MEMOIRES

ET

COMPTES RENDUS

DE I.A

SOCIETE ROYALE

C A N A D A

POUR L'ANNEE 1884.

TOME II.

MONTRÉAL:
DAWSON FRĖRES, LIBRAIRES-ÉDITEURS.
1885.

PROCEEDINGS

AND

T R A N S A C T I O N S

OF THE

R O Y A L S O C I E T Y

OF
C A N A D A

FOR THE YEAR 1884.

VOLUME II.
ace no
525

MONTREAL:
DAWSON BROTHERS, PUBLISHERS.
1885.

Fistazas according to Act of Parliament in the year 1885 in the Office of the Minister of Agriculture by Dawson Brothers, for the Royal Society.

TABLE OF CONTENTS.

PROCEEDINGS.

page
Trocecelings for 1884. I
TRANSACTIONS.
SECTION 1 .
I. Deux points dhistoire : - (1) Quatrième royage de Jacques Cartier ; (2) Expédition du marquis de La Roche, par Paul de Cazes 1
II. Etude sur une famille canadienne:-Famille De Catalogne, par i'Abré C. Tanguay 7
III. La province de Québec et la langue française, par Napoiféon Leqendre 15
IV. Les races indigènes de l'Amérique devant l'Histoire, par Napoléon Leqendre 25
V. Poutrincourt en Acadie - 1604-1623, par B. Sulite. 31
VI. Les Quarante dernières années:-Le Canada demie l'Union de 1841, par John Charles Dent. - Etude critique, par l'abbé Cascrain 51
VII. Les commencements de l'Eglise du Canadu, par l'abbí Verreau 63
VIII. Une promenade dans Paris - Impressions el souvenirs, par Joseph Marmette 73
IX. Les aborigènes d'Amérique - Leurs rites mortuaires, par J.-M. LeMoine. 85
X. Le Sacré-Coeur, par P.-J.-O. Chauveau 97
XI. Au bord de la Creuse, par Louis Fréchette 105
XII. L'Espagne, par Louis Fréchette 115
XIII. Trois épisodes de la Conquete, par Louis Fréchettre. 121
I. Fors l'honneur ! 121
II. Les dernières cartouches 125
III. Le drapeau fantôme 129
XIV. Les travers du sièle, par F.-G. Marchand 135
SECVIION II.
I. The Making of Canada, by Joun Reade 1
II. The Literary Faculty of the Native Races of America, by John Reade. 17
III. The Poets of Camada, by Join Lesperance 31
IV. A Plea for a Canadian Camden Society, by Georde Bryce 45
V. The Huron-Iroquois of Canada, a Typical Race of American Aborigines, by Daniel Wilson 55
SECTION III.
PAGE
I. The Origin of Crystalline Rocks, by T. Sterry Hunt ${ }^{*} 1$
II. On the Density and Thermal Expansion of Solutions of Copper Sulphate, by J. G. MacGregor 69
III. Blowpipe Reactions on Plaster of Paris Tablets, bl F. Hannel 77
IV. A Particular Case of Hydraulic-Ram or Water-Hammer, by C. Baillairgée. 81
V. Notes sur un fait météorologique particulier à Québec, par l'abbé Laflamme. 87
VI. Essai sur la constitution atomique de la matière, par l'abbé Hamel. 91
SECTION IV.
I. On sume Relations of Geological Work in Canada and the Old World, by Sir J. W. Dawson 1
11. Notes on the Manganese Ores of Nova Scotia, by Edwin Gilpin 7
III. Revision of the Canadian Ranunculacere, by George Lawson. 15
IV. On Geological Contacts and Ancient Erosion in Southern and Central New Bruns- wick, by L. W. Bailey. 91
V. Illustrations of the Fauna of the St. John Group continued: On the Corocoryphea, with further remarks on Paradoxides, by G. F. Matthew 99
VI. A Historiral Account of the Taconic Question in Geology, with a Discussion of the Relations of the Taconic Series to the Older Crystalline and to the Cambrian Rocks, Part II, by T. Sterry Hunt 125
VII. On some Deposits of Titaniferous Iron Ore in the Counties of Haliburton and Hastings, Ontario, by E. J. Chapman 159
V1II. On Mimetism in Inorganic Nature, by E. J. Chapman 161
IX. Canadian Fillicinice, by J. Macoun and T. J. W. Burgess 163
X. Note sur certains dépóts auriferes de la Beauce, par l'abbé Laflamme. 227
XI. Note sur un gisement d'émeraule au Saguenay, par l'abbé Laflamme. 231
XII. Notes on the Ocrurrence of Certain Butterflies in Canada, by W. Saunders 233
XIII. Note on a Decapod Crustacean from the Upper Cretaceous of Highwood River, Alberta, N.W.T., by J. F. Whiteaves. 237
XIV. Description of a New Speries of Ammonite from the Cretaceous Rocks of Fort St. John, on the Peace River, by J. F. Whiteaves. 239
ABSTRACTS IN SECTION IV.

1. The Geology and Economic Minerals of Hudson Bay and Northern Canada, by Robert Bell 241
II. Notes on Observations, 1883, on the Geology of the North Shore of Lake Superior, by A. R. C. Selwyn 245

LIST OF ILLUSTRATIONS.

SECTION III.
One wood-cut to illustrate C. Baillairgés paper on a particular case of WaterHammer, p. 84.

One plate to illustrate Prof. MacGregor's paper on the Density and Thermal Expansion of Solutions of Copper Sulphate. (At the end of section.)

SECTION IV.

One plate of Conocoryphea, etc., to illustrate G. F. Matthew's paper on the Fauna of the St. John Group. (At the end of section.)

ROYAL SOCIETY OF CANADA.

PROCEEDINGS FOR1884.

THIRD GENERAL MEETING, MAY, 1884.

SESSION I. (May 20th.)

The Royal Society of Canada held its third general meeting on May 20th, in the Parliament Buildings, Ottawa. The members assembled at the hour of 10 o'clock A. M., in the railway committee room, and the President, Dr. Chauveau, took the Chair and formally called the meeting to order.

The Honorary Secretary then read the following.

Report of Council.

The Council have the honour to submit their Annual Report.
In the month of June last, the following Resolutions were unanimously adopted, at a meeting of the Council, with reference to the publication of the Transactions of the Society :-

1. That the Proceedings of the Society and the Transactions, composed of papers contributed by members and others, be published in quarto form, the Proceedings having pagination by Roman numerals and the Transactions of each section having separate pagination. (Moved by Mr. Macfarlane; seconded by Professor Cherriman.)
2. That each portion of the Proceedings and Transactions of the Society be published in the language in which such portion was presented. (Moved by Mr. Macfarlane; seconded by Dr. Fréchette.)
3. That authors be informed that they can receive one hundred copies of their memoirs on application to the printers before the final printing of the same. (Moved by Dr. Selwyn; seconded by Mr. Whiteaves.)
4. That the following gentlemen constitute a Committee to arrange for the printing of the Proceedings and Transactions :-

Dr. T. Sterry Hunt, Chairman,
Dr. L. H. Fréchette,
Dr. Alex. Johnson,

of whom two shall be a quorum, and that this Committee be empowered to make suitable arrangements, financial and otherwise, for the editing and publishing of the same. (Moved by Professor Cherriman; seconded by Dr. Fréchette.)

The following Report of the Printing Committee, so appointed, has been made to the Council:-
"The Chairman of the Printing Committeo reports that, in accordance with the instructions received from the Council, this Committeo secured a publisher and mado all necessary arrangements for the publication in proper shape of the first volume of Procedings and Transactions of the Society. Of this volume of 750 pages, Quarto, with numerous illustrations, an edition of 1,500 copies was published and has already, within the past few weeke, been in the hands of the fellows of the Socioty and those other persons in the Dominion who, by our Constitution, were entitled to receive it.
"A large list of Aeademies, Librarles and Universities in foreign countries, to whom the volume is also to be sent, has been prepared by the Committeo and its distribution to these is in progress and will to completel within the next month. The accompanying letter from the publishers, Messrs. Sawson Bros, of Montral, will give may detnils with regard to the arrangemonts for distribution. Accompanging it will alon lee fond a full satement of expenditures on bohalf of tho publication up to this time.
"In view of eertatin difticnlties whicharose with regard to the printing, on account of the absenee of authore, and other irveghaties, the Committer on publication have deemed it proper to recommemb a fiw simple rulan the future guidance alike of authors and publishors, whioh will be submitterl tor thapprosal of the semety."

The ferter to which allu-ion is mate in the above Report is sulgoined :-
Montreal, May 14th, 1884.
To the 'hutrman of the Printimg Commiltere, Romal Suciety of Conade.
Dear sin,
W. Heg the rame that wh have dintriluted the volumes of Transactions, as per memorandum
 alon the li-t of meminco of l'arliamont. The thal number so disposed of amounts to 711 copies,

The valume for Britiols Columbia. Nimbimultand, aml Manitoba, went off last week only. The two later waited theonning of mavigation and all waitent more favomable rates for freight. The othor whmen were deliverel by our own comporndents at the chief cities, thus enabling us to forward caneo in hotk ley treight litw and atve exprens maten on sopatate packages.

We hase now the li- properl liy you for Fereign Soricties. This would require, with some mames addel sibue, atrus ind copion; … that, when all are sent off, athout 200 copies will remain in the deriety - hatuk. We would angeret that these be put into the custody of the Society's officers at Guawa for caroful pronervaion in future years.

We have received a letter firom the Secretary of the Treasury of the United States permitting the Transactions thenter that country free of duty. Althougl, in the strict terms of the United States tariff, that was allowable, yet the regulations of the Jepartment were so framed as to prevent it. These regrations have been relaxed in respect of alt those Societies, to whom it is dosirable that the book should the sent.

We can arrange, through our own correspondents at London, Edinburgh, Paris, Antwerp, Leipzig, and Vienna, for delivery in those cities. l3y this means the lowest rates of freight in bulk can be obtained. In the list we send with this, the express rates to the various towns in the United States can be seen and the expense ascertained with exactness.

The bill attached includes some items for boxing on copies sent out and eash disbursements for postage and freight down to date.

The Royal Society of Canada.

$\$ 17739$
Soon after the second general meeting, the Sceretary communicated the grateful acknowledgments of the Society to the Institute of France, for the gracious reply which that distinguished borly had been pleased to give to the invitation of the Royal Society of Canada. At the same time, Messieurs Xavier Marmier and Camille Doucet were informed that the Society had unanimously elected them to be corresponding members.

To theso communications the Secretary has received tho following replies :-

> Institut de France, Academie fraygaise,

Trouville-sur-Mer, le 9 juillet 1883.

Monsieve,

Dans sa dernière séance, l'Académie a reçu communication de la dêlibération que la Société Royale du Canada a bien voulu prendre pour la remercier de la sympathie, très cordiale en effet, qu'elle lui a témoignée en chargeant un do ses nembres, M. X. Marmier, d'aller la représenter anx fêtes du mois de mai dernier.

La maladie de notre confrère a pu seule l'empêcher do remplir l'agréable mission qu'il avait acceptée avec grand plaisir, et l'Académie l'a regretté vivement.

Veuillez, Monsieur, agléer les nouveaux remerciements de la compagnie, et en faire parvenir' l'expression jusqu'd Son Excellence M. le marquis do Lorne.

> J'ai l'honnour d'être, Monsieur,
> Votre très obéissant serviteur,

Camille Doucet.
Monsieur Bourinot, secretaire honoraire de la Societté Royale du Canada.

Institut de France, Adadémie franģaise,

Paris, le 9 juillet 1883.

Le secrétaire perpétuel de ll Académie, à

Monsieur Bourinot, secrettaire honoraire de la Sociéte Royale du Canada.

Monsteve,

En même temps que vous m'addressiez, pour l'Académie, une copie de la délibération prise par la Société Royale du Canada, vous avez bien voulu m'informer qu'a la séance générale du 25 mai dernier, nous avions eu, mon confrère Marmier et moi, l'honneur d'être nommés membres correspondants de cette jeune et déjà illustre compagnie.

J'aurais da, et voulu, Monsieur, vous remercier plus tôt d'une faveur à laquelle je suis, pour ma part, infiniment sensible. Marmier l'a fait sans doute et j'y aurais mis le même empressementsi, depuis deux mois, une ophtalmie assez grave ne m'eût empêché de lire et d'écrire.

Presque entièrement guéri maintenant, je me suis rendu à Paris pour la dernière séance, et j’ai communiqué officiellement à mes confrères les bonnes nouvelles coutenues dans votre double dépêche du 3 juin.

Soyez assez bon, Monsieur, pour être auprès de la Société Royale l'interprète de ma très vive gratitude, et recevez, pour vous personnellement, l'assurance de ma haute considération et de mon entier dévouement.

Camille Doucet, secrétaire perpétuel de l'Académie française, membre correspondant de la Société Royale du Canada.

Monsietr,
Je resois avec une cordiale émotion l'acte officiel que vous avez eu la bonté de m'adresser.
C'était mon fervent désir et mon heureux espoir de retourner dans votre pays, que j'aime depuis longtemp*.

C"était ma joie de songer que jirais là représenter l'Académie française en une journée solennelle de sa jeune sceur d'Ottawa.

Monage, monétat de santé ne m'ont pas permis d'entreprendre ce voyage.
La Société Royale du Canada a compris mes regrets et a voulu me consoler.
Par la motion de MM. LeMoine et Faucher de Saint-Maurice, elle m'a donné un témoignage de bienveillance dont je suis très touché.

Par le titre qu'elle m'a donné, elle m'a fait un honneur auquel j'attache le plus grand prix.
Oui, je suis fier d'être adjoint comme membre correspondantà cette Société Royale, fondée sous les auspices du noble gouverneur du Canada, Son Excellence M. le marquis le Lorne, et composée d'hommes si distingués.

Voulez-vous bien transmettre à mes honorés confrères l'expression de ma gratitude ?
Agréez, je vous prie, Monsieur, tous mes remerciements pour votre obligeante lettre et mes très empressés compliments.

Xavier Marmier.

In accordance with the Resolution of the last general meeting, the following Memorial was sent to the Governor-General in Council, respecting the International Fisheries Exhibition, then opened at South Kensington :-

To His Excellency the Governor-General in Council, dc.

The memorial of the Royal Society of Canada humbly showeth:-That the Society has heard with the deepest interest and pride of the success that has rewarded the efforts of the Government to
have Canada properly represented at the Interuational Fisheries Exhibition, opened a few weeks ago at South Kensington.

That the Society feels that the exhibit made by Canada will be a most efficient moane of advertising the great resources of the Dominion, and must very materially aid in attracting wealth and popalation into this country.

That the Society, in giving expression to the gratification whieh its members naturally feel, in common with all Canadians, begs leave at the same time to submit to your Honourable Body the advisability of the Gevernment taking measures to secure, for the intended Nutional Museum, such specimens from the Fishory Exhibit as may be of permanent scientific value to the Dominion.

Therefore your Memorialists trust that your Honourabie Body will be pleased to give due consideration to this question, and como to a conclusion which will practically promote the cause of Science in Canada.

Invitations have been addrossed to Literary and Scientific Societies throughout the Dominion, and the Sccretary has received roplies from the following bodios, with the names of their respective delegates, all of whom we hope will be present at this meeting :-

Names of Societies and Delegates.

1. Numismatic and Antiquarian Society, Montreal-R. W. McLachlan.
2. Literary and Historieal Society, Quebec-Dr. Harper.
3. Institut Canadien, Ottawa-Dr. L. C. Précost.
4. Natural History Society of New Brunswick-M. Chamberlain.
5. Entomological Society of Ontario-James Fletcher.
6. Ottawa Field Naturalists' Club-The President, Dr. Small.
7. Historical Socioty, Winnipeg-Prof. Bryce.
8. Natural History Society of Montreal-W. F. Ferrier.
9. Geographical Society of Quebec-Colonel Rhodes.
10. Nova Scotian Institute of Natural Science-M. Murphy, C. E.
11. Canadian Instituto-C. H. Carpmael.
12. Historical Society of Nova Scotia-Professor Lawson.
13. Institut Canadien de Québec-Abbé Bruchési.
14. Ottawa Literary and Scientific Society-W. P. Anderson.
15. Historical Socioty of Montreal-Abbe Verreau.

Invitations have also been sent to English and Foreign societies, to whom the same courtesy was paid on a previous occasion, but, owing to the visit of the British Association a few morths hence, it has not been possible for English bodies to send delegates to the meeting. The Ameriean Association for the Advancement of Science, however, we are glad to inform you, has appointed as its delegate Dr. Persifor Frazer, of Pliladelphia.

The following reply has been received from tho Académie Royale des sciences, des lettres ct des beaux-arts de Belgique, and from L'Athénée louisianais, of New Orloans:-

Academie Royale des sciences, des lettres et des beaux-arts de Belgique, Palais des Adademies, Bruxelles, le 9 avril 1884.
A Monsieur John Gro. Bournot, secrétaire honoraire de la Societé Royale du Canada, Ottava,
Monsibur le secretaire ilonoratre,
Jo me suis fait un houneur do comınuniquer al l'Acadénio royale des sciences, des lettres ot des beaux-arts de Belgique, votre lettre du 22 février dernier par laquello vous l'informiez quo la Société Royale du Canada tiendra sa troisième session annuelle à Ottawa, le 20 mai prochain.

L'Académie est très reconnaissante an conseil de la Société pour l'invitation qui lui a été faite d'envoyer des délégués à cette réunion. Elle regrette vivement qu'aucun de ses membres ne soit en mesure de se rendre à cette gracieuse invitation.

Veuillez agréer, monsieur le secrétaire honoraire,
l'expression de mes sentiments les plus distingués.

T. Liagre, le secrétaire perpétuel de l'Académie.

Nouvelle-Orleans, le 25 avril 1884.

Monsieur John Geo. Bourinot, secretaire honoraire de la Socitté Royale du Canada.
Mon cher Monsieur,
Comme vous le verrez en lisant la prochaine livraison des comptes rendus de l'Athénée louisianais, j'ai reçu la lettre que vous m'aviez fait l'honneur de m'adresser, et par laquelle, au nom de la Société Royale du Canada, vous nous invitez à envoyer des délégués à la session annuelle de votre institution. L'Athénée fera certainement tout son possible pour répondre à l'invitation d'une société qu'il tient en ni haute estime, quoiqu'il soit bien difficile à ses membres, qui sont tous hommes de profession, de s'abeenter même pour un temps très limité. La Société Royale du Canada a toutes nos sympathies ; nous admirons son patriotisme, son dévoûment à la science ; nous applaudissons à ses efforts.

Veuillez, mon cher Monsicur, donner aux membres du conseil l'assurance de nos meilleurs sentiments, et les prier d'agréer l'expression de notre gratitude.

Agréez, je vous prie, monsieur le secrétaire honoraire, mes salutations les plus cordiales.

Alfred Mercier, secrétaire perpêtuel.

We have also much pleasure in communicating the following telegram by the Atlantic cable, which has been received from the President of L'Association francaise pour l'avancement des sciences:-

Paris, le 19 mai, 1884.
Au prisident de la Societe Royale du Canada, Ottawa.
Le Président adresse au nom de l'Association française pour l'avancement des sciences, des souhaits de prosperité à la Société Royale du Canada.

The American Association for the Advancement of Science has also forwarded the following cordial invitation to the Royal Society of Canada, which we hope will receive a favourable response before the close of this meeting :-

Philadelphia Meeting:

American Association for the Advancement of Soience, September, 1884.
Commitee on Invitations And Receptions,
April 16th, 1884. $\}$

To the Royal Society of Canada.

The Local Committee, which has been organized to prepare for the forthcoming meeting of the American Association for the Advancement of Science on September 4th of this year, mindful of the very cordial reception accorded to the Association at its last meeting in Montreal, is desirous that the representative scientific body of our sister country should be present at what promises to be one of the
most important intornational gatherings of scientific men which havo over boen held; and therefore cordially invitos the members of the Royal Society of Canada to visit Philadelphia on September 4th next, to meet those of the Ameriean and British Associations, and of various Europoan seiontific socioties.

The Local Committeo, speaking in behalf of citizens of Philadelphia, as well as of the American Association for the Advancement of Science, promises a most cordial welcome to the Royal Society of Canada on that occasion.

> Joun Welsi, Chairman of Local Committee.
> C. W. Youna, President of American Association for the Advancement of Scionce, J. P. Lesley, President Elect, American Association for the Adcancement of Sciencc.

It is with much regret that we refor to the sudden death of one of the ablest and sincerest friends of the Royal Society, Dr. Alpheus Todd, for so many years the Librarian of Parliament. All of us know full well tho ability and learning of that distinguished gentleman, who had an abiding confidence in the success of the Society, and was considering carnestly, up to the very hour of his death, low he could best assist it in its work of encouraging literary and scientifie studies in Canada.

Sinco we last met in this building a year ago, the Marquis of Lorne, the distinguished founder of this Society, has left tho Dominion, but we are glad to know that he continues to feel the deepest interest in its success. The Council would suggest that his name should always appear in the 'Transactions as the Founder of tho Royal Soeiety. A resolution on this subject will be sulmitted for your approval.

Wo have overy reason to believe that tho suceessor of Lord Lorne takes nuch interest in the work of the Society, and will not fail to give it that encouragement which a (iovernor-General can always give. An Address will be formally presented to His Excellency; the Marquis of Lansdowne, asking him to act as Honorary President of the Society, in suecession to the Marquis of Lorne.

Wo are glad to be able to stato that the Parliament of the Dominion has most generously continued its grant of five thousand dollars for the present and following years toward the publication of the Transactions of the Socioty. We hope that the initiative taken by the Government will incite liberal-minded and wealthy men throughout Canada to make such generons donations as will enable the Society to promote the many objects to which it should devote itself.

The British Association for the Advancement of Science has decided to hold its annual meeting in Montreal, in the week beginning August 27th, on which oceasion a large number of the leaders in science from the United Kingdom will be present. It seems fitting on this oceasion that this Society should take a part in welcoming to our Dominion such a distinguishod borly, and it is therefore desirable tlat a Committeo should be appointed for that purpose.

List of Members Present.

The Honorary Secretary then proceeded to call the roll of members, and the following respondel to their names:-
P. J. O. Chauveau, Paul de Cazes, Pamphile LeMay, Faucher de St. Maurice, I. Fréehette, Joseph Tassé, F. G. Marchand, Bonjamin Sulte, l'abbé Casgrain, l'abbé Tanguay, J. M. LoMoine, Napoléon Legendre, John George Bourinot, Rev. Eneas Macdoncll Dawson, William Kirby, John Reade, George Stewart, jun., Georgo Murray, Charles Sangster, George T. Denison, Charles Baillarge, Professor Cherriman, E. Deville, Professor Dupuis, Sandford Fleming, F. N. Gisborno, l'abbé Hamel, Professor Harrington, G. C. Hoffman, Dr. T. Sterry Hunt, Professor Johnson, Professor J. G. MaeGregor, Professor Bailey, Dr. Robert Bell, Dr. G. M. Dawson, Dr. G. A. Grant, l'abbé Laflamme, Professor Macoun, W. Saundors, Dr. Selwyn, J. F. Whiteaves, John Lesperance, Herbert Bayne, C. H. Carpmael, Professor Chapman, Professor Girdwood, Professor Lawson, G. F. Matthew.

Reports from Affiliated Societies.

The list of Delegates was then road, and tho following Reports were duly presented from the following Literary and Scientific Societies in Cunada:-

1. From the Nora Scotian Institute of Natural Science, through Mr. Martin Murpiy, C.E.:-

The Nova Scotin Institute of Natural Science whs institnted on December 31st, 1862. It may beconsidered as a result of the effort to represent Nova Scotia at the great London International Exlibition of 186; The Now Scotian Commission secured the cooperation of a number of naturalists, and oher geatlemen who took an interest in Nutural History. The Secretary of the Commission, R. G. Halihurton, Fay., larrister-at-hw, took active steps in convening these gentlemen, with a view to mutal improvement in the stuly of Natural Science, as well as for the devolopinent of the natural resources of the Province. It was agreed "that a society le formed nuder the uame of the Nova Scotian Institute 1, Natural Scince; 'llat the lamitute mulertalie the publication of lists of the various natural prodnetims of the Jrovince, with sum olservalions as their respective authors may deem nocossary; That, a) far an the fimbo of the [n- titutw will permit, the President's address, the list of native productions, and a sedectionot the papers pat at the meetings by members be published, as the "Transactions of the

 lanty of the lastitms abmul in - till incrating. 'The Yolumes of the Tramsactions aro out of print, so
 Provincial bagialame of trom how humbed to two lumdred dollars, in connection with the fees of meminer, han chaldiat he lastitute to print and dish dibute its Transuctions, but not to illustrate them with majos and tigurm. The lantitute owe its success largely to the eflorts of its secretury, the Rev.
 the ablanement of it interents and in the cance of scionce. The following is the list of Papers read during the Stomion, 1-8.3-s : -

1. De Burt Cial F゙idl, ly Elwin dilpin, B.A., Government luspector of Mines, N. S.
\because Satural IIi-tory of the Cumatian Department of the Great [nternational Fisheries Commission, Lomdon, 1863, hy Rev. Wr. Honeyman, D.C.L.
2. On Manganese Ore of Cape Breton, by Filwin (iilpin, B.A.
3. Nuten on Special Aumarr, by J. G. Mactiregor, A.M., D.Sc.
4. Wn the Northern Limit. of Indigenous Grape Vines, by George Lawson, Ph.D., LL.D.
5. On Sable Itand : its changed Position, by S.D. McDonald, F.G.S.
6. On Glacial Action at Rimouski, Canala, and Loch Eek Argylshire, Scotland, by Rev. D. Honeyman, I) C.L.
7. Notes on Palariscopic and Mieroscopic Examination of Crystalline Rocks of Nova Scotia and Cape Breton, by Rer. I). Honeyman, D.C.L.
8. Sorne Physical Features of Nown Scotia, with Notes on Glacial Action, by M. Murphy, C.E. Provincial Government Engineer, N.S.
9. Notes of French Water Sponges, by A. H. McKay, M.A., B.Sc.

11. From the Geographical Society of Quebec, through Lieur.-Col. Rhodes:-

I have the hononr to report that the Geographical Society of Quebec has done a considerable momert of work during the past year, a prortion which appears in their Bulletin, which is now placed lefore you. As Gcographical eaterprise means commercial progress, it is not surprising that
there is a growing domand for a bottor and more general knowledge of our misknown territorios, and this ean only be guined by voyages of discovery, undertaken by a settled government. To the climate of Canada we must credit the sourco of all our health and wealth. Cold gives us vigour, the power of reproduction, our numerous populations and the probability of their indefinito increase, while again, it makes it possible to cover our lands with vegetation, and thus ensures fertility on the surface. Canadians need not be deterred by low temperatures, but rather believo scientific and civilized man may live in abundance, where nature has so larishly prepared the way for an intelligent and edueated race to work out its national oxistonce.

As tho Goographical Society advocatos and promotes, on all possible occasions, voyages of discovery, I am glad to roport that:-

A Survoy by wator will bo mado this soason of Hudson Bay and its Strait, by the Govornment of the Dominion.

An Expedition will also start by land from the lower St. Lawronce to Lake Mistassini and James Bay, equippod for wintering on or about the height of land betweon the Prorince of Quebec and the Northeast territory. This party will bo under the genoral instructions of Dr. Selwyn, the Director of the Geologienl Survoy for the Departmont of the Intorior.

Manitoba, having obtained powers to construet a milway from Winniper to Hudson Bay, there will bo exploration partios in that direction.

Tho Paeific Railway is now in the Rocky Mountains, opening the way to a better knowledge of those sections; which are also being further explorod by parties from the Geological survey, under the immediate superintendence of Dr. G. M. Dawson.

The United Statos Govornment is promoting Voyages of Discovery in Alaska and up the Yiukon River, which takes its source in the north-western eorner of Canala. A report of this survey has been sent to us, and appears in our Transactions.

Though I am happy to acknowledge much encouragemont within the yoar, from the general publie, to Geographical science, yet I regret to state that both the Dominion and the Government of the Province of Quebec have withdrawn their money grants, leaving us to contend with financial difficultios, which may becomo very embarrassing. The proper view to take of young Societies, such as ours, is the educational. We do not require much more than official recognition, such as we are receiring from the Royal Society of Canada; but, as our work is essentially of a national character, Canada ought not to be the only country in the world without a Geographical Society, which will assuredly bo the case, if we fail through a want of funds. Eeonomy is very well, but the saving of a few hundred dollars by the Dominion Government and by that of the Province of Quebee will not materially add to the public purse, whilst the adult portion of our population will be the losers from a scientific body's boing unable to publish and circulato gratuitously trustworthy information, independent of and uneonnected with the Railway and Land Companios of the period.

I beg to tender my respectful thanks to the Royal Socioty of Canada for a copy of thoir Proceedings and Transactions for 1882-83, as well as for the honor of taking a part in the assemblage of this year. These moetings have a special interest for the mombers of the Geographical Society of Quebec,

W. Ruodes, President.

Quebec, May 16th, 1884.
III. From the Numismatic and Antiquarian Society of Montreal, through Mr. R. W. McLacelan :-

In presenting to the Royal Society of Canada a report of original work done during the past year, the Numismatic and Antiquarian Society would congratulate the country on the organization of such an institution, and hopes that the promises for future literary work and seientific research may be fully carried out.

The Society was organized in 1862, with a membership of twenty, interested in the collection and study of coins and medals, under the name of the Numismatic Society of Montreal. In 1863, the: Society undertook the publication of a work deseribing the coins and medals relating to Canada. Owing to unavoidable delays, such as the death of one member of the committeo and the removal of: another from the city, the book was not issued until 1869. As, sinco that time many new coins and much information has come to light, a new book on the subject has been undertaken by one of the members of the Society: As it seemed to be the desire of the members to enlarge the scope of the society, its name was changel, in 1868, to that of the Numismatic and Antiquarian Society of Montreal. This, while it still retainel the Numismatic department as its most prominent fenture, permitted the introxaction of Archaological Research in all its branchos. The Society in 1870 was incorparated liy act of Provincial Parliament, and in $\mathbf{1 8 7 2}$ was made the recipient of a small government grant, which was continued ambally until last year. With the aid of this grant, the Society commenced, in 15:. the publication of a quarterly entitled, tho Conadian Antiquarian and Numismafic Journal. Bun it is fratel that, on account of the withdrawal of the annal grant, this publication may huse to he surpoded, or much rednced in size. ln this quarterly have appeared the Tranactimu wf she swiety, migital papers and enmmunications, and other matters relating to Archarology and Numismatology, eperially of the Dominion.

The Mmatmonp of the suciety, which has never been large, does not row number over fifty. fould the simety ancel in incerning ite membership, much more work would beacsomplished.

The fillowing parm have beon real during the year 1883 :-

\because Sinco on Mongan- Colednatel Candians, by W. MeLennam.
3. The Flemthe Li-, lig. J. H. Bewe.
t. The Dhamimal Thesen, by R. W. MeLatchlan.
5. A Few Waif from My Porttolio, ly C. S. Baker
ti. A Cont uf 1-.3 Struck from an Atered Die, ly R. W. MceLachlan.
7. Fion st dabriel, hy R. C. Laman.
5. On the Formation, Crowth and Decline of Commercial Citios, and the Probable Future of Montreal, le T. D. King.

9 A Britioh Columbia (iohl Coinaqe, by R. W. MeLachlan.

The collection of the suciety, mainly the contributions of members, eonsists of over two thousand coim and melals, and atmut one hundred volumes, principally Numismatio.

Thanking the Roval society for thin opportunity of making its work public, and for the valuable volume of the Transactions of the Iroyal Society for 1883, donated to its library, the Numismatic and Antiquarian seceiety of Montreal has much pleasure in submitting the above report.

Montreal, May, 188.

R. W. MoLachlan, Delegate,

IV. From the Canadian Institute, Toronto, through Mr. C. Carpararl :-

The follewing is a list of the papers read at the Institute during the past session :-
Nor. 3, 1883.-Complexion, Climato nnd Race, by J. M. Buchan, M.A.
10, 1883. - The Literature of English Speaking Canada, by C. P. Mulvany, M.D.
15, 1883.-Iand and I_alour, by W. A. Douglas, B.A.
24, 1883.-Onr Federal Government, by I). A. O'Sullivan, M.A.
Dec. 1, 1883. - The Tranafer of Land, by J. Herbert Mason.
8, 1883. - The Theory of Heat, by J. M. Clark, B.A.

Doc. 15, 1883.-England's Oldest Colony, by T. B. Browning M.A.
22, 1883.-Abattoirs, by Alan Macdougall, C.E.
Jan. 12, 1884.-The Nervous System of the Cat-fish, by Prof. R. Ramsay Wright.
19, 1884.-The History of Musical Instruments, with 'special reference to the Orchestra; the Piano, Violin and Organ, by W. Waugh Lauder.
26, 1884.-The Antiquity of the Negio Race,' by Frederick Phillips.
Feb. 2, 1884.-The Real Coxrespondents of Imaginary Points, by Prof. G. P. Young.
9, 1884. -The Rhitan Languages,-the Aztec änd its relations, by Prof. Campbell, Montreal.
The Celtic Topograply of Wales and the Tslo of Man, by Dr. McNish, Cornwall, Ont.
16, 1884.-The Skeleton of the Cat-fish, by J. P. McMurrich, M.A.
23, 1884.-Canadian Local Climates, by J. Gordon Mowat.
March 1, 1884.-Some Factors in the Malaria Problem, by P. H. Bryce, M.A., M.D.
8, 1884.-Old English Spelling and Pronunciation, by W. IIouston, M.A.
15, 1884.-Photography and the Chemical Action of Light, by J. P. Hall, B.A.
22, 1884.-The Radiometer, by W. J. Loudon, B.A.
29, 1884.-The Upper Niagara River, by Henry Brock.
April 5, 1884.-The Myology of the Cat-fish, by J. P. McMurrich, M.A. The Alimentary System of the Cat-fish, by A. B. MeCaltum, B.A. The Vascular System and Glands of the Cat-fish, by T. McKenzie, B.A.
12, 1884.-Compulsory Education in Crime, by Dr. E. A. Meredith.
19, 1884.-An Entomological Trip in the Rockies, by Capt. Gamble Gedles, A.D.C.
26, 1884. -The Art of Etching, by H. S. Howland, jun.
Report submitted, through Mr. C. Carpmael, by
R. W. Young, Assistunt-Secretary.

Oral statements were also made on behalf of the following Societies:-
V. From the Historical Society of Montreal, through Abbe Veareau.
VI. From the Historical and Scientific Society of Manitoba, through Phofessor Bryce.
VII. From the Institut Canadien de Québec, through Abbe Brecilest.
VIII. From the Natural History Society of Montreal, (in the absence of Mr. W. F. Ferrier), through Dr. T. Sterry Hent.

Tife American Association.

Dr. Persifor Frazer, delegate from the American Association for the Advancement of Science, then presented his credentials and addressed the meeting, on the invitation of the President :-

Mr. President and Gentlemen of the Royal Society :-I am fully sensible of the double honour which I enjoy at this moment,-that of appearing for the representative scientific body of my country; and that of being receired by this distinguished body and invited to address it. It is not my purpose, however, to occupy any part of your valuable tine with purely subjective feelings, for, to my understanding, the occasion of my presence has a vastly deeper significance than any that can be attached to the actor in it. The year 1884 is destined to be memorable in the annals of science. The scientific representatives of that mighty nation which wo of the United States, equally with you of Canada, are proud to call the Mother Country, after many attempts, have decided to consecrate the metropolis of their imperial Dominion of the West as the seat of one of their annual gatherings. Your own influential national society has held out its hand to its democratic sister across the southern border, the American Association for the Advancement of Science, inviting her to your annual conference of to-day, and she cordially accepts your courteous invitation and spoaks her
words of greeting throngh me, whom she charges moreover to emphasize the furmal invitation sent by her to you, the hosts, and to the British Association for the Advancement of Science, your guests, to attend the Philadelphia neeting in Soptember:

What ean be more fitting than that scientific men, who know no creed but love of truth, and no boundaries but those which limit our finite efforts to attain it, should set the example to the world of these brotherly ammities? What portion of the globe can be more fitting to lead in these courtesies than Canada, distinguished for her sturdy efforts in the van of peaceful progress? And to what people could Canala more suitably offer this graceful invitation than to the United States, her neighbour nud friend? Cauada and the U'nited States are bound together by many and strong bonds. They have hal the satme widernesses to reclaim; the same problems of the new western life to solve. Our bxorders separate no hostile people; but Canada's glories are ours, and ours are hers. Indeed, some of the names which shed the greatest lustre on science, literature and art are those of Canadians. Is it mit moticeable that the dietionary of the people of the United States, so fecund in expanding itself to meet the want-orea-ioney lyew conditions of things, has but one adjective to specify the nationality of our own illustrions men, one which will apply equally to those of Canada,-American. The Amerian Arowiation fir the Advancement of Science has twice mado its sojourn in Canada, and ham twice adjommen muler a deap deht of gratitude for the hospitality of the Canadians. The first time was in 1s:50, what it was weleomed by General Sir William Kyre, and the second in 1882, when your swetets, having just aprong into leing, armed cap-ùpic-the Minerva of the great northean thminin-welomed us with agen arms to your metropolis. In this connection, it is not unintercoting tume that Montreal is one of the only fon cities of the continent at which the American Amaiation hat held fwo of its thirty-there sessions.

It carno-f! invites som to give it the opportunity of returning your civilities at the next and greatent if it-mentinge. The formal invitation to this effect has been already laid before you, and I an here to amere gou that it is in ne comentional or perfunctory spirit that it has been given. The Inms of anime whish thin year will be wahlished between the scientifie men of Canada, Great Britain and the ["nited Stato will nwe monemiderable part of their dumblity to your acceptance and to the promer of mpmentative of the lasal society in Philalelphian next September ; and these bonds are lut the tion warp in the wet which will one day unite scientitic men of all nations in an international, on, rather, a matimal, wquization, of which even now the whispered aspirations of some of the greatel (if threr who will comatitute it lead us to form a vague pieture. Indeed, whatever success in the unitimation of human interents diphotay may achere, it is certain that seience will precede it liy many years in thin direction. May that time som eome.
 quelyuce moth. lifo que j'aic la crainte que ma connaissance imparfaite de votre langue no trahisse mon bon vondoir, et ne m'empeche de vons traduire fidelement ma penséo. Tout a l'heure, au nom do J'Anociation amóricaine pour J'asaneement de la science, j'exprimais l'espoir que la Société Royale du t'anada assisterait à notre conférence du 4 septembre prochain, et en rehausserait l'élat. MM. les inembres de la section françise sont tout naturellement compris dans cette invitation, que jo tions pourtant aleur renouveler dans leur belle langue, afin de micux établir que leurs frères méridionaux, de l'autre cité de la barriere nutionale, pensent à eux d'une faron tonte spéciale ; car rien ne serait plua injuste, Messiears, que de eroire que nous ayons pa vous oublicr, nous qui avons avec vous tant de liens auciens et tant de grands souvenits qui nous sont à tous également précieux.

A me séance aunuelle de la Société listorique de la Pennsylvanie, a la quelle j’ai assisté il y a deux semaines, j’avais le plaisir d'entendre un mémoire des plus intéressants sur le chovalier do Benujen qui s'est si noblement distingue, et qui a perdu la vie au moment de la victoire, preds de la ville que l'on nomme aujourd'hui Pittsburg.

Les incidents de la vio de ce héros ont rivement impressionné l'auditoire, qui a exprimé lo vœn qu'une plns large place fut dorénnvant réservée, dans les comptes rendus de notre société ainsi que
dans les recueils consacrés al l'histoire de notre civilisation, ì cette époque spéciale où l'influence franço-canadienne eut une action si grande sur notre destinée.

Il ne me reste plus qu'il vous remercior pour l'accueil bicuveillant que vous m'avez fait, et aussi pour l'attention que rous avez bien voulu me témoigner. Slle vous a permis, j'en suis sûr, malgré les defauts du mon discours, de saisir facilement dans toute leur étendue, dans touto leur sincérité, les sentinents d'amitié et de sympathic dont l'Associatiou américaine m'avait chargé d'être l'interprète aupre's de vous.

J'achève, maintenant, de remplir le devoir que mes compatriotes m'ont imposé en vous rappelant leur cordiale invitation, et en vous donnant rendez-vous, messicurs les membres français, au 4 septernbre prochain, a Philadelphic.

Attention having been called to the fact that Dr. Hart Merrian, Secretary of the Ormithologistss Union of Now York, was present, he was formally invited to take a part in the proceedings of the Socicty. He accepted the invitation with a few appropriate remarks.

A draft of an Address to His Excellency the Governor-General was then submitted to the Society by the President, and formally adopted. The meeting then adjourned until 3 o'clock in the afternoon of that day.

SESSION II. (Afternoon Sitting.)

Address of Council to the Governor-General.
At 3 o'clock, all the members of the Society having assembled, the President presented the following Address:-
To His Excellency the Most Honourable Henry Keith Petty Fitzmaurice, Marquis of Lansdowne, GovernorGeneral of Canada:
May it please Your Excellency:-We the President, Council and members of the Royal Society of Canada, beg leave to avail ourselves of this opportunity afforded by our first meeting since Your Excellency assumed the duties entrusted to you by Her Most Gracious Majesty the Queen, as GovernorGeneral of the Dominion, very respectfully to express to you the high gratification with which we welcome the accession to the vice-regal office of one already trained by active participation in public life, and by the experience derived from important administrative duties in the mother country, for the responsible functions which now devolve on you as the representative of our beloved Severcign and the chief Magistrate of the Dominion of Canada.

We beg leave with prefound respect to tender to you and to Lady Lansdowne our cordial greetings, and the assurance of our earnest wishes that your abode in Canada may be no less agreeable to Your Excellency and to Lady Lansdowne than conducive to the best interests of the Dominion and of the Empire at large.

The Royal Society of Canada owes its origin to the enlightened zeal of Your Excellency's predecessor, the most noble the Marquis of Lorne, who with a view of the more effectually promoting the progress of letters and science in the Dominion, elicited the cooperation of representatives of the various departmonts embraced in its plan of organization, from the different provinces, to take the initiative in an associated body, on which the Parliament of Canada conferred corporate powers, and Her Most Gracious Majesty was pleased to bestow its distinctive title.

During the first two sessions of the Royal Society of Canada, it enjoyed the special aid and encouragement of His Excellency the Marquis of Lorne, its founder, and owed not a little of its early succoss to his courteous and enlightened cooperation; and we beg now very respectfully to pray that
the same countenance and favour may be extended to us by Your Excellency, and that you will bo graciously plensed to accept the oflce of Henorary President of the Royal Society of Canada.

P. J. O. Cinauveau, President.
Join Geo. Bourinot, Secretary.

Tue Governor-General's Reply.

His Fixcellency replid as follows:-

Mr. President, Dr. Sterry Hunt, Ladies and Gentlemen:-My presence in this room is, I hope, sufficient evidence that I do not intend to offer an obstinate resistance to the invitation contained in the Address, with which you have been good enough to present me. In thanking you for it, I am afiaid. I can do little more than acknowledge the compliment which you have paid me in asking me to assume an ottice which, though honorary; certainly confers some reflected distinction upon the holder 1 have always felt, that one of the privileges which renders the Governor-General's office most attractive, is to the found in the oplomtunities which he enjoys of becoming acquaintod with those persons in every mhere and jrofession of life within the Dominion, whose acquaintance is best worth making. If that fromsition in true generally, it is one from which I am certainly notdisposed to recede when I find the member of the lingal Society realy, not only to welcome the Governor-General to the country, lint alse to give him an oflicial status in connection with the distinguished body to which thoy belong.

But, Emelemen, I do not firget that I owe the honour which you propose to confer upon me to womething bewides a denise on your part to exteml agrecably the circle of the Governor-General's wequantance. His prosence at your meetings is not without its significance. When you applied for and chainevl fermission to assume the title of "Royall," when you determined that the Quecn's repremontative ambla be your Honorary President, you were giving expression to a feeling that the work in which you were engagel was one which deserved recognition, not only as of national moment to the Ihominion, hut anome having an intereat for the great Empire of which the Dominion forms a part. If, Air. it is to be our conception of that Emipire that, while the mother country shall exert a moral influence which may act uron her ditferent coloniew, eath of these as it advances in culture and development and in intellectual power, shall, in its turn, exert an influence which shall react upon her, surely it is not a very tar-titched atatement osy that the mother country has in interest in what you are doing to promote learning and literature in this great Camalian community. And, after all, of the many points of contact betwem the Ohf Word and the New, none is closer than that at which the Literature and the diene of the two merge imperceptibly into each other. This is true in regard to the past, and not less true in regarl to the present.

If we look hack at the history of Camada, we see that the events which led to the colonization of New Fhyland and New France form a part of the history of Old England and Old France The movements, partly religious and partly politieal, which lad to the earliest settlement on the banks of the St. Lawrence and on the Athanticescaboard of Anerica; the fierce struggles of race which for generation brought sutfering and bloorshad to these shores, are unintelligible unless we read them ing the light of contemporancons events in Europe. In the domain of Science, the scientific men of the New World are working upon the lines laid down by their predecessors in the Old World, and are accumulating knowlodge which will be appropriated and utilized by their successors in toth hemispheres. In Literature the dividing line is almost imperceptible. The great classics of the Old Workd are ours by right of inheritance, and we have no dearer wish on behalf of our Canalian writers than that they should be known and nppreciated on the other side of the Athutic. 1 feel, therefore, as if the presence here of one who is, as it were, an official link between the Old and the New World was the outwarl sign of the intimate union which must always subsist between the Science and Literature of the Old World and the Science and Literature of the New.

Having to this extent justified, if it lo a justificution, my acceptance of the Honorary Presidency of the Society, I an bound to confess that I have little hope of being able to take a part in its proceed-
dings. I can, alas! lay no claim to a position amongst the distinguished confraternity whom I am addressing. My contributions to Literature have consisted for the most part in the preparation of sundry parliamentary volumes, the colour of whose binding has, I have no doubt, been reflected upon the faces of the unfortunate persons who have had occasion to read them. In regard to Scienco, I have never even performed the operation which Pope decribes as "holding the eel of science by the tail." It is therefore clear that I eannot aspire even to tho lowliest of fontstools in this loarned conclave. And porhaps it is as well that this should be so, for, to speak quite frankly, I should say that the less you had to do with official interference, however well intentioned, in your affairs, the botter for you. The form of govermment in the world of letters, wo all know, is ropublican, and that litorary community will prosper most which depends least upon external guidance and official recognition. I say this with a full knowledge of the obligations under which this Socioty lies to my prodecossor, Lord Lorne, to whowe oflorts it is probably duc that the Society camo into existonco whon it did, and who took so distinguished a part in its first organization. He did so, I think, because it was inevitable that some one should incur responsibility for the first step in the movement, which led to the formation of the Society, and because he was not the man to shirk that responsibility when it involvel a good deal of invilious work and exposure to criticism. I think, however, I am right in saying that this step once taken, Lord Lorne felt as fully as I do how necessary it is that your independence should be absolute and complete.

Well, sir, if this is true, perhaps I shall be told that we should push our thoories a little further. If it is the case that a Literary Society is likely to prosper in proportion as it is independent of official patronage and interference, may wo not say that Literature itself will thrive best in ant atmophere of independence, and that any attempt to impose upon her such an organization as this will do her more harm than good. I can conceive such an argument being held. I can even conceive that a ferson using it should go on to say that the case of Literature is widely different from the case of the Fine Artw, becaluse, while the art student of the New World is oxcluded from the treasures and teachings of the Ofl, the literary student of the New World has, in these days of cheap books and publie librarics, access to the best sources of information, and the noblest examples which the Old Wortd can supply. Well, wir, all this is perfectly true. It is perfectly truo that in the age in which we live, thanks to these facilities, thanks to the avenues opened by the public press, to the volumes of our periodical literature, and to the intellectual activity of our public life, the influence of such a Society as yours is absolutely incabable of keeping a man of good literary abilities in the background, or of foreing an indifferent performer to the front. To this extent it is perfectly true that freedom from official tranmels, a fair fied and no favour; should be tho password of every friend of Literature. But, sir, is this contention inconsistent with the belief, that there is good and useful work to be done by a Society such as yours? Nothing could, I think, be further from the trath. Your Society has not been formed for the purpose of ereating a literary monopoly, or erecting a close literary corporation, or overriding the efforts of individuals or "f societies. I have read with pleasure the statements which have, at different times, been laid before you of the objects which the Royal Society desires to aehieve. I certainly do not gather from those statements that is your ambition to put the Literature and tho Scionce of Canada into leading strings, or to deprive them of the natural vigour and spontancity of their growth.

What then are tho objects of the Society? May we not say, in the first place, that as man is naturally social and gregarious in his habits, it would be a little hard if tho friends of Literature and Science were to be the only section of society without an organization of their own. I think, too, we might say that the need of such an organization, such a rallying point, such a common ground, upon which the representatives of the Literature and the Science of the Dominion may mect together. is specially felt in a nation, where the population is as widely scattered, and the centres of intellectual activity are as far apart, as they are with us, and where every effort to give cohesion to the different portions of the nation deserves encouragement and support. Nor will the effects of its existence be less valuable becanse it includes representatives of the Literature of both the great races, which dwell side by side in this country, and each of which brings to the common fund a contribution
haring a distinetive charactor and importance of its own. That, gentlemen, is, I apprehend, one justifieation of the existence of the Society. The publication of the handsome volume of Transactions, of which you have been good enough to prosent mo with a very magnificent copy, aflords another.

Here, aguin, we may be asked why cannot you loave those literary productions to sink or swim accorling to their own desorts, instead of printing them as you do at the pullic oxpense? Tho answor to this question is, I think, that there must always be some work which, either because it anticipates popular taste, or because it is too recondite for the goneral romier, will be slow to obtain publicity through the ordinary channels. Such work will be conveniently and appropriately brought before the publio by the preriodienl issue of your Transactions. I confoss for myself, I am not sorry that the solid meal is relieved here and there by a few piccos, which appeal to the reader rather by the classical grace of their construction, and which are eapable of being more easily assimilated by an ordinary intellisence.

There is one other duty which such a society as this is admirably qualified to porform. I mem that of, upon occasion, preaking and acting with authority on behalf of Canudian Literaturo and serience. It action in this respect may take more than one dircetion. It may take that of corrempmande with other Asociations, either luabl Societies of which you have several excellent ones in l'analn, or the grat and learnel Socenties of limope and this continent, with many of which you have. I: an ghat to knew, estahli-hell relations. There is ono such Socicty which is probably in all our thonghte an the preent time. 1 mean that great English Association which later in the year will pay u-a witit whe great delight on Camalian teritory. There is, however, another public body with whith atan conecise that yon may, umon occasion, confer with great adrantage. That publio Inmly in the tinernmon of the Dominion. I can eonceive numerons eases in which it might be of the gremest aminatue ont inly to Litorature atml science, but to the Government itself that there
 fomemanationting natiomal culture might, uponocasion, be elicited. I will give you a single illustra. tion of my mosuing. Whe cate ocems to me in which such a boly as yours might operate most asefully in the manare in which I have suggesen. I refer to the ease of the Mistorical Records of this comery. Anvone who ha had to do with valuable mamseripts knows the difficulty of on the one hamd, rembering thene avalable for the legitimate purpeses of the historian, and on the other of
 fion which was controted with the task of investigating and reporting upon the great mass of valuable materials, which are scattered about the country, and of which the existence and value are often unsurpected ly their owners. I do not see why your Society should not, to some extent, take the place of our lintorical Manueript Commissions in regard to the historical records which may exist here.

Theme are all legitimate openings for your activity, and justifications of your corporate existence. In each of theso directions you should be able, without elaiming a monopoly, without discouragement of privite efforts, to do goorl national work in the broadest sense of the word, - work which because it will be the property of the whole Dominion will help to bind its parts more firmly together and to raise your country, not only in the estimation of its own people, but in that of the whole civilized world.

I have now only to thank you for the honour you have conferved upon me, and for the kindly terms in which you have welcomed me to the Dominion, and last but not least, for the courteous reference which your address contains to Lady Lansdowne, who, if she had known that the fair sex was as to be so largely represented in this room, would, I ave sure, have come here with mo.

Addifsses by the Prasident and Vice-President.

His Excellency was followed by the Presidont, the Hon. P.J. O. Chauveau, who spoko as follows:
Milord, Mesdames et Messieurs, - Dans notro dornière réunion, nous avons do faire nos adieux au fondateur do cotto Société, qui nous avait informé de son prochain départ. Nous avons tâché d'oxprimor notre reconnaissance au marquis do Lorno pour tout ce qu'il a fait pour établir cette institution ot on assurer la prosperite. Son Excellence a bien voulu frire a l'adresse quo nous lui avons présentéo la plus graciouse réponse.

Depuis ce temps, Son Excellenco et son illustre compagne, la princesse Louise, qui elle aussi avait donné à cette Société des marques du plus vif intérêt, ont quitté le Canada, regrettés do toute la population, ot laissant ici de vifs et profonds sentiments d'estime et do reconnaissance.

Lour résidence an milieu de nous a été surtont remarquable par le patronage éclairé qu'ils ont donné on touto occasion aux sciences, aux lottres et aux arts. La fondation de cette Sociéte et colle de l'Académio des beaux-arts on sont des preuves bien évidentes, ot qui, espérons-le, nbsisteront longtemps.

En acceptant aujourd'hui le titre de président honoraire do notre Société, of en faisant à l'adresse que nous venons de lui présenter la bienveillante réponse que nous venous d'entendre, Son Fixcellence lord Lansdowne a fait preuve de ses dispositions à favoriser los travaux et les rechorehes littéraires et sciontifiquos, et il nous a foumi do nouvoaux motifs d'encouragement daus l'accomplissement do la tâche que nous avons entreprise.

Cette tâche, Messieurs, est agréable en co qu'ollo a rapport al dos objets qui nous sont chors, ot surtout en ee qu'il ost permis à chacun do nous d'y suivre son inclination naturelle et de choisir lo genre de travail pour lequel il se connait le plus d'aptitude; mais, d'un antro côté, liendes circonstances purtieulieres it notre pays, ajoutéos aux obstaclos que l'on rencontre partout ailleurs, rendent notio miswion bien lifficile.

Te no forai pas à mos collegnes l'injure de eroire du'ils pouraient considérer lo titre de membro de la Société Royale comme purement honorifique, comme une récompense pour des travaux paskés, enfin commo une retraite honorable; mais les devoirs que ce titre impose sont pour quelques-mis d'entre nous d'un accomplissemont assez onéreux.

L'éloignement, les voyages, des occupations diverses, et, pour lo plus grand nomlne, l'absence presque complete do loisirs, sont antant do causes qui retarderont peut-être longtomps enore los progrès de notre joune Société.

Nos doux promières sessions annuolles ont cependant donné do bons résultats, et fourni une ample moisson de travaux utiles. La publication de ces travaux, ainsi que des comptes rondus de nos délibérations, n'a pu so faire que tout récemment. Le tout forme un volume de prés desept conts pagres, orné de gravures et do planches. Une grande partie des seize cents exemplaires qui ont été imprimés so distribue en ce moment aux sociétés scientifiques et littéraires et aux bibliothéques publiques, dans lo pays et a l'étrangor.

Les essais qui ont été lus ot discutés dans les sections n'ont pas tous été imprimés. Le cloix de ceux qui devront êtro publiés a été laissé, d'apreds nos règlements, au conseil do chaque section. En général l'originalité et l'utilité de ces mémoires ont été les motifs déterminants du choix. Tont en regrettant que plusieurs travaux qui font honneur a lours auteurs ne se trouvent point dans notre volume, les membres chargés de la tâche bien délicate d'apprécier ainsi los œuvres do leurs collègnes ont du cé.er à la nécessité de ne pas dépasser certaines limites quant aux frais d'impression. D'autres mémoires n'ont pas été publiés, uniquement parcequ'ils n'ont pas été envoyés à temps au comité chargé de surveiller la publication du volume.

Il ne m'appartient do fairo ni l'éloge ni la critique de ces travanx. Je me bornerai ì dire que les essais qui ont été lus devant les deux premidres scetions, traitant comme ils le font de sujets qui so rapportent a l'histoire primitive, a la découverte et a la colonisation de ce pays, et aux débuts de

Pro. 1884. c.
notre jeune litterature, forment une belle et remarquable introduction aux travaux qui devront suivre.
Il mosuffira nussi d’ajouter que les mémoires des deux sections seientifiques, coux surtont qui ont trait a la géologie ot à l'histoire naturelle, sont d'une grande utilité publique, et formont dejà une collection digne d'âre appréciée par tous coux qui s'intéressent au développenont matériel do notro continent.

Mais il serait fâclenx que l'on s'imaginât que la Société n'a pas d'autre objet, d’autre but que la lecture of la publication do ces ménoires. D'abord chacun d'eux ost, au sein do la section, lo sujet do discussions tonjours interessantes of sousent tres importantos.

De plus la Suciété s'ocecupo do tout ce qui a rapport au progrès des seienees et des lottres, et déja elle a pris l'initiative sur phsicurs paints importants.

1:lle s'at octura da fairo represonter notro pays an congrès intornational tom pour l'établissement dun mórilien prou le temps moyon, ainsi qu'i l'exposition internationale des pêcheries à Lamitro. Fille a recommade la comstrotion, dams la capitale, d'un edifice destine a reeevoir nos arehives hi-toriquex, al d'un man archéogique, éthologique et geologique. La question do la pro-

 des tavaux -ur les -

 si-tille.

 lavenir.

La legon devait étre dautant phas protitable quiune très grande partio do nos collections provemaient de dons des gouvernements érungers, et surtout du gouvernement français, qui s'est toujours montré d'une grantle générosité à notre égari. Pouvons-nous espérer que l'on continnera ì réparer sans ceese les suitey de notre impréroyance ?

Le cout plus grand d'edifices tout a fait incombustibles serait amplement compensé par le profit qui en résulterait de toutes manières. A ce point de vue n'est-il point tout id fait regrettable que la bello Dibliotheque du parlement a Ottawa ne soit pas aussi completement a l'abri du feu qu'on l'avnit esperé d'abord, et que rien ne paraisse deroir étre fait pour conserver la nouvelle bibliothèque qne l'on commenee a furmer dans la province de Quétree?

Ia plus aneienne maison d'éducation du pays a donné récemment un bon exemplo en faisant de son nouveau grand séminaire do théolugio un élifice complètement incombustible ; et l'on doit s'estimer
heureux qu'une partie au moins do la bibliothèquo do l'univorsité Laval, la plus précieuse peutêtro qu'il y ait dans le pays, ait pu y trouver placo.

Quant aux manuscrits ot aux anciennes archives, il reste encore benucoup à faire pour les classer, los mettre al l'abri de l'humidité d'un côté, a l'abri du fen de l'autro.

C'est un sujet dont notre Société s'est déjà occupée, et il suflit d'en refférer aux travaux do M. LeMoine et ì la proposition du Dr Todd. La perte dans ce cas-lid est encore plus irréparable que celle des livies mêne les plus précieux.

La question des droits d'auteurs a occupé les législatures des pays étrangers à plusieurs reprises, et la nôtre a fait plusieurs dispositions a co sujet. On a tenu une conférence internationale en Europe pour la discuter; mais tous los efforts qui ont été faits jusqu'ici pour concilier les justes droits dos auteurs avoc les prétentions que l'on fait valoir nu nom de la société n'ont pas encore, il me semble, rondu pleine justice aux familles de ceux qui suivent une carrière géneralennent ingrate. Dans ce pays où los difficultés qui entourent le savant et le littérateur sont plus grandes qu'ailleurs, ses droits et coux de sa famille dans le fruit de ses labeurs sont encore moins reconnus et moins protégés que dans plusieurs autres contrées.

Je ne me dissimule point tout ce que l'on peut opposer an mot charmant d'un spirituel homme do lettres fiançais: "Jo demande, disait-il, quo l'on décrète quo la propriété littér:ire est une propriété." mais, d'un autre côté, si l'on ne pout souffrir que les droits de la société soient entierement méconnus, il semble quo dans un pays comme celui-ci, la proprété littéraire devait durer dans tons les cas toute la vie de l'auteur, et pendant un certain nombre d'années aprés sal mort au profit de ses héritiers ou de ceux à qui il aurait pu la vendre.

Tandis que des hommes qui ont amassé des fortunes dans des entreprisos lucratives et quelquefois pou honorables peuvent les transmetre intactes à leurs enfints, est-il juste que cous qui ont travaille pendant toute leur vie pour la plus grande gloire de leur pays ne puissent laisser comme un modeste patrimoine à lour famillo la propriété de leurs auvres? Et suffit-il de dire que la bonne renommée, que la gloire littéraire d'un père on d'un aïul sont une protection et une arréole pour leur postérité? Protection qui ne protège pas toujours contre la faim, auréle qui brille tristement dans le vide que fait la misèrol

Pour ce qui est d'un projet qui nous a déjà occupés, celui de fonder des bonrses et des concours, il est regrettable quo nous n'ayons pour le réaliser aucune ressource pécuniaire.

La somme que le parlement fédéral a généreusement votée pour notre Société, vote qui a étéréitéré dans la session qui vient de finir, doit être, d'après les termes dont on s'est servi, employée uniquement à la publication de nos Mémoires. Espérons que plus tard le gouvernement consentira a voter une somme additionnelle pour les autres fins de notre institution, on que des particuliers riches doteront la Société Royale, comme l'ont été d'autres sociétés du même genre en Europe et en Amérique, et qu'enfin lo Canada aura ses Montyon et ses Bridgewater, comme il a ell ses Laval, ses MeGill, ses Masson et ses Girounrd.

Nous avons adressé, comme nous l'avions fait l'aunée dernière, des invitations à plusieurs sociétés sarantes do l'étranger, et à des associations littéraires et scientifiques de notre pays, dont le mérite nous était connue et que nous nous sommes affiliées.

Le rapport du Conseil constato que plusicurs dos sociétés éirangères so sont excusées en termes bien sympathiques; l'Association française vient de nous transmettro un télegramme bienveillant, et si l'Institut de France ne nous a pas fait encore de réponse officielle, je puis comprendre par une lettre très gracienso do M. Marmior que los mêmes dispositions existaient chez les membres de l'Académio et chez les ministres quo l'annéo dernière, mais qu'il n'a pas pu encore cetto fois, malgré son grand désir de revoir le Canada, se charger de la mission qu'on lui offrait aupres do nous. Il est malheureux qu'arec tous les liens qui existent entre co pays et son ancienno mère patrie, des obstacles incontrôlables s'opposent a la représentation de l'Institut de France dans une de nos réunions. Je ne doute pas que tons les membres de la Société ne forment des vœux pour qu'il en soit autrement l'année prochaine.

Du reste la grande réunion scientifique qui doit avoir lien cet automne a Montiéal, rendant pent prolable le présence dans le moment netuel d'un grand nounbre de délégués des sociétés étrangères, nos invitations ont du etre plus restreintes.

La plupart des associntions scientitiques ou littéraires de notre pays sont représentées ici.
C'est un devoir bien ngréable pour moi que de souhaiter la bienvenue al leurs délégués, et de les remercier de leur précicux concours. J'ajouterai cependant qu'il nous est pénible d'apprendre que celles qui appartiennent ì la provinee de Québee vont être privées des subventions ordinaires. Nul doute que des raisons impéricuses d'économie n'aient foreé le gouvernement local d'en venir a cette détermination ; mais il nous sera bien permis alexprimer le vell que la bonne ceuve interrompue par nécesite suit reprise le plus promptement possible.
la montant total de ces sulventions était bien modique, et les mémoires et annuaires publiés par quelynemes de res socictick, leurs bibliotheques, leurs musées, leurs conférences sont d'une bien grande valeur. ("ent deja heaucoup, daus un jeme pays comme le nôtre, que des amis des seiences et do buth - consarrent unc partic de leur temps à mantenir des institutions de ce genre; il est difficilo

1. impurtane do ethorts que font cess sociétés pour populariser les études saines et sérieuses, était

 dajuntedujumbe.
 ture. Sc:
 hildinhoqu du parkmon, il s'ítait, pour hien dire, identitié avee sa charge; la partie anglaise de whte batle condertion hasail puint de secrets pour lui.

 visiblument-n"u- avons an souflir et nous soutlions surtont en ee moment de l'abence de celui que lon preut connidérer comme te seeond fonlateur de la Société, notse premier président, M, le docteur Dawson.

Hearemement quil reviendra hientôt, trainaut avee lui tout un cortige de savants de toutes nations et de toutes spécialités, et qu'il goûtera au sein du congress scientifique, dont plus que personne il a provequé et atesuré la réunion ì Montréal, un bien grand bonheur, uno sorto de couronnement a taute une vie de lalreurs at de suces.

Quant a Son Excellence, le marquis de Lorne, s'il the nous est point permis d'espérer le revoir parmi nolas, il riest point nom plus tout a fait absent. Il est avee nous par in pensée, par une anxieuse sympathie dont il nous dome constamment des preuves. La plus graciense et la plus touchante est pent-citre dans la dédicace d'un livere charmant oü tontes les parties du Canada, tontes les langues qui y sont parlés, sont représentées, livre où la poésio le dispute a la prose, où la patrie de l'auteur par un sentiment bien délient cède le pas a la nôtre, livre enfin qu'il enroie, dit-il, aux membres de la Société Royale comme une marque de son respect et de son affection.

J'ai eu l'honneur do lire aux applaudissements d'un auditoire québeequois les premieres poésies quỉ figurent en thete de ce volume, et qui ont pour titre: l'une Canada, l'autre Quebec. C'était ih la
séance publique que la première section de cotto société a tonue réeeminent dans la salle des promotions de l'université Laval. Le nom de l'illustre fondateur de cetto grande institution se trouve ausssi dans ces vors :

Where flows the Clarles past wharf and dock, And learning from Laval looks down, And quiet convents grace the town.

La premiero section a ainsi inauguré, sons la présidence de M. Marehand, un mouvement qui, je l'espere, se continuera. Le succels qu'n eu cette réunion à Québec engagera sans doute les autres sections al se réunir do temps à autres aux endroits les plus commodes. Elles étaient du reste très bien représentées à Québee, la seconde par M. Stewart, la troisième par notre digne vice-préident, M. Hunt, et par M. l'abbé Hamel, la quatrième par M. l'abbé Laflamme et par M. Saint-Cyr.

Quelques-uns des essais of dos poésies qui ont été lus dans cette circonstance seront sans donte transinis pour être publiés dans le prochain volume do nos Mémoires, ce qui me dispernse d'en dire phus long sur cet heureux événement.

Jo no saurais toutefois trop insister sur tout ce qui pent donner de la permanence, de la continuité à nos opreations. Lo grand danger-et quelle est l'institution si prospère du'elle soit qui n'a pas éprouvé dos dangers à ses débuts - le grand danger pour notre Société, c'est le manque de cohésion.

Nous nous voyons eneore trop rarement et pour trop peu de temps. Deux ou trois jous de sénces pour le parlement confédéré des lettres, de l'histoire et de toutes les sciences ; c'est bien jeu de chove. Alors que chaque section - j'allais dire chaque parlement local - siege a son tour aussi sonvent qu'elle lo pourra; que chacune se constitue une petite capitale, ou bien, si on le préfere, que chacune aille de ville en ville faire connâtre notre œuvre.

Do cotte manière, l'autonomie des sections se maintiendra ; elles auront une vie propre; elles rayonneront chacune dans sa sphère; elles attireront à elles, chacune d'après sa nature et ses qualités propres, tout ce qui lui sera sympathique; et cela sans nuire en aucune manière aux travaux d'ensemble, sans porter ombrage aux grandes assises qui se tiendront ici plus rarement.

Dans ces sessions particulieres, bien des choses que nous n'avons point le temps de faire ou de discuter dans nos réunions générales, pourront être fiites ou discutées. En attendant, par exemple, que nous établissions des concours, chaque section pourra examiner les ourrages que leurs autenrs volldront bien lui adresser, et faire connaître dans des rapports transmis à la Société le mérite de chacun d'eux. JDéjà, a Québec, des essais d'un jeune écrivain eanadien ont êté lus et renvoyés à une commission, qui a décidé d'en faire une mention honorable.

11 importe surtout do faire connaître à la jeunesse canadienne que notre Societé ne lui ferme point ses portes, qu'elles lui sont au contraire ouvertes en tout temps et à tous égards. Il suffit qu'un membre de la Société se charge de la lecture d'un essai pour qu'il soit admis dans nos Mémoirew s'il en est jugé digne, sur le même pied que ceux des membres de la Société. Ceci a déja été fitit dans les seetions des sciences, et des hommes distingués ont bien voulu nous envoyer leurs travaux.

Les sections scientifiques ne renforment qu'un petit nombre de membres de langue frauçaise. Ils se sont déjà montrés disposés à faire connaître les recherches des travailleurs qui préferent éerire daus cette langue. Ce n'est pas ici le lieu d'insister sur l'importance qu'il y a pour cette partio de la population à s'affirmer dans les sciences comme elle l'a fait dans les lettres; mais il est bou d'attirer l'attention de la jeunesse franco-canadienne sur les avantages qui lui sont offerts, pour se frayer un ehemin dans eette direction relativement nouvelie.

Il me resterait beaucoup à dire sur la tîche qui nous cst dévolue, mais j'ai peut-être déjà trop long. temps abusé de votre indulgence. Cette tâche est importante non seulement au point de vue intellectuel, mais encore au point de vue moral et religieux.

L'Acadénic française, en choisissant pour sujet du prochain concours de poésie: Sursum corda,
a indiqué d'un seul trait les dangers que court la Société par l'abaissement des caracteres, par la soif de l'or et de toates les jouissances qu'il procure.

Les traraux intellectuels sont un dos meilleurs dérivatifs contre cos tendancos, et c'est pour cola que la religion les farorise et que plusicurs do ses ministres n'ont point dédaigne de faire partio de notre Société.

Je ne saurais terminer sans dire combion nous devons de reconuaissance a Sa Majesté la reine pour le titre qu'elle a bien voulu nous conférer, au gouvornement et au parloment fédéral pour l'octroi de notre charte et jrur les subventions qui nous ont été donnés, a la presse en général et aux amis des sciences et des lottres gui ont favorise notre entreprise.

A won-, Milorl, nons devens aussi bien des reme:ciements. Votre bienveillanto réponse a notre alresse a ćtrójutement applandie. Je risquerai cependant une critique. Porsonno n'approuvera ce pacange ou totre excessive moxlestic semble répudier tous les titres que vous avez à prendre une part netive et influente dans la direction de nos tamans. Dans tous les cas, jose espérer que le descendant dune do- fommes les phas spirituclles du conmencement de co siecle, et dont le nom ost célebre dans Ia litterature fiancaise, voudra bien se frouser che\% lui dans notre premidre section.

F:ntin, tout en mexexant de la maniere très insuffisante dont jai rempli jes devoirs de macharge, makgé he plus grand désir dectre utile, je dois recomaître tout l'aide quo j'ni reģu du Conseil et des ofliofers de la suctinte et en partioulier de notre vice président, du secrétare honoraire of du trésorier. do naij pan a faire léluge du Dr Hunt, qui jouit d'une haute réputation dans lo mondo scientifique ; mai- jo puin litw quil a montre un trex grand zate, et que comme président du comité des impressions il ar rembur gramio -omico.

It me renti a aprimer ferpuir que la lame lamonie, lo bon vouloir, l'assiduité, l'osprit de travail qui unt sigualí len debuts de notre jeune Société, continueront is se manifester de plus en plus et en anonterant lavenir. Si mou- jugeon de cet avenir par celui de notre bean et grand pays, si nous lo
 *arrperne qui viennont chaque jour laceroitre, no successeurs n'auront rien à eraindre do la compa-
 ghore des antres nations.

The falluwing preerla was then made ly the Vice-President, Da. T. Sterry Hunt :-

May it flease Your Fixcellency,-The present occasion, which is the second anniversary of the foumling of this Royal society of t'maka, will he memorable for us by your acceptance of the position of Honmary l'resdent, in phee of its distingnishet founder, the Marquis of Lorne. Your predecessor in the high charge of liovernor of this Doninion, always alive to its best interoste, sought to mark his administration by the cucouragement of whatever might conduce to intellectual advancement, and has made his name honouret among us ly services rendered, alike to the Fine Arts, to Literature and to Science. Foremost among these goot works the historian will, we believe, record that of the concoption ame the organization of this Society, which he hopeal to constitute on such a basis that it might aerve as a bond of union, and a means of friendly cooperation, among all those engaged in the cultivation alike of letters and of seience throughout our Dominion. He saw the need of an organization which should conduce to these ends, and conceivel the grond idea of wolding into one body the various nad complex elements at hand. Not content with establishing separate and indopendent Academies for those devoted to literature nud to scientific studies, he recognized the close relations which unite these apparently distinct pursuits, and moreover, felt the importance of the strength which is to be found in concerted action. From these considerations he was led to conceive of an association which should be for this Dominion something not unlike the Iustitute of Frauce, a union of several Aculemies, -for such is the real constitution of our body, which, with the gracious pormission of Her Majesty, calls iteolf the Royal Society of Canada.

Considered from the polnt of view alike of belles lettres, and of our history in civilized times,

Canada prosents exceptional conditions, demanding especial recognition in the very inception of the plan of the new Society, which includos representatives of two great European races, with differences of language and of national traditions. This is not the place to recall the heroic story of Freneh colonization in America, of the work of its pioneers in discovery and civilization from the Gulf of St. Lawrence to the Gulf of Mexico ; nor of the conflict, transferred from the Old World to the Now, which endod in the conquest of Canada by Great Brituin, and made its people,-while retaining thoir language, their institutions, and their laws,-the loyal subjects of the British crown. The scholar, howevor, notes as a result of all this, the oxistenco in Canada of a people under the British flag, cherishing the sentiment of their French nationality, and proud of the great nation from which they sprang. Remembering the glorious history of their ancestors on both continents, they have preserved their language as a sacred trust, and by works of history, criticism and pootry, have created in Canada a French literature of which they may justly boast. The existence of this element in the country required, as we have said, especial recognition, and hence in our Royal Suciety we find a Section which is devoted to this native French literature, and which may become another Arademie frangaise.

Side by side with this in our Society is found a corresponding linglish Section, the members of which, while not neglocting belles lettres, have beliore them a great field ot usefulnes- in history and ethnology, in which there is ample seope for the work alike of French and Einglish students in connection with our aboriginal races. ILere the two Sections can work logether hamomimety, each in its own language, in anticquariar and prehistorice researches. Such studies serve to luridge over the interval which in the popular apprehension separates literature from wence. This latter, in its wider sense, includes not only mathematical, physical, and "hemical stulies, lut the whole range of natural history and natural philosophy, cmbracing the three kingdoms of nature. To give to these scientific pursuits due phace in the new Royal society, and an equal weight with literature, two corresponding Sections were established, among which, irrespective of languge and nationality, the members selected as representatives were divided: the third section, including mathematies, physies, and chemistry; and the fouth, geography, geology, and general matural history.

It is in the world of science that the importance of a national organization such ats curs becomes more especially evident. The man of letters may hope to tind, in a publisher and a reading pulblic, encouragenent and pecuniary recompense for his labour; but the stulent of seience, though he may perchance gain fame, has little hope for such rewards. Yet the field of study lefore him in vant. In mathematies, in chemical and physical scienees are secrets untold which attract him ; while the natural history of our vast territory provides material which it will require generations of ardent workers 10 make fully known. The student of science asks only for generous criticism, and the means of publication. As regards the latter, scientific pursuits have always, in these latter times, enjoyed the protection and encouragement of enlightened states, and our own government, by its liberal grant for the printing of Transactions, showed in advance its appreciation of the objects and ains of the new Royal Society. The first volume, already before the world, will help, to prove that we are not unworthy of the confidence reposed in us, alike by our noble founder and by the representatives of the people. Among its contributions to French and English letters, and to various departments of seience, will be found not a few which will do honour to the country and contribute to the reputation of our young Society. It is, therefore, with satisfaction at the success already achieved, and with confidence in the future, that we are again met together, after two yoars of existence, for counsel and discussion. While we regret the absence of our founder and first Honorary President, the Marquis of Lorne, we are consoled by the consideration that your Excellency has been pleased to become his successor in the Presidency. The traditions of your illustrious family, not less than your own high attainments, assnre us that our endeavours as members of this Socioty will not want your generous appreciation and your oncouragement. Be assured that it will be our task to make the Royal Society of Canada worthy of its high
position as a body representing both the letters and the science of the Dominion, and accept our renewed thanks for the honour which you have done us in accepting the position of our Honorary President.

His Excellency having retired, the meeting adjourned until the following day at 10 o'clock, A.M.

SESSION III. (May 21st.)

The President took the chair at 10 o'clock A. M., and the Honorary Secretary read the list of Socicties who had not made reports on the previous day.

Reports from Affiliated Societies. (Continued.)
The following reports were then submitted :-

iX. From the Ottawa Field-Naturalists' Club, through Dr. Beaumont Small:-

During the year that has elapsed since my last report, the Ottawa Field-Naturalists' Club has purnued itn special work of developing the Natural History of this neighbourhood, with all its former vigour and activity, and its prospects have never beenmore promising than at the present time. It has added forty new names to its roll, it has become an incorporated society in accordance with the Ontario statutes, and marked success has attended its efforts in every branch of Natural History. In the summer months much zeal was displayed in pursuing the field-work, and the efforts of the Council have been apecially directed to rendering this work as systematic as possible. Under the direction of the leaders, the various branches,-representing Geology, Mineralogy, Botany, Entomology, Conchology and Ornithology,-made numerous afternoon excursions, some of them being held fortnightly throughout the reason. These were well attended by the working-members, and those desirous of becoming acquainted with the study of the branch; and in many instances they assumed the character of clasee for the instruction of beginners. The regular excursions were held monthly, the attendance varying from twenty-five to sixty. The first excursion of the season has been arranged for Thurday next, that the Club may have the honour of entertaining the Fellows of this Society on an "outing" among the ever attractive Laurentians, and to allow those who are interested in Natural History an opportunity of studying this neighbourhood.

Our soirces or winter meetings were seven in number, at which Reports of the work done in the sections during the summer were presented, and papers read on subjects of local interest. The following is the programme:-

Dec. 6, 1883.-Inaugural Address, by H. B. Small, M.D.
20, 1883.-Notes on the "Flora Ottawaensis," with special reference to the introduced plants, by J. Fletcher.
Report of the Ornithological Section.
Jan. 7, 1884.-The Sand-plains and Changes of Water-level of the Upper Ottawa, by E. Odlum, M.A.
Report of the Geological Section.
Notes on, and a list of, the Cambro-Silurian Fossils of the vicinity of Ottawa, by H. M. Ami.

> 31, 1884.-Edible and Poisonous Fungi, by J. Macoun, M.A., F.L.S., F.R.S.C.
> Report of the Botanical Section.

Feb. 14, 1884.-Ottawa Coleoptera, with notes on New Species, and on those Beetles not previously recorded from Canada, by W. H. Harrington,

Revision of the Suctoria, by J. B. Tyrrell, B.A., F.G.S.
 Report of the Geological Section.

Feb. 28, 1884.-The occurrence of Phosphate Deposits, by G. M. Dawson, D.S., Assoc. R.S.M., F.G.S., F.R.S.C.

Note on a new species of Archæocrinus, by W. R. Billings.
Report of the Entomological Section.
Mar. 13, 1884.-The Deer of the Ottawa Valley, by W. P. Lett.
Report of the General Zoology Soction.
Classes of instruction wore continuod thronghout the winter months, that in Botany being especially successful under the direction of Mr. Fletcher. The attendance averaged, and the examination held at the close showed that the course had been earnestly followed. No. 4 of our Transactions has been issued containing eighty-four pages and a plate. It embracos the work of the winter of 1882 (a copy of which is presented herewith). Our Library is now assuming considerable proportions, being entirely formed of publieations reccived in oxclange for our Transactions. As they are all devoted to Natural History and kindred subjects, and represent the work of Naturalists throughout the country, they form a most valuable collection of original papers, such as are not to lee found in the ordinary scientific works.

The Officers for this year, elected at the Anuual Meeting in March, are :-

As an evidence of the work we have accomplished, the lists, published in our Transactions, are worthy of notice. In the tield of botany, 920 plants have been collected; of shells, we have found 208 species; of birds, 198 ; of fishes, 48 ; and of insects 1,004 . This last collection, presented by Mr. Harrington during the past winter, is one of special merit. It is arranged and named after the revised check-list of Drs. LeConte and Horn, and is probably the first so adopted in this country.

As all the collections have been made within a few miles of this city, I think we can reasonably claim to have one of the most thoroughly worked districts of Canada. This local study of Naturai History is one we would earuestly ask the Royal Society to eneourage. Were local societies, instead of wandering aimlessly among the paths of natural science, to devote themselves to this work, and report to the meotings of your Society, there would soon be accumulated a fund of information more perfect and complete than by any other method.

Beaumont Small, President, O.F.-N.C.
May 28th, 1884.

X. From the Natural History Society of New Brunswick, through Mr. G. F. Matthem: -

I regret, on this oceasion, the absence of our delegate, Mr. Montagne Chamberlain, who has been prevented by unavoidable cirenmstances from attending this meeting. Mr. Chamberlain is one of the most active members of our Society, and could have presented to you the work done by it during the past year in a fitting manner.

Details of the operations of the Society during the past year will be found in bulletin No. 3, a copy of which has been sent to you. The active work of the Society during the past year has been
chiedy in the departments of Physies, Archrology, Botany and \%oology, and especially in the study of birds and maminals. Dr. Botsford, our President, has pursued some investigations on the convorsion of light into heat; other members have explored a village of the stone age at Bocabec, in Charlotte County, New Brunswick; and a number of botanists in difforent parts of the Provinco of New lrunswick havo made observations on the flora, which have resulted in adding sixty species of flowering plants th those previously known as inhabitants of New Brunswick. The value of the work of these loeal botanists may be learned from the fact that the Dominion botanist hass been satisfied to frust to their zealons investigations, and has given his tine to the exploration of the adjoining movinces, where the study of botany is not so actively pursuod.

Mr. Chamlerlain, our delegate, who wat to haye presented those and other facts to you, has himA.lf been engaget in the preparation of the list of mammals contained in the bulletin and in pursuing his work of investigating the migration of birds. In this line of study he is working in concert with the American Ornithelogist Union, of which he was one of the original promoters. The nims and methodo of this asociation have been very ably presented to you by Dr. Merriam, its delogate to the Royal Socety of Camata.

The Namal linory Socicty of New brunswick loch its annual field meeting in June and a converation in April, amb conducted a comse of free lectures on Science during the winter months. The manthly meetinge of the Society were well attendel, and important additions were made to its muenm and libary:

Rosjeetfully sulmitterl,

(i. F. Matthew, Acting Delegate.

A1. Fiom the 1:ntumolugical suciety of Ontario, through Mr. Janes Flemener:-

 year the wort of the Entumoturical somiety of Ontario has been vigoronsly prosecuted, on the same plan a- that heretufore tollowerl, with atiofactory and evilent results. The monthly organ of the So-
 original contrilominn from mombers of the Sowity, on Scientific and Practical Entomology. The

 newn parion of insects new to Science; alon papers on Pradical Entomolory, including lifo histories of seriow, ame of whill have been minutely deseribed in all thoir stages, and among them many injurious to agriculture.

With a view to popularize the seicence of Eintomology, and to encourago beginners in the study, a special arries of illustrated articles has becn published, which we hope will have the effect of inereasing the number of olservers in this important hanch of Biology. To further this end, and to systematize the descriptive work being done, ill such a manner as to secure uniformity in this department of reserch, the Comncil have prepared forms eontaining instructions for deseribing insects in their different stages. There has also appearel during the year in the Canadian Entomologist much valuable information in reference to the geographicul distribution of North American insects.

For the benefit of those interested in Agriculture and Horticulture, the Annual Report, which is always dovoted to this practical nspeet of the study, has recently been published, covering eightythree pages and embracing the Report of the Council, the Treasurer's Statement, the President's Inaugural Address, in which a review is given, not only of the work of the Society during the year, but also of the most important cerents of interest to entomologists in North America; as well as popular artielen giving dereriptions of and renedies for such inseet foes as may have been found particularly
injurious to our forest trees and field crops. In addition to this, a circnlar is being now prepared for circulation anong the farmors and agriculturists of the province, requesting them to report as promptly as possible on any insects whieh they find injuring their crops, with a view to the suggestion of appropriate remedies.

The nembership of the Society still increases, and now stands at about 400, and wo have on our roll mombers who are working for us in every province in the Dominion, as well as many of the leading entomologists in the United States. We have, however, to deplore with the whole seientific world the loss by death, during the past year; of somo of our most active members. Of these special mention may be made of Professor Croft, the founder of our Society, and Dr. J. L. LeConte, the celebrated coloopterist.

The large collections of the Society have been further added to and the Library considerably aug-mented,-their usefulness for purposes of reference and study thus being much increasel.

At the request of the Dominion Government, the Society undertook the preparation of a collection of specimens designed to illustrate insects injurious and beneficial to fish, to bo exhihited in the International Fisherios Exhibition, held last year in England. This collection, consisting of forty cases, was prepared and sent forward to London, where it formed a most useful and attractive feature of the Canadian Exhibit, and its merits were recognized by the award of a silver medal.

The council of the Entomological Society of Ontario are glad to learn that the suggestions contained in their Report to your honorablo Society last year, with regard to increased facilities for tho transmission of Natural History specimens by mail, are, in rosponse to a petition from the naturalists and students of science in Canada, receiving favourable consideration from the IIonomablo the Postmastor General, and they trust that the Royal Society of Canada will continue to use its influence in this direction on behalf of students of Natural History.
J. Fietcher, Delegate.
XII. From the Literary and Historical Society of Quebec, through Dr. ILarper:-

The Society, which I have the honour to represent as delegate, is, it not the oldest Litorary Society organized in Canada, at least ono of the oldest, and, at the present moment, perhaps the only one, which enjoys the dignity of an Imperial charter. Like the Royal Society of Canada, the Literary and Historical Society of Quebec had for its founder one of the Governors-General of Canada. It had also, as a model for its organization, the constitution of that highly distinguished body, so wellknown to every literary society in America, the Literary and Historical Society of New York. It was towards the end of the year 1823, that Lord Dalhousie laid the foundation of our Society. Ably assisted by Dr. John Charlton Fisher, joint editor of the New York Albion, and enthusiastically supported by many of the prominent citizens of Quebec, the Governor-General hal the satisfaction of seeing tho Society fully organized before the end of 1824 , when it was placed on a permanent basis through the liberality of the Government, which roted a sum of money to defirty the expenses connected with the Society's early efforts in collecting tho scattered materials of Canadian History; it was, moreover, this fund which enahled the Society to persevere in a work that has earned for it a name in connection with the archives of Canada and their perservation.

The honours which have been conferred upon our Society from timo to time have been fittingly crowned by the invitation of the Royal Society to send a delegate to its aunual meetings; and yet Mr. President, with you in the chair; and supported as you aro by such distinguished fellow-townsmen as Mr. LeMoine, Mr. Faucher do St. Maurice, Mr. George Stewart, jun., and many others who are members of the Literary and Historical Society of Quebee, I may venture to say that the honour has been purchased at a fair exchange,-an exchange which our Society endorses with the greatest pride in seeing you, sir, and these gentlemon occupying such a high position in Canadian Literature. It is, therefore, with the pardonable feeling that its activity has done something towards the development
of native literary tastes and historical research, perhaps even in promoting the universal feeling which has greeted the efforts of the Marquis of Lorne in forming this Royal Canadian institution, that the oldeat literary society in Quebee sendeth greeting to the Royal Society of Canada.

The Literary and Historical Socioty of Quobec, whilo resombling to somo oxtent the Royal Society in its origin, differs from it at least in one respect. The Royal Society has its tendencies all turnel towards the prospect of a brilliant future, -a future which I think every one is ready to admit haw been assured by the character of the first issue of its Transactions, which, I may say, forms at the present moment one of the most attractive volumes in our library at Quebec, and for which I have instructions to temare to this Suciety the thanks of our Conncil. Tho Royal Society lans a bright finture, while the literary and History Society of Quebec has perhaps only its past to contemplate. There are no less than three memoirs of our Society in print; altogether there is material enough in connection with its internal history to make up an interesting paper, worthy of the pages of the Transartion of the Royal society. As delegate, however, I havo only to mako my roport for tho Sear, loing content to remark that a full guanateo is given of tho dignity of our Society in some of the names which are to he found upon its roll,- -such names as Garneau, the historian; Abbe Home. the geographer; Almimal Baytiell, the hydrographer ; Chauvean, the educationist; Sowell, the jurint. Iocomin, the antiguarian; Dr. Anderson and Dr. Douglas. It would be a very pleasant and eany tank to give an account of the work of our Society under tho auspices of such distinguished member, fir it in all on recorl; lut my present duty is merely to read the following very simple Roport of lant years work.

Our ammal mecting was hell, as usabl, in Jamary, and from the Peports read on that occasion the following facto may be ghaned. Three of our most prominent members died during the year, mamely. Mr. HI. Siont, mur of the ohent, most zealous, and devoted membors, and for several years Ohe uf our Vicelproilents; Dre Jamen Sewell, a life member; and Judge Alleyn. There were in all sixtern rexiznations, some of them cansal ly the removal of the members from our city, while twonty buw momp were elected ath tive names enrolled as corresponding members. At the pullin mating- of the sinciety, the following papers were real :-"Great Explorers before ColumLuse" He Jhhn limate. Montreal: "The Origin and Development of the Greek Drama," by John
 tenar", ly cemrge Stewart jun, "A Visit to Naples," by the IIon. D. A. Ross, President of the
 the month of Fohmary, the Society ham the pleasme and privilege of listening to Mr. Matthew Armald. who deliveral at ome of car pulbic gatherings his lecture on "Literature and Scienco." An addition of over two lumpent volumes has been made to our Library, which has to some extent l,een rearrangex ow that greater facility in finding looks in the varions departments has been afforded io those whan make nse of the books on the premises. Valuablemditions have also been made to our collertions in the Mtreum; and in their Report the Council urge the necessity of increased accommodation for specimens in Natural Histury, ete.

In the matter of finances, I an sorry to report that wo are at present in danger of losing our government grant, or of having that grant curtailed. Should wo really be deprived of this sonree of revenue, we shall have to forego, to a large extent, the work which the noblo founder of our Society propmed that it should accomplish. In his oxcellent memoir, M. Louis P. Turcotio remarks that though one of the objects of tho Literary and Ifistorical Society of Quebee, was the advancement of Literary and Scientitic culture, yet it had also in view the collecting of historical materials and the translation of rare MSS. and historical works; and one has only to read a list of the works which have leen published by the Society from timo to time, to seo that it has boen fuithful to its early promises. Without our grant from Government, however, one is hardly able to predict what the future of our Society will be.

The following is a list of our Oflcers for the current year:-

XIII. From the Ottawa Literary and Scientific Society, through Mr. W. P. Anderson :-

The Literary and Scientifie Society of Ottawa was incorporated by act of the Outario Legislature in the year 1869, which empowered two preexisting societies, the "Mechanies' Institute and Athenæum" and the "Natural History Society," to unite under a new name. The "Mechanies' Institute and Atheneum," established in 1849, had been for some years in receipt of an annual grant of $\$ 300$ from the Ontario Government, and this has been continued to the Literary and Scientific Society. Having thus sprung from two societies, one somewhat popular in its nature, and the other more strietly scientitic, the Literary and Scientific Society has endeavored to continue, in a certain measure, the work of both. It has maintained classes of instruction, as well as courses of lectures, generally of a serious character as regards the subjects treated of, and it has been fortunate in engaging for these, at different times, the services of many of the furemost men in Canada, including several Fellows of your Society.

During the past winter the lectures delivered and papers read have been as follows:-

1. Inaugural Address, on the Conditions of Intellectual Progress, by the President, W. D. LeSueur.
2. Lecture on the Boundary Question, by Hon. Wm. Macdongall, C.B.
3. Paper on the Testing of Petroleum, with pratical Illustrations of Tests, by Wm. P. Anderson.
4. Paper on Somo Early Canadian Explorers, by F. II. Gisborne.
5. Essay entitled "Your Face and Mine," by J. M. Oxley.
6. Lecture on Music in its Analogies and Relations, by J. W. Harrison.
7. Lecture on Anglo-Saxon Civilization, by J. IIannay.
8. Lecture on Recent Improvements in Telegraphy, by F. N. Gisborne, F.R.S.C.

Short original Papers on Educational subjects, by Mr. J. A. McCabe, Principal of Ottawa Normal School; Mr. S. Woods, Principal of the Ottawa Ladies' College; and Mr. J. C. Glashan, City Inspector of Schools. The course also included a Piano-Forte Recital by Mr. Ernest White.

The Society, which started with a Library made up of the joint libraries of the constituent bodies, has devoted what funds it could spare to the purchase of new books; and during the past year has, through the liberality of friends, been ablo to apply nearly $\$ 500$ to this object. The number of books at present on the shelves is about 2,000 volumes. The Library has of late been much used by the members, and, as it consists mainly of high-elass works of Literature and Seience, must be regarded as a very
nsefnl educational modium. The reading-room of the Society is maintained on a liboral footing. Alout $\$ 160$ annually are expended in the purchase of nowspapers and poriodicals.

The Society has also a Museum comprising some valuable collections, chiefly Minoralogical, Botanical, and Entomologieal. The basis of this Museum has latoly been changed, the present purpose leing to confine our efforts to making local reprosentative collections; and some artieles which the Society possessed that were not of a local character, have been disposed of to othor scientifie bodios in return for speeimens more suitable to the Society's objects.

The number of members at present on the Society's books is about 350, and the annual subseription is tixed at the very low rate of \$2. The Society, under the vigorous presideney of Mr. LeSuear, has, during the past year, made a very gratifying advance, attributable chiefly to its having moved (1) wery central and otherwise suitable premises, and to the improvements made in the Library and leading.rom ; its prospects for the future may therefore be considered of an encouraging character.

The Onicers of the Society for the current year aro as follows:-

Presiden	W. D. LeSueur.
1st Vice-President.	Win. P'. Anderson.
end d ,	J. Fletclier.
Secretary.	.G. M. Greene.
Treasurer	.J. R. Armstrong.
Litharian.	.T. G. Rothwell.
turator	A. Megill.
	(W. Scott.
Members of	\{R. B. Whyto.
	(E. D. Martin.

Wm. P. Andeason, First Vice-President, Delegate to the Royal Society of Canada.

XIV. From the Nowa sotia Historical Society, through Professon G. Lawson:-

The puetal objects of the Nova Scotia Historical Society, the arrangement by which its Lihary hat been amalgamatex with the Provincial libatary of Nova Scotia, and the work aceom$p^{\text {li-hell, and in progres, of eollecting rare publications and documents bearing upon the history of }}$ the Province-were so fully detailed lyy Ihr. Allison, the Delegate of last year, that it is unnecessary now to refer to then further than to say that the arrangement and catnlogning of the Library aro now so far completed that the books can be consulted with facility. The work of collection still goes on, and the adlitions are incorporated in the Card Catalogue as soon as made.

Volume 111 ot the Society's "Heport and Collections," extending to 208 pages, has been publishel during the past year. It contains the concluding portion of the History of St. Paul's Cluurch, Halifin, ly the Rev. George Hill, D.C. L. The first two portions of this paper traced the history of the chureh, and recorted the historical affirs comected with it, from the first settlement of Halifax down to the year 1823. The present part contimes the narrative for the remaining sixty years, to the present time. The volume also contains a document of no inconsiderable importance in the history of the country, viz., the "Journal of Colonel John Winslow, of the Provincial Troops, while enguged in removing the Acadian French Inhabitants from Grand Pré, and the neighbouring sottlements, in the autumn of the year $1 \% 55$, ," transcribed from the original manuseript Journal, in the Library of the Historical Society of Massachusetts, by permission of the Society, in March, 1880, undor the direction of the Record Commission of Nova Scotia. The Society's volume likewise contains a History of the substantial stone edifice in Halifax, known as Government House, by the Hon. Adams G. Archibald, C. M. Gr., Lieutenant-Governor, in which its progress in building, from the laying of the
formdation stono in the year 1800 to its completion in 1807 is traced, and details are given of discussions and transactions connected with it; also of the accommodations provided for the several Governors of the Province, from tho time of the arrival of Governor Cornwallis, who held a Council at Halifax on October 15 th, 1749 , down to the yoar 1873, when the prosent building hed nearly fallen a sterifice to the spirit of trado by a proposal to sell it to a company to be converted into a hotel. From its first occupation in 1805, to the date of confederation in 1867, thirteen governors had lived in the house, some of whom have been statesmen of mark, othors successful soldiers, while several have performed important duties in othor parts of the ompire. Four in sucecssion left the post of Governor of Nova Scotia to bocome Governors-Gencral of Canada.

During the session 1883-84, just closed, tho following papers have boen read at the Society's meetings, and will be publishod in the fourth volume of Reports and Colloctions :-

1. On the Province Buildiug, Halifux, by His Honor Licut.-Governor Archibald, C.M.G.
2. Early Rominiscencos of Malifax : an old document, communicatell hy Thomas B. Aikins, D.C.I.
3. The Stone Age of the Mic-Mace, by Rer. Dr. Patterson.
4. Newfoundland, past, present, ind future.
5. Early Years of the Life of Sir John Wentworth, by Hon. Alams ti. Archibald, C.M.ti.
6. Origin of the Nanes of the Streets of Halifax, by Rev. Goorge Hill, I),C.IJ.
7. Visits of Literary Men to Nova Scotia, by Peter Lynch, Fisq.
8. A Tour with General Campleell in 1785, along the Coast of Nova Scotia, by Lient. Booth.
9. Ships of War wrecked on the Const of Nova Scotia, by S. Macdonald, F.G.S.

During the past year, twenty new mombers have been clected. There having been modeath; or resignations, the membership stands as follows:-

$$
\begin{aligned}
& \text { Number of members, 1882-83................. 10. } \\
& \text { 1883-84.......................... 125. }
\end{aligned}
$$

The members have had the satisfaction of reeing added to the Library the first portly volume of the Transactions of the Royal Society of Canada, which they regard as an earnest of the valuable results in Litoratme, History, and Seience, which the establishment of the Royal Society is destined to accomplish for this rapidly-growing Dominion.

Miscelifaneous Business.

Dr. Hart Merriam, Secretary of the Ornithologists' Union of New York, on the invitation of the President, then addressed the meeting, showing the objects of the Union and the valuable work it is performing on this continent.

The Honorary Secretary then read letters from Dr. Goldwin Simith and Julgo Routhier, regretting their unavoidable absence.

On the motion of Mr. G. Stewart, jun., seconded by Colonel Denison, a Committee was again appointed to consider the question of Copyright, in accordance with the recommendation of Section II, mado at the mecting of 1883 , -said committee consisting of Principal Grant, M. Faucher de St. Maurice, Professor Cherriman, Dr. Bell and Dr. Chanveau.

Professor Johnson mado the following Report from the Committee appointed at the previous meeting to inquire into the Forms of Aid and Encouragement given in other countries to young men deemed qualifiod and desirous to engago in Original Literary and Scientific Work, and to suggest the best means of providing similar aid and encouragement to young men in Canada :-
"The Committee beg to report that, partly in consequence of the regretted death of the Convener, the late Dr. Todd, they have been unable, as yet, to collect a sufficient amount of information to lay boforo the Society. They recommend that the Committee be continued, and report at the meeting of next year.

On the motion of Profossor Johnson, soconded by Profossor Chorriman, the following Committee was appointel on the foregoing subject: Professors Johnson, MaeGregor, Cherriman, Dr. Hunt and Mr. Sulte.

On the motion of Dr. Hunt, seconded by Professol Cherriman, it was unanimously
Resolced, That the name of tho Marquis of Iorne, the creator and organizor of our Society, ajpear henceforth in the volumes of our Transactions as "The Founder of the Royal Society of Canada."

The suciety then elected, on the proposal of Messrs. Stewart, Kirby and Denison (vide Rulo 8) the following gentlemen to be corresponding members of the Society: The Right Honourable the Mamuis of Porne, and Mr. Francis Parkman, also M. E. Rameau de Saint Pero, on the proposal of Ir. Fréllacte, Ablé Tanguay, and Mr. LeMoine.

The following Resolution was then adopted, on the motion of Professor Johnson, seeonden by Mr. Mi, Shewart. jun.:
"That in anting maler Rale 8 of the (omstitution, four of the corresponding members shall be Wertoultire cabh section; aml the name or names proposed, the names of the proposers, and the remoms in writing, hall lee amomeed th the Society throghthe Honorary Secretary at least one

1. The repromative of ach setem in the Commed shall he the judges of the papers to be ac"phen or matiol. So paper shall heren in any Sertion, at any general meeting of the Society,

 by -perial permision of the tommil. Tho publication of any paper not so aceepted, as having beon

111.-A proraman mataining the tithe of papers to be real shalt be printed and sent to the

11 - It anall he the duty of the secretaries of each section to prepare before each day's meeting
 manded for their realing. Thaee lists shall be printed and made public each morning before the time tixel for the meeting.

On the motion of Protiosor Lawsom, seconted by Dr. Selwyn, the foregoing rules were agreed to.

Election of Officers

The sieciety then proccerled to the Election of Officers for the ensuing year, and the following were unanimously chosen:-

President-Dr. T. Sterry Hunt, on the inotion of Colonel Denison, seeonded by Mr. G. Stewart, jun.

Vice.President-Dr. Waniel Whison, on the motion of the Very Reverend T. Mamel, seconded ly Profestor Chapman.

Honorary Secrelary-Jons Georoe Bolminot, on the motion of Professor Lawson, seconded by Professor Jolinson.

Honorary Treasurer-1)a. J. A. Grant, on the motion of Mr. George Stewart, jun., seconded by Colonel Denison.

On the motion of Professor Lawson, secondel by Dr. Grant, the following Resolution was agreed to: -
"That the retired and retiring Presidonts of the Socioty be continued as members of the Council for three years from the time of the vacating of their positions, and that it bo remitted to the Council to suggest such Amendment in the Constitution as may be necessary to give effect to this Resolution during this year."

The President communieated a letter from the Ottawa Field-Naturalists' Clnb, inviting the members of the Society to an excursion on the following day to the Laurentide Hills.

The moeting was then adjourned until Firiday, at $10 o^{\prime}$ clock Λ. M.

SESSION IV. (May 23rd.)

Miscelfaneous Business.
The Presidont took the Chair at 10 o'clock A. M.
The Honorary Secretary communicated the following resolution, which was adoptet on the motion of Dr. Hunt, seeonded by M. Fréchette:-
"In aeeordance with instructions given at the meeting on Wednesiay last, the Council recommend that number 5 of the Regulations of the Society be amended ly ading at the end thereot the following words: 'Together with all retired or retiring Presidents, who will be members of the Council during three years from the date of their retirement.'

On motion of Professor Johnson, seconded by Dr. Hunt, the following worls were added to Rule 12, with respect to the distribution of tho Transactions: "Such Scientitic Perimlicals at may he solected by the Council."

Tho Honorary Secretary communicated the following letter, receivel under Rule 6 :-
Ottana, 20th May. 188.4.
To the President and Council of the Royal Society of Canada:

Gentlemen,-

I have the honour to report that the section of English Literature, at a meeting held this day, nominated by ballot the Rev. W. H. Withrow, D.D., author of "The Catacombs of Rume and their Testimony rolative to Primitive Christianity," "History of the Dominion of Canada," and many other works, to fill the vacancy caused by the lamented death of the Iate Dr. Alpheus Todrl.

> I have the honor to be, Gentlemen,
> Your obedient servant,
> George Stewart, jun., Sceretary.

On the motion of Mr. G. Stewart, jun., seconded by Mr. Lesperance, the recommendation of Section II, jnst read, with respeet to Dr. Withrow's election as a member of the Royal Society, was agreed to.

On the motion of Dr. Hunt, seconded by Professor Lawson, the President, Viec-President, Honorary Secretary, and such other members of the Royal Society as may be present in Montreal at the time of the meeting of the British Association for the Advancement of Science, were appointed at Committeo to tender a hearty weleomo to the members of that distinguished body.

On the motion of Professor Johnson, seconded by Mr. LeMoine, the cordial invitation of the American Association for the Advancement of Science, was accepted, and the following Committee appointed to visit Philadelphia in September next:-Dr. Hunt, Principal Dawson, the Very Rev. T. I. Hamel, Dr. Daniel Wilson, Professors Bailey, MacGregor, Johnson, Lawson, Cherriman, Chapman,

Pro. 1884. E

Messrs. Bourinot, LeMoine, Carpmael, G. Stewart, jun., Dr. Chauveau, with such other members of the Society as may be present at the time and place in question.

The following Resolutions were adopted :-

1. The President having announced, on behalf of Section I, the desire of that Section to meet in Montreal in October next, in order to the reading of papers, and promoting the Society's objects in that city, the Society do approve of such meeting and authorize the Section to make such arrangements as may be necessary in regard thereto. (On the motion of Professor Lawson, seconded by Mr. G. Stewart, jun.)
2. The Council would draw attention to the fact that, by the Constitution, the meetings of the Society must be held in the City of Ottawa, unless otherwise determined. They would recommend that when a proposal to hold them elsewhere is made, it should take the shape of a formal invitation from gentlemen undertaking to represent the city or town suggested, and to provide proper accommodation therein for the meetings of the Society. (On the motion of Professor Johnson, seconded by Professor Lawson.)

The meeting then adjourned at noon until 2 o'clock, P. M., that day.

SESSION IV. (Afternoon Sitting.)

Rules respecting the Publication of Papers.

1)r. Hunt submitted certain rules respecting the Publication of Papers, which were agreed to after debate, and are as follows:-
I.- The author shall revise his MS. after reading, to prepare it for the press.
11.-The first proof in galley shall be sent to the author, and also a revise in galley.
III. - The matter shall then be put into page, and a proof sent to the secretary of the section to which it helongs, who will sign the proof when he has corrected it. Should the author demand it, he may see a proof in page.
IV. The chairman of the printing committee or his deputy, will sign the final revise, and will see that conformity in heading and in type is observed.
V.-If the authorn of paper- hapen to be absent in places not accessible without delay, they shall indicate nome permon by whom the proof shall be read; failing wheh, the secretary of the section shall be responsible for their reading and correction.
VI.-If, from the absence of the author, the proof of a paper cannot be read by him, and he has named no representative, and if the secretary will not read it, the printing committee shall not delay the volume for the author's return, but shall omit the paper.
VII. - All matter in the French language shall be read for literal errors by a French proof-reader skilled in the typographic art, and familiar with the present usage in France.

Reports of Sections.

The President then called upon the respective Sections to report their Lists of Officers and the work in said Sections during the present meeting. The following reports were accordingly made:-

Section I.-Rapport des séances de mai 1884.
Conformément à la permission accordée l'année dernière, notre section s'est réunie, à Québec, le 29 mars 1884, et a tenu trois séances, au cours desquelles plusieurs ouvrages ont été examinés et les matières concernant les lettres en général, ainsi que les intérêts propres de la section ont été discutés. La dernière séance a eu lieu le lundi 31 mars.

Le 20 mai 1884, cette section s'est assembléc al Ottawa, of a examiné plusieurs éerits, parmi lesquels ceux dont les titres suivent sont recommandés pour impression dans les mémoires de la Société, en même temps qu'une cortain nombre d'ouvrages lus à la session do Québec et acceptés a la réunion générale.
I. M. l'abbe Casgrain :-"E゙tude critique sur les Quarante dernières années, de M. Jolin Che Dent."
II. M. Cuauveau :-"Notes sur le chevalier de Lévis."
III. M. Fréchette :-Certains poèmes intitulés: "Au lord do la Creuse," "L'Espagne " et "Trois épisodes de la Conquète."
IV. M. Legendre:-"La province de Québec et la langue frangeaise" et "Les races indigènes de l'Amérique devant l'histoire."
V. M. LeMoine:-"Les aborigènes de l'A mérique et leur's rites morthairer."
VI. M. Chauveaut:-Deux chants d'un poème inédit intitulé: "Le Sacré-Cicur:"
VII. M. Marchand :-Satire: "Les Travers du siècle."
VIII. M. Marmette :-" Une promenade dans Paris."
IX. M. de Cazes :-"Date du quatrième voyage de Jacques ('artier," et " late de l'expédition du marquis de La Roche."

XI. M. l'abbe Tanguay :- "La famille de Catalogne."
XII. M. Sulte:-" Poatrincourt en Acadie."

XhI. M. l'ahbe Verreat :-"Notes sur les commencements de l'liglise du ('amala."
Par un comité nommé à ect etret, il a été fait mention honorable d'une súre d'articles intitulée Fantaisies littéraircs, dont l'auteur est M. Cicorges LeMay, chuliant de l'mivérsité Latval, al Qúbere.

Cette section demande la permission de se rémid duant la vacance, vers la tin de septembere, a Montréal, pour s'occuper des travaux qui sont de son ressort. Lec Conseil y a consenti.

Voici le résultat des élections faites par la seetion:

> Président-F.-G. Marchanh.
> Vice-président-Pala he: Cayes.
> Secrétaire-Benjamin Sute.

Je tout humblement soumis.
L. Fhéchette, Président. F.G. Marciand, Vice-président.

Bendimin Sulete, Secrétaire.
Ottawa, 23 mai 1884.

Report of Section II.

I beg to report that Section II las elected, as Office-bearers for the ensuing year:-

Rev. J. Clark Murray, Ll. D., President.
Lt.-Col. Georae T. Denison, B. A., Vice-President.
George Stewart, jun., Secretary.

The Committee on publications is composed of Dr. Daniel Wilson, Rev. J. Clark Murray and George Stewart, jun.

A Committee was appointed to consider the paper read by Rov. Prof. J. Bryce of Winnipeg, a delegate to the Royal Society, in which the question of publishing memoirs or oll books relating to Canadian history, travel, \&c., under the anspices of the Royal Society, is discnssed. Tho Committeo is composed of J. G. Bourinot, John Reade, John Leaperance and Gcorge Stewart, jun.

The Rev. W. H. Withrow, D.D., author of the Catacombs of Rome, etc., was ballotted for hy
the Section to fill the vacancy in the Society caused by the death of the lamented Dr. Alpheus Todd, and his name was duly communicated to the council of the Royal Society, in accordance with the provisions laid down in Rule, 6.

The following papers were read:-
I. Vowel Sounds. By M. L. Rouse.
II. The Functions of the Royal Society. By Wm. Kirby.
III. A Plea for a Canadian Camden Society. By Rev. Prof. J. Bryoe.
IV. The Medals and Coins of Canada under the French Régime. By R. W. MoLachlan.
V. The Poets of Canada. By John Lesperance.
VI. Septimius Severus in North Britain. By Rev. Eneas MoD. Dawson.
VII. Mary Stuart's Adieu to France. By Rev. Eneas McD. Dawson.
VIII. The Literary Faculty of the Native Races of America. By John Reade.
IX. The Making of Canada. By John Reade.
X. The Huron-Iroquois (presented). By Dr. Daniel Wilson.

The followins papers are to be printed in full :-

1. The Huron-Iroquois. By- Dr. Daniel Wilson.
2. A Plea for a Canadian Camden Society. By Rev. Prof. J. Bryce.
3. The Pocto of Canada. By John Lesperance.
4. The Literary Faculty of the Native Races in America. By John Reade.
5. The Making of Canada. By Jome Reade.

To be printed inabatract:-

1. The Medak and Coin- of Canada under the French Régime. By R. W. MoLadhlan.

I have the honour to be, sir, \&c., \&c.
Glorge Stewart, jun., Secretary.

liport of Section III.

The number of members of the Section in attendance was sixteen. Of the absent members, Prof. Haanel forwarded a communication to be read. The other absent members were Dr. Fortin, Prof: Luudon, and Mr. Macfarlane. Mr. Murphy, delegate from the Nova Scotian Institute of Science, was present and tork part in the discuswion of one of the papers.

The Officers elected for the ensuing year were:-

> Dr. Johnson, President.
> C. II. Carpmael, Vice-President.
> Dr. MaoGregor, Secretary.

The accompanying list gives the title of the papers read in full or in abstract :-
I. Electrical Induction in underground and aerial Metallic Conductors. By F. N. Gisborne.
II. A Particular Case of Hydraulic-Ram or Water-Hammer. By C. E. Baillairae.
III. On the Form of the Contracted Liquid Vein affecting the present Theory of the Science of Hydraulics. By R. Steckel (by C. E. Baillairgé).
IV. The Origin of Crystalline Rocks. By Dr. T. Sterry Hunt.
V. On the Density and Thermal Expansion of Solutions of Copper Sulphate. By Professor MacGregor, D.Sc.
VI. 1. Blowpipe Reactions on Plaster of Paris tablets ; (a) Reactions for copper and iron with hydrobromic acid; (b) Differentiation of selenium from mercury; (c) Coatings on tablets per se; 2. Descriptions of Apparatus for distinguishing flame-colouring constituents when occurring together in an essay. By Propessor Haanel.
VII. Lessai sur la constitution atomique de la matière. Par l'abré Hamel.
VIII. Tho Algebraical Development of Certain Functions. By Phoressol Dupurs.
IX. Contributions to our Knowledge of the Iron Ores of Ontario. By Phofesson Cuapman.
X. Note sur un fait météorologique particulior ia Québec. Par líabbe Laflame.
J. B. Curerriman, President.
A. Jounson, Secretary.

Report of Section IV.

In this section tho following papers woro read, oither in extenso or by title :-
I. Note on observations made in 1883 on the Geology of a fortion of the North shore of Lake Superior. By A. R. C. Selwyn, L.L.D., F.R.S.
II. Revision of the Canadian Ranuneulacere. By Prof. G. Lawson, Ph.1), LL.I).
III. Goology and Geological Work in the Old World in their relation to Canala. By Prusorpad Dawson, C.M.G., LLL.D., F.R.S.
IV. On the Occurrence of certain Butterties in Canada. By W. Sucsumes.
V. The Taconic Question in Geology, Parts. By'T. Sterry Host, LL.I., F.R.S.
VI. On the Conocoryphide of the St. John (irout with remalis on Pamandexide By (i, le. Mattiew, M.A.
 Ont. By Prof. E. T. Charman, Plı. D., LuL.D.

IX. A Monograph on Canadian Ferns. By T. J. W. Buraess, M.I., and Prof. J. Marons, M.I).
X. On Geological Contacts and Ancient Erowion in the Provine of New brmewick. By Prof. L. W. Bahley, M.A., Pl.D.
 the Peaco Rivor. By J. F. Whiteaves, F.G.S.
XII. On a Decapod Crustacean from the Upper Crotacenis of Highword Liver, N.W.T. By J. F. Wurteaves, F.G.S.
XIII. On the Mangmese Ores of Nova Scotia, By Fi. (illpin, M.A. Ficis.
XIV. Noto sur certains dépôts auriferes de la Beauce. Par l'Abré Laflamme.
XV. Découverto de l'Emoraude au Saguonay. Par l'abbe Laflamme, D.D.
XVI. The Glacial doposits in the vicinity of the Bow and Belly Rivers. By (r. M. Mawson, D.S., A.R.S.M., F.G.S.
XVII. On the Gcology and Economic Minorals of Hudson Bay and Forthern Canala. By IR. Bell, M.D., LL.D., F.G.S.
XVIII. A Rovision of the Geology of Antigonish Comity, N.S. By Rev. D. Honervan, D.C.L.
XIX. Junction phenomena of Carbonifcrous and Post Carboniferous wilh Pre-Carboniferous formations in Nova Scotia. By Rev. D. Honeysran, D.C.I.
XX. Noto sur la constitution géologiquo de l'apatite canadienne. Par' S. Obalski.

The section recommend to the Council that in future the Geological and Biological Section should soparate into sub-sections of Geology and Biology, but only for tho purpose of reading and discussing scientific papers. The Officers of the past session were reelected, viz.:-
A. R. C. Selwyn, LL.D., F.R.S., President.

Prof. G. Lawson, Ph.D., LL.D., Vice-President.
J. F. Whiteaves, F.G,S., Secretary.
J. F. Whiteaves, Secretary.

Concluding Resolutions.

The following Resolutions were proposed and adopted :-

1. That this Society tenders its thanks to the Ottawa Field-Naturalists' Club for the courteous attentions shown to its members yesterday on the occasion of the pleasant excursion to the Laurentide Hills. (On the motion of Mr. George Murray, seconded by Mr. George Stewart, jun.)
2. That the thanks of this Society be given to the Honourable Sir Charles Tupper, Minister of Railways, and to the Managers of the Grand Trunk and Canadian Pacific Railways for the facilities afforded the members in visiting Ottawa on the occasion of this meeting. (On the motion of Mr . Gisborne, seconded by Mr. Carpmael.)
3. That the thanks of this Society be tendered to the Honourable the Speaker of the House of Commons for the use of the rooms occupied during its meeting, and for other arrangements which have greatly facilitated its labours. (On the motion of Mr. LeMoine, seconded by Mr, George stewart, jun.)
4. That the he-t thank- of the loyal Society be tendered to the retiring President for his zealous exertions on behalf of the Society and his able conduct in the chair. (On the motion of Profinor (herriman, seconded by Professor Lawson.)
5. That this suciety make its acknowledgments to Mr. Bourinot, Honorary Secretary, and to Dr: (imant. Honorary Treasmer, for their earnest efforts to promote the objects of the Society. (On the mution of Protionor Johnson, seconded by Father Dawson.)

Dr. Chanvean. Mr. Bourinot and Dr. Grant retmoned thanks for the kind manner in which their humble arvices were meognized hy the Society

On motion of Profemor Matimesor, secomed hy Profestor Johnson, it was,
Rewaliel. That Section 6 of the (onstitution be adopted as a provisional arrangement for the sear, and that the Commeil he requested to furnish the members before or at the next meeting with information which may form a hasis of discussion of the subjects of this Section.

The soriety then adjommed until May, 1885.

THE ROYAL SOCIETY OF CANADA.

FOUNDER: THE RIGHT HONOURABLE THE MARQUIS OF LORNE.

OFFICERS FOR 1884-85.
honorary president and patron:
his excrllency the most honourable the marguis or lansdowne, G.c.M.G.
GOVERNOR-GENERAL OF CANADA.
President - - - - - T. Sterry hunt, Ll.D., F.R.S.
Vice-President - - DAniel Wilson, Ll.d., F.r.S.e.

EX-PRESIDENTS
SIR J. WILLIAM DAWSON, A.M., C.M.G., LL.D., F.R.S., Montreal.
HON. P. J. O. CHAUVEAU, LL.D., Docteur ès Lettres, Montreal.
OFFICERS OF SECTIONS.
SECT. I.-French Literature, History and Allied Subjects.
President - - - - F. G. Marchand.
Vice-President - - - - PaUl dE CaZES.
Secretary - - - BENJAMIN SULTE.
SECT. II.-English Literature, History and Allied Subjects.

SECT. III.-Mathematical, Physical and Chemical Sciences.
President $-\quad-\quad . \quad-\quad-\quad$ A. Johnson, LL.D.
Vice-President
Segretary

SECT. IV.-Geological and Biological Sciences.
President - - - - A. R. C. SELWYN, LL.D., F.R.S.
Vice-President - - - - GEORGE LAWSON, Ph.D., LL.D.
Secretary - - - . J. F. Whiteaves, F.G.S.
Honorary Secretarty - - . . . J. g. bourinot, f.S.S.

The Council for 1884-85 comprises the President and Vice-President of the Society, the Presidents, VicePresidents and Secretaries of Sections, the Honorary Secretary, and the Honorary Treasurer, besides ex-Presidents of the Society.

THE ROYAL SOCIETY OF CANADA.

LIST OF MEMBERS, 1884-85.

I.-LITERATURE FRANÇAISE, HISTOIRE, ARCHÉOLOGIE, ETC.

```
HÉcin, l'ABbé L. N., S.T.D., universite Laval, Québec.
Fors, v'Авué I. F.., Maxkinongé
Butrassa, Narotéos, Montréal.
CamikaiN, l'amué H. R., doctenr is lettres, Windsor, O.
Chatveac, P. J. O., LI.D., Montréul.
Ims Cazes, Patu.,Quérec.
InNs, Omcar, (quéluc.
Fabre, Hector, Paris, Frmico.
Fatcher ine Saint-Malmice, N., quélrec.
Fk&\mp@code{intte, Lutis, LL.I., Montréal.}
```

Legendre, Napoléon, Québec.
Lemay, Pamphile, Québec.
Lemoine, J. M., Québec.
Marchand, F.-G., Saint-Jean, Q.
Marmette, Joseph, Ottawa.

Rolthier, A. B., docteur ès lettres, Québec.
Sulth, Benjamin, Ottawa.
Tanguay, l'abbé Cyprien, Ottaza.
Tassé, Josepie, Montréal.
Verreau, l'abbé Hospice, docteur ès lettres, Montreal.

II.-ENGLISH LITERATURE, HISTORY, ARCH ÆOLOGY, ETC.

Botrinot, John George, M.A., F.S.S., Ottava.
Becke, R. Matrich, M.D., London, O.
Dawson, Rev. Axeas Macdonell, Othara.
Danison, Lt.-Col. G. T., B.C.L., Toronto.
Grant, Very Rev. G. M., D D., Principal, Queen's University, Kingston.

Kikey, Willam, Niagara.
Lesprbanch, John, Montreal.
Lindeby, Charles, Toronto.
Lrame, Rav. W., LLLD., Dalhousie University, Halifax.
Murhay, Gnonan, B.A., High School, Montreal.

Murray, Rev. J. Clark, LL.D., McGill University, Montreal.

McColl, Evan, Kingston.
Reade, John, Montreal.
Sangster, Charles, Ottawa.
Smith, Goldwin, D.C.L., Toronto.
Stewart Georgen, Jun., Quebec.
$W_{\text {Atson, }}$ J., M.A., LL.D., Queen's University, Kingston.
Wilson, Daniel, LL.D., F.R.S.E., President, University of Toronto, Toronto.

Withrow, Rev. W. H., D.D., Toronto.
Young, G. Paxton, M.A., University of Toronto, Toronto.

III.-MATHEMATICAL, PHYSICAL AND CHEMICAL SCIENCES.

Baillairgé, C., C.E., Quebec.
Bayne, Herbert A., Royal Military College, Kingston.
Carpmafl, C. H., M.A., Supt., Meteorological Service, Toronto.

Chapman, E. J., Ph.D., LL.D., University of Toronto, Toronto.

Cherriman, Prof. J. B., M.A., Supt. of Insurance, Ottawa.
Deville, E., Chief Inspector of Surveys, Ottawa.
Dupurs, N. F, M.A., F.R.S.E., Queen's University, Kingston.
Fleming, Sandford, C.M.G., C.E., Oltawa.
Fortin, P., M.D., Montreal.
Girdwood, G. P., M.D., McGill University, Montreal.

Gisborne, F. N., M I.T.E.E., C.E., Ottawa.
Hannel, E., Ph.D., Victoria University, Cobourg.
Hamel, Very Rev. T. E., D.D., Rector, Laval University, Quebec.

Harrington, B. J., B.A., Ph.D., McGill University, Montreal.

Horfmann, G. C., F. Inst. Chem., Geological Survey, Ottawa.

Hunt, 'Ti. Sterry, M.A., LL.D., F.R.S., Montrol.
Jonsson, A., LL..D., Mc(iill University, Montrall.
Loumos, J. T., M.A., University of Tormento, Tomome
Macfablane, T., M.E., Montrial.
MacGretor, J. (i., M.A., D.sic., F.R.S.E., Dalhonsio University, Inalija,

IV.-_GEOLOGICAL AND BIOLOGICAL SCIENC'RS.

Bailey, L. W., M.A., Ph.D., University of New Brunswick, Fredericton.

Bell, Robert, M.D., C.E., F.G.S., Geological Survey, Ottawa.

Dawson, G. M., D.Se., A.R.S.M., F.G.S., Geological Survey, Ottawa.

Daweon, Sir J. Willian, C.M.G., LL.D., F.R.S., Principal, McGill University, Montreal.

Gilpin Edwin, M.A., F.G.S., Inspector of Mines, Halifax.
Gilpin J. Bernard, M.D., M.R.C.S., Halifax.
Grant, J. A., M.D., F.G.S., Ottawa.
Honeyman, Rev. D., D.C.L., Museum, Halifax.
Jones, J. M., F.L.S., Halifax.
Laflamme, Rev. J. C. K., D.D., Laval University, Quebec.

Lawson, (i., Ph.I)., LI.D., Dalhousie I niversity Malifas.

Macous, J., M.A., Fi.I...., (ieolngical survey, (mmmo.
Matriben, G. F., sio. Johm, V.l:

Ostak, W., M.I). I'niversity of 'emmeskania, Ihiluhl/ phin, Penn.

Saumpers, W., London, 6 .
Selwys, A. R. C., LL.D., F.R.S., F.G.S., Director, (ieological Survey, Ottava.

St. Cyr, D. N., Quebec.
Whiteaves, J. F., F.G.S., Geological Survey, Ottawe.
$W_{\text {right, }}$ R. Ramsay, M.A., B. Sc., University of Toronto, Toronto.

CORRESPONDING MEMBERS.

The Marquis of Lorne.

Camille Doucet, secrétaire perpétuel de l'Académie française, Paris, France.

Eug. Rambau, de l'Académie française, Paris, France.

Xavier Marmier, de l'Académie française, Paris, France.

Francis Parkman, Boston, Mass.

SOCIÉTÉ ROYALE DU CANADA

MEMOIRES

SECTION I

LITTÉRATURE FRANÇAISE, HISTOIRE, ARCHÉOLOGIE, ETC

ANNEE 1884

1 -Deux points d'histoire,

Par Paula de Cazes.

(Lus le 21 mai 1884.)

Messieurs,

Quoique notre histoire ne date que d'hier, si on la compare à celle de la plupart des autres peuples, on y troure cependant un certain nombre de points obscurs que nos historiens n'ont pas encore pu complètement éclaircir.

Deux des faits les plus controversés et datant des promières années qui ont suivi la découverte de la Nouvelle-France, m’ont paru particulièrement curieux à étudier: tous deux ont rapport aux premières tentatives d'établissement qui ont ét́́ faites dans la nonvelle colonie française.

Le premier a trait an quatrième royage que Jacques Cartim aurait fait an Canada, pour en ramener M. de Roberval. Le second se rattache à l'expédition du marquis de La Roche, dont le senl épisode comn nous est arrivé de génération en qénération, comme une des plus navrantes légendes de notre histoire.

C'est le résultat de l'étude que j'ai faite de ces denx points historiques que je rais avoir l'honneur de soumettre à votre appréciation.

Quatrième yoyage de Jacques Cartier

Je n'ai pas, Messieurs, à vous faire ici le récit du premier essai de colonisation un pen sérieux qui fut tenté au Canada. Personne de vous u’ignore que M. de Roberval, après avoir obtenu de François Ier une commission qui lui conférait le titre de vice-roi et de lieutenant-général de toutes les possessions françaises en Amérique, quitta le port de La Rochelle, au printemps de 1542 , avec trois vaisseaux montés par environ deux cents personnes, tant hommes que femmes, et vint poser les bases d'un établissement à l'embouchure de la petite rivière du Cap-Ronge; puis qu'après avoir eu ì lutter contre la rigueur de la saison d'hiver, l'indiscipline de ses gens, la famine et la maladie, il se rit bientôt obligé, faute de secours, de retourner en France avec tout son monde.

La plupart des écrivains qui se sont occupés de notre histoire s'accordent ì dire que c'est Jacques Cartier que le roi de France chargea de rapatrier M. de Roberval.

Voici ce que dit à ce sujet notre historien national, M. Garneau:
"Au lieu de lui envoyer les secours qu'il demandait, le roi, suivant Lescarbot, chargea Cartier, en 1543, de ramener Roberval en France, où sa valeur et son influence sur les populations de la Picardie qui allait devenir le théâtre des hostilités, pouvaient lui être qtiles."
M. l'abbe Ferland, dans son Cours dhistoire du Canada, après avoir relaté cet incident à peu près de la même façon, termine en disant:
"Des pièces officielles nous apprennent que ce voyage dura huit mois." Puis il ajoute en note: "Parti dans l'automne de 1543 pour son quatrième voyage, Cartier aurait hiverné an Camada et l'aurait quitté à la fin d'avril ou au commencement de mai 1544."

Enfin, je lis dans l'Histoire des Canaliens-frangais de M. Sulte: "Mais comme Roberval ne revenait pas, le roi doma commission à Cartier d'aller le prendre avee sa colonie et de le ramener en France. Le décourreur partit done vers l'antomne de 1543, et retourna le printenps suivant nrec les débris de la bande de France-Roy."

Vu l'manimité des historiens à cet égard, le quatrième voyage de Jacques Cartier sembl m fait acquis sans conteste à l'histoire. Mais je ne partage pas l'opinion de MM. Ferland at sulto, lorsqu'ils avancent qu'il a eu lieu de l'automne de 1543 au printemps de 154

Et roi i sur quoi je base mon assertion sinon mes preures:
Dans lo rexlonent do compte entre Cartier et Roberval arreté le 21 juin 1544 par Mtro lobort La Goupil, dorument dóronvert dans les archives de la ville de Saint-Malo par M Charles Chat ot dout M. Desmazières de Séchelles envoya une copie, en 1861, au préxident du la sumbé historique et littéraire de Québer, je lis ce qui suit:
lit en ce qui "st du tiors navire--celui qui fit partie du troisième voyage avec la (irtude Hermine יt l'Emerillon, - mettre pour dix-sept mois qu'il a resté au dict voiage du diat Cartior, it jour luit mois qu'il a esté it retourner quérir le dict Roberval au dict Canada, au

Wapmyant -ur co donment, je sontiens que si Jacques Cartier avait fait son qua-
 t.onjop pour obtair cot arrêté de compte du 21 juin 1544 , si l'on considère surtout que lo reglemont dess difficultís aver lioberval eut lieu en vertu d'une ordomance royale.
('ar, connaissant lu pays bour y avoir déja passé deux hivers, il n'est pas probable que Iacques Cartior, qui arait mis près de trois mois à faire chacune des traversées précédentes, -hit commis l'imprudence de s'embarquer après le ler septembre pour le Canada d'où il ne pourait gucre repartir avant le der mai.

Lu admettant qu'il ait eu a son retour une traversée exceptionnellement belle, c'est tout au plıs s'il ent puetre de retour à Šint-Malo dans la dernière quinzaine de juin, -est-i-dire vers l'ípoque où le règlement de compte concernant ce voyage était arrêté à Rouen.

Ainsi ce quatrième royage de Cartier, qui, d'après un document dont l'authenticité ne put être mise en doute, n'a été que de "huit mois," en aurait duré alors de neuf à dix.

D'un autre côté, le fait que nos historiens, qui paraissent bien renseignés sur les pas et démarches de M. de Roberval au Canada jusque vers le mois de juin 1543 , semblent avoir perdu complètement ses traces après cette époque, fournit en faveur de ma thèse un argnment qui a bieu sa valeur.
M. Garneau semble appuyer cette dernière conjecture, quand il dit: "le gouvernenr (M. de Roberval) partit dans le mois de juin avec soixante-dix hommes, pour voir s'il ne serait pas plas heurenx que Cartier, et s'il ne pourrait pas atteindre le pays où les sauvages disaient que l'on tronvait des pierres fines et des métaux précieux. Mais il paraît qu'il n'alla pas loin, si ou eu juge par le silence qui règne à ce sujet; car, malgré la perte d'uue
partie de ses relations, si Roberval eût fait quelque découverte importante, il en serait renu sans doute quelque bruit jusqu'à nous."

Sans rendre mon argumentation complètement inattaquable, toates ces concordances historiques sur lesquelles j'ai tenté de l'étayer, me semblent suffisantes pour me permettre d'exprimer l'opinion que ce quatrième voyage de Jacques Cartier a dû avoir lieu du printemps à l'automne de l'année 1543.

Expédition du marquis de La Roche

Avant de discuter l'epoque de l'expédition du marquis de La Roche, je vous demanderai la permission de citer quelques lignes du Cours d'histoire du Canala de l'abbé Ferland, qui me serviront à appuyer mon argumentation.
"Après le retour de Roberval en France, il s'écoula bien des amées, pendant lesquelles le Canada semble avoir été complètement perdu de vue par la cour du roi très chrétien. Néanmoins, la Grande-Baie et l'entrée du fleure Saint-Laurent continuaient d'être fréquentées par les Malouins, les Normands et les Basques, qui remontaient jusquà Tadousae pour y faire la traite des pelleteries. Lajaunaye-Chaton et Jarques Nö̆l, nevelux et héritiers de Jacques Cartier, vonlurent avoir aussi une part de re commerce lucratif, mais plusieurs de leurs pataches ayant été détruites par des compagnies rivales, ils présentèrent une requête au roi, afin d'obtenir une commission semblable à celle dont avait joui leur oncle. Par des lettres patentes en date du 14 janvier 1588 , ils furent antorisés à faire seuls le trafic des pelleteries. De leur côté, les marchands de Saint-Malo armèrent leurs vaisseaux pour résister à ceux qui tenteraient d'entraver leurs relations arec les sauvages, et ils firent jouer tant de ressorts que le privilège accordé à Chaton et ì Noël fut révoqué.
"Un homme bien plus important que les nercux de Jacques Cartier s'occupait rers le même temps de fonder des colonies dans le nord de l'Amérique. Troîlus du Mesgouez, marquis de La Roche, issu d'une ancienne famille de la Bretagne, avait été attaché à la cour dès sa jeunesse, comme page de Catherine de Médicis. Protégé par la reine, il reçut de nombreuses faveurs des rois Henri II, Frauçois II et Charles IX. Mais, soit que ces homneurs et ces richesses ne fussent point suffisants pour satisfaire son ambitiou, soit qu'il eût dans son esprit un but plus élevé, l'agrandissement de la puissance frauçaise, il sollicita une commission qu'il obtint de Henri III, en 1578....
"Le marquis de La Roche, muni de cette ample commission qui lui permettait de tout entreprendre, voulut, avant d'armer ane flotille, aller lui-même reconuaître le pays avec un seul vaisseau sur lequel il s'embarqua accompagné de Chédotel, habile pilote normand. Indépendamment de son équipage, il avait sur son vaisseau environ cinquante misérables tirés des prisons de France. La Roche aborda à l'île de Sable, qui ne convenait certainement pas à l'établissement d'une colonie, et, après y avoir débarqué ses ciuquante colons, il alla reconnaître les côtes du continent. Ayant pris tous les renseiguements dont il avait besoin dans la suite, il repartit pour la France, espérant toucher en passant à l'île de Sable, et y embarquer ses gens. Mais une violente tempête s'éleva et le poussa si rapidement vers l'est, qu'en moins de douze jours il abordait en France. A son arrivée il trouva des obstacles invincibles à un nouveau voyage d'exploration, et il fut momentanément forcé d'abandonner ses projets du côté de l'Amérique.
"Les troubles de la Ligue étaient commencés. Durant la guerre civile qui agitait alors la France, il prit le parti du roi et déploya une grande activité dans la Bretagne. En 1588, comme il traversait la ville de Sablé que les troupes de la Ligue menaçaient, il fut arrété par l'ordre du duc de Merceur et conduit au châtean de Nantes oǹ il resta prisonnier jusqu'en 1596, c'est-à-dire pendant huit ans.
"Cependant les malheurenx abandonnés sur l'ile de Sable étaient dans une triste position. Sur cette terre aride et désolée, ils avaient bien sujet de regretter la prison dont on les avait tirés. Pour se préserver des intempéries de l'air, ils se creusèrent des tanières dans le sable, on se construisirent des baraques avee des débris de vaisseaux trouvés sur le rivage. Heurnsement pour enx que les bestianx et les pourceaux qu'y araient laissés le baron de léry et les Portugais s'y étaient multipliés et suffirent avee la pêche à leur fournir de quoi vivre. Enfin, le marquis de La Roche, étant sorti de prison, raconta à la cour sa malheurense aventure en Amérique, et parla des homones restés sur l'île de Sable. Tourhe de compassion, le roi ordoman ii Chedotel, qui se rendait ì Terre-Nenve pour la peche, de lus ravillir un passant. Selon quelques crrivains, cet ordre fut donné par le parlement de Rouen. Quoiquil rn soit, Chédotel s'acquitta fidelement de sa mission. Il retrouva sur l'̂̀le douze hommes hideux, portant une longre barbe et converts de peaux de loups marins. On les t ransporta it la cour daus leur accoutrement sauvage, et ils furent présentés au roi, qui fit donner cinguanto óns à harmu d'enx."

Now hintorims ne sont pas tons d'acord sur la date de cette expédition funeste qui s'ist résumén par la tarrible catastrophe de l'ile de Sable. Les uns, s'appuyant sur une commission qui fut accordée an marquis de La Roche par Henri III, le 12 janvier 1578, arsurent qu'dla aut liou dans le cours de cette même année ; les autres prétendent au contrairn, guayant éterem ch lance par la guerre de la Ligue pendant laquelle il fut fait prisumior, le marquis de La Rovhe obtint une antre commission du roi Heuri IV, en 1598, vи quil a'avait pas pu se servir de la premiere.

Mon opiniou a moi, ust - bien que cette prétention soit très osée - que la tentative de colonisation do marquis de La Roche an Canada n'a été faite ni en 1578, comme les uns le somimmont, ni en 1598, comme l'aflirment les autres.

Il est raisonnable de supposer, comme du reste l'admettent la plupart de nos historims, fu". M. de la Roche n'a pu obtenir une commission qu'après la révocation de celle de Jacques Noel et Etimne Chaton. M. l'abbé Ferland semble le reconnaître, comme nous venons de de voir, de la maniere la plus explicite, et M. Garueau, après avoir dit que les denx nerenx de Jacques Cartier avaient sollicité du roi Henri III le renouvellement des privilèges qui avaient été necordés au découvreur du Canada, s'exprime ainsi: "En considération des services du grand navigateur, des lettres patentes leur furent accordées en 1588 ; mais aussitôt que la chose fit connue, les marchands de Saint-Malo se pourvurent en conseil privé et rénssirent à faire révoquer ce privilège, sans cependant beaucoup profiter cux-mémes de leur succès, car, dès l'année du rétablissement de la paix, c'est-à-dire en 1598, le marquis de La Roche, qui était de la Bretagne, fit confirmer par le roi une commission de lieutenant-général de l'Acadie, du Canada et des pays circonvoisins, que lui avait dejà accordee Henri III, et dont les troubles du royaume l'avaient empêché de jouir."

Enfin M. Sulte semble jartager l'opinion de ces denx historiens: "Ces débats soulerés à Saint-Malo autour des prétentions de la famille Cartier, dit-il dans son Histoire des Conadiensfrangais, finirent par attirer les yeux vers le Saint-Laurent. On eut conuais-
sance d'un gros commerce qui se faisait dans ces endroits. L'idée vint à quelques seigueurs de s'en faire accorder le monopole. Les Bretons remontrèreut du mieux qu'ils le purent contre une telle injustice; mais ces gens étaient de la ribaudaille inconnue on haut lieu. Néanmoins on laissa encore quelque temps la famille de Cartier leur tenir tête.
"Le inarquis de La Roche ne douna ni à une faction nià l'autre l'avantage de devenir maîtresse de la situation. En grand seigneur qu'il était, il passa par-dessus les manants, se fit pourvoir d'une patente exclusive, et mit à la voile... pour aboutir à la catastrophe de l'île de Sable (1578)."

Si nos historiens ne sont pas du même avis en ce qui concerne la date de l'expédition, au unoins semblent-ils tous d'accord sur un point, savoir : que le marquis de La Roche u'a reçu sa commission qu'après la révocation des privilèges dont jouissaient avant lui Jacques Noel et Etienne Chaton.

Ce point éclairci, il s'agit maiutenant de savoir à quelle date précise les lettres patentes furent accordées aux neveux de Jacques Cartier, et quand elles furent révoquées.

Un document qui se trouve dans les arehives municipales de Saint-Malo doit faire disparaître toute incertitude à cet égard. Voici ce que M. Desmazières de Séchelles écrivait, le 8 décembre 1860, au président de la Société historique et littéraire de Québec, relativement au document en question: "On voit dans nos archives municipales, sous lu date du 14 junvier 1588, des lettres de Henri III, en vertu desquelles, pour reconuaitre les services rendus à l'Etat par Jacques Cartier, leur oncle, Sa Majesté daigna accorder aux sieurs Eticnne Chaton de la Jaunaie et Jacques Noël ou Nouel, capitaines de navires et maitres pilotes de Saint-Malo, le commerce exclusif du Canada pendant domze ans, avee faculté à eux de transporter chaque année dans ce pays, pour l'exploitatiou des minés découvertes ou à découvrir, soixante criminels, tant hommes que femmes, condamnés à mort on à quelque autre peine corporelle. Mais cette faveur ne dura que jusqu'au 5 mai 1589, époque où les Malouins obtinrent du même prince la rétractation de ce privilège."

Si la commission du marquis de La Roche ne date que de la révocation de celle qui avait été accordée aux neveux de Cartier (pour peu qu'on s'en rapporte au dire de nos historiens) cette rérocation n'ayant été prononcée que le 5 mai 1589 , comme doit le prouver un document dont l'anthenticité me paraît indéniable, il est évident que l'expédition en question n'a pu avoir lieu ell 1578.

Une autre considération de nature à me confirmer dans cette opinion, e'est qu'il ne serait guère raisonnable de supposer, d'après la version de M. l'abbé Ferland, que le marquis de La Roche, fait prisonnier en 1588 , e'est-à-dire dix ans après sa malheureuse expédition, eût attendu jusqu'à sa sortie de prison, qui n'aurait eu lieu qu'en 1596, pour faire part au roi de la triste position dans laquelle il avait laissé ses compagnons sur lile de Sable.

Comment aussi expliquer le mutisme et l'indifférence coupables de ce Chédotel, qui avait coutume, paraîtrait-il, d'aller faire la pêche dans ces parages?

D'un autre côté, l'opinion de ceux qui placent l'expédition du marquis de La Roche en 1598 ne me paraît pas plus soutenable; car un des principanx incidents qui s'y rattachent se troure en contradiction directe arse des faits indiscutés de l'histoire de France.

Sans autres commentaires, je dirai donc que, s'il avait entrepris son expédition en 1598, le marquis de La Roche n'aurait pu être, à son retour, fait prisounier par le duc de Mereœur, qui avait fait sa paix avec Henri IV, le 20 mars de la même année.

Or, si ce voyage n'a eu lieu ni en 1578 ni en 1598, quelle année faut-il lui assigner? O'est là la question que je me suis posée. Je ne me flatterai pas de l'avoir résolue d'une manière irréfutable: mais je crois avoir fait une preuve de circonstances que vous trouverez pent-etre digne d'arrêter votre attention.

En admettant que le marquis de La Roche ait entrepris son voyage au Canada en 1589, c'est-à-dire l'année même où furent réroquées les lettres patentes des neveux de Jacques Oartier, il est fort possible alors qu'il ait été fait prisonnier, à son retour, par le due de Merccour qui, au printemps de cette même année, et à la suite de l'assassinat du duc de Guise, était devenu le chef du parti de la Ligue, en Bretagne.

Sa captivité aurait duré de 1589 à 1596 - époque à laquelle M . l'abbé Ferland en fixe le terme - et il aurait été relâché pendant la trève qui suivit l'abjuration de Henri IV.

Puis, peu de temps après sa sortie de prison, à l'assemblée des notables qui s'ouvrit à Rouen le 4 novembre 1596, et à laquelle sa naissance devait l'appeler, il aurait raconté au roi le triste résultat de sa tentative de colonisation au Canada.

Enfin. Messieurs, si l'appréciation que je viens de faire de ces deux points de notre histoire ne vous semble pas exacte, j'espère que vous voudrez bien reconnaître au moins qu'elle a le mérite de faire concorder les principaux faits qui s'y rattachent avec des documents d'une incontestable authenticité.

Peut-être est-ce ici le cas de dire: Se non é vero é bene trovato.

II - Etude sur une famille canadienne:-Famille De Catalogne.

Par L'abbé C. Tanguay.

(Lue le 22 mai 1884.)
La Nouvelle-France venait d'être cédée à la couronne d'Angleterre.
Un grand nombre de ses enfants dévoués ne pouvaient se faire à l'idée d'avoir à vivre à l'ombre d'un drapeau étranger et sous la domination d'un gouvernement qu'ils avaient combattu pendant de longues années. Le sentiment si naturel de l'orgueil national vibrait trop fortement dans leurs cœurs: il fallait nécessairement s'éloigner, retourner daus la mère patrie, ou prendre le chemin de l'exil.

Au nombre des familles qui disaient adieu à leur patrie d'adoption, au Canada, pour se rendre, les unes daus la vieille France, les autres dans une colonie française, la Martinique, se trouvait la famille de Gédéon de Catalogne, dont l'aucêtre était venu se fixer au Canada, vers la fin du siècle précédent (1685). Cette famille va faire le sujet de l'étude que j'ai l'honueur de soumettre à la Société.

Plusieurs raisons en ont motivé le choix :
1o La noblesse d'origine qui l'a distinguée;
20 Ses alliauces nombreuses avec les plus remarquables familles canadiennes;
30 Les services éminents qu'elle a rendus dans la défense de la colonie, et dans le génie civil et militaire, aussi bieu que dans les lettres et dans l'histoire.

Branche aînée

L'origine de la famille De Catalogne se perd dans la unit des temps. On lui assigne toutefois le Béarn pour berceau.

D'après une tradition bien accréditée, un Jean de Catalogne accompaçnait Lonis IX en Egypte, en 1249, et assistait à la prise de Damiette, où il se distingua par sa bravoure. C'est en mémoire de cette campagne que le croissant se trouve dans les armoiries de la famille.

Une branche de ses descendants se trouve établie dans le Bazadois.
La bibliothèque nationale, département des manuscrits, possède un acte notarié eu date du 15 janvier 1565, concernant le sieur Louis de Catalogne, demeurant à Pommier en Bazadois.

De 1590 à 1660, on trouve à la mairie de la commune de Saint-Félix de Toucande dont dépend Pommier, une dizaine d'actes de l'état civil des différents membres de cette famille.

Les archives départementales de la Gironde et des Basses-Pyrénées contiennent aussi plusieurs pièces la concernant.

C'est en 1766 que la branche aînée De Catalogne s'éteignit. Elle avait en apanage le marquisat de Mauléon, ${ }^{1}$ qui tomba en quenouille, faute par la brauche cadette de réclamer

[^0]
whys.
Le major Provost commandait alors la garnison de Québec, en l'absence de M. de Frontenac, le gouverneur.
. Las nombrenses familles dont il est l'ancêtre, comptent des membres distingués dans l'état ecclésiastique et dans la magistrature. Voir le Dictiomnnire genealogiqu.

On retrouve le nom de Gédéon de Catalogne trois ans plus tard (1693) mentionné à l'occasion d'une antre expédition anglaise, que commandait le chevalier Fraucis Wheeler.

Dans le rapport des officiers de cette année (1693) Gédéon est mentionné comme bon officier et honorable homme.

En 1709 (14 octobre) les MM. Raudot, intendants, recommandaient d'une manière toute spéciale la promotion de Gédéon de Catalogne, dans leur lettre adressée au ministre :
"Les sieurs Raudot enrent l'honneur de vous euvoyer l'année dernière les cartes du gouvernement de Montréal qui vous furent préscutées par le sieur de Marigny. Ils ont l'honneur de vous envoyer cette année celles des gouvernements des Trois-Rivières et de Québec. Le sieur de Catalogne, lieutenant des tronpes de ce pays, qui a levé toutes ces cartes, s'est donné toutes les peines et tous les soins possibles pour qu'elles fussent justes et exactes. Ils peuvent vous assurer qu'il mérite l'honneur de votre protection, et que vous ayez la bonté de vouloir bien l'avancer dans la promotiou qui est à faire en ce pays: ses services, Monseigneur, et tous les mouvements qu'il s'est donnés pour ces cartes leur font espérer que vous voudrez lui accorder une place de capitaine. Cette récompense qu'il mérite par plusieurs endroits, vous épargnerait une pension qu’il mériterait pour cet ouvrage qui Jui a coûté deux amées de travail pendant lesquelles il a été obligé de visiter toutes les côtes de ce pays et même dans les temps les plus rudes et les plus difficiles. Cet ouvrage, Monseigneur, lui a attiré l'indignation du sieur LeVassenr, ${ }^{3}$ ingénieur en ce pays, qui lui demanda au châtean, devant Mme la gouvernante, de quel ordre il travaillait, et făché apparemment de ce qu'il faisait, par les ordres que vous aviez eu la bonté de nous donner, il lui dit qu'il vous manderait que toutes ces cartes n'étaient point justes, le dit sieur de Catalogne ne put souffrir, Monseigneur, qu'on le condamnât sans avoir vu son ourrage, et lui dit que pour juger et décider entre eux de quelque chose, il y faudrait toujours un troisième. Ils peurent cependant vous assurer qu'elles sont très justes, ayant été exposées ici pendant plus de quinze jours, à la censure de tout le monde, et il n'y a personue qui ne les aient trouvées de cette manière, si bieu même que plusieurs personnes veulent en faire faire des copies sur les originaux qui sont restés ici."

M. Gédéon de Catalogne, auteur

La Société historique de Québee publiait, il y a quelques années, un onvrage qui a pour titre: "Recueil de ce qui s'est passé en Canada au sujet de la guerre tant des Anslais que des Iroquois, depuis l'année 1682."

Ce recueil si intéressant ne porte ancune signature, et jusqu'à ce jour, il a semblé impossible d'en connaître l'auteur.

La Collection de manuscrits récemment éditée (1884) sous les auspices de la législature de Québec, attribue ce mémoire ou recueil à M. De Léry, ingénieur. (Voir la note de la page 625.)

Quelques citations de ce recueil que je me permettrai de faire ici, démontreront à l'évidence, je l'espère, que l'écrivain qui, daus ce recueil, se met à la première personne en relatant des faits accomplis de 1695 à 1712 , est bieu le même que les annalistes désignent

[^1]Soc. I, 1884-2.
sous le nom de De Catalogne. Il ne peut être question de M. De Léry, dans ces années, puisqu'en 1695 il n'arait encore que treize ans d'âge, et que les instructions de partir pour le Canada ne lui furent domnées que le 23 juin 1716.

Ou trouve encore à la page 54 de la quatrième série du même recueil publié par la Société historique, année 1695: "On envoya à M. de Louvigny, au lac Saint-François, deux détachements, l'un commandé par M. de Repentigny, et je commandais le second."
"Ie a4 février, l'hôpital de Montréal brûla. Le 28, M. de Callières fit assembler tous les principaux habitants dans la paroisse, où chacnu fit des offres pour le réparer. On me chargea de la conduite des travaux."

Rapprochons maintenant cet article de celui que nous lisons dans la vie de Mle Mance, où il est dit :
"Après l'incendie de l'Hôtrel-Dieu de Montréal, M. Géléon de Catalogne vint au secours decette communauté si f́prouvée. Architecte habile, il prépare les plans du nouvel édifice, dirige les hommes pour la préparation des bois nécessaires au rétablissement de l'HôtelDien, et, conjointement avee M. Jothier, marchand de Montréal, est chargé de la direction dus travanx, par me délibération prise dans une assemblée générale des citoyeus présidée par M. de Callieres.
"Cas denx messicurs s'aequitterent de cette commission honorable avec toute l'activité qu'on pouvait attendre de leur parfait devonement." (Vie de Mlle Mance, t. II, p. 130.)

M. G仿免on ine Catalogne, ingínieul militaime.

A la pare fleme du recteil, on lit ancore: "Je fus envoyé pour faire faire l'enceinte de la ville des Tross-Kivieres.
"La 2 novembre suivant, nous purtimes de Québec an nombre de quarante Frauçais et quarante Abénaquis, et arrivanes à llaisance ('Terre-Neuve) le 15 novembre.
"On envisagea les consíquences qưil y avait de fortifier Chambly, étant le passage de l'ennemi.... Le's intendants ordomèrent des fonds pour cette dépense et obligèrent wous les habitants du grouvernement de Montríal d'y donner chacun huit jours de corvée, et que pour commencer ces ourraqes et les mettre en état de défense, on m'ordonna de m'y transporter, l'antomne, pour y faire amasser des matériaux."

Une page, pour les amées 1711-1712, se lit eucore comme suit:
"Lon arait commencé à jeter les fondements de deux redoutes à Québee pour cire continnés l'année suivante, quoique les fonds fussent épuisés.
" L'une des redontes fut achevce, à la menuiserie près, et la maçonnerie de l'autre monté au carrí, et en outre on fit un mur le long de la côte du Palais, jusque vis-à-vis l'Hótel-Dieu, et on commença deux bastions et la courtine, entre la redoute du Cap-auDiamant et le cavalier de M. Dupont ${ }^{4}$ et ces ouvrages en sont demeurés là.
"M. de Beancour ayaut êté curoyé à l'île Royale, je fus chargé de la conduite des ouvrages et des toises."

En 1714, l'actif et intelligent Gédéon dirigeait eucore à Québec les travaux de la redoute du Cap-au-Diamant et du chateau Saint-Louis.

[^2]Six ans plus tard, il était envoyé en garnison à Louisbourg, Cap-Breton, où il présidait à l'exéeution des travaux de fortification de cette ville. ${ }^{6}$

C'est dans cette dernière ville que Gédéon de Catalogne terminait une carrière des plus honorables et des plus chrétiennes, rendant son âme à Dieu, le 5 jauvier 1729.

Il laissait pour héritiers de son étomante activité et de ses .qualités sociales, un fils, Joseph, et cinq filles, Mmes Damours, Gamelin, Pothier, Dubuisson, De Gannes-Falaise, et De Landriève. ${ }^{\text {b }}$

II - Joseph

Joseph, fils de Gédéon, naquit à Montréal le 5 mai $1694 .{ }^{7}$ Son père après l'avoir fait étudier à Paris, lui fit prendre le parti des armes, et, dès l'année 1722 , il recevait sa commission d'enseigue. Il servit eu cette qualité à l'île Royale en 1727 , et trois ans plus tard il était élevé au grade de lieutenant de marine.

En 1733, le 3 février, il épousait à Montréal Charlotte Dubuisson.
Ses mérites lui obtinrent bientôt l'honneur d'être décoré de la croix de chevalier de l'ordre royal de Saint-Louis.

Bien que militaire expérimenté, Joseph s'était adonné à la littérature et aux sciences. Il composa un Traité sur l'aiguille aimantée, qui lui valut un fauteuil à l'Académie des sciences de Paris.

Malheureusement pour la science et la colonie, il décédait à Louisbourg en 1735, six ans seulement après son père, ne laissant qu'un fils, Louis-Charles-François-Gédéon.

III - Louis-Charles-François-Gédéon

Louis-Charles-François-Gédéon, fils unique de Joseph, naissait à Lonisbourg le 14 février 1734. Il voulut, comme ses ancêtres, embrasser la carrière militaire, et comme eux fut décoré de la croix de cheralier de Saint-Louis.

Il fut un des braves de 1759 qui combattirent si vaillamment pour conserver à la France cette belle et raste contrée du Cauada. Le succès n'ayant pas couronné leurs efforts, le Canada fut cédé à la couronue d'Angleterre.

En 1765, une ordonnance portait' que tous les propriétaires canadiens qui voulaient demeurer au Canada et prêter serment de fidélité à l'Angleterre, resteraient en possession de leurs biens.

Mais le caractère de l'officier français ne lui permit pas de se plier sous la domination d'un souverain étranger, et dès lors il renonça à ses propriétés, pour rester fidèle à la foi jurée au roi et à la France, aimant mieux perdre ses titres et ses droits à la seigneurie des Prairies-Marsolet, qui était passée dans sa famille, que de consentir au sacrifice de sa nationalité. En 1766, il partit pour Saint-Domingue, où bientôt il eut le commandement de la place des Cayes, qu'il conserva jusqu'à sa mort, arrivée en 1781. Son corps repose daus l'église de Saint-Pierre de Saint-Domingue.

[^3]De son mariage avec Mle Louise Guyon-Desprès, célébré le 19 férrier 1759 à Montréal, naquit Charles-Gédéon.

IV - Charles-Gedeon

Né à Montréal le 11 septembre 1764, Charles-Gédéon n'eut pas l'avantage de connaître sa mère patrie, puisqu'en 1766 scs parents passaient à la Martinique; mais il avait devant lui l'exemple de ses ancêtres dont il retraçait la lignée jusqu'aux croisades et dont il lisait les armoiries:

D'or au chevron de guenles accompagné au chef dun croissant et d'une étoile du meme, en pointe đun pin au naturel sur une terrasse sablée. L'écu timbré d'un easque de baron, orné de tous ses lambrequins.

Il entra et fit ses études à l'école militaire de Paris et obtint la décoration de SaintLazare décernée anx six premiers de l'école. En 1782, il partit pour l'Espagne, avec son régiment et assista aux batailles de Cadix et de Gibraltar. Il eutrait, l'année suivante (1783), alu régiment de la Martinique, et dès lors servit avee grande distinction. De brillants faits d’armes signalerent sa présence à Sainte-Lacie.

En 1790, il obterait le grade de capitaine, et quelque temps après, bien jeune encore, il était decoré de la croix de saint-Louis.

C'est it cette époque (1791) qu'il 'pousa Mile Gallet de Saint-Aurin, appartenant à une des familles les plus honorables de la Martinique. Elle décéda en 1840, à Saint-Pierre de la Martinique.
"En 179\%, érit Sydney Daney, il la tête de duelques royalistes, il s'empara de la batterie Carnicas, an Gros-Morne, afin de combattre Rochambean, lieutenant-général des armées de la Rópublique, ut gouverneur de la Martinique, qui se trouvait à la tête des patriotes.

Dans l'attaque du morne Vert-J'ré par Rochambeau, les colons, ayant négligé de suivre lessonsids du Charles-Gídéon, furent battus. Celui-ci put néamoins réunir quelques compagnons pour prévenir less suitos d’une dófaite qui pouvaient être terribles. Il protégea ainsi les fommes et les enfants qui fuyaient un vainqueur dont ils étaient loin d'avoir 'utmdu vanter la clémence. Il vonlut même les conduire jusqu'â la Trinité, où ils s'embar-quérent."-(Histoire de la Martinique, par Sidney Daney, imprimée à Port-Royal en 1846.)

LiAngleterre s'étant rendue maitresse de l'ile de la Martinique, en 1794, Charles-Gédéon crut, dans son patriotisme héréditaire, devoir renoncer à la carrière des armes plutôt que d'accepter les oflros brillantes que hifaisait le nouveau gouverneur do la colonie alors dovenne un des joyaux de la couronne d'Angleterre.

A cette époque défà bien éloignée, il ne pourait en aucune manière témoigner que des sentiments de froideur pour la nation maitresse de l'ile.

Il conçut meme, en 1809, le projet d'un coup d'Etat, pour en reprendre pessession ; mais trahi dans ses plans, il cut à subir une longue détention au fort Saint-Louis.

Vaincn mais non abattu, Charles-Gédéon répondit au gouverneur anglais qui, présidant au conseil réani pour le juger, lui reprochait d'ctre hostile au gouvernement de Sa Majesté britannique: "Qu'entendez-vous, Monsieur le gouverneur, par eette expression "hostile"? "Est-ce que vous voudriez faire couler du sang anglais clans mes veines? Ce serait aussi difficile que "de faire couler du sang frangais dans les vôtres. Ce qui est un mérite pour vous serait donc un "crime pour moi!"

Ses juges, quiétaient d'ailleurs des gens d'honneur, n'osèrent pas condamner un citoyen aussi dévoué et aussi ferme. Il fat remis en liberté.

Les représentants du gouvernement français qui, en 1814, avait repris possession de l'île, n'oublièrent pas, dans sa retraite, le brillant officier du régiment de la Martinique, et mettant à profit son zèle, son courage, ses lumières et son expérience, ils le nommèrent d'abord commandant, puis colonel du bataillon des milices. Il fut successivement membre du conseil général et membre du conseil privé, et, en 1823, il était décoré de la croix de la Légion d'homneur.

Le brave, loyal et généreux Charles-Gédéon s'éteignit le 9 août 1854 à la Martinique, à l'âge de quatre-vingt-dix ans.

V - Auguste-François-Marie-Gédéon

Né en 1796 à Saint-Domingue, Auguste-François-Marie-Gédéon épousait ell 1823, Mile Marie-Louise-Joséphine de Carbonel, originaire de Provence, et petite nièce de l'abbé de l'Epée. Il était lieutenant des bataillons coloniaux, et membre du conseil colonial. II mourut le 31 janvier 1850 à Madison, Etat de New-Jersey, laissant deux fils GédéonAuguste et Jules-Charles.

VI-Gédéon-Auauste

Gédéon-Auguste, fils aîné du précédent, reçut le jour le 8 juillet 1824 , ì Saint-Pierre de la Martinique. Il y étudia le droit et y exerça les professions de notaire et d'avocat. Dans l'Etat présent de la noblesse française on trouve mentioné le baron Gédéon de Catalogne, notaire à Saint-Pierre de la Martinique. ${ }^{8}$

Le 16 novembre 1852, il épousait Mlle Louise-Hylaris Tiberge, fille de NobleHypolite Tiberge ${ }^{9}$ et de demoiselle Hodebourg DesBrosses. Cette dernière était parente avec les Dauray de Maupertuis, les Tascher de la Pagerie et les Dubue de Rivery, dont un des membres, Mlle Aimée, fut enlevée par des pirates sur les côtes d'Algérie, et envoyée par le Bey comme présent au Grand Ture Sélim III.

Elle devint sultane favorite, et à l'avènement de son fils Mahmoud II au trône, en 1808, elle fut déclarée sultane validée.

Gédéon-Auguste est décédé à Saint-Pierre le 10 septembre 1861, ne laissant qu'un fils Paul-Louis-Gédéon, et une fille, Marie-Gabrielle-Laurence.

VII - Paul-Louis-Gédéon

Paul-Louis-Gédéon, septième descendant de la branche cadette, est aujourd'hui l'héritier des titres de cette famille si remarquable. Il occupe la propriété de ses pères, et possède toute l'estime de ses concitoyens.

[^4]Quelque temps après la publication du premier volume du Dictionnaire généalogique, l'auteur recevait de M. Paul-Louis-Gédéon de Catalogne la lettre suivante:
" Monsieur l'abbé,
" J'ai appris, par une revue littéraire, que vous aviez publié un premier volume du dictionnaire des familles canadiennes. J'ai songé immédiatement à vous écrire pour vous expédier quelques documents concernant ma famille qui a habité le Canada pendant près d'un siècle. Je regrette vivement qu'ils ne soient pas plus détaillés; mais toutes mes tentatives pour les compléter sont venues échouer contre le mauvais vouloir de l'archiviste du ministère de la marine, à Paris.
" Plus heureux que moi, vous avez sans doute pris connaissance, aux archives de la marine, d'une somme de documents dont l'accès est refusée à beaucoup d'historiens archéologues. Nul doute aussi que vos archives du Canada ne soient très riches et très précieuses.
" De nombreuses familles françaises, Monsieur l'abbé, doivent s'intéresser vivement à votre ouvrage; depuis longtemps en effet, les noms de nos exilés du Canada attendaient une plume généreuse qui les réveillât de l'oubli et des ténèbres dans lesquels ils étaient plongés ; c'est assez vous dire, Monsieur l'abbé, le succès qui attend votre dictionnaire.
" Permettez, Monsieur l'abbé, que je vous exprime les vœux les plus sincères pour que le deuxième volume de votre intéressant et si précieux ouvrage rencontre le succès mérité de son ainé. Plusieurs de mes amis, dont les familles ont eu des alliances au Canada, s'intéressent vivement à votre publication, et se sont adressés à un libraire de Paris pour le faire venir du Canada.
" Veuillez agréer, Monsieur l'abbé, l'assurance de ma considération la plus distinguée.

III - La province de Québec et la langue française,

Par Napoléon Legendre.

(Lu à Québec le 29 mars 1884, et approuvé a Ottawa lo 21 mai suivant.)

Il y a maintenant près d'un siècle et un quart que nous avons passé de la domination de la France à celle de l'Angleterre. Après la grande bataille qui a placé le drapeau étranger sur nos murs, mais surtout après le traité par lequel la cessiou du pays a été ratifiée, il n'est resté sur cette ancienne terre française qu'une simple poignée de Français. Ils n'avaient pour vivre que leur hache et leur monsquet; mais leur cocur était anssi grand et aussi fort que l'immense et vigoureuse forêt à laquelle ils allaient livrer bataille, comme leurs pères l'avaient fait depuis au-delà de deux cents ans. Et ces Français, sans consulter leur nombre, se sont mis hardiment à l'œuvre. Or, ce n'était pas une chose ordinaire que celle qu'ils entreprenaient. Non seulement il leur fallait tirer péniblement leur existence quotidienne d'une culture sans cesse interrompue ou ruinée par les incursious des saurages et des bêtes fauves, mais ils devaient en outre latter constamment et pied à pied contre un envahissement encore plus redoutable, celui des mœurs, des coutumes et de la langue d'un étranger. Sans aigreur et sans haine, mais anssi sans faiblesse et sans compromis, ils ont fait cette lutte par tous les moyens honnêtes et légaux qu'ils avaient à leur disposition. Ils out passé successivement sous le règne d'uine commission militaire, puis d'une commission mi-partie civile et militaire, ensuite sous un gonvernement civil absolu, puis sous un régime soi-disant constitutionnel et représentatif, accordé en 1791. Mais ce gouvernement, qui n'était ni assez large ni assez populaire, a dû subir beaucoup de modificatious, en 1841, pour arriver à la coustitution plus libérale eucore de 1867, sous laquelle nous vivons.

Pour nous, aujourd'hui, cette période peut sembler courte, et il suffit de quelques lignes pour la résumer. Mais songeons à la durée qu'elle a eue réellement pour ceux qui ont été obligés de la subir, de la vivre jusqu'à la fin, et nous aurous une idée de l'immense travail accompli.

Or, pendant toutes ces luttes que l'elément français a dû souteuir sur ce continent, qu'a-t-il gagné? tout ; qu'a-t-il perdu? rien. Pour tous les avantages sérieux qu'il a conquis si longuement et si péniblement, il n'a sacrifié rien de l'héritage précieux qui lui avait été confié : sa foi, ses coutumes, sa langue ; il l'a conservé iutact comme au premier jour. Bien plus, il s'est accru et développé dans des proportions étonnantes. Les quelques milliers de familles qui sont restées attachées au sol canadien après le traité de 1763, forment aujourd'hui au delà d'un million d'âmes, sans compter les deux ou trois cent mille des nôtres établis sur le territoire qui nous avoisine, et qui forment autant de groupes au milieu desquels se conservent et se cultivent les traditions de la famille et de la nationalité. Non seulement nous ne uous sommes pas laissés envahir, mais nous avons envahi les autres. Et avec cela, - j’aime à le répéter, - sans cesser d'étre les loyaux sujets du
nonveau pouvoir sons lequel nous jouissons maintenant, du reste, des plus grandes libertés, nous sommes restés français par le cœur, par les coutumes et par la langue. Mais c'est surtont cette conservation intacte de la langue française qui forme un des traits les plus saillants de cette merveilleuse ritalité dont l'histoire du monde ne nous offre que bien pen d'exemples.

En effet, on conçoit facilement que les Français du Canada aient gardé leur religion, d'abord pare qu'm traité solemel lenr en assurait le libre exercice, et que, du reste, c'ótait mupoint sur lequel on ne ponvait les attaquer qu'avec les plus grands ménagements. l'our ce qui est des coutumes, on sait qu'il est extrêmement difficile de les déraciner the\% un peuple, dans quelques circonstances qu'on le place; et, au surplus, nos noureanx ronvernants n'avaient ancun intérêt immédiat à nous susciter des embarras sur ce point. Mais, quant an langrage, nous étions dans une tout autre position. Mélés constanment à un peuple qui parlait une langue étrangère, nos pères étaient obligés de se servir de cette lange non seulement dans la plupart de leurs rapports journaliers, mais encorn pour faire valoir on défendre leurs droits devant les tribunaux, et surtout devant le pouroir législatif, on bien pour comprendre des édits et ordonnances qu'on ne se donnait pas toujours la peine de leme traduire. On conçoit, dès lors, quels efforts il leur a fallu faire, quels combats ils ont diusoutenir pour ne pas se laisser entrainer peu à peu sur la pente vers laguelle tont concourait a les faire glisser. Et, quand on a sous les yeux le travail constant gue font les l'russions dans le but de germaniser l'Alsace et la Lorraine en imposant la langue allemande ot en proscrivant par tons les moyens l'usage du francais, on peut comprendre ce que faisait ini, dans un but analogne, une bureaucratie qui avait tout à grauner en allirmant son zèle ardent contre notre nationalité. Placés dans une position dija inférieure sons le rapport de l'existence matérielle, attendu que dans tons les états, professions, on emplois publics, la race qu'on qualifiait modestement de supérieure était naturellement la plus favorisée, nos compatrintes avaient encore le desavantage d'étre obligis d'apprendre doux langues pour ne pas être exposés à se heurter chaque jour, dans les dútails ordinaires do la vie, contre des obstacles et des retards continuels.

La difficulté ćtait moins grande, peut-être, pour les habitants des campagnes, qui se tronvaient moins sonvent en contact avee l'elément étranger; mais, dans les villes et les centres un peu considérables, oi la population était tonjours plus ou moins mélangée, c'était un danger, et par conséquent une lutte de tous les instants.

Une autre source de péril cetait le manque de livres et de journaux. On comprend que, par suite du nombre restreint des lecteurs, celni qui imp:imait un livre ou publiait un journal dans notre langue pouvait rarement faire rentrer ses avances, et perdait le plus souvent des sommes relativement fortes, sans compter le sacrifice de son temps et de son travail. Il s'ensuit done que ceux qui voulaient se renseigner sur les affaires publiques ou augmenter leur instruction sur d'autres points étaient obligés do recourir aux journaux et aux lirres imprimés dans une langue étrangère, qui nous arrivaient en grand nombre soit d'Angleterre soit des Eitats-Unis. Et cet état de choses a duré assez longtemps pour que bien des personnes, vivantes encore aujourd'hui, se souviennent d'avoir été obligées de copier en classe la plupart des cours qu'elles suivaient, parco qu'il n'y avait qu'un seul lirre imprimé pour le professeur; sonvent même ce livre unique faisait complètement defaut.

Dans les circonstances ordinaires, il aurait pu en résulter un moindre inconvénient;
mais, étant donné la situation qui nous était faite et la pression morale que nous éprouvions de toutes parts, il y avait là un danger que nous n'avons évité que grâce aux plus continuels efforts et au déploiement du plus grand patriotisme.

Et, au milien de ces tribulations qui prenaient souvent la forme de séductions, nons sommes restés fermes et inébranlables jusqu'à la fin. Nou seulement nous avons conservé notre langue dans toute sa pureté, dans toute son intégrité, mais nous l'arons même fait accepter à cenx qui voulaient nous imposer la leur. Par nos protestations incessantes, par nos efforts persistants, nous en sommes arrivés à faire reconnaitre à la langue française le droit de cité dans ce pays qu'elle avait jadis conquis à la civilisation, et dont on avait vouln plus tard l'expulser; nous l'avons fait mettre sur un pied d'égalité avec la langue de nos compatriotes d'une autre origine. Et, s'il nous est permis de nons enorgueillir dn travail que nous avons accompli sous ce rapport et du succès qui l'a couronné, nous ne devons pas oublier d'apprécier en même temps comme il le mérite l'esprit si libéral du pouvoir qui a su, lorsqu'il a été suffisamment éelairé sur la sitnation, nous rendre cette justice et faire amplement droit à nos légitimes aspirations.

Du reste, ceux qui ont voulu se mettre an-dessus des mesquins intérêts on des querelles du moment, ont toujours, même en Angleterre, estimé à sa véritable valeur ce sentiment si naturel qui nous faisait lutter sans relâche pour la conservation de notre langue et par conséquent de notre nationalité. Voici ce que disait lord Grenville, lors de la discussion du projet de constitution de 1791: "On a appelé préjngé l'attachement des Canadiens à leurs coutumes, à leurs lois et à leurs usages, qu'ils préférent à ceux de l’Angleterre. Je crois qu'un pareil attachement mérite mu antre nom que celui de préjngé ; selon moi, cet attachement est fondé sur la raison et sur quelque chose de plus élevé encore que la raison, sur les seutiments les plus nobles du cœur humain." Et cet esprit large et impartial que nous constatons chez plusieurs de nos gouverneurs, entre autres lord Durham, sir Charles Bagot, lord Elgin et lord Dufferin, ne se retronve-t-il pas heurensement anjourd'hui dans les belles paroles que prononçait S. E. le marquis de Lorne, gonverneur général du Canada, lors de l'inauguration de cette académie qui lui doit sa fondation: "Dans une des sections, ceux de nos concitoyens qui tirent leur origine de la vieille France, pourront discuter, avec cette élégance de diction et cette critique judicieuse si remarquable chez eux, tout ce qui a trait à leur littérature; ils s'y attacheront à conserver dans tonte sa pureté le grand idiome qui est entré pour une si large part dans la formation de la langue anglaise."

Anjourd'hui donc, non seulement la langue française est une des langues officielles dans notre province de Québec, mais elle est aussi, nou pas simplement tolérée, mais légalement reconnue au siège du pouvoir fédéral. Dans les débats du parlement d'Ottawa, et dans la correspondance officielle des départements, l'usage des deux langues est facultatif; et les lois, de même que les documents publics et le Hansard, ${ }^{1}$ doivent s'imprimer et se publier en français et en anglais.

Nous pouvons donc montrer avec une légitime fierté la position que nous avons couquise, au point de vue de la langue surtout, puisque dans cette académie, sur quatre-vingts fauteuils, nous en possédons vingt-six.
${ }^{1}$ Compte-rendu officiel des débats du parlement.

Voilà, succinctement, la vie que nous avons faito depuis plus d'un siècle et les résultats que nous arons obtenus.

Mais il y a encore une espérance que nous n'abandonnons pas et que nous devons, par tous hos elforts, tacher de réaliser, c'est d'etre reconnus officiellement, sous le rapport du langage, par le pays d'où nos ancêtres sont venus; c'est d'être admis à concourir, comme nos frères d'outre-mer, ì l'augmentation de l'héritage paternel. Car, cette langue si belle, qui est restée la langue officielle de presque tontes les cours de l'Europe, non contents de la conserver dans toute sa pureté et son intégrité, nous l'arons enrichie diune fonle de mots et de locutions empruntées à des circonstances nouvelles ot qui ne pouvaient se produire que difficilement ailleurs qu'ici. Placés dans une sitnation speriale, dans un miliou different de l'ancien monde, non seulement au point de vae du modu de vivre, mais encore sous le rapport de la nature matérielle, nous avons dû nécessairment exprimer des états nonveaux et des idées nonvelles, par des mots nouveaux. ('es mots, nous les avons crés et nous nons en servons tons les jours. Avions-nous le droit du lus crópr? arons-nous droit de nous en servir? Et pourquoi non? Une langue nowt pas mue thos, immuable ; ib est vai qu'on peut bien en fixer d'une façon à peu près déflution las rèrles grammationas, mais fanais on me pourra empecher ceux qui la parlent diendre on de modilier d'un commm acoord et suivant les circonstances, certaines expressions, on bien, an besoin, do wind des expressions nouvelles. Autrement, cette langue passorait bimotot à lítat du langue morte on tout an moins condamnée; car ici, grâce à la rapidite avee lactulle marche le siede, tont moment d'arret est presque un pas en arriern. Aussi, malırpé les défenses solemmelles de l'Académie, on voit la langue française saugnentor chagne jour de mots nonvanx que le dictiomaire officiel rejette, mais qui sont armeillis par Busicherelle, Poitevin, Littré et surtout par Laronsse, sur ce principe, sans donte qu'un dictionnare est mincipalement un registre de constatation, et qu'on doit exareer la plus grande prudence quand il s'agit de déclarer qu'un terme usuel est ou nést pas admissibln. C"est à la totalité de cemx qui parlent et qui écrivent qu’il appartient, dans coe cas, duse prononcer. Et cest pourquoi, malgré les dictionnaires mêmes, vous royez les erands journanx et les grandes revues affirmer ici leur autorité. Ouvrez la Reme des deux mondes, la Nouvelle Revue on l'Officiel, et vous y rencontrerez très souvent des expressions on des acceptions que les dictionnaires ne doment pas. Pour cela, en sontelles moins frauçaises et en resteronteelles moins dans la langue? Au contraire, ellos s'y fixeront darantage, ef les antorités officielles, pour être les dernières à céder, seront bien forcés, un jour on l'autre, de les accucillir et de les reconnaître. Au surplus, la même chose se produit dans toutes les laugnes; c'est une espèce d'évolution qu'il est impossible d'arreter. Et, sous ce rapport, nous ne pouvons pas citer de meilleur exemple que celui de nos roisins des Etats-Unis, dont le dictionnaire est beaucoup plus étendu que les dictionnaires faits en Angleterre, grace an grand nombre de mots nouveanx que les circonstances ont fait surgir.

Or, dans ce mouvement de progrès, nous, les représentants légitimes de la langue française dans l'Amérique du nord, nous avons marché avec les autres, et nous avons apporté notre quote-part de travail. Pourquoi maintenant ce trarail serait-il mis de côté, rejeté par cenx qui ont la mission officielle de l'etudier et de le juger? Pourquoi ces expressions que nous avons été obligés de créor n'entreraient-elles pas de plein droit dans le dictionnaire de la langue frangaise, avec une note indiquant le lieu de leur prorenance?

Voilà ce que je demande, et ce à quoi je crois sincèrement que nous avons droit.
Je ne veux pas, naturellement, parler ici d'un grand nombre d'expressions que l'on trouve dans les glossaires sous le titre: "d'Expressions particulières au Canada," et qui ne sont que des variantes, sourent légères, de prononciation, telles qu' on en trouve dans certains départements, en France. Ainsi, je m'inquiète fort peu qu'on dise fanil pour fenil, détorse pour entorse, greyer pour gréer, ondains pour andains, etc., ou bien encore qu'on se serve de certaines expressions démodées, usitées dans quelques provinces seulement, comme jouer aux marbres, pour jouer aux billes, siler, dans certains cas, pour sifler, dévirer pour retourner, etc. Plusieurs de ces mots disparaissent à mesure que l'instruction se répand; quant aux autres, ils donnent à notre langage un certain cachet d'originalité et d'archaïsme, que l'on aurait tort de lui reprocher dans la plupart des cas.

Mais les expressions ou acceptions auxquelles je tiens davantage, et pour lesquelles je réclame le droit de cité, ce sont celles que nous n'avons pas été libres de ne pas créer, et qui, pour la plupart, du reste, suivent exactement les règles d'une judicieuse étymologie, ou bien sont de bonnes adaptations du terme anglais correspondant.

Ainsi, les mots balise, baliser, sont deux termes de marine. En France les balises d'un port sont des bonées qui en marquent l'entrée; le verbe buliser s'emploie daus le mêne sens. Ici nous avons étendu cette signification. Pour indiquer la place des chemins, en hiver, sur nos grands champs de neige ou sur la surface glacie des fleuves et des rivières, on plante, de chaque côté, de petits sapins ou autres arbustes, qui guident le voyageur, quand les rafales on la poudrerie ont effacé la trace des voitures. Ces arbustes, nous les appelons balises, et nous disons, dans le même sens, baliser un chemin. Cette nouvelle acception n'est-elle pas rationnelle, et, an lieu d'aroir ici défiguré la langrue, comme certains écrivains peu réfléchis nous l'ont reproché, ne l'avons-nous pas, an contraire, enrichie? J'ai écrit un peu plus haut le mot poudrerie; c'est encore un terme, non seulement fort juste, mais de plus très pittoresque. On connait peu, en effet, en France, le tourbillonnement ou plutôt le poudroiement de la neige, tel que nous l'avons ici, ct que les Anglais appellent drifting. Ce sont donc les circonstances locales qui nous ont inposé ce mot, et nous disous avec beancoup de raison: Il y a de la poudrerie, il poutre. Nous avons aussi le terme contraire: pour indiquer que la neige ne poudre pas et qu'elle est devenue hamide par suite de l'élévation de la température, nous employons le verbe peloter, auquel les dictionnaires ne reconnaissent pas cette acception, bien qu'ils doment pelote de neige. Nous disons encore des chemins d'hiver qu'ils sont boulunts, lorsque la neige fait boule sous le sabot du cheval, que le cheval se trouve botté, et qu'il court le risque de s'embourber; nous disons aussi des chemins qu'ils sont moulineux, et de la neige qu'elle est moulineuse. Ces adjectifs viennent, le premier du verbe bouler, et le second du verbe mouliner; leur dérivation est donc parfaitement juste. Barauder et renvoi, sont encore deux termes dus à notre climat. Les renvois sont des pentes de glace ou de neige durcie que le patin du traîneau creuse dans le chemin, et qui font barauder la voiture, c'est-à-dire, glisser latéralement jusqu'à une petite accumulation qui arrête brusquement le mouvement et renvoie les voyageurs dans l'autre sens. Les patins ou lisses du traîneau sont deux mots auxquels nous avons donné une acception que la nature même de l'objet nous indiquait. Il y a aussi l'expression cahot, par laquelle nous désignons les fosses qui se creusent dans la neige du chemin et qui font cahoter la voiture. Ici, cependant, nous ne faisons que transporter à un chemin de neige un terme qui s'appliquait déjà à un
chemin d'été. Berlot, berline, carriole, sont encore des appellations qui nous servent à désigner certaines voitures d'hiver particulières an pays, et pour lesquelles nous n'avions pas de noms correspondants dans la langue française; nons avons done été obligés de créer un mot et de domner à deux autres une nouvelle acception. Une autre expression aussi juste que pittoresque, c'est le mot bordages, par lequel nous désignons les glaces qui se forment sur les bords des rivières avant que le milien soit congelé, ou qui tiennent encore à la rive après que la débâcle s'est faite. Sur le Saint-Laurent, où les bordages sont beancoupplus considérables, on leur donne le nom de battures. Nous avons encore lo mot poot, que nous appliquons surtont à la glace qui se forme sur le fleuve en face de Québec, et cela atec raison, puisque, presque toujours, lean reste libre on aval et sur une certaine cundue en amont de ce point ; e'est done un véritable pont de glace. Il y a bien des annés, be llempe arait pris en me semle nuit, depuis les rapides de Lachine, en haut de Montréal, jusqu’i l'ile anx Grues, à dix lienes en bas de Québec, c'est-à-dire sur un epane de 210 millos (350 kilometres). On a fendn, pour cet biver seulement, la siguification du mot pout it tout le lleuve, et l'annce de ce remarquable phénomène est restée connure sous le nom d'anné ,lu ground pont. Pendant cet hiver on n'a pas été obligé de construire despatinuirs artiliciels, car le denve lai-metme formait un immense skating rink, -omme disent les puristes. St, sur cet espace onvert à tous les vents, les jeunes filles

Il y a 'ncore un expression pour laquelle je ne demande pas le droit de cité, puisque les dicionmaires le lui ont díja ateorde, - mais que je signale comme l'une de nos plus heureuses adaptations ; c"est le mot raquette que les grands puristes remplacent, bien à tort, par lixpression sontiers i neire. Cette derniere expression n'est ni plus ni moins qu'une absurdití, attemetur lataynette n'a rien du soulier, si ce n'est quelle s'attache aux pieds comme we dernier. On pourrait, aree tont antant de raison, appeler le parapluie un wapean a pluie puisquil conver la tete comme le chapean, ou bien encore appeler le patim man soulier is oflace. l'our marcher it la raquette on se sert du mocassin ou soulier mou.

Et, puisulu jén suis à parler des mots que nous a inspirés notre saison d'hiver, c'est peuteitre le lion de diter ind la surrie awe tons les termes nouveaux qui s'y rapportent. Lal sucrerie proprement dite, c'est la forêt d'érables avee sa eabane à sucre, et tous les ustensiles qui survent à fabriquer le sucre dérable. Par les sucres, on entend l'époque où se fait le sucre et l'ensemble des travaux que nécessite cette exploitation. Entailler, c'est pratiquer, dans l'aubier de l'érable, une entaille ou incision par laquelle la sève s'ecoule, et Ćtablir une pièce de bois rainée, avec un vase, pour recueillir cette sève. Cette petite pièce, qui se nomme conlisse, goudrclle on goutterelle a huit ou dix pouces de longueur sur deux pouces de largeur ; elle sert de conduit ou de gargouille pour faire tomber la sève on ean derable dans le vase, qui peut être un auge on in cassot. Ce cassot est une petite boite étanche, faite d'écorce de bouleau. On fait bouillir la sève dans de grandes chaudières, et quand, par suite de l'evaporation, elle a acquis une belle couleur brune, on l'appelle réduit; c'est alors qu'on peut en faire de la trempette. Ce réduit devient ensuite, par une nonvelle ébullition, du sirop, puis de la tire avec laquelle on fait des toques, et, enfin, du sucre, qu'on laisse refroidir dans des monles. Pour agiter le sucre, on se sert de la mouvette; exploiter une sucrerie s'appelle faire couler. La plupart de ces expressions, je le sais, se trourent daus les dictionaaires, mais elles n'y ont pas l'acception que nous leur
donnons ici, pour l'excellente raison que l'industric à laquelle elles s'appliquent est particulière au pays et n'est pas connue en France.

Notons en passant: borlée de neige, terme que nous employons parce que la neige nous arrive, le plus souvent, comme une véritable bordée; croîte, qui indique la couche dureie qui se forme à la surface de la neige et qui est bien differente du verglas. Nous disons la croûte porte, c'est-à-dire, on peut y marcher sans enfoncer. Notons encore le frasil, qui désigne une glace rompue en menus morceaux et mélangée d'eau. Ce mot n'est-il pas parfaitement dérivé du verbe frangere? Et glissade, grlisselte? Jamais vous ne parviendrez à faire disparaître ces mots de notre vocabulaire, tant qu'il y aura des côtes et de la neige au Canada.

Il me serait impossible, sans donner à ce travail une étendue qu'il ne doit pas avoir, de relever tous les termes et locutions que nous pouvons réclaner comme nous appartenant; en voici cependant un certain nombre que je ne saurais passer sons silence.

Tous les Canadiens, en hiver, portent le casque, qui n'est pas aussi militaire qu'on le pense. C'est une espèce de bonnet en fourrure, ou bomet à poil ; il nous est indispensable, et il fallait le nommer de quelque façon; or, comme il a plusieurs points de ressemblance avee le casque du militaire, nous lui avons donné ce nom. Nons avons encore ici le capot, qui n'est ni le capot du marin, ni la grosse capote du soldat, mais qui tient de l'un et de l'autre. Cette acception est passíe dans notre langne, et elle y restera de même que le verbe encapoter, ou s'encapoter, anquel nous tenons, et qui est tout anssi rationnel que caoutchouter, accepté par les dictionnaires.

Nous avons encore le verbe se piéler, qui signifie résister fortement, se défendre; le mot crans, qui s'applique aux rocs dénudés et taillés à pic que l'on trouve sur les berges des rivières. Nous disons: "Ce navire est venu s'échouer, se briser sur les crums." Il y a ensuite le défaut de la côte, qui désigne l'endroit où un chemin commence à s'élever ou à s'abaisser : "Ma maison est construite dans le défaut de la côte."

Parmi les noms des arbres qui sont particuliers à ce pays, il en est un certain nombre que la France a admis, entre antres, épinctte, qui désigne une variété de bois assez commune ici, et que Bernardin de Saint-Pierre appelle improprement sapinette, puisque l'épinette étant plus grande que le sapin, c'est un augmentatif et non un diminutif qu'il eût fallu employer. Il y en a beaucoup d'autres qu'on ne trouve pas dans les dictionnaires, par exemple, le merisier (dans son acception canadienne), le bois d'orignal, le bois de plomb, la pruche, qui, tant pour son bois qu'à cause de son écorce, entre pour une si large part dans le commerce que nous faisons avec les Etats-Unis. J'espère pourtant que ce mot finira par être reconnu, avec sapinage qui est si joli, et cage, cageux et plançon, daus leur acception canadienne. Il faudra bien aussi que l'Académie se résigne, un jour ou l'autre, ì accepter notre meublier, qui vaut bien mieux que son ébéniste, et les expressions traine, tobogáne et mitasses qui, pour avoir tue légère odeur de boucane, n'eu sont pas moins d'excellentes adaptations. Il en sera de même, je l'espère, pour carré, char et lisse qui ont infiniment plus de raison d'être que square, wagon et rail, de même que char urbain et chemin de fer urbain, au lien de tramway. On nous a aussi reproché chéquer et chéquage, que nous avons dû créer, parce que la langue française ne possède pas de termes équivalents, et que le chéquage n'est pas la même chose que l'enregistrement du bagage tel qu'il se fait en France. M. Malézieux, cependant, dans son ouvrage sur les chemins de fer américains, nous donne raison et écrit hardiment, comme nous, chèque, chéquer, chéquage. Et, dans le fait, j'aime
mieux dire chéquer que slopper; notre verbe a au moins pour lui une excellente raison d'être: la nécessité, tandis que l'autre n'est véritablement qu'un mot de fantaisie.

Je pourrais signaler, en outre, un certain nombre de termes qui ont une couleur fort poétique, et que nous ne sacrifierions pas sans une sérieuse résistance; ce sont, entre autres, la lrumante, qui me parait dire plus que la brune; la noirceur, qui remplace avantageusement la nuit ou l'obscurité dans cortaines circonstances. Du reste, pourquoi ne pourrions-nous pas nous servir de ce mot dans un sens littéral, quand plusieurs auteurs du grand siècle l'emploient an figuré, notamment dans cette phrase de l'un d'eux: "Pardonnez-moi d'egayer un pen la noircenr que ma transplantation répand dans mon ame." C'est encore In mot rerollin, dont nos marins se servent au lieu d'embrun; cailler, pour se laisser aller an sommeil : sendormir, pour avoir sommeil ; parolie, pour petite assemblée politique ou muni"ipale ; lrumasser, pour dire qu'il tombe une plaie très fine, qui tient plutôt du brouillard; de meme qu'un grand nombre diutres fréquentatifs, qui s'emploient surtont dans les 'ampagnes, "omm" pussailler, machoniller, colletailler, monilhasser, bourrasser, cisailler un cheval, Cost-a-die tirer alternativement ef rapidement les guides.
A. montiontrai bucore be mot cention, qui désigne la centième partie d'une piastre, et fue nons avons adoptéa la plave de centime, qui désigne déjà la centième partie du frane;

 lat ressomblame frappante quoflire ine cloture - surtont la clôture en zigzag des terres moworlles - aver les pares ombertes de wes anciens livres qui se pliaient dans un étui, "omme vertanns cartus modnu's; les lignes d'óniture sur chaque page représentent assez bion les perches de la purce. Cloture demberres est anssi une expression pittoresque, tirée We la nature meme du la wher ; "hathe cette cloture, faite de branchages et de trones darlmes jotés pilu-mele, offre anx bestianx phtôt un embarras qu'un obstacle infranchissable. Siuter les rapides, portager et parayer, sont cucore des expressions pleines de justesse, qun bes circonstances memes nous ont forés d'employer. Citons encore pouvoir dean; whatier et camps pour liou de campement ; royagear, dans le sens de bueheron de chantiers; dissidents, pour contribmables appartenant a la religion de la minorité dans une municipalitio nolaire ; grond brulte et putit lurute, partie d’une forêt que le feu a détruite; catalogue, sorte de tapis fabriqué dans nos campagnes; érabliere, cedrière, frênière, etc., endroit oin "roissent l'írabla, le cèdre, le frôse; crosse, espèce de raquette recourbée avee laqualle ou jour à la lable, - we jeu nons vient des sauvages; apluchette de ble dinde, espèce de corsée pour iphucher les régimes de mais; forl, pour village, parce que dans les commencements de la colonie tons les villages étaient fortifiés; habilant pour cultivateur ; ripe, ruban de bois qu'enlive le rabot on la varlope; repoussis, petites tiges qui poussent après qu'on a abattu les gros arbres; cire ì ln hache, c'est-ì-dire n'avoir plus rien que sa hathe pour vivre; saboler, an parlant d'une roiture qui cahole; rang et concession sont des divisions d'une paroisse ou d'un canton; le chemin qui divise les rangs dans les cantons s'appelle cornon; l'endroit ou le cordon frappe un antre chemin à angle droit s'appelle le trait-carré. Je ne voudrais pas emuyer l'auditoire, cependant je ne puis résister au désir de citer encore une trentaine de mots ou d'acceptions qui méritent, il me semble, d'aroir leur place ici.

Ainsi nous disons acculoire au licu da avaloire ; audiler est un verbe aussi régulièrement forme que le mot audileur ; barrer et deburrer me porte, une armoire, nu tiroir, ne vaut-il
pas l'expression fermer à clef, ou ouvrir avec une clef; le mot est plus court, et, du reste, le pène de la serrure, pour etre moins long que la barre ordinaire de nos portes, n'en est pas moins une barre. La batterie et la tasserie d'une grange sont deux expressions canadiennes donblées de normand; ne les sacrifions pas au purisme; tomber en botte: cette expression ne vient pas du mot français botte mais de l'italien botte qui signifie tonnean; d'où, tomber en botte, c'est-ì-dire, tomber comme un tomean dont les cercles se sont détachés; caucus est un mot de couleur latine qui a passé par l'anglais; qu'on nous en trouve un meilleur et nous nous engageons en même temps à dire cercle an lieu de club; sonxer est un verbe original et plein d'harmonie imitative ; on dit: sonxe! pour exciter les chiens: c'est là leradical de notre verbe ; clairons, pour aurores boréales, est presque français, puistu'on appelait ainsi antrefois une éclaircie dans le ciel; conférencier, dans l'acception que nous lui domnons, passera de lui-même dans la langue française; avoir less côtes sur le longr, pour être moulu: je crois que cette expression est bien canadienne; elle n'est pas poítique, mais clle a le mérite de l'originalité. Etre dégradé en route, se \&lit sur terre et sur mor, et arcuse une origine latine très-authentique. Dérêner un cheval ; échiffe, échiffer, vient probablement de l'anglais chaff qui signifie balle on déehets du grain ou bien de chiffon. La ferrée est une bêche qui autrefois était en bois et n'avait qu'nne pièce de fer à l'extrémité du tranchant. Frotter les bottes, les souliers: je me demande pourquoi l'on nons reprorhe cette expression, attendu que dans cette importante opération le frotuge l'emporte sur le cirage. Grillé, pour hâlé par le soleil: je regretterais qu'on nous chicanât trop sur cee mot qui fait réellement tablean dans une phrase. Indictement est nu vienx mot français que nous avons repris sur l'anglais; nous en arions le elroit. Mal-i-main, maldance, malendurant, malchanceux, valent tout antant, il me semble, que malgracieux. Nurcher au catéchisme: je ne sais pas trop d'où cette curiense expression pent venir ; gardons-la, dans le style familier, à titre d'originalité. Menoirs et travail, an lien de timons, me paraissent très rationnels et nous avons raison d'y tenir. Оnaонarom, un mot de neuf lettres qui contient sept voyelles ; c'est dn reste notre chef-d'œuvre t'harmonie imitative. Purtisannerie, qualification et qualifié sont des dérivés de l'anglais et méritaient d'être créés. Pensionner et pilotter viennent, le premier de pension et le second de pilotis. On dit je pensionne en ville, et la terre est toute pilottée. Procédés, dans son acception canadienne, est la traduction de l'anglais proceedings qui dit à lui senl autant que délibérations, procès-verbal, compte-rendu; tâchons de le conserver. Rapportable: un bref rapportable dans hnit jours; servons-nous de ce mot, mais ne disons jamais retournable. Tinton, c'est l'appel suprême que fait la cloche de l'église par petits comps répétés avant les offices; il dérive très naturellement de tinter. Transquestion, transquestionner me semblent pourtant des mots de bon aloi, je ne sais pas pourquoi ils ne seraient pas français. Enfin nons disons tric-trac au lieu de crécelle; les deux mots. sont bons, mais je crois, en définitive, que le nôtre fait un pen plus de bruit et que, à cause de cela, il est meilleur.

Je pourrais, si je voulais épuiser le sujet, écrire tout un volume; mais mon intention n'a pas été de faire un glossaire, qu'un de nos collègues a déjà ébauché. J'ai voulu simplement montrer, par cette liste de mots pris au hasard, que, non seulement nous avious le droit de créer la plupart des expressions on acceptions dont nous avons enrichi notre langue, mais que, même pour celles qui n'étaient pas d'une absolue nécessité, nous avons tonjours suivi scrupuleusement les règles de l'étymologie et de l'analogie.

Personne plus que moi ne désire que nous corrigions nos fautes de langage, que nous
fassions disparaitre de notre conversation comme de nos écrits les anglicismes qui s'y sont glissés de temps à autres; mais pourquoi, je le demande, serions-nous obligés de rejeter des expressions qui, loin d'être du patois, - comme ont bien voulu le dire certains écrivains plus fantaisistes que renseignés, - sont, au contraire, régulièrement formées, ì ce point que nous pouvons toujours en rendre compte ì la satisfaction des linguistes les plus difficiles.

Les dictionnaires français doment tous les jours asile à une fonle d'expresions dérivées, soit des dillérents dialectes des provinces françaises, soit des langues étrangères, - et dans ce dernier cas, on we prend mème pas la peine de franciser le mot, témoin, les wagons, les tenders, les rails, les stramers, le lurf, le sporl, ete. Pourquoi donc ces mêmes dictiomaires n'acoucilleracut-ils pas des mots provenant d'un pays qui, par les prenves qu'il a données dans toute son histoire, a bien lo droit de demander qu'on lui conserve sou titre de province française, ot qu'on lui permette de travailler an développement d'une langue qu'il a consorver et santer pour ainsi dive sur ce continent, au prix des plus grands sacrifices?

Larsfun nous ítions moins comms en lirance, et que le Canada passait pour un pays à demi saurare je comprends qu'il cît ité ditficile de demander cette reconnaissance de nos droits: mais minurdhui que des rapports fréquents nous ont fait mieux connaitre, que les onvages de nos írivains sont lus ap apróniés par le public français, et qu'un des môtres a Ats tonromi par l'A ademie de liranc", le phas hant tribunal de l'univers, nons demandons,

 perdr. sat mationalit." Eh hion, cetto lanerue fraņase dont nous étions les dépositaires, les gardions, nous l'arons, mons, sorupulensement conservée; et voilà pourquoi, après une siparation do plus d'un sienle, tont whous montrant loyaux sujets de la Grande-Bretagne, bous sommers restés franças en fraçais quand même. Voilà pourquoi, sans vouloir indiscretement nons imposer, nous rélamons notre droit de naturalité ; nous demandons que lorspuil sagira de la langu de France, de cette bague que nons arons aimée et que nous amons cucore parchnsus tontes los antres, on nous dome au foyer maternel l'laumble place restée vide si lourtemps ; quion nous permette de fare partie de ce conseil de famille quand il prononce sur des intérêts qui tiement ì notre vie même.

Autrolois, quand un citoren romain voulait faire recomaitre ses privilèges, il n'arait qu'à prononcer ces simples mots: "Civis sum romanus." A notre tour, nous répétons ce cri qui doit mons ronvir tontes grandes les portes hospitalières de l'anciemne patrie: "Nous sommes restés français!"

IV - Les races indigènes de l'Amérique devant l'Histoire,

Par Napoléon Legendre.

(Lu à Ottawa le 21 mai 1884.)

L'histoire de la colonisation de ce continent par les puissances européennes représente la plupart des races qui l'habitaient avant l'arrivée des blanes, comme des hordes barbares et féroces qui se sont opposées, par tous les moyens, légitimes on non, à l'entrée et au progrès de la civilisation parmi elles, et qui ont récompensé par les tortures et une mort affreuse les hommes dévoués qui venaient répandre ici leurs inappréciables bienfuits. Aux sentiments de la plus sincère amitié, elles ont répondu par la trahison; aux services rendus, par l'ingratitude; à tous les actes les plus louables et les plus désintéressés, par le ineurtre, le pillage et l'incendie. Voilà ce que disent formellement en bien des circonstances, et ee que laissent entendre presque toujours ceux qui ont écrit notre histoire.

Maintenant, si nous mettons de côté un esprit de zèle et de partialité qu'il est facile de concevoir tout en le regrettant, et que nons envisagions les faits an seul point de vue de la vérité historique, je crois qu'il nous sera facile de replacer les choses dans leur état réel, et de montrer que ni le désintéressement et la bienveillance des uns, ni l'ingratitude eet la malice des autres n'ont été aussi marqués qu'on a roulu le faire croire.

Et d'abord, pour remonter à l'époque où les premières impressions ont dû se faire, de part et d'autre, voyous quelle a été la conduite des san rages lorsque Christophe Colomb débarquait, en 1492, sur l'île de San Salvador. Ils n'ont fait preuve d'aucune hostilité ; ils ont seulement manifesté une surprise bien naturelle. Lit cependant, comment Colomb, de son côté, a-t-il agi ? Son premier acte en débarquant n'a-t-il pas été de prendre possession, an nom de Dieu et de l'Espagne, d'nue terre que ces saurages pouraient bien légitimement considérer comme leur propriété? Il fait la mêmc chose à Saint-Donningue, où il construit unfort, et, plus tard, il affirme encore son droit de propriété sur tout le continent. En droit international, on appelle cela une déconverte ou une conquête; mais en droit ordinaire, ce n'est ni plus ni moins qu'une spoliation. Et c'est ainsi que cet acte a dû être considéré plns tard - lorsque ses conséquences sont devennes apparentes - par ces peuples primitifs qui ne connaissaient pas encore les subtilités et l'élasticité de principes du conquérant. Ce qui, au reste, a dû les induire fortement à se former cette opinion, c'est qu'ils ont vou ces mêmes hommes qu'ils avaient regardés comme des demi-dieux, ne pas pouvoir même s'entendre entre enx, ni continuer à imposer leur prétendue supériorité par des dehors au moins convenables. Ce Colomb, qui avait pris possession de leur territoire au nom de Dieu et de ses souverains, ils l'ont vu, plus tard, chargé de chaînes comme un malfaiteur, repartir pour son pays, pendant qu'un autre, son rival, commandait à sa place. N'ont-ils pas dû alors éprouver non seulement de la méfiance, mais du mépris pour ceux auxquels ils s'étaient crus naguère obligés de donner leur confiance et leur admiration.

Et an Mexique, qu'ont dû penser les naturels de la conduite de Cortez et de ses six cents soldats qui s'emparent du pays et en considèrent les habitants comme autant d'esclaves? Il est vrai qu'ici, Corte\% n'est pas reçu comme Colomb; il éproure de la résistance. Mais cette résistance si légitime pouvait-elle motiver les longs et inhumains traitements que les vainqueurs ont fait subir aux malheureux vaincus? Si l'intention des étrangers était réellement d'apporter à ces penples les bienfaits de leur foi et de leur civilisation, leur maniere de procéder indiquait bien tout le contraire; et leur cruauté, loin d'attirer des adeptes, explique parfaitement et justifie les révoltes indignées des victimes sur lesquelles pesait ce joug détestable.

Un peu plus tard, les mêmes faits se répètent an Péron, avec des nuances pent-etre plus horribles encore. Las malheureux Incas, trahis, dépouillés, torturés, ne comprement plus, on plutót ne comprennent que trop ces étrangers qui renaient ì eux les bras ouverts et la croix de chevalior sur la poitrine, leur apporter la paix ici-bas et la félicité dans une vie future. A en juger par la maniere dont on tenait les promesses pour cette terre, ces paiens fotaient bien fondés à ne pas aroir une confiance illimitée dans les engagements quon formait pour l'antre monle ; et il est de fait que cette confiance s'éteignait peu à pen chez tontes les tribns qui venaient en contact avec les Européens, mais surtout chez les plas "ivilisúes d"ntre elles, qui étaient parfaitement à portée d'apprécier les motifs et de prévoir le but des nonveaux arrivés. Car il ne fant pas oublier que, lorsqu'on qualifie de sauvages les pruplades de l'Amérique, il fant en excepter un certain nombre, les Péruviens et les Mexicains surtont, qui avaiont me hante civilisation. Chez ces deux derniers peuples, il y avait dos éoles d'art, un code de lois civiles et religieuses et un système très avancé d'agriculture ; on y voyait des tomples et des monuments magnifiques. Du reste, même chez les pruplates plus arrifrées, cette transformation instantanée et ì hautes doses qu'on voulait faire arcepter, finissait bientôt par révolter des gens inhabitués au joug, et qui tentaient naturellement les phas gramds eflorts pour s'en débarrasser. C'est alors qu'on les accusait do trahison envers leurs matres lécritimes, et qu'on leur faisait subir les chatiments les plus arbitraires et les plus terribles. Ei pourtant, ils ne faisaient que s'opposer de toutes leurs fores et par tous les moyens dont ils pouvaient disposer, à un état de choses qui leur semblait at quie était, en effet, une profonde injustice.

C"est quelque temps après ces événements que Cartier abordait sur les rives du fleure Saint-Laurent, et prenait, lui anssi, possession du pays an nom de Dieu et du roi de France. Ifi encore les saurages font bon accueil aux étrangers, - car, probablement, on n'avait pas encore eu comaissance des atrocités commises dans le midi du continent; ils les traitent en hötes distingués, et leur font visiter le pays. Le voyage de Cartier, de Québec à Hochelaga, ne provoque que des marques d'amitié. Tout le long des côtes, il voit de nombreuses cabanes habitées par des gens qui se livrent à la pêche et qui lui apportent du poisson en échange de menus articles. A Hochelaga même, il est l'objet d'une véritable ovation. En revenant, il retrouva en parfait état l'Emerillon qu'il avait été obligé d'abandomer dans le lac Saint-Pierre, à la garde de quelques hommes. Si les saurages araient été mal disposés et qu'ils enssent voulu faire un mauvais parti à ces marins, qu'est-ce qui pouvait les en empecher?

Plus tard, quand les Français, pendant lear hivernage, sont décimés par le scorbut, c'est encore un saurage qui leur indique le remède qui les gnérit. Il est vrai que Cartier avait réussi à cacher l'état d'extrême faiblesse auquel était réduit sa garnison; mais quelle
résistance auraient pu opposer aux guerriers sauvages, même des hommes valides, dans les circonstances où ils se trouvaient, éloignés de tout secours, emprisounés par les glaces et en butte anx rigucurs d'un climat nouveau pour eux? Et malgré tout cela, non senlement les sanvages se sont abstenus d'inquiéter les blancs, mais ils sout même venus à leur aide. Et comment ces bons offices sont-ils récompensés? Sur un simple soupçon, Cartier fait enlever Donnacona, ainsi que plusieurs autres chefs sauvages, et les emmène en France où ils meurent de nostalgie. Puis, à son retour, quatre ans plus tard, il s'empare peu à peu du pays, et établit les siens aux meilleurs endroits, refoulant, doncement peut-être, mais irrésistiblement, les malheureux possesseurs du sol, qui veulent en vain s'opposer à ses empiétements. Car, il faut bien le dire, cet établissement des Européens sur ce continent, dans les lieux déjà occupés par les saurages, constituait uu véritable empiétement. C'est ainsi que le jugent tous ceux qui envisagent les événements historiques ì un point de vue désintéressé, c'est-à-dire comme un spectateur qui, sans être mêlé à l'action, regarde froidement les faits, soit au moment même où ils se produisent, soit lorsque, plus tard, le calme est rétabli. Et c'est également ainsi que l'ont apprécié les premiers occupants du sol.

Loin de moi l'idée de vouloir mettre en doute les bomes intentions de Colomb, de Cartier et de la plupart de ceux qui ont travaillé persomellement à la colonisation de ce continent. Mais est-il pussible de prêter les mêmes motifs désintéressés aux gourernements qui les dirigeaient et les inspiraient? Ces gonvernements n'étaicnt-ils pas plutôt animés par le désir d'obtenir la possession de riches territoires, pour grossir leur trésor? On se rappelle les paroles significatives de François Ier: "Quoi! les Espagnols et les Portugais se partagent tranquillement entre eux le nouveau monde! Je vondrais bien voir l'article du testament d'Adam qui leur lègue l'Amérique." Le mème esprit se retrouve du reste chez Henri IV, qui, en 1599 et en 1608, charge alternativement Pierre Chanvin et M. de Monts, deux calvinistes, d'établir la religion catholique dans la Nouvelle-Fiance!

