ienus COMINELLA Gray.
65. Cominella limbosa Lamarek.
=C. Woldemari Kiener.
One specimen from each locality. Porto Grande (Mus. No. 125582); Cape Town (Mus. No. 125326).

Family COLUMBELLIDA.
Gemus COLUMBELLA Lamarck.
66. Columbella rustica Limé.

Common, fresh, living. Porto Grande (Mus. No. 125316).
The (!. rusticoides of Heilprin, which ranges on the American shores of the Atlantic from Cedar Keys to Cuba, may be regarded as a synonym of the above.
67. Columbella rustica Limné.
variety, Azorica Drouét.
Numerous examples. Fayal (Mus. No. 125282).
Subgenus NITIDELLA Swainson.
68. Nitidella cribraria Lamarck.

Common; Porto Grande.

Upon comparison I can pereeve no differenee between the foregoing and American examples. This speres has a remarkable geographical range. Among the Florida Keys and in the Antillean region, at Panama, on the west coast of South Ameriea, northerly to lower California, and at various places in the Gulf of California.

> Family MURICID.E.

Subtamily Muricivat.

> (iemus MUREX limmé.
> Subgemus PHYLLONOTUS Swainson.
69. Phyllonotus rosarium Chemnitz.

One beach shell: Porto Grande.
(iemus OCINEBRA Leach.
70. Murex (Ocinebra) angularis Lamarek.

A single, somewhat dubious example; Porto Grande Ans. Nu. 10535s).

Subtamily Purpurinat.

(ienus PURPURA Bruguiere.

71. Purpura hæmastoma Limé.

$=I^{\prime}$. undutu Lamarek.
$=I$ '. Forhesii Dunker.
Numerous living and beach examples. Fayal (Mus. No. 125276); Porto (irande (125305, 121370); Ashantee (125310, 1253:0, 125337); St. Helena (125407).

From lrayal many specimens. some tuberenlated, others without knobs. 'The Porto Girande examples were adults and junions of the typieal form: two of the sperimens were quite large, triangular, and knobly. F'rom Ishantee mmerous living specimens of the shotspired, rather triangular form, the wuduta of Lamarek and narrower examples $\quad I$. Forbesii Dunker; others with the spire of the average height, with tworows of knobs more or less conspicuous, varying in this feature as do the west coast American colonies of biserialis. A simgle individual of this widely distributed amd mutable form was detected at St. Helena; it is not a characteristic example having in the white aperture and the inconspicuons transerse ribbing and knobs of the bodywhorl a similar phase of variation from the gemeral aspect of hemastoma, that is exhbited bỵ I'. Blaincillei Deshayes + I'. ('allaö̈nsis Blainville of the west eoast of south Ameriea, when compared with the ordinary lacies of I. biserialis Blataville of the same coast to the northward. The St. Helena form is very close to a variety of hemu-
stoma in the National collection (No. 95953), from Abrolhos Island, coast of Brazil.

72. Purpura cingulata Lamarck.

Two specimens; Cape Town (Mus. No. 125324.)
Only two examples of this remarkably variable and interesting species were obtained; the larger 17.5 millimeters in length, with barely the hint of a keel on the upper part of the basal whorl, which otherwise is finely sculptured with closely set, fine incised lines or grooves, and the uper or apex whorls keeled and cancellated. The small example is only 4 millimeters long, equal to the two and one-half upper whorls of the larger shell. The National collection contains another and somewhat larger specimen of this nearly smooth variety, as well as one individual with a single broad keel upon the upper part of the basal rolution, comnerting, it will be seen, the plain form with the usual broadly ribbed and channeled typical specimens.
73. Purpura neritoidea Linne.

Three beach specimens. Porto (irande (Mus. No. 125369). These are of the typical knobby form.
(ienus SISTRUM Montfort.
74. Sistrum nodulosum C. B. Adams.

One adult, one junior; beach. Porto Grande (Mus. No. 125362).
Common at many places in the Antillean region and on the Florida Keys, ete.

75. Sistrum Brownii nom. prov.

One specimen. Porto Graude (Mus. No. 125357).
Of the same general facies as S. notulosum, but varying in scuptural characters; the National collection contains a similar example from the west coast of Florida.

Suborder STREPTODONTA.

Superfimily PrENOGIAOSSA.
Family JANTHINIDA.
(ienns JANTHINA Lamarck.
76. Janthina rotundata Leach.
$=$ Janthina communis Lamarek.
Five examples. Fayal, one specimen (Mus. No. 125297); Porto Grande (Mus. No. 125311), four examples of rather small size, but characteristic.

Superibunily G (r M NOGLOSSA.
 Family PYRAMIDELLIDAE.
 (icmus PYRAMIDELLA Limarck.

 77. Pyramidella dolabrata Limué.
 Four specimens. Porto Crande (Mus. No. 125:849). The above has heretofore been credited to the West Indies, Barbados, the Florida Keys, and west Florida.

$$
\begin{aligned}
& \text { superfamily TANNIOGLOSSA. } \\
& \text { F'amily TRITONIHDA. } \\
& \text { (ienun RANELLA Lamarck. }
\end{aligned}
$$

78. Ranella argus (imelin.

Two living specimens. ('ape Town (Mus. No. 12:3376). This speces also orcurs in New haaland, and has been credited to the west coast of South America.

Family CYPRNUDA.
(ienus CYPRAA Lamarck.
79. Cyprea spurca Limmé.

Two beach shells. Porto (irande (Mus. No. 120342"). Inhabits Antillean and Mediterranean waters.

Family STROMBIDAA.
(iemns STROMBUS Limné.
80. Strombus bubonius lamarek.
$=$ S. fasciatus* Gmelin.
$=S$. coronatus Defrance.
One living specimen; one fossil Postpliocene example. Porto Grande (Mus. No. 12530S).

Family CERITHIDDA.
Genus CERITHIUM Bruguiere.
81. Cerithium atratum Bruguicre.

One beach specimen. Porto Grande (Mus. No. 125328).
82. Cerithium vulgatum Bruguiere.
=C. tuberculatum Linmé.
Two beach shells. Porto Grande (Mus. No. 12:32.7.) Common everywhere in the Mediteramean, Adriatic, and Agean seas, as well
as on the coasts of Spain and Portugal, and the Canaries, from the shore to 50 fathoms. (Jeffreys.)

Family I'LANAXIDE.
(ienus PLANAXIS Lamarck.
83. Planaxis lineatus Da Costa.

Five specimens, living. Porto Grande (Mus. No. 125346).
Oceurs in the Viti Islands and at many phaces in Polynesian waters.
Family VERMETIDA.
Genus VERMETUS Mörch.
84. Vermetus Adansonii I)andin.

One large mass and two small examples. Porto (riande (Mns. No. 125306).

The "mass," npon the under side, has been perforated by Lithodomi. It includes also some of the following forms.

Gemis PETALOCONCHUS Lea.
85. Petaloconchus interliratus nom. prov.

Two masses. Porto Grande (Mus. No. 125378).
The two clumps of Petuloconchus above referred to include examples of the preceding species, V. Adensonii. While in external faries very like the foregoing, the interior upon close inspection will be found to have an elevated, thread-like ridge following the coiling sirally.

Family LitTTORINIDA.
Genus LITTORINA Férussac.
86. Littorina striata King.

Many specimens; living. Fayal at Horta (Mus. No. 125296), Porto Grande (Mus. No. 125363).
87. Littorina pulchella Dunker.

Numerous examples, fresh. Ashantee (Mus. No. 125338). Porto Grande (Mus. No. 125325).

Several specimens of this rather globose and somewhat angulated form were oltained; it resembles some of the West Mexican species.

> 88. Littorina scabra Linné.
var. lineata Gmelin.
Common, living. Ashantee (Mus. No. 125:336). Numerous living examples of this well-known species were found "sticking to bushes,
at the mouth of the Etry river." The specimens are of the varicty limeata (imelin and aster perfectly with Indo. Padife examples, of which first and last I have handled a great number. One vaiety of the large Antillear-loridian L. angulifere Lamarek, brown-colored, approaches closely to the ordinary asped of scobra, but I have never met with examples of the Indo- Dadife seabrat that exhibited the light pink and yellow or varied color aspects of the Antillean form, nor have I observed in the large quantity of the Sutilleam-Floridian forms collected and otherwise examined, certan varietal features that are exhibited by the Polynesian scabra.
89. Littorina cingulifera Dunker.

One example fresh. No locality, probably Cape Town (Mus. No. 125394).

Genus TECTARIUS Valenciemes.
90. Tectårius miliaris Q. and (i.
$=$ T: echinata Anton.
One specimen; Ascension Island (Mus. No. 125420).
Family FOSSARIDE.
Gemus FOSSARUS Philippi.
91. Fossarus ambiguus Limé.

Many examples; Porto Grande (Mus. No. 125371).
Several specimens of both the coamely ribbed and finely striate forms of this little shell were in the Edelipse collection. They were found attached to other shells and in the erevices of masses of Vermes tus, ete.

Family AMPULLARLDDA.
Genis AMPULLARIA Lamarck.
Subgenus LaNistes Montfort.
92. Lanistes ovum l'eters.

Fumerous specimens, ('mys, Dec. 2t, 18s? ; (Mus. No. 125585).
Abundant in a pond near Cunga.
Family CALYPTREDDE.
Gems TROCHATELLA Lesson.
93. Trochatella radians Lamarck.

> Trochita radians, Lamarck, Anct.
> - Infundibulum radians, Orbigny:
> -Infundebum radians, Mont fort, Tryon.

One, beach shell. Porto Grande (Mus. No. 125312).

The above example, though imperfect, is in a sufficiently good condition, and of sufficient size as to leave no doubt as to the determination. It measures maximum 4.25 , minimum diameter 29 millimeters.

It has not before been reported outside of Peru and Chile.
Family AMALTHEIDA.
(ienus AMALTHEA Schimacher.
94. Amalthea barbata Sowerls.
$=$ Hipponyx barbatus Sowerby.
A single specimen. Porto Grande (Mus. No. 125390).
Not before reported away from the west coast of the Americas.
Family NATICIDA.
Genus NATICA Lamarek.
95. Natica porata Reeve.

One specimen. Fayal (Mus. No. 125291).

Superfamily DOCOGLOSSA.
Family PATELLIDA.
Genus Patella Limné.
96. Patella rustica Linne.

Common. Fayal (Mus. No. 125277).
A good series of this species of various sizes, points to the two following of Drouét's, as probable synonyms.
97. Patella Moreleti Dronét.

Example. Fayal (Mus. No 125299).
This species is probably nothing more than a variety and junior of l. rustica Linné.
98. Patella Gomesii Dronét.

One specimen, beach. Fayal (Mus. No. 125290).
The above example though a beach shell is in tolerable condition; it agrees with Drouet's figure and description. I'. Gomesii suggests a variety of the Linnean species rustica.
99. Patella Argenvillii Krauss.

Numerous examples. Island of Saint Helena (Mus. No. 125412); Cape Town.

Several fine living specimens of this limpet were detected at St. Helena. It has somewhat the appearance of I^{\prime}. granularis, but the
close set radiating costar chameteristic of both speries，are not broken up into stambes．The fwo（＇ape Town shells are large adult examples and well represent this characteristic species．

100．Patella plumbea Lamarek
$=1$ ．plicata Bom．
P．Iugnbris Reevo（Fig．3z）
One example；Porto Grande（Mus．No．125353）．
Born＇s speries seems to be simply a strongly seuptured variety of phomber，and Reeve＇s lugubris from the island of St．Vincent．I regard as another varietal aspect of the Lamarekian species．

101．Patella pruinosa Kranss．
One beach shell，impertect；Cape Town（Mus．No．12．5370）．

102．Patella granularis Limmé．
$=r$ ．aenticulate，Martin．
Many examples living；Cape Town（Mus．No．12：B36）．
Numerous specimens，both mature aud adolescent．

103．Patella Baudonii Hronét．
Several specimens；Cape Town（Mus，No．125375）．
Described by Drout from the Azores．The examples collected by Mr．Brown indicate a close relationship to P ．Argenvillei and may ultimately prove to be only a varietal form of said species．

104．Patella occulus Born．
Three specimens；two juniors，in aleohol；Cape Town．
A strongly characterized speries．
105．Patella cochlear（imelin．
One specimen，aleohol；Cape Town．

> Family PHANIANELLIDE。
> (iœ⿱一⿱㇒⿵冂⿰丨丨一心 PHASIANELLA lamarek.
> -
> 106. Phasianella capensis IUnker.

Two good specimens；Porto Grande（Mus．No．12：5302）．
107．Phasianella pulla Limme．
Two examples in good condition；Porto Grande（Mus．No．12530．4）．
108．Phasianella neritina Dunker．

Three specimeus; Cape Town (Mus. No. 12:3s²) a pretty well-marked species.

Family TROCHIDAE.

Geuns MONODONTA Lamarck.
Section OSILINUS Philippi.
109. Osilinus Tamsi Dunker
$?=0$. Saulcyi W. \& B.
$?+M$. punctulata Lamarek.

Common living; Porto Grande (Mus. No. 125586).
Variable in umbilical character and otherwise; sometimes elevated, conical, and again frequently depressed; often exinibiting two or three obtusely rounded ribs following the periphery spirally, with a shallow groove between. Some examples are closely spirally lirate, and others are without lire. Specimens are frequently met with that are obtusely angulated. Some individuals are ornamented with light zigzag markings, others have only a few distant light spots on a dark ground; these point intimately toward punctulata. Apex when eroded, yellowish.

Section 0XYSTELE Philippi.
110. Oxystele sagittifera Lamarck.

Three living specimens; Cape Town (Mus. No. 125373.)
Genus Gibbula Risso.
".

111. Gibbula nassaviensis Chemnitz.

$?=$ Gibbula umbilicatus Montagn, variety.
Three specimens; Porto Grande (Mus. No. 125359).
The three shells of the foregoing species, collected as above, are in good condition. In the National collection under the same name I find numerous examples that were identitied by the late Dr. Stimpson (Mus. No. 18686). Upon turning to the author I find his deseription altogether too brief, and the figures too indefinite to make a satisfactory determination thereby. Neither upon following his name through the synonymy is a satisfactory result obtainable as to the identity of the shell he has named. The umbilical character is of no value whatever in this instance, for some individuals are distinctly umbilicated, others are not, and again others are partially perforated. The shells, considered apart from the confusion of names and conjectures as to the meaning of authors, appear to be an extra limital and dwarfed aspect of umbilicaris Linné $=$ T. umbilicatus Montagu.

Philippi makes nassaviensis a synonym of his occulta; and A. Adams includes nassaviensis preceded by a ? in the synonymy of Gibbula Proc. N. M. $93-22$
tumidus of Montagn. The National Museum series contatins speecmens from the Cape of Good Hope (No. 43098).

Family TURBINIDAE.
 Genms ASTRALIUM Link.

112. Astralium tuber linné.

One specimen; no locality given; probably Barbados.
Ocems in Florida, at Jupiter lulet and the Keys, as well as at numerous places in the Antillean region.

Family NERITIDE.
Genus NERITA Bruguiere.
113. Nerita neritinoldes liceve.

Numerous specimens, living; Ashantee (Mus. No. 125319).
The foregoing appears to be quite an abondant form. Sorrerby's morio and Philippi's cerbonaria are apparently the same.
114. Nerita ascensionis Chemnitz.

Common; many examples, living; Ascension lsland (Mus. No. 125401).

A pretty shell, apparently abundant.

> Superfamily ZYGOBRANCHIA.
> Family HALIOTIDE.
> Gemis HALIOTIS Linné.
> 115. Haliotis striata Lamarck.

One good specimen. Fayal (Mus. No. 125e80). Family FISSURELLIDE.

Geuns FISSURELLA Bruguiere. 116. Fissurella alabastritis Reeve.
$+F$ glancops Reeve.
Three beach shells. Porto Grande (Mus. No. 125392).

117. Fissurella mutabilis Sowerby

Two living specimens. Cape Town (Mus. No. 125372).
The above agree perfectly with named examples received from the Albany Museum.

> Subclass ISORIELIRA.
> Order POLYPLACOPHORA.
> Family LEPTOCHITONIDA.

Gemis Leptochiton Gray:
118. Leptochiton cyaneopunctatus hrause,
$i=$ lentiginosus Sby.

One specimen. Cape Town (Mus. No. 125380). A single small example, so close to Krauss's figure and description that I attach his name to it, though the color varies somewhat from his diagnosis. It also exhibits some of the characters of Gray's C. capensis.

Family ISCHNOCHITONIDA.
Genus Lepidopleurus Risso. 119. Lepidopleurus purpurascens C. B. Adama:

Barbarlos.

Class CEPHALOPODA. Order DIBRANCHIATA. Suborder OCTOPODA. Family OUTOPODIDA. Genus OCTOPUS Lamarek.

120. Octopus? vulgaris Lamarck.

One specimen, alcohol. Ascension Island, March 25, 1890; dredged 20 to 30 fathoms.

> Suborder SEPIOPHORA.
> Family SEPIIDA.
> Genus SEPIA Lamarck.
> 121. Sepia officinalis Linné.

One fine example. St. Paul de Loanda (Mus. No. 117941; in alcohol).
Suborder PHRAGMOPHORA.
Family SPIRULIDE.
Genus SPIRULA Lamarck.
122. Spirula fragilis Lamarck.

Fayal (Mus. No. 125292). Beach specimens; a widely distributed form; pelagic. SUMMARY.

ON RARE OR LITTLE KNOWN MOLLUSKS FROM THE WEST COAST OF NORTH AND SOUTH AMERICA, WITH DESCRIPTIONS OF NEW SPECIES.

Riv
Robert E. C. Stearns, Ph. D. Adjunct Curator of the Department of Mollusks.

(With Plates Lo.)
The forms included in this paper are all in the collection of the U. S. National Museum. Eight of the fourteen were collected by Mr. W. J. Fisher in the Gulf of California region several years ago. The others were collected by various persons: Dr. W. H. Jones, U.S. Navy ; Ir. Edward Palmer, Capt. (xeorge D). Porter, and others. A part of the species have already been described. In some cases these descriptions required revision and information relating to the species not before available has been added.

The number of forms heretofore associated in the monographs and by the principal anthors with an Indo-Pacific habitat will atteact attention. A comparison of the marime portion of the mollask fana of the (iulf region, with that of the Galapagos, as exhibited in the collection made by the U. S. Fish Commission steamel Albatross, a catalogue of which is nearly rearly for publication, gives a much larger representation of distactly Indo-Pacific or Polynesian species to the former. In comnection with the Polynesian species, attention is called to the beatiful embroidered cone deseribed by me in 1873,* Comus Jalli, in its general aspect, eolor, markings, ete., appoaching very closely to some of the species in the gronp represented by $\quad\left(\begin{array}{l}\text {. }\end{array}\right.$ textile. The origimal examples were obtamed by vessels in the diulf trade and brought to San Francisco. Subsequently, in 1876, Mr. Fisher collected numerous specimens, living and beach shells, at the island of Maria Madre, of the Tres Marias Group, in the mouth of the Gulf, and I have since seen several adolescent examples from the Gulf region, which sustain the validity of the species and indicate that it is found not infrequently within the Gulf area or upon its shores.

Family APLYSILDE.

Gеиин DOLABELLA Lamarek.
Dolabella californica Stearns.
Proc. Acarl. Nat. Sciences, Philadelphia, 1878, p. 395, Pl. vif, Figr. 1, 2.
Several examples (Mus. No. 75001), Mulege Bay, (iulf of California.
This form was first detected by Mr. W. J. Fisher in 1876. I have

[^58]Proceedings National Museum, Vol. XVI-No. 941.
not heard of its beine collected since. In Mr. Fisher's motes he says that the Aplysia-like animal prefers bdark places in pools left by the tide."

The shell is internal, triamgular, hatehet-shaped, with a curved and callous unclens or apex; entire shell hard and caleareous when adult; when young more or less membranaceons and thexible. Though several examples of the above, soft parts and all, were obtained, I was mable to get an entire specimen for investigation. Mr. Fisher, who mate no drawings at the time of collecting, informed me that the animal was of the same gencral form that authors have given of Aplysia,* the color of the Fisher individuals being a dark brown and the surface covered with wartlike papillae. In the matter of the color this species probably varies as do individuals of the others.

The various forms heretofore deseribed are principally inhabitants of ${ }^{\circ}$ the Indo-Pacitic province, and the Mediterranean region is alsocredited with is representative of this group.

The shell of 7 . califormica is in outline very much like that of 1 . lumphii Cuvier = D. seapula, Martyn.

The muclear eallosity varies more or less in different specimens.

Family ONCHIDIDA.

Genus ONCHIDELLA Gray.

Onchidella Binneyi Stearns.

Plate L, Figs. 1, e.

$=$ Omehidella Carpenteri Bimmy, Ntearns, l'roc. Acad. Nat. Sciences Phila., 1878, Pl. vin, Figs. 7, 8.
$=$ Omehidella Capentori Binney. Third supplement to vol, v, air-breathing mollusks of the U. S., vol. XIx, Bull. Mus. Comp. Zoölogy, Cambridge, Pl. Vi, Figs. D and E, 1. 214.
not Onchidium Carpenteri Bimmey. Proc. Ac. Nat. Sc. Phila., 1860, 1id; L. \& l. W. Sh. of N. A., i, 307-308, Fig. 544 (1868) not
Onchidella C'upenteri Binney, Manual Am. Lamd Shells, lBulhetin 2x, 1. S. Nat. Mus., 1885,1 . 163, F゙ig. 150.
Oncidichla? 'arpenteri W. G. Bimney, Fischer and Crosse. Mission sidentitigut aut Mexique et dans l'Amériquo Central.
Several examples (Mus. No. Nssey). San Francisquita Bay, Los Animas Bay, and Angeles Bay in the Gulf of Cabifornia.

The form listed herein was collected by Mr. W. J. Fisher at the places indicated; all of the spedimens were living. A deseription with figures was published by me in the Procedings of the Philadelphia Academy in 1s7s. Mr. Binney's Onchidium Corpenteri was the only form of the family that had been credited to the Gulf region; without looking into the matter sufficiently, I assumed that Mr. Fisher's specimens belonged to Mr. Binney's species.

[^59]The figures recently given by Mr. Bimey in his third supplement to the filth volume of the Air-Breathing Mollusks of the United States are not new drawings from the original specimens which furnished a basis for the brief and partial description of O. Carpenteri, as first pub lished by him in the Proc. Acarl. Nat. Sciences of Philadelphia, but from a specimen sent to him by Mr. Dall, one of the Fisher lot described by me in 1878, and, as I now regard it, erroneously referred to his species. His O. Carpenteri is a much smaller form, "the length of the largest* heing 5 millimeters, the extreme breadth 3 millimeters," while the Fisher specimens average 17.2 in length by 12.2 millimeters in breadth.

My former description is here given with some modifications. Body oblong ovate, about a third longer than wide; convex or round above, flat on the under side; anterior and posterior ends equally rounded; dorsum formed by the mantle and entirely rovering the back, which is of a smoky-hrown color, coriaceons and quite thick at the edges; under side of a dingy, yellowish color. Surface of dorsum covered with wartlike papille, some larger than others, the larger having somewhat the aspect of regularity, the interspaces being filled with the smaller; creeping disk or belly, elongated, nearly as long as the animal, and its width equal to about one-third of the entire width as seen from the under side.

Sexual organs on the right side, near the head. Respiratory orifice on the left side, between the edge of the creeping disk and the mantle, at a point about two fifths of the total length from the posterior end. Anal outlet on the right side, very near the posterior extremity of and just above the edge of the creeping disk. The eye peduncles rather short, and these as well as the buccal appendages are obscured by the contraction caused by the alcohol. The creeping disk being comparatively soft is much contracted by the same cause. Mr. Fisher remarked that he found this form "abmondat, attached to the under side of stones at low tide, sometimes overlapping each other."

In Hutton's Catalogue of the Marine Mollusca of New Zealand, he includes a species, Onchidelle nifficans Quoy, "uniform black, * * * common on rocks between tide marks," having the same habit in this respect as 0 . Binneyi.

The localities where Mr. Fisher collected his specimens are in the Gulf of California, on the westerly shore, the first in latitude $28^{\circ} 26^{\prime}$, the second in $28^{\circ} 50^{\prime}$, and the third and last in latitude 29 north, as it will be observed, not far from each other. Onchidium Carpenteri Binney is credited by the author as ranging geographically from the "Strait of Fuca to the Gulf of California." It is probably a distinct species and will sooner or later be verified by additional specimens in a suitable condition to admit of its characters being definitely ascertained and described.

Family VASOIOLARHDEE。

Subtamily fusinas.

Gemus FUSUS lamarek.
Fusus: polygonoides lammrek.
A single example, agreeing more closely with this speeces than any other that is contained in the National collection or that has been deseribed or tigured, was collected at C'atalina Islamd, Calitomia, by Mr. Fisher (Mus. No. B2:34S).

Family NASSIDN.

Gemas NASSA Lamarek.

Nassa brumeostoma Stearms.

Described in "Namtilus," May, 1893, Vol. vin, pp, 10-11.
Whell small, elomgated ovate, of seren to eight whorls, with a pointed and achtely elevated spire with generally three spiral series of gramules: occasional individuals show four series on the penultimate whorl and six to seven on the basal. In some examples the sempture has the appearance of longitudinal ribs broken up into grammes: in others the sentpture suggests spiral or revolving ridges broken into gramules; in some examples the eramulation covers nearly the whole of the basal whorl: in others an area equal to the last thind of the basal whorl is comparatively smooth. la some individuals the gramules next below the suture are more eonspienoms than the others, and agath a double row of more prominent gramules are seen on the upper part of the basal whorl. In some individuals the suture is distinct, in others obsemed Most of the examples exhibit tine revolving lire on the lower half of the basal whorl.

The aperture is small, ovate, about one-third the length of the shell; the outer lip is thickly rimmed externally and usually cremulated and denticulate within just below the edge. Cohumella roundly arcuated with the nsual callus above and a single terminal pleation at the base of the pillar, with four or tive obtuse ridges above. The sreater part of the basal whorl, as seen in front, is eovered with shiny eallus of a warm chestnut brown, varying more or less in depth of color, in some cases quite light. When held up to the light, on looking through the aperture, an obsemre lightish band is pereeptible. The warm brown glaze surounding the aperture and covering the pillar is quite characteristic, and together with the acute and blevated spire, makes it easily separable from its nearest congeners. Its nearest relatives geographieally and otherwise are Vasset complanuta Powis(V. sedorinscolla C. B. Ad.) and N. teyula Reeve (N. tiarula Kiener), both common in the Crulf region and forming, with bromneostoma, a little group exhibit-
ing similar general characters. Some examples of brumeostomu are more robust than others and vary in the elevation of the spire.

Dimensions: Length of largest, 16 millimeters; breadth, ! millimeters; an intermediate example measures 15 millimeters in length and 8 millimeters in breadth. This last is, however, much alove the average in size.

Habitat.- (inlf of California, near the month of the Colomado River (Mus. No. 37239); also at Guaymas, on the easterly shore (No. 23721, 50951), where numerons examples were collected by Dr. Edward Palmer.

Family MURICIDE.

Subfamily Muricinie.
(ienus MUREX Lime.
Sulgenus CHICOREU̇S Montfort.
Chicoreus palma-rosæ Mexicana Stearns.
$=$ palma-rose Lamarck, var?
$?=$ M. affinis Reeve.
$\{=$ M. Steeria Reeve.

A single example (Mus. No. 46803), in fair condition.
The occurrence on the west roast of any form allied to the palmarosie group of Murices has not heretofore been reported. In several instances during my residence in California I notired worn beach shells of the above in material received from the Gulf of California. The specimens were usually in such poor condition as to be of no value as examples for the cabinet, and the geographical fact of their appearance among west-coast shells did not impress me sufticiently, until Mr. Fisher returned from his Gulf expedition with the quite fair specimen herein listed. It hardly agrees with either of the described for ms above referred to, neither does it differ greatly. A comparison with the monographs is not quite satisfactory, and the various examples in the National Museum of such forms as it most nearly approaches, are not sufficiently numerous to remove the donbt. I have given it the above name, as in other instances in this paper, solely for the object that the geographical fact may be clinched and made known. It may ultimately prove to be a variety of Reeve's affimis, for which he has given no habitat.

The allies of the form known as palma-rosir include the following: M. palma-rose Lamarck, M. Steeria Reeve, M. Santia Sowerby, M. maurus Broderip, and M. affinis Reeve.

The salient features of the group are well illustrated in the priucipal and best known form, the species first named.

The character, number, and arrangement of the fronds upon the varices or varical fronds are quite persistent in all of these species, and they all have minor characteristics in common.

Commencing with the mper part of the varices, is the principal froud and this is divided or bifid, or we may say it is composed of two tronds uniting and forming one, the matin frond; then comes a gap, followed by thee fionds, then another gap followed by two fronds, and this system of ome, three, and two is exhibited uswally in each of the three varices of the body whorl.

Chicoreus Leeanus Dall.

Proc. U. S. Nat. Museum, vol. xif., pp. 329-330, 1889.
Two examples of this rare amd striking species were brought to my attention when in San Diego, in May, 1892, by Miss J. N. Cooke. The larger measured 90 , the smaller 75 millimeters in length. They were both collected by (appt. (i. l). Porter. The first was tomm living between tide maks in sand, one in San Ignacio lagoon, Lower California; the other was a beach shell. Dall's type was dredged off Cerros Island, Lower California, in it fathoms muddy bottom by the U.S. Fish Commission steamer Albutross, in 1888 . It measured 70 millimeters.

Gemus OCINEBRA leach.
Ocinebra lugubris Sby.
Murex lugubris Sby. Proc. Zoül. Soc. London, 1832, p. 175. Conch. Illus., Fig. 26. Reeve, Iconica, Sp., 143.
Murex erinaccoides Valenciemes. Reeneil d'observations, etc., ii, 302, 1833.
Murex californicus Hinds. Proc. Zoöl. Soc. London, 1843, p. 128. Voyage Sulphur, t. 3, pp. 9, 10.
Murex califormicus Reeve. Conch. Iconica, Sp., 144.
Murex (Ocinebra) crinaccoides Val. ($=$ \& M. califormicus Hinds) Starns. Proc. Acad. Nat. Sciences, Phila., 1878, pp. 395, 396.
Collected by Mr. W. J. Fisher at La Paz, Lower California, in 1867 (Mus. No. 46767).

In the late Dr. ('apenter's reports to the British association ($\mathbf{1 8} \mathbf{5} \mathbf{6}$ and $186: 3$) reference is made to Mriciden reimucoides by name only.

In his Mazathan catalogne, howerer, he has described a "var. indentuta," of a form which he presmmes to be Valenciennes's species, and suggests a comparison with Kiener's Murex alveatus. In the Smithsonian eheck-list, June, 1860, he included Kiener's name, but omitted that of Valenciemes. The "alveatus" of Kiener is a quite distinct form, not at all like lugubris.

The form under review came to my notice many years ago and its determination sorely puz\%led others as well as myself. About the same times mumerous examples of the European M. erinaceus were received from various sourees and from several localities, from the British Coast to the Mediteramean shores of southern Emope. The close resembance of the West American to certain examples of the European form at once attracted my attention and placed me on the right track to identification.

The propriety of Valenciemes's name was evident from the material
examined at the time and has since heen shown, as further sperimens have come to hand from other localities on the coast of Lower California

Hinds described the shell as having six rarices, but his figures show only three. Recve's description is correct in mentioning three varices alternating with nodes or ribs. I think that Hinds mintentionally included the three internodes as varices in his description.

The variation exhibited by lugubris is so great that it may ultimately be connected with trialatus; the type of lugubris as figured is hardly characteristic when the general facies of a large number of examples is considered. It is to be regretted that the more appropriate name of Valenciemes has to give way to that of Broderip.

Subfanily PURPURINA.

Genus PURPURA Bruguiere.

Purpura hippocastanum Linné.
A single living example of this Polynesian species, occurring in the Viti, Samoan, and Pelew islands, as well as in the Australian region, was detected at Mulege Bay, on the eastern shore, Gulf side of the peninsula of Lower California.

Family TRITONIDDA.

(ienus RANELIA Lamarck.
Ranella cruentata Sby.
This form, generally regarded as Indo-Pacific or Polynesian, collected at the Viti Islands by the late Andrew Garrett, was dredged by the Albatross (depth 31 fathoms, rocky bottom) off Lower California in latitude $22^{\circ} 52^{\prime}$, longitude $109{ }^{\circ} 55^{\prime}$. This is near Cape St. Lucas, the extremity of the peninsula. This adds another Indo-Padific form to the many instances noticed in the Fisher collection, and may be explained perhaps by the great depth of water that prevails so close to the coast, and curves well up into the Gulf of California, where the - 1,500, fathom line reaches a point that would be intersected or touched by a line drawn across the Gulf from Cape St. Lucas to Mazatlan and reaches neariy up to the Tres Marias Islands on the south. In fact the depths of 1,724 to 2,395 fathoms were found between the end of the peninsula and Corrientes.* (Mus. No. 125665.)

The remarkable distribution of this species is still further corroborated by an example collected by Mr. Charles T. Simpson, of the U.S. National Musemm, who detected it at the island of Utilla, on the coast of Honduras.

[^60]
Family CASSIDIDE.

(iemus CASSIS Lamarek.

Subgenus CASMARIA 11, and A. Ad.
Casmaria vibex limmé.
An example of this form (Mus. No. s88:31) was detected on the beach at the island of Maria Madre, of the Tres Marias, by Mr. Fisher. It is a crab shell with the columella considerably excavated by its alien tenant; the extreme upper or apex whors are wanting; otherwise the specimen is in good condition, the surfare polish and the color being intact, with a hint of the broad obseure color bands sometimes seeu in this species, and the tine dots or minute color spots that oceur along the line of the bands where they are intersected by lines of growth. Thongh a small specimen, only 33 millimeters long by 21.5 millimeters in breadth, it is solid and mature, with a thick callus in the colmmella region and a heavy rim to the outer lip, exteriorly broadened and prettily colormarked, as frequently seen in this species. This example is inconspichously obtusely noduse on the upper part of the basal whorl, which is also slightly angulated below the suture. The lower part of the outer lip, though somewhat worn, shows faint crenulation.

Another example of this species, the smooth, thin, inflated form, was collected at La Paz, on the opposite side of the Gulf, near the southern extremity of Lower California, by Mr. L. Belding. This hasa thin or only slightly thickened rim to the outer lip; the color markings or spots on the same are inconspienons, the deposit of callus in the columella region is slight, and the subsutual nodes of the basal whorl are barely pereeptible. This also is a crab shell, the pillar very much worn away and the tip of the apex is broken or wom oft; the surface of the shell is in good condition and still exhibits its normal gloss. The Belding specimen is considerably larger than the Fisher shell, and measures lon. 44.25 , lat. $£ 4.50$ millimeters (Mus. No. 34184).

Family GYPREIDA.
(ienus CYPR届A linné.
Subgenus LUPONIA (imy.
Luponia isabella-mexicana Stearns.
Plate L, Firs. :3, H.
$=$ C. controrersu Gray, Stearns, lroc. Phila. Acad. Nat. Sciences, Phila. 1878, p. 399.
In Somerby's monograph of Cypred in the Conchological llhastrations, speries 30 , Fig. 13i, mo habitat stated, reference is made to
what at that time (1878) I regarded as probably applying to this West Coast form. The only comment in Sowerby's text is "30-C. controversu, Gray, Zoïl. Jour., t. 7 and 12, p. 7. Obs. This may prove to be only a variety of U. isabella."

My remarks in the Proc. of the Phila. Academy, following the above quotation from Sowerby, with the West Mexican examples before me, were as follows:

While its general coloration would lead to its being grouped with C. isabella of the Indo-Pacific and C. lurida of the Mediterranean regions, it differs more from the former than from the latter species. While it is a more ventricose form than C. isabella, in this respect being nearer to C. lurida, the cdges of the lips are not as finely and closely erenulated as in isabella nor as coarsely as in lurida.
Numerous examples, some fresh and living, others beach shells, were collected by Mr. Fisher at the Maria Madre and San Juanita islands of the Tres Maries group.

The figure of.controversa, in Sowerby, represents a more glohose form than any example of isabelle that I had seen at the time of my examiuation of the Fisher shells, and these latter, as a whole, varied in this character from any examples of isabella I had met with, and agreed more nearly with Sowerby's figure. Since then I have seen numerous specimens of rather short or ventricose iscabellus, notably a lot kindly sent to the Museum by Mr. Isaiah Greegor, of Jacksonville, Fla. An example (No. 23394) from the "Gulf of California," collected by Capt. P'edersen, has somewhat more of the ordinary aspect of the Indo-Pacifie isabellas. The Pedersen shell is too much worn to be of service in the matter of determining the color. The Museum also contains examples collected by Dr. Edward Palmer, credited to "Cape St. Lucas" (No. 23685). Of the fresh examples collected by Fisher, the figure represents the largest, highest colored, and most strongly characterized individual; the ground color is nearly as dark as the average of lurida (certainly as dark as a light-colored lurida); the dark, lougitudinal, irregular linear markings sometimes, rather rarely, met with in specimens of isabella, are exceedingly conspicuous, and the blotch-like spots at the apical and opposite extremity strongly exhibited; these are dull orange, shaded down with reddish brown. It may be that this is an extreme example; by itself it might well be regarded as a distinct species; this fine shell, as well as others in the Fisher lot, presents, in a greater or less degree, a combination of the characteristics of both isabella and lurida.

The individual figured has the following dimensions: Length, 39 millimeters; diameter, 22 millemeters. (Mus. No. 46581.)

The National collection contains 1 example (beach), No. 23394, "Gulf of California," collected by Capt. Pedersen; 10 from the "Tres Marias," Nos. 46581 and 46582, Fisher; 7 from "Cape St. Lucas," Nos. 23685, 55861, 55862, Dr. Edward Palmer; and 46580, 1 example "Gulf of California."

Family LITTORINIDA.

Genus tectarius Valenciemes.
Tectarius atyphus Stearns.
1'l. 1s, Fig. $\overline{5}$.
Preliminary description, "Nautilus," Necember, 1893.
Shell small, ovate, subturcted, with five whorls; the basal traversed spirally by five promeipal obtuse keels, or ribs, broken into nodules; of these the peripheral keels are the strongest; between these and below the lower of the stronger keels, fatinter keels or strie are perceptible; the penultimate whor shows three rows of nodules; of these the two upper are the more prominent and the lower one is sutural and incomspicuous. Color, dull ashen ehocolate above, lighter below the periphery of the basal whorl, and mottled below the lowest keel. Aperture rather ovate than romd, dark colored within; columella somewhat excavated and of a pale chocolate tint. Near the base of colmmella the hint of a lightish band may be seev, from the edge of the onter lip, inward.

Dimensions: Alt., 6.25 ; lat., 4 millimeters.
A single cxample (Mus. No. 4is396), from Manta, Ecuador, collected by Dr. W. H. Jones, U. S. Navy.

This is the first example of this group of the Littorinide detected on the west coast of the Ameriean contiments. It is rather remarkable, when the abundance of Tecterias muricotus and its ally, Echinella nodulosa in the Antillean Caribbean region is considered.

Many of the so-called speries of Littorima inhabiting the Caribbean and lanamie waters or shores are so murh alike as to at onee suggest a common ancestry within comparatively recent geological times. The species described above is quite distinct from T. muricatus or K. nodulosa, and exhibits in the details of its characters such differences as to warrant specific designation.*

Family TURBINIDAE.

Gemis ASTRALIUM Link.
Subgenus UVANILLA Gray.
Uvanilla regina Stearns.

$$
\text { Pl. L, Figs. 6, } 7 .
$$

Proliminary ilescription, "Nautilus," 1892.
Shell conie, acute, imperforate, black or purplish black; whorls six or seren, concave and longitudinally somewhat obliquely corrugated or plicated, the plications more or less produced or overlapping at the suture and periphery or edge of the basal whorl, producing a closely crenulated or undulating effect just above the suture, and at the basal

[^61]edge; surface otherwise closely sculptured by incremental strie, which run at right angles to and cross the longitudinal plica. Base concave, radiately closely lamellose plicate; plice sharply defined and becoming more prominent as they approach the periphery, flattening, coalescing and simuously curving at the edge, which latter is followed by a shatlow sulcation or groove parallel to and just back thereof; this groove commences at the point where the upper edge of the outer lip joins the basal whorl and extends towards the lower edge of the aperture, where it is less distinct. Aperture obliquely subangulate, outer edge black, thin, crenulated, nacreous, silvery white toward the edge, bright. lustrous golden-yellow within and around the umbilical region, which latter, though deeply excavated, is not open. Columella white, calloused, arcuated, with a moderately conspicuous rounderl rib) bounding the umbilical depression, and terminating in a single tuberele. A shallow furrow then follows the inner rib, terminating in a notch just below the tubercle, and the umbilical region is still further characterized by an exterior or outer rib, part of the way double, of a brilliant orange, which color blends in, more or less, along the edges of the rib, to the bright yellow around it. A shallow furrow follows along the course of this outer rib also, becoming obsolete toward the aperture. The base of the shell is further sculptured, rather obscurely, by faint revolving lines.

Dimensions: Altitude, 36.0; diameter, maximum, 34.0 millimeters.
The above species combines the sculptural features of the Japanese Chlorostomas and the West American Uvanillas, more especially U. olivacea. It is a much haudsomer shell than the latter, and geographically the most northerly species of the group thus far detected on the west coast. It is numbered in the register of the department 125314.

Family TROCHID风.

Genus CHLOROSTOMA Swainson.
Chlorostoma gallina, var. multifilosa Stearns.
Pl. L, Figs. 8, 9.
Preliminary description, "Nautilus," December, 1892.
Shell imperforate, large, heavy, solid, thick, turbinate, elevated, inflated, globosely conical, with five and one-half to six and one-half whorls; whorls rounded; suture simple, moderately distinct, not channeled; apex obtusely pointed, eroded, and yellowish at the tip; color nearly black when wet, reddish or purplish black, when dry; seulpture spiral, consisting of numerous narrow, closely set, rounded ridges or costæ, separated by narrower incised whitish thread-like grooves; aperture rounded, oblique, subangulate on the columellar side and pearly within; outer edge black-rimmed, finely crenulated and mottled by the projection of the lighter colored groovings; columella short,
arenated, with two somewhat elongated tubereles near the base, and a shallow umbilical pit above; base convex.

Altitude 36 ; diamoter, maximm, 34 millimeters.
Hameat.-Guadalupe lsland, "among the rocks," (apt. George D). Porter. This island is off the outer coast of Lower Californaa, in latithde 29 north and longitude $11 \mathrm{~s}^{\circ}$ west; it belongs to Mexico. (Mus. No. 125315.)

The ridges are not of equal thickness, but vary considerably; in some instances twice as thick or wide as in others; and both ribs and grooves are somewhat coarser on the base tham elsewhere. The example before me varies trom the ordinary aspect or typical form of Forbes's gallinu, by the absence throughout of any trace of "longitudinal markings or sculpture," and from Hemphill's var. tincte in the absence of the "streak of yellow on the base, just below the columellar teeth:" in the latter also "the longitudinal markings and senpture are obsolete, and the spiral grooves generally searcely visible above," while in the example herein dessribed the elitire surface is comspicuously ribbed and grooved throughout.

The exceding variability exhibited by gallina and the related forms of this gemus on the west coast is such that I do net feel warmanted in regarding this tine and strongly characterized shell as a new species; it can, however, with propriety, be assigned, and is well entitled to an easily recognized varietal position.

ENPLANATION OE PLATE 1 。

Sote.- 'The tignres following the athority for the specitio name denote the actual size in millimeters of the specimen figured.

Fig. 1. Onchidella Binneyi Stearns, dorsal view, 17.3×12.2.
-. Onchidella bimucyi Steams, ventral viow.
3. Cyymoa isabella-mexicana Stearns, 39.0×23.
4. Cypraa isabella-mexicana Stearns.
5. Tectarins atyphus Stearns, 6.25×4.0.
6. U'anilla regina Stearns, 36.0 alt.
7. Etanilla regine Stearns, 34.0, max. diam.
8. Chlorostoma yallima viar. multifilosa stearns, 36.0 .
9. Chlorostoma gallina var. multifilosa Stearns, 34.0, max. diau.

4

8

5

9

West american Mollusks.

SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U. S. FISH COMMISSION STEAMER ALBATROSS.

[Published by permission of Hon. Marsialal McDonald, Commissioner of Fisheries.]
No. XXV.-REPORT ON THE MOLLUSK-FAUNA OF THE GALAPAGOS ISLANDS WITH DESCRIPTIONS OF NEW SPECIES.

BY
Robert E. C. Stearns, Ph. D., Adjunct Curutor of the Department of Mollusks. (With l'lates LI, LiI.)

The following list of the land and marine shells of the Galapagos Islands is based principally on the collection made by Prof. Leslie A. Lee and his assistants on the voyage of the U. S. Fish Commission Steamer Albatross from Chesapeake Bay by the way of the Straits of Magellan to San Francisco in 1887-'88. Withont any attempt to make an exhaustive review of the mollusk-fauna of the group, or even to make a list that would be a complete compilation or catalogue, I have included the principal collections from authentic sources heretofore made known or published, and have added such comments and notes as have occurred to me in the course of my examination of the Galapagos material collected by the Albatross and such other examples as are contained in the collection of the U.S. National Museum. It should be borne in mind that this report refers, so far as the marine mollusks are concerned, with a few exceptions, to the littoral and shallow-water species only. The deep-sea material remains to be investigated and reported upon hereafter by Dr. Dall; the few species he has already described are included in the summarized list in the latter part of this report.

GEOGRAPIICAL AND PHYSICAL CHARACTERISTICS.

A brief description of the geographical situation and physical characteristics of the islands of this group may be of some interest in connection with what follows. The Galapagos are a group of islands in the Pacific ocean, about 600 miles to the westward of the coast of Ecuador, to which State they belong. They lie on both sides of the equator, extending from about 2° north to $1^{\circ} 30^{\prime \prime}$ south latitude, and between $89^{\circ} 20^{\prime \prime}$ and $92^{\circ} 10^{\prime \prime}$ west longitude from Greenwich.

There are five principal islands, eleven smaller ones, and a great number of islets and rocks. The larger islands, situated between the
equator and 1 degree south, are Narborongh, Albemarle, James, Indefatigable, and Chatham. Of these Albemarle is the chief; it is the only one cut by the equator, is $i 5$ miles long and about 15 in breadth, and its highest summit, according to IIumboldt, is 4,636 feet above the level of the sea. Of the smaller islands, three are between the equator and 1 degree south-Jervis, Duncan, and Barrington; three between 1 degree and \rightleftharpoons degrees south-Brattle, Charles, and Hood; and five between the equator and \cong degrees north-Tower, Bindloe, Abingdon, Wemman, and Culpepper; the last only abont a mile in length by five-eighths of of a mile in width. As before stated, the highest elevation oceurs on the largest island, Albemarle, 4,636 feet; next is Narborough, about 4,100 ; others vary in altitude from these figures to Tower island, which only reaches an elevation of about 209 feet above the sea level.

VOLCANIC ORIGIN.

The entire group is of voleanic origin, and most of the islands consist of basaltic rocks and masses of scoriae and lava. "Searcely anywhere else," says Humboldt in his Cosmos, "on a small space of barely 120 or 140 geographical miles in diameter, has such a countless number of conical mountains and extinct craters (the traces of former communication between the interior of the earth and the atmosphere) remained visible." Darwin, who visited the Galapagos in the expedition of the Beagle, calculated the number of the craters at nearly two thousand, and two of the craters were simultaneonsly in a state of eruption. He wrote, "On all the islands streams of a very fluid lava may be seen, which have forked off into different channels and have often run into the sea." On Albemarle, "the cone mountains are ranged in a line and consequently on fissures." "Many margins of craters are formed of beds of tufa, which slope off' in every direction." While these islands have been regarded as of very recent formation, some of them are said to exhibit the remains of an older voleanic formation; these indications ocem" on Charles Island and the small islands Gardner, Caldwell, and Enderby, which surround it." "The structure of Albemarle,* made up of a series of at least tive volcanic centers with the adjacent Narborough, gives us an indication of the probable appearance of the central and western groups of islauds were they still active so as finally to become comected and form a huge island, with James, Indefatigable, Jarvis, Duncan, Barrington, and Charles as the culminating points of the platean, formed by the 100 fathom line. We may therefore look upon the Galapagos Isitands as a group of volcanic islands, gradually built up by successive flows of lava upon a huge mound, itself perhaps raised by the same agencles from the floor of the ocean; more active local flows in the same region having at special points built up more rapidly the northern group of islands-Wemman

[^62]and Culpepper, and the two other groups of islands we have recog. nized."
"While slowly steaming through the archipelago from island to island we had an excellent opportunity of studying the natural features of these islands, and also as we passed their shores or were dredging within a moderate distance. As far as a cursory examination like ours could prove anything regarding the nature of the geological structure of the islands, our observations fully agree with those of Darwin and of Wolf, that this group presents one of the best examples of true volcanic islauds.
"The majority of the islands are evidently formed around a central crater or center of elevation. They have increased in size and in height from successive lava flows. There is nothing to show that the separate islands are entirely the result of the disintegration of a larger volcanic chain, though of course a certain amount of denudation and submarine erosion has undoubtedly taken place, as is readily seeu on the slopes of the islands and on examination of the soundings between them. Neither do we find any indications either of elevation or of subsidence of any part of the area of the Galapagos district which would affect their topography; and, as Wolf maintains, we can still less explain their formation by a separation in former periods from the South American continent. On the contrary, every part of their structure seems to prove that the islands have beeu slowly formed by submarine eruptions at first, and subsequently by similar accretions at the level of the sea, until finally some of the islands have reached an elevation of over 3,000 feet. During the process of growth some of the islands have become joined together, as for instance Albemarle, which is probably composed of three islands originally independent, and also the eastern and western parts of Chatham, which were surely once two separate islands, and are now connected only by a low isthmus.
"The volcanic activity of some of the islands has continued to comparatively very recent times. I am informed by Mr. Cobos that smoke has been seen to issue from Narborough as late as 1836, and it is well known that Capt. Collet was driven from Tagus Cove by the heat due to an eruption on the neighboring Narborough. It is quite probable that the age of the Galapagos does not reach beyond the earliest Tertiary period, and many parts have undoubtedly not been formed before the present epoch, so that the time is geologically short during which so many plants have developed from their Sonth American, their Central American, their Mexican, or their West Indian ancestors." *

CLIMATOLOGY AND FLORAL ASPECT:
As would be supposed, the climatology of these islands is peculiar. Though situated directly on the equator, it is not excessively hot, being

[^63]modified by the comparatively low temperature of the surrounding sea. The main oreurs between February and June, but is very irrequar, and often there is none for one or two years. In the higher portions of the islands, about 900 feet, there is often rain all the vear. The zone up to between 500 and 600 feet is nearly without ran ; therefore the upper region remains always green, the lower is ard and baren. At the edge of the sea various maritime phants ocedr and in some of the bays mangroves, ete. In ascending the hills from the shore the whole ground in all directions is covered with apparently withered bushes, but on a closer examination it is found that these plants are mostly in bloom. This brushwod grows up to a height of a or 6 feet, ramely 10 feet, and here and there are fomd dlyorobe trees about 20 feet high, and also sporadic lalosantos (Guincmm), the latter being the largest tree in the lower region; it reaches a height of 30 feet and $: 3$ feet in cireumference. On plates which do not allow the growth of any other plant, the grotesque, tree like opmutios and gigantie Cerens are found. The Cereus is exemeally seen in the most barm spots. These cactuses wive a very ehamateristio appearance to this region. Besides these plants there are some fifty or sixty others, principally shoubby. Then comes an intermediate zone, the vegetation indicating increased humidity; this latter is included between the altitudes of about 650 and 900 feet, and separates the dry and humid resions. This intermediate belt, between 200 and 300 feet in width, is still more eovered with brushwood of a withered appearame. The catuses disappear and a trailing tree moss (l sued $)$ becomes the charateristic feature, and is easily distinguished from a distance by its white color. When the high platean above the goo foot line is reached the whole seenery changes; a refreshing, moist breeze comes from the eoast; the traveler is surrounded by green woods amd stands on meadows. These woods are principally of trees 30 feet high, of an Andean type, and the flora of Eemador at an altitude of, say 10,000 feet, is sugsested at an elevation of only one tenth as great; there is ereat resemblanee to the small Paramo foresis of the Andes, not only in the habits of the trees lout also in the small plants which cover the gromed, and in the mosses and lichens which cover the trees. The woods are free withont ereeping plants, making a passage easy; small meadows oceur, fonsisting nearly entirely of grasses and rushes ('!ppracer). Above this wooded region another may be seen, which is destitute of trees and covered only with a coarse, short grass, which extends to the highest summits of the islands. (Chatham, Hood, Indefatigable, and dames.)

The deseription of these varions \%ones is based on the eonditions fomm on ("harles Lsland; it is said to be the same on the others of high elevation. From this it is evident that such islands as do not reach to the humid region, like Hood, Barrington, Tower, ete., show only the arid state,

DISTANCES AND DEPTH OW WAIER BETWEEN THE ISLANDS.

The approximate distances between some of the islands are as follows:

	Miles.
Hood to Culpepper	21
Chatham to Narborough	163
Hood to Chatham	31
Hood to Charles	40
Chatham to Indefatigable	41
Albemarle to Abingdon	48
Abingdon to Bindloe	14
Bindloe to Tower	31
Abingdon to Wenman	88
Weuman to Culpepper.	22
Duncan to Indefatigable	
Jervis to James.	5
Barrington to Iudefatigable	11
Indefatigable to James	12
James to Albernarle	11
Charles to Indefatigable	31

"The deepest sounding on record is 671 fathoms (4,026 feet) between Tower and Indefatigable islands; between the Median islands the greatest depth does not surpass 300 fathoms, but a complete series of soundings may show quite different figures." *
Since the above was written by Dr. Baur we have additional data relating to the soundings in-Agassiz's \dagger paper, wherein he says:
"Our knowledge of the hydrography of the Galapagos is still quite incomplete. There are unfortunately no soundings between James and Albemarle, to indicate the probable depth of the ridges comecting them. Nothing likewise is known of the depth of the chamels between Abingdon and Bindloe and Tower, and no soundings exist to show how far to the westward the deep valley (of over 800 fathoms) separating Bindloe from Indefatigable extends, as there are no soundings between either Bindloe or Abinglon and Albemarle. There seems little doubt that the northernmost islands, the isolated rocks of Culpepper and Wenman, are themselves separated by comparatively deep water, and in turn separated from the northeastern group of islands, Abingdon, Bindloe, and Tower, by a tongue of the ocean of at least 1,000 fathoms in depth and from 60 to 70 miles in width. From a careful examination of the soundings thus far made it seems probable that the 100 fathom line connects Indefatigable, Duncan, Barrington, and Charles, and that there is also a connecting ridge inside that same depth between those islands and Albemarle to the southeast of Cape Woodford on Albemarle, or a wider platean of which Duncan Island is one of the culminating summits.
"A comparatively shallow connection may also exist between Cape

[^64]Nepean, on James Istand, and Albemarle in the direction of Cowley Island, Narborough itself being only separated from Albemare by a chamel less than in fathoms in depth. The soundings between Chatham, Barrington, and Hood are so few in number that we are not yet able to decide whether these somtheastern islands, Chatham and Hood, are not perhaps colmected by a ridge connecting Hood and Macgowen Reef, and also miting them with the great platean which the islands of Barringtom, Charles, Indefatigable, Duncan, Abbemarle, Narborough, and perhaps James have gradually built up.
"But it may be that the tongue of deeper water extending between Hood and Chatham runs toward Barrington, and also separates that island from Chatham."

Agassiz further onsays: "On account of the small number of soundings, no attempt has been made to draw curves of depth on the chart of the Galapagos."

ORIGIN THROUGII SUBSIDENCE.

The position of Baur is that "the Galapegos are continental islands, originuted through subsidence;" they all formed at a past period one large ishand, and this island itself was at a still former period "in connection with the American continent." This is in direct opposition to the opinions of "Jarwin, Hooker, Salvin, Grisebach, Englar, M. Wagner, Wallace, Peschel, and later by Wolf, and Agassiz, as herein quoted. All declare that these islands are of recent voleanic origin, that they have emerged out of the seat through voleanic activity, and have become peopled from the continent," etc. "Hemri Milne Edwards alone holds adifferent opinion; he believes that the Galapagos represent the remains of a former continent, and in this opinion I agree." He then proceeds by saying that "the principal reason of the believers of the elevation theory is the voleanic comdition of the islands. But I do not see any difficulty in that. If momatan ranges like the Himalayas, the Alps, the Andes, the Rocky Momitains, could be elevated thousands and thousands of feet, why could not subsidence take place in other places? If Central America should disappear by and by through subsidence, the result would be that the tops of the highest mountains would form voleanic islands, some with still active voleanoes. This would be exactly the condition we see to day in the Galapagos. I think, therefore, that the voleanie nature of a group of islands is no positive proot of its recent migin. Such groups of islands can be just as well considered as formed of the tops of the volcanie mountains of a sunken part of a continent."
"I believe, therefore, that the peenliar genera we find to day on the Galapagos have not originated there, but have been preserved in their old condition." *

[^65]Dr. Baur's contention arises from the hypothesis that only subsidence can explain what he terms the harmonic distribution of animal and plant life. He says furcher on, "that we need only an elevation of about 10,000 feet to connect the Galapagos with America." The peenliarities of the flora which he points out and which are referred to elsewhere in connection with the arid and humid zones (ante, page - he regarded as explicable only by the theory of subsidence; but it seems to me they are fully as well explained in Λ gassiz's paper, and so far as the alpine facies of the flora is considered, it may fairly in this respect be compared to that of the rainless belt of the South American mainland 600 miles to the eastward, and the modifying influences of cold on one side and drouth on the other may be regarded as producing aualogous results in dwarfing and otherwise differentiating vegetable life. The theory of subsidence he assumes will explain all these, as well as similar and other phenomena which I have not referred to, "in an absolutely easy manner." It is very doubtful, however, in the present state of our knowledge, whether this, that, or the other theory will satisfactorily explain all, but that theory which will fatirly explain a good portion, by those factors or agencies that are operating directly under our eyes, would seem to be preferable and entitled to acceptance over another, however plausible and attractive, that involves conjectural and remoter conditions. It seems to me that anyone who has given much thought and attention to the study of the geographical distribution of species, and has pursued it to such an extent as to justify the term investigation, upon a glance at any good map that presents the breadth aud range of the great Peruvian current, its velocity and direction, and the contributing influence of the Mexican as well as the Panamic current, which latter no doulbt is an important factor, and these combined including in their sweep and embrace the various islands which form this peculiar group, will readily perceive the geographical origin of the species that now inhabit them and the direction from which these islands were stocked or peopled. To the continnous or uninterrupted influence of these rivers in the sea, operating without intermission through indefinite centuries, as well as to the persistent agency of trade winds, storm winds, aud more transient rerial currents, we may find a solution, or key, to say the least, to the greater part of the phenomena, without resorting to topographic displacement or modification of the sea bed of 10,000 to 12,000 feet elevation to explain the fcw that are less easy or more difficult of explanation.

MARINE MOLLUSKS.

Of the marine shells (257 species) less than half a score* are indigenons; of these some, if not all, may prove upon a better knowledge of the mollusks of the shores of Central and South America to belong

[^66]to the mainland. Our knowledge of the marine species along the south American coast is not by any means satistactory. The collection made by Dr. Jones, of the U. S. Nary, which embraced 211 West coast species, carried 90 of them from 100 to 3,195 miles farther south than previonsly reported. Tectarius, of the Litorinide, previonsly deteeted at Hood and Bindloe by Dr. Habel as listed by Wimmer, was subsequently fomd at Manta, Eeuador by Dr. Jones,* and it is not unlikely that others now regarded as peenliar to the Galapagos may prove to be mainland forms. Attention is called to my remarks in the catalogue on Omphalius Cooksoni Smith and its close resemblance to, if not identity with, the Antillean O. fasciatus.

The number of species, howerer, that exhibit intimate relationship with Autilleam Caribbean forms, is quite small and inconspicuous, when placed side by side with the West American types.

DRIFT MATERIAL.

Pertaining to the drift material, its quantity and occurrence, the testimony of the sea bed claims special consideration. Referring to the "character of the bottom deposits," Agassiz remarks: "Nearly everywhere along our secoud line of exploration, except on the face of the Galapagos slope, we trawled upon a bottom either mudly or composed of Globigerina ooze, more or less contaminated with terrigenous deposits, and trequently corered with a great amount of decayed vegetable matter. We searcely made a single haul of the trawl which did not bring up a considerable amount of decayed vegetable matter, and frequently logs, branches, twigs, seeds, leaves, fruits, much as during our tirst cruise.
"I was struck, while tramling on our second line between the Galapagos and Acapuleo, to observe the great distance from shore to which true terrigenoms deposits were carried. There was not a station there oceupied of which the bottom could be characterized as strictly oceanic. At our most distant points from shore the bottom specimens invariably showed some trace of admisture with terrigenoms material. A very fine mud was the characteristic bottom brought up * * * from depths of $\because, 000$ fathoms. This mud continued all the way from the Galapagos to Acapuleo, and up to the month of the Gulf of California, where it became still more an impediment to dredging, so that little work was done until we passed the Tres Marias. Even then the trawl was ordinarily well tilled with mud, and with it came up the usual supply of logs, bramehes, twigs, and decayed vegetable matter. On going farther north, into the Gulf of California, the nature of the bottom did not change materially from what it had been along the coast," etc.

[^67]* * " "In the dredgings of the Blake in the Gulfo of Mexico, off the West Indies, and in the Garibbean, my attention had already been called to the immense amount of vegetable mattor dredged up from a depth of over 1,500 fathoms on the lee side of the West India Islands. But in none of the dredgings on the Atlantic side of the isthmns did we come upon such masses of decomposed regetable matter as we found ou this expedition. There was hardly a haul taken which did not supply a large quantity of water-logged wood, and more or less fresh twigs, leaves, seeds, and finits, in all possible stages of decompositions." * * *

WEST AMERICAN GURRENTS.

Again referring to A gassiz, he says: "The course of the currents along the Mexican and the Central and South American coasts clearly indicates to us the sources from which the fama and flora of the volcanic group of the Galapagos has derived its origin. The distance from the coast of Ecuador (Galera Point and Cape San Francisco) is in a direct line not much over 500 miles, and that from the Costa Rica coast but a little over 600 miles, and the bottom must be for its whole distance strewn thickly with vegetable matter, which, as I have already stated, came up in great masses in almost every haul of the trawl. This was especiaily noteworthy in the line from the mainland to Cocos Island, and certainly offers a very practical object lesson regarding the mamer in which that island must have receised its vegetable products. It is only about 27.5 miles from the manland, and its flora, so similar to that of the adjacent coast, tells its own story." "The velocity of the currents in the Panamic district is very great, sometimes as much as 75 miles a day, so that reeds, fruits, masses of vegetation harboring small reptiles, or even large ones, as well as other terrestrial animals, need not be afloat long before they might safely be landed on the shores of the Galapagos. Its flora, as is well known, is eminently American, while its fauna at every point discloses its affinity to the Mexican, Central, or South American, and even West Indian, types, from which it has probably originated; the last indicating, as well as so many of the marine types collected during the expedition, the close connection that once existed between the Panamic region and the Caribbean and Gulf of Mexico; a connection once extending, probably, through deep and wide passages all the way from the northern extremity of Colombia, the Isthmus of Panama, Costa Rica, and as far north as the Isthmus of Tehuantepec."

TERRES'TRIAL MOLLUSKS.

The land shells are principally of a Bulimoid type and of a dis. tiuctly American aspect. One of the twenty or more so-ralled species, Bulimus achatinellinus of Forbes, has in the brightness of its coloration,
its color markings, and the sheen and smoothoss of its surface a close resemblance to some of the I'olymesian Achatinellas; but it lateks the chief and constant chameter of the Achatimellas, viz, the ever-present and persistent twist of the eolmmella at its base. As may be seen upon examination of the tabulated list heremoto amexed, the land shells therem are assigued definitely to omly cight of the islands, viz: Albemate, Imbefagable, Bamington, ('harles, Mood, Bindloe, James, and Chatham. It is greatly to be regretted that our knowledge of the terrestrial mollusks of the eroup is so exceedingly limited. What might be the result of a systematie investigation, island by island, and zone by zone, and the environmental peculiarities, general and local, earefnlly observed and noted, we ean barely conjecture; but we are waranted in assuming from the testimony of the limited material under review, and what is linown of the relation of ellviromment to variation in the land shells in other parts of the world, that an ampe collection under the conditions above mentioned would be of very great value to the biologist and fall of interest from a more general seientifie point of view.

The various species of Galapagos land shells are in the main of dull, unattratetive colors; this might be supposed when the ciremmstances of their ocemrence are considered. Of a few of the species the collector noted the peenliarities of station, and we read of this or that species as ocemring "under scoria," "under lava," ete.; again of 1 . mux, which exhibits extreme variability and is apparently the most mumerous in individuals, as being found "on bushes" or upon or under lavia. To the student who has this material, or this class of material, before him these few brief motes are especially sugestive, and remind hin of the exceeding variability frequently exhibited within the compass of a comparatively limited area. An investigation of the higher altitudes of those islands that attain an elevation suthicient to include the "intermediate belt 200 and 300 feet in width," What may be called the white zone or zone of Visuct, and, still hisher, the platean region or zone of green woods and meadows, would doubtless show that said zones were inhabited each by its own peediar species and color types, characteristic of or to the zone, peculiar and characteristic in external facies at least, such as color and seupture, if not strikingly or materially different in that of form. In the upher or green zome it might be fombl that the mollusks were arboreal in their habits, of hright eolors, like Forbes's B. achatinellimus heretofore mentioned, and like the more showy of the numerous species of the Sandwich Island Lehatimelle,* which inhabit a similar station.

The land shells, as before stated, are detinitely referred to eight of the islands. So our knowledge of the marino species is restricted to eight,

[^68]viz: Hood, Albemarle, Charles, Juncan, Bindloe, James, Chatham, and Indefitigable.

It may he said perhaps that the presence of the marine molnsean forms of the West American coast is much less difficult to aceount for than either of the other faunal elemerts.

DISTRIBUTION OF TERRES'TRIAI, SPECIES.

The distribution of the terrestrial suecies both by fluviatile and marine currents as well as by arrial forces is easily explained. It includes necessarily a consideration of the vitality of these animals as well as of their eggs.

Binney,* referring to the introduction of foreign species into the United States, says: "Oceanic currents also aid in bringing to our shores foreign species, and have been the means of introducing and natualizing them. The diulf Strean is a prominent example of this. This great body of water, flowing from the Gilf of Mexico into the Atlantic, passes between the peninsula of Florida and the island of Cuba, and alter turning the southern point of Florida sweeps along its eastern shore. It is sometimes driven close to the northern coast of Cuba, and sometimes forced much farther north, according to the direction and force of the wind. Various countercurrents, due also to the influence of the wind, diverge from the main stream, among which is noticed a current, which, after a northerly wind has prevaled for several days, sets in a sonthwesterly direction near the Flonida Reef. The principal stream and the currents originating in it bear upon the surface various vegetable and other productions brought by rivers into the Gulf or swept from its shores, and these are frequently deposited upon parts of the coast very distant from their origin. In this way seed vessels from the Spanish Main, trunks of trees, and fragments of wood of unascertained origin, and numerous objects from the northern shore of Cuba are frerpently found on the shore of Key West and on the beach of Cape Florida and the shores and islands to the north of it.
"A few lears since a bottle was picked up on Tavernia Key, near Cape Florida, containing a note stating that it was thrown overboard off the Moro Castle. A Cuba barge, of the kind used in larling and unlading vessels in Matanzas, was lately found stranded on the beach at New River, 25 miles north of Cape Florida. Small objects from Cuba are often found on the shore of Key West.
"These circumstances are arlequate to account for the transmission of land shells from the island of Cuba, and even from more distant places, to the mainland and islands of Florida; and to this source we ascribe the origin of Helix. rhodocheiln, and Bulimus virgulatus, which

[^69]are probably derived from the lahamas，hat possibly fiom the Spanish

 from Guba，which，having found a congenial soil and climate in the somthern part of the peninsula of Florida，are now Ihmershing there in great mombers．To the same canse may possibly be due the passage of some of the smaller species，of misersal diffusion in the United States，to the island of C＇ubat．Among these are Ite lix minuserula，P＇upe rontrath，and P ．rapicola，which from their gemeral distribution on the rombinent may be supposed to have originated there rather than upon the istand．
＂We can mot help thinking，too，that such currents have had some ageney in introducing Melix hortcusis on our northeastern eoast at some former priond，athongh we are not arare of the existence of one capable of producing such an eflect．＂

＂That this hypothesis of the aseney of emments is no violent one，is poved by common experience．I single log of timber，removed from the bank of a siver by the rise of its waters during ate feshet，and borme by them to the oreall，and driven by winds，tides and rurrents，might eamy with it athd deposit upon other shomes the egess of mollasks，or evoll the living amimals themselves，provided they were not too long axposed to the clements．It is dillicult to estimate their powers of emdurance moter such cibemmstances，or to limit the amount of exposure which they might bear，but they are unquestionahly sueh as to enable them to sustatin life lou several days，in the rase we have supposed． Lags and trumbot frees which have drifted from a ereat distamere may often be seed upon our sea beaches；and we remember，ou one oreasion， to hatersen Namtasket beath，at the month of Boston hatbor，strewn with logs which had heen driven from the rivers of Maine by easterly winds of several days＇contimance．＂

にNなにAORDINAにど NEANONN．

 leys of（＇aliforniat and the other seaboad rexions of the west roast were furned into lakes through exeressiverantall in the lower altitudes and the metting of the previous smowtall in the higher requons of the momatains，for wedk the rivers were matble to eary off，within the ＂apacity of their ordinary chamels or dranage tronghs，the emormons folame of water；expy brook beeame a riser，and the rivers were changed into baging forrents，undermining the banks，eutting new pathes，and swepping along on the way to the sea，forest trees of a century growth，which were carried far into the ocean and borme
hither and thither by the currents and the winds. The greater part after drifting hither and yon were ultimately swept landward again by the prevalent westerly ornorthwesterly winds, and piled up helter-skelter upon the beaches all along the coast, forming a complete labyrinth and tangle or mesh work, of frequently enormons strands, and in the majority of cases absolutely concealing the beach itself for its entire width, from the water's edge to the extreme upper limit of the highest drift line.

Recent (December, 1892) west-coast papers say: "The Wolcott reports that in the recollection of seafaring men on the coast there has never been so many drift logs in the Straits of Fura as at the present time. The high freshets have swept down the fallen logs of ages and sent them adrift to the sea. Logs that have been buried in the sand for years along the beach below Port Creseent have been washed up, and in some places great dams of \log s are formed, rendering it dangerous for navigation."

AGENCY OF RIVERS, ETC.

Hooker, while discussing (Trans. Lin. Soc., 1851, Vol. xx, p. 163) the affinities of the flora of the Galapagos and its origin, lays great stress upon the action of the currents coming north from the Guyaquil River, and those flowing westward from the Bay of Pamama, as agents for the distribution of South and Central American plants. Speaking of the affinities of the plants of the Galapagos he says: "The new species being for the most part allied to plants of the cooler parts of America or the uplands of the tropical latitudes, the more peculiar are the same as observed chiefly in the hot and damper regions, as the West Indian Islands and the shores of the Gulf of Mexico."*

Again, refering to the extraordinary winter of 1861-'62 in California, or more properly in the Pacific seaboard States, it will be seen at a glance that with westerly currents and not unfavorable winds the drift trees and logs brought down by the streams would have been swept on and borne elsewhere, instead of being piled up along the beaches of Oregon and California, or would have continued to drift until they became water-logged and sunk. Nor was the havoe made in the forests caused chiefly by the main streams. Streams no larger than Russian, Smiths, and Klamath Rivers, of insignificant volume in ordinary years, were changed into devastating torrents and contributed largely to the general destruction.

In Chile there are between twenty and thirty streams of from 70 to over 200 miles in length, rivers of rapid descent, that drain off and carry more or less directly to the sea the water resulting from the melting snow of the Andes. The ordinary volume of these rivers is sometimes enormously increased by the winter rains, and occasionally a

[^70]winter or rainy season occurs of musual and extraordinary precipitation when the swollen "urrents exhibit tormential energy.*

Peru has numerous streams in common parlance of insignificant proportions and of little value for other than irrigating purposes. These, too, in seasons like the above, become important by reason of the damage resulting from their catastrophic action.

And still farther to the north, along the westerly slopes that drain into the Pacific, we may reasonably assume contributions are made to the general drift material that rivers ordinarily earry to the sea, and which, being within the range and influence of the west Mexican current, are likely ultimately, in part at least, to be borne seaward along its westerly course.

A single tree of large size might cary with it not only molluscan and insect forms mature, living, or in the egg, of several species, but also living individuals of many vertebrate forms that found refuge or safety upon it, somewhere along its course from its native forest home to the point where it found fimal lodgment, or was cast ashore; thus if the envirommental conditions were at all favorable, would be planted the foundation of a colony which would extend its territory so far and in such directions as were most congenial. The area of surface above the water furnished by the main trunk of such a tree, and the drift consisting of various material entangled in and amongits branches, would be amply sufficient in the matters of space and security, for the transportation of many animal forms; of these such as possessed sufficient vitality to successfully meet the contingencies of the voyage in the way of hunger, thirst, ete., would become the progenital stock in new regions more or less distant from their original haunts, where, under the steady but modcrate pressure of new environmental conditions, in the course of generations a new facies would be gradually brought about, developed in or given to the more plastic, and we shonld have what are called new species.

GENERATIVE CAPACI'Y AND VI'ALITY OF LAND SNAILS, E'TC.
The prolific generative capacity of the land smals and their extreme tenacity of life are to be considered in connection with their geographical distribution and establishment in new areas under the cireumstances and conditions described above, as well as in the matter of probable aërial distribution, which last has never received sufficient consideration as playing an important part, or any part whatever, as an agency in dispersing or distributing animal life or extending specific areas or ereating new ones remote from those previonsly existing.
"The number of egse produced varies in the genera and species," says Bimey, "in the sime proportion as the dangers to which they

[^71]are exposed are greater or less. Thus in the Limacida, whose means of protection and whose chances of preservation are much less than those of the Helicide, the number is much greater than in the latter. The number of eggs produced by two individuals of Limax agrestis kept in confinement by Dr. Leach was, in the course of rather more than a year, seven hundred and eighty-six. It usually amounts to at least three hundred per annum. The other species, though not equally prolific, multiply greatly; and each pair of the varions species of Helicide produces, amually, from thirty to one hundred eggs, and perhaps more. The young of the Limacidec complete their growth and reproduce their kind sometimes within the year of their birth, and always as soon as the second year; and the species of the other families are believed not to require a much longer time to attain maturity. This rapid increase replaces the numbers annually destroyed, and maintains the species in their relative importance.
"Their extreme tenacity of life is manifested in every stage of growth from the egg to the mature animal. In the northern part of the United States we have frequently observed the eggs of the Helicida in the forest covered with suow, protected only by a single leaf, where they had remained through the winter months, constantly exposed to a temperature much below the freezing point. The Helicide themselves withstand the cold of the severest winters in the same situations, and Succine has been frozen in a solid block of ice and yet escaped unharmed. Helices when frozen in a state of confinement, though they sometimes recover so far as to move about with some activity, usually survive buta short time.

SUBSISTING WITHOUT FOOD.

"The great length of time they can subsist without food is another exemplification of their great tenacity of life. Those species, especially which live in dry and exposed situations, have the power of endurance to a remarkable degree. A friend received specimens of H. desertorum which had been collected in Egypt, had been shipped to Smyrna, thence to Constantinople, thence to Rio Janciro, and finally to Boston, occupying a period of about seven months, which appeared in full vigor when taken from the papers in which they had been enveloped. They were laid away in a drawer, and on being examined three years afterwards some of them still came out in tolerable vigor."

Further instances of the extraordinary vitality of the land snails have come under my own observation, and these are more directly pertinent because the species referred to are West American, and inhabit areas where the physical features are more nearly like those of the South American mainland, and that particular zone of the same from whence no doubt the Galapagos islands were originally .stocked.

In December, 1865, the Stearns collection, now in the National

Museum, was muched by the acquisition of several examples of Helix Veatchii* Newcomb, that were collected by Dr. Veateh on Cerros or Cedros Island off the coast of Lower California in 1859. The specimens were given by Dr. Veateh to Thomas Bridges, and upon the death of the latter came into my possession with the remainder of the Bridges shells. One day upon a careful examination I discovered that one of the specimens was apparently still alive, and placed it in a box of moist earth; after a while it protruded its body from the shell and commenced moving about and seemed to be ho worse for its long fast of at least six years. I. Veatchii, it will be observed, beat the time of the famous British Museum example of I. desertorum, which lived without food within a few days of four yeers. In March, 1873, Prof. George Davidson, of the United States Coast Survey, while at San José del Cabo, Lower California, collected a number of specimens of Bulimus pallidior, and subsequently gave me a part of them, which I put in a box, where they remained undistubed until June 23,1875 , when they were placed in a glass jar with some chick-weed and a small quantity of tepid water. They soon waked up and began to move about apparently as vigorous as ever atter their long nap of two years two months and sixtren days. In connection with the foregoing it shonla be borne in mind that at the commencement of hibernation the land smails seal up the aperture of the shell with a close-fitting shield or epiphragm; this consists usually of thin transparent muens, at other times, and more especially with those forms that inhabit arid regions, of an opaque membranaceous matter of the thekness of thin card board; the animal protects itself still further by other and interior epiphragms, that, like so many partitions, still further protect them against prolonged or excessive heat or aridity. It should also be noticed that rolor also has some place in this comection, for althongh most if not all of the land shells that inhabit hot, arid, or sterile regions, seek protection from the heat by burrowing, the prevailing color of such species is white or whitish, rather than dark or black; the dirst reflecting the heat instead of absorbing it, as is the case with the latter. It may be that sufficient or perhaps too much space has already been given to these incidental or secondary matters, nevertheless before leaving this aspect of the subject the following from Woodward \dagger is worth quoting:

FURTHER INSTANCES OF 'TENACITY OF LIFE.

"The fresh-water molluses of cold climates bury themselves during winter in the mud of ponds and rivers; and the land snails hide themselves in the ground or beneath moss and dead leaves. In warm chimates they become torpid during the hottest and driest part of the year. Those genera and species which are most subject to this 'sum-

[^72]mer sleep' are remarkable for their tenarity of life; and mumerous instances have been recorded of their importation from distant countries in a living state. In June, 18iot, a living pond mussel was sent to $\mathbf{M r}$. Gray from Anstralia, which had been more than a yoar out of water. It was alive four hombed and ninetyeight days after it was taken from the pond, and in the interim had been only twice for a few hours in water, to see if it was alive.
"The pond shails (Ampullaria) have been found alive in logs of mahogany from Ionduras (Mr. Pickering), and M. Caillaud carried some from Egypt to D'aris, packed in shwdust. Indeed, if is not easy to ascertain the limit of their endurance; for Mr. Laidlay having placed a number in a drawer for this purpose, found them alive after five years, although in the wam climate of (alcutta. The Cyclostomas, which are also operculated, are well known to survive imprisonments of many months; but in the ordinary land snails such cases are more remarkable. Some of the large tropical Bulimi, brought by Lieut. Graves from Valparaiso, revived aftr being packed, some for thirteen, others for twenty months. In 1819 Mr . Pickering recaived from Mr. Wollaston a basketful of Madeira smails (of twenty or thirty different speries), three fourths of which proved to be alive after several months' confinement, including a sea voyage. Mr. Wollaston has himself told us that specimens of two Madeira snails (Ifelix papilio and tectiformis) survived a fast and imprisonment in pill-boxes of two years and a half; and that a large number of the small IVelix turricula, brought to England at the same time, were all living after having been inclosed in a dry bag for a year and a half."

THE AGENCY OF THE WINDS.

The distribution of plants through the ageney of the winds, by means of which the seeds are dispersed and borne directly or indirectly to great distances, has been recognized for years and years, while the same distributive factor as operating in the dissemination of animal life has scarcely attracted attention or received the recognition it deserves. Showers of "sulphur" have frequently been reported at a distance of 200 miles or more to the westward of the Atlantic seaboard where the yellow pollen of the pines standing in the barens of New Jersey has fallen and been deposited, in many places, to a perceptible depth. Showers of dust or sand from the desert of Southern California are swept northerly or westerly for great distances, first carried to a high altitude by the ascending column of heated air, and the desert sands of Sahara are sometimes lifted by similar means and carried northward from Africa across the Mediterranean.

Squids and fishes, inhabitants of the sea, that have been rarried up by waterspouts are borne landward by storm winds or gales, and fall to the earth in distant places, to the astonishment of the intelligent as well as the superstitious, and the cyclone, so called, or hurricane of the Proc. N. M. 93-24

Indian seas amd rlsewhere, sometimes of several homs' duration and of tervife fored, mbst, in the nature of things, inchate in the material mplifted and swepl betore them, amimate as well as inathimate objeets. No part of the earth's surface, probably, is free from the of'asional visitation of these violent storms, though their orenrence is much mote fergment in some regions that others. "Voleanic dust," from the crmption of a voleano on the island of st. V'incent, West Indies, fell on an island !a miles for the windwad in such quantities that trees Were crashed to the earth by the weight of the mass."* The egegs of most shats are mot heavier than partieles of volemine dust or desert Nathds or, perhaps, the pollen of the piac, and may be moved separately or as attached, either to aerial drift or the eurrent drift of the sea.

The more gemeal rewion whieh incheles withon its area the dalapatos is satid to be free from serere notms; it is highly probable, how. over, that in the comse of yeas stoms of great severity do oceur, atal it is quitr matikely that any portion of the cathes surfate is abso lately exompt liom oreasional visitations of this chatacters. With the hish velocity that not inferguenty manks serore meteorie disturbances, astorm of very shot damaton would be sulticient to cary literally on "the wings of the wind" plant seds as well as the minnte eggs of animals or the larva of insects over distances no greater than that between the Galapagos and the mantand. 1

I havegtoted, in the man litemally, from Bant, A gassi\%, Binmey, ete, in order to present to the reader, more patioulaty the stulent inter. ested in the stmby of the Mollasea, the mome important physieal leafores exhbited in this interesting eromp of ishads, their seographical isolation remote from the mainlame of the Ameriean continents, their still exeater distaner from any of the Polymesian istands, as well as How more local physieal rhatatoristies, abd the difference observable among the varions istamls when bromght into comparison one with athother.

Class PELECYPODA.

Family ONTRENOM,
Gents OSTREEA Limm.

1. Ostrea folium (imol.
'Two valves: different individuals.
dames Islamb.
[^73]These valves evidently belong to a species that inhabits the littoral zone, and to examples that inhabit the upper belt of said zone, and fasten upom small stomes or to the roots of mangroves or some other shore-inhabiting shrub. Of the many species that have been deseribed from the west coast quite likely one-half are synonyms.

The form of individual examples, as well as of the several individ uals that constitute a colony, is so dependent upon the object to which the individual or the mass is attached, that a satisfactory diagnosis is ont of the question with anything less than a large series and a mol titude of specimens.

Wimmer eredits one of Gould's species, O. glomeratn (vide Reeve's Monograph Conch., Iem., Figs. 52, a, b, c, d), to the (ialapagos, but Reeve makes no reference to any species of oyster in these islands, and it may therefore be assumed that, in the Cumingian collection these islands were not represented. O. glomeruta is, for an ostrea, a mather well-characterized species, and Reeve's figures are in this instance particularly good, so that it may be assumed that Wimmer's determination, if made from direct comparison with Reeve, is most likely correct; nevertheless I an disposed to doubt the presence of glomerata in the Galapagos mitil confirmed by further testimony or additional material. O. glomerata is rather an Indo-Pacifie form, extending northerly and westerly to the islamds of Japan. It is probable that Gould's mordex, collerted by ("Wilson's Expedition" in Reeve, in error for) Wilkes's Expedition, and dombthulty assigned to California, is really a West Coast form; by some authors it has been regarded as a synonym of "glomcrutu." I can conceive of varieties of mordax closely approaching "glomeratc," but in general features only.

Family ANOMIDDA.

Gemus Anomia Linné.

2. Anomia adamus Gray.

$=\boldsymbol{A}$. Lampe Gray, variety.
One left valve, beach, in good condition.
James Island.
Of the numerous alleged species figured in Reeve, A. adamus is the only one credited to the Galapagos, where Cuming obtained the example described by Dr. Gray mear Lord Ifood's Island, at the depth of 9 fathoms, attached to "A vieule margaritifera." If the deseription had been without the habitat, I should have recorded the specimen herein listed under the name of A. lampe, the latter being familiar to collectors generally, and usually attached to the species in collections.

In the Proceedings of the Koïlogical Society of London for the year 1849, Dr. J. E. (iray described (pp. 116, 117) seven species from the west coast of the Americas, including the foregoing, to wit: fidenas, pacilus, 'larbus, alectus, and hamillus. Dr. Carpenter, in his Check-

List of West Coast Shells, includes lempe and fidenus; the latter is described by Giray as "flat, smooth externally," ote. It is possible that lurbus fiom Payta may be a distinct species, but I doult it. Like fidenus, it is deseribed as "smootl:" but neither color, sculpture, form, whether exhibited in outline, convexity, or flatness, are of any permanence or of much value as diagnostic chanacters in this group; form, as to outline, convexity, or llatness, is entirely dependent upon the object which the individual Anomia has fastened upon. If it happens to be a Pretern, then the ribhing which characterizes the satlop shells is reproduced in the Anomia. If the young Anomia fixes itself in a deep or shallow concavity, or upon the surface of as slight or pronounced convex objeed, the shell in the course of its growth will be molded ateortingly. Where they fasten upon large, smooth cobbles, in a sheltered nook of the coast, protected from rongh seas, they are usu. ally flatter and of more even and regular growth. Neither are the muscular sears to be depended upon, as a ratid chameter for speciesmaking, as anyone can see who has a sufficient quantity of material and will compare the same with Gray's deseriptions before him. Carpenter, as before moticed, has adopted lampe and fidenas; these may for consenience be retained, the latter for the smooth variety, the former for the standard and usual examples, while the remainder of Gray's names may follow in the order of synonyms.

Family I'ECTENIDAE.
Gemus PECTEN Miiller.
3. Pecten subnodosus Shy.

Four right and ome left valves, all jumiors and in good condition (Mus. No. 102:519).

James Island.
The examples are from 1 : to 2 incles high and have t welve to fourteen ribs.

> Family LIMIDAE.

Gemus LIMA Bruguiere.
4. Lima arcuata Sby.

One broken valve.
dames Island.
Family AVICULIDA:
Geuns PERNA 13ruguiere.

5. Perna Chemnitziana Orf.

Isognomon Chemnitziamum Auct.
Two beach valves, one from each place.
Indefatigable and Hood islands.
Wimmeres list includes I. legumen (imel. and I. quadrangulare Reeve, but it will be admitted by anyone familiar with the shells of this
genus that the determination must be more or less anditary. The Allutross specimens do not differ essentially from the Panama and Gulf of California form, which both (9. B. Adams and Philip Carpenter determined as Orbigny's species. It is probably the same as flexuos" Sby., as stated by Carpenter, to whose comments in the "Mazatlan catalogue " reference is suggested.

Family MY'TILIDE.
Genus MYTILUS Lime.

6. Mytilus multiformis Cpr.

Valves, beach (Mus. No. 102353).
Hood Island.
This species was described by Carpenter from Mazatlan shells, and the Galapagos valves are apparently identical. Dr. Jones detected perfect examples and odd valves of M. cuneiformis ($=M$. ongustanus $R v e$.) at Chatham Island.

Gemus SEPTIFER Rechu\%.
7. Septifer Cumingianus Dkr.

One valve, beach (Mus. No. 102352).
Hood Island.
Cuming collected this species at I'anama and Cappenter includes it in his Mazatlan list.
(ienus MODIOLA Lamarck.
8. Modiola capax ? Cpr.

One example, very small, beach.
Hood Island.
Probably, but not certainly, the above species, which is credited to the Galapagos in the Guming collection now in the British Museum.

Family ARCIDA.
Gomis ARCA Lamarek.
Subgenus BYSSOARCA Swainson.
9. Arca (Byssoarca) solida Slyy.

Valves, beach (Mus. No. 122131).
Indefatigable Island.
10. Arca (Byssoarca) gradata Brorl. \& Shy.

Valves on beach.
James, Hood, Indefatigable, and Chatham islands.
Three perfect valves from James Island, one in good condition from Chatham, and one broken valve from Indefatigable; also one from Hood Island.

11. Arca (Byssoarca) Reeviana Orb.

Common, beach, valves.
Hood Island, common on beach. Indetatigable Island, thirteen odd valves, and James Island twenty-three valves, on beach.

This species is quite constant in sculpture of both hinge area and and exterior sumfer of valves, and the hinge teeth are chanacteristic and quite persistent; the outline of the valves is variable, as the byssal foramen is often carved ont nearly exelusively fom one valve. The largest example measured 4 by $2 \underline{2}$ inches.

Family UARDITUDAE.
Gemus CARDITA Bruguiere.
Subgenus Venericardia Lamarek.
12. Caidita (Venexicardia) flammea Michelin 1830 .

- C. Jlammea Auet.
+ U. ravia l3rod 1832,
+ C. tumida Brod.
$=$ Aetinobolus Jlammens Anct.
Valves, beach.
Common on dames Island where mumerons, principally right, valves were obtained; three vialves llood lsland. Reeve sals that "it is with no little gratidication that I now publish a good illustrative figure of a species deseribed thirteen years since by M. Michelin firom a worn odd valve. The Cardita raria is the mearest allied species to it, but that shell is of smaller dimensions, rounder and slightly noduled; the painting is also of a ditterent character."

Alteracareful comparison l feel waranted in uniting the three species as above under Miehelin's name. I am quite familiar with these forms and the color distinetion is of no value. These shells vary considerably in the other characters to which Reeve refers; but in the essential teatures of outline, growth, zones, ate., from alolescence to maturity, as well as in the number of ribs and the hinge characters, they are identical.

Family LUCINIDA.

Genus LUCINA Bruguere.

13. Lucina bella Comrad.

One good example, beach; (Mus. No. 12:2112) also valves; abundant.
The first named from Chatham Island. Abundant on Ihood Island; two left and one right valve and one perfect fresh specimen trom lndefatigable Island. I am inclined to regard Camenters 1. pectinuta Maz. catalogue sp., $1 \cdot 42$ as a varietal aspect of this species. The fibula of Wimmer's list is probably this species. C'apenter, in brit. Assu. Report 1 sigi, says "Conrad's bella may be $=$ pectimate."

Family UHAMIDA.
Gomus CHAMA Brugnioro.
14. Chama echinata Brod.

Valves, beach.
Indefatigable and James islands.
Five odd valves, junions fiom the former and one probably of this species from the latter island.
15. Chama frondosa Brod.

Valves, beach.
Several odd valves, generally in poor condition from dames and two from Lood lslamd. This species is common at many plates on the main land of South America; it is a variable form, amd the more northelly, ('. spinosa Brod., may be nothing but a variety of this. Reeve has credited other speeies to the Gabapacos, vi\%, spmoser, dernes, and imbricata, the value of which it is not easy to detemme; it is quite probable that too many sperias have been made. Also dreded off the coast of Lower California in ? 8 fathoms.

Family (ARIDII)N.
(Gemin CARDIUM Limmí.
16. Cardium consors Brod.

One left valve, beach.
James Island.
Family V ENERIDAK.
Gemin CHIONE Mogerlo.
17. Chione multicostata sby.

Valves, beach. James Island.
18. Chione compta Brod.

Three left valves, beach. Indefatigable Island.

Valves, beach.
19. Chione undatella Sby

James Island.
Two dight and four left valves of what may be regarded as this species; the group to which it belongs is exceedingly mumerous in individuals, and many species have apparently been made on simple varietal differences. Neither C'apenter's nor Wimmer's list eredit any species of Chione to the Gabapagos islands. The Albatross shells agree more nearly with the northerly undutellu than with the geographically related forms from the mainland of South America.
subtamily Tapesinas.
(ientin TAPES Megerle.
20. Tapes grata Say.

Five valves; beach (Mus. No. 10:457).
Indetatigable Island.
This speetes, which includes in its syonomy Vemus discors Sby., extends from Lower Califormia, southerly to the (iulf of Califormia, Central America and I'anama to Eemador; it runs pretty close to the west South American T', antiqua King, in certain features.

Family TLLLANHDA.
Genus Lutricola Bhanville.
21. Lutricola excavata Slyy.
$P=$ Lutricola alta Conr.
One right valve, dead; beach.
Indefatigable Island.
Dr. Jones collected this (one valve) at Chatham Island, also at Payta. on the main land.

Class GASTROPQDA.

Vamily BULLIDA.

- Genus BULLA Lime.

22. Bulla punctulata A. Ad.

Abundant on the beaches.
Hood and indefatigable islands.
1)r. Jones found it common at Chatham Island as well ats at various phaes on the man land of Sonth Ameriea. B. "sperst A. Ad. is probably a synonym; it is very close to B. adamsi Menke of the Gulf of Oaliformia.

> Family BULIMULIDN.
> (iemus BULIMULUS Leach.
> Subrenus NESIOTUS Albers.
23. Bulimulus nux, l3rod.. 18:3.2.

The typiea: form was described by Broderip in the Pro. Zoöl. Soc. London, p. 1:5, and digured by Sowerby in his Conchologieal Illustrations 37 and 37^{*}; the examples before me are from the same ishand as Broderip's type. Reeve's figure in the Conch. leoniea, lio, is misleading in this, that while it faithfully represents a not uncommon facies, it is not
a facsmile of the type as figmed loy Sowerby, and again it has more the appearance of a I'artula than the ehanacteristice aspect of mux.

Sperimens closely agreeing with Reeve's figure* are in the National collection (Mus. No. 1048:2); they werepresented by the late Ir. Lea, who received them, as well as other (iabapagos species, directly fiom Mr. Cuming, and were no doubt a part of the origimal lot, collocted at these islands by Cuming himself.
b. mux is an exceedingly variable form, and exhibits so many aspects of variation, that the most conservative comehologist might easily be led into species-making, even with an abmonne of individuals before him, for this is one of those protean forms, like, for instance, I'utula strigosn-Cooperi-Haydeni-Hemphillii-Idehoensis, etc., belonging to the Central province of the United States, that can not be properly exemplified or understood by a lew examples, nor even by a humdred specimens. In $B . m u x$, some individuals are ventricose, others rather slender; in some the columella is straight or subarcuate, in others more or less twisted, or more properly distorted. Often the callus on the body whorl is heavy or thick, and connecting, forming a peristome; oceasional individuals exhibit a tuberenloid thickening of the parietal callus on its edge. In some instances the shells are thin and almost tramslucent, others again, and more frequently, are opaque and solid. The sculpture varies from simple longitudinal incremental strise more or less conspicuous, that is to say, fine or coarse, to examples with transversely or spirally incised grooving. Where these two aspects of seulpture are present in the same individual, a more or less distinct rectangular roughening is the result. Frequently the prevailing color is whitish or dingy white, in others dull purplish brown; many intermediate shades of these colors ocemb, and banded examples are not uncommon; in these the bands are sometimes conspichous and striking and point towards a possible if not probable greater color-divergence, combined with slenderness of form, suggesting Forbes' achatinellimus.
'Taking into consideration the different expressions of variation, i. e., form, seupture, color, and general proportions, mux \ddagger exhibits the greatest versatility; the extent of variability illustrated in the mumerous examples, about two hundred before me, warants the assumption that ten times the number would furnish many other facies, if not extremes of variation. I have above called attention to the diserepancies, between the digures of Sowerly and Reeve. In all cases where the various Gatapagos speces described by Broderip and Sowerby are referred to, the latter's figures must be regarded as anthoritative, and be reeognized as the standard type. Reeve's figures are frequently, if not usually, not a facsimile of the original,

[^74]but a tigure of what in common parlance is called a "finer specimen" than the individual that was first described. It will at once be perceised that this practice must often lead to confusion. There are also discrepancies between the text and the numbering of the figures of the Galapagos Bulimi.

Reeves figure "1"1 cschuiferus" represents rumulosus, and his "135 Jecobi" probably applies to a bandless variety of unifasciutus.

To resume the consideration of the specific and varietal sequence and relationship of $m u x$, as referred to and figured by authors, in comparison with the material before me, we have tirst-

Bulimulus nux Brod., Sby. Conch. Ill., figs. 37 and 37^{*}.
Typical, numerous examples (Mus. No, 1180̃6s). Charles Ishand.
Color purplish-black or dark reddish-pmple; apex dark; the following one or two whorls light colored, or whitish; figure 37 shows inconspicuous dark bands on the body whorl. In a large number of specimeus it will be seen that these run gradually into ashen gray, and again into pale ashen-blue.
B. nux, banded variety=B. ustulatus Reeve non Sby.

Four examples (Mus. No. 118569).
Vide Reeve's Monog. Bnlimus, Conch. Ieon., fig. 130, not Sowerby's Conch. Ills., fig. 4*. Reibisch'sfigure 5 , of "ustulatus Sby.," represents banded example of $m \ldots x$; it is intermediate in form between the above specimens (No. 11sing9), and the slenderex form to which Sowerby gave the name.
B. nux, variety with intercised sculpture.

Charles Island; mumerous (Mus. No. 118570).
lupplish-brown to rufous-white; surface seuptured by revolving incised lines. Mr. W. (x. Bimney's 'trionta intereist, a species of the California region, from San Clemente Island and Santa Cruz Island," in the Santa Barbara chamel and Dr. Neweomb's "A. Ayresidun," another island speries from the same region ocenrring on Santa Cruz, San Miguel and Nanta Losa islands, are pertinent illustrations of the sculpture exhibited by the above variety of mux.

I have before called attention to the relationship of the character of sculpture above mentioned to the enviromment. It will be observed that it is present in a greater or less degree in forms that inhabit saline, arid, sandy and wind-swept stations. The Bulimi of the Gulf of California region, of the pallidion, vegetus, Tentusi group, exhibit it frequently; I lave in mind I; pullidior from C'armen Island in the

Gulf, where the saline, sterile, and sandy elements prevail. Occasional examples of several species of the mainland forms of Arionta also furnish illustrations. In the sculpture of the South American Butimi we find this character modified and carried to extreme elaboration until the shagreened surface is attained as in the Peruvian B. proteus and B. mutabilis (from Santos "under stones"). It will readily be seen that a form whose area of distribution includes subareas, where the environmental factors are varied to the extent of opposite or nearly opposite, as well as intermediate conditions, would exhibit extreme as well as a multitude of intermediate and what may be regarded as connecting facies or characters.

$$
\text { B. nux Brod., Sby., ventricose variety }=\text { Reeve's type. }
$$

Several examples, ('harles Island (Nos. 104829, 104963, and 122856).
This is the Reeve type of nux, a more ventricose, much larger, and freer growing form than the typical and original mux of Broderip. The color, etc., quoting Reeve, is "olive-brown stained with rusty red; the aperture is frequently compressed at the sides so as to give a square aspect." Some examples hint, in the matter of color, at dark café-au-lait. The color is sometimes a dark reddish-brown; of No. 104822 there are three specimens; No. 10496;3, two; these are rather globose, and coarsely sculptured; of 122850 , there are five examples, all in good condition.

It is apparently an intercised aspect of this ventricose variety (i.e., Reeve's type of $n u x$) that has received the names of asperatus from Albers, aud incrassatus from Pfeiffer (Mus. No. 23277). Reibisch gives a figure of Pfeiffer's species in plate 1, 4u, and adds a varietal name to the same of sulcutus, figs. $4 b$ and $4 c$; while his figure $4 d$ is given as incrassatus variety = muciformis Petit, which is probably correct. Reibisch's figure $3 ;$ pl. 1 , of asperatus Albers, indicates the propriety of its connection with the above.
B. nux, elongated variety.

Charles Island; several examples (Mus. Nos. 118573, 122855, and 23277).

This is an elongated form of $n u x$, sometimes strongly longitudinally ribbed, and probably includes verrucosus P'fr., as a variety. Nos. 118573, two examples, point toward P. rugulosus. Some forty or fifty examples in addition to the foregoing numbers, are in the National collectiou.
B. nux, variety with distorted mouth.

Charles Island; several (Mus. No. 118571). Parietal callus produced, forming a continuous peristome. Columella distorted or twisted.

The peculiar development of eallus, and distorted aperture caused thereby, are probably due tor the deposition of shelly matter, limey mucus or lymph, at the time of hibernation, when the animal has attached itself to the twis or stall of the plant which is to be its resting phare for its season of inactivity. The stalk or twig, being romb or romblish, and the mouth of the shell or aperture not fitting elosely to the inequalities of the surtare, in order to exelude the air, a deposit is made, and atilling in of the chinks or closing of the gaps ensues, and perfect allesion is secured as well as complete exclusion of the atmosphere. Where, in other instances, the peculiarity referred to is less conspicuous, the adhesion during hibernation has been to some object of a different shape, as perhaps, to the surface of a stalk of larger proportions, where the exat spot of adhesion was more nearly in plane with the aperture; in such a case the gap or discrepancy between the edge of the aperture and the surface adhered to, would require but a slight deposit in order to close it or, in other words, the character of the surface of the object to which the individual adheres at the time of hibernation, patatically molds and shapes the peristome or edge of the aperture, the callus conforming to the inequalities of the surface.
B. nux, variety with cremulated suture.

Charles Island; one example (Mus. No. 122002).
The crenulation of the suture, attributable to the batting up of the incremental lines against the base of the preceding whorl, during the process of growth, a not uncommon character, and an exceedingly conspicuous feature in many of the South American Bulimi of the west coast.

> B. nux, variety with sutural nodes.

Chatham Island; one example (Mus. No. 122003).
This form properly follows the preceding; it has a slightly cremulated ${ }^{\circ}$ suture in the sperimen before me; and, as well as others that I have seen, is dark colored and has a sutural girdle of more or less conspicnous equidistant nodes. 'These seulptural eharaters oceur doubtless quite independent of coloration. B. muciformis Petit, is referable to this variety.
B. nux, varicties intermediate.

I also include in the general synonymy of mux, menta Pfr., incolidus Reib., and remustus Reib; the latter is apparently a dwarfed form. 'These species of Reibisch's are numbered in pl. i, figs. 6 and 7 . His Wolfi is from Indelatigable Island, upon which P. mux has not yet
been detected, else I should regard that also as an aspect of nux, helonging to the variety represented in the National collection by No. 118571. Of the protean nux, it will be noticed upon the examination of Reibisch's list that he had only a few imperfect examples. Of what value to the student is such limited material?

24. Bulimulus Jacobi Sby.

Chatham Island; several examples; (Mus. No. 122005). Sowerby figures (Conch. Ill. 45,) both banded and bandless specimens. The above number includes shells that are obseurely banded (No. 122117 of the Muscum series), and others that are distinctly banded. See previous comments (under No. 23) on Reeve's figure of Jacobi.
25. Bulimulus rugulosus Shy., not rugulesus Rve.

Charles Island; abundant (Mus. Nos. 122000, 122001).
This form is apparently nearly as numerous as mux. Reibisch refers it to Chathan and does not credit it to Charles Island. On the former he says" "it is common on bushes, on the cliffs and under stones, at an elevation of from 300 to 600 feet; this is the prevailing form on Chatham, the same as mu.x is on Charles."

Ancey* has named two varieties of rugulosus, namely infuscata and planospira, both from Chatham Island examples.

In one example (No. 122001) we have an approach to sculpturatus Pfr.

26. Bulimulus eschariferus Sby., non Reeve.

Chatham Island, several examples (Mus. No. 423006).
It was on this island that Darwin collected his specimens; the PetrelCookson examples were detected on Charles Island. Of these, Mr. E. A. Smith says: "The Charles Island shells are considerably larger than those from the above locality [Chatham Island], and also coarser in sculpture, some of them displaying spiral granose or rugose striation, as in B. rugulosus Sby., from the same islands, and, indeed, they appear to be an intermediate variety or connecting link between the two species, both as regards size and sculpture."

Ancey \dagger has named two varietal aspects of the foregoing, bizonalis and subconoidalis.

27. Bulimulus (Pleuropyrgus) chemnitzioides Forbes.

Chatham Island (Mus. No. 122004).
Several examples of this interesting form, upon which Von Martens \ddagger based his genus Pleuropyrgus, were detected at Chatham Island. It was here that Forbes's type was obtained; it is the only species in

[^75]You Martons gemus thes far described. The National collection contans, in addition to the above, two examples (Nos. 120014 and 102549), collectel by Dr. Habel several years ago, presumably at this island, though not definiely stated. Reibiseh reports it from Chatham only, in the Wolf collection; three examples, abumbant on rocks and under stones, with Rab. rugulosus at an clevation of from 300 to 600 feet. This species is "2 2 " of the Reibiseh-Wolf" list. His" "28" B. (I'ruropyryus) lime, described from two examples, one of these possibly a junior, is probably identical with chemitzioides.

28. Bulimulus (Pleuropyrgus) Habeli Stearns.

Plate lif, figure 1.
Nautilus, January, 1892, Dall.* Also described by the author in the Nautilus, December, 1892.
$=B$. (Plewropyr!us) terebrat Reihisch. \dagger
Chatham Island (Mus. No. 12:119).
Two specimens were collected at this island April 4 , 1888. The National collection contains two other examples (No. 12:015), detected by Dr. Simeon Habel, at some one of the islands, several years ago, presumably at Chatham, which is the only island of the group where the I'yrgus type of bulimoids has been found. The Albatross shells are in perfect condition, the label specimens somewhat rubbed. One of the latter is of a pale, dull, reddish tint throughout the greater part of the shell, lighter on the upper part of the whorls following the suture, with a narow whitish band on the hasal whorl, and the columella white or whitish. The other of the Habel examples is white throughout; the lower three or four whorls preceding the basal, are rather faintly banded with pale ferruginous red, which alternate with whitish bands above and below on the basal whorl. The Habel specimens being somewhat rubbed, the ribbing is less comspicuous than in the Albutross examples, and the whitish suftace glazing of the Albatross specimens obscures to a considerable degree the color beneath, as seen in Dr. Habels shells. A fuller description than that given by Mr. Dall was published by me in The Nautilus, December, 189^{2}, together with preliminary diagnoses of other species from the Galapagos and elsowhere. The portion relating to the above is here repeated: "Nhell slender, elongated, thin, smooth, and shiny, slightly umbilicated, with thirteen to fourtern gradually increasing whors; whors slightly convex and longitudinally obtusely plicated; suture distinct; aperture ovate and slightly redected at the base of the colmella. Color ashen white, slightly rufous, with hints of a narrow reddish band beneath the surface glaze.
"Dimensions (of largest example): Long. 17.5, diameter, 3.5 millimeters.

- Oin some types new to the fama of the (atapagos Islands," by W. H. Dall.
\dagger Die Concholiogische Fama der (ablapagos-Inseln, von Paul Reibisch, Ges. Isis in Dresilen, 1892. Abh: 3, $20 \mathrm{pp} ., 2$ plates.
"This form is much more slender than P. chemnitzioides Fbs., which is well represented by the figs. $6 a, 6 b$, Pl. ix, Proc. Zooil. Soc. London, 1850. Aside from the differences in color and sculpture, the surface of Forbes's species is dull in fresh, urubbed, perfect specimens; the ribs in the latter species are comparatively shanp, threadlike, regular, and somewhat distant, the interspaces being perceptibly wider than the ribs are thick."

Again borrowing from Reibisch, it is seen that the foregoing occurs at an elevation of from 900 to 2,000 feet in the wooded region, on mossy rocks and under stones, and he quotes Wolf's notes, and says that it is abundant, though it appears that Reibisch had only four examples, of which hardly one was well preserved.

The various species made by Reibisch are based, it would seem, upon a very uncertain foundation, the number of individuals, in most cases being altogether too limited, the extraordinary variability of the Galapagos land shells being ronsidered, and the few examples upon which in nearly every instance his diagnoses rest, were generally in poor condition.

Family SUCUINIDE.

Genus SUCCINEA Draparnaud.

29. Succinea Bettii Smith, var. $=\mathbf{S}$. Wolfi Reil., var.

Chatham Island, one example (Mus. No. 122133).
This shell is a narrow, delicate variety of the species described by Mr. Smith, whose specimens were from Charles Island (Ietrel-Cookson collection). This solitary Albatross example agrees with Reibisch's Fig. $12 b$ in I'l. II of his paper.

Family ONUHLDILDA.

Genus ONCHIDIUM Cuvier.

30. Onchidium Lesliei Stearns.

Preliminary description in "The Nautilus," December, 1892.

$$
\text { Plate hi, figures 2, } 3
$$

Between tide marks, living.
Charles Island, April 8, one example (Mus. No. 129519); Albemarle Island, April 10, 1888, two specimens (Mus. No. 122520).

Form rounded ovate, nearly as broad as long. Dorsum coriaceons, nearly black, shiny, closely irregularly reticulated with finely incised lineation, and otherwise characterized by somewhat distant, rather flatly rounded papillie. Under side dingy, yellowish white; margin of mantle wide, nearly smooth; edge of same simple. Anal opening pos. terior near edge of mantle and somewhat produced. Respiratory orifice smaller, in median line with and in front of amus. Sexual orifice anterior, on the right side under the edge of the large oral hood or collar. Labial palpi thin, largely expanded. Dimensions: Length, 37.5;

Breadth, 31.5 millimeters. These proportions vary slightly in different individuals.

Genus ONCHIDELLA Gray.

31. Onchidella Steindachneri Somper.

Plate m, figures 4, 5.
Living examples, between tide marks.
Charles lsland, April s, six specimens (Mus. No. 122518); Albemarle Island, Λ pril 10, 1888, one example (Mus. No. 122517).

A well-marked species; edge of mantle prettily fringed on the under side with rather regularly placed trifoliate processes. Dorsum entirely covered with closely set, rounded, gramular papille, which also cover the surface of the wide mantle marein beneath, up to the edge of the (reeping disk. Color dark grayish or smoky black above; dingy Whitish on the under side. Anal orifice posterior, central just behind the end of the creeping disk? Respiratory oritice on the right side wear the vent. Sexual orifice anterior near the tentacle or oral appendage, under the edge, on the right side. Length about 20 , breadth about 17 millimeters. These proportions vary somewhat in different sperimens. Some allowance must be made for the contraction cansed by the alcohol in both the above and O. Lesliei.

Family SLPHONARIDDA.

> Genus SIPHONARIA Sliy.
> Subremus WILLIAMIA Monterosato.

32. Siphonaria (Williamia) peltoides Dall.

Beach shells.
Hood Island, two examples in fair condition (Mus. No. 102365); previously detected in the (xalapagos by Dr. Habel (Mus. No. 60416), at which of the islands not stated. Dall* gives the range of its distribution northerly as Monterey; it has since been detected near Cresrent (ity, Cal., which adds about 370 miles to its northerly range.

Family CONIDA.
Genus CONUS Linné.
33. Conus brunneus (Gray) Wood.

+ C. diademus Shy.
+ C. tiaratus Brod.
Numerous; beach shells.
Hood, Indefatigable, and James islands each furnished many examples of the typical form of brumeus.

An exeedingly variable species in size, color, and senpture.
The miformly brown-colored specimens $=($ '. diademus Sby. The sharply senfotured and generally dark-eolored individuals (Sow.,

Conch., III., fig. 10) are the tiaratus Brod. deseribed by the author from Galapagos examples. Pale-colored specimens with a facies intermediate with these have been credited to the Indo-Pacifie species miliaris, or rather this last has been eredited to the Calapagos Istands through the general and often quite close resemblance of individuals from these widely separated regions. The variety of brunnens resembling miluaris was obtained at both Ifood and Duncan islands. Another IndoPacific cone, U. minimus auct., has been wrongly referred to these islands, the exceeding variableness of (\%. brunneus and the erroneous determinations of anthors having brought about this confinson. Thus Reeve says, in his Monograph of the cones, "there can be no donbt of Mr. Broderip's C. tierutus being a variety of minimus; they exhibit too many characters in common to allow of their being separated." Cuming collected the Broderip form at the "Galapagos Islands, found in pools on the samds." Subsequently at the end of his Monograph, Reeve changed his mind and admitted Broderip's tiarutus as valid, but failed to olserve its relationship to brunneus. Tryon also fell into the error of including tiaratus in the synonymy of miliaris, and in this way crediting the latter to the Galapagos Islands. Reeve also (Monograph of the Cones, Pl. xlit adds to the confusion by fig. 224, "C. varius B., Galapagos Cuming," which figure simply presents a variety of brunneus and corresponds to two examples collected by Dr. Jones at Manta, Eevador. Cuming found this shell in clefts of the rocks at low water. It has been monographed with varius, an Indo-Pacific species, as "pulchellus Sby., non-Swainson, and interruptus Wood."

A common aspect of ($\%$. brumeus is of a uniform siema-yellow with at faint median band and pmoplish at the base of the columella. The seupture, as before intimated, varies considerably in sharpuess, and this applies as well to the gramules on the main whorl as to the coronation of the spire.

The importance and advantage of a large series of a species such as that of C. brumeus in the national collection are obvious when questions of identity and distribution are involverl, as in the foregoing instance.

The synonymy also through error includes, as my remarks show, miliaris, minimus, and varius B., all Indo-Pacific forms. While many forms of a decided Indo-Pacific character do oceur on the west coast of North America, I have as yet failed to detect a single dalapagos species that does not exhibit as close or oloser relationship to characteristic West American mainland forms.
34. Conus lucidus Mawe.
=C. veticulatus Sby.
Not common; beach.
Hood and James islands.
Dr. Jones collected one example at Chatham Island.

35. Conus pyriformis live.

A single example (Mus. No. 102342).
Hood Island.
36. Conus nux Brod.

Beach shells.
Hood (102345) and James islands (102271).
Exceedingly close to the Indo-Pacifie species Ceylonensis Mwass., which latter iuchades according to Tryon the synonyms pusillus Gould, acutus Sow., pusillus (Chemn.) auct., tenuisulcatus Sow., sponsalis Chemn., momus Brod., to all of which, exeepting Gould's, Tryon gives a varietal position. Tryon includes the west coast shell in the synonymy of Ceylonensis, but whatever may be the opinion of others on this point Broderip's name may conveniently be retained for the West American shell. Found at Chatham Island by Dr. Jones.

37. Conus gladiator Brod.

One example, beach, (102273.)
James Island.
Mr. Tryon comments on the closeness of this form to brumueus. I have at various times possessed and handled a large number of specimens, but have never been impressed by any such resemblance.
38. Conus Fergusoni. Sow.

Several specimens, beach.
James Island (No. 102270); Indefatigable Island No. 102450).
This rare species seems to have its home in the Galapagos islands. The original example, 5 is inches in length, was said to have been collected at l'anama. Some seven oi eight specimens were obtained by the Albutross, four of them at Indefatigable Island. The largest of these was 48 and the smallest \sum_{3}^{3} inches long. One of them was quite fresh, with epidermis intact. Notwithstanding its large size, it is quite unattractive, being a coarse white species without the slightest ornamentation.

The Galapagos islands, or rather certain of them, appear to be the specific center of a few marine forms, and a few other species here attain, in the matter of size and solidity, a remarkable development. Among the Cones (c. Fergusoni, exceedingly rave on the mainland and so seldom met with in collections, is mot infrequent on James and Indefatigable islands; so with Connspurpurascens and the variety of the same known as ('. regalitutus, which are found at several of the islands. The interesting and variable ('. brumens, with its characteristic yet extreme varicties, has its metropolis in the Gabapagos group. So also with Murex (I'hyllonotus) prineeps, I'urpura melo, I'. planospira, I'. patuIn and its close relative P. columellaris. Cussis tenuis here attains a vigorous growth and frequently an extraordinary size and solidity; Cyprea nigropmentatu is common, elsewhere exceedingly rave, and so with many other less conspicnous forms.
39. Conus purpurascens Brod.

+ C. regalitatus Sow.
Common; principally worn beach shells.
Hood, James, Indefatigable, and Charles islands.
Tryon, following previous writers, assigns to regalitatus a varietal position, but examples that are intermediate in coloration are exceedingly numerous. Hence no doubt the following synonymy which includes C. neglectus A. Ad., based upon a young example; C. luzonicus Sow, non Hwass., and C. comptus Gould; and perhaps C. achatinus Mke., non. Chemn, as the variety regalitutus. From James and Hood islands the examples are numerous and principally of the typical purpuruscens coloration, etc. (Nos. 102276 and 192240); specimens of the regalitatus var. (No. 102277) were obtained at James Island. One of each from Indefatigable (Nos. 102460 and 102461); and one beach shell of the varietal form, from Charles Island (102312). Tryon gives the distribution ass extending from Panama to Mazatlan, but my paper on Dr. Jones'shells carries the species as far south as Payta in Peru, and mupublished notes on a large collection made several years ago by Mr. W. J. Fisher adds considerably to its northerly range in the Gulf of California region, namely, at San Josef Island, Port Escondido, Los Auimas Bay, Angeles Bay, as well as the group of islands known as Tres Marias.

Family PLEUROTOMID .
Genui MANGILIA Ribso.
Sulgenus CYTHARA Schumacher.
40. Cythara densistriata Cpr.

Two examples (No. 122125).
Chatham Island.

Subgemus DAPHNELLA Hinds.

41. Daphnella sp.

A single beach-worn example from Indefatigable Island, too much rubbed to admit of determination. Hinds deseribed I. casta from the west coast of America; it may belong to that species.

Fanily OLIVIDE.

Genus OLIVELIA Swainson.
42. Olivella? gracilis Gray.

One beach specimen (Mus. 122120).
Chatham Island.
The worn condition of this solitary example makes the foregoing determination somewhat doubtful.

The Olives, so common on the mainland and in the Gulf of Califor-
nia, seem to be of rare occurrence in the Galapagos Islands. Carpenter reports only one, kotcontina, in his Reeve list. Dr. Jones detected (o. peruriana, one example, and the Albatross collectors were the first to collect an Olivella.

Family MARGINELLIDA.

Sulogenus PERSICULA Schumacher.

43. Marginella (Persicula) imbricata Hinds.

One example beach; (Mus. No. 117969).
Indefatigable Island.
A single specimen, considerably rubbed, but agreeing in form with the perfect examples in the National collection.
44. Marginella (Persicula) phrygia Cpr.

One specimen, beach; (Mus. No. 117968).
Indefatigable Islaud.
The characteristic markings of this species are sufficiently distinct in the solitary specimen rollected to make the above determination satisfactory. The National Museum has another example from the Galapagos (No. 5607t), the particular island not specified, probably collected by Dr. Habel.

Family MITRIDA.

Genus MITRA Lamarek.
45. Mitra effusa Swaing.

One fresh, perfect specimen (Mus. No. 102391).
James Island.
The distribution heretofore given as "Guacomayo, Central America, Galapagos Islands," must be extended northerly to the Gulf of Califormia. Fisher collected it in Mulege Bay, and several years ago the late Dr. W. M. Gabb detected it somewhere along the Gulf coast of Lower California.

Genus STRIGATELLA Swainson.
46. Strigatella tristis Brod.

Beach shells not uncommon.
Hood, Dunean, and James islands.
Several examples fiom Hood (No. 109381), one shell from James Island, and a frest specimen from Dumean Island (Mus. No. 102315). The ocemrence of this species in the Galapagos group is corroborated by Dr. Habels specimens (Mus. Nos. 56133,56337), as well as by other collectors. Tryon, following (arpenter, gives the northerly distribution as Mazatlan, but it is found at other and more northerly localities
in the Gulf of California, etc., where Fisher collected it in Mulege and also in Los Animas bays on the easterly shore of Lower California respectively, about 200 to 325 miles farther to the north.

Family FASCIOLARIIDE.
 Genus FASCIOLARIA Lamarck.

47. Fasciolaria princeps Sow.

Broken shell and fragments.
James and Indefatigable islands.
Cuming collected this species on the coast of Peru, the most southerly point reported; not before detected at the Galapagos Islands.

Genus Latirus Montfort.
48. Latirus varicosus Rve.

Beach specimen.
James Island.
49. Latirus tuberculatus Sby.

Common on the beaches.
Hood Island (1); James Island (3); Indefatigable (3); Duncan Island, numerous fresh examples (Mus. No. 102314).

Family BUCCINIDA.

Genus PISANIA Bivona.
Subgenus TRITONIDEA Swainson.
50. Tritonidea sanguinolenta Duclos.
$=T$. hamastoma Gray.
Beach shells, in various conditions.
Hood Island, not uncommon (Mus. No. 102379); James Island, frequent, two fresh specimens; Duncan Island, one beach shell; Charles and Indefatigable islands, beach shells and fragments. The inclusion of Janelii, Val.,* in the synonomy of hemastoma by Carpenter and others is an error, as Janelii is a markedly different form.

Geurs ENGINA Gray.
51. Engina carbonaria Reeye.

Beach shells, in various conditions.
Hood Islands, numerous (Mus. No. 102363); James and Duncan islands (Mus. No. 102319), one each.
52. Engina carbonaria Reeve., var. $=$ crocostoma Reeve. + forticostata Reeve.

Beach shells.
Hood Island (Mus. No. 102364). Tryon included crocostoma and forticostata, both of Reeve, in the synonomy of carbonaria, and I am in-

[^76]clined to think he was right. b. crocostome, as 1 see it, is a yellowmonthed variety of cerbonaria. The typical carbomaria has a bluishwhite mouth.

Family NASSIDA.
Gemun NASSA Lamarek.
53. Nassa nodicincta A. Adams.

Beach sholls.
Indelatigabld Island (Mas. No. 1こ:211:3); ('hatham Island (No. 10:211; one all each place. This is rather a rave form. Previonsly reported from the Galapagos by ('uming. Not digured in Tryon's Monograph or elsewhere, so fir us I have been able to learn.

Family COLUMBELLDDA.
Gemus COLUMBELLA Lamark.
54. Columbella castanea sow.

Beach shells, in good condition.
Hood Island. four specimens (Mus. No. 102374).

55. Columbella Paytensis Lesson.

 C. spurca sow.Beach specimens.
Hood lslath (Mas. No. 10s:3Fis); Indefatigable Iskmd (Mus. No. $10: 468)$. The example from Ihood is hardly chameteristice, yet it is nearer peytensis than to castemed. Abmonant at Payta (Jones's colleetion).
56. Columbella hemastoma Sby.

Not uncommon, beaches.
dames lsland, live. Hood, common. Indefatigable, two specimens, one fresh (Mus. Nos. 10:460, 102:372). Ocem's also on the coast of Fenador and in the Gulf of Califorma.
57. Columbella fuscata Sby.

Beach shells; many tresh and in good condition.
Imelatigable and llood islamds, common (Mus. Nos. 10:467,
 fresh sperimens. Dr. dones collerted this specoes at Payta, Pem, and at Manta, Eenador. Common in the Gult of California.

Subgents NITIDELLA Sw:inson.
58. Nitidella incerta Stearns.

Plate ad, tigure 6.
(Treliminary description in "Tho Natutilus," December, 189\%.)
One example, beach, dead; one perfect.
Indefatigable lslamd (Mus. No. 12001:2). Also (island not stated) Habel collection (Mus. No. 12:013).

Shell small, rather solid, acutely ovate, spire elevated, pointed, whorls six to seven, moderately convex, with inconspienons revolving erooves, more distinct on the lower part of the body whorl; upher whonds delientely sculptured with rloseset, rounded, longitmdinal ribs. Apex obtuse. Aperture nearly half the length of the shell. Outer lip somewhat thickened, with five to seven denticles on the inner side. Golumella, with a single rather prominent plat or tuberele, just below the middle. Surface colored by five to six brownish red bathds, alternating with as many white ones, on the body whorl.

Dimensions: Length, 6.02 ; length of aperture, 3 ; breadth, 2.65 millimeters.

The above description is based on a single fresh perfect specimen in the Habel lot (120013); the others are so much rubbed as to be of little diagnostie value. All show the tuberele on the eolumella. It is not unlikely that in a number of fresh specimens considerable color variation would be exhibited. The specimen deseribed is beatifully and conspicuously banded or striped. The above is nearer to ('apenter's Nitidella millepunclutu than to any other west coast form with which I am familiar. In comparison with the most perfect adult of the batter, from Cape St. Lucas (Mus. No. 1147), certain similaties and differences are perceptible. The interior crenulation of the outer lip, the longitudinal pleation of the upper whorls, and the seulpture striation of the lower part of the basal whorl are nearly or quite alike in both. The difterences are seen in the more clongated form of millepunctutu, the greater convexity of the whorls, the more pronounced sutural detinition, and the strong tuberele on the eolumella. The color marking of millepunctute is indicated by the speeitie name, and the general tone of the surface is yellowish.

This may possibly be "ext? sp." of Wimmer"s list from Bindloe Island, which he refers to Amycla and compares with "roble Say. It is otten not easy to determine to which of the groups of the Columbellide some of the forms should be assigned.

Family MURICIDAA.

Subtamily Muricinas.

Genus MUREX Limé.
Subgemus PHYLLONOTUS Swainson.
59. Murex (Phyllonotus) princeps Brod.

Beach shells in various conditions.
James and Charles islands, common; also less numerons on Indefat. igable Island. Freauently of large size and often quite solid and heavy.

Genus TROPHON Montiort.

60. Trophon ? xanthostoma Brod.

=T. P'eruriamus Lesson.
One bearh shell, jumior, in good condition. Hood Island. (Mus. No. 102351).

Subfamily Purpurinde.
 Gemus PURPURA Bruguiere.

61. Purpura patula Limé.

Common on the beaches, etc.
James, Indefatigable, and Hood islands. Several fresh specimens from the first phace (Mus. No. 102:79), and mumerous dead shells from the other islands. Also at Chatham Island, in Jones's collection.

Section PURPURELLA Dall.
62. Purpura (Purpurella) columellaris, Lamarck.

Common along the shores, etc.
Hood, James, Chatham, Charles, Dunean, and Indefatigable islands; quite large and heavy shells from the latter (Mus. Nos. 102376, 102311, 102318,102282 , and 122113). From Hood one solid specimen measured 3 inches, and the smallest adult only thirteen-sixteenths of an inch in length. The examples from James Island vary considerably in the elevation of the spire.

Section PLANITHAIS Bayle.

63. Purpura (Planithais) planospira Lam.

Beaches, abundant and frequently of large size.
Hood, Indefatigable, and James islands (Mus. No. 102377); quite mumerous on the two last ishands, where it often oceurs with the surface burrowed by some form of Pholad or Lithodomus. This species appears to be rather insular in its distribution. It is abundant and fine at Socorro Island, one of the Revillagigedos group, which is situated in latitnde 18035^{\prime} north, and longitude 111° west of Greenwich, distant from Mazatlan something over 300 miles, in a southwesterly direction, and about 240 miles south from Cape St. Lucas. The Galapagos examples are often exceedingly solid and heavy.

Section THALESSA H. \& A. Ad.
64. Purpura (Thalessa) melo Duclos.

Beach shells, common.
James, Duncan, Hoods, and Indefatigable islands. Closely related to the Antillean deltoided, and suggestive of a common ancestry. Dr. Jones collected the above at Chatham Island.

65. Purpura (Thalessa) callaoensis Gray.

$=$ Coralliophila callaoensis Auct.

- Fresh specimens, beach.

Charles Island, three examples (Mus. No. 102313). In Tryon's Manual the above is grouped with Coralliophila. Common at Manta, coast of Ecuador.

> Genus MONOCERAS Lamarck.
> (= ACANTHINA F. de Waldheim).
> 66. Monoceros grande Gray.

Beach specimens.
James and Indefatigable islands; apparently rare; the distribution of this species seems to be confined to the Galapagos group; the national collection contains a good example (No. 60719), probably collected by Dr. Habel; the particular island not stated.

Subfamily Tenioglossa.
Family TRITONIIDAE.
Genus TRITONIUM Cuvier.
Section COLUBRARIA Schumacher.
67. Tritonium (Colubraria) Sowerbyi Reeve.

The basal whorl, of what I regard as the above species, was obtained at Indefatigable Island (Mus. No. 117976). Reeve credits the above (6 fathoms sandy mud, Cuming), as well as a related form T. reticulatus to the Galapagos group. The fragment before me is in fair condition so far as color and sculpture go. While it evidently has general relations with T. testaceus Morch (=\|istortus and obscurus, Tryon pars.), it is much more finely sculptured and less rugged in its general facies than the latter; it also somewhat resembles T. reticulatus Blve., (=intertextus Rve.), but is a more solid shell than that species. Both reticulatus and testaceus are found in the Antillean-Caribbean region. As many marine species are common to the waters on both sides of Middle and South America, and many of the Tritons have an exceedingly wide geographical range, it would not be especially remarkable if either of the above were detected on the west side. Reeve has credited recticulatus to the Galapagos, but I am inclined to think that a small example of Sowerbyi is what that author had before him. The sculpture of the fragment agrees with the description which Reeve has given as characterizing Souerbyi, and though the fragment is without the general color or markings of either recticulatus or Sowerbyi, in my judgment it should be assigned to the latter rather than described as new. In the Colubraria group of Tritons color is not a constant character, and many of the species, to my knowledge, are colorless or nearly destitute of color markings.

68. Tritonium (Simpulum) olearium Linné.

Beach, fragment.
Indefatigable Islamd. A part only of a specimen, but sufficiently large and in good chongh condition, so that the determination was not dificult. Dr. Jones detected this species on the coast of South America, at Manta, in Eemador; also at l'ayta, in Peru. The Albatross and dones collections greatly extend the previonsly well-known wide distribution of this form. Its seographical range is seemingly world-wide within tropical and semitropical waters.

Fiamily CASNIDIDA.
Gemun CASSIS Lamarek. Subgemus CYPRæCASSIS Stutchbury.

69. Cassis (Cypræcassis) tenuis Gray = C. Маssena Kiener.

Common along the shores and the beaches.
James, Charles, Hood, and Indefatigable islands. The Galapagos group, if we may julge by momber of individuals and the sturdy growth and size many of them exhibit, is the metropolis of this time speries. From Indefatigable the largest specimen measured $5 \frac{1}{4}$ inches in length, with three to fome eonspicuons rows of nodules on the body whorl. An example somewhat laterer fom Hood Island, is about sit inches long, and neaty as heary as an arerage individual of the IndoDacitie ('assis rufins of same length. In 'Tryon's monograph of the Cassidider this species is redited to the dalapagos only; it oermes howerer in the Gulf of Califomia; the largest example from the Gulf region that I have seen is much smaller and less heary than the maximmm specimens from the Galapagos. A fine example fiom the Galapatos obtained by the late d. A. MeNiel, measured nearly 6 inches in length.

Genus ONISCIDIA Swainson.

70. Oniscidia tuberculosa Rvo.

Common on the beaches.
James, Hood, and Indefatisable islands. An aboudant species at James lsland where forty six shells were ohtained; less mumerous at Indefatigable (Mus. Nos. $10: 46 ; 302: 30)$. Dr. Jones obtained it at Chatham Island.

Family CYPREDDA.
(iemus CYPR届A Limé.

71. Cyprea exanthema Lim., var. $=$ C. cervinetta Kien
beaches, not uncommon.
dames and ludelatigable islands. This form has a wide distribution, from Payta, Pern, in the sonth to the (iulf of Califormia and La Paz,

Lower California, in the north. The name cervinetta Kien, has quite generally been applied to the west coast shells, and it may be well for geographical reasons to so label them or as "C'. exanthoma var. $=$ C. cervinetta Kien.," as above. They are one of the "pairs of analogues which inhabit both sides of the isthmus," of Darien, or Panama, as it is more commonly called. While the individuals of the two coasts are easily separable, there can be no doubt as to their ancestry. C. cervus, the habitat of which has been a matter of doubt, and therefore of discus. sion, is undoubtedly an east coast form, and may be regarded as a variety of exanthema. It is much more ventricose in proportion to its length, and as a rule, the spots are closer and more numerous than in exanthema proper. I have received first and last a great number of individuals of var. cerrinette, and have critically examined many more belonging to various persons, but have never met with the cervus form from the west side. The National Musenm contains characteristic examples of cervus from Vera Cruz, collected by Dr. Strebel, in 1866.

Subgenus LUPONIA Gray.

72. Cypræa (Luponia) nigropunctata Gray.

Common on the beaches.
James, Hood, and Indefatigable islands (Mus. No. 102375). For the most part in poor condition. The Galapagos Islands are apparently the specific center or metropolis of this form. Dr. Jones solitary example from Manta, Ecuador, confirms the previous somewhat doubtful report of its occurrence on the coast of the mainland.
73. Cypræa (Luponia) albuginosa Mawe.

Beach shells.
James Island, one example. Previonsly credited to the Galapagos in Wimmer's list.

Genus TRIVIA Gray.
74. Trivia Pacifica Gray.

Beach shells.
Hood Island, four beach shells but fresh and in good condition (Mus. No. 102362).

> Family CERITHIOPSIDA.

> Genus CERITHIOPSIS F. \& H.
75. Cerithiopsis neglecta C. B. Adams.

Beach shells.
Indefatigable Island, two examples (Mus. No. 122128).

Family CERI'THIDDA.

Genus CERITHIUM Bruguiere.
76. Cerithium maculosum kiener.

+ C. adustum Kiener.
C. mebulosum Shy.

Common on the beaches.
Dumean, dames, and Indelatigable islands. Numerous specimens, some quite fresh and perfeet were obtained; these include both; the smoother form is the (. chlustum Sby. var., non Kiener, the latter authors tigure and diagnosis not agreeing, else the wrong number is attached to the tigure. At Chatham Lsland, Dr. Jones collected several examples.

Family MODULIDA.
Genus MODULUS Gray.
77. Modulus cerodes, A. Ad.

Beach shells.
Hood Island, two beach-worn sperimens (Mus. No. 102354). Not heretofore reported from the Galapagos.

Family VERMETIDA.
Genus VERMETUS Morch.
Subgenus SERPULORBIS Sassi.
78. Serpulorbis squamigerus Cpr.

Beach shells, mumerous.
Hood, James, and Indetatigable islands (Mus. No. 102341, 102350, 117966,117967). From Hood Island, one example apparently varietal (No. 102350), rather thattened with pinched sides, resembling V . (Aletes) centiquadrus Val.

Subgenus ALETES Carpenter.
79. Aletes, species.

Beach, fragment.
Hood Island, too small and imperfect to warrant an attempt at de. termination.

Family LITTORINIDE.

(ienus TECTARIUS Valencionnes.
80. Littorina (Tectarius) galapagiensis Stearns. Plate 1.1 , tigure 7.

Preliminary description in "The Nautilns," December, 1892.
dames lshand; one example fresh and in good condition (Mus. No. 10こ509)

Shell small, rather solid, wate conie, angulated in outline; tive to
six and a half whorls; whorls covered with obtusely rounded and rather coarse nodules; of these the peripheral series is the strongest and the next preceding, somewhat less prominent, while the other girdles of nodes are still less conspicuous. The peripheral is closely followed by a parallel series just below, and the base is marked by succeeding rows of less prominence. The aperture is rounded-ovate and of a dark chocolate color; columella broad, somewhat excavated and produced below. Exterior dull chocolate-brown above, paler below, with still paler nodules.

Altitude, 7.50; latitude, 5 millimeters. Comparison with the Antillean and Indo-Pacific forms in the National collection indicates its non identity with any heretofore described.

Wimmer's list includes two species, namely (Hamus) lemniscatus Phil. and trochoides Gray, the first of the group reported as occurring here. The form herein described does not agree with either of the species catalogued by Wimmer; it is not so acutely conical as trochoides Gray, which Tryon includes in the synouymy of nodulosus Gmel., and the columella is broader and more produced at the base (posteriorly) than in lemniscata Phil, an Indo-Pacific form, regarded by Tryon as a synonym of miliaris. If Wimmer's determination is correct, which I am rather inclined to question, then three species of Tectarius are found in the Galapagos. Dr. Jones detected a single individual of this group at Manta, Ecuador, which I have listed with the Jones shells by the name of Tectarius atyphus, the first example of this genus from the West coast of the American continent. This is not referable to either of the species catalogued by Wimmer or to any others of the group, which is largely represented in the National collection.

Family RISSOIDA.

Genus RISso Freminville.
Subgenus alvania Risso.
81. Alvania reticulata Cpr.
not R. reliculata Mont., $=R$. Carpenteri Weink., (Tryon).
Beach specimen in fair order.
Indefatigable Island, one example (Mus. No. 122127).
Described by Carpenter from Neeah Bay, Puget Sound specimens in the Ami. \& Mag. Nat. Hist., Vol. xiv, 3d series, and agreeing with examples in the National Museum identified by Carpenter.

Wimmer records a species of Alvania without name; possibly either this or the following.
82. Alvania æquisculpta Cpr.

Beach example

Indefatigable Island (Mus. No. 122126). The single specimen collected by the Albatross was fortunately sufficiently perfect to admit of
identification. Named by Carpenter from Monterey, Cal., examples; collected by Mr. Harford and myself in 1867; now in the National Museum.

Genus RISSOINA Orhigny.
83. Rissoina fortis C. B. Adams.

Beach.
Hood lsham, two shells (Mus. No. 10?380). This species is in Wimmer's list.

Family CALYPTRAEDA.
Genus MITRULARIA Schumacher.
84. Mitrularia cepacea Brod.
$==$ Calytraa cepacea Brod., Auct.
Beach, rare.
Imlefatigable Island, one specimen (No. 102462); Chatham Island, three good specimens (Mus. No. 122116). Dr. Jones collected a specimen of this form at Manta, Eduador (No. 48402). Tryon includes the above in his synonymy of equestris. Wimmers list contains Celyptrece raria Brod., which may be the same as I regard as cepacea or the following. The Masemm has an example of this rave form from Acapulco (No. 60248) and one from Panama (No. 366®).

85. Mitrularia corrugata Brod.

$=$ Calyptrea corrugata Brod., Auct.
Beach shells.
James Island one imperfect example, but in sufficiently good condition to show clearly the characteristies of this rare species (Mus. No. 102511). This species appears to be another addition to the (ialapagos list; it oceurs at Acapulco, though quite rare nearly everywhere along the coast (Nos. 60247 and 59298).

Genus CRUCIBULUM Schmacher.
86. Crucibulum imbricatum Brod.

Beach specimen.
James Island; a single example in poor condition. Not before reported from the Galapagos. This form ranges from Lower California in the north to l'ayta, Pern, where several examples some $2 \frac{1}{2}$ inches in diameter were obtained by Dr. Jones. The small (ialapagos collection made by I)r. Jones at Chatham Island includes C.spinosum Shy., which seems to have escaped detection by the Albatross collectors. This latter ramges much farther to the north than imbricutum, namely, to Monterey, Cal.

Mr. Tryon, in his monograph of the genus Crucibulum, makes the various imbricated forms that have been described, synonyms of scutcllatum Gray; those that are "finely radiately costulate or smooth" he includes under the varietal name of quiriquina Lesson. Certain West Indian species he consolidates under the varietal name of auriculatum (Chemn.) Auct., an Indo-Pacific form is made var. violaceum Carpenter, and the West American spinose forms he places under the varietal name of tubiferum Lesson. His subordination of groups and species is as follows:
C. scutellatum Gray.
=C. imbricatum Brod.
$=C$. corrugatum Carp.
=C. rugosum Lesson.
=C. dentatum Menke.
=C. costatum Menke.
=C. Cumingii Carp.
= C. cxtinctorium Sowh.
= C. rude Brod.
$=$ C. gemmacea Val.
=C. pectinatum Carp.
= C. umbrella Desh.
$=C$. planata Mörcl.
=C. concameratum Reeve.
$=C$. serratum Brod.
The two latter presumably young shells.
Var. quiriquina Lesson.
$=C$. trigonale Ads. \& Rve.
=C. ferrugineum Reeve.
=C. lignaria Brod.
$=$ C. tenue Brod.
$=$ C. spectrum Reeve.
Var. auriculatum (Chemn.), Auct., West Indian.
=C. Curieri Desh.
=C. planatum Schum.
$=C$. Caribbeense Carp.
Var. riolaceum Carp. Ceylon.
Var. tubifcrum Lesson.
=C. spinosum Sowb.
$=C$. cincroum Reeve.
=C. hispida Brod.
=C. Peziza Gray.
=C. P'eziza,var. compressoconicum Carp.
$=$ C. maculatum Brod.
=C. striatum Brod., not Say.
$=C$. auritum Reeve.

It will be noticed that the West Indian forms, the Ceylon species, as well as the rest, are made varieties of scutellatum. Any person who has collected or handled a large number of the West American shells of this group is well aware of the excessive number of specific names that have been attached to what may reasonably be regarded as varieties, and that many of such names rest upou a very frivolous foundation. While Mr. Tryon's condensation of these is measurably warranted, with the ample material of the National collection before me I can not follow or approve in toto of his very radical modification.

The first objection to the above is the reducing of the spinose forms to a varietal position aud the second is the inclusion of others described under the names of pectinatum, serratum, concameratum, striatum, aud auritum in either of Tryon's varietal groups. One species not included in Tryon's enumeration is referred in his index to Galerus or Trochita, that is, C. sordida Brod. (Rve., Mono., sp. 22); this belongs with the species pectinatum, etc., above named, making all together six. In these the internal process or cup is distinctly separable from all the others, and the large National Museum series shows that under any modification of form due to the shape of the object to which the shell
was attached, whether resulting in the pinching together or compression of the sides, ete., the cuplike process is unaffected so far as relates to the proportion of the same that is attached to the immer surface. Carpenter"s pectinutum, to which in manuseript he gave also the name
 11,11 a, exhibits the characters and extent or proportion of the cup that is fixed to the side.

A caretul examination of one hundred and thirty-four examples included in thirty-two lots from thirteen localities bet ween Lower C'alifornia, in the north, and l'ayta, D'ern, in the south, discovered no comecting links between the usual form of the cup, ass seen in the species of the imbricated group, and the triangular cup of the pectinatum, serratum, etc., forms I have named. Besides the above example or pectinatum, which was collected at Mazatlan, the Museum series contains two from the "Gulf of C'alifornia" (No. 60:39), which, on previous and hasty identification, were wrongly determined as "imbricatum var.," and a fouth from Pamama; the exterior sculpture is also persistent and characteristic, easily separable from the others of the imbricated group. Of the one hundred and nincty-four examples of the spinose form from nineten localities between San Pedro, California, in the north, to Payta, Peru, in the sonth, and the Galapasos, in the National Museum, not one example occurs, whatever may be its shape, compressed or pinched, conical or flattened, wherein the internal eup is attached as in pectinutum, ete; neither have I observed in the course of going over the two groups imbricatum and spinosum any difficulty in separating them or any reason for uniting them by reason of the oceurence of varietal forms wherein the characters are too indefinite for satisfactory determination.

The foregoing is printed as written nearly two years ago. Recently, in relation to the Tertiary fossils of Florida,* Dr. Dall has referred to this character of the attachment of the cup, and he assigns certain forms, wherein the cup is adherent, to Dispoter (Say) Comad.

Dispotert as as section or subgenus of Crucibutum will therefore include pectinutum + Jeceetti, servatum, concameratum, striatum, curitum, and sordidum.

In this portion of his paper Dr. Dall remarks, "the species of both groups ['rucibulum s. s.; and I)ispoteca] have been very greatly overstated by naturalists who have assumed the constancy of the surface characters or those due to station." Farther on he says, "the Pacitic imbricutum, exeept for the link furnished by the fossils, is quite distinct from its, near relative, c. spinosum, hat in the Pliocene fossils the intermediate forms are more numerous, and there the two can hardly be regarded as distinct species."

[^77]Genus CREPIDULA Lamarck.
87. Crepidula aculeata Gmel.

Beach shells, rave.
Indefatigable and Hood islands (Mus. No. 102361). Dr. Jones found this form abundant on the mainland at Payta, Peru.

Family AMALTHELDAE。
Genus Amalthea Schumacher.
88. Amalthea Grayanus Mke.
$=$ Hipponyx Grayanus Mke.
Beach shells, common.
Hood, Chatham, and Indefatigable islands. Several specimens in fair condition (Mus. Nos. 102358, 122108, 102464).
89. Amalthea antiquatus Linné
$=$ Mipponyx antiquatus Linné.
Beach, several examples.
Indefatigable Islaud (Mus. No. 102465). Six rather small specimens from Chatham Island in Dr. Jones's collection. Wimmer's list also includes it.

> 90. Amalthea barbatus Sby.
$=$ Hipponyx barbatus Sby.
Common on the beaches.
Chatham, James, Indefatigable, and Hood islands (Mus. Nos. 122109, 102466,102357). Good, fresh examples were obtained at all of these islands. Dr. Jones's collection includes it from Chatham Island.

Family NATICIDA.

Genus POLYNICES Montfort.

91. Polynices dubia Recluz.
$=N$, Atacamensis Phil.
Beach, one example.
Indefatigable Island (Mus. No. 102472).
Tryon has included N. amiculata I'hil. and N. rapulum Reeve in the synonymy of this species.
92. Polynices uber Val.
= Mamma uberina Orb.

+ M. Phillipiana Nyst.
Beach shells.
Indefatigable, Hood, and Charles islands (Nos. 102471 and 102368). M. uberina and M. Phillipiana, of Wimmer's list, are credited respectively to Bindloe and Hood islands.

Proc. N. M. $93-26$

Sulgenus LUNATIA (irisy.
93. Polynices (Lunatia) otis lirod.

+ var, fusca Cpr.
$=$ N. Galapagosa Recluz.
$=$ N. perspicua Recluz.
N. Salangocusis Recluz.

Beach, broken shells.
Indefatigable Island (Mus. No. 10:170). Found also on the mainland, as fiar south as Payta, by Dr. Jones.

Family LAMELLARLIDE.
Gomas LAMELLARIA Montagn.
94. Lamellaria ? Stearnsii Dall.

Hood Island, one example in good condition (Mus. No. 102369).
The shell doubtfully assigned to the above species is quite small, only 5 millimeters long, possibly not adult. It resembles in a general way and is closer to Dall's Stecrosii thanoto any species that I am aware of; it has a marower columella, however, tham the species suggested. Without the sott parts it is doubtful whether its place is with this group or with Marsenint. ('apt. Couthouy's species from Orange Harbor, Patagonia, L. cutarctice and L. protfmuis, we represented by tigures of the amimals, but not the shells, and the Albutross example does not agree with E. A. Smith's putagonica.

95. Lamellaria ? rhombica litl.

Beach.
Hood Island, one nearly perfect specimen.

> Supertmmily DOCOGLOSSA.
> Family ACMALDA.

Gomus ACMAEA Lischncholt\%.
96. Acmzea scutum Orl).

Beach shells.
Hoorl and Indefatigable islands (Mus. No. 10235?). Neveral specimens from Indefiatigable.
97. Acmaea striata Rvo.

```
not A. strialu Q. N(s.
? =A. scutum, Orb. var.
```

Beach.
Hood Lsland (Mus, No, 102360). Six small examples. Probably a variety of scutum. Carperter resumed N. striuta live, as a variety of mesoleucu.

Genns OMPHALIUS Philippi.
98. Trochus (Omphalius) Cooksoni Smith. ? - O. fasciatus Born.

Beach.
James Island (Mus. No. 102505). Λ single perfert individual, measuring 4 millimeters in height and 7 millimeters in diameter, not quite the same proportions, but no doubt belonging to the species deseribed by Smith. The specimen before me is beautifully blotehed with irregular whitish spots, on a ground color somewhat darker than the rest of the surface, forming a girlle above the umbilicus. It seems strange that the resemblance to O. Juscintus of the Antillean region has not heretofore been noticed. A compadson with the very large series of fasciutus in the National Museum shows that it is very closely related to that species, if not identical.

Family NERITIDA.
Comun NERITA Brugniere.
99. Nerita scabricosta Jain.
$=N$. ornata $\mathrm{Sby}_{\mathrm{y}}$
Common on the beaches.
Hood, James, and Indefatigable islands (Mus. Nos. 10238:3, 102280, 102473). Fine large examples, many quite fiesh.

Superfimnily $/ / Y C$ GIBRANCHIAA
 Iramily FISSURELLIIAU.

Gemus FISSURELLA Bruguiore.
100. Fissurella macrotrema Sby.

Beach.
Indefatigable Island, one perfect junior (Mus. No. 12:129).

101. Fissurella rugosa shy.

Beach shells, in all conditions.
James, Hoorl, Indefatigable, Doncan, and Chatham islands. Numerous examples (Mus. Nos. 102366, 102453, 102:317). The various aspects of this protean form were found on the beach margins of the several islands named, in most instances in fair condition.

102. Fissurella obscura Slyy.

$$
\%=I_{0}^{\prime} \text { rugosa Sby., variety. }
$$

Beach.

Chatham Island (Mus. No. 122124). Several examples of this form, which may be regarded as probably a variety of the variable rugosa.

Beach shells.
Chatham Island. One junior in good condition (Mus. No. 122115). Dr. Jones obtained five small specimens at this island.
104. Fissurella nigropunctata Sby.
$=F$. vircscens Sby., var.
Beach examples.
Chatham Island. One junior in good condition (Mus. No. 12211t).
Genus FISSURIDEA swainson =GLYPHIS Carpeuter, nou Agassiz.
105. Fissuridea inæqualis Sby.

Beach shells in various conditions.
Hood, Indefatigable and Chatham islands, mostly from the first (Mus. Nos. 102367 and 122122).

In my list of Dr. Jones's South American shells, this speeies and alta were erroneously phaced in Mr. Pisbory's getas Lucapinella.

> 106. Fissuridea inæqualis Sby. var. pica Sby.

Beach specimen.
Indefatigable Island. A single eximple (Mus. No. 122121). Mr. Pilsbry is presumably right in assigning this to a varietal position.
107. Fissuridea saturnalis C'pr.

Beach specimen.
Chatham Island, two examples (Mus. No. 1:2ロ123).

> Subclass ISOPLEURA.
> Order POLYPLACOPHORA.
> Supertanily EOCHINONIA.
> Family LOPHYRIDE.

Geuns CHITON s.s.
108. Chiton Goodallii Brod.

Beach, fragments and live specimens.
Chatham and Albemarle Islands, one living example from each; Indefatigable, a single (anterior) plate (Mus. No. 10:451). Suggests in a general way C. magnificus.
109. Chiton sulcatus, Wood.

Beach, valves, also living examples.
Indefatigable Islands, portion of posterior plate. Charles Island, three living specimens. Hood Island, one worn median valve of a very large individual (Mus. No. 102356).

CARPENTER'S REEVE-CUMING LIST.

The following list of Galapagos shells is made from Dr. Carpenter's Reports to the British Association. The special island is given whenever stated. The list of marine forms was compiled by Carpenter from Reeve's Monographs; the list of laud shells* was furnished him by Cuming and contains several species not given by Reeve, and includes erroneously Bulimus corneus Sby., a Nicaraguan form. I have added such notes in brackets as may be of assistance in questions of comparison and reference:

1. Gastrochena rugulosa Sley.
2. Gastrochena brevis Sby.
3. Gastrochrna hyalina Sby.
4. Petricola amygdalina Sby.
5. Semele rupium Sby., Hood's Island.
6. Semele punctatum Sby.
7. Cardita iucrassata Sby. [\% error for crassa Sby.]
8. Cardita varia Brod. [=C. flammea Mich.]
9. Chama spinosa Schum. Hood's I. [? echinata var.]
10. Chama janus Rve. [?=frondosavar.]
11. Chamaimbricata. [?=frondosa var.]
12. Modiola capax Cpr.
13. Creuella coarctata Dkr. [Modiolaria s. g.]
14. Byssoarca truncata Sby. [Arca g.]
15. Pecten magnificus Sby.
16. Idima Pacifica Rve., Hood's I. [=arcuata Sby.]
17. Lima arcuata Sby.
18. Anomia adamus Gray.
19. Bulla Quoyii Gray.
20. Bulla rufolabris A. Ad.
21. Bulimus mux Brod. [Bulimulus s.]
22. Bulimus verrucosus Pfr. Charles I. on bushes.
23. Bulimus unifasciatus Sby. Charles I.
24. Bulimus rugulosus Sby. Chatham I.
25. Bulimus eschariferus Sby.
26. Bulimus Darwinii Pfr. on bushes.
27. Bulimus achatinelliuns Fbs.
28. Bulimus incrassatus Pfr.
29. Bulimus ustulatus Sby. Charles I. under lava.
30. Bulimus calvus Sby. James I. on tufts of dead grass.
31. Bulimus Jacobi Sby. James I., under scoriab.
32. Bılimus chemnitzioides Fbs. [Pleuropyrgus g .]
33. Bulimus corneus Sby. [error: a Nicaraguan species.]
34. Bulimus sculpturatus Pfr.
35. Bulimus rugiferus Sby. Janes I., under scoriz.
36. Bulimus nucula Pfr.
37. Bulimus Galapaganus Pfr.
38. Bulimus Manini Pfr.
39. Siphonaria gigas Sby.
40. Siphonaria scutellum Desh. [=obliquata Sloy?]
41. Lophyrus Goodallii Brod. [$=$ Chiton g.]
42. Lophyrus sulcatns Wood [$=$ Chiton g.]
43. Chiton hirudiniformis Sby.
44. Acmea striata Reeve.
45. Fissurella rugosa Sby.
46. Fissurella macrotrema Sby. [=rugosa Sby. var.]
47. Fissurella nigropunctata Sby. [=virescens Sby. var.]
48. Fissurella mutabilis Sby.
49. Fissurella obscura Sby. [? F. rugosa Sby. var.]
50. Glyphis iniequalis Sby. [Fissuridea g.]
51. Turbo squamigera Rve. [Senectus g.]
52. ('alyptrea varia Brod. [Mitrularia g.]
53. Hipponyx Grayanus Mko. [Amalthea g.]
54. Hipponyx barbatus Sby. [Amalthea g.]
55. Cerithium ocellatum Brug. Polynesia [?]
56. Cerithium nebulosum Sby. [=maculosum Kien.]
57. Cerithium Galapaginus Sby. [=interruptum Mke. var.]
58. Littorina porcata Phil.

* Brit. Assoc. Report 1856, p. 359.

59. Planaxis planicostata Sby.
(60. Luponia nigropunctata Gray. [Cypreatg.]
(i1. Trivia pulla Gask.
(6). Trivia fusca Gray [?]

G3. Trivia radians Lam.
64. Trivia Pacilica Gray.
(6.). Trivia suffusa Gray [?]
66. Trivia mbescens Grity [8]
67. 'Trivia Mangerio Gray.

6x. Cancollaria mitriformis Sby.
69. Cancellaria \& chrysostoma Sby.
70. Cancellaria hamastoma Sby.
71. Strombus cranulatus Svains.
72. Terebra ornata Gray.
73. Myurella frigata. [='Terebra strigata Sby.]
74. Drillia excentrica Sby.
75. Drillia bicolor Sby. [Crassispira s. …
76. Drillia rugifora Sby. [Crassispira s. g. $]$
77. Drillia albicostata Sby. [Crassisprata s. gr.]
78. Drillia splendidula Sby. [Crassispiras. s. ${ }^{\text {s.] }}$
79. Conas mux Brod. [Seopage ante.]
80. Comus brumbus Wood.

81: Conus minimus var. [$=$ brumneas var.]
82. Conus varius var. [三brumens var.]
83. Comus Luzoniens var. [$=$ purpurascens var.]
84. Conus diadema Sby. [=brumens var.]
85. Stylifer astericola Brod.
86. Cirsotrema diadema Shy.
87. Natica maroceana Chem.
88. Lunatia Galapagosa Reclu\%. $[=0$ otis var.]
89. Oniscia tuboreulosa Rvo. [Oniscidia $\left.{ }^{\text {g. }}\right]$
90. Oniscia xanthostoma A. Ad. [Oniscidia g.]
91. Cassis coarctata Shy. [Lovenia s.g.]
92. C'assis temuis Gray. [Cypromeassis s. © N .]
93. *'Triton reticulatus Blvo. [Colubrarias. s. . .]
94. Triton Sowerbyi Rve. [Colubraria s. (g.]
95. Triton pictus Reove. [Epidromus s. …]
96. 'Triton clandestinus Lam. [Simpn$\operatorname{lnm} 8 . \mathrm{g}$.$] :$
97. Lathirus ceratus Gray.
98. Lathirus tuhereulatus Brod.
99. Lathirus varicosus Rvo.
100. Mitra gitusapata Rve. [Costellaria B. . . .]
101. Mitra gratiosa Rve. [Thala s. g.]
102. Mitra muricata Swains. $[=$ lens Wood.]
103. Strigatella tristis Brod. [=Mitra g.]
104. Strigatella efinusa Swains. [$=$ Mitra . .]
105. Olivella kaleontina Juclos. [=01iva g.
106. lurpura Carolensis Rve. Charles I. [=triangularis Blve.]
107. Purpura patula Limé.
108. l'urpura colmollavis Lam. [=Purpurellats. g.]
109. P'upura planospira Lam. James I. [三Planathais 8. g.]
110. Vitularia salebrosa King.
111. Monoceros grande Gray. James I.
112. Engina carbonaria Rvo.
113. Engina pulchria Rve. [=E. Reeviaua C. B. Ad.]
114. Engina pyrostoma Sloy.

11\%. Engina maura Sby. [f]
116. Engina crocostoma Rvo. [=carbonaria var.]
117. Engina zonata Rvo. Charles I.
118. Columbella hamastoma sby.
119. Columbella varians Sby. [Anachis g.]
120. Colminbella unicolor Sby. [Alia 8. g.]
121. Pseudo-Buccinum hiliratum Couthony, Reeve. [Tritonidea s. ...]
122. Engina (Buccinum) pulchrum. [See No. 113.]
12'3. Nassa nodifera lowis. $[=$ tegula Rve.]
124. Nassa amgulifera A. Ad.

12i.) Nassa nodicineta A. Ad.
126. Fusus Dupetithourrsii Kien.
127. Anachis nigrieans Sby.
128. Anachis atramentaria Sby. Chatham I.
129. Anachis rugulosa Sby.
130. Strombina bicanalifera Sby.
131. Strombina lanceolata Kien.

1:32. Pisania cinis Rve. [Tritonideas. g.]
133. Murex pumilus A. Ad. [Ocinebra (2.]
134. Murex mucleus 13rod. [Purpura g.]

[^78]
ALBERS' LIST.*

Under the generie title of Nesiotes, Albers included all of the Galapagos Bulimi known at the time, with the exception of Forbes's achatinellinus and chemnitzioides. Albers first used the name Nesiotus in 1850, afterwards as revised, Nesiotes in 1860; the latter has since been used in Coleoptera and Memiptera by various entomological writers. Sehliitter's Omphelostyla (1838) is probably not the same group as the Galapagos shells.

1. mux Brod.
2. nuciformis Petit.
3. sculpturatus Pfr.
4. asperatus Albers
5. incrassatus Pfr.
6. Darwini Pfr.
7. unifasciatus Sby.
8. ustulatus Shy.
9. galapaganus Pfr.
10. Jacobi Sby.
11. mucula Pfr.
12. calvus Sby.
13. rugiferus Sby.
14. eschariferus Sby.
15. rugulosus Shy.

Of Albers' list of fifteen as above, four, namely, nuiformis, asperatus, incrassutus, and muculu, should be regarded as varieties or synonyms of mux. Pfeiffer's section Rhaphiellus of Ehrenberg's geuus Buliminus is based upon Forbes's Bulimus uchatinellimust and includes only this solitary species.

It would seem that geographical considerations would cause one to hesitate before placing any Galapagos form in Ehrenberg's genus. In the light of to day, it is an interesting illustration of or commentary on the extreme systematization, to which the pulmonata-geophila, all the world over, have been subjected.

The relations of achatinellinus to the other Galapagos forms can not be satisfactorily determined until a larger series has been collected and examined, and the peculiarities of station and habits have been observed.

As to generic or subgeneric titles, one may well ask why Pleuropyrgus for the Galapagos forms, like Forbes's chemnitzioides, when we have Pyrgus turritus Brod. (Reeve, 124) from "Truxillo, Peru," before us.

It is highly probable that the well characterized insular groups of Bulimoids, Achatinelle and Partula of the Sandwich and Society islands, respectively, influeuced authors to the extent of causing them to regard the Galapagos forms as an analogous group worthy to be known by a distinguishing name.

THE PETREL-C00KS0N SHELLS.

Commander Cookson, in command of H. M. S. Petrel, visited Charles, Abingdou, and Albemarle islands in June, 1875. The shells collected by him were determined by Mr. F. A. Smith, of the British Museum,

[^79]from whose paper I have quoted as below. He remarks,* "the shells collected by Commander Cookson are all from Charles lsland. They belong to twenty-two species, the majority of which were previonsly known to have been fomd in the arehipelago, thongh we were ignorant in some instances of the island on which they were fombl. Six of the species are additions to this fanna, three of them being apparently u:described."

1. l'urpura patula limué*
2. l'urpura calkoensis Cray.
3. Engima crocostoma live.
t. Rhizochilus (Cocalliophila) parvas

Smith. A new species.
5. Columbella fuscata Sher.
6. Lathims varicosus Rvo.
7. Lathirus tuberoulatus Brod.
s. Mitra (Strigatella) tristis Swains.
9. Comus mux Brod.
10. Cerithum machlosum Kien.
11. Calyptraa sp.
12. Hipponẏ Grayamus, var., Mko.
13. 'Trochus (Omphitins) Cooksoni

Smith. A new eprecies t
14. Fissurella obsema Sby.
15. Chiton (Lophyrus) Goodallii Brod.
16. Chiton (Lophyius) suleatus Wood.
17. Area sp. "Seems most mearly allied to A. "radater liod. A: Sbyg"
18. Bulimus mux Brod.
19. Bulimus unifasciatus Sby.
20. Bulimus eschariterns Sby.

21 . Suceinea Bettii. Smith.
[18]. "The specimens of this speries collected be Commander Cookson are very coarsely striated, and much danker in color than those deseribed by Broderip. They arestriped hongitulinally with a mixture of slate color and brown, with here and theme some pale streaks: and some specimens have a distinct pale band around the middle of the body-whorl; and the four apical whorls are bhish black.
"This species is considerably variable in form, some examples being much more elongate than others.
"The following measurements show how great is the variation in length. One shell is $\underset{\sim}{2} 0$ millims. long and 10 i diameter, and another very short one has a length of only 16 millims.o and yet is the same width as the longer specimen."
[20]. "This species is quoted by Reeve as having been fommat Chathan lsland by Darwin. The Charles Island shells are considerably larger than those from the above locality, and also eonser in sompture, some of them displaying spiral gramose or ragose striation as in B. rugulosus of Sowerby, from the same islands: and, indeed, they appear to be an intermediate variety or comeeting link between the two species, both as regards size and seulpture. The largest speeimen measures 19 millims. in length and $7 \frac{1}{2}$ in width."

[^80][21]. A new species, of which the anthor says the species "is most nearly allied to S. rubienda Pfr., which was deseribed as' coming from the island of Masafnera, off the coast of Chile."
"Long., 13 millim.; diam., maxima 8. Apertura longit., 10 millim.; diam., 53." Also a "var. Testa brevior."

WIDMER'S* LIS'T OF HABEL'S (AALAPAGOS SHELLS-SUHMARY.

1. Murex regins Wood. [Plyllonotus s. g.]
2. Cantharus hemastoma Gray. [-'Tritonidea sangninolenta Duclos.]
3. Tritonium pileare $\mathrm{I}_{\text {}}$ 。 $[$ \& = T '. (Lamp usia) vestitus Hinds.]
4. Nassa versicolor C. B.-Arl.
5. Purpura columellaris Lam. [Purpurellas. (g.]
6. Purpura planospira Lam. [Planathais s. g.]
7. 'urpura melones Duclos. [P'melo.]
8. Acanthina grandis Gray. [Monoceros g.]
9. Conchopatella peruviana Jam. [=Concholepas \&.]
10. Rhizochilus madreporarum sow.
11. Rhizochilus parvus Edgar Smith.
12. Latirus varicosus Jeove.
13. Peristernia tuberculata Jrod. [Latirus g.]
14. Strigatella tristis Swains. [Mitrag.]
15. Strigatella effusa Swains. [Mitrag.]
16. ?'Turricula cronata Brod. [Mitrug.]
17. Columbella castanea Sow.
18. Columbella fuscata Sow.
19. Columbella hemastoma Sow.
20. Columbella cribraria Quoy of Gaim. [$=$ Nitidella cribraria. Lam.]
21. Columbella suffinsa Sow. [Anachis s. g.]
22. Columbella atramentaria Sow. [Anachis s.g.]
23. Columbella rugulosa Sow. [Anachis s. g.]
24. Amycla sp.
25. \& Amycla pulchella Sow. $[$? $=$ Anachis elegantula Morch.]
26. Engina crocostoma Reeve. [=E. carbonaria var.]
27. Volvaria rukella C. B. Ad. [Volvarina s. g.]
28. Volvaria varia Sow. [-Marginellat (Volvarina) varia.]
29. Carlinm ringens Swains. [Malea g.]
30. Mamma uberina l'Orb. [=Polynices uber Val.]
31. Mamma Philippina Nyst. [= Polynices uber Val.]
[2. Mamma otis Brorl. [=Lmatia otis.]
3:3. Naticina pellucida Reeve. [Sigaratus g. 1
32. Morm tulbercnlosum Sow. [Oniscidiar g.]
?\%. Cassidea tenuis Gray. [Cyprecassis g.]
33. Cirsotrema diailoma Sow.
34. Acus strigata Sow, [Terebra \&.]
35. Enlima micans Carpent.
36. Stylifer astericola Brod et Sow.
37. Cytharaoryza Minds. [Mangiliag.]
38. Conus brumbens (Mawe), Gray. [C. brumneus Wood.]
39. Comus coronatus Dillwyn. [$=\mathbf{C}$. brumnens Wood vitr.]
40. Conus nux Srod.
41. Leptoconus regalitatis Sow. $[=\mathrm{C}$. purpurascens var.]
42. Cyprea exanthema I.
43. Luponia alluginosa (Mawe) Gray. [Cypreas g.]
44. Juponia nigropunctata Gray. [Cypreag g.]
45. Trivia Mangeria Gray.
46. 'Trivia pacifica Gray.
47. Trivia pulla Gaskoin.
48. Cerithium adustum Kiener. [=C. maculosum Kien., var.]
49. Triphoris? alternatus C. B. Ad. [Triforis g.]
50. Lacuna porrecta Carp.
51. Hamus lemniscatus Phil. [Tectarins g.]
52. Hamus trochoides Gray. [Tectarins g.]

* Zur Conchylien Fauna der (ialapagos Inseln von Augnst Wimmer, November, 1879. Akad. der Wissensch. The species herein listed were collected by Dr. Simeon Habel in 1868.
b6．Rissc na fortis C．B．Md．
57．Rissoina inea C．B．Ad．
58．Alvania sp．
59．Siphonium margaritarum Val．
60．Siphonimm squamigerum Carp． ［Serpulorbis g．］
61．Siphonium pellucidum Brod et Sow．
62．Calyptrat varia Brod．［Mitrularia g．］
62．Cochlolepas barbata Sow．［Amal－ thea ${ }^{g}$ ．］
64．Cochlolepas Grayana Menk．［Amal－ thea g．］
65．Cochlolepas subrufa sow．［Amal－ thea g ．］
66．Amalthea antiquata L ．
67．Nerita ornata Sow．［ $=$ N．scabri－ costa Lam．］
68．Nerita Rernhardi Recl．
69．Omphalus Cooksomi Edgar Smith． ［Trochus g．$_{\text {．}}$ ］
70．Omphalius reticulatus Wood．［Tro－ chus g．］
71．Fissurella macrotrema Sow．$[=\mathrm{F}$ ． rugosa Sby．viar．］
72．Fissurella obscura sow．$[=? \mathrm{~F}$ 。 rugosa Sby．var．］
73．Lucapina alta C，B．Ad．［Fissuri－ dea g．］
74．Lncapina insequalis Sow．［Fissuri－ dea g．］
75．Lucapina mus Reeve．［Fissuri－ dea g．］
76．Tectura patina Eschsch．［Acmara g．］
77．＇Tectura spectrum Nott．［Acmas g．］

78．Nacella？subspiralis Carp．
79．Lophỵrus Goodallii Brod．［Chiton g．］
80：Lophyrus suleatus Wrood．［Chiton g．］
81．Lepidopleurus janeirensis Gray． ［Chiton．］
82．Acanthochites hirmdiniformis Sow． ［Chiton．］
83．Bulla rufilabris A．Ad．
81．Janthina fragilis Lam．
85．Bulimulns achatinellinus Forb．
86．Bulimulus Darwinii Pfir．
87．Nllobimm stagnale Petit．［Auri－ cula.${ }^{\text {g．］}}$
88．Melampus trilineatus C．H．Adams．
89．Tralia panamensis C＇．B．Ad．
90．Pedipes angulatus（ $\%$ B．Ad．
91．Lucina fibula Ad．et Reeve．
92．Lucina punctata L．
93．Aetinohohs varins Brod．［Cardita玉．］
94．Mytilns Adamsianus Dunker．
95．Margaritifera？（＇mmingii Reeve． ［Meleagrina g．．］
96．Isognomon legumen Gmel．［Per－ na g．］
97．Isognomon quadrangulare Reeve ［Perna g．］
98．Barbatia decussata Sow．［Arca．］
99．Barbatia velata Sow．［Arca．］
100．Barbatia divaricata Sow．［Arca．］
101．Barbatia gradata Brod．et Sow． ［Arca．］
102．Radula areuata Sow．［Lima g．］
103．Ostrea glomerata Gonld．

ANCEY＇S GALAPAGOS SPECIES，ETC．

In the Bulletin of the Société Malac．de France＊Mr．C．F．Ancey， under the title of＂Nouvelles Contributions Malacologiques，＂has de－ seribed Bulimflus amastroides；in connection with the deseription he refers to B ．calvus Sowerby as the only species with which it may be rompared，but his shell has a＂facies général très different，＂form more oval，less height，and a more delicate sculpture．

His varieties of B ．rugulosus Sby．，namely，infuscata and planospira， and of B．eschariferus Shy．，bizonalis，and subconoidalis，have ahready been mentioned．

In speaking of the Galapagos Bulimoids he says：＂Les Butimes appar－ tiement incontestablement an systeme américaine，mais ils se sont modifiés peu à peu，grace à la nature voleanique de ces îles et a leur position géographique．＂

As to the relationship of the Calapagos Bulimi to many of the forms inhabiting various subregions in the general one of the South American main, compare B.bilinetus Sby. in Reeve, No. 132, from "St. Elena and west Columbia," with certain aspects of rugulosus Reeve's No. 121. Withont making an exhaustive or even systematic search for analogies in form, sculpture and general facies, a random reference includes such species as pustulosus: Brod., rhodacme Pfr., and pupiformis Brod., from IIuaseo; pruinosus Sby., and scalariformis Brod., from Peru; modestus Brod., albicans Brod., affinis Brod., arrosus Brod., and punctulifer from Chile; striatus King and striutulus of Sby., montivagus Orb., Bolivia; sordidus Lesson, apodometes Orb., Laurentii Sby., Chile and Peru, and limonoicus, Orb., also from Peru; Torallyi Orb., trochoides Orb., and crepundia Orb., three Bolivian forms. But it is not simply to these as figured in the monographs, but to the shells themselves that attention is called; many of the species above named it would be quite impossible to represent satisfactorily by one, two, or three figures, or by the same number of examples; the variation which many of them exhibit is so great, that a large series is absolutely necessary.

It will be noticed that the mainland forms suggested by me for comparison with the Galapagos shells are principally Chilian and Peruvian; from the former especially. It would seem so far as the Bulimoids are considered, that the islands were stocked from this part of the continent rather than from Ecuador and farther north.

REIBISCH'S WOLF COLLECTION.

Die conchyliologische Fauna der Galapagos-Inseln, von Paul Reibisch (mit Tafel I und II),* includes the following, being an amotated and descriptive catalogue or summary of the terrestrial species previously described and of others regarded by the author as new and described as such. The material which Reibisch had before him was collected by Dr. Theodor Wolf, State geologist of Ecuador, but the number of examples scems to have been exceedingly limited and generally in an unsatisfactory condition; either immature, weathered, or in some other way imperfect.

For the sake of continuity I have quoted herein from Reibisch's papers all of the previonsly described species which he has included, following his numbers, though in some cases he has added nothing to our previous knowledge. In other instances the information he has giveu as to station, altitude, etc., is of sufficient interest to make the publication desirable.
I. BULIMULUS l.aぃю.

1. Bulimulus oноhaxiforus Suw.

Habrat.-(hatham Ishand (Darwin).
2. Bulimulus umifarcintus Sow.
 shell without epidermis.

3. Bulimulua mucula lor.

 teet. "The smatlest of the eromp of R. mur."
4. Balimulus vermeosus l'fr.

5. Bulimulus aspexatus Albors.

Ilabitatrochanles lsland (Wodr). "Five examples, all whthout epidermis."

6. Bulimulus mux lirod.

 to dion leot, in the dry zone: only a lew imperfert examples collered "umber bushes amd stomes."

7. Bulimulus incrassatus P'r.

 to 2000 feet in the wooded rewion, on bushes, with R. ('hemmitsiodes
 Vamety sulcotus, Reib. Habitat. Charles lsamd (Wolf): also Variety
 (Wolf).

Reibiseh here eomments briotly on the phasticity of the l. mur form.

8. Bulimulus ustulatus sow.

 conspienous than tho sempture.
9. Bulimulus invalidus Revih.
llamotr. Charles Ishand (Wolt).
10. Bulimulus venustus Roil.
 elose to ustmbetus.
11. Bulimulus calvus Sow.

IIAbicatr.-James Island (Cuming); Charles Island (Wolf).
12. Bulimulus Jacobi Sow.

Habitat.-dames Island (Cuming).
13. Bulimulus pallidus IReib.

IIABATAT.-Albemarle Island (Wolf), in the dry zone, zoo to 800 feet altitule, moler stomes and bushes. Of four examples omly one was perfect.
14. Bulimulus cinereus Reib.

IIABATAT.—Dames Island (Wolf). 'The deseription of this species, aceording to the atuthor, rests on two examples in poor eondition.
15. Bulimulus rugulosus Sby.

MABATAT.-Chatham Istand (Cuming, Wold), B00 to (600 feret; common on bushes on the cliffs and undres stomes; the prevanling form on Chatham, as B. mux is on Oharles Istand.
16. Bulimulus ventrosus Reib.

IIABATAT-DBarineton Island (Wolf). (iommon on the whole is land; holds a similar position here that mur, rugulosus, and Wolfi maintain in the other islands. The form is ineonstant and variable. 'Three examples, one imperfect.

Variety β.
IIABITA4'- ('hatham Island (Wolf'). 'Two examples, more shiny and darker colored than the Barrington specimens.

17. Bulimulus galapaganus Pfr.

IlABITAT.-Gal:paigos (teste Pfoiffer l. e.), Barrington, Wolf. Of the foregoing speciss, mumbered 15,16 , and 17 , Reibisch remarks they form a subgroup rentricted to the eastern part of the arehipelago.

18. Bulimulus acutus Reib.

IIABATAT.-Chatham Island (Woll'), at an elevation of 900 to 2,000 feet; very abmalant in grassy spots and on the trunks of trees. Two mature, one adolescent examples.
19. Bulimulus curtus Reil.

HABBTAT.- ('hatham Island (Wolf), 900 to 2,000 fert. Very abondant in grassy places and on the trunks of trees. The anthor remarks that it forms, with lo. ncutus, a peculiar group restricted in distribution so far as known to Chatham Island.
20. Bulimulus rugiferus Sow.

Habitat.-dames Island (Cuming).

21. Bulimulus nudus Reib.

Habitat.-Charles Islamd (Wolf). The author says of this that in form it stands bet ween sempturatus and ruyferus, bat differs from said species in size, and the sempture is less distinct. The deseription rests ou two examples, weathered (calcinerten).

22. Bulimulus sculpturatus, Pir.

llabitat.-Galapagos (Darwin).
23. Bulimulus Darwini Pif.

Habitat-Gabapagos (Darwin).
24. Bulimulus Wolfi Retil.

Habirat.-Indefatigable Island, on lava elifts, under stomes, ete. This is said to be characteristie of Indefatigable Istamd, as rugulosus is of Chatham and nux of Charles lsland. Number of examples three, two grown and one immature. Very close to Darwini, but differs in having a third tooth, oceurring on the outer lip.
25. Bulimulus Simrothi Reib.

Habitat.-Albemarle Laland (Wolt). Not common, in the tree elad region 1,000 to 2,000 feet clevation; represented by threo individuals which may not be fully grown; one of these is deformed. Reibisch remarks that the first eleven species are limited to Charles and Chatham islands:* the latter (No. 11) up to this time observed in only two places. The rugulosus and cortus groups are restricted to Barington and Chatham, and 20 to Dis grouped or subgrouped under Darmini, as 2 a type, ocemr on Charles, Indefatigable, James, and Albemarle. Here also comes in as a subgroup B. Jacobi.

26. Bulimulus (Pleuropyrgus) terebra Reih.

[18. (Pleuropyrgus) Habeli Steans. The Nautilus, Jamuary, 1892, pp. 98-99.]
Hableat. - (Chatham Island (Wolf), at an elevation of 900 to 2,000 feet in the wooded region, on mossy roeks and under stones; abundant. four examples, of which hardly one is well preserved.

27. Bulimulus (Pleuropyrgus) chemmitzioides Fhs.

Habitat.- ('hatham Island (Wolf), station 300 to 600 feet altitude; abundant on rocks and under stones, along with R. rugulosus.

[^81]
28. Bulimulus (Pleuropyrgus) lima Reib.

Habitat.-Chatham Island (Wolf). Rare; occurring with P. terelua; only two examples detected, one of these possibly a junior.

Judging by his figure, I should regard the above as a dwarfed or adolescent form of chemnitzioides.

Reibischolserves that this group, Plouropyrgus, seems to be restricted to Chatham Island. With our present limited knowledge of the land mollusks of the Gatapagos group it would appear so, but much more light is needed to make generalizations of any great value.
29. Bulimulus (Pelecostoma) canaliferus Reib.

IIABiTAT.- Chatham Island (Wolf). Abundant in moss at an elevation of 900 to 2,000 feet. Four mature individuals.

This may prove to be a valid species; the figure is unsatisfactory; it suggests relationship to rugifer and may be a dwarfed variety of that species.
30. Bulimulus (Pelecostoma) cymatoferus Reib.

IIABidAt.— ('hatham Island (Wolf). "Immature examples" seem to have been regarded as a sufficient foumbation for this species, of which the soft parts are unknown, and the genus must rest on shell charae ters only.

The above is figured in pl. If, 7, of Reibisch's paper; it is I all's Leptinaria chathemensis,* a subgenus of Stenogyra in the family stenogyrido.

II. BULIMINUS Ehrenberg.

31. Buliminus (Rhaphiellus) achatinellinus Forbes.

Habitat.-Cialapagos (Cuming), Chatham Island (Wolf), on mossy rocks at an elevation of 900 to 2,000 feet; apparently rare; no good live examples detected. Reibisch says the sole example figured differs in several particulars from that given in Pfeiffer.

II. PUPA Draparnaud.

32. Pupa (Leucochila) munita Reib.

Habitat.-Albemarle Island (Wolf), "on bushes near the shore," close to I '. Wolfi, which is abundant in the province of Guayaquil, Licuador.
33. Pupa (Leucochila) clausa Reib.

Habirat.--Indefatigable Island (Wolf).
On bushes near the shore. Reibisch implies that this is a more developed form of P. Wolfi.
IV. SUCCINEA, Draparnaud.
34. Succinea (Tapada) Bettii Smith.

Habitat.-Chatham Island (E. A. Smith, l. c.).
35. Succinea (Tapada) Wolfi Reib.

Habiest.-Chatham Island (Wolf).
In the wooled region, 900 to 2,000 feet above the sea, abundant in moss and among rocks; ahso var. producta, a more elongated, slenderer form than the typical Wolfi, represented by a single individual; station same as type form.

V. HELICINA Lamarck.

36. Helicina Wolfi Reil. (Pl. ir, Fig. 13.)

Habipat.-Chatham Island (Woll). Station same as the above Suecineas, 900 to 2,000 feet altitule, among the mosses and rocks. This form was previously deseribed by Dall, and was named by him nesiotica, see Helicina (Idesa) nesiotice in "The Nautilus" for Janary, 1892.
Of Reibisch's inculidus (No. 9) and his (No. 10) remustus, the number of examples that he harl is not stated. If one may judge of these by the following, it may be assumed that the mumber was quite inadequate.

Of pullidus (No. 13) four, only one of which was perfect; cinereus (No. 14), two in poor condition; rentrosus (No. 16), three examples, one imperfect; acutus (No. 18), two mature one adolescent example; mudus (No. 21), two examples weathered; Wolfi (No. 24), three specimens, two grown, one immature; Simrothi (No. 25), theee individuals which may not be fully grown; one of these is deformed.

The extreme variation of these Galapasos bulimoids is so great that it may ultimately be found that what are now regarded as three species, Darwinie, rufiferus and seulpturatus, phas callosities and color, are varieties of one. To these should be added Reibisch's Wolfi, which probably belongs to Darwini, the third tooth on the outer lip which constitutes the difference, is of insignificant value.

IRR. JONES'S CHATHAM ISLAND, GALAP'AGOS SHELLS.*

1. Mytiluscuneiformis Reeve $=$ M.angustanus Lam.
2. Tellina (Capsa) excavata Sby.
3. Mactra velata Phil.
4. Bullat punctulata A. Ad.
5. Conns lucidus Mawe.
6. Conns nux brod.
7. Oliva peruviana Lam.
8. Fusus Dupetithonarsii Kien.
9. I'urpura melo Duclos.
10. I'urpura patula Limé.
11. Purpura patula var.
12. Monoceros tuberenlatum Gray + Purpuat muricata Gray.
13. Ianthina fragilis Lam. $=\mathrm{I}$. striatula Cpr.
14. Oniscidea tuberculosa Brod.
15. Cerithimm maculosum Kien.
16. Amalthea antiquata Liune.
17. Amalthea barbata Sby.
18. Aemara sentum Orh.
19. Fissurella virescens Sby.
[^82]
DALL'S GALAPAGOS SPECIES.

In Mr. Dall's "Preliminary Report* on the Collection of Mollusea and Brachiopoda obtained in 1887-'88" on the voyage of the U.S. Fish Commission steamer Albatross from Fortress Monroe to California, etc., the following new species are described by him, and are recorded as occurring "near the Galapagos Islauds," haviug been dredged at the stations indicated.

1. Leda pontonia Dall.

Stations 2807 and 2808, 812 and 634 fathoms, mud and sand.

> 2. Verticordia perplicata Dall.

Station 2807, in 812 fathoms.
3. Dentalium megathyris Dall.

Station 2807, in 812 fathoms; this form was also dredged off Chiloe Island and southwest Chili at stations 2788 and 2789, in 1,050 and 1,342 fathoms.
4. Actæon perconicus Dall.
"Near the Galapagos" * * * 812 fathoms.
5. Scaphander interruptus Dall.

Station 2807, * * * 812 fathoms.
6. Pleurotoma exulans Dall.

Station 2808, * * * 634 fathoms.
7. Calliotectum vernicosum Dall.

Station 2807, * * * in 812 fathoms.
8. Pleurotomella argeta Dall.

Station 2807, * * * 812 fathoms.
9. Pleurotomella (Gymnobela) agonia Dall.

Stations 2807 and 2808.
10. Pleurotomella suffusa Dall.

Station 2807.
11. Chrysodomus (Sipho) testudinis Dall.

Station 2807.
Station 2807.
Station 2807.
12. Nassa Townsendi Dall.
13. Scala pompholyx Dall.

[^83]Proc. N. M. 93- 27
14. Gaza Rathbuni Dall.

Station 2818 , in 392 fathoms.
15. Haliotis Pourtalesii? Dall.

Station 2815, in 33 fathoms, sand, near Charles Island.
Subsequently in the "Nautilus," January, 1892, Mr. Dall described the following terrestrial forms collected by Dr. G. Baur.

16. Helicina (Idesa) nesiotica Dall.

The first species of the family reported from the Galapagos; Chatham Island, on leaves of plants 1,600 feet above the sea. Mr. Dall remarks, "the type is not unknown in the I'anamie region, but is said to be absent from the west slope of the Andes."

17. Leptinaria chathamensis Dall.

"Chatham lsland, on ferns at 1,600 to 2,000 feet above the sea. Somewhat analogons forms are found in the mountains of the Panamic region."

18. Zonites (Hyalinia) Bauri Dall.

"South Albemarle Island, on weathered bones of tortoises. **** The absence of any form of Helix or Konites has been commented on by most of those naturalists who have treated of the Galapagos shellfama, and it was certainly a most extraordinary deficiency from any point of view. This discovery of Dr. Baur's removes the most striking anomaly of the fanna."

LIS' OF THE MOLLUSK-FAUNA OF THE GALAPAGOS ISLANDS, COMPILED FROM THE FOREGOING.

Class PELECYPODA.

Order PRIONODESMACEA.
Suborder OSTRACEA.
Family OSTREIDE.
Genus OSTREA Linné.

1. Ostrea folium (imel.

James Island, Albutross.
2. Ostrea glomerata Gould.

Galapagos, Wimmer.
Suborder ANOMIACEA.

Family ANOMIIDA.
Genus ANOMIA Linné.
3. Anomia adamus Gray.
$=A$ lampe Gray
James, Albatross; Galapagos, Carpenter.
Suborder PECTINACEA.

Family PECTINID AE.
Genus Pecten Miiller.
4. Pecten subnodosus Sby.

James Island, Albatross.
5. Pecten magnificus Shy.

Galapagos, Carpenter.
Family LIMID Æ.
Genus LIMA Bruguiere.
6. Lima arcuata Sby.

James Island, Albatross; Galapagos, Carpenter, Wimmer.
7. Lima pacifica lieeve.

Hood Island, Canpenter.
Suborder MYTILACEA. Family AVICULIDA.

Genus Avicula Lamarek.
8. Avicula Cumingii Roove.

Galapagos, Wimmer.
(ienus PERNA l3ruguiero.
9. Perna Chemnitzianus Orb.

1sognomon C. Auct.
Indefatigable and Hood lslands, Albatross.
10. Perna legumen Gmelin.

Hood Island. Wimmer.
11. Perna quadrangulare heeve.

Charles Island, Wimmer.
Family MYTLILDE.
Genus MYTILUS Linnt
12. Mytilus multiformis Cpr.

Hood Island, Albatross.
13. Mytilus Adamseanus Dkr.

Hood Island, Wimmer.
14. Mytilus cuneiformis Reevo.

Chatham Island, Jones.
Genus SEPTIFER Reclu\%.
15. Septifer Cumingianus Dkr.

Hood Island, Albatross.
Gemus MODIOLA Lamarek.
16. Modiola capax Cpr.

Hood Island, Llbatross; Galapagos, Carpenter.
Genus MODIOLARIA Beck.
17. Modiolaria coarctata Dkr.

Galapagos, Carpenter.

Suborder ARCACEA.
Family ARCDD N .
(ienus ARCA Lamarek.
18. Arca truncata Sby.

Galapagos Islands, Carpenter.
Sulgenus BYSSOARCA Swainsou.
19. Arca (Byssoarca), solida Sby

Indefatigable Island, Albutross.
20. Byssoarca gradata B. \& S.

Hood Island, Albatross, Wimmer; Charles Island, Petrel; James, Chatham, and Indefatigable islands, Albatross.
21. Byssoarca Reeviana Ori.

Hood, James, and Indefatigable islands, Albutross.
Gemus BARBATIA Gray
22. Barbatia velata Sby.

Hood Island, Wimmer.
23. Barbatia decussata slyy.

Hood Island, Wimmer. Genus DAPHNODERMA Mont., not Poli.
24. Daphnoderma divaricata Sby.

Galapagos Islands, Wimmer.
Family LEDDIDA.
Genus LEDA Schmmacher.
25. Leda pontonia Dall.

Oft Galapagos, 634 fathoms, Albutross.

> Order TELEODESMACEA. Suborder CARDITACEA.
> Family CARDITIDAE.
> Geuus CARDITA Bruguieré.
> Subgenus VENERICARDIA Lamarck.
> 26. Cardita flammea Mich.
> =C. raria, Brod.

Hood and James islands; Albatross; Bindloe, Wimmer; Galapagos, Carpenter.
27. Cardita crassa Sby.
$?=$ incrassala Sby.
Galapagos Islands; Carpenter.
Suborder LUCINACEA. Family LUCINIDA.

Genus luCiNa Brugieré.
Subgenus LUCINA s. s.
28. Lucina bella Conrad.

Hood. James, and Chatham islands; Albatross.
29. Lucina punctata Linmé.

Hood lsland, Wimmer.
30. Lucina fibula Ad. At Rve.

Hood Islaud, Wimmer.
Suborder CHAMACEA.
Family CHAMIDAE.
Geuus CHAMA Bruguieré.
31. Chama echinata Brod.

Indefatigable and James islands; Albatross.
32. Chama frondosa Brod.

Hood and James islands, Albatross.
33. Chama imbricata Brod.

Galapagos Islands, Carpenter.
34. Chama inquinata Brod.

Indefatigable Island, Albatross.
35. Chama Janus Reeve.

Galapagos Islands, Carpenter.
36. Chama spinosa Brod.

Hood Island, Carpenter.
Suborder CARDIACEA.
Family CARDIIDA.
Genus CARDIUM, Lamarek.
37. Cardium consors Brod.

James Island, Albatross.

Suborder VENERACEA.
Family VENERIDE.
Genus CHIONE Megerle.
38. Chione multicostata Sby.

James Island, Albatross.
39. Chione compta Brod.

Indefatigable Island, Albatross.
40. Chione undatella Shy.

James Island, Albatross.
Subfamily Tapesine.
Genus TAPES Megerle.
41. Tapes grata Say.

Indefatigable Island, Albatross.
Suborder TELLINACEA.
Family PETRICOLIDA.
Genus PETRICOLA Lamarck.
42. Petricola amygdalina Sby.

Galapagos Islands, Carpenter.
Family TELLINIDA.
Genus LUTRICOLA Blainville.
43. Lutricola excavata Sby.
$=$ L. alta Conrad.
Chatham Island, Jones; Indefatigable Island, Albatross.
Family SEMELIDAE.
Genus SEMELE Schmacher.
44. Semele rupium Sby.

Hood Island, Carpenter.
45. Semele punctatum Sby.

Galapagos Islands, Carpenter.
Suborder MACTRACEA.
Family MACTRIDA.
Genus MACTRA Limé.
46. Mactra velata Plil.

Chatham Island, Jones.

Order ANOMALODESMACEA.
Suborder ANATINACEA.
Family VERTICORDTIDA.
Gemis VERTICORDIA Wool.
47, Verticordia perplicata Dall.
Off Galapagos Islands, 812 fathoms, Albutross.
Suborder ENSIPHONACEA.
Family GASTROCHENIDA.
Genus Gastrochana spengler.
48. Gastrochæna regulosa Sby.

Galapagos Islands, Carpenter.
49. Gastrochæna brevis Sby.

Galapagos Islands, Carpenter.
50. Gastrochæna hyalina Sby.

Galapagos Islands, Carpenter.
Suborder ADESMACEA.
Family PHOLADIDE.
Genus PHOLAS Limé.
51. Pholas acuminata Sby.
$?=$ Parapholas acuminata.
Chatham Island, Jones.
Class SCAPHOPODA.
Order SOLENOCONCHA.
Family DEN'TALIIDA.
Genus Dentalium Linué.
52. Dentalium megathyris Dall.

Otf the Galapagos Islands in 812 fathoms, Albatioss.
Class GASTROPODA. Subclass ANISOPLEURA.

Superorder EUTHYNEURA.
Order OPISTHOBRANCHIATA.
Suborder TECTIBRANCHIATA.
Family ACTEONIDE.
Genus ACTEON Montfort.
53. Actæon perconicus Dall.

Near the Galapagos in 812 fathoms, Albatross.

Family SCAPHANDRIDA.

Genus SCAPHANDER Montfort
54. Scaphander interruptus Dall.

Off the Galapagos Islands in 812 fathoms, Albatross.
Family BULLID x.
Genus BULLA Limé.
55. Bulla punctulata A. Ad.

Chathan Island, Jones, Hood, and Indefatigable, Albatross.
56. Bulla Quoyi (tray.

Galapagos Islands, Carpenter.
57. Bulla rufilabris A. Ad.

Hood and Bindloe Islands, Wimmer; (xalapagos Islands, Carpenter.
Order PULMONATA.
Suborder STYLOMMATOPHORA.
Subfamily GEOPPHILA.
Family LIMACIDA.
Genus ZONITES Montfort.
Subgeuus HYalinia Ferussac.
58. Zonites (Hyalinia) Bauri Dall.

South Albemarle Island, Baur.
Family BULIMULID風.
Genus BULIMULUS Leach.

Section N ESIOTUS Albers. 2
59. Bulimulus nux Brod., Sby. (type).

Albemarle Island, Albatross; Charles Island, Petrel, Carpenter, Reibisch, Albatross; Chatham Island, Albatross.
59. * * banded variety.
$1=$ ustulatus Rve., non. Sby.
Charles Island, Albatross; Carpenter, Reibisch.
59. * * * Variety intercised sculpture.

Charles Island, Albatross.
59. * * * * Ventricose variety.
$2=$ Reeve's type.

Charles Island, Carpenter.

$$
3 \text { - var. =asperatus Albers. }
$$

Charles Island, Reibisch.
4 - var. =incrassatus P'fr.
Charles Island, Reibisch, Galapagos, Carpenter.
¿_— var. sulculus Reih.

Charles Island, Reibisch.

> 59. * * . " * elongated variety.

Charles Island, Albatross.
G- : rervecosus Pfr.
Charles Island, Carpenter.
59. * * * * * * Variety with distorted month.

Charles Island, Albatross.
59. * * * * * * * Variety with cremulated suture.

Charles Island, Albatross.
59. * * * * * * * * Varicty with sutural nodes.

7 - = muciformis Petit.
Chatham Island, Albutross; Charles Island, Reibisch.
59. Varietien intermediate.

$$
\begin{aligned}
& 8-=\text { mueula Pfr. } \\
& 9-\quad \text { incalidus Reib. } \\
& 10 \text { - }+ \text { remustus Reib. }
\end{aligned}
$$

Charles Island, Reibisch; Galapagos Island, Carpenter.

60. Bulimulus Jacobi Sby:

James Island, Carpenter; Chatham, Albatross.

61. Bulimulus rugulosus Sby. non Rre.

Charles Island, Albutross, Carpenter; Chatham Island, Reibisch, Carpenter.

1 - var. infuscate Ancey.
2 - var, planospird Ancey.
Chatham Island, Ancey.
62. Bulimulus eschariferus Shy. non Rve.

Charles Island, Petrel; Chatham, Albatross, Carpenter.
1 - var. bizonalis Ancey.
2 - var. subconoidalis Ancey.
63. Bulimulus unifasciatus Sby.

Charles Island, Carpenter, Reibisch, Petrel.
64. Bulimulus calvus Sby.

Charles Islaud, Reibisch; James Island, Carpenter.
65. Bulimulus amastroides Ancey.
$?=$ calvus var.
66. Bulimulus Galapaganus Pfr.

Galapagos Island, Carpenter; Barrington Island, Reibisch.
67. Bulimulus Darwini Pfr.

Bindloe Island, Wimmer; Galapagos Islands, C'arpenter.
68. Bulimulus rugiferus Sby.

James Island, Carpenter.
69. Bulimulus sculpturatus Pfr.

Galapagos Islands, Carpenter.
70. Bulimulus Manini Pfr.

Galapagos Islands, Carpenter.
71. Bulimulus ustulatus Sby., non Rve. nor Reib.

Charles Island, Carpenter.
72. Bulimulus pallidus Reib.

Albemarle Island, Reibisch.
73. Bulimulus cinereus Reib.

James Island, Reibisch.
74. Bulimulus ventrosus Reib.

Barrington Island, Reibisch.
74a.——var. β. Reib.
Chatham Island, Reibisch.
75. Bulimulus acutus Reib.

Chatham Island, Reibisch.
76.* Bulimulus curtus Reib.

Chatham Island, Reibisch.
77.* Bulimulus nudus Reib.

Charles Island, Reibisch.
78. ${ }^{*}$ Bulimulus Wolfi Reib.

Indefatigable Island, Reibisch.
79.* Bulimulus Simrothi Reib.

Albemarle Island, Reibisch.

Section RHAPHIELLUS \mid Pfr.
80. Bulimulus achatinellinus Forbes.

Chatham Island, Carpenter, Albatross; Hood Island, Wimmer.
Genus PYRGUS.
Section PLEUROPYRGUS Martens.
81. Bulimulus chemnitzioides Forbes.
$?=$ l. lima Reib.
Chatham Island, Carpenter, Albatross, Reibisch.
82. Bulimulus Habeli Stearns $=1$. (Plewropyrgus) terebra Reib.

Chatham Island, Albatross, Reibisch.
Section PELECOSTOMA Reibisch.
83. Bulimulus canaliferus Reib.

Chatham Island, Reibisch.
Family PUPIDAE.
Genus PUPA Draparnaud.
Subgenus LEUCOCHILA Martens.
84. Pupa munita Reib.

Albemarie Island, Reibisch.
85. Pupa clausa Reib.

Indefatigable Island, Reibisch.
Family STLNOGYRLDA.
Genus Stenogyra shutt.
Subgenus LEPTINARIA Beck.
86. Leptinaria chathamensis Dall.
$=$ liulimulus (Pelecostoma) cymatoferus Reib.
Chatham Island, Baur; Reibisch.

Family SUCCINIIDA.

Genus SUCCINEA Draparnaud.
87. Succinea Bettii Smith.

$$
\text { var. }=S . \text { Wolfi Reib., var. }
$$

Chatham Island, Reibisch, Allutross; Charles Island, Petrel.
I have induded these (76-79) in my list, alhongh I suspect their validity. t Used here tentatively as a section of Bulimulus Leach non Buliminus Ehr.
88. Succinea Wolfi Reib.

Chatham Island, Reibisch.

- var. producta Reib.

Chatham island, Reibisch.
Superfamily DITRRFMATA.
Family ONCHIDIID E.
Genus ONCHIDIUM Cuvier.
89. Onchidium Lesliei Stearns.
(Plate Li, Fige. 2, 3.)
Albemarle and Charles islands, Albatross.
Genus ONCHIDELLA Gray.
90. Onchidella Steindachneri Semper.
(Plate Li, Figs. 4, 5.)
Charles and Albemarle islands, Albatross.
Suborder BASOMMATOPHORA.
Superfamily AKTEOPHILA.
Family AURICULID E.
Genus AURICULA Lamarck.
91. Auricula stagnale Petit.
= Ellobium stagnale P'etit.
Bindloe Island, Wimmer.
Genus TRALIA Gray.
Tralia panamensis C. B. Adams.
Hood and Charles islands, Wimmer.
Subfamily MELAMPINA.
Genus PEDIPES Adanson.
93. Pedipes angulatus C. B. Adams.

Bindloe Island, Wimmer.
Genus MELAMPUS Montfort.
94. Melampus trilineatus C. B. Adams.

Hood Island, Wimmer.
Superfamily PETROPHILA.
Family SIPHONARIIDA.
Genus SIPHONARIA Sowerby.
95. Siphonaria gigas Sby.

Galapagos Islands, Carpenter,

96．Siphonaria scutellum Desti．
－obliquata Sby．．！
Galapagos Islands，Carpenter．
Sulgroms WILLIAMIA，Menterosato．
97．Williamia peltoides laill．
Howd Islamd，Alhutross：Galapagos Islames，National Musemu．

Superorder STREPTONEURA．

Order CTENOBRANCHIATA．
Suborder ORTHODONTA．
superfamily TOXOGLAESA．
Family＇TにREにRLDE．
Genus TEREBRA Brugniere．
98．Terebra omata Gray．
Galapagos Islamds，Carpenter．
99．Terebra strigata Nhy．
Galapamos Islands，Wimmer，Carpenter．
Family CONIDLE．
Genus CONUS Limé．
100．Conus brumneus Wood．
Hood，Dume：m，dames，and Imdetatigable islamds， Ihatross；Galat－ pagos Islands，Carpenter，Wimmer．

100a．Conus brumeus，var．diademus Sly．
Hood amd James islands， 1 lhatross：Galapagos lslamds，Coarpenter． 100b．Conus brumeus，var．tiaratus Brod．
－．coronatus Dillwyn．
Hood Island，Lbatross，Wimmer：Bindloe Lslamd，Wimmer；James Island，Albatross．

100c．Conus brunneus，var，$=$ miliaris．Anct．in error．
Hood and Duncan islamds，Ilhatross．
100d．Conus minimus，var．
？：二ыrumeus，var．
Galapagos Islands，Carpenter．
100e．Conus varius．var．
？：brunncus，var．
Galapagos Islands，Carpenter．
101. Conus purpurascens, Brod.

Hood, James, and Indefatigable islands, Albatross; Cialapagos Islands, Carpenter.

101a. Conus purpurascens, var.
$=$ regalitatus Sby.
Hood, Charles, James, and Indefatigable islands, Albatross; Galapagos Islands, Wimmer.

101b. Conus purpurascens, var.
$=C$. Luzonicus Sby, var.
Galapagos Islands, Carpenter.
102. Conus nux Jirod.

Hool Island, Albatross, Wimmer; Charles Island, Petrel, Wimmer; Bindloe Island, Wimmer; James Island, Albatross; Chatham Islaud, Jones; Galapagos Islands, Carpenter.
103. Conus lucidus Mawe.
$=$ C. reticulatus Sby.
Hood and James islands, Albatross; Chatham, Jones; Galapagos, National Museum.
104. Conus pyriformus Reeve.

Hood Island, Albatross.
105. Conus gladiator Brod.

James Island, Albatross.
106. Conus F'ergusoni Sby.

James and Indefatigable islands, Albatross.
Family PLEUROTOMIDAE.
Genus PLEUROTOMA Lamarck.
Subgenus PLEUROTOMA ss.
107. Pleurotoma exulans Dall.

Off Galapagos Islands, 812 fathoms, Albatross.
Genus DRILLIA Gray.
108. Drillia excentrica Sby.

Galapagos Islands, Carpenter.
109. Drillia bicolor Sby.

Galapagos Islands, Carpenter.
110. Drillia rugifera Nby.

Calapagos Islamds, Carpenter.
111. Drillia albicosiata siby.

Galapagos Islands, C'arpenter.
112. Drillia splendidula Shy.

Galapanos Islands, Carpenter.
(imun MANGILIA Risso.
Subgemus CITHARA Schmmacher.
113. Cithara densistriata Cpr.

Chatham Island, Albatross.
114. Cithaza oryza Hinds.
bindloe Island, Wimmer.
Subgems DAPHNELLA Hinds.
115. Daphnella sp., ? = casta Hinds.

Indefatisable Island, Albatross.
Subgenns Callotectum lall.
116. Calliotectum vernicosum 1all.

Off Galapagos Islands, si2 fathoms, Albatross.
Subgenus PLEUROTOMELLA Verrill.
117. Pleurotomella argeta 1)all.

Off Galapanos Islands, slこ fathoms, Albatross.
118. Pleurotomella suffusa Dall.

Off Galapagos Islands, sl: fathoms, Albatross.

Section GYMNOBELA Verrill.
119. Pleurotomella agonia ball.

Off Galapagos lslands, Sle and biat fathoms, Ilhatross
Family UANOELIARIDE.
(immus CANCELLARIA Lamarek.
120. Cancellaria mitriformis Sby.

Galapagos Islands, Carpenter.
121. Cancellaria hæmastoma Sby.

Galapagos Islands, Carpenter.
122. Cancellaria? chrysostoma Sby.

Galapagos Islands, Carpenter, National Museum.
Superfamily RHACIGLOSSA.
Family OLIVIDA.
Gemus OLIVA Braguiere.
123. Oliva peruviana Lamarck.

Chatham Island, Jones.
124. Oliva kaleontina Duckes.

Galapagos Islands, Carpenter.

- Genne OLIVELLA Swainson.

125. Olivella? gracilis Gray.

Chatham Island, Albatross.
Family MARGINELLIDAE.
Gemis MARGINELLA Lamarek.
Section Volvarina Hinds.
126. Volvarina varia Sliy.

Galapagos Islands, Wimmer.
127. Volvarina rubella C. B. Adams.

Bindloe lsland, Wimmer.
Subgenus PERSICULA Schumacher.
128. Persicula imbricata Hinds.

Indefatigable Island, Albatross.
129. Persicula phrygia Cpr.

Indefatigable Island, Albatross.

> Family MITLRIDAE.
> Genus MITRA Lamarek.
> 130. Mitra crenata Brod.

Hood Island, Wimmer.
Proc. N. M. 93-28
(iomus STRIGATELLA SWainsob.
131. Strigatella effusa swainson.

James lsland, Albatross: Hood lslamd, W'immer; Galapagos, Carpenter.
132. Strigatella tristis Brod.
 trel; Calapagos 1slands, Carpenter, Wimmer, National Museum.
133. Mitra muricata swainsom.
$=$ M, lens Wood.
Galapagos, Cimpenter.
Subgemus COSTELLARIA. Swainson.
134. Costellaria gausnpata live.

Galipagos Islands, Uinpenter.
Subgemis thala II. iA A. Adams.
135. Thala gratiosa live.

Galapagos Islamds, Carpenter.

> Family IASCIOHARUIDK.
> Gmms FASCIOLARIA Lamarek.
> 136. Fasciolaria princeps shy.
dames and Indefatigable istands, Llbuthoss.
fiomin LATIRUS Montfort.
137. Latims ceratus (iray:

Gialapagos Islands, Uapenter.
138. Latirus varicosus lieeve.
dames Island, Albutross: Hood Ishand, Wimmer; Charles lsland, Petrel: Galapagos Island: C'apenter, National Musemm.
139. Latirus tuberculatus sby.

Hood Istand, H lbutross, Wimmer; Charles Island, Vetrel; Duncam, dames and Indefatigable. Albetross; Bindloe Lsland, Wimmer; Calapagos Islands, Cirpenter.

Subtamily FUSINE.
 Gumus FUSUS Lamarek.

140. Fusus Dupetithouarsii Kiener.

Chatham Island, Jones; Galapagos Ishands, Cappenter.

Family BUCCINIDA.
Gemus CHRYsodomus swainson.
Subgenus SIPHO Mörch. 141. Sipho testudinis Mall.

Near the Galapagos Islands, in 812 fathoms.
Genus PISANIA Bivoma.
Subgenue TRITONIDEA Swainsom.

142. Tritonidea sanguinolenta Buclos.
 $=$ T'. hemustoma (iray

Hood, James, Dumean, (harles, and Indefatigable islands, Albutross; Ilood and Sindloe Islands, Wimmer; (ialapagos Istands, National Mu sellin.
143. Tritonidea cinis Roeve.

Galapagos Islands, Camenter.
144. Tritonidea biliratum Reeve.

Galapagos Islands, Carpenter.
Gemun ENGINA (iray.
145. Engina carbonaria Kve,

IIood, Juncan, and James islands, Albutross; (iabapagos Islands, Carpenter.

145a. Engina carbonaria live., var.
= crocostoma Rve.
IFood Island, Albatross; Charles Istand, Petrel; (ialapagos Islands, Carpenter, Wimmer.

145b. Engina carbonaria Rve, var.
forlicostata Reve.
Hood Island, Albatross; Galapagos Islands, Carpenter.
146. Engina pulchra Reeve.
= Buccinum pulchrum Reeve.

+ E. Receiana C. B. Adlams.
Galapagos 1slands, Carpenter.

147. Engina pyrostoma Sly

Galapagos Islands, Carpenter.
148. Engina maura Sly. ?

Galapagos Islauds, Carpenter.
149. Engina zonata Reeve.

Charles Island, Carpenter.

Family NASSIDA.
Genus NASSA Lamarck.
150. Nassa nodicincta A. Adlams.

Charles and Indefatisable islands, Albutross.
151. Nassa nodifera J'owis.

- N. tegula Reeve.

Galapagos Islands, Carpenter.
152. Nassa angulifera A. Aid.

Galapagos Islands, Carpenter.
153. Nassa versicolor C. B. Adams.

Galapagos Islands, Wimmer.
154. Nassa Townsendi Dall.

Near the Galapagos Islands, in 81: fathoms.

Family COLUMBELLIDA.
Gemus COLUMBELLA Lamarek.
155. Columbella castanea Sby.

Hool Island, Albatross, Wimmer; Charles and Bindloe islands, Wimmer.

> 156. Columbella paytensis Lesson.
> $=$ C. spurca slyy.

Hood and Indefatigable islands, Albatross.
157. Columbella fuscata Sby.

Indefatigable, Hood, Chatham, and James islands, Albutross; Charles Island, Petrel; Galapagos Islands, Wimmer.
158. Columbella hæemastoma Sby.

Hoods, James, and Indefatigable islands, Albatross.
Subgenus ALIA H. and A. Adams.
159. Alia unicolor slor.

Galapagos Islands, Carpenter.
Genus STROMBINA Mörch.
160. Strombina bicanalifera Sby,

Galapagos Islands, Carpenter.
161. Strombina lanceolata Kiener.

Galapagos Islands, Carpenter.
Subgenus NITIDELLA Swainson.
162. Nitidella incerta Stearns.

Indefatigable Island, Albatross; Galapagos Islands, National Museum.
163. Nitidella cribraria Lam.

Hood, Charles, and Bindloe islands, Wimmer.
Subgenus ANACHIS A. Adams.
164. Anachis atramentaria Sby.

Chatham Island, Carpenter; Hood Island, Wimmer.
165. Anachis rugulosa Sby.

Hood and Bindloe islands, Wimmer; (a alapagos Islands, Carpenter, National Museum.
166. Anachis varians Sby.

Galapagos Islands, Carpenter.
167. Anachis nigricans Sby.

Galapagos Islands, Carpenter.
168. Anachis suffusa Sby:

Bindloe Island, Wimmer.
169. Anachis elegantula Mörch.
$=$? Amyola pulchella Sby., Wimmer.
Bindloe Island, Wimmer.
Genus AMYCLA H. and A. Adams.
170. Amycla sp.

Bindloe Island, Wimmer.
Family MURICID x.
Genus MUREX Linné.
Subgenus PHYLLONOTUS Swainson.
171. Phyllonotus regius Swainson.

Galapagos Islands, Wimmer.
172. Phyllonotus princeps Brod.

James, Charles, and Indefatigable islands, Albatross.
Gemus TROPHON Montiort.
173. Trophon? xanthostoma Brod.
$=T$. peruriknus Lesson.
Hood Island, Albatross.
Genus OCINEBRA Leach.
174. Ocinebra pumilus A. Ad.

Galapagos Islands, Carpenter.
(ienus VITULARIA Swainson.
175. Vitularia salebrosd King.

Galapagos Islands, Carpenter.
Subfamily Purpurinas.
176. Purpura patula Limé.

James, Indefatigable, and Hood islands, Albatross; Charles Island, Petrel; Chatham Island, Jones; Galapagos Islands, C'arpenter.

Subgenus PURPURELLA Dall.
17\%. Purpura columellaris Lamarck.
Hood, James, Chamles, Duhean, Chatham, and Indefatigable islands, Albatross: Hood, Charles, and Bindloe islands, Wimmer; Charles Island, Petrel; Galapagos Islands, Carpenter.

Subgenus PLaNithaís Bayle.

178. Purpura planospira Lamarek.

Hood Island, Wimmer, Albatross; James and Indefatigable islands, Albatross; Galapagos Islands, Carpenter.

Subgenus THALESSA II. © A. Ad. 179. Purpura melo Duclos.

James, Duncan, Hood, and Indefatigable ishands, Albatross; Charles Island, Wimmer; Chatham Island, Junes; Galapagos Islands, National Museum.
180. Purpura callaöensis Gray.
$=$ Coralliophila callaüensis Auct.
Charles Island, Petrel, Albatross.
181. Purpura triangularis Blve.
$=I^{\prime}$. Carolensis Reeve.
Charles Island, Carpenter.
182. Purpura nucleus Brod.

Galapagos Islands, Carpenter.
Genus CONCHOLEPAS Swainson.
183. Concholepas peruvianas Lamarck.

Hood Island, Wimmer.
Genus MONOCEROS Lamarck.
$=$ Acanthina Waldheim.
184. Monoceros grande Gray.

Hood Islaud, Wimmer; James and Indefatigable islands, Albatross; Galapagos Islauds, Carpenter; National Museum.
185. Monoceros tuberculatum Gray.

Chatham Island, Jones.
Subfamily Coralliopitilinae.
Genus CORALLIOPHILA Adams.
Sulgenus RHIZOCHILUS Steenstrup.
186. Rhizochilus parvus Smith.

Hood Island, Wimmer; Charles Island, Petrel.
187. Rhizochilus madreporarum Sby.

Hood Island, Wimmer.
Suborder STREPTODONTA.
Superfamily PTANOGLOSSA.
Genus SCALA Iumphrey.
188. Scala pompholyx Dall.
"Near the Galapagos" in 812 fathoms.
Section CIRSOTREMA Mörch.
189. Cirsotrema diadema Sby.

Hood Island, Wimmer; Galapagos Islands, Carpenter.
Family JANTHINIDA.
Genus JANTHINA Lamarck.
190. Janthina fragilis Lamarck.
$=J$. striatula Cpr.
Chatham Island, Jones; Galapagos Islands, Wimmer.

Supertumily GIMNOGLOSSA.
Family EULIMIDA.
fienus EULIMA Risso. 191. Eulima micans Cpr.

Bindloe Island, Wimmer.
(ienus STILIFER Jrod.
192. Stilifer astericola Brod. and Sby.

Galapagos Islands, Carpenter, Wimmer.
Superfimily 'IARNIOGLOSSA.
Family TRITONIDDA.
(ienus TRITONIUM Cuvier.
Section COLUBRARIA Schmmacher.
193. Triton Sowerbyi Reeve.

Indefatigable Island, Albatross; Calapagos Islands, Carpenter.
194. Triton reticulatus Blve.

Galapagos Islands, Oapenter.

Subgenus LAMPUSIA Schmmacher.
195. Triton olearium Limne.

Indefatigable Island, Alluatross.
196. Triton clandestinus Lam.

Galapagos Islands, Carpenter.
197. Triton vestitus Minds.

Galapagos Istands, Wimmer.
198. Triton lineatus hrod.

Galapagos Islands, Cuming-Reeve (6 fathoms).
199. Triton pictus Reeve.

Galapagos Islands, Carpenter.
Family CASSIDIDE.
Genns CASSIS Lamarck.
Subgenus CYPRECASSIS Stutchbury.
200. Cypræcassis tenuis Gray.

James, Charles, Hood, and Indetiatigable islands, Albatross; (ialapagos, Carpenter, Wimmer.

Subgenus LEVENIA Gray.
201. Levenia coarctatus Sby.

Galapagos Islands, Carpenter.
Family DOLIID.
Genus DOLIUM Lamarck. Subgenus MaLEA Valenciennes. 202. Malea ringens Swaiusgn.

Galapagos Islands, Wimmer.
Genus ONISCIDIA Swainson.
203. Oniscidia tuberculosa Reove.

James, Hood, and Indefatigable islands, Albatross ; Hood Island, Wimmer; Chatham Island, Jones; Galapagos Islands, Carpenter.
204. Oniscidia xanthostoma A. Ad.

Galapagos Islauds, Carpenter.
Family CYPRAIDA.
Gemns CYPR平A Linne。
205. Cypræa exanthema Linné.

Var. $=$ C. cervinetta Kiener.
James and Indefatigable islands, Albatross; Galapagos Islands, Wimmer.

Subgenus LUPONIA Gray.
206. Luponia nigropunctata Gray.

James, Hood, and Indefatigable islands, Albatross; Hood and Bindloe islands, Wimmer; Galapagos Islands, Carpenter; National Museum.
207. Luponia albuginosa Mawe.

James Island, Albatross; Charles Island, Wimmer.

Genns TRIVIA Gray.
208. Trivia pacifica Gray.

Hood Island, Albatross; Hood, Charles, and Bindloe islands, Wimmer; Galapagos Island, Carpenter; National Museum.
209. Trivia pulla Gaskoin.

Charles and Bindloe islands, Wimmer; Galapagos Islands, Carpenter.
210. Trivia fusca Gray.

Galapagos Islands, Carpenter.
211. Trivia radians lamarok.

Galapagos Islands, Carpenter.
212. Trivia suffusa Gray:

Galapagos Islands, Carpenter.
213. Trivia sanguinea (iray

Galapagos Islands, National Museum.
214. Trivia rubescens Gray.

Galapagos Islands, Carpenter.
215. Trivia Maugere (iray.

Bindloe Island, Wimmer.
Family STROMBLD.E.
Gemus STROMBUS Lime.
216. Strombus cramulatus Swainson.

Galapagos Islands, Carpenter.
Family TRIFORIDAE.
(Gems TRIFORIS Deshayes.
217. Triforis altematus C. 13. Allams.

Hood Island, Wimmer.
Family CERITHIODSHDA. Gems CERITHIOPSIS Forbes and Hamley.
218. Cerithiopsis neglecta ©. B. Adams.

Indefatigable Island, Albatross.
Family CERITHLIDAE.
Genus CERITHIUM Bruguiere.
219. Cerithium ocellatum Brug.

Galapagos Islands, Oapenter.
220. Cerithium galapaginus Sby:
C. interruptum Mke., var.

Galapagos Islands, Carpenter. 221. Cerithium maculosum Kiener. =C. nelutosam Sby.
Hood, Duncan, James, ind Indefatigable islands, Albatross; Charles lsland, Petrel, Chatham lslands, Jones, Cabapagos Islands, National Museum, Carpenter.

221a. Cerithium maculosum Kiener.
var. $=$ C. adustum, Kiener.
Mood and Charles islands, Wimmer; Duncan, James, and Indefatigable islands, Albatross; Galapagos Islands, National Museum.

Family MODULIDA.
Genus MODULUS Gray.
222. Modulus cerodes A. Ad.

Hood Island, Albatross.
Family PLANAXIDE.
Genis PLANAXIS Lamarck.
223. Planaxis planicostata Shy.

Galapagos Islands, Carpenter.
Family VERMETIDA.
Genus SIPHONIUM Mörch.
224. Siphonium margaritarum Val.

Hood Island, Wimmer.
Gemus Vermetus miorch.
Subgenus SERPULORBIS Sasse.
225. Serpulorbis squamigerus Cpr .

Hood, James, and Indefatigable islands, Albatross; Galapagos Islands, Wimmer.
226. Serpulorbis pellucidus Brod.

Hood Islaud, Wimmer.
227. Serpulorbis pellucidue Brod.

Var. planorboides $=$ Serpula regularis Chem.
Hood Island, Wimmer.
Subgenus ALETES Carpenter.
228. Aletes sp.

Hood Island, Albatross.
Family LITTORINID x.
Genus LITTORINA Férussac.
229. Littorina porcata Phil.

Galipagos Islands, Carpenter.
230. Littorina peruviana latu.

Galapagos Islands, National Museum.
Gemus LACUNA 'Turton.
231. Lacuna porrecta Cpr.

Hood and Bindloe iskands, Wimmer.
(Genus TECTARIUS Valencionnes.
232. Tectarius lemniscatus Pliil.

Hammas lemmiscatus.
Hood Island, Wimmer.
233. Tectarius trochoides Gray.

Hamus trochoides.
Bindloe Tsland. Wimmer.
234. Tectarius galapagiensis Stearis.

Jan es Tsland, Albutross.
Family RISSOIDA.
Genus RISSOA Fremenille.
Subgemus alvania Risso.
235. Alvania requisculpta Cpr.

Indefatigable Island, Albatross.
236. Alvania reticulata Cpr.

Indefatigable Island, Albatross. 237. Alvania sp.

Bindloe Island, Wimmer.
Gemm RISSOINA Orbigny.
238. Rissoina fortis C. R. Adams.

Hood Island, Albutross: Bindloe Island, Wimmer.
239. Rissoina inca C. 13. Adams.

Hood Island, Wimmer: Galapagos Lslands, National Museum. 240. Rissoina stricta Mke.

Galapagos Islands, National Museum.
Family CALYPTRNDDE.
Genms MITRULARIA Schmather.
241. Mitrularia cepacea Brod.
=Calyptron cepacea Auct.
Chatham Island, Albatross.
242. Mitrularia corrugata Brod.
=Calyptraa corrugata Auct.
James Island, Albatross.
243. Mitrularia varia Brod.

Hood, Charles, and Bindloe islands, Wimmer; Galapagos Islands, Carpenter.

243a. Mitrularia sp.
$=$ Calyptraas sp.
Charles Island, Petrel (probably belongs to one of the preceding).
Genus CRUCIBULUM Schumacher.
244. Crucibulum imbricatum Brod.

James Island, Albatross.
245. Crucibulum spinosum Sby

Chatham Island, Jones.
Genus CREPIDULA Lamarck.
246. Crepidula aculeata Gmelin.

Indefatigable and Hood Islands, Albatross.
Genus TROCHATELLA Lesson.
247. Trochatella radians Lamarck.

Galapagos Islands, National Museum.
Family AMALTHEIDA.
Genue AMALTHEA Schumacher.
248. Amalthea Grayana Menke.

Hood, Chatham, and Indefatigable islands, Albatross; IIond, Charles, and Bindloe islands, Wimmer; Galapagos Islands, Carpenter.

248a. Amalthea Grayana Mke. variety.
Charles Island, Petrel.
249. Amalthea antiquata Linné.

Hood Iskand, Wimmer; Chatham Island, Jones; Indefatigable Island, Albatross.
250. Amalthea barbata Sby.

Chatham, Jones, Indefatigable, and Hood islands, Albatross; Ghatham Island, Jones; Galapagos Islands, Cacpenter.

```
251. Amalthea ? subrufa Sby.
```

Galapagos Islauds, Wimmer.

Eamily NATLCLDE.
Gemin NATICA lamarek.
252. Natica maroccana Chemmit..

Galapagos Islamds, Carpenter.
Ciemus POLYNICES Montiont.
253. Polynices dubia Recluz.
D.atacomensis l’hil.

Indefatigable lsland, ilbatross.
254. Polynices uber Valenciennes.

+ uherina Onb. + Phillipinma Nyst.
Hood, Charles, and Ludedatigable istands, Llatross: Hood amd Bindloe islands, Wimmer.

Sulgenus LUNATIA Gray.
255. Lunatia otis lirod.

Inderfatigable Islamd. Ilbutross: Hoonl Lslamd, Wimmer: (talapanos Islands, Carpenter.

Genus Sigaretus Lamarck.
256. Sigaretus pellucidus Reove.

Charles Island, Wimmer.
Fimily LAMELLARLIDE.
Gemms Lamellaria Montague.
257. Lamellaria Steansii Jall.

Hood lslamd, Albatross.
258. Lamellaria ? rhombica Dall.

Hood Island, Albatross.
Suportmmily DOCOGLOESA.
Family ACMLELD.E.
Genus ACMAEA Eschscholtz.
259. Acmaea scutum Orh.

Hood and Indetitigable islands, Albatross; Chatham Island, Inmes. 260. Acmæa striata Reove.

Hood Islam, Albutross; Galipiggos Lslamds, Ciapenter.
261. Acmæa patina. Esch.

Hood, Charles and Bindloe islands, Wimmer.
262. Acmæa spectrum Nutt.-Reeve.

Bindloe Island, Wimmer.
Subgenus NACELLA Schumacher.
263. Nacella subspiralis Cpr.

Charles and Hood islands, Wimmer.

> Superfamily RHIPIDOGLOSSA.
> Family TURBINIDA.
> Gemus TURBO Linne.
> Section SENECTUS Swainson.
264. Turbo squamigerus Reeve.

Galapagos Islands, Carpenter.
Family 'TROCHIDA.
Genus OMPHALIUS Philippi.
265. Omphalius Cooksoni Smith.
$?=0$. fascialus Born.
James Island, Albatross; Hood, Charles, and Bindloe islands, Wimmer; Charles Island, Petrel.
266. Omphalius reticulatus Wood.

Hood Island, Wimmer.
Gemus GAZA Watson.
267. Gaza Rathbuni Dall.

Off the Galapagos, in 392 fathoms.
Family NERITIDA:
Genus NERITA Bruguieré.
268. Nerita scabricosta Lam.
$=N$. ornata Shy.
Hood, James, and Indefatigable islands, Albatross; Galapagos Islands, Wimmer.
269. Nerita Bernhardi Recluz.

Hood Island, Wimmer.
Family HELICINIDA.
Genus HELICINA Lamarck. Section IDESA.
270. Helicina nesiotica Jall.
$=H$. Wolfii Rieb.
Chatham Island, Baur, Reibisch.

Family HALIOTLD.む.
271. Haliotis Pourtalesii (1):ll.

Near Charles lslamd. in 33 fathoms, Ilhatross.
Family lissurelilll. Genus FISSURELLA Bruguiere. 272. Fissurella mutabilis Sly.

Galapagos lslands, Carpenter.
273. Fissurella rugosa Sly.

Hood. Dumean, Chatham, dames, amd Ludefatimahle Ishands, Albatross: Galapagos Islamds, C'apenter; National Museum.
274. Fissurella macrotrema sloy.

Indefatigable lsland, Llbatross; llood, Charles, amd Bimdoo Ishands, Wimmer; Galapagos Islands, Uapenter.
275. Fissurella crassa Lam.

Galapagos Islands, National Museum.
276. Fissurella obscura Sby:
$P=\boldsymbol{F}$. rugose shey, variety.
Hood, Charles, and Bimdloe lslands, Wimmer; Charles Island, Petrel; Chatham lsamd, Ilbutross: Calapagos Islands, darpenter.
277. Fissurella nigrocincta Cpr.

Galapagos Islands, National Museum.
278. Fissurella virescens Sly.

Chatham Island, Albotross: Jones.
278a. Fissurella nigropunctata Shy.
$=r$. virescens Shy., var.
Chatham Lsland. Albutross: Galapagos lslamds, (iatpenter.
Guma FISSURIDEA Swainson.
= Glyphis Campenter nom Agassiz.
279. Fissuridea inzequalis Slyy.

Hood, (Hatham, and Indefatigable ishames, I lhatross; Itood, Charles, and Bindloe islands, Wimmer; Cialapagos Islands, C'arpenter.

279a. Fissuridea inæqualis Sby.
Var. $=F_{0}$. pica Sby.
Indefatigable Island, dhatross; Galapagos Islands, National Maseum.
280. Fissuridea saturnalis Cpr.

Chatham Island, Albutross.
281. Fissuridea alta C. B. Ad.

Bindloe Island, Wimmer.
282. Fissuridea mus Reove.

Bindloe Island, Wimmer.

> Subclass ISOPLEURA.
> Order POLYPLACOPHORA.*
> Superfanily EOCHITONIA.
> Family ISCHNOCHITONIDE.

> Genns CHATOPLEURA Shuttleworth.
283. Chætopleura janeirensis Gray.

Galapagos Islands, Wimmer.
Genus CHITON Linne.
Section RADSIA Gray.
284. Chiton (Radsia) sulcatus Wood.

Hoods, Char les, and Indefatigable islands, Albatross; Hood Island, Wimmer; Charles Island, Ietrel; Galapagos Islands, Carpenter, National Museum.
285. Chiton (Radsia) Goodalli Brod.

Albemarle, Chatham, and Indefatigable islands, Albatross; Charles Island, Petrel; Galapagos Islands, Carpenter, Wimmer, National Museum.

Genus TONICIA Gray.
286. Tonicia? Coquimbensis Frembley.

Galapagos Islands, National Museum.
287. ? Tonicia hirundiformis Slyy.

Galapagos Islands, Carpenter, Wimmer.
Superfamily OPSICHITONIA.
Family MOPALIID A.
Geuns ACANTHOCHITON Leach.
288. Acanthochiton spinifera Frembley.
$=$ C. aculeatus Barnes.
Galapagos Islands, National Museum.

[^84]Proc. N. M. 93-29

The total number of species in the forequing list embraces 285 , and the varieties momber 30 , all together 31 s , which may be segregated as follows:

(1)lows:	Sprecies. Varieties.	
Peleeypods, marine	61
Staphopeds, marime.	1	.
Gastropods, marine.	20%	13
Gastropods, land.	31	17
Total.	288	30

Ot the 28 s species 59 weredetected for the first time by the A thatross party; of these 12 are deep water forms obtained by dredsing, and not previously deseribed; these are included in "Dalls List." Of the shallower water forms two ate new and have been described by me elsewhere: also one new and interesting speedes of land shell. Many of the varietal forms 1 regad as syomym or of doubthul validity; Whaterer may be their value, all or nearly all were obtained by the Albatross party, as may be seen by reference to the text.

Aeknowledgments are due to Hon. Matshall Melomald. I?. A. Fish Commissioner, for the use of the drawing from which the map aceompanying this paper has been reproduced, and to Dr. W. 11. Dall, who kindly assisted in the correction and revision of the proots.

Phate: $1 / 1$.

Note. - The mumbers follow ing the anthority of the speritie name denote thenethal size of the specimen figured, in millimeters.

Kig. 1. Bulimulus (lewropyrgus) Mabeli length, 17.5; breadth, :3.5; p. 38:2.
2. Onchidium Leslici, dorsal viow; length, 37.5 ; breadth, 31.5; p. is:3.
3. Onchidium l.eslici, ventral view.
4. Onchidella Steindacheri, dorsal view; longth, 20.0; breadth, 17.0; p. 384.
F. Onchidella Steimdachmeri, vontral viow.
6. Nitidella incerfa, length, 6.02; breadth, 2.7.; p. 390 .
7. Tectarius galapagiensis, lengeth, 7.50 ; hreatth, $5.0 ;$ p. 39 .
lrati: 1/II.
MAP OF GALAPAGOS ISIANDS.

Mollusks of the Galapagos Islands.

.

\pm

SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U.S. FISH COM. MISSION STEAMER ALBATROSS.

[Published by permission of Hon. Marshall McDonald, Commissioner of Fisheries:
No. XXVI.-REPORT ON THE PTEROPODS AND HETEROPODS COLLECTED BY THE U. S. FISH COMMISSION STEAMER ALBATROSS DURING THE VOYAGE FROM NORFOLK, VA., TO SAN FRANCISCO, CAL., 1887-'88.

BY
James I. Peck.
(With Plates LiII-LV.)

I.-THE THECOSOMATOUS PTEROPODS.

In the course of the steaner Albatross, south from Norfolk, representatives of this group of the Mollusca were dredged at a series of seven stations, off the West Indies Islands and along the eastern coast of South America, as follows:

Sta.	Lat.	Long.	Depth.	Temp.	Character of bottom.	Date.
	\bigcirc	- 14	Fath.	${ }^{\circ} \mathrm{F}$.		1887.
2750	1830 N.	633100 W.	496	44.5	fine gray sand	Nov. 27
2751	1654 N.	631200 WV .	687	40.0	blue glob. ooze	Nov. 28
2754	1140 N .	583300 WV .	880	38.0	glob. ooze	Dec. 5
2756	322 S .	374900 W.	417	40.5	gray sand bank	Dec. 14
2760	127 S .	371700 W.	1,019	39.5	brown clay (ooze)	Dec. 18
2761	1539 S .	383254 W.	818	39.0	pteropod ooze.	Dec. 26
2763	2417 S.	424830 W .	671	37.9	brown glob. ooze	Dec. 30

They were also taken in a series of surface collections exteuding over regions as follows:

Sta.	Lat.	Long.	Temp.	Sea.	Sky.	Date.
	01	- / 1	${ }^{\circ} \mathrm{F}$.			
1	3413 N .	741330 W.	75	smooth	clear.............	Nov. 22,5 p.m.
2	3116 N.	715000 WV .	70	smooth	slightly clowly.	Nor. 23, 6:15 p.m.
16	421 S .	815900 W.	74	vers smooth.	moonlight	Mar. 1, 1888, 4:45 а. m.
19	737 N.	784630 W.	78	light swell..	hazy --. .-. .	Mar. 3, 2:15 p.m.
26	${ }_{0}^{0} 30 \mathrm{~N}$.	883730 W .	80	light swell..	light clouds .. - .	A pr. 3, 7:35 p.m.
31	008 S .	900600 W .	89	smooth....-	light clouds....	A pr. 15, 7:30 p. 11.

Of these, it will be seen that they do not in any way coincide with the dredging stations, since only the first two in which live pteropods were taken are located in the Atlantic, off Cape Hatteras, and farther cast off northern Florida, while the four others are located in the Pacific, one off Cape Blanco of Peru, one in Bay of Panama, and two east from the Galapagos Islauds. The vessel having in the mean time passed around South America into the Pacific, and sailing northward
reached in her course the Galapagos Islands. Hence it is that a comparison of the foregoing tables of stations will show that the empty shells, takell with the dredge, do not conform in locality to the existence of liveanimals at the surface taken by the two nets. This is partly due to the fact that surface collerting was not always done at the same time and place as the bottom collecting, and even when that was the case the result was the same. In the derp-sea dredgings of the open waters where the pteropods are foum, the surface and bottom collections for one station may not agree closely, whereas the averages of the surface and bottom from a number of stations of the sime region may agree quite closely. Comresponding to dredging station 2756, only 417 fathoms, the surface not took heteropods hut no pteropods; while corresponding to a surface station 7 , at which also heteroports only were taken, was a dredging station 275.5 in which shells of neither were taken at 720 fathoms. So that from the individual position of the stations no inferences can be dran was ocorrelative existence between live pteropoda at the surface and the presence of their dead shells at the bottom, over the same area. Surface collections of pteropols may be present without the occurrence of like shells in collections of deposit at that point, as shown at surface station 26 , as also deposit shells may be taken without the corresponding presence of live shells at surface, as at station 2756 . But these dredgings would of themselves undonbtedly show that at some seasons of the year and at some zonary depths, if not at the surfare, these mollusks exist in greater or less abundance throughout the regions traversed in the course of the Albutross

Of the three families of Thecosomatons P'teropoda, Limacinider, Cavoliniidte, and Cymbuliidse, the first is represented in these collections only hy two live specimens of Limacina inflata, which were taken at station erath by the dredge, at a depth of 850 fathoms associated with six different species of C'avoliniiilie, all of which latter, however, were represented only by empty shells. This would agree with Hacekel's statement* that this particular species is one of those belonging to zonary and bathybic lame. The temperature at the bottom at this point was 38 F., 16 degrees colder than that recorded for the surface water, amounting almost to arctic temperature.

The Cymbuliidir are not represented in the collections in any way. The Cavoliniidar, on the other hand, considering the fact that the eollecting points at which they ocolur are so few, are quite completely represented both at surface and bottom At the dredging stations all the eight species of c'arolinia, exeept one (globulose) the one species of Curirrina (columella) and six of the fourteen species of Clio, nearly one-half are represented. Cavolinider, in fact, were taken at everyone of the dredging stations as well as at each of the surface stations where any pteropods were taken. Wheler this family of the eight spe-

Jenaische Zeitschrift fiir Naturwissenschaft, Fiuf und zwanzigste Bands, p. 277 (Pteropoden und Heteropoden).
cies of the genus Canolinia, uncinuta oceurred at two of the dredging statious 2750,2760 , and at one of the surface stations, surface 16 . The species longirostris was found at two dredging stations 2754, 2760, and two surface stations 26,31 ; tridentate was taken at four of the dredging stations $2750,2756,2760,2763$, but at none of the surface collections; gibbosa occurred at two of the dredging stations 2750,2760 , and at one surface station, 19 ; trispinose was found at four of the dredging stations, 2750, $2751,2754,2760$, and at one surfare station, 2; inflexe was taken at two dredging stations 2754, 2760; quadridentutu oceured once only, as a deposit shell at 2760.

Of the species of Clio represented in the collections from these points, Clio (Creseis) virgula has been included in the study, although it was taken at a point farther north in the Gult Stream (hereafter described). Clio (Creseis) conica was taken at surface station 1; Clio (Hyalocylix) striata was taken at surface station 16 ; Clio (Styliole) subuluta was taken at surface station 1, also at dredging station 2754; Clio (s. str.) balantium was taken at dredgingstation 2754 ; Clio (s. str.) pyromidata was taken at dredging stations 2750, 2751, 2760 .

Iastly, of the genus Ouvierinu, the species columella was taken at two dredging stations 2754, 2760, and at surface station 2.

Of the data of the distribution of these families here given, results indicate that areas of deposit and the surface habitat of these mollusks in these particular temperate and tropical regions, are rifh in Cavoliniidx, especially so in Cavolinit, while Clio and ('uvierina are very well represented; Clio occupying the more northern latitudes in so far as these collections give evidence. Results also show that there are no marked distinctions between the kinds and distribution in the Atlantic and the Pacific waters upon either side of northern South Ameriica. The shells in deposit confirm the evidence of the surface collections, so far as there is any evidence fiom deposits upon the floor of the ocean. As has been said, there is no material dredged from the Pacific side, where surface collections were present, but these latter, from the Pacific, were entirely similar to the relative kind and abundance of the pteropods, both surface material and deposit shells, of the Atlantic side. The few Limacinidie taken, either as dead shells or in the low temperatures of bathybic collections, were obtained from the deep-water dredgings in the Atlantic.

I have given in Plate I an outline map of the region to which this account applies, reference to which will show the line of transit along which the stations are laid.

Some of the dredging stations are apparently near in-shore for the occurrence of pteropod deposits, but all are drawn in at least 500 fathoms.

After leaving station 2763, the course of the steamer lay south for 26 degrees of latitude in the shallow waters along the castern coast of * South America, the depth ranging only from 10 to about 80 fathoms.

No shells of pteropods are recorded from the dredgings in these waters. Twelve deep-water stations are also recorded along the western coast of South America in the course of the vessel northward through 15 degrees of latitude, the depth ranging from 100 to 1,200 fathoms, but no pteropods are reported.

No dredging stations were made between $35^{\circ} 0 \mathbf{S}^{\prime}$ south and the equator. In fact, all the other forty-seven dredging stations in the Pacific waters, exept nine, were made in shallow waters ranging from 6 to abont ia fathoms; in none of these are pteropods recorded.* But the surface collections secured them, as is shown in the outline map, between the mainland and the Galapagos Istands, as described heretofore in this article for the varions genera and species of c'arolinia and Clio. No dredging stations are recorded at exactly these bearings except one at surface 26 in 1,379 fathoms.

I have given thus a sketeh of the course of the Albutross and the depths and, in some cases, the temperature of the waters traversed, in the hope of arriving at some reasoms for the meeting with peropods in the dredging points in the south temperate zone, upon both eastern and western coasts of the southern part of South America, in the same measure as they are fomd in the northern parts in the torrid zone. Not belonging to litoral famar, we should not expeet them in the shallow dredgings along the coast. But some other causes must operate to prevent their occurring in the deeper waters of the more open sea along those coasts; and why, therefore, should they not appear from the deeper dredging stations on the western coast of southern South America! The dredging stations made below latitude 33° were, as has been stated, taken upon the eastern side in shallow waters, but upon the western side in much deeper waters, so that bathybie or zonary fanne would be very different from that of the shallower seas; the surface temperatures, however, agree very closely. A series of thirteen consecutive stations of the east side below latitude 38° averaged, at surface, $54.3^{\circ} \mathrm{F}$. in the latter half of the month of 'Jumary; a similar consecutive series of thirteen stations in about the same latitude along the west side averaged 55° in the first half of the month of February. But no pteropods are recorded at any surface stations in the Pacific except those indicated upon the ontline map in Plate I , while deposit shells were not taken in the Pacifie by this expedition.

Thus it falls out that pteropod collections of this voyage are, in origin, for the most part from the Caribean and Panamaic provinces,that the two regions furnish material entirely similar in make-upwhich material belongs almost exelusively to the family Cawoliniidit, representing all the species except one of the genus Cavolinia, the spe-

[^85]cies of Cuvierina, as also six of the fourteen species of Clio, comnting, however, virgula from farther north; and lastly that from none of the deeper water dredgings in the Pacific are reported deposit shells, although at times dredgings were there taken in the same region with the surface collections whichsecured them; also that Limacina occurred only at considerable depths both alive and as deposit shells.

From the work of the steamer Blake Alexander Agassi\% concludes that bottom distribution is largely determined by the course of the ocean currents, so that by means of pelagic faune and their bottom distribution, light may be thrown upon the course of the currents.* To this cause he ascribes the presence of Arctic pteropods along the New England coast, from the course of the Labrador currents. In this way also an explanation is found why surface collections of pteropods may be abundant over deep waters while the bottom distribution must be looked for elsewhere along the ocean current which sweeps the region; such doubtless is the case with regard to the surface collections of the Albatross on this voyage in the Gulf of Panama and at the Galapagos Islands. As has also been stated from the evidence of these collections, forms of Clio are more abundant in the more northern stations than representatives of Carolinic. If therefore we regard the equatorial seas of the West Indian and Caribbean regions as offering the most favorable conditions for the growth of these pelagic molluses, it may be readily seen that they woukd le largely distributed firom these areas to the northward upon the surface of the Gulf Stream; while in the new ronditions thus encountered the abundance of the Carolinia forms might surcumb first, and that the species of Clio might be enabled to hold their own longer in the struggle and so be carried farther into the temperate waters of the Northern Atlantic.

So also in the distribution of these molluses south from these equatorial areas maned, the brazil current and the other currents running southward along the coast of South America doubtless carry quautities of pteropod shells far from the habitat of the animals when living before their final deposition upon the bottom; but the bottom accumulations may at the same time be augmented by the shells of the same species borne alive f̂pon the surface of the current until such conditions were entered as to cause their wholesale destruction, producing a comparatively sudden precipitation, as it were, of some of the classes of living organisms as soon as they are swept into the regions in question.

At any rate from these or other canses large deposits of pteropod ooze were encountered by the Albatross in her course along the South American waters. Such an ooze was discovered at station 2760 , the study of which has some evidence for a distribution of the family Cacolinida as heretofore outlined; that is to say, the accumulation of molluse shells upon the floor of the ocean is some evidence of the relative kind and abundance of the molluscan life inhabiting the

[^86]waters above, and, if the greater part of the ooze is made up of Cavoliniide deposited through constant and successive seasons in the same region, its composition must bear some relation not only to the pelagie but also to the zonary and bathybic fanate by which it is laid down in this region.

This "pteropod ooze" in question was dredged in 1,019 fathoms depth, and when dried it proved to be a mass made up almost entirely of pteropod shells in various states of entirety, in which condition it was submitted for study. In order to compare the genera and species, as shown by deposit, with those of the same genera and species taken alive at the surface, the specimen of ooze reported was separated into its component parts and weighed. A comparison by weight, of course, expresses only the amount of material contributed to the general mass of the deposit by each group, and bears no exact relation to the number of individuals in each of the varions gromps, because of the great difference in individual size; one of the largest, (. tridentete for instance, will outweigh many of the small Clio subulata; one large Clio balantium will contain more material than several of the much smaller. Clio pyramidata, and yet a table of comparative werghts shows very clearly, I think, the relative activity of the sources from which these great deposits are laid down, both as regards individual numbers as well as the mass of material contributed by each kind. Such a table of relative weight of the principal constituents in their order rums thus:
(yrams.
Carolinia longirostris, tridentata, uncinata, quadridentata..................... 6. 6. 177
Cavolinia inttexa .-............-.. . 084

Curierine columella.-.. 08

Clio (Styliola) subulata. 276
Total Cavolinide. 9. 006
Limacinide (fragments) .. 151
Limacina inflata. 006
Total Limacinida 157
Atlanta peronii...................-... 146

Cyclammint........-.-.. 170
Triloculina (?) .-... 282
Globigerinu (etc.) ...
Total Rhizoporia . 534
Débris ... 7.808
Total ӧ̈де. 17. 651
The species under the genus ('arolinia were weighed together, be(ause the specific place of so many of the fragments of shells could not be distinguished owing to their fragmentary state, although their place
in this genus was perfectly evident. But loy far the greatest number of individuals, and the largest relative weight, belonged to the species longirostris; of the total 9.006 grams of Cavolinia, 5.513 grams, nearly two-thirds, were from this species. Then come in the order named, uncinata, tridentata, and quadridentata. The material afforded by the Limacinide is relatively light, and it is probable that even this estimate of these coiled pteroporls was somewhat exaggerated by some fragments of spiral shells (of which only the central spire remained), which belonged to other spinal gastropods than Limacinider although weighed in this connection because they had possibly belonged to characteristic species of this group, Limacina was not even numerically 'abundant.

The Heteropoda are represented in the ooze only by medium-sized Athanta peronii, which were quite common. The three principal genera of Rhizopoda which characterized this deposit were Triloculina (?), Cyclammina, and Globigerima, with a few Orbitulina and Orbitoides (\%). These forms could easily be separated from the general mass on account of their large size; but there are doubtless others that remain mixed with the fine débris of the sample, which, if they could be separated out, would add somewhat, but not very materially, to the total weight of the Rhizopoola of the ooze. It is worthy of remark that this pteropod ooze was associated with a globigerina ooze, but so stratified as to be quite distinct. This appears from the account of Capt. Tanner,* who describes the trawl as being buried in mud, so as to be landed with difficulty, when the main mud bag of the net was filled with one deposit while the smaller ring nets were filled with a very different one-the deposits being a fine globigerina ooze, "with only here and there a pteropod shell," and a coarse pteropod ooze, but which was uppermost is not stated; the latter is the one here considered.

This débris, finally, is that which remained after all was separated that could be readily identified; it therefore comprises a good deal of very finely ground shells as of some very fine dried silt. But there were also weighed with it other forms of life, such as several kinds of gastropods, two kinds of lamellibranchs, and also small sea-urchin shells in considerable numbers-all the material, in fact, that was not quite plainly pteropod, heteropod, and rhizopod. It is largely made up, of triturated shells as the unaided eye may readily determine, which triturated shells, however, represent the scattered remains of C'avolinia, Clio, Cuvierinu, Limucinu, etc., in abont the same ratio, I am strongly led to believe, as above given for the rest of the ooze.

Of course there are many sources of error in such a reduction of this sample of ooze; I have no means of judging what of the smaller constituents might not have been taken away in the preparation and

[^87]drying of it, and it is by no means intended that these carefal weights imply the mathematical accuracy of a chemieal analysis, but 1 am very ertain that they do represent very fathtully the relative proportions of the kinds and abmedane of the forms actually living in the surromoling waters, at least as tar as the pteropods and heteropods are concerned, because the evidence of the surface collections from regions to the morth leads to this same view. It the depthot a thousand fathoms not many, even of the more delieate skells, would be lost immediately by solution; at least they would all disappear at a unitorm rate, since the matority of the shells are sonearly alike in thickness and material.

This analysis of the work was entered into with the purpose of getting some check upon the sum total of the work done both at the surtace and at other parts of this section of the equatorial Atlantic, and with the result that from the ooze at this point also we draw the same conclusionsas to the relative kimdand abondance of C'avoliniidarand Limaciniidar inhabiting these latitudes upon both sides of the northern part of the South American continent, as were drawn from the comparison of the other dredging and surface collecting stations. The C'avoliniidar predominate largely, and of these the genus Carolinia is more abundant, although the various subgenera of Clio are well represented.

In the sample of pteropod ooze, the species longirostris was the most abundant of any individual form, which is also true of the surfiree collecting, althongh the uncinatu is very abmodant. Such is accordingly the systematic composition ami distribution of the pheropods of this expedition. The mere fact that they are pelagie forms prevents their being divided ofl'into distinct regions, except very broadly speaking, but it is dombtess true that a corresponding number of consecutive collecting points, taken in aretic or even in temperate climates, would produce a series of poropods agreeing among themselves as these do, but of a different general type which should represent the majority of individuals and species.
Some of the thecosomatous piteropods have been tigured many times, showing their anatomy as well as the form of the empty shell, and in the figures upon Plates 11 and ui it is not so much intended to bring out new points in the form of the individual genera or species as to bring together in a series the representative species taken by the Alluetross, in order that their relative size and homologies may be better indicated, and thus their pelagie association with each other when living the better appreciated. In order to do this, the shells of the varions groups are figured, drawn to the same seale-five times en-larged-as showing properly chongh many of the points in which the genera of the family Cavolinider stand related to each other, and the species to the genera. The outlines were drawn with an embryograph, showing lateral, ventral, and, in some cases, front views of the shells, in order to obtain the proportions of the organisms with their specitic
qualities. The classification was made in aceordance with the radical revision of the group as proposed in the Reports of II. M. S. Challemer,* and it was the purpose of the figures to arrange the system graphically as far as rould be done, for the pteropods of those regions covered by the Albatross.

Plate I is devoter to the genus Camolinit, exeepting Figure 8, which outlines in different positions shells of the only coiled pteropods taken, specimens of the family limadiaide, Limucine inflata. It has abready been stated that two live specimens were taken at 880 fathoms, and when preserved the parts were withdrawn largely into the large opening of the shell. These minute empty shells were present also in the ooze examined. The other figures on the plates are drawn with ventral face upward, the position usually assumed by the living animal, so that the dorsal part of the shell is below in the side views of outline drawings. Figs. 1-7 present seven of the eight speries of the genus Gavolimia, the small globulose not having been obtained by these collections. Fig's. 1 and 2 represent thespecies "with dorsal lip thick ened into a pad." 'That is to say, trispinosu and quadridentata. 'The thickened dowsal lip-in the drawing remesented by the heavy line-is in the living animal deeply brown pigmented, and so contrasts strongly with the translucent color of the rest of the shell. Fig. 1 represents trispinosa, a from ventral view, b firm side view, and e from firont view. The drawing is incomplete with respect to the long, posterior spine (not truthfully represented by the dotted lines of the figure), which bears upon its end the embryonir shell, and relatively is very long, as may be seen in figures of the living specimen.t This figure does show, however, the relative size of this species, its greater lateral extent as compared with its dorso-ventral thickness. In the arrangement of its projecting points, the aperture and various proportions of the parts, trispinose compares with inflexa (Fig. 7.), but on aceome of the thickened dorsal lip it stands in the scheme of classification of the Challenger Reports, next to quadridentata.

Cavoliniat quadridentata is represented in Fig. 2, from a ventral view, b lateral, and odorsal view. It is the smallest representative of all the species of this gemus in the collections, is very much rounded, very eompact in shape, with small aperime, and without any lateral or posterior projections to the shell. All the other Cavolinide are withont the thickened anterion edge of the dorsal lip. Of these longirostrisFig. 6 a ventral and b lateral view-has a distinguishing feature in the fact that the ventral lip projects beyond the dorsal, so that in a the extreme points in the posterior contour of the shell belong to the ventral lip alone, since they project beyond the edge of the dorsal lip, which ends at the two small projections at the hind end of the shell, interior to the other extreme tips, and so nearer the middle line. The

[^88]side ciew of lomgirostris (b) shows also the great development of the dorsal (lower in the tigure) lip of the shell, prolonged into the long hood which rms far out bemeath the overlying fins, and sedptured with the deep notch in its anterior part. This little shell is, in many respects, the most highly developed, as it is also the most abundant in the collections.
(\therefore g giblesa-Fig. 4, a ventral, b lateral view-is characterized by the prominent transverse keel into which the anterior surface of the ventral lip is developed. This feature appears in lateral view, Fig. 1 l , and is evidently due to an aceelerated growth of the shell in this part, as is shown by the strong ridges and width bet ween the lines of deposit, giving it a markedly servated contour at this point. The dorsal (lower in the drawing) lip, of this species is also relatively lamge at its anterior part, forming a deep hood umderneath the fins. On these aceounts the posterion aspect of gibhosa is compatively namow than the anterior part (see a of Fig. 4) which is one of the points used in giving it its systematie position.

Fig. 5 shows in ontline a representative of the species tridentata; a from ventral, b from lateral view. All the members of this species taken on this trip of the Alluetross were quite large, and the one figured was one of the largest specimens; they were not very abmond. It might well be chosen as a typieal C'arolinian poteropod shell; none of the parts are exaggerated, all are symmetrically developed. The lateral view b, howerer, imperfectly represents the measure of the dorsal l_{p}, of the shell, the anterior hoodlike projection of which was broken off in the specimen figured; in a complete specimen it is more nearly like the same structure in (${ }^{\circ}$. giblosa ($\mathrm{Fig} .+b$), although not quite so well developed.
The two specimens of Corolinid which have the posterior and lateral parts of the shell drawn out into points (but with the ir anterior margin of dorsal lip) are uncinuta and inflese. The former of these is represented in Fig. :3 in a dorsal and blateral view. The posterior spine of the shell is relatively quite long and strongly curved backwards, while the lateral points of the shell give a considerable increase to the expanse of the aperture between the two lips. The dorsal lip also is very strongly curved and compressed antero-posteriorly, while the rentral lip is rery much rounded, showing upon its anterior tave the lines of growth of the shell deposit. Finally, Fig. a represents the form of Curolinia inflera, "from ventral, and b from lateral view. The shell is much more tubular than that of uncinatu, the lateral points giving width to the aperture of the shell, which does not, however, extemd the whole length of the shell, thus leaving a very long curved posterior part. The dorsal lip, moreover, rums straght forward and does not curve up into a hood below the fins, as is more or less the case in the other species.

Such are the relations of these species as indicated in Figs. 1-7. In erery case the anterior of the drawings of the shells is toward the right (exept the front view in Fig. 1 () and the ventral face of the shell
turned uppermost, as when ocoupied loy the living animal. a is in each case the outline from the ventral face and b from the side, while Fig. 8 represents the species Limacina inflata.

The representatives of the gemus Clio are given upon Plate in. Of these the one species rirgulu (Figs. 9 and 10) was not taken upon this trip of the Albatross, but belongs farther morth, having been taken abmdantly by the Fish ('ommission Schooner Grampus in her investigations of the (iulf Stream, southeast from Marthas Vineyard, at the surface in the summer of 188%. Two forms of it were fonnd-the species virguld proper (represented in Fig. 9) from lateral view, atso an optical section from front, showing its circular shape, and a variety of the same, corniformis, which differs from the former only in the length of the shell, the size of its opening and the curve of the posterior point being relatively about the samie.

The one other pteropod taken with shell quite unsenptured and of circular section is Clio (Creseis) comict, represented in Fig. 11, which thus shows its straightness in all positions, its great length, and slenderness also as compared with any of the others. In Fig. 12 is represented Clio (Styliola) subuiata, which is distinguished from the other straight-shelled pteropords by the possession of a dorsal longitudinal groove which runs somewhat ohliquely along the shell out into a projection, which on its acoont better resists fracture perhaps, or else is a normal feature of the shell. This groove gives a very evident asymmetry to the shell-as if it were the axis of the animal and the posterior part of the shell were bent away from this axis.

In the optical section the groove is seen to be cansed by a folding up of a ridge of the shell; there is also to be noticed some dorso-ventral flattening of the animal. Whether this groove bears any relation to any anatomical peculiarities of the animal, I have, as yet, not ascertained.

The course of longitudinal groove is represented by the dotted lines in the figure. The three other species of Clio represented have certain peculiarities common to all, and in a way they stand in a series. Thus in Fig. 13 are given outline drawings of two fragments of Clio (Hyalocylix) striatt, showing an individual variation in size, a being a small and b one of the largest specimens; for although quite a large vial full of the mollusks was taken at one of the surface stations, it was very difficult to get very many of the shells, and none perfect; they, being so delicate and covering loosely only the posterior part of the animal, are easily detached and lost in collecting. The side views given in a and b of Fig. 13 show how the outline of the shell is thrown into a series of transverse grooves shown here in the profile of the figure, while the view into the anterior end of the shell gives a dorso-ventrally flattened optical section, as indicated in r. In Fig, 14 (a lateral of the posterior part only, b ventral, and c frontal view of Clio (s.str.) balantium) the same features are emphasized as far
as the dorso-ventral thattening is comermed, so that the sides of the shell are produed into well-definod "keels," while the dorsal (lower in the lige. 14e) side of the mollusk shows the median groove, whieh also chatacterizes the dorsal lip of the shell of the ('iwolinided (see also the same Fig. 1e). The shell of the individual here figured was one of the largest of the collections. It is mot m!iformly erooved over its entive length, sime the transerse matings tend to disappear at the most posterior pant of the shell, as seen in the dorsal (left hand) faree of the lateral view, of ofie. 14. 'The exale form of the most anterior edge of the shell eould not he determined on areome of the breaking off of the delicate material, so that the dotted lines in b represent only the broken edge as it existed in the shell as preserved in the eol-
 ventral, and f front, view) the anterior pate of the shell is the most exagexerated into the laterat "keels" and the depth of the dorsal groove, as eath best be seen in the optieal seetion of the shell shown in e: the very wide leeds are bent ventralwards athe the dorsal groove (below in the drawing) appears deep and natow in like manner. A lateral view, 1 , shows the extent of the aperture amd the straightness of the posterion part of the shell and the length of the projection of the dorsal part into a grooved tongue which underlies the fins. Thes dotted lines in ${ }^{\prime}$ and b show the condition of the shell when tigured, hut it was apparently not complete, and so may not truthfinly represent the real outline of the anterior edge of a perfect shell.

Finally, in lig. 16 atre represented twoviews of C'merime columella, a from lateral and b from ventral view. Othandily, in the living spere imens, one can tind a good many with the embryonie shell still attachedto the posterior end of the shell of the alatt amimal,* but they were not present in these collected by the d lbetross, amd so have the posterion eatd bhutly rounded, although compressed somewhat on the ventral edge, as is shown in the lateral view of which the dorsal face of the figure is toward the left. The anterior end of the sheil also shows a difterence in the two lips of the shell. ('mciovind colnmella, therefore, thes differs from the others; while the various spereies of (lio measure thus with each other ats outlined for the figures of Pl . Itr.

It wat purposed in entering upon the study of these collections to deal esperially with the comparative antatomy of the gromp to be bromght out hy the method of serial sections, as employed in a former paper for one of the Cymbulider,t but as some of the speres were here represented only by empty shells, and sincoso many tissues of living amimals were treated only with strong alcohol as they were collected, it seemed advisable to deal in this section of the work only with the distribution of the peropods as indicated by this voyage of the vessel, to-

[^89]OOn tho Anatomy and Llistology of Cymbuliopsis calcoola. Studies from Bio. Lab., Johns Mopkins University, Vol. wr, No. 6.
gether with such relationships as may be demoted ly a study of the shedls themselves; and to leave for another seetion the completion of the study of the comparative anatomy as it may be supplemented by more material for such a study of this interesting group.

The long delay of this paper has been quite mavoidable, and I owe many thanks to Commissioner MeDomald of the U.S. Fish Commissiom, for the generons kinduess with which he has treated all maters per taining to this and all other points of my association with him. Also the most grateful remembrances are due Dr. W. K. Brooks of the Johns Hopkins Duiversity-at, whose shgesestion the stanly of the P'teropoda and Heteropoda by serial sections was entered upon-for the comntless advantages enjoyed in his laboratory at the time this subjert was undertaken four years ago as one of his students.

H.—'THE IIN'EJROPODA.

These collections were taken together with the Pteropoda as discassed in the preceding part of this repord, and as illustrated upon Plate 1 , where the positions of the varions collecting stations are indicated in the outline map.

Heteropods, acordingly, either alive or repesented by their empty shells, were taken at two dredging stations as follows:

Sta.		at.		\%	1)epth.	'T*小川.	Character of hottom.	Date.
-	\bigcirc	1		1	Heel.	\bigcirc		1887.
2751	16	34 N.		12 W	687	4)	Shute globr. ooze	Nov. 28
27.1	11	40 N .		33 W	880	38	filob, on\%\%	Inoe

And at a series of form surface collections deseribed as follows:

Sta.	Lat.	Jong.	'Tomp.	Soa.	Sks	Date.
	\bigcirc	\bigcirc	- H^{\prime}			
7	804 N .	5247 W	81	Sumboth	Showery	Wec. 7, 1887, $1: 45 \mathrm{pr} . \mathrm{m}$.
8	322 s .	3749 W.	79	liourh	Jight clouls.	Hec. 14, 1887, $11: 30 \mathrm{at}$. 11.
18	1 0,3 N.	8015 W .	7 N	Very smonth	Oraraist....	Mar. 3, 188k, 8: 20 fr . m .
31	6 41 N .	8027 W	81	dight swell.	Clear, starlight	Mar. 31, 1888, 7:30 \%, 31.