Un siècle se passe, pendaut lequel les Européens continnent à venir rançonner le pays, - toujours du droit du plus fort, - en y apportant beancoup moins de civilisation qu'ils n'en rapportaient de fourrures précienses. Car il est de fait qu'un grand nombre de ceux qu'on amenait de l'ancien monde étaient pris parmi une classe fort doutense, témoin la colouie de Roberval, et la tentative de M. de La Roche arec ses cinquante repris de justice. Il est également hors de doute que les compagnies qui se faisaient octroyer des privilèges, sons prétexte d'évangéliser les sauvages s'oceupaient beaucoup plus de leurs comptoirs que du salut des infidèles. Si bien que ces derniers commencèrent à mieux connaitre leurs frères d'outre-mer, et s'aperçurent que, loin d'être des personnages surnaturels et parfaits, comme ils les avaient jugés d'abord, ils étaient au contraire des mortels assez remplis de vilains défauts, et n'ayant de remarquablement supéricur que la grandeur de leurs navires et la portée de leurs armes à feu.

L'année 1603 voit arriver M. de Champlain qui, avec les intentions les plus louables, il n'en faut pas douter, commet cependant la faute de prendre parti pour certaines peuplades contre d'autres, leurs ennemies. Il avait été bien reçu partout, avait obtenu, pendant ses voyages daus l'intérieur du pays, tous les renseignements dont il avait besoin. Et cependant, à la demande des Allgonquins, il va porter la guerre chez les Iroquois, établis sur les bords du lac Champlain. L'année suivante, il y retourne encore. Aussi, est-ce de cette époque que date cette haine profonde des Iroquois contre les blancs, haine qui devait,
pendant plas d'un siècle, mettre la colonie dans nu danger perpétuel, et ne s'éteindre qu'arec les derniers guerriers de cette vaillante nation.

Peu à peu, non seulement au Canada, mais sur tout le littoral et même dans l'intérieur du continent, les Européens se groupent et s'emparent du sol. Partout les faits sont les mêmes: le saurage, d'abord inoffensil', devient remuant sous l'agression; il a l'expérience de ses roisins; il sait comment se terminent toutes ces protestations d'amitié et ces semblants de protection, qui ne servent qu'à déguiser des empiétements. S'il craint encore l'Européen, il n'a plus pour lui ni admiration ni respect. Le charme est complètement rompu.

Il y a bien encore les missionnaires, qui font tous leurs efforts pour réparer les fautes det les imprudences des colons; mais leur influence n'est pas assez considérable pour faire contropoids. D'ailleurs, tons n'enseignent pas les mêmes dogmes et n'imposent pas les mêmes prórptes, - car il y a des missiomaires de croyances différentes. Ce qui est stricternent dífendu par les uns est facilement toléré, quelquefois commandé par les autres; ils s'awnent rérproqument de prêcher et d'enseigner l'erreur. Le missionnaire catholique affirme anjourt'hni au satrare qu'il lui est impossible de se sauver hors de son église, et que le ministre protestant le trompe en se trompant lui-meme; le lendemain, le missionnaire protestamt lui affirme aree une égale cortitude que. s'il vent faire son salut, il lui faut shiver ses ensignements à lui, et ne pas écouter la robe noire qui l'induit en erreur. Comment woulw \%ous quill ait conliance et se laisse persuader? Dt, du reste, y eut-il unite de doctrine et de prediation. le saurage, en vovant les effets qu'ont apparemment produits, sur la plupart des Européns avec lesponels il est mis en contact, la religion et la morale du'on rent lui faire accepter, a bion le droit de se demander si, réellement, il vant la peine de whaner. On lui prêhe la paix et le pardon des injures: et il voit tous les jours des disputos ent dus assants, des guerres et des représailles. On lui enseigne l'amour de la probité et l'horreur du vol, et il constate en meme temps que, non seulement on le triche autant que possible dans la traite des fourrures, mais qu'on s'empare aussi de son sol, comme si C"bait laction la plus naturelle et la moins répréhensible. Il est vrai encore qu’llya, d'un aut re coité, la conduite des missionnaires qui prêchent autant d'exemple que de parole, et gui scellent de leurs souffrances et souvent de leur sang leurs affirmations et leurs promesses; mais, je le répète, crla ne suffit pas pour faire contrepoids. Et, du reste, s'il est vrai que, même che\% nous, on soit enclin à croire plutôt au mal qu'au bien, à plus forte raison doit-on concevoir l'existence de cette propension chez des gens dépourvus pour la plupart de civilisation, et naturellement portés, par leurs traditions religicuses et leurs croyances actuelles, à voir dans les actions qui les étonnent des manifestations de l'esprit du mal.

Et c'est ce qui explique la haine croissante du sanvage pour l'Européen ; et voilà pourquoi, trompé, maltraité, spolić par ces étrangers qu'il avait accueillis comme des amis, il fait tout ce qu'il peut pour les chasser et reprendre ce qu'ils lui ont enleve. Peut-etro agit-il quelquefois, sonvent même, avec une cruauté qui nous fait frémir, mais qui ne doit pas nous surprendre, si nous tenons compte de ses mœurs et de son degré de civilisation. Du reste, les plaintes de ses vietimes et la flamme de ses bûchers n'ont pas été les premières à monter vers la vointe des cieux ; et même dans cette Europe, si bien civilisee, où, au commencement du XVe siècle, (1431) l'evêque de Beauvais avait fait brûler Jeanne Darc, où, un siècle plustard (1572), eurent lieu les épouvantables massacres de la Saint-Barthélemy, -
il y avait bien, çà et là, quelque bûcher qui fumait encore, et quelque sombre cachot où l'on mettait une victime à la torture. Tant que vous n'anrez pas effacé de l'histoire la lueur sinistre de ces horribles autodafés, et fait taire l'écho qui apporte jusqu'à nous les cris des malheureux brûlés vifs ou déchirés sur la roue, il vous est interdit de parler de la cruanté des sauvages. Leur conduite a du moins l'excuse de l'ignorance et d'une violente irritation, tandis que la vôtre a cette aggravation de la pleine connaissance et du libre exercice d'un jugement froid et éclairé.

Cette question écartée, que reste-t-il done ì reprocher anx sauvages de ce continent? Ce qu'ils ont fait n'est-il pas ce qui s'est pratiqué et ce qui se pratiquera dans tous les temps et chez tous les peuples du monde? Ce qu'a fait le peuple de Dien quand il se défendait contre les envahisseurs ; ce qu'ont fait les Grecs et les Romains; ce qu'ont fait les Francs, les Gaulois, les Saxons; ce que fait l'Irlande depuis si longtemps; ce que fait la Pologne depuis plus d'un siècle; ce que font les Indes et ce qu'a fait la France, il y a dix ans à peine. Ils se sont tous battus pour leur religion, leur famille et leur patrie. Ils ont tous défendn pouce par pouce le sol natal, et vengé la mort de ceux qui sont tombés sur le champ de bataille en soutenant une canse qu'ils avaient raison de considérer comine juste et sainte. Ils ont défendu leur propre existence qu'ils sentaient menacée; et ils avaient cent fois raison, car les événements ont justifié leurs alarmes. Que sont-elles devenues ces races puissantes et fières qui déployaient leurs nombrenses tribus sur tout ce continent? Presque partout elles sont disparues; et, là où on en trouve encore quelques groupes, ce sont de pauvres déshérités sans nationalité réelle. Dans plnsieurs endroits on les voit errants, pourchassés par les blanes, qui continnent à les tromper et à les pressurer. C'est aux Etats-Unis surtout que leur sort est plus digne de pitié. "Je voudrais, dit le révérend Savage, au cours d'un sermon sur la "question des sanvages," je voudrais faire pénétrer au plus profond de vos cœurs les vérités que je viens d'affirmer. Tout ce que les sauvages demandent, c'est la simple justice. Pendant plus de deux cents ans, l'histoire de l'occupation anglaise dans ce pays n'offre qu'une série non interrompue de frandes... On a chassé les sauvages de leurs foyers; on a fait avec eux des traités pour les rompre le lendemain; on leur a réservé des terres pour les leur reprendre de force au premier besoin... Dans toutes les guerres qui se sont allumées entre les sauvages et les blancs, neuf fois sur dix elles sont dues à l'injustice, à la trahison et aux actes agressifs de ces derniers. Lees blancs ont forcé les Indiens à se réfugier sur des terres stériles et dépourvues de gibier, où il leur est impossible de tronver leur subsistance... On leur reproche aussi leurs vices. Leurs pires vices sont ceux que les blancs leur ont inculqués..."

Voilà comment est dépeinte la situation des sauvages aux Etats-Unis, par un témoin désintéressé. Exploités, pressurés par me valetaille administrative, ils fuient éperdus. Et quand, irrités par leurs longues souffrances, ils osent lever la tête, comme dernière protestation, ou exercer leur vengeance sur quelque ennemi isolé, aussitôt on crie à la trahison, à la révolte, et l'on sabre sans merci ; tous y passent: hommes, femmes et enfants. Avant cinquante ans, toutes ces tribus, que l'on a voulu civiliser par le fer, le fen et l'eau-de-vie, seront complètement effacées.

Et que sout devenus ces puissants Incas, plus civilisés que leurs conquérants, ces fiers Aztèques, également supérieurs à cenx'entre les mains desquels la trahison les a fait tomber? Ils sont tous éteints; leur soavenir même surnage à peine au milieu des discordes qui agitent constamment les hordes qui ont envahi ces malheureux pays.

Ici, nous avons peut-être été moins cruels, et les quelques sauvages qui vivent dans le Dominion y sont relativement libres et tranquilles ; mais ils s'éteignent doucement, et n'ont plus d'existence nationale. Ils sont virtuellement rayés du livre des nations.

Voilà comment, à mon sens, on doit envisager ce côté de notre histoire. Nous ne datons que de trois siècles, et nous ne sommes pas assez anciens pour avoir nos légendes, nos temps mythologiques. Nos annales sont presque d'hier et font partie de la période contemporaine: n'y mettons rien de faux; ne permettons pas qu'on y introduise quoi que ce soit qui indique l'exagération et le zèle du partisan. Soyons vrais, même quand nous devrons en souffrir ; soyons justes, même quand il faudra confesser un tort. Si nous avons péché, nous ne sommes malheureusement pas les seuls, du reste ; et notre humiliation sera un peu moins grinde quand nous considérerons que, même dans ce grand siècle de lumières où nous vivons, il se trouve encore des pays qui prétendent marcher en tête de la civilisation, et où l'on regarde comme patriotique de repousser tout habitant du CélesteEmpire qui vient y chercher l? pain et l'abri ; et d'autres où l'on tolère les épouvantables tortures infligées aux prisonniers dans les cachots de Saint-Pétersbourg et les colonies pénales de la Sibérie.

Soyons un peu plus sévères pour nous-mêmes, et plus indulgents pour les races que nous avons remplacées sur ce vaste continent. Elles pouvaient avoir des défauts, mais elles avaient en leur faveur le droit et la raison. Si nous n'avons pas su leur rendre justice pendant leur existence, rétablissons au moins aujourd'hui la vérité des faits pour rendre justice à leur mémoire.

V-Poutrincourt en Acadie - 1604-1623,

Par B. Sulite.

(Lu le 21 mai 1884.)
A la suite des explorations faites de 1597 à 1603 sur le Saint-Lanrent, et qu'avaient dirigées Pontgravé, Chauvin, de Monts et Champlain, sur toute la partie narigable de ce fleuve, le sieur de Monts s'identifia avec les projets dont la Nonvelle-France était l'objectif, et il obtint un privilège d'établissement qui donna naissance à la colonie acadienne. Rappelons ce qu'était ce personnage.

Pierre du Gua ou du Guast, sieur de Monts, né en Saintonge, patrie de Samuel de Champlain, mais d'une famille italienne, appartenant ì la religion réformée, bon serviteur du Béarnais, avait été mêlé aux troubles de la Ligne. Peut-être était-il parent du capitaine du Guast, favori de Henri III, chargé par celni-ei de tuer le cardinal de Guise (1588). D'après Brantôme, du Guast était l'homme le plus accompli de son temps. Marguerite de Valois, première femme de Henri IV, disait du même officier: "C'est un corps gâté de toutes sortes de vilenies, qui fut douné à la pourriture, et son âme au démon, à qui il en arait fait hommage." A la suite d'intrigues de cour, on le tronva assassiné dans son lit, suivant la contume du temps. Desportes fit sur sa mort un somnet passable qui se termine par ces vers :

Enfin, la nuit, au lit, faible et mal disposé,
Se vit meurtrir de ceux qui n'oussent pas osé,
En plein jour, seulement regarder son visage.
Cela rappelle Casimir Delavigne disant des soldats de la vieille garde morts à Waterloo:

L'ennemi, les voyant couchés dans la poussièro; Les regarda sans peur pour la première fois.

Pierre du Gua fut nommé gouverneur de Pons, en Languedoc, gentilhomme ordinaire de la chambre de Henri IV, et se tint en faveur pendant de longues années. C'était, dit Charlevoix, un fort honnête homme, dont les vues étaient droites et qui avait du zèle pour l'Etat, et toute la capacité nécessaire pour réussir dans l'entreprise de l'Amérique. Comme il offrait de couvrir les dépenses, le roi lui donna carte blanche, avec le titre de son lieute-nant-général an pays de la Cadie, du 40 e au 46 e degré, pour peupler, cultiver et faire habiter, rechercher les mines d'or et d'argent, bâtir des villes, concéder des terres, etc. Le privilège, en dehors de la concession des terres aux habitants, s'étendait jusqu'au 54 é de latitude.

La compagnie formée en cette circonstance se composait de marchands de Rouen, Saint-Malo et La Rochelle. C'est la première fois que nous voyons cette dernière ville figurer dans les arrangements concernant le Canada. Il n'en est pas moins vrai que; depuis très longtemps déjà, ses armateurs envoyaient sur les côtes de l'Acadie et au golfe Saint-

Laurent des navires qui faisaient la pêche et la traite; Cartier avait rencontré, en 1534, dans le détroit de Belle-Isle, un grand vaissean de La Rochelle. Deux Rochelois, associés de de Monts, en 1604, se nommaient Macquin et Georges. ${ }^{\text {i }}$ Au printemps de 1604, ils équipèrent deux bâtiments, de cent vingt et de cent quarante tonucaux, commandés par les capitaines Timothée, du Havre-de-Grâce, et Morel, de Honflenr, aidés des pilotes Cramolet et Pierre Angibaut dit Champdoré. A bord montèrent le sicur de Monts, son secrétaire Rallean, Jeau de Biencourt, sieur de Poutrincourt, Champlain, Pontgravé, Lonis Hébert et cent vingt artisans et soldats. Bien qu'arrivée un peu tard à l'île Sainte-Croix située dans la baie de Fundy, près de la côte du Noureau-Brunswick, la petite troupe commença des cultures et " y g list un fort garny de cauons et de plusieurs bastimens de charpenterie. Il ỵ en eust anlcuns qui se cabanèrent à la mode des sauvages." Durant l'hiver (1604-5), trenteosix hommes moururent du mal de terre, sorte de scorbut; soixante et hoit furent malales ; mzo seulement subirent sans trop de malaise la manvaise saison: "c'étaient les Chasours qui, un qrailards compagnons, amaient mieux la picorée que l'air du foyer," dit le pire liard qui, ell 1611, recueillit wette tradition.

 nín wi point parlé. Le printemps rema, on se décida à adopter Port-Royal de préférence a Saintu- ('roix. Quarantu-unatre hommes s'installèrent à Port-Royal ; les champs ense-

 plantus formulés contre lui. La moins guon puisse dire, c'est que la traite formait alors la base de ses calluls. Il usait de son privilege avee me grande rigueur à l'égard des marins
 it la cour. Il me semble pas aroir saisi des le début le côté civilisateur de sa mission. lasarbot le prise pourtant beancoup:

> In Monts, tu es celui de qui lo haut courage
> A tracé le chemina un si grand ouvrage.

Lhiver de 1605-6, douze hommes moururent du mal de terre presque en même tomps. Iat troupe de 1604 renfermait des catholiques et des protestants, dans une proportion í peu prés f́gale, parat-il. La Firance était à moitié protestante ou à pen près. Je ne comais pas le nom du pastenr de cette croyance, mais l'un des denx prêtres catholiques, nommé Nicolas Aubry, de laris, appartenait à uue bome famille, qui s'était opposée à son royage en Amérique. C'est le même qui s'égara dix-sent jours dans les forêts, et dout Champlain of Iassarbot nous ont raconté les aventures. Il vivait encore en France en 1612, et désirait reprendre ses voyages. L'autre prêtre et le ministre moururent daus l'hiver de 1605-6; on les enterra ensemble, bien qu'ils se fussent disputés vaillamment en plus d'une rencontre et même combattus à coups de poings sur le fait de la religion. Champlain nous raconte ces curicux détails.

- Pontrincourt était également repassé en France. C'est lui qui releva les affaires de Port-Royal, abandonnées ou fort négligées par de Monts. Nous reverrous ce dernier per-

[^5]sonnage s'occupant de nouveau des intérêts de l'Acadie; mais Pontrincourt s'identifia plus que lui avec cette contrée.

La famille de Poutrincourt remonte dans l'histoire à Gaultier l'Ancien, sieur de La Ferté, mort avant l'année 1090 , et qui était seigneur de la vicomté de Biencourt dans le Ponthieu, en Picardie. Le quinzième descendant en ligne directe de ce Gaultier se nommait Florimond de Biencourt, né vers 1500, ou même plus tard, et qui débuta dans la carrière des armes (1525) sous le duc de Guise. Il fut nommé gentilhomme ordinaire de la chambre du roi en 1532, et ne cessa, durant plus de trente autres années, de remplir des charges importantes. Sa femme, Jeanne de Salazar, fille de Jacques de Salazar, chevalier, seigneur de Marsilly, tué à la bataille de Pavic (1525), lui donna neuf enfants, parmi lesquels Jeau de Biencourt, né en 1557, et qui, en vertu du testament de ses père et mère (1565), hérita de la terre de Marsilly. Ce fut le seigneur de Port-Royal.

Jean de Biencourt, sieur de Poutrincourt, seigneur de Marsilly, baron de Gnérard en Brie, seigneur de Guibermesnil, baron de Saint-Just en Champagne (du chef de sa mère) et seigneur de plusieurs autres lieux, servait, avec son frère ainé Jacques, le parti de la Ligue ou de Heuri III, durant les amées 1587-89, et, comme il se trourait assiégé dans le château de Beaumont par le roi de Navarre, celui-ci lui proposa, mais sans succès, de lui donuer le comté où il était, s'il voulait se mettre à son service. Plus tard, Henri IV s'étant fait catholique (1593), Poutrincourt se déclara pour lui, et reçut ce compliment de la part du souverain, "qu'il était mu des hommes des plus de bien et des plus valeureux de son royaume." ${ }^{3}$ Beau soldat, la main prompte et le cciur générenx, il gagna la confiance de Henri IV, qui l'honora de plusieurs lettres relatives anx affaires militaires, le fit chevalier de ses ordres, gentilhomme ordinaire de sa chambre, mestre de camp de six compagnies de gens de guerre, et lni témoigua constamment une grande amitié. Vers 1590, il avait épousé Claudine Pajot et en ent sept ou huit enfants, savoir: 1o Jean, qui siguait comme sou père "Jean de Biencourt," ce qui signifterait qu’il était l'ainé des garçons; il paraît s'être éteint sans alliance vers l'année 1613. 2o Charles de Biencourt, ${ }^{4}$ qui passa en Acadie (1610), où il mournt (1623) empoisonmé, dit-on. 3o Jacques, qui a contiuué la lignée; il a porté le nom de Salazar. to Jeanne, mariée à Charles Vion, chevalier, seigneur de La Fié. 5o Marie, épouse, en premières noces, de Jarques du Bourg, chevalier, seigneur de Mariolles, arrière-petit-neven d'Antoine du Bourg, chancelier de France; et en secondes noces, de Charles L'Hnillier, seigneur de Saint-Mesmin et de Courlanges. 60 Claudine, mariée à Pierre L'IIuillier, frère de Charles, puis à Charles Gauthier. Et deux autres enfants morts sans alliances.

Poutrincourt, substitué à de Monts, parvint en 1606 à recruter une autre troupe, formée à peu près des mêmes éléments que la première, et l'embarqua à La Rochelle, sur le Jonas, capitaine Foulques, ${ }^{5}$ pilote Olivier Fleuriot, de Saint-Malo. De Monts envoyait son secrétaire, le sieur Ralleau, pour surveiller ses intérêts.

Un auteur dont il faudrait étudier les livres aree plus d'attention qu'on ne l'a fait

[^6]jusqn'à présent, un homme précieux qui rient au second rang parmi les fondateurs de l'Acadie, Mare Lescarbot était du voyage. Le grand calme de son esprit et son indépendance ont déplu anx manipulateurs de notre histoire, qui ne veulent accepter les témoignages ou les jugements des terivains qu'à condition de trouver en eux des instruments de leurs idées étroites. Mais un jour on lira l'Histoire de la Nowvelle-France et les Muses de Lescarbot... lorsque le terrorisme aura disparu de la province de Québec. Ceci reut dire que cet excellent homme, bou chrétien, français jusqu'au bout des ongles, n'était pas de l"école des jésuites.

Marc léscarbot, né à Vervins, en 1570 ou à pen près, se qualifie dans ses ouvrages de seigneur de Saint-Audebert, non loin de Soissons, et d'arocat en parlement. Il avait publié (1599) wne traduction du Discours de lorigine des Russiens, de César Baronius, sarant historien ecrlésiastique. Salnons le premier poète qui ait véeu au Canada! Voici comment il raconte le motif de son voyage: "Ayant en l'homeur de comnaître le sieur de Poutrincourt quelques anmées auparavant, il me demanda si je voulais être de la partie... Désiremx, non tant de voir le pays que de comaitre la terre ocenlairement, et fuir un monde corrompu, je lui domai parole." Il venait de perdre m procès qui lui tenait au cœur; à son rotour en lirance, il en appela et eut gain de canse. A La Rochelle, an printemps de 1606, il écrivit une épitre dont je détache une strophe:

> Poutrincourt, c'est done toi qui as tonche mon amo Ft lui as inspire und devote flamme A céldrer ton los et faire par mos vers Qu'a l'avoirton mun volo par l'univers.

Lescarbot avait beanooup d'ítude et savait observer. Son style rappelle celui de Montaigue. Pourquoi la Société royale ne farait-elle pas un examen de ses ouvrages au double point de vue de lhistoire et de la bibliographe ancienne?

La première culture de la turre avait été faite à l'ile Sainte-Croix. Dans l'été de 1606, Poutrincourt mit ses hommes au labourage a Port-Royal. Il y a apparence que ces travaux se firent sous la direction de Louis Hébert, apothicaire de Paris, lequel, outre son penchant pour l'agriculture, herborisait et étuliait les plantes du pays nouveau. "Le labourage est la première mine qu'il nous faut chercher," disait Lescarbot. Le plan seignenrial de loutrincourt était bati sur ce principe.

Dans la troupe de de Monts (1604) il n'est fait aucune mention de femmes. Lonis llébert, qui ell formait partie, était marié avec Marie Rollet depuis au moins deux ans à cette époque ; son premier enfant comu, Guillemette, paraît être né en 1606; mais, en supposant que ce fût en 1605 ou 1607 , je me croirais toujours justifiable de lui donner PortRoyal pour bercean. Cette fille de race blanche, première-née dans la Nouvelle-France, ćpousa (1621), à Québec, Guillaume Couillard, et vit le développement de la colonie puisqu'elle mourut en 1684 - ajoutons entourée du respect do tous ses concitoyens. Nos chroniques racontent sa vie.

Une íle, sitnée dans la rade de Port-Royal, et une petite rivière qui coule non loin de là, ont reçu, dès 1605 ou 1606 , le nom de Hébert, lequel a été corrompu en Imbert par les cartographes ; finalement, les Anglais leur ont imposé les appellations de Bear Island et de Bear River. ${ }^{\text {© }}$

[^7]Avant de repasser en France, dans l'été de 1606, Poutrincourt pouvait done regarder d'un œil satisfait sa colonie augmenté et en voie de se suffire à elle-même par l'agriculture. Je tiens à faire disparaître, autant que la vérité le permet, ce caractère d'aveuturiers appliqué par les historiens aux hommes de de Monts et de son successeur. On roit jusqu'ici quelques faux calculs de la part des chefs, mais aussi une grande pensée dominant toute l'entreprise de Poutrincourt : celle d'une colonie agricole.

Le sonnet suivant de Mare Lescarbot, en date de Port-Royal le 24 août 1606, m'a été communiqué comme inédit par un membre de la famille Biencourt:

Adieu aux Francais retournant de la nouvelle France en la France gauloise.

A M. de Poutrincourt.

> Scipion, onnuyé de la trompeuse vie
> D'un siècle corrompu, passa do sos vioux ans
> Le chagrin au déduit des jardins ot des champs, Dédaignant les douccurs d'uno ingrato patrio.
> Ton âme, Poutrincourt, d'injustico onnemio, En nos mours corrompus ne prond nul passe-tomps, Et, commo Scipion, tu chorches dés longtemps Un séjour d'innocenco eloigné de l'envio.
> Mais on co point ici tu passes Scipion: C'ost quo, fuyant si loin dos hommes la malico, Non soulement tu sors a la religion; ${ }^{\text {º }}$
> Mais tu t'acquiors oncore un ronom glorieux:
> Et l'autre, s'écartant loin do ses envioux, Se contenta d'avoir aux piods foulé lo vico.

Avec des terres en culture, des maisons commodes, des moulins (construits par Lescarbot), la pêche, la chasse, l'amitié des sauvages, un peu de secours de France, la colonie se voyait assez fermement établie pour envisager l'avenir. C'est de Paris que devait sourdre l'orage; on était loin de s'en douter.

Au mois de mai 1607, un nommé Chevalier, de Saint-Malo, apporta des lettres de de Monts, ordomnant à Poutrincourt de ramener tont son monde eu France. Chevalier, raconte Lescarbot, avait eu charge de capitaine au navire, et comme tel était responsable des provisions dectinées à Port-Royal; mais il prouva adroitement que le tont avait été ou perdu ou endommaré... "par les chemins, par fortune de gueule," ajoute en riant le narrateur. Sur le Jonas, avec Chevalier, étaient le pilote Nicolas Martin et le capitaine Pontgravé. A Canseau, ils rencontrèrent "un bon vieillard de Saint-Jean-de-Laz, nommé le capitaine Savalet," lequel en était à son quarante-deuxième voyage dans ces lieux, - ce qui suppose autant d'années de navigation, pour le moins.

Poutrincourt, l'abbé Aubry, Champlain, Pontgravé, Biencourt, Champdoré, Lescarbot, Hébert - et tout ou partie de leurs hommes - s'embarquèrent donc pour la France, après ces nouvelles. Champlain fonda Québee l'année suivante.

[^8]Si Lescarbot ne demenra pas longtemps en Acadie, son influence n'en fut pas moins grande sur les destinées de cet établissement, car il no cessa, durant plusieurs anmées, d'occuper ses lecteurs du projet de la Nouvelle-France. Avant de mourir, il eut la satisfaction de voir Richelieu prendre en mains les affaires de la colonie. Ce vaillant écrivain a fait mentir le dicton populaire: "Un poète ne vaut pas un fendeur de pieux." Nous arons de Lescarbot une Histoire de la Nomvelle-France et les Muses de la Nouvelle-Franee, publices à Paris ula même année 1609, et dans lesquelles les historiens ont beancoup puisé. "On y voit un auteur exact et judicienx, dit Charlevoix, un homme qui a des vnes, et qui eit ćté anssi capable d'établir me colonie que d'en écrire l'histoire." L'amée de la publication de l'Histoire de la Nourelle-Fronce, un pasteur protestant, Pierre Erondelle, en donna whe paraphrase en langue anglaise, qui parut à Londres sons les auspices do Richard Jlaklnyt; le texte français ent trois éditions en pen d’anées. Les Muses ont en deux éditions du vivant de l'auteur. Il imprima anssi, eln 1612, une Relation dernière de ce gui s'cst presie au roynge dlu sieur de Poutrincourt en la Nowvelle-France, depuis 20 mois en ga. l’urre du Castille, fils du célébre président Jeannin, visita la Suisse en 1617; Jascarhot l'acompagnat étécrivit en vers le Tablean de la Suisse, publié en 1618, en même tumps yu'une nouvelle édition de l'Mistoirc de In Vouvelle-France, complétée jusqu'à la mort de loutrinoourt. Cette publieation, comedant avee la lettre de Charles de Bieucourt du lur aptombre lifs, ent produit de grands résultats, si l'onverture de la guerre de Trente ans. nent paralysi la politique francaise. Nommé commissaire de la marine, Lescarbot parait sètre ćtoint dans ces fontions. La Chasse aux Aurghis, composée en vers (1628), est son dernier livre connu. Lescabot est, avee Champlain, le plus fort penseur des premiers tempes du la Nouvelle-France. L'un et lautre se sont tenus en dehors des partis religienx - ct sont restís bons ratholiques.

Qu'on me permette mot de digression. Jean-François de La Roque, chevalier, seigheur de lionorval, de Nogens nt de Prax, signait: "J. La Roque." Il est connu dans notre histoirn sous le nom de Roberval, à l'occasion de ses royages dans le Saint-Laurent aree Jacrues Cartior. On sait que Franços Ier l'appelait le petit roi de Vimen, à canse de la grande considération dont il donissait dans cette partie de la Picardie, sa province. Ecoutons maintenant ce que Jescarbot disait en 1612, parlant des prédications que M. Flenche faisait aux saturages a Port-Royal: "Quelquefois anssi il a conduit sa troupe en procession sur mur montagne qui est an nord de leurs habitations, sur laquelle il y a un roc carré de tontes parts, de la hauteur d'une table, courert d'une mousse épaisse où jo me suis quelquefois couché plaisamment. J'ai appelé ce lieu le mont de La Roque, au portrait que j'ai fait dı Port-lioyal en mon Histoire, en faveur d'un mien ami nommé de La Roque, prévost de Vimeu en Pieardie, qui désirait de prendre là une terre et d'y envoyer des hommes." Voilà bien, ce me semble, un petit-fils de Roberval qui s'occupait de l'Acadie.

De Monts obtint, en 1607, le droit d'exploiter (durant une seule année) la traite du fleuve Saint-Laurent, et, par sa protection, il permit à Champlain de fonder uu poste à Québec (1608). Voyons la suite de sa carrière. Malgré la mort du roi (1610), ce gentilhomme était resté an poste de gouverneur de Pons, et jouissait encore d'nn certain crédit à la cour. Sur les instances de Champlain, il ressaisit (1611) ses droits dans la Nouvelle-France, envoya des hommes, des arbres fruitiers, entre autres des pommiers, à Québec, et seconda de tous ses efforts la traite du Saint-Laurent; mais il céda à Mme de Guercheville ses prétentions sur l'Acadie. On le voit s'intéresser dans les affaires du

Canada en $1612,1613,1617$ et 1627 . Après cela nous le perdons de vue. ${ }^{8}$ Son influence a été très grande sur les commencements de notre colonie. Champlain savait le trouver à propos. Bien différent de ceux qui, avant lui, avaient tenté d'établir des postes dans ces territoires nouveaux, il sut enfin concilier l'idée du commerce des fourrures et de la pêche maritime avec la colonisation, et s'il ne parrint pas à fonder en Acadie et à Québec, de son vivant, des paroisses prospères, la faute en est à l'ignorance et anx préjugés de ses contemporains. Sully, principal ministre de Henri IV, ne disait-il pas qu'il était dangereux d'envoyer des cultivateurs dans les contrées lointaines, attendu que l'on courrait le risque de dépeupler la France! Il a fallu bien des travaux, me expérience chèrement acquise pour arriver, sous Richelieu (1627), à faire reconnaitre le principe des colonies agricoles, et sous Colbert (1665), à mettre le principe résolument en pratique. Combien ne devons-nous pas savoir gré à de Monts, à Pontrincourt, à Champlain surtout, du dévouement dont ils ont fait prenve dans cette grande lutte en faveur d'une idée nouvelle, large, honorable, nationale et humanitaire !

Dans l"automne de 1607, aussitôt après son arrivée en France, Charles de Bienconrt, alors âgé de seize ans à peine, se fit passer par de Monts la seigneurie de Port-Royal, ce qui le mit en état de continuer les travaux en les angmentant, surtout du côté de la culture des terres. Les années 1608 et 1609 s'écoulèrent de la sorte. Poutrincourt préparait en France une expédition plus importante que les précédentes. Jean de Biencourt, l'ané des enfants de Poutrinconrt, âgé de dix-sept ans, alla rejoindre son cadet à Port-Royal ell 1b08. A partir de 1609 , écrit M. Rameau, "il y eut une suite toujours croissante de cultures et de défrichements dans le haut de la rivière, vers le lieu, probablement, qui fut plus tard appelé la Prée-Ronde. Non seulement la colonie possédait du bétail, mais on élevait des poulains, des veaux et des pourceaux." Les cheranx ici mentionnés paraissent avoir été importés de Frauce en 1611.

Jeanne de Salazar, mère de Pontrincourt, décédée vers 1608, avait laissé à ée fils la baronnie de Saint-Just, en Charnpagne, et selon les apparences il en hypothéqua les revenus pour se mettre en état de préparer une nouvelle expédition en Acadie. An commencenent de février 1610, il partit done du manoir de Saint-Just, et s'embarqua sur un batean qui descendit l'Aube, puis la Seine jusqu'à Dieppe. Il amenait deux de ses fils: Charles, sieur de Saint-Just (c'est Biencourt), et Jacques, sieur de Salazar, âgés respectivement de dix-huit et quatorze ans, si je ne me trompe. Plusieurs gentilshommes le suivaient, en ronte vers l'Acadie ; ce fut comme la seconde fondation d'un poste qui promettait cette fois de prospérer. Parmi ces gentilshommes étaient Thomas Robin de Coulogne, ${ }^{9}$ René Maheu, Belot de Montfort, de Jouy et le sieur Bertrand, natif de Sézanne. Lonis Hébert voulut revoir les lieux où il avait espéré s'établir pour jamais. Clande de Latour était du voyage, avee son fils Charles, âgé de quatorze ans. Claude de Latour, on simplement Latour, car les uns en font un gentilhomme et les autres un simple maçon, ${ }^{10}$ observe M. Rameau, paraît avoir toujours été protestant, et tantôt français tantôt anglais. Il est nommé Claude Turgis de Saint-Etienne, sieur de Latour, et désigné comme venant de Paris, appartenant à la maison de Bouillon. Des revers de fortune l'avaient poussé dans le nouveau monde.

[^9]Poutrincourt s'était assuré le service d'un prêtre nommé Jesse Fleche ou Fleuche ou Fléché, natif du diocèse de Langres, "homme do bonnes lettres", envoyé par Robert Ubaldini, uonce du pape à Paris, et qui jouissait d'une réputation de science et de vertu. Les Souriquois domèrent ì cet ccelésiastique le surnom de patriarche, qui s'est transmis à tous les missionnaires de la Nouvelle-France. Les sauvages prononcent "patliasse"; ils appelaient "petits patliasses" les élèves de nos séminaires.

L'expedition mit à la voile le 26 février. "La saison était rude, dit Lescarbot, et les vents le plus souvent contraires, mais on pent bien appeler un voyage heurenx quand enfin on arrive à bon port. Ils ne furent guère loin, qu'ils rencontrèrent, vers le Casquet, un navire de forbans, lesquels, voyant le dit sieur et ses gens bien résolus de se défendre si on les attaquait, passèrent outre. Le 6 de mars, ils rencontrèrent onze navires flamands, et se salmerent lim l'autre de chacmu un coup de canon. Depuis le 8 jusqu'aun 15 , il y eut tempête, durant laquelle une fois ledit sieur, étant conché à la ponpe, fut porté de son lit par-dessus la table, au lit de son fils." Quelques jours après l'Asceusion, ils touchèrent à l'ilo sainte-Croix, "là où le dit siemr fit faire des prières pour les trépassés qui y étaient "uterrés dès le premier voyage du sieur de Monts, en l'an 1604." De ce lieu ils se dirigèrent burs l'ort-Royal. La $2 t$ juin, fete de saint Jean-Baptiste, furent baptisés par M. Fleuche, Memberton et vingt antres sanvages; il y en cut plusieurs antres de baptisés du 14 au 16 ant, lo 8 at 9 octobre et le ler décembre de cette année 1610 : en tont cent quarante et un.
M. Fenthe, érit I asarbot, "s"mpara de mon étude et de mes parterres et jardinages, ou il dit avoir trouvi quantit́ do raves, naveanx, carottes, panais, pois, fèves, et toutes sortes d'herthes jardinieres homes det planturenses. A quoi s'étant occupé, il y a laissé à son retour, qui lut lo 17 juin 1611 , m bean champ de blé à beaux épis et bien fleuri."

Ies plas ancienues coneessions de terres en Acadie datent de 1610. M. de Meulles, intement da la Nouwelle-France (1685), en a rin les titres écrits et signés par Poutrincourt. Il est regrottable fue les noms de ces premiers lubitonts de l'Acadie ne nous aient pas été conservés

Le 8 juillet, trois semaines après l'arrivée à Port-Royal, Jean de Biencourt, baron de Saint-Just, hils ainé, repartit pour la lirance dans le dessein de préparer des renforts, tant en hommes qu'en argent of marchandises. En cette occasion, l'amiral de France honora ce jeune homme "dutitre de vice-amiral en la mer du Ponant ès côtes de delà." Lescarbot ajoute: "Ayant à nourrir beaucoup d'hommes au moins l'espace d'un an et plus, attendant une cueillette de ble, il était besom d'me nouvelle charge de vivres et marchandises propres au commun usage tant de lui et des siens que des saurages." Biencourt eutradans le port de Dieppe le 21 nont.

Ce n'est certes pas l'activité et les bomes conceptions qui manquaient à Poutrincourt. Son énergie surmontait les obstacles les uns après les autres. Assisté de ses fils, très jeunes encore, mais évidemment donés de courage et de capacités hors ligne, il agraudissait sa fondation et la voyait sur le point de prospérer par ses senles ressources. L'ambition de ce brave seigneur, qui travaillait plus qu'aucun roturier et risquait son bien au gré des événeinents, était de commencer une Nouvelle-France, dont il cût éte le premier baron, et de laisser à sa famille un héritage conquis sur le domaine de cette grande Amérique inconnue. Il voyait déjà les campagnes remplaçant la foret primitive, une population rurale heureuse et riche se répandre le long des côtes et dans l'intérieur du pays, les ports fréquentés par les navires marchands, des moulins, des fabriques, des usines produisant les mille choses
qu'exige la civilisation et qui rendent la vie plus supportable, - et par dessus tout cela, le drapeau de la France flottant dans la brise, salué par les acclamations d'un peuple nourellement créé, défendu par les bras et les cœurs d'une jemesse patriotique! Ce rêve ne devait pas se réaliser. Une jalousie s'éleva. Une force occulte sut contrecarrer les projets du digne gentilhomme. Il n'aimait pas les jésuites: on lui déclara la guerre dans ces quartiers. Déjà, en 1606, des personnes, sans doute bien intentionnées, lui avaient conseillé de demander des missionnaires à ces pères, mais il n'avait pu s'y résondre. Le jour vint où sa colonie prit forme et annonça deroir prospérer: les jésuites se présentèrent et surent s'imposer. Notons que c'était au lendemain de l'assassinat de Henri IV, et que, grâce à Marie de Médicis et anx Italiens qui gouvernaient la France, les jésuites reparaissaient an pouvoir. Une observation de Lesçarbot trouve sa place ici: "Quand il (Poutrincourt) aura de plus amples moyens, il pourra envoyer des hommes aux terres plus penplées, où il faut aller fort et faire une grande moisson pour l'amplification de l'Eglise. Mais, il fant premièrement bâtir la république, sans laquelle l'Eglise ne peut être, et, pour ce, le premier secours doit être à cette république et non à ce qui a le prétexte de piété, car cette république étant établie, ce sera à elle à pourvoir à ce qui regarde le spirituel." Les jésuites savent s'emparer à la fois du spirituel et du temporel.

Mme de Guercheville, personne de grande piété, désirant contribuer à la conversion des sauvages, avait résolu de débourser les sommes nécessaires à cet objet. Les jésuites se servirent de sa fortune et de son influence. En 1610, le roi Hemri IV venait d'être poignardé, lorsque Jean de Biencourt "reparut en France dans les intérêts de l'Acadie. Mme de Guercheville, voyant que, malgré ses obsessions, Poutrincourt n'avait rien répondu relativement an projet de conduire des jésuites dans la colonie, et comprenant que ce seigneur perdait son principal appui dans la personne du sonverain disparn, décida le sieur Robin à se charger d'une partie de la dépense des missions. Le jeme Louis XIII, guidé par sa mère, affecta cinq cents écus à l'entretien des religienx; Mmes de Guercheville, de Verneuil ${ }^{12}$ et de Sourdis firent cadean de riches ornements de chapelle. Le père Christophe Balthazar, provincial des jésuites, désigna les PP. Biard (alors à Poitiers) et Enemond Masse pour missionnaires.

Arrivés à Dieppe le 24 octobre 1610, où était fixé l'embarquement, les pères eurent contestation arec les associés de Poutrincourt, qui étaient en devoir de faire radonber le navire : deux marchands hugufnots: Duchesne ou Duquesue ${ }^{13}$ et Dujardin; ${ }^{44}$ ils se retirèrent au collège d'Eu. Sans se décourager, Mme de Guercheville fit une collecte en cour, racheta (quatre mille livres) les droits de ces marchands, et comme, après cela, il lui restait en main une certaine somme, elle en composa un fonds pour empêcher, disait-elle, que les pères ne fussent à charge à Poutrincourt, ${ }^{15}$ laissant à celni-ci l'ordre de consacrer le revenu des pêcheries et du commerce des fourrures à l'entretien de Port-Royal, dont les administrateurs devaient être les sieurs Robin ${ }^{16}$ et de Biencourt, avec l'entente que les

[^10]missionnaires recerraient leur part des profits provenant de cette source. Le texte du contrat, ${ }^{17}$ passé le 20 janvier 1611, montre que les jésuites étaient mis sur le pied d'associés dans l'entreprise. ${ }^{1 s}$

La Gruce de Dieu, qui fit voile de Dieppe, le 26 janvier 1611, sous le commandement du capitaine Jean Daune et du pilote David, de Bruges, tous deux protestants, avec un équipage en bonne partie de la même croyance, ${ }^{19}$ amenait en Acadie les PP. Biard et Masse, Mme de Poutrincourt et Jean son fils aîné, regardé comme le chef de l'expédition. In navire n'arriva à Port-Royal que le 22 mai. Il n'est pas dit que Mme Hébert fit retourníe à Port-Royal aree son mari en 1610 ; peut-être se troura-t-elle du voyage de 1611. En tout cas, le l'. Biard écrivait de Port-Royal, au mois de janvier 1612: "Nous sommes vingt, sans sompter les femmes."

La I'. l'ierre Biard, né à Grenoble en 1565, enseignait la theologic à Lyon depuis neuf aus lorsquil fut désigué aux missions de l'Acadie. Il s'était offert dans le même but en 1tios, ot avait f́tí accppté; mais. rendu à Bordeaux, ne recevant pas de nouvelles, il avait div renonerr an royage. "Ceest un homme fort savant, gascon de nation, dit Lescarbot, dupu-i monsienr le premier président de Bordeanx m'a fait bon récit." Le P. Enemond Massw, nóa lyon rers lôt, appartenait à la rompagnie de Jésus depuis 1594, et était devenu assistant du cólebre P. Cotton, prédicateur du roi. Entendant parler du nouvean monde, sa rocation de missiomaire se révéla; il quitta la cour avec joie pour suivre les fondateurs de l'Acadie.
la 17 juin 16il, loutrinourt repart it pour la France, amenant M. Fleuche et plusieurs hommes qu'il navait pas le moyen de nourrir. La poigne des jésuites l'attendait. En promior liou, sa position ćat sulfisamment vague pour le mettre dans l'embarras si on lui drmandait des titres rairs inurhant les terres de l'Acadie. Ensuite, il n'y arait qu'ì hi proparer la compurni des jésuite pour le determiner à rompre avee ses projets. L'affaire fint conduito diphonatiquement. lás jésuites, puissants en cour, pouvaicut exiger la révision des papiers de ce digne homme, moitic squatter, moitié seigneur, - mais avant tout l'âme de la colonisation de l'Acadie. Introduit dans la filière légale, il lni fallait se soumettre ous aretirer.

Mone de Gurreveville continuait ì recueillir des offrandes destinées aux missionnaires. lontrincourl, très gêné dans ses finances, la trouva en apparence disposée à se joindre ì sa socífté, qu'il disait être favorable à la conversion des sauvages et qui l'était en effet. ('ette dame voulait domer mille écus pour l'armement d'un navire, moyennant quoi, elle participerait dans les bénéfices qui en résulteraient, et aussi dans les terres accordées par la couronne, soit immédiatement ou plus tard; ${ }^{20}$ mais Poutrincourt s'était déjà taille en imagination un vaste territoire ì coloniser, dont il soutint qu'il était seigneur et maitre. Appelé à produire ses titres, il n'en put rien faire, et vit bientôt qu'il s'était enferré ; car Mme de Guercheville se retourna vers le sicur de Monts, dont les lettres patentes étaient, pensait-on, restées en vigueur, et qui lui céda ses droits. Les lettres

[^11]royales qui confirment cet arrangement accordent à Mme de Guercheville toutes les terres de la Nouvelle-France, depuis le fleuve Saint-Laurent jusqu'à la Floride, ne réservant à Poutrincourt que le seul Port-Royal. Quand on prend du pays, on n'en saurait trop prendre. Résultat bien net: Poutrincourt se voyait enlever ses droits, lui le colonisateur ; un ordre religieux redoutable, lameux par l'intrigue, allait marcher sur ses brisées. On lui dirait: Tu n'es plus maître dans ta maison. S'il résistait, on élèverait colonie contre colonie, pensant que "ceci tuerait cela."

La noble dame versa les mille écus au fière Gilbert du Thet, de la compagnie de Jésus, qui partait pour l'Acadie et qui devait, en route, les remettre à quelques marchands de Dieppe. Le P. Biard nous fait entendre amèrement que non seulement Poutrincourt eut l'adresse de tirer quatre cents écus de cette somme, mais encore qu'il plaça au commandement du navire un de ses propres employés, nommé Simon Imbert, "cendrier et ancien tavernier de Paris," à qui il avait fait la langue. C'était de bome guerre. Il en avait le droit. Le vaissean partit de Dieppe le 31 décembre 1611, et arriva à Port-lioyal le 20 janvier. C'est à ce voyage, je crois, que furent amenés les chevaux que les Anglais enlevèrent de Port-Royal en 1613, et qu'ils mangèrent peu après, fante d'autre nourriture.

Qu'était Mme de Guercheville? Une personne dévote, un instrument sous le pouce d'une compagnie habile et sans scrupule.

Antoinette de Pons, pieuse et belle, disent les chroniques du temps, s'était fait remarquer par son mérite et sa piété, au milieu de la cour dissolute de Heuri LII. Le marquis de Guercheville, son mari, étant mort, le roi Henri IV avait en pour la jolie venve une passion assez prononcée. Il comptait bien emporter la place aussi lestement qu'il prenait les villes; mais, cette fois, la vertu et la dignité de la sujette firent échee au roi. "Sire, lui diteelle, mon rang ne me permet pas d'être votre femme; j'ai trop de ccur pour devenir votre maîtresse!" Réponse d'autant plus belle que la noblesse se faisait souvent une gloire de ce honteux commerce. Et, sans plus de paroles, la marquise se retira à son château de La RocheGuyon, sur la Seine, à dix lieues de Paris, où elle menait un train princier. Henri IV, toujours entreprenant, poussa un jour une partie de chasse de ce côté, et, sur la fin de la journée, il envoya un gentilhomme demander le couvert pour lui et quelques uns des siens, prétextant qu'il était trop loin de la capitale pour y retourner sans avoir pris du repos. Mme de Guercheville l'accueillit avec empressement, fit illuminer le château, commanda un souper somptueux, se montra aimable et prévenante comme une bonne et fidèle amie, déclara au roi qu'il était maître chez elle, et... monta en voituıe pour aller concher à deux lieues de là, chez une dame de sa connaissance ! L'aventure fit du bruit. Plus tard (1594), la marquise épousa, en secondes noces, Charles du Plessis, seigneur de La Rochefoncauld, comte de Beaumont, chevalier des ordres du roi, premier écuyer de Henri IV, et, en cette occasion, elle joua une nourelle pièce au souverain en refusant de prendre le nom de La Rochefoucauld, qui avait appartenu à la célèbre Gabrielle d'Estrées. Gabrielle s'était vue fiancée, d'autres disent mariée, avec Nicolas d'Armeval, seigneur de La RochefoucauldLiancourt, qui périt on ne sait comment, mais fort à propos, assure-t-on, pour la tranquillité de sa femme. En 1599, Gabrielle mourut. L'année suivante, Henri IV divorça d'avec Marguerite de Valois (la reine Margot) et épousa Marie de Médicis. En mémoire de la conduite de Mme de Guercheville (on la nommait toujours ainsi malgré son second mariage), ce prince voulut qu'elle occupât l'un des tabourets placés autour de la reine dans les
rénnions d'éclat. Ce fut la première dame qu'il présenta à Marie de Médicis, lui disant: "Je vous donne une dame d'honneur qui est en vérité une dame pleine d'homeur." L'époux de Mme de Guercheville était alors gouverneur de Paris. A quelque temps de là, Mme la connétable de Lesdiguières, une coquine fieffée, entra à la cour; le rang de son mari lui valut un tabouret élevé d'un on deux degrés au-dessus de celui de la belle marquise. Or, Malherbe, le poète, qui ne manquait pas les occasions de placer ses épigramıes, assista un jour ì une fête où la situation des deux dames éveilla son esprit caustique. "Je rois, dit-il, la rertu récompensée, et le vice encore mieux traité" Mme de Guercheville mourut à Pais en 1632, ayant été, comme on l'a va plus haut, seigneuresse de toute la Nouvelle-France.

Jean de Biencourt disparait après 1611. Son frère cadet, Charles, commandait à PortRoyal. Vers cette époque, il était constamment en voyage, soit sur mer ou parmi les Souriguois, ses amis fideles. C'est "ru jeune seigncur de grande vertn et fort recommandable," disait de lai le P. Biard en 1612. Il savait la langue des sauvages à la perfection et ©́ait deremu un véritable coureur de bois, sans jamais se plaindre du dur régime que lui imposait sette nonvelle existence.

Ici le désacoord entre Ioutrincourt et les jésuites prit une forme sensible. Avec l'arduar de son tompérament, le jeme de biencourt sopposait aux désirs des jésuites et refusait de recomaitre leurs réclanations à titre d’associés. En réalité ces pères étaient des intrus. Pour compliquer la situation, le fils de l'ontgravé, appelé Robert, luttait d'influme parmi les samvages, contre bo bonillant gouremeur de Port-Royal. On en rint à des roies de firit. La colonie devait souffrir de cet état de choses: elle s’affaiblit en effet, an limu de prondre des formes. libencourt, royant que les pères jésuites demandajent à retourner en lirauce, s'opposa ì leur départ. Il se sentait plus maitre de la situation tant griil les trnait sons sa main. Il ne savait don" pas que les jésuites pêchent toujours en can trouble. Nóamoins, l'asenir paraisait pen rassurant aux colons. Ce fut sans doute en ce momunt (1612) que Mme de Poutrincourt abandoma Port-Royal avec ses enfants, car if n'est plus fait mention delle en ce lien, et la suite des récits nons porte à croire qu'il n’: demeurait pas de fermmes en 1613, lorsque les Anglais dévastèrent le poste.

Ie frere Da Thet repassa en liruce an milien de l'été de 1612, après l'appaisement des dissensions, et il induisit Mme de Guercheville à fonder un poste séparé. En conséquence, elle équipa ma navire de cent tomeaux, capitaine Charles Flory, de Hableville, leguel, part je Honlleme le 12 mars 1613 , sous le commandement du capitaine La Sanssaye, arriva à La Hève le 16 mai, d'où il se rendit à Port-Royal. La reine Anne d'Autriche, très portée pour les jésuites, avait contribué ì l'achat des armes et de quelques munitions. A part les matelots, an nombre d'me quinzaine, il y avait à bord ringt-sept personnes, qui se proposaient d'hiverner dans le nourel établissement. Le P. Jacques Quentin, jésuite, et le frère Du Thet, accompagnaient l'expédition, avec le dessein de retourner en France dans le meme navire. Des chevaux et des chèrres, des approvisiomements pour une année, quatre tentes ou pavillons, etc., Ćtaient transportés en même temps. La Saussaye ne trouva à Port-Royal que cinq ${ }^{21}$ personnes: les deux pères jésuites; Hébert, qui tenait la place de Biencourt (pendant que celui-ci était allé au loin chereher des vivres) ; Valentin Pagean, domestique des pères, et un engagé. Rien ne nous indique la présence de Mme

[^12]Hébert; elle avait dû repasser en France avec Mme de Poutrincourt. C'est à Hébert que La Saussaye remit les lettres de la reine, enjoignant de relâcher les jésuites. Ceur-ci suivirent le capitaine, qui les conduisit anx Monts-Déserts, à l'entré de la rivière Pentagoët, sur une île qu'ils nommèrent Saint-Sauveur, et où La Saussaye débarqua trente hornmes. A la mi-juin, on fit les jardinages et les semailles. Les jésuites voulaient que leur comptoir fût le principal poste, le picot, la clef de voûte des établissements français en Acadie; mais Saint-Sauveur périt sous l'étreinte des Anglais, et Port-Royal resta debout malgré les Anglais et en dépit des jésuites.
"D'après une lettre mentionnée par Lescarbot, Poutrincourt serait parvenu à expédier à La Rochelle, en mai, 1613, un mois et demi après le départ de La Sanssaye, un navire chargé de provisions," dit M. Rameau ; - puis il ajoute: "Ce fait n'est pas très certain ; il n'est mentiouné que dans l'édition de 1617."

Les Anglais de la Virginie pêchaient le long des côtes, en remontant an nord. A quinze on seize lieues de l'île des Monts-Déserts, ils eurent connaissance, par les sanvages probablement, de la formation d'un poste français. Le capitaino Samnel Argall résolut de surprendre cet établissement. La paix régnait entre les deux couromes, mais Londres et Paris étaient si loin! Les navires anglais s'approchèrent done de saint-Sanveur. La Motte le Vilin, lieutenant de La Saussaye, alla au-devant d'eux, et, après un combat dans lequel le frère Du Thet fut tué, il lui fallut céder au nombre. La Sanssaye était à terre en ce moment. Voyant le désastre, il s'enfuit dans les bois; mais le lendemain il crut devoir se montrer. Argall le reçut avee une politesse apparente, lui demandant de produire sa commission... qu'il avait enlevée la veille du navire de La Motte; naturellement on ne la troura pas. Dès lors, les Anglais le traitèrent de forban, et pillèrent le poste. Après des pourparlers, voyant qu'il était à pen près impossible de renvoyer ses prisonniers en France, Argall leur proposa de les emmener dans la Virginie, ce qui fut accepté tont d'abord par quatre personnes, avec l'entente qu'on me les molesterait point au sujet de la religion, et que, après un an de service, ils pouraient retourner en France. Finalement quinze hommes, avec les PP. Biard et Quentin, furent transportés à la Virginie. Le commandant de cette plantation, Thomas Dale, voulut les mettre à mort, mais Argall sortit alors de ses bagages la commission ce La Saussaye et leur sauva la vie. Bientôt après, trois de ces infortunés moururent de maladie. En 1615, quatre autres étaient encore en Virginie. On ne commaît rien du reste de la bande. Retournons en Acadie.

Le père Masse, ${ }^{2 z}$ avec trente hommes, fut embarqué pour la Hève, où le navire de Pontgravée ${ }^{23}$ et un autre bâtiment français les reçurent pour les rapatrier. La Saussaye parait s'être échappé de Saint-Sauvenr et avoir répandu l'alarme à Sainte-Croix et à PortRoyal. Argall le suivit de près, trouva ces deux postes abandonnés et y mit le feu. Biencourt était en course dans les bois. A l'aspect des ruines de ses maisons, ce jeune homme (vingt-deux ans) montra un courage digne de celni de son père. Selon Lescarbot, il aurait fait proposer à Argall un combat singulier, ou un combat entre un nombre égal d'hommes de part et d'autre. Hannay, dans son History of Acadia, ne mentionne point ce défi chevaleresque; mais il dit que les deux chefs se rencontrèrent dans une prairie, accom-

[^13]pagnés de quelque suite, et que l'offre de Biencourt de diviser la traite entre les Anglais et les Français ne fut pas acceptée. Le 9 novembre, Argall se remit en ronte, et il arriva à temps dans la Virginie pour sauver la vie aux Français mentionnés plus hant.

Les PP. Biard et Quentin farent ramenés en Europe, après plusieurs mois d'une navigation accidentée. Anx îles Açores, ils surent rendre un service important au capitaine anglais qui les conduisait et qui, à partir de ce moment, se comporta à leur égard arec déférence. Quand ils furent rendus en Angleterre, les antorités françaises intervinrent en leur faveur; ils rentrèrent en France vers la fin d'avril 1614, et se réfugièrent chez les jésuites d'Amiens. La Motte le Vilin réussit à se rendre en Angleterre vers le même temps que les PP. Biard et Quentin. Mme de Guercheville envoya La Saussaye ${ }^{24}$ à Londres sollicitur la restitution de son navire; ce fut tout ce qu'elle obtint. Le P . Biard a én rit des lettres datées de l'Acadie et de lirance, et une intéressante relation qui fut inprimée en janvier 1616. Il s'éteignit ì Arignon le 19 novembre 1622.

En trois anmés (1610-13), dit ce missionnare, il ne mourut de maladie à Port-Royal et is Sint-大abeur que deux hommes, l'un de Saint-Malo et l'autre bretou. Sans doute, les colons s'étaient a"climatés et savaient se pourvoir des choses nécessaires sous le rapport du vètencent, de l'habitation et de la nouriture. Poutrincourt avait accompli à Port-Royal, à lat date do 1613. plus que Champlain lui-méme n'arait pu faire à Québec. Sans l'acte de piraturie d'Arrall, son établissoment était en roie de prospérer, nonobstant la division des forces des lrançais 'an deux spigneuries on colonies. Après de Monts, auquel revient l'homent de la premiere année, tous les travaux, de 1606 à 1613 , furent son curre et celle de ses lils: ciest pourquoi jo me suis appliqué à démontrer que Port-Royal était derenu, (1) 1613 , autre chose qu'un vulgaire poste de traite. Je vais maintenant expliquer ce qui ent lien dans les annés $1614-162 \%$, et l'on se convaincra, d'une part, que les Français n'abantomerrnt point l'Acadie, et d'antre part, que cette occupation fut encore l'œuvre do la famille de Poutrineourt. J'ai mis curelide de Monts et ses mérites, Mne de Guercheville et ses lonables intentions, llébert et son dévoument, Lescarbot et son patriotisme; mais aumu d'eus ne saurait être comparé à loutrincourt pour les sacrifices de temps, d'argent, et pour la persévérance indomptable dont il fit preuve, tout en étant animé des plus hauts motifs. Limpression crée en France par les évenements de 1613 fut que tout etait détruit: les jésuites ne parlèrent pas autrement. Si jamais ils ont su que Biencourt et ses hommes avaient conservé leurs postes et bâti de nouveaux forts, ils ont garde "de Conrard le silence prudent."

Biencourt rassembla ses gens, fit réunir le bétail que les Anglais n'araient pas aperçu, constata que son moulin était intact, que les terres promettaient une récolte pour l'année suivante si on les ensemençait, et, sams balancer, il fit ses préparatifs d'hivernement. N'ayant plus de provisions, il fallait vivre de chasse; mais cette chasse devint une source de richesse. Grace aux saurages, on se trouva, le printemps venu, en possession de nombreuses pelleteries, sur lesquelles Biencourt comptait pour relever Port-Royal. L'expérience acquise ì l'égard du climat, du mode do logement, de la nourriture et des voyages dans ces contrées nourelles, permit d'éviter les malheurs survenus en 1604 et 1605. La pêche ne fut pas négligée. Ainsi donc, au lieu de repasser en France sur les nombreux bâtiments qui sillonnaient les eaux de la presqu'ile, ces courageux pionniers, se regardant comme ancrés

[^14]dans le pays, voulaient s'y maintenir en dépit des orages et des contretemps de tous genres. Il est impossible de dire combien d'hommes demeurèrent avec Biencourt dans ces circonstances difficiles. Au moment de l'attaque d'Argall, les colons étaient occupés aux travaux des champs, sur le haut de la rivière Dauphine, à deux lieues du fort ; ils échappèrent facilement aux Anglais. Quelques uns, assure-t-on, se dirigèrent du côté du Canada; mais rien ne nous fait croire qu'ils parvinrent jusqu'à Québec. D'autres ont pu s'embarquer pour la France sur les bâtiments de pêche. De Port-Royal à la Hève, on coupe aisément à travers la foret. Ce qui parait certain, c'est que la petite colonie ne renfermait plus aucune femme, sauf peut-être Marie Rollet, épouse de Louis Hébert, dont la date du retour en France n'est pas précisée.

Poutrincourt, ruiné par ses entreprises, n'en persistait pas moins à vouloir fonder wh grand fief en Acadie. Pour cela il sollicitait de tous eôtés des secours et une protection bien difficile à obtenir dans un tel moment. Il trouva enfin de l'aide chez certains marchands de La Rochelle qu'il lia au commerce des pelleteries; puis, ayant équipé un navire de soixaute-dix tonneaux, il mit à la voile le 31 décembre 1613 , et arriva, le 27 mai, ${ }^{25}$ derant Port-Royal, où il fut reçu comme un envoyé de la Providence. Les terres, ensemencées l'année précédente, promettaient de belles moissons. La colonie, ravitaillée si à propos, reprit vigueur. En uu instant on releva les édifices détruits ou écoulés, et tont revint à la vie.

Louis Hébert se rembarqua avec Poutrincourt, et tous deux étaient de nowvean à La Rochelle avant le 18 juillet 1614. Hébert rencontra en France Samuel de Champlain, qui le détermina à s'établir à Québec (1617), dont il fut le premier colon vivant du produit de sa terre. Bien qu'il ait demeuré à Port-Royal, on ne peut regarder comme sa descendance les Hébert de l'Acadie, qui sont de date très ancieme dans cette partie de l'Amérique, et qui comptent de nos jours plusieurs milliers de représentants parmi les divers groupes acadiens de notre Confédération; mais il peut y avoir en parenté entre les denx souches.

En 1614, Poutrincourt se rendit en Suisse dans l'intérêt de ses entreprises. An moment où il se préparait à reprendre la route de Port-Royal, nue circonstance se présenta qui lui devint fatale. Le prince de Conti s'agitait dans la Champagne; il avait même pris les armes. Le maréchal d'Ancre, premier ministre, nomma Pontrincourt gonverneur de Mérysur-Seine. Ce fut en défendant cette place que le seigneur de l'Acadie mourut, le 5 décembre 1615. Les soldats, qui le chérissaient, firent élever, à l'endroit où il succomba, une croix de pierre qui porte encore aujourd'hui le nom de Croix de Poutrincourt. Disons ce que devint sa famille, car il est à peu près le seul (sauf Hébert et La Saussaye) de ses compagnons sur lequel il nous reste de semblables renseignements. Il y a apparence que Mme de Pontrincourt décéda vers 1616. Son fils Charles, déjà qualifié de sieur de SaintJust en 1611, entra dès lors en possession de la terre et domaine de ce nom, ru que Jean, le fils aîné, était mort à cette époque. Charles demeurait en Acadie et se nommait Biencourt ; on suppose qu'il ne se maria jamais. Jacques, troisième fils, continua la liguée de la branche dite Poutrincourt. Marié, le 1er octobre 1622, avec Françoise, fille de Jean de Mornay, chevalier, seigneur d'Ambleville, du Gnérard et de Renilly, il eut pour successeur son fils Charles, qui épousa, le 9 novembre 1647, Edmée, fille de Jean de Tremelet, chevalier, seigneur de Gumery. Gabriel, fils de ces derniers, contracta alliance, le 8 mai 1696, avec

[^15]Marguerite, fille de Jean de Pelletier, seigneur de Montmort. De ce mariage naquit Chris-tophe-Angustin-Gabriel, qui devint chevalier et monsquetaire de la garde du roi, et qui épousa, le 19 juin 1722, Marie-Anne, fille de Charles du Pare, seigneur du Plessis et du Meix. Leur fils, Christophe-Angustin, se maria, le 18 décembre 1758, avec Marie-Jeanne-Victoire, fille d'Edıne-Thomas Sandrier, seigneur de Mailly. Leur fils, Ange-Pierre-Louis-François de liencourt, reçu page de Monsieur, frère du roi, le 23 juin 1776, puis garde de marine au département de Brest, en 1779, périt vers 1783 sur la frégate la Diane, faisant partie de l'eseadre du comte de Guichen. Dans sa personne s'éteignit la descendance du seigneur de Port-Royal. Le trisaienl de Pontrincourt avait eu pour frère Jean de Biencourt, dont la descendance subsiste seule anjourl'hui de tontes les branches de cette ancienne famille. l:lle compte ringt-quatre générations en ligne directe, et est représentée par le marquis de liencourt et ses trois fils dont l'un a pris récemment le nom de Poutrincourt.
la mort d" Poutrincourt rompait ses projets et ceux de son fils, car celui-ci ne pouvait plus compter que sur lui-même. S'es ressourees pécuniaires se bornaient à ce qu'il retirait de la traite. Son inlluence parmi les bailleurs de fonds et les armateurs était mince. Sans se détourager, néamuins, il resta au poste et se prépara à braver la mauvaise fortune. Ses relations régulieres aree la France cessèrent presque tout ì fait. On ne voyait à Port-Royal athou ménag̣ purement franças, mais il y restait quelques cultivateurs. Il semble certain que quelque métissage avait díja cu lien, bien que la chose soit contestée. Les éléments d'une colonie stable existaient d’allenre dans ces hommes formés à la rude école des années próédentes. On possédait des logrments commodes. Les cultures étaient prospères. Le moulin à farine et monlin à scju fonctionnaient. Les bestiaux se multipliaient. Le commerce avait pris mue bone direction par l'entremise des bâtiments de pêche. A l'aide de signaux on attirait les navires, qui livraient des produits européeus en échange des pelleteries. Lhentót une station permanente fut établie au cap Fourchu, Yarmouth aụourd'hui. et reçt le nom de fort Lomeron. Des postes volants commencèrent à la Hève et au "ap sable. Lin attendant des jours plas henrenx, e'étaient là des noyaux d'établissements très appréeiables. Mais on lit davantage. Après le désastre de Port-Royal, Claude de Latour su batit moste de traite à l'entrée du la rivière Penobscot, dans le Maine. Les Anglais de llymouth l'en chasserent donze ou treize ans plus tard. Il est le fondateur de cet établissument cólebre dans les gutures et les coups de main, de 1626 à 1713. La premiere dispersion des Acadiens accomplie par la razzia du capitaine Argall eut pour résultat, on le roit, de laire naitre de noureanx établissements sur les deux côtes qui regardent la bain de loundy et même sur le rivage de l'Atlantique et le territoire du Maine. Je me pernettrai aussi de supposer que Charles-Amador de Latour, âgé de dix-sept ou dix-huit années en 1614, dirigea son attention vers le fleuve Saint-Jean, où les fourrures abondaient et où il joua un si curieux rôle par la suite. Certes, avec de pareilles dispositions nos aventuriers, comme on les appelle, se montraient de dignes élèves de Poutrincourt; et il est bien malheureux que la France ait attendu vingt ans pour leur prêter main-forte. La continuité de l'occupation française sur ces côtes ne saurait être contestée. Les navires de la baie de Biseaje et même de la Normandie fréquentaient les postes de Biencourt et en retiraient des cargaisons de fourrures en place des armes, des vetements, des outils qu'ils livraient aux habitants, et des babioles que ceux-ci destinaient à la traite avec les sauvages. Les ressources naturelles de Port-Royal en faisaient le quartier général de cette bande
hardie, moitie laboureurs, moitié conreurs des bois; ce lieu était le pivot sur lequel tournaient toutes les opérations, tant il est vrai qu'il ne peut y avoir de colonie sans l'agrieulture.

En 1618, Biencourt fit demander aux autorités de la ville de Paris des colons, auxquels il promettait un établissement avantageux. Sa lettre est d'une grande valeur historique; la voici: "Aux authorités de la ville de Paris. Du Port-Royal, en la Nouvelle-France, ce premier septembre 1618. Messieurs:-Comme ainsy soyt que la Société des hommes s'entretienne par un mutuel secours, j'ay pensé vous rendre un agréable service, si je vous donnais advis de la chose qui importe grandement an bien de vostre ville, laquelle il est notoire estre une bonne partie de l'an sustenée de l'abondance de ce pays. ${ }^{26}$ Fen mon père, monsieur de Potrincourt et moi, avons, depuis quatorze ans en ça faict nos efforts d'estre utiles à la France en ce regard et planter icy le nom François et par mesme voye le nom de Dieu.
"Déjà tous ces peuples se disposaient à recevoir le Sainct Baptesme quand la mort funeste de moin dit feu Sieur \&e., père arriva, ayant esté laschement ${ }^{27}$ tué pour le service du Roy au siège de Meri, sur Scine, il y a trois ans, ce qui a reculé l'œuvre commencée. Mais si cela doit estre regrettable, nous avons aussy à regretter que le nom François peu à peu s'évanouira icy, si l'on n'y donne ordre de bonne heure, et vous feront pour les Molnes (la grande mane de vostre ville et de l'Europe que ce païs vous dome gratuitement) tributaire au gré de l'Anglois qui nous traitte hostilement par deça, en a chassé les Jésuittes, et yceux mesmes captifs avec leur équipage, bruslé nos habitations, ${ }^{2 \times}$ et cet esté a encore pris un navire de Dieppe. Cependant, il peuple puissamment la Virginie et le Bormude, où il erivoye des colonies tous les ans, et naguerres est icy passé une flotte de cinç cens hommes avec nombre de femmes de ladite nation, laquelle s'est pourvue d'eau douce et de bois eu mon voisinage. Il y a uu conseil particulier pour la Virginie, et des escoles à Londres pour faire instruire les naturels du dit pais, et ils promettent bien aux Anglois que quand ils aurout ce qui est au delà, ils auront aisément le deça. ${ }^{20}$
"Ce n'est chose, messieurs, qu'il vous faille mespriser; vous estes les Pères du peuple, e'est à vous pour veoir à ce qu'on ne luy arrache le pain de lit main. Il fant done prévenir le dessein de l'Auglois, puisque nous le voyons de loing, et pour veoir ì ce que ce pais soit plustost habité de Frauçois et garny de deux ou trois forts le loug de cette coste pour leur asseurance et conserver la liberté de la pescherie de deçà qui vault tous les ans un million d'or à la France. Une petite despense fournira à cela, messieurs; il faudrait un ou deux navires allans et venans qui conduiroient gratuittement ceulx qui vouldroient venir icy, et quelques petits fonds pour nourrir quelque tems les plus pauvres, comme il faut faire la première despense, moyeunant quoy on pourroit retirer icy vos mandians valides, et soulager beaucoup de familles grévez de trop grand nombre d'enfans, voirre mettre à l'aise plusieurs qui gémissent en secret et n'osent faire paroistre leur nécessité; que si ces peuples barbares vivent au milieu des terres, pourquoy ne vivront point ceux à qui Dicu a donné l'invention

[^16]de tant de métiers et qui ont la Frauce roisine, pour leur fournir les choses nécessaires aux dits métiers et à la vie.
"La terre est icy bonne au labourage, messicurs; la chasse y est abondante, et le poisson à foison, et je ne roudrois point avoir faiet eschange du Pirou à cette terre, si une fois elle estoit sérieusement habitée. ${ }^{30}$
"Fraictes donc, messieurs, quelque petite despense, et ayez la gloire d'avoir icy planté le $n o m$ de Dien et premiers estably ce pais et vous servir de nous tandis que vous le pouvez faire. Nous avons découvert touttes ces costes au peril de nos vies. Elles nous sont touttes cogrnues et avons lintelligence et l'usage du language de deçà.
"Souffrir"\%-vons que, pour pell de choses, le nom François soit hommy par toute cette terre? Vous qui are\% le navire ${ }^{31}$ pour marque des trophez navales de vos ancestres, laisspre-rous périr cett, gloire et n’ayderez-vous point anx navigations de la NouvelleFrame, qui vous remira un jour abondamment l'usure de vostre despense, car, outre la arande mamu de ses poissons, ses bois et prés se rempliront bientôt, qui vous fourniront abontance de cuirs, graisses, rhairs et laitages, d'où vostre peuple aura du soulagement; commerausy les bois do deçi vous fourniront de navires, de cendres et secours de bastimens ghe vous faites remir de siuede, Danemarek on Mascovie, avee une navigation plus longun et périllemse que cellerey.
"J"anrois beancoup te thoses à rous dire cy-dessus, messicurs, lesquelles je laisse pour ne vous estre mmuyenx et vous dire que si ce pais a esté méprisé jusques icy, ça esté par ignorame et par la malice de's marehams.
"On dit: il y a longtems qu"on parle du Canada et on n'en voit aucun fruict. Je répons qu'il y a longtens 'fue mons ne somme's point assistaz, et est aisé de parler entre oisifs ou assis dans unt whaise.
"Seulem"nt je vons représente l'Anglois, ${ }^{32}$ vous laissant ì considérer ses desseins, et sur er je price lien, messiours, vous domer arcoissement de toute prospérité. Votre très humble servitar. P'otrencourt." 33

Il he parait pas que la ville de Paris ait répondu à cet appel si éminemment patriotique. Foree fut done a biencourt de rewourir phe que jamais an trafic, ce qui était chose assw farile, mais moins gloriense que le développement de la colonie agricole si bien conçue par l'outrin ourt et son fils. Nommoins, la lettre ci-dessus arrivait dans un moment farorable; elle ne dut pas être étrangère à la formation (1619) de deux compagnies dont l'une fut antorisée à faire la pêche le long des côtes, et l'autre à trafiquer des fourrures avee les sanvages de l'Acadie. Les pêcheurs s'établirent ì Miscon, les traiteurs au fleure SaintJean. Trois récollets furent envoyés ì Miseon, à Port-Royal et au fleuve Saint-Jean, tant pour assister les Français que pour prêcher les sauvages. On assure que, eu 1621, huit cents vaisseaux allaient et renaient de l'Acadie en France. La guerre de Trente ans commençait (1618) ; le royaume, agité par les révoltes des princes, allait passer aux maius de Richelieu.

Selon la remarque de M. Rameau, les récollets eurent cette utilité, de tenir rattachés à la civilisation les Français dispersés daus ces solitudes. Il ajoute: "Ils purent aussi

[^17]régulariser à diverses reprises quelques unes des unions grossières contractées entre les Français et les squaws... Il se constitua ainsi quelques rudiments de familles métisses, qui apportèreut plus tard un certain contingent d'utilité, lors de l'établissement des premières familles européennes."

La colonie du Massachusetts, fondée deux ans après la date de la lettre de Biencourt, confirmait les prévisions de cet esprit éclairé. Au mois de septembre 1621, un Ecossais, sir William Alexander de Menstrie, obtint du roi Jacques Ier, la concession de toute l'Acadie sous la dénomination de Nouvelle-Ecosse, et dressa un vaste plan de colonisation que Charles Ier approuva en 1625.

Biencourt mourut (1623) au moment où sir William tentait (1622-23) de prendre possession de la contrée au nom du roi d'Angleterre. Jusque-là, la troupe de Biencourt s'était recrutée des habitants fixes de Port-Royal, et assez régulièrement de matelots déserteurs, d'aventuriers et de pêcheurs, outre les sauvages, qui lui étaient très attachés. Tous ensemble, ils firent une si bonne contenance, que les premiers émigrants du seigneur ecossais (1623) ne crurent pas devoir rester dans ces lienx et repartirent sans retard.

Charles de Latour, fidèle lieutenant de Biencourt, était tont désigné ponr prendre sa place. Le fort Lomeron passa sous son commandement. ${ }^{34}$ Un autre fort, appelé Saint-Louis, construit dans le voisinage vers le même temps, se trouva aussi rangé sous les ordres de Latour.

En 1624, trois récollets arrivèrent de France, parcoururent le Nouveau-Brunswick, voyageant à pied, ce qui veut dire à travers la forêt, et se rendirent à Québee, en suivant la rivière Chaudière.

Je voulais m'arrêter à 1623, avec la fin de la carrière de Biencourt; mais le successeur de ce dernier mérite quelques lignes touchant les premières années de sou pouroir comme chef de la colonie.

C'était un persomnage singulier que Charles-Amador de Latour. On l'a un peı mêlé avec son père, et, comme il résulte de ce malentendu une double légende, je vais tâcher de remettre chacun d'eux à sa place. Charles était eatholique et resta toujours bon Français. On le nommait tantôt Latour, tantôt le siear de Saint-Etiemne. Sa fille Jeanne, née vers 1626, et dont la mère était souriquoise, fut légitimée an bercean. Elle épousa Martinon ou Martin d'Aprendistigny ou d'Arpentigny, plus tard seigneur sur la rivière Saint-Jean.

Un certain nombre de Français, déserteurs de navires peut-être, s'étaient assemblés sur la grande rivière de la Hève et refusaient obéissance à Latour ; ils formaient même une bande rivale de la sieune. Par un manque d'attention des historiens, ces hommes ont été confondus avee ceux de Latour. Il ne faut pas s'y tromper: de même que Biencourt arait continué la tradition de son père, de même Latour adoptait les idées de Biencourt.

De 1604 à 1613, sous de Monts et Poutrincourt, l'histoire de l'Acadie est à présent assez bien fixée.

De 1614 à 1623, sous Biencourt, elle échappe à l'étude exacte et se prête à la légende. Avec Latour, elle combine les deux genres et captive l'imagination. Latour et plus tard Saint-Castin furent des héros de roman; aussi les conteurs et les poètes se sont-ils emparés de leurs noms comme d'un bien appartenant à la littératare.

[^18]Les désaccords survenus entre Richelieu et l'Angleterre aboutirent (1626) ì des hostilités. Du camp de La Rochelle, arr printemps de 1627, le cardinal signa l'acte constituant la compagnie des Cent-Associés, en vertu duquel le Canada et l'Acadie devenaicnt un territoire colonial sous l'ancien nom de Nonvelle-France. Charles de Latour résolut de faire des démarches pour renouer des relations arec la mère patrie et conserver son antorité dans les forts et sur les terres qu'il administrait. Il jeta les yeux sur son père, Clande de Latour, à qui les Anglais venaient (1626) d'enlever son poste de traite de Penobscot, et le vieillard s'embarqua, le 27 juillet 1627 , porteur d'une lettre de son fils qui demandait an roi Louis Xifi d'etre nonmé commandant de toute la côte de l'Acadie. L'aceneil que lui fit le sonverain n'est pas comm. A son voyage de retour (1628), il tomba dans la flote de Kertk, qui venait de transporter quelques familles écossaises à Port-Royal, au nom de sir William Aluxander, et fut pris.

Les expéditions du capitaine Charles Daniel au Cap-Breton, en 1629 et 1630 ; le retour de Clande de Latour en Acradie à la tête des Ecossais (1630), les combats qui s'en suivirent; of le debarquement de Ra\%illy, en 1632 , avee des colons français, sont des faits connus. L'Acade redevint possession française avonéc. Cela n'empêche nullement Biencourt de prendre sa place dans l'histoire, tout ainsi que son père. A lui la gloire de la conservation de l'ort-Royal, et du développenent des postes français dans la baie de Fundy! A lui l'homener d'avoir attiré l'attention de ses compatriotes sur ces belles contrées, cent fois parournes, cent feis incomprises. A lui l'hommage de l'histoire, puisqne ses projets Catont grands, justes, sares, praticables, pt qu'il avait le comrage de les exécuter malgré l'indiflérence de la mere patrie. Apres la desente d'Argall à Saint-Sauveur et à Portlioyal, les Anglais ne sont pas revelus dans ces parages ; qui donc empêchait les Français de France de söntéresser a la colonie aradienne? Ceri: on en avait chassé les jésuites, et la reine régente, toute à la dévotion des jésuites, vonlait bien croire que c'était un établissment ruinc. Qu'inporte que loutrincourt et son fils travaillent avec succès et patriotisme, que Iescarbot réimprime ses livres, que le commerce persévère dans l'exploitation du paỵs: on en a chassé les jésuites, at les jésuites disent que tout est détruit!

Cependant liencourt étendra son commerce, il conservera Port-Royal, il implorera du secours, demandera à la France des cultivateurs, des artisans, des hommes d'ordre; il signalera le danger de l'approche des Anglais; une féconde idée nationale l'animera; mais non, l'histoire n'existe pas où les jésuites ne gouvernent point. Le réveil provoqué par Pontrincourt servira la cause des révérends pères, ou il ne servira à rien. Tant pis pour la France!

VI - Les Quarante dernieres annees :- Le Canada depuis l' Union de 1841, par John Charles Dent. * - Etude critique,

Par l'abbé Casarain.

(Lu lo 20 mai 1884.)

I

nly aurait une étude assez curiense à écrire sur les évolutions de l'opinion publique daus notre pays depuis l'nnion des Cauadas. Avant 1840, les denx provinces étaient restées en quelque sorte étrangères l'une à l'autre. De là beancoup de préjugés mutuels très intenses. Mais les rapports incessants que l'Union ćtablit entre les hommes les plns marquants du Haut et du Bas-Canada modifièrent ensuite ces sentiments. Du parlement, où les députés apprirent à se connaître et à s'estimer, les rues impartiales des esprits éclairés se firent jour peu à peu dans la presse, et, par elle, dans les différentes classes de la société. Le journalisme anglais, qui, jusque-là avait été presque unirersellement hostile aux Canadiens:français, prit une attitude plus mesurée, que ces derniers ne tardèrent pas à reconnaître ct à apprécier. La plupart des publications qui se firent depuis en langue anglaise, se ressentirent plus ou moins de cette influence. Il s'est formé parmi nos concitoyens d'origine britannique deux écoles bien distinctes: l'mee, certainement encore trop nombreuse et trop puissante, qui s'obstine dans les idées rétrogrades d'mu autre temps, et continue à entretenir les préjugés ; l'autre, qui se recrute parmi les intelligences d'élite et qui s'est mise à étudier nos institutions, qui en a compris le mérite, et qui travaille activement à effacer les préventions.

Il scrait facile d'en citer plus d'un excmple : nous n'en trouvons pas de plus frappant que celui offert récemment par un écrivain fort remarquable d'Ontario, le principal Grant, sous la direction duquel vient de s'achever la publication d'un grand ourrage illustré, le Picturesque Canada, destiné à prendre rang parmi les meilleurs travaux du genre qui aient été imprimés en Amérique. Outre une connaissance peu ordinaire de nos anuales historiques, il règne dans ces deux volumes un ton d'impartialité et de bienveillance que l'on n'est pas encore accoutumé à rencontrer chez les auteurs qui ne partagent pas les croyances catholiques.

C'est après avoir connu cet excellent ourrage que nous avons eu occasion de lire les Quarante dernières années de l'histoire du Canada de M. John Charles Dent, dont nous entreprenons de faire la critique. Nous pensions y trouver la même absence de préjugés et la même largeur de vues; le modèle que l'auteur avait sous les yeux dans le beau travail dirigé par le principal Grant, dont les premiers fascicules se publiaient à Toronto, lorsque M. Dent imprimait son livre, semblait permettre de l'espérer. Mais les livres se

[^19]snivent et ne se ressemblent pas. Celui de M. Dent, nons regrettons de le dire, relève directement de l'école arriérée et fanatique que nons venons de mentionner, et qui, pour nous servir d'une expression de l'historien Justin McCarthy, "s'imagine qu'il ne peut exister rien de réellement bon en dehors du protestantisme." "Au lieu de réagir contre ces idées étroites, de dominer la foule ignoranto pour l'instraire et la guider, l'auteur s'est mis ì sa suite et s'est fait l'écho des préjugés.

Je me suis imposé la tache de lire ces deux épais volumes in-quarto, ce qui u'est pas un mince mérite ; et je déclare qu'il m'est arrẹvé rarement de lire rien d'anssi médiocre sur l'histoire. L'ourrage ne se rachète guère que par un côté: celui du luxe du papier et de l'impression. Convenons que ce n'est pas le côté le plus important.

Dès l'abord, on jugera de l'esprit de l'auteur par l'appréciation qu'il fait du peuple et du clergé canadien-français en 1840: "The rural population, dit-il, were in a condition of "intellectual stagnation, if not of positive retrogression... The habitant... was illiterate, "snperstitions, and wholly insensible to the value of education. The habitant, indeed, was " not merely indifferent to edncation - he was opposed to it in principle; AND HE WAS " (generulhy escoubaged in tills opposition by his parish priest." (t. I, pp. 53 et 54).

Mouvemment rútrograde, on tout an moins stagnation dans lordre moral et intellectuel, et, cela par la lautu da clergé ; telle était, suivant M. Dent, la situation du penple canadicnfranças, a lépoque de l'mion des denx Canadas.

Mais l'autenr est-il bien assuré que les faits soient conformes ì sa vae des choses?
Nous allons be tonstater raphenent en mettant en regard deux époques de notre histoire: arlle de la Conguete et celle de l'Union.

Quel était l'état de notre population en 1760 , et quel était-il en 1840?
Jormque be sort des armes nons jeta entre les mains de l'Angleterre, nous n'étions (on l'a sonvent répété) qu’une roixantaine de mille Français, complètement ruinés par la gherre, abandonnés par une grande partie de la classe aisée et instruite qui allait émigrer en Franee, et dont l'Angleterre favorisait le départ, comptant venir plus facilement à bout du reste de la population. Le senl climent de réorganisation qui subsistat dans cette débâde générale fut le clergé. Un historien dont M. Dent ne suspectera pas l'impartialité en fareur dn catholicisme, M. l'arlman, a dit, en parlant de cette époqne: "Confusion, if " not anarchy, would have followed but for the parish priests, who in a character of " double paternity, half spiritual and half temporal, became more than ever the guardians "of order throughout Canada." (The old Regime in Canada, by F. Parkman, p. 400).

Sous le régime frunçais, le haut enscignement avait toujours été entre les mains du clerge ; elle avait en pour source principale le collège des jésuites de Québec, qui, depuis l'origine de la colonie, avait rendu des services inappréciables. Le séminaire de Québec s'était occupé exclusivement de l'éducation et du recrutement du clergé.

Un certain nombre d'écoles avaicnt été établies dans les campagnes, sous les auspices plus ou moins directs du gouvernement; mais aucun systeme d'instruction primaire n'était régulièrement suivi. Il n'est peut-être aucun rapport sous lequel le régime français ait éte plus défectucux. A cette époque, l'éducation populaire était loin d'attirer autant qu'anjourd'hai l'attention en Amérique et en Europe ; et, d'ailleurs, les guerres continuelles

[^20]que la France avait eu à soutenir pour garder pied au Canada, avaient fait de ce dernicr pays une colonie militaire autant qu'agricole. Les habitants, toujours près d'être appelés sous les armes, soit pour défendre le sol, soit pour faire partic d'expéditions lointaines, étaient souvent obligés d'abandonner ì leurs enfants le soin de la culture des terres. A peine ccux-ci avaient-ils grandi dans les labours des champs, que, la plupart du temps, ils étaient convoqués à leur tour pour le service de l'Etat.

L'édncation des filles avait été de tout temps entre les mains des communantés religicuses. Les ursulines, les hospitalières de l'Hôpital-Général et les dames de la Congrégation avaient des établissements à Québec; les ursulines en araient un autre aux Trois-Rivières; à Montréal, les dames de la Congrégation s'étaient dévonées à l'enseig̣nement depuis la fondation de la ville, et avaient établi des convents dans une dizaine de paroisses rurales.

Telles étaient à peu près les sources intellectuelles que présentait le Canada au lendemain de la Conquête ; clles étaient dues presqu'entièrement au clergé et aux commutnautés religieuses.

L'Angleterre le comprit bien tont d'abord; anssi chercha-t-elle à les tarir à la fois en tarissant la source même du elergé. Mgr de Pontbriand, évêque de Québee, étant mortt l'aunée qui suivit la prisc de cette ville, elle apporta toute espèce dobstacles et de délais à la nomination de son snccesseur. On pent dire, sans rien exagérer, gue lo plns grand ennemi de l'éducation an Canada, depuis la Conquête jusqu'ì la reille de l'Union, ce fut l'Angleterre. Elle commença par supprimer le collège des jésuites, et si elle ne supprima point également le séminaire de Montréal, c'est que les événements ne lui permirent pas d'exécuter ce dessein. On sait quelle part du revenu public elle employa à fonder et entretenir le famenx Institut royal, qu'elle arait imaginé pour protestantiser les Canadiens. L'opposition qu'il fallut faire à cette perfide organisation, qui nons entomrait de dangers d'autant plus à craindre qu'ils étaient plus dissimulés, et qui disposait des fonds publics et de toute l'influence du pouvoir, paralysa, pendant plusieurs années, me partie de nos efforts pour répandre l'éducation françaisc. Cette opposition a servi de prétexte aux ealomnies dont M. Dent se fait aujourd'hni l'echo. Que serait-il arrivé, cependant, si nous arions prêté l'oreille aux suggestions qui nous furent faites? si nous avions fléchi devant les menaces et le déni de justice? si, de guerre lasse, nous eussions renié notre religion et notre nationalité? L'Angleterre aurait-clle pu résister aux deux invasions américaines de 1755 et de 1812? Quelles raisons aurions-nous enes de nous battre contre nos voisins? Nos intérêts n'cussent-ils pas été les mêmes? Si la religion ct la nationalité n'avaicut pas élevé une barrière entre nons et les Américains, il y a plus d'un siềcle que l'Angleterre aurait perdn le Canada; et cette perte aurait entraîné probablement celle de toute l'Amérique britaunique. Aujourd'hui la république américaine compterait quelques Etats de plus, et n'aurait d'autre limite du côté du nord que la mer Glaciale. Pour nous, nous serions noyés dans l'immense flot humain qui inonde les Etats-Unis; nous aurions perdu notre caractère national, c'est-à-dire notre force et notre originalité, et nous serions montrés du doigt comme un peuple d'apostats. L'Angleterre elle-mêmc serait la première à nous reprocher notre trahison.

Au lien de cela, nous sommes restés un peuple pur d'alliage, homogène, vaillant et prospère. Les deux premières nations du monde, la France et l'Angleterre, sont fières de nous: la France, qui nous avait crus perdus, uous a retrouvés après un siècle, et nons à
reconnus pour ses plus dignes enfants; l'Angleterre, qui nous avait méconnus, nous réclame comme ses plus fidèles sujets.

Ce fut dans les circonstances que nons venons de dire que le clergé et le peuple canadiens trouvèrent, dans l'inspiration du patriotisme, les moyens de développer l'instruction générale et de créer des établissements de haute éducation, d'où sont sortis nos hommes publics, et qui font aujourd'hui l'homeur et la force de notre race eu Amérique. Les cours d'etudes qu'on y suit ont fini par nous nssurer sur plusieurs points, particulièrement en histoire et en littérature, nne supériorité qui n'est pas contestée.

La canse de cette supériorité remonte à l'esprit conservateur du catholicismo. Grâce à cet esprit, la tradition des fortes études classiques qui ont fait les grands siècles, ne s'est jamais perdue parmi nons. Elle a imprimé à notre société une direction moius pratique, mais plus ćlevée qu’à celles qui nous enviromnent.

La séminaire de Qućbec ourrit un cours classique après la suppression du collège des jésuites; le collige de Montréal fut fondé en 1773 par l'abbé Curatean; le collège de Nicolet, en 1804, par le curé lbrassard; le collège de Saint-Hyacinthe, en 1811, par le rurí Girouard; le college de Sainte-Thérèse, en 1825, par le curé Ducharme; le collège de Chambly, en 1824, par le euré Mignault; le collège de Sainte-Anne, en 1827, par le curí l'aimehand; le college de l'Assomption, en 1832, par le curé Labelle; le collège du Kingston, en 18:37, par Mgr Mc.Donell; les Ecoles chrétiennes, en 1837, par les sulpiciens. Les maisons d'éducation pour les filles se multiplièrent en proportion.

Tontes ces fondations sont dues à l'initiative individuelle on à nos corporations religieuses, et nont en, la plupart du temps, d’antres ressources que le dévouement des particuliers; et cela à une ́poque où il fallait réngir contre la tyrannie oligarchique qui trahissait la cause de l'instruetion publique pour servir celle de son fanatisme.
list-il nécessaire de dire gue l'éducation morale du peuple, loin d’avoir été négligée, fint tonjours la principale et constante occupation du clergé que chaque paroisse était róglée a la maniere d'une fanille, dont le curé ćtait comme le père vigilant et austere ; que par ses instructions religieuses, éclairées et suivies, il communiquait à ses ouailles les vertus civiques en même temps que les vertus chrétiennes dont il était lui-même l'exemple? C"est sous l'empire de ces graves cuseignements que s'est formée cette population cana-dienne-française, paisible et morale, anie de l'ordre et des lois, modeste dans ses désirs comme dans ses habitudes, accessible aux idées ćlevées et généreuses, - en un mot, possédant les qualités qui font le bonheur et la prospérité des Etats.

Il ne fant pas chercher aillenrs la canse de l'influence si grande que le clergé s'est acquise sur le peuple canadien : elle s'explique par cette action bienfaisante.

Mais, nu-dessus de toutes ces considérations, il y a un fait éclatant qu'on a cité souvent et qui ne sanrait être mis trop en évidence, car il est une preuve sans réplique de la moralité de notre race: c'est l'accroissement presque fabuleux de la population. De 1760 à 1840, c'est-ì-dire dans l'espace de quatre-vingts ans, elle s'est accrue de 65,000 à 650,000 Ames. Elle est anjourd'hui d'un million et demi.

En présence des faits qui précèdent et que l'auteur des Quarante dernières années ne peut ignorer, comment a-t-il pu écrire que, sous le rapport moral et intellectuel, les Canadieusfrancais aient snivi un mouvement rétrograde? N'avaient-ils pas, au contraire, suivi une marche progressive, d'autant plus remarquable qu'elle avait été entravée par des difficultés de toute nature? Quand on réfléchit à tous les désavantages de leur position après la Con-
quête, à leur faiblesse numérique, au petit nombre d'hommes instruits qui étaient restés parmi enx, à l'isolement et à l'abandon dans lesquels ils avaient été jetés soudainement, n'ayant de contact qu'nvec un vainqueur qui les détestait et qui aurait voulu les faire disparaître du sol, s'il en avait trouvé les moyens, ne jouissant, dans le principe, d'ancune liberté politique, étant obligés de défendre leurs institutions toujours menacées, on se demande comment ils ont pu résister à tant d'obstacles et ne pas être anéantis. On admire l'habileté et la prudence avec lesquelles ils se sont conduits, d'abord pour se faire pardomer leur existence, et ensuite pour assurer le maintien de leur religion, de leur langue et de leurs lois, et enfin pour conquérir leurs libertés politiques.

Lorsque leur nombre eut commencé à s'accroître, et que l'Angleterre leur eût accordé une constitution, ils comprirent que la première chose qu'ils avaient à faire était d'angmenter le nombre de leurs maisous de hant enseignement, afin de former d'abord un clergé plus nombreux, et ensuite une classe de citoyens instruits et dévoués qui fussent en état de défendre leurs intérêts sur tons les terrains de la vie pulblique. C'est cette pensée qui a domú naissance à tons ces collèges classiques qui sont devenus dés pépinières inépuisables pour l'Eglise et pour l'Etat.

On a eu raison de dire que l'instruction primaire avait été fort négligée, mais nous arons montré sur qui en retombait la responsabilité. Si les gourernants d'alors, an lieu de dépenser les fonds publics et l'influence dont ils disposaient, à essayer de pervertir le peuple en l'enlevant an catholicisme, avaient employé les mêmes moyens pour établir un bon système d'écoles, l'instruction primaire eût été proportionnellement anssi avancée en 1840 qu'elle l'est aujourd'hui. Mais les efforts des hommes éclairés et notamment du clergé étaient venus, je le répète, se briser contre la mauraise volonté dn gonvernement. Ceux qui, comme nous, fréquentaient les écoles à cette époque, se rappellent les regrets qu'excitait l'impuissance où l'on était de remédier à ce mal. N'est-il pas étrange que maintenant on eu fasse une arme contre les Canadiens, et surtout contre le clergé?... M. Dent, qui redit ces accusations, ne s'aperçoit pas qu'il est un demeurant d'un autre âge, que le temps des préjugés est passé, qu'un esprit de justice prévant à présent parmi ses compatriotes et que les plus éminents d'entre enx se font un mérite de savoir nons apprécier. Le piquant qu'il a cru ajouter à son livre en cherchant à nous rabaisser, lui donne une pente invincible vers le ruisseau: il aura le sort de ses prédécesseurs. Qui songe anjourd'hui à l'historien Smith et aux calomnies dont il a voulu ternir les premiers temps de notre histoire?

II

Il est plaisant de voir comme M. Dent le prend de haut avec nous, de quel ton de supériorité il nous traite. Macaulay on Carlyle ne prononçaient pas leurs jugements avec plus d'assurance. Ce naif ne doute pas de lui-même; il croit simplement que The last Forty Years est le pendant de l'History of our own Times de Justin McCarthy. Rien que cela. Pour qu'on n'en doute pas, il a la modestie de nous en prévenir dans son prospectus: "As its name implies," dit-il, "it will be a veritable Canadian "History of our onon Times."

Or j'ai lu The IHistory of our own Times eu même temps que The last Forty Years, et je déclare que je ne connais rien de plus désastreux en littérature que cette comparaison. Imaginez une enseigne d'épicier auprès d'un tableau de maître!

Evidemment M. Dent s'est persuadé qu'il n'y a dans le Dominion qu'un seul historien
digne de ce nom : M. Dent. On s'en aperçoit ì la manière dont il traite l'Histoire du Canada de Garneau. "The current year," dit-il en la mentionnant, "finds us unprovided with any general history of our conntry that is worthy of the name."

Il importe pen que la critique étrangère ait trouvé cette histoire digne de la littérature francaise, que des historiens comme Henri Martin en aient fait l'éloge, et qu'un des derniers veux de ce savant acadénicien, avant de mourir, ait été de lui servir de patron pour la faire couronner par l'Académie française; M. Dent en a jugé autrement: son arrêt est sams appel.

Si, du moins, aree de telles prétentions, l'auteur des Quarante dernières annees faisait prouse d'un véritable talent; mais son livre ne supporte pas la critique. Il est écrit plutôt aree la plume d'un journaliste qu'avee celle d'un historien. Composé sans plan arrêté, il manqu aboblmment de proportion. Conçoit-on un ourrage qui s'intitule: Histoire de purante ans et qui, formant deux gros rolumes de 985 pages, n'a que cinquante pages sur los dix dernieres ammées.

En revanche, cartaines parties sont traitées avec une étendue tout anssi disproportionmón, "t contioment on ne sait combien de longueurs, de redites interminables.

Lialministration de lord Motalfe, par exomple, qui n'a duré que deux ans et huit mois, norrupe pas moins de cent rincuante et we pages.

Lin maints endroits. l'autenr ne fait grâce dancun détail, si insignifiant qu’il soit. Il triomphe it nous dire non senlement quel quantieme du mois, quel jour de la semaine, mass même quella heure du jour tel gourerneur est arrivé dans le pays, ou telle sessiou du parnment siast ourepte. Sir Charles liagot, raconte-t-il, n'est débarqué du vaisseau qui liavat tranoporté en Amérigue, que le lemdemain de son arrivée a New-York, dans l'aprèsmidi; som lagare et whi de sa suite pesaient exactement quarante-deux tomeaux. Et ains de suite. M. Dent apparmment ignore que l'histoire n'est pas un inventaire, et ne sörrit pas comme whe facture.
lanteur des Qunrunte dermires années a une tendance qu'il a peut-être empruntée à Instin Mc:arthy: il cherche à piequer la curiositédu lecteur en mettant, au commencement de chature chapitre, quolque titre it effet. Co louc, qui rappelle trop l'art du romancier, convient fell à la gravite do l'histoire. Mas Justin MeCarthy se le fait pardonuer par ungoût littiraire dont M. Dent ignore le secret. Je ne veux citer qu'un exemple de la manière de M. Dent, que je troure dans son second volume.

La trente-sixieme chapitre porte en redette ces deux mots français: L'Année terrible. A quel propos? Quelle amnée de notre histoire depuis 1840 jusqu'à nos jours mérite cette formidable épithète? Nous l'ignorons. M. Dent l'ignore aussi. L'Année terrible de Victor Hugo lui sera tombée sous les yeux, et il n'a purésister à l'attrait de ce titre. Alors il s'est nis à la recherche d'une année terrible. Pourquoi n'aurions-nous pas, comme la France, notre année terrible? Il ne s'agissait que de la déconvrir. La voilà, dit M. Dent en toute assurance : c'est l'année 1857. Mais elle n'est pas du tout terrible, l'année 1857. Elle l'est moins, dans tous les cas, que d'autres qui se sont écoulées durant les derniers quarante aus, telles que 184\%, l'année de l'exode des Irlandais et de l'épidémie du typhus; mais pen importe. Stet pro ratione voluntas. Et cela s'appelle faire de l'histoire !

Un pareil livre ne mérite pas les honneurs d'une longue critique; aussi ne voulonsnous insister sur quelques points que pour rétablir la vérité.

Le thème favori de M. Dent est la supériorité des Hauts-Canadiens sur nos compa-
triotes. A l'entendre, ils sont à peu près la seule population éclairée, la seule qui ait de l'initiative, soit pour les affaires privées, soit pour les affaires publiques, la senle qui ait bien compris ses droits et qui les ait fait valoir avec intelligence.

Nous allons mettre les deux provinces eu présence, les montrer à l'cuvre, à l'une des époques les plus décisives de notre régime parlementaire, et il sera facile de constater laquelle entendait mieux ses droits et ses devoirs, laquelle savait mieux combattre pour la liberté. Nous roulons parler de la crise politique que subit le Canada sous l'administration de lord Metcalfe. Voici en quelques mots quelle était la situation.

Sir Charles Bagot, prédécesseur de lord Metealfe, avait pris l'administration de la colonie (1842) des mains de lord Sydenham, dont la conduite tyrannique avait sonlevé un profond mécontentement dans la population. Ami sincère de la justice et de la liberté, sir Charles Bagot n'avait pas tardé à ramener l'ordre et la trunquillité par la sagesse de son gouvernement. Il avait établi avec franchise le régime du gouvernenent responsable, pour lequel les nôtres avaient combattu avec antant d'ardeur que de persévérance. D'autres réformes importantes qu'il favorisa et introduisit, achevèrent de lui conquérir une estime et une popnlarité universelles. Sa mort vint trop tôt mettre un terme à cette administration qui arait fait entrer le Canada dans me voie de liberté, de calme et de progrès incounne jusque-lì.

Ce fut sous ces heurenx auspices que sir Charles Metcalfe prit la direction de la colonie. L'Angleterre ne pouvait faire un choix plus malheurenx. Ancien gonvernemr de l'Inde, et ensuite de la Jamaïque, il s'y était imbu d'idées autoritaires incompatibles avec le gouvernement d'un peuple libre. De l'Orient, où il avait été longtemps témoin de l'astuce et du despotisme des rajahs et des nababs, "auprès de quile pouvoir est tout et le peuple n'est rien," il avait été transporté anx Indes occidentales, où il avait tronré un autre genre de servilisme qui avait achevé de le rendre inapte à comprendre les aspirations des races civilisées. Son expérience s'était faite en sens opposé anx tendances des sociétés modernes, et il était trop avancé dans la vie pour refure son éducation politique. Tel était le gouverneur que la Grande-Bretagne imposait au Canada après l'administration libérale de sir Charles Bagot.

C'était réveiller l'antagonisme que ce gonverneur avait mis ses soins à détruire. Sir Charles Metcalfe n'ent pas d'autre idée que de faire rétrograder le pays an temps de lord Sydenham, en démolissant ce que son prédécesseur avait si habilement édifié. Il se mit en guerre ouverte avec le ministère La Fontaine-Baldwin, alors an pouvoir, par une suite d'actes arbitraires et de procédés inconstitutionnels, qui forcèrent La Fontaine à lui donner sa résignation. Cet événement fut le signal d'une tempête qui ne devait cesser qu'après son départ. Le Canada se trouva replongé daus un état de trouble et d'agitation voisin de l'anarehie.

Pendant neuf mois, le gouverneur se consuma eu vains efforts pour reconstitner un ministère. Les échecs qu'il subit ne firent qu'augmenter son obstination: il s'érigea en petit souveraiu et gouverna sans conseillers officiels, sans chefs de départements, violant ainsi les principes du gouvernement responsable qui avaient été établis et mis eu pratique avant lui.

Enfin le ministère si tristement connu sous le nom de ministère Draper-Viger fut formé, le parlement dissous et de nouvelles élections fixées pour l'automne de 1844.

Ce fut alors que se dessina l'attitude des denx provinces. Elles avaient les memes droits à faire valoir, les mêmes principes ì faire triompher. Leur canse était commune: sauver le gonvernement responsable, qui leur avait apporté la paix et le progrès; reponsser le rétablissement du régime arbitraire, qui avait été la source de luttes stériles et sans fin. Ein un mot, elles avaient à choisir entre la liberté et l'assujettissement.

Mnlgré les efforts de lord Metcalfé, qui, sans respect pour sa dignité, se jeta dans l'arène politique et se fit le premior partisam de sa canse; malgré les moyens iniques et la corruption qu'il emouragea, la province de Québee vota en masse pour l'opposition, tandis que le Hant-Cianda sontint la polifique du gonverneur et lui assura une majorité de cinq ou six foix ch farlament. Le sonl homme marquant parmi les Canadiens-français qui, en cette ocasion, se sćpara de ses compalrioles, M. Viger, lequel avait accepté un portefeuille dans le nouvan ministiore, fut battu dans deux comtés et vit sa carrière publique brisée pour jamais

Toutus lio rusen diplomatigues de lord Mctualle, appuyé par l'Angleterre, pour rompre
 c象atant trimuph au parti liberal ou riformiste, dirige par MM. La Fontaine et Baldwin, qui comimuitent a lutter juspaim 1848, at remontèrent alors an pouvoir avee un phas grand prestige yułalparavant.

La cromromement ruponsable fut, depuis cette date, établi définitivement; une ère mourallos sontrit pome lemada sous les anspices de lord Elgin, qui reprit la politique sagen ef vraiment anglaist de sir Charles Bagot.

Voili, wh qulques mots, le rítit de cette lutte mómorable et le rôle qu'y joua chacune dis deux provimes. (On est itmene duger maintenant laquelle des denx y prit la part la phe intelligernte, laquello ar montra la plus amie de la liberté et du progrès.

On aura bean "hereher à le nier, l'histoire impartiale dira que l'établissement du gonvernement roponsable dont nous jonissons, et qui a été le point de départ du grand déveloperment ampur mons assistons, est dia a vant tont anx efforts éclairés et patriotiques des C'anadien-franctas.

On wrait bin de lo soupçnuer en livant l'Histoire des quarante dernières années de M. Dant. Ohlige de ra*ontor les laits, il se dome bien garde den tirer les conclusions. Il ne parlome quere phe it nos compatriotes lenr patriotisme que lord Metcalfe, qui le qualifiait d'areuglement (bimuess) at qui ch faisait un chef dacensation contre eux. An lien d'admirer le sentiment qui les tenait mais ansemble comme m senl homme autour de leurs chefs, pour rérlamur leurs droits, il s'en étonne et semble ne pas le comprendre. Il réserve ses sympathies pour nos adversaires les plus déclarés. Sans parler des prétextes qu'il s'ingínic a trouver pour pallier la conduite de lord Sydenham, il est curieux de voir le mal qu’il se dome pour excuser la fatale administration de lord Metcalfe. Cette idée fixe l'entraine dans les jugements les plus contradictoires, comme celni-ci, par exemple, sur le caractère de lord Metcalfe. Après aroir dit au sujet des élections sanglantes de 1844: "The Gorernor himself did not scruple to turn his personal influence to accomnt, as well as to resort to stratagems which he despised, in order to win votes... and became, in his, own estimation, something of a trickster," (t. I, p. 375, t. II, p. 10); l'auteur ajoute, dans un autre endroit: ".....I do not mean that he did or sanctioned anything incompatible with public virtue... No man ever went through life with better intentions... " (t. II, pp. 11 et 2 J).

III

Nous no terminerons pas cette critique sans relever un autre passage du livre de M. Dent, où l'on verra avec quelle ignorance et quelle légèreté certains auteurs traitent l'histoire. Il n'est pas nécessaire d'en comnaître bien long sur la colonisation primitive de notre pays, pour savoir quels furent les motifs qui firent adopter le système de concessious territoriales qui a prévalu dans la Nouvelle-France. A l'origine de la colonie, le fleure Saint-Laurent et ses tributaires étant les senles voies de communication, les premières seigneuries fureut concédées sur ses rives. Chaque seigneurie était divisée eu concessions d'une quarantaine d'arpents de profondeur, et ordinairement de deux ou quatre arpents de front. En s'établissant sur ces terres, les colons avaient besoin de deux choses essenticlles: d'abord une voie de communication, dont ils s'assuraient en construisant leurs hathitations au bord de l'ean; ensuite quelques moyens de défense contre les incursions des Iroquois, auxquelles ils étaient sans cesse exposés. La forme parallélogrammique des terres offrait sons ce rapport un grand avantage, en permettant de rapprocher les maisons antant que possible les unes des antres. Au premier sigual d'alame, tonte la concession, mise sur l'alerte, se levait en armes et formait une ligne de défense, le long de laquelle il était plus facile de se porter secours. Si l'on était obligé de se replier devant l'mmemi, les familles trouvaient un refuge à pen près inexpuguable dans le manoir du seignomr, qui était un édifice tonjours solidement construit, entouré de palissades et ordinairement muni de quelques pièces de canon.

Tels étaient les avanta ges qu’offrait autrefois le système de colonisation adopté par les Frauçais.

On a observé depuis que cette division de la propriété territoriale présentait un autre avantage tout ì fait favorable à l'agriculture. Il suffit de regarder nos campagnes pendant l'hiver, pour constater que les clôtures qui divisent les champs, retiement de chaque côté d'elles une quantité de la neige poussée par le vent. C'et amas de neige a lo double chlet de préserver le sol d'une gelée trop profonde et d'y laisser une espèce d'engrais. C'e fait est si universellement reconnu que certains cultivateurs f́lèvent quelguefois de nouvelles lignes de clôtures pour augmenter cet amas de neige.

Après cette courte explication, voyons si les paroles ironiques de M. Dent, que nous allons citer, ont leur raison d'être.
"Most of the farms, dit-il, consisted of narrow strips, forming rectangles, nearly a mile and a half in length, with a frontage of ouly a few yards. These "ribbons of land," as they have been called, with the land all longitude, were held under the old feudal scignorial tenure, and generally involved the performance of certain antiquated and more or less absurd services on the part of the occupants." ${ }^{2}$

L'Histoire des quarante dernières années n'est cependant pas sans mérite: elle accuse un bon nombre de recherches, et renferme beaucoup de détails absents de l'Histoire du Canada sous l'Union, par L.-P. Turcotte, la seule qui ait été publiée arant celle-ci et dont M. Dent fait, au reste, un juste éloge en rendant témoignage de son exactitude.

[^21]
IV

L'esprit qui a inspire le livre de M. Dent n'est pas nourean; ce n'est qu'me forme de l'nntipathie que l'ancien parti tory, né de la Conquête, avait vouée aux Canadiens-français. Si, an lendemain de la cession du pays, quelqu'un fût venu dire aux hommes de ce parti: Vous royez cette poignée de Canadiens, vaincus, ruinés, abandomés, désorganisés, que vous pense\% tenir sous votre talon; eh bien! à cette même date, dans un siècle d'ici, ils seront un million d'hommes, maitres des deux rives du Saint-Laurent, heureux et prosperes; ils serment ansi fronçais d'esprit et de cour qu'aujourd'hai, avec la même religion, la même langue et les mêmes lois; ils auront leur système d'éducation, lenr littérature, lours hommes publies: ils auront secoué, l'une après l'autre, toutes les servitudes que vons aurw hurché à leur imposer ; ils seront aussi libres et jouiront de la même constitution que les ritoyens do la Grande-Bretagne ; si, dis-je, quelqu'un en̂t tenu ce langage, areer quol sourire d'incródulité il aurait été accucilli! Et pourtant cela s'est réalisé, et an delì.

De míme nt are plus do raison encore, nous pouvons dire anjourd'hui aux représentants actuels du cette faction dont M. Dent n'est que le disciple attardé: Nous avons asé fos devanders: mons vous userons, vous aussi. Impuissants à nous opprimer, vous employe\% contre nous la dernice arme qui vons reste et qui a longtemps réussi aux vôtres, colle du préjugi. Eh bion! nous briserous cette arme entre vos mains comme les antres;
 Vons ase\% dípofís apprendront ì mons comatre et ì nons apprécier. Notre défense sera toujours lat mem": non de vaines paroles, mais l'action. Res nee verba. Travailleurs laborienx et pationts, nous laissons dire, et nous bâtissons avec des matériaux impérissables l'ídifie de notre nationalité. La foi, la moralité et le patriotisme en sont les fondements; avece cela on arrive a tous les progres. ("est m fait reconn et admis que notre population, par son senl développement naturel, se double tous les vingt-huit ans. Pour cela, nons n'a 11 sierle, un ponple compact et homogène de plus de quinze millions d'habitants; c'est-àdire ${ }^{\text {rumbere moins que la population de la France sons le règne de Lonis XIV. N'aurons- }}$ nous pas le droit alors de nous appeler la France américaine, et d'aspirer à remplir sur ce continent le role quelle a joń en Enrope? Ecoutez ce qu'a dit de nons un homme dont vous ne contestere\% pas la valeur et qui a étudié à fond notre génie national, lord Dufferin : ".. J'ai tonjours considéré comme du meilleur augure la collaboration de la race françase dans le Canada. Cette race, qui a déjà coutribué si puissamment à civiliser J'surope, ne peut manquer de suppléer et de corriger de la façon la plus heureuse les qualités et les défauts considérés comme inhérents an John Bull traditionuel. Avec la générosité, l'esprit d'inrention, l'élan, la grâce, la délicatesse, la précision dn jugement et la finesse artistique des Français, arec le flegme et le tempérament britanniques, on peut dire que nous réanissons les éléments qui gouvernent en grande partie le monde moral et le monde physique... Il ne faut pas onblier que c'est à l'élévation d'esprit de la race française, à son amour de la liberté, et à son exacte appréciation des droits civils contenus en germe dans la constitution primitivement accordée par l'Angleterre au Canada, que nous derons le développement de cette antonomie parlementaire dont lo pays est fier à si bon
droit..." (Canada under the Administration of the Earl of Dufferin, by George Stewart, Esquire, pp. 300 et 301).

Ces paroles d'un des hommes d'Etat les plus éminents que l'Angleterre ait envoyés pour gouverner le Canada sont d'autant plus significatives qu'elles résument l'opinion de tous ceux qui ont approfondi cette question.

Les Canadiens-français ont foi en leur destinée ; elle est d'ailleurs entre leurs mains. Ils n'ont besoin pour y arriver que de rester fidèles à eux-mêmes.

VII - Des commencements de l'Eglise du Canada,

Par l'abbé Verreau.

(Lu le 21 mai 1884.)

Il n'est pas sans importance pour l'histoire de l'Eglise du Canala de savoir comment les premiers missionnaires reçurent le pouvoir d'établir le christianisme dans les vastes contrées que les Français commençaient à coloniser.

On sait que Champlain s'était adressé aux réeollets do la province religiense de la Touraine pictavienne' pour avoir des missiomnaires, et que sa demande avait été reçue avec empressement par le supérieur.

Les religieux désignés par celui-ci vinrent à Paris demander an nonce Ubaldini less pouroirs nécessaires pour commencer cette mission. Mais le nonce leur répondit qu'il n’avait aucun "ponvoir spécial pour de telles affaires, at que có́tait à lurur général quiils se devaient adresser." ${ }^{2}$

Le P. Le Clercq, plus an fait des choses ecclésiastiques que Champlain, est aussi plus explicite: "Son Eminence leur témoigna qu'elle n'avait pas l'autoritó de leur en expédier les pouvoirs, et qu'il fallait en écrire à Rome au procureur de l'ordre, afin de les obtenir' de Sa Sainteté." ${ }^{3}$

Or la saison était avancée; l'époque du départ des vaisseaux approchait; et il me restait pas assez de temps pour entrer en négociation à Rome aver le général des franciscains. Il fallut done renoncer an royage, et les religieux rentrèrent dans leur couvent de Brotages, remettant "l'affaire à l'année suivante." "

Ce projet fut done rompu parce que le pape seul pent envoyer les missiomaires, et qu'il était impossible de recevoir son antorisation en temps opportun.

Il est assez singulier que Sagard ne parle pas de ces premières tentatives de Champlain ; il a pu les ignorer, parce qu'il n'appartenait pas à la province de l'Immaculée-Conception.

Bientôt les récollets de la province de Saint-Denis on de France. ${ }^{5}$ reprirent, pour leur propre compte, l'idée des missions canadiennes, soit que leurs frères y eussent renoncé

[^22]défnitivenent, soit que les idées de Champlain eussent changé. Le P. Garnier de Chapoin, ${ }^{6}$ supérieur de la province, prit la chose à ccour; il en parla aux cardinaux et aux évêques, réunis à Paris pour les états généraux, et il eut le plaisir de voir son zèle loué et approuvé de tous. Fort de ces encouragements, le P. Chapoin choisit quatre missionnaires, - les PP. Jamet, d'Olbeau, ${ }^{7}$ Le Caron et du Plessis, - qui s'embarquèrent bientôt pour le Canada.

Champlain, que je viens d'analyser, ne parle plus cette fois des démarches faites anprès de l'autorité religiense pour obtenir des pouvoirs nécessaires anx missionnaires. De son silence on pourrait conclure ou qu’il a ignoré ces démarches on que les récollets ne se seraient plus adressés an nonce, se contentant de l'npprobation des évêques et des cardiuaux.

Mais nous arons un témoin contemporain qui supplée an sileuce de Champlain. Le frère satgard moms apprend *quil se trouvait le compagnon du P. Chapoin, quand on lui demamla dos missiomaires. Non senlement il était son compagoon, mais encore il avait part, dit-il, it ses soins, et comme ses sentiments et ses intentions. Or Sagard dit positivement que les reollets s'adressèrent an pape: "Mais pour que la chose était d'importance " "t qu'olle ne ponvait être bien laite que par les voies ordinaires et bienséantes aux reli-- grienx de lordre de Saint-lirançois, nous ê̂mes recours ì Sa Sainteté pour en avoir les permissions " urcosuires, leopulagreat notre sele en érivit à son nonce résidant en cour de France, "dupuel nus religipux destinés pour la mission reçurent avee sa bénédiction une permission "rerbale diallor dans les terres infideles et canadiennes pour travailler à lemr conversion."
 contemporains.
L. P. Iadebver, qui merivait en 167万, ${ }^{9}$ tont en confondant plusicurs choses, est très "xplicit" sur lo litit primeipal: "...Attendu que cela ne se pouvoit faire sans avoir la mission
 " F'rame do domur de sa part la mission nécessatre à ces religieux en attendant qu’il en" weyat te hef. qui arriva denx ans apres. Cependant le nonce doma la permission suiVante" "t le bon piry, par inadrertance sams doute, cite le bref qui ne fut accordé qu'en 1615.
L. l'. Le. Clereqest mun peuns exact dans les détails: "M. le nonce lui (au P. Chapoin) " accorda la mission solon l'ordre qu'il en avait reçu du pape, en attendant le bref que Sa "Santete lui envoya un date du 18 mars 1618 ."

Enfin je lis dans un mémoire présenté par les pères récollets en 1684: "L'année 1615, " le père provincial des rócollets de Paris en vertu des ordres du Paul V, domée à son " nonce ${ }^{10}$ qui estoit actuellement en France... envoia quatre récollets en Canada où ils "arriverent la méme ammée, ctc."

Lass demarches des récollets durent avoir lieu dans les premiers jours du mois de mars $161 \hbar^{\circ}$, puisque ces religicux, après s'être présentés au nonce, arrivèrent à Rouen le 29 mars, et qu'ils s'embarquerent ì Honfleur le 24 avril. "

Le nonce anquel ils s'adressèrent était encore Robert Ubaldini, qui ne fut remplacé

[^23]par Bentivoglio qu'au mois de décembre de l'année suivante, $1616,{ }^{12}$ circonstance qu'il faut bien remarquer.

Ainsi, le fait de la mission apostolique donnée aux pères récollets est parfaitement établi.

Ils n'ont reçu encore, il est vrai, qu'une permission ou mission verbale; mais nous allous la voir bientôt renouvelée et appuyée sur un document écrit qui a été publié, et dont l'original existe à la propagande.

J'insisterai sur quelques détails. Nos historiens les plus exacts sont tombés dans l'errenr, ou n'ont pas mis assez de clarté dans leur récit, parce qu'ils n'out pas étudié très attentivement les documents cités par Sagard et Le Clercq. ${ }^{13}$

Ces deux écrivains, dans leur ardeur de faire voir que la mission de leurs pères est bien authentique, citent, pour le spirituel, le bref qu'ils attribuent à Paul V, et, pour le temporel, les lettres patentes du roi. Mais ils paraissent croire que ces documents auraient été accordés au moment du départ des missionuaires, et qu'ils n'auraieut été reçus par ceuxci que deux ou trois ans plus tard, par suite d'une négligence assez inexplicable.

Ce sont différents points qu'il importe d'éclaircir et de fixer.
Commençons par les lettres patentes.
Il s'agit de savoir: 10 si la date que leur assigue le P . Le Clercq est exacte; 20 si elles ont précédé ou suivi le bref du nonce.

1o Les PP. Sagard, Lafebvre et Le Clercq citent tont an long les lettres patentes de Louis XIII, avec cette difference que les deux premiers ne leur assignent aucune date, et que le P. Le Clercq, au contraire, les termine ainsi :
"Donné à Saint-Germain-en-Laye, le 20 mars, l'an de grâce 1615, et de nostre Règne le Cinquième." ${ }^{14}$

Ce passage renferme une erreur manifeste.
D'abord, il est impossible que le roi, à cette date, eût quitté Paris. Les états généraux venaient à peine de se terminer; les principaux députés attendaient encore les réponses de la cour à leurs cahiers; la sœur de Louis XIII devait partir ponr aller éponser le fils de Philippe III. De sorte que les affaires et les fêtes de la cour retenaient tont le monde à Paris. Le 19 mars, d'après le Mercure de France, ${ }^{15}$ il y eut grande démonstration et ballet féérique au palais Bourbou en l'houneur de la future reine d'Espagne. Le roi et la reine mère y assistèrent. Il est bien difficile, sinon impossible, que le roi se trouvât, le lendemain, à Saint-Germaiu pour expédier les affaires de l'administration.

Mais il y a une preuve qui est concluante, et le document royal lni-même la fournit. Il rappelle que les récollets étaient déjà rendus au Canada et qu'ils y avaient converti et baptisé plusieurs indigènes. Or, ils se sont embarqués la première fois pour le Canada, le 24 avril 1615 ; les lettres patentes doivent donce être d'une date postérieure. Voici les

[^24]paroles de Louis XIII: "Nostre cher et dévot orateur, le P. provincial de la province de "Saint-Denis, en France... se seroit ${ }^{16}$ ey-devant, et en secondant nos désirs, offert d'en" royer ès pais de Canada des religieux du dit ordre pour y preseher le sainct Evangile... "et ì cet effect y en ayant envoyé nombre, leur labeur (par la grace de Dien) n'auroit pas "esté inutil, au contraire, quelqu'uns des dits habitants de Canada, recongnoissans leur " vicil erreur, ont embrassé avec ardeur la saincte Foy et y out receu le sainct baptesme, " nouvelle qui nous a esté aussi agréable qu'aucune qui nous peust arriver, et ne reste " maintenant quàì alfermir ce qui a esté commencé par les dits religieux, ce qui ne peut " mienx estre qu'en permettant aux dits religieux de continuer ensemble de shabituer au " dit pais et y bastir autant de couvens qu’ils jugeront estre nécessaire, etc." ${ }^{17}$

Comment lo P'. Ie Clercy a-t-il pu se tromper? Il est assez difficile de le dire. S'il arait sons les youx les dates écrites en chiffres, il a pu, comme cela arrive assez souvent, prendre le chiffre 8 pour $\overline{5}$, et lire: " l'an $1615 . .$. et notre règne le 5 e," an lieu de " l'an $1618 \ldots$ le 8 e."

Lal'. l_{4} Clereq a puanssi. de bonne foi, corriger ce qu'il croyait une erreur.
Il cat prsible en ellet, que le roi ait domé aux récollets, lors de leur premier voyage, des lettres du cachet. pour conper court à toutes les difficultés que les marchands - toujours âpres an gain, - anraient pu faire ì leur embarquement, ou à leur installation au Canada.

Ie P. D. Chrequ'ayant que les secondes lettres sous les yeux a pu croire que c'étaient lon promieres, et y aura ajouté la date que celles-ei devaient avoir.
Ci. u'est lia ru'une simple conjecture; mais cette conjecture est autorisée par ce que las rérollots disent dans leurs remontrances an roi en 1621: "Depuis six années en ça " (qu'il aplu à linu se survir de lemr ministère sous l'uutorité de Vostre Majesté, tant au "royage de rette terre "trangère, etce, etc." ${ }^{\text {se }}$
hans tom- les cas, le document royal que nons lisons dans le P. Sagard et les autres historiens est postérienr à l'année 1615 , et si la date du mois de mars est exacte, ce ne pent Atre que le mois de mars de 161 ou de 1618.

Je crois qu’il fant s’arrêter à cetle dernière amée.
20 Cette ron lnsion se troure confirmée par l'examen de la seconde question, savoir si les lettres ont précédé ous suivi le bref.

Sagard, après awoir transcrit le bref, ajoute: "Ensuite de la permission de Sa Sainteté "dommée à mos peres, j’ai trouvé coppie d'une lettre du roy... dont voicy la teneur."

Ia P. Iafebrre dans son Histoire chronologique de la province des recollets de Paris, dit positivement, ch. 22: "Sa Majesté donna demeis les lettres patentes qui suivent," et plus loin, parlant du bref et des lettres patentes, il dit que ces documents furent donnés après le départ des religieux.

Deux mémoires faits en faveur des récollets, l'un en 1637 et l'autre en 1684, ${ }^{19}$ confirment asse\% clairement cette alfirmation du P. Lefebvre.

Le premier mémoire, après aroir rappelé qu'en 1618 le pape fut sollicité d'accorder des pouroirs aux récollets, ajoute: "Sa Majesté les y a appelés par lettres patentes du dit temps."

[^25]Dans le second, nons lisons: "L'annee 1615, le P. provincial des RR. de Paris, en "vertu des ordres de Paul V donnés à son nonce... et en conséquence des lettres patentes "de Sa Majesté expédiees ensuite, envoya le P. Potanten."

De ces différents passages, il me paraît résulter que les lettres patentes sont postérieures au bref.

Il est bon de remarquer que si les missions du Canada ont commencé en dehors de l'intervention du gouvernement - qui avait d'ailleurs à cette époque bieıı des affaires difficiles à régler, 一 c'est le roi qui les fait établir authentiquement par le saint-siège.

Champlain est le premier qui a l'idée d'appeler des missionnaires, ou du moins il est le premier qui travaille ponr en obtenir. Il fait les principales démarches auprès des récollets, afin qu'on lui accorde quelques pères; c'est lui qui s'adresse it la cour et aux états généraux pour provequer des secours nécessaires à une pareille entreprise. Si le roi y contribue, e'est tont an plus en domant des lettres de cachet pour obliger les marchands à transporter les religieux au delà de l'Océan.

Quand nous disons que Champlain est le Père de la patrie, nons ne considérons ordinairement que l'ordre temporel on politique ; mais nous devous recomaitre qu'il est anssi le père de notre jeune pays dans l'ordre moral et religieux. Champlain s'est trouvé à la hauteur de cette double tâche. A l'Eglise il a ouvert de vastes contrées dont elle a pris possession ; à la France il a douné une colonie qui aurait puêtre sa force et qui est au moins une de ses gloires.

Ce sont les récollets, il est vrai, qui firent à home les démarches nécessaires pour obtenir leur mission ; mais le roi n'intervint point, et tout se régla entre le supérienr des récollets d'un côté, et le nonce de l'autre.

L'essai tenté par les révérends pères parnt bientôt suffisant ; on avait la preuve que la conversiou des sauvages était possible, sans compter que les Français avaient hesoin de secours religieux. Mais il fallait un établissement stable où le zèle intempestif de persomne, - religieux d'un ordre étranger ou du même ordre, - et ne vînt les déranger.

Champlain, les PP. Jamet, Le Caron et d'Olbean, dans les différents voyages qu'ils firent en France de 1616 à 1618, pour attirer l'attention de la cour sur les nombreux besoins de la colonie, durent faire des instances dans ce sens.

Le P. Jamet fut retenu en France par ses supérieurs, "parce qu'estant instrnit à fond "de l'estat du Canada, il pourroit mieux que personne en gérer les affaires et en procurer "les avantages en cour et ailleurs."

Jusqu'à présent nous ne connaissons de ces démarches que ce qu'en rapporte le P. Le Clercq ${ }^{23}$ d'une manière générale. Furent-elles, comme il le donue à entendre, complètement inutiles? contribuèrent-elles au changement qui s'opéra dans les idées du roi eu 1617? Il est assez difficile de se pronencer en l'absence de documents positifs. Toujours est-il qu'une des premières mesures de Louis XIII, quand il prit la direction de son royaume, fut d'entamer des négociations aree Paul V, afin de donner à la mission du Canada des bases plus solides que celles qu'elle avait eues jusqu'alors.

Le bref accordé par Bentivoglio fut la réponse du pape aux demandes du roi.
Ce document a nne valeur historique importante pour nous. Malheurensement nous n'eu avions, jusqu'à présent, qu'une traduction imparfaite donnée par Sagard et copiée

[^26]par Lefebrre et Le Clereq. J'ai été assez heureux que de me procurer le texte original, conservé aux archives de la propagande, comme je l'ai dit plus hant. Je le donne en entier, séparant par des chiffres de renroi les parties sur lesquelles jattirerai plus loin l'attention du lecteur.
" || 1 Gumo Bentivolus, Dei et Sanetae Sedis Apostolicae gratia Archiepiscopus Rhodiensis, S. D. N. D. Paula divina providentia Papae quinti ad Christianissimnm D. Dominum Indovicum tertium decimum Francornm et Navariae Regem Nuntins Apostolicus, \&c., \|| 2 at Judex seu Commissarius hac in parte ab eodem S. D. N. Papa Panlo quinto specialiter commissus et depntatus, || 3 Dilecto Nro Venerabili Patri, Fratri Josepho Caron presbytero religioso professo Recollecto ordinis Sti. Francisci et aliis Patribns et Fratribus Recollectis einsdem ordinis Sancti Francisci professis, in sacro presbyteratus ordine constitutis ac abordinario ad sacras confessiones andiendas approbatis, propediem ad partes tantum paranorum pro illormm ab idolatria ad catholicam religionem conversione tecum per practatum latrem provincialem mittendis et deputandis, seu per te de eius licentia ac permissione assumendis:
"Kaluten et sinceram in Domino charitatem.
"\| 4 Noreritis quod cun ita sit quod muper sen alias Rmus Duns Archiepiscopus et comes Lagrunmsis, orator Nacrae Majestatis Christianissimae apud praefatum Sanctissimun Dnum Nrum of Sanctam Sedem Apostolicam requisiverit et expostulaverit ab eadem Santitatesua quatenus sulb bemplacito praedictae Suae Sanctitatis, et cum facultatibus infras riptis, Reverendus Pater lrovincialis Religiosorum Recollectornm dicti ordinis Sti. Francisci mittere posset alichot religiosos einsdem ordinis et provincine suac Sti Dionisii qui essent sulliciontus ot idonei ad propagandam fiden eatholicam in partibus infidelium, of quantum hor opus crat ex se ipso meritorimm, et placuerat praedictae Sanctitati Suae nobis committure potestatem conedendi lan ultates pro praemissis exequendis necessarias et convenimes : $\| 5$ ldeo ex cansis et rationibus praenarratis, auctoritate et permissione apostolica praedietis praefato Rdo l'atri vestro provinciali et vobis de eins nominatione et clection" ar deputatione facultatos sequentes dedimus et concessimus damusque et concedimus quibus uti poteritis dummodo ibi non sint qui similes habeant facultates et ${ }^{21}$. durarit, et donec vos, Fatur Josephus Caron, et socii vestri praedicti in iis partibus paganorum fueritis duntaxat. Et sunt praedictac facultates tenoris, virtutis et continentiae ut sequitur, videlicet:
"Infidelinm et fidelium natos infantes et alios quoscumqne ad veritatem Christianae fidei venire rolentes, servatis servandis, recipiendi, et etiam extra ecelesias in casn necessitatis baptizandi. confessiones andiendi, et poenitentium confessionibus diligenter anditis, illos a quibuscumque sententiis excommunicationis aliisque censuris et poenis ecclesiasticis, necnon quibuscunque eriminibus, excessibus, et delicitis, etiam apostolicae Sedi, etiam in litteris die Coenae Domini legi solitis reservatis et contentis, imposita eis pro modo culpae poenitentia salutari et iniunctis iniungendis, in foro conscientiae absolvendi : Eucharistiae, Matrimonii et Extremae Unctionis sacramenta ministrandi : paramenta, rasa, et ornamenta ecclesiastica ubi non adhibetur sacra unctio benedicendi. Oum probatur, neophitis in quocumque, non tamen primo et secundo neque inter ascendentes et descen-

[^27]dentes consanguinitatis et affinitatis gradu, dummodo mulieres raptae non fuerint ac nterque contrahentium sit catholicus acque adsit iusta cansa tam in contractis quam in contrahendis, gratis dispensandi, ac prolem legitimam declarandi, vel nuntiandi : || 6 altare portabile decenter habendi ac super eo in locis decentibus, et ubi non est commoditas ecclesiarum, celebrandi.
"In quorum praemissorum fidem et testimonium, praesentes litteras manu nostar subscriptas et subsignatas per Dilectos nostros D. Ludovicum Savanutium, in utroque iure doctorem, auditorem nostrum, et magistrum Thomam Gallot, Clericum parisiensem in Pontificio et Caesareo iuribus licentiatum, notarium publicum auctoritate Apostolica vencrabilisque Curiae episcopalis parisiensis, in sequendo edictum regimm descriptum et immatriculatum Parisiis in Vico Novo Beatae Mariac Virginis commorantem, nostrum haw in parte Notarium, fieri et signari sigillique nostri iussimus et fecimus appositione communiri.
"Datum Parisiis, anno Domini millesimo sexcentesimo decimo octavo, die vigesina mensis Martii.
"(Signatum) :
"G. Archiep. Rhodien. Nuntius Aplicus, "et infrascrip: De mandato praefati Illmi et Rmi Dni, "Dni Nuutii Apostolici, et Commissarii delegati, "F. Galdot, Not. Pbcus, qui supra, \&ce
" Lutnovicus Savanuti, Anditor."
1o Le nom seul qui est en tête du document aurait dû faire comprendre au P. Sagard que le bref n’avait puêtre accordé lors du départ des premiers missionnaires, épogue où Bentivoglio n'était pas encore arrivé en France. Il aurait dû faire comprendre, d'un autre côté, an P. Le Clercq que ce bref n'était pas donné par le souverain pontife lui-même, mais purement et simplement par le nonce, en vertu de pouvoirs spéciaux qu'il avait reçus du pape.

20 En effet, Bentivoglio avait été nommé commissaire apostoliquue pour les missions canadiennes, commissarius in lac parte, - et non pas comme le P. Sagard traduit : "commissaire en ces quartiers," - auctoritate et permissione apostolica... dedinus, etc., etc.

Comme la propagande n'existait pas encore, Paul V prenait donc le moyen le plus efficace de favoriser les missions, en les confiant à la surveillance et à la direction de son nonce à Paris: - Quantum... placuerat predicte Sanctitati Suc nobis committere potestatem concedendi facultates... necessarias, etc.

3o Le bref est adressé au P. Le Caron, qui se trouvait en ce moment an Canada, commissaire ou supérieur des quatre pères missionnaires. Les pouroirs qu'on hia accorde sont restreints aux religieux profês, prêtres, déjà approuvés par l'ordinaire, qui se rendaient an Canada pour travailler à la conversion des sauvages, et non dans un autre but, ad partes tantum paganorum pro illorum...conversione...tecum...mittendis, et encore ces religieux devaient être désignés par le provincial de Saint-Denis, ou choisis avec sa permission par le P. Le Caron.

4o Sagard a traduit nuper par autrefois ${ }^{22}$ ce qui est contraire à la signification du mot

[^28]latin, en même temps qu'à la vérité historique. En effet, l'ambassadeur dont il est question ici, - Denis Simon de Marquemont, ${ }^{23}$ - avait été envoyé à Rome eu mission extraordinaire, après l'assassinat du maréchal d'Ancre, c'est-à-dire après le 24 avril 1617, probablement vers la fin de juin 1617. ${ }^{24}$

Les démarches de l'ambassadeur français n'ayant pu avoir lieu plus tôt, le temps écoulé entre la demande et la réponse ne doit donc être que de quelques mois.

La correspondance officielle de Marquemont pourrait fixer la date précise des négociations; mais il paraît que cette correspondance n'existe pas à Paris, au ministère des affaires étrangères, où je l'ai vainement demandée.

1, Mémoire faict en 1037 pour l'affaire des pères récollects, ${ }^{23}$ qui rapporte très exactement les dates, phace ces démarches en 1618: "le pape Paul V, requis par monsieur l'ambassa"eleur résidant à Rome. Yan 1618, au nom de Sa Majesté, commanda au nonce en France, etc."

Au fond, "e qu'il importe surtont de constater, c'est que jusque-là Louis XIII n'avait pas tonté de dímarches oflicielles auprès de la cour de Rome, et que Panl V, de son côté, Brant de faire ancun acte public d'autorité religieuse, avait attendu qu'on l'en priat au nom duroi du Vrance. Les négociations furent terminées ì temps pour que le P. d'Olbeau ot ('hamplain, retournant à Québee an printemps de 1618 , ${ }^{25}$ pussent emporter des copies du brof et des lettres patentes.

So La père provincial, par ces paroles, se tronve nommé le premier supérieur ou préfet de la mission Onvoit, en parcourant le P. Ie Clereq, plusieurs actes de son autorité; mais le plus important est certainement l'appel qu'il fit aux pères jésuites de venir partager les fatignes et les travanx de ses frères de Québec. Ceux-ci les demandaient, et "le révé"rend pire provincial, ì qui seul, privativement à tout antre, la mission était soumise en "qualité de préfet, pour y envoyer qui hon lui semblerait en vertu du bref apostolique "dont il a lait mention, assembla son deflinitoire à l'occasion des affaires du Canada, dont "celle-la fint la principale." a

Go Ontre les pouvoirs mécessaires pour la conversion des infidèles et l'administration bles sacrements, le nonce accorde le privilège de l'autel portatif, pouvoir qui permut à celui qui le regoit de célébrer la sainte messe partout où il se trouve, pourvu que ie soit dans un lieu convenable. Le concile de Trente ${ }^{28}$ avait enlevé ce privilège à tous les ecalísiastiques excepté aux cardinaux et aux évêques. Les missionnaires, même les phus f́loignés, ne pouvaient avoir cette faveur que par une concession spéciale du pape, et il me paraít probable que les nôtres la reçurent alors pour la première fois. ${ }^{20}$

C'est ce qui peut expliquer le retard qu'ils ont apporté à célébrer la messe en arrivant
${ }^{23}$ Gallia Chrintiana, IV, 1920 colonne, élit. de Palmé.-Palatius, Jhali Cardinalium, Venise 1703, t. IV, col. 124, dit que Marquemont fut donx fois ambassadeur a liome, en 1617 et en 1622. M. Avenel, Letlres de Richelieu, semble croim qu'il n'eut qu'une seule ambassade.
${ }^{21}$ Lattres. . . du Cardinal ile Richelicu publiées par M. Avenel, t. II, p. 16, note.-Je n'ai pu arriver à fixer la dato exacte de la nomination de Marguement a l'ambassade extraordinaire de Rome. Je vois bien, par la correspordance de Bentivoglio que l'ambassadeur ordinairo, rappelé par Villeroy, arrivo a Paris le lor juin, et qu'au milieu de juillet, l'archeveque de Lyon était rendu à Roma-Lettere diplomatiche di G. Bentivoglio, lettros du 4 juin et du 19 juillet 1617.

[^29]dans le pays. On trouve singulier aujourd'hui qu'ils aient été un long mois sans la dire, malgré lenr zèle, leur piété et le désir des pauvres Français de Qnébec, privés depuis si longtemps des secours de la religion, ${ }^{30}$ tandis que plus tard on les roit célébrer même sur les navires. ${ }^{31}$

Aussitôt que les missions du Canada eurent été reconnues au nom du saint-siège, Louis XIII donna les lettres patentes dont il a été question plus haut, et qu'on peut voir tout au long dans les PP. Sagard, Lefebvre et Le Clereq.

Ces lettres étaient destinées à protéger les missionnaires et cousacraient leur établissement en Canada: "Il ne reste à présent qu’à affermir ce qui a esté commencé par les dits "religieux, ce qui ne peut mieux estre qu'en permettant ausdits religicux, de continuer "ensemble de s'habituer au dit pays et y bâtir autant de courents qu'ils jugeront être "nécessaires."

La province de Saiut-Denis avait seule le privilège d'envoyer des missionnaires, et ceux-là seuls devaient être reçus à s'embarquer qui araient été désignés par le provincial. "Cela pour empescher," dit le roi, " toute confusion qui pourroit sulsvenir si chaque religieux à son premier mouvement se portoit de passer en Canada."

Les missious du Canada relevaient du provincial de Saint-Denis.
Celui-ci pouvait envoyer autant de religieux missionnaires qu'ils le jngeraient à propos: "Nous avons dit et déclaré, disons et déclarons par ces présentes, signées de nostre main, "nostre intention et volonté estre que le père provincial de Saint-Denis en France, senl "puisse et luy soit loisible d'envoyer au Canada autant de ses religieux récollets qu'il "jugera être nécessaire, etc."

Enfin la personne des missionnaires et les monastères qu'ils batiraient dans ces contrées lointaines étaient placées sous la protection immédiate du roi.

Cette mesure n'était pas inutile parce que les missiomaires allaient angmenter les dépenses des associés, sans compter que plusieurs personues pourraient voir de mavais œil la présence des religieux, soit sur les vaisseaux, soit sur les lieux on se faisait la traite.

Tel est le second et dernier acte qui consacre l'établissement de l'Eglise an Canada.
Les précautions qui y sont prises coutre le zèle envohissant d'antres missiounaires peurent nous paraître étranges aujourd'hai; il n'en était pas ainsi au XVII siècle, où chacun se moutrait très jaloux de ses privilèges. Il ost évident que les pères récollets établis à Québec avaient à soutenir une latte contre d'autres religicux qui vonlaient partager leurs travaux et leurs mérites. Quiétaient-ils? L'histoire le dira peut-être un jour.

Je résume:
1o En 1614, Champlain demande des missiomnaires aux pères récollets de la province de l'Immaculée-Conception.

20 Les religieux choisis par le provincial et envoyés à Paris, voyant que le nonce ne pent lenr accorder les pouvoirs dont ils ont besoin, abandonnent l'entreprise.

30 Vers la fin de 1614, quelqu'un, très probablement le procureur général à Rome, demande au pape les pouvoirs de missionnaires pour quelques uns des pères de SaintDenis en France qui désiraient travailler à la conversion de nos sauvages.

[^30]4o En 1615, le nonce Ubaldini donne, au nom du pape et de vive voix seulement, ces pouvoirs aux quatres pères qui s'embarquent pour le Canada.

50 Vers la fin de 1617, - peut-être au commencement de 1618, - Louis XIII demande à Paul V d'accorder au provincial de Saint-Denis, avec les autres pouvoirs, le privilège exclusif de choisir et d'envoyer des missionnaires au Canada.

60 Au mois de mars 1618, le nonce Bentivoglio accède à la demande du roi, en vertu d'une commission spéciale du pape.

7o Enfin le roi confirme l'établissement de la mission des récollets par des lettres patentes.

VIII - Une promenade dans Paris - Impressions et souvenirs,

Par Josepir Marvette.

(Lu le 22 mai 1884.)

Pour le bibliophile, l'amateur de bibelots et des productions de l'esprit de tontes espèces, l'endroit le pins charmant de Paris où vons puiosiez promener vos rêveries est certainement le quai Voltaire et le quai Malaquais. "Les bonlevards, a écrit M. Claretie, e'est la vie même de Paris, et comme son petit journal. Mais les quais, c'est son passé, c'est son histoire, e'est sa véritable bibliothèque."

Si done, vous le voulez bien, nous nous éloignerons, pour anjourd'hni, des immenses artères où le pouls de la grande ville bat son plein, et, par une de ces tièles journées d'arril, qui sont le renouveau de l'année parisienne, nous irons de compagnie dénicher des sonveuirs littéraires et artistiques dans ce coin phas silencieux de la capitale du monde intellectuel.

Lorsque, laissant derrière soi le portique de la Chwmbre des députés, on remonte la rive gauche de la Seine, l'ou suit d'abord le quai d'Orsay anquel Boucher d'Orsay, prérôt des marchands, donna son nom au commencement du dix-huitiène siècle. Ce quai est tont d'un aspect solennel, bordé qu'il est à droite par des ministères, des ambassades, des hôtels aussi graves, aussi corrects que les personnages de distinction qui les habitent. Viennent ensuite le palais de la Légion d'homeur, incendié par la Commme et rebâti par les légionnaires aussitôt après ; et puis, à côté, les ruines majestuenses de la Cour des comptes dont les murailles calcinées et noircies témoignent encore de la folie furieuse des communards de 1871. Après avoir enfin longé la caserne et le eafé d'Orsay, nons voici vis-à-ris du PontRoyal à la tête duquel commence le quai Voltaire. Le philosophe de Ferney lui a laissé son nom pour être venu mourir dans une maison située à l'angle de la rue de Beame et du quai dont il est devenu le parrain. Une inscription rappelle qu'il mourut an premier étage, chez son ami, le marquis de Villette, dans un appartement que l'on tint fermé jusqu'au temps du premier empire. Ou en profita, pendant la Terreur, pour y eacher, sous la protection du souvenir de Voltaire, ceux-là mème qu'il arait tant accablés de sa haine et de ses sarcasmes, des prêtres!

A côté de cette maison historique est l'hôtel Voltaire. Il me sonvient que c'est ici que notre historien, M. Garneau, descendit lors de son premier voyage à Paris, en 1831. En évoquant la mémoire de ce grand esprit, si éminemment habile à redonner la vie aux ehoses du passé, ne trouvez-vous pas curieux comme moi de connaître les impressions de l'illustre royageur à la vae de ce merveilleux Paris dont, comme nous, il avait si souvent rêvé avant de le voir, et qu'il aimait tant se rappeler par la suite. - "J'avais hâte, dit-il, d'abord en débarquant à Calais, de fouler cette vieille terre de France dont j'avais tant entendu parler par nos pères et dont le souvenir, se prolongeant de génération en génération, laisse après

$$
\text { Sec. I, } 1884-10
$$

lui cet intérêt plein de tristesse qui a quelqué chose de l'exil." Et, plus loin, il ajoute: "Je descendis ì l'hôtel Voltaire, en face du Louvre. La Seine seulement nous séparait. On célébrait, ce soir-là, l'amuiversaire de la révolution de l'année précédente, qui avait mis Louis-Philippe d'Orléans sur le trône des Bourbons. Je passai sur un balcon d'où je pus voir le fen d'artifice qui se tirait sur le pont d'Arcole. Le spectacle que j'avais sous les yeux arait quelque chose de féerique. A mes pieds, c'étaient les quais où se pressait une foule immense, et la Seine oì se réfléchissaient mille flambeaux. En face les Tuileries et lo Lourre, a ma droite le portail de l'église de Saint-Germain l'Auxerrois et plusieurs ponts jusqu'an Pont-Neuf; à ma ganche, le Pont-Royal, le pont et la place de la Concorde, le jardin des Thileries, les arbres des Champs-Elysées et, dans le lointain, l'Are de triomphe de l'Stuile tout rayomant de lumières. Des ligues enflammées, embrasant l'horizon de tous coites, ídairainut cette vaste étendue et permettaient anx monuments de dessiner leurs grandes masses sur les ombres de la nuit, tandis qu’à leurs pieds les rayons tombés des flambeanx doraient la tote des promeneurs et faisaient étinceler les armes des patrouilles. Le "icl fait "nforn. Des fusées de tontes les formes et de toutes les couleurs s'élevaient de tons les points de laris. Te passai une partie de la muit au milien de ces enchantements. Le lobdemain, fo m'orpillai comme après un rêve de choses merveilleuses. En rouvrant les youx, fiaperçus devant moi la gralerie du Lonve. Ma chambre était en face de ce palais, et j dus commener à remmaitre la réalité du spectocle qui, la veille, avait saisi mon imagination.'

Il faut arour gur Paris, cefte graude coquette, arait, ce soir-là, revetu ses plus beaux atours, comme pour faim hombur an joune étranger venu de si loin pour la voir!

Dapuis le commencment du quai Voltaire, en passant par le quai Malaquais et celui d. Conti, junguan lont-Nouf, don Menri IV, du hant de sonfer cheval de bronze, laisse tomber son surfirn suptignu sur lobon peuple de Paris, la librairie, le bric-à-brac envahissent tout. parapet des quais, devantures des boutiques et rez-de-chaussées au plafond bas din face. A l'étalage en plein air s'olfrent partont les livres, l'imagerie de moindre valeur; lus trop fréquentos averses du ciel parisien ne permettant pas d'exposer aux intempéries de l'air les éditions primeps et les gravures arant la lettre. Voulez-vons plutôt admirer des incunables authontiques, de vrais elzévirs, des pasdeloups irréprochables, traversez la rue et vous arrete\% aux vitrines qui longent les quais à perte de rue. Là, des milliers de chefsd'cuvere de l'imprimorie, de la reliure et du barin charmeront votre regard, tandis que, tont ia cooté, s'amuseront à vons tirer l'wil toutes les merveilles du bric-à-brac: vieilles armures damasquinées d'or on d'argent, épées à poignće finement ciselée par quelque armu-rier-maitre des quinzième ot seizième siècles, bahuts d'ébène, coffrets mauresques aux délicates et fantastues incrustations de cuivre ou de nacre, lustres en vieux cuivre fouillés à jour, émaux cloisonnés, facnces de Bernard Palissy, ivoires, potiches, statnettes, porcelaines de Chine, de Saxe ou de Sèvres, tout cela vrai souvent, mais parfois aussi imité avec une perfection telle que des conmaisseurs sérieux ont pu s'y laisser prendre.

Mais, croyez-m'en, il ne fait pas bon s'attarder ì reluquer toutes ces curiosités: l'œil d'abord s'y laisse prendre, l'esprit ensuite, et enfin votre porte-monnaic plus que vous ne l'auriez voulu peut-être. Retournons au parapet où les caprices sont moins dangereux à satisfaire. Pour ceux qui, comme moi, aiment les lipres pour le plaisir raffiné qu'on eproure à les lire et non pour la satisfaction stérile de posséder des exemplaires plus ou noins rares d'ouvrages que l'on n'étudiera jamais, voici l'endroit où l'on peut faire, aux
plus bas prix, ample provision de pature intellectuelle. Depuis les feuilletons populaires jusqu'aux productions plus sérieuses de la littératuré et aux ouvrages de droit ou de science cédés à vil prix par des étudiants besogneux, on trouve ici au meilleur compte et s'étalant sur un parcours de près d'un mille, à pen près tous les éléments d'une bibliothèque de choix.

Un cri, parti du pont des Saints-Pères, près duquel nous passons, nous fait dresser l'oreille. Il est poussé par un gamin qui se penche sur le garde-fon, en se faisant un porteroix de ses deux mains. - Eh! là-bas! ça mord-il ?... - Une bordée de jurons qui monte de la berge, nous révèle anssitôt la présence d'un pêcheur malheureux que la voix éraillée du gamin a brusquement tiré de sa béate espérance. Pour peu que nous nous penchions aussi sur le parapet du quai, nous apercevons, tant que la vue peut porter, en aval et en amont du fleuve, une armée de pêcheurs à la ligne qui, d'un œil anxieux et d'un hameçon inoffensif, fouillent vainement en tous sens l'ean bourbense de la Seine qui, en cet endroit du moins, contient bien des choses, le poisson excepté. Ce qui n'empêche pas que, dans la belle saison, comme dans la mauraise du reste, les bords de ce fleuve en miniature ne soient couverts de pêcheurs, les uns dans des bateaux ancrés an milien de la rivière, d’autres debout sur des trains de bois, ceux-là sur la rive, ceux-ci plus à l'aise - les moins couraincus, les tièdes - assis jambes pendantes sur le parapet inférieur des quais, tous attendant aree foi le poisson qui n'arrive jamais ou qui ue se montre, à de bien rares intervalles, que sous une forme si déplorablement exignë que c'est vraiment étrange de voir cette passion aussi malheurense que tenace chez un peuple sceptique et remnant comme le parisien. On se rappelle encore avee stupéfaction tont un groupe de ces chevaliers de l'hameçou, qui, lors du siège de 1870, et même durant la Commune, suivaient, impassibles à leur poste ordinaire, le mouvement de leur ligne agacée par le seul courant du fleuve, alors que les obus prussiens renaient éclater auprès d'eux et que, à denx pas, les Tuileries, lo Lourre, le palais de la Légion d'honneur et la Cour des comptes, incendiés par les communards, se tordaient dans un gigantesque embrasement qui enflammait le ciel et empourprait le fleuve comme d'une longue traînée de sang. Mais laissons ces stoiques tendre leurs hameçons à une proie chimérique, sans plus s'occuper des révolutions qui passent et des trônes qui s'écroulent que des bateaux-mouches qui silloment la Seine en tous sens et des blanchisseuses et des chiens qui barbottent à côté des pêcheurs, et résumons notre promenade et nos observations. Aussi bien s'offre à nos regards une figure qu'il eût été vraiment dommage de laisser passer sans lui donner notre attention, d'autant plus que cette physionomie fait nécessairement partie du tableau vivant qui anime l'étalage des bouquinistes. Presque toutes les après-midi, quand il ne pleut pas, un vieillard, vert encore, an teint frais, à l'œil vif, à la figure fine et bienveillante, reprend son éternelle promenade le long des parapets couverts de livres - ses plus chers amis. Ce doyen, peut-être, des bibliophiles de Paris, ce grand dénicheur de livres rares, c'est M. Xavier Marmier, de l'Académie française. Pour donner une idée de ce que cette passion de bouquiner a dû lui procurer de vives jouissances, il me suffira d'ajouter, ce qui le peindra d'un trait. que, par une clause de son testament, M. Marmier laissera une somme assez ronde pour convier, après sa mort, tous les bouquinistes de Paris à un dîner plantureux.

Mais, il nous a reconnu, l'érudit et aimable bibliophile! - Comment vous portez-vous, cher ami ? me dit-il avec bonté. Et, le voilà qui passe familièrement son bras sous le mien et se met à marcher doucement avec moi, tout en me demandant des nouvelles de ce

Canada qu'il aime tant. Ainsi devisant, et nous arrêtant parfois tous deux pour fenilleter un livre dont la reliure et le titre a fixé notre attention, nous arrivons au pont des Arts. La tour de Nesle, la famense tour de Nesle de romantique mémoire, s'élevait là, sur notre droite, an lieu même oì se dresse anjourd'hui le classique Institut de France.

Il y a séance solemnelle ì l'Académie. M. Marmier me le rappelle et me demande si j'ai reçu le billet d'admission qu'il m'a envoyé la veille. Je lni réponds affirmativement et l'en remercie. - Vous entrez? me dit-il. - Certes! je n'aurais garde manquer d'assister à cette fête de lesprit ! - Il vons va falloir faire queue, remarque en somriant mon interlocuteur. Et il ne montre la foule qui stationne ì l'une des portes latérales du temple où les quarante Immortels pontifient dans toute la dignité de leur gloire.

Mon illustre compagnon me dome une poignée de main, et disparaít par la porte centrale, tandis que je vais me confondre aree le commun des mortels, privilégiés cependant, qui attendent, quelejues uns depuis plus d'une heure, que l'on ouvre les portes donnant accès aux tribunes du palais.

On allait, ue jour-là, lire les deux rapports de l'Académie sur les ouvrages couronnés et sur les prix Montyon acuordés aux plus beaux exemples de vertu remarqués durant l'annén. Comme toutes les séances de l'illustre corps, qui sont bien courues par le monde flagant, celluni arait attiré m grand nombre de persomes, et les quelques centaines de sie̛ons que la salle pent contenir étaient occupés jusqu'an dernier. La partie inférieure de la rotonde du dimn de l'lnstitut, le parquet, est occupée par les académiciens, par les parents des deux rapporteners, at, aux jours de réception, par ceux des récipiendaires. Ces quelques privilégiés, des dames surtout, ont senls l'homeur de s'asseoir tont près des membres dol'Académiי. La gros des spectateurs prend place dans des tribunes en amphithéatre d'ou l'on a l'homenr de dominer l’auguste assemblée.

Mon billet me phaçat dans l'amphithéâtre du nord, en face du bureau. Il y avait bien une hour qu" jotais ocmpé, an attendant comme tout le monde, à lorgner et analyser les toilettes harmantes de ces incomparables Parisiennes qui étalaient complaisamment aux yeux brapues sur chles lemr equets minois, leurs robes fraîches, leurs bijoux et leurs dentelles de grand ton. lorsque enfin, les deux portes placées à côté du bureau s'ouvrirent. Entre deux haies de soldats qui leur présentent les armes, les académiciens apparaissent. J'en recomais quelques uns dont la gravure a rendu les traits familiers à chacun: le premier dentre tous, Victor IIugo, la plus grande persomification de la poésie an XIXe siècle. C'ette tête blanchie par près de quatre-vingt-trois hivers et couronnée d'une anréole de plus de soixante ammées de gloire, je la revois bien telle que je me la devais fixer dans la mémoire, deux heures plustard, en face du beau portrait que Bonnat, l'habile artiste, a fait de l'auteur des Contemplations. Assis dans l'attitude du penseur, il appuie sur sa main droite ce raste front où s'anima tout un monde de prodigienses créations qui ont promené la renommée de Victor Hugo sur tons les points du globe. Ses yenx perçants plongent dans les profondeurs des siècles pour en sonder les mystères et les révéler ì l'humanité attentive à la roix de son barde si longtemps inspiré.

Et puis, ce sont: Alexandre Dumas, fils non moins célèbre aujourd'hui du plus merveilleux conteur qui existât jamais; Xavier Marmier, le révélateur, en France, de la littérature des pays du nord de l'Europe et le bienveillant ami du Canada; Jules Simon, arec qui j'avais eu l'honneur de déjeuner chez M. Marmier en compagnie de MM. Chaplean et Fabre ; Henri Martin, qui, dans son Histoire de France, a parlé dn Canada avec un enthou-
siasme qui nous fait tant d'honneur, et qu'il me fut donné de connaître persounellement quelques mois avant sa mort; Sardon, le spirituel auteur dramatique, dont la figure railleuse reflète tout l'esprit qui pétille dans ses Faux bonhommes et dans Divorgons. Enfin, Reuan, qui, malgré son scepticisme, n'a pu se départir de ses airs de séminariste défroqué, et qui, de loin, a toute la dégaine d'un bon gros bedeau de cathédrale.

J'en passe et des meilleurs.
-La séance est ouverte, dit le secrétaire perpétuel, M. Camille Doucet. Il prend la parole d'une voix un peu grèle, mais qui sait nuancer avec art les passages délicats qui abondent dans son rapport sur les ouvrages couronnés par l'Académic. Au nombre de ces livres se trouvent deux romans exquis: Le Crime de Sylvestre Bomard, de l'Institut, par M. Auatole France, et L'abbé Constantin par Ladovic Halévy.

Mais, le nom qui provoque les applaudissements les plus prolongés est celui de Gustave Nadaud, auteur de tant de chansons si populaires jusque chez nous, et dont l'Académie s'est plu à courouner l'œuvre si ganloise et si profondément philosophique sous ses dehors légers.

Nadaud est là, assis, radieux, à côté de ses juges qui lui souricut.
"Est-ce un poète, est-ce un musicien, est-ce un philosophe? dit M. Camille Doncet. C'est tout cela, Messieurs, c'est un chansonmier. Depuis plus de trente ans il chante; ses chansons nous sont allées au cour et nous les avons tous chantées après lui:

C'est benhomme Qu'on me nomme!
a-t-il dit un jour, et le nom lui en est resté. J'allais vous parler du talent, du la bellehumeur, du désintéressement, de toutes les vertus de ce bonhomme. Je m’arrête. Dêjaì, du milieu de vous, j'entends s'échapper comme un écho d'un refrain comm qui nous dit:
—" Vous avez raison!"
Et l'anditoire d'applaudir avec d'autant plus d'entrain qu'il sent bien que v'est pentêtre à l'œurre du dernier vrai chansonnier de France qu'il accorde ses chaleureux sufrages. Car, avee bieu d'autres bonnes choses encore, avec la franche gaité ganloise, par exemple, la véritable chanson française est tout près de disparaitre de France. Hélas! cette bonue, sémillante et si fine chanson de Béranger, de Désaugiers et de Dupont ne se chante plus à Paris où maintenant l'on beugle et l'on applaudit, dans les cafés-concerts, tout ce qu'il y a de plus bête comme couplets et de plus atroce comme musique. Voilà pourquoi, sans doute, l'Académie s'est empressée de déposer une couronne d'immortelles sur l'œuvre du dernier chansonnier de France. Certes, Nadaud peut-il être fier de son succès; mais peut-être pas sans tristesse ; car ne sont-ce pas là fleurs de cimetières?...

A M. Camille Doucet succède M. Mézières, chargé de la lecture du rapport sur les prix de vertu. Plein de son sujet, il débute d'une roix retentissante, mais senrone an bont de cinq minutes, au point que bientôt on l'entend à peine. En vain M. Doucet inonde son confrère de verres d'eau sucrée, la voix de l'immortel n'en descend pas moins de plus en plus aux plus infimes proportions.

Est-ce le débit monotone et étonffé du rapporteur, est-ce l'effet de la chaleur écrasante qui règue dans la salle, ou bien la longue énumération de tant de traits de vertu groupés en imposante phalange? Je ne, saurais le dire; mais je vois, Dieu leur pardonne! quelques
uns des Immortels - Victor Hugo tout le premier - incliner doneement la tete de droite et de ganche et sommeiller comme de simples humains. Enfin, la voix de M. Mézières s'éteint dans un suprême effort pour couronner sa centième rosière, et chacun se précipite au dehors pour y retrouver un pen d'air respirable.

A peine avons-mous fait quelques pas en revenantsur le quai Malaquais, qu'une grande aflluence d'équipages de maîtres, stationant ì la porte du palais des Beaux-Arts, nous rappelle que l'on vient d'y ourrir l'exposition des portraits du siecle. Lidée de réunir cette colleetion de merveilleuses toiles disséminées par tous les coins de Paris, est due à la Société philanthropique, qui s'est adressée aux grandes fanilles et aux collectionneurs de la capitale pour en obtenir l'antorisation d'exposer quatre cents portraits historiques au profit de cette fuve de bienfasance. Fondée en 1780, la Société philanthropique entretient dans Paris trentedoux journanx, trois asiles de unit pour femmes et eufants, un hospice pour les vieilles femmes, onze dispensaires pour les adultes et un dispensaire spécial pour les enfants. C'est done faire carre de charité que de suivre la fonle élégante qui se presse à l'entrée du palais des Beanx-Arts. Et certes, n'aurons-nous point d'ailleurs ì regretter notre aumône! Comme' ì toutes lés expositions de ce genre, l'élite de la société se réserve un jour on deux par smaine con haussant le prix d'entrée, ce qui éloigne la grosse foule. Nous n'aurions pu mieux tomber, ceest le jour des privilégiés de la naissance et de la fortune. Le v'lan, le prhuth, "omm" on dit en 'es derniers temps à Paris, en un mot, pour parler français, la fine fleur du la suciété parisieme s'est domée rendez-vons au palais des Beanx-Arts. L'élégance de bou ton des toilettes féminines, le grand air, voire la mine adorablement hantaine des fermmes, Ja correction de mise et de tenue des hommes qui s'inelinent devant leurs idoles aree cepte supreme distinction que dome senle a fréquentation habituelle des salons, tout nous dit que noun sommes en présence de ces cinq on six cents persomalités qui donnent le ton ì l'aris, au monde entier. Mais n'allons pas nons laisser éblouir par tont ce monde plein de superbe, pour lecguel nous, paure étranger, n'existons même point, pas plus que nous laisser griser par ces enivrants parfums de femmes émanant des bouillons de dentelles et du soin qui nous frolent en passant de leurs énervantes caresses; fuyons aussi les froublants regards de tes reines de la mode qui laissent tomber sur nous avec la chaleur distante d'un rayon de soleil qui n'en brûle pas moins à des millions de lieues, et nous en allons reprendre nos reveries en passant la reve des grandes figures historiques que l'art a fixíns sur les quatre cents toiles appendues anx murs du palais.

Nous ne saurions, dans cette visite rapide et dans l'entrainement du tourbillon humain qui nous ponsse et nous emporte plus vite que nous ne vondrions aller, nous ne pouvons songer à nous arreter devant ehaque portrait, à résumer, unême le plus succintement possible, les impressions diverses que chacun d'eux nous cause, les intéressants souvenirs qu'ils nous rappellent tous. C'est même à peine si nos yeux ont le temps de se fixer sur unn cinquantaine d'entre cenx que la nature de nos études littéraires et de nos préférences personnelles nous portent ì examiner avee plus d'attention. Voici donc, au hasard du catalogue qui nous gnide, les figures qui nous frappent le plus, à mesure qu'elles défilent derant nous.

C'est d'abord une des reines du chant, peut-être la première entre toutes, qui s'offre ì notre contemplation, la Malibran! Comment une créature anssi frele a-t-elle pu remplir le monde entier des prodigieux éclats de sa voix? C'est que, dans ce corps débile, un mer-
veilleux organe obéissait aux ćlans d'une âme éperlue d'idéal et d'une virtuosité que les vers de Musset out immortalisée :

> Chaquesoir dans tes chants, tu te sentais palir. Tu connaissais lo monde et la foulo et l'onvio, Et dans ce corps brisé concentrant ton génio, Tu regardais aussi la Malibran mourir!

A quelques pas, Balzac, peint par Boulanger, dans ce froc blane de moine qu'il aimait revêtir aux heures du travail. Curieuse antithèse entre ce costume de cénobite et l'œurre du plus grand analyste du cœur féminin qui ait peut-être jamais existé! Quelle intelligence, quel monde de créations variées s'agite dans ce vaste front, blanc comme du marlore sous cette épaisse chevelure noire rebroussée en arrière ainsi qu'une crinière de lion! Et dans ces yeux étincelants comme deux diamants noirs, quelle inspiration, quel feu sumaturel dans ce miroir où se refiètent les flamboiements du génie créateur de la Comédie lumaine!

Salut à toi, Rachel, reine de la tragédie, qui rajeunis dans ce siècle l'art antique de Melpomène ressuscité par Corneille et Racine! Le bean front pour porter la couronne, et comme dans ton regard profond et sombre se réfléchissent tontes les fatalitís que l'antiquité a jetées sur la scène!

Et toi, Berlioz! tête d'aigle, irrité de voir, de ton vivant, ton génie mécomn par la France, alors qu'à l'étranger l'on t'acclamait comme l'un des phts grands maitres de la musique moderne, laisse un petit-fils de la France s'incliner devant toi; car ta magistrale symphonie dramatique la Damnation de Foust m’a fait éprouver les jonissances les plus rives qui aient jamais fait vibrer les fibres de mon être!

La taille prise dans une redingote d'homme, les chevenx coupés sur le con on boucles épaisses, les yeux brillants comme denx escarboucles - ces yeux dont la flamme brûla la vie de Musset! - très pâle, et rêveuse comme une vignette des romans de l'époque où elle écrivait Indiana et Valentine, telle est George Sand dans cette petite toile de Delacroix, qui est un chef-d'œuvre, et telle elle était - fantasque créature en rupture complète avec les convenances - lorsqu'elle composait ses exquises Lettres d'un voyargeur, en parcourant l'Italie un bâton de touriste à la main, tout comme une étudiant ou un rapin ì la recherche d'impressions et d'aventures.

Encore un Delacroix, encore une merveille du pincean qui nons a conservé les traits d'une célébrité de l'art. Maigre, pâle, l'air fatal, avec de petites moustaches ombrant des lèvres minces marquées à peine au-dessous de deux grandes rides qui entaillent les joues comme les deux S d'un violon, c'est bien là Paganini, ce virtnose endiablé, cet archange du violon, que la légende accusait d'avoir assassiné sa maîtresse et d'avoir ensuite emprisomé son âme dans son instrument. Frappé du scean dont l'empreinte est visible sur la face de ceux qui doivent mourir jeunes, la figure de l'artiste semble, sur la toile, revivre de la vie surnaturelle d'au delà le tombeau. Ce n'est plus un vivant, c'est un mort au moment de la résurrection. On dirait ce portrait fait pour continuer et confirmer la légende des sinistres aventures qu'on se plaisait à lni attribuer, quand son prestigieux talent émerveillait l'Europe.

Mais roilà que le courant de la foule nous attire et nous emporte, sans que nous ayons le temps de nous recueillir en présence d'une multitude de personnages d'époques diffé-
rentes, et qui, passés à l'immortalité, ne paraissent nullement surpris do se trouver maintenaut côte ì côte: Guizot, Thiers, Louis XVI, Gluck, Louis:XVII, le prince Eugène, Mlle Duchesnois, Mlle Georges, Royer-Collard et M. de Barante.

Pourtant, résistant au flot qui passe, arrêtons-nous quand même devant ce pastel de Girand. Celui dont le peintre dessina les traits eut pu garder le titre de marquis de la Pailleterie. Il se contenta de porter le nom du général républicain Dumas, et de devenir le plus amusant, le maitre conteur de ce siècle, et de tous les autres. La bonne, large et sympathique tigure exubirante de gaité communicative et d’intelligence prime-santière! Qu. de héros sont sortis tout armés de cette grosse tête crépue pour faire ln conquête du monde intellectuel!

Non loin de lui, Chateanbriand, grande ligure, pose, drapé dans son immense orgueil et dans son itarnel bumi de toutes choses. Que éest bien là l'illustre vaniteux qui ne cessa de répiter jusqu’an dernint jon': "Je m'emuie, je m'ennuie de la vie; l'ennui m'a toujours - divorí: we qui intíresse les autres homines ne me touche point. Pastenr on roi, quaurais-je .. fait du ma houhto on du ma courome? En Enrope, en Amérique, la société et la nature m'ont lassí... P'uissance et amour, tont in'est indifférent, tout m'importune!"

A cote du grand forivain dont la manssaderie de caractere perce dans tous les traits, void bion la phas charmante figure do fomme qui puisse respirer le talent, la jeunesse et le phaind du sentir virw du la vie intellectuelle et physique. C'est Mme Delphine Gay(iiratin, dams tout londat do ses vingt ans et de sa beaute. Avee sa robe de mousseline banthe, wrén a la taille par marge ruban de satin blen, avee son auréole de cheveux
 errim sur lo bras droit. .Whe est hion telle qu'elle apparut à la première représentation d'Hermmi, on lardente jemuesse de 1830, qui allait acclamer Victor Hugo et le sacrer grand prete, applandit àmance la fiere beanté accoudée sur le bord de sa loge, dans l'attitude d'mu muse wh extase.

Konei Nipolion! Qa'il nous parait petit, perdu dans les replis d'hermine de sa toge d'mpereur! "t comme il nous a tougours semblé plus grand, malgré sa petite taille, dans los portrait yui nous le montrent framehissant les Alpes à cheval pour commencer la conquete de l'Lurop', ou dehout sur le rocher de Sainte-Hélène, les yeux perdus sur la mer immense comme sa renommée!

A vitide lni, Talleyrand, ee Machiavel de la politique moderne. Le dédain superbe qui tombe de son wil et de ses levres hautaines n'est pas de nature à nous faire oublier qu'il servit et trahit sureessivement tous les pouroirs auxquels il sut imposer la puissance de re qénie d'intrigue, que l'on est convenu d'appeler poliment, suivant le cas, politique ou diphomatie.

Dans un admirable pastel de Prud'hon, nous apparait, digne dans sa mélancolie d'épouse répudíe, l'impératrice Joséphine, à qui il ne manqua, pour être la plus heureuse et la plus aimée des femmes, que de n'être point celle d'un empereur.

Lamartine, par Ary Scheffer! Le plus suave des poètes par le plus poète des peintres de ce siècle. Le front, les yeux, sont bien du doux anteur des Mélitations et de Graziella; mais le bas de la figure, aux lères sévères, me parle du tribun, de l'auteur des Girondins, doublé de l'homme politique incompris et récemment revenu des illusions du pouvoir.

Arec tes épaules pliant sous le poids des plus sombres pensées, écrasé sous le fardeau du remords peut-être, figure tourmentée de Lamennais jetant an monde les effroyables

Paroles drun Croyant, il me semble t'entendre dieter la terrible vision des "sept rois sur leurs sept trônes de fer."

Sa Majesté l'impératrice Eugénie! Inelinons-nons, Messieurs, en présence de la plus grande infortune de ce temps, en face de celle qui fut impératrice, épouse et mère, et qui, jetée violemment sur la terre de l'exil, a tout perdu, beauté, trône et famille, et, brisée par la donleur, descend lentement la longue spirale de sa désolation.

Du premier coup d'œil, je te reconnais, minois bizarre de la plus cascadeuse des actrices, qui ne te fais pardonner tes caprices et tes incartades insensées qu'à force de talent. Oui, Sarah Beruhardt, ce sont bien là ces yeux d'un noir d'enfer qui te brûlent la moitié du visage, et qui, de la scène, lancent ces éclairs dont le fluide électrique fait frémir les milliers d'auditeurs que tu tiens haletants sous le charme.

Bien pris dans une taille relativement petite, voila le marquis de Gallifet, le phus brillant général de cavalerie, et peut-être, dit-on, le futur vengemr de la France.

Nous saluons S. A. R. le prince de Galles, le président de la Rápublique, M. Grévy, et le duc d'Aumale, dont les figures sont familières ì tous.

Quoiqu'il ne soit pas moins comm, certes, et bien an contraire, comment ne pas nous arrêter en face de l'auteur de Rolla, des Nuits, de l'Ode a lu Malibran, et de la lettre à Lamartine, qui - superbe égoïste, qu'as-tu fait là ! - ne daigna même pas répondre à cet envoi de vers aussi beaux que ses plus belles inspirations! Tougtemps, bien longtemps m'arrêtai-je en face de ce remarquable pastel de Landelle, pour me fixer dans l'esprit chacm des traits de mon bien-aimé poète, de celui de mes prédilections: tiès blond, le teint clair et coloré sur les pommettes, la lèvre inférieure sensuelle et la supérieure gonflée au milien par un rictus donloureux. - Les tristesses humaines que tu as traduites en immortels sanglots, amant infortuné, ont laissé leur empreinte sur ta face. C'est que tu les ayais plus vivement, plus cruellement ressenties, pent-être, qu'ancun autre avant toi. Et voilà pourquoi, avec ton génie, tu seras tonjours le chantre de l'amour et de la jennesse, qui trouve en tes lamentations sublimes l'idéal écho de ses propres désespérances. - Un jour que je m'étais rendu en pèlerinage au cimetière du Père Lachaise pour y rêver auprès du tombeau de Musset, un jeune couple, se tenant par la main, s'en vint ajouter une courome de fleurs à toutes celles qui couvraient déjà le mausolée. Longtemps, les doigts serrés dans une matte étreinte, ils contemplèrent le buste qui couronne le marbre mortuaire. Sous l'émotion qui les étreiguait, leur tête s'inclina vers la terre où repose le cher poète, et je vis deux larmes glisser de leurs paupières et tomber sur le gazon. Ils avaient dî s'aimer en le lisant ensemble...

Barbey d'Aurevilly! type non moins étrange que ses œuvres: La vieille Maîresse et Les Diaboliques. Grand, brun, avec des cheveux noirs frisés et rejetés en arrière et encadrant largement la figure coupée aux deux tiers par une épaisse moustache. La taille est fortement cambrée et pincée dans une redingote aux parements bordés d'un large ruban de satin noir. An cou une cravate, large aussi, et dont les longs bouts de soie mauve et mordorée retombent sur la poitrine en voilant le plastron de la chemise. Sa main gauche, dont l'index expose aux regards un diamant qui étincelle, est fièrement appuyee sur la hauche, à la royale, comme on disait an grand siècle. En un mot, l'air provoquant d'un capitaine Fracasse en redingote, voilà le portrait vrai de l'excentrique auteur de la Theorie du dandysme dont il pose, snccesseur amoindri de Brummel et du comte d'Orsay, pour le dernier modèle.

Mais, de tous les portraits exposés, celui qui attire le plus les regards, représeute une des femmes les plus accomplies, les mieux douées du côté de l'esprit et de la beanté, dont le pinceau d'un grand peintre ait jamais fixé les traits sur la toile. Demi-assise, demiconchée sur une chaise longue, elle pose dans un négligé étudié avec tout le raffuement propre à mettre en relief les formes les plus exquises, mais qui serait fatal à toute beauté taut soit peu moins parfaite. Suave figure de brune an teint elair et aux longs yeux noirs d'une pénétrante donceur, elle penche vers nous son front qu'illnmine l'auréole d'une intelligence hors lique agrémentée d'une expression de bienveillance extrême. Epaules et $\underline{\text { rorge }}$ d'une blancheur et d'un modelé at faire rongir celles de la Madeleine au désert du Corrége, beanx bras déeouverts qui pendent dans un abandon plein de charme et d'une grachensetio de lignes telles que les dut rêrer le grand inconnu qui sculpta la Vénus do Milo, lis pinds mus - pieds d'enfants qui tiendraient dans la main - eét adorable corps s'mbere, avec une vérité qui lui donne la vie, sur un rideau cramoisi tendu au fond d'une piee à eolonne sourrant sur des massifs d'arbres. Si grande est la perfection à laquelle. lo peintre en cst arrivé, si empoignante cette fascinatrice beanté, qu'après l'avoir contomplée qualque temps, il rous semble que le soulle de la vie soulève sa poitrine et que vons alle\% tomber a ses pieds.

Cepte admirahle peinture est l'attirant portrait de Mme Réeamier qui, depuis la fin du sied de dernirr jusqu’an milien de celni-ei, vit un emperen et toute une armée de princes, de qénéraux ef l'mrivains lex plus distingués, l'assiéger de lenrs hommages et de leurs adorations. Tous firment ses amis: Napoléon et Lacien Bonaparte, Adrien et Mathieu de Montmorenty, le cénéral bumadnte. Camille Jordan, le neven du grand Frédéric, le prince Angusto do l'ruser, qui, apres aroir lait peindre ce portrait de Mme Récamier par le baron (Gorard, voulut on laire le primcier cadean à loriginal ; Benjamin Constant, Ballanche, Ampere gui lit, diton, sa promenade en Amérique pour se distraire un peu du sonvenir do son amour mathourenx, of enfin, et surtout, Chateaubriand. Cependant, ancun ne fut jamais son anant, be pour rux tous qui s'en désespéraient en min, elle fot tout ce que par nature clle ponvait être, lenr lassant au moins cette consolation suprême de pleurer leur matheur all commun.

Mais, widi quesur tontes ces toiles célelbres, les tons clairs commencent à se fondro aver los parties ombrées; c'est le jour qui s'en va. Nous laissons à regret tous ces grands morts et tontes ces célébrités contemporaines s'épanouir dans leur gloire, et nous redescendons parmi les virants.

Pendant que les brillants équipages s'ébranlent à la suite les uns des autres, pour ramener cheq elle la foule élégrante, encore tont émerveillé d'avoir vu défiler devant moi cetfe étomante procession de célébrités dont le rayonnement illumine ce siècle, je m'en vais m'appuyer sur le parapet du quai, en face du palais des Beaux-Arts. Le soleil se couche dans la pompe de sa majesté parisienne. Sur l'autre rive, en face, l'immense batiment du Louvre se fond dans un nuage d'or, tandis que la Seine semble rouler de l'argent en fusion. A droite et derrière nons, du côté de la cité, les aiguilles de la Sainte-Chapelle, les vitraux de Notre-Dame, clochetons, tourelles et rosaces, ainsi que l'interminable traînee de fenêtres et de toits qui dominent les denx rives, étincellent, miroitent et pondroient dans un incomparable flamboiement; tandis que, sur la rive gauche, les grands arbres du jardin des Tuijeries et de l'avenue des Champs-Elysées se pondrent la tête de poussière d'or. Tout lì-bas, nu point culminant du lointain, l'Are de triomphe de l'Etoile - rêve gigantesque du grand
empereur - plane un moment dans les feux du couchant comme un ostensoir avec ses raissellements de rayons.

Enfin, en acteur content de ses effets, l'astre radieux s'incline jusqu'à terre, et disparaît derrière le grand rideau pourpré tendu sur l'horizon.

Déjà les quais et les monuments d'alentour commencent à s'effacer dans l'ombre montante, et, voici que sur les ponts les réverbères s'allument, piquant leurs clous à tête d'or sur la tenture bleu pâle du ciel.

En revenant par le quai Voltaire, je me heurte à mon excellent ami, Victor du Bled, qui vient de laisser son article au Moniteur, et qui, saisi d'un bel enthousiasme pour le Canada, me parle des études qu'il va bientôt faire sur notre pays. Pour m'en causer plus longuement, il m'entraîne à dîner du côté des grands boulevards. Nous traversons la Seine en face de la vaste place de la Concorde qui resplendit déjà de mille flammes de gaz auxquelles se mêle le rayonnement fugitif des lanternes des nombreux équipages revenant du Bois.

Nous débouchons bientôt sur le boulevard de la Madeleine, au milieu du vacarme assourdissant de centaines de voitures qui roulent et se croisent dans tous les sens, et nous parvenons à percer notre voie dans le torrent de piétons qui inonde les larges trottoirs, couverts, par la moitié, d'une multitude de consommateurs humant une dernière gorgée de vermouth ou d'absinthe avant d'envahir les restaurants dont les glaces sans tain resplendissent au feu des lustres de l'intérieur.

Tandis que mon ami continue à me développer les ilées de ses futurs articles sur notre histoire et notre littérature, je m'en vais me grisant du bruit toujours montant, de l'indescriptible surexcitation de Paris qui, la nuit venue, détend bruyamment ses muscles tirés par le travail ou les ennuis du jour, - et, bacchante affolée, pousse une formidable clameur de joie en se ruant aux plaisirs.

IX. - Les Aborigènes d'Amérique - Leurs rites mortuaires,

Par J.-M. LeMoine.

(Lu le 22 mai I884.)

Messieurs,

Les amis de l'histoire et de l'archéologie parmi vous me sauront grí, j'ose le croire, de leur soumettre quelques observations sur les rites mortuaires des aborigènes de l'Amérique.

N'allez pas croire que Sagard, Mare Lessarbot, Lafitan, Perrot, Charlevoix et les écrivains qui leur ont succédé, nous aient donné le dernier mot sur tout ce qui se rattache ì cette question si complexe: l'origiue de l'homine ronge d'Amérique - le farouche roi de ces contrées, que les premiers explorateurs y rencontrèrent an commencenent du seizième siècle ou avant.

L'archéologie américaine - l'américauisme, comme on dit en France - l'étude philologique et ethuologique des races primitives de ce continent, ces imoonbrables tribus échelonuées du Labrador aux montagnes Rocheuses - depuis le Mississipi jusqu'à la mer Pacifique - voilà, n'en doutons pas, un sujet d'un intérêt majeur pour une association comme la nôtre.

Pourquoi le Cauada français n'aurait-il pas ses archéologues aussi bien que ses poètes et ses littérateurs? Eu ce moment, la France scientifique s'occupe activement de l'archéologie de l'Amérique; et la Société américaine de France, établie en 1857, compte parmi ses fondateurs toute une pléäde de savants, tels que Malte-3rin, Alfred Maury, Buruouf, Bounetty, Cortambert, Léou de Rosuy, Madier de Montjan, Tomard, Lacaze.

Chez nos compatriotes d'une autre origine, an Canada, l'on voit un groupe de zélés chercheurs : MM. Dawson, Wilson, Campbell, Reade, Whiteaves, Matthew, Hind, dont les éerits ont jeté beaucoup de jour sur tout ce qui se rattache anx peuplades indiennes, - leur origine, leur mythologie, leurs croyances religieuses, leurs superstitions, leurs dialectes si variés, leur couformation physique, leurs rites et cérémonies funèbres, etc.

Jusqu'au moment où cette société vit le jour, ces laborieux savants avaient été laissés à leurs efforts individuels. Ils étaient sans organisation, sans aide de l'Etat, sans musée national pour recueillir les curieux monuments, les vestiges de ces races éteintes, leurs hiéroglyphes, leurs seulptures sur pierre on sur bois, les symboles des tribus, leurs ustensils domestiques, les armes des guerriers, les crânes et les squelettes. Une ère nouvelle a donc commencé ; il nous est permis de dire: Altior tendimus.

Examinons mainteuant où en est l'arehéologie chez nos voisins.
C'est surtout Henry R. Schoolcraft qui a fait de l'archéologie une spécialité aux EtatsUnis.

Ses voyages, ses reeherces ont absorbé plus de trente années de son existence. Au reste M. Schoolcraft a joui de rares avantages pour étudier l'homme des bois, pour sou-
lever un coin du voile qui recourre cette étrange nature, pour pénétrer à travers l'écorce de cette organisation exceptionnelle, inaccessible au progrès, aux lumières de la civilisation. Il a récu de longues années parmi les aborigènes, où il épousa la petitefille d'un grand chef, une femme donée des plus éminentes qualités du cour et de l'esprit. L'idée de son magnifique travail, dont le premier volume vit le jour en 1860, fut conçue en 1846. Cette année-là, avec l'appui de plusieurs amis de la science, Schooleraft présenta m mémoire au Congrès, l'invitant à s'enquérir de l'histoire, de la condition et de la destinée des races indiennes des Etats-Unis. Le 4 mars 1847, le Congrès donna instruction an secrétaire de la guerre, dont relevait le Bureau des sauvages, de faire préparer un rapport sur cette matière, et M. Schooleraft fut chargé de le dresser. Les six in-quarto de Schoolcraft ' eurichis de nombrenses gravures, de planches coloriées, de dessins fort variés at nxícutín avec luse, ont servi pour ainsi dire de point de départ à la plupart des archéolognes qui sont venns apres lui, ef le nombre en est grand.

Mais passons soms silenee les recherches de Schooleraft, Catlin, Hubert Bancroft, Hale. Abhot, etr., toutes précieuses qu'elles sont, pour signaler les travaux des archéolornes du lourean dophnologie de Washington, présidé par le major J. W. Powell, cette partie du moins qui a trait anx rites fimèbres des peuplades saurages. Que d'études profondes at fairn sur les langues indiennes, ces donze cents dialectes dont on a constaté lexistence en Amérique!

Que de points danalogie et de comparaison entre les vocabulaires, ${ }^{2}$ la construction de lat phrase, lat consomnameq des mots, la pictographie, les hiéroglyphes de ces races, et le langrare los us et coutumes des peuplades de l'Asie et de l'Europe! L'homme blane, lhomme ronge, lhomme noir ont-ils tons me commune et unique origine? Nous le pensons. lien que certains ćrivans aient prétendu qu'il se rencontrait en Amérique des ruines qui rmmontent à cing siècles après la fondation de Babylonne, on n'a encore rien déconvert qui dínotw th"\% nus aborigenes une civilisation avancée, des arts perfectionnés, - pas me̊ne wh\% les mount buiders, constructeurs de monticules de l'Amérique centrale. Larchoologio the\% noms ne ressemble nullement à celle de la vieille Europe, où une colomne sculptíe, un torse antique, comme l'a dit le professeur Wilson, revèle l'ère de Thémistocle on d'Anguste. Chez nons, l'historien des âges préhistoriques trouve peu de matérianx pour excreer sa science, tandis que l'archéologue, bien qu'il manque de traditions sur l'ápogue antérieure à la découverte du continent, recueille une ample moisson parmi les ruines et les monuments dont l'origine semble postéricure à cette date, et pent en tirer de luminenses conelnsions.

Ie domaine de l'archéologie en Anérique est beaucoup trop raste pour atre exploré en un seul jour. Etudions, Messieurs, pour le quart d'heure, l'aborigène sous un des aspects les plus intéressants de son étrange nature: la sépulture donnée à ses morts. Il y a au moins sept modes principanx de sépuliure chez les races indiennes.

1o L'enfonissement des cadarres dans des fosses on excarations, dans des tertres élevés de main d'homme, dans des huttes, sous des tentes, on bien encore au fond des cavernes.

[^31]20 L'embaumement, qui consiste à transformer les dépouilles mortelles en momies, avant do les confier à la terre, aux cavernes, aux tentes, ou à des échafauds élevés sur lo sol, ou à des charniers ou ossuaires, etc.

30 Le dépôt du cadavre dans une urne.
4o La sépulture dans des arbres creux ou sous des monceaux d'écorce on de pierre, à la surface du sol.

5o La crémation partielle ou totale des corps, et le dépôt subséquent des os calcinés ou des cendres dans des urnes ou des boîtes hissées sur des échafands ou dans les arbres, etc.

60 La sépulture aérienne, laquelle consiste à déposer les cadarres dans des huttes, ou bien encore de les cnfermer dans des pirogues on des boites élevées sur des estrades ou poteaux, ou bien déposés à la surface de la terre. Quelquefois la déponille des jeunes enfants était enfermée dans des paniers, puis suspendue aux ramoux des arbres.

7 La sépulture sous l'onde, ou dans des pirogues que l'on lançait à la dérive, ete.
Le procédé le plus usité semble avoir été l'inhumation sous terre. "Le's Iroquois de la nouvelle York, dit Schooleraft, creusaient un trou profond; on y enfouissait le cadarre du défunt dressé sur ses pieds our ramassé sur ses hanches. On reconvrait lo tron aree des trones d'arbres, afin de garantir le corps du contact avee la terre qui le recourrait. Puis on élevait le sol en forme de tertre ou de retranchement sphérique. La mort était revetu de ses plus beaux habits; on lui faisait don de wampums et autres effets. Les parents tenaient la fosse dégarnie d'herbe, et s'y rendaciét ì diverses reprises pour y faire des lamentations."

L'historien Lawson ${ }^{3}$ décrit comme suit les rites funèbres des ludions qui jadis habitaient les Carolines: "Chez les tribus de la Caroline, la sépulture des morts était acrompagnée de cérémonies particulières dont l'étendue et le coût se mesuraient au rang des trépassés. On plaçait d'abord le corps sur un brancard de branches, puis on lo reléguait dans une hatte construite pour l'occasion, où les parents, les chereux en désordre, venaient le pleurer pendant un jour et menuit. Ceux qui devaient prendre part aux funérailles s'acheminaient vers la bourgade, et, chemin faisant, ils arrachaient des épaules de coux qu'ils rencontraient les couvertures et vêtements qu'ils jugeaient nécessaires à la cérímonie. On en revêtait le cadavre, puis on le recouvrait de deux ou trois nattes de jones on de cannes.
"Le cercueil était fait de cames tressées, on de joncs creux, liés aux denx extrémités. Quand tout était prêt pour la sépulture, on transportait le corps, de la hatte où il avait été d'abord déposé, dans un verger de pêchers, où un autre brancard le recevait. Là se réunissaient la famille du défunt, sa tribu et les invités.
"Le jongleur, ayant commandé le silence, prononçait l'oraison funèbre du mort, racontant sa bravoure, son habileté, son patriotisme, ses richesses, son prestige parmi les guerriers, commentant sur le vide que sa mort allait creuser, et exhortant les survirants ì le remplacer en marchant sur ses traces, décrivant le bonheur qui l'attendait dans le pays des esprits où il était rendn, et couronnant sa harangue par une allusion anx principales traditions de la tribu.
"Finalement le cadavre était porté de ce brancard à la fosse par quatre jeunes gens,

[^32]escortés par les parents, le roi, les vieillards, la nation entière. Une fois arrivé au sépulcre, profond de six pieds et long de huit on peu s'en faut, où l'on avait solidement enfoncé dans le sol deux fourches sur lesquelles reposait une perche, on matelassait le fond du sépulcre d'écorces d'arbre; on y déposait le corps avec les deux ceintures ou lanières qui avaient servi à porter le cercueil; on plaçait ensuite nombre de bûches de pin résineux nppnyées sur la perche, pour servir d'ornement autour du mort. Alors on ajoutait de la terre en forme de voutte pour garantir le eadavre du contact de l'air."

Après un certain temps on l'exhunait et on déposait les os dénudés dans l'ossuaire, que Delbry et Lafitaun nomment le "Quiogozon." Les rites funèbres chez ces peuples ont subi plusimurs modifirations, depuis ces lointaines époques. On se sert davantage de cercucils, et le mort est touyjours enterré la tête vers l'onest. Ou a supprimé l'oraison funèbre" mais le festin des morts et les antres cérémonies de denil se pratiquent toujours.

Jas Cries et lus réminoles de la Floride, en 1850, enterraient les morts de la manière suivante: "Quand' un membre de la lamille meurt, les parents inhument le mort à quatro pieds de profondour ì pen près, dans un tron rond crensé sons la hatte ou le rocher
 assisi - "nreloppée d'un" converture at les jambes recourbées et líées ensemble.

Si rist un crumpive on la tatone; on lui dome son calumet, ses armes, ses décorations. (On ajonte ia la fossu des haguetes líés à un cerele. On recouve le tout d'une "omb he terre sullisamment forte pour supporter le poids d'm homme. Les parents hurlont ia tur-têtw plenran ch publie quatre jours durant. Quand le défunt a été de son virant 1 m homm" "minnt, sat famille quitte son ancienne résidence pour s'en constrnire une nourille, pronadée que la oi gisent les os de ses morts, le lien est infesté desprite of de spatrex malliasiants.
L.: Com:unches ont und marticulier de disposer de leurs morts, sans s'occuper du - ontact des renter alver lat derte
"Suand " un Comanch" tire i sal lin "t que le rale de l'agonie va faiblissant, on profite due que le worps ext endore what nt thexible pour lui replier les genoux sur la poitrine et les jamber sonts lus cuissers. On lui ploie les bras sur chaque côté de l'estomac et on lui courbo la tête sur los grnoux an moyen dune lanière qui la retient fermement dans cette pasition. Alors on enveloppe le corps d'une converture, et une seconde lanière affermit le tout: de sorte que le difuut semble être un objet rond et compact. On lie le cadavre sur le dos diun cheval; me squaw monte en croupe, ou deux femmes marchent de chaque cité du cheval pour tenir le défunt en place jusqu'an lien de la sépulture. Puis on le jette dans l'excavation préparée. Le mort n'a d'autre cortège funèbre que deux ou trois femmes. Lion transporte d'ordinaire le corps à l'ouest de la bourgade, et on l'eufonit sans façon dans une des profondes ravines on canons du pays des Comanches. On enterre le guerrier avec son arc et ses flèches; mais après avoir rompu ces dernières. On dépose aussi dans la tombe la selle de son cheval et autres objets de valeur. Puis on recourre la fosse de fagots, de terre, et quelguefois de pierres.

Parmi les cérémonies funèbres, notons la coutume de tuer, près de la fosse, le meilleur cheval du défunt, pour domner occasion à ce dernier de faire acte de présence dans l'autre monde sur ne monture vigoureuse et bien caparaconnée.

[^33]Ancienuement, si le défunt avait été un chef ou une personne d'importance, possesseur de vastes troupeaux de chevaux sauvages, on lui sacrifiait de deux cents à trois cents de ces derniers.

Les Comanches et les Wichitas - bons cavaliers - racoutent le trait suivant, pour prouver la nécessité de pourvoir les morts d'équipages convenables, au moment où ils abordent le séjour des bienheureux:
"Un jour, un Comanche, vieus, pauvre et saus parents, mourut. Quelques membres de la tribu furent d'avis qu'il importait peu quelle monture il aurait pour faire son entrée dans le pays des ombres. On tua donc près de sa tombe me vieille haridelle qui avait une oreille pendante. Peu de semaines après la sépulture du panvre homme, il revint monté sur la même rosse fatiguée et affamée. Il se rendit en premier lieu au camp des Wichitas où il était bieu connu, et demanda des vivres; mais sa mine hideuse, ses yeux éteints, ses joues creuses inspirèrent de l'effroi à tous les spectateurs; ils se saurèrent. Un guerrier doué d'un courage plus robuste que ses compagnons se hasarda à lui présenter an bout d'une longue perche un morcean de viande. Le défunt se rendit ensuite à son propre camp, où il inspira, si c'était possible, une terreur encore plus vive que chez les Wichitas. Comanches et Wichitas quittèreut l'endroit, et allèrent s'établir ailleurs.
"L'âme en peine questionnée pourquoi elle était revente de la sorte parmi les vivants, fit réponse que lorsqu’elle s'était présentée à la porte du paradis, les gardiens araient refusé net de le laisser passer outre sur sa misérable monture. Elle avait donte pris le triste parti de revenir en ce monde rejoindre ceux dont la lésinerie lui wait procuré cette triste haridelle. Depuis ce temps, nul Comanche trépassé ne s'est mis en route pour le royaume du soleil couchant, sans être pourvu d'un coursier capable de faire honneur à son cavalier, aussi bien qu'aux amis qui le fournissent.
"Le cortège quitte la hutte du côté du soleil couchant, afin que le trópassé puisse accompagner l'astre du jour au pays des ombres. Ses mâues se mettent en route le soir même du lendemain de la mort.
"On brûle la hutte, les couvertures, les habits, les objets de prix du défunt, tout, excepté ce qui a été enterré arec lui-même, ses voitures, ses harnais..... L'on pleure, l'on se lamente, l'on se déponille de ses vêtements, pour se revêtir de haillons. Une jeune épouse, une mère dévouée se fera des incisions aux bras, an corps, aree des couteaux ou des ciseaux de pierre, au point de tomber en défaillance par la perte du sang. On engage des pleureuses, versées dans l'art de se lamenter. Les proches se dénudent le crâne de cheveux, en tout ou en partie. Si le défunt était un chef, les jeunes guerriers se compent la chevelure du côté gauche.
"Durant les premiers jours qui suivent la mort, le denil se continue surtont au lever ou au coucher du soleil, car le Comanche adore le soleil. Pour un guerrier mort en été, le deuil dure jusqu'à la chute des feuilles. Quant à celui qui expire en hiver, on continue de le pleurer jusqu'à ce que les feuilles reverdissent."
"Chose digne de remarque, ajoute le Dr H. C. Yarrow, les rites funèbres chez les Comanches sont presque identiques avec celui de certaines tribus de l'Afrique.... L'usage de louer des personnes pour pleurer date de la plus haute antiquité."

SÉpuitures hors de terre

Cenx qui sont curicux de connaître les modifications que les sépultures indiennes ont subies là où les missionuaires ont pénétré, liront avec iutérêt la partie du mémoire du Dr Yarrow, qui décrit les cérémonies funèbres des Pueblos, an nouveau Mexique, d’après le Juge Antony Joseph.

On y remarquera, entre autres, la coutume singulière de la tribu des Caddoes, qui ne confient pas ì la tarre la dépouille de leurs guerriers morts sur le champ de bataille, mais s'en remettent aux bêters laures et aux oiseanx de proie du soin de les faire disparaitre, le sort de res guerriors dans le pays des âmes étant réputé préférable à celui de ceux qui menrent de mort naturelle. Au reste cette pratique de jeter les cadarres à la voirie existait whe\% les am"iens Perses, les Mèdes, les Parthes, les Illyriens, etc., an rapport de liruhin de de liem Meuret. Tont ce ehapitre du mémoire, ou sont décrits les divers modes du sípulture mentionés dans les récits de voyage anciens et modernes, mérite un examen attentif. (Anmul Report of Bureau of Ethnology, U. S., 1879-80, pp. 101-3.)

Cystes ou tombeaux en pierre

Cie genro de śfulture semble surtout avoir été pratiqué daus les Etats du Temnessec, de l'Illinois, du Kantucy, ainsi que dans l'Amérique centrale. (Report of Bureau of Etnologry, p. 113).

On remarque whe ces aborigènes la même préocupation que celle que nous avons notée plus han : présper lo cadarre du contact de la terre, après la mort. A cette fin on "reusait lu sol de donze à dix-huit ponces de profondeur, puis l'on confectionnait, au moyeln do piurres plates, whe espece do tombe, quelquefois en y ajoutant une pierre en guise de courerele. Les tombeanx des races primitives de la Gaule, trouvés près de Solutré, France, en 187:, ressmblaient ì cenx qui furent découverts par Moses Fiske, au Tennesser. Les cadarres araient été vraisemblablement repliés, comme si la personne était assise. Quelprefois les tombeaux des hommes contenaient des pipes, des marteaux, des dards du fleches en pierre; on trouvait aussi des morceaux de poterie, des perles, etc., dans celui des femmes.

Larchéologne Bancroft ${ }^{6}$ décrit comme suit le mode de sépulture par cyste, chez les Dorachos de l"Amérique centrale: "A Veragua, les Dorachos avaient deux modes de sépulture. le tombeau des chefs était fait de pierres plates, relevées solidement; on y déposait des urnes précieuses remplies de vin et de nourriture pour les morts. On enterrait le peuple dans des tranchées où étaient déposées des cruches de vin et des vases pleins de mais; le reste de la tranchée était rempli de pierres. En quelques endroits de Panama et de Darwin, les chefs et les grands, seuls, receraient des honneurs funèbres. Chez le penple, dès qu'un individu sentait les approches de la mort, il s'acheminait ou se faisait conduire vers la foret par son épouse, sa famille ou ses amis, qui lui apportaient des épis de bled ou des gâteaux et un vase rempli d'ean, puis le laissaient à son sort, exposé souvent à la voracité des bêtes fauves. D'autres, plus respectucux euvers leurs morts, les enfermaient dans des sépuleres où ils pratiquaient des niehes pour recevoir du vin et du

[^34]mais, qu'ils renouvelaient chaque année. Chez certaines peuplades, quand la mère expirait avec un enfant à la mamelle, l'enfant vivant était déposé sur le sein de sa mère et enterré avec elle, afin qu'elle pût l'allaiter même aur delà de la tombe." (II. Bancroft).

La tendresse maternelle avait chez ces peuples des secrets, des mystères que ne comprenait pas même Millevoye, quand il chantait eu vers si harmonieux les sépultures indiennes du Canada:

> Les yeux levés au ciel, la mère désolée
> S'approche avec lenteur de l'étroit mausolée,
> Et, soupirant lo nem de cet enfant chéri,
> Répand sur son tombeau le lait quil l'eût nourri !

Séptiture dans les tertres

Comme le bureau d'ethnologie de Washington doit prochainement publier un rolume spécial sur ce genre de sépultures, le savant Dr Yarrow s'est contenté de présenter dans son mémoire un aperçu des exemples les plus frappants de sépultures sons tertres - qu'il nomme buriuls in mounds - déconverts dans les Etats du Missouri, du Tennessee de l'Ohio, de l'Illinois, de la Floride et de la Caroline du nord.

Cestertres sont construits en terre, en sable, quelquefois en pierre, de quatre à quinze pieds de hauteur sur trente à cent pieds de longuenr. Ils sont creux, et sous ces domes ou chambres mortuaires se rencontrent les squelettes souvent particllement calcinés des anciens habitants, accompagnés d’objets en pierre ou d'articles de poterie. La crémation partielle était-elle usitée chez ces peuples et les tertres n'étaient-ils que dus cimetières ou lieux de dépôt secondaires pour les restes calcinés des guerriers? Voila antint de problèmes à résoudre. L'ethnographe Yarrow clôt cette partie de son travail par la clescription d'un de ces cinetières indiens dans la Caroline dn nord, découvert en 1871 par le Dr J. M. Spainhour. Il mentionne un antel an centre. On y tronva trois squelettes qui semblaient avoir été inhumés d'après une méthode précise. L'est, lonest et le sud de la chambre étaient occupés, mais non le nord. On voyait, par la présence et la disposition des tomahawks, des colliers et autres objets, que les occupants devaient aroir été des chefs.

Sépulture dans ou sous les wigwams

Butcl de Dumont décrit comme suit un mode de sépulture usité chez certaines peuplades de la Louisiane, en 1753:
"Les Paskagoulas et les Billoxis n'enterrent point leur Chef, lorsqu'il est décédé; mais ils font sécher son cadavre au feu et à la fumée, de façon qu'ils en font un vrai squelette. Après l'avoir réduit en cet état, ils le portent au Temple (car ils en ont un, ainsi que les Natchez), et le mettent à la place de son prédécesseur, qu'ils tirent de l'endroit qu'il occupait, pour le porter avec les corps de leurs autres Chefs dans le fond du Temple, où ils sont tous rangés de suite, dressés sur leurs pieds comme des statues. A l'égard du dernier mort, il est exposé à l'entrée de ce Temple sur unc espèec d'autel ou de table faite de cannes, et couvert d'une natte très-fine travaillée fort proprement en carreaux rouges et jaunes avec la peau de ces mêmes caunes. Le cadavre du Chef est exposé au milicu de

[^35]cette table droit sur ses pieds, sontenn par derrière par me longue perche peinte en ronge, dont le bout passe an-dessus de sa tete, et à laquelle il est attaché par le milieu du corps aree une liane. D'une main il tient un casse-tette ou une petite hache, de l'autre une pipe; et an-dessus de sa tête est attaché, au bout de la perche qui le soutient, le Calumet le plus fameux de tous cenx qui lui ont été présentés pendant sa vie. Du reste cette table n'est guère élevée de terre que d'un demi-pied; mais elle a au moins six pieds de large et dix de longueur.
" C"est sur cette table qu'on vient tous les jours servir à manger à ce Chef mort, en mettant devant lui des plats de sagamité, du bled grolé ou boncané, etc. C'est là aussi qu'an commencement detontes les récoltes ses Sujets ront lui offrir les premiers de tons les fruits quiils peurent recueillir. Tout ce qui lui est présenté de la sorte reste sur cette table ; et, comme la porte de ce Temple est toujours, ouverte, qu'il n'y a persoune, préposé pour y willor. que d'ailleurs il est ćloigné du Village d'un grand quart de lieue, il arrive que ce sont ordinairement des. Etrangers, Chasseurs on Saurages, qui profitent de ces mets et de ces fruits, ou 'fu'ils sont consommés par les animaux. Mais cela est égal à ces sauvagres ; at, moins il en riste lorsqu'ils y retournent le lendemain, plas ils sont dans la joie disant que leur ('hel'a henen mangé, et que par conséquent il est content d'eux, quoiquil Ifs at abandomis. lour leur ourrir les yeux sur l'extravagance de cette pratique, on a bean leur remésuter, of quils we peurent s'empêcher de voir eux-mêmes, que ce n'est pas creort qui mompr; ils répondent que si ce n'est pas lni, e'est toujours' lui au moins qui offira qui il lui plait of qui a été mis sur la table ; qu'après tont c'était la pratique de leurs pere, du lur mere, du leur parens; qu’ils n'ont pas plas d'esprit qu'eux, et qu'ils ne sanment minux fare que de shive leur exemple.
" ("ent annsi devant cotte table, que, pendant quelques mois, la veure du Chef, ses matans, son plas proches parms, viennent de tems en tems lui rendre visite et lui faire lurs harmures, commus sil était en état de les entendre. Les uns lui demandent pourquoi il s'est lainé mourir avant eux? d'autres lui disent que s'il est mort ce n'est point de leur fant"; que c'est lui-même qui s'est tué par telle débanche on par tel effort; enfin, s'il y a en quelque defant dans son grourmement, on prend ce tems-là pour le lui reprocher. Cependant ils finissent tonjours leur harangue, en lui disant de n'etre pas faché contre enx, de bien manger, et quils auront toujours bien soin de lui."