The colle tions contan but litte materiai, but the individual speri mens are, in norly every instance, beantiful representatives of the varions genera of this widely distributed gromp. There genera are represented: Allanta, Carinaria, and Ituthint.* Of these Athate is represented by about thirty large shells of the species peromii, fommd in deposit at dredging station 2751 , associated with four of the delicate shells of some species of Carinaria (besides the Plempoda taken there). These Carinaria shells also were miformly of good size and must have belonged to lage specimens of the living molluses of the overlying

[^90]habitat. At dredging station \because Öt there was also taken one small broken Corimeria shell. Beyond these two colledting points east trom the West Imdia istamds. mo heteroped shells are reoorded matil station -ition was reached (see the former section of this report. . 'Therosomat tous l'teropoda." p. ©iti), while the dthenter shells dredged in the woze at this latter point are mueh smatler that the sperimens of the same spectes tathen tarther morth at station 2 äd as just deserihed. None of the thentor were alive. One shriveled speedment of a 'arimerior, how
 termine its origits. but from aprearames comelade that it may have sumk to the bottom already dead amd there have been tahen with the dredge. At athy rate it bears litte resemblance to a specimen taken alive at the surface and is so distorted as to hide its speritied distine tion.

All the other material from this stonp of mollases was taken alive at the surface collections as heretofore located.

1 requet very moth not hating had opportunties of itentitying all the speries of these surtare colle etions. A large sperimen ot Corimariar Was taken at surface station $2 t$, the speedes of which 1 do mot know.
 rimaria mediteranes. 'The part of the body anterion to the prominent eyes is markedly bent rentrahames: the muclems situated direotly opposite the boot, or tin, is longs and eylimetral and stamds vertically up trom the surfae of the bedy to a comparatively ereat height. No shell was present acompanying the specimen. The posterior part of the body extends behind the muelens and toot about one-thimed the length of the animal: the eyes. also, are situated about one-thind the length of the animal bate from the month end.

The remaming material of the colle eftons consists of dastropods of the gemus Lenthime, which were thus distributed at the following points:
 of which could not be yet determined ateurately beeatuse of their immature state: at surfae station s, three sperimens of an lanthima, two of which are of the speries globosa, I think, athd the other undetermined: they are all bather small speeimens. At surfare station 18 were taken four large specimens of Lenthime globose (?) athd ome large repres. sentative of the species communis: finalls, at surface station ot, there Was taken another speeimen of the speries just mentioned as undetermined.

It will be readily seen that the lanthinide taken in this expedition of the Albatross all come from regions within a few degrees of the equator, amd are not maked!y distinct from eath other, although separated by the South American continent. Prof. A. E. Verrill, of Vale [Thiversity, did me the great kimhess to go over these specimens and to compare them with the lanthinidie in the masem of that institution. From such a comparison, moreover, it was impossible to give the spe-
cific position to the representatives taken by the Albatross, since no close agreement between them could be made; and this was doubtless due to the difference in locality; for sperimens in the musem at Yale were of Ianthinida from the region of the Sandweh Islands, in the Pacific side, and from the Arctic regions of the Atlantic side; while these from the Albutross collections of the equatorial regions belonged to different spercs which possessed intermediate qualities of different kinds, such as a different compression of the spiral, shape of aperture, ete. From the fact, therefore, that they do show distinctions from naterial collected at other points, the representatives of this group illustrate also the segregation and the localization of pelagic mollusca in given areas, broadly speaking. Although Ianthinida were so widely distributed, no empty shells were taken from bottom collecting.

Biological Laboratory
Williais College, April, 1893.
Proc. N. M. 93-30

Explanation of Plate LiII.

Plate I is an outline tracing of a Mercator projection map of South America, with a part of North America, illustrating the course of the Albatross south from Norfolk. The line of dredging stations, where pteropods and heteropods were taken, bears the numbers $2750-2763$ according to the records of the steamer. So also the surface collecting stations where these molluses were taken are likewise numbered 1-31.

Plate LIV.

All the outlines are drawn to the same scale-five times enlarged-with au embryograph. a ventral, b lateral, c front view, in each case.
Fig. 1. Cavolinia trispinosa.
2. Cavolinia quadridentata.
3. Cavolinia uncinata.
4. Cavolinia gibbosa.
5. Cavolinia tridentata.
6. Cavolinia longirostris.
7. Cavolinia inflexa.
8. Limacina inflata.

Plate LV.

Letters as before.
Fig. 9. Clio (Creseis) rirgula.
10. The same, variation corniformis.
11. Clio (Creseis) conica.
12. Clio (Styliola) subulata.
13. Clio (Hyalocylix) striata.
14. Clio (s. str.) balantium.
15. Clio (s. str.) pyramidata.
16. Cuvierina columella.

Collecting Stations of Steamer Albatross.

(1) Fig. 8

L

Pteropoda.
(Fig 9
\square

Fig. 10

Fig. 11

Fig. 12

Fig. 16

Fig. 15

Pteropoda.

DIAGNOSIS OF A NEW CALIFORNIAN LIZARD.

BY
Leonhard Stejneger, Curator, Department of Reptiles and Batrachians.

Among a number of lizards collected by my friend Mr. H. W. Henshaw, at Witch Creek, San Diego County, Southern California, during the present month (May, 1893), I find a most distinct new species belonging to the genus Xantusia. It was taken among rocks at an altitude of about 2,700 feet. I propose to name it in honor of its discoverer.

Xantusia henshawi, sp. nov.
Diagnosis.-Two interfrontonasals;* one row of superciliaries; fronto-parietals in contact; an interoceipital; pupil vertical.

Habitat.-Witch Creek, San Diego County, California.
Type.—U. S. National Museum, No. 20.339; H. W. Henshaw coll.; May, 1893.

Reserving a full description, with figures, for a future paper I will here only call attention to the most salient characters by which this species may be separated from the other two species of genus. It differs from both, and in fact from all the members of the family, by the possession of a well-developed interoccipital shield. It also differs from the two Xantusias as well as from Lepidophyma by having two interfrontonasals, in this respect agreeing with the Cuban genus Cricosaura. Like Xentusia vigilis it has but one series of superciliaries (or supraoculars), while X. riversiana has two. It is longer and slenderer than the latter, and is more depressed than either. The color differs from both in being blackish-brown on the upper sufface irregularly marbled with cream-colored lines which on the tail incline towards forming cross bands; under side whitish; seales on back small, uniform, flat tubercles; rentral scales in fourteen lougitudinal and thirty-three transverse rows, preanal scales in three transverse rows, the two median posterior scales being the largest; about ten femoral pores on each side. Total leugth, 148^{mmm}; length to posterior edge of occipital plates, $13{ }^{\mathrm{mm}}$.; length to vent, $6 \tilde{\sigma}^{\mathrm{mm}}$.

[^91]
DESCRIPTION OF A SUPPOSED NEW SPECIES OF ODONTOPHORUS FROM SOUTHERN MEXICO,

1)Y
Robert Ridgway, Curator of the Department of Birds.

ODONTOPHORUS CONSOBRINUS, sp. nov.
Sp. Cirar.-Most like O.gutatus (iould, but much darker and richer in general coloration, and differing positively in entire absence of any buff or tawny color in the crest.

Adult female (type, No. 44732, Mirador, Vera Cruz, Mexico, April 5 ; Florentin Satorius): Pileum, including entire crest and underlying feathers of occiput, uniform brownish black, fadling to sepia-brown on forehead; superciliary and supra-amicular regions lighter sepia or bister-brown; ear coverts dark chocolate-brown, approaching black along the upper margin; continued from this dark auricular patch, down sides of neck, a broad stripe, more or less interrupted, of rich chestnut, mixed with blackish; cheeks .(malar and subauricular regions), chin, and throat black, each feather marked with a mesial streak of white, these markings broader and of guttate form on the subauricular region. Hind neck, sides of neck (except as described), and back rather light bister-brown, mixed with olive, indistinctly mottled or vermiculated with dusky, the feathers of the back with narrow mesial streaks of buffy whitish; inner webs of seapulars with most of exposed portion black (producing large black spots or blotches), preceded by bars of black and tawny-chestmut; outer webs coarsely mottled with olive-grayish and buffy-whitish, and marked with zigzag bars of blackish; prevailing color of wing coverts mummy-brown, varied with zigzag markings of dusky and occasional transverse spots of black, most of the feathers marked with a terminal small guttate spot of light buff; outer owebs of secondaries dusky, broken by broad bars of mottled russet; tertials mised rusty brown or bright russet and dusky, each feather with a large and conspicuons subterminal irregular lumule of black, the tip marked with a deltoid spot of deep buff; primaries dusky, their outer webs indistinctly flecked along the margin with buffy. Lower back light buffy olive-brown, indistinctly mottled with darker and with occasional small spots or flecks of black; rump similar, but rather darker, with more distinct dusky vermiculations; upper tail coverts with the same features still more pronounced. Tail
dull black, with outer webs (both webs of middle feathers) varied with narrow broken or zigzag bars of rusty brown. Under parts grading from rich, warm brown* on the chest to bright chestmut on tlanks, each feather ornamented by a mesial guttate streak or spot of white, margined with black; anal and femoral regions light brownish, indistinctly barred with grayish dusky and olive-tawny fuder tail coverts black, irregularly spotted, and barred with light olive-tawny. Bill black; "iris brown:" feet horn-eolor. Length (skin), about 10.00; wing, 5.(60; tail, 2.90 ; exposed culmen, $0.3: 3$; depth of bill at base, 0.50 ; tarsus, 1.62; middle toe, 1.35.

An adult female from Protrero, Cordová (No. 41649, December 20, 1869, F. Sumichrast), is essentially like the one described, but presents the following slight differences: The top of the head is not nearly so dark, scarcely approaching black even on the longer feathers of the crest, while, except these latter, the feathers have distinct but narow light brown shaft streaks; the white streaks on cheeks and throat are broader; the under parts are somewhat less richly colored, with the white markings broader and less regular, while the rump and lower back are more distinctly vermiculated and freckled with dusky. Wing, 5.50 ; tail, e.62; exposed culmen, 0.75 ; depth of bill at base, 0.50 ; tarsus, 1.62 ; middle toe, 1.50 .

The seven specimens of 0 . guttatus Gould with which these two Mexican birds have been compared are all from Costa Rica, and all have the bright ochraceous erest (overlaid by dusky), as shown in Could's plate. The birds described and figured by Gould are said to have come from Honduras. The male represented by him shows the conspicuous ochraceons rest and agrees otherwise with the Costa Rica bird; but the other figure, representing what Gould says is the female, is without any ochraceous, though not otherwise different; and he describes the female as different from the male "in having the crest of a miform brown, and in the black of the throat being less extensive." I am not, however, inclined to credit the alleged sexual character of this difference in the color of the crest, since two of the seven Costa Rican specimens (one of them, moreover, an immature bird) are marked as females by the collectors and have the crest colored exactly as in the males.

[^92]
A SUBTROPICAL MIOCENE FAUNA IN ARCTIC SIBERELA.

iy
William Healey Dall, Curator of the Department of Mollusks.

(With Plate Livi.)
In the northeastern angle of the Okhotsk Sea, between the parallels of 58° and 62° north latitude and in about 158° east of Greenwich, lies a large body of water known as the Gulf of Penjinsk. It extends in a northeast and sonthwest direction for about 300 miles and has a greatest width of some 140 miles. At its head it is divided by a large peninsula into two narrower arms, of which the westermmost is called the Gijigat Bay and the other Pemjinsk or Zhinsk Bay.* At the head of the former a small river comes in, some distance up which is the small Russian trading post of Gijigh, which, to the best of my knowledge at present, is the only permanent settlement anywhere about the gulf.

This arm of the Okhotsk Sea has not been visited, so far as recorded, by any scientifie explorer, mess we except the officers of a small coast-guard steamer maintained by the Russian Govermment in the Okhotsk Sea, and who did some hydrography in this vicinity. No collections from this region are mentioned in any work on the natural hnstory of this region which is accessible to me.

From Russian travelers and the explorers of the Telegraph expedition of 1865-'67, as well as the whaling captains of the North Pacific fleet, something is known of the characteristies of the gulf. It is icebound for more than half the year. Late in May simultaneously with the freshets in the rivers falling into the gulf, the ice near its head and along its shores becomes loosened and a certain amount of open water will be formed between the main floes of the Okhotsk Sea and the land abont the gulf. A large number of whales, supposed to be a variety of the true Arctic: Bowhead or Bulan mysticetus, were formerly in the labit of resorting to these sheltered bits of open water where they brought forth their young. This came to the knowledge of the whaters, and about 1849 the whale fishery was established in the Okhotsk Sea and maintained there until the whales became too sraree to warrant their pursuit. Since the ice prevented the access of the whale ships, they were accustomed to send boat parties through the

[^93]narrow strip of open water along the shores mitil the open water at the head of the hays was reached, according to Scammon, usually about the ?Oth of dune. With the boats whating was carried on from camps on shore until, in July or later, the main thoes had so broken up as to allow the ships to penetrate the bays.
The shores aromd the gulf are, in many places, cliffy or precipitous and the beaches stony, thongh the depth of water is moderate, nowhere exceeding 100 fathoms, as far an known. While the latitude of Penjinsk Gulf is that of Shetland or the South Cape of Greenland, and it is not within the Aretic Circle, yet its climate and conditions are essentially aretic, and it is the only region where the true arctic whale has ever been known to breed except in the Polar Sea. The marine fauna probably resembles that of other parts of the Okhotsk Sea where it is known to be extremely seanty along the shores, profuse in individuals in water deep enough to be free from grounding ice, and strictly aretic everywhere. Further south, off the west shore of the peninsula of Kamchatka, is a noted codfishing ground, but no record of any attempt to fish in the gulf has been brought to my notice. In the summer a fairly large rin of salmon of several species occurs in most of the rivers falling into the gulf and wild fowl are abmendant spring and fall as they come and go from their breeding grounds at the mouths of the rivers farther north.

On the shore of one of the small hays which put out from the gulf coal has long been known to exist, though the exact locality is not indicated on any of the charts I have been ahle to examine. The place was known to the whalers as Coalmine or Coal Bay. In 1866 the Russian trausport Sakhalin, which had brought supplies for the telegraph explorers, being short of coal, obtained a quantity from this place, which enabled her to reach the Amoor River, though the quality of the fuel was poor. It seems to resemble the Eocene lignites of Alaska rather than the coals of greater age and density.

From this locality in 1855 , when a member of the Ringgold and Rodgers exploring expedition in the North Paritic, the late Dr. William Stimpson obtained a small collection of fossils, comprising six species of mollusks, which were deposited by him on his return to America in the Museum of the Smithsonian Institution, where they have since remained.*

[^94]The aspect of these shells indicates for them a Miocene age, to which they were assigned by the late paleontologist F. B. Meek. The matrix is a light-brown or grayish, tine grained, rather hard sandstone, exactly like many of the Miocene sandstones of the adjacent Alaskan coast. Taking the occurrence of the beds of lignite into consideration we may suppose that they are, like the Alaskan lignites of the opposite shore of Bering Sea, immediately succerled by a bed of marine Miocene, from which these fossils may have heen derived. In cleaning off some adherent matter it was found that a few small particles of a stony alga still adhered to the fossils and retained some of its original green color. This shows that the alga is not a fossil, and iudicates that the specimens were obtained upon the beach, where they may have remained some time after being weathered out of the original matrix. One specimen, a large oyster, is somewhat worn, as if by the waves, and still retains in its shell substance something of the purple color which characterized the shell while living.

DESCRIPIION OF THE SPECIES.
 Ostrea gigas Thunberg.

Ostrea gigas Thunberg, Kong. Vet. Ak. Handl. t. xiv, for 1793, p. 140, pl. 6, figs. 1-3; Lischke, Jap. Meeresconch, I, p. 174, 1869; II, p. 160, pl. 14, figs. 1, 2, 1871; ini, p. 114, 1874; Dunker, Ind. Moll. Jap. p. 249, 1882.
Ostrea Laperousii Schrenck, Bull. Imp. Acad. Sci. St. Peterb, Iv, p. 411, 1861; Reisen in Amurl., Moll., p. 475, pl. 19, ligs. 1-6, 1867.
Ostrea taliemehanensis Crosse, Journ. de Conchyl., x, p. 149, pl. 6, fig. 6, 1862.
Ostrea talienwahnensis Sby., Conch. Icon. Ostrea, pl. 10, fig. 21, 1871.
? Ostrea borealis Jay, Perry's Japan Exp. p. 296.
Coalmine Bay, Gulf of Peujinsk, Okhotsk Sea, W. Stimpson, Mus. Reg. No. 4787.

The fossil comprises the whole of the upper and most of the lower valve, held together by the indurated matrix and measuring about 103 millimetres long by 90 millimetres in greatest width. The specimen is somewhat waterworn, evidently after weathering out of the matrix, but retains partly the purplish color common to this species. It appears to agree in all essentials with the recent shell.

This oyster has, like the O. virginich of America (which it much resembles), a very wide range in latitude, extending from the China seas to the west coast of the island of Sakhalin and in Japan to Nagasaki. But the fossil, so far as its condition permits us to judge, represents the southern form of the species rather than that which it assumes near the northern extreme of its present range.

Semele Stimpsoni n. s.

Pl. lvi, fig. 5.

Shell sub-orbicular, moderately compressed, sculptured with numerous wide, low, rather irregular concentric ridges which are angulated
at the summit and sometimes broken up or conthent on the posterior part of the shell; also by tine radiating stria, strongest near the beaks, crossed by obvions incremental lines and nearly or quite obsolete toward the base, in the adult; the posterior fourth of the shell is marked off from the rest by an obsure radial depression which gives the hinder end the appearance of being slightly compressed and twisted to the left; cardinal region behind the beaks marked by an obscure narrow lanceolate impressed area or escutcheon; hinge with (in the left valve) a large cartilage pit, in front of which is a narrow, thin cardinal tooth with an anterior lateral very short and closely adjacent, the posterior lateral also extending but little behind the end of the cartilage pit; interior surface smooth, the pallial line distinct, the sinus broad, bluntly rounded in fromt and extending to a vertical line dropped from the beak. Lon, of left valve, 33 ; alt., 30 ; semidiameter of shell, 7 millimetres.

Two left valves (Mus. Reg. No. 4788) were obtained from the bed at Penjinsk Gulf by ir. Stimpson, in whose honor the species is named.

This species most closely resembles N. modesta A. Adams* from West Africa and St. Helena, a species which is somewhat higher, more inflated, with longer lateral teeth, a smaller cartilage pit, and more rounded concentric sculpture. In both the scuppture near the beak tends to be more nearly lamellar and the radiating grooving more prominent.

The nearest relative geographically which S. Stimpsoni possesses is the similarly sculptured form, referred to by schrenk under the name of S. culifornica, which is found in the Japan Sea and the Strait of Tartary. While many Japanese shells are common to Northwest America, it can hardly be said that the identity of this species, which I know only by Schrenk's figure, with the Gulf of California shell is fully established. It is possible that our fossil may prove identical with the living form recorded by Schrenk, but this can only be determined by a comparison of specimens.

[^95]Shell irregularly ovate, depressed, alternately radiately sculptured with riblets and threads; apex eroded in the specimens, but situated at about the posterior third; lines of growth obvious; margin entire or slightly crenulated by the seulpture; interior smooth, muscular impressions strong, interrupted at the right as usual in the genus; the shells showing evident color markings consisting of alteruate light and dark radiating lines much as in s. lineolata Orbigny. Lon. of shell, 20 ; max. lat., 15 ; alt. (somewhat eroded), 4 millimeters.

Two specimens (Mus. Reg. No. 4791) received from Dr. Stimpson.
This species recalls S. lecanium Cpr., of the northwest coast of America, but is very closely related to the S. radiata Ad. \& Rve. figured from the China seas in the "Voyage of the Samarang." Two species of Siphonaria, S. fuliginata Rve. and S. utra Quoy \& Gaim., are known from the present seas of Japan and Korea, but neither so closely resembles our fossil as the more tropical species above mentioned, which indeed is hardly distinguishable from the form we have described.

Conus okhotensis n. s.

$$
\text { Pl. LVi, fig. } 4 .
$$

Shell short, stout, solid, of about eight whorls; spire low and rounded, suture appressed, with a few obscure spiral strise in front of it; shoulder of the shell rounded; sides smooth, hardly striated even over the caual, aperture rather wide, outer lip straight, sutural sinus shallow; pillar simple, slightly twisted at the end; lon. of shell, 50 ; lat., 35 millimeters.

A young and an adult specimen (Mus. Reg. No. 4789) were presented by Dr. Stimpson.

This species is not unlike Comus californicus on a larger scale, and belongs, as well as can be judged in the absence of color markings, to a group (Chelycomus) which is most abundantly represented in the Moluccas and on the shores of Africa. There does not appear to be at present any closely related species on the Japanese coasts, but C. fulmen and C. pauperculus are found in that region and would in a general way be associated with it. Among the recent species in the National Museum, C. glaucus from the Moluccas presents the closest parallel in form and conchological characters.

In the larger of the two fossil specimens a faint indication of what might be taken as traces of spirally disposed color marks is perceptible, but these are not sufficiently distinct to permit of a dogmatic assertion that they are traces of color and not an incident of mineralization.

Cerithium cymatophorum n. s. Pl. lvi, fig. 1.
Shell stont, solid, short, of seven or more whorls; nucleus lost; aperture defective; sculpture characterized by a constriction about the
middle of the whorl, above which there is only spiral sentpture ; in front of it the whorl is marked with about eight prominent romeded waves or obscure ribs, with wider interspaces, which become obsolete on the last halt of the last whorl; spiral sedpture of fine, sharp, minutely chamelled inesed lines with mueh wider, smooth, Hat-topped interspaces suture appressed; base constrieted about the middle, sentptured with more erowded incised lines; pillar with a moderate callus: lon. of shell, 35: max. diam., 17 millimeters.

One specimen (Mus. Reg. 4790) presented by Dr. Stimpson.
This speces is related to the gromprepresented by C'. culyatum Brug., ('. !!uinaicum Phil., and C.. amulum Plail, the secomd of which extemds its ramee from the (baboon, West Atrica, to the Phitippines, Lard Hood's lsland and dapan, if anthorities may be trasted. The fossil is, however, sumeiently distinguished from any of them by its form and sculp. ture. The group at present is only represented in wam-temperate, or subtropieal waters. The specimen dessribed had been attacked by Cliona betore tossilization and more or less perforated, beside sustaining the loss of its outer lip. A much smaller, but in many respects similar, species is foum in the Older Miocene of Florida.

Diloma (Chlorodiloma) ruderata n. s

Plate wiv, fig. 3.
Shell small, tubbiniform, rude, with little narere, of about fom whorls; whorls rounded, suture appressed and slightly constricted, senpture only of rather rude lines of growth : surface composed of a dark shell layer, with obseme indications of spiral lines of lighter color: base full, slightly thattened, a narrow impressed area aromed the umbilicus, which is barely perforate and nearly covered by a small callus; aperture rounded: pillar short, eoneave, ending in a small, low, narrow, toothlike prominence; throat smonth. Alt, of shell 1.5; max. diam. of base, 13: min. diam., 11.50 millimeters.

Two specimens (Mus. Reg. So. 4797) were received. No species very closely related to this shell is at present known from the dapanese fama, but there are a momber of them in the Australasian seas. The genus is perhaps represented log I) perpleare Pilsbry, of Japan. I have referred the fossil to Diloma rather than Cilbula, chiefly on account of the sempture and seant pearly layer, but on such oceasions it is impracticable to determine positively the precise relations.

(iENERAI, CONOLUSIONS.

The evidence attorded by these fossils indicates ummistakably that the fama including them must have flomrished in waters at least as wam as those which at present orempy the Japan Seat, at a distance of more than a thousand miles to the sonthward. The oyster and siphonariu show that the fanta was litoral and not ant offshore or deep-
water assembly. Faunally the species point to a distinct analogy with those of the China and South Japan seas, and, like the existing fauna of those seas, they indicate bonds of relationship with the west coast of Africa and the coast of Australia rather than with the Indo-Pacific fauna of northeast Africa and the Malay Archipelago. These curious analogies have been noted by all those who have studied the mollusk fauna of Japan, and their explanation is one of the trophies for which future students, with fuller geological knowledge of oriental countries, may compete. At present hypothesis could rest only on speculation.

It is not often that so small a number of specimens as those we have described would contain the elements necessary for deciding on so many points of interest, but the present case is a fortunate exception.

We may now consider the climatic relations indicated by this little collection. There are no observations on record from the Gulf of Penjinsk, but the climate can differ but little from that of Okhotsk, which is situated in the same latitude as that of the mouth of the Gulf of Penjina and some 350 miles to the westward. It there is any difference it is that the gulf is colder than Okhotsk, since Scammon indicates that open water occurs about June 20 in the gulf, while the average at Okhotsk is about two weeks earlier.

We find Okhotsk has a mean annual temperature of the air of 23.12 , spring having a mean of 23.9°, summer of 52.1°, autumn of 24.6°, and winter of minus 8.2°. The temperature of the sea water does not rise above $40^{\circ} \mathrm{F}$. (except in the harbor') during the wamest part of the summer, and for two-thirds of the year it is at or below the freezing point. It may therefore be assumed that the water climate of Penjinsk Gulf does not essentially differ from that which is offered by those parts of the Polar Sea which are free from ice during the summer months. The climate of the region indicated as a natual climatic home by such an assemblage of fossils as those we have been discussing, should have a summer sea-water average temperature of 70°, and a winter average of $60 \rho \mathrm{~F}$. at least, with a minimum twnperature never approaching the freezing point. As the difference bet ween the temperature of the air and that of the water can not permanently remain much greater than 50 or 6 , it follows that the annual mean temperature of the Gulf of Penjinsk in Miocene time (or the craindicated by our fossils) can not have been much les.s than $60^{\circ} \mathrm{F}$., and was probably higher. That is to say, since this fossil fana flourished in these waters the annual mean temperature has diminished by 30° to $40^{\circ} \mathrm{F}$., at the most moderate calculation.

It is perhaps very late in the day to refer to the hypothesis which explained the warm water Old Miocene of the morth Atlantic shores by assuming a shifting of the polar axis so that the pole at that time would have been situated somewhere in central Siberia. That hypothesis has few if any friends at the present time. But it may not be amiss to point out that, if it were necessary to put a quietus on that moribund specu-
lation, the presence of a warm water Old Miocene in eastern Siberia, such as our present fossils indicate, would be quite suthicient to prove that no polar conditions in the modern sense could have existed there during that epoch of geological time.

Plate lav.

Fig. 1. Cerithium cymatophorum Dall, lon. of original 35 millimotors. Page 475.
2. Siphonaria peujina 1 D all, lon, of shell 20 millimeters. Page 475.
3. Diloma (Chlorodiloma) ruderata Dall, alt. of shell 15 millimetors. Page 476.
4. Comus okhotensis Dall, alt. of shell 50 millimeters. Page 475.
5. Semele Stimpsoni Dall, left valve, lon. of original 33 millimeters. I'age 473.

Siberian Tropical Miocene Fossils.

NOTES ON A COLLECTION OF BIRDS FROM EASTERN NICARAGUA AND THE RIO FRIO, COSTA RICA, WITH A DESCRIPTION OF A SUPPOSED NEW TROGON.

BY
Charles W. Richmond.

The accompanying list, in which are emborlied the notes made during a year's residence in eastern Nicaragua, is based on collections and observations extending from February 1, 1s92, to January 19, 1893. Specimens of most of the species were obtained, and of others, nearly all North American, only those well known to me have been admitted unless otherwise stated.

Greytown, or San Juan del Norte, is situated on a small lagoon at the mouth of the San Juan River, on the Carmbean coast of Nicaragua. It is almost surrounded by marshes and silico* swamps, yet the climate is as healthful as at any other point on the coast. This is due, probably, to the sandy nature of the soil on which the town is built, and to the influence of the sea air. The climate of the region is apparently not as deadly as many suppose. Many foreigners live in the country for years, retain their health, and are seldom or never troubled with "the fever." Unless one is peculiarly susceptible to malarial influences no bad effects are liable to attend a sojourn in the country if proper care is taken to preserve the health, but one is very liable to be led into various exposures on first reaching the country, especially if one has left a severe winter behind in the north. The country a few miles inland is not as salubrious as directly on the coast, and those who contract the fever there frequently recover entirely after a trip to the seashore.

The coast country has a protracted rainy season of eight or nine months, from May to January, with occasional spells of fair weather during the other three or four months. Some years the "dry" season is said to fail altogether. The rainfall is enormous, and from a report of observations by officers of the Nicaragua Canal Company it appears that over 296 inches fell at Greytown during the year 1890. The precipitation during July of that year was nearly 2 inches per day. The

[^96] F.; tho werage is about s5 at noon and 7×0 at night.
'Wo werks were sent at (ireytown, where collecting was contined to the bushey thickets and chmpe of bushes on the outskits of the fown, and to fruit trees in the gatrdens. The speries collected were mostly those lomad in all charings and open places along the coast. My bother, W. I。 Richmomd, athd Ms. (i. W. Mitehell, collected for at few days at a coatan plantation on the Sill dnan neal (ireytown, alld sefured several speries not motered elsewhere Four days, Fehwary
 Ne:aragna. The collecting gromed there was moll the same as that al diveytown, chmps of bushes, thickrts of small extent, and at sprinkling of latere trees on the lowhand alones the lake shome. The dry season at Nan Carlos had an athal oxistemee and the dimate was de-
 pied on the lian Frio, which llows into thesan duan opposite San Carlos. 'The river wis ascerbled tor the Glathsa lodian settements, at the head of eamoe nawisation in the dey season, and a few days spent in their neishborhod. With the exerption of two clearings the river banks were mimhabited. Owing to this solitule amimallife was abme dant. Waller hide were extromely momeroms. Monkeys of three sper cies wore seen day after day in lage troops. Alligators, turtles, and lizabds actaally swamed, abd shatis, pobably the same as found in the lake, were fomd as lar as the Indian habitations. Demse forests extemd along the lrio for miles, with oceasional stretches of savamah land. Natow patehes ot lall grass lime the banks in low plates, where the heary timber is replaced by jumgles of smaller trees. The altitude of the river, as far as eosered by me, is less that loof ferd, and the vegetation therefore shictly tropical.

The time from Mareh İ to Λ pril 17 was passed on the San duan and al dieytown, but no collecting was done, athd much of the spring migration of Noth Ameriban hisds was missed. I have amdeavored to give dates in commertion with the North Amorican spereies, which may be of some value in the study of the migration of those bided bat it will be remembered that the motes cover parts of two migrations, and that a spedes moted from October to Vehrmary was seen first in Feh. roary and agat on its return fom the morth in October; also that speries common at direytown and moted as last seen in February (when my obsemations emded there may really have remained a month or more later. 'The lerms winter, summer, ete, have been used to designate the same seasons as in the north.

The time from May 1, kise, fo damary 19, 189%, was passed on the Besondido River, primeipally at the "I. I." plantation. As by fir the most of my time was spent on that river, and most of the species observed ehsewhere were also eolleded there, 1 have included in the list
two or three species not met with by me, but collected by Mr. Ifenry Wickbam* a number of years ago.

The Escondido, formerly known as Blewfields or Blnefields River, is probably the most important one on the coast of Central America, with the exception of the San Juan. There is no troublesome bar at the month, as is usually the case, and large ocean steamers ascend the river to Rama, 65 miles from the month. Two rivers, the Rama and Seruia, join at the town of Rama and form the Escomdido. The banks for many miles, including both branches above Rama, are lined with banana plantations, the monotony of which is broken by the mumerous picturesque ceiba and ebo trees which have been left standing in the clearings, and the dense tropical forest in the background. In the last 15 or 20 miles of its course the river winds through dreary silico swamps and empties into Bluefields Lagoon, a sheet of water 15 miles long and 7 miles broad. These swamps are of little interest; they are covered with a dense growth of silico palms and trumpet trees, and bird life is scarce.

The Iuternational Planting Company's plantation, or "I. I'." as it is familiarly called, is 50 miles from Bluefields. A creek joins the river at this plantation, and affords an excellent means of reaching the heavy forest in the rear. Many of the forest birds delight to frequent the open space where the creek runs through the woods, and a canoe trip in the early morning under these circumstances usually enables one to get a fair lot of birds. Shortly after reaching the "I. P." plantation work was much interfered with by an attack of the fever, due entirely to carelessness, which eveutually led to my return to the United States.

Special attention was given to the colors of soft and fading parts of specimens collected, and in all cases where a definite color of such parts is given the part was compared with Ridgway's Nomenclature of Colors.

My thanks are due Mr. Ridgway, curator of the department of birds, U. S. National Museum, who has allowed me the use of various specimens in the Museum series for comparison with my own, and has aided me in other ways; and to Messrs. (. E. Mitchell and W. L. Richmond for records fiom Greytown and on the Escondido. I can never sufiticiently thank Mx. Sam. A. Risley, of the International I'lanting Company, who rendered me so many favors during my stay there that it would be useless to try to enumerate them. He contributed in many ways to the success of my work. I met with so many offers of assistance and expressions of good will from Λ mericans and others with whom I came in contact in Nicaragua that with one exception my thanks are due them all.

[^97]
Family TURDIDE.

1. Turdus mustelinus Gmel.

Heard several times on the Escondido; first noted November 7.

> 2. Turdus ustulatus swainsonii (Cab.).

One shot October 3. A large flight occurred on the 14th.
3. Merula grayi (Bonap.).

Common on the Liscondido and also observed at Greytown. Its song is not unlike that of the American Robin (Merula migratoria), although somewhat inferior. On the Escondido the bamana plantations are its favorite hamots, and it frequently places its nest in the bunches of fruit, occasionally building in the space at the junction of a leaf with the stem of the plant. A nest secured July 1 resembled that of M. migratoria in having the walls well plastered with mud. It contained two fresh eggs, measuring 1.09 by 0.7 , and 1.14 by 0.79 ; pale bluish-gray, spotted and blotched with reddish-brown.

Two young birds just able to fly were found June 18.
It is interesting to note that in the tropies many species lay but two eggs. The domestic fowls are not as prolitic as in the north apparently,and their eggs are small-sized.

Family SYLVIIDE.

4. Polioptila bilineata (Bonap.).

Not very common on the Escondido and at Greytown.

Family MIMIDA.

5. Galeoscoptes carolinensis (Linn.).

Rather common; observed from October 28 to April 17.

Family TROGLODYTID x.

6. Henicorhina prostheleuca (Scl.).

Apparently not common. The bird skulks close to the gromed in the thick underbrush of the forest and is quite shy.
7. Thryophilus costaricensis Sharpe.

Common at (ireytown and on the Escoudido, also observed on the Rio Frio. It is most abondant durime the winter months and possibly may mot oceur doring the breeding season; at any rate, it escaped my notice during the carly summer, and it was not until duly that the birds became conspicuous through their loud but rather monotonous song. They are mostly confined to thickets bordering streams, and
keep so well concealed that it is difficult to secure specimens. At times they appear in plain sight and do not manifest any unusual shyness.

> 8. Thryophilus thoracicus (Salv.).

Rather common. This species is found in the forest, in trees, usually at a distance of 10 or 20 feet from the ground. It spends its time much as does Thryothorus atrogularis, searching among the bunches of dead leaves and masses of dead material lodged in vines. It occasionally scolds in a somewhat harsh voice, but on the whole is rather a silent bird.

9. Thryophilus zeledoni Lawr.

One specimen secured February 13 in a thicket at Greytown. In its actions it resembled the following:

10. Thryothorus atrogularis Salv.

Common; appears to be absent part of the year. First seen September 7, and afterwards common until the end of Fehnary. Found in the forest, 10 or 20 feet $u p$ in the trees, searching for food in the thick tangled masses of vines, or scratching in the accumulations of vegetable matter lodged in palms. It is not very noisy, seldom uttering its rather harslı note.

11. Troglodytes intermedius (ab).

Common on the Escondido. A pair or more are found on every plantation. The birds are very familiar, hopping around through the houses and outhuildings like the Honse Wren (T. cëdon), and the song is almost exactly the same, but rather less musical. Nesting apparently occupies a considerable portion of the year. I found young in July and August, and nest building was observed in November and January. The nests were constructed of fresh grass, with a small entrance in the side. One was located in a fork in the top of a small guava tree, and another was built in a bunch of grass which had grown through an opening in an outbuilding.

Family MNIOTILTIDA.

12. Protonotaria citrea (Bold.).

Quite common through the winter months; first seen September 2.
13. Helminthophila pinus (Linn.).

Apparently rare; shot one at Greytown February 8 and saw another on the Escondido January 17.
14. Helminthophila chrysoptera (Limn.).

Uncommon during the winter; specimens obtained November 5.

15. Helminthophila peregrina (Wils.).

Shot a specimen on the Escondido October 2t; two days later the species had become abundant, hundreds passing by in an almost continuous stream, pausing an instant in the trees in front of the house, then off again, following the course of the river westward. This migration continued until the 29 th, after which date no more were observed.
16. Compsothlypis americana (Linn.).

One specimen, in company with some Temessee Warblers, shot October 26 on the Escondido.

17. Dendroica æstiva (Gmel.).

Abundant winter resident. First seen August 9, and afterwards abundant, swarming in the tall grass bordering the Escondido River. Remains until late in February at least.

I never heard this or any of the other North American birds sing here.

18. Dendroica coronata (Limn.).

Not very common. Observed at Greytown and on the Escondido. Several noticed November 2S, and one on February 16.
19. Dendroica maculosa (Gmel.).

Quite common in winter. First seen October 27 , and last on February 5 .
20. Dendroica pensylvanica (Linn.).

Abumdant during the winter months, noticed from September 29 to February 16.
21. Dendroica dominica albilora Baird.

One specimen collected at Greytown, February 12.
22. Seiurus aurocapillus (Linn.).

Rather rare, first seen November 7, and occasionally noted until May 6.

> 23. Seiurus noveboracensis notabilis (Grinn.).

Abundant in winter, from September 20 until May 5.
24. Seiurus motacilla (Vieill.).

Rather rare, first seen October 23.
25. Geothlypis formosa (Wils.).

Very common, first seen September 22.

```
26. Geothlypis philadelphia (Wils.).
```

Shot an immature male on February 4, at Greytown; the only one seen.
27. Geothlypis trichas (Linn.).

Common, first observed October 28.
28. Geothlypis bairdi Nutting.

Common on the Rio Frio in Costa Rica. One specimen taken at Greytown and one at Colorado Junction, on the San Juan. Rare on the Escondido, where I got an adult male May 29, and a young bird in first plumage June 5.
29. Geothlypis caninucha icterotis Ridgw.

Rather common on the Escondido. First specimen shot May 17. Next seen August 17, when an immature male was shot. Later it became quite common, and individuals were frequently heard. The note is loud and clear. The birds are found in the tall grass along the river banks. They may breed here, but if so are very retiring, as I saw none during the summer.
30. Icteria virens (Linn.).

Uncommon, apparently. First seen October 14, and specimeu obtained at Greytown February 14.
31. Sylvania mitrata (Gmel.).

Very common. First seen September 24; taken at Greytown February 5.

32. Setophaga ruticilla (Linn.).

Very common; first seen September 20.
33. Basileuterus leucopygius Scl. and Salv.

Common on the Rio Frio in March. The bird has habits very similar to Seiurus motacilla, and its note is very much the same. Instead of jerking the tail up and down it flirts it continually after the manner of a Redstart (Setophaga ruticilla), and at times resembles this bird in habits more than the Seiurus. The song is loud and clear, and very melodious, resembling somewhat that of a Field Sparrow Spizella pusilla), with several variations.

Found usually along streams, but often wanders into clearings, where it hops along fallen trees and on bare patches of ground. The birds were found almost invariably in pairs.

Family HIRUNDINIDE.

34. Progne subis hesperia Brewst.

A pair shot September 13 on the Escondido out of a flock of six or eight, which had settled in the top of a dead tree during a shower. This appears to be considerably south of the other records for this species.

35. Progne chalybea (Gmel.).

Abundant. Nests in holes in trees standing in the plantations, and also common in the town of Bluefields, where the birds use natural avities in the breadfruit trees for nesting purposes. Young birds formd from April to July. Later, the birds congregate in small flocks and tly about over the plantations and houses, oceasionally circling about high in the air during sumy days. At times large flocks, mixed with Tachycincta allilinea, Chelidon erythrogaster, and others may be seen flying about, especially in the evening before sunset or on cloudy afternoons. The ordinary note resembles that of P. subis.

36. Chelidon erythrogaster (Bodd.).

Abundant in winter and during migrations. Arrive late in August, when they oceur in large flocks, usually mixed with other species. In March large numbers were seen, probably migrating, and small numbers were seen as late as May 3.
37. Tachycineta albilinea (Lawr.).

Abundant, particularly on the Rio Frio, where there were many snags and stumps sticking out of the water, in the cavities of which the birds bred. Saw young birds early in May.

This species seldom or never occurs away from the rivers, where it flits back and forth, fiequently perching on snags or dead limbs hanging out over the water.

38. Stelgidopteryx uropygialis (Lawr.).

Common on the Rio Frio in company with the preceding.
Collected by Wickham on his trip up the Escondido.

Family VIREONIDÆ.

39. Vireo olivaceus (Linn.).

One of a pair secured September 16.
40. Vireo philadelphicus (Cass.).

One shot October 21 was the only one observed.
41. Vireo flavifrons Vieill.

Rather common; first se ${ }^{\text {n }}$ October 22 and last on February 8.
42. Vireo ochraceus Salv.

A pair secured in some bushes at Greytown, February 1, and one seen April 10, in the same vicinity.

My birds are in fresh mworn plamage, and almost as bright as V^{\top}. carmioli. They agree sery well with the description of the bird called

Tireo semiflavus by Salvin, which was probably a bird of this species in unusually bright plumage.

Measurements are as follows:

* All measurements are in inches and hundredths; the tail measurement is that of the longest tail feather from tip to point of insertion.

43. Hylophilus decurtatus (Bonap.).

Common at Greytown and on the Escondido River during the winter. Apparently not present during the summer, but was observed from August 28 and thereafter throughout the winter. It has a pleasing song; is usually found some distance up in the trees, although at Greytown it was found in low bushy thickets.
44. Vireolanius pulchellus verticalis Ridgw.

Not common. First observed September 28, and several times thereafter. It appears to be absent during the summer. In one of my specimens, a female, there is a well-defined and really conspicuous yellow rictal streak, the green over the eye is paler than usual, and faintly yellowish, forming a decided superciliary stripe. There are several yellow feathers posterior to the lores, and the abdomen is of a brighter yellow than in other specimens examined. In two other National Museum specimens from Guatemala there is a tendency to a light rictal streak and faint superciliary stripe.

Family COREBIDAE.

45. Dacnis ultramarina Lawr.

One female, shot November 27 on the Escondido, was the only oue seen.
46. Chlorophanes spiza (Linn.).

Very common on the Escondido. First seen September 26, and afterwards common. Feeds largely on ripe bananas. Has a lour, clear, shrill call of two syllables, like "twee-twee," which can be heard a long distance. Mixes with the other Honey Creepers quite freely.

Iris, burnt sienna; lower mandible, naples yellow.
47. Arbelorhina cyanea (Linn.).

Very common in flocks at San Carlos in February, feeding on trees having large crimson flowers. One shot on the Escondido May 17, and others found associating with A. lucida in November.

Feet and legs of adult male, vermilion; of female and immature birds, brownish vermiliou.

Very abmudant on the Escondido. First seen November 21 , when several came into the house. Afterwards abment, mixed with a few Chlorophames and A. cyanea. The note is a weak chirp. These birds appeared to be attracted by the coobant and bread frat trees. In almost every specimen shot the bill was covered with a waxy substance.

In the adult male the feet and legs are canary yellow; claws black; the females and young males have these parts sage green, but in the latter the colors begin to change with the phumage.

49. Cœreba mexicana (Scl.).

Common at Greytorn and at the Guatusa Indian clearings on the Rio Frio. A pair started a nest at Greytown in a bread-fruit tree, but deserted it before finishing. The note is a rather weak, rapidly uttered chirp. Not seen on the Liscondido.

Family TANAGRIDÆ.

50. Euphonia luteicapilla (Cab.).

One specimen secured September $2 \mathcal{S}^{2}$ on the Escondido.

51. Euphonia hirundinacea Bonap.

Not rare on the Escondido, where it hames the bama plantations and feeds largely on the ripe fruit. Has a pleasing and somewhat varied song.

52. Euphonia gouldi Scl.

Oceasionally seen in small companies on the Escondido and at Greytown. Does not appear to spend its time among the banamas like the preceding.

53. Calliste larvata DuBus.

Very common in small flocks. Immature birds obtained early in May. Feeds largely on ripe bananas, although at times it appears to seareh for insects in the Trumpet and other trees.

54. Tanagra cana Sw.

Abundant at Greytown and on the Escondido in pairs and small flocks. Feeds largely on ripe bananas and the berries of some trees. Has a prolonged squeaky note.
lipe bananas prove a great attraction for many species. Bumches of the finit are often cut down and allowed to rot in the plantations, and when "dead" ripe they draw most of the plantation birds, even species that are almosit exclusively insect feeding, such as Pitangus.
55. Tanagra palmarum Weid.

One specimen shot at Greytown, February 6.
56. Ramphocelus passerinii lionap.

With the single exception of sporophila corrina this species is the most abundant in localities visited by me. It fairly swarms in all favorable situations, and is one of the first birds to impress the eye of a foreigner. The birds spend the day romping about in the bushes or in the banana plantations, chasing one another hereand there, with no apparent reason other than to jass away the time. They keep up an almost continual squeaky chatter, which is the only note heard on ordinary occasions, butat times I have heard solitary males sing, if the performance may be called a song. It is a very inferior chant, much like the ordinary chatter, but uttered in a slow and measured way. Females appear to be much mone momerous than males. The birds are perhaps not truly gregarions, although very social the year round, and may possibly be polygamous. In many ways these birds remind one of the House Sparmow (P'usser domesticus). The birds show little feeling when robbed of nests and eggs. One partial albino was observeci.

Nesting begins carly, as young were fond in the nest during the first week in March, and eggs were obtained as late as July 4. As in many other species in this region, the number of eggs and young formd in a nest is two. The nests are placed in bushes or vines, from 1 to i feet from the gromd, constructed of small stems of plants and dead leaves, and lined with fine grass stems. Eggs ovate, pale blue, marked chiefly on the large end with dark brown, almost black, spots, mottlings, or occasional pen lines, with a few indistinct pale lavender spots. Measurements of four clutches are as follows: 0.96 by $0.64,0.94$ by 0.64 ; 0.87 by $0.66,0.88$ by $0.07 ; 0.98$ by $0.63,0.98$ by $0.64 ; 0.88$ by $0.68,0.90$ by 0.68 .

57. Phlogothraupis sanguineolenta (Less.).

Not rare on the Escondido and at Indian plantations on the Rio Frio. In habits it differs much from the preceding, being ordinarily rather shy and quiet. Rarely more than two are seen together, except in the fall, when there is a tendency to gather in small flocks. At this period there appears to be something of a migration of the species, or an influx of individuals from other localities, and the bird might then be said to be common. An increase in numbers was noticed late in Angust. The note is a rather shrill whistle; I did not hear the song. It occurs in banana plantations, in bamboos along streans, and in open places on the edge of the forest, but does not appear to frequent low bushes, as the above species is wont to do.

A nest found May 30 was in a cluster of vines on a banana plant, at a height of 8 feet. It was similar to that of Ramphocelus, but slightly larger, covered with living green moss, and lined with hair-like black stems. The eggs are pale blue, short ovate, sparsely spotted at the large end with brownish black spots, with occasional faint marks of lavender. They measure 0.91 by $0.71,0.90$ by 0.70 . Iris reddish brown.

58. Piranga erythromelas Vieill.

Early in March I observed two adult males on the Rio Frio, and another on the Escondido september 27 . These were in the searlet and black phomage, and the only individuals of the speries identified.

> 59. Piranga rubra (Linn.).

Very aboudant during the winter. Males are found in varions stages of phmage between that of the female and adult mate. First seen late in October, when they shortly becamerommon, and continned so until spring. Last seen April 13.

60. Phænicothraupis salvini Berl.

My specimens of this genus collected on the Escondido are referable to this form, although not typical, while a pair from Greytown, collected by Holland, are true P. fuscionuld. These localities are separated by a distance of only 60 or 70 miles.

These birds are gregarions and inhabit the forest; individuals are often found in company with Ant Thrushes and other birds, preying on the traveling ants. They are rather shy and the first to notice the approach of an intruder, when they move off to a position of safety, scolding in a harsh voice. Iris brown.

61. Phænicothraupis fuscicauda Cab.

Common on the Rio Frio. Mabits similar to those of the above.
62. Tachyphonus luctuosus Lafr. \& D'Orb.

Uncommon, occasionally met with in the forest on the Escondido, where they are found in the trees, above the undergrowth. Feet and legs light heliotrope purple.

63. Arremon aurantiirostris Lafr.

Very common on the Rio Frio, less so on the Escondido. While journeying up the former river I camped at night in the woods, where, at daybreak, the first sigus of bird life were sure to be individuals of this species hopping about on the gromd in open places, uttering an oceasional sharp "chip," and at the least suspicions movement darting back into the dark recesses, from whence they would again appear after becoming reassured. I have never seen them above the bushes, while ordinarily they seem to prefer brush heaps and bare spots on the ground.

Bill orange-vermilion.
The nest is slightly raised from the ground, and is very bulky. It is constructed on a base of dead leaves, plant stems and other dry material being largely used; the lining is of fine light-colored stems and roots. The affair is roofed over like that of the Ovenbird (Seiurus: aurocapillus) and covered with living ferns and mosses, which most effectually conceal it . Several visits were made to a nest before the
bird could be identified, owing to its extreme shyness and habit of stealing away on my approach. The eggs are two, elliptical ovate, with straggling spots of dark brown at the large end. Two eggs, taken from different nests, measure 0.95 by $0.65,0.93$ by 0.67 .

64. Saltator atriceps Less.

One shot at Greytown February 3. This was the only individual positively identified, althongh the species may have been common.
65. Saltator magnoides Lafr.

Common in plantations and thickets along the streams.
66. Saltator grandis (Licht.).

Not identified at Greytown, but specimens were obtained near Bluefields, at Sau Carlos, and commonly on the Escondido. These birds feed on berries, ripe bananas, and other fruits. They are very restless.

67. Pitylus poliogaster scapularis Ridgw.

Common on the Rio Frio and on the Escondido. This Pitylus is gregarious; it inhabits the rather open parts and edges of the forests, and occasionally wanders into the banaua plantations. The birds sing almost incessantly as they travel about in search of food. The song is short and jerky, and its resemblance to that of the Dickeissel (Spiza americana) very close. I saw birds with nesting material about the middle of May.

68. Pitylus grossus (Linn.).

Not common on the Escondido, where individuals were at times seen in the forest. It is rather shy, and does not appear to go in flocks like the preceding. The call note is similar to that of the Cardinal (Cardinalis cardinalis). The skin is very tender. Bill vermilion.

Family FRINGILLID.

69. Oryzoborus nuttingi Ridgw.

Not common; observed at Greytown and on the Escondido. It frequents the clearings and thickets around plantations and bordering the forest. The bill is usually flesh-color, occasionally black. I did not note anything further on its habits.
70. Oryzoborus funereus Scl.

Abundant at the International Planting Company's plantation ou the Escondido, and probably at other places on that river; one specimen was taken at Greytown. It lives in precisely the same situations and resembles Sporophila corvina so closely that the two birds are difficult to distinguish at any distance, except by song, which, in this species is very like that of the Indigo Bunting (Passerina cyanea), but is not
nearly so loud and clear. At times, like Sporophila corrine, it seeks a perch in the top of a tree from which to deliver its song. Usually, however, it is content with the tall grass growing in the plantations and on the edge of the water, where it leads a careless life and finds an aboudance of food.

A nest found June 14 was in a bush, 3 feet from the ground. It was made of fine weed stems, the imer part entirely of fine hair like stems, lined with the same. Eggs, two, ovate, grayish white, finely spotted all over, particularly on the large end, with lavender, and over these small, irregular dark-brown markings. They measure 0.53 by 0.59 , 0.78 by 0.58 .

71. Guiraca concreta (Du Bus).

Rather common, especially in clearings, and thickets bordering the woods. The song is not very remarkable. On one occasion I found several of these birds a short distance in the woods behaving very suspiciously near a colony of army ants, but am mable to say whether they were preying on the ants or not.

72. Sporophila corvina (Scl.).

Extremely abundant, particularly on the Escondido, where it fairly swarms in all suitable situations, in the long grass and around chums of bushes. It is very social and much like Ramphocelus in its habits.

In the Centrali-Americana, Biologia Ares, i, 356, referring to this species, the statement is made that "in Nicaragua alone it approaches the Pacific, having been found at Los Sabbalos on the western shore of the Lake of Niearagua." This is a mistake, as Los Sábalos is located on the San Juan, some miles east of the lake (Nutting gives it as about 35 miles). This hacienda is not shown on any map, but the Sábalos River, which gives the location exactly, empties into the San Juan from the north, and is named on most maps, I believe. The birds are abundant here, and also on the Rio Frio in favorable places.

The song of this species is a rapid chant, giving one the impression that the singer is in a hurry to finish and be off with the rest of its kind. The bird is quite a mimic, frequently lringing the notes of other species into various parts of its little performance. I have detected the notes of Myiozetetes texensis, Crotophagu, Ramphocelus, and others during one execution. At times the song appears to be composed almost entirely of the notes of other species. The common call is a "deé-ah," and reminds one of a note of spinus tristis.

Breeding begins in May, as fresh eggs were found about the middle of the month. The nest is usually placed in a bush, though often in the grass, at heights varying from 2 to 8 feet. It is composed of fine stalls and grasses, lined with finer ones. Sometimes the nest is made of one material, without extra lining. The eggs are two ; yellowish white, blotehed with pale lavender, over which are heavy, though
sparse, markings of dark brown, chiefly at the larger end, sometimes forming a wreath, and mixel with occasional fine black spots. Two eggs measure 0.77 by $0.53,0.74$ by 0.53 ; tuother, 0.73 by 0.50 .
73. Volatinia splendens (Vieill.).

One specimen, taken July 14, found in the tall grass on the river bank.

74. Passerina cyanea (Linn.).

Occasionally observed during the fall on the Escondido. First collected September 30, and a flock noticed October 23. All were in the plumage of the female.

75. Embernagra striaticeps Lafr.

Very common. Found in clearings, banana plantations, and similar places, where it prefers the vicinity of bushes, vine-covered banana plants, and other hiding places, to which it can retire if disturbed. The bird spends much of its time upon the ground, searching for food; and individuals were sometimes caught in traps set for small mammals. I have not heard this bird sing, but it has a low and rather plaintive chirp. A nest found May 6 was in a fan palm leaf, about 3 feet from the ground. It was quite a bulky affair, roofed over and composed of strips of dead leaves and weed stalks, lined with fine stems and grasses. The base of the nest was tenanted by a colony of black ants. Several visits were made to the nest before the bird could be identified, owing to its retiring way. The eggs were two, ovate, pure white, measuring 0.93 by $0.69,0.96$ by 0.69 . Another nest, found the same day, contained small young, and was in a citrus tree, about 5 feet from the ground. It was not so bulky as the first.

Family IUTERID.E.

76. Eucorystes wagleri (Gray).

Noted at various places on the Sau Juan and Rio Frio; one specimen shot on the Escondido.

A colony observed nest-building on the Rio Frio early in March. The actual work of securing material and constructing the nests seemed to fall upon the females, the males merely accompanying them back and forth on these occasions. A dead tree standing in the open, containing a hornet's next, had been selected by the birds, and about fifty nests were suspended from the extremities of the branches. These were nearly finished, and various nests on the ground testified to the overburdening of some of the smaller branches. I did not hear any song, but the birds kept up a low chuckling note as they flew to and from the tree. The amont of energy and diligence displayed by the birds in building these nests is truly remarkable, when one considers the time wasted by many birds in nest-building.
77. Gymnostinops montezumæ (Less.).

Yery common. Gregarious at all times and breeds in communities, the birds selecting a solitary dead tree, as in the case of Eucorystes, generally with a hornet's nest in it, where the peculiar pendulous nests, over 3 feet in length, are suspended from the branches, presenting a very conspicuous appearance.

At these colonies many apparently old nests are found on the ground, having been attached to branches unable to bear the strain, or possibly blown down by the wind. Nests occupied at the time were found late in April, and nest-building was noticed early in Jamary. During the summer the birds are rather retiring, and only occasionally met with in the woods, but late in the fall and throughout the winter they are very conspicuons, visiting the large ebo and other trees in the plantations, or passing overhead from one feeding place to another. The flight is slow and labored, and recalls that of a crow; the birds also have a habit of tlying in an unsteady stream when moving from one place to another in umbers, instead of going in a flock. The ordinary note is frequently uttered, but, like the song of this species, is most difficult to describe. The song is a gurgling sound, rapidly ascending the scale, and simultaneously with it another note is uttered resembling the shrill squeaking of a hinge or wagon wheel in need of attention. The attitude of the bird in the act of singing is also remarkable. When about to deliver its notes it makes a profound bow, bringing the head below the level of its perch, at the same time raising the tail to a vertical position. While singing the bird gradually resumes its normal position. It sings at frequent intervals for a half hour or more, and when not thus engaged sits dressing its feathers or hops leisurely about. It is worth mentioning that in every case that came under my notice the bird, during its singing spell, was alone.

Iris dark brown; terminal half of bill chrome-orange, remainder black; naked skin on side of head flesh color, with faint bluish tinge.

78. Amblycercus holosericeus (Licht.).

Common; occurs mostly in clearings and banana plantations, but is met with occasionally in more open places in the woods. It is gregarions to some extent, as small flocks of six or eight are commonly observed traveling about in search of food. Clumps of bamboo and thickets of "wild plantain" (Heliconia) are favorite resorts of this species. It spends much time investigating the dead leaves hanging from banana plants, shaking and rattling them as if to frighten insects from their hiding places. Ordinarily quiet and rather retiring, it is possessed of considerable curiosity, and can be called up without any difficulty by imitating its note or the cry of a bird in distress, when it seolds one in a harsh voice, the note much resembling that of a Magpie. Several times while trying to entice more desirable birds from the thick underbrush have I been surrounded by individuals of this spe-
cies, who immediately began to scold loudly, with the result of frightening other birds away. This species is the author of various whistling notes, that are difficult to identify before one has become well acquainted with the bird, owing to its retiring disposition. On one oceasion, having wounded one of these birds, it escaped iuto the thick brush, where I was mable to reach it. Another individual flew into a bush close by and began to whistle, when the injured one hopped out from its place of concealment and answered the calls of the newcomer with an entirely different whistle.

Iris varies from Naples yellow to almost white; feet plumbeous.

79. Cassicus microrhynchus (Scl. and Salv.).

Common. These birds are gregarious part of the year, but go in pairs during the breeding season. The nest is somewhat over a foot in length, constructed of the same materials and resembling in shape the nest of Gymnostinops. The birds do not appear to select isolated trees, as in the case of the Yellow-tails, nor do they nest in communities. A pair was noticed building late in February in the top of a large forest tree. One of the birds, probably the female, attended to the nest-building, while the other escorted it to and from the nest, singing a few lines while material was being arranged in the nest. The song resembles notes occasionally uttered by the American Robin (Merula migratoria). These birds appear to have some particular roosting place, to which they resort each night, when not occupied with nesting cares. A small flock of seven or eight used to pass over the plantation each evening, drop into a tree for a moment or so, then off toward the woods, where they spent the night. When flying they make a whirring noise with the wings.

This is a forest species, keeping usually to the high trees, but often found among the lower branches searching for food in company with Phenicothraupis and other birds.

Iris pale blue; feet black.

80. Icterus prosthemelas (Strickl.).

Common in banana plantations on the Escondido. Although this bird was observed almost daily for over eight months, I failed to hear its song; the only note detected was a chirp similar to that of the House Sparrow (Passer domesticus).

81. Icterus mesomelas (Wagl.).

The common Oriole of the country. Confined to clearings, especially banana plantations, where it is known as "Banana Bird" to all the English-speaking people. It has a loud, clear song, with several variations. The bird is something of a ventriloquist at times, beginning its song in a low tone, as if far away, and gradually leading up to its
full volume, when one discovers the bird close at hand, instead of far away in the plantation, as at first supposed.

The nest did not come under my observation, but young birds were frequently met with; two young, hardly able to tly, were found Jue 22 .
82. Icterus spurius (Liun.).

Common in winter. First seen August 20, and last observed on February 2:3. This and the following species occur here mostly in small flocks of from tive to eight, sometimes both species in the same company. They do not seek their food among the banana plants after the manner of the native species, but prefer open, spreading trees in the plantations, bamboos, and fruit trees.

83. Icterus galbula (Linn.).

Common in winter. Noted from September 20 to February 16.
84. Callothrus robustus (Cab.).

One specimen taken at San Carlos, from a flock of the following species.
85. Agelaius phœeniceus (Linn.).

Common at San Carlos and in marshy places on the Rio Frio. Not enough specimens were preserved to decide whether this or sonoriensis was the form occurring there.
86. Dolichonyx oryzivorus (Linn.).

Observed flying over, October 10, on the Escondido. Heard several times late in August and September.
87. Quiscalus macrourus Swains.

Common at San Carlos and Bluefields; not observed at Greytown.
Several times during my stay at San Carlos I saw what appeared to be individuals of the recently described (Quiscalus nicaraguensis Salv. and Goolm. mingling with the above species at the wharf and along the lake shore, but shooting was prohibited within the town and no specimens were secured.
88. Cassidix oryzivora (Gmel.).

Not common. Observed a few times on the Escondido.

Family FURNARIIDE.

89. Synallaxis pudica Scl.

Very common at Greytown and quite so on the Escondido. Almost always in pairs. At Gireytown the birds were most commonly found in brush piles, prospecting for food, and on being approached would seek the recesses of the pile rather than escape by flying to some other
place of safety, chattering rather harshly at being interfered with. They also have notes of one or two syllables, but although I observed them ou many occasions and noted their habits minutely I never heard the song which Mr. Nutting speaks of (Proc. U. S. National Museum, vi, 1883, p. 404), and am inclined to think some mistake was made when he gave this bird credit for a song. On the Escondido the birds are often found in the dense masses of vines and parasitic plants attached to the trunks of trees standing in the phantations, in which they find favorable places for concealment. It is an easy matter to bring one of these birds out into plain sight by squeaking, as they show much curiosity. In their habits they resemble the Wrens, but exhibit less nervousness than those birds.

The nest is built in a bush, from 3 to 5 feet from the ground. It resembles a retort to some extent, in having a bowl with a neck at the top slanting downward. The nest is made of small thorny sticks closely laced together; the neck or entrance is built out and downward until it is below the level of the body of the nest. Sometimes this covered way is not very well defined, being lost in the mass of sticks. The nest is so compactly put together that it is not an easy matter to open it bare-handed. The species appears to go much better with this family than with the Temdrocolaptider, where it has long been placed.

Iris reddish brown.

Family DENDROCOLAPTIDE.

90. Automolus pallidigularis Lawr.

Common in the woods on the Escondido. Boes not cling to the trunk of a tree, but hops about and perches somewhat like a Robin. Its note very much resembles that of the Red-breasted Nuthatch (Sittu cunadensis). It passes much of its time searching in the rubbish that gathers on the broad palm leaves.

My specimens appear to be pallidigularis, although probably not typical. In two examples the under parts agree exactly in color with cervinigularis from Guatemala, marked "Compared with type."

91. Xenops genibarbis III.

One individual shot in the forest near Castillo. It was hopping about in a tree, some distance from the ground.
92. Glyphorhynchus cuneatus (Licht.).

This was the most abundant species of the family in the forest region embraced in this paper. Usually found in pairs. It climbs like a Woodpecker, frequently uttering its sharp "chip," sometimes a rapid succession of "chips." The bird is very tame and unsuspicious.

A nest found May 26 was in a small, natural cavity at the foot of a tree, not more than 10 inches from the ground, and the nest itself was level with, if not below, the ground. The eggs, two in number, were

$$
\text { Proc. N. M. } 93-32
$$

pure white, short ovate, and bhut at bothends. They measure 0.75 by $0.61,0.73$ by 0.60 .

Notwithstanding the fact that the eggs were somewhat incubated, the bird was congaged in carying tufts of fine roots to the nest at the dime of its diseovery. When surprised on the nest it would fly to the mearest tree and cling to the trunk, where it remained perfectly motionless, and allowed me to pass within a short distance of it. This performance was repeated several times, always with the same result, the bind evidently relyingon its dull color and silence for protection.
93. Dendrocolaptes sancti-thomæ (Lafr.).

Ocrasionally seev on the Escondido. It is sometimes attracted by the armies of ants, where it mixes with the other species of Creepers and Ant Thrushes.

94. Dendromis nana Lawr.

Quite common in the woods on the Escondido. This bird is usually fouml in the forest, but one pair was observed at Greytown on the trunk of a rocannt tree, some distance from heavy timber. I fail to rerognize the form rostaricensis Ridgw. My specimens present considcrable variation in size and color.
95. Dendrornis lacrymosa Lawr.

I did not meet with this speeies, but Wickham collected it on the Escondido.
96. Picolaptes compressus (Cab.).

Two specimens taken at San Carlos. They were climbing a solitary tree, located in a marshy spot, some distance from the woods.
97. Dendrocincla anabatina scl.

Olserved sereral times on the Escondido, with armies of foragingants. This and the following species were shot from the same tree, in one instance. Note, a querulous chirp, fiequently uttered. Iris dark brown.
98. Dendrocincla olivacea Lawr.

One specimen shot from a company of ant-eating birds on the Escondido. Iris dark brown.

99. Sclerurus guatemalensis (Hartl.).

One shot on the Escomblido. A pair of the birds was found on the ground in the deep woods.

Family FORMLICARIIDA.

100. Cymbilanius lineatus fasciatus Ridgw.

Common: fomd in the forest, in trees, usually from 10 to $\because 0$ feet from the ground. Ilas a fhat tering note of several syllables, rapidly uttered. Fromales appear to be bather retiring, and fall under observation much less frequently than males.

When Mr. Ridgway described this subspecies* he had only one bird Proseolings C". N. National Musemm, vi, 1883, 404, April 11, 1884.
from South America, a Cayenne female. His description has reference only to the female, and when applied to the male the differences pointed out by him are somewhat misleading, as in the latter the chief dissimilarity is observed on the under parts. Since that time the National Museum has acquired four males from Diamantina, Brazil, and others of both sexes, from Nicaragua and Costa Rica. A careful examination of this series leads me to believe that the northern birds are easily separable from the South American ones.

Granting that the Cayenne female is a typical one of the South American form, and I have reason to think it is, the difference between it and the Central American birds is at once apparent. The bars on the upper parts are much narrower and paler than in the latter, and, while the under parts are nearly the same as regards width of bars, there is a very strong suffusion of buff in the Central American examples. In males the difference between the bars on the upper parts is hardly distinguishable, but there is a decided difference below, the black and white spaces being considerably wider in fasciatus. The statement made in Biologia Centrali-Americana, Aves, in, 195, that the variation in the width of the white bands is probably due to age, the birds with narrower bands being the older, is disproved by two males from Diamantina, in which the wings are similar in color to those of the female, a mark of immaturity. These birds differ in no way from the other Diamantina males as regards barring of the under parts. There is a difierence in size alone sufficient to warrant the separation of the two forms, as an examination of the following table will show:

CYMBILANIUS LINEATUS.

Number.	Collection.	Locality.	Sex.	$\begin{gathered} \text { Binl } \\ \text { from } \\ \text { nostril. } \end{gathered}$	Wing.	$\begin{aligned} & \text { Longest } \\ & \text { taill } \\ & \text { feather. } \end{aligned}$
112275	U.S. N. M ..	Diamantina, Mrazil.		0.52	2.82	2. 67
120940	do	do	8	. 54	2.82	2. 77
120941	. do	do	δ	. 52	2.84	3. 01
120942	. . do	(1)...do		. 52	2. 80	2. 95
328.3	. do	Cayenne	\%	. 52	2.80	2.70

Iris carmine.

101. Thamnophilus melanocrissus Scl.

Very common. This species is found in thickets bordering the forest, in patches of bushes in clearings, in clumps of bamboo along the banks of streams, and in similar places. It is often seen on the ground in these situations, searching for insect food. The song of this bird is heard at frequent intervals during the greater part of the day. The performance is a repetition of notes, rapidly uttered, in one key, with a slight panse after the first and second syllables. "Took, took, tu-tu-tu-tu-tu-tu-took, wah," resembles it about as closely as it is possible to give it in print. The last syllable, "wah" is very harsh and guttural, and is heard only when one is very close to the bird. When singing, the bird usually seeks a perch above its surroundings, a bamboo, or the top of a bush, where it often remains for a considerable length of time, uttering its monotonous notes in answer to those of other individuals of the same species within hearing. It is rather shy under these circumstances, and on being approached drops into the bushes, where it remains perfectly quiet until all danger is over. On other occasions, when in the bushes, although in plain sight, the bird may be approached very closely without its showing any measiness.

The majority of males collected by me on the Escondido have white edgings to the feathers of the under tail coverts, some of them fully as much so as in T. transandeanus. Specimens in the National Museum from the north coast of Honduras have these feathers plainly edged with white, in one speeimen to such an extent as to give it the appearance of T. melamurus. The wing coverts in all of these specimens are conspicuously tipped with white.

Iris geraniun red; bill black; feet and tarsi light plumbeous.

102. Thamnophilus atrinucha Salv. and Godm.

Three specimens secured on the Escondido. They were all found in the forest some distance up in the trees; one of them was at least so feet from the ground when shot. Sometimes seen with Formicicora boucardi inspecting the palm leaves, and searching in the masses of rubbish which accumulate in such places.

Iris brown.

103. Thamnophilus doliatus (Linn.).

Common. This speries inhabits the same situations, and its song and hahits are very similar to T. melanoerissus. When anything happens to arouse its curiosity or startle it the crest is raised.

Mr. Cherrie states (Auk, ix, 189\%, 250) that this species occurs only on the Parific side of Costa Rica. It is quite probable, however, that the specie's will be found on the Atlantic coast also, as the bird is common at Greytown.

His noted in different specimens as yellowish white and greyish white; feet bluish plumbeous.

One specimen shot in the forest on the Escondido, July 2. This was the only one observed. It was hopping about in a tree after the manner of a Formicivora.

105. Myrmotherula melæna (Scl.).

One shot in the woods on the Rio Frio. It resembled Formicivora in its actions.

Feet and claws pale bluish plumbeous.

106. Cercomacra tyrannina Scl.

Very common on the Escondido. One of the Ant Thrushes most frequently seen. Found in bushy places or in low trees in the forest, where it keeps concealed and often utters its chattering note. Almost always found in pairs, but occasionally noticed roving about with Formicivort and other species.
107. Formicivora boucardi Scl.

Common on the Escondido. It keeps in the trees some distance from the ground. Sometimes seen in flocks of fifteen or so in company with other species, searching the palm leaves for food, reminding one of a troop of Kinglets or Titmice to some extent.

108. Ramphocænus rufiventris (Bonap.).

This curious little bird is rather common at Greytown, where it passes its time in the bushy thickets. On the Escondido it is often met with in the forest, hopping about in the thick undergrowth, seldom getting more than a few feet above the ground. It is usually quick and Wrenlike in its inovements, but at times acts very leisurely, scrutinizing its surroundings in seareh of insect food, very much after the fashion of a Vireo. It is a quiet, unsuspicious bird, rarely uttering a note of any kind, or manifesting uneasiness at the proximity of an musual object.
109. Gymnopithys olivascens (Ridyw.).

Uncommon on the Escondido. Apparently confined to the thick modergrowth of the forest, usmally found associating with other species of the family, attending the hordes of army ants. Shy and retiring.

Naked skin around eyes pale blne; iris dark crimson; tarsi, feet, and claws dark plumbeous; upper mandible black.
110. Gymnocichla chiroleuca Scl. and Salv.

Quite a common species on the Escondido, where it frequenis the undergrowth in the deep woods. Being a shy bird, it is more often heard than seen, keeping well concealed, and tlying hurriedly fiom one clump of bushes to another during its travels in search of food. It is donbtless gregarious to some extent, as the birds are generally found
in small companies of five or six. The note is a lomd, ringing whistle, like "checoo, cheer-oo, checoos" resembling that of the Cardinal (Gardinalis) not a little. The birds call every few moments in reply to their companions, while wandering about. This note is also used during excitement or when seolding. It is one of the species most frequently found in the vicinity of traveling ants.

Bill, tarsi, feet, and claws plumbeons; naked skin of head azure blue, campanula-blue posterior to the eyes; iris dark arimson.
111. Myrmelastes lawrencei (Silv. and Godm.).

An adult male of this rare species was shot in the forest of the Escondido, September 7. It was found in a locality where Gymnocichla chirolencel was common, and it probably has similar habits. This is, I believe, the first record for the species north of Pamama.

The skin on the head is colored as in Gymmocichla, but is only noticeable on raising the feathers.

112. Myrmelastes intermedius (Cherrie).

Met with on two occasions on the Escondido. Found in bushes in the forest. Rather shy, and difficult to secure. This bird has a rather pleasing call of several syllables. Skin on head colored as in the above species.

113. Hypocnemis nævioides (Lafr.).

Uncommon. Habits similar to those of Gymnopithys.

114. Formicarius hoffmanni (Cab.).

Common on the Escondido, where its lonely call may be heard in the woods at any time. This species passes its eutire time upon the ground in the more retired parts of the forest, using its wings only when suddenly surprised. It is an easy matter to call the bird up by imitating its whistle, and under these circumstances, if alarmed, will take wing and tly far enongh to enable it to escape. If one falls in with a bird whle traveling through the woods, it sneaks quietly away without resorting to tlight, menless a suspicious movement is made. On one oceasion I watched an individual for several moments while it was perched on a large vine a few inches above-ground, calling at regular intervals. It soon discovered me, when it jumped to the ground and walked rapidly away.

115. Phlogopsis macleannani (Lawr.).

Common in the woods on the Escondido. I saw them almost invariably with the armies of foraging ants, and, when disturbed, they quickly mate off through the underbrush, uttering their curious, low, rambling notes.

Naked skin on head azure blue, campanula-blue back of eyes; iris reddish brown; bill black; tarsi, teet, and claws pinkish vinaceous.

Those familiar with Mr. Thomas Beltes "Naturalist in Nicamaga," have no doubt been impressed with his accounts of the habits of the various species of ants, and his observations on the Ant Thrushes and other birds usually found with the Escitons, or army auts. My experience with the Ant Thrushes habitually attending armies of ants leads me to disagree with the following statement in this book (p. 20) insomuch as it bears on the food of these birds: "several speries of antthrushes always accompany the army ants in the forest. They do not, however, feed on the ants, but on the insects they disturb. Besides the ant thrushes, trogons, creepers, and a variety of other birds are often seen on the branches of trees above where an ant army is foraging below, pursuing and catching the insects that fly up."

I did not examine the stomachs of any of these birds, a circumstance I now regret very much, but ants were found in the months of some birds shot, which, while not proving positively that they were intended as food, strengthens a belief in that direction, especially when backed by other observations to the same effect.
In traveling through the woods one becomes aware of the proximity of hordes of auts, either by walking into their midst and receiving the information direct from the ants themselves, or by the medley of bird notes proceeding from the scene of activity. If the birds are approached quietly they will be found mostly close to the ground, and, as far as the Ant Thrushes are concerned, hidden in the thick bushes, on which and the ground the ants are swarming. On being discovered the various species make off through the underbrush in a guilty way, the Creepers begin an industrious search for insects on the trunks of neighboring trees, and each bird calls in its own peculiar manner, as if to disclaim any responsibility in the affair. The Creepers, or Rubycrowned Tanagers (Phemicothroupis), if present, are usually the first to notice an intruder and give the alarm. Various species of forest birds, hardly to be expected in these assemblages, are often found, joining in the scolding, and giving one the impression that they have been drawn into a discussion without knowing why. These latter birds do not appear, in most cases, to feed on the ants, but on the insects in the bushes and trees overhead. Four species of Ant Thrushes I invariably found with these columns of ants, Gymnocichla chirolenca, Phlogopsis macleamani, Hypocnemis nevioides, and Gymnopithys oliverscens, named in the order of their abundance. Señor Alfaro, director of the Museo Nacional, San José, Costa Rica, tells me that he has examined the stomachs of these birds and found them to contain ants.

Occasionally another species of ant is met with in the forest; this one travels in a narrow trail from 4 to 6 inches wide, instead of 20 or more feet, as in the case of the other, and, moreover, the trail is bare of everything, all obstructions having been removed. Birds accompanying these ants can not be feeding on insects disturbed by the latter, for none are started from the path; yet I have found the four spe-
cios of hide just mentioned in attendance upon these ants at varions times, evidently for the purpose of feeding on the ants themselves.

I do not think any of the other Ant Thrushes met with by me feed on ants, except possibly Myrmelastes, Formicerins, and (Irallaria. The first of these probably is an ant-cater, but 1 saw it only on three oceasions and am not able to say positively.

116. Grallaria dives Salv.

One sperimen shot in September, on the Eseondido. It was walking about on the ground, and on my approath thew into a low bush. I did not hear its mote.

Family TYRANNIDN.

117. Copurus leuconotus Latr.

Gommon. Tas a marked preference for dead trees in plantations and clearings, or dead limbs of living trees, in which the nest is usually located. The birds are almost invariably found close to the cavity in which their nest is phaed, during the breding season at any rate, frequently leaving their perbes to lly out after a passing insect, after wheh retmming to the same spot. The note is characteristic, shrill and prolonged, but rather weak.

118. Todirostrum cinereum (Limm.).

Ahundant. Has a sharp, explosive note of three or four syllables, giving one the impression that it is a much larger bird than is really the ease. My experience with the bird and its nest agrees very well with that of Mr. Cherrie, who has given a description of the nest and eges in the Auk, Vir, 1800, 233. Aceording to my observations, however, the bird is not restricted to the banks of streams, although it shows a decided prelerence for such phaes. All of the nests foind by me were in perfectly exposed situations and resembled bunches of drift grass. My tirst nest of this Flyeateher was fomm purely by aceident. While explorimes a busy tract, much frequented by this species, my attention wasdrawn to a small bird with disheveled phomage, which was darting at a Synulluxis pudico, accompanying its attacks by a hissing note. The attitude of the pugnacious little bird was striking, its tail was elevated and fully spread, and at every movement of the bird was switched from side to side in an angry way. With such a formidable appearance and spirited attack the intruder was soon driven off. The victor, which proved to be a Todirostrum cineremm, then hopped out toward the end of a branch and disappeared into what I had supposed to be an accidental tuft of dead grass and leaves. This I found to be its nest, a very compact strmeture, though ragged in appearance, with a hidden entrance in the side just large enongh to admit the bird.

Legs two or three, pure white. Three eggs, fomed Mareh 31 , measure 0.65 by $0.45,0.65$ by $0.46,0.65$ by 0.46 . Twoother egessare 0.63 by 0.43 , 0.71 by 0.41.

Iris pale yellow, almost white; feet bluish plumbeous.

119. Todirostium schistaceiceps Scl.

Rather common. Not seen during summer, but specimens obtained August 30, after which date it was common. It Greytown this species and T. cineroum are found in much the same places, but, while the latter is bold and defiant in its actions and notes, this bird is quiet and retiring; I did not hear it utter a note at any time. On the liseondido it was observed in open places in the forest, where it kept in the undergrowth.

120. Oncostoma cinereigulare Scl.

As in the case of the above species, it was only observed during fall and winter. In its actions and choice of feeding places it also resem bles that bird. First taken September 4.
121. Mionectes oleagineus assimilis (Scl.).

Not common. Aipecimen taken at Greytown and two others on the Escondido, one of which flew into the house. These were noted during fall and winter.

122. Capsiempis flaveola (Licht.).

Common in bamboos on the Escondido, and in bushy thickets in the vicinity of San Carlos. 'Taken also at Greytown. Has a weak note which it frequently utters while searching for food. It is very indus trious, almost constantly on the move, thongh arting in a leisurely manner. Numerous deserted nests found in the bamboos probably belonged to this species. They were shallow structures, attached to forks at the extremities of the bamboos, covered outwardly with green moss, and usually suspended over water. An immature bird differs from the adult in being lemon yellow below, instead of canary yellow; wing bars yellowish buff; tail tipped with yellowish buff; feathers of back, upper tail coverts, crown, and hind neek also edged with the same color.

123. Tyrannulus semiflavus Scl. and Nalv.

One specimen collected in some low bushes in open woods on the Escondido, September 7.
124. Tyranniscus parvus Lawr.

Common at Greytown in bushy thickets, and on the Escondido, where it was found high up in the forest trees in open places. The stomach of one individual examined was filled with small green seeds.
125. Elainea pagana subpagana (Scl. und Nilv.).

Common at Greytown and on the Escondido. Resembles Myiarchus in habits, but prefers clearings, in the vicinity of thickets. I did not notice it in the woods at any time.

```
126. Myiopagis placens (Scl.).
```

Common in bushes and thickets in the neighborhood of san Carlos.
127. Myiozetetes texensis ((iirand).

Very common everywhere in the vicinity of streams. Saw fully Hedged young on May 14, and found fresh eggs the same day.
128. Myiozetetes granadensis Lawr.

Common on the Escondido. One bird shot from a bamboo fell into the water, and before I could paddle to it a lizard ran ont and dragged it to the bank, wherenpon he dropped it and disappeared in some brush.
129. Rhynchocyclus cinereiceps (Scl.).

One specimen secured near Greytown.

> 130. Pitangus derbianus (Каир).

Common. Called "Kiskadee"by the natives. Confined to the banks of water courses.
131. Myiodynastes luteiventris Bonap.

One of a pair shot on the Escondido.
132. Megarhynchus pitangua (Limn.).

C'ommon, usually in pairs. Note is a harsh chatter. Not so partial to river banks as Pitangus.

133. Muscivora mexicana Sel.

Two specimens taken on the Escondido in September and October. The crest was not noticed in either case until the birl was shot.
134. Myiobius fulvigularis Nalv. and (iodm.

Shot a specimen on the San Juan, near Castillo, and took another far up the Rio Frio, where others were observed. It is found in the forest trees some distance from the ground, and makes a whirring noise with its wings while flying.

> 135. Empidonax pusillus traillii (Aud.).

Common on the Escondido and at San Carlos during the winter. Taken in fall as early as September 4 , and in the spring until May 6.
136. Empidonax flaviv ntris Baird.

Several taken on the Escondido; first noticed October 22.

137. Empidonax acadicus (Gmel.).

A specimen was taken on the Escondido October 2.2. Empidonaces were common during the fall, and I probably missed noting some of the species, as attention was directed more to other birds.
138. Contopus virens (Linn.).

A common migrant; but few seen during the winter months. First heard August 21, and af few days later its familiar whistle was frequently heard. It was very abundant September 27 .
139. Contopus brachytarsus Scl.

Common at San Carlos, but rather less so on the Escondido. An immature specimen taken in July has a very dark, almost pure black pileum. This specimen and others collected in February and March, in fresh, unworn plumage, have a very decided wash of straw-yellow on the under parts. This species prefers clearings and thickets. I did not at any time observe it in the forest country. Its note is weak.

140. Myiarchus crinitus (Linn.).

One specimen secured October 14 on the Escondido.
141. Myiarchus lawrencei nigricapillus (Cab.).

Very common; found mostly in clearings and bushy thickets; oceasionally in open places in the forest. Note very weak.

142. Tyrannus melancholicus satrapa (Licht.).

Abundant at all times. Young birds fully fledged were found May 14. In a marshy spot on the Escondido, where dead trees and isolated bushes abounded, this species was exceedingly abundant. It is rather difficult to get good specimens, most of those shot being either in very worn plumage or molting.

143. Tyrannus tyrannus (Linn.).

A migrant. First seen September 8, when a small company of six or so was seen. A flock of over a hundred was observed on the morning of September 15. The birds dropped into a large tree on the plantation, and, judging from their movements, started in at once to satisfy their hunger.
144. Tyrannus dominicensis (Gmel.).

Rather common at Greytown for a short time late in March.
Family COTINGIDむ。
145. Tityra personata Jard. and Selby.

Common. Usually found in small flocks in clearings, where dead trees abound. This bird has a very curious note-a low, gurgling sound, as if it were trying to clear its throat, sometmes hardly audible wheu the bird is in a ligh tree. The birds are occasionally given to playfulness, and chase one another lazily around the top of a tree, apparently with no desire ou the part of the pursuer to overtake the object of its chase, but merely to keep, it on the move. Breeds in holes in
trees. Feeds on fruits and berries, and possibly also on insects. Iris light brown; terminal third of bill batk; remathder dall rose purple; naked space around eyes purplish cammine.

146. Tityra albitorques frazeri Kaup.

Three individuals were shot out of" a dead tree on the "I. P." plantation May 1s. Two of these bids were females, one of which would shortly have deposited an egg. The species was not observed elsewhere.

147. Pachyramphus cinereiventris Scl.

Speries taken at Greytown and on the Escondido. A nest found at Greytown April 14 was in an orange tree about 12 feet from the ground. It was rather bulky, composed of grasses and stems of various phants, with an entrance near the top. It contaned three eggs, of a grayish color, obsemely mottled or blotched. The eggs were lost, and this description is entirely from memory.

148. Pachyramphus cimamomeus Latwr.

Rather common.

149. Lathria unirufa (Scl.).

Uncommon: noted in the forests on the Escondido.

150. Laniocera rufescens (Scl.).

One wandered into the house, on the Escondido, early in January, and was the only one noted.

This specimen, and one from Honduras (Segovia River), both males, are appreriably darker than an individnal from I'anama, and another firom ('osta Rica (Barranca). In the two former the indistinct dark edging of the feathers of the under parts extends throughout, including the under tail coverts in the Nicaraguan specimen, while in the Pamama and Costa Rican examples this edging is obsolete on the abdomen. The Honduras bird is recently adult, with signs of immaturity still apparent. The tertials and rectrices are tipped with tawny-ocharaceous. 'The feathers of the greater and of some of the middle wing coverts are conspicmonsly edged with black. There are also two or three harekish feathers on the belly. The northern birds are someWhat lager, as the following table will show:

Number.	Collection.	Lowality.	sex.	Exposed culmen.	Wing.	'rail.	Tiursun.
112176	U.S.N. M	Segovia liver, Hondmas.	(s)	0. 69	4.40	3. 5.5	0.85
4748	C. W. IR .	Escomblido River, Niearagrat	d	. 70	4.30	3.35	. 85
414:30	U.S.N. M	Barranca, Costa Riva	c	. 60	4.45	3.25	. 81
5376to .	I'thama	(s)	. 61	4.45	3, 25	. 80

151. Lipaugus holerythrus scl. and Nalv.

Several taken on the Rio Frio, but not noticed elsewhere. Wickham found this speries on the Escondido. Raises its crest when disturbed.

152. Attila citreopygius (Bonap.).

Two specimens secured on the Escondido agree in a general way with others of this variablespecies. These were taken in rather open woods, and resembled Flycatehers in their actions. Iris brownish carmine.

153. Pipra mentalis Sol.

Rather eommon in the forest on the Escondido. Usually found trav eling about in small numbers. I once saw a male in a lemon bush, half a mile from any timber. Two came into the house. Itis of adult male, white; feet and legs Isabella color.
154. Manacus candzei (l'ařul.).

Very common in the forest. Sometimes a flock of twenty or more males are found assembled in the low bushes, apparently after food. When flying the birds make a buzaing with the wings, and on alighting often make a noise similar to the cratking of a small twig, or of a Peccary gnashing its teeth. Feet orange.

155. Carpodectes nitidus Silv.

This species is common on the Rio Frio in Costa Ricab. During a trip, 11] that river, from February 26 to March 10, I foum the birds mumerous, from a few miles from the mouth to a point about $: 3$ miles below the (inatusa Indian villages, far up the river. The birds were observed daily, passing over the river high above the trees, with steady flight and regular wing-beats. Most of the birds seen on these occasions were males. My first specimen was a female, found near the edge of the forest in a small berry-laden tree. The berries of this tree proved a great attraction to various species. During two or three visits to the tree I noticed the following, not all of them were feeding on the berries, however: J'irongu rulbre, Myiobius fulriguleris, Tityra personute, I'echyramphus cinnamomens, Manacus énndei, Lipau!us holerythrus, C'arpodectes mitidus, Trogon massema, T. melanocephalus T. atricollis tonellus?, Caicallomatotis, Ramphustos tocard, and I'teroglossus torquatus. Several days later I was fortunate enough to find a tree in which the birds were feedines, some miles farther up the river They were attracted by the berries, with which the tree was laden. There were filteen or more of the Carpodectes in the tree, besides two or three Tityra persomatn, and other species, all feeding on the berries. It each discharge of the gun the birds flew out and disappeared in the surrounding trees, from whence, in the course of fifteen minutes or so, a bird would take the initiative and return to feed, to be followed shortly by the others, who straggled in by twos and threes.

After a long wat I secured seven of the birds, also a Tityra, shot by mistake, and wounded two or three more Corpodectes, which were lost in the woods. Most of those shot were gorged with the berries. About 2 miles above the tree just mentioned I found Mr. Frederich IIansen,
who was living on a small plantation bordering the river. He was well acquainted with the birds of the region, but had never seen this species near his clearing, nor did I, during several days stay there; yet \because miles down the river it was common. Mr. Hansen told me that he had seen this species on some of the small rivers emptying into Lake Nicaragua from the east. It was known, he said, as "Espiritu Santo," or Holy dhost bird. September 28 I shot a female from a tall trumpet tree on the Escondido, and at the same locality on January 5, 1893, Mr. (i. E. Mitchell shot ten, mostly males, which were feeding in a berryladen tree in the plantation. Mr. Mitchell did not hear the birds ntter a note, nor did any of the individuals observed by me make a noise of any description. Jamary 19, while on board a steamer going down the river, we observed three more of the birds in a trumpet tree on the river's edge.

Length of an adult male in the flesh, 10 inches. Iris very dark brown; bill, plumbeous, with black line along the culmen; feet and legs plumbeous.

> Family MOMOTIDE.

156. Urospatha martii (Spix).

Apparently rare. Noted on the Escondido.
157. Momotus lessoni Less.

Occasionally met with in the forest. The note is not very penetrating; it resembles "hoo-hoo," given in a rather jerky manner, and sounds far away, even when the bird is close at hand.
158. Prionirhynchus platyrhynchus (Leadlo.).

Collected on the Escondido by Wickham; I did not see it.

> Family ALCEDINLDA.

159. Ceryle torquata (Limm.).

Very common. This speries has a note similar to that of C. alcyon, but somewhat stronger.

One morning a pair of these birds went throngh a very curious performance. Attention was first called to them by their loud rattling ery, which was kept up almost constantly as they cireled and gyrated about over the water, occasionally dropping-not diving-into the the water, and sinking below the surface for a moment. This manenvering lasted some minutes, after which both birds tlew up stream uttering their ordinary note.

Two or three individuals were in the habit of passing the night at some point on the creck bark of the "I. I'" plantation, and came over just about dusk every evening. I moticed them for several months, and was struck with the regularity of their coming, and the course taken by each on its way to the roost. The birds could be heard a
considerable distance away, just before dusk, uttering their loud single "chuck" at every few beats of the wings. They appeared to come from their feeding grounds, often passing over the plantation opposite, probably to cut off a bend in the river. One of the birds invariably passed close to the corner of the laborers' quarters, though at a considerable height, and the other near a trumpet tree some distance away. The third bird was only a casual visitor. At times the birds came together, but usually there was an interval of several minutes. Their routes met at a turn of the creek a few rods back of the house, where they usually sounded their rattling notesand dropped down close to the water, which they followed to the roost. This was in a huge spreading tree, covered with parasitic plants and numerous vines, which hung in loops and festoons from the limbs. On one occasion I shot at one of the birds as it came clucking overhead, and caused it to drop several small fish. A female nearly ready to deposit eggs was shot October 9.
The birds made their appearance rather late in the morning, usually after 8 o'clock, and at times spent several hours of the day up there. Although the birds appeared to have their home at this place, I did not, on any of my numerous trips up the creek, discover the site.

According to my observations the Kingfishers on the Escondido rank about as follows in regard to abundance: Ceryle amazona, C. torquata, C. americama septentrionalis, C.inda, C.alcyon, and C. superciliosa stictoptera. The first two may be found at all times, the third is rather less common, while the last three are quite uncommon, the smaliest particularly so. C. torquata, C. amazona, and C. alcyon have notes very much alike; the notes of the others are weak, varying in volume according to the size of the species, and are quite different from those of the large species.

On the Rio Frio, where the solitude is unbroken by river steamers, and rarely by the native dories, birds inhabiting the water's edge are abundant, and among the smaller species Ceryle torquata and C.amazona are conspicuous.
160. Ceryle amazona (Lath.).

Abundant. The note is almost the same as that of C. ulcyon, but this bird has in addition a curious laughing note, which I have not heard from any of the other species.

161. Ceryle alcyon (Linn.).

Uncommon; observed on both rivers.
162. Ceryle americana septentrionalis Sharpe.

Rather common. Feeds largely on small crustaceans. The note is a weak "tuck."
163. Ceryle superciliosa stictoptera Ridgw.

Rarest of the Kingfishers in this region. Noted on both the Rio Frio and the Escondido.

164. Ceryle inda (Limm.).

Theommon. The first specimen I saw was in a pateh of woods, in a damp place near Greytown, some distance from any body of water, and rather an unusual place for a Kingfisher.

V'amily GALBULIDE.

165. Galbula melanogenia scl.

Rather rare. Noted on the Lscondido. Observed only on three or four occasions. It has a piercing cry, resembling "kee'-u," with the first syllable very shill and strongly atcented. The stomach of one sperimen shot, contained insects. The bird jerks its tail after the fashion of a Kingfisher.

Family BUCCONIDE.

166. Malacoptila panamensis Lafr.

Rather rare in the forests on the Escondido. A female shot May 2'3, was about ready to deposit egss. It was shot from a twig directly in front of a hole in a bamboo, in which its nest was probably located. The stomach was distended with insects, principally locusts. On July 2 , another female was found, aecompanied by one young bird, and both were secured.

The species seems to be rontined to the thick forest, where it keeps among the lower branches, at times eren descending to the bushes. His carmine.

Srptember 23 , I shot two birds which I supposed at the time to be mates, as they were found within 40 yards of one another, and subsequent dissection proved them to be male and female. The latter differs so much from ordinary pundmensis, in being dark clove-brown or brownish slate above, with brownish black stripes on lateral underparts, that Mr. Ridgway applied the name Maluroptila fuligimosa to it in a MS. description, and in ease the bird should prove to be really distinct foom ponmmonsis, thisname may be used to designate it. For the present I prefer to include it with M. panamensis.

This bird, No. 127339, I'. S. National Musemm, Escondido River, September 23,1892 , may be described as follows:

Above deep clove-brown, rather clearer or more inclining to brownish slate on head and neek; back and tips of wing-coverts sparsely marked with minute dots of dull buffy' ; sides of head, beneath and behind eyes, narrowly streaked with buff; median portion of forehead, loves (except near eyes), and malar phomes white; chin and upper throat mixed white and dusky brown, the latter nearly uniform on upper throat; center of throat white, beroming light dull buff on lower throat and chest; rest of lower parts buffy white, the breast and sides conspicuously striped with dusky brown, these stripes broadest and most sharply
defined on sides of breast; under wing-coverts and broad edges to inner webs of remiges buff. Upper mandible black; lower, pale yellowish brown, tipped with black; feet horn color; iris carmine. This color from life, the others from dried skin. Wing, 3.30; tail, 2.95 lateral feather 0.80 shorter; exposed culmen, 0.95 ; tarsus, 0.65 .

Mr. Ridgway's notes on the birl, made before knowing the circumstances under which it was shot, however, are as follows:

It is conspicuonsly unlike any of the twenty-three specimens of M. panamensis with which it has been carefully and simultaneously compared, nowithstanding the range of individual variation is so great. If M. inornate, as defined by Sclater and others, is separable from M. panamensis, then M. fuligimosa is certainly very distinct from both. The only other view which can possibly be justified by the series before me is that there is only one species in Contral America, from Panama to Guatemala, varying individually in plumage to a remarkable degree. Should this view prove correct, then M. fuliginosa must be immitted to represent an extreme of coloration quite as marked as the rufescent birds which occur both at the northern and southern limits of this range.

167. Bucco dysoni Scl.

One specimen obtained in the forest on the Escondido. This individual was catching insects, and acted very much like a Tyrannus. On making a capture it would seek a new perch, flying in a leisurely way, and showing considerdbie hesitancy about selecting a place to settle upon.

Iris, wine-purple; bill, black; feet, blackish.

Family TROGONIDAE.

168. Trogon caligatus Gould.

Apparently uncommon, on the Escondido, where all Trogons are called "Mountain Parrots" by the English-speaking people. Orbital ring yellow.
169. Trogon atricollis tenellus (Cal.).

Common. One flew into the house. Trogons are almost invariably found in pairs, rarely in small flocks. Iris very dark brown; feet plumbeous; orbital ring blue; bill chromium-green.
170. Trogon chrysomelas sp. nov:

Sp. Char.-Exactly like T. atricollis tenellus, except that the metallic green of the male is wholly replaced by opaque black, without the slightest trace of metallic gloss.

Adult male ('Туpe, No. 127338, Escondido River, Nicaragua, September 23,1892 ; Chas. W. Richmond): Entire head, neck, and chest uniform "dead" black; back, scapulars, and rump dull, dusky grayish brown, tinged or mixed with blackish; upper tail-coverts and middle tail-feathers brownish black, the latter abruptly tipped with deep black (about 0.40 of an inch wide). Wing-coverts and outer surface of closed
secondaries rery fincly remmiculaterl with black and white; rest of wing hark, the primaries edged with white, this ocrupying whole onter wel) at the base. Three outer tail-feathers mostly white (the outermost wholly white for the exposed portion), broally tipped (for about 0.45 of all inch on first to 0.70 of an inch on the third feather) with white, the remaining portion sharply and regularly bared on both webs with black, the black hars averaging very nearly as wide as the white interspaces. Under parts, posterion to the chest, wholly rich cadminm yellow, becoming a little paler next the black of the rhest. Bill greenish horn color, with tomia and culmen yellowish; feet horn color. Length (skin), 9.25; wing, 4.30; tail. 5.40, the outermost feather e.3. shorter; culmen, 0.75.

Following is a description of the supposed female of this speries:
Adult female (Type, No. 128375. Lscondido River, Nicaragua, January 17,1893 , Chas. W. Richmond): Upper parts, including upper tail coverts, sides of neck, malar region and auriculars, slate-black, almost pure black on pileum; middle pair of tail feathers slate-black, with a terminal black bar of 0.20 inch. Wings black, primaries, second to sixth, with outer webs edged with white; secondaries and wing-coverts narrow? barred with white, bars 0.10 inch apart. A white spot before and one behind the eye; thoat and breast between monse- and smokegray, a narow band of white posteriorly and bordering the yellow of the lower breast. Lower breast, abdomen, and under taileoverts deep "admium-yellow; sides olive-gray : feathers of tarsus black, whitish at the base. Second pair of rectrices black, somewhat lighter on the onter web; third pair hack; three onter pairs tipped with white, broad on the outer web, but narrowing down to a mere edging on the inner web at the tips of the feathers; the outer feather barred for its exposed length, but basal half of this barring more in the nature of spots, which do not touch the shaft, and become smaller toward the base; the second feather is similar but has less barring; the third still less. Exposed rulmen, 0.66 ; width of bill at base, 0.69 ; wing, 4.70 ; longest tail feather, 5.10 ; shortest, 3.28 : tarsus, 0.58 . Orbital ring clove-brown; iris dark brown.

The female just described resembles that of T. caligutus almost exactly, but the baring on the wing coverts and secondaries is very different, and there is a slight difference on the upper parts, a pereeptible gloss being present on these parts in the bird just described.

171. Trogon massena (iould.

Common. These birds feed largely on berries and fruit. The birds while pirking at the froit sometimes hang from the end of a branch, back downward, with wings fluttering, at such times presenting a very striking appearance.

Lris datk vellow; mandible orange.

172. Trogon melanocephalus Gould

Commou. The most abundant of the Trogons in the localities visited by me. It eften wanders into the plantations. Sometimes found in companies of six or eight. The note is of one syllable, often repeated.

The flight of this and other species of Trogons is very irregular, something like that of a Goldfinch (Spinus tristis).

Orbital ring pale blue; iris dark brown.

Family CAPRLNULGIDN.

173. Chordeiles virginianus henryi (Cass。).

Exceedingly abundant during fall and winter on the Escondido. First seen August 17. Specimens from Arizona, Mexico, and Nicaragua as a general thing have shorter wings than birds from the north, tlie differeuce being about a half inch, but in one Nicaraguan specimen the wing is fully as long as in northern examples, while three specimens from the Dakotas and Minnesota are as small as any of the southeri ones.
174. Nyctidromus albicollis (Gmel.).

Ahundant, particularly at Greytown. These birds are rery partial to open places and clearings, but are also found, though less commonly, in the dense woods. Specimens shot at Greytown early in February were breeding, and eggs about to hatch were obtained May 18. During the mating season two or three of these birds get together and utter very remarkable, low, guttural noises impossible to describe. The ordinary note may be represented by "kwe-ah-réo," uttered in a clear, riuging, and rather tremulous roice, and can be heard a long distance; the call from a distant bird sounds like "ah-réo." The birds are so abundant that at night the air seems to be filled with their notes, coming from all directions.

Stenopsis albicaudu Lawr? While paddling up the Rio Frio, birds were several times observed that I now feel quite swe were of this or another species of Stenopsis. They made their appearance just before nightfall, while still enough daylight remained to allow a fair sight of them. They flew close to the edge of the forest, at a height of 30 or more feet above the water. Their flight was steady and rather slow. The birds appeared to be grayish and had square tails. I did wot hear any note. In April, about 10 miles from Greytown, I saw one as it Hear across an opening in the forest and disappeared in the dark trees beyond. If not Stenopsis these birds were of a species as yet not recorded from Nicaragua or Costa Rica.

Family MICROPODID.E.

175. Panyptila cayanensis (Cmel.).

Common at the "I. P." plantation on the Escondido, but not olserved elsewhere. Specimens are vety difticult to obtain on aroome of the
high-flying habit of the birds. It is ahmost impossible to obtain any of the Swits exept during the rainy season, as at other times they fly high, far out of gun range. 'This appears to be the ouly record for the species north of lamana. For a note on the nest of this bird see The Auk, x, January, 1893, S4.

176. Chætura gaumeri Lawr.

C'ommon on the Escondido. Speeimens of this and the following speries taken about the last of May were apparently breeding. The reference to ('hatura vauxi on the Escondido, in the Biologia, Aves, If, 376 , belongs to this species, as I did not find vauxi.

177. Chætura cinereiventris guianensis Hartert.

Two specimens shot on the Rio Frio, from a large company of Swifts, and others were collected on the Escondido, at "I. I'." plantation, where, with C. gunmeri, it appeared to be common.

On the Rio Frio I saw numbers of a larger, back Swit, about the size of C. brumeitorques, but was mable to get specimens.

Family TROCHILIDE

178. Glaucis hirsuta (Gmel.).

Common in the forest, where it keeps near the ground, as do the two following species. Feet Hesh-colored.

179. Threnetes ruckeri (Boure,).

Much less common than the above; its habits are the same. It was noted on the Escondido. Feet flesh-colored.
180. Phaëthornis longirostris (Less, and Delattre).

Common in the forest on the Essondido, and not intrequently seen in the banama phantations, near the wools. It is quite partial to the flowers of the "Wild plantain" (Helicomia). This and the other forest or Hermit IInmmers are often found along streams, which they follow through the woods, pansing an instant here and there to investigate a spider's web, or bright-colored flower, of which there are many in these phaces. When darting rapidly though the woods, it utters a sharp, shrill "chwerp" at short intervals, and it is not a little startling to have one of these birds shriek as it shoots by within a few inches of one's head. Feet flesh-colored.

181. Pygmornis adolphi (Boure.).

('ommor on the Escondido. It is contined to the forest. I did not hear it utter any note One is made aware of its presence by the noise produced by its wing a fait buzz not louder than that made by a humble bee.

The crimson blossoms of a small spreading tree, common in the woods, are quite attractive to this species.
Basal halt of mandible Naples yellow; feet flesh-colored.
182. Lampornis prevosti (Less.).

Taken at Los Sábalos and San Carlos. It was rather common at the latter place in trees which bore trumpet-shaped carmine flowers.

183. Florisuga mellivora (Linn.).

A pair obtained in a cacao plantation on the San Jnan, near Greytown. It was rather common there.

184. Amazilia fuscicaudata (Fras.).

Very abundant at all places visited, far outnumbering the other Hummingbirds. This species is confined to clearings, and does not occur in the forest. On the Escondido it haunts the banana plantations, where it is attracted by the large purple flowers of the banana plants. The note is almost identical with the "tuck" of the Junco (Junco hyemalis).

Bill brownish carmine, except tip, which is black.

185. Polyerata amabilis (Gould).

Rather uncommon. Observed on both rivers. It is usually found in clearings and plantations, but occasionally in open woods. I once shot a specimen as it hovered before some flowers, on the opposite side of a small creek. It fell into the water, and almost immediately a green lizard ran to it, bronght it out, and, after shaking it, deposited it on the moss, with which the ground was covered. The lizard then assumed a ludicrous position and contemplated the victim, which was still alive, and wonld probably have devoured it had I not shot it also, thus securing two specimens instead of one. Mr. Mitchell one day had his attention called to an Iguana in a tree near the honse by the cries of a small bird, which the reptile had caught. The large lizards and Iguanas probably catch small birds for food whenever the opportunity offers.

Family CUCULID E.

186. Crotophaga sulcirostris Sw .

Abundant in plantations and clearings. Seems to be gregarious all the year round. The stomachs of many of those I examined contained grasshoppers, with which they often gorge themselves.
187. Piaya cayana mehleri (Bonap.).

Common. This species has a habit of ruming along the limbs, which gives it a close resemblance to a squirrel. It is indifferent as to choice of surroundings, being found in trees in clearings or in the forest, sometimes only a few feet from the ground, and again in the high trees.

One specimen secured at Greytown.
A Cuckoo noticed on the Eiscondido was either C. americamus or C. erythrophthalmus.

Family RAMPHASTIDAE.

189. Ramphastos tocard Vieill.

Common. This and the following species are seldom seen during the summer months, but from (October or November on through the winter they are seen daily, sometimes in large flocks, and often come out into the plantations. Both of these speciesmake a curions croaking noise, while assembled in some solitary tree or retired place, but if disturbed they fly silently away. It is the only note I have heard them utter.

190. Ramphastos brevicarinatus (iould.

This species is more aboudant than the above. Its habits are the stame. I shot a young one which had been feeding on the ground, judging from the mud on the feet and bill.

- 191. Pteroglossus torquatus (Gmel.).

Very common. Frequently found in small companies of from five to eight. Several may sometimes be killed out of a Hock before the remaining ones make up their minds to tly away. The note resembles "palice," which is the pronumeiation of the Spanish word feliz, meaning happy. It is uttered in a shill, squeaky tone, and the natives call the bird by this name, but I have heard it applied to neither of the other Toncaus here.

When a Hock of the birds are disturbed they call excitedly, and emphasize their displeasure by rapping their bills against their perch.

Iris lemon-yellow; orbital space, poppy-red, becoming brownish black immerliately around eyes; feet and legs sage-green.

> Family PICIDA.
192. Campephilus guatemalensis (Hartl.).

Common. Althongh a forest bird, it often ocen's in the clearings. Iris yellow.

193. Ceophlœus scapularis (Vigors).

Not as common as the above species. Iris almost white.
194. Celeus castaneus (Wagl.).

One individual obtained on the San Juan, near Greytown.
195. Chloronerpes yucatanensis (Cabot).

One obtained at San Combos February 25 . It was a female, and would shortly have deposited eggs.
196. Eleopicus* caboti (Malh.).

Common in the woods on the Escondido. Otten fomm near the colonies of traveling ants.
197. Melanerpes pucherani (Malh.).

The most abundant Woodpecker in the region. Found in open places in the woods, and in clearings.

198. Picumnus olivaceus Lafr.

One adult male was taken at San Carlos February 26. Judging from its actions and the high development of the tester, it had a nest somewhere in the viciuity. This bird appears to be true olinaceus; it does not agree with Mr. Rideway's flucotinctus. Feet plumbeous.

> Family PSITTACIDE.
199. Ara macao (Limu.).

Very common. Generally in pairs or companies of pairs. A tree cut down late in February contained two eggs of this species. Naked skin on head flesh-color.

200. Ara militaris (Limn.).

Somewhat less common than the above. Habits and notes similar.
Naked skin on head pale carmine-purple; iris dark yellow, but varies in different individuals.

201. Brotogeris jugularis (Miill.).

Observed at Sau Carlos, on the lake, if my memory serves me right, but I do not find any reference to the species among my notes.
202. Conurus finschi salv.

Common on the Escondido. Feeds usually in the large trees standing in the plantations, but at times in small trees bordering the forest, where one day I found a flock of about twenty-five scattered about in low trees that were laden with berries. The birds were tame and allowed me to approach them very closely.
203. Conurus aztec Souancé.

Abundant. Otteu seen in large flocks.
204. Amazona salvini (Sillvad.).

Common. Collected at Greytownand on the Escondido. Iris orange.
205. Pionus senilis (Spix).

Very common on the Escondido. Iris orange.

[^98]Observed on the Rio Frio, where a thock of about a dozen were fomd in a fruit tree. The birds were perfectly quiet and made no noise, even after I had shot into the tree several times and wounded some.

Family S'TRIGIDE.
207. Strix pratincola guatemalze Ridgw.

One specimen obtained on the Escondido.

> l'amily BUBONIDA.
208. Syrnium virgatum Cass.

One specimen was bronght to me alive on the Escondido. Tris mummy-brown.
209. Symium perspicillatum (Lath.).

Collected by Wickham on the Escondido.

Family FALCONIDE.

210. Pandion haliaëtus carolinensis ((imel.).

Common during the winter months, particularly near the coast. Observed as late as May.

211. Falco albigularis Dand.

Compon on the Escondido. This bird tlies very rapidly, and i.: quite noisy. Its mote slightly resembles that of the Sparmow Hawk (F. sporverins), and also that of the Killdeer (Sginlitis vocifera). Fool consists largely of grasshoppers. One evening just atter sundown I saw one of these birds pursue and catel a large moth that was thitting above the tree tops.

This Hawk appears to be confined to the plantations and clearings, where it prefers a perch on some prominent dead limb, from which it makes frequent forays.

On cloudy aftemoons or just about dusk the birds often fly up and down over the river until they can hardly be distinguished in the growing darkness.

Iris dark brown; ere and naked space around eres yellow; feet and legs pale orange.

212. Falco sparverius Linn.

Very common in winter. First seen October 16, and one shot late in Febrinary.

213. Micrastur guerilla Ciss.

One specimen shot on the Eiscondido, in a thicket bordering the forest.

214. Herpetotheres cachinnans (limm.).

Common on the Escondido. The guttural langh which usually precedes the long call of this species can be heard only a short distance. The birds call most frequently about dusk, and keep it up until after dark. The first individual I saw was in a large dead tree on the Rio Frio, near where I was encamped for the night. It began its monotonous call about dark and continned it for fully tifteren mimutes. It is often called "Rain Crow" by the Americans on the Escondido.

Iris burnt umber.
215. Elanoides forficatus (Limn.).

A small company noticed circling ahont on the Escondido on May 15.
216. Circus hudsonivs (Limm.).

Common during the winter on the Escondido. I shot one October 2, in the act of carrying off a chicken. In Niraragua it never lets an opportunity pass to get a chicken, probably because it fails to secure enough food in other ways, as the conditions are totally different from those prevailing in its hunting grounds in the Chited States. Small mammals appear to enter very little into the food of the birds of prey there, owing to the dense vegetation and the difficulty of securing them, but lizards, snakes, and insects are much sought for.

217. Accipiter velox (Wils.).

Found by Wickham on the Escondido; I did not meet with it.
218. Urubitinga anthracina (Licht.).

219. Urubitinga urubitinga ridgwayi (Gurney).

Not very common. Found usually in pairs. The above two species were observed on the Escondido, where Wickham secured sperimens. Also noted at San Carlos.
220. Leucopternis ghiesbreghti (InBus).

Mr. G. E. Mitchell got one specimen in the forest on the Escondido.*
A Hawk that may be Leucopternis phumbers, Salv. was often noticed on the Rio Fri !. It was usually found perched on limbsover the water, and was very tame, allowing the dory to pass under it at a distance of less than 10 feet, in some cases. One was observed to catch a large green lizard. Unfortunately no specimens were preserved, and the identification must remain in doubt.

221. Rupornis ruficauda (Scl, and Salv.).

This is the most abondant Hawk on the Escondido. It is fome in the plantations and cleared places, usually in pairs.

Iris noted as yellow, and in some specimens as light brown, the latter probably immature birds; cere yellow.

222. Buteo latissimus (Wils.).

Rather eommon on the Escondido during the winter months. First seen September 30 .

223. Buteo brachyurus Vicill.

One specimen secured on the Escondido.
224. Busarellus nigricollis (Lath.).

Observed at Greytown ou several occasions.

Family UATHARTHDE.

225. Gypagus papa (Linn.).

Frequently observed on the Escondido, and oceasionally several were seen in one day, but the birds habitually pass the time so high in the air that they will ordinarily escape notice. One secured on the Rio Frio. It was attracted to the clearing by a laree suake killed a tew days previous. As the bird came sailing overhead several Blark Vultures ont of resperet vacated the tree in which it was about to light.

It would be quite useless to attempt a description of the colors of the naked skin of the head and neck of this bird withont a diagram.

Iris white.

226. Catharista atrata (Bartr.).

Very common. One afternoon while paddling up the creek I heard a remarkable hissing noise, as of some body going rapidly through the air, and looking in the direction of the sound, saw a dark object shoot through the air in a downward direction and disappear behind some trees, but the movement was so swift that I conld not identify it, even as a bird. Shortly atterward another object came lown with the same rapidity and noise, but I could not plare it. About a month later I was in a cattle pasture containing solitary dead trees here and there, with a few Black Voltures perehed about, when I heard this same noise and saw a bird dive down and make a sharp turn when near the tree tops to check its speed, then sal up and perch with the other birds on the trees. This operation was repeated by several other birds, all of this species, which were very high in the air, and it was no doubt the means taken by them to reach the earth quickly. The birds observed on the first occasion were also doubtless of this species.

227. Cathartes aura (Limn.).

Common, but less abundant than the above.

> F'amily COLUMBIDA.

228. Columba nigrirastris Scl.

This is the common mourning l'igeon of the region. Abundant, particularly along streams, where its lavorite perch is in the trumpet tree. It is confined mostly to the forest.

Iris vinaceous; bill black; feet pink.
229. Columba speciosa (imel.

Two specimens secured on the Liscondido. Mr. (r. E. Mitchell shot a young bird in first plumage October 26.

Colors of adult: iris, brown; feet, lavender; bill, vermilion.
230. Columba rufina (Temm.).

One specimen taken on the Escondido.
231. Engyptila cassini (Lawr.).

Several secured on the Escondido.

232. Engyptila vinaceiventris Ridgw.

Specimens supposed to be this species were taken on the Escondido, and others seen. My identification rests on the description (Proc. U. S. N. M., $x, 1887,583$), the type not being available at this time.

The bird oceurs in clearings. Iris light yellow.
233. Peristera cinerea (Temm.).

Quite common on the Escondido, where it appears to be resident only part of the year. First noted abont September 20, when its peculiar two-syllabled call was frequently heard.

Found in bamboos along streams, or in solitary trees in the plantations, usually in pairs.

234. Columbigallina passerina pallescens (Baird).

One shot at San Carlos.
Family CRACID A.
235. Penelope cristata (Linn.).

Common in the forests on the Escondido, where it is found usually in the loftiest trees, as is Crax globicera. These birds are much hunted by the natives, who call them "(uabms." A hunter is guided almost eutirely by the low, prolonged cry of the birds, uttered at times while feeding, as without this clew it is almost impossible to find them.

Iris carmine; naked shin of throat dull carmine; scuttele of tarsus and feet coral red.
236. Ortalis cinereiceps (Gray).

Common. Known as "Chachalaca" by the Spaniards, and often called "Wild Chicken" by the Americans on the Escondido. It is frequently seen on the borders of banana plantations and in open places in the forest, usually in small flocks.

These birds are heard most frequently about dusk, chanting their monotonous notes, which resemble their Spanish name.

On one occasion I fired into at tree over a dozen times while a small Hoek of these birds were feeding in it. They remained throughont the disturbance, cheking to one another occasionally, as if uncertain as to the propriety of remaining. At other times I have noticed them exhibit undue haste in retreating from view, but ordinarily they are moderately tame.

237. Crax globicera Linn.

Rather common. Observed on the Rio Frio and on the Escondido. It is often kept in captivity. A fine male on the Magnolia plantation was very tame, and answered to the name of" "Toule." One of Tonie's peculiarities was an abhorence of women. The moment a dress appeared on the plantation he began to show great distress, uttering his low, plaintive whistle, and ruming atter the object of his wrath, with body leaning forward and almost brushing the ground, head thrown back, and tail raised, giving him a langhable appearance. After picking at the offending dress and following its wearer about for a time, 'Touie would quiet down a bit, but would continue to sulk and utter his note of complaint until the cause of the tronble had departed. This bird raised its crest when exeited, or when its curiosity was aroused, but on other occasions kept it depressed.

Iris dark brown; cere Naples yellow.

Family PERDICIDA.

238. Odontophorus melanotis Salv.

A flock of over a dozen was observed in the forest on the Escondido. When approached the birds tlew into the suromaling trees and afterwards ofl' into the woods, two or three at a time. Two were secured.

239. Odontophorus spodiostethus Salv.

One specimen. It was one of a pair found rumning in a path in the woods on the Eseondido. Following is a description of this bird, which has been compared with a specimen from Panama, belonging to the American Museum of Natural History :

Pilcum and cervix sepia, edged with mummy brown, some of the feathers with slender shaft-streaks of buff; a line of feathers on sides of head bordering superciliary stripe tipped with fine, tear-shaped buff spots, edged with blackish, these feathers most numerous and markings largest just above, and posterior to, black aurieular marks; interscapular region, including sides of neck, dark gray, broadly edged or bordered with light chestnut; this is followed posteriorly and on the scapulars by light olive-brown, the feathers for the most part faintly and almost imperceptibly vermiculated with a darker shade, having slender buff shaft-streaks, and usually the inner web black, with deep chestnut mottlings. Back, rump, and upper-tail coverts light olive, an occasional feather with a narow black shaft-streak; the feathers minutely
and indistinctly barred with wary lines and specks of blackish; tail similar, but with a faint chestnut tinge. Wings dull blackish brown; the primaries, except the first, with faint, nearly obsolete barrings on the outer wel); exposed portion of secondaries irregularly spotted or marked with buff; wing-coverts light grayish olive, irregularly and finely mottled and spotted with buff and dull blark, some of the feathers dull black on the inner web, with brownish edgings. Breast and jugulum dark gray, feathers faintly tipped with burnt-umber, just ruough to give the gray color a soiled appearance; throat dusky grayish white, passing gradually into the gray of the jugulum; chin, malar region, auriculars, lores, anterior part of forehead, and broad superciliary stripe tawny; a dusky streak before eyes; upper part of auriculars brownish black. Lower breast, sides, and encroaching to some extent on abdomen, buffy ochraceous; rest of sides light olive-brown; abdomen creamy buff, changing to almost white posteriorly; flanks and under tail enverts buff, rather conspicuously but unevenly barred with black.

The American Museum specimen has more tawny on the head, the whole pileum being tinged with it; the buffy ochraceous is more extensive on the sides; the flanks and under tail-overts are not nearly so conspicuously bared, and the back, rump, upper tal-coverts, and tail are strongly tinged with brownish buff.

The following measurements may be useful:

The length of wing, given in Mr. Salvin's original description is 4.20 inches. The American Museum specimen, formerly in Mr. Lawrence's collection, is labeled "()dontophorus rubigenis Lawr."" but I am not aware that any description was ever published. The specimen was collected a year or so after the description of (1. spodiostethus appeared.

Family TINAMIDA.

240. Tinamus robustus Scl.

Rather common in the forest on the Escondido. Those shot were extremely fat, and the flesh very tender, white, with a greenish tinge. These birds are known as "Mountain Hens," and probably one of the species of Tinamou is the one called "Six o'clock Bird," which has a very melancholy call of three syllables, uttered about sundown, and also oceasionally during the day.

241. Crypturus pileatus (Bodd.).

Common in the forest on the Escondido. Iris light brown.

242. Crypturus, sp.?

A bird of this gems, shot on the Escondido, was partly caten by a cat before I could save it. The wings, back, and wome other portions of the phomage were preserved, and later compared with the various species in the National Musemm series, but agreed with none of them. In length of wing it matches ('.boncardi and ('. sellewi, and in regard to plumage comes nearer the former, but appears to be distinct from both. Legs and feet orange-vermilion.

Family CHARADRHDE.
243. Agialitis vocifera (Linn.).

Common; first heard November 11.
244. 出gialitis collaris (Vieill.).

One shot February 29 on the Rio Frio.

Family SCOLOPACIDE.

245. Gallinago delicata (Ord).

Common at San Carlos in February, and exeedingly abundant at Magnolia Plantation on the Escondido, during my stay there in November and December. First observed October 16.
246. Totanus flavipes (limel.).

One seen on the Escondido October 16.
247. Totanus solitarius (Wils.).

Rather common. First noticed September 30.
248. Actitis macularia (Linn.).

Common. Observed from July 30 to May 16.
249. Bartramia longicauda (Beehst.).

One seen November 26 on the Escondido.
250. Tringa minutilla Vieill.

Two shot on the Rio Frio February 29 , and another shot on the Escondido in December. This latter had been noticed associating with a flock of Killdeers some time previous to its death.

Family RECURVIROSTRIDR.
251. Himantopus mexicanus (Miill.).

A small flock observed on the Rio Frio February 29.
Family CICONLIDA.

252. Mycteria americana Linn.

Noticed on the Lio Frio, and at Magnolia Plantation on the Escondido. Mr. Bownan, a plume hunter, intiomed me that he oceasionally saw it on the lake, where it was known as "Beterano."
253. Tantalus loculator Linn.

Common on the Rio Frio, and on the Escondido. On the latter river the birds were quite abundant in a marsh back of Magnolia Plantation.

> Family PLATALEIDA.
254. Ajaja ajaja (Linn.).

A flock of seven noticed on the Rio Firio.
Family COCHLEARIIDA.

255. Cochlearia zeledoni Ridgw.

Common on the Rio Frio, where several colonies were noticed. Two specimens obtained on the Escondido. The note of this species is a squawk, something like that of the Night Heron, and like the latter bird this species is nocturnal.

Eyes black and very large; feet and legs pale green.
Family ARDEIDA.

256. Ardea tricolor ruficollis (tiosse).

Two specimens noted on the Escondido.

257. Ardea candidissima (imel.

Rather common on the Rio Frio; not often noticed on the Escondido.
258. Ardea egretta Gmel.

Abundant on Lake Nicaragua, where it breeds in large colonies on the islands. Common on all the rivers and lagoons.

The plume hunter is at work on the lake, engaged in exterminating these birds. Two men are established at San Carlos, and have been engaged in this business for three or four years. They sell their phumes to a New York dealer. A firm in Greytown offers 50 cents for cach bird of this species bronght in, and this probably explains the scarcity of the birds about Greytown.
259. Ardea herodias Limn.

Common

```
260. Ardea virescens Limm.
```

Apparently a winter resident only, at which season it is very common. First noticed early in October.

261. Ardea cœrulea Linn.

Abundant. Barring A. cgretta, it is the most abumdant of the Herons. Iudividuals in the white phumage largely predominate.
262. Tigrisoma excellens Ridgw.

One specimen shot on the Eseondido, and others supposed to belong to this species, heard on the same river. The bird is nocturnal, and
has a very distressing note, like the groan of some one in agony. A Tiafrisoma was common on the Rio Frio, but no specimens were obtained.

263. Tigrisoma cabanisi lleine.

Given in the list of birds obtained by Wickham on the Eiscondido.

264. Nycticorax nycticorax naevius (Bodd.).

Common, especially on the Rio Firio.

> Fiamily ARAMIJN.
265. Aramus giganteus (Bontip.).

Several moticed on the Rio Frio.

> Family RALLIDA.
266. Aramides plumbeicollis /evedon.

One pair observed on the Escondido. They were in the woods on the bank of a stream, and were cackling very much like a (iuinea fowl. I shot one of them, at which the other set up a loud scolding. My bird agrees with the original specimens of A. plumbeicollis obtainea at Jimenez, Costa Rica, by Si. Alfaro, who informs me that he has found the A. celyennensis only on the Pacific side of Costa Rica. In looking over the dramides in the National Musemm, I find one specimen of cryennensis labeled "Talamanca" ((iabb), but with this exception all ethers from the east side are plumbeicollis. An immature bird from Ionduras (Segovia River) is also referable to this species. Two from David, Chirigui, are cotyennemsis.

267. Fulica americana (imel.

Several seen on the Diseondido.

268. Porzana cinereiceps Lawr.

Ahmmant at all phaers visited. It is esperially mumerous in the tall grass that lines the river banks. The bird is quite fearless, and is easily called out of hiding hy imitating the squeak of a young bird, or by making any umsual moise. It breeds rommonly in the plantations on the Escondido, where it buids its nest in the grass, wenerally about a foot from the gromm. 'The nest is made of dried grass, lined with : broad-leaved grass. It is almost globular in shape, and has a small entrance in the side. It is very dificult to find the bird on the nest, as it leaves on the slightest suspicion of danger, and skulks of through the grass uttering a sharp" chip."

The call is a curious, hatsh, grating chatter. These birds were frequently eamght in traps set for small mammals along the river's edge.

The eggs are from three to five, short ovate, pale creamy white, spotted, principally at the large end and sparingly over the rest of the surface, with cinnamon-rufons, mixed with lavender. Measurements of three sets are as follows: 1.11 by $0.85,1.10$ by $0.83,1.08$ by $0.85,1.07$ by $0.85 ; 1.12$ by $0.84,1.10$ by $0.8 \geq, 1.13$ by $0.8^{2}, 1.07$ by $0.83,1.08$ by $0.81 ; 1.10$ by $0.82,1.07$ by $0.52,1.10$ by 0.83 . Nests were found from early in May until date in August.

In a series of seventeen adults, including the type of the species and also that of P. lencogustra Ridgw., I fimd a wide range of variation, especially in the amount of white on the underparts. In individuals recently adult, the white extends from the throat to the muder tailcoverts, including the tibia. In some specimens this is uninterrupted, but in most of them there is a narrow pectoral band of cinnamon, with faint white edges to the feathers when the plumage is fresh. In these young adults the gray on the forehead and sides of head is often entirely absent, or very dull and much restricted. The specimens before me show these variations in all stages. In some of the apparently old adults the gray of the head is very restricted, and in one example its place is taken by umber brown. The black and white bars of the lower sides, flanks, and under tail-coverts varies much. In some the white bars are very narrow and in others quite broad. The black is intense in some individuals and dull in others. The variation in size is also considerable, as an examination of the accompanying table of measurements will show. The smallest specimen in the series is a female from the Rio Frio. This bird, in addition to its small size, has the shoulders and some of the wing-coverts very distinctly barred with white; the feathers thus barred are much darker than in ordinary birds, in fact almost black. A bird from the Escondido also has these barred shoulders, and one other shows a faint approach to it. In the type of I. leucogustra some of the feathers of the moder tail-coverts are tinged with light rufus, an approach to which is noticed in other specimens of the series. I am unable to separate I. leucogastra from P. cinereiceps.

Number.	Collcetion.	Locality.	Sex.	Culmen.	Wing.	Tarsus.
67904	U.S.N. M .	Type, Costa Rica (Gabl.).	9	0.63	2.90	1. 12
126286	- . - do	Greytown, Nicaragna....	\%	. 70	2.82	1. 10
126334 do	Iio Frio, Costa ILica.	¢	. 63	2.67	1.02
127050	. . . do	Lseondido River, Nicaragua	${ }^{\circ}$. 73	2.90	1.26
128387	. . do		σ	. 71	2.85	1.21
128388	\cdots -	---. do	d	. 71	2.83	1.17
4042	C. Wr. R	-ilo	\bigcirc	. 70	2. 80	1.11
4049	...do	. 10	$\stackrel{+}{+}$. 70	2.87	1.16
4084	- . . do	- . do	¢	. 71	2.95	1.19
4085	- ..do	- . do	9	. 66	2.84	1.15
128390	U.S.N. M ..	- . - do	${ }^{+}$. 65	2.75	1.10
4250	C. W.R. .-.	- - do	9	. 64	2.92	1. 15
4319	\cdots - do	. . do	\%	. 70	2.95	1.19
128391	U.S.N. M ..	-.. do	9	. 65		1.11
4321	$\text { C. W, } R$	-.....do	O	. 70		1.15
128389	U.S. N. M .		σ	. 75	2.83	1.19
91302	Type of P. lencogastra Ridgw., Los Silbalos, Nicaragua.	\%	.70	2. 75	1. 20

The downy young are entirely black above, slightly glossy; underparts dull black. deepest on chest and sides; throat dull light gray, mixed with hack down; abdomen and flanks dark smoke gray, with a tinge of louft on the former; a sooty grayish streak along the median line.