La crémation

Cette cérénonie mortuaire est vieille comme le monde.
("était par une sereine journée d'antomue, sous le bleu ciel d'Italie. On préparait uu bûcher sur le rivage, ì l'ombre des noires forêts qui bordent la Méditerranuée. D'un côté la magnifique baie de S'pezia; de l'autre une antique ville latine; en face, des groupes d'iles verdoyantes comme des corbeilles de fleurs flottant sur l'onde; partout une nature vaste, radicuse. favorable ì l'inspiration.

Le feu sacré s'allumait pour des rites funèbres; on roulait dans le brasier des troncs d'arbres, des débris de naufrage; on préparait l'encens et le vin du sacrifice.

Pour qui donc ce bûcher? Est-ce pour un guerrier étrusque, quelque exploratenr fameux de Carthage, englouti par le perfide élément, quelque navigateur de Tyr ou de Sidon, victime des fureurs de Neptune, ou un compatriote de Menœachus ou d'Arche-
morus occis pendant la guerre de Thèbes? Nullement, messieurs les historiens et les archéologues. Nous ne sommes ni dans l'âge prêhistorique, ni aux temps moins reculés mais encore obscurs où une louve bienveillante allaitait deux enfants sur le mont Palatin. Nous sommes ell plein dix-neuvième sièclc. La scène se passe à Villa Reggio, près de Livourue. Et vous, messieurs les poètes, ${ }^{8}$ ne soycz pas trop scandalisés si l'ou vous dit ce qui advint, en septembre 1822, aux restes d'un des vôtres, l'illnstre poète Shelley, après son fatal naufrage sur la Méditerraunée.

Qui de vons a oublié que Lord Byron, accompagné de Leigh Hunt, Trelawney, le capitaine Shenley et un autre ami, confia anx flammes la dépouille meurtrie de son malheureux ami, Perey Bysshe Shelly, noyé dans la baie de Spezia?.

Est-ce que cet exemple donné par le poète anglais porterait ses fruits de nos jours?
Tout récemment la presse des Etats-Unis abondait en détails sur les cas de crémation qu'un célèbre médecin français tentait naguère à Washington, où il avait établi à grands frais un laboratoire (erematorinm) pour cet objet. ${ }^{9}$ Les journanx de Londres signalaient récemment au delà de cent cas de crémation daus le Royaume-Uni.

Revenous à nos sauvages.
La crémation est un procédé usité non seulement parmi les tribus saurages à l'ourest des montagnes Rocheuses, mais encore parmi celles qui sont groupées à l'est. Elle était en houneur ehez les Grecs, les Romains, les peuples asiatiques. Llle menace même de s'introduire chez les modernes. Bien qu'il existe de l'analogie entre cette pratique che\% les ancieus et chez les peuplades de l'Amérique du nord, elle en dillère sur certains points, et doune lien à d'intéressantes dissertations. Schoolcraft, ${ }^{1 "}$ Stephen Powers, "Ross ('ox, ${ }^{12}$ Heury Gilman, ${ }^{13}$ A. S. Tiffany, ont tour à tour jeté du jour sur cette question.

Chez certains peuples, on attendait sept on huit jours, aviat d'allumer le bicher, afin de donner le temps aux parents de bien constater l'identité da mort. Chez diatres, on brûlait avec le cadarre tout ce qui avait appartenn an défunt; puis on enfonissait les cendres dans un trou.

Henry Gilman siguale la décourerte d'un tertre, en Floride, rempli de restes humains, et où des crânes avaient été réscrvés pour recueillir les cendres. On ne voyait sur ces crânes aucune trace de feu. Chez certaines tribus de l'Oregon, la crémation des cadarres était l'occasion d'affreux traitements pour les reuves des morts. Elles étaient tenues de recueillir les restes, de les envelopper dans de l'écorec, et de les porter sur lenr dos pendant plusieurs années. Elles devenaient comme les esclaves de la tribu, dont elles subissaient les mauvais traitements, au point qu'elies cherehaient quelquefois dans le suicide un terme à leurs maux. Selon ces barbares, le feu du bûcher avait pour effet de dégrager du corps l'âme qui s'élevait avec la fumée vers le solcil, puis regagnait les régious fortunées dans l'ouest.

[^36]
Sf́pulture afrimenne dans des armbes ou sur des échafauds

Ce mode de sépulture est fort usité, même de nos jours, parmi certaines tribus de Sionx et de Dakotahs.

On place les cadarres, couchés sur le dos et emmaillotés dans des peaux ou des convertures nssujetties par des lanières, dans des arbres, si les rameaux offrent des appuis convenables ; et l'on n'a recours à des échafands que lorsqu'il n'y a pas d'arbres dans le voisinage. Ces édhafands sont des objets sacrés, et quand une tribu ennemie ne les respectait pas, la mort des conpalbles seule expiait l'offense. Quand le cadarre a passé deux ans ainsi exposé, quelquefois on le met en terre. Ce sont des femmes - les femmes les plus àgée's - qui se chargent des préparatifs de l'inhumation et du deuil.
M. William J. Cleveland a fourni une description fort détaillée de ce genre de sépulture the\% nue tribu de Nionx, an Nébraska.

11 y ajoute des détails très intéressunts sur une autre coutune funéraire de ces penplades, laduelle, sams être générate, nons semble fort curicuse. Il la nomme keeping the shose. "e qui pourait se tradnire par ronserver l'esprit du morl. L'on enlève du crâne du trépasé n pell de chevenx que l'on enveloppe dans un morceau d'indienne ou antre tison, jusquà ce que le roulean atteigne an moins denx pieds de longueur et dix ponces andiamêtre ; puis lon enferme le tont dans un étui fait de peanx, badigeonné en roulours variós at voyantos. (On dópose l'étni sur deux supports croisés comme suit
 olframbes de tonte wpere que l'on distribue en dons, lorsqu'il y en a suffisamment.

 le monont de lour distribution. Les hommes et les enfants mâles sont seuls admis dans cett" hutte, hormis l'épouse du déhant, à qui il est permis d'y pénétrer, pourvu que ce soit du grand matin. Las hommes pubent y entrer pour fumer et causer. Les femmes sont tomos de ferser la cendre de leur pipe an centre de la hatte; et elle y demenre intacte, tamt que la distribution des ollrandes n'a pas en lieu. Ceux qui mangent en de lieu noublient janais de déposer quelque met sous l'étui mortuaire, pour l'esprit du trépassé. Il n'est loisible a personne d'enlevir ces comestibles, à moins d'y être contraint par la faim; en ce cas, il est méme purmis à métranger qui ne connaissait pas le défunt d'enlever ces mets.

Lépoque de lar distribution venne, les amis du défunt ainsi que ceux qui devaient avoir leur part des présents, sont convoqués à la hutte, et le gardien - généralement mu proche parent - leur distribue les dons. Le rouleau contenant les cheveux du mort est ouvert, ot l'on ajoute aux offrandes quelques petites mèches de cheveux du mort.

La cérémonie se répète quelquefois à diverses reprises. Tout le temps qui précède la distribution des chevenx, la hutte aussi bien que le rouleau, est regardée comme un objet sacré, mais pas an delà. Il semble que les parents et amis du défunt ne veulent ni voir ni retenir aucnn objet en lenr possession qui aurait appartenu au mort pendant sa vie, et qui leur en rappellerait le sonveuir. On dirait qu'il s'agit de bannir aussi vite que possible la mémoire dı trépassé. M. Cleveland ajoute nonobstaut que ces Indiens croient tous que chacun est doné d'un esprit qui survit à la dissolution du corps; le corps meurt, mais l'esprit se rémit, dans le pays des ames, aux autres esprits amis qu'il a comms
en ce monde. Pour enx la mort est mu profond sommeil. "Il s'est endormi à telle ou telle époque," vous diront-ils, en parlant des morts; mais ces coutumes comme bien d'autres s'affaiblissent sensiblement. "Les Dakotas confient leurs morts aux cimes des arbres, quand les ramenux inférieurs ne leur offrent pas des appuis convenables," dit le Dr L. S. Turner, chirurgien dans l'armée américaine, et qui a passé six années de sa vie parmi ces sauvages. "Dans tout le cours de mon existence, ajoute-t-il, j'ai vu peu de chose plus navrant que le spectacle d'un des anciens de la tribu s'acheminant chaque jour, au déclin du soleil, vers la tombe de son enfant, et domant libre cours à sa douleur arec des accents à fendre les pierres, puis de voir, à la nuit tombante, le vieillard attristé reprendre, comme un morne fantôme, le sentier qui le ramène ì son wigwam solitaire. Quelquefois il y avait à ce tableau une teinte de tristesse additionnelle, c'est lorsque je voyais un père inconsolable allumer en sanglotant un petit feu sous la tombe aérienne de son fils, puis interrompre ses lamentations pour fumer en silence."

Au reste, Messieurs, ces tombeaux aériens mollement hercés par le zéphir, sons larerte ramée des bois, le poète Delille vous les a fait connaître encore mionx que ne le sauraient faire les archéologues de l'Amérique entière :

> La, d'un fils qui n'est plus, la tondre mère on deuil A des rameaux voisins vient pendro le cereucil. Eh! quel soin pouvait mieux consoler sa jeune ombre! Au lieu d'être enformé dans la demeure sombre, Suspondu sur la terre et regardant les cieux, Quoique mort, des vivants il attire les yeux. La, souvent sous lo fils vient reposer le père; La, ses scurs en pleurant accomparnent leur mère; L'oisoau vient y chanter, l'arbre y verse des plours, Lui prête son abri, l'embaume de ses fleurs ; Des premiers feux du jour sa tombe se colore; Les doux zéphirs du soir, le doux vent de l'aurore, Balancent mollement ce précieux fardeau, Et sa tombe riante est encore un berceau: De l'amour maternel illusion touclante!

Messieurs, je crains avoir dépassé les limites que j’ai dû me tracer pour cette conférence, et cependant je n'ai fait qu'effleurer mon sujet.

Sans prétendre vous avoir ouvert en cette matière de nouveanx horizons, j’ai cru que le temps était venu d'attirer votre attention sur les études faites par des archéologues américains ainsi que sur les intéressantes recherches, de même que sur les travaux importants de ce groupe de savants et d'autiquaires alimentés par le Bureau d'ethnologie dans la république voisine, et auxquels le Smithsonian lnstitution de Washington prête son prestige et sa puissante protection.

Bieu que l'archéologue, au Canada, soit privé de bieu des avantages accessibles à son coufrère des Etats-Unis, il n'est pas tout à fait sans ressources, sans aide. L'exploration géologique et scientifque de notre sol, qui se poursuit sans relâche chaque année, les rapports publiés par le bureau des sauvages, sur l'état des races indiennes, voilà des sources de renseignements, une coopération tout acquise, qu'il ne saurait négliger. L'idée heureuse du marquis de Lorne de doter cette Société d'un musée national, à Ottawa, où seront recueillis les antiquités, les monuments, les restes des races primitives, aussi bien
que des specimens d'histoire naturelle, va nous assurer des facilités nouvelles pour étudier chaque phase de notre obscur passé.

Avec l'intelligence que Dieu nous a départie, les enseignements puisés dans nos lycées, et l'amour de la science implanté dans nos cœurs, rien n'empêche que cette société 'emboite au moins le pas derrière la florissante association que James Smithson fondait à Washington en 1846 - dans la voie du progrès intellectuel et des découvertes curieuses ou utiles qui distingue si éminemment l'époque où nous vivons.

Depuis que ces lignes ont été tracées, un savant distingué, de Saint-Jean, N.-B., M. G. F. Matthew, vient de signaler la découverte des ruines d'une bourgade indienne, sur les rives de la rivière Bocabec, dans le Nouveau-Brunswick, qui datent de l'àge préhistorique. L'érudit délégué de la Société historique de Winnipeg, le professeur Bryce, mentionne des sépultures indiennes au Manitoba, de l'âge des mound builders, et le Canada savant attend avec impatience la publication des recherches du Dr J.-C. Taché sur les sépultures indiennes découvertes par lui sur les rives du lac Simcoe.

X - Le Sacré-Cour, ${ }^{1}$

Par M. Chauveau.

(Lu le 20 mai 1884.)

Au sombre Golgotha le silence régnait ;
La mère avait quitté la croix qu'elle étreignait ;
Dans sa dure agonie,
Le fils avait poussé vers le divin séjour
Un cri plein de terreur, de reproche, d'amour,
De tendresse infinie.

Quand les cieux tressaillaient à ce suprême appel, Lui, la tête inclinée, à son Père éternel

Avait remis son âme.
Le soleil éclipsé, de lamentables voix, Au temple et dans les airs, dénonçaient à la fois

Le déicide infâme.

La terre avait tremblé ; les morts étaient sortis
Des tombeaux, et par eux les vivants avertis
Se frappaient la poitrine.

- Nature, anges, démons, larron justifié, Juifs et soldats romains, du Dieu crucifié

Proclament la doctrine.

Les pharisiens seuls poursuivent avec soin
Leur atroce vengeance, et de la ville au loin
Ils font garder la porte.
Par leurs ordres secrets, et pour mieux contenir
L'émeute redoutée, on voit alors venir
Une ignoble cohorte.
Les plus vils des bourreaux marchent au milieu d'eux ;
Ils s'en vont, rassurant ces docteurs scrupuleux,

[^37]Sec. I, 1884-13.

Achever leur victime.

Le temps presse; plus tard, contre les saints décrets On verrait le sabbat souillé par des gibets !

Eux le sont par leur crime!
Sinistres assommeurs, les archers se hataient Vers le lieu du supplice ; avec eux ils portaient

Des cordes, des échelles.
La mère et celles qui partagent son malheur Sentent plus vive encor leur poignante douleur, Comme ils passent près d'elles.

Sous leurs coups redoublés le plus vieux des larrons Livra son âme affreuse aux griffes des démons, Dans un dernier blasphème.
A tous deux l'on brisa les os également;
Le jeune, qui priait, s'en alla saintement
Avec le Christ lui-même.
On jette dans un trou ces cadavres obscurs ;
De la mort de Jésus n'étant pas encor sûrs,
Les bourreaux se consultent.
Au Calvaire déjà, comme au jour des fureurs,
Le partage se fait de ses adorateurs
Et de ceux qui l'insultent.
Des femmes, un jeune homme, en ce terrible instant, Sont près de lui; de ceux qui suivaient en chantant Hosanna, nuls restiges !
A la gauche l'on voit ses anciens ennemis, Effrayés, abattus, mais encore insoumis, Malgré tous les prodiges.

La douceur de Jésus, son supplice cruel, Pour ses persécuteurs à son Père éternel,

Sa prière sublime,
Dans la foule avaient fait de nouveaux convertis;
La plupart cependant étaient déjà partis :
Peu restaient sur la cime.
Dieu le voulait ainsi : demeurés plus nombreux, Ils auraient, au défaut des apôtres peureux,

Compromis son ouvrage.
Près des femmes groupés, tout frissonnants d'horreur,
Eux aussi redoutaient, pour le corps du Sauveur,
L'abominable outrage.

Qui pourra jamais dire, ou seulement penser, Quand de nouveaux affronts tu voyais menacer Sa dépouille chérie, Ce que furent pour toi ces terribles moments, Combien il te fallut endurer de tourments, O divine Marie!

Mais tout était réglé pour lui-même et pour toi.
" Vous ne briserez point ses os," disait la Loi; Puis dans un autre lirre:
"Ils reverront celui qu'ils avaient transpercé." De ces textes anciens le sens trop effacé A l'instant va revivre.

Inspiré par le ciel, un officier romain
Aux archers indécis fait signe de la main Et, brandissant sa lance, Il presse son coursier, qui d'un bond vigoureux Jusqu'au pied de la croix, passant au milieu d'eux, Comme un éclair s'élance.

D'un bras ferme et cruel, dans le flanc du Sauveur Il dirige le fer pénétrant jusqu'au cœur. Par la large blessure, Du divin réservoir de suprême bonté, Jaillit comme un torrent qui de l'humanité Lave la flétrissure!

La loi de la terreur finit; la loi d'amour
Commence ; tout le sang de son cœur en ce jour
Au début la féconde!
Pour Jésus c'était peu d'avoir brisé nos fers, Et par sa passion délivré l'univers:

De sa grâce il l'inonde.

Dans sa bouche mourante était la vérité ;
De son cœur entr'ouvert sortit la charité ;
Et la douce espérance,
Sur le premier rayon du soleil renaissant, Du ciel jusqu'à la terre aussitôt s'élançant, A comblé la distance.

Atteinte avec ton fils par le glaive acéré, Mère, console-toi; dans ton sein déchiré,

> Va s'enfanter l'Église !
> Les vertus du Calvaire, espoir, amour et foi, Grandissant par tes soins, de la nouvelle Loi Resteront la devise.

Ce gibet infâme pour vous, O juifs, écartez-le! Le monde Au pied de la croix à genoux, Bénissant sa vertu féconde, Saura bientôt la relever ! Un étranger vient d'achever Ce qu'avait prédit le prophète ; Entr'ouvrant le cœur de Jésus, Il a préparé la retraite Où les peuples seront reçus.

La vigne aux généreuses grappes
A su fournir avant le soir
Le vin des divines agapes:
Vous pouvez ôter le pressoir !
Dieu, qui préside à ces vendanges,
Pour vous aider prête ses anges ;
Le cep avec soin conservé
Verra passer plus d'un orage ;
Mais pour tonjours le doux breurage
Aux hommes seuls est réservé.
Du ciel remplissant les promesses, Le fer de ta lance, ô Romain, Eclipse aujourd'hui les prouesses Des conquérants du genre humain. Dévoré d'une soif ardente, Le monde dans sa longue attente Soupire après l'eau du rocher; Près du Sauveur qu'il symbolise, Grâces à toi, nouveau Moïse, Les nations vont s'approcher.

Ce que l'humanité désire Et méconnaît tout à la fois, Ce que les peuples en délire En vain demandent à leurs rois;

Ce n'est ni la sagesse altière, Ni la richesse avide et fière; Ce qu'ils veulent sans le savoir, C'est l'égalité, la justice, L'humilité, le sacrifice
Dont Jésus nous fait un devoir.

Prosternés devant la Nature, Toujours ils l'invoquaient en vain ; De leurs faux dieux la tourbe impure N'aima jamais le genre humain. Le Dieu qu'au Calvaire on adore Fait briller à leurs yeux l'aurore D'un culte sublime et nouveau, Culte d'amour et de souffrance, Qui met la joie et l'espérance, Dans la douleur, dans le tombeau.

De la religion nouvelle Tout le mystère est dans son cœur. Aimant d'une flamme éternelle, Par l'amour seul il est vainqueur ; Il transporte, ô divin prodige ! Des grands et des forts le prestige, Aux doux, aux humbles comme lui.
De Bethléem la sainte étoile,
De l'avenir perçant le voile,
Pour tous les malheureux a lui.

Les enfants ont eu ses caresses, Les simples son enseignement, Les pauvres toutes ses tendresses;
La mort par son commandement
Rend au père sa fille aimée,
Son fils à la mère éplorée, Et, spectacle digne des cieux, Lorsque exauçant Marthe et Marie
A leur frère il rendit la vie, Des pleurs jaillirent de ses yeux.

Mais sa bonté fait plus encore ;

S'il guérit le pauvre lépreux
De l'ulcère qui le devore, S'il chasse les démons affreux,

Aux ombres du sepulcre avare S'il peut d'un mot ravir Lazare, D'un mot il transforme les cœurs ; Au lieu des plus impures flammes, D'un regard il met dans les âmes, Les plus héroïques ardeurs.

Ce miracle, par sa nature, Est d'un Dieu le trait le plus fort;
Les autres en sont la figure :
Il met sa gloire en cet effort.
Aux yeux de l'antique sagesse, Se repentir, c'était faiblesse; Seul, aux terrasses de Sion, David en ses saintes alarmes, Avait eu du pouvoir des larmes
La douce révélation.

Au criminel qui s'humilie
Par de véritables regrets
Le Fils de David concilie
Le ciel dont il a les secrets ;
Du pain de vie et du calice, S'il établit le sacrifice, C'est pour rester près des pécheurs, Les attirant par sa clémence, Et refaisant une innocence Aux plus souillés, avec leurs pleurs.

Il vient dans nos cœurs, dans nos veines ;
Il est en nous et nous en lui ;
Au cceur des pauvres Madeleines,
Au cœur de tous ceux dont l'appui
Est dans ses grâces invincibles,
Point d'offenses irrémissibles
Que de refuser son amour;
Les publicains, les pécheresses,
Se confiant en ses promesses
Ont été payés de retour.
Mais il fait sentir sa justice A qui ne sut jamais aimer, A ceux dont l'infàme avarice Ne peut jamais se désarmer.

Au jour affreux de sa vengeance, Il punira surtout l'engeance Des hommes froids et sans pitié, Des lâches apostats, des traîtres Comme Judas vendant leurs maîtres, Sourds à la voix de l'amitié !

Si le vrai repentir allège De nos péchés le lourd fardeau, L'innocence a son privilège : Son rôle est toujours le plus beau. A ses pieds pleura Madeleine, Mais sur son cœur, pendant la cène, Il pressait l'ami chaste et doux, Le plus fidèle des apôtres, L'aimant à rendre tous les autres, A rendre les anges jaloux.

O le plus doux des jeunes hommes, Le plus terrible des vieillards, Par delà le siècle où nous sommes, Dieu fit pénétrer tes regards! Toi qui savais le sort des mondes, Perçant les ténèbres profondes, De l'avenir, la charité Fut le commandement suprême Que tu reçus du Sauveur même, Pour le siècle et l'éternité !

Tu fis la plus belle exégèse Dans l'évangile de l'amour, Publié par toi dans Ephèse, Où tu répétais tout le jour :
Aimez-vous bien les uns les autres.
Resté seul de tous les apôtres,
Ce fut ton supplice, ô martyr!
De ses secrets dépositaire, Oublié par lui sur la terre, Loin de ton Jésus de vieillir !

Tu fus la dernière prière
Du premier siècle dans son deuil ;
Tu fus la dernière lumière, Que l'on vit briller sur l'écueil,

De toutes celles qu'au Cénacle
Alluma l'Esprit saint: l'oracle,
De l'Eglise dans sa terreur, Lorsque déjà de l'hérésie, L'épidémique frénésie
Menaçait l'œuvre du Seigneur.
Qui mieux que toi pouvait redire
Les merveilles du cœur divin?
A qui plutôt devait sourire
De son culte le grand dessein?
Mais la céleste Providence
A chaque époque de souffrance
Réserve un remède nouveau ;
Le monde en sa décrépitude
A de la vile multitude
subi le dégradant niveau.
Ce siècle en sa fausse sagesse
De froids calculs fait ses vertus;
Il étonne par sa bassesse!
Tous les courages abattus,
De l'honneur oubliant la trace,
Aux lâches passions font place;
Ce sont les jours par toi prédits,
Les épouvantables années
Aux derniers humains destinées, Les jours sinistres et maudits,

Où remontant du noir abîme Satan doit triompher encor, Où dans sa décadence infime Le monde doit croire au vean d'or. Pour que finisse l'affreux rêve, Que l'humanité se relève, Le Christ veut un effort vainqueur ; Chassons les voluptés infâmes ; Comme au Calvaire, en haut les âmes !
En haut tous les cœurs vers son cœur!

XI - Au bord de la Creuse,

Par Louis Fréchette.

A M. Paul Blanchemain.
(Lu le 22 mai 1884.)

I

Oui, j'y songe souvent, ô mon lointain ami ;
Et, quand autour de moi tout repose endormi,
Et que sur mes deux mains mon front lassé se penche,
Dans ces chers souvenirs mon cœur ému s'épanche.
Sur le seuil du chalet aux murs hospitaliers, Où j'avais découvert tant d'échos familiers, Après avoir au front baisé vos petits anges Frais comme des lilas, doux comme des mésanges, Et, la voix attendrie, échangé nos adieux Avec celle qui fait vos jours si radieux, Nous quittâmes Biray.

L'âme triste sans doute,
Nous vîmes disparaître, au détour de la route,
La tourelle cachée au milieu des massifs.
Et, la main dans la main, nous marchâmes pensifs,
Vous le fils, moi l'ami, vers la pieuse enceinte
Qui d'un noble et grand cœur garde la tombe sainte.

Pourquoi redire ici ce qui gémit en nous
Lorsque ensemble on nous vit tomber à deux genoux
Sur le tertre funèbre où dort le doux poète?
Tandis que le clocher, rustique silhouette, Mystérieux, jetait son ombre entre nous deux, Nos cœurs sentaient quelqu'un qui se rapprochait d'eux.

Ami, ces moments-là, malgré les destinées, Sacrent l'amitié mieux que de longues années!

II

Ce saint devoir rempli, vers des pays nouveaux Nous partîmes, traînés par deux fringants chevaux.
Quels horizons! et quelle ineffable journée!
Sur la plaine, d'azur et d'ambre illuminée,
Dans des bruines d'or, nos regards croyaient voir
La verdure sourire et les rayons pleuvoir ;
Fraîche encor du baiser de l'aube matinale,
La campagne brillait dans sa grâce automnale;
Là des bosquets touffus, des coteaux ondulés Que festonne la vigne ou que dorent les blés; Plus loin, de grands bœufs roux à l'allure indolente ;
Un filet d'eau qui fuit sous une arche branlante;
Là-bas, un vieux castel dégageant, au travers
De maigres peupliers et de châtaigniers verts, Comme dans les tableaux, sa poivrière grise; Et puis des papillons voltigeant à la brise ; Des buissons pleins d'oiseaux et de vagues rumeurs ; Des vents frais tout chargés d'aromes parfumeurs ; Dans l'écho le refrain d'une chanson lointaine ; Et puis...

Mais à quoi bou? Ma mémoire incertaine Par ces détails oiseux ne pourrait que ternir Ce qui sans doute est vif dans votre souvenir.

III

Nous nous acheminions vers la source où la Creuse S'ouvre un lit murmurant dans sa vallée ombreuse. Soudain, comme un coursier qui se cabre et hennit, Prisonnières heurtant leurs parois de granit, Voici de Saint-Benoît les bruyantes cascades.

Nous égarons nos pas sous les sombres arcades Du vieux cloître en ruine où les bénédictins Pâlirent autrefois sur les textes latins. Tombeaux, inscriptions par les siècles rongées, De mousses et de lierre ogives surchargées, Beaux restes mutilés de chapiteaux romans, Tous ces trésors poudreux des anciens monuments, Nous interrogeons tout, fatiguant nos paupières A déchiffrer les mots de ces pages de pierres.

> Nous découvrons aussi quelques travaux romains. Puis, pour vous oublier, tristes débris humains, Inclinés sur le bord du rocher qui surplombe, Nous allons méditer au bruit de l'eau qui tombe!

IV

Quelqu'un nous avait dit:
"Là-bas, sur ce sommet
Au pied duquel, ruisseau que le druide aimait, Le Portefeuille roule en chantant sous les saules, S'élève un vieux dolmen, reste des vieilles Gaules."

Quelques instants après, vers le plateau lointain Où gît ce survivant de tout un monde éteint, Enjambant les talus, sautant de roche en roche, Effarouchant l'oiseau qui fuit à notre approche, Nous nous hâtons tous deux, prêtant, chemin faisant, Notre oreille aux récits du petit paysan Pieds nus et l'œil madré qui nous montre la route, Et qui, d'un ton ravi, tout charmé qu'on l'écoute, Et promenant sur nous ses regards ébahis, Nous conte la légende étrange du pays:

Cet étang, c'est la mare aux martes; sur ces pierres, Tous les soirs, à minuit, les pâles lavandières Viennent-battre et laver le blanc linceul des morts ; Quiconque les dérange a de cuisants remords !
Des gens ont, disait-il, vu la pierre levée
Des Rendes, dans la nuit, descendre la cavée,
Allant à je ne sais quel affreux rendez-vous ..
Lorsque l'enfant se tut, nous avions devant nous, Enigme interrogée en vain par l'antiquaire, Le dolmen : une masse énorme de calcaire, Qui, sur quatre piliers informes suspendu, S'élève hors du sol de ce coteau perdu, Comme un autel dressé pour quelque dieu farouche. Le colosse était là, verdi par une couche
De mousse et de lichens - témoin morne et discret D'une époque dont nul ne connaît le secret.

O fatals monuments des âges druidiques, Qui donc fera jaillir de vos blocs fatidiques

Presque an hasard, en vrais enfents de la Bohème, Nous nous mimes ell route.

Oh ! quel riant poème,
Que cetto exeursion ì travers ce Berry
Si gai, si vordoyant, si frais et si fleuri!
Jo crois m'y woir cheor. Suspendant notre course, I'afois mons faisons halte an bord de quelque source, Oit, sons he front penthe de quelque arbre songeur, Nous rompons en riant le pain du voyagenr. Nons reeherthons surtont les sites, les mines, Les murs demathtere, penchés sur les ravines. Nons tisitoms un fen compagnes et hameanx, Arou bes villagois orhangeant quelques mots; Vouci ぶamín-r"bastien et sa vaste tour ronde; Puiscrant-Gormain qui fut lien dexil sons la Fronde Vieux clochers, bourg coquet, murs moircis, gai manoin Carrefours oit se dresse une croix de bois noir, Tout a laissé chem moi des sonvenirs vivaces.

Je n'oublierai janais, près du chatean des Places, La jeune paysame aux yeux blens, nous contant, Timide, la légende antique de l'étang:
Un seignenr mérréant, rapace oisean de proie, Une femme quifuit, une enfant qui se noie, Un crime, un châtiment... et puis, que sais-je moi? Sinon que nons prêtions l'oreille avec émoi.

VI

Enfin le jour tombait. Le soleil qui décline Dorait de tons moins vifs le flanc de la colline.

Tout ì coup, et jetant son ombre aux alentours, Sur_un roc formidable, un sombre amas de tours,

De lourds donjons penchants, de croulantes murailles, Comme un géant troué qui perdrait ses entrailles, Apparaît devant nous.

C'est Crozant!

Quel beau soir,
Ou plutôt quelle nuit nous passâmes à voir La ruine exhiber, immense, au clair de lune, Les flancs déchiquetés de sa carcasse brune, Et, de reflets blafards vaguement inondés, Profiler sur l'azur ses grands murs lézardés!

Seuils effondrés, arceaux béants, porches pleins d'ombres, Arcs-boutants délabrés émergeant des décombres, Blocs disjoints envahis par la ronce et les houx, Longs couloirs éventrés heurtés par les hiboux, Pans épais perforés de spirales funèbres, Souterrains où l'on voit des yeux dans les ténèbres, Parapets chancelants qui semblent s'accrocher Aux arbres rabougris qui pendent du rocher, Puissants remparts flanqués de bastions énormes, Lourd amoncellement, écroulements difformes, Tout, dans ce fier débris, farouche majesté Où l'implacable main des âges a sculpté
Le tragique blason des vieux siècles gothiques, Prenait sous nos regards des formes fantastiques. Cela semblait, sous l'astre aux rayons tremblotants, Comme un spectre arrêté sur les confins du temps!

VII

Soudain il nous sembla, cachés dans la pénombre, Voir s'animer au loin la forteresse sombre.
Nous entendons grincer herses et ponts-levis ; Et les barons d'antan, de leurs archers suivis, Bardés de fer, la lance au poing, panache en tête, Noirs chevaucheurs sonnant leur fanfare de fête, - Ainsi que le vautour qui des grands monts descend, Féroces, altérés de pillage et de sang,
Vont surprendre la ville ou battre la campagne ;
Leur file se déroule au flanc de la montagne;
Ils vont, et les hauts faits de ces rudes tueurs Allument l'horizon de sinistres lueurs.
Puis, sanglants et repus, lourds de butin, sauvages, Harassés d'une nuit de meurtre et de ravages,

Essuyant leur flamberge aux mousses du sentier, Vers les murs sourcilleux de leur repaire altier, Nous voyons remonter ces fauves Alexandres, Laissant fumer au loin quelque village en cendres. Et puis, suprême exploit de ces puissants larrons Que l'on nommait alors burgraves ou barons, Nous croyons entrevoir, au reflet des lanternes, Pendre quelque gibet au-dessus des poternes !

O castels féodaux, jadis si pleins de bruits, Comme on aime à rêver sous vos créneaux détruits !

VIII

Or, comme nous quittions l'antique citadelle, Qui domine à la fois la Creuse et la Sédelle, Et que je vous montrais, sur la grève, en aval, Un vieux moulin tournant sa roue au fond du val, Vous, ému, par-dessus la crevasse béante Qui l'isole du roc où perche la géante, Sur l'escarpement noir - pour clore l'entretien Vous m'indiquiez du doigt l'humble clocher chrétien, Qui, depuis deux mille ans, voit tomber en poussière Les colosses de marbre et les babels de pierre!

Dans l'auberge du lieu nous trouvant à l'étroit, Le curé nous arait accueillis sous son toit ; Ce brave et bon abbé, cœur droit et sympathique, Qui trouva le moyen de parler politique Et dogmes, sans jamais faire un retour mesquin De vous, chaud royaliste, à moi républicain!

IX

C'était le lendemain jour de grande assemblée.
Le trot de nos chevaux, sur la route sablée, Nous emporta bientôt vers d'autres horizons. Aux branches des taillis, dans l'herbe des gazons, La nuit à pleines mains avait semé des perles; Sous la feuille sifflaient les pinsons et les merles; Les taons sonnaient la charge autour des églantiers; Et, par files, suivant le détour des sentiers, Joyeux, et nous faisant un salut de la tête, Des couples d'amoureux s'en allaient à la fête,

Ayant mis le matin leurs habits les plus beaux, Et faisant sur le sol résonner leurs sabots.

Désormais la campagne est plus accidentée.
Quand nous avons gravi quelque longue montée,
Il nous faut redescendre au fond des ravins creux.
Nous cotoyons parfois d'âpres coteaux ocreux,
D'où l'œil découvre au loin de vastes chenevières.
Nous saluons ici le manoir des Clavières;
Puis nous apercevons, monceau de granit brun,
Ce rival de Crozant qu'on nomme Châteaubrun.
La Creuse sous sa droite, un torrent sous sa grauche, Le vieux burg dresse au loin sa gigantesque ébauche Dont l'arête hardie, au fond du ciel serein, Découpe, rude et fier, son profil souverain. Jamais ruine n'eut un aspect plus austère. Pour la mieux contempler nous mettons pied à terre ; Et, comme j'en crayonne un informe croquis, Vous, poète inspiré, dans un sonnet exquis, Devant ce sombre acteur de plus d'un sombre drame, En admiration vous épanchez votre âme.

X

Enfin nous arrivons à ce recoin perdu
De l'Indre, qui nous montre, aspect inattendu, Surgissant tout à coup des parois d'une gorge, Un clocher qu'on voit poindre au milieu des champs d'orge.

C'est le petit village aimé de George Sand, Gargilesse, retraite où l'on aime, en passant, A s'arrêter devant ses anciennes reliques. Ici c'est l'abbaye aux murs mélancoliques ; Là c'est d'un vieux château le tympan blasonné Qu'appuie une tourelle au front découronné ; Puis enfin, c'est l'église, un bijou d'édifice Qui mêle dans son style, élégant artifice, Du gothique au roman tout le charmant détail. Nous en admirons tout, de l'abside au portail, Jusqu'à la crypte sombre où le vieux capitaine, Guillaume de Naillac, grand prieur d'Aquitaine,

Sous sa roide effigie aux longs traits imposants, De son dernier sommeil dort depuis sept cents ans. ${ }^{1}$

Nous promenons un peu notre allure bourgeoise Sur la place où bruit la foire villageoise. Près d'un ruisseau jaseur et presque inaperçu, On nous montre un logis rustique au toit moussu Qu'habita quelquefois la sublime et grande âme Que l'on appelle encore ici la bonne dame. Puis un bruit de sabots et de crins-crins joyeux Arrivant jusqu'à nous, voyageurs curieux, Nous entrâmes pour voir les danses berrichonnes. Hélas ! à notre aspect, fillettes folichonnes, Pour prouver que de nous elles faisaient grand cas, Se mirent à danser vaises et masurkas. Plus de folle bourrée au son des cornemuses...

Vous fuyez donc aussi le bal rustique, ô Muses !

XI

Enfin, sautant tous deux dans notre phaéton, Nous prenons en riant la route d'Argenton ; Argenton la puissante, Argenton la romaine, Où le touriste errant qui le soir s'y promène Se heurte à chaque pas sur des débris gisants, Vestiges d'un passé vieux de dix-huit cents ans !

La voici; regardez! De ses hauteurs altières, Pendant en noirs tronçons des murailles entières.
La roici, pittoresque, avec son château-fort Qui dans le vif du roc s'arc-boute avec effort; Arec sa basilique à la flèche hardie, Dont la rosace jette un reflet d'incendie ; Avec son esplanade et ses couronnements D'où l'œil découvre au loin tant de sites charmants; Avec son ancien cirque et sa tour distordue, Croulante, et qu'on dirait avoir été fendue Par quelque coup d'estoc monstrueux. La voici! Que d'assauts meurtriers se donnèrent ici!

Nous étions arrivés presque à la nuit tombante. La fête, comme ailleurs, éclatait, absorbante;

[^38]Des bazars regorgeant de monde et de clarté Dans l'ombre des maisons s'ouvraient de tout côté ; La soirée était belle et la foule rieuse; Du plaisir on sentait l'aile mystérieuse, Toujours jeune, flotter sur le vieux bourg romain; Bras dessus bras dessous, ou se donnant la main, Des bandes, de partout pour le bal accourues, En groupes tapageurs circulaient dans les rues, A tue-tête chantant quelques refrains joyeux.
Une larme monta de mon cœur à mes yeux, Lorsque, si loin, au fond de votre chère France, J'entendis l'air aimé d'une ancienne romance Que ma vieille nourrice, au vieux foyer, chez nous, Chantait en m'endormant, le soir, sur ses genoux.

Alors, ô mon ami, malgré nos sorts contraires, Je compris mieux encor combien nous étions frères!

XII

Je le compris surtout lorsque, sans hésiter, Le soir même, à la gare, il fallut se quitter. De France et d'avenir bien longtemps nous causâmes, Echangeant entre nous le meilleur de nos âmes.
Vous retourniez au toit de vos enfants chéris ;
Et moi, je reprenais la route de Paris,
Emportant dans mon cœur plus que je ne raconte.
Ces beaux jours sont bien loin, car la vie est bien prompte ; Mais j'y songe souvent, ô mon lointain ami ;
Et , quand autour de moi tout repose endormi, Et que sur mes deux mains mon front lassé se penche, Dans ces chers souvenirs mon cœur ému s'épanche.

XII-L'Espagne,

Par Louis Fréchette.

(Lu à Québec et approuvé à Ottawa le 22 mai 1884.)

A S. E. le comte de Premio-Real, consul général d'Espagne au Canada.

Pourquoi donc cette insulte inepte? Depuis quand, O fier peuple français, le sifflet provoquant, Les farouches clameurs et les lâches huées, Sous tes portes aux bruits de gloire habituées, Accueillent-ils ainsi l'étranger dans Paris? Depuis quand est-ce donc par des charivaris Que la France reçoit l'hôte qui la visite? Retournons-nous aux temps du Borusse et du Scythe? Ton beau titre de peuple éminemment courtois, Des sots, pour l'abdiquer, monteraient sur les toits ! O folie ! est-ce là de la vertu civique?
Tu renoncerais donc, sublime république, Si belle en tes succès, si noble en tes revers, Désormais à donner l'exemple à l'univers !

Ma France, c'est à toi qu'on a fait cet outrage.
L'Europe tout entière a connu ton courage ;
Mais qui te vit jamais arracher les fleurons Qui, sans injure aux tiens, brillent sur d'autres fronts?
Des gloires d'ici-bas ta part est assez large
Pour que celles d'autrui ne te sqient point à charge.
Ce prince, chef élu d'un grand peuple éclairé, Devait passer chez toi comme un être sacré.
C'est un monarque, soit; en est-il moins un homme? Et puis Néron lui-même, à l'étranger, c'est Rome ! Ce roi, du sol français n'eût-il pas fait le sien, Eût-il vingt fois porté l'uniforme prussien, Eût-il été cent fois l'hôte de l'Allemagne, Saluez ! à son front luit le blason d'Espagne !

Or c'est donc à l'Espagne, à ces vaillants drapeaux, Qu'on prodigue l'opprobre ainsi hors de propos! Maladroits! avez-vous, en huant ce carosse, Effacé Saint-Quentin, Pavie et Saragosse?
Vos pères, ces vainqueurs aux champs d'Almonacid,
S'émouvaient au récit des prouesses du Cid;
Et l'on vous honorait, antiques Hispanies,
Terre de sommets bleus et de plaines jaunies, De donjons menaçants, de seuils hospitaliers, Où sonna l'éperon des derniers chevaliers !

O Murcie, Aragon, Castille, Andalousie, Pays bénis du ciel, et que la Poésie, Eprise, un soir d'été, de vos charmants séjours, D'un reflet de son aile a dorés pour toujours, C'est à vous que l'on jette un cri blasphématoire ! Mais ces hommes n'ont donc jamais lu votre histoire ! Ils n'ont donc jamais su - l'on comprend leur dédain, Que l'Espagnol, poète, artiste et paladin, Fut, peuple sans rival que la gloire enveloppe, Durant plus de mille ans, le premier de l'Europe ! Que déjà, du temps même où les forums romains Au mot de liberté, joyeux, battaient des mains, L'Espagne au fond des bois tenaient des assemblées ! Que, près d'un siècle avant que les castes troublées Discutassent à Londre avec acharnement, Les cortès, à Léon, siégeaient en parlement! Que huit cents ans bientôt auront lui sur le monde, Depuis que le Progrès, qui dénoue et féconde, Sur le sol espagnol brisa le premier frein, Et proclama les droits du peuple souverain ! Que ce peuple fut grand par les arts et la guerre ! Qu'il sut braver jadis Charlemagne, et naguère Sut défier encor le fameux conquérant Que l'Histoire a nommé Napoléon le Grand! Que Viriathe, à lui seul, rebelle à tout servage, Acculé comme un loup dans la sierra sauvage, Dix ans tint en échec Rome et ses généraux ! Que Pélage, à son tour, formidable héros, Ecrivit de son glaive une légende telle, Qu'elle a suffi pour rendre une époque immortelle! Que des grands noms l'Espagne est l'un des plus anciens ; Que Cadix ${ }^{\text {fint bati par les Phéniciens, }}$

Sagonte par les Grecs, par les Gaulois Numance ; Que Rome de Madrid a jeté la semence; Que Carthagène avait Asdrubal pour parrain, Et Tolède pour père un sauvage du Rhin!

Et puis, quelle autre race ou lettrée ou guerrière A su porter plus loin l'eclat de sa carrière? Quelle autre nation, quel penple jeme ou vienx A bercé dans ses bras plus d'enfants glorieux? L'Espague eut Cespédès, cet autre Michel-Ange, Cervantès le profond et Mendosa l'étrange, Calderon, de Vega, Santos, Montemayor, Velasquez, Juan Calvo, Murillo, Salvador, Zurbaran, Hermandez, Medina, Mereadante, Tous les talents depuis Phidias jusqu'à Dante, Tous les héros connus d'Achille à Spartarus: Elle eut Léonidas, et Coclès, et Gracchus... Mais pourquoi tant fouiller dans la cendre historique?
L'Espagne ent - chapeanx bas ! - Lépante et l'Anérique !
Lépante! - c'est le duel de deux mondes rivaux ;
La lutte du passé contre les temps noureaux ;
C'est de l'humanité l'une des grandes crises ;
C'est l'Occident chrétien avec l'Asie aux prises ;
Ce n'est plus un combat entre deux nations, C'est l'âpre choc de deux civilisations !
Or l'Espagne, enrayant l'univers sur sa pente,
Soldat de l'avenir fut vainqueur à Lépante!
L'Amérique ! - Salnt, carrefour surhumain Où de l'humanité bifurque le chemin!
Comment, avec les mots d'une langre inféconde,
Te nommer, ô sublime éclosion d'un monde?
Effacez l'Amérique, où, sentant son déclin,
L'Europe qui fermente a versé son trop plein,
Et, sous son propre poids dont le fardean l'ecrase,
L'univers ébranlé chancelle sur sa base.
L'Amérique, e'est la soupape des Titans,
Le balancier qui vibre entre les mains du Temps:
Double objet qui, donnant au vieux monde un sol libre, Prévint l'explosion et sauva l'équilibre!

Or, à toi, noble Espagne! à toi, Ferdinand-deux, La grande part d'houneur daus ce pas hasardeux!

Car, quel que soit le point qu'indiquât sa boussole, Si Colomb fut génois, sa barque est espagnole!

Oui, l'Histoire a parlé ; tout ce qui peut tenir D'aurore, de progrès, d'espoir et d'avenir
Dans deux noms d'ici-bas - ô vérité frappante!Tient dans ces deux grands mots: Amérique et Lépante! Et notre âge les doit, Espagne, à tes héros !

Enfin, qui n'aimerait tes vieux romanceros, Tes ballades d'amour, tes légendes tragiques, Les récits merveilleux de tes conteurs magiques, Belle Espagne? Souvent mon rêve tend les bras Vers tes escurials et vers tes alhambras, Où, la nuit, vont errer sous les verts sycomores Tes monarques chrétiens arec tes vieux rois mores; Il aime les grands airs de ton noble hidalgo, Ton boléro joyeux, ton souple et fier tango, Tes gais toréadors, tes brunes gitanelles Cachant sous l'éventail leurs ardentes prunelles; Il s'arrête parfois aux balcons du Prado, Lorsque la senora soulève son rideau Pour écouter chanter les douces sérénades; Il se penche souvent au bord des esplanades, A l'heure où le son vif et clair des tambourins Flotte dans l'air ému de tes longs soirs sereins. Et puis, jamais lassé d'aller boire à tes sources, Mon rêve, revenu de ces lointaines courses, - De parfums, d'harmonie et d'amour enivré, Garde encore un reflet de ton beau ciel doré.

Oui, j'aime ce pays de la blonde romance, Où Corneille a puisé, par où Hugo commence ! Sol de l'antique honneur à la valeur uni, Qui nous prête le Cid et nous donne Hernani! Sol prodigue et fécond, rien ne manque à ta gloire ; Et quiconque t'insulte, insulte aussi l'Histoire!

Oh ! non, vaillante Espagne, en ces hideux excès, Je ne reconnais point le noble sang français.
Ce n'est pas là non plus la république fière
Qui disait à chacun des peuples: Sois mon frère!
Au-dessus de ce tas d'ignorants dévoyés,
D'anarchistes jaloux et peut-être... payés,
Dans d'autres régions l'on voit planer la France.
Celle-là sut toujours prêcher la tolérance ;
Et - même auprès d'un roi, fût-il monstre et payen, -
Dans ses devoirs envers l'hôte et le citoyen, Si la France mentait à son rôle historique, Nous la répudierions, nous, Français d'Amérique!

XIII - Trois Episodes de la Conquete,

Par Louis Fréchette.

(Lus le 21 mai 1884.)

I

Fors l'honneur!

C'est par un soir humide et triste de l'automne.
Dans les plis du brouillard, la plainte monotone Du Saint-Laurent se mêle aux murmures confus
Des chênes et des pins dont les dômes touffus
Couronnent les hauteurs de l'île Sainte-Hélène.
Au loin tout est lugubre; on sent comme une haleine
De mort flotter partout dans l'air froid de la nuit.
Au zénith nuageux pas un astre ne luit.
Tout devrait reposer ; pourtant, sur l'ile sombre,
A certaines lueurs qui se meuvent dans l'ombre,
On croirait entrevoir, vaguement dessinés,

- Groupes mystérieux partout disséminés,

Et se serrant la main avec des airs funèbres, -
Comme des spectres noirs rôder dans les ténèbres.
Tout à coup, sur le fond estompé des massifs, Et teignant d'or le fût des vieux ormes pensifs, Dans les pétillements attisés par la brise, Et les stridents éclats du bois sec qui se brise, Eclatent les rougeurs d'un immense brasier. Prenant pour piédestal l'affût d'un obusier, Un homme, au même instant, domine la clairière.
A son aspect, un bruit de fanfare guerrière
Retentit; du tambour les lointains roulements
Se confondent avec les brefs commandements
Qui, prompts et saccadés, se croisent dans l'espace.
Place! c'est la rumeur d'un bataillon qui passe.
Un autre bataillon le suit, et tour à tour On voit les régiments former leurs rangs autour

Du rougeoyant foyer dont les lueurs troublantes
Eclairent vaguement ces masses ambulantes, A chaque baionnette allumant un éclair.
Alors, couvrant le bruit, un timbre mâle et clair, Où vibre je ne sais quel tremblement farouche, Résonne, et, répétés tout bas de bouche en bouche, Parmi les cliquetis, les clameurs et le vent, Laisse tomber ces mots :

- Les drapeaux en avant!

Arrêtons-nous devant cette page d'histoire.

Nos conquérants étaient maîtres du territoire. Cerné dans Montréal, le marquis de Vaudreuil, Après plus de sept ans de luttes et de deuil, Après plus de sept ans de gloire et de souffrance, Ne voyant arriver aucun secours de France, Dans sa détresse amère, avait capitulé.
L'orgueilleux ennemi même avait stipulé,

- La rougeur à ma joue, hélas ! en monte encore, -

Que le lendemain même, au lever de l'aurore, Nos défenseurs, parqués comme de vils troupeaux, Au général anglais remettraient leurs drapeaux.
Leurs drapeaux !...
Ces drapeaux dont le pli fier et libre
Durant un siècle avait soutenu l'équilibre
Contre le monde entier, sur tout un continent!
Ces drapeaux dont le vol encor tout frisonnant
Du choc prodigieux des grands tournois épiques, Cent ans avait jeté, des pôles aux tropiques, Son ombre glorieuse au front des bataillons ! Ces drapeaux dont chacun des sublimes haillons, Noir de poudre, rougi de sang, couvert de gloire, Cachait dans ses lambeaux quelque nom de victoire!
Ces étendards poudreux qui naguère, là-bas,
Sous les murs de Québec, avaient de cent combats
Couronné le dernier d'un triomphe suprême!
Ces insignes sacrés, il fallait, le soir même,
Leur faire pour toujours d'humiliants adieux !

> Indigné, révolté par ce pacte odieux,
> Lévis, ce dernier preux de la grande épopée,
> Le regard menaçant, la main sur son épée,

S'était levé soudain, et sans long argument, Contre l'insulte avait protesté fièrement.
Vingt mille Anglais sont lâ qui campent dans la plaine !
Lai n'a plus qu'un débris d'armée à Sainte-Hélène :
N'importe ! les soldats français ont su jadis
Plus d'une fois combattre et vaincre un contre dix!
La France, indifférente, au sort nous abandonne:
N'importe encore ! on meurt quand le devoir l'ordonne!
Il veut, sans compromis, résister jusqu'au bout.
Il se retirera dans l'île, et là, debout
A son poste, en héros luttera sans relâche.

- Dans mes rangs, disait-il, il n'est pas un seul lâche!

Ne prêtez pas la main à ce honteux marché ;
Je puis, huit jours au moins, dans mon camp retranché, Avec mes bataillons tenir tête à l'orage ;
Et si la France encor, trompant notre courage,
Refuse d'ici là le secours imploré,
Dans un combat fatal, sanglant, désespéré,
Tragique dénoûment d'une antique querelle,
Nous saurons lui montrer comment on meurt pour elle !

Vaudreuil signa pourtant. Refuser d'obéir, C'était plus que braver la mort, c'était trahir.
-Trahir! avait pensé le guerrier sans reproche...
Et c'est lui qui, dans l'ombre, avant que l'aube approche,
A ses soldats émus, dans la nuit se mouvant,
Avait jeté ce cri : - Les drapeaux en avant!
Allait-il les livrer? Allait-il, à la face
De tous ces vétérans - honte que rien n'efface -
Souiller son écusson d'un opprobre éternel?
On attendait navré le moment solennel.

Lévis s'avance alors. Dans son œil énergique,
Où le feu du brasier met un reflet tragique, Malgré son calme, on sent trembler un pleur brûlant.
Vers les drapeaux en deuil l'homme marche à pas lent, Et, pendant que la main de l'histoire burine, Lui, les deux bras croisés sur sa vaste poitrine, Devant ces fiers lambeaux où tant de gloire a lui, Longtemps et fixement regarde devant lui.

Dans le fond de son cœeur il évoquait sans doute Tous les morts généreux oubliés sur la route, Où, tout illuminés de reflets éclatants, Ces guidons glorieux marchaient depuis cent ans. Enfin, comme s'il eût entendu leur réponse, Pendant que son genou dans le gazon s'enfonce, Refoulant ses sanglots, dévorant son affront, Sur les fleurs de lys d'or il incline son front, Et, dans l'émotion d'une étreinte dernière, De longs baisers d'adieu couvre chaque bannière...

- Et maintenant, dit-il, mes enfants, brûlez-les, Avant que d'autres mains les livrent aux Anglais!

Alors, spectacle étrange et sublime, la foule, Ondulant tout à coup comme une vaste houle, S'agenouille en silence; et, solennellement, Dans le búcher sacré qui sur le firmament, Arec des sifflements rauques comme des râles, Détache en tourbillons ses sanglantes spirales, Parmi les flamboiements d'étincelles, parmi Un flot de cendre en feu par la braise vomi, Sous les yeux du héros grave comme un apôtre, Chaque drapeau français tomba l'un après l'autre !

Quelques crépitements de plus, et ce fut tout.

Alors, de Montréal, de Longueuil, de partout, Les postes ennemis crurent, dans la rafale, Entendre une clameur immense et triomphale ; C'étaient les fiers vaincus qui, tout espoir détruit, Criaient : Vive la Frunce! aux échos de la nuit.

O Lévis ! ô soldats de cette sombre guerre!
Si vous avez pu voir les hontes de naguère, Que n'êtes-vous soudain sortis de vos tombeaux, Et, vengeurs, secouant les augustes lambeaux De vos drapeaux en feu, dans votre sainte haine, Venus en cravacher la face Bazaine!

II

LES DERNIÈRES CARTOUCHES

Abstract

A l'ouest de la plaine où grandit Montréal, Dans un site charmant, poétique, idéal, Que longe le chemin de la Côte-des-Neiges Où, du matin au soir, cheminent les cortèges Qui vont au rendez-vous de ceux qui ne sont plus, Dans la déclivité d'un immense talus, A l'ombre des bouleaux et des bosquets d'érables, Se dressent les pans noirs, décrépits, misérables, D'une ancienne masure effondrée et sans toit. C'est là qu'un jour le morne archange dont le doigt Inflige la défaite ou fixe la victoire, S'arrêta pour dicter une page à l'Histoire!

A l'époque sanglante où nos pères, trahis, Défendaient corps à corps leurs foyers envahis, Et, groupe de héros débordés par le nombre, Touchaient au dénoûment fatal du drame sombre, Dans ce logis, alors presque un petit manoir Dont les tons vigoureux tranchaient sur le fond noir De la forêt encor vierge de la cognée, Vivaient un vieux traiteur à mine renfrognée Nommé Luc Sauriol, sa femme et son fils Jean.

Celui-ci, gars robuste à l'œil intelligent, Avait pour son pays déjà monté la garde ; Des soldats de Montcalm il portait la cocarde ; C'était un fier tireur, et l'Anglais n'avait point Plus terrible ennemi la carabine au poing.

Les cohortes d'Amherst avaient conquis la plaine ; Et nos derniers vengeurs, campés dans Sainte-Hélène, Attendaient l'arme au bras le signal de mourir, Lorsqu'un jour Sauriol vit son fils accourir, Et, grave, s'arrêter sur le seuil de la porte :

- Bonjour, père, dit-il, c'est moi! je vous apporte Un message pressant au nom du gouverneur.
Ce soir, à la nuit brune, il vous fera l'honneur

De s'arrêter ici pour affaire importante.
On dit, ajouta-t-il d'une voix hésitante, Qu'il s'agit - le soldat tâtait ses pistolets -
D'une entrevue avec le général anglais

Le soir même, en effet, - c'était le huit septembre, -
Le marquis de Vaudreuil, assis dans une chambre
Du logis isolé dont les derniers lambris
Jonchent en ce moment le sol de leurs débris,
Le désespoir au cœur et l'âme à la torture, Capitulait, livrant avec sa signature, Entre les mains d'Amherst surpris de son succès, Le dernier boulevard du Canada français! On lui refusait même - affront d'âme vulgaire Pour nos soldats rainqueurs les honneurs de la guerre.

Le vieux Luc Sauriol, stupéfait, confondu, En se rongeant les poings avait tout entendu. Lorsque tomba la plume, il se leva farouche, Prit son fils à l'écart, et, l'index sur la bouche, Le regarda longtemps un éclair dans les yeux.

- J'ai compris, lui dit Jean, serrant la main du vieux.

Puis, prenant son fusil de chasse, d'un air sombre, Il entr'ouvrit la porte, et disparut dans l'ombre.

Le père ni le fils n avaient capitulé.

Tout près, un chemin creux serpentait, accole Au pied d'un mamelon où des quartiers de roche Avaient été rangés pour défendre l'approche Des postes avancés, par cette route-là. Les officiers anglais devaient passer par là, Au milieu de la nuit, pour rejoindre leurs lignes.

Pour la première fois, infidèle aux consignes, Jean Sauriol y court, prend la chaîne d'un puits, En barre fortement l'étroit passage, et puis Monte sur les hauteurs se mettre en embuscade. Quelques instants après, la noire cavalcade, Avec un long éclat de rire goguenard, S'engouffrait au grand trot au fond du traquenard.

Ce fut terrible.
Au choc, la troupe tout entière

- Chevaux et cavaliers - roula dans la poussière, Pêle-mêle, criant, hurlant, se débattant ; Pendant que Sauriol lançait au même instant, Par vingtaine, du haut de la crête saillante, De lourds éclats de roc sur la masse grouillante. Un double éclair alors perce l'obscurité ; C'est encor Sauriol qui, dans l'ombre posté, Tire sur les Anglais et les crible à outrance. Enfin, poussant trois fois le cri : - Vive la France! Le soldat, devenu brigand pour son pays, D'un pas ferme gagna l'épaisseur des taillis.

Ce fut durant trois mois une chasse enragée.
Lorsque dans le sommeil la ville était plongée, Un éclair tout à coup s'allumait quelque part, Et quelque sentinelle, aux créneaux d'un rempart, Victime sans merci d'une infernale adresse, Tombait, le front percé d'une balle traîtresse. Parfois, si Montréal respirait, —vis-à-vis, Dans l'Ile où, maintenant, les soldats de Lévis, Voyaient flotter dans l'air l'étendard britannique, Le poste anglais, saisi d'une terreur panique, Entendait résonner l'invisible mousquet, Et trouvait l'un des siens râlant sur le parquet. Si quelque cavalier, hardi batteur d'estrades, Osait sortir, le soir tombé, ses camarades Voyaient revenir seul le cheval effaré.
Presque toutes les nuits, le guet exaspéré Trébuchait tout à coup sur un masse informe, Où l'on reconnaissait le fatal uniforme.

Amherst, la rage au cceur, fit battre tons les bois : Sur dix soldats, un jour, il n'en revint que trois ! Enfin, l'on n'osa plus se hasarder qu'en plaine...
Un yaincu tenait seul une armée en haleine.

> Mais l'âpre hiver allait venir : les massifs nus N'offraient plus désormais, sous leurs dômes chenus,

Au pauvre guérillas de retraite bien sure; Et puis l'homme souffrait au bras d'une blessure Qu'une balle avait faite un soir en ricochant. Au flanc du Mont-Royal, du côté du couchant, Dans le creux d'un ravin où chantait une source, Il avait découvert la tanière d'une ourse, Dont un épais fourré dissimulait l'abord. Jean Sauriol avait tué l'ourse d'abord, - Pour lui cela n'était rien de bien difficile, -

Et puis il avait pris sa place au domicile.
Son père venait là lui porter à manger.
Que voulez-vous, à tout on ne peut pas songer ; Lui ne s'était muni que d'un baril de poudre Avec du plomb ; assez, disait-il, pour découdre Dans les règles de l'art un régiment d'Anglais.

Ces derniers avaient eu beau tendre leurs filets, Sauriol leur glissait dans les doigts comme une ombre ; Dit, lorsque les chasseurs qui le traquaient en nombre S"applaudissaient déjà du succès obtenu, Il s'enfonçait sous terre, et . . . ni vu ni connu!

Cela ne pouvait pas toujours durer. La neige, Le cernant dans son antre ainsi que dans un piège, De tout secours humain l'isola tout à coup. Lee malheureux ne s'en désola pas beaucoup : Il avait fait depuis longtemps son sacrifice. Pourtant, si le regard, à travers l'orifice De la grotte, dans l'ombre eût par hasard plongé, Il eût plus d'une fois vu le pauvre assiégé, Transi, mourant de faim, pleurer dans les ténèbres... Hélas! ce n'étaient pas pour lui, ces pleurs funèbres ; On va le voir.

Un jour - ses pas l'avaient trahi Sauriol vit soudain ton refuge envahi : On le tenait.

Chez lui, pas un muscle ne tremble :

- Messieurs, dit-il, avant que nous partions ensemble, Ecoutez bien ces mots que je dis sans remord:
Je suis un meurtrier, je me condamne à mort !

Mais vous, les agresseurs ! vous, nation vorace! Oui, vous, les éternels ennemis de ma race! Bourreaux de mon pays, vous mourrez avec moi!

Il dit, et, froidement, sans hâte, sans émoi, Tire son pistolet dans le baril de poudre...

Tout disparut. Ce fut comme un éclat de foudre.
La détonation ébranla les rochers ;
Les lourds quartiers de rocs, de leur base arrachés,

- Dans un immense cri d'indicible épouvante, -

Sautèrent dans l'espace, avec la chair vivante
De vingt hommes hachés, brisés, agonisants ...
*
Le lendemain matin, parmi les corps gisants, Sur les débris épars d'un désastre qui navre, On trouvait un vieillard penché sur un cadavre Qu'il semblait sur son ceur presser avec transport

On s'approcha lui : le pauvre homme était mort !

III

Le drapeau fantôme

Nous sommes loin, bien loin.
Ces bruits sourds et confus
Que le vent nous apporte à travers les grands fûts Qui percent les fourrés ou bordent la prairie, Ce sont les grondements du saut Sainte-Marie.
Là, dans les lointains bleus qui bornent l'horizon,。 Où paissaient autrefois l'élan et le bison, Par delà la forêt et la chute qui gronde, Se balancent les flots du plus grand lac du monde.

A droite, c'est la Pointe-aux-Pins, endroit fameux, Où, sur le seuil sacré de leurs wigwams fumeux, Les guerriers tatoués des peuplades indiennes Qui hantaient autrefois les forêts canadiennes Echangèrent souvent le calumet de paix.
Du côté sữ, masqués par des taillis épais,

```
Sec. I, 1884-17.
```

Le voyageur découvre, à deux pas du rivage, Les restes d'un vieux fort nommé le fort Sauvage.

Foulons avec respect ces glorieux débris !

Louis-Quinze, en signant le traité de Paris, - Honte qu'à tout jamais répudiera l'histoire, A vait livré ce vaste et fécond territoire Dépassant les trois quarts de l'Europe en ampleur, Comme un lopin de terre infime et sans valeur. Nous étions devenus anglais comme en un rêve!

Plus d'un siecle et demi d'héroisme sans trêve, De déroúment sans fin, de travail incessant! Tout un passé de gloire écrit avec du sang! Un peuple, un continent, l'avenir, presque un monde, Prodigués au profit d'une débauche immonde !...

Le vieux drapeau français dut refermer ses plis, Et, fier témoin de tant de hauts faits accomplis, Faire place partout aux couleurs d'Angleterre. Sur un seul point pourtant il se fit réfractaire; Ce fut au fort Sauvage. Un brave y commandait, Nommé Cadot. Malheur à qui se hasardait A provoquer d'un mot cet homme à forte trempe! Il cloua simplement le drapeau sur sa hampe.

Un envoyé du roi d'Angleterre arriva:

- Passe au large! dit-il, j'en ai vu d'autres, va!
- Mais ce fort maintenant est un fort britannique.
- Vous dites? fait Cadot, d'une voix ironique;

Eh bien, venez-y voir ! j'ai trois petits canons Qui seront enchantés de vous dire leurs noms.
-Nous vous sommons, Monsieur...
-Et moi, je vous invite
A rebrousser chemin tous ensemble, et plus vite !
Au large, entendez-vous? ou sinon mes boulets
Vous auront bientôt fait savoir s'ils sont anglais.

- Commandant, lui dit-on, vous ettes un rebelle ; Prenez garde!
- Allons donc, vous me la baillez belle, Fit en riant Cadot ; depuis quand votre roi De commander ici s'arroge-t-il le droit?
-Depuis qu'un souverain qu'on nomme roi de France
Nons a cédé son titre à la prépondérance.
Allons, vite, amenez votre drapeau!
- Oui-da!

Le roi de France aurait vendu le Canada!
Eh bien, l'on ne vend pas les Français qu'il renferme.
Si vous croyez pouvoir nous prendre, allez-y ferme!
Car tant que je serai vivant, et le plus fort, Mon drapeau flottera sur le donjon du fort. Allez !...

Durant six mois, Cadot, sombre et farouche, Fit ses provisions de combat et de bouche, Arma du mieux qu'il put sa faible garnison ; Et puis il attendit, calme, et sur l'horizon Sans relâche tenant fixé son regard d'aigle.

Il lui fallut enfin subir un siège en règle.

Sitôt que le printemps facilita l'accès
Des parages lointains où le vieux fort français Ouvrait toujours au vent son oriflamme blanche, Cent grenadiers d'Ecosse, âpres à la revanche, Débarquèrent un jour dans les remous du saut.

Le lendemain matin, on marchait à l'assaut.
Dix hommes seulement défendaient la redoute.
La victoire fut rude, et coûta cher sans doute; Mais Cadot, héroïque en sa rébellion,
Du haut de ses remparts lutta comme un lion; Et les troupes du roi reculèrent hachées.

On investit la place; on creusa des tranchées; Et ces fiers conquérants résolurent enfin De vaincre à temps perdu l'assiégé par la faim.

Mais les précautions de Cadot sont bien prises.
Toujours sur le qui-vive, à l'affût des surprises, Près du cercueil des morrts, au chevet des mourants,

- Car les mousquets anglais ont éclairci ses rangs, -

L'étrange révolté veille et se multiplie,
Tandis que le drapeau, sur sa hampe qui plie, En face des Anglais enfermés dans leur camp, Au vent flotte toujours intact et provoquant.

A de forts ennemis croyant avoir affaire, Les assiégeants honteux et ne sachant que faire N'osaient plus hasarder un combat désastreux. Maudissant le guignon, se querellant entr'eux, Ils passèrent l'été, sans que ni violence
Ni ruse, un seul instant, trompât la vigilance De Cadot, que jamais rien ne put assoupir.

Or, l'automne arrivée, il fallait déguerpir.
Un beau matin, plus rien! Sans tambour ni trompette, Les Anglais avaient pris la poudre d'escampette.
Battus, manquant de tout, et craignant pour leur peau, Ils avaient laissé là Cadot et son drapeau, Et regagnaient Quebec par la route du fleuve.

C'étaient huit mois au moins de gagnés.
Mais l'épreuve
Avait été terrible et fatale au vainqueur.
sur ses neuf compagnons, tous des hommes de cœur, Cadot ne comptait plus que deux soldats valides ; Mais c'étaient, comme lui, deux paroissiens solides, Qui n'avaient pas souvent, comme on dit, froid aux yeux. Devant le vieux drapeau dont le pli glorieux, Sur le fond vert des bois, comme un vol de mouette, Faisait toujours trembler sa blanche silhouette, Dans un serment farouche, étrange, solennel, Ils jurèrent tous trois leur salut éternel Que, sans faillir, et tant qu'une dernière goutte De sang leur resterait an cœur, coûte que coûte, Et dût le monde entier fondre sur le vieux fort, Tous trois, se roidissant dans un suprême effort, Même quand aurait fui tout rayon d'espérance, Couvriraient de leur corps le drapeau de la France;

Et que - les autres morts - le dernier, resté seul, De son dernier lambeau se ferait un linceul!
-Et maintenant, mes vieux, dit Cadot: Notre Père !

Et ce Quelqu'un d'en haut en qui toute âme espère Vit ces désespérés, au regard sombre et doux, Auprès du vieux drapeau, qui priaient à genoux !

Les débris, cependant, de la petite armée, Par dix hommes ainsi vaincue-et décimée, Transis de froid, brisés de fatigue et de faim, Aux quartiers généraux étaient rentrés enfin, Dans un état d'esprit difficile à décrire.
A leur récit piteux, Murray se mit à rire :

- Ma foi, tant pis, dit-il ; nous avons devant nous

Plus de temps qu'il ne faut pour réduire ces fous.
Je ne vois pas qu'il soit besoin qu'on se morfonde ;
A déloger ces gueux à l'autre bout du monde ;
Pour le moment, j'ai bien d'autres chiens à fouetter!

En somme, on décida de ne point se hâter.
Les semaines, les mois et'les saisons passèrent;
Les souvenirs sanglants par degrés s'effacèrent ;
Puis Washington, levant son vaillant étendard,
Acheva d'attirer les esprits autre part.
Engagés désormais dans une immense guerre,
Nos orgueilleux vainqueurs ne se souvinrent guère,
Dans les anxiétés poignantes des combats,
Que le drapeau français flottait toujours là-bas.
Cadot fut oublié.

A leur serment fidèles,
Tous les ans, quand venait le mois des hirondelles, Les trois héros songeaient à mourir bravement.
Ils vieillirent. L'un d'eux, on ne sait trop comment, Périt dans la forêt. Sur sa couche brûlante, Un autre succomba, rongé de fièvre lente.
Et Cadot resta seul, sans espoir, sans appui, Avec l'immensité déserte autour de lui!

Vingt ans sont écoulés; Cadot n'est plus qu'une ombre. Dans les ennuis sans fin, dans les transes sans nombre, Mais sans que son courage ait un instant failli, Le pauvre solitaire avant l'âge a vieilli. Il est tout blanc ; sa main tremble sur la détente De son mousquet rouillé dont la voix éclatante N'éveille plus l'écho des grands bois giboyeux. Seul avec un vieux chien sauvage au poil soyeux, Fidèle compagnon de sa vie isolée, Il montait quelquefois sur la tour ébranlée Où flottaient les haillons troués du drapeau blanc ; Et là, pensif, courbé sur son bâton tremblant, Comme s'il eût encor rêvé de délivrance, Il regardait longtemps du côté de la France ; Et puis s'agenouillait, pendant que de ses yeux De longs pleurs de vieillard coulaient silencieux.

Il vivait de gibier, de poisson, de racines. Quelquefois les Indiens des bourgades voisines Venaient le visiter, et, dans son abandon, D'un peu de pémican fumé lui faisaient don.

Un jour, - c'était par un de ces hivers si rudes Qui désolent souvent ces froides latitudes, Trois Sauteux, qui renaient de chasser l'orignal, Ne virent pas - étrange et funèbre signal Le vieux drapeau flotter à son mât qui balance. Ils entrèrent au fort. Un lugubre silence Régnait partout. Soudain, dans un obscur réduit Où le pressentiment d'un malheur les conduit, Les trois chasseurs se voient en face d'un cadavre ; C'était Cadot rigide, et - spectacle qui nạvre N'ayant que son drapeau pour dernier vêtement.

Le héros était mort, drapé dans son serment.

Le fort n'est plus debout. Pourtant, sur ses ruines, Le yoyageur prétend qu'à travers les bruines Et les brouillards d'hiver, on voit encor souvent
Le vieux drapeau français qui flotte dans le vent.

XIV-Les travers du siècle,

Par F.-G. Marchand.

(Lu le 21 mai, 1884)

Notre époque est féconde en prodiges sublimes ;
L'homme dans son élan atteint toutes les cimes ;
La matière prend vie au charme de sa voix, Et la foudre domptée obéit à ses lois.

Ces merveilleux produits du moderne génie Ont des maîtres de l'art inspiré l'harmonie, Et ma muse timide ose à peine ell ces vers D'un siècle tant vanté dénoncer les travers.

Pourtant il le faut bien ; j'ai promis, c'est tout dire ;
La parole, en honneur, jamais ne se retire.
Donc j'enfourche Pégase, et sans plus de façons
J'aborde carrément mon sujet... Commençons.
Le savoir, de nos jours, fait des progrès rapides,
J'en conviens. Mais, grand Dieu! combien de cerveaux vides,
Près du savant modeste et consciencieux,
Prenant du sot orgueil les airs prétentieux, Préfèrent, dans l'excès d'une ignorance altière, Aux trésors de l'esprit ceux du millionnaire! Combien d'adorateurs de l'antique veau d'or, Qui, d'un culte odieux entourant leur trésor, Consacrent sans rougir leur âme à cette idole ! Qui, du lucre éprouvant l'affection frivole, Estiment le prochain au poids de son bilan, Font de leurs gains suspects l'étalage insolent, Et, de la bienfaisance ignorant le mérite, N'offrent à l'indigent qu'un dédain qui l'irrite! Combien de beaux poseurs, d'une moustache ornés, Qui, de cœur et d'esprit fatalement bornés, Donnent plus d'importance au nœud de leur cravate Qu'aux travaux d'Eddison, Gutenberg ou Socrate!
De futiles projets toujours préoccupés,

Parés de pied en cap, et surtout bien huppés, On les voit promener leur vaniteuse audace, Lorgnant chaque passant et faisant la grimace A l'aspect moins brillant des apôtres de l'art, Pour qui les qualités spéciales du fard, Les primeurs de la mode et les vertus magiques De la pommade ambrée ou des grands cosmétiques Sont restés à l'état de sujets négligés !... Que d'anges féminins aux attraits... mitigés, Oubliant que la grâce est vertu féminine, Et glissant sur la pente où leur caprice incline, Pour se donner un ton d'originalité, Remplacent la candeur par l'excentricité, Et font du savoir-vivre une bizarrerie !... Contemplant cet abus, le spectateur s'écrie :

- Depuis quand le gendarme affublé d'un jupon A-t-il droit de cité?

L'espiègle écho répond:

- C'hut! critique arriéré, c'est un progrès moderne;

L'élégance aujourd'hui s'inspire à la caserne.
Grace au p schutt, le faux col, les bottes à talons,
Le casque, le toupet, tout est de mise...
Allons !
Cet écho malappris, dans sa verve indiscrète, M'a fait dire...

Pardon si je bats en retraite!
Oui, tout ce qui précède est un lapsus linguc. Mon insolent souffleur n'avait pas distingué Entre l'extravagance et la juste limite, Entre la femme vraie et celle qui l'imite, Sans pouvoir toutefois en rien lui ressembler. Celle-ci, par ses airs frondeurs, nous fait trembler ; Mais la femme de cœur jamais ne se déclasse ; L'une subit la mode et l'autre la dépasse. L'épouse qu'au foyer nous retrouvons le soir, La fillette qui vient à nos genoux s'asseoir, Et distrait nos soucis par son gai verbiage, Anges du coin du feu, doux agents du ménage, Ces êtres bien aimés, pour charmer nos logis, N'ont pas, dans leurs apprêts, les flamboyants gâchis D'ornements que distingue en tout le disparate, Où le bon goût se perd et le vulgaire éclate; Mais, choisissant d'instinct les pudiques couleurs, Simples dans leur tenue, ornant surtout leurs cœurs,

Elles font du chez-soi le chaste tabernacle
Où le bonheur s'instale et régne sans obstacle.
Mais la médaille a bien son revers...
Le voici :
Parfois l'astre enchanteur de l'hymen s'obscurcit.
Le v'lan, ce messager insolent de la mode, Fait du nœud conjugal une entrave incommode, Des joyeux entretiens la formule se perd, Et le foyer, jadis heureux, devient désert. L'époux chargé d'ennuis n'y trouve rien de mise ; Pour lui, pauvre blasé dont l'avenir se brise, Le toit commun n'est pas ce refuge béni Où l'amour tendre et pur, an devoir réuni, Ennoblissait les ccurs au lieu de les séduire... Et l'épouse, voyant son bonheur se réduire Au souvenir lointain des beaux jours envolés, Croit, par l'enivrement des plaisirs affolés, Remplacer les douceurs dont son ccur sent le vide. S'acheminant ainsi sur la pente rapide Où la foule les pousse et descend avec eux, Deux êtres dont le ciel avait béni les vcux, Pour des futilités brisant leur vie intime, Par des sentiers fleuris arrivent à l'abîme. Mais passons...

Les travers dont le monde s'éprend
Ont la pédanterie en titre, au premier rang, Et, sur tous les pédants, prônant leur importance,
Le faux savant toujours obtient la préséance.
Aujourd'hui cette espèce a son chic spécial :
Elle pose au progrès, et, toujours à cheval
Sur quelque théorie où l'absurde domine,
On la voit imitant le savant qui rumine, Ou proclamant sur place, à tous les vents du ciel, De ses inventions le trait essentiel.
Les gens pour ennuyer ont chacun leur manière ; Celui-ci vous retient par une boutonnière, Et ne daigne vous rendre enfin la liberté, Qu'après avoir dix fois longuement discerté Sur mainte abstraction dont son esprit se grise. Mais le plus ennuyeux des fâcheux, quoiqu'on dise, Est cet énergumène en paroles fécond, Qui, tout scandalisé du siècle, se morfond A prouver des humains la coupable ignorance, Et qui, poussant sa fougue insensée à l'outrance,

Pour réforme a rêvé l'Etat bouleversé,

 Et, pour dernier succès, le monde renversé. Ce type, incessamment rétif à la manœuvre, N'en réclame pas moins le progrès pour son œuvre. Et cet autre pour qui toute innovation Est un produit sentant la Révolution! Qui, dans le cercle étroit des rigueurs d'un autre âge, Se concentre, et ressemble au hibou dans sa cage; Préfère aux feux du jour les ombres de la nuit, Et, par hostilité contre tout ce qui luit, Fait mine de douter, dans.sa morgue indicible, Qu'en créant l'univers Dieu le fit perfectible! Ces exemples, choisis entre mille, au hasard, Font voir que, tout compté, notre époque a sa part De faiblesse inhérente à l'humaine nature. Mais, par un autre excès, n'allons pas en conclure Que l'humanité tombe aux mains de Lucifer.Non. Les travers mondains sont vieux comme l'enfer.
Notre grand père, Adam, pécha par gourmandise ;
Cain tua son frère, Abel, par convoitise ;
Cham manqua, nous dit-on, au respect filial ;
Solomon abusa du sceptre impérial ;
Nabuchodonozor, devenu malhonnête,
Par un dur châtiment se vit changer en bête;
Et, depuis ces débuts, des crimes abondants
Offrent pour tous les goûts de nombreux précédents.

ROYAL SOCIETY OF CANADA.

TRANSACTIONS
 SECTION II.

ENGLISH LITERATURE, HISTORY, ARCHAOLOGY, ETC.

PAPERS FOR 1884.

I.-The Making of Canada.

By John Reade.

(Read May 21, 1884.)

My purpose in this paper is not so much to speak of what is striking and dramatic in Canadian history, as to indicate some of the stages by which a handfinl of adventurers (I use the word in its ancient and honourable sense) has become a nation of five millions of people. I wish to draw attention to the influences of clinate, occupation, and surroundings by which the settlers were modified, until, in the course of time, they came to form a new ethnic variety. I will then show briefly what characteristics were contributed by the immigration that set in after the Cession and has continued to the present. If I can make it plain that the stocks from which we are derived are the best in Europe, and that the mion of the qualities which have made them severally great onght, when efficacionsly combined and developed, to make us still greater, I shall look upon my labour as not in vain. But while thus hopefully indicating the sources of our strength, it would be poor patriotism and false delicacy to aroid any reference to equally obrious elements of weakness. These, indeed, make themselves so conspicnous at certain periods in our growth to nationhood that emphasis becomes unnccessary. But in the early years of the colony there is generally so much of the grand and heroic about the leading fignres, that it is only by a scrutiny which is out of sympathy with romance, that we discover the drawbacks that retarded its progress. One of them undoubtedly was the lack of a consistently wise colonial policy on the part of the metropolis. Neither to Acadia nor to Canada was it (if we except the new departure of Colbert) either far-seeing as it concerned France or just to the colonists. It may be said, indeed, that the healthy social life and industrial progress of the Canadian people were due, in the main, to qualities which the founders of families brought with them from their homes in Northern France, developed and fructified by the discipline of the climate and the example and ministrations of a devoted clergy. Interesting as it would be to follow step by step the career of Champlain and the colony under him, and to share in the enthusiasm of Chomédy de Maisonneuve and his pious company, as with holy rites they laid the foundations of Ville Marie, I can only cast a momentary glance at the trials and the triumphs of that critical time. Rapid, indeed, under those brave explorers of the 17 th century, was the march of conquest. Once the foundations of the colony were fairly laid, they shrank from no difficulty, no hardship, no danger. Missionary zeal, ambition, commercial enterprise, enlightened curiosity and love of adventure, all combined to make their successes rarely paralleled in boldness, range and usefulness.

Founders of Families.

Choosing a point of retrospection after Quebec, Three Rivers and Montreal had been duly organized, we may see what had been accomplished in less than a generation from the establishment of the first pioneer (Louis Hébert, 1617). In the year 1645, then, we find, on the authority of M. Sulte (Histoire des Camadiens-frangais, Tome II, p. 147) that the progress of colonization is represented by 122 habitants or settlers, all of whom but three are married, while one of the three is a widower. We know their names and places of birth. Thirty-four of them came from Normandy, twenty-seven from Perche, four from Beauce, three from Picardy, five from laris, three from Maine. Of the whole number eighty were from north of the loire. As to the wives, it is probable that the eighty north-country men were balanced by eighty north-country women, the families that supplied the former also supplying the lather. Fight years later, that is in 1653, M. Sulte reckons the settled pupulation at difis souls, of whom 400 were at Quebee, 175 at Three Rivers, and 100 at Montreal. Among the founders of Canadian families may be mentioned Louis Hebert, Guillanne Conillard, Abrahan Martin (Mgr. Taché and Dr. Taché are deseended from all thren of these hate piomers) ; Jan Coté; 1'ierre Paradis; Bertrand Fafard dit LaframIniser ; Christophe (revin' (ane"stor of Ludger Duvernay, founder of the Minerve and of the soricte sumb-Jen-Buptite): Pierru boucher (ancestor of the de Boucherville family); the three (iodefluys; tinillanue Conture (ancestor of Bishops Turgeon and Bourget); Joseph (iravellu: Tonsesint Tompin (ancestor of Charles de Langlade); Charles LeMoine (ancestor of the mow distinguishod familins and personages in the colony) ; Jacques Arehambault; (G:atricl Dudos de Cuthes (amestor of M. A. D. de Celles) ; Guillaume Pepin dit TrancheMontagne (from whom have descended several men of mark, including Sir Hector and Bishop Langevin). But I must refer the inquirer to M. Sulte. In a note (Hist. des Can:fruncuis, Tom ($\{$, p. 1.53) after roluting certain calumnies as to the origin of the French('anadian prople, by a chronolorical statement showing that Champlain had table rase in New France, when he hegran his volonzation, that patriotic writer says: "See the Dictionnatre (iencullugique of Athe Tanglay. This compilation of registers of births, marriages and death is minule. In order to show its value, we may say that all the French Canadians spread through North Anerica find there their family tree, accompanied with a thonsand details. No other nation possesses such a book. We owe it to the archives of our parishes and seigneuries and to the indefatigable patriot whose name it bears. The stranger, who now and then concerns himself with us, too often neglects to consult our national library. They speak of French Canadians in the United States, in France, in England, aceording to the information of fancy. When they learn that we are of some importmee, the works of Garnean, Ferland, and Tanguay will have an honoured place in the esteem of the learned." There was also a floating population, consisting of fur-traders and speculators, soldiers, military officers and members of the civil service.

After 1653 the provinces south of the Loire began to contribute a considerable proportion to the population, while the immigration from Perche and Normandy declined. But, as M. Sulte points out, the first arrivals exercised a deep and lasting influence on the character and usages of the people.' A patriotic sentiment had gradually taken root, as

[^39]a new generation grew up. The born Canadians looked npon Canada with the same affection that their fathers had felt for France. Some old usages ${ }^{1}$ were preserved, but they, as well as the songs that were brought from across the Atlantic and even the spoken tongue were somewhat modified in the course of years. The French Canadian was being developed.

Local, Differentiation.

The great distance of the little fortified settlements of this province from each other and the still greater distance between Quebec and Acadia, also tended to create local peculiarities of character, manner and language. But there was less perceptible differnnce between any one French Canadian and another, however far apart may have been their places of birth or however diverse their surroundings, than there was between the Frenchspeaking native of Canada and the native of France.

The Acadians.

The frequent interruptions and constant alarms experienced in Acadia from English rivalry, especially during the contimance of European wars, made soriety there less settled than in the more western colonies. The civil organization was less complete. Such fends as that between Latour and d'Anlnay de Charnisay were unknown at Quebee or Montreal. Their isolation and the neglect of the mother-country were sorely against the Acadians, and yet, though a prey to frequent raids, to crnel abandonment and to internal disorder, there were intervals of steady progress as well as inspirations of enterprise, which tended to develop the resources of the comntry and which show what might have been efferend had France only appreciated her duty. In 1671 the population was 40 , which in 1679 had grown to 515 , and in 1686 to 900 or 920 souls. The population of the four seignenries and the scattered settlements in 1707 was $1,838-965$ men and 873 women. An inpulse to immigration had set in after 1701 , some 400 persons arriving at Port Royal between that year and 1707, but the day was now at hand when "this colonial flower shonld be ravished from the crown of France." It was too late. When the cession to Fingland took place in 1713 , the population was 2,100 . Shortly before the sentence of banishment was pronomnced in 1755 there were between 8,000 and 9,000 . Many of these had taken refinge

[^40]at Chipody, Lonisburg and elsewhere, and it is computed that the number affected by the edict of expulsion amounted to abont 6,000 . Of these a good many ultimately returned. There must certainly have been a pretty fair nucleus of families to yield 108,605 , the French (generally Acadian) population of the maritime provinces according to the last census. It has been noted that the names of many French-speaking families living there to-day are those of the Acadians of the 17 th century. There were some intermarriages with Sootch and Irish, and also with Indians. St. Castin married the danghter of an Abenakis chiel'; d'Jntremont married one of St. Castin's half-breed daughters; the mother of Latours daughter Jeame was a woman of the Amalekite tribe; and several other such marriages or mions are on record. (Rameau: Une Colonie féodale, p. 195.)

Acalian Characteristics.

Ia Motho-C'adillar, writing in 1690 of the resources of Acadia, describes the cattle and horses as modified by the inflnence of climate, fodder and treatment. The third generation of colonists was then mature, and it is natural to suppose that their differentiation had also begrun. M. Rameau, who quotes Lamothe, says:-"The men also had experienced like modification. The children of the French emigrants had become, in fact, Acadians, and now formed a small distinct community with new customs of their own, and united by the traditions and usages that the fore of ciremostances had imposed on them. They were marked by profemul attarhment to their religions faith, which, being intimately associated with all the hathits of their lives, fostered a spirit of mity and harmony which enabled them to live in peace so long without police courts and almost withont laws." He adds, howner, that the disposition of a people who had little chance of cultiration was not always tractable, the difficulties of their mode of life tending to embitter minds already prone to the defects of the French character. He mentions among their faults levity, improvidener, vanty-sometimes leading to good actions, but commonly intolerable to others; latk of subordination, unless when imposed by force, love of gossip and criticism, with that jealonsy which often accompanies excessive fondness for company. Thence arose

[^41]| " Jonjour le maltre et la maitresso | La Ignolée, la Ignoloche, |
| :---: | :---: |
| Et tout lo mondo de la maison. | Mettoz du lard dedans ma poche! |
| Pour le dernior jour de d'annéo | Quand nous fum's au milieu du bois, |
| Ja Ignole vous nous devez. | Nous fum's a l'ombre; |
| Si yous vonlez rien uous donner | J'entendais chantor le coucon |
| Dites-nous-le, | Ft la coulombe. |
| On enumènera seulcment | Rossiguolet du vert bocage |
| Ia fille aineo.- | Rossignolet du bois joli, |
| Ou lui fera faimo bonne chère, | Eh ! va-t-on diro a ma maltresso |
| On luifora chauffer les pieds. | Que je mours pour ses beaux youx. |
| On vous demande seulomont | Tout' fille qui n'a pas d'amant, |
| Une chignée, | Comment vit-ello? |
| Do vingt a trento pieds do long | Ello vit toujours on soupirant |
| Si vous voulez-o. | Et tonjours veille." |

frequent divisions, coteries and disputes. One governor, Menneval, said his existence among them was an enfer; another thought he used language almost as bad when he called them half-republicans. The English rulers, after the conquest, regarded them as ungovcrnable. Religion, says M. Ramean, alone can make such a people manageable, and yet even the priests themselves, who had spiritual charge over them, more than once complained of a character so hard to deal with. Laurent Molin, a cordelicr, who served the Acadians in 1670 and carried out for M. de Grandfontaine the census of that year, a mild and patient man, speaks, simply as a matter of fact, of the manuer in which he was received while discharging his duty, of the anger and suspicion with which his requests for information were resented as an intrusion. This objection to census-takers is not confined to the Acadians. M. Molin said that, when under the influence of their better feelings, the Acadians were kind and obliging and full of sorrow for whatever faults they might have committed. M. Rameau adds that their faults, which were French laults, were such as needed peculiarly the services of the priests, whose mission, he thinks, is nowhere more useful than when they are engaged in counselling and advising the Frenth people.

We may now take leave of the Acadians, whom it is necessary to study carefully in making any analysis of the constituents of our Dominion population. As the French Canadians were the original settlers of Quebec and of Ontario in part, so were the Auadians of the maritime provinces. Acadia and Canada together formed la Nonvelle France.

The Canadian Colonies.

Let us now return for a little to the consideration of the colonies of Champlain and Villeneuve. It is usual for historians to busy themselves with great events only, the sayings and doings of kings and rulers and ministers of state. Such personages have, undoubtedly, much influcuce in guiding the destinies of a nation, but it is the character and conduct of the people themselves, after all, that build it up or pull it down.

Whether by a policy of timely coneiliation Champlain might have avoided all the devastations and bloodshed and other evil consequences of long-ontinned Indian wars, it boots not to inquire. He probably knew his own business as well as most of those who have undertaken, after the event, to advise him. If he made the lroquois inveterately hostile by joining the Hurons in attacking them so soon after his organization of the colony, he certainly produced so wholesome a terror in their minds as made his peacefnl explorations possible and protected the colony, in its very infancy, from total destruction. The rivalry for a while between the Dutch, and during the whole of the old regime, between the English and the French colonists, necessarily implied on both sides the use of Indian allies. That not merely somebody, but almost everybody, blundered in the matter of Indian policy at the outset of colonization on this continent is only too true and much to be deplored. Successes of the Jesuit and other missions prove that some of the native tribes were not unsusceptible of being won over by kindly treatment. Justice, gentleness and firmness, with a constant effort to allay their inter-tribal ferocity, might have been as fruitful of good as the opposite course was of evil. And yet, but for the hostility of the Indians to civilization, Christianity and each other, Canada would be deprived of some of the most glorious instances of heroic courage and heroic mechness which the annals of war and martyrdom cau furnish. A people that could produce such characters as those of Brebœuf and Lalle-
mant, of Dollard des Orıneaux and of Madeleine de Verchères, cannot be without qualities which command vencration and lead to greatness. In daring and useful enterprise, Canada has an honour-roll not less conspicuous. Champlain himself did not shrink, notwithstanding the many calls on his time, from setting the example. Following in his track, the Jesuits established the wilderness missions in what is now the garden of Ontario. One after another undertook long and perilous quests. To-day, with our network of railways giving speedy communication in all directions, we cannot realize the difficulties and dangers which those brave men faced. Loug before an intercolonial railway or even an intercolonial road had been dreamed of, three Recollet Brothers had walked every foot of the distance (excepting the water to be crossed) between the St. John River and Quebee. From Champlain's visit to the great lakes till the Verendrye brothers reached the Rocky Mountains, the work of exploration went on, northward to Hndson's Bay, southward to the Gulf of Mexien,-while in all directions over the intervening areas were set up mission stations and trading posts, the relics of some of which remain to this day. Marquette and Hemepin, La Salle and Le Moyne d'Iberville, and scores of lesser names, illustrate the story of North American discovery.

And what of the mass of the people? We are at no loss for information regarding than. Firom lonis Hebert, our pioneer habitant, to the volunteer who fought with Montcalm, weighed down by multiplied disadrantages, for the independence of a land which a degenerate court affected to despise, we have many and many a glimpse of them-at their plasures, at their work, beeping the Indian foe at bay or returning thanks for security vourhsafel. In the main, they were industrions, orderly, sociable, courageous, moral and devout.

State of liducation.
That they ware mot duite withont opportunities for the development of their intelligence is evident from the attention which the royal government gave to public instruction. (Chauseau: Instruction Publique en Crmada, p. 48.) The religious orders had also undertaken the work of education among the people of the colony as well as among the Indians. (Ib., p. i2.) In 1663 the Grand Seminary was founded by Bishop Laval, but as early as 16:37, five years before the foundation of Montreal, Father Rohault, son of the Marquis de Gamache, who had given a large sum of money for the purpose, had begun the construction of a college in the city of Quebec. (Ib., pp. 52, 53.) The Seminary of St. Sulpice dates from 164T, when Montreal was only five years old. The Institut des Frères Charron was in operation, with various success, from 1688 to 1747 . (Ib., pp. 53, 54.) These institutions could not have existed in a conntry where education was wholly neglected. That the daughters of the habilants were taught by the ladies of the Ursuline Convent we know from a letter of Madame Marie de l'Incarnation, which M. Sulte has in part reproduced with pertinent comments. He reminds his readers of the danger of mental degeneracy and coarseness of manners resulting from the constant ocenpation of the men in pursuits which, if necessary, were not elevating, and indicates the providential character of the inspiration that would compensate for the forced. neglect by cultivating the gifts and graces of the female sex. He gladly emphasizes the benefit which it has conferred on French Canadian socicty and on the French language, mentioning as one of its probable
fruits the admired transformation of the songs of France into pure and delicate melopes. (Sulte: Histoire des Canadiens-français, Tome II, p. 68.) It is, however, matter of regret to find that the provisions for education do not seem to have improved during the following three-quarters of a century. In a memoire of M. Hocquart, dated 1736, to which 1 will presently refer in more detail, complaint is made of the slender character of the education which even gentlemen's children receive. They hardly, he says, know how to read and write, and are unacquainted with the first elements of geography and history. At Quebed the chief teacher is also hydrographer and missionary, and has little time for his pupils. At Montreal, matters are little better. He recommends the appointment of a good master for each place. Later on matters seem to improve. In 1757, Madame Bourgainville wrote thus:-"The simple habitants of Canada would be seandalized at the name of peasants. In fact, they are of better stuff, are more intellectual and better educated than those of France."

Governments.

The notions of mankind have changed very much as to the question of the people's share in administration since the middle of the 17 th century. l'opular government in our sense, or even in the medieval sense, did not exist in Canada at that time. lrontenac tried to make a change, but the result was one of Colbert's gentle but mumistakeable rebukes. "His municipal government, and his meeting of citizens were, like his three estates, abohished by a word from the court which, bold and obstinate as he was, he dared not disobey. Had they been allowed to subsist, there can be little donbt that great grood would have resulted to Canada." (Parkman's Frontenar, p. 21). M. Ramean, though he lays stress on the advantages which the Canadians derived from their excellent parochial system, working in harmony with the organization of the seigneurie, acknowledges that the absence of mmicipal institutions was a serious drawback. (Une Colonie feodale, pp. 290, 291). The grant of such a boon would, he thinks, have doubled their energy and their power for grood.

Champlain's rule, as the commissioner of the Companies, lasted from 1608 till 1635, with an interruption of three years, during which Quebee was ocenpied by Louis Kirkt. He was succeeded by Governors de Montmaguy, d'Aillebonst, de Lauson, and d'Avangour. In 1663, M. de Mesy, on the recommendation of Mgr. de Laval, was sent ont to inangnrate the system of royal goverument,-the Company of the Hundred Associates having been dissolved. A sovereign council was formed, modelled on the Parliament of Paris, composed of the governor, the bishop, five (afterwards seven) councillors, named by them conjointly, an attorncy-general, and, on his arrival in Canada, the intendant, who represented the minister. To this body the entire administration of the colony was entrusted. In 1664, the Coutume de Paris was made the law of the land. The country was divided for administrative purposes into three governments, those of Quebec, Three Rivers and Montreal, the two latter having their own magistrates, and courts of justice. Later on (in 1717) an admiralty court was established at Quebec.

Of the system of administration just sketched, M. Garneau says that-"it was the worst of all systems of government, being the delegation of absolute power, to be exercised a thousand leagues from the delegating authority and in a state of society essentially dif-
ferent from that of the mother country. But Louis XIV, the most despotic of all French kings, conld not have been expected to grant institutions bearing the smallest germ of liberty." (Histoire du Canada, Tome I, p. 184). Of the judicial system the same writer says: "Justice was generally administered in a manner impartial and enlightened, and it was obtained at small cost. Jurisprudence, based on the solid fonndation of the ordinance of 1667 , was free from those variations and contradictions which, at a later period, brought uncertainty and suspicion on the administration of justice." (Ib. p. 184.)

Colbert's twenty years of office were the most progressive years in the history of Canada under the old régime. Llis efforts to promote settlement, agriculture, manufactures, commerce, and general and industrial education had, for the time and in the cirrumstances, a remarkable success. Iron-works, tanneries, ship-building and other industries were started and a considerable trade grew up with the mother country and the Westludins. In 1676 , the population was 9,719 souls, having nearly trebled since 1665 . In 170t, it had incrased to 17,400 , - the whole population of New France, including Acadia, being then about 19,000 . This was a mere handful compared with the inhabitants of the British wolonins, whith then mumbered some 260,000 . But though few, their sway was far-ranhinur. "Detroit was ormpied by the French," says Parknan, describing the state of C'anadia, after Fromtenas death; "the passes of the west were giarded by forts, another Now. Frane erve up at the month of the Mississippi, lines of military communication joined the (inlf of Mexioo with the (inlf olst. Lawrence; while the colonies of England lay parsive botwern the Allerghanes and the sea, till roused by the trumpet that sounded with watering notos on many a boody field, to peal at last in trimmph from the Heights of Abraham."

Noblesse.

Thonerh Frontona was not permittod to make the three estates an engine of polity, they were in full force under the social system of the old regime. In a memoire, presented by IV. Talon, intendant. to the minister Colbert, in 1667, on the state of Canada, the author says that thereareonly lour ancient nobles and four other heads of families whom the king hat honourd by his letters during the previons year. He thinks there may possibly be sonne other noblemen among the oflicers of the army, but he looks upon an estate so numerically wak as insullicient for the maintainance of the king's anthority, and adyises the the addition of eight more to the number, the space for the names being left blank to be filled up in Canada, according to usage. Another mémoire composed long after (attributed to M. Hocquart, intendant in 1736), enumerates fourteen noble families, which it may not be without interest to mention, as some of them are still represented in Canada. They are the Gardeur (with four branches, Repentigny, Courcelle, Tilly de Beaurais, St. Pierre) ; Denys, (with three branches, Denys de la Ronde, de St. Simon, Bonaventure) ; Daillebout (with four branches, Perigny, Manthet, Dargenteuil, Des Mousseanx) ; Boucher (established at Boucherville and the head of which, ninety years old, had more than 190 children, grand-children, brothers, nephews and grand-nephews) ; Contrecœur, La Valterie, St. Ours, Meloises, Tarrien de la Pérade (all of whom came to Canada with the de Carignan Regiment in 1669) ; Le Moyne (the family of the de Longuenils) ; Aubert; Hertel and Godefroy (both very numerous), and Damours. There were, besides these, the noblemen connected with the troops. Afterwards the writer mentions incidentally, in referring to the eagerness of
scions of noble families to enter the king's service that they are mostly poor and would gladly increase their resources. As for the condition of the rest of the people in the latter half of the sixteenth century, the former of the mémoires from which I have been quoting says that there were some well off, some indigent, and some between both extremes.

Canada and the Canadians in 1736.

In 1736 (according to Mr. Hocquart) the population of the colony was about 40,000 , of whom 10,000 are returned as fit to bear arms. The Canadians, he says, are tall, well made, and of a vigorous constitution. The artisans are industrious and the habitents skilful with the axe. They make the most of their own tools and implements of husbandry; build their own houses and barns, and several of them can weave, making great webs of stuff that they call drugget, which they use for clothing themselves and their families. So much for their good qualities. But they are also, according to M. Hocruart, vain, ${ }^{1}$ fond of being noticed and sensitive to rebuke. Strange to say, it is the country people whom he thus characterizes. The townspeople are less faulty. They are attached to their religion and there are few incorrigibles; but they think too much of themselves, and this failing prevents them from succeeding, as they might do, in the arts, agriculture and commerce. The long winter, with little occupation, also tends to make the men lazy. But they are addicted to the chase, to navigation, to royages, and have not the coarse and rustic air of the French peasant. Though naturally hard to manage, they become more tractable when their honour is appealed to, but the spirit of subordination is sadly lacking, the fault, in part, of deficient firmness on the part of former governments. This is said, it seems, with reference to the militia, whose moral and physical qualities and training were to be severely tested sooner than M. Hocquart imagined. The intendant then gives an account of the products, commerce and industries of the country. Wheat is the chief crop. The country furnishes more than what meets the needs of the inhabitants, and the surplus is exported. In good years, 80,000 bushels in flour and biseuits are sent out of the country, but 1737 was a bad year. The lands of Quebec are not all equally good, some of them being hilly, but those of Montreal are level. The experiment of fall wheat had been made, but was considered risky on account of frosts. Oats, pease, barley and rye, as well as flax, hemp and tobacco were all grown to some extent. There were as yet few orchards. More attention to the culture of tobacco is recommended. The beaver

[^42]was retreating northward but still plentiful at the Company's posts, Tadousac, Temiscaming, etc. The English were charged with enticing the Indians with brandy, but it was also acknowleged that they gave a better price for the skins. The Three Rivers iron mines are inentioned, as are also the copper mines of Lake Superior. The ship-building industry at Quebec was growing in favour. Thirty nations of Indians were described as ocenpying the continent of Canada.

The last days of the old Regime.

Another memoire, dated twelve years later (1758) and attributed to M. Querdisien Trimais, is written with spirit and force but is not cheerful reading, as it gives a most gloomy piture of the state of the comntry and brings scathing charges of malfeasance and dishonesty agranst the public functionaries of the time. The population is set down at 80,000, of whom 15.000 were able to bear arms. The state of misery to which the commey is represonted as having been brought mainly by corrupt administration is so intolurable, that if the dorement had been prepared expressly to show that the time had tomn when ('inada must sake ofl' the paralysing grasp of Louis XV and his agents, it "ould not have ben more pertinent or more vigoronsly worded. Canada had to pass through some severe trials under tha new refrime, but none of then can be compared with the curndes wrothenders set forth with monscious pathos in this prosaic state-paper. Well might the ehder P'apine:lu contrast the freedom of British institutions, even such as they were before the expiry wi the 1 sth contury, with the tyranny and rapacity of such men as thtendant higot. (The Memores quoted from are those included in the Collection de Momenirs th de Relutions sur l'histoire uncenne du Canada, published by the Literary and Historial Socinty of Qubber, 18t(1).

The revital of M. Tremais may well lead us to believe, with Abbé Ferland and M. In Moine, that there was more than indifference in the manner in which Canada was allowed to pass from the hands of France. It was the interest of the infamous Bigot coterie to conceal their own malfeasance under the common ruin, just as the scoundrel will burn the house whose immates he has murdered, in order to hide the traces of his crime. (Album du Touriste, pp. 59 and 97).

When M. Tremais' memoire was pemed, there was no obvious reason to fear that the system of rule which it so damagingly accused was near its termination: Montealm had won a victory over one of the finest British forces that ever offered battle to foe on this continent. Wolfe was engaged in a work of retaliation unworthy of his genins and character. But in the book of fate the knell had sounded, and the brave and chivalrous Montcalm was soon to lie dying and helpless, leaving to the care of de Ramezay the honour of France, the safety of the army and the defence of Canada.

The Remnant and the New-comers.

As at the capture of Quebec by Kirkt in 1629 , so at the conquest of 1760 , only a comparatively small number of the people abandoned their country. The words of M. Sulte, relating to both occasions, are applicable in this place: "Those who remained in the
country constituted just the stable portion of the population, that is, the habilants. It is false to say that Canada was at that time (1629) abandoned. That primary germ of Canadian families deserves neither the indifference nor the oblivion of historians. For it was they who refused to despair of their adopted country, and their development was proof against every attempt to arrest it. A hundred and fifty years later the Canadians were in the same situation, and then too they had the courage to remain Canadians. Such is our history. We have become anchored in the soil in spite of the ebb and flow of European influences. In 1629 , of less than a hundred persons then in the colony, more than a third was composed of habitants, and they remained faithful to their post, undeterred by ill fortune."

But after the Cession, an immigration from Great Britain at once set in. In fire years a newspaper (the Quebec Gazette) had been established at Queber, the first umber of which contained the advertisements of English merchants. In twenty-five years there was a considerable British population, and, in the following year, the sentiment of loyalty lad become strong enough among the whole population to present a united front against the wiles and encroachments of the Ameriean Congress. In the defence of Quebee against Richard Montgomery in December, 1775, the French and British were as one man.

In 1763, when Canada was formally ceded to England, the rule of martial law, inaugurated in 1759 , was changed for a modified military govermment, with the promise of popular representation, as soon as eircumstances would permit. In 1774 was passed the Quebec Act, which greatly enlarged the limits of the province, assured religions liberty, with the privileges indicated in the terms of capitnlation, reeognized the andent Frond civil law, but insisted on the adoption of the criminal law of (ireat liritan. In 158t, the province of New Brmswick was created and the town of N'. Iohn settled with L. W. Loyalists. In 1791, the province of Quebee was divided into Upper and Lower Canada, with British law in its entirety for the former. It signified the inanguration of constitutional, but without responsible, government, a boon which was not enjoyed, till, after the rising of 1837, the severed provinces were again united under a common government. The next political change was the most important of all, being that which was effected by the British North America Act, constitnting the Dominion of Canada. By successive anuexations, in accordance with its provisions, the whole region from the Atlantic to the Pacilic has been made one federal power, under a single central authority.

United Empire Loyalists.

The American revolntion having been snccessful, most of those who had sided with the mother-land in the quarrel were expatriated and had their property confiscated. An appeal having been consequently made to Great Britain, an act was (in 1783) passed in their favour, and the following March fixed as the ultimate date on which claims for redress shonld be received. The number of those dispossessed on account of their unbroken allegiance was from 25,000 to 30,000 , the great majority of whom took up their abodes in the Canadas, New Brunswick and Nova Scotia. We have ample means ofjudging of the character of this addition to our population. The loyalists were moral, intelligent and enterprising, and formed a timely and valuable accession to the young communities of Opper Canada and the maritime provinces, where many of them rose rapidly to distinction,
and their descendants are among the foremost in politics, business, the church, and the professions at the present day.

The Rise of Cities.

Under their influence some of the old French settlements or posts were made the centres of town and cities. Annapolis (1713) and Halifax (1749) had, as British foundations, preceded the conquest. Truro was founded three years after the taking of Quebec, and some others grew up on the old sites without formal differentiation. (See ex-Governor Archibald's most interesting address on the occasion of "the 121st amiversary of Truro's natal day"). Niagara was for a time the rival of York, as Toronto was called. "The "ities of the old work," says Dr. Wilson, "have their mythic founders and quaint legends still commemorated in heraldie blazonry. Tht there is no mystery about the begimnings of Toronto. Upper (amada was arected into a distinct province in 1791, only eight years after Frane linally renomed all cham on the province of Quebec; and a few months afterwards General simcoe, the first governor of the new province, arrived at the old Frencll fert, at the mouth of Niagara river, and in May, 1793, selected the Bay of Toronto as the site of the future capital. The chosen spot presented a dreary aspect of swam and mudeared pine forest but and these his sagacions eye saw in anticipation the city rise which alrealy mumbers upwards of 60,000 [by the last census 86,215] inhabitants, and, rejocting the old Indian name sime restored, he gave to his embryo eapital that of York." (Prehistoric Man. Vol. I, p. 18). Dr. Scadding has written the history of the city whose birth is thus romedsely described, and he, with the assistance of Mr. Dent, the able anthor of "The last Forty Years," is bringing ont a jubilee volume on the same subject, it propos of its fiftielh amiversary as a corporate eity. Kingston, or Fort Cataraqui, is amother of then cuckoo foundations, and several of the smaller towns have been built on or near the sites of old forts or missions in the Ontario peninsula, and Acadian settlements along the Bay of Fiuncy, just as more lately Winnipeg rose suddenly to size and celebrity in the vicinity of Fort Garry. The day may come when Fort Prince of Wales, on Ifukson's bay, may win new renown by giving an air of antiquity to a Canadian Archangel.

The motises, circumstances and personnel, associated with the establishment of the british Canadian cities that have no adventitions antiquity of the kind in question, are not quite unknowable. Some of them have been gathered by painstaking investigators, such as Mr. Burrows, who has written the interesting "Amnals of the Town of Gnelph." Local history of this kind has no small value in enabling one to judge of the elements that go to the making of a nation, but they lack the interest that pertains to the foundation of Quebec or Montreal or Port Royal.

Increase of Population.

Jet us now see what has been the growth of our population under the new regime. In 1800, it was estimated at 240,000 , less than than that of New Brunswick alone to-day. In the next twenty-four years it more than doubled. In 1851, it had trebled the figures of a quarter century before, and twenty years later it had risen to $3,657,887$. The population
of the Dominion by the last census was $4,324,840$ (ocenpying an area of $3,470,392$ square miles). The 70,000 or 80,000 French Canadians of 1760 have grown into a community of $1,298,929$. This growth in a century and a quarter, with hardly any aid from immigration and a good deal of loss from emigration, is certainly remarkable. The Irish element, 957,403 souls, comes next, the English and Welsh, with a population of 891,248 , being third, the Scotch, 699,883, next, while the German, chiefly in Ontario and New Brunswick, is set down at 254,319 . The remainder is made up of Dutch, Scandinavians and other European nationalities, with 108,547 Indians, 21,394 Africans and 4,383 Chinese. The floating Chinese population has greatly increased during the last three years.

A good Stock.

The population of the Dominion, made up of the best blood of Western and Central Europe, the pick of the Latin, Teutonic and Celtie races, has erery dement necessary to form a great nation. In physique and intellectual powers the arerage (anadian is certainly the equal of the average lirenchman, Briton or German. At present, the national elements composing the whole are distinct, and attention to the question of origins at this transition stage in our history will be of advantage for the determination of rertain problems hereafter. But there must come a time when a Canadian will be simply a Canadian, as an Englishman is an Englishman, whether of Celtic, Naxon, or Norman descent. Already there are Canadian characteristics in which natives of all origins share. Every year that tendency will become more marked, and with it the growth of a mational spirit. Great as has been our progress as allied national commmities, it will be much greater when we are all really one. Unity is, indeed, our great desideratum, and it should be the aim of every patriotic and public-spirited man to use his inflnence for its attainment.

Sectionalism.

In the past the lack of it has been the great drawback to progress and prosperity. No one can read our history withont perceiving that, from first to last, some form of sectionalism has been a drag upon all efforts for the general good. It arose, in part, no doubt, from the circumstances of existence until a comparatively recent period. Distances between cities, the centres of opinion, were very great, and the modes of communication slow and inconvenient. The most chivalrous hospitality may prevail between such commmities, but, at the same time, a spirit of clique will be produced. Certain ways of looking at things will become stereotyped and virtually unchangeable. As, with the increase and improvement of means of communication, intercourse becomes more frequent, men's minds become more receptive and interchange of ideas takes place, but with the majority local prejudices survive long after their usefulness has disappeared. In Canada, peeuliar circumstances have besides created conventions unknown elsewhere, or, at least, to the same extent. I mean that which arranges for the representation of "interests " altogether apart from merit, or what would result naturally from knowledge of men as men, and from perfectly free choice. I need scarcely say that this parochial distribution of public functions is wholly anomalous and antagonistic to the very idea of nationality. Let churches
elect their churchwardens and deacons, and let national societies elect their officers; but the nation knows no such distinctions, and, though it may take some time to substitute for such a convention a more rational usage, it must surely go eventually, and the sooner the better.

The Provinces.

There is another point which may be slightly touched on, as it suggests a serions damere to the nation-the question of provincial rights. Dr. Draper maintains, in his History of the (ivil Wiar, that the antagonism between North and South was an innate antagonism of race and class, agreravated by diflerences of climate and the institution of Havery, and must have ended as it did. Slavery suited the southermer better than the northerner, but the northerners have had slaves too. At any rate, whatever drove them to war, thre is no slawery in Canada, and we are all north. Our sectional divisions, if they come, will be those of longitude. That provincial rights should be maintained, is altowher mopssary and just, and no one who wishes well to his country would encourage the federal authorities in violating the law of the land. But such a thing is impossible, as full provision has been made to prevent it. If the law is at fault, that is another question. There is, howerer, muh more need of a league for a defence of the nation's rights arainst the abuse ol' sectionalism, than there is of a league for the defence of provincial rights. Eiver on maty inthoness conspire against the national interest. Loenlism and antionaliom arn in the ascememt. What we want most is a strong, mbiased natioual pirit.

Promens.

In extenti, ('anada is the fourth of the erveat powers of the world. In population, Canada is in adranm of about a dozan independent kingdoms and republics. In public works, shippingr, wommor, manufactures, industries, Canada is great, and growing daily greater. It onght to be a pride to take part in any way in the making of such a nation, in the development of its rosources, in fostering its literature, science and art. We have great scientific names. Wo have an academy which has done some creditable work, and whoever consults Morgan's Bibliothera Canadensis, Lareau's Litterature Canadienne, the 'hapter entitled Mourement intellectuel et litteraire in Chauveau's Instruction Publique en C'annadu, and lBourinot's Intellectual Development of the Canadian People, will see that we have taken, at least, the first steps towards the production of a national literature. What we need is a national sentiment. We have, unhappily, no metropolis-no centre of taste and judgment. Such a metropolis or its equivalent, will, no doubt, be recognized in time But the national feeling must precede it. That, indeed, as throughout this paper I have tried to make clear, is our chief desideratum.

Conclusion.

In the rise of the little colonies of the begiming of the 17th century to the status of
what is virtually a nation, ${ }^{1}$ with all the heroism of saint and martyr and patriot, with all the enterprise of the great explorers, with all the virtues that distinguished the private life of the people, one evil quality ever exerted an injurious influence on the community and retarded its progress. A critic whom I greatly respect ${ }^{2}$ has found fault with Parkman for pointing out, in one of his works, the jealousies of a past age. But I think that any attentive reader of our history must be sadly convinced that, amid so much that compels our admiration, amid displays of energy and courage, zeal and heroism, such as would adorn the annals of any people, the spirit of clique has made itself banefully felt, bringing the weakness of the divided house which, the Scripture says, cannot stand. We see it making mischief between creed and creed, between Church and State, between clergy and laity, between order and order, between city and city, between native-born and foreign-born, between mother-country and colony. That spirit is not dead yet. It shows its activity in many ways-more ways than I need mention. It is emphatically a bad spirit, and one which it is a patriotic duty to oppose by all honest means. For that spirit we should substitute the spirit of unity, of helpfulness, of co-operation and goodwill; the spirit that does away with prejudice and fruitless rivalry and detraction and division in politics, in science, in art, in literature, and to cherish and encourage that spirit, by example as well as by precept, should be the constant aim of the Royal Society of Canada.

[^43]
II.-The Literary Faculty of the Native Races of America.

By John Reade.

(Read May 21, 1884.)

What have the research and learning that have been bronght to bear on pre-Columbian America disclosed as to the literary faculty in any of its populations? Before attempting to answer this question it will be well to seek a reply to another. Were any of the American languages suitable for employment in literary composition? The common notion regarding them would, perhaps, imply a negative answer, and this notion is supported by some great names. M. Ernest Renan, in his work on the Semitic languages prononnced a judgment which was, by implication, so indiscriminately adverse to the native tongues of America that Abbe Cuoq felt himself called upon to stand up in their defence. In an able pamphlet he claimed for the Algonquin and Iroquois languages all the excellences that his antagonist attributed to the Aryan tongues, while he put them far above the Chinese and even those of the Semitic group. M. Cuoof does not lark followers; neither does M. Renan. The elaborateness, which the former so highly recommends as a prominent feature in the American languages, Dr. Farrar looks upon as childish excess. On that point Professor Whitney says: "Of course, there are infinite possibilities of expressiveness in such a structure, and it would only need that some native American should arise to fill it full of thought and lancy and put it to the use of a noble literature, and it would be rightly admired as rich and flexible, perhaps, beyond anything else that the world knew." But as it is, he considers it "cumbrous and timewasting in its immense polysyllabism." Professor Whitney, in fact, seems to think of the languages of the West as Byron thought of the Land of the East, that "all save the spirit of man is divine," and that, if only those who speak them were as gifted as they are expressive, the harmony would be fruitfully complete.

Professor Max Miiller on this as on some other points is at variance with Professor Whitney. As we know from his writings, the great. German-English philologist loses no opportunity of profing by intereourse with such foreign stadents as he may come in contact with at the university which benefits by his services. Among them there happened some time ago to be a Mohawk and to him, as we learn from a note in Mr. H. Hale's interesting work, "The Iroquois Book of Rites," Professor Mïller said one day: "To my mind the structure of such a language as the Mohawk is quite sufficient evidence that those who worked out such a work of art were powerful reasoners and acute classifiers." (Book of Rites, p. 99, note). In a letter to Mr. Hale, Professor Müller has also given the following emphatic testimony to the value of the American tongues to the philological student: "It has long been a puzzle to me why this most tempting and promising field of philological research has been allowed to be almost fallow in America-
as if these langnages could not tell us quite as much of the growth of the human mind as Chinese or Hebrew or Sauscrit." No one, I think, need wait for a more forcible incentive to the scientific study of our native American langnages than what we find in this distinct arowal of their worth from one of the greatest philologists of our day. It is still more to the purpose of this paper that the author of "Prehistoric Man " describes the tongues of the New World as "languages of consistent grammatical structure, involving agulutinate processes of a complexity unknown before and capable of being employed in an eflective native oratory and even as rehicles of the sacred and profane literatures of the amcient world."

The judgments just quoted apply to the whole range of American speech. But it is almost medless to say that langrage on this continent is not one but manifold. How morplexing the sariety is may be imagined from the fact that Mr. Hnbert Bancroft has fommeratid nearly six hmotred languges or dialects between northern Alaska and the 1sthmus of l'anama on the western side of the continent. "An exhanstive classification of the Ammrian lamgures," says Professor Whitney, "is at present impossible. . . There aro many errat erromp and a host of lesser knots of idioms or dialects, isolated or unclassifted The Eskimus line the whole northern coast and the north-eastern down to Newfommand. The Athabasian or Tinne ormpies a great region in the far north-west the Aparhe: and thu S:arajo in the south also belonging to it), and is flanked on the west by the Srulish and othor smallur groups. The Algonquin had in possession the north-eastern amb middl. United states and strethed westward to the Rocky Momenans; within its frritory Wa implad that of the lropuois. The Dakota (Sionx) is the largest of the families ornpering the ervat pairins and plans of the far west. The Muskokee gronp filled the Nitatos of the somh herat. In C'oloralo and Utah commence the towns of the settled and comparatively civili\%n lowhlo ludians, rising to the more advanced culture of the Mexiam people, attainine its height in the Maya ol Central America, and continued in the empire of the Incas of Parm. The Quithan of the latter, with the related Aymara, are sill the native dialeets of a considerable part of Sonth America; with the TupiGuarani atoo on the cat, in the valley of the Amazons and its tribntaries. The condition of the Amerian lamenages is thus an epitome of that of the languages of the world in general. Great and wide-spread families, limited groups, isolated and perishing dialects, tou'h and jostle man another." -(The Life and Grouth of Language, pp. 263, 264).

Having followed Prolesor Whitney in his hasty course from north to south, it may be worth while to comsider brietly the characteristies of the more important languages of the region trawised. Wi may do so in inverse order, which is also, generally speaking, the order of their morit. Prescott tells ns of the prudent despotism, not without its imitators in modern times, which substituted for the well-nigh countless and troublesome varicty of tongues spoken by the inhabitants of Peru the rich and beautiful Quichua. This language is said by those who have stadied it to bear resemblance to the dialects of Central America. The Tupi or Guarani now serves the same purpose of a lingoa geral, according to a writer quoted in the Revue du Monde Latin (Senhor Bantista Cactano), from Guiana to Patagonia. The sane writer says that all the languages of South America may be rednced to fire. Of the languages of Central America the Tzendal was once looked upon as the most ancient, but it has lately been recognized as a branch of the Maya, now spoken in Yucatan, and the nother tongue of most of the languages of the central region.

Going still northwards, we meet with the Nahua or Aztec, which is said to have been at its best in the century just preceding the Conquest. "If the Maya," says Mr. Strong in "The North Amerieans of Antiquity," "has been compared to the Greek, the Aztec has been likened to the Latin, not in structure or vocabnlary, but in its relation to ancient American civilization, in its expressiveness, politeness, its capability for the sublime and for the romantic coloring with which it is able to clothe that which is humble and even insignificant." "Those who imagine," writes Dr. Brinton, "that there was a porerty of resourees in these languages or that their concrete form hemmed in the mind from the study of the abstract, speak withont knowledge. One has but to look at the inexhaustible synonymy of the Aztee, as set forth in Olmos or Sahagm, or at its power to render correctly the refinements of the scholastic theology, to see how wide of the lact is any such opinion. And what is true of the Aztec is not less trne of the Quichna ant other tongues." -(American Hero-Myths, p. 24).

If we still advance northward, we enter upon the apparent whas of the numerons languages that have been or are still spoken by the Indians of the area comprised within the United States and Canada. Several of these languages have won praiso almost as emphatic as that which has been bestowed on the tongnes of Central and south America, while others are of a low type and incapable of development for literary purposes. Ot the former class may be mentioned the Creek, the Cherokee, the Zuni, the Cree, the Ojibway, the Dakota and the Iroquois, on some of which fresh light has recently been shed by Canadian students sueh as Fathers Lacombe and Cnoq. A notable instance of the other class is furnished by Dr. Wilson, who compares the ntterances of the Chinook to the "inarticulate noises made from the throat, with the tongue against the teeth or palate, when encouraging a horse in driving." (Prehistoric Man, II, 395). The same anthor wfers to the Babel of langnages heard at Fort Vancouver on the Columbia river, which is visited by Walla-Walla and other tribes for purposes of trade, and describes the putois, with as sul)stratum of strangely metamorphosed English, which serves as a common means of communication. The fact, noted by Mr. Male, (to which Dr. Wilson draws attention) that this factitious language is spoken by the rising generation more readily than any other form of speech, may supply a key to some puzzles in American philology. For who can tell how often the same process has been gone through in days when there was no Enropean language to form a basis for the mongrel strneture? The sight of such unlooked for and really unimaginable distortions of our English speech as "pos," "paia," "tumola," for "suppose," "fire," "to-morrow," should prove a warning to those who lore to detect kinship in mere verbal likeness.

Having now shown by respectable authority that some of the American languages are not unfit to serve as media for literary prodnction, let us see whether there is evidence of any kind of writing being employed by those who thus turned them to account. If that evidence should be deemed too slender, are we to be expected to give up the main inquiry as practically futile? Is it not absurd to look for any traces of literature where there is no written language, or means of committing it to writing? On this question it is to the point to hear Max Müller. "Here, then," he says, "we are brought face to face with a most startling fact; writing was unknown in India before the fourth century before Christ, and yet we are asked to believe that the Vedie literature in its three well defined periods, the Mantra, Brahmana and Sutra periods, goes back at least a thousand years
before our era." (India: What can it teach us? Lecture VII.) And then he goes on to state that those ten books of hymns, containing 10,580 yerses, were handed down from generation to generation for 3,000 years by memory alone. It seems incredible, yet Professor Muller tells us that he had students who thus learned the Vedas by heart, who could not only repeat them but repeat them with the proper accents and even correct mistakes in his printed edition. The Gauls, he also reminds us, on the authority of Cosar, had their Druidic literature only in their memories, having religious objections to committing it to writing. The instances, indeed, that might be eited of oral transmission are so numerous and so well anthontiated that, if there are any products of the American muse said to be thus handed down, we need not suspiciously reject them on that score. The late Patrick MeGrecor, in the Preliminary Dissertation to his "Gremine Romains of Ossian," says: "The allegation that it is impossible to commit to memory such a quantity of verse is disproved by the fact that erem at this day, when the lore is nearly extinct, a few individuals are to be finnd through the llighlands who can repeat as many songs or hymns as would fill a volume large "nough to tontain all that Ossian ever composed." The extraordinary memory of Lord Marablay may have been a case of survival to more degenerate and bookrelying days of just suth a faculty as Mr. Me Gregor here speaks of. Our own McGee, another Cirlt, was similarly erifted.
lint the Ameriams were not all ladking in the means of recording their thonghts or recristering histori" wents. "south America," writes Dr. Wilson, "had her miniature picturewriting, her semptured ehronicles or basso-relievos, her mimetic pottery, her Abfined symbelism and assoriated ideas of tolours and her quipus. North America had her astronomical scinnce, her more developed though crude picture-writing, her totems, pipe-senpture and wampun; and also her older momd-builders, with their standards seremingly of weight as wrll as of mensuration." The quim, Prescott informs us, "was a cord abont two fee loner, composed of diflerent coloured threads, tightly twisted together, from which a ghantity of smaller therads were suspended in the manner of a fringe. The threads were of different colours and were tied into knots; the word quipu, indeed, signifies "Anot." These colours denoted semsible objects or abstract ideas and by means of the knots the Pernvians were able to caleulate with great rapidity. Of course, such an instrnment could not be used for writing in anything like our sense. It helped the memory by way of assoriation.

The Mayas are redited by some writers with a sort of alphabet. Bishop Landa, whose name it bears, says they had books, formed of long narrow strips of parchment, folded map-wise, so as to have the appearance of a modern volume. By means of coloured figures of a pecoliar character, the value of which is as yet imperfectly known, they could commit their thoughts, so as to be intelligible to each other, to the folded sheet. Ont of the holocaust which the Spanish clergy thought due to religion, four documents have been saved. These are known as the Dresden Codex, the Codex Troano (from Señor Tro y Ortolano), the Codex Peresianus (from Sénor Pio Perez) and the Codex Cortesianus, lately published by M. Léon de Rosny. Each of these codices has an interesting history, but a word or two as to the last may suffice to show the manner in which such documents sometimes come to light. In 1876 or 1877, a Spaniard offered to sell to the Bibliothèque Impériale of Paris an ancient American manuscript, photographed specimens indicating its possible value. But the price asked was thought too high by the Bibliotheque
authorities, and soon after it was purchased by the Spanish government for the Archrological Mnsenm of Madrid. In 1880, M. de Rosny went to that city to study it and he was permitted to make two photographic copies of it. In his opinion, it and the Codex Troano belong to the same original document.

In 1863, an event occurred which glarldened the hearts of all Americanists. The indefatigable Brasseur de Bourbourg found, in the archives of the Royal Academy of Madrid, a Spanish manuscript styled "Relacion de las cosas de Yucatan," of which the author was said to be the Bishop Landa already mentioned. This churehman had lived in Mexico for thirty years (from 1549 to 1579), and his name was a lamiliar one in the amals of Central America. Yet this Relacion had hitherto, like many another, donbtless, escapod notice. Among the most interesting contents of the book was nothing less than a key to to the Maya symbols. "Eureka!" was the cry that echoed through the antiquarian world. The mysterious epigraphy which had heretofore baffled the most obstinate questioning would now stand revealed. But Bishop Landa had been mable or had not chosen to be very clear in dealing with the alphabet that bears his name, and, thongh the apperarance of the Relacion set many a scholar to work at it, the mysterions mamscript is still undeciphered. M. de Rosny, Mr. Cyrus Thomas, Dr. Brinton and other gentlemen are, however, still earnestly engaged in the endeavom to interpret it and a complete key, it is to be hoped, will soon be discovered. Dr. Philipp Valentini, after careful study, has come to the conclusion that the so-called alphabet is not an alphabet at all. He moses an able: pamphlet written to prove that it is a Spanish contrivance, with the remark that, thongh "Landa's alphahet," had been in the hands of students for seventeen years (that is, in 1880), it had proved of no avail whatever for purposes of decipherment. He, therefore, believes it to be merely a device of the missionaries and not, as has been clamod, an ancient product of the native intellect. (The Land Alphabet a spmenish fatrication. Proc. Am. Ant. Soc., 1880).

Many books in the Aztee picture-writing, which differs from the Maya, were also destroyed on the gromed of idolatry-some of them, like the ammals of the Mexican State committed to the flames by Zumarraga, being extremely valuable. They were mostly printed on cotton cloth, prepared skins and magney paper, and were put up in the same fashion as those of the Mayas. Documents written since the Conquest, some of them with a Spanish translation, are numerons, a fine collection of them being preserved in the museum of the University of Mexico. The series of pictures in the Codex Nendoza, representing the practical home educational curriculum of the ancient Mexicans, is considered a good instance of the Aztec symbolic writing. The Maya and Nahua calendar systems are highly interesting and have suggested analogies with almost every nation in the old world.

Leaving the civilized races of Mexico and Central Ameria and directing our steps northward, we meet with no system of writing or inscription comparable with theirs. Dighton Rock, the markings on which Professor Rafn claims to have deciphered, the Cincinnati Tablet, by some considered a calendar stone, and the "Cremation Tablet" found at Davenport, Iowa, and which Professor J. Campbell believes he has interpreted by means of Landa's alphabet, are the most remarkable of northern epigraphic "finds." But of anything like an alphabet in the accepted meaning of the term, evidently or even probably purposed to serve as such, the only instance as yet known is a modern one, that of
the Cherokee chief, Sequoyah. Of it Sir John Lubbock said that, as far as the inventor's own language was concerned, it was superior to ours. It is syllabie and has eighty-five characters.

We have now prepared the way for a consideration of the literary facnlty of some of the American races, not as possessing so admirable an instrument for recording their thouglits as the Cherokee, or even the English alphabet, but as being, even the most advanced of them, like the Hindoos, the Greeks, the Romans, the Germans, when they were literally in that stage of progress which the Italians figuratively describe as analfubti. They are miversally conteded the story-telling instinct. "As a raconteur," says Dr. Brinton, in his exellent monograph on "Aboriginal American authors," he (the American Intian) "is motiring. He has in the highest degree Goethe's Last zu fabuliren. In nu Wrimtal aty does the teller of strange tales find a more willing audience than in the ludian wigwam. Thr folk-lore of every tribe which has been properly investigated has furnat ont to le most ample. Tales of talking animals, of mythical warriors, of giants, Wwarfs, subth wompen, potmt maricians, impossible adventures, abound to an extent that dofins collewtins." (. Ahorigimal American Aulhors. p. 10). An important branch of the "humbun of the young l'eruvian nobility was to listen to the chronicles of the amantas ant they wore also taurht to spak their own language with purity and elegance. (Preswollis History of the Comquest of Prom. Book 1, whap. 4). That some of the American languages When starpmible of all the phase of style has been already shewn, and they doubtless improver from ernemation to ermeration, as the teachers, chiefs and orators brought out their wedlent by patice and a well traned ear. Mr. Strong says that, in seeking morthWard the lingual tram of A\%ter migration, the fact has been too often forgotten that the Mexisan tomerne at the time of the Consuest had been modified by centuries of cultivation. Su l'arusian prodmetion has been published, Dr. Brinton says, but there are Quichua mamuッipt anowible. Of thest the most important is a treatise on "The errors, false (iods, wursations amd diaholical lites of the provinces of the Inca Empire." It has been, in pard, (ramsated lye Dr. F. WeAvila and the fragment has been done into English by Mr. Clament: Markhan for the Hakluyt society. Another Quichua manuscript is the "Adver"Mrias: of bon Luis In an a member of the royal line, but its fate is unknown. That the "duated spakers of the Quichna tonge were aceustomed to historical or narrative composition we learn from l'rescott. "Amalists," he says, "were appointed in the principal "ommmitis whose business it was to record the most important events that occurred in thim. Uther funtionaries of a higher character, nsually the amantas, were entrusted with the history of the empire and were selected to chronicle the great deeds of the reigning lnea or his ancestors. The narrative thas concocted could be commmicated only by oral fradition ; but the quimes served the ehronicler to arrange the incidents with method and to

[^44]refresh his memory." (History of the Conquest of Peru, Book I, chap. 4). After Professor Max Müller's testimony as to the oral transmission of the Vedas, this mode of composition need not be wondered at. Among a people so conditioned and trained, the exercise of their mnemonic and oratorical powers in the council and in the drama would becone second nature. The eloquence of the native races of the North is well known. With them the warrior was not necessarily the man of few words that he customarily is among the practical Anglo-Saxons. Like the Greek and the Roman, he could talk as well as fight and defend his cause in the form as well as in the field. In the IIon. A. Morris's "Treaties of Canada with the Indians of Manitoba," we may see how apt and lawyerlike are the questions, how subtle the arguments, how effective ocasionally the metaphors, of the Indians of our own North-West. The wonderful tact of some of the chiefs in carrying on the negociations for the N. W. Angle Treaty is esperially emphasized. The demeanom of the Indians on that occasion is thas deseribed: "Whether the demames put forward were granted by the governor or not, there was no petubume, no ill-foeling evinced; but every thing was done with a calm dignity that was phasing to behold and which might be copied with advantage by more pretentions deliberative assemblies." (The Treaties of Canada, etc., p. 76). In reminding the governor of the retentiviness of the native memory, one of the chiefs said: "You must remember that our heats and our brains are like papar; we never forget." (The Treaties, efr., p. 68). In the monarehies of Peru, Central America and Mexico liberty of speech would not be so widely enjoyed as under the more free-and-easy tribal rule of the North. But still they doubtless harl their orators, and, at the outset of the tragic invasion, which robbed prince and peasant of national independence for ever, we may see, from the recorded interviews lnetwen the new-comers and the chosen spokesmen of their sorereign, with what art the latter conducted the negotiations.

But it was in the form of the drama especially that the inter-tropical races dipplayed their gifts of speech and action. "The Peruvian pieces," says Pressott. "aspired to the rank of dramatic compositions, sustained by character and dialogue. fomded sometimes on themes of tragic interest and at others on such as, from their light and social whacter, belonged to comedy." Thongh rude the execution may hare been, the historian points out that the mere conception of such an amnsement distinguished the leruvians from those rougher races whose pastime was war. In his Sorith critica dei Teatri, Signorelli devotes a chapter to the native American theatre. He does not so much credit the Pernvians, however, with dramatic skill as with taste for the divine art of poetry; and he praises a poetical composition or haravec, preserved by Garcilasso de la Vega, as muriched with just and vivid images. He acknowledges, at the same time, the existence ol a certain kind of drama in Pern, which had its most effective representation at the great festival of the sun at Cuzeo which Marmontel has made so prominent a feature in "Les Ineas." Before long we are likely to have a triple treat of Perurian poetry. Dr. Brinton has just now in preparation an American anthology which will be a characteristic "collection of the songs, chants and metrical compositions of the Indians, designed to display the emotional and imaginative powers of the race and the prosody of their languages." He also informs us, in his "Aboriginal American Authors," that Señor Gavino Pacheco Zegarra is about to publish a Trésor de la Langue des Ineas, which will contain many of the Peruvian yaravis or elegiac chants and that Mr. Clements Markham collected some twenty sougs
of ancient date during his travels in South America which he may be expected to give to the world before long. "What would not one now give," says this last writer, in his iutroduction to the Ollenta drama (as quoted by Dr. Brinton), "for those precions relies of Inca civilization which the half-breed lad (Garcilasso de la Vega) allowed to slip from his memory!" The drama just mentioned is the most famous of such compositions in the Quichua tongue. It treats of love and war, has an ingenious and eventful plot, and the dignity of the chicf characters and incidents is relieved by the jokes of some of the minor personages. (Brinton: Aboriginal American Authors, p. 56). It is rather singular that Senor Sinta Ama Mery, whose article in the Revue du Monde Latin on Les aborigènes du Brésil I have already mentioned, should, in a description of the porasses or pantomimic dances of the Brazilian Intians, have almost repeated in substance what Signorelli says of the sacred ballats of the Peruvians. "All the sutferings of hman life," says M. Mery, "all the treat domb of their ancestors, forced marthes, struggles, persecutions, captivity, the ancuish of defeat, are reproduced in those mimic dances, which are, in fact, dramas of the most thrilling charactor."

If the hetterhsin lemwians could be said to have a literature of their own, with stronerre rasom may suth an honowr be ascribed to the civilized peoples of Yucatan and Maxio. I have already spoken of their books in symbolic writing. Some of the Spanish writere of a past alqe quite complacently confess the destruction of all such volumes that they would and possession of on the ground ol idolatry or immorality ; and in some cases they sinwerely belinend that they were doing right. But the loss is irreparable and we "amot hess the memory of those who cansed it. "The Maya Chronicles," edited by Dr. Brimm, the fira voluma of his Library of Aboriginal American Literature, contans the five chronickes in th. Maya or Yuateque language composed shortly after the Conquest and carrying back the history of the country many centuries. These are supplemented by a history of the "onqu'st written by a Maya chief in 1562. This is one of the most important of the contributions to the aboriginal literature of America that have as yet seen the light. Apart from its ereat historical interest, enhanced by Dr. Brinton's excellent notes, it atford an opportunity of contrasting the genius of the Maya with that of the Azte or Mexitan language.

Allied with the Maya is the Quiché, in which there is quite a respectable literature. The Popul Vuh or National llook, of which a translation was published in French by Athe lirasseut de Bourbourg, is a surprising production, the story of the hero being of thrilling interest and the language sometimes of remarkable beauty. The story of Votan belongs to the Trendals, another branch of the Maya race. It was written down in the 17th century by a Christianized native whose manuscript afterwards came into the hands, first of Bishop Nune\% de la Vega and secondly of Ramon Ordonez y Aguiar who showed it to Cabrera in 1790. But where it is now is unknown. The Quiche people had also their dramas-the most interesting being that of Rabinal Achi-a story of successful andacity made unexpectedly tragic by the death of the forceful hero, virtnally by his own act.

The "Annals of Chauhtitlan" is a Nahua or Mexican manuseript which was first translated by Faustino Chimalpopocatl Galicia, after whom Abbé Brasseur de Bourbourg christened it the Codex Chimalpopoca. Dr. Brinton has included it also in his Jibrary.

Boturini gave a list of some forty or fifty Nahua or Aztec manuseripts, including a Cronuca Mexicana giving the history of the nation from the year 1068 to 1597.

What most interests us in the Nahua, as well as in the Maya literature, is its poetry. Some Maya poems are preserved in the book of Chilan Balam and in the Popul Vuh, and the "Maya Prophecies" contain some mystic songs of the priests of Kukulcan and Itzamna. Dr. Brinton, who gives this information, adds that the modern Maya lends itself readily to poctic uses, as verses in his possession by Garcià y Garcià, the Yucatan historian, abundantly show. "The Comedy Ballet of Güegiuence," in the Nahna-Spanish dialect of Guatemala, an edition of which by Dr. Brinton is to form a volume of his Library, is wortly of mention as well for that reason as for the vivid indications that it gives of a sense of the ludicrons in the native mind. For information regarding it and also regarding the other forms of Mexican, Central and South Ancrican literature, the didactic, the oratorical, the religious, etc., I must refer to Dr. Brinton's "Aboriginal American Anthors." I will now take leave of those ancient and mysterious civilizations to roam for a while with northern sachems over more familiar ground.

No native northern poet has won such praise as that which was elicited from the pen of Montaigne by the refrain of a Tupi song. (Essais, Livre I, ch. 30, p. 321). Some of the northern tribes have, nevertheless, some share of literary ability. The Jesuit, Father Lafitau, gives them credit for sound judgment, lively inagination, ready coneeption and wonderful memory, though he does not deny that they have serious faults. If less civilized than the races of Mexico and Peru, they had, at least, the germs of civilization which, in more favorable circumstances, might have fertilized and borne good fruit. Statesmanship and diplomacy-of a rude kind, indeed, but yet capable, now and then, of coping with the wisdom of trained European politicians-were displayed by several of the chiofs. Their schemes of government, thongh primitive, were snited to their condition. The framers of the Iroquois and other federations must have been men of skill and foresight. In war it was natural that they should distinguish themselves, as it was the main ocenpation of their lives. In arts and mannfactures they had made the first steps and some of them showed considerable invention and taste. If care in the choice of language, the exercise of logic or of imagination, as the occasion called for close reasoning or appeal to the emotions, and a corresponding eloquence for which the listeners seldom failed to show due appreciation, be any token of literary faculty, some of the northern nations were certainly not destitute of it. Some writers ascribe to the Celt the possession of artistic gifts in excess of either the Teutons or the Latins. But the Celts were preceded by an carlier race, of which the Basques are a remnant, with which it is more than likely that they intermarried, thus gaining some of the qualities by which they have ever been characterized. Whether the gift of ready speech was one of these qualities it is impossible to say; but stranger things have happened. It is singular that the Basque is the only langrage of the old world which is marked by peculiarities of strncture that differentiate it and the American tongues from the rest of human speech. Does that argue kinship in remote times, or is it due to inflnences in the evolution of language as yet undiscovered, which befel these tongues-the American and the Basque-and these alone? It would be strange, if it should turn ont that the race, of which some refugees found a permanent shelter in Pyrenean recesses, while others, as Gibeonites at first, as equals
afterwards, contributed to the making of the Celts and thus to European civilization, should be of the same stock with the red man found on this continent ages after by the modified descendants of those ancient half-breeds. It is, at least, not unworthy of remark that the Basque was an habitual visitor to these shores long, we camot say how long, before Jacques Cartier set foot on them. Some have eren found in the language of the maritime tribes traces of more than a mere trading intercourse between the Christian Basque fishermen and the pagan Indians. However we may try to account for the oratorical genius of some of the Indians, there is ample proof of its existence. Nor is it in comection with that point alone that we might justly ask to include our aborigines among Dr. Boyd's "people of whom more could have been made." There seems to be little doubt, indeed, that the Indians, accosted by Europeans at and immediately after the time of Columbns, were generally of a kindlier, more humane, and more tractable character than their desemdants have come to be alter some generations of experience of their uninvited gursis. Wo may well ask ourselves what they might have become, had the explorers and colonists been inspired by purer motives and more generous sentiments. If we find them, and if some writms delight to 'qualify them, as treacherous, blood-thirsty, as well as ignorant and superatitions, it ought not to be forgotten that the example set them and the tratment which they reacived, were not always such as to improve their minds or morals or to win them over to the usages of "ivilization. Civilization to them was, in many instances, presented in the most odions form of selfishness, rapacity, and all injustive.

What they have been capable of growing to mander the favourable anspices of upright dealing and wisw training, the reeords of "ivilized and partially civilized Indians testify. Of lhair skill in warfare 1 newl not speak. Some of their chiefs, had they served in the armins of "ivilized mations, would have had their place on the rolls of fame as great grenerals or compurors. With more pleasure I recall their achievements in the arts of pance. They hare lurnished inventors, artists, physicians, lawyers, preachers. As to their litwry fandy we find its germ in the legend of the tribe, the story-telling of the wigwann, and tho sprech-making of the council. "Multitndes of poetical tales and legends," writus sir. W. Mawson, in "Fossil Man," "have been written down from the lips of old ludian men and women." and he mentions as a specimen an unpublished myth, collected by Mr. Rand among the Micmans mitled "Rushing Wind and Rolling Wave." This characteristic has been utilized by the greatest poet and the greatest novelist of America in their most truly American prodnctions. When they wrote the works in question, the scientific study of the American races had hardly well begun. The organization of the Bureau of Jithnology at Washington and of the "Congrès des Américanistes" in Europe is pleasing evidence of the enlightened and fruitful interest taken in the subject in recent years. Some investigators have endured hardships and faced perils which can only be paralleled in the annals of missionary self-derotion. It would be strange if all this labour did not yield some important facts, if some fresh light were not shed on the origin, habits, traditions, and modes of thought and speech of the Indian nations. Even Indians themselves have engaged in the same researeh. Peter Dooyentate Clark wrote a book on the "Origin and Traditional History of the Wyandots," which was published in Toronto in 1870. A later contribution by an Indian to Indian history is the "History of the Six Nations" by chief Elias Johuson, of the Tuscaroras. An earlier work on the same confederacy was written
by David Cusick, also a Tuscarora. These works were written in English, but a production has just been given to the world, under the editorial care of Mr. Horatio Hale, which is the most speaking testimony to the literary ability of the race.

Of all the tribes that peopled this continent at the time when the colonial annals of Canada began, there is no group in which we have so much canse to feel an interest as the Huron-Iroquois federation. "In the great valley of the St. Lawrence," writes Dr. Wilson, "at the period of earliest European contact with its native tribes, we find this confederacy of Indian Nations in the most primitive condition as to all knowledge of progressive arts; but full of energy, delighting in military enterprise and amply rndowed with the qualities requisite for effecting permanent conquests over a "ivilized but unwarlike people. Nor did the primitive arts of the Iroqnois prevent the development ol incipient germs of eivilization amongst them. Agrienlture was systematically practised; and their famous league, wisely established, and maintained unbroken through very diversified periods of their history, exhibits a people advancing in many ways towards the initiation of a self-originated civilization, when the intrusion of Europeans abruptly arrested its progress, and brought them in contact with elements of foreign progress pregnant for them only with the sonrees of degradation and final destruction." It would take too long, in a paper like this, to tell by what events and motives such a league in that distant day was brought to pass. The whole story is related by Mr. Irale in the "Iroqnois Book of Rites," the second volume in Dr. Brinton's Library of Aboriginal American Literature. It may suffice to say that, when the Muron-Iroquois first became known to Europeans, they occupied the valley and uplands of what is now northem New York, in the region that stretches westward from the head waters of the Hudson to the Genesee. In the same order they succeeded each other under the names of the Caniengas (or Mohawks, the Oncidas, the Onondagas, the Cayngas and the Senecas. Subsecnently (about 1715), the Tuscaroras of the Roanoke valley were added, thus making six allied mations, instead of five. Though living so far south, the Tusearoras were of the sume stock as the nations with which they united. That stock primiurly included the Wyandots or Hurons, the Attiwandaronks, the Eries or Neutrals, and the Conestowas or Andastes, besides the original constituents of the league. That in the course of time the timbers of their "long house" should have been riven apart and the severed portions have become hostile to each other, is not to be wondered at. Such breaches occur in civilization as well as barbarism. But longa est injuria; longe ambages. Enough to say that a common danger from the powerful Mohicans prompted the eastern Caniengas and Oneidas to unite. The western Senecas and Cayugas were also drawn together by a commou fear of Atotarho, the tyrant of the Onondagas. In this last community, however, it was destined that the deliverer should arise. We know him chiefly as a legendary personage. Mr. Hale claims for him a complete flesh-and-blood reality. At all events, Hiawatha (who is also known by less musical and less pronounceable names), after long thinking, devised a plan by which his own and the neighbour nations should be permanently protected against outside and inside perils. The machinations of Atotarho proved too much for him among the Onondagas. So he passed beyond the limits of his cantom and people, and made his way to the dwellers on the Mohawk. There his wisdom and eloquence prevailed and ultimately, by a course of negotiation which I cannot now linger to describe, the confederacy was formed. But, as in nearly all such cases, success was the issue of compro-
mise. Not the wise and gentle Hiawatha, but the self-willed and unserupulons Atotarho, was made the chief of the confederacy. His badness and Hiawatha's goodness entered the region of fable, but the spirit of the league, in the formation of which they were prominent actors, survived for centuries.

But what has this to do with a native literature? It happens that the most authentic and most interesting of the evidences of literary ability among the North American Indians is found in the "Book of Rites", which Mr. Hale has pablished in full with a literal translation and copious comments. The English missionaries taught their Indian pupils to write in their own language. As early as 1714, the Anglican Prayer-book was translated into the Mohawk tongue. The council chiefs saw that it would be well to preserve in the same way their own traditions and ceremonies. One of them, David, a friend of lBrant, perhaps David of Schoharie, who fought with Sir W. Johnson against the French in 175斤, undertook the task. In 1832, Chief Johnson went to visit another Whef, then ill of cholera, and the aged host told his visitor of an important book that he had in his possession and surgested that he should copy it. .Johuson did so, only omitting, as he afterwards regretted, what referred to the later history of the Six Nations after their removal to C'anada. Soon after, the old chief's house was burned and the volume prished with it. A second copy Mr. Male subsequently obtained from Chief John burk. A further portion, or supplement of the book, was found with a small remnant of the onee powerful Onomdagas, near Syracuse, New York.

In his translation, Mr. Ifale had the assistance of the two chiefs Johnson, father and son. of the Rer. Mr. Bearfoot, Onondaga by birth, Canienga by adoption, an educated man ind the pastor of a white Anglican congregation. To be estimated at its true ethnonologic and litcrary value, the "Book of lites" should be read throughout, with Mr. Hale's. introduction and comments. Its full name is "The Ancient Rites of the Condoling Council." This council held a peenliarly high rank in the Iroquois political system. "Amone the many commils." says Mr. Hale, " civil and religions, tribal and federal, in which the public spirit and social temper of the Iroquois found their most congenial and most popular mode of display, the Yondemase, or Condoling Council, held the highest rank. It was, in a certain way, typical of the whole, and comprised the elements of all the other comeils." (The Iroquois Brole of Rites, edited by Horatio Hale, p. 481). At it took place, not only a public lamentation, but the great elective act of the league. It was, therefore, like a state funeral and a presidential election combined. The summoned chiefs approaching the place of meeting, the opening formalities began, "at the edge of the woods," (which circumstance gave its name to the preliminary ceremony), where a fire was kindled, the calnmet lit, and an address of welcome pronounced. The greeting touches on the sad loss sustained, on sorrow for the dead, on the need of union, and on the dangers of the journey,-" thorny ways, falling trees and wild beasts lying in ambush." The list of nations is gone over, with their towns and various clans. Then there is a hymn, bidding hail to the leagne, the kindred, the warriors, and the women, and ending with the words, "My forefathers, hearken to them!".This, Mr. Hale terms the national anthem of the Iroquois. All through the condolence occurs the contrast between the great and wise of the past and their degenerate saccessors. It closes with a sort of chanted litany to those who were "rulers and founders." The following passage from it is arranged for singing and will give some notion of the spirit and poetic tenor of the dirge :

"Woo! Woe! Hearken ye!
We are diminished! Woe! Woo! The cleared land has become a thicket Woo! Woe!
They are in their graves They who established it, The great League ! Yet they deciared It should endureThe great league ! Woo! Their work has grown old! Woo! Thus are we become miserable!"

The Onondaga document is similar in spirit. It begins with the speech of the sympathizer: "I come to your door where you are mourning in great darkness, prostrate with grief," and closes with the choice of a successor to the dead chief. Such is "The liook of Rites," which, Mr. Hale thinks, affords unquestionable evidence of the character both of those who composed it and of those who received it. For traditions, gathered by Enropeans from the lips of Indians, for speeches reported to have been delivered at council or negotiation, we are at no loss, but "The Book of Rites" is the only instance extant of an Indian production, of a time preceding the discovery of America, composed in an Indian language and throwing light on Indian history and character. Mr. Hale's work is made exceedingly valuable by an introduction, in ten chapters, treating, in surcession. of the Huron-Iroquois nations, the league, and its founders and laws, and the character, policy language and customs of the federate tribes.

Of books written by Indians in English, a few have been already mentioned and, in dealing with the nations of Central and Sonth America, we have seen that they also used the language of their Spanish conquerors as a medium for literary composition. Many others, written in these and other tongues, might be mentioned, which are, at least, sufficient to prove that the native races are not quite devoid of the literary instinct, thongh, from the force of circumstances, their oratorical powers were more developed. It is not generally known, perhaps, that Chief Joseph has written a history of his Oregon campaign in "Nez Percé" hieroglyphics-a work which is said to have brought him more renown among his people than his warlike exploits. No grander-looking Indian, it is said, has appeared since the days of Black Hawk. The present chief of the Cherokees is, like not a few others of the civilized chiefs, a minister of the Gospel, and preaches eloquent sermons in his own tongue. Poetic talent has been by no means wanting among the northern Indians. Some of their traditions and folk-tales are imbued with the true spirit of poesy, though no chief that I am aware of has, like the sad sovereign of Tezeuco, left seventy odes as the fruit of his devotion to the muse. If the best of the scattered productions of northern genius were, however, collected and properly edited, they might form no contemptible anthology. Those who are interested in the subject will eagerly await the publication of Dr. Brinton's promised work, in which the North will, doubtless, have due place, as well as the selections now in preparation by the Burean of Ethnology at Washington. When they appear, it may be seen that the grand and beautiful scenery of the

New World was not without its creative influence on the wild children of the forest and the plain, as well as on the more civilized communities of the tropics. Can I better supplement this hope than by a reference to a Caughnawaga poetess, Miss Emily Martin, a mannseript volume of whose poems was shown at the Indian exhibition of September, 1883? Some of her poems display poetic feeling and mastery of language-the English language. It will have been noted, indeed, that it is in another tongue than their own that most of the literary Indians of America have written. Some of them have written even in Latin, and there are instances of respectable Indian linguists. Although, as long as a large proportion of those who speak them are isolated from the rest of the population, there is little lear of the native tongnes growing into disuse, it is more than likely that, as civilization alvances, the number of persons speaking any Indian tongue will diminish. In the Indian Territory of the United States, in the schools of the more cultivated nations, the other bran hes of education are studied at the expense of the native languages. Miss Jenness, writing in the Alluntir Mombly for April, 1879, mentions the case of a young ('homome lady, a teacher of langnages, philosophy and mathematics, who confessed to haring understond only two words of a ('herokee sermon. Intermarriage, of course, tends 10 prohture a likerenult. Miss. Jemess sees therein the great solution of the Indian question, as revards the wivized tribes, and it may prove the solution not only of the Indian but of many questions which now look diffenlt. It is possible, therefore, that some of the "xisting languages may in time (some of them, perhaps, before very long) wholly disappear, as others hav alrady done. But to allow any of them thus to vanish, withont some effort to diswover whatever tradition and comparative philology may be able to reval woneming them, wonld beaneglect only less blameworthy than the destruction of the historical monnments of Central America and Mexico.

It has, I think, bum brought out by manifold evidence that some of these languages are not unfit for liturary nses, and that those who spoke them were not without a cons--iom-ness of their strugth and beanty and comprehensive force of expression. Such qathered testimony, of which a small share has been presented in this paper, adds much to their interest, and suggests new inducements for their critical study as important members of the great family of hmman speech. A grood deal has been done in that way during the last forty or fifty, and more especially during the last fifteen or twenty, years. Since Mr. S'rephens bade adien to the ruins of those cities of Yucatan, which he had done so much to bring to light, a new ara has begm for American archæology, and its philology has not been forgotten. But notwithstanding all the conquests of recent years, there are still many provinces of knowledge that Americanists have not yet securely won. New vistas of investigation, new paths of research which inquirers, judicious and persevering, may follow out to fruitful conclusions, have been opened up, and from every such path numerous by-paths branch off; which may offer prizes of ascertained truth to the trained eye that looks for "good in everything." In the true sense, though nearly four centuries have passed away since Columbus caught the first glad glimpse of the "dashing silverflashing surges of St. Salvador," America remains yet to be discovered. For, until its people and their languages have been traced home to their lost kindred in the far-off prehistoric past, the work so valiantly begun by that great explorer cannot be pronounced completed.

III. - The Poets of Canada.

By John Lesperance.

(Read May 23, 1884.)

Although it must be admitted as a fundamental principle that a colony cannot have a literature of its own properly so called, inasmuch as literature, to be distinctive, requires the germ of individuality, and individuality, in its collective meaning, is only another term for the outcome of a national sentiment; yet I apprehend that, as I have had ocrasion to show in other places, a partial exception shonld be made in farour of Camada. Onr country differs from any other colony of the British Empire in its origin, geographical position, social and political nature, and its tendencies. Paradoxical as it may appar, the very heterogeneonsuess of our population-divided on the broadest lines of race, creed and tongue-has been the mainspring of a certain national unity clearly observable anong Canadians, and much of our mental and moral spontancity can be traced to a gencrous, stimulating spirit of competition. The result is that, coming direetly to the partinular subject which I have in view in this paper, we may justly lay some claim, at least, to a literature of our own in the sense that it is Canadian, as strictly distinct from English, French, or American. And in the various branches of this literature, the most distinctive of all is the department of verse. The ground being thus cleared, I have thought that I could choose nothing more interesting, nor more in accordance with the nature and duties of the English Section of the Royal Society than a brief sturly of the Pocts of Canada. The material naturally divides itself into two parts, the French poets and the English poets, and by right of priority the former must come first under notice.

I.

Frencil Poets.

In the summary review of the Literature of French Canada, which I had the honour of submitting to you at the general meeting of last year, I sketched the prominent position held by the French poets among their colleagues who cultivated the other fields of oratory, history, romance, polemics, essays and journalism. I might have added that their position was also the most ancient, in accordance with the general principle that all literatures have their beginnings in song. The first regular and consecutive poen that we find dates back as far as 1732, when Jean Taché published his Tableau de la mer, written in wellsounding Alexandrines. Taché was a versatile man,-notary, tradesman and shipper,and his descendants, inheritors of an honoured name, have been faithful to his traditions.

At about the same time there appeared a serio-comic poem, modelled somewhat on Boilean's Lutrin, and treating of certain ecclesiastical controversies and troubles that occurred in 1728. The author was Abbé Etienne Marchand, curé of Boucherville from 1732 to 1774 , and, as we shall see later on, he too can boast of a namesake who has successfully cultivated the comic muse. After the publication of this work, there is an interval of silence covering exactly one hundred years. This was the momentous epoch of Indian wars, of the conquest, of the American invasion, and of the bitter struggle for constitutional rights- that raged betwixt the victors and the vanquished. Epigrams, satires and political dithyrambs abound, chiefly after the establishment of the journal, Le Canadien, in 180t; but nothing has come down to us of that serene character which peace and prosperity allone can proluce. It was only in 1830 that a volume of epistles and miscellaneous porms was put forth by Michel Bibaud, who may be termed the father of French Canadian ferse, as he was the first of French Canadian historians. The work is very unequal, as are all the other produetions of this eccentrie writer, but it is not at all clevoid of interest.
singularly dongh, it was another historian who followed in his footsteps, and Garnomis superior talents at onte gave a form and inspiration to the national poetry. All the compositions of this giftel min, the first of which appeared in 1835, are of a high wrder of merit, hut I shall mention only his Dernier IHuron, because it contains an image of the most original and pathetic beaty. The poet represents the Last of the Hurons stanting on a hillork and marshalling the phantoms of his lost warriors. Suddenly, he fancies that a shadow pasmes before him, and the bones of the buried braves seem to rattle muker his feet, and the Indian blood bubbles in his veins. But, alas! it was all a mockery; at the fime of the hill he saw only the seythe of the mower :

> "P'erfite illusion! Au pied de la collino
> ("est l'acier du faucheur!"

It is an exquisite contrast. Garneau derived the idea of his poem from a painting by a native artist, llamondon of Tariolin, the last of the pure-blood of the Hurons of Lorette. To this picture was awarded the first prize in a competition established by the Literary and Ilistorical society of Quebec, in 1838, and it was purchased by Lord Durham, at that time governor-general.

The biographer of Garmeau may be regarded as his poetical successor. M. Chaureau, the distinguished l'resident of the Royal Society, has not produced much verse, although I learn with pleasure that he is at present bestowing his leisure upon an elaborate poem of a religions character : but the little that we have is worthy of himself, and I can assign no higher praise. His ode (1861) to Donnacona, the chief of a Quebee tribe, treacherously captured and conveyed to France by Jacques Cartier, is fall of spirit, and the first stanza presents a noble picture:

[^45]Garnean and Chanvean bring us down to 1850 , when the greatest of Freuch-Canadian poets steps upon the scene and opens the galaxy that has gone on multiplying and brightening until our day. Octave Cremazie, born at Quebec in 1830, followed the calling of a bookseller. His poems appeared between 1852 and 1862 , in which year he was involved in financial ruin and took refuge in France, where he died of a broken heart in 1878. In this place, last year, I expressed the hope, that a national monument wonld be set up to the memory of Crémazie in the shape of a complete edition of his works. I am pleased to say that my hope has been fulfilled by the publication at Montreal of a splendid volume, which every Canadian lover of letters shonld have on his book-shelves. The character of Crémazie's inspiration is sublimity. His thought soars on broad and sweeping pinions; his images are grand and salient; and, when he strikes the minor key of national regret and disappointment, the effect is deeply pathetic. I an convinced that, if his life had not been blasted, and he had continued to write in freedom of mind and amid the associations of his childhood and native land, he would have created poems not unworthy to rank with those of the best writers of contemporary France. The "Chanut of the Old Soldier," composed on the arrival, in 1855, of the French corvette, La Capricieuse, sent ont by Napoleon III to open commercial relations between France and Canada, is simply a masterpiece. The blind and tottering veteran, hearing the sound of camon on the river, and fondly imagining that it heralded the return of the French fleet, is led to the ramparts by his son, and breaks ont in a thrilling lamentation on being told that it is the Red Cross of England streaming from the mizzen. But his confidence remans mashaken, and day after day he repairs to the same spot, in the hope that his old companions in arms will yet come back from over the sea. The time arrives at last when he is no longer scen on the heights, and we are told that he has died in the arms of his son, murmuring: "They will return, but I shall not be there." Then we have the poet's outburst:-

> "Tu l'as dit, ô vioillard! La France est rovenuo! Au sommet de nos murs, voyez-vous dans la nuo, Son noble pavillon déroulor sa splondeur? Ah! ce jour glorieux, où los Français, nos frères, Sont venus pour nous voir, du pays de nos pères, Sera le plus aimé de nos jours do bonhour."

And a shadow is seen on the wall, wavering in the breeze. It is the old soldier standing at his post to assist at the glorious scene. Nor he alone.

> "Tous les vieux Canadiens moissonnés par la guorre, Abandonnent aussi leur couche funérairo, Pour voir réaliser leurs rêves les plus beaux. Et puis on entendit, le soir, sur chaque rive, Se mêler, au doux bruit de l'onde fugitive, Un long chant de bonbeur qui sortait des tombeaux."

Equally powerful and majestic is Le Drapeau de Carillon, an ode addressed to the lily-flag of Royal France which floated on the main bastion of Fort Carillon, or Ticonderoga, on the day when Montealm achieved a brilliant victory over Abercrombie and his gallant High-
landers. That flag is religiously preserved at Quebee by M. Baillairgé, who is expected to display it in the procession of St. Jean Baptiste Day, which will take place in Montreal on the 24th of June. Superior even to the two pieces just mentioned is the Promenade des Trmis Mois, a weird fantasy, wherein the dialogue between the worm and the corpse is replete with terrible thoughts of death and the dread Hereafter.

Next in merit to Crimazie, and haud longo intervallo, is M. Fréchette, President for the year of the French Section of the Royal Society. Of all Canadian poets he is the best known to Encrlish readers, becanse of his adequate knowledge of our language, his social relations with our people, and the circumstance of his having received the Mouthyou awarl of the Franch Academy, an honour somewhat akin to the Newdegate Prize. M. Froment, is a very carelul writer, chiselling his verses according to the most approved Horatian ruln. 'The llow ors of his youthful genius were gathered in a small rolume, enthlad Hes laisis. whith at once established his reputation. This was followed by Pel Mel, : work of rim hur promisu and riper fruit. The equipment with which he presented hims.lf Indior the Jirench Acaldmy was two little collections appropriately called Fleurs Borenles and Oiseant de Netire. He has written constantly ever since, and I happen 10 know that he hat ready two important rolumes, containing a sories of narrative poems desiend to endenate the prinipal wents of the history of Canada from the begiming of the Colons. The pon "xichs in this species of composition and from the few examples latn! puthinhel, such as " 18 - 0 ." Notre Histoire, Le Drapean Funtome, and others, we mas "xpet the mon valuable contributions yot made to the literature of French Canada. M. Fredneth phay with shems on many notes. His verse, always perfect in form, beathes strengh aml tembernes. while the thought is always thoroughly limpid. He is a manar of the ammet. in which liame some of his prettiest conceits are enshrined. Among his lyrical chlorts. IA Diromerte dm Mississippi is, perhaps, the best, and I think that he is himwli of than opinion. Ilis vision ol the romantic figures that passed along the mighty river in the heros. days ol diswory and exploration is very poetical, and the contrast between the andint widumes and the progress of today is set forth with power. Victor Hago could not has written more splended strophes than these :-
> "Oui, denx vierle's ont fui. La solitude vierge Xíst plus là: Tha prorrès le flot montant submergo Ies vestiges derniors dun passé qui finit.
> Où le désere dormait grandit la métropolo;
> Fit le flenve asservi courbo sa large épaule Sons l'arche aux piliers de granit.

> 1'lus do furèts sans fin ; la vapeur les sillonne !
> L'astre des jours. nouveaux sur tous les points rayonne;
> Lienfaut de la naturo est évangelisé ;
> La soc du laboureur fertilise la plaine,
> Ft le surplus doré lo sa gerbe trop pleine
> Nourrit le vieux mondo épnise."
M. Pamphile Lemay now deserves our attention. In 1865 he published his Essais Poetiques, which included his remarkable translation of Longfellow's Evangeline, revised and re-edited by him in 1870. This work is sufficient of itself to establish any writer's repatation. In 1867 appeared La Déeouverte du Canada, a poem which was crowned by

Laval University and further honoured by a gold medal. In 1869, his Hymne National deserved another gold medal. In 1875, Les Vengeances saw the light. These poems are all more or less lengthy, but in 1879 M. Lemay collected his shorter and more fugitive pieces in a book, entitled Une Gerbe. He has since given forth a volume of Fubles, replete with a quiet philosophy. The qualities of this poet's talent are grace and tenderness. His versification is always correct, his diction chastened, and his imagery well balanced and refined. He has an eye for Nature, and is particularly happy in the treatment of domestie and religious subjects.
M. Benjamin Sulte has, of late, neglected the Muse in favour of historical research, but his single volume, Les Laurentiennes, is quite sufficient to ensure him a prominent place among the French poets. He excels in song writing, and his work has a distinctly mational stamp from the circumstance that he gives expression to the thoughts and aspirations of the people. Among his best efforts I may mention La Putineuse, Les Fonduteurs and La Clorlue.

It is a curious instance of the blending of races in the Province of (aneber, that one of the rising young French poets should bear the thoroughly English namb of Willian Chapman. His contribution is denominated Les Quebecquoises, which, although rather juvenile here and there, even in the author's own estimation, is a prodnction full of possibilities and promise. M. Chapman is a conscientions, painstaking writer, ats serere to himself as any critic could be, and these qualities, supporting undoubtedly original talents, must secure the young poet a brilliant future. I would particularly wall attention to his odes on matters of historical and national interest, sulh as those to Dollurd des Ormeaux, La Bataille de Ste. Foye, Chateauguay and Carlieur.

Another poet with a foreign name, a good round hrish name, is James Domelly. From a line in his impassioned address to Ireland, I shonld fancy he was born in the Emerald Isle. If so, his mastery of the French langmage, and his skilful handling of the intricacies of French versification, are remarkable. M. Donnelly has the poetic instinct, and it is a pity that he does not produce more.

Several clergymen figure among the poets of French Camada, but I have roon for the mention of only one, Abbé Gingras, curé of St. Edouard de Lotbiniere, in the district of Quebec. The very title of his little volume is poetic-An Foyer de mon Presbytere. The Abbé writes rapidly and is not sufficiently addicted to the use of the file, but he has a fresh, unhackneyed turn of mind and his sentiments are trnly clevated. As might be expected of a celibate priest, he treats of subjects that are ont of the common, and is debarred from touching on that tender passion which is the most poetioal outcome of the human heart. His work has, therefore, the enforced advantage of novelty of which he makes abundant use. His thoughts on the churchyard and on a child dying without baptism are original and awe-inspiring.
M. Félix Marchand, fellow of the Royal Society and member of the Provincial Parliament for the county of St. Johns, has devoted himself almost exclusively to comedy, both in prose and verse. Of the first I need not speak, except to say that his work evinces a knowledge of human nature, a gift of gentle satire, and a sense of sly humonr, which readily raise it out of the groove of the commonplace. These qualities are heightened when presented in metrical form. Les Faux Brillants is a comedy in five acts, and Un Bonheur en attire un Autre is another in one act. Both of them are very happy conceptions, and the
ravelling and unravelling of the amusing plot in both cases display an amonnt of technical skill rarely to be met with in this very difficult kind of composition.

The number of minor poets, whose works are more or less ephemeral and cast in varying degrees of excellence, is very large, and the bare enumeration would fill a lengthy paragraph. M. Sulte has comnted no less than 175 names. These writings were originally consigned to the columns of newspapers or the pages of magazines, and have never been collected except on one or two occasions. Among the writers of this class, I may cite Eustache l'rudhomme, formerly a notary of Montreal, who published many elegant pieces some twenty years ago, but has since gone out of sight. Judge Routhier, one of the best prose writers in this province, has also published a number of poems, the Ode on Canada in the nineteenth century being specially worthy of note. J. Lenoir, of Montreal, was cut off in his prime, just as his talent was maturing. His apostrophe to the Chureh of Notre Dame of Montreal is set in broad lines. Then we have Fiset of Quebec, Poisson of Arthabaska, Alfred Garncan of Ottawa, son of the poet and historian, Achille Frechette of Ottawa, and Evanturel of Qneber.

The tine and space at my command do not allow of any further extension of this study. My paper has been essintially revisional and not critical, and hence I have been spared the labour of finting fant. But even if I had gone into analysis, I should still hold that the names which I have cited are those of genuine poets, who have published works of rabl merit, many of them destined to live as long as the French language survives in America, and as long as the liench Canadians preserve their patriotism and their intullectual antonomy. All the clements have been touehed upon in their poetry, their history, anlivened by romance and consecrated by afllietion ; their nationality, maintamed in spite of all the disinteqrating influences of conquest; their religion, homely and primitive as in the Brittany and Nomandy of the Middle Ages; their social life, adorned by courtesy, inspirited by cheerfinlness and stamped with a simple, old-fashioned sense of honour.

II.

English Poets.

In treating of the English poets of Canada, you will perhaps be surprised to learn that the field is a very wide one, and that I must at once draw the line between the writers who have published only casual verses, however excellent many of them may be, and thoso who have prodnced works of a more ambitions and enduring description. I shall touch upon the first without any strict regard to chronological order, and without further insistance than the limits of my paper will allow. Place aux dames!

The most distinguished names of our female poets are those of Annie L. Walker, Pamela S. Vining, Augusta Baldwyn, and Mrs. P. L. Haney. The principal work of Harriet A. Wilkins, of Hamiltou, is her Acadia, which has reached a second edition. Jennie E. Haight, formerly a teacher at Montreal, rises considerably above the ordinary standard, while the verses of Mrs. Moodie have sustained the reputation which this gifted lady has achieved in the department of romanco Helen M. Johnson published a volume of poems in 1856, which has since become very rare. She was cut off prematurely in

1863, in her thirtieth year. Miss Murray's poems, especially on Scottish subjects, are full of interest, but she will be chiefly remembered as a successful writer of fiction. Mrs. Faulkner published, in 1850, a volume of poems under her maiden name, Rhoda Am Pare, and the title, Wild Notes from the Backwoods, sufficiently indicates its character. A distinguished Irish Canadian name is that of Rosanna Eleanor Mullins, better known as Mrs. Leprohon, whose numerons poems, sacred, narrative, descriptive, lyrical, clegiac, and society verses, were gathered into one volume in 1881. Mrs. Leprohon was endowed with many attributes of the poetic faculty, and several of her pieces will always find a place in any selections from Canadian poets.

In the roll of the male writers, whith I shall abbeviate as much as possible, I may mention James McCarroll, Frederick Wright, R. J. McGeorge, W. F. Hawhy, E. II. Dewart, E. J. Chapman, Thomas Mequem, H. F. Damell, John May, J. R. Ramsay, John Massie, J. G. Hodgins, Robert Stnart Patterson, J. A. Allen, Samnel l'ayne Ford, liobert Sweeney, D. J. Wallace, J. H. King, W. H. Hawley, Donald Mr Thtosh, Willian P. Lett, T. Cleworth, John Scoble, James McIntosh. Alexander Mrdachlan has sometimes bern called "the Canadian Burns," and he certainly deserves sperial emmmendation for all his efforts in favour of our country and its literature. Dis publications are mumerons, among which are three small volumes of poems, the last of which, antitled Ther Emigremt, is much the best. Isidore (f. Ascher, formerly a lawere of Montreal, but now resident in London, published Voices from the Hearth in 1stas, which at onee secured for him a leading position among our minor poets. He still publishes occasional piewes under the familiar name of "Isidore." Alazon and other Pooms, was put forth in 1 s.in by William Wye Smith, formerly of Toronto, and he has been a prolifir writer, in prose :und verse,
 he published at Kingston The Crusades amb other l'oems, including lengthy piaces, such as Napoleon Bonaparte and The French Revolution and Laizu. This volnme is now ont ol print and very scarce. If Mr. William Kirby had not achiowed so high a reputation in the domain of fiction, especially by his valuable historical nover Le Chirn Dor, we should be disposed to linger more over his verse. His 1. E., "Thle of toper Canada, appeared in Niagara in 1859, and we have hat the pleasure of reading several contributions of equal merit since that time. Mr. Kirby is a thorongh Canadian both in verse and prose. John F. McDonnell, a young Irishman of Quebee, has written a number of very spirited lyrics, and, if he had not died promaturely, wonld certainly have established a reputation. W. O. Farmer, a youthful lawyer of Montreal, is destined to fill the void made by McDonncll. He has pathos, imagination, enthusiasm, and a delicate ear for cadence. It is to be hoped that Mr. Farmer will continne to cultivate the Muses with devotion. There is matter for regret that Mr. Croorge Martin does not write more frequently and that, after assisting Charles Hearysege in the publication of Saul, he has not thought fit to print a collection of his own poems. It is a further pity that Martin Gerald Griffin has become so absorbed in politics and the carcs of militant journalism as to neglect his uncommon literary ability. Mr. Griffin has that facility of verse and instinct of good taste which are inherent in the poetic temperament, and of all the productions which I have read from his pen, there is not one that is not decidedly superior. It is sufficient to say of Mr. Cleveland, of the Eastern Townships, that he has succeeded in breaking the charmed circle of the Allantic Monthly, and that several
of his compositions have been laid before a wide public in the pages of that fastidions and exclusive periodical. It is, once more, unfortunately due to the narrowness of my space that I can only barely allude to two men who, by their transcendant talents and the prominence of their positions, would almost merit the honours of a separate page. The two greatest orators of Canada were also very considerable poets. There is a swing in Howe's verse, a breeziness in his fancies, a rush and roar in his transports, well in keeping with the wild music of those waves within whose sight his infuncy was cradled. I would suggest that a careful selection be made of Howe's poems, and that they be published in cheap form lor distribution as prizes or otherwise in our sehools. They breathe the true mative spirit. Somewhat the same may be said of MeGee's Canadian Bulluls. which might very properly be detached from the bulky volume containing his othor prems and published separately. Thas would the country have another link of sympathy with the memory of the mantyred orator and poet. I have now to speak of one who nerds no introlution to lovers of Camadian literature, and certainly none to his Fethows of the Roval sombly-Evan MeColl. His first published volume dates back to 1s:3f. und re the title of the Momenin Minstrel, containing poems in Gaelie and attempts in Banlinh some. In ls: and smultanously with a second edition of the Mountain Vinstr'- Ghe bust prool' of that work's suceess-appeared Clarsuch Nom Beann, a contribution whadic lattors whith at once placed him in the front rank of Celtie bards. Hagh Millur walled him "the Mone of the Mighlands." During his long residence in Canada, Ifr. M. ('ull hes fropumuly publishod poems on subjects of varied public interest, and it was hopnd that the tim" would rome when he would commemorate the second half of his matial life by futtime forward his Candian poems. He has done so. A hand--ome rolnme. publishod simultaneously at Toronto, Edinburgh, and Inverness, appeared in 1-a.: and is announcol as containing the English poems of the author. These arn "m-idratly urar two hmodred in mumber, presenting an almost infinite variety. Whather the Monntuin Vinstiot complete, whirh is a desirable accuisition; and we have. in the socond half, the sones that were mostly written in Canada. Our poet hats mamamed his popmlarity for so many years, and the characteristics of his gronins ar" so well known and appreciated, that we need scarce do more than thank Mr. Macoll for bequeathing to his comatrymen this beantiful memorial of a long life devoted to poetry. Nor will the father live alone: he will survive in his offspring. 1 have detached the mame of Mary J. McColl from among the female poets, purposely to set it beside that of her venerable parent. Her Bide a Wee, a handsome little volume, was published at Bultalo in 1880. When an authoress is introduced into the world of letters with such sponsors as Longfellow, Whittier, Wendell Holmes and Joaquin Miller, she recinires no poor words of recommendation such as I might utter to-day. I shall only repeat in one line what I wrote more at length, in a review of the work at the time of its publication, that Mary McColl gives promise of such poetic qualities as must place her by the side of the prineipal poets of America, if she continues to give due attention to her natural gifts.

It is one of our standing regrets, and a source of discouragement, that we have not been able to maintain a literary periodical of our own. The loss is the greater because there is a vast store of talent in the country, which only requires a proper chamel of publication to produce most substantial results. The Canadian Monthly is a ease in point.

That magazine never really rose beyond the tentative stage, but, even so, it served a most useful purpose by giving a voice to several of our young singers. We all remember the writings of Fidelis, and all of us have been delighted at the felicitons conceptions of Mr. Dixon of Ottawa and of the Rev. P. Mulvany.

With all due respect, I cannot overlook the name of our distinguished colleaguc, Mr. George Murray. He is known throughout the length and breadth of the Dominion as a ripe and refined scholar, and what may be strictly denominated the type of a purely literary man. Throwing a well-known lapidary compliment into the present tense, we may truthfully say of him : Nihil quod tangit non ormat. Without dwelling on those other services to Canadian literature with which his name has been associated for years, it were empty praise to repeat that his verse is set in so perfect a mould that it beromes a fit subject of study and imitation. Unfortunately, his poems have not yet been collerted in bookform. But I hope I shall be guilty of no indiscretion in saying, and I am sure the lioyal Society will be delighted to learn, that an eminent colleague has the material of a vohme ready, and has been persuaded by his friends and admirers to publish it within the not distant future. When Charles Mair, the young poet from Perth, Ontario, put forth his Dreamland and Other Poems in Montreal and London, I fincied I discorered in them the germs of the Canadian Swinburne. There was a freedon and dash in the metre an efferrescence in sentiment, and a bloom of imagination which gave promise of a golden harvest, but mufortunately Charles Mair has abandoned his province and his Muse, and has sinee devoted his entire mental energies to trade in the Northwest.

Our dramatic compositions are maccountably rare, with the exception of those of Heavysege, which I camot here notice. Chief among the others is Prince Pedro of Dr. IT. H. Garnier, of Lncknow in the county of Bruce, which I have had previons occasion to pronounce a performance of exceptional worth. The plot revolves on the terrible story of Inez de Castro, which is one of the darkest pages of Portngnese history. The author has the true dramatic instinct; his intrigue is developed with ingemuity, the dialogue is in perfect situation, the characters are sharply drawn, and the denouement (can we not find an English equivalent for that eccentric stage word) is a striking culmination, I venture to pronounce Prinee Pedro one of the best contributious to Canadiandramatic poctry, and to recommend its more general perusal. I am given to understand that Dr. Garnier has other important poems in preparation.

The first work of the well-known author, J. J. Procter, was published in Montreal in 1861. It was entitled Voices of the Night. Althongh it appeared at a period of literary depression, the vogue of the work was such as to inspire the author with the confidence that he had struck the popular chord of feeling, and ever since his name has stood honourably before the public. I am happy to iuform the Society that, only a day or two ago, I had the honour and pleasure of receiving an advance copy of a second rolume from the same pen, entitled Black Hawk and other Poems. The numerous pieces composing this work are not of uniform excellence, but their general character is such as to enhance the reputation of the author. Mr. Procter is one of the recognized poets of Canada and his claims cannot be overlooked.

Few of our poets have the sweep and vigour of Samuel James Watson, now, alas! gathered to his fathers, whose single volume, containing the mellifluous Legend of the Roses, and a drama of great power and foree entitled Rnolan, was published in 1876. It at
once took a high rank among cultivated readers, Longfellow and Emerson showing in a marked manner their appreciation of its merit and value. The long poem is exceedingly rich in apt allusion, graceful comparison, and delicacy of expression. There is hardly a halting line in the whole legend, which is full of pretty fancies and tenderly-turned conceits. The drama is quite in keeping with Watson's other work. It is of a graver mould, and the incident, dialogue and grouping of characters are managed with consummate art and taste. The pity of it is that Watson was so soon taken away from us. He was one of the few, that were not born to die.

On my third visit to Canada, in 1865 , I read one evening in the portico of the St. Lawrence Hall, in the Montreal Telegraph, now defunct, the following poem :-
I.

> Good night! God bless thee, love, wherever thou art, And keep thee, like an infant, in His arms! And all good messengers that move unseen By cye sin-darkened, and on noiseless wings Carry glad tidings to the doors of sleep, Touch all thy tears to pearls of heavenly joy.
> Oh ! I am very lonely missing thee;
> Yet, morning, noon, and night, sweet memories Are nestling round thy name within my heart, Like summer birds in frozen winter woods.
> Good night! Good night! Oh, for the mutual word!
> Oh, for the loving pressure of thy hand!
> Oh, for the tender parting of thine eyes!
> God keep thee, love, wherever thou art! Good night!
II.

Good night, my love! Another day has brought Its load of grief and stowed it in my heart, So full already, Joy is crushed to death, And Hope stands mute and shivering at the door. Still Memory, kind angel, stays within, And will not leave me with my grief alone, But whispers of the happy days that were Made glorious by the light of thy pure eyes.

Oh! shall I ever see thee, love, again, My own, my darling, my soul's best beloved, Far more than I had ever hoped to find Of true and good and beautiful on earth ? Oh ! shall I never see thee, love, again? My treasure found and loved and lost, good night.

III.

Good night, my love! Without, the wintry winds Make the night sadly vocal ; and within, The hours that danced along so full of joy, Like skeletons have come from out their graves,

> And sit beside me at my lonely fire, Guests grim but wolcome, which my fancy decks In all the beanty that was thoirs whon thou Didst look and broatho and whisper softly on them. So do thoy come and sit, night after night, Talking of mo to theo till I forgot That thoy are mere illusions and the past Is gono forever. They havo vanished now, And I am all alone, and thou art-where? My love, good angels bear then my gool night !

When I had read once, I paused in admiration and astonishment. I read again, and still the wonder grew. Here was a kind of triple sonnet, written in blank verse, and signed with fictitions initials: but I felt there was a soul in them. The reflection I made was: "The man who wrote these lines is a poet, and I will hear of him again." Five or six years elapsed, when in 1870 appeared the Prophecy of Merlin, by John Reade. I procured one of the first copies, and, after attentive reading, my judgment was confirmed. King Arthur has been borne away in a barge to the vale of Aralon, and Sir Bedivere, the last of the Knights of the Round Table, lifts up his roice upon the beach and weeps. Merlin comes forth, and, after stanching his wound, consoles him with a prophecy of the happy days that are to replace the golden era of Camelot. Three queens shall reign in the favoured land, a triple sisterhood beneath one crown,-Britain, and Albyn, and green Innisfail. The description of the arts and sciences in this new time is of surpassing beanty. Merlin then gives a glowing description of Prince Albert, the consort of this Queen; adds a brilliant picture of the Crystal Palace and the first London Exhibition; makes a touching allusion to Canada, "the far land beneath the seting sun;" and concludes with a tribute to Prince Arthur, who had, at that time, passed a year among us. After this, Merlin disappears and leaves Sir Bedivere alone upon the strand among the dead. Merlin goes and Bedivere is solitary, but we are happy, because we are in possession of the most perfect poem ever written in Canada, a fit pendant to Tennyson's Idylls of the King. The same volume contains a number of other beantiful compositions. Those bearing on Scriptural smbjects, such as Vashti, Balaam, Rizpah, Jubal and Jephthah, being specially remarkable. In a magazine article, published a few years ago, I made bold to say that, with the exception of Longfellow, Mr. Reade is the best somettenr in America, and I am proud to say that my judgment has been ratified in high quarters. I should be embarrassed to choose from his sonnets; and must content myself with one example of his softer and more mythical mood, in ballad metre:-

I.

In my heart are many chambers, through which I wander free; Some are furnished, some are ompty, some are sombre, some are light;
Somo are open to all comers, and of some I keop the key,
And I onter in the stilluess of the night.

II.

But there's one I never enter,-it is closed to even me! Only once its door was opened, and it shut for evermore;
And though sounds of many voices gather round it, like the sea, It is silent, ever silent, as the shore.

III.

In that chamber, long ago, my love's casket was concealed, And the jewel that it sheltered I knew only one could win; And my soul foreboded sorrow, should that jewel be revealed, And I almost hoped that none might enter in.

IV.

Yet day and night I lingered by that fatal chamber door, Till-she came at last, my darling one, of all the earth my own; And she entered-and she vanished with my jewel, which she wore; And the door was closed-and I was left alone.
V.

She gave me back no jewel, but the spirit of her eyes
Shone with tenderness a moment, as she closed that chamber door, And the memory of that moment is all I have to prize,-

But that, at least, is mine for evermore.
VI.

Was she conscious, when she took it, that the jewel was my love?
Did she think it but a bauble, she might wear or toss aside?
I know not, I accuse not, but I hope that it may prove
A blessing, though she spurn it in ber pride.
About four or five years ago, when I was editor of the Canadian Illustrated News, I received a small copy-book containing a number of short poems, written out in a schoolboy's hand. A modest letter accompanied it: Would I kindly look at the pieces, and, if I found any that were suitable, would I kindly give them a corner in my paper. I at once plucked out this flower of a sonnet and published it:-

[^46]> More roal than castles in the air, and laid On some foundation, theugh of sand that slopes Seaward to lift again-it comes arrayed In olive sea-weods; but a raven mopes Upon its topmost stone, and casts a slade."

I felt sure that we should soon hear from this New Branswiek boy again. And so we did. In 1880, there was published in Philadelphia a dainty little volume, entitled Orion and Olher Poems, ly Charles G. D. Roberts. You all remember with what pleasure and applause that publication was received. The poem from which the book takes its name is simply a gem of purest ray serene. While CEnopion, the King of Chios, immolates unto Apollo a tawny wolf, his hunter, Orion, makes his appearance upon the scene with

> "The grandeur of the mountains for a roke, The torront's strength for girlle, and for crown, 'The sea's calm, for dread fury capable,-"
and stands
"Without the laurel's sacred shade Which his largo presence de oprened."

In reward for his services, the hunter craves the hand of the snow-breasted nymph, Merope, but the king, while he feigns to consent, fills a wine-cup with a Colchian drug and presents it to the unsuspecting servitor, who falls asleep upon the beach. Two slaves are then despatched to pour poison upon his eyelids, by which these are deprived of light. A troop of maids beloved of Doris then rises ont of the sea, and gronping around the prostrate giant they sing a chorus which, with strophe and antistrophe, is cast in the best Greek model, and not unworthy of Swinburne. Orion hears and arises groping, and after a grand apostrophe to Night, a voice, thrice repeated, bids him hie to the hills, where he shall behold the morning. On his way up he grasps a forgeman from a smithy behind a jagged cape, and, hoisting him upon his shonlders to guide his feet, he reaches the crest of the mountain

> " Ere the fiory flower Of dawn bloomod fully."

There his beloved appears to him, and he recovers his sight just as the rosy light of morning falls upon her beantiful face. The twain then retire to Delos, being escorted over the waves by bands of Nereids at Poseidon's bidding, and in that island's consecrated shelter they spend a blissful existence. There is a marked imitation of Tennyson in this poem, bat its original character is equally marked and stamps it as the author's very own.

Ariadne is the second of the classic poems in the volume. The picture of the heroine lying on the sea-beach forms a picture that lingers in the mind :-
> "She lay, face downward, on the shining shore, Her head upon her bended arm; her hair Ioose-sproading foll, a heart-entangling store; Her shoulder swelling through it glimmered moro Divinely white than snows in morning air ; One tress, more wide astray, the ripples bore Where her land clenched the oeze in mute despair."

The subject of the poem is Bacchus' wooing and winning of the maid, the account of which is aglow with the poetry of passion.

Launcelot and the Four Queens is another Tennysonian reminiscence, but so exquisite is the workmanship that a special charm pervades it all. See how Launcelot du Lac is depicted asleep:
" ${ }^{\text {Neath }}$ the fruit-trees latticed shade
An errant knight at length is laid,
In opiate noon's deep slumber sunk;
His helm, well proved in conflict's stern,
Lies in a tuft of tender fern
Against the mossy trunk.

A robin on a branch above,
Nodding by his dreaming love,
Where four blue eggs are hatched not yet,
Winks, and watches unconcerned
A spider o'er the helm upturned
Weaving his careful net.

The sleeper's hair falls curling fair
From off his forehead broad, and bare,
Entangling violets faint and pale ;
Beside his cheek a primrose gleams,
And breathes her sweetness through his dreams,
Till grown too sweet they fail."
Four queens of great estate come riding by, and very properly fall in love with the sleeping knight. They weave a rell of witchery above his eyes, and bear him homeward on his shield by the aid of their men-at-arms. He is locked up in a high chamber and plied with the wiles of the beautiful queens, but remains faithful to Guinevere, and is finally rescued by one of the damsels of the court. Let the Royal Society send a word of greeting to Mr. Roberts, and encourage him to go on cultivating a talent which must inevitably lead him to fame.

IV.-A Plea for a Canadian Camden Society.

By George Bryce, LL.D., Professor of Literature, Manitoba College, Winnipeg.

(Real May 24, 1884.)

The task of gathering the materials for a history of our Dominion is one of the greatest difficulty. Leaving ont of account the work of minute investigation, and the additional labour of classification required by the historian in order to grain the trme perspective of events, the mere physical labour of collecting facts from so wide an area, and from such a variety of sources as our Canalian history embraws, is overwhelmine. Mr. Parkman, excelled by few in his truthful appreciation of the seenes he describes, in laborious investigation of the soures wheme he draws his information, and in the clan and beautiful diction employed by him, finds it possible, in his most sucessful works. merely to select here and there a "coigne of rantage," and to give a sindy of some pioturesque combination of events in the early day's of Canada's military régime. His works, abombing as they are, are rather monographs than historits. It is the as belomemer fo foretin comntry, Mr. Parkman can scareely be experted to have the sympathy and pationt appreciat tion necessary to gather up the elements of our social, intellechal, and material life.

That life has originated at many different peints in the northern half of this comtinent, and has grown into ever stronger vital emrents; while these have incrased and drepenced, have come together, and are now begiming to assmme somothing like a mity of How. The historian who would seek to follow this growing, thongh yet feetble, stream of national life, be he never so earnest, so able, or so willing, will encounter a task of almost mexampled difficnlty. The nomadie life of our aborigines implies a state of things of which there is scarcely a trace remaining; the early life of the new settler, struggling for existence, is proverbially uninteresting and unlikely to attract the attention of any one likely to record it; the scattered character of the settlements places obstacles in the way of a presentation of the facts. Of the conflicting statements made in letters, pamphlets, and newspapers, the want of a public opinion of any force at the time makes it impossible to find a criterion of correct judgment; while, owing to the recent period of many of the events, it is difficult to give them a faithful treatment without creating animosity on the part of friends of the actors still living. Moreover, the strong political bias, apparently indigenous to our Canadian soil, renders it most difficult for the historian to treat his subject dispassionately, without arousing the susceptibilities of the philosophers who go about subjecting everything in art, science, sociology, and history to the minute inspection of their party microscope.

Wide and difficult of comprehensive treatmeut as the subject of Canadian history is, the clue to the earliest history of Canada, in almost all the points where Europeans first approached it, lies in its being in northern latitudes. The fur trade was the first attraction that induced Old World peoples to undertake settlement in
the different parts of Canada then occupied. It is by no mere chance that the beaver finds its place on our Cauadian escutcheon. Carticr, almost exactly three centuries and a half ago, came with his commission authorizing him to open up this trado with the matives. Captain Chauvin, in 1600 , built his trading house at Tadousac to cultivate the fur trade. Champlain returned on his first voyage home in a ship laden down with furs; and the Hugnenot, de Monts, hastening, under the protection of the monopoly granted him, to take the virgin eatch of Nova Scotia, found, in the first harbour which he entered on the Acadian shore, that he was forestalled by a fur-trading vessel, whose cargo of furs, however, he promptly seized for his own advantage. Within fifty years from the time of Champlain's arrival in Canada the shores of straits and bays by scores, to the extremities of the great lakes, were occupied by the posts of the fur-trader. Michillimarkinar, Sanll Str. Marie and Nipigon, on Lake Superior, were ahready centres of trade. It was alout the cud of that contury that lahontan wrote his amsing and extravagant ancont of the rastor. Inded, to surh an extent had the trade grown that in 1700, in Nomtral, therefourthe of the fins were lournt to obtain a market for those that remained. Ther rison drtar of the settement of New lramee was the fur trade.

While Frame, with all the fore and glory of her more prosperons days, was pushing her explorations and trade to the far West. England sought a share of the treasures of the widumess, and in laith latd whin Iludson Sitrat the foundation of her great fur company. Firerhanded Charle 11 gave over with lavish thonghtlessmess a vast extent of country th the furtraders mpesented be the brave lrince Rupert, General Monk, the kingmakry, and the bersatile Lord $A=h$ ley. The fiw trade was the sole department of trade of tho Ihdont: liay Company for a hundred years. (m the borders of the Bay, shat up in their forts, the cenpany dreatol with wandering tribes coming 600 and 800 miles from the interior. justilying in the kemmeso wh ther trade, their moto, "Pro pelle cutem." There is a pioturesqu" interent in these Argonauts of this century of Indson Bay adventure, as they retmen with the Goldn Fhece and anged in the somewhat momantic, but mererthess consoling, work of paying laree dividends to the shareholders. It is true that their retreat was invaded ly the dashing sailor, d'Iberville, and their forts were taken to bo restored by the Treaty of liyswids; but this was only an episode in a hundred years of successful trade.

One hundred yars of the company's life had not passed before the covetons eyes of rival traders fell mpon theiroperations. It was stated that the company was avaricious, tyramical, selfish, and revengeful; and repeated efforts at length obtained a parlinmentary investigation in 1749. The company delended itself with vigor, and its antagonists, though not silenced, were overborne.

Another movement in the opening up of the interior by way of Canada took place at the same time as this fieree onslaught on the Hudson's Bay Company, though entirely independent of it. The French explorers had reached the limits of Lake Superior, and heard from Indian sourees of vast regions beyond. In the stockade of Michillimackinac was laid the plan for exploring the districts further west. Verandrye, a French officer, who had distinguished himself at Malplaquet, with the advice of a Jesuit priest named Father Gonor, mudertook the task. In 1731 Verandrye left the shores of Lake Superior; he and his sons were the first to thread the Red, Assiniboine, and Souris rivers, to cross by a portage to the Missouri, and after ascending it to reach the Rocky Mountains. The sane
adventurer or his party explored the Saskatchewan, and his immediate successor, St. Pierre, in 1752 reached the Rocky Mountains at the very point where the Canadian Pacific Railway now enters the pass to cross the Rockies.

As so often happens to pioneers, the adventurous French explorers did not enjoy the fruit of their labours. In 1759, the conquest of Cauada by the British cut the connection with the new Northwest. But the field for enterprise was too tempting to be left long unvisited. British merchants from Montreal, in 1766 and following years, took up the unused canoe and paddle; and traders, named Cury and Finlay, pushed over Verandrye's ronte, reached the source of the fur-supplies of the IIndson's Bay Company and intercepted the Indian trappers, who had before gone down the streams to Hndson Bay. The intmders were now taking the trade down Lake Superior to Montreal. Like a sleeping giant roused to action, the English fur company left the shores of Hudson Bay, penetrated to the interior, and the first meeting of the Montreal and English traders took place, it is said, in 1774, at Fort Cumberland on the Saskatchewan. Here bergan the conllict which for nearly fifty years was maintained betweon the Northwest Company and that of Hudson Bay, resulting in the depletion of both, and their linal coalescenee in 1821.

The Northwest Company had been most energetic in its efforts to dot the whole conntry with posts. It followed in the wake of one of its illnstrions partners, sir Alex. Mackenzie, and crossed the Rocky Monntains, becoming the forermmer of British ormpation on the Pacific slope. Beyond the Rocky Momntains this enterprising company, miting the perseverance of its hardy Scottish leaders (many of them Jacolite refugets to Canada, or their descendants) with the love of adventure of their French Canadian romugemes, met another band of fur-traders, the Astor Fur Company of New Fork, formed in 1809 to trade upon the Columbia River. Washington Irving has made the story of the Astor Company familiar to us all.

I have merely drawn a bare sketeh of the leading lines ly which om country was first reached, and shown how the stimulus of the fur trade led to the early ocenpation of almost every part of Canada. It will be observed that I leave out of notice in this paper the remarkable and, I trust, by Canadians never to be forgoteln morement of the Thited Empire Loyalists; also that part of it-the transference of the loyal Indians to Canada, as well as the subsequent influx of an immense British immigration to our shores-as not included so directly under the head of exploration. My main object in this paper is to give some account of the literature of these several movements originating in the peltry trade, and to recommend some plan for its preservation.

The several lines of exploration of which I have spoken seem to divide themselves up as follows:-

1. The military colonization of New France.
2. The English occupation of Hudson Bay.
3. The penetration to the new Northwest by Verandrye.
4. The growth of the Northwest Company of Montreal.
5. The inland movement of the Hudson's Bay Company.
6. The formation of the Astor Company; and the expedition of Lewis and Clarke up the Missouri and over the Rocky Mountains.
7. The couflict of the fur companies; the establishment of Selkirk colony; and the coalescence of the rival companies.
I.

The well-known name of Champlain is connected in the minds of very few with the pernsal of his own writings. Yet his works, published in quarto form in Quebec in 1850, are interesting memorials of the life and habits of the Indians and of his own valour as an explorer. In 1697, the Recollet priest, Lonis Hennepin, published at Utrecht the record of his journeys. Among the rare books of this period is the amusing account of travels published by Baron Lahontan, at Amsterdam in 1705, and The Hague in 1715. Who can fail to feel the highest admiration for the six-volume edition of Father Charlevoix, publishol in l'aris in 1744. The "Jesuit Relations," issued by the Canadian Government, contains a vast amount of information. The twelve large quarto volumes of the documenbary history of the State of New York are a treasury of information about the early history of C'anda, as well as of the state to which they belong. The events connected with the arly royage to IIndson Bay are diseussed by M. de Bacqueville de la Potherie and M. Jeremic, while the names of Laftean, sagard, and others, speak of interesting memorials of this, the heroic period of Canadian history.

II.

Through not rery mumerons, the books comected with the early days of the English ocmpancy of IIndson bay are of great ralue. "An Accomnt of IIudson Bay, 1744," by Arthre Dobbs, is sum of the rarest and most valuable of these. "A Voyage to Hudson": lay," hy llenry Ellis, published in 1748, is worthy of note; and an "Account of Six Years lasidence in Intson's lay, ending in 1747 ," by Joseph Robson, bristles with oppoition to the great company of furtraders. There is the work known as "The Ameri"an Traseller, 1700 ;" while the Mhe-book, containing the investigations by the British Ifone of Commons, gives an acoment of the fur trade and the unsuccessful efforts of its rivals to owertum the ereat monopoly.

III.

A Frem pheriod comes next : it is full of the adventurous exploits of the discoverer of Lakn Wimnipeg and its tributaries. The fact that Verandrye's discoveries, extending from 17:31 to 1745 , preceded by so short a time the loss of Canada to France, no doubt explains why so little is known of that era, now springing into greater prominence as the historian strives to trace the pathway of early adventure in the Canadian Northwest. We are indebted to the researches, in the documents of the archives of the Department of Marine and the Colonies at Paris, made by their former custodian, M. Pierre Margry, for almost all we know of it.
IV.

The Scoto-French movement from Montreal, resulting in the Northwest Company, has a considerable literature from its leginning, about the time of the Treaty of Paris, 1763, to the union of the rival fur companies in 1821. Among the most noticeable books of travel relating to this period is the now rare book of Jonathan Carver, published in 1778, of a long
fourney to the interior taken by him some ten years before. Between the years, 1760 and 1766 , a traveller named Alexander Henry, in company with Frobisher, one of the leading founders of the Northwest Company, took a journey as far into the interior as Lake Athabasca. Of this extended expedition the traveller published an account in 1809. A leading work of the period is that published by the great traveller, Alexander Mackenzie, after wards knighted for his discoveries by George III. In the service of the Northwest Company he first descended the river which bears his name. Ine, lirst of white men, crossed the Rocky Mountains north of Mexico, and inseribed in vermilion letters, on a rork on the Pacific coast, the following words, "Alex. Mackenzie, from Canada by land, 2and July, 1793." Another Northwest trader, Daniel W. Harmon, who, in 1800, penetrated the interior and lived successively on the Assiniboine River in the sonthern, and on Lake Athabasca in the northern department, and who even crossed the Rocky Mountains in the Peace River district, has left us a most absorbing volume published in 1820.

V.

Leaving for a time the inward movement by the great lakes and the water-ways of the northwest comntry, we must notice a series of expeditions from Montral, and a murrent of trade, no doubt induced by this Montreal stream, but counter to it. This was the movement to the interior made by the great English fur company from lludson Bay. The Indians, from the whole Northern Department, who had formerly come by the line of conneeted lakes and rivers all the way from Athabasca down the Churchill River. and even from Lake Wimnipeg by way of the Nelson, with their furs, were, as already mentioned, intereepted by the interlopers, as they were considered, from Montreal between the fears. 1760 and 1770. To carry out their inland movement, to regain their diminishing trade, the IIndwon's Bay Company selected Samuel Hearne, not only an intrepid officer, but a clever writer. His first expedition was to discover the Coppermine River, of which the Indians had told. His daring explorations have gained him the name of "the C'anadian l'ark." In 1tit he established posts far inland,-one of them being Fort Cumberland, on the Saskatchewan. Hearne's book was published in 1795. Another adventurer, who, under the direction of the Hudson's Bay Company, carried ou this aggressive work was Edward Uinfreville, who has given us a work, "Present State of Hudson's Bay Company," which was published in 1790. The archives of the Hudson's Bay Company would undoubtedly afford ampler details of this period, which was a turning-point in the history of the monopoly.

VI.

The discovery of the Pacific coast of America belongs to the later years of last century. The unfortunate French navigator, L_{2} Perouse, who, having left France in 1785, was never heard of after departure from Botany Bay on his homeward voyage, has a double interest for us. In the account of his travels, published by M. Millet-Murean, in four volumes, at Paris in 1798, these points are given. The first is found in the introduction to the first volume, where there is a description of the attack upon the forts of Hudson Bay by the French in 1782. La Perouse, agaiu, is said to have discovered a portion of the coast of
]ritish Columbia. To this day our Pacifie coast preserves the name of Captain Vancouver, who, during the years, 1790-95, explored our western limits, and returning westward circumatvigated the globe. The account of his voyages, edited by his brother, was published in six volumes, in London, 1801.

The discovery of the western coast of the continent drew attention to it on the part of the United States Government. Accordingly, a detachment of the United States Army was litted out to ascend the Missouri River and cross the Rocky Mountains to the Pacitic. This was actomplished by the expedition under Captains Lewis and Clarke during
 dition was published in the United States, and afterwards in London, 1815. In 1805 an exploration of tha Upper Mississippi was undertaken, at the instance of the Government of the Unitod states, by Lient. Pike. The object of the party was successfully accomHishod, and the arcount of it forms an interesting volume, published in London, 1811. In 1-2.3. a journey to Lake Winniparg and Jake of the Woods was undertaken by a party muder Major Long, of which an accomt is given by Professor Keating. We should mention also, in company with this, the work of J. C. Beltrami, published in two volumes in Lomdon in 1828, and fntitled "A Pilgrimage to Europe and Ameriea, leading to the Discorery of the soumes of the Mississippi and Bloody River," (i. e., the Red River.)

Stimulated alike by the strugerle between the IIndson's Bay Company and the NorthWest ('ompany, and by these succonful axplorations of the country towards the Pacific on Thited Nitatos tarritory, John Jacob Astor pushed on his fur-traders to the far West. Not moly don's Iringes "Astoria" give us, as has been said, an accomit of this, but we are fortunath in paneoning important naryatives by a momber of the traders themselves, who passed thengh the turmoid of the (r regon fir trade. Among the traders belonging to the Astor ('ompany was onm Aldx. Russ, well-known alterwards as sheriff of the district of Assiniboia on led livis. Sont out to tha lawific coast in 1811, he remained there until the yat 182. whon hu retumed over the Rorky Momatans, and with his Indian wife came to reside in thesidkirk colony on Red River. One of his works, published in 1839, is an ancomint of the carly sottlemont of the Colmmbia River in the period with which we are draling.

Another of Astor's companions, a Frenchman from Montreal, named Gabriel Francherr, has left us a most valuable book in his own tongue. In it he relates the incidents of his return home overland, in 1814, by crossing the Rocky Mountains, floating down the Naskatch"wan, journeying over the "Grand Portage" to Fort William, and passing down the Jakes to Montreal. In 1854, an English translation of Franchère's work appeared in New York. The Astor fur-traders seem to have had a taste for writing, for, of the seme party as the preceding, another, named Ross Cox, published in 1832 an account of his jonrney around Cape Horn, his residence for six years on the Columbia River, and his return, in 1817, by a route nearly the same as that of Franchère.

VII.

The settlement of the colony by Lord Selkirk, in the ralley of Red River, was an event of the greatest importance in the history of British America. It saved for Britain, as it appears to the writer, the fertile plains of the Northwest. That philanthropic nobleman
succeeded, in the furtherance of his great schemes of colonization, in gaining a controlling interest in the Hudsou's Bay Company. The appearance of his colony on the Red River was the signal for a bitter contest, resulting well nigh in the destruction of the colony, while the ruin of the rival fur companies was only averted by their union in 1821. A considerable literature grew ont of this emigration movement and its troublesome consequences. In 1805, the Earl of Selkirk published an able work on Highland emigration ; for he had before that time sent 800 Highland peasants to Prince Edward Island. In connection with the emigration scheme by way of Hudson Bay and Rupert Land, there appeared "The Narrative of the Destruction of the Settlement of Red River in 1815," a brochure against the Earl of Selkirk by Bishop Strachan in 1816; "Narrative of Ocrurrences in the Indian Country in 1817;" a letter of the Earl of Selkirk to Lord Liverpool in 1819; "Report of the Selkirk Trials," in two versions, in 1820 ; "The Red River Settlement lhuebook," published by Honse of Commons in 1819 ; and a "Book of Observations," upon the preceding published in 1820, of which only one copy is known to be in existence.

VIII.