Immature birds are clove brown abore, becoming dull black on the tertials, rump, and tail. Top of head dull dark grayish, the feathers indistinctly edged with dank brown; sides of neek, and nape, with faint tinge of rufus; sides of head, neck, and breast smoke gray, obscurely tipped with dusky; throat, and underparts medially, dull white, the latter more or less tipped with dusky; lower sides and flanks dark grayish, obseurely barred with dull white. Wings sepia brown. In birds slightly older than this there is a buffy suffusion on the abdomen and under tail-coverts, and isolated cimamon feathers appear ou the breast.

Iris of the adult, carmine; feet and legs, olive; bill apple green at base; in immature birds the iris is dark brown; mandible plumbeous.

269. Porzana exilis vagans Ridgw.

One specimen taken on the Escondido. It was caught while ruming through the grass by one of the laborers.
This specimen agrees very minutely with the type in most points, but has rather less barring on the wing coverts and the tarsus is much shorter. Measurements are as follows:

Eyelids clay color; feet raw umber; inis carmine, bill as in the above species.

> Family JACANIDE.
270. Jacana spinosa (Limn.).

Very common at Greytown, and at Magnolia plantation on the Escondido. Young lirds about a week old were noticed April 10. Birds in immature plumage seem to predominate at all seasons of the year.

Family HELIORNITHIDE.

271. Heliornis fulica (Bodd.).

C'ommon on the Rio Frio, but much less so on the San Juan and Es condido, no doubt on acoomt of the traffic on the latter rivers. The birds are usually fomed close to the patehes of tall grass that oceur at intervals along the banks of the streams. They are almost invariably in pairs, rather shy, and quick to seek shelter if approached. A favor-
ite hiding place is muder the finges of bushes and trees which hang over the water in many places. When disturbed they swim at once for cover, to reach which they are sometimes obliged to cross the river, and will fly if hard pressed or if the distance is considerable. After a hiding place is reached they thy into the bushes overhead or swim uneasily about until forced to take to another place. A bird will often sink below the sufface leaving only the head exposed, but as it always faces the object in pursuit its white breast is readily seen, even under water. When suddenly surprised, as for instance at a bend of the river, the bird dives quickly and is not seen again. It also dives when wounded, but only when escape by tlight or swimming is impossible. My observations are to the eflect that it dives only as a last resort.

> Family ANATIDA.

272. Dendrocygna autumnalis (Linn.).

On an overflowed piece of land on the Rio Frio I saw a flock of over two thousand birds of this species. Small Hocks of a dozen are often seen on the Escondido. Known as "Whistling Duck" from its note. It is commonly kept in captivity.
273. Cairina moschata (Limm.).

Rather uncommon and extremely shy. Frequently seen in the domestic state. Noted singly or in pairs.
274. Anas discors Linn.

Three individuals, one of which was shot, observed swimming in the Escondido, December 27.

275. Dafila acuta (Lim.).

One specimen shot and a few others seen on the Escondido in December.

> Family PELECANIDA.
276. Pelecanus fuscus Lim.

Common near Greytown and Bhefields on the lagoons.

Family SULIDA.

277. Sula piscátor (Linn.).

The evening before we reached Greytown, from Kingston, a pair of Boobys flew around the ship as if intending to spend the uight on board, and, after considerable recomoitering, one of the birds perched on the rigging at the bow of the boat, where it was caught by W. L. Richmond.

Very abundant along the coast, nesting on the various keys which there abound. No specimens were secured, but the identification is supposed to be correct.

Family FREGATIDA.

279. Fregata aquila (Linn.).

Very common along the coast, and not rare on Lake Nicaragua. Occasionally seen on the Escondido, at a distance of 50 miles from its mouth. The birds breed abundantly on the keys off the coast.

Family PHALACROCORACIDE.

280. Phalacrocorax sp.?

A Cormorant was abundant on the lake, and numbers were seen on the Rio Frio. Rarely noted on the Eiscondido.

On the lake I one day saw over a thousand, fishing. They nest on the islands of the lake, where, Mr. Bowman told me, he had found as high as five thousand in one breeding place. Such a place was visited by him during my stay at San Carlos in February, and he reported finding eggs and young in all stages at the breeding grounds.

> Family ANHINGIDÆ.
> 281. Anhinga anhinga (Linu.).

Abundant on the Rio Frio, and often seen on the Escondido.

> Family LARIDE.

Terns of several speries were seen at Greytown and Bluefields, but no specimens were secured.

DESCRIPTION OF A NEW SPECIES OF FRUIT BAT, PTEROPUS ALDABRENSIS, FROM ALDABRA ISLAND.

re
Frederick W. True, Curatur of the Department of Mammals.

Among the mammals recently collected by Dr. W. L. Abbott, in the islands north of Madagascar, are two specimens of an interesting species of Pteropus, apparently undescribed, from Aldabra Island. This species is peculiar in having the orbits completely encircled by bone, and the color of the back and hairy parts of the extremities light yellow-gray.

The two specimens here described are both males. One was collected September 26, 1892, and the other October 5, 1892.

Pteropus aldabrensis, sp. nov.
Ears long, acute, nearly naked. Fur dense and soft; that of the under surfaces and rump, wavy. Fur of the back about 20 mm . long, nearly straight, directed barkward and appressed. Interfemoral membrane very narrow in the center and concealed by the fur. The fur extends on the upper sides of the tibia nearly to the tarsus, and there are a few hairs on the tarsus and metatarsus and at the base of the claws. On the under side the fur is confined to the proximal half (or less) of the tibia. Upper sides of humerus and proximal half of the forearm clothed with appressed fur; a naked area on the elbow. On the under side of the humerus the fur extends thickly almost to the elbow. The under surface of the prebrachium is clothed nearly to the line of the midde of the forearm. On the endopatagium a baud of hair, having the width of the prebrachium, extends from the sides of the body to the elbow, and is continued (growing gradually narrower) to the carpus. The interfemoral membrane is clothed above and below about to a line joining the centers of the tibia. The posterior margin of the endopatagiom is sparsely clothed with hairs.

Muzzle, lower jaw, and throat dusky brown. Head and cheeks pale yellow. Nape, shoulders, sides of neck, and breast bright ferruginous. Abdomen ocher-yellow, shading gradually into the ferruginous color of the breast anteriorly. Back aud extremities gray-buff, tinged with ferruginous on the humerus and tibia. Sides of the body below the wings chocolate-brown, which color also extends to the fur on the under side

[^99]of the wings below the humerns, though the hairs have more or less yellowish-brown tips

The hairs of the crown of the head are very pale yellow at the base, with darker tips. Those of the ferruginons collar are chocolate-brown at the base, except over the shoulderglands, where they are ferruginous throughout. All the hairs of the abdomen are grayish-brown at the bases, pale about the pubis, and darker anteriorly.

The majoritv of the hairs of the back are pale gray at the base, with buff extremities; mingled with them are fewer dark-brown hairs.

Skull.-Muzzle narrow. Orbits completed behind by the union of the post-orbital process with the zygomatic arch. Upper incisors close together, the outer pair nearly as large as the inner pair. Lower incisors crowded, the outer pair resting against the canines and the imer pair against these. The inner pair have about one-half the diameter of the outer pair, and are so placed that one-half their mass is extemal to a line joining the anterior surfaces of the outer pair. First upper premolar deciduous.

> Dimensions of the body.

Measurements.	$\begin{gathered} 20984 \\ 36053 \\ \text { Male.* } \\ \text { Aldabra } \\ \text { Id. } \end{gathered}$	$\begin{aligned} & \frac{20985}{3305 t} \\ & \text { MHIe.* } \\ & \text { Aldabra } \\ & \text { Id. } \end{aligned}$
Head and body	${ }_{189}$	${ }^{m m} 184$
Ear, from lower margin of oritice to tip	24	25
Forearm.	119	117
Thumb (without claw) -	38	38.5
Ilind foot (without claw)	37.5 15.5	40.0 16.0

[^100]| | Measurements. | 20984 | 20985 |
| :---: | :---: | :---: | :---: |
| Length | | $9 \mathrm{in}$. | $9 \frac{1}{2} \mathrm{in}$. |
| tixpanse. | | 39 in . | $40 \frac{2}{2} \mathrm{in}$. |

Dimensions of the skull.

NOTICE OF THE CRUSTACEANS COLLECTED BY THE UNITED STATES SCIENTIFIC EXPEDITION TO THE WEST COAST OF AFRICA.

BY
James E. Benedict, Assistant Curator of the Department of Marine Invertebrates.

The crustaceans enumerated in this paper were obtained by W. Harvey Brown and his brother, Arthmr II. Brown, during the voyage of U. S. S. Pensucola on the recent eclipse expedition to St. Panl de Loanda on the west coast of Africa. The ship sailed from New York on the 16th of Ostober, 1889, stopping on the way at the Azores and the Cape de Verle Islands, also at Free Town and Elmina on the Gold Coast, arriving at its destination on the 6th of December. After the eclipse the ship sailed for Cape Town and then homeward, stopping at the Island of St. Helena, Ascension Island, and Barbados. For the sake of completeness, the few things obtained at this American locality are included in the list.

The collection, though not large, is as extensive as could be expected where men were collecting in all departments in the limited time allowed in the different ports. With the exception of a variety of Calinectes tumidus Ordway, none of the Brachyura are believed to be new. However, the species obtained are valuable to the Musemm eollection, in every case adding a species or a locality previously unrepresented.

BRACHYURA.

Family PERICERIDe.

 Microphrys bicornutus (Latreille).Pisa bicornuta Latreille, Ency. Meth. Hist. Nat., x, p. 141, 1825.
Pericera bicorna Milne Edwards, Hist. Nat. des Crust., i, p. 337.
Miluia bicormuta Stimpson, Ann. Lye. Nat. Hist. N. Y., Vir, p. 180, 1860.
Microphrys bicornutus A. Milne Edwards, Crust. in Miss. Sci. au Mexique, p. 61, pl. XIV, figs. 2, 3, and 4, 1873.
Barbados, May 8, 1890. One specimen.
Mithrax sculptus (Lamarck).

[^101]Barbados, May 8, 1890.

Family CANCRIDA.

Actæa rufopunctata (Milne Edwards).

Xantho rufopunctatus Mihne Edwards, Hist. Nat. des Crnst., i, p. 389.
Actea rufopunctata A. Mime Edwards, Nouv. Arch. Mus. Mist. Nat. Paris, , p, 268,
pl. Xrim, tig. 1, 1a.
Ascension Island; one young specimen.
Leptodius americanus (Sanssure).
Chlorodius americamus Saussure, Crust. Nouv. Antilles et Mexique, p. 14, pl. i, fig.5.
Xanthodius americanus Stimpson, Amn. Lyc. Nat. Hist. N. Y., p. 209, 1860.
Leptodius americanus A. Milne Edwards, Crust. in Miss. Sci. au Mexique, p. 269, 1871.
Barbados, May 8, 1890.
Leptodius floridanus (Gibbes).
Chlorodins floridamus Gibbes, Proc. Amer. Assoc. Adv. Sci., p. 175, 1850.
Leptodins floridenus A. Milne Edwards, Crust. in Miss. Sci. an Mexique, p. 268, pl. xide, fig. 2, 1871.
Barbados, May 8, 1890.
Eriphia gonagra (Fabricius).
Cancer gonagra Fabricius, Suppl. Ent. Syst., p. 337, 1798.
Eriphia gomagra Milne Edwards, Hist. Nat. des Crmst., , p, 426, pl. xym, figs. 16, 17.
Barbados, May 8, 1890.

Family PORTUNIDÆ.

Genus CALLINECTES Stimpson.

Althongh the occurence of the genns Callinectes on the west coast of A firica is well known, the specimens obtained by the eclipse expedition are the only ones in the musem collection from that region. λ. Mine Edwards, in his Zoologie du Mexique, describes Cullinectes afiranus as a new variety of C. diaconthus from the Cape de Verde Islands. In this work he also makes all of the Ordwayan and other species of the gemus mere varieties of C. diacanthus. Holding this view, he maturally does not point out the afinity of his variety to any of the species generally recognized on this side of the Atlantic. In January, 1863 , Albert Ordway, through Dr. Stimpson, commmicated to the Boston Society of Natural History his well-known monograph of the genus Callinectes. In this paper Mr. Ordway brings into line as distinct species the different forms long known as Lupu hustate Say and its synonyms, and but recently placed by Dr. Stimpson in the gemus Cullinectes erected by him for the species on: account of its very narow \perp-shaped abdomen. Mr. Ordway, in defining the several species, used as one of the principal characters the widely different
forms of the appendages of the male abdomen. Seven of the species so defined are represented in the museum collection, and unless intermediate forms are found the value of this character is surely specific. Whatever may be the result of an exhanstive study of a large series of specimens from the widely-separated localities in which this genus is found, it would seem that for the present its study would be best advanced by regarding its principal subdivisions as distinct species.

Callinectes larvatus, var. africanus? (A. Milne Edwarls).
Callinectes larratus Ordway, Boston Jour. Nat. Hist., vir, p. 573, 1863.
Callinectes diacanthus var. africanus A. Milne Edwards, Crust. in Miss. Sci. an Mexique, p. $2 \mathscr{} 9$.

A large male was taken in the Beyah River, Elmina, Ashantee, November 27, and two large males were also obtained at St. Panl de Loanda, December 11, 1889.

These specimens agree so well with a large series from Key West that they can be separated only by the color, the African specimens being puple above and the American a horn color which can not be aceurately described from specimens so long in alcohol. The hands agree in color, both having dark fingers set with red teeth.

A young female without chelipeds taken at Porto Cirande, November 11, seems to belong to this variety.

Callinectes tumidus Ordway, var. gladiator, nov.
Callinectes tumidus Ordway, Boston Jour. Nat. Hist., viI, p. 574, 1863.
A small individual referable to this species was taken November 27 in the Beyah River. Althongh not more than one-half the size of C. larvatus from the same place, the intromittent organs are much longer and are curved and hooked, as in tumidus. The segments of the abdomen are the same. The last article of the fifth pair of legs is tipped with black, as in tumidus. The variety is made on account of the longer lateral spines and the less convex carapace.

Platyonychus bipustulatus Milue Edwards.
Arch. du Mus., x, p. 413, and synonymy.
Cape Town, February, 1890.

Family GEOCARCINID ※.

Geocarcinus lagostoma Nilne Edwards.
Hist. Nat. des Crust., ii, p. 27 ; Miers, Challenger Report, Zoïl., p. 218, pl. xvir, fig. 2.
A fine male was taken at Ascension Island, March 21. Miers gives a good figure of a female from the same locality and refers it to this species with a question as to its identity. The identity of our specimen depends on that of Miers.

Family OCYPODIDA.

Ocypoda cursor (Limmé).
Cancer cursor Limné, Syst. Nat., ed. xii, p. 1039.
Ocypoda cursor de Haan, Fama Japon., Crust., p. 29.
St. Paul de Loanda, December 11.
Gelasimus tangieri Eydoux.
Mag. de Zool., Cl. vir, notice xvir, pl. 14, 1835.
Beyah River, Ashantee, November 27 ; St. Paul de Loanda, December 11.

Gelasimus perlatus Herklots.

Additamenta ad Faunam, p. 16, 1851.
One male taken at St. Paul de Loanda, Iecember 11, agrees with descriptions and figures.

Family GRAPSIDIE.

Grapsus maculatus (Cateshy).
Pagurus maculatus Cateshy, Nat. Mist. of the Carolinas, If, pl. xxxvi.
(irapsus maculutus Milne Edwards, Ann. Sci. Nat., p. 187, pl. vi, fig. 1, 1853.
Ascension Island; Fayal, Azores. A very small specimen from the Cape de Verde Islands may also belong to this species.

Goniopsis cruentatus (Latreille).
Grapsus cruentatus Latreille, Hist. Nat. des Crust. et Ins., vt, p. 70. Gomiopsis cruentutus de Hatan, Fiman Japonica, Crust., p. 33.

Ashantee, November 27.

Pachygrapsus marmoratus (Fahricius).

Cancer marmoratus Fabricius, Ent. Syst., II, p. 450.
l'uchygrapsus marmoratus Stimpson, Proc. Acad. Nat. Sci. Phila,, p. 102, 1858.
Fayal, Azores, November 2.
Pachygrapsus transversus Gibbes.
Proc. Amer. Assoc. Adv. Sci., hif, p. 189, 1850.
Porto Grande, Cape de Verde Islands, November 11.
Sesarma africana Milne Edwards.
Hist. Nat. des Crust., if, p. 73, 1837.
Beyah River, Ashantec.

Plagusia depressa Say.

Jour. Acarl. Nat. Sci. Phila., I, p. 100, 1815.
Beyah River, Ashantee, November 11.

ANOMURA.

Family HIPPID A.

Remipes scutellatus (F'abricins?).

Ascension Island.

Family I'ORCELLANIDA.

Petrolisthes magnifica (Gibbes).

Porcellana polita Gray, Zool. Misc., p. 14, 1830. Griffiths, Cuv. Crust., p. 312, pl. xxv, tig. 2, 1833.
P'orcellana maynificat Gibbes, Proc. Amer. Assoc. Adv. Sci., p. 191, 1850; Proc. Elliott Soc., p. 6, pll. 1, fig. 3, November, 1853.
Petrolisthes politus Stimpson, Amn. Lyc. Nat. Hist. N. Y., vir, p. 74, 1860.
Dr. Stimpson regarded this as at syonym of P. politus of Gray, but Gray's description is inadequate and the figure of Griffiths does not help the identification, and unless the type is extant it would seem best to retain Dr. Gibbes's name.

Color in alcohol: Carapace light brick-red. When the surface is magnified innmmerable punctures are brought to view, the position of each puncture marked by a very small light colored spot invisible except under the lens. The merus joints of the ambulatory legs are colored the same as the carapace, but under the lens are more conspicuously and irregularly spotted or blotched. The carpal joints are a little darker. The propodal joints are a deep red, darkest near the distal end, which is abruptly light. The dactyls are light, each with a deep reg ring in the middle. The cholipeds are a deeper red than the carapace. The tips of the fingers are crimson with the subterminal portion black.

Barbarlos.

Family PAGURIDAE.

Calcinus sulcatus (Milne Edwards).
Pagurus sulcatus Milne Edwards, Ami. des Sci. Nat. (2), vi, p. 279; Hist. Nat. des Crust., 11, p. 230, 1837. See also Dr. Hilgendorf in Monatsberichte der K. P. Akad. zu Berlin, 1878.
Dr. Iilgendorf shows that Herbst's description agrees better with sulcatus than with the tibicens of the eastern seas, and refers a Calcinus from Mozambique to the tibicens of Edwards nee Herbst. Prof. Henderson, in the Challenger Anomura, p. 61, quotes Dr. Hilgendorf, but refers a Calcinus to Herbst's species tibicens. If the West Indian species was the one described by IIerbst, that name must eventually be adopted for it. The eastern species would perhaps take the name given by Randall, Pagurus levimanus (Jour. Acad. Nat. Sci. Phila., viit, p. 135 + 1839).

Barbados.
Fayal, Azores.

MACRURA.

Family PALINURIDA. Panulirus guttatus (Latreille), var., Bate.

I'alimu'us guttatus Latreille, Ann. du Museum, inf, p. 393.
I'aulirus guttatus, var. Bate, Voyage of the Challenger, Macrura, p. 78, pl. Xu.
One large specimen of this species, agreeing very well with the Variety described by Bate, was obtained at Porto Gramle, November 1®.

Panulirus spinosus (?) Milne Lidwards.
Hist. Nat. des Crust., 7. 298.
Two females with eggs, Porto Grande, November 12.

> Family PALANONIDA.

Palæmon jamaicensis? Herbst.
Milne Edwards, Hist. Nat. des Crust., 11, p. 398, and synonymy.
Ten specimens from the Quanza River at Cunga. In comparison with specimens from the island of Old Providence, West Indies, they are a little more slender, the teeth of the inner margin of the fingers are larger, and the spines of the first pereiopod are coarser. They agree more closely with much larger specimens from Nicaragua. It is possible that a large amount of material from these widely separated localities would give sufficient data to divide the species into varieties. The length of the largest specimen, from the tip of the rostrum to the end of the telson, is 15: millimeters; length of the left anterior pereipod, 192 millimeters.

Family PENAEIDA.

Penæus brasiliensis Latreille.

Nouv. Dict. Hist. Nat., xxv, p. 156, 1817. Miers, Iroc. Zoöl. Soe. London, pp. 299, 306, 1878.

A number of specimens of this speries are in the collection from Elmina, Ashantee. Miers says that "specimens from Whydah, on the west coast of Africa, agree in all resperts with anthentic specimens from Brazil." Our specimens range from 65 to 90 millimeters in length. They correspond with Miers's description, and compared with specimens from oft Trinidad, West Iudies, agree well, except that the latter have only nine teeth on the rostrum, while the former have ten. In the Trinidad specimens the longitudinal sulei do not extend quite so near' to the posterior border of the cephahothorax and do not end in little pits, as is the case with those from Elmina.

ISOPODA.
Family ONISCIDA.
Porcellio, sp.
St. Helena; Azores.
Family IDOTAEIDA.
Idotea, sp.
Cape 'Town.
Family SPHEROMIDE.
Sphæroma, three species.
Cape Town.

AMPHIPODA.

Undetermined genus and species. Cape Town.

PHYLLOPODA.
Family APODIDA.
Apus, sp.
Pond, St. Paul de Loanda.

A DESCRIPTIVE CATALOGUE OF THE HARVEST-SPIDERS (PHALANGIID E) OF OHIO

EY
Clarence M. Weed, D. Sc., Professor of Zö̈losy in the New Hampshirt Collese.
(With Plates LVII-LXIX.)
The present paper is based upon a study of a large collection of harvest-spiders from all parts of Ohio, gotten together during the writer's commection with the Ohio Agricultural Experiment Station from 1888 to 1891. Most of the specimens were taken, by myself or my assistants, in Franklin County, in the central part of the State, but good series were also obtained from Butler, Cuyahoga, Fairfield, Fulton, and Warren counties, so that all the regions of the State are fairly well represented.

The Phalangiid fama as a whole is quite similar to that of Illinois, which I catalogued in 1887.* It is very much richer in species than either New Hampshire on the north (six species) or Mississippi on the south (three species), both of which I have recently treated of. \dagger The family seems to reach its maximum development in the latitude of central and southern Ohio.

The figures accompanying were drawn by Miss Freda Detmers, under my direction. Most of them have been used in previous papers, but some appear here for the first time. The localities are given by counties.

Family PHALANGIIDA.

Subfamily Pifalanginne.

Members of this subfamily are Arachnids having the body composed of a single piece, and long, slender legs. The teguments are not coriaceous, though often quite solid. The segments are only indicated by striae, which are often obsolete. There are five ventral abdominal segments; a single anal piece, and two distinct lateral pores on the upper margin of the cephalothorax. The maxillary lobe of the palpus has two tubercles, and the epistoma is in the form of an elongated triangular plate.

[^102]The there genera fomed in Ohio may be distinguished as follows:

Abstract

I.-First joint of mandibles with a tooth on ventral surface near base, A.-Maxillary lobes of second pair of legs with a large base, impressed, straight and elongated, not attenuate, but rather a little enlarged from the base to the apex and very obtuse; claw of palpus denticulate

Liobunum. 13.-Maxillary lobes of second pair of legs forming elongated triangles, quite large at the base, then gradually retracted, not impressed, with anterior border straight; claw of palpus not denticulate

Mitopus. II.-First joint of mandibles without tooth...................................

Liobunum C. Koch, 1839.
Anterior and lateral borders of the cephalothorax smooth. Eye eminence rather small ; smooth, or provided with small, slightly distinct tubercles; widely separated from the cephalie border. Lateral pores small, oval, and marginal. Anal piece large, transverse oval or semicircular, much wider than long, and much wider than the reflected borders of the eighth segment. Mandibles short, similar in the two sexes; first joint furnished at the base below with an acute tooth. Papi simple; femur, patella, and tibia without any process and without projecting angles; maxillary lobe provided at the base with two strong comeal teeth. Maxillary lobe of the second pair of legs very long, nearly straight from the base, not attenuated, directed mesad nearly horizontally, and mited on the ventro-meson to the lobe from the opposite side without forming a sensible angle; the two together lightly arched on the cephatic border, and forming an even curve. Stemal piece large, slightly contracted between the fourth pair of coxa, gradually enlarging and obtusely truncate cephalad. Legs very long and slender; tibia of the second pair with a few false articulations. Palpal claw denticulate.
The species of Liobunum found in Ohio, with the exception of L. bicolor, may be distinguished by the following artificial key, which applies esperially to the males. I have not seen mature specimens of this sex of L. bicolor, and so have not included it:

1. Femur of front legr shertor than body ...-.-.. 3
2. Femur of front leg longer than body... 5

3. Dorsum reddish-brown, not spotted grande
4. Femur of palpus with a distinct spur on its outer ventro-lateral anglecalear
5. Femur of palpus without a spur .. 7
6. A distinct black longitudinal central marking on dorsum. .-..................... 9
7. No distinet black central marking...........-.. 11

8. Body brown, lecs black … ... 13

9. Palpi brown-.-.-...-... 15
10. Second legs with a white ring at distal end of tibia........................... longipes
11. Second leas black throughont 17
12. Eye-eminence with two rows of many tubercles; body smallpolitum

18 Eye-eminence with few tubercles; body of medium size

Liobunum vittatum (Say) Weed.
(Plate lvii, Figs. 1, 2; Plate lviif.)
Phalangium vittatum Say, Jour. Phila. Acad., ir, 65; Woor, Comm. Essex Inst., vr, 20; Underwood, Can. Ent., xvir, 168.
Liobunum vittatum Weed, Am. Nat., xxi, 935; xxvi, 999; Bull. III. St. Lab. Nat. Hist., III, 85, 101 ; Psyche, vi, 426.

Male.—Body 7^{mm} long; 4 ${ }^{\text {m"n }}$ wide. Palpi $7^{m n n}$ long. Legs: first, 44^{mm}; second, 89^{mm}; third, 45^{mm}; fourth, 64^{mmn}.

Dorsum reddish-brown, with a dark central marking, commencing at eye eminence and extending backward to the ultimate or penultimate abdominal segment. Contracting slightly near the anterior margin of abdomen, then gradually expanding until about the beginning of the posterior third of the abdomen, where it again slightly contracts. Ventrum slightly paler than dorsum, both finely granulate. Eye eminence a little wider than high, hack above, canaliculate, with small black tubereles over the eyes. Mandibles light yellowish-brown, tips of claws black; second joint with short sparse hairs. Palpi long, reddish-brown; tarsal joints paler. Femm and patella arehed; with two rows of rather-blunt, dank tubercles on the outer ventro-lateral surface; femur also having a few small subobsolete ones on its dorsal surface. Tibia with a similar row on its outer ventro-lateral surface, a short row on the distal portion of its inner ventro-lateral surface, and a short row on the proximal portion of its ventral surfare. Tarsus pubescent, with a row of short, blunt, black tubercles on its immer ventro-lateralsurface, exteuding fiom the base to near the apex. Legs black; coxie reddish-brown, minutely tuberculate; trochanters with minute scattered tubercles; femora and patellae with rows of small spines; tibie with very short hairs. Shaft of genital organ slender, subcylindrical, not broadened distally, but bent at an obtuse angle and terminating in a very acute point.

Female.—Body 8-9 $9^{\text {min }}$ long; 5-($\boldsymbol{j}^{m \mathrm{~mm}}$ wide. Palpi $5^{\text {man }}$ long. Legs: first, 42^{mm}; second, 90^{mm}; third, 43^{mm}; fourth, 61^{mm}.

Besides its rounder body and much more robust appearance, it differs from the male as follows: Dorsum of a much darker shade of brown with less of the reddish tint, and the ventrum paler. Second joint of mandibles with fewer hairs. Palpi shorter, more slender, with the rows of tubercles on the tibia subobsolete, and that on the tarsus entirely wanting. Legs generally light-brown with black annulations at the articulations. Ovipositor whitish, with no dark color in apical rings.

Ohio: Lawrence, August, 1858; July, September, 1889; Warren, summer of 1889 .

This abundant specie; is commonly found in the extreme southern comnties of the State. It runs into the form described by Say as Phalangium dorsatum, now known as Liobumum vittatum dorsatum, and

[^103]Proc. N. M. $93-35$
it is difficult to draw the line between them. I have suggested* that it would be well to refer to dorsatum the forms from those localities in which the average length of the second pair of legs of the males is less than 70 or possibly 7 7."". According to this division most of the forms from the central and northern portions of the State would belong to dorsatum.

> Liobunum vittatum dorsatum (Say) Weed.

(Plate lyif, Fig. 3.)

Ihalangium dorsatum Say, Jour. Phil. Acad., II, p. 66, Compl. writ., if, p. 13.
Woorl, Comm. Essex Inst., Vi, p. 18.
Liobumum dorsulum (Say). Weed, Amer. Nat., xxi, 1. 935. Bull. Ill. State Lab. Nat. Hist., HI, p. 83.
Liobumum rittatum dorsatum (Say). Weed, Amer. Nat., xxvi, p. 786.
This form differs from L. rittutum only in its smaller body and shorter legs. The arerage length of legs of seventen specimens, taken at Columbus, was as follows: Frst, $35^{m m}$; second, $69.8^{m " n}$; third, $35^{m \mathrm{~mm}}$; fourth, 50.2 mm . A very short-legged specimen of this form, from Dakota, is shown in Fig. 3, Plate Lvi.

This is perhaps the most abundant representative of the family in the central and northern part of the State. "This species evidently passes the winter in the egg state, as it has never been taken during the winter or early spring months. The eggs of the northern form apparently do not hatch rery early, probably not until May, and the young grow slowly. Ocrasionally I have found a fully developed one during the latter part of June, but generally they do not become mature until July. My collections show two half grown specimens taken at Columbus, Ohio, July 30, 1585, and another collected iu the same locality July 16, 1888, which is not fully developed.
"When very young these harvest-men seem to prefer the shelter of the grasses. low herbage, and rubbish piles, but as they grow larger they are to be found in a great variety of situations. In the prairie regions of central Illinois, where nearly all of the comntry is oceupied by corn fieids and osage orange hedges, the young are very common on the corn plants, where, as I have elsewhere surmised, they probably live upon the numerons small insects drowned in the moisture contained in the bases of the unfolding leaves, as well as on the corn plant lice (Aphis muidis). The full grown individuals are to be found nearly everywhere, on bushes and trees in the woods, in meadows and pastures, along fences, and in sheds and outhouses. They oceur abundantly from July to October.
"The only opportunity I have had of studying the long-legged southern form in the field was in southern Illinois during the autumn of 1886. Along the rocky ledges ruming across the State and throngh Union County, these hrvest-spiders were exceedingly abundant, occurring everywhere on the rocks and ground. They were so numerous that as one walked in the open groves on the farm of Mr. Parker Earle they would run along in droves.
"This species, like others of its family, has the power of exuding from about the coxie a liquid with a peculiarly disagreeable odor. This doubtless serves as a protection fiom birds and other enemies."*

Liobunum nigropalpi (Wood) Weed.

(Plate Lix.)
Phalangium nigropalpi Wood, Comm. Essex Institute, vi, 22-23, 39.
Phalangium nigropalpi Wood. Underwood, Can. Ent., xvir, 168
Liobunum nigropalpi (Wood). Weed, Amer. Nat., xxiv, 918; Trans. Am. Ent. Soc., xIX, 187.
MaLe.-Body $6-7^{m m}$ long, $4^{m m}$ wide; palpi $5^{m m}$ long. Legs: first, $40-51^{\mathrm{mm}}$; second, $75-92^{\mathrm{mm}}$; third, $39-4 \mathrm{~S}^{\mathrm{mm}}$; fourth, $60-70^{\mathrm{mm}}$.

Borly elongate, narrowed posteriorly. Dorsum reddish brown, of a nearly uniform tint, with a faint central marking, and scattered yellowish spots; minutely tuberculate. Eye eminence black, slightly canaliculate, with a row of rather small, black, distant tubercles on each carina. Mandibles light yellowish brown, tips of claws black; second joint with sparse hairs. Palpi well developed; black, except tarsus, which is brownish ; a row of tubercles on outer ventro-lateral surface of femur ; femm, patella, and tibia each somewhat arched; a few tubercles on lateral surface of proximal portion of patella, and a row of tlattened black tubercles on the inuer ventro-lateral surface of tarsus; ventral surface of tibia clothed with stiff black hairs. Ventral surface, including coxie, of nearly the same color as the dorsum, but a little lighter; coxe tipped with white. Legs very long and slender; trochanters dark brown, more or less blackish; rest of legs blackish. Genital organ Hattened, bent with a donble bow-like curve, contracted at its distal extremity, and ending in a short acute point.

Female.—Body $7.5^{m m}$ long, 4.5 $5^{m i n}$ wide; palpi $5^{m w n}$ long. Legs: first, 37^{nm}; second, 70^{mmn}; third, 38^{mm}; fourth, 51^{mmn}.

Differs fiom male as follows: Body larger, rombler ; central marking more distinct; imer distal lateral angle of patella more conical; row of tubercles on tarsus of patella obsolete; legs brown rather than black.

Fairfield County, September 20, 1890. This is a rare species for Ohio. The only time I have taken it in the State was at Sugar Grove on top of a wooded hill, where I saw several specimens rumning about on the fallen leaves.

Liobunum nigripes Weed.

(Plate Lx.)

Liobunum verrucosum (Wood). Weed, Amer. Nat., xxi, 935; Bull. Ill. State Lab. Nat. Hist., 111, 88-89, 102; Amer. Nat., xxiv, 918.
Liobuиum nigripes Weed, Trans. Am. Ent. Soc., xix, 190.
Male.-Body 6. $5^{m a n}$ long; $4^{m n n}$ wide; palpi $4.5^{m n n}$ long. Legs: first, 27^{mm}; second, $\tilde{5}^{\mathrm{mmm}}$; third, $2 \mathrm{~S}^{\mathrm{mm}}$; fourth, 30^{mm}.

Dorsum minutely tuberculate, almost appearing finely granulate, ferruginous brown, somewhat darker in front, with a faint indication of a dark central marking in some specimens, and indistinct transverse rows of yellowish dots. Eye eminence developed, slightly longer than high, black above, very slightly canaliculate, with two rows of small, black tubercles, frequently subobsolete. Mandibles light brown, tips of claws black; second article with sparse, dark hairs. Palpi slender, grayish or brownish in some specimens, with more or less black on basal joints; femur with short, seattered hairs ; ventral surface beset with well-developed black tubercles; patella curved, with short hairs and small black tubercles; tibia and tarsus thickly beset with short hairs, without tubercles, except a subobsolete row on the inner ventro-lateral surface of tarsus. Veutrum grayish brown, cephalic portion tuberculate. Legs, including trochanters, black; trochanters tuberculate ; femora, patelle, and tibie with rows of small spines. Shaft of genital organ straight, except at tip, broad, flat; about trothirds of the way from the base to the apex expanding into an alate portion, which contirues for abont one-fifth the entire length of the shaft, then suddenly contracting into a rather robust, curved, canaliculate end, and terminating in an acute point ; with two curved spinous hairs just behind the base of the jointed tip.

Female.-Body $9^{\text {mon }}$ long; $4^{\text {man }}$ wide; palpi $4.5^{\text {men }}$ long. Legs: first, 28^{mm}; second, 48^{mm}; third, 26^{mm}; fourth, 40^{mm}.

Besides its larger size the female differs from the male in the much darker color of the dorsum, which varies from dark ferruginous brown to almost black; in color of ventrum, which is grayish rather than brown; and in having the legs, except trochanters, brown rather than black.

Specimens of this species have been collected in Clermont County, Angust, 1890; Franklin, July 7-10, 1890; Warren, June 28, July 23, 1890.

The sexes of this species are quite molike. In tirst going over my collections I separated the males in one series and the females in another, thinking them different species, but on finding that the speci mens of one of the supposed kinds were all mates and the others all females, and that in nearly every instance the two forms had been taken at the same time and place, I had little hesitancy in considering them the same.

During July, 1890, this form was very common in central Ohio. But it does not appear to be so in other places, as I have no specimens from any other state except Illinois.

Liobunum politum Weed.
(Plate Lxi.)
Liobunum politum, Weerl, Bull. Ill. St. Labr. Nat. Hist., iff, p. 89; Amer. Nat., xxv, p. 295; Trans. Am. Ent. Soc., xix, p. 266.

Male.—Body $\tilde{y}^{\text {nm }}$ long; 2. $8^{m m}$ wide; palpi $3.5^{m m n}$ long. Legs: first, 25^{mm}; secoud, 51^{mm}; third, 26^{mm}; fourth, 36^{mm}.

Dorsum smooth, finely granulate; clear reddish brown, with no markings, except ocrasionally a fant indication (shown by a slightly (larker sharle) of the usual central dark marking. Eye eminence rather prominent, slightly constricted at base, black above, canaliculate, with a regular curved series of small, acote, black spines over each eye. Mandibles whitish, tips of claws black. Palpi slender, light brown, with femur and patella dusky; finely pubescent, with a subobsolete row of minute dark tubercles on the imer ventro-lateral surface of femur, and another row on the inner ventro-lateral surface of tarsus; joints slightly arched. Veutrum with coxa, including the membranous distal lateral tips, and generally the trochanters, vermilion red. Legs with proximal portions light-brown; distally dark brown or blackish. Shaft of genital organ nearly straight, slender, Hattened, canaliculate; distal portion very slightly expanded, then slightly contracted, and again expanded into a half spoon-shaped portion, and terminating in a small acute point.

Female.-Differs from the male in having a larger, rounder body, and in the color of the dorsum, which is brown, with a rather distinct, darker central marking, and numerous whitish spots arranged more or less transversely. In some specimens the central marking is subobsolete. Apical rings of ovipositor white.

Specimens of this handsome and abundant species have been taken in the following counties of Ohio, on the dates given: Champaign, August 1s, 1890; Clermont, August, 1890; Delaware, September 18, 1S90; Framklin, July 9, 1859; July 7, S, 9, 10, 27, 31; August 6, September $2,5,6,9,1890$; Lawrence, September 5, 6, 1890; Madisor, July 19, 1890 ; Scioto, Septembr 3, 1890; Warren, July 5, August 14, 16, 1890.
"This harvest spider is an out-door species, occurring abundantly in fields and woods, although seldom found about barns and outhouses. During the past summer (1890) I have taken great numbers in Franklin County, Ohio, in the grass along the banks of a small creek, and among the driftwood left by the overflowing of the Olentangy River. The species becomes fully developed eally in July, and the males and females are about equally abundant. Both sexes when disturbed emit from the coxal region a liquid having a peculiarly sharp, pungent odor.
"I placed a momber of these harvest spiders in a large glass vivarimu July 10, 1890. Two days afterward a pair were observed mating. They were standing on one of the vertical sides of the vivarium, facing each other. The male kept waving his second pair of legs in the air; his body was somewhat more elevated than that of his mate, being inclined downward and forward, while that of the latter was inclined upward in front. Similar observations were subsequently made on many other individuals. When alamed both sexes have a habit of standing on six legs, rapidly vibrating the body and moving the second legs in
a partial transerse circle in the air. In confinement they eagerly devour plant lice."*

In New England I have taken this species oftenest while sweeping the insect net over gras lands.

Liobunum longipes Theed.
(Plate hxif, Fig. 1.)
Liobunum nigropulpi (Wood). Weed, Am. Nat. Xxit 935, Bull. Ill. St. Lal). Nat. Hist., III. Liobunum lomgipes Weed, Am. Nat., xxiv, 918; 'Trans. Am. Ent. Soc., xix, 26̄̈.

Male.-Body $4^{m m}$ long, $3^{m m}$ wide. Palpi $4^{m m}$ long. Legs: first, 41$49^{1 \mathrm{~mm}}$; second, Se $_{2}-99^{\mathrm{mm}}$; third, $43-50^{\mathrm{mmn}}$; fourth, $59-67^{\mathrm{mm}}$.

Dorsum minutely tuberculate, reddish brown, with a slightly darker, subobsolete, central making, sometimes simply represented by obscure, brown blotches. Eye eminence at least as broad as high, black above, canaliculate, with rows of small, black tubereles on the carine. Mandibles light yellowish brown, tips of claws black; second joint with sparse hairs. Palpi slender, light brown, distal portion of temur and amost all of patella, usually a little darker. sometimes almost black; femm, patella, and tibia with small scattered tubereles and short hains; tarsus pubescent, with a row of small, black tubercles on its imer ventrolateral surface. Ventrum, including coxie, paler than dorsum, of a nearly miform, light brown tint; coxit tuberenlate, tips white; trochanters black. iuegs very long, slender, blark or brownish black; generally thongh not always with apical tenth of tibia of second pair white; shatt of genital organ flattened, contracted near its distal extremity and bent upwari, terminating in an acute point.

Female.-Body $6^{\text {mun }}$ long; $4^{\text {man }}$ wide. Palpi $4^{\text {man }}$ long. Legs: first, 39^{mm}; second, 72^{mm}; third, 40^{mm}; fourth, 51^{mm}.

Besides its larger body and shorter legs it differs from the male in having the dorsum slightly smoother, with more or less dark matings, and the central marking more distinct.

Ohio: ('lermont, August, 1890; Fairfeld, September, October, 1890; Franklin, August 6, 1890.

The females of this form are rare. I have a single sperimen taken in Fairfeld County during October which may be a fully developed female of this speceies: its body is large and swollen by eggs. Its legs are dak brown with white ammulations at all the joints, including those of tarsi, and a transverse white bloteh on dorsum of abdomen. If this is the female lomgipes the forms with plain brown lege mast be immature conditions of it.

> Liobunum ventricosum (Wood) Weed.
(Plate ixini.)
Phalanginm rentricosum Wood, Comm. Essex Inst., Vi, 32, 33, 39, fig. 7.
I'halangium rentricosum Wood. Packard's Guide to the Study of Insects, p. 657, lig. 633.

I'halangium ventricosum Wood. Underwood, Can. Ent. xvir, 169.

[^104]Liobumum (\%) ventricosum (Woud). Weed, Amer. Nat., xxi, 935.
Liobumum (?) rentricosum (Wood). Weed, Bull. Ill. State Lab. Nat. Ilist.. Hir, 101.
Liobumame ventricosum (Wood). Weed, Amer, Nat, xxiv, 918: Trans. Am. Ent. Soc., XIX, 188.

Male.-Body 7^{mm} long; $5^{m m}$ wide; palpi $6^{m m}$ long. Legs: first $35^{m m}$; second, 68^{mm}; third, 35^{mm}; fourth, 53^{mmn}.

Body elongate; abdomen conical or pear-shaped. Dorsum, legs including trochanters, and palpi varying from dark cimmanon-brown to ferruginous brown, most commonly cinnamon rufous. Ventrum light grayish brown. Dorsum closely granulate with an indistinct darker marking, and mumerous small grayish spots arranged in irregular transverse series. Eye eminence black, exept at base; rounded, not caniculate, smooth, or with a few small, acute tubercles. Palpi rather slender, with none of the angles prolonged; femur with a very few small spinous tuberdes and hairs; patella strongly, and femur and tibia slightly arched; coxe minutely tuberculate, tipped with white; trochanters and legs cimamon rufous; tarsi dusky. Legs long and moderately robust. Genital organ of male "Hat, nearly straight, slender at the basal portion, gradually widening and distally rather quickly expanded into a broad alate portion, and then abruptly contracted into a moderately robust, slightly curved point, which is placed at an angle to the rest of the shaft; at the base of the point a marked noteh in the end of the shaft.
 32^{mm}; second 62^{mm}; third, 32^{man}; fourth, 45^{mmz}.

Differs from the male in the very much larger size of its body. The abdomen in most specimens is greatly swollen, especially below.

Ohio: Franklin County, June 13, 1889 ; July 8, 1890 ; September 25-30, 1888; Warren County, August 7, 1890.

The immature form of this species was described by Wood as Phelungium formosum, and was later referred by myself to the genus Forbesium. The young occur rather commonly during autumn, winter, and spring, under boards and \log, being very much more abundant than I have ever found the adults. They become mature early in June.

Fig. 1.-Lisumam ventricosum. Immature: a, body; b, eye eminence, side view ; c, satue, front view ; d, palpus ; c, palpal claw ; all magnitied.

This immature form as found in spring shoftly before maturity is represented in tig. 1, and is described as follows:

Dorsmm remarkably smooth, mottled with gray and blackish brown; a wide, dark brown or black central marking commences on the cephalic marein and runs to the middle of the fifth abdominal segment, where it abruptly terminates; it is expanded
on the cephalothorax, contracted on the first abdominal segment, and then again expanded. The entire abdomen candad of the middle of the fifth segment usually much lighter than the part cephalad. There is a peculiar oblique sinus candad of each lateral pore. Eye eminence brownish, perfectly smooth, not at all canaliculate, almost hemispherical. Mandibles whitish, with the usual black tips to the claws; second article with sparse blackish hairs on dorsal surface. Papi rather slender, mottled, distally whitish; fumished with short blackish hairs. Patella with its inner distal lateral angle prolonged into a short apophysis, and having a rather thin brush of hairs on its imer lateral surface. Tarsal claw denticulate. Ventrum, including cosa, grayish brown, cephalic portion with short dark hairs. Trochanters brownish black. Legs light brown, ringed with dark brown; furnished with very minute blackish spines.

Liobunum bicolor (Wood) Weed. (Plates havy and Lxy.)

Phalangium bicolor Wood, Comm. Essex Institute, vi, 28, 39.
Phalangium bicolor Underwood, Can. Ent., xvit, 168.
Liobumum (?') bicolor Weed, Amer. Nat., xxı, 935.
Liobumm (\%) bicolor Weed, Bull. III. St. Lab. Nat. Hist., HII, 103.
Liobumum elegans Weed, Bull. III. St. Lab. Nat. Hist., III, 89, 102.
Astrobunus (?) bicolor Weed, Amer. Nat., xxxis, 918.
Liobunum elegans Weed, Amer. Nat., xxxiv, p. 918.
 48^{mm}; third, 24^{mm}; fourth, 37^{mmn}.

I orsum blackish, with a faint indication of a lighter central marking; a large triangular reticulated pateh on the cephalothorax, the posterior portion including the eye eminence; behind this is a smooth grayish black space which is interupted by a transverse reticulated band parallel with the front of the posterior coxie; a large quadramgular reticulated brown patch on the central portion of the ablominal dorsmm, behind which are two other transveise reticulated bands. There are also on the dorsum of the abdomen more or less distinct transverse rows of whitish tubereles with black tips. Segmentation between cephalothorax and abdomen and between segments of latter obsolete. Eye eminence prominent, dark brown, canaliculate, with a row of welldeveloped acute brown tubereles on each carina. Mandibles light yellowish brown, with very little black on claws; tooth on lower surface of first joint distinet; both joints smooth, with only a few indistinct whitish hairs. Palpi light brown, with femme and tibia more or less dusky; all joints exeent tarsi with mumerous small spinose tubereles. Ventral surface, including coxie, whitish brown; a transerse row of minute tuberches on earh abdominal segment. Coxir cosely tuberculate. Trochanters grayish. Legs light bown, very slender, long; proximal joints with rows of acute conical tubereles.

In Dr. Wool's deseription the patches mentioned above are spoken of as consisting of "close, small bark thbercles," but under a high power they are seen to have a retioulate surface.

Ohio: Franklin, October 2, 1ss9; October 13, 1s90; Hemry, August 18, 1890 (immature).

An examination of more than fifty specimens of a harvest spider in various stages of development, taken along the banks of the Hamme River, in Hemry County, Angust 18, 1890, leads to the conclusion that the form from Illinois described some years ago as Liobumum elegrens is an immature stage of the male of the present species. I have never found any adult males. The forms deseribed as elegons are illustrated in Plate lxy and their description is as follows:

Male.-Body, 3.2^{mm} long, 2.1 \mathbf{m}^{mm} wide. Palpi, 2.1mun long. Legs: first, $19^{\mathrm{mm} \mathrm{\prime}}$; second, 38^{mm}; third, ${ }^{20} 0^{\mathrm{mm}}$; fourth, 29^{mm}.

Dorsum blackish at the margins, especially on the abdomen, and light brownish in the middle, with a faint indication of a central marking. Finely granulate, with numerous very small black tubercles scattered in patches over the surface and a transverse row of large whitish tubercles on each abdominal segment. Lye eminence prominent, light brown, darker above; canaliculate, with two rows of well developed tubercles having whitish bases and black tips. Mandibles whitish, tips of claws black. Palpi slender, light brown. Femur, patella, and tibia, with distant short spinose tubercles. Tarsus with whitish hairs. Ventrom whitish brown, with a transverse row of tubercles on each abdominal segment, and the pectus and coxae closely tuberculate. Legs very slender, proximal portions light brown, distally darker. Femora furnished with minute blackish spines.

Liobunum calcar (Wood) Weed.

Phalangium calcar Wood, Comm. Essex Institute, vi, 26-27, 39. phatanginn calear Wood. Underwood, Can. Ent., xvir, 168. Liobumum (?) calcar (Wood). Weed, Amer. Nat., xxi, 935. Liobunum (?) calcar (Wood). Weed, Bnll. Ill. St. Lab. Nat. Hist., v. H1, 90-9

Male.-Body $7.5^{\text {man }}$ long; 4.5 $5^{\text {mun }}$ wide; palpi -mme long. Legs: first, 31^{mm}; second, 56^{mm}; third, 33^{mm}; fourth, 40^{mm}.

Dorsum reddish-brown; minutely tuberculate; some specimens having a faint indication of a central marking and seattered light-colored spots. Eye eminence well developed; of nearly equal height, length, and breadth; blackish above; slightly canaliculate, with a row of small, acute tubercles on each carina. Mandibles yellowish-brown, with obscure markings of a darker color, especially on the imner donsolateral surface of the secomd joint, where they are sometimes arranged in the form of a series of irregular parallelograms; dorsal surface of second joint sparsely clothed with stiff hairs; tips of claws black. Palpi long, very robnst, dark reddish-brown, lighter distally. Femur enlarging from base to apex, with a very robust spur-like process on its outer, ventro-lateral surface near the distal extremity, the anterior edge of the spur being provided with a row of short black tubercles; a few similar tubercles on the proximal portion of the imer ventrolateral surface; sparsely provided with spinose hairs. Patella short,
thick, so muited with the femur as to form an areh, with sparse hairs and a few scattered tubereles on its dorsal and outer-lateral surfaces; tibia arehed, densely clothed with long, hack hairs; a pateh of short, black tubereles on the proximal portion of its ventral surface, and a short row of similar tubereles on the apial portion of its inner, rentrolateral surface; tarsus clothed with long, back hairs, with a row of short, black tubereles on its inner ventro-lateral surface, terminating in a short, denticulate claw. Ventrum light reddish-brown. Coxa reddish, with a few short hains; two front pairs with a row of subobsolete tubercles on the anterior border. Trochanters light brown, darker above; remaining joints of legs reddish-brown with darker ammuli; femora, patella, and tibia having rows of short spines. Shatt of genital organ very robust, flattened. distally curved and suddenly contracted, and terminating in a short, acute point.

Hescribed from sereral Illinois specimens. This is a rare form of which the female is yet mknown. The species does not strictly belong to Liobunm on accomnt of the process on the femm of the palpus, but as this may be merely a sexual pecularity not possessed by the female, I leave it in that genus for the present. I have a single specimen collected on Catawba Island by Mr. J. S. Hine.

Liobunum maculosum (Wood) Weed.

(Plate lixit.)

Phalangium maculosum Wood, Comm. Essex Inst., vi, 31-32, 40.
Phalangium maculosum Wood. Underwood, Can. Ent., xvif, 168.
Phalangium (?) maculosum Wood. Weed, Bull. Ill. State Lab. Nat. Hist., III, 104.
Liobunum maculosum (Wood). Weed, Amer. Nat. xxiv, 918; Trans. Am. Ent. Soc., xix, 191.
MaLE.Body $8^{m m}$ long; 4.5 ${ }^{m m}$ wide; palpi $5.5^{m m}$ long. Legs: first, 19^{mm}; second, 33^{mm}; third, 21^{mmn}; fourth, 26^{mun}.

Female.-Body $11^{m m}$ long; $6^{m o n}$ wide; palpi $5^{\text {man }}$ long. Legs: first, 16^{mm}; second, 32^{mm}; third, 20^{mm}; fourth, $27^{7 \mathrm{~mm}}$.

Body large; dorsum sranulate, cinnamon-brown, with an indistinct darker, vaseshaped rentral marking, begiming at the eye eminence, contracting slightly on the first abdominal segment, and then slightly expanding and ruming with nearly parallel sides to the posterior extremity; a great many small yellow spots on the abdominal segments arranged in irreghar transerse series (in the male under examination there is on the front margin of the middle of the first abdominal segment, and between that and the eye eminence on the cephalothorax, transverse masses of minute golden lots); in front of eye eminence is a whitish V.shaped mark. Eye eminence well developed; black, except a whitish spot at the base both in front and behind; contracting from lase mpard; scarely camaliculate; with two subobsolete rows of backish tubercles. On the front margin of the cephalothorax, directly in front of the eye eminence, is a pateh of three rows of small
black tubercles, sometimes subobsolete; other similar, but smaller tubercles are scattered near the rest of the margin of the cephalothorax. Mandibles brownish white, with tips of rlaws deep black. Ventral suface of palpi very light brown, almost white; dorsal surface brown, femmr and patella darker than the rest; inmer distal angle of femur and patella slightly prolonged in female, scarcely so in male: femm, patella, and tibia furnished with rows of spinous tubercles, which on tarsus are represented by similar, but more numerous rows of stiff spines. Ventral surface very light brown, almost whitish; coxse tuberculate, same color as rest of ventrum. Trochanters black, rest of legs cimamon-brown, darker at articulations; proximal joints having numerons spinose tubercles. Genital organ of male "robust, somewhat flattened, distally alate, bent through its entire length with a double, bow-like curve; at its distal extremity blunt, not bent, with a sharp, slender, straight, projecting point."

Warren County; Lawrence County, July, 1889. A rare form, bearing a close general resemblance to L. grande. It is possible that it is all immature form of grande.

Liobunum grande (Say) Weed.

(Plate lxvii.)

Phalangium grandis Say, Jour. Phil. Acad. Nat. Sci., 11, 67; Compl. Writings, 11, 14.
Phalangium grande Say. Wood, Comm. Essex. Inst., vi, 34, 40.
l'halangium grande Say. Underwood, Can. Ent., xxiv, 168.
I'halangium (?) grande Say. Weed, Bull. Ill. State Lab. Nat. Hist., III, 105.
Astrobumus (?) grande (Say). Weed, Amer. Nat., xxiv, 917.
Liobumun grande (Say). Weed, Trans. Am. Ent. Soc., xix, 192.
Male.—Body $9^{m \mathrm{~mm}} \operatorname{long} ; 5^{\mathrm{mmn}}$ wide; palpi $6^{m \mathrm{mu}} \operatorname{long}$. Legs: first, 21^{mm}; second, 36^{mm}; third, 23^{mm}; fourth, 32^{mm}.

Dorsum minntely tuberculate, with numerous larger, black, spinose tubercles scattered thickly over the surface, being especially numerous on the cephalothorax and anterior portion of abdomen and occurring in a dense quadrangular patch just in front of eye eminence. Dorsim varying from ferruginous-brown to almost black, with mumerons small, yellowish, not very distinct spots on the abdomen, arranged in irregu lar transverse series, sometimes subobsolete, laving a dark-brown central vase-shaped marking begiuning at the sides of the eye eminence, where it is quite broad, and contracting motil it reaches the middle of the first abdominal scutum, then gradually expanding to the middle of the abdomen, then again gradually contracting toward posterior extremity; this band sometimes obsolete, or nearly so. Eye eminence black, prominent, rounded, somewhat canaliculate, each carina usually having a row of five or six well-developed, aroute, black, conical tubercles. Segmentation of cephalothorax with abdomen not very distinct, and of anterior abdominal segments nearly obsolete. I'alpi dull yellowish-brown, often mottled with blark, especially on
patella and tip of femme rather long, slender, with the imer distal angle of patella sometimes slightly prolonged; joints slightly arehed, especially patella; femm, patella, especially on dorsal suface, and tibia, fumished with mumerous black, spinose tubereles and hais; tarsus furnished with hairs, and with a row of tubereles on its imer ventro-lateral surfice. Mandibles light yellowish brown, tips of claws black; second joint furnished with mumerous stiff, backish hairs. Ventrum light brown or grayish; sides of pectus and coxie tuberenlate; trochanters black, tuberculate; remaining portions of legs dark brown, except the joints and tarsi, which are blackish. Genital organ similar to that of L. maculosum.

Fbalale.—Body 12mm long; 6.5 winde; palpi $6^{m m}$ long. Legs: first, 20^{mm}; second, $3 \tilde{5}^{\mathrm{mm}}$; third, 21^{mm}; fourth, 28^{mm}.

Differs from the male in its larger body, especially the abdomen, and in having fewer tubereles on the dorsum and palpi.

Ohio: Franklin County, August t, 1890; Fulton County, August, 1890; Lawrence County, July, 1ss9, September 5, 1890; Waren County, July 5, 18, August, 1890.

Liobunum grande (Say) var. simile Weed.

Liobunum similis Weed, Amer. Nat. גxiv, 918; Trans. Am. Ent. Soc. xix, 193.
Male.-This variety is at once distinguished by the deep black color of the palpi and mandibles. It does not differ in other respects from normal grande.

Ohio: Cnyahoga County, August, 1889; Butler County, September, 1s90. I have not yet seen any females having the markings of this variety.

Mitopus 'Thorell, 1876.
First joint of mandibles with a strong tooth on rentral surface near base. Maxillary lobes of the second pair of legs in the form of elongated triangles, large at base, anterior border straight Claw of palpus not denticulate. The body teguments are soft or subcoriaceons, and the anterior border of the cephatothorax in our species is provided at the middle with three small geminated points. The dorsal surface is provided usually with small teeth, which, on the abdomen, are arranged in transerse series. The eye eminemere is of medium size, about as wide as long, lightly canaliculate, and provided with two series of low tubercles.

But two American species have been deseribed, both of which are found in Ohio. They may be distinguished thus:
Legs mottled gray, not pinkish
pictus.
Legs with a distinct pinkish tinge.
ohioensis.

I'halangium fictum Woorl, Comm. Essex Inst., vi, 30-31.
Oligolophus pichs (Woorl). Weed, Amer. Nat., xxi, 35.
Oligolophus pictus (Woorl). Weed, Bull. Ill. St. Lah. N. H., In, 95-97.
Mitopus pictus (Wood). Weed, Amer. Nat., xxvi, 528.
Male.-Body $5^{m m}$ long, 3.2^{mm} wide; palpi, $4.1^{\text {m"n }}$ long. Legs: first, 11 mm ; second, 27^{mm}; third, 133^{mm}; fourth, 20^{mm}.

Dorsum minutely scabrous, mottled ash-gray, much lighter in some specimens than others. Dark central marking generally very distinct, commenoing at the anterior border of the cephalothorax, the dorsal surface of which it almost covers, and suddenly contracting at its posterior margin, so that it starts on the abdomen as a narrow line, slightly wider than the eye eminence, then gradually expanding until it reaches the end of the anterior third of the abdomen, where it suddenly contracds, its borders irregularly curving toward the dorso-meson, then expanding again, though not becoming as wide as before, and finally gradually contracting and running as a stripe to the last segment, or, as in some specimens, simply terminating at the anterior margin of the penultimate segment. Anterior margin of cephalothorax nearly straight, lateral angles slightly produced, each having a black spine on an elevated base; three large brownish black, tooth-like processes just back of the middle of the margin, each teminating with a minute spine, the middle process being slightly in front of the others. Back of these, but in front of the eye eminence, there is a curved series of minute spines on whitish elevated bases, and back of the eye eminence, on the cephalothorax, there are two similar nearly transverse series. There is also a similar transverse series on each segment of the alodomen most easily seen on the black central marking. Eye eminence large, brownish, canaliculate; each carina having four thick, brownish tubercles, each of which terminates in a black spine. Mandibles light brown, tips of claws black; dorsal surface of second joint and of apical portion of first joint furnished with short black hairs; second joint with a blunt tubercle on its imer dorso-lateral surface, just above the base of the finger forming part of the claw, and the apical portion of its outer lateral surface (behind the insertion of the thumb) prolonged into a tubercular process. Thumb with a prominent dorsal tubercle near its base. Palpi mottled; the outer ventro-lateral portion of the femur with an irregular row of long, slender, white tubercles, terminating with black spines; inner ventro-lateral surface with a series of long, black, curved, spinous hairs; inner lateral surface with similar shorter hairs more numerous, forming a brush on the slightly produced inner distal angle; dorsal and outer lateral surfaces with short spinous hairs; patella nearly as long as tibia, its inner distal angle produced and furnished with a brush of black hairs with recurved tips; shorter hairs in
distant rows on its dorsal and lateral surfaces; tibia with its inner lateral distal angle slightly swollen, not projecting forward as does that of the patella, but furnished with a similar brush of hairs; outer ventrolateral surface with a subobsolete row of white tubercles, tipped with spinous hairs: dorsal and outer lateral sumace furnished with sparse short hairs; tansus thickly covered with long, black, recurved hairs, usually with a row of subobsolete, short, black tubercles on its imer ventro-lateral surface, and terminating in a moderately robust simple claw. Ventrum light grayish brown, hispid. Legs short, robust; coxie light gray, covered with spinous hairs on elevated bases; trochanters light brown or grayish, tubereulate; remaining joints mottled with blackish brown and gray; all exeept tarsi with longitudinal rows of small black spines, and acute tubercles on their dorso-distal borders; tibie angular; tarsi hairy. Sheath of genital organ enlarged distally, truncate; shaft moderately robust, distally canaliculate, then expanded into a spoon-shaped portion, and terminating in a short, black, acute, articulated piece.

Female.-Body larger and more robust; besides which it also differs from the male in having no tubercles on the mandibles. Apisal joints of ovipositor grayish.

Ohio: Franklin ('ounty, Fulton County, August, 1890; Fairfield County, September 20, 1890.

Mitopus ohioensis Weed.
(Plate LXViif.)
Oligolophus ohioensis. Weed, Amer. Nat., Xxiv, 1103.
Female.-Body, $6^{m m}$ long, $3.5^{m m}$ wide. Legs: first, $8^{m m}$; second, 20^{mm}; third, $15^{\text {mn }}$; fourth, 100^{mm}.

Dorsum of a peculiar glossy gray, central marking indistinct, shown mostly by stripes at outer margin; begiming at anterior lateral angles of cephalothorax two fant blackish stripes run obliquely back and toward the middle of the anterior border of the abdomen (forming a truncate V) and then run nearly parallel to each other two thirds of the way to the posterior extremity, although they are nearly obsolete on the anterior third of the abdomen. Dorsum of cephabothoras free from tubercles exeept on margins, but having many minnte brownish gramules. I Oorsum of ablomen with mumerous, very minute pits seattered over its entire surface; and an indistinct transverse row of small whitish tubereles, tipped with very minute dark spines on each segment. Division between the rephalothorax and abomen almost obsolete, and sesmentation of anterior abdominal segments wholly so. ('ephatic margin of rephalothorax nearly straight; lateral angles slighty produced, each having a small black spine; three prominent, acute, erayish tubereles on middle of anterior margin, each tipped with a minnte black spine, the middle one being nearly twice as large as
those on the side, and also slightly in front of them. Eye eminence promment, constricted at base; grayish, except a dark spot about each eye; eyes small; camaliculate, and having on cach carina a row of four prominent, conical, grayish tubercles, each terminating in a minute black spine. Mandibles light brown, claws tipped with black; dorsal surface of second joint furnished with short black hairs. Palpi mottled; ventral surface of femur with numerous white, elongate, conical tubercles, each tipped with a prominent black spine; dorsal surface furnished with numerous black spinous hairs, many of which are tipped with white; patella short, with its inner lateral distal angle much prolonged (almost equaling the patella in length), the whole imner lateral surface being thickly set with strong spines, black tipped with white; a few smaller spines on its dorsal surface. Tibia slightly longer than patella, its inner lateral distal angle slightly prolonged, and its immer lateral surface provided with spines like those on the patelia; its dorsal and outer lateral surfaces also having smaller and sparser spines, and its ventral surface being provided with a few whitish conical tubercles tipped with black spines; tarsus furnished with many rows of rather long black stiff hairs, and having two small black tubercles at the base of the well developed clam. Ventrum light gray, hispid. Legs very short, robust, pinkish; coxae light gray with a slight pink tinge, provided with rather long, stiff black hairs on elevated, whitish bases; trochanters tuberculate, light gray with a pink tinge; remaining joint.s pinkish, all except tarsi having longitudinal rows of small black spines.

Described from one specimen collected in Warren County, Ohio, during the summer of 1889. I have since received from Prof. S. A. Forbes one other specimen taken in Illinois, which appears to belong to the same species.

A reëxamination of the type specimen after it has been in alcohol nearly four years shows that it was apparently just ready to moult when captured. The body has shrunken away from the outer skin, and an inner one seems to cover it. This leads to the suspicion that this is an immature form of M. pictus, the pink coloring possibly being due to the peculiar conditions of the moulting period.

Phalangium Linné.

Body soft or sub-coriaceous, with dorsum generally furnished with small sharp tubereles, which on the abdomen are arranged in transverse series. Eye eminence canaliculate, with two series of pointed tubereles. Lateral pores large, oval, and near the margin. Mandibles short and simple in the female, often more developed and provided with tubercles in the male; first article unarmed below. Palpi simple, often having the imer distal angle of the femur and of the patella very slightly produced, but never prolonged into a process; hairs equal, or sometimes thicker on the inner side, but not forming a brush; patella always shorter than tibia; maxillary lobe provided at the base with two conical
tubercles. Maxillary lobe of the second pair of legs much longer than wide, gradually narrowing from the base to the extremity, directed obliquely forward and not meeting; anterior border straight. Pectus large, parallel between the coxa, romded in front or slightly lancolate, more rarely enlarged and obtusely truncate. Feet long, more or less robust. Claw of palpus simple.

But one species of this genus has been found in Ohio.

> Phalangium cinereum Wood.
(Plate laix.)
Phalangium cinerem Wood, Comm. Essex Inst., vi, 25 ; Weed, Amer. Nat., xxy, 32; Trans. Amer. Ent. Soc., wix, 269.
 $23-33^{\mathrm{mm}}$; second, $44-52^{\mathrm{nm}}$; third, $24-33^{\mathrm{mmm}}$; fourth, 31-36 ${ }^{\mathrm{mm}}$.

Dorsum ash-gray, sometimes more or less brownish, with a wide, vase-shaped central marking, which is sometimes obsolete. There is a transverse series of small spinose tubercles behind the eye eminence, another row on posterior border of cephalothorax, and one row on each abdominal segment except the last two; a curved series of similar tubercles is found in front of the eye eminence. These tubercles have whitish bases and acute black apices, and generally also have a spinose hair arising on one side near the apex of the white portion and reaching beyond the tip of the tubercle. In front of eye eminence there are two longitudinal series of three each of these tubercles. Lateral borders of cephalothorax subsinuate. Eye eminence low, canaliculate, with a series of tive or six tubercles like those on dorsum on each carina. Mandibles brownish white, tips of claws black; second joint and apical portion of first joint furnished with short, black, stiff hairs. Palpi light brown, rather slender, first four joints with minute tubercles and short black hairs; none of the angles prolonged; tarsal joint without tubercles, but with hairs; claw moderately robus. Venter, including coxer, light grayish brown, with many somewhat quadrangular patches of a more pronounced brown, and scattered blotches of choco-late-brown. Trochanters light brown, with many small tubercles; remaining joints of legs cimamon-brown, more or less ammulated with lighter and deeper shades; angular, with longitudinal rows of black spines; sheath of genital organ suberlindrical, truncate; shaft robust, with two lateral oval openings near distal extremity, then contracted into a blunt scoop-shaped piece, turned upward at nearly a right angle and terminating in a slender acute point.

Female.-Body, $6-9{ }^{m " n}$ long, 4-5"n" wide; palpi, $4^{m \mathrm{~mm}}$ long. Legs: first, $21-29^{\mathrm{mm}}$; second, $39-52^{\mathrm{mm}}$; third, $22-29^{\mathrm{mm}}$; fourth, $30-37^{\mathrm{mm}}$.

Differs from male as follows: Body larger, rounder. Dorsum darker gray, more mottled, central marking more distinct; tubereles on dorsum smaller, those on cye eminence more numerous, and those forming the longitudinal series in front of eye eminence also more numerous. Palpi
with hairs but without tubercles. Legs with anuulations more distinct; trochanters without tubercles; spines on femur less prominent, and those on tibia obsolete; narrow quadrangular patches on venter of abdomen arranged in transverse series. Distal joints of ovipositor blackish; about thirty in number.

Ohio: Butler county, September 1, 1890; Delaware county, September 18, 1890 ; Erie county, July 5, 1890; Frankliu county, October 4, 1890, September 18, 20, 21, 1889; October 18, 1889; Lawrence county, July, 1889 ; Madison county, July 21, 1890.
"The ash-gray harvest-spider passes the winter in the egg state. A few years ago in Illinois I fom a bunch of about a dozen small, white, spherical eggs slightly beneath the soil surface, which were transferred to breeding cages. During the spring they hatched into small gray Phalangiids, which were believed to belong to the present species. I have never seen the female engaged in oviposition, but the structure of the ovipositor indicates that the eggs are deposited in the ground about half an inch below the surface. In the latitude of central Ohio there are apparently two broods each season, the first maturing late in June or early in July, and the second, which is much more numerous in individuals, in September.
"This species is preëminently what may be called an in-door form. It abounds especially in sheds, outhouses, and neglected board piles, being rarely found in the open field. Its color especially fits it for crawling over weather-beaten boards, making it inconspicuous against such a background. During the day it is usually quiet, but at dusk and on cloudy days it moves about quite rapidly. It probably feeds upon small flies and other insects that it finds during its nocturnal rambles. The only natural enemies I have seen it suffering from are the web-making spiders, in the webs of which it often perishes by getting its long legs inextricably entangled."*

Individuals of this species seem to be very irregular in becoming fully developed, and it is difficult to determine whether there is more than one generation a year or not.

EXPLANATION OF PLATES.

Plate LVif.
Fig. 1. Liobunum vittatum. Male. Natural size.
2. Structural details of same, magnitied: a, body; b, ey z-eminence, side view; c, eye-eminence, front view; d, palpus, side view; e, claw of palpus, side view.
3. Liobunum vittatum dorsutum. Male from Dakota. Natural size.

Plate LVIII.

Fig. 1. Liobunum rittatum. Female. Natural size.
2. Structural details of same, magnified: a, body; b, eye-eminence, side view; c, eye-eminence, front view ; l, palpus, side view; e, claw of palpus, side view.

Plate LIX.

Fig. 1. Liobunum nigropalpi. Male, Natural size.
2. Structural details of same, magnified: a, body; b, eye-eminence, side view; c, eye-eminence, front view; d, palpus, side view; e, claw of palpus, side view.

Plate LA.

Fig. 1. Liobunum nigripes. Male. Natural size.
2. Structural details of same, magnified: a. body; b, oje-eminence, side view; c, eye-eminence, front view; d, palpus, side view; e, claw of palpus, side view.

Plate LXI.

Fig. 1. Liobumum politum. Male. Natural size.
2. Structural details of same, magnitied: a, boly; b, eye-eminence, side view; c, eye-eminence, front view; d, palpus, side view ; elaw of palpus, front view.

Plate LXII.

Fig. 1. Liobunum longipes. Structural details of male, magnified: a, body; b, eyeeminence, side view; c, eye-eminence, front view; d, palpus, side view; e, claw of palpus, side view.
2. Mitopus pictus. Structural detail of male, magnified: a, body; b, eye-eminence, side view; c, eye-eminence, front view; d, palpus, side view; e, claw of palpus, side view; f, tip of mandible; g, genital organ.

Plate LiIII.

Fig. 1. Liobunum rentricosum. Male. Natural size.
2. Structural details of same, magnified: a, body; b, ere-eminence, side view; c, eye-eminence, front view; d, palpus, side view; c, claw of palpus, side view; f, maxillary lobes of second legs.

Plate Lidiv.

Fig. 1. Liobumum bicolor. Female. Natural size.
2. Structural details of same, magnified: u, body, with legs and palpi removed; b, eye-eminence, side view; c, eye-eminence, front view; d, palpus, side view; e, claw of palpus, side view.

plate livy.

Fig. 1. Supposed immature male of I. bicolor.
2. Structural details of same, magnified: a, body; b, eye-eminence, side view; c, eye-eminence, front view; d, palpus, side view; e, claw of palpus, side view.

Plate Idivi.

Fio 1. Liobuпи maculosum. Female. Natural size.
2 Structural details of same, magnified: a, body; b, eyo-eminence, side view; c, eye-eminence, front view; d, palpus, side view; e, claw of palpus side view.

Plate Livil.

Fig 1. Liobumm groudc. Male. Natural size.
2. Structural details of same, magnitied: a, body; b, eye-eminence, side view; c, eye-eminence, front view; d, palpus, side view ; e, claw of palpus, side view; g, maxillary lobe of second leg.

Fig. 1. Mitopus ohioensis. Female. Natural size.
2. Structural details of same, magnified: a, body; b, eye-eminence, side view; c, eye-eminence, front view; d, palpus, side view; e, claw of palpus, side view.

Plate LXIX.

Fig. 1. Phalangium cinereum. Male. Naturalsize.
2. Structural details of same, magnified: a, borly; b, eye-eminence, side view; d, palpus, side view; e, claw of palpus, side view; f, maxillary lobe of second leg; h, tip of ovipositor; i, dorsal tubercle.

Fig. 1.

Fig. :

Fig. 3.

Liobunum vittatum (Say). Male.

Fig. 1.

Fig. :
Liobunum vittatum (Say). Female.

Fig. 1.

Fig. 2.
Liobunum nigropalpi (Wood). Male.

Fig. 1.

Fis. id.
Liobunum nigripes Weed. Male.

Fig, 1.

Fig. 2.
Liobunum politum Weed.

Fig. 1.

Fig. \because.

1. Liobunum longipes.

ㄱ. Mitopus pictus.

Fig. 1.

Fig. 2.
Liobunum ventricosum (Wood).

Fig. 1.

Fig. 2.

Liobuntem bicolor (Wood).

Fig. 1.

Fig. :
Liobunzm bicolor (Wood). Immature male.

Fig. 1.

Fig. :
Liobunum maculosum (Wood).

Fig. 1.

Fig. 2.
Liobumum grande (Say).

Fig. 1.

Fig. :
Mitopus ohiocnsis Weed.

Fig. 1.

Fig. 2.
Phatangium cinereum Wood.

SCIENTIFIC RESULTS OF THE U. S. ECLIPSE EXPEDITION TO WEST AFRICA, 1889-90.

REPORT UPON THE INSECTA, ARACHNIDA, AND MYRIOPODA.

BY
C. V. Riley,
Honorary Curator of Insects,
[including descriptive papers on Pseudoneuroptera by P. P. Calvert; and on Arachnida by Nathan Banks and George Marx.]
(With Plate LXX.)

INTRODUCTION.

The insects of this collection are from a region the insect fauna of which is almost totally unrepresented in the National Museum collection. For want of funds we have been unable to make more than a very small begiming in the rollection of exotic insects, while the literature at command in Washington upon exotic species, is yet very insufficient. A large proportion also of the African insect fauna yet remains to be worked up. For these varions reasons I have been obliged to refer much of the material to specialists for determination, my own part in the work being little more than the orderly arrangement of the determinations for publication. The collection as a whole is not large, and the Coleoptera and Lepidoptera were more generally collected than the insects of any other order.

The Hymenoptera of the collection were kindly determined by Mr. W. F. Kirby, of the British Musemm, and I have simply brought the list together in proper arrangement and added a few notes.

The Lepidoptera, after some few species had been determined at the Musemm, were sent to Rev. W. J. Holland, of Pittshurg, Pa., who submitted a full list of determinations arranged according to locality. In the interest of miformity Mr. Holland's list has been rearranged in systematic order.

There were only seven species of Diptera collected. Dr. S. W. Wiljiston, who has so materially assisted me in working on the Diptera, was unwilling to attempt their determination, and the material was so poor and so scanty that it was not thought worth while to send it abroad. Four of the species have been determined generically.

In the Coleoptera, with the aid of Mr. M. L. Linell, a certain number of species were made out and the residue were then sent to Dr. David Sharp, of England, who has determined them, when necessary, by comparison with the collection in the British Museum. Mr. (hampion, of the British Musemm, has given a few of the names in the families ('istelidx, Lagridde, and Anthicide to Dr. Sharp, while Mr. Jacoby has examined some of the Chrysomelidee and Mr. Gorham the Endomychide.

The Orthoptera have been determined by Mr. Henri de Saussure, of Geneva, Switzerland.

The Pseudonemroptera were sent to Mr. P. P. C'alvert, of Philadelphia, Pa., who describes the new species.

The Hemiptera were sent to Mr. A. L. Montandon, of Bucharest, Roumania, who has given me most of the determinations.

In the Arachnida the families Attida and Lycosida have been studied by my assistant, Mr. Nathan Banks, and his report, with descriptions of the new species, is appended. The remaining Arachnids have been referred to Dr. George Marx, whose report, with descriptions, is also included. The Myriopoda were sent to Messrs. O. F. Cook and G. N. Collins, of Syracuse University, and as tive of the seven species comprising this material were, according to their decision, entirely new to science, I have appended their report in the form in which it was received.*

I have added such details as to number of specimens and locality as may have value. My sincere thanks are due to all the gentlemen named for their courteous aid in the determination of the material.

INSECTA.

Order HYMENOPTERA.

Family APIDA.

Bombus sp.

A single poor alcoholic specimen. Horta, Hayal.
Xylocopa torrida Westwood.
Eight sperimens, all females. Gongo, Jamuary 2,1890 , and December 20, 1889.

Megachile rufipes Fabr.

One poor specmen. Congo, Jamuary 2, 1890.
Megachile nasalis Smith.
One poor specimen. Congo, December 25, 1889.

[^105]
Family VESPIDE.

Polistes smithii Sanss. Var. (${ }^{(1)}$
Two specimens. Congo, Jamuary 2, 1890.
Belenogaster sp.
One specimen. Congo, December 27, 1889.
Family EUMENIDA.
Synagris calfida Linn.
Two specimens. Congo, December 24, 1889.
Synagris æquatorialis Sauss.
Two specimens. Congo, no date.

Eumenes fenestralis Sauss.

One specimen. Congo, no date.

> Eumenes æthiopica Sauss, var. (\$)

One specimen. Congo, January 2, 1890.
Family LARRIDe.
Larra sericea Smith.
One specimen. Congo, January 2, 1890.

Larra ${ }^{81}$.

One specimen. Congo. This is a handsome species, one-half larger than L. sericea, with abolden pubescence on the thoras, the wings yellowish and the abdomen black, transversely banded with silvery pubescence on the posterior borders of the segments. The face is densely clothed with golden pubescence, and the legs are uniformly light brown.

Family SPHECIDA.

Pelopæus spirifex L.
Two specimens. Congo, January 2, 1890. The clay tumels of this species were also collected, but present nothing characteristic.

```
Pelopæus ecksteinii Dahlt. (f)
```

Two specimens. Congo. This species, which Mr. Kirby has labeled with a query, is rather larger than I 'spirifex, and differs superficially, mainly in being red where the latter is yellow.

Sphex sp.

One specimen. Congo. This is a large and handsome species, 40 millimeters in length, with blue-black abdomen and wings, velvety, black metathorax, and mahogany-brown pro and meso thorax, head antennre, and legs.

Family POMPILIDE.
Mygnimica atropos Smith.
One specimen. Congo, December 30, 1889.
Family MUTILLIDE.
Mutilla leucopyga Smith.
One speeimen. St. Paul de Loanda. Mutilla medon Smith.
Two specimens. Congo.

Mutilla sp.

One specimen. Congo. This is a small wingless insect, two-thirds the size of M. lencopygn, which it resembles in general coloration. The abdomen, however, is less hairy, is of an elongate pyriform shape, and has three silvery spots each side.

> Family PONERIDE.

Streblognathus æthiopicus smith.
One specimen. Freetown, Sierra Leone.
Family FORMICHDE.
Catoglyphis viatica Fabr.
One specimen. Jongo.
Catoglyphis viatica liabr., var. (f)

One specimen. Congo.
Camponotus fulvipectus De Geer.
Three specimens of this handsome species. South Africa.

> Family dHRYSLDIDE.

Pyria lyneca Fabr
One specimen. Congo.

> Family PROCTOTRYPIDE.

Embolemus ($\left.{ }^{(}\right)$sp.
One specimen. Uongo.
Nore.-In addition to the recognizable material, there was a mutilated Andrenid, an undeterminable Melinid, and a pupa apparently of a large Eumenid, all from Congo.

```
Order LEPIDOPTERA.
    Suborder RHOPALOCERA.
    Family PAPILIONIDA&.
        Papilio demoleus Limm.
One torn male, Freetown, and two specimens, Congo (Banama Point).
```

Family PIERIDA.
Terias æthiopica 'Trin.
Several examples, Freetown, and several specimens, Congo (Banana Point).

Terias desjardinsii Boistl.
Two females. Elmina.
Terias senegalensis Boisd.
Two or three specimens. Congo (Banana Point).
Pieris severina Cram. ($\%$)
The tattered fragments of a species of Pieris, probably severina, collected at (:ape Verde Islands (St. Vincent). The principal reason for calling this identification into question is the fact that the anterior wing lacks the barek spot at the end of the cell. Otherwise, so far as can be retermined from the fragments of the insect preserved for us by the diligence of the collector, there is reason to think that the foregoing determination is correct. Two undoubted examples were collected at Banana Point, Congo.

Pieris gidica Godt.

Several males and one female. (ongo (Banana Point). The specimens are lather larger than, and the black markings heavier than, in any examples I have seen from Natal and more southerly portions of the continent, and upon the under side of the pimaries the black angulated streak at the extremity of the discoidal cell is extended inwardy along the median nervore to the origin of the first merlian mervule. This is a constant foature in every sperimen, and gives the under side a very different faries from typical sperimens of gidich taken further south. The form is worthy of a varietal name.

Pieris zochalia Boisd.
A fragment of a male specimen. Congo (Banana Point).
Herpæmia eriphia Giodt.
One female. St. I'aul de Loanda.
Mylothris poppea Cram
One ragged female. Frectown.
Mylothris chloris Fabr.
One female. Elmina.
Colias electra Limn.
One example. Cape of (Good Hope.
Teracolus evippe Limn.
One badly damaged sperimen of the male of the species, St. Vincent, Cape Verde Islands. Also two males and one female, St. Panl de Loanda.

Teracolus calias C'ram.

One mutilated female, St. Vincent, Cape Verde Islands. Also one male, St. Paul de Loanda. .

> Teracolus doubledayi Hopper, = T. hewitsomii Kirhy.

Two examples. St. Paul de Loanda.
Family DANADDAE.
Danais plexippus Linn.*
Danais chrysippus Limn.
Namerous examples, all males, (hongo (Banana Point). Also two males, St. Helena.

Danais chrysippus Limn var. alcippus Cram.
One specimen of this, the common North African form of the species, Frectown.

Family AORALDA.
Acræa encedon Linn.
Nomerous examples, male and female Congo (Banana Point).
Acræa manjaca Boist.
One female example, St. Paul de Loanda, differing from Madagascar specimens only in being a tritte larger.

Acræa horta Linn.
Numerons examples, Cape of Good Hope.
Family NYMPHALIDE.
Pyrameis cardui Limn.
Four examples, St. Helena.
Precis amestris Drury.
One example Freetown, and one good example, Ehmina.
Hypolimnas misippus Lim.
One male of this widely distributed species was taken at Porto Grande, St. Vincent, Cape Verde Islands, one female at Congo (Banana Point), and three males and three females at St. Panl de Loanda.

Neptis melicerta Irviry.
A small example of the male, Frectown.
*There are two female sepecimens of this insect in this collection, which were taken loy Mr. E. G. Howe at Horta, Fayal, Azores Islands. The inseet is North American originally, but within comparatively recent years has attained to a wide geographical distribution. Its spread westwardly through the islands of the Pacifice and to Anstralia has recently been commented upon by entomologists, and I have a specimen taken in Java abont three years ago by Mr. William Doherty. Its presence in tho Azores is in keeping with its occasional occurrence in England, and we may soon expect to find it established upon the continent of Africa, where it will no doubt find congenial food plants.-W. J. H.

Euphædra cyparissa Cram.
The remnants of a specimen, the hind wings of which appear to have been bitten off by a bird or a dragon fly, Freetown.

Hamanumida dædalus Fabr.
A piece of a specimen, Freetown.
Palla varanes Cram.
A perfect female, Freetown.
Harma cænis Drury.
One male specimen, St. Paul ie Loanda.
Family SATYRIDE.
Mycalesis vulgaris Butl.
One male specimen, Freetown. This species is widely distributed from Senegambia southward into the region of the Congo.

Mycalesis eliasis Hew.
Three specimens, St. Paul de Loanda.

Family LYCANIDA.

Lycæna lysimon Huebn.
One female, St. Paul de Loanda, and one female captured on board ship between St. Vincent and Sierra Leone.*

Lycæna bætica Linu.
Two examples, St. Helena, and one male specimen, Ascension.

> Family HESPERIDA.

Tagiades flesus Fabr.

One specimen, Freetown, and one specimen, Elmina.

Pamphila mohopaani Wallengren.

One female example, Congo (Banana Point).
Pamphila n. sp.?

St. Paul de Loanda.

One specimen, in poor condition, which I can not refer satisfactorily to any of the species known to me, but which comes very near P. fatuellus Hopffer, from which it differs mainly by having two spots at the end of the cell of the anterior wing; in this respect being like P. mohopauni, though otherwise, especially upon the under side, revealing great differences.

[^106]Suborder HETEROCERA.
Family SPHINGIDE.
Sphinx cingulata Linn.
Three specimens, St. Vincent, Cape Verde Islands.
Family ZYGENIDA.
巴gocera venulia Cram.
One male example of the varictal form figured by Boisduval in the Monographie des Zygamides Planche I, Fig. 3.

Euchromia sperchina Cram.
Two specimens, Freetown.
Sučhromia leonis Butl.
One specimen, Freetown.
Syntomis sp.
Two examples, too badly rubbed to make a positive determination possible, Freetown.

Syntomis kuhlweinii Lefeb.
Two specimens, Cape of Good Hope.
Family BOMBYCIDE.
Bombycid moth not determined, Freetown.

> Family NOCTUIDE.

Achæa chameleon Guen.
Two examples, Congo (Banana Point), and one example, st. Paul de Loanda.

Eustrotia? sp.?
One broken specimen, Congo (Banana Point).
Tarache? sp.?
Two examples, Congo (Banana Point).
Order Diptera.
Family ASILIDE.
Omnatius n. sp.
Two specimens, Congo, Janary 2, 1590.
Ospriocerus sp.?
One specimen, Congo.
Family TABANIDE.
Diachlorus sp.
One specimen, Congo, Jamary 2, 1890.

Family DOLICHOPODIDA.
Geu. \& sp.?
One specimen, Freetown, Sierra Leone.
Family CONOPIDA.
Conops sp.
One specimen, Congo.
Family MUSCIDA (sens. strict.)
Gen.? sp.?
Two specimens, Congo.
Family HIPPOBOSCIDE.
Gen.? sp.?
One specimen, Congo, January 2, 1890.
Order COLEOPTERA.
Family CICINDELID A.
Cicindela melancholica Fab, (Determined by Dr. Javid Sharp.)
Eleven specimens, St. Paul de Loauda.
Family CARABIDA.
Calosoma rugosum De Geer.
One specimen, Porto Grande, St. Vincent, November 11, 1889.
Scarites perplexus Dej. (Determined by Sharp).
One specimen, Congo.
Graphipterus limbatus Cast. (Determined by Sharp.)
One specimen, South Africa.
Anthia decemguttata Linn.
One specimen, Cape of Good Hope.
Pheropsophus guineensis Chand.
Three specimens, Congo.
Abacetus sp. (Sharp det.)
One specimen, Congo.
Chlænius sp.
"Probably var. major of C. cuprithorax Qued." (Shar'p). One specimen, ${ }^{\text {Congo. }}$

Harpalus ruficornis Fab. (Sharp det.)
One specimen, Port Horta, Fayal, November $2,1889$.

- Family DYTISCIDAE.

Eretes sticticus Linn.
Five specimens, St. Paul de Loanda, (?) December 12, 1889.

Cybister filicornis Sharp.
Six specimens, Congo, December 25, 1889.
Cybister senegalensis Aube.
Two specimens, Congo, December 25, 1889.
Cybister tripunctatus Oliv.
Thirty one specimens, St. Paul de Loanda (?), December 12, 1889.

Family HYDROPHLLLDA.

Berosus cuspidatus Er.
One specimen, Congo.
Family GYRINIDA.
Dineutes aereus Klug.
One specimen, Freetown, Sierra Leone.
Dineutes subspinosus Klug.
One specimen, St. Paul de Loanda.

Family STAPHYLINIDAE.
 Goërius oleus Miill.

Tro specimens, Port Horta, Fayal.
Family SCARABNIDA.
Ateuchus prodigiosus Er. (Sharp det.)
One specimen, St. Paul de Loanda.
Ateuchus capensis Dej. (Sharp det.)
Three specimens, Congo, and one specimen, South Africa.
Gymnopleurus chloris Klug. (Sharp det.)
Three specimeus, Congo.
Gymnopleurus virens Er.
Fourteen specimens, St. Panl de Loanda; one specimen, C'ongo.
Onthophagus hybridus Dej. (vinctus Er.) (Sharp det.)
One specimen, Congo.
Onthophagus thoracicus Oliv. var. of q. (Sharp det.)
Three specimens, Congo, January 2, 1890.
Anomala sp. "Unnamed in our collections." (Sharp).
One specimen, Congo.
Adoretus sp. "Unknown." (Sharp).
Two specimens, Congo.
Adoreuts sp. "Unknown" (Sharp).
Two specimens, Congo, January 2, 1890.
Melisseus eudoxus Woll. (Sharp det.
One specimen, St. Helema, March 1, 1890.

Heteronychus sp. "Unknown, near licas, arator." (Sharp).
Sixteen specimens, Congo, December 25, 1889.
Temnorhynchus diana Beauv.
One specimen, Congo.
Oryctes boas Fiabr.
One male, Elmina, Gold Coast, November 28,1889 , and one female, St. Paul de Loanda.

Heterorhina monoceros Gory and Perch.
Two specimens, St. Paul de Loanda.
Gnathocera trivittata Swed. (Sharp det.)
Five specimens, Freetown, Sierra Leone.
Gnathocera afzelii Swartz. (Sharp det.).
Eight specimens, Freetown, Sierra Leone.
Pachnoda inscripta Gory and Percheron.
Four specimens, Freetown.
Pachnoda marginata Dru.
Four specimens, Elmina, Gold Coast, and twelve specimens, Freetown, Sierra Leone.

Family BUPRESTIDE.
Aphanisticus sp. "Unknown" (Sharp).
One specimen, Congo.
Family MONOMMIDE.
Monomma giganteum Guer. (Sharp det.).
One specimen, St. Paul de Loanda.
Family ELATERIDE.
Heteroderes "near crucifer. ? inscriptus Er., but has not been compared with description" (Shary).
One specimen, Congo.
Family PTINIDA.
Apate terebians Pall. (Sharp det.).
Two specimens, Congo.
Family TENEBRIONID.E.
Zophosis muricata F'ab. (Sharp det.).
One specimen, South Africa.
Pedinomus favosus Er. (Sharp det.).
One specimen, South (?) Africa.
Psammodes tenebrosus Er. (Sharp det.).
Twelve specimens, St. Paul de Loanda.

Blaps nitens Cast. ? (Sharp det.).
One specimen, Horta, Fayal, November 2, 1889.
?Blaps. "Unknown" (Sharp).
One specimen, Horta, Fayal, November 2, 1889.
Adesmia sp. "Unknown to me and at British Musenm" (Sharp). One specimen, South Africa.

Pogonobasis verrucosa Lr. (Sharp det.).
One specimen, Congo.
Opatrum sp. ? (Sharp det.).
Seven specimens, St. Helena.
Gnophota curta Er. var. (Sharp det.).
Three specimens, St. Paul de Loanda.
Gnophota curta Er. ? another var. (Sharp, det.).
One specimen, Congo, December 25, 1859.
Zophobas morio Fab. (Sharp det.).
Three specimens, St. Helena, February 22, 1890.
Family CISTELIDA。
Hymenorus sp. (Champion det.).
Two specimens, Cougo, January 2, $\mathbf{1 8 9 0}$.
Family LAGRIIDA.
Lagria aeneipennis Fabr. ? (Sharp det.).
Three specimens, Congo.
Lagria sp. near cuprina Fabr. (Champion det.).
One specimen, Freetown, Sierra Leone.
Family ANTHICLDA.
Formicomus sp. (Champion det.).
One specimen, Cougo.

Family RHIPIDOPHORIDE.

Emenadia flabellata Fab. (Sharp det.).
One specimen, Congo, January 2, 1890.
Family MELOLDE.
Mylabris oculata Thmb, (Sharp det.).
Tro specimens, South (?) Afica.
Mylabris dentata Olir. (Sharp det.).
Two sperimens, St. Paul de Loanda; five specimens. Congo.
Mylabris (Actenodia) ohrysomelina Er. (Sharp det.).
Two specimens, St. Paul de Loanda.

Family OTIORHYNCHIDE.

Tanymecus sp. ? (Sharp det.).
One specimen, Congo.
Tanymecus sp.? (Sharp det.).
Two specimens, Congo. "Genus unknown to me and not in the British Museum; near Otiorhynchus" (Sharp). Two specimens, Cape Ledo.

Naupactus longimanus Fab. (Sharp det.).
Five specimens, Ascension Island. This is a Brazilian species, and its occurrence at Ascension Island is of interest.

Family CERAMBYOIDE.
Delochilus prionoides Thoms. (Sharp det.).
One specimen, Cape of Good Hope.
"Genus near Ocme; unknown to Bates or me; not in British Museum; not compared with Quedenfeldt's recent descriptions. This is the most important insect of the lot" (Sharp). One specimen, Congo, January 2,1890 . This is a handsome, slender, burnished green species, with rufous legs, 25 millimeters long.

Phryneta spinator Fab.
One specimen, Congo, January 2, 1890.
Diastocera trifasciata Fab. (Sharp det.).
Eight specimens, Freetown, Sierre Leone.
Family CHRYSOMELID $\underset{\text { E }}{ }$
Cryptocephalus sp. "unknown" (Sharp).
Two specimens, Congo, January 2, 1890.
? Melitonoma (Sharp det.).
One specimen, Congo, January 2, 1890.
? Melitonoma (Sharp det.).
Seven specimens, Congo, January 2, 1890. One specimen, St. Paul de Loanda.

Aulacophora sp. ? (Jacoby det.).
Two specimeus, Congo, January 2, 1890.
Luperodes occipitalis Reiche ? (Jacoby det.).
Sixteen specimens, Congo, January 2, 1890.
Graptodera sp. (Sharp det.).
Five specimens, Congo.

Family ENDOMYCHID.

Danaë (Oediarthrus Gerst.) natalensis Gorh. (Gorham det.).
One specimen, Congo.
Proc. N. M. 93- 37

Family COUOINELLIDA.
Xanthadalia Cr. (Harmonia Muls.) rufescens Muls. var. (Sharp det.).
Five specimens, Congo.
Alesia (Micraspis Cr.) aurora Gerst. ? (Sharp det.).
Five specimens, Congo, Jamuary 2, 1890.
Exochomus nigromaculatus (ioeze (auritus Seriha) (Sharp det.).
Nine specimens, Congo, Jamary 2, 1890.
Chilomenes (Cydonia Muls.) lumata Fabr. (Sharp det.).
Five specimens, Congo, Jannary $2,1890$.
Chilomen-s lunata Fabr. var. (Sharp deto).
Seven sperimens, Congo; one sperimen, Nt. Itelena, a dark variety, in which the yellow and red matulation has become reddish brown.

Epilachna chrysomelina Fabr. (Sharp det.).
Three specimens, Congo.

> Order HEMIPTERA.
> Suborder HETEROPTERA.
> Family PENTATOMIDA.
> Agonoscelis erosa Wolft.

Two specimens, Congo.
Nezara viridula Lim.
One specimen, Horta, Fayal, November 2', 1859.
Family COREIDK.
Leptoglossus membranaceus Fabr.
One specimen: Congo, Jannary 2 , 1890 .
Family LYGALIDE。
Lygæus elegans Wolfi.
Two specimens, South Africa.
Family I'YRRHOCORDDA.
Odontopus sexpunctatus Litp.
Two specimens, St. Paul de Loanda.
Dysdercus superstitiosus Fabr.
Two specimens, Congo, Jamuary $2,1890$.
Family REDUVIIDK.

Harpactor segmentarius (ierm.
Two specimens, Congo, Jamary ', 1890.
Haxpactor albopilosus Sign.
Two specimens, Congo.

Family HYDROMETRIDA.
Lampotrechus leptocorus Reuter.
Two specimens, Congo.
Family NEPIDÆ.
Laccotrephes fabricii Stăl.
Onc specimen, Congo, December 25, 1889.

Family BELOSTOMATIDA.

Belostoma niloticum Stâl.
One specimen, St. Paul de Loanda.
Order ORTHOPTERA.
Family BLATTIDE.
Panchlora indica Fabr.
Six specimens, St. Heleua:
Panchlora maderæ Fabr.
One specimen, St. Helena; one specimen, Ascension Island, March 22, 1890.

Blatta germanica L.
One specimen, Congo, January 2, 1890.
Periplaneta australasiæ L.
One specimen, Porto Grande, November 11, 1889; three specimens, Barbadoes, May 8, 1890.

Nauphoeta cinerea Oliv.
Two specimens, St. Helena.
Family MANTIDE.
Polyspilota pustulata Fabr.
One specimen, Freetown, Sierra Leone. Parathespis sp. (larva).
One specimeu, St. Paul de Loanda. Thespis sp. (larva).
One specimen, St. Paul de Loanda. Mantis? sp. (larva)
One specimen, Freetown, Sierra Leone.

Family PHASMATIDA.

Bacillus sp. 9

One specimen, Congo.

Family GRYLLIDA.
Liogryllus bimaculatus De (ieer.
Six females and larvar. From Ascension Istand and St. Helena, February 23,1890 .

Gryllus melanocephalus Serv.
One specimen, Congo.
OEanthus capensis Nauss.
One specimen, Freetown, Sierra Leone.
Gryllotalpa africana Palis d. Beany.
One specimen, Congo, January 2, 1890.
Gryllomorpha aptera Herr. -Schaif.
One specimen, Ascension Island.
Brachytrypus vastator Af\%. ठ O and larvie.
Five specimens, December $25,1889$.

> Family CONOCEPHALIDAE.
> Gen.? sp.? lavre.

Two specimens, Ascension Island.

> Superfanily ACHIDIINA.
> Family ACRIDIIDA.
> Acridium anguliferum Kraus.

One specimen, Frectown, Sierra Leone.
Near Pezotettix. sp?
One specimen, Frectown, Sierra Leone.
Coptacra sp.? (larva).
One specimen, Congo.
Catantops : (larva).
One specimen, Congo.
Catantops sp.

One specimen, Congo.
Catantops melanostictus Schanm.
One specimen, Congo, January 2,1890 . Caloptenus femoratus Fabr.
One specimen, St. Paul de Loanda, December 10, 1889.
Family (EDOPODODAE.

Pachytylus (larvar).

Two specimens, St. Paul de Loanda.
Cosmorhyssa sostata F'abr.
Two specimens, Congo.
Acrotylus deustus Thunbg. var.
One specimen, St. Paul de Loanda.

Trilophidia annulata Thunbg.
One specimen, Congo.
Pachytylus migratorioides Reich.
Small variety. One larva, Horta, Fayal; two adults, Ascension Island.

GEdaleus nigrofasciatus Fabr. var. gracilis Sauss.
Three specimens, Porto Grande.
Family PYRGOMORPHIDE.
Chrotogonus senegalensis of q. $^{\text {. }}$
One specimen, St. Paul de Loanda; two specimens, Congo.
Ochrolebia caffra ? Linn. (larvie).
Eight specimens, Congo, January 2, 1890.
Atractomorpha congensis Sauss. 후우.
Eleven specimens, Congo.
Family PAMPHAGIDA.
Xiphocera canescens St.
One specimen, Congo.
Family TETTIGIDAE.
Paratettix sp.
Seven specimens, Congo.
Gen.? sp.? (larve).
Congo.

Family TRYXALIDA.

Acrida unguiculata Ramb.
Thirteen specimens, Congo and St. Panl de Loanda, January, 1890. Acrida turrita Lim. (larv:e).
Two specimens, Congo.
Paracinema tricolor Thunby.
One specimen, Congo, January 2, 1890.
Epacromia tricoloripes St.
One specimen, Congo.
Stencbothrus sp. ?
One specimen, St. Paul de Loanda.
Tryxalis sp. ?
One specimen, Congo.

> Gen.? sp. ?
'I'hree specimens, Congo.

Two specimens, St. Helena.

Family FORFICULIDA.

Sphingolabris sp.
Five specimens, Congo.
Labidura riparia Palis.
One specimen, Congo, December 25, 1889.

Order NEUROPTERA.
Family HEMEROBIID A.

Subfamily Myrmeleonide.

A large Myrmeleonid (undetermined) having a wing expanse of 100 millimeters and a length of 40 millimeters, was eollected at Congo, December 28 . The thorax and head are black, the legs brown, and the abdominal joints brown, tipped with black.

Order PSEUDONEUROPTERA. By P. P. Calvert.

Family LIBELLULID E (sens. lat.).

Subfamily Libelluline.

Diplax dilatata n. sp. Calvert. (Figs. 1 and 2.)
子. Vertex hairy, brownish or brownish yellow above, blackish in front and on the sides; tip truncated, its outline very slightly concave from side to side.

Frons hairy, brownish yellow or reddish, grooved above, with a of nos. ing downwards to the front margin, which is also black, a brown

Fig 1.
Ablomen of Di-
plax dilatata rather wide blackish band in front of eyes and vertex; in front with two small dark spots. Nasus and rhinarium brownish yellow, rhinarium sometimes darker. Labrum reddish yellow with some obscure blackish marks. Labium black; its lobes brown, blackish on the inner and anterior margins and at joint with labinm (at this joint sometimes yellow). Basal joint yellow. Occiput brown. Rear of eyes clark brown with three yellowish spots, a row of light-colored hairs from the right uppermost spot to the left one.
Prothorax blackish, anterior margin yellow ; posterior lobe with a reddish tinge (dark red in life?), hind margin broad, bilobed, with a fringe of long light-colored hars. humeral stripe, first and second lateral sutures each with a black stripe, a short, broader black stripe in front of the spiracle. The stripes on the sides reach down to black spots around the fect. Pectus mostly blackish.

Feet moderately long, black, femora sometimes brownish interiorly, posterior tibise with two rows of 10 to 12 spines; tarsal nails toothed before apex.
Abdomen compressed at the base, becoming narrower to the base of the fifth segment, whence it widens and thickens to the seventh segment, where it is wider than at the base; from the seventh segment it narrows to the apex, which is a little wider than at the base of the tifth segment; the dilated portion at seventh segment triangular in cross section. Color, brownish yellow, some parts with a reldish tinge (red in life?) ; segment 1 dark brown at base; 2 sometimes with a small median dorsal
brown spot; a brown dot on each side of the median dorsal line near the apex of 3 to 6 , sometimes also on 7 and $8 ; 2$ and 3 , only, with a transverse carina.
Genitalia not prominent. Hamule bifid, internal branch terminating in a small, rather acute hook directed outwards; external branch much thicker; apex obtuse. Genital lobe with apex rounded, hairy.
Appendages brownish yellow, with short hairs. Snperiors of about the length of the eighth segment; viewed from above, they are straight, dilated on the inner side before the apex, which is acute, black; viewed from the side, they are directed slightly downwards to the extreme apex, which inclines slightly upwards (as in vulgata); on the under side are 9 to 13 black denticles corresponding in position to the dilatation on the inner side. Inferior appendage, viewed from the side, is concave above

Fig. 2.
Genitalia of Diplax dilatata of n. sp. from base to apex, which latter is curved upwards and ends in a small black denticle on each side; this denticle extends a little beyond the last denticle on the under side of the superiors; viewed from below, the appendage is rather broad, triangular, apex truncated, slightly emarginate.
Wings hyaline, reticulation brownish, hind wings with a light yellow cloud alongside of the membranule, extending outwards to about the level of the basilar cross vein, and backwards but little farther than the apex of the membranule. Pterostigma 3 to 4 times as long as broad, brownish yellow, surmounting parts of two or three cells. Membranule moderate, whitish. Sectors of the arculus stalked. One basilar cross yein placed nearer the base than the first antecubital. Nodal sector slightly waved. No hypertrigonals. Front wings with 10 (occasionally 9 in one wing) antecubitals, the last not continuous; 10 to 12 postcubitals; discoidal triangle with one or two cross veins; internal triangle of 4 to 6 cells; four, then three rows of discoidal areolets. Hind wings with 7 antecubitals, the last continnous; 10 to 12 posteubitals; discoidal triangle free, its inner side in the prolongation of the arculus; no internal triangle; discoidal areolets three, then two rows increasing; sectors of the triangle arising from the same point.
One male differs in having an additional basilar cross vein placed so as almost to form an internal triangle on the right hind wing, an indication of the beginuing of such a vein on the left hind wing, both hind wings with discoidal triangle crossed by one vein.
f. Similar to the male; differs as follows: Lobes of the labium yellow, margined as in ${ }^{2}$. The first three segments of the abdomen yellow; 1 black at base, 2 and 3 brownish along the median dorsal line; a crooked brown stripe on the sides of 1 to 3 ; venter of 2 and 3 black. Remaining segments of abdomen lost.
Nine antecubitals to the front wings, last one on the right wing having a corresponding cross vein in the subcostal space although not continnons. Right-hand wing with 6 antecubitals. Two discoidal areolets at the triangle in hind wings.

Measurements: ${ }^{\text {f }}$: Total length, 44.5 to 47.5 millimeters. Abdomen (incl. app.), 26.5 to 31.5 millimeters. Superior appendages, 1.75 to 2 millimeters. Front wing, 35.5 to 37 millimeters. Hind wing, 33 to 34.5 millimeters. Pterostigma, 3.5 to 4 millimeters. Width of abdomen at base of $5,1.5$ millimeters. Width of abdomen at 7, 3 to 4 millimeters.
f. Length, abdomen, appendages, ?. Front wing, 37.5 millimeters. Hind wing, 34.5 millimeters. Pterostigma, 3.5 millimeters.

Four males, one female from St. Helena. Dr. Hagen examined one of the males for me and wrote, "It is unknown to me." This species belongs to the group of geuera embracing Diplax, Thecadiplex, and Erythrodiplax in Dr. Karsch's arrangement of the Libellulina (Berliner Ent. Zeit., xxxin, pp. 347-392, 1890). I place it provisionally in Diplax.

Libellula (Orthetrum) capensis 11.sp. Calrert. (Fis. 3.)
 Libellula assimilis Hagen MS.

d. Vertex reddish, in front black, tip bitid, apices acute. Frons reddish yellow, sides lighter, grooved above, front separated from each side by a vertical carina, the two carine united by a horizontal carina just above the lower margin of the frons. Nasus and rhinarium luteous. Labrum reddish yellow. Labium and its lobes brown Oceiput reddish brown.

Prothorax with anterior lobe brown, posterior lobe yellowish, broad, its hind margin slightly notched in the middle.

Dorsmon of thorax luteous, a faint indication of a brownish spot on each side of the median crest near its summit, and a brown humeral stripe. Sides yellowish, obscure, with ill-defined bown marks around the lateral sutures.

Feet luteons, tibise darker, apices of femora and tarsi black.
Abdomen rather slender, compressed at base, slightly contracted at the fourth segment becoming wider to the sixth, but not so wide as at base; from 6 tapering gradually co apex. First three segments luteous, an ill-defined brown stripe each side. Dorsum of remaining segments pruinose, under side of abdomen luteous.

Fig. 3.
Genitalia of Libellula capensis of n . sp.

Genitalia a little prominent. Anterior lamina with sides rounded to the ipex, which is truncated. Hamule bifid, branches of equal length, straight, almost parallel, separated by but a short interval; inner branch black, slender, apex rounded, with a slight hook; outer branch luteons; much thicker, apex rounded. Genital lobe broad, apex rounded, hairy.
Superior appendages black, about as long as the ninth segment, similar to those of D. dilatata ($q \cdot v$.). Inferior appendage luteous, sides blackish, similar to that of dilatata.

Wings hyaline, somewhat milky, a very slight yellowish clond at base. Reticulation blackish, costa luteous exteriorly. Pterostigma, brownish yellow, three to four times as long as broad, surmounting two and parts of two other cells. Membrauule blackish. Sectors of the arculus stalked. One basilar cross vein placed very nearly on a level with the first antecubital. Nodal sector waved. Fronwings with one hypertrigonal; 13 (right), 15 (left) antecubitals, the last one cont tinuous; 11 postcubitals; discoidal triangle with one cross vein; interual tiangle of three cells; three rows of discoidal areolets.

Hind wings with no hypertrigonals; 10 (right), 11 (left) antecubitals, the last ol. continuons; 11 (right), 10 (left) posteubitals; discoidal triangle free, its inner side slightly nearer the base than the prolongation of the arculus would be; no internal triangle; two rows of discoidal areolets, increasing; sectors of the triangle a little separated at their origin. Total length, 49 millimeters. Ahdomen (incl. app.), 33.5 millimeters. Superior appendages, 2 millimeters. Front wing, 34.5 millimeters. Hind wing, 33 millimeters. Pterostigma, 3.5 millimeters.

One male from Cape Town. Dr. Hagen examined this specimen and wrote to me (September 2, 1890) it "is my L. "ssimilis, never published." This species belongs to the qenus Orthetrum of Kirby's Revision.

Libellula (Orthetrum) caffra Burmeister. (Fig. 4.)

Dr. Hagen has determined two specimens for me as belonging to this species. They are a male from Congo and a female from Freetown, Sierra Leone. Both have a considerable portion of the abdomens wanting.

In his Revision of the Subfamily Libellulina (Trans. Kool. Soc. London, Xir, pp. 249-348, 1289), Mr. W. F. Kirby refers caffra to his new genus Thermorthemis (p. 289). I think it rather belongs to his genus Orthetrum. Thermorthemis is stated (l. c.) to have the triangle in the forewings followed by four or five rows of cells;

Burmeister (Handbuch der Entom., II, pp. 855, 8.56) places ceffre with species having "gleich anfangs drei Zellenreihen in dem Felde hinter dem Dreieck der Vorderfliigel,"* and with this these two specimens agree. These two specimens also differ from the characters of Thermorthemis by laving the pterostigma moderate; fore
 triangle traversed by one vein, one hypertrigonal, internal triangle of 3 (in one wing 4) cells; hind wings with triangle free, no hypertrigonals, sectors of the triangle a little separated at base.

Fig. 4.
Genitalia Libellula caffra of Burm.

Fig. 5. Genitalia of Libellula sp

Fic. 6.
Genitalia of Libellula unifasciata ơ Oliv.

Another male from Congo which, at first, I had also referred to caffra, mas perhaps belong to another species, as there are differences in the genital hamule and in the coloring of the thorax. Unfortunately this male has also lost the greater part of the abdomen. (See accompanying figure, 5.)

Libellula (Cacergates) unifasciata Oliv. (Figs. 6 and 7) (leucosticta Burm.).
Eight males and three females from Cougo. One male from Porto Grande, St. Vincent. One male from Angola, December 9.

The width of the dark band on the wings of the male varies; its least width on the fore wings is from the level of the second postcubital to that of the ending of the median sector; its greatest width on the same wings is from the level of the nodus to that of the inner side of the pterostigma.

This species is the type of the genus Cacergates Kirby.

Vulva of Libellula unifasciata q Oliv.

Fig. 8.
Vulva of Libellula rubrinervis o Selys.

Fig. 9.
Genitalia of Libellula rubrinervis ${ }^{\circ}$ Selys.

Libellula (Trithemis) rubrinervis Selys. (Figs. 8 and 9.)
One male and one female from Congo.
Libellula (Crocothemis) erythræa Brullé. (Fig. 10.)
One male from Congo.
Libellula (Urothemis) edwardsii Selys. (Fig. 11.)
Three males from Congo agree with Baron de Selys's description (C. R. Soc. Ent. Belg, 4 Mai 1878, p. lxv.) Another male from Congo agrees quite well with Rambur's description of "sanguinea Burm." (Névropteres, p. 112), and differs from the males of edwardsii by the general reddish color of its body and reticulation, and by the size and color of the basal markings on the hind wings. I can find no structural differences between it and the males of edwardsii. The three males of edwardsii have on the hind wings a blackish-brown basal streak in the subcostal space and

[^107]half of the costal space reaching a little more than halfway to the first antecubital, and a blackish-brown basal spot bounded anteriorly by the submedian nervure, extending outwarls to the level of the first antecubital (not

Fig. 10. Genitalia of Libellula erythrea δ°. reaching the triangle), and not reaching the anal border. In the other male the streak and spot are similarly situated, and are reddish-brown, with the veins lighter; the streak reaches outwards half way between the first and second antecubitals, the spot a little farther so as to extend a short distance into the triangle.
Burmeister describes (Handb. d. Ent., II, p. 858, No. 60) both male and female of sanguinea from Madras. Rambur says that he has described only the male [of "sanguined Burm."] from Senegal. Baron de Selys states (l. c., p. lxiv) that signata Ramb. (Névr., p. 117, only the female, locality unknown) is synonymous with senguinea Burm. If signata Ramb, and samgrimea Ramb. are difforent species, as seems probable, samuinea Ramb. may be a variety of eduardsii, or founded on younger specimens thereof. It should be noted moreover, that edwardsii is recorded from Dakar in Senegal (Selys, l. c., p. lxy).

Fig. 11.
Genitalia of Libellula edwardsii s' Selys. The lighter colors of sanguinct Ramb, approach more nearly those of the female than of the male of edwardsii.

Two Libelluline nymphs from Congo are included in the collection.

Subfamily Agrionine.

Pseudagrion glaucescens Selys.
One male from Porto Grande, St. Vincent.

Pseudagrion torridum ? Selys.

One specimen from Congo, with the abdomen wanting (except the first segment), may belong to this species.

Pseudagrion species.

One male from Porto Grande, St. Vincent, but with the head wanting. Seems to belong to an undescribed species of Pseudagrion.

ARACHNIDA.
ARANEINA.

By Nathan Banks.
Family ATTIDE.
Menemerus marginellus, Simon.
One damaged specimen from "Congo."

Hasarius adsonii? Aud. \& Sav.
Three specimens which probably belong to this common tropical form, from Ascension Island.

> Family LYCOSID E.

Lycosa sp:

One very much damaged specimen from Ascension Island.

Lycosa brevipes, nov. sp. Banks.

Length, $f, 10$ millimeters. Cephalothorax yellowish brown, with three yellow stripes; a median, widest behind; and a submarginal one on each side, wider than
 the median one and but slightly separated from the margin. On each side of the anterior part of the median stripe is a yellow, elongate spot. Eyes black; mandibles reddish; palpi and legs yellowish, without markFig. 12. ings; sternum yellow; abdomen gray above, yellow beneath; a narrow Epigynum yellow median stripe on auterior part of dorsum, bounded by black; brevipes. epigynum reddish; spinnerets yellow.
Cephalothorax narrow, pars cephalica not very high. Anterior row of eyes straight, as long as second row, M. E. larger than S. E. Eyes of third row same size as those of second row and about twice as far apart; legs short and stout; sternum broad, rearly round; abdomen oblong oval, widest behind the middle. Epigynum small. One specimen, "Congo."

Pardosa valida nov, sp. Banks.

Length, 9,6 millimeters. Cephalothorax reldish, blackened in eye region and on margins; mandibles dark, red brown; sternum black; palpi and legs yellowish, with black rings and spots; abdomen dark brown, almost black above, venter lighter brown, clothed with white hairs; epigyuum red brown; spinnerets black.

Cephalothorax broad, sloping suddenly behind dorsal groove. Anterior row of eyes curved, little shorter than second row, S. E. slightly lower than M. E., equal in size. Eyes of second and third rows equal in size, the latter as far from the former as the former are from each other. Legs long, especially the fourth pair, the tip of the femur of which reaches the eud of the abdomen. Abdomen elliptical, about as long as the Fig. 13. Epigynum of Par dosa valida. cephalothorax. Two specimens, "Congo;" another, much damaged, from "Sierra Leone."

ON A NEW GENUS AND SOME NEW SPECIES OF ARANE F FROM THE WEST COAST OF AFRICA COLLECTED BY THE U. S. STEAMER ENTERPRISE.

By Geo. Marx.

1. Selenocosmia nigroventris, nov, spec. Male. Figs. ia and ib.

Cephalothorax long, 14 millimeters; broad in the middle region, 12 millimeters.
Leg I. Femur, 12 millimeters; patella and tibia, 14.2; metatarsus, 8 ; tarsus, 5.8 ; total, 40 millimeters.
Leg II. Femur, 11 millimeters; patella and tibia, 12.4; metatarsus, 8 ; tarsus, 5.5; total, 36.9 millimeters.
Leg III. Femur, 8.6 millimeters; patella and tibia, 10.6; metatarsus, 8.5; tarsus, 55 ; total, 33.2 millimeters.

Leg IV. Femur, 11.3 millimeters; patella and tibia, 13.5; metatarsus, 11; tarsus, 5.6 ; total, 41.4 millimeters.

The whole upper surface of cephax, abdomen, and legs densely covered with light mouse-colored pubescence; sternum, maxillæ, labium; femoral joint of palpi and coxae velvety black; abdomen at the central region also black; at the inner side of maxillie a fringe of long, pink-colored hairs.

Anterior ME largest; posterior ME very close to the former and contiguous with the posterior L. E.; eye, tubercle, trausverse, oval.

One male specimeu from the Congo.

2. Cydrela brumea, nov. spec. Female. Figs. 2 a-d.

Cephalothorax long, 5.5 millimeters; broad, in the middle, 4.3 ; abdomen long, 6.5 millimeters.

Leq I. Femur, 3.8; patella and tibia, 4.2; metatarsus, 2.5; tarsus, 2; total, 12.5 millimeters.

Leg II. Femur, 3.4 ; patella and tibia 3.7; metatarsus, 2.2; tarsus, 1.6; total, 10.9 millimeters.

Leg III. Femur, 3.3; patella and tibia, 3.6; metatarsns 2.7; tarsus, 1.3; total, 10.9 millimeters.

Leg IV. Femur, 3.8; patella and tibia, 4.5; metatarsus, 3.5; tarsus, 2.8; total, 14.6 millimeters.

Palpi femur, 3.1 long, 1.5 thick; patella and tibia, long 2.8, thick 1.3; Tarsus, long 1.5.

Cephax, trophi, sternum and legs shining dark reddish brown, the tibiæ, metatarsi and tarsi a little lighter; abdomen * brown, with some spots, all parts sparsely covered with yellowish hairs.
Cephalothorax oval, p. cephal. impressed at the sides, attenuated and globulate in front; high, declining moderately from the center to the front and the back, but steeply sloping transversely; median fossa short and very distinct, clypeus high and somewhat projecting.

The two anterior eyes contiguons, a little smaller than those of the middle row, which are the largest of all and separated from each other by a space which hardly equals their diameter; the smaller posterior ME are the same distance apart from the eyes of the second row as these are from the eyes of the first row; they are separated from each other by their diameter; the two lateral eyes of the third row stand farther back than the median eyes, and form a recurved line; clypeus higher than the space between the eyes of the first and the second rows.

Mandibles stout, attenuating toward the tip and directed slightly backward. Maxillar subtriangular, much broader than high, surrounding the labium and nearly meeting each other in front of the latter, drawn out externally for the insertion of the palpi. Labium oblong ovate and nearly twice as high as it is broad. Sternum simate in front, posteriorly, slightly pointed, with swellings opposite the cosie, not higher than broad, and flat. Palpi nearly three times as stout as the legs; femoral joint clavate at apex, tibial joint at the inner side with a row of short blunt spines; tarsus terminating into a long strong tooth and armed at the sides with double rows of similar spues.

Legs slender, hairy, all joints but the femora with ummerous short spines on the superior surface and longer ones beneath, which are particularly numerous at the distal ends of tibie and metatarsi.-Congo.

3. Cydrela maculata, nov. spec. Female. Fig. 3a-b.

Cephalothorax long, 4 millimeters; broad in the middle, 2.2; abdomen loug, 4broad, 3.

Leg I. Femur, 2; patella and tibia, 3; metatarsus, 1.6; total, 7.8 millimeters.
Leg II. Femur, 1.6; patella and tibia, 2; metatarsus, 1.3; total, 5.7 millimeters.
Leg III. Femur, 1.8; patella and tibia, 2; metatarsus, 1.5; total, 6.3 millimeters.
Leg IV. Femur, 2.4; patella and tibia, 2.4; metatarsus, 2 ; total, 8 millimeters.
Cephalothorax, mouth parts, sternum, palpi, and legs dark brown ; coxe lighter colored, abdomen brownish with two romd yellowish spots closely together at the base of the dorsum, and two or three short, transverse, recurved lines of the same color above the spinnerets; at the under side the basal region and the spinuerets are light brown.

[^108]Cephax oblong ovate, high, not much narrower in front than in the middle region: seen from the side the dorsum is highly arched in the longitudinal axis. P. cephal. not distinctly separated from p. thorax, in front rounded and globulate, median fossa short and very dcep.

Eyes subequal, anterior eyes separated from each other by a space equal to three times their diameter. Space between the eyes of the second row about equal to their diameter; these eyes are removed from the anterior by a space equal to the last mentioned. Posterior eye row strongly recurved, the middle cyes a little farther apart than the ejes of the second row, the posterior lateral eyes removed from the middle by a distance equal to three times their diameter.

Cephax twice as long as broad. Legs on all joints but the femora with a fow short spines, slender and short. Palpi twice as stout as femur I and armed like brunnea.

Four specimens from Kilimanjaro, Africa.

Machomenus nov. genus.

Cephalothorax perfectly flat, a little longer than broad, much rounded at the sides, a little constricted behind the posterior lateral eyes. A distinct and very prominent transverse ridge between the two eye rows, extending outward, forming a sharp and prominent point on each side.

Eyes eight, in two transverse rows, the anterior straight row situate at the vertical front of the cephalothorax before the ridge, the posterior slightly recurved row with the two middle eyes on the flat dorsal surface and the lateral eyes on the posterior angle of the projecting point of the ridge. The auterior lateral eyes the largest; space between the anterior middle eyes equals about one and one-half of their diameter, and they are about twice as far removed from the anterior lateral eyes. The posterior lateral eyes a little larger than posterior middle; the eyes of this row are about equidistant.

Mandibles weak, short, directed backward. Maxillir inclined over the labium, truncate at apex, labium broader than long, subtriangular, rounded at tip.

Legs: The two anterior pairs much longer and stonter than the two posterior pairs; first pair a little longer than second. Tibiae with a few scattered spines at the inner side, and a double row of prominent spines at the metatarsi of the two anterior pairs; no scopala on the tarsi.

Machomenus albidus nov.sp. Male (undeveloped), Fig. 4tec.

Cephalothorax whitish, with two longitudinal brownish bands removed from the lateral borders by a space equaling their width. Mouth parts, stermum, and legs yellow, mottled with white spots. Abrlomen oblong-ovate, with two dark spots in the first third of its length and a number of transverse lines on the posterior region. Several undeveloped males and females from Congo.

5. Selenops brownii nov. sp. Female, Fig 5a.

Cephalothorax long, 4.5 ; broad in the middle, 5.4 ; broad in front. 2.6 millimeters. Ablomen long, 6.5; broad, 5 ; first leg, 15.6 millimeters long; secoud leg, 18 millimeters; third leg, 17.5 millimeters; fourth leg, 18 millimeters.

Cephalothorax uniformly reddish, testaceous, with brownish narrow lateral horders; p. cephal slightly more red; mouth parts of the same color, apex of maxillar and labium with a paler border; sternum paler. Abdomen olive-yellowish brown, with three pair of white spots in the middle region and several similar ones at the apical border, several indistinct transverse dark wavy bands and brown spots: at the under side pale grayish-yellow; legs yellowish at the inner side, with a brownish hue, and at the tibiae with two dark rings, which are more distinct in the two anterior pairs than in the two posterior; all eyes surrounded by a black area, which is less
distinct at the central eye and most prominent in the posterior lateral; these latter are situated upon a large black tubercle.

The anterior eye row nearly straight, close to the margin of the clypens; the median eyes about their diameter apart, the smaller lateral obli,fue. The posterior row recurved, the middle eyes a little larger than those of the first row and only apart from these by a space equaling their radius. The posterior lateral eyes the largest, situate at the outer side of a large tubercle; the posterior middle eyes are further apart than they are from the posterior lateral.

Mandibles subgeniculate at the base, directed forward and diverging.
Maxille arched, at the basal half concave, surrounding the labium; at the distal half rounded at both sides to an oval. Labium, about half as long as maxillie; a little longer than broad, wider at apex than at the base, and rounded at tip. Sternum oval, slightly longer than broad.

Abdomen truncate in front, with nearly parallel sides and pointed at apex, covered with short, bristle like hairs.

Legs loug and slender, with a sparse, fine pubescence; the tibise of the two anterior pair with three pair, the metatarsi with two pair, of very long spines. Several females from the Congo.

6. Epeira eclipsis nov. sp. Fig. 6a-b.

Cephalothorax long, 5.4 millimeters; broad in the middle, 4.3 ; lroad in front 2 millimeters; aldomen loug, 10; broad, 6.5 millimeters; first leg, 20 millimeters long; second, 18.5 ; third, 12 ; fourth, 20 millimeters.

Cephalothorax pale yellow, with a dark-browu strip running over the dorsum and a similar one on each side, not quite at the margin. Abdomen grayish, mottled with darker and lighter spots at the sides, a scalloped longitudinal band running over the dorsum, a few brown short stripes near the angles of the scallops. At the under side, in the central region, a black longitudinal band running from the epigynum to the spinnerets, bordered by a narrow white stripe which widens into an oval spot at the middle region, and a similar but smaller spot at the base of the spiunerets. Legs reddish-yellow, with dark-brown bands and with many short spines. Sternum blackish-brown, with a narow yellow longitudinal hand. Maxillie and labinm dark brown, with lighter tips. Cougo.

EXIPLANATION OF PLATE LXX.

1a. Selenocosmia nigrorentris n. sp., eyes.
1b. Selenocosmia migrorentris, male palpats.
2a. Cydrelabrunnea n. p., female, enlarged.
2h. Cydrela brwnnea, eyes.
2c. Cydrela brumea, palpi, trophi, and sternilm.
2d. Cydrela brunnea, epigynume
Ba. C'ydrela maculata n. sp., eyes.
3b. C'ydrela maculata, epigynum.

4a. Machomenus albidus n. sp., male, undeveloperl, enlarged.
4b. Machomenus albilus, face from the frout.
4c. Machomenus albidus, face tilted upward.
5 . Selenops brownii n. sp., epigynum.
6a. Epeira eclipsis n. sp., female enlarged.
6b. Epeira eclipsis, epigynum.

Marx del

ON SOME FOSSIL UNIOS AND OTHER FRESH-WATER SHELLS FROM THE DRIFT AT TORONTO, CANADA: WITH A REVIEW OF THE DISTRIBUTION OF THE UNIONIDA OF NORTHEASTERN NORTH AMERICA.

BY
Chas. T. Simpson, Aid, Department of Mollusks.

The United States National Iuseum has recently receiver from Mr. A. P'. Coleman, of the School of Practical Science of Toronto, a number of fossil Thios and other fresh-water shells from the drift of that eity, the former of which are highly important in their bearings on the distribution of certain suecies of that genus. Thay were obtained fiom a bed of sand betweentwo glacial beds in a railway cot on the Belt Line, north of Winchester street, 20 to "25 feet above the River Don.

Eight species and one variety of Unios and six speries of other fresh water shells were sent, all of whirh are living at the present day. All the Unios are characteristic forms of the Mississippi Valley, but of these only three species have ever been reported from ('anata.

The material was rereived in rather had condition; in the case of the Unios the valves wres all more or less broken and somewhat crumbled, yet I have been able to identify with rertainty most of the specimens.

It may be well before giving a list of these specimens, and stating the range which they at present occups, to brietly ontline the distribution of the Inionide of Eastern North America. I shall not go into details regarding this matter, which I have treated at length in a paper recently published in the American Naturalist.*

Suffice it to say that at the present time a common assemblage of the Naiades inhabits the entire Mississippi IO mage Area, to the almost absolute exclusion of all of her forms. Within this region is found the most magnifirent development of the "Thionidee of any part of the world. It is an ancient fanna, having deseremded in a no donbt moboken line, and through forms which have in some cases seareely changed, from the Cretaceous period. The speries and individuals are excedingly mumerous; they are often very large and pondorons, omamented with beantifuland odd patterns of color and sculpture. Unione life seems to have run riot here, and there is only one other area in the world at all comparable to it in this respert-that of China-which has no doubt received a part of its stock from the same source as the territory in question.

While many species actually found within this area, and others belonging with groups having their metropolis here, have spread far out

[^109]into other regions, I know of but a single species belonging elsewhere that has been fomd within this basin, a case that I shall refer to later.*

The streams of 'rexas are almost wholly peopled with these and closely related forms, which, in some cases, extend well into Eastern Mexico, and even Central and Northern South Ameriea. To the northward and eastward a number of characteristic Mississippi Uniones have extemed into the Red River of the North, the Saskatchewan, the Mackenzie, to the Hudson Bay Territory, Michigan, and ('anada. It is probable that one of these species is even found in the Columbia River, Unio luteolus, where it is known by the name of U. oregonensis. It will be therefore seen that the Naiades of this region are vigorous and aggressive.