Covering portions of time in all these different eras, there remains to notice one department, most interesting in the present comection, viz, manuseripts or unpublished naratives known to be in existence. The following may be given as examples of these:-"Trayels of Pierre Esprit Radisson, 1682;" "John Adamson's Voyages, 1746 ;" "David Thompson's Journal, 1796-98;" "Hen'y's Jommal, 1800-'16;"" "Peter Fidler's Jommey to Athabaska; "Foundation of the Forts in the Ynkon Country," by an ollicer in the employment of the Hudson's Bay Company. The Hudson's Bay Company in London has also given to the Society of which the writer is a representative the privilege of examining any papurs, att their forts or offices in Canada, belonging to the period antecedent to 1821.

Enough has now been said to show that we have in (anada an indigenous early literature, most of it now very rare, and yet not deserving the oblivion to which it is fast hastening. Comnoisseurs have their choice cabinets of these books, which they guard with miserly care, and some of our public libraries have a number of them; scarcely is there in Canada a complete collection. The writer has referred largely to works belonging to the field of the Society which he has the honor to represent here-the Historical and Scientific Society of Manitoba, - that field being the "country north and west of Lake Smperior." No doubt other gentlemen could have found a considerable earlier literature for the Maritime Provinces, French Canada, and the more recent Province of Ontario. The study of this early literature is very important. We complain that so few devote themselves to the study and preservation of our early history. Surely it is the duty of this section of the Royal Society of Canada to stimulate research and facilitate the study of the records referred to. The question is: How can this be done?

I have the honor to propose one way, perhaps not the best, yet one having the promise of accomplishing something in this department. I propose that steps should be taken by which this Society, or some body associated with it, should undertake each year the publication of a number of books and manuscripts relating to the early portion of our
history. I say this without disparagement to the volumes published by Desbarats of Quebee, or to the publications of Shea of New York. The latter, however, are too expensive; and of tho former many are already scarce, such as "Champlain," which is now quoted at Paris at eighty francs.

There is abundant precedent for such an undertaking as that proposed. It is hardly necessary to remind you of such an organization as the Roxburghe, Club instituted in 1812 by barl spencer and a number of gentlemen in Iondon, for the republication of rare books and hitherto unpublished mamuscripts. The Baunatyne Club, called after George bannatyme was established in 1823, in Eelinburgh, by Sir Walter Scott and others, for printing works illnstratice of the history, antiquities, and literature of Scotland, and published somb 11: volumes, of which the Edinburgh Revien, in 1835, said: "They form a serico of contributions to the stock of historical literature which a munficent govermment alone, ur sheh a sondety as the lamatyne Club, could or would prodnce." The Matland ('lub, aloo, atablished in Glasgow in 1828 , did its share in "reprinting rare and forcotent mitions and thes reseling these lrom that oblivion into which the unhappy diatastr of the ag. for $\leqslant 4 \cdot h$ prodn tions would otherwise have allowed them to sink."

The Jaklust sombly was whathed in 1846 for the purpose of printing rare and
 opromgh hy has mans an man anass to soures of a branch of knowledge which yields 10 nome in importanw aml is suprion to most in varinty." A late writer says: "The
 greal disw rimination and wre, and have "ome to be regarded as the standard text-books
 of " Tha Hawhins Voyagos," Hhe lirat work published ly the society. The Hakluyt

 forial intoret, and walled altor ok William Canden, buried in Westminster Abbey, the most distinguisherl antiquarian of the Elizabethan era. Of his great work, "Britanna,"of whieh, hy the way, there is a copy of the 1610 edifion in the Mantoba Society's libraryit was quaintly said "it was the common sun whereat our modern weriters have lighted all their little torches.

Follwing the rample that these sorieties afford us, may we not, in the incipient stage of our historical researches, add an impetus to the work, by giving some assistance to the production of the means necessary for undertaking the sturly of our history. Let un suppos", as an instance of what might be done immediately, that a committee wero appointed to select for issue, this or next year, three works. Let us choose a work dealing with the history ol seaboard America, such as Oldmixou's "British Empire in America" with its curious maps, published in London in 1708 , and now sold by dealers for $\$ 10$ for the two volumes: take as a second work, Hennepin's "Nouvelle Decouverte," in French, as representing, in an interesting way, the period of the French regime, now valued at from $\$ 10$ to $\$ 20$; and say, for a third, "Harmon's Journal of Northwestern Life," scarcely to be had at any price. Were these three, or others of a similar nature, taken, and a proposition made to some Canadian publisher as to the cost of publishing an edition of 500 or 1000 copies, there could be no risk in the matter. If, then, a prospectus were issued offering subscribers the three volumes this year, with the prospect of their being followed by a
similar number next year in uniform style, for an annual subscription of $\$ 5$ or $\$ 6$, no one can suppose that, with the influence of the Royal Society and its affiliated societies, there would be difficulty in obtaining a number sufficient to make the enterprise successful, and to give the subscribers a series of most valuable and, to many at present utterly unattainable, works at a minimum of cost.

V.-The Huron-Iroquois of Canadı, a Typical Rare of American Aborigines.

By Daniel، Wilson, LL.D., F.R.S.E., President of University College, Toronto.

(Read May 23, 1854.)

In a previous commmication to the Royal Society of Canada I sulbmitted some general considerations of the ethnical characteristies, and of the condition and relative status, of the aborigines of North America. In that, I aimed at a brief summary of their general aspect as the indigenous American stock mpon whom, during the last three and a half centuries the same Aryan race has intruded, which in older and prehistoric centuries displaced indigenons races of Europe not without some analogons results. I now propose to glance at one of the most characteristie types of the American aborigines, which appears, according to their own traditions, to be of Canadian origin; and which, as one important branch of the common stock, claims onr special consideration as preeminently the historical native race of Canada.

I have already submitted the reasonings by whith I have been led to the conclusion that, throughont the whole North American continent, from the Arctic eirele to the Mexican Gnlf, no trace has been recovered of the previons existence of anything that properly admits of the term "native civilization." The rude arts of Europe's stone age belong to a period lying far behind its remotest traditions: mnless we appeal to the mythic allusions of Hesiod, or to such poetic imaginings as the "Prometheus" of Aschylus. But all available evidence thus far serves to show that the condition of the native tribes thronghont the whole area of this northern continent has never advanced beyond the stage which finds its apt illustration in the rude arts of their stone period, inelnding the rudimentary efforts at turning to accomet their ample resonrees of native copper without and use of fire.

But this uniformity in the condition and acquirements of the native tribes, and the consequent resemblance in their arts, habits, and mode of life, have been the fruitfnl source of misleading assumptions. Everywhere the early European explorers met only rude hunting and warring tribes, exhibiting such slight variations in all that first attracts the eye of the most observant traveller, that an exaggerated idea of their ethnical uniformity was the not unnatural result. So soon as the systematizings of the ethnologist led to the differentiation of races, the American type was placed apart as at once miform and distinctive; and, strange as it may now seem, this idea found nowhere such ready favour as among those who had the fullest access to the evidence by which its truth could be tested. It was the most important and comprehensive induction of the author of "Crania Americana," as the fruit of his conseientious researches in American craniology. The authors of "Indigenons Races of the Earth" and "Types of Mankind," no less unhesitatingly affirmed that "identical characters pervade all the American races, ancient and modern, over
the whole continent." In this they were sustained by the high anthority of Agassiz, who, after discussing in his "Provinces of the Animal World, and their relation to Types of Man," the fanma peenliar to the American continent, and pointing ont the much greater uniformity of its natural productions, when its twin continents are compared with those of the eastern hemisphere, thus summed up the result of his investigations: "With these facts before us, we may expect that there shonld be no great diversity among the tribes of man inhabiting this continent; and indeed the most extensive investigation of their peculiarities has led Dr. Morton to consider them as constituting but a single race, from the confines of the Esquimaux down to the southermmost extremity of the continent. But, at the same time, it should be remembered that, in accordance with the \%oological character of the whole ralm, this race is divided into an infinite number of small tribes, presenting more or less diflirence onn from another." It was natural and reasonable that the men of the sixteenth eentury should believe in Calibans, or Ewaipanoma, " the Anthropophagi, and men whose heads do grow beneath their shoulders." America was to them, in the most literal sense, another world: and it was easier for them to think of it as peopled with such monstrositios, than with human beings like ourselves. lint it is curious to note in this nincoenth contury the lingering traces of the old sentiment; and to see men of science -till linding it diffient to mancipate themselves from the idea that this continent is so essmatally :mother world, that it is inconceivable to them that the races by which it is peopled hould bear any allinity to themselves or to others of the old world. American "tholerists long chung to the idea of an essentially distinct indigenons race; and Dr. Nott, 1)r. Meires, and other in vestigators weleomed every contirmation of the view of Dr. Morton as to the occupation of the whole American continent by one pecnliar type from which alone the EAkino were to be exeepted, as an immigrant element, possibly-according to the ingronions smernlations of one distinguished student of seience,-of remotest Enropean antiquity. Drolessor Hnxley in an address to the Ethnological Society in 1-til, surgests hypothoimally, that the old Mexican and South American races represent Whe true American stock: and that the lied Indians of North America may be the prodnet of an intermisture of the indigenons native race with the Eskimo. It is noticeable, at any rate, that nearly all writers, however widely dillering on other points, follow Humboldt in lassing the Eskimo apart as a distinct type. He remarks in his preface to his "American Researches," that "except those which border the polar circle, the mations of America form a single race characterized by the formation of the skull, the colour of the skin, the extreme thimess of the beard, and the straight, glossy hair." Some of the characteristies thus noted are undoubtedly widely prevalent; but the head-form, or "formation of the skull," is the most important; and a careful comparison of the sknlls of different tribes has long since modified the opinion, expressed by the great traveller and reasserted by distinguished American ethnologists.

In reality, were the typical feature most insisted on as universal as it was assumed to be, it wonld furnish the strongest argument for classifying the predominant Asiatic and American types as one. All the points appealed to suggest affinity to the Asiatic Mongol. But to this the Canadian race, to which attention is here specially directed, presents a striking exception ; and it is deserving of notice that the dolichocephalic head-

[^47]form is not only characteristic of the Huron-Iroquois stock; but it is prevalent in others of the northern tribes. Recognizing a correspondence, in this and other respects, between the Algonkins and Iroquois, who long divided between them the area of Upper and Lower Canada and the adjacent western territory, Dr. Latham remarks: "The Iroquois and Algonkins exhibit in the most typical form the characteristics of the North American Indians as exhibited in the earliest descriptions, and are the two families upon which the current notions respecting the physiognomy, habits, and moral and intellectual powers of the so-called Red Race are chicfly founded." Of the former, Mr. Parkman, who has studied their later history with the minutest care, says: "In this remarkable family of tribes occur the fullest developments of Indian character, and the most conspicuons: examples of Indian intelligence. If the higher traits popularly aseribed to the race are not to be found here, they are to be found nowhere." ${ }^{1}$

The Iroquois were an important branch of the great stock which included also the Hurons, or Wyandots, the native historical race of Canada. But divided as the two were throughont the whole period of French Canadian history by the bitterest antagonism, it is convenient to speak of them under the compound term of Inron-lroquois; and to the special history of this indigenous stock, with the more gencral suggestions prompted by their peculiar characteristies as a typical race of American aborigines, attention is here chiefly directed. In doing so it is desirable not only to note the physical geography of the comtry which they occupied, as a region of forest and lakes; but, still more, to keep in view this fact as a predominant characteristic of the continent, and as one important factor in the evolution of whatever may scem to be peeuliar in the aborigines of North Ancrica.

The effects resulting from the physieal features of a country, on the derelopment and aggregation, or interblending, of its races ean nowhere be wisely overlooked. Eren within the narrow limits of the British Islands the influences of monntan and lowlands, of the fertile stretches of Kent and the valley of the Thames, the fens of Lincolnshire, the moorlauds of Northumbria, and the Welsh and Scottish Highlands, have largely contributed to the endurance, if not in some degree to the development, of ethnical distinctions; as they have undoubtedly been the chief source, not only of the perpetuation, but of the multiplication of diversities in language.

In this respect Britain is an epitome of Enrope, with its great mountain ranges, and detached peninsulas, by means of which races have been isolated within well-defined areas, and their languages and other distinctive peculiarities preserved. Russia alone, of all European countries, presents analogies to Central Asia as a region farourable to nomadic life; and in so far as its history differs from that of the continent at large, it accords with such physical conditions. Throughout the whole historic period, as doubtless in prehistoric times, the great chain of monntains reaching from the western spur of the Pyrmees to the Balkans has influenced European progress; while the chief navigable river, the Danube, traversing the continent through one miform temperate zone, has tended still further to the perpetuation of certain distinctive ethnical characteristics in central and sonthern Europe. In all its most important geographical features, the

[^48]"northern continent of America presents a striking contrast to this. An isosceles triangle with its base within the Arctic circle, it tapers to a narrow isthmes towards the equator. Its great mountain chain runs from north to south, and in near proximity to the Pacific coast; and its chief navigable river, rising within our own Canadian Dominion, and receiving as its tributaries other rivers draining vast regions on either hand, traverses twenty degrees of latitude before it reaches the Gulf of Mexico. Another range of highlands rises towards the Atlantic sea-hoard, and forms the eastern boundary of the great interior plain. But the Alleghanies or Appalachian system of mometains, thongh they may be said to catend from the St. Lawrence to the Mexican Gulf, rise only at a few points, as in the White Monntains of New Hampshire, to any great elevation. They form rather a long platem, intersected by wide valleys; and so diversify the landscape, without ronstituting strongly duffed barriers or lines of demarkation. As a whole, the rontinent of North Anerica, castward from the Rocky Mountans, may be described as a herel area, so slightly modified by any clevated regions throughout its whole extent, from the Arice circle to the Gulf of Mexico, as to present no impediment to the wanderings of nomadic tribes. lt is interlaced with rivers, and diversifed everywhere with lakes, alikw aralable for natigation and for fishing ; and, until the intrusion of Enropean immigramts. its forests and prairies abounded with game far in excess of the wants of its popmation. liserybhing thus tanded to perpetuate the condition of nomadie hunter milne. This stage of mative American history inevitably drew to a close under the influmer of liuropan institutions and civilization; but it is interesting to note, that the sande ab-ente of any well defined geographical limitations of area, which tended to meretuate the nomadie habits of the savage, has aided in consolidating the great confederaly of the [nited Natos, and maintaining an ethnical and political conformity throughout the North Anerican continent in striking contrast to the diversities in race

lli-tory and native traditions alike conlirm the idea that the valley of the St. Lawrence was the habitat of the Luron-Iroquois stock as far back as evidence can be appealed to. The lluron traditions till of a time when the Irovince of Quebee was the home of the race eatward to the neal ; while those of three at least of the members of the Iroquois confederacy in legembary fashon clamed their birth from the soil south of the great river. When the lirenth explorers, maler the leadership of Jacques Cartier, first entered the St. Lawrence, in 1535 . they fomed at Stadacone and Hochelaga-the old native civic sites now ocenpied by the cities of Qucbec and Montreal,-a population apparently of the Huron-Iroquois stock; and, in so far as reliance may be placed on their traditions, Canada was then populous throughout the whole valley of the st. Lawrence with industrious native tribes, the representatives of a race that had occupied the same region for nomumbered centuries. "Some fanciful tales of a supernatural origin from the heart of a mountain; of a migration to the eastern sea-board; and of a subsequent return to the country of the lakes and rivers, where they finally settled, comprise," says Brownell,' " most that is noticeable in the native traditions of the Six Nations prior to the grand confederation." But the value of such traditionary transmission of national history among unlettered tribes has received repeated confirmation; and the incidents of their own famous leagne, perpe-

[^49]tuated with circumstantial minuteness in the traditions of the Iroquois, are assignable apparently to the earlier half of the fifteenth century. The older event of the overthrow of the Alligéwi, in the Ohio valley, of which independent traditional records have been handed down by the Lemni Lenape, or Delawares, and by the Iroquois, is believed to be correctly assignable to a date nearly contemporaneous with the assumption of the authority of bretwalda of the Heptarchy by Egbert of Wessex,-that memorable step in the fusion of "nations" not greatly more important than those of the Iroquois league, until their divisions in speech and polity were effared in the unity of the English people. As to "the fanciful tale of a supernatural origin from the heart of a monntain," it is simply a literal rendering of the old Greek metaphor of the autochthones, or children of the soil, symbolized by the Athenians wearing the grasshopper in their hair; and is by no means peruliar to the Iroquois. Mr. Horatio llalederived from Manderong, an old Wymblot chicf, the story, as narrated to him hy the Ifurons of Lorette. They took hin, he said, to a mombain, and showed him the opening in its side from whence the progenitors of the people emerged, when they "first canc out of the ground." ${ }^{1}$ The late Huron chief, Tahourenche, or Francois Xaviar licard, communicated to me the same legendary tradition of the indigenous origin of his pople; thlling me, though with a smile, that they came out of the side of a monnain butwen Quebme and the great sea. My informant comeded this fact with other incidents, all pointing to at traditional belief that the northern shores of the lower St. Lawrene wrew the original home of the race; and he spoke of ertain ancient events in the history of his people as having occurred when they lived beside the big sea. The earlest anthentie reference to this tradition ocrurs in the "Redations" for 163t, where Brebeuf, after a briel allusion to certain of their magical songs and dances, says: "The origin of all suth mystrites is nssigned by them to a being of superhmman stature, who was womnded in the forchead by one of their nation, at the time when they lived near the sea." The reference to a migration from the sea-board obviously points to one of those incilents in the life of the nation which marked for them an epoch like the Ilegira of the Arabs. When Champain followed Cartier nearly seventy years later he found only a frw Algonkins in theib birch-bark wigwans, where the palisaded towns of the Huron-Iroquois hat stood. But no Algonkin legend claims this as their early home. The invariable tradition of the Ojibways points to the Lake Superior region and the country stretehing towards Hudson Bay, as the ancestral home of the Algonkin tribes.

Such information as can thus be gleaned from many independent sources, as from the somewhat confused yet trustworthy narrative of David Cusick, the Tuscarora historian, and from Peter Dooyentate, the Wyandot historian, all leads to the same conclusion. From remote and altogether pre-Colmmbian centuries, the Hurons and other allied tribes-the occupants in the seventeenth and eighteenth centuries of various detached portions of the country north of the St. Lawrence and eastward of the Georgian Bay,-appear to have been in possession of the whole region to which their oldest traditions pointed as the cradle of the race; while nations of the Algonkin stock lay beyond them to the north-west. The great river and the lakes from whence it flows into the lower valley formed a well-defined southern boundary for affiliated tribes; but the first Dutch and English explorers of the Hudson, and of the tract of country which now

[^50]constitutes the western part of the State of New York, found the river valleys and lake shores in occupation of the Iroquois coufederacy, then consisting of Mohawks, Oncidas, Onondagas, Cayugas and Senecas. These constituted the five nations of the famons Iroquois league. But the Hurons of Canada, with whom they were latterly at deadly fend, appear to have been the oldest representatives of the common race, and were still in ocupation of their ancestral home when Carticr first explored the St. Lawrence. The same race had spread far to the south; and its representatives, in detached groups, long continned to perpetmate its influence. These included the Conestogas or Andastes, the Andastognes, the Carantonans, the Cherohakahs or Notoways, the Tuscaroras, and others, muder varions names. It is not always casy to recognize the same tribe under its widely dissimilar dwignations. The Susqumbmorks of the English and the Minquas of the Dutch, appar to be the Audastes muder other names, and Champlan's Carantouans may have bem thw Eries. Under those and other names the Huron-Iroquois stock "xtrmberd to the comntry of the Tuscaroras in North Carolina. Still farther sonth
 the Iropuos.' This lawt Mr. Maln has placenl heyond doubt; and having detected in the languac" of th" form'r a erammatical structure manly Huron-Iroquois, while the vocabnlary in to aroat whent forign, he is imelined to think that we thas recover traces of a prople, far somb in Alabama and Gergia, the descendants of refingers of the conturfal Alligewi, adopted inte onn of the nations of their Iroquois conquerors. ${ }^{2}$

From one after amother of the ontlying sonthern ofthoots of the emmon stork, additions Were made from time to time, to restore the mombers of the decimated lroquois. Westwath of the confederary was the country of the Eries, an offshoot of the Seneen nation. orenpying the somthern shore of the great lake which perpetuates the name. Immediate]y the morth of the Eries, within the C'anadian frontier, the Attiwendaronks,
 tribe of the samestork, werestlad in the fertile megion between Lakes Erie and Ituron. th 171t, har Tusaroras. when driven by the Enerlish out of North Carolina, wore wel-
 the nam. of the Nix Nations. Towards the middle of the same century the waste of war made then raty to welcome any additions to their numbers; and the Tuteloes and Nanfirokes. both apharently Algonkin, firnished fresh aceessions to the diminished numbers of the confederary. but without taking their place as distinct mations.

But of all the nations of the stock thus widely spread westward and southward, the Hurons are the native historical race of C'anada, intimately identified with ineitents of its carly settlement, and of friendly intercourse with La Nowelle France. Their language is now recognized as the oldust form of the common speech of the Huron-Iroquois, and it is not creditable to Conadian philologists that jis grammar still remains unrepresented in any accurate printed form. The Literary and Historical Society of Quebec did, indeed, publish in its Transactions, in 1831, the translation of a Latin MS., compiled with much industry by a missionary who had laboured among the Hurons of Lorette, and whose anonymous work was found amongst the papers of the mission. But it is the production

[^51]of one ignorant of the science of language, and gives no adequate idea either of the grammatical structure or of the variety and richness of the Huron tongue.

The languages or dialeets spoken by many native Indian tribes have undoubtedly perished with the races to which they pertaned; but the numurons Huron-Iroquois dialects still existing, not only in written form, but as living tongues, alford valuable materials for ethnical study. The history of other Indian tribes abundantly accounts for the multiplication of a minnte diversity of languges so specially characheristic of the Anerican continent, with the endless subdivisions of its indigenous population into petty tribes, kept apart by internecine fends. The number of native Ammentangmages is estimated by Vater, in his Lingurum Totins Orbis Index, at abont firw humdred. But. the question forthwith arises: What shall be reoraded as constitutiner a laneracer for, in the wanderings of little bands of Indian momads. dialeets multiply induinitely. Nomply
 States," as spoken between Alaska and the lathmus of l'anamal.
 The subject is rendered more attrative owing to the lad that, of manly all the nations of the North Americau continent, their laguages are the only survine memorials of the race. Already, under the efliefent supervision of the Ethongraphe line an of the United States, systematice contributions are beines secomed for this important ham of knowledge, so fur as their own arographical area is concornct. A no las inporant arat is embraced in the Dominion of ('anada, and it is pontiarly incmonnot on the Royal Society to urge on the attention of the (fovermment the newesity for timely antion in this matter. In our own Northwest, and in british Colmmbia. language aro disabparing and races becoming extinet. Mr. Itale remently contrituted tothe Ammionn thitusuphical Society's transactions, a valuable monogran on the fotelo tribe and languave, durimi mainly from Nikonla, the last full-hlood Tutelo, who survival till mpwards of an
 their Grand River reserve near Brant ford. "My only knowladge of thr Thtelons." sise Mr. Hale, "had been derived from the few notioes comprisel in (iallatins: Syonsis of the" Indian Tribes, where they are classed with the nations of the Htwron-Iroquois stork. At the sane time the distinguished anthor, with the scientile "antion whith markert all his writings, is eareful to mention that no vocabulary of the languge was known. That which was now obtained showed, beyond question, that the language was totally distind from the Huron-Troqnois tongues, and that it was closely allied to the language of the Dakota family." ${ }^{1}$ But for this timely exertion of a philologival stumbt, this intrrestiner link in the history of the Huron-Iroquois relations with afiliated tribes woukl have been lost beyond recall.

Now or never, much work of this same kind has to be done; nor would the requisite organization be difficult to secure. A systematic cooperation of some sections, or of the council of this society, with officers of the Indian Department and those of the Grologital and Natural History Survey of the Dominion, would furnish workers available for accomplishing results for the native tribes of Canada similar to the data now being so efficiently accumulated in reference to the Indian tribes of the United States. Already;
${ }^{1}$ The Tutelo Tribe and Language, p. 9.
with the sanction of the director of the Geological Survey, comparative vocabnlaries of Indian tribes of British Colnmbia have been collected by Dr. George M. Dawson, and Mr. W. Fraser Tolmie, which form a valuable contribution to Canadian ethnography. Much has yut to be done before the multifarious dialects can be reduced to form, and classified in distinct gronps pertaining to their determinate stocks. Some are mere dialeets, such as the previling condition of nomad life so largely tends to develop, owing to the frequent brakine up of dismembered tribes, or the adoption of refugees, or survivors of conquered tribes, into the larger band. This peenliarly tends to beget an intermingling of ronambaris, and new modifieations of spech. Others have only acquired their dialectic -haractar in the scattering of tribes brokin mp into small bands, and consequently present a rory limitul rante of rombulary. Vntil remitly the tendency has been to assmme an und.ely inu nuity of spmed for the whole American languages, based on the polysynthetic, or holophrasti, characturistir asmibed to the whole; just as by an exaggerated estimate of the prevanur of : protominat hembform, one physical type was long assumed to char-
 lampane is comormel, the preme fondency is towards the opposite extreme. Major

 Fifte-five of thom he believes to be satisfactorily detemined as distinct stocks. On the
 (1) the native Amminan languaser, thus proweds: "Yot it is the confident opinion of limmistio oherlas that a fumdamental miy lies at the base of all these infinitely varying finm- of sumblat thaty may lee, and probably are, all descended from a single parent langrag..."

The history of the Huron-Iroquois ram, and esperially of the Six Nation Indians, -inw iha sefthenent of the main hody for the past century on their reserves on the Grand River. in the l'rasinc. of (mation, curionsly illnstrates the pertinacity with which they hatro "hariwhel the dialnetic varioties of a common tongue. But while the essential
 rawe: it in intoresting io notr the recomition by the Indians of affinities of dialects, and the distinction between even remote kinship based on such evidence, and a radical divwnty in language and race, as in the readmission of the Tusearoras to the Iroquois family of nations. Acoordiner to Brebenf, the kinship of the Attiwendaronks of the Niagara pransula was reognized by the Hurons in that designation, which classed them by a name signifying a "pooble of a languge a little different." ${ }^{2}$ Peter Jones Kahkewaquonaby, a civilised Ojibway, adopted into the Mohawk nation, in speaking of the traditions of the Indians as to their own origin, says: "All the information I have been able to gain in relation to the question amounts to the following. Many, many winters ago the Great Spirit, Kechw-Manedoo, created the Indinus. Every nation speaking a different language is a second creation, but all were made by the same Supreme Being." ${ }^{3}$

Among the races of the northern continent, none more fitly represent their special characteristics, enst of the liocky Mountains, than the great Huron-Iroquois family. Their

[^52]language is remarkable for its compass and claborate grammatical structure; and the numerous dialects of the common mother tongue furnish evidence of migration and conquest over a wide region eastward of the Mississippi. To such philological evidence many enquirers are now turning for a clue to the origin of the races of the New World; and for the recovery of proofs of their affinity to one or other of the Old World stocks. Professor Whitney, after dwelling on the "exaggeratedly agglutinative type" of the ancient Iberian language, and its isolation anong the essentially dissimilar languages of ${ }^{\circ}$ Aryan Europe, thus proceeds: "The Basque forms a suitable stepping-stone firom which to enter the peculiar linguistic domain of the New World, since there is no other dialeet of the Old World which so much resembles in structure the Anerican languages ; " ${ }^{1}$ not indeed, as he adds, that they are all of accordant lorm ; lor he pronomees the gromping of them in a single great family as "a classilication of ignorance."

The analogy thus indicated has been viewed with lavour by Mr. Horatio Hale, as at valuable hint pointing in that direction to the recovery of possible fraces of the pe-Aryan languages of both continents. "In Western linope," her remaks, "one commmity is known to exist, speaking a language which, in its gencral structure, maniliste a near likeness to the Indian tongues. Alone, of all the raves of the ohd continent, the lasques or Euskarians of northern spain and south-western Frame have a sperech of that highly complex and polysynthetic character which distinguishes the Ammican languages." lhat at the same time Mr. Hale adds with discriminating care: "There is not. indow, any such positive similarity in words or grammar as would prove a diret atfiliation. The likeness is merely in the general cast and mould of spech;" such as, on any theory of linguistic aflinity, is alone to be looked for in the languages of races separated no less by vast intervals of time than of space. Novertheless, this element of correpondence common to both is suffecently marked to attract much attention. We have as yet however, barely rached the threshold of this all-important encuiry; and find at evary step only fresh evidence of the neenssity for the diligent acommulation of all arailable - materials before the native races of our own Dominion, and those of the noighbouring States, perish, and their languages pass beyond resall.

Nothing but patient accumulative researeh and study of the vocabulaties and grammatical structure of the native American languages will yield any immediate results of practical value. Comparison with the languages of the old world, even where they seem to yield traces of relationship, has thus far served only to confirm the evidnce of the remote date at which separation took place between the Asiatic, or other old world stocks, and their American congeners. Speculation aceordingly finds ample room for fancy to sport with the uncertain cluc. So far as the more northern tribes are concerned, Mr. Clements Markham would trace their affinities to the nomads of Siberia. Mr. Hyde ('larke, taking the recently deciphered Akkad for the typical language of the original wanderers from their Asiatic fatherland, assumes one branch of it to have passed to India and IndoChina, and thence by way of the Pacific islands to America. These movements, to which the grammatical forms of Malay-Polynesian appear to lend some countenance, are referred to a remote era of Asiatic civilization, during which the maritime enterprise of the Pacifie may have been carried on to an extent unknown to modern Malay navigators. So, in like

[^53]manner, Professor John Campbell seeks in the same obscure dawn for some philological traces of long-forgoten Hittite migrations, such as may harmonize with the idea of the mythic Atlantides, the people of a continent once stretching westward into the Atlantic main. But the interval to be bridged over, between such remote traces of Asiatic or other affinities and the oldest of Iroquois traditions, is too vast to hope for any present aid from the latter source. But il Akkad, Hittite, Egyptian, Phœnician, or other of the world's greyfathers, transplanted to Ameriea the germs of its long indigenous stock, we look in vain for ans tranes ol their ohl-world eivilization north of the Mexican Gulf. Nor is it by any means an wablished truth that the indigenous arts of Central America or Peru are of an! wry erat antiquit!. Their metallurgy was at a crude, yet suggestive, stage at which it was mot likly to be long arrested. The same may be said of their hieroglyphic rawols: thongh they cortanly present some highly significant analogies to the Chinese phan of word-writing, ealulated, along with other aspects of resemblance to that peenliar
 (1) monlify wn wimatw of the posil) duration of Central and Sonthern American
 Wh that of beyp somens to me irremelable with the evidence. Their architecture was barbari. thomsh imponine from the sale on which their great temples and palaces were built. In ('ontal Amerian aperally the ageregation of numerous ill-lighted little ehamhore like honeyombed wills extavated ont of the huge pile, is strongly suggestive of aflaity 10 the ('anas (irandus. and the l'ueb) os of the Zani : and this is confirmed by the
 tion of the l'unhlo pottery

Tha atronomy and the callendars, both of Mexico and Pern, with their detailed mothons of remoting their divisons of time, are all suggestive of an immature phase of Wivilization in the bery stage of its umergence from barbarism, modified, in some cases, by therernt arduisition of certan arts. As for the peenliar phase of Mexican art, and whatwer ohbrevidne of porms Mexino supplies, they appear to me no more than natural prohnse of the firt sumasinl intrusion of the barbarians of the northern continent on the wals of trpical civilization. Certain it seems, at least, that if an earlier native "ivilization had eror exisued in the north, or il the representatives of any type of old world (ivilization were presunt there in numbers for any length of time, some traces of their lost arts mual longe since have amen to light.
lint the conserative power of language is indisputable, and the evidence of the origin or afliliation of rates. which it supplies, surpasses all other kinds of proof. The study of the anciont languges of India has opened up a bomdless field of research. Tha aflimitis of languare preserve subtle traces of muheeded relations; and if the kinship now "hamed for the polysythetic languages of both hemispheres be correct, we are only on the threshold of significant disclosures. The Hnron-Iroqnois tongue, in its numerons ramilieations, as well as some of the mative langnages that have outlived the last of the races to which they belonged, may preserve traces of affinities as yet unrecognized. lunt we must be content at the present stage to accumulate the needfnl materials; to master the history of the races of our own Dominion; and to determine, as far as possible, their affinities to each other, and to the typical stocks of the northern continent. When this has been accomplished, we shall still have to await the careful inductions of
philological science before we can hope for any trustworthy solution of the problem of which philology undoubtedly offers the most hopeful key.

In $n o$ respect are the Huron-Iroquois more correctly adducible as a typical race of American aborigines than in the absence of all evidence of their ever having acquired any of the arts upon which civilization depends. We look in vain in their vocabularies for terms of science, or for names adapted to the arts and mannfactures on which social progress depends. But they had developed a gift of oratory, for which their language amply sufficed, and from which we may infer the presence in this race of savages of latent powers, capable of wondrous development. "Their langnages show, in their elaborate mechanism, as well as in their fuluess of expression and grasp of thought, the evidence of the mental capacity of those who speak them. Scholars who admire the inflections of the Greek and Sanscrit verb, with their expressive foree and clearness, will not be less impressed with the ingenious structure of the verbin Iroquois. It comprises nine tenses, three moods, the active and passive voices, and at least twenty of those forms which in the Semitic grammars are styled conjngations. The very uames of these forms will suffice to give evidence of the care and mimentoss with which the framers of this remarkable language have endeavoured to express every shade of meaning. Wr have the diminutive and angmentative forms, the cis-locative and trans-locative, the duplicative, reiterative, motional, cansative, progressive, attributive, frequentative, and many others." ${ }^{1}$ To speak, inded, of the Iroquois as, in a consciously actire somse, the framers of all this would be misleading. But it munestionably grew up in the deliberations aromd the council fire, where the conflicting aims of confederate fribes were swaym by the eloquence of some commanding orator, matil the fierest warror of this forest race learned to value more the successful wielding of the tongue in the Funonsionm, or figurative loner House of the League, even than the wielding of the tomahawk in the firld. At the organization of the eonfederacy, the Canyengas or Mohawks were liguratively said to have "built a house," rodinonsomil, or rather to have "bnilt the long housi" in which the comeil fire of the Fire Nations was kindled. Of this the Senecas, lying on the extreme west, were styled the "door-keepers," and the Gnondagas, whose territory was central, were the custodians. The whole usage is rhetorical and figurative. Uuder such influences the language of the Huron-Iroquois was framed, and it grew rich in emotional and persuasive forms. It only meeded the evolution of a true alphabet out of the pictorial symbolism on their painted robes or the grave posts of their chiefs, to inangurate a literature which should embody the orations of the Iroquois Demosthenes, and the songs of a mative Homer, for whom a vehicle of thought was already prepared, rich and flexible as poet could desire.

So far as the physical traits of the American aborigines furnish any evidence of ethmical affinity they unquestionably suggest some common line of descent with the Asiatic Mongol ; and this is consistent with the agglutinate characteristics common to a large class of languages of both continents. But, on the other hand, the characteristic head-form of the Iuron-Iroquois, as well as that ol Algonkin and other northern tribes, deviates alike from the brachycephalic type of the sonthern Indian nations of this con-

[^54]Sec. II., 1884. 9.
tinent, and from that of the Asiatic Mongols. Humboldt, who enjoyed such rare opportunities for studying the ethnical characteristies of both continents, but to whom, nevertheless, the northern races, with their dolichocephalic type of head were unknown, dwells, in his "American Researches," on the striking resemblance which the American race bears to the Asiatic Mongols. Latham classes both muder the common head of Mongolide; and Dr. Charles Pickering, of the American Exploring Expedition, arrived at the same conclusion as the result of his own independent study of the races of both continents. Nowertheless. howerer great may be the resemblance in many points between the true Red Indian and the Asiatic Mongol, it falls short of even an approximate physical indutity. The Mongolian of Asia is not indeed to be spoken of as one unvarying type, any mori than the American. But the extent to which the Mongolian head-form and prouliar physiognomy chamenterize one widely diffused section of the population of the (antum continent, gives it sperial promineme among the great ethnical divisions of the human race. Morton assigns 1421 as the cranial capacity of eighteen Mongol, and only 12.34 as that of one hundred and sixty-four American skulls other than Peruvian of Mexican. Wr: I'an Topinard, in discussing the American type, adds: "If we are to rely on the methol of cubic momemenent followed by Morton, the American skull is ome of the least "apacions of the whole human race." P Put Dr. Morton's results are in anm. ranurta mishading. The man eapacity yielded by the measurements of 214 Anmian skull, in the Pabocly Musom of Archeology, moluding a considerable numbur of fomalne, is $1: 81$; and with a carefully selected series, excluding exceptionally larre amt small cramia, the reults would be higher. Twenty-six mate California sballe, for "xample, yirld a mean capacity of 1470. The Huron-Iroquois crania would rank ammen sh wantional examphen The forthead is, indeed, low and receding, but
 to the Enropean mean.
lut any ided of simple miformity in the athnical characteristics of the varions races of Norih and south America is umtemable. All probabilities rather favour the idea of diffirent athnjal centres, a diverity of origin, and considerable admixture of races. All avidenw, monorer, whether physical or philological, whaterer else it may prove, leaves no room for doult as to a greatly prolonged period of isolation of the mative races of the New World. Whether they came hither from the Mediterranean, in that old mythic dawn the memory of which survived in the legend of a submerged Atlantis; or the history of their primeval migration still lingers among the fading traces of philological affinity with the lBasques; or if, with the still more remote glimpses which the aretic launa of the New World supplies, we seek to follow the palæolithic race of central Limropes reindeer period in the long pilgrimage to Behring Straits, and so to the later home of the Ameriam Mongol : this, at least, becomes more and more obvions, that they bronght with them no arts derived from the ancient civilizations of Egyptor of Asia. So far, at lenst, as the northern continent is concerned, no evidence tends to suggest that they greatly differed at any earlier period from the condition in which they were found

[^55]by Cartier when he first entered the St. Lawrence. They were absolutely ignorant of metallurgy; and notwithstanding the abundance of pure native copper accessible to them, they cannot be said even to have attained to that rudimentary stage of metallurgic art which for Europe is spoken of as its "Copper Age." Copper was to them no more than a malleable stone, which they fashioned into axes and knives with their stone hammers. Their pottery was of the most primitive erndeness, hand-fashioned by their women without the aid of the potter's wheel. The grass or straw-plaiting of their basket-work might seem to embody the hint of the weaver's loom; but the products of the chase furnished them with skins of the bear and deer, sufficient for all purposes of "lothing. They had adyanced in no degree beyond the condition of the neolithic savage of Emropess Stone Age, when at the close of the fifteenth century they were abruptly brought into contact with its cultured arts. The gifted historian, Mr. Franeis Parkman, who has thrown so fascinating an interest over the story of their share in the long protracted strugerle of the French and English colonists of North America, says of them: "Among all the barbarous nations of the continent the Iroquois stand paramonnt. Elements which among othere tribes were crude, confused, and embryotic, were among them systematized and con reted into an established polity. The Iroquois was the Indian of Indians. A thorough savage, yet a finished and developed sarage. Ite is perhaps an example of the hiehest elevation which man can reach without emerging from his primitive condition of the hanter." Yet with this high estimate of the race as preminent anong Red Indian nations, he adds: "That the Iroquois, left under their institntions to work out their destiny undisturbed, would ever have developed a civilization of their own, I do not believe." They had not, in truth, taken the first step in such a direction; and, were it not for the owidence which language supplies, it would be conceivable that they, and the whole barbarian nations of America, of which they are a type, were Mongol inturders of a later date than the Northmen of the tenth century; who, it seems far from improbable, ennountered only the Eskimo of the Labrador coast, or their more sonthern congeners, then extending considerably to the sonth of the St. Lawrence. The prevalene of a brathycephalic type of head among sonthern Indian tribes, while dolichocephalic "harateristies are common to the Eskimo and to the Huron-Iroquois and other northern Indiam nations, lends some countenance to the idea of the latter being the product of an intermixture of Red Indian and Eskimo blood. The head-forms, however, thongh both long, differ in other respects; and there is a like divergence apparent on comparing the bones of the face, with a corresponding difference in their physiognomy.

Dr. Latham, as already noted, finds in the Iroquois one of the most typical families of the North American race, and Mr. Parkman styles them "the Indian of the Indians." The whole Huron-Iroquois history illustrates their patient, politic diplomacy, their derotion to hunting and to war. But their policy gave no comprehensive aim to wars which reduced their numbers, and threatened their very existence as a race. Throughout the entire period of any direct knowledge of them by Europeans, there is constant evidence of the rise of fends between members of the common stock, due in part, indced, to their becoming involved in the rivalries of French and English colonists, but also traceable to hereditary animosities perpetuated through many generations. The strongly marked
${ }^{1}$ The Jesuits in North America, p. 47.
diversities in the dialects of the Six Nations is itself an evidence of their long separation, prior to the date of their confederation, which is believed to have been effected in the earlier half of the fifteenth century. By far the most interesting and trustworthy narrative of this famous leagne is embodied by Mr. Horatio Hale in "The Iroquois Book of Rites," a contribution to aboriginal Ancrican literature of singular interest and valne. Among the members of this confederacy the Tuscaroras oceupy a peculiar position. They were reunited to the common stock so recently as 1714 , but their traditions accord with those of the whole Ifuron-Troguois family in pointing to the Lower St. Lawrence as their oriminal home: and the diversity of the Tuscarora dialect from those of the older nations of the league furnishes a valuable gange of the significance of such differences, as evidence of the length of prediod during which the rarious members of the common stock hat been separated. On the other hand, the mamer in which, in the absence of any hereditary fend, the lrognois resperted the bonds of consanguinity, and welcomed the fugitive immigrans from North Carolina, throws an interesting light on the history wh the rate ame the large extmot of comtry occupied by it in the time of its greatest properit!

The artinet home of the whole huron-lroquois stock was whin the area latterly rmbacold in Lper and Lowre ('andat, and, therefore, they have a pecular claim on the inturet of (anatians as whe fursors in the ocupation of the soil; while, in so
 the Hurm were whtommed th a frimbly, if fatal, alliame with the warly French colonists: and hhe Tropmis of the six Nations have enjoyed a home, under the protection of

 -ignilicant. Thu fathes of the common stork dwelt, in sum times as their oldest and mos dherinfal traditions perserved in momory, in their northern home on the st.
 " Wampum-k"pers." or otticial amalists, that there cane a time when, from whaterer "anor, th" ('aniongas-Ka-nyon-kr-ha-ka, or Flint people, i. e., the Mohawks, -the "eldest brother" of the danily. led the way from the northern shore of the St. Lawrence to their bater hom in what is mow the Niate of New York. But the remote and prehistoric Wharater of this laber tradition is shown by the faet that the Oneidas, Onondagas and semecas, all damed for themselves the character of antochthones in their later home. The profise pot where anorling to the cherished legend of the Oneidas, they literally sprang from the soil, is still marked by "the Oncida Stone", a large boulder of flesh"oloured syenite, from which the latter called themselres Oniota-ang, "the people begot from the stone." It ocupins a commanding site overlooking a fine expanse of comery stretching to the Oncida Lake. But, acoording to Mr. Hale, the name of the Oneida nation, in the commil of the league, was Nihationtakow, usually rendered the "greattree people," or literally "those of the great log." This designation is comnected, most probably as an after-thonght, with a legendary meeting of their people with Hiawatha. ${ }^{1}$

The long-enduring league of the Iroquois is foremost among the characteristic features which distinguish this remarkable race of American aborigines from the

[^56]Algonkins, and other ruder tribes of North America. The story of this league has been repeated by successive admiring historians, not without rhetorical exaggerations borrowed from the institutions of civilized nations, both of ancient and modern times. Morgan says of this tribal union: "Under their federal system, the Irorfuois flourished in independence, and capable of self-protection, long after the New England and Virginia races had surrendered their jurisdictions, and fallen into the condition of dependent nations; and they now stand forth upon the canvass of Indian history, prominunt alike for the wisdom of their civil institutions, their sagacity in the administration of the league, and their courage in its defence. When their power and sovereignty finally passed away, it was through the events of peacelinl inturcourse, grachally progressing to this result." Schooleraft in like mamer refers to "their adramement in the womony of living, in arms', in diplomacy, and in civil polity," as evidente of a momota date for their confederacy. ${ }^{2}$ but while thas contrasting the "power and sombergnty" of the Iroquois with the "dependent nations" to the south, "idhooldraft heares it manifest that, even in the sevententh cantury, their whole mombers fell shom of lamo. and thoir warrors or fighting men were carefully extmated in 1676 at 2,150 . The diverity of dialects of the different members of the leages is a smore of cmions intorest to the philologist; but the fact that, anong a people mumerically so small, local dialocte worn thus perpetuated, is a proof of the very partial influme of the latatu as and ond union. It serves to illustrate the general defeet ol mative Ammican polity. "Xothing." says Max Mäller, "surprised the Jesuit missiomaries so mu'h as the immense mmmber of languages spoken by the natives of America. But this, lar from being a mond of a hieh state of civilization, rather showed that the various ranes of Ammina hat nerem sub, mitted for any length of time to a powerful political conerntration." The hamenis were undoubtedly preeminent in the highest virtues of the savage: amd amblat they hase united with their comage and persistency in war some of the elanemts of promes in civilization ascribed to them, they might have proved the regenerators of the comtiment, and reserved it for permanent occupation by races of natire origin. "Wherever they went," says Schooleralt, "they carried proots of their "nerey, womrate and enterprise. At one period we hear the somd of their warery along the Strats of tho st. Marys and at the foot of Lake Superior; at another, under the walls of Quebere, wher they linally defeated the Hurons under the eyes of the French." And altur glaning at the loner history of their trimmphs, he adds: "Nations trmbled when they heard the name of the Konoshioni."

In older centuries, while the Huron-Iroquois still constituted one mited people in their ancestral home to the north of the St. Lawrence, they must have been liable to contact with the Eskimo, both on the north and the ast; and greatly as the two races differ, the dolichocephalic type of head common to both is not only suggestive of possible intermixture, but also of evidence of cneroachments on the Eskimo in early centuries by this aggressive race. In the sixteenth and seventeenth centuries, as probably at a much earlier date, when the Iroquois had parted from the Wyandots or Hurons, they

[^57]became muquestionably the aggressive race of the Northern continent; and were an object of dread to widely severed nations. Their earliest foes were probably the Algonkins, whose original home appears to have been between Lake Superior and Hudson Bay. Nevertheless, there was a time, according to the traditions of both, apparently in some old pro-Columbian century, when Iroqnois and Algonkins combined their forees agrinst the Alligewi, a long extinct stock, whose name survives in that of the Alleghany monntans and river. If the growing belief is well founded that they were the so-called -. Mound-Puilders" of the Mississippi and Ohio valleys, they must have been a namerous pople, ocupying a territory of great extent, and carrying on agriculture on a large seale.
 bryond the stage of Iroguois progress. But their pottery was greatly superior to any cermaie art of the rexion around the great lakes; their ingenious earvings in stone have lowe whents of whtrepreal interest : while their singular geometrical earthworks still bu\%h th" Amwiran ar haboget, from the evidence they show of skill in a people still mandially in thein some period. The only concuivalle solution of the mystery, as it

 Falleva.as in lem : amd, like the mythe Quetzaldoatl of the Agtees, tanght them agrienlmre, and dirwnel the cmatrut tion of the matellons earthworks to which they owe their latw disimelise name. lim for some unknown reason they provoked the mated fury of
 I "urime phan of imipiont mative ivilization thas perished; and, notwithstanding all the
 - :agu of bhar known history with the ahieroment of such a progress in agriculture or
 frimph of the bromois in this lons-protratod warfare may have been due the hamghty airit whim thencoforth demanded a recognition of their supremacy from all -urombling nathos. Thair patial historims ascribe to them a spirit of magnamity in the use of their power, :mblandiatorial interposition among the weaker mations that :"knowlondem their supromary. They appar, indeed, to have again entered into alliance with an Algonkin nation in the early period of their league. Their annalists have transmitten the memory of a traty ceflented with the Ojibways, when the latter dwelt on the shores of Lakesuperior; and the meeting place of the two powerful races was at the great fishing-ground of tho sault Ste. Marie rapids, within reach of the copper-bearing rocks of th. Kewemaw peninsula. The leagne then established is believed to have been faithfully maintained on boih sides for upwards of two hundred years. But if so, it had been displaced by bitter leud in the interval between the visits of Cartier and Champlain to the St. Lawrence.

The historical significance given to the legend of Hiawatha by the coherent marrative so ingenionsly deduced by Mr. Horatio Hale from the "Iroquois Book of Rites" seems to point to a long past era of beneficent rule and social progress among the Huron-Iroquois. But the era is pre-Columbian and mythic. The pipe of peace had been long extinguished, and the huried tomahawk recovered, when the early French explorers were brought into contact fwith the Iroquois and Hurons. The history of their deeds, as recorded by the Jesuit Fathers from personal observation, is replete with the relentless ferocity of the
savage. War was their pastime; and they were ever ready to welcome the call to arms. La Salle came in contact with them on the discovery of the Illinois; and Captain John Smith, the fomder of Virginia, encountered their canoes on the Chesapeake Bay bearing a band of Iroquois warriors to the territories of the Powhattan confederacy. They were then, as ever, the same fierce marauders, intolerant of equality with any nuighbouring tribe. The Susquehannocks experienced at their hands the same fate as the Alligewi. The Lenapes, Shawnoes, Nanticokes, Unamis, Delawares, Munsees, and Manhattans, were successively reduced to the condition of dependent tribes. Eyen the ('anarse lndians of Long Island were not safe from their vengeance; and their power soms to have been dreaded throughout the whole region from the Atlantic to the Mississippi.

It thus appears probable that in remote centuries, before the discovery of Amorica by European voyagers, the region extending westward from the Labrator coast to Lakt Ontario, if not, indeed, to Lake Huron, had been in occupation by those who clamed to bu autochthones; though we have now no other knowledge of this than what may led dedued from their own traditions of migration and war. But though thus mantaming a hanghty predominancy; so far as their arts afford any evidence of progress, they wore in their infancy. The country occupied by them, except in so far as it was overerown with th" forest, was well adapted for agriculture; and the Iroquois and Hurons alike compared favourably with the Algonkins in their agricultural industry. lhat this work was mitely carried on by the women, while the share of the nen in the joint povision of food was the product of the chase. The beaufiful region was still so largely under forest that it must have afforded abundant resourees for the hunter ; but it durnished un facilitios for the inauguration of a copper or bronze age, such as the shores of Lake supurior in vain offered to its Algonkin nomads. Of metallie ores they had no knowledger and while they doubtless prized the copper brought oceasionally from Lake Superior, copper implements are rare in the region which they occupied. Their old alliane with the Algomkins of the great copper region had long come to an end; and when they came under the notice of the French and English colonists, the Algonkins had jointel with the Hurous as the most powerful and implacable foes ol the Iroquois confederay.

In the ancient warfare in which Algonkins and Hmon-Iroqnois are found mited against the nation of the great river valleys, we see evidences of a conllict betwend widely distinct stocks of northern and southern origin. It is an antaronism batwern well-defined dolichocephalic and brachycephalic races. In the dolichomephalic Irogrois or Huron, we have the highest type of the forest savage; no nomad, but maintaining as his own the territory of his fathers, and bnilding palisaded towns for the somer shelter of his people. The brachycephalic Mound-Builder, on the other hand, may still survire in one or other of the members of the semi-civilized village communities of New Mexico or Arizona. But if such attempts at the interpretation of native traditions hare any value, they carry us back to pre-Columbian centuries, and tell of long protracted strife, milil what may at first have been no more than the aggressions of wild northern races, tempted by the resomees of an industrions agricultural community, became a war of extermination. The elaborately constructed forts of the Mound-Builders, no less abundant throughout the Ohio Valley than their curious geometrical earthworks, prove the skill and determination with which the aggressors were withstood, it may be through successive gencratious before their final overthrow.

The palisaded Indian town of Hochelaga, one ol the chief urban centres of the HuronIroquois tribes in the older honne of the race, and a sample of the later Huron defences on the Georgian lay, stood, in the sixteenth century, at the foot of Mount Royal, whence the city of Montreal takes its name; and some of the typical skulls of its old occupants, as well as Hint implements and pottery from its site, are now preserved in the museum of McGill University. The latter relies reveal no more than had long been familiar in the remains which abound within the area of the Iroquois confederacy, and elsewhere thronghout the casturn states of North America. Their carthenware vessels were decorated with herringbone and other incised pattorns; and their tobacco-pipes and the handles of their clay bowls wore at times. rubly modelled into human and animal forms. Their implements of tlint and stone wore equally rude. They had inherited no more than the most infantile Salver arls: and when those were at length superseded, in some degree, by implements and wayma of bumpan mannfacture, they prized the more effective weapon, but manifecel no desire for mastoring the arts to which it was due. To all appearance, Whmeh mammberal anturies, the tide of human life has ebbed and flowed in the valley
 Whe wambern have left on the satuls of time tell only of the unchanging recurrence of
 art an mow vary faniliar to ns. The andint tlint-pits have been explored; and the flint-
 wort of the ladian braw. His spars and arrowheads, his knives, chisels, celts and hammors. in thint aml stomt, almmme. Fish-hooks, lances or spears, awls, bodkins, and other implements of bon and denr:s Lorn, are little lass common. The highest efforts of artistic skill whre expmond on the carving of his stone pipe, and fashioning the pipe-stem. The

 the gran or straw plating: or, at times. the actual impressions of the cordage or wickerwork hy whin the larger way vesels were hed in shape, to be dried in the sun beforo they were imperintly humed in the primitive kiln. But the potter also indulged her fancy :a times in modelling artistic devices of men and animals, as the handles of the smaller ware, or the forms in which the chay tobacco-pipe was wrought. Nevertheless the Nurherncominent lingered to the last in its primitive stage of neolithic art ; and its most northern wre its rudest tribes, until we pass within the Aretic circle, and come in contact with the ingenious handiwork of the Eskimo. Southward beyond the great lakes, and esperially within the aren of the Mound-Builders, a manifest improvement is noticeable. Alike in their stone carvings and their modelling in clay, the more artistic design and hetter finish of industrions settled commmities are apparent. Still further to the south, the diversified ingemity of fancy, especially in the pottery, is suggestive of an influence derived from Mexican and lernvian art. The carved work of some western tribes was also of a higher character. But taking such work at its best, it eannot compare in skill or practical utility, with the industrial arts of Europe's neolithic age. This region has been visited and explored by Enropeans for fully three centuries and a half, during a large portion of which time they have been permanent settlers. Its soil has been turned up over areas of such wide extent that the results may be accepted, with little hesitation, as illustrations of the arts and social life subsequent to the occupation of the continent by
its earliest aboriginal races. But we look in vain for evidence of an extinct native civilization. However far back the presence of Man in the new world may be traced, throughout the Northern continent, at least, he seems never to have attained to any higher stage than what is indicated by such eridences of settled ocenpation as were shown in the palisaded Indian town of Hochelaga; or at most, in the ancient settlements of the Ohio valley. Everywhere the agriculturist only disturbs the graves of the savage hunter. The earthworks of the Monnd-Builders, and still more their configuration, are indeed snggestive of a people in a condition analogons to that of the ancient popnlace of Egypt or Assyria, toiling under the direction of an overruling caste, and working out intelleetnal conceptions of which they themselves were incapable. Yet, even in their anse, this inference finds no confirmation from the contents of their monnds or carthworks. They disclose only implements of bone, flint and stone, with some equally rude copper tools, hammered into shape withont the use of fire. Working in the metals appears to have been confined to the southern continent; or, at least, never to have fonnd its way northward of the Mexican platean. Nothing lont the senlptured tobaero-pipe, or the betterfashioned pottery, gives the slightest hint of progress beyond the first infantile stage of the tool-maker.

But whatever may have been the soure of special skill among the old agricultural occupants of the Ohio valley, their Iroquois supplanters borrowed from them no artistie: aptitude. No remains of its primitive occupants give the slightest hint that the aborigines of Canada, or of the combtry immediately to the sonth of the St. Lawrence, derived any knowledge from the old race so curionsly skilled in the construction of geometrical earthworks. Any native bmrial-monnds or embanknents are on a small scale, betraying no more than the simplest operations of a people whose tools were mere flint hoes, and hom or wooden picks and shovels. Wherever evidmee is fomed of true working in metals, as distinct from the cold-hanmered native copper, as in the iron tomahawk, the copper kettles, and silver crosses, recovered liom time to time from Indian graves, their European origin is indisputable. Small silver buckles of native workmanship are indeed common in their graves; for a metallic currency was so mintelligible to them that this was the use to which they most frequently turned French or Euglish silver coinage.

But notwithstanding the general correspondence in arts, habits, and conditions of life, among the forest and prairic tribes of North Ameriea, their distimetive elassification into diverse dolichocephalic and brachycephalic types points to diversity of origin and a mingling of several races. So far as the native races of Canada are considered, it has been shown that all belong to the dolichocephalic type. The Alligéwi, or MonndBuilders, on the contrary, were a strongly marked brachycephalic race; and the bitter antagonism between the two, which ended in the utter ruin of the latter, may have been originally due to race distinctions such as have frequently been the source of implacable strife.

The short globular head-form, which, in the famous Scioto-mound skull, is shown in a strongly marked typical example with the longitudinal and parietal diameters nearly equal, appears to be common among the southern tribes, such as the Osages, Ottoes, Missouries, Shawnoes, Cherokees, Seminoles, Uchees, Savannahs, Catawbas, Yamasees,

Creeks, and many others. This seems to point to such a convergence, of two distinct ethnical lines of migration from opposite centres, as I think is borne out by much other evidence. In noting this aspect of the question anew, the further significant fact may also be once more repeated, that the Eskimo cranium, along with certain specialties of its own, is preeminently distinctive as the northern type.

Among what may be accepted as typical Canadian skulls, those recovered from the old site of Hochelaga, and from the Huron ossuaries around Lake Simcoc, have a special valne. They represent the native race which, under various names, extended from the Lower St. Lawrenee westward to Lake St. Clair. The people encountered by Cartier and the first French axplorers of 1535 , and those whom Champlain found settled around the Grorgian Bay sixty-eight years later, appear to have been of the same stock. Such primidive local names, as stadarone and Horhelaga, are not Algonkin, but Huron-Iroquois. Natiee traditions, as well as the allusions of the earliest French writers, confirm this iden of the eccupation by a Muron-Iroqnois or W yandot population of the "region northeast ward from the mouth of the st. Lawrence, at or somewhere along the Gulf coast, before they erer mot with the Fronch, or any Enropean adventurers," as reaffirmed in the narrative of their own native historian, Peter Dooyentate Clarke. ${ }^{1}$ But whatever confirmation may be fonm for this mative tradition, it is certan that the European adventurers hore no part in thar expulsion from their anciont home. The aborigines, whom Jacques Cartier fomblaproserous people, safe in the shelter of their palisaded towns, had all vanshed before the return of the French under Champlain; and they were found by him in new sottlamenti, which they had formed far to the westward on Lake Simeoe and the Georgian hay.

Questions of considurable interest are involved in the consideration of this migrafinn of the ${ }^{\text {ll }}$ nons; and the ciremmstances under which they deserted their earlier home. They wror visited ly ('hamplain in 1615, and subsequently by the missionary Fathers, who, in 1639, fomm them ormpying thirty-two palisaded villages, fortified in the same dashion as thow deswibed by the first French explorers at Stadacone and Hochelaga. Their munbors are barionsly estimated. Brebenf reckoned them at thirty thousand; and deswibed them as living together in towns sometimes of fifty, sixty, or a hundred dwellings, - that is, of three or four hondred houscholders,-and diligently cultivating their fields. from which they derived food for the whole year. Whatever higher qualities disfinguished the Iroquois from Algonkin or other native races, were fully shared in by the Hurons; and they are even spoken of with a natural partiality by their French allies, like Sagard, as a patrician order of sayages, in comparison with those of the Five Nations. When first visited by French explorers, after their protracted journey through the desolate forests leetween the Ottawa and Lake Huron, their palisaded towns and cultivated fields must have scemed like an oasis in the desert. "To the eye of Champlain," says Mr. Parkman, " accustomed to the desolation he had left behind, it seemed a land of beauty and abundance. There was a broad opening in the forest, fields of maize with pumpkins ripening in the sun, patches of sun-flowers, from the seeds of which the Indians made hair-oil, and in the midst the Huron town of Otonacha. In all essential points it resembled that which Cartier, eighty years before, had seen at Montreal; the same triple

[^58]palisade of crossed and intersecting trunks, and the same long lodges of bark, each containing many households. Here, within an area of sixty or seventy miles, was the seat of one of the most remarkable savage communities of the continent." ${ }^{1}$ The Hurons, thus settled in their latter home, consisted of several " nations," including their kinsmen to the south, as far as Jake Erie and the Niagara river. They had their own tribal divisions, still perpetuated among their descendants. The Rev. Prosper Vincent Sa8atannen, a native Huron, and the first of his race admitted to the priesthood, informs me that the Ifurons of Lorette still perpetuate their ancient classification into four "grandes compagnies," each of which has its five tribal divisions or clans, by which of old all intermariage was regulated. The members of the same clan regarded themselves as brothers and sisters, and so were precluded from marriage with one another. The small number of the whole band at La Jenne Lorette renders the literal enforeement of this rule impossible; lut the children are still regarded as belonging to the mother's clan. The five clans into which each of the four companies is divided are:-1. The Deer, Oskmonton; 2. Thu Buar, Anniolen; 3. The Wolf, Annenarisk8"; 4. The Tortoise, Andiasik; 5. The Beaver, I'sotni. There were two, if not more dialects spoken by the old Hurons, or W yandots; and that of Hochelaga probably variol from any form of the langage now surviving. This has to be kept in view, in estimating the vahe of the lists of words limishol by Jacepues Cartier of "le langage des pays et Joyanmes de Hochelaga et Comada, andrement appellé par nous la nouvelle France."

Of the condition of the region to the wast of the Othawa prior to the serenteenth century nothing is known from direct observation. Bufore Champlain had an opportunity of visiting it, the whole region westward to Lake Hurm had been depopulated and reduced to a desert. The fact that the few matives foumd by Champlain ownying the once populous region of the Hochelaga Indians were Algonkins, has been the chief ground for the assmmption that the expulsion of that old Wyandot stock was dhe to their hostility. But such an idea is irreconcilable with the fact that the latter, instead of retreating sonthward to their Furon-Iroqnois kinsmen, took refnge among Algonkin tribes. According to the narrative of their own Wyandot historian, Pettr Doojentate, gathered, as he tells ns, from traditions that lived in the memory of a few among the older members of his tribe, the island of Montreal was occupied in the sixteenth century by Wyaudots or Hurons, and Senceas, sojourning peaceably in separate villages. The tradition is vague which traces the canse of their hostility to the wrath of a Suneca maiden, who had been wronged in the object of her affections, and gave her hand to a young Wyandot warrior on the condition of his slaying the Seneca chief, to whose intluence she ascribed the desertion of her former lover. Whatever probability may attach to this romance of the Indian lovers, the tradition that the Hurons were driven from their ancient homes on the St . Lawrence by their Seneca kinsmen is consistent with ascertained facts; as well as with the later history of the Senecas, who are found playing the same part to the Eries under a somewhat similar incentive to revenge, and appear to have taken the lead in the destruction of the Attiwendaronks. The native tradition is of value in so far as it shows that the fatal enmity of the Iroquois to the Hurons was not originally due to the alliance of the latter with the French ; but Senecas and Hurons had
${ }^{1}$ Pioneers of France in the New World, p. 367.
alike disappeared, before Champlain visited the scene of Cartier's earlier exploration. The Attiwendaronks, who dwelt to the south of the later home of the Hurons, on the shores of Lakes Ontario and Erie, may have formed another of the nations of the Wyandot stock expelled from the valley of the St. Lawrence. Situated as they were in their later home, midway between the Hurons and Iroquois, they strove in vain to maintain a friendly nentrality. Charlevoix assigns the year 1635 as the date of their destruction by the latter. Certain it is that between that date and the middle of the century their towns were uttorly destroyd ; and such of the survivors as lingered in the vicinity were incorporated into the nation of the senceas, who lay nearest to them.

The Eries ware another Huron-Iroquois nation, who appear to have persistently held aloof from the league. They were semingly a fiereer and more warlike people than the Attiwndaronks ; they fonght with poisoned arrows, and were esteemed or dreaded as wamions. Thoir mumbers mos have been considerable, since they were an object of appremben to the nations of the leapue, whose western frontiors marehed with their own. They arn allimme by the mave historian, Cusick, to have sprung from the Seneas; lont, if:on, thar aparation wain probably of rmote date, as they were both mumerons and bowndinl. 'The combtry which they ownpied was noted anong the French coureurs des bois fire it- lyax firs: amd bhe gate arordingly to its people the name ol "La Nation du ('hat." Their an"iont home is still indiated in the mame of the great lake beside which they dwelt. Lint. For sam, mbinown wason they refused all alliance with the Senecas

 sition will diapmear, when it is remembered that an Indian nation regards itself as at war with all onhers not in arthal allianc." Prace, he adds. was the ultimate aim of the foumber of 1 h." looguoin wharehy ; and, for lovers of peace on such terms of supremacy, the cusks belli would not be more diflicult to find than it has proved to be among the most Christian of kines. In the "ase of the Eries, as of the elder Wyandots of Hochelaga, the final rapure is asoribucl to a woman's implatable wrath.

Fathor La Moynu. whila on amission to the Onondagas in 1654, learned that the Iromuis conforman ware uxited to fury aganst the Eries. A captive Onondaga chief is said to haw beren humt at the stake after he had been offered, according to Indian custom. to one of the Erie women, to take the place of her brother who had been murdered whide on a visit to the somoras. It is a characteristic illustration of how the fends of ages were perpetmatial. The traditions of the Iroquois preserved little more than the fact that the leries had perished ly their fing. But a story told to Mr. Parkman by a Cayuga Indian, only too aptly illustrates the hideous forocity of their assailants. It represented that the night after the great batile in which the Eries suffered their final defeat, the forest was lighted up with more than a thonsand fires, at each of which an Erie was being tortured at the stake. ${ }^{2}$ The number is probably exaggerated. But it is only thus, as it were in the lurid glare of its torturing fires, that we catch a glimpse of

[^59]this old nation as it vanished from the scene. Of the survivors, the greater number were adopted, according to Indian fashion, into the Seneca nation.

Some of the earthworks met with to the south of Lake Erie show proofs of greater constructive labour than anything found in Canada. Still more interesting are the primitive hieroglyphics of an inseription on Cmminghan's Island, ascribed to the Eries, and which Schoolcraft describes as by far the most elaborate work of its class hitherto found on the continent. ${ }^{1}$ But the rock inscription, though highly interesting as an example of natire symbolism and pietographic writing, throws no light on the history of its carvers; and of their laugrage no memorial is recoverable, for they had ceaserd to exist before the ereat lake which perpetnates their name was known to the lirench.

More accurate information has been preserved in raference to the Wurms, amone whom the Jesnit Fathers laboured with self-denying zall, from time to time reporting the results in their "Relations" to the Provincial of the (order at laris. Ont of the most characteristic religions ceremonies of the Hurms was the ereat " beast of the bead," welebrated apparently at intervals of twetve years, when the remains of theil dead wore gathered from seaflolded biers, or remote graves, and deposited amid emeral monmine in the great cemetery of the tribe. Valuable mobes and lims. pottory. copper kettlos and others of their choicest possessions, intluding the pyrular. or larew tropical shells bronght from the Gull of Mexico, with wampme, pizod implements, and premal maments,
 exploration of those Huron ossuaries, the sites of the palisaded villages of the Hurons of the sevententh century have been identilied in reant gars; and thome aro now preserved in the Laval University at Qubber upards of righty whlls rewnered from cemeteries at St. Ignace, St. Joachin, Ste. Marie, Nt. Michacl, and ather villages. tho
 missionaries by whom they were thus designated. Other examples of skulls from the same ossuaries, I may add, are now in the museums of the University ol Toronto, the London Anthropological Society, and the Jardin des Ilantes at laris. The skalls perevered from those ossuaries have a special value from the fart that the last survivors wer driven out of the country by their Iroquois foes in 1649 ; and henee the rania rewowed from them may be relied upon as fairly illustrating the physical whacteristice of the raep before they had been affected by intercourse with Europeans. The Huron skull is of a well defined dolichocephalic type, with, in many cases, an musual prominemee of the occipital region; the parietal bones meet more or less at an angle at the sagittal suture; the forehead is flat and receding; the superciliary ridges in the make skulls are strongly developed; the malar bones are broad and flat, and the profile is orthognathic. (areful measurements of thirty-nine male skulls yield a mean longitudinal diancter of 7.39 to a parictal diameter of 5.50 ; and of eighteen female sknlls, a longitudinal diameter of 7.07 to a parietal diameter of 5.22 . 2

Who were the people found by Cartier in 1535 , seemingly long settled and prosperous, occupying the fortified towns of Stadacone and Hochelaga, and lower points on the St. Lawrence? The question is not without a special interest to Canadians. According to

[^60]the native Wyandot historian, they were Wyandots or Hurons, and Senecas. That they were Huron-Iroquois, at any rate, and not Algonkins, is readily determined. We owe to Cartier two brief vocabularies of their langnage, which, though obscured probably in their original transeription, and corrupted by false transliterations in their transference to the press, leave no doubt that the people spoke a Huron-Iroquois dialect. To which of the divisions it belonged is not so obvions. The langnages, in the various dialects, differ only slightly in most of the words which Cartier gives. Sometimes they agree with Intron, and sometimes with Iroquois equivalents. The name of Hochelaga, "at the beaver-dam," is Huron, and the agreement as a whole preponderates in favor of" a Huron rather than an Iroquois dialect. But there was probably less difference between the two then, than at the more recent dates of their comparison. In dealing with this important branch of philological evidence, I owe to the kindness of my friend, Mr. Horatio Hale, a comparative analysis of the rocabulary supplied by Cartier, embodying the results of long and "areful study. Ho has familiari\%d himself with the Huron language by personal intereourse with mombers of the little hand of civilized Wyandots, settled on their reserve at Anterdon, in Wrestom Ontario. The language thus preserved by them, after long separafion from other members of the widely scattered race, probably presents the nearest apmoximation to the oriminal forms of the native tongue, as spoken on the Island of Montral and the howrest. Lawrence. ln the following comparative table the Wyandot whivahnt. Wh the werds furnished in ('antiers lists are placed along side of them, so as to athit of easy romparivon. The remmblances which are discernible to the experionced philolugist may mot strike the erneral reader with the like force of conviction. Allowance has to la made for varieties of dialent among the old ocenpants of the lower valley of the St. Jawrence, and also for the whages wronght on the Huron language in the lapse of three and a half centmres, not simply by time, but also as the result of intercourse and intermixture with other peophs. The habit of recruiting their mumbers by the adoption of prisonurs amb lerokn tribes could not fail to exercise some influence on the common tongu". The k or hard in of Cartier is, in the Wyandot, frequently softened to a y; and on whe oher hand, the $"$ is strenothened by a l somd, as in Cartier's pregnant term Canada, the ohd Iforhelaga word for a town, which has become in the Wyandot Yandata; and so in wher instances. Whan the nerlling of C'arther's words varies in different places or editions of his marative, the varions forms are here given. In writing the Wyandot words the comsomants ar" used with their English somds, except that the j is to be pronounced as in French (linglish z in "azure"), and n has the sonnd of the French nasal n. The vowels have the same sounds as in Italian and German.

Some of the Wyandot words placed in the following lists alongside of those furnished by Cartier are not, as will be seen, transformations of the old forms, but synonyms, or equivalents now in use. Others, however, show the changes which have taken place, under the novel circumstances which have affected the scattered Huron fugitives in the interval of upwards of three centuries. This is particularly noticeable in the numerals, where the greater number of the modern words are imperfect abbreviations of the original forms. This process of phonetic change and decay is more fully illustrated in subsequent tables of Huron-lroquois numerals.

A Comparatite Vocabulary of words in the "Language of Hochetaqa and Canada," as aiven by Cartier, and the correspondina words in the Language of the Wyandot (or Wendat) Indians residing on the reserve in the Township of Anderdon, near Amherstbura, Ontario: By Mr. horatio hale.

	Cartier.	Wyandot.
Ono.	segada, secata	skāt.
Two	tigneny, tignem	tend
Three	asche, hasche.	sheĩk.
Four	honnacon, honnaceon.	dāk, or mak.
Fivo .	ouiscon.	wish.
Six	indahir, indaic.	wajã, or waya.
Seven	ayaga, aliaga..	tsutaré.
Eight.	addegue, adigue	ateré.
Nino...	madellon	entroñ.
Ten	nssem	ahsécin, or asăñ.
Twenty		tenditawäh ceñ.
Thirty		shenkiwähseñ.
One hundred.....		skatamendjawe.
One thousand ..		sañgwãt.
Head..	aggourzy, aggoursy, agonaze, aggomi.	ayeskutañ (my h.)
Forehoad	hetguenyascon..	yeyeñta (my f.)
Eyes	hegata, heigata, igata	yahkweñda.
Ears ..	ahontascon	yehoñta, yaninla (my e.)
Mouth.	escahe	yeskarent (my m.)
Teoth	esgougay	yeskoñshya (my t.)
Tongue ..	osuache, esuache.	yendashya (my t.)
Faco	hogonascon	yeyoñslya, yeyoñke (my fi)
Hair	aganiscon, agoniscou.	ayeru-hia (my h.)
Arm	aiayascon	yeya'sya, hajasha.
Belly	eschehenda	yescmeñta (my b.)
Leg.	agouguenchondo..	yenoñta (my l.)
Foot	onchidascen, ochedasco.	yashita (my f.)
Hand	aignoascon, agnascon.	yorasa.
Fingers	agenoga	yegyāyi, hañgià.
Nails...	agedascon..	éta, yec̃hta (my ni.)
Man.	aguehan.	rume (homo), hagyaihañ (rir.)
Woman.	agrueste, agructte.	utehkye, utéhkieñ.
Boy .	addegesta..	meñtseñtia.
	agnyaquosta	yawitsinoha.
Infant	oxiasta ..	shiäha.
Shoes	atha, atta	mashyu.
Corn...	osizy	oneñha.
Water	amo.	tsañdusti, or tskadusti.
Flesh.	quahouascon	owãhtra.
Fish	queion ...	yeñtsoñ.
Squirrel	caiognem	huhtayi.
Snake	undeguezy (conleurre).	tyngentsi (snake).
Wood	conda....................	utahta (wood), yaroñta (tree).
Leaf	hoga, ho	undrahta.

A Comparative Vocabulary of words, etc.-Continued.

	cartier.	WYANDOT.
Knife	agoheda	waneñshra.
Hatchet	addogne, asogne	tuye.
Bow	ahena, ahenca	enda.
Arrow	quahetam	o'ondā.
Deer	aionnesta (stag), asquenondo (doe)	skanoñtoñ (deer).
Hare	sourhamda	tañyoñyaha.
Dog......	agayo	yañyenō'.
To-morrow	achide	ashitak.
Heaven	quenhia	yaroñya.
Earth	damga	ondèt (earth), omeñtsa (world).
Sun	ysnay	yandishra.
Mron	assomaha	wasuñteyi-yandishra (night-sun.)
Stars	siguehoham..	tishyoñ.
Wind	cahoha, cahena, cahona	yaora, jukwas.
Sea \ldots.	agogasy, agougasy.......................	uñtare, tarijñye.
Island	cohena	yawenda.
Mountain	ogacha	ononta, onontija.
Ice.	honnesca	udishra.
Snow.	canisa	diñyeñta, diñyehta.
Cold	cathau.	ture.
Warm	odazan, odayan	tarihaati.
Fire	azista, asista	tsista, tshista.
House	canocha	yanoñsha.
Town	canada	yandāta.
My father	addathy	haista, haistañ.
My mother	adanahoe, adhanaoc.	anēañ, anǎ'eñ.
My brother	addagnin	he'yēañ.
My sister	adhoasseue, addasene	eyè'añ.
Beard	sotone.	uskwañrañ.
To sing.............	thegehoaca.	tewariwākwe.
To laugh............	cahezem	kyeskwatandi.
To dance	thegoaca	yendrawa.
My friend............	agniase .	nyāterō (friend).
Run	thodoathady	yetake, tiarahtat.
Chief	agouhana.	hayuwāneñs.
Night	auhena	wasuñteye.
Day..................	adeyahon	meteye, mentahãoñ.
Pine-tree	annedda	handehta.

When Champlain followed Cartier into the St. Lawrence after an interval of sixtyeight years, the well-fortified towns had disappeared, along with their builders, and the few occupants of ephemeral birch-bark wigwams belonged to another race. Had he been curious to learn the facts of an event, then so recent, there could have been no difficulty in recovering the history of the exodus of the Hochelagans. But it had no interest for the French adventurers of that day ; and the idea most generally favoured by recent writers ascribes
the expulsion of the Wyandots, or Hurons, from their ancient home in eastern Canada, to the Algonkins. This, as already shown, is irreconcilable with the fact that Champlain found them, in the begiming of the seventeenth century, in friendly alliance with the latter against their common foe, the Iroquois. If, however, the Wyandot tradition of the expulsion of the Hurons from the island of Montreal by the Senecas be accepted as an historical fact, it is in no degree inconsistent with the cirenmstances subsequently reported by Champlain; but rather serves to account for some of them, if it is assumed that the Senecos were, in their turn, driven out by the Algonkins, and then finally withdrew beyond the St. Lawrence.

But there is another kind of evidence bearing on the question of the affinities of the people first met with by Cartier in 1535 , which also has its value here. I have carefully compared the skulls found on the ancient site of Hochelaga, and now preserved in the Musenm of McGill University, with some of the most characteristic IInron sknlls in Laval Thiversity, and find that the two correspond closely. Aqain, the description of the palisaded towns of the Hurons on the Georgian lay very aceurately reproduces that which Cartior gives of Hochelaga. Ephemeral as such fortifications necessarily were, the construction of a rampart formed of a triple row of trunks of trees, smounted with galleries, from whence to hurl stones and other missiles on their assailants, was a formidable modertaking for builders provided with no better tools than stone hatchets; and with no other ineans of transport than their nnited labour supplied. Bnt the design had the adrantage of furnishing a self-snpporting wall, and so of saring the greater labour of digging a trench, with such inadequate tools, in soil penetrated crerywhere with the roots of forest trees. It was the Huron-Iroquois system of military engineering, in which they contrasted favorably with the Algonkins, among whom the absence of such evidence of settled habits as those secure defences supplied, was characteristic of these ruder nomads. But snch urban fortifications no less strikingly contrast with the elaborate and enduring military earthworks to the south of the great lakes. The pottery and implements found on the site of Hochelaga are also of the same character as many examples recovered from the Huron ossuaries. On the other hand the pecnliar rites, of which those ossnaries are the enduring memorials, appear to have distinguished the western Ilurons from the older settlers on the St. Lawrence. The great Feast of the Dead, with its recurrent solemnities, when after the lapse of years the remains of their dead were exhumed, or removed from their seaffold biers, was the most characteristic religious ceremonial of the Hurons; and was practised with still more revolting rites by the kindred Attiwendaronks. Festering dead bodies were kept in their dwellings, preparatory to scraping the flesh from their bones; and the decaying remains of recently buried corpses were exhumed for reinterment in the great trench, which was prepared with enormous labour, and furnished with the most lavish expenditure of their prized furs, wampum, and other possessions.

In all ages and states of society mnavailing sorrow has tempted the survivors to extravagant excesses in the effort to do honour to the loved dead; and smmptuary laws have been repeatedly enacted to restrain such demonstrations within reasonable bounds. "The Book of Rites" suffices to show that the Iroquois had, in ancient times, funeral rites, no doubt of the same revolting and wasteful character, until their mythic reformer, Hiawatha, superseded them with a simpler symbolical funeral service. "I have spoken of the solemn event

[^61]which has befallen you," are the introductory words to the thirtenith paragraph of "the Condoling Council," and it thus proeceds: "Every day you are losing your great men. They are being borne into the earth; also the warriors, and also your women, and also your grandchildren; so that in the midst of blood you are sitting." It is therefore enacted, in the twenty-seventh paragraph, evidently in lien of older practiees: "This shall be done. We will suspend a pouch upon a pole, and will place in it some mourning wampum, some short strings, to be taken to the place where the loss was suffered. The bearer will euter, and will stand by the hearth, and will speak a few words to comfort those who will be mourning; and then they will be comforted, and will conform to the great law."

A string of black wampum sont round the settlement, is still, among the Indians of the six Nations, the notice of the death of a chief; as a belt of black wampum was a derfaration of war. It seems to me not improbable that the people of Stadacone and Hochelaga han submitten to the wise social and religious reforms by which the ancient rites of their dead were superseded by the symbolism of the mourning wampum; and honce the ahsence of ossuaries throughout the island of Montreal, and the whole region to the east lout when the liggitive Wyandots fled into the wilderness, and reared n"w homes around lake Simeon and in the westorn peninsula, they may have revived traditional wages of their fathers, and restuned the revolting rites which had been redutanly alsmanel. Amme the civilized Indians of the Six Nations, some memoriak of andint rites of the dead still sumive. A visitor to the reserve at the time of the drath of the lat highty estermed chief, George Johnson, told me that on the event lwinge known it was immediately rexponded to ly all within hearing by the prolonged
 soon spreat the nuw of their lose thronghout the reserve. Nearly the same sound, uttered

Thu Huron onsuariw do muquestionally constitute a distinctive diversity from ancient Ifomblatan matums. Newertheless, while the evidence appears, on the whole, to justify the assumption that the Five Nations were a distinct people from the Wyandots to the north of the st. Lawrence, before the arrival of Cartier; it seems most probable that the same Jroynois, who at a later date pursued the Hurons with such relentless fury, were the devastators of the region westward to the head of Lake Ontario, which Champlain found a desert.

The later history of the Hurons and Iroquois is not withont its special interest. One little band, the Hurons of Lorette, the representatives of the refugees from the massacre of 1648, has lingered till our own day, in too close proximity to the French labitants of Quebee to preserve in purity the hlood of the old race. But great as are the alterations which time and intermixture with the white race have effected, they still retain many intellectual as well as physical traits of their original stock, after an interval of two hundred and thirty-six years, during which, intimate intercourse, and latterly frequent intermarriage with those of European blood, have wrought ineritable change on the race. ${ }^{1}$ Other more vigorous representatives of the old Huron stock oceupy a small reservation in the Township of Anderdon, in Western Ontario ; and from them the vocabnlary

[^62]has been derived which is employed above as a test of the language of the Hochelagans in the sixteenth century. But the Hurons of Lorette have also preserved their native tongue ; and even specimens-if not indeed an ample rocabulary, -of the older form of their language survive, from which some illustrations are adduced below. A third modification, of the ancient tongue no doubt exists; for the larger remnant of the survivors of the Hurons, after repeated wanderings, is now settled, far from the native home of the race, on reserves conceded to them by the American Government in Kansas.

The Hurons have thus, for the most part, disappeared from Canada; but it is not without interest to note that the revolution which, upwards of a century ago, severed the connection of the old colonies to the south of the St. Lawrence with the region to the north, restored to Canada its ancient Iroquois race. The confederation of the Five Nations is traced by Mr. Hale, in his "Iroquois Book of Rights," to Hiawatha, whom he reclaims from Lougfellow's traditional association with the Ojibways of Lake Superior, and literally identifies as an Onondaga chief of rare sagacity, the beneficent reformer of his people. In Longfellow's version of the "Indian Edda," he refers to it as founded on a tradition prevalent among the North American Indians, of a person of miraculous birth, who was sent among them to clear their rivers, forests, and fishing grounds, and to teach them the arts of peace. That the legend of "a Prince of Peace" in any form should have been perpetuated among tribes persistently devoted to war as the main business of life, can only be accounted for by a growing sense of the misery brought on themselves by hereditary feuds which wasted their numbers, and exposed their families to treacherons massacre, or to the most barbarons tortures. But the Hiawatha tradition appears to belong to the Iroquois, among whom there arose a wise teacher to whom Mr. Male ascribes the avowed design of a universal federation of his race, under whirh peace should everywhere reign. "Such," says this latest historian of their league, "is the positive testimony of the Iroquois themselves, and their statement is supported by historical evidence." ${ }^{2}$

No interpreter of Indian philology or tradition is more deserving of respectful consideration than Mr. Hale, whose valuable researches have thrown a floorl of light on this department of study. But in view of all that we know of this people throughout the whole anthentic period of their history, I find it difficult to reconcile the idea of such a far-sighted philanthropic reformer with the social condition of the tribes known to have composed the Iroquois confederacy. Nevertheless the league of the Iroquois is an undoubted fact. The five tribes or "nations" were thenceforth banded together as members of the famons Kamonsioni or league of the united households. Of its peareful frnits, except in so far as it prevented internal fends, we have no evidence; but to its influence apparently was due the exceptional preeminence achieved among the nations of the North American continent by a barbarous people, ignorant of any of the arts indispensable to the merest initial steps in civilization. This race of mere savages acquired the mastery of a region equal in extent to Central Europe; and by a system of warfare, not, after all, more inherently barbarons or recklessly bloody than that of Europe's Grand Monarch, reconstructed the social and political map of the continent east of the

[^63]Mississippi. Their influence acquired a novel importance when, in the seemingly insignificant rivalries of French and Inglish fur-traders, they practically determined the balance of power between the two foremost nations of lurope on this continent. Their indomitable pertinacity proved more than a mateh alike for Enropean diplomacy and military skill; and, as they maintained an uncompromising hostility to the French at a fime when the rival colonists were nearly equally balanced, the failure of the magnificent shemes of louis XIV and his sucecssors, to establish in North America such a supremacy as Charles V and Philip If had held in Mexico and Pern, is largely tracenble to them. It is natural that the Auglo-American sturlent of history should estimate highly the polity of satage warrions who thas foiled the schemes of one of the most powerful monarinins of limope for the mastery of this continent. The late Hon, L. H. Morgan thus writes of them: "They achieved for themselves a more remarkable civil organization, and anouirel a hioher degree of influence, than any other race of Indian lineage except thon of Mexion and lern. In the dramat of Emopean colonization, they stood, for nearly two (matulins, with an makaken front, against the devastations of war, the blighting influme of foreign intercourse, and the still more fatal encroachnents of a restless and adraning border population. Under their federal system, the Iroquois flourished in indmendenc., and capable of self-protection, long after the New England and Virginia rame hat summened their jurisdictions, and fallen into the condition of dependent nations; and they now stand forth uron the canvas of Indian history, prominent alike for the wistom of their eivil institutions, their sagracity in the administration of the leagne, and their whrage in its defence." l But in this the historian applies to the Imquis an limopean standard, similar to that by which l'rescott mensciously magnified Mrxitan barbarian into a rivalry with the contemporary civilization of Spain. The romanne atarhed tu the llodensanecera, or Kononsionni, the famons league of the Long
 the fow that its wriginators fomaned to the last mere savages. But it is, at any rate, important to kerp the fact in riew, and to interpret its significance in that light. When the treaty which initiated the league was entered into by the Camiengas or people of the flint, and the Ondidas, they were both in that primitive stage of mosophisticated larbarism t" which the tern "stone period" has been applied. In the absence of all linwwedge of metallurgy, their implements and weapons were, alike, simple and rude. Agriculture, methrimel conditions, must have been equally primitive; and as for their wars, when they were not defensive, they apear to have had no higher aim than revenge. Gallatin, no unapreciative witness, syys of them: "The history of the Five Nations is calculated to give a favoumble opinion of the intelligence of the Red Man. But they may be ranked among the worst of conquerors. They conquered only in order to destroy; and, it would seem, solely for the purpose of gratifying their thirst for hlood. Towards the sonth and the west they made a perfect desert of the whole comntry within five hundred miles of their seats. A much greater number of those Indians, who since the commencement of the seventeenth century, have perished by the sword in Canada and the United States, have been destroyed by that single nation, than in all their wars with the Juropeans." ${ }^{2}$

[^64]To characterize the combination effected among such savage tribes, as one presenting elements of wise civil institutions; or indeed to introduce such terms as league and federal system, in the sense in which they have been repeatedly employed by historians of the Iroquois, as thongh they referred to a confederation akin to those of the anciout Achacans or Atolians, is to suggest associations altogether misleading. Thongh an interesting phase of American savage life, to which its long duration gives additional significance, the Iroquois league was by no means unique. The Creek confederacy embraced numerous tribes between the Mobile, Alabama, and Savamah rivers, and the Guli of Mexico. At the head of it were the Muskhogees, a mumerons and powerful, but wholly savage, race of hunters. Like the Oncidas, Onandagas, and the still older Wyandots, they and the Choctaws claimed to be autochthones. The Muskhogenes appealed to a tradition of their ancestors that they issued from a cave near the Alabama River; while the Choctaws pointed to the frontier region between them and the Chicasaws, where, as they alfirmed, they suddenly emerged from a hole in the earth, a mumerons and mighty pooph. The system of government amongst the members of this sonthern confederacy semens thate borne considerable resemblance to that of the Irognois. Every village was the centre of an independent tribe or nation, with its own chiol; and the restraints imposen on the individual members, except when cooperating in some sperial enterprisu or religions ceremonial, appear to have been slight.

An ingenious philologieal induction of Mr. Hale has abready been rofirmed to. Itw finds in the language of the Cherokes a grammar mainly Hmon-Troguois, and a vocabulary largely recruited from some foreign source. From this he is led to infer that one protion of the conquered Alligéwi, while the confliet still lasted, may have cast in thuir lot with the conquering race, just as the Tlascalans diel with the Spaniards in their war against the Aztees, and hence the origin of the great Charoke nation. The fugitive Alligewi he surmises, may have fled down the Mississippi till they reached the cometry of the Choctaws, themselves a mound-building people; and to the alliance of the two he would thus trace the difference in the language of the later from that of their castern kindred, the Creeks or Muskhogees. ${ }^{1}$ On the assumption of such a combination of ethmial chmemts, the origin of the Creek confederacy is casily accounted for.

The confederated members of the League of the Iroquois remained savages to the last. Their agriculture, carried on solely by female labour, was simple and rude. Their arts never advanced a step beyond that of Europe's neolithic dawn. Even the implements of war and the chase consisted only of the flint-headed lance and arrow, and the hafted stone for a tomahawk or battle-axe. We have to retrace our way far behind the oldest of Europe's historical traditions for any parallel to such a condition of infantile harbarism. Yet in one respect their progress had been great. Each nation of the Iroquois league had its chief, to whom pertained the right of kindling the symbolic comeil fire, and of taking the lead in all public assemblies. When the representative chiefs of the nations gathered in the Long House around the Common Council fire of the league, it was no less necessary that they should be able and persuasive speakers than brave warriors. Rhetorie was cultivated in the Comncil House of the Iroquois no less earnestly than in the Athenian ekklesia or the Roman forum. Acute reasoning and persuasive eloquence demanded all

[^65]the discriminating refinements of grammar, and the choice of terms which an ample vocabulary supplies. The holophrastic element has been noted as a peculiar characteristic of Anerican languages. The word-sentences thus constructed not only admitted of, but encouraged, an claborate nicety of discrimination; while the marked tendency of the process, so far as the language itself is concerned, was to absorb all other parts in the verb. Time, place, manner, aim. purpose, degree, and all the other modifications of language are combined polysynthetically with the root. Nouns are to a large extent verbal forms; and not only nouns and adjectives, but adverbs and prepositions, are regularly conjugated. Elaboratod polysyllables, flexibly modified by systematic internal changes, give expression, in one compounded word-sentenee to every varying phase of intricate reasoning or emotion; and the complex structure shows the growth of a language in habitual use for higher purposs than the mere daily wants of life. The vocabulary in use in some rural distriets in England has been foum to include less than three hundred words; and in provincial dialonte, thas restricted, the relinements of grammatieal expression disappear. Among such rustin communties speed plays a very subordinate part in the business of life. But upon the doliberations of the Indian Council Honse depended the whole action of the confederay. Hence. whik in all else the Iroquois remained an untutored savage, his lantuate is a marrellomsly systematized and beatiful structure, well adapted to the requimoments of intriate rasoning and persuasive subtlety.

I'refessor Whitneysys, in reference to Anerican languages generally, what may more "aporally be aphliel to the haron-I roquois: "There are infuite possibilities of expressivemos in such a struture: and it would only need that some native-American Greek race Should arise, to lill it finll of thonght and fancy, and put it to the uses of a noble literature, and it would be riohtly admited as riwh and flexible, perhaps, beyond anything else that Hn" world knww." Yet, on the other hand, the Iroquois dispense with the whole labials, nwrer artionlate with their lips, and throw entirely aside from their alphabetical series of phometios six of those most constantly in use by us.

In this diretion, then, hes the ethnological problem whieh cannot fail to awaken Nor inmasing intorest : and to which I am anxious to direct, in some special degree, the enders of this setion of the Royal Soriety of Canada. To the native languages we must look for a true kiy to the solntion of some of the most curious and difficult questions incolved in the peopling of this continent. "There lies before us," says Professor Whitney, "a vast and complicated problem in the American races; and it is their lamene that must do by far the greatest part of the work in solving it."

Of the languages of the Muron-Iroquois, the Huron appears to be the oldest, if not the parent stock. When this aggressive race had spread, as conquerors, far to the south of the Si. Lawrence, the mother nation appears to have held on to the cradle land of the race, where its representatives were found still in possession when the first Enropean explorers entered the St. Lawrence in the sixteenth contury. Colonists, of French or English origin, have been in more or less intimate intercourse with them ever since, yet the materials for any satisfactory study of the Huron langnage, or of a comparison between it and the various Iroquois dialects, are still scanty and very inadequate. The languages of the Five Nations that originally constituted the members of the Iroquois league, are, in the strictest

[^66]sense of the term, dialects. In their comncil house on the Grand River, the chiefs of the Mohawks, Oneidas, Onandagas, Cayngas, and Senecas, speak each in their own language and need no interpreter. Nevertheless, the differences are considerable; and a Seneca would scarcely. find the langnage of a Mohawk intelligible to him in ordinary conversation. But the separation of the Tusearoras from the Iroquois on the Mohawk River had been of long duration, and their language differs much more widely from the others.

The Mohawk language was adopted at an carly date for communicating with the Indians of the Six Nations. The New England Company, established in 1649, undur favour of the Lord Protector, Cromwell, "for the propagation of the Gospel in New England," was revived on the restoration of Charles II, under a royal charter; and with thaminmit philosopher, Robert Boyle, as its first governor, vigorous steps were taken for the religions instruction of the Indians. The correspondmere of Elion, "the Aposthe of the Indians." with the first governor of the company, is marked by their anxiety fin the completion of the Massachusetts Bible, which, alonge with other books, ho had translated for the bondit of the Indians of New England. The silver commmion surviee, still preserved at the reserve on the Grand River, presented to the ancestors of the Mohawk nation. Loy Qumb Anne, is an interesting memorial of the carly efferts for their Christianzation. It bears the inscription: "A. R., 1711. The gilt of Mer Majesty, ly the erawe of (Gool. of (imat Britain, France and Ireland, and of her plantations in North Ammita, Quren: wher Indian Chappel of the Mohawks." The date has a sperial interest in "vidmuce of thu transforming influences already at work; for it was not till three yars latm that the Tuscaroras were received into the confederation, and the lroquois becane known by their later appelation as the Six Nation Indians. In acomdance with the efforts indiatod by the royal gift, repeated steps wre taken for transhang the Soripturn and the l'aymer Book into their languge. In fa lotter of the Rev. Dr. Start, missiomary to the six Nations, dated 1771, he describes his introduction to Captain Brant, at the Mohawk village of Canajoharie, and the aid received from him in revising the Indian lrayd Book, and in translating the Gospel of St. Mark, and the Acts of the Apostles into the Mohawk langnage. The breaking out of the revolutionary war arrested the printing of these translations. The manuscripts were brought to Canada in 1781, and placed in thw hands of Colonel Clause, the Deputy Superintendent of Indian Affairs. This gantleman subsequently carried them to England, where they were at length printed. A more recent edition of the Mohawk Prayer Book, prepared under the direction of the her. Abraham Nelles, a missionary of the New England Company, with the aid of a native catechist, issued from the Canadian press in 1842. The Indian text is accompanied with its English equivalent on the opposite page, and this Kaghyadouhsera ne Yoedereanayeadagutha, or Book of Common Prayer, is still in use in the religions services of the Six Nation Indians at their settlement on the Grand River.

Some characteristics of the language, such as the absence of labials, are ilhstrated below from the Mohawk Prayer Book. The one specially referred to constitutes not only a distinctive difference from the old Huron speech, but affords proof of the latter being the older form. "It is a fact," says Professor Max Müller, in referring to his intercourse with an intelligent native Mohawk, then a student at Oxford, " that the Mohawks never, either as infants or as grown-up people, articulate with their lips. They have no p, b, m,
$f, v, w-$ no labials of any kind." ' The statement, so far as the Mohawk infants are concerned, is open to further inquiry; but Dr. Oronhyatekha, the Mohawk referred to, and to whom I have been largely indebted in this and other researehes in Indian philology, not only rejects the six letters already named, but also $c, g, 1, z$. The alphabet is thus roduced to swenteen letters. Professor Max Minler notes in passing, that the name "Mohawk" would seem to prove the use of the labial. But it is of foreign origin, though possilbly derived from their own oegwehokongh, people. The name employed by themselves is "(anienga." The practice of speaking without ever closing the lips is an aryuired habit of later origin than the forms of the parent tongue. A comparison of any of the Ironnois dialterts with the Luron as still spoken by the Wyandots of Ontario, Whow: the min usi by the latter in what is no doubt a surviving example of the oldest form If the Huron-roxpuis lamonage. This Huron m frequently becomes w in the Iroquois
 man." Mohawk. rowhere etc. These and other examples of this interchangeable characwristio of ladian phomblow, and the process of subslitulion in the absence of labials, are ilhntrated in the talbe of Huron-Iropuois mumerals on a subsequent page. The habit of imsarially ammang with the lips open is the source of very curious modifications in the Inngumis comatulariow whel compard with that of the Wyandots. The m gives place to
 the wird ley the moditiantions it givers rise to.
A.wnuminun of the mumpals of cognate languages and dialects is always instructive; :and whith thenwing dixpmition of Ameriman philologists to turn to the Basques, as the whly frhituric raw of Einrepe that has perpetuated the language of an allophylian Anck with pmoille analugios th the nation languges of America, I have placed their manw wits alonge side of those of the Ituron-Iropnois. The permanency of the names for mumath, and their trodem from dixplament by syonyms, are seen in the miversality If on" wrim of nam:s thenwhont the whole ancient and modern Aryan languages of A. in and Europ. But the Bascun mumerals bear no resemblance to them, unless such be trated in the probably amidntal rescmblance of the bi, two, and the sei, "six," as in the "ssem, "twn," (derem), if the old Iforlinlaga, the ulisen of the later Wyandots. The elnen of the Batque has also its remote, and probably aceidental resemblance; but the milla, "one thonsand." is ertainly borrowed, and serves to show that the higher numerals, with the "widmu. they allord of ndrancing "ivilization, were the resnlt of intrusive Aryan influances. With the crowing tendency to turn to the prehistoric Iberians of Europe as one possible key to the origin of the races and languages of America, it is well to keep this test in virw for comparison with the widely varying native numerals. But the correspondence is slight, even with probable Turanian congeners. One Biscayan form of "three," hirun, is not unlike the Magyar harom; while the eyg, "one," of the latter, seems to find its counterpart in the inseparable particle that transforms the Basque radical henn, "ten," into the hamaika, "eleven." But snch fragmentary traces are in striking contrast to the radieal agreement of Sanskrit, Zend, Greek, Latin, Celtic, Slavonic, and Tentonic numerals. Mr. Hale has drawn my attention to the curions manner in which the names of the first five Hochelaga numerals in Cartier's list are contracted and strengthened in the modern

[^67]Wyandot; and some of the modifications in the Iroquois dialects are no less interesting. Secata, the Hochelaga "one," survives in the Onondaga skadah, while it becomes skat in the modern Iuron, the Cayuga, and the Seneen. But in the compounded form of the Wyandot "one hundred," skatamendjawe, as in the Onondaga skululudevemyachaceh, the terminal a reappears. Tigneny, the old form of "two," is abridged and strengithened to tendi; asehe, "three" (originally, in all probability, aschen, or, as still in use by the Hurons of Lorette, achin,) survives as ahsunh or ahsenh in mearly all the Iroguois dialects, including the Tuscarora. In the Nottoway it is still discemible in the modified arsa The exceptions are the Seneea, where it becomes sen, while one Wyandot form is shenk; which reappears in the Seneca compounded form of "thirty," shentiv"部en. Homuacon, " lour," loses both its initial and terminal syllables, and becomes duk in the Wyandot, and heilh or hei, an abbreviation of the Mohawk kayerih, in the Caynga and the Nemera dialows. The andunt form of "five," ouiscon, has partially survived in the IHwon misch. It becomes wish, whish, wish, or (in the Seneca) wis, in all the Iroqnois dialerts, - the Wyandot and C'iyura once more agreeing in form. The "yngr, "seven," of the old Itorhelang, nemby resembles the juedeh of several of the Iroquois dialects, asin the Cayuga jethti, in the Tuscarora jumb, and in the Nottoway oyug; whereas in the Wyandot it is tsotare. Thw "utigur. "nioht." in its oldest form, is sadekonh in the Mohawk, and dehrumh in the ('ayngat; with the substitution of the l for r it becomes deklonh in the Oneida; and alter changing to telion in the senora, and nagronh in the Tuscarora, it reappears in the Nottoway as detirn. The ameient madrllon, "nine," euriously survives in abridged form, with the substitute for the labial, in the Oneida wadlonh and the Onondaga voulomh, while one Wyandot fome is cutrme amt that of the Hurons of Lorette entson. In the Hochelagan nsem, "tem," whe her the ohd form which is perpetuated in the Wyandot alasen, the Onondaga and ('aynga menenh, the Trustaroma wasunh, and the Nottoway washa; while the Mohawk and the (Jneila have the diverse oyerih, or oyelit, with the characteristic change of r into 1 . The form of the Mohawk for "one thousand," oyerihnadenmmymeh, is an interesting illnstration of the proqressive development of numbers. No is probably a contraction of nikomb, "of thm," or "of it,"the whole reading " of them ten hundred."

In comparing the languages of the different members of the Iroquos confedrany with the Wyandot or Huron, some of the facts already noted in the history of the lomere have to be kept in view. Nearly two centuries and a hall have dranspited since the three western nations of the confederacy, the Onondagas. Chyogas and smmen rewimed great additions to their numbers by the successive adoption of Attiwandaronk. Huron, and Erie eaptives, while the Canyengas, or Mohawks, and the Oneidas remained maffected by such intrusions. There is direct evidence that the Omondaga language has undergone great change ; as a Jesuit dictionary of the seventeenth century exists, which shows a much nearer resemblance between the Mohawk and Onondaga languages at that date than now appears. Allowance must be made for similar changes alfecting the Hurons in their enforced migration from the St. Lawrence to their later homes. Here, as in so many other instances, it becomes interesting to note how the language of a people reflects its history.

In tracing out slighter and more remote resemblances, such as may be discerned on a close scrutiny, where the variation between the Hochelaga and the modern Wyandot
numerals is widest，the different sources of change have to be kept in view．In all such comparisons，moreover，allowance must be made for the phonetic reproduction of unfamiliar words learned solely by ear，as well as for the peculiar representation of the nasal sounds in their reduction to writing by a French or English transcriber．

The tradition，mentioned by Dooyentate Clarke，of Senceas and Wyandots living in friendly contiguity on the Island of Montreal in the sixteenth century，naturally suggests the probability that their dialects did not greatly differ．Certain noticeable resemblances between the Seneca and the Wyandot numerals have been noted above，but it is only their modern forms that are thus open to comparison；and in the process of phonetic deeay the Sencea has suffered the greatest change．But after making every allowance for modifications wrought by time，by adoption of strangers into the tribe，and other internal sourees of ehange；as well as for the imperfection of Cartier＇s renderings of the Hochelaga tongue，and for sulsequent errors of transeribers and printers，there still remains satisfac－ tory evidence of relationship between nearly half of Cartier＇s vocabulary and the corresponding words of the Wyandot tongue．A comparison has already been mado between the Hodndaga momerals and those of the Wyandots of Anderdon．In the follow－ ing comparative tables of nmmerals，I have placed alongside of the old Hochelaga series derived from Cartiors lists those now in use among the IImons of Lorette，as supplied to me by M．Panl Pitard，the som of the bate Ifuron chief．In the third column another version of the Wyandot mumerals is given，from Gallatin＇s comparative vocabulary．It is derivet from different soures，including the United States War Department；and there－ fore，no doubt，illustrates thu changes which the language has undergone among the Wyandots on their monote Texas reserve．Gallatin also gives another version of Huron numerals dorived from＇atgard．It will bu sem that M．Piand used the t as in Cartier＇s lists，and in that of the southern Wyandots，where the d is employed in others；except in the Nottoway mmerals，where the use of both is，no doubt，due to the English tran－ scriber．In comparing the diflirent lists，this variation in orthography and also the inter－ changeable k and $⿱ ⺊ 口 灬$ have to be kept in view．Thus the Caynga has dekrunh，in the Oneida dekelonh，where the Tustarom has murromh．But the Huron tendi，in use now both at Lorette and Anderdon，shows the result of long intercourse with Europeans begetting an appreciation of their discrimination bet wean the hard and soft consonants．Had the whole series been derived from one soure，such orthographic variations would have disappeared． The lists have been lumished to me by the Rev．J．G．Vincent and M．Picard，edncated Hurons；L．A．Dorion，an educated Iroqnois ；Dr．Oronhyatekha，an educated Mohawk；Mr． IIoratio Hale；and also from Gallatin＇s valuable comparative tables of Indian vocabularies， in the＂Archeologia Americ＂ma．＂In the Synopsis of the Indian Tribes，to which these rocabularies form an appendix，Gallatin classed both the Tuteloes and the Nottoways， along with the Tusearoras，as southern Iroquois tribes．Recent researches of Mr．Hale have． established the true place of the Tuteloes to be with the Dacotan，and not the Huron－ Iroquois family；but it is otherwise with the Cherohakahs，or Nottoways，whose homo was in sontheastern Virginia，where their memory is perpetuated in the name of the river on which they dwelt．At the close of the seventeenth century they still numbered one hundred and thirty warriors，or about seven hundred in all；but twenty years later， of the whole tribe only twenty souls survived．At that date two vocabularies of the language were obtained，which furnish satisfactory evidence of the correctness of their
classification among southern Iroquois tribes. Their numerals, as shown in the following tables, approximate, as might be anticipated, to those of the Tuscaroras, at least in the majority of the primary numbers; whereas those of the Tuteloes are totally dissimilar. As to the Basque numerals introduced iuto the comparative tables, they only suffice to show the diversity of the pre-Aryau language still spoken, in varying dialects, on both slopes of the Pyrences, from cither the Iroquois or any other known American language, except in so far as both are agglutinative in structure. Van Eys, in his "Basque Grammar," draws attention to the words buluzlorri, and larrugori, "naked"; the first of which literally signifies "red-hair," and the sceond "red-skin." They are interesting illustrations of the way in which important historical facts lie embedded in ancient languages. But the colour of the hair forbids the inference that the ruddy Basques of primitive centuries were akin to the "Redskins" of the New World.

The phonology of the Iroquois lauguages is notable in other respects besides those already referred to. According to M. Cnoq, an able philologist, who has laboured for many years as a missionary among the Iroquois of the province of Quebec, the sounds are so simple that he considers an alphabet of twelve letters sufficient for their indication: $a, e, f, h, i, k, n, o, r, s, t, w$. The transliterations noticeable in the various Iroquois dialects, follow a well known phouetic law. Thus the l and r are interchangeable, as ronkree, "man," in the Mohawk, becomes in the Oneida lonkive; raxha, "boy," becomes laxha; rakeniha, "my father," becomes lakenih, etc. The same is seen thronghout the compound numerals from "eleven" onward. The Cayuga and Tuscarora most nemrly approach to the Mohawk in this use of the r. A characteristic change of a different lind is seen in the grammatical value of the initial r in the Mohawk in relation to gender. For example, onkve is applied to mankind, as distinguished from latryoh, "the brute." It becomes ronkwe, man, yonkwe, woman. So also raxal, "boy," thanges to karlu, "girl ; "rilyenah, " my son," to kheyenal, " my daughter," etc. The change of gender is further illustrated in such examples as raolih, his apple; raoyen, his arrow; ahkolih, her apple; ahtoyen, her arrow; raonalih (masc.), aonalih (fem.), their apples; raodiyenkuireh (mase.), aodiyenkuireh (fem.), their arrows, etc. But this arrangement of the formative element as a prefix is characteristic of American languages, though not peculiar to them. Thus Seshatsteaghseragwekough, Almighty God, (literally "Thou who hast all power, or strength,") becomes, in the third person, Rashatsteaghseraguekough.

The vowel sounds are very limited. No distinction is apparent in any HurouIroquois language between the o and the u. In writing it the e and u sounds are also often interchangeable. Where, for example, e is used in one set of the Tuscarora numerals supplied to me, another substitutes u for it.wherever it is followed by an n; e. g., enjuh, unjih; alsenh, alisunh; endah, undah, etc. So also the word for "man" is written for me in one case onkwe, and in another unkweh. It requires an acute and practised ear to discriminate the niceties of Indian pronunciation, and a no less practised tongue to satisfy the critical native ear. Dr. Oronhyatekha, when pressed to define the value of the t sound in his own name, replied, "it is not quite t nor d." The name is compounded of oronya, "blue," the word used in the Prayer Book for "heaven," and yodakha, "burning." In very similar terms, Asikinack, an educated Odahwah Indian, when asked by me whether we should say Ottawa, or Odawa, replied that the sound lay between the two,-a nicety discernible only by Indian ears.

Comparative Tables of Numerals in Huron-Iroquois and Basque.

	Hochelaga (Cartier.)	Huron. (Lorette.)	Wyandot.	Монашк.
1	$\left.\begin{array}{l} \text { segada ... } \\ \text { secata ... } \\ \text { tigneny } \\ \text { tignem } . \end{array}\right\}$	skāt. tendi \qquad	scat tendee	unska.
3	asche	achin	shaight	ahsunh
4	honnacon..	ndak.	andaght.	kayerih
5	ouiscon	wisch.	weeish	wisk
6	indahir	wahia	waushau	yayak
7	ayaga......	tsotaré	sootaie.	jadah.
8	adigue	ateré	autarai .	sadekonh
9	madellon..	entson	aintru	tyodonh
10	assem......	asen	aughsagh	oyerih
11		asenskatiskare	assan escatc escarhet	unskayawenreh
12		asentenditiskaré	asanteni escarhet....	dekenihyawenreh
13		aisenachinskaré		ahsunhyawenreh
14		asendakskaré.		kayerihyawenreh
15		asenwi-chskaré		wiskyawenreh
16		asenwahiaskare		yayakyawenreh
17		asentsotaréskaré		jadahyawenreh
18		asenateréskaré		sadekonhyawenreh
19		asenentsonskare		tyodonhyawenreh
20		tendi eouasen................	tendeitawaughsa	dewasunh.
30		achink iouasen		ahsunhniwasunh
100		enniot iouasen.	scutemaingarwe.....	unskadewennyaweh
1000		asenate ouendiaré.........	assen attenoignauoy	oyerih-nadewennyaweh .

Comparative Tables of Numerals in Huron-Iroquois and Basque.-Continued.

	Oneida.	Onondaga.	Cayuga.	Seneca.
1	unska	skadah..	skat...................	skat, skaut
2	deken	dekenih	deknih................	dekni, tindee
3	ahsunh	ahsunh	ahsenh.	sen, shaight
4	kayeh...............	kayeih.	keih	kei, kaee.....
5	wisk................	wisk.	wish.	wis, wish
6	yahyak.............	ahyak.	hyeih.	yei, yaee.............
7	jadak	jadah	jadak	djadak, jawdock....
8	deklonh	dekenh	dekrunh	dekion, tikkeugh...
9	wadlonh	wadonh	dyoton	tiohton, teutough ..
10	oyelih...............	wasenh	wasenh.	washen, wushagh....
11	unskayawenleh.....	skadahkahe	skatskareh.	skatskae.
12	dekenyawenlih.....	dekenihkahe	deknihskareh	dekniskae
13	ahsunhyawenlih ...	ahsunhkahe.	ahsenhskareh	senskae.
14	kayehyawenlih	kayeihkahe.....	keihskareh.	keiskae.
15	wiskyawenlih......	wiskahe	wishkareh.	wiskae.
16	yahyakyawenlih ...	ahyakkahe	hyeihskareh	yeiskae.
17	jadahyawenlih	jadahkah	jadakskareh	djadakskae
18	deklonhyawenlih...	dekenhkahe.	dekrunhskareh	dekionskae
19	wadhyawenlih......	wadonhkahe	oyotonskareh	diohtonskae.
20	dewasunh	dewasenh	dewasenh.	dewashen
30	ahsunhniwasunh ...	ahsunhniwasenh	dewasenh skatskarch	shenkwashen.
100	unskadewenayaweh	skadahdewennyaeheweh.	skatdewennyaweh ..	skattewenyae........
1000			washen notewenyae.

Comparative Tables of Numerals in Huron-Iroquois and Basque.-Continued.

	Tuscarora.	Notroway.	Tutelo.	Basque.
1	unjih.......	unte	noñs, nosai, nonsa...	bat
2	nektih	dekanee.................	nomba, nomp.	bi, biga
3	ahsunh .	arsa, quaachsa	nani, lani, lat	hirur
4	undah	hentag.................	tǒpa, topai, top.......	laur
5	wisk.	whisk	kasa, kisan, kisahi..	bortz.
6	oyak...	oyag	akāspe, agus.........	sei
7	janah	ohatag	sagom, sagomink	zaspi
8	nagronh	dekra	palan. palali.	zortzi
9	nirunh	dehecrun	tsaen, ksaki	bederatzi
10	wasunh.	washa	putskai, putsk	hamar.
11	unjih*karah	urteskahr	agenosai..............	hamaika
12	nektihskarah.	dskaneskahr	agenomba	hamabi
13	ahsunhskarah		agelali	hamahirur
14	undahskarah.		agetoba ..	hamalaur
15	wiskskarah..		agegisai	hamabortz
16	oyakskarah....		agegaspe	hamasei.
17	janahskarah.		agesagomi	hamazaspi
18	nagronhskaral		agepalali	hamazortzi
19	nirunhskarah..		agekisauka	hameretzi
20	new	dewartha unteskahr .	putska nomba.......	hogei
30	undahdiwasenh......	arsence warsa.........	putska nan	hogei eta hamar
100	kayaswih	kaharsthree	okeni	ehun...................
1000		unteyoasthree	okeni butskai.........	milla...................

In relation to number there are both a dual and a plural, but this is limited to the pronouns. The personal pronoun is thus declined :-

FIRST PERSON.

singular.		Dual.		pleral.	
I	Iil.	We	Onkenonlia.	We	Onkyunha.
My	Alkwawonls.	Ours	Onkyawouh.	Ours	Onkwawenh
Me	Iih.				
SECOND PERSON.					
Thou	Iseli.	You	Senonlia.	You	Ionla
Thy	Sawenh.	Yours	Jawonh.	Yours	Sowawent.

THIRD PERSON.

He	Raonha.	They	Rononla.	The!	Rononlat.
His	Raowonh.	Theirs	Lamawenh.	Thutirs	Ratonawonh.
She, or it	Aonha.		They	Ononh	
Her's, or its.	Aowenh.		I7wios	A	

The pronom may thas be slown in post-positional relation to the nom :-

I am a Mohawk.	Kanyoukehaka ne lih	Wre ere Melventis.	Kanyenkuhak nounk wunha
Thou art a Mohavk.	Kanyonkehaka no iseh	Yom are Mohuwks.	Kanyenkelaka me johna
He is a Mohauk.	Kanyonkehaka no raonha	They are Mohauks.	Kanyenkehaka neonomha

The plaral of noms is formed, for the most part, in two ways, acoording to the relation of the word to animate beings, or to inamimate objects. For the former the termination okonh is added to the singular form of the nom. Thas yakosutens, "a home." beromes in the pliral yakosatensokonh. In ronkwe, " man," there are the distinctive plurals ronomkee, "men," onkwehokonh, " mankind." For inanimate objects the addition becones okon, or okonah, as ahsareh becomes ahsarehokon, or ahsarehokonah; ahtah becomes ahtahhokon, or aldahakonah.

In expressing gender there is a general form used when speaking of the female sex, and employed without distinction, as a common gender, when referring to animals. In speaking of men and women together, the masculine dual or plural form is nsed. In speaking of women alone the common gender is applied; bat there is another distinctive form in the pronoun, employed only when speaking of, or to, one who is an object of respect or affection, such as a mother. This is indicated in the peculiar agglutinative structure of the language by the $k a$ or $k e$ as a feminine intercalation, thus: ahkaonka, she; alkowenh, hers. The change from masculine to feminine in nowns relating to mankind is expressed mainly by the use of the initial r or k, as in the following examples:-

ronkue Man.	raxah Boy.	rihyenah My son.
yonkwe Woman.	kaxah Girl.	kheyenah My danghter.

The pronoun is amalgamated with the noun, in accordance with the agglutinative process which rules throughout, as in the following example, and in its mode of forming
the possessive case. "My apple," is ahkwahih. This is a compound of the pronoun, ahkwawenh, " my," and kahih, " apple," but instead of ahkwawenh + kahih, the last syllable of the pronoun, and the first of the noun, are elided. The peculiar forms for expressing the special and common female gender are also shown here in the formation of the second and third persons :-
singular.

So with kayenkwireh, " an arrow," or aludokenh, "a tomahawk;" the possessive case is similarly formed thus :-

ahkwadokenh	My tomahawk, ahkwawunh ahdokenh.		
sadokenh	Thy " from sawenh "" " "		
raodokenh	His "	" raonwunh " " "	
chkodokenh	Her "	" ahkowunh " " "	
cotokmh	Her, or its tomahawk, from aowunh ahdokenh.		

The dual and plural are formed throughout as in the first example.
The same peculiar distinctive feminine forms, the one used in addressing a person loved or respected, and the other applied to an inferior or a stranger, affect the combination of the pronoun and verb, as in the following example; which has no claim to present all the minute elaborations of which the Mohawk verb is susceptible, but will in some degree illustrate its flexibility, and the process by which it accomplishes results akin to those effected by the English auxiliary verbs :-

The verb To Give.
INDICATIVE MOOD.
Present Progressive Tense.

1. With Masculine object to verb.
riyavis
ehtsawis
rowis
singular.
I am giving him.

Thou art giving him. He , she, or it, is giving him.

PLURAL. shakwawis We are giving him. ehtsisewawis You are giving him. ronwawis They (M. and F.) are giving him. dual.
ehtsityawis We two are giving him. ehtsijawis You two are giving him. ronvawis They two are giving him.
2. With Feminine object of love or respect.

singular.

keyavis I am giving her.
seyawis Thou art giving her.
sakowis He is giving her.
yakowis She, or it, is giving her.

PLURAI.

$$
\begin{array}{ll}
\text { yakhiyawis } & \text { We are giving her. } \\
\text { yetsiyawis } & \text { You are giving her. } \\
\text { sakonawis } & \text { They (M.) are giving her. } \\
\text { yakonawis } & \text { They (F.) are giving her. }
\end{array}
$$

DUAL.
yakhiyawis We two are giving her.
yetsiyawis You two are giving her.
sakonawis They two are giving her.
3. With Feminine or Neuter Object.
kawis I am giving her, or it.
sawis Thou art giving her, or it.
rawis He is giving her, or it.
yowis She is"giving her, or it.
yakwawis We are giving her, or it. sewawis You are giving her, or it. sakonawis They (M.) are giving her, or it. yakonawis They (F.) are giving her, or it.

There is no change in the dual to distinguish between " giving him" or "her," and "giving them."

Past Indefinite.

1. With Masculine Object.
riyawih I gave him.
ehtsawih Thou gavest him. rowih He , or she, gave him, or her.
2. With Fem. Object.

I gave her.
Thou gavest her.
He gave her.
She, or it, gave her.
3. With Fem. or Neut. Object.

kawih I gave her, or it.

sawih Thou gavest her, or it.
rawih He , or she, gave her, or it.
yowih He , or she, gave her, or it.

Present Perfect Texse.	
nenhkeyawih ${ }^{1}$	I have given him, or her.
nensheyawih	Thou hast given him, or her.
nenhshakowih	He has given him, or her.
nenhyakowih	She, or it, has given him, or her.

Past Perfect Tenge.

1. With Mas. Object.
nenhsihiyawih
nenhsitsawih
nenhsihowih
nenhsishakwawih
nenhsistsisewawih
nenhsihonwawih

I had given him. Thou hadst given him. He had given him. We had given him. You had given him. They had given him.
3. With Fem. or Neut. Object.
nenhsikawi i
nenhsisawih nenhsihawih nenhsiyowih nenhsiyakwawih nenhsisewawih nenhsikonwawih

I had given her.
Thou hadst given her.
He had given her.
She had given her.
We had given her, or it.
You had given her, or it.
They had given her, or it.
2. With Fem. Object.
nenhsikeyawih I had given her. nenhsisheyawih Thou hadst given her. nenhsishakowih He had given her.
nenhsiyakowih She had given her.
nenhsiyakhiyawih We had given her.
nenhsiyetsiyawih You had given her.
nenhsishakonawih They (M.) had given her. nenhsiyakonawih They (F.) had given her.
4. With Plur. Object.
nenhsikeyawih I had given them.
nenhsisheyawih Thou hadst given them.
nenhsishakowih He had given them.
nenhsiyakowih

[^68]Future Simple Tense.

1. With Mas. Object.

I will give him.
Thou wilt give him.
He will give him.
We will give him.

You will give him.
They will give him.
unkeyonh unseyonh unsakaonh unyakaonh unyakhiyonh unyetsiyonh unshakononh unyakononh

I will give her. Thou wilt give her. He will give her. She will give her. We will give her. You will give her. They (M.) will give her. They (F.) will give her.

3. With Fem. or Neut. Object.	
unkonh	Iwill give her, or it.
unsonh	Thou wilt give her, or it.
unronh	He will give her, or it.
unyaonh	She will give her, or it.
unyakyonh	We will give her, or it.
unjonh	You will give her, or it.
unkunvayonh	They will give her, or it.

Future Perfect Tense.

1. With Mas. Object.
nenhsunhiyawih I shall have given him.
nenhsuntsavih Thou shalt have given him.
nensunhowih He, or she, shall have given him.
nenhsushakrauth We shall have given him.
nenhsustsisencaurih You shall have given him.
nenhsunhomavih They shall have given him.

2. With Fem. Object.

3. With Fem. or Neut. Object.
nenhsunkauih I shall have given her, or it. nenhsunkawih Thou shalt have given her, or it. nenhounhawih He shall have given her, or it. nenhsunyowih nenhsunyakwawih nenhsunsewawih nenhsunkunwawih

We shall have given her, or it.
You shall have given her, or it.
They shall have given her, or it.

IMPERATIVE MOOD.

chtshonh	Do thou give him.
s'heyonh	Do thou give her.
ehtsijonh	Do ye give him.
yetsiyorh	Do ye give her.
takwayonh, or contr. takyonh	Do you give me.
takenonh	(S. or p.) give us two.
takeniyonh	Do you two give me.

Similarly also the verb, To Drive, is similarly conjugated, as shown here in the following tense :-

Present Progressiver

1. With Masc. Object.

I am driving him. Thou art driving him. He , or she, is driving him.
shakadoris
chtsisewadoris
ronvadoris

We are driving him. You are driving him. They are driving him.
2. With Plur. Object.
kudoris sadoris radoris $\begin{array}{ll}\text { I am driving them. } & \text { - yodoris } \\ \text { Thou art driving them. } & \text { yakhiyadoris }\end{array}$ She is driving them.
We are driving them, oke.,
[some as verl, To Give.]
3. With Fein. or Nout. Objoct.

keyadoris	I am driving her, or it.
seyadoris	Thot art driving her, or it.
s'hakodoris	Ho is driving hor, or it.
yakodoris	Sho is driving hor, or it.

The verb, To Hunt, simply changes the terminal ris of the last verb into rals. heyndorats, "I am hunting her," or "it," etc. The verb, To Lend, changes it into hus. Kemuihus, "I am lending her." It will be observed that the Feminine singular is like the plural, e.g., keyawis, "I am giving her," or " them;" keyadoris, "I am driving her," or "them."

khenihas	I am lending her.	kenilus	I am lendingr her, or it.
shenilus	Thou art lending ler.	semilus	Thou art lending her, or it.
shakonihas	Ho is londing leer.	roniluts	Ife is lemting her, or it.
yakonihas	She is lending her.	yonilus	She is lemdiner her, or it.

The examples adduced may suffice to illustrate the elaborate yet consistent symmetry of the verb, compounded ont of the significant roots of its various verbal and grammatical members. Prefixes, suffixes, and incorporated clements of subortinate parts of speech, are so combined as to furnish the most delieate shades of expression, suth as the English language has only acquired at a late stage by means of its anxiliary verbs: and all this in the langnage of a people not only without letters, but lacking the very rudinembs of civilization, in so far as that is dependent on a knowledee of the arts.

The euphonic changes which mark the systematic: transitions in the Mohawk language, though by no means peculiar to it, cannot fail to awaken an interest in the thonghful stndent, who reflects on the social condition of the people anong whom this elaborated vehicle of thought was the constraining power by means of which their chiefs and elders swayed the nations of the Iroquois confederay with an dondume more pownful and persuasive than that of many civilized mations. They have been illustrated in the verb; but the same systematic application of euphonic change through all the transitions of their vocabulary is seen in the elaborate word-sentences, so characteristic of the extreme length to which the incorporating mode of structure of the Turaniam fimily of languages is carried in many of those spoken by the American nations. The habitual concentration of complex ideas in a single word has long been recognized, not only as giving a peculiar character to many of the Indian languages, but as one source of their adaptability to the aims of native oratory. From the Massachnsetts Bible of Eliot, Professor Whitney quotes a word of eleten syllables; and Gallatin produces from the Cherokee another of seventeen syllables. This frequently embodies a descriptive holophrasm, and so aids the native rendering of novel objects and ideas into a language, the vocabnlary of which is necessarily devoid of the requisite terms. But in such cases the agglutinative process is obvious, and the elements of the compounded word must be present to the mind of speaker and hearer. The English word "almighty" is itself an example of the process. It becomes in the Mohawk Prayer Book seshatsteaghseragwekonh, from seshatsteh, "you are strong," and ahkwekonh, "all," or "the whole." When the missionaries first undertook to render into the Mohawk language the gospels and service books for Christian worship, it
may be doubted if many of their converts had ever seen a sheep. But they had to reproduce in Mohawk this general confession: "We have crred and strayed from Thy ways like lost sheep." They did it accordingly in this fashion: Teyagwaderycaducearyesneoni yoegwathaharaguaghtha ssisahate tsiniyouht yodiyudarghtooouh teyodinakaroetoeha, which may be literally rendered: "We make a mistake, and get off the track where your road is, the same as strayed animals with small horns." The extreme literalness of the rendering may probably strike the mind of the English reader in a way that would not occur to the Indian, familiar with such deseriptive holophrasms. But it illustrates a diffieulty with which Eliot was very familiar when engaged on his Massachusetts Indian Bible. In translating, for example, the song of Deborah and Barak, where the mother of Sisera "eried through the lattice," the qrood missionary looked in vain in the Indian wigwam for anything that corresponded to the term. At leneth he called an Indian and deseribed to him a lattico as wioker work, and obtained in response a rendering of the text which literally meant: "The mother of sisera looked through an eel-pot." It was the only kind of wieker-work of which the Indian had any knowledge. But such dillicultios are trifling compared with the ideas involver in thendogial fhraseology, such as necessarily oceur in the Creeds, the Tre lerum. or the Litany. For example, the sentenee: "When thou tookest upon theo to deliver man," as rendered in the Litany, has the word "deliver" reproduced in Mohawk by aesearhsheymatukh, which is formed of "homusasto, "to get," or "bring," and ohyada, "a body." As tw the Mohawk equivalent fir "womb," in the same sentence, kanegweadakonh, it med not surpise us to lind that its literal significance is "in the belly." The word, "responses," which in its peruliar liturgical signiticance was not to be looked for in the Mohawh rocabulary: is rendered tehudirighnoucuronhs, or literally, "first one and then the other." Th" 1 ann" fin "hearen" is borrowed from the visible blue sky; oromy, "blue," -in the lluron, aronhin; fintombuhtionh, "in the blue," i.e, heaven; though in speaking of hearen it is more matal to say tratronateh, "on the blue;" so also karomytheronont, "being of the hlue," or " of hararn," ie., heavenly.

The exampless of dilfernt Huron-Iroquois versions of the Lord's Prayer here produced will help to illustrate the charater of some of the leading forms of its dialects. But the remark with which Mr. Hale, in the introduction to "The Iroquois Book of Rites," concludes his instrutive analysis of the formation of the Iroquois language, is worthy of special note. After indicating the marvellous preservation of grammatical forms, not less elaborate than those of Sanskrit or Greek, among unlettered tribes, he adds: "What is still more remarkable, a comparison of the Iroquois with the Huron grammar, shows that, after a separation which must have exceeded five hundred years, and has probably exceeded twice that term, the two languages differ less from one another than the French of the twelfth century diflered from the Italian, or than the Anglo-Saxon of King Alfred differed from the contemporary low German speech." ${ }^{2}$

The first of the following versions of the Lord's Prayer is of special interest as a specimen of the Huron language in a translation executed within twenty-five years after the destruction of the Huron settlements on the Georgian Bay. The copy which I possess

[^69]is authenticated by M. Paul Picard Tsa8enhohi, son of the late Huron chief, Tahourenché, and is accompanied by the following memorandum, from the pen of the Reverend Father, by whom it has been transcribed for me: "Je sonssigné certifie que la langue Huronne n'a pas changée. C'est la méme langue qui était parlée en 1673 , nons n'avons pas d'autre Pater que celui, qui a êté écrit par le Révérend père Jésuite Chanmonot, qui résidait à l'ancienne Lorette avec le Révérend père Jésuite Pierre Martin Bourart, lrocureur des Missions. Josepil Gonzague Vincent Hodelonro8innen." " A comparison of this specimen of the Huron language, derived from one of the Jesuit missionary Fathers of the seventeenth century, with the subsequent Mohawk and Iroquois versions of the Lord's Prayer, wherever the same terms are used, serves to illustrate some of the modifications that the language has undergone in the course of time and from the dispersion of the race. This is seen in such words as the Huron aromhin,e, which in the Iroyuois becomes karonhiake, and in the Mohawk ketrombyatont. The old form hetsitron is similarly ehanged to tesiteron in the Iroquois, and to teghsideronh in the Mohawk; and so in other instances.

Aiesachientaensken, as here used, means strictly "mayst thou have an exalted," or "honoured, name" It is the same word as the Iroguois diesasennaien. The termination sken is a sign of the optative mood in the Itmon. Aiakuligastashen appars to mean "may we be made happy, "or" blessed;" and, as such, is a very mundane rendering of "thy kingdom come; " but the whole version partakes of the character of a paraphrase. Nomdende is made up of ne, "the," ende, "earth," and the lo ativesuflix nde. Trusinnommshorn and fusumont are from emonten, "to give." As to the translation of the simple petition for daily brad, it seems as though two attempts at rendering it into Itmon had beon made; and both of them retained, with the adverb ifondi, "also," to indieate the second form as a another version of the first. But there is reason to suspere that the text has sulfered, probably in repeated transcription. Some of the words can only be conjecturally rembered, in their uncertain orthography. The comma in the body of a word represents the soumd of y, when it stands for a primitive k which has been lost by phonetic decay; or is slurred over in indistinct utterance. Thus $/ a, 8 a$, arennien is in its primitive form laksukskarennion.

THE: LORD'S PRAYER IN HURON.

d'ate8entato d'aionnhek8i. Sasandi,onrhonk nonSariSadera,i foskenaiaSen n'enditsonsadi,onrhens for the day that which makes to live. Parlon us our urong-doings as It pardon

n'onxhiatolati	ennonchien	eon,8asichen	nia	de,ari8aderai'	aseti	ta, $\mathrm{Sa}, \mathrm{aronnien}$	d'ukant.
those who offend us.	let not	overcome	$u s$	the sin	all	(urn from 4 ¢	the cril.

In the year 1880, the Upper Canada Bible Society undertook the publication of the four gospels "in the Iroquois langnage." In the report of the Society for that year it is

[^70]stated: "The directors have ascertained that there are several thousand of this tribe in both Quebec and Ontario, and that Chief Joseph (Onesakeurat) of Oka, the translator, is quite competent thus to give, with their help, a good and useful version of the Gospels to his own people." The report of the following year states that an edition of a thousand copies had been printed. The Oka Indians, in so far as they are Iroquois, are descendants of the Indians of the Five Nations who, under the influence of the French missionaries left their own people, and removed to Lower Canada. They were chiefly Mohawks, but included representatives of the other "nations." The language which they still speak is substantially the same as the Mohawk, though with characteristic local modifications. Chiof Joscph in his translation employs the printer's substitute of the cypher 8 which was introduced at an carly date by the French missionaries to represent both the lirenth ou and the English w. Proper names, such as Abraham, Jacob, Mary, etc., are printed lor the most part, with the labials, in ordinary type. Bnt where the true Indian orthoepy is reproduced, "Matthew" becomes 8atio; thus "Joseph, the husband of Mary," is rendurd Rose n Rasari ; and the same influence of the absence of the labials is seen in the forms which suh names wcanionally assmme in the old Mohawk Prayer Book, e.g. Hary for "Mary," Agwereah for "Abraham," etc.
(hidedoneh Onesakemat was educated at St. Mary's C'ollege, Montreal, and was for at the rmployed as swertary hy the sulpician lathers at Oka. On subsequently joining the Methonliv ('hureh, he studiel for four yeas in preparation for missionary work among his wwnerple, so that his translation must be accepted as the work of an educated native frenumis. A comparisu betworn the language of this recent translation and that of the ald Mohawk l'rayr bouk is lull ofinterest. At a first glance the difference appears to be mush ervatur than prowe to be the case on close investigation; and is due, in a large durfer, th motrantions in othography, such as are inevitable wherever two or more stulents attempt ind"pendently to reduce an mwritten language to definite form. Thus wo lim] tuksuientu, tukoryenhu; nonsentsiuke, neonvunjake, etc. Other changes involve a little more modification of the words; e.g., kari8aneren, karihwanerunh; the aiesasennaien of the "asterm Iroyuois, wonld be in the Mohawk ahyesasunriyosteh, etc.; but only one word in the following Iroquois version of the Lord's Prayer deviates essentially from the Mohawk. That is taksarisukiten, which I had rendered, from its place in the context, "lead us." Its probable derivation and true significance are discussed below. The Mohawk equivalent would be takurashuriniht. Situated as the scattered members of this old race now are, widely severed, and precluded from intercourse, such dialectic diversities must tend to increase. ('hanges both in diction and grammatical forms have necessarily arisen, not only from the long separation of the Iroquois of eastern Canada from their western congreners, but also from their admixture with Onondagas and others speaking different dialects; nevertheless the language is still substantially the same. The French missionaries, recognizing the fact already noted, that in none of the Iroquois languages is any distinction made between the d and t, the g (hard) and k, or the o and u, have simplified the alphabet by using only the t, k, and o. The h is used for the aspirate, though sometimes it is the sign of the gutteral ch; and the en and on represent nasal souuds familiar to the French ear. The English orthography of the language is at once more complex and less consistent with its orthoepy, in the effort to represent unfamiliar Indian sounds. In the Rev. J. A. Cuoq's "Lexique de la Langue Iroquoise," he gives "Kahnawake,

Sault St. Íonis, nom de lieu dont I'orthographe Anglaise a fait Caughnawaga." So also Fianata, a "town" i.e. Canada. From this diversity in spelling such changes result as the French kahiatonsera, English kahyadonhsera, "book;" k8anoronk8a, "beloved" (lit. "you whom we love "), in the old Mohawk Prayer Book gwanoronghkwa, and in the modern orthography gwanoronhkwa. So also tesel ne sanakta, "take up thy bed," of the modern Iroquois gospels becomes desegh'k ne sanakda; and sasatenti tsi tisanonsote, "go into thy house," is rendered sasaghdundy tsidesanoughsode. Thas a transliteration of the old French and the modern English rersions greatly reduces the apparent dissimilarity between the two specimens of Mohawk or Iroquois. These variations, mainly due to a difference in the orthographic modes of representing the same sounds, but also indicative of changes in pronunciation, are further illustrated in their numerals. This will be seen by a comparison of the series here given, with those in the preceding tables. They have been furnished to me by J. A. Dorion, an educated native Iroquois who is now the teacher at the Oka Indian sehool :-

1, enska.	5, wisk.	9, tioton.
2, takeni.	6, iaiak.	10, oieri.
3, asen.	7 , tsiatak.	20 , tewashen,
4, kaieri.	8, satokon.	100, enska-tewenniawe.

But, in addition to the apparent dissimilarity arising from variations in orthography; the dialectic differences, produced by upwards of a century of separation between the Mohawhs of eastern and western Canada, throw an interesting light on the more comprehensive process of change which resulted in the older dialects of the Six Nations, and the difference of all of them from the Huron tongue. The following is the Oka Irofumis version of the Lord's Prayer as it occurs in the 6th chapter of the Gospel of Matthew :-

THE LORD'S PRAYER FROM TIE HROQLOIS GOSPELS.

Some features in this version are worthy of note. The ne here is generally the definite particle; $k e$, is the locative particle. Oronhia, or Huron aronhia, e, as already noted, is "blue;" karomhia, " in the blue," i.e., heaven ; nonventsiake, " on," or " in the earth :" omventsia, with the definite particle prefixed, and the locative particle as a suffix. Aiesasennaien, "may thy name be exalted," is from kasenna, "name," with the rerbal prefix aiesa marking the second person singular of the subjunctive mood. Takwanont is from on, "to give," prece-
ded by the composite pronoun takwan. The word kanikonoha, "mind," is found in a number of derivations and compounds, as in ionkhinikonraksala, rendered freely "wherein any oue offends me," or " makes a bad mind." The aksata is from aksen, "bad;" as also iotaksens, "it is evil," comes from the same root. Kasaslensera, "power," is from kesaste, "to be strong; " kanentonsera, "glory," is from kennonton, "to admire;" the sera added to the root-word gives it the value of an abstract noun, as, in the English, "strong " becomes "strength."

Tuhacarivakviten is a compound which puzzled me; and on consulting Dr. Oronhyatekha he replied that he knew of no such word in the Mohawk language. It is, therefore, an Oka holophrasm; which, from its place in the context, must mean "lead from us," or some such idea. Mr. Malt suggests that it is a compound of kariza, "thing," or "act," as in karivaneren, "wrong-doings," and khawitha "to remore," or " put aside." If so, it expresses in a word the entire petition, "deliver us from evil."

The following version of the Lord's Prayer is from the Mohawk Prayer Book still in use among the Six Nation Indians on the Grand River, western Ontario; but which, as a translation, is fully one hundred and seventy years old. A comparison of it with the more recent Iropuois Iranslation is interesting in varions ways. First there are the slight variafions noticuable in the same, or nearly similar words. Shoegnaniha, "Our Father," of the one, becomes in the nther takraimha; the karomhykomb, "in heaven," of the older version, has apparently acenired a slight change in promuciation in the karonhiake of the latter. Again, the ne-oughreatsyntie, "on," or "in the earth," becomes nonventsiake; and so with other worls. There are also interesting examples of different attempts at expressing the same idea, as : "raonkhinutsuraten, literally "those who hinder us," or "get in our way," for which the other substitutes iombinikonraksta, the composition of which lias already been shown, and which may be rendered here "any one (who) oflends us." The complex holophrasms are, on the whole, more numerous in the older version; but it has also its abbreviations, as in the tsimi-nitymht, "as it is," which, when repeated, assumes the contracted form of tsiniyonht.

THE LORISG PRAYER IN MOHAWK.

If any student of American ethnology to whom the foregoing remarks present features of interest, will spread before him a map of the northern continent, and trace out the wanderings of the Huron-Iroqtois race as here indicated, he must revert in fancy to
that remote century when confederated Iroquois and Algonkins swept in triumphant fury through the wasted valley of the Ohio, and repeated there what Goth and Hun did for Europe, in Rome's decline and fall. The long-settled and semi-civilized MoundBuilders, or Alligéwi, as we are learning to call them, fled before the furious onset, leaving the great river-valley a desolate waste. The barrier of an old-settled and wellorganized community, which, probably for centuries, had kept America's northern barbarians in check, was removed; and the fierce Hurou-Iroquois stock ranged at will over the eastern regions of the continent, far southward of the North Carolina river-valleys, where the Nottoways and Tuscaroras found a new home. As to the Nottoways, they appear to have passed out of all rememberance as an Iroquois tribe; yet it is suggestive of a long-forgothen chapter of Indian history, that the name is still in use among the northern Algonkins as the designation of the whole Iroquois stock. The Nottawa-saga is, doubtless, a memorial of their presence on the Georgian Bay; and the Notaway (Náhdahwe) River which falls into Hudson Bay at James Bay, is so named in memory of Huron-Iroquois wanderers into that Algonkin region.

Some portion of the ancient Huron stock tarried on the banks of the St. Lawrence, in what is known to us now as the traditional cradle-land of those Canadian aborigines. Others found their way down the Hudson, or selected new homes for themselves on the rivers and lakes that lay to the west, till they reached the shores of Lake Erie; and all that is now the populous region of Western New York was in occupation of the Irocuois race. Feuds broke out between them and the parent stock in the valley of the St. Lawrence. They meted out to them the same destruction as to strangers; and the survivors, abandoning their ancient home, fled westward in search of settlenents beyond their reach. The Georgian Bay lay remote from the territory of the Iroquois, but the mations of the Wyandot stock spread beyond it, until the Niagara peninsula and the fertile regions between Lake Huron and Lake Lrie were ocenpied by them, and the Niagara river alone kept apart what were now hostile tribes. But wherever we are able to apply the test of linguistie evidence their affinities are placed beyond dispute. On the other hand, the multiplication of dialects, and their development into separate languages, are no less apparent, and in many ways help to throw light on the history of the race.

The old Huron mother-tongue still partially preserves the labials which have disappeared from all the Iroquois languages. The Mohawk approaches nearest to this, and appears to be the main stem from whence the other languages of the Six Nations have branched off. But the diversities in speech of the varions members of the conlederacy leave no room to doubt the prolonged isolation of the several tribes, or "nations," before they were induced to recognize the claims of consanguinity, and to band together for their common interest. Some of the diversities of tongue, specially noteworthy, have already been pointed out, such as the r sound which predominates in the Mohawk, while the l takes its place in the Oneida. In the Onondaga, Caynga, and Seneea, they are no longer heard. The last of these reduces the primary forms to the narrowest range; but beyond, to the westward, the old Eries dwelt, speaking it may be presumed, a modified Seneca dialect, but of which unfortunately no record survives. As to the Tuscaroras and the Nottoways, if we knew nothing of their history, their languages would suffice to tell that they had been longest and most widely separated from the parent stock.

It is not without interest to note in conclusion that the main body of the representatives of the nations of the ancient Iroquois League, sprung from the Huron-Iroquois stock of eastern Canada,-after sojourning for centuries beyond the St. Lawrence, until the traditions of their origin had faded out of memory, or given place to mythic legends of autochthonic origin,-has returned to Canadian soil. At Caughnawaga, St. Regis, Oka, and on the River St. Charles, in the province of Quebec ; at Anderdon, the Bay of Quinté, and above all, on the Grand River, in Ontario; the Huron-Iroquois are now settled to the number of upwards of 8,000 , without reckoning other tribes. If, indeed, the surviving representatives of the Aborigines in the old provinces of the Dominion are taken as a whole, they number upwards of 34,000 , apart from the many thousands in Manitoba, British Columbia, and the Northwest Territories. But the nomad Indians of the Northwest must be classed wholly apart from the settlers on the Grand River reserves. The latter are a highly intelligent, civilized people, more and more adapting themselves to the habits of the stranger immigrants who have supplanted them; and are destined as certainly to merge into the predominant race, as the waters of their ancient lakes mingle and are lost in the Ocean. Yet the process is no longer one of extinction, but of absorption ; and will assuredly leave enduring traces of the American autochthones, similar to those which still, in the Melanochroi of Europe, perpetuate some ethnical memorial of its allophylian races.

ROYAL SOCIETY OF CANADA.

TRANSACTIONS
 SECTION III.

MATHEMATICAL, PHYSICAL AND CHEMICAL SCIENCES.

PAPERS FOR 1884.

I.-The Origin of Crystalline Rocks.

By Thomas Sterry Hunt, M.A., LL.D. (Cantab.), F.R.S.

(Prosented May 20, 1884.)

Abstract

I.-Ifistorical and Critical.-The schools of Wernor and of Hutton. Tho chaotic, motamorphic, motasomatic, thermochaotic, ondoplutonic and oxoplutonic or volcanic hypotheses. Conditions of tho problen. The crenitic liypothesis statod. II.-The Development of a New Hypothesis.-The history of the growth of the crenitic liypothesis. III.-Illustrations of the Crenitic IIypothesis.-The history of zoolitic and foldspathice minerals; of the principal protoxyd-silicates, and of other rock-forming silicates. Tho artificial production of mineral silicates. Tho conditions of tho crystallization of minerals. IV.-Conclusions; followed by an analysis of the contents of rections, and a note.

I.-Historical and Chitical.

§ 1. The problem of the origin of the crystalline rocks which cover so large a part of the earth's surface is justly regarded as one of fundamental importance to grology, and its solution has been attempted during the past century by many investigators, who have advanced widely different hypotheses. These, it is proposed to review bricfly in a historical sketch before proceeding to suggest a new one, which it is the object of the present memoir to bring forward. Withont going back to the speculations of the ancient philosophers, we find those of the last two centuries, Newton, Descurtes, Leibnitz and Buffon, among others, accepting the hypothesis of a former igneous condition of our planet. Starting from this basis, the phenomenia of volcanoes, and the resemblances between their consolidated lavas and many of the erystalline rocks, maturally gave rise to the notion of the igneous origin of these, which was formulated in the hypothesis that all such rocks, whether massive or schistose, were directly formed during the cooling and consolidation of a molten globe.
§ 2. Playfair, in his "Illustrations of the Huttonian Theory of the Earth," tells us that it was Lehman, who, in 1756, first distinguished by the name of Primitive the ancient crystalline rocks, described by him as arranged in beds, vertical or lighly inclined in attitude, and overlaid by horizontal strata of secondary origin. These primitive rocks were by Lehman regarded "as parts of the original nucleus of the globe, which had undergone no alteration, but remained such as they were first created." This view was shared by Pallas and by De Luc, the latter of whom at one time considered the primitive rocks "as neither stratified nor formed by water," though as Playfair informs us, De Luc subsequently admitted "their formation from aqueous deposition, as the neptunists do in general." ${ }^{1}$

[^71]Pallas held a similar view, aud according to Daubree, both Pallas and Saussure "admitted, as Linnæus had done, that all the terranes have been formed by the agency of water, and that volcanic phenomena are but local accidents." Pallas pnblished his "Observations on Mountains" in 177T, and Saussure the first volume of his "Voyages dans les Alpes" in 1779. It was about 1780 that the celebrated professor of Freiberg began, in his lectures, the exposition of his views, called by Playfair "the neptunian system as improved by Werner;" though his Classification of the Rocks, in which these views were finally embodied, dates only from 1787.
§3. According to Werner, the materials which now form the solid crust of the globe were deposited from the waters of a primeval ocean, in which the elements of the crystalline rocks were at one time dissolved, and from which they were separated as chemical precipitates. The granite, which he regarded as the fundamental rock, was first lail down, and was closely followed by the gneisses and the hornblendic and micaceous schists. When the dissolving ocean covered the whole globe to a great depth, and its waters were tranquil and pure, the rocks deposited were exclusively crystalline and, like the ocean, they were universal. These he distinguished as the Primitive rocks.

At al later period, the depth of the ocean was supposed to have been diminished by the retreat of a portion of the waters to cavities within the globe; a notion apparently borrowed from Leibnitz, who imagined caverns, left by the cooling of a formerly fused mass, to have subsequently served as reservoirs for a part of the universal ocean. In this second period, aceording to Werner, a chemical deposition of silicates still went on, but dry land having been exposed and shallows formed, currents destroyed portions of the previonsly deposited masses, which were also attacked by atmospheric agents. By these actions were formed mechanival sediments, which became interstratified with those of chemical origin. It was during this period of eo-incident chemical and mechanical deposition that were formed the Intermediate or Transition rocks of Werner, which, from the conditions of their formation, necessarily covered only portions of the universal Primitive series. At a still later period, marked by a farther diminution of the superficial waters, were laid down the Sccondary rocks of Werner, at a time when the sea no longer produced mineral silicates, and had assumed essentially its present composition.
§4. The Primitive rocks, according to this hypothesis, were those composed entirely of chemical deposits, which are either crystallized or have a tendency to crystallization, and in which the action of mechanical causes cannot be traced. In the Transition series, the products of chemical and mechanical processes are intermingled, and materials derived from the disintegration and decay of Primitive rocks are present; while the rocks of the Secondary series were formed from the ruins alike of the Primitive and the Transition series. Daring the process of their consolidation, the various strata having been broken, fissures were formed through which the surplus waters retired to the internal cavities, depositing on the walls of the fissures through which they descended, the varions matters still held in solution. In this way were formed metalliferons and other mineral veins.

The aqueons solution in which all these crystalline rocks were at first dissolved was described by Werner and his disciples as a chaotie liquid, and he even designated the rocks themselves as chaotic, "because they were formed when the earth's surface was a chaos." These Primitive rocks, consisting of the granite and the overlying crystalline schists, covered the whole earth, and their geographical inequalities were due to
the original deposition, which did not yield a regular surface, but presented elevations, upon the slopes of which were subsequently laid down the Transition strata.

Such, according to Werner, was the origin of all rock-masses except recent alluvions, deposits of obviously organic origin, and the ejections of volcanoes, which he conceived to be due to the subterraneous combustion of carbonaceous deposits. In the earlier ages of the world there were, according to him, no volcanoes and no evidences of subterranean heat. Neither in the formation of granite, of basalt, of the crystalline schists, or of mineral veins, or in the displacements of the strata to be seen in the deposits of various ages, did he recognize any manifestations of an internal activity of the earth. ${ }^{2}$
§5. We now pass to the consideration of the rival geological theory of Hutton, which was developed at the same time with that of Werner. Saussure, as early as 1776 , had ascribed to aqueous infiltration the granitic veins in the Valorsine, and others near Lyonsa view which was shared by Werner, who, from their similar constitution, conceived that the formation of massive and stratiform granitic rocks had taken place under conditions like those which gave rise to the veins in question, and then extended this view to other veins and masses of what we must regard as injected or irrupted rocks, including not only granites but dolerites and basalts.

Hutton and his interpreter, Playfair, on the other hand, regarded all granitic veins as having been filled by injection with matter in a state of igneons fusion, repudiating the notion of Saussure and of Werner that such materials conld be formed by crystallization from aqueous solutions. Granitic veins, according to Hutton, are in all cases but ramifications of great masses of granite, themselves often concealed from view. "In Hutton's theory, granite is regarded of more recent formation than the strata incumbent upon it; as a substance which has been melted by heat, and which, forced up from the mineral regions, has elevated the strata at the same time." ${ }^{3}$ From this condition of igncous liquidity, he supposed, had crystallized alike quartz and feldspar, as well as tourmaline and the other minerals sometimes found in granitic veins. Granite is elsewhere declared by him to be matter fused in the central regions of the earth.
§6. With Werner, granite was the substratum underlying all other rocks simply because it had been the first deposit from the chaotic watery liquid, and it was said to pass into or to alternate with the distinctly stratiform or sehistose crystalline rocks. In this view of its geognostical relations, Werner was strictly correct, if by granite we understand the massive or indistinctly stratiform aggregate which makes up what some would call granite and others fundamental granitoid gneiss. This is what I have called an indiaEnous rock, which may be with or without apparent stratification. We must, however, distinguish, besides this first type of crystalline rock, -the underlying granite of Werner,-two others which, though mineralogically similar, and often confounded, are geoguostically distinct. Of these, what I have called Exotic rocks consist apparently of softened and displaced portions of aggregates of the first type, and are met with alike in

[^72]dykes and in masses of greater or less size, intruded or irrupted among the stratified or indigenons rocks. These are the typical granites of Hutton. The third type includes those concretionary masses of granitic material formed in fissures or cavities, which are evidently deposits from aqueous solutions. These are the infiltrated veins of Saussure and of Werner, and are what I have designated endoaEnous rocks.
§7. By keeping in view this threefold distinction between indigenous, exotic and endogenous granitic aggregates, as I have long since endearored to show, the obscurities and apparently contradictory views of different observers are easily explained. These distinctions are recognized in other crystalline rocks than granite. Under the name of crystalline limestones, as is well known, have been included both indigenons and endogenous masses. The question whether or not certain crystalline silicated rocks are to be regarded as eruptive, is seen to be of minor importance, when we consider that it is possible for indigenons crystalline doposits to appear in the relation of exotic masses; whether displaced in a softened and plastic condition, as more generally happens, or else forced, in rigid masses, among softer and more yielding strata, as appears, from the observations of Ntapff, to be the case of the serpentines of St. Gothard. ${ }^{4}$
s8. Werner argued, and as we shall endeavor to show, correctly, from their analogies with "oncretionary granitic reins, that all granitic rocks were deposited from water, and are consequently indigenous or andogenous in origin. He denied the existence of exotic and of ignoons rocks. Hutton, on the contrary, from the phenomena of exotic granites, and the analogies observed between these and basalts and modern volcanic rocks, was led to assume an igneous and (xotic origin for all save the clearly stratiform crystalline rocks. Matalliberous lodes, also, he supposed to have been formed, like granitic veins, by igneous injection from below. While the diserples of Werner denied the igneous origin of basalts, and even of obsidian, Huttom and his sehool, on the other hand, maintained that the agates oftrn found in crupted rocks were lormed by fire. Playfair reasons:-"The fluidity of the argate was therefore simple and massisted by any menstrum ;" that is, it was due to heat, and not to solution; while, in the case of mineral veins, their closed cavities were held to "atford a demonstration that no chemical solvent was ever included in them."s These cavities were regarded as due to the contraction consequent on the cooling of injected igneons material.
§9. The basic rocks, included by Hntton under the common names of basalt and whinstone, are regardod by hin as similar in origin to granite, and called "nnerupted lavas." 1lo elsewhere says that "whinstone is neither of volcanic nor of aqueous, but certainly of igneous origin," that is to say plutonic. Playfair distinguishes between what he calls the volcanic and the plutonic theory of basalt.

But while Hutton ascribed a plutonic origin to basalt and to granite, he did not, as some have done, assign a similar plutonic origin to gneiss and other crystalline schists. These were by Werner declared to result from a continuation of the same process which gave rise to granite, and to graduate into it. Gneiss is held both by Wernerians and by modern plutonists to be but a stratiform granite, and both of these rocks are believed by the one school to be aqueons and by the other to be igneous in origin.

[^73]In the system of Hatton, however, a wide distinction is made between the two rocks. Gneiss was no longer a primitive or original rock, as taught by Lehman and by Werner, but, like the other crystalline schists, designated by Hutton as Primary, was sapposed to be "formed of materials deposited at the bottom of the sea, and collected from the waste of rocks still more ancient." In his system "water is first employed to arrange, and then tire to consolidate, mineralize, and lastly to elevate the strata; but with respect to the unstratified or crystallized substances the action of fire alone is recognized." ${ }^{6}$ Hutton also conceived the pressure of the waters of a superincumbent ocean to exert an important influence in the consolidation of the sediments. He is thus a plutonist only so far as regards granite and other unstratified rocks, while in maintaining a detrital origin for the crystalline schists he, as Nammann has remarked, may be regarded as the author of the so-called metamorphic hypothesis of their origin. Playfair himself declares of Hutton's system: "We are to consider this theory as hardly less distinguished from the hypothesis of the vulcanists, in the usual sense of this appellation, than it is from that of the neptunists or disciples of Weruer." ${ }^{7}$
§ 10. It was no part of Hutton's plan to disenss the origin of those more ancient rocks, which had, according to him, furnished by their disintegration materials for the primary stratified rocks. It was, in the language of Playfirir, a system "where nothing is to be seen beyond the continuation of the present order." "His object was not... like that of most other theorists to explain the first origin of things." This system, as interpreted by his school, asserts the conversion of detrital rocks into masses indistinguishable from those of truly igneous origin, which were the sources of the first detritus. The changes which it assumed to be wronght by the alternate action of water and lire on the earth's crust were not supposed to be limited by any external conditions in the nature of things, and were compared by Playfair to the self-limited perturbations in the movements of the heavenly bodies, in which, as in the geological changes of the earth's crust, "we diseern no mark either of the commencement or termination of the present order."
§ 11. Hutton's system is thus concisely resumed by Danbrée:-"The atmosphere is the region in which the rocks decay; their ruins accumnlate in the ocean, and are there mineralized and transformed, under the double influence of pressure and the internal heat, into crystalline rocks having the aspect of the older ones. These re-formed rocks are subsequently uplifted by the same internal heat, and destroyed in their turn. The disintegration of one part of the globe thus serves constantly for the reconstruction of other parts, and the continued absorption of the underlying deposits produces incessantly new molten rocks, which may be injected among the overlying sediments. We have thus a system of destruction and renovation of which we can discern neither the beginning nor the end."s
§ 12. It was this perpetual round of geological changes, which took no account either of a beginning or an end, that led the theologians of his day to oppose the system of Hutton. On the other hand, in the system of Werner, which taught the fashioning of the present order of our globe from a primeval chaos beneath the waters of a universal ocean, they saw a conformity with the Hebrew cosmogony which recommended to them the neptunian

[^74]hypothesis. Hence the theological element which, as is well known, entered so largely into the controversies of the vulcanists and the neptunists at the beginning of this ceutury, and the suspicion with which the partisans of Hutton were then regarded by the Christian world.

The extreme neptunian views of Werner, however, soon fell into disfavor. The visible evidences of the extrusion of trappean rocks in a heated and softened state, obserrations showing the angmentation of the temperature in mines, and the phenomena of thermal springs and volcanoes, soon turned the scale in favor of Hutton's views. There were not wanting those who attempted to unite the Wernerian hypothesis with that of an igneous globe, and who supposed a primeval chaotic ocean, to the waters of which, heated by the mass below, and kept at a high boiling-point by the pressure of an atmosphere of great density, was ascribed an exalted solvent power.
\$18. Such a modilied neptunian view was advanced by Delabeche. In his "Researches in Theoretical Geology," published in 1837, he fivored the notion of an unoxydized nuclens, as surgested by baty, and held to a solid crust resting on a liquid interior, and presenting from the first, irregularities of surface. He then speaks of "the much debated question" whether the crystalline stratified rocks " have resulted from the deposit of abraded portions of proxisting roks mechanically suspended in water, or have been chemically durived from an arumens or an ighmens fluid in which their elements were disseminated." Wi. hawe in this paragraph three distinet hypotheses presented. Two years later he clearly denlared fir the second of them.

While admitting the erystallization of detrital matter in proximity to intrusive rocks. Dhlaberdn objereted to what he called the "sweeping hypothesis" of Hutton and his sehool, Ifr supposed that, in the cooling ol" our planet from an igneous fluid state, "there must harw han at time when solid rock was first formed, and also a time when heated fluids rested upon it. The latter would be conditions highly farorable to the production of crystalline substances, and the state of the earth's surface would then be so totally different from that which now exists, that mineral matter, even when abraded from any part of the "arth's crast which may have been solid, would be placed under very different conditions at these ditferint periods." He suggests that there would be "a mass of crystalline rocks prodnced at lirst, which, however they may vary in minor points, should still preserve a grneral character and aspect, the result of the first changes of fluid into solid matter, crystalline and sub-wrystalline substances prevailing, intermingled with detrital portions of the same substances abraded by the movements of the heated and first-formed aqueous fluids. In the gneiss, mica-slate, chloritie-slate and other rocks of the same kind, associated together in great masses, and covering large areas in various parts of the world, we seem to have those inineral bodies which were first formed. The theory of a cooling globe, such as our planet, supposes a transition from a state of things highly farorable to the production of crystalline rocks, to one in which masses of these rocks would be more rarely formed. Hence we conld never expect to draw fine lines of demareation between the products of one state of things and those of the other." ${ }^{9}$
§ 14. Still later, in 1860, we find a similar view suggested by Daubrée as a probable hypothesis. He goes back in imagination to a time when the waters of our planet, as yet

[^75]uncondensed, surrounded the globe with a dense envelope estimated to equal 250 atmospheres. "The surface of the earth was at this time at a very high temperature, and if silicates then existed they must have been formed without the co-operation of liquid water. Later, however, when it began to assume a liquid state, the water must have reacted upon the pre-existing silicates upon which it reposed, and then have given rise to a whole series of new products. By a veritable metamorphic action, the water of this primitive ocean, penetrating the igneous masses, cansed their primitive characters to disappear, and formed, as in our tubes, crystallized minerals from the matters which it was able to dissolve. These matters, formed or suspended in the liquid, would then be precipitated, and give rise to deposits presenting different characters as the temperature of the liquid diminished." He then inquires: "Were these different periods of chemical decomposition and recomposition, in which aqueous action (la voie humide) intervenes nuder extreme conditions which approach those of igneous action (la voie seche), the era of the formation of granite and of the azoic and crystalline schists? We camot affirm this in an absolute manner, but we may presume it, especially when we consider that on this hypothesis there must have been formed two principal products, the one massive and the other presenting evidences of sedimentation, passing into each other gradnally, as is the case with granite and gneiss. In any case, it camnot be contested that if there was a time when the rocks were exclusively under the dominion of fire, they passed under that of water at an eporh much more remote than we have hitherto admitted. The influence, now established, of water in the crystallization of silicates, no longer permits any donbt on this point. We cannot perhaps now find anywhere upon the globe rocks of which it may be aflirmed with certainty that they have been formed by igneous action, without the intervention of water." ${ }^{10}$
§ 15. To give some notion of the temperature of the first water precipitated on the earth's cooling surface, Danbrée calculates that the waters of the present ocean, estimating their mean depth at 3,500 metres, would, if spread uniformly over the earth's surface, have a thickness of 2,563 metres, which, if converted into rapor, would correspond to a pressure of 248 atmospheres, a weight which would be angmented by the presence of other vapors and gases. "No liquid water could therefore rest upon the earth until its temperature had fallen below that which would give to the vapor of water a tension of 250 atmospheres," at least. When we consider that a tension of only fifty atmospheres of stean corresponds, according to Arago and Dulong, to a temperature of 26589 contigrade, we can form sume conception of that corresponding to a tension five times as great; which would, on this hypothesis, have been the temperature of the first waters precipitated on the cooling planet, realizing many of the conditions attained by this ingenions experimenter when he subjected mineral silicates to the action of water in tubes, at temperatures of from 400° to 500° centigrade.

It is unnecessary to point out that Daubrée here attempts to adapt Werner's neptunian hypothesis to that of a once-fused and cooling globe, and to find, like Delabeche, in the highly-heated primeval ocean, the chaotic liquid which, according to the master of Freiberg, was the menstruum which at one time held in solution the elements of the primitive rocks. The experiments of Daubiée in his tubes, above referred to, are of great impor-

[^76]tance in this comnection, and will be considered farther on, in the third part of this paper.
§ 16. The Huttonians early borrowed the notion of a granitic substratum from Werner, and supposed the earth when first cooled to have had a surface of granite. Hutton, true to his thesis, avoided the question of the primal rock. His reasonings, according to Playfair, "leave no doubt that the strata which now compose onr continents are all formed from strata more ancient than themselves," "while, as we have seen, the iutruded granites were looked upon as but fused and displaced portions of underlying strata. The granitic tharacter of the rocks which antedated aqueous disintegration was, however, a matter of legitimate inference, and his disciple, Macculloch, supposed the earth when first cooled to have beell "a globe of granite." Later, in 1847, Elie de Beaumont, starting from the hypothesis of a cooling liquid globe, imagined it "a ball of molten matter, on the surface of which the lirst granites crystallized." ${ }^{12}$
§17. It should here be mentioned that Poulett Scrope, in 1825, put forth what he called "A New Theory of the Earth," in which he supposes "the mass of the globe, or at least its axternal zone to a considerable depth, to have been originally (that is at or before the moment in which it assumed the position it now holds in the planetary system) of a gramitic composition, composed probably of the ordinary elements of granite, and having a very large grain; the regular crystallization having been favored by the circumstances under which it previously took place, though, as to what these circumstances were, I do not venture to hazard a supposition." He farther says, "If then we imagine a general intamescence of an intensely heated bed of granite, forming the original surface of the globe, to have been succeeded by a period in which the predominance was acquired by the repressive force oceasioned by the condensation of the waters on its surface, and the deposition from them of varions arenaceous and sedimental strata (the transition series), the structure of the greiss-formation is at once simply explained. This structure may have been subsequently increased by the friction of the different lamine against one another as they were urged forward in the direction of their plane surfaces, towards the orifice of protrusion, along the expanding granite beneath; the laminx being elongated, and the crystals fored to arrange themselves in the direction of the movement." This implies an exoplutonic origin of gneiss.

Later in the same essay, however, Scrope supposes an intensely heated ocean, holding in solution great amounts of silica, and having, at the same time, suspended in its waters, feldspar, quart\% and mica, derived from the disintegration of the underlying granite. These suspended materials were deposited and consolidated into gneiss, and later the dissolved silica, precipitating with some enclosed mica as the ocean cooled, gave rise to mica-schists. In this last, we see the germ of the thermochaotic hypothesis, while in preceding statements of Scrope, we have outlined the carly volcanic and metamorphic hypothesis of Dana, to be noticed farther on. ${ }^{13}$

[^77]§ 18. That such a primitive granite had been the source of gneiss, was taught by Beroldingen, " who maintained that all the rocks of granitic character haviug an appearance of stratification, are granites of secondary formation, or regenerated granites, similar in their origin to sandstones; " a notion which was vigorously combatted by Saussure, " who held, as we have seen, to the neptnnian theory of the origin of these rocks. The detrital hypothesis, which he opposed, was however stremnously defended by Hutton and his sehool, and especially by Boue and by Lyell. To the former belongs the first definite attempt to explain how uncrystalline sediments like graywacke and clay-slate might be changed into crystalline rocks such as gneiss and mica-schist. Of his views, put forth in 1822 and 1824, Naumann remarks, "Bouë first understood how to bring this theory into more decided harmony with the details of geological phenomena, and besides invoking the internal heat, brought to his assistance emanations of gases and vapor from the carth's interior to explain the alteration of sedimentary slates into gueiss and mica-schist." He imagined under these conditions "a sort of igneons liquetaction, followed by a cooling process, which permitted a crystalline arrangement, and a derelopment of new mineral species, without destroying or deranging notably the original laminated structure."
§ 19. These views were adopted in 1833, in his "Principles of Geology," by Lyell, who designated strata supposed to have been thas transformed by the mane of hypogene metamorphic rocks, a title intended to indicate a metanorphism which took place in the depths of the earth's crust, and proceeded from below upwards. Under this name, lyell first popularized the Huttonian view as extended by Bouë, which may be conveniently designated as the metamorphic hypothesis of the orimin of crystalline rocks.

Its plausibility has led to the adoption of this theory by many geologists during the past fifty years. Some, unwilling to admit the influence of a high temperature in such change, have imagined it to result from causes operating at ordinary temperatures during very long periods. As regards "the nature of these transforming processes, Gnstaf Bischol and Haidinger were inclined to suppose that a long-continued pereolation of water through the rocks produced an alteration of their substance, and a recrystallization, in the same way as must have taken place in the production of certain psendomorphs by alteration." ${ }^{16}$ Hence the significance of the often repeated dictum that "metamorphism is pseudomorphism on a broad seale."

By a further application of the notions derived from the study of epigenic or replace-ment-psendomorphs, which show in many cases the partial or even the total replacement of the original elements of a mineral species, constituting what has been appropriately designated metasomatism, a metasomatic hypothesis of the origin of crystalline rocks has been arrived at, to which we shall revert farther on.
§ 20. Regarding the metamorphic hypothesis, we may remark, as Naumann has done, that the very transformation assumed, namely that of mechanical sediments into crystalline rocks, remains to be proved. In his "Lehrbuch der Geognosie" in 1857, while still admitting the metamorphic origin of certain limited areas of crystalline schists, Naumaun

[^78]declared that the facts were "not all favorable to the baseless hypothesis which is now carried to extremes." Such an origin of crystalline rocks was denied by the neptunians, who held to the direct crystallization of these rocks from a chaotic watery liqnid, for which reason we may conveniently and appropriately call their view the cinotic hypothesis. It is also denied by those who hold these rocks to be of simple igneous origin, the first products of a cooling globe, a view which we may call the endoplutonic hypothesis; and in part by those who advocate what we shall call the ExOpLuTONIC or voleanic hypothesis of their origin.

We have already noticed at length the chaotic hypothesis, both as originally held by Werner, and modified by the intervention of internal heat, as taught by Delabeche and by Dambree, constituting what we may call the thenmochaotic hypothesis. It remains to notice first the two phonic hypotheses just named, and fimally to consider the metasomatit: hypothesis, both as applied to rocks consisting of crystalline silicates, and to limestones.
§ 21. Reasoning, as Naumam has said, from "the great resemblance which gneiss and most of the rooks accompanying it bear to granite and to other eruptive rocks; the probability that most of these eruptive rocks have been solidified from a state of igneous fluidity; the almost mavoidable assumption that our planet was originally in the same state, and was only later covered with a solidified crust; finally the fact that in the primitive gneissic seriss gramite and gneiss are found regularly interstratified with each other," we are led to what we have designated the endoplutonic hypothesis, which is, that the primitive rocks form the "first solidilied "rust of our planet." Naumann remarks of this, that althongh it has "not fomb so many supporters as that of the metamorphic origin of the primitive rocks, the oljections against it are probably neither greater nor more numerous than agrainst the latter." Of this hypothesis, he adds that "it leads necessarily to the inference that the succession of the primitive rocks downward corresponds to their age from oldest to youngest, becanse it was, of course, through a solidification from without inward that the strata in question were formed." Those who would maintain, on the contrary, that the succession of these in age is from below upward, must suppose, as he explains, that the material of the younger crystalline rocks "has been protruded from the interior, through the carth's crust, in an eruptive form." For these two opposite modes of formation, both essentially phitonic, we may properly adopt the names of endoplutonic, already used abore, to designate the hypothesis which supposes the rocks to be generated within the first-formed crust; and exoplutonic, for that which conceives them to have been formed outside of the same crust, by eruptive or what are popularly called rolcanic processes.
§ 22. The endoplutonic hypothesis has not wanted defenders, among whom are some of the most distinguished names of geology. In 1882, we find Hebert, the eminent professor at the Sorbonne, declaring of the ancient crystalline schists, "these mineral masses appear to be due to a crystallization in place, consequent upon the cooling of the fluid terrestrial globe." "The absence from these of rolled masses or of detritus of pre-existing rocks"-assumed by him-"indicates that water did not at that time as yet exist in tho state of a liqnid mass." This series, including various gneisses, micaccous, hornblendio and chloritic schists, with crystalline limestones, "should form a group clearly distinct from all others. It is anterior to granite, and coustitutes a truly primitive series, which is
neither eruptive nor sedimentary, but is due to a third mode of formation which, borrowing the mame from d'Omalius d'Halloy, we may call crystallophyllian." ${ }^{17}$ It is difficult to conceive that this can be any other than that imagined by Naumam, which we have called endoplutonic.
§ 23. Thomas Macfarlane, in a learned essay in 1864, on "The Origin of Eruptive and Primary Rocks," ${ }^{18}$ has developed the hypothesis of the endoplutonic origin of the primitive rocks with much ingenuity, and defends a view already suggested by Scheerer, that the laminated structure of these rocks may have been cansed by currents in the molten mass of the globe. He further suggests that the first-formed crust may have had a different rate of rotation from the liquid below ; ${ }^{19}$ from which also would result a stratiform arrangement in the elements of the solidifying layer, such as is seen in many slags, and in certain eruptive rocks. But while he applies this view to the primitive rocks, he proposes for the later crystalline schists one which is essentially the thermochaotic hypothesis of Delabeche and Daubrée, ascribing their origin to the action of a highly heated primeval ocean on the previously formed crust. The chief difficulties with which this endoplutonic hypothesis has to contend, according to Naumam, "arise from the structural relations of the primitive series, and the mineralogical characters of certain rocks belonging to it. Whether these difficulties can be explained away by the supposition of a hydropyrogenous development of the outside of the lirst solidified crust, as indicated by Angelot, Rozet, Fournet, Scheerer and others, we must leave undecided in the meantime." Such a hydro-pyrogenons process is more clearly defined by Danbrée, when he refers the formation of granites and crystalline schists "to aqueons action interrening under extreme conditions, which approach igneous action," as explained in § 14. Any modifications of the heated crust through the intervention of water mnst come under the categories of what we have called the thermochaotic and the metasomatic hypotheses, or else of that one which remains to be described in the present essay.
§ 24. In the paper already cited, Macfarlane has, moreover, discussed at length the probable condition of the earth's interior, beneath the crust of primitive stratiform rocks, with especial reference to the origin of the different types of eruptive rocks. Already, in the last century, we find Dolomien maintaining the existence, beneath the granitic substratum, of a liquid layer, from which come what he called basaltic lava-flows. A similar view was developed later by Phillips, Durocher, Bunsen and Streng, who have imagined a separation of the liquid matter at the surface of the cooling globe into two layers, an upper acidic one, corresponding to granites and trachytes, in which, besides alumina and an excess of silica, lime, magnesia and iron-oxyd are present in very small quantities, and potash and soda abound; and a lower basic one, corresponding to dolerite and basalt, in which lime, magnesia and iron-oxyd abound, with an excess of alumina, and but little alkali. These two constitute the trachytic and pyroxenic magmas of Bunsen, who

[^79]endearored to determine what he conceived to be their normal composition, and, as is well known, sought to show that there exists such a relation between the proportions of these various bases and the silica, that it is possible to calculate the composition of any given eruptive rock from the amount of this element which it contains. He thence concluded that various intermediate rocks have been produced by a mingling or amalgamation, in different proportions, of these two separated magmas. For the composition of these, see farther a note to $\$ 66$. I have elsewhere discussed the history of this hypothesis, and have given reasons for its rejection.

Sartorius von Waltershansen has also objected, from another point of view, to this hypothesis, and, has maintained that while there is no such distinct separation of the liquid inturior, as was imagined by Phillips, Durocher and Bunsen, there is nevertheless a gradual passage downward from a lighter ancicic to a denser and more basic liquid stratum ; beneath which still heavier metallic minerals are supposed ly him to be arranged in the order of their respective densities. This view has been adopted and extended by Mr. Macfarlane in his marer above rited. Wra shall however attempt to shew in the second part of this memoir that the obsorved relations of acidic and basic eruptive rocks admit of a widely dillirent inturpretation to those above given, and one more in accordance with known (heminal and mineralogical facts ${ }^{2 n}$.
§ 2.). Returning from this digression on hypothetical notions of the earth's interior, we propose to consider the exoplatonic or roleanic hypothesis of the origin of the crystalline stratifind rocks, according to which, as concisely stated by Naumann, the material composing them "has been projected from the interior, through the earth's crust, in an eruptive form." Inasmulh as the matter discharged in subaerial or snbmarine eruptions appears in part as thows of molton lava, and in part as disintegrated solid materials which, like other detritus, may be arraged by water, it is evident that this hypothesis comects itself with that of the Huttonian sohool, to which, considering the mineralogical resemblances between volcanic and other crystalline rocks, it would make little diflerence whether the sediments required for the metamorphic process came from the disintegration of older crystalline strata, from a primeval granite, or from volcanic products. The volcanic hypothesis, excmpt so far as consolidated lava-flows are concerned, thus becomes, as we shall see, a metamorphic or plutonicedetrital hypothesis.

As an illustration of this view, we find J. D. Dana in 1843 propounding a general theory of crystalline rocks, which is essentially volcanic. In this he endeavours to shew, (1) that the schistose structure of guciss and mica-schist is not a satisfactory evidence of sedimentary origin, inasmuch as exotic or eruptive rocks may sometimes take on a laminated arrangement ; (2) that granites without any trace of schistose structure may hare had a sedimentary origin; and (3) that the heat producing metamorphic changes in sediments did not come from below, as supposed by the Hultonians, but through the waters of the ocean, heated by the same cruption which brought to the surface the materials of the metamorphic rocks; which were spread over the ocean's bottom in a disintegrated form. Their comminution was supposed by Dana to be effected in one of three ways; (1) they were ejected as pyroclastic material, in the form of a sand or ash-eruption, or (2)

[^80]were disintegrated by coming in contact with water while in a fused condition, or (3) were broken by abrasion after consolidation. In any case, the detrital matter, as in the Huttonian hypothesis, was supposed to be transformed into a crystalline rock by the action of heated waters.
§ 26. After assigning such an origin to certain rocks called by him metamorphic porphyries and basalts, with regard to which he supposes "every eruption produced a heated sea around it, which hardened " the disintegrated porphyry, and recrystallized the comminuted materials, Dana proceeds to say that "granite, like porphyry, is an igneons rock. In its era, granite-sands were formed like porphyry-sands, and restored by heat to metamorphic granite, like metamorphic porphyry. . . . I use the word granite here as a general term for this and the associated rocks, mica-slate, syenite and hornblende-slate, ete., which, I have shown, may also have an igneous origin. These granite-sands, like porphyry-sands, were formed about the regions of eruption, in one of the modes pointed out, and in all probability were never clays like the alluvial deposits of the present day. With regard to primary limestones, a general survey of the facts seems to evince that some of these were of igneous origin like granite. If this were the case, there must have been others, formed at the same time with the deposits of granite-sand, and through the action of the same causes. These were recrystallized by the next discharge of heated waters." ${ }^{21}$ Dana, forgetting the effects of the law of convection in licfuids, here makes the suggestion that "at no great depth the waters might be raised to the heat of ignition before ebullition will begin, and if the leaden waters of a deep orean . . are for days in contact with the open fires of submarine voleanoss, we can scarcely fix a limit to the temperature which they would necessarily receive."

We have thus presented a complete exoplutonic or volcanic hypothesis, and at the same time a complete metamorphic or volcanie-detrital hypothesis, alike for porphyry, granite, syenite, gneiss, mica-schist and crystalline limestone; ach and all which are assumed to have a two-fold origin, and to appear alike in an eruptive and in a secondary sedimentary form. A reference to the previous speculations of Scrope, already set forth in § 17 , will show to what extent Dana was his disciple.
§ 27. Dana has since abandoned this hypothesis, so far as regards the cruptive origin of the detrital matters. In his later writings, he sets forth the familiar viow of a liquid interior covered with a solid crust, which latter was the supposed source of the Archean or primitive rocks. "These Archæan rocks are the only miversal formation; they extend over the whole globe, and were the floor of the ocean, and the material of all the emerged land, when life first began to exist." These rocks of the first crust, disintegrated by submarine and subaërial agencies, yielded beds of detritus, which, being consolidated by the action of the heated waters, gave rise to new rocks, which would " be much like those that resulted from the original cooling, because chiefly made out of the latter by re-consolidation and re-crystallization." "Igneous rucks have a close resemblance to granite, diorite, and other crystalline kinds, and hence may have proceeded from the fusion of older kinds. But these older kinds derived their material from an older source, and

[^81]originally from the fused material of the globe, so that the proof of such an origin by re-fusion is not established beyond a doubt."
§ 28. It is not clear whether, according to Dana, we have any where this hypothetical primitixe or truly Archean rock exposed, since, speaking of the Laurentian series, which he also calls Archean, he says at the same time :-" These Laurentian rocks are made out of the ruins of older Laurentian, or of still older Archean rocks; that is to say the sands, clays and stones made and distributed by the ocean, as it washed over the earliest-formed crust of the globe. The loose material, transported by the currents and the waves, was piled into layers, as in the following ages, and vast accumulations were formed; for no ont estimates the thickness of the recognized Laurentian beds as below thirty thousand fent." Lest he should be supposed to hold to his former theory of the volcanic origin of these supposed detrital matters, which formed the Laurentian, he now declares "They. have no resemblance to lavas or igneons ejections." ${ }^{21}$

These erystalline stratified rocks are thus not that universal Archæan terrane which Was the first-formed crust of the cooling globe. The imagination is at a loss, however, to understand the nature of the disintagrating process, or the source of the materials which in the Janrantian period were, according to this hypothesis, spread over vast areas to a depth of not less than thirty thousand feet, and seeks in vain for the site of the vanished Atlantis whith furnishod this chormous amount of mechanically disintegrated rock.

S 29. Clatence King, in 1578 , gave us a clear and admirable discussion of the same Antital metmorphic thoory, and argued, as Dana had done before him, that the depression of sulmemtary strata helow the surface of the carth, even to great depths, is not sufficient to cffert thair wrysallization ; since basal paleozoie beds which have been buried bencath $\therefore 0,100$ fine or more of sediments are now seen, when exposed by great movements of (bwation, and by arosion, to prisent no evidences of crystallization or so-called alteration. King. howner, did not reject volcanice action as a sonrce of detritus, for in discussing the origin of the great bods of serpmentine and of olivine-rock which are often met with in the older erystalline sehists, he says, "olivine-bearing rocks are among the oldest eruptive bodins," and then asks, "may not olivine-sands, like those now seen on the shores of the Hawaiian Islands, have been then, as now, accumulated by the mechanical separation of searomrents, and subsegumtly buried by foldspathic and quartz-sands." He thus looks to rokanic eruptions for the source of olivine and serpentine beds, and adds, "I see no reason to ask for a different origin for the magnesian silicates than for the aluminous minerals," "t the eruptive source of which is thus implied. A similar hypothesis of the formation of beds of olivine-rock and serpentine from accumulations of volcanic olivinesand, has since been maintained by Julien, whose paper is mentioned further on, § 37.
§ 30. Other geologists, besides King, have in later times advocated a similar volcanic hypothesis of the origin of erystalline rocks. A. Kopp, in 1872, taught that granite is an altered trachytic lava, and that gneiss may be derived from the detritus of trachyte or of granite, while doleritic lavas in like manner give rise to the various greenstones. The trausformation of these is supposed to be effected through the intervention of

[^82]heated waters, at great depths in the earth. ${ }^{23}$ All this is but a repetition of the hypothesis put forward forty years since by Dana, and subsequently abandoned by him.

Törnebohm has also lately advanced a similar hypothesis to explain the origin of the primitive granite, and of the gueiss into which it seems to graduate. The material of these rocks came up as lara now does, and a portion of it, disintegrated, rearranged by water, and recrystallized, assumed the form of gneiss. Rensch, in like manner, according to Marr, supposes that the gabbros, diorites, and dioritic and hornblendie-schists of the Bergen district, in Norway, are but altered tufas and erupted rocks.
§ 31. Mr. Marr, in a recent paper, urges the claims of the volcanic hypothesis to explain the origin of the ancient crystalline rocks, seemingly unaware of its earlier advocates. It is apparent that if we accept the doctrine of the permanence of continents and of oceanic depressions, the metamorphic-detrital theory of the Huttonians, which bailds up series of crystalline rocks beneath the sea from the ruins of an older land, which had itsell been formed beneath the sea, is no longer tenable. The difficulty of getting the thirty thousand feet of sediments required to spread over a continent, as in Dana's later hypothesis, is, as Marr perceives, overcome if we suppose this material to have been derived not by the superficial waste and disintegration of former lanel, but by ejection from reservoirs beneath the earth's crust. Hence, with the advocates of the doctrine of the permanence of comtinents, the volcanic or exoplutonic hypothesis is again coming into faror: ${ }^{24}$

Similar considerations appear to have led C. II. Hitehcock, in 1883, to a like conclusion. The continents, in his scheme, are buitt up from bencath the waters of a miversal ocean. He writes :-"We start with the earth in the condition of igneous fluidity. It "ools so as to become encrusted and covered with an ocean. Numerous volcanoes discharge moliten rock, building up ovoidal piles of granite [beneath the ocean], which change gradually into crystalline schists. When the hills are high enough to overlook the water, they constitute the beginuings of dry land." All this is intelligible, but it seems strange to one familiar with the geological literature of the last forty years to read, in this connection, the remark that "few have ventured to speak of anything like volcanc action, except as it lias been manifested in the formation of dykes, in the early periods." 25

To all of these speculations as to the exoplutonic or voleanic origin of the crystalline rocks, the language of Nammann, in criticizing the original volcanic hypothesis of Dana, is applicable. "The perfect and thoroughly crystalline character of the greiss, the enormons extent which the primitive formations oceupy in so many districts, the architecture of these great gneissic regions, and their occurrence wholly independent of larger granitio masses, are all incompatible with this idea."
§ 32. The view of the igneous and eruptive origin of crystalline limestone, admitted in Dana's former scheme, was familiar to the geologists of forty years since. Emmons and Mather in America, and von Leonhard, Rozet and Savi in Europe, among others, then held to the belief that many crystalline limestones were igneous, and Savi had even attempted to point out the centres of eruption of the Carrara marbles. ${ }^{36}$ It is hardly neces-

[^83]sary to recall the fact that serpentines, and great deposits of magnetite and specular iron, nre still by some anthorities considered as eruptive rocks, and that the hypothesis of the igneous origin of metalliferous lodes, tanght by Hutton, is not yet wholly obsolete. In 1858, H. D. Rogers spoke of "the great dykes and veins of anriferons quartz" supposed to have issued "in a melted condition through rents and fissures in the earth's crust. .Outgushing bodies of this quartz," chilled by contact with the cold waters of the ocean, were supposed ly him to have furnished the material for the Primal quartzites of Pennsylvania. ${ }^{27}$ Still later, in 1874, we find Belt maintaining with learned ingenuity the igneous origin and the injoction of auriferous quart\% veins. He insists, as I have elsewhere done, ${ }^{23}$ on the transition from veins of pure quart\%, often metalliferous, to others containing feldspar, and thence to true granitie veins; but instead of regarding these as aqueous and concretionary, assmmes them to be igneous, and thence concludes that the gold-bearing quart\% lodes were filled with liquid quart\% by "igneous injection," though admitting that in these, as in granites, water helped to impart liquidity. ${ }^{20}$
§33. In farther illustration of the extension of the plutonic doctrine to other rockmasses than those already mentioned, I quote from an essay by Daubrée, published in 1871.30 " The hypothesis advanced by Lazzaro Moro, in 1740, attributing an eruptive origin to rocksalt as well as to sulphur and bitumen, was again taken up and applied by de Charpentier (10e?) to the salt-mass at Bex. which is associated with anhydrite; and d'Alberti, in the dassic study made by him ol this terrane, mantained the same hypothesis for all the rocksalt found in the trias. Moreover, the examination of the deposits of pisolitic iron ore had, in $18.2 Q$, conducted Alexandre Bronguiart to a similar conclusion, which was soon after applied to the silicions deposits which constitute the buhrstone of the tertiary. A like origin was by donalius (1841 and 1855) ascribed to other substances, particularly to certain days and to certain sands, which, especially in Belgium, appear to be connected with the formation of calamine, and which Dumont in 1854 called geyserian deposits." "It was thus," adds Daubrie, "that varions substances belonging to sedimentary strata were recognized as coming, or at least were supposed to come, from the lower regions (eflicut recomues ou au moins átuient supposées provenir des résions profondes.)"
§34. The presence of water in ignited and molten rocks was shown by Poulett scrope in 1825 in his studies of volcanoes. ${ }^{31}$ Subsequently, Scheerer, conceived that a small portion of water, probably five or ten hundredths, might, at a low red heat, give rise to a condition of imperfect liquidity such as he imagined for the material of eruptive granites. Similar ideas as to the aqueo-igneous fusion of granite were at the same time adopted by Elie de Beaumont, and are now generally admitted, the more so, as they are in accordance with the results of microscopic study. From the presence in granitic rocks of what he called pyrognomic minerals, like allanite and gadolinite which, by exposure to ignition,

[^84]undergo permanent physical and chemical changes, Scheerer, moreover, argued that the temperature of formation of the granitic veins holding these minerals could not have been very high. ${ }^{32}$

This notion of hydroplutonic eruptions, thns set forth by Scrope, Scheerer and Élie de Beaumont, has received a still farther extension of late. The hydrated rock, serpentine, is supposed by some of those who maintain its exoplutonic derivation to have come up from below as an anhydrous silicate, and to have been subsequently hydrated. Danbrée, however, has suggested that it had already passed into the hydrated condition before its ajection. ${ }^{33}$ Akin to this is the view of some modern Italian geologists, who explain the stratiform character of this rock by smposing that it was ejected from below as an arpueons magma, chiefly of hydrated silicates of magnesia and iron mingled in some cases with feldspathic matter; from which, by crystallization and rearrangement, the masses of surpentine and their associated euphotides have been formed, as well as the arcompanying anhydrons silicates, olivine and enstatite. By this hypothesis "the serpentines are considered as eruptive without being truly igneons, inasmuch as they do not contain in thin composition any mineral which has been submitted to igneous finsion," thongh "the magma may have had a temperature ol several hundred degrees." ${ }^{3}$

The conception of hydroplutonic eruptions, whether applind by sirrope to lavas, by Scheerer to granites, by Belt to metalliferous quartz lodes, or lyy Daubrem and some Italian geologists to serpentines and enphotides, is instructive as a phase in the derolomment of that geological hypothesis, aecording to which a voluno is a deus ee muchinu, which is invoked to solve every knotty problem that presents itself in studying the origin of rock-masses.
§ 35. Writing in 1883 of the extravagances of the exoplutonic or volcanic doctrine, 1 spoke of it as "the belief in a subterranean providence which could send forth at will from its reservoirs" alike granite and basalt, olivine-rock and limestone, quarz-rock and magnetite. ${ }^{35}$ An otherwise friendly critic ${ }^{3 / 3}$ speaks of this language as "a kind of device" for producing a false impression, by associating rocks for the most part of eruptive origin with others which are not so." This, however, is precisely what the plutoni" school in question has done, and is still doing. Eminent tearhers in geology of our time, some of them still living, have included with granites and basalts, not only serpentines, hut limestones, magnetite, auriferous quartz, buhrstone, rock-salt, anhydrite, hydrous iron-ores, and even certain clays and sands, among the substances which have been thrown up from the depths of the earth.

The obvious question, as to the origin of these supposed accumulations of varions and unlike substances in the under-world, has been one to perplex the thonghtfnl geologists of this school, and for those who did not admit that such might come from buried deposits, once superficial, presented difficulties which it was sought to overcone by a

[^85]general theory of transmutation ; by which it was imagined that a part or the whole of the original elements of a rock might be replaced, thus giving rise to new lithological species. Such a change has been appropriately named a metasomatosis or change of body. I have elsewhere pointed ont that this view has been adopted by two distinct and, to a certain extent, opposed schools in geology, both of which, however, agree in admitting an almost unlimited capacity of change of substance, through aqueous agencies, in provionsly solidified rocks. The first of these schools applies the doctrine of metasomatosis to silicated and aluminous rocks, either of plutonic or plutonic-detrital origin ; the second to rocks of generally acknowledged aqueous origin, such as limestones. ${ }^{37}$
§ 36. As regards the metasomatosis of plutonic or plutonic-detrital rocks, such as the ordinary feldspathic types, -granites, gneisses, diabases and diorites, -we are taught the conversion of any ont or all of these into serpentine or into limestone. The integral change of each one of these into serpentine by the complete elimination of alumina, alkalies and lime, and the replacement of these bases by magnesia and water has, as is well known, beepla maintained by many writers of repute, including Müller and Bischof, and later Dana and Delesse. Moreover, King and lowney have, since 1874, taught the conversion into limestones of all the silicated rocks mentioned, and have assigued a similar origin to the \underline{I} reat interstratilied masses of crystalline limestone which are found in the ancient gneisses, alike of North America and Europe. Not content with this, they have even maintained the conversion of serpentine itself into limestone, and have explained the existence of ophicaldites, and of serpentine masses in limestone, as evidences of the incomplete transformation of beds of serpentine, itself the product of a previous transformation of feldspathic rorks. ${ }^{3 \times}$ The older school of metasomatists regarded serpentine and other hydrated magnesian silicates, on accome of their insolubility, as the last term in the metasonatic process; but King and Rowney contend that serpentine itself is not exempt from change.
§37. Among the gneisses and mica-sehists of the Atlantic belt are found at many points, especially in I'emsylvania and thence southwestward through the Carolinas into Alabama, important masses ol a rock composed essentially of a chrysolite or olivine, and referred to dunite or lherzolite. With these are associated not only serpentine but various hornblendic and feldspathic rocks, together with much corundum-the latter alike in segregated veins and disseminated in the beds. These chrysolite-rocks, which, as seen in North Carolina, were already described by the writer, in 1879, as indigenous stratified deposits in the Montalban series, " have been made the subject of detailed studies both by Genth aud by Julien, whose published results are instructive examples of the application of the metasomatic doctrine in the hands of its disciples. Genth supposes that, at the time when these chrysolite-rocks were deposited, vast amounts of alumina were set free by some unexplained process, and formed beds of corundum, and that this species, by sub-

[^86]sequent hydration and metasomatosis, has been changed to bauxite, diaspore, spinel, opal, and a great number of aluminiferous silicates, including various micas, probably some feldspars, and also magnesian silicates of the chloritic group. The final result has been, " in many instances, a pretty thorough alteration of the original corundum into micaceous and chloritic schists or beds, or, as Prof. Dana would express it, 'a pseudomorphism on a broad scale.' " 10
§ 38. Julien, who has more recently studied these rocks, adopts with regard to the chrysolite-beds the view suggested by Clarence King, in 1878, that they were derived from the disintegration of chrysolitic eruptive rocks, and were originally chrysolite sandstones. Chrysolite, according to him, and not cormdum, has been the point of departure for the various changes which have given rise to the crystalline schists in question. Thus, while some of the chrysolite beds remain mehanged, others have been converted into strata of cellular chalcedonic quartz, of serpentine, of steatite, of talcose actinolite-schist, of tremolite schist, and of a diorite or gabbro made of albite and smaramdite and including grains of red corundum, sometimes with margarite. Within these rocks are veins and fissures of various sizes and shapes, in which are fomd crystallized cornndmm, with enstatite, actinolite, talc and ripidolite, among other speries. Julien, who assigns a similar origin to the like crystalline schists found elsewhere throughout the Atlantio belt, concludes that all of these various rocks have been derived from chrysolite. As recgards the hypothesis of Genth, he writes: "The view which has been sngrested, founded on certain phenomena observed in the corundum-veins, that these secondary rocks, and many schists, have been derived from the alteration of cormudum, finds not the least confirmation from my studies, and is indeed strongly contradicted by facts observed in the field. The cornndum itself is, in all cases, both in the veins and in the particles fonnd in the gabbro, a secondary or alteration-product. All the phenomena of alteration, both in the veins and rock-masses absolutely require, and can be simply explained by the introduction of a solution of soda and alumina into the fissures and interstices, during the period of alteration and metamorphism." ${ }^{11}$ This solution, he imagines to have come from some subterrancan sonrce

[^87]in a heated condition. The applications of the doctrine of metasomatosis seem to be limited only by the imagination of its disciples.
§ 39. We now come to examine what we have called the second phase of the doctrine of metasomatism, which starts, not from silicated and aluminous rocks, but from limestones, and from these proceeds to silieated rocks. The resources of the chemist were severely laxed, when it was required by the metasomatist to change a sandstone or an argillite into a gneiss, a hormblende sehist, or a serpentine; but with a comparatively soluble rock, like limestone, the change was less difficult to conceive. Accordingly, we find von Burh, lladinger and others teaching the conversion of limestone into dolomite, and Gustaf liose and Dana, the further change of dolomite into serpentine; while Volger, and after him bisthol, maintaned the transformation of limestone into gneiss and granite. The argmont for this change, as stated by the latter, is instructive, as showing the ordinary mode of reasoning adopted by this school. The occurrence of feldspar in the form of cal(ite, aterding to him, "proves the possihility of carbonate of lime being replaced by a feldspathic substance." He elsewhere argues that since both quartz and feldspar may replate walcito, "if both changes take place together, the chief constituents of gneiss would ber anbstitutid for the limestone removed." "Volger also describes instances of the asso"iation of alularia and pericline with calcite, at St. Gothard, which show that feldspar, quart\% ambleatary be substituted for the carbonate of lime in calcite. Consequently, it may be inferred that granite or gneiss may be prodnced from limestone in the same mamber." ${ }^{2}$
§ fll. Akin to this finw of Volger is that snggested by Pumpelly with regard to the halluflinta or bedded petrosilex-porphyry of Missouri (composed chiefly of quart\% and orthoclanリ-that this rotk, as well as its imbedded magnetic and specular iron and mangranse ores, may hate beth derived by a metasomatic process from a limestone, parts of which were replacel by the oxyds of iron and manganese, "while the porphyry, now surromuling the ores, may be due to a previous, contemporancons, or subsequent replacement of the lime-"arbonate by silita and silicates." Portions of this petrosilex are, in fact, intimately mineled with calcite, and thin layers of erystalline limestone are also fond interstratilied with the petrosilex, whieh, in these associations, retains its normal composition ol' a mixture of orthoclase and quartz ${ }^{\text {a }}$

The hypothesis of metasomatism as applied to silicated rocks, endearors to account for the eremration of dilferent and unlike masses in a single crystalline terrane or series, and also for certain phenomena in the transformation of detrital rocks. As applied to limestones, however, by Rose, Volger, Bischof and Pumpelly, it seeks to explain the transformation of a single wide-spread rock into granite, gneiss, serpentine, petrosilex, and crystalline iron-ores. These transformations once established, we should have an intelligible hypothesis to account for the origin of the principal crystalline rocks.
§ 41. We have in the preceding historical sketch endeavoured to shew that the "xisting hypotheses regarding the origin of the stratiform crystalline rocks may be classed muder six heads, which are as follows:-

[^88]I. Endoplutonic. This supposes the rocks in question to have been formed from the mass of the primeval globe as it congealed from igneous fusion and, as Nanmann remarks, implies a solidification from without inwards. The process beginning before the precipitation of water on the surface, this liquid took no part in their formation, and their stratiform structure and arrangement are to be ascribed to crystallization, or to the effect of currents set up in the congealing mass. (Naumann, T. Macfarlane, Hébert et al.)
II. Exoplutonic. This hypothesis conceives the crystalline stratiform rocks to have been built up out of matters ejected from beneath the superficial crust of the earth. Besides lavas and pyroclastic rocks, which are the ordinary products of volcanoes, the hypothesis of the Huttonians (in which the notion of metamorphism is carried back indefinitely, so that its products are confounded with the primeval crust,) has apparently led the way to a belief in the eruption not only of re-fused rediments, but of hydrated serpentinic and feldspathic magmas, and even, as we have seen, of quartz, magnetite, limestone, rock-salt, anhydrite, and of clays and sands. It would not probably be maintained by its advocates that the eruption of all of these rocks was attended with volcanic phenomena, properly so-called. Such extruded rocks, though not truly voleanic, would however, as coming up from the underworld, merit the more comprehensive designation of exoplatonic, here proposed.
III. Metamorphic or plutonic-detrital. This hypothesis conceives the crystalline rocks to have been formed by consolidation and recrystallization of sediments arranged beneath the sea, and derived (1) from the ruins of endoplutonic rocks resembling these, (Hutton, and his followers, Playfair, Scrope, Bone, Lyell, and l)ana in 1863-1879) ; (2) from exoplutonic or volcanic rocks, broken up, for the most part, during the process of cruption, which was often submarine. With these materials may also be associated laya-flows. (Dana in 1843, Kopp, Reusch, Törnebohm, Marr, C. H. Hitchcock). The heat, which was believed to effect the metamorphosis of these detrital materials bencath the sea into crystalline rocks, is supposed by the Inttonians to have come from the heated interior by conduction, but, according to the voleanic-detrital hypothesis of l)ana, through the direct heating of the waters of the sea by contact with the eruptive matters.
IV. Metasomatic. Although the crystalline rocks believed to be formed in each one of the preceding methods have been supposed to be occasionally the sulyject of widespread metasomatosis, we may properly restrict the title of a general metasomatic hypothesis to that which seeks to explain the derivation of the principal crystalline silicated rocks from limestones, as suggested by Rose, Volger, Bischof and Pumpelly.
V. Chatic. We have already suggested the name of the chaotic hypothesis for that which supposes the crystalline stratiform rocks, as well as the granites underlying them, to have been successively deposited by crystallization from a general chaotic ocean, by which their elements were originally held in solution. In this doctrine, which was taught by Werner and his immediate disciples, the conception of internal heat was not recognized, and there was no suggestion of an elevated temperature in the chaotic ocean.
VI. Thermociafotic. The history of the attempts to adapt the Wernerian hypothesis to the conception of a cooling globe has already been told in the preceding pages. It was supposed that the waters of the universal chaotic ocean were highly heated, and were thus enabled to exert a powerful solvent action upon the previously-formed plutonic rocks of the primitive crust, transforming them into the present crystalline stratiform
rocks; a hypothesis of their origin which may be appropriately designated as thermochaotic. According to this hypothesis, as set forth by Scrope, and afterwards by Delabeche and by Daubrée, the first water on the surface of the planet would be condensed under a pressure equal to 250 atmospheres, corresponding to a temperature near that of redness. We are reminded in this of Dana's earlier metamorphic theory, in which he also invoked the action of waters at a red heat. These, however, were supposed by him to be heated in the depths of the ocean by local volcanic ermptions, and the process, so far from being a universal one belonging to a very early time in the history of our planet, was a partial one repeated at dillerent geological periods.

Acoreling to Daubre the original plntonic rocks are not known, and the oldest urystalline sehists are thermochaotic. Macfarlane, on the contrary, while adopting this hypothesis for the later crystalline or transition schists, maintains the endoplutonic origin of the primitive gracisses.
\$ 42. Proceding now to review briefly the claims of the above hypotheses, we remark with regard to the first, that multiplied observations in many parts of the world have now extablished the existence of a regrlar succession in the crystalline rocks, which show by the ereatur cormertion of the lower members, by frequent discordances in stratification, and ly the presme of fragments of the lower in the higher strata, that the order of greneration was from below upwards. With this, moreover, corresponds the fact that the lower rocks are the more massive and more highly erystalline, while the upper ones present a eradual approximation in physical characters to the merystalline sedimentary or fecondary strata; thus justifying the name of transition, applied by Werner to these intermadiate rocks. All thas lants are irreoneilable with the endoplatonic hypothesis.

The universal distribution, and the persistency of characters of these various groups of rystalline roks, indicate noreover that they lave been produced by a world-wide action, "xtunding with great regularity throngh vast periods of time, and are incompatible with anythiug which we know of the phenomena of vulcanicity. The objections long sime made by Namman to the second or exoplutonic hypothesis are still as valid as ever, and the ere is no "vidence in the litholowical characters of these rocks of their volcanic origin. The argment derived from the similarity between their mineralogical composition and that of crupted rocks, of paleozoic and more recent times, is equally strong in favor of the derivation of these latter from the primitive strata.
§ 43. The metamorphic hypothesis, which would derive the primitive strata from the consolidation and the recrystallization of detrital platonic rocks, whether endoplutonic or volcanic, is, for many reasons, inadmissible. Without at present considering the later crystalline groups, which are also of vast extent, the ancient granitoid gneisses, (originally called Laurentian and represented in Canada by the Ottawa and Grenville series,) have an unknown volume, since their base has never been detected. It is, however, certain that they include, wherever studied in Europe or in America, a rast thickness which, as Dana correctly says, camnot be assumed to be less than 30,000 feet. The detrital hypothesis demands an agency which shall create, transport, and lay down beneath the sea, over vast areas, now continental, this enormons thickness of sediment, not of mingled sands and clays, like those of later deposits, (which are the results of a more or less complete subaęrial chemical decomposition of primitive rocks,) but in a chemically unchanged condition, and with the feldspar unaltered. It, moreover, demands a source for these enormons
amounts of fresh detrital material, either in vanished pre-Iaurentian continents, or in vast volcanic centres which have left behind them no traces of their existence.

This hypothesis further demands a consolidation and recrystallization of the clements of these re-composed rocks, so perfeet that the mieroscope fails to detect the evidence of their detrital origin. The resemblances between the primitive crystalline rocks and what we know to be detrital rocks, compressed, re-cemented, and often exhibiting interstitial minerals of secondary origin, is too slight and snperficial to deceive the critical student in lithology, and disappears muder microscopical examination. The lessons tanght by careful lithological and stratigraphical study have already led to the abandomment of the metamorphic hypothesis by the greater number of geologists; the more so since, as Bomery has well remarked," the long-quoted examples of metamorphic secondary and tertiary rocks in Europe have, without exception, been found to be mistaken, and to have been based cither on false stratigraphy, on eases of re-composed erystalline rocks, or on a local development of crystalline minerals in the texture of clastic rocks.
§44. The very ingenions metasomatic hypothesis, which would derive the crystalline stratified rocks from the transformation of limestones, is of course a gratuitons one, based on some observed cases of association of silicates with calcite, and the possible replayement of the one by the others, and deserves mention only as showing the grater difficulties of the previous hypotheses, which could lead to the adoption of that of general metasomatosis. It is possible, however, that its authors never inagined for it the rank of a muiversal hypothesis ; the creation of continents of pure limestone, and their subsequent transformation into the vast masses of granitoid gneisses jnst referred to, would make as great demands on our credulity as the metamorphic hypothesis itself.

As regards the chaotic hypothesis of Werner, according to which the whole of the materials of the crystaline rocks were originally dissolved in a primeval sea, its chemical difficulties are evident to the modern student. That the ocean could have ever held at one time in solution, under any conceivable conditions, the elenents of the whole vast serics of crystalline rocks, and could have deposited them suceessively, in that orderly maner which we observe in the earth's crust, was seen to be incredible. This argument, suceessfully urged by Playfair and his followers, contributed, with others, to the discredit which, as we have seen, soon fell upon the Wernerian hypothesis.
§ 45. Respecting what we have called the thermochatic hypothesis, so ingenionsly set forth by Daubrée, while his conclusions as to the first precipitation of water on the globe at a very high temperature are not to be questioned, it can, we think, be shown that its direct action, under these conditions, upon the primitive crust could not have resulted in any such succession of deposits as those which make up the erystalline schists; these we are forced to assign to a later period in the history of the globe, for which the phase to which Daubrée has drawn attention was but a preparation.