The waters that drain into the Atlantic are inhabited by a totally different set of Uniones, which, as a rule, are moderate in size, of rather frail structure, and not remarkable for color or seuppture. The Appalachian chain acts as an ahost total barrier to the mingling of the forms of the two areas, and, so far as is known, only a very few of these eastern species extend westward to the headwaters of the St. Lawrence.

The following is a list of shells sent by Mr. Coleman:
Unio phaseolus. Hild. Six valves. An abundant, widely distributed species, whose recorded northern limits are western New York, Cheboygan Comen, Michigan, near the Mackinaw Straits, and St. Peters, Minn.

Unio occidens Lea? Part of a right valve. It is found living as far north as Ottawa, Canada.

Unio pustulosus. Lea. Six valves in bad condition, which I believe to be typical pustulosus. Not reported outside the Mississippi area. It extends north to St. L'eters, Minn., and southern Wisconsin.

U'nio pustulosus var. Schoolerofti Lea. Four valves and the posterior part of a pair. It orems north to Cirand Rapids, Mich., and Lake Erie.

Unio undulatus Bax. Part of a left valve in bad condition, but undoubtedly this species. Mississippi area into Texas, north to Ottawa, and Red River of the North.

Unio rectus Lam. Right valve of a young specimen. Widely distributed, extending to Ottawa and the Red River of the North.

[^110]Unio trigonus Lea. Fourteen valves. Its northern limits are western New York, southern Michigan, aud St. Peters, Minn.

Unio solidus Lea. Eleven valves. Not hitherto reported outside the Mississippi Basin.

Unio clavus Lam? Five valves in bad condition, which, after the most careful and exhaustive comparison, I refer to this species. It is confined to-day to the Mississippi area, reaching north into western New York.

Quite a number of specimens of the other fresh-water shells were received in bad condition. These are Pleurocert elevatum Lea, I's subulare Lea, P. pallidum Lea? and an undetermined species; Valvata sincera Say, remarkably depressed, and Spharium striatinum Lam. All of these are now found living in Canada, except the first mentioned species, which is, I believe, confined to the Mississippi area.

The theory founded by Agassiz and elaborated by Dawsou, Upham, Gilbert, Tyrrell, and others, that during the glacial period the arehean region of Canada was elevated from 1,000 to 2,000 feet above its present level, and that it was covered with an ice mantle from 3,000 to 6,000 feet thick, a mantle which in the eastern part of the United States extended down to latitude 38° or 40°; that in the Champlain period which followed there was a subsidence over this area, during which great lakes were formed by the melting ice, whose northern shores were the yet remaining wall of ice, and whose southern borders w ere the land that sloped northward; and that they drained into the Mississippi system, is most strongly confirmed by the evidence of these fossil Unios, and by every fact of the distribution of the Naiades in this general region to day. It is believed that the entire system of the present Great Lakes was united, and that at one time it covered a considerable part of lower Michigan, and extended well into Ohio, Indiana, and Illinois. What has since become the Red River of the North, which at that time was an arm of the great lake Agassiz, no doubt had its outlet into the Upper Mississippi from the small Bois des Sioux River, which rises in Lake Traverse, and from this comnected with Big Stone Lake, near by, the head of the Minnesota River.* The waters of the St. Lawrence, dammed with ice, could only escape into the Mississippi system.

It is quite probable that if the species of Naiades which now are found on the Atlantic slope inhabited any considerable part of the upper St. Lawrence and northern drainage systems previous to the glacial period, the great cap of ice grinding over the country, together with the rigorous climate, nearly or quite exterminated them in this area. As evidence in this direction, the case of Marguritana margaritifera may be cited. It is an oriental species, having its metropolis in northern Europe and Asia, which has crossed over into North America in all

[^111]probability by a now submerged landway, and to-day is found in British Columbia, Washington, Oregon, northern California, and in the upper waters of the Missouri. It is again met with in eastern Canada, New England, Pennsylvania, and New York, but has not been reported from any of the intervening territory. The suggestion made several years ago by Prof. A. G. Wetherby * that it had been destroyed in this region by glacial action seems the most reasonable, and it is possible that at the eastern side of the continent it might have survived in the area not covered by the ice cap or that it may have been driven to the southward before it. This is the only naiad now found living within the Mississippi drainage area that may said to belong to the Atlantic system, and it is undoubtedly an immigrant. It probably entered the Missouri through streams which comnected that river with the Northwestern lake system.

Unio rudiatus, a characteristic Atlantic drainage form, has been reported from Lake Wimnipeg and the Nelson River, \dagger but it approaches so near to L'nio luteolus, a common Mississippi shell, that the identification may be considered somewhat doubtful. Unio complanatus, another characteristic Atlantic area species, has, on the excellent authority of Mr. Bryant Walker, been found in the southern peninsula of Michigan, and Unio nusutus, a third abundant and widespread eastern form, is frequently met with in that state, and in streams in northern Ohio that drain into Lake Erie. But the Red River of the North, so far as is known, is peopled wholly with Mississippi Valley Naiades, and some of them extend to the Mackenzie River.

At the time during the Champlain period when the waters of the northern lake region overflowed into the Mississippi Basin, many of the hardier, more vigorous, and characteristic species of the latter territory migrated northward and established themselves; most of them remain in the streams that now drain northward and northeastward, but a few have possibly retreated, while others, including three of those received from Toronto, are to-day in all probability confined to the Mississippi Valley. The lower peninsula of Michigan is almost exclusively inhabited by these forms, as well as the (xreat Lakes, and they extend well down the St. Lawrence and north and east into Canada.

To briefly recapitulate, then, the I nio fauna of the Mississippi Valley is remarkably distinct, being nearly related only to a part of that of northeastern Asia. It is an old fauna, dating back through an almost unbroken series of species to the Laramie group of the Cretaceons, and it is remarkably developed in large, vigorous species and numerous individuals. That these forms are dominant is proven by the fact that they so exclusively occmpy this vast area, and that they have spread so widely into other regions, through a great variety of climate and conditions.

[^112]The Unionider of the Atlantic slope are far less vigorous and aggressive, and evidently are not fitted to take possession of wide and diversified areas. If they occupied any considerable part of the great British American plain before the drift period, it is not at all improbable that they were well-nigh exterminated by the onward movement of the great cap of ice, which relentlessly ground its way from north to south over the face of the country. At the close of the ice age, when this great glacial sheet began to melt away at its sonthern border, the water of this great region, which sloped to the northward and eastward, dammed up by the great ice wall in that direction, was forced over into the Mississippi through various outlets, and the Unionids of the latter territory, finding an easy entrance into a region almost or quite destitute of other forms, rapidly worked in and became the dominant fauna when the great wall had melted away and the streams resumed their normal courses.
The absence of the Atlantic species to day throughout a large part of the upper St. Lawrence region may perhaps be accounted for by supposing that they have never been able to cope with and dispossess their more persitent relatives from the Mississippi Valley, though the evidence afforded ly the fossils described in this paper would go to show that, to a certain extent, some of them, at least, had retreated.

Mr. Dall has called my attention to the important bearing which these fossils may have (if the geological facts stated be fully confirmed by further exploration) upon the theory of a mild interglacial period, preceded and followed by an advance of the ice. If the ice receded to the vicinity of Toronto, allowing these Mississippi species to attain to that region, the fact that they did not establish themselves there would be easily accounted for by the subsequent advance of the ice and the destruction of the colony. The final melting and disappearance of the ice cap, being complicated by changes in the direction of the drainage, might not afford a second opportunity for the immigration of the species in question.

DESCRIPTIONS OF SOME NEW BIRDS COLLECTED ON THE ISLANDS OF. ALDABRA AND ASSUMPTION, NORTHWEST OF MADAGASCAR, BY Dr. W. L. ABBOTT.

BY
\section*{Robert Ridgway.}
\section*{Curator of the Department of Birds.}

1. Ixocincla madagascariensis rostrata subsp. nov.

Subsp. Char.-Similar to true I. madagascariensis, but larger, the bill especially, and coloration paler.

Hab.-Aldabra and Gloriosa islands.
Type, No. 128,658, male ad., Aldabra Island, October 2, 1892; Dr. W. L. Abbott. Length (before skinning), $9 \frac{5}{8}$ inches; wing, 4.50; tail, 4.00 ; exposed culmen, 0.82 ; depth of bill through nostril, 0.28 ; tarsus, 0.86 ; middle toe, 0.65 . "Bill orange-red, tip black; feet Heshy brown." (Abbott, MS.)

2. Buchanga aldabrana sp. nov.

Sp. Char.-Differing from B. atra in larger and morestrongly hooked bill, much longer nasal plumes (reaching halfway from nostrils to tip of bill), much narrower rectrices, and in the very pale coloration of the female.

Adult male (type, No. 128,719, U. S. Nat. Mus., Aldabra Island, October 8, 1892; Dr. W. L. Abbott): Entirely black, glossed with greeuish blue, the remiges and rectrices much duller, more brownish, and very faintly glossed. "Trides red, bill and feet black." Leugth (before skinuing), 11.25 ; wing, 5.30 ; tail, 5.55 ; middle feathers, 4.20 ; culmen (from extreme base), 1.15 ; depth of bill through nostril, 0.38 ; tarsus, 0.92 ; middle toe, 0.60 .

Adult female (No.128,722, same locality and collector, October 2, 1892): Above dull slate-gray, the margins of the feathers on forehead and hind neck and lower part of rump approaching grayish white; wing-coverts dull greeuish slate indistinctly edged with dull brownish white; remiges and rectrices dull grayish brown, edged with paler. Under parts grayish white, the feathers of the breast, belly, ete., dusky grayish be.
neath the surface; under wing-coverts almost wholly pure white. Bill, legs, and feet black; "irides reddish brown." Length (before skinning), 9.75 ; wing, 4.50 ; tail, 4.80 ; middle feathers, 4.08 ; culmen (to concealed base), 1.12; depth of bill through nostril, 0.38 ; tarsus, 0.90 ; middle toe, 0.60 .

Immature males are variously intermediate in color between the adult male and adult female.

The collection contains three adult males, two immature males, and one adult female, representing dates from October 2-19, inclusive.

3. Foudia aldabrana sp. nov.

Sp. Char.—Similar to \boldsymbol{F}. mundaguscoriensis (Linn.), but very much larger.

Adult male (type, No. 12s,692, U. S. Nat. Mus., Aldabra 1sland, October 5, 1892; 1r. W. L. Abbott): Head, neck, chest, and upper breast bright scarlet (flame scarlet on under parts); rest of under parts rather light chrome-yellow, tinged with orange on abdomen and with scarlet on the crissum. Lores and orbits blark. Back and seapulars light yellowish olive broadly streaked with black; rump plain light tawny olive-brown; upper tail-coverts flame-scarlet. Wings dull blackish, all the feathers margined with light olive or olive-yellowish; tail olivegrayish, the feathers edged with yellowish olive. "Bill black; irides dark brown; feet brownish flesh." Length (before skiuning), 6.50 inches; wing, 3.30 ; tail, 2.10 ; culmen, 0.6.) depth of bill at base, 0.50 ; tarsus, 0.92 ; middle toe, 0.65 .

Adult female (No. 128,690, same locality and collector, October 3): Pilewm and hind neck deep olive-butf, narrowly and rather indistinctly streaked with dusky; superciliary stripe, cheeks, and sides of neck, light brownish yellow; a post-ocular streak of dusky; anterior under parts pale Naples-yellow (palest on throat), the posterior lower parts deeper yellow. Otherwise like the adult male, but without trace of red anywhere. "Upper mandible horny brown, lower mandible pale horny; feet flesh-color." Length (before skiming), .J.50; wing, 3.05; tail, 2.10 ; culmen, 0.70 ; depth of bill at base, 0.50 ; tarsus, 0.85 ; middle toe, 0.60.

Two other adult males show a mixture of red on the back, and one of them has the lower rump, as well as the upper tail-coverts, red. It is therefore probable that in full plumage this species has the red as extensive as in F. madagascariensis.

A young male is like the female described above, but is somewhat brighter yellow beneath.

4. Rougetius aldabranus sp. nov.

Sp. Char.-Similar to R. gularis, of Assumption, but without trace of dusky streaks on dorsal region, and with white bars on belly and flanks much less distinct (sometimes almost wanting).

Type, No. 128,835, U. S. Nat. Mus., Aldabra Island, October 10, 1892; Dr. W. L. Abbott. Length (before skinning), 12.50 inches, "irides chestnut-brown; feet blackish brown; bill black, base pink."

Eight adults from Aldabra compared with four from Assumption Island agree in the above-mentioned characters. In the type, there is scarcely a trace of white bars on the abdomen, while those on the flanks and thighs are nearly obsolete. Other specimens, however, have these markings well developed, though never so broad and distinct as in R. gularis, while in none of them is there even a trace of the blackish streaks on the back, which are very conspicuous in all the birds from Assumption.
5. Ibis abbotti sp. nov.

Sp. Cirar.-Similar to I. bernieri, as distinguished from I. ethiopica but lower neck naked and minutely papillose; remiges without darkcolored tips (blackish gray in I. bernieri, dark metallic green in I. ethiopica); decomposed tertials greenish blue on outer, grayish green ou inner, webs and iris light blue instead of white.

Нав.-Aldabra Island.
Type, No. 128,812, female ad., Aldabra Island, October 8, 1892; Dr. W. L. Abbott.

6. Sula abbotti sp. nov.

Sp. Char.-Most like S. cyanops, but bill much more robust, and coloration different, the prevailing color of the wings and tail deep black instead of grayish brown, the wing-feathers (both remiges and coverts) with inner webs and bases largely and abruptly pure white, and the upper tail-coverts and flanks marked with guttate or wedge-shaped spots of black.

Adult male (type, No. 128,761, Assumption Island, Indian Ocean, Sep. tember 18, 1892; Dr. W. L. Ablott): Head, neck, back, rump, upper tailcoverts, and entire under parts pure white; scapulars and wing-coverts pure white basally, grayish black terminally, the former mostly concealed, but frequently exposed as angular spots, or streaks, particularly on the lesser and middle wing-coverts; greater coverts with inner webs pure white, except at tip; remiges and primary-coverts black superficially, but inner webs of secondaries chiefly (those of immermost feathers wholly) pure white, and those of the primaries also largely pure white, this color reaching to the shaft on the basal portion of the first quill, which also has the outer web white, and the shaft yellowish white, at base; on the innermost primary the white forms a broad edging which extends nearly to the tip, gradually ruming out to the edge, but at the base occupying the entire width of the web. Tail deep black, the feathers (except middle pair) sharply tipped with pure white, and broadly edged with the same at the base. Each of the upper tail-coverts has a large wedge-shaped median spot of black, and many of the feathers of
the flanks are similarly marked. "Iris dark brown; feet leaden gray, lower parts of webs hark; tip of bill [for about 1 inch] black; [rest of] bill fleshy white; orbital skin black; gular pouch light green." (Abbott, MS.)

Total length (skin), about 28 inches; wing, 18 ; tail, 8.40 , outer feathers 3.20 shorter: culmen, 4.40 ; depth of bill at base (in front of lores), 1. 65 , width at same point, 1.22 ; tarsus, 2.00 ; mịddle toe, 3.50 .

This fine species is a little larger than S. cyenops, and of similar general appearance, but differs very much both in form and coloration. The bill is much heavier than in that speries, for while but little longer it is altogether deeper and broader through the base. The serrations of the tomia are also much coarser. The tarsus is decidedly shorter but the toes much longer than in S. cyanops, and the covering of both legs and feet is far rougher than in that or any other species of the genus. As to coloration, the most conspicuous features are the sharply defined wedged-shaped black markings, on a pure white ground, on the upper tail-coverts and flanks, the extensively white inuer webs of the remiges, and the positively black, instead of brown, general color of wings and tail. Wherever the white and black come into juxtaposition there is always a bold line of junction, and in no case a gradual shading together of the two colors.

7. Turtur saturatus sp. now.

Sp. Char.-Similar to Tuldubramus, but much darker; the whole back rich purplish chocolate, the head, neek, and chest similar but slightly paler; light-colored tips of rectrices more restricted and more tinged with gray (wholly gray in adult female); adult male with sides of neck distinctly glossed with green.

Hab.-Amirante group (Ile Poivre; Ile Alphonse?).
Type, No. 128,625, male ad., He Poirve, August 22, 1892; Dr. W. L. Abbott.

NOTES ON A SMALL COLLECTION OF MAMMALS FROM THE TANA RIVER, EAST AFRICA, WITH DESCRIPTIONS OF NEW SPECIES.

BY
Frederick W. True, C'urator of the Department of Mammals.

Mr. William Astor Chanler and Lieut. von Hölnel have recently sent to the Museum, among other East African collections, a small number of mammals. These were collected on the Tana River, between the coast and Hameye, a point about 300 miles from its mouth. Included among them is a new species of dormonse, Eliomys, which I propose to name Eliomys parrus. Its characters are as follows:

Eliomys parvus sp. nor.
Size small. Ears short, rounded, sparsely clothed with short, brownish hairs; the skin of the margin dusky.

Color above buff, tinged with brown. The hairs of the back are blackish in the basal half, then ringed with buff and tipped with brown. Muzzle lighter than the head, the short hairs being mostly without dark tips. A dusky line extends from the nostrils to the eyes, and a ring of dark color surrounds the latter. Cheeks (to the base of the ears), lips, chin, and throat clothed with hairs which are white to the base. The remainder of the under surfaces yellowish white, the hairs gray in the lower half. Feet white. Tail pale reddish choco-late-brown, washed with white, especially on the under side. Hairs of the tail short at its base, growing gradually longer distally, and attaining a length of 19^{mm} at the tip. The hairs are equally long on the median line and the sides of the tail, and hence there is no trace of a distichous arrangement.

Dimensions of body in millimeters.

Length of terminal luairs of tai] - - - .-..................................... 19.0
Length of hind foot, with claw...... . ..-.-. .-........................... 13.5
Height of ear from base of outer margin 9.0
Dimensions of skull in millimeters.

End of palate to posterior base of incisors 7.3

Greatest zygomatic brearlth. .. 13.0
Upper premolar to posterior base of incisors. 5.0
Length of upper molar series-.-. .-.............................. 2.8

This diminutive species closely resembles E. Kelleni Renvens, hat appears to be slightly larger, with proportionately shorter tail. The ears are decidedly shorter. In E. kelleni all the hairs of the under surfaces are gray at the base, while in E. parvus those of the cheeks, chin, and neck are white throughout. The ears have a dark margin in the latter species, but in E. kelleni the hairs of the margin are white. The end of the tail is mostly white in E. kelleni, but not in E. parvus.

The type specimen of E. parrus, No. 21005 , herein described, is a female. It was received in alcohol and afterwards made up as a dry skin. It was not accompanied by a label indicating the exact point on the Tana River where it was obtained.

The collection also contains two species of bats, belonging to the genera Tesperugo and Nycteris.

Vesperugo (Vesperus) rendalli Thomas.
There is a single specimen of this species, which was described by Mr. Thonas in 1889, from Bathurst, on the river Gambia.* It is a female of smaller size than the typical male specimen. Its dimensions are as follows, in millimeters:

	$\begin{aligned} & \text { Cat. No. } \\ & 21007 \% \end{aligned}$
Head and body	41.5
Tail	33.5
Forearm.	31.5
Head	15.0
Muzzle to eye	5.8
Ear, from base of outer margin to tip	12.0
Thumb, with claw	4.5
Lower leg	11.5

Nycteris hispida (Schreber).

Five specimens of this bat were collected, which differ in no way from those originally described. There are three males and two females.

Of mice, the collection contains but one species, which is allied to Mus musculus, and appears to be undescribed. Its characters are as follows:

Mus tana sp. nor.

Size larger than Mus musculus. Tail abont one-fifth longer than the head and body, terete, scaly; with sparse hairs, which do not conceal the seales. Ears thin and rom stiff hairs. These are white on the margin of the ears and brown elsewhere.

General color brownish-gray above, hoary below; feet white. Fur soft, without spines.

Hairs of the back of two kinds, namely, long hairs, gray at the base and black distally, and shorter hairs, gray at the base, with a sub-
terminal ring of buff and a black tip. Both black and buff become gradually less conspicnous on the sides and fade into the white of the belly. Hairs of the belly gray at the base and white at the tip; on the throat they are entirely white. Fore and hind feet entirely white, the hairs longer than is usual in this group; those at the extremity of the toes extending beyond the claws, but not concealing them. Claws white. Soles naked, purplish-brown (in alcohol), including the tubercles, which are pitted and not striated. Scales of the tail, both above and below, dark brown; the hairs of the upper side dark brown, of the under side white.

Skull exactly comparable to that of Mus musculus, except in size. Teeth similar, but the auterior tubercles of the first lower molar when worn form a quatrefoil instead of a trefoil. Posterior lower molar triangular, the apex directly backward.

Dimensions of the body in millimeters.*

	Cat. No
Length of head and body	77.0
Length of tail vertebre	93.0
Length of ear from lower margin of orifice to tip	16.5
Length of hind foot, with claw	23.0
Dimensions of the skull in millimeters.	
Basi-cranial length, from foramen magnum to posterior base of incisors.	
End of palate to posterior base of incisors	12.0
Length of upper molars	4.6
Length of nasals	11.0
Greatest zy gomatic breadth	14.0
Length of lower molars	4.4

The type specimen, No. $2100 \pm$, female, was received in alcohol. After being measured, it was made up as a dry skin. The exact locality on the Tana River in which it was obtained was not indicated.

Accompanying Mr. Chanler's collection was an immature specimen of Nannomys, apparently N. minimus, collected at Wange on Manda Island, north of Lama, by Mr. Gustav Denkhardt.

[^113]
REMARKS ON THE AVIAN GENUS MYIARCHUS, WITH SPECIAL REFERENCE TO M. YUCATANENSIS LAWRENCE.

BY
Robert Ridgway,
Curator of the Department of Birds.
The discrimination and identification of the species and geographical races of the genus Myiarchus is one of the most difficult tasks with which the student of Neotropical ornithology has to deal, the style of their coloration being remarkably uniform, the species numerous, and their geographical variations perplexing. Some forms once considered specifically distinct, and indeed very different from one another when specimeus from distant areas are compared, are connected by intermediate specimens where their respective ranges come together; in some cases (as for example that of M. cinerascens and M. nuttingi) it is not at all improbable that hybridism plays a part and thus complicates the problem; but in others (e.g., M. mexicanus and M. magister) the intergradation is on too extensive a scale to warrant serious consideration of hybridism as the probable cause.

Most writers are agreed as to the limits of the genus, the only species involved in a difference of opinion regarding this point being the M. barbirostris (SW.), of Jamaica, which some of the best authorities have referred to the Autillean genus Blacicus, though I fail to discover wherein it differs structurally or otherwise (except specifically) from the flat-billed Myiarchi (M. larrencii and allies). Doubt has been expressed by Messrs. Salvin aud Godman (Biologia Centrali-Americant, Aves, II, pt. 12, March, 1889, 1. 96) as to the propriety of referriug M. flammulatus Lawr. to the genus Myiarchus, and in this doubt I share so strongly that I have no hesitation in formally separating it. (See p. 606.) Another species also seems to me to require separation on account of its very long tarsi. This is the M. magnirostris (Gray), of the Galapagos archipelago, a species which otherwise resembles the smaller flat-billed species, though differing in having the bill much narrower and less contracted at the tip. These two eliminations, together with that of the flat-billed group typified by M. tuberculifer and including M. lumencii and allies, make four well-defined groups
included within the genus Myiarchus, as generally understood, the chief structural characters of which may be tabulated as follows:
a^{\prime}. Bill nearly cylindrical, its depth at gonydeal angle nearly equal to its width at

a^{2}. Bill depressed, its depth at gonydeal angle decidedly less than its width at the same place.
b^{1}. Nostrils distinctly lateral; width of bill at frontal feathers much less than length of gonys.
c^{1} Tarsus much shorter than length of bill from rictus; lateral outlines of bill

c^{2}. Tarsus as long as bill from rictus; lateral outlines of bill not contracted at tip

Eiribates.
b^{2}. Nostrils superior; width of bill at frontal feathers equal to length of gonys. (Tarsus much shorter than length of bill to rictus.)......Deltarhyachus.
The synonymy of these generic or subgeneric groups is as follows:

1. Myiarchus Cabanis.

Myiarchus Cals., in Tschudi, Fann. Per., Aves, 1845, 152. Type, Muscicapa ferox Gm. Kaupornis Bovap., Ann. Sc. Nat., ser. iv, Zool., i, 1854, 133. Type, Myiobius stolidus Gosse.
Myionax Cabs. and Heine, Mus. Hein., if, 1859, 73. Type, Muscicapa crinita Linn.
"Despotina Kaup, 1851," Gray, Hand-1. 1, 1871, 363. Type, Muscicapa ferox Gm.
This section includes, besides the type (M. ferox), M. crinitus (Linn.), M. mexictmus (Kaup), M. cinerascens Lawr., M. yucutanensis Lawr., M. tyrannulus (Miill.), H. pheocephalus Scl., and all the West Indian species except M. burbirostris (Sw.), together with, as a matter of course, their various geographical races or subspecies.

2. Onychopterus Reichenbach.

Onychopterus Reici., Av. Syst. Nat., 1850, t. lxy. Type, Tyrannus tuberculifer D'Orb. and Lafr. ($=$ Myiarchus atriceps Cab,?).
This includes, besides the type, M. lawencii (Gir.) and M. barbirostris (Sw.), together with the various geographical races of and species allied to the former species.
3. Eribates Ridgway.

Eribates RidgW., MS. Type, Myiobius magnirostris Gray.
4. Deltarhynchus Ridgway.

Deltarhynchus Ridgw., MS. Type, Myiarchus tammulatus Laws.
Species which I have not examined, and therefore can not assign to their proper sections, are the following: M. cephalotes Tacz., M. pelzelni Berl., M. pheonotus Salv. \& Godm., M. apicalis Scl. \& Salv., M. tricolor Pelz., M. semirufus Scl., and M. inquietus Salv. \& Godm.

Myiarchus yucatanensis Lawr.
Although described by Mr. Lawrence in 1871 (Proc. Acad. Nat. Sci., Philad., 1871, p. ©35), Myitrchus yucatanensis remained little known until 1ssi, when the present writer gave it definite characters in his
"Manual of North American Birds" (p. 334), based largely on a perfect specimen obtained in northern Sucatan by Mr. G. F. Gaumer; the extremely worn plumage of the type and the other specimen obtained with it by Dr. Schott having precluded a clear perception of the specific characters. The following year Dr. Sclater also recognized it as a distinct species and gave it (Cat. B. Brit. Mus., xiv, 1888, p. 260) a clear diagnosis, based on additional specimens collected by Mr. Gaumer. He also admitted its relationship to M. stolidus (Gosse), first indicated in the key of my "Manual," stating that it "clearly belongs to the Antillean group of MI. stoliclus, with broad rufous margins to the inner webs of the rectrices."

The next year Messrs Salvin and Godman (Biologia Centrali-Americana, Aves, II, pt. 11, March, 1889, p. 93) also recognized it as a species, but assigned it to the group of M. lawrencii, and qualified their opin. ion of its validity by the statement that they could "see very little difference between these Yucatan birds [M. yucatunensis Lawr.] and the form of M. laurencii found in eastern Mexico, from Vera Cruz northwards," though admitting that "compared with M. leworencii from more southern localities, including Yucatan itself,* the amount of red in the tail of $\mu_{\text {. yucatanensis becomes a more conspicuous chnacter, and the }}$ difference betweeu the two is more obvions."
More recently, Mr. J. A. Allen seems to be suspicious of its specific distinctness, and says (Bull. Am. Mus. Nat. Hist iv, No. 1, Art. xvii, Dec. 29, 1892, p. 345) that " the two origiual specimens * * \boldsymbol{o}^{*} are both in very worn plumage, and were these the ouly specimens known I should not hesitate to refer them to M. lawrencii." He further says that "while the types bear a strong resemblance in coloration to worn specimens of M. tyrammius [a South American species not referred to in my "Manual"] in which the amount of rufous in the tail is below the normal, this is evidently not the species to which they bear the slosest affinity."
These somewhat conflicting views have induced me to reëxamine the subject, although the number of specimens of M. yucatanensis accessible to me has not increased since the "Manual" was written, except that the type, not then examined, has been borrowed for the purpose from the American Museum of Natural History. This reëxamination and comparison of specimens fully confirms my reference of the species to the typical section of the genus, as indicated in the "Manual" and indorsed by Dr. Sclater in the British Museum catalogne, the form of the bill in M. yucatanensis being very different from that of M. lawrencii.
For comparison with the three specimens of M. yucatanensis I have selected all the National Museum specimens of the M. lawrencii type from Yucatan (M. I. olivascens, nobis, four in number) and five examples

[^114]of true M. laurencii representing localities "from V'era Cruz northwards," and including Giraud's type, said to have been obtained in Texas. That the differences between them are really very considerable, the following tabulated statement of their characters will show: a^{1}. Bill approximately cylindrical (i. e. as in typical Myiarchus).

1. M. yucatanensis. Wing, not less than 3.35 (average, 3.38) ; tail, not less than 3.32 (average, 3.34); tarsus, 0.85 ; middle toe, 0.48 ; inner webs of second to filth rectrices with inner half rufous; top of head distinctly more reddish brown than back.*
a^{2}. Bill distinctly depressed (i. c., as in type-species of the subgenus Omychopterus).
2. M. olivascens. Wing, not more than 3.10 (average 2.97); tail, not more than 3.05 (average 2.87); tarsus, not more than 0.76 (average 0.74); middle toe, not more than 0.42 (average $0.39 \frac{1}{2}$); iuner webs of second to fifth rectrices without any rufous in adult (a narrow edging only in young); top of head same color as back.
3. M. lawrencii. Wing, 3.22-3.35 (average 3.30); tail, 3.05-3.28 (average 3.15); tarsus, $0.75-0.80$ (average 0.78); middle toe, $0.40-0.42$ (average 0.41); inuer webs of second to fifth rectrices merely edged with rufous; top of head distinctly darker (not more reddish) than back. (Colors throughout much darker than in M. yucatanensis, the upper surface of the tail more strongly washed with rusty, and wing-coverts edged with brown or rusty instead of light grayish.
[^115]
ON A SMALL COLLECTION OF BIRDS FROM COSTA RICA.

RY
Roberi Ridiwill,
Curator of the Department of Birds.

The specimens referred to in the following notes were kindly submitted by the authorities of the Costa Rica National Museum, through Mr. George K. Cherrie, the ornithologist of that establishment.

1. Rhodinocichla rosea (Less.).

An adult female from Buenos Aires (No. 3660, Museo Nacional de Costa Rica, March 13, 1892, George K. Cherrie), is similar to 53900, U. S. National Museum, from Panama (J. McLeamnan); lout owing to its fresher condition the colors are rather purer, particularly the dark slate-color of the upper parts, which becomes browner with age. Its measurements are as follows: Length (skin). 6.60 ; wing, 3.20; tail, 3.15; exposed culmen, 0.79 ; tarsus, 1.07 ; middle toe, 0.72 .
2. Microcerculus luscinia Salv.

An adult female from Burica, Costa Rica (No. 2593, Museo Nacional de Costa Rica, December 15, 1891, George K. Cherrie), is similar to No. 53901, U. S. National Museum, from Panama (J. McLeannan), but differs in the following particulars: There are no dusky terminal margins to the feathers of the upper surface; the innermost greater wingcoverts, on the other hand, have indistinct blackish tips; the general color of the wings, particularly the remiges, is appreciably darker; the middle portion of the lower breast and belly is much paler, inclining to dull brownish white, slightly tinged with rusty, each feather showing a central irregular (usually V-shaped) mark of dark grayish; the sides are more strongly tinged with raw-umber or tawn-olive. Length (skin), 4.00 ; wing, 2.15 ; tail, 0.87 ; exposed culmen, 0.60 ; tarsus, 0.87 ; middle toe, 0.60 .

Some of the differences of coloration, as for example the darker hue of the wings and tail, and the stronger rusty tinge on sides, are doubtless due to the fresher condition of the plumage.

3. Buthraupis cæruleigularis Cherrie, sp. nov.

Sp. CHAR.-Similar to B.arcei Scl. and Salv., but larger, sides and flanks extensively and uniformly bluish dusky, and chin and throat dull indigo-blue, scarcely darker than top of head.

[^116]Adult male (type, No. 12s840, I ${ }^{r}$. S. Nat. Mus.,* Buena Vista, Costa Rica, August 4, 1892; Castro y Fernanlez): Head (all round), hind neck, sides of neck, entire upper parts, sides, and tanks, uniform dull indigo-blue, the larger wing-coverts, remiges, and rectrices, however, dull black except on edges; chest and breast (except laterally), belly, anal region, and under tail-coverts bright yellow, changing gradually from rich Indian-yellow on the chest to lemon-yellow on the under tailcoverts; axillars canary-yellow; under wing-coverts mixed primoseyellow and white; inner webs of remiges dull brownish gray, paler on edges, these becoming whitish toward base of quills; thighs uniform dusky indigo-blue. Bill entirely black: legs dusky horn-color; feet dull blackish. Length (skin), about 5.60 (tail imperfect); wing, 3.42; exposed culmen, 0.60 ; depth of bill at base, 0.35 ; tarsus, 0.85 ; middle toe, 0.60.

Mr. Cherrie sent an excellent description of this bird, but it has unfortunately been mislaid and I have therefore been obliged to prepare a new one.

Although apparently very different from B. arcei Scl. and Salv. in the extensively and uniformly dusky sides and flanks, it is so closely similar in other features of coloration that I strongly suspect it may only represent an extreme variation of that species. At any rate, additional specimens will be necessary to establish its validity.

4. Tachyphonus rubrifrons Lawr.

Although Dr. Sclater considers this.to be the female of T. xanthopygius, two of the three specimens now before me are marked as males by their collectors (J. Carmiol and N. Uamanza).

The pair collected by Señor Carranza (Nos. 7168 and 7169, Museo Nacional de Costa Rica, Reventazón, Costa Rica, February 24, 1892), are almost exactly alike, and both very similar to No. 47454 , C. S. National Museum, collected at Angostura, Costa Rica, January S, 1867, by J. Carmiol. The two males differ from the female in the much strouger yellow tinge to the under tail-coverts, some of the middle feathers being, in fact, almost pure yellow, but no other difference of coloration is observable. The Carranza male differs fiom the Carmiol specimen in having the chin and throat purer gray, and the chest strongly tinged with yellowish olive.

If really referable to T. xanthopygius, the phumage represented by T. rubrifrons must, therefore, be that of the young male as well as the female.

According to the collector, the iris is reddish and the bill and feet black in both sexes.

[^117]Measurements of the three specimens, together with a male of T. xanthopygius, are as follows:

TACHYPHONUS XANTHOPYGIUS SCI..

Museum No.	Museum.	Ser and age.	Locality.	Date.	Wing.	Tail.	$\begin{gathered} \text { Hx- } \\ \text { posed } \\ \text { cul- } \\ \text { men. } \end{gathered}$	$\begin{aligned} & \text { Tar- } \\ & \text { sus. } \end{aligned}$	Middle toe.
17875	U.S.	δ^{*} ad.	Truando, Colombia.		3.80	2. 80		0.82	0.60

TACHYPHONUS RUBRIFRONS LAWR.

47454	U.S.	$8{ }^{8}$ ad.	Angostura, Costa Rica.	Jan. 8,1867	3.25	2.43		0. 78	55
7169	C. R.	c ad.	Reventazón, Costa Rica.	Feb. 24, 1892	3. 25	2.43	0.63	0.80	0.52
7168	C. R.	\% ad.	d	. . . do	3.15	2.37	0.60	0.80	0.50

Should this bird prove to be distinct from T. xanthopygius Scl., as I believe it will, we must, if the A. O. U. canons of nomenclature are adhered to, restore the name Tachyphonus rubrifrons Lawr., for which Mr. Lawrence substituted the name T. propinquus when he discovered that the red color on the forebead of the type specimen was an accidental stain. (See Canon xxxi, A. O. U. Code of Nomenclature.)
5. Pachyrhamphus ornatus Cherrie. (Proc. C'. S. Nat. Mus., Xiv, No. 855, 1891, 338.)

An apparently immature female belonging to the Museo Nacional de Costa Rica (No. 1472, San José, J. C. Zeledon), is much like the type (an adult female), but differs in having the back, etc., more grayish olive-green, which, instead of being quite the same hue from upper back to tail-coverts is much tinged posteriorly with light sandy brown or fulvous, this being especially marked on lower and posterior scapulars and longer upper tail-coverts; the pileum is lighter, rather russet than chestnut; the broad pale margins to wing-coverts and secondaries are much paler, those of the coverts being chiefly buff, those of secondaries pale olive-buff; the sides of the head are paler, and the upper throat is nearly white, like chin. The white frontal mark is much less tinged with buff near base of culmen; the black patch covering nape and sides of occiput is less sharply defined and less intense black, and the adjacent color of hind neek is decidedly paler than the back, producing an indistinct collar. Length (skin), 5.50; wing, 2.85; tail, 2.20; exposed culmen, 0.42 ; tarsus, 0.70 ; middle toe, 0.45 .

6. Pachyrhamphus cinereiventris Scl.

Four adult males in the collection of the Museo Nacional de Costa Rica are typical of this form, all having the whole back intense blueblack, without any gray across the hind neck. This is the case even in an immature male (same collection, No. 4432 , May 3,1890), in which the greater part of the rump is olive, instead of slate-gray, and the wings largely in immature plumage. The shade of color of under parts is very miform (intermediate between slate-color and slate-gray),
some specimens showing a faint transverse fieckling of a paler tint on the belly and other posterior portions.

Two immature females in the same collection differ from an adult (possibly a young male) in the collection of the U.S. National Museum from Greytown, Nicaragua (No. 40t48, Jume 14, 1865, H. E. Holland), in the darker and richer color of the uper parts, the back being olivebrown in contrast with the olive-color of head and neck; wing markings rather deeper, especially the edges of secondaries; under parts considerably more richly colored, the prevailing hue being yellowish olive, clearing to olive yellow on abrlomen, under tail-coverts, etc., these parts in one specimen (No. 3465 , Jiménez, August 12, 1ss9, A. Alfaro) being almost canary yellow,* while the yellow covers nearly the whole anterior portion of the under surface.
7. Platypsaris aglaiz obscurus Ridgw. (Iroc. I. S. Nat. Mus., XIv, 1891, p. 474.)

An adult male (No. ito9, Museo Nacional de Costa Rica), obtained at the same time and place with the type of P. a. obscurus, is similar in color to the type on upper parts, but is paler beneath, especially on the throat, where there is not the slightest indication of the dusky spotting, so conspicuons a feature in the type. In fact, the whole throat, especially its lower portion, is considerably paler than any other part of the lower surface, except under tail-coverts and anal region, the color being a pale, slightly brownish, gray. The average hue of the under parts is very nearly the same as in the type of I. ". hypopheus, t and still more like another specimen of that form (No. 120294, C. S. Nat. Mus.). From all the males of the latter form, however, it may be ristinguished by the decidedly smaller size, large white spot at base of inner web of outer primary, and correspondingly more extended white patch covering the basal portion of other primaries on the under surface. Measurements are as follows: Length (skin), 6.50; wing, 3.30; tail, 2.35; exposed culmen, 0.58 ; tarsus, 0.82 ; middle toe, 0.48 .

Two additional females from the same locality agree essentially with the one originally described, and differ even more from the La Palma specimen doubtfully referred to P. u. latirostris (cf. Proc. U. S. Nat. Mus., Xiv. 1891, 1. 4i4). No. 5410 (Museo Naciomal de C'osta Rica), Jiménez, February 7,1891 , has the upper parts somewhat more intense chestnat-rufous, with none of the grayish-brown tinge seen on the back of the type female; the black of the pileum, however, is slightly mixed with dull rusty brown. The under parts are rather deeper ochraceous than in the type. Length (skin), 6.00; wing, 3.30; tail, 2.45; exposed culmen, 0.58 ; tarsus, 0.75 . "Iris black; bill and feet, horn-color."

No. 3461 (Museo National de Costa Rica), Jiméne\%, August 6, 1889, • A. Alfaro, is still deeper in color, the upper parts tending more decidedly toward chestmot, and the lower surface quite miform, deep

[^118]ochraceous-buff, inclining to tawny along sides. There is no ardmixture of brown in the black of the pilemm. Length (skin), 6.30 ; wiug, 3.40 ; tail, 2.58 ; exposed culmen, 0.60 ; tarsus, 0.75 .

The three females of this form which are now on view agree in the much brighter or more castaneous coloration of the upper parts, by which character they may be immediately separated from females of any other of the local forms of this species. In the clearness of this rusty coloring of the upper parts they come nearest P. a. latirostris, in which, however, the color is very much paler, while the pileum is dull slate-color instead of glossy black.
8. Sclerurus canigularis Ridgw. (Proc. U. S. Nat. Mus., Xir, No. 762, February 5, 1890, 24.)
An immature female (No. 8281, Museo Nacional de Costa Rica, Buena Vista, Costa Rica, August 14, 1892, ('astro y Fernandez) is closely similar to the type of the species (an adult female), but has the upper parts rather more castaneous and the chest a little less so. Its measurements are as follows: Length (skin), 5.70; wing, 3.40; tail, 2.35 ; exposed culmeu, 0.80 ; tarsus, 0.88 ; middle toe, 0.72.

This bird is certainly distinct, at least subsperifically, from s.albigularis Scl.
9. Scytalopus argentifrons Ridgw. (Proc. I. S. Nat. Mus., Xiv, No. 869, 1891, 475.) Adult male (No. 6379, Museo Nacional de Costa Rica, Volcan de Irazí, July 31, 1891): Forehead and anterior half of crown (back to a little past posterior angle of eyes), delicate silvery gray or cinereous, this color extending backward laterally, above ear-coverts, to the hinder part of the occiput (terminating about half an inch from posterior angle of the eye); lores and anterior portion of the forehead a little darker and browner gray; orbital region nearly black, especially above the eye; postocular streak, occiput, hind part of crown, hind neck, back, scapulars, and wing-coverts uniform slate-black; remiges and rectrices similar but slightly browner; rump and upper tail-coverts dark bister-brown, barred with blackish. Ear-coverts, malar region, chin, and throat slate-gray (slightly darker on the first), gradually deepening on sides of breast to dark slate color, the sides and belly dark slate-color, with broad pale gray tips, these light tips still paler, and less pure, gray on lower median portion of belly; flanks, anal region, and under tail-coverts dusky black, each feather broadly tipped with light russet or tawny-brown, producing a heavily barred effect. Bill entirely deep black; legs and feet rather dark horn-color, the outer side of the former considerably darker. Length (skin), 4.70; wing, 2.00 ; tail, 1.55 ; culmeu (to base), 0.52 ; exposed culmen, 0.43 ; tarsus, 0.83 ; middle toe, 0.70.

This specimen differs from the type and the example which accompanied it (as described in these "Proceedings," Vol. xiv, pp. 475, 476), as follows: The frontal silvery patch is more extensive, ${ }^{*}$ and exhrbits

[^119]a conspicuous lateral extension, over the erroverts, quite as far as the end of the latter; the anterior part of the forehead and lores are paler, slightly brownish, gray instead of dark slate-color; the general color of the upper parts is devoid of any brownish tinge, being a pure slateblack or blackish slate, and the wings are without any trace of brownish markings; the side of the head, together with the chin and throat, are paler gray. Possibly the type may be a younger bird, and the other specimen (No. J419, Museo Nacional de Costa Rica) may also be an immature male, or perhaps an adult female.

Foung (?) femule (No. 595 , Museo Nacional de Costa Rica, Volcan de Irazú, July 2, 1891): Above nearly uniform dusky brown (nearest "(clove brown"), inclining to bistre posteriorly, where showing rather indistinct dusky central spots (a single subterminal one on each feather of hinder scapulars, lower back, and rump), the upper tail-coverts russet, with dusky bars; outer surface of remiges vandyke brown; sides of head a little paler than pileum, the ear coverts nearly uniform dull slate-color; chin, throat, and chest mixed pale gray and pale isabella color, the latter on tips of feathers, and the prevailing color superficially; rest of under parts cimamon-buff, deeper and brighter posteriorly, paler and grayer anteriorly, each feather marked with a partly exposed subterminal \bigcap-shaped mark of dusky; flanks, aual region, and under tail-coverts clear mummy-brown, rather broadly barred with dusky. Bill brownish black; legs and feet as in adult. Length (skin), 4.40; wing, 2.03 ; tail, 1.62 ; exposed culmen, 0.35 ; tarsus, 0.78 ; middle toe, 0.68 .
10. Antrostomus saturatus Salvin. (A.rufo-maculatus Ridgw. Proc. U. S. Nat. Mus., xiv, 1891, 466.)
In redescribing this species as A. rufo-maculutus, I was not at the time aware of Mr. Salvin's previous name and description, my memoranda or references thereto having been somehow lost or mislaid. Since my attention has been called to the matter, I find there can be no question that I have thus, by accident, added a synonym to the nomenclature of this species.

Another adult male, from the same locality as the type, collected by Mr. Geo. K. Cherrie, July 24, 1891, has been received for examination. This example (No. 5893, Museo Nacional de Costa Rica) is almost exactly like the type, but differs in a few minor particulars, as follows: Along the sides of the oceiput and across its posterior portion, some of the feathers have one or both webs mainly whitish, with black bars, producing a much interrupted series of irregular small whitish blotehes; there is considerable lightcolored (pale rusty buff) mottling on the scapulars and tertials, rendering the large black spots or blotehes more conspicuons; the pale rusty-brown oblique bands on the middle tailfeathers are more interrupted, being much broken by irregular black markings, and there is even less light spotting on the throat, where the general color is an almost unbroken dusky black. Its measurements are as follows: Length (skin), 8.6.); wing, 6.30 ; tail, 4.85 ; its graduation, 0.70 ; tarsus, 0.65 ; middle toe, 0.60 .

NOTES ON A THIRD INSTALLMENT OF JAPANESE BIRDS IN THE SCIENCE COLLEGE MUSEUM, TOKYO, JAPAN, WITH DESCRIPTIONS OF NEW SPECIES.

BY
Leonhard Stejneger.

The title of this paper explains the origin and raison d'êt:e of the following remarks. For fuller explanation I would refer to the introductory note to the first paper of this series (Proc. U.S. Nat. Mus., xiv, No. 874 , 1891, pp. 489-498). The second paper is entitled "Two Additions to the Japanese Avifauna, including Description of a New Species" (Proc. U. S. Nat. Mus., xv, No. 906, 189², pp. 371-373).

The first paper made eight additions to the avifanna of Japan; the second two species; the third paper (the present one) also adds eight species to the list. An inspection of the material in the Science College Museum has consequently so far added eighteen species, several of which were hitherto undescribed. It has, moreover, resulted in clearing up many doubtful points and identifications, and I have had an opportunity to examine several rare species of which I had hitherto seen no Japanese specimens. For these and many other favors I wish to express my indebtedness to the authorities of the Scieuce College Mu seum, particularly to Dr. I. Ijima.

Urinator pacificus (Lawr.).
A young specimen (No. 576; ô ; Tajiri, March 14, 1884) is in all probability referable to the present species. The dimensions are very small, particularly the bill, and as the bird is at least nine months old, the bill has probably attained full size.

This would make the second Japanese specimen of this species, the first one having been recorded by me but recently (Proc. U. S. Nat. Mus., xv, 1892, p. 291).
(64) Gygis candida (Gm.).

The exact identity of Blakiston and Pryer's No. 64 has been somewhat doubtful, though the probabilty that it was the present species was very strong. It is therefore interesting to learn from Dr. Ijima that Mr. Namiye has compared the specimen in question with the bird sent and found them to be identical, and as the latter bird is an unquestionable Gygis candida the doubt is set at rest. We are still igno-
rant, howerer, of the locality whence came the former specimen, but as the present specimen was collected in the Province of Owari the species must be admitted to the fauna. No reference to the White Tern is found in Seebohm's Birds of the Japanese Empire.

In a letter, dated February 1:3, 1893, Dr. Ijima informs me that he has since obtained another specimen, but he does not give any locality. It was found by Mr. Ota among a lot of skins brought to Yokohama from variousplates in Japan for export for millinery purposes. It is now No. $2: 337$ of the Science College Museum and measures, according to Dr. Ijima, as follows: Bill, 33^{mm}; wing, $221^{m m}$; tail, 97^{mm}; middle toe, with claw, $30^{m m}$.
(75 \ddagger) Stercorarius pomarinus (Temm.).
A young specimen (No. 1075), from the Province of Owari, is the third specimen from dapan and therefore well deserving of being recorded. it is a young bird.

(101) Limosa lapponica baueri (Naum.).

Dr. Ijima justly calls attention to the great dimensions of the specimen sent (No. 1144: Tokyo). The wing is only slightly in excess of the ordinary length in this species, being $230^{m m}$, but the exposed culmen is $120^{m m}$, and the tarsus $62^{m m}$. He writes that he has had another specimen "of this form." Referring to the measurements given by me in my "Results of Ornithological Explorations in Kamchatka," ete. (Bull. U.S. Nat. Mus., No. 29, p. 123) it will be observed that all the sexed specimons are males. The difference in sex may account for the difierence in size.

Tryngites subruficollis (Vieill.).

Specimen No. 2164 , collected by Mr. Ota in the Province of Owari, adds not only a species, but a genus to the Japanese avifama. The buff-breasted sandpiper is easily recognized by the peculiar pattern of the wing-feathers, best seen from the underside; the lining and axillars are pure white, but the under primary-overts, as well as the imner webs of the remiges are beautifully marked with dusky marblings on a whitish ground.

The present speries is strictly American in its distribution, though specimens have occasionally strageled to Lurope, particularly England. On the other hand, Mr. E. W. Kelson (C'ruise Corwin, 1881, p. 90) states that he found it quite common in the vicinity of Cape Wankarem, on the Arotic seamast of eastern Siberia, early in August, 1881. It is not clear, however, that he actually collected specimens, at least there is no record corroborating the observation, that I know of. If such a colony occurs on the Siberian coast it is safe to say that the members composing it retrace their steps to America during the migrations, and the Japanese specimen can not be regarded otherwise than as in accidental straggler.

(14911_{2}) Gallicrex cinereus (Gim.).

So far this species has only been obtained once in Japan, viz: a specimen collected by Mr. Ringer at Nagasaki, Kiu-Siu. We have now to record a specimen from Hondo, which was purchased in the flesh in Nagoya during the winter 1890-91 by Mr. Narazaka, who is connected with the Educational Museum in that city. Dr. Ijima found it there and secured it for the science College Museum in Tokyo (No. 2188).

玉strelata hypoleuca Salvin.
The bird which last year (Proc. U. S. Nat. Mus., xiv, 1891, p. 490) I recorded as Astrelata leucoptera is really the present species, and I hasten to correct the mistake.

I will say in my own defense, however, that the mistake was not due so much to a blunder on my part as to an unfortunate lack of type specimens of these difficult birds, and to various other circunstances, as will be seen from the following explanation: The specimens of alleged E. leucoptera with which the Japanese bird was compared were Peale's types of his \boldsymbol{N}. brevipes, a name which everybody has considered synonymous with .E. leucopterce of Gould. There were differences, but owing to the fact that there were still greater apparent differences between the Japanese bird and Mr. Salvin's diagnosis of E. hypoleuca I adopted the former name. But circumstances have changed since then, Mr. Witmer Stone having kindly undertaken to compare the specimens with Gould's types of A. lencoptera and Rev. Canon Tristram most generously lending me an authentically identified specimen of W. torquata (in Salvin's handwriting), the species with which Salvin compares it. Now it turns out that F. torquatu is nothing else than F. brevipes, the species (under a wrong name) with which I compared it. It will be observed that Salvin says (Ibis., 1888, p. 359): "E. torquate, Macg., affinis, sed paulo major, canda multo longiore distinguenda," while the difference in the tail-feathers as measured on my specimens only amounted to 10^{mm}.

Although the proportional differences are thus reduced to nothing, a careful observation shows that there are enough color characters to be relied upou, although not readily appreciated when reading the original description.

The differences as they now reveal themselves upon a comparison of the above material and an additional Japanese specimen mentioned below are as follows:
(1) In A. brevipes (torquatus) the lining of the wing is much whiter, only a broad margin along the anterior edge being slaty, while in X. hypoleuca most of the under primary coverts are lighter or darker gray.
(2) In CD. hypoleuca all the tail-feathers, including the exterior pair, are uniform blackish slate, the concealed extreme bases being more or less white, while in \boldsymbol{T}. brevipes the tail is much lighter gray, from slate color on the middle pair gradually beroming lighter toward the outer
pair, which are medium gray (Ridgway, Nomencl, pl, ii, no. $\overline{\text { r }}$), the outer pair, besides, more or less sprinkled with white in the inner web.
(3) In . Fs. hypolence the slaty color of the top of the head extends considerably further down below and beland the eyes than in 7 . brevipes and the line of demarkation between the coloration of the upper and the lower sides is apparently less well defined.

As a rule, perhaps, the underside in E. brevipes is more or less sprinkled with dusky, especially on chest and tlanks, but some specimens, at least, are fully as white below as E. hypoleuca.

In addition it may be well to call attention again to the white, hairy filaments found in all the three spedimens of . W. brevipes (torquatus) before me and absent in my serimens of E. hypolenco. This may be a diagnostic charater, or it may be simply seasonal and foumd in all species. It deserves a fuller investigation, however, than I can give it at present.

Estrelata hypolenca was originally introduced by seehohm into the Japanese avitama upon the strength of specimens collected by Mr. Holst in the Bonin Islands (Ibis, 1890, p. 10a). I have now before me another specimen from the Bomins, collected by Mr. B. Nakamura in 1892 (Sc . Coll. No. D290), as well as the specimen from the Province of Mino, Hondo, at the time referred to by me as A. lewcoptera.

Measurements.

Musenm and No.	Collector and No.	sex and age	Locality.	Date.	Wing.	$\begin{aligned} & \text { Tail- } \\ & \text { f. } \end{aligned}$	$\begin{aligned} & \text { Exp. } \\ & \text { culmen. } \end{aligned}$	Gradnation of tail.	Tar. sus.	$\begin{aligned} & \text { Middle } \\ & \text { toe, with } \end{aligned}$ claw.
sc. Coll. 450		ad	Prove, Mino.	1885	227	112	24	41	30	38
Sc. Coll. 2290	Nakamura	ad. .	Bonin Islands..	1892	231	123	27	4	$3: 3$	41

Æstrelata longirostris, sp. nov.

Itagnosis.-hength of nasal tube more than one-fourth the exposed culmen; a white wedge on immer wehs of primaries ocoupyiug the basal two-thirds; batck, plumbeons; top of head, himl neek, slaty black; feathers of rump and upper tail-coverts abruptly white at base; tail-feathers, slate color, white at extreme base, and onter pair strongly sprinkled with white on inner webb; entire umlerside pure white, includinglining of wing, except a narow line along the anterior edge, which is white and black mixed.

Hebitat.-North Pacific Ocean: Province of Matsu, Japan.
Type.—Se. Coll. Mus. Tokyo, No. 1583.
This species differs from all the other true . Estreluter in its proportionally long and slender bill, approaching in this respect Cookilaria cookii, in which, however, the nasal tubes are very much shorter.

As will be seen fiom the measurements given below, it is one of the small speries of the genas belonging to the section with large white wedge on the inner webof primaries. It consequently at once differs from
E. hypoleuca Salv. and E. brevipes Peale, which latter I consider the same as Mactillivray's E. torquate.* Of the smaller Estrelute with white wedge on the inner web of primaries it needs only comparison with \mathcal{E}. defilippiana and $-E$. icucoptera. It differs from the latter by the greater amount of white on the under wing-coverts (agreeing in this respect almost absolutely with E. Iefilippiana as exemplified by specimen No. 9961 , kindly lent me by Rev. Canon Tristram), by the plumbeous color of the back, and by the different coloration of the tailfeathers. From E. defilippiana, on the other hand, it differs, among other things, sufficiently in having the top of head and nape blackish, like the small upper wing-coverts, and not ashy like the rest of the upper surface. I may add that the characters of E. leucoptera, as now understood by me, are furnished me from Gould's types in the Philadelphia Academy of Sciences by Mr. Witmer Stone, who also had the kindness to directly compare them with the present species.
I know of no other species with which E. longirostris needs comparison.

It is one of the most interesting recent additions to the fauna of Japan, or, more properly, to that of the North Pacific Ocean, as the province of Mutsu, whence came the two specimens here noticed, can

[^120]hardly be regarded as their true home. W. longirostris probably breeds on some out-of-the-way islet in the North Pacific, and the specimens in question, whose wing-feathers are molting, were most likely driven firom their regular habitat by a heavy gale. The discovery of this species affords an interesting parallel to that of Estrelata fisheri, deseribed not many years ago by Mr. Ridgway from Kadiak, Alaski.

Measurements.

Museum and No.	Collector and No.		Locality.	実			$\stackrel{\cong}{\leftrightarrows}$				Remarks.
Sc. Coll. Tok., 1584.		Ad	Prov゙, M	200^{*}	103	25	7	28	33	23	
Sc. Coll. Tok., 1583.			do.	187*	98	25	7	29	36	20	Type.

* Longest primaries molting.

Bulweria bulweri (Jard. and Selby).
The specimen (No. 45\%) referred to in the previous account (Proc. U. S. Nat. Mus., XIv, 1891, No. 87t) as having heen "picked up on the shore of Sulphur Island" is now before me. Like the other Pacific specinens examined by me, it has the light wing bar. By Canon Tristram's courtesy I have been able to compare our specimens with the one in his collection from the Marquesas Islands and referred to B. mucgillirroyi (Tristram, Cat. Coll., 1889, p. 6). I must regard it as typical B. bubceri, for it has the wing bar very conspicuous, and I fail entirely to understand the remark in the Ibis, 1881, p. 252.

Oceanodroma fuliginosa (Gm.).
In introducing this interesting addition to the Japanese avifauna I have at once to state that this is neither Kuhl's, nor Forster's, nor Solander's, nor Parkinson's Procellaria fuliginosa.

It is with great reluctance that I adopt "this much abused specific name, the various applications of which in this family of birds are hard indeed to trace, and harder still to remember," as Salvin truly says (Rowley's Orn. Misc., r, 1876, p. 232), but I see no other alternative. The matter stands thus: The present specimen certainly does not belong to any of the species now recognized by ornithologists. I should, therefore, have felt but little hesitation in deseribing it as new, were it not that Latham's (and conserpuently also Gmelin's) description fits the bird exactly. The case is in many respects parallel to that of Gmelin's I. desolata, a specific name almost as "much abused" as I '. fuliginosa. Both having been misapplied by Kuhl, an Eistrelate was for many years known as E. desolata. Of late, however, Latham and Gmelin's
descriptiou and name have been applied to Prion desolatus. So far the parallel is absolute. The only difference is that Latham's description of P. desolata does not fit the Prion half as well as his description of P. fuliginosa does the present species. Therefore, if it is defensible and correct to recognize a Prion desolatus Gmel. nec Kuhl (and I believe it is), then it also becomes necessary to recognize the bird before me as Oceanodroma fuliginosa Gmel. nec Kuhl.

The present specimen is strongly suffused with plumbeous above, but this plumbeous tinge is probably present in all the uniform fuliginous species, when fresh, and will probably in time disappear in this specimen, too. It is chiefly distinguishable from the other similarly colored species by its large size.
The specimen (Science College Museum, No. 1555) was collected by Mr. Y.Tanaka at Torishima, 1891, and by him presented to that muserm.

Oceanodroma markhami (Salv.).
Through the great kindness of Canon Tristram I have before me the specimen from Sendai Bay, collected by Lient. Gum in 1874, which has caused the introduction of the name O. melania into the Japanese avifauna. I have also before me U. S. Nat. Mus. No. 13025, the O. melania collected by Xantus, at Cape St. Lucas (entirely overlooked by Seebohm, B. Jap. Emp., p. 271), and the only specimen thus far obtained in North America besides the type. The coloration of the two specimens is practically identical (the uniform hrown upper surface, without plumbeons tinge of the National Musueum bird, I attribute to the age of the specimen), but the proportions are so different that I feel compelled to regard them as belonging to different species. The question now arises, which one is the true O. melenia of Bonaparte? Seebohm has compared Tristram's bird with the type in Paris, and says, in a general way, that he has "no doubt that they belong to the same species" (B. Jap. Emp., p. 271). On the other hand, I find on the back of the label of the Cape St. Lucas specimen, in Dr. E. Cones's handwriting, the following: "True melania, as ascertained by measurements procured from Pucheran by Prof. Baird." Now, if Seebohm has not minutely noted the various dimensions and found them identical, he would naturally have no doubt as to the identity of the two specimens, if depending chiefly on coloration. Under these circumstances I think it safer to rely upon the measurements of the type given by Pucheran, and to regard the two Mexican birds, the type and the specimen in the National Museum, as being the same-conseruentiy true 0 . melania.
The Japanese bird, on the other hand, agrees very well with Salvin's O. markhami. It will be observed in the table of dimensions given below that the chief difference between the Mexican and the Japanese birds is in the length of the tarsus, and we are at once reminded of Salvin's remark in regard to this O. morlhami (P. Z. S., 1883, p. 430): "C. melanice, Bp. apud Coues, certe similis, sed capite plumbescente,
tarsis brevioribus forsan diversa．＂I feel，consequently，confident that there can be but very little，if any，difference between the type of 0 ． murkhomi and the Japanese so－called O．melaniu．

It may be interesting to remark that this species（or possibly 0 ．fuli－ ginosa）has been recorded from Japanese waters long ago，as v．Kittlitz （Denkw．，II，p．191）obtamed，in lat． $37^{\circ} \mathrm{N}$. ，long． $2112^{\circ} \mathrm{W}$ ．，（ir．，a speri－ men of a bird which he describes as a Thutassidroma，rather large and＂uniformly blackish brown．＂

Oceanodroma monorhis（Swinh．）．

Although not strictly an addition to the Japanese avifauna，as I have already included the species in my list of the birds of the Lin Kin Islands（Proc．U．S．Nat．Mus．，x，1887，p．414）upon the authority of （Collingwood（P．Z．S．，1871，p．422），the present specimen is highly interesting as being the first one obtained in Japan proper．It was col－ lected by Mr．N．Ota in the province of Mutsu，and is now No． 1598 of the Science College Museum．The specimen was taken to England by Canon Tristram，who identified it as above．It agrees very well with Swinhoe＇s original deseription（Ibis，1867，p．386），and I have no doubt as to the correctuess of the identification，although I can not verify the character which to Swinhoe suggested the specific name，and which he describes in the following words：＂Nostril with only one hole apparent at the end of the tube．＂In the present specimen the septum is cer－ tainly present and visible，though perhaps not reaching as far forward as in the other species．

Ciconia nigra（Lin．）．

In my review of the Japanese Merodii（Proc．U．S．Nat．Mus．，1887， p．285）I gave the characters and the synonymy of the present species ＂in order to facilitate the identification if any straggler should visit Japanese territory．＂The straggler has now done so，and the brackets which included the name of the species in my synopsis may be re－ moved，as I have before me，through Dr．Ijima＇s kindness，an immatme female Black Stork，shot by Messis．Ise Jogoro and Ohashi（and pre－ sented to the Science（ollege Maseum by the former）on January 19， 1892，at Sunamura，at the mouth of Nakagawa，near Tokyo，where the bird had been observed among the rushes for about a week previously．

Being a roung bird，the feathers of head and neck are dark brown with lighter margins and no metallic green reflections．

（137⿺辶⿳亠丷厂彡⿱亠䒑日，Demiegretta ringeri Stejn．

The collection contains two specimens，one（No．426）from Sakura， Shimosa，March 14,1884 ，the first record from Hondo，but not in full plumage and consequently unavailable for comparison；the other from Tsushima，are of the specimens upon which Dr．Ijima based his remarks （Jomin，Sc．Coll，Imp，Univ，Japan，v，1891，p．122）to the effect that
he failed to see the distinction between the color of the occipital crest and the rest of the upper plumage, except the scapular plumes, and that consequently he refers to the specimensunder the name of "Ardea" jugularis Wagler.

To this I may remark that in the specimen sent nearly all that is seen of the back, on account of the make of the skin, consists of the seapular plumes. If the elongated occipitals, however, be compared with the feathers of the hind neck no one can fail to appreciate the distinction in color. The top of the head and the occipital crest in the specimen before me (No. 1802) are beautifully plumbeous, "while in the Polynesian specimens the top of head and the occipital crest are much darker, corresponding closely to Ridgway's 'slate black.'"

I must therefore contend that Dr. Ijima's Tsushima specimen, so far from weakening the status of Demiegretta ringeri, has materially strengthened it.

> Phasianus torquatus (Gmel.).

A specimen from Tsushima (Sc. Coll. Mus. No. 1775) was sent in order to have it compared with "contiuental" specimens. It agrees in every particular with other specimens collected by P. L. Jouy in Tsushima, now in the U. S. National Museum, as well as with specimens from Fusan, Korea, collected by the same gentleman. Of Chinese specimens I have only two specimens procured in the Shanghai market, but without information as to exact locality. From these the Korean and Tsushima birds differ in the greater amount of chestnut on the interocapulium. Seebohm (Ibis, 1888, pp. 313, 314) in a very general way nints at local differences of coloration in Ph. torquatus, but fails to establish any races. With a less extensive material I do not feel justified in separating the Korean birds.
(157) Coturnix coturnix japonica (Temm. \& Sehl.).

In regard to the Japanese quails, I am inclined to make Mr. Seebohm's words mine, viz, "I do not believe in the two quails." (Trans. As. Soc. Jap., x, 1882, p. 128.) The pattern and groand color of the throat in the European quail is very variable indeed, and the Japanese subspecies is no exception, as the material before me shows, in which I can trace all gradations from white-throated birds to those with a uniform dark vinaceous-cimamon throat.

One of the two birds sent by Dr. Ijima is particularly instructive, as it shows a phase of the throat coloration of the Japanese bird not yet recorded. No. 2168, from the Province of Owari, is an old male in the normal breeding plumage, i. e., with the whole throat and sides of face uniform dark vinaceous-cinnamon, in every respect identical with a male collected by Capt. Blakiston at Sapporo, Yezo, May 11, 1877 (U. S. Nat. Mus., No. 95980). The other specimen (No. 2170), from the same locality, differs, however, in having a large black patch down the middle of the throat, sending off at the lower end on each side the usmal
upper cross branch; otherwise the throat and sides of face are as uniformly saturated vinaceons-cinnamon as the other specimen. In addition, No. 2170 differs from the other Japanese specimens before me in having the elongated flank-feathers less chestnut and with a broad blackish edge along the whitish central stripe in these feathers.

In the first-mentioned example there is just the faintest possible trace of dusky on the middle of the throat as an indication of the black patch, and, moreover, near the chin there is a small white feather lett. I am, therefore strongly inclined to the belief that the vinaceons-cinnamon throat is derived in spring from the white throat by recolorescens.

(158) Columba intermedia Strickl.

A young bird (No. 139) undoubtedly belonging to this species and collected at Kurikomayama, Miyagi-ken, northeasterı IIondo, on March 28,1884 , apparently disposes of the so-called O. domestica (or livia) in Japan (Proe. U. S. Nat. Mus., 1887, p. 424). The probability was certainly against the latter occuring in Japan, but without any specimen of C.intermerlia from Japan proper at hand I regarded it as the safe course to retain the name and give the distinguishing characters of both species.

The species with white tail-band is not so easily disposed of however, and as it occurs in Korea it may be looked for in Southern Japan.*

(315) Butastur indicus (Gmel.).

Blakiston and Pryer (Traus. As. Soc. Jap., x, 1882, p. 183) record the Javan buzzard as common in Y'amato and Shikoku, but "as yet not found north of Yokohama." Sc. Coll., Mus. No. 1678, is therefore noteworthy as having been obtained at Nikko, about 80 miles north of Yokohama.

[^121]Diagnosis.-Similar to C. rupestris (i.e., with white wing and tail-band), but the gray color darker, the entire breast strongly suffused with wine-purple, with a strong metallic gloss, which in certain lights changes to green; neek all around verdigris green with metallic gloss, which in certain lights changes to purplish.

Habitat.-Korea, Ussuri, and probably Northern China.
Type.-U. S. Nat. Mus., No. 114582; 子 ad.; Southern Korea, November 22, 1882; P. L. Jouy, Coll. No. 1328.

Diagnosis.-Adult female, similar to Accipiter nisus, but upper surface much lighter and grayer, being a light gray (about averaging like Ridgway's gray, no. 8, pl. ii, Nom. Col.).

Habitat.-Japan.
Type.-Science College Museum No. 2192; Prov. Hitachi, Japan; Jan., 1892.

With an abundant material of sparrow hawks (A. nisus) from the British Islands, the continent of Europe, India, Korea, and Japan, consequently covering the entire west-to-east range of that species, I can discover $n o$ approach to a coloring of the upper parts such as the present bird shows; nor can I find in the very extensive literature on the variations of Accipiter uisus any reference to a similar specimen.* Taking a large series of specimens of the corresponding age and sex, there is but slight difference in the coloration of the upper parts, and in the series before me, ranging from England in the west, to Japan in the east, it is impossible to pick out any specimens showing a decided difference from the average.

The bird, however, which I have ventured to give a new specific name is not one but several shades lighter and grayer than the ordinary A. nisus, grading from Ridgway's gray No. 7 (Nom. Col., pl. ii) on top) of the head to No. 9 on the upper tail-coverts. In addition the shaftstreaks are very dark and pronounced; the dark bands on the tail are nearly obsolete; and the white band at the end of the tail is very broad and conspicuous, being fully $5^{m m}$ wide. The under side is also lighter, the dark crossbars being decidedly gray. In size, proportions, and pattern of coloration there is no difference.

Without seeing the specimen some ornithologists might perhaps think that the paleness and grayness of this specimen is due to fading or abrasion. But that is not the case. The plumage is quite new and fresh. Nor is there any apparent tendency to albinism; the concealed white spots are not abnormally large; and there are hardly any white margins to the upper wing-coverts or tail-coverts so common in specimens of A.nisus. The specimen is undoubtedly old, but age alone is hardly a sufficient explanation of the fine coloration so markedly different from all other specimens of A. nisus. Others might insist that we have here to do only with an accidental individual variation, but I would quote what Dr. Ijima writes me apropos of this bird: "Sparrow. hawks of this color are known (though rare) to Japanese falconers and are prized much more by them than the ordinary ones, as they are said to be more powerful and useful."

It would be hard to believe this bird to be a resident of Japan, together with the ordinary A. nisus which is common there, but as the

[^122]speemen in question was shot in danary there is every reason to suppose that it only visits the country during migration. I would then sugrest the possibility that this light-gray form may be the bird breeding in Kamtschatka, where we know that the place of decipiter perlumbarius is taken by the nearly white A. condidissimus. True, the Kamtschatkan birds are said by Taçamowski to be similar to those from Europe (Bull. Soc. Zool., France, 1Ss: p, pi32), but this identification can hardly be considered conelnsive, as in the same breath he determined the A. coudidissimus as A. atricapillus. It is more than likely that yonnger birds of A. pullens and of A. nisus may be difficult to identify, except by the most minute comparisom, and it is not likely that the difference would reveal itself mess he had old birds of both species before him.

Since the above was witten the first volume of 1)r. Taczanowski's posthumous work "Faume Oruithologique de la Siberie Orientale," has been reeeived, and fomy delight I find my views strongly corroborated on p. 107, where he deseribes " 11 male alulte du Kamtschatka" as having "le cendré bleuatre des parties superieures du corps beancoup phas clair que dans les oiscanx de la Niberie orientale de lewope centrale avec lesquels nous l’avons comparé, la coulem du sommet de la tête, qui est plus foncée que sur le reste, est beatuonp moins foncée que celle de la région interscapulaire des oiseaux rités, le cendré blenatre est le plus rlair sur les seapulaires postépeurs, les remiges tertiaires, le croupion et sur la queme, les baguettes noires sont partout bien dessinées la bordure terminale des rectrices largement blanche."

Syrnium uralense (I'allas).

A specimen from ILamo, province of Musashi (November 10, 1883), Sc. Coll. Mus., No. 629, brings up the old question as to the status of this form in Japan. Four specimens fiom Yezo, one collected by blakiston and three by Itenson, are apparently true N. uralense. I say apparently, because I have a suspicion that the dapanese birls are very much smaller than the contimental-especially European-specimens, but as I am somewhat doubtful in regard to the sexing of the specimens before me I do not venture to separate them.

Two specimens firom Hondo, including the present specimen, are pereeptibly darker than the Ve\%o birds, so much so in fact, that I am inclined to regard them as a separable rate. However, they are much nearer to the northern than to the dark one from Nagasaki.

Against the aceptance of three forms, viz, (1) a N. fuseescens from Kin-Sin, (2) the very light true S. wralense from lezo, and (3) a darker race of the latter possibly entitled to a trimominal appellation from Hondo, there is only the dark specimen, in the Pryer collection, said to come from lokohama. This oceurrence seems so improbable that I wish to challenge the acematey of the label, a challenge the more justifiable as 1 have most direct infomation to the effect that Mr.

Pryer did not always exercise that serupulous care and promptness in labeling his specimens which alone would entitle them to weight as evidence in doubtful cases.
(165) Cuculus kelungensis Swiuh.

A young specimen which can ouly have been out of the nest but a short time is exceedingly interesting, as it demonstrates how far apart C. kelungensis and C. canorus in reality are, in spite of the superficial resemblance of the adult birds.

The specimen (Tokyo Univ. Mus., No. 1950), which was collected by Dr. Ijima at Norikura, July 18, 1891, may be described brieflly as being uniformly slate above, with a faint olive gloss on back and wings, and more plumbeous on rump and upper tail-coverts, every feather very narrowly fringed with white at tip, a few white feathers on nape; sides of face, throat, fore-neck, and chest solid blackish, rest of lower surface blackish, with white crossbars.

It will be seen how different this blackish bird is from the young of the European cuckoo (and presumably from that of its Eastern representative C. c. telephonus, an adult sperimen of which was shot in the same locality), a difference fully as large, if not larger, than that between the young of Dryobates major and japonicus.

The specific distinction between C. kelnngensis and canorus, therefore, scems to be considerably deeper-rooted than the difference in their note and the comparatively slight, though quite constant difference in ground color and pattern, between the adults would indicate.

The correctness of referring this specimen to the present species can not be doubted, as there is no probability that the young of C. tele. phonus is so different from its Western relative. On the other hand the dimensions, which in this half-grown bird are greatly in excess of those of the fall-grown C. tamsuicus, preclude its being referred to the latter species.

(178) Eurystomus calonyx Sharpe.

The birds of this form are of very great interest, as the only specimen hitherto obtained in Japan proper is the specimen, often referred to, which was procured at Nagasaki in May, 1879.

As the specimens (which were collected and donated by Mr. W. Takachiho at Hokosan, Buzen, Kiu-Sin, May 25, 1891), were carrying branches for the nest in the hole of a big tree it is safe to assume that the bird is a regular summer resident in the southern portion of the country as it has already been shown to be in Tsushima.

A comparison of these two birds and four from Tsushima collected by Mr. P. L. Jouy in June, 1885, with others from various localities, fully bear out the distinctions made by Mr. R. B. Sharpe (P. Z. S., 1890, pp. $550-551$). At the same time a reëxamination of the Liu Kiu specimens previously referred to by me as E. orientalis proves this identification
to be correct, as it agrees in every particular with the Philippine Islands specimens.

We have, consequently, in Japanese territory two species, or forms, of Eurystomus-E. orientalis in the Lin Kius, probably traveling south over Formosa to the Philippines, and E. colomy, x, the migrating ronte of which is more westerly over China to the Malayan peninsula.

This shows how essential it is not to disregard the small differences and fine distinctions, if we wish to come to a full understanding of the many difficult questions for the solution of which we study ornithology. The naming and distinguishing of these forms is not the ultimate object of our study, but is the necessary and only means by which we can arrive at the truth.

(169) Upupa epops Lin.

A specimen (No. 1570) from Yamadagori, Province of Ise, and obtained from Mr. Ota, agrees perfectly with European and Asiatic specimens.
The Ifoopoe is probably not so rare in Japan as one might be led to suppose from the statement in Seebohm's Birds of the Japanese Empire, p. 159, that " the sole claim of the Itoopoe to be regarded as a Japanese bird rests upon a single example in the possession of Captain Blakiston [now U. S. National Museum No. 96009], which was obtained off the southeast coast of Yezzo," for not only was it mentioned in Fauna Japonica from a Japanese drawing, but Prof. Maximowitch, who could not well have mistaken the bird, noted it as having been seen at Hakodate in 1861 (Blakiston, Ibis, 1863, p. 138; Blak. and Pryer, Trans. As. Soc. Jap., x, 188:2, p. 138). The U. S. National Museum, moreover, has received from Mr. Ringer a male specimen (No. 114759) which was collected in Kin Sin on March 8th, 1888, and now Dr. Ijima writes me that Mr. Nozawa has shot it at or near sapporo, Yezo. We have thus positive evidence of its occurrence on all three of the large islands. Since the above was written Dr. Ijima iuforms me (Feb. 13, 1893) that Mr. Alan Owston, of Yokohama, had just shown him a specimen said to have come from Nagoya.

(170) Yungipicus kizuki (Temm.).

When first advocating the restriction of the name I. secbohmi to the Yezo bird and arguing in favor of regarding the Hondo bird as typical Y. kizuki, I had only 9 specimens at hand. The material at my disposal has increased considerably since then, and after examining the 22 dapanese specmens now before me I can only reaftim what I said then (Proc. U. S. Nat. Mus., 1886, p. 122) viz, "that the form which inhabits the middle Island [Hondob is inseparable from the Nagasaki bird and that the birds sonth of 'Blakiston's Line' are more different from the Ye\%obird than are Cokohama and Nagasaki specimens from cach other."

Messrs. Iargittand Seebohm, who originally held that Y. kizuki is
confined to Kiusiu and $I^{\text {r }}$. seebohmi to Hondo and Yozo, have of late modified their views somewhat, inasmuch as both forms inhabit Hondo; but their arguments are by no means clear and are altogether unconvincing. Mr. Seebohm (B. Jap. Emp., 1890, p. 157) says: "All my Yokohama examples (eight), including a breeding female, agree in color and markings with the skin from Yezzo [I. seebohmi], and not with that from Nagasaki" $[Y . k i z u k i]$, but on the previous page he distinctly contradicts himself by saying that he has two examples of the typical form, i.e., Y. kizuki, collected by Mr. Owston at Yokohama, and one by Mr. Heywood Jones on Fuji-yama, which is only 42 miles distant from Yokohama. Mr. Hargitt, on the other hand (Cat. B. Brit. Mus. xvin, 1890, p.s19), makes me responsible for the theory of both forms inhabiting the same island.* In my original article referred to, I expressly stated (p. 120) that, "in order to find out the true habitat of a Woodpecker it is necessary to ascertain where it breeds," and for the possible occurrence of Y. seebohmi in Hondo I suggested (p. 123) that it might straggle across in winter from Yezo. I have later suggested the possibility of true Y. seebohmi occurring in very high altitudes in northern IIondo, but that is hardly more than a guess and should not be quoted otherwise.
But the statements in regard to these forms have become still more contlicting of late, for while Mr. Seebohn has referred the Tsushima bird to Y. seebohmi (Ibis, 1892, p. 95), Dr. Ijima (Journ. Coll. Sc., v, 1891, p. 121) says that "the typical form [Y. kizuki found on the IIondo also occurs on Tsushima". He has kindly sent me a skin from the latter island (No. 1760; 子 ad. Niimura, Tsushima, March 16, 1891, M. Namiye coll. In addition to this I have two adult females (U. S. Nat. Mus. No. 114636 and 114637) collected by Mr. Jouy in Tsushima, May 18 and June 2, 1885, respectively. Comparing these three specimens point for point with three specimens from Kiu Sin I can fully corroborate the correctness of Dr. Ijima's identification, for the Tsushima birds. Lest I might be accused of partiality I mixed the birds together and asked my friend Robert Ridgway to pick out the three darkest specimens without giving him any information as to their habitat or anything else. He at once picked out two, but had great difficulty in making up his mind which of the remaining four was the darkest. When he finally decided, it was found that he had selected as the darkest the three Tsushima birds! Yes, the Tsushimabirds are, if any, darker, that is, they are even more Y. kizuki, than the typical Kin siu birds themselves, and yet Mr. Secbohm calls them Y. seelohmi!!

As Dr. Ijima also states, the Sagami (Hondo) birds agree in color and markings with the typical Y. kizuki. In verification he sent me a pair for inspection.

[^123]No. 1960, a young male from Norikura, July 18,1891 , is quite interesting. It is generally paler than the adults and the pattern less decided; the lateral muchal red patches are present, but nearly the whole top of the head has whitish spots at the tip of each feather.

I may finally be allowed a few general remarks on the status of I. seebohmi. It is a form but very slightly differentiated, but there is enough avorage difference between the specimens from lezo and those from further south to make it profitable to retain the name for the northern form. But I will emphasize the fact that the differences between Y. kizuki and I.k. seebohmi, which the anthors above referred to have never ceased to mantain, are much smaller than the differences between the other races of woodpeckers in Japan and Kimethatka described and named by me, but for which I have been held up to the horrified ornithological publie as an umprincipled hair-splitter. Those who cannot appreciate the distinctness of Dryobutes purus and immutabilis, of Picoides albidior, or Picus yessoensis, should give up Yungipicus secbohmi as soon as possible.

(167) Dryobates japonicus (Seeb.).

Dr. Jjima sends four specimens to help me solve the question as to the possible distinotness of the Yezo birds; one of the specimens (No. 1187, ㅇ, Napporo, March 13, 18s:, Nozawa coll.) being from the latter island, while three (No. 1413, of , Tokyo, November 30, 1890, Ijima coll., No. 109s, \&, Nagami ; and No. 1093, of, Ogawa, December 5, 1893) are from Hondo. I do not know the exact location of Ogawa, but I do not believe it to be south of Yokohama.

An inspection of this additional material only corroborates the view expressed in my paper on Henson's Hakodate birds (Proc. U. N. Nat. Mus., xv, No. 90t, 189\%, p. 299). The Vezobird is the palest specimen, althongh very closely approached by the one from Ogawa, but in the former the white shoulder patch is decidedly larger. The Tokyo specimen has all the white portions strongly washed with deep ferruginous, evidently a superficial stain.
(255) Pitta nympha Temm. and Schl.

An adult specimen (No. 1580) from the province of Inaba.
I have compared it carefally with the pair collected by Mr. P. I. Jony in Tsushima and find it to agree in every particular. The Drown of the head only is a little deeper and a few of the middle wing eoverts have near the tip a mesial hark wedge, presmmably due to age. The scutellation in the front of the tarsus is also unusually distinet, pointing in the same direction.

Dr. Ijima writes me in regard to this species as follows: "This is one of two specimens said to have come from the province of Inaba. I purchased both for the Museum. That this species does oceur in the southern provinces, for instance in Kin Sin, there can be no doubt at all. Mr.

Ota recently obtained a specimen from Owari. It is also mentioned in Japanese ornithological mauuscripts, but seems never to come as far north as Tokyo. The Japanese name of this bird is Yairocho, meaning eight-colored bird, and its local name in Satsmma is Akadanna (aka= red; dama=cloth worn about the lower parts of the body)."
(224) Accentor erythropygius Swinh.

A male in nestling plumage collected by Kikuchi at Norikura, Angust, 1888 (No. 889). It is very much like the adult bird, wing and tail being identical, but the top of head is washed with ochraceous and streaked with blackish, and rump and under side, including flanks, more or less tawny-ochraceous streaked with dusky; the pattern on the throat is not so well defined.
(223) Prunella rubida (Temm. and Sch1.).

No. 891, a nestling, collected by Kikuchi at Norikura-yama, Province of Shinano, August 19, 1888. Wiug and tail as in adults; upper surface likewise, though with a tawny tinge insteal of the vinaceous of the adults; under side pale tawny ochraceons fading to whitish on belly and indistinctly streaked with dusky.

A careful comparison of three specimens from Hondo with four from Yezo proves them to be absolutely identical. There does not seem to be the slightest foundation for the alleged subspecies P. fervida.
(261) Turdus naumanni Temm.

Two specimens with one of T. eunomus were sent by Dr. Ijima under the above name to illustrate a supposed combination of the characters of the two species. They are readily referred to their respective species, however, but the key by which the two species were supposed always to be distinguishable requires some emendation, as both specimens of T. naumanni show considerable dusky in the coloration of the flanks. The differences in the color of the outer tail feathers, under tail-coverts, under wing-coverts and rump seem to be always coustant. Taking Robert Ridgway's "Nomenclature of Colors" as a standard, we find that the under wing-coverts and outer tail-feathers in T. nummami are of a color somewhat intermediate between the cinnamon (Pl. inf, Fig. 20) and tawny (Pl. v, Fig. 1), while the under wing-coverts in T'. eunomus are intermediate between cinnamon rufous and vinaceous-cinnamon (Pl. iv, Figs. 16 and 15), or for all practical purposes the former, and the tail practically uniformi brownish slate; the latter species, in addi tion, has a strong wash of rufous chestnut on the rump. Besides, in T. ennomus the central portion of the longest under tail-coverts always has some dusky added to the brown, while in T. nuumanni it is unmixed, of the same color as the under wing-coverts.

The superficial resemblance between the three birds sent is undoubtedly due to their being somewhat youngish birds.

With a series of over thirty specimens before me I must agree with Mr. Seebohm that these well defined species do not intergrade, and there should be no difficulty in properly identifying even young birds by comparison, though the differences may be somewhat difficult to express in words, and difficult to grasp even when well expressed.

The two specimens of T. naumanni were collected by Dr. Ijima at Tokyo, February 17, 1889 (Sc. Coll. Mus. Nos. 750 and 757), and are both males.
(254) Pratincola maura (Pall.).

A young in transition from the nestling plumage collected by Dr. Ijima at Norikuri, July 24, 1891.

I have but little to add since I last wrote about these species (Pr. U. S. Nat. Mus., xv, 1892. pp. -), except that I have now been able to examine several breeding specimens collected by Dr. Abbott in the Vale of Cashmere during July, 1891. These belong to the smaller bright race and tally, consequently, exactly with Oates's description of the Siberian examples. When, therefore, he says (Fanna Br. India, Birds, if, 1891, p. 62): "Siberian specimens of Bush-Chats are not very numerous, but all I have seen are so intensely black on the head and back, so intensely rufous on the breast, and, moreover, so small, the wing not exceeding 2.6 in length, that I have not been able to match them with any breeding bird from the IImalayas, except in the ease of one bird from the interior of Sikkim," it would almost seem as if two forms, were breeding in the Himalayas, probably in different parts.

Comparing these Cashmere birds with my specimens from Japan I find no other difference than the width of the bill at base, which is markedly greater in the Japanese birds.

(207) Cyanoptila bella (Hay).

A young male in nestling phumage (No. 2015), collected by Dr. Ijima at Norikura, July 21, 1891, demonstrates beyond the slightest doubt that the two sexes are perfectly distinguishable in the nest. This specimen which has the characteristic buff plumage, scaled with blackish margins to the feathers, has the blue edges to the wing feathers and the blue tail broadly white at base, like the the adult males, thus strongly contrasting with the female nestling collected by Jouy (U. S. Nat. Mus., No. 88616) which combines the same sealy nest plumage with the brown wings and tail of the adult female.

Mr. Seebohm has also an imnovation in regard to the genus of this bird, for he now refers it to Viltara. The change could hardly have been more unfortunate, and is perfectly in line with his lumping of the genera Sialia and Grandala; but then they are all blue! It seems, however, as if he was somewhat dubious, since the typial Niltara has no white on the tail, though taking comfort in the fact that "both have the curious pale patch on the throat" (B. Jap. Emp., p. 59). But tiren, Ficedula albicilla
has the identical pale patch! True, it is not blue, but what of "Tarsiger" cyomurus, which has both the blue color and the pale throat pateh?! It is clear that the pale throat patel is of higher than "generic value."

On the other hand, were we to be guided by color alone, we shortd feel tempted to place Cyanoptila near some of the species now referred to Cyornis, but in view of the very weak feet and long wings of our present species, it will be well to keep them apart mutil a more natural arrangement of all the flycatchers can be effected. The experiment of exchanging one uncertainty for another is hardly scientific.
(210) Ficedula ferruginea (Gm.).

A young male from the province of Yamashiro (No. 1645).
Mr. Seebohm has recently referred this species to the genus Siphia, of which S. strophiata is the type, but as I shall show, with but poor reason. Oates has placed the species usually called Erythrosternu in the same genus, but having no access to the type species of Siphia I am unable to say whether he is right or wrong. As I can find no valid character by which to separate either of them generically from Ficedula, it matters little as far as my nomenclature is concerned. It it quite plain that it is a certain resemblance in the coloration that has led Mr. Seebohn to the ill-advised step of calling this bird Siphia, as will appear from the following quotation (B. Jap. Emp., p. 60): "The Mugimaki Flycatcher belongs to the genus Siphia, in which, although the sexes differ in color, they agree in huving the base of the tail more or less white and the upper tail-coverts nearly black." I have italicized the last paragraph for the reason that it is entirely erroneons. In the "Mugimaki Flycatcher" the sexes do not agree in these points at all, inasmuch as the female has the tail perfectly uniform, without any white at base.and the upper tail-coverts not black, but miform with the back. There is consequently no reason to join Poliomyias with Siphia on account of the coloration.

Locustella hondoensis, sp. nov.

Diagnosis.-Rictal bristles obsolete, outer tail-feathers two-thirds, the central ones eutirely, covered by under tail-coverts; upper parts uniform olive; culmen, to extreme base, more than 16.5^{mm} (0.65 inch).

Habitat.-Japan.
Type.--Sc. Coll., Tokyo, No. 1669; province of Shimosa.
The type, although a young bird, clearly belongs to an undescribed species, for not only is the coloration unique, but the length of the bill is quite as characteristic. In proportion to its size (all feathers fully grown) the present form is, in fact, the longest billed species among related birds. The shape of the bill is exactly that of L. fusciolata, though somewhat slenderer on account of its proportionally greater length.

The color of the upper surface is uniform and rather dark olive, without any of the brownish cast so universal in the other species of Locustelle, a peculiarity of coloration the more remarkable since it is clearly a youg bird, and young birds of this gemus are msually strongly suffused with yellowish, or buff,on the uper parts as well as on the lower.

That the birl in question really belongs to the genns Locustella, and has to be compared with species of that genus alone, will be plain from some of the characters mentioned in the diagnosis, viz, the rudimentary development of the rictal bristles and the great extent of the graduation of the tail. To make perfectly sure, I may add that the tail consists of twelve featheris, and that the first (tenth, or distal) primary is very small, just extending beyond the primary coverts, and less than one-third the second.

The bird in question probably belongs to the group of the genus which has no subapical blackish bar across the tail-feathers, the specimen before me showing no trace of it, but as this character is less developed in the young birds than in the adults I do not venture to be positive about it.
It remains to compare the specimen with those species of the genus which have uniformly colored upper parts.
L. fluriatilis and luscinioides, being exclusively westeru palæarctic, hardly need mention, but to make the comparison complete I may remark that, aside from their shorter bills, their wing formular are entirely different from that of our bird.
L. fasciolutu is a much larger bird, with an entirely different color of the back. The wing formula is also sufficiently different.

In average size L. ochotensis* comes nearer to our bird, but its bill is much shorter and the coloration is different. The young L. ochotensis (Phil. Acal., No. 3006s, and U. S. Nat. Mus., No. 96247), now before me, are distinctly tawny above, and the yellow below is more inclining to bufi. There are structural differences besides, for both remiges and rectrices are considerably broader in L. ochotensis; and the third primary, particularly, is much more curved near the tip.

The possibility of findmg a name among the several synonyms of L. ochotensis, which in reality might turn out to belong to our bird, has been investigated, but without favorable result.

[^124]The first name we encounter is Cassin's Lusciniopsis japonicu (I'r. Phil. Acad., 1558, p. 193). Through the courtesy of Mr. Witmer Stone the type (Phil. Acad., No. 30068), from Hakodate, is now before me. It is a young bird and in every detail a counterpart of U. S. Nat. Mus., No. 92648 , also from Hakodate, and collected by Capt. Blakiston. Both are referable to the species from Japan which we are used to call L. ochotensis, and consequently, not to the present bird.

The next bird in order is Swinhoe's Locustella subcerthiola (Ibis, 1874, p. 154), based upon another specimen from Hakodate collected September 3, 1861, by Blakiston (Blak., No. 734), and by him referred to "Calamoherpe cantillans." The type is probably not now in existence, as it is neither in the Swinhoe collection, nor in the U. S. National Museum (see Seebohm, B. Jap. Emp.; p. 73), but Blakiston's reference to the similarity of the bird to the plate in Fauna Japonica of Salicaria cantillans and to Acrocephalus orientalis makes it certain that it was a L. ochotensis and not the bird we are now considering.

Arundinax blakistoni was described two years later by Swinhoe from a young specimen collected by Blakiston at Hakodate. The type is in Seebohm's possession, who declares it to be an L. ochotensis in first plumage. Moreover, Capt. Blakiston retained in his own eollection a duplicate specimen (fairly entitled to be regarded as a cotype) obtained on the same date and at the same place (Hakodate Light Ship, Oct. 3, 1875), which is now before me (U. S. Nat. Mus, No. 96248 , Blak., No. 1880), and is the same young bird with which I have compared the new species above.

There is conseruently no other alternative but to bestow a new name on the Shimosa bird, and to recommend collectors to keep a sharp lookout for the adult bird.

To facilitate identification I append the following detailed description of Locustella hondoensis.

Colovation.-Entire upper surface uniform olive (Ridgway, Nom. Col., pl. III, fig. 9), underside pale Naples yellow washod with olive on sides and becoming clay-colored on under tail-coverts; chest, spotted with dusky ; a dull olive-buff superciliary stripe ; ear coverts olive, with pale shaft-streaks; lining of wing whitish. Bill, brown above and on tip of lower mandible; base of latter and terminus of upper pale.

Dimensions-	Millimetres.
Wing.	. . 63
Tail-feathers.	57
Exposed culmen.	15
Culmen to extreme base.	18.5
Tarsus.	24
Middle toe with claw.	21
Middle of bill at middle of nostrils	4
Graduation of tail.	- 18

Wing formula:-First primary $2^{\text {mm }}$ longer than primary coverts; second primary equals fifth; third longest, longer than fourth.

Acanthopneuste borealis (Blas.). Acanthopneuste borealis xanthodryas (Swinh.).

An undated and unsexed specimen from the province of Surnga (No. 2156) is an undonbted A. borealis.

The other bird (No. 2038), collected by Inr. Ijima at Norikura, province of Shimano, Mondo, July 27, 1891, is very young, and it is eonsequently not possible at the present state of our knowledge to say, with absolute certainty, whether it is a A. xanthodryas without examining the parent bird. The coloration is typically that of A. xemthodryos, and as the first primary is fully 15^{mm} long I think Dr. Ijima quite correct in referring it to the latter.
(244) Acanthopneuste tenellipes (Swinh.).

Dr. Ijima has forwarded a specimen collected at Sapporo, Yezo, October 4, 1890. It belongs to the Sapporo Maseum (No. 820) and is particularly interesting as the only antumnal specimen so far obtained in Japan.

(180) Zosterops japonica Temm, and Schl.

Dr. Ijima sends the two Tsushima specimens (Nos. 1749, 1750) which he discussed in his paper on the Tsushima birds (Journ. Coll. Sc. I. Univ. Jap., V, 1891, p. 109). As he remarks, the bills of these birds are somewhat larger than those from Hondo, but the difference is trifling in itself and I have before me a thind specimen from Tsushima collected by Jouy (T. S. Nat. Mus., No. 114646) which in its measurements is absolutely identical with those of Peterson's No. 77, from Nagasaki, recorded by me in Proc. C. S. Nat. Mus., 1857, p. 487, both birds being females. I can discover no difference in coloration and wing-formula and must refer the Tsushima birds to true $Z . j a p o n i c a$.

This opens up the question of the status of Z. stejnegeri Seeb. from the Seven Islands. I have reexamined our specimen from Oshima, the northern island of the group, but beyond the fact that the bill is 1 millimeter longer than the longest Tsushima bill, I can see no difference. The measurements presented by Seebohm of birds fiom the southern islands of the group seem to average longer, and it may be that the birds from those islands may be larger generally. It is evident, however, that the Oshima bird as well as varions larger specimens from IIondo, Kiu Siu, and Tsushima, are intermediate, and that the bird in question is only entitled to a trinominal appellation, as Zosterops japonica stejnegeri.

Seebohm, in his paper on the birts of Tsushima (Ibis, 1892, p. 90), says that "no species of this genus has been recorded from Corea," but he has evidently overlooked my reference in Proc. U. S. Nat. Mus., 1887, 1. 486.
(2051) Lanius magnirostris Less.

A young specimen of this rare Japanese bird, collected at Nikko, Hondo, (No. 16:37) is the fourth specimen obtained in Japanese territory.

The first one was an adult bird collected by Mr. Pryer at Fujisan; the second, an aduit female, by P. L. Jouy on Fuji, July 2, 1882 (U. S. Nat. Mus., No. 91455); and the third, a fine adult male, by the same gentleman ou Tsushima, May 22, 1885 (U. S. Nat. Mus., No. 114639).

(195) Pica pica media (Blyth).

A comparison of specimens of true Pica pica from Europe with examples from China, Korea, and Japan has convinced me of the subspecific distinctness of the eastern magpie. The essential difference consists in the color of the secondaries and greater coverts which in the adult P. media are considerably more purplish blue than in the typical form.

The specimen in the Science College Museum (No. 1581) is an adult collected in the Province of Hizen (in which Nagasaki is situated) Kiu Siu.
Sturnia sinensis (Gm.).

Two specimens (Nos. 2165 and 2166) were purchased in the flesh from a game dealer in Tokyo, February 10, 1889. According to Dr. Ijima they were skimned by Sakamoto, who found shot holes on the body. They show no signs of being escaped cage birds, and as there is but slight probability of their having strayed from their regular habitat in China, the inference is that a colony of these birds may have become established somewhere in IIondo, probably originating from escaped or willfully liberated cage birds.

Loth specimens are nearly entirely void of the usual salmon-colored suffusion, and the younger specimen is shedding some of the remiges.
(272) Emberiza personata Temm.

I can corroborate Dr. Ijima's identification of No. 1748, Uchiyama, Tsushima (Jour Sc. Coll. I. Univ. Jap., v, 1891, p. 116). It is uuusually pale, in fact so much so that at first I was inclined to regard it as \boldsymbol{E}. spodocephala. An examination of the outer tail-feathers, however, at once shows it to be E. personata, as in this species the dusky of the outer web invades the inner web toward the tips to quite a considerable extent, while in E. spodocephata it is almost totally confined to the outer web.

Another specimen (No. 2187) from the Province of Owari is also sent. There is a pinkish color, especially on the under side, evidently an accidental stain.

Emberiza ciopsis ijimae, subsp. nov.
Dr. Ijima has kindly sent for my inspection three of the Tsushima birds which he has discussed in his valuable paper on the birds from Tsushima, viz, Nos. 1751, 1753, and 1754 (Journ. Coll. Sc. I. Univ. Jap., $\mathrm{v}, 1891, \mathrm{p} .114$). Without coming to a decision whether to refer these birds to E. ciopsis or to E. castaneiceps chiefly for want of specimens of the latter, he correctly pointed out the differences from the former.

For comparison with R. castanciops I have four males collected at Fusan, Korea, hy Mr. V. I. douy during Jamuary, Ipril, and May. It is evident from this material that the Korean birds difter from E . ciopsis, of which I have ten males at hand, in several other points in addition to having the ear eowerts brown instead of batek. Thus, the top of the head is at all seasous less mixed with blackish, and the rump is considerably paler. In both respects the Tsushima birds agree closely with the birds from the other dapanese Islands. It is, thereore, entirely out of the question to refer them in any way to E. censtemeiceps. On the other hamb, as pointed out by Dr. ljma, they differ from typucal E. ciopsis in the amotat of the brown on the ear coverts. True, some winter bith from dapan proper mateh the least maked Tsushima birds of a later date, but in the former the brown disappears as the season advances, while in the latter it appears to be permanent.

Uneler these ciremontances it seems best to recognize the Tsushima form as a separate race, which may be chameterized as follows:

Emberiza ciopsis ïimer, subsp. nov. Closelyallied to Emberize ciopsis, but the eareoverts brown in the male during the breeding season instead of black.

Habitat.-Tsushima, dapan.
Type-Ac. Coll. Mus., Tokyo, No. 1汤. of ad. Niimura, Tsushima, March 10, 1591; Namiye coll.

LAND SHELLS OF THE GENUS BULIMULUS IN LOWER CALIFORNIA, WITH DESCRIPTIONS OF SEVERAL NEW SPECIES.

1)Y
William Healey Dall, Honorary Curatrr of the Department of Mollusks.

(With Plates Lxxi and Lxixis.)
The peninsula of Lower Califorma is known as the home of several interesting species of the gemus Bulimulus, inchuding what is, perhaps, the largest species of the gemns, B. montezuma. As much of the peninsula, in its arid highlands, recalls the analogons districts of Peru and Chile, so the land shells, especially the Bulimuli, bear in their external characters the imprint of a similar enviromment, which has gone so far that, in one or two eases, the similar species of Califonia and Pern have been referred to the same species. An examination of a good series shows, though this opinion proves to be mistaken, that there was reasonable ground for it in the remarkably similar effects produced by the similar enviromment acting upon plastic forms of the same genetic history, in the two widely separated regions. The reception of an in teresting series of specimens from the ('alifornia Acarlemy of S'iences, collected by an exploring expedition sent out by them, and the attempt to name them, and simultaneously to review the speries ahready well represented in the national collection, gradually led to the study embodied in the present paper.

The first species of the group from this region was described by Sowerby in 1833 ; others were named by Gould in the Boston Joumal of Natural History in $1852-53$. An account of most of the older species may be found in the "Land and Fresh-Water Shells of North America," Part I, by Binney and Bland, pp. 191-208, 1869. Later references to them appear in the great work loy Crosse and Fischer on the land and fresh-water mollusks of Mexico, and in papers by Dr. J. (x. Cooper in the proceedings of the California Academy of Seiences, second series, III, pp. 99-103, 207-217 and - - with Pls. Xin and Xiv, and also in Zoe, Vol. 1II, p. 11, $\Lambda_{\text {pril, }} 1892$. The figures on the plates above mentioned are, unfortunately, not as characteristic as might be wished. There is also a short paper by the writer on l. proteus, in the Nautilus, of July, 1893.

Genus BULIMULUS Leach.
Section SCUTALUS Albers.
Bulimulus (Scutalus) pallidior Sby. (B. vegelus Gould.)
Normally arboreal; elevation 100-500 feet, chietly in the southern part of the peninsula; San Jose del Cabo, Belding, Eisen; Cape St. Lucas, Xantus; Punta Arena, Bryant; Carmen Island, Stearns; Santa Margarita Island, U. S. Fish Commission; Costa Rica, Zeledon. (Plate Lxini, Figs. 2, 3.)
There is the typical form, polished and without any visible spiral striation, which varies from acute and slender ($20+40^{\mathrm{mm}}$ and 7 whorls)
 It also varies a good deal in size. The specimens from Costa Rica are rather thin and the lips rather widely expanded. They agree perfectly in other respects with the Lower Califormian shells.
The spiral striation in many specimens becomes pronounced and in some reaches a point comparable to the surface of the B. montezuma. For this variety I have used the varietal name strictulus. It is particularly noticeable in collections from Carmeu and Margarita islands and the Gulf coast of the peninsula.

Bulimulus (Scutalus) montezuma 1)all. (1 . proteus auct. non Broderip.)
Almost confined to the momtains of the peninsula at an clevation of 2,000 to 3,500 feet (Cooper). See the Nautilus, July, 1893, p. 26 . (Plate Lxxir, Fig. 1.)

The variations of this species seem contined to greater or less elevation of the spire and more or less acute apical angle of the same. The specimens I have seen are more miform in their general appearance than those of either of the other species of this region. They are never smooth, though the granules differ in prominence.

Bulimulus (Scutalus) Baileyi Dall, n. s. (B. Xantusi var., Stearns uon Binner.)
Cape St. Lucas, W. J. Fisher aud G. Eisen; Ortiz, Mexico, Veriun Bailey; Guaymas, Mexico, E. Palmer. (Plate Lxxi, Fig. 1.)

Shell when perfectly fresh with a delicate brownish epidermis, which is usually lost, beneath which the shell is brownish Hesh color with irregular pale streaks in harmony with the incremental lines; the margin of the whorl in front of the suture is also often whitish; dead shells are waxen or pure white, often with a ferruginous discoloration; whorls five and a half, the mucleus with a central pit or dimple at the apex, the first two turns regularly ribbed with small, sharp, rather distant ribs, the wider interspaces of which are spirally striate; subsequent whorls with close, fine, sharp, somewhat irregular wrinkles, in harmony with the incremental lines, sparser on the last whorl and crossed by fine sharp close strie of variable strength, sometimes hardly visible, but in other shecimens distinct and gramblating the wrinkles; all intermediate grades are observable in comparing many specimens; suture distinct;
form like that of pallidior on a smaller seale, varying from moderately wide to slender; whorls rommed or moderately flattened; umbilious small but deeper proportionately than in pallidior; aperture rounded ovate, the lip rather widely reflerteri, thin, the outer and pillar lips approximating, united by a thin wash of callus.

Measurements of a slender and a slout specimen, respectively.

This species is larger than B. Tantusi and the latter is without a reflected lip. B. Buileyi has the color of excelsus lather than pallidior. Its variations, within the limits of its smaller size, are similar to those of pallidior; the granulation of the surface in the rongher sperimens is much finer, but of the same character as that of 1 3. montezumu. The species was at first confomded with 1 3. Santusi, the type of which had been mislaid, but when the latter was fonnd and a series eompared, it was obvious that they belonged to different sertions of the gemus. It is named in honor of Mr. Vernon Bailey, of the U. S. Department of Agriculture, who collected it in western Mexico.

Section DRYMEUS Albers.

Bulimulus (Drymæus) californicus Reeve.
"California," Hartweg, fide Reeve; Gulf coast of Lower California, Stearns.

Only one specimem of this little-known species is in the mational collection, and it unfortunately has had the pillar broken, apparently in removing the animal. It recalls B. Liebmamni, but is nearest to B. serporastrus Say, but is more slender than any specimen of serperastrus observed in our very large series from many localities. The peristome is reflected, especially in front, and the surface is polished.

Section MESEMBRINUS Albers.
Bulimulus (Mesembrinus) Xantusi W. (i. Binney, not Cooper. (B. Giabbii, Crosse and Fischer.

Cape St. Lucas, Xantus (type); Rancho Lagunas, I'unta Arena, near sea level, Bryant; Sierra Laguna, near Lat Chuperosa, altiturle 2,000 feet, Eisen. (Plate Lxxir, Fig. 4.)

The specimen from which Mr. Binney desoribed the species, and which was figured to illustrate it, is in the National Collection (Mus. Reg. 9017) and must be regarled as the type. It is fiuely but intensely granular from the spiral striation, and agrees in every respeet with the form described and figured by Crosse and Fischer in their fine work on the Mollusks of Mexico muder the name of J. Gabbii. The lip is not

Proc. N. M. 93- 41
reflected in any of the specimens. The specimens conlected by Bryant and Lisen are of the smooth, or rather not gramuated variety levis, which accounts for Br. 'ooper's inability to hamonize them with Binney's description and figure. The epidermis is thin and olivaceous, and Dr. Cooper reports the most perfect speecimen as being streaked with brown, lighter and darker, as on B. alternatus.
The type of B. Xentusi measures 20 mm . long, $10 \frac{1}{2} \mathrm{~mm}$. in greatest width, the aperture 10 by 7 mm . The smooth ones are variable in size, measuring from 18 by 10.5 to 17 by 8.5 mm . None of the specimens received from Dr. Cooper show any trace of color makings. B. digitale, described by Reeve (Conch. Ic., Pl. 47, Fig.308, November 1848) without habitat, bears from the figure a very close resemblance to B. Tantusi.

Nection LEPTOBYRSUS Crosse and Fischer.
The type of this section is B. spirifer (iabb, but from a study of the species 1 am satistied that several of the other species are too closely related to be separated from 3 . spirifer sectionally, though at first sight they fail to show the chanacters clearly. The section contains two sets of species, which are separated by the presence or absence of the prominent love or flange on the pillar in the first half of the last whorl, but all the species present oceasional individuals which show a ridge here, even if the majority of the conspecitic specimens do not. The nuclear whorls are peculiar, and agree closely, especially in the sumken position of the extreme muclens making a pit or dimple on the apex of the spire; the nuclear whorls have a peculiar and when mworn a very shapp and characteristic seulpture, and most of the species have an extremely similar facies, the most aberrant form being B. artemesia, which, however, differs only by its more munerous whorls, slender form, and the less-reflected peristome. I am contident that all these species are genetically comerted, and that they should be embraced in one sectional group.

Subsection A; withont prominent lamella.
Bulimulus (Leptobyrsus) 'artemesia W. (G. Bimney:
Cape St. Lucas, Xantus, 1 (type) specimen; Sierra Lagma, at 3,000 feet above the sea, 2 specimens, Eisen. (Plate Lxxir, Fig. 5.)

The type is in good condition; it has eight and a half whorls, of which the first two are obtusely keeled above and the nuclear point small and sumken, forming an apical funcular pit which is quite conspicuons. The seupture of the nule les is like that of the other species already mentioned, of rather sparse fine, sharp riblets, with the wider interipares more or less spially engraved. The surface is wrinkled finely, with traces of granulation here and there on the wrinkles. The peristome is slightly reflected, and inside thickened in the manner characteristie of a shell which has passed the dry season adhering to the bark of a tree. The pillar far within the aperture shows a faint elevated ridge. Traces of epidermis on the shell are pale olivaceous
yellow, the shell itself of a waxen white. It appears to be a rare species, and the furthest removed from the others which constitute the section. Yet I cannot believe that it is less related to inseendens (for instance) than to B. pupiformis.

Bulimulus (Leptobyrsus) inscendens W. (G. Binney.
Cape St. Lucas, Xantus (types); Lower California, 100 to 3,000 feet above the sea, San José del Cabo, San Leonicio, etc., Eisen (typical form): Sierra Lagma, altitude 3,000 feet (smooth variety), Eisen; San José del Cabo and Punta Arena, Lower Cal. (var. Beldingi Cooper) Belding and Bryant. (Plate Lxxir, Fig. 6.)

The type specimens of this species show the very distinet gramulation due to spiral strise, and have a mucleus like that of B. artemesia, obtusely keeledabove. The pillar has a more or less distinct fold which, however, never becomes laminar, and is often feeble. The spiral striation may be coarse, fine, or absent, as in the species previously described. A smooth form-that is, one in which there is no spiral striation or granulation of the axially directed wrinkles, yet which has the form of the type, also oceurs. Both this and the type have large shells with flattish whorls and a rather acutely conical spire. The other varieties are as follows:

Var. alte Dall; whorls rouuder, shell shorter, last whorl 25-38, aperture $20-38$ of the whole length. This form leads to var. Beldingi. Whorls $7 \frac{1}{2}$, altitude 38 ; maximum diameter 14 mm . Var. monticola Dall; more slender, smooth, compact, last whorl $33-40$, aperture 17-40 of the whole length. This recalls B. Bryanti Cooper, but is less slender, has not the divergent last whorl, nor the laminiferous pilar. Whorls $7 \frac{1}{2}$, altitude 40 , maximum diameter 14 mm . Var. Beldingi, Cooper; smaller, stouter, without spiral striation; last whorl 23-32, aperture $15-32$ of the whole length. It is difficult, without a connecting series, to believe that this is not a distinct species from the typical inscendens. If they should be so divided hereafter, the above varieties alta and monticola would range with Beldingi rather than with inscendens proper. Whorls in the typical Beldingi $6 \frac{1}{2}$, altitude 32 , maximum diameter 14 mm . The reflection of the peristome is narrower and thicker than in most of this group.

> Bulimulus (Leptobyrsus) excelsus Gould, (B. elatus Gld, olim.)

La Paz, Xantus, Belding, Fisher. (Plate Lxxir, Fig. 7.)
This is the largest, finest, and most local of the forms of this group. When fresh is streaked with waxen-white and purplish-brown and is whitish in frout of the suture. It has two nuclear whorls obtusely keeled and with a less conspicuous apical pit than the others. The spiral strie on the nucleus are often extremely faint, but can usually be made out with a magnifier on the later whorls. I have not seen any specimens where the striation was strong enough to granulate the wrinkles. While differing somewhat in form, the size is rather uniform
compared with that of the other speries, as might be experted from its smatler range in area athd altitude. The pillar bears an observable fold, but no lamina.

Bulimulus (Leptobyrsus) Zeledoni 1hall, sp. nov.

Costa Rica, Zeledon, Mus. Reg. 98こ31. (Plate Lxixi, Fig. 2.)
Shell thin, colorless, with tramslucent, polished, pale yellow epidermis and seven whorls; apical pit small, the mutear whorls rommed, the riblets upon them close set and cut by equidistant spiral grooving, so as to produce a close, even reticulation like that of close-woven cloth; apex rather pointed, whorls slighty rounded, sutwerlistinct; surface sculptured with obscure incremental wrinkles and rery faint sparse spiral strise; last whorl bore than half the length of the whole shell; base rounded, with a narrow umbilicus, over which the pillar lip is broadly reflected; aperture short, wide, peristome thin, reflected, except near the sutural commissure, the retlection becoming more marked in proportion as one passes from the suture forward, and widest of all at the pillar, which is straight, almost forming an angle with the lip at its base; body with a slight wash of calhus; a slight fold at the back of the pillar, but no lamina. Longitude of shell 30 , of last whonl 17, of aperture 11; maximum latitude of shell 13.5 , of aperture 10 mm .

I have included this species, collected by Señor Don JosíZeledon, becanse it does not seem to be deseribed, and also because it seemed naturally associated with the species of Lower Califormia, to which this article is devoted. It is easily recoguized when perfect by its melear sculpture and simple coloration, polished epidermis, aud rather wide squarish aperture.

Subsection 13, with a prominent lamina projecting from the pillar in the first half of the last whorl.

This eronp at present comprises thre speces, and the internal features are essentially the same in each. Nbout the time that the pernultimate whorl is begiming to be formed the pillar becomes gyratory, so that, viewed from below, it deseribes a spiral curve around an imaginary cylindrical axis of greater or less diameter. After completing its round and beginning on the last whol the onter edge of the gyre becomes thickened and expanded in a fin-like manner with thick rounded margin; the twist of the pillar becomes more nealy axial, and at the aperture of the shell shows merely as a fold or rommed ridge such as appears in the various species of subsection λ.

Bulimulus (Leptobyrsus) spirifer (iabl.

"In the monntains, among rocks, from San Sutonio below Lat P'a\% to near sin Borja, and in the highest mountains, perhaps even farther north." Gabb. San Jose on the Gulf of California. Belding. (Plate Lxxil, Fig. S.).

Nearly all the specimens in the national collection were receiver from Gabh, so that they are anthentic. The species has been confounded
with others by several writers, but is clearly a distinct and well characterized form, and is the type of Leptobyrsus, according to the anthors of that name. The species is moticeable for the oily gloss of its surface. The lamina is usually visible with difficulty or not at all from the aperture; "the prominent tooth winding inward from the columella," mentioned by Dr. Cooper,* is the fold on the pillar and not the lamina, which last he does not seem to have observed or differentiated.

The mucleus hardly differs from that of inscendens, the shoulder of it is rounded, not angular, and the spiral strie are faint. The color of the shell is more brownish and less livid than in excelsus, the pale streaks, though frequently present, are less conspicuons, and the whitish edge of the whorl in front of the suture is less constant. The shell is the thimest of all the species. It varies in form much like the others.

Bulimulus (Leptobyrsus) Bryanti (Cooper) Dall. B. inseendens Bryanti Cp. op. cit., 1). 101, Pl. Xif, figs. 4 a-c, 1898.
"On dry monntains, 800 to 1,000 feet high, climbing high copal trees, northward from Cape St. Lucas, through a distance of 350 miles." Xantus, San Jose del Cabo, Bryant. (Plate Lxxi, Figs. 3, 4.)

Usually white, but when living or fresh, pale brown, showing hardly any spiral seulpture. Nucleus as in the last species. Lamina extraordinarily thick and rounded, not visible from the aperture. Surfacenearly smooth but not polished; reflection of the peristome narow and feeble.

This was referred to inscendens as a variety, but appears to be nearest to spirifer and a well-defined species.

Bulimulus (Leptobyrsus) Veseyianus Dall, sp. nov:
Espiritu Santo Id., (xulf of California. Belding. (Plate Lxxy, Figs. 4, 5.)

Shell stout, inflated, brownish, polished, with seven whorls; suture appressed, distinct, but shallow; muclens worninall the specimens butapparently notdiffering fiom that of B. Bryanti except as being moreblunt; whorls except the last rather rounded, the last whorl somewhat flattened at the periphery; umbilicus large but narow, overshadowed by a very wide expansion of the pillar-lip; aperture large, the lips approximated behind, the reflection wide and greatly recurved, of a livid waxen passing into white at the margin; body moderately callous, pillarstraight with an obseure fold visible at the aperture, intemally with a large thick sublinguiform lamina; surface of the shell like that of B. cxcelsus, but mone polished. Lon. of shell, 36.5; of last whorl, 25 ; of aperture, including the $\mathrm{lip}_{\mathrm{p}}, 20 ;$ maximum diancter of shell, 20 ; of apertme, 15 mm .

This species is named in honor of Mr. J. Xantus de Vesey, to whom we owe much of our knowledge of the fana of Lower ('alifornia. It is recognizable by its short, stout shape, widely reflected recurved peristome, very narow space between the commissures of the lips and body, and large subtriangular lamina. Five specimens, all very uniform, were collected by Mr. Belding (Mus. Reg., 34122) some ten years ago.

Section ORTHOTOMIUM. Crosse and Fischer.
Bulimulus (Orthotomium) sufflatus Gould. (B. vesicalis Gld. olim.)
Lower California, Rich; low lands about La Paz, Gabab; San José del Cabo to La Paz, Bryaut. Sierra Lagma to 3,000 feet above the sea, Eisen. Variety insularis Cooper, Espiritu Santo Island, Bryant. Abundant near La Paz, Belding. (Plate Lxxif, Fig. 9.)
This characteristic shell has no coloration except in its epidermis, which is straw color or pale olive, intensified at lines which represent resting stages, and more or less polished. The form varies from 33.5 by 17 , and 36.5 by 21 to 32 by 23 mm . The peristome is slightly reflected in front and widely over the umbilicus; elsewhere it is not reffected. In specimens which have survived a dry season attached to bark or a stone, the inside of the peristome aud the space on the body between the two lips is often much thickened by a deposit of callus. The nucleus is similar to that of Leptobypsus, except that the apical part is irregularly punctate, and the riblets instead of being even and sharply defined are more or less wary and on the shoulder and earlier part give a vermicular effect. The apical pit is not conspicuous though evident in some examples. Pathologie specimens showing lumps or tubercles on the pillar are not very rare, but normally the pillar is simple. The young are frequently taken for B. pilula from which they may be discriminated by their projecting and more sharply sculptured nuclear whorls and less open umbilicus as well as more ovate form.

Bulimulus (Orthotomium ?) pilula W. (x. Bimnes.
Cape St. Lucas to Margarita Island, Xintus. San José del C'abo, Bryant. The specimens collected at Punta Arena by Bryant and mentioned by Dr. Cooper are probably immature sufflatus. (Plate Lxxis, Fig. 10.)

The types of this species in the National Musem have a distinct and mature appearance. The specimens comecting them with sufflutus are usually young sufflutus. The two types have 4 and $\frac{1}{2}$ whorls, respectively, as many as specimens of sufflatus four times their size. The nuclear whorls are smaller than in sufflutus and more delicately sculptured, while the incremental wrinkling on the body whorl is more conspienous and regular than in the larger species. I have seen no spercimens of piluta which appear to be genuine except the types. All the others when critically studied resolve themselves into varieties of sufflutus.
U. S. National Museum, Jume, 1893.

> EXPLANATION OF PLATE LXXI.

F1g. 1. Bulimulus Baileyi Dall.. 640
2. Bulimulus Zeledomi Dall... 644
3. Bulimulus Bryanti (Cooper) Dall, from behind, showing internal lat-
melna through an opening made into the whorl............................... 645
4. Bulimulus Veseyiumия Dall.-.. 615
5. Bulimulus Feseyiumus Dall, from behind, the whorl opened to show the otherwise invisible lamella.

645
vot. XVt, PROCEEDINGS OF THE NATIONAL MUSEUM. 647
EXPLANATION OF PLATE LXXII.
Page.
Fig. 1. Bulimulus montezuma Dall 640
2, 3. Bulimulus pallidior Sby 640
4. Bulimulus Jantusi W•. G. Binney 641
5. Bulimulus artomesia W. G. Binney 642
6. Bulimulus inscendens W. G. Binney 643
7. Bulimulus excelsus Gld 643
8. Bulimulus spirifer Gabb 644
9. Bulimulus sufflatus Gld 646
10. Bulimulus pilula W. G. Bimney 646

1

i

ה

$!$

DESCRIPTIONS OF NEW SPECIES OF AMERICAN FRESH-WATER CRABS.

BY

Mary J. Rathbun. (With Plates Lxxiil-Lxxvii.)

Family PSEUDOTHELPHUSIDE.

PSEUDOTHELPHUSA Saussure.

The synonymy of this American genus with a complete list of spe cies is given by Prof. S. I. Smith in the Transactions of the Connecticut Academy, Vol. II, 1870. In the Annals and Magazine of Natural History (6) III, p. 7,1889 , Mr. R. I. Pocock describes a new species (P. tenuipes) from Dominica, and gives distinguishing characteristics of all the species. The collection of the United States National Museum contains no described species of Pseudothelphusa, but the genus is represented by eight new species. They all possess a cervical suture, two epigastric lobes separated by a median suture, two small Y-shaped depressions near the posterior margin of the gastric region, and five rows of spines on the dactyls of the ambulatory legs, three rows above and two below. The exognath of the external maxillipeds is shorter than the ischium of the endognath. The species are grouped according to the character of the front.
A^{\prime}. Front not vertically deflexed, but rounding smoothly downward to the inferior margin.

Pseudothelphusa jouyi.
(Pl. Lxxili ; Pl. Lxxiv, Figs. 1-3.)
Carapace convex, punctate, smooth, and shining, much broader in the male than in the female. Cervical suture short and curved, sometimes not continued to the antero-lateral margiu. Epigastric lobes faintly indicated by a short horizontal groove in front of them, of a lighter color; sometimes the groove is obsolete, but the color remains. There is no trace of a superior frontal crest, the front rounding smoothly down to the margin, which is not visible from above and is strongly retreating at the center. Median sulens shallow, dividing the front
into two lobes. Seen from in front, the margin is nearly horizontal; seen from below, the two lobes are slightly arched forward. There is no outer orbital fissure. The frontal and upper orbital margins are indistinctly ridged, and are granulate in small specimens; in large ones the ridge is meven, the normal gramulation being feebly indicated. Lower orbital margin granulate. Antero-lateral margins finely denticulate, the denticles obsolete in adult males, where the margin is simply uneven. Ischim of maxillipeds elongate, merus subtriangular, endoguath but slightly overlapping the jugal area; exognath shorter than the ischium (Pl. lxxiv, Fig. 3). The inferior surface of the body is punctate, the puncte being larger next the orbit. The cervical suture is present on the lower surface. The abdomen of the male (Fig. 1) is widest at the distal end of the third and the proximal end of the fourth segment; lateral margins of third and fourth segments convex, of fifth concave. Extremity of appendage of first segment with lateral expansions above, the outer one larger and with a single sharp tooth pointing outward and downward, the inner one with a spatulate tooth pointing forward and inward (Fig. 2). The abdomen of the female conceals the sternum. Chelipeds very unequal. Merus with short, stout spines on the imer margin; upper margin with dentiform tubercles on the proximal two-thirds; lower outer margin rounded, with a few granules; a line of granules on the inner surface near the carpus. Carpus punctate, with a short, broad longitudinal groove above and a stout inner spine. Larger hand in male much inflated, punctate, smooth; fingers widely gaping, with strong teeth. Smaller hand with margins subparallel, fingers almost meeting when closed. In the females the chelipeds are more nearly equal, and in character resemble the smaller cheliped of the male. Ambulatory legs little compressed; merus slender, with upper and lower margins subparallel, upper margin blunt, with depressed spinules, which become obsolete in adults; carpus feebly spinulous above; propodus, above and below.

Color, a rich reddish brown.
Length of $\delta 27^{\text {mun }}$; width, 43.5 ; length of large chacliped, 86 . Length of 729 ; width, 46 ; length of large cheliped, 66.
Many specimens were collected by Mr. P. L. Jony in 1892 at the following localities in Mexico:

Lake Chapala, about ${ }^{5}, 000$ feet elevation, among stones and shingle on lake shore; February 19, 7 o , 807 , mostly with eggs (17718); Febsuary 20, 7 大, 2 ?, 4 young, all small (17719).
Juanacatlan, Falls of Rio San Juan, between Lake Chapala and Guadalajara, April 26; 6 ㅎ, 11 ₹, mostly small (17720).
Prof. A. Dugès has presented specimens from Valle de Santiago, State of Guanajuato; $1 \quad \delta, 1 \ngtr$ (172.21); also au additional female (4122) from the same State, probably from the same locality.

This species bears a strong resemblance to P. americana Saussure from Hayti, but that species is without a cervical suture.

Pseudothelphusa dugesi．

（Pl．Lxxiv，Figs． 4 and 5．）
This species is so closely related to jouyi that one might easily conn－ found the two．It can be distinguished，however，first，by the front which is sinuons and slightly bilobed，more abruptly deflexed than in jouyi，with a strong marginal ridge visibie from above and defined by a submarginal groove；viewed from in front the margin is nearly straight；second，by the more compressed meral joints of the ambula－ tory legs，which are slightly dilated in the middle，the uper edge thin； third，by the appendages of the first segment of the male abodomen，in which the inner tooth at the extremity is more slender than in jouyi and is directed closer to the appendage．

Color，dark olive－brown．
Length of male 21 ；width， 33 ；length of cheliped abont $53^{m m}$ ．Length of female， 20 ；width， 33.5 ；length of large cheliped，abont 43.

Cuernavaca，State of Morelos，Mexico，P．L．Jony，August，1892； 7 か， 1 子（17524）。

A small female from the State of（tuanajuato（？），A．Duges（4389）， has the meral joints of the ambulatory legs proportionally wider than in the specimens from Cuernavaca，all of which are much larger．

Pseudothelphusa terrestris：

（Pl．ixxiv，Figs． 6 and 7．）
This species much resembles jouyi and dugesi，but the carapace is wider，the cervical suture deeper and more conspicuons，the gastric re－ gion more elevated．Front not rounding downward as in jouyi but abruptly deflexed as in dugesi，the margin strongly ridged，defined by a well－marked submarginal groove，and visible from above．Viewed from in front the two halves of the margin slope downward toward the center．The outer orbital angle is less advanced than in jouyi．The denticles of the antero－lateral margins are less prominent than in speci－ mens of jouyi of equal size，the obliteration in adults being even more complete in this species．In the abdomen of the male the terminal seg－ ment is more acute than in jonyi；the appendage of the first segment differs in having at the tip on the outer side a much narower lateral expansion with a narrower，sharper tooth，and on the inner side，a somewhat scythe－shaped tooth．Chelipeds similar to those of jouyi； the lown outer margin of the merus has a distinct line of granules．The ambulatory legs are more compressed，the merus joints thin above． and wide in the center．

Color，olive－brown．
Length of o 21 ；width， 36 ；length of large cheliperl，about 59 mu． Length of 919 ；width， $3 \times$ ；length of large cheliped，abont 33 ．In this female specimen the chelipeds are almost equal．

Collected by Mr．P．L．Jouy at Atamajac， 3 miles west of（iuadalajara， April，15，1892， 3 of， 2 ㅇ（17723）；also at Barranca Ibarra，near Guada－
lajara, April $20-23,1$ s92, under stones on moist hillside, about 10 feet above the river, 3,700 feet above sea level, and 1,500 feet below Guadalajara, S δ, S of, small (1724).
$A^{\prime \prime}$. Front vertically deflexed, forming a blunt erest.
B^{\prime}. Crest smooth.

Pseudothelphusa verticalis.

(11. LXXNV, Figs. 8 and 9.)

Carapace flattened, obseurely punctate. Cervical suture deep and short, continued to the margin. Epigastric lobes depressed. Front vertically deflexed; superior margin not ridged or gramulate, but presenting a smooth, rounded surface, which is almost straight and scarcely interrupted by the shallow median sulens. Infero-frontal margin with a prominent ridge, indistinctly granulate, a submarginal groove, and a shallow median sinus. The ridge is continuous with the orbital margin. Antero-lateral margins denticulate. Orbits deeper than in jouyi, sometimes with a shallow hiatus. In the male abdomen the appendages of the first segment are very different from those of the species above deseribed (Fig. 9). Chelipeds with the merms triangulate, broadening distally, shorter than in jouy; upper margin with dentiform tubercles, which become almost obsolete toward the carpus; lower imer margin with two irregular rows of spiny teeth; lower surface with a line of gramules on the outer and distal margins; carpus shorter than in jouy; large hand very deep and swollen, much larger than the small hand; fingers gaping in the larger cheliped. The ambulatory legs are compressed, broad; merus joints much dilaterl, with a thin upper margin, obscurely denticulate.

Length of 825 ; width, 42 ; length of large cheliped $72^{2 m m}$.
Length of 822.8 ; width, 39 ; length of large cheliped $54^{\text {mm }}$.
Tehuantepec, Mexico, Dr. Spear; 4 of, 5 \& (2537).
$B^{\prime \prime}$. Crest tuberculate.

Pseudothelphusa xantusi.

Carapace in shape resembling the preceling, slightly convex, punctate, gramulate anteriorly and laterally. There is a trace of an additional suture behind the cervical suture, which is not an even curve, but turns slightly toward the horizontal near the margin. Epigastrice lobes well-marked, tubereulate, separated by a deep, narrow median sulcus, which divides the superior firontal crest. This erest is blunt, and is provided with a wide row of tubercles, and near the orbit turns backward, following the line of the orbit for a short distance. Inferior frontal margin with a prominent ridge, which projects forward, is somewhat bilobed, gramulate, and visible from above. Orbits large, not filled by the eyes; margin gramulate except for a short distance beneath the outer angle, where the absence of gramules simulates a shallow fissure. Antero-lateral margin denticulate, slightly interrupted
at the cervical suture and between that suture and the orbital angle. Merus of maxilliped more quadrate, less triangular than in the preceding species. Inferior regions of the carapace very finely gramulate and punctate, cervical suture present. Jugal area pubescent as far back as the sternum. Small cheliped (the only one present) granulate, punctate, with a broad merus; inner face ontlined below and distaliy with bead-like tubercles, inner margin with a double row of blunt spines, increasing in size distally, upper margin with spinulous ruge extending on the outer surface distally. Carpus with a very shallow sulcus, a short inner spine; inner margin spinulous. Upper and lower margins of hand subparallel; fingers in contact. The merus joints of the ambulatory legs are flattened, widening toward the center, denticulate above; capal and propodal joints spinulous on the upper, iuner, and distal margins.

Length, about 29 ; wilth, 49; length of smaller cheliped, about 61^{mm}.
? Mexico, John Xantus; a single mutilated specimen, ¢ (2527).
This specimen is labeled "Cape St. Lucas", but it is more likely to have come from the vicinity of Manzanillo or Colima, where Mr. Xantus made valuable collections of fresh-water fishes and mollusks in 1862.
$\mathrm{A}^{\prime \prime \prime}$. Front vertically deflexed, forming an acute lamellate crest.

Pseudothelphusa colombianus.

(Pl. wxily, Fig. 10; Pl. Lxxv, Fig. 1.)
Carapace slightly convex, finely punctate, gramulate anteriorly and near the lateral margins, the granules more evident in the smaller specimen. Epigastric lobes very prominent, the ridge continued faintly for a short distance in a transverse line of granules. Cervical suture curved, becoming less marked near the lateral margin. Superion frontal margin lamellate, almost straight, tuberculate, divided by a V shaped notch at the extremity of the median suleus. The margin near the orbit turns nearly parallel to the orbital margin and terminates just above the base of the eye. Inferior frontal margin slightly in advance of the superior, sinuous, with a prominent, horizontal, ridged, and granulate margin, which is contiuuous with the tuberculate or cremulate orbital margin. Front deepest at the outer ends. Antero-lateral margins denticulate, interrupted by a shallow sinus at the cervical suture and another between that and the orbit. External orbital fissure small and shallow, formed by the absence of one or two granules. Inferior surface of the carapace finely granulate near the margin. Jugal region pubescent and anteriorly granulate. Chelipeds of female unequal, punctate. Smaller cheliped much like that of contusi, but with few granules; the inner margin has a single row of spines, and below it a row of tubercles. Larger cheliped similar to the smaller, except that the propodus is much deeper (Pl. Lxxy, Fig. 1). Fingers in contactwhen closed. Ambulatory legs little compressed; meral joints widening toward proximal end, denticulate on upper margin, and in the last pair prominently ridged
on lower outer margin; capal joints spimulous above and distally; propoolal joints with small spines above, below, and distally.

Length, セ2.5; width, 50 ; length of cheliped, about $6 \tilde{a}^{\text {mum }}$.
River David, Chiriqui, United States of Colombia, about latitude 8 ? 2s' N, longitude sen $2 t^{\prime} W^{\prime}$, at an elevation of 4,000 feet above the sea; "very rapid streams desending fiom Mome Chiriqui"; J. A. McNiel, July, 1883; $29(5512)$. In the same bottle there is an ambulatory leg of a specimen one-half again as large, which is apparently the same species.

Pseudothelphusa lamellifrons.

$$
\text { (1’l. LXXv, Figs. 2-5. })
$$

The carapace of this species is allied to that of colombiamus; the granules of the anterior and lateral portions are, however, more prominent, and the rervical suture is supplemented by another shorter parallel suture a little posterior to the first, but not prolonged to the margin. Front similar to that of colombiunus, but narrower and deeper." External orbital fissure very shallow and broad, with a denticle in the middle. Antero-lateral margin very thin and acute, with fine teeth a little more prominent than in colombiamus and crowded close together. lsehium of maxilliped broadening noticeably at the distal end. Abdomen of male contracted at the fifth segment (Fis. 4); the extremity of the appendage of the first segment is laminate, and folded and compressed laterally, the imer side having two lobes above, the posterior one very large, and the onter side with a blunt tooth pointing forward and ontwath (Fig. \quad) . ('helipeds in shape and armature resembling those of colombianus, but the gramules are pominent; the upper and lower margins of the basal portion of the larger propodus more acmate than in those of the female of that species. Fingers in contact. The meral joints of the ambulatory legs are compressed, very wide at the center, the upper erge thin.

Length, 22: ; width, 34.3 ; length of cheliped about 46^{mm}.
Isthmus of Tehmanteper, Mexico, F. F. Sumichrast; ;3 males (3289).

Pseudothelphusa richmondi.

(Pl. LAXv, Figs. 6-10.)
Carapace more convex than in the two preceding species, finely punctate, with scaly granules near the lateral margin. Cervical suture deep and almost straight. Epigastric lobes well marked. Hedian suleus short, making a V-shaped noteh in the superior frontal margin. There are three faint depressed tubereles arranged transversely aross the gastric region. Margins of front and orbits crenulate or granulate. Superior frontal margin mealy straght, as seen from above, but seen fiom in front, the two sides slope downward to the median line; the onter extremities join the orbital margin. Inferior
margin sinuous, its lobes visible from above (Fig. 6). The external orbital tooth and the next lateral tooth are finely dentate; posterior to the cervical suture there are ten small spiniform teeth nearly equal in size, followed by a diminishing series of spinules on the postero-lateral margin ; the first of the ten teeth has, on one side of the carapace, one, on the other side two, accessory spinules. Orbital fissure broad, shallow, U-shaped. Inferior surface of the carapace grambate near the lateral margin, and granulate and pubescent on the jugal area. Maxillipeds broad, considerably overlapping the jugal area; ischium much wider at the distal than at the proximal end; merus more quadrate than in preceding species. Last two segments of the male abdomen longer and narrower than in lamellifions (Fig. 7); appendages of tirst segment with superior portion of the extremity armed with three unequal spines, the inferior portion having a concave oval area. ('helipeds unequal, punctate, with scaly granules, which form rugosities on the outer surface of the merus; merus and capus armed similarly to those of colombianus, except that there is not a continuons line of granules near the upper margin of the iuner surface. Hands rough, with scaly glanules, especially on the margins. Large hand deep, lower margin very convex. Fingers in contact. Meral joints of ambulatory legs compressed and widening towand the center; upper margins of meral, carpal, and propodal joints, and lower margin of propodal joints spinulous; dactyls very slender.

Length, 32.5 ; width without spines, 49 ; length of cheliped about $70^{\text {mun. }}$.
Found on dry land near a small creek which flows into the Escondido River, 50 miles from Bluefields, Nicaragua, by Mr. Charles W. Richmond, October 30, 1892; one male (17725).

POTAMOCARCINUS.

Established by Milne Edwards* for a species (P. armutus) which differs from Pseudothelphusa in laving the superior frontal crest sharp and lamellate, and more prominent than the inferior, the carapace armed with strong spines and an external orbital hiatus.

This genus is doubtfully distinct from Pseudothelphusa, some species of which have an orbital hiatus; in P.richmondi the front is sharp and lamellate, though not entirely concealing the inferior crest. In Pseudothelphusa can be seen every gradation between the sharp-crested front and the smooth front without a ridge. There seems to be no external character to distinguish Potamocarcinus except the strong marginal teeth, which is hardly a generic character. The following species is therefore placed provisionally in this genus.

[^125]
Potamocarcinus nicaraguensis.

Potamocercinus armetus Stimpson (not Milne Edwards), Droe. Acad. Nat. Sci. Jhila. x, $1,100,1858$.

Stimpson, in his mpublished report on the (Imstacea collected by the North Pacitic Exploring Expedition, says of P. armothes, "We have but one specimen of this species, a small mate, half an inch in length. It difiers somewhat from the large female deseribed by Milne Edwards, in that the carapace is punctated, and, toward the lateral margins, somewhat granulated. The second and third antero-lateral teeth are bitid. Dactyli scareely quadrangular, almost romded, also smaller and less spimulose. It was fombl at Omotepee Island in Lake Nicaragua, by Mr. Charles Wright, botanist of the expedition."

Potamocarcimus nicurafuensis is a large species; small specimens agree with Stimpson's diagnosis, except that the dactyls are not less spinulous than in Mihe Edwards's figure of armatus.

Campace broder anterionly than in armatus, slighty convex, distinctly marked with small puncte, gramate near the lateral margins, the granules most prominent in young specimens. Cervical sulcus deep and curved; there are wide and deep grooves either side of the posterior gastric area, and small Y-shaped grooves between them. The epigastric lobes are well marked, divided by a narrow sukus leading to the front. Superior fiontal margin horizontal, granulate, more advanced in the central portion; median fissure V-shaped. Front concave, the inferion margin much behind the superior, the two hatres separately arehed upwad. Postorbital tooth obtuse, outer margin rounded. Second tooth broader, obtuse, often with one or more accessory teeth on its margins. Third tooth, that directly posterior to the cervical suture, broad, very variable in shape, but always bilobed. Rematning large teeth, four to six in momber, irregular in shape and position, achete, spinons. There are often small intervening teeth. Postero-lateral margin with several spimules which decrease in size from the lateral angle. External orbital hiatus deep and wide; orbital margin grambate. Lower surface of the carapace gramulate near the lateral margin and on the jugal area. The margin of the epistome is three-spined; median spine long and curved upwatd. As in amata, the endognath of the external maxillipeds is very wide and covers a portion of the jugal region; the exognath is much shorter than in "rmate, never exceeding one-half the length of the ischinm. The appendages of the first segment of the male abdomen are rery stont, and at the summit present a concave onter surface which has a spine at the antero-inferior angle, a lobe at the antero-superior and posteroinferion angles, and two spines at the postero-superion angle (Pl. Lxxvi,

Fig. 3). Abdomen of female very large, concealing the sternum. Cheli peds long and strong, unequal, punctate; merus roughened above, imer margin spinons, the spines longer and stronger at the distal end; inferior margin granulate. Carpus with a very shallow median groove near the center, and as stont spine on the inner margin. Large hand much swollen, deep; there is a short line of tubercles on the inner side of the lower margin near the carpus; dactyl strongly arched; fingers and lower surface of hand speckled with small dark spots, which, on the fingers, are granulous; teeth of prehensile edges inregular, broad, and strong. Smaller hand less broad and deep; fingers in contact or slightly gaping; otherwise as in the larger hand. The chelipeds of the female are shorter and more slender than those of the male. The merus joints of the ambulatory legs are slightly compressed; upper and lower margins almost parallel; upper margin obscurely granulate; carpal joints unarmed; propodal joints spinulous on the distal portion; dactyli compressed, with five rows of spines.

Length of os $57^{\text {mun }}$; width without spines, 8 ; ; approximate length of larger cheliped, 158 ; length of propodus, 90 ; depth, 37 ; thickness, 23. Length of 9,63 ; width, without spines, 95 ; approximate length of larger cheliped, 135; length of propodus, 71 ; depth, 25 ; thickness, 15.

Lake Nicaragua, Dr. J. F. Bransford ; 4 8 , 2 9 (5837), grading in size from tro inches to three-fourths of an inch in length.

Near ('reytornn, Nicaragua, Dr. Louis F. II. Birt ; 2 2 , 3 o (13788) all large. Greytown is at the mouth of the river San Juan, an outlet of Lake Nicaragua.

Rio Frio, Costa Rica, a tributary of the San Juan, Charles W. Richmond, March 3,1892 ; one \circ (17957).

EPILOBOCERA Stimpson.

In 1860 Stimpson instituted the genus Epilobocera (Ann. Lyc. Nat. Hist. N. Y., vir, p. 234) for a fresh-water crab of the family Thelphuside, distinguished by the frontal process meeting the internal suborbital lobe, behind which the antenna passes to the orbital cavity. The merus of the external maxilliped is transverse, its anterior margin rounded, and the palpus goniarthroid. The type species, E. cubensis, was found in fresh-water streams near Santiago, Cuba.

In 1870 Prof. S. I. Smith (Trans. Comn. Acad. ni, p. 150) gives a more detailed description of E. cubensis, and describes another species, E. armata, probably from the Bahamas. The generic diagnosis should be amended so as to include species in which the frontal process nearly joins the suborbital-lobe, the character being at best of doubtful value. The following distinguishing characters may be added: A process projects from the upper side of the expiratory canal, and the exognath of the extermal maxillipeds overreaches the ischium of the endognath.

Proc. N. M. $93-42$

Abstract

A' Superior frontal erest projecting beyond the inferior. 13' Carapace gramulated near the margins above and below. cubibxsis. B $^{\prime \prime}$ Carapace not gramulated near the margins. armata. $A^{\prime \prime}$ Superior frontal crest not projecting beyond the inferior. B^{\prime} Carapace with coarse sealy granules near the margins above and below

GBANULATA. $13^{\prime \prime}$ Carapace without coarse scaly gramules near the margins

Epilobocera haytensis.

(1'l. LXXVII, Figs. 4 and 5.)
Carapace very slightly convex, finely gramulate, and punctate. Cervical sulcus deep. Cardiae region with shallow depressions on either side, and two minute Y-shaped grooves in the sulcus between the gastric and cardiac regions. Epigastric lobes distinct, separateri by a well-marked suleus, which extends forward and forms a wide median simus in the superior frontal margin. This margin is prominent and nearly straight when seen from above, but slopes domnward toward the middle, and in the larger specimen the two halves are inclined slightly batkward toward the median line. The margin is mevenly tuberculate, and near the orbital border it is directed backward and ends above the base of the eye. The inferior margin of the front is three-lobed, the median lobe directed downward and forward, the lateral lobes rommled and horizontal, projecting well beyond the superior margin. The margin is remulate, and also the orbital border, which is continuous with it. There is a broad hiatus beneath the outer angle of the orbit. The intermal suborbital lobe is very broad and concave, and nearly, but not quite, tonches the subfrontal process. The antero-lateral margin is marked by small bhut teeth, irregular in size and shape, and interrupted by a wide sinus at the cervical suture, and another near the extermal orbital angle. The teeth become smaller and more indistinct near the postero-lateral margin, which is slightly concave, smooth, and rombded The marginal teeth are less plainly marked in the smaller specimen. Labial border of the epistome with three lobes; median lobe acute, projecting downwad and slightly forward; lateral lobes shorter, less acute, their inner margins arehed upward and forward. The margins of the lobes are tuberculate. On the lower side of the carapace there is a line of tubereles following the cervical suture, and the anterior portion of the jugal area is tubereulate. The endognaths of the external maxillipeds in width do not exceed the buceal cavity; the merus is more or less quadrate, the antero-external angle rounded (Fig. 5). The male abomen is widest at the third segment, and does not taper regularly to the last, but the margins of the fourth, fifth, and sixth segments are separately convex. The appendages of the first segment are bent ontwards at almost a dight angle near the extremities, which are lobed and spimbliferons. Chelipeds mequal. The merus is amed with stout
blunt spines on the inner margin, irregularly dentate on the upper margin, scabrous on the upper portion of the onter surface, and with a line of small tubercles on the lower outer margin; carpus faintly scabrous near the merus, with a strong, blunt spine at the inner angle. Hand inflated; fingers irregularly dentate within, gaping to the tips in the male, in contact in the female. Ambulatory legs flattened, sparingly pubescent; merus joints denticulate above; carpal joints indistinctly denticulate above, with a few spinules on the distal margin; propodal joints with two rows of spines above and below, the lower ones the longer, and one row on the distal margin; dactyls with three rows above and two below, with fewer spines in the lower rows.

Length of larger specimen, a female, 46^{mm}; width, 76 . Length of o 21.5; width, 38.

Hayti; A. G. Younglese; 1878; ô (3192).

Epilobocera granulata.

(Pl. hxxvii, Fig. 6.)
The specimens are smaller than in the preceding species, and are sexually immature. The species is closely allied to haytensis. The areolations of the carapace are the same. The anterior portion is more distinctly granulous, especially the epigastric lobes, and the brauchial regions are coarsely granulate near the margius. The antero-lateral margin is not interrupted at the cervical suture, but there is a deep simus next the postorbital tooth, and the first tooth following is very small. The next 6 to 9 teeth are larger and more regular than the remainder. Superior frontal border as in haytensis. The inferior frontal border is thin, more advanced than the superior, and in a front view the two halves are seen to arch upward. The external suborbital fissure is very shallow, scarcely more than an iuterruption of the denticles of the orbital border. The subhepatic and subbranchial regions are granulate, and the cervical ridge is present as in haytensis, but the jugal area is smooth, except at the anterior extremity. The epistome has three acute lobes, tuberculate on the margins, similar to those of haytensis. The maxillipeds in width exceed the buccal cavity; the merus has the antero-external angle much more arcuate than in haytensis (Fig. 6). Abdomen of male narrower than in haytensis, especially noticeable in the peuultimate segment. The merus and carpus of the chelipeds of the male are similar to those in haytensis; the carpal spine is sharper. Hands little dilated; fingers very slightly gaping at their base. Ambulatory legs sparingly pubescent, with meral joints denticulate above; carpal, propodal, and terminal joints armed as in haytensis.

Length, 13.5; width, 23 millimeters.
West Indies (6705). Four specimens, all more or less mutilated. Two of them are males, and probably also the other two,

Family TRICHODACTYLDDAE.

Trichodactylus quinquedentatus.

(1. LxXVH, Fig. 7.)
('arapace very convex longitudimally, slighty convex transversely. Surface smooth, shining, punctate, the puncter irregular in size and mumerous. There is an \mathcal{H}-shaped depression in the center of the carapace. Front narower than in pumctutus, consisting of two broad lobes more pronounced than in specimens of punctatus of equal size. Exter. mal orbital angle obtuse. Lateral margin strongly arenate, armed with five teeth, besides the orbital, the first three sharp and spiniform, the last two bhunt. Campare widest at the fourth tooth. Frontal, orbital and lateral margins ridged and smooth. Onter margin of merns of maxilliped ridged and more stronsly produced at its anterior angle than in punctutus. Abdomen of female coverins the stermme termi nal segment broadly triamgular, rommed at the tip. Chelipeds in female mequal, punctate; merus triangular, upper margin acote, with a tooth at the distal end; lower surfae with a small shanp spine on the outer and the immer margin, and a blunt propection at the extremity of the outer margin; earphe with a spine on the inmer margin. Hands convex beneath, almost straight above; smaller hamd about two thirds as deep as larere; fingers in contact in both hands. Ambulatory legs very slenter; meral joints not dilated. Ambulatory legs, fingers, and upper portion of hand and earpus, covered with it close velvety pubescence.

Length, 19; width, 22 millimeters.
Found in a diteh, amost dry, near the Escondido River, 50 miles from Blachedrs, Nicaragua, he Chanles W. Richmond, Angust 15, 1892; one female (17726).

T' quinquedentatus can be distinguished from other speries by the number of lateral teeth.

ENPLANATION OF PLATES
(From drawings by Mr, A. ll. BALDWin.)
P1..ATE LXXIII.
I'seudothelphuse jou!!i, of, $\times 1$.
I'ATE LXXIV.
EIg. 1. P^{\prime}.jomyi, five segments of male abdomen, $\times \mathbf{1}_{6}^{3}$.
$2 . \quad$. jouyi, first abdominal appendage, outer side, $\times 3$.
3. I^{\prime}. jonyi, oxternal maxilliped, $\times 1_{3}^{33}$.

1. I'. dugesi, carapace of δ. $\times 13$.
2. I^{\prime}. dugesi, tirst abominal appendage, outer side, $\times 4$.
3. I'. terestris, catapaco of $\delta, \times 13$.
4. P. terrestris, first ablominal appendage, onter side, $\times 3$.
5. I'. verticalis, large hamd of of, $\times 1^{\text {s. }}$.
6. P. Peticulis, first abdominal ippendage, upper side, $x \boldsymbol{2}_{5}$
7. I^{\prime}. colombionus, carapace of small of $\times 1_{6}^{3}$.

Plate lixdy.
Fig. 1. P. colombianus, large liand of $\circ, \times 13$.
2. l'. lamellifrons, carapace of $\begin{gathered} \\ 0\end{gathered} \times \mathbf{1}_{\frac{3}{5}}$.
3. P. lamellifrons, large hand of ${ }^{7}, \times 1^{3}$.
4. P. lamellifrons, five segments of male ablomen, $\times 1{ }^{3}$.
5. P. lamellifrons, first abdominal appendage, outer side, $\times 3 \frac{1}{5}$.
6. P^{\prime}. vichmondi, carapace of $\delta^{\downarrow}, \times$ about $\mathbf{1}_{1}{ }^{1}$.
7. $P^{\text {P }}$. vichnondi, five segments of male abdomen, $\times 1^{3}$.
8. I' vichmoudi, first abdominal appendage, outer side, $\times 2$ 永.
9. P^{\prime}. richmondi, external maxilliped, \times about $1_{1 / 6}$.
10. P. richmondi, large hand of $3, \times$ about $1 \frac{1}{16}$.

Plate lexivi.
Potamocarcimus nicaraguensis, $\frac{3}{6}, \times \frac{1}{2}$.

Plate hxivif.

Fig. 1. I', nicaraguensis, external maxilliped, $\times 1_{5}^{3}$.
2. \bar{P}. nicaraguensis, five segments of male abdomen, \times.
3. P^{\prime}. nicaraguensis, first abdomiual appendage, onter side, $\times 1_{6}^{3}$.
4. Fipilobocera haytensis, carapace of \circ, \times. .
5. L. haytensis, external maxilliped, $\times 1_{5}^{3 /}$.
6. E. granulata, external maxilliped, $\times 3$.
7. Trichodactylus quinquedentatus, ㅇ, $\times 1 \frac{3}{3}$.

1-3. Pseudothelphusse jouyi.
6, 7. P. terrestris.
10. P. colombicmus.

4,5, P. dugesi.
8.9. P '. verticalis.

1. Pseudothelphusa colombianus.

2-5. P. lamellifrons.
$6-10$. P. richmondi.

Potemoche inns mienaranuensis

1-3. Potamoctercinus nicaraguensis.
6. E. granulata.
4.5. Epilobocera haytensis

ন. Tirichoductylus quinquedentatus.

SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U. S. FISH COMMISSION STEAMER ALBATROSS.

[Published by permission of Hon. Marshall MoDonald, Commissioner of Fisheries.]
NO. XXVII-CATALOGUE OF A COLLECTION OF BIRDG MADE IN ALASKA bY Mr. C. H. TOWNSEND DURING THE CRUISE OF THE U. S. FISH COMMISSION STEAMER ALBATROSS, IN THE sUMMER AND AUTUMN OF 1888,*

Robert Ridgway, Cirator of the Department of Birds. Family ALCIDA.

1. Iunda cirrhata Pall. Tufted Pufin. Middletou Island, August 26 ; one specimen.
2. Fratercula corniculata (Naum.). Horned Pufin. Shmmagins, August 2; one specimen.
3. Ptychoramphus aleuticus (Pall.). Cassin's Anklet. Shumagius, Augnst 4; one specimen.
4. Simorhynchus cristatellus (Pall.). Crestel Auklet. Big Koninski Isiand, August 4; two specimens.
5. Brachyramphus marmoratus(Gmel.). Marbled Murrelet. Koliak, Augnst 18, and Barclay Sound, Soptember 27 ; two specimens.

- 6. Cepphus columba Pall. Pigeon Guillemot. Shumagins, August2; two specimens.

7. Uria troile californica (Bryant). California Murre Shumagius, August ${ }^{2}$; one specimen.

Family STEIRCORARIDDE

8. Stercorarius pomarinus (Temm.). Domarine Jaeger. Kodiak, August 15; one young birl.
9. Stercorarius parasiticus (Linn.). Parasitic Jagger. Kodiak, August 18; one specimen.

Family LARIDA.

10. Rissa tridactyla pollicaris Ridgw. Pacife Kittiwake. Middleton Island, Augnst 26; two specimens.

Framily DIOMEDEIDA.

11. Diomedea albatrus Pall. Short-tailed Albatross. "North Pacitic Ocean," no date; one specimen.
${ }^{*}$ Various circumstances have delayed the piblication of this list, which was prepared in 1889.

Family PROCELLARIDOA．

12．Fulmarus glacialis glupischa Stejn．Pacific Fulmar．Light－honso Rock． August 8；two specimens．
13．Puffinus tenuirostris（Temm．）．Slender－billed Shearwater．South of Unimak Pass，duly゚－99；one specimen．

Family SCOLOPACIDE．

14．Tringa bairdii（Conos）．Baird＇s Sandpiper．Kodiak，Angust 15；one specimen．
15．Tringa minutilla Vieill．Least Sandpiper．Shumagins，August 1 ；one specimen． F゙amily l゙ALCONIDA：

16．Falco columbarius Limn．Ligeon llawk．Kodiak，August 15；ons specimen． Fimmily BUBONIDA．

17．Asio accipitrinus（l＇all．）．Short－eared Owl．Unalashka，July 28 ；one specimen． F＇amily PICLDAE．

18．Ceophlœus pileatus（Limn．）．I’ileated Woodpoeker．＂Alaskan cruise，October ＂Iz＂；ono specimen

ramily CORVIDE。

19．Corvus caurinus Baird．Northwest Crow．Barelay Somm，September 27 ；one specimets．
20．Pica pica hudsonica（Sab．）．American Magpic．Shmmgins，Augnst 2；one specimen．

Family FrRINGILLIDE．

21．Leucostictegriseonucha（Brandt），Nleutiauleucosticte．Unalashka，July 27； two specimens．
22．Acanthis limaria（Limn．）Redpoll．Kodiak，Ausust 11 ；one specimen．
23．Calcarins lapponicus（Limio）．Lapland Lomgspar．Shmmesins，August 1 ；one specimen．
24．Ammodramus sandwichensis（Gmel．）．Kotliak，Murnst 11；Whatashka，duly 27 ；Middleton Island，Angust $2(6 ;$ six specimens．
25．Zonotrichia coronata（lall．）．（ioldon－crowned Gparrow，Shmmarins，Angrst 2 ；Kodiak，Jumist 11 and 15 ；throu specimens．
26．Melospiza cinerea（limel．）．Noutian Song Sparrow．Kodiak，August fis and 17；two specimens．
27．Passerella iliaca malaschensis（Gmel．）．Townsend＇s Sparrow．Korliak，Au－ gust 11－17（six specimens）；Middletom lsland，Angust 26；two specimens．

> Family MNIOTHATH.N.

28．Dendroica aestiva（Gmel．）．Vellow Wrarher．Mindleton lsland，Angust：26； three specimens．
29．Sylvania pusilla pileolata（1：all．）．l＇ileolated Warbler，Kodiak，Angust 11； one specimen．

F＇amily ThO（：1，ODY＇TID．

30．Troglodytes hiemalis pacificus Baind．Western Winter Wron．Kodiak，Angust 15 ：md 19 ；two specimens．
A young bird in first phumage may be describerd as follows：

Townsend）：Above plain bister－bown，duller on top of head，brighter posteriorly，the upper tail－coverts inclining to Vinnlye－brown：wings
and tail brighter brown (very nearly a medium tint of Vandyke), barred with dusky, the primaries dusky spotted with pale buffy brown or light brownish buff. A very indistinct superciliary stripe of pale brownish. Chin and throat dull buffy-grayish; breast and belly dull light buffybrownish, the feathers indistinctly margined with grayish dusky; sides and flanks more decidedly brown, especially the latter, which are rather broadly barred with dusky; lower belly similarly barred, but ground-color paler (like color of breast, ete.); under tail-coverts light Vandyke-brown, each with a central sagittate spot of dusky. Bill and feet as in the adult.
31. Troglodytes alascensis Baird. Alaskan Wren. Unalashka, July 27; two specimens.

> Family PARIDAE.
32. Parus atricapillus septentrionalis (Harris). Long-tailed Chickader. Kodiak, August 15 and 17; two specimens.

Family SYLVIIDAE.
33. Regulus satrapa olivaceus Baird. Western Golden-crowned Kinglet. Kodiak, August 15 and 17; two specimens.

Family TURDIDE.
34. Turdus aonalaschkæ Gmel. Dwarf Hermit Thrush. Kodiak, Angust 15 and 17 ; four specimens.
35. Hesperocichla nævia (Gmel.). Varied Thrush. Kodiak, August 15; two specimens.

A REVISION OF THE GENUS FORMICARIUS BODDAERT.

BY
Robert Ridgway, Curator of the Department of Birds.

The present attempt to elucidate the species and local forms of the Genus Formicarius was brought about by a peculau combination of circumstances. The U. S. National Museum has for a long time possessed specimens of two forms from Central America, one represented by specimens from Costa Rica and Nicaragna; the other by examples from Panama; and, althongh unquestionably distinct forms, all were labelled "Formicarius hoffimenni." Further, while F^{\prime}. hoffmemni was described from a Costa Ria specimen, the description made it clear that the Panama birds in the National Musemm and not those from Costa Rica represented that species, a fact to be explained only on the supposition that this Panama form extended into some part ofe ${ }^{\text {Costa }}$ Rica from which the National Museum had no specimens, perhaps, on the Pacific side, a hypothesis which specimens recently receiver from the Costa Rica National Museum have proven to be correct. To add to my perplexity, the leading authorities on Neotropical ornithology ascribed another species (F. amulis) to Costa Rica which could not be recognized anong the many specimens examinen. In short, I found it quite impossible to properly label the material examined with the assistance of Volume $x v$ of the "Catalogue of Birds in the British Musemm," or that portion of the Biologia Centrati-Americant, i ves, including this genus.

After bringing together a series of nearly sixty specimens, however, from various collections, the matter is made quite clear regarding a number of doubtful points, though the material is still fir from adequate for a satisfactory treatment of the subject, immense areas of South America and considerable portions of Central America being absolutely unrepresented.

As one resilt of this accumulation of material, it has been ascertaned that three very distinct forms of the anders section of the genus occur in Costa Lica, the commonest of which, or at least the one having the mostextensive range there, appears to have bern universally confounded with F. hoffmanni, while that referred to F. amclis, is really not that species at all, but a very distinct one, ranging fom Costa Rica to western Ecuador, which Mr. ('herrie has named, in manuseript, F^{\prime}. nigricapillus. It is also found that between H^{r}. hoffmanni and $F_{\text {. crissalis, }}$ or in the district extending from the island of Trinidad throush Venezuela to the interior of Colombia, is interposed a form of somewhat in-
termediate but detinite and very constant characters，which I have named r^{\prime} ．suturaths．Of F^{\prime} ．crissalis I have seen lout one specimen；of F^{\prime} ．amolis only two（possibly three），and mone of F^{\prime} ．rufipectus or its near ally（possibly not different），E ．thoracicus．
ln the case of few specimens of a given form，or what are supposed to be the same form，it is of course dificult to tell whether certain ob． vious differences represent individual or local variations；lout，as has so often been the ease in other instanees，it has been fomblat the larger the series of specimens the more miform are their waracters， and ronsequently the various local forms thus represented ean be more easily defined．

My thanks are due for the loan of specimens to the authorities of the Museo Nacional de Gosta Rica，the lboston Society ol Natural Ilistory， the American Masemmof Natural IVistory，New York City，and Messrs． Salvin and Godman，of Lombon，England，all of whom have lent me important specimens，without which no satisfactory conclusions could have theen reached．The eonsiderable series of specimens which I have thus been able to bring together sugests very strongly the probability
 F^{\prime} ．momiliger Scl．，and the three forms which I amobliged to deseribe as new，are not distinet species，but merely more or less differentiated geographical races of one widely distributed species，which ranges from sonthern Mexico to Bolivia；and that when we have specimens from the very considerable areas of continental tropical America from which examples of the gemus have not yet been examined it will berome nec－ essary to chanacterize and name still other forms．Ilowever this may prove to be， 1 find that the ten forms of the l ．amalis section treated below can easily be made out fiom the comparatively scant material which I have been able to compare：＊
＊The following table will show the numberand soureo of the specimens oxamined in the preparation of this paper：

		Collection．					
No．	Species．						
1	F．cayamensix Bondt	2		2			
	Vi．nimpitrons（iould．．	\because		3			
3	F\％amatio（Latr．a Dorb．）			1		\＃	
4	F－uisricapillus Cherrie．	1				－	
5	FV．crissalis（Cab．）．．．．．．．．					1	
6	F．saturatus Ritgw．	1		11	（1） 1	$\stackrel{1}{3}$	
7	IV．hothmanni（Cabr．）	3		4	（l） 1	3	
8	F．mubrosun liilcw	$\stackrel{8}{8}$	9				4
9	F．moniliger Sel．．．	\because		3		：	
10	F．pallidus Lawr．．			1		1	
11	F．rutipetus Saly ．．．Bor						
12	F＇．thoracicus＇tacz．© Berl．						
	Total．	19	13	2	2	11	4

Gemus FORMICARIUS BoDDAERT.

Formicarius 130DD. 'Tabl. L', E. 1783, 43. T'spe, I '. cayamensis Bond.

Myrmecophaý Lacúp. Mém. l'Inst. P'aris, Hi, 1801, 507. 'Type undeterminable.
Myiolhera Illig. Prodr. 1811, 218. Type, Turdus colma Gm., = Itomicarilts cayanensis Bond.
Mymothera, part, Vibili, Analyse, 1816, 43, 70. 'Typo (nono specified, and no speeies named; includes "Befroi, ot quelques autres fourmilliers de Buffon").
Myocincla Swans. Classif. B. if, 1837, 230. 'T'ype, Thurdus colmu (imel., 二 Formictrius fayanensis BODD.
(ien. Cinar.-Wing exceeding tail in length by at least the length of the tarsus, much rommed (first quill shortest, thind to fifth longest), the primaries strongly curved. T'ail rounded, the difference between the shortest and longest feathers about equal to length of gonys or a litthe less. Tarsus about two and a half times as long as bill from nostril, distinctly scutelate on both anterior and posterior divisions. Midale toe more than half as bong as tarsus. Immer toe with the tip of its claw reaching to or slightly beyond base of middle claw ; onter toe a little shorter, its basal phalanx united to middle toe; hind toe rlecidedly shorter than lateral toes, but with claw nearly as long as the digit. Bill shorter than head (exposed culmen about as loug as distance from nostril to posterior angle of eye), slightly compressed anteriorly, somewhat depressed at base, the tip obviously notehed. Nostrils exposed, obliguely longitudinal, with overhanging membrane. Rictal bristles - hort, inconspicuous. Liyes large, the reqion immediately behind and beneath maked. Plumage normally compact; qeneral eolor uniform brown above (the had sometimes rust y or black); dasky, grayish, or brownish below, sometimes with the chest maty, the under tail coverts also usmally rusty, and the throat black; imer webs of remiges with basal portion buffy, ochaceous, or tawny, the under wing coverts similar, but tipjed with black.

The genns most nealy related to Formicarius is, apparently, Phogopsis Rememenbacir, with which it is compared by Mr. Salvin (Proc. Kool. Soc., London, 1866, p. 73), as follows:

The genns formictrins seems well defined, and separable from the allied forms by several trenchant characters. Thophumage consists of short, moderately firm feathers, giving the bird a compact appearance very elifterent from that of Phlogopsis, all members of which genus have softer and longer feathers, more like those of Pithys and its affines. Tho region behind the eye is naked; in Ihlogopsis the ontire circlet is bare. The supranasal feathers of Formicarins are short and compact; in I'hlogopsis they are long and prominent. 'The sentelle of the tarsi of the former are distinet and divided, while I'hlogopsis has as single shied on the front of the tarsus. The mostril of Formicerias is ohlong and situated neares the baso of the bill than that of Phlogopsis, which is romul. The hind claw is longer aud less curved. The tail is shorter, stiffer, and less rounded.

KEY TO THE SDECDES.
a^{\prime}. Top of head and hind neck rufescont or tawny, conspicnously diferent from color of back; outer wob of exterior feather of alula light tatwny or buff.
b^{\prime}. Forehead bright tawny or rufescent, like crown, etc. (Brazil.).1. F. cayanensis.
b^{2}. Forehead black or dusky. (Amazon Valley.)......................2. F'. nigrifrons. a^{2}. Top of head dull browmsh, not conspicuonsly different from color of back or else black; outer web of exterior feather of alula grayish brown.
b^{1}. Chest black or some shade of grayish or grayish brown.
c^{1}. Sides of neck similar in color to hind neck, not rufescent or cinnamomeous.
d^{1}. Top of head brown, like back, with only centers of feathers blackish; chest slate-wray, in contrast with black of throat; smaller. (Upper Amazon Valley, Bolivia to northeastern Peru.)3. F. analis.
d^{2}. Top of head, also chest, black; larger. (Pacific coast district, from western Eeuador to Costa Rica.)..............................4. F. nigricapillus.
c^{2}. Sides of neck rufescent or cimamomeons.
d^{1}. Under tail coverts wholly tawny, rusty, or chestnut.
e^{1}. Forehead concolor with crown,-not rufescent.
f^{1}. White loral spot large, conspicuous; under parts clear brownish gray, becoming nearly white on belly; under tail coverts clear tawny. (British Guiana.)
5. F. crissalis.
f^{2}. White loral spot small, sometimes obsolete; under parts nearly uniform deep brownish gray; under tail coverts rufous-tawny. (Trinidad, Venczuela, and coast of Colombia.) 6. F. saturatus.
e^{2}. Forehead distinctly rufescent, different from crown. (Under tail coverts, as in I. crissalis; general color of unter parts much browner than in either F. crisstlitis or F^{\prime}. saturatus.) (Isthmus of Pamama, north to westem Costa Rica.)
7. I. hoffimanni.
d^{2}. Under tail coverts only partly (if at all) tawny, rusty, or chestnut, the longer (posterior) feathers being dusky margined with brown.
e^{1}. No rusty collar across fore neck. (Eastern Costa Rica and Nicaragua.)
-8. F. umbrosus.
e^{2}. A distinct rusty collar across fore neek.
f^{\prime}. Darker; rusty brown above, the pileum much darker. (Eastern Mexico, Ghatemala, and British Honduras.)9. I'. moniliger.
f^{2}. Paler; light grayish brown above, the top of head not darker. (Yucatan.).
10. F. pallidus.
b^{2}. Chest rufons or chestnut.
c^{1}. Top of head rusty brown; chest chestmut-rufous. (Veragua; Ecuador.) ..11. I. rufipectus.
c^{2}. Top of head black; chest dark rufons or chestnut. (Eastorn Ecnador.) 12. F^{\prime}. thoracicus.

Formicarius cayanensis Boddaert.

Formicarius cayanensis Bond., Tabl. P. E., 1783, 50 (based on Le Têtema, de Cayenne Buff., P Enl., 821).-Gray, Gen. B., 1, 211; Mand-1. 1., 1869, 298, No. 4418.-Scl., P. K. S., 1857, 46 (Guiana; Brazil) ; 1858, 277 (Cayenne; Brit. Guiana; north and sontheast Brazil).
Formucarus cayemensis Scl., Catal. 1862, 190 (Brazil),-Saly., P. Z. S., 1866, 74 (Guiana; Cayeme; Brazil).-Peliz., Orn. Bras., in, 1868, 168 (Brazil).-Scl. and Saly., Nom. Neotr., 1873, 75.
Myrmornis cayennensis Cabs, and Henee, Mus. Mcin., h, 1859, 7 (Brazil).
Turdus colma Guel. S. N., I, 1788, 827.
Myrmothera colma Vielli., Enc. Méth., 1723, 681, 683.
Myiothera colma Cab. in Schomb. Guiana, nif, 1818, 686., Bonar.-Consp., 1,1850, 205 (s. Brazil).
Formictrius colme ScL., Cat. B. Brit. Mus., xv, 1890, 302 (Saô Paulo, Bahia, and southeast Brazil; ''ern?)

Myrmothera tetema Vieill., Enc. Méth., 18:23, 683.
Myioturdus tetema Max., Beitr., in, pt. 2, 1831, 103x. -MÉnérro, Mem. Ac. St. Poters. sér. vi (Sc. Nat.), 1835, 466.
Myiotheratetema Bonap., Consp. I, 1850, 205 (Cayenne: north Brazil).—Burm., Syst Ueb. III, 1856, 46.
Mymothera fuscicapilla Vinill., N. D., xir, 1817, 112; Enc. Méth., 182̊3, 6x1.
Myiothera ruficeps Sipu, Ar. Bras., i, 1823, 72, pl. 72, fig. 1.
Furmicarius ruficeps Pelz. Orn. Bras., II, 1868, 90, 168 (Walde do. ('raviari, Matto. Grosso; Boden; Borba; Para).

Hab.-Southeastern Brazil (Saô Paulo; Bahia).
Sp. Cinar.-Entire pilemm and hind neck bright rufons-tawny (paler laterally, often clouded with dusky medially); sides of head (including lores and superciliary region), chin, throat, and chest black, changing gradually into sooty grayish brown or dull sooty slate on under parts of the body; upper parts olivaceous, the tail hackish terminally, the outer web of external feather of alula and basal portion of remiges and under wing coverts buff or pale tawny.

Adult male (No. 32571, U.S. Nat. Mus., "Brazil"; E. Verreaux) :-Pilemm and hind neck russet-tawny, paler (light ochraceous) laterally, the median portion clouded with darker by the showing through of the dusky bases of the feathers; rest of upper parts plain grayish olive; the outer webs of the remiges inclining to Prout's brown, and the terminal half (approximately) of the tail backish brown; outer web of exterior feather of alula ochraceous-buff; primary coverts plain blackish brown; under wing coverts buff, tipped with brownish black, the larger (more posterior) feathers almost wholly of the latter color; imer welbs of remiges ochra eous-buff for basal third or more. Sides of head (including lores and superciliary region), sides of neck, chin, throat, and chest black; remaining under parts dull brownish gray, tinged with olive laterally, the ventral region suffused with grayish white. Bill, black; legs and feet, brownish. Total length (skin), 7.10; wing, 3.20 ; tail, 2.20 ; exposed culmen, 0.62 ; tarsus, 1.18 ; middle toe, 0.72 .
"Lores and throat varied with whitish." (SClater.)
The series which I have been able to examine of this species is very unsatisfactory. There are only four specimens, all adults, but only one of them sexed.

An example in the National Museum collection, supposed to be from Santa Catarina, Brazil (No. 24049, Lemuel Wells, coll.), is essentially like the one described above, but has the colors rather deeper throughout, the rusty color of pileum, etc., richer, the upper parts more deciderlly olive, and the lateral under parts much more olivaceous. Wing, 3.30 ; tail, 2.20 ; tarsus, 1.18 : middle toe, 0.75.

Two specimens from Bahia in the collection of the American Museum of Natural Ifistory are similar in color to the example deseribed above, except that the color of the pileum is much brighter and more uniform-rich rufous-tawny, passing into ochraceous along the edges -
with little, if any, visible clouding of dusky along the median line. Their measurements are as follows: No. 43537: Length (skin), 6.75; wing, 3.45; tail, 2.10 ; exposed culmen, 0.70 ; tarsus, 1.23 ; middle toe, 0.72. No. 43:3'3: Length (skin), 6.10; (tail not grewn out); wing, 3.40 ; exposed culmen, 0.68; tarsus, 1.25; middle toe, 0.75 .

2. Formicarius nigriirons Gould.

Formicarius nigrifrons Gould, Am. N. H., ser. '2, xv, May, 1855, 344 (Chamienros, e. P'eru; mus. J. Gould) ; P. Z. S., 185̈5, 68 (Chamicuros).-ScL., P. Z. S., 1855, 145 (Bogota) ; 1857, 47 (Colombia; Amazonia) ; 1858, 68 (Rio Napo, e. Ecuador); 277 (Colombia; e. Peru) ; Catal., 1862, 190 (Bogota); Cat. B. Srit. Mus., xv, 1890, 303 (Cayenne, Brit. Guiama, Bogota, Sarayacu, e. Ecuador, Chamicuros, e. Periu)-Saly., 1’. \%. S., 1866, 74 (e. l'eru; Colombia); Hbis, 1885, 429 (Camacusa, Brit. Guiaua),-Scl. and Shly., P. Z. S., 1873, 277 (e. Peru); Nom. Neotr., 1873, 75 (Colombia; e. Peru).-Taczan., P. Z. S., 1882, 32 (n. e. I'eru); Orn. du Pér., H, 1884, 77 (Yurimaguas and Chamicuros, e. Pern).
Myrmornis nigrifrons Cab. and Heine, Mus. Hein., in, 1859, 7 (Cayeme).
Formicarius cayanensis (nee Bodd.) Pelz., Orn. Bras., 1868, 90, 168 (Rio Negro, Maribatants, Barra Mai, and Rio Brancho).
Hab.-Guiana to the Amazon and Colombia.
Sp. Cimar.-Similar to F. cetyonensis Bodd., but with whole forehead glossy black.

Adult male (No. 32872, U. S. Nat. Mus., Rio Napo, e. Ecuador; E. Verreanx).-Entire foreheat and lores glossy black; sides of head (including marrow superciliary line), sides of neck, chin, throat, chest, and breast "dead" black; rest of muler parts dark sooty gray, the anal region mixed with whitish. Crown, oceiput, nape, and hind neck deep rufous-tawy, paler, or more ochraceous, laterally, darker (almost chestnut) on the crown, where the feathers are blackish immediately beneath the surface; rest of upper parts clear bister-brown, the tail darker, inclining to brownish black on about the terminal half; outer well of outermost feather of alula deep buff; primary coverts wholly brownish black; basal third (approximately) of inner webs of primaries ochraceous-huff; smaller under wing coverts light buff, tipped with blackish, the larger eoverts chiefly blackish. Bill, black; legs and feet, brown. Total length (skin), 6.00; wing, 3.15; tail, 1.95; exposed culmen, 0.60 ; tarsus, 1.15 ; middle toc, 0.70 .

Young mule (No. 16718, Amazon R., Lient. Herndon, U. S. N.).-Similar to the alult, but forehead less extensively black, the lores and submbital region largely rusty, chin and throat white squamated with black, chest dark sooty brownish gray, rest of mader parts lighter and duller brownish gray than in alult, and upper parts browner (ranging from clear bister on back to mummy brown on upper tall coverts).

Three adults from British Guiana in the collection of the American Musemu of Natural IVistory differ from the single example from the upper Amazon (Rio Nipo) in much larger bill and in having a distinct
phumbesus cast to the under parts, even the chest being washed with this color. They measure as follows:

Whether the Guiana and Upper Amazon birds thus differ constantly I am unable to state with certainty; but m view of the great uniformity in coloration in the three Guiana birds and their constantly much larger bills I have little dount that such will prove to be the case, and therefore propose, provisionally, the name Formicarius niyrifrons glaucopectus* for the Guiana bird.

3. Eormicarius analis (Lafresuaye).

Myothera analis Lafre, + Mag. de Kool., 1837 ("Synopsis Avium"), Cl. II, p. 14 (Yuricares et Chiquitos, Bolivia).-D'(Oms., Voy. Ois., "1835-1844," 191, pl. 6 bis, fig. 1.
? Myiothera analis Bonar. Consp. I, 1850, 205 (Brazil).
Formicurius amulis Scl., P. Z. S., 1857, 46, part (Bolivia); 1858, 277, part (Bolivia); Cat. B. Irrit. Mus., xy, 1890, 304, part (locs. ine. Pern and e. Lenador). -Saly., P. Z. S., 1866, 7t, part (Bolivia).-Scl. and Saly., P. Z. S., 1867, 751 (Xeberos and Cliyavetas, e. Peru); Nom. Neotr., 1873, 75 , part (Bolivia).-'Taczan., P. Z. S., 1882, 32 (Huambo, n. e. Peru) ; Orn. Pér., ir, 1884, 78 (Yurimaguas, Xeveros, Chayavetas, Huambo, and Paucal, e. Peru).-Alien, Bull. Am. Mus., N. H., it. No. 2, 1889, 98 (Yungas, Bolivia).-Salv. and Godin., Biol. Centr. Am. Aves, II, pt. 29, 1892, 235, part (Bolivia).
Hab.-Bolivia and eastern Peru.
Sp. Char.-Whole top of head olivaceous-brown, like back, but centers of feathers dusky; sides of neck similar in color to top of head, but rather lighter-not at all inelining to cimamomeons or rufous; under tail coverts varying from bright rufous-tawny to tawny-chestnut -always uniform.

Adult femole (coll. Walvin and Godman, Yquitos, Tolivia, August ٌコ4, 187s, I. Whitely). -Feathers of pilewm dull blarkish broadly margined with sepia-brown, producing a scaled appearance; rest of upper surface clear olive-sepia or bister, deepening into a warmer brown (approaching Yandyke brown) on secondaries and brightening into almost mummy brown on upper tail coverts; outer wel) of exterior feathers of alula deep brocoli bown; pimary coverts, wholly blackish dusky; tail blackish brown terminally, browner basally. Lores, suborbital and malar regions, chin, and throat dull blark, the first with
${ }^{*}$ Trpe, No. 13536, Am. Mus. Nat. Hist., British Guiana; Alexander.
I "Lafre et D'Orb." are usmally quoted as the dewribers of this sperics, but the former only cam properly be considered as its describer. It is true that Lafresnaye, in the article cited above, quotes "D'Orb., Voy dans l'Amér. merid., pl. 6 his," but neither this platenor the deseription in D'orhigny's "Voyage" were published until several years after the publication of Lafresunve's description.

Proc. N. M. $98-43$
an indistinct central spot of white; sides of neek light bister, like hind neck. Thest dull slate color, the remaining under parts (except mider tail coverts) lighter gray, tinged with olive on sides and flanks and inclining to whitish gray on lower part of belly. I Joder tail coverts wholly clear deep tawny. Bill, blackish; legs and feet, horn color. Total length (skin), 6.40; wing, 3.52; tail, ‥1s; exposed culmen, 0.75; tarsus, 1.20 ; middle toe, 0.7 .

An adult in the collection of the American Musenin of Natural History (No. 30700 lis.) from Yungas, Bolivia, altitude 6,000 feet, (H. II. Rusby) is brighter bister brown above, with the dark centers of the feathers of the pileum far less distinct; the white loral spot much larger; the sides of the neck and postocular region appreciably different in hue firom the hind neck and other upper parts (deep wood brown instead of light bister) and the under parts are paler and less pure gray, time entire chest, as well an sides and flanks, being strongly tinged with light brownish. The under tail coverts, however, are colored exactly as in the Iquitos specimen. Length (skin), 6.50; wing, :3.40; tail, 2.00; exposed enlmen, 0.70; tarsus, 1.22 ; middle toe, 0.72 .

What will doubtless prove a local form of this species, aproaching F. nigricupillus ('merrie in its characters, is represented in the collection of Messrs. Salvin and Gorman by an adult from Sarayacu, northeastern Peru (C. Buckley). This differs from the Bolivian specimens in its much darker coloration throughont, the upper surface ranging from dark wepia on the head to mmmen brown on upper tail coverts, the whder parts ranging from dark sooty slate on the chest to deepolivegray on sildes and flanks. The under wing coverts and axillars have their basal portion bright tawny, and the under tail coverts, instead of being deep clear tawny, are rich chestant. The white loral spot is about as well developed as in the Yquitos specimen. Total length (skin), 5.70 ; wing, 3.57 ; tail, 2.05 ; exposed culnen, 0.72 ; tarsus. 1.25 ; middle toe, 0.71 .

Of this very casily recognized form 1 have seen three specimens, all mentioned alowe. These aspermintely, in essential features, with the
 in which the einnamomeons coloring on the sides of the neck in all the related species (except F. migricupillus ('mermie) is conspicuously absent, and no doubt represent the true F. analis. In the Lafresnaye collertion, fire sometime the property of the Boston Socicty of Natural History, are the alleged types of F.anulis; but they certainly are not the types of that species, since they unguestionably belong to the forms subsequently separated as F. crissolis bey Cabanis and F. saturatus by the author of the present paper, and are probahly from Guana or lower Amazonia and some part of Colombia, respectively. (See remarks muder F. crissulis and F. suturutus, on pages 671 and 679)
iocording to Dorbigny, the naked postocular space is whitish in life, the eres rect, and the feret violet; but Taczanowski (Orn. Pér., ir,
p. 78) gives the fresh colors of an arlult female from Yurimaguas as follows: "Bill, horn-black; feet, gray; iris, deep brown."

4. Formicarius nigricapillus Cherrie.

Formicarius analis (nec Myothera analis Larr.) Scl. P.Z.S. 1860, 294 (Babahoyo, w. Ecuador) ; ('at. 1862, 190 (Esmexaldas, w. Ecuador) ; Cat. B. Brit. Mus. xv, 1890, 304, part (Esmeraldas, Ralzar Mts., aud Sta Rita, w. Ecuador).-SALy. P. Z. S. 1866, 74, part (Costa Rica; Veragua); 1867, 145 (Sta Fé, Veragua).-Lawr. Am. Lyc. N. Y., Lx, 1868, 110 (Veragua).-Scl. and Salv. Nom. Neotr., 1873, 75, part (Panama; Costa Rica).-SalŇ. and Godar. Biol. Centr.-Am., Aves, II, pt. 30, 189", 235, part (Tucurrique, Costa lica; Veragua; w. Echador).-Taczan and Berl. P. Z. S. 1885, 118 (Esmeraldas, w. Ecuador).

Hab.-Costa Rica to western Eenador.
Sp. Char.-Similar to F. anulis (Lafr.) in the entire absence of rufous on sides of neck, etc., but larger (the bill conspicuously so), and very much darker throughont in coloration, the entire head and fore neck (sometimes chest also) being deep black, instead of this color being confined to cheeks and throat.

Adult mule (Coll. Salvin and Gorlman, Costa Rica, 1869, J. Carmiol).Eutire head (including whole of the lores), nerk (except hind neck) and chest deep black, fading gradually on the breast into dark sooty slate color, this fading into dull sooty slate on sides of abdomen, the middle of the belly paler and browner, the sides and flanks strongly washed with olivaceous; under tail coverts bright russet, becoming gradually darker on the more posterior feathers, the longest of which are mainly dusky blackish with their tips aud edges mummy brown; under wing coverts and axillars buff (varying in intensity on different feathers) each feather broadly and abruptly tipped with black; remiges with the basal portion of their inner webs dull cinnamon. Upper parts, including hind neck, rich dark brown (intermediate between "mummy" and "bister," the feathers brownish black beneath surface), changing gradually to deep chestunt on upper tail coverts and to a less reddish hue (nearly pure "bister") on outer whbs of wing coverts and tertials; outer webs of remiges (exept tertials) grayish bromn. Tail brownish black. Bill entirely deep black; legs and feet brownish. Total length (skin), 7.50 ; wing, 3.70 ; tail, 2.00 ; exposed culmen, 0.90 ; tarsus, 1.30 ; middle toe, 0.82.
delult femule (type, No. 128852 *, U.S. Nat. Mus., Buena Vista, Costa Rica, August 16, 1892, Castro y Fernandez).-Similar to the male, as described above, butupper surface not quite so bright a broww, the breast and sides of belly more slaty, and under tail coverts rather paler: legs and feet brownish black. Total length (contrarted skin), 6. 10 ; wing, 3.55 ; tail, 2.02; exposed rulmen, 0.90 ; tarsus, 1.15 ; middle toe, 0.8.5.

An adult (sex not indicated) from Sta Rita, western Ecnador, in the collection of Messrs. Salvin and Godman ("Villagomez, per C. Buck-

[^126]ley") is most like the female from ('osta Rica but is even less castaneous or rufescent abover(nearly pure "bister" on the back) and more extensively shaty beneath, while the hind nerk, instead of being similar in color to the back (as in both Costa Rica sperimens), is dark slate color, like the chest, and the under tail coverts bright rufors-tawny. It very likely represents a lucal race. Its measuments are as follows: Total length (.kinu), 7.00 ; wing, 3.70; tail, 2.28; exposed culmen, 0.85; tarsus, 1.30 ; middle toe, 0.80.

This species andoubtedly comes nearest to F. unulis (Lafr.), which rephaces it in Bolivia and eastern Peru (and castern Ecuador?), hat may be easily recognized by its perfectly black pilem (the whole top of the head
 erts with their longer feathers chiefly dusky, and decidedly largersize, the bill especially. From the other two species fonnd in Costa Rica it may at once be distinguished, in andition to its black pileum, by the entire absence of any cimamomeons coloring about the head or neck, and by the absence of any trace of white on the lores.

5. Formicarius crissalis (Cabanis).

Myiother" analis (nee Lafr.) Calb, in Schomb, Guiana, HI, 1848, 686 (Roraima, Br. Guiana).
Formicarius anali.s Scl. P. Z. S. 18:8, 277, part (Cayenne; Brit, Gniana; Para?).
Myrmornis cuissalis Cab. J. f. O. 1861, 96 (Roraima).
 75, part" (Gniana; Cayenne; P'ario).-SCL. Cat. J. Jrit, Mns. XV. 1890, 305, part (Cayenne; Guianal) - Salvi. and GoDm. Biol. Centro-Am., Aves, 1I, pt. 30, 1892, 234 , in text (Gniama).

Sp. Cunr.-Similar to F. cmalis (Lafr.), but postocular region and siden of nerk distinctly cimamomeons, in marked contrast with color of hind neck.
Adult male (coll. Salvin and Godman, Carimang River, British Cuiana, December $7,188.5$, 11. Whitely). - Feathers of pilemu blatkish, broadly magined with bister brown, prowtucing a distinctly scaled appearance; rest of upuer parts bright hister hown, deeper, warmer, hrown on wing roverts and serombares, brighter on upper tail coverts. Tail warm bister brown, with exposed terminal half blackish. Postocular region (sides of oceiput and terminal portion of ear roverts) and sides of neck vina-ceons-brown (intermediate between Mars brown and fawn color); lores, margin of orbital region (exeept posterionly) cheeks, chin, and thoat, deep black, the first with a large centran spot of white. Chest dull shategray, clanging to paler gray on sides and llanks (which are tinged with olive on out ermost teathers), and lightening into pale gray on lower breast and belly, the lower portion of the latter quite white; under tail coverts clear bright tawn. Bill black; legs and feet hom brownish. Total length (skin), 6.in; wing, 3.fio; tail 2.10; exposel culmen, 0.72; tarsus, 1.30 ; middle toe, 0.50 .
*Not the deseription, which is entively that of F. saturatus Ridgw.

Of this form I have seen lut the one sperimen of known locality described above. One of the alleged types of Myotherre andis Lafr. in the museum of the Boston Society of Natural History (Lafresnaye collection, No. 5052) is apparently referable to this form, though I have not been able to compare it with Guiana specimens, laving returned it before the one described above was received. The entire belly is dull white, and the breast and sides very pate brownish gray, without any olive tinge, while the maler tail coverts are bright tawny. Its meas. urements are as follows: Wing, 3.65; tail, ••.00; exposed culmen, 0.s0; tarsus, 1.35 ; middle toe, 0.82 .

6. Formicarius satíratus Ridgway.

Myrmornis analis (nec Myothera anatis Lafis.) Cabs, and Heine, Mus. Hein. ir, 1859, 7 (Porto Cabello, Venezuela).
Formicarius analis Scl. P. Z. S. 1858, 277, part (Trinidad).
Formicarius crissalis (nee C'ab.) Scl. Catal. 1802, 191 (Trinidad), Sald. P. Z. S. 1866, 75, chiefly* (Trinidad).—SCL. and Saly. P. Z. S. 1867, 576, part (Trinidad);1869, 252 (San Esteban, Venezucla).-C1hapм. Bull. Am. Mus. N. H., No. -, 1893, -. (Trinidad.)
Formicarius hofmanni (nce Cabs.) Léot. Ois. 'Trinid. 1866, 187.-F'rnscir, P'. Z. S. 1870, 568 ('Trinidad).
Hab.-Trinidad, Venezuela, and northeastern Colombia.
SP. CHAR.-Intermediate in coloration between r^{\prime}. crissalis and F. hoffimanni; agreeing with the former in the darker pilemm, without rusty on forehead; more restricted rusty color on side of neck, etc., and purer gray under parts, but differing in much darker coloration (especially lower parts), more intense rufescent color of sides of neck, and smaller (sometimes almost obsolete) white loral spot.

Adult mule (Type No. 59315, American Museum of Natural Ifistory, Princetown, Trinidad, March 24, 1893, Frank M. Chapman).-Feathers of pileum dull black centrally, broadly margined with sepia-brown, producing a distinctly scaled appearance; rest of upper parts clear bistre brown, deepening into Vandyke brown on secondaries and brightening into burnt-nmber on upper tail coverts. Lores, orbital region (bordering even the posterior margin of naked postocular space), cheeks, ear coverts (except terminal portion), chin, throat, and fore neck, deep black, the first with a small central spot of white; sides of head and neck immediately posterior to the black area, rusty brown or burnt-umber. Chest dull deep slate color; sides and flanks similar but somewhat paler, the belly still paler, though not approaching white, even on the lower portion; under tail coverts cutirely clear cimmamonrufous. Bill wholly deep black; legs and feet dark horn color. Total length (skin), 6.8j; wing, 3.60; tail, 2.32; exposed culmen, 0.75; tarsus, 1.25 ; middle toe, 0.72 .

Adult female (No. 59313, same locality and collector, March 11, 1893). —Exactly like the adult male, as described above, exeept that the sec-

[^127]ondaries and uper tail coverts are less rufescent, the reddish-brown color on sides of neek less intense, the sides mose washerl with brown, and the under tail coverts very slightly paler and duller. Total length (skin), 6.80 ; wing, 3.53 ; tail, 2.12; tarsus, 1.18 ; middle toe, 0.75 .

This new form is based on a series of fifteen adult specimens, ten of which are from the ishand of Trindad (Frank M. Chapman), one froun San Esteban, Venezuela (A. Goering), one from Remedios, Colombia (T. K.s.almon), and two from unknown localities. These specmens are so uniform in their characters there can be no doubt that they represent a race easily distinguished from either F. hotimonni or F. crissalis, thongh doubtless grading into both, as these almost certainly do with other forms.

The ten Trinidad specimens are so much alike that the only differences observable are exceedingly slight variations in the amount of reddish tinge to the brown of the upper parts, the size and distinctuess of the white loral spot (in none is it nearly so large as in the single example of F. crissalis examined, its average size being about the same as in F. hoffimami), and in the exact hue of the under tail coverts. As to the last-mentioned character, the variation is all but inappreciable, the extremes being what may be termed deep tawny* and chestnattawny. In all the specimens examined, even including those from Yenezuela and Colombia and the two from unknown localities, the black of the throat has a very definite posterior outline, but is mot so sharply contrasted with the color of the chest as in K. hoffmami, nor is there ever any tendency of the rufescent color on the sides of the neek to form an incipient collar across the fore neck, as is often the case in F. hoffmami. The black of the throat is also much more extended posteriorly, occupying the entire fore neck, than in the single specimen of F. crissalis, in which the fore neek is slate-gray, like the chest.

An adult male from San Esteban, Venezuela (1. Goering) and another from Remedios, Colombia (T. K. Salmon), in the collection of Messrs. Salvin and Godman, do not differ from the Trinidad specimens, except that in the former the upper parts are very slighty browner, thongh the exact hate is approached very closely by one or two specimens.

In the National Musemu collection is a specimen from unknorn locality which agrees in most respects with this form, but is still more intensely coloren, the muder tail coverts being rich chestnat and the upper parts a redder brown. It may be more fully described as folJows:
 brown, tinged with Yandyke, somewhat darker on top of head, and decpening on upper tail coverts into a rich burnt-umber or chestnutbrown; tail seal brown, with a broad terminal band (about 0.60 of an

[^128]inch wide on middle feathers) of brownish black; lores, orbits, anterior half of ear coverts, malar region, chin, throat, and foreneck miform black; the first with a distinct central spot of white. Sides of oceciput and neck and terminal half of ear coverts, burnt umber or brownish chestnut; under surface of body, reep brownish slate, darker and clearer on chest; under tail coverts, rich chestnut: Bill wholly deep black; legs and feet dusky horn color. Length (skin), b.00; wing, 3.50; tail, 2.00 ; exposed culmen, 0.80 ; tarsus, 1.22 ; middle toc, 0.50 .

One of the alleged types of F. antlis (Lafr.) in the collection of the Boston Society of Natural History (Lafresnaye collection, No. 50 - 3) appears, from the memoranda which I made during its inspection a year or more ago, to be referable to this form. Its measurements are as follows: Total length (mounted specimen), $\dot{6.70}$; wing, 3.70 ; tail, $\because .20$; exposed culmen, 0.80; tarsus, 1.22.

The other alleged type of F. analis (Lafresnaye collection No. noz̃2), on the same evidence, is F. crissalis (CAB.) (See p. 671.)

Compared with F. hoffmami (Cab.), F. saturatus differs as follows: The pilemm is darker and decidedly less reddish brown, without any cinnamomeous tinge on the forehead. The sides of the occiput and neck are far less distinctly (immamomeous, being merely tinged with this color. The general color of the upper parts is very decidedly less russet, being of a nearly pure olive-brown with the rump less tinged with rusty brown, and the upper tail coverts duller rusty brown. The under parts are decidedly darker and more uniform; the whole chest and breast nearly clear slate color; the belly lighter but not approaching white; and there is much less of an olive tinge on sides and flanks; the under tail coverts are of a deeper or brighter tawny cinnamonrufous.

7. Formicarius hoffma nni (Cabanis).

Mymornis hoffmanni Cabr. J. f. O. 1861, 95 (Costa Rica).
Formicarius hoffmanni Scl. aud Salv. P. Z. S. 1864, 357 (Panama) ; (?) 1879, 526 (Antioquia, Colombia); Nom. Neotr. 1873, 75, part (Panama, Costa Rica?)Lawr. Ann. Lye. N. Y. in, 1868, 110 (Costa Rica).-Saly. P. Z. S. 1866, 75 (Panama; Costa Rica) ; 1870, 193 (Bugaba, Veragua).-scl. Cat. B. Brit. Mus., xv, 1890, 304, excl. syn. part (Panama; Veragua).-Salv. and Goda. Biol. Centr.-Am. Aves, ir, pt. 30, 1892, 234, part (Las Trojas,* Costa Rica; Chiriqui, Bugaba, Lion Hill, Obispo, Paraiso Station, and Chepo, Isthmus of Panama; "Colombia").
Formicarius analis (nec Myothera analis Lafr.) Lawr. Amn. Lyc. N. Y. vir, 1861, 326 (Panama).
Mab.-Isthmus of Panama, Veragua, and southwestern Costa Rica.
Sp. Cifar.—Similar to F. moniliger Scl., but paler, especially below, with the under tail coverts entirely clear rufous-tawny; without a distinct rusty collar across the fore neck, and with top of head much paler brown, becoming distinctly rusty or cinnamomeous on the forehead.

[^129]Adult mule (No. J3779, Panama, J. McLeannan)—Forehead warm brown (intermediate between Prout's brown and Vandyke brown); rest of pileum bright bister, the centers of the feathers, especially on crown, blackish; rest of upper parts bright bister, inclining to mummy brown on rump and secondaries and passing into nearly a burnt-umber lue on upper tail coverts; tail warm bister brown, the terminal third (ap)proximately) blackish. Lores, orbits, cheeks, chin, and throat black, the lirst with a central spot of white; sides of hinder head and sides of neck chest nut-cimamon or mars brown, this extending narowly across the fore neek along the hinder edge of the black throat patch; chest and upper breast brownish gray, abruptly detined against the narow cinnamomeous collar; sides and flanks light olive-brown, tinged with grayish; lower breast and entire belly pale dull buff, the feathers pale grayish beneath the surfaer; under tail coverts wholly bright rufous-tawny. Bill black; legs (in dried skin) pale brown, toes darker. Length (skin), $6 . \overline{0}$; wing, 3.40 ; tail, 2.18 ; exposed culmen, 0.7 ; tansus, 1.20 ; middle toe, 0.70.

Adult femule (No. 53780, U.S. Nat. Mus., Panama; J. MeLeannan).Similar to the male, but rather brighter brown above, without the narow cinnamomeons collar across fore neck (the grayish olive of the chest directly touching the black throat patch), under parts more tinged witholive, and longer under tail coverts mather darker and duller tawnrufous. Length (skin), (6.10; wing, 3.40; tail, ㄹ..00; exposed culmen, 0.75 ; tarsus, 1.25 ; middle toc, 0.70 .

Four additional adults (not sexed) from Panama belonging to the American Museum of Natural History, New York City, and an adult male in the collertion of Messis. Nalvin and Godman agree in all essential particulars with the birds deseribed above; three of them show an indication of the cinnamomeons collar across the fore neck, but in none is it nearly so distinct as in the speemen deseribed. An adult from Lion Mill, near Aspinwall, in the National Musemm collection is likewise similar. 'The adult male in Messts. Salvin and Godman's collection (Panama, MeLeaman) differ slightly from the specimens deseribed above in being a very little darker below, particularly on the belly, and in having the cimamomeons collar across the fore neck much less distinct, though still strongly indicated.

Four specimens from southwestern Costa Rica lent me by the authorities of the Costa liea National Musemm are quite like Panama examples, thongh areraging a little larger. The localities represented are Trojas, near Cobagre (altitude about 3, (000 feet), and buenos Aires, all on the Pacifie side.

A specimen in Messirs. Salvin and Godman's collection from Jugaba, Chiriqui (E. Aree), likewise agrees closely with Pamama examples, except that the under parts are umsually dark, particularly on the chest. Another specinen from Chiridui (predise locality not stated), in the same collection, is equally dark, though of a clearer slate-gray color
below, and the erissmm is so deep a rusty hat as to be almost chestmot. In fact, this exampleagrees so closely whth specimens of F. suturatus in the coloration of the mader parts. throwhont, that were it not for the more cinmamomeous forehead, and the locality, it might be referved to that form. Possibly it may be from the Athatie side of Chiriqui, and if so would indicate the probability that F^{\prime}. seturatus follows the Colombian littoral on that coast to Chiriqui and there grades into r ' hoffimamio.

Putting aside this one specimen, the remaining fourteen examples of \boldsymbol{F}. hoffmanmi can be easily distinguished from any of the fiftern sperimens of F. saturatus by the following characters: The postocular region and sides of the neek are much more extensively and distimelly cimamomeons; the top of the head is lighter, more reddish brown, with the forehead conspicuously rusty or cimmanomeons; the moder parts are paler, less miform, and more bownish stay; the cimamon or rufons on the sides of the neck nsually follows the posterior margin of the black throat patch, forming an incipient, or oreasionally continwous though narrow, collar aross the fore neek, and the under tail coverts are of a decidedly lighter rufous-tawny.

8. Formicarius umbrosus Ridgway.

Formicarius hoffmanni (nee Myrmornis hoffmanni Cabs) Bove. I. Z. S. 1878, 62 (San Carlos, Costa Rica).-Kehed. Proc. U. S. Nat. Mus. vir, 1885, 108 (Costa Rica); An. Mus. Nac. C. R. 1887, 115 (Costa Rica),-SAlv. and Godm. Biol. Centr. Am., Aves. nf, pt. 30, 189\%, 234, part (Los Sábalos, Nicaragua; San C'arlos, Jimenez, and Pacuare, Costa Rica).
Formicarius holfmani Nutting, Proc. U. S. Nat. Mis., vi, 1883, 405 (Los Síbalos, Nicaragua).
Hab.-Atlantic slope of Costa Rica and Nicaragua,
Sp. Cinar.—Similar to F. hoffmanni (CA13.), but colors more intense throughout, the muler tail coverts dull rusty brown, with longer feathers chiefly dusky; rusty coloring on sides of neck darker and more restricted, and forehead same color as crown.

Arlult male (type, No. 68243, Talamanca, Costa Rica, J. Cooper).Pileum rich bister brown, with centers of the feathers blackish, producing an indistinctly scaled appearance, these dusky centers more concealed on the forehead; rest of upper parts rich mummy brown, brightening into burnt-umber or almost chestunt on upper tail coverts. Lores, margin of bare orbital space, checks, chin, and throat back; post-ocular region, terminal portion of auricular region, and sides of neek rusty brown or light burnt-umber. Chest, sides, and manks dull grayish brown (the sides washed with bister), lightening on breast and belly into dull brownish gray or hair brown. Shorter under tail coverts bright russet, the longer feathers blackish, margined and tipped with light mummy brown. Bill black; "iris chocolate;" legs and feet horn brown. Total length (skin), 6.50; wing, 3.42; tail, 2.15; exposed culmen, 0.77 ; tarsus, 1.35 ; middle toe, 0.72 .

Adult fomale (No. 6s45, same lorality and collector). -Similar to the adult male, as described above, but upper parts less reddish brown (nearer "bister" than " mummy" the upper tail coverts bright mummy brown instead of chestnut umber); chest and sides brownish slategray, the latter washed with olive-brown; middle line of breast and belly, also the anal region, dirty whitish. Total length (skin), 6.30; wing, 3.40 ; tail, 2.10 ; exposed culmen, 0.72 ; tarsus, 1.23 : middle toe, 0.70 .

Soung femule (No. 8108, Museo Nacional de ('osta Rica, Jimenez, Costa Rica, July 11, 1892, A. H. Verrill).-Similar in general coloration to the adult female, but whole pileum uniform brownish black with tips of feathers more brown, chin and throat buff spotted with dull black, chest sooty blackish, feathers of belly tipped with brownish gray (producing an indistinct spotted or clouded appearance), and longer under tail coverts uniform black. Basal two-thirds of lower mandible light colored (dull yellowish in dried skin).
The nineteen adult specimens of this form show the same amount of individual variations as other forms. This variation affects chiefly the exact lue of the brown color of the upper parts (which ranges from rich mummy brown to clear bistre on the back and rich burnt-umber, almost chestuat, to mumny brown on the upper tail coverts, the arerage hue being intermediate) and the relative amont of brown and gray on the under parts. The adult male described above has the under parts more brown than any others in the entire series. The oppositc extreme is represented by No. 91264, U. S. National Musemm, from Los Sabalos, Nicaragna (adult male, May 17, 1883, C. C. Nutting), aud No. 7170, Costa Rica National Museum, Reventazon, Costa Rica (adult male, February 21, 1892, N. Carranza), in which the under parts are a nearly uniform deep smoky slate color, darker on the chest, paler on the belly, only the sides and flanks being distinctly tinged with olive. In a few specimens (as No. 128349, adult male, Escondido River, Nicaragua, September 6, 1892, U. W. Richmond) the belly is ruite extensively light colored-pale buffy grayish, sometimes inclining to soiled white toward the anal region. In the coloration of the under tail coverts there is practically no variation, the longer or more posterior feathers being always blackish, merely margined with rusty brown, only the shorter or more anterior feathers being uniform rusty, and this not nearly so light and tawny a hue as on the same feathers of F. hoffimanni. In none of the nineteen specimens does the rusty color of the sides of the neck show a tendency to extend across the fore nerk, forming an incipient or occasionally distinct though narrow collar, as frequently occurs in F. hoffimomi; and, while the black of the throat always has a definite posterior outline, the color of the chest is sometimes so dark that the contrast is by no means conspicuous.

From F. moniliger this form may be readily distinguished ly the entire absence of the rusty band across the fore neck and the more rusty shorter under tail coverts.

9．Formicarius moniliger Sclater．

Formicarius moniliger Scl．，P．Z．S．1856， 294 （Cordova，Vera Cruz，Mexico）；1857，47； 1858， 278 （Vera Crız；Mosquito coast）；18599， 383 （Playa Vicente，Oaxaca）；Catal． 1862，191，No． 1165 （Oaxaca）；Cat．B．Brit．Mus．xy，1830，303，part（s．Mexico； Guatemala；Belize，Brit．Honduras）．－Saly．，Ibis，1861， 353 亿Chisec，centr． Guatemala）；P．Z．S．1866， 75 （Mexico and Guatemala）．－Sunich．，Mem．Bost． Soc．N．H．i，1869， 5 万̆6（near Protrero，Vera Cruz）；La．Nat．v，－， 248 （do）．—Scl． and Salv．，Nom．Neotr．1873， 75 （Mexico and Guatemala）．－Salv．and Gobar．， Biol．Centr．－Am．，Aves，in，pt．30，1892，233，part（Cordova，Cerro de la Defensa， near Protrere，Atoyac，and Playa Vicente，s．Mexico；Cayo，Brit．Honduras； Vera Paz，Chisec，Kampamac，Choctum，and Tactic，̛̛uatemala）． Myrmornis moniligera Cab．，J．f．O．1861， 96.

Hab．－Southern Mexico，Guatemala，and British Honduras．
SP．CHAR．－Above brown，more russet on upper tail coverts；chin， throat，cheeks，orbits，and lores black，the latter with a white spot； sides of neck and band across fore neck，immediately below black throat，dull cinnamon－chestnut；rest of under parts dull brownish gray，darker on chest，paler on belly；under tail coverts dusky，more or less tipped with light brown，this nearly uniform over shorter ante－ rior feathers．

Adult male（No．22367，＂Mexique，＂Verreanx），－Pileum deep warm bistre，the feathers darker centrally；hind neek Vandyよe brown；rest of upper parts lich brown（intermediate between mummy brown and bistre），brightening into burnt－umber on upper tail coverts．Lores， orbits，malar region，chin，and throat uniform dull black，the first with a distinct central spot of white；immediately behind this black axea is a broad band of chestunt，begimning on the ear coverts，passing over the sides of the neck，and thence across the fore neck；chest dark olive－ grayish；sides and flanks olive－brown or light bistre；breast and sides of abdomen brownish gray，considerably paler than chest，the feathers of the median portion of the abdomen margined at tips with buffy whitish，which predominates posteriorly；under tail coverts dusky， tipped with light fulvous brown，this amounting to a mere terminal edging on the longer posterior feathers，but prevailing on the shorter anterior ones．Bill black，the lower maudible more brownish；legs and feet light brown（in dried skin）．Length（skin），6．50；wings， 3.45 ；tail， 2.00 ；exposed culmen， 0.80 ；tarsus， 1.25 ；middle toe， 0.75 ．

Adult female（Coll．Salvin and Godman，Atoyac，Vera Cruz，Mexico， April，D．W．S．）．－Similar to adult male as described above，but darker， especially below，where the entire surface posterior to the rusty collar （except under tail coverts）is dark sooty gray，darkest on the chest and palest on the lower belly．The rusty collar across the fore neck much narrower（only about 0.10 to 0.15 of an inch），and the white loral spot smaller．Total length（skin），6．35；wing，3．55；tail，2．15；ex－ posed culmen， 0.80 ；tarsus， 1.23 ；middle toe， 0.80 ．

Juv．（No．43 ̃̃31，Am．Mus．Nat．Hist．，Guatemala：Lawrence collec－ tion）．－Upper parts colored as in the adult，lower parts also as in the
adult, excepit the throat, which has the black replaced by dull brownish dusky (almost exactly like color of chest), the feathers of the posterior portion tipped with rusty, forming a narow, somewhat broken, band, much less distinct than in the adult. Upper mandible black, tipped with yellowish white; lower, brown, with yellowish-white tip.

With two specimens from Mexico, fou from Gatemala, and one from British IIonduras, I am mable to apmeciate any constant differchees of coloration according to locality, except in the case of the lastmentioned example, which is lighter colored (extensively buffy-whitish) on the middle line of the breast and belly, with the upper parts of an appreciably lighter or clearer tawny-bistre. The darker sperimens from Guatemala are quite as dark as the Vera Cruz specimen described above, but all the Guatemala examples are perhaps a little bit brighter in the color of their upper parts than those from Mexico, though the difference is so very slight that I strongly doubt its constancy in a large series. Certainly there are no variations of color in this series which even approximate the paleness of coloration which strongly chamaterizes Mr. Lawrence's \boldsymbol{F}. pallidus, from Yucatan.

10. Formicarius pallidus Lawrence.

Furnarius (lapsus penne) pullidus Lawr., Ann. N. Y. Acad. Sci., 11, No. 9, May 29, 1882, 288 (Yucatan).
Formicarius pallidus Lawre, Amn. N. Y. Acad. Sci. if, No. 9, 1882.
Formicarius moniliger Scl., Cat. B. Brit. Mus., xv, 1890; 303, part.-SAlv. and Godm., Biol. Centr.-Am., Aves, 11, pt, 30, 1892, 233, part.
Hals.-Yucatan.
Sp. Char.-Similar to F. moniliger Sel., but very much paler throughont.

Adult (Type, No. 43543, Amerian Museum of Natural IIstory, Incatan, G. F. Gammer). - Above, plain light grayish brown, * deepening on lower rump and upper tail coverts into a more tawneolive or russet lme; tail rather light olive-brown, with inner webs and termina! portion of outer webs dusky. Chin, upper and middle portions of throat, and thence upward to and surrounding orbits, dull black; lores also black, but marked with a central spot of white about 0.15 of an inch long. Sides of head and neck immediately behind the black area deep cimnamon-rufous, continued in a band arross lower throat; chest, sides, and flanks rather deep brownish gray, fading into dull white on the belly; under tail eoverts light wood-brown, with indistinct paler shaft streaks, the longer feathers less buffy. Bill black; less and feet homcolor. Length (skin), 6.50; wing, 3.65; tail, 2.25; exposed (oumen, 0.85 ; tarsus, 1.25 ; middle toe, 0.80 .

Another adult in the collection of Messis. Salvin and Godman (Tizimin, Yucatan, (x. F. (iammer) agrees elosely with the type, but is very slightly deeper olivacons above and the rusty collar across the fore

[^130]neck is a duller, more cimanomeons, hne. It does not, however, approach in intensity of coloration even the palest and dullest colored specimens of F. moniliger from Guatemala, Honduras, and other parts of the latter's range. Its measurements are as follows: Length, (stretched skin), about 8.00 ; wing, 3.5ัँ; tail, 2.23; exposed culmen, 0.82 ; tarsus, 1.20 ; middle toe, 0.80 .

While there can be no doubt that this form is merely a pallid local race of F. moniliger, and should therefore be known as Formicarius moniliger pullidus, we have not yet the proof of such fact; and, in order to preserve unformity of nomenclature in this paper, I have given it a binomial appellation, as I have done with forms which undoubtedly are conspecific with F. analis.

11. Formicarius rufipectus Salvin.

Formicurius rufipectus Saly., P. Z. S., 1866, 73, 74, pl. ViII (Veragua); 1867, 145 (do.).-Scl. and Saly., Nom. Neotr., 1873, 75 (Veragua).--Scl., Cat. B. Brit. Mus., Xr, 1890, 306 (Veragua; Baisa, Ecualor?).-Salv. and Godsr, Biol. Centr.Am., Aves, If, 1t. 30, 1892, 235 (Santiago de Veragua; Baisa, Ecuador?).
? Formicarius thoraciens "Stolza. MS.," Taczano and Berl., P. Z. S., 1885, 101 (Machay, e. Ecuador).
Hab.-Veragua; eastern Ecuador?
Sp. Char.- Dbove brownish black, the rump dusky rufous, the pileum tinged with rufous; lores and throat black; breast, crissum, and middle of the belly chestnut-rufous; sides of the body sooty; bill black; feet brown.

Total length, 7 inches; wing, 3.40; tail, 2.25 ; tarsi, 1.50 ; bill to the rictus, 1.10.

Similar to I^{\prime}. amelis (D'ORB. and Larre), but at first sight distinguished by the chestmut-rutous breast. |Tramstation of the original description.]

According to Messis. Salvin and Codman (Biol. Centro-Am., Aves, it, pt. 30, pp. 235, 23: ${ }^{3}$, "this well-manked species comes next to F. analis [i.e., H^{\prime}. nigricapilhes Cherve] in many of its characters, such as the absence of the white spot on the lores and the wholly black ear coverts. Its rufous breast, however, rembers it readily distinguishable as well from F. amalis as from all its congeners."

Never baving seen a specimen of this very distinct species, I am mable to sive a more detailed description of it.
(12?) Formicarius thoracicus 'Tamanowski and von l3erlejsch.
Formicarins thmacicus"Stohzm. MS." Taczan. and Berl., P. Z. S., 1885, 101 (Machy, e. Lemador).-ScL., Cat. B. Brit. Mus., xv, 1890, 301 footnote.-SALv. and Gomm, Biol. Contr.-Am., Aves, n, pt. 30, 1890, 236i, sill $f:$ rufipectus.

Mab,-EEastern Eenador (Machay, altitude 5,000 feet).

Sp. (HAR.-Above dusky olivehrown; entire hearl, with throat, black; breast dark rufous; abdomen olizelorown: moler tail roverts rufous; wings blackish, the mper eowerts and the onfor webs of the
remiges the some color as the bark; the under wing coverts varied with ochraceons and black; tail black.

Adult mule.-The black occupies the whole of the head, including the throat; the upper parts are brownish olive, much darker on the rump, and changing into rusty on the upper tail coverts; fore neck and breast very dark rust-red; abdomen sooty olive, much lighter than the back; under tail coverts dark rusty. Wings blackish, the upper coverts and onter webs of the remiges the same color as the back, the under wing coverts bright orhaceous with two large black cross-bands, the inner webs of the remiges russet at the base. Tail blackish. Bill horn-black; feet deep hrownish gray; iris deep brown.

Femule.-Resembles the male in all particulars, and is only distinguished by the less intense rusty on the breast, extended to the middle of the abdomen and continued as a wide stripe of russet-ocher to the under tail coverts.

Male.-Length of wing 89, tail 59, bill 27, tarsus 39 millimeters.
Femule.-Total length 218, spread of wing 310, wing 89, tail 60, bill 27, tarsus 38 millimeters.

The above is a free translation of the original description, cited above.

Although Messrs. Salvin and Godman (l.c.) consider this bird as being probably the same as \boldsymbol{F}. thorucicus Salv., there are features in the description which seem to indicate its distinctness. For example, the following points of disagreement in the descriptions may be cited:

It may be, however, that the two bids are really the same species, and that their apparent differences may disappear in a larger series; but until such is proven to be the case I mefer to keep them separate.

DESCRIPTION OF A NEW STORM PETREL FROM THE COAST OF WESTERN MEXICO.

EY
Robert Ridgway, Curator of the Depariment of Birds.

The type-specimen herein described was collected by John Xantus nearly thirty-five years ago, but Mr. Chas. H. Townsend's considerable series of excellently prepared specimeus-the only othexs taken, to my knowledge-entitle him to the credit of having established the specific characters of this species, to which I conserquently take pleasure in giving his name.

Oceanodroma townsendi, sp. nov.
Thalassidroma melania "Bonap." Baind, Proc. Ac. Nat. Sci. Philad. 1859, 301, 306 (Cape St. Lucas).
Cymochorea melania Coues, Proc. Ac. Nat. Sci. Philad. 1864, 76; Key, 1872, 329 ; Check List, 1873, No. 589.-B. B. \& R., Water B. N. Auı. II, 1884, 411.
Cymochorea melcna Ridgw., Nom. N. Am. B. 1881, No. 724.-Coues, Check List, 2d ed. 1882, No. 824 ; Key, 2d ed. 1884, 781.
Oceanodroma melania A. O. U., Check List, 1886, No. 107.-Ridgw., Man. N. Am. B. 1887, 70.

Oceanodroma townsendi Ridgw., MS.
Sp. Char.--Tarsus decidedly longer than middle toe, with claw. Color, sooty brownish or dusky, darker above; under wing coverts eutirely uniform in color with lower parts; exposed surface of greater wing coverts eutirely light grayish brown. Total length (skins), about, 8.00-8.50 inches (average, 8.20); wing, 6.60-7.00 (6.78); tail, 3.30-3.60 (3.43); depth of fork, 0.95-1.30 (1.15); exposed culmen, 0.57-0.62 (0.59); length of nasal tubes, $0.22-0.30(0.27)$; tarsus, $1.20-1.28(1.24) ;$ middle toe, with claw, 1.10-1.20 (1.13).

Hab.-Off coast of western Mexico, north to Cape St. Lucas and Guaymas.

Type, No. 13025, U. S. National Museum, ô ad., Cape St. Lucas, Lower California; J. Xantus.

Observations.-A series of nime finely-prepared skins of this spe, cies. collected by Mr. (.. H. Townsend off Guaymas and AcapulcoMexico, proves conclusively that this bird can not be the Thalassidroma melania of Bonaparte, neither the dimeusions nor the coloration

[^131]agreeing at all closely with the latter, as the following comparison will show:

Mcasurements.

	Wing.	Tail.	Fork of tail.	Exposed culmen.	'Tarsus.	Middle toe, with claw.
O. townsendi	7.00 (6.78)	3.30 (3.43)	1. 22 (1.15)	0.62 (0.59)	1. 22 (1.24)	1.20 (1. 23$)$
O. melania.	7.83	3. 30	1. 22	0.82	1. 22	1. 30

Coloration.
O. townsendi.-Above dark sooty brown, black only on tertials, secondaries, primaries, primary coverts, and tail; beneath sooty grayish brown.
O. melania.-Above raren black ("nigro covacina"); beneath sooty.

In the measurements of O. tornsendi given above, the first under each heading represents the nearest approach, in a series of ten specimens, to the corresponding measurement of 0 . melamia, the number immediately following (in pareutheses) being the average of these ten specimens. It will be observed that while the length of the tail, the depth of its fork, and the length of the tarsus are the same in the two species, the wing, the exposed culmen, and the middle toe are very much longer in O. melania than in O. tornsendi. The measurements of O. melania were taken from the type by Pucheran, for Prof. Baird, in millimeters, and have been carefully reduced to inches and hundredths.

DESCRIPTION OF A NEW SPECIES OF MOUSE (SITOMYS

DECOLORUS) FROM CENTRAL AMERICA.

By
Frederick W. True, Curator of the Department of Mammals.

Among some specimens of mammals recently collected by Mr. E. Wittkugel in Honduras for the National Museum, is a species of Sitomys, belonging to the subgenus Rhipidomys ($=$ Nyctomys Saussure), which appears to be undescribed. Dr. J. A. Allen has already made mention of a specimen of this species,* which specimen he regarded as the young of S. sumichrasti. He has kindly sent it to me for examination. It is an imperfect skin of a youngish individual, collected at Santo Domingo, Tehuantepec, Mexico, by Dr. A. C. Buller. The tail is wanting. It appears to agree in every respect with the Honduras specimen in the National Museum, from which the following description is taken. I may say incidentally that we have in the museum the skin of a young S. sumichrasti, which shows the closest possible similarity to the adults of that species.
The following is a description of Wittkugel's Honduras specimen, No. 21092, from Rio de las Piedras, collected Dec. 11, 1890 :

Sitomys (Rhipidomys) decolorus, sp. nov.

Size intermediate between Mus musculus and M. decumanus. Ears prominent, thin, nearly naked. Soles naked, except in the proximal fourth, the naked portion not granular, and with prominent pads. Tail clothed with longish hairs, growing more abundant toward its tip, where they conceal the scales and form a pencil.

Color above brownish-isabelline, more or less sladed with gray along the middle of the back. Flanks clearer. Under surfaces and lower part of cheeks pure white, not blending with the color of the sides. Feet like the back, but the hinder ones somewhat more dusky. Toes impure white. Ears sparsely clothed with rather long, choco-late-brown hairs exterually, and similar, but somewhat lighter-colored, hairs internally. Hairs of the tail chocolate-brown, not lighter

[^132]below than above. Whiskers black. Eye surounded by a dark-brown ring.

Dimensions of the body.*

Measurements.	21092. ㅇ ad. Rio df las l'ic. dras. Honduras.	3104 ojva Santo Domingo, Mexico.
	11%.	mm.
Length of head and body.	108.0	104.0
Length of tail-vertebrat	85.1	
Leingth of terminal pencil of tail	10.0	
Length of hind foot and claw.	$\because 3.0$	212.0
Height of ear from lower margin of oritice	14.0	13.5

The skull has strongs suprarbital ridges, but presents no well-detined differences from that of S. sumichrasti.
'This species is easily distinguished from s'. sumich'asti, of which there are two specimens in the National collection-one, as already stated, a young individual, and the other an adult fiom Mirador, Mexico, collected by Dr. Sartorius. The latter was compared with the type-specimen of s. sumichrasti from the Geneva Museum, in 1890, by Mr. J. A. Allen, Inr. Merriam, and myself, and found to be identical.

From S. sumichrasti, the species herein described differs by its much paler and yellower coloration, its dusky ears and tail, and also by the comparative shortness of the tail.

I am mable to find any described species to which it can be considered as belonging. From the fact that one specimen comes from Mexien and the other from Honduras it would appear that it has a wide distribution in Central America.

I would remark in this comection that it seems probable to me that N. solvini (Tomes) is distinct from S. sumichrasti, although the two are united by Alston and Tronessart. Specimens of S. salrimi from Guatemala and Honduras in the National collection agree with each other and differ from s. sumichosti, from Mexico, in having a chocolatebrown tail and large, thin ears, clothed with hairs of the same color. The tarsus is also more or less dusky, and the ferruginous of the back is shaded with black by the intemingling of hairs of that color.

In s. sumichrosti the upper surfaces, together with the tail, ears, and tarsi, are nearly miform dull fermginous throughout.

DESCRIPTION OF A NEW GEOTHLYPIS FROM BROWNSVILLE, TEXAS.

BY
Robert Ridgway, Curator of the Department of Birds.

In The Auk for July, 1891 (p. 316), Dr. J. A. Allen records the capture of a bird at Brownsville, 'Tex., which he identified as Geothlypis poliocephala palpebrolis (Ridgw.), and he also mentions a specimen in Mr. Semett's collection taken at Aldema, 'Tamaulipas, on the Mexican side of the Rio Grande. I have not had an opportunity to compare the specimens referred to with the type of (i. pulpebralis; but the National Museum has recently received from Dr. Wm. L. Ralph tive adult males aud one adult female of a form of the G. poliocephula group, collected at Brownsville in April and May, 1893, and therefore presumably identical with the specimens mentioned by Dr. Allen.

It requires but a glance, however, to show that these sperimens are not G. pulpebralis, which is entirely yellow beneath, while all the Brownsville birds have the sides, flanks and anal region-some of them much the greater portion of the under surface of the body-pale dull buffy, in marked contrast with the clear yellow color of the throat. etc. In this respect they do, however, agree very closely with the type of G. poliocephula Baird (from Mazatlan, Mexico), and, were it not for certain constant differences of coloration and proportions, might be considered the same. Since these constant differences do exist, it beromes necessary for me to recognize the brownsville birds as repre senting a local or geographical form, which may be characterized as follows:

Geothlypis poliocephala ralphi, subsp. nov.
Geothlypis poliocephula palpebralis (Ridgw.) MLLVN, Auk, July, 1891, 316 (nec Geothlypis palpebralis RIDGW.).-A. O. U. Check List (Fourth Suppl., 1892), No. 682.1 .

Subsp. ('HAR.-Similar to G. poliocephula Baird, but larger (the bill especially), uper parts grayer (the tail particularly), and the edge of the winc and under tail coverts much paler yellow.

Hans.-Lower Rio Grande Valley.
Type, No. 139348, of ad., Brownsville, Texis, May 4, 1893. Presented by Dr. Wm. L. Ralph.

THE PROPER GENERIC NAME OF THE TUNNIES.

BY
Theodore Gill, M. D., Ph. D.

It must be conceded that neither of the names generally used till lately for the tumnies can be retamerl. What is the proper substitute has been a question in dispute.

President Jordan has proposed a new name (Albacora) for the true tumy and another (Germo) for the long-finned albacore, but referring both as subgenera to a common gelus for which he took the name Albecora.*

The present writer has accepted the name Orycnus, originally the result of a lupsus calami, \dagger but subsequently deliberately adopted for the short-finned tumies. \ddagger

The reasons given for the revival of the name of Oryonus have not satisfied President Jordan or his disciples, Dresslar and Fesler. The latter have commented on the subject as follows:

The name Orycnus Cooper, it seems to us, is preoccupied by its previous use for another genus or subgenus by Gill. It is therefore iueligible. In other words, a generic name originating in a misprint of a well-knowr name can not be later used as a name of another genus. \&

Orycmus was not taken by Cooper for another genus or subgenus than that for which it was originally used by Gill. That author, under the caption "Genus Oryonus Cuv.," specified "Orycmus secundidorsalis," the tumny, and that only. For the tunnies only Cooper retained the name, restricting Oroynus to the long-finned Albacores. It seems to me that the course was legitimate. However, a discovery which I made soon after the publication of my paper "On the proper generic name of the tunny and albacore" will settle the question against all of us in accordance with the principles of nomenclature recognized by us.

In 1845 the twenty-fifth volume of the Encyclopadia Metropolitana was published, and in it are zoölogical articles by Dr. J. F. South.

[^133]Among them is one on "I'humus." After the "generic character" and some romments, a parasraph was devoted to the nomenclature in the following terms:
Cuvier has applied the word Thymux generically to these lish, but as it had heen long before used by Fabricins as the title of a gemus of hymenopterons insects, it will be better to use the corresponding word Thumun to prevent confusion.

The name Thum, was thas sugersted amd used as a substitute for Thymmes and as sufficiontly distinct from the latter; it has rassical samction, the form 'thmmus being the regular one and preferved by many sholars* to Thymm"s.t Thmmms, it is loree, is a mere variant of Thymmas, but, being a variant, it is different and, as different, was lormally introduced as a substitute for Thymuns. By most Ameridan ichthyologists it will therefore be accepted.

The essential symonymy of thmmmes is as follows:

'IIUUNNUS.

Symonym.!.

 Thymuns of Fab., 1775.)
 Orcymas of Raf., 1815.)
<Thymms C'u. d' V'll., Hist. Nat. de P'oissons, t. X, p. 57, 18:31.
<Thumms South, Ene, Metrop., v. 20, p. 620, 1815.
Thymmen Gïuther, Cat. Fishes in Brit. Mus., v. 2, p. 362, 1860.
 Phila., [v. 14], p. 12:5, 1862. (Lapsus cat (ami.)
<Oreymme (ill, P'roc. Acad. Nat. Sci. Phila., [v. 14], p. 329, 18tie.
\times Oryenns Coper, Proe. Cal. Acad. Nat. Sci., ソ. 3, p. 77, 1863.
$>$ Oreymus Cooper, Proc. Cal. Aead. Nat. Sci., v. 3, p. 77, 1863.
Albacorat Jorden, Man. Vert, An. N. U. S., 5th ed., p. 10fi, 1888. (T. 1hymms.)
$>$ (iermo Iovdan, Proc. Acad. Nat. Sci. Phila., 1888. (T. alalomy(r.)
scomber sp, Lizn. et vet atuct.
 Thymms, Limm. Plin. 9, 15, 17, 44, si. ; Hor. S. 2, 5, 4; Ov. 11al, 98; Mart. 10, 18. 12:" Andrews' Copions and Critical Latin English Laxicon.
""Thymus, i. v. [i. e. vide] thmm," Indrews op, cil.

THE SHEIL HEAPS OF THE EAST COAST OF FLORIDA.

13 V
DeWitt Webr, M. 1). (With Plates daxum-mxaiv.)

There are many evidences that a portion of the east coast of Florida was quite thickly settled in prehistoric times, and remains of this settlement are fomul in refuse heaps of villages and single habitations. These haps are from a few square yards to many acres in extent, and from 1 to 1.5 feet in depth. They must have been the abode of a race for many generations. The remains indicate that the variety of food obtained was great, and included all kinds of shelfish, from the large Busyom perversum to the tiny Donnx, numerous kinds of fish and a species of turtle, together with various birds and mammals which now inhabit the peninsula. The skull of a whate has also been fomm. In comertion with these remains are fomb the varions members of the human skeleton in positions which would at least suggest cami balism. There are hearths with arcumulations of ashes and shells mingled with pottery (mostly in fragments) and implements and weapons of shell. These implements and weapons tell us all we know of the mode of life of the race which inhabited the region, and enable us more or less correctly to reconstruct this early society. That the people were hunters and fishers, the variety of animals, birds, and fish which went to supply their larders abundantly testifies. The porpoise seems to have been a farorite article of food, while the remains of the manatee are found in the shell heaps farther north than the present habitat of the animal. The whale, whose remains were found beneath one of the large heaps, at least a quarter of a mile from the ocean, may have been stranded on the beach; but all the other fish, birds, and amimals were doubtless captured by the wary and active savage. It would seem as if many of the fish might have been taken with some sort of a net, as they must have employed a twisted cord for many purposes. There are marks on much of the pottery showing it to have been molded in baskets made of cord. Sinkers of various shanes were used.

The implements of shell were, for the most part, constructed firm the busycon carica, and the st. Angustine collection shows all forms and
stages of this ronstruction. While the use to which the greater number of the implements of shell must have been put is obvions, there is much uncertainty regarding others which are found in abondance. One of these, known as the perforated shell, may have been used for the dressing of skins, and the perforation which has provoked so much sperulation, made for the insertion of the finger to give more firmmess to the grasp.* (Pl. Lxxviin.)

Another, found in abundance, is made usually from the smaller shells of the Strombus, and is worked as near as possible to the form of a ball. They may have been playthings of the children. The drinking shells were prepared with great care, and seem also to have beeu used as cooking utensils, some of them showing marks of exposure to fire. (Pl. Lxxix.) From the great number of perforated shells found on one small heap I was led to conclude that it was in some seuse a maunfactory of these articles. Some of these scrapers or gonges show as sharp an edge as it is possible for a shell to receive, while others are dull. Other utensils take the form of spoons. A granite or other pebble with an end flattened and polished was probably used to put an edge on such implements as required to be sharpened.

The pottery, though mostly in fragments, affords an interesting study and shows great variety of design in its ornamentation. Some of the vessels were made in baskets woven from cord, while others, from the peculiar marking on their external suface, must have been made in another way. The great smoothmess and perfect regularity of the internal surface of these vessels is remarkable. They vary much as to the character of the material of which they are made. Some are of pure clay; and of these, some are thoroughly baked and hardened, while others are slightly baked and therefore brittle. Others have an admixture, to a greater or less degree, of sand, and are harder. In size they vary from a bowl holding 1 or' 2 quarts to vessels holding 5 gallons, and in shape from a shallow pan-like dish to a pot or vessel resembling a jug. (Pls. Lxxx, Lxixi.) The ormamentation includes about one hundred different designs, the principal of which are shown in Pl. Lxxxir. It is easy to understand the origin of the fine cord-like markings which appear on the surface of those vessels which were molded in baskets. Other vessels were apparently ormamented by using a pen-like instrument made from a reed, while the clay was soft, and still others by rolling portions of the soft clay and then putting them on as a housewife sometimes ornaments her pie crusts. In one specimen, the impress of the fingers is plainly visible, showing even the texture of the skin. By far the larger portion, however, appear to have been ormamented by the use of a stamp, which left the surface arranged in squares, as shown in the plate. Fully three-fourths of the pottery found is ornamented in this

[^134]way. These vessels must have served for cooking, as well as for holding water, as many are blackened from exposure to the fire. While it is probable that these people cooked the greater part of their food by roasting over the fire, yet the tịy Domux shells at least, which are present in immense numbers, must have been boiled in water to obtain a broth. They are too small to have been cooked in any other way. The number and extent of the hearths and the amomet of ashes proves that the Indigenes usually cooked their food.

The form of the mounds and collections of shells is of interest, and some of the larger ones may enable us to determine the form of the prehistoric habitation. When individual families dwelt by themselves there would be one slowly growing heap for each, which after a time might be abandoned. When a comparatively wide extent was occupied the remains would take the form of what we now call Shell Fieldsplaces where the ground for many acres appears to be full of shells, but without elevations rising above the general level. A form common among the heaps is that of a long bank or mound, from '2 to 10 or more feet in thickness, and covering from one to several acres, always near the water and usually in proximity to an inlet of the sea. Scattered through these heaps, from the surface of the soil beneath to their summits, are found implements, utensils, and fragments, of pottery. A hearth, with a foot or more of ashes and 6 feet or even more across, may be found, with 5 or 6 feet of shells above it. This disposition of remains gives a clew to the manner of formation of the mounds and is well shown in the large momd below Matanzas Inlet, which covers more than 30 acres (Pl. Lxxxiv). The side facing the ocean is from 10 to 12 feet in depth, but has suffered from the encroachment of the sea to an extent which can not be determined (Pl. Lxxxiin). The highest part of the mound covers abont 2 acres, and back of this, extending to the Matanzas River, lies the remainder, disposed in circles of greater or less extent and covered with forest. These circles adjoin each other over a large part of the territory. They are from 4 to 8 feet in depth and from 12 to 15 feet across at the bottom. This was a dwelling place, and the daily refuse was thrown out on all sides, and so the circles of shells, bones, etc., gradually grew higher and higher, surrounding the rude dwelling like a wall. This wall would also serve for protection from the winds of winter and likewise as a pit for defense in case of attack. When this hollow had become too deep, or the wall about it too high, it would be abandoned, and the owner, pitching his tent on the top of surrounding ridges, would use the hollow as a pit in which to throw refuse.
The mound of which I an now speaking would appear to have been in some sort a center of population for many miles around. A spring of water lies in the midst of it, and the waterway was kept open to the river. Smaller mounds are found scattered up and down the river for several miles in the vicinity. One of these, some 2 miles north and

Hear the inlet at Matanzal bar, was perhaps lised as a lookont and signal station. A large part of this momal (I'l. Lxxis) was remored from the mortheast part and piled up on the remainder, forming a peak about 3 a feot high. From this point a good view is ghtained for several miles along the level combtry, amb an appoarhing enemy could be easily seen. A covered way or diteh runs from the hase to the summit. thas hidings those who were passing from the sight of the enemy.

As to the age of these heaps all mast be left to conjecture. Trees lmudreds of vears old are soattered over them. Ill instruments and implements of wood have long since perished, and not even a trablition of them remains. The shell heaps appear to me older than the earth mounds which some times adjoin them.

Perforated Shells from Shell Mounds in Florida.
Used probably for dressing skin ; two are prepared for use as clubs.

POTTERY FROM SHELL MOUNDS IN FLORIDA.

1. From mound near Old Fort Matanza. \&. From Anastasia Islaud. 3. From Fitzpatrick"s Mound

Pottery from Shell Mounds in Florida.
A perfect vessel from Homosassa, holding five gallons.

Pottery from Shell Mounds in Florida; showing variety of Design.

Sea face of Shell Mound in Florida, looking east.
The sea has washed away a large part of the mound and appears to be making further encroachments every year

DESCRIPTION OF A NEW BLENNIOID FISH FROM CALIFORNIA.

BI
Tarleton H. Bean. M. D.,
Assistant in charere livision of Fïsh Culture, UT. S. Fïsh Commission.

1)uring the month of June, $1 \mathrm{~s}: 8$, car No. 2 of the U. S. Fish Commission made a collection of tishes at Monterey, Cal., for its aquarium at the World's Columbian Exposition. Among the species obtained and delivered in C'hicago alive is a sticheroid fish, which resembles a dinmell in general appearance, and yet differs in some essential characters. and appeas to represent an undescribed genus and species. It may be introduced into the literature under the name

lhaiogrammus Hopiknsii.
PLAGIOGR AMMUS, new gemus.
Body moderately elongate, compressed, covered with very small scales; lateral lines, 2 ; vi\%, one begiming above and slightly in advance of the upper angle of the will opening, and extending along the upper part of the body, but not reaching to the tail; one beginning in advance of the end of this and reaching to the caudal; numerous lateral ridges on the sides, similar to those on Dictyosomo of Temminck and Schlegel; a series of subpentagonal plate-like bodies along the abdominal edge on each side between the ventral and the anal. Head moderately long, naked, with pointed snout; mouth oblique and rather large. The jaws subequal, or the lower slightly projecting; jaws with strong teeth in broad bands, the intermaxilla with an outer series of enlarged canine-like teeth; teeth on vomer and palate; a pair of large canines near the symphysis in each jaw, the canines of the upper jaw fitting into an interspace behind the mandibulary canines. A series of ${ }^{\circ}$ pores on the ramus of the mandibula continuing around the preoperenlar edge; a series of similar pores along the lower margin of the preorbital continned backward and upward towards the nape. Anterior nostril tubular: posterior without tube. Maxilla broadly expanded

[^135]posteriorly; lips well developed. Branchiostegals $\overline{5}$; gill membranes partly mited. but fee from the isthmus behind. (xill rakers minute, tubereular, in moterate number. A single long dorsal fin consisting of spines only. The spines longest in the posterior portion; anal fin lower than the dorsal, but similar in shape. Pectoral large, entirely below median line. Ventrals well developed, in advance of pertorals; candal rounded, distinct. Intestinal canal short, with five small pyloric coca.

Plagiogrammu; Ho kinsi new species

The type of the description, U. S. N. M., No. 44221 , is a single example, 6 inches long, oltained at Monterey, Cal., Jume 22, 1893.
D. NLI ; A. II, $29 ; c . \mathrm{I}, 5 ; \mathrm{B}$. V. Scales about 95 ; ridges on side 32.

The greatest depth of the body, 1 inch, is contained $5 \frac{1}{3}$ times in the total length without caudal. The length of the head $-1 \frac{5}{16}$ inches -is one-fourth of the total without caudal. The diameter of the eye is one-fifth of the length of the head. The suout is acute. The anterior nostril is tubular and nearer to the eye than to the tip of the snout. The posterior nostril is close to the upper auterior margin of the eye. The maxilla extends almost to the vertical through the hind margin of the eye. The intermaxilla is long and slender and reaches nearly as far back as the maxilla. The intermaxillary teeth are in boad bands, with an outer series of 5 or ${ }^{6}$ large canines, those near the symphysis largest. The teeth in the mandible are in broad bands in front, followed by several enlarged canine-like teeth. A large canine on each side of the symphysis, the interspace between the two mandibulary canines receiving the canines of the intermaxilla when the jaws are closed. A row of 's pores along the ramus of the mandible and the edge of the preopercle; another series around the lower margin of the preorbital bone as described for the genus. About 8 gill rakers on the first arch below the angle.

The distance of the dorsal origin from the snout is nearly equal to the length of the head. The spines are lowest in front; the longest spine is two-sevenths of the length of the head. The longest rays of the anal are near the end of the fin and scarcely exceed the length of the eye. The length of the pectoral equals that of the postorbital part of the head. The ventrals are close together; the imer rays longest-two-sevenths as long as the heard. The caudal is rounded, its length nearly one-half that of the head. The vent is under the eleventh spine of the dorsal.

The upper lateral line begins above and slightly in adrance of the uper angle of the gill opening, eurves very slightly over the pectoral and extends to below the twenty-fifth spine of the dorsal, its distance from the dorsal edge equal to the diameter of the eye and also equal to its distance from the lower lateral line. The lower lateral line begins under the sixteenth spine of the dorsal and extends to the caudal. On each side of the abdominal ridge, between the rentrals and the vent,
are located about 10 subpentagonal plate-like bodies, the largest about one-half as long as the eye.

Color dusky brown; the fins black.
Little is known about the habits of the species, beyond the fact that in the aquarium it hides in rock crevices and seldom ventures from its hiding place. I take pleasure in associating with this blenny the name of Mr. Timothy Hopkins, of Menlo Park, Cal., the founder of the Seaside Laboratory at Pacific Grove, Mouterey Bay, in commemoration of his services in behalf of science.

NOTES ON MYRIAPODA FROM LOANDA, AFRICA, COLLECTED BY MR. HELI CHATELAINE, INCLUDING A DESCRIPTION OF A NEW GENUS AND SPECIES.

BY
O. F. Coок.

A small collection of Myriapoda presented to the National Museum by Mr. Heli Chatelaine, formerly United States commercial agent at St. Paul de Loanda, was entrusted to me for study by Dr. Riley. This material supplements that collected by the United States Echipse Expedition of 1889 and 1890^{*}, and makes necessary some emendation of the former paper, including the establishment of a new genus of Iulida.

Spirostreptus variabilis Cook and Collins.
Ann. N. Y. Acad. Sci., vini, 28, Pl. if, Figs. 11-14 (1893).
A mature male agrees entirely with the description and figures quoted. A female specimen 115 mm . long and with 65 segments has the clypeus very coarsely rugose, with the depressions between the antenne not very apparent; the rescentic excavations lower down are very well pronounced. There are four punctations in the upper and seventeen in the lower row; teeth very broad and blunt. Lower edge of eyes slightly convex instead of concare. The eye formula are, respectively, $13+12+11+10+8+6+4+2=66$ for the left eye, and $13+12$ $+11+10+8+7+5=66$, a variation not recorded in the former description. The surface of the segments are without ridges, but have occasional very fine furrows. Anal valves scarcely wrinkled at base of margin. The exposed parts of the anterior subsegment are, in alcohol, yellowish buff.

Another female sperimen 85 mm . long has 52 segments, the exposed parts of the anterior subsegments reddish, the crescentic depressions of the clypeus not evident, while those between the antenne are much more apparent than in the other specimen.

In the Eclipse Expedition Myriapoda there were eight specimens, four males and four females, and there are thus eleven specimens of this species in the Museum.

[^136]
Odontopyge of von Porath (probably), not of Brandt, P'eters, and Karsch.

Body of moderate size, about 15 times as long as broad, cylindrical, narrowed, and slightly compressed posteriorly.
Covered portion of rertex with transverse and longitudinal striations.
Clypens with two rows of setigerous punctations immediately above the labrum.

Labrum with shallow emargination and blunt teeth, which project nearly as far as the edges of the labrum outside the emargination.

Eyes pointed-oval or triangular-crescentic, distant from each other by more than the transverse diameter of one of them; ocelli $40-80$ in number.

Antemme subclavate, moniliate, second joint longest, followed by the third, sixth, fourth, fifth, first, and seventh; eighth joint distinct; olfactory cones large, widely separated.

Mandibulary stipe with exposed surface couvex, subrectangular; margin plane or elevated.

Masticatory plate romided triangular, about trice as long as broad, divided into a flat triangular, roughened surface with a raised margin and a broad groove.

Mandibulary tooth large, triangular, with rounded apex, about twice as long as the breadth of base.

Dentate lamella with five blunt teeth.
Pectinate lamellæ, nine.
Hypostoma more or less arcuate, the ends enlarged and with a chitinized projection on the posterior edge.

Mentum of male with the ends rery narrow, that of the female oblong.

Promentum semi-elliptical triangular, broadest behind, rounded in front; a narrow posterior portion with the surface plane, the larger anterior part concave, with a distinct line of demarcation.

Cardo small, subtriangular.
Stipe between two and three times as long as its greatest width.
Lingual lamina subequal in length with the promentum, half as wide as the stipe.

First segment with the lateral lobes rounded or somewhat truncate, with one or two oblique striations.

Anterior subsegments concentrically striate anteriorly, and with scattered gramules along the striations.

Posterior subsegments finely, longitudinally rugulose; coarser striations on the lateral and ventral surfaces.

Supplementary margin regularly pectinate.
Repugnatorial pores beginning on the sixth segment, absent frem the last two segments and sometimes from the fourth from the last; pores located near the middle line of side.

Ṕedigerons lamina punctate areolate, not transversely striate.
Last segment carinate on the median line above, completely closed below.

Anal valves carinate near the margins, the carina produced above into a larger or smaller subconic, pointed mucro.

Legs 6 -jointed, the first joint short, the others subequal, with the fourth slightly longest; males with membranous cushions on the ventral face of the fourth and fifth joints; cushions wanting on the first five and last two pairs; seven pairs in front of the genitalia, first three pairs with pedigerons lamina free.

First pair of legs of males 5 -jointed, the basal joint with a large curved process directed cephalo-laterad.

Genitalia of male with the flagellum expanded and lamellate.
Segments $54-69$, length $30-8 \mathrm{~mm}$.
Distribution: The species typical of the above gems has been found only at sit. Paul de Loanda, but several other species, probably congeneric, are known from Caffraria, so that the genus will probably be found throughout southern Africa.

This genus differs from spipostreptus in the nine pectinate lamellie, the shape of the mentum and promentum, the pectinate supplementary margin, the repugnatorial pores wanting on the penultimate segment, the membrauous cushion of the two penultimate joints of the male legs, and the lamellate flagellum of the male genitalia. How far any individual character will prove to be diagnostic of the genus can not, of course, be inferred, but size, shape, habit, and coloration enforce the opinion that the present is a new generic type.

From the species of spirostreptus, subgenus Yodopyyge, the spinal anal valves are a distinguishing feature. Whether the two subgenera of Spirostreptus ought not to be given generic rank, remains to be determined; the spined anal ralves, if a constant character, should be given, it would seem, as much weight as the additional pore of Alloporus.

Ctenoiulus chatelainei, sp. nov.

Odontopyge furcata (Karsch), Amm, N. Y. Acad. Sci., viil, 36, Yl. iir, Figs. 24-28, not Spirostreptus (Odontopyge) furcatus Karsch, neue Juliden des Berliner Museum, p. 22.

Body of males slightly constricted behind the head.
Covered portion of epicranium with two well-pronounced transverse striations, the space between which is finely striate longitudinally.

Vertex smooth or very fincly striate longitudinally; sulcus obsolete, but the suture distinct, as well as the transverse intra-ocular suture which it joins.

Clypeus smooth, sometimes with a large shallow depression below the middle; upper row of 5-8 punctations, lower row of $16-20$; each of the punctations has a bristle, some of which are .125 mm . long.

Eyes pointed oral, distant from each other by more than the trans-
Proc. N. M. $93-45$
rerse diameter of one of them; ocelli subequal, arranged $11+10+9+8$ $+7+5+3=53$.

Antemne 4 mm . long, the fifth and sixth joints together louger than the second.

Mandibulary stipe with anterior edge of exposed surface broadly emarginate.

Mentum oblong, about six times as broad as its median length, posterior corners rounded in the female, in the male replaced by a membranous pouch into which fits the large process of the copa of the first pair of legs.

Promentum without bristles.
Stipe of gmathochilarium with scattered bristles along the promentum and the anterior half of the lateral margins.

Lingual lamine with a few short bristles at base, and three leng ones toward the anterior margin.

First segment smooth, anterior angle rounded; one complete and deep striation, and a branched, more shallow, marginal striation.

Anterior subsegments with seven or eight concentric striations on the anterior portion, the striations with small protuberances about as far apart as the striations are from eachother; some of the protuberances, not on the striations, but located without regularity on that part of the subsequent which is behind the striations.

Posterior subsegments with fine curved and branching wrinkles whose general direction is longitudinal; the coarser striations of the sides and inferior surface begin about two-thirds of the distance from the median line to the repugnatorial pore, but the striations above the pore are very short and to be found only along the suture.

Supplementary margin finely and equally pectinate, 0.055 mm . long, including the teeth, which are 0.01 mm . long, broad at base, pointed; sinews between teeth rounderl, 0.01 mm . broad.

Repugnatorial pores longitudinally elliptic, 0.04 mm . long, situated at the middle line of side, nearer to the nearly straight suture than to the posterior margin of the segment. In front of the pore the surface of the segment is smoother, and immediately behind the pore is a more or less evident depression. On male specimens the fourth segment from the end may have no pores. Sometimes there is a pore on one side and not on the other.

Last segment rugose above, smoother below and tinely punctate, strongly carinate on the median line above; posterior angle somewhat produced, rounded.

Anal valves rugulose-punctate, each with a prominent carina which incloses a crescentic space between it and the moderately prominent, slightly compressed margins; the carina is produced above into a large, usually sharp-pointed mucro, curved slightly cephalad at apex.
l're-anal scale punctate, rounded, nearly twice as broad as long.
First pair of legs with the process of coxa tuberculate-wrinkled, a
setigerons punctation near the distal end of the anterior face of the coxa.
Color of alcoholic specimens chestuut-brown, alternating with yellow; anterior portion of each posterior subsegment brown, the posterior margin and usually a broad dorsal median line, yellow or buff; feet pale reddish, antemme chestnut-brown; anterior and ventral portions of segments buff. In the young the colors are paler and less distinct, so that the general color appears to be a dirty yellow.

Length of larger sipecimeus 60 mm., fliameter 4 mm .; 61-64 segments.
Habitat.-St. Paul de Loanda. Mr. Chatelame's collection contains three female specimens and several others in more or less fragmentary condition. This additional material has made necessary some changes in the specitic description quoted above, and many of the characters previously placed in it have been relegated to the new generic description.

The spined anal valves appeared to Mr. Collins and myself so remarkable a feature that we were inclined to believe them characteristic of a genus, and rather than establish a new genus we preferred to believe that there was some mistake about Dr. Karsch's statement to the effect that the species described by him under Odentopyge had no pectinate supplementary margin. Since the former paper was written, the study of a more extensive collection of African Iulidie has established the fact that the spined anal valves exist in several genera, and are found in forms which have the supplementary margin entire.

It therefore becomes necessary to distinguish the present and allied forms from the other described groups, and when studied with such a purpose in view, the differences from Spirostreptus are evidently such as to demand a separate description, not merely the establishment of Spirostreptus, a genus no longer adequately definable by reason of the diversity of forms now referred to it.

Porath has described five species with pectinate supplementary margins and other characters which render it probable that they are congeneric with the above, and the generic description has been drawn up to accomodate them. They are Ctenninlus forcolatus, puncticuulus, aequalis, dimidiatus, and pretextus, the last with the apices of the teeth of the supplementary margin connate. As Dr. Karseh has examined the type of Spirostreptus dimidiatus Peters, and finds the supplementary margin entire, it is probable that Porath's dimidiatus is distinct, and the name should be changed as Dr. Karsch has suggested.

All Porath's species are firom Caffraria, distant from Loauda by 20 degrees of latitude, and the descriptions do not include the characters of the mouth-parts, legs or genitalia, so that their generic affinities can not be determined with confidence, hence it can only be said that from what is known of them they seem to belong to the present genus rather than to any other.

From the West Coast of Africa three species of Odontopyye have
bern describerl, arutus, angolensis, furcutus, the first two from Angola, the third from the (rold Coast. so that no differences of distribution call, as yet, be alleged between the two allied groups. On the East Coast, however, the rase seems somewhat different, for nine species of Odonto$p!!g r^{\prime}$ have been described from the tropical region, while none were foumd in Caftiraria.

Scolopendra morsitans Limn.
Nine specimens, varying from $60-80 \mathrm{~mm}$. in length, and with ne characters longer noteworthy in so variable a species.

Huntington, N. Y., 29 Aug., 1893.

DESCRIPTION OF A NEW SPECIES OF BLIND-SNAKES (TYPHLOPIDF) FROM THE CONGO FREE STATE.

131
Leonhard Stejneger, Curator of the Department of Reptiles and Batrachians.

The National Museum is under obligations to Mr. J. H. Camp for a small, but very interesting collection of reptiles and batrachians firm Leopoldville and Stanley Pool. One of the species sent proves to be new and may be described as follows:

Typhlops præocularis, sp. nov.

Diagnosis.-A preocular, not in contact with supralabials; no suboculars; ocular in contact with nasal below preocular, reaching lip behind second supralabial; snout with sharp horizontal edge.

Habitat.-Congo Free State, Africa.
Type.-U. S. National Museum, No. 20799; Leopoldville, or Stanley Pool, Congo Free State; J. H. Camp coll.

Description.-Snont very prominent and pointed, bat not hooked, with sharp cutting edge: nostrils inferior, situated just beneath the rutting edge, between two large nasals almost at the point where the internasal suture joins the rostral; rostral very large, about two-thirds the width of the head, the portion visible from below wider than long; labial border of rostral concave, without the usual central prolongation backwards; anterior nasal half-moon shaped, the outer edge nearly parallel with the rostral, the nasal cleft proceeding from the lower border of the rostral, ending at the rostral just below the cutting edge; posterior nasal at the cutting edge as wide as the preocular and ocular together, becoming narrower above and below, in contact above with prefrontal and supraocular, below with second supralabial and ocular; preocular about as wide as orular, below widely separated from the supralabials by the posterior nasal and ocular; ocular rather narrow, below anteriorly in contact with posterior nasal, and second snpralabial reaching the lip behind the latter; eyes indistinguishable; first supralabial exceedingly small, forming the edge of the lip below the anterior nasal, anteriorly receding within the mouth behind the rostral, being separated from the corresponding labial on the other side by a small squarish scale behind the rostral; second supralabial rather larger, in contact with first suprababial, anterior and posterior nasal and ocular, its upper posterior corner wedged in between the two lastmentioned shields; a long and narrow shield behind the lower posterior

[^137]edge of the ocular represents what is ordinarily the fourth supralabial, its anterior point, however, barely reaching the lip; prefrontal and frontal subequal. wider than long; subocular and parietal subequal, wider than long, somewhat wider than frontal; one mental; two sublabials; diameter of body at the middle 67 times in the total leugth, the body growing thicker posteriorly; tail very short, wider than long, ending in a short spine; 24 to 26 scales round the middle of the body. Uniform, pale brownish gray, scarcely paler below. Total length 340 millimeters.

Remarks.-This very distinct species seems to be quite unique in the way in which the facial shields border the upper lip. The rostral, as described abore, forms the anterior border as usual, but instead of this consisting of a narrow square projection backwards, the lower free border of the rostral is distinctly coneare forward. The posterior projection, however, can be detected under the microscope as a separate small scale inside the mouth back of the rostral, separating the two exceedingly small but elongated anterior supralabials from each other by barely discernible sutures, while the suture separating it from the rostral is rery distinct. The next peculiarity of the upper labial border consists in the absence of the third supralabial, in place of which the lower end of the ocular reaches the lip, while the fourth (in this case third separate) labial is forced backward. Another rather uncommon feature is the exclusion of the preocular from the supralabials, the posterior nasal and the ocular being broadly in contact below it. The snout from below, therefore, superficially somewhat resembles that of one of the Leptotyphlopidae. The nostrils are placed uncommonly close to the rostral, being situated almost at the junction of the cutting edge with the rostral and internasal sutures.
Altogether this is a very remarkable form which seems to have no particularly close relationship, to any of the hitherto known species.

ON SOME COLLECTIONS OF REPTILES AND BATRACHIANS FROM EAST AFRICA AND THE ADJACENT ISLANDS, RECENTLY RECEIVED FROM DR. W. L. ABBOTT AND MR. WILLIAM ASTOR CHANLER, WITH DESCRIPTIONS OF NEW SPECIES.

BY
Leonhard Stejneger, Curator of the Department of Reptiles, and Batrachians.

The collections treated of in the present paper were sent home at various times by the gentlemen mentioned in the title. In addition to these I have enumerated several specimens, chietly from the Seychelles, collected by the late Col. Nicolas Pike, and presented by him to the Museum, as well as a few others from the same islands obtained fiom the British Museum, in 1883, and the Paris Museum, through Prof. Léou Vaillant, during the present year.

Dr. W. L. Abbott's collections from the base of the Kilima-Njaro were made during 1888 and 1889, and the specimens mentioned in the following pages were probably taken at altitudes between 5,000 and 8,000 feet above the sea.

He collected twice on the Seychelles, viz, in April and May, 1890, and again in 1892 during the months of July and August. In October, November, and December of the same year he collected in Aldabra. The reptiles obtained in Gloriosa Island were taken during the latter part of January, 1873.

The collection received from Nr. William Astor Chanler was made by him and Lieut. von Hœhnel, of the Imperial Austrian Navy, along the Tana River, en route from the coast to Hameye, about 300 miles inland. His expedition left Mkoumbi, on the coast of Witu, on September 18 and reached Hameye on November 26, 1892, following the left bank of the Tana from Merifano to Subaki, where he crossed over to the right bauk. He also presented the Museum with a small, but interesting collection made by Mr. Gustav Denhardt at Wange on the island of Manda, a short distance north of Lamu.

Mr. Chauler's collection is chiefly interesting in furuishing material from a region between that of the Massai land and Somali. Species found hitherto only in the latter country are among Mr. Chanler's treasures, while the range of several southern forms have been extended northward.

The most interesting portion of Dr. Abbott's collections are undoubtedly the specimens obtained in the Seychelles, Aldabra, and Gloriosa. So far as I know no extensive collecting has been done in the last men-
tioned islands．＊The herpetologioal result is only three species of lizards in each island，but it is not supposed that the fauna of these islands is exhansted．The following is a list of the species collected by Dr． Abbott：

Hemidactylus mabouia．
Zonoster＇ns mudngusceriensis．
stulephetrus gloriosus．

Gloriosa．

－

Aldabra．

Phelsuma abbotti．
Hemidactylus mabonia．
Athephar＇us poeciloplenrus．
The seychelles，on the other hand，are by this time pretty well ex－ plored，thongh it is to be regretted that the collectors so far have neg－ lected to furnish data by which it would have been possible to ascer－ tain the distribution of the species in the various islands composing the group．Severtheless，Ir．Abbott＇s collections have added several additions to the fauna of these interesting islands，inchuding two species hitherto undescribed，one of which belongs to a genus hitherto only found in Australia．

The only list of the reptiles and batrachians of the Seychelles，so far as I know，is given in Wallace＇s Istand Life（London，1881，pp．395－ 397）．He enumerates eleven species as found in the group，five of which he considers pernliar to the istands．Since then it has been learned that two of the species enmmerated by him，viz，Bocdon geo－ metricus and C＇aecilia rostratu，in reality are peculiar，though at that time supposed to occur in other localities as well，making the peculiar species seven．To－day we know fifteen land species as occurring with certanty，ten of which are peculiar，while a number of additional names may be regarded as of doubtful ocerrence．The following is a revised list，the full explanation of which will be found further on in this paper， under the head of the varions species．The names in brackets are those of Wallace＇s list ：

SEYCHELLES．

＊Denotes that the species is considered peculiar to the group．
\dagger Denotes that speeimens are in the 1 ．N．National Museum．
にだアTLII．
（C＇helone imbricata，lide l＇eters，Monatsh．Berlin，1866，p．887．）
1．Sternotherws migricem．．
？Sternotharus simutus．
†！．Hemidact！l／ws mubonire．
？Hemidnclylus．firnatus．
＋3．Itiplodactylux inexpectatus．
＋1．Phelsman modn！ascavionsr［Ph．reperlianus］．

[^138]*就. Ailuromy. seychellensis [1'helsuma s.].
6. P'eropms mutilutus [Wallace].