The mineralogical characters and associatious of the ancient crystalline rocks are, it is maintained, incompatible with the elevated temperature supposed in the hypothesis of Daubrée. The orderly interstratification with the ancieut Laurentian gneisses of beds of limestone, and others of dolomite, not less than the presence in the one and the other of these of concretionary masses and beds of serpentine, after the manner of fliut, and the

[^89]inclusion in this of what so many regard as an organic form, the Eozoon Camadense; the presence, alike in the limestones, gneisses and associated quartzites, of carbon in the form of graphite; and, finally, the occurrence of sulphids, testifying to a process of reduction of sulphates (which, not less than the graphite, suggests organic matter,) all indicate chemical processes such as are now going on at the earth's surface, and have been in operation since the begriming of paleozoic time ; but which are iuconsistent with any considerable elevation of temperature above that now prevailing on the earth. They are, in short, evidences that the processes of vegetable and animal life were going on simultaneously with the deposition of the rocks of the Lanrentian period. More than this, the presence of romnded masses of older rrncisses in the younger crystalline schists, not less than the composition of these schists (as we shall hope to show in the sequel), are evidences that during the period in question a subacrial detay of the older crystalline rocks was already going on, giving rise to bonlders of deromposition, to chays, and all the chemical reactions which that process implies, and which 1 have alsewhere set forth at length. ${ }^{\text {s }}$
§ 46. If we have correctly defined the conditions requisite for the production of the rystalline stratified rocks, they must have been separated from water by a process of "rystallization or preipitation, at a temperature and a pressure not widely different from those now prevailing at the earth's surface. This process, in the earlier periods, mast have been widely extended, and, so far as known continental areas were concerned, probably universal. A slowly progressive change meanwhile went on in the chemical conditions, imdicated by a gradual modification in the composition of the rocks, and the areas of deposition, though still very great, became limited, leaving large surfaces, both of subsequently erupted rocks and of the precipitated stratified rocks, exposed to a process of subarrial deray, the soluble and insoluble products of which alike intervened in the rocklorming processes of this later or transition period. The conditions of the problem before us require moreover a souree, neither detrital nor volcanic, for the immense mass of wholly crystalline material, chiefly quartz and feldspars, constituting the vast and as yet unfathomed primitive granitic and gneissic series; which only at a later time furnished its contingent of decayed and detrital matter to the crystalline transition rocks.
lhat there is still another condition imposed by the problem belore us-that of a satisfactory explanation of the highly inclined and often nearly vertical attitude of the crystalline stratified rocks, which is most remarkable in those of the earliest periods. The ordinarily received explanation of this, as due to the contraction of a cooling globe, has seemed so inadequate to account for the great contortion, crushing, and folding of these older rocks, that some geologists, as Naumann tells us, have been led to regard the present as their original attitude, resulting from movements of the solidifying crust; in which conncetion he quotes with approval the language of Kittel, that "so long as a hypothesis is unable thoroughly to explain the almost vertical position of the primitive strata, it cannot be regarded as even approximately near the truth."

It will, we think be apparent, in the light of the preceding review of existing hypotheses, that no explanation of the origin of the crystalline rocks which fails to meet all of the conditions just defined can hope for the approval of those who, after a careful survey of the whole field, seek for a new and more satisfactory hypothesis. It remains to be seen

[^90]whether, with the help of modern physical and chemical science, and our present knowledge of geological facts, it is possible to devise such a one. After many years of reflection and study, the present writer ventures to propose a new hypothesis, believing that while avoiding all the difficulties of those hitherto put forward, it will furnish an intelligible solution of a great number of hitherto unsolved problems in the physiology of the globe.

II.-The Development of a New Hypothesis.

§ 47. The history of the beginning and the growth of the new hypothesis here proposed to explain the origin of crystalline rocks is necessarily to a great extent personal, since it covers the work of many years of the author's life. The lines of investigation which have led to this hypothesis may be described as first, that of the order and snecession of the crystalline stratified rocks of the earth's crust ; secondly, their mineralogy and lithology; thirdly, their history, considered in the light of physics and chemistry, involving an inquiry into all the chemical relations of existing rocks, waters and gases, inchuding the transformations and decay of rocks, and the artificial production of mineral species; and fourth and lastly: the probable condition of our planet before the creation of the present order. The adequate discussion of all these themes, which would include a complete system of mineral physiology, is impossible within the limits of the present essay, but a brief outline of some of the chief points necessary to the understanding of the hypothesis will here be attempted.
§ 48. As regards the order and succession of the crystalline rocks, the anthor's studies of them, begun in New England forty years since, and continned in Canada from 1847 onwards, were for many years perplexed with the difficulties of the Huttonian tradition, (then and for many years generally accepted in America) that the mineral character of these rocks was in no obvious way related to their age and geological sequence, but that the strata of paleozoic and even of cenozoic times might take on the forms of the so-called azoic rocks. It was questioned by the partisans of the Huttonian sehool whether to the south and east of the azoic rocks of the Laurentides and the Adirondacks, in North America, there were any crystalline strata which were not of paleozoic or of mesozoic age, although many of these are undistinguishable from the rocks of the Laurentides.

As I have elsewhere said, the metamorphic and the metasonatic, not less than the exoplutonic hypothesis, of the origin of the crystalline rocks, by fining to recognize the existence and the necessity of an orderly lithological development in time, have powerfully contributed to discourage intelligent geognostical study, and have directed attention rather to details of lithology and of mineralogy, often of secondary importance. ${ }^{46}$ That a great law presided over the development of the crystalline rocks, was from the first my conviction, but until the confusion which a belief in the miracles of metamorphism, metasomatism, and vulcanism had introduced into geology was dispelled, the discovery of such a law was impossible.
§49. Convinced of the essential truth of the principles laid down by Werner, and embodied in his distinctions of Primitive, Transition and Secondary rocks, I sought, during

[^91]many years, to define and classify the rocks of the first two of these classes, and by extended studies in Europe, as well as in North America, succeeded in establishing an order, a succession, and a nomenclature, which are now beginning to find recognition on both continents."

While the succession of the various groups of crystalline rocks was thus being established, not without the efficient aid and co-operation of other workers in late years, mineralogical and chemical studies were teaching us much of the true nature of the differences and resemblances of these groups, as well as of the natural relations and modes of formation of varions silieates and other mineral species which enter into the composition of the crystalline rocks. The investigations of physicists and astronomers had moreover griven form and consistence to the ancient theory of the igneous origin of our planet, and the concmrent working in all of the lines of investigation above indicated was thus preparing the way for a new hypothesis of the origin of crystalline rocks-a hypothesis of which I shall endeavour to sketch the growth and the evolution.
$\$ 50$. It was in January, 1858, more than a quarter of a century since, that I ventured to put forth a speculation as to the chemistry of a cooling and still molten globe. Considering only that crust with which geognosy makes us acquainted, it was maintained that at a very early period the whole of its non-volatile elements were united in a fused mass of silicates, which included the metallic hases of the salts now dissolved in the ocean's waters ; while the dense atmosphere of that time was charged with all the carbon, sulphur, and chlorine, combined with oxygen or with hydrogen, besides which were present watery vapor, nitrogen, and a probable excess of oxygen. The first precipitated and acid waters from this atmosphere falling on the hot earth's silicated crust, would, it was said, soon become neutralized by the protoxyd bases, giving rise to the chlorids and sulphates of the primesal sea; with the probable separation of the combined silica, at that high temperature, in the form of guart\%. The suggestion as to the acid nature of the primitive atmosphere, and its lirst chemical action, which were obvious deductions from the igneous th"ory, had, as I afterwards learned, been anticipated by Quenstedt. ${ }^{19}$
§ 51 . These views were reiterated in May, 1858, when they were coupled with the conception of a solid muclens to the globe as then taught by Poulett Scrope and by William Hopkins. The subsequent subaërial decay of exposed portions of the earth's primitive crust in a moist atmosphere, now purged of the acid compounds of chlorine and sulphur, but still holding carbonic acid, was then set forth as resulting in the transforma. tion of feldspathic silicates into clays, and the transference to the sea of the lime, magnesia and alkalies of the decayed rock in the form of carbonates, the latter of which, reacting on calcium-chlorid, would yield carbonate of lime and chlorids of sodium and magnesium. It was then said that by this hypothesis "we obtain a notion of the processes by which, from a primitive fused mass, may be generated the various silicious, argillaceous and calcareous

[^92]rocks which make up the greater part of the earth's crust." Of this it was declared, "the earth's solid crust of anhydrous and primitive igneous rock is everywhere deeply concealed beueath its own ruins, which form a great mass of sedimentary strata, permeated by water," and subjected to heat from below, changing them to crystalline metamorphic rocks, and at length reducing them to a state of igneo-aqueous fusion, through which they yield eruptive rocks. Of this primitive crust it was farther asserted that it "probably approached to dolerite in composition."

The principal points in this hypothesis, as presented in 1858, were thus the solid condition of the earth's interior, and the derivation of the whole of the rocks of the known crust, by chemical transformations, from the original superficial and last-congealed layer of the cooling globe, which was considered to have been a basic rock, not unlike dolerite. All of these positions are fundamental to the present hypothesis.
§ 52. These views were again repeated in a paper read before the Geological Society of London in June, 1859, with some farther developments as to the origin of the various crystalline_rocks derived from the primeval crust. This, it was claimed, was necessarily quartzless, and far removed in composition from the supposed granitic substratnm, or the primitive gneiss. An attempt was, however, made to show that with the quartz, derived from the supposed first decomposition of the primitive igneous rock by acid waters, and the sediments resulting from subsequent disintegration and subaërial decay, coarser and finer sediments, more or less permeable, would result, which by the natural chemical action of infiltrating waters might, in accordance with known laws, divide themselves into two great classes, "the one characterized by an excess of silica, by the predominance of potash, and by small amounts of lime, magnesia and soda, and represented by the granites and trachytes; while in the other silica and potash are less abundant, and soda, lime and magnesia prevail, giving rise to pyroxene and triclinic feldspars. The metamorphism and displacement of sneh sediments may thns enable as to explain the origin of the different varieties of platonic rocks withont calling to our aid the ejections of the central fire."
§ 53. Such was the scheme put forward by the writer, in 1858 and 1859 , to explain the generation from a homogenons undifferentiated crust, without the intervention of plutonic matters from the earth's interior, of the two great types of acidic and basic crystalline rocks; gneisses, granites and trachytes on the one hand, and doleritic rocks, greenstones and basalts on the other. Regarded as an attempt to adapt the Huttonian hypothesis to the growing demands of the science, and to give it what it had hitherto lacked, a starting point in time, and a possible explanation of the two types of acidic and basic rocks, this scheme demands a place in the history of geology, although, in the judgment of its author, it must share the fate of all other forms of the metamorphic hypothesis. In recognizing the adequacy of a primitive undifferentiated layer of igneous rock as the sole source of the materials of the future order it, however, effected a great step towards a more satisfactory hypothesis. ${ }^{49}$

[^93]§54. The nature and history of this primitive layer was farther discussed by the author in a lecture on "The Chemistry of the Primeval Earth," given at the Royal Institution in London, in June, 1867. ${ }^{50}$ Therein it was said: "It is with the superficial portions of the fused mineral mass of the globe that we have now to do, since there is no good reasou for supposing that the deeply-seated portions have intervened in any direct manner in the production of the rocks which form the superficial crust. This, at the time of its first solidification, presented probably an irregular diversified surface, from the result of contraction of the congealing mass, which at last formed a liquid bath of no great depth, surrounding the solid mucleus." It was further insisted that this material would contain all of the bases in the form of silicates, and must have much resembled in composition certain furnace-slags or volcanic products. Of this primary lava-like rock, it was said, that it is now everywhere concealed, and is not to be confounded with the granitic substratum. That granite was a socondary rock, formed through the intervention of water, was then argued from the presence therein, as a constituent element, of quartz, " which, so far as we know can only be generated by aqueous agencies, and at comparatively low temperatures." The metamorphic hypothesis of the origin of granite was then maintained.

In 1869, in an essay on "The Probable Seat of Volcanic Action," ${ }^{\text {si }}$ a further inquiry was made into the probable nature and condition of what had been spoken of in 1858 as "the ruins of the crnst of anhydrous and primitive igneous rock." This, it was now said, "mnst by contraction in cooling have become porous and permeable, for a considerable dapth, to the waters afterwards precipitated upon its surface. In this way it was prepared alike for mechanical disintegration and for the chemical action of the acids .
present in the air and the waters of the time. . . . The earth, air, and water, thus made to react npon each other, constitute the first matters, from which, by mechanical and chemical transformations, the whole mineral world known to us has been produced." It was farther argued, from many geological phenomena, that we have evidence of the existence between the solid nuclens and the stratified rocks of "an interposed layer of partially Huid matter, which is not, however, a still unsolidified portion of the once liquid globe, but consists of the outer part of the congealed primitive mass, disintegrated and modified by chemical and mechanical agencies, impregnated with water, and in a state of igneoaqueous fusion."
§55. Although in 1858 I had, as already shown, sought to give a more rational basis to the metamorphic hypothesis of the origin of crystalline rocks, the traditions of which, as expounded by Lyell, weighed so heavily on the geologists of the time, other considerations soon afterwards led me to seek in another direction for the solution of the problem. The examination of the mineral silicates deposited during the evaporation of many natural waters, that of the Ottawa river among others, and the study which I had made of the hydrous magnesian silicate found in the tertiary strata of the Paris basin, induced me, as early as 1860 , to inquire "to what extent rocks composed of calcareous and magnesian silicates may be directly formed in the moist way;" and again, in the same year, to declare

[^94]with regard to the latter, "it is evident that snch silicates could be formed in basins at the earth's surface, by reactions between magnesian solutions and dissolved silica;" a consideration which was then applied to the generation of serpentine and of talc. Again, in 1863 and 1864, I ventured to conclude that "steatite, serpentine, pyroxene, hornblende, and, in many cases, garnet, epidote, and other silicated minerals, are formed by a crystallization or molecular rearrangement of silicates generated by chemical processes in waters at the earth's surface." ${ }^{32}$
§ 56 . While natural waters hold in abundance both lime and maguesia, alumina is, under ordinary conditions, insoluble in them, and moreover is not found uncombined with silica. The problem of the genesis of the aluminous double silicates, so abundant in the rocks, was therefore a more difficult one than that of the simple protoxyd-silicates, with which they are often intimately associated. Many facts in the history of zeolitic minerals, however, soon led me to recognize in the conditions under which these aluminous double silicates are formed, a clue to the solution of the problem. Thus it was that, in an essay read before the Geological Society of Dublin, in April, 1863, ${ }^{23}$ I called attention to the observations of Daubree on the production, during the historic period, of the zeolites, chatmazite and harmotome (phillipsite), by the action of thermal waters at a temperature not above $70^{\circ} \mathrm{C}$., on the masonry of the ancient Roman baths at Plombieres. The mode of the occurrence of these minerals showed that the aluminous silicate of the burned bricks had been changed into a temporarily soluble compound, which had crystallized in cavities as zeolites, which differ in composition from feldspars only by the presence of combined water. I also called attention, in this comection, to the experiments of Daubrée, who, by operating at higher temperatures in sealed tubes, had succeeded in producing crystallized quartz, pyroxene, and apparently feldspathic and micaceons minerals.
$\oint 57$. The aqueous origin of feldspars, and their intimate relations to zeolites and other hydrous minerals, were farther noticed by the author, in the "Geology of Canada," in 1863, in which he cited the observations made by J. D. Whitney on the frequent occurrence of orthoclase in the copper-bearing veins in the melaphyres of Lake Superior. The crystals of this mineral, which had been mistaken for stilbite, are there found under conditions, which show their formation contemporaneously with the zeolites, analeime and natrolite; while elsewhere in the same region, the associates of the orthoclase are epidote, calcite, native copper and quartz, upon which, as well as upon saponite, the crystals of the feldspar were found implanted. ${ }^{54}$ Whitney recalled in this comection the occurrence of a variety of orthoclase, the weissigite of Jenzsch, with chalcedony, in cavities of an amygdaloidal rock.
§58. These facts were now insisted upon, in connection with my own observations, to show the aqueous origin of the feldspar found in veins among the crystalline schists in the province of Quebec, where "a flesh-red orthoclase occurs so intermingled with white quartz and chlorite as to show the contemporaneous formation of the three species. The orthoclase generally predominates, often reposing upon or surrounded by chlorite, and at

[^95]other times imbedded in quartz, which covers the latter. Drusy cavities are also lined with small crystals of the feldspar, and have been subsequently filled up by a cleavable bitter-spar," often with crystallized hematite, rutile, and copper-sulphids. It was shown that among these reins, then described as of aqueous origin, there was to be seen a transition, from those "containing only quartz and bitter-spar, with a little chlorite or tale, through others in which orthoclase appears, and gradually predominates, until we arrive at reins made up of quartz and feldspar, sometimes including mica, and having the character of a coarse-grained granite; the occasional presence of copper-sulphids and hematite characterising all of them alike." There was also described the occurrence, in the same region, of a dark-colored argillaceons and schistose rock, having in parts the aspect of a chloritic greenstone, which is rendered amygdaloidal by the presence of numerous spherical or ovoidal masses of quart $\%$ or more commonly of reddish orthoclase, often with a nuclens of quartz. In schistose varieties of this rock the feldspar extends from these centres in such a manner as to give a gneissoid aspect to the mass. All of these facts were regarded as showing the aqueons origin of orthoclase, and its secretion from the adjacent rock.s ${ }^{s}$

S5!. With the feldspar in the above mentioned veins may be compared the similar ocurrence, observed in 1872, in the great quartz lodes with chalcopyrite which traverse the Huronian greenstones at the Bruce Mines, on Lake Huron, of bands one or two inches wide of a brick-red orthoclase, mingled with a little quart\% and a small amount of a greenish, apparently homblendic element, forming an aggregate which can hardly be distingushed from some of the older granitic rocks, but is clearly interbanded with the metalliferous quart\% and the hitter-spar of the lode. In this connection may also be quoted a description of the vertical parallel veins found cutting at right angles the Montalban gurisses, in Northbridge, near Worcester, Massachusetts. These veins, as described by the writer, " may be traced for considerable distances, and are ordinarily but a few inches in thickness. The veinstone of these is grenerally a vitreous quartz, which in some parts exhilhits selvages, and in others bands of white orthoclase, by an admixture of which it passes elsewhere into a well characterized granitic vein. The quartz veins, in places, hold cubic crystals of pyrite, together with chalcopyrite and pyrrhotite, the latter in considerable masses, sometimes accompanied by crystals of greenish epidote, imbedded in the quartz, and occasionally associated with red garnet. In one part, there is found enclosed in the wider portion of a vein, between bands of vitreous quartz, a lenticular mass, three inches thick, of coarsely granular pink calcite, with imbedded grains of dark-green amphibole and on one side small erystals of olive-green epidote and red garnet; the whole mass closely resembling some crystalline limestones from the Laurentian," and evidently endogenous. ${ }^{\text {sh }}$ I have also deseribed remarkable examples of similar associations of zoisite, garnet, homblende, pyroxene and calcite in the metalliferous quartz lodes in the Montalban series, at Ducktown, Tennessee. ${ }^{57}$
$\oint 60$. The question of the aqueous origin of coneretionary veins was resumed by the author in 1871, in an essay On Granites and Granite Veinstones, when it was maintained that the relation of granitic veins with metalliferous quartz-lodes, on the one hand, and

[^96]with calcareous veins carrying the ordinary minerals of crystalline limestones, on the other, is such that to all these veins must be assigned a common aqueous origin. It was farther shown that the endogenous granitie masses or veinstones in the Montalban or younger gneissic series in New England often attain breadths of sisty feet or more, and that they present great varieties in texture, from coarse aggregates of banded orthoelase and quartz, often with muscovite (from which these various elements are mined for commercial purposes), to veins in which the concretionary character is not less marked, including beryl, tourmaline, garnet, cassiterite and other rare minerals; while others still of these great veins are so fine-grained and homogeneous in character as to have been quarried as granites for architectural uses. These endogenons masses are included alike in the gneisses, the quartzites, the staurolitic mica-schists, and the indigenous crystalline limestones of the Montalban series, and, though generally transverse, are sometimes, for a portion of their conrse, coincident with the bedding of the enclosing rock. ${ }^{\text {si }}$

It was elear that these endogenous granitic veins of posterior origin were mineralogically very similar to the older gneisses and the erupted granites. From a prolonged study of all these phenomena, the conclusion was then reached that we have in the action which generated these endogenous granitic rocks a continuation of the same process which gare rise to the older or fundamental granitoid gneisses, which were hence of aqueons origin.
$\$ 61$. This process of reasoning was in fact identical with that by which Werner, in the last century, was led to assigu an aqueous origin to the primitive granite and the crystalline sehists. In a farther description, in 1874, of some examples of these banded veinstones from Maine and Nova Scotia, it was said that their structure is "due to successive deposits from water of crystalline matter on the walls of the vein, and results from a process which, though operating in later times and in subterranean fissures, was probably not very much unlike that which gave rise to the indigenons granitic gneisses., ${ }^{3,9}$ The same ideas as to the origin of the ancient crystalline rocks, and their relations to granitic and to zeolitic veins, were farther defned by me, in 1874, when it was said: "The deposition of immense quantities alike of orthoclase, albite and oligoclase in veins which are evidently of aqueous origin shows that conditions have existed in which the elements of these mineral species were abundant in solution. The relation between these endogenous deposits and the great beds of orthoclase and triclinic feidspar-rocks is similar to that between veins of calcite and of quartz, and beds of marble and of travertine, of quartzite and of hornstone. But while the conditions in which these latter mineral species are deposited from solution have been perpetuated to our own time, those of the deposition of feldspars and many other species, whether in veins, or in beds, appear to belong only to remote geological ages, and, at best, are represented in more recent times only by the production of a few zeolitic minerals." ${ }^{60}$
§62. A farther and more particularized statement of the author's conclusions as to the origin of the crystalline rocks was embodied in a paper read before the American Association for the Advancement of Science at Saratoga, in August, 1879, containing the three following propositions: ${ }^{61}$

[^97]1st. All gneisses, petrosilexes, hornblendic and micaceous schists, olivines, serpentines, and in short, all silicated crystalline stratified rocks, are of neptunian origin, and are not primarily due to metamorphosis or to metnsomatosis, cither of ordinary aqueous sediments or of volcanic materials.

2nd. The chemical and mechanical conditions under which these rocks were deposited and crystallized, whether in shallow waters, or in abyssal depths (where pressure greatly influences chemical affinities), have not been reproduced to any great extent since the beginning of paleozoic time.

Brd. The ermptive rocks, or at least a large portion of them, are softened and displaced portions of these ancient neptunian rocks, of which they retain many of the mineralogival and lithological characters.
\& (i). In a subsequent paper, in 1880 , it was said, with reference to the subaërial decay of rock: : "The alnminous silicates in the oldest crystalline rocks oceur in the forms of leldspars, and related species, and are, so to speak, saturated with alkalies or with lime. It is only in more rerent formations that we find aluminons silicates either free or with reduced anounts of alkali, as in the argillites and clays, in micaccous minerals like muscovite. margarodite, danourit, and pyrophyllite, and in kyanite, fibrolite and andalusite; all of which we regard as derivel indirectly from the nore ancient feldspars." In comection with this important point, which 1 had already discussed elsewhere, I added the following note relerring at the same time to the propositions of the preceding paragraph: "It is a question how lar the origin of such crystalline aluminous silicates as museovite, margarodite, damourite, pyrophyllite, kyanite, fibrolite and andalusite, is to be sought in a proness of diagunesis in ordinary aqueous sediments holding the ruins of more or less complepely decayed feldspars. Other aluminous rock-forming silicates, such as ehlorites and magnesian minas, are, however, comected, through aluminiferous amphiboles, with the non-aluminous macrnesian silicates, and to all of these various magnesian minerals a very different origin must be ascribed."

In a farther discussion of this subject, in 1883, it was noted "that decayed feldspars, arell when these are reduced to the condition of clays, have not, in most cases, lost the whole of their alkalies." is This was shown by the analyses made by Sweet, of the kaolinizd granitic gneisses of Wisconsin, from which it appears that "the levigated clays from these decayed rocks still hold, in repeated examples, from two to three hundredths or more of alkalies, the potash predominating."
§64. The question of the source of the matters in aqueous solution which, according to the hypothesis before us, gave rise to granitic veinstones, naturally comes up at this stage of our inquiry. As we have seen, the granitic substratum of igneous origin, the existence of which is postulated by most modern geologists is, since the time of Scrope, Scheerer and Elie de Beaunont, generally conceived to be impreguated with a portion of water, eonjectured by Seheerer to equal perhaps five or ten hundreths of its weight; and throngh the intervention of this to assume, at temperatures far below the point of liquefac-

[^98]tion of the anhydrous rock, a condition which has been designated one of aqueo-igneous fusion. This interposed water, under the influence of great heat and pressure, we may suppose, with Scheerer, to constitute a sort of granitic juice, which, exuding from the mass, might fill fissures or other cavities, alike in the granite and in the adjacent rocks, with the characteristic minerals of granitic veins. This seems to have been essentially the view of Élie de Beaumont, who described the elements of the pegmatites, the tourmalinegranites, and the veins, often abounding in quartz, which carry cassiterite and columbite, as emanations from the adjacent granitic masses, or as a granitic aura. Daubréc and Scheerer, in previously describing the similar granitic veins found in Scandinavia, conceived them to have been filled in like manner, not from an unstratified granitie substratum, but from the crystalline schists which enclose them. ${ }^{64}$
§65. In both of the above hypotheses, we note that the source of the orthoclase and the quartz of the veins is sought in the solutions derived from the granitic substratum or its elosely related crystalline schists. If now we go farther back, and ask for the origin of this granitic substratum, with its constituent minerals, we have shown, in opposition to the view that it is the outer layer of a cooling globe, good reasons for maintaining, in the first place that such a layer must have had a very different composition from that of granite, and in the second place that granite itself is a rock of secondary origin, in the formations of which water has inl all cases intervened. We have, moreover, already sought to show that the attempt to derive this granitic rock, by any process of metamorphosis or metasomatosis, from sediments formed from the primitive quartzless rock, was nuterable, and that the vast granitie substratum, so homogeneous and so widely spread, could not thus have originated. Already, in 1874, it had been deelared that the process which generated the orthoclase and the quartz of the granitic rocks was one represented in more recent times by the production of zeolites.
§ 66. The generation from basic rocks, by aqueons action, alike of orthoclase, of quartz, and of zeolites, is well known. These are often associated in such rocks, under conditions which show them to be secretions from the surrounding nass. The substance named palagonite is an amorphous, apparently colloidal, hydrons silicate, the composition of which, deducting the water (about seventeen per cent. on an average), is, according to Bunsen, identical with that of his normal pyroxenic or basaltic magma (\$24), except that the iron in palagonite is in the state of peroxyd. This substance is changed by no great elevation of temperature into the zeolite, chabazite, a crystalline silicate of alumina and alkalies, rich in silica, but destitute of iron-oxyd and magnesia, and a more basie residuum, in which the latter two bases are retained. Basaltic rock is, according to Bunsen's observations in Iceland, ehanged through hydration into palagonite, "under the influence of a neptunian cause," and this, by the heat of contiguous eruptive masses, is subsequontly transformed into a zeolitic amygdaloid. These operations, as he has shown, may be repeated in our laboratories. Fragments of amorphous native palagonite, when rapidly heated in the flame of a lamp, develope in their mass cavities filled with a white matter, recognized by the aid of a lens as crystalline chabazite; while the transformation of basaltic rock into palago-

[^99]nite itself may also be artificially effected. ${ }^{\text {as }}$ Palagonite, is not, apparently, a distinct mineral species, but a colloidal hydrated mixture, interesting as marking a stage in the transformation of the vitreous form of certain basie silicated compounds. The crystalline forms of these by their decomposition may, however, yield zeolites without passing through this intermediate stage.
$\$ 67$. That in these curions but neglected observations of Bunsen's, wo have reproduced in miniature not only the process which takes place on the large scale in masses of basic exoplutonic rock, but the process which must have gone on in the early ages, when the universal basic rock, which we have supposed to form the surface of the cooling globe, was heated from below, and penetrated by atmospheric waters-was a deduction which, although it seemed legitimate, was too vast and too far-reaching to be lightly accepted. It was therefore not mutil after many years of careful consideration, and the examination and rejection of all other conceivable hypotheses, that the conviction was acquired that in these reartions, which give rise to zeolitic minerals, we have the true solution of the problem of the genesis of crystalline rocks. This was formally enunciated in 1884, when, after considering the condition of a cooling earth, in accordance with the hypothesis defined in $\$ 50$, it was said: "The globe, consolidating at the centre, left a superficial layer of matter, which has yielded all the elements of the earth's crust. This last-cooled layer, methanically disintegrated, saturated with water, and heated by the central mass, furnished in aqueous solution the silicates which were the origin of the ancient gneisses and similar rocks." ${ }^{\text {os }}$

[^100]\mp@subsup{}{}{8}\mp@subsup{O}{}{4}... 71.87=Fe 52.04
Ti O
\&....... 0.0. 0.06

```


```

I'roxenie renk-matter....................................... 15.28
100.08

```

The ore-deposits of other portions of this iron range sonth of Burnt River, and all the deposits in the range immediately north of the river, are quite free from titanimm; but some small deposits of magnotic ore, in which a certain amount of titaninm is present, oceur 10 the morth of this northern range, in the township of Minden.
'Tnrning now to the sontheeast of this section ol' country, we find in the township of
 forms magnetite, wry similar in charader to the Pime Lake ore. This deposit, known as the lomise Mine is also in the form of an immense stock, or irregular mass, the prinripal axis of whill axtmok in a dieretion a little north of cast. It forms a stecp slope or ridge, rising ahow the general surface of the ground to an average level of nearly one hundred fert. Trenches opened across the face of the slope; at different levels, show, the orw-mas. to axtend in widh from sixty feet in some places to over 160 feet in others, but contying exposures imbleate a still greater extension; while the length of the deposit in an casterly and westorly direction excerds \(i, 400\) leet. The ore itself is of a granular texture, blatk, and strongly matretic, with specifie gravity varying fron 4.45 to 4.48 .

An analysis, from a sieved amount of ore weighing several pounds, gave results as follows:-


This titaniferous deposit, like that in Glamorgan, lies in the more or less immediate vicinity of iron ore deposits, in which no trace of titaninm can be detected. Some of the more important of these comprise the so-called Emily Mine, on lots 6-8 of the nineteenth concession of Tudor; the Baker Mine, on lot 18, concession 18, of the same township; and the Batchelor Mine, on lots 15, 16, of the eighth concession of Wollaston. Analyses of these and other iron ores from this district of Ontario will be found in a paper, by the writer, communicated to the chemical section of our Society.

\title{
VIII.-On Mimetism in Inorganic Nature.
}

\author{
By E. J. Chapman, Ph. D., LL.D.
}
(Read May 23, 1884.)

The use of the term "Mimetism" in comection with inorganic bodies, may appear, at first thought, unwarranted ; but, until Mimetism is absolutely proved to arise from the action of innate, as distinguished from external, lorees, the extension of the term in its present sense is not, I hope to show, altogether without justifucation. In its conventional acceptation the term is, of course, applied to the supposed results of a natural imitative process by which certain animals-especially insects-inhahiting more or less restricted geographical areas, have come to resemble either certain other animals of the district, or certain vegetable forms, such as leaves, twigs, and the like,-the assumed function of this mimetic principle being mainly the presorvation of the individual from the attacks of its enemies.

Various opinions have been adranced in explanation of this pecnlianity. It has been regarded as the direct result of a protecting Providence,-the imitated form being thas considered, not a superinduced condition, but an original, crated rondition. It has been regarded, on the other hand, as simply the result of natural selection, originating in a very slight and accidental approach towards the imitated type or olject, this becoming inore and more developed and intensified in suecessive generations, until the imitation finally becomes complete or reaches its extreme limit.

Neither explanation is free from difliculties, but the object of the present note is not to discuss these, but simply to suggest a third viow, nanely, that this so-alled mimetism may be neither original nor selective, in a Darwinian sense, but simply the result of a kind of localism (to coin a word), -associated forms by some occult law becoming impressed with mutual resemblances. Some principle of this kind does certainly prevail to some extent in organic nature ; and the effect of this localism is curiously seen also in certain associated minerals, in minerals which under normal conditions, or when oceurring apart, have scarcely two characters in common. A mimetism of this latter kind cannot obviously be either providential or selective. General resemblances among minerals (as the resemblance of some varieties of apatite to beryl, of dark varieties of zinc blende to ferruginous garnets, etc., ) have, of course, been long recoguized and referred to ; but I am referring, here, not to general resemblances, but to what may be called "special resemblances under local conditions," and under these conditions only. I am not aware that this kind of mineral mimetism has hitherto been pointed out. Although vagnely impressed by it for some years, it first forced itself prominently on my attention during an examination of some of the phosphate deposits of this immediate neighbourhood, that is, in the townships of Templeton, Buckingham, etc., on the Quebec side of the Ottawa River. The
so-called "phosphate" of this region occurs, it is well known, in lenticular or irregular masses, often of large size, associated with magnesian mica (i.e., phlogopite), pyroxene and calcite, the mica and the pyroxene appearing in some places to surround or enclose the apatite, after the manner of an enclosed or "sheathed" ore-stock. In different deposits, and in different parts of the same deposit, various other minerals are often subordinately present, and some of these resemble each other in a very striking and peculiar manner.

All who are familiar with our apatite deposits know, for instance, how frequently certain associated varieties of pyroxene are mistaken for phosphate, even by explorers of fair pretensions to be considered experts. Some examples are indeed strikingly alike: and yet apatite and pyroxene are never referred to in mineralogical text-books as likely to be mistaken for one another. The resemblance is in fact a local resemblance only. Scapolite and apatite, again, have in general but few points in common; but in many of the scapolites of these phosphate deposits the likeness is very strong-even to the rounded (as though semi-fused or semi-dissolved) edges, the peculiar sub-oily lustre, and surface characters generally. Much of the pyroxene, likewise, of these phosphate deposits closely resembles the associated scapolite. Viewed generally, each of these species, as we know, has several varieties, some of which are very distinct in aspect; but, in the association of these two minerals in our phosphate deposits, closely resembling varieties chiefly come together. But of all these mutual resemblances, none, perhaps, are so striking and so unexpected as those presented by the examples of quartz and zircon which occur in these phosphate deposits. As a rule, these two minerals could scarcely be confounded even by the least experienced eye; but here they present the same dark-red colour, the same resinovitreous lustre, the same peculiar wrinkled or pitted surfaces (left apparently by the decay of minut" arystals of apatite), and thus look in almost every respect alike. But, of course, in all of these resemblances, the fundamental character of the mineral, viz., its composition and its essential crystallization, necessarily remains unchanged : just as the insect is still the insect, while closely resembling the leaf or other deceptive form.

\author{
IX.-Canadian Filicinea.
}

\author{
By John Macoun, M.A., F.L.S., and T. J. W. Buraess, M.B
}
(Read in abstract May;23, 1884.)
Probably no form of growth throughout the vegetable kingdom attracts more general attention than ferns, which, while appealing strongly to the scientific tastes, have an equally powerful claim upon the artistic. Their distribntion over the whole surface of the globe, with the exception of the sterile portions of the polar regions, places at least some forms within the reach of everyone, while, grow in what locality they may, there is none to which they do not lend an added charm. Of the home of these beantiful productions of Nature, nowhere can we find a more charming description than that of Mr. F. G. Heath, who, in his introduction to "The Fern World," speales of it as "A world-apart-of dreamy beauty, of soft vapours and chequered sumbeams. A world-below the glare of noonday-filled with the most delicate and graceful of the forms which Nature's God has made to clothe the earth with a mantle of green. A world where Nature's own sweet music-the silvery music of the streamlet's ripple-falls, gently cadenced, on the ear : or where the stillness of repose is mbroken, even by the hum of insect life. A world sometimes of darkness relieved but ly the faintest glean of light; sometimes of open rocks and streams, where the roar of the torrent echoes over the mountain side, and rushing water reflects the golden colouring of the sum-rays. A fairy world hidden away under the covering of rugged rocks on the sea-shore, bencath mosscovered stones in the river's bed, or in the depths of the primeval forest."

The purpose of the present paper is to place before you a full though succinct account of such of these most interesting plants as are fornd within the confines of the Dominion.

Twenty years ago there was published "A Synopsis of Canadian Ferns and Filicoid Plants," containing brief descriptions, with the distribution, of all our then known species, since which time, so far as I am aware, no similar work has been undertaken. This valuable paper, by George Lawson, Ph. D., LL.D., which appeared first in the Edinburgh "New Philosophical Journal" (January and April numbers, 1864, Vol. XIX,.N. S.), and in the Transactions of the Botanical Society of Edinburgh, (Vol. VIII, pp. 20-50), was reprinted the same year at Montreal, in the "Canadian Naturalist," (N. S., Vol. I, No. 4, Angust, pp. 262-300.) The number of ferns, including Ophioglossacer, recorded in it was fifty, of which eight were considered of doubtful occurrence. Of these eight, three, Asplenium marinum, Asplenium montanum and Asplenium Ruta-muraria do not, as far as yet known, favour us; two, Schizaa pusilla and Woodsia obtusa, are confined to Nova Scotia, each having been discovered in a single locality only, and within the past few years; while the remaining three, Aspidium Filix-mas, Aspidium fragrans and Ophioglossum vulgatum, are now known in numerous districts. The forty-seven species to which Professor Law-
son's list is thus curtailed, have been increased to sixty-four. Of the seventeen additions we are indebted to British Columbia, at the time of the publication of the synopsis almost a terrn incormia as recrards its floral treasures, for no less than nine, viz., Polypodium Ľouleri, Polypodium fulcntum, Gymnogranme triangrularis, Chcilanthes gracillima, Pellaca Uensa, Lomaria spicant, Phegopteris alpcstris, Aspitium rigidum, and Aspidium munitum; three, Cheilanthes lamurinosa, Hoodsia Oregana and Woodsia scopulina are common to British Columbia and the Northwest Territory; three, Cystopteris montana, Botrychium matricuriufolium and Botryrhium Innccolatum, range from Nova Scotia to Lake Superior and north-weotward; and two are furnished by the elevation to the rank of species, as Aspidium Bowllii:mi bohrychium simplex, of plants recognized by Professor Lawson as varieties.

The total of known speries of lilices and Ophioglossacea in the world at the present day is "amatid t", lue abont 8,000 , of which the great bulk is tropical, and of this mumber the North American continent, north of the Mexican bonndary, can claim Io date cnly hisi. Now, when we consider that nearly 100 of these are natives "f th" "xtrme somhern and somth-western States, it will be seen that our working botanist have net bern idle, and that C'anda, considering the boreal nature of her climate, "omparn mat latomably with the neighboring republic in the number of her ferns. To "onviy sum. ihat of the distribution of our species, two tables have been prepared, the Whe - hewiner thit aedneral range the other their allotment as regards Canada.

Table I i- hamed on Mr. Lidlidde: division (Torrey Bulletin, Jannary, 1875,) of North

 rerim.

1I. Linken. - luhahting (with a few exerptions) the northern portion of the United
 dor, Genmland amd Alakan and nuarly all represented also in the northern portions of the Ohd World

111 Anलusimux- - Extending throughout the mountain and hilly region of the States mat of the Mississippi, whon to the coast, and northward into Canada, and in a few inAances aloo inhabiting the ( Ohd World.
11. lanfe- Extmang along the western border of the continent at points from Aluska fo, California, in a bew uses appearing also in the Rocky Mountain region.
V. New Mextus- - hahabiting the central momtain regions of New Mexico and Colorado, many of the spectes extending thence into Mexico, and some even to South America, and a lew of them also occurring in California.

If. Trosmak.-Inhatiting the border of the Gulf of Mexico, most of the species extending into the West Indies and tropical America."

The sixth class, of course, does not concern us, and is only introduced to show the distribution in its entirety, while the fifth presents the solitary and anomalons Cheilanthes lamginosa which, properly New Mexican in its range, extending in the United States from Illinois to Utah, Texas, Now Mexico and Arizona, unacconntably reappears in British Columbia nud on the eastern base of the locky Mountains. The additional class introduced shows which of the species are peculiar to the North American continent.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & SPECIES. &  & \% &  & \% &  & 麋 &  \\
\hline 1 & Adiantum pedatum, \(L \ldots \ldots \ldots \ldots \ldots\). & & & 1 & & & & \\
\hline 2 & Aspidium acrostichoides, \(S w z\). & & . & 1 & \(\ldots\) & & & 1 \\
\hline 3 & Aspidium aculeatum, Suz . & & 1 & & & & & \\
\hline 4 & Aspidium Boottii, Tuckerman & & 1 & & & & & \\
\hline 5 & Aspidium cristatum, Swz. & & & 1 & ...... & & & \\
\hline 6 & Aspidium Filix-mas, \(S w z\) & & 1 & & & & & \\
\hline 7 & Aspidium fragrans, Suz & & 1 & & & & & \\
\hline 8 & Aspidium Goldianum, Hook. & & & 1 & & & & 1 \\
\hline 9 & Aspidium Lonchitis, Suz............... & & 1 & & & & & \\
\hline 10 & Aspidium marginale, \(S\) wz. & & \(\ldots\) & 1 & & & & 1 \\
\hline 11 & Aspidium munitum, Kaulf. & & & & 1 & & & 1 \\
\hline 12 & Aspidium Noveboracense, Suz........... & & & 1 & & & & 1 \\
\hline 13 & Aspidium rigidum, Suz. & & & & 1 & & & \\
\hline 14 & Aspidium spinulosum, Swz & & 1 & & & & & \\
\hline 15 & Aspidium Thelypteris, Suz.............. & & & 1 & & - & & \\
\hline 16 & Asplenium angustifolium, Mx & & & 1 & & & & 1 \\
\hline 17 & Asplenium ebeneum, Ait. & ...... & & 1 & & & & \\
\hline 18 & Asplenium Filix-fæmina, Berah......... & 1 & & & & & & \\
\hline 19 & Asplenium thelypteroides, \(M x \ldots \ldots . .\). & & & 1 & & & & \\
\hline 20 & Asplenium Trichomanes, L............ & 1 & & \(\ldots\) & - & & & \\
\hline 21 & Asplenium viride, Hudson. & & 1 & ...... & & ...... & & \\
\hline 22 & Botrychium lanceolatum, Angs.......... & & & 1 & \(\ldots\) & ...... & & \\
\hline 23 & Botrychium Lunaria, Swz............... & ..... & 1 & \(\ldots\) & & ...... & & \\
\hline 24 & Botrychium matricariæfolium, A . \(\mathrm{Br} \ldots .\). & & 1 & & & & & \\
\hline 25 & Botrychium simplex, Hitch. . . . . . . . . . & & 1 & & & & & \\
\hline 26 & Botrychium ternatum, \(s w z . . . . . . . . .\). & & & 1 & ...... & ...... & & \\
\hline 27 & Botrychium Virginianum, Swz.......... & & & 1 & ..... & & & \\
\hline 28 & Camptosorus rhizophyllus, Link......... & & & 1 & \(\ldots\) & ...... & & 1 \\
\hline 29 & Cheilanthes gracillima, D. C. Eaton...... & & & & 1 & ...... & & 1 \\
\hline 30 & Cheilanthes lanuginosa, Nutt & & & & ....... & 1 & ...... & 1 \\
\hline 31 & Cryptogramme acrostichoides, \(R\). Br..... & ...... & 1 & & ....... & ....... & & 1 \\
\hline 32 & Cystopteris bulbifera, Bernh & & & 1 & & & & 1 \\
\hline & Carried Forward............. & 2 & 11 & 15 & 3 & 1 & 0 & 11 \\
\hline
\end{tabular}


Table II divides the Dominion into five botanical areas, and shows what species, with their most distinct varieties, are found in each, viz :
I. Atlantic Provinces and Eastern Quebec.
II. Ontario and Western Quebec.
III. The Great Plains northward to the Arctic Circle, including the greater part of Manitoba.
IV. Rocky Mountains.
V. British Columbia.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & SPECIES. & I. & II. & III. & IV. & v. \\
\hline 1 & Adiantum pedatum, \(L\). . & 1 & 1 & & & 1 \\
\hline 2 & Aspidium acrostichoides, Suz . & 1 & 1 & ..... & & \\
\hline 3 & Aspidium aculeatum, Suz.. & & & & & \\
\hline & Var. Braunii, Dell. & 1 & 1 & & \(\ldots\) & 1 \\
\hline & Var. scopulinum, D. C. Etton & 1 & & & & \\
\hline 4 & Aspidium Boottii, Tuckermen & 1 & 1 & & & \\
\hline 5 & Aspidium cristatum, Suz & 1 & 1 & 1 & & \\
\hline & Var. Clintonianum, D. C. Eatom & & 1 & & & \\
\hline 6 & Aspidium Filix-mas, Suz & 1 & 1 & \(\ldots\) & ... & 1 \\
\hline 7 & Aspidium fragrans, Suz & 1 & 1 & 1 & 1 & ..... \\
\hline 8 & Aspidium Goldianum, Hook. & 1 & 1 & ..... & & \\
\hline 9 & Aspidium Lonchitis, Siw & 1 & 1 & 1 & 1 & 1 \\
\hline 10 & Aspidium marginale, Suz & 1 & 1 & 1 & 1 & \(\ldots\) \\
\hline 11 & Aspidium munitum, Kaulf & & .. & & & 1 \\
\hline 12 & Aspidium Noveboracense, Suz & 1 & 1 & ... & & \(\ldots\) \\
\hline 13 & Aspidium rigidum, Suz. & & & & & 1 \\
\hline 14 & Aspidium spinulosum, Swz. & 1 & 1 & 1 & 1 & 1 \\
\hline & Var. intermedium, D. C. Euton & 1 & 1 & 1 & 1 & 1 \\
\hline & Var. dilatatum, Horn. & 1 & 1 & 1 & 1 & 1 \\
\hline 15 & Aspidium Thelypteris, Swz. & 1 & 1 & 1 & .. & \\
\hline 16 & Asplenium angustifolium, \(M x\). & 1 & 1 & ... & & \\
\hline 17 & Asplenium ebeneum, Ait & & 1 & ... & & \\
\hline 18 & Asplenium Filix-foemina, Bernh. & 1 & 1 & 1 & 1 & 1 \\
\hline & Var. angustum, D. C. Eaton . ...................... & 1 & 1 & & & \\
\hline 19 & Asplenium thelypteroides, \(M x \ldots \ldots \ldots \ldots \ldots \ldots . .\). & 1 & 1 & \(\ldots\) & & \\
\hline 20 & Asplenium Trichomanes, \(L\). . . . . . . . . . . . . . . . . & 1 & 1 & 1 & 1 & 1 \\
\hline & Carried forvard ..................... & 21 & 22 & 10 & 8 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & SPECIES. & I. & II. & III. & IV. & V. \\
\hline & Brought forvard....................... & 21 & 22 & 10 & 8 & 11 \\
\hline 21 & Asplenium viride, Hudson.......................... & 1 & 1 & ....... & 1 & ...... \\
\hline 22 & Botrychium lanceolatum, Angs..................... & 1 & ...... & .... & ....... & ....... \\
\hline 23 & Botrychium Lunaria, Suz.......................... & 1 & 1 & 1 & 1 & 1 \\
\hline 24 & Botrychium matricariæfolium, A . \(\mathrm{Br} \ldots \ldots . . . . . . . .\). & 1 & 1 & \(\cdots\) & ...... & ....... \\
\hline 25 & Botrychium simplex, Hitch......................... & 1 & 1 & 1 & \(\ldots\) & ...... \\
\hline 26 & Botrychium ternatum, Suz .......................... & 1 & 1 & 1 & 1 & 1 \\
\hline & Viar. obliquum, Milde.............................. & 1 & 1 & 1 & 1 & . \\
\hline & Viar. dissectum, Mildi.............................. & 1 & .... & ..... & \(\ldots\) & \(\cdot\) \\
\hline \(\because 7\) & Potrychium V'irginianum, suz ..................... & 1 & 1 & 1 & 1 & 1 \\
\hline 23 & Camptesorus rhizophyllus, Limk & ... & 1 & 1 & \(\ldots\) & - \\
\hline 29 & (heilanthes gracillima, I). ©: Eutom & ... & \(\ldots\) & ...... & ....... & 1 \\
\hline 30 & Cheilanthes lamuginosa, Nutt. . . . . . . . . . . . . . . . . . . & & & ...... & 1 & 1 \\
\hline 3 & (rypterramme acrostichoides, R. Br. . . . . . . . . . . . . . & ..... & 1 & 1 & 1 & 1 \\
\hline 3 & (ystopteris bullifera, Bernh ......................... & 1 & 1 & . & ...... & - \\
\hline :3 & (ystopteris fragilis, Buruh ........................... & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & Cy-mpteris montana, Bionh. & 1 & 1 & \(\ldots\) & 1 & \\
\hline (:) & Dicksonia pilaniuscula, Willd & 1 & 1 & \(\ldots\) & & - \\
\hline : \(\%\) & (iymmogramme triamgularis, Kinly & & & & & 1 \\
\hline \(: 7\) & Lembaria spicant, Ifert.. & & & & & 1 \\
\hline is & Onoclea sensibilis, \(I\) & - 1 & 1 & 1 & & \\
\hline 39 & Onoclear Struthiopteris, Ioff - . . . . . . . . . . . . . . . . . . . . & 1 & 1 & 1 & & \\
\hline 40 & Ophioglossum vulgatum, \(L\) & 1 & 1 & ....... & & \\
\hline 41 & Osmunda cinnamomea, L & 1 & 1 & \(\ldots .\). & ....... & \\
\hline 42 & Osmunda Claytoniana, L & 1 & 1 & \(\ldots\) & & \\
\hline 43 & Osmunda regalis, L.. ............. ...... ............. & 1 & 1 & 1 & ...... & \(\ldots\) \\
\hline 44 & Pellæa atropurpurea, Link........................... & & 1 & 1 & 1 & 1 \\
\hline 45 & Pellæa densa, Hook. . . . . . . . . . . . . . . . . . . . . . . . . . . & 1 & ...... & ...... & .... & 1 \\
\hline 46 & Pellæa gracilis, Hook. & 1 & 1 & 1 & 1 & 1 \\
\hline 47 & Phegopteris alpestris, Mett............................ & & .... & ...... & ....... & 1 \\
\hline 48 & Phegopteris calcarea, Fee............................ & 1 & 1 & & & .... \\
\hline 49 & Phegopteris Dryopteris, Fee.......................... & 1 & 1 & 1 & 1 & 1 \\
\hline 50 & Phegopteris hexagonoptera, Fee ...................... & & 1 & \(\ldots\) & & \\
\hline & Carried forvard. .......... ............. & 44 & 46 & 24 & 20 & 25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & SPECIES. & I. & II. & III. & IV. & V. \\
\hline & Brought foruard........... . . . . . . . . . . & 44 & 46 & 24 & 20 & 25 \\
\hline 51 & Phegopteris polypodioides, Fee....................... & 1 & 1 & 1 & 1 & ...... \\
\hline 52 & Polypodium falcatum, Kellogg......................... & & . & .. . & - .... & 1 \\
\hline 53 & Polypodium Scouleri, Hook. and Grev...... . . . . . . . . . & & & & ...... & 1 \\
\hline 54 & Polypodium vulgare, \(L\). & 1 & 1 & 1 & 1 & 1 \\
\hline 55 & Pteris aquilina, \(L\). & 1 & 1 & 1 & 1 & ...... \\
\hline & Var. lanuginosa, Bong. & & & ..... & & 1 \\
\hline 56 & Schizæa pusilla, Pursh...... ............. ............. & 1 & & & & \\
\hline 57 & Scolopendrium vulgare, Smith. & 1 & 1 & & & \\
\hline 58 & Woodsia glabella, R. Br & 1 & 1 & 1 & 1 & ...... \\
\hline 59 & Woodsia hyperborea, R. Mr & 1 & 1 & 1 & ..... & ...... \\
\hline 60 & Woodsia 1lvensis, R. Br. ............................ & 1 & 1 & 1 & 1 & ...... \\
\hline 61 & Woodsia obtusa, Torr. & 1 & ..... & ...... & \(\cdots\) & ... \\
\hline 62 & Woodsia Oregana, D. C. Euton....................... & & 1 & 1 & 1 & 1 \\
\hline 63 & Woodsia scopulina, D. C. Futon . . . . . . . . . . . . . . . . . . & & .. & ... & 1 & 1 \\
\hline 64 & Woodwardia Virginica, Smith. & 1 & 1 & ...... & & \(\ldots\) \\
\hline & Totals................................. & 5.4 & 5 & 31 & 2 & 81 \\
\hline
\end{tabular}

Throughout the paper the distributions and habitats, as well as the limits of size assigned to the varions species are, in most cases, given from personal observation, but are supplemented by facts bearing on these points recorded in standard anthors, or communicated by reliable correspondents.

The habitat of ferns is subject to considerable variation. Plants from any cause thrown out of their proper range, and finding themselves in their new abode destitute of their acenstomed surroundings, make a desperate effort to accommodate themselves to their new euviromment, and often fully succeed. Thus the Common Polypody, which has its usual home on rocks, in parts of Ontario lacking such, flourishes freely on dry banks, and the Matricary Grape-Fern, commonly found in wet woods and in moss aloug streams, has been noted in Nova Scotia on high, dry and open grass lands.

Variations in size depend to so great an extent on the character of the soil and the climatic conditions under which a plant grows, that it becomes a matter of difficulty, or well nigh impossibility, to ascribe any usual height to a species, e. g., Asplenium Filixfoemina, which, in low, rich woods reaches a height of two to three or four feet, in exposed mountainous places often does not exceed three to six inches. Information on this head, however, is not without importance to pteridologists, and an endeavour has been made to mention the better known extremes, but without the intention, in any degree, to lay these down as absolutely fixed limits.

Apart from the foregoing there are variations which camot always be referred to ass certainable causes. Many forms are found differing from the normal type, yet clearly traceable as only forms of it, and, when these are capable of transmitting their peculiarities to subsequent generations, they are styled varieties. In all such cases, howerer, there is an imate tendency to revert to the original type, and the best systematists endearour to restrict, as much as possible, the so-called varieties. Notwithstanding this, as it cannot be disputed that the study of forms tends greatly to enlarge gur knowledge of the real nature of speries, and, as this diversity of form often constitutes one of the great barriers to our fording sure of a sperimen being properly placed, while only recording the most delinod and fully recomized forms as distinct varieties, a fair degree of prominence has been uiven to those minor deviations on which are based the more questionable ones.

Though free usp has been made of the best works, both American and European, in the preparation of the sperifie descriptions, these have, in all cases except those of Schizca fusilln and Iheroptris "fustris, been drawn from Canadian specimens, large numbers of which. from widn! seprated localities, have been submitted to close examination, and wardully comparal with American and often foreign plants. In this connection gratitude lir samable aswistan- not alone in material supplied for examination, but also in information furnished mast be axpressed to various friends, of whom Professor D. C. Eaton of Xi.w Haran. ('onn!: Y'rofessor Lawson and Mr. leter Jack of Halifax, and Mr. A. H. M.Kay of l'ablu, Kova Comia; Mr. James leleteher of Ottawa, Mrs. Roy of Owen Somma and Ir. Millman of London. Gnt, have not been the least forward.

The symymy lats berom made full enongh to include most of the more familiar names, whinh have at differnt time bern so lavishly applied to many of the species, and pains hatre ban takell thintrodme famalian relerences, in order to facilitate future researches man the hom. hifory of any of the forms. Where any economic value, in either science or \(1 h_{\text {l" }}\) arts. "xists, ow has rxisted, in a peries, a mote of such has been appended.

In wh lusion of this, priaps already too lengthy, introduction, and before proceediner to the dworipion of the individual speries, a few words as to ferns in general and their monte of dowlomment may not be ont of place. While in appearance and habit they present an intinite varioty, from the sedge-like Shazan musilla to the stately Osmunda regralis, in all, ruprodurion is carriod on throngh germs (spores), which are almost infinitesimal, dus-lik" bollies, produced asexually. A spore, unlike an ordinary seed, is not a diminutive plant made up of radiclo and plumule, but consists of a little, double-coated cell, differing in shap and "xternal appearance in the different genera of ferns. In germination, the outar layer (erospore) is burst by the absorption of water, and the inner (endospore), which has taken on a process of development by enlargement and cell multiplication, is protruded in the shape of a minute, leaf-like, usually round or heart-shaped, flat patch (/رrohnllium), composed entirely of cellular tissue and quite unlike the parent plant. Among the hair-like root fibres, which, springing from the under surface of the prothallinm, attach it to the earth, are now produced a number of other cells, but of two distinct kinds, corresponding to the stamens and pistils of flowering plants, and called antheridin and archegonia. The former are filled with small, ciliate, thread-like bodies (amtherozoids), analagous to pollen, while the latter, which are bottle-shaped, contain an imperfect germ, consisting of a minute, central cell (oosphere). At a certain stage in the process of germination both the antheridia and archegonia burst by the absorption of
water, and the antherozoids escaping, are, by the movement of their cilise, brought in contact with the archegonia, through the neek of which they make their way to the oosphere and fertilize it, when, immediately beginning to grow, it gives origin to a very small and simple plant. This young plant at first derives its nourishment from the other cells of the prothallium, which, however, soon withers away, its nursling having established roots of its own. Steadily onward, now, goes the process of development, till at length the young plant begins to assume a likeness to the parent fern. But, having reached this stage, we are still very far from having a perfect plant, for the growth of the fronds is slow, mueh more so than that of the leaves of flowering plants, and in the great majority of ferns it is generally two or three years before the development is completed. When at length this is accomplished, and the frond is ready to produce fruit, there arise on it (in set places, according to the speries of fern) clusters of little, projecting cells. Each of these cells becomes divided into two, one of which either shrivels up and forms a stalk connecting the remaining one with the frond, or entirely withers away; while the second is divided into five cells, four of which surround the fifth. Each of these four is again divided into two, forming an outer and an inner layer of cells. The outer layer next unites to form a case (sporangium), while the inner disappears, its place being taken by a fluid in which the fifth cell is left floating. This floating "ell continues to grow for a time, when it breaks up into a mass of dust-like bodies, -the new spores. lünally, when the fruit is fully matured, the sporangium splitting, the spores are sattered, and, floating about, at last come to rest in some farourable spot, where they may again begin a fresh cyele of life, such as has just been described.

The following Synopsis of Genera is taken from Professor Laton's "Ferns of North America" without change, except as regards its limitation to Cauadian species, and the transposition of the Orders Ophioglossacea and Filices.

\section*{SYNOPSIS OF GENERA.}

\section*{Cohort Filicinef.}

Vascular Cryptogamia having leavos or fronds usually raised on a stalk, rising commonly from a creeping or assurgent or even erect rootstock, and bearing on the back or margins sporangia containing spores of hut ono kind, which in germination produce a minute cellular prothallus, on which are borne antheridia and arclacenia, the latter after fertilization producing a new plantlet. Stems never hollow, nor coverel with subulate leaves.
Order OPMIOGLOSSA CEEE. Leafy plants; the leaves (fronds) simple or branched, often fern-like, eroet in vernation, developed from underground buds formed fron ono to three years in advazce, either within the base of the stalk of the old frond or by the side of it, bearing in special spikes or panicles subeoriaceous, exannulate, bivalvular sporangia, formed from the main tissue of the fruiting segments of the frond. Prothallus underground, destitute of chlorophyll, moncecious.
1. OPHIOGLOSSUM. Frond with a posterior simple or forkod or palmated sterile segment, and one or more anterior or lateral simple spikes of fructification ; the connate sporangia in a row along each side of the spike. Buds exterior to the base of the stalk. Voins reticulated.
2. BOTRYCHIUM. Frond with a posterior pinnatifid or compound sterile forn-like segmont and an anterior, panicled, fertile segment, the separate sporangia in a double row on the brancbes of tho panicle. Bud onclosed in the base of the stalk. Veins free.

Order FILICES. Loafy plants; the leaves or fronds circinato in rernation, rising from a rootstock and bearing reticulated sporangia which are homologous with leaf-hairs, being outgrowths from the epidermis. Prothallus above ground, green, monceeious, in some cases producing new plants from unfertilized archego-

* Fertile and sterile fronds ncarly alike; recoptacle not clevaled.
\(\dagger\) Indusium none.
13. PHEGOITERIS Sori dot-liko, minuta
\(\dagger \dagger\) Indurium orlicular or reniform.
14. ASPIDIUM. Sori round, borne on the back or at the apox of the voinlets ; indusium attached at the centre
or at the basal sinus, freo around tho margin. Pinne not articulated to the rachis. Frond ofton decompound.
\(\dagger \dagger+\) Indusium fixed across the fertile veinlet at the lower side of the sorus, onate or roundish, very
delicate. Small ferns.
15. CYSTOLTERIS. (Charactor of the subsection.)
```

* Sterile fromls foliaccous, the firtile froml urith contracted and pod-like or berry-like divisioms.

```
16. ONOCLEA. Sporangia on an elevated receptate, which is lialf sursounded at the base by an obseure collarliko indusium.
Tmbe VII. Woodsire. Sori round, borne on the veins; indusinm fixed benoath the sori, saucer-shaped and long-ciliate, or at first globose and at length breaking into soveral segments.
17. WOODSIA. Small ferns with free veins.

Tmbe VIII. Dicksonicge. Sori romblish, marginal or submarginal. Indusimm cup-siaperl or two-valved its outer part composed of a reflexed lobe of the frond, or more or less united with it.
18. DICKSONIA. Indusium in our species small, nearly glohmar, membranareus. Fromd rather large, elongr ated, deeompound.
 ring an apical cap of cells radiating from a contral point or minute circular space.
19. SCHIZSA. Sporangia atached basally in two or fonr rows on tha narrow divisions of little pinate (rarely digitate) terminal appendages of the simphor didhotomons fronds. Cells of the ring radiating from a eircular spaco.

 stalks dilated into stipuliform appendages.
20. OSMUNDA. Sporangia borne on the threathlike divinioms of a scparate frome ur of a sprial part of a fromd; the fruit-bearing portion normally destitute of green colouring matter.

> Order.-OPIIIOGIGSBICELE. Lindl.

\section*{Gemus I.-OPIIIOGLOSSUM, L., ADmer's-tongue.}
1.-O. vulgatum, L., (Common Adder's-tongue), Michx., Fl. Bor.-Am., II, 27.5. l'ursh, II., 675. Swartz, Syn. Fil., 169. Gray, Man., 672. Eaton, Ferns of N. A., II, 261. Underwood, Our Nat. Ferns, etc., 70. Lawson, Can. Nat., I, 293. Maroun's Cat., No. 2341.

This plant, easily overlooked in the grass of low meadows where it is usually found, is one which once seen, with its long stalked spike rising from the single leaf-like barren segment, can never be mistaken for anything else. Occasionally it is found in woods, and sometimes on dry hillsides. In height it ranges from 6 to 12 inches, and thongh fleshy is non-evergreen. Root-stock slender, erect or rarely creeping, giving off fleshy horizontal roots; sterile segment sessile near the middle of the plant, from 1 to 4 inehes long;, smooth, entire, oblong-ovate or elliptical in outline, obtuse, and narrowed at the base; fertile spike usually about an inch in length, apiculate, long-stalked, and much overtopping the sterile segment.
O. vulgatum as a rale does not vary much, but occasionally the sterile segment is acute, is perfectly round, or is not exceeded by the fertile, while sometimes a rootstock bears a second frond, or, according to Prof. Eaton, one of the roots may produce an adventitious bud and originate a new plant at some little distance from the old one.

Adder's-tongue was formerly extolled as the principal ingredient in an ointment
thought to exert a wonderful effect in the cure of serpent-bites, wounds, burns and sealds. It was also esteemed as an application to the inflamed udders of cows, and is still used in parts of England for this purpose.

Though rare, the Adder's-tongue in Canada has a wide range, extending from Nova S.otia westward to Manitoba. Found in Nova Scotia previous to 1863 by McCulloch, of Dathonsie College, but the exact locality ol his specimens not known. Truemanville, Cumberland Co., N. ぶ-d. J. Truemun. Hopeville and Cape Enrage, N. B.-J. Brillain. M.मbourne TP., Richmond Co., Que.-Miss McIntosh. Hemmingford, Que.-Goode. Beeehwood, near Hmmbock Lake, Ottawa, Ont.-J. Fletcher. Ferry Point, Belleville, Ont.; Beaver Mradow, hotwern Hooper's Lake and the Hastings Road, Tudor Tp., Hastings Co., Ont. ; erasey pares ahmer the Trent, M.C'am's Lstand, Seymour Tp., Northumberland Co., Ont.; st. Thomas, Vilein Co., Ont.-Muroun. Valley of the Humber, Toronto, Ont.-Burgess. Monils of Rainy Risar, Lake of the Woods.-(i. M. Denoson.

\section*{(banu: 11-bothy('ll) M, Noz, Gbape-Fern}

Ghan ernal has thr following points common to all the species. Rootstock short,
 lam of the stalk -wollen where it momesthe had, and erenerally covered with a loose, butor theath, the withered ban of the stalk of the preceding year. All of them ocea--bumally sutgent the variation of havine the sterile sections transformed into fertile, and
 pihnoprinering with from the main stalk on from the axils of the sterile divisions.
s Ban of stalk, whinh cheloses the hod, closed on all sides. Sterile divi-- iom more of less fleshy.
* Shrile division unally phaced at or above the middle of the plant. Frombs never hairy
\(\dagger\) Surila division onm pimate or pinnatified, the pinnæ never pinnately bobed.
1.-I Livakia, sıu:, (Moonwort), Hook., Fl. Bor.-Am., II, 265. Gray, Man., 671. Law:an, Can. Nat., I, 293. Macoun's C'at., No. 2336. Watt, Can. Nat., IV, 364. Eaton, Ferns of N A., 1, 24. Underwood, Our Nat. Ferns, etc., 72.

Osmunda Lunuria, L.
The Moonwort is a tleshy but non-evergreen plant, commonly about three to ten inches high, growinir on dry, grassy uplands, rocky places or exposed eliffs, and sometimes in rich woods or boggy meadows. Sterile segment closely sessile near the middle of the plant, oblong in outline, obtuse, and simply pinnate; pime crowded, commonly \(5-15\) in number, semi-lunar from a broad, wedge-shaped base, the sides concave and the outer margin crenate, the terminal division usually two- or three-lobed; fertile segment bi-tripinnate, long stalked, as a rule overtopping, often considerably, the sterile. Bud smooth, with the aper of the sterile segment bent over and outside of the nearly straight fertile one.

Variations in this fern are not uncommon, and cases of forking rootstocks, each of the branches givingr rise to a frond, are reported. The sterile segment is oceasionally more or
less ovate in ontline, and sometimes short-stalked, while the outer margin of the pinnx may be entire or incised, the latter condition when marked constitnting var. incisum, Milde. A Rocky Mountain specimen of Prof. Macoun's very closely approaches the form with small, alternate, rounded and distant lobes, collected by Mrs. Rust in Onondaga County, New York, while others from the same locality resemble \(B\). simplex in having the sterile segment distinctly petioled. Two plants from Bow River Pass, Rocky Mountains, show the buds bursting for the new growth, which seems to be taking place before the old fronds are withered, and specimens from Cape Rosier, Gaspé, Que., in other respects typieal B. Lunuria, have the sterile segment scarcely overtopped by the fertile, and placed high up on the plant, much as in B. matricariafolium, the common stalk forming about three-fourths of the total height. Some monstrous forms from Flat Creek, Manitoba, also grathered by Macoun, are very stout and fully a foot high, with the fertile segment much branched, the primary lower branches almost as long as the fertile segment itself, while the sterile segment is stalked and has its lobes, some of the lower of which are converted into branched fertile pinnæ, decply incised.

In ancient times B. Lanarin was redited with mysterions and magieal powers for opening locks when put into key-holes, taking the shoes off horses stepping on it, and turning quicksilver into the genuine article, while even to the present day there are firm believers in its powers of healing wounds to which it is applicd.

In Canada the Moonwort oceurs from Quebee to British Columbia, and northward to within the Arctic Circle. North side of Island of Orleans, Que.-F. F. Whitentes. Riviere du Loup en-bas, Que.-D. R. McCord. Exposed clifts near Cape Rosier, Gaspé, Que.; abundant on the north shore of Lake Superior at the Pic and Nipion lay, in meadows at Cape Alexander, twelve miles up the Nipigon River, and at various points on Lake Nipigon, Ont.; very plentiful on the prairie close to the sand hills at Flat Creck, Manitoba; on mountain slopes, Bow River Pass, Rocky Momntains, N. W. Ter. ; in a boggy meadow near Fort McLeod, B. C., Lat. \(55^{\circ}\).-Macoun. Carlton Iouse, on the Saskatchewan, N. W. Ter.-Richardson. Echimamish River to Knee Lake, and Chmrchill River near Indson Bay, N. W. Ter.-R. Bell.
\(\dagger \dagger\) Sterile division, in fully developed fronds, mostly bipimatifid.
2.-B. matricariffolium, \(A\). Br., (Matricary Grape-Fern), Watt, Cam. Nat., IV, 364. Macoun's Cat., No. 2339. Eaton, Ferns of N.A., I, 129. Underwood, Our Nat. Ferns, etc., 72.
B. rutaceum, Swz.
B. simplex, Hook. and Grer.
B. neglectum, Wood.

This is a moderately fleshy, non-evergreen plant, two to twelve inches ligh, growing commonly in dark, wet woods and along rivulets, but also found on rather dry and grassy, elevated plateaus. Sterile segment petioled, placed above the middle of (usually high up on) the plant, oblong-orate in ontline, and pimate into \(9-11\) orate, or orateoblong, obtuse lobes, which are nearly all of one size and toothed or incised; fertile segment bipinnate, and generally short stalked; bud smooth, with the apex of both segments turned down, the sterile segment clasping the fertile one by its side divisions, with its apex overlapping the whole.

The sterile segment is variable in shape, and the fertile in the degree of its division, but varieties based on these differences are, as stated by Prof. Eaton, probably only indicative of stages of development. The plant above described is the common one in America. The simplest form has the sterile segment very small, obovate-cuncate, and slightly \(3-5\) toothed along the sides, with the fertile a simple spike; while the most fully developed has the sterile segment broadly triangular in outline, the lower pinnæ pinnately divided into obtuse, toothed lobes, and the fertile much branched, its lower branches nearly as long as the central part. In any of the forms the sterile segment is occasionally almost or quite sessile.

With us the wastern limit of this fern, so far as known, is Lake Superior, but in the Unitel states it has bern detected in Unalaska. Pieton, N. S.-A.H. McKay. Dry and high grasslands, Cape Blomidon, N. S.-Macoun and Burgess. Truemanville, Cumberland Cor, N. ミ.-A. J. Trueman. l'etitcodiac and Titusville, N. B.—.J. Brittain. Gravelly places on sat clifls growing with B. Lumariu, Cape Rosier, Gaspé, Que.; woods near Belleville, (Ont.: pilu woots live miles north of Campbellford, Northumberland Co., Ont.; at the big pool helow the rallwy bridge, Nipigon River, and on islands in Lake Nipigon, Ont.Murnu. King's Mountain, Chelsea, Que., and Casselnam, Ont.-J. Fletcher.

 A, 1. 33. Inderwonl, Our Nat. Ferns, ete., 78.
B. ruturrum, varr. lauceolatum, Moore.

Osmunda lancrolata. Genelin.
This spectes, which grows from 2 to 9 inches high, is non-evergreen and scarcely Howh, dwelling along the shaded, mossy banks of streams, and in rich woods and low pastures. Sturile strment dosely sessile near the top of the plant, triangular in outline, and pinate with olligue, lanceolate, ante pinne, which are again pimatifid into similar but smalher swements; fertile semment short stalked, slightly overtopping the sterile, bitripinnate, with slender branches; bud smooth with the fertile segment recurved its wholn lomgth, the shorter sterile segment reclined npon it.

Like the Matricary Grape-Fern this plant shows a regular gradation of species from the form above deseribed down to the smallest specimens, which have the pinne nearly contire and the fertile segment simple. Rarely the sterile segment is only sub-sessile, and occasionally it overtops the fertile.

Soung plants of this species are not easily distinguished from those of B. matricaricefolium, of which it is by some authorities made only a variety. The points to be nost relied upon in the differentiation are, that B. lanceolatum fruits later (end of July or beginning of Angnsi), is nsually smaller and more slender, has the sterile segment sessile and deltoid with lanceolate, acute or sub-acute divisions, and the fertile segment is very short stalked. In addition there are the differences in vernation.

As yet recorded this plant is rare in Canada, and though found in Nova Scotia, New Brunswick and Quebee, is very local in all these provinces. In a field at Truemanville, Cumberland Co., N.S.-A.J. Irneman. Shady places in rich soil, Fredericton and Bass River, N. B.-Fowler. Magog, Que.-Goode.
4.-B. simplex, Hilch., (Hitchcock's Moonwort), Hook., Fl. Bor.-Am., II., 265. Gray, Man., 671. Watt, Can. Nat., IV, 364. Macoun's Cat., No. 2335. Ball, Trans. N. S. Inst. Nat. Sci., IV, 155. Eaton, Ferns of N. A., I, 121. Underwood, Our Nat. Ferns, etc., 71.
B. virginicum, var. (?) simplex, Gray, Man., ed. 2nd, p. 602. Lawson, Can. Nat., I., 292.

This is a smooth, non-erergreen, fleshy, little plant, 1-7 inches high, growing in meadows, damp rich woods, and on hillsides. Sterile segment petioled, placed below the middle of the plant (usually near its base), ovate in outline, and incised into three to five lobes, which are roundish, obovate, or semi-lunar, with the outer margin entire or obscurely crenulate; fertile segment long-stalked, usually much overtopping the sterile, and once or twice pinnate ; bud smooth, with the apex of both sterile and fertile segments erect.

As in B. lanceolatum and \(B\). matricaricfolium, this species exhibits a regularly graded series of stages of development, and from rar. simplicissimum, Lasch, the simplest form with the sterile segment very small and entire and the fertile simple, througl2 var. incisum, Milde, the common form and the one above described, and var. sub-compositum, Lasch, more decidedly pinnatifid with the lowest pair of pinnæ remote, slightly incised and petioled, the varying stages can be traced to var. compositum, Lasch, (the common western form), which is the perfectly matured plant, and has the sterile segment ternate with stalked, pinnately incised divisions, and the fertile segment fully bipinnate. Rarely the sterile segment is placed above the middle of the plant forming var. fullax, Milde.

The range of this species in Canada is from Nova Scotia to Lake superior and the Northwest Territory, though in the United States it extends south-westward to California. Windsor, Hants Co., N. S.-How. Truemanville, Cumberland Co., N.s.. var. simplicisst-mum.-A. J. Trueman. Petitcodiac and Fredericton, N. B.-Bailey. Dalhonsie, N. B., var. sub-composilum.-J. Fletcher. Temisconata, Que., near the sea shore.-Thomas. Quebee, Que. —Brunet. Montreal, Que.-D. R. Mc.Cord. Grenville, Argenteuil Co., Que. A small island at the east end of St. Joseph's Island, Georgian lay, Ont.-J. Befl. Very common in the meadows along the Kaministiquia River, above Fort William, Lake Superior, Ont. -Macoun. Between Cumberland Honse and Hudson Bay, N. W. Ter.-Drummond.
5.-B. ternatum, Swz., (Ternate Grape-Fern), Hook. and Baker, Syn. Fil., 448. Watt, as var. Americanum, Can. Nat., IV, 364. Macoun's Cat., No. 2340. Katon, Ferns of N. A.. I, 147. Underwood. Our Nat. Ferns, etc., 73.
B. rutafolium, A. Braun.
B. australe, R. Br.
B. fumarioides, Willd. Pursh, II, 655.
B. ternatum, Swz., var. lunarioides, Milde, Macoun's Cat., No. 2340, var. 1. Underwood, Nat. Ferns, 101.
B. lunarioides, Swz., Gray, Man., 672. Provancher, Flor. Can., 722. Fowler’s, N. B. Cat., No. 773. Lawson, Can. Nat., I, 292. Ball, Trans. N. S. Inst. Nat. Sci., IV, 156.

Osmunda ternata, Humb.
Botryapus lunarioides, Mx.
This is a half evergreen, very fleshy, smooth or somewhat hairy plant, commonly growing from 4 to 12 inches high, and found in meadows or on hillsides, and in low, rich
woods or sandy woodlands. Sterile seginent usually long petioled from near the base of the plant, evergreen, triangular or pentagonal in outline, ternate with the primary divisions stalked, as may also be the secondary or even the tertiary, and pinnately decompound; ultimate segments, varying from roundish-reniform to obliquely or broadly ovate, entire, cremulate, or toothed; fertile segment long stalked, usually much taller than the sterile, and bi-quadripinnate; bud pilose, with the apex of both segments bent down, with a slight curve inward.

This description inchdes the following varieties of Eaton's "Ferns of North America," vi\%, Var. lenarioides, which is small and has the barren segment two to four times ternate, and the nltimate segments distinet and roundish-reniform, (found only in Sonth Carolina and the (iulf states) ; var. rutcefolium small, with only the lowest segments distinct, and theme obliquelyovate, (in America fonnd only in Newfomdland, New Brunswick and the noighboring region): var, anstrule, which is large and much decompound, with the ultimatt w.gment. broadly ovate or roundish rhomboid, (found chicfly along the Pacific coast) ; and sub-var. intermedimm, ( \(B\). lumarioides of (rray's Mamal), similar but smaller and less decompound than anstrule (the vommon form through Canada, except in the extreme east and wes.)

Var. ollliynum, Mildu, (B. obliymm, Muhl.), has the sterile segment, with ovate-lanceolate or lamowate pimatitid secondary or tertiary divisions, the terminal lobes of which are long primind, but the lower ones roundish or obliquely ovate, the margins cremulate or toothecl.

Var disectum, Milde, (b. dissertum, Muhl.), has the divisions of the sterile segment compoundly and lamiately cut into small, narrow lobes and teeth, but is otherwise as in the last.

In somm sperimens collected by Prof Macom in dry, rich woods at Fort William, Lake Superior, Ont., and rofurable to the sub-var. intermedium, the sterile segment springs from about the middle of the plant, and is harely overtopped by the fertile.

In its variuus forms this species has a very wide range, extending quite across our ferritory from the Atlantic to the lacific and far northward. The following are some of the lowalities where it is reorded as found : Cape Poreupine; Boylston, Guysborough Co.; Lawdon, Hants Co.; and other places in Nova Scotia.-Rev. E. H. Ball. Bedford and Windsor, N.s.; Rapide de Femine, about six miles below Grand Falls, N. B., var. rutafo-liun.- P. Juck. Hather common in New Brunswick.-Fowler. Quebec, Que.-Wm. Sheppard. Three Rivers, Que.—Murlugan. St. Joachim, Que.-Provancher. Richmond and Drummond Cos., Que.-I. A. Bothurell. Waste places near l'rescott Junction, Ont.-B. Billings. Hamilton, Ont.-J. M. Buchan. Ieanington and Blenheim, Ont-Burgess. London, Ont.-W. Siumbers. Otiawa, Ont.; New Westminster, B. C., both sub-rar. intermedium and var. australe.-J. IVetcher. Along the north shore of Lake Superior, at Nipigon River, Red Rock, Fort William, etc.; frequent on the western prairies, especially toward the Saskatchewnn ; a limestone mountain in Peace River Pass, Rocky Mountains, Lat. \(56^{\circ}\). Mancoun. Mouth of Rainy liver, Lake of the Wonds.-G. M. Dauson. Var. obliquum seems to occur much less commonly than the type. New Germany and Oaklands Lake, Mahone Bay, N. S.-Rev. E. H. Ball. Dry, rich woods near Hopyard, Belleville and sandy soil, Jice Lake Plains, Ont.-Macoun. London, Ont.-W. Saunders. Abont Hudson Bay, York Factory and on the "Height of Land," in the Rocky Mountains.-Drummond. Var.
dissectum is recorded only from Mt. Uniacke, N. S.-Riev. J. B. Uniacke; and New Germany, Lunenburg Co., N. S.-Rev. E. H. Ball.
§ § Base of stalk which encloses the bud open along one side. Sterile division membranaceous.
6.-B. Virainianum, Swz., (Virginian Grape-Fern, Rattlesnake-Fern), Hook. and Baker, Syn. Fil., 448. Watt, Can. Nat., IV, 364. Eaton, Ferns of N. A., I, 253. Underwood, Our Nat. Ferns, etc., 73.
B. Virginicum, Willd., Gray, Man., 671. Pursh, II. 656. Provancher, Flor. Can1, 721. Lawson, Can. Nat., I, 292. Macoun's Cat., No. 2337. Fowler's N. 13 Cat., No. 772. Ball., Trans. N. S. Inst. Nat. Sci., IV, 156.

Osmunda Virginiana, L.
Botrypus Virginicus, Mx., Fl. Bor.-Am., II, \(27 t\).
This is a beantiful fern, with the leafy portion, when well developed, resembling in general appearance the foliage of some of the umbelliferous plants. It is non-evergreen, smooth or sparsely hairy, usually from \& inches to ? fert high, and grows in rich woods, or sometimes in bush clearings. Sterile segment sessiln alhout the middle of the plant or a little above it, broadly triangular, and ternate; primary divisions short-stalked, lateral ones orate, the terminal triangular, all once or twice pimate, then once or twice pinnatifd; secondary dirisions ovate-lanceolate; ultimate segments oblong, toothed at the apex; fertile segment long stalked, bi-quadripinnate: buds pilose, with the fertile segment recurved its whole length, the larger sterile segment reclined upon it.

The fertile spike of this species occasionally forks, and specimmens have been reported with the fertile panicle partly transformed into a sterile one. The plant known as yar. gracile, Hook. and Grev., (B. gracile, Pursh), is a very small and delicate form, 4 to \(\overline{5}\) inches high, with the fruiting panicle of few eapsules and the bud smooth or nearly so. Mr. Davenport, in Torr. Bull., Vol. X, p. 5, states that this form is probably rather the young state of \(B\). Virginiamum than a true variety, and that its bud being smooth or rery nearly so, the vernation of this species will probably prove to be, "bud smooth at first (in the youngest state), finally pubescent, the hairy covering of the mature bud having only gradually been taken on with age." A form of \(B\). Virginianum, the common one in places on the north shore of Lake Superior, where it grows in old clearings, is distinguished from the typical plant by its having a much less delicately membranaceous sterile segment, which at the same time is small in proportion to the size of the plant and comparatively little decompound. With this form the Rocky Mountain and British Cohmbian specimens agree in the rigidity and thickness of their sterile segments. In a specimen from the Island of Anticosti, Que., the sterile segment is placed at the upper part of the plant, the common stalk forming fully three-fourths of the height.

In Canada this fern is very abundant, stretching northward to near the Aretic Circle, and from the Maritime Provinces westward as far as the wooded country extends in the prairie region, and through the mountains to British Columbia. Not very plentiful in Eastern Quebec, it becomes much more so in the western part of that province, and find its true home in the rich woods of Ontario, where it is one of the commonest of ferns. It is less abundant in the wooded parts of Manitoba and the Northwest but extends far north and again becomes fairly plentiful in British Columbia. Not common in Nova

Scotia; Picton, Pictou Co.-A. H. McKay. Port Mulgrave, Strait of Canso.-Rev. E. H. Ball. Cape Blomidon, N. S.-Lawson. North Mountain, Annapolis, N. S.-Macoun and Burgess. Rather common in New Brunswick.-Fonler. Rocky woods, Jupiter River, Anticosti, Que.; north shore of Lake Superior, at Red Rock, Nipigon, Thnnder Bay, and up the Kaministiguia, Ont.; Fort McLeod, B. C. Lat. \(55^{\circ}\), and lower valley of Fraser River, B. C. -Macoun. Lower slopes of South Kootanie Pass, Rocky Mountains, Lat. 49.-G. Mr. Dawsom. The var. gracile is reported from Truemanville, N. S.-A. J. Trueman. Oxford House, N. W. Ter.-McTarish.

\section*{Order.-FILICES, Juss.}
Genus I.-POLYPODIUM, L., Polypody.

\section*{* Vains free.}
1.-1'. \viciale, L., (C'ommon I'olypody, Rock-Fern), Mx., Fl. Bor.-Am., II, 271. Pursh, II, his. (iray, Man, hise. Lawson, C'an. Nat., I, 268. Macoun's Cat., No. 2284. Fowler's N. 1F. ('at.. No. TH. Pall, Trams. N. S. Inst. Nat. Sci., IV, 149. Watt, Can. Nat., IV, 363. Eatom, Jirns of N. A., 1, 237. Underwood, Our Nat. Ferns, ete., 81. Provancher, Flor. (:am, 71:)

I'. vil!gure, L., var. Americmmm, Hook., Fl. Bor.-Am., II, 258.
P. Virginiunum 1 .

This is an evergrin spoites, varying in height from 2 to 15 inches, the smooth stipe usually foming somewhat less than one-half the length. It is commonly found upon rorks expensed wheded, hut sometimes upon dry banks, old logs, or in deep, cool Woods on errwing trew, after the mamer of \(P\) '. incamum. Rootstock chaffy, crecping close to the surface: fromls smooth, acuminate, leathery, usually one to three inches broad, orat. to oblons-linar in ontline, and divided nearly to the rachis into entire or somewhat sorrate, olntuse pinnar ; vius all free; fruit-dots about a line in diameter, placed midway betwent the midrib and margin of the segments.

The shape and amome of division of the frond and of its pimme are subject to considerable chance, and in Europe a number of varietics based on such changes have been described. Most of these have been found in America, but only two of them seem worthy of special notice, viz, var. Cambricum, found in the Eastern States, but of which no Canadian specimons have been seen, which is likely to occur also within our limits, and will be known by its being bipinnatifid throughout or in its lower half; and var. oceilentate, which has larger and thimer fronds than the typical form, with acuminate, often sharply serrate, pinne. Examples of bifid fronds are sometimes seen in this fern.

As a remedial agent, the roots of \(P\). vulgare were formerly esteemed for their purgative properties, and also as a pectoral in asthma, but they are now scarcely ever employed.

The Common Polypody is widely distributed throughout Canada, from the Atlantic to the Pacific, extending northward to Nelson and Slave Rivers, and probably to the Arctic Circle. It is especially abundant in all rocky districts, but seems to prefer the heavily-bedded Lower Silurian limestones, from the Niagara to the Trenton. Of very general distribution throughout Nova Scotia--Rev. E. H. Ball. Common near St, John,
but rare in northern counties of New Bruuswick.-Fowler. Grand Falls and Woodstock, N. B.-P. Jack. Common in Quebec.-Provancher, D'Urban, McCord, J. Bell, etc.; and in Ontario.-Macomn, Lawson, Billings, Logie, Burgess, etc. Plentiful in rocky parts of Mani-toba.-Macoun, Dawson, Burgess. Nelson River, Hudson Bay, N. W. T.-R. Bell. Rocky Mountains.-Macoun. In Britisḥ Columbia the common form is var. occidentale. -Macoun and Fletcher ; but specimens of the normal type are also found. This plant has been seen growing plentifully on old elm trees, near Belleville, Ont., near Heely Falls, Trent River, Northumberland Co., Ont., and near Amherstburg, Essex Co., Ont.-Macoun.
2.-P. falcatum, Kellogg, (Kellogg's Polypody, Hooked Polypody, Liquorice-Ferı), Eaton, Ferns of N. A., I, 201. Underwood, Our Nat. Ferns, ete., 81.
P. glycyrrhiza, Eatou.

It is a species with thin but evergreen fronds, by Hooker regarded as only a form of \(P\). vulgare, growing in the crevices of sea cliffs and in trees, and reaching a height of \(1+\) to 2 feet. Rootstock creeping, elongated, and chaffy especially at the advancing end; stalks commonly a little less than half the length of the fronds, slender, pale straw-colour when dry, and slightly chafly just at their artieulation with the rootstock; fronds broadly lanceolate, 9 to 15 inches long by 4 to 8 wide, long-pointed, smooth, and very deeply pinnatifid; segments numerous, tapering from broad bases into \(\operatorname{long}\), aemminate points, sharply serrate, and often falcate; sori medium-sized and nearer the midvein than the margin.

No marked variations are known in this fern, but the edges of the pinmare sometimes eutire, and again deeply incised. The root has a taste resembling liquorice, and is used as an emollient and expectorant.

With us this species is only found in British Columbia. Abundant on rocks along the coast, between Victoria and Esquimanlt Harbour, Vancouver Island; frequent in the hollows of living trees in the valley of the Fraser River, especially at the mouth of Harrison River.-Macoun.
* * Veins forming ample regular areolr.
3.-P. Scouleri, Hook. and Grev., (Scomler's Polypody, Leather-leaf Polypody), Hook. and Baker, Syı. Fil., 342. Eaton, Ferns of N. A., I, 193. Underwood, Our Nat. Ferns, etc., 81.
P. carnosum, Kellogg.
P. pachyphyllum, Eaton.

This is also an evergreen species, and ranges in height from 3 to 18 inches, growing usually on trees and stumps, but occasionally on the ground. Rootstock stout, creeping, scaly; stalks stout, smooth, generally a little shorter than the fronds; fronds smooth, leathery, fleshy when green, broadly ovate in outline, 2 to 6 inches wide, and divided to the rachis; pinnæ broad, linear-oblong, minutely serrate, and very obtuse, the terminal one distinct; reinlets mostly united to form regular areolæ; fruit-dots, often nearly the fifth of an inch in diameter, placed close to the midrib.

Except in size, \(P\). Scouleri seems to present little variation, but some British Columbian specimens examined had some of the pinnæ acutish, and in one case the terminal segment showed a tendency toward bifurcation.

Like P. falcatum, this ferm is in Canada restricted in its range to British Columbia, specimens collected in which province, at Alberni on the western side of Vancouver Island, by Mr. J. I. Anderson, have been kindly furnished for examination by Mr. Jas. Fletcher, of Ottawa. Vanconver Island and main land west of Coast Range.-Macoun.

\section*{Genus II.-GYMNOGRAMME, Desv., Golid-Fern.}
1.-(iymiolirame timangularis, Kaulf, (Califomia Gold-Fem or Gold-back), Hook., Fl. Bor-Am., H, 259. Macoun's Cat., No. 2285. Eaton, Ferns of N. A., II, 15. Underwood, Our Nat. Ferns, ete., 82.

This handsome evergreen fern, varying from 5 to 15 inches in height, grows on hillsides in the revices of rocks. liootsiock short, creeping, chaffy and covered with old stalk-bases; stalks slender, dark brown, polished, and densely tufted; fronds pinnate, deltoid of pentaronal in outline, measuring from \(1 \frac{1}{2}\) to 5 inches each way; lower pinne mull the larest, triangular, and twice parted, with the secondary pinne much elongated on the lown sidn; upher pimar lanceolate, and more or less pinnately lobed; upper surfac of the fromls smonth or rarely mimately gramular, but beneath they are covered with a gellow or white ceracous powder.

Stmomens examined display no varation, exept that British Cohmbian plants are rather more rigid and stunted in trowth than those from California. Var. viscosa, D.C. Faton, a Californian form, has the upper surface of the fronds viscid.

Thonerl common wourl in the United States, from California to Oregon, this fern in the Thminion orows only in British Colmonbia, and is of rare occurrence even there. Crevices of rocks on the grasey slopes ol' Cedar llill, a few miles from Victoria, Vancouver


> Gr-mus: lif-('HEII,ANTHES, Swz., Lip-TERN.
1.-('. (ibachmina, D. C. Euton, (Lace-Fern, Graceful Lip-Fern), Hook. and Baker, Syn. Fil., 189. Laton, Furns of N. A., II, 247. Underwood, Our Nat. Ferns, etc., 90.
( . restila, Brackenridge.
An whrgreen plant, 3 to 10 inches high, growing in dense beds among rocks. Rootstocks creeping, tangled, chaffy; stalks tufted, dark brown, scaly when young but soon beroming smonth; fronds about half as long as the stalks, linear-oblong in outline, bipinnate or sometimes, from the lobing of some of the pinnules at the base, partly tripinnate ; pinne numerons, crowded, and composed of about nine oblong-oval pinnules, which are about a line in length and smooth or very nearly so above, but clothed with pale, ferruginous, matted wool beneath; indusia rather broad, yellowish-brown, and formed of the continuously recurved margin of the pinmules.

Among British Columbian specimens supplied by Mr. Fletcher, and found growing with the common form, were some fronds differing from those figured in the "Ferns of North America," in being markedly more slender, with distant pinme and smaller and more distant pimules.

This is another British Columbian species reported only from Mount Finlayson, near Victoria, Vancouver Island.-J. Fletcher. Crevices of dry and exposed rocks a few
miles beyond Spence's Bridge, on the Thompson River.-Macom. At Pend d'Oreille River.-Lyall.
2.-C. Lanucinosa, Nutt., (Woolly Lip-Fern), Gray, Man., 659. Hook. and Baker, Syn. Fil., 139. Maeoun's Cat., No. 2286. Eaton, Ferns of N. A., I, 41. Underwood, Our Nat. Ferns, etc., 90.
C. vestita, Hook., not of Swartz and Willd.
C. lanosa, D. C. Eaton.
C. gracilis, Mett.

Varying in height from 2 to 8 inches, this evergreen fern grows in tufts on exposed roeks, where its short creeping root-stocks form a matted mass. Stalks densely tufted, slender, brownish-black, at first clothed with woolly hairs but at length nearly or even quite smooth; fronds about equal to the stalks in length, ovate-lanceolate in outline, and tri- or rarely bi-pinnate; pinnes deltoid and rather distant below, bnt oblong-ovate and erowded above; ultimate segments erowded, round, and not more than half a line in diameter, exeept the terminal which is obovate and larger, upper surface scantily tomentose but the lower covered with densely matted, whitish-brown, woolly hairs; indusia very narrow and formed of the almost continuous unchanged margins of the pimnules.

Among specimens of this fern from British Columbia was a form with the divisions, from the primary pinne down to the ultimate pimnles, rather distant, making the frond in part quadripimate; final divisions very minute, being less than half the size commonly seen. In some plants the whole frond presented this lax appearance, while in others only the lower pinne showed it, the rest of them being as in the typical form. Bifurcation at the apex of the frond is not uncommon in this fern.

The range of this plant in Canada is limited to British Columbia and the eastern base of the Rocky Mountains in the N. W. Territory. Abundant on ledges of rock between Morley and Old Bow Fort on the left bank of Bow River, N. W. T. ; crevices of rocks near Limestone Point on the North Thompson River, B. C.-Macoun. Rattlesnake Blaff, Black Canyon, above Ashcroft, B. C.-A. J. Hill. Alpine woods, Rocky Mountains.-Drummond. New Caledonia, Northern British Colnmbia, and north-west coast.—Donglas.

\section*{Genus IV.--PELLEA, Link, Chiff-Brake.}
* Fronds thin, veins readily seen.
1.-P. aracilis, Hook., (Slender Cliff-Brake), Gray, Mau., 659. Hook. and Baker, Sym., Fil., 145. Macoun's Cat., No. 2288. Fowler's N. B. Cat., No. 747. Watt, Can. Nat., IV, 363. Eaton, Ferns of N. A., II, 65. Underwood, Our Nat. Ferns, etc., 93.

Pteris gracilis, Mx., Fl. Bor.-Am., II, 262. Pursh, II, 668. Swartz, Syn. Fil., 99. Hook., Fl. Bor.-Am., II, 264.

Pteris Stelleri, Gmelin.
Pteris minuta, Turez.
Allosorus gracilis, Presl. Grey, Man., ed. 2nd, 591.
A. Stelleri, Ruprecht, Lawson, Can. Nat., I, 272.
A. crispus, var. Stelleri, Milde.

Cheilanthes gracilis, Kaulf.

Pellaa gracilis is a very delicate, pon-evergreen, little fern, 3 to 10 inches high, with fronds in general appearance a good deal like those of Cryptogramme acrostichoides, growing in the crevices of damp, shaded, calcareous rocks. The fertile and sterile fronds are somewhat mulike,-the former, which are the tallest, haring distinct, linear-oblong, almost entire ultimate segments, of which the terminal are much the longest, while in the latter they are decurrent, ovate or obovate, and cut or toothed. Root-stock slender, creeping, nearly naked; stalks slender, \(1 \frac{1}{2}\) to 6 inches long, brownish or pale-straw coloured, somewhat polished and sparingly chafly at the base; fronds (including both fertile and sterile) smonth, ovate or orateoblong in ontline, very delicate, and bi-tripinnatifid; veins mostly only once forked; indnsia broad, remaining rolled over the sori until they are ripe.

In some specimens of this fern from Owen Sound, Ont., the ultimate segments of the fiertile froms are almost narrowly linear, while in some from Ottawa, Ont., they are ovate, and the thrminal ones lout very little the longer.

This forn oreurs in British America from Labrador to British Columbin, thongh it is by no mons a very common species. Morris Falls, Restigonche, and Grand Falls, St. John, N. B-Fionler. Woodstork, N. B.-P. Jack. On crystalline limestone, mear the Lake of Thrw Mommans, River Roure, Que.-W. S. M. D'Urban. Cacouna, Que.-J. W. Dawson. Riviere du Loup, en bas, Que.-Dr. Thomas. Crevices of limestone rocks near Hemlonk Lakw, Ottawa, Ont.-I. Flotcher. Lakefield, Ont.-Mrs. Traill. Canada (Goldie), to the Naskathowan (Drummoml), in Mook., Fl. Bor.-Am. Crevices of rocks near L'Anse à Fallon, ('ape Rosiar, and N'te. Anne des Monts River, Gaspé, Que.; limestene rocks along the River Moria, mear Belleville, Ont.; (revices of rocks, Foster's Flats, below the whirlpool, Niagara Falls, Ont.; aloner th" Kaministiquia River, below the Kakabeka Falls, Ont., and on ledges at the falls: under the cliff at Red Rock and near Nipigon Station, on the Canada Pacific lailway, Ont ; wrices of the Huronian slates seventeen miles from Michipicotin, on the Magpie River lioad, (Ont.; Pare River l'ass, Rocky Monntains, N. W. T.-Macoun.
* * Fronds leathery, veins olscure.

2-1' atmprbplorea. Link, (Claỵton's Clifl-Brake), Gray, Man., 660. Lawson, Can. Nat., 1, 272. Hook and Baker, Syn. Fil., 147. Macoun's Cat., No. 2289. Watt, Can. Nat., IV. 343. Eaton, Ferns of N. A., II, 61. Underwood, Our Nat. Ferns, ete., 93.

Peris atronurpurea, L. Pursh, 11, 668.
Platyloma atropurpurea, J. Smith.
Allosorus atropurpmren, Kunze. Gray, Man., ed. 2nd, 591.
This evergreen speries grows from 2 to 18 inches high and on dry, though shaded, rocks, which are generally calcareons. Rootstock short and chaffy; stalks elnstered, wiry, dark purple, polished, and with usually more or less chafly hairs on them; fronds commonly 1 to 12 inches long, ovate or oblong-lanceolate in outline, leathery, and pinnate, or near the base, bipimate; fertile pinnules and simple pime nsually acutish and oblong-linear or linear (sometimes two inches long), while the sterile are obtuse and oval or oval-oblong (about half an inch long) ; at the base, the pinnules, of which the terminal are the longest, may be truncate, slightly cordate, or auricled on one or both sides; veins mostly twice forked; indusia rather broad, but not fully covering the sori.

Forking pinnules and fronds of this fern are not very rare, and sometimes the auricles at the base of a pinnule are as long as the pinnule itself. A form from near Asheroft, B.
C., has some of the pinnæ pinnatifid at the base into roundish or semi-lunate lobes, which are shorter than the bases of the pinne from which they have been cut off, and this form of pinna is irregularly scattered over the frond, several undivided ones separating sets of divided ones.
\(P\) atromurpurea is a widely distributed but very local fern, occurring in Canada from Ontario westward to British Columbia and northward to Great Bear Lake. Neighbourhood of Hamilton, Ont.-Judgr Logie. Limestone rocks, Elora, Ont.-C. McPherson. Crevices of rocks at the Whirlpool and Foster's Flats, Niagara Falls, Ont.; abundant at various places in crevices of dry limestonc rocks around Owen Sound and Colpoy's 13ay, Ont.; limestone cliffs, Clearwater River, north of Methy Portage, Lat. 57, N. W. Ter.; canyon near Buffalo Head Mountain, Rocky Mountains; crevices of dry rocks between Spence's Bridge and Cache Creek, B. C.-Macoun. Rattlesmake Bluff, Black Canyon, above Asheroft, B. C.-A. J. IIill. Canada to Bear Lake and the Rocky Momntains.Richardson and Drummond.
3.-P. Densa, Hook., (Oregon Cliff-Brake, Close-set Pellaa), Hook. and Baker, Syn. Fil., 149. Macoun's Cat., No. 2290. Eaton, Ferns of N. A., I, 77. Underwood, Our Nat. Ferns, etc., 94.

Onychium densum, Brackenridge.
This fern is evergreen, and found in clefts of rocks, usually at considerable elevation, varying from 4 to 12 inches in height. Rootstocks slender, tangled, and chafly ; stalks densely tufted, wiry, slender, chestnut-brown, and dull or but slightly polished; fronds forming usually only about one-fourth of the height of the plant, smooth, ovate or trian-gular-oblong in outline, leathery, and tripinnate, with the pinnir and pinmies densely crowded; ultimate segments linear, nearly sessile, very acnte or muronate, those of the fertile fronds entire with recurved edges, and those of the sterile (very rarely seen) broader and sharply serrate; veins mostly simple; indusia distinct, but rery thin and delicate.

Strangely enough, this plant is, in Canada, restricted to almost the two extremes of our vast territory, viz., Quebec and British Columbia. Found by Prof. Allen on Mount Albert, Shickshock Mountains, Gaspé, Que., in 1881, growing exposed to the sun on the steep walls of ravines, at 2,000 to 3,000 feet elevation-Eaton. Mount Finlayson, Vancouver Island, B. C.-J. R. Anderson. Abundant on cliffs along the Fraser Niver, abore Yale, and within the Cascade Monntains, B.C., notably at Chinaman's Blufl.-Mrarmm.

\section*{Gemus V.-CRYPTOGRAMME, R. Br., Rock-Brake.}
1.-C. acrostichoides, R. Br., (American Rock-Brake, Parsley-Fern), Hook., Fl. Bor.Am., II, 264. Lawson, Can. Nat., I, 273. Watt, Can. Nat., IV, 363. Laton, Ferns of N. A., II, 99. Underwood, Our Nat. Ferns, etc., 92.
C. crispa, forma Amerieana, Hook.

Allosorus acrostichoides, Spreng., Gray, Man., 660. Macoun's Cat., No. 2287.
A. crispus, Kaulf.
A. crispus, var. acrostichoides, Milde.

Gymnogramme acrostichoides, Presl.

Phorobolus acrostichoiles, Fee.
The Rock-Brake grows from 4 to 12 inches high, and forms dense tufts among rocks and in their crevices. It is a handsome species, with evergreen barren fronds. Rootstocks creaping and chaffy; stalks mumerous and straw-coloured, bearing fronds of two kinds; sterile fronds ovate in general outline, dark green, smooth, leathery, short-stalked, bi-quadripinnatifid, with orate or obovate, toothed ultimate segments; fertile fronds more lanceolate in gemeral ontline, thinner, yellowish, long-stalked (standing nearly twice as high as the sterite), less compound, with narrow linear or linear-oblong segments; indusia formed of the cideses of the segments, which are so far reflexed as to meet at the midrib and thus grive them a pod-like appearance.

Wecasionally, in this fern, the upper part of a fertile frond is sterile, and Mr. Davenmort. in tho "Jotamial (iazette", has reported specimens with the lower pimne sterile. Sombstril. fromb. from British Cohmbia show the ultimate segments lanceolate or almost linar-lanconlats and mery regularly and sharply serrate, while in others the fertile pimmules are remarkably long and narrow, the basal ones in some cases measuring nearly ont inth in lunth by only half a linn in width.

With us this phant is fomd from lake Ituron west to British Columbia, extending morthward \({ }^{\prime}\) whthin the Aretir Cirde. MeIeod's Itarbour, Manitoulin Islands, Ont.—T. Bell. C'mulnorland Jouse to Grat Rear Lake, N. W. Ter-Richardson. Between Eehimanioh libw and Oxford Jlousw, and around ('ross Lake and Nelson River, near Hudson Hay N. W. Tirr-h Bell. Nitony places in the locky Momains, but rare, to the sourees of the ('nlmblia liver. l? ('. (1) rummond), thence to the (irand Rapids of the Columbia (D) melns), in Thok., Fl. lins.-Am. Rocks along the Arctic coast, from Mackenzie River
 the ('asoade ramge and along the Fraser liver, IB. C.—Macom. Yale, B. C.-T. Fetcher. Wiewan libwr, Kootaniw Valley, liocky Montains.-G. M. Dazoson.

Gimus VI-ptiris L., Brake or Mracken.
1-l', Ascomiva, Le, (Common Brake or Bracken, Eagle-Fern), Mx., Fl. Bor.-Am., II, 262. S゙wart, sym. Fil, 100. Gray, Man., 658. Provancher, Flor. Can., 715. Lawson, Can. Nat., 1, 2Tl. IJonk. and laker, Syn. Fil., 162. Macomn's Cat., No. 2291. Fowler's N. B. Cat., No. 74t Thall. Trans. N. ‥ Ins. Nat. Sci., IV, 149. Watt, Can. Nat., IV, 363. Naton, Firms of N. A.. I. ef3. T'uderwood, Our Nat. Ferns, etc., 88.

Allosorus aquilinus, J'resl.
This is the coarsest and one of the commonest of our native ferns, growing from 1 to 5) feet high. It is nonerergreen, though in sheltered situations it stands a good deal of frost, and, while rommonest on dry, sumy hillsides, is also fomd in thickets and even in wet, thick woods. liootstock black, widely creeping at usually a considerable depth underground, producing only one frond each year, but having the scattered, woody remains of the stalks of several previous years attached; stalks light-brown, rigid, naked, the part between the rootstock and the point where they emerge from the ground swollen and darkened; fronds dull green, leathery, triangular in general outline, varying from a foot, or even considerably less, to three feet in length by nearly as much in breadth, upper surface smooth, the lower slightly pubescent, bi-tripinnate; principal primary
pinnæ long-stalked; secondary pinur (even the largest) nearly sessile, entire, pinnatifid or pinnate; ultimate segments oblong or oblong-linear, and obtuse; veins free and much forked; indusia delicately ciliate and nearly always more or less double.

Sometimes the divisions of the secondary pinnæ are entire (var. intcgerrima of Lawson in Can. Nat., Vol. I, p. 271), and sometimes they are hastate, or yet again their lobes may be entirely separate, thus making the frond quadripinnate. A young, barren state, occasionally developing into a large plant while retaining its youthful characters, has at different times been a puzzle to pteridologists, and forms var. elcipiens of the same author. Specimens with bifid pinne or pimmules, or even both, have been found at varions times. The rar. caudata, Hook., ( \(P\). caudata, L.), is by Eaton confined to the Gnlf States,-the forms found in Canada and the Northern States, and published as such, being wrongly socalled. This form has the fronds glabrous on both sides, and the pimnules and segments very narrow, the terminal ones much clongated.

Var. lanuginosa, Bong., (P. lanuginosa, Bory), confined to the western coast, has fronds decidedly pubescent or silky-tomentose beneath, lut is otherwise about the same as the typical plant. Mr. Fletcher found, near New Westminster, B. Columbia, specimens of this fern growing in swampy thickets over eight feet high, thongh on dry ground it was about the usual size.

No other fern possesses as much economic value as \(P\). nquilinu. The young fronds and rootstocks have been used as food by the inhabitants of different countries, and the dried fronds, chopped up with hay or straw, are in Wales given as fodder to horses. The ashes, which contain a large amount of alkali, have been used by glass-makrers, and in Switzerland the potash is extracted for commercial pmposes. The plant has also been employed for thatching, as a fuel, and as a packing material for fruits, while in medicine the root is by some considered extremely valuable as a vermifnge.

The Bracken, growing principally on sand or sandy loam, is found from the Atlantio to the Pacific. Very common in Nova Scotia.-A. H. Mchay. Growing everywhere in New Brunswick-Fowler. Jupiter River, Island of Anticosti, Que-Bucoun. Common everywhere in Quebec.- \(D, R . M c \operatorname{Cor} d\). Common in Ontario and in parts of Manitoba.Macoun, Burgess, etc. Saskatchewan plains, N. W. Ter.-Drummond and Macoun. Rocky Mountains.-Macoun. Very common, var. lanuginosa, on Vancouver Island and the inain land, British Columbia.-Macoun and Fletcher.

\section*{Genus VII.-ADIANTUM, L., Maidenhail.}
1.-A. pedatum, L., (American Maidenhair), Swartz, Syn. Fil, 121. Mx., Fl. Bor.-Am., II, 263. Pursh, II., 670. Gray, Man., 658. Hook. and Baker, Syn. Fil., 125. Provancher, Flor. Can., 714. Lawson, Can. Nat., I, 270. Macoun's Cat., No. 2292. Fowler's N. B. Cat., No. 745. Ball, Trans. N. S. Ins. Nat. Sci., IV, 149. Watt, Can, Nat., IV, 363. Eaton, Ferns of N. A., I, 135. Underwood, Our Nat. Ferns, etc., 87.
A. Americanum, Cornutus.
A. boreale, Presl.

The Maidenhair, probably the most beautiful of all our ferns, is a non-evergreen species, which attains a height of 6 inches to 2 feet, accordingly as grown in dry, somewhat exposed situations, or in low, rich woods (its proper home). Rootstock elongated, creeping, scaly,
about ns thick as a goose-quill; stalks erect, slender, dark brown, polished, and dichotomonsly forked, the recurved branches bearing four to sixteen pinne on their outer side, and forming fronds crescentic or nearly circular in outline ; pinnules numerons, smooth, springing alternately from the rachis by short stalks, (the terminal one of each pinna cuneate in shape, the lowest two or three triangular, and the intermediate ones oblong), apparently one-sided from their lower slightly-curved margin being entire, while the upper is cleft into lobes; tobes in sterile fronds toothed, but in fertile reflexed and altered to form the indusia.

Specimens of this form are ocrasionally seen with the pinnules much more deeply in-- isen than hisal, and others with most of them triangular, a combination of these two forms makine the var, Irimgulare of Me'Cord, in Can. Nat., Vol. I, p. 355. In some plants collmod in the shakshow Mountains, Qubbee, at an elevation of 4,000 feet, the primary brambus the little trmbury to rmurbation, making the general outline of the frond trianguar, while, by a sudm bembing inward on themselves of the ends of the branches, the largeppinnt appar to ber on the ontside of the fronds, and some of them are given the appearan" of beine bram hed. A somewhat similar abnormality is seen in specimens from lahndidd. Ont, whith have the two banches curved inward instead of outward,
 pinmul...





In C'manta the Mathenhair, hlourgh viry local in its distribution outside of Ontario,

 Finder Irehimald: Mill, l meer Musquodoboit, Halitix Co., N. S'; near Woodstock, N. B- J. Juk ('ommon in (burnec, experially in the western part. Quebec, Que.-Hon.

 *ti. 'Wh the plateall of Mt. Alhert, near a small lake, Shickshock Mountans, Gaspé, Que.; Vammurer I-land, Valw and other places in British Columbia-Macoun. Mt. Finlayson, natar Vintoria, lb, ('., a duply haniate form growing with the common one.-J. Fletcher. Gucu Charlott. Slands, B. C., specimens over two leet high.-G. M. Dawson.

> Gemus I Ih.-LOMARIA, Willd., Deer-Fern.
1.-Ls spicans, Dest., (Oregon Deer-Fern, Roman-Fern, Hard-Fern, Spiked-Fern), Hook. and loker, Syn. Fil., 178. Macoun's Cat., No. 2293. Eaton, Ferns of N. A., I, 249. Underwood, Our Nat. Ferns, ete., 95.
L. borcalis, Link.

Osmunda spricant, L.
Onoclea spicant, Hoff.
Blechnum spicant, Smith.
B. boreate, Swartz. Pursh, II, 669.

This is a species with dimorphous fronds, growing 1 to 3 feet high, and found on the ground, generally in rich, cool woods. Rootstock short, thick, and very chaffy; sterile fronds erect, smooth, leathery, very short-stalked, narrowly-lanceolate, tapering to both ends, and pinnatifid to the rachis into oblong or linear-oblong, upwardly curved, entire or obscurely crenulate, generally obtuse segments, the lower of which gradually grow shorter and shorter until they appear like little distinct auricles along the stalk; fertile fronds nearly similar in general outline, but long-stalked (greatly overtopping the sterile), and pinnate into fewer and more distinct segments, which are much narrower and somewhat longer than those of the barren fronds; veins free in the sterile fronds, but forming a series of areole on each side of the midrib in the fertile; indusia placed close to, but distinct from, the margins of the segments; sori, when ripe, mearly covering the backs of the pinnæ.

This is a somewhat variable fern, and in Europe a great many varieties, chielly founded on differences in the degree of divisions of the fronds and toothing of the pimer, have been described. Var. serratum, Wolleston, has the margins of the pinno strongly and doubly serrate, and a very peculiar form found in British Columbia, with the lower hall of the fronds sterile and the frnctification broken into short sori, formed Blectume doodioides, Hooker. A specimen from New Westminster, 13. ('., shows the lower fourth of a fertile frond sterile, but otherwise as in the typical plant. Forking fronds and pinner are not very uncommon in this fern.

The Deer-Fern, which extends along the Pacilic lrom California to Alaska, is in C'anada confined to the coast of British Columbia west of the coast range of mountains, where, however, it is abundant. Nootka, Vancouver Island.-Mertens. New Werstminsteri.-.J. Fletcher. Yale.-Macoun. Drew's Harbour and on Queen ('hartottr Islands, (i. II Dawson. Observatory Inlet.-Srouter. Pitt River.-A. J. Hill.

> Genus IX.-WOODWARDIA, Smith, Char-Fern.
1.-W. Virginica, Smith, (Virginia Chain-Fern), Swart\%, Syn. Fil., 11t. Pursh, II, 670. Gray, Manı, 660. Lawson, Can. Nat., I, 278. Hook. and Baker, Syın. Fil., 188. Macoun's Cat., No. 2318. Ball, Trans. N. S. Ins. Nat. Sci., IV, 149. Eaton, Ferns of N. A., II: 45. Underwood, Our Nat. Ferns, ete., 96.
W. Banisteriana, Mx., Fl. Bor.-Am. II, 263.
W. thelypterioides, Pursh, II, 670.
W. Chamissoi, Brackeuridge.

Blechnum Virginicum, L.
Doodia Virginica, Presl.
A handsome, non-evergreen fern found growing in swamps, and attaining a height of 2 to 3 feet, or in the South even 5 feet. Rootstock fleshy, 3 to 5 lines thick, extensively creeping, and chaffy at the advancing end; stalks, forming about one-half the height of the plant, erect, stout, and blackened for some distance above their origin, which blackness gradually changes to a dull brown above; fronds rather leathery, oblong-lanceolate in general outline, short pointed at the apex, and pinnate; pinnæ numerous, sessile, linear-lanccolate, and pinnatifid nearly to the rachis into oblong, minutely serrulate segments ; veins forming a single row of narrow areolæ, which emit free veinlets, along the
midribs of both pinnre and seginents; sori oblong, one to each arcole, and sunk in shallow cavities in the frond, which cavities are covered by the lid-like indusia.
W. Virginica is but very slightly variable and possesses no economic value. A specimen from Stony Lake, Ont., from the greater laxity of its parts, is more delicate in appearmee than nsmal, and has the pinnules obliquely triangular, about as broad as long, acutish, and almost entire.

This is ruther a rare plant and mene known to range west of Lake Huron. North West Arm and Dartmouth, Malifax Co., N. S.-Rev. E. H. Ball. Roadside between Caledonia and Liverpool, Queen's Co., and between Liverpool and Jordan River, Shelbourne Co., ․․-l’. Iark. Vear Gaspé Basin, Que.-M. J. Eden. Near Heek's Mills, ten miles from l'panolt, Augusta Tp., Ont.-B. Billings. Peat swamps of the Mer Blen near Otawa, Ont-J. Fletrher. Along the ('anada Atlantic Railway, near Eastmann's Springe, linsill ('o., (but.: very abmedat live miles north of Colborne village, Ont.; common in marshis at west emd of (iull lakr, Addington Co., Ont.-Macoun. Near Millgrove, Went-

(i,mus X-AN'LeNI!M, L., Npleenwort.
§ Imbuia suraght or nearly so attathed to the upper side of the vein, rarely a liw of them donble
* Fromblo char pimate.
\(t\) simall forms with a green radhis
1-A. Vhath: Mmlsm, (fimen splumwort), 心wart\%, Syn. Kil., 80. Hook., Fl. Bor.-Am.,



A. 'Trichomunes, L

A intormedium. I'renl.
The Gren riplenwort is adelicately herbareons, though evergreen, little fern, from \(2 \frac{1}{2}\) 10 10 indhes high. Growing in thlts in the clefts of shaded rocks. Rootstock short, creepint, and saly: stalk- slender, maked, reddish-brown at the base, but soon changing into a green which is contimed through the rachis; fronds \(1 \frac{1}{2}\) to 6 inches long by about \(\frac{1}{2}\) inch wide, linear-laneolate in outline, and pimate; pinnte short-stalked, romdish-ovato or rhomboidal, more or less cumeate at the base, entire on the lower margin, crenate or incised on the contsides; sori few and approximate to the midvein; indusia very delicate.

This fern is subjeet to slight variation in the shape and toothing of the pinnæ, and in England a bran hed form, var. multifidum, Moore, is not infrequent in places. Specimens from near St. John, N. B., agree with, except that they are even more robust than, var. robustum of J. B. Goode in Can. Nat.: Vol. IX, p. 300 ; but except for their sturdiness seem in no way specially noteworthy. Other specimens from the same locality show fronds with the pime remarkably distant.

The range of this species westward is given by Enton as New Brunswick to the Rocky Mountuins and British Columbia, while northward in the Rocky Mountains, according to Drumnond, it extends to Lat. \(56^{\circ}\). Very rare, Tettagouche Falls, Gloucester

Co., and Green Head, St. John Co., N. B.-Fowler. Becoming common about St. John, N. B., in moist shady clefts of limestone rocks.-G. U. Hny. Near Tadousac and at the Falls of Rivière du Loup, Que.-D. A. Watt. In a deep gorge on the road from Gaspé Basin to Fox River, and near Grand Etang, Que. ; on sea cliffs at Mont Lonis and at the Falls of Ste. Anne des Monts River, Que. ; base of Monnt Albert, Que. ; between Owen Sound and Sydenham Falls, Ont., and on both sides of the Falls on the perpendicular sides of narrow rents in the heavily bedded limestone, the crevices often not more than two fect wide although fifty feet deep; abundant on debris under limestone diffs within the Bow River Pass, Rocky Mountains, N.W.T.; on a limestone momtain, in Peace River Pass, Rocky Monntains, Lat. \(56^{\circ}\)-Macoun.
\(\dagger \dagger\) Small ferns with a dark rachis.
2.-A. Trichomanes, \(L\), (Maidenhair-Spleenwort, Dwarfépleenwort), Mx., Fl. Bor:Am., II, 264. Swartz, Syn. Fil., 80. Gray, Man., 661. Hook and Baker, Syn. Fil., 196. Provancher, Flor. Can., 715. Lawson, Can. Nat., I, 274 . Macoun's Cat., No. 2295. ]all. Trans. N. S. Inst. Nat. Sci., IV, 150. Watt. C'an. Nat., IV, 363. Eaton, Firns of N. A., I, 271. Underwood, Our Nat. Ferns, ete., 98.
A. melanocaulon, Willd. Pursh, II, 66ti.

This fern. which grows in the crevies of gemerally shated and moist rocks, is an evergreen, and varies from 3 to 9 inches in height. Rootstock short and sealy; stalks densely clustered, shining, and black, which colour is continued throngly the rachis; fronds 2 to 7 inches long by about a third of an inch, or rather more, wide, linar in outline, somewhat rigid, and pimate; pimmen morons, ahmosi sossile, romelishowal or oblong, obliquely wedge truncate at the base, entire or crenate, and artionlated to the rachis, which persists long after they have fallen off: sori few and rather distant from the midvein ; indusia delicate.

Like A. viride, this plant is somewhat variable in the characters of its pinns, which in var. delicatulum of Lawson in Can. Nat., Yol. I, p. 274 , are small and distant, while in var. incisum, Moore, which has been collected in Vermont and may be looked for in lastern Canada, they are incisely lobed with the lobes often crenate or serrate. The latter variety is the common form in California. Specimens with forking fronds are sometimes found.

The leaves of \(A\). Trichomanes, which are slightly mucilaginous and astringent, have been used to prepare pectorals for chronic conghs, and as a substitute for Adiantum Capillus-Veneris in the making of "Sirop de Capillaire."

This species may be said to be nowhere abundant with us, though generally distributed from the Atlantic to the Pacific. Hartley Water-fall, Pirate Marbour, Sirait of Canso, and on Gold River, near Chester, Lmenburg, N. S.-Rev. E. H. Ball. The "LookOut," Cape Blomidon, N. S.-Lawson. Near Threc-mile House, Halifux, N. S.--Sommers. Montreal, Que.-Maclagan. Chatham Tp., Argenteuil Co., Que.-D. R. McCord. Jupiter River, Island of Anticosti, Que.; Mont Lonis and up the Ste. Anne des Monts River, Gaspé, Que.; Shannonville, near Belleville, Ont.; crevices of Lamrentian rocks in the northern parts of Peterborough and Vietoria Cos., Ont.; Red Rock, Lake Snperior ; and westward to the Lake of the Woods; Clearwater River, near Methy Portage, N.W.T., Lat. \(57^{\circ}\); along Peace River, within the Rocky Mountains, and in Bow River Pass, Rocky Mountains-Macoun. Great Shuswap Lake and Cascade Mountains, near Yale, B.C.-
G. M. Dauson. Ottawa, Ont.-J. Fletcher. Lake Medad, near Hamilton, Ont.-Logie. Rorks just below the Falls and near the Whirlpool, Niagara River, Ont.-Burgess. East coast of Hudson Bay-R. Bell.
3.-A. ebenfum, Ait., (Ebony-Spleenwort), Swartz, Syn. Fil., 79. Torrey, Fl. N. Y., II. 492. (iray, Man., 661. Provancher, Flor. Can., 716. Lawson, Can. Nat., I, 276. Macom's C'at., No. Q29G. Eaton, Ferns of N. A., I, 21. Underwood, Our Nat. Ferns, - 1t... ! ! 4.
A. polypmetioides, Swart\%, Syn. Fil., 79.
A. Irichomanoides, Michx., Fl. Bor.-Aın., II, 265.

Acrostichum platyneurom, L .
A Aluder, Mequat, wergrem little plant, 6 to 20 inches high, growing on shaded rakts, or in "porl roky woods. Rootstock short, creeping, covered with old stalk-bases; stalk- Shirt dark brown or almost black, and polished, as is the rachis; fronds smooth, "romp to \(1 \frac{1}{2}\) inthre hood, lincar-lancolate in ontline, and pinnate; pinnæ numerous, …ila, huntly alurnate, surrate, oblong or lanceolate (often somewhat seythe shaped), dhand or amricled manally on the upper but sometimes on both sides of the base, and lumizntal, or the lower grachally beroming shorter and deflexed; sori mumerous and approximat. Wh ithe miduern: indusia very delicate.

In this shlonwort alan forking fronds as well as slight variations in the shape and tondhine of the pinner arr at times mot with, and a form with large fronds and incised phma is lar. stratum, Miller.

The number of lowatites known in camada for this fern are but few and confined to tho Broninw of Ontario. Fonky woods, Brockville, Ont-B. Billings. Crevices of Laurentian ruck a littlut of the north of Shamonville Station on the Grand Trunk Railway, aine milua ant of ledleville, Ont.: (iibmon Momatain, a mass of metamorphic rock, four miles whth if Brlavill, Prin" Edwarl Coo, Ont.-Maroun. Point Albino, Lake Erie, Ont.I). \(\because\) Iarg.
\(\dagger \dagger \dagger\) Tall ferms with a green rachis and linear-lanceolate, acute pinne.
4.-A. Avilstifohicu, M.r., (Narrow-leaved Spleenwort, Swamp-Spleenwort), Swartz, Syn. Fil, Tti. P'urhh, II, 66t. Gray, Man., 662. Lawson, Can. Nat., I, 275. Macoun's ('at, No. 2ess. Satom, Firns of N. A., H, 73. Underwood, Our Nat. Ferms, etc., 99.

A pycnocarpon, Spreng. \(^{\text {s. }}\)
This fern is found in low, rich woods, commonly varying from \(\frac{7}{2}\) to 3 feet high. The barren and fortile fromds are somewhat unlike and are very sensitive to frost. Rootstock smooth, crepping, and corcred with old stalk-bases; stalks erect, smooth, green when fresh but brownish when dry, and dark coloured like the rootstock close to the base; fromds 1 to 2 foet long by 4 to 8 inches wide, lanceolate or lanceolate-oblong in outline, sometimes much contracted at the base, smooth, and pimate; pinnæ numerous, shortstalked, linearlanceolate, acuminate, and entire or crennlate, those of the fertile fronds, which are taller than the sterile, being narrower and rounded instead of subcordate at the base as in the sterile; sori crowded, slightly curred, linear, and placed obliquely to the midrib; indusia firm.

Little variation is seen in this species, but occasionally the pinnæ are slightly serrate
instead of crennlate, and cases where the fronds are forked at the summit are not very uncommon. Fronds sterile in general appearance are frequently found bearing a few fruit-dots on some of the pinnse

The Swamp-Spleenwort, which in Canada is limited in its distribution to Qucbee and Ontario, is rare in the former Province, but very common in the sonth-western part of the latter. Nun's Island, Montreal, Que.-S. H. Parsons. Open woods, the Mountain, Montreal, Que.-D. R. McCord. Abundant in McKay's Woods, Ottawa, Ont.; frequent in rich woods in Ameliasburg, Prince Edward Co., and in rich soil in low woods along Cold Creek, Brighton, Northumberland Co., Ont.; very common in woods west of Collingwood and around Owen Sound, Ont.-Macoun. Low woods up the Don Valley, Toronto; redar swamps and rich woods, London, Ont.-Burgess. Rich woods, Amherstburg, Ont.Maclagan.

\section*{* * Fronds more than once pinnate or pinnatifid.}
5.-A. thelypteroides, \(M x\), (Silvery-Splenwort), Swartz, Syn. Fil., 8:. Pursh, II, 667, Gray, Man., 662. Hook. and Baker, Syn. Fil., 226. I'rovancher, Flor. C'an., 716. Lawson, Can. Nat., I, 276. Macom's Cat., No. 2299. Fowler's N. B. ('at, No. 749. Ball, Trans. N. S. Inst. Nat. Sci., IV, 150. Eaton, Ferns of N. A., II, 33. Underwood, Our Nat. Ferns, ctc., 100.
A. acrostichoides, Swartz., Syu. Fil., 82.

Athyrium thelypteroides, Desv., Watt., Can. Nat. 1V, 3tis.
Diplazium thelypteroides, Presl.
It is a rather pale-green, handsome, non-evergreen firn, commonly \(1 \frac{1}{2}\) th 32 feet high, growing in deep, rich woods. Rootstock smooth, creeping, covered with old stalkbases, and very like that of A. angustifolium ; stalks crect, tufted, rhafly when young, but smooth or nearly so when matner fronds 1 to \(2 \frac{1}{2}\) feet long ly 6 to 10 inches wide, lanceolate or lanceolate-oblong in general outline, sometimes much contracted at the base, often somewhat hairy on the veins, and pimate: pinme linear-lancerlate from an almost sessile base, acuminate, and deeply pimatifid; segments oblong, obtuse, and minntely toothed, the teeth often obscured by the edges having a tendency to turn under: sori crowded, oblong, slightly curved, the lowest one of a segment often double; indusia firm, and, when young, shiniug and silvery, giring from their abundance the same general hue to the whole under surface of the frond.

As a rule this fern is not variable, but a form oceurs in which the segments are crowded and deeply serrated, var. serratum, Lawson, Can. Nat., Vol. I, p. 277.

It is not a very common species eastward, but is very abundant in most sections of Ontario, and finds its present known western limit about Current River, Lake Superior. Windsor, N. S.—How. Halifax, N. S.—Dr. Lindsay. Mt. Dalhousie, N. S.-A. H. McKay. Strait of Canso; Boylston, Guysborough Co. ; and Rawdon, Hants Co., N. S.-Rev. E. H. Ball. Wentworth Station, Cumberland Co., and North Mountains, Kings Co., N. S.-P. Jack. Scarce in New Brunswick.-Fowler. Near Grand Falls and at Woodstock, N. B.P. Jack. Quebec, Que.-Hon. Wm. Sheppard. Montreal, Waterloo, Lennoxville, and in Argenteuil Co., Que.-D. R. McCord. Richmond and Drummond Cos., Que.-J. A. Bothwell. Very common in Ontario.-Macoun, Logie, Burgess, etc. Along the Canada Pacific

Railway，north of Lakes Huron and Superior，Ont．－J．Flelcher．Current River，Lako Superior．－Macoun．
§ § Indusia curved，often crossing the reins，and attached to both sides of them．

6．－A．Find－frmina，Bernh．，（Lady－Fern，Common Spleenwort，Female－Fern），Gray， Man．．Gri．Hook．and Baker，Syn．Fil．，227．Provancher，Flor．Can．，716．Macoun＇s Cat．， No．륵．Fowlur＇s N．B．（＇at．，No． 750 ．Ball，Trans．N．S．Inst．Nat．Sci．，IV，150．Eaton， Jerns of N．A．，II，首：．Tuderwood，Our Nat．Ferns，etc．， 100.

A．athyrium，Sureng．
Polynowlium Filicicfoemime，L．
Athyrium Fitix－loemina，Roth．，Lalwson，Cim，Nat．，I，277．Watt，Can．Nat．，IV， 363.
Athyrium asplenioides，Desv．
Aspillum Fillic－foeminu，Swart\％．
Aspudium asplemiendes，ぶwart\％l＇ursh，II，bi6t．
Nophordiam Filic－foemina，Mx．，Fl．Bor．－Am．，II， 268.
Nephrodinu nsplenioides，Mx．，Fl Mor．－Am．，II， 268.
Thu haty－Fern is a ＂ommon and most polymorphons non－evergreen species，which Ircos－in dusw tufts in mosist fields and woods，where it reaches a leight of \(1 \frac{1}{2}\) to 4 feet．
 and coverex with whd stall－han＇s．lat is stonter＇：stalks smooth，erect，slightly chaffy at the

 shmally mush marmwel at the base，hipimate；pinnar numerons，short－stalked，and lan－
 distimet of conllant on the marowly winged secondary rathis；sori short，placed near the milvein，at lateth comflumt over mearly the whole mader surface of the fronds，to which they giw a tark hown colour：indusia almost straight or varionsly curved，delicate，and usmally lacuratociliato．
l＇robably no other firn is more variable than this，Mr．Moore having described nearly s．venty varicties as ocurring in（ireat liritain，all of which there is no reason shonld not be lound with us，as indeed many of them have been．The following are the leading forms：Viar．uncustum，whinh is so distinct as to have merited description as a species being alone rotained as a crood varioty．Var．exile．D．C．Eaton，is a depanperate form，with fronds only 3 to 6 inches lone，and pimate，with the pinna deeply cut into segments，which are frw toothed at the cnds．Var．Intifolium，Hook．，has oblong－lanceolate，nearly bipinnate fronds， 2 to 8 feet long，having the pinure oblong－linear with a narrowly－winged secondary rachis，and pimnles broadly ovate，foliaccous，obtuse，and often doubly serrate．Var． cyclosorum，Ruprecht，has the fronds very large，often five feet high，and bipinnate；the long pinnules pinnatifid almost to their midrein；sori roundish，and indusium very short． Var．molle，Moore，is small，with ovate－lanceolate，almost bi－pinnate fronds，the lower pair of pinne distant，and the sori distinct．Var．lacinialum，Lowe，has small fronds and irregular laciniated segments．Var．rigidum，Lawson，has small，rigid fronds and the sori confined to the lower part of each pinnule，while var．cristatum，Wolleston，has multifid apices of fronds and pinne．

Var. angustum, D. C. Eaton, (Aspidium angustum, Willd., Asplenium Filix-foemina var. Michauxii, Mett.), has narrow, rigid, nearly bipinnate fronds, 1 to 3 feet long, with the pinnæ narrow and obliquely ascending or curved upward; pimnules crenate or serrate, and sori short and abundant. Var. rhoeticum, of the Davenport Catalogue, and of Lawson, in the "Cauadian Naturalist," is covered by this form.

The rootstock of A. Filix-foemina possesses anthelmintic properties similar to those of the Male-fern, but in a somewhat lessened degree.

This is one of our most widely diffused ferns, being common in most parts of British America, from the Atlantic to northern British Columbia. In the northern woods it is particularly luxuriant, and does not produce the contracted forms seen at the south, where the atmosphere is less charged with moisture. Quite common and widely distributed throughout Nova Scotia.-Rer. E. H. Bell. A very common and variable fern in New Brunswick.-Fowler. Very common in Quebec and Ontario.-Lauson, WreCord, Macoun, ete. Cominon in wooded parts of Manitoba and the Northwest Territory, in the Rocky Mourtains and in British Columbia.-Macoun. Throughont Canada to the Saskatchewan and Alpine woods of the Rocky Mountains. - Drummond. The varr. augrostum, though less common, is not extremely rare, especially in Ontario. Salt Mometain, Whycocomagh, N. S. Macoun and Burgess. Farmersville and Delta, Ont.-Lawson. Ottawa, Ont.-J. Fetner. Belleville, Ont.-Macoun. London, Ont.-Burgess.
[Note.-The crediting of Asplenium marinum, L., to New lhrunswick, in Honker's " Flora Boreali-Americana," on the authority of E. N. Kencall, is now know to have been a mistake, and by Eaton, in "Ferns of North America," it is exeluded as a North American specics.]

\section*{Genus XI.-SCOLOPENDRIUM, Smith, Mart's-Tongive.}
1.-S. vulgare, Smith, (Common Hart's-Tongue, Caterpillar-Fern), Gray, Man., 662. Hook. and Baker, Syn. Fil., 246. Lawson, Can. Nat., I, 278. Macoun's Cat., No. 2319. Eaton, Ferns of N. A., I, 247. Underwood, Our Nat. Ferns, ete., 100.
S. officinarum, Swartz. Pursh, II, 667.

\section*{Asplenium scolopendrium, L.}

An evergreen and rare American fern, 7 to 24 inthes high, found growing in tults in wet, shaded ravines on the debris of limestone rocks. liootstock chaffy, short and erect, or long and inclined, with adherent stalks, which are also very chaffy; fronds brightgreen, supported on usually short stalks, 6 to 18 inches long by 3 to 2 inches wide, oblongligulate in outline, from an auricled heart-shaped base, simple with entire or madulate margins, obtuse or acute at the apex; sori linear, placed almost at right angles to the midvein, in pairs, side by side, one on the lower side of one veinlet, the other on the upper side of the next veinlet below, thus appearing to have a double indusium opening along the middle.

Variations in this fern are very common in Enrope, but none of them, with the exception of forking fronds, an approach to var. multifulum, Moore, have, so far as known, been found within our limits.

The leaves of \(S\). vulgarc have been employed as astringents in hemorrhages and fluxes, as solvents for renal calculi and as applications to burns, but their properties are feeble, and they have fallen into disuse.

One of the rarest of American ferns, being found in the United States only in central New York and Temnessee, and in Canada at two widely separated points in New Brunswick and Ontario. Very rare, near Woodstock, N. B., 1881.-Jas. Sutton. Abundant ou debris under the cliffs at Sydenham Falls and other localities around Owen Sound, Ont.Mrs. Roy.

\section*{Grmus XII.-CAMPTOSORUS, Link, Walking-Leaf.}
1.-('. आ11\%onnyldus, Link, (Common Walking-Leaf), Gray, Man., 663. Lawson, Can. Nat., I, 279. Macoun's Cat., No. 2391. Eaton, Ferns of N. A., I, 55. Underwood, Our Nat. Perns, "tr., 100.

Asplcninm rhizophyllum, L., Provancher, Flor. Can., 715.
crolopendrimm thizophyllum, Hook.
Antigromma rhizophylla, J. Smith.
An evergreen species, it to 17 inches high, growing in tufts on shaded, mossy lime-- bone, rarely samkiont or granitic, rorks. Rootstock short, creeping, and covered with old stalk-hases; stalks shonder, hurbaceous, dark brown near the base but green above, and narrowly wingen; fronds leathery, smonth, decumbent, lanceolate from a cordate and aurichul or hastafo hase, tapering above into a long and rery slender prolongation, which wfon rons and gives rise to new fronds, and these in turn to others, so that two or three andrations may be commed together; in size they measure from 4 to 12 inches long by \(\frac{1}{2}\) to 1 ind wide just above the auricles, and their margins are entire or undulate; veins with frow apices aloner the margins of the fronds, are reticulated near the midrib, and have the linear sori varionsly sitnated on either side of them.

The variation in this fern is considerable, especially as regards the size and shape of the auricles, whith arw sometimes almost absent, at others prolonged to the extent of even sewral in hes, orasionally rooting at their tips, and yet again so separated from the base of the frond as to make it appar three-cleft. Forking fronds are not rare, the bifurcation generally taking place at the tip, but sometimes from near the auricles. Mr. Arthur, in the "Lootani"al (Gazette", Yol. VIII, p. 199, has described a form which he calls var. intermedium. It is distinguished by the absence in the stipe of a thread of dark sclerenchyma characteristic of the nomal form, while the fronds, which are thinner and narrower and have acute bases without proper auricles, are more simply veined. Specimens much resembling this form have benn found by Mr. liletcher at Ottawa, Ont. Fronds with irregularly incised margins have also been noticed from time to time.

Except in a few localities in Ontario, rather a rare Canadian fern. Sorel, Que.-Lady Duthousic. Montreal Mountain, Que.-Provancher. L'Abord-à-Plouffe, on the River Jesus, rear of the Island of Montreal, Que.-D. R. McCord. Isolated rocks iu a shady pasture, Hemmineford. Que.-J. B. Goode. Limestone rocks, west of Hull, and in a ravine near King's Mere, Chelsea, Que.-.J. Fletcher. Rocky woods a mile north-west of Oxford Station, on the Ottawa \& Prescott Railroad, Ont.-B. Billings. Crevices of limestone rocks at the railway bridge, Shannonville, and on boulders beyond the Big Spring, on the Marmora Road, Hastings Co., Ont. ; rery abundant on broken masses of rocks at Foster's Flats, below the Whirlpool, Niagara Falls, Ont.; in great profusion at Owen Sound, Ont., on boulders and ledges under the cliffs on both sides of the Bay, and at Sydenham Falls.-

Macoun. Mountain side west from Hanilton, Ont.; also at Aneaster and Lake Medad.Judge Logie. Canada (Goldie), to the Saskatchewan (Drummond), in Hook., Fl. Bor.-Am.

\section*{Genus XIII--PHEGOPTERIS, Fee, Beech-Fern.}
* Fronds triangular; rachis winged.
1.-P. polyponioides, Fee, (Common Beech-Fern, Beech-Polypod, Mountain Polypod), Gray, Man., 663. Macoun's Cat., No. 2302. Fowler's N. B. Cat., No. 751. Ball, Trans. N. S. Inst. Nat. Sci., IV, 150. Eaton, Ferns of N. A., II, 217. Underwood, Our Nat. Ferns, etc., 101.

Ph. vulgaris, Mett.
Ph. connectile, Watt, Can. Nat., IV, 363.
Polypodium Phegopteris, L., Swartz, Syn. Fil., 40. IIook., Fl. Bor.-Am., II, 208. Prorancher, Flor. Can., 713. Lawson, Can. Nat., I, 269. Hook. and Baker, Syn. Fil., 308.

Polypodium connectile, Mx., lil. Bor.-Am., II, 271. Pursh, II, 659.
Polystichum Pluegopteris, Roth.
A non-evergreen plant, from 6 to 20 inches high, found in damp, especially rocky, woods and on hillsides, seeming most at home in an atmosphere surcharged with moisture. Rootstock slender and extensively creeping ; stalks usnally longer than the fronds, slender, erect, darkened close to the base but green above, stramineous when dry, and somewhat hairy, especially toward the top ; fronds acmminate, longer than broad (8, to 8 by 2 to 6 inches) pimatifid, hairy on both surfaces, but especially beneath, with scattered scales intermixed; piune sessile, linear-lanceolate, acuminate, deeply pinnatificl, the lowest pair separated from the others and tumed obliquely downward and forward; nltimate segments oblong, obtuse, entire or cremulate, the basal ones decurrent and adnate to the main rachis, on which they form irregnlar wings; sori borne near the margin of the segments.

This seems to be one of the least variable of our ferns. The apices of the fronds or some of the pinne are occasionally forked, and specimens are seen remarkably pubseent and scaly along the midribs.

The Beech-Polypod is commonest in the Eastern Provinces, whence it ranges to west of Lake Superior, and, according to Richardson, to the Saskatchewan, appearing again in the Rocky Mountains. It is also known in places to extend high northward, being found in Greenland south of the Arctic Circle, and on the west coast in Alaska and Unalaska. Common and generally distributed throughout Nova Scotia.-Rev. E. H. Ball. Common in New Brunswick.-Fowler. Common in Quebec.-D'Urban, Brunet, Thomas, Bothwell, etc. Very luxuriant on the Island of Anticosti and shore of the lower Nt. Lawrence, Que ; abundant around Lake Superior, but uncommon about Lake Nipigon, Ont.; along Lake Manitoba and the Porcupine Mountains, Man., but rather scarce.-Macoun. Not common in Eastern Ontario, and in the south-western peninsula seems to be replaced by \(P\). hexago-noptera.-Macoun and Burgess. Prescott, Grenville Co., and Osgoode Station, Russell Co., Ont.-B. Billings. Ottawa, Ont., and along the Canada Pacific Railway north of Lakes Huron and Superior.-J. Fletcher. Near the sources of the Columbia on Portage River, Rocky Mountains, Lat. \(52^{\circ}\).-Drummonel.

2-P. mexagonoptera, Fee, (Hexagon Beech-Feru), Gray, Man., 663. Macoun's Cat., No. 2304. Faton, Ferns of N. A., II, 147. Underwood, Our Nat. Ferns, ete., 101.

Polyporlium hexugonopterum, Mx., Fl., Bor.-Am., II, 271. Pursh, II, 659. Swartz, Syn. Fil., 40. Lawson, Can. Nat., I, 268. Hook. and Baker, Syn. Fil., 309.

Polyporium Phegopteris, var. majus, Hook.
This species, which often closely resembles \(P\). polypodioides, is non-evergreen, grows from 1 to \(2 \frac{1}{2}\) feet high, and inhabits rich, open woods. Rootstock slender, extensively creeping, the newer part moderately chaffy; stalks usnally exceeding the fronds, slender, erect, sattered, dark-coloured and sealy close to the base but green and naked abore, pale straw-olour when dry; fronds acuminate, 5 to 12 inches long and as broad or broader, pinnatifid. slightly hairy on both surfaces, often finely glandular beneath, where also are a lew sales along the midreins; pinner sessile, lanceolate, acuminate, and decply pinnatitid, thu lowest pair in living plants turned obliquely forward but not deflexed; ultimat, segments oblong and obtuse, the middle ones of the lower pinne elongated (often muth to) and lobed, the rest entire or cremate, while the basal ones are decurrent and adnate 10 the main rachis, the polygonal wings of which they form ; some of the sori usually ramote from the margin of the segments.

Nonttypical specimens of this ferm are often very dillleult to separate from \(P\). polypodiwites. As a rulo it is more southern in its range, is much larger, and has somewhat thicker and mone thally rootstocks, while its fronds, which are thimer, usually less hairy and araly, and nearly always as brod as or broder than long, have the lower pair of pinne longer and broader than the pair next above. The lower pimne too are much broader in the middle than at the base, and the segments are more toothed.

The variations ol' this species serm to be confined to forking of the fronds and pinnæ, and at ereater or las amount of pubescence. Occasionally specimens are seen with the wing interrupted betwern the first and second pairs of pinne.

Rare in Quebre and kastum (ntario, but farly abundant in parts of Central Ontario.
 Islamd, Montreal, Que.-Š. II. Parsons. Mirwin's Woods, near l'rescott, Ont., rare.-B. billings. Amongst boulders in a piece of rocky woods two miles from Campbellford, Norlhmberland Co., Out.; thickets and hillsides, Port Stanley, Lake Eric, Ont.-Macoun. ('hippewi, Ont.-Muclugrm. Rich woods, London, St. Thomas and Windsor, Ont.-Burgess. l'ury Nound, Muskoka District, Ont.-.Judge Logie.
** Fronds triangular but ternate with the three divisions stalked; rachis wingless.
:B-P. Dryourbits, Fee, (Oak-Fern, Ternate-Polypod), Gray, Man., 663. Macoun's Cat., No. 230\%. l'owler's N. 13. Cat., No. 752. Ball, Trans. N. S. Inst., Nat. Sci., IV. 150. Watt, Gan. Nat., IV, 36\%. Laton, Ferns of N. A., I, 157. Underwood, Our Nat. Ferns, etc., 101.

Polypodium: Dryopteris, 1., Swartz, Syn. Fil. 41. Hook and laker, Syn. Fil., 309. Provancher, lilor. Can., 713. Lawson, Can. Nat., I., 269.

Polypodium calcareum, Pursh, II, 659.
Nephrolium Dryopteris, Mx., Fl. Bor.-Am., II, 270.
Polystichum Dryopteris, Roth.
The Oak-Fern is a beautiful, non-evergreen plant, growing from 6 to 24 inches high,
in dry or rocky woods. Rootstock very slender, widely creeping, slightly chaffy on its newer parts and especially toward the adrancing end, giving off but few rootlets; stalks usually exceeding the fronds and sometimes very much so, seattered, ereet, very slender, brittle, dark-colored and chaffy near the base but smooth and green above, stramincons when dry; fronds light green, very thin and delicate in texture, smooth, 3 to 12 inches loug by about the same or even a little greater breadth, ternate into stalked, widely spreading, triangular, pinnate divisions; middle division the broadest and symetrical, while the lateral have the pimme on the lower side the longest, often very markedly so ; pinne sessile and pimatifid, or even on the middle division bi-pinmatifid; ultimate segments entire or toothed; sori near the margin.

Like the rest of the genus, \(P\). Dryopteris is subject to but little variation. Stonter, taller, and more rigid forms, which are not uncommon, are described as var. erectum by Lawson in Can. Nat., Vol. I, p. 269.

Common in all or nearly all rocky woodlands from Nova Sootia to British Columbia, and extending northward to the Arctic Circle. Not one of the commonest ferns, but to be met with in most localities in Nova Neotia-Rev. E. II. Ball. Common in New Bruns-wick-Fowler. Common in Quebee.-Murlugan, D'Urban, Proruncher, Maroun, etr. Common in rocky parts of Ontario.-Billings, Mucoun, Burgess, ete. Along the Canada Pacific Railway north of Lakes Huron and Superior.-I. Flether. Common along Lakes Manitobat and Wimipegosis, and in the Riding, Dnck, and Portupine Momtans, Man, : Rocky Mountains, specimens over 12 inthes wide-Mtacoun. Echimamish River to Uxford House, N. W. Ter.,-R. Bell. Rocky Mountains and Great Bear Lake, lat. 66 . -Ifook, in Fl. Br.-Am. British Colmmbia-G. M. Dureson.
4.-P. calcarea, Fee, (Limestone Beech-Fern, Limestome Polypod), Eaton, Ferns of N. A., II, 277. Underwood, Our Nat. Fems, ete., 102.

Ph. Robertiana, A. Braun.
Ph. Dryopteris, Fee, var. Robertiemum, Davenport.
Polypodium Robertianum, Inoff., Lavvson, Can. Nat., I, 270.
Polypodium calcareum, Smith.
Polypodium Dryopteris, var culcareum, Gray, Man., ed. 2nd, 590.
This, being a more rigid, is a somewhat less graceful plant than P. Dryopteris. It is a non-evergreen species, from 10 to 20 inches high, found growing on limestone rocks. Rootstock slender, widely creeping, slightly chatfy especially at and toward the adraneing end; stalks scattered, slender, glandular, chaffy and darkened near the base; fronds herbaceons but rigid, minutely glandular, 4 to 8 inches long by nearly the same width, ternate into stalked, pinnate divisions, the lateral of which have the inferior pinner somewhat longer than the superior; pinnæ sessile and pinnately lobed or divided; ultimate segments oblong, obtuse, crenately toothed, or, in very large specimens, again lobed; sori copious and submarginal.

This fern is closely related to \(P\). Dryopteris, but is distinguished by its glandular stalks and fronds, its greater rigidity, and by its having smaller inferior pinnæ on its lateral divisions.

Though long attributed to America, the Limestone Polypod was not clearly known as a native until a few years ago, when it was collected on slaty rocks in eastern Minne-
sota. Abundant on ledges of limestone abont two miles up the left bank of the Becseie River, Islmud of Anticosti, Que., very typical specimens, 1883.-Macoun. Recorded by Mr. Mc.Cord in Can. Nat., Vol. I, p. 355, as found at Sorel, Que., by Lady Dalhonsie. Lake of the Woods, Manitoba, collected by G. M. Dawson in 1873, but catalogued as P. Dryoperis. Abont one hundred miles north-east of lake of the Woods, near Lonely Lake, (Lake Scul), (Ont-R. Bell.

Note.-This fern has been placed as a distinct species in deference to the opinions of Mide, Faton ant other distingnished pteridologisls, but from personal observation of the typical plant, as well as a number of specimens which seem to connect it with P. Dryoperis, on" is hed 10 the same opinion as that expressed by Mr. Davenport, who, agreeing with llooker and Baker, ramks it, in the supplement to the Davenport Herbarium Catalogue, only as a varicty (Rolertianum) of llyopteris.]

> * * Fronds obloncr-lanceolate; rachis not winged.
 Wool, Wur Nat. Frins, blt, 101.

Pomphtium npestre. Hoppe, Hook. and Baker, Syn. Fil., 311.
Polypertiam hueticum. L .
Aspidium nlpestre, Swart\%
Aspidiam rlumtirum, ぶwart\%.
Ayplonium ulpestre, Matt
This sum ins ditlers erreatly from the resi of its genus, and has a strong general resembanm to Aspleninm filix-fomine, from which, however, it is easily distinguished by the abmene of indusia. It is non-wrormern, and grows in tults, reaching a height of 16 to 34 imhes. Kontsomk short, wet or obliture, thickened with old stalk-bases; stalks 4 to 10 in hos lomg. batk and slighty watly at the hase but pale brown and smooth above ; fronds 1 to : leet long hy 3 to 6 inches wide, acmminate, membranaceous, smooth, pinnate ; pimer deltuddameolate in outline, twice parted ; pimules oblong-lanceolate with sharply toothed uhtimate segments; sori copious and submarginal.

So Canalian pecimens of this plant have been obtainable for examination, but in a list of kirw sperinmen it is reported as having been found in the Caseade Mountains of British Cohmbia, about Lat. 49, hy Dr. Lyall.

\section*{Grmis XIV.-ASPIDlCM, Suartz, Shemd-Fern, Wood-Fern.}
§ Indusium kidney-shaped or round, with a narrow sinus.
* Fronds thinly membranaceous, decaying in antumn ; stalks and slender, creeping rootstocks nearly naked Veins simple or once forked.
1.-A. Novebobacense, Suz., (New York Shield-Fern), Pursh, II, 661. Gray, Man., 664. Macoun's Cat., No. 2315. Fowler's N. B. Cat., No. 754. Ball, Trans. N. S. Inst. Nat. Sci., IV, 151. Eaton, Ferns of N. A., I, 49. Underwood, Our Nat. Ferns, etc., 104.
A. thelypterioides, Swart\%, Syn. Fił., 57.
A. thelypteris, Hook.
A. thelypteris, var. Noveboracense, Willd, Provancher, Flor. Canı, 718.

Lastrea 'Noveboracensis, Presl. Lawsou, Can. Nat., I, 284.
Polystichum Noveboracense, Watt, Can. Nat., IV, 363.
Polypodium Noveboracense, L.
Nephrodium Noveloracense, Desv.
Nephrodium thelypterioides, Mx., Fl. Bor.-Am., II, 267.
Dryopteris Noveloracensis, Gr.
A light green, very delicate fern, withering at the slightest frost, which usually grows in grassy swamps and moist woods or thickets, where it reaches a height of \(1 \frac{1}{4}\) to \(2 \frac{1}{2}\) feet. Rootstock rather slender, creeping just beneath the surface of the ground; stalks few, generally approximated, slender, brownish-yellow, naked except when very young, about a third the length of the fronds; fronds erect, lanceolate, tapering both ways from the middle, 1 to 2 feet loug by 3 to 6 inches wide, acuminate, ciliate and finely hairy along the midribs and veins, pinnate; pinnæ sessile, lanceolate, acuminate, deeply pimatifid, the lowest two or more pairs gradually shorter and deflexed until the lowest are often mere auricles; segments flat, oblong, obtnse, entire; veins mostly simple; sori small, distinct, marginal ; indusia glandular.

Occasionally specimens present themselves in which the segments are slightly toothed, the basal ones being sometimes cnlarged and more deeply divided, while forking fronds are not extremely rare. A var. suaveolens, D. C. Laton, is found in New York, but has not been noticed as yet in Canada. It is sweet scented in drying and has the fronds narrower and more rigid with the under surface sprinkled with minute glands.

This fern is in Canada most common in the Maritime Provinces and finds its western limit in Ontario. Common in swamps and moist places in Nova Scotia.-Rer. E. H. Ball. Common in New Brunswick.-Fowler. Quebee, Waterloo, Montreal, Que.-IIon. Wm. Sheppard. Richmond and Drummond Cos., Que.-J. A. Bollurell. Mome Belœil, Que.Maclagan. Ottawa, Ont.-J. Fletcher. Prescott, Ont., common.-B. Billings. Kingston and Lakefield, Ont.-Mrs. Traill. Abundant in pine woods, Seymour, Northumberland Co., Ont.-Macoun. Hamilton, Ont.-Julge Logie. Toronto, London, Windsor, and Port Cockburn, Muskoka District, Ont.—Burgess. Owen Sonnd, Ont.-Mrs. Roy. Gore liay, Manitoulin Islands, Ont.-J. Bell.
2.-A. Thelppteris, Suartz, (Marsh Shield-Fem, Marsh-Fern, Snuffbox-Fern), Syn. Fil., 50. Gray, Man., 664. Provancher, Flor. Can., 718. Pursh., II, 661. Macoun's Cat., No. 2314. Fowler's N. B. Cat., No. 753. Ball, Trans. N. S. Inst. Nat. Sci., IV, 151. Eaton, Ferns of N. A., I, 233. Underwood, Our Nat. Ferns, ete., 105.

Lastrea Thelypteris, Presl., Lawson, Can. Nat., I, 283.
Acrostichum Thclypteris, I .
Polypodium Thelypteris, L.
Polystichum Thelypteris, Roth., Watt, Can. Nat., IV, 363.
Nephrodium Thelypteris, Desv.
Dryopteris Thelypteris, Gr.
This plant, common in marshes and wet places, but sometimes seen on dry ground, is very like the preceding species, and though more rigid is also very sensitive to frost. It varies in height from \(1 \frac{1}{2}\) to 4 feet, and has the fertile fronds the tallest and longest
stalked with narrower segments. Rootstock slender, wide-spreading, black; stalks seattered, slender, blackish at the base but brownisln-yellow above, naked except when very young, and usually as long as or even longer than the fronds; frouds erect, oblouglanceolate, but little narrowed at the base, 9 inches to 2 feet long by 3 to 6 inches wide, short pointed, slightly pubescent along the midribs and veins, and pinnate; pinme shortstalked, linear-lanceolate, acute or acuminate, mostly horizontal, and deeply pinnatifid; segments oblong-ovate, obtuse, and entire, the fertile ones with their margins revolute often making them appear acute; veins mostly forked; sori small, often confluent, placed midway betwern the midrib and margin or nearer the midrib; indusia generally naked.

Sperimens of the Marsh-Fern are sometimes met with having the lower pinne - redued and somingry intemediate between this species and \(A\). Noveboracense the var. intermerlin of Labson in Can. Nat.. Vol. I, p. 284, and such specimens are often difficult to phas. The mot obvious distimenishing characters in A. Noveboracense are: (1) stalk murh shotw than frond: (2) froud acmminate and much contracted at the base ; (3) pinnis chasty smalle: (t) lobes flat; (5) veins mostly simple; (6) sori marginal and distinet. The dewren of pulnswnew and thickness of the fronds in this fern are also subject to consilerable variation. "xtrmas in the direction of these characters constituting var. pubesfens of l'ref. hawson. while those in the reverse direction form var. glabra. Oceasionally plant an" fomm with som of the segments cremate or toothed, and still more rarely frouds are sum which arm hipinate with pimatifid divisions, Forking fronds, too, are seen in this fern from time to time.

A rury emmon lim in codar, tamamek, and other swamps, extending, according to Liaton. Westward to Lake Wimmpeg. which is also probably about its northern limit. Quitn rommon in wamps in Nora scotia-liev. E. H. Ball. Rather common in wet marshy plaws in Xiw Brunswick-Pinver. Common in Quebec.-McCord, Provancher, Drulusun, P'ursons, th: Almudant in Lastırn and Central Ontario.-Macoun, Fletcher, Billings. Muclasum, Logie, Burgess, 切. Muskoka and Parry Sound, Ont.-Burgess. Near Rad River suthement. Man- Mr'Tarish.
* * lironds lirmly membranaceons, often evergreen ; stalks and thickened rootstotks chally; veins forking freely.
\(\dagger\) Fronds large pinnate with pimatifid pinne; indusia large, thinish, flat, and persistent.
3.-A. CRistatum, Suartz, (Crested Wood-Fern), Syn. Fil., 52. Gray, Man., 665. l'rowancher. Flor. 'inn. 718. Macoun's Cat., No. 2309. Fowler's N. B. Cat., No. 757. 13all. Trans. N. ․ Inst. Nat. Sci., IV, 153. Eaton, Ferns of N. A., II, 153. Underwood, Our Nat. Ferns, etc., 106.
A. Lamcastriense, Spreng.

Iastrea cristata, Presl., Lawson, Can. Nat. I, 282.
Polypodium cristatum, L .
Polyslichum cristalum, Roth., Watt, Can. Nat., IV, 363.
Nephrodium cristatum, Mx.
A nearly evergreen species fonnd in low woods and swamps, sometimes in dry places, growing from 1 to 3 feet high. The fertile and sterile fronds are somewhat unlike,
the latter as well as their stalks being the shorter and more decidedly evergreen. Rootstock stout, creeping, chaffy, and covered with old stalk-bases; stalks shorter than the fronds, chaffy especially near the base; fronds erect, smooth (or with a little chaff on the rachis), linear-oblong or lanceolate, 9 inches to 2 feet long by 3 to 7 inches wide, and pinnate; pinnæ triangular-oblong or the lowest nearly triangular, mostly very short-stalked, and deeply pimnatifid; pimmles oblong, very obtnse, finely serrate or cut-toothed; sori large, often confluent, placed as near the midvein as the margin ; indusia smooth.

Occasionally fronds are seen broadest in the upper third, giving them an oblanceolate appearance ; and a form fonnd at Iondon, Ont., differs in having the sori small (abont half the size commonly seen) and being less coriaceons in texture.

Var. Clintonianum, D. C. Eaton, is distinguished chiefly by its greater size and more numerous pinnæ and segments. Fronds \(2 \frac{1}{2}\) to 4 feet long by 8 to 12 inches wide; pinnee oblong-lanceolate, broadest at the base deeply pinnatifid; segments serrate or cut-toothed, or the basal ones sometimes pinnately lobed ; sori near the midrein. This, which is probably the form referred to by D. I. Mc.Cord in ('an, Nat., Vol. I. p. 358, is sometimes mistaken for \(A\). Goldianm, but diflers in having the fertile fronds narrower. and all the pime broadest at the base instead of in the middle.
A. cristatum is found in the Jastern l'rovinces, and passes wostward through the wooded comntry, without a break, to the Rocky Momatains, while northward it is known to extend as far as Great Slave Lake. Common in Nova Scotia--Ball and Mchuy. Not very common in New Brunswick-Fonter. Not unommon in Queboc.-D'trban, Provancher, J. Bell, MeCord, ete. Jocal hut not rare in Ontario-Maroum, Marlaran, Billiness, Fletcher, Burgess, ete. Porcupine Momains, Man-—Mucom. Suskatrhewan, N. W. Ter.Richardson. Lake Wimnipeg and Slave River, N. W. Ter.-Ettom. Vir. CYimtoniamm, A form, probably this, found in Chatham Tp., Argentenil Co., Que.-D). R. Mc Corl. Border of woods, Alva Farm, Knowlton, Que, and Dow's Swamp, ()ttawa, Ont.-. Fretcher. Black ash swamps, Belleville, Ont.-Macoun. Swamps, London, Ont.-Burgess. Owell Sound, Ont.-Mrs. Roy.
4.-A. Gombianum, Hook., (Goldie's Wood-Fern), Gray, Man., b66. Provancher, Flor. Can., 718. Macoun's Cat., No. 2317. Eaton, Ferns of N. A., I, 305. Underwood, Our Nat. Ferns, etc., 106.
A. Filix-mas, Pursh.

Lastrea Goldiana, Presl., Lawson, Can. Nat., I, 282.
Nephrodium Goldianum, Hook. and Grev.
Dryopteris Goldiana, Gr.
One of our largest and most stately ferns, growing in low, rich woods and deep. rocky ravines, and varying from \(1 \frac{1}{4}\) to 4 feet high, or even higher. The fronds stand in a crown, the sterile generally somewhat the smaller, and, though firm in texture, are non-evergreen. Rootstock stout, creeping or ascending, chaffy, and covered with old stalk-bases; stalks stout, shorter than the fronds, green when fresh but straw-colour when dry, and chaffy ; fronds erect, broadly ovate or the fertile oblong-ovate in outline, 9 inches to 3 feet long by 6 to 15 inches wide, smooth except for a little chaff on the rachis, bright green abore but paler beneath, and pinnate ; pinne oblong-lanceolate, the lower ones usually broadest in the middle, and very deeply pimatifid; segments oblong-linear, generally somewhat
scythe-shaped, almost entire, or crenate, or serrate with appressed teeth; sori large, generally distinct, and placed very near the midvein; indusia smooth, often with the sides of the sinus overlapping, thus making them appear round and entire.

This fern presents no marked variations, differences in the degree of serration of the segments alone constituting the vars. serratu and integerrima of Prof. Lawson, in Can. Nat., Vol. I, p. 283.

Very rare in the extreme eastern part of our territory, and, though found in low, rich wouls throughout the greater part ol Ontario, as far west as Georgian Bay, it is not at all common wem there. Near Woodstock, N. B.-P. Jack. Richmond aud Drummond Cos.. Que-.J. A. Bolluell. The Mountain, Montreal, Que.-D. R. McCord. Abundant among encis rocks near Hamilton's Farm, River Rouge, Que.-W. S. M. D'Urban. Nun's Island. Montreal, Que.-S. II. Parsons. Ottawa, Ont.-J. Ftetcher. Farmersville and banks of river to west warl of Brockville, Ont., in crevices of Lamrentian rocks.-Lawson. Woods, bollesille, ('astleton and lhighton, Ont.--Macoun. Woodstock, Ont.-Millman. Rich wools. Lankon, Ont--Bureress. Amherstburgh, Ont.-Maclagan.
\(\dagger+\) Fronds large, t wice pimate near the base, but the upper pinnules conflumt ; indusia rather large, firm, convex and persistent.
 No. 2311. Fowlar's V I; Cat, No. 75t". Pall, Trans. N. S. Inst. Nat. Sci., IV, 153. Goode, ('am. Nat., 1X, 2:4. Latom, Firns of N. A., 1, 311. Underwood, Our Nat. Ferns, etc., 106.

Custren Fili,r-mus, Presl.. Lawson, Can. Nat., I, 282.
Polystiohum Filir-mas, Roth., Watt, Can. Nat., IV, 363.
Depherolium lïlir-mas, lidehard.
Polupodium Filir-mas. L.
Dryopteris Fillir-mus, Sthott.
A rery handsome species, with the fronds rising in a circle to a height of 1 to 4 feet. It is fonnd in rocky woods or on open, rocky hillsides, and, thongh mon-evergreen, stands consilerable frost. lootstock stont, ascending or upright, chaffy, and covered with old stalk-lases; stalks stont, 으 or 3 inchos to 1 foot long, straw-coloured, and very chaffy; fronls broadly to rather narrowly oblong-lanceolate, 9 inches to 3 feet long, acuminate, smooth except for the chafly scales of the rachis and midribs, dark green above but paler beneath, and pinnate ; pinne lanceolate, tapering from base to apex, acuminate, and pinnatifiel almost or rarely quite to the midrib; segments crowded, oblong, obtuse, not very deeply toothed, the basal ones sometimes incisely lobed; sori rather large, nearer the midrein than the margin, generally absent from the apex of the segments; indusia smooth.

This fern, in addition to being somewhat variable as regards its degree of scaliness, presents a var. incisum, Mett., which differs from the typical plant in having the fronds rery large and scantily chaffy ; pinme much broader at the base; segments larger, more distant, ovate-lanceolate, acutish, and pinnately incised, with toothed lobes along the sides; indusia more delicate and less persistent.

The roots of A. Filix-mas have strong anthelmintic properties, and in Siberia they are used as a flavoring ingredient in brewing ale. The Norwegians use the unfolded fronds as greens, and in other places the whole plant, which abounds in alkali, is used in the mamufacture of soap.

In Canada this fern is not common, and, as far as yet known, is confined to restricted areas of Nova Scotia, New Brunswick, Quebec, Ontario and British Columbia. First noted in Nova Scotia at Whycocomagh, Cape Breton.-Lindsay. Aspey Bay, Lake Ainslie and Cape Mabou Mountains, Cape Breton, N. S.-A. H. Mc.Kay. Keswick Ridge, N. B.-J. Moser. Abundant and very luxuriant along the Gaspé coast, Que., at Fox liver.-Macoun. Among loose rock under the limestone cliff at the rear of Royston Park, Owen Sound, Ont., and about ten miles up the Georgian Bay, under the same range of chiff.-Mrs. Roy. British Columbia.--Lyall.
> 6.-A. Rigidum, Swartz, (Rigid Wood-Fern), Syın. Fil. p. 53.

> Polypodium rigidum, Hoff.
> Polypodium fragrans, L.
> Polystichum strigosum, Roth.
> Polystichum rigidum, D.C.
> Nephrodium rigidem, Desv.
> Lastrea rigida, Presl.

This is a handsome species, though rather stiff-looking (whence its name), somewhat fragrant, nearly evergreen, of a dull green color. In heright it varies from 1 to 2 feet, and is found growing in crown-life tufts anong rocks on mountain sides. Rootstock short, thick, very chally, and covered with old stalk-bases; stalks forming ! to ? the length of the plant, rigidly ereet, very chafly especially at the base, ereenish straw-colou when dry; fronds smooth except for some scattered chaff along the rachises, grom aborn but paler and often more or less glandular beneath, lanceolate, ovate-laneolate or somewhat elongated-triangular in outline, leathery in texture, and hipinnate; pinnse ohlong-lanceolate or the lowest triangnlar-lanceolate, and pinnate; pinnules oblong, conmpicuonsly veiny and doubly serrate, with spinulose teeth; sori large, nearer the midvein than the margin; indusia firm, convex with a very narrow sinus, bearing short-stalked glands on their edges.

But few specimens of this fern have been obtainable for examination, and those presented little variation, except that in the largest of the specimens, which measured only 4 inches wide by about 19 inches long, many of the pimmes were deeply pinnatifid into doubly serrate lobes, a character also seen in some of the lower and basal pimmles of medium-sized specimens. According to Prof. D. C. Eaton, his var. argutum presents no points of specific difference from the typical rigidum, except that its fronds are larger and broader.

All the Canadian specimens of this fern seen were furnished by Mr. Fletcher, of Ottawa, and were collected by Mr. J. J. Cowley, of Victoria, Vancouver Island, B. C., some of them from the immediate vicinity of that city, others from Mount Finlayson, on the same island.
7.-A. Marainale, Swartz, (Evergreen Wood-Fern, Marginal Shield-Fern), Syn. Fil., 50. Hook., Fl. Bor.-Am., II, 160. Pursh, II, 662. Gray, Man., 666. Provancher, Flor. Can., 718. Macoun's Cat., No. 2308. Fowler's N. B. Cat., No. 758. Ball, Trans. N. S. Inst. Nat. Sci., IV, 153. Eaton, Ferns of N. A., II, 69. Underwood, Our Nat. Ferns, etc., 107.

Polypodium marginale, L.
Lastrea marginalis, Presl., Lawson, Cau. Nat., I, 281.

\section*{Polystichum marginale, Watt, Can. Nat., IV, 363.}

Neghrodium marginale, Michx, Fl. Bor.-Am., II, 26 T.
Dryopteris marginalis, Gray.
A large and conspicnous evergreen fern, growing on wooded banks, and especially common on rocky. wooded hillsides. It varies in height from 8 or 9 inches to 3 feet, and grows in circular tults. liootstock stout, ascending, chaffy, covered with old stalk-bases; stalks shorter than the fronds, chatly, brownish when fresh but stramineous when dry; fronds smooth exeept for the scattered chaff on the rachis and midribs, paler on the under surface, leathery, ovate-lanceolate or ovate-oblong in outline, 6 inches to 2 feet long, pinnate; pinntr almost sessile, lanceolate or lanceolate-acuminate, broadest just above the hase. pinnate or pimatifid: segments oblong, obtuse, often somewhat seythe-shaped, entire or wemately toothell : sori rather larew placed close to the margins of the segments; indusia smooth, oftron ladeotoured.

In ennmal siz', outlinn and amonnt of division, as well as the size, shape and proximity of its disismes. this form is quit, variable, and a munber of forms have been de-
 var. لfenm of liohinom. While vory laree fronds, (32 feet long), bipinnate with all the pinmules pinmatid, is war. Traillw of lawson. Forking lronds are sometimes fomd, and Wanimatly othere are sem brondest at the base, or having the pinne and their divisions woplaping valy whor. small plants, is to 6 inches high, with only the lowest pimme pimatilid. the other-monty lohed (at young state of the species), are not uncommon.

Ihmmant in ravin": and on rocky slopes from the Maritime Provinces to the Lake of the Whond thenor more - paringly, and only in places, to the locky Monntains. Very armarally dismbinted throughout the Provine of Nova Scotia, and to be met with on most

 Meroun, billimes, Lesie, Burgess, wt. Lakefield, Ont., var. Traille--Mrs. Traill. Common in thi Muskoka Distriet of (Ontario, and on the Dawson Road, Man.-Burgess. Split Rock Portage, on the Nipigen liver, (Ont, and in Peace River Pass, Kocky Mountains, Lat. \(56^{\circ}\). -Mrconn. The Naskathewan.-Drummond.
\(\dagger+\dagger\) Fronds large, fully twice pinnate; indusia rather small, thinnish, flat, and at length shrivelled or deciduous.
8.-A. spivulosus, Surartz, (Spinulose Wood-Fern, Common Wood-Fern), Syn. Fil., 50. Hook., Fl. Bor.-Aın., II, 261. Gray, Mau., 664. Provancher, Flor. Can., 719. Macoun's ('at., No. 2316. Fowler's N. B. Cat., No. 756. Ball, Trans. N. S. Inst. Nat. Sci., IV, 151. Eaton, Jerns of N. A., II, 163. Underwood, Our Nat. Ferns, etc., 107.

Iastrea spinulosa, Presl.
Nephrodium spinulosum, Desv.
This species is partially evergreen, especially the barren fronds, and is one of onr very commonest and most variable ferns. It has fertile and sterile fronds alike, forming a crown, and finds its home in thick, especially damp, woods, where it reaches a height of \(1 \frac{1}{2}\) to 2 feet. Of the typical form, var. vulgare, D. C. Eaton, the following are the characters: Rootstock stont, crecping or ascending, chaffy and covered with old stalk-bases; stalks rather slender, darkened at the base but green above, chaffy (especially when
young) with pale brown scales; fronds bright green, erect, narrowly oblong-ovate, usually 12 to 15 inches long by 4 to 7 inches wide, smooth, and bipinnate; pinnæ short-stalked, oblique to the rachis, elongated triangular, the lowest pair broadly triangular with the inferior pinnules twice, or nearly twice, as long as the superior, the basal ones longest of all; pinnules also obliquely set, connected by a very narrow wing, oblong, sub-acute, incised or pinnatifid; lobes spiuulosely toothed, especially at the apex; indusia smooth, and without marginal glands.

Innumerable varieties and forms of this plant have been recorded and described, all of which, however, are either monstrosities or can, without much straining, be referred either to the typical form or the vars. intermettum and dilatatum.

Var. intermedium, D. C. Eaton, (A. intermedium, Willd., A. Americanum, Davenport, Lestrcu intermedia, Presl.), has the scales few and tawny; fronds dark green, oblong-ovate, broader and often larger than in the typical plant, twiee or often thrice pinnate, under surface minutely glandular; pinna spreading, oblong-lanceolate, the lowest pair somewhat triangular with the inferior pimules moderately elongated, but the basal ones a little shorter than the next; pimmles also spreading, ovate-oblong, acutish, pinnatifid or pimate; ultimate segments oblong-ovate, obtuse, and spinulosely toothed on both sides and apex; margin and often the surface of the indusia covered with stalked glands.

Var. dilatatum, Horneman, (A. dilatutum, s'wz., Lastrea dilatata, I'resl., Nephrortium dilatatum, Desv.), has the scales large and brown. often with a darker centre; fronds bory dark green, broadly ovate or triangular-ovate, usually much "xeeeding, wperially in breadth, the other forms, thrice pimate; pinnir spreading, broadly triangular with the inferior pinnules much longer than the superior, the basal ones on the lower side longer than the next but on the upper side usually shorter than those next them ; pimnles lance-oblong and deeply pinnatifid; ultimate segments oblong and toothed; indusia smooth. A dwarl state of this variety is var. dumetorum, which fruits freely when 5 to 8 inches high, and has compact bipinnate fronds, with the inferior basal pinnules but little elongated.

Numerous other sub-varieties of \(A\). spinulosum have been noted, ineluding var. obliquum, which is a rather rigid, more than usually chaffy form of the typical plant, with pinme and pinnules obliquely set, and var. rccurvatum, which shows a recurved convex growth of the frond, pinne and pinnules. A British Columbian plant from Vancouver Island is much laxer than common, and has the pimure pinnules and segments more distant, tapering and acuminate; the pimmes, too, are narrower throughout and the whole ferm is more rigid than is usually seen. Occasionally specimens are lound with glands scattered over the upper as well as the under surface of the fronds, and bifurcating and crested forms occur both in the species proper and in its varieties.

Under its various forms this species crosses the continent, and is known to range northward to Alaska and beyond the Peace and Churchill Rivers. Ocemring in the wooded districts of all the Provinces, in some places, notably the Island of Anticosti, Eastern Quebec, and to the west of Lake Superior, it forms almost the whole undergrowth. The typical plant is probably the least common form with us, but has been seen in Nova Scotia, New Brunswick, Quebec, Ontario, and, according to Prof. Eaton, about Lake Su* perior and westward to British Columbia. Vars. intermedium and dilatatum also extend from the Atlantic through the Rocky Mountains to the Pacific, but while the former, which loves drier woods than the normal form, is par excellence the usual form in Eastern
and Central Ontario, the latter, which is not common in Ontario except about Lake Superior, prevails most extensively in the Lastern Provinces and British Columbia.
9.-A. BоotтII, Tuckerman, (Bootts' Wood-Fern), Eaton, Ferns of N. A., II, 175. Underwood, Our Nat. Ferns, ete., 107.
A. syinulosum, var. Bootlii, Gray, Man., 665. Macoun's Cat., No. 2316, var. 1.
A. cristatum, var. uliginosum, Milde.

Lastrea uliginosa, Newman.
Dryopteris rigidu, Gray.
This fern, by some authorities regarded as a hybrid of \(A\). spinulosum with \(A\). cristalum, is found in swamps and wet places in woods and thickets. It is partially evergreen, "spentally the barren fronds, and, growing in a crown, attains a height of 18 to 3 feet. 'The sterile and lertile fronds are somewhat unlike, the former being shorter, somewhat les.ompound, and generally profnced a little later in the season. A third set of fronds is monluced in summer. internediate in size and with broader, blunter pinnules, which may the wher harran or lertile. liootstock stout, creeping or ascending, chaffy, and cov--red with old shalk-hases; stalks shorter than the fronds, stont, chaffy especially when yount with large, pali brown seales; fronds erect, deep green, firmly membranaceous, - longat d-oblong or clongated-lanceolate in outline, 1 to 2 feet long, smooth above but slightly hatly with sometimes a few stalked glands below, nearly bipinnate; pinne very short-malked, the upper lancolate from a broat base, the lower triangular-lanceolate and broalent at the very base, with the inferior basal pinnmles but little if any longer than the superior: pinnules broadly oblong, obtuse, the lower pinnatifid, the upper merely Arratn whth short, apinulose teeth; indusia minntely glandular.
(Wur reorded stations for this lern are very few, but a more careful seareh would probably pore it to be less extremely rare. Bellahill, thirteen miles from INalifax, and near rackvilh Church, two and a half milus further up the old Windsor Road, N. S.-P. Jack. Swamp near he (a. T. Ry. station at Belleville, Ont, growing in the immediate vicinity of \(A\). cristatum var. Clintoniamum and \(A\). spinulosum.-Macoun. Vicinity of Hamilton, Ont.Lugio
\(\dagger \dagger \dagger \dagger\) lironds small ; lipinnate with sinall crowded pinnnles; indnsia very large and persistent.
10.-A. Fhamans, sibarte, (Fragrant Wood-Fern), Syn. Fil., 51. Hook. Fl. Bor.-Am., 410. Gray; Man., 66t. Macoun's Cat., No. 2307. Fowler's N. B. Cat., No. 755. Ball, Trans. N. S. Inst. Nat. S'ci., IV., 151. Jaton, Ferns of N. A., I, 175. Underwood, Our Nat. Ferns, ete., 105.

Polystichum fragrans, Ledeh., Watt, Can. Nat. IV, 363.
Lastrea fragrans, Moore, Lawson, Can. Nat. I, 283.
Polyporliuan fragrans, L.
Nephrosdium fragrans, Rich.
Dryopteris fragrans, Schott.
A low, lance shaped, evergreen fern, 4 to 14 inches high, with a pleasant aromatic odour resembling that of strawberries, the odour remaining even in the dried fronds and becoming much more obvious when they are soaked in water. It grows in the crevices
of shaded cliffs and on mossy rocks, especially near cascades. Rootstock stout, ascending or erect, very chaffy; stalks usually very short, green or greenish straw-color, clustered, very chaffy, the chaffiness extending along the rachis and midribs of the fronds; fronds mixed with old and shrivelled ones, rigid, erect, lanceolate, 3 to 12 inches long by \(\frac{1}{2}\) to \(2 \frac{1}{2}\) inches wide, glandular on both surfaces but especially so beneath, bipinnate; pinnx linear-oblong and pinnately parted; pinnules oblong, obtuse, toothed or nearly entire, almost hidden beneath by the overlapping indusia, which are toothed and glandular round the margin.

This species is subject to slight variations in the shape of its general outline as well as of its pinnæ and in the degree of chaffiness, slenderer and less scaly forms constituting var. \(\beta\). Hooker.

A few economic properties are attributed to it, being used in Northern Asia as an anti-scorbutic and in Mongolia as a substitute for tea.

The range of the Fragrant Wood-Fern is from Nova Scotia to the Rocky Mountains, and from the boundary between us and the United States to the Arctic Circle. Hartley Water-Fall, Pirate Harbour, Strait of Canso, N. S.-Rev. E. H. Ball. Clefts of rocks at the Railway Tunnel at Restigouche, N. B.-Fowler. Dalhonsie, N. B.-J. Fetcher. Saguenay River, Que.-D. A. Watt. Hemmingford, Que.-Goode. Perpendicular rocks at the Falls of Ste. Anne des Monts River and along the Telegraph Ioad, Gaspé, Que.; Pie Island, and along cliffs on the shore of Thunder Bay above that island, McKay's Mountain, Thunder Cape, and Red Rock Station, C. P. Ry., north shore of Lake Superior, Ont.; very abundant on trap cliffs on the upper part of Nipigon River and all ronnd Lake Nipigon, being the common fern in that region, often with fronds orer a foot long; Dawson Road, Man.; Peace River Pass in the Rocky Mountains, above Hudson's LIope in the Canyon, Lat. \(56^{\circ} 12^{\prime}\).-Macoun. C. P. Ry. north of Lake Superior, a form approaching var. ß. Hooker. -J. Fletcher. East coast of Hudson Bay, Cape Chudleigh and Cape Prince of Wales, Hudson Strait, 1884.-R. Bell. Great Bear Lake, N. W. Ter.-Hooker. The Saskatchewan to the Arctic Sea and islands.-Richardson and Sir E. Parry.
§ § Indusia round and entire, fixed by the depressed centre. Pimse and pinnules usually auricled on the upper side at the base.
* Fronds simply pinnate.
\(\dagger\) Stalks short.
11.-A. Ionchiris, Swartz, (Holly-Fern), Syn. Fil., 43. Gray, Man., 666. Hook. and Baker, Syn. Fil., 250. Macoun's Cat., No. 2305. Eaton, Ferns of N. A. I, 161. Underwood, Our Nat. Ferns, etc., 103.

Polypodium Lonchitis, L.
Polystichum Lonchitis, Roth, Lawson, Can. Nat. I, 285. Watt, Can. Nat. IV, 363.
The Holly-Fern is a handsome evergreen species, growing in tufts in shaded rocky places, usnally on the debris of calcareous rocks, and attaining a height of 5 or 6 inches to over 2 feet. Rootstock stout, ascending, very chaffy, and corered with old stalk-bases; stalks chaffy, 1 to 3 inches long; fronds dark-green, rigid, leathery, linear-lanceolate, 4 or 5 inches to 2 feet long by 1 to \(2 \frac{1}{2}\) inches wide, acute or acuminate, narrowed at the base,
smooth above but chaffy below; pinne very numerous, crowded and often overlapping, broadly lanceolate-falcate or the lower triangular, strongly auricled on the upper side wedge-truncate on the lower, spinulose-serrate with pointless teeth between the serrations; sori confincd to the upper part of the frond, placed about half way between the midvein and margin, following the outline of the auricles as well as of the pinne.

This fern shows bat little tendency to variation, the only noticeable differences being in the size of the fronds and their coarser or finer serration. Occasionally, too, fronds are seen oblanceolate in outline, while from limrope they are reported as sometimes forking at the apex, which teratological variation would probably also be found here if sought for.

Found in North-castern Nova Scotia, this fern is not seen again until it reappears in Central Cntario, on leaving which it is again absent until the Rocky Mountains are reached, although in the north it is reported in Hooker's Arctic Plants as being found on rocks along the Aretic coust from the Mackenzie River to Baffin Bay. In considerable abundance near Aspey Bay, Cipe Breton, N. S.-A. II. McKay. Found sparingly at Foster's Flats, below the Whirlpool, Niagara Falls, Ont.; very common on rocky ground, especially mader clills, throughout the liruce Peninsula, and around Owen Somd, Ont. ; on the mountain slopers of low River lass, Korky Momtains, N. W. Ter., and in Peace River Pass, liocky Monutains, Lat. iff ; Cascade Monntains, above Yale, B. C.-Macoun. Kootanie l'ass, Rooky Mountains, about Lat. 49, at 6,500 feet elevation.-G. M. Dawson. Rocky Mountains, Lat. 52-51; -Drummond.
\[
\dagger \text { † 'talks at loast several inches long. }
\]
12.-A. Actostimonem, surtz (Christmas-Fern, Chaffy Shield-Fern), Syn. Fil., 44. Gray, Man., titib. Ilook. and Baker, Syn. Fil., 250. Pursh, II, 661. Provancher, For. ('an., 718 Mamou's ('at., No 2:313. l'owler's N. ]3. Cat., No. 759. Ball, Trans. N. S. Inst. Nat. Ári., I M, 153. Eaton, Ferns of N. A., I, 257. Underwood, Our Nat. Ferns, etc., 102.

I'olystichum acrostichoides, 心'hott, Lawson, Can. Nat. I, 285. Watt, Can. Nat. IV, 363.
Nephrodium acroslichoides, Mx., Fl. Ror.-Am., II, 267.
A narrowly lanceolate lim with dark shining evergreen foliage, growing about 9 or 10 inthes to \(2 \frac{1}{2}\) feet high in tufts in woods and on wooded hillsides, and especially favoring rocky soil. The sterile and fertile fronds are somewhat dissimilar, the latter being generally rather taller and more erect, with the upper fruit-bearing pinnex contracted and smaller. liootstock creeping and covered with old stalk-bases; stalks green above but brown at the base, chally especially below; fronds leathery, lanceolate from a scarcely narrowed base, 4 inches to 2 feet long by 3 to 5 inches wide, smooth above but more or less chafly below, pinnate; pinnte linear-lanceolate, the upper often more or less falcate, short-stalked, abruptly narrowed at the lower side of the base and auricled above, serrulate with appressed bristle-pointed teeth; sori placed near the midrein, confluent, when ripe covering the entire under surface including the auricles of most of the fruiting pinno.

Fronds with the pinnte incised-serrate are not very uncommon, and occasionally this is carried so far that the pinnax are almost pinnatifid, making a form that stands intermediate between the typical plant and var. incisum, Gray. The latter has the pinne cut lobed, those of the fertile fronds being nearly or quite all fruit-bearing, with the sori generally covering the upper pinne, but confined to the tips of the lower ones. Specimens with forking fronds and pinne have also been reported.

The Christmas-Fern is found from Nova Scotia to the Bruce Peninsula of Ontario, which seems to be about the western limit of its range in Canada. Quite common in Nova Scotia.-Rev. E. H. Bull. Common near St. John, N. B., but only a single tuft noticed in the northeru counties near Molns River, Kent Co.-Fowler. Woodstock, N. B. -P. Jack. Common in Quebec.-Provancher, D'Urban, Maclagan, Bothwell, Sheppard, etc. Very abundant in Eastern and Central Ontario.-Macom, Lawson, Fletcher, Logie, Burgess, etc. The var. incisum is reported from Montreal, Que.-D. R. McCord. Owen Sound, Ont. -Macoun. London, Ont.-Burgess.
13.-A. munitu m, Kaulf, (Chamisso's Shield-Fern), Hook., Fl. Bor.-Am. II, 261. Macoun's Cat. No. 2306. Eaton, Ferns of N. A., I, 187. Underwood, Our Nat. Ferns, cte., 103.

Polystichum munitum, Presl.
Nephrodium Plumula, Presl.
It is an evergreen species, growing among rocks and in forests, commonly from 1 to 5 feet high, and is one of the finest of North American ferns. Rootstock stout, ascending, covered with old stalk-bases; stalks stont, usually forming about one-fourth or a little less of the height of the plant, very chaffy with brown scales; fronds standing in a crown, leathery, lanceolate (tapering very slightly toward the base), 1 to 4 feet long by 4 to 8 inches wide, acuminate, bright green above but paler bencath. where also they are chaffy especially on the rachis, pinnate; pinner numerons, wide-spreading, nearly sessile, linearo acuminate, very sharply and often donbly serrate with inenryed, arnleate treth. anricled on the mpper side, obliquely trmeate on the lower, all or only the npper ones fertile, none of them contracted; sori abundant, nearer the margin than the midrib, following the ontlines of the auricles as well as of the pimar proper.

A form of this fern, corresponding to var. incisum of \(A\). acrostichoides, is var. inciso-serratum, D. C. Eaton. It has large fronds and pinner lanceolate-acuminate from a very conspicuously auricled base, incised a quarter or a thind of the way down to the midvein, the divisions serrated, veins much branched and sori scattered. This is the only marked variation occurring with us, but two California forms are vars. undatum and imbricans of D. C. Eaton. A specimen from crevices of rocks, Fanconver Island, is rather moticeable for its extremely narrow fronds, which are over a foot in length but do not exceed two inches in width.

The rhizomes and uncoiled fronds of \(A\). munitum are said to be sometines cooked and eaten by the Western Indians.

In Canada this fern is confined to British Colmmbia. North-west America.-Menzies. Nootka, Vancouver Island.-Mertens. Very abundant around Victoria, Vancourer Island, both the typical form and var. inciso-serratum; common in rocky woods up the Fraser River to far above Yale, within the mountains.-Macoun. Damp thickets, New Westminster.J. Fletcher.
* Fronds bipinnate, or nearly so.
14.-A. aculeatum, Swartz, (Prickly Shield-Fern), Syn, Fil., 53. Hook. and Baker, Syn. Fil., 252. Eaton, Ferns of N. A., II, 123. Underwood, Our Nat. Ferns, etc., 103.

The species in North America is a Californian plant, finding its representatives withịn Canadian territory in the vars. Braunii and scopulinum.

Var. Brauni, Doell, (Braun's Prickly Shield-Fern), Gray, Man., 667. Macoun's Cat., No. 2312. Fowler's N. B. Cat., No. 760. Ball, Trans. N. S. Inst. Nat. Sci., IV, 154. Eaton, Ferns of N. A., II, 124. Underwood, Our Nat. Ferns, etc., 104.

Potystichum angrulare, Presl, var. Braunii, Lawson, Can. Nat., I, 285.
Polystichum aculeatum, Moore, var. Braunii, Watt, Cau. Nat., IV, 363.
Aspidium Braunii, Spenner.
Aspilium aculeutum, Pursh, II, 662. Provancher, Fl. Can., 719.
This is a fine evergreen species, 1 to \(2 \frac{1}{2}\) feet high, with a prickly aspect, growing in the werines of moist, shaded rocks and in rocky woods. Rootstock stout, erect, closely covered with old stalk-bases; stalks very short and chaffy; fronds growing in a crown, Mliptical-lancolate in outline, tapering to both ends, covered with long, soft hairs and -hatl, himmate: pimme nmmerons, oblong-lanceolate, the lower short and almost obtuse, the upper very ante; pimmes mostly distinct, very short-stalked, ovate or oblong, truncate and almost rectangular at the base, generally more or less auricled, sharply serrate with incurved teeth. Ocmasionally fronds of this variety are seen which are oblonglanedate in ontline and but little namowed at the base.

Var. scopulinum, 1) ('. Jatom, (Ferns of N. A., II, 125), is also an evergreen, and grows in thu wruins of rows. Stalks short; fronds narrowly lanceolate, 3 to 10 or 11 inches long by \(\frac{1}{2}\) to \(1 \frac{1}{2}\) inhes widn, deriduonsly "haffy, pimnate; pime numerous, ovate or ovate-oblong, rather whas, pinnatuly lobed at th. base, but smrate with pointed and barely aculeate mah above. liy some oronl anthoritios this variety is placed under Aspidium mohrioides, but Prof. Laton, while saying it is almost as moth like this species as A. aculeatum, prefers to have it with the latter, as it has the lobes of the pimere somewhat aculeate.

Vars. Californum, 1). (C. l'aton, angulure, Braun, and prolifermm, Wolleston, are Californian forms, the latter two being also well known in Europe.

With ns the range of Var. Brannii is restricted to the Jrovinces of Nova Scotia, New Brunswick and Quebee in the east, and British Columbia in the west. Rare, even where local. in Nova Scotia; owbring at Marble Momtain, Bras d'Or Lake; Sherman's Mome tain, lort Mulerare, Strait of Canso; Ehler's Water-Fall, near Guysborough, and hilhs abore Mahon, Capu hroton--Rer. Fi, II. Ball. Near Lake Ainslie, Cape Breton, N. S.A. H. Mrhing. Near Badderk, and at River Inhabitans, Cape Breton, N. S.-P. Jack. Pirate Harbour. Sitrait of C'anso, N. S.-Mucoun and Burgess. Cape Blomidon, N. S.-Lawson. Sugar Toaf, Restigonche and Odell's Grove, Fredericton, N. 13.-Fowler. St. Francis River. Andover, N. 1.-G. I. Hay. Plentiful in rocky woods along the Gaspé coast, Que., gencrally nowr the shore and often within the spray of the waves.-Macoun. Quebec, Que.-Hou. W'm. shepparl. Temiscouata, Que., not common.-Thomas. Abundant ou gneiss rocks and danp logs, valley of the River Rouge, Argentenil Co., Que.-W. S. M. D'I'rlan. Portage and sources of the Columbia River, west side of the Rocky Mountains, Iat. \(52^{-}\)-Drummond. Nootka, Vancouver Island, B. C.-Hanke. Having been found in Washington Territory, U.S., var. scopulimum may be looked for in Sonthern British Columbia, bat as yet the only place it is known to exist in Canada is Mount Albert, Shickshock Mountains, Gaspé, Que., having been found by Professor Allan in July, 1881, and by Professor Macoun in August, 1882. In the case of the latter, it was collected on the summit of the mountain, at an altitude of 4,000 feet, and close to a grantity of still anthawed winter snow.

\title{
Genus XV.-CYSTOPTERIS, Bernl., Bradder-Fern.
}
* Fronds ovate-lanceolate, bi-tripinmate.
1.-C. fragilis, Bernh., (Brittle-Fern), Gray, Man., 667. Provancher, Flor. Can., 719. Lawson, Cau. Nat., I, 286. Hook. and Baker, Syn. Fil., 103. Macoun's Cat., No 2322. Goode, Can. Nat., IX, 299. Fowler's N. B. Cat., No. 762 . Ball, Trans. N. S. Inst. Nat. Sci, IV, 154. Eaton, Ferns of N. A., II, 49. Underwood, Our Nat. Ferns, etc., 108.
C. tenuis, Desv.

Polypodiun fragile, L.
Aspidium tenue, Swartz, Syn. Fil, 58. Pursh, II, 6;65.
Aspdidium fragile, Swartz, Syn. Fil., 58.
Nephrodium tenue, Mx., Fl. Bor.-Am., II, 269.
Cyathea fragitis, Smith.
Cystea fragilis, Smith, Watt, Can. Nat., IV, 363.
This is a slender, common, and variable species, most at home in crevices of moist shaded roeks and among stones, but also found in rich woods and sometimes in open wet places. Its usual height is nbout 8 to 16 inches, though occasionally, in favored localities, it reaches even as much as 2 feet, while in mountainous districts, depanperated forms not exceeding 2 to 4 inches occur. It is non-cvergreen, being bery sensitive to frost. Rootstock elongated, creeping, covered with old stall-lhases, and rery chaffy toward the apex; stalks slender, clustered, very brittle, straw-color or lhown shading to green in the rachis, darkest at the base where also they are sparingly chally; fronds mostly reclining, oblonglanceolate or ovatc-lanceolate, commonly 4 to 8 inches long by 1 to 8 wide, thin, smooth, bipinnate ; pime ovate-lanceolate or somewhat triangular, pointed ; pinmules decurrint along the narrowly winged secondary rachis, ovatc-oblongr, somewhat acntely toothed or shallowly incised and toothed; sori small, roundish, nsually distinct ; reinlets mostly rumning out to the teeth of the lobes; indusia acute at the free end.

This fern is extremely variable, and the same roots will at dillerent times or eron the same time produce fronds that might be referred to different ones of the munerons so-ralled varieties, of which the following are perhaps the best known :-Var. demlutu, Mook., with narrow scarcely bipinnate fronds, less pointed pinner, and obtuse merely bluntly toothed ovate pinnules. Var. angustata, Smith, with broad and often nearly tripimnate fronds, acute pinnæ, and acute lanceolate pinnules, which have sharp toothed, sharply pointed lobes. Var. laciniata, Davenport, with narrow and little more than pinnate fronds and ovate pinnse, the lobes of which are irregularly laciniate with narrow teeth. Var. Mchayii, Lawson, a common form in America, differing from the ordinary European plant (also found with us), which has broad, leafy, approximate pinne, in having the pimme very far apart and narrowly lanceolate; pinnules oblong, always more or less cuneate at the base, and rounded at the apex; sori few and scattered; plant when growing with a hard, bare look and a bluish-green colour. A very peculiar form found at Whycocomagh, N. S., falls under var. multifida, Wolleston. It resembles var. angustata in general appearance, but has the ends of the fronds as well as most of the pinne and some of the pimmules forked or showing a tendency thereto. Another form, in some respects approaching var. Dichieana, Sim., from near Michipicotin on the north shore of Lake Superior, is broadly triangular-lanceolate in outline, and has the pinnules overlapping one another, those of the lowest pinnæ remark-
ably broadly triangular, the basal ones measuring an inch in breadth and length. Specimens collected at Jondon, Ont., have branched rootstocks nearly a foot long, while others, gathered in the Rocky Mountains and British Columbia, have tho sori confluent and covering every particle of the under surfuce of the frouds, so as to give them a dark brown appearance.

This is one of the most universally distributed of ferns, appearing in almost every part of our whole territory from cast to west and from north to south, growing even on the prairie wherever moisture sufficient for it to grow ean be obtained near rock.
2.-('. bulbifelia, Bernh.. (Bulblet Cystopteris), Gray, Man., 667. Provancher, Fl. Can., 71:1. Lawson, C'an. Nat., I, 287. Hook., and Baker, Syn. Fil., 103. Macoun's Cat., No. Q:324. Fowler's N. B. Cat., No. 761. Ball, Trans. N. S. Inst. Nat. Sci., IV, 154. Goode, ('an. Nat., IX, 2!9. Eaton, Ferns of N. A., II, 55. Underwood, Our Nat. Ferns, etc,, 108.

Polyportiant bulliferum, 1 .

Aspuidinu atomarinm, Mahl.
Nephrotinm bullificrum, Michx, Fl., Bor.-Am., II, Q68.
('ysten bullietern, simith, Watt, Can. Nat., IV, 3tis.
A tall, shond.r. mfted forn, gencrally producing on its under side fleshy bulblets, which fall to the ground and form new plants which reach maturity in the second year. It is found in wot plates anong rodss, of in low rich woods, attaning a height of 1 to to 3 feet, and withers with the early frosts of antum. Rootstock short, covered with old stalkhases, and sparingly chatfy at its apex; stalks slender, rather brittle, clustered, much shorter than the fronds, when fresh dark-brown close to the base and green above (sometimes hrown throurhout), but when dry pale straw-colour; fronds mostly reclined, elonErated, tapering from hase to slender apex, usually \(1 \frac{1}{4}\) to 2 feet or even more in length by 3 to 5 inches wide at the base, thin, very minutely glandular in the living plant, often bearing bulblets. which are commonest at the base of the pinna and toward the apex of the fronds, bipimat": pinni oratcoblong, pointed ; pinnules oblong, obtuse, pinnatifid or toothed, the lower ones distinct, but the rest decurrent along the narrowly-winged, secondary rachis: veinlets mostly rmning out to the tecth of the lobes; indusia truncate at the free end.

Irofessor Lawson proposes a var. horizontalis for a shorter form of this fern, with tri-angular-lancoolate fronds, broad at the base and not more than three or four times longer than broad, pinntr horizontal. The same writer also proposes a var. flagelliformis, which, however, seems to differ in no respect from the typical form of the species. Depauperate forms, but bearing bulblets, collected on exposed cliffs in Gaspé, Que., by Mr. Goode, are only \(2 \ddagger\) to 2\(\}\) inches long including stalks.

Found in Nova Scotia and New IBrunswick, but not common, and extending westward to the Lake of the Woods, Manitoba. Rare in Nova Scotia; Hartley's Water-Fall, Pirate Harbour, Strait of Canso-_Rev. E. H. Ball. 'Aspey Bay, Cape Breton, N. S.-A. II. Mckay. Growing with Adiantum pedatum at Newport, Hants Co., N. S.; Grand Falls, N. 13. -P. Jack. Restigouche and St. John, N. B.-Foveler. On damp limestone rocks ap Jupiter River, Island of Anticosti, Que.-Macoun. Common in Quebec.-Provancher, D'Urban, Bell, Maclagan, McCorl, etc. Very abundant throughout Ontario, as far west as the Bruce

Peninsula.-Lawson, Billings, Macoun, Logie, Burgess, ete. Manitoulin Islands, Ont.-J. Bell. Lake of the Woods.-Dawson. North-West Angle, Lake of the Woods, Man.Burgess.
* * Fronds deltoid or pentagonal, ter-quadripinnate.
3.-C. montana, Bernh., (Mountain Cystoperis), Hook., Fl. Bor.-Am., II, 260. Hook and Baker, Syn. Fil., 104. Macoun's Cat., No. 2323. Eaton, Ferns of N. A., II, 53. Underwood, Our Nat. Ferns, etc., 108.

Polypodium montanum, Lamarck.
Aspidium montanum, Swartz, Syn, Fil., 61.
Cyathea montana, Smith.
Cysteu montana, Lamarck, Watt, C'an. Nat., IV, 363.
This is one of our rarest, and a very beautiful species of fern, differing markedly from the rest of the genus. It is a delicate plant, reaches a height of 8 or 9 to 16 inches, and grows along creeks in very deeply shaded woods. liootstock long, slender, creuping, scaly near the apex; stalks usually mneh longer than the fronds, seattered, slender, brown at the base but green above, very sparingly chaffy; fronds deltoid or pentagonal-ovate in outline, 3 to 6 inches long by about the same breadth, smooth except for some small seales along the rachis and midribs, ter-quadripinnate with the rachisus, even to the primary, all narrowly-winged; pimno pointed, the lowest uncenally deltoid-orate and much larger than those above, which become gradually simply lanceolate; pimules ovate-oblong, inferior ones of the lowest pinne very much longer than the npper, divided into secondary pinnules, which in turn are pinnately incised almost, or even quite, to the rachis into oblong, sharply-toothed lobes; veinlets generally ending at the indentations between the teeth; indusia irregularly toothed toward the apex.

Exeept in size, this fern does not seem to be subject to much rariation. Specimens have been seen with the inferior basal pinnules of the lowest pair of pinnee ahnost as large as the pinnæ from which they sprang, and in others the lowest pair of pinnar were very (over 2 inches) distant.

One of the very rarest of our native ferns. Labrador.-Butler. In a deep ravine, in which flowed a small brook, on the northern face of Mount Albert, Nhickshock Momtains, Gaspé, Que.; in a cedar swamp near the silver mine north of Current River, Lake Superior, Ont; abundant in Kicking Horse Pass, Rocky Monntains, N. W. Terr.-Mncoun. By streams in shady Alpine woods in the Rocky Mountains, Lat. 52'510.-Drummond.

Geuus XVI.-ONOCLEA, L., ()nocidea.
1.-O. sensibidis, L., (Seusitive Fern), Mx., Fl. Bor.-Am., II, 272. IIook., Fl. Bor.-Am., II, 262. Pursh, II, 665. Gray, Man., 668. Provancher, Fl. Can., 717. Lawson, Can. Nat., I, 274. Macom's Cat., No. 2321. Fowler's N. B. Cat., No. 764. Ball, Trans. N. S. Inst. Nat. Sci., IV, 154. Watt, Can. Nat., IV, 363. Eaton, Ferns of N. A., II, 195. Underwood, Our Nat. Ferns, etc., 109.

The Sensitive Fern, which grows in wet places open or shaded, usually measures from 6 inches to \(2 \frac{1}{2}\) feet high. The barren and fertile fronds are extremely unlike, the former being leaf-like, very sensitive to frost, quickly wilting when plucked, and much
taller and more common than the latter, which are non-leaf-like and remain erect, though drying up, through the winter. Rootstock elongated, creeping, naked; stalks scattered, very sparingly chafly and darkened at the base, green above when fresh but brownish when dry, the sterile usually a little louger than their fronds, the fertile usually much longer; sterile fronds foliaceons, smooth, triangular-ovate in outline, 3 to 15 inches in length, deeply pimatifid into oblong-lanceolate, generally obtuse, entire, undulate or sinnuate-pinnatifid segments, which are comected by a wing gradually widening upward, or the lowest pair sometimes distinet ; fertile fronds nearly black, rigid, much contracted, bipimnate with the orect appressed, narrow pinne divided into pinnules, which are rolled into berry-like "losed involurres; veins of the sterile fronds copiously anastomosing, those of the fertile free.

This fern is subject to considerable variation as regards its size and the cutting of its biunt and lolding of their segments. All possible forms intermediate between the typical storilu :and liertile fronds may oecm, and var. oblusilobata, Torr., (Onoclea obtusilobata, Schk.), is the onn standing about midway between the two. In it the pinne of some of the sterile fromds are arain pimatilid, and the so-formed pinmules becoming contracted and somewhat resolute, without entirely losing their foliaccous character, bear a few sori. This firm is oftom produced from rootstocks which bear normal sterile fronds also, and the same Hant may produco var, olmsilobuta one year and the type form the next, -a plant with bijimate'sterile fronds, thus standing between the normal sterile frond and var. obtusilobata, is var. lipimmata, Lawson in Can. Nat., Vol. I, p. 274 . Mr. McCord, in the same volume, p : :, \(\quad\). mentions a form with glandular sterile fronds.
(ommon thronghout every part of Canada westward (in the swampy and wooded rerion) (0, the head of Lake Wimipegosis and the Saskatchewan. Only two stations are recorded with us for var. oldusilolath, viz, wet meadow one mile north of Murray Town Hall, Northmmberland C'o., Ont.-Mucoun, and Ottawa, Ont.-J. Fhetcher; but there is little dombt that a carefin search wonld show it to be much more common.
2.-(). ぶruthoptems. Hoff., (Ostrich-Fern), Swartz, Syn. Fil., 111. Watt, Can. Nat., 1V. :33. Eaton, Ferns of N. A., 11, 201. Underwood, Our Nat. Ferns, etc., 109.
O. nomblasa, Schkuhr.
O. Germanica, Hook.

Osmunala Struthiopteris, I.
Struthiopteris Germanica, Willd., Hook., Fl. Bor.-Am., II, 262. Gray, Man., 667. Provancher, F1. Can., 717. Macoun's Cat., No. 2320. Fowler's N. B. Cat., No. 763. Ball, Trans. N. S. Inst. Nat. Sci.. IV, 154. Lawson, Can. Nat., I, 273 as var. Pennsylvanica.

Struthiopteris Pcnnsylvanica, Willd, Pursh, II, 666.
A tall and showy species growing in large tufts, commonly \(1 \frac{1}{2}\) to 6 feet high, in low, open or wooded, especially alluvial, gromd. The barren and fertile fronds are quite different. The former, which are leaf-like, much the taller, and non-evergreen, grow in a circle and curve outward to form a beautiful vase-like receptacle for the latter, which are few in number, non-leaf-like, and remain erect, thongh drying up, long after the sterile have ranished. liootstock short, thick, erect, covered with old stalk-bases, giving off long, slender, subterranean stolons; stalks short, stont, angular, those of the fertile fronds a little the longest, darkened and chaffy at the base, green above when fresh but brown when dry; sterile fronds broadly-lanceolate, \(1 \frac{1}{1}\) to 5 feet long, abruptly short-pointed,
much narrowed at the base, pinnate into numerous, sessile, linear-lanceolate, acuminate pimx (the lowest ones deflexed), which are in turn deeply pinnatifid into crowded, oblong, obtuse, entire segments; fertile fronds 9 inches to \(1 \frac{1}{2}\) feet long, dark colonred, contracted, rigid, pinnate into obtuse, obliquely ascending, almost entire or pinnately lobed pinne, the margins of which are rolled backward to form necklace-like or almost cylindrical bodies enclosing the fruit; veins of both sterile and fertile fronds free.

This fern oceasionally presents a condition analagous to the var. obtusitobata of \(O\). sensibilis, in the shape of fronds intermediate between the barren and fertile, bearing a few sori on contracted though still herbaceous pinnx.

The Ostrich-Fern in Canada ranges from Nova Scotia to Lake Wiunipen and the Saskatchewan, being very common as far west as Lake Huron. Only noted abont forty miles north of Michipicotin on the Magpie River, and about five miles up the Kaministiquia River, Lake Superior, Ont.; along the Assiniboine River, from Winnipeg to the Souris River, Man.-Macoun. North-west Angle, Lake of the Woods. Man-Burgess. Canada to the Saskatehewan.-Richurdson.

> Genms XVII-WOODSIA, R. Br., Woodsid.
§ Stalks obscurely articulated near the base; fronds chaffy or smooth, never glandular.
* Fronds glabrous or nearly so.
1.-W. Gidabellla, R. Br., (Smooth Woodsia). Hook.. Fl. Bor.-Am., II, 259. Gray, Man., 669. Lawson, Can. Nat., I, 289. Watt, Can. Nat., IV, 363. Hook. and Baker. Syn. Fíl.. 47. Macomn's Cat., No. 2326. Goode, Can. Nat., IX. 298. Fowler's N. B. C'at., No, 766. Eaton, Ferns of N. A., II, 115. Underwood, Our Nat. Ferns, ete., 110.
W. Alpina, var. glabella, Eaton.

Polypodium fontanum, L.
This species of Woodsia is extremely delicate and non-erergreen, growing in tufts on moist, shaded rocks, or in their crevices, and only reaching a height of \(1 \frac{1}{2}\) to 6 inches. Rootstocks short, ascending, elustered; stalks slender, usually less than an inch in length, smooth or with a little chaff below the articulation ; fronds bright green, narrowly linearlanceolate, usually 1 to 5 inches long by 3 to 6 lines wide, glabrons both sides, pimnate; pinnæ 1 to 3 lines long, roundish-ovate or somewhat deltoid, obtuse, and crenately lobed into 3 to 7 , rounded, nearly entire lobes; sori very few; indusia with only a few long cilia on their margins.

The degree of variation in this fern doos not seem to be very great, var. Belli of Lawson having been since referred by him to \(W\). hyperborea, in which \(W\). glabelln finds its closest ally. The differences between the two plants consist only in the latter being shorter, with narrower, more delicate and perfectly smooth fronds, which have but slightly lobed pinnæ and very scantily ciliate indusia. Bifurcating fronds are very occasionally seen, and many of the Lake Superior specimens differ from those found in the Eastern Provinces in having their pinnæ markedly more distant and more inclined to be triangular.

Though comparatively rare and quite local, the Smooth Woodsia in Canada has a wide
range, extending from New Branswick west to the Rocky Mountains, while northward it reaches the Aretic Cirele. The Tumnel, Restigonche, N. B., rare.-Fooler. Grand Falls, N. B. - P. Jack. Limestone rocks, twelve miles up Jupiter River, and under eliffs at Ellis Bay, Island of Anticosti, Que.; frequent in crevices of rocks along the Gaspé coast and on cliffs along the Ste. Anne des Monts River, and Rivière du Loup, Que.; ledges of rock, Kakabeka Falls, Kaministiquia River, ten miles sonth of Fort William, Red Rock near the C. P. lis. station, and on trap rocks up the Nipigon River, Lake Superior, Ont. ; limestone rocks, Pine lortage, Clearwater River, below Methy Portage, Lat. \(57^{\circ}\); crevices of rock, bow liver Pass. Rocky Mountains, N. W. Ter.-Macom. Saguenay River and Montmor(Mnci Falls, Que-D. A. Wall. Great bear Lake, the original station, N. W. Ter.-Richardson. On rocks along the Aretic coast, from Mackenzie River to Baffin Bay.-Hook., Arc. Pl.

2-W. 1 n penimerea, R. Br., (Northern Woodsia, Alpine Woodsia, Flowercup-Fern), Hook, Fl. lior-Am., II, 259. Hook. and laker, Syn. Fil., 46. Provancher, Fl. Can., 720. Mawmis (at, No. 232 7. Watt, Can, Nat, IV, 363. Eaton, Ferns of N. A., II, 107. I'uderwood, wir Nat. Firms, ete., 110.
II. A/nima. S. F. Gray, Lawson, Traus. Bot. Soc. Ed., VIII, 108, and Can. Nat., I, 289.

II: Itrensis, var, Bunth.
Polypertium tupperhoreum, Swartz, Syn. Fil., 39 .
Arrostidtum alpinum, Bolton.
Poluproliam arronicrum, smith.
A small, non-evergrem ferm. :3 to 8 inches high, growing in tufts on moist, mossy rocks. liout-torks short, ascending. clustered, thickly set with old stalk-bases; stalks luss than half the length of the fromds, stout for the size of the plant, numerous, chaffy near the lase, and sparingly so with hair-like stales or almost smooth above, shining, redidh-hrown: fronds linear-lanceolate, 2 to 6 inches long ly 6 lines to 1 inch wide, sparingly chatly, hairy or meariy smooth, pimate; pimme 3 to 6 lines long, triangular-ovate, oltuse pimataly lobed into a fow obtuse, rounded or obovate, nearly entire lobes; sori menally distinct: indusia long, ciliate.
ley some anthorities this ferm is not considered distinct from W. Ivensis. Usually the two are pasily separated, but intermediate forms occur, and it is at times very hard to decide under which to place such. W. hyperherea is usually the smaller, narrower, more delicate in texture, smoother, and has shorter, more obtuse and less deeply lobed pinna, with sori msually remaining distinct. Prof. Lawson, in Can. Nat., Vol. I, p. 4, describes a nearly smooth form, with longer ( 9 inches) and lax fronds, which he proposes to distinguish as var. Belli, but the distinctions seem insuffieient to warrant the construction of a distinct variety.

In Canada this fern occurs very locally from New lBrunswick to the Saskatchewan, and north to the Arctic Circle. Aroostook Falls, Vietoria Co., N. B.-Hay and Wetmore. Dartnouth River, Gaspé, Que., twenty miles from its mouth, var. Belli.-J. Bell. Perpendicular faces of rocky cliffs near Cape Rosier, Gaspé, Que.; on rocks and in their creviees twenty miles up the Ste. Anne des Monts River, and at the Falls of the same river at the base of Mont Albert, Que.; on mountain masses along the north shore of Lake Superior, west of Nipigon Bay, on eliffs of Jack Fish Island, Lake Nipigon, and on ledges of rock between the Hudson's Bay Co's post and Lake Superior at Michipicotin, Ont.-Macoun,

On a moist, mossy bank near the falls on the Rivière-du-Loup, within reach of the spray from the falls, and on mossy rocks in a ravine, Temiscouata, Que.-D. A. Watt. Norway House, Lake Winnipeg.-Richardson. Nottiugham Island, Hudson Strait.-R. Bcll. On rocks along the Arctic coast, from the Mackenzie River to Baffin Bay.-Hook., Arc. Pl.
* Fronds very hairy and chaffy beneath.
3.-W. Ilvensis, R. Br., (Rusty Woodsia, Woolly-Feru), IIook., Fl. Bor.-Am., II, 259. Pursh, II, 660. Gray, Man., 669. Provancher, Fl. Can., 720. Lawson, Can. Nat., I, 288. Hook. and Baker, Syn. Fil., 46. Macoun's Cat., No. 2325. Fowler's N. B. Cat., No. 765. Ball, Trans. N. S. Inst. Nat. Sci., IV, 155. Watt, Can. Nat., IV, 363. Eaton, Feṛıs of N. A., II, 111. Underwood, Our Nat. Ferns, etc., 110.
W. hyperborea, var. rufulula, Koch.

Acrostichum Ilvense, L.
Polypodium Ilvense, Swartz, Syu. Fil., 39.
Nephrodium rufululum, Mx., Fl. Bor.-Am., II, 269.
Aspidium ruficulum, Swartz, Syn. Fil., 58.
A small, dull green, rather coarse looking, tufted, non-evergreen, but hardy fern, growing usually from 3 to 13 inches high, on exposed metamorphic rocks and in their crevices. Rootstock short, ascending, tulted, covered with old stalk-bases; stalks commonly abont half the length of the fronds, stout for the size of the plant, greenish when fresh but straw-coloured or reddish-brown when dry, very hairy and chatfy; fronds lanceolate, usually about 2 to 8 iuches \(\operatorname{long}\) by \(\frac{1}{2}\) to 2 wide, as a rule thickly covered on the under side with chaff and hair, which is whitish when youg but afterwards rusiy, green and smoother on the upper surface, pinnate; pinme sessile, if to 9 lines longr, whlongovate, rather acute, and pimatifid into about 9 to 21 oblong, obtuse, usually wrenate lobes, which have slightly reflexed margins; sori mmerons and at length contluent; indusia long ciliate.

This fern is occasionally almost smooth, and, as before stated, the less chaffy forms are hard to distinguish from the more chalfy ones of \(W\). huperborea, and the var. grurilis of Prof. Lawson in Can. Nat., I, p. 288, which, as stated by him, seems to agree better with W. hyperborea in technical characters, is one of these intermediate forms, and probably referable to that species, which is fom in the locality where Lawson's form was collected. Some specimens from the north of Lake Superior are more delicate in appearance than usual, from having all their parts narrower and much more distant, while the fronds themelves are narrower and more acuminate.

Woodsia Ilvensis occurs in places within our limits from Nova Scotia to the Rocky Mountains, and north beyond the Arctic circle. Not common in Nova Scotia.-A. \(H\). McKay. Salt Mountain, Whycocomagh, Cape Breton, N. S.-Lindsay. Abundant on Gold River, near Chester, Lunenburg Co., N. S.-Rev. E. H. Ball. High rocks, east side of Lake Thomas, Halifax Co., N. S.; Hay's Falls, near Woodstock, N. B.-P. Jack. Near Truro, N. S.-Campbell. The "Look Out," Cape Blomidon, N. S.-Macoun and Burgess. Sugar Loaf, Restigouche, and mouth of Upsalquitch, N. B.-Fowler. Keswick, Nashwaaksis, St. Stephen, and near Green Head, St. John, N. B.-J. Vroom. Extremely abundant in many parts of Quebec and Ontario.-Provancher, D'Urban, Lauson, Macoun, Fletcher, Logie, Burgess, etc. Very abundant and luxuriant west and north-west of Lako

Superior, prodncing fronds over a foot long and nearly two inches wide.-Macoun. Echimamish River to Oxford House, and Nelson River, near Hudson Bay, N. W. Territory. —R. Bell. Canada to Hudson Bay, Bear Lake, and the Rocky Mountains.-Richardson and Drummoml. Rocks along the Arctic coast from Mackenzie River to Baffin Bay, also in Arctic Greenland and along the east and north-east coast.-Hook., Arc. Pl.
§ § Stalks not articulated; fronds glandular-pubescent or smooth, not chaffy.
* Indusia of a few broad segments, at first covering the sorus.
4.-W. obrts 'Torrey, (Ohtuse-leaved Woodsia), Gray, Man., 668. Lawson, Can. Nat., I, 2s!. Hook. and Maker, Nyn. Fil., 48. Ball, Trans. N. S. Inst. Nat. Sci., IV, 154. Macoun's ('at.. No. 2:3:30. Eaton, Ferns of N. A., 11, 189. Underwood, Our Nat. Ferns, ete., 111.

II: Ierrinima, Hook. and Grev.
Tolyporiam ohtusum, spreng
Aspidium oblusum, Willd., Pursh, II, b6e2.

Cystopteris oblusa, F'resl.
Physemutium ohtusum, Hook., Fl. Bor.-Am., II, 259.
Phystmatium Perriniunum, Presl.
This is a noneerergreell speries found growing in tufts in rocky places, and reaching a height of! inches to \(1 \frac{1}{2}\) fied. Liootstock short, creeping, somewhat chaffy, and covered with old stalk-hases; stalks grom when fresh but stramineous when dry, darkened close to the bast, chatly whon young, about half the length of the fronds; fronds broadly-lanceolate in couline, commonly abont if to 12 inches long by 2 to 3 wide, delicate, minutely glambular-hairy especially on the under side, nearly bipinnate; pinne rather distant, tri-angular-orate or miangular-lanceolate, obtuse, pinnately parted into oblong, obtuse, crenandy wothed rements, the lower of which are pinnatifid; indusia nearly covering the sporangia at first but afterward splitting into 4 to 6 spreading, jagged lobes.

Thongh not rare in parts of the United States, the only known station for this fern in Canada is near C'aming, Nova Seotia, in the gorge through which Dr. Hamilton's Road winds up to the smmmit of North Mountain, where it was found by Mr. Peter Jack of Halifax, who kindly supplied a specimen for examination. The plant credited in "Ferns of North America" to British Columbia as Woodsia oblusa, on the authority of a list of the specimens collected in 1861 on the Galton Mountains by Dr. Lyall, is not that species, but, as Prof. Eaton remently writes. Woodsia scomulina, while Prof. How's plant so called, collected at Windsor, Nova Ficotia, and now in the provincial museum at Halifax, is only a form of Cystopteris frugilis.
* Indusia small, never covering the sori, split into narrow segments or reduced to minute cilise.
5.-W. scopulina, D. C. Eaton, (Rocky Mountain Woodsia), Hook. and Baker, Syn. Fil,, 48. Macomn's Cat., No. 2328. Eaton, Ferns of N. A., II, 193. Underwood, Our Nat. Ferns, etc., 110.
W. obtusa, Gray, not of Torrey.

A non-evergreen species usually from 6 to 12 inches high, growing in dense masses on rocks and in their crevices, chiefly in the shade. Rootstocks short, creeping, very
chaffy, covered with old stalk-bases; stalks shorter thau the fronds, quite dark near the base but lighter upward, puberulent with minute pointed hairs and stalked glands; fronds lanceolate in outline, 4 to 8 inches long by 9 lines to 2 inches wide, pimate, rachis and under surface puberulent and glandular like the stalk; pinne numerous, oblong-ovate, sub-acute, deeply pinnatifid into short, ovate or ollong, obtuse, crenulate or toothed lobes ; sori sub-marginal ; indusia very delicate and deeply cleft into narrow segments which terminate in short hairs.

Specimens vary greatly in the amount of their pubescence, the smoother forms being very difficult to distinguish from W. Oregana. Some British Columbian specimens from near Yale have fronds fully two inches wide with the pinne so crowded as to overlap.

In the United States this species cxtends as far castward as Minnesota, but with us, as far as known at present, it is confined to the Rocky Monntains and British Columbia. Rocky Mountains and Elk River, Kootanie Valley, B. C.-G. M. Duwson. Among loose rocks on mountain side, specimens thirteen inches long, at Lytton, B. C., also on Mount Finlayson, near Victoria, Vancouver Island, B. C.-J. Fletcher. Along the Fraser and Thompson Rivers, B. C., from Yale to Spence's Bridge, and on the monntains at these places ; abme dant in Kicking House Pass, Rocky Mountains. N. W. T.-Mucoun.
6.-W. Oregana, D. C. Eaton, (Oregon Woodsia), Gray, Man., 6669. Marom's Cat., No. 2329. Watt, Can. Nat., IV, 363. Eaton, Ferns of N. A., II, 185. Underwood. Onr Nat. Ferns, etc., 110.
W. obtusa. var. Lyallii, Hooker.

This is a delicate, non-evergreen fern, with the fertile and sterilo fronds somewhat unlike (the former being the taller), growing from 5 to 10 inches high in dense patches in the crevices of rochs, very often where exposed to the sun. Rootstocks short, "reeping, chaffy, covered with old stalk-bases; stalks usually rather more than half the length of the fronds, slender, chaffy below when young, darkened near the base but greenish or straw-colored above; fronds lanceolate or linear-lanceolate, 3 to 6 inches long by 8 to 12 lines wide, smooth, pinnate; pinner triangular-oblong, obtuse or acutish, pinnatifid into segments, which are obtuse, oblong or ovate, crenate or toothed. with the teeth oftell reflexed and covering the sub-marginal sori; indusia very minute and divided almost to the centre into a few beaded hairs.

Woodsia Oregana and scopulina are very much alike, and, unless the specimens are in good condition, it is difficult to distinguish the one from the other. The most important distinctions are the minute glandular pubescence of the latter, the differenco in the division of its larger indusia, and the similarity of its fertile and sterile fronds. In general appearance, too, W. Oregana resembles small forms of \(W\). obtus, from which, however, its glabrous fronds and rudimentary involucre distinguish it. Forking fronds are not uncommon in this species.

The Oregon Woodsia, ranges from British Columbia eastward to Lake Nipigon, while northward it is known to reach as high as Lake Athabasca. Along the Fraser and Thomson Rivers, B. C., from Yale to Spence's Bridge; on Blackwater River, along the Telegraph Trail, and at Fort St. James, northern British Columbia; Peace River Pass, Rocky Mountains; Fort Chipewyan, Lake Athabasca, N. W. Ter., Lat. \(58^{\circ} 48^{\prime}\); crevices of rocks, Blackwater River, Lake Nipigon, Ont., 1884, a very glandular form.-Macoun.

\section*{Genns XVIII.-DICKSONIA, L'Her., Dicksonia.}
1.-1). Pilosiuscula, Willd., (Hairy Dicksonia, Gossamer-Fern, Hay-scented Fern), Hook., I:l. Bor.-Am., II, 264. Pursh, II, 671. Eaton, Ferns of N. A., I, 339. Underwood, Our Nat. Ferns, etc., 111.
D. pubeseens, Swartz.
D. pmuctilobuln, Kunze, Gray, Man., 669. Provancher, Fl. Can., 720. Macoun's Cat., No. 2:331. Fowler's N. 13. Cat, No. 767. Ball, Trans. N. S. Iust. Nat. Sci., IV, 155.

Sephirnlium punctilolnhum, Mx., Fl. Bor.-Am., II, 268.
Aspidiun punctitobulum, Swartz, Syn. Fil., 60.
Dernstheltie punctilobula, Moore, Lawson, Can., Nat., I, 287.
Thu (iossamer-Fern is a very delicate and beantiful species, with pale-green, feathery fronds. whith wither quickly when plenked, decay in autumn, and give out a pleasant hay-lik" otour in drying. It is a rather common fern in eastern North America, growing in monst soit in pastures and open woods, and on rocky hillsides, reaching a height of 1 in + foet. lootstock slonder, brunhing, extensively ereeping, naked except for a little hair :n it, growing extrumity; stalks commonly forming about one-third or less of the hoight of the phant. scattored, stont, urect, darkened toward the base but gradually fading (1) straw-olor, eremish when fresh, chaffess but somewhat puberulent; fronds ovatelammolute in outline, 1 10 3 foet long by 3 to 10 inches wide, long pointed, hairy and mimaty yrandular especially bencath, hi-pimate; pime lanceolate and pointed; pinmules olmur, moslly whtuse. pimatifid into oblong and obtuse, cut toothed lobes; sori minute, whin a recurved toothlet, nsually one at the upper margin of each lobe of the pimbules.

Forhing fronds and pimar of this fern are far from rare, but beyond this it seems to be suljer to little variation except that of size, and of a greater or less degree of pubescence and \([\) randulosity.

In its range this ferm seems to be confined to about the eastem third of our territory, not extending wesward beyond the Georgian Bay. Very common in Nova Scotia. Ror. I: If. Ball. Very abundant in New Brunswick.-Fowler. Common in extreme "astern (duber'-Muroun. Lemmoxville and Waterloo, Que.-Hon. Wm. Sheppard. Richmond and lirmmmond Cos., Que.--J. A. Bothrell. Sorel, Que.-Lady Dalhonsie. Montreal, Que.-Murlugran. Abundant in Harrington Township and on Hamilton's Farm, River Ronge. Argentenil Co., Que-W. S. M. D'Urban. Abundant in Stewart's Bush, Ottawa, Ont., and at ('asselman, Ont.-J. Flefcher. Near Prescott, Ont.-B. Billings. Near Kingston, Ont.-J. Bell. Common along the roadside between Flinton and the Addington Road, Addington Co., Ont.; low rich woods a little east of Norwood, Peterboro Co., Ont.-Macoun. larry Sound, Georgian Bay, Ont.-Logie.

> Genus XIX.-SCHIZ⿸A, Smith, SchizeA.
1.-S. pusilla, Pursh, (New Jersey Schizea, One-sided Fern), Gray, II, 659. Manl, 669. Hook. and Baker, Syn. Fil., 428. Lawson, Can. Nat., I, 291. Eaton, Ferns of N. A., I, 185. Underwood, Our Nat. Ferns, etc., 113.
S. filifolia, De la Pylaie.

\section*{S．tortuosa，Muhl．}

This is an extremely local，and very peculiar looking，little sedge－like plant， \(1 \frac{1}{2}\) to 4 inches high，growing in tufts in low grounds．＂The sterile and fertile fronds are unlike， the former resembling bunches of short curled leaves，the latter straighter and projecting above them like a slender culm．Rootstock very minute，horizontal，and creeping；sterile fronds linear，very slender，flattened，tortuous，scarcely an ineh long by a quarter of a line wide；fertile fronds equally slender，but straighter， \(1 \frac{1}{2}\) to 4 inches long，bearing at the top a triangular－orate fertile appendage，which is 2 to + lines broad at the base by usually a little less length，and consists of 4 to 6 pairs of closely placed oblong pinnir ；the two halves of the appendage usnally folded together，at least in the dried specimen．

For this rare American fern but one station is known in Canada，vi\％，on the shore of Grand Lake，twenty－three miles from IIalifax，N．S．，where it was disoovered in August， 1879，by a Miss Knight．It has not been lound since that time though carufnlly searched for by Mr．McKay，of Picton，who says，however，that bush fires have swept ofer the place since it was got，which may account for its absence．It hat provionsly been reworded by De la Pylaie as occurring in New fomdland，and its discovery in Nova reotia is particularly interesting as confirming the anthenticity of that station．

> Genus XX.—OかMUNDA, L., Flowernis-FERS.
＊Sterile fronds fully bipinmate with separato pinmules．
 Am．，II，273．Gray，Man．，670．IIook．and Baker，Syn．Fïl，427．Provander．Fl．Cann， 721．Macoun＇s Cat．，No．2：822．Kowler＇s N．B．Cat．，No．The．Ball，Trans，N．ぶ．Inst，Nat． Sci．，IV，155．Watt，Can．Nat．，IV，36t．Laton，Ferns ol＇N．A．，I，203．Underwood，Wur Nat．Ferns，ete．， 113.

O．spectabilis，Willd．，Pursh，II，6．58．Hook．，Fll．Bor．－Am．，II，26．̄̄．
O．regalis，var，spectabilis，Milde，Lawson，Can．Nat．I， 290 ．
O．glaucescens，Link．
An elegant，non－evergreen，pale green fern，commonly 2 to \(\overline{\text { feet high，growing in }}\) swamps，wet woods，low thickets，and ly the margins of ponds and rivers，sometimes even in running water．The fertile and sterile fronds are unlike，the former producing at their summits a racemose panicle of fructification Rootstock creeping and greatly thickened with imbricated stalk－bases；stallss erect，stout，tufted，commonly about half the length of the fronds，smooth or with a litile brown decidnous cobwebby wool，their bases dilated to form stipular wings ；sterile fronds ovate－oblong in outline， \(1 \frac{1}{\ddagger}\) to \(3 \frac{1}{2}\) feet long by 8 to 20 inches wide，smooth，bipinnate；pinure stalked，with rather leathery， sessile or short－stalked pinuules，which are commonly oblong－oval，obtnse，obliquely－ truncate at the base，and crenulate－serrate；fertile fronds like the sterile except that ser－ eral of the upper pinnæ are contracted and bipinnate，with the cylindrical divisions non－ foliaceous and covered with bright brown sporangia．

The sterile pinnules vary greatly in size and shape，but none of these variations seem constant enough to justify any attempt at the formation of distinct varieties thereon．In size they run from 9 lines to 2 inches in length by 3 to 8 lines wide，while in shape
they may be broadly-oral or oblong-lanceolate. Their apices may be sub-acute and their bases very unequal, rounded, sub-cordate or auricled on the lower side, while the margins may be entire or lobed in their lower half. The American plant has been described as a distinct species, under the names \(O\). glaucescens and \(O\). spectabilis, also as a distinct varicty O. recralis var. sperfabilis, but it corresponds too closely to the European to admit of such separation. The distinctions of the European O. regalis have been found in its darker colour. greater size, more spreading pinnte, and aurieled pinnules, but American specimens identionl in all these respects are not at all uncommon. As regards the fertile fronds, sometimes some of the fruiting pinme are but partly contracted and continue leaf-life with sporangia along their margins, a state analagous to var. obtusilobatn of Onoclea sensibilis, wr again. the fruiting may imitate that of \(O\). Claytonama, the frond being fertile in the middle and barren above and below, var. interruitn. Milde.

This plant was formerly esteemed as possessing astringent and emmenagogue properties. but is now considured of little value. In the northern parts of England an infusion of the rhizom", which is very stareloy, is a popular remedy for rickets, and an application to sprans and bruins, while in the north of Europe a similar infusion has been used as a starch

Thn. lioyal-frorn is very common in most parts of the eastern half of our territory, but Dewome rare toward its western limit. which, according to Richardson and Eaton, is the Sakathewan. (H)served north of Lake Superior at liond Lake, on the line of the Canadian Iacifu Ralway. twelemiles cast of the Jic River, and at Current River, Thunder Bay.-Marom, Musking Island. Lake Wimipeg.-J. M. Maroun.
* * similu fromds pimatt. with deeply pianatifid pimna.
 Fiil. 160. P'ursh. II, 14.7. Gray, Man., 670. Hook. and Baker, Syn. Fil., 426. Lawson, Cam. Xar. I. ent. Macom's ('at., No. 2333. Fowler's N. B. Cat., No. 768. Ball, Trans. N. 犬. Hast. Nat, Nici.. IV, 15\%, Wiatt, Cam. Nat., IV, 364. Eaton, Ferns of N. A., I, 219. loderwood. Wur Niat. Ferns, atc., 113.
O. interruph. Mx.. Fl. Bor.-Am., II, 273. Hook... Fl. I3or.-Am., II, 265. Pursh, II, 657. Provaucher. Fl. Cann.. 7으․

Struthiopteris Chaytoniana. Bernh.
This is a handsome, non-evergreen species, commonly about 2 to 4 feet high, growing in circular tufts in low grounds, wet woods and thickets. The sterile and fertile fronds are mulike. the former growing generally on the outside of the circle, gradually curre gracefnlly ontward in all directions to form a vase-like surrounding for the latter, which are taller, erect, and have a few of the middle pairs of pimme contracted and covered with sporangia. Rootstock creeping, greatly thickened with imbricated stalk-bases; stalks stout, erect, usually a little more than half as long as the fronds, when young clothed with loose, brownish wool, with stipular wings at the base; sterile fronds oblong-lanceolate in outline, If to \(2 \frac{1}{2}\) feet long by 6 inches to 1 foot wide, woolly when young but smooth, except for a little of the wool in the axils of the pinnx and along the midribs, when mature, rounded or short pointed at the apex, pimnate; pinne short-stalked, oblonglanceolate, rather obtuse, deeply pinnatifid into ovate-oblong, obtuse, entire, oblique pinnules; fertile fronds like the sterile, except that 2 to 5 pairs of the central pinne (which
wither early in the summer), are contracted and bipinnate, with the divisions eylindrical, non-foliaceous and covered with dark-green sporangia.

This fern is subject to slight variations in the shape of its pinnse and pinnules. The former are occasionally acutish instead of obtuse, and Prof. Lawson, in Can. Nat., mentions a lax form in which they are remarkably short and somewhat triangular; the latter are sometimes seen obscurely crenulate toward the apex. The position of the fertile pinme, instead of being about the middle of the frond, may be near the top or bottom of it, and the number may be unequal on the two sides of the rachis. Rarely some, or even all, the fertile segments retain a foliaceons character and bear marginal fructification.

Though unaware of their ever having been used, the rhizomes of this furn possess properties somewhat similar to those of \(O\). regalis, and the dried fronds have been utilized in the Lower Provinces as a winter fodder for sheep.

The Interrupted-Fern is very common throughout most parts of Canadia, from Noya Scotia to Lake Superior, and probably linds its western limit in Mamitoha. In the cast it prefers swamps, but west of Lake Snperfor it is found in opern woorls. Not unwommon around Lake Nipigon and Thunder Bay.-Maroun. Collected by Bourean at Sturgeon Lake, some hundred miles north-west of Lake superior, and, arcording to Vilde, on Lako Winnipeg.
3.-O. Cinnamomea, L., (Cinnamon-Fern), Swartz, Syn. Fil., 16io. Mx., Fl. Bor.-Am., II, 273. Pursh, II, 657. Hook., Fl. Bor.-Am.. II, 265. Gray. Man.. 6ito. Hook, and Baker, Syn. Fil., 426. Provancher, Fl. Can., 「21. Lawson, ('an. Nat., I, 290. Macom’’s Cat., No. 2334. Fowler's N. B. Cat., No. 768. Ball. Trans. N. S. Inst. Nat. Sij., [V. 1.\%. Eaton, Ferns of N. A., I, 227. Underwood, Our Nat. Ferns, entr.. 114.
O. Claytoniana, Comrad, not of \(\mathrm{L}_{\text {}}\).

Struthiopteris cinnamomea, Bernh.
The Cinnamon-Fern is a non-evergreen species, growing in large chmps, from \(1 \frac{1}{2}\) to 5 feet high, in cedar swamps, low grounds and moist thickets. The strrile and fertile fronds are unlike, the former, which are foliaceons. forming, as in O. Cheylomionn, a green, vase-like surrounding for the latter, which are cinnamon-rolonred. non-foliacous and erect. The fertile fronds, which mature their fruit as they unfold, appen before the strrile and wither early in the season, before the latter complete their growth. Rootstock creeping, much thickened with imbricated stalk-bases; stalks stont, erect, the sterile about half as long as the fronds but the fertile about the same length, stipulate at the base, when young elothed with abundant rusty wool ; sterile fronds oblong-lanccolate in outline, 1 to \(3 \frac{1}{2}\) feet long by 6 inches to \(1_{4}^{\frac{1}{4}}\) feet wide, densely rusty-woolly when young but nearly smooth at maturity, pointed or even acuminate, pinnate; pinns short-stalked, oblonglanceolate, acute, decply pinnatifid into orate-oblong, obtuse, entire, oblique pinnules; fertile fronds very woolly when young, having all the pinnæ contracted and bipinnate, with the divisions cylindrical, non-foliaceons and covered with cinnamon-brown sporangia.

In the absence of fructification, this plant is not always easily distinguishable from O. Claytoniana, the most evident differences being that in O. cinnamomea the apex of the frond, as well as of each of the individual pinne, is decidedly acute or even acuminate, usually, too, the pinne are narrower. As stated by Mr. Davenport in the Torrey Bulletin,

Vol. IX, p. 101, a good distinguishing point between the sterile fronds is, that in \(O\). cinnamomea at the base of each pinna there is a small, persistent bunch of wool, which is nearly or wholly wanting in \(O\). Claytoniana.

Like the other Osmundas, variations in the pinnæ aud pinnules are not very uncommon. The former may be more lanceolate than oblong-lanceolate, and the latter may be somewhat acute, obscurely crenulate and even in the lower ones elongated and pinnatifid, or more or less imbricated. Fertile fronds are occasionally found in which a few or most of the lower pinnæ are barren, thus imitating the normal method of fruiting in \(O\). regalis, a state which constitutes the var. frondosa, Gray. Occasionally, too, fronds are found copying \(O\). Claytoniana in being fertile in the middle, while more rarely the apex is barren and the base fertile. Var. alata, Hook., has the rachis slightly wing-margined, a not uncommon character of large fronds, while pinnæ, retaining a more or less foliaceous character, with a marginal fructification, are found from time to time. Var. imbricans, Milde, a very close approach to which is sometimes seen in American specimens, has rigid fronds, with the segments elongated and overlapping each other.

The rhizomes of this fern have been reputed to possess demulcent, sub-astringent, and tonic properties. Boiled in milk, they yield a fine mucilage, which is useful in diarrhera.

Very common throughout Nova Scotia, New Brunswick, Quebec and Ontario to Georgian Bay, which probably is with us its western limit, though it is recorded by Lawson in the "'anadian Naturalist" as having been found at Two Heart River, Lake Superior, by R. Bell, Jr. Var. fromlosa has been found at the following places: Windsor, N. S.How. Halifax Water-Works, Halifax C'o., N. S.-P. Juck. Molus River, Kent Co., N. B.--Foncler. Bismark, Ont., along the Canada Southern Railway.-Macoun.

\title{
X - Note sur certains dépots auriferes de la Beauce,
}

Par l'abbé J.-C.-K. Laflamme, D.D.

\author{
( Lue lo 23 mai 1884.)
}

Bien que je n'aie rieu d'absolument neuf à communiquer aux membres de la Société Royale à ce sujet, je me permettrai cependant de signaler en deux mots quelques observavations persomnelles, ainsi que quelques renseignements que j’ai ćté à même de recucillir de la bouche de personnes éminemment qualifiées. Avant d'aller plus loin, je crois qu'il n'est que juste de faire remarquer l'extrême importance que présentent les gisements aurifères de la Beauce. Les résultats qu'on y a déjà obtenns, malgré les obstacles de tout genre qui sont saus cesse venus entraver les exploitations des mineurs, sont plus que suffisants pour légitimer les plus belles espérances. Il n’y a pas de donte que des travaux judicieusement localisés et conduits arec discernement et prudence ne soirnt ouromés de succès.

En pareourant les différentes études, les différentes recherches scientifiques qui ont été faites sur la géologie de cette partie du pays, on reste surpris de la petitesse du travail accompli et de l'immensité de ce qu’il y anrait encore à faire. A part les quelques dútails que donne le rapport de progrès de 1863 , à part le travail de M. A. Michel, celui du 1)r S . Hunt, publiés tous les deux en 1866, et un domble rapport du Dr Selwyn, en 1811 et 1882, on ne trouve plus que quelques bribes parsemées çà et là dans quelques rolmes des rapports de la commission géologique, sans ancun lien commun qui les rattache et leur donne l'unité nécessaire à toute cuvre importante.

La petite brochure de M. W. Chapman, considérée an point de vue géologique, n'est qu'une compilation, une réunion assez indigeste de differents extraits des rapports que je vieus de mentionner.

Cet état de choses est d'antant plus anormal que déjà depuis longtemps on réclame l'examen méthorlique de ces importantes formations. "Il est vraimeut regrettable, disait déjà M. Michel en 1866, que diverses canses aient empêehé l'exploration générale de la région aurifère. D'autant plus, dit-il ailleurs, que, quand on considère la valeur des déconvertes qui ont été faites dans la Beauce sans que le gouvernement s'en mêlât, il est raisonnable de supposer que, plus tard, on finira par en faire d’autres anssi sérienses et peut-ètre encore plus importantes." .Te n'ai done qu'un but en écrivant ces quelques remarques: attirer encore une fois l'attention des géologues canadiens sur ce petit coin du pays, et y provoquer des travaux en rapport arec son importance minière réelle.

L'or des alluvions se trouve sur une assez grande superficie, mais, comme le faisait déjà remarquer sir W. Logan, il y a une vingtaine d'années, en dépôts locaux, d'étendue très irrégulière. C'est là, en effet, un des grands ennuis des mineurs. La richesse du gravier aurifère varie d'une manière vraiment désespérante daus l'espace de quelques pieds.

Les pépites d'or sont le plus sonvent arrondies, ce qui indique un point de départ assez éloigné. En effet, il me semble très difficile d'admettre que ces fragments aient été arrondis sur place, comme quelques-uns semblent l'admettre. D'ailleurs, on trouve dans les mêmes alluvions des pépites anguleuses, non usées, provenant évidemment des reines de quartz placées directement sous ces alluvions; celles qui sont usées doivent done venir d'ailleurs.

On a déjà signalé le caractère spécial du gravier anrifère de la Beauce. Il semble que, dans la deseription qu'on en a donnée, on a en particulièrement en vue les alluvions de la Gilbert, qui se trouvent ensevelies sous une épaisse couche de boulder clay, recouverte ellemème de plusicurs pieds de sol arable. Ce gravier aurifère serait done antérieur an boulder chay lui-meme, at appartiondrait ainsi au commencement du quaternaire, pent-etre même à la find dutiaire.

Mais il nist quid juste de remarquer que les graviers auriferes des rivières du Loup " M.termette ont whe position bien différente; ils reposent sur le boulder clay, an lien
 on est porte it wire frab le drift aurifere de la Beance appartient à deux époques distinctes.

On a parlé lion souvent du sable noir qui se trouve invariablement mélangé avee l'or. Déjà © trituration on domompoition des formations voisines, toujours riches en oxydes de fer. Tout denimement on me remetait muorcean d'oxyde noir de fer (fer titané) dans lequel on wit un petite pópit, dor. Cet échantillon vient aussi de la Beauce et donne un exemple remarquable diune alliance tres euriense entre lor et les minérais de fer.

Jusqu'i prénent, pour síparer lor de ce sable noir, dans la plupart des eas, on laisse
 lo sablu noir. qui wit ablu pres deux fois phas léger que l'or. Il fant cependant y aller arm de crandes préautions, vu que, dans certains cas, l'or se tronve en pépites pour ainsi dire miruscopiques. ("nst comme une poussière dont on ne vérifie la nature qu'à l'aide d'un forto loupé. Malgré sa témité, cette pondre métallique est en quantité assez notable pour que las mineuss aient intérêt it la recucillir avee grand soin.

On sinst demandé souvent d'on venait lor de ces alluvions. Une petite partie a pu se séparer des veines de quart\% qui traversent les rochers sous-jacents, mais la plus grande partie vient d'ailleurs.

Sil fant croire que ces transports ont en lien pendant le commencement de l'époque glaciaire, alors que le glacier a culevé les parties superficielles des rochers décomposés préalablement par l'action séculaire des agents atmosphériques, la direction des rainures superlicielles indiquera de quel point de l'horizou viennent ces amas considérables de drift. Or ces rainures sout très nombrenses et très nettement marquées en un grand nombre d'endroits. Nous les trouvons en différentes concessions de St-François le long de la Gilbert, dans les cantons de Cranbourne, de Linière, de Marlow, de Frampton et de Ware, et encore ailleurs. Leur direction générale est du N.-N.-E. au S.-S.-O. Bien que ces indications ne doivent être admises qu'avec beancoup de précantions, elles sont cependant de nature à faire connaitre los directions à suivre pour connaitre les gisements auriferes qui ont enrichi les alluvions de la Beance.

Espérons que les travaux qui commencent cet été sur le haut de la rivière Gilbert, et qui sont supposés se faire sur ce qu'on pourrait appeler les veines mères, nous édifieront pleinement sur ce sujet.

Les veines de quartz aurifere de la Beauce sont aussi très importantes. Elles sont nombreuses; on peut presque dire que tont le gouflement superficiel qui caractérise cette partic du pays comprise entre les premières collines à St-Joseph et la frontière des EtatsUnis, est sillonnée d'une profusion de veines quartzenses. \({ }^{\text {. }}\) Comme direction générale, elles courent du N.-E. au S.-O. C'est à peu près la ligne que suivent les anticlinales et les synclinales des nombreux plissements que les géologues constatent dans ces formations. Je crois que les fissures de ces veines sont contemporaines de ces plissements.

Leur rapport avec la stratification est extrêmement remarquable. Elles sont généralement parallèles aux lits, ce qui n'a pas peu contribué à faire douter de leur nature et de leur valeur. Il y a longtemps que MM. Hunt et Michel ont signalé cette curiense disposition. Lors d'une exploration faite eu 1880, j'ai en l'oceasion de vérifier moi-même la position relative des lits et des veines.

J'ai suivi pendant plus de vingt arpents une vene de quartz aurifere, dans le canton de Marlow. Cette veine disparaissait assez sonvent, mais pour affleurer un pen plus loin. La direction générale était assez régulière et les indices assez nombreux pour me permettre de localiser exactement la bande quartzeuse."

Elle était éminemment aurifere. J'ai répété à maintes reprises des essais mécaniques grossiers, et toujours j’ai trouvé des petites pépites d'or sur le fond du plat de lavagre. De même, en lavant les alluvions qui entouraient cette veine, j'y ai toujours tronvé de l'or en quantité notable.

Les veines de quartz sont donc loin d'être rares it la Beance. Ie roc en est pour ainsi dire criblé. Vous les trourez, d'après M. Michel, dans les seigneuries d'Anbin-Drlisle, Aubert-Gallion et Vaudrenil, dans les cantons de Jersey, Marlow, Liniere et Metgermette. J'ajouterai les cantons de Cranbourne, Ware et Watford où elles sont très nombreuses, souvent assez puissantes et très probablement auriferes.

Le quartz renferme plusieurs minerais à part l'or, qui y est d’ailleurs distribné fort irrégulièrement. On y trouve la galène, la blende argentifère, des pyrites auriferes et encore quelques autres. Plusieurs de ces minérais se décomposent par l'action de l'atmosphère, et comme l'or résiste ì ces actions décomposantes, il reste dans la cavité quartzeuse sous forme de pépites grossièrement arrondies. J'ai pu constater moi-même cette origine pour quelques grains d'or passablement gros. L'explorateur doit, à ce propos, se tenir en garde contre certains propriétaires, qui, désirenx de vendre les mines qui leur appartiennent, lui montrent des morceaux de quartz dans les eavités desquels ils ont eut soin de faire entrer à coup de poinçon des pépites d'or, pour faire monsser leur mine prétendue. C'est un peu ce qui s'est passé à la rivière du Loup, où des gens ont tiré, dans les sables du rivage, des coups de fusil chargés de pépites d'or, au moment où des explorateurs venaient faire les inspections préliminaires à des achats définitifs.

\footnotetext{
\({ }^{1}\) Ici, je suis en désaccord avec le dernier rapport de M. Webster tel qu'il est reproduit par M. Selwyn, mais il eet probable que mes recherches et les siennes ne se sont pas faites exactement dans les inémes localités.

D'ailleurs, ce que dit plus loin M. Webster, dans lo même rapport, laiese croire qu'il doit y avoir plusieurs veines aurifères. A propos des alluvieus qui reposent sur le silurien supérieur, il attirme que, le loug de la Chaudière, depuis le lac Mégantic jusqu'à StJoseph, on ne peut guèro laver un plat d’alluviod sans y trouver dea parcelles d'or.
\({ }^{2}\) Les deux lèvresétaient des argillites dont les feuillets couraient parallelcment a la direction générale de la veine.
}

Ces veines quartzeuses sont tout particulièrement développées dans le silurien supérieur. C'est dans ce dernier terrain qu'elles sont tout spécialement abondantes. A ce propos, il serait fort important de rechercher en détail les limites des formations siluriennes à la Beance, car il me semble que les veines qui traversent le silurien supérieur sont plus importantes au point de vue économique que les autres. Il est assez probable que cette recherche géologique ne présenterait pas de bien grandes difficultés, vu qu'il ne manque pas d'endroit où l'on pourrait se procurer des fossiles nombreux et en bon état de conservation. Je citerai tout spécialement plusieurs localités en la paroisse de St -George.

Je me permettrai, en terminant, d'attirer l'attention sur un autre point. C'est le rendement en argent des mines de la Beauce. Tout le monde sait que l'or de la Beauce renferme une assez forte proportion d'argent. Or ce dernier métal a déjà été trouvé en plusieurs endroits, non pas à l'état natif, mais sous la forme de sulfures plus ou moins compliqués. J'ai eu occasion d'examiner personnellement une veine argentifère assez remarquable, dans le canton de Marlow. Sa direction est sensiblement différente des reines de quart\% aurifère ; de plus elle renferme relativement peu de quartz, mais elle est composée en grande partie d'un sulfure compliqué de fer, d'arsenic et d'antimoine qui contient une proportion notable d'argent. Il y a trois de ces veines qui se trouvent au même endroit, à quelques pieds de distance l'une de l'autre.

La galène trouvée à la Beauce est argentifère, et il ne faudrait pas non plus perdre cula du vue dans les recherches dirigées de ce côté.

En voilà assez pour faire voir qu'il y a dans cette partie de notre pays plusieurs problèmes à résoudre, également intéressants au point de vue théorique et au point de vue économique.

\title{
XI - Note sur un gisement d'emeraude au Saguenay,
}

\author{
Par l'abbé J.-C.-K. Laflamme, D.D.
}

\section*{( Lue le 23 mai 1854.)}

Dans le cours d'une exploration géologique, faite pendant l'été de 1883, dans la région du Saguenay, j'ai eu occasion d'y constater l'existence de certains minéranx rares, du moins au Canada, et sur lesquels je crois devoir appeler loattention de la socióté Royale.

Ce gisement intéressant se troure à quelynes milles an nord-onest de lextrémité inférieure du lac Kénogami, it peu près à lendroit où apparaisent, dams le gueiss du lanrentien inférieur, les premières bandes labradoritiques du laurentien supérieur. Un rocher abrupt borde le chemin public du eôte du nord-est at atteint mu hatem de denx ou trois cents pieds. Il se compose, comme la phupart des rochers voisims, de masses gheissiques, et sa surface a été forlement arondic par laction frosive du gla ier quaternaire. Sur les flancs de cette colline se voit une veine assom nal délinie thi se compose dumica, de puart\% et de feldspath en gros eristaux. ('eux-ciattrignent de tres fortes dimensions. Lat pitn de cette veine est comme man grant it tres gros grains
 quable en ee qu’il renferme dans sa masse me quantite considarable de gromats. Il ont presque impossible de eliver une masse, meme relativement petite, de ce mineral, sams trouver un grand nombre de feuillets qui tiennent emprisomís de jolis grenats, tries limpides. Malheureusement leur volume est trop restreint pour qu'ils puissent étre utilisés.

An même endroit se trouve encore l'emerande. La forme cristalline en est parfaitement définie: Prismes droits à six faces, à surlaces latérales profondément camelées. Lat couleur cst vert d'eau, ce qui rapprocherait ce minéral de l'aigur-marine.

Les cristanx atteignent des dimensions remarquables. J'en ai rut qui arait phes de deux pouces de diamètre et une longueur de huit ponces.

Leur forme est tellement tranchée que les cultivatenrs des environs, frappés par l'apparence de ces pierres longues et régulières, disaient avoir tronvé une mine du chevilles de pierre.

Les travaux qu'on a fait en cet endroit sont nécessairement très restreints, vu que les propriétaires du terrain sont pauvres, ce qui leur enlève toute possibilité de faire des recherches dispendieuses. Cependant, il n'y anrait rien de surprenant si des explorations suivies et bien conduites amenaicut la découverte de dépôts d'une certaine valeur.

A ce propos, il est important de remarquer que ce gisement minéralogique n'a pas tous les caractères d'une veine régulière. Il est bien vrai qu'on peut constater l'existence du mélange de gros cristaux de quartz, de mica et de feldspath sur une longueur d'an delà d'un mille perpendiculairement à l'arète rochense dont j'ai parlé plus haut, mais les limites de cette prétendue veine sont loin d'être nettement définies. Souvent le passage du gneiss
aux gros cristaux se fait par une série de changements presque insensibles. A tel point qu'on serait porté à regarder ces gisements comme des agglomérations, des concentrations cristallines ; ce sont comme des endroits où, grâce à une modification spéciale de l'action métamorphique, les différentes espèces minérales ont pu revêtir leurs caractères distinctifs d'une manière plus parfaite.

Rien de surprenant, dans cette hypothèse, si les quelques mines qu'on a fait partir à l'endroit que j'ai examiné ont accusé un changement assez notable entre les pierres de la surface et celles de l'intérieur. Contrairement à ce qu'on attendait, on a constaté que les cristaux d'émeraude sont plus rares à quelques pieds au-dessous de la partie superficielle.

Quelle que soit l'importance ou la valeur de ce fait minéralogique, j'ai cru qu'il était assez important pour en donner communication à la Société Royale. D'autant plus que c'est la première fois, je crois, qu'on trouve un gisement d'émeraude bien caractérisé au Canada.

\title{
XII.-Notes on the Occurrence of Certain Butterflies in Canada.
}

\author{
By W. Saunders, London, Ontario.
}

\section*{(Read May 21, 1884.)}

Important changes have evidently taken place in the revent past affecting ihu geographical distribution of some of the butterflies now regarded as Canadian, and similar changes are also occurring at the present time. It is well known that some butterflies occur in considerable abundance crery year in many localities, while others, nsually rare, occasionally become plentiful. Some are restricted within certan limited areas, others, though extremely rare, are found at widnly distant points. While others again, onee rare and formerly found only in the most southern portions of our conntry, are now much more common and have been taken in some of the more northern sections of Ontario and Quebee. Seeing that these gradual changes in the lecation of speries arn ownrine, it is important that all who are interested in this department of holontial study shomd record any observations they may have the opportunity of making, so as to aid in preparing the way for a fuller knowledge of the geographical distribution of our specios, and of the causes which affect such distribution.

Papilio cresphontes, formerly known as \(P\). Thoas, is a notable instaner of a butterily onee extremely rare in our Province, and found only in its most sonthern connty, having within fifteen or twenty years disseminated itself throughont the ereater part of Ontario. I well remember the great interest with which collectors looked upon the first Canadian specimens of this butterfly. They were taken more than twenty years ago in the meighbourhood of Amherstburgh and were regarded as great rarities. This insect was first deseribed by Oramer, and was figured by Boisduval and LeConte in their work on the Butterflies of North America, published in 1833, where it is referred to as a common insect in the Southern States, feeding in the larval condition on the orange and lemon trees. It is still abmondant in the South, and is regarded as a noxions insect on accomnt of the injury it does to the foliage of trees of the Citrus family; the larva is known there under the common name of "the orange dog."

The species composing the Rue family, Rutacea, to which the genns Citrus belongs, all have their leaves dotted with pellucid glands containing pungent or bitter aromatic volatile oils. The genera are very unlike each other. We have in this comntry, besides the orange and lemon, the northern and southern prickly ash, Xanthoxylum Americanum and Carolinianum; the hop-tree or wafer-ash, Ptelea trifoliata; and tro introduced plants, the garden Rue, Ruta graveolens, and Dictamnus fraxinella, the latter being cultivated in gardens as an ornamental herbaceous plant. Wandering from its home among the orange groves, this butterfly is enabled to recognise the allied genera in this family as suitable
food for its larva, and in the West lays its eggs on the prickly ash or on the hop tree, or with equal readiness selects the herbaceous dictamnus, and occasionally the heavy-odored garden Rue.

Doubtless these different plants are distinguished by their odor. It is difficult to imagine in what other way an insect could be attracted to a plant bronght from some distant shore, of which none of its ancestors have had any knowledge. That insects possess the power of distinguishing and appreciating odors is evident. The carrion beetle traces out the decomposing substance whererer it may be placed on the surface, and butterflies, moths, and other insects swarm around sweet exudations or deposits. It may be asked how is it that the promanmit mieration of this insect northward has been so long delayed, and what ifelunstance hare brought about the result. There was no lack of food plants, for the shruls it now ferds on hatr ben growing here for thonsands of years; neither is the and mation thanere in the dimate. The question as yet remains unanswered. In
 "pmatiat the diflowne in limate betwern the sonth and the north, and continnes to
 winter Las youl fomd somn "eres and newly hatehed larvat as late as September Qut. Yout of the larvar hathey at this period did not attain much more than half their erowthtuther s.p.re frest rendered them torpid, when they became the prey of a star for of Ihemiphera whin pirmerd them and surked them almost dry. Several specimens which wor a fow duys wdor watnol attak and grew with unsual rapidity, attaning
 insert pance the wimer. A similar fault is also observed in the common cabbage butterfly, Pirris rupue a comparatively rexnt impertation from the milder climate of England,



Anmher of laren and handamn sperios is Papilio philenor, a butterfly which is "xtrom.ly rar" in ('andata, so much so that in the course of more than twenty-five years' *xprivine I have mon with single example. Two or three specinens were taken in the whithmurhowl of Wionlstork, Ont., many years ago, and a most remarkable occurrence of this insme in great abmedince in Wist Flamborongh, Ont., in 1858, is recorded by the
 He says." thense hutterilins "pmented in comotless numbers about the lilac trees as long as they "ontinud in hlossom and then suddenly disappeared. They lasted from the 7th to the 18 th of June. hat very few apparing after that date." He also states that they were numerous at that time about Toronto. There is no record of any similar ocenrrence of this insect during the twenty-five years which have since passed. It is not an uncommon bintterfly in Ohio, and this flock may have come across Lake Erie, but it is most unusual to find any butterfly so plentiful during the first brood, as to admit of flocks like this travelling so far from their usual breeding grounds. The larva of philenor feeds on different species of Aristolochia, none of which I believe are native to Ontario. Aristolochia sipho, known as Dutchman's Pipe, is cultirated as an ornamental climber in some gardens, but whether there were any growing at that time in the vicinity of Flamborongh is not known. Had its natural food-plants been abundant, the sudden appearance of such a host would probably have resulted in the species becoming a common one throughout western Ontario.

On Junc 29th, 1882, while collecting at Point Pelee, I was astonished at capturing in fair condition a specimen of Terias Mexicana, an insect, as far as known, hitherto unrecorded anywhere in this western region. Mr. W. H. Edwards, in his catalogue of the Butterflies of America North of Mexico, gives as localities for this species, "Texas to Arizona, California, occasionally in Kausas and Nebraska." It is scarcely possible that the specimen taken by me during a two day's sojourn in that locality was the only one existing there; it is altogether likely there wore others, and that the butterfly has established itself in that district. This seems to be another example of a southern butterfly migrating northwards, and it is quite possible that within a few years it may cover a much more extended area, and perhaps become as common as the once rare Papilio cresphontes.

Three specimens of another butterfly, new to on C'andian lists, were taken at the same time and in the same locality; these were Thecta smitacis, Boisduval, or T. auburniana, Harris, a species recorded as occurring in the Atlantic States, the Mississippi valley, and in Texas.

Twenty-three years ago, on May 2th, while collecting in a swamp in the outskirts of London, I captured two specimens of a handsome little Therela, which proved to be a new species, and was named by Mr. W. H. Edwards of Wist Virginia. Therla lata. For eight or ten years following I regularly visited that lorality about the same date, but never saw another specimen. That swamp has long since disappeared, and its site is now thickly covered with dwellings. The next year a single example of the sane species was captured near the city of Quebec. Although nearly a quarter of a fontury has since passed away, and the number of observers in the memtime has ereatly increased, wo have mon knowledge of any other specimens of this Therla having ben taken in Canala, but during this interval the insect has been captured in West Virginia, and in one loeality in Mane. The flight of a Thecla, being short and jerky, seems to be incompatible with the idea of the insect travelling any great distance, and, if this species hat always been as rare as it now is, it conld scarcely have distributed itself orer such an immense area. Doubtless we have here an example of a butterlly once common, but which, from some mexplained cause, has become almost extinct.

\section*{XIII.-Note on a Decupod Crustacean from the Upper Cretaceous of Highwood River, Alberta, N. W. T. By J. F. Whiteaves.}

\author{
(Read May 21, 1884.)
}

Remains of crustaceans allied to the lobster and crab of recent seas, though comparatively frequent in the Cretaceous rocks of Emope and the United States, have not yet been recorded as occurring in deposits of the same age in Cauada.

In 1876, however, while engaged in studying the fossils colleeted by Mr. James liichardson from the Lower Shales of Skidegate Inlet, in the Queen Charlotte Islands, which are now believed to be the equivalents of the Gault, and in attempting to remove the matrix which covered one side of an Ammonite, the writer had the good fortune to expose to view a nearly perfect specimen of a small crab, which has been sent to Dr. Henry Woodward, of the British Museum, for examination and description.

The fossil, which it is the more immediate object of this paper to deseribe, is a rather remarkable example of a macrurous decapod or lobster-like erustacean, collected by Mr. R. G. McConnell. in 1882, from the Cretaceous shales of thr Highwood liver, a tributary of the Bow.

The specimen originally consisted of an elongate-oval and flatened coneretionary nodule of soft argillite, with a small piece broken off from one end, but cnongh of the matrix has beem removed to show most of the carapace and the upper surface of a few of the abdominal segments. The anterior extremity of the carapace, with the rostrum, is unfortunately not preserved, and the tail, with some of the posterior abdominal segments, was broken off wheu the nodule was found. The ambulatory feet are preserved, but it was found to be scarcely possible to remove the soft shale from around them without running the risk of spoiling the specimen.

The carapace, like that of most of the macrura, is elongated and comparatively narrow, with nearly parallel sides, and, when perfect, its length must have been abont twice as great as its breadth. 'A little in advance of the midlength a single, broadly V-shaped, deep and rather wide groove or furrow crosses the carapace transversely. The posterior half of the carapace is depressed and rather distinctly three-keeled in a longitudinal direction, though it is most likely that these appearances are mostly or wholly due to a considerable and abnormal compression from above. Be this as it may, in the specimen collected by Mr. McConnell, a central keel, or narrow but prominent raised ridge, which is about three times as broad posteriorly as it is anteriorly, and which is bounded on each side by a deep and angular furrow, extends from the posterior end of the carapace to the centre of the V-shaped groove which transverses it. This central keel is much more strongly marked than the broad and comparatively obtuse lateral keels, which latter are placed near the outer margin of each side. The surface of the posterior half of the carapace (and perhaps that of the anterior also) is covered with rather distant, small, isolated conical tubercles, which, under the lens, look as if they might have each borue a bristle at the summit, and
which, occasionally, are surrounded by a minute annulus at the base; and the three keels each have a single series of larger conical tubercles, whose pointed apices are directed forward.

In front of the transverse and \(\nabla\)-shaped furrow the carapace is very badly preserved, and the anterior margin with the rostrum is broken off. The two lateral and tuberculated keels appear to be prolonged to within a short distance of the front margin of the carapace, though they are somewhat less distinct in front of the transverse furrow than they are behind it. On the anterior side of the furrow the central keel is absent, and the median portion of this part of the carapace bears a number of comparatively large and prominent, distinct and conical tubercles, which are somewhat peculiarly arranged. Next to the furrow, and in advance of it, in the median line, there are five tubercles arranged, in two convergent rows of two pairs and an odd one, which, if connected by lines, would have much the shape of an isosceles triangle, with its base near to the furrow. Between the space bounded by these five tubercles and each lateral keel, there is a shallowly concave and rather broad depression of the carapace. In front of these five tubercles, again, there are four others and still larger ones, (the two anterior ones apparently of considerable size), arranged somewhat in the form of a square, any of whose sides would be greater than the base of the isosceles triangle indicated by the other five.

The upper surface of each of the abdominal segments bears a tubercle in the centre, on its anterior edge, and another one on the margin of each of the sides. The most prominent characteristic of the species, in fact, is the possession of three widely distant, longitudinal and tuberculated keels, which extend over nearly the whole length of the upper surface of the body.

To the right of the carapace, in front, there are indications of what appears to have been a large pinching claw, and, if the appearances presented are correctly interpreted, the sides of the fixed ramus of that claw are also coarsely tuberculated.

Until its exact generic position shall have been settled by the collection of more perfect specimens, it may be convenient to designate the present species as Hoploparia (?) Canadensis, though it is by no means certain that it belongs to McCoy's genus of that name.

\title{
XIV.-Description of a Nero Species of Ammonite from the Cretaceous Rocks of Fort St. John, on the Peace River. By J. F. Whiteaves.
}
```