* +7 . Mabuya sechellensis [Euprepes cyanogaster].
*+8. Chameleo tigris [Wallace].
*9. Lycognathophis seychellensis [Dromicus s.].
*10. Bocedon geometricus [Wallace].
BATRACHAA.
* +11 . Megalixalus seychellensis [M. infrarufus].
†12. Ritua mascareniensis [R. mascariensis].
? U'cotyphlus oxymus [Caecilia oxyura].
*13. Cirgptopsophis multiplicatus.
*+14. Hypogeophis rostratus [Caecilia rostrata].
* +15 . Hypogeophis alternans.

I. REPTILIA.

LORICATA.

Crocodylus niloticus Lavr.
Mr. Chanler sends a small specimen from the Tana River (No. 20071), and 1)r. Abbott a nearly grown one; exact locality not given (No. 16027).

TESTUDINES.

Sternothærus nigricans (1)ONND.).

There are four Sternothari in the collections sent home by Dr. Abbott, three from La Digue Island, seychelles (U. S. National Museum, Nos. $19802-19804$) and one dried specimen from Gloriosa Island (No. $29: 347$, Dept. Comp. Anat.).

The determination of this species (for most certainly all four specimens are strictly conspecific) has caused me considerable doubt from the fact that Boulenger, among the British Museum specimens, enumerates one sperimen from La Digue under š. simutus (Cat. Chel. Br. Mus., 1). 195). I have no undoubted specimen of the latter species to compare with, and consequently have to rely on the literature. Now, N. "igricans is said by Boulenger (op.cit., p. 19.) to have the upper.jaw neither hooked nor bicuspid, and it is very certain that our specimens can not fairly be called "bicuspid," thongh there is an indication of a notch with the faintest possible swelling on both sides. Then again he states that in this speries "the frontal suture [is] not or but slightly exceeding the width of the interorbital space," while in N. sinurutus "the interorbital width [is] considerably less than the longitudinal suture between the frontal shields." This would most certainly make our sperimens \mathcal{S}. nigricans, as in all of them the interorbital space is at least as wide as the length of the frontal suture.

In addition to this our specimens agree exactly with the characters given by Peters (Reise Mossamb., Zool. Amph., p. 8) as characteristic of S. nigricuns in as much as the posterior margin of the carapace is not serrated, the median marginals are not keeled and hardly visible when the carapace is viewed from above. I may also mention that Peters has identified another specimen from the Seychelles (Mahé Island) as S. nigricans (Monatsber. Akad. Wiss. Berlin, 1877, p. 455).

Finally, if Smith's plate representing S. simuatus (IIl. Zoöl. S. Afr. Rept., pl. i) is only approximately correct, our specimens can not well belong to that species.
The largest specimen (No. 29347) has a shell 160 mm . long.

SAURI.

Hemidactylus mabouia (Moreav).

Of this widely distributed species our collectors have brought specimens from nearly all the localities visited.

Mr. Chanler has one from the Tana River (U. S. Natioual Musemm, No. 20087).

Dr. Abbott sends two large specimens labeled Kilima-Njaro (Nos. 16748-16750). He has also two specimens from the Seychelles (Nos. $2045-20455$) in pretty poor condition. I am not aware that this species has been collected in these islauds before.* It would be interesting to know in which particular island they were obtained.

Three more specimens from Gloriosa Island (Nos. 20459-20461), also collected by Dr. Abbott, have apparently been taken from the stomach of some bird, as they appear to be half digested. I have no doubt about the correctness of the identification, though the tubercles on the back are rather large.

The same gentleman, finally, has three specimens from Aldabra Island, one of them quite young (Nos. 20470-20472). I can discover no other difference from typical specimens than the separation of the second chin-shield from the second infralabial by two small scales, identical in both the grown specimens, while in all the other specimens of H. mabouia before me the second chin-shield is in contact with the second infralabial.

Diplodactylus inexpectatus, sp. nov.

Diagnosis.-Back covered with uniform granular seales; digits with regular transverse lamellæ inferiorly; rostral and first labial entering nostril; digital expansion considerably wider than digit, two-thirds the

[^139]diameter of the eye; 12 entire lamellie under the fourth toe; ear-opening small, one-third the diameter of the eye.

Habitat.-Ile Mahé, Seychelles.
Type.-U. S. National Museum, No. 20433; Dr. W. L. Abbott coll.
Description.-Snout considerably longer than the distance between the eye and the ear-opening; ear opening small, rounded; digits rather long, slender, feebly depressed, inferiorly with large, undivided, transverse lamellæ, 12 under the fourth toe, which are broken up into small tubercles some distance before the distal expansion; the latter cordiform, considerably wider than digit, two-thirds the diameter of the eye; digits above, including the upper surface of the expansion covered with small granules like those on the back; upper surface of body and limbs, as well as tail above and below covered with small uniform granular scales, somewhat larger on suout and tail; postral four-sided, fully twice as wide as high, without cleft above; nostril pierced just above the suture of the rostral with first labial, between both the latter and three small scales; three scales along the upper border of the rostral betreen the anterior supero-nasals; eleven supralabials, first largest; ten infraabials; mental trapezoid, not larger than the adjacent labials; no chinshields, but small polygonal scales passing gradually into the minute granules of the gular region; abdominal scales small, about the size of the caudal granules, but smooth, roundish hexagonal, slightly imbricate; tail cylindrical, tapering, with uniform granulation; two enlarged granules close together on each side of the base of tail; no preanal pores.

Color (in alcohol) above dark brownish gray, with indistinct darker marbling on head and sides; traces of dark cross bands on lower back; below whitish; labials white; a pale stripe from nostril through upper part of eye to above ear-opening bordered below by a dark line; digits cross-barred with dusky.
 width of head at ear-opening, 7 mm .; fore limb, 11 mm .; hind limb, 17 mm .; tail, 35 mm .

Remarks.-The discovery of a new gecko of the phyllodactyl group in the principal island of the Seychelles is not so very surprising, because in the first place the reptile fauna of these islands is probably not yet thoroughly explored, while in the second place other species of the same group, as for instance Phyllodactylus oviceps, Ph. sanctijohamis, Ph. stumpffi, Ph. porphyreus, Ph. pictus, and the two species of Ebenavia, inbabit either Madagascar or some of the surrounding islands. The surprise is, however, that the new species belongs to the genus Diplodactylus, as now understood by Boulenger, all the hitherto known species of which are confined to Australia. That the present species really is a Diplodactylus can not be doubted, for the digits are " not dilated at the base, clawed, the distal expansion covered above with small tubercular scales similar to those on the basal part," the sub-digital transverse lamellie are undivided, and there is no penul-
timate expansion. Howerer, in view of the fact that the genus Phyllodectylus, which umpuestionably is ciosely allied, has a similar and even wider distribution, the present extension of the range of Iliplodectylus can mot be considered particularly abnomal, while the discovery of a species of the nearly related Australian genus Oedura in southwestern Africa a few years ago (ochera africana Bonlenger, Aun. Mag. N. H. (6) hi, Aug. 1s88, p. 138) is even more startling.

Phelcuma abbotti, sp. nov.
Diagnosts. - Nostrils pierced above the first upper labial only; ventral scales smooth; snout not twice as long as the distance between orbit and eur-opening; chin shields much larger than adjoining gular scales; tail not much depressed, narrower than the body; 3i2 femoro-preanal pores altogether; segments of tail not very distinct, composed of six transierse rows of scales on the side as well as on the apper surface.

Habitat.-Aldabra Islams.
Type- ${ }^{\top}$. S. National Museum No. 20467 ; Dr. W. L. Abbott coll.
Description.-Snout once and two-thirds as long as the distance between the eye and the ear-opening, twice the diameter of the orbit; upper part of rostral with a median cleft; nostril pierced above and bordered beneath by the first supralabial; supralabials seven to eight; infialabials seven; chin shields four on each side. gradnally decreasing in size, imner pair abont four times as large as outer; one to three scales between the naso-rostrals; ear-opening small, its vertical diameter not half that of the orbit; dorsal seales small, keeled from the head: rentral scales smooth; femoral pores thirty-three altogether; tail not very much depressed, harower than the body; segments of tail rather indistinct. composed each of six transverse rows of rather large, flat seales both on sides and upper surface; lower surface of tail (when intact) with a median series of transersely diated scales, two narrower ones alternating with a wider one. Color (in alcohol) dark olive slate above, on the sides gradually passing into the whitish of the under smfare; a black line from nostrils through eye to neek; supralabials and a broad band backwad to wer the ear-opening whitish; sides and upper surface of limbs coarsely marbled with blackish.

Measurements (in millimeters).

Remarks.-The present species, in its general features, resembles Ph. mudayuscariense, having the same arrangement of the scales surromuding the nostrils, but it has a cousiderably shorter and somewhat broader suout, and the suprelabials are higher. It is probably also a much smaller animal, as the specimens before me have every appearance of being full grown. The coloration is also very different when compared with individuals of the same size from the Seychelles, the lateral stripes of the head being quite characteristic.

In some respects, especially the length of the head, Ph. «bbotti approaches Ph. laticuuda, but the shape of the tail of the latter seems to be quite different, while in the former it is exactly like that of I'h.maduguscariense. From both of these species, as well as from I'h. ceperianum, from Mauritius, our new species differs in the much greater size of the scales which cover the upper and lateral surfaces of the tail, these scales being regularly hexagonal and flat. Boettger's description of these scales in P'h. dubium, from Nossi Bé, as quoted by Boulenger, C'it. Liz. Br. Mus., I, p. 215, is not explicit enough, but it would seem as if they may be similar to those in Ph. abbotti. From Boettger's species the latter seems easily distinguishable by its large chin shields which are fully as well developed as in Ph. madagaseariense, while in Ph. dubium they appear to be more like those of Ph. cepedianum.

Agama colonorum Dadd.

Six specimens (U. S. National Museum, Nos. 20081-20086) collected by Mr. Chanler at the Tana River are so much alike typical western specimens that I am unable to separate them. The eastern ones have possibly the nuchal crest on the average consisting of fewer (10-12) and slightly larger spines than in specimens from the West Coast (12-15).

It will be noticed that Peters records A. congica, which Boulenger unites with A. colonorum, as having been collected by Hildebrandt at Ukamba (Monatsber. Ak. Wiss. Berlin, 1878, p. 202).

Varanus saurus (LaUR.).

By recording the two young specimens collected by Mr. Chanler on the Tana River (Nos. 20072-20073) as above I wish to express the fact that they have the scales on the nape larger than the dorsal scales, as Peters asserts that the reverse obtains intrue V. niloticus from Northern Africa.

Latastia spinalis (Peters).

A single specimen of this species, hitherto tound only in Abyssinia, was collected by Mr. Chanler on the Tana River (U. S. National Museum, No. 20076). This discovery is the more interesting since Boettger has recently deseribed a nearly related new Latastia from Lafarng, Somaliland, but this species, L, hetrolepis, is distinguished by having
the supraoculars entirely surrounded by granules (Zool. Anz., xvi, April 10, 1893, p. 115).

From Boulenger's description (Cat. Liz. Br. Mus., int, p. 57) our specimen differs only in having all the gular granules of the same size, the four posterior rows, including the edge of the collar, suddenly appearing as flat, subequal scales, while Boulenger says: "Gular scales moderate, gradually increasing in size toward the collar."

From Peters' original description and figure (Monatsber. Akad. Berlin, 1874 , p. 369 , pl. - fig. 2) our specimen differs chietly in having a narrow but elongate interparietal; in having the fremal divided off anteriorly; in having the subocular between fifth and sixth supralabials; and in having only one series of very wide brachial plates covering the outer aspect of the humerus.

In our specimen the average number of scales across the body is 38 ; ventral shields in 27 transverse rows; two enlarged median preanals surrounded anteriorly and laterally by a row of smaller scales; femoral pores 11 ou each side.

In coloration our specimen agrees very well with Peters description of the type.

Eremias sextæniata, sp. nov.

Diagnosis.--Ventral plates in six straight subequal longitudinal series; lower nasal undivided, resting ou first labial only; supraoculars entirely surrounded by granules; upper head-shields strongly striated; subocular excluded from lip by one or two supralabials; back with six pale longitudinal bands, including five darker clay colored bands, which contain each a series of numerous black spots.

Habitat.-Tana River, East Africa.
Type.-U. S. National Museum, No. 20080; W. A. Chanler coll.
Remarks.-Differs from E. spetii chiefly in the exclusion of the subocular from the lip and in the coloration.

Two specimens were collerted by Mr. Chanler (Nos. 20079-20080), both having the subocular excluded from the lip by well-developed supralabials, two on both sides of No. 20050, while two on one side and one long one on the other side in No. 20079.

On the other hand it appears that the types of E. spekii (two specimens in British Museum) as well as the types of E. rugiceps Peters (how many? Boulenger, Cat. Liz. Br. Mus., inf, p. 84, footnote, says "Types (Mus. Berol. 9287) examined") all have the subocular bordering the lip.

This character might be supposed to be subject to individual variation, and I have no material at hand that will throw any light upon this subject, but I find that Boulenger (fom, cit.) when describing species of which British Musemm contains very large series (for instance, E. !yuttulata, pp. 88-89, 28 sperimens; E. aryuta, p. 102, 28 specimens) does not mention any variation in this character, althongh he always notes the irregularities in the numbers of the adjoining supralabials.

The coloration, moreover, seems to offer another tangible difference. Boulenger describes E. spelii as being "brownish above, with three longitudinal paler lines, and a more indistinct one along each flank; small black cross bars between the light streaks" (Cat. Liz. Br. Mus., iII, p. 84), and Peters also describes the synonymous E. rugiceps as having five longitudinal pale lines, of which the middle one bifurcates anteriorly, (Monatsber. Akad. Berlin, 1878, p. '203). Our specimens, on the contrary, have 6 distinct pale lines, the mediau line, like the other dark interspaces being marked with a series of black spots. The number of these spots averages in each row eighteen to twenty.

Eremias brenneri Peters.
The specimen (No. 20078) collected by Mr. Chanler on the Tana River agrees in all essential points with the characters given by Boulenger in the description of E. brenneri, as distinguished from E. mucronate (Blanford) (Am. Mus. Genova (2), xii, 1892, p. 8). It has the upper head-shields strongly striated, and the upper caudal scales strongly keeled.

The specimen seems, in fact, to be perfectly typical, except that it has the anterior three chin-shields in contact, a difference evidently within the individual variation. The subocular is excluded from the lip, being wedged in between the sixth and seventh supralabials on the right side, but between the seventh and eighth on the left side. There are, moreover, five elongate infralabials on each side, followed by tro or three rows of small hexagonal scales. The top of the head is also normal, but the interparietal is quite minute. With these exceptions, in addition to the strong striation of the upper head-shields, the figures of the head of E. erythrosticta given by Boulenger (Amn. Mus. Genova (2), xir, 1892, pl. i., figs. $2 a$ and $2 b$) would answer for our specimen; that one representing the side of the head is particularly an exact reproduction of No. 20078.

Eremias hoehneli, sp. nov.

Diagnosis.-Ventral plates in eight straight longitudinal series; occipital shield present; lower nasal divided, resting on first and second supralabial; supraoculars entirely surrounded by granules; scales on upper surface of tibia much larger than dorsals; upper head shields strongly striated; subocular reaching the lip; posterior chin shields reaching the lip; first pair of infralabials in contact behind the mental.

Habitat.-Tana River, East Africa.
Type.-U. S. National Museum, No. 20077; W. A. Chanler coll.
Remarks.--This species is very closely allied to E. brenneri, with which it shares the strong striation of the upper head shields, the strong carination of the upper scales of the tail, the granules surrounding the supraoculars, and the divided subnasal. It differs, however, in having eight longitudinal series of ventrals, instead of six, in the sub.
ocular reaching the lips, and in the very remarkable sentellation of the lower jaw. E. bremeri has five to six clongate, narrow infralabials, none of which are in contact with those on the other side, the last one followed by two or three rows of small hexagonal scales; it has, moreover, four pairs of chin shields, two or three anterior pairs in contact. In our present species, on the other hand, there are only two or three anterior infralabials, the first pair in contact on the median line behind the mental. Thus there are but three pairs of chin shields, only the anterior pair being in contact, while the last pair form the edge of the lip. At the posterior end of the last chin shield there is a long and narrow infralabial, while in the corresponding place in E. brenneri there are two rows of small scales.

In addition to these differences the type specimen, the only one collected, shows several divergencies from the only specimen of \boldsymbol{E}. brenneri which we have for comparison, viz, the frontoparietal is longer in proportion to its width and is deeply grooved mesially; the two parietals form a straight line behind, while in E. brenneri they form a concave angle; gular scales as well as those forming the edge of the collar apparently smaller in the former than in the latter; there is no clongate shield along the outer edge of the parietals. There are probably still other differences between the two specimens, which, however, are somewhat damaged.

In the arrangement of the mandibular shields the specimen upon which I have ventured to base a new species certainly seems somewhat abnormal, and it is possible that the characters adduced from it may prove not to be diagnostic. Nevertheless, the tro additional ventral rows and the admission of the subocular to the lip appear of sufficient importance to justify the separation.

1 have named the species in honor of Mr. Chanler's traveling companion, Lieut. von Hoehnel, of the Imperial Austrian Navy, who has also done part of the collecting.

Mabuya sechellensis (Dim. \& Brisk.).

With 19 specimeus from the Seychelles before me, 10 of which were collected by Dr. Abbott, I am unable to recognize M. «rightii (Cat. Liz. Br. Mus., ifi, 1887, p. 162, pl. viii) as a valid species.

From the appended table it is evident that the number of scales round the body varies from 34 to 42 , entirely irrespective of the shape of the frontomasal or its relation to the rostral. As to the comparative width and length of the frontonasal, I have only to remark that the difference either way is ustally so trifting. and the cases of equality between the two dimensions so frequent, that one is often doubtful as to the location of the specimens. In two cases only, viz, two very large specimens, is the frontonasal completely excluded fiom the rostral by the supranasals being in contact with each other; in most of the specimens the anterior angle of the frontonasal just tonches the rostral, and
only in a fer, mostly small specimens, does the frontonasal broadly join the rostral.

List of specimens examined.

U. S. National Museum number.	Whence obtained.	Scales round body.	Frontonasal		Frontonasal and rostral	
			longer than broad.	broader than long.	$\begin{aligned} & \text { in } \\ & \text { con- } \\ & \text { tact. } \end{aligned}$	not in contact.
16718..	Abbott	36	-	\times	x	--
16719.	. . . do .	38		$\overline{-}$	\times	-
16720.	- . . do	36		\times		
16721.	do	34	x			-
16722.	. do	36	-	\times	-	-
16726.	.do	42	-	\times	\times	
16730.	do	42	-	\times	\times	-
16731.		40	-	\times	\times	-
20456.		38	-	-	x	-
20457		38	-	-	\times	-
$8281{ }^{*}$	Pike.	40	-	\times	\times	-
8282.	$\ldots .0_{0}$	38		\times	\times	
20407.	Paris Museum	36	-	\times	\times	-
20408.do	36		$\underline{\chi}$	\times	
19222.	British Mnseum	42	-	\times	-	x
19223.	...do	40	-	$\stackrel{\times}{\times}$	\times	x
19224.	. 10	40 38 8		\times		\times
19225.		38 38		-	$\stackrel{\times}{\times}$	-

*Frigate Islaud.
Mabuya chanleri, sp. nov.
Diagnosis.-Lower eyelid with a large, undivided, transparent disk; scales on the soles spinose; the adpressed hind limb reaches beyond the elbow of the adpressed fore limb, but not to the axilla; frontoparietals two; thirty-two scale rows round the body; dorsals feebly tricarinate; subocular not narrowed below; distance from snout to ear-opening greater than from ear-opening to asslla and more than one-half the distance from axilla to groin; color above blackish with large white rounded spots.

Habitat.-Tana River, East Africa.
Type.-United States National Museum, No. 20104; W. A. Chanler coll.
Description.-Lower eyelid with a medium-sized transparent disk; nostril behind the vertical of the suture between the rostral and the first labial; a small triangular postuasal; anterior loral large, pentagonal, in contact with first and third labials; rostral rather prominent; supranasals not in contact behind the rostral; frontonasal as wide as long, in contact with the frontal; latter equals in length the frontoparietals and interparietal together, in contact with first, second, and third supraoculars; four supraoculars, first comparatively large, second largest, but not much larger than fourth; five supraciliaries, second as large as fifth; frontoparietals distinct, as large as the interparietal; parietals not meeting behind; a pair of narrow nuchals; five supralabials anterior to the subocular, which is not narrowed inferiorly; eight infralabials; ear-opening oval, fully as large as the trausparent palpebral disk, with three small obtuse lobules auteriorly;

Proc. N. M. $93-46$
dorsal and lateral seales very feebly tricaninate; first pair of muchals antirely smooth; thirty two seale rows round the middle of the body; the hind limb reaches beyond the elbow of the adpressed fore limb hall way to the axilla; seales on the soles sharply keeled, spinose; subdigital lamelle sharply micarinate, spinose: tail very slender.

Color of upper side of back, tail, and limbs brownish black, with large romaded whitish spots, each spot usually covering the adjoining portions of three scales, the point of contact between the three scales in the ernter; the spots are aranged in pretty regular transverse and longitulinal series, about twelve of the former between head and tail, and about ten of the latter, the lower row on each side confluent with the whitish color of the mader surface; head lighter brownish, most of the sutures emphasized by darker, with about five more or less interpupted transerse bands of whitish; suprababials as well as sublabials whitish, with broad rertical dark hown bars in continuation of the brown of the top of the head; lower surface whitish, with a few dusky spots on the chin.

Measurements.
 [In millimeters.]

Snont to end of interparietal... 11.5
Snout to ear-opening . 13
Snout to fore limb ---...............-. .-..................................... 21
Snout to anal opening ... 50
Axilla to groin... 23
Fore limb.. 17
Hind limb .. 21
Tail (tip broken off) .-... 48
Romarks.-Only one specimen of this well-maked species was sent home by Mr. Chanler, for whom it is named.

Lygosoma kilimensis StENN.

Proc. U. S. Nat. Mus., XIV (No. 862), 1892, p. 405.
The description of this novelty was based on the specimen collected by Dr. Abbott at the foot of Kilima-Njaro (No. 16749).

Riopa sundevallii (smith).

One specimen from the Tana River by Mr. ('hanler (No. 20109).

> Ablepharus boutonii pœcilopleurus (WIEGM.).

The varions subspecies, on forms, by which A. boutoni is represented in varions localities semes as yet but imperferetly worked out, and the problems conceming its seographical distribution are therefore but imperfectly moderstood. The material at my command is, however, tow sumty to allow me to take the question up in full, but, small as it is, it semms interesting enongh to warmat the publication of a few observations.

The specimens before me from the same locality show a remarkable uniformity of color pattern, especially if we consider the great variability of the species. On the other hand, the structural charactersfor instance, the relations between frontal and prefrontals, number of scale rows around the body, relative length of limbs, etc.-are subject to great differences in series of specimens from the identical locality.

This will account for my adopting the above name for three specimens from Aldabra Island (Nos. 20473-20475, collected by Dr. Abbott), notwithstanding the fact that they have only 24 scale rows round the body. In coloration, however, they agree perfectly with specimens from the Hawaiian Islands (Nos. 5706 and 12260, U. S. Exploring Expedition) as well as with Wiegmam's colored figure of, A pocilopleurus. from Peru (Nov. Acta Ac. Leop.-Carol., xvir, 1835, pl. viii, tig. 1). They possess the dark lateral band spotted with whitish; a rather welldefined light band above this, and an olive back with black dots which are most numerous in a line bordering the light band.

On Gloriosa Island we find another form which looks entirely different, the status of which will be set forth under the next heading, as I am obliged to give it a new name in order to discuss it intelligently.

Ablepharus gloriosus, subsp. nov.
Diagnosis.-Similar to A. boutonic, but with two white and three blackish very distinct and straight-edged lateral bands; four supralabials anterior to the subocular; 20 to 22 scale rows round the body.

Habitat.-Gloriosa Island.
Type.-U. S. National Museum, No. 20463; Dr. W. L. Abbott coll.
Color description.-TOp of head and inner half of the two median dorsal scale rows olive brown; a well-defined brownish black band on either side occupies the outer half of these scales and the inner half of the next scale row, commencing at the outer edge of the supraoculars, the two black bands joining a little back of the anus and continuing as a median dark band down the upper surface of the tail; below this band on either side an efpually well defined white band occupies the next two half scales commencing somewhat indistinctly above the nostrils, proceeding backwards over the superciliaries aud scales of upper eyelids, wheuce the band is well defined, and continuing down the tail; below this white band, on either side, another brownish black band occupying on the sides of the body one whole and two half scales, on the neek two whole and two half scales, originating at the nostrils, proceeding backwards through the eye and across the temporal region, and finally continuing down the sides of the tail; the two next half scales are marked with a well-defined white band which involves the supralabials, passes through the ear-opening and above the fore limb, but stops upon meeting the hind limb; finally, below this there is a dusky band, well defined but not of so deep a color as the others, occupying a half and a whole scale row, starting below the
ear-opening, passing through the axilla, and stopping in the groin; limbs above blackish brown with white dots; entire under surface white; palms and soles blackish.

Remarks.-I have given so detailed a color description for the reason that specimens from such a small island may not always be accessible to my brother herpetologists. The description is the more to be relied upon as there are four specimens in the collection, all perfectly alike and all characterized by the same distinctness and straightness of the outlines of the lateral bands.

These specimens are of the same size as those from Aldabra, alongside of which they present a totally different aspect. One of the Gloriosa specimens has only 20 scale rows (No. 20464), the others have 22 , while in the three Aldabra specimens there are 24 scale rows. There is, however, another structural difference which seems to me to be of more importance, as I find the nuchal shields of all the four Gloriosa specimens to be wider and with more arched outlines, against the straighter ontlines of the same shields in those from Aldabra.

Dr. Boettger (Zool. Anz., 1881, p. 359) has described a specimen from Nossi Bé as variety A. cognatus. This specimen also has 22 scales round the body, but only three supralabials in front of the subocular; moreover, and I think this the chief difference from my A. gloriosus, it is colored like A. peronii, that is, without the lower two bands so characteristic of the former.

Judging from Dr. Peters's remarks (Reise Mossamb., Amph., p. 77), the Ablepharus occurring in the Comoro Islands is identical with our Aldabra specimens.

Looking at the map, it can not be denied that the Ablephari inhabiting the four islands, or island groups, here mentioned have a rather peculiar distribution, and it will at once be clear how necessary it is to treat these closely allied forms carefully and in detail.

Chamæleo roperi Bove.

Four specimens (Nos. 16741-16742; 16745-16746) were collected by Ir. Abbott at the foot of Kilima-Njaro, and two by Mr. Chanler on the Tana River (Nos. 20103, 20108).

Chamæleo dilepis Leach.
Mr. Chanler sends home two specimens from the Tana River (Nos. 20074-20075).

Cbamæleo tigris Kuirl.
Numerous specimens from the Seychelles by Dr. Abbott. Nos. $16715-16716 ; 20458$. The exact locality of Nos. 20434-20.139 is specified as ile Mahé.

Chamæeleo taitensis STEINI.

Three specimens collected by 1)r. Abbott at the foot of Kilima-Njaro were described by me, in 1891, as ('h. abbotti. Dr. Steindachuer's
name, however, seems to have the priority by a few months. I would state, however, that the number of the Wiener Sitzungsberichte containing the description (Math. Nat. Cl., Vol. C., v-vir heft, May-July, 1891) did not reach the library of the Smithsonian Institution until June 30, 1892, while the "Anzeiger" was never received at all.

SERPENTES.

Typhlops schlegelii Bianc.

Two specimens, a large one (U. S. National Museum, No. 20123) and one half-grown (No. 2012t) were collected by Mr. Denhardt on the Iskand of Manda, both alike in all essential points. Color above, dark olive; below, yellow; the outline between the two colors irregular, and the four lowest olive scale rows on each side with a yellow spot in the middle forming four narrow yellow longitudinal lines.

No. 20123 is 430 mm long; diameter, 15 mm ; scale rows, about 36 .
No. 2012t, 200 mm long; diameter, 7 mm ; scale rows, about 36 .

Typhlops mandensis, sp. nor.

Diagnosis.-Nasal large, semidivided, nasal cleft proceeding from the first labial; four supralabials; preocular present, narrower than the nasal or the ocular; no subocular; eye not distinguishable; rostral large; snout not hooked, with obtusely angular horizontal edge; nostrils inferior, just below the edge; prefrontal, frontal, and interparietal of equal size, much larger than the seales on the body; supraoculars and one pair of parietals still larger; diameter of body 23 times in the total length; tail exceedingly short, much wider than long; 34 scale rows round the middle of the body, the median dorsal row not enlarged. Color above, uniform pale greenish gray; below, pale butf.

Total length 135 mm .
Mabitat.-Wange, Island of Manda, north of Lamn, East Africa.
Type.-U'. S. National Museum, No. 20125; Gustav Denhardt coll.
Remarks.-This new species is apparently nearly related to T. hallowelli Jau, which, however, has only 3 supralabials and 28 scales round the body. The scutellation of the head is very much as figured by Sordelli (Jan, Icon. Ophid., livr. 4, 1864, pl. v, fig. 6) except that in T. hallowelli the prefrontal, frontal and interparietal decrease in size backwards, the latter being scarcely larger than the scales of the body, while in the present species these three shields are of equal size and much larger than the scales of the body. The supraoculars and parietals are also proportionally larger in the latter.

The only specimen collected has a small abnormal scale on the right side at the junction of the sutures between the preocnlar and ocular on the one hand, and the second and third supralabials on the other.

The Museum possesses 18 specimens of this species from the Seychelles, of which "灬 were collected by Col. Pike (No. sest) and 16 by Dr. Abbott (Nos. 1672:3-16724; 16732; 20419-20.4:31) the last 13 being from the Island of Mahé.

This large series demonstrates, probably, the extremes of individual variation. It may therefore be useful to emmerate individually the exceptions from the normal seutellation which may be expressed thas: Anal, $\frac{1}{1}$; supralabials, 9 ; loreal, 0 ; postoculars, 3 ; temporals, $1+\ddot{\text {. }}$

All the specimens have the normal number of temporals and supra: labials (No. 20422 has the sixth supralabial on the left side divided horizontally). The greatest variation is in the number of postoculars, Nos. 20426 and $1672:$ having only two postoculars on both sides, while No. 20429 has two on one and three on the other. More interesting is the fact that one specimen has an undivided anal (No. 16732), but most so is No. 20119, which has a well-developed loreal on both sides.

The coloration varies greatly, as there are specimens nearly uniformly colored from a light yellowish to nearly black, while others have dark or light spots.

Simocephalus chanleri, sp. nov.

DiAgNosis.--Frontal much shorter than the parictals; three postoculars; two labials entering the eye; secondary keels on all the seales, but no oblique striation; dorsal seale row next to the vertebral row not much larger than the laterals; eye much larger than nostril.

Mabitat.-Wange, Island Manda, north of Lamm, East Africa.
Type.-U. S. National Museum, No. 20126; Gustav I)enhardt coll.
Iescription.-Depth of rostral two-thirds the width, visible from above; internasals slightly wider than long, two-thirds the length of the prefiontals; firontal as long as wide, much longer than the prefrontals and much shorter than the parietals; loreal as long as deep; one preocular and three postoculars; temporals $1+2$, the anterior large, elongated, and widely separating the tifth supralabial from the parietal; seven supralabials, third and fourth in contart with the eye, seventh rery small; five sublabials in contact with the anterior geneials which are considerably laxger than the posterior ones; 15 seale rows, all the scales, including the row next to the gastrosteges, strongly keeled, the latter row even showing a secondary keel on each side, while in the adjoining row there are two secondary keels on the lower half of each scale; vertebral scale row with two very strong primary keds, beginning on the fourth scale from the parietals, and two well-marked secondary keels on cach side; suales in row next to the gastrosteges largest, the others gradually diminishing in size toward the vertebral row, the one next to the latter hat slightly larger than the others; seales in secomb row from gastrosteges mot elongated. searealy longer than wide; none of the scales with any obligue striation: color above, including
the lateral portion of the gastrosteges, uniform olive gray; below, yellowish. Length of head from tip of suout to end of parietals, 14 mm .
The type and only specimen is somewhat damaged, hence the impossibility of giving the number of gastrosteges and urosteges. Anal single.

Remartis.-Boulenger, in the first volume of the new Catalogne of Suakes in the British Museum ($1893, \mathrm{pp}$. 344-347), recognizes five species of Simocephatus with which it is necessary to compare the new species. Of these, two are at once easily excleded, s.cupensis by its very short parietals, and s.s stenophthelmus by its extremely small eyes. From the other three species the one here described is at once distinguished by its three postoculars.

This, however, is not the only character in which it differs, as will be shown by the following comparison:
The outline of the head of S. chenleri, both in profile and seen from above, is most like that of s. guirali (See MIoquard, Bull. Soc. Philom., (7) xi [ou plate erroneously x] 1887, pl. ii, fig. 3), consequently not so flattened and elongated as that of S. poensis (see Moquard, tom. cit., pl. i, fig. 2) or S. nyasse (Cat. Suakes Br. Mus. I, 1893, pl. xxiii, fig. 2). The size, form, and sculpture of the dorsal seales of N'. guiroli are entirely different, the comparative smoothness of the extreme lateral row, the elongation of the next one as well as the proportionally greater size of the former and of the one next to the vertebral row being quite characteristic, not to meution the oblique striation of the scales, which is not seen at all in S. chanleri. In the latter the prefrontals are also comparatively smaller and the frontal larger.

The island whence came the present species is situated not far from the month of the Tana River, and is, I believe, the most northern locality on the east coast of Africa in which any Simocephatus has been collected.

Boædon geometricus (Schleq).

Jan. Icon. Ophid., livr. 36, pl. iii. fig. 2 (1870).
Boolon seychellensis Güvther, Ann. Mag. Nat. Hist. (6) I, May, 1888, p. 830, pl. xviii, fig. c.
B. geometricus Bovlenger, Ann. Mus. Genota (2) xif, 1892, p. 14.

Dr. Abbott has sent home three specimens from the Seychelles, vi\%: Nos. 16733, 20446, and 20432, the latter being a comparatively young specimen, collected on the Ile Mahe in 189. It is somewhat darker, but otherwise colored like the larger specimens, the five dark lines on the back being clearly visible in all. There is a fourth specimen in the museum, collected by Col. Pike on Frigate Isli:nd, Seychelles. (No. S236). All four specimens have 23 seale rows.

Boædon lineatus Dum. \& Birns.

Two specimens from the island of Lamu, collected by Denhardt, a large one (No. 20131) and a young (No. 20130); the former has 27 scale
rows，the latter only 25. A large sperimen（No．16754）from Kilima－ Njaro，collected by Dr．Abbott，has 29 scale rows．
Boulenger has recently（Amm．Mus．Genova（2），xir，1892，pp．13－15， and Cat．Snakes Br．Mus．，i，1893，pp． 327 －336），reviewed the genus and decided that Giinther＂s 1 B．bipreocularis is only a synonym of B ．lineatus， and as he with his aboudant material undoubtedly is in a better posi－ tion to judge，I have named my specimens accordingly，in spite of the fact that all three have two preoculars．I have for comparison only five specimens from Loanda，on the west coast，collected by Mr．Heli Chatelain（U．S．National Museum Nos．16246；16249－16251；20033），and one from Cunga，collected by Brown（No．16075）．All of these have only one preocular；moreover，in all，except No．16075，the third supralabial has the upper posterior angle produced backward so as to join the eye below the preocular，while in the one from Kilima－Njaro as well as in both the Lamu specimens the third sumralabial is excluded from the eye（No． 16075 has it joined on the right side，excluded on the left）； finally，in the western sperimens there are three longitudinal white stripes on the head，the lower one originating beneath the eye on the fourth and fifth supralabial，while in the eastern ones before me there is no trace of such a stripe．

The young specimen in every respect closely resembles Jan＇s var． rerieguta，from Mozambique（Icon．Ophid．，livr．36，pl．ii，fig．4），which also has the same arrangement of the third supralabial，at least a partly divided preocular，and lacks the subocular white streak．

I am strongly of the opinion that it may be possible and protitable to recognize the varions subspecies of B ．lineutus．In such a case the present form would probably stand as B．lineatus variegatus（Jav），Giin－ ther＇s B ．preocularis being a strict synonym of it．

Crotaphopeltis hotamboeia（LAUR．）．

Jan，Icon．Ophid．，livr．39，pl．ii，fig． 1.
Five specimens，from Tana River，by Chanler，two adults（Nos．20110， 20091 ），two young ones（Nos．20093，20094），and one somewhat older （No．20092）．

The old ones are lighter in color，being of a medium brownish gray above，with the top of head lighter brownish and a blackish cloud on the auricular and postauricular region，while the young ones are dark brownish slate，approaching blackish，sprinkled with whitish，but with－ out any marked difference in the color of the head．

I have compared them with three specimens（No．20s06－＇s）recently received by the Musem from Mr．J．II．Camp，who collected them at Leopoldville，Congo State，and find them identical．

Philothamnus semivariegatus（Smith）．
Thee specimens，two（Nos． 2009 s and 20105）from the Tana River， by Chanler，the other（No．こ01ご）from Island Manda by Denhardt．

Nos. 20128 and 20105 are spotted to the same extent as Peters' figure of his Ph. punctatus (Reise Mossamb., Zool. Amph., pl. xix A, fig. 2), while No. 20098 has only a few black spots on the anterior portion of the body.

Hemirhagerrhis kelleri Boettarr.

Zool. Auz., xvi, April 24, 1893, p. 129.
Two specimens of this species (Nos. 20100, 20112), recently described by Dr. Boettger from Somaliland, were obtained by Mr. Chanler on the Tana River.

Structurally both specimens agree closely with Dr. Boettger's description, allowing for a reasonable individual variation (thus No. 20100 has 2-3 temporals on one side and 2-4 on the other, while No. 20112 has $2-3$ on both sides; in the former the preorbitals are somewhat separated from the frontal, while in the latter they barely meet it). In coloration No. 20100 also corresponds well with the Somaliland specimens, but No. 20112 differs in this respect considerably inasmuch as the middle of the back is marked with a broad and very dark brown stripe from the head to within a very short distance of the tip of the tail. This band is four scales wide, occupying the median three rows and one-halfscale on each side, the color of these halves being darker, almost black. In addition the other markings above and below are much darker and better defined, the dark vermiculations on top of the head and the onter double line on each side of the gastrosteges being particularly well marked; the two lower whole scale rows in the light space between the median dorsal band and the broad lateral bands are marked with a narrow dusky stripe along the center. The broad median dorsal band is also traceable in the light-colored specimen, especially posteriorly, but it is but slightly darker than the rest of the upper side.

U. S. National Museum number.	$\begin{aligned} & \text { Scale } \\ & \text { rowrs. } \end{aligned}$	Gastro steges.	Anal.	$\begin{aligned} & \text { Uro- } \\ & \text { steges. } \end{aligned}$	Length of body and head.	Length
20100.	17 17	154	$\begin{aligned} & 1 / 1 \\ & 1 / 1 \end{aligned}$	$\begin{array}{r} \text { Pairs } \\ 75 \\ 688 \end{array}$		mm . 78 64

Hemirhagerrhis hildebrandtii (Peters).
1878.-Ablabes hildebrandtii Peters, Monatsber. Ak. Wiss. Berlin, 1878, p. 205, pl. ii, fig. 6.-Fischer, Jahrb. Hamburg. Wiss. Anst., i, 1884, p. 7.
The present species is so rare and the original description so meager that I think it advisable to furnish a detailed description of the specimen at hand.
U. S. National Museum, No. 20106; Tana River, East Africa; W. A. Chanter coll.-Nine maxillary teeth, slightly increasing in size backwards, the posterior tooth grooved.

Scalo rows 17; gast rosteges 176 ; anal $\frac{1}{1}$; mosteges ! 8 ; supralabials 8 , fourth and fith in contact with eye, seventh largest; infralabials 10 , four in contact with anterior chin shield; temporals $2+3$.

Rostral normal, more than twice as wide as higl, quite visible from above; hasal large, mueh swollen and bent up on the upper surface of the nead. the nostril heing piered on the canthus rostralis and quite visible from above, the subnaral suture not reaching the nostril, obligue posteriorly, meeting the suture between first and second supralabials; internasals almost triangular, very small, less than one-third the prefrontals; loreal long and naroot, twice as long as high; a deep furrow from rostral to eye formed by the suture bordering the supralabials alove; preocular comparatively small, just touching the frontal above; frontal long, twice as long as broad, longer than prefiontals and internasals together, as long as parietals; supraoculars large, considerably swollen; two postoculars, uper one slightly larger; anterior temporals t wo, long, the upper one particularly narow, pointed anteriorly and barely reaching the upper postocular; two pairs of chin shichs, the posterion shghtly longer. Dorsal seales smooth, with one very distinct apical pore.

Color above drab, with a broad serrated brown band down the middle of the back almost to the tip of the tail, the borders and lateral projections being almost black, the adjoining scales, especially anteriorly, pale buff; a series of blackish ipots corresponding to the lateral seme of the dorsal band on the scale row nearest to the gastrosteges and mosteges; on the posterior half of the body a more or less distinct line on the third row from the grastrosteges and mosteges; tip of tail nearly micolored buff; top of head duab, with indistinct marblings of dark brown; a dark-brownish transocular streak; each of the labials in both jaws with an ill-defined dark brownish spot; muderside whitish, indistinetly marbled with dull rufous and matked withill defined, narrow, longitudinal backish spots: underside of tail densely sprinkled with grayish.

Length of head and borly, 250 mm . ; lenth of tail, 107 mm .
Remarks.-This species is evidently rather closely related to Giin-
 should apparently stand as Hemirhaferrhis mototanior. The difference between the two serefes as far as it can be made out fiom the deseription alone, comsists in the nomber and shape of the anterior temporats and the greater length of the tail in the present species. The coloration appears to be bery similat, the chief difterence being that the dorsal band in the present speries is serrated all the way and the presence in this species of the spots on the scale row next to the gastrosteges. Manyother differemees might bepointed out were we toacept thedetais of the sentellation of the head as shown in the figure as absolutely eorrect in every instance, but that is hardy to be expected.

From Ihemirhagerhis kelleri, the type of the genus, the present
species differs somewhat in the dentition, it having nine suphamaxillary teeth instead of five. 'They are somewhat smaller and more closely set, but this would scarcely justify their generic separation, inasmuch as all the other characteristics of the genus are present, particularly the single, swollen nasal with the incomplete, oblique subnaral suture. The coloration is also of a very similar character.

At first I had determined upon a new name for the present species, not supposing that an opistoglyph snake had been described by Peters as an Ablabes; but a comparison with his figure and description leaves but little doubt but that it is the same species, and that Peters overlooked the groove of the last maxillary tooth.

Since writing the above I find that Bonlenger has recently united H. nototeniu and H. hildebroultii under the name of Amphiophis nototenia (Proc. Zool. Soc. Lıond., 1S91, p. 307). For the reasons given above I still retain the two names distinct. As to the propriety of uniting Hemirhagerrhis Boettger with Amphiophis Smith, I can have no opinion, since I am macquainted with the type species of the latter.

> Psammophis sibilans (Liv.).
> Jan, Icon. Ophid., livr. 34, pl. iii, fig. B.

Two adult specimens, one (No. 20129) from Wrange, by Denhardt, the other from the Tana, by Chanler (No. 20099).

Psammophis biseriatus Peteris. Sitzungsher. Naturf. Fr. Berlin, 1881, p. 88.
I have no doubt that the two specimens (U.S. Nat. Mus. No. 20095 at., 20090 jum.) collected by Mr. Chanler on the Tana River belong to this species in spite of some differences from the description of the single type specimen (Mus. Berol, No. 939 4) collected by Hildebrandt at Taita.

The chief differences consist in the single anal, as described by Peters, against double in both our specimens, and in the somewhat greater number of urosteges in the type. The latter difference, however, is easily within the range of individual variation, and the difference in the anal seems hardly to be of much greater importance in this instance, inasmuch as the specimens in all other respects seem to agree perfectly. There is the less room for doubt, as both Boulenger and Boettger record the species from Somaliland (Anm. Mus. Genova (2) xif, 189:, 1. 15.; Zool. Auz., 189:3, p. 119), our locality, consequently, being intermediate.

The chief characteristics of the species, viz, the very elongated head and the great length of the frontal as compared with the supraoculars, the former, consequently, being broadly in contact with the preorular and the prefrontals widely separated from the supraoculars, are very strongly marked in our specimens, and Peters' description of the coloration agrees very well with the larger one. Peters does not at all describe the coloration of the head, which is very characteristic, how-
ever, but as the markings on top of the head are less distinct in the larger of our suecimens than in the smaller one, it is possible that they disappear by increasing age. The sides of the head in both sperimens are equally strongly marked, as follows: Labials pure white, with a few minute black specks near the commissure and a well-defined hack line along the upper edge of the supralabials, bordering below a chestnutbrown transocular band, and no light marks on preocular or postoculars. Top of head grayish brown, with several well-defined light clay-colored marks, narrowly outlined in black in the young specimen; thas the posterior half and the anterior lateral corners of the frontal are marked in this mamer, joining behind a curved line occupying the exterior and posterior border of the supralabials; a W-shaped figure crosses the parietals, while a narrower and fainter line joins the frontal with the rostral covering the internasal and the prefrontal sutures.

The young specimen differs from the old one in the coloration of the back, the ground color being more ashy and the markings more ferruginous. The median seale row is of the latter color, forming a narrow line down the entire length of the back, the inner corners of the lateral spots almost tonching it and the outer edges of these in turn connected with a similar line on the fourth outer scale row; each of the outer three scale rows are also marked with a darker brown line; the lateral lines appear to break up into spots on the posterior third of the body and to disappear entirely on the tail.

Of minor differences between Peters' description of the type and our specimens may be mentioned that in these the loreal is perceptibly longer than the nasals together.

Both our specimens have nine supralabials, fifth and sixth in contact with the eye; the younger specimen has $2+3+3$ temporals, the older one $1+2+2$, but the upper ones are large and plainly the result of the fusion of two plates; the second pair of geneials are very clongate in both specimens, exceedingly so in the larger one.

U.s. National Mnse ${ }^{\text {den }}$ number.	Scale rows.	$\begin{aligned} & \text { Gastro- } \\ & \text { steges. } \end{aligned}$	Anal.	Uro- steges.	Length of lowly and head.	Length
				Pairs	$m m$.	$m m$.
2009\%.	15	143	1/1	120	420	$\because 80$
20096.	15	* 155	1/1	102	$\because 2$	105
	Abont.					

Onr specimens ayree, as it will be seen, perfectly with the one colberted at Arusha, at the base of Kilimat Niaro, by Itr. (i. A. Fischer, and described, as well as figured. by I)r. J. (x. Fischer (Jahrb. Hamburg. Wiss. Anst., 1, 1884.]. 13, pl. i. fig. 4), which has 144 gastrosteges, $\frac{1}{1}$ anal, and 109 urosteges. This sperimen seems to be somewhat larger than our largest, and the top of the head appears to be uniformly colored as the type: the spots on the labials are latger than in ours.

One specimen (No. 20097) from the Tana River.

R hamphiophis rostratus (Peters).

An adult specimen (No 20111) from the Tana River, by Chanler. The specimen shows on the right side of the face the abnormality of having the upper posterior angle of the fifth supralabial separated as a large subocular.

Dasypeltis palmarum?

U. S. Dational Mnscum, No. 16755: Kilima-Njaro; Dr. Wr. L. Abbott coll.

Dasypeltis abyssina?
U. S. National Museum, No. 16756; Kilima-Njaro; Dr. W. L. Abbott coll.

There is such at confusion in the literature concerning the species of the genus Dasypeltis, and the specimens before me agree so little among themselves and with the published descriptions, representing about half a dozen species or subspecies, that I have been unable to name them to my own satisfaction. I have therefore selected the names belonging to descriptions which come the nearest to them, adding a query to each. The only other course would have been to make new names, but as I have no doubt that some of the old names will be found available as soon as some one with more material shall have been able to untangle the present skein. But I will ask as a favor of my fellow herpetologists that, if they ever quote the names heading these remarks, they will kindly not omit the question marks which I have added.
No. 16775 is much the larger of the two specimens before me; it is of a uniform dark brownish olive above and yellowish bencath; it has 23 scale rows. This would make it easily D. palmarum (Giunther, Cat. Col. Sn. Br. Mus., p. 142).* In addition, it has $3+4+5$ temporals, the first row scarcely longer than the others, second and third rows keeled. The denticulation of the keels of the third, fourth, fifth, and sixth lower lateral scale rows is very pronounced, the scales themselves being very small and placed obliquely. The supralabials are quite high, the fifth, for instance, being considerably higher than wide. The parietals are very small, being ouly as loug as the frontal.

The other specimen (No. 16756) is much smaller; in fact, quite young. The ground color is the same dark brownish olive, perhaps a shade more brown, and at first sight it appears to be uniform, but upon a closer inspection it is found that there is a series of darker spots on the back separated by a pale space, the markings closely resembling those on the back of Sordelli's figure of R. scaber (Jan, Icon. Ophid.,

[^140]39 livi., pl. ii, fig. 4,*) which Peters refers to his 1) scalbra var. merlici. Even the markings on the neck and head seem to be identical. Were these the only distindions I should unhesitatingly regard the specimen as the young of the one here called I). pelmarum?, and the var. medici as a synonym, but the scutellation of the head of the young specimen is so radically different from the old one, and from Sordelli's figure as well, that I must regard them as two distinct species until it be proven that the individual rariation in these snakes is almost molimited, and that there is ouly one species of Dasypeltis. The specimen in question has 25 seale rows, the keels of the lateral rows well denticulated. The head, as compared with No. 16755, differs as follows: The supraoculars are more arched, as described by Duméril and Bibron in case of D. abyssina; the temporals are $2+4+5$, the two first ones being excessively long and smooth, the others small, carinated; the supralabials are very low, the fifth, for instance, being wider than high; the sisth supralabial is extraordinarily deveioped, the upper border being elongated obliquely backwards along the lower first temporal and parallel with the latter; the seventh supralabial is also ruite elongated and partly below the sixth; the parietals are long, being as long as frontal and prefrontals together. I may add that both sides of the head are identical.

It will be observed that the large uniformly colored specimen (No. 16750) as regards cephalic scutellation agrees closely with Sordelli's figure, quoted above, while the young and spotted specimen (No. 16756) in nearly every respect agrees with Duméril and Bibron's I). abyssina, both as described (Erp. Gen., rir, pp. 496-497) and figured (Atlas, pl. lxxxi, tig. 2) by them, the chief difference consisting in the lighter and yellower gromd color of the latter. It is difficult to see in which other respect Peters' D.scubru var. mossumbica (Reise Mossamb., Zool., III, 1882, p. 120) differs from 1)uméril and Bibron's species, and it would even appear that Peters' D. lincolutu (Monatsber. Ak. Wiss. Berlin, 1878, p. 206) only differs in coloration.

In view of the above facts I am inclined to think that all through eastern Africa there ocelur two well defined species of Insypeltis, (1) D. palmarum (possibly only a color variety of true I). scabra) having 23) to 25 scale rows; :3 short anterior temporas; parietals not longer than frontal; and (\imath_{2}) $)$. ubyssinu (with several color varieties, mossam. bica, lineolata) having $2=$ to 27 scale rows; : \because very elougate anterior temporals; parietals as long as frontal and prefrontals together.

Naja nigricollis Rennh.

A young specimen (No. 20090) from the Tana River, by Chanler.
The scutellation of the head is perfectly nomal, except that on the right side there are four postoculars, the lower one having been divided, and that on the left side a small pertion of the fifth surnalabial is divided off forming an additional minute supralabial.

[^141]The scale rows on the middle of the body number 25 .
The coloration above is pale drab, the margins of the scales being paler, the underside uniform pale buff; round the neck a single broad bluish black collar covering 12 gastrosteges and about as many scales; on the vertebral line, starting on the fifth gastrostege and on the sixth vertebral seale from the parietal. A spot of similar bluish black below the eye, but not reaching the commissure.

Atractaspis rostrata Gürther.

One specimen (No. 20127) from Wange, Island Manda, collected by G. Denhardt; 23 scale rows.

Causus rhombeatus (Licit.).

Two specimens (U. S. Nat. Mus., Nos. 16757, 16758) collected by Dr. Abbott at Kilima Njaro, in poor condition. They have 19 scale rows; normal rostral; internasal broadly in contact with loreal; large dark, white-margined spots on the back. For these reasons I refer the species to C. rhombeatus, of which I have no autheutic Sonth African specimen at hand for comparison; but Abbott's specimeus agree well with the type of Hallowell's C. maculutus, except that in the latter the rhombs are more distant, and the angle of the black cephalic chevron more acute. It will be observed that Peters has already recorded the species from Taita (Monatsber. Ak. Wiss. Berlin, 1878, p. 207).

Causus nasalis, sp. nov.

Diagnosis.-Nineteeu scale rows; rostral produced, but forming no ridge above; internasal not in contact with loreal, being excluded by the prefrontal which is in contact with the posterior nasal; anal single; back with narrow, more or less distinct chevron cross-bands having the angle turned backwards.

Habitat.-Tropical Africa.
Type.-U. S. National Musemm, No. 16055, í ; West Africa; W. H. Brown coll.

Remarks.-In the form of the rostral the present species seems to be somewhat intermediate between Causus rhombeatus and C. resimus (both species with 19 scale rows), it being more pointed and prominent than in the former, though not to the same extent as in the latter, which is described and figured (Mouatsber. Ak. Wiss. Berlin, 1862, p. 2iT, pl., fig. 4) as having "das Rostralschild vorspringend mit aufgestiilpter Krempe." From both of these, however, it differs in the relation of the internasal to the loreal, the posterior outer corner of the former bending down behind the posterior nasal in the two old species, while in the pres. ent one it is considerably shorter and not meeting the loreal at all. The cross-bauds on the back of O. nusulis show a style of pattern entirely different from that of C. rhombeatus. The type of ' ' . resimus appears to have been uniform on the back, but it is possible that young speci-
mens may show a coloration more approaching C. nusulis than C. rhombeatus.

Causus rostratus Güntirer (P. Z. S., 1864, p. 115, pl. xv) is a species marked like C. rhombeutus, but with the rostral of C. resimus. Judging from the illustration quoted, the internasal is broadly in contact with the loreal, as in both of these species, and differs consequently in the same manner as they from C. nasalis. It has, moreover, only 17 seale rows. In view of these facts I am mable to regard C. rostratus as a synonym of C. resimus, as du Bocage has been doing (Jorn. Sc. Lisboa, viII, No. 32, Mch. 1882, p. 290).

Cousus lichtensteini Jan (a specimen of which is in the Musemm, No. 20805 , collected by Mr. J. A. Camp at Leopoldville, Congo State), differs in so many points that a comparison may be considered umecessary; it has 15 scale rows and a blunt rostral, even less prominent than that of C. rhombeatus. On the other hand, the coloration is somewhat similar to that of C. nasalis, and the internasal is widely separated from the loreal. The above characters are more than sufficient to separate them.

Causus jacksonii Günther is the latest species described (Ann. Mag. Nat. Hist., (6) I, May 1888, p. 331), and in many respects the one which comes nearest to C. nusalis. The coloration appears to be very similar as well as the form and size of the rostral. Whether the internasal joins the loreal, or not, is not expressly mentioned in the description, and no figure is given, but it is said that "in other respects [except rostral] the sentellation is very much as in the other two species" [C. rostratus and C.rhombeatus]. The chief character to be relied on in Dr. Giinther's description is therefore the number of scale rows, which is 23 , and as he had three specimeus before him this alone would seem sufficient.
The exact locality of the type of Cousus nasalis was not furnished by the collector (Mr. W. H. Brown, of the U. S. Eelipse Expedition to West Africa, 1859). However, a very similar specimen, though larger but in poorer condition, was obtained by him at Cunga on December 25 (U. S. Nat. Mus. No. 16074), and the type is probably from the same neighborhood. This large specimen has lost the arrow-shaped mark on the occiput, as well as the postocular streak, but the dorsal chevrons are well marked. In the type both the cephatic and the dorsal marks are well pronounced.

In addition to these West African specimens we have recently received two specimens collected by Mr. Chanler on the Tana River (U. S. Nat. Mus. Nos. 20088 and 20089), both smaller than the type; No. 20089 , in fact, quite young, only $14 s^{m m}$ long. In the larger specimen the blackish color markings have neady disappeared, but they are well developed in the young one, agreeing perfectly with the type in color, though the ground color is more bluish.

In sentellation the eastern specimens differ but very little from the western ones. The internasals and loreals are quite alike. The only
difference which I can detect is that the iudication of a keel on the dorsal seales is slightly more pronounced in the eastern ones. The number of scale rows are also somewhat variable in the latter as I have counted 20 rows ahost as often as 19 . In addition I may say that in the youngest specimen the rostral is but slightly prominent, hardly more so than in C. rhombeatus.

II. BATRACHIA.

ecaudata.
Phrynomantis bifasciata (sinth).
Three specimens (U.S. National Mnseum, Nos. 20113-20115) collected by ''hanler at the Tana River. They belong to Boulenger's variety A (Cat. Batr. Sal. Br. Mus., p. 17.3) with the modification that the lateral bauds do not commence on the upper eyelids but between the nostrils. It is to be noted that Dr. (1. A. Fischer has already collected this species at Wito ou the Tana (Peters, Reise Mossamb., Zool., Amph., p. 172).

Bufo regularis Reuss.
Eight specimens (U.S. National Museum, Nos. 20107, 20116-20122) collected by Mr. Chauler on the Tana River, and two (Nos. 16751-16752) by Dr. Abbott at Kilima-Njaro.

In all the specimens the vertical light line above the shoulder is plainly indicated, no matter how different the coloration may otherwise be. All are likewise marked with dark rose-color on the posterior aspect of the thighs, while in some of the younger individuals the rosecolor also pervades the back in a varying degree. In the young specimens the tympanum is comparatively smaller than in the adults; but the first finger is in all distinctly longer than the second.

Hyperolius cinctiventris Cope.
The only specimen sent home by Mr. Chanler, who collected it on the Tana River (U. S. National Museum, No. 20493), belongs untoubtedly to the species collectively named as above, but I am not by any means convinced that all the names referred to by Boulenger (Cat. Batr. Sal. Br. Mus., 1882, p. 126) under the present speries are in reality unconditional synonyms.

For that reason it may be useful to make a few notes conceruing structure and coloration of Mr. Chanlen's specimens,

Proc. N, MI. $93-47$

In the first place the rudiments of webs between the fingers are very minute; the temporo-crural fold as well as the gular fold and the one surounding the ventral disk strongly marked; skin on the disk as well as on the space between the lateral folds coarsely granular, skin on throat and underside of thighs more finely so.

Color above (in alcohol) very light drab with minute brownish spots on lower back; a well-detined arow-shaped brownish gray mark between eyes, the point turned barkwards and a short shaft-like projection from the anterior margin; a similaty colored band from nostril throngh eye obliquely down to cor ner of mouth; lips white, with an indistinct broad brownish band from eye to lip; a dusky line across the wrist and a similar one across the middle of the forearm, the space between being perceptibly lighter than the ground color; lower half of tibie apparently similady marked; lower surface of limbs, breast between the gular fold and the anterior border of the ventral fold, as well as space between the lateral border of the latter aud the temporocrural fold, cinnamon-colored.

Phrynobatrachus acridoides (Core).

Two specimens (U. S. National Museum, Nos. 20101-20102), collected by Mr. Chanler on the Tana River, agree in all essential points with Cope's original description (Journ. Acad. Phila., vi, 1867, p. 198) of stanrois neridoides. In addition to the characteristic dorsal plices our specimens have another descending from beneath the well-pronounced tympanum to the humerus. The coloration is also as described, though our specimens have no vertebral band, but there is a large blackish, pale-margined, triangular patch across the top of the head to the outer edge of the eyelids, the apex of the triangle pointing backwards; the tympanum is covered with a dark patch and the upper lip is dark with minute white dots.

Rana mascareniensis DuM. \& Bibr.
Five specimens (U. S. National Musemm, Nos. 16734-16738) from the Seychelles by Dr. Abbott. In all the specimens the fifth toe is longer than the third, or exceptionally equal to it, but never shorter. No. 16735 is a male with the external slits of the vocal vescicles parallel with the commissure and situated directly under the tympanum.

APODA.

Hypogeophis rostratus (CUV.).
Six well-preserved specimens, five adult and one young (\mathbf{C}. S. National Museam, Nos. $20440-2045$), collected by Dr. Abbott in the Seychelles, and one half-grown specimen received from the Paris Museum (No. 20403), throw considerable light on the individual variation of the present species and the validity of the characters assigned to it.

They show, anong other things, that the relative number of complete and incomplete "circular folds" relied upon by Boulenger in constructing his key to the species of this genus (Cat. Bat. Grad. Br. Mus., 1882, p. 96) is of no value. It is plain from the appended table that while in some of the specimens "nearly all the circular folds* completely surround the body," in others the majority of these folds are widely separated on the anterior portion of the back, a few nearest to the head being complete, however, in most cases. On the ventral surface all the rings counted are continuous, the iateral impressions on the posterior portion, which were not counted, alternating with the complete rings. It seems, therefore, better to rely upon the smaller number of rings and their incompleteness on the anterior portion of the ventral surface in separating H. guentheri \dagger from H. rostratus.

List of specimens.

Hypogeophis alternans, sp. nov.
Diagnosis.-About 163 to 175 folds, the posterior 40 to 50 complete on the ventral and dorsal lines; the posterior 79 to 86 complete across the dorsal surface as well, while anterior to these, above and below, the complete primary rings alternate with secondary rings broadly interrupted on the dorsal and ventral lines; snout shorter than width of head across the eyes; tentacle halfway between and below eye and nostril.

Habitat.-Seychelle Islands.
Type.-U. S. National Museum, No. 204i8; Mahé, Seychelles; Dr. W. L. Abbott coll.

[^142]Inscription of type specimen.-Teeth small, subequal in each jaw, the mambibulars larger than the maxillaries, the palatines very small; mumber of teeth on one side: Maxillary, about 30 ; mandibulars, outer row, about 2., inner row, $\overline{2}$; snout rounded, prominent, shorter than width of head arross the eyes: eyes very indistinct; tentade near the border of the lips equidistant fiom eye and nostril; body depressed, with a shatlow longitudinal groove on eath side of the back and one along the rentral median line; 175 folds, of which the posterior 40 are continuous arross both the dorsal and the ventral lines, while the posterior 86 are also continuous on the dorsal line; anterior to the 40 below and the sif above complete primary rings alternate with incomplete folds, the latter decreasing in length toward the head, though clearly .traceable to within one ring from the latter; tail somewhat conical, indistinct. Purplish-black above and below, anterior portion of head dark yellowish gray.

Total length, : 31 m m.: greatest diameter of body, 16 mm : smout, 6.5 mm. ; width of head across the eyes, 5.5 mm .
hemarks.-In general coloration the present speries, of which we possess the large type specimen collected by Dr. Abbott and a half grown one received from Prof. Lion Vailhant (No. 20404; Seychelles), agrees very closely with our specimens of $I I$. rostrutus, but it is at once distinguishable from the latter by the different arrangement and number of the folds, the greater width of the head, shorter snont, and different position of the tentacle, which in the latter is much nearer to the nostril.

On the other hand, the new species shows considerable similarity in the arrangement of the folds to Boulenger's ('ryptopsophis multiplicutus, which also hails from the Seychelles. The latter represents a different genus, however, lacking the interior row of mandibular teeth, while our specimen has five well-developed inner mandibulars on each side. The position of the tentacle is also widely different it being three times nearer the eye than the nostril in C. multiplicatus.

As the arrangement of the folds also resembles somewhat that of Irrotyphlus oxyurus, I was at first inclined to refer Duméril's two small specimens from the seychelles, and recorded by him as belonging to the latter speries (Mém. Nor. Sr. Nat. Cherbourg, ix, 1863, p. 316 , pl. i, fig. S), to the species here described by me. In looking at the figure (l. c.) I find, however, that the tentacle is placed directly under the nostril, and I am consequently forced to believe that there is still another eareilian found in the Seychelles in which the tentacle is thus located, thongh its identity with the true Indian V : oryurws appears rather doubtful.

In regard to the generie position of the new speries I have to remark that the tentade appears to be surroumbed entirely by a groove, but as it presents the same appearance as in several of the speremens of Π. rostrutus, in which I have been mable to make ont its thap-like nature,

I have concluded that this is due to shrinking of the alcoholic specimens. The squamosals are in contact with the parietals.

The young specimen is in less satisfactory state of preservation, but the characteristic points are readily made ont and the differences in the folds between the two specimens are expressed in the diagnosis.

NOTES ON RECENT COLLECTIONS OF NORTH AMERICAN LAND, FRESH WATER, AND MARINE SHELLS RECEIVED FROM THE U. S. DEPARTMENT OF AGRICULTURE.

BY
Robert E. C. Stearns, Ph. D., Adjunct Cutrator of the Department of Mollusks.

The following species, received during the year 1892 fiom the Department of A griculture, represent the Molluscan portion of the collections made dming said year by Dr. C. Hart Merriam and his assistants, in the Division of Biological Explorations.

As in previous accessions from the above source, many interesting facts pertaining to the geographical distribution of the forms collected, give additional value to the material obtained, and furnish many items of importance relating to the local fame of various parts of the comtry.

Following the terrestrial species which constitute the principal part of the collection, a few fresh-water species are listed, closing with several marine forms from the Gulf border of the State of Mississippi.

Class GASTROPOIA.

Pulmonata-(idopifila.

Family Testacellide.

Genus GLANDINA Schmmacher.

Glandina truncata Gmelin.

One or two examples from each of the following localities:
Chattahoochee, Fla.; Houma, La.; Washington, Miss.; Riceboro, Liberty County, Ga.; Vernon Bailey, April, 1893. Mr. R. J. Thompson also obtained two examples of this species at the last-named place at about the same time. The Georgia specimens were found on the Le Conte plantation.

This is a widely distributed species and probably the most familiar form of the genus. It is found in the "Atlantic and Gulf States, from North Carolina to Texas, as far north as Macon in Georgia, Bibb County, Ala., and Jackson, Miss." I found it quite numerous among the grass in moist, springy ground just outside the military reservation of Fort Brooke, at Tampa City, Fla., in 1869. My collection included the typical form as well as the varieties. prorolleln, ete.

Family LIMACLDAE.
Genus ZONITES Montfort.
Zonites lævigatưs l’feifter.
Three examples.
Washington, Miss., "in the woods," Yernon Bailey, May, 1892. Binney, in his useful "Manual of American Lamd Shells," says of this species, "I have received specimens from Pennsylvania to Arkansas, from Illinois to St. Augustine, Fla., and Mobile. It attains its greatest development in the Cumberland subregion."

Family PHILOMYCIDE.
Gems tebennophorus Binney.
Tebennophorus carolinensis Bosc.

One specimen.

Stone County, Mo., near Marble Cave; Vernon Bailey.
This large and distinctly characterized slug occurs as far north as "Canada, and as far to the south as Texas and F'lorida." (Binney.)

I have collected numerous examples among the bricks, rains of an old building near the historic Burns residence at the foot of Seventeenth street, Washington, and it is apparently quite common at many places in the District of Columbia, and presumably in the surounding country.

Family HELICIDE.
(iemus PatUla Held.
Seetion Anculisplra Morse.
Helix (Patula) alternata Say.
One dead specimen.
Washington, Miss., Vernon Bailey.
The solitary example obtained here was not quite mature. The variation exhibited by this speries makes it an exceedingly interesting form to the student. While limited in this respect when compared with the protean strigosa, nevertheless it includes cumberlandiana, Fergusoni, and mordax, as heretofore indicated,* and as proven by the ample series in the National Museum, which exhibits a direct gradation of intermediate and blending varieties. Mr. Pilshry \dagger in this comection speaks of "eltermata, including also mordare and cumberlamliuna (which are hardly more than extreme forms of alternuta)," ete.
"This pretty and variable species ranges from Labrador to Texas throughont the eastern I nited States, and is found in the postplioche of the Mississippi Valley, retaining some of the color of the red Hame-like patches." (Bimmey.)

[^143]
Helix (Patula) Hemphilli Newcomb.

$=H$. (I'atula) strigosa Gould var.
Five examples, dead.
Fort Huachuca, Ariz., at an elevation of about 4,300 feet above the sea; Dr. A. K. Fisher, May 14, 1892. (Mus. No. 125,599.)

The sperimens of the above, collected by Dr. Fisher, exceed in size any of the numerous examples of the Hemphilli variety of strigosa that I have seen. In other respects, too, they are of interest, as they exemplify within a small number of individuals a rauge of differentiation from the subangulate to the keeled or augulate whorls. They are all more or less tlattened and carinate, for extreme as the typical Hemphilli is when compared with the typical strigosa, it is nevertheless connected by a chain of intermediate and gradually connecting forms. In some of Dr. Fisher's specimens, a supersutural groove follows the whorls, and one nearly fresh example shows two color-bands, one above and one below the periphery. It is to be regretted that Dr. Fisher did not obtain more, and living examples of this interesting form from the Arizona region.

Bailey collected this form in August, 1890, "among rocks at an altitude varying from 8,000 to 11,000 feet," on the slopes of Needle Peak, Lost River Mountains, Idaho. The variety Hemphilli had previously been obtained in Idaho by Hemphill, and has heretofore been reported from Nevada, Utah, and Colorado.

In the May, 1892, number of "The Nantilus," I publisher the fact of the detection of Patult strigosa (Mus. No. 123,576), by Mr. Marcus Baker, of the U. S. Geological Survey, at Coon Mountain, Ariz., about 10 miles south of Canyon Diablo. Mr. Baker's sperimens were found "scattered along the interior slopes of the crater;" they are mostly dead shells. The elevation, as stated, is between 5,200 and 5,700 feet above tide level. The whole region is excessively arid, and the general aspect of the shells collected by Mr. Baker implies an environment of that kind. As a whole they are rather that than elevated, and more or less angulated at the periphery. The fresher examples are slightly rufous, with two narrow revolving bands on the body whorl. The character of the locality partially described by Mr. Baker will be still better understood by the following abstract of a paper read before the National Geographic Society of Washington, 1). C., by Mr. (x. K. Gilbert, in March, 1892 , and it will further give a pretty fair idea of the general character of the enviromment elsewhere, where this remarkable species and its varieties are the prevailing forms.

From Mr. Gilbert's paper, it appears that Coon Mountain is a curiously shaped crater in a desolate region some three days journey from Flagstaft. The crater is abont three quarters of a inile in diameter, howl shaped and quite deep, and rarious reasons have been given at times for its existence. Neax it have been discovered so many specimens of meteoric iron, that it would seem almost necessarily more than a mere coincidence. Speaking of the unequal distribution of land and water on the surface of the earth, Mr. Gilbert said that one reason given in explanation of that
was that there was a greater density in that hemisphereand hence a greater attracting power for water. This mequal density might be accounted for by some unusual accretion there, such as would arise from contact with a star. Speculation as to the possibility that the earth's greater hollows originated in this way suggested to him a similar explanation for the origin of the Arizona crater, that it was caused by the collision of an iron star several thonsand feet in diameter.

In order to find out what this theory was worth, Mr. Gillert, accompanied by Mr. Marcus Baker, visited Coon Mountain and camped near there for some time, carefully studying all the peculiarities of the place, and making a number of olservations to discover whether the relation between all this meteoric iron and the crater, was one of cause and effect, or of coincidence merely. Coon Mountain rises some 400 feet above the level of the surrounding plain, and the bottom of the crater is about 600 feet below the highest point on the rim.

The rock strata of the plain are limestone and saudstone and lie nearly flat. In the rim of the crater these rocks are bent upward, and upon them lie broken fragments of the same materials. The peculiarity of the crater, from the geological point of view, is that it contains no voleanic rocks, and in this respect is unique. The phenomena observable in connection with the crater had given rise to a number of hypotheses, two of which the speaker discussed more freely than the others. The glacial hypothesis and the theory of the limestone sink are both inadequate. The true hypothesis of the crater implies the expenditure of a tremendous amount of energy in a very brief space of time. By the system of elimination all the hypotheses have been abandoned with the exception of the stellar and the explosive. Magnetic and volumetric tests were applied, and with the former the needle showed no evidence of the presence of a considerable mass of iron. After experiments with these same needles later it was estimated that if the crater was formed by the penetration of such a mass, it must have been buried so miles below the surface to have affected the needle so slightly.

By the volumetric test it was necessary to determine whether the debris surromnding the crater would just fill it or exceed the necessary amount by the supposed amome of the embedded star. It was found that it would just fill it, and this would seem to compel the abandoning of the stellar theory, and we are forced to believe that the relation of rock and crater is one of coincidence ouly, though the chances of such a coincidence are not greater than one in five thousand. After comparing the phenomena of Coon Mountain with those of the volcanic eruptions in Japan in 1888 , Mr. Gilbert said that in the future ('oon Mountain will probably be looked upon as an example of the bursting of the earth's surface by volcanie steam unaccompanied by lava. It is highly improbable that this catastrophe was witnessed by man.

From a description of the region and the phenomenal character of the remarkable locality where Mr. Baker collected his examples of strigosa, we will return to a further consideration of the shells and the varietal aspect they exhibit. In a recently published portion of his Manual in refering to the strigosa group of Putula, Mr. Pilsbry says: *

In the species of this division [Anguispira], the characters of sculpture, form and color and to a less degree of the soft parts, vary to an extent inconceivable to those who have not actually seen the shells. It may now be demonstrated that the forms described as H. strigosa, Cooperi, idahoensis, Hemphilli, Maydeni, ete., are connected by such a multitude of intermediate forms that it is absolutely impossible by the most acute analysis, to draw lines of demarcation between them.

It is refreshing in these days of excessive systemization and speciesmaking to meet with a paragraph like the above by an author of justly recognized ability in a publication of standard character and impor-

[^144]tance; yet it would not be a matter that need cause surprise to find in the course of twelve months some disciple of the " new school" rushing into print with a "revision" of this peculiar group, in which every third individual shell is honored or slishonored with a generic, subgeneric, or some other title, to say nothing of elaborate, though more general, divisions, subdivisions, ete., ad libitum, in frivolous perplexity.

The National Musemm contains a maguificent and exhanstive series of strigose and what are now regarded as its varieties, probably surpassing all others excepting that contained in Mr. Memphill's private collection; it includes not only the ample series received directly and indirectly from Mr. Hemphill, but mumerous accessions, large and small, made by various parties, in the course of explorations and travel within the general territory inhabited by strigosa and its allies.

Geuns POLYGYRA Say.
Helix (Polygyra) auxiformis Bland.

Ten specimens.

Bay St. Louis, Mississippi; Vernon Bailey, April 30, 1892. "In the pine woods"; examples mostly dead and bleached. The foregoing has been found to inhabit Florida, Alabama, Louisiana, Texas, and the Indian Territory. Numerous beds of semifossil specimens are found in Middle Alabama. (Binney.)

Helix (Polygyra) Dorfeuilliana Lea.

Dead shells.
Stone County, Mo.; Yernon Bailey, on side hills near Marble Cave.
This form is widely distributed through many of the Southern States, having been collected in Florida, Louisiana, Texas, Arkansas, Indian Territory, etc., and as far to the north as Kentucky, opposite Cincinnati, Ohio. Mr. McDaniel reports its occurrence in eastern Texas, in Andersou County.

Genus MESODON Rafinesque.

Helix (Mesodon) albolabris Say.
One specimen.
Stone County, Mo., near Marble Cave, on sidehills, with the previous species; Vernon Bailey.

This familiar form has a wide geographical distribution. The national collection contains ummerous examples, forming an exceedingly fine series, embracing nearly seventy trays.

The geographical range of albolabris extends from Maine to Minnesota, inclusive of Canada (at various places), thence soutnerly to Arkansas, Mississippi, and Florida, and the States and Territories included between the above northerly and southerly lines, comprising, as shown in the collection, a representation of twenty-three of the States, etc.

As would naturally be supposed, of a form inhabiting so great an area, ronsiderable variation is exhibited, and one finds adults in some phaces with small shells, in others with shells conspicuously large; some with elevated and some with depressed shells. Again, in some localities, the growth lines are delicate, and the shells also light and thin; others have heavy shells, and a coarse seuppure. Another and more striking varietal character is the orrasional presence of a toothlike prominence on the parietal wall, and sometimes a toothlike process is seen at the base of columella on the peristome.

The gemus Mesodon is represented on the Pacific coast of North America by several species. At the present time there is a great gap between the western and northern extension or limit of the group as we trace it uestward firm the Atlantic side of the continent, and the extremest eastern locality, at which it has been found as we follow it eastward from the Pacific coast. Regarding, as I do, both H. Townsendiun and H. ptychophora as Mesodons, and considering the latter as a variety of the former, we find these West or Pacific-coast forms extending eastward as far as Idaho, where ptychophor has been detected, near Salmon River and in the valleys and on the slopes of the Bitter Root Mountains; it also occurs in Montana, according to Binney. Between western Idaho and Minnesota there is, it will be seen, a great gap, in which we have no evidence of the existence or presence of any form of Mesodon. It is not, however, umreasonable to suppose, that sooner or later this long reach will be materially shortened by the detection of Mesodon at new localities, both in the easterly and westerly margins of the present boundaries.

From the Miocene of the John Day region,* in the neighborhood designated as the North Fork of the John Day River, Oregon, longitude $1190^{\circ} 40^{\prime}$, latitude $44^{\circ} \tilde{5} 0^{\prime}$, an given by Prof. Condon, we find Mesodon associated with H. (Arionta) fidelis, H. (I'tula) perspectiva and the rare and curious Ammonitella Sutesii of Dr. Cooper.t To the Mesodon, which I regarded as an undescribed form, I gave the name of Dallii. 'The other species, from the John Day beds, are familiar to the collector and student of recent land shells, though Totesi is about as rare as fidelis is common.

Mesodon Jallii difiers fiom any of the living representatives of the group inhabiting the Pactic States. It suggests an ancestral form, from which may have proceeded the species known as columbiania, devia, fermana, ett. Ammonitella Yatesii is so exceedingly rare, and

[^145]is so restricted and peculiar in its distribution, that, considered in connection with the fossil examples, it may be regarded as obsolescent or as an interesting survival of the extraordinary physical changes of the John Day enoch, and the apparent absence of Mesodon in the region heretofore indicated, may be due to its absolute obliteration through similar causes during the middle or later tertiary periods as well as to still later physical changes.

```
Helix (Mesodon) dentifera Bimney.
```

One dead, fresh example.
Washington, Miss.; Vernon Bailey.
Mr. Bailey has carried this form quite far to the South. Its range has heretofore been given as from Maine to North Carolina.

> Helix (Mesodon) thyroides Say.

Var. bucculenta (iould.
Several examples.
Washington, Miss. (one example living); near Marble (ave, Stone County, Mo. (three specimens), occurring on the sidehills, and at Houma, La. (nine dead specimens); Vernon Bailey.

Mr. Binney says of thyroides: "A post-pliocene species now found all over the eastern province. The variation in size is very great. The small or bucculentus form of this species is usually that found in the Southern States. Both the larger and smaller forms exhibit a small parietal callosity or tooth, and the shell is also variable in the umbilical feature." Binney credits it to Washington County, Tex., and Mr. W. L. McDaniel, of Tyler, Tex., has collected the bucculente form in Williamson County in that State.

Some examples of thyroides-bucculentr that I have inspected are externally very close to occasional individuals of the so-called ptychophora, from Cœur d'Alene, Idaho.

Geuns TRIODOPSIS Rafinesque.
Helix (Triodopsis) inflecta Say.
Two specimens, dead.
Stone County, Mo.; Vernon Bailey, July, 1892.
The above examples were found on the slopes of the hills near Marble Cave. The species inhabits a large teritory, exteuding from the Atlantic seaboard westerly to the valley states of the Ohio and Mississippi rivers, and southwesterly to Texas. A well marked and easily recognized form.

Helix (Triodopsis) Levettei Bland.

Ten examples.
Fort Huachuca, Ariz., Dr. A. K. Fisher, May 14, 1892.
The specimens collected by Dr. Fisher, though much larger than the type, having from one-and-a-half to two-and-a-half more whorls, agree
perfectly in every other respect and also agree with examples in the L. S. National Museum (No. 124481) from Tucson, Ari\%, presented by the late Dr. Isaac: Lea. The Lea specimens, of which there are several, include examples that exhibit the characteristics of Trionlopsis, as well as others, in which the peristome is simple or not tridentate or denticulate, in this respect being like other species that have been placed in the above gemus, and show upon what an infirm foundation some of these genera are based.

It is quite evident that howevar persistent the tridentate chamater may be in certain forms, in others it is variable, and therefore of little value; the latter may be regarded as the connecting links which unite Triodopsis to Mesodon.

Bland's description* rests upon "two living and one dead specimen," collected by Jr. (i. M. Levette, near Santa Fe, N. Mex. Binney, quoting Bland, says; "this species is quite distinct from any known North American or other form. The number of whorls and of teeth, their form and color, with the color of the shell and peristome, are its peculiar features. The strise are by no means so well developed as shown in the figures."

Further on, he observes: "the species varies in the number of teeth on the peristome. Some have one basal tooth only, which in some specimens is widely and bluntly bifid."

Attention is called to the geographical extension of the range of this species and of Patula strigosa var. Hemphilli; for this addition to our knowledge we have to thank Dr. Fisher and the Biological Division of the Department of Agriculture.

From the habitat of Dr. Levette's examples to Tucson, the locality of the Lea specimens, and Fort Huachuca, is nearly 400 miles in a southwesterly direction; the latter place is so very near the boundary line between the state of Sonora, Mexico, and the United States, that there can he hardly a doubt that further exploration of the general region will detect both H. (Patula) Hemphilli and H. (Triodopsis) Lerettei south of the boundary, and add their names to the list of the Mexican fauma.

(ienns ARIONTA Leach.

Section L.YSINOE H. and A. diams.

> Helix (Arionta) californiensis Lea.

One specimen, dead.
Monterey, Cal., "in the woods," October s, 1891; Vernon Bailey.
A familiar form, which seems to have its specific center in this region. I collected a large nmber of the above at this place in March, 1867, in openings on grassy slopes.

[^146]Two examples, dead.
Monterey, Cal., with the foregoing, on the same day; Vernon Bailey. This species is rather local in its occurrence; the Santa Cruz form, somewhat differentiated in color and epidermis, though modified environmental conditions, has received the name of sequoicola.

Helix (Arionta) Rowelli Newcomb.

$=H$. Lohri Gabl.

Three specimens, dead.
Fort Huachuca, Ariz.; Dr. A. K. Fisher, May 14, 1892.
Dr. Fisher's examples agree perfectly with the specimens in the National Collection, collected by the late Prof. Gabb, who found them, as elsewhere stated by me, in the table-lands of Lower California, near Mulege. It has been reported from the Sait River Mountains, 7 miles north of Phoenix, Ari\%, by Pilsbry, and has been credited to C'hihuahua, Mexico, and still further to the eastward in the State of Texas.

It is interesting to note its, occurrence at Fort Huachuca, associated with Patulu Hemphilli and Triodopsis Levettei.

Binney, on page 22 of the Manual of American Land Shells, in speaking of H. kowell, says it "has been referred to Arizona, but erroneously," and, in connection with H. Remondi (Carpenteri), says "it is the only species common to the peninsula and mainland of Mexico;" these statements, in the light of later knowledge, require correction. It is highly probable that other forms now regarded as peculiar to the peninsula of Lower California, will somer or later be detected on the mainland.

> Family BULIMULIDE.
> Genus BULIMULUS Leach.
> Bulimulus dealbatus Say.

Four dead shells.
Stone Comnty, Mo., near Marble Cave, "on the side hills;" Vernon, Bailey.

The upper whorls of the adults exhibit the longitudinal ribbing characteristic of B. Ragsdalei Pilsbry. This species has heretofore been reported from various places in Texas by Mr. Bailey and others connected with the Biological Division of the Department of Agriculture.

William Lloyd collected several examples of this species at Monterey, Mexico, in 1891.

Family SUCCINIIDA:
Genus SUCCINEA Draparnaud.
Succinea Sialleana Pfeiffer.
Six examples, dead.
Houma, La., Vernon Bailey, May S, 189き.
This is a well-marked species and quite distinct from the following:

Six specimens.
Houma, La.; Vernon Bailey.
This also is a well-rletined and characteristie form, easily separable from the preceding species, and has heretofore been credited to "Lake Concordia, in Texas."

PULMONATA-IIGGROPHILA.
Family LIMNLIDE.
Genus PLANORBIS Guettard.

Planorbis tumidus Pfeiffer.
Numerous bleached specimens.
Pan Handle, Tex., August 25, 1892; Vernon Bailey.
The shells of this species were "found in a dry basin on the prairie, at an altitude of 3.660 feet above sea level." This form also oceurs in Nicaragua.

Planorbis trivolvis Say.
Ten examples.
Houma, La.; Vernon Bailey, May, 1892.
These shells are partly jumiors, but the lot contained a sufficient number of perfect adults to admit of identification. A common form found nearly everywhere in North America. The National Museum contains examples from Puebla, in the State of Puebla, and from Jalapa, in the state of Vera Cruz, received from the Mexican Geographical Commission a few years ago.

> Genus PHYSA Draparnaud

Physa gyrina Say.
Numerous living examples.
Stone County, Mo., Vernon Bailey, July 7, 1892.
"Found in a creek near Marble Cave."
Physa mexicana Philippi.
Ten or more living specimens.
Houma, La.; Vernon Bailey.
These agree with the form to which Philippi gave the name mexicana; it appears to be a very globose variety of heterostropha.

SCUTImRANCHIATA.

Section RHIPIIOM(LOSSA.
Family HELICINIDAE.
Genus HELICINA Lamarck.
Helicina orbiculata Say.
Numerous specimens.
Missouri, ip Stone Comity, near Marble Cave; Vermon Bailey.

Common on the slopes of the hills.
In addition to the localities heretofore credited with this species, Mr. McDaniel has collected it in eastern Texas, in both Bell and Smith counties.

Writing of this form Mr. McDaniel says: "I found large numbers of this species in Bell County, Tex. The exact locality was on limestone bluffis on either side of Salado Creek. On one morning, just after a moderate rain, the whole face of the cliffs was sprinkled with them. On top of the bluff's they were found walking on twigs in the low brush and brambles and on trees 8 feet from the ground. Associated with them were found Helix alternata Say, and an occasional Bulimulus schiedeanus var. Mooreana Pfr. This species also occurs in Florida. I found a solitary living example under a cedar \log between Tampa and Rocky Point wheu collecting in this region in 1869.

The following marine species were collected by Mr. Bailey on the shores of St. Louis Bay (Mississippi), Gulf of Mexico.

Class PELECYPODA.

Family CH, MIDA.

Genus CHAMA Bruguiere.
Chama arcinella Linné.
Valves only.
A widely distributed form, ranging geographically from Hatteras in the north, on and around the shores of Florida and the Gulf of Mexico to the Antillean region as far south as the island of Guadaloupe, West Indies. When perfect this is a peculiarly interesting and striking species.

Family VENERIDE.
Genus DOSINIA Scopoli.
Dosinia discus Reeve.
One example, fresh.
This species is quite common at many places on the eastern and gulf shores of Florida and at mauy other places in the Gulf of Mexico. Its northern limit is given as Virginia, by Dall,* and its southerly range as Vera Cruz.

I have found it abundant on the outer beach of Amelia Island near Fernaudina, Florida, associated with Telline alternata Say.

[^147]
Olass GASTROPODA.

Family FASCIOLARILDE.
Geuns FULGUR Montiort.

> Fulgur perversa Linné.

One good example.
This form has a wide distribution, and is one of the largest species of marine gastropods, the shell often attaining a length of 15 inches or more. It is found as far north as Cape Hatteras, on the Atlantic side, where it occurs between tide marks; thence southerly, along the coast, to and around the extremity of the peninsula of Florida, and on the shores of the Gulf of Mexico, in many localities, with Cuba as its southerly limit. At many places within the range of its distribution the animal (softer parts) is used as au article of food. It is, however, for the most part, tough and indigestible, in these respects rivaling the abalones or Haliotis of the Pacific coast, which are so largely used as food by the Chinese, and also exported to China in great quantities for culinary, or rather gastronomic purposes.

Family LITTYORINID_E.

Geuns Littorina Férussac.
Littorina irrorata Say.
Numerous specimens, living.
This also is an abundant and widely distributed species, living not only between tide marks, but frequently far above high-water line; it occurs on the shore of Rhode Island, thence along the shores southerly around Florida and the Gult of Mexico to Texas and is credited to the West Indies and the island of Jamaica.

It is a solid and rather pretty form, and may be seen in localities where it occurs, crawling up or attached to the stiff, wiry sedge grass of the lagoous and salt meadows or marshes near the shore.

Family NA'TICIDE.
Subgenus NEVERITA Risso.
Neverita duplicata Say.
One dead beach-shell.
A common form at many plares along the ocean and gulf shores from Massachusetts Bay to Texas; oceurs also at Vera Cruz. I have collected numerons examples on Nahant and Chelsea beaches in the north, and on both coasts of Florida, and on the Florida Keys, in the south.

Lunation heros Say, may be reganded as the Atlantic analogue of the West American or Pacitic Lumutiv Lewisii, thongh the latter attains a much larger size than heros. So Neverita duplicuta may be considered
as the east coast analogue of the Pacific N. Recluziumu, though the latter exhibits remarkable extremes of variation in many ways, and is much less constant in form than duplicata. I have collected both of these western forms at many places, from Puget Sound to San Diego. L. Lewisii is occasionally met with of extremely large size; it is the giant of the Naticas; it is frequently eaten by the Indians inhabiting the region bordering on the sound.

Family NERITIDE.

Genus NERITINA Lamarek.

Neritina reclivata Say.

Numerous living examples.
Dall gives the distribution of this species, as St. Augustine and both coasts of Florida, Texas, and the West Indies to Jamaica, the latter place being its southerly limit so far as known at the present time. Wherever found it is usually quite abundant. It is a rather pretty and well characterized species. It is quite common around the mouth of Hillsboro River where the stream flows into the bay near Tampa.

Class CEPHALOPODA.
Family SPIRULIDE.
Gemus SPIRULA Lamarek.
Spirula peronii Lamarck.
One example, shell.
This is a pelagic species and its shells are found, sometimes in vast numbers, after storms or high winds, cast up on the beaches. The shells which are internal, are quite common in collections, aud are often sold and used for fancy shellwork, but complete and perfect examples, animal, shell and all, are rarely met with in the museums.

Wasilington, D. C., November $15,1833$.

ON THE RELATIONSHIPS OF TAYLOR'S MOUSE, SITOMYS TAYLORI.

BY
Frederick W. Truf, Curator of the Department of Mummals.

In 1887, Mr. Oldfield Thomas described a very small mouse from San Diego, Texas, uncler the name of Hesperomys (Vesperimus) taylori.* Later he gave a full description of it under the name of Cricetus (Tesperimus) taylori. \dagger

For many years the National Museum possessed no examples of this interesting little species except a mutilated skin in alcohol, but on two occasions since 1887 it has received some complete specimens in alcohol from Mr. William Taylor, in whose honor the species was named.

This mouse is readily distinguishable from other American field-mice, as Mr. Thomas has pointed out, by its small size and nearly uniform coloration.

Mr. Thomas placed it unhesitatingly in the subgenus Vesperimus, and remarked "no detailed comparison is needed of this little mouse with its nearest allies." I propose to show, however, that it possesses characters intermediate between those of Vesperimus and Onychomys, and is typical of neither.

Dr. C. H. Merriam, in 1889, raised the subgenus Onychomys of Baird to the rank of a genus, giving as the principal characters the following: \ddagger

1. Anterior upper molar with three external and two internal cusps. Last lower molar subcircular in outline.
2. "Coronoid process of mandible well developed, rising high above the condylar ramus and directed backward in the form of a large hook."
3. Nasals wedge-shaped behind.
4. Body stout and heavy; tail short and thick.
5. Hind feet with four phalangeal tubercles only.

These characters are contrasted with those of Hesperomys § (especially subgenus Tesperimms), in which the first upper molar has three cusps on each side, the last lower molar is somewhat elongated, the coronoid process is very short, the nasals are truncated behind, the tail is long, and the hind feet have six tubercles.

[^148]Upon examining eritically specimens of Nilomys laylori, I find that a different combination of characters exists. Thus, the anterior upper molar has three cusps on each side, and the last lower molar is somewhat elongated, as in Vesperimus, but, on the contrary, the coronoid process is high and prominent, as in onychomys. The nasals are truneated behind, as in Vesperimus. In the proportion of the length of the tail, however, the speries is intermediate between the two subgenera. Thus, in Onychomys the average leugth of the tail, for all the specimens of the several species cited by Dr. Merriam in 1859 (except O. 1 ongipes), is 40 per cent. of the length of the head and body; the longest tail, 62 per cent., is found in O. longicaudus, and the shortest, 36 per cent., in O. melanophrys. The average for four specimens of Sitomys (Tesperimus) leucopus is 89 per cent., while in S. taylorit is 65 to 70 per cent.

The hind feet in S. taylorihavesix tubercles, as in ordinary Tesperimus, but some hairs are found on the anterior part of the soles as fir as the base of the toes, and even under the toes themselves.

On account of the peculiar combination of characters mentioned above, I am disposed to regard S. taylori as the type of a separate subgenus, which may be termed Baiomys.

Baiomys, subgen. nor.
Ascending ramus of mandible short and erect. Condyle terminal. Coronoid process well developed, uncinate, and near the condyle.

Size very small, tail short. Plantar tubercles, six. Soles hairy.
With Vesperimus and Onychomys, this subgenns will form one section of the genus Sitomys. It is more closely allied to the former than to the latter. In Vesperimus, the nearest ally, as Mr. Thomas has pointed out, is s. (Tesperimus) michiganensis, which has many of the characteristics of S. trylori, but so far as regards the skull is typical of the subgenus to which it belongs.

NOTES ON THE NATURAL HISTORY OF ALDABRA, ASSUMPTION AND GLORIOSO ISLANDS, INDIAN OCEAN.

BY
Dr.'W. L. Abbott.*

The atoll of Aldabra lies 220 miles northwest of the north point of Madagascar, in latitude $9 \circ 2 \tilde{5}^{\prime}$ south, and longitude $46{ }^{\circ}$ east. It is about 22 miles long by 8 miles in extreme width, the long axis lying east and west.t It is entirely of coral formation, and forms an oval ring of land, broken at several points by chanmels, and inclosing a lagoon. The ring of dry land is widest at the southeast and northwest corners, where it is nearly 3 miles across. The Grande Terre, or main island, forms threefifths of the circumference of the ring. It includes (from midway on the western side of the ring) the whole southern and eastern sides to a point on the north shore, heing 35 miles long. It is separated by Pass Hourreau, 200 yards wide, from North or Middle Island. This is 12 miles long, forming the north shore as far as Grand Pass. This is the principal opening into the lagoon. It is 400 yards wide, and 8 to 10 fathoms deep. West of this lies Île Picard, or Northwest Island, forming the northwestern corner of the atoll. It is about 5 miles long. Between the south end of Île Picard and the northwest end of Grande Terre, lie half a dozen small islands and as many shallow channels. The lagoon is about 20 miles long and 6 miles in width. Excepting in the northwestern comer near Grand Pass and in a few channels, it is very shallow, half of it being nearly dry at low tide. Grand Pass is the only inlet deep enough to allow the passage of a large vessel, and through this the current rums with great rapidity, 5 to 7 knots, so that it is dangerous for sailing vessels except at the turn of the tides. At Pass Hourreau there is a narrow channel, through which a small vessel might pass. .The inner or lagoon shore of the land is everywhere bounded by mangrove swamps, intersected by numerous chanmels. During the northwest monsoon a heavy swell rolls in through Grand Pass and breaks upon the reef within the lagoon. It is very dangerous to boats at such times, and the pass can not be traversed. There are numerous islands scattered about the lagoon, the longest being Ile Sepoy, about 5 miles from Grand Pass and directly opposite to it, and Île Michel, opposite to Pass Hourrean, and close to the southern side

[^149]of the lagoon. There are hundreds of other smaller islets, varying in size from a few acres to a few square yards.

The atoll is entirely of coral formation. Darwin, in his "Coral Reefs," relying principally on the reports of Capt. Moresby, did not regard it as a true atoll. The rocks of which it is composed were said to be "vitrified." The rock certainly resembles lava in its outward appearance; but it is easily broken, and the fracture displays a white interior and mumerous fossil corals that are in a scarcely altered state. The rock gives a peculiar ringing sound when struck.

The principal difference between Aldabra and other coral islands is, that it seems to be of very ancient formation and has undergone an elevation of 15 to 20 feet. The island is flat, composed almost entirely of naked coral rock, rough and jagged, completely honeycombed in every direction with pits and tissures. Scarcely any soil exists, except. ing where a small quantity of rich mold, formed by decomposing coral, has accumulated in hollows of the rock. The sea face is an overhanging cliff of rock, but in a few places, especially on Île Picard and on the west coast, are sandy beaches and low sand-hills. Upon the south coast are Dune Jean Louis and Dune du Mêche, sand hills, which reach 6 6a feet above sea level-the highest points in Aldabra.
Nearly the whole surface is covered with a dense, almost impenetrable scrub of tangled bushes. No large trees now exist except the mangroves, which attain a height of 60 feet and a diameter of a foot or more. Formerly some large trees existed, as shown by the decaying stumps and fallen logs, occasionally 2 feet in diameter, still to be found upon Île Picard. In some places the larger mangroves are dead over areas of several acres. The disappearance of the larger trees can only be attributed to a diminution in the rainfall.
The supply of fresh water is very scanty, only obtainable in hollows in the rock, except at one place near the southeast corner of Grande Terre. Here there is a sort of spring, filling a hollow in the rock 6 by 2 feet, and 5 feet deep. This seems to drain a considerable area, as the level of the water can not be appreciably lowered by baling out. The water is of poor quality.

The rainfall is scanty and very irregular. Sometimes many months rlapse during which not a drop of rain falls, and, on the other hand, 6 inches have been registered in a single night.

The islets in the lagoon are of very peculiar form, generally more or less mushroom-shaped. The level of their flat summits is a few feet

level of present reef.
Fig. 1.-Section of an islet in the lagoon.
above that of spring tides. They aresevidently the remains of the ancient floor of the lagoon. All the other parts having been cut away by the action of the water, the sides of all are undermined, and the smaller frequently present a very perfect mushroom-shape, as shown
in the accompanying figure. Sometimes the top is 30 feet in diameter, perched upon a support of 5 or 6 feet in thickness.

As before stated, the island is full of pits. These are often 20 to 30 feet in diameter and as many feet deep, and are full of salt water at ligh tide. Near the western end of the floor of the lagoon is a large hole, through which the water spouts up as the tide rises. This opening doubtless communicates with the sea outside through subterranean passages, and as the tide outside the lagoon is one or two hours in advance of that inside, this phenomenon is easily accounted for.

The currents sweep with great rapidity through the lagoon, especially near the chamels, but in some of the calmer corners, particularly in the southwest, the bottom is covered with a layer of tine white mud, similar to that described by Darwin at Keeling atoll.
The average temperature on the island during October was 76° in early morning and 84° during the day. After the monsoon changed, early in December, it became much damper and warmer-up to $90 \circ$ in the shade at $2 \mathrm{p} . \mathrm{m}$. During October and November we had no rain, the vegetation became quite dried up, and mosquitoes were absent. In December about 15 inches of rain fell; vegetation awakened, nearly every plant put forth fresh green leaves and flowered. A more complete transformation could scarce be imagined. The desert island became a blooming garden filled with the perfume of flowers.
The most remarkable indigenous inhabitant of Aldabra is the gigantic land tortoise,* similar to those of the Galapagos group. They were formerly very abundant, but being easily caught and in great demand for their flesh, their numbers have been greatly diminished by the whalers and fishermen visiting the island. They are now protected (nominally) by the government of Seychelles, to which Aldabra belongs. They are still found upon Grande Terre and Île Nord, probably in considerable numbers, although I met with but few, as many parts of Aldabra are wholly inaccessible, owing to the rugged surface and dense jungle. They were completely exterminated upon île Picard about twelve years since, but have recently been reintroduced by the present lessee of the island, Mr. James Spurs. At the present day they are more plentiful in the Seychelles than in their original habitat. They were brought many years since to the former islands, where they breed freely in confinement, and are much valued for food, being eateu at marriage feasts and on other festive occasions. It is the only remaining species of the gigantic land-tortoises that formerly inhabited Bourbon, Mauritius, and Rodriguez (and probably also Madagascar) at the time of their discovery. A single individual, probably of the Rodriguez species, still lives at Fort George Barracks, in Mauritius. The greatest enemy of the land tortoise is the common rat, which swarms upon Aldabra and eats the young as soon as they are hatched.

The only other laud-reptiles upon Aldabra are a small lizard (Able-

[^150]pharus pocilopleurus) and two geckos (Hemidactylus mabouia and Phel. suma abbotti*).

Turtles are plentiful. Many thousands ammally ascend the sandy beaches to deposit their eggs. Tortoise-shell was formerly gathered in large quantities, but this fishery has been overworked and large "carré" are now scarce.

Mammals are represented by a large fruit bat (Pteropus aldabrensis, True), and two smaller bats. \dagger Rats (Mus decumanus), probably firom wrecked vessels, swarm everywhere, and are very destructive. Cats, probably from the same source, are common upon Grande Terre, where they have completely exterminated the flightless rail.

Land-birds are represented by fourteen resident and six accidental or visiting species; water-birds by twenty-four species. Doubtless many more occasionally visit the island from Madagascar and Africa.

The most-interesting species of birds is the curious flightless rail (Rougetius aldalranus, Ridgway), the sole survivor of the numerous flightless birds that inhabited the Mascarine Islands at the time of their discovery. I fear the present species must follow their example, as their arch enemy, the cat, has already exterminated them from Grande Terre, and must sooner or later reach the other smaller islands of the group, where the rails as yet abound in great numbers. The other land-birds are apparently similar to, or identical with, Madagascar species.

Boobies of several species, \ddagger frigates (Fregata uquila minor), and various species of terns§ and sandpipers, abound.

A flamingo (Phenicopterus erythreus?) is found in considerable numbers. This is particularly interesting as having also existed in Mauritius at time of its discovery.

Fish are not very plentiful in the neighborhood of the islands. Huge cocoanut-crabs (lobsters) abound, as also land-crabs.

Insects are not mumerous either in species or individuals. Six or seven butterflies, a few moths, a dragoufly, a few beetles, some flies, and bees are found.|| Mosquitoes abound

[^151]The islands are covered with dense scrub, mostly composed of shrubs 4 to 8 feet high. No large trees except mangroves now exist, and small plants are remarkably scarce. There are no ferns or orchids, but considerable quantities of Orchilla moss are gathered. Formerly "porche" and "bois rose" grew to considerable size, judging from the decaying stumps and logs. A few cocoanut trees exist, mostly upon Îl Michel.

Aldabra is not permanently inhabited, but there are usually a few fishermen from Seychelles living there. The whole Aldabra group, including Aldabra, Astove, Assumption, and Cosmoledo, belongs to the British colony of Seychelles, and is leased by the Government for the turtle and tortoise-shell fishery.

ASSUMPTION ISLAND.

Assumption lies 20 miles sontheast of Aldabra and is about 5 miles long by $1 \frac{1}{4}$ miles wide. In its physical features it is much like Aldabra, but its surface is smoother and it is not so densely covered with scrub. A considerable part of the surface is covered with "champignon," as the rugged fossil coral rock of Aldabra is called. There are two large sand dunes upon the eastern shore, abont 70 feet high, which are visible from a considerable distance. No fresh water exists, unless just after a rain, when a little collects in hollows in the rock. The animal life and vegetation is similar to that of Aldabra. The little flightless rail (Rougetius abbotti, Ridgway)* abounds, as well as most of the other land-birds found upon the latter island. Numbers of goats run wild, having been introducèd many years since from Europa Island (in Mozambique Channel).

GLORIOSO ISLAND.

Glorioso Island lies about 90 miles west-northwest of the north point of Madagascar (Cape Amber), and 120 southeast of Aldabra. It is

[^152]Dragonfly:

1. Pantala flavescens, Fab. A common East African species. Myrmelcon. Myrmelcon, sp. Mantid:
2. Polyspilota variegata, Oliv. An East African species. Beetles:
3. Oxythyrea amabilis, Schönh.; var. Smaller than the continental forms.
4. Small scarabæid-undetermined.
5. Small longicorn-undetermined. Wasps:
6. Spliex, sp.
7. Monedula, sp. Other diptera:

Odontomyia, sp.

* A different species from that of Aldabra, descrived in The Auk, for Jannary 1894.-R. R.
situated upon the south end of the Glorioso bank. The bank is about 8 miles long by 2 in width. île du Lise lies at the north end of the bank.

Glorioso Island contains about 700 acres, being $1 \frac{1}{3}$ miles long by 1 mile wide. It is partly covered with sand hills 50 to 60 feet high. Formerly it was almost entirely covered with a growth of "porche," "bois rose," "fonche" and other large trees, but at present many have been cut down. The soil is umsually fertile for an oceanic island, haviug been manured for ages by thousands of sea-birds. "Champignon," or fossil-coral rock, such as composes Aldabra, Cosmoledo, etc., exists iu only a few spots, and the soil or sand is of fair depth. Large quantities of maize are grown. Water from wells is of poor quality. There are five species of land-birds, three of which, a sum bird,* Zosterops, \dagger and a bulbul \ddagger are probably peculiar.
Common fowls rum widd in the jungle in considerable numbers. They are very shy and not easy to shoot. Among sea-birds there is a booby, which seems to be peculiar to the island.s They breed in large numbers upon the "fouche" trees, in comnany with frigates and common boobies.

Upon the neighboring small islet of Lise vast numbers of "Wideawake" terns (Nfernu fuliginosa) breed, together with "General" and "Capucin" boobies (Sulu cyenops and S. piscator). A gecko (Hemiductylus mabouia) and two other lizards, (Ablephurus gloriosus Stejneger, Zonoscurrus madayaseariensis) are plentiful. Numbers of wild cats range the jungle, so that birds are far less numerons, individually, than in Aldabra.

[^153]
REMARKS ON JAPANESE QUAILS.

BY

Leonhard Stejneger.

When writing my remarks on the Japanese quails recently sent me by Dr. Ijima (Proc. U. S. Nat. Mus., xvi, 1893, p. 623) I had not yet seen Mr. Oglivie Grant's "Notes on the Genus Coturnix" (Ann. Mag. Nat. Hist. (6) $\mathrm{x}, 1892, \mathrm{pp} .166-173$), in which he advances the theory, or rather announces as a demonstrated fact, that there are two species occurring in Japan (and other portions of eastern Asia) viz: C. coturnix, the typical European species, and C. japonica, which, in their purity, may be distinguished as follows:

```
a}\mp@subsup{}{}{1}\mathrm{ Feathers on throat and chin short and rounded.
    b}\mathrm{ A black band down the middle of the throat
    C. coturnix %
    b}\mp@subsup{}{}{2}\mathrm{ No black band down the midlle of the throat.
        c
        c}\mp@subsup{}{}{2}\mathrm{ Chin and throat dark vinaceous-cinnamon [dull brick-red, O. G.]
                            C.japonica % ad.
az}\mp@subsup{a}{}{2}\mathrm{ Feathers on throat and chin elongate aud lanceolate.
    b}\mp@subsup{}{}{1}\mathrm{ Entire throat white
        C.japonica ᄋ
    b}\mp@subsup{}{}{2}\mathrm{ Middle of throat suffused with dark cinnamon-rufous....... C.japonica % juv.
```

The multitude of specimens which do not fall within the limits I have here drawn, he disposes of by the following remark: "The intermediate forms are, as I shall presently show, undoubtedly the results of interbreeding." But I am sorry to say that he does not show this, for there is no discussion of the material upon which he bases his remarks, nor are we furnished with a list of his specimens with the accompanying data upon which we might be enabled to base an opinion as to the correctuess of his conclusions. All he gives us is a bare assertion to the above effect, the essential part of which is as follows: "In Japan and China the migratory Quail (C. coturnix), as already pointed out, inhabits the same tract of country during the breeding season as C. japonica, and there can not be the slightest doubt that the two species fre quently interbreed, with the result that all sorts of intermediate hybrids are produced. These intermediate plumages are most noticeable among the male hybrids. For instance, some have the dull brick-red throat of C. japonica and the black anchor-shaped mark of C. coturnix, others have only the upper two-thirds of the throat dull red and the lower third white, while again a third lot have, in addition, a black band down the center of the red part, and all kinds of intermediate s. ages between these three examples may be found."

It is evidently in order to meet the objection that rufous-throated males are often found in Europe that he makes the following remark: "Equally also, though of secondary importance, C. coturnix interbreeds freely with the red-throated resident race (C. ctppensis)* in South Africa and the islands surrounding the coast, and the results are seen in the many male birds from South Africa and Southern Europe, ete., in which the white parts on the sides of the head and throat are more or less suffiused with the bright rufous chestnut of the resident bird."

But this is hardly more than a postulate, and it is, in fact, somewhat difficult to see how such a hybridization can take place between a resident species and a subspecies (and he calls them only "races"). the results to be found both among the residents and the migrants, The facts are that these so-called intermediates between C. capensis and C. coturnix are not ouly found in South Africa and Southern Europe, but that they are quite common in Central Europe, as evidenced by the detailed description of the throat color and markings by Naumann (Naturg. Vög. Deutschl., vi, 1833, pp. 578,579 , and particularly pp. $580-581$). From his remarks it will be seen that the male quails in Germany vary as much and almost in the same way as the Japanese and Chinese birds described by Mr. Ogilvie-Grant, and by him asserted to be hybrids.

Looking over my material I find nothing in it to contradict the supposition that the color and markings of the throat of the male Japanese bird is subject to as much individual variation as in the German bird, and I can see no reason for regarding these varions plumages as "intermediate stages" or "hybrids." I think such a view also effectually disposes of the somewhat curious peculiarity that "these intermediate plumages are most noticeable among the male hybrids."

Mr. Ogilvie-Grant does not mention any specimens in which the supposed hybridism is expressed in an intermediate state of the enlongated throat feathers. On the other hand, in the males he regards the presence of these specialized feathers as the sign of youth, in support of which he mentions the case of "a rather more mature male" in which "one side of the throut has lost the immature elongate feathers like those of the female and assumed the short, rounded, durl rufous feathers characteristic of the male adult," but all other data which would make it profitable to discuss the case are wanting.

I now tum to the material before me.
(1) UT. S. Nat. Mus., No. 95980 ; δ ad.; collected by Blakiston at Sapporo, Yezo, May, 11, 1877. In coloration this specimen is exactly like the front figure of Fauma Jap. Av., pl. 1xi, with the exception that the posterior half of the superciliary stripe is white and the anterior half spotted with white; the flank feathers are less marked with blackish; throat feathers, both in the middle and on the sides, short and rounded.

[^154](2) Imp. Mus., Tokyo, No. 2168; Province of Owari, Hondo; Mr. Ota coll.; no date. Coloration almost identical with the foregoing specimen, though with a faint blackish wash on the middle of the throat. Otherwise the similarity of the two specimens is so complete that I have no hesitation in pronouncing it of the same sex and age as the foregoing. Throat feathers in the middle short and rounded; on the sides perceptibly longer and narrower, though not pointed.
(3) Imp. Mus., Tokyo, No. 2170; Province of Owari, Hondo; no date. Coloration like 1 and 2 , but chin, middle of throat, and first lateral branch of the throat patch black; flanks as in figure quoted above; throat feathers much as in 2.
The above three specimens thus appear to be fully adult summer males.
(4) U. S. Nat. Mus., No. 109409; ô ; Shimosa, Houdo; December 22, 1885. Geueral coloration much as the above, but all light markings, including superciliary stripe, more strongly washed with buff; breast deeper ferruginous; chest feathers with a large chestuut spot in either web, but no black spots; feathers on middle of throat dull cinnamonrufous, with broad white terminal margins; those on the sides of throat and on cheeks cinnamon-rufous with a white shaft streak, with terminal black spots on the cheeks. Middle throat feathers rounded; lateral ones elougated and pointed; a fer of the latter still in their sheaths.
The richness of the coloration, especially that of the breast, leads me to believe that this is a fully adult male in, at least, its second winter.
(5) U. S. Nat. Mus., No. 91582; ${ }^{\circ}$; Yokohama, Hondo; April 4, 1883; P. L. Jouy coll. Uonsiderably paler than any of the foregoing; throat and upper fore neck white, with a narrow dusky band down the middle of the throat, united below with a semicircular dusky line descending from the ear; lateral throat feathers edged with cinnamonrufous; middle ones more or less suffused with the same color and tipped with whitish; a few blackish spots on the chest; all the throat feathers elongate and pointed.
(6) U. S. Nat. Mus., No. 95983; sex not given; A. Owston coll.; no date. Practically identical with foregoing, except that ouly lateral throat feathers are pointed, the median ones being short and rounded.
(7) U. S. Nat. Mus., No. 95982; ô ; Nagasaki, Kiusiu; January 1, 1877; F. Ringer coll. Like the foregoing, but throat band twice as broad, occupying the whole middle part and continued backward beyond the first semicircular line, though not reaching the second; throat feathers all strongly elongated and pointed.
(8) U. S. Nat. Mus., No. 114127; ò ; Fusan, Korea; November 21, 1885; I. L. Jouy coll. Like the foregoing, but throat and upper fore neck pure white, with a faint indication of a dusky band down the middle of the throat, caused by the dark bases of the feathers shining through the white tips; two semicircular black lines, the upper one imperfect on the median line; mediau throat feathers rounded, lateral ones moderately elongated, pointed.
(9) U. S. Nat. Mus., No. 1141थ6; ${ }^{\text {o }}$; 40 miles from Seonl, Korea; November 11, 1883; P. L. Jouy coll. Like foregoing, with pure white throat, but simicireular lines scarcely indicated; middle throat feathers short and rounded, lateral ones elongated and pointed, but even less marked than in the foregoing; a number of these feathers, however, still in their sheaths.

The above six specimens (4-9) are unquestionably males, but I would not like to say anything concerning their age. Thus I can not bring myself to believe that 7 , with its widely and distinctly black throat, is a very young bird, in spite of the fact that the feathers are more pointed and longer than in any of the others.
(10) U. S. Nat. Mus., No. 109410; \ddagger; Shimosa, Hondo; December 22,1885. General coloration like 8 and 9 , but throat suffused with buff and chest with numerous rows (at least five) of black spots; middle throat feathers rom
(11) U. S. Nat. Mus., No. 95981; ㅇ ; Yubuts, Yezo; September 13, 1882; Blakiston coll. Very pale and very little rust color on back; throat white, washed with buff; chest thickly spotted with black; flanks also heavily marked with black; lateral throat feathers pointed, middle ones less so; feathers appear considerably worn.
(12) In this enumeration of our Japanese and Korean specimens I have omitted No. 15849, collected during the Perry expedition by W. Heine, because it is unsexed and with no definite locality, besides being now somewhat soiled and faded. It seems to be most like No. 4 of this enumeration.

Our European series available at the present writing is very poor, but I wish to call attention to one specimen.
(13) U. S. Nat. Mus., No. 100345; oे ; Koucza, Transsilvania, Hungary; August 28, 1883; J. von Csato coll. Throat coloration almost identical with Ringer's Nagasaki specimen (7), except that the lateral feathers are not marked with cinnamon-rufous. The lateral throat feathers are perceptibly lengtheued and pointed, fully as much as the Korean example (9).

In the above series there are hardly two specimens in which the throat feathers are of exactly the same size and shape. Mr. OgilvieGrant will probably maintain that this is exactly what we wonld expect in the hybrids. On the other hand, I would call attention to the fact that an intermediate shape is not at all coincident with an intermediate coloration or pattern. Specimen 7 is in this respect very instructive, as it unites the extreme elongation of the feathers of C. japonich with the extreme blackness of the throat of c'.coturnix. Were we to accept the theory of hybridism, there would only be one pure-bred speecimen (1) in the whole lot. This one is a typical C. japonica, and were we to identify our specimens by means of the key all, except No. 3, must be called ('. juponicu. The fact that a European specimen (13) also shows clongated pointed lateral throat feathers throws cousiderable doubt upou the value of this character as being diagnostic.

I have yet to see undoubted specimens of C. coturnix from Japan. Of course, that proves nothing, for Mr. Ogilvie-Grant may have seen them, but with his paper and the above-deseribed series of specimens before me I can only say in regard to the occurrence of the two species in Japan "not proven."

Concerning the exact significance of the elongated throat feathers in the eastern birds, I have no well-founded theory to offer, but it seems to me as if there might be only a strong tendency toward the development of a "beard" in the eastern form, with an individual variation in this respect similar to the throat coloration.

It will probably remain for the Japanese field ornithologists to settle this question by the study of large series of fresh birds.

1 hope that the above remarks may help them to fully understand the issue and consequently to collect intelligently.

Proc. N. M. $93-49$

NOTES ON BIRDS OF CENTRAL MEXICO, WITH DESCRIPTIONS OF FORMS BELIEVED TO BE NEW.

By
P. L. Jouy.

The following notes on the birds of central Mexico are the result of about twelve months' travel in that iuteresting country. Landing at Tampico on the 13th of October, 1891, a few days were spent in vigorous battle with mosquitoes and in courteons intercourse with the custodians of the custom house, who, thanks to the kinduess of Señor Don Mateo Romero, passed all my luggage and collecting outfit through without examination. Few birds were seen, the ouly species worthy of mention being Corvus mexicanus and Milvulus forficatus, which were not observed at any other place. A deep narrow river empties into the Gulf at Tampico, giving access to the interior of the country by means of native dugout canoes. I was strongly advised by the United States vice consul, Mr. Presley, to make the trip some 40 or 50 miles up the river, but fear of malaria and possibly "yellow jack" drove me to seek a safer climate. I was assured that it was perfectly safe to spend the winter mouths, that is from October to March, in the hot country by using ordinary precautions in regard to diet and drink. By working up and down the railroad considerable country could be covered with little loss of time.

Eighteen hours by the Mexican Central Railroad brings the traveler through the tropics, where nature is most luxuriant, up through cooler regions, across dashing mountain streams, through magnificent gorges, and, finally, across arid plains to the city of San Luis Potosi, the capital of the State of the same name. This, one of the largest and most important cities of Mexico, has unrivaled railroad facilities, being on the direct line of the Mexican National Road, rumning north and south, and is the western terminus of the Tampico branch of the Mexican Central. It also connects with the west by means of the Aguas Calientes branch of the Mexican Central. It is thas easy to reach the surrounding country, and, although the immediate neighborhood of the city is uninviting, yet an hour's travel in almost any direction takes the traveler into sparsely-wooded or hilly country, where collecting is possible.

Having paid my respects to the governor, Gen. Don Carlos Diez Gutierrez, and presented my letter's and credentials, I received, through
his kindness, a general letter of introduction from him to all officials and others in the State, which proved of great service to me.*

From the city of San Luis, therefore, as headquarters, a number of trips were made from time to time. One to Chareas, in the northern part of the State, established the habitat of Aphelocoma cyanotis. Through the courtesy of Señor Don Xavier Espinosa, I was enabled to visit the hacienda Angostura, belonging to his family, which lies near the station of San Bartolo on the Tampico Line; here a new form of Basileuterus rufifions was obtained, together with other varieties. Grus mexicanu was here numerous in December. Several species not elsewhere obtained were collected at Solidad Don Carlos, a suburb of San Luis; also at Ahualule, a station 24 miles from the city on the Aguas Calientes branch. Before leaving San Luis a trip was made to Lake Patzcuaro, in Michoacan, where fresh specimens of that interesting bird, the Mexican Jaçana, were obtained aud forwarded to Washington, where they were mounted into a striking group for the U.S. National Museum Exhibit at the World's Columbian Exposition.

From January 9 to July 12, 1892, was spent in or near the city of Guadalajara, from whence numerous expeditions were made into the country. The Barranca Ibarra, a favorite collecting ground, lay about half a day's journey north of the city. This beantiful gorge, descending abruptly 1,500 feet, gave access to a quite varied and tropical fauna and flora. Here grew and were cultivated the pineapple, banana, and the mango; and here also the coffee plant flourished; many species of birds found here were never seen on the plateau above, and collecting would have been ideal if some of the tropical insect pests had not also entered into this paradise.

Other trips made from Guadalajara rere to the falls of Juanacatlan, the "Niagara of Mexico," to Lake Chapala, reached from the station Atequiza, where I found unaccountably poor collecting, and also to the hacienda El Molino, which I visited through the kindness of Señor Don José Maria Negrete. This place, reached from the station Negrete, is probably the best locality for the naturalist near Guadalajara. A large, semi-wild garden planted with a great variety of trees and shrubs, and well watered by means of irrigating ditches, proved to be a great attraction for birds of all kinds. The proprietor, a gentleman who had traveled in nearly all lands, was also a great lover of birds, and kept several magniticent living specimens of the rare Grus americana, said to have been taken in the country, as an ornamental feature of his place.

In the latter part of March a trip was made on horseback south of

[^155]Guadalajara, through the town of Zapatlan, to a place known as San Marcos, in the southern part of the State of Jalisco, and on the east base of the volcano of Colima. In this locality and in the neighboring Barranca Veltran (or "Beltran," as it is commonly known), a number of species were seen for the first time.

These barrancus, or gorges, produced either by ages of erosion or else by volcanic agency, are often a mile, more or less, deep, and perhaps 3 or 4 miles across in places, narrowing down to the width of a small stream at the bottom; they are therefore rather precipitous, and as they lie in the direct line of travel they give scope for the engineer's abilities. The change from the comparatively barren plateau to tropical luxuriance is often so great that the effect is that of entering into one of nature's greenhouses, a grand forcing house, a score or more miles in length, sheltering what unknown treasuries for the botanist and zoölogist! Here are found such birds as Dendrornis, Engyptila, Conurus, aud Amazona, besides numerous hummers and other tropical forms.

A few species are included in this list which were collected at Guaymas, on the Gulf of California, and also a few from the mountains in Sonora, 32 miles south of the border town of Nogales, notably Parus wollweberi, Dendoica gracic, Columba fasciata, and Cyanocitta macrolapha.

It will be seen from the foregoing that most of the species enumerated are from the temperate table-land region most nearly corresponding to our own southern borders of Arizona and New Mexico and although many common tropical birds will be looked for in vain in this list, yet it is hoped that it will not prove the less valuable on that account.

Color notes of the iris and other soft and fading parts of specimens have in all cases been compared with the plates in Ridgway's Nomenclature of Colors, which is an indispensable companion of the field naturalist, and is likewise invaluable in determining the tints of feathers. I am also much indebted to the author for advice and aid in the identification of species. In conclusion, I take pleasure in acknowledging the extreme courtesy received from the officials of the Mesican Gorernment in all parts of the country, who did everything in their power to further my objects. Through the interest of Señor Mariscal, at the request of Minister Ryan, I received an autograph letter from his excellency President Porfirio Diaz, introducing me to the favorable notice of the governors of all the provinces of Mexico. These gentlemen in turn, so far as I traveled, gave me letters current in their respective States, which did much to facilitate traveling in the country.

Family TURDIDE.

1. Catharus melpomene clarus, subsp. nov.

A comparison of two adult male birds from Jaliseo with a series from Vera Cruz and Gutemala shows that the western bird is a clearly rec-
ognizable geographical race. It is a slightly larger and very much paler bird than the eastern form and has deeidedly longer wings and tail. It may be recognized by the following description:

C'atharus melpomene clarus, subsp. nov. Type, U.S. National Museum, No. 12662 ․ ô ad. Barranca Ibarra, Jalisco, W. Mexico, May 13, 1892, P. L. Jony, coll.

Above, head and back olive-brown, rump tawny-olive, tail slightly darker, wings tawn-olive, the imer webs of the primaries and secondaries abruptly dusky; the center of the under surface of the wings cream-buff (clay color in melpomene). Breast and flanks pale olive-gray; throat, belly, and crissum pure white; a few feathers of the sides of the crissum tinted pale isabella-color.

Dimensions: Length (fresh specimen), 173^{mm}; wing, 86 ; tail, 74 ; tarsus, 33. Iris very dark brown; eyelids, angle of mouth, and inside of mouth, cadmium-orange; tarsi and toes pale yellow.
A very shy, elnsive species, always found on or near the ground in deep shady woods.

This clearly marked form has apparently escaped the notice of both collectors and writers, as I find no mention of Catharus melpomene as a western Mexican bird, nor has a paler race been referred to by authors. As Prof. Baird has pointed ont in Review of American Birds, page 7, Costa Rican specimens differ from east Mexican and Guatemalan examples in "the prevalence of a grayish olive shade in the back;" they are also a deeper, clearer gray on the breast and flanks, and average shorter tails. A larger series of specimens in spring plumage would probably show it to be a distinct race.

2. Merula tristis Smains.

A common bird in the Barranca Ibarra, near Guadalajara. Specimens taken March 9 and April 21. Only note heard was a single sharp chirp or alarm note.

Iris dark brown.

3. Myadestes obscurus occidentalis Stejn.

San Marcos, southern Jaliseo, March 25.
This bird, populanly known as the clarin, is a familiar and highly prized cage liod all through the interior of Mexico. The finest clarins are said to come from the eastern part of the country from the State of Vera Cruz southward, M. unicolor being more highly prized as a singer than M. obscurus.

The song of this bird, impossible to describe, has the most sylvan character of any bird music I am acquainted with. It is the very essence of deep shady woods and falling water. Poured forth suddenly, it has a surprising tinkling metallie quality, mingled with flute-like warbling notes given in falling cadences. The song is not loud nor is it long sustained, but it has a character all its own.

The color characters given by Dr. Stejneger in Proc. U. S. N. M., Iv, 1882, page 371, separating var. occidentalis aud var. insuluris from M. obscurus are shown by this specimen to be untenable, it having white tips to all the tail feathers, and also light edges to the tips of the innermost secondaries. The wing formula of the three birds, however, appears to be distinct. My specimen agrees with the type of occidentalis in having the forehead white.

4. Sialia mexicana Swains.

Taken in foothills, 25 miles west of Charcas, San Luis Potosi, in November. Common in the valleys at that time and in the mountains up to an elevation of 7,000 feet.

Iris dark brown.

Family MIMIDD

5. Melanotis cærulescens (Swains.)

Taken in Barranca Ibarra, near Guadalajara, in March and April.
This bird, known as the Mulato by the Mexicans, is a very commori cage bird all over the country. It is a very fair singer and mimic, and is much valued for its lively and familiar ways.

Iris deep reddish-brown.
6. Harporhynchus curvirostris (Smains.).

A very common species in the central part of the State of San Luis Potosi: it was taken at Ahualulco in October, and was found abundant in the valleys about Charcas in November. It seemed to be found exclusively in the valleys grown up with Opuntias, in the larger specimens of which it builds its nest. Iris chrome; upper mandible, dusky; under mandible, pale yellow; tarsi, pale yellowish; toes, dusky.
7. Harporhynchus longirostris (Lafr.).

Taken at hacienda Augostura, in southern part of State of San Luis Potosi, in December. Rather a shy bird and apparently not very common, as few specimens were seen.

Iris cadmium-orange.

Family SYLVIID.E.

8. Regulus calendula (Linn.).

A single specimen was taken at Soledad, San Luis Potosi, on November 27, but was apparently not at all common. Not seen elsewhere.

9. Polioptila cærulea obscura Ridgw.

Taken in the neighborhood of Guaymas in February.

Family PARIDA.

10. Psaltriparus melanotis iulus, subsp. nov.

Subsp. char.-Differing from true P. melanotis in having the back hair brown instead of "yellowish brown" (bistre); paler under parts, the ventral region being ouly very slightly tinged with buffy; bill larger and heavier but other dimensions apparently the same.

Habitat.-Western Mexico (type No. 126630 U.S. National Museum, © ad., Hacienda E1 Molino, Jalisco, June 15, 1892; P. L. Jouy).
Au example from Guanajuato, collected by Prof. A. Dugès, agrees fairly well with the type except that being a very young bird it is darker above and has buff edgings to the wings and tail. The flanks are also tinged with vinaceous.

This form is apparently interfediate between P. melanotis and P. lloydi but is easily distinguished from the latter by its distinctly gray head and light, hair-brown, back. The dimensions of the bill are about the same.

11. Parus wollweberi (Bonap.).

Adult and young of this bird were taken at an elevation of 6,000 feet in the mountains, 32 miles south of Nogales in Sonora, June 18. They were in small flocks with full-grown young which they were tending very solicitously.
Bill lavender at the base, tip dusky, edges pale yellow; gape yellow; tarsi and toes lead color.

Family SITTIDE.

12. Sitta carolinensis aculeata (Cass.).

Taken 32 miles south of Nogales in Sonora, June 19, in the pines.

Family CERTHIIDA.

13. Certhia familiaris mexicana (Glog.).

Seen in the pines 32 miles south of Nogales, Sonora, June 19.

Family TROGLODYTID A.

14. Heleodytes brunneicapillus (Lafr.).

Common everymhere in the arid plain region wherever the cactus is abuudant. Taken at Ahualulco, near San Luis Potosi, in October, and found abundantly in suitable places in Jaliseo. Its loud purring notes proclaiming its presence unmistakably wherever found. In habits this great wren acts more like one of the Harporhynchi, than one of its relatives. It builds its nest in the cactus (Opuntia), like Harporhynchus
curvirostris, and I have never seen it cock its tail over the back in the characteristic wren attitude.

15. Thryophilus sinaloa Baird.

This is the commonest species of wren at the Barranca Ibarra, Jalisco, where it was taken May 13. It affects deep, shady woods, and breeds in the thickets bordering the stream which flows at the bottom of the barrauca. Iris burnt-sienna; under mandible lilaceons; tarsi and toes, lilac-brown.

Family MNIOTILTID $\underset{\text { E. }}{ }$

16. Helminthophila celata (Say).

Common in the latter part of November at Soledad, San Luis Potosi.

> 17. Dendroica virens (Gmel.).

Common in Cuernavaca, Morelos, in September; specimen ta ${ }^{17}$ en September 14.

18. Dendroica auduboni (Towns.).

Very common all winter about Guadalajara. Familiarly seen in the gardens and about the court-yards of the houses, searching for insects in the crevices of walls and among the plants.
19. Dendroica dominica albilora Baird.

Taken in Cuernavaca, Morelos, September 4.

20. Dendroica graciæ Coues.

Quite common in mountains 32 miles south of Nogales, Sonora. Specimens taken June 17. Exceedingly shy, keeping high up in the pines.

21. Dendroica æstiva sonorana Brewster.

Common in Cuernavaca, Morelos, in Angust and September. Specimen taken August 19.
22. Sylvania pusilla pileolata (Pall.).

Taken at the falls of Juanacatlan, Jaliseo, January 31. Common in the willows near the banks of streams.
23. Basileuterus rufifrons jouyi Ridgway.
[Proc. U. S. Nat. Mus., xv, p. 119.]
Two specimens, male and female, of this new form were taken at the Hacienda Angostura, December 8. These were first seen in bushes overhanging a small stream. They had the quick, nervous movements of a Geothlypis, and uttered scolding notes when disturbed. Another specimen collected at the Barranca Ibana, Jalisco, May 11, is identical
in color with the type specimen. These versatile littie birds seem to be of varying habits, and are found in all suitable places atfected by warblers. Never found far from ruming water, they may be seen dodging in and out among the bushes on the banks of streams, or on the shady side of a barranca they will be seen gleaning a harvest of small game in the treetops.

24. Euthlypis lachrymosa (Bonap.).

Tolerably common in the Barranca Ibara where it undonbtedly breeds. Specimen taken May 14. Of very shy, skulking habits, this bird is almost invariably foud on or near the gromad. Delighting, like a water-thrush, in shaded thickets near ruming streams, it affects hoggy places and is very expert in dodging behind bushes when disturbed. It has the constant habit, when walking on the ground, of flirting the tail sideways.

Family VIREONIDA.

25. Vireo flavoviridis (Cass.).

Tolerably common in the Barranca Ibarra in May, where it was undoubtedly breeding.
Iris pale venetian-red; bill and feet plumbeous.
26. Vireo noveboracensis (Gmel.).

Taken at the Hacienda Angostura, San Luis Potosi, December 16. Iris, white.

Family LANIIDA.

27. Lanius ludovicianus excubitorides (Swains.).

Exceedingly common and abuudant everywhere in the central plateau region. Taken at Soledard, near San Luis Potosi, in December. Fond of perching in a conspicuous place, it has takeni kindly to the telegraph wires and may almost invariably be fomed on them. A nest seen on the border at Nogales on June 22 contained five eggs. It was placed in the center of a mesquite tree and about 6 feet from the ground. The nest was so loosely put together and so tangled in the thomy growth of the tree that it could not be lifted out. It was composed of coarse grasses and sticks and lined with finer grasses and thickly and softly padded with the dried flowers of the amaranth.

Family TANAGRIDE.

28. Euphonia, sp.

A single specimen of one of these small birds was seen in the Barranca Ibarra, but could not be identified. It was dark metallic blue on the bark and bright yellow on the under parts. It was only seen for a moment and then disappeared and was not observed again.
29. Piranga hepatica Swains.

Barranca Ibarra, near Guadalajara, March 10. Several specimens seen.
30. Piranga bidentata Swains.

An adult male was taken in the Barranca Ibarra, near Guadalajara, May 14. This is probably near its most northern range, and no other specimens were seen.

Family FRINGILLID \mathbb{A}.

31. Cardinalis cardinalis canicaudus Chapm.

Hacienda Angostura, San Luis Potosi, in December. Common in all suitable cover.

32. Pyrrhuloxia sinuata Bonap.

Collected at Ahualulco, in San Luis Potosi, October 28, but apparently not very common.
33. Guiraca cærulea eurhyncha Cones.

A common species throughout the central plateau region of Mexico; it was taken at the Hacieuda Angostura, San Luis Potosi, in December, and was also fomd quite abundant in Jalisco. Iris, dark brown; upper mandible, dusky; lower mandible, dull lead-color.
34. Sporophila torqueolà (Bonap.).

Apparently not very common. A pair were seen and taken at the Hacienda El Molino, Jalisco, June 12.
35. Passerina versicolor (Bonap.).

Taken at the Barranca Ibarra, March 10.
36. Amphispiza bilineata (Cass.).

Abundant in the hills near Guaymas in February.

37. Zonotrichia leucophrys intermedia Ridgw.

Fields and hedges around San Luis Potosi, November 20, abundant.
38. Spizella breweri Cass.

Abundant in small flocks in the fields anong low bushes. Falls of Juanacatlan, Jalisco, January 31.
39. Junco cinereus (Swains.).

Quite abundant in small flocks in the monntains 25 miles west of Charcas, San Luis Potosi, at an elevation of 7,000 to 8,000 feet. Specimens taken November 13. They were found on the open sumny slopes of the mountains, feeding on the ground or in low scrubby growth.

Iris, chrome; upper mandible, dusky; under mandible, pale yellow; tarsi, pale yellowish; toes, dusky.

40. Pipilo fuscus Swains.

This is one of the commonest birds everywhere in central Mexico. Almost invariably fomd on the ground, or on low walls, in tangled, grassy places; it is particularly partial to hedges along the roadsides. Of familiar and inquisitive disposition, it is constantly intruding itself on the passer-by. Utilizing the runways of the ground squirrels it keeps dodging in and out, appearing and disappearing, to the confusion of the collector. Taken at Ahmalulco and San Luis Potosi, October 28 and November 30.

41. Pyrgisoma rubricatum (Licht.).

Only seen at the Barranca Ibarra, near Guadalajara, May 11 and 13. This is essentially a ground species, and, althongh it was not exactly rare, it is a very shy bird and difficult to get. It was found almost exclusively around the head of the barranca on the bare hillsides and on the road leading down, but never descending any distance toward the warmer lower country.

Iris, reddish brown; tarsi and toes, pale brownish lilaceous.

42. Carpodacus cassini Baird.

Abundant in small flocks among the live oaks at an elevation of 7,000 to 8,000 feet. In the mountains 25 miles west of Chareas, San Luis Potosi, November 13.

43. Spinus psaltria mexicanus (Swains.).

First seen at Soledad, San Luis Potosi, November 27, in small flocks in cottonwood trees, also taken at the Hacienda El Moiino, in Jalisco, June 13. This is the large form first described by Swainson from the table-land of Mexico, Real del Monte, and which ranges north to southern Texas. Average measurements of six specimens of this bird from sonthern Texas and northern Mexico give the following results: Wing, 2.60 inches; tail, 1.70 ; culmen, 0.40 . Two other forms, appasently distinct and with different habitats, have been called mexicanus by various authors, but can readily be distinguished by their smaller size and the more brilliant coloring of the under parts. They may be distinguished as follows:

> Spinus psaltria croceus, subsp. nov.

Subsp. Cilar.-Differing from N. mexicamus in having the entire moler parts a deep gamboge-yellow instead of pale canary-yellow; the white of the wing at the base of the primaries more restricted, and with less white on the tertials. Axillaries maiuly jet black (axillaries gray, or gray narrowly streaked with black in mexicamus). Size smaller, average of four specimens from Costa Rica, Guatemala, and I'anama give, for the wing, 2.42 inches; tail, 1.52 ; culmen, 0.37 .

Habitat. - Western C'entral America (type No. $\overline{3} 3,839$ U. S. National Museum,子 ad., Panama, J. McLeanuan.

Spinus, species.

The species inhahiting the Peninsula of Yucatan resembles croceus very closely in size and general coloration, but has the axillaries bright yellow with black bases. This may prove to be a distinct form, but the absence of reliable material from that locality prevents me from arriving at any conclusion in regard to it.

Family ICTERID.

44. Icterus abeillei (Less.).

Two adult males of this species were taken June 10 and 12 at the Hacienda El Molino, Jalisco. They were apparently not very common and the female escaped notice.

45. Icterus wagleri Scl.

Two adult mates taken in Barranca Ibarra, Jalisco, April 20, 22.
Iris dark brown; base of under mandible lead color; tarsi and toes dusky olive.

> 46. Icterus audubonii Giraud.

Two adult females taken at the Hacienda Angostura in San Luis Potosi, December 10 and 16.
47. Icterus cucullatus Swains.

One specimen, a young male, taken in the Barranca Ibarra, April 21.
48. Icterus pustulatus (Wagl.).

Taken in Barrauca Ibarra, Jalisco, April 21.
49. Sturnella magna neglecta (Aud.).

Abundant in the salty meadows of southern Jalisco. Specimens seen seemed very pale in color.
50. Quiscalus macrourus Swains.

Taken at Saledarl, near San Luis Potosi, November 30. Iris light yellow. Very abundant all through the central Mexican region. A noisy and familiar bird, it makes itself at home in all cultivated places, and is particularly abundant in the parks and gardens of the cities. It even invades the patios of the houses and steals the food from the domestic fowls.

Family CORVIDÆ.

51. Cyanocitta stelleri macrolopha (Baird).

Abundant in the mountains south of Nogales in Sonora. Frequenting the pine woods in small flocks, they are very noisy birds, cawing all the time, and moving about from place to place continually.

52. Aphelocoma cyanotis Ridgw.

This bird first described by Mr. Ridgway in his "Maunal of North American Birds" from a very old specimen collected by John Taylor,
esq., in 1836, and labeled simply "Mexico," was taken in the mountains, 25 miles west of Charcas, San Luis Potosi, November 13. It was found tolerably abundant in small flocks among the live oaks at an elevation of 7,000 to 8,000 feet. Found in rather open sparsely-covered situations, it seemed to spend much of its time on the ground feeding on fallen acorns, its habits resembling the Arizona jay, and, like that species, it also has a rather weak voice.

53. Calocitta colliei (Vig.).

Only seen at the Barranca Ibarra, where specimens were collected March 9. This noisy, showy species was found in the lower sides of the barranca in small flocks of four or five. Very shy and wary and constantly on the wing, flying from place to place, they make the air ring with their loud, harsh cries.

There seems to be considerable difference in size between the sexes of this bird, the male being larger in every way. The crest of the male also difters from the female's in being longer, recurved, and tipped with white, while the female's is straight and tipped with blue.

54. Corvus mexicanus Gm.

This species, long supposed to be restricted to the west coast of Mexico, notably at San Blas and Mazatlan,* was taken near the gulf coast at Tampico, October 15, thus apparently extending the range of the bird clear across the country. Several specimens were seen in company with grackles (Quiscalus macrourus) feeding in a plowed field. Seen from a distance their glossy plumage corresponded so closely with that of the grackles that, at first sight, it was difficult to tell the two birds apart; of course closer inspection revealed their different proportions, but I believe that this circumstance, if it is a constant habit, of the crows being found in company with the grackles may have led to their being overlooked by collectors.

I did not observe this bird elsewhere, but I have no donbt that further investigations will show that the species has a much larger range than has been credited to it heretofore.

Family TYRANNID.Æ.

55. Sayornis nigricans (Swains.).

Very common in state of Jalisco in summer.

56. Pitangus derbianus (Kaup).

Abundant in the cottonwood trees in the outskirts of Guadalajara; its noisy, querulous notes were constantly heard. Taken at Agua Azul, Guadalajara, February 4.

Iris dark brown.

[^156]57. Megarhynchus pitangua (Liun.).

Barranca Veltran, southern Jalisco, March 24. Common in the tree tops at the bottom of the barranca. Not takeu elsewhere.

Iris very dark brown.
58. Pyrocephalus rubineus mexicanus (Scl.).

Abundant everywhere in the arid valleys of Mexico, this bird is one of the most familiar and well known forms. Its brilliant color and showy habit of darting into the air render it very conspicuous wherever found. Taken 15 miles west of Chicas, in the state of San Luis Potosi, November 13.
59. Empidonax griseus Brewst.

Taken at Soledad, near San Luis Potosi, December 3.
60. Empidonax hammondii (Xantus).

Taken at the Barranca Ibarra, Jalisco, March 9.
61. Empidonax wrightii Baird.

Taken at Noledad, near San Luis Potosi, November 20; also at the Barranca Ibarra, Jalisco, March 9.
62. Myiarchus mexicanus magister Ridgw.

Common in cottonwood trees along river bottoms. Taken at Hacienda El Molino, Jalisco, June 10.
63. Myiarchus lawrencii olivascens Ridgw.

Barranca Ibarra, Jalisco, May 14.

64. Milvulus forficatus (Gmel.).

A single specimen of this bird was shot at Tampico, October 15. It was perched on a telegraph wire, and seemed to be very unsuspicious. It was not seen in any other locality.

Iris dark brown.

Family COTINGID A.

65. Platypsaris albiventris (Lawr.).

A shy, silent species found in the tree tops. Of rather sluggish habits, they present a rather striking contrast to the vivacity of the fly-catcher. Only observed in the Barranca Ibarra, where a specimen was obtained May 13. Iris umber brown; bill and feet lead color.

Family DENDROCOLAPTIDAE.

66. Dendrornis mentalis Baird.

Only met with at the Barranca Veltran, southern Jalisco, where it is apparently not very common, as only one specimen was seen. This was taken March 24.

Iris dark brown; upper mandible dusky olivaceous, under mandible lilaceous; tarsi and toes olive.

Family TROCHILIDE.

67. Cœligena clemenciæ Less.

Taken at Cuernavaca, Morelos, September 24.

68. Trochilus colubris Linn.

Very abundant at Cuernavaca, Morelos, during the whole of September.
69. Cyanomyia ellioti (Berl.).

A common species in the vicinity of Guadalajara; they were taken at Lake Chapala, February 19, and were found quite abundant at the Barranca Ibarra, where specimens were collected in March. A female from Chapala has the throat stained a dirty yellow from contact with the pollen of some plant. These specimens appear to differ from violiceps in having a louger and broader bill, as well as having a shining green tail instead of bronzy red, as in the latter species.
70. Cyanomyia violiceps Gould.

This species was quite abundant in Cuernavaca, Morelos, from the latter part of August to the first week in September, during which time quite a number of specimens were taken.
71. Amazilia beryllina (Licht.).

Taken at Cuernavaca, Morelos, September 3. Apparently not very common.
72. Iache latirostris (Swains.).

Taken at Hacienda Angostura, San Lais Potosi, December 10; also at the Barranca Ibarro, Jaliseo, March 10, where it was a common species. Base of bill carmine.
73. Chlorostilbon auriceps Giould,

Two specimens of this rather rare species were taken at San Marcos, southern Jalisco, March 25 . Other specimens seen at about the same time would indicate that this locality, the base of the voleano of Colima, was the proper habitat of the species.

Family CAPRIMULGIDA.
74. Chordeiles texensis Lawr.

Very common at Lake Patzcuaro, December 22, flying low over the water at dusk. Not observed elsewhere.

Family PICID x.

75. Dryobates scalaris bairdi (Scl.).

Taken at Ahualulco, near San Luis Potosi, October 28. Apparently not very common, as a single pair only were seen. Not seen elsewhere.
76. Sphyrapicus varius (Linn.).

Very abundant near San Luis Potosi in November and December. Taken at Soledad November 30 and December 3.
77. Melanerpes aurifrons (Wagl.).

Very abundant in the State of San Luis Potosi, where it was taken at Ahualulco and Soledad, in October and November, and also at the Hacienda Angostura, in the eastern part of the State, in December.

78. Melanerpes uropygialis (Baird).

Taken in the Barranca Ibarra, May 14.

Family MOMOTIDA.

79. Momotus mexicanus Swains.

San Marcos, suuthern Jalisco, March 29. Only seen at one place, a tangled thicket near a small stream. They did not seem at all shy, but sat on a low branch of a tree and eyed one with mild curiosity, all the while uttering a soft, low note. A singular characteristic noticed was the prominence of the ear tufts, which in this species project, in life, from the sides of the head very conspicuonsly, and give the bird a very unusual and grotesque appearance.

Iris dull carmine.

Family ALCEDINID.

80. Ceryle americana septentrionalis Sharpe.

Very common on the borders of the lakes and all small streams throughout the country. Specimens taken at Hacienda Augostura, San Luis Potosi, and at Lake Chapala, Jalisco.

Family TROGONID.E.
81. Trogon ambiguus Gould.

Taken in pine woods at Agosto, en route from San Marcos to Atenquiqui, April 1. A few were seen at this place in the pine woods, where Proc. N. M. 93- 50
they were very shy; also occasionally seen at the Barranca Ibarra. Iris very dark brown, eyelids orange; bill bright yellow.

Fanily CUCULIDE.

82. Crotophaga sulcirostris Sivains.

Common in thickets in small flocks near Lake Chapala, Jalisco, in February.

83. Piaya mexicana Swains.

Takeu at the Falls of Juanacatlan Jalisco, January 31, and the Barranca Ibarra, April 20. For such a large, showy bird, this is an exceedingly unsuspicious one. It is easily approached, and in fact seems to be unconscions of danger even after its mate has been killed. It has a note resembling that of a small woodpecker.

Iris carmine or crimson; bill apple green, slightly dusky at the base; iuside of month blue-black; tarsi and toes plumbeous.

Family PSITTACIDE.

84. Ara militaris (Linn.).

Tolerably common at the Barranca Veltran, southern Jalisco; also found in the pine forests of Agosto. I was told that it had been taken as far north as Guadalajara, at the Barranca Ibarra, but I did not sce it at that locality. This bird joins in the noisy evening flights of the parrots, flying very high and uttering piercing cries.

Iris yellow; naked skin around the eye carmine.
85. Conurus petzii (Wagl.).

Common in small flocks in the Barranca Veltran, sonthern Jalisco, but not met with elsewhere. Specimeu taken March 24.

These birds readily become domesticated, and are familiar pets with the natives. They are seldom caged, except at night for protection, and soon learn to distinguish their master and to say a few words.

Iris naples yellow; naked skin around eye king's yellow; upper mandible flesh-tinted, sides of lower mandible dusky, middle portion horn color.
86. Amazona finschi (Scl.).

This is the most abundant species of the family found in southern Jalisco. Common in the Barranca Veltran, where specimens were taken March 24 and 27 . During the day these birds are seattered in small flocks all over the country, feeding on the various wild fruits, but toward evening they assemble in flocks of thirty or more and seem to take delight in long flights up and down the barranca, screaming in noisy chorus all the while. Suddenly they swerve off their course and alight in a large tree and for a few moments all is silent, when, appar-
ently without canse, they fly forth and seek some other tree, only to repeat the performance which they keep up until darkness sends them to their final rossting place. Ordinarily stupid and easily approached, they seem to be unnsually suspicious at nightfall and occasionally fly quite high, when their rapid powerful flight much resembles that of a wild duck. Inner ring of iris brown-ocher, central portion chrome, outer edge, orange; bill pale yellow, brightest on sides of upper mandible; naked skin around eye dusky lead color; toes lead color; nails dusky.

Family STRIGIDA.

87. Strix pratincola Bonap.

Specimen shot in a cultivaterl field at noontime. It had probably been disturbed at its roosting place and seemed to be in a dazed condition, and was easily approached.

Taken at Agua Azul, Guadalajara, February 4.
Iris very dark brown.

Family BUBONIDA.

88. Bubo virginianus subarcticus (Hoy).

Specimen taken in Guadalajara, May 30.
89. Speotyto cunicularia hypogæa (Bonap.).

A few specimens were seen in the State of San Luis Potosi, at the Hacienda Angostura. Their mounds were spread over a considerable portion of a barren plain, and although the weather was stormy and unauspicious, being in December, as soon as the sun came out they were seen standing on top of their little mounds, bowing gravely as one approached.

Family FALCONIDA.

90. Circus hudsonius (Limn.).

A common species in central Mexico. Specimen taken at Soledad, San Luis Potosi, November 27.
91. Buteo borealis calurus (Cass.).

Exceedingly abundant through the whole central region.
92. Urubitinga anthracina (Licht.).

This bird has a peculiarly heavy awkward flight and seems to be very stupid in comparison with other hawks. It has also a most peculiar voice. I was attracted from quite a distance by a curious harsh squawk which I at first took to be the note of a night-heron; following up the sound my surprise was great to see a large dark-colored hawk perched
on the branch of a tree and uttering, at frequent intervals, a harsh and
 from the ground and allowed me to approach quite closely, showing no sign of alarm. Apparently not very common as I saw no other specimens. Collected at the Hacienda El Molino, Jalisco, June 11.

Iris rich brown ; cere and eyelids lemon-yellow ; bill plumbeous, darker at the tip; gape chrome yellow; tarsus chrome.

93. Polyborus cheriway (Jacq.).

Very common in the valleys both in San Luis Potosi and in the State of Jaliseo. Often seen in scattered troops of three or four individuals on the ground prowling around in search of dead bodies of small animals or other refuse.

Hacienda Angostura, San Luis Potosi, December 14.
Iris yellow; bill lead-color; cere and throat chrome-yellow; tarsi and toes bright chrome.

Family PELECANIDA.

94. Pelecanus californicus Rillgw.

Very abundant in the harbor of Guaymas, where specimens were taken in full plumage in latter part of February.
(Color notes of this species have been unfortunately mislaid.)

> Family ARDEIDA.
95. Ardetta exilis (Gmel.).

Taken at Lake Patzeuaro, December 20 .
96. Botaurus lentiginosus (Montag.).

Taken at Lake Patzcuaro, December 20.
97. Tigrisoma cabanisi Heine.

This bird, which is quite common in the streams of the lower part of the State of San Luis P'otosi, shares with the land-otter the native name of "perro de agua," or water dog. This incongruous name is said to have been applied to the bird on account of the hoarse barking croak which the creature makes when disturbed.

Male, female and full grown young were taken on the Rio Verde, at the Hacienda Angostura, December 9 aud 15.

Iris, pale chrome; under mandible and cere, pale greenish yellow; throat, king's yellow; tarsi and toes, dusky greenish.

> Family IBIDIDE.
98. Plegadis guarama (Linn.).

Very common in all marshy places in the central table-land, also found about all small streams and lakes. Taken at Lake Patzenaro, December 22.

Family ANATIDA.

99. Erismatura rubida (Wils.).

Taken near San Luis Potosi, November 14. Common in streams throughout the State.

A flock of ducks were frequently seen as late as the middle of May in the Barranca Ibarra, Jalisco, but they were very shy and no specimeus were obtained. From their size I should judge that they were some species of Anas. Several species of ducks were common on Lake Chapala during the winter months the most abundant being Dafila acuta, Aythya collaris, Anas boschas and obscura(?). Grebes were also abundant and coots thronged the beaches.

Family COLUMBIDA. 100. Columba fasciata Say.

Specimens taken in northern Sonora, 32 miles south of Nogales, June 14. Inner portion of iris, pale yellow; outer edge, lilac; eyelids, maroon; bill, dull cadmium; tip, black; tarsi and toes, clear cadmium.

101. Melopelia leucoptera (Linn.),

A common species throughout central Mexico, it is much prized by the natives as a pet, and almost every hut shows a cage or two with its mournful occupants, hanging at the door. Its doleful song has been transposed by some poetical genius into the following refrain,-

> Tu! Tu!
> Qué quieres?
> Qué quieres?
> Quiero tu! Quiero tu!

You! you! What do I want? I want (or love) you! I love you!
Fresh colors are as follows: Iris, ochraceous-rufous; cere campa-nula-blue; tarsi and toes, dull maroon-purple.

102. Scardafella inca (Less.).

An abundant and familiar species everywhere. It has become semidomesticated and may be found at all times about gardens and roadsides. Specimens were taken at San Luis Potosi and Guadalajara in October, December, and June. Iris, dull orange; bill, dusky, tarsi and toes, pale flesh color.

103. Engyptila, sp.

Apparently not a common bird in the regions visited. A specimen was shot in the Barranca Veltran Mareh 24.

Family PERDICIDE.

104. Cyrtonyx montezumæ (Vig.).

A beantiful specimen of this birl was seen in captivity at Guadalajara, and said to come from the neighborhood. It was exceedingly tame and very loquacious, answering its master's call and keeping up a continual piping as long as any attention was paid to it.

105. Callipepla squamata (Vig.).

Quite numerous in the rocky hills near San Luis Potosi, at Ahualulco; also brought into market by hunters at Guadalajara.

106. Callipepla gambeli (Nutt.).

Seen in cages in Cinadalajara. Said to have been taken in the neighboring hills.

107. Colinus graysoni (Lawr.).

Common in the neighborhood of Guadalajara where it was frequently offered for sale by the hunters; also found in the State of San Luis Potosi, at the IFacienda Angostnra. Specimens taken at the Hacienda El Molino, Jalisco, June 13.

Family GRUIDE.

108. Grus mexicana (Miill.).

This species was numerous in winter time at the Macienda Angostura in San Luis Potosi, frequenting the cultivated tields, and were often seen in large flocks circling hight in air, their loud "Kr-r-r-ruk" being distinctly heard when the birds were almost out of sight

109. Grus americana (Linn.).

Several living specimens of this magnificent bird were kept at the Macienda El Molino by Señor José Maria Negrete, as one of the attractions of his place. They were quite tame and walked freely about, guarded by an aged peon with a staff, whose sole duty it was to feed them and drive them to and from their watering place.

Family JACANIDA.

110. Jacana spinosa (Linn.).

Abundant at Lake Patzeuaro, but not seen anywhere else. They seem to be seattered abmondantly all around the margin of the lake, but are generally seen singly walking over the lily pads. At times, generally in early morning or late afternoon, small flocks of four or five individuals may be found on the heach feeding after the manner of waders. They are rather shy and difficult to kill, and have a noisy
cackling voice when they take flight. When standing in reeds or sedge, they frequently stretch the neck up straight on the lookout for possible danger. They have also a curious habit of stretching the wings and raising them up over the back until they meet, thus displaying to the best advantage the beautiful contrasting colors of the wing-feathers, which in this position are conspicnously visible for a long distance. On wounding one of these birds, I found that it was a very fair swimmer, and, when I overtook it in a boat, it dived with as much confidence as a grebe, and I never saw it again.

Adults and fully grown young were taken December 20.
Fresh colors of a female atult were as follows: Tris, very dark brown; bill and frontal lobe, king's yellow, the latter dusky ashy at base; base of bill dirty white, slightly dusky at juncture of yellow portion; tarsi and toes, dusky greenish, brighter at the joints; alar spines chrome.

Fresh colors of a male bird differed slightly, as follows: Iris, alar spines, and under mandible, dull yellow; frontal lobe, slightly greenish yellow; upper mandible, olive, dusky at the base and with a whitish spot at the angles of the mouth; tarsi and toes as in the female.

Family RECURVIROSTRID \neq

111. Himantopus mexicanus (Miill.).

In small flocks on the shores of Lake Patzcuaro, December 22. Very shy; a specimen shot had a tapeworm in its intestines. Iris, carmine (the pupil in this bird is so large that the iris is reduced to a mere line); tarsi, pink; joints, lilaceous; toes, dull orange; nails, seal brown; bill, purplish black.

Family SCOLOPACIDAE.

112. Gallinago delicata (Ord).

Common in suitable places along marshy banks of streams in winter. Taken at Hacienda Angostura, San Luis Potosi, December S. Two birds were discovered sleeping at noonday on a mossy bauk, side by side, with their long bills tucked under their wings.

Smithsonian Institution, November 3, 1893.

INDEX.

A.			Page.
	Page.	Africa, myriapoda from	703
Abbott, Dr. W. L., birds collected by	597	new species of snakes from	09
mammals collected by	533	West, mollusks from	317
on natural history of		Agama colonorim	717
Indian Ocean Isl-		Agassiz, Alexamiter	455
ands	759	Agelaius pheniceus	496
reptiles collected bs -	711	Agonostomus, Central American species	
Abitites Linkii	268	of	58
Ablepharns boutonii poecilopleurns....	722	Alaska. bids in.	663
gloriosus, new subspecies....	723	Albatross, collections by	71
poecilopleurus...............	72	explorations	663
Acauthonychine, subfamily	231	Actinie	119
Acanthopnenste borealis.	636	crales from	23
xanthodry	636	Diatomaceae	303
tenellipes.	636	dredgingstations	
Accentor erythropygius	631		452
Accipiter pallens, new species...........	625	mollusks of	35.3
velox	521	ptoropods and	
Acmæidx from Galapagos Islands	402	heteroporls of..	451
Acreille from West Δ frica.	570	Alhers, Von Marten, on Galapagos mol-	
Acrididee from West Africa	580	lusks.	407
Actra rufopunctata	536	Alcide of Alaska	6:3
Actinauge, genus of Actinix	183	Alcerlinidse, from Mexico.	78.5
fastigata, new name	187	Nicaragua	10
Verrillii, new name	181	Aldabra Islands, hirds fron	597
Actinernus, characters of..	165	mammals fr	533
plebeins, new species-	166	natura? history of	759
Actinia infecunda, new name	146	reptiles from	711
Actinie, bibliography of	210	Algansea, Mexican species of	55
classification	134	Allen, Harrison, on North American loats	1-28
new species of	136	Allin, Dr. J. A	689, 691
of Albatross explorations	119	Alyelus, synonymical notes on	49
Actiniaria, geographical distribution of.	201	conspersus, description of	49
Actinostola, characters of.	167	A ${ }_{\text {a }}$ aja a ${ }^{\text {ajaja.. }}$	57
callosa	167, 209	Amaltheidid from Galapagos Islands	401
excelsa, new species	170	from West Africa	3:5
pergamentacea, now spe-		Amaziliat leryllina.	784
cies	171	fuscicaula	517
Actinozoa, classification	119	Amazona finschi	7×6
Actitis macularia.	526	salvini	519
Adamsia, genus	18 ?	Amblycercus holosericens	49.
involvens, new species.	182	Amiarus, Mexican species of	$5 \cdot 1$
Adelonycteris, characters of...............	28	Amphipoda	541
Adler, Dr. Cyrus, on the shofar	287	Amphispiza bilineata.	739
Etgialitis collaris	526	Ampullaridide, from West Africa	343
vocifera	526	Anableps, Central imerica species of...	57
Agocera venulia	573	Anas discors.	53
Estrelata brevipes........................	619	Anasimus rostratus, new species	2 O
hypoleuca	619	Anatide from Mexico	789
longirostriş....................	618	from Nicaragua	531
Africa, crustaceans from	535	Ancey's Galapagos species of shells	410
East, reptiles and batrachians		Ancostoma cinereigulare.	505
from	711	Anemonia inerualis. new spee	149

Page.
Anemonia variabilis 147, 208
Anguido from Mexico 41
Anguispira 744
Aulingidao from Nicaragua. 532
A nomia adamus from Galapagos Island. 371
Anomiidx from Galapagos Island 371
Anommra from Africa 539
Antheada fambly of actinis 146
Anthicide from West Africa. 576
Antholoba, genas 164
reticulata 164
Antrostomus saturatus 614
Anthozoa, classification of 119
Antrozous, characters of 28, 29
Anura from Mexico 39
Antomolus pallidigularis 497
Aphelocoma cyanotis 781
Apidse from West Δ frica 566
Aplysiitle from California 341
from West A frica 325
Apoda 738
Apodide from Africa 541
Arachnida from West Λ frica 586
Ara macao 519
militaris 519,786
Aramidre from Nicaragua 528
Aramides plumbeicollis 528
Araner, new genus and species of 587
Arbelorhina cyanea 487
lucida. 488
Area (Byssoarea) solida 373
Archeopteryx, bony structure of wings 26
Ardea, species of, from Nicaragna 527
Ardea tricolor ruficollis. 527
Ardeida from Mexico 788
from Nicaragua 527
Ardetta exilis. 788
Arionta 750
Arremon aurantiirostris 490
Artibeus, characters of 28
measurement of membranes. 7
Asilide from West \boldsymbol{A} frica 572
Assumption Islaxds, description of 763
natural history of 759
Asthenognathine, subfamily 251
Astronotus, Central American species of 58
Atalapha, characters of
Atherinidx, Central American genera of
58Atlanta, species of, collected by AllatrossAtlanta peronii463
457
Atractaspis rostrata 735Attila citriopyerins.Attila, from West A frica.509
586Australia, cralos from
Aviculide, from Galapagos Islands. 83, 98 372
1.Baiomys, new subgemus758
Baldwin, A. II 63
Banks, Nathan, on Arachnida 586
bartramia longicaudus. 520
Basilenterus leucopygins 485
ruifrons, jouy i777
Batrachia737
Batrachians and reptiles, new speciesfrom Mesico37
Bats, coloration of
Pago. 12
characters of exterwal car 8
characters of wing membrane in tlight 3
fruit, new species 533
genera of North American 28
general plan of anterior extremities 25
hair characteristics 11
measurements of membranes of 7
membranes of, Allen on 1
new species of 533
North American, Allen ou 1-28
plan of bony structure of wings. 25
posterior limbs of 21
ribs of 16
secondary skin developments 10
sesamoil bones of 19
skeleton characteristics 13
skin characteristics 12
skull characteristics 13
sternum and anterior limbs 16
teeth characteristics 26
vertebral column of 15
Banr, Dr., 'quoted. 357
Bean, Tarleton II., on new blemnoid fish 699
Bering Straits, crabs from 97
Belenogaster. 567
Bell, Prof. Jeffrey 208
Belonesox, Central American species of 57
Belostomatide from West Africa 579
Benedict, James E., on African crusta- ceans 535
Bibliography of Actinia 210
Birds, bony structure of wings of. 26
from Central Mexico, Jony on 771
from Nicaragua 479
new species of 43, 469, 479, 597, 687
new subspecies of. 691
Blakiston, Captain, birds collected by. 217
Blatchley, W. S., on Mexican batrachians and reptiles. 37
Blattide from West Dfrica 579
Boadon geometricus 727
lineatus. 727
Bolocera brevicornis, new species 158, 209
occidua, new species 154
pannosa, new species 156
Boloceridx, characters of 153
Bombus. 566
Bombycidx from West A frica 57_{2}
Botanrus leutiginosus 785
Bourke, Capt. J. G 220
Brachywotus (Heterograpsus) jonyi, new species. 247
Brachyphylla, measurement of mem. branes 7
Brachyphyllum texense, now species 269
Brachyura from west coast of Africa 535
Bramocharax, Central American species of. 56
Brandt, quoted 97
Brotogeria jugularis 519
Brown, Arthur II 317, 535
Brown, W. Harvey, of African expedition 31 535
Brycon, Central American species of 56
Bubo virginianus subarcticus. 787

INDEX.			795
	Page.		I'age.
Bubonide from Alaska	664	Campephilus guatemalensis..............	518
from Mexico	787	Camponotus fulvipectus	568
from Nicaragua	520	Cancellarida from West Africa	328
Buccinide from Galapagos Islands	389	Cancride from 4 frica	536
from West Africa	329	new species of	236
from Nicaragua	512	Cape de Ferde Islands, crabs from	98
Bucco dysoni	513.	Caprimulgide from Mexico	785
Buchanga aldabrana, new species	597	from Nicaragua	515
Bufo intermedius from Mexico.	39	Capsiempis flaveola	505
regularis	737	Carabide from West Africa	573
Bufouida from Mexico	39	Carcinoplax dentatus, new speci	243
Bulimulide	751	Cardmalis cardinalis canicautus.	779
Bulimulus	640, 751	Cardita (Venericardia) Hammea	374
from Galapagos Island	376	Cardium consors	375
artemesia	642	Carinaria, collected by Albatross	463
Baileyi	640	Carpenter, Dre, list of Galapagos mollusks	
Bryanti	6.5	by	405
californicus	641	Carpolacus cassini	780
dealbatus	751	Carpodectes nitidus	509
excelsı	G43	Carpolithus Harseyi, new species	278
inscendens	643	obovatus, new species	278
montezum	640	Casmaria vibex	348
n	376	Cassicus microrlynchus	495
pallidio	640	Cassidide from Galapagos Istauts	394
pilula	616	from Lower California.	3.4
spirifer	644	Cassidix oryzivora	496
sufflatus	646	Casts, gelatin, J. W. Scollick	61
Veserian	645	Catharista atrata	52.2
Xantusi	641	Cathartes aura.	522
Zeleloni.-.....	644	Cathartidee from Nicaragua.	522
Bulla punctulata.	376	Catharus melpomene clarus, new sub.	
Buller, Dr. A. C., mammals collected by .	689		77.3
Bullide from West Africa	324	Catoglyphis viatica	568
Bulweria bulweri.	620	Catostomida, Central American species of	5.
Bunodidre, family of	194	Cansus nasalis, new species	735
Buprestide from West Africa	575	rhombeatus	735
Busarellus nigricollis.	522	Cavolina, illustrations	466
Butastur indicus.	624	gibbosa	460
Buteo borealis calurus	787	quadridentat	459
brachyurus.	522	Calvolinidre of Albatross explorations	452
latissimus	522	Celens castaneus.	518
Buthraupis ceruleigularis, new species..	609	Central America, fresh-water fishes of... manmals from	53 689
C.		rephalopoda	755
		from West A frica	339
Cairina moschata..........................	531	Ceophlens scapularis.	518
Calappidx, new speries of.................	252	Cerambycide from West Africa.........	577
Calciuns sulcatus.	539	Cercomacra tyranmina	501
California, Gulf of, mollusks from	341	Cerianthe:e, characters of.	201
new blennoid fish from	699	distribution of	206
new genera of crabs from	226	Cerianthus vas, new species	202
new insects from	52	Cerithidre from Galapagos Islands	396
new species of lizard from....	467	from West Africa	332
rare mollusks from	344	Cerithiopside from Galapagos Islands...	305
throwing-sticks from..........	219	Cerithimm cymatophorum, new species ..	475
Callinectes from Africa.	536	Certhia familiaris Mexicana	776
Callipepla gambeli	790	Certhiidx from Central Mexico.	776
Calliste larvata	488	Ceryle alcyon	511
Callothrus robustus.	496	amazona.	511
Calocitta colliei.	782	americana septentrionalis	511,785
Calvert, P. P., on African insects.	582	inda	512
Calyptreidæ from Galapagos Island.	398	superciliosa stictoptera.	511
from West A frica..........	34	torymata...........................	510
Cambarus pellucidus testii, new sulispecies \qquad	283	Chetura cinereiventris guianensis........	516 516
Camp, J. H., snakes collected by	709	lawrencei, new species of swift.	43

	Page.		Page.
Chama	753	Coleoptera from West Africa	573
arcinella	753	Colias electra	569
echinata	37.5	Colinus graysoni.	790
Chameleo operi	724	Collins, (i. N., ou African Myriapoda....	703
taitens	721	Collodes tennirostris, new sjecies....	230
tigris	724	Colombia, new species of insect from	47
Chamidro	753	Colnmba intermedia	624
Chanler, William Astor, African reptiles collected by	711	lencoptera nigrirostris	789 522
Characinida, Central American species of	55	rufin	523
Characodon, Central American species of.	56	speciosa	523
Charadriide from Nicaragua	526	Cohumbellide from Galapagos Islands...	390
Chatelaine, Heli, Myriapoda collected by	703	from West Africa	329
Cheiroptera, North American	1-28	Columbida from Mexic	789
Cheiidon erythrogaster	486	from Nicaragua.	522
Cherrie, George Li., birds collected by ...	4	Columbigallina passerina pallescens	523
Chicorens Leeanus.	346	Compsothlypis americana.	484
palma-rosa Mexicana	345	Coulylactis, characters of.	150
Chilonycteris, measurement of mem-		cruentata	150
brane	7	Congo, Africa, snakes from	709
China, crals from	93	Conidre from West Africa	328
Chione, species of, from Galapagos Is.		Conocephalide from West Af	580
lamts.	375	Conopidie from West Africa	573
Chionocetes Behring	96	Contopus brachytarsus	507
opilio, distribution of-	74	virens	507
tanneri, new species.......-	76,104	Conurus aztee	519
Chirostoma, Central American species of.	58	finschi	519
Chiton, species of, from Galapagos Is-		petzii.	786
lands.	404	Conus, species of, from Galapagos Islands.	384
Chitouanthus, new g	189, 209	Conns okhotensis, new species...........	475
pectinatus	190	Cook, O. F.. on African Myriapoda	703
Chlorinoides, species of, in National Mu-		Cookson, Commander, shells collocted by	407
	83	Copurus leuconotus	504
Chloronerpes yucatanensi	518	Corallimorphidre, characters	198
Chlorophanes spiza	487	Corallimorphus profundus	199
Chlorostilbon anriceps.	784	Coreide from West Africa.	578
Chlorostoma gallina multiflosa, descrip.		Corvide from Alaska.	664
tion of	351	from Central Mexico	781
Chondractinine, subfamily	183	Corrus mexicanus	782
Chonophorus, Ceutral American species		Corynorhinus, characters of	28, 29
f.	6^{6}	Cosmopepla, classification of species of .-	46
Chordeiles texeusis	785	Montandon	45
virginiams henryi	515	cœeruleata, new species	47
Chrysidida from West Africa	568	Uhleri, new species	48
Chrysomelide from West A frica	577	Costa Rica, collection of birds from	479, 667
Cichlida, Central American genera of....	58	new species of bird from	44
Cicindelide from West Africa	573	Cotingidx from Central Mexico	783
Ciconia nigra	622	from Nicaragua.............	507
Ciconiidx from Nicaragua	526	Coturnix coturnix japonica	623
Cireus hudsonits	521.787	Couesius greeni, new species	313
Cistelide from West Africa	576	Crabs from Australia	98
Clibanarins	539	from North Pacific	97
Clio, illustration	466	family Maidse, catalogue of	63
species of, collected lyy Albatross.	453,461	new genera and species of........	223
Clover, Lieut. Commander Richardson.	472	Cracide from Nicaragua.	523
Coal in Arctic Siberia	472	Cradactis, new gemus	197
Coccinellida from West A frica	578	digitata, new species.	198
Coceyzus minor.	518	Crayfishes, blind, new species of.	283
Cochlearia zeledoni	527	Crax globicera.	524
Cochleariido from Nicaragua	527	Crepulula aculeata	401
Coligena clemencio	784	Crocodylus niloticus from Δ frica	713
Colocerus grandis, new species	79, 104	Crotaphopeltis hotamberia.	728
Cenebra mexicana	488	Crotophaga sulcirostris.	517,786
Cerebide from Nicaragua.	487	Crucibulum imbricatum	398
Coleman, A.	591	Crustaceaus from west coast'of Δ frica	535

Coleoptera from West Africa 573
Colias electra 569
Colinus qraysoni................................ 790
Collins, (x. N., on African Myriapoda.... 703

Colombia, new species of insect from 47
lencoptera............................ 789
nigrirostris............................ 522
rufina
speciosa............................ 523
from West Africa.......... 329
from Nicaragna 502
Columbigallina passerina pallescens..... 523
Compsothlypis americana................... 484
Condylactis, characters of 150
cruentata....................... 150
(1) for 388

Gonoephalide from West Arice - 580
Conopidie from West Africa............... 573
Contopus brachytarsus 507
virens 507
finschi............................... $\quad 519$
petzii................................ 786
Conus, species of, from Galapagos Islands. 384
Cook, O. F., on African Myriapoda 703
Cookson, Commander, shells collocted by. 407
, 504
Corallimorphus profundus.................. 199
Corente from West Africa...............
from Central Mexico $\quad 781$
Corvus mexicanus............................ 782
Cornorhinus, characters of 28,29
Montandon on 45
creruleata, new species 47
ollection of birds from 479, 667
rom Central Mexico 783
507
Coturnix coturnix japonica 623
Couesius greeni, new species 313
from North Pacific................... 97
family Maidse, catalogue of...... 63
new genera and species of........ 223
Cracida from Nicaragua.................... 523
Cradactis, new genus 197
digitata, new species........... 198
Craytishes, blind, new species of.......... 283
Crax globicera.................................. 524
Crephdula aculeata 401
-
Crotophaga sulcirostris..................... 517, 786
Crustaceans from west coast of Δ frica .. 535

I'age.
Cryptophrys, new genus...................... 250
concharum, , ctw species ... 250
Crypturus pileatus
...... 525
Ctenoiulus, new genus.......................... 704
chatelainei, new species 705
Cuculidx from Mexico 786
from Nicaragua................. . . . 517
Cuculus kelungensis............................. 627
Cuvier, cited... 120
on name of tumnies 694
Cyanocitta stelleri macrolopha 781
Cyanomyia ellioti................................-. 781
Cyanomyia violiceps............................... 784
Cyanoptila bella.
Cycadeospermum rotundatum
Cyclammina of Albatross explorations
632

Cyclax (Cyclomaia) suborbicularis, figure of

10
Cycloxanthus californiensis, new species. 237
Cydrela brunnea, now species...........
maculata, new species
588

Cymbactis, new geuus......................... 174
faculenta, new specics..-.... 174
Cymbilanius lineatus fasciatus 498, 499
Cymopolia fragilis, new species........... $\quad 259$
zonata, new species............. 259
Cymbulider of Albatross explorations... 452
Cynopterus, measurement of membranes. 7
Cypraidæ from California 348
from Galapagos Islands 39 !
from West Africal ---...-...... 332
Cyprinidæ, Mexican species of............ 55
Cyprinodontide, Central American genera of

56
Cyprinoid fish, new species of 313
Cypseloides cherriei, new species of swift 44
Cyrtomaia smithi, new species.--.......... 228
Cyrtonyx montezuma 790
Cythara densistriata 387
D.

Dacuis ultramarina
Dafila acuta
51
Dakota, explorations by Lieut. Warren in 33
fossil plants from................... . . 35
Dall, William Healy $353,595,639$
crabscollected by゙... 225 on Albatross collection of mollusca...

417
on fauna of Arctic Siberia.

471
Danaidx from West Africa................... 570
Dasypeltis abyssina................................ 733
palmarum

Davidson, Prof. George.......................... 368
Dawson, Sir William........................... 105

Demiegretta ringeri............................... . . 622
Dendrocincla anabatina...................... 498 olivacea........................ 498
Dendrocolaptis sancti-thoma 498
Dendrocolaptida from Mexico............. 784
from Nicaragua. 497
Dendrocoris pini, new species............. 51J'age.
Dendrocygna autumnalis 531
Demiroica austiva 484
estira sonorana. 777
auduboni 777
coronata 484
dominica albilora 484, 777
gracia 777
maculosa. 484
pensylvanica. 484
virens. 777
Dendronis lacrymosa 498
nana 498
Denhard, Gustav, reptiles collected by 711
Desmodus, measurement of membranes 7
Devouiau plants from New York 105
Diatomacea, Albert Mann on. 303
Diaz, President Portirio. 773
Dictyotites, new genus of fossil plant. 113
f'asciolus, new species. 110,113
maximus, uew species 111
IHiloma (Chlorodiloma) ruderata, new sjuecies 476
Diomedeidæ of Alaska 663
Dione attinis 101
Dioonites Buchianus angustifolins 265
Buchianus rarinervis, now va. riety 264
Dunkerianns 265
Diplax dilatata, new species 582
Diplodactylus inexpectatus, new species. 714
Diptera from West Δ frica 572
Discosoma fuegiensis 200
Discosomide, characters of 199
Distant, M., quoted. 45
Doherty, Williaw, Javan insects collect- ed by 570
Dulabella californica. 341
Dolicbonyx oryzivorus 496
Dolichopodidie from West Africa. 573
Dormitator, Cesutral American species of. 60
Dorippidit, new specie's of. 258
Dorosoma, Central American species of 56
Dorosomidse, Central American genera of. 56
Dosinia disens 753
Dresser, II. E., on gray shrike 217
Dryobates japonicus 630
scalaris bairdi. 785
Dryophyllum aquamarum from Wyoming 35
Dytiscide from W West Δ frica 573
E.
Elaalia americana, new species 254
Ecaudata 737
Fekstein, Dr., U. S. Navy 68
Edwardsie, tribe of Actinize 135,206
Edwardsia intermedia, new species. 136
Eigenmann, Carl H., on fresh-water fishes of Central America. 53
Elainea pagana subpagana. 505
Elanoides forficatus 521
Elateridx from West Africa 575
Eleopicus caboti 519
Fleotris, Central American species of... 60
Eliomys parvus, new species 601
Emberiza ciopsis ijima, new subspecies 637

	Page.		Page.
Emberiza personata	637	Fishes, fresl-water, of South America...	53
Embernagrastriaticeps	493	Fisher, W. J., mollusks collected by	341
Embolemus	568	Fishery, whale, in Okhotsh Sea	471
Empidonax acadicu	506	Fissurellidre from Galapagos Islands....	403
tlaviventris (?)	506	from West Africa	338
griseus.	783	Florida, shell heaps of	695
hammondii	78.3	Florisuga mellivora.	517
pusillus traillii	506	Fontaine, William Morris, on fossil plants	261
wrightii.	783	Sorliculide from West Africa	582
Endomychide from West A frica.	577	Formicariide from Nicaragua.	198
Engina, species of, from Galapagos Islands.	389	Formicarius, key to species of analis	669 673
Engyptila cassini	523	cayanensis	670
Epeira eclipsis, new species	590	erissalis.	676
Epilobocera.	657	hoffimann	502, 679
granulata	560	revision of genus	667
haytensis	658	moniliger	683
Fpomophorus, measurement of membranes.	7	nigricapillus	675
Equisetum texense, new speci	263	pallidas	684
Eremias sextrniata, new species	718	rutipectus	685
Eribates	606	saturatus.	677
Ericerus, new genus	223	thoraciclis	685
latimanus, new species.	224	umbrosus	681
Erileptus, new geuus	220	Formicidro from West Africa.	568
spinosus, new species..........	227	Formicivora botcardi.	501
Eriphia gonagra	536	Fort Berthold, fossil plants from	33
Erismatura rubida	789	Fort Clarke, fossil plants from.	33
Ethusa lata, new species	258	Fort Union, Montana, fossils from	36
Euchromia leonis	572	Fossaride from West Africa	334
sperchina	572	Fossil plants of Montana	33
Eucorystes nagleri.........................	493	from New Tork and Peun-	
Euderma, characters of	28	sylvania.	105
Eulamia, Mexican species of	54	new species of	110
Eumenes aethiopica	567	from Texas.	261
Emuenide, from West Africa............	567	Fussil shells from Aretic Siberia	471
Euphertra cyparissa.......................	571	from Canada.	591
Euphonia gouldi.	488	Fussils, Glen Iose, table of.	280
hirumdinacea	488	Fomlia aldabrana, new species...........	598
lutcicapilla	488	Fregatide from Nicaragua	532
Enprognatha bitida, new species	230	Frenelopsis Hoheneggeri	275
Eremias brenneri	719	varians, new species........	273
hahneli, new species	719	Friedenwald, Dr. H.	288
Eurynome aspera	89	Fringillida from Alaska................	664
longimana	103, 104	fromCentral Mexi	779
Eurystomos calonyx	627	from Nicaragu	491
Euthlypis lachrymosa	778	Fugur perversa	754
F.		Fulica americana	528
Falco albigularis		Fundulus, Central American species of..	56
Falco albigularis	520	Furnariide, from Nicaragna..............	496
sprarverins	520	Fusus polygronoides.......................	344
Finlconida from Alaska.	664		
from Mexico.	787	G.	
from Nicarasua	520	Galapagos Islands, lescription of	35.3
Fasciolariidx.	754	fanna and flora of	359
from California.	34	mollusks of	353.419
from Galapagos Islands...	389	mollusks, Alber's list	
from West A frica	329		107
Ficedula ferruginea.	423	mollusks, Carpenter's	
Fish Commission, collections by 67,	119,699	list of	405
crabs collected by....	223	mollusks, Dall's list	
mollusks collectal bs.	353	of	417
pteropods collectedly.	451	mollusks, Reibischon.	411
Fish, new blemnoid........................	699	mollusks, Wimmer's	
Fishes, fresitwater, catalogne of Central		list of..............	409
American......................	53	volcanic origin of	354

l'ige.
512
Galbula melanogenia
512
Galbulide, from Nicaragua
Galeorhinide, Mexican species of 54
Galeoscoptes carolincusis 483
Gallicrex cinerens 617
Gallinago clelicata 526, 791
Gambusia, Central American species of 57
Gastropoda 743, 75
from Galapagos Island. 376
from West Africa $3 \because 4$
Gastropods of Albatross explorations 464
Gelasimus coloradensis, new species $\because 46$
gracilis, new species. 2.1
latimanns, new specios 45
perlatus 538
tangieri. 538
Gelatin casts, J. W. Scollich on 61
Geocarcinide from Africa 537
Geocarcimus lagostoma 537
Geothlypis, new subspecies of 691
hairdi 485
caninucha ictorotis. 485
formosa 48
philadelphia 484
poliocephala ralphi, new sub- species of 692
trichas 185
Gerrhonotus imbricatus from Mexico. 41
Gibbula nassaviensis from Africa 337
Gilbert, Charles H., on wall oyed pollock 315
Gill, Dr. Theodore 60
on gencrio name of tunnies693
Girardinichthys, Central American species of 56
Girardinus, Central American species of. 58
Glacial period in North America. 593
Glaucis hirsuta 516
Glaudina truncata 743
Globigerina of Albatross explorations 457
Glorioso Islands, description of 763
natural history of 759
reptiles from 711
Glyphorhynchus cuneatus. 497
Gobidas of Central America 60
Gobioides, Central American species of 60
Gobiomorus, Central American species of 60
Goniopsis cruentatus $5: 38$
Grallaria dives 504
Grapside from Δ friea. 538new species of
Gripsus maculatus 5.38247
Gray, J. E., quoted. 371
Gray slrike, status of 217
Greegor, Isaiah, shells collected by 349
Green, Δ shdown H., fish collected by 313
Greenland, crabs from 68
Grenada, new species of bird from 43
Greytown, Nicaragua, birds from: 480
Gruda from Mexico 790
Grus americana. 790
mexicaua. 790
Gryllido from West \triangle frica. 580
Guiraca caerulea eurliyncha 779
concereta 492

Qygis candida.. 615
gymuocichla chirolenca 501
Gymmopithys olivascens 501
(iymuostinops montezuma 494
(rypagis papat 523
Gyrinide from West Δ frica. 54
H.
Habcl, Dr. Simeon, shells coliected by 409
Hiadilon, A. C., cited 209
Hadilon, Prof 119
Halcampidu, family of Actinite 141
Halcurias, new genus 143
pilatus, new species 142
Haliotible from Test Δ frica 3.38
Haliserites chondriformis, new species 110,113
Dechenianus. 109,112
lineatus, new species 110,113
Hall, Prof. C. W., fossil plants from. 33
Hamanumida dadalus 571
Harma cinnis 571
Harnorhynchus curvirostris 775
longirostris. 75
Harvey, J. W., fossil plants collected by. 261
Hay, Dr: O. P 37
Hay, W. P., on blind crayfishes 283
Hayten, Dr. F. V., fossii plants from 33
Heleorlytes brunneicapillus 776
Melicidie 744
from West Africa 325
Helicina 59
orbiculata. 753
Helicinida 752
Heliornis fulica. 530
Heliornithide from Nicaragua. 530
Helix albolabris 747
alteruata 74
auriformis 747
callforniensis 750
dentifora. 749
Dorfeuilliana. 747
Dupetithonarsii 751
Hemphilli 745
inflecta 749
Levettei 749
Rowelli 751
thyroides. 749
Helminthophila celata 777
chrysoptera 483
peregrina 48
pinus 48
Hemerobiidse from West Λ frica 582
Hemidactylus mabouia 714,762
Hemiderma, measurement of membranes. 7
Hemiptera from W'est Africa 578
heteroptera, Montandon on American 45
Hemirhagerrhis hildebrandtii 799
kelleri 720
Hemus cristulipes from Iucatan 67
Henicorlina prostbeleuca 48°
Henslaw, H. WF., lizards collected by 467
Merlstia, species of, in National Mtuseum. 79
Herpemia eriphat 569
Herpetotlores cachinnans 521

	Page.	J.	
Hertwig, I'rof., on Aetinaria	206		I'age.
Hertwig, I'rof. Richard	119	Jacana, Mexican	772
Hesperide from West \triangle frica	571	spinosa	790
Heterocera from West Airica	572	Jacanide from Mexic	790
Heteropods of Llbatross explorations	451, 463	from Nicaragua	530
Ifeteroptera, new species of	51	Janthinide from West Africa	331
Ifexactinse, tribe of Actinia	140, 206	Jipan, crabs from	81,100
Hill, 'rrof. liobert T	262	gray shrike from	217
Himantopus mexicams	526,791	Jerdon's Mammals of India, quoted.	30
Hippoboscide from West Λ frica	573	Jewish historical exhibition	288
Hirundinide from Nicaragua.	485	Jewish shofar, Adler ou	287
Holmberg, F. L	60	Jordan, David Starr	693
Honturas, mammals from	689	on new species of ey-	
Hopkius, Timothy, fish named for	701	prinoid fish	313
Horned toad from Mexico.	41	on wall-eyed pollack.	315
Howe, E. G.. insects colleeted by	570	Jones, Dr. W. II., mollusks collecteid by ..	341
Howgate Expedition, crabs collected by .	68	Jony, P. L.. crabs collected by	83
Hume, David II., fish collected by	315	on lirds from Mexico	771
Hyas arancus, distribution of............	67	Junco cinetens	779
coaretatus, distribution of	69	K.	
latifrons from North Pacific	96		
lyratits, distribution of	72, 104	Kain, C. П., on Diatomaceio	303
Hyastenus, species of, in National Mn-		Kerivoula, characters of	31
seum.....................................	8.5	Knowlton, F. H	117
Hyastenus caribbaus, new species	85. 104	on fossil plants of Mon taua	
longipes, figure of........	104		33
Hydrometridie from West Africa	579	L.	
Hydrophilide from West \mathbf{A} frica.........	574		
Hyla eximia from Mexico	40	Lacertilia from Mexico	40
miotympanm from Mexico.	40	Lagridid from West Δ frica	576
Hylite from Mexico.	40	Lake Patzenaro, Mexico	772
Hylophius decurtatus.	487	Lake Chapala, Mexico.	772
Hymenoptera	566	Lambrus (1'arthenolambrus) exilipes, new	
Hyperolius cinctiventri	737	species.	234
Hypocnemis nerioldes.	502	Lamellariide from Galapayos Islands.	402
Hypogeophis alternans, new specic	739	Lampetra, Mexican species of	54
rostra	738	Lamporius prevosti	517
Hypolimnas misippu	570	Land birds on Aldabra Island	762
		Lanidio from Central Mexico	778
1.		Lanius Iudoricianus excubitoride	778
Iache latirostris	784	Laniocera rufescen	508
Ianthina, species of, collected by Alba-		Laricopsis longifolia	268
tross	463	Laride, from Nicarag	532
Ibidida from Mexico	788	of Alaska	66:3
Ibis ahbotti, new speeres	599	Larra	567
Ictalurus, Central American spocies of. .	54	sericea.	567
Ieteria virens	485	Larrida from West Africa	567
Icteride from Central Mexico	781	Lasionyeteris, characters of	28
from Nicaragıa	493	Latastia spinalis.	717
Icterus galbula	496	Lathria unirufa	508
mesomelas	495	Latirus from Galapagos Islands	380
prosthemela	495	Lanins magnirostris	636
spurius.	496	Lee, Prof. Leslio A., mollusks collectel by	3.3
Ictiobes, Central American species of.	55	Leiotealia badia, uew species	194
Idotea	541	Lepidoptera.	508
Idotaide from Africa	541	Lepidosteidx, Central American species	
Iquanide 1rom Mexico.	40	of	54
Inachide, new genera of	223	Lepidostens. Mexican species of	54
Imachoides magdalenensis, new species..	298	Lepteces, new genus of crabs	83
Indiana, blind crayfishes from.	283	ornatus, now species.	84, 104
Inlide, new genus of	704	Leptochitonide from West Δ frica	338
Ischnochatomdie from West Africa	339	Leptodius americanus	536
Isopoda.	541	doridanu	536
Ixocincla madagascariensis rostrata, new		Leptopus longipes	95
subspecies.	597	Leucopternis gheisbreghti	521

INDEX.			801
	Page.		Page.
Leucosidæ, new species of	251	Macrura	540
Libellula (Cacergates) unifasciata	583	Mactridæ, species of, from T est A frica...	324
(Orthetrum) caffra	584	Maia squinado	80
(Orthetrum) capensis, new spe-		verrucosa	81
cies	584	Maidæ, catalogue of	63
' (Urothemis) edwardsii	585	key to species examined	65
Libellulida from West Africa	58.2	key to subfamilies of.	63
Lima arcuata	372	list of, in National Museum	93
Limacidæ	744	Mainæ, key to genera of.	64
from Trest Africa	325	Malacoptila panamensis	512
Limacina, illustrations of.	466	Manacus candæi	509
inflata	459	Mann, Albert, on Diatomacea	303
Limacinidre of Albatross explorations....	452	Mantidæ, from West A frica.	579
Limuæidæ	752	Marginellidæ, from Galapagos Islands...	388
Limosa lapponica baueri	616	Margaritana margaritifera, distribution of	593
Liobunum.	544	Martens, Prof. von.	208
bicolor	552, 562	Marx, George, on new genus of aranew..	587
calc	553	Mason, Otis T., on throwing.sticks......	219
grande	556, 562	Matanzas Inlet, shell beap at.............	697
longipe	550, 562	Mauritius, crabs from....................	92
maculos	554, 562	Meeds, Prof. A. D.	34
nigripe	547, 562	fossil plants from	33
nigropalp	547, 562	Meek, F. B	473
politum	548,562	Megachile nasalis	566
ventricos	550, 562	rufipes	566
vittatum	545,561	Megarhynchus pitangu	506, 783
vittatum dorsat	546,561	Melanerpes aurifrons	785
Littorina	754	pucherani	519
irrorata	754	uropygialis	785
(Tectarius) galapagiensis, de-		Melanotis crerulescens	775
scription of	396	Meloidre, from Test Africa..............	576
Littorinidæ	754	Menippe convexa, new species	239
from California	350	Merriam, Dr. C. Hart, collection of shells	
from Galapagos Isla	396	by	743
from West Africa.	333	Merula grayi	482
Lizard, new species of......................	467	tristis	734
Lizards, Mexican species of	40,41	Mesodon	747
Locustella hondæusis, new species.......	633	Mesorhœa gilli, new species	235
Lonchoglossa, measurement of membranes	7	Mexico, batrachians and reptiles from...	37
Loomis, H., crabs collected by	92	birds from	771
Lophostoma, measurements of membranes	7	new species of birds from	469,687
Lophozozymus (Lophoxanthus) frontalis, new species. \qquad	236	fresl-water fishes of throwing-sticks from	53 219
Lophyride from Galapagos Islauds......	404	Micippa Нaanii	100
Loricata from East Africa	713	hirtipes	99
Lucina bella	374	mascareni	92
Lunonia isabella-mexican	348	spinosa	92, 98
Lutricola excarata.	376	thalia aculeata	92
Luzzatto, Dr. Isaiah	288	Micippinæ, key to genera of	65
Lscænidre from West Africa	571	Micrastur guerilla	520
Lycognathophis seychellensis	726	Microcerculus luscinia	609
Lycosa brevipes, new species	587	Micropanope polita, new species	238
Lycosidæ from West Africa	586	Microphrss bicornutus from Africa.....	535
Lygeilim from West Δ frica	578	Micropisa ovata.	97
Lygosoma kilimensis	722	Micropodide from Nicaragua.............	515
Lysin@	750	Milvulus forficatus	783
U.		Mimidx from Central Mexico..............	775 482
Mabuya chanleri, new apecies.	721	Minnesote, University of, fossils from...	33
sechellensis	720	Miocene fauna in Siberia..................	471
Machonuenus, new genus.................	587	Mionectes oleagineus assimilis	505
albidus, new species.......	589	Missouri River, fossil plants from.......	33
McDonald, Marshall 119, 223, 353,	,451,663	Mitchell, G. E.	481
McMurrich, J. Playfair, on Actiniæ......	119	Mithrax sculptus	535
Macrotus, character of :	28	suborbicularis	102
measurements of membranes.	7	Mitopus	556

	Page.		Page.
Mitopus, ohioensis.	558, 563	Miylothris poppea.	563
pictus	557	Myonanthus ambiguus, new genus and	
Mitridæ from Galapagos Islands.	388	species	151
from West Africa	328	Myra suborata, new species	256
Mitrularia from Galapagos Istands	398	townsendi, new species.	255
Mniotiltide from Alaska	664	Myriaporia from Africa	703
from Mexico	777	Myrimotherula meliena	501
from Nicaragua	483	Myrmelastes intermedius	502
Modiola capax	373	lawrencei	502
Modulide from Galapages Islands	396	Myrmotherula fulviventris	501
Mollicnesia, Ceutral American species of.	57	Mytilus multiformis	373
Mollusks, from West Afrien	317	N	
from west coast of America ...	341		
new species of	341	Naja nigricollis.	734
of Galapagos Islands.	353,419	N	4
Molossi, external ear of	10	Nassidx for Galapagos Islands	390
key to genera of	28	Naticidæ...-.	754
Molossus, measuremert of membranes...	7	from Galapagos Islands	401
Momotidm from Mexico...................	785	from West Africa	35
frem Nicaragua	510	Naxia dicantha	100
Momotus lessoni	510	robillar	88
mexicanus	785	Nebraska, explorations by Lient. Warren	
Monommide from West Africa	575	in..	33
Monophyllus, neasurement of mem-		Neetroplus, Central American species of.	59
branes	7	Nematophyton crassum, notes on	115
Montana, fossil plants of	33	Neorhynchine, subfamily.	33
Montandon, A. L., on American Hemip-		Neorhynchus mexicanus, new species	233
tera heteroptera	45	Nepide from West Africa	579
Morais, Rev. Dr. S . .-.	288	Neptis melicerta.	570
Mormops, meastrements of membranes..	7	Neptunus (Hellenus) iridescens, new	
Mouse, new species of .	689	speci	40
Moxostoma, Central 4 merican species of.	55	Neritidx.	755
Mugilidx, Central American species of . .	58	from Galapagos Islands	403
Murex, spenies of, from California......	345	from West Ifrica.	338
Muricides from California	345	Neritina	755
from Galapagos Islands	391	reclirata	755
from West Africa .-............	330	Neuroptera from West Africa	582
Mursia hawaiiensis, new species	252	Vererita duplicata	754
Musical instruments and their homes....	297	Newberry, Dr. J. S., on extinct floras of	
Muscide from West Africa.	573	North America	33
Muscivora mexicana	506	New York, fossil plants from	105
Mustana, new species	602	New Zealand, crabs from	81
Mutilla	568	Nibilia erinacea.	90
lencopss	568	Nicaragua, birds from	479
medon	568	Nitidella incerta	390
Mutillide from West Africa	568	Noctilis, measurement of membranes....	7
Myadestes obscurus occidentalis.........	774	Noctuidre from West Africa	572
Mycalesis cliasis.	571	Noctulinia, characters of.	30
vulgaris........................	571	North Pacific ocean, crustacea of	95
Mycteria americana.	526	Northrup, Dr. J. I	1.34
Mygnimica atropos	568	Notropis, Central American species of $^{\text {a }}$	53
Myiarchus.	606	Nursia tuberculata, new species	257
crinitu	507	Nycteris hispida.	602
lawrencii	608	Nycticegus, characters of	28
lawrenceei nigricapillus	507	Nycticorax nyctorax nevius	$5 \geq 8$
lawrencii olivascens	783	Nyctidromus albicollis.	515
mexicanus magister	783	Nyctinomus, characters of	23
olir	-608	Nymphalitix from West Africa...........	570
yucatanensis.	606, 608		
Myiobius fulvigularis.	506		
Myiodynastes luteiventris	506	Oceanodroma fuliginosa....................	620
Myiopagia placens.	506	markham	621
Myiozetetes granadensis	506	monorhis	622
texensi	506	townsendi, new species....	687
Mylothris chloris	569	Ocinebrn lugubris...........................	346

INDEX.
Octopodide from West Africa 339
Papilionide from West Africa
Page. 568
Ocepoda cursor 538
Ocypodide from Africa 538
new species of 241
Ocypodine, subfamily 24
Odontophorus consobrinus 469
melanot is 51
spodiostethus 524
Ediplax, new genus 241
granulatus, new species 242
Ediporlide from West A frica 580
O'Fallons Creek, fossil plants from 34
Ogilvie-Grant, Mr., description of Chi- nese lirids by 766
Okhotsh Sea 471
Olivella gracilis. 387
Olividx from West Africa 328
Omphalius trochus Cooksoni 403
Ouchidella Biuneyi 342
Steindachneri 384
Onchidiide from Gulf of California. 342
Onchilium Lesliei, new species. 383
Oniscidae from Africa 541
Oniscidia tuberculosa $39 t$
Onychopterus. 606
Opisthropus, new gemus 251
rausversus, new species 252
Oractis Diomedere, new species 138
Oractis, new genus of Actinie 138
Orbitutina of Allatross explorations. 457
Orizaba, Mount, batrachians and reptiles from 37
Ortalis cinereiceps 5
Orthoptera from West Africa 579
Oryzoborus funereus. 491
nuttingi 491
Osteology of bats 13
Ostrea folium from Galapagos Island 370
gigas from Arctic Siberia 473
Otago Museum, crabs from 82
Otiorbynchide from West Africa 577
Oulactis californica. new species 196
P.
P'achyrhamphas cinereiventris 508, 611
cinnamomens 508
ornatus 611
Pachygrapsus longipes, new specis 247
marmoratus 538
Pagiophyllum dubium, new species 271
Paguride from Africa,
Palemon jamaicensis 540
Palemonidx from Africa 540
Palinuride from Africa 540
Palla raranes 571
Palmer, Dr. Edward $3 \nmid 1$
Pamphagidx from West Africa 581
Pamphila, new species of 571
mohopaani 571
Panama, birds from 680
Pandion haliaëtus carolinensis 520
Panulirus guttatus 540
spinosus 540
Panyptila caranensis 515
Papilio denoleus 568
Paractide, family of 160
Paractis, characters of 161
lineolata 162
vinosa, new spectes 163
Paramithrax, species of, in National Mu- settim. 81
Pardusa valida, new species 587
Parida fiom Alaska 663
from Central Mexico 776
Parthenopida, new species of. 234
Parus wollweberi 776
Passerina cyanea 493
versicolor. 779
Patelidac from West A frica 335
Patnla 74
Peachia, characters of. 14
koreni, new species 14
Peck, James I., oa pteropods aud hetero poods. 451
Pecten subnodosus 372
Pelecanine from Mexico 788
from Nicaragua 531
Pelecanus caifornicus 788
Pelecypoda 753
from Galapagos Islands 370
Pelia, species of, in National Museum 80
Pelonæus ecksteinii 507
spirifex 567
Penreidre from Africa 540
Penrens brasiliensis 540
Penelope cristata 523
Penhallow, D. P., on fossil plants 103
ou Nematoplyyton cras. sum 115
Penjinsk Gulf, Siberia 47.
Peunsylvania, fossil plants from 105
Peutatomide from West Africa 578
Pentatomine, subfamily 45
Perdicida from Mexico 790
from Nicaragua 524
Periceride from Africa 535
Peristera cinerea 523
Perna Chemnitziana 372
Petrel, storm, new species of 687
Petrolisthes magnifica 539
Petromszontide, Central Americau spe cies of 3.4
Phrenicothraupis fuscicanda 490
salvini 490
Phæthornis longirostris. 516
Phalacrocoracidæ from Nicaragua 532
Phalangida from Ohio 543
Phalanginn 543
Phalangium 559
cinereum 560, 563
Phasianus torquatus 693
Phasianellide from West Atrica 336
Phasmatide from West Atrica 579
Phelsuma abbotti, new species. 716, 762
Phethodontide from Mexico 37
Philomycide 744
Philothamns semivariegatus 728
Phenicopterus erythrens from Aldrabra Island 762
I'age. Page.
Phlogopsis macleannani 502
Phlogothraupis sanguincoleata 489
Pbrynobatrachus acridoides 738
Phrynosoma orbiculare from Mexico 41
Phrynomantis bifasciata 737
Phyllactide, characters of 196
Phyllopoda541
Phyllostoma, measurement of membranes 7
Phyllostomida, external ear of 10
key to genera of 28
Physa gyrina 752
Mexicana 752
Piaya cayana melileri 517
Mexicana 786
Pica pica media 637
Picide from Alaska 664
from Mexico 785
from Nicaragua 518
Picolaptes compressus 498
Picumnua olivaceus. 519
Pieridse 569
Pieris gidica 509
severina 569
zoclialia 569
Pike, Col. Nicholas, reptiles collecteu by 711
Pilodius flavus, new species. 239
Pilumnus gonzalensis, new species 240
Pinnixa californiensis, new species 249
Pipilo fuscus 780Pinnixa occidentalis, new speciesPionotherida, new species of248248
Pioursita limmato
Pionopsitta hamatotis. 520
Pionus senilis. 519
Pipra mentalis 509
Piranga bidentata 779
erythromelas 490
hepatica. 779
rubra 490
Pisa, species of, in National Museum 83
Pisania tritonidea sanguinoleuta. 389
Pitangus derbianus 506, 78
Pitta nympha. 630
Pitylus grossus $49!$
poliogaster scapularis 491
Plagiogrammus, new genus 699Hopkinsi, new species700
Plagusia depressa 538
Planaxidas from West Airica 333
Planorbis trivolvis 752
tumidus. 752
Plants, fossil, from Montana 33
from New Tork 105
from 'lexas. 261
Plataleida from Nicaragna 527
Platymera califormiensis, new species. 253
Platyonychus bipustudatus 537
Platypocilius, Central American speciesof".
Platypsaris albiventris 78357
aglaire ohscnrus 612
Plegalis guarauna.788
Pleurotomide from Galapagos IslandsPodochela lobifrons, new species387
mexicana, new species 225
temnipes, new species. 224Page.
Pteropus, allabrensis, new species....... 533
Pterospermites Cupanioides, descriptionof
Ptinide from West Africa 5 575
Pugettia dalli, new species 23
Pulmonata-Geophila 743
Pulmonata-Hygrophila 752
Purpura, species of, from Galapagos Is.
lands 392
hippocastanum
Pycnanthus, new genus. 172347
maliformis, new species 172
Pygmornis adolphi 516
Pyrameis cardui 570
Pyramidellidæ from West Africa 332
Pyrgisoma rubricatum 780
Pyrgomordhidze from West Africa 581
Pyria tyueca 568
Pyrocenhatus rubineus mexicanus 783
Pyrrhocoridæ from West Africa 578
Pyrrhuloxia sinuata 779
Q.
Quails, Japanese 765
Quercus dentoni, from Dakota 35
Quiscalus macrourus 496, 781
R.
Rallidæ from Nicaragua 528
Ralph. Dr. Wm. L., birds collectet by 692
Kamphastidæ from Nicaragua 518
Ramphastos brevicarinatus 518
tocard 518
Ramphocrenus rufiventris 507
Ramphocelus passerinii 489
Rana mascareniensis 738
Randallia distincta, new species 257
Ranella cruentata 347
Rapp, classification of polyps by 121
Rathbun, Mary J., on new species of crabs 649
on crabs of family Maidat 63
on new genera and species of crabs...223
Raynolds, Capt. W. F., explorations by .
Read, Charles H., on throwing-sticks....
Recurvirostridæ from Mexico33220791
Nicaragua 526
Reduvida from West Africa. 578
Regulus calendula 775
Reibisch, vol Paul, on Galapagos mol- lusks 411
Remipes scutellatus 539
Reptiles and batrachians, new species. 711new species
from Mexico.37
Reptilia from Mount Orizaba, Mexico... 40
Rhamdella, Central Anuerican species of 54Rhamphiophis rostratus
733
Rhinonoma, measurement of membrane. 7from Galapagos IslandsRhipidophoridæ from West Africa.
Rhipidloglossa 752
576403
Rhizopoda of Albatross explorations 457
Rhodinocichla rosea
Rhopalocera
Page. 568
Rhynchocyclus rinereiceps $50{ }^{\circ}$
Rhynchonycteris, measurement of mem branes 7
Richmond, Charles W., on birds from Nic aragua. 479
Richmond, W. L 481
Rilgway, Robert 481, 605
on Alaskan birds 663
on birds from Aldabra Island 597
on birds from Costa Rica 609
on genus Formicarius 667
on new species of bird 469
on new species of swifts 43
on new storm petrel 687
on new subspecies of Geothlypis 691
Riley, C. V. 45,703
new species dedicated to 52
Riopa sundrvallii 722
Kisley, Sam. A 481
Kissoidæ from Galapagos Islands 377
Kodgers, Capt., crabs collected by 96
Rodgers exploring expedition 472
Rostes, Central American species of. 56
Rougetius aldabranus, new species 598
Rupornis ruficauda 521
S.
Sagastia crispata. 181
lactea, new species 176
paradoxa, new species 180
Sancti-Matthrei, new species 179
Sagastidæ, characters of 175
Salamanters from Mount Orizaba 37
Saltator atriceps 491
grandis 491
magnoides 491
Salvin, Osbert 481
Sandwich Islands, new species of crabs from 223
Satyrida from West Africa 571
Sanri from East Africa 714
Sayornis nigricans 78:
Scarabeidx from West Africa. 574
Scardafella inca. 789
Sceloparus reneus from Mexico 40
microlepidotus from Mexico. 41
variabilis from Mexico. 40
Schizophrys aspera 91
Schizophrysinæ, key to genera of 65
Schizostoma, measurement of mem- branes 7
Sclater, P. L 481
Scleroplax, new genus 250
graunlatus, new species. 251
Sclerurus canigularis 613
guatemalensis 498
Scollick, J. W., on gelatin casts 61
Scolopacide of Alaska 664
from Mexico 791
from Nicaragua. 526
Scolopendra morsitana. 708

Scoville expedition to Mount Orizaba 37
Scutibranchiata
Seyra acutifrons, distribution of 88compressipes100
Scrtalopus argentifrous 613
Seiurus aurocapillus 484
motacilla 484
noveboraceusis notabilis 484
Selenocosmia nigroventris, new species 587
Selenops brownii, new species 589
Semele Stimpsoni, new species 473
Sepidar from West Africa 339
Septifer Cumingianus 373
Sequoia pagiophylloides, new species 276
Sesarma africana 538
Setophaga ruticilla 485
Seychelle Islauds, reptiles from 711
Shell heaps of East Florida 695
Shells, collections of 743
fossil, from Aretic Siberia 471
Canada E91
Shofar and its uses, Adler on 287
Shrike, gray, status of 217
Sialia mexicana 775
Siberia, crabs from. 97
Siberia, Arctic, subtropical fauna of 471
Siberian tropical miocene fossils 478
Sicyopterus, Central American species of 60Siluride, Mexican species ofSimocephalus chanleri, new speries.54
Simpson, Charles T., on fossil unios 591726
Sinea Rileyi, new species
Siphonaria pedjina, new species. 47551
(Williamia) peltoides. 384
Sitomys decolorus, new species 689
sitta carolineusis aculeata 776
Sittide from Central Mexico 776
smith, E. A 474
on Galapagos mollısks. 407
Smith, Prof. H. L. 304
Snails, land, vitality of 366
Snakes, new species of T09
south, Dr. J. F 693
South America, fresh-water fishes of 53
Spelerpes bellii from Mcxico 37
gibbicaudus, new species of Mexican salamander 38orizabensis, new species of
Mexican salamander 38
Spzocarcinus granulimanus, new species. 242
Speotyto cunicularia hypogrea 787
Spliaeroma541
Shheromidx from A frica 541
Sphecidre from West A frica 567
Sphenocarcinus agassizi, new species.... 232
phenolepidium Sternbergianam densifo-limn
268

- Splsenopteris valtensis 263
sphex 567
Sphingidro from West Africa 572
Spliyrapicus varius 785
Spinus psaltria croceus, new subspecies. 880mexicanus780
Spirostreptus variabilis 703
Spirula peronii755
Page. 752 752
Spirulidæ
Page.
from West Africa
from West Africa 755
339
Spitzbergen, crabs from 68
Spizella breweri 779
Sporoplila corvina 492
torqueola 779
Squires, L. M 102
Stal, Prof., quoted
Staphylinidr from West Africa 574
Stearns, Robert E.C., on mollusks of Gal- pagos Islands 353
on West African mollusks 317
on West coast mol- lusks 341
on shells 743
Stejneger, Leonhard 37
on gray shrike 217
on Japanese birds 615
on Japanese quails. 765
on New Californian lizard 467
on new species of blind snakes 709
on reptiles and bat- raclians from Africa 711
Stelgidopteryx uropygialis 486
Stenogyridæ from West Africa 326
Stephanactis. genus of actinire 194
hyalonematis, new species 193
Stercorariidæ of Alaska 603
Stercorarius pomarinus 616
Sternothærus nigricans 713
Sterens, Lient. H. K 472
Stichodactylina 198
Stimpson, Dr. William.
Streblognathus rethiopicus 568
Strigatella tristis 388
Strigide from Mexico 787
Nicaragua 520
Strix pratincola. 787
guatemalæ $5 \div 0$
Strombida from West Africa 332
Sturnella magna neglecta 781
Sturnia sinensis 637
Succinea 751
Bettii 38.3
concordialis 752
Salleana 7.51
Succinidr from West Africa 327
Succinidæ 7.51
Sula abbotti, new species 599
Sulide from Nicaragua 531
Sumichrast, Prof 38
Swifts, new suecies of 43
Sylrania mitrata 48.
pusilla pileolata 7.7
Sylviidx from Alaska 665
from Central Mexico 75
from Nicaragua 482
Synagris aquatorialis. 567
calfida 5675317
63
63 North Pacific. 95
on crustacea of
on crustacea of 3 845
574-
INDEX.

Srnotus, characte	Page. 30	Totanns solitarius	Page. 526
Syntomis huhlweinii	572	Townsend, Chas. H., birds collected by...	663,687
Syrninm perspicillat	520	Trichodactylide	660
uraleuse	626	Trichodactylus quinquedentatus.	660
virgatum	520	Triloculina of \mathcal{A} lbatross explorations	457
T.		Tringa minutilla.	$\underline{6}$
		Triodopsis	49
Tabanidæ from West Africa...	572	Tritoniidr from Galapagos Islands	393
Tachycineta albilinea.	486	- from Lower California	7
Tachyphonus luctuosus	490	from West Afric	332
rubrifron	610, 611	Trivia Pacifica..	95
xanthopygi	611	Trochidé from West Africa	7
Tagiades flesus	571	from West Coast	1
Tanagra canas	488	Trochilitæ from Mexico.	\%
palmarum	488	from Nicaragua	516
Tanagridre from Central Mexico	778	Trochilus colubris..	4
from Nicaragua	488	Trogloilytes intermedi	183
Tantalus loculator	527	Troglodytidx from Alaska	
Tapes grata.	376	from Central Mex	6
Tebennophorus carolinensis	744	from Nicarag	2
Tectarins styphins, description of.	350	Trogon, ambiguus	
Teeth characteristics of bats.	26	atricollis tenellus	13
Tellinidx from Galapagos Islands	376	caligatus....	3
from West Africa	324	chrysomelas, new	13
Tenebrionidæ from West Africa	575	-hysomelas,	
'I'erebriuxe from West Africa	327	melanocephalus	515
Teracolus calias.	570	Trogonidæ from Mexico	785
doubleday	570	from Nicaragu	3
evippe	569	Trophon xanthostoma..	392
Terias rethiopic.	569	True, Frederick W....	5,602
desjardins senegaleus	569 569	on new species of bat.	533
Test, Frederick C.	285	ou new species of	
Testacellidre	743		
Testudines from East Africa	713		
Tetragonopterus, Central American spe-		Tryxalide from West Africa	1
	55	Tunnies, proper generic name of.	3
Tettigidx from West Afri	581	Turbinidæ from West Africa	8
Texas, fossil plants from	261	from West Coast	0
new species of birls from	691	Turdidæ from Alask	5
Thamnophilus atrinucha	500	from Central Mexic	3
lia	500	from Nicaragua	82
melano	500	Turdus, species of, from Nicara	82
Thelotornis kirtlandii.	733		
Thomas, Oldtield, description of mouse		Turner, L. M	63
	757	Turtles on Aldrabra Island	2
Throwing-sticks from Mexico and Cali-		Turtur saturatus, new species	0
fornia.............	219	Typhlonidx, new species of...............	709
Thryophilus costarice	482	Typhlops mandensis, new species........	5
sinaloa	777	pracularis, new specie	709
thorac	483	schlegelii	J
zeledoni	483	Tyrannidze from Central Mexico.	782
Thryothorns atrogular	483	from Nicaragua.	01
Threnetes ruckeri	516	Tyranniscus parvas	05
Thuya interrupta from Montana.	34	Tyrannulus semiflarns.	505
Tigrisoma cabanisi ...-....................	528, 788	Tyrannus dominicensis	507
Tinamidæ from Nicaragua	$52 亏$	melancholicus satrap	0i
Tinamus robustus	52.	tyraumus.....	504
Tityra albitorques frazeri.	508		
personata.....	507	U.	
Todd, Prof. David P., of African expedi-		Unionidx, review of North American	591
tion	. 317	Unios, fossil, from Canada.	591
Todirostrum cine	504	Upupa epops.	628
schistaceiceps..............	505	Urinator pacificus.	615
Totanus flavipes	526	Urodela from Mexico	37

	Page.		Page-
Trospatha martii	510	Webl, De Witt, on shell heaps in Florida .	695
Urubitinga anthrac	787	Wells, J. G., birds collected by	43
ridgwayi.	521	West Indies, new species of swift from..	43
Uvanilla regina, description of...........	350	pteropods from.	451
V.		Wetherby, Prof. A. G., cited	594
		Wetzstein, 'T. G	288.
Vaillant, Prof. Leon	711	Whale fishery of Okhotsh Sea	411
Vampyrops, measurement of membranes.	7	White, Dr. C. A., fossil plants from	34
Varanus saurus	717	Wickham, Henry	481
Tenerida	753	Williams College.	465
Venerida from Galapagos Islands	375	Williams, Talcott	298
Vermetidre from Galapagos Islands......	396	Williamsonia texana, new species	278
from West A frica	333	Wittkugel, E., mammals collected by	689
Verill, Prof. A. E.	464	Wolf, Dr. Theodor, shells collected by...	411
Vespidae from West 4 frica	567	Wyoming, fossil plants from.	35
Vespertilio, characters of..................... measurement of membrane-	28 7	x.	
V espertilionidse, external ear of.	10	Xanthodes minutus, new species.	238
key to genera of........	28	Xantusia heushawi, new species.	467
notes on genera of......	29	Xenops genibarbis.	49:
Vesperugo, character of......................... rendalli	28 6 6	Xiphophorus, Central American species of \qquad	57
Viburnum asperum from Montana	36	Xylocopa torrida.	566
Vireo tlavifrons.	486	Y.	
flavoviridis.	778	Yale University, museum of	
noveboracensis	778	Yellowstone River, exploration	464 33
ochraceus	486	fossil plants from	33
olivaceus...	486	Yungipicus kizuki..	628
- philatelphicus	486	7	
Vireolanius pulchellus vertical Tireonida from Central Mexico	487	2.	
Tireonida from Central Mexico	778	Zamites tenainerris.	267
from Nicaragua	486	Zhinsk Bay, Okhotsh Sea.	471
Tolatinia splendens.	493	Zonites.	744
W.		levigatus	744
		Zonotrichia leucophrys intermedia.	779
Ward, H. A., crabs collected by	92	Zosterops japonica	636
Ward, Prof. Lester F., fossil plants from.	34	Zygrnidre from West Africa.	572
War horns, Adler on early use of.	294	Zygobranchia from Galapagos Islands...	403
Warren, Lient. G. K., explorations by.	33	Zygonectes, Central American species of.	56

smithsonian institution libraries

[^0]: * The monograph from which this introduction has been extracted will be published as a Eulletin of the National Museum. The printing of the latter having been unavoidably delayed, it has been thought best to publish this introduction in advance.-F W T

[^1]: *The gromp mamed the Molossi will be held in this essay to bo distinet from the Eronp of which Embellomura is the central genus. I am of the opinion that these allimees are distinet and co-egual.

[^2]: *The endopatagium and mesopatagium are together the same as plagiopatagium of Kolenati. (Beitr. z. Naturgesch. der Europ. Chir., Dresden, 1857.)

[^3]: *A word was needed to express the terrestrial motion of a bat whose wings are at rest. I venture to use "scurry" in lieu of a better.
 \dagger The contrast between prone and pendant positions of bats when at rest is an instructive one. It supposes the existence of a number of adaptive characters, which will be observed in the accounts of members of our fauna. So little is known of the habits of bats that it would be premature to base any generalizations upon these or any other isolated groups of structural peculiarities. I have seen our common brown bat in captivity hang itself up by the claws, but have never seen it other than prone when at rest in its native haunts. I am also aware that Rhynchonycteris (which has a flexed thumb and a small potlical callosity) comes to rest like a moth; i. e., with wings expanded yet prone.

[^4]: * C. marginatus.
 \dagger V. murinus.

[^5]: Superior loop angulated, open............ . Artibens.
 Superior loop nearly fillod................... Nyctinomus (N. brasiliensis).
 Superior loop about half filled............ Alalapha.

[^6]: * In the restriction of the lower incisors to four in a family where the dominant number is six it is of interest to note that in Nyctinomus brasiliensis the third incisor on each side is rudimental or may be lost, thus reducing the number from six to four.

[^7]: *The following is quoted from Jerdon's ". The Mammals of India," Roorkee, svo, 1867 , p. $36:$

[^8]: * Proceedings of Am. Philosoph. Soc., xxix, February 11, 1891.

[^9]: *Preliminary report of explorations in Nebraska and Dakota in the years 1855, 1856 , and 1857 , by Lieut. G. K. Warren, topographical engineer IT. S. Army. Reprint, Washingtou, 1875.
 \dagger Exploration of Yellowstone and Missouri rivers under direction of Capt. W. F. Raynolds, 1859-60. Washington, 1869.
 \ddagger Later extinct floras of North America. Annals of the N. Y. Lye. of Nat. IIist., vol. IX, 1868, ple. 27-76.

[^10]: * Lesquereux: Cret. and Tert. Floras, 1. 157, Pl, xxx.

[^11]: - The extreme length of head renders this proportion comparatively small.

[^12]: *Proc. U. S. Nat. Mus., 1891, pp. 1-81. Since this paper was published a mumber of new species have been described. I take this oceasion to add these and also to give a number of species overlooked in the former paper.
 Bunocephalus iheringii Boulenger. Proc. Zoïl. Soc., 1891, 235.
 P'seudopimelodus cottoides Boulenger. Proc. Zoül. Soc., 1891, 233. (Closely allied to P '. parahybe Steindachner.)
 Pimelodella cigenmanni Bonlenger $=P^{\prime}$. buckleyi E. \& E., not Bonlenger.
 Pimelodus nigribarbis Boulenger. I'roc. Zöl. Soc., 1891, 232. Distinct from P. valenciennis Lnetken.
 Pimelodus argeutens Perugia. Ann. Mns. Genov. (2) x, 631, 1892. P'late, R. Parama. Pimelodus spegazzinii Perugia. Loc. cit. 632. Durango.
 Pygidium minutum (Boulenger). Proc. Zoöl. soc., 1891, 235.
 Acanthopomt annectens Lnetken. Vidensk. Medd., 1892. (Near Stegophilus.)
 Otocinclus nigricauda Boulenger. Proc. Zoöl. Soc., 1891, 234.
 Chotostomus aculeatus Perngia. Ann. Mus. Genov. (2) x, 677, 1882. Paragnay.
 Loricaria catece Hensel=L. lima Kner.
 Loricaria evansii Boulenger. Jaganda, Matto Grosso, Brazil. Ann. and Mag. Nat. Hist. July, 1892.
 Elopomorphus trilineatus?
 Elopomorphus orinocensis Steindachner. Orinoco. Ichthyol. Beitrige, xix, 1888.
 P'lethodectes erythrinus Cope. Chateews crythrurus Cope.
 Tetragonopterus steindachneri sp. nov. Iquitos. Loc. eit., xv, July 26, 1892. The nanie lineatus is preoccupicd by T. Tineatus Perugia. April, 1892.
 Tetragonopterus anomalus Steindachner. Corrientes. Loc. cit., 27.
 Tetragonopterus nigripinnis Perugia. Ann. Mus. Genov. (2) x, 613, April, 1892.
 Tetragonopterus lineatus P'erugia. Loc. cit., 644.
 Tetragonopterus moorii Bonlenger. Chapala Platas, Matto Grosso. Ann and Mag.

[^13]: * A strong gelatin such as is used by photographers is best.
 tother methods may be followed, however, such as wetting the ghe and wrapping it in a moist eloth.

[^14]: * A synonym for Eycria arachoides (Rumph.).-M. J. R.

[^15]: *Not distinct from Herbstia.—M. J. R.

[^16]: * A. Milno Lilwards (Nouv. Areh. Mus. d’ Hist. Nat., iv, p. 51, pl. Xvi, fig. 1, 1Ntis) represents this specties with several unegual lateral teeth, and the ambulatory legs regularly tubereulose.-M. J. R.
 t Soo pare 92.-M. J. R.

[^17]: ${ }^{\dagger}$ Equivalent to Schizophrys aspera (Mine Edwards). See page 91.-M. J. R.

[^18]: ${ }^{*}$ Cyelomata suborbicularis Stimpson, Amer. Jonr. Sei., x×ıx, p. 133, 1860.
 Cylax (Cyclomaia) suborbichlaris Miers, Jour. Limm. Soc. Lombon, Xiv, p. b60, 1579.-M. J. R.

[^19]: * (iöppert : Foss. Flora des ịberqungsgebirges, p. 116, I'l. 111, IV. Dawsou: Foss. Plants of the IDev. and U. Sil. of Canala, (ieolog. Survey of C'anada, 1871, 1, 25, Pl, IV.
 † Brongniart: Hist. des Vég. Foss., 1, 127, Pl. xVif, xxir.
 \ddagger Schimper: 'Traité de Pal. Vég., Pl. Xxiv.
 § Göppert: Foss. Flora des Ưbergangsgebirges, Pl. x.
 $\| 1$)awson : ($e \mathrm{e}$ l. Hist. of Plants, p. 170 ; Solms Latubach : Foss. Bot. Eng., ed. Trans. p. 320 , Fig. 44 ; Brongniart: Hist. des Vég. Foss., I, p. 12.2, Pl. xxvi; Dawson: loss. Plants of the Dev. and U. Sil. of C'anda; Geolog. Survey of C'anada, 1871, p. :2.5, Pl. 15, Fig. 4?.

[^20]: * Rept. on Fose. Plants of the Dev. and U. Sil. of Canadit, Geol. Surv. of Can. 1871. 215 ; иl. xv.
 \dagger Schimper: Traite do Pal. Foss., Pl. XIn, Fig. 8.
 \ddagger Ibid., Pl. xv, Fig. 1.
 §In conucetion with my determination of these species, I desire to acknowlede the courtesy with whieh Ir. W. G. Farlow of Harvard University, plaed at my disposal his valuable collection of Marino Algac ; also to I)r. G. L. Goodale for permitting reference to the large collection of fossil plants in the Musenm of Comparative Zoülogy.

[^21]: "Sternberg: Vers., II, 1, 3.
 2039.
 \$1lidr. p. SO.
 §Soworby: English Bot., Xit, 1. H4, [1. U336.
 1. If. 102, 108, Pl, vii, A.

[^22]: "Harvey: Nereis Boreali Americana, r, 108, 1’. vili, 13 .

[^23]: "1)awson: Foss. Ilants of tho Dev, and U, Sil ot ('anada, (ieologicalSurv, of Canada, 1871, pp. $37-11,11.1 x, x$.

[^24]: *The numbers given refer (numerator) to my laboratory number and (denomina. for) to the number as given in the collection of the U, S. Goological Survey,

[^25]: *Trans. Royal Soc. C'au., Vh, iv, 25, Pl. I, Fig. 5.

[^26]: *The mark of interrogation is Rapp's.

[^27]: *I take this statement from Dama, nothaving access to Milne Edwards' work.

[^28]: In a recent paper Lid. van Beneden ('91) eontests the idea that there is a phylogenctic comnection between the Crianthere and the Edwandside and Hexactinize. On pages 140-141 of his paper he smms up the ditforences which the Ceriantheashow to these forms, and it may not be out of place here to consider the value of these supposed differmees. Difference No. 1 does not require consideration, since it stamls or fable with the acematey or erroneonsness of No. \because. This is as follows: If the sulear directives aro designated as I and the remaining mesenteries of a twelvemesenteried Hexatinian are designated aceording to their succession, counting from the sulcar directives towabls tho sulcular, as II, III, IV, V, and VI, then the emhryonie succession of tho mesenterios in the Hexactinis is III, V, I, VI, II, IV, while in the Cerianthea the snccession of the tirst twelve mesenteries is II, III, I, IV, V, VI. The fallacy of this is evident. It has not been clamed that the first tuedre mesenteries of Corianthore and Hexactinias are homologous, but only that the first cight in hoth groups aro homologous with the dight Eflwardsia mesenteries. Considering the embryonic suceession of these mesenteries in both groups, it will be found to be identical, thus: III, I, II, IV. Difterenco No. 3 refers to the presence of longitudinal (adductor) museles on the mesenteries of the Valwardsiae and Hexactinite and their absence on those of the ('erianthee, and to the presence of ectodermal longitudinal

[^29]: muscles in the latter and their absence in the other two gromps. The absence of "adductor" muscles in the Cerianthese is at duestion of observation, since Boveri has described and figured them; and with regard to the presence of ectodermal longitudinal muscles in the Hexactiniar, van Beneden has apparently overlooked Hertwig's account ('88) of their occurrence in Corynuctis sp? and Corallimopphus obtectus. In the present report I describe their oceurrence in Halcurias pilatus.
 ${ }^{*}$ It seems fairly certain that the actimian recently described by H. V. Wilson ('90) as Hoplophoria coralligens (sie) is identical with the Viatrix !lobulifer, originally described by Duchassaing and Michelotti ('60).

[^30]: * It seems donhtful, howerer, if the F . pulchro ot Andres is likew ise a sagartid. 1 should rather be inclined to consider it al Phmmathas, since it presents certain striking resemblances, judging from Andres' description, to P. crucifer.

[^31]: *It seems probable that Danielssen's ('90) Sideractis is a Bolocera, though the existence of an endodermal sphincter would preelude such an identification. It is to be noticed, however, that Dauielssen's figure (Pl. vir, tig. 10) hardly bears out his assertion on this point.

[^32]: - Since this was written ('arlgren (91) has described, in a paper on B. longicormis, a similar sphincter fold. He points ont, correetly, that the sphincter is thrown off with the tentacle, and it therefore does not serve to close the opening left on the surfoco of tho disk. My deseription. was drawn up from sections throngh tentacles still atherent, and the conclusion was somewhat hastily reached that the use of the sphincter fold was to occlude the opening.

[^33]: *See note 1. 15!.

[^34]: * A. C. Haddon.-Report on the Aetinine dredged off the sonthwest coast of Irelaud in May, 1888. Proc. Roy. Irish Acad., 3d sor.; Vol. r, 1890.
 †Sitzungsber. Jenaisch. Gosellsch, 1882.

[^35]: * "Always" in the sense which does not prechbde possible exceptions due to indieidual variation.

[^36]: * Altmexikanische Wurfbretter, von Dr. Ed. Seler, Interuationales Archiv fuir Ethnographie, Bd. In, 1890; The history of the throwiug-stick, which drifted from Alaska to Greenland, ly Johm Murdoch, Am. Authropologist, July, 1890; Ueber altmexikanische umd sidamerikaniselae Wrurhetter, von Dr. Hjalmar Nolpue in Stocklolm, Internal. Arehiv f. Ethnog., Bh. wr, 1890; Ueber die W'urfhölzer der Indianer Amerikas, von Dr. Max Uhle, Mittheil. der Anthrop. Gesellsch. in Wieu, Bd. xvir, n. F., Vı, 1887; Ueber sidamerikanische Wurfhölzer in Kopenhagener Museum, von Kristian Bahnson, Interuat. Arehiv f. Ethoog., if, 1889; Mrs. Zelia Nuttall, in a paper real before the Woman's Anthropological Society in Washington. cntitled "The Atlatl or Spear-Thrower of the Ancient Mexicans, Arch. and Ethond, lapers of the Peabody Museum, I, No. 3; Les propulseuis it erochet modernes et prehistoriques, par Adrien de Mortillet, Rev. Mensuelle de l'Ecole d'Anthropologie de Paris, I, 15 aont 1891.

[^37]: [P'ublished ly permission of Hom. Marshall Mobonald, Commissioner of Fisheries.]

[^38]: * Oific , to become swollen; $\pi \lambda \dot{c}$, anything flat and broad; carapace. In analogy with Oidímovs (oifé $\omega+\pi 0$ ís), the swollen-footed.

[^39]: *Hist. Nat. Crust., iI, p. 108, 1837.
 \dagger Milne Edwards and Lucas, d'Orhigny's Voy. l'Anér, Mérid., atlas, Crustaces, pl, XiHz ifg . 1, 1843.

[^40]: ""Flore fossile du Portugal," 1. 14, Pl. xv゙, Figs. A-14.

[^41]: *" Die Fossile Flora der Nordwestdentschen Wealden formation," pp. 30, 31.

[^42]: "Monographio der Norddentschen Wealdenbildings" p. 16. I'l. Vri, Fig. 1. † Monograph xv, U. S. Geological Survey, Part 1, text, p. 181; Part If, plates, Pl. LXXXV, Fig. 10.
 $\ddagger O_{\text {p. cit. P Part } 1, ~ t e x t, ~ p, ~ 194-145 . ~}^{\text {. }}$

[^43]: " Foossile Flora der Nordwesthentschen W"ealdenformation," Pr. 39, 10. P1. xix, liens. 1-5.

[^44]: "Iahontologio Frangaiso. llantes jurassiynes, 'Tome 111 ; athas, Pl. xish, Fig. 7.
 \dagger Monograph XV, U. S, Geological Survey, lart 1 , toxt, p, go 1.

[^45]: * Monograph xv, U. S. Geological Survey, Part I, text, pp. 218-220.

 Proc. N. M. 93- 18

[^46]: *Monograph xv, U. S. Geological Survey, Part I, text, pp. 215-218. † lbid., p. 220.
 \ddagger "Die fossilen Pftazen der Werusdorfer Schichten." Pl. vi, Fig. 1.

[^47]:

[^48]: Monograph xv, U. S. Geological Survey, Part i, text, p. 269; Partin, plates, Pl. CxXXV, lig. 17.
 t Monograph xv, U. S. Goological Survey, P'ut I, text, p. 271; Part H, plates, Pl. Cxxxyi, Fig. 12.

[^49]: *It may be interesting, that among the many caves in which I observed C, pellucidus, these marked with an asterisk pontained botle it and C. Bartonii.

[^50]: "Saadia hen Joseph, $892-912$, une of the groat Jewish scholars of the midulle ages. He translated the Bible into Arabic and wrote many important works.

[^51]: *Karpeles, Geschichte der Judischen Literatur, p. 496.
 \dagger "It is unlawful to use a shofar which had been rent and afterwards joined together; also one composed of several pieces joined together. If a shofar had a hole which had been closed, if it hinders the proper sound, it may not he used; hut if it does not affect the proper sound it may be used."-Mishna Rosh hashana, MI, 6.

[^52]: *"When the feast of the New Year happened on the Sabbath they used to sound the shofar in the sanctuary, but not ont of it. After the destruction of the temple, Rabban Jochanan, son of Zaceai, ordained that they should sound (on the Sabbath) in every place where there is a tribunal of justice (beth Din). Rabli Eleazar says: "He only issued this order in respect to Jamnia," but they (the other sages) said muto bim, "it was the same for Jamnia as for any other place in which there is a permanent tribunal of justice."
 "And in this respect also was Jerusalem privileged above Jamnia, viz, that every city from whence Jerusalem could be seen and tho somming heard, which was near enongh, and to which it was allowed to go on the Sabbath, might somel; but in Jamnia it was only permitted to somnd before the tribunal of justice.-Mishuce Rosh hashana, IV, 2.
 f"It was not permitted for the purpose of sounding the shofir on the feast of New Year, to go beyond tho Sabbatical limits, to remove a heap of stones under which a shofar is buried, mount a tree, ride on any animal, or swim over the witers to get a shofar, nor may he cut it with anything that may not be used, on areonnt of transgression against the Sabbatical rest, nor disobey on its account any negative precept of the law; but a person may, if he choose, pour water or wine into the shofar to improve its sound. Children should not be prevented from sounding, but on the contrary it is lawful to be occupied in teaching them to sound."-Mishne Rosh hashana, IV, 8.

[^53]: In Sanhedrin, 7 b., we read: "Raj) Huma when about to hold court was acenstomed to ask for the implements of his trade: a rod, at strap, a shofar, and a sandal." The shofar, remarks Rashi, was for use at an exeommunication.

 Wakireh Kháneh, a rock near Bandamir, in Persia, is so called (acoording to tra(lition) hecanse at the soumd of drums and trmmpets tho workmen engaged on the walls and dikes in the neighborhood assembled there to receive their wages and provision. (Ousely, 11, 186.)

[^54]: *They say parenthetically that the shofar was the shape of a horu and possibly made of horn.
 \dagger Wetzstein, p. 73, proposes an Arabic etymology; šufra and šf fir in Arabic mean edge or corner, and it is prohably his idea that they bear the same relation to shofar that corner bears to Latin cormu. The late Prof. de Lagarde compared shofar with Armenian shifora (Armerische Studien, p. 117, No. 16931).
 \ddagger Cf. Siegmund Fracnkel, Die Aramaischen Fremdworter im Arabischen, Leyden, 1888, p. 24.
 § See Mnsical Instrmments and their Homes, by Mary E. Brown and William Adams Brown (New York, 1888), p. 196. It is principally interesting becanse it resembles the trumpet played by an Assyrian warrior on a bas-relief of Nineveln and the Hebrew trumpet represented on the arch of Titus at Rome. This latter is wot identical with the shofar; it is the straight metallie trmmpet or hagogera which is represented on the arch of 'Titus (Engel, p. 24).
 ||Fr. Delitzsch, Prolegomena eines neuen Hebraisch-dramaischen Horterbuches zum Alten Testament, Leipzig, 1886, p. 125.

[^55]: * Baron von Kortt, in the disenssion of Wetzatein's paper, assorted that the goat horn was still used for making shofas by the dews of Poland. If this statoment be correr it would point to a fradition more ancient that that eontaned in the Jewish liturgy.

[^56]: *Indonesien, oder die Inseln des malayischen Archipel, ron A. Bastian. H1. Licferven!. Sumatra und Nachbarschaft. Berlin, 1886, P1. II, No. 5.

 1 Babelon: Manal of Oriental Antiquities, p. 37; Rerue archiologique, 1883 (3e nérie, t. 11), Pl. XX.

[^57]:
 -i:

[^58]: * Proc. Cal. Acad. Sciences, April 7, 1873, I’l. i, Fig. 1.

[^59]: * See Woodward's Mannal, '2d ed., p. 321.

[^60]: *Albatross Explorations, A. Agassi\% in Bull. Mus. Comp. Zoül., Vol. xxiri, No. 1.

[^61]: * Vide Proc, U, S. National Museum, Vol, Xiv, p. 326.

[^62]: *.A. Agassiz, in Bull. Mus. Comp. Zoül., Vol. גxifi, No. 1.

[^63]: * A. Agassiz.

[^64]: * Baur's paper, Am. Nat., 1891.
 \dagger A. Agassiz in Bull. Mus. Comp. Zoöl, Vol, xxiry, No. 1.

[^65]: * Dr. Banr in Am. Naturalist, April, 1891.

[^66]: * Not inclusive of dredged or deep water species.

[^67]: *List of shells collected on the west coast of South Ameriea, principally between latitudes $70^{\circ} 30^{\prime} \mathrm{S}$. and $8^{\circ} 49^{\prime} \mathrm{N} .$, by Dr. W. H. Joues, U. S. Navy. Proc. U. S. Nat. Mus., Vol. NIV, pp. 307-335, 1891.

[^68]: The dull-rolored speces of thin Polynesian group of shells live generally, it mot exclusively, on the gromm or near it-that is to say, are not arboreal, as I was informed by my esteomed iriend the late Dr. Noweomb many years ago.

[^69]: *Terr. Moll. and Shells of tho United States (A. Binney) Vol. 1, 1851, p. 152 et seq. (edited by A. A. Gould).

[^70]: "Quoted by Λ. Λ gassiz, as previonsly indicated,

[^71]: * It was the occurrence of such a winter as this that destroyed the botanical garden of my friend the late Thomas Bridges, whose establishment was within flood rauge of one of these Chilean streams.

[^72]: * Now rewarded as a variety of $I I$. areolata, \dagger Recent and lossil shells.

[^73]:
 \dagger^{\prime} The l'anmotn eroup, supposed to be entiraly outside of the eychono bett, which
 samo storm oxfomded for tho society lalands. The oldest matives had not even a tra-

 While reading the proots of this paper the daty papers have contamod notices of a disastroms hurvicane on the coast of Chile, by which the mole at one ot the bittato poris was carricd away and damage at this point was done to the extent of +1in, (10)

[^74]: * It is gemerally moderstood that Reeve's great work is in the main, batsed upon, and illnstrates the Cuming collection.
 \dagger Binney's Manual Am. Land Shelln, p. 163.
 $\ddagger B$. nux occurs on three of the islands, viz, Charles, Chatham, and Albemarle.

[^75]: *Bull. Soc. Malac. France. Juillet, 1887, pp. 293-299. \dagger Id.
 \ddagger Albers die Heliceen, 2d ed., Leipzig, 1860, p. 221.

[^76]: * Buccinum Janelii Val., Voy. Venus, Moll., 1846.

[^77]: * Transactions Wagner Institute, Phila., Vol. wi, part i1, Dece. 1892.

[^78]: * To the Tritonsshould boadded 7'. lincelus Brod., foumd in coral sand at the depth of about 6 fiathoms. Cuming-Reove's Monog., spocios 4 , fig. 4, $4 a, b$.

[^79]: 'Von Marten's Albers' Die Heliceen, ete., Leipzig, 1860, Ed. H.
 \dagger Proc. Zool. Soc., London, 1850, p. 56.

[^80]: ${ }^{*}$ Proc. Kool. Soc. kondon, 1877, p. 6.4 et seq.
 *•• both the normal form aml the variety (I. columellaris) oreme at "harles Island." Mr. Smith notices the dimimutivesize of occasional adult examples of tho lat ter form.
 t The anthor says "it bears atiant relationship to T. oceultus lhil., but is more conoid and more strongly sentptured." As the number of examples is mot stated, it may be assumed that the anthor hat but a single specimen as the basis of his description.

[^81]: *Revising the distribution as given above hy hoibiseh of tho tirst elevon sperios, which includes R. nu.r, Thermarle must be credited with that speedes on the proof of . Ilbutross examples, and lharini, which he includes in his numbers 20 to 25, must be credited to Bindloo as given hy Wimmor.

[^82]: * List of shells collected on the west coast of South America, prineipally between latitudes $70^{\circ} 30^{\prime}$ south and $8^{\circ} 49^{\prime}$ north, Proc. U.S. Nat. Mus., Vol. XIv, pp. 307-335. 1891.

[^83]: * Proc. U. S. Nat. Mus., Vol. xif, pp. 219-362, pls. v-xv, 1889.

[^84]: * The proper classification of the Chitons herein listed awaits the publication of Mr. Pilsbry's Monograph.

[^85]: * See "table of trawling and dredging stations" mado by Albatross during the year aml a half ending June 30,1888 , in the Report of the Work of the UT. S. Fish Commission Steamer Alhatross from January 1, 1887, to Juno 30, 1888, by Lieut. Commander Z. I. Tanner, U. S. Nayy, commanding. Fish Commission Report of 1887."

[^86]: "Three cruises of the Blake, by Alexander Agassiz. Vol. I, 1p1. 120-121.

[^87]: *Report on the work of the U. S. Fish Commission steamer Albatross from January 1, 1887, to June 30, 1888, by Lieut. Commander Z. I. 'Ianner, U. S. Navy.

[^88]: * By Panl Pelsencer, Vol. xxif of thoso Reports.
 + Rang et Souleyet, Monographiedes Pteropodes, Paris, 1852.

[^89]: "Seo figure in 'Tryon's "Introduction to Systematio Conchology," Pl. 12, F'ig. 9.

[^90]: *Ianthina is merely a specialized Gastropod, but here considered with the pelagice Heteropods for convenience.

[^91]: *The nomenclature of the head shields of the Nantusiida is yet unsettled. As the most detailed description is Cope's description of Xantusia riversiana (Proc. Phil. Ac., $1883, \mathrm{pp} .30,31$) I have here adopted his nomenclature in order to avoid confusion and to facilitate comparison with the one here given.

[^92]: *Intermediate between mummy-brown and l'ront's brown.

[^93]: *The nomenclature in these parts is somewhat unsettled and chats differ, but the names here used are derived from the Russian Iydrographie Office chart.

[^94]: *Although no extended data accompany the specimens, I learn throngh the courtesy of Lient. Commander Richardson Clover, l'.s. Navy, hydrographer of the Navy Department, that the L. S. S. Hamook, lieut. I. K. Stevens, L. S. Navy, commanding, visited Coal Bay early in August, 18:5, and it was doubtless by some one on board that the speries were collected. Tho position assigned to Coal Bay on the map of the expedition is in latitule $60^{\circ} 17^{\prime}$ north and longitude 161° 句' east of Greenwich. It is noted that coal was found a oundantly, but of inferior quality for generating steam. Some account of the Hancock's visit to Coal Bay is given by A. W. Habersham in his volume entitled "My Last Cruise" (etc.). Philadelphia, Lippincott, 1857, pp. 329-371.

[^95]: * This was referred by Mr. E. A. Smith, of the British Musemm, to S. cordiformis "Chemnitz," which is the West Indiam and East American species variously known as S. reticulata (Gmel.) Wood, orbiculata and radiata Say, subtrumeata Sby., Jayanum C. B. Adams, and pulchella A. Adams. From these, however, the St. Helena shell is quite distinet, as shown hy a series kindly presented to the National Musoum by Capt. Turton. Its sculpture is never sharp and rasping to the tonch as in the West Indian shell, and all the specimens (five) show a minute lumne, under which the shell substance is of a deep charet-brown eolor, forming a very conspicuons spot of color and not occurring in any of the American shells from over fifty difterent localities. The concentrice ridges are broad and blunt in the S, modeste, while they are represented in tho American species only by thin sharp lamella. As Chemnitz was a binomial writer only accidentally, and did not adopt the Linnean system of nomenclature, his name can not be accepted even for the American shell, which will best he known by the name of Gmelin, adoptod and illustrated by Wood, in the belief that the shell is the Tellima reticulata of Limé, a conclusion to which the researches of Hauley on the dinnean types lend a reasonable probability.

[^96]: *The local name of a species of palm which constitutes the prevalent growth in most swamps of the coast district.

[^97]: *List of birds collected on the Blnefields River, Mosquito eoast, hy Mr. Menry Wickham, by P. L. Sclater, F. R. S., and Osbert Salvin, M. A., F. Z. S. Iroc. Zoül. Soc. Loud., 1867, 278-280.

[^98]: * The name Dendrobates, Sw., usually employed for this genus, is preocenpied (Wagler, 1830; Ratruchia).

[^99]: Proceedings National Museum, Vol. XVI, No. 948. [Advance sheet of this paper was issued July 14, 1893.]

[^100]: *These measurements are from the dry skins. Dr. Abbott gives the following dimensions for the same specimens when fresh:

[^101]: Muia sculpta Lamarck, Hist. des Anim. sans Vert., v, p. 242.
 Mithrax sculptus Milne Edwards, Hist. Nat. des Crust., I, p. 322. Miers, Challenger Report, Zö̈l., xVII, p. 87, 1886.
 Milhraculus sculptus Stimpson, Bull. Mus. Comp. Zoül., if, p. 117, 1870.

[^102]: ${ }^{*}$ Bull. Ill. St. Lalb. Nat. Hist., 11I, 97. †Trans. Am. Ent. Soc., Xix, 261; Psyche, vi, 425.

[^103]: * Amer. Naturalist, xxvi, 1004, in an article discussing at some length the geographical variations of this species.

[^104]: * Weed. Amer. Nat., xxy, 296.

[^105]: *On account of the excessive delay in publication, Messrs, Cook and Collins withdrew their report in January, 1893, and have pubished it elsewhere.

[^106]: * It is quite a common occurrence for specimens of Lepidoptera and other winged insects to be taken at sea off the western coast of Africa, and numerous references to such phenomena are found in the literature of travel. The writer has in his possession some specimens of Lyccna cissus Godt., and of the common Pieris rape Linn., which were taken at sea 75 miles off Cape Palmas. The power of sustained flight of such insignificant and apparently weak creatures is simply marvelous.-W. J. H.

[^107]: * It was not until after I had entirely completed the MS. of this paper that I noticed that Dr. Karsch had previonsly pointed out (Berliner Ent. Zeit. xxxir, p. 377. 1890) from the same quotation from Bumeister that caffre Burm. does not belong to Thermorthemis. Dr. Karsch there states that caffa is unknown to him.-P. P. C.

[^108]: *The abdomen is so much shriveled that it is impossible to determine its form or color.

[^109]: *On the Relationships aud Distribution of the North American Cnionidr, with notes on the West Coast Species. American Naturalist, Vol. xxvir, No. 316, 1. 353. Proceedings National Museum, Vol. XVI-No. 252.

[^110]: * No. 85981 of the lsata Lea collection, now in the National Musemm, was sent to Mr. Lea from the ponds of the Wabash by Dr. Lewis, and labeled ly the latter "Unio subrostratus Say." The former "hanged it to unsutus. No. 85938 , same colgection, Foote's P'ond, Gibson County, Indiani, was labeled L. masutus by Lea. I have carefnlly examined these shells and unhesitatingly pronownce them to be U. subrostratus, a form closely resembling U. nasutus at times, but always more inllated and differently shaped in the ventral region. 'There are authentic shells of t^{i}, nasutus from Ohio in Dr. Lea's collection, but they are all from streams that fall into Lake Eric. One Unio in the Musemm collection (No. 26060), from J. A. Lapham, is labeled U. radiatus, Pine, northeast boundary of Wisconsin. Pine County is in Minnesota, near Lake Superior, and is drained by the St. Croix River, a tribntary of the Mississippi. I am inclined to refer this specimen to the very nearly related Unio luteolus, a common Mississippi Basin species.

[^111]: * Geological and Natural History Survey of Canada, new series, Vol. vi, 1888-‘ $\quad 9$, 1).5. E.

[^112]: * Jl. Cin. Soc. Nat. Hist. July, 1881, p. 7.
 \dagger Land and fresh-water shells of Manitoba. Robert Christy.

[^113]: * From the alcoholic specimen before skinning

[^114]: * These Yucatan birds are M. Iavroncii olivascens, nobis, those from Vera Cruz northward being true M. lawrencii.

[^115]: *This character is of course obvious or conspicuous only in fresh plumage specimens.

[^116]: Proceedings National Mrusemm, Vol. XVI-No. 956

[^117]: * No. 8287, Museo Nacional de Costa Rica.

[^118]: * This example is not sexed, and may be a young male.
 \dagger Proc. U. S. Nat. Mus. גIV, 1891, p. 167. (Interior of Honduras.)

[^119]: * Regarding the extent and shape of this patch in the original specimens due allowance should be made for their imperfect condition.

[^120]: * As Peale's E. brecipes has heretofore always figured among the synonyms of .E. leucoptera (E. cookii Auct. nec Gray); a few remarks may not be out of place. The material before me cousists of Peale's two specimens and C'anon Tristram's No. 9779 ($る$ ad. Muanivake, interior of Viti Leva; T. Kleinschmidt coll. May, 1878), labeled E. torquata in Mr. Salvin's handwriting, and kindly lent me by the owner. The latter specimen, it is true, is not one of the types, but it agrees so closely with the descriptions published that I feel confident of its correct identification. This being the case I have no hesitation in pronouncing E. torquata a synonym of E. breripes, for the three specimens are as much alike as any three specimens of Estrelata I have seen. They differ from.E. lencoptera by haring the back plumbeous and by having the wedge in the inner web of primaries ill defined gray instead of well-defined white. As Peale's two specimens served Mr. Cassin as hasis for his Procellaria cookii and Mr. Ridgway for his E. leucoptera the srnongmy of the present species would staud thus:

 Estrelata brevipes (Peale).
 1848.-Procellaria brexipes Peale, Zoöl. Expl. Exp., Birds, (p. 294).
 1858.-Pracellaria cookii Cassin, U. S. Expl. Exp. Mamm. and Orn.. p. 414 (nee Gray; nec Gould).
 1860.-Procellaria torquata MacGillivray, Zoül., xviif, p. 7133.
 1863.-Procellaria desolata Schlegel, Mus. P. Bas., Proc., p. 13 (part; nec Gmel).
 1871.-qFulmarns aneiteimensis Gray, Hand-1. B., III, p. 107 (nom, nud.; fide Salvin. Gray, however, quotes MacGillivray's torquata loc. cit., p. 1104).
 1887.-Astrelata leucoptera Ridgway, Man. N. Am. B., p. 65 (nee Gould).

 I may mention a character found in all three specimens by me reterred to E. brevipes, viz., numerous hair like white filaments on occiput, hind neck, and sides of neck. These filaments I have been unable to observe in any other Estrelata in our collection, but Mr. Witwer Stone, who kindly examined and compared some of my specimens with Gould's types in the museum of the Philadelphia Academy, informs me that similar filaments are present in the uniform dusky specimen which Gould considered the young of his E. mollis.

[^121]: * In my review of the Japanese pigeons (Proc. U. S. Nat. Mus., 1887, p. 425), I referred to this bird as Columba rupestris (P'all.), at the same time calling attention to Taczanowski's statement as to the difference between the typical birds from Dauria and Baical and those from Dssuri, the Russian province just north of Korea. I had not seen specimens of either form then, hat our museum having since obtained specimens of both I an in a position to fully corroborate Taczanowski's observation, and feel prepared to carry out his suggestion (Bull. Soc. Zool., France, 1876, 1. 240) that the eastern form should be separated, if additional specimens should present the same result as he had reached. I propose to call it

[^122]: * See, however, reference at end of this article.

[^123]: Y Y kizuki. "Hab. Japan (island of Kinsin), and, according to Dr. Stejneger, the sonthern part of Hondo"! But why "according to Ir. Stejneger," when he himself enumerates as Γ. kizuki a specimen from Kolse?!

[^124]: *By this name I moderstand here the bird now usually so ealled, but I can not refrain from recording my suspricion that two distinguishable forms are confounded under that name. I find on comparison of Kamtchatkan and Japanese (including Kurile) specimens, that the latter have a much shorter second primary and a considerably more tawny color on the upper surface than the latter. I am inclined to think that the Kamtchatkan specimens are identical with those collected by Middeudorfi at Udskoj Ostrow, and that their migration route from and to Kamtchatka is identical with that of Chelidon lylleri, at least for the first part of the route. They would then le typical L. ochotensix. The Kurile and Japanese specimens are then entitled to the uame Locustella japonica (Cass).

[^125]: *Aun. Sci. Nat. (3), xx, p. 208, 1853.

[^126]: * No. 8284, Museo Nacional de Costa Rica.

[^127]: *. Description eutirely.

[^128]: That is, a color a little moro saturated than the "tawny" of my "Nomenclature of Colors" (I'l. v, F'ig. 1).

[^129]: *But not other specified Costa Rican nor Nicaragnan localities, which refer to F. umbrosus Ridgw.

[^130]: Intermediate between olive and hair-brown, with a slight tinge of Isabella color.

[^131]: Proccedings National Muséum; Voi. XVI-N゙o. 962.

[^132]: * Bull. Amer. Mus. Nat. Hist., III, 1890, 187. Proceedings National Museum Vol. XVI-No. 963.

[^133]: *Jordan (D. S.) A Manual of the Vertebrate Animals of the Northern United States. Fifth edition. Chicago, 1888 (p. 106).
 \dagger Proceedings of the U. S. National Museum, Vol. xı, p. 319, 1888.
 \ddagger Proceedings of the California Academy of Natural Sciences, Vol. III, p. 77, 1863.
 § Bulletin of the U. S. Fish Commission, Vol. vir, for 1887 (p. 437). Washington.

[^134]: *Theso shells have been found with wooden handles inserted in the perforation for use as hatchets or picks, and the U.S. National Museum possesses several speci-mens.-T. W.

[^135]: Procecdings National Musem, Vol: XVI-No. 967 .

[^136]: * O. F. Cook and (x. N. Collins: The Myriapoda Collected by the United States Eclipse Experdition to West Africa. Ann. N. Y. Acad. Sci., Vmpp. 22-40, Pl. I-MI.

[^137]: Procedings National Musermı, Vol. XVI-Nu. 969 .

[^138]: One species of lizard is so tir recorded from（iloriosa by Dr．Giinther as Gerrhono－ tus mude！fascariensis（Kool．Coll．＇Alert，＇188t，1．Lxti）evidently alipsins Lor Komo－ sunrus maduguscuriensis．

[^139]: *Boettger (Abh. Senckenb. Ges., XII, 1881, p. -331) records Hemidactylus frenatus as occurring in the Seychelles, but upon what authority I do not know. It may perhaps not be unnecessary, in view of this record, to state emphatically that the specimens collected by Dr. Abbott are true I. malouia, with well-developed inner digits and tubercles on the postocular portion of the upper surface of the head.

[^140]: *Leaving out of consideration the Rachiodon inornatus described by Duméril and Bibron (Erp. Gen., vir, p. 498) having 25 scale rows and "la carine des écalles du bas des flanes . . très-forte . . mais à peine deutelée."

[^141]: Prohably the type of Bianconi's Dipsas medici from Mozambigue; see p. 2 of cover of lirr. 29.

[^142]: As "circular folds" I have only counted those which are visible on the upper and lower surfaces, whether interrupted on the middle of the back and helly or not. I have consequently left out those short impressions on the posterior half of the body which are only visible if counting along the sides and which can not by any stretch of language be termed "circular." As a result I count 105 to 111 circular folds against Boulenger's "about 125."
 +Judging from the number of rings and their completeness on the back of the full-length fignre on plate vii (Cat. Bat. Grad. Br. Mus., 1882) it represents H. rostratus rather than H. guentheri, although so designated.

[^143]: *Proc. TV. S. Nat. Musenm, vol. Niv, 1891, p. 96.
 \dagger Mannal of Conchology, vol. viti, p. 115.

[^144]: * Vol. viil Manual of Conchology page 115, Feb. 28, 1893.

[^145]: * Bulletin of the U. S. Geological Survey No. 18. On the Marine Eocene, Freshwater Miocene and other Fossil Mollusca of Western North America, by Chas. A. White, M. 1). Washington, 1885.
 †This species is generally referred to by authors as Gonostoma Iafesii, but Cooper's genus Ammonitella, 1868, which is based on this form, is valid and should therefore stand, as Rafinesine's (romostoma (applied to a group of fishes), 1810, has precedence over the use of said name in the Mollnsca, (Held., 1837) by twenty-seven years, as well as over Pfeitier's use of Conosfoma in 1879.

[^146]: * Binney's Manual of Am. Land Shells (Bull. 28, U. S. Nat. Mus.), p. 385, 386, fig. 419.

[^147]: : In Bull. No. 37, U. S. National Museum; C'at. marine mollusks, etc., southeastern coast of the United states, etc.

 Proc. N. M. $93-48$

[^148]: *Ann. \& Mag. Nat. Hist., 5th ser., xix, 1887, p. 66.
 \dagger Proc. Zoöl. Soc., London, 1888, p. 446.
 \ddagger North Amer. Fauna, 2, 1889, p. 3.
 $\oint=$ Sitomys.
 Proceedings National Museum, Vol. XVI-No. 972.

[^149]: * Edited by Frederick W. True, with the assistance of other curators of the Museum. No identifications of species were included in Dr. Abbott's manuscript.
 †The island was completely surveyed by H. M. S. Alert, in 1882.

[^150]: * Probably Testudo elephantina. F. A. L.

[^151]: "Nen species described by Mr. Stejneger.
 tOne of these is Ayctinomus pumilus. F. W. T.
 \ddagger Only Sula piscutor (Linn.) is represented in the collection made by Dr. Abbott.R. R.
 §Sterna bernsteini, S. fuliginosa, s. melanuuchen, Anous stolidus and Gygis alba.-R. R.
 $\|$ Mr. Linell furnishes the following list of Aldabra insects received from Dr. Abbott:
 Butterflies:

 1. Diadema misippus, L. Both sexes taken; 才, black with violet-shot white spots; ¢, brown with black and white wing-tips, closely imitating Danais chrysippus. The distribution of this species is remarkable. It is rare in America from south Floridat through the West Indies to the Amazon region; wore common in Africa (except the Mediterrancan region) and through Southern Asiap and the Malay Archipelago to New Holland.
 2. Junonia clelia, Cram. Common in South and East Africa.
[^152]: 3. Lycana telicamus, Hiib. South Europe throngh East Africa to the Cape of Good Hope.
[^153]: * Cimyris souimanga.
 \dagger Z. madagascariensis.
 \ddagger I.cocinela matagascariensis?
 §Two species of boobies were collected ioy Dr. Abbott, Sula cyanops and S. piscator, but both of these are of very wide distribution.-R. R.

[^154]: * I would suggest that the proper name of this subspecies is Coturnix coturnix africane (Schlegel) (see Fanna Jap. Aves, p. 103). There is no reference to this name in Mr. Ogilvic-Grant's synonymy.

[^155]: * In no country are letters of introduction more valuable than in Mexico. The proximity to our wildest borders and the ease of ingress has flooted the country with the worst varieties of tramps and adventurers, until the oft-deluded native has come to regarl all foreigners with suspicion. The traveler intending to spend any length of time in Mexico will, therefore, do well to provide himself with credentials,

[^156]: *Biologia Centrali-Americana, Aves, Vol. i, p. 488.