(Read May 2:i, 1854.)

```

Several specimens of an apparently undeseribed Ammonitoid shell were collected by Mr. (now Dr.) A. R. C. Selwyn, in 1875, at Fort St. John, mostly from large concretionary nodules in shales which, from their position, may possibly represent the Fort benton Group, of the Upper Missouri Cretaceons. The only other fissils obtained from these shates are a Pecten, an Oxytoma, one, or perhaps two, specie's of Inoceramus, and a "alst of a Natica or Lunatia, all of which are too imperfect to be specilically determincel. When fomm in nodules, these Ammonites occur in the condition of imperfectly proserved and much flattened casts of the interior of the sholl, which vary in size from one inh and at half to nearly eight inches in their greatest diameter. Tho nodules have been split open in suth a way as to expose to view only one side of each tast. upon which no vestiger wf the sutures of the septa ean be traced.

At all stages of growth the whorls of the speries now muder consideration appear to have been so strongly involute that the inner ones are nearly. if not quite, wovered by the outer volution. The umbiliens or umbilical depression, consequently is pory small and narrow, but as its boundaries are indistinctly defined. and as the secimens are tenerally much crushed and distorted, it is difficult to estinate its proportionate width with muth accuracy.

The smallest specimens are compressed at the sides and regularly ribbed, but the ribs, which are somewhat flexnous, are much narrower than the broad, shallow erooves between them, and each rib bears a prominent and narrowly elongated tubercle dose to the periphery, and at a right angle to the side of the shell. At this stage of growth the characters of the central portion of the periphery are unknown.

Two half-grown individuals, which measure respectively lour and four and a half inches in their greatest diameter, though not altogether free from distortion are much less abnormally compressed than any of the others. Judging by these specimens, which are almost entirely free from the matrix, and which look as if they might have been collected from the bedded rock, the breadth or thickness of the shelly tube, of which the outer volution is composed, must have been considerable, and nearly or quite equal to its dorso-ventral diameter. The periphery is broadly compressed, as are also the sides, so that the outline of the outer portion of the aperture is nearly square, but this may be the result of a slight amount of distortion, and the siphonal edge may have been regularly rounded in its normal condition. With this advance in age, the ribs become converted into broad and rounded, but not very flexuous, prominent and obliquely transverse, radiatiug folds. In the smaller of the two specimens, the primary folds bifurcate widely at the umbilicus, and for the most part alternate with shorter and simple intercalated plications. The points at which the primary folds bifurcate are each marked by a single transversely elongated
tubercle, whose summit is obtusely rounded, and each branch bears a similar tubercle near the outer edge of each side of the periphery. The secondary folds also each bear a single tubercle on both sides, near the margin of the periphery, but become obsolete and consequently devoid of tubercles on the umbilical margin. In the larger of the two halfgrown specimens, the primary folds are simple and do not bifurcate, but bear transversely elongated tubercles on the umbilical margin, and alternate with shorter secondary plications. In both specimens the primary and secondary folds are continuous across the periphery, and the siphonal region is entirely devoid of any kind of keel.

On the largest examples collected, the radiating folds become nearly or quite obsolete, and the outer volution bears a circle of seven or eight widely distinct, very large and prominent conical tubercles around and on the umbilical margin, and about double that number on each side. near the outer edge of the periphery. In addition to the tubercles, the surface is marked with coarse and irregularly disposed radiating striæ, together with a few indistinct remains of the folds which characterized it at an earlier stage of growth. At all staves of growth the tubercles, whether large or small are placed at a right or nearly right angle to the sides of the shell.

The generic position of this species must, of course, remain doubtful until the sutural line of the latter shall have been observed. In the meantime, however, judging by analogies in "xternal form and surface ornamentation, the present species seems to be somewhat nearly related to the Buchicerus surallovi (the Ammonites Svallovi of Shumard) of the Utah ('retaceous. and may, therefore, be provisionally referred to that genus, under the name Buchinerus (?) cornutum, although it is quite as likely to be an Acanthoceras or an Hoplites. The close involution of its whorls and the ornamentation of their sides are very like those of some species of Placenticeras, but the broad siphonal edge of the Peace River shell seems to forbid its refercnce to that genus. The most prominent characters of B. cornatum are its small umbilicus and the large size of the tubercles on the adult shell. In \(B\). Swallovi, the umbilicus is stated to be so large as to exhibit "a large part of each of the inner volutions"; the nodes or tubercles on the sides of the shell are comparatively small, and there is a double row of tubercles near the margin of the periphery, whereas in B. cornutum there is only a single row.

\section*{ABSTRACTS, 1884.}

\section*{I.-The Geology and Economic Minerals of Hudson Bay and Northern Canada.}

By Robert Belil, M.D., LL.D., C.E., Assistant Director of the Geological Survey.
\[
\text { (Read May } 28,1584 \text {.) }
\]

Since the reading of this paper before the Royal Nociety, the author has been named as the scientist and medical officer to accompany the Govermment expedition to be sent to Hudson Bay during the present summer, and as he will then enjoy rare opportunities for obtaining new information in regard to the geology of these regions, he considers it best to give only the following abstract of his paper, and to defer the pullication of the map which accompanied it until a future time, when fuller details may be given.

The paper contained a sketeh of the geology of those great tracts of the Dominion stretching northward from the organized provinces into the polar regions, and which may be properly designated Northern Canada. With reference to the country around Hudson Bay, the author's remarks were based entirely upon his own observations. In regard to the Northwest Territories his information was derived partly from his own explorations and partly from the jommals of earlier travellers, while the geology of the Aretic regions was taken from the maps and writings of the scientific men who had accompanied the various expeditions of discovery to the northern seas. In illnstration of the paper, a map of North America was exhibited, on which the author had colored the distribution of the rock-formations, as far as known up to the present time. The character and extent of the successive divisions were then described in their chronological order, beginning with the oldest.

Hitherto it had been customary to represent the geographical area of the main body of the Laurentian system as consisting of two wide arms extending north-eastward and north-westward from the great lakes, but it might be more correctly described as of a somewhat circular form, including Greenland, which appears to be mostly Laurentian. Hudson Bay lies in the centre of the Laurentian area of the mainland, but its shores are fringed to a considerable extent by newer rocks.

It was evident, as Dr. Bell shewed by his geologieal map, that the distribution of the Huronian series was intimately connected with that of the Laurentian, being fornd mostly within the general limits of the latter. The rocks of this system appeared to rest conformably upon the Laurentian in all eases which he had observed. The Hnronian might be characterized as the great metalliferous series of Canada. The largest areas of
these rocks which had beeu distinctly traced out lie betweeu the upper lakes of the St. Lawrence and James Bay, but other areas are known to exist far to the north-west and north-east. They occur in considorable force on the northern side of Athabasea Lake, and rocks which appear to correspond with them are abundant to the north of Great Slave Lake. Dr. Bell had found a basin of Huronian rocks, measuring about 180 miles in length, to the north-east of Lake Winnipeg. They are reported in various parts of the Labrador peninsula as far as the Ungava River, and the author had found them on the east side of Hudson Bay, at Cape Hope, the Paint Hills and Richmond Gulf, and had obtained specimens of similar rocks from near Mosquito Bay. Specimens which he had procured through the officers of the Hudson's Bay Company and the Eskimo from the west side of the Bay between Chesterfield Inlet and Knap Bay, indicated the existence of the Huronian series along that coast.

At Marble lsland, on the same side of Hudson Bay, and opposite the part of the coast which has just been referred to, a white rock is reported to be largely developed. The author had received specimens of it from officers of the Hudson's Bay Company, and found it to consist of a line-grained white guartaite, resembling saceharoidal marble, from which circumstance the island has probably derived its name. This rock appears to be identical with the guartzites which form so conspicuous a feature in the typical Huronian of Lake Huron, and wr may have, on this part of Hudson lay, a repetition of the same series. Dr. Bell had found boulders of white quartzite thickly seatered on the surface at the Methy Portace, and her had bew inlormed by Mr. Roderick Ross that similar boulders were abmondat in Various parts of the "ountry to the north-east of Lake Athabasca.

Around the month of the Churchill River, on the same side of the Bay, and for some miles along the wast to the "ast of it, are found massive and also thinly-bedded grey argillacoous quartzites with conglomerate beds (the well-rounded pebbles of which are mostly of white (quart), interstrutified with an occasional thin shaley layer of a rather darker color than the mass. These strata may form part of the Huronian series, but they also resemble the gold-boaring rocks of Nova Scotia, and, like them, hold veins of white quart\%. Assays of samples from six of these veins, all of which contained more or less specular iron, did not, however, show any traces of the precious metal.

On the Little Whale River and in Richmond Gulf, on the east side of the Bay, another set of rocks is found following the Ifurouian and underlying unconformably the Nipigon series, which occurs in great force on this part of the coast. This intermediate formation consists of great beds of hard red silicions conglomerate and red and grey sandstones with some red shales, and appears to have a considerable volume.

Captain H. P. Dawson, R.A., who had charge, during 1883, of the Observatury station of the Circumpolar Commission at Fort Rae, on Great Slave Lake, collected specimens of the rocks in silu, and made notes on the geology of the surrounding country at Dr. Bell's request. On the shores and islands of the long northern arm of the lake, he found a red conglomerate which may be equivalert to that which occurs at Richmond Gulf; also fine-grained grey and green quartzites. Mr. A. S. Cochrane, one of the writer's assistants, found a hard red sandstone and conglomerate with white quart\% pebbles at the east end of Lake Athabasca, and similar rocks are reported to occur on the Clearwater River above the Methy Portage, and again to the south of Cree Lake, which lies between Isle à la Crosse and Lake Athabasca. Sir Johu Jichardson describes a rock between the eastern
part of Great Bear Lake and Coronation Gulf, which appears to correspond with the hard red conglomerates and sandstones just described.

The Nipigon formation is largely developed along the East-main coast of Hudson Bay, between Cape Jones and Cape Dufferin, and consists of compact non-fossiliferous bluishgrey limestone, coarse cherty limestone-breccia, quartzites, shales, diorites, amygdaloids and manganiferous clay-ironstones. The limestones of Lake Mistassini, in the interior of the Labrador peninsula, bear a strong resemblance to those of the East-main coast, and are probably of the same age. Similar limestones, associated with trap, are described by Richardson as occurring on the shores of the Arctic Sea, between the Mackenzie and the Coppermine Rivers. The native copper of the former stream is associated with rocks, which, from Richardson's description, appear to be similar to those of the Nipigon series. Non-fossiliferous limestones, like those of this formation, form the greater part of the spurs of the Rocky Mountains, which run north-eastward across the lower part of the Mackenzie River, and we may have here a great development of the Nipigon formation.

A border of Silurian rocks (principally limestones) extends along a considerable portion of the western shore of Hudson Bay, and stretehes inland one liundred miles on the Nelson River. To the west and sonth-west of James Bay, Silurian limestones and marls form a wide belt between the great Devonian basin of that region and the Lanrentian rocks of the interior, their base, or western limit, on the main Albany River, being 200 miles, in a straight line, from the sea, and 230 miles on the Kenogami or principal southwestern branch of the same stream. On the western side of the Lanrentian nuclens, Silurian limestones run north-westward through Manitoba and may be traced as far as Isle à la Crosse Lake. But these strata are most widely spread in the north over the great islands beyond the Aretic Circle, between Baffin Bay and the open ocean to the west, and the polar sea to the north.

Devonian rocks, consisting of limestones, shales and marls, with gypsum and clayironstone, form a large basin to the south-west of the head of James Bay. Strata of this age are found here and there, following a north-westerly course, all the way from the southern part of Manitoba to the mouth of the Mackenzie River. They do not, however, appear to occupy so extensive an area as had been supposed by the earlier explorers. What they had described as "bituminous shales," belonging to this system, were found by Dr. Bell to be really soft, fine-grained, Cretaceous sandstone, saturated and blackened by petroleum, and which, after exposure to the weather, sealed off in flaggy pieces, which, at a short distance, resemble coarse shale. In this region the Deronian rocks, rich in fossils, lie in immediate and almost conformable contact with these blackened strata, so that this error was easily made. The same conditions may extend northward, from the mouth of the Mackenzie to Banks Land, and the Melville archipelago and the supposed Carboniferous rocks of these regions may consist of lignite-bearing Cretaceous sandstones, associated with Devonian strata, in which some of the fossil forms resemble others in the Carboniferous.

Fossils, supposed to be of Liassic age, have been found at Capes York, Horsburgh and Warrender, in bright red sandstones, which form conspicuous features in the landscapes at these points; and, again, on Exmouth, Bathurst and Prince Patrick Islands; and Richardson states that Liassic strata occupy a basin along the 77 th parallel of latitude, all the way from the 95 th to the 120 th meridian.

The Cretaceous deposits are very widely spread throughout the whole length of the Northwest Territories. They fill up the greater part of the wide depression between the Rocky Monntains and the Laurentian hills, all the way from the United States boundary to the Arctic Ocean. Southward, they continue to the Gulf of Mexico, so that the Cretaceous system forms a wide belt rumuing north and south completely throngh the continent.

The deposits overlying the Cretaceous system in the Saskatchewan and Alberta districts, which have been classed as Tertiary, are supposed to occur in some places in the valley of the Mackenzie, one of which is at the junction of the Bear Lake River. Tertiary strata are well known to occur at Disco and neighboring places on the west coast of Gresmland, and lignite, probably of the same age, is reported to be found near Cumberland Bay, on the west side of Davis Strait.

The Post-tertiary deposits of many parts of the northern regions, which had been trawised by Dr. Bell, were described as of much interest. In the valleys of the Moose and Alhany livers. they contained beds of lignite resembling the lignites of the Tertiary period in the western territories. Dr. Bell had obtained the remains of both the mastodon and the mammoth aromed Indson Bay. The latter had also been noted at a few places in the Northwest territorins, and a number of bones and tusks of mammoths had been found on the lat on Pormpine River, a tributary of the Ynkon, near the eastern border of Alanka.

In refurring to the wonomic minerals, Dr. Bell said that even the coarser ones, such as granite, cmant-stone, gypsum, clays, marls, ochres, sand for glass-making, moulding, etc., misht yet haw their ralue in some parts of the regions under consideration, and he had always carefully noted them. Soapstone, mica, plumbago, asbestus, chromic iron, apatite, salt and iron prrites in economic quantities had been discovered in different localities. Varions ornamental stones had been noted, amongst them lazulite, malachite, jade, agate, "arnelian, chrysophrase, etc. Lignites, it was well known, are found in many places in the great region constituting the valley of Athabasca-Mackenzie, and on the coast and islands of thu Arctic Sea; also at Disco, in Greenland, and probably near Cumberland Bay. The lost-tertiary lignites of the Moose River have been already mentioned. Anthracite of good quality, but apparently only in small quantities, associated with rocks of the Nipigon series, had been found on Long Island, on the east side of Hudson Bay. Petroleum, which proceeded from the Devonian strata, as it does in Ontario, Pennsylvania and Ohio, was very abundant along the Athabasca and Mackenzie, and had also been found on the Peace liver, and in other localities in the far Northwest, some of which had been described by the author, in the "Canadian Journal ", a few years ago. Vast quantities of asphalt, resulting from the drying up and oxidation of the exnding petroleum, were found on the Athabasea, around Great Slave Lake, and at some places in the northern forests, far from any large river or lake.

Of the metallic ores, iron was stated to be very abundant. Inexhaustible quantities of rich manganiferous ore existed on the Nastapoka Islands, near the east coast of Hudson Bay. The ore was in the form of beds lying at the surface, and the frost had broken it into pieces of convenient sizes for shipping. Valuable deposits of magnetic iron had been found on Athabasca and Knee Lakes, and an extensive mass of pure limonite on the Mattagami River. Captain H. I. Dawson, R. A., had discovered a vein of foliated speenlar
iron on Great Slave Lake. Copper ore had been met with on Hudson Bay, and the native metal, which from private accounts appeared to exist in great quantities, had long been known to occur on the Coppermine River, which flows into the Arctic Sea. Lead ore was abundant in the vicinity of Little Whale River and Richmond Gulf, on the East-main coast. Zine, molybdenum, antimony and manganese had also been collected in different parts of the regions under consideration. The galena of Richmond Gulf contained silver, and this metal was also found in iron pyrites in the same part of the country. Nuggets of native silver were washed ont of the gravel, along with those of gold, on the upper waters of the Peace River. Gold had been detected in veins on the East-main coast, and in quartz from Repulse Bay; and alluvial gold had been obtained in streams among the mountains to the west of the lower part of the Mackenzie River. This region, for various reasons, Dr. Bell regarded as the most promising one yet known in the Dominion for the precious metals. He thought that even the gold of the drift deposits, which are eut through by the Saskatchewan River at Edmonton, and for a distance above and below it, might have been originally derived from this quarter, although a number of years ago he originated the idea that the gold of these drift deposits may have come from Huronian strata, which might exist to the north-east. Large areas of these rocks have since been discovered on the north side of Athabasea Lake; still he considered it quite as likely that the Edmonton gold had been derived from the western side of the Mackeuric valley. It was certain, from various facts which he mentioned, that it had not come down the Saskatchewan River itself from the Rocky Mountains.
II.-Notes on Observations, 1883, on the Geology of the North Shore of Lake Superior. By A. R. C. Selwyn, IL.D., F.R.S., F.G.S.
(Read May 21, 1884.)

The author stated, briefly, the result of observations made on the stratigraphical relation of the great columnar masses of trap which form the snmmit of Thunder Cape, Pie Island, McKay Mountain and other hills in the vicinity, and which have been designated the "crowning overflow," and considered to be newer than the rocks of the Nipigon and Keeweenian series. It was stated that, while those named are clearly a part of the Animikie series, there are other similar flows at a much higher horizon, such as those at Red Rock and in the hills on the north side of Nipigon Bay. Further, that no evidence of unconformity could be found from the base of the Animikie series to the top of the Keeweenian, as developed between Thunder Bay and the east end of Nipigon Bay, where, in certain islands, the red and white rocks of the Nipigon series are well exposed in contact with the dark argillites of the Animikie series, with, in some cases, interrening layers of vertically columnar trap, probably diabase, but similar to that of Thunder Cape, etc. Between Silver Islet and the islands above named, the Animikie series appears to be com* pletely overlapped by the Nipigon, and has not been certainly recognized, anywhere to the east of Nipigon Bay.


To illustrate Mr. G.F. Matthew's Paper on the Fauna of the St.John Group.

42
R6
v. 2
cop. 3

Royal Society of Canada
Proceedings and transa tions

\section*{PLEASE DO NOT REMOVE}

\section*{CARDS OR SLIPS FROM THIS POCKE}
UNIVERSITY OF TORONTO LIBRARY```


[^0]:    ${ }^{8}$ Dans les Basses-Pyrénées.

[^1]:    ${ }^{3}$ LeVasseur avait préparé les plans des fortifications do Québec, que l'on commença en 1702. Il eut aussi quelque discussion avec M. le marguis de Crisafy, qui alors commandait la place.

[^2]:    - La butto du moulin qui sorvait de cavalier était a l'extrémite de la rue Mont-Carmel, sur l'espéce de jeteo qui existo oncore on arrière des batisses sorvant aujourd'hul do palais de justico. (LoMoyno, Fortifications de Qukbec, p. 2).

[^3]:    ${ }^{6}$ Les ruines de ces fortifications subsistent encore (1884).

    - Cos familles comptent de nombreux et honorables doscendants.
    - Il est à remarquer que la famille Gédéon de Catalogne s'est toujours dirigée vers le continent de l'Amérique depuis deux siècles. Tous les descendants du premior Gédéon no passèrent en France que le temps de leur éducation. Aucun n'y reçut le jour, et tous sont demeurés français, fidèles au roi et a leur France bien-aimée。

[^4]:    8 Voir Bachelin de Florence, p. 421, ed. 1873-74.

    - Potit neveu du célèbre abbé Tiberge, baron d'André, bien connu sous le règne de Louis XIV, et dont il est fait mention dans les lettres de Mme de Maintenon.

[^5]:    ${ }^{1}$ J'ai rectoilli tous les noms qui sont passés sous mes yeux pendant que jo préparais cet article.

    - L'un d'eux, étant tombé a la mer, donna son nom all port Mouton.

[^6]:    ${ }^{3}$ Archives curieuses de l'Histoire de France, lère série, t. XV, p. 379.
    ${ }^{4}$ Dans une lettre de 1618 que je cito plus loin, il prend le nom de Poutrincourt, ce qui montrerait que son frèro ainé était mort avant cette date.
    ${ }^{\text {s }}$ Peut-être le mêmo qui fut captif a Tunis en 1611, et qui a fait un mémoire au sujet des corsaires barbaresques (Archives curieuses de l'Histoire de France, t. XV, p. 363).

[^7]:    - Au moment ou j'ecris, les journaux de la Nouvello-Ecosse discutent sur l'origine de ces deux noms.

[^8]:    ${ }^{7}$ A plusieurs reprises Lescarbet revient, dans ses ouvrages, sur les sentiments de piété de Poutrinceurt, et il le louange chaleureusement de ses efforts pour convertir les sauvages.

[^9]:    ${ }^{8}$ Chassés de France par la révocation de l'édit de Nantes, les de Monts se fixèrent en Allemagne. Le contreamiral comte de Monts, actuellement au service de la Prusse, est le descendant direct du fondateur de l'Acadie.
    ${ }^{9}$ Fils de M. de Sicoine, genverneur de la ville de Dieppo, catholique plein de zèle et de piété, dit le P. Biard.
    ${ }^{10}$ Ces méprises sont très fréquentes dans nos archives. On ne peut les attribuer qu'a l'inadvertance de l'écrivain. J'ai vu le nom d'un juge avec le titre de charpentier.

[^10]:    ${ }^{11}$ Il avait appris cet événemont le 28 juillet, dans le voisinago de Terre-Neuve.
    ${ }^{12}$ Très compromise dans lo complot qui avait abouti à l'assassinat du roi.
    ${ }^{13}$ On dit qu'il fut le père du fameux marin do ce nom.
    "Selon Lescarbot, ils offrajent de s'entendro avec des religioux mais pas avec les jésuites, disant que ceux-ci leur prondraient lours biens.
    ${ }_{1 s}$ Il n'eut plus manqué que d'obliger Poutrincourt à se charger de l'entretion des religieux, lui qui arait tant de peine à fonder sa colonie!
    ${ }^{16}$ Le siour Robin dévoué à Mmo de Guerchoville, laquelle obéissait aux jésuites.

[^11]:    ${ }^{18}$ Il est aussi fait mention de Daniel de Quenteville, bourgoois, conseiller-échevin de la ville do Dioppe, commo intéresé dans les affaires d'Acadie.
    ${ }^{10}$ Fin Acadie commo au Canada, ils soignaiont lours potites affaires temporolles.
    ${ }^{13}$ Jo cito cos fails pour montrer que I'outrincourt était oncoro maltro choz lui, ot qu'il prenait les Français tols uqn'ils étaiont, sans viser a l'oxclusivisme.
    *Pourquoi la apeculation vient-elle gater lo don do mille écus?

[^12]:    ${ }^{n}$ Cinq jersonnes dans lo josto. Jew autres n'etaient pas loin.

[^13]:    ${ }^{23}$ Missionnaire au Canada, de 1625 à 1629 et de 1633 à 1646 ; il mourut cette dernière année à Sillery, près de Québec.
    ${ }^{23}$ La carrière de Pontgravé est celle d'un marin et d'un traiteur, Il fut le bras droit de Champlain à Québec.

[^14]:    ${ }^{36}$ L'un do ses doscondants, qui porto lo mêmo nom, est au nombre des plus savants archeologues de Franco

[^15]:    ${ }^{25}$ Cinq mois de navigation dans une barque !

[^16]:    ${ }^{26}$ Donc Paris s'approvisionnait de poisson ot autres denrées en Acadio.
    ${ }^{27}$ Des princes du sang s'étaient révoltés. Cest en les combattant, par les ordres dır roi, que Poutrincourt avait trouvé la mort. Je ne pense pas qu'il fût assassiné, comme le mot "laschoment" le ferait croire.
    ${ }^{28}$ C'est l'affaire d'A rgall, en 1613.
    ${ }^{29}$ Si jo comprends bien, ceci vout dire: les sauvages dos côtes promottaient aux Anglais do leur procurer l'Acadio, lorsqu'ils auraient fait do bons établissements en Virginie.

[^17]:    ${ }^{3}$ Lescarbot disait la même chose.
    ${ }^{2}$ Ies armes de la ville de l'aris sont un naviro sous voiles.
    m In 0 novenbro 1620, les Jilgrim Fathers arrivèrent en vue du cap Corl pour fonder la colonio du Massachirsotts.

    * Ce nom est colui de Charles do Biencourt, second fils do Poutrincourt et de Claudine Pajot.

[^18]:    ${ }^{34}$ En 1631, on lui donna lo nom de fort Latour.

[^19]:    * The last Forty Years: Canada since the Union of 1841, by John Charles Dent. Toronto. Published by'George Virtue, 1882.

[^20]:    1"Who believe in the existence of nothing really good outside the limits of protestantism." (History of our oun Times, by Juetin MeCarthy. t II, p. 86.)

[^21]:    ${ }^{2}$ Pour ce qui, dans ce passage, a trait au régime féodal, nous renvoyons le lecteur à notre Histoire d'une Paroisse canadienne au XVIIe siecle.

[^22]:    ${ }^{1}$ Cetto province désignée sous le nom de l'Immaculée-Conception, s'étendait jusqu'à l'océan du côté do la Rochelle et de l'íle d'Oléron. Il y avait un couvent de récollets à Bronages même. Cette circonstance, autant que les remarques de M. Houel, peut avoir déterminé le choix de Champlain.
    ${ }^{2}$ Champlain, p. 499, pagination inféricure, édit. de Laverdière.
    ${ }^{3}$ Etablisscment de la Foy, t. I, p. 32.
    ${ }^{4}$ Champlain, p. 493. L'auteur do l'Hist. de la Colonic française, t. I, p. 145, me paraît s'être un peu trop hâté de conclure que les récollets ne voulurent pas user de ce moyen, c'est-a-dire recourir a leur supériour de Rome. Les religieux envoyés de Brouages à Paris n'avaient qu'une chose à faire, c'était de laisser agir leurs supérieurs immédiats, ot de rentrer dans lour douvent; ce qu'ils firent.
    ${ }^{5}$ Ello avait été fendéo en 1612.

[^23]:    *Champlain, p. 493. Le Cleric, Champlain écrivent Chapouin, ot Sagard, Chapoin.
    . J'ai muivi l'orthographe do Sagard, t. I, p. 74, et de Io Clercq, t. I, p. 69, qui roproduisent des lettros signtes de ces noms.

    - Page 29, t. J, Himnire clu Cenneda, enlit. de Tross.
    - Hise. chronologigue de la Irovince des REcollets de I'arir, ele., Paris, chez Deny Thjorry 1677.
    ${ }^{10}$ Decourerks et flullisements des Franguis dans l'Oucst, ctc., pullies par P. Margry, Paris, 1875, t. I, p. 18.
    "Champlain, pp. 496 ot suiv., Sagard, Mish du Canada, p. 36, édit. do Tross.

[^24]:    ${ }_{12}$ "Ora posso avvisare V. S. Illma il mio arrivoin Parigi cheè seguito oggi alli 15 prosperamente col divino favore... Di Parigi li 15 décembre 1616." Littere diplomatiche di G. Beativoglio, Torino, 1852.
    ${ }^{1 s}$ L'errour où est tombé l'auteur do l'Hist. de la Col. Franç. au sujet du nonce a été relevéo par Laverdière, Eurres de Champlain, p. 492, note. L'erreur de Ferland au sujet des lettres patentes du roi n'a pas'encoréété signaleo, à ma connaissance.
    ${ }^{14}$ Etablis de la Foy, t. I, p. 51.
    ${ }^{15}$ Mercure de France, t. IV, année 1615, p. 9.

[^25]:    ${ }^{16}$ Dans Sagard, on lit: ne moit. Tous coux qui sont vonus après lui ont répété cotto ornour typographique.
    ${ }^{19}$ Sagard, His. du Canada, L. I, p. 33.
    ${ }^{16}$ Jeblif de la Fby , t. I, p. 187.
    "Collection des memoire publies par M. Margry, t. I.

[^26]:    ${ }^{20}$ Etablis. de la Foy, t. I, p. 105.

[^27]:    n Quolques mots ont eté omis par le copisto. La tradnction do Sagarl porto: "ot dont lo tomps ne soit pas expire."

[^28]:    ${ }^{27}$ "Vous pourrez scavoir qu'autrefois lo révérendissime archevesque, comte de Lyon... ayant requis le saint "siège, etc." Sagard, t. I, p. 29, édit. de Tross.

[^29]:    ${ }^{2}$ Dicourertes et etablisements, L. I, p. 6.

    * Ils mirent à la voile le 24 mai. Champlain avait quitté Paris dès le 22 mars. Champlain, pp. 599 et 600 .
    ${ }^{n}$ Etallien de la Foy, t. I , p. 298.
    ${ }^{25}$ Sons. 22, ch. 0.
    * Elle avait eté rendue aux pères jésuites par Grégoire XIII, bullo du ler octobre 1579.

[^30]:    ${ }^{20}$ Depuis que cette note a été écrite, les solennités du cinquantenaire de la société St-Jean-Baptiste m'ont rappelé que la première messe célébrée au Canada, l'a été le 24 juin, jour même de la fête de saint Jean-Baptiste, et très probablement dans l'̂̀le de Montréal. Voir Champlain, p. 499, note, et les Découvectes otc., de M. Margry, t. I, p. 3.
    ${ }^{{ }^{3}}$ Etabliss. de la Foy, t. I, p. 215.

[^31]:    ${ }^{1}$ Abcinves of Ambigisal knowlmbgh of the Indian tribes of the Unitod States, by Henry R. Schooleraft, LI_D. Mhiladelphia, 1860.

    - Voir la conféronco lne devant la Societé littéraire et historique, a Québec, le 17 décembre 1850, par M. le profusseur J. Canpbell, M.A., de Montréal.

[^32]:    ${ }^{3}$ Hist. of Carolina, 1714, p. 181, cité par Schoolcraft, p. 93.

[^33]:    - Hist. Ind. Tribes of U. S. 1855, pt. V, p. 270.

    B Annual Ieport of the Bureau of Eumology, U. S., 1870-80, p. 9.

[^34]:    - Nat. Races of the Pacific States, 1874, Vol. I, p. 780.

[^35]:    ${ }^{7}$ Mem. Hist. sur la Louisiane, 1753, Vol. I, pp. 241-43.

[^36]:    ${ }^{8}$ Il ne faut pas oublier quo les poètes les plus distingués du Canada, MM. Fréchette, Lemay et Marchand, font partie de la première section de la Société Royale.

    - Le Dr Jules Lemoyne, récemment décédé à Washington. Lo 8 mai courant, on faisait subir la crémation a Washington aux restos mortels du professeur Sainuel G. Gross.
    ${ }^{10}$ Hist. Indian Tribes of tho United States, I854, Part IV, p. 224.
    ${ }^{11}$ Cont. to N. A. Ethnol. 1877, Vol. III, p. 341.
    ${ }^{12}$ Adventures on the Columbia River, 183I, Vol. II, p. 387.
    ${ }^{13}$ American Naturalist, November, 1878, p. 753.

[^37]:    ${ }^{1}$ Ce sont les deux premiers chants d'un poème qui doit en avoir six ou sept, et que l'auteur avait commencé a la demande d'une personne chère qui n'est plus.

[^38]:    ${ }^{1}$ Inscription tumulaire de Guillaume de Naillac ou Nolac:
    " Anno: Domini : millesimo: ducentesimo: sexagesimo: sento: die: dominico: post: festum: ominum : sanctorum : obiit: G. de Nolac: de profundis vili."

[^39]:    ${ }^{1}$ In his Himoire de In Iillerature canalienne, M. Laroan lays stress upon the fact that the traditions, songs, Lales, proverbs and superstitions of the French Canadians are all Norman or Breton.

[^40]:    ${ }^{1}$ Somo old beliefs that onco existed among the habitants are, M. LeNay, the translator of Erengeline, tells us, fast dying away. Onc of them was that of the temporary resurrection, at Christmasetile, of the last curé of the parish; who, with his dead flock around him, recited the office for the day, his ghostly audionco repeating the responses. Anothor tradition is that on Christmas night the light of tho stars penetrates the opened recesses of the oarth, sometimes rovealing hidden treasures. The supposed genufloxions of tho oxen at that sacrel season are common to most Christian communities. With Christmas among the French Canalians, as among ethor peoples, are connocted many curious rhymes which have been handed down from generation to genoration. The strangest of these is what is known as La Guignolee, of which there are soveral vorsions. It is more immediately associated with New Year's Day than with Christmas, but formerly the two holidays were closely related. The Christmas soason may, indeed, be said to terminate only with Epiphany, which by many is still called Old Christmas Day. The origin of La Guignolé is unknown. The explanation au gui, l'an neuf! (the one generally givon) would carry tho custom back to the Druids and the gathering of the sacrod mistletoe (gui, viscum) to which Pliny makes reference (Nat. Hist. xvi., 249). The custom is still kept up, M. Sulte says, in somo parishes of the Province of

[^41]:    Quelwe, of singing the Guighole on the uvening of St. Sylvester's day, that is Now Year's ove. As tho words of this ancient invoration may bo new to some, I append one of the versions contained in the Chansons populaires du Canada of M. Ernest Gagnon :

[^42]:    ${ }^{1}$ It is singular that Kalm, the Swodish naturalist, on his visit to Queboc in 1749 , mado just the samo roflection, not on the halitants, but on the ladies of Quebec. The same distinguished tourist, who brought the obsorvant eye of science to bear upon more than horbs and minerals, speaking generally, says that the womon of Canada are handsomo, virtuous and woll-bred, with an abandon that is charming in its innocence. As housewives ho found them superior to those of the English colonies. More than once he contrasts the refinemont of the Canadians with the brusqueness of the Dutch and English. But he thinks the Canadian ladies give too much time to their toilet. He makes a difference between the ladios of Quebec and those of Montreal. The formor is a veritablo Frenchwoman by education and manners-the consequence of association with the noblesse that came every year in the king's ships, while hosts so distinguished rarely got so far inland as Montreal. He says the French attribute to tho ladies of tho latter city a large share of Indian pride with Indian lack of culture. But they as well as the fair Quebecquoises err through fondness for dress.-(Voyage de Kalm en Amérique, analysé et traduit par W. Marchand.)

[^43]:    ${ }^{1}$ In using the terms "nation" and "national" with regard to Canada, it will be understood that I have recourse to the only mode of expression applicable to a community of such dimensions and prospects as ours. The bond that unites us to the mother-country is not forgotten.
    ${ }^{2}$ The author of Colbert et le Canada.

[^44]:    " Mr. J. IR. Bartleu (l'ranal Nurralive, etc., vol. ii, p. 283) says that "no analogy has yet been traced boIwen the language of the ohd Moxicans and any tribe at the north, in the district from which they are supposed to have come; nor, in aby of the relics, or ornaments, or works of art, do we obsorve a rescmblance between them." But Dr. 1). Wilson points to some probable connection between the "uncouth, clicking sounds" of the Chinooks and olher trites and the lli, lxl, all, izlli and yoll of the most characteristic Mexican terminations. Those sinilarities of spech Dr. Wilson regards as the " nere reflex traces of later and indirect Mexican influence." Perhajs, from the same mint of viow, the syllables $/ 1$ and $h$, which cecur in Haida worls and which, Dr. G. M. Daweon suggests, may represent the article, aro not without significanco (Report of Progress of Geol. Surrey of Canada for 1878-79, p. 177 3).

[^45]:    "Stadaconé dormait sur son fier promontoire;
    Ormes ot pins, forêt silonciouse et noire, I'rotégeaiont son sommoil.
    Ia roi Donnacona, dans son palais d'écorce, Attondait, méditant sur sa gloire et sa force,

    Lo retour du soleil."

[^46]:    " At Pozzuoli, on the Italian coast, A ruined temple stands. The thin waves flow Upon its marble pavements ; and in row Three columns, last of a majestic host Which once had heard the haughty Roman's boast, Rise in the mellow air. Long years ago The unstable floor sank down, and from below The shining flood of sapphire-like the ghost Of youth's bright aspirations and high hopes,

[^47]:    1 Typer of Mankind, p. 291.

[^48]:    ${ }^{1}$ The Jesuits in North America, p. 43.

[^49]:    'The Indian Races of North and South America, p. 286.

[^50]:    ${ }^{1}$ Magazine of American History, vol. x., p. 479.

[^51]:    ${ }^{1}$ Archacologia Americana, vol. ii., p. 173.
    ${ }^{2}$ Indian Migrations, p. 17.

[^52]:    ${ }^{1}$ Whitney's Study of Tangunge, p. 348.
    ${ }^{2}$ Relation, 1641, p. 72.
    ${ }^{3}$ Y'eter Jones and the Ojebway Indians, p. 31.

[^53]:    ${ }^{1}$ The Life and Growth of Languages, p. 259.
    ${ }^{2}$ Indian Migration as evidenced by Languages, p. 24.

[^54]:    ${ }^{1}$ Hale's Indian Migrations as evidenced by Language, p. 3.

[^55]:    ${ }^{1}$ Antloropology, hy Dr. Paul Topinarl ; Fug. Trans., p. 480.
    2 "The Huron Hace and Head-form." N. S. Canadian Journal, vol. xiii., p. 113.

    - Crania Amoricana, p. 105.

[^56]:    ${ }^{1}$ Jroryuois lbook of Rites, ph 78.

[^57]:    ${ }^{1}$ League of the Iroquois, p. 4.
    ${ }^{2}$ Notes on the Iroquois, p. 51.
    ${ }^{2}$ Lecturos on the Science of Languago, 5th ed., p. 58.
    ${ }^{4}$ Notes on the Iroquois, p. 52.

[^58]:    'Origin and Traditional History of the Wyandotts, p. 4.

[^59]:    ${ }^{1}$ League of tho Iroquois, $\boldsymbol{p}^{2} 76$.
    ${ }^{2}$ Tho Jesuits in N. Anerica, p. 441. Note.

[^60]:    ${ }^{1}$ History of the Indian Tribes, vol. ii, p. 78.
    ${ }^{2}$ "Huron Race and Head-form." Canadian Journal, N.S., vol. xiii., p. 113.

[^61]:    Sec. II., 1884. 11.

[^62]:    " Some American Illnstrations of the Evolution of new Varicties of Man." Journal of Anthropology. May, 1879.

[^63]:    ${ }^{1}$ The IIuron vocabulary propared by the Jesuit Father, Chaumonot, is, as I have recently learned, still in existence, and will, I hope, be speedily published, under trustworthy editorial supervision.
    ${ }^{3}$ The Iroquois Book of Rites, p. 22.

[^64]:    ${ }^{1}$ The League of the Iroquois, pr 2.
    ${ }^{2}$ Archeologia Americana, vol. ii, p. 79.

[^65]:    ${ }^{1}$ Indian Migrations, p. 22.

[^66]:    ${ }^{1}$ Life and Growth of Language, p. 261.

[^67]:    ${ }^{1}$ Iactures on the Science of Ianguage, 2nd Ser., p. 162.

[^68]:    ${ }^{1}$ The prefix, nenh, is here, and in the following tense, a contraction for ohnenh, already.

[^69]:    ${ }^{1}$ When crossing the ocean in tho S.S. Sardinian, I was amused to hear the lato Captain Button direct his seamen, when assembled for religious servico, to sing port and starboard,-a sailor's rendering of antiphonal.
    ${ }^{2}$ The Iroquois Book of Rites, p, 113.

[^70]:    ${ }^{1}$ It is thus described: "Oraison Dominicale extraite d'un manuscrit très-ancien attribué au Révérend Père Chaumonot, Jésuite, qui était au Village de L'ancienne Lorette avec les Hurons en l'année 1673." My obligations are due to J. M. LeMoine, Esq., for kind services in aiding me to procure this copy.

[^71]:    ${ }^{1}$ John Playfair, loc. cit. pp. 160, 162. The Theory of the Earth, by James Hutton, first appeared in 1785, and in a second edition in 1795. Playfair's celebrated exposition of it, here quoted, was published in Edinburgh in 1802.

[^72]:    ${ }^{2}$ In preparing the foregoing synopsis of the viows of Werner, I lave followed, in part, the exposition of his system given by Murray in his Review of Playfair's Illustrations of the Huttonian Theory, published anonymously in Edinburgh in 1802 ; in part the statements to be found in Playfair, in Bakewell, in Lyell, and in Naumann ; and also the excellent analysis given by Daubrée in his Études et Expériences Synthétiques sur le Métamorphisme, et sur la Formation des Roches Cristallinos; Paris, 1860.
    ${ }^{3}$ Playfair, Illustrations, etc., p. 89.

[^73]:    - Sce Trana. Royal Soc. Canada, vol. i, part iv, page 212.
    ${ }^{5}$ Mayfair, Illustrations, etc., pp. 79 and 260.

[^74]:    ${ }^{6}$ Playfair, Illustrations, etc., pp. 12 and 131.
    ${ }^{\text { }}$ Biography of Hutton ; Playfair's Works, vol. iv., p. 52.
    ${ }^{8}$ Daubrée, Études et Expériences, etc., p. 12.

[^75]:    - Delabeche, Geology of Cornwall and Devon, pp. 33-34; also Researches in Theoretical Geology.

[^76]:    ${ }^{20}$ Daubré, Études et Expériences Synthetiques, etc., pp. 121, 122.

[^77]:    " l'layfair's Biography of James Lintton, in Playfair's completo works, 4 vols, Edinburgh, 1822; s00 vol. iv. pp. 33-81. His Illustrations of the Iluttonian Theory will there be found reprinted in vol. $\mathbf{i}$.
    ${ }^{12}$ Sur les Einanations Volcaniques ot Métalliferes. Bull. Soc. Geol. do Fr. (2) iv.
    ${ }^{12}$ Scrope, Considerations on Volcanoes, otc., 1825, pp. 225-228. Tho cosmogony of Scrope was fantastic in tho extrome; he conjoctured the solid granitic earth to have been detached from the sun as an irregular mass, and compared it to an aürolite.

[^78]:    ${ }^{14}$ Voyages dans les Alpes (1796), vol. viii., pp. 55, 64.
    ${ }^{13}$ Boué, Annales des Scionces Naturelles, Aug., 1824, p. 417, citod by Naunann.
    ${ }^{16}$ Naumann, Lelurbuch der Geognosie (1857) 2nd ed. vol. ii., pp. 160-170. Wo shall have frequent occasion in theso pages to quote from this section of Naumann's Lehrbuch.

[^79]:    ${ }^{17}$ Bull. Soc. Géol. de France (3) xi. 30.
    ${ }^{18}$ Canadian Naturalist, volume viii.
    ${ }^{19}$ It is worthy of note in this connection that Halley was long ago led, from the study of terrestrial magnetism, to adopt a similar hypothesis with regard to the oarth's interior. "He supposed the existence of two magnetic poles situated in the earth's outer crust, and two others in an interior mass, separated from the solid envelope by a flnid medium, and revolving by a very small degree slower than tho outer crust. The same conclusion was snbsequently adopted by Hanstoen." (Hunt, Chem. and Geol. Essays, p. 60.)

[^80]:    * For a discussion of the viows of Phillips, Durocher, Bunsen and Streng, sco Hunt, Chem. and Geol. Essays, Pages 3-6,60, and 284. See also Bunson, Ann. de Chim. ot do Phys. 1853, (3) xxxviii, 215-289.

[^81]:    ${ }^{21}$ Dana, On the Analogies betwoen tho Modern Igneous Rocks and the so-callod Primary Formations. Amer. Jour. Science, 1843, vol. xlv., p. 104-129.

[^82]:    ${ }^{31}$ Dana, Manual of Geology, 3rd od. 1879, pp. 147, 154, 155, also 720.
    a Geology of the Fortioth Parallol, vol. I, p. 117.

[^83]:    ${ }^{23}$ Noues Jahrbuch fur Mineralogio, 1872, pp. 388 and 490.
    ${ }^{24}$ Marr, The Origin of Archæan Rocks; Geological Magazine, June, 1883.
    ${ }^{25}$ Hitclucock, The Early History of the North American Continent.-Proc. Amer. Assoc. Adv. Science, 1883.
    ${ }^{26}$ Soo for references Hunt, Chem, and Geol. Essays, p. 218; also Bouê, Guide du Géologuo Voyageur, ii. 108.

[^84]:    ${ }^{77}$ (roology of Pennsylvania II. 780.
    20 Chemical and Geological Essays, pp. 102-208, and infra Part II.
    $=$ Belt, The Naturalist in Nicaragua, 1874, pp. 97-100. In the pagas here referrod to, my friond, whose promature doath was a great loss to scionce, has sot forth with clearness the Huttonian theory of metalliferous veins.

    * Daubree, Des terrains stratifess considérés au point do vue do l'origine des substances qui les constituont, otc. Bull. Soc Géol. do France (2) xxviii, p. 307.
    ${ }^{31}$ Scrope, Considerations on Volcanoos, p. 25.

[^85]:    ${ }^{32}$ For an analysis of these viows of Scheerer and Elie de Beaument, and references to the controversies to which they gave rise, seo Hunt, Chemical and Goological Essays, pp. 5, 6, and 188, 189.
    ${ }^{33}$ Géologie Experimentale, p. 542.
    ${ }^{3}$ See, for an account of this hypothesis as maintained by Issel and Capacci, Hunt, on The Geological History of Serpentines, Trans. Roy. Soc. Can:, vol i., part iv., p. 198.
    ${ }^{35}$ Ibid, vol. i., part iv., p. 206.
    ${ }^{35}$ Geological Magazine for June, 1884, page 278.
    Sec. III., 1884. 3.

[^86]:    ${ }^{37}$ Seo, in this connection, Hunt, Chem. and Gool. Essays, pp. 316, 320, 325 ; also preface to the socond odition of the same, pp. xxvii-xxxi. ; and farther, Trans. Roy. Soc., Can., vol. i., part 4, pp. 108-204.
    ${ }^{28}$ Chom. and Gool. Essays, p. 324; also Trans. Roy. Soc. Can., I., part 4, p. 204; and W. King and T. H. Rownoy, An Old Chapter of the Geological Rocord, 1881, chaps. vii. and xii.
    "Soo James Macfarlano's Geological Handbook, 1870, p. 130; and, for somo notes on the history of similar rockes, Tran. Roy. Soc. Can., vol. i., part 4, p. 210.

[^87]:    ${ }^{40}$ Genth, Proc. Amer. Philos. Soc., Sopt. 1873 and July 1874; also Amer. Jour. Sci. (3), vi., 419l and viii., 221223. Mr. Dana, in a notice of Dr. Gonth's conclusions, in the last citation, llenounces me severely fur having, on a former occasion, cited from him the words above quoted by Genth, forgetting that it is Genth, whom ho praises, and not mysolf, who is thus attributing them to him, and that Genth's conchusions, if admittol, form a striking exemplification of that doctrine, which Dana there repudiates. In the same note, after stating that I liavo declared that "the advocates of the doetrine of transmutation" have taught that "the greater part of all the so-called metamorphic or crystalline rocks are the result of an opigenic process," and that "the advocates of this doctrine maintain that a mass of granite or diorite may be converted into serpentine or limestone, and that a limestone may be changed into granite or gneiss, which may in its turn become serpentine," Dana calls this an extravagant doctrine, and says:-"I demonstrated that all writors on pseudomorphism, with but one or two axceptions, would repudiate it as strongly as mysolf." He farther says the statements here quoted "have beon shown by mo to bo untrue;" and, with regard to the transmutation of granito or gnoiss into limestone, declares, in repeating his charges before the Boston Socioty of Natural History, that " he never knew any one ignorant enough or audacious enough to have suggested it." (Proc. Boston Soc. Nat. Hist., xvii. p. 170.)

    Those who read thene pages, and will take the trouble to consult tho autherities here cited, or those given in more detail in my Chemical and Geological Essays, pp. 324-326, may satisfy themselves that I have not borne falso witness in this matter, but that every one of tho changes cited has been formally maintained by some one or more of the transmutationists. It is surely not more difficult to transform granite into limestone, than limestone to granite, as imagined by Volger, or corundum to opal with Genth, or chrysolite to corundum with Julien.
    ${ }^{41}$ Proc. Boston Soc. Nat. Hist. (1883) vol. xxiii, p. 147.

[^88]:    ${ }^{\text {e2 }}$ Bischof; Chomical and 1hysical Geology, 1859, vol. III., pp. 431, 432.
    ${ }^{43}$ Geological Survoy of Missouri, 1873; Iron Ores, otc, pp. 25-27. Also Munt, Azoic Rocks, Rep. En, Socond Grological Survey of Penn., [1. 104.

[^89]:    ${ }^{4}$ Geological Magazine, November, 1883, p. 507.

[^90]:    a The Docay of liocks Groologically Considerod, 1883.-Amor. Jour, Sci., vol. xxvi, pp. 190-213.

[^91]:    ${ }^{46}$ Amer. Jour. Science, 1880, xix, 298.

[^92]:    "I have olsewhere given the history of the progress of inquiry in this direction in Roport E of the Second Geological Survey of Pennsylvania (Azoic Rocks) 1878; in brief, in an essay on Pro-Cambrian Rocks, otc., in tho Amor. Jour. Scionce, 1880, (xiv. 208); and later in a atudy of the Pro-Cambrian Rocks of tho Alps, in the Trans. Roy. Soc., Canada, vol. 1, part 3, pp. 182-190. Sco also in this connection the late address of Dr. Hicks, president of the British Geologists' Association, in its Procoedings, vol, viii. 1883, Un the Succession of the Archean Rocks, etc. ; and the still more recent paper of Prof. Bonney; president of the Geological Society of London, on The Builling of the Alps, in Nature for May 18 and 25, 1884; also the Geological Magazino for June 1884, p. 280.

    * Epochen der Natur. p. 20.

[^93]:    ${ }^{49}$ See, for the references to this early statement, the American Journal Science for January, 1858, (vol. xxv, p. 102;) also a Theory of Igneous Rocks and Volcanoes, Canadian Journal, Toronto, May, 1858 ; and Some Points in Chomical Geology, in abstract in Philos. Mag. for February, and in full in the Quarterly Geological Journal for November, 1859. The latter two papers are reprinted in the author's Chemical and Geological Essays, pp. 1-17.

[^94]:    * Procoodings of the Royal Institution, and also Chomical and Geological Essays, pp. 35-45.
    ${ }^{\text {B4 }}$ Geological Magazino for Juno, 1809, and Amor. Jour. Science, for July, 1870 (vol. i., p. 21.) Soo also Chemical and Geological Essays, pp. 50-67.

[^95]:    ${ }^{52}$ For citations and references see Chemical and Geological Essays, pp. 296, 297 and 300.
    ${ }^{63}$ The Chemistry of Metamorphic Rocks ; Dublin Quarterly Journal for July, 1863; reprinted in Chemical and Geological Essays, pp. 18-34.
    ${ }^{4}$ Whitney, Amer. Jour. Science, 1869, xxviii., 16.

[^96]:    "Geology of Canada, 1863 ; pp. 476 and 600.
    ${ }^{*}$ Azoic Rocks, Report E, Second Geological Survey of Ponnsylvania, p. 247.
    ${ }^{4}$ Chemical and Geological Fssays, p 217.

[^97]:    ${ }^{58}$ Amer. Jonr. Science (3), vol. i., 88 and 182, and vol. iii., 115 ; also, Chem. and Geol. Essays, pp. 183-209.
    ${ }^{59}$ Proc. Boston Society of Natural History, xvi. 237, p. 108.
    ${ }^{50}$ Chemical and Geological Eesays, p. 298.
    ${ }^{61}$ The History of some Pre-Cambrian Rocks, etc. Proc. A. A. A. S., for 1879, and Amer. Jour. Science (1880) इix., p. 270.

[^98]:    *The Chemical and Goological Rolations of the Atmosphere, Amer. Jour. Science, xix, 354. See farthor, for the stratigrafhical relations of the various aluminous silicates, (which wore first set forth by the author in 1863), Chem. and Geol. Feerys, pp. 27 and 28 ; also Report E, Socond Geological Survoy of Ionnsylvania, (1878) p. 210.
    ©The Ihecay of Rocks Geologically Considored, Amer. Journal Scionco, (1883) xxvi, 194.

[^99]:    ${ }^{64}$ For a general account of the views described in this paragraph, and for references to the somewhat extended literature of the subjoct, see Hunt, Chemical and Geological Essays, pp. 18s-191; also Tbid., p. 6.

[^100]:    © The following is the compsition assignol by Bunson to tho typical trachytic and basaltic magmas, and to palagonice, as dedurel from his studies of these rocks in Icoland; $A$, being the normal tracliytic type, the moan of seven analyses of trachyto and ulsidian; $1 B$, the normal basaltic type, from six analyses of basalt and lava; and C, the average of several palazonites of that region, floducting the water:-
    

    The forrous oxyd in the six oxamples from which B was doducod varied from 11.69 to 19.43 ; whilo for the palagonito, tho iron (which is not separated from the alumina in tho aboro average, and is prosont as forric oxyd,) rangod from 11.85 to 21.30 . Tho wator thoroin variod from 16.0 to 24.0 per cont. Tho oxygen ratio for palagonite, taking the maximum of alumina, 18.97, and the forric oxyd, 11.85, togethor, would be about 1:2:4; and excluding the latter from the calculation, vory nearly $1: 1: 4$. Palagonite, according to Bunsen, is thus a hydratod basalt which has oxchanged a portion of its lime for magnesia, with peroxydation of the contained iron. It " is the amorphous portion of basalt that gelatinizes with acids, which is tho part forming zeolites" (corresponding to tho ritroous matter of the tachylito-basalts), and the hydration of this yiolds palagonito. Bunson, by fusing a basalt with potassic hydrato, and treating tho mass with water, got a matorial which differed from tho basalt only in haring lost a little silica and acquired 30.0 of wator, and which had all tho charactors of palagonite. (Bunson, Recherches sur la formation des roches volcaniques en Islando. Ann. do Chim. ot do Plys (1853) (3) xxxviii., 215-259.
    *From a roport of a lecture by the author before the Iowell Instituto, Boston, Mass., Feb. 20, 1884, in the Bonton Daily Advertiser of March 1.
    §68. The transformation of the primary basic layer, judging from the phenomena seen in basic exoplutonic rocks, would give rise not only to quartz, feldspars and zeolites, but to aluminous silicates like epidote, chlorastrolite and prehuite, and to non-aluminous silicates like pectolite, okenite and apophyllite. These silicates are all non-maguesian, but their reactions, while in a soluble condition, with dissolved magnesian salts would give rise to various natural magnesian silicates, both aluminous and non-aluminous.
    § 69. The cooling of the surface of the earth by radiation, and the heating from below, would establish in the disintegrated, porons and unstratified mass of the primary layer a system of aqueous circulation, by which the waters penetrating this permeable layer would be retumed again to the surfuce as thermal springs, charged with varions matters there to be deposited. The result of this process of upward lixiviation of the mass would be the gradual separation of the primary undifferentiated layer into an npper stratum, consisting chiefly of acidic silicates, such as feldspars with quartz, and a lower, more basic and insoluble residual stratum, charged with iron and magnesia; the two representing respectively the overlying granitie and the underlying basaltic layer, the presence of which beneath the earth's surface has generally been inferred from exoplutonic phenomena. The intervention of the argillaceons products of subaërial decay was considered, and the reactions between them and mineral solntions from bolow, it was coujectured, might give rise to certain micaceons minerals.
    § 70. That the great shrinking of the primary layer, consequent upon the removal from it, by solution, of the vast amount of matter which built up the overlying granitic and gneissic series, would result in a collapse and a general corrngation of this overlying deposit, and that this would probably be attended by ontflows, through fissures, of the anderlying basic magma, constituting the first ernptive or exoplutonic rocks, were among the most obvious deductions from this hypothesis. These varions points were concisely set forth in notes read in April and May of this year, with the suggestion that this newly proposed explanation of the origin of crystalline rocks, through the action of springs bringing up mineral matters from below, might be called the crenitic hypothesis, from the Greek ropivn, a fountain or spring. ${ }^{\text {.r }}$
    §71. The steps in the chronological history of the new hypothesis, which we have sketched in the preceding pages, may be briefly resumed as follows :-
    I.-1858. An attempt to deduce from the doctrine of a solid incandescent nuclens, and a single primary igneons rock, supposed to be quartzless and basic, throngh mechanical and chemical agencies, two distinct and unlike classes of sedimentary deposits, which, when subsequently transformed by subterranean heat, should give the two types of acidic and basic crystalline rocks. This was an attempt to adopt the Huttonian metamorphic hypothesis to the conception of a cooling globe, and to give it, what it wanted, a point of departure.
    II.-1860. An attempt to explain the production, by aqueous action at the carth's surface, of various protoxyd-silicates.
    III.-1863. An attempt to extend this last conception to double aluminous silicates, by a consideration of the formation of zeolites at the earth's surface in rocks of secondary age,


    and also in more recent times, through the action of thermal waters; it being shown, from the association of zeolites with feldspar and quartz in nature, that all these are sometimes formed contemporaneously from aqueous solutions, and also that many feldspathic veins and masses have probably had a similar aqueous origin.

    1V.-1871. The subject of granite veins, farther discussed, and the mineralogical similarity between these endogenons masses and the indigenous gneissic and granitic rocks insisted npon.
    V. -1874 . The argument reiterated, that the conditions under which the primitive granitic and gnessic rocks were produced were cssentially similar to those of the granitic veins of the later crystalline schists, and that these conditions are reproduced to a smaller extent, in later times, in the formation of zeolitic minerals: finally, that the gneisses and bedded granites are to granitic veins what beds of chemically-deposited limestone and travertine are to calcareous veins.

    Vl.-1880. The definite assertion of the aqueous origin of stratified crystalline rocks, coupled with the regection of thedoctrines of metamorphism and metasomatism in explaining their origin, and the assertion of their pre-paleozoic age. At the same time, the probable interrention of clays, from the subacrial decay of feldpars, as a source of certain erystalline alnminonss silicates is suggested.
    VII.-1884. The delinite assertion is made that the ancient erystalline rocks were generated either directly from materials brought to the surface by subterranean springs from the primary igncous rock, or, as was the case in later times, by the reactions of these maturials with the products of subarial decay. These latter included clays from feldspars, and dissolved magnesian salts formed by the action upon sca-water of magnesian carbonates set free in the atmospheric decomposition of basic rock erupted from the primary stratum. Thus, while what may be called the Primitive erystalline rocks were wholly "renitic in their origin, the soluble and insolnble results of the subaerial decay, alike of basic "xoplutonic matter, and of the older crenitie rocks, contributed to the formation of the later, or Transition crystalline sehists.

    ## IlI. Imidtstrations of the Crenitic Hypothesis.

    § i2. The crenitic hypothesis, which has been proposed in the second part of this essay to accomnt for the origin of the granites and crystalline schists, conceives them to have been derived, directly or indirectly, by solution from a primary stratum of basic rock, the last congealed and superficial portion of the cooling globe, through the intervention of circulating subterrancan waters, by which the mineral elements were brought to the surface. This view not only compares the generation of the constituent minerals of the primitive rocks with that of the minerals formed in the basic eruptive rocks of later times, but supposes these rocks to be extruded portions of the primary stratum which, though nore or less modified by secular changes, still exhibited after eruption, though on a limited scale, the phenomena presented by that stratum in remoter ages. The study of these rocks, and of their accompanying secondary minerals, which may be properly described as the secretions of these rocks, will therefore be found very important as illustrations of the crenitic hypothesis.
    § 73. Without here entering into the details of their geognosy or their lithology, it is sufficient to recall the fact that such basic eruptive rocks abounding in zeolitic minerals are found, with many characters in common, from the time of the Cambrian or pre-Cambrian Keweenian series of Lake Superior to that of the trias of eastern North America, the tertiary of Colorado and the British islands, and the recent lavas of Iceland. The secreted minerals of these rocks often occur in closed cavities in tufaceous beds, constituting amygdaloids, and, at other times, in veins or fissures of considerable size. They are not, however, confined to the tafaceous or recomposed detrital exoplutonic rocks, (which are sometimes themselves hydrated and transformed into palagonite, as described by Bunsen in Iceland,) but occur in veins and cavities in massive rocks, as is well seen in the diabase of lergen Hill, New Jersey, and the massive basalt of Table Mountain, Colorado, both remarkable for their zeolitic minerals.
    \$74. The accumulations of secreted minerals in these conditions are often considerable in amount. Among other examples, it may be noticed that the zeolitic masses in the amygdaloids of the Faroë Islands are sometimes three or four feet in diameter, and constitute a large portion of the rock. Veins of lammontite in Nova Scotia attain breadths of a foot or more, while some veins on Lake Superior, which are made up to a great extent of zeolitic and related species, are two and three feet or more in breadth, and often of considerable extent. The history of the chemical composition of the zeolite-bearing rocks of Lake Superior, and of the changes which have taken place in their degradation from the original eruptive mass, have been studied in detail by Pumpelly, with the help of the previous analyses of Macfarlane, but cannot here be discussed. ${ }^{\text {ma }}$
    §75. We must here notice the modes of occurrence of the zeolites of Table Monntain, Colorado, as described in 1882 by Messrs. Cross and IIildebrand. ${ }^{69}$ The upper forty feet of a great flow of basalt, one hundred feet or more in thickness, shows many cavities, large and small, described as more or less flattened and drawn out. Some of these cavities are empty, while others are more or less completely filled by various zeolites, which are also found in fissures in the mass and, in the case of analeite, in a conglomerate made up of pebbles of basic eruptive rocks, underlying the bed of basalt. The zeolitic deposit often appears as "a reddish-yellow sandstone-like material, which occurs in many of the cavities. In the larger ones it takes the form of a floor, the upper surface being horizontal, and the deposit may be several inches in thickness. Small eavities have been completely filled with it, and it is clear that the deposition has taken place from the bottom of each earity, upward. In parts of South Table Mountain, especially, the same material has filled fissures. Usually the lower part of such masses is composed of a reddish-yellow mincral in irregrular grains, which form a compact aggregate, in which lie isolated spherules of a similarly-colored radiated mineral. These spherules are seldom more than two millimetres in diameter, and are very perfect spheres. They increase in number upwards, and finally form the greater part of the deposit. In one cavity, six or eight feet in horizontal diameter and about two feet high, the deposit is quite different. Here the main mass is loosely granular, and is formed chiefly by a bright greenish-yellow mineral, while a stratified appearance is produced by


    layers of a white or colorless mineral. Some of the white layers are chiefly made up of easily recognized stilbite, and the same mineral, in distinct tablets, forms the upper layer of the whole deposit. There are also irregular seams of white running through the yellow mineral."

    The greenish-yellow crystalline mineral was found to consist of laumontite, and the other layers were mixtures of stilbite and lanmontite, with some of which were found spherules of thomsonite. This, in other cavities, formed layers by itself, without admixture of the other zeolites mentioned. The presence of these zeolites in cavities side by side with other cavities which were entirely empty, is, according to the writers whom we have quoted, apparently due to the fact that the former communicated with fissures which were chanmels for the percolating waters that deposited the zeolites. Such fissures, filled up with similar zeolites, were in many cases found leading to these cavities.
    § 76. The eruptive rocks which break through the Trenton (Ordovician) limestone at and near Montreal, in Canada, are of various ages and unlike composition. Some of these are highly basic, and have been described as dolerites and diorites, while some have been fond to contain analcite, and others again much nephelite, and have been referred to tuschenite and nepheline-syenite. In some fine-grained amygdaloidal varieties of these basie rorks, which have been designated dolerites, I long since described the occurrence of houlandite, "habazite, analcite and natrolite, with quartz and epidote." These zeolites are not abundant, but in certain of the basic doleritic rocks on Mount Royal I have found remarkable veins of orthoclase with quartz and other minerals, which merit a notice in this conncetion. Included in vertical dykes of these rocks, themselves cutting the horizontal limestones which appear at the base of the momatan, are frequent granitic veins, sometimes twelve inches or more in breadth, parallel with the walls of the inclosing dyke, often distinctly banded, and exhibiting a bilateral symmetry which, together with their drusy structure, shews them to be endogenous. The most characteristic of these veins are made up of white, coarsely-crystalline orthoclase with a little quartz which, in druses, presents pyramidal forms. In some of the veins, Dr. Harrington has since detected, besides orthoclase and quartz, nephelite, sodalite, caucrinite, hornblende, acmite, biotite and magnetite. All of these minerals are seemingly secretions from the enclosing basic exotic rock.
    § 77. The mineral secretions of the basic eruptive rocks may be conveniently grouped under seven heads, as follows:-

    1. The aluminous silicates, inciuding the zeolites properly so-called, to which we append the related hydrous species, prehnite and chlorastrolite, and the associated anhydrous species, orthoclase and epidote, which are common in the amygdaloidal rocks of Lake Superior. To these we must add albite, axinite, tourmaline and sphene, observed by Enerson, in 1882, in a diabase dyke in the trias at Deerfield, Massachusetts, ${ }^{71}$ and also the various anhydrous aluminous silicates found with orthoclase in the veins on Mount Royal, just described.
    2. The group of hydrous protoxyd-silicates, the bases of which are lime and alkalies, and


    of which pectolite may be taken as the type. These species are sometimes wrongly spoken of as belonging to the class of zeolites. As an appendage to this group, we note the hydrous borosilicate of lime, datolite, frequently found in these rocks. Mention should here also be made of the anhydrous protoxyd-silicates, hornblende and acmite, in the feldspathic veins of Mount Royal. We have already called attention to the occurrence of hornblende and pyroxene in granitic veins under other conditions ( $\$ 57$ ).
    3. Quartz in its various crystalline and crypto-crystalline forms, as rock-crystal, amethyst, chalcedony, agate and jaspery varietics, is found both alone and associated with the minerals of the preceding groups. Hyalite of very recent origin has also been observed by Emerson at Deerfield.
    4. The oxyds, magnetite and hematite, are frequent in the zeolite-bearing rocks of Nora Scotia, where both of these species form veins in amygdaloid, and where magnetite moreover occurs in drusy cavities with quartz, laumontite and calcite. Hematite, in the form of plates of specular ore, is also found there in veins with latumontite, and manganese oxyd is sometimes associated with these iron-oxyds. Small crystals of hematite on prehnite, with a little manganese oxyd, have been observed by Emerson at the Deerfield locality, as also cuprite on datolite, and malachite on prehnite. In similar associations he, moreover, found small portions of varions sulphids, such as chalcopyrite, pyrite, sphalerite and galenite.
    5. The presence of native copper, and occasionally of native silver, associated with the various silicates already named, should also be noticed. The former metal is common to the zeolitic rocks of Lake Superior and Nova Scotia.
    6. Mention should here be made of the saponite often found in amygdaloidal rocks, which, in its purer form, is a hydrous silicate of magnesia, with but little alumina or ironoxyd. Matters, apparently of this class fill, or more frequently line, amygdaloidal cavities which are filled with other species. This magnesian hydrous silicate is perhaps distinct in origin from the delessite or iron-chlorite which is a frequent constitnent of many basic rocks, such as the melaphyres of Lake Snperior, and is probably not a secretion but a residual product of the transformation of the rock.
    7. Calcite in varions forms is a common species in the rocks in question, and fluorite and barytine may also be mentioned as accidental minerals thercin.

    It is principally with the first two classes of minerals, the zcolitic group, with its appendages, and the pectolitic gromp that we have to do. These two, as is well known, though chiefly found in the eruptive rocks already noticed, are not confined to them. Some species of zeolites occur occasionally in veins in gneiss and other crystalline rocks, and even in limestones and other sedimentary deposits. These occurrences are the more readily understood when we consider that the same minerals have been recently formed by the action of thermal waters in various localities, and are even generated in sub-marine ooze. Many of the species of these two groups have also been formed artificially in the chemist's laboratory.
    §78. It is our present purpose to consider, first, the zeolitic, and secondly, the pectolitic group, both as regards their chemical composition and their relations to various anhydrous silicates. We shall then proceed to notice the action of water at high temperatures on glass and similar bodies, in giving rise to various crystalline species, including quartz. In this connection will also be discussed some facts relating to the chemistry of the alkaline
    silicates. We shall next notice the action of thermal waters in historic times, and the occurrence of zeolites in the clays of the deep sea, and then pass to the experiments on the artificial reproduction of zeolitic species in the laboratory of the chemist, and discuss the relations of hydrous and anhydrous species. From this, we shall proceed to a consideration of the reactions of the hydrous species of the two groups with magnesian salts. The origin

    TABLE OF ZEOLITES AND RELATED SPECIES.
    
    of these salts through subaërial decay of exoplutonic magnesian silicates, and their relation to the primeval sea, will then claim our notice ; after which will be considered the probable relations of the clays from the subaërial decay of feldspathic rocks to other classes of rock-
    making silicates. The conditions of crystallization of mineral matter will next be considered in relation to the formation of rocks, after which the conclusious of our present study will be briefly summed up in the fourth and last part of this essay.
    §79. In the accompanying table of zeolites and related species, are placed, in the first column, the names of hydrous species; in the second column are given the oxygen-ratios between the protoxyd-bases, the alumina, the silica, and the water, represented respectively by $\mathrm{R}, \mathrm{r}, \mathrm{Si}$, and H ; while in the third colnmn, appear the symbols of the predominant pro-toxyd-bases in the respective species. In the fourth colnmn are given the names of corresponding anhydrous species, the protoxyd-bases of which are too well known to require designation. In this and the succeeding tables I have generally followed the terminology and adopted the formulas given in the fifth edition of Dana's "System of Mineralogy."

    In the line with the most basic zeolite known, thomsonite, are placed not only the feldspar, anorthite, but a scapolitic species, paranthite, and sodalite. The mincrals of the sodalite group, including hanyine and nosite, correspond, as is well known, to a silicate of the anorthite type united with a chlorid or a sulphate. With nephelite is coupled the hydrous species gismondite, a true zeolite. The recent analyses, by Cross and Hildebrand of the zeolites of Table Mountain, Colorado, give for the zeolites having the characters of thomsonite a proportion of silica greater than corresponds to the formula of that mineral given by Rammolsberg, which we have placed in the table. Some of their analyses, while yielding almost exactly the other ratios of the formula, give for silica, instead of $4 \cdot 00$, the numbers, $4 \cdot 65,4.76$ and even $5 \cdot 17$; showing a composition more silicious than that of gismondite, and approaching that of a zeolite corresponding to fahlmite, barsowite and bytownite. These chemists, while believing the specimens analyzed by them io represent a pure and mmixed mineral, leave undecided the question of its real composition.
    § 80. The feldspars, barsowite and bytownite, according to several concordant analyses, are as distinct from anorthite as they are from labradorite, and apparently as much entitled to form a distinct species as the latter feldspar, or as andesite or oligoclase. The composition of a lime-barsowite, with the ratios, $1: 3: 5$, would be silica 48.54 , alumina 33.33 , and lime $18.13=100.00$. With these feldspathic minerals has been placed iolite, which is a magnesia-iron silicate, giving the above ratios and, as I long since pointed out, is from its atomic volume entitled to be regarded as a feldspathide. With these various anhydrous species would appear to correspond very nearly the so-called thomsonite of Cross and Hildebrand. With this anhydrons gromp we have placed two hydrous magnesian species, the one, esmarkite, also called praseolite and aspasiolite, and the other fahlunite, which includes what have been called auralite and bonsdorffite. These species are often associated in nature with iolite, from which they differ only in the presence of water, and they have been by most mineralogists regarded as formed by subsequent hydration from this mineral. This view, however, was contested by Scheerer, who regarded the association of the hydrous and anhydrons minerals, as due to a simultaneous crystallization of two isomorphous species. ${ }^{72}$

    The relations of the silicates of the natrolite section to labradorite are obvious from the table. The same may be said of the relations of the numerons silicates of the analcite section to andesite, hyalophane and leucite, and of the faujasite section to oligoclase.
    ${ }^{73}$ Amer. Jour. Science (1848), v. 385, from Pogg. Annalen, 1xviii, 319.
    Sec. III., 1884. 6.

    It is to be noted that the well-defined zeolite, harmotome has as yet no corresponding anhydrous silicate. Of the heulandite section, and the corresponding feldspars, orthoclase and albite, it is to be remarked that orthoclase and albite are the only feldspars hitherto found associated with zeolites, and the only feldspars as yet artificially produced in the wet way. The observations of Whitney already noticed (\$57) have since been fully confirmed by Pumpelly, who finds orthoclase very common with the zeolitic minerals on Lake Superior, where its deposition is shown to be posterior to laumontite, prehnite, analcite, apophyllite, quartz, ealeite, copper and datolite; the only species superimposed upon it being cal-ite, chlorite and epidote, which latter also occasionally occurs between lammontite and prehnite, in order of superposition. ${ }^{73}$
    § 81 . We have placed at the end of the table the two hydrons silicates prehnite and chlorastrolite which, from their associations, are evidently, secretions of basic rocks, like the zolites, though neither of them present the ratios for protoxyds and alumina which characterize these silicates. Irehnite has no known corresponding anhydrous silicate, while chlorastrolite, though a less common species, is interesting, inasmuch as it affords the oxyeren-ratios of the anhydrous species, epidote and zoisite or saussurite; a fact of some signiticane in comnection with the abnudance of epidote in the amygdaloids of Lake superior. It has also the oxyeneratios ol meionite of the seapolite group, an anhydrous silicate, which howerer belongs to a much less condensed type than zoisite, as is indicated by its inferior density and hardness, and its ready decomposition by acids. I have elsewhere discussed the relations of these two silicates, and have shewn that the density, hardness, and chemical indiffrence of epidote and sanssurite assign them a place with garnet and idocrase, in the grenatide gronp; while meionite, thongh lacking the proper feld-spar-ratio between protoxyds and alumina, belongs to the feldspathides. ${ }^{\text {a }}$
    \$8.2. It is to be noted that the protoxyd-bases of the zeolites and their related feldspathides are "ither alkalies or lime, baryta or stroutia, if we except the partially magnesian zoolites, picranalcite and picrothomsonite, and iolite and its related hydrous species, which, besides magnesia, inchude ferrons oxyd. The latter base enters also to some extent into epidote and prehnite. It should also be remarked that small portions of ferric oxyd are frequently found in the analyses of \%eolites, amounting, in the red varieties of lanmontite to thre or four, and in some natrolites to one and two hundredths. Some part of this, however, is disseminated in the form of hematite, giving color to the zeolites, and recalling the association alike of hematite and magnetite with zeolites, as already noticed, and a similar occurrence of these oxyds erystallized in many granitic veins.
    §83. We next come to the hydrons silicates of lime and alkalies, which we have called, for convenience, the pectolitic group, and which are correlated in the accompanying table with other protoxyd-silicates having similar oxygen-ratios, chiefly magnesian, and partly hydrated and partly anhydrons. We have indicated in the second column, for the known silicates of the pectolitic group, the oxygen-ratios of $\mathrm{R}, \mathrm{Si}$, and H , as in the former table, and have left a blank under $H$, where, as in the first three terms, for example, no pectolitic or non-magnesian species is known.

    The first place in the table is given to chondrodite, the most basic natural protoxydsilicate known, and remarkable for the replacement of a small and variable proportion of


    oxygen by fluorine. In the second line, we find, besides monticellite and chrysolite (including the pure magnesian variety forsterite or boltonite), the hydrous species, villarsite. With these, moreover, belong the manganesian species, tephroite; the \%incic, willemite; and the glucinic, phenacite. In the third line, the hydrous silicate, serpentine, with the ratios, $4: 3: 2$, stands alone. Serpentine, mulike villarsite, has no corresponding anhydrous magnesian species, and it is worthy of note that, as Daubrée has shown, when dehydrated and fused, it breaks up into chrysolite and enstatite, between which, excluding water, it holds an intermediate position. ${ }^{75}$ Deweylite, in like manner, another hydrous magnesian silicate with the ratios, $2: 3: 1$, has no corresponding anhydrous species, but is represented by the hydrous lime-silicate, gyrolite, the most basic of the pectolitic group as yet known.

    TABLE OF PROTONYD SHIC.ITLS.
    
    § 84. We come next to the great section of bisilicates, represented among anhydrous species by wollastonite, enstatite, pyroxene, many hornblendes, and the manganesian species rhodonite, with many related species and sub-species. With these are the hydrous magnesian bisilicates, picrosmine, aphrodite, and cerolite, in which the oxygen-ratios, $\mathrm{R}: \mathrm{Si}: \mathrm{H}$, are respectively $1: 2: \frac{1}{2} ; 1: 2: \frac{3}{4} ;$ and $1: 2: 1 \frac{1}{2}$. These various bisilicates are represented among the pectolitic group by plombierite and xonaltite ; the former a lime-silicate found by Daubrée in the process of formation at the hot spring of Plombières in France, and having the oxygen-ratio, $1: 2: 2$. Of the less hydrated xonaltite, it is worthy of remark that, as observed by Rammelsberg, it occurs in concentric layers with the anhydrous species, rhodonite (bustamite), and the hydrous quadrisilicate, apophyllite.

    While many hornblendes have the ratio of a bisilicate, others are believed to have a


    ratio (excluding a little water) of $4: 9$, not far from that of pectolite, with which wo have placed them. Different annlyses have assigned to tale the ratios for the fixed basis of $2: 5$ and $1: 3$, (the water being variable),-the latter corresponding to sepiolite, 1:3:1. For neither of these do we know any corresponding pectolitie silicate.
    § 85 . We come, in the last place, to the quadrisilicates, for which we have no representatives in the table among anhydrous or among hydrous magnesian species. They are, however, represented in the pectolitic group by no less than three species, okenite, apophyllite, and an umamed species got artificially by Danbrée. It is fibrous like okenite, is decomposed by acids, and is a hydrons silieate of lime, with six per cent. of soda, giving the ratios, $1: 4: \frac{1}{2}$. Pectolite, it will be recollected, contains in like manner about nine per cont. of soda, while apophyllite contains five per cent. of potash and a little fluorine.
    § 86. The process by which this umamed pectolitic silicate was obtained by Daubrée is bury instructive, as showing, in many ways, the action of heated water on an undifferentiated silicate of igneons origin. He took for the subject of his experiments a common glass, the analysis of which gave silica 68.4 , almmina 4.9 , lime 12.0 , magnesia 0.5 , and soda $14.7=100.5$. Tubes of this glass were sealed up, with many precantions, in tubes of iron, with about one third their weight of pure water, and exposed during several weeks to a temperature not less than $400^{\circ} \mathrm{C}$. At the end of this time the glass was found to be completely disurgrogated and changed into a white fibrous or lamellar substance, composed in great part of the fusible pertolitic quadrisilicate of line and soda in ruestion. With this were found aboudant crystals of quarty, and a few crystals having the form of diopside, and the composition of a lime-iron pyroxene. In certain of the crystals of this latter mineral were also included microsepic grains of a black matter resembling magnetite or picotite, probably the former. The iron of these minerals was perhaps derived from the metal tube.
    § 87. The net result of the prolonged action of heated water on the glass was that the vitreons silicate gave up 44.0 per cent. of its silica, 64.0 per cent. of its soda, and 85.0 per cent. of its alnmima ; the lime, with the remaining silica and soda and alumina (equal to 1.4 hundredths) forming the pectolitio silicate. Of the separated silica, the larger part separated in the form of well-crystallized quartz, with globules of chalcedony, and the few crystals of pyroxme mentioned above. The soluble matter, got by treating the decomposed glass with boiling water, was a silicate of soda, with some dissolved alumina, neglecting which the proportions of soda and silica in the liquid were found, in one instance, to be as $63: 37$ by weight, corresponding to an oxygen-ratio of $R: S i$ of about $3: 4$. But as, according to Daubrée's analysis, 85.0 per cent. of the alumina had passed into the solution, this would make for 63 parts of soda not less than 9.7 parts of alumina, which should give for the silico-aluminate in solution a ratio of $\mathrm{R}: \mathrm{r}:$ Si of nearly $3: 1: 4$; a result of much significance which it would be very desirable to verify by further trials.
    §88. Daubrée has recorded experiments like that above made to determine the solvent action of heated water npon vitreous volcanic rocks, such as obsidian and perlite, which gave similar result to glass, though, according to him, not so well defined. Fragments of sanidin, of oligoclase, of potash-mica and of pyroxene, in these tubes, suffered no apparent change, though incrusted with crystals of quartz derived from the glass. This stability was to have been expected from the fact that crystals of pyroxene are formed ander similar conditions, and, as we shall see, both albite and orthoclase have since been crystallized at high temperatures in presence of solutions of alkaline silicates. Another
    experiment, mentioned by Daubrée in this connection, is important. By heating in a glass tube with water a refractory clay (probably under similar conditions to the preceding experiments) this became filled with white pearly hexagonal scales, resembling a mica. They were fusible, attacked by hydrochloric acid, and contained both silica and alumina, being seemingly a product of the action of the alkaline silicate from the glass upon the infusible kaolin. ${ }^{76}$

    Daubrée recalls in this connection the observations of Frémy, who found that colloidal silicates of soda, (water-glass), made at low temperatures, and containing a large excess of silica, give up, when heated, a portion of their silica, which separates in a form having the insolubility of quartz." Daubrée well remarks that we appear to have, in his own experiments at high temperatures with water, a similar breaking-up of the silicate of soda, which had separated from the glass, into quartz and a more basie silicate.
    § 89. In connection with this apparent solubility of alumina, under certain conditions, in watery solutions of alkaline silicates, the observations of Ordway are very important. In his extended studies of the alkaline silicates in 1861, he notes that Bolley had shown that magnesia and lime are slightly soluble in solutions of water-glass, and that Kuhlmann had obtained a double silicate of potash and manganese as a violet-colored vitreous mass, giving a brown solution with water, and had also observed a similar combination of cobalt. Ordway found that in the manufacture of water-glass, if care be not taken, a portion of iron passes into the compound, which is not separated from the solution by peroxydation, and but imperfectly by sulphids. The solvent power of the water-glass is diminished by dilution, but the liquid thus rendered turbid, becomes clear again on concentration. He observed that when a few drops of a weak solution of a metallic salt are added to a solution of water-glass, the precipitate at first formed is redissolved by agitation. "A liquid silicate thus takes up no inconsiderable amount of the oxyds of iron, zinc, manganese, tin, antimony, copper and mercury." By agitating a solution of ferrous sulphate with one of water-glass, in a vessel partly filled with air, a liquid is got which, after filtration, has a very deep blue color. ${ }^{78}$ This solubility of metallic oxyds in aqueous solutions of alkaline silicates will help to a rational explanation of many obscure facts in mineralogical chemistry, as, for example, the presence of iron, manganese and copper-oxyds, and of metallic copper, with the zeolites and other minerals secreted from basic rocks.
    $\$ 90$. We may now consider the observations of Daubrée and others on the contemporaneous formation of crystalline zeolites, and many other mineral species, by the slow action of various thermal waters on the bricks and mortar of ancient Roman masonry in France and Algeria. It was at Plombières, in the Vosges, that his first observations were made. The hot water, here rising from a fissure in a granitic rock, penetrates a layer of gravel, and to protect it from the superficial waters, the Romans had capped the spring with a mass of concrete, resting partly upon the granite and partly upon the gravel. From beneath this concrete, extending over a length of more than a hundred metres, and in parts, three metres in thickness, the waters were led to the surface through vertical channels of cut stone. The water, having at its outlet a temperature of $70^{\circ} \mathrm{C}$., fills the gravel ، beneath the roof of concrete, and a portion filters slowly upward through this. The concrete


    itself was made of fragments of burnt red brick, with others of sandstone and of a friable granite, the whole in a calcareons cement. Repairs having required enttings to be made in this nass, it was found to contain mmerous crystallized mineral species, formed through the action of the water, which were examined by Danbree, with the aid of de Senarmont for the crystallographic determinations, and first described in 1858.
    § 91. The substance of the fragments of brick was found to be altered to some depth, while the munerous cavities therein were lined or filled with various matters, often distinctly crystallized. Among these were identified chabazite and phillipsite (christianite), gismondite, implanted on the chabazite, scolecite, and what is designated by Daubrée as mesotype (thomsonite or natrolite). In the calcareous cement were well-defined crystals of apophyllite containing, as nsual, a little fluorine; while in cavities in the lower part of the concrete, near the gravel, was fomed an abundant gelatinous matter, which was detected in the att of deposition, in recent cuttings in the mass through which the water was still owiner. This matter clsewhere had consolidated into a white mammillary concretionary fiforous substance, which was lomen to be a hydrous silicate oflime, with but 1.3 hundredths of alumina, and constitutes the pectolitic species, plombierite, already noticed ( $\$ 84$ ). With the various minerals in the concrete was also found an aboudant deposit of silica in the form of hyalite, and more rarely erystals of tridymite, and globules of chaleedony, towether with calcite in well defined crystals, arragonite, and fluorite. The chabazite was when found adherent to fragments of wood enclosed in the concrete, recalling, as observed be Datroe, the similar o currence of zolites with fossil wood in lacustrine limestone in Aurerene. The varions minerals named were absent from the fragments of friable granite, while in the mulerlying gravels the only matter deposited was an amorphous aluminous silicate. compared to halloysite, and lound also in the concrete.
    § ! 12. The fragments of red burnt brick in the cement had undergone an alteration from their surface, marked by coneentric limes of changed color, as well as by the development ol' zoolites, and also of an amorphoms matter compared by Daubrée to palagonite. In these framments, the amount of combined water had increased from two or three hundredths in the centre, to cight hundredths in the outer infiltrated portion, in which the amome of matter solnble in nitric acid was equal to fourteen or fifteen hundredths, including a notable proportion of potash, supposed by Daubrée to have been fixed from the waters. The silica, alunina and lime of the new mineral species were derived from the cement and the bricks, the ealcination of which had probably rendered then more susceptible to chemical change. As has been pointed out by Daubree, the resembance between these species and the similar ones found in many rocks, extend even to minor details of crystalline form and association. The small geodes lined with crystals, in the bricks, as the writer can testify, cannot be distinguished by inspection from many similar cavities in certain amygdaloids.
    § 93 . Similar phenomena have since been noticed in the ancient constructions around the thermal waters of Luxeil, Bourbonne, and others in France, and at Oran in Algeria. These localities have added little more to our knowledge of the production of silicates, though at some of them, and notably at Bourboune, besides zeolites, have been found various crystalline metallic sulphides derived from the transformation of metallic objects enclosed in the concrete. The water of the last named locality, which unlike that of Plombieres, rises from the muschelkalk, has a temperature of about $60^{\circ} \mathrm{C}$., and is
    a nentral saline containing seven or eight thousandths of mineral matters, chiefly sulphates and chlorids of alkalies, and of lime and magnesia; while that of Plombières contains only about three ten-thousandths, and is also said to be neutral. As remarked by Daubrée, it is probable that the action of the water in the formation of these mineral silicates is, to a great extent, independent of its composition, since pure water, in acting upon finely divided alkaliferous materials, soon becomes itself alkaline.

    As regards other silicated deposits from thermal waters, we may notice the case of the baths of St. Honoré (Nièvre), the waters of which, having a temperature of $31^{\circ} \mathrm{C}$., yield a finely laminated white translucent substance in concentric layers, which appears from analysis to be a hydrous silicate of alumina, with a large excess of silica, but is probably a mixture. Mention is also made of a similar deposit from a mineral spring at Cauterets, which is talcose in aspect, and according to qualitative analysis, is a silicate of alnmina, with magnesia and alkalies. ${ }^{79}$ In this connection mention should be made of the occurrence at the thermal spring of Olette (Pyrenmes Orientales), of a erystalline silicate, having, according to Descloizeaux, the crystalline form of stilbite, of which it has also the composition."
    §94. As an example of a zeolite, apparently in process of formation, may be mentioned the observations of R. Hermann, who found in the crevices of a colnmnar basalt at stolpenan, in Saxony, an amorphons white plastic snbstance, which after some time changed into acicular crystals of scolecite. ${ }^{81}$ More recently, Renevier has described the oceurrence of a white subtranslucent matter, unctuous to the tonch, gelatinons at first, but beroming a plastic mass, and called by the quarrymen mineral lard, fonnd in constructing a trumel in the molasse or tertiary sandstone near Lansame, in Switzerland, in 1876. This substance, which formed layers of from one to three centimetres on the walls of fissures, was said by observers to have, in some cases, taken on a crystalline form, a fact, however, which Renevier was not able to verify. When dried at $100^{\circ} \mathrm{C}$., it was found to be a hydrated double aluminous silicate, giving the oxygen-ratios of chabazite, $1: 3: 8: 6$; the bases being lime and potash, with 3.14 per cent. of magnesia. ${ }^{{ }^{* 2}}$
    §95. A remarkable fact in the history of zeolites is that lately made known by the researches of Murray and Rénard, that a decomposition of volcanic detrital material, groes on at low temperatures in the depths of the ocean, transforming basic silicates. "represented by volcanic glasses such as hyalomelane and tachylite," into a crystalline zeolite on the one hand, and the characteristic red clay of deep-sea deposits on the other. To quote the language of the authors, this process, "in spite of the temperature approximating to 0 " C., gives rise, as an ultimate product, to clearly crystallized minerals, which may be considered the most remarkable products of the chemical action of the sea upon the volcanic matters undergoing decomposition. These microscopic crystals are zeolites, lying free in the deposit, and are met with in greatest abundance, in the typical red-clay areas of the central Pacific. They are simple, twinned, or spheroidal groups, which scarcely exceed half a millimetre in diameter. The crystallographic and chemical study of them shows


    that they must be referred to christianite," ${ }^{8}$ which is but another name for phillipsite. We have here, as in the case of palagonite, and in ordinary zeolitic rocks, the breaking-up of a basic igneous silicate into an acidic crystalline aluminous silicate of lime and alkalies, and a more basic insoluble residue, rich in iron-oxyd; a portion of which, as is well known, separates from these red clays in the form of concretions, often with oxyd of manganese.
    § 96 . We have next to examine the conditions under which zeolites, feldspars and related silicates have been artificially produced in the chemist's laboratory. When, according to Berzelius, three parts of silica and two of alumina are fused with fifteen parts or more of potassic carbonate, and the cooled and pulverized mass is exhausted with water, there remains a double silicate, which has the composition of a potash-anorthite, with the ratios, $1: 3: 4$, corresponding to potash 28.68 , alnmina 32.04 , and silica 39.31 ; the excess of silicat being dissolved as an alkaline silieate. ${ }^{84}$ The analogous soda-compound may be produced in like mamer. A similar silicate, according to Ammon, is obtained when recemly precipitated almmina is added to a moderately concentrated and boiling solution of canstic soda, mixed with silicate of soda. The alumina is at first completely dissolved, but a white pulverulent precipitate som separates, which is a hydrous silicate of soda and almuina, having for the fixed bases the same ratio as before, $1: 3: 4$; corresponding to anorthite and to thonsonite.c
    §97. C. J. Way, in his studies on the absorption of bases by soils, prepared artificial aluminous siliates by diswolving ahmina in sodi-ley, and adding thereto a solution of siliate of soda contaning not more than one equivalent of siliea to one of alkali ( $\mathrm{R}: \mathrm{Si}=$ 1: 3,) to which any eonvenient exeess of soda might be added. A precipitate was thus ohtained. which, when washed and dried at $100^{\circ}$ C., was a white pulverulent silicate of alumina and soda, holding twelve hundredths of water, and having almost exactly the oxygen ratios, 1: : : 6: 2 ; being a true soda-mesolite. This artificial silicate, when digested with lime-water, or with any nentral salt of lime, exchanged its soda for lime. It was diffeult thus to separate the whole of the soda, but in some cases the replacement was almost complete, and a scolecite was formed. Either of these compounds, when digusted with sulphate or nitrate of potassium, was converted into a potash-mesolite. With a solution of a marnosian salt, these compounds gave a magnesian double silicate, which was not particularly examined ${ }^{\text {w }}$ Berzelius again, by adding a solution of silica to one of alumina in potash, in proportions which are not indicated, found the mixture to solidify in a few minutes to an opaque jelly, in consequence of the separation of a silicate ol alumina and potash haring the oxygen-ratios, $1: 3: 8$, which are those of analcite. ${ }^{\text {E }}$ Farther investigations are required to make known the precise conditions for the production of these different silicates, which give for their fixed elements the ratios respectively of thomsonite, mesolite and analcite. The most basic of these, according to Berzelius, is formed in the presence of an excess of a soda-silicate.
    § 98. Henri Ste. Claire Deville, by mingling solutions of silicate of potash and aluminate of soda, in such proportions as gare for the oxygen-ratios, al : $\mathrm{Si}=3: 6$, obtained a


    gelatinous precipitate, which in sealed tubes, at temperatures of from $150^{\circ}$ to $200^{\circ} \mathrm{C}$., was gradually changed into hexagonal plates of a potash-soda zeolite with the oxygenratios, $1: 3: 6: 2$; having the physical characters of levynite. The residual liquid was nearly free from both silica and alumina. On repeating this experiment at a higher temperature, a very different result was obtained. There was an abundant separation of silica in crystalline grains, with a little levynite, while an alkaline aluminate remained in solution. This remarkable dissociation of the first-formed aluminous silicate into free silica and soluble alumina recalls the conditions of the separation of quartz already noticed in $\$ 87$. The crystalline silica produced in this reaction may be either quartz or tridyinite, which latter form of silica, mingled with quartz, was obtained in 1879 by Friedel and Sarrasin by heating gelatinous silica with ain alkaline solution to about 400 ' U. The dissociation of alumina from silica, observed in this experiment, serves to throw light on the origin of cormudum and spinel. In other experiments with mixtures of solutions of silicate and aluminate of potash in sealed tubes at $200^{\circ} \mathrm{C}$., Deville got a arystalline compound with the formula of phillipsite, $1: 3: 8: 5$. Subsequently, de Sthulten, in similar experiments, at $180^{\circ} \mathrm{C}$., with silicate and aluminate of soda, obtained crystals of analcite, with the ratios, $1: 3: 8: 2 .{ }^{88}$
    § 99 . More recent investigations in the same direction by Friedel and Sarrasin are very instructive, as showing not only the generation of feldspars in the wet way, but thu production at will, under similar conditions, of a feldspar or a zeolite. These chemists had already, by heating a mixture of silicate of alumina (precipitated from a solution of chloride of aluminium by silicate of potash) with an excess of a solntion of silicate of potash, obtained crystals of orthoclase, mingled with crystals of quartz or, at a more elevated temperature, of tridymite. In subsequent experiments, undertaken for the production of albite, a similar hydrous silicate of alumina was mingled with a solution of silicate of soda, (the silica and alumina in the proportions of the soda-feldspar), and heatod to from $400^{\circ}$ to $500^{\circ} \mathrm{C}$. Instead of the anhydrous albite, however, were obtained crystals of analcite, 1:3:8:2; the excess of silica, with soda and some alumina, remaining in solution. When, however, an excess of silicate of soda was employed, the whole of the silicate of alumina was transformed into albite. ${ }^{89}$ Thus analcite, which is formed by the action of thermal springs below $70^{\circ} \mathrm{C}$., is equally produced at $180^{\circ} \mathrm{C}$., as in the experiments of de Schulten, and at $400^{\circ} \mathrm{C}$. and upwards.
    § 100. We have thus far considered among aluminous double silicates those which present the oxygen-ratio of $\mathrm{R}: \mathrm{al}=1: 3$, and have only mentioned incidentally the epidote and meionite groups. The numerons experiments already detailed suffice to show that the double silicates of alumina and alkalies, formed under very varied conditions in the wet way, in the presence of an excess of alkali, always present this ratio, of $1: 3$. When, however, we pass to aluminous double silicates with other protoxyd-bases, we find many with the ratio, $1: 2$, as in the epidote and meionite groups; with $1: 1$, as in the alumina-garnets and biotite; or even 2:1, as in phlogopite and many hydrated aluminomagnesian species of the chlorite group. The genesis of these various calcareous

    Section III., 1884. 7.
    and maguesian alumina-silicates, so conspicuous in the rocks, is an important and unsolved problem.

    Artificial zeolitic compomds, like the soda-mesolite formed by Way, with the ratio, $R: a l=1: 3$, may, as we have seen, exchange their alkaline base for lime or magnesia, but for the silicates in question, in which this ratio is $1: 2$, or $1: 1$, or $2: 1$, the corresponding silicates of alumina and alkalies are as yet unknown to chemistry, being soluble, and probably unstable and unerystallizable. Analogy, however, as well as the modes of onnrrence of these calcareons and magnesian silicates, would lead us to expect the the production of such alkaline double silicates, under certain conditions, in solution, and we are not withont evidence of the ocourrence of such compounds. The soluble alkaline extract from the decomposition of an almminous glass, in Daubrée's experiment, holding in solntion both silica and almmina, gave, if the data are exact, the oxygen-ratio for $\mathrm{k}: \mathrm{al}: \mathrm{si}=3: 1: 4$. We have also, in Friedel and Sarrasin's experiment, the separation of analeite from a like solution, which retained both silica and alumina in solution. Researehes in this direction will probably make known to us the conditions under which such resilual solntions may be produced, containing alkalino-aluminous silicates with the ration corresponding to epidote, samet, biotite, phlogopite and the chlorites.
    § 101. Magnesian silicates corresponding to the zeolitic and feldspar group are rare, and known to us only through the artificial compond of Way, the species iolite, esmarkite and fahlunite, and the partially marnesian zeolites, picrothomsonite and picranalcite. Chabazite, when linty pulvorizd, aroording to Eichhorn, exchanges a portion of its lime for potash when digested with a potassium salt, but is very slightly attacked by a solution of magnesian "hlorid." The more silicic of these zeolites are apparently indiferent to such sub-litutions and, as we have seen, phillipsite is formed in sea-water. We should, howwre, expect the morv basic of the calcareo-aluminous silicates, with the ratios, $\mathrm{R}: \mathrm{al}=\mathbf{1}: \mathbf{1}$ or $\mathfrak{2}: 1$, to lee very susceptible to replacenent by magnesia. Bunsen has shown that palagonite, a hydrous silicate of this class ( $\$ 67$, foot-note) with a large proportion of caluareous base, decomposes even a solution of ferrous sulphate, which removes its lime, and it would doubtless decompose in a like manner magnesian salts. I have long since shown that an artificial hydrous silicate of lime readily decomposes a solution of magnesimm-chlorid, with the production of calcium-chlorid and a magnesian silicate; a result in accordance with the carlier observations of Bischof on the power of solutions of silicate of lime to decompose magnesian salts. ${ }^{11}$
    $\oint 102$. While on one side of what we may call the normal type of alumina-protoxyd silicates, with the ratio, $\mathrm{R}: \mathrm{al}=\mathbf{1}: 3$, as seen in the group of the feldspars and the zeolites, we have those with an excess of protoxyds, including scapolites, epidote, garnet, biotite, phlogropite, and the chlorites; there is another series of aluminous silicates in which the proportion of protoxyds falls below this normal ratio, and still another series in which protoxyd-bases are absent. Of the latter we need only name the auhydrous species, andalusite, fibrolite and cyanite, and the hydrous species, pyrophyllite, pholerite, and kaolinite, with the amorphous halloysite, a more highly hydrated and colloidal form of the kaolin-silicate. The aluminous protoxyd-silicates with a diminished proportion of alkali,


    constitute an important group, including the principal non-magnesian micas, muscovite, margarodite, euphyllite, damourite or sericite, and paragonite, excluding the rarer lepidolite of veinstones, which is more highly alkaliferous. In the following list, the formulas for the last four species named have been taken from Dana's "System of Mineralogy," while the three given for different varieties of muscovite have been devised so as to facilitate comparison with the latter, and at the same time to represent, as near as may be, the variable composition of the anhydrous mica.

    NON-MAGNESIAN OR MUSCOVITIC MICAS.

    |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Muscovite (a) . ..... | 12 |  |  | 6 | : | 9 |  |  |  |
    | Muscovito (b)....... |  |  |  | S | : | 9 |  |  |  |
    | Muscovito (c) ....... | 1 |  |  | 6 | : | 9 |  |  |  |
    | Margarodito .... . . . |  |  |  | 6 | : | 9 |  |  |  |
    | Enphyllite ......... |  |  |  | 8 | : | 9 | : |  |  |
    | Damourito.......... |  |  |  | $)$ | : | 12 | : |  |  |
    | Paragonito.... ...... |  |  |  | ) |  |  | : |  |  |

    § 103. The frequent occurrence of muscovite in endogenous granitic veins with orthoclase and albite, shows that this species, like the feldspars, may be crystallized from solutions. At the same time, their composition and their geological relations suggest that this and the related micas have more generally been derived, directly or indirectly, from the subaërial decay of the feldspar of granitic rocks. While these micas are rare, or altogether absent from the oldest granitoid gneisses, they become comparatively abundant in the youngr gneisses and their associated mica-schists and, finally, in the forms of danourite, sericite, and paragonite-schists, characterize great masses of strata among the still younger transition strata. We have called attention to the fact that decayed feldspars, already changed to the form of clay, and approaching to the kaolin-ratio, in which al: $\mathrm{Si}=3: 4$, still retain, in many cases, a few hundredths of alkali ; while the three anhydrons silicates of alumina, andalusite, fibrolite and cyanite, which are frequently found crystallized in certain mica-schists, have each the ratio, 3:2. It will be readily seen that the separation of these highly aluminous silicates from clays still holding a little alkali would leave residues having essentially the composition of the micas given in the above table. There are, however, other mica-schists which are not accompanied by such anhydrous aluminous silicates, but on the contrary are associated with serpentines and chloritic minerals, indicating in the waters of the time a very different condition from that which we have first supposed, and pointing to the intervention of soluble silicates. That these, by their union with the kaolin from decayed feldspars, might yield muscovitic or acidic micas, will be evident, when we note that the elements of one equivalent of kaolinite united with one of thomsonite, or of natrolite, would give essentially the oxygen-ratio of muscovite or margarodite, and two of kaolinite with one of thomsonite that of damourite or paragonite.
    § 104. There exists another important class of hydrous alkaline aluminous silicates, related to these micas in composition, but differing widely from them in structure and
    physical characters. It includes what has been variously designated as pinite, gieseckite, agalmatolite, and dysyntribite, which sometimes occur in crystalline forms in other rocks, and at other times themselves constitute rock-masses. Amorphous, and granular or compact in texture, its hardness and general aspect have often led observers to compare it to serpentine. The many varieties of this substance, as Dana has remarked, agree closely in physical characters, as well as in composition, and he has deduced from their analyses a formula corresponding to a hydrous silicate of potash and alumina, with the ratios, 1:8: $12: 8$, which requires potash 12.0 , almmina 35.1 , silica 46.0 , water $6.9=100$; in which the potash may be partially replaced by soda, lime, or magnesia. Dysyutribite, as first deserilonl by C. U. Shepard, lorms rock-masses, associated with specular hematite in St. Law renne ronnty, New lork; and similar deposits, often of considerable extent, occur in the erystallinnsthists of the Green Monntain range, both in Vermont and Quebec. In the latter provines, a bed of it instanstead, interstratifind with chloritic sehists, is one hundred fint wike, schistose, and often with an admixture ol quart\%. Layers of the pure pinite from this thposit, formenly described by the writer under the synonym of agalmatolite, have a bandul atroture, a ligneons aspect, and a satiny lustre. The mineral is transhucent, aft, unthons, and somewhat resembles steatite. A similar deposit occurs in argillite, amoner the "rystallime shisis of st Frames, leance, which is honey-ycllow in colour, and eranular in texture. The pinites from these two localities agree closely in composition. That of the lattor contained sitia 5u. 0 , almmina 33.40 , magnesia 1.00 , potash 8.10 ,
     almost exactly the oxymen-ratio of $1: 8: 133^{3}: 2 \frac{1}{2}$, closely agreeing with Dana's formula, "xupt in an weress of siliea perhaps dur to an admixture of quartz, which is apparent in the demoit at siansteder The variety of pinite, formerly deseribed as parophite from its resomblane to surpmont, ownes in uncrystalline Canbrian shales at St. Nicholas, near Glneme limated to pinitn are the minmals which have been called onkosine and oösite.

    The name of cossate has bean given to a similar mineral having the physical characturs of pinite, from which it differs in containing soda instead of potash. The formula, which has been deduced from ins analysis, is identical with that of the soda-mica, paragonite. We camot be certain, in the case of massive minerals like these, whether this sum" gencral formula is not as well adapted to pinite as that proposed above. In any case, it is evident that we have in the pinitic group a widely distributed class of natural silicates, not less important than the muscovitic group, and probably similar in origin.


    § 105. The constancy in composition and the wide distribution of pinite show it to be a compound readily formed and of great stability. Such being its character, it might be expected to occur as a frequent product of the aqueous changes of other and less stable silicates. It is met with in veinstones, in the shape of erystals of nephelite, iolite, scapolite, feldspars, and spodumene, of each of which it is supposed to have been formed by epigenesis. Its frequent occurrence as an epigenic product is one of the many examples to be met with in the mineral kingdom of the law of "the survival of the fittest." It is, however, difficult to assign such an origin to beds of this mineral, like those which have been above described, which are probably the results of original deposition, or of diagenesis. It is a characteristic of our present umnatural system of mineralogy to banish to the category of doubtful species most of the substances which are supposed to be of epigenic origin, and which do not ordinarily present a definite crystalline structure. Several mineral compounds are apparently indisposed to assume a crystalline condition, and among these are pinite and serpentine. The latter is probably, like pinite, in certain cases, a product of epigenesis, but few, we think, who have stndied the mode of its occurrence and distribution in crystalline limestones, will ascribe to it, in such conditions, an epigenic origin.
    §106. Dana has compared serpentine and pinite on the ground of their physical resemblances, and has said that pinite is "an alkali-alumina-serpentine, as pyrophyllite is an alumina-talc." ${ }^{\prime 9}$ The relations between the minerals thus compared are, however, mimetie only and not genetic. A true system of mineralogical classification must not be based on analogies such as these, nor on assumptions regarding water as replacing fixed bases, or alumina as taking the place on the one hand of silica, or on the other of protoxyd-bases. Some of the relations, suggested by formulas constructed in accordance with such assumtions, are not withont interest from the point of view of theoretical chemistry, but serve only to mislead the mineralogist who seeks for a fundamental and genetic system of classification of mineral silicates.
    § 107. The cardinal distinction is that between protoxyd-silicates and almminous silicates, based on their origin, and on the chemical relations of their respective bases. For the latter class, there comes, in the next place, the consideration of the proportions between the protoxyd-bases and the alumina, and the departures on cither side from the ratio, $\mathrm{R}:$ al $=1: 3$, as seen in the relations of those aluminous silicates with an excess of $R$, on the one hand, and on the other, those with a deficiency of $R$, which are comected with the simple aluminous silicates. The above ratio of $1: 3$, which we have called the normal ratio of protoxyd to alumina, is that not only of the feldspars and the zeolites, but of diaspore, of the spinels, and of the crystalline aluminate of potash. The chemist will not need to be reminded that this stable gromp is the simplest possible compound which the hexatomic element, aluminium, can form with a monatamic or a diatomic element like sodium or calcinm, corresponding to a condensed molecule, the water-type of which will be $\mathrm{H}_{8} \mathrm{O}_{4}$.
    § 108. The point of next importance, which is of special signifiance in the aluminous double silicates, is that of their greater or less condensation, or in other words, the relation of their density to their empirical equivalent weight, as already pointed out in the case of the


    scapolite and epidote gromps ( $\S 81$ ). ${ }^{25}$ The greater stability of those which belong to the more condensed types is shown in their superior resistance to decay, and is thes of geological signifiance. The relations of anhydrous to hydrous species of aluminous donble silicates appear to be of less importance, when we consider what secondary canses will determine the formation either of a hydrons or an anlyydrous species, of a zeolite or a feldspar. ${ }^{96}$ The relations of the bases, potasl, soda, and lime to each other, and to magnesia and other protoxyd-bases, are next to be considered, alike for the donble aluminous silicates and for simple silicates of protoxyds.

    A system of classification, constructed in accordance with these principles, has already bean indicated in the preceding illustrations of the crenitic hypothesis, and will, it is believed, be found of fundanental importance for the student of mineral physiology ; since it is basel on the genetie processes by which the species of the mineral world havo in most cases been formed. The principles which it embodies, will be found not less appliwhbe to compounds of igncons origin than to those formed by aqueous processes.
    § 109. In considering the origin of erystalline stratified rocks formed, in accordance with our hypothesis, in all wasts with the concurrence of water, questions connected with the promss of erystallization of mineral species, and of their condition when first deposited, are of much importance. The most familiar case is that of the direet separation of matters in a "ryatillin" condition, as happens from the evaporation or the change of temperature of the solvant, or from the ereneration of new and less soluble componds, as in many cases of ehemical precipitation. In this comertion, it should be noted "that many such componds, when tirst qumerated ly donble deromposition in watery solutions, remain dissolved for a erater or hass length of tim, before separating in an insoluble condition. . . . . There is reason to belin ve that silicates of insoluble bases may assume a similar state, and it will probably be shown one day that for the greater number of those oxygenized compounds, which we call insoluble, threre exists a modilication soluble in water. In this conne otion allow mat be realled the great solubility in water of silicic, titanic, stannic, ferric, almuinic and "hromic oxyds, when in what Graham has called the colloidal state." ${ }^{97}$ In Writing the above, in 1sit, reference was also made to my own earlier observations on the solubility, muder cratain conditions, of carbonate of lime, which are subjoined.
    § 110. "The recent precipitate produced by a solution of carbonate of soda in chlorid of ralcium is readily soluhle in an excess of the latter salt, or in a solution of sulphate of marnesia. The transparent, almost gelatinons magma, which results when solutious of carbonate of soda and chlorid of caleinm are first mingled, is immediately dissolved by a solution of sulphate of magnesia, and by operating with solutions of known streugth [titrated solutions] it is easy to obtain transparent liquids holding in a litre, besides three or four hundredths of hydrated sulphate of magnesia, 0.80 gramme, and even 1.20 grammes, of carbonate of lime, together with 1.00 gramme of carbonate of magnesia; the only other substance present in the water being the chlorid of sodium equivalent to these car-


    bonates. A solution of chlorid of magnesium, holding some chlorid of sodium and sulphate of magnesia, in like manner dissolved 1.00 gramme of carbonate of lime to the litre. Such solutions have an alkaline reaction."

    These solutions, which contained, in all cases, neutral carbonates, with no excess of carbonic acid, possessed a considerable degree of stability. One prepared with 0.80 gramme of carbonate of lime and 1.00 gramme of carbonate of magnesia, when filtered after standing eighteen hours at $10^{\circ} \mathrm{C}$., still retained 0.72 gramme of carbonate of lime to the litre, but, after some days, deposited the whole of this in transparent crystals of hydrous carbonate of lime, all of the carbonate of magnesia remaining dissolved. This hydrons carbonate, stable at low temperatures, is at once decomposed, with loss of its water, at $30^{\circ} \mathrm{C}$. "The solubility of the yet meondensed carbonate of lime in neutral solutions, which are without action upon it in another state of aggregation, is a good example of the modified relations presented by bodies in the so-called nascent state, which probably, as in this case, consists of a simpler and less condensed molecule. At the same time, the gradual spontaneons decomposition of the solutions thas obtained aflords an instructive instance of the influence of time on chemical changes." 9 s
    § 111. The spontaneons conversion of uncrystalline precipitates into erystalline aggregations may next be noticed. Instances of this are well known to chemists, but a remarkable and hitherto undescribed example is aflorded in the case of the mixed oxalates of the cerium-metals, got by precipitating their nitrie solution with oxalic arid in the cold. A tongh pitchy mass was thus repeatedly obtained which, in a few minutes, changed into incoherent erystalline grains, the conversion being attended with a notable erolntion of heat. Another example of a somewhat similar phenomenon is presented in the case of the amorphous insoluble malate of lead, which, as is well known, spontanconsly changes into crystals beneath the liquid in which it has been precipitated.
    § 112. In the paper above quoted on the salts of lime and magnesia, I have described not less remarkable examples of similar transformations in the case of the carbonates of lime and maguesia. A paste of hydrous carbonate of magnesia precipitated in the cold, slowly changes under water, at ordinary temperatures, into a crystalline mass made up of prisms, grouped in spherical aggregations, of the well-known terhydrated magnesian carbonate. In like manner, the amorphous paste got by triturating in a mortar a solution of chlorids of calcium and maguesium, in equivalent proportions, with the requisite amount of a solution of nentral carbonate of soda is, at a temperature of from $65^{\circ}$ to $80^{\circ}$ C., changed, after a few hours, into an aggregate of translucent crystalline spheres of a hydrous double carbonate, resembling the hydrodolomite of von Kobell. At temperatures of from $15^{\circ}$ to $18^{\circ} \mathrm{C}$., the same magma changes slowly into a more highly hydrated compound. The process of change, which requires from twelve to twenty-five days, appeared "to consist in the formation of nuclei from which crystallization proceeded until every particle of the once voluminous, opaque, and amorphous precipitate had become translucent, dense, and crystalline." The product is made up of brilliant prisms, apparently oblique, grouped around centres, and sometimes forming spheres five or six millimetres in diameter. The hydrated double carbonate of lime and magnesia, thus formed in presence of a


    slight excess of carbonate of soda, was found to contain more than two per cent. of the latter, but it was not certain whether this did not proceed from an admixture of the hydrous donble carbonate of lime and soda, gaylussite. The new composition itself was described as having the composition of a gaylussite, in which magnesium replaces sodium. The production of erystals of true gaylussite, as observed by Fritzsehe, by the slow crystallization of the gelatinons precipitate got when a strong solution of carbonate of soda in excess is mingled with one of calcinm-chlorid, is another remarkable example of the phenomenen under consideration.

    Fritzsche moreover observed that it is not necessary that the lime-carbonate should be in its arelatinous form in order to produce this compond, since the previously precipitated carbonate when digested with a solution of carbonate of soda, slowly combines with it to form the rystalline hydroms double salt. More remarkable still is the observation of H . Ste. (laire Deville, which I have repeatedly verified, that a paste of magnesia alba and bicarbonate of soda, with water, is slowly changed, at a temperature of from $60^{\circ}$ to $70^{\circ} \mathrm{C}$., into al transparent arystalline anhydrons double carbonate of lime and soda, hexagonal in form, and called by its discoverer a soda-dolomite. ${ }^{9}$
    § 113. In this romnection, it shonld be said that we have here an explanation of the dimmation of the double earbonate of lime and magnesia which constitutes ordinary dolomite. The orisin of this mineral speries, which so often constitutes rock-masses, is still Ernerally misumberstood. The baseless notion ol its production by a metasomatosis or partial replacement of the lime in ordinary limestone imagined by the older geologists, is still repeated, and holds its plate in the literature of the seience, despite the facts of geognosy and of 'hemistry. I have long since shown, by multiplied examples, that the ordinary mode of the ocurrence ol dolomite in nature is not in accordance with this hypothesis of its origrin, since bets of clolomite, or more or less magnesian limestone, are found alternating, sometimes in thin and repeated layers, with beds of non-magnesian carbonate of lime. Moreover, beds ol 'rystalline dolomite, conglomerate in character, are found to "nelose pelblas and fragments of pure non-magnesian carbonate of lime. I have also explained at length the natural reactions by which precipitates consisting of a greater or less proportion of hydrons carbonate of magnesia, mixed with carbonate of lime, must, in past ages, have been laid down in the waters of lakes and inland seas, in some cases with, and in others without, the simultaneous formation of sulphate of lime.

    It was, moreover, found that the reaction at an elevated temperature in presence of water, between sulphate of magnesia and an excess of carbonate of lime, supposed by Haidinger and von Morlot to explain the frequent association of gypsum and dolomite, does not yield the double carbonate, since the carbonate of magnesia separates in an anhydrous form, and does not combine with the carbonate of lime. Finally, it was shown that mixtures of hydrous carbonate of magnesia and carbonate of lime, when heated together in presence of water, unite to form the anhydrous double carbonate which constitutes dolomite. In my experiments, their combination, with the formation of dolomite, was effected rapidly, at $120^{\circ} \mathrm{C}$., but many considerations lead to the conclusion that its production in


    nature is effected slowly at much lower temperatures, and that the formation of the hydrous double carbonate already ${ }^{3}$ deseribed is, perhaps, an intermediate stage in the process. ${ }^{100}$
    § 114. The reactious described in the preceding paragraphs between the elements of comparatively insoluble substances in the presence of water, resulting not only in the conversion of amorphous into crystalline bodies, but in the breaking-np of old combinations, as well as in the union of mulike matters meehanically mingled to form new crystalline species, are instructive examples of what Gümbel has termed dingenesis. The changes in the masonry of the old Roman baths in contact with thermal waters, resulting in the hydration of the substance of the bricks, and its conversion into zeolitic minerals; the hydration of volcanic glasses, with similar results, going on, even at low temperatures, in the deep sea; the decomposition of common glass by heated water; the conversion of basaltic rock into palagonite and the production therefrom of zeolites; the similar changes seen elsewhere in amygdaloids, and even in massive basic plutonic rocks, are also examples of this process of diagenesis, and serve to show its great geological signilicance. We have already snggested the intervention of similar reactions in past ages among the sediments from the subaerial decay of felspathic rocks, in some cases with the concurrence of the secretions from the primary basic stratum, which, in acordance with the cruntie hypothesis, we suppose to have been the source of soluble mineral silicates. In the diagenesis of these early argillaceous sediments, aided by renitic action, will, it is believed, be found the origin of many of the crystalline schists of the transition rocks.
    §115. An instructive phase in this diagenetic process is that of the gradual conversion of smaller crystalline grains or crystals into larger ones, which is familiar to chemists. This action is in fact nearly akin to that which takes place in the transformation of amorphous into crystalline precipitates, since in both cases a partial solution precedes the crystallization. It is well known that, as a resnlt of snecessive solution and re-deposition, large crystals may be built up at the expense of smaller ones. This process, as H. Deville has shown, "suffices, muder the influence of the changing temperature of the seasons, to convert many fine precipitates into crystalline aggregates, by the aid of liquids of slight solvent powers. A similar agency may be supposed to have effected the erystallization of buried sediments, and changes in the solvent power of the permeating water might be due either to variations of temperature or of pressure. Simultaneonsly with this process, one of chemical union of heterogeneons elements may go on, and in this way, for example, we may suppose that the carbonates of lime and magnesia become united to form dolomite or magnesian limestone." ${ }^{\text {103 }}$
    § 116. The tendency of the dissolved material in this process to crystallize around muclei of its own kind, rather than on foreign particles, is a familiar fact, and its geological importance, to which I first called attention, as above, in 1869, was again pointed ont by Sorby in 1880, when he showed that dissolved quartz might be deposited upon clastic grains of this mineral in perfect optical and crystallographic continuity, so that each broken fragment of quartz is changed into a definite crystal, as was seen in his microscopic


    studies of various sandstones. ${ }^{102}$ This fact has been confirmed by the observations of Young, Irving, and Wadsworth in the United States; ${ }^{103}$ and Bonney has suggested the possible extension of such a process to feldspar, hormblende and other minerals. ${ }^{104}$

    Vanhise has very recently amounced that his microscopical examinations of certain sundstones of the Keweenian series, from Lake Superior, aflord evidence of the secondary deposition of both orthoclase and plagiocluse feldspar, in crystallographic continuity upon broken feldspathic grains, in one case uniting the two parts of a broken feldsparcrystal. The sandstones which have yiclded these examples are made up in part of feldspathic tragments, and in part of fragments of "some altered basic rocks." They are moreover, interstratifed with and, in some case at least, immediately underlic the basie platonic rocks of the same kewermian series. ${ }^{\text {nis }}$ When we consider that orthoclase is a common secretion of these basic roks, as is shown by its frequent occurrence in them with zeolites and epidote, it may perhats be questioned whether the scoondary feldspar in the sandstone has been derived from the adjacent grains of this mineral, or has come into solution from the transtomation of the basic rocks. The apparent stability and insolubility of orthomase and oligomben at high temperatures in the presence of water, as observed by Dablem, would serm to favour the latter view. In any ease, it is a striking illustration of the tembenty of mineral speres to crystallize aromed nuclei of their own kind, which is so marked a lactor in the development of the crystalline rocks.

    ## IV.-Conclusions.

    § 117 . We reviewed in the lirst part ol this essay the history of the different hypotheses hitherto proposed to explain the migin of the erystalline rocks and, in doing so, reached the comblusinn that not one of them affords an adequate solution of the various problems presented by the hemical, mineralogical and geognostital characters of the rocks in question : at the same time, we endeavored to show suceinctly what are the principal conditions to which a satis lactory hypothesis must conform. In the second part, we sketched the growth amb development, during the last quarter of a century, of what we believe to be such a hypothesis. In the third part, we sought to bring together a great number of facts, both new and old, which serve to illustrate the new hypothesis; according to which the crystalline stratiform rocks, ass well as many erupted rocks, are supposed to have been derived by the action of waters from a primary superficial layer, regarded as the last portion of the globe solidified in cooling from a state of igneons fluidity. This, which we have described as a basic, quartzless rock, is conceived to have been fissured and rendered porous during crystallization and refrigeration, and thus rendered permeable to considerable depths to the waters subsequently precipitated upon it. Its surface being cooled by radiation, while its base reposed upon a heated solid interior, upward and downward currents would establish a system of aqueous circulation in the mass, to which its porous but unstratified condition would be very favorable. The materials which heated subterraneous waters would bring


    to the surface, there to be deposited, would be not unlike those which have been removed, by infiltrating waters in varions subsequent geological ages, from erapted masses of similar basic rock; which, we have reason to believe, are but displaced portions of this same primary layer. The mineral species removed from these latter rocks, or segregated in their cavities, are, as is well known, chiefly silica in the form of quartz, silicates of lime and alkalies, and certain double silicates of these bases with alumina, including zeolites and feldspars, besides oxyds of iron and carbonate of lime; the latter species being due to the intervention of atmospheric earbonic acid. The absence from these minerals of any considerable proportion of iron-silicate, and, save in rare and exceptional conditions, of magnesia, is a significant fact in the history of the secretions from basic rocks, the transformation of which, under the action of permeating waters, has resulted in the conversion of the material into quart/ and various silicates of alumina, lime, and alkalies, while leaving behind a more basic and insoluble residue abounding in silicated compounds of magnesia and iron-oxyd with alumina.
    § 118. The peculiarities resulting from this comparative insolubility of magnesian silicates long ago attracted the attention of the writer. The aldition, to solutions like seawater, of bicarbonate of magnesia, which is a product of the sub-aerial decay of basic rocks, would, it was shown, effect a separation of dissolved lime-salts in the form of carbonate, leaving the magnesia in solution as chlorid or as sulphate; while on the contrary the action of such a natural water with certain silicates, whether solid or in solution, containing lime or alkalies, would effect a removal of the dissolved magnesia. At the same time it was shown that, "by digestion at ordinary temperatures, with an excess of freshly precipitated silicate of lime, chlorid of magnesimm is completely decomposed, an in soluble silicate of magnesia being formed, while nothing but chlorid of calcinm remains in solntion. It is clear that the greater insolubility of the magnesian silicate, as compared with silicate of lime, determines a reaction the very reverse of that produced by carbonates with solutions of the two earthy bases. In the one case, the lime is separated as carbonate, the magnesia remaining in solution, while in the other, by the action of silicate of soda, or of lime, the magnesia is removed and the lime remains. Hence carbonate of lime and silicate of magnesia are found abundantly in nature, while carbonate of magnesia and silicate of lime are produced only under local and exceptional circumstances. It is evident that the production from the waters of the early seas of beds of sepiolite, talc, serpentine, and other rocks in which a magnesian silicate abounds, must, in closed basins, have given rise to waters in which chlorid of calcium would predominate." ${ }^{100}$
    §119. From this reaction it would follow that the magnesian salts, formed when the first acid waters from the atmosphere fell upon the primary stratum, would be removed from solution, either by the direct aetion of the solid rock, or by that of the pectolitic secretions derived therefrom in the earliest ages. The primeval ocean, if, as we suppose, a universal one, would soon be deprived of magnesian salts, and henceforth the early-deposited rocks would be essentially granitic in composition, a nd non-magnesian, until the introduction of magnesia into its waters from an exterior source.

    The pectolitic silicates, themselves, which, in the cavities of exotic basic rocks, are deposited in crystalline forms, would, if set free in a sea deprived of magnesian salts, be


    readily decomposed by the carbouic acid everywhere present, with separation of free silica and carbouate of lime. From this wonld be formed the first deposits of limestone, which make their appearance in the old gneissic rocks and become mingled with magnesian carbonate and silicates from the introduction of magnesiau salts into the waters. The comparative instability of the lime-silicate is seen when wollastonite is compared with the corresponding silicates, pyroxene and enstatite. It is possible, notwithstanding the absence of magnesian species from zeolitic secretions, that, under certain conditions, small portions of magnesian silicate may have been included in the early crenitic deposits, but the rarity of such magnesian silicates in these, and their abundance in parts of the later Laurentian and in younger deposits, points to a new source of the magnesian element; mamely, the extravasation of portions of the underlying primary mass, and its subaerial decay.

    It would be instrnctive to consider in this relation the gradual removal of a large proportion of silica from the primary stratum in the forms of orthoclase, albite and quartz, and the consequent partial exhanstion of portions of this underlying mass, so that its succecting serretions consisted chicfly of hess silicic silicates, such as labradorite and andesite, wihhout quartz, as in the Norian series.
    § 120 . The conditions of this lirst "xophatonic action cannot be fully understood antil Wh hate sutted the question of the permanence of continental and oceanic areas, and the extent of the early creniti rocks which constitute the fundamental granites and the granitcid gneissurs. Whe ther thess are spread, with their vast thickness, alike underneath the grat arvas of the palewoic serins and our modern oceanic basins; in brief, whether or not they are universal, as supposed by Werner, is a question whieh cannot here be discussed. There is, howerer, nothing in inmpatible with what we know of the chemistry of the early rocks and the carly owan in the supposition that they were universal, since there is apparmely ne evidenee that the produts of subacrial decay of exposed rocks intervened in thuir production. siuch a condition of things was, however, necessarily self-limited; the gratat diminution of the primary mass, from the constant removal of portions of it in a state of solution, and the vant accumulated weight of the superincumbent aceumulated granitic and gncisis material, could not fail to result in widely spread and repeated corrugations and foldings of the overlying mass, the effects of which are seen in the universally wrinkled and frequmely rirtical attitude of the oldest gneissic rocks. Such a process, like the similar though less considerable movements in later times, would probably be attended with untllows, in the form of lissure-eruptions, of the underlying basic stratum, which, in accordance with our hypothesis, was permeated with water under conditions of temperatures and pressure that must have given to it a partial liquidity. Such a process of collapse and corrugation of the crenitic deposits, attended with extravasation of the underlying primary stratum, would, donbtless, be often repeated in these early periods, resulting in frequent stratigraphical discordances, which are, however, in all cases to be looked upon as local accidents, and not as wide-spread catastrophes. Hence the appearance, from time to time, of exoplutonic rocks, with upliftings and depressions of the older rocks, which cansed the exposure of both alike to the action of the atmosphere.
    § 121. The consequent subaërial decay of these two types henceforth introduced new factors into the rock-forming processes of the time, and made the beginning of what Werner called the Transition period. The decomposition of these, under the influence of a moist
    atmosphere holding carbonic acid, resulted in the more or less complete removal of the alkali from the feldspars of crenitic rocks, and their conversion into kaolin, while the corresponding changes in the basic exoplutonic rocks were still more noteworthy. These rocks, while containing feldspars, consisted in large part of silicates of lime and magnesia, presumably pyroxene and chrysolite, which, as we are aware, yield to the action of the atmosphere the whole of their lime and magnesia. These, in the form of carbonates, passed into solntion together with a large proportion of silica, leaving behind the remaining portion, together with non-oxyd and the kaolin from the feldspars. The carbonates of alkalies, of lime, and of magnesia, resulting from the subaërial decay of the exposed exoplutonic and the crenitic rocks alike, were carried to the sea, there to play an important part. Besides the direct influx of carbouate of lime into the waters of that time, it is evident that both the alkaline and the magnesian bicarbonates would react upon the calcium-chlorid of the primeval sea, with the production of a farther amount of lime-carbonate, and the generation of alkaline and magnesian chlorids. In this way, the sea beroming magnesian, a new order of things was established. Henceforth, the pectolitic matters brought up from the primary layer would at once react upon the dissolved magnesian salts, and the production of such compounds as chondrodite, chrysolite, serpentine, and talc would commence. No one who has studied the mode of occurrence of these silicates in the upper part of the Laureutian series, where serpentine not only forms layers, but frequent concretions like flints, often around nuelei of white pyroxene, can fail to recognize the process which then came into play, resulting later in the production of abundance of pyroxeme, hormblende and enstatite, and apparently reathing its culmination in the vast amount of magnesian silicates found in the deposits of the Huronian age.
    § 122 The solutions of simple silicates of alkalics, which by heat had drposited their excess of silica in the form of quarta, as in the case of the soluble matter from glass, probably gave rise by their reaction with magnesian solutions to the basic protoxyd-silicates, like choudrodite, chrysolite, serpentine and pyroxenc. That we have no anhydrons quadrisilicates corresponding to apophyllite and okenite is apparently due to the fact that such silicates, in contact with water at elevated temperatures, break up into anhydrous bisilicates and quartz; as is seen in the artificial association of pyroxene and quartz in the experiments of Daubrée, and the frequent occurrence of admixtures of the two in beds among the ancient gneissic rocks. A noticeable fact in the history of the surbasic silicates of magnesia and related protoxyd-bases, mentioned above, is their frequent association with nonsilicated oxyds. Examples of this familiar to mineralogists are the occurrence of aggregates of chondrodite and magnetite; of chromite, picotite, ilmenite and corundum with chrysolite and serpentine; and of franklinite and zincite with tephroite and willemite. These collocations are probably connected with the solvent power of solntions of alkaline silicates, already insisted upon ( $\$ 89$ ), and probably also with the dissociation of silicate of alumina in heated alkaline solutions, noticed by H. Deville ( $\$ 98$ ).

    The separation, by the alteruate action of decaying organic matters and of atmospheric oxygen, of iron-oxyd, which readily passes from a soluble ferrous to an insoluble ferric condition, and conversely, has probably played an important part in the formation of deposits of iron-oxyds, which are much more cosmopolitan in their associations than corundum, or the compounds of chromic, titanic, aluminic, manganic and zincic oxyds mentioned above, to which we have assigned a different origin. It will remain for the mineralogist
    to determine what deposits of magnetite and of hema what to the other origin.
    § 123. We have seen, among the secretions of like epidote and prehnite, in which the ratio of the p being $1: 3$, as in the feldspars and the zeolites, is $1 \frac{1}{2}$ on account of their solubility and their instability, cates with a still larger proportion of lime to the al their former existence in solution, in the frequent oced and alumina, in which the oxygen-ratio of R , al, inste $2: 3$, as in prehite, beromes $3: 3$ and even 6 whlorites. Such silicates, often with epidote, abound in the rocks of Huronian age.

    This process by which, through the intervention of silicated secretions from the subatram, the magnesian salts are removed from the sea-water, is, as we have shown, the rovers of that which takes place through the action of the carbonates from the subaerial doray of silicated rocks precipitating limesalts and giving rise to magnesian waters, if not owr oneanic arras, at least in inland basins of greater or less extent. Alternations of this kimd must have been frequent in geological history, and we have evidence of a wideaprad phomemonon of this kind following the In uromian age, when in seas, from which magusian salts wern apparently for the most part excluded, were deposited the gneisses and mina-s.hists of the Montallan series. These, in very many places, are found resting dirwty, ofton in unomformable superposition, upon the older or Laurentian gneisses, bnt "Sowhre" npon the Ituronian, showing the intervention of extensive movements of elevation aml subsidente, and probahly of demulation, subsequent to the Huronian time.
    5124. The introdnction on a limited scale, into the sea-basins of the Montalban time, of magnesian salts is evidnt from the ocearional appearance of magnesian silientes in the Moutallan rocks. The most noteworthy fact in their history is, however, the appearance in this serics, with gruisees which differ from those of older times in being finer grained ant lens granitoid, of deposits containing aluminous silicates characterized by a diminished proportion of protoxyt-bases. Such as these are the beds of quartzose schists holding non-marnesian micas and the simple silicates, andalusite, fibrolite and cyanite. It has already been mentioned that, in the formation of these rocks, the more or less completely decomposell feldspar from the subaerial decay of older crenitic rocks may have been brought into the areas of deposition. Wither such clays, still retaining a portion of alkali from undecayed feldspar, or clse admixtures of kaolin with the elements of a feldspar or a zeolite might, as has boen suggested, yield by diagenesis, muscovite and quartz, with one of the simple aluminons silicates just named. That a process of subaërial decay was in progress in the Montalban time is shown by the presence in the mica-schists of this series, at several localities in Saxony and elsewhere, as described by Sauer and subsequently noticed by the present writer, of "boulders of decay," having all the appearance of those formed during the atmospheric decay of the older gneisses. ${ }^{107}$ The intervention in the deposits of that period of somewhat basic zeolitic minerals, is shown by the presence in the younger gueissic series of Germany of large masses of so-called


    dichroite or iolite-gneiss, and the occasional occurrence of iolite in the younger or Montalban gneisses of New England.
    § 125. The predominance of micaceous schists of the muscovitic type in the upper portions of the Montalban, marks the growing change in the conditions of the process which gave rise to the indigenous crystalline rocks, a process continued with many modifications, and with diminished energy, through the subsequent period of the Taconian. This was marked by the deposit of quartzites, limestones, and argillites, and also by the intercalation of schistose beds, characterized by an abundance of damourite or related micaceous minerals, as well as by the presence of matters apparently feldspathic, which seldom take upon themselves the characters of well-defined species, though found transformed by subaërial decay into a form of kaolin, and in some instances apparently assuming the state of an imperfect gieiss. These Taconian schists, which require careful chemical and microscopic study, also inchede serpentine, tale, pyroxene, epidote and garnet. The appearance in paleozoic argillites of crystals of rutile, of tourmaline, and of stanrolite, indicates a latter stage of that condition of things which marked the crenitic process of pre-paleozoic times, and made possible the formation of the whole vast series of primitive and transition crystalline schists which we have sought to include under the names of Laurentian, Norian, Arvonian, ILuronian, Montalban and Taco-nian-designating in their order the upward snceession of these great groups from the fundamental granitoid gucisses (here included in the Laurentian) to the dawn of paleozoie time. The Arvonian or petrosilex gromp intervenes between the Laurentian and the Huronian. The peculiar characters of the Norian, and its localization to some few limited areas in Europe and North America, make it difficult for us, as yet, to define its precise relations to the Arvonian. The Norian, however, like the Arvonian, probably ocrupies a horizon between Lamrentian and Huronian. Much time may pass, and many stratigraphical stndies must be made, before the precise relations of the Huronian and the succeeding Montalban can be defined. It seems probable, in the present state of our knowledge, that the Montalban series, though of great thickness, was, in many cases, deposited over areas where the Huronian had never been laid down. Notwithstanding the great geographical extent and the importance of these two series, neither can claim that universality which apparently belouged to the primitive granitic stratum; a universality soon interrupted by the uplifting of portions of dry land, an event which preceded IIuronian time.
    § 126. That the production of large quantities of similar pectolitic silicates, in regions remote from exotic rocks, was continued from the Pre-Cambrian to far more recent times is evident, from the presence of a considerable deposit of serpentine among the horizontal Silurian dolomites of Syracuse, New York, of which the writer has elsewhere recorded the history, ${ }^{108}$ and also from the well-known beds of sepiolite found with opal in the tertiary dolomites of the Paris basin. ${ }^{100}$ The recent amorphous zeolitic deposits in tertiary sandstone in Switzerland ( $\$ 94$ ), and the compounds referred in the foot-note to §104, should not be forgotten in this connection.

    Whether the silicates brought from below by crenitic action were directly separated as feldspars, as crystalline zeolites, or as gelatinous precipitates to be subsequently changed


    
    apparently occur as integral parts of rocks chicfly feldspathic, form a great central gronp. On one side of these are the aluminous double silicates, represented by basic species like garnet, epidote, magnesian micas and chlorites, all with an excess of protoxyd-bases while, on the other hand are the aluminous double silicates of the mnscovitic and pinitic groups, in which the diminished proportion of the protoxyd-bases prepares the way to the associated simple aluminous silicates, pyrophyllite, andalusite, cyanite, etc. To these
    groups must be added the non-aluminous silicates, including hornblende, pyroxene, enstatite and chrysolite, and the hydrous maguesian species, serpentine and tale. Besides these are free silica, generally as quartz, free oxyds, including the spinel and corundum groups, which, together with the carbonates, make up the essential parts of the crystalline rocks.
    § 129. Rock-masses, and the mineral species which compose them, present variations in time, as we find in tracing the history of the great successive groups of erystalline strata; and they moreover show local changes, as seen in different parts of their distribution in the same geological group. As regards the causes of these variations, very much remains to be discovered by the patient collection and recording of facts concerning the associations of mineral species, their artificial production, and their tra nsformations under the influences of fire and water, and of solutions of potassic, sodic, calcareous and magnesian salts. The instability of silicated compounds of igueous origin in the presence of water and watery solutions, so widely diffused through nature, is the warrant for a general adueous hypothesis; while, on the other hand, the derivation of stable mineral species, under such influences, from matters of igneous origin justifies us in assuming for these species an igneous starting point.

    Igneons fusion destroys the mineral species of the crystalline stratified rocks, and brings them back as uearly as possible to the primary undifferentiated material. Fire is the great destroyer and disorganizer of mineral as well as of organic matter. Subterranean heat in our time, acting upon buried aqueous sediments, destroys carbonates, sulphates, and chlorides, with the evolution of acid gases and the generation of basic silicates, and thus repeats in miniature the conditions of the ante-nepturian chas, with its surrounding acidic atmosphere. On the other hand, each mass of cooling igneous rock in contact with water begins anew the formative process. The hydrated amorphous product, palagonite, is, if we may be allowed the expression, a sort of silicated protoplasm, which, in its differentiation, yields to the solvent action of water the crystalline silicates which are the constituent elements of the crenitic rocks, leaving, at the same time, a more basic residunm abounding in magnesia and iron-oxyd, and soluble not by crenitic but by sub-aërial action. Palagonite, or some amorphous matter resembling it, probably marks a stage in the sub-aqueous transformation of all igneous rocks, though only under special conditions does this unstable, hydrous substance form appreciable masses. In all cases, igneous matter, of primary or of secondary origin, serves as the point of departure.

    According to the proposed hypothesis, which derives rocks of the granitic type, composed essentially of quartz and feldspars, by aqueous secretion from a primary igneous and quartzless mass, it would follow that the highly basic compound, assumed by Bunsen to represent the typical pyroxenic or basaltic rock ( $\$ 24$ ), would be the abore mentioned insoluble residuum; and that less basic varieties of similar rocks wonld correspond to portions of the same primary mass, less completely exhausted by lixiviation, and consequently approaching in composition to admixtures of the basaltic and granitic types, as maintained on other grounds by Bunsen himself.
    § 130. The principles which have been enumerated in the preceding pages will, it is believed, lead the way, not only to a natural system of mineralogy, but to a natural system of classification of crystalline rocks, cousidered with regard alike to their chemical composition, their genesis, and their geological succession. A valid hypothesis for the crystalline
    rocks must scek to comnect all the known facts of their history, by alleging a true and sufficient cause for the production of their various constituent mincral species. Such a hypothesis will violate $n o$ established principles in chemistry or in physics, but will show itself to be in accord with them all, and will commend itself to the acceptance of those who take the pains to muderstand it.

    The crenitic hypothesis set forth in these pages is the result of many years of patient study applied to the clucidation of a great problem; and as such is offered to chemists and mineralogists as a first attempt at a rational explanation of the fundamental questions presented by the history of the erystalline rocks of the earth's crust.

    ## Contents of Sections.

    I.-Historichl and 'ritichl.-§ 1, 2. Supposed igneous origin of crystalline rocks; views of Lehman, Pallas, de Luc and sansure-3, 4. Werner's neptunian system; his primitive, transition and secondary rocks. -5 . systom of Hutton; his interpreter lay fair; nature of granito.-6, 7. Indigonous, oxotic and endogenous rowhs; signifiname of uruption in geology:- 8,9 . The sehools of Werner and Hutton contrasted; their mulikn siews of the origin of granite and of gneiss; Hutton the fonder of the metamorphic sclool.-10,
    
     the intervation of interaal heat.-1ti. The granitic sulstratum of Werner adopted by Iuttonians.-17. fonlut surume's theory of the origin of granite and of gneiss.-18. Beroldingen and Saussure on the dutrital orivin of gnew; views of Bome.-19. dyell on the Ifuttonian or motamorphic hypothesis; Piachef ami 1 tailinger on lsemumarphic alterntion ; a motasomatic hypothesis.-20. Naumann's criti-
    
    
    
    
     his stanment of the suctamorphic: hymothesis.-29. Clarenco King on motamorphism, and the sup-
     31. Marr and C. H. Hitchumk on the samo; its relation to the origin and permanonco of continents.:2.. Varimanewtozsto on the supmed oruption of limestones, serpentines and iron-ores; II. D. Rogers and lailt on then ignenus wrigin if quartz lowles, - 33. The ornptive origin of rock-salt, buhrstone and cortain clays and samls maintainud by many- 3 f. Water in the formation of granites; Scrope, Elie do liwamont and sthexer; py romomic minerals; hydroplutonic origin of serpontino- - 35. Excesses of the exphutonicsechoil; transmutation or metasomatism.-36. Motasomatosis of silicated rocks; their suppead conversinu into serpemine nald linestone; King and Rownoy.-37, 38. Chrysolite rocks of the Alantic indt ; contlicting viows of Genth and Julion as to their supposed alteration (Dana's criticisms, font-note).-3:, 40. Metasomatusis of limestones; views of Volgor, Bischof and Pumpolly.-41. The endophtonic, oxoplutonic, motamorphic, motasomatic, chaotic and thormochaotic hypothoses summex nip-42. The emboplutonic and exnplutonic reviowed. - 43, 44. The metamorphic, metasomatic and chaotic reviewel. - 45 . The thormochaotic; conditions of the problom of rock-formation.
    11.-The Divelopment of a Newo Itypotheris.- $\$ 47$. The lines of investigation followed.-48, 49. Order and succession of erystallino rocks. - 50,51 . The hypothesis proposed in 1858 of a solid globo and a superficial layor as the sourco of all rocks.-in2. Farther speculations in 1859 on the source of acidic and basic rocks.54. Developments in 1867-1809; the socondary origin of granite, and the undorlying primary basic stratum.-55. The aqueous origin of many mineral silicates.- 56,57 . Geological significance of zoolites, and their relations to feldsjars. - 58,59 . On feld.pathic and granitic veins. $-60,61$. Relations of granitic veins to indigenous granites and gneisses.-62. Conclusions announcod in 1870.-63. Relations of alumina in sillcates to protoxyd bases.-64. Sourco of granitic elemonts; Scheoror, Elie de Boaumont.-65. The scoondary origin of granita.-6C. Bunson on palagonito, its origin and changos; composition of trachytic
    and basaltic magmas and of palagonito (foot-note).-67, 68. A primary quartzless rock the source of granite and of crystalline schists.-09. Its separation by wator into a lower basic, and an upper acidic portion.-70. Shrinking of the former and wrinkling of the latter ; exoplutonic rocks; the cronitic liypo-thesis.-71. Its growth from 1858 to 1884.
    III.-Illustrations of the Crenitic Mypothesis.- $\$ 72$. The now liypothosis dofined.-73, 74. The study of zoolitic rocks. -75. Zeolites of Table Mountain, Colorado.-76. Zeolites and feldspathic veins of Mount Royal.-77. The mineral socrotions of basic rocks classified.-78. Teolites and related silicates; a tabular viow.-79. Tho thomsonite and nephelite series.-s0. Barsowite, iolite, and related spocies; tho natrolite and labralorite sorios; the fanjasite and heulandite serios; orthoclase.-81. Prelnite and chlorastrolito; opidoto, saussurite and meionito.-82. The protoxyd bases of zeolites; homatite and maynetite; the pectolitic group aud its rolated species; chondrodite, chrysolite, serpentino, dowoylito; tabular viow.-84. The bisilicates, hydrous and anhydrous.-85. Quadrisilicates.-86, 87. Daubrée on tho action of hot water on glass; formation of quartz, diopsido, a pectolitic species, and a soluble silicato of alumina and soxa. -88. His farthor studies of feldspars, etc. ; Frémy on alkalino silicates.-89. Ordway on alkalino silicates; solutions of water-glass dissolvo metallic oxyds. $-90,91$. Tho thermal waters of Plonbieres; recent formation of zeolitic and pectolitic silicates, quartz and calcite.- 92 . Tho alteration of bricks by theso warm wators.-93. Similar studies at othor thormal springs.-94. Rocent production of zoolites in basalt and sandstone- -95. Their formation in deop-sea ooze-96, 97. Tho production of zeolitic silicates in the laboratory; results of Berzolius, Ammon, and Way.-98. II. Deville on tho formation of zeolites and quartz.-99. Friedel and Sarrasin on the production of both zeolites and feldspars in heated solutions. -100 . Aluminous silicates with oxcess of protoxyd bases; their genesis.-101. Reactions of zenlites with magnesian solutions; Way, Eichhorn, Bunsen.-102. Aluminous silicates with deficiency of protoxyds, and simple aluminous silicates; muscovitic micas.-103. Proballe origin of theso silicates.-104. l'inite and related species ; their composition.- 105 . Their importance in nature; tho survival of the fittest.106. The supposed chomical rolations of pinite- $-107,105$. A natural system of mineralorical classi-fication.-109. Conditions of crystallization from water; solubility of silicates and oxyds.-110. Tomporary solubility of carbonato of lime; a hydrocarbonate.-111. Conversion of amorphons into crystalline matters; corium-oxalates; malato of load.-112. Crystallization of hylrons magnesian carbonato, and hydrous doublo carbonates of limo and magnesia; gaylussite; the sola-dolomite of 11. Deville.-113. Dolomite, its geognostical and chemical history ; its origin and formation explainecl.-114. The procoss of diagenesis.-115. Convorsion of snallor into larger crystals ; chemical union.-116. Crystallization of dissolved mattors around nucloi; examples from quarta and orthoclase.
    IV.-Conclusions.-§ 117. The cronitic hypothesis ro-stated.-118 Separation of magnesian salts from sea-water; tho relations of carbonatos and silicates of lime and magnesia.-119. Elimination of magnesia from the primeval soa; decomposition of pectolitic silicates by carbonic acid, and formation of limestone.-120. First exoplutonic action; rosults of contraction of the primary mass.-121. Sub-aërial decay of exotic rocks a sourco of magnesian salts; tboir roaction with poctolitic silicates.-122. Docomposition of alkaline silicates; formation of quartz and basic silicates; oxyds of the spinel and corundum groups; their formation.-123. Surbasic aluminous silicates; rocks of the Huronian time.-124. Absenco of magnesia from sea-basins; Montalban gneisses and ,mica-schists; sub-aërial decay; boulders of docomposition; iolite-gneiss.-125. Taconian sorios; its micacoous schists; Laurentian, Arvonian, Norian, Huronian, Montalban and Taconian sories; their relations noted.-126. Later evidences of cronitic action; Silurian sorpentine and tertiary sepiolite; conditions of deposition of aluminous silicates compatiblo with life.127. Exoplutonic or volcanic plenomena; their probable throe-fold origin.-128. The history of crystallino rocks resumed.-129. Their changes in time and place; grounds of an aqueous hypothesis and an ignoous point of departure; fire as a destroyer, water as an organizer ; relations of palagonite ; separation of the primary mass into basic and acidic layers. - 130. Marks of a valid hypothesis; claims of the one here proposed.

    Note.-The observations of Vanhise, cited in § 116, have appeared since the presentation of this paper in May, 1884. The same is true of those of Murray and Rénard, referred, to in $\S 95$, though these had previously been communicated to the present writer.

    # II.-On the Density and Thermal Expansion of Solutions of Copper Sulphate. 

    By J. G. MacGregor, M.A., D.Sc., F.R.S.E.

    (Read May, 1884.)

    The experiments described in this paper were undertaken with the object of providing data for the correction of direct measurements, made by Professor Ewing and the anthor, of the change of bulk produced in water by the addition of small quantities of anhydrous copper sulphate. We had found by measurements of the density ${ }^{1}$ of solutions formed by adding the crystallized salt to water, that the volume of certain solutions of this salt was less than the volume of the water which the solution contained. It followed that if the result of the solution of anhydrous salt was the same as that of the solution of crystallized salt (the respective solutions formed having the same constitution), the addition of anhydrous salt to water in certain proportions must produce contraction. This we found to be the case, and we were able to make, roughly, direct measurements of the amount of the contraction. ${ }^{2}$ Accurate measurements required a knowledge of the expansion of weak solutions of different strengths with temperature, and this expansion it was my object to determine. Havincr made the desired observations with weak solutions, it seemed worth while to continue the investigation with stronger solutious as well.

    The expansion of the solutions was studied by measuring their density at different temperatures. The density was measured by means of a specific-gravity bottle of the ordinary form. It was made of thin glass, but the glass was not so thin as to have its rolume appreciably changed by any pressure to which its walls were subjected. It was provided with a carefully ground stopper having a capillary perforation. The balance used was one of Oertling's, capable of indicating a difference of a tenth of a milligramme. The rough measurements of density were of course corrected, so as to eliminate the errors due to the expansion of water and of the bottle, and to the displacement of air. Special measurements were made to determine the expansion of the bottle. For the expansion of water I used Volkmann's ${ }^{3}$ table, obtained by a combination of the experimental results of Hagen, Matthiessen, Pierre, Kopp and Jolly. The densities given below are all expressed in grammes per cubic centimetre, that is, they are specific gravities referred to water at $4^{\circ} \mathrm{C}$. as standard.

    The best thermometer at my disposal was one which could shew temperature differences of one-tenth of a degree centigrade. In the numbers by which temperatures are described in the tables given below, the figures in the second place of decimals are the result of corrections. The errors of the fixed points of the thermometer used were


    carefully determined; but I did not consider it necessary, for the purpose for which the experiments were made, to calibrate the instrument.

    The constitution in the case of the weaker solutions was determined by mixing known masses of water and of the crystallized salt. In the case of the stronger solutions it was determined by means of the data furnished by Gerlach's experiments, ${ }^{4}$ as given in Landolt and Börnstein's Physikalisch-chemische Tabellen (Berlin, 1883), the density of the given solution, at the temperature of Gerlach's experiments being determined by interpolation from the results of the following tables, and its constitution being then determined by interpolation from Gerlach's results.

    The following tables give the densities at various temperatures of solutions of different constitution, together with the ratio of the densities of the solutions and of water at the same temperature :
    I.-Solution containing 0.28 per cent. of the Crystallized Salit.

    | Temperature. | Density. <br> (Grammes per Cubic <br> (Centimetre.) | Ratio of Density to that <br> of Water at the <br> same Temperature. |
    | :---: | :---: | :---: |
    | $14^{\circ} .63$ | 1.0031 | 1.0039 |
    | 18.90 | 1.0024 | 1.0039 |
    | 23.07 | 1.0014 | 1.0038 |
    | 27.54 | 1.0003 | 1.0039 |
    | 31.81 | 0.9991 | 1.0040 |

    Il.-Solution containing 0.89 per cent. of the Crystallized Salt.

    | Temperature. <br> (Centigrade.) | Density. <br> (Grammes per Cubic <br> Centimetre.) | Ratio of Density to that <br> of Water at the <br> same Temperature. |
    | :---: | :---: | :---: |
    | $13^{\circ} \cdot 72$ | 1.0096 | 1.0103 |
    | 18.50 | 1.0087 | 1.0102 |
    | 2134 | 1.0080 | 1.0101 |
    | 26.02 | 1.0069 | 1.0101 |
    | 30.89 | 1.0054 | 1.0100 |


    III.-Solution containing 1.75 per cent. of the Crystallized Salit.

    | Temperature. <br> (Centigrade.) | Density. <br> (Grammes per Cubic <br> Centimetre.) | Ratio of Density to that <br> of Water at the <br> same Temperature. |
    | :---: | :---: | :---: |
    | $12^{\circ} .81$ | 1.0158 | 1.0164 |
    | 16.67 | 1.0150 | 1.0161 |
    | 21.14 | 1.0140 | 1.0160 |
    | 24.80 | 1.0132 | 1.0160 |
    | 28.96 | 1.0120 | 1.0160 |
    | 34.15 | 1.0104 | 1.0160 |

    IV.-Solution containing 3.57 per cent. of the Crystallized Salt.

    | Temperature. <br> (Centigrade.) | Density. <br> (Grammes per Cubic <br> Centimetre.) | Ratio of Density to that <br> of Water at the <br> same Temperature. |
    | :---: | :---: | :---: |
    | $13^{\circ} .92$ | 1.0254 | 1.0261 |
    | 16.57 | 1.0250 | 1.0261 |
    | 24.29 | 1.0230 | 1.0257 |
    | 26.42 | 1.0224 | 1.0257 |
    | 30.49 | 1.0212 | 1.0257 |
    | 36.08 | 1.0192 | 1.0256 |

    V.-Solution containing 5.82 Per cent. of the Crystallized Salt.

    | Temperature. <br> (Centigrade.) | Density. <br> (Grammess per Cubic <br> Centimetre.) | Ratio of Density to that <br> of Water at the <br> same Temperature. <br> $14^{\circ} .94$ |
    | :---: | :---: | :---: |
    | 18.09 | 1.0408 | 1.0417 |
    | 22.87 | 1.0403 | 1.0419 |
    | 27.54 | 1.0392 | 1.0416 |
    | 32.32 | 1.0379 | 1.0416 |
    |  | 1.0367 | 1.0417 |

    VI.-Solution containing 6.91 per cent. of the Crystallized Salt (according to Gerlach).

    | Temperature. <br> (Centigrade.) | Density. <br> (Grammes per Cubic <br> Centimetre.) | Ratio of Density to that <br> of Water at the same <br> Temperature. |
    | :---: | :---: | :---: |
    | $15^{\circ} .04$ | 1.0449 | 1.0457 |
    | 19.11 | 10445 | 1.0461 |
    | 19.82 | 1.0438 | 1.0455 |
    | 23.17 | 1.0430 | 1.0455 |
    | 27.74 | 1.0418 | 1.0461 |
    | 28.86 | 1.0415 | 1.0456 |
    | 34.55 | 1.0391 | 1.0450 |
    | 39.13 | 1.0374 | 1.0451 |
    | 44.31 | 1.0352 | 1.0450 |

    VII-Solution containing 16.78 per cent. of the Crystallized Salt (according to Gerlach).

    | Temperature. <br> (Centigrade.) | Density. <br> (Grammes per Cubic <br> Centimetre.) | Ratio of Density to that <br> of Water at the same <br> Temperature. |
    | :---: | :---: | :---: |
    | $13^{\circ} \cdot 52$ | $1 \cdot 1135$ | $1 \cdot 1142$ |
    | $18 \cdot 70$ | $1 \cdot 1118$ | $1 \cdot 1134$ |
    | $21 \cdot 34$ | $1 \cdot 1107$ | $1 \cdot 1129$ |
    | $24 \cdot 70$ | $1 \cdot 1095$ | $1 \cdot 1126$ |
    | $28 \cdot 76$ | $1 \cdot 1080$ | $1 \cdot 1123$ |
    | $32 \cdot 22$ | $1 \cdot 1065$ | $1 \cdot 1120$ |
    | $39 \cdot 53$ | $1 \cdot 1037$ | $1 \cdot 1120$ |
    | $53 \cdot 76$ | $1 \cdot 0955$ | $1 \cdot 1120$ |

    VIII-Solution containing 19.92 per cent. of the Crystallized Sali (according to Gerlach).

    | Temperature. <br> (Centigrade.) | Density. <br> (Grammes per Cubic <br> Centimetre.) | Ratio of Density to that <br> of Water at the same <br> Temperature. |
    | :---: | :---: | :---: |
    | $15^{\circ} \cdot 55$ | $1 \cdot 1357$. | $1 \cdot 1367$ |
    | 20.83 | $1 \cdot 1337$ | $1 \cdot 1359$ |
    | $28 \cdot 15$ | $1 \cdot 1311$ | $1 \cdot 1353$ |
    | $34 \cdot 35$ | 1.1284 | $1 \cdot 1348$ |
    | $46 \cdot 04$ | 1.1230 | $1 \cdot 1344$ |

    IX.-Solution containing 25.62 per cent. of the Crystallized Salit (according to Gerlach).

    | Temperature. <br> (Centigrade.) | Density. <br> (Grammes per Cubic <br> Centimetre.) | Ratio of Density to that <br> of Water at the same <br> Temperature. |
    | :---: | :---: | :---: |
    | $19^{\circ} \cdot 11$ | $1 \cdot 1784$ | $1 \cdot 1802$ |
    | $24 \cdot 80$ | $1 \cdot 1760$ | $1 \cdot 1793$ |
    | $29 \cdot 78$ | $1 \cdot 1734$ | $1 \cdot 1785$ |
    | $38 \cdot 62$ | $1 \cdot 1696$ | $1 \cdot 1780$ |
    | $44 \cdot 00$ | $1 \cdot 1674$ | $1 \cdot 1783$ |

    X.-Solution containing $26 \cdot 11$ per cent. of the Crystallized Salit (according to Gerlach).

    | Temperature. <br> (Centigrade.) | Density. <br> (Grammes per Cubic <br> Centimetre.) | Ratio of Density to that <br> of Water at the same <br> Temperature. |
    | :---: | :---: | :---: |
    | $14^{\circ} \cdot 13$ | $1 \cdot 1840$ | $1 \cdot 1849$ |
    | $19 \cdot 31$ | $1 \cdot 1823$ | $1 \cdot 1841$ |
    | $25 \cdot 71$ | 1.1795 | 1.1832 |
    | $30 \cdot 39$ | $1 \cdot 1771$ | $1 \cdot 1823$ |
    | 37.40 | 1.1741 | 1.1821 |

    Sec. III., 1884. 10.

    On Plate 1 curves will be found, whose abscisse and ordinates are the temperatures and densities, respectively, of the above tables. They are drawn on a somewhat large seale, and are crowded together that all may be given on one page. To find the density indicated by a point on any curve, the ordinate of the point must be added to the mumber at the left-hand end of the curve. The uumber at the other end indicates the composition of the solution. The lioman nmmerals refer to the above tables. By means of these curres the density of any solution at any temperature within the limits of the above experiments may be approximately determined. I hare not thought it worth while to deduce formule for that purpose.

    The third columns of the above tables shew that (1) the ratio of the densities of any solution of copper sulphate and of water respectively, at the same temperature, diminishes with the temperature: (2) in the case of some solutions it attains a constant value within the temperature limits of the experiments; and (3) in the case of others its rate of change with temperature diminishes as the temperature rises, so that it seems as if for them also it would berome zero at higher temperatures. These results may be paraphrased thus:(1) The density of a solution of sulphate of eopper diminishes with increase of temperature at low tompratures at a greater rate than that of water; or the thermal expansion of such a solution is at low tomperatures greater than that of water. (2) The higher the temperature the smallar is the difterne betwem the rates of diminution of density with temperature, or the themal expansions, of the solution and of water. (3) At sufficiently high trmpratures, cortainly for somm solutions and probably also for all solutions, the rates of diminmion of density with trmurature, or the thermal expansions, of the solntion and of water respectively are the same.

    From the curves of Platel we can easily determine, by graphical methods, approximate valnes of the rate of change of the density of a solution of given constitution with t+mprature at dittionent tomperatures; and we find that the rate of change of density with temprature increases with the temperature. Thas, taking the solution containing 19.92 per cent of the rystallized salt, we get the following corresponding values:-

    | Timperature. | Wate of Change of Density <br> with Temperature. |
    | :---: | :---: |
    | $15(\%$ | -0.00035 |
    | $200^{\circ} "$ | 0.00036 |
    | $30^{\circ} "$ | 0.00040 |
    | $40 "$. | 0.00048 |
    | $50^{\circ} "$ | 0.00060 |

    We may also determine, by similar methods, the values of the rate of change of density with temperature for given temperatures and for solutions of different degrees of concentration. Thus, for $20^{\circ}$ and $30^{\circ} \mathrm{C}$. we have the valnes of the following tables:-

    | Porcentago of <br> Crystallized Salt in <br> Solntion. | Rate of Chango of <br> Density with <br> Tomperature at $20^{\circ} \mathrm{C}$. | Rate of Chango of <br> Density with <br> Tomperature at $30^{\circ} \mathrm{C}$ |
    | :---: | :---: | :---: |
    | 0.28 | -0.000210 | -0.000298 |
    | 0.89 | 0.000225 | 0.000303 |
    | 1.75 | 0.000218 | 0.000243 |
    | 3.57 | 0.000948 | 0.000315 |
    | 5.82 | 0.000225 | 0.000358 |
    | 6.91 | 0.000240 | 0.000358 |
    | 16.78 | 0.000383 | 0.000393 |
    | 19.92 | 0.009350 | 0.000418 |
    | 25.62 | 0.009388 | 0.000440 |
    | 26.11 | 0.000413 | 0.000473 |

    Thus the rate of change of density with temperature for a giren temperature increases in general with the percentage of salt in solution. It will be noticed that there is a curions break in the continuity of the values of this rate for the temperature $20^{\circ} \mathrm{C}$. The first six curves, in fact, differ in form from the rest.

    A slight manipulation of the above results will shew clearly the pecnliarity of solutions of sulphate of copper referred to above. The following table gives (1) the values of the specific volume (i.e., volume in c.e. of 1 gramme) of the above series of solutions at $25^{\circ}$ C. ; (2) the values of the quotient of the total mass of water present in unit mass of the solution at $25^{\circ} \mathrm{C}$. by the density of water at that temperature, i.e., of the volume of water at $25^{\circ}$ which must be added to the mass of anhydrons snlphate contained in unit mass of the particular solution to produce a solution of the same constitution; (3) the differences between these volumes :-

    | Percontage of <br> Crystallized Salt in <br> Solution. | Volume of one <br> Gramme of Solution <br> at $25^{\circ} \mathbf{C}$ | Volume of Water at <br> $25^{\circ}$ in one Gramme <br> of Solution. | Difference. |
    | :---: | :---: | :---: | :---: |
    | 0.28 | 0.9990 | 1.0011 | -0.0021 |
    | 0.89 | 0.9929 | 0.9972 | 0.0043 |
    | 1.75 | 0.9569 | 0.9916 | 0.0047 |
    | 3.57 | 0.9776 | 0.9800 | 0.0024 |
    | 5.82 | 0.9627 | 0.9648 | 0.0021 |
    | 6.91 | 0.9590 | 0.9585 | +0.0005 |
    | 16.78 | 0.9014 | 0.8953 | 0.0061 |
    | 19.92 | 0.8832 | 0.8752 | 0.0050 |

    The differences of the above table are, for weak solutions, negative. Hence, assuming, as mentioned above, that the same solution is produced by adding a given mass of crystal-
    lized salt to a given mass of water, as by adding a mass of anhydrous salt, less than the above mass of crystallized salt by the mass of the water of crystallization, to a mass of water greater than the above by the same amount, it follows that the addition of certain relatively small quantities of anhydrous salt to water must produce a solution with a volume smaller than the volume of the water employed.

    If the differences of the above table are plotted as abscissæ, and the percentages of crystallized salt in solution as ordinates, the curve thus obtained shews that the contraction gradually increases with the strength of the solution until it reaches a maximum value in the case of a solution containing 2.1 per cent. of crystallized salt, or about 1.34 per cent. of anhydrous salt, and having, therefore, a density of 1.0151 , in which case it amounts to -0048. Hence, an easy calculation shews that if about 0135 gramme of anhydrous salt be added to 1 cubic centimetre of water at $25^{\circ} \mathrm{C}$., the volume of the solution will be less than 1 c.e. by about 00485 c.e.

    The curve also shews that as the strength of the solution increases beyond that just mentioned the contraction decreases until, for a solution of $7 \cdot 4$ per cent. of crystallized salt (ie., 5.96 per cent. of anhydrous salt), it has the value zero. If, therefore, $\cdot 0632$ gramme of anhydrous salt be added to 1 c. . of water at $25^{\circ} \mathrm{C}$., the volume of the solution also will be 1 cc . For stronger solutions there is no longer a contraction but an expansion. The volume of the solution is greater than the volume of the water it contains.

    These results agree fairly well with those of the approximate direct measurements referred to abore, as to the strengths of the solutions shewing maximum contraction and zero contraction ruspectively. They gave for the former that of a solution containing about 2 per cent. of the anhydrous salt, and for the latter that of one containing $5 \cdot 21$ per cent. of anhydrous salt. As to the amount of the maximum contraction, however, the results differ, the direct measurements having given 00043 . I am unable to account for this discrepancy

    Some of the results described above seem to be of sufficient importance to warrant a similar study of other salts. I hope to lay the results of such study before this Society at a future meeting.

    # III.-Blowpipe Reactions on Plaster of Paris Tablets. 

    By E. Hannel, Ph.D., Victoria University, Cobourg.

    (Rearl May 22, 1884.)

    ## I.-Reactions for Copper and Iron with Hydrobromic Acid.

    In a former paper entitled: "On the Application of Hydriodic Acid as a Blowpipe Reagent," I described a method of rendering evident certain white iodide coatings, by producing them upon blackened tablets. Since the publication of this paper I have sought to do away with the necessity of using blackened tablets by searching for a reagent which would, with the substances in question, give easily recognized coloured coatings. I have succeeded in the ease of copper, which gives with hydrobromic acid a dappled coating of greyish-black over purple. This same reagent also gives a very characteristic rustcoloured coating with iron. These two coatings differ graatly in rolatility; that of copper is very volatile, that of iron very much less so. This difference enables the analyst to distinguish the copper and iron in presence of each other, since, if a mineral contaning copper and iron' be treated on the tablet with hydrobromic acid and heated before the blowpipe, the copper coating will be driven to a distance, while the iron coating will appear immediately around the assay. The separation of the coatings is marked and distinct. The reaction is equally sensitive for both.

    In many cases, a drop of hydrobromic acid allowed to fall upon the assay placed on the tablet is quite sufficient, without subjecting the assay to heat, to produce around the assay a characteristically coloured ring, declaring the presence of iron; if the assay be now subjected to the O . F., the flame becomes coloured bluish-green, and the dappled coating of copper makes its appearance. Fuming hydrobromic acid was used for these reactions.

    Blowpipe analysis is raluable, chiefly on account of its expeditionsness and the small quantity of apparatus and reagents required for its operations. It is, therefore, in general, not desirable to detract from its value by multiplying the number of reagents or appliances required, unless it can be shown that the detection of a substance or substances is rendered thereby more certain and expeditions, and that an otherwise difficult separation becomes, by the use of the new reagent or appliance, not alone possible but simple. These characteristics are claimed for the new reagent, hydrobromic acid, since it not alone facilitates greatly the detection of copper and iron in presence of each other, but also in presence of other lead-colouring substances such as cobalt and nickel.

    ## II.-Coating of Iron with Hydriodic Acid on Tabiets.

    Iron gives a very volatile feebly-violet coating with hydriodic acid on a tablet, but its deposition on account of its volatility and its recognition on acount of its feebleness are
    so very uncertain, that for amalytical purposes the coating is useless. I mention the coating, only becanse it frequently happens that violet spots make their appearance on the tablet when minerals are examined with hydriodic acid before the blowpipe. This happens either because the mineral or the plaster of Paris, of which the tablet is made, contains iron.

    ## III.-Distinction of Selenium from Mercury.

    When a solenite of merury is treated on a tablet with hydriodic acid before the blowpipe, the coatings the to the selenium and mereury overlap throughout their whole axtent. It is difficult to determine from the resulting combination-colour by mere inspection the presence of either of the constitnents. In this case a differentiation may be effected by tomhing the coating with ammonimn sulphide, and gently heating the moistened - jot befora the howpipe; the mercury will then be driven from the moistened spot and apmar above it as a black coating, white the selenium remains near the spot as an orangeyellow ratinge

    ## W.-Comtingis on Tablets, per se.

    Plastur of Paris tablets, as supports in blowpipe operations, are preferable to any whers hithorto in usi, mot alone because tablets permit of the use of such reagents as hydrindi. adid, hydrobromi" acid and ammonium sulphide in the detection of the substanes whturing into the composition of the mineral under examination, but because the rane of obatings per se is rery much greater for plaster tablets than for any other support. Thesw per so coatings are. on account of the readiness with which they are whained. "pmially valuable for purposes of analysis. I have, therefore, undertaken their study, the results of which I berg to oftior in this paper.

    ## Description of Contings.

    Selenium-lied brown volatile coating, far away from assay.
    Tirmannite (Ko. Hg.)—Black coating, near assay, surrounded by reddish coating farther away from assay.
    Arsenic-White coating over brownish-black. Coating volatile.
    Silver-Brownish-yellow coating, close to assay. Coating produced by flaming tablet beyond assay after the assay has been heated for a time with the O. F.
    Alloys of
    Bismuth and Silver. Purplish coating, uear assay. Coating produced by flaming
    Lead and Silver. tablet beyond assay, after the assay has been heated for a time Antimony and Silver) with the O. F.
    Galena-Greyish-black feathery coating, near assay. This coating is more strikingly exhibited, when obtained from precipitated lead sulphide.
    Orpiment-Orange-brown coating, near assay, white over faint brownish, farther away.
    Realgar-Coating similar to preceding, the brown is less orange and more dingy.

    Mercury-Grey coating. (Most minerals containing mercury deposit metallic mercury on plaster tablet when treated with O. F.)
    Tellurium-Brownish-black coating, near assay.
    Carbon-Black coating, near assay. (Substances containing easily-decomposed hydrocarbon deposit the black coating of carbon when treated with O. F.)
    Cadminum-Yellow coating over brownish-black.
    Gold-Purple coating, near assay.

    # IV.-A Particular Case of Hydraulic-Ram or Water-Hammer. 

    By C. Baillairge, C. E.

    ## (Load May 2t, 1884.)

    When I wrote last to Mr. Bourinot announcing, for the next meeting of the Society, the reading of a paper by Mr. Steckel, "On the Form of the Contracted Liquid Vein as affecting the present Theory of the Science of Hydraulics," I had no idea of contributing a paper of my own. Since that date an accident has occurred to the main conduit of the Quebee Water Works, which may prove interesting and instructive, from a scientific point of view, to the world at large and to the hydranlic engineer in particnlar.

    The Quebee aqueduct is, as compared with other gravity-works, almost mique in some of its leading features. The fountain head at Lorette, through whith the supply of water from Lake St. Charles is derived, is not less than 480 foet above the pipe which passes under the bed of the river St. Charles near the city. Some fon years ago there occurred in this portion of the condnit a leak, originating in an air-hole in the spigot end of one of the pipes within the fancet, and so small as to be invisible at the time when the pipe was laid, now thirty years ago. This hole, by the constant passage through it of a jet of water muder a pressure of 208 lbs. to the square inch, gradnally enlarged to a diameter of about one inch and a half; when, serionsly affecting, as it did, the supply in the city, it was decided to stop the lakage by applying, over it and around the pipe, a wrought-iron band an inch thick and four inches and a half in breadth.

    Twelve months afterwards the leak broke ont again, and, mpon examination, it was found that, in this short interval of one year, the water had, under the great pressmre alluded to, forced the leaden joint, and, in the edge of the ring next the faucet, caten away a space of an inch in depth by two in breadth. One of the ribbon pieces of the wooden box, which encloses the conduit beneath the bed of the river, and which was some six inches in section, was nearly eaten throngh by the impinging jet, and the four and a half inch sheet-piling, which formed the side of the enclosure, was worn away to the extent of three inches.

    I mention these facts as worthy of attention, and to elicit the opinion of scientists and practical men upon the questions, how far the water itself, if pure, could have produced the effects related? or whether it is not possible and even probable, that there issued forth from the aperture in the pipe some of the sedimentary matter lound in it and periodically scoured ont of it by opening the smaller pipe ( $8^{\prime \prime}$ ) leading into the river from the eighteen-inch conduit? This sediment, however, is deposited in the tube and rests on the bottom of it, while the leak was in the upper half of the condnit, and, as the velocity of flow through the pipe is but some two aud a half to three feet per second, it becomes a question whether and, if so, to what extent, the reaction of the jet could stir up the
    sediment and cause some of it to come out, with the effect produced on the wood and iron as related? or whether the water alone, without any gritty matter and under such pressure, could eat through an inch of iron in less than a year?

    This wearing away of the iron and wood may also be accounted for in another manner, and the explanation is more rational. The pipe under the river is not only boxed in, us inferred from what has just been stated, but the box is filled in around the pipe with pudeled clay. Now this clay may, and probably does, contain a quantity of gritty matter. In liki manner, where the pipe was buried in earth, when leakages have from fime to time been discopered and repaired, the iron was invariably worn away in the fancol to some extent, as also in the spigot, and this wearing away may be attributed to the attrition or friction cansed not only and solely by the water, but by the superjacent and adjoining samd falling constantly from above, as the hole in the filling or embankment aromd the bipn inwased; or by the grit being drawn into the eddy of the fisuing jet in at wity to prodmee the eflect stated.

    The defolive pipe was in ousequente of this taken ont and a new piece inserted; ambl. to ghard aqainst a simikeremmen a bridge was built over the river, and a new and addtional main wan laid as a siding to the other.

    This new main forms the subjert of the present paper. It is at an elevation of say, somb thraty fiot abore that imberded in the river and therefore under a head of 466
     bore or insid. diancer, in twel fow lingths, with spigot and fancet joints, five inehes
     at the whtw of the - pan Whith is 120 fere between the piers. The conduit is supported (on ca-tiron haim a font hinh, to allow space for repairs to joints and for replacing a brokn pipn whon rupaired. The objen of throwing the pipe up at the centre into a sfphom or arth wan twofold : that rom might be given for the passage of river crafts lollowh it. and that it might low self-sustaining in case of the destruction by fire of the wowdon 1 ube whith surnumds it oull sides; this tube being in cross-section, eight feet insidn. six fint high. with double walls of three-inch plank, and eighteen inches of sawduat betwerl the two to grard against the aflects of frost. It rests on a flooring of beams supperd hy the trus.e whieh constitute the framework of the structure.

    For many yars past in Quebre, in fact, in the upper wards of the city ever since the laying of tho nw wonduit, owing to the pressure falling off, it has been necessary to have rmomse to the intermittent system of supply. This necessitates the turning on and ofl" of the water every day at certain hours. The stop-gates are all supplied with gearing to prevint their shutting off too rapidly, and creating in consecuence what is known as a wator-hammer or water-ram. Some years ago, owing to the too rapid working of the gearing of a gate near the summit level in the city, some 300 feet above the level of the conduit in the bridgn, one of the twelve-feet pipes, one inch and a quarter thick, and previonsly tested to stand a pressure equal to that of a column of water, 1,000 feet high or, say, 430 lbs . to the square inch, burst under the foree of the ran due to the canse just mentioned. The pipe was split along the top through almost its entire length, and the city had to be supplied by the pipe under the river while the other was being repaired.

    This pipe merely rests on the flooring of the tube, as already explained, and is not
    bound to it or trussed to prevent any lateral motion. .It must be stated that the pipe thus laid and not tied or loaded down, except by its own weight and that of the water within it, was, when the burst occurred as above related, only 140 feet from embankinent to embankment on either side the river. What has just happened and I an now about to relate, might have happened at the time the pipe burst in the bridge, had the moaded portion of the conduit been of greater extent. It was at that time, as just stated, but 140 feet; all beyond that, on both sides of the river, being imbedded and weighed down by some six to seven feet of earth embankment.

    We are now engaged in putting in a new thirty-inch main, side by side, and at fivefeet centres from the old eighteen-inch main, whith is to extend the whole distance from the fountain head to Quebec, to increase the supply. Having had a lawsuit, on account of the pretended obstruction to river navigation by the first (or present) bridgees being built over it to carry the eighteen-inch main, it was not considered prudent to erect a similar structure side by side with the former, and I determined to recommend that the new iron tubular bridge to contain both pipes shonld be erected on the very site of the presentstructure and this, of course, without in any way interfering with the present supply through the eighteen-ineh main.

    To effect this it was, of course, necessary, as well as being in other respects advantageons, as giving the hitherto confined stream greater water-way at this point, to erect the piers or abutments of the proposed new bridge in the rear (or land-ward) of the old piers, thus of course inereasing the span by so much. Now to do this, some forty leet of the embankment at each end of the present conduit had to be removed, to make room for the new piers, and the unburied, and therefore moaded, portion of the main was thereby increased from 140 feet to be about 220 feet.

    Just now the pressure in the pipes, due to the spring fieshets, is at its maximum or nearly so, thongh the quantity of water passing into the city is but slightly affected by the variation in the head at Lorette over the centre of pressure of the conduit. The intermittent system continnes, the pipe passing over the summit level in the city and thence downward to the high levels to be supplied, while for the lower districts it is drawn from a point some eighty feet below the summit level; and this pipe is every night shut off from the intra-mural city at 7 P.M., to increase the pressure on the summit levels.

    On the 18 th of April last, just about this hour, it was found that the city was without water. Upon proceeding with men and implements to visit the line of aqueduct some nine miles or less in extent between the fountain head and eity, it was discovered that the leakage had again occurred within the bridge, but the water-ram had this time exerted and manifested itself in quite another manner,-and this may give some clue to the projection of boilers from their moorings, and to the varying distances to which these are carried on the occasion of their bursting under steam-pressure. This accident to the Quebec aqueduct might possibly happen elsewhere under like circumstances ; and it is to enable engineers to guard against an occurrence which, in certain situations, might be franght with danger to life and limb and give rise to heary damages, and also, as already stated, on account of its scientific bearings on practical hydraulies, that I consider it important that the oceurrence should be made known to the scientific and professional world.

    The water was, of course, shut off from the bridge, or over-head conduit, and allowed
    to take its course towards the city by passing through the conduit under the bed of the river. And this shows the importance and wisdom of duplicate mains at such points, and in general thronghout the whole line of any aqueduct under considerable head, and, at any rate, along the lower portions of it, as we have already had several bursts in the main at different points along the low levels between Lorette and Quebee, similarly caused by a water-hammer induced by the gates being shat too rapidly in the hurry occasioned by a conflagration in the city or by some other cause.

    In the present ase the pipe, through 140 feet of its leugth, or between the points at which it was to some extent conlined in position by the temporary end-partitions of the wooden tubn or endowure, had been bodily raised at the centre, I can not say how much mope, hot at hast six imbers: for it was sumk to that depth in the iron chairs and wooden belsturs, on which it reposed on the flooring of the tube. The pipe now forms in plan an Mongated ㄷ. or something in the shape of the figure, ACDB , in the cut, the breadth of the
     Haner of the fanw perndrated nine inches into the side of the tube, breaking through the throineln dal linine: while at D) the Hange of the pipe at that point entered only about one imh and a half. The site or lateral thrust was therefore eight feet, ten inches and a half, and would, of comrse, have been much greater, had not the side walls of the thbo and the outw fwelreinh frame or trass work been there to prevent portions of the conduit at ('and I) from thinge ofl' into the river, which it is evident would have hapernel, if unomlinel in the way they were.
    

    The joints at ('aml ), as will be infored from the angular deflection at each of these point : and the shortening ol the conduit by so much, were completely detached and surarated; the immer portion of the two pipes, forming the angle, being still the one within the other, while, at the sid nomen to the bridge-melosure, the edge of the spigot was fully thre or mone inthes ont and dear of the faneet in wach case. At D , the leaden ring was comphetely ont of the joint and lying on the flooring ol' the tube; while at C , the lead was only partly deranged. The tanent joints, where shown in the sketeh, by short lines drawn arros the line, A (1) B, representing the axial line of the pipe, were but slightly deranged towards the ends, A and 13 , or loosened, say, to the extent of a sixteenth of an inch, while the other joints were more and more loosened as they approached C and D. The portion of the pipe between ( and D, some thirt y-two feet in length, remains perfeetly straight, turning as it did on or about the centre of its length on a pivot at the point $O$, which is abont three feet from the centre of the tube, A B.

    Now, as to the force exerted in producing this effect ou the pipe, this force must of course be, at least, equal to the whole weight of the cast-iron conduit moved and of the water which filled it before the accident. This combined weight is calculated at 57,406 lbs., so that this is evidently the lowest estimate of the buckling effort of the hydraulicram or hammer, since the pipe and the water contained could not have been lifted clear out of its supporting cradles, as it has been, by a less weight than its own. But that the force or lifting weight exerted must have been much greater than this is evident from the
    fact that in addition to the weight of the pipe and water, and before this conld be raised, it was necessary for the ram to exert such additional force as would tear asuuder the leaden joints at C and D and loosen all the others. What this additional exertion may be equivalent to, I am not in a position to state, without some experiments on the longitudinal adhesion of pipes thus leaded and staved in a way to prevent leakage under a 466 -feet head of water ; but it must be assumed at more than the 200 -lbs. pressure per square inch, exerted by the water, through the gasket, on the leaden band enveloping the spigot end of the pipe. This, at five-feet average girth and half-inch thickness, under the aforesaid pressure, is equal to $6,000 \mathrm{lbs}$, and as there are ten joints between $A$ and $\mathrm{C}, \mathrm{B}$ and D (those between C and D not having started), it would appear that an additional strain of some $60,000 \mathrm{lbs}$. must have been exerted in order thus to dislocate the conduit simultancously at the several joints just mentioned. But this pressure of 200 lbs . to the inch must, of course, have been exceeded, since leaden joints do not give under it, and no donbt more than twice that pressure must have been exerted, to say nothing of the foree rupuired to thrust the pipe at $\mathbf{C}$, as already stated, through the three-inch deal-lining of the hox and some six inches into the space beyond.

    This accident teaches three important lessons:-lirst, the necessity of having double or treble gearing to all such gates, as pipes under great heads of water are supplied with, that it may be impossible for them to shat at a speed beyond a given velocity; secondly the possible and probable effects of a water-ram or hammer on moaded or unconfined pipes; and lastly, the necessity, where it is unloaded or not buried in the earth, of securing the conduit both vertically and laterally to the bed on which it rests, in order to prevent the recurrence of an accident which, in some cases or localities, or under certain cirenmstances, might prove highly disastrons. I have often stood with my men in this tube at, or very near to, the point $C$, where there is an air valve, and had such an accident onconred there then, we must, in a second, have been canght and crushed to atoms between the conduit and the tube.

    The damage has been repaired by merely thrusting back the pipe at C and D into position, by re-mming these two joints and re-staving all the others ; for, strange as it may seem, not a single break or flaw or the slightest crack, occurred at any point in any of the pipes which together make up the length of 140 feet. This pipe will, when the other is laid side by side with it, as intended in the new iron tubular bridge, be tied to it by iron straps, and both will be fastened down to the iron floor-beams of the bridge.

    It may also be interesting to engineers to know that, some years ago, the whole superstructure of this bridge was thrust bodily aside some three feet at the centre, owing to the pressure of ice piled up against it, the pipe, of course, moving with the bridge and partaking of the same lateral displacement. This lateral motion did not start any of the joints, beyond a mere oozing of the water from some of them, the plastic nature of the lead submitting to this displacement, without any other effect on the passage of the water through the pipe. The bridge was again thrust back into its normal position and vertical plane, by the simultaneous use of a number of jack-screws applied to the lower side of the bridge snperstructure,-these screws abutting and acting against as many struts of stout timbers, the lower ends of which rested on the stony bed of the river. This displacement of some three feet in seventy (half the span), or about five per cent., without materially loosening the joints, indicates the possibility of doing at least as much in any case, where it might
    be required to thrust aside a water conduit in a street to make room for another, or for any other purpose; and of doing so without interfering in the least with the supply of water from it or the passage of water through it. Nothing more would be required than to replace the joints, which would be necessarily a little loosened by the derangement.

    ## V - Notes sur un fait météorologique particulier à Québec,

    Par l'abbé Laflamme.

    (Lu le 22 mai 1884.)

    Je ne viens pas traiter ici, d'une manière générale, la température de québer, non phus que la quantité de pluie ou de neige qui y tombe chaque anmée. Mon intention est tont simplement de signaler la prédominance très remarquable de certains rents dans cette partie du pays.

    On peut dire que les vents, à Québec, ne soufflent que dans deux directions, du nordest et du sud-ouest. Les diagrammes que prépare le bureau du service météorologique canadien sont très intéressants ì ce point de vue. En effet, ils montrent une différence on ne peut plus marquée entre les vents de Québec et ceux des autres villes du Dominion.

    Le printemps et l'automne, les vents du nord-est l'emportent; durant l'été et I'hiver, les vents du sud-onest sont les plas forts à leur tour. Ainsi, en 1882 , pendant les mois du printemps, mars, ayril et mai, sur 2,191 hemres de rent, nous avons en 846 heures de vent de nord-est, et 553 heures de vent de sud-onest ; total 1,399 heures. Ce qui montre d'abord l'influence réelle de la direction de notre fleuve sur l'orientation des vents, et rnsuite une prédominance indéniable des vents de nord-est. Dans les mois d'été et d'hiver, la direction moyenne restant tonjours la même, les vents de sud-onest sont les plus coustants.

    Je crois qu'il est assez facile de se rendre compte de ce phénomène particulier ì Québec en examinant la position qu'occupe cette ville par rapport aux principales chaines de montagnes du Bas-Canada.

    Placée le long du grand fleuve, au point où il cesse d'étre un bras de mer pour devenir fleuve ordinaire, la vieille capitale s'élève à l'endroit où les deux chaînes de montagnes qui courent au nord et au sud de la province sont les plus rapprochées l'une de l'antre. Plus bas et plus haut, ces ligues en relief s'éloignent de plus en plus. Québee est donc placé dans un étranglement orographique général, quelque chose qui ressemble aut fond d'un double entonnoir.

    Or personne a'ignore l'influence très grande des élévations du sol sur la direction des vents superficiels. Sans altérer les grandes lignes de déplacement suivies par les mourements aériens des hautes régions, elles produisent à la surface des perturbations qui sonvent masquent complètement les courants généraux. La conséqueuce évidente sera qu’ì Québec les courants d'air devront s'orienter de préférence dans la direction da flenve ; et, peudant que dans d'autres parties de la province les vents souffleront dans des directions différentes, ils se disposeront nécessairement dans la direction de la vallée du Saint-Laurent.

    Aussi chaque fois que le bureau météorologique nous avertit qu'un centre de faible
    pression, ou qu'une cyclone nous arrive de l'ouest, à moins que le noyau de la tempête ne passe très loin du fleuve, le mauvais temps commence tonjours par quelques journés de pluie arec un vent de uord-est qui augmente peù à pen, et le tout se termine par un temps serein, aceompagné d'une forte brise du sud-ouest.

    Mais au point de vue des tourbillons et des tempêtes, le fleuve ne fait guère qu'orienter les courants d'air ; il n'en est pas lui-même la canse. Je crois qu'on ne peut pas dire la mêne chose des vents de nord-est très persistants qui se font sentir à Québec le printemps et l'antome.

    Cus rents, je les appellerai vents secs, vu qu'ils se produisent souvent dans une atmosphirre phre et sercine. Pendant quïls souflent, le baromètre ne baisse pas, ce qui indique quilis ne participent en rien à lat nature des cyclones ou des tourbillons. Bien loin de là, loplus sonvent, le mercure monte. Lat plus lorte hauteur barométrique observée à Québec duphis quatre ans lan ité pendant on lort vent de nord-wst. La colonne dépassait trente et un poluc.

    Lec cid rete ans\% sonvent pur et dion blen vif. S'il y a des nuages, ils forment une band du vapurs qui couront sur les flancs des Lamentides et sur le versant des collines qui longront la rive sud. Il nest pas rare de voir en même temps d'antres nuages qui pasom dans lue riwions devéns et sid dirigent vers le golfe Saint-Laurent, allant ainsi en
     ('or dirniors muages sont plux enfumís que cenx qui viennent du bas du fleuve, et quel(queliois il hur arrive ditre asse\% nombreux pour courrir complètement le ciel.

    Alors la mass d'air fruid et lumide, poussée par le vent du nord-est, n'étant pas
    
     pareourt. it as rents de nord-est, que jappelais secs il y a mu instant, deviement des sourcons alomiame duphie. Tout naturelloment, cest durant la nuit, alors que le soleil now phu sur thorizn pour rípundre partout sa chaleur, que ces plaies sont plus fortow
    ('inte precipitation ne se produit plus sons la lorme d'une pluie fine et serree, comme melle fu" noms arons durant le passage de la première moitié d'un tourbillon; mais une pluie torrentiolle, une averse dilurienne tombe par intermittence, de façon à rappeler com-
     prononcte que les múes se "hargent délectricité; et nous avous alors le curieux spectacle de la foudre gromblam de temps it autre, pendant gn'un vent violent du nord-est nous transit jusqu'aux os. Il niy a guère do printemps on ce curieux phénomène climatérique ne se reproduise plusieurs lois.

    Cos deux courants aćriens superposés coexistent ì Québec durant des semaines entières, mous ammant sans cesse d'emnyenses alternatives de soleil et de pluie qui se succent brusquement, sans que le baromètre en soit aucunement affecté.

    Quelle pent ctre la cause de ce singulier état de choses? Il me semble qu'il est tout simple de l'attribuer à la position géographique de Québec, an fond de son doulle entonnoir. Dans l'entonnoir occidental, les neiges fondent de bonne heure et le sol découvert est bientôt réchauflé par les rayons du soleil. Au contraire, le golfe et la partie supérieure du fleure constituent un réritable réservoir de froid, à canse des glaces qu’ils renferment alors et des courants froids qui y pénètrent du Labrador. Dès le milieu d'arril cette iné-
    galité de température est déjà fortement marquée et persiste ensuite pendant de nombreuses semaines.

    Rien de surprenant si, dans ces conditions, l'air échauffé de l'entonnoir occidental se soulève, créant ainsi un vide partiel. L'air froid de l'entonvoir oriental s'y précipite en suivant la direction du fleuve. La vitesse de ces masses froides s'accélère à mesure qu'elles avancent. Absolument commo mu flot de marée qui s'engouffre dans une baie rétrécie, et dont l'impétuosité augmente avee le rapprochement des rives qui l'enserrent.

    Aussi, à peine ont-elles traversé le col de l'entonuoir, que ces vagues aériennes rencontrant une surface libre plus grande, les courants aériens perdent de leur vitesse, changent de direction et constituent les vents irréguliers qui se font sentir dans les distriets de Trois-Rivières et de Montréal. Ces vents de nord-est seraient done de véritables moussons d'automne et de printemps.

    Un fait qui tendrait encore à confirmer cette manière de voir, c'est que les points placés en dehors de notre entonnoir orographique, à savoir le Sagnenay ve la Beance, n'ont, en fait de vent de nord-est, que ceux qui dépendent du passage d'un tourbillon atmosphé. rique ordinaire.

    Je me permettrai de sigmaler, avant d'aller plus loin, l'influence du flux et du reflux sur les vents, à Québec. Cette influence existe, on ne saurait le nier. Tons les marins le sarent fort bien, et ils ne se font pas faute de s'appuyer sur ce fait pour régler une foule des détails de leur navigation de cabotage. Le flux et le reflux de la marée allectent très semsiblement le fond de l'entonnoir oriental. Le changement de mivear y afteint en moyeme ume vingtaine de pieds. Airee le flot montant l'air est forcément repoussé, et avee le reflux un vide partiel tend à se produire. Il est vrai que ces modifications n'atteignent pas à la fois toute la surface du fleuve, mais cependant elles s'y produisent un pen partont.

    Or, si nous supposons qu'au moment où commence l'un ou l'antre de ces grands monvements de marée, l'équilibre atmosphérique soit déjà dans un état relativement instable, nous ne devons pas être surpris si le déplacement forcé de plusieurs milliers de pieds eubes d'air y détermine un bonleversement définitif qui se traduit par un courant d'air en un sens ou en l'autre. Aussi ces vents de marée sont-ils d'antant plas forts que l'air' était primitivement plus tranquille. Quand nous jouissons déjà d'une forte brise, l'influence du flux et du reflux est beaucoup plus faible, quelquefois même insensible.

    J'ai dit, au commencement de cette étude, que le vent du sud-ouest était le vent habituel de Québec, l'été et l'hiver. Ce vent ne saurait avoir une cause analogrue à celle que nous venons d'indiquer en peu de mots pour son congénère du nord-est. Comme il ne se manifeste qu'aux époques où l'équilibre de la température s'est à peu près établi entre l'est et l'ouest de la province, je crois qu'on est en droit de le regarder comme une branche des contre-alizés qui, sous notre latitude, atteindrait alors la surface du sol. D'ailleurs il est bien probable que la vallée du Saint-Laurent joue encore un rôle important dans l'orientation générale de ce comrant d'air.

    Si les idées qui viennent d'être exposées sont exactes, je crois que les vents de Québec ne changeront guère de régime. Au contraire, je suis porté à penser que les vents du nordest en particulier s'accentueront de plus en plus. Les défrichements augmentant dans la partie occidentale, l'atmosphère s'y réchauffera plus vite le printemps, et les vents de nord-est, dans l'entonnoir orographique, commenceront plus tôt pour finir plus tard. Car

    ## 90 L'ABBÉ LAFLAMME - NOTES SUR UN FAIT MÉTÉOROLOGIQUE, Etc.

    si l'on peut supposer que le climat de l'ouest de notre province s'adoucira peu à peu, on ne peut pas croire qu'il en sera de même pour l'est. La température y restera évidemment la même, ou à peu près, vu qu'il n'y a aucune cause capable d'amener un changement dans ce sens.

    L'automne, les mêmes causes produisent les mêmes effets que le printemps, et la saison des vents de nord-est commence, à Québec, en septembre, pour se terminer vers la fin de novembre.

    # VI - Essai sur la constitution atomique de la matière, 

    Par l'abbé T.-E. Hamel professeur à l'université Laval.

    (Présenté le 21 mai 1884.)
    L'expérience la plus grossière montre que le monde matériel est composé d'un grand nombre de corps placés à distance et se déplaçant les uns par rapport aux autres. L'expérience montre encore que les corps qui paraissent continus, comme les solides, les liquides et les gaz, sont cependant séparables en portions plus on moins ténues et que l'on peut isoler. Il semble tout naturel d'admettre que ces portions isolables sont, mème dans les solides, réellement isolées et séparées les unes des antres, et qu'elles y sont simplement juxtaposées. Autant que l'expérience pent le constater, nue foule de faits démontrent en outre que ces parcelles qui constituent les solides (j'en dis antant, à plus forte raison, des liquides et des gaz) ne sont pas en contact immédiat, mais quan contraire elles sont distantes les unes des antres, pouvant exécuter des mouvements relativement considérables sans toucher leurs voisines.

    On s'est demandé naturellement s'il était possible de déterminer jusqu'où pouvait aller la divisibilité de la matière. - Le fait est qu'on est parvenu à opérer cette divisibilité physiquement au point de dépasser tont ce que les sens sont capables d'apprécier. Mais ce qui échappe anx sens, l'imagination pent encore le poursuivre en s'appuyant sur le raisonnement. On s'est donc demandé si la matière est divisible à l'infini, ou si la divisibilité des corps matériels a une limite.

    Or la divisibilité infinie est un non sens, puisqu'elle supposerait dans un corps limité un nombre actuel infini de parties existantes, ce qui est métaphysiquement impossible et absurde. Reste donc la divisibilité limitée. Mais quelle est la nature de celle-ci? - La constance des propriétés des corps appelés corps simples, qui se retrouvent toujours rigoureusement identiques, quelles que soient les combinaisons préalables par lesquelles on les a fait passer, et surtout les propriétés cristallines des corps que l'on pent obtenir à l'état de pureté, ont conduit les physiciens et les chimistes à une espèce d'unité, appelée molécule, spéciale à chaque espèce de corps, et que l'on a coutume de définir: "ce dont on ne peut rien retrancher sans changer la nature intime du corps." Cette définition de la molécule comprend aussi bien la dernière parcelle séparable des corps composés que celle des corps simples de la chimic. D'après cette définition, il y a done des molécules complexes qui sont susceptibles d'être réduites à des molécules plus simples, mais qui ne sont plus semblables anx premières: par exemple, la molécule d'eau est réductible en deux ou plusieurs molécules d'oxygène et d'hydrogène. - Toutefois, dans ce couraut d'idées, il y a des molécules qui ne sont pas réductibles en plus simples qu'elles, au moins à l'aide des forces dont la science actuelle peut disposer: ce sont les molécules des corps simples. D'après cette conception, les corps simples de la chimie se distingueraient les uns dès autres
    uniquement par la nature de leurs molécules, qui seraient différentes d'un corps à l'antre, mais seraient fixes pour chaque corps.

    Cette fixité des molécules des corps simples a été regardée d'abord par les chimistes comme une condition nécessaire de la stabilité de ces corps dans leurs propriétés physiques et chimiques. Elle avait en outre l'avantage de rendre facilement compte de la fixité des équivalents chimiques, ainsi que de la loi des proportions multiples. Aussi, pendant longtemps, ati-on regardé les molécules des corps simples comme étant absolument fixes, invariables de forme, insécables, c'est-à-dire non divisibles ultérieurement, bien qu'cllex cuscout, chacume dans son espèce, un volume étendu et de forme déterminée. On liss a appelés ufomes, l'est-ì-dire non divisibles. - Mais si, à première vue, on rendait compte ainsi de de la lixité des especes chimiques, et des principales lois fondamentales de la chimie, on s'est, dans la suite, bientôt tronvé en face de difficultés que cette théorie nedpliquait pas, et même arec lesquelles elle se tronvait en contradiction. Pour n'en (iter fu'un "xemple’ d’après la loi d’Avogrado, des volumes éganx de gaz ou de vapeurs contimnent dne nombres égrax de molécules, soit simples, soit composées. Or on sait Ghinn whme de dhlore et un rolume d'hydrogine se combinent enformant deux volumes dacilu ahmhydripur, on, we qui revient an meme, une molécule de ehlore et zne molónl. dhỵdrumarment deur molécules d'acide chlorhydrique; donc chaque molé-
     d'hydruqint. Les exmples analogues sont nombreux. - Il résulte de là que les molé"ulne. si la loi dus volumes d'Avorrado ast vraie, ne peuvent pas etre invariables: elles funant an moins :- scindur "n denx. Cefait s'est tellement imposé à Avogrado luimimu (puil a dis imaginer lhypothese des molécules intégrantes et des molécules élementhires, la promirus fant composíes dun certain nombre des secondes, et la loi des rolumes d'Abogralo s'appliquant seulement anx moléenles intégrantes.
    si cett, dillinulté ćait la seule, l'ingéniense hypothése des molécules intégrantes s rait mun "xpliation plansiblu et strictement suffisante; mais il y en a bien d'antres. ('omment "xpliquer la parfate homoménété des combinaisons chimiques, en même temps que l'absolun dillérnow duproprítés qui existe entre les composés et le composant d'une part : et dantre part la difternue radicale entre la combinaison de deux corps et le simple milante de cus dux corps? Par exemple, si l'on mélange un volume d'oxygène avec deux volumes d'hylrogènc, on peut les laisser ainsi mélangés indéfiniment sans jamais - onstater aucune des propriétés spéciales de l'ean; c'est un simple mélange. Mais si l'on met Iu fen it ce mélange, he serait-ce que par une étincelle, la combinaison a lieu, les propriétés de l'oun sont caractóristiques, et l'on ne trouve plus aucune des propriétés spéciales de l'oxygène ou de l'hydrogène : an lieu d'un mélange, on a un corps parfaitenent homogène qui ne trahit en aucune façon la présence de l'un ou de l'autre de ses composants; si bien que l'on peut dire que, dans l'eau, il n'y a plus ni oxygène ni hydrogène. Or, si les molécules élémentaires d'Avogrado sont de petits solides invariables, leur simple juxtaposition plus ou moins intine suffiteelle pour expliquer l'énorme différence entre le mélange et la combinaison?

    Mais ce n'est pas tout. Outre certains effets de contraction observés dans quelques composés (potassium et oxygène, v . g.), et inexplicables dans la théorie des molécules élementaires solides et invariables, comment expliquer, dans cette même théorie, les effets de présence ou de contact (pour lesquels on a imaginé la force catalytique); la polarisa-
    tion des liqnides et des solides; la production de l'électricité dans les piles; les modifications produites dans les corps par la lumière, la chaleur, l'électricité, le magnnétisme? N'a-t-on pas été obligé, pour essayer d'expliquer ces phénomènes et bien d'autres, d'avoir recours à toutes sortes d'atmosphères autonr des molécules, et d'en faire le siège de ces manifestations? Il fallait bien mettre ce siège quelque part, et évidemment on ne pouvait le mettre dans les molécules elles-mêmes. Il en résultait donce singulier état de choses, savoir: que la molécule, cet élément regardé comme fondamental, se trouvait réduite au rôle de noyan neutre, inutile, inerte, hors d'atteinte daus le sein de l'atmosphère qui l'entourait et qui était tout !

    Aussi plusieurs physiciens, ne comprenant pas la nécessité d'un noyau insaisissable, inabordable, inerte et inutile, ont-ils cru pouvoir en nier l'existence et ne voir dans las corps matériels que des centres de forces sans substratum matériel. Ces centres du forces, qui n'étaient que des êtres de raison, étaient-ils plus intelligibles que ce quills étaient destinés à remplacer? Il est permis de croire que les auteurs de cette nonvelle theorie auraicht été bien en peine de s'expliquer là-dessus.

    Il en est de même de l'explication moderne des lois dites de l'attruction unirerselle on lois de Newton. L'illustre géomètre anglais disait qu’il était trop philosophe pour croire que les corps matériels pussent agir les ans sur les antres à distance; anssi exprimait-il son admirable loi en disant que les choses se passaient comme si les corps shattiraiont en raison directe des masses et en raison inverse du carré des distances. En attendant qu'on wit trouvé une explication qui satislit mieux sa philosophie, Newton appliqua le ealcul à sa loi en smpposant (simplement pour faciliter le calcul) ce que sa philosophir limpè̀ chait d'admettre comme une réalité. Il en est résulté wne explication trllement simple et une si grande facilité de calcul, que l'on n'a pu depuis trouver d'expression plas simple' non seulement pour l'attraction miverselle et les calculs de l'astronomie mathématique, mais pour l'application du calcul à toutes les autres forces de la mécanique: ceestà-dire, que, pour se rendre compte d'une force quelconque, il fant essentiellement la regarder comme émanant dun corps et sexerçant sur un autre. Il résulte encore de là cet antre fait étrange que tous les calculs de la mécanique céleste et usuelle, quis. vérifient d’ne manière si admirable et conduisent à des résultats dont l'exactitude exclut la possibilité de tout doute, se tronveraient fondés sur une pure hypothèse qui manquerait elle-même de tout fondement, et qui serait soi-disant philosophiquement fausse !

    Quoi qu'il en soit de l'étrangeté de cette assertion, qu'est-ce done qu'ont imaginé les modernes pour expliquer philosophiquement les lois de Newton et remplacer l'attraction universelle? Pour éviter l'attraction à distance, ils ont imaginé d'attribuer à la pression de l'éther l'effet que l'on attribuait à l'attraction. Dans cette hypothèse les corps ne s'attirent pas, mais ils sont poussés les uns vers les antres. Fort bien! il n'y a à cela qu'un léger inconvénient, c'est qu'on tombe de Charybde en Seylla. En effet, on suppose que l'éther est unfluide parfaitement élastique et dont les éléments constituants sont iufiniment plus subtils que les molécules les plns petites des corps gazenx. Mais alors de deux choses l'une: ou les éléments coustitutifs de l'éther se touchent, où ils sont à distance. - S'ils se touchent, comment peuvent-ils vibrer et surtont être animés de ces énormes vitesses qu'on est obligé de leur supposer pour produire les effets attribués à l'attraction nuiverselle? - Et s'ils ne se touchent pas, en quoi consistera leur élasticité pour qu'ils puissent par le choc entrer en vibration et changer la direction de leurs mou-
    venents? Faut-il, eux aussi, les supposer enveloppés d'atmosphères distinctes d'euxmêmes, on bien finir par admettre entre cux une action à distance? D'ailleurs ces éléments constitutifs de l'ether ne penvent pas etre en nombre infini ; ils sont done limités en nombre et par là mème limités dans l'espace qu'occupe leur totalité. S'ils ne s'attirent pas, comme ils éprourent chacun une résistance du côté de l'intérieur de leur ensemble, et qu'ils nien épronvent pas ou n'en éprouvent qu'une moins grande du côté de l'extérieur, comment expliquer qu'ils ne se dispersent pas et qu'ils puissent exercer une pression toujours exactement la même sur les corps qui y sont plongés? Comme on le voit, il y a place encore pour d'antres théories plus heureuses dans leurs explications que celles qui précèdent.

    Celle que je veux exposer icin'est pas nonvelle ; mais peut-être n'a-t-elle pas été développée jusqu’ici dans l'ensemble de ses conséquences. Je vais essayer de le faire. Cette théorie, con lat prenant en elle-mème, et sans tenir compte de l'histoire de ses progrès successils dans l'enprit du ceux qui s'en sont occupés, pent être considérée comme une conclusion deduite de lapplication du calcul ì tous les problèmes de mécanique; et elle se prote aduirablement al lexplication de tous les phénomènes: car ceux-ci n'en sont, pour ainsi dier, que les conséquences naturelles. Or c'est bien là la meilleure épreuve de toute therorie sciemifique.

    La mécanique est l'étude du monvement des corps sous l'action des forces. On commonee cotte ífude par "elle du mouvoment en lui-même, indépendamment de ses causes. ('opte ítud. du monvement (désignée sons le nom de cinématique) n'implique aucune théorib hypothétique ef ast absolument vertaine. Puis, sous le nom de forces, on étudie tout ". qui put produire ou modifier le monvenent des corps. Or, sans rien préjuger sur la nature imtime de la force, et simplement pour la définir au point de vue de son introdu'tion dans le calcul, on est conduit ì considérer, dans chaque force, sa direction, son intensiti et son point dapplication. Ce point d'application d'une foree est aussi nécessaire à le détermination de celle-ri que lintensité ou la direction de la force, si bien que, sans ce point, il cost impossible dappliquer le calcul à une force pour en tirer quelques ronclusions.

    Anssi, pour procéder du simple an composé, est-on obligé de commencer par étudier le mourement produit par une force, lorsque celleeei est appliquée, non pas à un corps étundu, mais à un simple pornt matériel ( sans étendue), afin qu'il u'y ait pas d'ambigruté ni d'hésitation sur la localisation précise du point d'application de la force. Cette concoption des plysiciens s'est imposée à eux par la nécessité du calcul, car alors tout est net et précis: étant donnée une expression de la force, on détermine rigoureusement la nature de la trajectoire (unique) suivie par le point matériel, et la loi du mouvement de ve point matériel sur sa trujectoire ; réciproquement, étant donnée la nature de la trajectoire et la loi du nouvement, on détermine rigoureusement l'expression mathématique de la force. l'our passer de là à l'étude du mouvement d'un corps, on suppose d'abord deux points matériels, puis lrois déterminant les sommets d'un triangle, puis qualre déterminant les sommets d'une pyramide, puis un nombre quelconque de points matériels toujours reliés entre eux d'une manic̀re fixe et formant ce qu'on appelle uu solide invariable. Pour déterminer le mouvement généralement complexe de ce solide, on étudie d'abord son
    mouvement d'ensemble ou le mouvement de son centre de gravité : c'est ce qui conduit aux lois de la composition des forces. Puis on étudie les déplacements des différents points qui composent le solide invariable par rapport an centre de gravité. - On passe enfin de là au mouvement beaucoup plus compliqué des ensembles de points reliés par certaines lois qui ne les astreignent pas à garder entre eux des distances fixes.

    Ainsi, de proche en proche, on arrive à pouvoir appliquer le calcul aux mouvements des différents corps naturels en les supposant composés de points matériels reliés entre eux d'après les lois que fait connaître l'expérience. - Mais, dans tous les cas, la base fondamentale de l'application du calcul aux problèmes les plus compliqués comme aux phes simples de la mécauique, c'est de les réduire, par la pensée, à un ensemble de points matériels reliés entre eux par certaines lois. Alors tout est clair, et, chose merveilleuse, non senlement on calcule ainsi aisément les cas usuels, mais on prévoit des faits noureaux toujours confirmés par l'expérience, du moment qu'on part de données certaines! Bien plus, vouloir agir autrement, e'est errer au hasard et se mettre dans l'impossibilité d'arriver à un résultat certain.

    Quand on songe que Dieu a tout fait avee nombre, poids et mesure, est-il bien sage de croire que la seule manière d'appliquer le caleul aux lois de l'univers physique soit fondée sur aue pure abstraction de l'esprit, sans réalité existante, et ait un fondement philosophiquement faux? -- C'est ce que je me permets de ne pas croire. - Quand d'ailleurs on réfléchit que l'expérience, à mesure que l'on étudie davantage les sciences phỵiducs et chimiques, tend à prouver que les molécules elles-mêmes des corps simples ne sont pas invariables dans leurs formes et se comportent comme de véritables corps composés, il me parait absolument raisomable de regarder comme une réalité l'hypothèse qui sert de base à la mécanique.

    Dans cette conception, les molécules élémentaires des corps simples seraient donc composés de points matériels, véritables substances n'ayant point d'étendue réelle et se localisant par conséquent tont entières chacune dans un point mathématique, mais ayant une étendue virtuelle s'étendant, pour chaque point matériel, ì tout l'univers. .Je m'explique.

    Les métaphysiciens de l'école de saint Thomas d'Aquin ont une admirable manière d'exprimer la nature des êtres matériels: ils disent qu'ils sont, en dernière analyse, composés de matière première et de forme substantielle. Si nous empruntons cette manière de voir, qui rend le discours beaucoup plus clair, nous pourrons dire que, dans les points matériels tels qu'ils sout ici supposés, la matière première, c'est ce qui fait que ces points sont quelque chose et non pas des riens comme les points mathématiques qui ne sont que des positions. Nos points matériels sont donc des êtres ayant une cxistence réelle et individuelle. Maintenant il est impossible d'admettre que ces points matériels soient absolument inertes, si l'on reut expliquer les phénomènes de la nature: il faut au contraire admettre qu'ils sont à la fois áctifs et passifs, c'est-à-dire qu'ils peuvent agir sur les autres points matériels de même nature, et en recevoir une action. Or la forme substantielle de ces points matériels serait précisément l'ensemble des propriétés actives et passives qui font que chaquə point matériel est sensible à tout le reste de l'univers, et réciproquement en reçoit une action, propriétés dont la loi de l'attraction miverselle dit Newton serait une des manifestations. A ces points matériels seuls appartiendrait proprement et absolument l'impénétrabilité physique, c'est-à-dire la propriété: d'exclure tout antre point matériel de la place qu'occupe actuellement sa propre substance.

    Cette impénétrabilité ne serait pas non plus un simple effet d'inertie passive, mais serait le résultat de cette espèce d'activité par laquelle chaque point matériel a la propriété de rejousser tout autre point matériel tendant à venir occuper la position déjà occupée par le premier. Cette impénétrabilité vraiment active serait me seconde manfestation de la forme substantielle et pourrait en mêne temps rendre compte de l'élasticité des points matériels, et par suite expliquer la possibilité du mourement ribratoire calorifique, lumineux et électrique.

    Las points matériels ainsi considérés penvent expliquer, bien mieux que tont antre systemu comu, les phemomenes naturels. Essayons de le faire voiren admettant provisoirement leur réalité, et tirons lés conséquences qui résultent de leur constitution supposée, "\&st-i-dire, I de leur attraction mutuelle (vraie attraction inhérente à leur nature) s'exerCann "n raison direto de leur nombre et en raison inverse dn carré de leur distance réciproque"; et -2 de l'espeé de répulsion mutuelle résultant de leur impénétrabilité active.
    ( $\circ$ poims matériels, wais atomes dans toute la force du terme, et que, pour cette raison, ïupellarai désormais atomes pour abréger, peurent être désagrégés, c'est-à-dire isolés les uns des alltres. whemes of oroupes plus ou moins nombreux.
    
     atioficant, par consf́quont, à tontex les conditions que les physiciens désirent trouver et - ont whés de suporm dans la fluide miversel commuńment désigué sons le nom d'éther,
    

    - 'i lom supjose maintuant un certan nombre de ees atomes amenés une première fois
     l'ation atrantive promondante de lemsemble des autres, on se tronvera en face d'un groupa plus on moins stable, mais qui ne pourra plus se désagréger seul, et qui nécessitera
    

    Mais quelle sera lat constitution de cotte moléeule? elle dépendra évidemment des conditions intiales qui auront préside ì sa formation. La molécule sera plus ou moins dense, indermalamment flu nombre de ses atomes composants, snivant les directions des mouroments of les grandeurs des vitesses qui auront amené en présence les atomes dn groupe. Quebles que soient cependant ces vitesses, jamais les atomes d'une molécule ne pourront érre anonés an contact absolu, c'est-à-dire à me distance nulle, à cause de leur impróqrabilité actire. Ils resteront donc à distance les uns des autres et formeront comme whe rspece de constellation sans liens apparents, mais cependant assez solule pour exiger un etlort, une force pour la briser. Dans cette constellation, les atomes ne seront pas immobiles: ils ne pourront même pas l'être. En effet, sous la double influence de l'attraction dn groupe sur chacun d'eux et de leur impénétrabilité active, ou, si l'on veut, de leur élasticité répulsive mutuelle, le mouvement de translation qui les aura amenés en présence se trouvera transformé en mouvement vibratoire rectiligne ou ratotoire, suivant la direction primitive du mouvement primitif de chacun d'eux par rapport à l'ensemble des autres du groupe; car dans cette tranformation du mouvement derra se vérifier la loi si admirable de la conservation de l'énergie. - Dans la molécule ainsi formée, la disposition des atomes ne sera pas quelconque: elle résultera de la combinaison des deux forces en présence et des conditions initiales de mourement qui auront donné lieu à la formation de la molécule. Cette disposition pourrait être rigoureusement calculée d'avance, étant données les circons-
    tances initiales du problème. On peut dire à priori qu'elle sera telle, que chaque atome constituant se placera de manière à satisfaire lo mieux possible à l'ensemble des actions auxquelles il se trouvera soumis. Les formes extérieures des molécules seront done en général des formes polyédriques aussi régulières que le comportera le nombre des atomes composants; et les sommets de ces polyèdres seront déterminés par le lieu moyen d'autant d'atomes vibrants.

    Les molécules ainsi constituées ne seront pas également stables, c'est-à-dire qu’elles exigeront plus ou moins de force extérieure pour être brisées. Cette différence de stabilité dépendra du mode de vibration interne de chaque groupe et surtout du nombre d'atomes composants. Pour un mode analogue de ribration interne, il est facile de prévoir que, en général, plus la molécule sera simple, plus elle sera stable ou fixe, c'est-ì-dire plus il faudra de force extéricure pour la briser. La forme la plns stable sera celle dans laquelle les affinités mutuelles seront le plus identiquement satisfaites pour chaque atome du groupe; or cela aura lieu lorsque tous les atomes composants seront maintenus à des distances égales les uns des autres. Cette condition est réalisée dans le cas de quatre atomes occupant les sommets d'un tétraèdre régulier; comme e'est en même temps le groupement le plus simple, puisqu'il est impossible de déterminer un solide avec moins de quatre points, on peut affirmer d’avance que ce grompement forme la molécule à la fois la plus petite et la plus stable.

    Partant de là, en s'aidant de la géométrie, sans qu’il soit nécessaire de recourir ì des calculs compliqués, on peut se rendre compte assez aisément des chances plus ou moins grandes de stabilité que présenteront des grompes successifs de $5,6,7,8,9,10,11 \ldots n$ atomes. Evidemment plus les nombres d'atomes composant les groupes sont considérables, plus les calculs se compliquent, mais il suffit de roir que ces caleuls sont possibles, si ce n'est daus l'état actuel de la science, au moins in se. Heureusement l'étude des nombres les plus simples suffit pour donner une idée de la loi générale. Ainsi il est aisé de voir que certains groupes plus nombreux seront cependant plus stables que d'autres quile sont moins, bien qu'en général la plus grande stabilité doive appartenir aux groupes les plus simples. On peut même comprendre que certains nombres ne pourront pas faire de groupes réguliers stables, et que si de tels groupes se sont formés, la moindre force extérieure a dû les briser. De là nous pourons déjà conclure que, vu les forces en jeu dans la nature depuis l'origine du monde, il n'y a plus maintenant que les groupements se prêtant aux combinaisons les plus stables qui aient pu persister.

    Supposons donc qu'il fût possible, non seulement d'isoler, mais de voir toutes les molécules différentes qui existent actuellement dans la nature, et de les ranger par ordre croissant de nombre d'atomes constituants; que constaterions-nous? -D'abord nous tronverions que la série n'est pas complète et qu'il y a des rides: ces vides correspondraient aux groupements très peu stables dont nous avons parlé, et qui n'ont pas pu subsister, si tant est qu'ils se soient formés. Puis, en suivant la série croissante, nous trouverions des groupes (a) dont le nombre d'atomes serait exactement ou le multiple de quelque autre groupe précédent, ou la somme de deux ou plusieurs groupes plus simples dans la série; tandis que certains autres groupes (b) ne joniraient pas de cette propriété, et joueraient, parmi les molécules, un rôle qu'on pourrait comparer à celui des nombres premiers en arithmétique. Il est clair que les groupes ( $a$ ), sous l'influence de forces convenablement choisies, pourront
    se dédoubler exactement dans les groupes plns simples dont ils sont les sommes, et qui sont compris dans les groupes (b), ce que ne pourront pas faire ces derniers. Inversement, ì l'aide de forces suffisantes, on pourra, en combinant ensemble les groupes plus simples (b), arriver à former les groupes plus compliqués qui en sont les sommes (a). Nous voilà done en présence de deux espèces de molécules correspondant exactement à ce que les chimistes uppellent les corps composés et les corps simples.

    Mais roici où se montre la supériorité do la théorie présente. Les molécules composíes (a) sont anssi homogènes en (lles-mèmes que les molécules plus simples (b). Ce que lon appelle combinaison so distingre nettement et complètement du simple mélange: co n'est pas une juxtaposition plus intime ou plus régulière que dans le mélange; c'est une transformation compléte. Dans la molíeule composée résultant de la combinaison de deux on trois molévules plus simples, il n'y a plas ancune trace de ces dernières: la somme do leurs atomes se trouve bion dans la molénule résultante; mais cette somme d'atomes a pris son arrangement special ponformement anx artions mutuelles de ces atomes, sans qu’il resto rien qui puisse rapmerer la forme das groupements précédents. Bien plus, si après avoir
     phonitu it redénomone la pemiere, al poura fort bien arriver (et même il est maturel do supporer guil arrive qéméralement) que lés dax molécules plas simples résultant de la doompoition, ne suront pas composén des memes atomes que la première fois. Cela n'emperherait pas len denx molónlus simples d'ètre identiques it ce qu'elles etaient auparavaut, puisqu. Wur idontité, ou plutot l'idntité de laurs propriétís ne viont pas de l’identité malériolle das atom"s composants, mais uniguement du nombre et du mode de groupement do cenx-ri. On expligne amsi parfitement la difireme radicale qui existe entre la combanason chimique "t le simple molunge; on explique en meme temps la dillérence si grande de proprićté "ntre le compost id less compusents. Enlin on vomprend comment il se fait que le composí, tant quil reste fel, ne manifeste ancum trace de composition, et est anssi homogene quesil itait comps simphe.

    Comme on le voit, dans att "théoric, les différentas especes de corps simples ne diffèrent (que par la forme de leurs moléenles, et celle-ci dépend du nombre d'atomes qui les rompose et de leur mode de vibration interne. Tons les atomes sont identiques, tant ceux qui composent l'ither quecenx qui constituent les corps pondérables. Cette identité de nature de tons les corps est conforme à ce que l'expérience nons apprend sur l'identité des - ffets produits sur tous les corps par l'attraction, la chaleur, la lumière, l'électricité, les forves diverses. La masse, qu'il est impossible de définir physiquement lorsqu'on n'admet pas l'ideutité ultine de nature des différentes espèees de corps, et que le bon sens cependant oblige constamment de dire proportionnelle à la quantité de matiere, la masse, dis-je, se trouve nettement définic conformément an sens commun et à la croyance populaire: c'est le nombre des atomes qui se trouvent dans un corps; la masse croit proportionnellement à ce nombre d'atomes. Les molécules conservent leur sens et lear signification arec leurs propriétés caractéristiques telles que les exigent les lois de la chimie et de la cristallographie; ayant, par conséquent, tous les arantages que l'on croyait trouver dans les molécnles, solides invariables de l'ancienne chimie, sans en avoir les inconvénients; rendant bien mieux compte et des equivalents chimiques et des proportions multiples. De plns, ces molécules n'étant pas invariables, peuvent se scinder sans qu'il y ait là rien d'extraordinaire; et, pour se rendre compte de la loi des volumes d'Avogrado, il n'est
    plus nécessaire de recourir à la superfétation des molécules intégrantes et des molécules elémentaires. La loi n'en est que plus simple, plus belle et plus complète.

    Les molécules ainsi entendues sont des corps conme les autres. Les atomes qui les constitneut sout maintenus en équilibre sous l'influence des forces diverses qui agissent sur eux. Toute force extérieure, dans le rayon d'action.de laquelle une molécule peut se trouver, modifie la forme de cette molécule en obligeant les atomes qui la composent à prendre de nouvelles positions d'équilibre. - Or quelles sont les forces connues qui peuvent agir sur les molécules, et dont uous pouvons disposer? Ce sont les mouvements vibratoires connus sous les noms de chaleur, lumière, ćlectricité ; les chocs, c'est-à-dire les mouvements rapides des corps que l'on approche brusquement les uns des autres; surtout les attractions qu'exercent les nus sur les autres les corps que l'on met en contact plus on moins immédiat. - Le mode d'action des premières forces que nons venons d'indiquer sonlève bien des problèmes que l'expérience n'a pas encore résolus; la dernière, bien que plus mystérieuse à première vue, est cependant plus accessible aux prévisions du calcul. Du moment qu'il est admis que les atomes, tout en se localisant dans un point rigoureusement sans étendue réelle, ont cependant une étendue virtuelle s'étendant à tout l'unvers, c'est-à-dire ont la propriété de faire sentir leur action à tous les atomes de même nature, sauf la modification d'intensité produite par la distance, il devient facile de pré voir ce qui arrivera pour les groupements que nous avons désignés sons le nom de molécules, lorsqu`on les mettra en présence. Bien que chacun des atomes qui les composent soit enchainé de manère à ne ponvoir (sans l'intervention de lorees extérienres) se soustraire à l'action prépondérante des antres atomes du groupe, toutefois son action par rapport aux atomes qui se trouvent en dehors du groupe anquel il appartient, n'est pas détruite. Cette action s'ajoute à l'action semblable des autres atomes du grompe, de sorte qu'une molécule exerce sur un atome extéricur une action proportionnelle an nombre d'atomes qui la compose. C'est la loi de proportionalité anx masses de Newton.

    Si denx molécnles se trouvent en présenee, chacunc d'elles agira sur l'antre de la même manière, de sorte que leur action mutuelle sera essentiellement euraison composée de leurs masses. Si ces molécules sont éloiguées l'une de l'autre à une distance relativement grande par rapport à leurs volumes respectifs, les actions de chacun des atomes d'une molécule sur chacun des atomes de l'autre seront seusiblement égales et parallèles; il cu résultera un mouvement d'ensemble, un monvement de translation des deux molécules l'une par rapport à l'autre, mais sans modification de leurs formes respectives. Si la distance diminue, il arrivera un moment où la différence entre la distance des atomes les plus rapprochés (entre les deux molécules) et la distance entre les atomes les plus éloignés, sera assez grande pour constituer, par rapport à chacune d'elles, une force extérieure qui modificra nécessairement les positions d'équilibre des atomes qui la composent. La forme de chaque molécule se modifiera donc de plus en plus profondément à mesure que celles-ci se rapprocherout davantage ; et l'on conçoit qu'il puisse arriver une époque où l'attraction mutuelle sera assez grande pour qu'elles se brisent et s'unissent en tout on en partie en un même groupe, qui ne ressemblera plus aux précédents. Ce sera une combinaison qui aura produit une nonvelle molécule.

    Si l'on suppose une séric de molécules semblables entre elles: par exemple, un liquide pur; l'expérience montre que, si le liquide est parfaitement homogène, les molécules qui le composent se conduisent, les unes par rapport aux autres, sensiblement comme si elles
    étaient sphériques, c'est-à-dire qu'elles ne manifestent aucune polarité spéciale. Or il est clair que toute modification dans la forme d'une molécule (quelle qu'en soit la cause) devient, pour d'autres molécules qui l'aroisiuent, une force extéricure qui tend à les modifier elles-mêmes comme la première. Donc, si l'on plonge dans un liquide homogène un corps étranger qui, par son attraction, modific la forme des molecules avec lesquelles il est en contact, celles-ci ì leur tomr modificront la forme de leurs voisines, et ainsi, de proche en proche, tout le liquide a،querra une polarité qu'il n'avait pas auparavant. Cette polarisation d'un liquide (c'est la mème chose pour un solide) est donc, dans notre théoric, une conséquence ussentielle de la modification de forme des molécules sous l'action de forces extérienres suffisantes. Elle se produit sur le coup par la simple présence de la cause, et resse du coup alec l'enlèvement de cette cause. On est ainsi débarrassé de ces polarités prexistantes purement gratuites dans les molénles, ainsi que de ees rotations de molécoles, lorsque la polarisation linit par domner lieu à des décompositions et recompositions sucessives, comme celas se presente sons l'influme des pôles d'une pile galvanique.

    Qui n'ontrevoit anssi, dans cette theorie, une explication très simple et toute naturelle du la polarisation lumineuse, du passage de ja refraction simple à la réfraction double, ete, risultats de tontes les tanses capables de prodnire me modification dans la forme des molecules (tolles que l'électrivité, le magnétisme, la chaleur, la pression, etc.)?

    Un dernier fait. Tout le monde connat la differrence considérable d'énergie chimique rasultant de ce qu'on appelle P'tut massan. Or c'口st me conséquence immédiate de la theorit que jexpere. Quon me permette une comparaison. J'ai deux maisons construites en brigues: l'une a exigi $n$ briques at l'autro $m$. Je venx construire une troisième maison aver len matérianx des denx premieres, cost-i-dire aver les $n+m$ briques qui les constituent. Pour cela, il me fant d'abord define les denx premieres maisons, afin d'en avoir les brigues, puis construire la traisiome. ('edle eri me coutera néessairement plus cher que si les briques eussent été toutes prêtes à amployer, parce qu'il me faudra payer pour le travail de la demolition. Lorsigue je venx faire de l'an avec de loxygine et de l'hydrogène, j’ai là deux constructions tontes faites et qui exigent une force spéciale uniquement pour être brisées ou demolies. Mais si l'oxygene, par exemple, résulte d'une décomposition qui vient de se produire, on pent "onsiderer les atomes qui sortent de la combinaison et qui doivent former loxygine, comme des matériaux qui sans doute, si on leur en donne le temps, se grouperont sous formo doxygene, mais qui, en attendant, sont une matière première qui n'est pas plus de l'oxigène qu'un antre corps: ce sont des atomes actuellement désagrégés et qui n'ont plus qu'ì être employés dans une autre combinaison. On comprend done qu'il suffit d'une force bien moindre pour faire entrer ces atomes dans une combinaison nouvelle que si on attend qu'ils aient en le temps d'obéir à leurs actions mutuelles et de se constituer en oxygène.

    Ces considérations pourraient s'étendre presque indéfiniment, puisqu'elles sont l'explication la plus naturelle des faits. Ce qui précède suffit amplement pour appuyer cette théorie et permettre de lui appliquer le mot italicu: Si non è vero, e ben trovato, ce que je traduirai en disant que, si cette théorie n'est pas vraie, elle mérite bien de l'être.

    Trams.R.S.C.,I884. TABLE OF COPPER SULPHATE SOLUTIONS. Sec.III, PlateI.
    
    'To illustrate Prof. MacGregor's Paper on the Density and Thermal Expansion of Solutions of Copper Sulphate.

    ## ROYAL SOCIETY OF CANADA.

    ## TRANSACTIONS <br> SECTION IV.

    GEOLOGICAL AND BIOLOGICAL SCIENCES.

    PAPERS FOR 1884.

    # I.-On some Relations of Geological Work in Canada and the Old World. 

    By J. W. Dawson, C.M.G., LL.D., F.R.S., \&e.

    (Read May 21, 1884.)

    I do not propose in this paper to attempt the impossible task of discussing all the points of contact between the geology of Canada and that of other parts of the world, but merely to notice a few instances likely to be of interest to this section, which have come under my own observation, of the relations of seientific work and workers on the two sides of the Atlantic,-relations which are daily becoming more intimate, and which it may be hoped will be greatly strengthened by the approaching visit of the british Association to Montreal.

    Beginning with the older crystalline rocks, one is struck with the large amount of attention at present bestowed on petrology, and especially on the microscopic examination of rocks. I can recall the time when these subjects scarcely excited any interest, and were almost entirely neglected by English geologists. The current now sets strongly in this direction, and many of the younger men are enthusiastiv lithologists, while many of the warmest and most earmest discussions in the Geological society relate to subjects of this kind. In connection with this, the comparison of the pre-Cambrian rows of Britain with the larger and more complete development of these formations in Canada is pursued by such men as Bonney and Hicks, and has directed much attention to Canadian geology.

    Canada has naturally taken the lead in the discrimination and classification of those old pre-Cambrian rocks, of which she possesses so large an area. The distinetions made by Sir W. E. Logan, of the Lower and Upper Lamrentian, the IImronian and the Upper Copperbearing Series of Lake Superior, were in advance of anything done in Europe at that time, and they have been ably followed up by Dr. Hunt and by the officers of the Geological Survey. Corresponding formations are now recognized in Great Britain, and in a recent address delivered by Dr. Hicks, as President of the Geologists' Association, he contends for the existence in the British Islands and other parts of Europe of rocks corresponding to the Lower Laurentian or Ottawa scries, to the Middle or Grenville series, to the Norian or Upper Laurentian, to the Huronian and to the Montalban. F had myself an opportunity of noticing the remarkable lithological resemblance of the rocks of the St. Gothard Pass to those of the White Mountains, and I had also the pleasure of recognizing in the gneisses and crystalline schists of Assonan in Egypt, a series identical in mineral character with many portions of the Middle Laurentian of Canada; while overlying deposits, largely made up apparently of igneous products, seemed to occupy the position of the Arvonian series. The quarries, from which the ancient Egyptians obtained their fine blocks of red granite and diorite, are in intrusive dykes and masses penctrating these old stratified rocks,

    Nothing can be more remarkable than the strong similarity in mineral character of these ancient rocks in all their wide extension in both continents.

    The areas occupied by these pre-Cambrian rocks in Great Britain are so limited, and their statigraphical complexities are so great, that some controversy still exists as to their arrangement; but the prospect is that they will ere long be admitted on all hands to correspond in their order of oceurrence with the Canadian series.

    The long-agitated question of the animal nature of Eozoon Canadense is now in a somewhat quiescent state; but I have been pleased to find a pretty uniform current of opinion in its favour among those best qualified to judge. Dr. Carpenter has for some time been engaged in a careful remamination of all the more important specimens, with a view to the publication of an exhanstive monograph on the subject, which is to be illustrated with lares and admirably wecotod figures. I had the pleasure, shortly after my arrival in England, of spmding a few days with Dr. Carpenter and aiding him in this work, as well as of furnishing him with notes of the geological relations and mode of occurrence of the spurimens.

    Thanks to the bahours of IIal], Barrande, and libllings, the correlation of the great Silurian surics of Europe and America is now in a somewhat complefe and satisfactory condition. Amerje: whinh is so minent in its representation of the life of the Silurian, is still somewhat bhiml in the recornition of the Cambrian and the determination of its fossils. We ar howerer steadity adrancine in this matter, more especially in Canada, and I hope that the axedlont work of Mr. Matthew on these ancient fossils, in connection with this cociets. will be contimed and cularged. The re-arrangement and more complete display of the Palaboic fossils in the new Musem at South Kensington will place the means of comparison with British forms in a more advanced position than formerly.

    When in helorimm. I hat the pleasure of examining the interesting collections of Devonan phats of that wontry whin have been deseribed by M. Crepin. I was struck With the close corr apondence of the forms with ours in Canada,-a correspondence more marked in the specimens themselves than in the published engravings, owing to close similarity of the state of preservation and the containing rock. In Britain also, my friends, the Rev. Thomas Brown of Edinburgh and Mr. Kidston of Stirling, have been extending our knowledge of the Dranian flora, and find, as in this comntry, the lower portions of that system to be characterized by such forms as Psilophyton, Arthrostigma and Prototaxites, while the ferns of the gems, Archeropteris, and Lepidodendroid species are equally noteworthy in its upper members. As yet no flora corresponding in richness to that of our Middle Deronian or Middle Erian has been recognized.

    Very remarkable discoveries of millipedes and scorpions hare been made by Peach in the Devonian and Lower Carboniferons of Scotland, which place that country far in advance of America, though Nova Scotia afforded the earliest Carboniferons millipede known. That millipedes existed in the Lower Devonian of Scotland is a fact in harmony with the occurrence of winged insects in the Middle Devonian of New Brunswick. Mr. Peach's discoveries also indicate very remarkable affinities between the scorpions and the eurypterid crustaceans, some of which seem to have been aquatic scorpions.

    With reference to the Carboniferous flora, I had the pleasure of spending a week with my old friend, Prof. Williamson of Manchester, and of inspecting under the microscope the magnificent series of preparations of structures which he has been accumulating for many
    years, and describing and figuring from time to time in the Transactions of the Royal Society. I was able to make many notes of these specimeus, which I trust will be useful in advancing the knowledge of this flora in Canada; and I feel convinced that the facts accumulated by Prof. Williamson aud those recently obtained by Grand'Eury and others in France are rapidly placing us within reach of a comprehension of the affinities and relationships of the plants of the coal period, mach more accurate and definite than we have heretofore obtained. While new and unexpected conclusions may be reached on this subject, I have reason to belicve that many of the suggestions and anticipations, which I have ventured to throw out with reference to the plants of the Nova Scotia coal-formation, and which I have based on facts of mode of occurrence as well as of structure, will be verificd and confirmed. More especially it will, I think, appear that there have been grouped, under the general name of Sigillaria, plants of very different ranks; while definite characters will be found to separate the greater part of the plants known as Cordaites from the true conifers of the gencra, Dadoxylon and Araucarites; and the humble plants of the group of Rhizocarps will be discovered to have beeu more important in the Palæozoic than has hitherto been supposed.

    The coal-field of Nova Scotia has afforded a very remarkable group of terrestial batrachians, not precisely paralleled elsewhere. But recently Fritsch has deseribed, from the so-called gas-coal deposits of the Permo-carboniferous of Boliemia, a number of very similar forms, some of them belonging to the same genera with those of Nova Scotia. The earlicst known indications of Carboniferous Batrachians were the footprints discovered by Logan at Horton Bluff and described by me as Hylopus Sograni; but we have not found actual bones at so low an horizon. I saw, however, in the collections of Dr. Traquair in Edinburgh, a skull of a large batrachian not yet described, from beds of the same age in Scotland.

    The peculiar development of the Cretaccous and Laramie rocks in our Western Territories, the rich angiospermous flora which they contain, the insensible gradation upward of the Cretaceous into the Tertiary, and the small relative development of the marine parts of the formations, have given a special and exceptional character to these deposits. Recent discoveries are, however, tending to assimilate the floras of the old and new worlds in the Cretaceous epoch; and in Great Britain, Mr. Starkie Garduer has recently shown that the Eocene flora corresponds more nearly with that of America than had heretofore been supposed, and that certain floras formerly regarded as Miocene are really older. ${ }^{1}$ In this way much of the apparent discrepancy will be removed, and we shall probably be no longer told by European palæobotanists that floras, which on stratigraphical grounds or the evidence of animal fossils we know to be Eocene or Cretaceous, are in their estimation Mioceue. I had myself occasion to observe in the Cretaceous of the Lebanon, where, however, the marine limestoues are very largely developed, a formation with sandstones, shales, and clays, containing shells of Ostrece and nodules of ironstone, as well as fossil wood


    and beds of lignite, and which, in character and geological horizon, may be held to represent the Dakota group or the Lower Belly River group of the West.

    The opinions of geologists in Fingland, with reference to the vexed question of the glacial drift, are, I think, gradnally diverging from the extreme glacialist views, recently current, to a position of greater moderation. The great submergence of the later Pleistocene, evidenced by the occurrence of marine shells and sca beaches at high levels, has forced itself on the attention of geologists in Great Britain, as it has long siuce done in Canada, and has produced the general conviction that much of the transport of bonlders and drift has been due to the agency of floating ice. My friend, Mr. Milne Home, who has for some time been the chairman of the boulder committee of Scotland, informs me that the carrlul mapping and sthely of these travelled masses has thrown much new light on their dimerions and mode of conveyance, and that a conference between the English and Sottish whmitue is to held and will probably still farther aid in the elucidation of these peints. It womld sem that a similar committee, or series of committees, might be profitably emplowim in reorling the statisties of Canadian travelled boulders, and much preliminary information might be compiled from the reports of the Geological Survey and the papers published in minntifie periodicals.

    When in the last. I had an opportunity of satisfying myself as to the occurrence of a great lebistocene submerwene in the Mediterranean regions, parallel to that in Northern lamrope and Amerita, and suceeded in like manner by a continental period,-a fact very important with rufermes to the later geological history and physical geography of the old continent The details of these observations will appear in the London Geological Magazine.

    The subject of prehistoric man is at present one of intense interest, and is pursued both by eroolorists and archarolorists. In Canada we are familiar with the fact that oul modern aborigimes alford, in their maners and implements and weapons, much materiar for cxplaning the traces of prehistoric men in older countries. Dr. Daniel Wilson has most ably illustrated this in his admirable volumes on "Prehistoric Man," and I have myself" endenvourd to diren attention to it in my little work entitled "Fossil Men and their Lepresentatives"; while by a singular coincidence, M. Quatrefages has adopted almost the same title, "Lillomme fossile et l'llomme sauvage," for his recent valuable work on this subject. The admirable collections now accumulated in public museums, and especially those at sit. Germains and at Brassels, and in the British Museum, with such private collections as those of Mr. John Evans and Prof. Boyd Dawkins, bring very clearly before the mind of a Canadian student, the striking resemblance between the arts of the perished peoples of primeval Europe and those so lately universal in the American continent. The Smithsonian Institution, at Washington, has rightly appreciated the importance of collecting extensively and preserving for future reference the monuments of the Stone Age of America. Our eflorts in this direction have as yet been comparatively feeble, but it is to be hoped that they will be greatly extended in the time to come.

    Some of the most interesting remains of prehistoric man in the world are those of the Lebanon range; both because of the abundance and richness of the cavern deposits of that region, and the fact that some of these antedate the old Phenician colonization of the coast of Syria. When at Beyrût I had the opportunity of making collections in some of the most interesting caverns of the region, and obtained evidence, which I have given in a
    paper read before the Victoria Institute, that the oldest cavern deposits, containing remains of the horse and the rhinoceros, belong to a period in which the physical character of the country was somewhat different from its present condition, and which may be characterized as Post-glacial or Antediluvian. Other deposits come up to the time of the Phenician colony.

    The subjects referred to in this paper have been but slightly sketched; but it may be interesting to bear in mind that we are workers together with so many able men on the Eastern side of the Atlantic, whose works we may study, while we emulate their successful labours. I cherish the hope at some future time to direct your attention more specially to some at least of the subjects cursorily noticed in the present paper.

    # II.-Notes on the Manganese Ores of Nova Scotia. 

    By Edwin Gilipin, Jun., A.M., F.G.S:

    (Read May 22, 1884.)

    In the following sketch I have endeavoured to bring together the information relative to the manganese ores of Nova Scotia. The only previous note now accessible, beyond the references in Dr. Dawson's "Acadian Geology," is one by the late Dr. How, of King's College, Windsor, published in the Transactions of the Nova Scotia Institute of Natural Science. The exceptional purity of some of the ores makes them interesting to the mineralogist, and valuable in certain operations of the mannfacturer. The attention paid in Nova Scotia to the working of these ores is by no means proportionate to their value, and to the great extent of the geological formation to which they appear to be chiefly confined. The object of these notes will be obtained, if they serve to indicate that the ores of manganese may prove in the future an important addition to the mining resources of this province.

    The least valuable but certainly the most common of the Nova Scotia manganese ores is wad. This ore is found as a superficial deposit in comection with every geological formation known in the province. Among the localities yielding it may be mentioned Jeddore, Ship Harbour, St. Margaret's Bay, Shelburne, La Have, Chester, Parrsborough, Springhill, Pictou, and Antigonishe. These ores exhibit the varying composition which characterizes their class, and have in some cases been used to a limited extent as paints. On Boularderie Island, Cape Breton, a bed of wad, several feet thick, was examined some years ago. The following analyses show this want of uniformity of composition : two analyses by Mr. Hoffman, of the Canadian Geological Survey, gave:-
    
    also, in the case of analysis II, traces of copper, cobalt, and nickel.
    An analysis, by the writer, of a sample from a different part of the bed, gave:-

    $$
    \begin{array}{ll}
    \text { Manganese peroxide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }
    \end{array}
    $$

    At the Londonderry Iron Mines, Colehester County, in the great vein of brown hematite, associated with ochre, ankerite, sideroplesite, and calcite, in strata of Lower Silurian age, secondary changes have at some points enriched the iron ore with manganese
    peroxide up to fourteen per cent. of its total constituents. Some encrusting fibres are manganite, and pert of the manganese is present under the form of wad, of which Mr. H. Lonis gives the following analysis:-
    
    'The' werrenw of this ore in the prewrbonilerons rocks is interesting, as showing In oriminal wide dimpibution and as posibly indiating the sources of part of the more
     benn minn to ally "xhent in Novia siontia, and it is known to occur in pre-carbonferous atrata at enveral pints. Botwern Malilax and Windsor, near Monnt Uniacke, pyrolusite is fouml in -mall proknts and beins pernotratine qranite, and in quartrites of the anriferous
    
     hill- somb of Wolfiville. in Kingis (omity, the same ore is fonm in guartzites and slates, prommably of Cpery silurian are. In the trias of the same comety, the ore is met in a bedhed form notar ('ormwallis and Wolfille, and in the triassic trap it is said to oecur
    

    Wra, howner. find hase ore most abundantly in the Iower Carboniferous marine limeton. formation. This horizon forms one of the widest spread, and most strongly marken of the divisions of the C'arboniferons period. It is met in King's Connty, in Hants. ('mmbrlant, Coldhester. Pirtont, and Antigonishe, and in the four counties of the Island ol' ('inn' Bretom. The measures of this division, comprising sandstones, shales, grits. and limestomer. with beds of gypsmm and marl, sometimes rest directly on the precarboniferons strata, and at many points are separated from them by the lower, or false roal-measures, or by beds of conglomerate, according to the conditions of the period of andmulation. The limestones and gypsmm occur, apparently, at no fixed horizon in this division. Dr. Dawson, in his "Acadian Geology", has divided the limestones into five groups, characterized respectively, so far as the subject has received attention, by a predominance of certain fossil forms. In his supplement to the second edition, he proposes to subdivide the lowest group by distinguishing a certain manganiferous limestone, which appears at many points to form the basis of the limestone formation, strictly so called. This limestone at Salmon River, Cape Breton County, Springville and New Laing, Pictou County, Chester, Maitland, Tenny Cape, Windsor and Onslow, seems to underlic the gypsum beds, and gencrally to be associated with manganese. The following analyses by the writer show the character of some of these limestones:-

    |  | Springville, (Pictou Co.) |  | Tonny Capo | Salmon Rivor, C. B. |
    | :---: | :---: | :---: | :---: | :---: |
    |  | I. | II. | I. | 1. |
    | Lime carbonato.. .......... | $83 \cdot 42$ | $55 \cdot 28$ | $49 \cdot 81$ | $49 \cdot 269$ |
    | Iron carbonate....... ...... | $1 \cdot 20$ | $24 \cdot 11$ | $2 \cdot 56$ | 4.044 |
    | Magnosia carbonato........ | 10.32 | $10 \cdot 15$ | $35 \cdot 44$ | $28 \cdot 034$ |
    | Manganese carbonato...... | $1 \cdot 38$ | $1 \cdot 83$ | $4 \cdot 58{ }^{1}$ | $14 \cdot 586$ |
    | Insolublo matter. . . . . . . . . | $4 \cdot 85$ | $5 \cdot 00$ | 8.06 | 1.298 |
    | Moisture................... | - | -40 | $\cdot 37$ | - |
    |  | $101 \cdot 17$ | $96 \cdot 77$ | $100 \cdot 82$ | $97 \cdot 231$ |

    The limestone of Chester, on the Atlantic shore, presents a remnant of Lower Carboniferons measures, formerly withont doubt co-extensive with those of our northern counties. The lower beds are described by the late Dr. How as compact, of a dark blue colour, and consisting principally of carbonates of iron, lime, magnesia and manganese, yielding umbers by weathering. These are the most highly magnesian and manganiferous limestones that I have yet met in the province. It is quite possible that there may be others higher in the marine limestone formation carrying notable perentages of the carbonates of these metals. In the case of the Pictou district, however, the overlying limestones, up to what may be termed the base of the millstone-grit, are decidedly nonmagnesian; the inspection of a very complete set of analyses showing none carrying over four per cent. of the carbonate of magnesia, and usually little more than traces of manganese.

    The following analysis, made at the Durham College of Sience, of a limestone lying above the Springville gypsum, shows the usual composition of the purer grade of the limestones of the higher sections of the Pieton marime limestones :-

    | Sime carbonate. | 96-26 |
    | :---: | :---: |
    | Magnosia carbonato. | $2 \cdot 33$ |
    | Iron peroxide. | . 57 |
    | Manganese peroxide | -5. |
    | Alumina. | -10 |
    | Sulphur. | -02 |
    | Phosphoric acid. | -03 |
    | Silica. | $1 \cdot 99$ |
    | Mcisture | $\cdot 17$ |
    |  | $101 \cdot 02$ |

    In the northern part of Hants County, the carboniferous marine limestones and the underlying lower coal measures are found in a series of east and west folds; shifted and broken by transverse subordinate flexures. The presence of manganese in the upper of these divisions is first observable at the mouth of the Shubenacadie River, where a darkcoloured limestone underlies the gypsum, and is associated, a short distance cast of the river, with red shales, carrying veins of red hematite, with manganese oxides and calcspar. The westward continuation of this horizon is noticeable again at Tenny Cape, where a series of these measures, extending to Walton and Cheverie, a distance of about fifteen


    miles, contains several beds of limestone, which apparently underlie the gypsum, and may be called manganiferous. These measures carrying manganese re-appear again south of Windsor, and at Donglas, fifteen miles south of Tenny Cape, near the line of their junction with the prewarboniferons rocks. In this range of measures the manganese of Tenny Cape appears to be principally connected with a compact red and gray limestone, Which, from the analysis already given, may be called a dolomito. At the western end of the district it ocurs as veins in conglomerates and sandstones, and also in limestones in places deridedly marnesian.

    The Thany C'ap manranese ores were discovered abont the year 1862, and have been intwrmittently worken since that date. The limestone band to which they seem to be primeipally contined is about 300 feet thick. The ore oecurs in irregular nests, and in arams oromben on beddinerplanes and cross-fractures. It thens occurs that large masco almont antirely iswlatod haw bem mot, also seams with occasional pockets, somefinn connword, but in mo sase, so lar as I am aware, following any regular order of poniton or "xtme That larent mass yet fomd was extimated to contain 180 tons of ore. Apparemby the or" has hem deposited at irverular intervals of time, with the associated minerals, in the openines wom by the ation of water on the limestones. Specimens may
    
    
    
    
    
    
    
    
     abalable oxid. The followine analyses show the general character of these ores :-

    |  | Douglas. ${ }^{1}$ | Choveric. ${ }^{2}$ |
    | :---: | :---: | :---: |
    | Moisture. | $1 \cdot 660$ | $2 \cdot 05$ |
    | Water of composition. | $3 \cdot 630$ | - |
    | Irun proxide. | - 603 | $2 \cdot 55$ |
    | Wxyzen.... | 7.035 | - |
    | Baryta. | -724 | $1 \cdot 12$ |
    | Insolutile matter. | $1 \cdot 728$ | $2 \cdot 80$ |
    | l'hosphoric acil. | - | I. $0: 2$ |
    | Manganese oxides.... | 84-620 | - |
    | l'eroxide of manganese. | - | $90 \cdot 15$ |
    | Lime. | - | trace |
    |  | $00 \cdot 000$ | $90 \cdot 699$ |

    At Walton and Cheverie manganite is more common than at Tenny Cape. Its mode of occurrence is similar, and its general character is shown by the following analyses:-

    |  | Tenny. ${ }^{1}$ | Cheverie. ${ }^{3}$ |
    | :---: | :---: | :---: |
    | Manganese oxides. | 85.54 | 86.81 |
    | Iron peroxido.. | 1-18) | 2. 5 |
    | Baryta. | . 89 \} | 2.05 |
    | Insoluble matter. | $3 \cdot 27$ | 1-14 |
    | Phosphoric acid | . 34 | - |
    | Water .... | 8.54 | $10 \cdot 00$ |
    | Available oxygen. . | $51 \cdot 54$ | 47-73 |

    The Tenny Cape manganite is compact, with partly fibrous structure, and submetallic lustre. It is not in much demand at present, but I am informed that considerable quantities could be got at several points. The following are the principal minerals found in connection with the Tenny Cape ores:-

    Calcite. This, the most abundant accessory, occurs as low rhombohedral erystals implanted on the limestone, of reddish and bluish shades, frequently with the edges clouded symmetrically with impurities; and as a secondary deposit on the preceding crystals, in the form of snow-white gramular incrustations, frequently penetrated by the fibres of pyrolusite; and as a capping on isolated fibres of the ore. The pyrolnsite also occurs encrusting wine-coloured crystals of dog-tooth spar.

    Iron is present as an earthy red hematite, and as a fibrous and mammilated limonite. Iron sulphide is seldom visible.

    Barite occurs in rounded nodules, and in tabular crystals in the ore, and mixed with the calcspar.

    Selenite is sometimes noticed in fibrous form, and in thin transparent films.
    Many very beautiful cabinet specimens of these minerals have been met at Mr. T. W. Stephens' mine, the matural beauty of the crystals being greatly increased by the setting of gleaming fibres of the black pyrolusite.

    Lower Carboniferous limestones at Minudie, in Cumberland County, have yielded small quantities of a soft fine-grained pyrolnsite, giving on analysis 9704 per cent. of manganese binoxide. Ores similar to those of Tenny Cape are found at Onslow, and on the Salmon River, near Truro, Colchester County, Prospecting work has shown red shales and sandstones, and beds of dark-bluish limestone, covered by beds of gravel and clay holding nodules of compact sub-crystalline pyrolnsite. The ore also occurs in veins, up to four inches in thickness, in the sandstones, and in irregular nests and layers in the limestone. Calcspar, barite, and selenite are found in the veins, whith are filled with fibrous ore. The exact horizon of the beds holding these ores is not readily ascertainable, and it may be higher in the marine limestone formation than at Tenny Cape. The ore is of very good quality, some of it running as high as ninety per cent. of available oxide. In Pictou County, near Gleugarry station, nodules of fibrous pyrolusite, containing eightyfour per cent. of peroxide, are found with crystals of dog-tooth spar, in a dark-blue limestone, similar to that at Springville already referred to, and exposed close to the junction of the marine limestone with pre-carboniferous rocks.

    Boulders of a mixture of psilomelane with manganite occur lying on the limestone at Springville, of which an analysis has already beell given, and on the associated red


    shales. At severnl points in this vicinity the limonite ores, found along the line of junction of the Upper and Lower Silurian with the Lower Carboniferons marine limestone are heavily charged with manganese. The ore is dull brownish-black in colour, with a black streak, and softer than the normal limonite. The percentage of manganese present in the iron ore varies. The general character of this ore, however, will appear from the following analyses by the writer:-
    

    In Antirmishe comuty similar furriferons manganese ores have been found in drift at a-v.ral phanes.

    In C'ip M Bran d"posits of monomic value occur only in the western part of the amaty of the samm name. Were, at the had waters of the Salmon River, the lower mombors of the ('antomifore are met in a valley between the felsites of the Mira and bath lay hills. The - mon is gentrally ocenpicd by the millstone grit, beneath the edges of whith the marim limestons or asionally crop ont, or the latter are excluded by the bavil cmelnmeratw. The following motes are from a visit to the Moseley (iron) mine, and from intormation hindly furnished by Mr. Fletcher, ol the Canadian Geological Survey.

    Tho filaitw of the Mira Hills form a series ol bays along which are exposed carbon-
     the varying conditions of the winds and currents of the period under consideration. At some prinse, the limetomes rest on the folsites; at other localities, grits and shales intervene: ulswhere, the basal conglomerates are covered directly by the millstone grit. The manganes ores wor diswored two years ago in one of these recesses where the felsites were sucomeded by shates and grits, and fimally by limestones, the latter apparently patending from point to point of the ancient bay. The ores at the western mine are found in irregular bedded lagers in a soft arenaceons reddish-coloured shale, which is in some places caldarmons and coated with films of manganese oxide. The layers vary in thickness up to eighteen inches, and are frequently connected by cross stringers of ore. The shales when weathered present the ore in small nodules, and the disintegration of the former by water probably indicates the source of the beds of gravel manganese ore found lying on them. The ore at the eastern mine occurs as a bed immediately underlying a layer of black manganiferons limestone, with red and greenish shales and coarse grit. The thickness of the ore and limestone varies from two to eight inches, the average thick-
    ness of the two being about eight inches. The ore also oceurs in this vicinity as lenticular pockets and irregular nests in conglomerate, etc., and sometimes forms the cenenting material. This latter mode of occurrence is similar to that shown by the red hematites (sometimes highly manganiferous) found at various points in the lower Carboniferons conglomerates of the island near their junction with older strata. The analysis of the overlying limestono has already been given. The ore from this locality is generally a pyrolusite, soft, fine-grained, and sometimes sub-crystalline. It is at some openings mixed with manganite, and the latter ore is abundant at several places in the grits. The minerals associated with the ore are calcspar, barite, films of selenite, and limestone. Analyses by Mr. Hoffman, of the Canadian Geological Survey, show that the ores run as high as 88.9 per cent. of binoxide, and contain an admixture of ferric oxide as low as two-tenths of one per cent. On the Magdalen Islands, the manganese ores are found, according to Mr. Richardson (Geological Survey Report, 1879-80) associated with saud, clay, gypsum, and doleritic rocks of Lower Carboniferous age. From Mr. Hoffman's report, (ibid.) the ore is a purely crystalline manganite, yiclding on analysis 4561 of binoxide. I have, however, seen samples of pure pyrolusite from these islands. There do not seem to be any limestones directly comected with these ores, as surveyed by Mr. Richardson, and the locality appears to form an exception to the rule which, so far as my information goes, governs the presence of manganese ores in the Carboniferous of Nora Scotia, viz., the presence of limestone. Possibly in the case of these Magdalen Island ores they may have been derived directly from the dolerite.

    From the preceding notes, which cover, I think, all the localities known to yield manganese in this province, it may be inferred that in Nova Scotia there appears to be ground for referring the principal deposits of the ores of manganese to an horizon low down in the Carboniferous marine limestones, and certainly, in most cases, underlying the lowest gypsum beds, and that limestones, magnesian and sometimes also manganiferous, appear to be associated with them. I am not prepared to attempt any outline of the process which, in Nova Scotia, appears at some points to have deposited in these strata iron ores, sometimes manganiferons, and at other points ores of manganese frequently very free from iron. The source of the manganese may be looked for in the older strata bordering the Carboniferous sea, or, as Dr. Dawson suggests, its presence in these limestones may be due to the decomposition of volcanic debris proceeding from the contemporaneons igneous vents which produced the Carboniferons traps. Both the older bordering strata, and the limestones and associated strata may have been drawn upon for the deposits of this interesting and useful mineral. The action of magnesian thermal springs may have led to the alteration of the limestones more particularly referred to in the preceding notes. Such an action might lead to the deposition of manganese and iron oxides, as well as of lead and copper ores, all of which are frequently found in them.

    # III.-Revision of the Canadian Ranunculacee. 

    By George Lawson, Ph. D., LL.D., Dalhousie College, Halifax, Nova Scotia.

    (Head May 23, 1884.)

    In the year 1870, my monograph of the "Ranmenlaces of the Dominion of Canada" was published in the Transactions of the Nora Scotian Institute of Natural Science. Its objects were: to show what speeies of Rammenlaceons plants had heen identified as Canadian ; to correct their nomenclature, as far as this conld be done with the limited material to which access could then be had ; to present concise descriptions of the species; to point out their geographical range as then ascertained; to plate on record their local oceurence so far as had been observed ; and, finally, to suggest points for investigation in regard to those species that appeared to be of doubtinl rank. whose relations to others were imperfectly understood, or whose occurrence and distribution were imperfectly known. After a lapse of thirteen years, during whith period a good deal of botmizing has been done in Canada, and many useful publications bearing upon the North American flora have appeared,-some within our own borders, others in the United States of America, in England, and in Russia,--l have thonght it might be usefnl to return to this Order, and present to Canadian botanists, through the Royal Society, a fuller and more accurate description of our Ramunulaceons plants than was possible at the time when my previous paper was prepared. Throughout the Dominion many collectors have been at work. In the older provinces, resident amateur botanists and students have, by individnal effort and through "field clubs" and similar organizations, already done much good service to science, both in collecting materials and working up the botany of their respective districts. By the rapid opening up of the great Northwest, by the survey explorations over the Plains, among the Rocky Mountains, the Cascades, in British Columbia, and along the Pacific coast, our knowledge of the distribution of our indigenous plants has been greatly extended. The names of those to whom I am indebted for specimens, seeds, or information, used in the present paper, will be found under the several species, but foremost among recent collectors may be mentioned the name of Professor Macoun, who, with other officers of the Canadian Survey, has had opportunities such as fall to the lot of few botanists, and, availing himself of them to the fullest extent, he has reaped an abundant harvest, as is shown by the lists already published and by the accumulations of material still awaiting examination. I have to express my obligations to Dr. Selwyn, the director of the Survey, for affording me every facility for examining the herbaria in the museum.

    It is hoped, by arranging the materials of our Canadian collectors and observers, and collocating the results obtained by botanists in other comntries, in occasional monographs
    such as the present, that the information thus brought together may be made available for general use, and prove an incentive to resident botanists and students to continue and extend their labours, and direct their energies to the observation and record of facts bearing upon questions that still need elucidation.

    It is very desirable that collectors should be particularly careful to note the precise localities and dates of collection of their specimens. Where names of places are apt to be mistaken, the latitude and longitude should be noted as nearly as possible. Sneh facts form useful simentific data. The tondency has been, in our large comstry, especially in published floras and lists, to omit special localities, and to indicate the general grngraphical range, or smpposen range, of the plants orer wide areas, in such vague terms as. "from Canala to the lapific", "from the Atlantic through the wooded country to the lonky Homntains and liritish Colmmbia," "Nowfoundland, Labrador and Hudson Bay," .H.: In working out the distribution of plants, it is not safe to tabulate as facts such - tatomente as these berans there may be rasonable suspicion either that, in difficult families, more than she speins is inchudel in the range indicated, or that the statement may lu. the risult of a montal impresion rather than of a sufficient number of actual (W).eration- When wh haw the sperimens from definite localities before us, they
     A.finitunes on antual data. Onr am should be to collect materials for a Canadian flora, barine in mind that, whils a pandy of facts was some exense in the early days for varm.n... of eneralization, now, the more matorial we aceumulate, the greater "phormaty thon is for preision in our work. The many imperfections of this paper will intiat. how moth room romains for work in the field, in the herbarinm, and in the
    

    1. Tu show what swios of Ranumentace have been ascertained to be certainly inhabitants of the Dominion of Camada, and of adjoining tracts of comentry that, for purpons of grouraphical botany, mamot well be disconnected,-citations being given of the historimat withon for their owrenm in cases of plants not observed during recent yours.
    2. To corret the nomendature so as to bring it in accord, as far as possible, with that adopted by the most remint and trusiworthy anthorities in the standard works of other comentries.
    3. To presint concisin descriptions of the several species, so as to enable stadents to identify them with certainty.
    4. To give the synonyms and references neeessary for tracing the history of the siveral plants throughout botanical literature back to the first scientific recognition of the species, wherever this can b: done without orer-burdening the record. In a few cases, pro-Linnean citations are giren where they tend to elucidate or illustrate the early history or distribution of a species, or the origin of its specific name.
    ¿. To point out the geographical range of these plants over Canada, and other parts of the Northern Hemisphere.
    5. To record their local distribution, that is their presence or absence from particular localities, or occurrence or absence throughout larger districts of the several provinces.
    6. To suggest points for observation in regard to those species that appear to be of
    doubtful rank, or whose relations to other reputed species are still imperfectly understood, or whose range has not been fully traced.

    The Ranunculacece ${ }^{1}$ form a large natural order of flowering plants, distributed chiefly throughout the temperate and cooler parts of the northern hemisphere. They belong to the polypetalous division of Dicotyledones, and form the first order of Bentham and Hooker's "Genera Plantarum," as of most other modern systematic works. In .Jussien's "Genera Plantarum," they formed the first order of "C'lass 13, Polypetalous Dicotyledonons plants, with hypogynous stamens." Upwards of 1,200 species have been described by authors as inhabiting the globe, only a small proportion being Anstralian, but Hooker and Bentham rednee the number of well-distinguished speries to 540 . Lindley had estimated them at 1,000 .

    Whilst, in regard to structure, the boundaries of the order are pretty well defined, and the plants which it contains present a certain miformity in the lorm, modes of division and incision of the leares, which, in a large majority of the herbeceous species are more or less tripartitely or palmately divided, and always without stipules, although often with flattened petioles, yet the several genera present considerable diversity of modification in the form, number, and arrangement of the parts of the flower. In the genus Clematis, the calyx consists of large petaloid sepals, whilst the petals are mostly absent. In Anemone we have the same modifications, with this difference, that the sepals are imbricate in astivation, that is, orerlapping, and not valrate or meeting at the edges on the same plane. In Thatictrum, the sepals are small and imperfectly petaloid, the stamens in some of the speries forming the conspicuous part of the flower. In Ramumus, the calyx consists of five green imbricate sepals, assuming the more ustal general form, texture and colour of this organ as seen in other families of plants, whilst, in this genus, the corolla also assumes its more normal form as a verticil of large, flat or "upped, bright-coloured petals. Myosurus presents us with other modifications; the sepals are spurred, the petals are saccate and stalked, and the receptacle is greatly elongated. Callha has large petaloid sepals, but no petals. In Trollius, the sepals are also large and conspicuous, variable in number, but there are slender petals with a pit at base. In Coptis the petals are shortly tubular at the apex. In Aquilegia they are funnel-shaped, being narrowed posteriorly into long hollow "spurs." Then there are two genera in which the flower is irregular, viz., Delphinium and Aconitum. In these, as well as in some others, the petals are peculiar, small, deformed, or altogether absent. The fruit also raries considerably in this order. In most cases it consists of a large number of minute nut-like achenes (each containing a single seed); but in Pceonia, Caltha, Trollus, Coptis, Aquilegia, Delphinium, Aconitum, the fruit consists of several or many-seeded "follicles" or pods. In Actica, etc., it is a berry.

    Many of these plants have powerful physiological actions, owing to organic compounds which they contain; several have been long in use in medicine, and as


    poisons. In some, the acid or poisonous principle is so volatile as to be removable by drying or boiling. Aconitum Napellus, which yields the powerful alkaloid Aconitine, was used by the Romans as a poison, and has of late years been the cause of fatal accidents in England, where the root had been mistaken for horse-radish. A. ferox was at one time nsed by the natives in India to poison wells in advance of the British troops. Ranunculus acris, Flammula and seelerutus have been employed in Europe for blistering, instead of cantharides. Anemone Hcpatica, and Delphinimm are astringents; Helleborus, a drastic purgative; Ihylrastis Cumudensis, a tonic; Coptis trifolia, a powerful bitter; Xanthorhiza apitifolin, a tonic bitter. The berries of Actea are poisonous, the roots anti-spasmodic, expertorant, astringent,-used in cases of catarrh. Cimicifuga has similar properties, and its preparations have of late years come into use in rheumatic affections; its astringent bittur rool is a riput demedy for rattle-siake bites. Few of these plants can be used as fiod or fodder. limunomps repens is eaten by cattle. The small starchy tubers of $R$. Fionrin hatw bom rooked as an article of food in Austria; Caltha palnstris is used in New England in spring as a pot-herb, and C. leptosepala is boiled and used as greens by the silver miners on the Rorky Mountans of the South. ${ }^{\text {. }}$

    Conspectus of Genera.
    
    
    
    (mone 1. HEWITI:
    
    

    * Petals 0 or rery small, mot hollowed.
    
     J"tahid.
    ** Petuls hullowed ont or tubular.
    
     Abmia imbhisent. Hurls. Leaves radical or alternate.
    
    
     ovulexi, dehiscing when ripe, or raroly baccate. Horbs. Jeaves radical or alternato, the involucrate ones similar.
    Suhtribe 1. Cintues Iavos palmati-norvol or palmatisoct. Flowners regular, solitary, or in panicles.
    * Petals 0.

    Gonus 7. CALTIAA. Ovnles in a donble serios along the ventral suture.
    Genus 8. HVIDRASTIS. Ovules 2. Carpels baccate.
    ** Petals small or slender.
    Genus 9. ThoLLiU' Sopals usually deciduons. Potals entire.
    Subtribe 2. Isobvraf. lanves ternate, sub-pinnato, or decompound. Fowers regular, solitary, or in panicles.


    ## * Sepals 5-6.

    Genus 10. COPTIS. Petals small. Carpels free, stipitate.
    Genus 11. AQUILEGIA. Potals prolonged backwards into long hollow spurs.
    Subtribe 3. Delpinfer. Leaves palmati-nerved or palmatisect. Flowers irregular.
    Gonus 12. DELPHINIUM. Dorsal sopal spurred belind.
    Genus 13. ACONITUM. Dorsal sepal helmot-shapod.
    Subtribe 4. Cimerfenes. Leaves ternato, sub-pinnato, or docompound. Flowors regular, in racemos.

    ## * Stamens numerous.

    Genus 14. ACTAA. Carpel 1, baccate.
    Genus 15. CIMICIFUGA. Carpels 1 or several, dehiscent follicles.
    Tribe V. PASONIEAL. Sopals imbricate. Potals large. Carpels with a circular dise, several or many ovuled, dehiscent. Large herbs or slightly woody. Leaves radical or alternato, pinnately decompound. (ionus 16. PNONIA.

    ## Gemus I.-CLEMATIS, Linneus.

    $$
    \text { Bentham and Hooker, Genera Plantarum, I., p. } 3 .
    $$

    List of Species:-

    1. C. verticillaris.
    2. C. Douglasii.
    3. C. Virginiana.
    4. C. ligusticifolia.
    [C. alpina, var. Ochotensis.]

    ## 1.-Cuematis verticildaris, De Candolle.

    Stem shrnbby, slender, trailing or climbing, from ten to twenty feet or more in length. Leaves of the barren or leaf-bearing shoots opposite, petioles twisted and clasping as tendrils, each leaf consisting of three stalked leaflets, which are ovate, or slightly heartshaped, or oblong-lanceolate, shortly acnminate or acute, entire or more usually coarsely and laciniately toothed or trifid, hairy when young, becoming nearly glabrous at maturity. Peduncles opposite, each bearing one large cernmons flower. Sepals four in number, one and a half to two inches in length, petaloid, ovate-lanceolate, acuminate, of a pleasing but not bright purple colour, thin and flascid, somewhat cupped and convergent, forming a campanulate blossom, not expanding freely. Petals small, crowded, in form of spatnlate stamen-like processes, the inner series passing into stamens. The flowers, which are from two to three inches in diameter, are produced in May, or early in June, on the bare leafless shoots of the previous year, arising in pairs from the opposite buds of the shoot. Each flower is accompanicd by an apparent leafy verticil, formed of two pairs of long-stalked trifoliate leaves, produced simultaneonsly with the development of the flower. The flower arises from the axil of one of the upper pair of snbtending leaves, and from the other a leaf-shoot or branch shoots forth. The flowers are succeeded by large heads of acheues with long silky plnmose tails. The leaflets are long-stalked and vary in form (as usnal in this genus) from broadly ovate to ovate-lanceolate, usually more or less cordate at base, acute or acuminate, somewhat lobed, coarsely toothed or entire, at least towards the point, one and a half to two inches in length, and somewhat less in breadth. Fl. May-June.

    Clematis verticillaris. De Candolle, Syst. Nat. Reg. Veg., Vol. I., p. 166. (1818.) Prodromus, I., p. 10. Hooker, Fl. Bor.-Am., I., p. 2. Torrey \& Gray, Fl. N. Am., I., p. 10. Maclagan, Trans. Bot. Soc. Edin., III., p. 13. Lond. Jour. Bot., VI., p. 66. Torrey, Fl. N. Y., I., p. 7. Wood, Botany p. 201. Gray, Manual, ed. 5, p. 35. Provancher, Fl. Can., p. 4. Lawson, Ranunc. Can., p. 20. Bot. Wilkes, p. 212. Watson, King's Rep., V., p. 4. Porter, Hayd. Rep., 1871, p. 477. Coulter, same, 1872, p. 758. Watson, Bibl. Index, I., p. 11. Macoun, Cat. (1883), No. 1. J. F. James, Revis. Clematis, pp. 3, 11, and 19. Brewer \& Watson, Botany of California, ed. 2, Vol. I., p. 3.

    Atragene Americanu. Sims, Bot. Mag., t. 887. Aiton f., Hortus Kewensis, ed. 2, III., p. 342. (1811). Pursh, Fl., p. 384. Spreng., Syst., II., p. 644. Watson, Dend. Brit., p. 74, (182.5). Don, Mill. Dict., I. p. 10. Spach, Hist. Veg., VI., p. 270. Dietr. Syn., III., p. 349. Loudon. Arboret.. I., p. 248, t. 27. Hort. Brit., p. 228. Gray, Gen. Illus., p. 14, t. 1. Manual. こ. ed., p. :3. Revue Horticole, 185 t, t. 7, and 1855, t. 17. Curtis, Bot. N. Carolina, p. 120. ('hapman. Fl. Nouth. U. S., p. B.
    C. Americama. Poiret supp, V., p. 622. (1810-16.)
    A. Coumbinmu. \intall, Jour. Ac: Phil., VII., p. 7.
    (: 'olumthiann. Torr. © (ir.. Fl. N. Am., I., p. 11. (Watson.)
    The sperins was originally deseribed in the Botanical Magazine as Atragene Americana, 1). ('andoll", in " Reqni Vagetabilis S'ystema Naturale," did not adopt the genus Atragene, but merod it in Clomatis, as Poiret had previously done. Poiret called it C. Americana. But there being alrady a Clemalis Americam, described in Miller's Dietionary, from Equatorial Ameriatand adopted by D. ('andolle, the latter botanist had to find a new specific name for the Sorthern American plant, now transferred to Clematis, and accordingly called it (' maticilluris. in allusion to the apparent raticils of leaves subtending the flowers. In the Hortus Britumims, its English name is wiven as the Whorled American Atragene.

    So far as observed, the limits of the range of this species are as follows:
    Pacitic (onst li.gion.-South limit (Northern California)................. $40^{\circ} \mathrm{N}$. Lat.
    North limit (British Columbia) ................... $50^{\circ}$ "
    (Extent of range, N to $\mathrm{N}=10^{\circ}$.)
    Rovky Mountain lingion-South limit........................................ $40^{\circ}$
    North limit (Mount Selwyn)................ 56 "
    (Extent of range N . to $\mathrm{S}=16^{\circ}$.)
    Elevation limits : Teton, $48^{\circ} \mathrm{N} .=11,000 \mathrm{ft}$. Utah, $40^{\circ} \mathrm{N}$. $=9,000$ "
    Central Continental Regrion.-South limit (Wisconsin)..................... $46^{\circ}$
    North limit (Hudson Bay).................. 54 ${ }^{\circ}$ "
    (Extent of range, N. to $\mathrm{S} .=9^{\circ}$.)
    Atlantic Coast Region.-South limit (Carolina Mountains) ............... $37^{\circ}$
    North limit (Maine, Vermont, Montreal)...... $45^{\circ}$ *
    (Extent of range, N. to $\mathrm{S}=8^{\circ}$.)
    Extreme South Limit (Carolina Mountains).................................... $37^{\circ}$
    Extreme North Limit (Rocky Mountains)........................................ $56^{\circ}$
    In woods in the central districts, as far north as lat. $54^{\circ}$, ascending the elevated valleys on the eastern declivity of the Rocky Mountains in that latitude.-Richardson, T. Drummond. At Cape Mendocino, on the N.W. coast, in lat. $40^{\circ}$, plentiful (North California).-

    Douglas. (Hook., Fl. Bor.-Am., I., p. 2.) Montreal and Belœil Mountains, Que, ; at Jones's Falls (Ridean Canal) this was the most striking plant, a handsome-flowered species ascending the trees and rocks to a height of twenty or thirty feet, (1843),-Dr. P. W. Maclagan. Vicinity of Quebec City.-Dr. Brunet. Mountain side east from Mamilton, Ont.-Judge Logie. North limit in Hudson Bay Territories, lat. $54^{\circ}$; seldom occurs to N. W. of Ontario.-Barnston. Mount Selwyn, lat. $56^{\circ}$, Rocky Monntans; Coast Range of British Columbia; foot-hills of Rocky Mountains, near $49 t h$ parallel ; and in the low River Pass.-Macoun. North Hastings, Ont., 15th .June, 1874, in fruit.-Macoun. Spence's Bridge, British Columbia, 21st May, 1875.-Mucome. Chelsea Mountains, north from tha city of Ottawa; first found there by the Ollava Fieh Club. (In llower May, 188t.)

    Vermont.-Wood. New York and Pemsylvania_ - Parsh. Mountains of North Caro lina.-Chapman. Delaware, New Jersey, Comeetiont, Mane, New Hanpshire, Wisconsin, Montana, Idaho, Utah.-James.

    According to Hortus Kewensis, the Amerian Atragene was introduced to English gardens by Messrs. Loddiges, in the year 1797. It is tho earliest flowering speries, but, as the flowers are produced before the foliage, it is less adapted than some others for gaten decoration. In its native hames, in the rocky and busly woods, it is an agreable surprise to the botanist to find its chaming blossoms amone the withered leares in the "arly season of spring flowers.

    ## 

    Stem shrubby, climbing. Leaves opposite, petioles twisted and lasping as twhlrils. leallets three, stalked, ovate or somewhat cordate, acute, lobed, and coarsoly tootherd. Peduncles opposite, each braring a large panide or claster of numerous Howns. sipats four, rather large, petaloid. Petals absent. A climber, ten or twely fent high, rlinging to bushes and small trees for support. Flowers white, fragrant. The plant is rery conspicuous in the fall season, as the leafless stems with their numerons dhsters of phmertailed achenes form large feathery wreaths. The leallets are always prominently toothed, sometimes almost lobed, never entire, as they sometimes are in (: Vitalba, of Europe, and constantly in several Indian species. Very variable in length and breadth and division of leaflets.

    Clematis Virginiana, Limmens, in Amœı. Acad., IV., p. 275. S'p. I'l., 766. Michanx, Fl. Bor.-Am., I., p. 318. Pursh, II., p. 384. Bigelow, Fl. Bost., p. 133. Lam. Dict., II., p. 43. Walt. Fl. Car., p. 157. Aiton f., Hort., Kew., ed. 2, III., p. 344. Willdenow, s'p. Pl., II., p. 1290. Persoon, Synops., II., p. 99. DC. Syst., I., p. 142. Prod., I., p. 4. James, Long's Exp., II., p. 343. Elliott, II., p. 44. Wats. Dendr., i4. Hook., lil Bor.-Am., I., p. 1 (in part.) London Jour. Bot., VI., p. 66. Don. Mill. Dic., I., p. 5. Torr. and Gr., Fl. N.A., I., p. 8 and p. 657. Spach., Hist. Veg., VII., p. 278. Dietr. Syn., III., p. 345. Torr. Fl. N.X., I., p. 6. Fremont's Rep., p. 87. Emory's Rep., p. 136 and p. 406. Loud. Hort. Brit., p. 228. Arbor., I., p. 237, fig. 13. Richardson, Arct. Exped., II., p. 442. Gray, Pac. R. Rep. 12, 40. Manual. Curtis, Bot. N. Car., p. 120. Parry, Pl. Minn., p. 608. Lesquer., Fl. Ark., p. 374 . Lawson, Mill. Fl. N.S., ser. 3, part 5, t. 14. Chapman, Fl. So. U.S., p. 4. Lawson, Ranunc. Can., p. 20. Watson, Bibl. Index, p. 11. Macomn, Cat., 1883, No. 2.
    C. Canudensis. Mill., Dict., n. 5.
    C. fragrans. Salisb. Prod. p. 3 亿 1 , not of Temore (which is Flammula).
    C. cordifolit. Moench, Sup., p. 104.
    C. brututa. Moench, Sup., p. 103.
    C. corduta. Pursh. II., p. 384. "DC. Prod., I., p. 4, exc. syn." Spreng. Syst., Il., p. bial Don, Mill., 1., p. E .
    C. Purshii. Dietr. Syn., IlI., p. 345.
    (Vematis Virsinium mennomiac similis. Plukenett, Mantissa, p. 51, t. 379, f. 4, (1700.)
    ('hotosemict. l'ursh, lil.. II., p. 88t. ('hapman, Fl. S. U. S., p. 4. Referred here by Mr. lames.
    ('inada- Mictune. hanks of streams and moist spots, edges of swamps, ravines, etc., from the wher of lime d' (or Lake, ('apu liretom, and the Atlantic eoast of Nova Scotia, ", \&t warl thround tw morinem of Now Bmuswick, Qumee, and Ontario. Banks along
    
     anl aldoming commins, as hotwey Kingstom amd Odessil, Waterloo, and Hinchinbrook;
    
     Whawa amd I'tenolt liailway, abmalant: rate in thimets northward to Chelsea.-Mr. B. Pillines: fir biolncille abumdant in low grommes, along small streams; also Thunder Bay,
    
    
    
    
    
     Stalles aml ('analat and to exteml northwards to the Naskatehewan; but Sir John no douln in. ludent the kiorn ligustivitian. which, although described from Nuttall's Notes in Torme and (iray: fikra, wan thon wall known or generally recognized as a species.

    I ook or oborred that this had been long cultivated in England, where it proved a hady phan, wolladaped lor covering walls and arbours. Its flowers are highly fragrant, which is not usual in this grmus. The lirst notice of its cultivation in England is in Horms Kewrasis, "176it, by Mr. James Gordon."

    ## 3.-Ciematis higusticifolia, Nultall.

    Stem shrubby, trailing or climbing. Ieaves pimate and five-leaved, or ternate, occasionally seven-leared; the leaflets oval, oblong or lanceolate, from broad to very narrow, tri-lobed or with few distant teeth. Inflorescence in close panicled corymbs, flowers on long, slender pedicels, diocions. Otherwise as C. Virginiana. In Professor Macoun's specimens from source of the Qu'Appelle the leaves are pinnate, the leaflets short, as broad as long, and shortly stalked, inflorescence corymbose. In a form (apparently of this) collected in May, 1883, near Canyon City, Colorado, the leaflets are narrowly oblonglanceolate, very acuminate, with a few distant teeth.
    C. liguslicifolia. Nuttall in Torr. \& Gr., Fl., I., p. 9. Gray, Pl. Fendl., p. 3. Watson,

    Bibl. Index, I., p. 10. King's Exp., 40th Parallel, p. 3 J. F. James, Revis. Clem., p. 9 and p. 15. Macoun, Cat., No. 3. Brewer \& Watson, Bot. Calif., ed. 2, Vol. I., p. 3.
    C. Virginiana. Hook., Fl.-Bor. Am., I., p. 1, in part. Richardson, Boat Voy. App., II., p. 284, in part. Lawson, Ranunc. Canad., p. 20, in part.

    From Washington Territory to the Saskatchewan.-Watson, King's Exp. 40th parallel, p. 3. Rocky Mountains. The locality given in Hook., Fl. Bor.-Am. for C. Virginiana, viz., Banks of the Columbia (Douglas), no doubt belongs to C. ligusticifolia. Climbing or trailing over bushes or sand on the sand hills at the source of the Qu'Appelle; Spence's Bridge and Cache Creek, B.C.-Macoun. Sand Creek, Colnonbia Valley, 13.C., 22nd July, 1883; Coldstream River, Cascade Mountains, B.C., 8th July, 1877; margin of Waterton lake, Rocky Mountains.-Dr. G. M. Dawsone

    This is essentially a Rocky Monntain plant, ocemring in one or other of its forms in New Mexico, Colorado (where I gathered it last year, near Canyon City), California Arizona and Oregon. The forms which pass under the name of C. ligusticifolia might be referred as varieties of C. Virginiana. Mr. James suggests that the eastern plant (C: Virginiana) is a descendant of the western one (C. ligrusticifoliu), and that the latter may have its nearest relatives in the highlands of India, but I know no Indian species resembling it.

    Dr. George Dawson's specimen from Sand Creek, Cohmbia Valley, with nearly smooth, broadly ovate, subcordate, tri-lobed leaflets, may be T. and G.'s var. B. lrevifolia.

    ## 4.-Clematis Douglasit, Hooker.

    Stem erect, simple, herbaceous, and, like the peduncle, strongly striate, with one terminal campannlate cernous flower. Leaves pilose, bi-tri-pinnatifid, the segments linear. Carpels villous, with long phmose tails.-Hooker. Torr. \& Grob.

    Clematis Douglasii. Hook., Fl. Bor.-Am., I., p. 1, tab. 1. Torr. \& Gr., Fl. I., p. 8 and p. 657. Lond. Jour. Bot., VI., p. 65. Don, Mill., I., p. 8. Walp., I., p. 7. Dietr. Syn., III., p. 348. Gray, Am. Jour. Sc., ser. 2, XXXIII., p. 408. Proc. Acad. Phil., 1863, p. 56, Watson, King's Rep., V., p. 3. Porter, Hayd. Rep., 1871, p. 477. Fl. Col., p. 1. Coulter. Hayd. Rep., 1872, p. 758. Torrey, Bot. Wilkes, p. 211. Watson, Bibl. Index, I., p. 10. J. F. James, Revis. Clem, pp. 3 and 12. Macoun, Cat., 1883, No. 4.
    C. Wyethii. Nutt. in Jour. Acad. Phil., VII., p. 6. Torr. \& Gr., Fl., I., p. 8. Walpers, Rep., I., p. 7. (Watson.)

    On the west side of the Rocky Momitains, near the sources of the Columbia. Douglas, in Hook., Fl., B.-A., (quoted as the Oregon in Torr. and Gr.) Judging from the course of the Columbia River and Douglas's ronte as laid down in Hooker's map, the locality of this plant would be in the neighbourhood of Mount Brown, near 52 north latitude. It does not appear to have been found in British America by any other collector; but several localities are given for the Rocky Momntains of the south. Mr. James thus sketches its distribution :-"A mountain western species, strictly confined, so far as known, to the Rocky Momntain ranges, and extending from Central Colorado, at Middle Park, Clear Creek Canyon (middle elevations), and in the Wahsatch and Uinta Mountains of Utah, at 6,000 or 7,000 feet, to Fort Ellis, and the Yellowstone in Montana, at Snake River Valley. Teton Mountains ( 11,000 feet) and Flat Head River Valley in Northern

    Idaho and Washington Territory." "We have specimens in fruit from Douglas's last Oregon collection." Torr. and Gray, Fl., I., p. 657.

    Sir William Hooker, in describing this plant, observes: "This beautiful species of Clematis is quite unlike any hitherto described; and I am anxious it should bear the name of its zealous and meritorious discoverer." David Douglas, who was a native of Perthshire, Scotland, greatly distinguished himself as botanical collector for the Horticultural Society of London, in the early days when that flourishing institution was filling the gardens of England with new and strange plants. But this species does not seem to have ever reached a garden. Douglas met his death in 1834, at the early age of 36 years, by falling into a pit made by the natives of the Sandwich Islands for catching wild animals. (There is a biographical sketch in Loudon's Gardeners' Magazine, for May, 1835, and in Canulian Naturalist, 1860.)


    #### Abstract

    [C. ALPINA. Mar. OHOTENSIs. Leaves biternately divided, segments oblong-lanceolate, acuminate, serrate, petals few, linear. (Atrarene Ochotensis. Pallas, Fl. Ross., II., P. 6\%. (: Ohmensis, Poir. DC. Nyst. Nat., I., 166.) Prof. Gray expresses surprise that this plant should have been for the first time detected in the New World at a point so far suth as Nanta lé. (Plantir Fendleriane Novi-Mexicanæ, p. 4.) In the Old World it is the northern or Siberian form of the European C. alpina, but in America it has only, so far, been found in Colorado, Utah and Idaho, according to Mr. J. F. James (Clematis, p. 12) , who ohserves: "Doubtless it is to be found in British America at the north, and may even extend up to Alaska." As yet, however, it cannot be included in our Flora, but will, it is hoped, ere long reward the efforts of some climber on our Rocky Mountains. It is the only speries of Clematis common to both America and Europe.]


    > Genu. II.-THALICTRUM, Linnaus.

    Hooker and Bentham, Genera Plantarum, I., p. 4.
    list of species:-

    1. T. Cornuti.
    2. T. occidentale.
    3. T. dioicum.
    4. T. alpinum.
    5. T. sparsiflorum.
    6. T. anemonoides.
    [T. purpurascens.]

    ## 1.-Thalictrum Cornuti, Linnaus.

    Root fibrous. Stem strong and tall, prominently furrowed, (three to six feet high). Radical leaves long-stalked, very large, and, like the sessile cauline leaves, ternately decompound; leaflets large, thick and glaucous or downy beneath, varying from broadly obovate to narrowly elliptical in outline, ternately divided into rather large acute lobes. Flowers numerous, in large showy terminal panicles, diœcious or polygamous; sepals white; anthers crowded, erect, on short, stoutish filaments ; stigmas very long, flattened. Carpels numerous, terete, ribbed. Cornute's Thalictrum.

    Thalictrum Cornuti. Linn., Sp. Pl., I., p. 768, (1753). Aiton f., Hort. Kew., ed. 2, III.,
    p. 347. Pursh., p. 388. Persoon, Synops. Pl., II., p. 100. Hook., Fl. Bor.-Am., I., p. 3, tab. 2 Torr. \& Gray, Fl. N. A., I., p. 38, in part. Gray, Pl. Fendl., p. 5. Manual, ed.5, p. 39. Chapman, Fl. S. U. S., p. 5. Pl. Bourgean, 254. Lawson, Ranunc. Canad., p. 31. Watson, Bibl. Index, I., p. 25. Macoun, Cat., No. 22.
    T. corynelhum. DC. Syst. Nat., I., p. 172. Richardson, Frankl. Jour., 12, in part, (see Hook. Fl. B. A.)
    I. confertum. Mrench. (Watson, Index.)
    I. crenatum. - Desf. Cat. Hort. Par., ed. 2, p. 12f. (DC.)
    T. discolor. Willd.
    T. rugosum. Pursh, F1., p. 388. 1)C. Syst. Nat., I., p. 185.
    T. Carolinianum. DC. Syst. Nat., I., p. 174. (Watson.)
    T. leucostemon. C. Koch and Bonché, in App. Index Semin. Hort. Berol., 1855. Walpers, Amales Botanices Syst., IV., p. 12. C. Koch and Bonchés description does not show this plant (received at the Berlin Garden from North America) to be essentially different from T. Cornuti. It appears to be a form with more compact congested panicles, a peculiarity that might possibly result from its being grown in the well-drained soil of the Berlin Botanic Garden.

    Thalictrum Canadensc. Cormute, Canad. Pl. Hist., 18t, tab. 1s7, (1630). Provancher, Fl. Canad., p. 5.

    T'. Americanum. Parkinson, Theatr., 265, 11. 9, (1640).
    I'. majus, foliis aquilegic, florc albo. Morison, Historia Plantarmm, III., p. 32.5, (1680).
    T. Canadense, caule purpurascente, Aquilcgier, folizs, florum staminibns albis. Tournefort, Inst. Rei Herb., p. 271, (1700).

    Banks of rivers as far north as lat. $56^{\circ}$, in wooded districts, the whole breadth of the continent, exchading the barren gromends and alpine tracts.-Iloker, Fl. B. A.

    Wet meadows and margins of streams, not uncommon throughout the provinces of Ontario, Quebec, Nora Scotia, New Brunswick. Kingston, Ont., Hardwood Creek, 10th July, 1861, and surrounding comtry, abmudant; Halifax County, not rare-Lawson. Frequent in Quebee province.-Mi. Barnston. Chippewa and Malden, Ont.-Di. P. W. Maclagan. Gaspé, moist places along the Dartmonth River.-Dr. John Bell. Windsor, N.S.-Prof. How. Prescott and Ottawa, common.-B. Billings jr. Lake Superior.-Prof. R. Bell. Belleville, common on the borders of streams.-Macoun. Antieosti, 1861.Verrill. Newfoundland, Bonne Bay and Point Rich, Jnly-August, 1861.-J. Richardson. Between Wild Rice River and Red Lake River, September, 1860 -Dr. Schultz. Assiniboine River, July, 1861, Nos. 40-50-Dr. Schullz. From the Atlantic through the wooded districts "to the Pacific," north to Peace River.-Macoun. Manitoba Honse, 14th June, 1881, and Long Lake, N. W. Territory, 7th July, 1879.—Macoun, in Herb. Can. Surv. St. Marie (Beance),-Provancher. Abundant in the Atlantic prorinces of Canada, but its western or Pacific range has not been well traced. Cnltivated in England in 1640, (Parkinson, l. c.).

    ## 2.-Thalictrum occidentale, Gray.

    This is referred to by Brewer and Watson as very like the southern T. Fendleri, except
    in the achenes, which are nearly half an inch long, narrow, long-acuminate and less curved than in that; it seems to be allied to T. Cormuti, the filaments not thickened upwards as in that species.

    Thalictrum occilentale. Gray, Proc. Am. Acad., VIII., p. 372. Watson, Proc. Ain. Acad., XI., p. 1こ1 (1876), Brewer \& Watson, Bot. Calif., ed. 2, I., p. 4.

    British Columbia to W. Montana.- Watson. Oregon to Montana.-Bot. Calif.

    ## 3.-Thatictrum moicum, Limazus.

    lion of stromer think fibres, sometimes almost tuberous. Stem twelve or fourteen inche. varvine to two liet or morr in height, with long-stalked ternately compound laswe compund ol rommed thin browdobed leallets, green above, glancous beneath. I:hwers dinniou (on pulygmons), in panicles. sepals gremish, with yellow or dull
    
    
    
    
    
    
    
    fira-y fank- of rivors : most abundant in the wentral limestone districts, from Canada
     of the Lionky Mountains--Drummome. And on the banks of the Columbia.-Mre. Garry.
    

    Hr! wonls:and banks, "ommon in central Ontario, as woods about Trenton, June, 1862,
    
    
    
    
     James Adie. Nanknzie Rivar, above Fort Nimpson, 22nd June, 1853; Trout Lake, June; butwentsurnant Trout lake, June.-MeTtrish. Near the big lake of Harrington, Co.
     N.w lirun-wick, at Kiswick lidge, rare-Fouldr. Flat lands, Restigonche.-Chalmers.

    This plant was mutivated in lEngland by Mr. Philip Miller in 1759. Mill. Dict. ed. 7, n. $!$

    ## 4.-Thahictrum atpinum, Limheus.

    Root librons, stem simple, smooth, three to six inches high, leaves nearly all radical, long-stalked, biternate. Flowers hermaphrodite, in a simple raceme. Carpels shortly stalked, tipped with the hooked style.

    Thalictrum alpinum. Limn., Sp. Pl., p. 76ヶ. Fl. Lapponica, p. 225. Iudson, Fl. Anglica. Withering, Fl. 13rit. Lightfoot, Fl. Scot., p. 286, t. 13 f. i. DC., Syst. Nat., I., p. 1\%j. Prod., I., p. 12. Bot. Mag., t. 2237. Torr. \& Gr., Fl. N. A., I., p. 39. Wood, Cl. Bk.
    \& Fl., p. 204. Hook. \& Thoms., Fl. Indica, I., p. 18. Eng. Bot., t. 262. Hook., Bab., and other British authors. Reicheubach, Ic. Fl. Germ., III., 26. Fries, Summa Veg. Scandinar., p. 27. Lawson, Ranunc. Canad., p. 33. Watson, Bibl. Index., p. 25. Macoun, Cat., No. 23.
    T. microphyllum et marginatum. Royle, Ill., Walp. Rep., I., 24-25.
    T. acaule. Camb., Walp. Rep., I., 12, n. 31. Ann., IV., p. 11

    First recorded as Canadian on authority of Kalm; subsequently reported from the Island of Anticosti, in the Gnlf of St. Lawrence, by Pursh : not noticed by Hooker in Flora Boreali-Anericana. Again collected on Anticosti by Mr. Verrill, rare and not in flower, 1861 ; more recently by Macoun, on Jupiter River, Anticosti. very abundant in river valleys, bat not on high grounds.-Herb. survey Cunada. Nowfoundland.-Herh. Bunks, DC. Newfoundland, 1866-8.-H. Reeks (Jour. Bot., IX., p. 1ii). Greenland.-IIormemmn. Lyngemarken, Disco Island, west coast of Greenland, 1-sit.-Brown Comp. Plentiful at sea level amongst Luzula spodicen, at Englishman Bay. Dison, to the weot of Liowely, lat.
     Rocky Mountains of the South.-Dr. Parry. Ieeland.-Hewter. Lindsay. \&oc. Orknes, 500 feet-Bostrell-syme. scotland. Seandinaria. \&ッ.. Wiales-sir J. E. smith. Pyrences-DC. Lapland.-Linurus. Himalaya and Thibet, above 10.000 feet-Ihobe fil. d. Thomson, Fl. Ind., Walpers Annales, IT., p. 11. The stronghold of this speries is in Vorthern Europe. where it ocurs chiefly on the monntains, desendince to the sea level as it approa hes the Arctic Circle, and extending eastward through East siberia. Naraya Zemlya. - Buer and Mideff. In Britain it extends from 33 to 81 N. lat.. its southern limits being Yorkhire and Wales, on mountains, descending to the coast lewel in the Sorth Highlands, and ascending to 3900 feet in the East Highlands; range of mean annual temperature $f^{\prime}-34$. H. C. Watson, Cybele Brit., I.. p. 71, who oboerves: "This is traly an Arctic speries, and the specific name should be construed with reference to the climate, and not as indiating any predilection for the Alps, as seems to be implied by those botanists who write the name with an initial capital,-Alpinum."
    5.-Thalictrum sparsiflorum, Turezainou.

    Plant 12 to 18 inches high, with shortly petioled ternately compound leaves, which are glabrous, glancous on the lower surface. Flowers hermaphrodite, filaments clarate. Carpels large, pale, thin and pod-like, stipitate, with embossed reins but no furrows.

    Thalictrum sparsiflorum. Turcz. in Index Sem. Petropol. Ann. Sc. Nat. ser. 2, ir, p. 332. Gray, Pl. Wright. Smithsonian Contributions, V. p. 8. Watson, Bibl. Index, I., p. 26. Macoun, Cat. No. 24.
    T. clavatum. Hook., Fl. Bor.-Am. I., p. 2, exel. syn. Torr \& Gr., Fl. N. A., I., p. 37. Walpers, Ann. Bot., IV., p. 10. Lawson, Rannnc. Canad., p. 33.

    Not T. clavatum of DeCandolle's Systema, Gray's Manaal, and Chapman's Fl. So. U. S., which is a southern plant.
    T. Richardsonii Gray, Am. Jour. Sc. XLII., p. 17.

    Found only on Portage La Loche, a height of land composed of sand hills, lying in lat. $57^{\circ}$, and separating the waters flowing to Hudson Bay from those falling into the

    Arctic Sea.-Richardson, in Hook., Fl. Bor.-Am. York Factory, a large number of specimens collected during successive seasons.-Governor McTavish. Unfortunately special localities are not given on the labels of McTavish's specimens, the district being indicated merely by the letters "Y. F." Low ground along the eastern base of the Porcupine Mountains, about lat. $53^{\circ}$; Manitoba; McLeod Lake, lat. $55^{\circ}$, B. C.-Macoun.

    ## 6.-Thalictrum anemonoides, Michaux.

    Root of few fleshy tubers; radical leaves few ; long-stalked, ternately compound, with stalked leaflets; cauline leaves similar, forming an involucre. Plant five or six inches high, with habit and foliage of Isopyrum, flowers of Anemone, and fruit of Thalictrum, 1)

    Thulictrum anemonoides. Michaux, Fl. B. A., I., p. 322, (1803.) DC., Syst. Nat., I., p. 186. Prodromus, I., p. 15. Hook., Fl. Bor.-Am., I., p. 4. Torr. \& Gr., Fl. N. A., I., p. 39. Gray, Gen. Ill., I., p. 24. t. 6. Manual, ed. 5, p. 38. Chapman, Fl. S. U. S., p. 6. Watson, Bibl. Index, I., p. 25. Macoun, Cat., No. 19

    Anemone thatictroides 乃3. Linn., Sp. Pl., p. 763.
    Anemone thatictroides. Bigelow, Fl. Boston, p. 136. Pursh, Fl, II., p. 387. Aiton, Hort. Kew. Bot. Mag., t. 866. Persuon, Synops. Pl., II., p. 98. Pursh, Fl., p. 387.

    Syndesmon thulictioides. Hoffmansege, in Flora, 1832, Intell. Blatt., p. 34. Lawson, Ranunce ('an., p) 31

    Anemonellu thutictioides. Spach, Hist. Veg., VII., p. 240, (1839.)
    C'anada-Kilm, Mirhane. St. David's, Niagara District, Ont.-Dr. P. W. Maclagan. Oaklands, Hamilton, Ont., 31 May, 1859.-Judge Logie. Vicinity of Niagara Falls and Pelee Island, Lake Erie.-Macoun.
    [T. ptrptrascens, Linneus. Attributed by Limeres to "Canada," in the Species Plantarum, has not so far been satisfactorily identified as a Canadian species, although reported several times. It appears to be a southern plant, well known to Dr. Gray, who gives a full description of it in the Manual, 5th edition, p. 39. T. dioicum is frequently tinged with purple on the upper part of the stem, leaf stalks, \&c., and such forms have been mistaken in Canada for T purpurascens. It is very desirable that all suspicious forms of Thalictra should be collected, especially in the southern peninsula of Ontario, whence Dr. Burgess reports this species, but I have not had opportunity of examining his specimens.]

    > Genus III.-ANEMONE, Linneus.

    $$
    \text { Bentham and Hooker, Genera Plantarum, I, p. } 4 .
    $$

    List of species:-
    Section 1.-Involucre of three simple leaves close to the flower, resembling a calyx. Hepatica. Dillenius. Linn. DC. Gray.

    > | 1. A. Hepatica. | 2. A. acutiloba. |
    | :--- | :--- |

    Section 2.-Involucre much divided, distant from the flower; achenes with long plumetails. Pulsatilla. Tournefort. DC.
    3. A. patens.
    | 4. A. occidentalis.

    Section 3.-Involucre more or less resembling the leaves, usually distant from the flower. Achenia without tails.
    5. A. Baldensis.
    6. A. parviflora.
    7. A. nemorosa.
    8. A. deltoidea.
    9. A. Richardsoni.
    10. A. cylindrica.
    11. A. Virginiana.
    12. A. dichotoma.
    13. A. multifida.
    14. A. narcissiflora.

    ## 1.-Anemone Hepatica, Limurus.

    Plant aculescent; leaves numerous, all radical, (from a tufted rhizome), long-stalked, lamina of three rounded obtuse lobes (slightly overlapping) with entire margins, the lateral lobes occasionally bi-lobed. Flowers many from the same root, on separatio stalks; involucre three-leaved, so close to the flower as to resemble a trine calyx. Sepals six (in two fows), varying in mumber to nine (in three rows), petal-like, cllipticoblong, those of the outer row alternating with the approximating involural leares, size and colour variable, (white, rose, purple, blue). Stamens usually from eighteen to twenty-one. C'impels normally about twenty-seven. There is an apparent cirde of hairs betwern the involurepe and the onter row of sepals, similar to the pubescence of the rest of the seape, but nothing between the sepals and stamens to represent petals. The innor verticil of sepals might be regarded as petals were it not for the mumerons examples in this order of the absence or abnormal form of petnls. Leaves, and esperially the potioles and flower-stalks, also the external surface of the involural leaves, covered, more or less, with silky pubseence, which becomes less conspicuous on the lamina as the foliage matures, and ultimately disappears on its upper surfice. Achenes hairy, collapsing so as to herome finrowed

    Anemone Hepatice. Linn., Sp. Pl., I., p. 758 , (the European plant.) Mirhanx, Fil. B. Am., I., p. 119. Bigelow, Fl. Boston, p. 135. Lawson, Ramme. ('in. p. 29. Watson Index Bibl., I., p. 4. Macom, Cat., No. 17. Lloyds, Drugs and Meds. N. Am.. p. 37, figs., $13,16,17$.

    Hepatica triluba. Chaix, in Villars, Mist. l'l., Dauphine, I., p. 334 (1786). P'ursh, Fil., II., p. 391. Nuttall. Elliott. Barton. Hook., Fl. B.-A., I., p. 8. Torr. \& Gr., Fl., I., p. 15. Chapman. Gray, Manual, ed. 5, p. 38. Provancher, Fl. Can., p. 7.
    H. triloba, $\delta$. foliorun lobis oblusis. Hook., Fl. Bor.-Am., I., p. 9.
    H. triloba $\alpha$. oblusa. Torr. \& Gr., Fl. N. A., I., p 15.
    H. triloba ß. Americana, DC. Syst., Nat., I., p. 216.
    H. Americana. Ker, Bot. Reg., t. 387. DC. Prod. Don. Nutt.

    Herba Trinitatis. Dalechamps, Hist. Gen. Pl., 1274, f. 1, 2, (ann. 1586).
    Trifolium Hepaticum. Mentzelius, Index Nom. Pl. Multilinguis, p. 30ヶ, (1682).
    Hepatica. Gronovius, Fl. Virginica, p. 61, (1743).
    Common in rich woods in central Ontario, in comntry bordering on the lake and river. Very abundant on wooded banks near the Grand Trunk Railway line, between Kingston City and Kingston Mills, (flowers of several colonrs). Longpoint, on Gananoque River, one form with five-lobed leaves infested by a parasitic fungus (Uredo), May, 1862.Lauson. Very abundant in Caledon, Iune 1862.-Rev. C. I. Cameron. Mountain side west of Hamilton, 6th April, 1860.-Julse Logie, Belleville, abundant in rich woods.-Macoun.

    Rocky woollands west of Brockville, not rare; and Ottawa, lot 0, rare.-B. Billings jr. Penetanguishene, Lake Huron, in flower 25 th A pril.-C. C. Todd. Ottawa (not so common as A. acutiloba).-Macoun. Tetit Cap, St. Joachim.-Provancher. From Isle of Orleans, westward. rather rare in Quebee Province-Brunet. St. Stephen, N.B., in f. May 10, 1879. —Mr. V'rom. Keswick Ridge, N.B.—.T. Moser. Windsor, N.S., rare.-Prof. How. Pictou, Nセ.. wry rare-A. H. Mrkay. Bridgewater, N.S.-Rev. E. Ball. Sitha,-Rolhrock.

    In woml in the wolral limestone trats, from Canada to lat. $52^{\circ}$. Mr. Drummond found it as far morth as lat $\therefore \therefore$, in the sechaded alpine valleys on the eastern declivity of the Rowky Mountain riden.-Rirhardson, in Hook., Fl. B.A. (Doubt has been expressed rowrdine the W゙mainer and Rowly Mountain halbitats, yet Rothrock reports the plant from 'itk:1)
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
     plant homld be aprimklal with time pat soil, or some: "quivalent, antil the base of the loat - lalk : in ooverl. Ihto this tho somds fall, and about the time that active growth "ommonne in the barnt phant in antumn, they germinate, producing a pair of leaves simultanomsly whth the erowth of the new leaves on the old plant. When the leaves are fully dureloped, the swdings may be removed. Some flower the next year. They genorally follow the colour of their parent, though pink seedlings occasionally come from blue phants. More sodlings come up anongst the leaves than outside them." (Rev. O. Wolley Dorl, Gard. Chro, Fel), 16, 1884.)

    ## 2.-Anemone acutioba, Leneson.

    liesenbles the preeding; the leaves are even more symmetrical in shape, but the lobes or summents are elongated-lapering, gradually narrowed from below the middle to an acute point. The involucral leaves and sepals are also more or less acute. Flowers in May. So far as observed, intermediate forms do not oceur.

    Anemone acutiloba. Lawson, Ranunc. Canad., p. 30. Watson, Bibl. Index, I., p. 3. Macoun, Cat., No. 18.

    Hepatica triloba var. acuta. Pursh, Fl., p. 391. Hook., Fl. Bor.-Am., I., p. 18. Torr. \& Gr., Fl. N. A., I., p. 15.
    H. tribola $\beta$. foliorum segmentis acutis. Hook., Fl. Bor.-Am., I., p. 9.

    If triloba ß. acuta. Torr. \& Gr., Fl. N. A., I., p. 15.
    H. acutiloba. DC. Prod., I., p. 22. Gray, Gen., I., p. 22, t. 5. Manual, p. 38.

    Anemone Hepatica var. acuta. Bigel., Fl. Bost. ed. I., p. 135.
    This is essentially an Ontarian and Northern States species, being' scarce in the South and West and quite unknown in Europe.

    Longpoint, Gananoque River, May 7, 1861, abundant ; near Kingston Railway Depot, 2nd May, 1868; two miles west from Kingeston Mills, 24th May, 1859.—Lauson. Camden.Dr. Dupuis. Prescott, Ottawa, ete. common in woods.-B. Billings jr. Very abmant in dry woods, Belleville-Macoun. Artemisia, May 12.-Rer. C. I. Cameron. l'oint Levis, P.Q-Brunet. Common around Montreal ; abundant abont Ottawa-Macoun. Northumberland Co., Ont.-Macoun.

    The Hepatica group of Anemone (A. Hepmeticu and A. ucutilobu) is connented with the other species of the genus, such as $A$. nemorosa, throngh $A$. cherulosa, of Transylvania DC. Syst. I., p. 217), figured in "Gartenflora," t. 419 , which has a calyx-like involuere like the true Mepaticas, and in foliage and flowers resembles A. Apenninn. A. angulosn has an approximate involucre of three leares mueh smaller than the sepals, which are from 6 to 9 in number as in the Hepaticas, that is, there are two or three whorls.

    ## 3.-Anemone patens, Linhous.

    Whole plant covered with long silky hairs when young, losing much of the hairiness as the parts mature. Leaves radical, from a strong root-stock, long-petioled, termately divided into narrow linear segments. Scape 1 -flowered. Flower large, appearing before the leaves, involucre sessile, like the leaves, becoming distant from the flower hy the elongation of the upper part of the stalk. Sepals is (or more), large, externally velyety with short hairs. Carpels with long plumose tails. Flowers (sepals) purplish, or of violet shades, sometimes very pale. Petals are represented by a few very small processes like abortivestamens. Stamens munerons. The involucre, and that portion of the flower-stalk below it, are densely villous, with long silky hairs; the upper portion of the stalk, which is very short at first, becomes much elongated in fruit, and scarcely villous or nearly glabrous. The flower of the Siberian plant is white, according to limmens. A small form from Fort Simpson, summer of 1853, (McTavish) has the involucre divided into linear, but rather broad, segments, very sparingly villous, and the sepals are almost glabrous.

    Anemone patens. Linn., Sp. Pl., ed. 3, p. 559. DC. Syst. Nat., I., p. 191. Regel, Fl. Ost.Sib., I., p. 20. Hook., Fl. Bor. Am., I., p. 4. Torr. \& Gr., Fl., I., p. 11. Gray, Manual, ed. 1, p. 5. Rothr., Fl. Alaska, p. 442. Provancher, Fl. Canad., p. 6. Hook. f., Aretic Pl., p. 283.

    Clematis hirsutissima. Pursh, Fl., II., p. 385. DC. Syst. Nat., I., p. 155.
    A. Iudoviciana. Nutt., Gen., II, p. 20.
    A. Nuttalliamen. DC. Syst. Nit.. I., p. 193. Richardson, in Firankl. Jour., p. 12. Nuttall, Jour. Acad. Phil., V., p. 1:8.

    I'ulsatillu Nuttallianu. "Spreng. Syst., II, p. 633." Gray, Mannal, ed. 2, p. 4.
    A. fluescens. "Zuce, in Regensburg Zeitung, I., p. 371 ."
    $P$. patens, B. Wolfrangiana. Trautv. \& Meyer (exc. syn.), according to Regel.
    P. putens. Cray, (Gem.. I., p. 18, t. 3. Pl. lendl., p. 4. Lawson, Trans. Bot. Soc., Eblin. X.. P, :Hi. Ramme. Camad.. p. Qe.
    A. mulcus, var. Vmlullimu. Glay, Mamual, ed. 5. p. 36. Watson, Bibl. Index, p. 5. Ma*om, ('at., p. 12
     arats. from lat. if th lit on the Mackenzie-Richardson. Valleys in the Rocky Monntains. - Drummomd. Douslus
    
    
    
    
    
     16in Man. Wif; Fort Smpon, in ft.: Fukon River; on Andorson River and at Fort
    
    
    
    
     dominion of Surthop Enrope ant Asia. Prol. Macoun observes that it is abundant on dry uraw elly soil from the waturn marein of the praitie region, through the Rocky
    

    Sir Willian Howkr. in VI. Bor.-Am., rmarked: "There is no difference whatever
     and from sikuia on the borkers of boland. Both are liable to vary in the breadth of the s.erm...nt willuir laves, and in the volour ol their flowers. Mostly, however, these aro purph. Than palu yollow-flowerd variety Irom Niberia is cultivated in England. The phant atlions sambly soils, and its blossoms appar amoner the earliest of the season." On May 2.5. 18s:\%, I limm it blommir brightly on dry knolls at the Crested Buttes, Coloralo. the eromul wowed with a lew inches of snow that had fallen the night before, but not deep monorh to bury the large flowers. The recent tendency has been to regard our Anwrivan plant as wsontially distanct from the Enropean. I am still donbtful by whit characters to separate it, and have, on that account, retained the Linnean name. It is a variable plant in Europe and Northern Asia. In the allied A. Halleri of Switzerland, the divisions of the leaves and involucre are proportionately much shorter, and the flower rather larger. $P$. vulguris of Ehrope has pinnatisect foliage.

    ## 4.-Anemone occidentalis, Walson.

    "More or less silky-villous; stems stout, $\frac{1}{2}$ to $1 \frac{1}{2}$ feet high, 1 -flowered; radical leaves large, long-petioled, biternate and pinnate, the lateral primary divisions nearly sessile, the segments pinnatifid with narrow laciniately-toothed lobes; involucral leaves similar, nearly sessile, about the middle of the stem; sepals 6 or 7 , six to nine lines long, white or purplish at base; receptacle conical, becoming much elongated, sometimes $1 \frac{1}{2} \mathrm{in}$. long; achenes linear-oblong, the tails at length $1 \frac{1}{2} \mathrm{in}$. long, reflexed." Watson.

    Mr. Watson points out (Proc. Am. Acad., 1876, Vol. XI., p. 121) that this species differs from A. alpinu of Europe and the Cancasus (with which it had been long conjoined) in its more finely and narrowly dissected leaves, which have also the primary divisions much more shortly petiolnlate, and in the lengthened receptacle (sometimes an inch and a half long) which in the other is small and hemispherical (even in fruit). Sir William Hooker describes Drummond's specimens as from 6 in. to $1 \frac{1}{2} \mathrm{ft}$. high, flowers white, with a purplish tinge at the base, heads of pericarps very large, awns long, very silky.
    A. occidentalis. Watson, Proc. Ann. Acad., XI., P. 121. Brewer \& Wats., Bot. Calif., I., p. 3. Watson, Bibl. Index, I., p. 443. Micom, Cat., I., p. 11.
    A. alpina. Mook., Fl. Bor.-Am., I., p. 5 (exel. synn.) Torr. \& Crr., Fl. I., p. 11. Hook. f., Arct. Pl., 283 and 311, in part. Rothr., Fl. Alaskal, 442. Not. of Linn., DC., Regel, \&c.

    Pulsatilla alpina. Lawson, Ranunc. Canad., p. 23 (excl. European synonymy).
    Eastern declivity of the Rocky Mountains, lat. 52 to 5.-Drummond. Hitherto unnoticed as a native of America.-Hooker, Fl. Bor.-Am. (18:39). Top of Rocky Mountains and W. Summit, near Kootanie Pass, 26th July, 1883.-Mucoun. Mountans of Sonthern British Columbia and Rocky Mountains, near the 49 th parallel, at 6000 ft . altinde.-Dr. G. M. Dawson. Kotzelme Sound.-Cuth. Beechey, (Torr. \& Grr.) Rothrock. Monnt Shasta and Lassen's Peak, California.-Brever \&. Watson. The indication in "Botany of California" of the Gulf of St. Lawrence (if our Athantic St. Lawrence be meant) is no doubt an error. Mr. Watson suggests (Bot. Calif.) that the A. alpina of Aretic American collectors is referable to this species, and I have therefore assumed that the Kotzebue Sound plant belongs here. A. occidentalis had not been scparated as a species in 1860, when Sir Joseph Hooker (Distr. Arc. Pl., p. 311) observed that he had seen but one Aretic American specimen of A. alpina, which was much stunted, and that it had not been fonnd east of the Cancasus in the Old World, though it is not uncommon in North America on both sides of the Rocky Momntains.

    ## 5.-Anemone Baldensis, Linneus.

    Leaves nearly glabrous and somewhat fleshy, ternately divided into laciniate tripartite segments, lobes linear obtuse; the involucral leaves like the others, and shortly petiolate, multifid. Scape villous, 1 -flowered. Scpals 8-10 (DC.), 6-8 (Hook.), oblongsuboval, obtuse, spreading, somewhat villous externally, tinged with blue. The Mount Balda Anemone.

    Anemone Baldensis．Limn．Mantissa，p．78，DC．Syst．Nat．，I，p．203．Hook．，Fl．Bor．－ Ain．，I，p．5．Torr．© Gr．，Fl．N．A．，I，p．12．Macom，Cat．No． 8.

    A．mullifidn．Watson，Bibl．Index，I，p． 4.
    Arid phaces on the eastern smmmits of the locky Monntains，lat． $52^{\circ}$ to 55 ．－T Drum－ moml，in Hook．，Fl．Bor．－Am．

    This is a Well－known phant in the Swiss Alps and other monntainous districts of con－ tinental linrope．lout its American record is simply that quoted above from Hooker＇s Flora． Its sonthern laronean range is not in favour of its ocmurence on the Rocky Mountans， hut ズir Willian Jlooker semms to have had no doubt whaterer of the identity of Drum－ mond＇s－perimens with the Emopean plant．Watson refers them to mullifida，and may be correat．hat I know not on what eromed．

    ## 6．－Anhmone palivflolea，Michmex．

    1．ancormmand tripartitn，with cmande，crenately lobed divisions．Involucre usually
     larev．．jnk ．wal，whin，or the outor surface tinged with blue．Carpels in a globose， cmapat．Woully heal．Dant variable in hereht，from a foot to 2 or 3 inches in the sub－
     amd hid in the radial haves．the maked flowerstatk six inthes long．In Prof．Macoun＇s
    
     and baty and oht butamist．give the number of sepals as 6 ；they are probably variable．
    
    

    Antmone zmivitura．Mi．hx，l＇l．Bor－Ans．，I，p．319．D）（．Syst．，J，p．200．Hook．，Fl． Bur－Am．I，p．S．Timr．©（ir．．F1．N．A．．I，p．12．JIook．f．，Arct．Pl．，p．283．＂Pl．Bour－ Gran．ב̈t．＂＇iray，Mannal，ind，p．37．Lawson，lanunc．Canad．，p．23．Provancher，Fl． Can p li Watom，lihhl．Indax，1，p．5．Macom，Cat．No． 7.

    A cumitulin．Ins：ieu，Ann，du Mus．，HI，1．21，f．，3．Persoon，Synops．Pl．，II，p． 97. J＇ur：h．1\％l．，II．p．：inn

    A．toulln．Banks in Horlo．（DC）
    A．Inomlis．IVichardson in lirankl．1st Jour．，ed．2，App．，p． 21 （a small form）．
    A．syluestris，th．wllom mimor．太ihrank，lll labr．，28，（Watson）．
    Judson Bay．－Michume．East coast of IIudson Bay．－Dr．R．Bell．Eastern primi－ tive district，central limestonn tract，baren grounds，and Rocky Mountains，from lat． $45^{\circ}$ to the Aroti－Soa．lat． 70 ．－Ridhardson，Drummomel，in Hook．Fl．B．A．Labrador．－Pursh， Morrisom．－Nowfondland．－Hew）Bimks，（1）（．）Kot\％ebne Somd．－Rothroch．Kootanie l＇ass．looky Monmains－D Dr．G．M．Darsom．Magdalen River；St．Anme River and Shickshock Monutains．（iaspé，P＇Q．；Pie River，Lake Superior；Bow River，near Morley， N．W．T．－Mucoun．North Kootanie Pass，1883．－Macoun．It becomes abmudant northward and extends to the Aretie Sea，lat． $70^{\circ}$ ．－Hook．f．Labrador and Anticosti－－Pursh．Anti－ costi，S．W．Point．－A．E．Verrill，23rd July，1861．Dartmonth Rirer，Gaspé，fonnd in fl．at mouth of Jady＇s－steps Brook，June 29，1862，and plentiful up the river．－Dr．J．Bell．The
    plant is not so rare in the Northwest, judging from specinens received from Governor McTavish, which are as follows:-Between Severn and Tront Lake, June; Mackenzie River, 29th May, 1852; Tront Lake, June; between Anderson River and Fort Good Hope ; Fort Simpson, summer of 1853 ; west of Rocky Mountains, between Lapierre House and Fort Ynkon; Athabasca River, 31st July, 1852; Ynkon River; York Factory. Lake Superior, northward and westward.-Gray.

    ## 7.-Anemone nemorosa, Limucus.

    Radical leaf solitary, arising from a short, slender, horizontal rhizome, and composed of three broad, cuneately lobed or slightly pimatilid incisely-toothed leallets. Flower solitary, on a stem which is bure below, hat with an involure half way up of three stalked leares divided like the root leaves, the ladteds invisely toothed, the lateral ones with large basal lobes (more usually divided into serpate leaftets (rompomed) in Encrish, Scotch and Geman specinens, but only deeply pimatifid in our Ameritan phat), terminal leallet of involucral leal slightly stalked, all the lobes acuminate. Sepals is or 6 , elliptical, glabrons on both sides (bright white, sometimes tinged with pink or purphe). Carpels few, oblong. kerled, pubescent, with hooked beaks as long as the hody of the carpel. Plant sparingly hairy. The Wood Anmone. Anenons, or Wind liowne, of the English poets.
     I., p. 204. Prod., I., p. 20. Continental European and English Floras. ILook., Fl. Bor.Am., I., p. 6. Torr. \& Gray, Fl. N. Am., I., p. 1:. Hook. f., Arrt. Pl., p. 28.3. " Pl. Bourerau, 254." Gray, Man., p. 38. Lawson, Ramme. C'mad., p. ロ̄. Traill, ('anad. Fl., p. s1, t. 10. Brewer \& Watson, Bot. Calif., I., p. 4. Watson, Bibl. Index, I., p. 戶. Macom, Cat. No. 9. A. quinqucfolin. Limm. Sp. Pl., p. T62.
    A. pedata. Raf.-Schmaltz in Desv. Jomr. Bot., 1808, I., p. 230. DC. Syst. Nat., I., p. 214. Prod., I., p. 22.
    A. lancifolia. Pursh, Fl. II., p. 386. DC. Syst. Nat. I., p. 205. Prod. I., p. 20. Torrey, Compend., p. 223.
    A. minima, DC. Syst. Nat., I., p. 206, appears to be a dimiuntive form of this species from the Alleghanies.
     Herb., I., p. 94.-DC.

    Canada, and thence to the sonth end of Lake Wimnipeg; not seen to the north of lat. $53^{\circ}$.-Richardson. Country to the eastward of the Rocky Mountains.-Drummond. Westward of the Rocky Mountains.-Dougrlas. Woods in rear of Kingston, also neighbourhood of Toronto, and other localities in Ontario, occasional, but not common.-Lauson. Common, Port St. Francis, Q., Niagara and Malden, Ont.-Dr. P. W. Maclagan. Barlow's woods east from Belleville, Ont.-Macoun. Gros Cap, Jnne 15.—Prof. Bell. Gaspé; Dunvegan (lat. $56^{\circ}$ ), on Peace River ; British Columbia; Vancourer Island.-Macoun. Dean or Salmon River, British Columbia.-Dr. G. Mr. Dawson. Not uneommon in New Brunswick.-Fowler, who has sent a specimen from Bass River, Kent. Common at the Sagnenay.-Provancher.

    Middle Siewiacke, N.S.-G. G. Campbell. Newport, N.S.-H. H. Bell. Mr. Barnston found this plant common to the westward of Lake Superior, along the frontier line of the United States, in rich alluvial soils. A form, characterized by Hooker as unusually hairy, was found by I. King at Lake of the Woods. (Back's Exped.) In western Europe this species is extremely common, and legel has it from various collectors in Kamtsehatka, ete.

    Of the British American spercmens, Sir William Hooker observes: "Flowers white, varying to purple, as in Europe, but the sepals are more constautly 5 , and the leaves, though occasionally as broad as with ns, are usually marrower and disposed to be more compound." This remark probably applies rather to the Northwest or Hudson Bay forms than to the Ontario nows. The plant varies much in the division of the foliage, size of parts and other charaters. In what may be regarded as the well-developed typical form, the leares are trifoliate, torminal leaflet shortly peliolnate, rhomboidally lanceolate, incisely lobul and tonthed in the upper half, lateral leaflets nearly sessile, very deeply divided into two lobes, the lateral lobe oblique, both incisely toothed in the upper part. [n sperimens fron Itulson Buy Territorim (Me'Turish), and Dean or Salmon River, B. C., (Dr. (i. M. (I) us:m), 2th Jume, 1-77. the involueral leaves are trifoliate, the leaflets sessile,
     (Hut., (Ifomn), have mapat. hairy, involural leawes, wher of tive closely sessile rhomboidal latlens, of of three suh leallets, with the lateral ones very deeply lobed, all the
    
     radical and incolneral leates of is distimet lathets and corresponds to the $A$. quinquefolia, Linn., l. ،

    In our ('analian phant, the upper part of the petiele appears to be generally more hairy than in buronam suminnens, in which it is mostly nearly glabrons.
    8. - Anemone melifomea, Hooker.

    Slightly hairy, ratieal leares longepetioled, from a filiform rhizome, ternate, leaflets (and the thren susile involural leaves), broadly oral, subdeltoid, or rhomboid, more or less thenply trifil, anote, with a lew incisions at the tips. Seape erect, slender, 8-12 inches, with rourhish hairs. Flower solitary (as large as that of $\boldsymbol{A}$. clichotoma), an inch across. Smpals is-6, white, oral or obovate, obtuse, spreading, nearly glabrous.
    A. deltoiden. Hook., lil. Bor.-Amer. I., p. 6, t. 3. A. (Scape with involucre and flower.) Torr. \& Gr., Fl., I., p. 13. Brewer \& Watson, Bot. Calif. Macoun, Cat., No. 10.

    In thick shady woods of the Columbia, near its confluence with the sea.-Douglas, Scouler, Nuttall.

    Salmon River, near Salmon House, Coast Range, British Columbia, 10th July, 1876.Dr. G. M. Daroson, in Herb. Canad. Survey.

    ## 9.-Anemone Richardsoni, Hooker.

    Plant with long trailing runners, rooting and giving off single, trifidly or piunatifidly cut, petiolate leaves; pednucles naked below, with an involucre at the middle, of
    three trifidly-cut leaflets. Sepals 6, spreading. Whole plant with a slight, but somewhat rough, pubescence. Carpels not numerous, compressed, glabrous, with very long deflexed uncinate beaks.

    Anemone Richurdsoni. Hooker, in Franklin's 1st Journal, ed. 2, App., p. 21. Fl. Bor.Am., I.. p. 6, tab. 4, fig. A. Torr. \& Gray, Fl. N. A., I., p. 18. Hook. f., Arct. Pl., p. 283 and p. 311. Lawson, Ranme. Canad., p. 29. Watson, Bibl. Index, I., p. 6. Macom, Cat., No. 11.
    A. rammeuloides, var? Richardson, in Franklin's 1st Journal, ed. 1, App., p. 740.
    A. arctica. Fischer MSS. (Hooker.)
    A. Vahlii. Hornemam, Flora Danica, p. 13, t. 2176, according to Lange, (Ifook. f.)
    lastern primitive district, shores of Hudson Bay ; barren ground, Rocky Monntains, from $55^{\circ}$ to $68^{\circ}$, in wet mossy ground.-Richarelson, Drummont. Unalaschka and throughout all Siberia.--Dr. Fischer, (IHooker.) Churchill, 3rd July, 1853, and York Factory.McTavish. York Factory, Angust 15th, 1868.--Di. Bell. I'ethemich Island, Great slare Lake, 27th June, 1855.-Cuptuin Rae. Kotzebue Sound and Yukon River:-Rothrock. Greenland.-Hook. $f$.

    Captain Rae's specimens are smoothish, and there is an old pencil memorandnm identifying them with "a form gathered by Drummond in 1843, Chippewa," the specimens of which I had probably seen in the Edinburgh Iterbarimm.

    Sir Win. Hooker observes that the ripe fruit is highly curious; the mumerous long slender styles, all bent downwards, have the appearane of a very course and shaggy head of hair ; under the microscope, the points are seen to be rolled up or uncinate in the dry state, only slightly curred when moist.
    10.-Anemone Cybinmile?, A. Gray.

    Leaves termately divided into enneate segments, cut and toothed. Pedmeles several, very long and naked above, all arising from an involncre of stalked ternately divided leaves. Sepals 5, obtuse, greenish white. Carpels in a long cylindical head. Plant 1 or $\because 2$ feet high, shorter, more silky in foliage than the next, with more slender wiry stems and more finely divided leaves, the inflorescence less branched, with fewer involucels. Prof. Gray, the author of this species, observes that it often flowers after the manner of $A$. Virginiana, developing involucels and secondary peduncles, and that the leaves of the involucre are twice or thrice as many as the flower stalks.

    Anemone cylindrica. Gray, Am. Lyc. N. Y., III, p. 221. Torr. \& Gr., Fl. N. A., I, p. 13. Torr., Fl. N. Y. S., I, p. 8. Gray, Pl. Fendler., p. 4. Manual, p. 37. Lawson, Ranume. Canad., p. 25. Watson, Bibl. Index, I, p. 3. Macoun, Cat. No. 12. Lawson, Proc. Inst. Nat. Sc. Nova Scotia, VI, pt. 1, p. 73.

    Near Belleville, also Mr. Duff's farm, Kingston, August 8, 1861 ; Pittsburg, September 6, 1861 ; Delta, 1st July, 1862 ; also Kingston Mills,-all in Province of Ontario.-Laucson. Trail to Red River, 1860, and between Snake Hill and Pembina, 1862.-Dr. Schullz. Belleville, common on sandy hills.-Macoun. Township of Durham.-Brunet. Ottawa. -Fletcher. Extends south to Santa Fee, New Mexico.-ll. Fendl.

    Grown by Mr. P. Jack at Bellahill, Halifax Co., from seeds collected by Mr., Howard Stokes in the Pembina Mountain district, summer of 1880.

    ## 11.-Anemone Virginiana, Limeus.

    Leaves ternately divided into arominate 3 -cleft incisely serated segments, or leaflets. Peduncles several, very lone, all arising from an involucre of 2 or 3 petioled ternately divided leares, the primary or terminal peduncle naked, the secondary ones with 2 -leared involncels, whance arise other lateral peduncles, giving the plant a branched character. Appals it erenish follow or white. ('arpels in an oun or oblong head, soft with white or tawny wool. Plant 2 or : font high, hairy. The large heads of carpels and stalked leaves of the involure distingerinh this speries from A. dichotome.
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
     10 the northwat; on ridh hanks of rivers-Richtrdson, Drummont, in Hook., lll 13.A. Month of C"palyuith livir, Grand lalls of St. John, N.B.-Fowler. Madeline River, Gasp: Fors William: pains to Rocky Mountains.-Macom.

    ## 12.-Anemone michotoma, Limmas.

    Leaves deeply eleft or divided into from 5 to 7 leallets, which are cuneate, incisedtoothed. Flowers several, primary pedincle with a general involucre of three sessile leaves, the lateral stalks with two-leaved involucels, \&e. Flower $1 \frac{1}{2}$ inch hroad. sepals obovate, white. Carpels in a hemispherical head, flat, orbieular, hairy. A handsome free-growing plant.

    Anemome dichotoma. Jinn. Amœn. Acad., I., p. 155, (1749). Sp. Pl. ed. 3, I., p. 762. Aiton f., Hort. Kew., ed. 2, III., p. 339. I'ursh, Fl., p. 387. DU. Syst. Nat., I., p. 210.

    Prodromus, I., p. 21. Maximowicz, Prim. Fl. Amur., p. 18. Regel in Radde's Reisen, I., p. 17. Lawson, Trans. Bot. Soc. Edin., X., p. 346. Ranunc. Canad., p. 24. Watson, Bibl. Index, I., p. 3. Macom, Cat., No. 14.
    A. Pennsylvanica. Limm. Mant. II., p. 247 (1767). Aiton, Hort. Kew., ed. 1, II., p. 256. Pursh. Fl., p. 387. DC. Syst. Nat., I., p. 209. l'rodromus, I., p. 21. Richardson in Franklin's Jour., 13. Torrey, Flora New York State, I., p. 19, t. 4. Hook., Fl. Bor.-Am., I., p. 8, t. 3, f. B. Torr. \& Gr., Fl. N. A., I., p. 1t. Gray, Gren. Ill., I., p. 20, t. 4. Manual, 5 ed., p. 37. "Pl. Bourgean, 254." Matthew, Canad. Naturalist, ser. 2, XII., p. 1.58.
    A. Canadensis. "Linn. Syst., ed. 12, III., App. 231."
    A. irregularis. "Lam. Dict., I., p. 167."
    A. aconitifolia. Michanx, Fl., I., p. 320. Persoon, Synops., II., p. 97.

    Limnæus described as two species, A. dichotoma, Emropean, in 1749, and A. Pennsylvanica in 1767, for which latter the only habitat giren was "Canada." De Candolle pointed ont that the American Pennsyluanica was similar to the European dichotome, but more slemder. Hooker found Dahurian specimens to "entirely areord with the American ones," but in Fl. Bor.-Am. retained the nane Pennsylramien.

    In woody and prairie tracts by the banks of rivers, from Itulson Bay to the l'arific, and from the United States to near the month of the Makmoie River ; not fomd in the barren grounds.-Richardson, Drummond, Dourles. Lake Wimnipeg and Nlave Lakre-R. King, Back's Exped. Head of Lake Wimnipere, 1879.-I'rof. Bell.

    Hardwood Creek, 1861, also Portsmouth, and rlswhere ahout Kingston, (Ontario, June 4, 1859 ; Frankville, Kitley, 5th July, 1862; 11ear Toronto, 2nt June, 1stiz-Lansen. Carroll Point, Hamilton, 7th July, 18ã9.-Tulige Logie. Prescott, Ottawa, dir, common over the comntry.-B. Billings jt. Lake Superior.-Prof. Bell. Chippawa and Madem, Ont. —Dr. Maclagan. Belleville, common amongst rocks aleng rivers.—Dhoun. Gaspé, banks of Dartmouth River, June 17, July 5.-Dr. J. Bell. Anticosti, July 18, 1861.-Verrill. From the Northwest, I have received specimens as follows, viz: From Gorernor AITavish: Mackenzie River, above Fort Simpson, 22nd Jume; Saskatehewan, 19th July; Lake Nipigon, 1853 (sepals silky); Mackenzie River, between Fort Nimpson and Slave Lake, 21st June, 1853. Lake Superior. From Dr. Schultz: sperimens from Fort Garry, July and Angust, 1860; between Wild Riee River and Red Lake River, Sept. 1860 ; Assiniboine River, July, 1861, sp. No. 62. Lake Wimipeg and Slave Lake.-Capt. Back. Provancher, seems to find the plant rather rare in Queber Province. Truro, N. S.-Dr. Campbell. Along the St. John River and tributaries.-Forler. Jacket River.-Lawson. Gaspé; valleys of the Rocky Mountains.-Mucoun. Restigonche.-Mi. Chermers, Fowler's List. Jnpiter River, Anticosti, Ang. 28, 1893.-Mnacom, in Herl. Canad. Survey. In the States it is confined in range to "West New England to Illinois and north westward" (Gray), whilst in British America it is widely spread, extending from the Atlantic Coast west to the Pacific, and northwards nearly or quite to the Aretic Ocean. Mr. Barnston indicates its range thus: Thronghont the extent of the British Territory eastward of the Rocky Monntains, and even westward, though less plentifnlly.

    Cultivated in England in 1768, by Mr. Ph. Miller, flowering in May and June. Mill., Dict., ed. 8., n. 7, (Hort. Kew. ed. 2).

    ## 13．－Anemone multifida，Poiret．

    Leaves ternately divided into cunciform segments eleft into linear lobes．Flower arising from a primary involucre，which consists of 2 or 3 short－stalked leaves，with 1 or 2 flowers from secondary involucels．Sepals from 5 to 8 ，oval－obtuse，half an inch long， red，yollow，or white．Carpels in a spherical or oval，very woolly，head．Plant from 6 to 12 inches high．

    Anemone mullifila．Poiret in Encracl．Meth．，Suppl．，I．，p．364．DC．Syst．Nat．，I．，p． 209．Prot．，I．，p．20．Hook．，Fl．lor－Am．，I．，p．7．Torrey，Fl．N．Y．，I．，p．9，t．2．Gray， Manmal．is ad．，p．Bi．Mathew，Camad．Nat．，XII，p．158．Lawson，Ranme．Canad．，p． －2．Brewor \＆W：atson，Bot．Calif．，I．．p． 4.

    A Commeromitma．1）（＇．in leless．Iron．，I．，p．4，t．1ヶ．Don，Mill，I．，p． 19.
    A．Ilulsonimu．Lidlardson in Frankl．Tour．，p．1\％．＇Torr．\＆Gr．，Fl．N．A．，I．，p． 13 and ぶupr，p，biss

    A．untrisiflora．＂Ilowh．\＆Arn．Bot．Beechey，121，＂（Watson）．
    A．Imigron．Gay，Fl．（＇hil．（Walrers，Amm．，I．，G．）
    Gull of the St．Lawredre－Goldir．From the shores of IIndson Bay to the western denlivit！ol the lanky Momatans，and from the United States to near the shores of the
     the sonron of the（＇ohmbia－Donslas，Mook．，Fl．Bor．Am．Hndson Bay．－Herb．Banks，
     bank－and river himgles，Dartmonth Riwar，Gapé，Junce 30，1862－－Dr．John Bell．Fort
    
    
     Fort Nimpon，June 20．The lat montiond apecimen is a huxument form，referable no douth in b．Hmanimu，whill is apparmatly not a permanent variety．River St．John
     anron the ervat jaine and northwardly by Leace River to British Columbia；Rapid City， Manitoba－Mucoun．Aloo Iupitar Rivar，Anticosti，28th Angust，1883；Pic River，L．
     Tuly．1：8：－Dr．（i．M．Darson．in Herh．Camad．Survey．Watertown，New York State， and on the sonth shore of Lake Superior．Douglas collected it near the sources of the Columbia，on the west side of the Rocky Monntains．It likewise grows at Conception in Chili，on the Chilian Andes，and at the Straits of Magellan．

    ## 14．－Anemone narcissifiora，Limucus．

    Whole plant more or less villons．Leaves palmately divided into cuncate seginents， incisely cleft，lobes linear，acute．Petiole bearing an umbel of several or（in var．monantha DC．）one or two short－stalked white flowers．Involucral leaves sessile， 3 to 5 ，cleft． Specimens from the mountains of Southern Lurope are less hairy than our American plant．

    Anemone narcissifora．Linn．Sp．Pl．p．763．Bot．Mag．t．1120．Pursh．，Fl．Il．p．
    387. DC. Syst. Nat. I, p. 212. Prod. I, p. 23. Hook., Fl. Bor.-Am., I, p. 8. Torr. \& Gr., Fl., I, p. 14. Wood, Cl. Bk. \& Fl., p. 203. Lawson, Ranınc. Canad., p. 30. Watson, Bibl. Index, I. p. 4. Macom, Cat. No. 16.
    A. debia. Bellardi, App. Fl. Pedem., p. 232, t. 7.
    A. umbellata. Lam., Fl. Fr., not Willd. DC.
    A. fasciculata. Linn. Sp. Pl., I, p. 763.

    North West coast of America.-Menzies. Unalaschka.-Nelson. Kotzebue Sound.Hay \&. Collie, in Capt. Beechey's collection, specimens 1-flowered.-Hooker. Alaska.-Rothrock. Alpine region of the Rocky Momntains between lat. $39^{\circ}$ and $41^{\circ}$ - Purry, Hall \&s Harbour. "Canada," given for this species by Pursh, has not been confirmed. Newfoundland has been more recently cited by Mr. H. Reeks, who visited that country as an ornithologist in 1866-68, and seems to have made an interesting collection of plants. See London Jour. Bot., IX, p. 16. It is doubtful, however. whether the plant has ever been found in America east of the Rocky Mountains. Sir Joseph Hooker's Aretic table shows its range over the Northern hemisphere as follows:-European Alps; Asia to Altai, \&c.; Eastern Asia; Aretic America; N. W. America. (Tab. Arct. Pl., p. 283.)

    ## Genus IV.-MYOSURUS, Linneus.

    Bentham and Hooker, Genera Plantarum, I, p. 5.
    List of species:-

    1. M. minimus. | 2. M. aristatus.

    > 1.-Myosurus minimus, Linnerus.

    An ammal glabrons or slightly hairy herb, with attuft of linear leaves and 1 -flowered naked seape, 3 or 4 inches high. Receptacle slender, cylindrical, elongating by growth as the carpels (achenes) mature, the latter numerous, oblong, blunt, arranged upou it as an axis, so that it resembles a spike. The elongated receptacle is 1 to 2 inches in length, varying with the vigour of the plant, and usually about half as long as the peduncle.

    Myosurus mimimus. Limn. Sp. Pl., p. 407. DC. Syst. Nat. I, p. 230. Smith, Bab., Hook., \&c. Torr. \& Gr., Fl. N, A., I, p. 25. Gray, Manual, p. 44. Chapman, Fl. S. U.S., p. 6. Lawson, Ranunc. Canad., p. 43. Watson, Bibl. Index, p. 15. Brewer \& Watson, Bot. Calif., 2 ed., I, p. 5. Macoun, Cat., No. 25.
    M. Shortii. Raf. in Am. Jour. Sc., I, p. 379. DC. Prod., I, p. 25.

    Ferry Point, opposite Belleville, Ont., 24th May, 1865 ; Vancourer Island, B.C., 7th May, 1875.-Macoun, in Herb. Canad. Survey. Tsi Tsutl Mountains, British Columbia, 19th July, 1876.-Dr. G. M. Dawson, in Herb. Cauad. Survey. Belleville, Out., rocky pastures west of Albert College; arid spots north of Cypress Hills, N.W.T.; near Victoria, Vancouver Island, B.C.-Macoun. Near Short Creck, Souris River, N.W.T.-Dr. G. M. Dawson.

    Found in Illinois, Kentucky, Georgia, Louisiana, Arkansas, Oregon, California (wet
    places in Sacramento Valley, Hartweg ; alkaline soil near livermore Pass, Brewer) ; also in Asia, and in Enrope from Montpellier to St. Petersburg, in fields subject to standing water in winter; in England in "damp places in fields," (Bab.) "Cornfields, meadows and pastures in a gravelly soil ; the whole plant is acrid."-Withering.

    In the plant fron Tsi Tsutl Mountains, the receptacle is only one-fifth of the length of the pednucle, and the Vancouver Island specimens are of the same form with elongated peduncle.

    Dr. larry. in dwaribing the North Ameriem Desert Flora, between $32^{\circ}$ and $42^{\circ}$ North latimd. (Jommal of Potany. VIII. p, :3t3-7), wives this as the only Ranunculaceons plant of these desert trates. The ammal desert plants, whose period of growth is strictly confined
     bation a safe dumet for thoir u-nally minute sereds during the prolonged dry season, a condition which is, in great measure, supplied by the porons, sandy and gravelly soil into Which they fall and art safoly huriod, not only out of the reach of climatic influences, but alon sati- from the destrution of amimals. Their growth is rapid and evanescent. In strone combrast the thes are the beremial plants with their thick rhizomes or tuberous or tap roms. Whese stores emable them to resist prolonged drought, whilst the stems and
     athpting them to pesin rigorms amatic ronditions are also well seen on the western prairios and on the mesa or tably-land aromen the peaths of the Rocky Mountains of the south.

    Thu Rinnmenture, "ssmatially moisture-lwing plants, abound in the northern and Aretie rexims aml at all Anations on the momatans of the northern hemisphere where there is monturn and sulliwht summer hat for flowering plants. The peremial species dinaperar on the dusert. on the dry praties, and on the driest parts of the mesa, where herbamos phats have wither to give up the habit of forming thin leaforgans or to durby momoms rhizomes or roots to mable them to resist the mmitigated drought.

    ## 2.-Myostrus Abletates, Bentham.

    Rosembling the proceding species in habit, small size, and general aspect, the leaves narrowly linear, flower stalk 2 inches or more in length; receptacle in frnit oblong or linear. 2 10s lines loner: $\frac{8}{8}$ rd the length of the stalk; achenes prominently beaked, the beak mearly as long as the achene. Specimens from Vanconver Island are three or four inches high, nearly as large as M. minimus, but the receptacle is more slender. The toaked-achenes form the prominent character of the species.

    Myosurus aristatus. Bentham, Lond. Jour. Bot., VI., p. 458. Watson, Bibl. Index, I., p. 15. Brewer \& Watson, Bot. C'alif., ed. 2, I., p. 5. Macoun, Cat., No. 26.
    M. apchlus. Gay, Ilist. Chil., Bot., I., p 31, t. 1, f. 1. Baillon, Hist. Pl., I., p. 48.

    Arid soil, Spence's Bridge, B.O., 19th May, 1875; muddy places and on shingle, Vanconver Island, 13.O., 7th May, 1875; also Jy̦toon, B.C., May 18th, 1875.-Macom in Herl. Canad. Surver. Arid soil west of the Elbow of the South Saskntchewan, 1879 ; near Reed Iake, lat. $50^{\circ} 30^{\prime} \mathrm{N}$. ; long. $10 t^{\circ} 20^{\prime} \mathrm{W}$-Macoun in Cat. In the shade of sagebrush, Carson and Sierra Valleys (California) to Utah; also Chili.-B. \&. W.

    ## Genus V.-Trautveiteria, Fischer \& Meyer.

    Fischer and Meyer, Index Sem., 1835, p. 22. Bentham and Hooker, Genera Plantarum, I., p. 5.

    ## 1.-Trautvetteria grandis, Nullall.

    Stem 2 to 3 feet high. Leaves alternate, 2-3, distant, the lower long-stalked, the upper short-stalked or sessile, thin, membranons, palmately lobed, the loves acuminate, toothed, pubescent below, the veins sarcely prominent. Flowers in a nearly simple, corymbose cyme. Carpels in a roundish head, beaked.

    Tratvetteria gramlis. Nuttall in Torr. © Gr., Fl. N. Am., I., p. :37. Walpers, hap. I., p. 60. Torrey, Bot. Wilkes, p. 213. Brewe \& Watson, Bot. ('alif., M. 2. [.. p. 42.).

    Actat palmatu. Hook., Fl. Bor.-Am.. I., p. 26 (exill. syn.)
    Trantvelteria putmela, var. orcilentatis. (iray, Pror. Am. Anal., Mll., p. BT:. Watson, Bibl. Index, I., p. 27. Macom, Cat., No. 7-

    Actece gramdis. Dietr. Syn., 3., p. 233.
    Northwest coast of America.—Menzies in Harl, Hooker. F\%. Bor-Am. Rith woods on the Lower Fraser River, British Columbia; a singla spommen, 1sta.-Maroun in larb, Canad. Survey. On Mill Crook, Plumas County, California and in Oregon-Dou. Colif.

    Mr. Watson observes that the T? palmale of the Atlantie states of which this has been hitherto mostly regarded as a variety) has more coriacens strongly reincel leares, the cauline sessile, and the larger achenes ( 2 lines long or more) oblong-obovate, ander at base, and abruptly beaked by the short style: he also remarks that the Japanese form has a narrowly orate arhene, more attennate upwarl into the straightish style.

    ## Gends VI.-RANUNCULUS, Limmeus.

    Bentham and Hooker, Genera Plantarum, 1., p. i.
    Section I. Batrachium, DC. Achenes transversely wrinkled. (Aquatic Herbs with capillaceous submerged leaves. Petals white, with yellow claw, and a pit near the base.

    1. R. hederacens, var. Lobbii.
    2. R. hederaceus, var. hederafolius.
    3. R. aquatilis, var. longirostris.
    4. R. aquatilis, var. conferroides.
    5. R. aquatilis, var. Dronetii.

    Section II. Ranuncuius as restricted by some authors. Achenes not wrinkled. Mostly perennial terrestrial herbs with yellow (rarely white) petals haring a small scale at the base.

    Sub-section I. Aquatic, with capillaceous leaves and yellow petals.
    6. R. multifidus.
    8. R. multifidus, var. $\gamma$. repens.
    7. R. multifidus, var. $\beta$. limosus.

    Sub-section 2. Terrestrial, with fibrous roots, divided leaves, and white (or purplish petals.)
    9. R. glacialis.

    Sub-section 3. Terrestrial, with fibrous roots, undivided leaves and yellow petals.
    10. R. reptans.
    11. R. reptans, var. $\beta$. intermedius.
    12. R. ambigens.
    13. R. Cymbalaria.
    14. R. Cymbalaria, var. alpinus.

    Sub-section 4. Terrestrial, with fibrous roots, the leaves more or less divided or cleft, at least the upper ones, petals yellow.
    15. R. abortivus.
    28. R. Pallasii.
    16. R. affinis.
    17. R. affinis, var. cardiophyllus.
    18. R. affinis, var. leiocarpus.
    19. R. ovalis.
    20. R. glaberrimus

    21 . R. sceleratus.
    22. R. Lapponicus.
    23. R. hyperboreus.
    24. R. hyperboreus, rar. pyemarus
    2.5. R. nivalis.
    26. R. nivalis, rar sulphureus.
    27. R. nivalis, var. Eschscholtzii.
    sub-section 5. Temestrial, root a fascicle of tubers, petals yellow (more than 5.)
    40. R. digitatus

    > 1.-Rantinctide hederaceus, var. Lobbit.

    Rereptaclenglabrous. Stems elongated, floating, 6 to 12 inches long; submersed leaves none, or rudimentary, resembling adventitious shoots. Floating leaves 3 to 8 lines wide, deeply 3 -lobed, truncate-ordate $\frac{1}{4}$ to $\frac{2}{3} \mathrm{in}$. wide, lobes equal, oval or oblong, the lateral ones usually with a broad notch at the apex. Peduncles opposite the leaves, thicker than the petioles, $\frac{1}{2}$ to 2 in . long. Flower buds globose. Petals 2 or 3 times as long as the persistent sepals. Ntamens about 6 ; arhenes few, (about 4), turgid, glabrous. Receptacle rounded or flat, elabrous

    Ranunculus hydrorharis Lobbii. Hiern, Batrachian Ranunculi, Jour. Bot., IX, p. 65, t. 114.
    R. hederaceus, var. Torrey in Report Exped. Whipple, (1857). Brewer \& Watson, Bot. Calif. ed. 2, p. 5.
    R. aquatilis, var. Lobbii. Watson, Bibl. Index, p. 17.
    R. Lobbiï. Gray, Am. Jour. Sc., ser. 3, I, p. 476.
    R. hederaceus. Macoun, Cat. No. 27.

    In a pool by the roadside near Esquimault Harbour, Vancouver Island, 1875.-Macoun. Oregon.-W. Lobb, 1852, No. 249 ; and California, near 35th degree of lat., in 1853-4.Bigelow, in Herb. Kew., fide Hiern, 1. c. Russian River.-Bolander, in Bot. Calif.

    ## 2.-Ranunculus hederaceus, var. hederafolius.

    Differs from the preceding in growing on mud (not floating), the petals not, or scarcely, exceeding the calyx; leaves with 3 or 5 entire or sub-entire somewhat deltoid lobes, the middle one projecting. Leaves sometimes opposite.

    Rumunculus hydrocharis hederafolivs. Heirn, Batr. Ranunc., Jour. Bot., IX, p. 67.
    R. heileraceus. Biria, Hist., Renonc., p. 33.
    R. aquatitis, var. arcticus. Durand, Kane Exp., II., p. 447.
    R. hederaceo proximus. Giesecke, (Durand.)

    Newfoundland and Rocky Mountains.-Hiern. The Rocky Mountain plant with larger flowers and more numerous stamens than in the type. Not rare in Europe. Disco and adjaceut coast, $70^{\circ}$.-Durand.

    ## 3.-Ranunculus aquatilis, var. Longhostris.

    Aquatic. Receptacle hairy. Stem weak, arched, rooting copionsly at the joints. Leares all submerged, subsessile, (not cuncate-1labelliform), segments capillary; stamens 12-15. Petals small, narrowly elliptic-ovate, faintly veined. Receptacle small, globose. hispid. Stamens 12-15. Carpels 8-10, inflated on the peripheral side, with prominent recurved or hooked beaks.

    Ranunculus hydrocharis lomgiostris. Mimm, Batr. Rammo. Joms. Bot., IX. P. 1on, (1×T1)
    R. longirostris, Godron, Essai, f. 9. (1889.)
    R. aquatilis (var. trichophyllus?). Lawson, Monogr. Rannme. (imad.. p. t?, (1xal9.)

    In rumning water, creeks and ponds, (Gamooque lism and Ridoan ('anal. Ont.; Yarker, Ontario, 1861.—Lurson. Canada West.Drummond, Whrom, New Mrxiro. Kirıtucky ; Columbia; Missouri ; California-Miern: who also refiers to this form, but apparently with some hesitation, Dr. Lyall's sperineus from Tolnceo l'lain, Kootenay, B. C. : Burkers from Rock River, Hudson lay Territory; and lonmean's from saskathmwan. Oneurs exclusively in North America.-Hiern.

    ## 4.-Ranunculuts aquatids, vell. (onfervomber.

    Aquatic. Stem filiform. Leaves submersed and dissected, subsessile sommonts capillary, weak and collapsing (when taken out of the water). Pedumeles "qualling the leaves in length. Leaves, flowers and peduncles of small size. Stamens few (5-12). Carpels short-beaked. Receptarle nearly cylindrical, hairy.

    Rammeulus hydrocharis confervoides. Hiern, Batrach. Rannme., Jour. Jot., IX.. p. 10̈2, (1871).
    R. conforvoides. Fries, Summa Veg. Sian., I., p. 139, (1846).
    'Batrachium confervoides. Fries, Bot. Not. A11., 1845, p. 121.
    R.. paucistamineus, var. borealis. Beurl, Bot. Not., 1852, p. 156.

    Lake Winnipeg.-Douglas. Washington Territory ; North of Europe; Iceland.
    5.-Ranunculuds aquatilis, var. Drouetit.

    Differs from the preceding var. (confervoides) in the fruit-receptacle being oblong (uot cylindrical), the stem slender but scarcely filiform, and is probably not distinct, as Mr . Hiern indicates that in its Pacific and Cascade Mountain forms it approaches confervoides.

    Ravunculus hydrocharis Drouetii. Hiern, Batr. Ranunc., Jour. Bot., IX., p. 102.
    R. Drouetii, F. Schultz.

    Batrachium Drouetii. Nyman, Nya. Bot. Not. An. 1852, p. 98.
    British Columbia (Wood) ; Lower Fraser River, Columbia (Dr. Lyall); Cascade Mountains, U.S. (Dr. Lyall) ; Aleutian Isles.-Hiern, l. c. Widely spread through Europe ; also Asia, Africa, South America.
    [Var. submersus, with more numerous stamens, larger, with bigger flowers and more elongated submersed leaves, occurs at Boston, U.S., and is in all probability widely distributed.-Hiern.]

    ## (6.-Ranunculus multifidus, $P$ ursh .

    l'lant wholly or partially submersed, or creeping on wet mud. Stem rooting at the joints. Laves orbicular in outline, all, or the lower submerged ones, dissected into numeroun very narrow capillary, or broader linear segments or veins, the upper or emersed lả゙ー flat, rounded or somewhat reniform, lobed or cleft into more or less angular lobes, but not disoneted. Petals large, bright yellow.
    limmumenlus mullifictus. I'ursh, Fl. Am., II., 736 (1815). DC. Syst. Nat., I., p. 270. Prod., 1. p. 34. (iray. Mantal. ed. 5. p. 40. Lawson, Ranunc. Canad., p. 41. Watson, Bibl. Index. I.. p. 20. Marom. (at No. 29. Not R. multifulus, Forskœhl, which is an Arabian plant (R. Forskichlii, D(')
    R. flurintilis. Bitelow, Fl. Bont., 'd. 1, p. 139. Not of Willdenow (although so quoted by 1 ( $)^{\circ}$

    R: Iurnstis. Benk \& Trany, in Baton's Manual, ed, 3, p. 423, (1823.)
    f: Purshii. Ridhardson, in App. Frankl. Jour., ed. 2, p. 23, (1823). Hook., Fl. Bor.Am. p. 1. , t. 7. Torr. \& (ir. Fl., I., p. 19. Hook. f., Arct. Pl., p. 283. Chapman, Fl. ※ L.s. P. X. Wood, (1l Bk. \& Fl., p. 206. Rothr., Fl. Alask., p. 442.
    R. delphinifoliess. Torrey, Eat. Man., ed. 4, p. 424.
    R. amphibius. James, Cat., 183.
    R. Beckiii. Don, Mill. Dict., I., p. 39.
    R. fluitans. Provancher. Fl. Canadieme, p. 10, not of Lamarck.
    R. raticuns, var. multifulus. Regel, Fl. Ost.-Sib., I., p. 45.

    Common throughout the eastern and prairie districts, from Canada to near the Arctic Sea; never observed floating in deep water, but sometimes spreading over the surfaces of sphagnous bogs, more generally creeping on mud in very sheltered pools of water in shady places; lakes and marshes about Slave Lake, Cumberland House Fort.-Richardson. And to the Rocky Mountains.-Drummond. Extending to near the Arctic Sea.-Hooker.

    In ditches and muddy pools, not rare in Ontario. Sloate Lake, Sydenham, 7th June, 1859, ; near Yarker, 11th July, 1861; marsh between Forfar and Newboro', on the Ridean, 4th July, 1862.-Lawson. Creek in Gladford, 25th May, 1860.-Logie. Conway Creek, Prescott.-B. Billings jr. Malden, abundant.-Dr. P. W. Maclagan. Very abundant in ponds around Belleville, Ont.; Cape Breton.-Macoun. Windsor, Nova Scotia. -How. Kotzebue Sound.-Rothrock.

    ## 7.-Ranunculus multifidus, ver. $\beta$. himosus.

    Creeping, partially submersed, all the leaves more or less reniform in ontline, lower ones dissected, the ultimate segments linear, upper ones palnately divided into angular segments.
    R. Purshii $\alpha$. Richardson, Frankl. Jour., ed. 2, App., p. 23.
    R. Purshü rar. $\gamma$. Hook., Fl. Bor.-Am., I., p. 15, t. 7. B., fig. 2. Torr. \& Gr., Fl., I., p. 20.
    R. limosur. Nuttall, in T. \& Gr. Fl., I., p. 90.
    R. radicans, ß. repens. Regel, Fl. Ost.-siber., I., p. 45.
    R. multifulus, var. $\beta$. Watson, Bihl. Index, I., p. $\because 0$.

    Slave Lake, Cumberland Honse Fort, and Rocky Monntains.-Drummonl in Iook., Fl., l. c. Touchwood Hills, N. W. Territory, and in pools near Stuart Lake, British Columbia.-Macoun.

    $$
    \text { 8.-Ranunculdts multifidu's, var. } \gamma \text {. Repens, Walsom. }
    $$

    Creeping on mad, all the leares romdish reniform, palmately divided into thren or five segments.
    R. multifudus $\gamma$. repens. Watson, King's Rep., V., p. 8. lhibl. ludex, I., p. 20.
    R. Purshii $\beta$. Richardson, l. с.
    R. Purshii, var. $\delta$. Hook., lil. Bor.-Am., p. 15, tal). 乌. B., fig. 3. Torr. \& Gr., Fl. N. Am., I., p. 20.
    R. radicans. C. A. Meyer, in Ledehour's Fl. Altaica, II., p. 316.
    R. radicans, $\alpha$. typicus. Regel, Fl. Ost.-Siber., I., p. 44.
    R. Purshii $\beta$. terrestris (subgluber). Ledehour, Fl. Rossica, I., p. 35.
    R. Gmelini. Flora Sibirica, IV., t. 83, b.

    Bear Lake.-Richardson. Bay of Dschscholte, on the western shore of extreme Arctic: America.-Chamisso. Near Flinton, Hastings Co., Ont, and on the great prairies.-Ituoun. Swamps, Foot Hills of Rocky Mountains.-Dr. G. M. Dauson.

    ## 9.-Ranunculus alacialis, Limneus.

    Plant 3-8 inches long, stem about 1-flowered. Radical leaves petiolate, palmately 3 -parted or 3 -cleft, the lobes trifid, lobules thick, and somewhat ohtuse. Canline leaves or bracts few and sessile. Calyx covered with brownish silky hairs. Petals romdish, emarginate at the apex, as long at the sepals, white with a purplish tinge. Achenes compressed, margined.

    Ranunculus glacialis. Limn. Sp. Pl., p. 777. Biria, Hist. Renoncnl, p. 34. DC. Prod., I., p. 30. Torr. \& Gr., Fl. I., pp. 16 and 358. Hook. f., Arct. Pl., pp. 283 and 311. Durand, Pl. Kane II., p. 448. Watson, Bibl. Index, I., p. 19. Maconn, Cat., No. 44 b.
    R. Chamissomis. Schlechtend. Animad., I., p. 12, t. 1.

    Found in East Greenland by the earliest and by all subsequent voyagers, but never on the Baffin Bay side till Kane's expedition, when it was brought from North Proven, lat. $72^{\circ}$ N.-Hook. fil. Fury Beach, Elwyn Inlet, Gulf of Boothnia.-Capt. A. H. Markham. Iceland.-Lindsay. Laplaud, Swiss Alps, Pyrences, Anstria, Hnngary.

    ## 10．－Ranunculus reptans，Linneus．

    Stem slender，arched－procumbent，and rooting at the joints．Leaves linear，acute， somewhat fleshy，glabrous，entire．Jlowers solitary，terminal or at the joints，the flower sinall，sepals spreading，obtuse．Petnls sinall，obovate，yellow．Achenia smooth，with a minute point．

    Rıииисиlu：reptans．Limm．Sp．Pl．，p．5ヶ8．Fl．Dan．，t．108．Ait．f．，Hort．Kew．，ed．2， 111，p．3．51．Torr．心́（ir．，lil．．I．p．16．（iray，Man．，ed．1，p．9．DC．Syst．，I，p．248．Lightf．， Fl．Sotica，dige ontitle page．Withorine．Arr．Br．Plis．，Il，j，505．Lawson，Ranunc．Canad． p．40．Wood．（＇I Bk．AL F．p．omb．

    R filitormis Mi．han，Fil．，li．A．．1，p．320．P＇ersoon，Synops．，II，p．102．Pursh，Fl．， 11． 1 ， 312

    R roplus，var．（B．filifinmis，1）（＇．syst．Nat．，I，p． 248.
    fi．Flmmmuln，var．Y．filifimmis．Hook．，lil．B．A．．I，p． 11.
    R．Flammuln，var．remtus，smith，Lher．F1．，III，p．45，（1825）．Meyer，Pl．，Lab．，p． 96. （iray，Man ．．i．p．11．Wats．Bibl．Index．1．p．18．Brewer \＆Wats．，Bot．Calif，I，p． 6.

    R．I＇lummulu，sub－sp．Foptans．Heok．f．，Student＇s Flora，p． 6.
    Whank in the st Lawreme liver．nour Brokville and elsewhere on the northern
    
     lingtom．J＇esontt，and bank of st Lawrome River，west from Brockville．－B．Billings jr． lake Wimnip＂t amd Athabaska liver．31st July，1862．－McTwish．Gravelly banks of lakes and rivers Xova siontand（＇oast lamere of British Columbia；Lake Winnipeg； －barinoly amongst samd ant side of liver Trent，below Heeley＇s Falls，Seymour，Ont．－ Wuroun．Lakisit（hatho－Prormmer．Lalmador，Newfoundland，Iceland and Greenland．

    This limm is well known in noth min limpe，and extends to Kamtschatka，but is not bery mommon．（）nt（anadian plant agros perfedly with Scotch specimens（from Loch
     lirmmar．chotland，have narmwly lancoolate laves，apparently connecting this with Fammula In Camada it appears to be permanently distinct．

    > 11- Randerdis heptans, var. ß. intermedius.
    bavie narmowly banomate，the upper ones linear，entire．
    R．Flammult，var．intermedin．Hook．，F1．Bor．－Am．，I．，p．11．Gray，Man．，ed．5，p． 41.
    R．Flammuln．Sollewhtondal，in Linnesa，VI．，p． 5 万7．
    Shore of Lake Ontario at Presquille l＇oint，and on Toronto Island．－Macoun．Sonth Greenland－Modi．f．，Aret．I＇l．

    > 12.-Ranveculus ambigens, Watsom.

    Sten more or less ared l＇rom a reclining base，with adventitions roots from the lower joints．Leaves ovate－lanceolate or linear－lanceolate，narrowed at the base into short sheathing petioles，nsually glabrous and entire or slightly toothed．Carpels small，with a subulate beak．Petals much longer than the calyx．

    Rumunculus ambigens. Watson, Bibl. Index, I., p. 16.
    R. Flammula. Pursh, Fl. N. Aın., II., p. 391. Torr. \& Gr., Fl. N. Am., I., p. 16. Gray, Manual, ed. 1, p. 8. Lawson, Rantue. Canad., p. 40. Wood, Cl. Bk \& Fl., p. 206.
    R. Lingua. Pursh, Fl., p. 391?
    R. alismufolius. Gray, Man., ed. 2, p. 8; ed. 5, p. 41. Chapman, Fl. ふ. U.s., p. 7. Macoun, Cat. No. 30.

    Sonthern Canada.-Goldie. Wet fields and on the common at College street, Kingston, Ont.-Lauson. Near Victoria, Vancouver Island.-Macoun, in Herb. Canad. Survey. Vicinity of Port Colborne, Ont., McGill College Herb.-Macoun.

    ## 13.-Ranunculus Cymbalaria, Pursh.

    Humble, creeping, main stock throwing off rumers, which root and berome leafy at the joints, forming new plants. Leares long-stalked, orbienlar, somewhat cordate, crenately notched or almost lobed. Flowers sereral, on a leafless stalk a lew inhes high, with one or two distant bracts. Carpels very mmerons, with short beaks, forming an oblong or round head.

    Renuncolus Cymbalariu. Pursh, Fl. Am., IT., 1. 392. I)C. Syst. Nat., I.. 1. 25.2. Prod., I., p. 33. Hook., Fl. Bor.-Am., I., p. 11. Torr. \& Gr., F1. N. Am., I., p. 17. Torrey, Fl. N. Y., I., p. 12. Gray, Pl. Wright., II., p. 8. Manual, ed. it, p. 41. Provaneher, Fl. C'anal., p. ! Hook. f. \& Thomson, Fl. Indica, I., p. 81. Walpers, Ann., IV., p. 18. Hook f. Arct. I'l., p. 283. Lawson, Ramme. Canad., p. 40. Watson, Bibl. Iudex, I., p. 18. Mawoun, Cat. No. 32. Hance, Lond. Jour. Bot., XXI., p. 296. Brewer \& Watson, Bot. Calif., ed. 2, I., 1. 7. Regel, Fl. Ost.-Sibir., I., 1. 42.

    A number of forms ocenr in Northern Europe and Asia and on the Rocky Mountains, whose relations to $R$. Cymbalaria appear to be still imperfectly understood, and I hate therefore refrained from quoting synonyms which it has been eustomary to refer here. $R$. salsuginosus of Pallas was regarded by the elder Hooker as identieal with this speefes, but not De C'andolle's plant of the same name. In the Flora Indica, Ilooker and Thomson now identify with it De Candolle's plant also. R. sulsuginosus of Wallich is referred to R. pulchellus, C. A. Meyer, and R. salsuginosus, Don, in Royle Ill., to R. lobatus, Jarquem. On the other hand, I infer from remarks in Plante Fendleriance, that Gray regarded R. Cymbalaria, Pursh, R. trillentutus, HBK., and R. salsuginosus, Pallas, as three wellmarked species. And yet, in the Bibliographical Index, Watson, who may be regarded as representing Cambridge views, quotes, as synonyms of $R$. Cymbalaria,--tridentutus, HBK., salsuginosus, Pallas, sarmentosus, Adams, and halophilus, Schlechtendal, to which Hook. \& Th. add plantaginifolius, Murray.

    Gaspé, at the mouth of the Dartmonth River, in situations nearly as low as Gaspé Bay, July 15, leaves sometimes floating.-Dr.J. Bell. Windsor, N.S.-Prof. How. Anticosti, July 5, 1861.-Verrill. Hudson Bay Country, McTavish.-York Factory ; also Slave Lake25th July.-McTavist. Lake Winuipeg.-Barnston. Fredericton.-Dr. Robb. New Bruns, wick, Gulf shore.-Rev. J. Fowler. Bay of Fundy.—Matthews. St. Joachim, Rimouski.Provancher. Musquodoboit River, Halifax County, 25th June, 1878.—Dr. W. H. Lindsay.

    Bedford Basin．－Lanvson．Lake Winnipeg．－R．King，in Back＇s Expedition．Common in moist shady places，from Canada to near the Arctic Sea，lat． $68^{\circ}$ ，and from Hudson Bay to the summits of the liocky Momntains．－Richarlson，Goldie，Donglas，Drummond， Morrison．－Hook．，Vl．Bor．－Am．Beauharnois and Montreal，P．Q．，McGill College Herb． －Maroun．On mud flats along the Ottawa at Thurso，P．Q．Fletcher．Along the Ottawa River at Bamharmois，P．Q．From IIndson Bay to near the Aretic Sea，in lat． $63^{\circ}$ ．－ Richurdson．N゙・w Brunswiw－Fouler．Sea shores and margins of salt ponds in the prai－ rie rugion and inturior of Dhitish Colmmbia；Gaspé，P．Q．F Fort William，Lake Superior．－ Macoun．D＇arilic mash．－Dr．（i．M．Daneson．
    \＆onth（imonland．Itwok，Arot．l＇l．
    Firn demeted be Powh near the sall works of Ouondaga，New York State．It grows al Loner J land amd s＇alum．Vase．Gray sives its distribution in the Eastern United
     Illimis and w．atwarl ；alon al sall sprimes．＂Salt plains of the Platte－James．Banks of
    
    
    
    
    

    Xuat the－ummit of th，lionky Monmains，belwern lat． 52 and $55^{\circ}$ ．－Drummond，
    
    

    > 15.-Randicutas abomives, Linneus.

    Randical have peliolate rommish or kidney－shaped，more or less crenate，smooth and shiming，thom of the stem frery shortly staked or sessile，and divided or parted into oblomr，＂meate or brody limar divisions．Petals shorter than the sepals．Carpels in globose heals inflated，with small curved beaks．

    Rammeulus ahortirus．Linn．Sp．Pl．，p．Tro．Willd，Sp．Pl．，II，p．1314．Pursh，Fl．，II．， p．342．1）（．s．s．Nat．，I，p．2ti8．J＇rod．I，p．34．Ilook．，Fl．Bor．－Am．，I，p．14，in part， Torr．\＆（ir．．lil．N．Am．．J．p．19．Torrey，Fl．N．Y．，I，p．13．Gray，Manual，ed．5，p． 42. Chapman，Fl．ぶ US゙．p．7．Wood，Cl．Bk．\＆lil．，p．206．Lawson，Ranunc．Canad．，p． 3 ל． Watson，Bibl．Jndex，］，p．1\％．Macom，C＇at．No．37．

    R．auricomus var．Kiria，Hist．Renonc．， 39.
    Abundant about the City of Kingston，Ont．，and surrounding country，in pastures and woods；Indian Island，Bay of Quinté，5th June，1862；Sloate Lake，Sydenham，7th Jnne， 1859 ；Kingston Mills，24th May， 18.9 ；grounds of Rideau Hall，Ottawa，24th May， 1884. —Lazoon．Portland，July，1860－Dr．Dumuis．Fort Garry，July 1861．—Dr．Schultz，sp． No．180．Nicolet，Montreal，Kingston and Malden．－Dr．P．W．Maclagan．Belleville， abundant in low wet places；Peace River；British Coluınbia．－Macoun．Common in Caledon．－Cameron．Roadside，Hamilton．－Logie．Lake Winnipeg．－Burnston．Lac St．

    Jean, also St. Joachim.-Provancher. Belæil-Dr. J. Bell. Bass River, Kent, N. B.Fowler. Prescott district, common.-B. Billings jr. Osnabruck and Prescott Junction, 20th May, 1859.-Epstein. Gaspé, Douglastown and North Fork of Dartmouth River, June 18, 1862.-Dr. J. Bell. Anticosti, June 25, 1861; Newfoundland.-Verrill. Hadson Bay Territories.-McTuvish. Picton, N.S.-A. H. McKay. Canada; and to lat. $57^{\circ}$; central limestone and prairie districts, and castern declivities of the Rocky Mountains.Richardson, Drummond, Mrs. Percival, Todd. Newfonndland.-Cormack, (Hooker.)

    In open exposed situations the stem is short and stout, the leaves are thick with short petioles, and the plant rises to a height of from 3 to 7 or 8 inches; in woods and shaded situations the whole plant is more delicate, the stem elongated and lax, the leaves thin and of a paler bright green, with longer petioles, the radical ones few in number, and the slender stem rises to a height of from 12 to 18 inches. Althongh described by Gray (in Mànual) as "glabrous and very smooth," this species is usually slightly hairy, or has at least hair points. I have not seen the var. micrunthus, which is described as pubescent.

    ## 16.-Ranunculus afrinis, R. Broun.

    Radical leaves long-petioled, more or less cuncate at the base, pedately divided or lobed, cauline ones sub-sessile, digitate, being divided to the base into long narrow linear segments. Stem erect, 1,2 or several-flowered, and, with the calyx, more or less pubescent, fruit an oblong-cylindrical head of achenes with recurved beaks. Plant usually more or less pubescent, especially on the pedicels and calyx. Carpels usmally but not always hairy.

    Ramunculus affinis. R. Brown in Pary's 1st Voy., App., p. 265. Richardson, in Frankl. Jour., ed. 2, p. 23. Hook., in Parry's 2d Voy., App., p. 394. Fl. Bor.-Am., p. 12, t. 6 f. A. Graham, in Edin. Phil. Jonr., 1829, p. 187. Torr. \& Gr', Fl. N. Am., I., p. 18. Gray, Pl. Fendl., p. 4. Pl. Wright., II., p. 8. Watson, Bibl. Index, p. 1.. Micoun, Cat., No. 34.
    R.arcticus. Richardson, in Frankl. 1st Jour., ed. 1., App., p. T+1.
    R. auricomus. Hooker, Back's Exped., 1836, p. 523. Hook. f., Distr. Aret. Pts., pp. 283 and 312. Not auricomus of Linn. and European botanists.
    R. auriconus, var. affinis. Lawson, Ranunc. Canad., p. 37.

    The following references in Watson's Index appear to be somewhat doubtful or obscure:-R. pedatifidus, Schlechtendal. R. amconus, Ledebour. R. caspitosus, Wallich.

    Cape Mnlgrave, in N. W. America.—Lay \&. Collie. (Beechey.) Melville Islands.Parry. Shores of the Arctic Sea, between long. $107^{\circ}$ and $159^{\circ}$.-Richardson, Frankhn, Back, Drummond, (Hooker.) Churchill. 3rd July, 1853, a small specimen.—McTavish. Kotzebue Sound.-Hooker. Lake Winnipeg. - Barnston. Slave Lake, Thlew-ec-choh and Athabasca.-King, (Back's Exped., 1833-4.) Abundant west of Moose Mountain, N. W. T.; Quesnel, British Columbia.-Macom. Lake of the Woods and Traders Road, north of Woody Mountain, N. W. T.-Dr. G. M. Dawson. Disco; east shore of Baffin Bay (west coast of Greenland), $69^{\circ} 15^{\prime}$. Extreme north and south limits observed on the West Shore (Grinnell Land) : $82^{\circ} 27^{\prime}: 81^{\circ} 42^{\prime}$.-Harl, Brit. Pol. Exped., 1876. Swift Rudder Bay and Floberg Beach.-Dr. Moss, (Hart.) East Greenland, "north coast."-Buchanan. Cumberland Gulf, Davis Strait.-Taylor.

    The plant having been much confounded with the $\boldsymbol{R}$. auricomus of Europe, it is difficult to trace its distribution. In some of its forms it runs down the mountains into New Mexico, as appears from Parry and Fendler's collections. I have gathered it on the mesa around the Colorado peaks.
    R. auricomus of Europe has three distinct sets of leaves, viz.: 1. Radical leaves, which are long petioled, reniform, three-lobed or -partite. 2. Lower cauline leaves, which are shortly petioled, pedately divided into broad lobes. 3. Upper cauline leaves, which are sessile and embracing, digitately divided into slender linear lobes. The whole plant is nearly glabrous, of a vivid green colour like the sylvestral form of $R$. abortivus, the calyx is only slightly hairy, and the achenes are in a globose head. It grows in warm sheltered woods, never in exposed situations, and does not extend far north, nor to very great elevations. $\quad$. affimis, on the contrary, is conspicuously arctic and alpine in its range.

    > 17. -Ranunculus affinis, var. cardiophyllus, Gray.

    Robust and roughly hairy; radical leaves rounded-cordate with the base rather deeply cmarginate, undivided or many-cleft, crenate; cauline ones palmately cleft into lincar inciscly crenate lobes: sepals spreading, half the length of the petals; head of achenes oblong.

    Ranunculus affinis, var. cardioplyllus, Gray, Proc. Am. Acad., 1863, p. 56. Wats., Index. I, p. 16. Macom, Cat, under No. 34.
    R. cardiophyllus. Hook., Fl. Bor.-Am. I, p. 14, t. 5. Bot. Mag., t. 2999. Torr. \& Gr., Fl., I, P. 18 .

    In the central prairie and limestone districts.-Richardson, Drummond. Alpine prairies in the Rocky Mountains.-Drummond, (Hooker.) Vicinity of Morley, Bow River, seven miles north-west of Edmonton.-Macoun.
    18.-Ranunculus affinis, var. Leiocarpus, Trautvetter.

    Radical leaves divided, the lobes oblong-lanceolate or linear-lanceolate, entire or incisely dentate. Stem leafy.

    Ranunculus affinis, var. leiocarpus. Trautvetter, in Pl. Schrenk., p. 71. Regel, Fl. Ostsib., I, p. 45. Watson, Index, p. 16. Macoun, Cat., under No. 34.
    R. pedatifidus, of Sm., DC., Ledeb., Trautv. \& Meyer, and Turcz., according to Regel, Fl. Ostsibir., I, p. 46.

    Top of Mount Albert $4,000 \mathrm{ft}$. ; Shickshock Mountains, Gaspé,-Macoun, in Herb. Canad. Survey. Table Top Mountain, Gaspé, July 30, 1883.-Porter, in Herb. Canad. Survey.

    ## 19.-Ranunculus ovalis, Rafinesque.

    Stem very short, rising from 5 or 6 inches in flower and fruit. Leaves mostly radical, ovate or obovate, more or less rhombic or sagittate, long petioled, toothed, those on the stem nearly sessile, lobed or parted, the upper ones into linear segments. Flowers large.

    Carpels globose, with very minnte beaks, in round heads. Whole plant pale green, with soft hairs.

    Rammenlus ovalis. Ralinesque-Schmaltz, Jour. Bot., II., p. 268. (1814.) DC. Syst. Nat., I., p. 302. (1818.) Prodromns, I., p. 43. Graham, Edin. Phil. Jomr., 1829, p. 188. Poiret, Supp., V., p. 778. Don, Mill 1Dict., I., p. 33. Hook., Fl. Bor.-Am., I., p. 12, t. 6., f. B. Torr. \& Gr., Fl. N. Am., I., p. 18. Walpers, Rep., I., p. 42. Dietr. syn. III., p. 318.
    R. rhomboideus. Goldie, in Edin. Phil.Jour.,VI., p. 329, t. 11, f. 1. (1822.) Richardson, in Frankl. Jour., p. 13. Hook., Fl. Bor.-Am., 1., p. 12. Torr. \& Gr., I, Fl. N. Am., I., p. 18. Gray, Man., ed. 5, p. 42. Lawson, Ranume. C'anad., p. 36. Macomn, Cat., No. 83.
    R. brevicautis. Hook., Fl. Bor.-Am., I., p. 13, t. 7, 1.: A. (18333.) Lond. Jour. Bot., 1st Series, VI., p. 66. Torr. \& Gr., Fl., I., p. 18.

    Lake Simeoe, Ont.-Goldie.--In the central limestone and prairic distriets from Canada to lat. $57^{\text { }}$. Common in the western parts of Camada (Ontario).-Ridhardson.

    Alpine prairies among the Rocky Momntains, and about Carlton Honse, lat. abe and $55^{\circ}$ (R. ovalis.)-Drummond, in Hook., Fl. B.-A. Shores of Lake Huron (R. brevicmulis)Richardson, Drummond, in Hook., Fl. B.-A. Nandhills on the lanks of the Humber, near Toronto, Ont., 4th June, 1862, plentiful.-Lawson. Sanely plains nurar Castleton ; also at Murray Town hall.—Macoun. Lake Wimipeg.—Bernston. Near Montral.—Dr. Holmes. Sand hitls near Trenton and Riee Lake Plains, Ont.; Lake of the Woods, and on the western plains.-Macoun. Near London, Ont.-Saunders. Nandy planis of the Rivinse aux Sables, Lambton Co., Ont-Gibsom. Red River Prairie and P'mblina Momatan-Dt. G. M. Dawson, (Macomı).

    ## 20.-Ranuncult's (itaberrints, Hooker.

    Plant suceulent and glabrous. Stem 4 to 7 inches high. Root a fasidide of long fleshy fibres. Leaves broadly oval-oblong, cuneate at the base, or more or less elliptical, entire or bluntly toothed at the apex, the upper bracteal ones cleft into 3 linear lobes. Sepals oval, not reflexed, half the length of the petals. Petals oral, ywilow, 3 to 4 lines long. Achenes turgid, smooth, with a short curved beak, in globular heads.

    Ranunculus glaberrimus. Hook., Fl. Bor.-Am., I, p. 12, t. 5, 1. A. Torr. \& (ir., Fl. N. Am., I, pp. 19 and 658. Brewer \& Watson, Bot. Calif. ed. 2, I, p. 7. Watson, Bibl. Index, I, p. 19. Macoun, Cat. No. 35.

    Common on the mountains around the Kettle Falls (of the Colmmbia), and on the Rocky Mountains, near the limits of perpetual snow.-Douglas, in Hook., Fl. B.-A. Nar Lake La Hache, and above Boston Bar, B. C., 27th July, 1875.-Mromn, in Herb. Canad. Survey. Wallawallah River, \&c.-Nultall. In the Suake country, along Snake or Lewis River.-Tolmie. Washoe Momntains (Anderson) and northward in sub-alpine situations to Oregon and Idaho.-Bol. Calif.

    ## 21.-Ranunculus sceleratus, Linneus.

    Root fibrous. Stem thick and hollow (1 foot high). Leares somewhat flesliy, smooth and glossy, the radical and lower canline ones stalked, three-lobed or three-parted, rounded, the segments blunt, crenate, upper leares sessile, trifid, the lobes linear, entire
    or incisedentate. Sepals reflexed. Petals seareely longer than the sepals. Carpels slightly wrinkled. Juice acrid. Anmual or biemial. Celery-leaved Crowfoot.

    Ramunculus scelerutus. Limn. Sp. Pl., p. 776. Fl. Dan., t. 371. Engl. Bot., t. 681. Biria, Renome.. 41. Willd., Sp. Pl., II., p. 1315. Schlecht., Aninad. Ranne. II., p. 10. Hook., Fl. siot., p. 1it. Wither., Arr. Br. Pts., II., p. 505. Elliot, S. Carol., II., p. 59. Lishfiont, Fl. Sot.. M. ․ 1., P. 291. I'ursh, Fl. Am., II., p. 393. DC. Syst. Nat., I., p. 2tis. Irod., 1., p. it. Smith, Fing. Fl.. 111., p. 48. Richardson, in Franklin's Jour., p. 14. Howh, Fl. Iowr--Am., 1.. p. 15. Torr. \& (ir., Fl. N. An.., I., p. 19. Torrey, Fl. N. Y., I., p. 13.
     Man. .i. . . p. Le. Lawson. Ramme. ('anad., p. 38. Watson, Bibl. Index, I., p. 24. Man*m, (:at. No. 3n.
    
    Herlm ciltidoa. (iuilandinus, (Padua, 1558).
    
    Sinmule pulustris "urifution luris. C. Bamhin, (16T1).
    
    Flooded errabolly bank of rivers from Canada to lat. $67^{\circ}$. - Richardson, Douglas, Dinmmund sumat ditho and wet place, Cataraqui Creek and other bays along the -hme of Lakn (blarin, and :lloner the comse of streans rmming into that Lake.-Lawson.
    
    
    
    
    
    
     reatom in doult if lning indignome in Americe, where it is widely spread throughout bitioh Imeria amb the 1 nitud statue, Irom tho Atlantie to the Pacilic, both in const distrint and on the phans with inturior, from lat. 67 in the north, sonth to S. Carolina and the Platte River.

    The Jinglish bomanlar name of this plant has not been followed by American
     Witherines's Arranmement of British l'ants, Lightfoot's Flora Scotica, Smith's English Fhra, Howher's British Flora, Hull's British Flora, Hooker and Arnott's British Flora, Babingon: Manmal of british botany and no doubt in many other books. The Society of Lotanists at Litchlidd, in 1ixa. medertook to give an exact literal rendering in English of thr hatin "Systema Vegrtubilium" of Jimmeus, in which they had the assistance of a large mumber of eminent authorities, inchuding IDr. Samuel Johnson. In this work, instead of giving the viruacular linglish names of the plants, the method was adopted gencrally of substituting for them linglish words as nearly equivalent as possible to the latin Linntan "trival," or specific names. Ranneulus scelcratus thus became the "Baneful Ranunculus." Ioudon, who in his publications took great pains to popularize Natural History, by the nse of linglish names, rendered it the "Hurfful Crowfoot." Gray, probably thinking that his predecessors had not hit upon the true rendering of "sceleratus," called our plant, with American frankness, the "Cursed Crowfoot." He is followed by

    Abbé Provancher, who, in "Flore Canadienne," repeats: "Renoncule scélèrate, Cursed Crowfoot." Macoun evidently thought the epithets had waxed strong enough for a plant that was not known to have done harm, for in his Catalogue we find it standing simply as the "Noxious Butterenp." Probably the true English rendering of the name would be the "Blistering" or "Biting" Buttercup, or Crowfoot, as the "Herba sceleratu" no doubt originally obtained that ancient name on account of its supremely acrid taste and blistering properties. Hudson (Fl. Angl.) quotes "Ranunculus palustris Merbe" as an artiole of pharmacy. Pemant, in 1772, (Tour in Scotland, II., p. 4.) wrote that the Water Ramuculus is used instead of Cantharides to raise blisters." Lightfoot (l. c.) says: "Tho whole plant has a most acrimonious quality; if brused and laid upon any part of the body it will in a few hours raise a blister. Strolling beggars have been known smmetines purposely to make sores with it, in order the more readily to more compassion." Othere early Floras and Herbals give similar testimony. The word, seelerulus, is uned in the sense of "sharp," "hot," "arrid" to the iaste. Plantus has "toritur smapis serelerata,"the _- mustard is being ground. Also in the semse of "moxious," dadly," by Pliny: "sceleratissimi serpentimm,"一the dendliest serpenis. It is douldful whether the formation of so-ealled English names for plants by tramslation of theif botanical nanes is of any real benefit. It is otherwise with vermacularmes in ad a a nse by the peoph of the countrins in which the plants grow; these are of real importane not in a botamial point of view only, but in relation to language, history and anthropology. In the wase of the prestant
     may very well displace all others. Roussand dended Liments for using Latin womds mot in Cicero's works, by saying that they might have bern had ('ionor writion a systom of botany. So Dr. Johnson and the other litwhfeld anthomites might hare hem wamend to preserve the vernacular plant-names if they had been compiling an English lidionary instead of aiming at a literal translation of a concise Latin book.

    ## 22.-Ranunculus Lapponictes, Limurus.

    Leaves glabrons, the radical ones few, long-petioled, tripartite, the lobs dilated, obtuse, coarsely toothed; scape 1 -flowered, usually naked, longer than the leares: ealyx of 3 reflected sepals.

    Ranunculus Lapponicus. Lim. Sp. Pl., p. 778. Smith, in Fl. Lapponica, ed. 2. p. 194, t. 3, f. 4. DC. Syst. Nat. I., p. 271. Prod., I., p. 35. Hook., Parry's 3rd Voy. App., p. 121. Fl. Bor.-Am., I., p. 16. Hook. \& Arn., Bot. Beechey, p. 121. Fl. Dan1, t. 229.. Persoon, Synops., II., p. 104, No. 42.

    Mossy woods in the eastern and central districts, and from lat. $50^{\circ}$ to the Aretie Sea. Momutain swamps, eastern declivity of the Rocky Mountains, lat. $52^{\circ}$ to $55^{\circ}$.-Drummonel. Whale Islands in the Arctic Sea.-Lieut. Ross. A rare plant, being very alpine or very Arctic.-Hooker. Mossy swamps along the base of the Porcupine Momntains, Manitoba; swamp near St. Albert at Edmonton, N. W.T. ; swamps along Little Stone Lake, N. W. T.; and in numerous swamps in northern British Columbia.-Macoun. Kotzebue Sound. -Rotlerock. Prince Arthur's Landing, Thunder Bay.-Rev. J. K. McMorine, (Macoun.) Near McLeod Lake, British Columbia, 22nd June, 1875, - Macoun, in Herb. Canad. Survey. East shore of Baffin Bay (west coast of Greenland),-extreme north and south
    limits observed: 7 $\mathbf{Q}^{\circ} 20^{\prime}: 69^{\circ} 15^{\prime}$.—Hurt, Brit. Polar IExpd., 1875-6. Jacobshavn, Disco Bay, Greenland, 1867.-Bronon. Ieeland, 1860-Dr. W. L. Lindsay. This species inhabits all Sir Joseph Hookers five Aretic Areas, but does not attain the highest latitudes.

    ## 23- - linunculus hyperboreus, Rothöll.

    
     hase the theathe amriched by two vipuldelike dilatations. Petals 1 -flowered, flower -mall, mpals reflexing. petals yיllow, shorter than the sepals. Heads of achenes globose, or wate lamt orlabrons or anm what pubesernt.
     Danica. 1. 3: I. (Trimen, Jonr: Put, XVIl!., p. 278.) Retzius, Prod. Fl. Scand., n. 691. DC.
    
    
    
    
    
    
    
     1sioti. Jawhohawn and Matont, Jis.o bay, Gremland, 1867.-Mrown. Iceland, 1860.Ior. II. V. Limkny Vorway Lapland. Niburia. S'pitabergen. Himalayas. Aretic
    

    Sir Jowph Hower ohervers that he has seen no Aretio American specimen of this Hant: all so walled he thinks relerable to mymums. Ontl. Distr. Aret. Pl., p. 312.

    ## 

    N゙wn ered, without creping llagella. Radieal leaves petiolate, cauline ones sessile. Stem 1-flowered. Sepals somewhat rellexed, glabrous or slightly hairy. A very small glabrons plant, with the habit of saxifracit rioularis, and intermediate between R. hyperfrnous and miralis. InC.

    Ranunculus pyšuncus. Wahlenberg, Jil. Lapponica, n. 286, t. 8, f. 1. Parsh, Fl., II., p. 3913. UC. Syst. Nat, 1.. p. 273. Hook., Fl. Bor.Am., I., p. 16. Torr. \& Gray, Fl. N. Am., I., p. 20. Jecgel. 1Fl. Ost-Nib., I., p. 41. Hook f., Arct. Pl., pp. 283 and 312. Lawson, Ranmec. Canad., p. 39. Watson, Bibl. Index, 1., p. 22. Macoun, Cat. No. 40. Brown Camp., Fil. Discoana, p. 447.
    R. nevalis, B. Lim. Sp. Plantarum, p. 778.
    R. nivalis pysmarus. Fl. Lapp., p. 232, t. 3, f. 3.
    R. Subimii. R. Br., in Parry's 1st Voy. App., p. 244. Hook. Fl. Bor.-Am., I., p. 17. Torr. \& Gr., Fl. N. Am., I., p. 20. Durand, Kane Exp., p. 185.
    R. hyperborens. Hook. f. \& Thomson, Fl. Indica, I., p. 32. Walpers, Annales, IV., p. 19. Moist grassy places on the high parts of the Rocky Mountains, in lat. $55^{\circ}$.-Drummond.

    Arctic Sea coast between $170^{\circ}$ and $140^{\circ}$.-Richarelson. About Behring Strait on Chamisso Island, and that of St. Lawrence.-Chamisso. Melville Island.-Parry. Shores of the Arctic Sea, between Mackenzie River and Coppermine River.-Richardson. Labrador.Pursh. Top of Mount Selwyn, Peace River Pass, lat. $56^{\circ}$.-Macoun. Rocky Mountains near the 49 th parallel, $6000 \mathrm{ft} .-D r . G$. M. Dawson. Akatont, Jacobshavn, Christianshaab, Illartlek, and Claushavn, Disco Bay, 1867.-Brown. Kotzebue Sound.-Hook. \&. Arnott, Bot. Beechey.-Rothrock. East shore of Baffin Bay (west coast of Grcenland), extreme north and south limits observed : lat. $72^{\circ} 48^{\prime}: 69^{\circ} 15^{\prime}$; especially common at Upernavick.IIart, British Polar Expedition, 1875-k. Unalaschka. Spitzbergen. Scandinavia. The Tyrol. This is one of Sir Joseph Hooker's " most arctic" plants, being found far north in all the five Areas into which he divides the Arctic Region.

    Hooker and Thomson point out, as the result of their examinations, that $R$. pygmeus differs from R. hyperhoreus only in the want of stolons. In Sikkim both the erect and stoloniferous forms occur, and Sikkim specimens cannot bo distinguished from those of the north of Europe. Walpers, Amales, IV., p. 1!. See also Flora Indica, I., p. ?.2, and Hooker's Ontlines of Distribution of Aretir P'lants, Limm. Trans., 1860, p. 312.

    ## 2..-Ranuxctilus nivalis, Limecus.

    Radical leaves long-stalked, cleft palmately into about five broad somewhat ovate obtuse lobes, the middle lobe obovate-cuneiform, narrowed at the base; canline leaves palmate, nearly sessile. Flower solitary, sepals covered with matted brown hairs, upper part of pedumele with similar but shorter hairs, petals longer than sppals. Arhenes glabrous, their beaks nearly straight. Form of leaf variable.

    Ramunculus nivalis. Limn. Sp. I'l., p. 778 , (in part). Gmmeri Flora Norvegica, p. 627. (1766.) Smith, in Rens' Cyc., n. 38. DC. Syst. Nat., I., p. 273. Prod., I., p. 35. IIook., Fl. Bor.-Am., I., p. 17. Regel, Fl. Ost.-Sib., I., p. 39. Fl. Dan., t. 1699. R. Brown, in Parry's 1st Voy. App., p. 264. Richardson, in Frankl. 1st Jour. App., ed. 2, p. 24. Greville, Memoirs Wernerian Soc., Edin., III., p. 430. Hook., Fl. Bor.-Am.. I., p. 17. Torr. \& Gr., Fl. N. Am., I., p. 20. Hook. \& Arn., Bot. Beechey, p. 121. Durand, Pl. Kane, II., p. 448. Hook. f., Arct. Pl., pp. 283 and 312. Lawson, Ranunc. Canad., p. 39. Watson, Bibl. Index, I., p. 21. Macomn, Cat., No. 44.
    R. frigitus. Willd., Spec. Pl., II., p. 1312. DC. Prod., I., p. 35. Hook., Fl. Bor.-Am., I., p. 18 (under $R$. nivalis).
    R. Altaicus. Laxm., Nov. Com. Acad. Petrop., 1774, XVIII., p. 533, t. 8. Ledeb., Fl. Rossica, I., p. 37.

    Lofty parts of the Rocky Mountain chain, lat. $55^{\circ}$. Drummond. Copper Mountains and Arctic Sea coast, in muddy pools which become dry during summer, long. $110^{\circ}$.-Richardson. Arctic coast near the termination of the Rocky Mountains, long. $140^{\circ}$. Sir J. Franklin, Capt. Back. Behring Strait.-Chamisso. Kotzebue Sound.-Lay and Collie, in Beechey's Voyage, Rothrock. West coast of Greenland, betw. lat. $70^{\circ}$ and $71^{\circ}, 1818-20$.-W. Jameson. Labrador. -Torrey \&. Gray. Assistance Bay, south-west of Cornwallis Island.-Dr. Sutherland. Tsi-Tsutl Mountains, in muddy pools which become dry during summer, 15th July,
    1876.-Dr. G. M. Davson, in Herb. Canadian Survey. East shore of Baffin Bay or Smith Strait (West Greenland) ; extreme northern and southern limits observed : $81^{\circ} 6^{\prime}$ : ( $69^{\circ} 15^{\prime}$. On west shore of the Strait (Grimmell Land), $82^{\circ} 27^{\prime}: 81^{\circ} 42^{\prime}$. Flowering later than affinis in Diseovery Bay, but remaining in blow throughout the summer. Appears to hare no choice of station with regard to alitude or nature of soil, but growing more luxuriantly at low levels. In flower June 17th, in Discovery Bay. Floeberg Beach.1)r. Muss. Prom sealnes to 2000 feet near St. Patrick Bay. Not met with north of Bascl Bhe-IInt, British Polar Expedition, 1876, in Journal of Botany. Lapland. swown. Norway. Spitahergen. Iceland. This is one of Sir Joseph Hooker's "most ar.tic" pam: of emaral diatribution, that is, found far north in all the five Aretic Areas.

    Mr. Hart, in spaking of the diflicnlties due to climate and to the grazing of animals, with whith phants in the Arotic warions have to contend, observes that the brent goose "prefers shont-and hads of Ramuculus nivelis."
    l'rof Oliwer has dessribed a variety of mindis, with small flowers and pale hairs on the waly (Natw Vigrawe, Vol. Il., p. 310, ed. 1878), which Mr. Hart refers, probably
     dlowered warlier than the true miralis, and disappared quickly, preferring ground slushy whth the lirat that at a hith altitude.
    
     hairs. showere than the petals

    I' nimbis var sulfureus. Watson, Bibl. Index, 1., p. 21. Macoun, Cat., under No. 44.
     p. 17
    
     in Franklin: Lit Jour.. ed. I., P. Tto. Schlecht. Animadr., sec. II., p. 15.

    Rapulse hay, - Dr. Rue. ax Merb. MreTavish. Ellesmere Land, but not met with in Grimull Land. Gant and west shores of Batlin Bay, lat. $78^{\circ} 18^{\prime}$ to $78^{\circ} 50^{\prime}$. Luxuriant at l"oulke ľiord and along llayes sound. Elevation 700 feet at Foulke Fiord, -Hart, Brit. Pol. lixp, 1~T5-tj. Not met with north of Fonlke Fiord. Spitzbergen.-Capt. Scoreshy.

    Arctic shores and islands. Labrador. Kotzebue Sound. Greenland. Finmark. Siberia.

    ## 27.-Ranunculus nivalis, var. Eschscholtzii, Watson.

    Ieaves ciliate; the radical ones petiolate, always tripartite, the divisions lobed; stem about 1 -flowered; sepals shorter than the petals, and clothed with fulvous hairs; achenes obliquely orate, shortly pointed.

    Ranunculus nivalis, var. Eschschollzii. Watson, King's Rep., X., p. 5. Bibl. Index, I., p. 21. Macoun, Cat., under No. 44.
    R. Eschscholtzii. Schlechtendal, Animadversationes Ranunc., II., p. 16, t. 1. DC. Prod., I., p. 35. Hook., Fl. Bor.-Am., I., p. 18. Torr. \& Gr., Fl. N. Am., I., p. 21.

    Islands of Unalaschka and St. George, N. W. America.-Chamisso. Near the regions of perpetnal snow, on the borders of streams upon the Rocky Mountains, lat. $52^{\circ}$ to $56^{\circ}$.Drummond. Pine River Pass, Rocky Mountains, 24th July, 1879.—Dr. G. M. Dauson, in Herb. Canad. Survey. Top of Mount Selwyn, Peace River Pass, lat. 56 .-Macoun. Rocky Mountains near the 49th parallel ; and the TsiTsutl Mountains and Coast Range, B.C.Dr. G. M. Dawson. Kotzebue Sound to Cape Lisburne.-Rothrock.

    ## 28.-Ranuncuius Patilasii, Schlechtendul.

    Stem creeping, fistulous; leaves all petioled, divided into three oval, obovate or cuneate lobes; calyx of 3 sepals; corolla of 8 petals; carpels in a ronnd head, thick, orate, glabrous, beaked. Allied to Ficaria in its triphyllous calyx, and in having more than 5 petals.-Schlecht.

    Ranunculus Pallasii. Schechtendal, Animadversationes Rannnc., I., p. 15, t. 2. Spreng. Syst. Veg., II., p. 649. Hook., Fl. Bor.-Am., I., p. 10. Don, Mill. Dict., p. 32. Torr. \& Gray., Fl. N. Am., I., p. 17. Ledebour, Flora Rossica, I., p. 31. Ascherson, Fl. Laht., in Flora, XLIII., p. 369. Hook. f., Aret. Pts., p. 283. Watson, Bibl. Index, p. 22. Macom, Cat., No. 53.

    On the western shores of extreme Arctic America, beyond Behring Straits, namely in the Bays of Eschscholtz and Good Hope; and on the little Island of St. George, to the north of the Aleutian Islands.-Chumisso. Kotzebne Sound.-Rothrogh. Labrador.-Hook. fil. Given in Sir Joseph Hooker's table of Aretic Distribntion as occurring in the following areas, viz.;-Aretic Europe, Arctic Asia, Arctic W. America; also within the area of "N. E. Asia and Japan," and "N. W. America"; confined, however, in the N. E. American area to Labrador.

    ## 29.-Ranunculus Hookeri, Regel.

    Leaves minutely pubescent; radical ones petioled, palmately or pedately divided, with the lobes linear and entire (obtuse). Scape erect, nearly naked, 1-2 flowered. Sepals oval, concave, spreading, hairy. Petals yellow, slightly longer than the sepals. Plant 3 to 4 inches in height. Fruit not known.

    Ranunculus Hookeri. Regel, Fl. Ost.-Sibir., I., p. 47, (1862). Watson, Bibl. Index, I. p. 19. Macoun, Cat., No. 43.
    R. pedatifidus. Hook., Fl. Bor.-Am., I., p. 18, t. 8, fig. B., (excl. syn.) Torr. \& Gr., Fl. N. Am., p. 21.

    Barren summits of the Rocky Monntains, on the eastern side of the ridge, lat $52^{\prime}$ to $55^{\circ}$.-Drummond.

    ## 30.-Ranunculus acris, Linnaus.

    Root fibrous. Radical leaves palmately tripartite, segments trifid and deeply cut, uppermost stem-leaf tripartite with linear segments. Peduncles round, not furrowed. Sepals
    erect-patent, pubesceut. Recoptacle glabrous. Potals yellow, paler than those of $R$. repens or bulbosus. The plant is slightly hoary with short pubescence, which gives it a pale hue, whilst $R$. repens is always, in exposed places, of a dark grecu color.

    Ranunculus acris. Limn. Sp. Pl., p. 779. Pırsh, Fl., II., p. 394. DC. Prod., I., p. 36. Hook., Fl. Bor.-Am., I., p. 18. Torr. \& Gr., Fl. N. Am., I., p. 21. Torrey, Fl. N. Y. S., I., p. 14. Gray, Man., ed. 4, p. 10. Hook., f., Student's Fl., ed. 3, p. 9.

    An Enuropean plant, introduced and now common throughout the cultivated parts of Canala, a weed in pastures and by waysides (much less abundant than R. repens, which sprack rapidly with (nltivation) : not seen in woods remote from settlements. Common in central Ontario, as ahont Kingston, \&e., and also in Nova Scotia, as Halifax Comnty, Truro and other parts of Colchester.-Lauesm. Montreal and St. Johns, Q.—Dr. P. W. Murlueun. Eillis Bay, Autiosti, July 15, 1861.-Verrill. Gaspé, common in hay fields, 1ntiz-Mr. I Birll. Common about Hamilton.-Tulge Logie. Prescott district, common.fi Rillines jr. Wimhoor, Ns'-Prof. How. Point lich, Newfoundland, May 7, 1861. -1. Radurdson. Lidnville : particularly abmedant about Sault Ste. Marie and Garden
     Bomming rommon in East Manitoba-Mtwom, 188\%. New Brunswick, too abmant in damp lidds-Finder. heedat.-Limkay. South (ireenland.-Hook. fill.
     liorm. anllatom near Kingston. eith July, 1 stio.

    In sir Jowph Lookres tahle ol distribution of Aretic llants ( 1860 ) this species is rntoral an indiranous in N.W. and N.L America. Bat, in the Students' Flora of the Britioh l-lamls. it- distribution is given as Jollows :-Enope (Arctic) ; North Asia; introducal in Anmerat Mr. Watson obsorves, in Index libl., that it is generally regarded as introdu*el in Amoriat. That this is the correct view there can be little or no doubt.

    $$
    31 \text { - Ranincurds mepens, Linnaus. }
    $$

    lioot of strong fibres. Stem more or less erect, with prostrate creeping scions from the hase. las l'composed of :'s stalked leatlets, which are 3 -lobed, the lobes trifid and cut. Flowers larcu, golden-yellow, on furrowed peduncles, sepals erect-patent, pubescent; receptacle hairy. Plant rough, with long hairs, or nearly glabrous.

    Ranumeulus repens. Limn. Sp. Pl., p. 7九9. Fl. Dan., t. 795. Eng. Bot., t. 516. Poir. Díe. VL., p. 112. I'ersom, Synops.. 1I.. p. 105, No. 51. Smith, Eng. Fl., III., p. 51. Hook., FI. Sot., p. 17.5. 1)(C. Syst. Nat.. l., p. 285. Babington, Manual, ed. 3, p. 8. Hook. f., Student's Fl.. p. 7. I'ursh, Fl., P. 394. Hook., Fl. Bor.-Am., I., p. 19: Torr. \& Gr., Fl. N. Am., I., pp. 21 and 658. (iray, Manual, ed. 5, p. 43. Chapman, Fl. S. U.S., p. 8., Hook. f., Arct. I'l., p. 283. Wood, Cl. Bk. \& Fl., p. 207. Lawson, Ranunc. Canad., p. 34. lirewer \& Watson, liot. Calif., I., p. 8. Watson, Bibl. Index, I., p. 23. Macoun, Cat., No. 48. Provancher, IFl. Canad., p. 11.
    R. prostratus. Poiret, Dict., VI., p. 113. Smith, in Rees's Cycl., No. 55. Eaton, Man., ed. 5, p. 358.
    R. infeslus. Salisb. Prod., p. 8 83.
    R. tomentosus. Poiret, Dict., VI., p. 127. Pursh, Fl., II., p. 394. DC. Syst. Nat., I., p. 292. T. \& G., Fl., I., p. 23.
    R. lanuginosus, var. $\gamma$. Pursh, Fl., II., p. 394.
    R. intermedius. Eaton, Manual, ed. 3, p. 424.
    R. Clintonii. Beck, Flora, p. 9.

    In fields and wet pastures, abundant in many places, especially in the Maritime Provinces. Toronto, 2nd June, 1862; Quebec, May, 1884; Kingston ; Brockville; Halifax. -Lawson. St. Joachim. Malden. Common about Montreal (McGill College Herb.) ; Little Metis, Q., 1882.—Macom.

    A small, depressed, smooth-leaved lorm of this species, with flowers no larger than those of $R$. acris, and sometimes smaller, oceurs on the sea shore around Bedford Basin, Nova Scotia, and a similar one is occasionally found in poor wet soils inland, but it appears to be quite a different plant from the R. nitidus of the Sonth. (Chapman, Fl., p. 8.) Watson (Bibl. Index) seems to identify Hooker's nitidus (which is obscure) with the latter. A form in the Canadian Survey Herbarium, collected at Ottawa by Mr. Fiketcher, and referred by Prof. Macoun to var. nilidus (Chapman), is small, almost glabrous, with small flowers, and elosely resembles the Nova Scotian plant.

    In its several forms this species ranges over Northern Enrope to Iceland, N. and W. Asia, N. Africa, as well as over a large portion of North America, both as an indigenons plant and in its weed-form in cultivated fields. It aseends to 2700 feet on the mountains of Scotland. In Western America it extends south to California. It is a very variable plant, the prolific mother of many book species. I'roneness to variation, like adaptability for cultivation, depends to a large extent upon the elasticity of a plant in suiting itself to changed conditions. We see this well illustrated in the present species.

    > 32.-Ranunculus repens, var. hispidus, Tortey \&• Giay.

    Stem more or less erect, clothed with long, spreading, bristly hairs; pedicels with the pubescence appressed, or less spreading.

    Ranunculus repeus, var. hispidus. Torr. \& Gr., Fl. N. Am., I., p. 6.58. Chapman, Fl. S. U.S., p. 8. Watson, Bibl. Index, I., p. 23. Macoun, Cat. No. 48 b.
    R. hispilus. Michanx, Fl., I., p. 321. DC. Syst. Nat., I., p. 289. I'rod., I., p. :39. Hook., Fl. Bor.-Am., I., p. 19, in part (Watson). Torr. \& Gr., Fl. N. Am., I., p. 22. Hook. f., Aret. Pl., p. 283.
    R. Marilandicus. Poiret, Dict., VI., p. 126. Pursh, Fl., II., p. 394. DC. Syst., I., P, 291. Prod., I., p. 40.
    R. Pennsylvamicus and Plilonotis. Pursh, Fl., p. 398.
    R. fascicularis. Barton, Fl. Phil., II., p. 25, not of Bigelow.
    R. Schlechtendalii. Hook., Fl. Bor.-Am., I., p. 21. Torr. \& Gr., Fl. N. Am., I., pp. 24. and 659.
    R. repens, var. Murilandicus. Iorr. \& Gray, lil. N. Am., I., p. 31.

    In moist shady situations. Banks of the Humber, Toronto.-Lawson. Ottawa.Fletcher. Prescott, Ont.-B. Billings jr. London, Ont.-Saunders. Hamilton.-Logie. Galt.-Buchan. Chippewa and Malden, Ont.-Dr. P. W. Maclagan. Magdalene River, Gaspé, Que. ; Cold Creek, Ont.; Manitoba, westward.-Macoun. Rivière du Loup, Que.Thomas. Common near Quebec.-Brunet. Sackville River, N.S.-Lawson. Montreal and Newfoundland, MeGill College Herb.-Macoun. Mackenzie River.-Barnston.

    ## 33.-Ranunculus occidentalis, Nuttall.

    "Hirsute, with shining, spreading hairs; leaves trifid or 3-parted; segments cuneate and trifid or incisely toothed, the lateral ones often sub-divided; the uppermost leaves trifid, with linear acute segments; stem divaricate, many flowered; sepals reflexed, half as lonir as the elliptical oblong petals; carpels smooth, much compressed, with the revolute style nearly their own length."-Nutt, in Torr. \& Gr., Fl. N. Am.
    linnumentus accilentulis. Nuttall, in Torr. \& Gr., Fl. N. Am., I., p. 22, excl. syn. "(Gray, Proc. Am. Acad., VIll., p. 374." Watson, Bibl. Index, p. 21.
    R. hispidus. Ilook., IFl. Bor.-Am., I., p. 19, in part.
    R. Culifornicus. Macom, Cat., No. 50.
    R. arris. Macoum, Rep. Geol. Survey Camad., 1875.

    Abundant in the vicinity of Victoria, Vanconver Island.-Macoun. Plains of the Orwenl River, hear woods- - Nuthall.

    ## R4. -Rantncedes Lennsifuanicus', Linneus.

    Romehly hirsuta, with strong spreading bristly hairs. Stem strong and erect. l.anco of : diotimet. slightly stalked leallets, which are ovate-acute, ternately eleft and towhed, strmaty ramud. Calyx raflexed. Petals bright yellow, shorter than the sepals. ('arpllary had, wal-ohbomen an elongated receptacle; earpels smooth, with short -tatienthtakr.

    Ranumbus Pemsylumions. Linn, fil., Supplementum Plantarum, p. 272 (1781). Linn.
     V., 1. 120. liria, Remonc., p. 41 (oxel. syn. Poir.). Barton, Comp. Fl. Phil., II., p. 25.
     Sys Nat., I. p. P! Prok I., p. 40. Hook., Fl. Bor.-Am., I., p. 19. Back's Exp., p. 523. Torr di (ir., Fll N. Am., l., p. 2e. Torrey, ll. New York, I., p. 15. Chapman, Fl. S. U.S., p. \&. Gray, Manual, ad. 5, 1. 42. Wood, Cl. Bk. \& Flora, p. 207. Provancher, Fl. (:anad.. l.. p. 11. Lawson, Ranner. Canarl., p. 35. Watson, Bibl. Index, p. 22. Macoun, ('at., Nor 47. Hook. fi., Arct. l'l., p. 2s:3.
    f. C'undensis. Jacrquin, Miscellanea, II., p. 343 (1781). Icones Pl. Rariorum, I., t. 10.5 (17-1-85)
    R. trifolius. Manch, Suppl., p. 70.
    R. hispidus. Pursh, Fil., M., p. 395.

    Nioolet and ('hippewa.-Dr. P. W. Maclagran. Hinchinbrook, Ont., July, 1862; between Kingston and Waterloo, Ont., 25th July, 1860.-Lawson. Belleville, abundant in wet waste places.-Micoun. Prescott district, wastes, common.-B. Billings jr. St. Joachin.-Provancher. Fort Simpson, June.-McTavish. Fort Garry, July, 1861.—Dr. Schullz, sp. No. 126. Jake Winnipeg.-Back. To lat. 67.-Hooker. West to the Pacific.Torr. \&. Gray. Nepean--13. Billings jr. Athabasea.-R. King, Back's Exped., 1833-4. Pictou, N.S.-McKily. Wot places, New Brunswick, rather rare.-Fowler. Gaspé, Rivière du Lonp, district of Montreal and River Rouge, P.Q.; Ottawa; St. Catherines, Toronto, Ont. ; wooded country to the Rocky Mountains, through British Columbia to the Pacific.-

    Macoun. To within the Arctic Circle, in sub-areas: Arctic Western America and Arctic Eastern America.-Hook. fil. (The first sub-area includes the Arctic district from Behring Straits castward to the Mackenzic River, and the second, that from Mackenzie River to Baffin Bay.)

    ## 35.-Ranunculus recurvatus, Poiret.

    Hirsute, with fine spreading hairs. Stem erect, branched above. Leaves long petioled, all similarly cleft into three oval or somewhat cuneate lobes, which are "ut and toothed towards the apex; radical leaves less deeply divided than the canline ones, and with more rounded lobes. Scpals reflexed; petals shorter than the sepals, pale ycllow. Achenes crowded into a compact round head, with conspicnous slender reenred beaks.

    Ramunculus recurvatus. Poiret, Dict. Bot., VI., p. 12:3 (1804). Pursh, lil. Am., Il., p.:394. DC. Syst., I., p. 290, excl. var. Nelsoni. Prod., 1., p. 39. Hook., Fl. Bor.-Am., 1., p. 20, excl. vars. Torr. \& Gr., Fl. N. Am., I., pp. 22 and 658. Torrey, Fl. N.Y. I., p. 16. Chapman, Fl. S. U.S., p. 8. Gray, Manual, d. 5, p. 42. Watson, Bibl. Index, I., p. 2.2. Macoun, Cat., No. 39. Wood, Cl. Bk. \& Fl., p. 207.
    R. Penusylvanicus, var. Biria, IIist. Renonc., p. 41.
    R. lamuginosus. Walter, Fl. Carol., p. 159.
    R. saniculaformis. Mühl., Cat., 56.

    Not uncommon in the country along the north shore of Lake (Ontario, and extmuling more sparingly eastward through Quebec to New lnmuswick and Nova Neotia. Wistwardly it disappears, according to Prof. Macom, at Lake of the Woods. I haw not quoted the localities given in Hooker's Flora Boreali-Americana, viz, Labrador, month of the Columbia, and eastern declivity of the Rocky Momitains, as they probably refer to other species.

    Banks of the Humber and near Toronto, 2nd June, 1862; Hardwood C'reek, 10th July, 1861; Delta, 2nd July, 1862; Newboro-on-the-Rideau, 23rd July, 18.59; unem Trenton, 6th June, 1862; Sloate Lake, Sydenham, Ont., Tth Jume, 18:3!-Lanson. Sulphur Spring, near Aneaster; July, 1859.-Logie. Prescott district, in woods. common. B. Billings jr. Nicolet, and Chippewa, Ont.-Dr. P. W. Maclagan. Belleville, abundant in low, moist woods.-Macoun. Common in Caledon.-Rer. C. I. Cameron. Pied du Cap Tourmente.-Provancher. Bass River, Kent, N.B.-Fouler. Picton, N.s.-A. II. Wehiny. Beaumont, St. Joachim, Pied du Cap Tourmente, P.Q.-Brutet. Montreal Mountain and the Eastern Townships.-Herb. McGill. Ottawa.-Fletcher. More abundant westward, disappearing at Lake of the Woods.-Macoun.

    ## 36.-Ranunculus Nelsoni, Gray.

    Pilose. Stem erect. Radical leaves ternately cleft, the divisions laciniately cut into lobes. Pedicels with appressed pubescence. Sepals strongly reflexed, hairy. Petals yellow, slightly longer than the sepals. Fruit heads globular; achenes flattened, with a short curved beak, hairy.

    Ranunculus Nelsoni. Gray, Proc. Am. Acad., VIII., p. 373. Watson, Bibl. Index, I., p. 20. Macoun, Cat., No. 49.
    R. recurvatus, $\beta$. Nelsoni. DC. Syst. Nat., I., p. 290. Prod., I., p. 40. Hook., Fl. Bor.Am., I., p. 20. Torr. and Gr., Fl. N. Am., I., p. 23. Ledb. Fl. Ross., I., p. 44.
    R. recurvatus. Bong. Veg. Sitch., p. 123. Not of Poiret and others.
    R. occidentalis. Torr. and Gr., Fl. N. Am., I., p. 22., in part.
    R. occidentalis, var. parviflorus. Torrey, Bot. Wilkes, p. 114.

    Unalaschka and the Aleutian Islands.-D. Nelson. Sitka.-Bongard, Rothrock. Near Victoria, Vancouver Island.-Macoun. Queen Charlotte Islands.-Dr. G. M. Dawson, in Herb. Canad. Survey. Oregon to Alaska.-Bot. Calif.

    ## 37.-Ranunculus Nelsoni, var. tenellus, Gray.

    Sparingly pilos Stem erect, slender. Radical leaves ternately cleft into separate hafl ts, cumate at base, laciniately cleft, or else simply cleft and the divisions lobed. Flowers small. Fruit heads globular, achenes smooth. A more delicate and slender plant than the type, with more divided smaller leaves.

    Rimunculus Velsmi, var. tenellus. Gray, Proc. Am. Acad., VIII., p. 374. Watson, Bibl. Index. I. p. 20. Macoun, ('at, under No. 49. Brewer and Watson, Bot. Calif., ed. 2, 1. p. P
    R. tenellus. Nutt., in Torr and Gray, Fl. N. Am., I., p. 23. Walp. Rep., I., p. 43. Howh.. in Lond. Jour. Bot.. VI.. p. 67

    Vancouser Fland, near Yale and along the waggon road from Clinton to Quesnal, 13. ('-Matoun. Shady woods of the Oregon and Wahlamet Rivers.-Nuttall. Sierra Nivada, near Yosemite.-Bolander

    ## 

    Root composed of a fascicle of thick fleshy fibres, or slender fusiform tubers. Stem short. L avest.rnately divided in a pinnatifid manner, more or less compound, pubescent wh appressed silky hairs. Petals twice as long as the sepals. Carpels very short, usually margind. with slendur terminal beaks. Some of my specimens are precisely like Hooker's figure in Fl. B.A., but the plant varies with much broader and more irregular leaf-lobes

    Rununculus fascicularis. Mühlenberg, Cat., p. 56. Bigelow, Fl. Bost., p. 137. DC. Syst., I., p. 291. Prod., I., p. 40. Hook., Fl. Bor.-Am., I., p. 20, t. 8, f. 1. Torr. and Gr., Fl. N. Am., I., p. 23. Torr., Fl. N.Y., I., p. 15. Gray, Manual, ed. 5, p. 43. Wood, Cl. Bk. and Fl., p. 206. Lawson, Ranunc. Canad., p. 34. Watson, Bibl. Index, I., p. 18. Macoun, Cat., No. 36.

    This species is indicated by Sir William Hooker (Fl. Bor.-Am.) as ranging from "Canada" (which included, at the time he wrote, the provinces of Lower Canada or Quebec and Upper Canada or Ontario) to the south end of Lake Winnipeg. But the results of subsequent observation tend to limit this range; the plant has been observed, so far, only in the districts lying on the north and west shores of Lake Ontario, not extending either into Quebec eastwardly nor westwardly into Manitoba and the NorthWest Territory.

    Kingston Mills, only one small patch, 1843 ; also Chippewa and Malden.-Dr. P. W. Maclagan. Near Toronto, June 2nd, 1862, and near Trenton, Ont., June 6th, 1862; also on hilly ground in the vale of Trent, above the village.-Lancson. Trenton depot; on commons east from Belleville and on hill above Belleville; Niagara Falls.-Mucoun. Hamilton, Ont.-Logie. Common east of London, Ont.-Saunders.

    ## 39.-Ranunculus bulbosus, Limneus.

    Root of uniform fibres, descending from the large bulbous base of the stem, the bulb depressed-globular. Radical leaves composed of three stalked leaflets, which are tripartite, the segments trifid and cut, divisions of the upper leaves narrower, linear. Stem erect, about a foot high, furrowed, several flowered. Sepals reflexed, thin and semi-transparent at the base, receptacle hairy, petals of a golden yellow as in $R$. repens. The stem never throws out suckers. The year's bulb is formed immediately above the bulb of the previous year, which is found in a partially decayed state unter the new one. Bulboms Crov-foot, Buttercup, Gold Cup.

    Ramunculus bulbosus. Limn. Sp. Plant., p. itc. Withering, Arrangement of lrit. Pts., II., p. 508. Willd., II., p. 1324. Poiret, Dict., VI., p. 115. Eng. Bot.. t. 51.5. DC. Syst. Nat., I., p. 29j. Prodromus, I., p. 41. Smith, Eng. F1., III., p. 49. Pיrsoon, Synops, I., p. 104. Flora Danica., t. 55. Michaux, Fl., I., p. 321. Pursh. Fl., II., p. 392. Mook., Fl. Bor.-Am., I., p. 21. Torr. and Gray, Fl., I., p. 24. Gr. Manual, ed. \%, p. 43. Wood, Cl. Bk. and Fl., p. 207. Chapman, Fl. S. U.S., p. 8. Lawson, Ramme. Canad., p. 3\%. Provancher, Fl. Canad., p. 12. Watson, Bibl. Index, I., p. 18. Macoun, C'at., No. 46. Hook. f., Student's Fl., p. 8. Watson, Cybele Brit., I., p. 88. Aiton f., Hort. Kefr., III., p. 356. Loudon, Hort. Brit., p. 231. Mag. Nat. Hist., I., p. 380 (figure of double hulb).

    This is an old world plant, native in middle and southern Europe and in parts of north Africa and of Asia. In Europe it grows ehiefly in warm dry grass fields, pastures, and by waysides. On the American Continent it has become naturalized, being "very abundant only in E. New England; rare in the interior." (Gray.) First fonnd in Canada by Lady Dalhousie. Newfoundland.-Morrison. (Hook., Fl. Bor.Am.) Roadsides near London, Ont.-Dr. Burgess, in Herb. Canad. Survey. Point Pleasant Park, Halifax, N.S., July, 1884.-Rev. Robt. Laing. Near Shelburne, Nova Scotia.-Rev. Mr. Rossborough. Also found in pastures near Barrie, Ont.-Spotten. And near Hamilton, Ont.-Buchun. Canadian specimens are rather taller and more lax than the ordinary state of the plant as found in Scotland. Whilst abundant in England and the south of Scotland, this species is rare or altogether absent in the north, and does not rise to any great altitude on the monntains, the highest station apparently being 1500 feet in Aberdeenshire, where H. C. Watson regarded it as not indigenous but possibly introduced. In Canada it has probably been brought with grass or clover seeds from Southern Europe, but now appears to be permanently established in several localities.

    The name Ramunculus bulbosus, now in use by botanists for this plant, dates back to a period long anterior to the reformation of botanical nomenclature by Linnæus, having been applied to it by Thalius in the "Sylva Hercynia," published at Frankfort in 1588. Aboat


    the same period it was described in the works of Dodonæus and others as $R$. tuberosus whilst Tabernæmontanus figured it as $R$. minus, and Petiver, in the English Herbal, called it "Bulbous Crow-foot."

    The old books contain a double variety (R.bulbosus flore pleno, C. Bauhin, Pinax, 179), which Provancher refers to as the Bouton d'or of French Canadian gardens, R. bulbosus, Lobel, Icones, 666, f. 2, (1591).

    > 40.-Ranunculus digitatus, Hooker.

    Acaulescent, glabrous, root a fascicle of 3 to 5 clavate tubers (as in the common European R. Ficaria). Leaves few, petiolate, the lamina divided in a digitate manner into from 3 to 4 oblong-spathulate lobes. Flowers $1-3$, terminal ; sepals spreading or reflexed, half the length of the petals ; petals $7-11$ oblong-cuneate, obtuse, yellow, with a nectary-scale at the claw. Stamens numerous. Carpels in a nearly globose head, ovate, compressed, with a subulate very slightly recurved beak.

    Ramunculus digitutus: Hooker, Jour. Bot. and Kew Gard. Misc. III. (1851), p. 124, t. 4. Walpers, Ann. (Mïller), IV., p. 17. Lawson, Ranunc. Canad., p. 43. Watson, King's Reports, V., p. 8. Bibl. Index, VIII., p. 18.

    Rocky Mountains [probably Peace River], Van Express Party, spring of 1854.Governor H'Turish, II. B. ('o. Rocky Mountains near Fort Hall [Oregon], Hook. l. c.

    Ravesctits omthoritychts, (Hooker), has not, so far as known, been found in British America. It is a slender plant with much divided leaves, the ultimate lobes narrow and linear. Hook., Fl. Bor.-Am., I., p. 21, tab. 9. Oregon.-Douglas. See Gray, Proc. Am. Acad., VIII., p. 373.

    Genus VII.-CALTHA, Linnaus.
    Bentham and Hooker, Genera Plantarum, I., p. 6.
    List of Species :-

    1. C. palustris.
    2. C. leptosepala.
    3. C. palustris var. Sibirica.
    4. C. natans.
    5. C. leptosepala ? var. biflora.

    ## 1.-Caltha palustris, Linnaus.

    Stem thick, hollow. Leaves rounded, reniform, or cordate, lobes rounded, margin crenately notched or nearly entire.

    Caltha palustris. Linn. Sp. Plant., p. 784. Fl. Dan., t. 668. E. B., t. 506. Forst., Trans. Linn. Soc., VIII., p. 323. DC. Syst. Nat., I., p. 308. Michaux, Pursh, \&c. Hook., Fl. Bor.-Am., I., p. 22. Torr. and Gr., Fl. N. A., I., p. 26. Gray, Manual, p. 24. Hook. f., Arct. Pl., pp. 283 and 312. Lawson, Ranunc. Canad., p. 44. Macoun, Cat., No. 54. Watson, Bibl. Index, I, p. 8.
    C. arctica. R. Br., in Parry's 1st Voy. Appendix, p. 265. Hook., F1. Bor.-Am., I., p. 22. Torr. and Gr., Fl. N. A., I., p. 27.
    C. orthorhyncha. Ruprecht, Fl. Caucas, p. 28.
    C. palustris, var. orthorhyncha, Trautv., Enumer. PI. Radde., p. 493.
    C. Himalensis. Don., Prod., p. 194. •(Sec Walpers, Anv. Bot., IV., p. 31.)
    C. Govoniana. Wallich, Cat. No. 4710. Royle, Ill., III., p. 54.
    C. paniculata. Wall., Cat., No. 4711.

    The following described species, chicfly Austrian, are probably not really distinct, except as varietics :-C. cornuta, Schott; C. latifolia, Schott ; C. leta, Schott; C. intermedia, Schott; C. vulgaris, Schott; C. alpestris, Schott; C. Guerangerii, Schott. (Aualecta Bot. "CEstr. Bot. Woch. Bl., 1855, p. 391.") Walpers, Amn. Bot., IV., pp. 30-31.

    Populago. Ray, Synops. Stirp. Brit. (1696.)
    Tussilago, sive Farfugium. Mathiolus.
    Throughout Canada in the plains, frequent.-Hooker. Labrador.-Morrison. Colum-bia.-Dr. Scouler. Near Kingston Mills, May 24th, 1859, and in several places along the course of the Ridean Canal; abundant in several places letween Montreal and Ottawa, 1884.-Lawson. Amherstburg.-Di. Kemp. Osnabruck and Irescott Junction, May 20th, 1859.-Rev. E. M. Epstein. Bass River, Kent, N.B.-Rev. J. Fowler. Swamps, Addington County, Ont., June, 1860.—Di. Dupuis. York Factory.—McTuvish. Opposite Gros Cap, June 15th.—Dr. R. Bell. Hamilton, in wet ground east from the city, near Mr. Aikman's house, April 25th, 1860.-Logie. Prescott district, common.-B. Billing's jr. Mingan and Anticosti, 1861.—Verrill. Gaspé, month of Donglastown liver, ete., June 3rd and 9th, 1862.-Dr. J. Bell. St. Anne River, Gaspé, June, 1883.-Porter, in Herb. Canad. Survey. Newfoundland, L'Anse du Loup, Straits of Belleisle, July, 1861.—J. Richardson. Whycocomagh, Cape Breton, July 22nd, 1883.-Macoun, in Herb. Canad. Survey. Bass River, N.B., in fl., June 1st, 1867, June 2nd, 1869, May 30th, 1870.-Fouler. Lake Wimi-peg.-R. King, Back's Exped., 1833-4. Throughout Quebec.-Brunet. Extending across through the finest country to the Rocky Mountains.-Macoun. Coast of the Arctic Sea and Melville Island.-Hook. f. 'Richard's Island, at the mouth of the Mackenzie River. -Pullen. Coast of the Arctic Sea, long. $107^{\circ}$ to $150^{\circ}$-Richardson, Frunklin, Back. Melville Islands.-Parry, Hook., Fl. B.-A. Iceland and North of Europe, North and West Asia to the Himalayas. Sir Joseph Hooker remarks that the absence of every form of Callha in Greenland is a most remarkable fact, this one being most abundant and conspicnous in Iceland.

    A double-flowered rariety; still cultivated in gardens, was found wild in England in Ray's time, by D. Lawson, (Synops. 2 cd., 1696, p. 154), but it may have been knowu as a garden plant before that time, as it is described by C. Bauhin (1671). Sir J. Hooker refers the double variety to C. Guerengerii, probably C. riparia, Dou.

    ## 2.-C. palustris, var. Sibirica, Regel.

    Stem sub-erect, 1-flowered; leares reniform-cordate, with the sinus obtuse, crenate; sepals 6-7, oval.

    Caltha palustris, var. Sibirica. Regel, Fl. Ost.-Sibir., I., p. 52. Watson, Bibl. Index, I., p. 8 (excl. synonyms?) Macoun, Cat., No. 54 (2).
    C. asarifola. DC. Syst. Nut., I., p. 309. Hook., Fl. Bor.-Am., I., p. 22. Torr. \& Gr., Fl. N. A., I., p. 27.
    C. palusiris, var. asarifolia. Rothrock, Fl. Alaska, p. 442.

    Unalaschka and Aleutian Islands.-D. Nelson, in Merb. Banks, DC. Syst. Nat. Alaska. - Rohlhock: Hooker, although he kept this apart as a species in Flora Bor.-Am., suspected it to be too near to C. polustris.

    ## 3.-Calitha natans, Pallas.

    Stin remmbent, floating, flexnons, much branched, rooting. Leaves reniform-cordate, (renat". with tho lobes somewhat approximated, obscurely crenate near the base, toothed towards the apex, the sinus decper than in C. palustris. Flowers $\frac{4}{4}$ inch in diameter. sepals oval. Follicles in al dense head very much shorter and broader than in palustris, abom! inch in hough, with a straight beak Flowers of nearly a pure white, according to cior Iohn litichardsom, as quoted by Ilooker.

    Calthen mituns. l'allas, Itin. Russ., ed. Germ., Il I., p. 248. Forst., Trans. Linn. Soc., Vlli, p. :324. Iursh, Fl., II.. p. S90. DC. Syst. Nat., I., p. 311. Hook., Fl. Bor.-Am., I., p. 2e. Torr. © (ir., Fl. N.A., 1.. p. 27. Lawson, Ramunc. Canad., p. 45. Watson, Bibl. Index., I., p, s. Marolur, ('at, No. 23.
    C. pulustris, var., Hook. f., Arct. I'., pp. 24.3 and 312.
    (reeping on the surface of deep sphagnons bogs, in the woody central districts from (amada (Omario) to lat, (in, rare-Ridhardsm, Drummond, Hook., Fl. Bor.-Am. This probably arriws the rang of the phant too far cast. Flowing stream twenty miles west of Edmonton, on the Law la Nun road. N.W.T., 187: ; Peace River tributaries, near Fort Ňt John: Molly River, near Mothy lortage, lat, is N.-Macoun, in Herb. Canad. Survey. Thu Amur and Kamtshatka; lirst found in Eastern Siberia by Pallas. Sir Joseph Hooker (Ontl. Jist. Arct. Fl.) refers this as a form of C. palustris, stating that the prevalent opinion amonest botanists is to mite as varieties radicans and aretica also; he points out that this is a floating plant, aflecting high latitudes only. It appears to me to be sufficiently distinct, the close hoad of short, crowded follicles being very characteristic, as well as tho habit of the phant, and the form of the leaf. R. Brown distinguishes natans by its capsules being in a dense head,-arctica having linear anthers,-and natans, he says, has smaller leaves, white flowers and oval anthers. Collectors who may meet with the living plants will do well to notice these points.

    ## 4.-Calitha heptosepala, DeCandolle.

    Root a fascicle of very long, straight, thick, simple fibres. Leaves radical, their petioles closely aggregated and sheathing each other by the tery broad, thin, membranous marginal wing. Iamina elliptical-oblong, oval or heart-shaped, with acute basal sinus, and more or less sagittate, nearly entire or coarsely crenate, glabrous; first leaves smaller and shorter than the later ones and with shorter petioles. Flowers, one or two from the same root, but always on separate stalks; plant never branched, as shown in Hooker's figure 1; figure 2 shows it well. Flower 1 inch to $1 \frac{1}{2}$ inel across; sepals about 8 or 9 ,
    pure white with a blue or green metallic tinge on the lower surface. Anthers long, narrow, linear, pollen grains small globular, paler. One of the first flowers to bloom in spring-time in the cold bogs at the edge of dissolving snow at high elevations on the Rocky Mountains. Boiled and used as greens by the miners in Colorado.

    Caltha leptosepala. DC. Syst. Nat., I., p. 310. Prod., I., p. 45. Hook., Fl. Bor.-Am., I. p. 22, tab. 10, figs. 1-6. Torr. \& Gr., Fl. N. Am., I., p. 27. Gray, Pl. Fendler., p. 4. Brewer \& Wats., B. Cal., p. 9.
    C. biflora. Watson, Bibl. Index, I., p. 7. Macoun, Cat. DC. Syst. Nat., I., p. 310? Hook., Fl. Bor.-Am., p. 22? Torrey and Gray, Flora N. Am., I., p. 27?
    C. sagillata. Torrey, in Ann. Lyc. N.Y., II., p. 164 (excl. synon.), according to Torrey and Gray.

    The sepals are not brightly shining on the inner surface, as in C. palustris and the buttercups (in which the cells containing the colouring matter are extremely small, compact and flat, forming a smooth surface), but have the texture of the sepals of Anemone nemorosa. This is a gregarious plant, often covering large spaces in boggy ground and on wet shoulders of the mountains. At a distance, the yellow centre and long, narrow sepals give it the appearance of a daisy or ox-eye. Its whole general appearance is totally unlike that of Caltha palustris.

    Prince William Sound, north-west coast of North America.-Menzies (Herb. Banks, DC.) Alpine swamps in the Rocky Mountains, between lat. $52^{\circ}$ and $55^{\circ}$.-Drummont. Cariboo Mountains, in Coast Range, British Columbia,-Dr. G. M. Dawsom. Sitka.-Ruthrock. Alaska.

    In California, swamps near head of King's River, at 8,000 feet.-Brewer. Near Lassen's Peak.-Lemmon. Sunny margin of the creek, six miles above Santa Fé, in the monntains New Mexico.-Fendler. Abundantly in flower in the cold swanps among the Elk Mountains of Colorado, end of May, 1888; in flower at the highest point of the Marshall Pass, May 22nd.-Lawson.
    5.-Calitha leptosepala? var. biflora.

    Stem 1-leaved, 2-flowered, radical leaves petiolate, reniform, crenate, with a wide sinus, sepals obloug.

    Caltha biflora. DeCandolle, Syst. Nat., I., p. 810
    On the west coast of North America, near Banks Island.-Menzies, (sp. in Herb. Banks.)

    DeCandolle described as above, from the Herbarium of Sir Joseph Banks, a plant collected on the west coast of North America, near Banks Island, by Menzies, as Caltha biflora, and Hooker, in Fl. Bor.-Am., simply repeated DeCandolle's brief character, adding' the remark: "I have seen no specimens which exactly accord with this, but it seems to me too nearly allied to C. leptosepala." Hooker and Gray followed suit. Watson, in the Bibliographical Index to American Botany, however, relegates C. biflora to C. palustris, under Regel's name var. minima. Prof. Macoun has followed Watson, and referred here specimens, with narrow sepals, from- Tsi Tsutl Mountains, B.C., collected by Dr. G. M. Dawson, which may or may not be the same as Menzies's plant. Brewer and Watson observe (Bot. California, 2 ed.) that "leptosepala appears to pass into biflora." If that be the
    case it will require a stretch of imagination to comnect bifora with palustris. In the absence of definite information regarding DeCandolle's plant, and its relation to the Eastern Siberinn minima of Regel, it will be safe meantime to refer the former to C. leplosepala, to which both DeCandolle and Hooker thought it was more nearly related than to C. selustris, the former pointing out that in biflora the sepals were broader and shorter than in leptosejula, -a charncter, however, which, in the latter plant, is exceedingly variable.

    ## Genus VIII.-HYDRASTIS, Linnaus.

    Brantham and Ilooker, Genera Plantarnm, I., p. 7.

    ## 1.- Mydresta Canadensis, Limeus.

    fitm (9 to 18 imeshesh) from a fleshy rhizome, bearing a few scale-like abortive loabs at hase, and a lare palmately divided petiolate serrated leaf near the top, the axis noming in a Howor, subtemded by a large panately divided and toothed leaf or bract. Sism and leaf wins, ote, mone or less hairy.

    Hytrusis C'madensis. Limn. Sp. Pl., da, 2, 3, scc., p. 784. Aiton f., Hort. Kew., III., p.
     1. p. 214. I'rod., 1.. p. 12?. Torr. \& (ir., Fl. N. A., I., p. 40. Lindl., Fl. Med., p. 3. Gray, (innera, l., p. 4- t. 18. Manal, p. 4t. Chapman, Fl. S. U.S., p. 11. Lawson, Ranunc. Camad, pror. Manom, C'at, No. Tb.

    H!ultryhyllum rermen Cimuthonsium. Limn. Sp. Pl., I., p. 146
    Warnern Canulensis. Miller, I4., II., p. 190, t. 285.
    ('anada. in water.-Linmens. A misake; the plant grows only in rich, dry ground, in shat! wouls. Mirvin's Woods, lrestott, Ont.-h. Billings jr., in Herb. Bot. Soc. Ca.
     Ont.-Dr. Nichol.
    ('ultivated in England in 1759 hy Mr. Philip Miller.

    Genus IX.-TROLLIUS, Linnaus.
    Beuthan and Hooker, Genera Plantarum, I., p. 7.

    ## 1.-Troliius Americanus, Muhlenberg.

    Sepals 5 or 6 or more, greenish yellow, spreading horizontally, forming an open flower. Petals small, unmerous, and much shorter than the sepals and stamens.

    Trolliws Americams. "Muhlenberg, Ind. Fl. Lanc., 172, (1791)." Watson. "Muhlenb. et Guissenh. ined. Donm, Cat. Hort. Cantab." (1796.) DC. Bot. Cabinet, t. 56. Bot. Mag., t. 1988. DC. Syst. Nat., I., p. 313 ; Prodr., I., p. 46. Loudon, Hortns Britannicus, p. 231. Hook., Fl. Bor.-Am., I., p. 23. Torrey, Fl. N. Y., I., p. 40, t. 3. Ledeb., Fl. Ross., I., p. 51 Regel, Irl. Ost.-Sibir., I., p. 56.
    T. laxus. Salisbury, Trans. Linn. Soc., VIII., p. 303, (1803.) Pursh, Fl., II., p. 391.

    Torr. \& Gr., Fl. N. A., I., p. 28. Lawson, Ranunc. Canad., p. 45. Watson, Bibl. Index, p. 27. Macoun, Cat., No. 64.
    T. pentapetalus. Herb. Banks. (DC.)
    T. decapetalus. Herb. Bose. (DC.)

    Gaissenia verna. Raf., Jour. Bot., II., p. 168. (1808.)
    Alpine rivulets on the eastern declivity of the Rocky Mountains, between lat. $52^{\circ}$ and $55^{\circ}$-Drummond. Michell Creek, British Columbia.-Dr. G. M. Dawson, in Herb. Canad. Survey. Top of the Rocky Mountains, Kootanie Pass; Coldwater River, Cascade Mountains, British Columbia.-Dr. G. M. Daxson. Mountains of Cariboo.-Mruconn.

    Pennsylvania and New York, on moist shady hills.-Pursh. In deep swamps, in New Hampshire to Delaware and Michigan.-Gray.

    There is also an open-flowered Trollins in Siberia, etc., T. Asiaticus. In T. Europeus the sepals are connivent, forming together a round ball, hence the name Globe Flower.

    ## Genus X.-CO1'TIS, Salisbury.

    Salisbury, in Trans. Linn. Soc., London, VIII., p. 305. Bentham and IIooker, Genera Plantarmo, I., p. 8.
    List of species :-

    1. C. trifolia.
    2. C. asplenifoliat.

    ## 1.-Coptis tietfolia, Sulishury.

    Stem short, with bright yellow fibrons roots spreading from its base. Leaves longstalked of three wedge-shaped, slightly lobed, finely toothed, shining, evergreen leaflets. F'ower solitary, on a naked stalk 3 or 4 inches high. Petals very small, ('ucullate oboonic, white. Stameus with yellow authers.

    Coptis trifolia. Salisbury, Trans. Linn. Soc., VIII., p. 305. Pursh, Fl., II., p. 390. DC. Syst. Nat., I., p. 322. Fl. Danı., t. 1519. Hook., Fl. Bor.-Am., I., p. 23. Torr. \& Gr, I., p. 28. Gray, Gen. Ill., p. 38, t. 13. Manual, p. 45. Lange, Pl. Grœul., p. 129. Hook. f., Arct. Pl., p. 284. Lawson, Rannuc. Canad., p. 45. Watson, Bibl. Index, p. 12. Macoun, Cat., No. 57.

    Helleborus trifolius. Linn. Amœu. Acad., II., p. 355, t. 4, f. 18, (1751.) Sp. Plantarum, p. 784. Kalm, Resa til N. America, III., p. 379, (1761.) Aiton f., Hort. Kew., IIl., p. 361. Michaux, Fl., I., p. 325. Bigelow, Fl. Bost., p. 134.

    Anemone Granlandica. Eder, Fl. Danica, IV., t. 566.
    Helleborus trilobus. Lamarck, Encyc. Meth., Bot., III., p. 98.
    Chrysa borealis. Raf. Schm., "N. Y. Med. Rep., V., p. 350." Desv. Jour., Bot., II., p. 170.

    Canada, and thence to lat. $58^{\circ}$, in dry, sandy and mossy places.-Hooker. Labrador. Morrison (Hook). Toronto, June 2nd, 1882, in fl., not common ; Halifax County, N.S., and thronghont Nova Scotia, common in many places in moist woods.-Lawson. Bass River, Kent, N.B. - Prof. Fovoler. Hudson Bay Territories, several specimens. - McTavish. St. Augustine, Labrador, 1865.-Rev. D. Sutherland. Opposite Gros Cap, June 15th.-Dr. R. Bell. Shore of Lake Medad, Hamilton, Ont., May 17th, 1860.-Logie. Prescott distriet,
    common.-B. Billings jr. Anticosti, July, 1861.-Verrill. Gaspé Basin, south side, June 2nd, 181;.—Dr. J. Bell. Windsor, N.S.-Prof. How. Nicolet, Montreal; St. Valentine, P.Q.; Kingston and Port Robinson, Ont.-Dr. P. W. Maclagan, Merb. Edin. Belleville, borders of swamps, under evergreens.-Macoun. Terrebonne and L'Islet.-Provancher. Rare in the interior of the western country, certainly not about Lake Winnipeg.-Barnston. Abundant from Newfomdland and Nova Scotia to the Rocky Mountains.-Macoun. Manitoba Honse, June 14th, 1881 ; Belleville, Ont., June 10th, 1876.-Macoun, in Herb. Canad. Survey. St. Anne des Monts, I'.Q., June 12th, 1883.-Porter. Sitka and Unalaschka.-Torr. © Gr. sitka-Liothrock. In Niberia, in shady woods, with Oxalis and Circca.-Linnous. Arctic Asia, Gouth Germland. N. Europe, N. and N. E. Asia, and N. W. and N. E. America.-Hook. f. Arct. l'l. Not liritish

    Introdured to English gardens by the IIndson's Bay Company, in 1782.-Ailon f., Hort. Kew.. l. e.

    This plant is viry regular in its period of flowering, and well adapted to indicate the forwarduess of the spring season As observed by Prof. Fowler, at Bass liver, New lirmswik, it cann into flower in the several years, at the following dates, showing a range of dillirence of four days only in the four years:-

    $$
    \begin{array}{l|l}
    \text { Ntio. May } 24 t h . & \text { 1869. May 26th. } \\
    \text { 18tim. May } 27 \text { th. } & \text { 1870. May 28th. }
    \end{array}
    $$

    luder the name of "Gold Thrend," which it has olstained on accome of the rich ywllow colour of its ronts, this plant is collected and commonly sold in the public markets as a medicinal herb. Laren quanfitios are exported from Yarmonth Comenty, Nova Scotia, to the. I'nited states.

    ## 2 -Copmes asimenfoha, Sulisbury.

    SHom short, lates bipimate, ternately divided, the leaflets incisely lobed and twothed, radical leaves long-stalked. Peduncle branched, bearing usnally 2 flowers. Petals long and narrow. dilated and cucullate abont the middle, erect-spreading, longer than the strongly reflexed sepals. Carpels alout !, horizontal, on pedicels of their own length, half an inch lour, with lomgitudinal veins, ventrally swollen, straight on back with slightly recurved tip and chsolete beak. Plant grlabrous, with minute hair-bases on stem and leaves.

    Coplis asplenïfolin. Salisbury, Trans. Lim. Soc., VIII., p. 306. Pnrsh, Fl., II., p. 391. 1)C. Syst. Nat., I., p. 322. Prodromus, I., p. 47 . Hook., Fl. Bor.-Am., I., p. 23, t. 11 (exel. syn), (nsplenioides in note.) Ledeb., Fl. Rossica, I., p. 53. Torr. \& Gr., Fl. N. A., I.; p. 28. Watson, Bibl. Index, p. 12. Macoun, Cat., No. 58.

    Thalietrum Juponicum, Thunberg, included among the "Thalictra dubia aut non satis nota," by DeCandolle, in Syst. Nat., was referred in Flora Bor.-Am. to this species, but Sir Joseph Hooker has kindly responded to my enquiries (letter, Aug. 11th, 1884) by informing me that the Japanese plant is Coptis trachypetala, Sieb. \& Zucc., and that $C$ aspleniffolia, Salisb., does not occur in Japan.

    North-west coast of N. America.-Menzics, Douglas. Observatory Inlet. - Scouler. Rich woods, Queen Charlotte Islands, July 18th, 1878.-Dr. G. M. Dauson, in Herb. Canad. Survey. Rich woods, New Westminster, B.C.-Macoun. Sitka.-T. \&. G., Rothrock.

    In Dr. Dawson's specimens the carpels are much longer than in Hooker's figure in the Flora Boreali-Americana.

    ## Bentham and Hooker, Genera Plantarum, I., p. 8.

    List of Species :-

    1. A. Canadensis.
    2. A. formosa.
    3. A. truncata.
    4. A. cærulea, var. flavescens.
    5. A. brevistyla.
    6. A. vulgaris.

    ## 1.-Aquilegia Canadensis, Linneus.

    Segments of leaves trifid. Sepals oblong-lanceolate, scarcely spreading, of an orangescarlet colour. Petals nearly straight and trumpet shaped, the spur orange-scarlet (as the sepals), lamina pale yellow, the fleshy attachment white, lamina not thrown back but continuous in direction with the spur ; spur twice the length of the lamina, its cnd inflated with an almost colourless polished intumescence. Stanens and styles much exserted, or produced beyond the floral envelopes. Follicles downy, with very long thread-like beaks.

    Aquilegia Cmadensis. Limn. Sp. Pl., p. 752. (1753.) lhot. Mag., t. 24i. Looldiges, lBot. Cabinet, t. 888. Michaux, Fl., I., p. 316. Pursh, Fl., p. 372. DC. Nyst. Nit., I., p. 387. Prod., I., p. 50. Hook, Fl. B.-A., I., p. 24, in part. Torr. \& Gray, Fl. N. A., I., p. 29, (excl. $\beta$. hybrida, Hook., and $\beta$. riolacea, Nutt.) Gray, Manmal, p. té. Ill., Genn. I., t. 13. Pl. Fendl., p. 4. C. A. Meyer, Sertum Petropolitanum, under t. 11. (Chapman, Fl. S. U.S., p. 9. Wood, Cl. Bk. \& Fl., p. 210. Provancher, Fl. Canadieme, p. 1.). Hook. f., Arct. I'l, pp. 284 and 313. Lhaker, Gard. Chro., new serins, X., p. 20. Lawson, Liamunc. Canad., p. 46, Porter, Fl. Colorado, p. 4. Watson, Bibl. Index, p. 6. Macom, Cat., No. 59.
    A. variegata. Moench, Meth. Marburg, p. 311. (1794.)
    A. elegans. Salisb. Prod., p. 374. (1796.)
    A. faviflora. Tenney, Am. Nat., I., p. 388.
    A. corolla simplici, nceturiis fere rectis. Gronovius, Virg., p. 59. (1743.)
    A. pumila pracox Canadensis. Cornuti Canad., p. 60, t. 60. (1635.)
    A. precox Canadensis, flore externo rubicundo, medio lutco. Moris., Hist., III., p. 457. (1680.)
    A. Virginiana flore rubescente. Plukenet, Almagestum, 38. (1796.)

    The Early Red Columbine of Virginia. Parkinson's Theatrum Botanicum, 136i-. (1640.)
    In woods and open clearings, chiefly where the soil is dry and sandy, in Ontario, but most writers speak of its growing on rocks, or in rocky places. Near Toronto, June 2nd, 1862, a robust leafy form, much branched above. Abundant about Kingston, especially near Kingston Mills, Waterloo, and Wolfe Island.—Lawson. Montreal Mountain, May, 1848, and Niagara.-James Adie. Rear of Ernestown, 1860.-Dr. Dupuis. Caledon, rather rare.Rev. C. I. Cameron. Nicolet, Montreal, Kingston, Niagara River, and Malden.—Dr P. W. Maclagan. Pied du Cap Tourmente.-Provancher. Belœil Mountain.-Dr. John Bell. Mountain side, west of Hamilton, Ont., common, May, 24th, 1859.-Judge Logie. Prescott district, common.-B. Billings jr. Falls of Montmorenci, Point Levis, and Orleans Island, P.Q.Brunet. Gneiss rocks, Sixteen Mile Lake, River Rouge, P.Q.-D'Urban. Belleville, common in rocky or sandy open woods; Kaministiqua River.-Macoun. Near Emerson,

    Manitoba-Dr. G. M. Darsson. "Saskatchewan Plains.-Bourgenu." "Lake Winnipeg."R. King, in Back's Expedition, 1833-4. Sonthern limit $40^{\circ}$ N. lat., Northeru limit $56^{\circ}$ N.-Barnston. No indigenous Aquilegia has been found in New Branswick, Nova Scotia, Cape Breton, Prince lidwnrd Island, Newfoundland, Labrador, or Anticosti.

    In dry deep loose sandy soils about Toronto the plant is much larger in all its parts than in the loans overlying the limestone and Laurentian rocks about Kingston. When coltivated in ordinary garden soil, and especially in moist climates, as in Nova Scotia and in the Edinlmorgh lotanic Gardon (where it was grown by the late James McNab, from sweds collented by himsilf in Ameria), the flowers become much less vivid in colour than in the arid soils and hot -mmer climate of its home in Ontario and western Quebec.

    The ernugraphical ranue of this plant, which is the most easterly Aquilegia on the American whtimant is not correctly given in :ny work hitherto published, its distribntion hatiur ben misel up with that of other species, and, in some cases, erroneous doalitios have bown atcel. Sir Whim Hooker, in gnoting Fort Vancouver and mouth of the Columbia, no doubt refferrel to another species. Torrey and Gray indicated Hudson Bay th (imomia and wost to Missouri, not noticing its absence from a large portion of "andro British Amorica, and Nultall's phat from Big Bhae River of the Platte is , no dombt, different. Woon dows not imdiate its range with much precision when ho says: " "t arows wild in most of the stalne." Baker speaks of it as miversnlly spread
    
     rewhent ('atalumu of ('anam phants, ropats a mistakn locality, on anthority of a Halifas list, that would extend the phant "asiward in lhitish America at least seven dearem firther than it is known to erow. A fuller secord of localities than we now
     the phant in Britinh Anmia. Gur Canalian and Ameriman lotanists and collectors have not yet end fully iuth the way ol publishing, in the botanical periodicals, localities for rare, mannal, or critional nowios, and local lists, -a practice which, in Britain and some onher Luropan conutries, has proved highly usefnl in furnishing data for working up groographiral distrihution.

    Mr. Baker olswryes that this plant was well known to our pre-Limmean botanists and cultivators, heing one of the phants introduced to Jurope by Tradescant. I have given some of the old rafuremes (in synonymy) to illustrate this point. He further observes: "We have a varioty gathered by Fondler in New Mexico, with a smaller limb than in the type (linear-obleng, sepals one-third inch long, lamina of petals one-quarter inch), and a very lonig slender spur." This is no cloult the plant referred to by Gray, in Plante Fendlerinnar, p. 4. In May, 1883, I gathered on the mesa at the base of Mount Marcellane, on the Pacific slope of Colorado, elevation about 9,000 feet, a form corresponding to Fendler's plant in the slender spurs, but the sepals are very obtuse, and no longer than the petal-lamine, and the stamens are only slightly protruded beyond the petals and sepals, the filaments nearly all of one length. It may rank as a variety of Canadensis,' but is possibly a hybrid.

    This species is the only American Aquilegia noticed in "Hortus Kewensis," Ed. 2, wherein it is stated to have been introduced to English gardens before 1640 by Mr. John Tradescant sen., flowering in April and May,-rather earlier than in its Canadian home.

    ## 2.-Aquilegia formosa, Fischer.

    Plant robust, two to three feet high. Leaves very glancous on the lower surface, slightly so on the upper, the uppermost sessile leaves or bracts trifoliate, not at all incised. Sepals spreading, lanceolate to broadly ovate-lanceolate, more or less acute, about one-third inch wide, longer than the spurs, sometimes nearly twice their length, nsually bright red. Petals with a short truncate yellow lamina varying in size to half the length of the sepals. Petal-spur puffed out (belly-like) in the upper half, rather abruptly narrowed below, with a terminal knob. Styles as long as the sepals, the upper stamens projecting considerably beyond the laminæ of the petals. Follicles under one inch in length, one-third as broad as long, hairy (or glabrous?), with filiform beaks nearly their own length. Pedicels hairy. Mr. Baker observes that this species is very near the eastern A. Canadensis, from which it differs by its larger sepals, quite twice as long as the petal lamina.

    Aquilegia formosa. Fischer, in DC. Prodr., I., p. 50. Ledebour, Flora Rossica, I., p. 56. Torrey \& Gray, Flora N. Amer., I., p. 30. Lawson, Ranunc. Canad., p. 47. Regel, Gartenflora, II., p. 219. Flore des Serres, VIII., t. 795. Baker, Synops. Aquilegia, Gar. Chro., n. s., X. (1878), p. 111. Watson, Bibl. Index., I., p. T. Brewer \& Wats., Bot. Calif., I., p. 10. Macoun, Cat., No. 60, in part.
    A. Canadensis. Hook., Fl. B.-A., I., p. 24, in part.
    A. Canadensis, var. Bongard, in Mem. Acad. St. Petersburg, Sc. Phys. et Math., ser. 6, II., p. 124. Torrey, Pac. R. Rep., p. 462 ; Mex. Bound, p. 30.
    A. Canadensis, var. formosa. Cooper, Pac. R. Rep., XII., p. 55. Watson, King's Rep., 40th parallel, V., p. 10. Torrey, Bot. Wilkes, 216.
    A. arctica. Hortul. (Walpers.) London, Steudel, Nomencl. Botanicus. Regel, Gartenflora, II., p. 19.

    Queen Charlotte Islands, July 16th, 1878.—Dr. G. M. Duwson. Vancouver Island; mainland of British Columbia, from the valley of the Fraser to lat. 56, western slopes of Rocky Mountains.-Macoun, Dawson. Sitka and Unalaschka.-Bongrard. (T. \& G.) Sitka. Herb. Mus. Paris.—Walpers, 1. c. Rothrock. From Sitka down the west side of North America to California, ascending in the Rocky Monntains to 6,000-7,000 feet; Kamschatka, according to DeCandolle's Prodromus, but I have not seen Old World specimens.-Baker. Oregon.-Nuttall. Some of the localities cited may possibly relate to A. truncata.

    ## 3.-Aquilegia tiruncata, Fischer \&- Meyer.

    Flowers red with orange or yellow. Sepals spreading or reflexed, equal in length to the spurs, which are gradually and uniformly narrowed from the open truncate mouth to the apex. Lamina scarcely at all developed. Follicles six or seven times as long as broad,
    with prominently embossed veins, and slighly hairy. Brewer and Watson observe that this plant is very variable as to size, foliage and colour of flowers. In Prof. Macoun's specimens the gradually narrowed trumpet-like petal spur, and the long slender follicles, are striking characters; but Mr. Baker observed that, in a large bundle of specimens at Kew, he could not draw any distinct line of demarcation between this species and $A$. formosa. It is not to be concluded from this that the plants are not really distinct, as we now know how prone Aquilegias are to hybridize and thus furnish puzzling connecting links.

    Aquilegra truncata. Fischer \& Meyer, Index Seminum Petropolitanum, 1843, p. 8. Regel, Sert. Petrop., 1852, t. and p. 11. Lawson, Ranunc. Canad., p. 47. Brewer \& Wat son, Bot. California, I., p. 10. Watson, Bibl. Index, I., p. 7.
    A. Canudensis. Torrey, Pacif. R. Rep., IV., p. 62.
    A. Californica. Hartweg, in Lindl. Gar. Chr., 1854, p. 836, cum. ic. Gray, Proc. Am. Arad.. VII., p. 328. Regel, Gartenflora, IV., p. 131.
    A. crimin. Planchon, in Flore des Serres, 1857, t. 1188.
    A. formosa var. Baker, Synops. Aquilegia, Gard. Chro., X. (1878), p. 111.
    A. formosa. Macoun, in Herb. Canadian Survey. Cat., No. 6, in part.

    Rich ground and grassy slopes along streams, Black Water River, British Columbia, June 11th, 1-75-Mucoun, in Herb, (anad. Survey. Shady places by streams, California. -Breter \& Watsom.

    ## 4.-Aquilegia chrulea, var. flay escens.

    Supals reflexed in the expanded flower, lanceolate, yellow or slightly flushed on the bark with red. I'etal-lamina oborate cuncate, of a paler yellow than the sepals, truncate at apex: spur nearly half an inch long, yellow, slightly incurved, knobbed. Styles and stamens muth exserted. Follicles pubescent.
    A. flurerths. Watson, Bot. 40th Parall., King's Rep., V., p. 10. Gray, Am. Jour. śc, ser. 3. III., p. 149. I'orter, Hayd. Rep., 1871, p. 477. Coulter, do, 1872, p. 759. Baker, Synops. Aquilegia, Gard. Chro., X., (1878), p. 20. Watson, Bibl. Index, I., p. 7. Macoun, Cat. No. 63.
    A. Canadensis, var. aurea. Roezl, in Regel's Gartenflora, 1872, p. 258, tab. 734.

    Rocky Mountains.-Bourgeau. Dry rocky slopes, Michell Creek, British Columbia, July 11th, 1883 ; Kootanie Pass, Rocky Mountains.-Dr. G. M. Dawson, in Herb. Canad. Survey. Bow River Pass, in thickets, and at the base of the cliffs of the eastern range Macoun. Subalpine zone of the Rocky Mountains in Utah and Oregon, at an elevation of from 5,000 to 7,000 feet above sea level-Baker, who observes, "This is now widely spread in English gardens."

    The normal form of the species has a Southern distribution, and is not found within British America.

    ## 5.-Aquilegia brevistyla, Hooker.

    Flowers bluish-purple, varying to paler (claret) colours, or white, but never orange-red or yellow as in other N. American species. Sepals ovate-lanceolate, rather longer than
    the petals. Petal-spurs incurred, knobbed at the end, about equal in length to the lamina. Stamens and styles short, included. Follicles pubescent. General aspect of A.vulgaris, but more delicate in stem, foliage, and flowers, the last much smaller; the stamens and styles shorter.

    Aquilegia brevistyla. Hooker, Fl. Bor.-Am., I., p. 24. Torr. \& Gr., Fl. N. A., I., p. 30. Lawson, Ranunc. Canad., p. 47. Hook. f., Arct. I'l., pp. 284 and 313. Baker, Gard. Chro., X., p. 20, (1878). Watson, Bibl. Index, I., p. 6. Macoun, Catalogue, No. 61.
    A. vulgaris? Richardson, in Franklin's 1st. Jomrnal, ed. 2., App., p. 21.
    A. vulgaris var. brevistyla. Gray, Am. Jour. Sc. ser. 2, XXXIII., p. 410 Porter, Fl. Colorado, p. 4.

    Western parts of Canada.-Drummond. As far north as Bear Lake.-Richardson. Clear Water River, July 13th ; Nipigon, 1853; Fort Simpson.-McTavish; also, in a parcel from McTavish labelled "I. Nipigon, chiefly near Lake Snperior."-Ilerb. Lawson. Received from Mackenzie River.-Barnston. Rocky Mountains.-Bourqeau. Sitka, Indson Bay Territory, and down the Rocky Momenains as far sonth as Colorado.-Daker. Telegraph Trail, B.C., and Peace River, at the Rocky Mountain l'ortage, lat. 56. - Macoun. This species was not known west of the Rocky Monntains until found in British Columbia by Prof. Macoun. Bat Sir Joseph Hooker remarked in 18tio, (Dist. Arct. Pl.) that he had seen specimens of a Sitka plant, in an indifferent state, which were a great deal like it, and that brevistyla was allied to the Siberian A. parviflore, Led.

    ## 6.-Aquilegia vulgaris, Limens.

    Spurs incurved like a crozier, shorter than the very broad lamina. Stamens exserted, the inner ones frequently imperfect. Sepals orate-lanceolate with acute tips, twice the length of the spurs. Flowers large, most commonly blue, but varying to purple, rose, white, etc. Cultivated varieties are striped or have double flowers, having two or more rows of petals.

    Aquilegia vulgaris. Limn. Sp. Pl., p. 752. Eng. Bot., t. 297. DC. Syst. Nat., I., p. 334 (with a page and a half of synonyms and references.) Bab., Man. ed. 3, p. 10. Hook. f., Student's Fl., p.11. Gray, Manual, ed. 5, p. 45. Lawson, Ranunc. Canad., p. 47. Macoun, Cat., No. 62.

    Abundant in the neighbourhood of Prince's Lodge, Halifax County, the property formerly occupied by H. R. H. the Duke of Kent, and in spots along the Railway Line ; also in several places on the road between Halifax and Windsor. About the end of June the deep railway cutting at Prince's Lodge looks like a magnificent flower garden from the abundance of this plant, in every variety of colour, on the rocky cliffs.

    ## Genus XII.-DELPHINIUM, Linneus.

    Bentham and Hooker, Genera Plautarum, I., p. 9.

    ## List of species:-

    1. D. scopulorum.
    2. D. Menziesii.
    3. D. variegatum.
    4. D. azureum.
    5. D. Ajacis.
    6. D. orieutale.

    ## 1.-Delphinium scopulorum, Gray.

    Tall, smooth or finely pubescent. Petioles of the lower leaves long and dilated at the base, lamina orbicular in outline, 3 to 5 parted, the segments laciniately lobed, lobes acute. Raceme rather strict, many flowered (slightly compound or panicled below.) Flowers sparingly pilose externally, spur straight, as long as the sepals; lower petals bifid, slightly bearded. Root perennial, fibrous.

    Delphinium scopulorum. Gray, Pl. Wright., II., p. 9. Smiths. Contrib., V., p. 9. Walpers, Ann., IV., p. 24. Am. Jour. Sc., ser. 2, XXXIII., p. 242. Brewer \& Watson, Bot. Calif., I., p. 11. Wats., Bibl. Index, p. 14. Macoun, Cat. No. 66.
    D. exaltatum. Hooker, Fl. Bor.-Am., I., p. 25. Lawson, Ranunc. Canad., p. 47, (not of Aiton, DC., Gray.)

    Rocky Mountains, between lat. 52 and 56 .-Drummond. Hook., Fl. Bor.-Am. The Yukon country adjoining Russian Territory ; Clear Water; July 13th.—McTavish. Saskatchewan and Rocky Mountains.-Bourgeau. Abundant near Morley, Bow River; on the Saskatchewan, as far east as Carleton, and northward to the Peace River, lat. 56.Mucoun. Iroquois Creek, near Fort McLeod, Brit. Columbia.—Dr. G. M. Dawson. New M-xico-Gray.

    ## 2.-Deliphinium Menziesii, DeCandolle.

    Dwarf, very hairy, except at the base. Petioles scarcely dilated at base, lamina 5 parted, the divisions cleft into linear entire lobes. Racemes 3 to 6 flowered. Flowers large, deep blue, veined with purple, pubescent on the external surface; spur straight, as long as the sepals; follicles somewhat tomentose. Root fleshy.

    Delphinium Menziesii. DC. Syst. Nat., I., p. 355. Prodr., I., p. 54. Bot. Reg., t. 1192. Hook., Fl. Bor.-Am., I., p. 25. Bot. Beechey, Supp., p. 317. Torr. \& Gr., Fl., Supp., I., p. 661, (not of P. 31, which is D. simplex, Douglas.) Hook. f., Arct. Pl., pp. 284, 313. Rothrock, Fl. Alaska, p. 442. Brewer \& Watson, Bot. Calif., p. 11. (Not of Porter, Colorado Fl.) Macoun, Cat. No. 67.
    D. tuberosum. Menzies MSS.
    D. pauciflorum. Nutt., in Torr. \& Gr., Fl. N. A., I., p. 33, (see p. 661).
    D. Nuttalliana. Pritz.
    D. patens. Newberry, Pac. R. Rep., VI., p. 65.

    In Nova Georgia.-Menzies, sp. in Herb. Banks.-DC. Syst. Nat. North-west coast of America.-Menzies. Kotzebue Sound.-Capl. Beechey's collection. Common under the shade of solitary pine trees, at Puget Sound, the Columbia River, and in California.Douglas. Hook., Fl. Bor.-Am. In pine woods, from Kotzebue Sound to Oregon. Torr. \& Gr., Fl., I., p. 661. Kotzebue Sound to Cape Lisburne.-Rothrock, Alask. Abundant on Cedar Hill, and in many other localities near Victoria, Vancouver Island.-Macoun, Dawson.

    From Puget Sound to Montana and the Blue Mountains of Oregon, apparently not entering California-Brewer \& Watson, l. c.

    ## 3.-Delphinium variegatum, Torrey \&- Gray.

    Pubescent, with straight, spreading, or somewhat tomentose hairs. Leaves three parted, the segments cuneiform, many cleft into narrow linear rather obtuse lobes. Flowers large, on long pedicels, in a short open raceme, blue; sepals broad, spreading, spur short and stout. Flower stalks and follicles very hairy. Root of fleshy fibres.

    Delphinium variegatum. Torrey \& Gray, Fl. N. A., I., p. 32. Brewer \& Watson, Bot. Calif., I., p. 10. Watson, Bibl. Index, I., p. 14. Macoun, Cat., No. 68.
    D. grandiflorum, var. variegatum. Hook. \& Arn., Bot. Beechey, p. 317.
    D. decorum. Benth., Pl. Hartweg., p. 295.

    Under the cliffs near the waggon road, Yale, British Colnmbia.-Macoun, A. J. Mill. Lytton, B.C. 20th May 1876.--Dr. G. M. Darson, in Herb. Canad. Survey. California.Douglas. In the coast ranges from Santa Barbara to l'mata de los Reyes.-Brever of Wats, Bot. Calif.

    ## 4.-Demphinium azureum, Michenx.

    Glabrous or slightly pubescent. letioles slightly dilated at luse , the lamina 3 to 5 parted, the segments cleft into linear lobes. Raceme loose, perfectly simple, the pedicels long and spreading. Flowers azure coloured, darker or paler, petals shorter than the sepals, the lower ones densely bearded, spur longer than the sepals. Peremial. A very variable species, and of wide distribution, if all the forms referved really belong here.

    Delphinium azareum. Michanx, Fl. Mor.Am., I., p. 314. (180:3). Poir. Sup., II., p. 4.s. Pursh, Fl. II., p. 371. Persoon, Synops., II., 1. 82. DC. Syst. Nat., I., p. 3.5\%. I'rod., I., p. 54. Bot. Reg., t. 1999. Torr. \& Gray, Fl. N. A., I., pp. 32 and hefo. London, Hort. Brit., p. 222, No. 14,147. Gray, Pl. Fendleriante, p. 5. 1'l. Lindheimerianir, p. 142, (under D. virescens). Manal, p. 46. Chapman, Fl.s. U.S., p. 10. Lawson, Ranue. ('mad., p. 48. Watson, Bibl. Index, p. 12. Macoun, Cat., No. 69.
    D. Carolinianum. Walter, Fl. Carolina, p. 155. (1788).
    D. virescens. Nuttall, Genera N. A. Pl., II., p. 14. (1818). Torr. \& Gr., II. N. A., I., p. 32. Wood, Cl. Bk. and Fl., p. 210. Gray, Pl. Lindheim., p. 14?.
    D. vimineum. Don, in Sweet's Brit. Fl. Gard. t. 37t. Bot. Mag., t. 3593. Torr. \& Gr., Fl. N. A., I., p. 32.
    D. simplex. Gray, l'l. Wright., II., p. 8, according to Watson in Bibl. Index, (but not of Douglas, Hooker, nor Brewer and Watson).

    West of Rocky Mountains, between Fort Yukon and Lapierre House ; also Yukon country (fl. smaller, pedicels and spurs shorter).—McTavish. Dry slopes, Cypress Hills, June 9th, 1883.—Dr. G.M.Dawson, in Herb. Canad. Survey. South of Lake Winnipeg.Dr. Houghton. Plains near Wood Monntain, N. W. Territory.-Dr. G. M. Dawson. New Mexico.-Fendler. Colorado.-Lawson. Wisconsin, Illinois, and Sonthward.-Gray, Man. North Carolina to Georgia_-Torrey \&. Gray, Fl. Texas.—Drummond. Arkansas.-Nuttall, Pitcher.

    Walter's name, Carolinianum, is older by fifteen years than the azureum of Michaux; but, as this may ultimately prove to be a composite species, and the nomenclature of the genus cannot be regarded as settled, I have meantime retained the latter name as the one commonly used.
    [D. simplex. Douglas, in Hook., Fl. Bor.-Am., I., p. 25, is a southern plant found by Douglas on the sub-alpine range, west of the Rocky Mountains, near the Columbia, plentiful ; and by Brewer in the coast ranges south to San Diego. It also occurs in Idaho. Much resembling D. azureum of the eastern plains, but differing in its less strict habit, and looser racemes of larger and more open flowers. (Bot. Calif.)

    ## 5.-Delphinium Ajacis, Reichenbach.

    Stem erect, divaricately branched. Racemes elongated, rather laxly flowered, pedicels as long as the bracts. Follicles solitary, pubescent. Annual or biennial. Dwarf or Branclied Lurkspur

    Delphinium Ajacis. Reich. (not Limn.) Hook. fil., Student's Flora, p. 11.
    D. Consolith. Hooker, British Fl. ; Babington, Manual ; and other British authors prior to year 18tio. (not of Limn.) ; P'ursh, Fl., p. 372. Beck, Bot., p. 13. Torr. \& Gr., Fl. N. A., I. p. :30. Darling, Fl. Cest. 3, ed., p. 7. ('hapman, Fl. S. U.S., p. 10. Gray, Manual, p. 46. Wood, Bot. \& Fl., p. 210. Lawson, Ranunc. (anad., p. 48. Watson, Bibl. Index, I.,p. 444. Macoun, Cat, No. 65.

    An introduced Southern European plant.
    Banks of the st. Lawrence River west of Prescott, Ontario-B. Billings jun., in Herb. Bot Son: Canada. Gardens, wastr places, and wheat fields, near Belleville, Ont.-Macoun. Vicinity of Hamilton, Ont--Buchen.

    This plant has been known in ('ambridgeshire, England, since the days of Dillenius, but has not spread there, and, beyond the chalk districts, is little more than a casual strageler. Sion H. ('. Watson, C'yblele Britamica, I., p. 97. It may have been brought to Canada in grain or grass seed from England or continental Europe, and seems to find congenial conditions in the light soils overlying the limestones of Ontario.

    The true $D$. Consolifla of Limneus differs from this species in having shorter glabrous follicles, short racemes, and seeds with interrupted ridges. (Hook. fil.) It is a southern European plant, not native of England, and found only once in a field in Jersey. The Canadian localities hitherto published for " $D$. Consolida, $L$." no doubt all belong to $D$. Ajacis, Reich. The D. Ajacis of my Monograph of Ranunculaceæ is D. orientale. Sir Joseph Hooker says:-"Syme observes that D. Ajacis, Reich. (and continental European authors) is not the plant of Linneus (which is orientale of Gay) ; hence the present plant should have a new name; but as the names, Consolida, orientale, and Ajacis, are now fixed, it is unwise to disturb the present arrangement."

    > 6.-Delphinium orientale, J. Gay.

    Stem erect, straight, almost unbranched, whole plant nearly glabrous; the flowers in a long dense raceme, pedicels as long as the bracts; capsules pubescent. Annual.

    Delphinium orientale. J. Gay. Boiss., Fl. Orient., I., p. 79.
    D. Ajacis. Linn. Sp. Plantarum, I., p. 748. DC. Syst. Nat., I., p. 341. Wight \& Arnott, Prodromus Fl. Pen. Ind. Orient., I., p. 4. Lawson, Ranunc. Canad., p. 49. Provancher, Fl. Canadienne, p. 16. Ledebour, Fl. Ross., I., p. 58.

    Hyacinthus. Theocr., Idyl., 19, and Ovid, Metam. (DC.)
    Between Wild Rice River and Red Lake River, September, 1860-Dr. Schultz.
    In the species Plantarmm, Limmeus gives a blank habitat for this plant, as if it were known, in his day, not as a wild plant at all, but only as a garden flower. The specimens collected by Dr. Schultz may have grown from seeds aceidentally dropped by a traveller. It should, however, be looked for, now that the country is settled. Trautretter, in his Enumeration of the Plants collected by Radde in the Caucasus in 1875, cites a station for this species in Russian Armenia, as if it were there indigenous.

    # Genus XIII.-ACONITUM, Linnaus. <br> Bentham and Hooker, Genera Plantarnm, I., p. 9. 

    List of species :-

    1. A. Napellus.
    [A. Fischeri].
    2. A. delphinifolium.

    ## 1.-Aconitum Napelides, Limecus,

    Tall (2 feet or more), straight, ercet, leafy. Leaves very dark dull green, furrowed on the upper surface, palmately lobed, the lobes pimatifid. Flowers very mmerons, closely set, on short pedicels, forming long, slender, simple racemes. Galea nearly hemispherical, sepals dark blue, dull or lurid before expansion. Whole plant more or less pubescent. Readily distinguished by its very long racemes, which are not at all corymbose. Rootstock fusiform, black, yiclds the very poisonous alkaloid Aconitine. Several other European and Asiatic species are cultivated in gardens, with which this is apt to be confounded. Monkshood. Wolf's Bane.

    Aconitum Napellus. Linn. Species Plantarnm, p. 751 (excl. syn. Gronov. Virg., 165). Ǩelle, Specileg. Aconit., p. 14. cum ic. (1788). Willdenow, Sp. Pl., II., p. 1235. Smith, English Flora, III., p. 31. Aiton f., Hort. Kew., III., p. 323. Hooker, Brit. Fl. Babington, Manual. Wood, Cl. Bk. \& Fl., p. 211. Hook. f., Student's Flora, p. 12.
    A. vulgare. DC. Syst. Nat., I., p. 371.

    Found oceasionally as a garden outcast, but not inclined to spread in Canada. Near Falls of Montmorenci.-Mr. Thomas. Sir Joseph Hooker gives its distribution as Europe, Siberia, West Asia to the Himalaya. Noticed (1811) by Aiton as a native of Germany, France and Switzerland, first cultivated in England in 1596 by Mr. John Gerard. It was first found wild in England, (in Herefordshirc), abundantly in 1819 by Rev. E. Whitehead, Oxon. (Eng. Fl.,) ; is now regarded as doubtfully native in Wales, Hereford and Somerset; naturalized elsewhere; a denizen ?-Watson. Not noticed in the early British Floras. The original A. Napellus of Linnæus seems to have included at least two European and one American species.

    ## 2.-Aconitum delphinifolium, Reichenbach.

    Plant rather low and spreading, with fine pubescence or glabrous, few- or manyflowered. Leaves round-reniform in outline, palmately lobed, lobes incisely crenate.

    Flowers deep blue, in a short, loose, simple raceme, or more usually slightly corymboso below, with long pedicels, (more lax and flaceid than in A. Napellus) ; galea hemispherical or only very slightly conically-narrowed.

    Aconilum delphinifolium. Reichenbach, Monog. Acon., p. 79, t. 9. Lawson, Monogr. Ranun. Canad., J. 49.
    A. delphinifolium, Ameríanum. DC. Syst. Nat., I., p. 380.
    A. Kipellus var. delphinïfolum. Seringe, Monogr., p. 159. DC. Prod., I., p. 63. Hook., Fl. Bor.Am. I.. p. 2ti. 'Torr. \& Gr., Fl. N. Am., I., p. 34. Regel, Bot. Ostsibirien, I., p. 111. Rothrork, Fl. Alanka, p. 442. Watson, Bibl. Index, I., p. 1. Macoun, Cat. No. 26.

    1. Nipmellns var. delphinifolinm, lusus ק., purauloxum. Regel, Bot. Ostsib., I., p. 111, t. 3, lig.
    A. purculumm. Reich., Monogr., t. 10, fier. 3-5.
    A. delphimbilinm, 13. putudornm. Reich. Ill. Gen. Acon., t. 42.
    A. delfh var. ar. and ''. Ledebour, Fl. Lossica, p. 70.
    A. Vinpellus. Ifook. \& Thomson, Flora Indica, I., p. 57. Macoun, 1st Cat., No. 70.

    Shedre land (misspelt in DC. Nyst.) on the north-west coast of North America. D.wil Vilsum, Urmsies. About Bohring Sitrait, as far north as lat. $66^{\circ} 13^{\prime}$.-Chamisso. Cape Mulgravir and kotrehne sound.-Capt. Beechey's Collection. Moist mountain prairies in the lionty Momatains, bet. lat. $\mathrm{H}_{2}$ and inf-Drummond, Hooker. The Yukon comntry, aljunine $\mathrm{H}_{1}$. linsian 'Yorritory-Mr Tarsh. Misinchine River, near Pine River Pass, Lorky Momutains. Inly ㄹ.3l, $1 \times 7!$, in II.—Dr. G. M. Darson, in Herb. Canad. Survey.
     and Marlonzin liiver.-Lomon\%: ('hamisso Istand; Sitka; Kamtschatka; near Kadjak.firsel. Two forms uf diphimfolium, not obscrued in America, have been described by Buinhenharh an sheins: semirntentum, which, oecurs in Kamtschatka, Unalaschka, Bays of
    
    [Ammitin Prochem, lementard, has not yot been found in British America; but armes in Alankand in Warhingtom Territory, where it was first found by Douglas on the Wallawallah liver, a bramh of the Columbia; it ranges to Kantschatka, and one form (B. arcuntum) ervurs in Mandschuria ; in Anerica it reaches south to California, rising to shon foct on the Siarra Nuvada. Ninooth or slightly pubescent; leaves palmately eleft, the 5 (or 3) secmonts being rather widely cuneate, and incisely toothed, the lobes rhombicovat. ancutely pointod. Flowers in a somewhat panicled raceme. Galea more or less conival, its margin arched from insertion to point. This is the A, nasutum, of Hook., Fl. Bor. Am. A. Fïscheri, sar. ©r. lypricum, Regel, Bot, Ostsibirien, p. 98.]

    > Genus XIV.-ACTEA, Linnaus.
    > Bentham and Hooker, Genera Ilantarum, I., p. 9.

    List of species :-

    1. A. alba.
    2. A. rubra.
    3. A. rubra, var. arguta.

    ## 1.-Actea alba, Bigelono.

    Stem scaly at the base, bearing about two ternately decompound leaves, the leaflets ovate-acuminate, serrated,-and terminating in an erect raceme of small white flowers Raceme elongated in flower, oblong, pedicels very thick and rigid in flower, and increasing as the fruit ripens, becoming as large as the peduncle or axis, and thickened at the apex so as to embrace the base of the fruit; berrics large, milk white, somewhat elongated or egg shaped. Growing side by side with A. rubra, this plant, which is much larger in all its parts, flowers and ripens its fruit about a month later in the season, so that it is difficult to compare the two in the fresh state.

    Actaa alba. Bigelow, in Eaton's Manual, ed. 4, p. 187. Fl. Bost., ed. 2, p. 211. Hook., Fl. Bor.-Am., I., p. 27. Torr. \& Gr., Fl. N. A., I., p. 35. Torrey, Fl. N.York, I., p. 22. Chapman, Fl. S. U. S., p. 11. Gray, Manual, ed. 5, p. 47. Lawson, Ranunc. Canad., p. 51. Watson, Bibl. Index, I., p. 2. Macoun, Cat., No. 73.

    Actaa spicata, var. alba. Linn. Sp. Plant., p. 722. Ait. f., Hort. Kew., III., p. 286. Persoon, Synops., II., p. 61. Wood, Cl. Bk. \& Fl., p. 212. Gray, Manual, ed. 2, p. 14.
    A. Americana, var. $\alpha$. baccis niveis. Pursh, Fl. Am., II., p. 366, (1814).
    A. brachypetala, var. a. alba. DC. Syst. Nat., I., p. 385, (1818).
    A. pachypoda. Elliott, Carolina, II., p. 15, (1821).

    Aconitum baccis niveis. Cornuti Canad., t. 77, (1635).
    Canada.-Michaux. About Lake Huron.-Dr. Todd. St. Helen's Island; Kingston; Thorold; Navy Island and Malden.-Dr. P. W. Maclegrm. Prescott.—B. Billing's jun., in Herb. Bot. Soc. Ca. Near Toronto, June 2nd, 1862; 13lomidon, Nova Scotia, 1882.Lawson. Windsor, N.S.—Dr. How. Camden, Co. Addington, Ont.- Dr. Dupuis. Belleville, Ont., frequent in rich woods; throughout Quebec and Ontario, and through the wooded country to the Coast Range in British Columbia.-Macoun. Does not pass north of $53^{\circ}$ or $54^{\circ}$-Barnston. Hamilton, Ont.-Judge Logie. Anticosti.-Ierrill. New Bruns-wick.-Fowler. Smith's Falls, Ont., 1843.—Dr. P. W. Maclagan, in Trans. Bot. Soc. Edin. Belleville, Ont., 16th May, 1867.-Macoun, in Herb. Can. Survey.

    ## 2.-Actea rubra, Willdenow.

    Resembling the preceding in habit. Raceme compact, shortly oblong or hemispherical in flower, the peduncle or general axis elongating slightly in fruit; pedicels very slender and dark in colour; berries more or less drooping on their weak stalks, roundishoblong, somewhat oblique, with a longitudinal groove on one side, skin deep red, pulp white, seeds dark. Plants of this species, from Blomidon, Nova Scotia, and Ottawa, Ont., agree in their season of ripening, which is much earlier than that of A. alba. The berries are occasionally very small, without seeds. The slender pedicels appear to be a constant character.

    Actaa rubra. Willdenow, Enumer. Berolin.; p. 560, (1809). Bigelow, Fl. Bost. ed. 2, p. 211. Hook., Fl. Bor.-Am., I., p. 27. Back's Expedition, p. 523. Torr. \& Gr., Fl. N. A., I., p. 35. Torrey, Fl. N.Y., I., p. 21. Gray, Gen. Ill., I., p. 50, t. 19. Pl. Fendlerianæ, p. 5. Lawson, Ranunc. Canad., p. 50.
    A. spicaln, valr. rabra. Aiton, IIort. Kew. ed. 1, II., p. 221. Willd., Sp. Pl., II., p. 1139. Michanx, Fl., I., p. 308. Wood, Cl. Bk. \& Fl., p. 212.
    A. Americunu, var. ß. buccis rubris. Pursh, Fl. Am., II., p. 367. (1814.)
    A. bruchypetala, viar. ß. rubra. DC. Syst. Nat., I., p. 385. (1818). Richardson, in Franklin's Jour., p. 12.
    A. longripes. Sipach, Hist. Veg., Vll., p. 388.

    Canada: from Hudson Bay to the Rocky Momatains, as far north as lat. $60^{\circ}$ in wools.-Tisld, Richurdson, Drummond, Itook., Fl., B.-A. Near Odessa, Ont., July 10th, 1861 ; Portsmouth near Kingston, Ont., June th 1859 ; Indian Island, Bay of Quinté, June 5th, 1stio; Turonto, Junt end. 18120; ('helsea Mountains near Ottawa, May 24th, 1884 ; Blomidon and Luwlimd, Noval sootia-Lauson. Bass Liver, Kent, New Brunswick.-Rev. J. Fowler, sp in tl. Montral Momatain, May, 1848.-Tames Adie, sp. in fl. Malden.-Dr. P. W. Wucheren. Niwhumdland, Barbe Bay, Ang. Thh, 1861.-J. Richardson, in fl., in Herb. Bot. ᄃon Canad slave lake, Jumedth; York Factory, in 1l., September.-McTavish. Between Wild kion liver and Rod hakn River, Noptember, 1860-Dr. Schultz, sp. No. 114. Bellevill. Preynent in rich woods ; common in rich woods from Nova Scotia and New Brunswik twllu liokt Mountains, and north to lat. 60 ,-exclusively a forest plant.-Macoun.
     Surwe N'w Amm dts Hontes, I'. Quebw, Jume 17th, 1883.-Porter. Bass River, New Jimmewik, lirat Howning: June 4th, 1867; May 29th, 1868; June 2nd, 1869.-Fowler.
     lond Jour liot., IX., 1. 115.

    ## B-Acriat hubla, var. arguta.

    l'ant muth larger than the typinal form of rubra. Leallets elliptical, acuminate,
    
     River the luan are mulh smaller than in those of Dr. Dawson from Quesnelle and the limky Monntains: ther raveme is elongated in fruit.

    Actua arsutn. Nuttall, in Torr. © Gr., Fl. N. Am., I., p. 35.
    A. spicath var, urenta. Torrey, Parif liy. Rep., IV., p. 63. Brewer \& Watson, Bot. Calif. p. $1^{12}$

    Extmods from Washington Tarritory to Alaska. Fraser River, B. C.-Macom, in Herb. Canad, surves. Mitholl's Creck, liorky Momentans, July 11th, 1883; Quesnelle, B. C., May 2-th, 187t,-1)r. G. M. Durson, in H(rb). Canad. Survey.

    Whilst our three British American forms of Actan closely resemble each other in thuir habit or mode of growth, foliage, flowers and fruit, and each indicates some tendency to variation under varying conditions of soil and climate, and probably in some cases as the result of crossing, yet their distinctive characters are too well marked to admit of their being lumped into one species, or merged in the European A. spicata, -whose small, neat, narrow leaflets, small, compact corymbs of flowers, extremely short pedicels, the upper flowers being alnost sessile, and black berries, seem to separate it clearly from all our forms.

    ## Geuus XV.-CIMICIFUGA, Linnaus.

    Bentham and Hooker, Genera Plantarum, I., p. 9.

    ## 1.-Cimicifuga racemosa, Nuttall.

    Rootstock thick and kuotted. Leaves triternate, leaflets ovate-oblong, incisely serrate. Racemes branching, very long and wand-like, 6 to 12 inches when in flower, elongating to from 1 to 3 feet in fruit. Scpals white, or greenish-white, caducous. Fruit, monogynous (sometimes digynous, DC.). Petals 4 to 6 , small. Stamens mumerons (as in Actia) with slender white filaments, "about 100 to each flower, giving the raceme the appearance of a long and slender plume," (Wood.) Flowers fetid. Carpels globose-ovate. Seeds 7 or 8 , compressed. Flowers in July. Black Snake Root. Black Cohosh. Bugbane.

    Cimicifuga racemosa. Nuttall, Gen. Pl., II., p. 15. (1818). Barton, P1. Philad., II., p. 12. (1819). Elliott, Bot. S. Carol., II., p. 16. (1821). Torr. \& Gr., Fl. N. Am., I., p. 36. Torr., Fl. N. Y., I., p. 22, t. 4. Gray, Gen. Ill., I., p. 51, t. 20. Mamual, ed. 2, p. 15 ; ed. 5, p. 48. Chapman, Fl. S. U. S., p. 11. Lawson, Ramunc, Canal., p. 50. Watson, Bibl. Index, I., p. 9. Macoun, Cat., No. 75. Wood, Cl. Bk. \& Fl., p. 211. Bentley, Phamacrutical Journal, series 2, II., p. 460.
    C. serpentaria. Pursh, Fl. N. Am., II., p. 37 ..

    Actca racemosa. Linn. Sp. Pl., p. 722. Amcen. Acad., VII., p. 193, t. 4. Aiton f., Hort. Kew, ed. 2, III., p. 286. Willd. Sp. Pl., II., p. 1139. Michamx, Fl., I., p. зos. DC. Syst. Nat., I., p. 384. Prod., I., p. 64. Hook., Fl. Por.-Am., I., p. 2 亿.
    A. monogyna. Walter, Fl. Carolina, p. 151.
    A. orthostachya and gyrostachya. Wendroth, Index Sem. Hort. Marlurg., 1840.

    Macrotys actaoides. Rafinestue, N. Y. Med. Rep., V., p. 354. Desv. Jour. 1hot., II., p 170.
    M. serpentaria. Faton, Manual, ed. 4, p. 356.
    M. racemosa. Eaton, Mau., ed. 5, p. 288.

    Botrophis Serpentaria. Rafin., Med. Fl., I., p. 85, f. 16.
    B. actcoides. Fischer \& Meyer, Index Sem. Petrop., 1835.

    Actaa racemis longissimis. Gronovius, Flora Virginica, p. 59. (1743).
    For an exhaustive account of the medicinal properties of this plant, see Prof. Bentley's paper in the London "Pharmaccutical Journal and Transactions," second series, Vol. II., p. 460, (March, 1861), from which it appears that the root had long been a popular remedy in consumptive and bronchial affections in several of the western States of the American Union, and was first bronght into regular practice by Dr. Garden, of Virginia, in 1823, as a medicine of great value in tubercular consumption. The rhizome is the part used. A resinoid extract is procured by precipitation from the concentrated tincture of cimicifuga by water; this has been termed Cimicifugin or Macrolin (Pharm. Jour., XVI., p. 273), but it does not possess all the active constituents of the root, which are best taken up by water and (especially) alcohol. Hence water and alcohol are commonly used in the medicinal preparations of cimicifuga. A fluid extract and a dry extract have been prepared by Prof. Procter, (Amer. Jour. Pharm., XXVI., p. 107).

    Habitat in Florida, Virginia, Canada.-Linnœus.
    Canada.-Pursh. Cayuga, Grand River, Ontario.-Dr. P. W. Maclagan, in Herb. Edin. Norfolk County, Ontario.-Dr. Nichol, according to Macoun's Catalogue. Canada to

    Georgia and the Western States.-Torrey \& Gray. Obviously very rare in Canada; the only Canadian specimens I have seen are those of Dr. Maclagan from Cayuga. Said by Wood to grow in upland woods; by Gray, in rich woods. Maine and Vermont to Wisconsin and southward.-Gray, Man.

    Cultivated in England in 1732 by James Sherard, M.D.

    ## Genus XVI.-PEONIA, Linncus.

    Bentham and Hooker, Genera Plantarum, I., p. 10.
    One species.

    > 1.-Peonia Brownii, Douglas.

    Herbaceous. Leaves thick, biternate, the leaflets ternately and pinnatifidly lobed, glabrous, glaucous beneath. Petals scarcely longer than the sepals, leathery, dark red. Follicles three to five, smooth.

    Pronia Brovnii. Douglas, in Hook., Fl. Bor.-Am., I., p. 27. Torr. \& Gray, Fl., I., p. 41. Bot. Rerg., ser. 2, t. 30. Brewer \& Watson, Bot. Calif., I., p. 13. Wats., Bibl. Index, I., p. 15. Macoun, Cat., No. 77.
    P. Californica. Nuttall, in Torr. \& Grr., Fl. N. A., I., p. 41.

    Near the confines of perpetual snow, on the sub-alpine range of Mount Hood, NorthWest America, 1826, fl. June, July.-D. Douglas. Hook., Fl. Bor.-Am. Mount Hood is laid down in Hooker's map as in lat. $45^{\circ} \mathrm{N}$. ; long. $121^{\circ} \mathrm{W}$.; and at a distance of about 150 miles from the Pacific Coast. East of the Blue Mountains of Oregon, not in sub-alpine situations. - Nuttall, in Torr. \& Gray, Fl. N. A. San Bernardino to Vancouver and western 1 tah, but rare cast of the Sierra Nevada; this plant endures a great range of station and climate, from wet to very dry soils, and from the hot plains of Southern California to near the confines of perpetual snow on the mountains.-Brewer \& Watson.

    This species is not known in cultivation.

    ## I N DEX

    ## TO

    ## Revision of Canadian Ranunculacee.

    Note.-The specific and varietal names undor which the plants are described in the paper aro printed in the Index in sambl capitals, the synonyms and historical names in lower case leters.
    Page:
    Aconitum baccis niveis, Cornute. ..... 83
    delphinifolicay, Reich ..... 81
    Americanum, DC ..... 82
    $\beta$. parodoxum, Reich ..... 82
    var. a., Ledebour ..... 82
    var. Chamissonianum, Roich.. ..... 82
    var. $\gamma$, Ledobour ..... 82
    var. somigaleatum, Reich. ..... S2
    Fischerif, Reich ..... S2
    a. typicum, Regel. ..... 82
    乃. arcuatum ..... 82
    Naibelles, Lim ..... 81
    Napellus, Hook. \& Thoms ..... S?
    var. dolphinifolium, Seringe ..... 82
    var. dolph. paradoxum, Rogel. ..... 82
    nasutum, Hook ..... 82
    paradoxim, Reich. ..... 82
    vulgaro, DC ..... 81
    Actea alba, Bigelor. ..... 83
    Americana, var. a. baccis niveis, Pursh. ..... 83
    var. baccis rubris, Pursh. ..... 84
    arguta, Nutt ..... 84
    brachypetala, var. $a$. alba, DC ..... 83
    var. 3. rubra, DC. ..... 83
    grandis, Dietr ..... 43
    gyrostachya, Wendroth ..... 85
    longipes, Spach. ..... 84
    monogyna, Walter ..... 85
    orthostachya, Wendroth. ..... 85
    pachypoda, Elliott ..... 83
    palmata, Hook ..... 43
    racemis longissimis, Gronovius. ..... 85
    racemosa, Linn ..... 85
    rubra, Willd ..... 83
    var. arguta, Lawson. ..... 84
    spicata, var. alba, Linn. ..... 83
    var. arguta, Torrey. ..... 84
    var. rubra, Aiton. ..... 84
    Anemone aconitifolia, Michaux ..... 39
    acUtiloba, Lawzon ..... 30
    alpina, Hook ..... 33
    arctica, Fischer ..... 37
    Baldensis, Linn ..... 33
    borealis, Richardson ..... 34
    Canadensis, Linn. ..... 39
    Caroliniana et c., Plukenet. ..... 38
    Page
    caul. ram. pet. lanc., Gronovius ..... 38
    Commorsoniana, DC. ..... 40
    cunoifolia, Jussien ..... 34
    crlrinmea, Gray ..... 37
    neltonea, Hook. ..... 36
    menotoma, Linn ..... 35
    dubia, Bellardi ..... 41
    fasciculata, Linn ..... 41
    tlavescens, Zued ..... 32
    (iramlandica, (Fder ..... 71
    IIepatiea, Lim ..... 29
    var. anuta, Bigelew ..... 31
    hirsuta, Monch ..... 38
    IHdsoniana, Richardson ..... 41
    irregularis, Lam ..... $2!$
    lancifolia, l'ursh ..... 3.5
    lanigera, (iay ..... 40
    Peing ina ('Areating), Theophrast. ..... 3.5
    Ludoriciana, Nutt ..... 31
    minima, DC ..... 35
    meltifins, Peiret ..... 40
    multifida, Watsen. ..... 34
    marcissifiora, Iimu ..... 40
    narcissillora, IIook. \& Arn ..... 40
    vemorosa, Limb ..... 35)
    Nuttaliana, DC ..... 32
    oucidentalis, Wietsom ..... 33
    parviflora, Michaux ..... 34
    patens, Linn ..... 31
    patens, var. Nuttaliana, Gray. ..... 32
    podata, Rafinesque. ..... 35
    Pennsylvanica, Linn ..... 39
    quinquofolia, Linn ..... 37
    ranunculoides, var.? Richardson ..... 37
    micluardsons, Hook. ..... 26
    sylvestris, $\beta$. alba minor, Schrank. ..... 34
    tenella, Banks ..... 34
    thalictroides, Bigelow ..... 28
    thalictroides, P., Linn ..... 28
    umbellata, Lam ..... 41
    Vahlii, Hornemann ..... 37
    Virginiana, Limn ..... 38
    Virginiana, Hermann ..... 38
    Anemonella thalictroidos, Spach ..... 28
    Apium aquaticum, Tragus ..... 54
    Apium risus, J. Bauhin. ..... 54
    Pagk
    Aqu＇mbiba arctica，Hort ..... 75
    mREVISTILA，Hook ..... 76
    C．fRUI．Es，var．Flaけrecens，Laumon ..... 76
    Californica，IIartweg ..... 76
    Casammsis，Jiun ..... 73
    （analonsis，）look． ..... 75
    （＇analensis，Torrey ..... 76
    （＇andebnsis，var．aurea，Rowel ..... 76
    var．formosa，（＇onger ..... 75
    par，fonlivitioss，Jatusen ..... it
    var．，lunkarl ..... 75
     ..... 73
    chugans，sulisl ..... 73
    eximiar l＇lan＇lum ..... 76
     ..... 7
    Hasiflora，Teमow？ ..... 73
     ..... 75
    fиr！ussa．Varollu． ..... 76
    bar．lakier ..... $7 i$
    farbill ra，Jandulwitr ..... 7.
    fmanila parmx（analonais．（inmate ..... 73
    1．1． 1 1．s．rhle，Humlin luter，Muris ..... 73
     ..... 7
    bariow：hta，Vu bu•h ..... 73
     ..... 73
    い14 11．1－．l．1．＂ ..... 75
    whataria＂livlagelonalar．hevisight，liray77
     ..... $\cdot 1$
    （ whamlathas，Nist ..... 20
     ..... $\because 4$
     ..... 15
     ..... 41
     ..... $\therefore$
    crundtaria，laf ..... 85
     ..... （17）
    arrtion，li．Itr ..... li．
    asarifelis，In ..... （is
    lithora，Watond ..... （i！）
    hithura．Ik ..... $6!$
    curnmia，sthot ..... $1 ; 7$
     ..... （i）
    folloratherrii，Sedatt ..... （i）
    Himah－bsis，］（on ..... 10
    isternis）ia，\＆lott ..... 69
    licta，velutt ..... （i）
    latifulia，※lentt． ..... 187
    1．V：TTMEIALA，J）${ }^{\circ}$ ..... （i8
     ..... 199
    satass，J＇alleas ..... （88
    ortborliyncha，Iuprochit ..... 67
    1＂Al．0日tus， $\operatorname{Iinn}$ ． ..... 66
    var．，Hook ..... is
    Var．asarifolia，lkothrock ..... $(18$
    var．Ininima，Regel． ..... 69
    var．orthorhyncha，Trantv ..... 67
    rar．Simirica，Regel ..... 07
    ！nniculata，Wall ..... 07
    riparia，Ikn． ..... 67
    Bagittata，Torroy ..... 69
    Paga
    vulgaris，Schott ..... 67
    Chrysa borealis，Rafin ..... 71
    Cimicifuga racemosa，Nutt ..... 85
    serpentaria，Pursh ..... 85
    Clematis almina，rar．Ochothsoss ..... 24
    Americana，Millor ..... 20
    Amoricana，Poiret ..... 20
    bractoata，Mench ..... 22
    Canalensis，Miller ..... 22
    Columbiana，Torr．\＆Gr ..... 20
    cordata，Pursh ..... 22
    cordifolia，Monels ..... 22
    Dougl．asis，Hook ..... 23
    fragrans，Salisb ..... 22
    hirsutissima，Pursh ..... 31
    loolosericea，P＇ursh ..... 22
    מ．nctsticheos．s，Nuth． ..... 22
    Odnotemsis，l＇oir ..... 24
    l＇urshii，Detr ..... 22
     ..... 19
    Vhegmana，Lime ..... 21
    Virginiana et e，l’ukenet ..... 22
    Viryiniana，Hook ..... 23
    Wethii，Jutt ..... 23
     ..... 72
    ：ankurinides，Itwo ..... 72
    （rawhymetah，Sird）．\＆Zuce ..... 72
    THEF日．A．A，Sulisb． ..... 71
     ..... 80
    A．rivos，licich ..... 80
    ＊xheram，Michor ..... 79
    Carolinianum，Wralter． ..... 79
    Comsolila，Hexik ..... 80
    devorm，Benth． ..... 79
    ＂xaltatum，Jierk ..... 78
    цrandiflorum，var．variegatum，H．\＆A ..... 79
    Mexasin，$D C$ ..... 78
    Nuttalliana，I＇ritz ..... 78
    orieatinie，J．Gay ..... 80
    1atens，Nowlerry ..... 78
    buaciflorum，Nutt ..... 78
    schiviores，Gray． ..... 78
    minis．ex，Douglas． ..... 80
    simplex，Gray ..... 70
    tuberosum，Menzios ..... 78
    vabegiatem，T．\＆G ..... 79
    vilinineum，Don ..... 70
    virescens，Nutt ..... 79
    Gaissenia verna，Raf． ..... 71
    Helleborus trifolius，Linn ..... 71
    trilolus，Lam ..... 71
    Hepatica，Gronovius ..... 20
    Hepatica acutiloba，DC． ..... 31
    Americana，Kor ..... 29
    triloba，Chaix ..... 20
    a．obtusa，T．\＆G ..... 23
    B．acuta，T．\＆G． ..... 31
    $\beta$ ．Americana． ..... 29
    ß．fol．seg．acutis，llook ..... 31
    d．fol．lob．obtusis ${ }_{2}$ Hook ..... 29
    Page
    var. acuta, Pursh ..... 31Horba Sardoa, Guilandinus
    54
    Herba scelorata, Apulaius
    Herba scelorata, Apuleius ..... 54
    Herba Trinitatis, Dalochamps ..... 29
    Hyacinthus, Theoc., Ovid ..... 81
    Hymbastis Canadersis, Linn ..... 70
    Hydropliyllum verum Canadensium, Linn. ..... 70
    Macrotys actsooides, Rafin ..... 85
    racomosa, Eaton ..... 85
    serpontaria, Eaton ..... 85
    Mrosurus apetalus, Gay ..... 42
    aristatus, Benthant. ..... 42
    minimus, $\operatorname{Linn}$ ..... 41
    Shortii, Rafinesquo ..... 41
    Paonis Browni, Douglas ..... 86
    Californica, Nuttall ..... 86
    Populago, Ray ..... 67
    Pulsatilla alpina, Lawson. ..... 33
    Nuttalliana, Sprongel. ..... 32
    patens, Gray. ..... 32
    $\beta$. Wulfgangiana,Trantv. \& Moyer ..... 32
    Ranunculus abortives, Iinn ..... 50
    var. micrantlus, Gray ..... 51
    ACRIS, Linn ..... 59
    acris, Macoun ..... 62
    afrinis, $R$. Broun ..... 51
    var. camboruyilles, Gray ..... 52
    rar. $\gamma$. helocarieqs, Trautr. ..... 52
    alismæfolius, Gray ..... 49
    Altaicus, Laxm. ..... 57
    amcenus, Ledebour ..... 51
    ambigens, H'atron. ..... 48
    Ammani, Gunuer ..... 56
    amphibins, James ..... 46
    aquathis, var., confervolnes, Luwson ..... 45
    var. Droueth, Lauson. ..... 45
    var. Lobbii, Watson ..... 44
    rar. Longirostris, Lawson. ..... 45
    var. submessus, Lawson ..... 46
    var. trichopliyllus? Lawson ..... 45
    arcticus, Richardson. ..... 51
    auricomus, Hook ..... 51
    var., Biria ..... 50
    var. aflinis, Lawsou ..... 51
    Beckii, Don ..... 46
    brevicaulis, Hook ..... 53
    bulbosus, Linn ..... 65
    cespitosus, Wallich ..... 51
    Californicus, Macoun ..... 62
    Canadensis, Jacquin ..... 62
    cardiophyllus, Hook ..... 52
    Chamissonis, Schlechtendal ..... 47
    Clintonii, Bock ..... 61
    confervoides, Fries ..... 45
    Cymbalaria, Putsh ..... 49
    var. 乃. alpinus, Hook ..... 50
    delphinifolius, Torroy ..... 46
    digitatus, Hook ..... 66
    Drouetii, F. Schultz. ..... 45
    Page
    Eschscholtzii, Scblechtondal. ..... 59
    fascicularis, Muhlenberg ..... 64
    fascicularis, Barton ..... 61
    filiformis, Michaux ..... 48
    Flammula, Schlechtendal ..... 48
    Flammula, Pursh ..... 49
    var. $\gamma$. filiformis, Hook ..... 48
    var. intermedia, Hook ..... 48
    var. reptans, Sinith ..... 48
    sub.-sp. reptans, Hook. f.. ..... 48
    fluitans, Provancler ..... 46
    fluviatilis, Bigolow ..... 46
    frigidus, Willd ..... 57
    (ilaberbumes, Hook ..... 53
    filacianis, Limn. ..... 47
    Gmelini, Fl. Sibir ..... 47
    halophilus, Schlechtendal ..... 49
    hederaceus, Biria. ..... 45
    hederaceus, Maccun ..... 44
    hederaceus, var., Torrey ..... 44
    mameracese, zut, mederafohes, Luuson ... ..... 44
    var. Lomsi, Lavson ..... 44
    lispridus, Itook ..... 62
    hispidus, Michaux ..... 61
    lispidus, Pursil ..... 62
    Hooksir, Regel. ..... 59
    hydrocharis conferondes, Hiern ..... 45
    hederafilins, II iern ..... 45
    Lohbii, Hiern ..... 44
    longirostris, Hiern ..... 45
    hymbiblevs, Rothöll. ..... 56
    hyperborens, Howk. \& Thoms ..... 56
    nyphriorbes, var. Pycmates, Lateson ..... 56
    infestus, Salisb. ..... 60
    intormedius, Eaton ..... 61
    lacustris, Beck \& Tracy ..... 46
    lanuginosus, Walter. ..... 63
    lanuginosus, var. ;. Pursh. ..... 61
    Lapponicus, Linn ..... 55
    limosus, Nutt. ..... 47
    Lingua, Pursh? ..... 49
    lobatus, Jacquem ..... 49
    Lobbii, Gray ..... 44
    longirostris, Godron ..... 45
    Marilandicus, Peirct. ..... 61
    multififes, l'ursh ..... 46
    var. $\beta$. himosus, Lauson ..... 47
    var. 子. repers, Wutson ..... 47
    multifidus, var. 1. Hatson ..... 47
    Nelsoxi, Gray ..... 63
    rar. tenelles, Gray ..... 64
    nitidus, Hook ..... 61
    nivalis, Iinn. ..... 57
    nivalis, . ..... 56
    var. $\beta$. Wahlenberg ..... 58
    rar. Escrischourzir, Watson ..... 58
    pygmæus, Linn. ..... 56
    rar. sulpilurees, Watson ..... 58
    oocidentalis, Nuttall ..... 62
    Page

    occidentalis, T. \& G

    occidentalis, T. \& G ..... 64 ..... 64
    var. parviflorus, Torrey ..... 64
    orthorhynchus, Hook ..... 66
    ovalis, Refinesque ..... 52
    Pallasin, Schlechtendal ..... 59
    palust. apiifol. lævis, C. Bauh ..... 54
    paucistamineus, var. borealis, Beurl ..... 45
    pedatifidus, Hook ..... 59
    pedatifidus, Schlecht ..... 51
    pedatifidus, Smith ..... 52
    Pennsylvanicts, Linn, fil ..... 62
    Pennsylvanicus, Pursh ..... 61
    Pennsylvanicus, var., Biria ..... 63
    Philonotis, Pursh. ..... 61
    plantaginifolius, Murray ..... 49
    prostratus, Poiret. ..... 60
    pulchellus, C. A. Meyer ..... 49
    Purshii, Richardson. ..... 46
    a., Richardson ..... 47
    〔., Richardson ..... 47
    3., terrestris (subglaber), Lede- bour ..... 47
    var. :. Hook ..... 47
    var. f. Hook ..... 47
    pymaus, Wahl ..... 56
    radicans, C. A. Meyer ..... 47
    a. typicus, Regel ..... 47
    var. multifidus, Regel ..... 46
    repens, Regel ..... 47
    henthates, Poiret. ..... 63
    recurvatus, Bong ..... 64
    8. Nelsonii, I) ..... 64
    berens, Li ..... 60
    rar mapiots, T. de $G$, ..... 61
    repens, var. Marilandicus, T. \& G ..... 61
    heitass, Limu. ..... 48
    var. S, filiformis, DC ..... 48
    rar. \& intemmenhes. ..... 48
    thomboideus, Goldie. ..... 53
    Sabini, R. Br. ..... 56
    salsuginosus, Ion ..... 49
    salsuginosus, Pallas ..... 49
    salsuginosus, Wallich ..... 49
    saniculæformis, Muhl. ..... 63
    $P_{\text {age }}$
    sarmentosus, Adams. ..... 49
    sceleratus, Linn ..... 53
    Schlechtendalii, Hook ..... 61
    sulphureus, Solander ..... 58
    tenellus, Nutt ..... 64
    tomentosus, Poiret ..... 60
    tridentatus, HBK ..... 49
    trifolius, Mœnch ..... 62
    Syndesmon thalictroides, Hffmsg ..... 28
    Thalictrum acaule, Camb ..... 27
    alpinom, Linn. ..... 26
    Americanum, Parkinson ..... 25
    anemonoides, Michx ..... 28
    Canadense, Cornute ..... 25
    Canadense, et c., Tournefort ..... 25
    Carolinianum, DC ..... 25
    clavatum, Hook ..... 27
    clavatum, DC ..... 27
    confertum, Mœnch ..... 25
    Cornuti, Linn. ..... 24
    corynellum, DC ..... 25
    crenatum, Desf. ..... 25
    Dhocum, Linn ..... 26
    discolor, Willd ..... 25
    Japonicum, Thunberg ..... 72
    lævigatum, Michx. ..... 26
    leucostemon, Koch \& Bouche. ..... 25
    marginatum, Royle. ..... 27
    majus fol. Aquil., et c., Morison ..... 25
    microphyllum, Royle ..... 27
    occinentale, Gray ..... 25
    purpurascens, Linn ..... 28
    Richardsonii, Gray ..... 27
    rugosum, Pursh ..... 25
    sparsiflorum, Turcz ..... 27
    Trautvetteria grandis, Nutt ..... 43
    palmata, var. occidentalis, Gray ..... 43
    Trifolium Hepaticum, Mentzelius ..... 29
    Trollús Americanus, Muhlenb ..... 70
    decapetalus, DC ..... 71
    laxus, Salisb ..... 70
    pentapetalus, DC ..... 71
    Tussilago sive Farfugium, Mathiolus. ..... 67
    Warnera Canadensis, Miller ..... 70

    # IV.-On Geological Contacts and Ancient Erosion in Southern and Centrel New Brunswick.-By L. W. Bailey. 

    (Road May 23, 1884.)

    The importance of geological contacts in the determination of the structure and geological history of different regions is well understood, and in the stndy of the latter these receive, as they deserve, especial attention. While the various formations, in their petrological characters, their thicknesses, and their contained fossils, afford the data for estimating the conditions of their origin and their relative duration, it is along their lines of junction that we are to look, more than elsewhere, for information as to the circumstances under which they came to a close; in other words, for the time and nature of the physical breaks by which the historical record is divided into its separate chapters, and made comparable with those of other regions.

    In the study of the geological structure of the Province of New Brunswick, which, as regards its general features, is now well adranced, a variety of such contacts has been observed and detailed in the geological reports. From the peculiar position, however, which this Province occupies with reference to the great north-eastern or Aradian basin, and from the fact of its possessing a larger number of determinable horizons than any other portion of that basin, of which it therefore becomes to a cortain extent the key, the consideration of these contacts has an interest beyond the immediate region in which they are found, and suggests conclusions of much wider application. It is the intention of the writer, in the following remarks, to consider briefly some of the more important of these junctions, and the deductions which they may seem to justify. As the passage from one formation to another is usually accompanied by evidences of more or less extensive erosion, and as this, in some instances, affords almost the only proof of a want of contimuity, some observations on this latter point may also prove of interest.

    The reference of a portion of the rocks of southern New Brunswick to a pre-Silurian, Azoic, or, as it is now better termed, Archean age, was first asserted by the writer in connection with Mr. G. F. Matthew in 1865, on the ground of their relations to the fossiliferous rocks of St. John, then first identified by Hartt as containing a typically Primordial fauna. It is remarkable that, while the recognition of this ancient horizon is not exceeded, as regards the completeness of the data, by that of any subsequent formation, so its relations to the underlying rocks are of the most satisfactory and conclusive character. For not only do they differ wholly in lithological characters, a feature which some writers suppose to have been the only ground for their separation, but, in every particular ordinarily marking discordance of successive formations, the evidences here offered are wide-spread and complete. Whatever view be taken as to the precise equivalence of the underlying groups which have been compared respectively with the Laurentian and Huronian systems, the fact remains that these represent a vast thickness of sedimentary
    strata of the most diverse character, and that, while at one point the Primordial rests upon what appear to be the most recent of these strata, at another it reposes upon beds which cannot be less than several thousands of feet lower in the series, while the conglomerates which mark its hase bear further testimony, both in their composition and their thickness, to the erosive processes which preceded or accompanied the deposition of the Primordial sediments. Finally, while local unconformable contacts may be seen at many points, an equally marked discordance is observable in the two groups as a whole, the trends of the Primordial bing transverse to those of the supposed Huronian, as the folds and dislocations of the one are quite independent of those of the other. The Lower Silnrian, or Cambrian, formation is thas as clearly defined in its stratigraphical relations as it is in its palcontological leatures, and forms a readily recognizable horizon, with reference to which the position of both older and more recent groups may be directly compared.

    As rugard the older sybtems to which reference has been made, New Brunswick has been maturally looked to as likely to aflord some information upon the questions which haver parntly awakened so much attention, regarding the mumber and order of succession of the proc'anbrian racks. and has, indeed, bern freguently referred to in discussions of this -ubjow. It wan. howeror. I think. hatdly lo said that these questions, as leere applied, have vet recoived a dedinit, solution. That there are among the rocks referred to three, if not fortr, distinct arouss of stmat, whibiting strong lithological contrasts, and pro-
     nized and has lewn condirmed hy all later study of the reqion, hat the precise relations in Whith hlume tathl to wh other and their eorrelations with proposed subdivisions of
     ditlerent observers. Thus, while the writer, in common with Mr. G. F. Matthew, ly whom the - trueture of the district was first studiod, has described, in what he believes to be an
     former beime paraded as repreming the bamentian and one at least of the latter the Huronim sysm,-Hr. Innt has bern dispowed to question the existence of true Lanrentian in this district, and to modify the above arrangement hy associating the ealeareons with the schistose erroup. regarding both as newer than Inmonian and equivalents of what he has abwhere termed Montallant. Without attempting to deny that such an arrangemont is possible, and that, if sustanod by further investigation, it would bring the succession in this regrion into remarkable parallelism with that observed elsewhere, the writer, aftor long and ropeated study of the region, is still constrained to think that the fiacts of the case are such as to favour the former rather than the latter view of the actual structure. Thas, applying the test of contacts, which it is the purpose of the present paper more particularly to consider, it is not a little remarkable that while the calcareo-silicious group may be seen at many points resting upon, and in direct contact with, the coarser gneisses, following these thronghoat their distribution, and apparently involved in the movements by which they have been affected; nothing at all resembling the strata first named is to be found in connection with the schistose group, where the few limestones which are met with are very impure, of insignificant thickness, of different character, and of wholly mulike associations. Again, if the calcareous and associated strata are really more recent than the felsite-petrosilex group, the entire absence of the latter between the same calcareous beds and the underlying gneisses, when these are observed together,
    would imply an amount of erosion which, considering the nature of the material composing the felsitic group and the vast bulk which it exhibits even at a very limited distance, scems altogether improbable. It may be added that while pebbles, derived alike from the felsitic and schistose beds, occur abundantly and in great variety in the basal conglomerates of the Primordial, no such pebbles from either member of the calcareous group have been identified in such a position as they naturally would be in, were the latter group immediately subjacent. All that can at present be positively asserted is: (1) the super-position of the limestone-quartzite series upon the granitoid gneiss, though perhaps distinct from the latter, and (2) the interposition of a vast body of schistose strata, quite mulike those of the first named group, between the felsitic rocks and the hasal beds ol the Primordial. It may be added that between the felsitic group and the overlying sehists and conglomerates the contacts are abundant and easily observed, showing not only distinct unconformity of dip, but at least a partial breaking up of the lower beds, accompanied by the extensive extravasation of igncous rocks and the formation of coarse tuffs: and argemerates, filled with blocks derived from the horizons belleath. Adopting this view of the suceession, it will be found to accord very nearly with that deswibed by Dr. Hieks and others as characterizing the district of St. David's in Wales, where fossiliferons Cambrian strata, containing a fauna similar to that of St. Joln, are in like manner underlaid in downward succession by slaty and comparatively little altered rocks (Pepidian), a middle group (Arvonian), comprising contemporaneons voleanit rorks, folsites, brectias and tuffs, and having a thickness of 15,000 feet, and a lower group (Dimetian) consisting of granitoid and quartzose rocks with coarse gneiss and bands of limestone and dolomite. The Coastal, Coldbrook and Portland groups of the New Brunswick local reports present apparently identical features both of origin and arrangement. We may now pass to the consideration of some more recent horizons.

    In connection with the Primordial or Canbrian rocks of St. John, no remains of younger formations are to be met with, except it be those of the Lower Carboniferous series, and although in the more northerly belt of such rocks, fom in the valley of the St. John River in King's Comnty, these are approached somewhat nearly by fossilifurous beds of Upper Silurian age, no actual contact of the two has been observed. It is, however, to be remarked that while beneath the Primordial rocks of this region there are, as in St. John County, felspathic and schistose beds, sncceeding in turn a well defined felsitepetrosilex gromp, the latter is also directly and unconformably covered by the Upper Silurian strata, thus indicating the extensive erosion to which the surface had been subjucted prior to the deposition of these later sediments,-a circumstance made still more conspicnons by the occurrence of numcrous hills, some of them several hundred feet in height, which rise like islands through the nearly horizontal Upper Silurian beds, being evidently fragments of a formation at onc time much more widely distributed. The nature of these beds and the fossils they contain show that the waters in which they were deposited were but of moderate depth.

    It has long been known that rocks of Upper Silurian age are widely spread over the northern connties of New Brunswick, and that these are bordered along their sonthern edge by wide belts of much harder rock, flanking one or more belts of granite, and in the vicinity of the latter often presenting the aspect of highly crystalline schists, this second group being variously deseribed by Gesner, Robb, Hitcheock, Hind and others as Silurian, Cam-
    brian, Mica-sehist group and Quebec group. Until within the last year or two, however, no definite knowledge existed, either as to the true limits or relations of these several sets of rocks, or evell whether in the lower group there might not really be included several distinct formations. In 1879 , the base of the Upper Silurian in that part of Carleton Comnty lying east of the St. John River was approximately fixed by Mr. Matthew, and, simultaneously but independently, a like bonndary was determined by myself between the town of Wertatork and the Maine frontier. More recently both of these districts have been rexamined and the line of contact ot these formations carefully studied for a distance of not less than thirty miles. Though somewhat obscured by overlying carboniferous sedimonts, the nmonformity of the two is, nevertheless, strongly marked: first, in the occurrunce at the bas of the upper series of thick beds of calcareous conglomerate filled with fragumats (hlant silicious slate and petrosilex) derived from the group below; secondly, in a ditlirenme both of strike and dip: and thirdly, as a result of this difference, in the progremive overlaphine of the newer lormation upon the several members of the older. The fows of the latw group are momerons and varied, and indicate an horizon corresponding -ither to that of the Niacara or Lower Itedertorg ; in the lower are a few shells and araphlitw. borether with fragments of tribohites, apparently of the genera Trimuclens and Harps. lot too poorly prearrod to bo certainty determinable.

    Tha relations af these supposed Cambro-Silurian rocks to the granite open up numeroms ynmains, as intoresting as they are dillionlt. They present, indeed, only another phase of the woll-knww Tan onc controversy, so admiralhy summarized and diseussed by our dis-
     fanmon- insolved in this controversy it is not necessary, nor do I feel prepared, to enter; the ulje.ts of the present paper will be sulliciently served by presenting a few facts of achal , heorvation in the tirld, with surh conclusions as are of direct local application. In the cate of looth of the great gramite belts which traverse New Bronswick, the contacts of the lather with the bordering stratifiod rocks are best seen along their northern edge, from whinh wrorlyug material has been lor the most part removed, while it has been extensioly acmumbated alomg that of the south. Where thos exposed it invariably presents the followine features:-

    1 The transition from massive, compact and unform granite to the associated schists or other ronks is instantaneous and abrupt.
    2. The invaded beds vary qreatly in character, embracing coarse and fine gneisses, mica shists, wheritic and hornblendic sehists and fine micaceous sandstones.
    3. Foliation and erystallization are most marked in the vicinity of the granite, and decrease in receding from the latter, but vary greatly in the apparent distance to which the effect has extended, this being in some instances only a few yards, while in others it is several miles.
    4. The outline of the granite is irregular, and, while in part parallel to the strike of the enclosing schists, at others it intersects these obliquely or even at right angles, or sonds into the latter irregular tongues.
    5. Detached masses or bosses, of various forms and sizes, border the main granitic areas, indicating, beneath the schists, a wide-spread and uneven granitic floor.
    6. Granitic veins, not dillerent from the main mass of the granite, but readily distin-
    gnishable from true segregated veins which accompany them, penetrate the schists in all directions to a distance of several hundred feet.
    7. Large detached blocks, of various sizes up to two or three feet, but usually angular and sometimes rectangular, are enclosed in the granite, and produce the appearance of a coarse granitic breccia.

    To the above it may be added that small patches, sometimes not more than a few yards or feet in extent, of gneissic or schistose rock, are occasionally met with resting upon, but inseparable from, the granite, at very considerable distances from the nearest exposures of such schistose rock, while smaller masses, which are evidently detached fragments, occur in all parts of the granite area, often retaining the same features of texture, foliation, and even of colour, presented by the main body of such rocks.

    From a consideration of the above and other facts, the conclusion seems to be fairly established that the granites in question are intrusive or exotic, and that the alteration of the associated rocks was an accompaniment, if not an effect, of such intrusion. It may be added that while the several belts of slates and schists, north and south of, or central to, the granite, have been variously described as wholly or partly of different age or origin, recent minute examinations of the region show beyond question their essential identity,the same crystalline and semi-crystalline rocks always appearing where the granite is approached, whether from the sonthern, northern or castern side, while in the opposite directions these as invariably graduate into the upper and comparatively unaltered argillites and greywackes. At what period the extravasation of the granite occurred is less certain. As far as yet observed in Carleton County, no veins of the latter are to be found penetrating the Upper Silurian, although veins of syenite and diorite are common; but the fact observed in the southern counties, that the conglomerates older than the Lower Carboniferous are destitute of granitic pebbles, while those of the latter formation alhound with them, taken in connection with the evident similarity of the granites in the two regions, and the precisely similar effects accompanying them, appears to indicate that both are of synchronous origin and both Devonian. In either case the amount of erosion which has since occurred is sufficiently indicated by the facts already stated, the whole granitic area, with a superficies of several hundred square miles, having been evidently laid bare by the denudation of beds (schists, slates and sandstones,) which, though now miles apart, were at one time continuous over it, and which, to judge from their highly inclined attitude and vast thickness, must have buried it to a very considerable depth. The fact that the granite areas are usually lower than those of the bordering schists would also seem to indicate that erosion has been more extensive and complete along these areas than in the regions adjacent to the latter; while the much greater breadth of the region of metamorphism and foliation on the northern side of the granite, than on the southern, would appear to indicate a much more abrupt descent in the junction line of the granitic mass on this latter side than upon the opposite. It is to the contrasts thus produced that the different views, which have been advanced by different observers as to the relations of the strata in the district, are to be ascribed.

    I pass now to the contacts of the Devonian. In the southern counties the rocks of this age, so far as they have been certainly identified, are of very limited distribution, and rest only upon rocks of Cambrian or pre-Cambrian age, a portion of these latter, by an overturn and fanlt, being also brought to rest, in a position of comparative conformity,
    upon the Devonian strata, and thus originating a misconception which for some years obscured the true structure of the region. No contacts of Devonian and Silurian are to be found in this part of the Province; and though such contact has been supposed to occur in conncetion with the argillites bordering the central coal-feld, the age and relations of these rocks can hardly be regarded as definitely settled.

    In rising to the Lower Carboniferous, we reach an horizon and a series of contacts which. whether they be regarded simply in themselves, or in their accompaniments of erosion and lithological contrasts, constitute the most marked boundary line in the physical hi-tory of New brunswick. Resting indifferently and unconformably upon all the older formations (Lanrentian, Huronian, Cambrian, Upper Silurian, Devonian and granite); compmend of material, in some instances fossiliferons, derived from all these formations, and varyiner in its senect with the nature of the rock on which it rests; exhibiting no sign of thes motanorphin inthences which have hardened, crystallized, or debitumenized all the whar beds beneath, wen to the Devonian, hat, on the contrary, being even in its lowest pertions saturatend with petrolemm and containing deposits of Albertite, -the study of this liomation. from whatorer pemint of vew, sugrests conclusions of the greatest interest. So mathind and su widnespead are the contrasts referred to, not in New Brunswick only but "Wrywhre around and ower the Acadian basin, and so important were the movements by whill then comtasts were detormined, that we may well style the epoch in which they marred inn Amath or lewonian revolution. It was, indeed, probably at this time that Hhe Aadian basin proper first bequme darly outlined by the elevation of its bordering hills. and whell all the more marked of thense physical features whith now distinguish it berame devermined. If is remarkable that both the breadth of the formation and its Whation abow the sta-lewl progressively inverase in passing from the western to the "astern side of the Irovince, heds of this age in the former being rarely met with more Han two wr the humbed feet atmee the sca, amd mostly confined to the valleys, while in the opmeste diremtion they gradually monnt the sides of the hills, and, in the case of Shepoly Moumain, in Albert, cap the latter at a height of twelve hundred feet. There i., howerer, tronl reason to beliew that they formerly spread over much wider areas and poseasel a monsiderably qreater thickness than they now exhibit. Thus, not only on Sherody Momatain, but on other portions of the southern hills, at searcely inferior elevafions, strata of this are may be choserved in positions which are not far from horizontal, and which appear to be merely the detached and isolated fragments of a formation, which at one time must have been continnous, and which deeply buried the entire region in which they are found. So agrain, similar rocks, showing similar evidences of marine origin, are found in scattered areas over portions of York, Carleton and Victoria Counties, which are also but little inclined, and which have probably been disconnected by erosion. Some of these in the Beccaquimie region camot well be less than 800 or 900 feet above the sea-level. In Kiug's County the peculiar topography of such localities as the Dutch valley and Upham, are evidently due to the removal of extensive masses of this formation by denuding processes.

    Still further evidence of the extent to which this formation has suffered by removal is shown in its relations to the overlying coal-measures, and brings us to cousider another line of contact, of special interest as bearing upon the important question of the coalproducing capacity of this formation. There can be no question that, at many points, the
    red calcareous beds of the Lower Carboniferous pass up into those of the millstone-grit, not only without unconformity, but with direct evidence of transition between the two; as for example about Hillsborough in Albert County, where the denudation which has taken place would appear to have occurred at a later period: but on the other hand there are also evidences that this conformity is in many instances only apparent, resulting from the fact that both sets of beds are approximately horizontal, and that a considerable interval, involving a large amount of corrosion and deformation of the surlace, oceurred prior to the deposition of the later strata. Thus, while in the Grand Lake district we have, on the Newcastle River, a regular and apparently conformable succession of Lower Carboniferous marine sediments, millstone-grit, and productive coal-measures, all with only a very low inclinatiou; borings through these latter at a distance of only a few miles, and on the side of the dipping strata, resulted in showing the entire absence of the lower beds, while at yet another point, on Coal Creek, the coal-measure rocks may be seen, for miles, resting upon uplifted pre-Carboniferous slates, withont the intervention of the Lower Carboniferous. So also, in some parts of York County, points almost within sight of each other show horizontal coal-measure rocks resting at one time upon nearly vertical Lower Silmian beds and at another upon an apparently thick mass of Lower Carboniferons sediments. The wide-spread accumulations of dolerite, basalt and amygdaloid, which intervene between the summit of the last-named group and the millstone grit, may be regarded as further evidence of their unconformity. The supposition of conformity in beds so nearly horizontal would necessarily imply, with wide superfieial "xtent, a very linited thickness to the coal-formation; while that last mentioned, by supposing the deposition of these beds upon a surface extensively folded and eroder, will at least admit of the possibility of a very varied thickuess of the coal strata, and consequently of the occurrence of other seams of coal than those now known and worked near the surface.

    The last contact to which it is necessary here to refer is that of the Carboniferous formation with the Trias or new red-sandstone. Several examples of such contacts have been observed along the southern coast, but, apart from the fact of placing beyond question the existence here of Mesozoic deposits, they present no features of special interest.

    In recapitulation, it will appear from the foregoing observations that we have in New Brunswick not less than six well defined physical breaks, with all the usual accompaniments of unconformity, viz., one between the Primordial and pre-Cambrian, four betwoen the several subdivisious of the Paleozoic, and one between the latter and the Mesozoic, to which may be added certainly two, and probably three, similar breaks among the preCambrian rocks. In each of these cases, excepting perhaps that between the two main divisions of the Carboniferous, the unconformability is accompanied and in part indicated by the formation of heavy beds of conglomerate, while, in most instances, the same lines of junction are marked by the occurrence of eruptive rocks, the result probably of the same forces to which the unconformity is to be ascribed. In the case of the Deronian revolution, involving movements of the entire Paleozoic series, there were, in addition to the eruptions of trap, the extensive extravasations of granite which constitute so marked a feature in the geology of Acadia, and which have had so profound an influence on all its subsequent history.

    # V.-Illustrations of the Fauna of the St. John Group continued: on the Conocoryphea, with further remarlis on Paradoxides. By G. F. Mattiew, M.A. 

    (Read May 23, 1884.)

    In continning my work on the Fauna of the St. John group, I have, at intervals during the past year, made an examination of a part of the numerons species of tribohites grouped by the late Prof. C. F. Hartt under the genus Conocephulites of Barrande. During the examination of the fossiliferous material from the beds of Division $1 e$ of the St. John group necessary for this purpese, some points in illustration of the characters of the Paradoxides described in my former paper were noticed, which were not observed when that paper was written. To these I shall refer before entering upon the main subject of this article.

    > I.-PARADOXIDES.
    1.-Paradoxides Acadicus. (Fig. 1.)

    Young of this species.-In trimming some pieces of slate, two heads of rery young individuals were exposed, which show important differences from the adult. These heads were of equal size, and being only half of the length of the smallest head described in my former paper, show the appearance of the species at a much earlice period of growth. The length is about 4 mm ., and it possesses in an exaggerated degree the wide-spread anterior border which is a somewhat marked feature of the 8 (7.7) mm. size. This 4 mm . size is also remarkable for the sharp Anopolenus-like sinns in the facial suture, and for the long eye-lobe, which on the one hand touches the glabella, and on the other nearly reaches the posterior margin. The cheeks are expanded to correspond to the spreading anterior border, and the third and fourth furrows are placed very near the anterior end of the glabella.

    Pygidium (Fig. 2).-A tail-piece, 4 mm . long, appears to have belonged to a larger test of this species. It is ovate in outline and has peculiarities not observed in any other. The axial lobe is somewhat more than half of the whole length. It consists of two segments : the anterior one ring-like and narrow, with a small lunate portion, one third of its length, marked off on the posterior side; the posterior segment of the axial lobe is subtriangular, its extremity is rounded and the sides are rounded forward at the anterior quarter. Along the front and side of the lateral lobe of the pygidium there is a marginal fold or border, which at its anterior end connects with the first ring of the axis.

    Sculpture.-The upper surface of the pygidium is finely granulate, and in the posterior half, where (in the specimen) the upper surface is broken off, the inner side of the under surface presents a number of irregular parallel striæ, concentric to the axial lobe and the front of the pygidium. This tail-piece, both in its granulated surface, its thickness, and its well preserved form, possesses characters belonging to the rigid test of Paradoxides Acadicus.

    2.-Paradoxides lamellatus, Hart. (Figs. 3 and 4.)

    Tharongh the kinduess of Mr. J. F. Whiteaves, of the Geological and Natural History Survey of Canada, I was afforded an opportunity of examining a well-preserved head of the trpical form of this species. I'rof. Hartt speaks of this trilobite as "a small species distingushed from several others found with it by the presence of a number of sharp perpendicular lamina on the anterior lobe of the glabella." As it is desirable, for the purpose of comparison with othor speries, that a more complete description of this trilobite should be given, Thaw shetched the following characters:-

    The enterior murim is arthed aromed the front of the glabella, and thence to the suturn it is straight. The dat area is one and a half times longer in front than at the -nture. The fold is mon wider at the suture than in front of the glabella.

    The sluhth is about on quartior longer than its width. It is narrowed and depressed at the bach, but risw anteriorly into at well-rounded dome.

    Giblether furfors-The lirst wosses the glabella and is deoply impressed, especially in the ontw third, and arme bak from hoth extmities to the middle of the glabella.
     narruw or han the lirst and i- denply imponssel: it inclines backward as it ascends the Slon of the olabella, and the "xtromities of the segments are sharply bent backward where they apmanh the axial line. The thin and lourth furrows are lightly inpressed and arw dimend forward: the thim firmow exthods about onthird across and is slightly bent hakward :a the inner and : the fouth furow extends only abont one-fourth across. Neither the third nor the fonth wextels quite to the edge of the glabella.

    Tho orrinitul siner is sma.what indind forward at the extremities, and is strongly armal werialls. It is high behmen and slopes gradually to the occipital furrow. This finrow is deaply improsel in the outw third of its longth, and in this part is strongly arched forward wwarts the middle of the lirst glabellar furrow. Between the outer thirls there is a flattoned area on the axis of the glabella where this furrow blends with the first elabullar finrow. but the later furow is hare somewhat the deeper.
    'Tha, pesterior murein is broken in the specimen examined, but appears to arch downward strmaly the extromity. The furrow is of regular width, and is moderately impressed.

    The fued cheek also is broken, but appears to be rather narrow; it is elevated in the middle and depressed at both ands. The ocular lobe in the specimen examined is broken off.

    Sculpure-The antwrior marginal fold is traversed by fine parallel raised lines, which branch at intervals; they are roughly parallel to the anterior margin, near which they are more crowded. The l'ront of the dome of the glabella is ornamented with two or more continnons sharp, raised ridges (separated by the space of about one millimetre) which sweep around the front of the glabella on each side to the fourth furrow; higher on the dome of the glabella are small, broken and irregular ridges; similar small, elongated elevations of the test are scattered on the slopes of the glabella between the second and fourth furrows. The projecting part of the occipital ring and the back of the dome of the glabella are covered with tubercles, which, on the less elevated parts of the ring, and the posterior half of the glabella, gradually diminish in size, until they pass into granulations. Similar gramulations are found on the fixed cheeks.

    Dimensions.-Length, 13 mm . ; breadth, about 15 mm .
    Locality,-St. John, N.B. Collector, T. C. Weston.
    This species is intermediate in size between $P$. Eteminicus and $P$. Acadicus. It resembles the former in the appearance of the glabellar furrows and in the hollowness of the neck of the glabella, and the latter in the granulated cheeks.

    ## appendages of paradoxides. (Fig. 5.)

    As any facts relative to the existence of appendages in the trilobites are of importance from their bearing on the question of the position of these creatures in the animal kingdom, I reproduce in the drawings accompanying this article a pygidinm incorrectly figured in comnection with my former paper. (Sue Fir. 15, Plate X, Vol. I, Trans. Roy. Soc. of Canada.) In Fig. 14 of the plate referred to, another pygidium of the same type is figured, upon which a row of scars appears on each side of the axis; but those on the pygidium reproduced with this paper are more distinct. These scars are somewhat obliquely set on each ring of the axial lobe exeept the first, and are not far from the median line; the first pair are nearly cireular, but those behind have an oval form.

    If these scars mark the points of attachment of limbs, as seems not improbable, in being so near the axial line they conform more nearly in position to the articulating base of the appendages of Asaphus megistos, as represented by Mr. C. D. Walcott in "Science," March, 1884, than they do to that of Calymene senariu, ligured in the same paper.

    ## 3.-Paranoxides Micmac.

    In preparing the notes for my former paper, I was a good deal perplexed as to the species to which Prof. Hartt intended to attach this name. In his preliminary notice of the fauna of the St. John group ("Observations on the Geology of Southern New Brunswick," page 30), he says there at least five species of Paradoxides in this formation. At page 656, "Acadian Geology," he speaks of Paradoxides lamellatus as a speeies occurring with several others; on the next page, Dr. J. W. Dawson attaches the name, with doubt, to a specimen in my collection of that period since destroyed by fire, as being probably the species which Hartt distinguished by this name.

    The name was not found attached to any of the Paradoxides in the type-collection of fossils of the St. John group deposited at Cornell University by Prof. Hartt, and yet there are some unpublished species of other genera among these fossils, which have been named by him. Prof. C. D. Walcott, of the United States Geological Survey, who has examined this collection, and will describe the species contained in it in a monograph on the Cambrian fauna of the United States, now in press, is of the opinion (and rightly, that "the species $P$. Micmac should be thrown out, as not determined by illustration, description, or the preservation of type-specimens." But as the name $P$. Micmac has gone into geological literature, I would suggest that it be applied to the large species with finely striated glabella, marginal fold, and broad free cheek. (See Fig. 8, Plate X, Vol. I, Trans. Roy. Soc. of Canada.) This is probably the one figured in "Acadian Geology."

    ## II.-CONOCORYPHEA.

    In l'rofessor Hartt's descriptions of the species of the St. John group, ("Acad. Geol.," p. 643, etc..) he has grouped together, under the genns Conocephalites of Barrande, a large number of species which wonld now be divided among several genera. When tested by the criterion of the cye-lobe it will be observed that they all belong to one or other of two groups,-one characterized by the possession of eye-lobes and free cheeks; the other consisting of trilobites which apparently have no eyes, and have a suture which cuts off only a portion of the rim of the head-shield. This latter group is the one which I propose to make the sulpect of this arricle

    Thu ('onowryphea, as this limited, appear to be confined to the lower plane of the primordial zonn, ant arr thas ahnost as characteristic ol this horizon as Paradoxides itself. In their fommer stares the trilohitos of this group assimilate in general form moch more
     blanw in chindy due to the narrowness and comparative great length of the glabella in the
     for in then stare the erlabella rontrads in hongth and expands at the base, and finally as-- Hum- that manal shate to which this lorm of trilobite owes its name.

    In the armuphtrilohitus of this suh-family which is found in the Acadian region, some
     How hld Wiorld, and ratise the furstion as to whether too mond weight has not been attached wh chars of the farial suture as a mans of dividing genera. Tlans, in regard to the
     cormulus, Barr.) asoobiated tourther by larrande in the genus Conocephalites, he mentions that the - 1 ture in the two speries is the same in position, and takes the ground that the difliorine number of segments in the thorax and the diverse pygidia are not of sufficient valu" warry these spedes into diflerent gromera, and therefore that Corda shonld not be followerl in thas dividine them.

    I thimk, howerr, it will hemadn car from the additional light thrown upon the ruations of than two sperics by a knowledge of the life-history and the mature features of (omerephatites Mallhemi (Hartt) that Corda was right in establishing two genera for these spectes. It annot bre questioned but that the relationship between the last named trilobito and (\%, cormulus is much closer than its comnection with C. Sulzeri, and that this relationship is most strongly shown in the possession by the two former of a marked protuberance, or lobe, in front of the grabolla, and by their small pygidia. The value of the protuberance, or frontal lobe, in discriminating the two genera is better appreciated when the embryological development of ('t. Mathewi is considered ; for it will be found that this specics springs from a more elementary form that the other Conocorypheans of the St. John group, which by their pygidia and the form of their cephalic shield find their relationship with C. Sulzeri, C. bufo, etc. Barrande remarks that the difference of one joint in the thorax between $C l$. coromatus and $C$. Sulzeri is not of sufficient moment even when coupled with the existence of diverse pygidia to separate these two species generically. His opinion, as regards the lower generic value of the number of segments in the thorax, is supported by the fact that Ct . Malthewi possesses in the only known thorax but fourteen segments, the normal number of segments in Ct . Sulzeri, but not in Ct. coronatus.

    If we admit that the number of divisions in this region of the body is really a matter of arrested development at an carlier or later stage of growth in the life of an individual, it would be of less value in the discrimination of genera, than other points more nearly related to the earlier embryonic features of the trilobite.

    Omitting from consideration the difference in the facial suture between C. Sulzeri and Conocephalites Baileyi (Hartt), a very close resemblance in general form and in the special moulding of the surface of the cephalic shield is apparent; nor is the resemblance between the pygidia of the two species less marked. In the monlding of the imner surface of the head-shield, and in the form of the thoracic segments, we trace on the other hand a close connection between the last named species and Erinnys venulosa (Salter) of the British Cambrian rocks.

    A still more obvious resemblance is apparent between Conocephalites (Conocoryphe) elegans (Hartt) of the Acadian region and Conocoryphe bufo (Hicks) of the British Cambrian; and in this case there is no diversity in the suture to throw doubt upon the relationship, for both of these species have a suture that euts off about a third of the marginal fold.

    Considering these main features in the form and the markings of the head-shield, and what is known of the size and number of the other parts of the Conocoryphea on both sides of the Atlantic, it appears to the writer that these trilobites are properly divisible into two groups, which may be arranged, as follows:-
    A. Specios with frontal lobe as well as glabella, and having a small pegidium.
    1.-Ctexoceinialus, Corde.

    > Species laving a wall-like front to the cheoks and frontal lobe,

    > Ct. coronatus.

    Spec:os laving a sloping front to the cherks ant frontal lobo,--sub-genus, Hertellu,

    Ct. Mattlewi.
    ? (t. Solvensis, Ifickis. ${ }^{1}$
    B. Species with glabella only, and with larger pygidium.
    2.-Coxocorypine, Corda.

    Species laaving a suture that runs along the outor edge of tho marginal fold, C. Sulzori,

    Specics having a suture that cuts off tho latoral third of tho marginal fold-subaronus, Betilithe,
    C. Baileyi.
    C. Walcotti, n. sp.
    C. elegans.
    ? C. bufo. ${ }^{2}$

    ## A-CTENOCEPHALUS.

    ## 1.-Ctenocephalus Matthewi (Figs. 6-21.)

    Conocephalites Matthewi, Hartt; Conocoryphe Matthewi, Dana (Meek).
    The author of this species has well said that it is the most abundant of the trilobites found at St. John; nevertheless, after having discovered hundreds of heads and other parts of the body, I have not yet met with a perfect individual. However by using the fragments that have been recovered, a fairly good description of all parts of the test can now be given.


    ## additional features of the cephalic shield.

    This is the only part of the animal described by Prof. Hartt, and though his account is very full and accurate, it does not give all the characters of this part of the body. It is seldom that the head is fom "more than twice as wide as long," except when Hlatened by pressure in the slate; and the anterior margin is perceptibly angulated where the lateral thirds begin. It may lee said also that the fold, though weak at the sides, goes mitirely round the posterior angle. Prof. Hartt does not mention a pair of spines, or tubereles, which are set in the hollow between the cheek and the glabella, on the edge of the fosterior marginal furrow (one spine being at the inner corner of each cheek) and whith and berem in almost all stages of growth of this species. The statement that the glateolla is longor than its width applies to the younger tests; but in the adult, as pres.ornal in the slatos, it is more frequently widne than its length, and may be generally Asurilnd as luine as wide as it is long. The ocular ridge, and the lines that diverge from it foward thw anterior marin (Fig. 10), are much more distinct on the inner, than on the wher. wirface of the shield; and the lines not only hifureate, but are found to anastomu... wht "ath other, forming a retionlated ornamentation over the inner surface of the anturior fart of the hearl. Many of the spines that derorate the front of the cheeks are set at the interantions of these lines. The spines are spoken of as being "sparsely sown;" but this romark dues mot agnly to all varidies of the species, as will be seen further on. ${ }^{1}$ Thw "xamphe uf this specins tigured in "A"adian Geology" is considerably below the full : i\% of the alnht, the heal of whin, as it ocours flattened in the slates, averages 19 by 38 1mm, hut is thasimally som as large as 20 by 40 mm .

    ## (iENAL Spines. (Fig. 8.)

    Anong the parts not dowribed by Prof. Hartt are the genal spines. These appendages aro coraminally fomd attan hed to the under side of the anterior marginal fold, and, when Wethed. cary with them the lower half of the lateral third of this fold. They are not spimons like the surface of the emphalic shield, but they sometimes have a few seattered tubereles, and are cowerd with minute grannlations, visible with a lens. The spine in the adult, forms two-fifths of the whole length of the detached cheek-piece, and is moderately incurved to the point ; the spine narrows rapidly in the first third, and is sharp at the axtremity; a faint rib traperses the clock-piece along the median line.

    ## FACIAT SUTURE.

    Prof. Hartt makes no allnsion to this feature of the test in his description of the species, and, if the spines were not found attached, its position wonld hardly be suspected. In its course along the upper surfice of the test it agrees exactly with that of Conocoryphe sulzeri, but diflers on the under surface. In C. Sulzeri and Cl. coronatus, it begins at oneeighth of the distance from the apex of the shield, but in our species at about one-third of


    the distance from the same point; it runs along the edge of the lateral margin, until it approaches the posterior angle, and there it cuts across the extremity of the marginal fold in a curving line, releasing the genal spine from its connection with the shield. A line drawn from the front (apex) of the glabella, touching the front of the cheek, will intersect the anterior margin, where, on the under side of the shield, the suture usually begins; it varies, however, a little in different individuals. It is a somewhat remarkable fact that, while in the two Bohemian species of the Conocoryphea, $C$. Sulzeri and $C t$. coronatus, the suture begins quite near the apex, in the Acadian species of all genera of that group it begins about one-third of the distance from the front of the shield to the genal angle.

    ## thorax. (Figs. 11-12.)

    This middle region of the body is seldom found in comnected segments, but the slates abound with pleure, having the form and ornamentation of this species. The thorax of the adult is not known, but that of the half-grown animal ( 14 by 28 mm ., var. perhispridus) ${ }^{1}$ consists of fourteen segments (Fig. 12). The axis is well rounded, and the rings are about three-fifths of the length of the pleurx ; each ring is grooved more deeply at the sides than on the axial line, and carries a few small obscure spines, ranged along the crests of the bounding ridges. The pleuræ are bent downward at the middle of their length, and are strengthened by a wide groove or furrow, which extends well out towards the tip; the raised edges of the pleuræ are decorated with eight to ten small spines, these being more numerous on the front than on the back edge of each pleura.
    pyardium. (Figs. 13, 13b, 13c, 13d.)
    Among the pygidia of the Conocoryphean type there are two kinds which are of much more frequent occurrence than others; the smaller of these corresponds in form and size to the pygidium found with the thorax just described. This, therefore, is regarded as the pygidium of Ct . Matthewi, the other being the tail-piece of Conocoryphe Baileyi.

    This pygidium is reversed semi-circular, being straight or nearly so on the base and arched around at the front of the axis and lateral lobes. The largest is about $4 \times 8 \frac{1}{2} \mathrm{~mm}$. The axis is about three-eighths of the whole width, and has a posterior slope extending nearly or quite to the end of the pygidium ; it has two rings, beside the articulating facet; the first one is sharply raised with strong furrows before and behind, but the furrow behind the second ring is only faintly defined : the posterior lobe projects in high relief from the general surface of the caudal shield, and descends abruptly and rapidly to the posterior margin. The lateral lobes are flattened posteriorly ; each lobe has one rib, beside the half rib in front; the first costal furrow is distinct, the second faint, but neither reach the outer margin ; there is no distinct marginal fold, but the surface of the pygidium is slightly raised towards the outer margin.

    Sculpture.-Each ring of the axis bears four or five minute spines ranged along the crest, and the costal rib has about the same number; a few similar spines may also be detected on the outer part of the half rib, and scattered over the flat surface of the lateral


    lobe．These spines show most distinctly on the mould of the inner surface，and are perhaps only perforations of the test．The outer surface of the test appears to the naked eye to be smooth，but when magnified it is found to be finely granulated．

    ## Varieties．

    This species varies much in the ornamentation of the cephalic shield，Beside the type which is described by Prof．Hartt as having sparsely sown spines，there are three varicties distinguished by the ornamentation．Of these，the first two appear to run into the typical form，but the third has more stable characters．

    The spines which ornament the surface of $C t$ ．Matthewi are tubular，having a cavity which passes through the test ；those on the front of the cheeks，on the frontal lobe，and on the anterior marginal fold，are connected together within by a network of striations which usually cross each other at the internal orifices of the spines；on the outside of the shield there are also stria，though usually ridges，corresponding in course and position to those within．These strix originate at the ocular lobe，and extend forward across the anterior marginal fold to the edge of the shield．

    The following table，shewing the usual number of spines on different portions of the test，will help to distinguish the varicties that are described separately after it：－

    TABLE AHOWING THE AVERAGE NUMBER OF SPINES OF DIFFERENT VARIETIES OF CIENOCEPHALUS MATTHEWI．

    |  | Anterior Margin． |  | $\begin{aligned} & \dot{\circ} \\ & \text { 合 } \\ & \text { I } \\ & \text { B } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \text { di } \\ & \text { dy } \\ & \text { dy } \end{aligned}$ | $\begin{aligned} & \text { 粃 } \\ & \text { 告 } \\ & \text { 흥 } \end{aligned}$ |  | Cheeks． |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\begin{aligned} & \text { 官 } \\ & \text { 号 } \end{aligned}$ |  |  |  |  |  |  |  |
    | Typical form（young， $5 \times 8 \mathrm{~mm}$ ）$\ldots \ldots$. | 25 | 12 | 6 | 15 | 4 | 5 | 12 | 20 |
    | ＂（well grown， $14 \times 28 \mathrm{~mm}$ ．）．．． | 40－50 | 15－20 | 10－15 | 15－25 | 4 | 5 | 25 | 40－50 |
    | ＂（adult test，$\left\{\begin{array}{l}16 \times 32 \mathrm{and} \\ 19 \times 38 \mathrm{~mm} .\end{array}\right\} .$. | 35 | 20 | 12 | 24 | 4 | 5 | 20 | 25 |
    | Var．a．geminispinosus（ $11 \times 2 \mathrm{~mm}$ ．）．．． | 30 | 25 | 12 | 13 | 2 | 4 | 12 | 18 |
    | Var．3．hispidus．．．．．．．．．．．．．．．．．．．． | 60 | 30 | 40 | 50 | 10 | 20. | 40－60 | 60－80 |
    | Var．$\gamma$ perhispidus ．．．．．．．．．．．．．．．．． | 80 | 60 | 60 | 70 | 40 | 30 | 70 | 100 |

    Var．a．geminispinosus．A sparsely－spined variety in which the spines are paired on many parts of the shield．This is especially the case with those on the occipital ring and glabella，and in some cases there is a distinct double row of spines，passing from the outer posterior angle of the cheek，inside the summit，to its anterior extremity，and thence round the front of the frontal lobe to the opposite cheek．This variety may be the Cono－ cephalites geminispinosus of Prof．Hartt；but the wide marginal fold and gibbous cheeks， attributed by him to geminispinosus，are more frequently met with in the next variety．

    Var．$\beta$ ．hispidus is more angulated in the outline of the cephalic shield than the typi－ cal form，and the middle of the anterior margin generally projects a little in front：it has
    more tnmid cheeks than the type, or var. $\alpha$., and the fulness extends well down toward the genal angle; the furrows are gencrally deeper and more abrupt, and the anterior marginal fold usually broader and flatter. The occipital spine is long and stout, and the ocular ridge frequently not observable. The largest head of this variety found was $15 \times$ 30 mm . The marked feature of this variety is the profusion of spines that cover the raised parts of the cephalic shield,-usually double the number found on the typical form.

    Var. $\gamma$. perhispidus (Fig. 12), is distinguished from the others in having more than one row of tubercles or spines on the lateral limbs of the anterior margin; and by the more numerous and smaller tubercles, almost uniform in size, that cover the test. The largest test of this rariety found was $15 \times 30 \mathrm{~mm}$.

    ## Growtil and Development of the Young.

    Fortunately in this species the peculiar form of the cephalic shicld, and the hispid surface enable us to recognize without difficulty very small tests; in the very youngest we lose the guidance of spines, but the general form is a sulliciont assurance that, in the minute tests to which I am about to refer, we have the embryonic and larral stages of this trilobite. The youngest form, however, differs widely from the adult, and, without the intermediate links, one would hesitate to assign them to the same species or eren the same genus. In the following descriptions I have named as "stages" those tests, where a new feature is introduced in the monlding of the cephalic shiteld during growth.

    Embryonic Stage (?), $1 \times 1 \frac{1}{4} \mathrm{~mm}$. (Figs. 14 and 15.)-Shield semi-oval in ontline and globose, with genal spines. The anterior margin is bounded by a very thin, threadlike fold at the anterior quarter. The genal spines are slender, arehed inward at the points, and about as long as the checks are wide.

    The axial lobe of the cephalic shield (there being as yet no glabella) is chrb-shaped, the anterior half being enlarged ; it is bounded thronghout by distinct furrows.

    The occipital ring is not distinguishable as a separate part, but the occipital spine appears as a distinct protuberance at the posterior end of the median lobe.

    The posterior margin is strongly arched forward on each side of the centre, and backward again on nearing the genal spines; the fold is visible, but is a mere thread.

    The cheelis are somewhat tumid outward, but they fall below the level of the median lobe in the forward half. In a few tests of this size the ocular ridge is faintly outlined for a short space on the anterior slope of the cheek, on each side of the axial lobe and quite close to the anterior marginal fold, but usually it canmot be distinguished.

    I have marked this form with doubt as an embryonic stage of Ct. Matthcui. It is not found in such great numbers as the succeeding stage, and may perhaps be only an immature condition of it; or possibly it may be an carlier stage of one of the other Conocorypheans. The club-like form of the enlargement of the front of the axial lobe may be due to backward pressure upon this very flexible test. In most of the tests of the next stage obtained from the slates, the width of the anterior end of the axial lobe is, on the contrary, exaggerated by downward pressure.

    Finst Stage, $1 \frac{1}{3} \times 2 \mathrm{~mm}$. (Fig. 16.) -Shield semi-circular, with genal spines.
    Anterior margin.-The fold faint, thin and thread-like, and extending about one-third
    across the front of the shield. Genal spines are moderately incurved and at this stage are half as long as the posterior transverse dinmeter.

    The axial lobe of the shield is trumpet shaped, about twice as wide in front as behind, where it is about one-fifth of the transverse diameter.

    The occipital ring is prominent and separated from the median lobe by a furrow; it is subtriangular, the extremities extending forward toward the inner angles of the cheeks. The summit projects backward to an elevated point which is scarcely a spinc.

    The posterior margin is strongly arched, and has a distinct though not strong fold.
    The cheeks are prominent ; they are somewhat higher than the axial lobe of the shicld, and are tumid forward and in the outer half. The ocular ridges are still far forward on the anterior slope of the cheeks, around which they arch, descending into the furrow, and arw lost to virw about half way from the front of the cheeks.

    In small tests, suth as the preeding, which bear only a remote resemblance to the adnlt form, and which, owing to their thimness, are more liable to distortion than the succending monlis, the anthor deponds largely upon thee considerations in referring them to this onemis. There is, first, the train ol'suceeding sizes, which by their form and marking aro undoubtemly of the sporine (\% Matheri. In the second place, there is the semi"ircular thind and the rudiment of the ocular vidge, which together are sufficient to show that then minutn thests bellong to the Conocoryphans. And, thirdly, there is the considwration of number. I think it may be sately assumed that one-third of the head shields of
     in brokinge np the shalex of horizen ic at St. John, are of this species; and of the embryonin best finmel at the same lecality, a corresponding number are of the above form or stag..
     spines. This has the thirds of the front margin angulated, and is easily recognized as related to the adult form of the speries.

    Anterior margin.-In this, besidu the fold in fromst, the lateral thirds can be seen to be slighty turneal along the wide.

    The grabella is now divided from the rest of the axial lobe which forms a short prominence in from of the glabella, and is low as compared with it. The first pair of glabellar furrows is distinctly though lightly inpressed, and the second pair can sometimes be detected. The occipital ring and spine are well marked.

    The cheeks are now more spreading at the base and somewhat tumid outward and forward. The two little spines at the posterior inner corner are visible. The ocular ridge is higher up on the slope of the check than in previous stages,-being in about the position of this ridge in the adnlt of Conocoryplie elegans.

    Sculpture.-The surface of the test when viewed with a lens appears to be finely granular.

    Third Stage (Fig. 17.)-Shield, $2 \frac{1}{3} \times 4 \mathrm{~mm}$. Narrowly semi-circular, but angulated like the last, with rounded corners and without spines.

    Glabella rather wider at the posterior end than in front, but still only about one-fifth of the whole width of the shield. Two pairs of furrows are now distinctly but lightly impressed. The frontal lobe is still short and comparatively inconspicuons.

    The postcrior margin is now straighter and the furrow heavier.
    The cheeks are now more like those of the adult in form, and the little spines at the corner more distinct.

    Sculpture.-The spines on the cheeks are now visible with a lens, and the rows across the glabella also.

    Fourth Stage (Fig. 18.)-Shield, $3 \frac{1}{3} \times 5 \frac{1}{3} \mathrm{~mm}$. Oblong semi-elliptical, without spines.

    The anterior marginal fold is now traceable all around, and is wider and stronger everywhere than in the younger stages.

    Glabella much wider behind than before; nearly one-third of the transverse diameter. Three pair of furrows are visible, two directed backward, as in the adult. The frontal lobe is rounder than in preceding stages, having gained in length.

    The cheeks have become ovoid and spread apart at the base, owing to the flattening of the posterior outer angle and the widening of the base of the glabella.

    Sculpture.-Tubular spines, are now visible on all projecting parts,--a double row on the front third of the anterior marginal fold, and a single row on the rest of the fold; there is also a row of about five spines on each limb of the posterior marginal fold.

    Fifth Stane (Fig. 19.) - Shield, $5 \times 8$ mm. Narrowly semi-cirenlar, somewhat angulated, without spines.

    The Glabelle and its furrows are more distinet than in the preceding stage
    Posterior margin.-Notch in the outline at the inner end very distinct; fold thickened toward the outer end, and rounded forward at the genal angle.

    Sculpture.-All elevations are now covered with spines, and the number dors not ditfer greatly from those on some adult individuals, but they are arranged with more regnlarity, especially the rows across the glabella and frontal lobe; those around the outer base of the cheek may also be seen to be roughly arranged in rows parallel to the anterior border. The average number of spines on heads of individuals of this age is given in the preceding table.

    From this stage onward to the adult period there are no very decided characters marking the progress of the animal toward maturity, but the changes in the proportions of different parts of the shield are gradual. Of certain sizes, there is a predominating number of shields preserved, as, for instance, at $6 \times 10 \mathrm{~mm} ., 7 \times 12 \mathrm{~mm} ., 9 \times 17 \mathrm{~mm}$., (Fig. 20); $10 \times 20 \mathrm{~mm}$., $14 \times 28 \mathrm{~mm}$., (Fig. 21); $19 \times 38 \mathrm{~mm}$., (Fig. 6.) The form of the shield changes during this time, so that the width becomes double the length.

    Size $9 \times 17 \mathrm{~mm}$. (Fig. 20 and 9.)—Of this size, an individual with other parts attached to the shield has been obtained, from which it appears that the genal spines have become shorter in proportion to the size of the shield than they were at first. Four segments of the thorax attached show a rapid narrowing of the body-rings at this stage.

    Size $10 \times 20 \mathrm{~mm}$.-At this period the head-shield, as preserved in the slates, is about twice as wide as long, and continues to maintain this width until the adult size is reached; the genal spine is also short, as in the adult.

    Size $14 \times 28 \mathrm{~mm}$. (Fig. 21.)-From this period to maturity there is greater variation
    in the number of spines covering the test, and the arrangement of these spines is less regular than in the younger heads. The number of spines usnally found on shields of this size is given in the preceding table.

    SIZE. $19 \times 38 \mathrm{~mm}$. (Fig. 6.)-In this, which may be considered the adult stage of this species, the most notable features are the increased irregularity in the number of the spines, and the greater distinctness of the eye lobe and its ramifications.

    ## Resemhance of the Young Tests to Other Species.

    Actal whe--The warliw stages of growth in this trilobite are of much interest, esprotilly thos which precede the second segmentation of the axial lobe of the cephalic shint la plaw of the conical erlabella, which characterizes the Conocoryphea at maturity, thes embryonie tosts have a lub-shaped, or trmmpet-shaped, median lobe, simulatiner. Io amm "xtent, the erlabella of Paradoxides and Caransia, and especially the younger -tarna of sum hirsum. As in the lirst mand gemus, the eyelobe begins opposite an anterior (nnlarement of tho axial lobe of the shimd, and sweeps ontward toward the genal angle. Tho loneremal spine of the early stages adds to the likeness.

    Promblal telle.-The growth of this part is an interesting feature in the history of this ribobit.. At liret it was a narrow sergent cut off from the median lobe; but as the animal erww, and the weldheretreat from the front of the shield, a corresponding in-"ran- in the fonth of this part took place; matil, from being when first seen about onefifthomly of tho axial diamene, it beamo at maturity nearly a third. What the glabella low in land durine the growth of the animal. was partly aequired by this frontal proluberaturn of the shi.lld.

    In the yonme al' ('mewormber bateyi 'orresponding to the second and third stages of this spurne ther. is a sitht protuberann in this part of the shicld, so that in distorted young tush- it is not always easy to distinurish the two species; especially in the second stage of (\%. Mutheri, when there are no tubereles visible and when the position and sweep of the orular riden in the two spories and in Conocoryphe elegrans are very similar: but in the ohlor lests, in which the specitic characters are more fully developed, the species are easily suparated. In the Enropean Conocoryphe sulveri a slight protuberance of a similar nature may be observed, but it doos not assume importance.

    Arransement of the spmes (Fig. 9, \& $\cdot \boldsymbol{c}$ ) - Although at the first glance the spines, which are strewed orer the surface of the test in this species, appear to be placed without order, it is evidont, on a more careful survey, that some at least are arranged in a definite way. Seperal rows of spines may be observed, especiully in the young, crossing the glabella; and the surface of the lest is sometimes seen, both in this species and in Conocoryphe elegans, to be slightly clevated along the lines where these spines are set. It would appear that some general purpose in the economy of these trilobites is subserved by the elevation of the test at these places.

    Glabella.-In this species (Ct. Mathewi), the glabella is relatively smaller than in any other of the Conocorypheans occurring at St. John; and it does not fairly assume the form characteristic of the genus mntil the shield has attained half of its largest diameter. This will be seen by the following table. In this table the measurement of the small shields are only roughly approximated:-

    COMPARATIVE SIZE OF HEAD AND GLABELLA OF CT．MATTHEWI AT DIFFERENT AGES．

    |  | Sizo of Cepbalie Shield． |  | Sizo of Glabella． |  |  | Proportion of the Glabella to the |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Length． | Width． | Length． |  | dth． |  |  | Tran Dian | verse eter． |
    | Average of sevoral．．．．．．．．．．．．．．． | 19 |  | 0 | 9 |  | $\cdot 47$ |  | $\cdot 25$ |  |
    | ＂＂ | 18 | 36 －® | 8 | 8 | 号 | $\cdot 45$ |  | －22 | ｜ |
    | ＂＂${ }^{\text {a }}$ | 16 | 32 馬 | 8 | 72 | $)^{\circ}$ | －5 |  | －24 | ¢ |
    | ＂＂＂ | 14 | 28 | 6 | 7 |  | －43 | $\stackrel{\text { gr }}{\sim}$ | ． 25 | ¢ |
    | ＂＂two | 12 | 257 | 51 | 7 |  | － 46 | $\stackrel{\square}{\square}$ | ． 28 |  |
    | ＂＂four | 11 | 23 ¢ ¢ ¢ | 5 | 6 | 咎 | － 45 | 㥻 | $\cdot 26$ | 己 |
    | Var．a．geminizpinosus．．．．．．．．．．．．． | 11 | 22 틀 | 5 | 62 | \％ | － 45 |  | $\cdot 3$ | $\overline{\mathrm{J}}$ |
    | Average of two | 9 | 182 | 42 | 51 | \％ | － 5 |  | $\cdot 3$ | － |
    | ＂＂＂ | 8 |  | $4 \frac{1}{2}$ | 5 |  | $\cdot 56$ |  | －3 | 등 |
    | ＂＂three． | $7 \frac{1}{3}$ |  | 4 | $3 \frac{1}{2}$ | ） | ． 55 |  | $\cdot 27$ |  |
    | ＂＂four | 53 | 101 | 3 | 21 |  | ． 52 |  | －24 | 它 |
    | ＂＂tlireo． | $4 \frac{1}{3}$ | 8 E | $2 \frac{1}{3}$ | 2 | $\stackrel{4}{8}$ | $\cdot 5$ | E | －25） | 는 |
    | ＂＂ | 3 | $\left.5 \frac{1}{3}\right\} \underset{=}{\Xi}$ | 13 | $1 \frac{1}{2}$ |  | ． 55 |  | －28 | E |
    | ＂＂＂ | $2 \frac{1}{3}$ | 4 砍 | $1 \frac{1}{3}$ | 1 | E | －51 | $\stackrel{\rightharpoonup}{0}$ | $\cdot 6$ | － |
    | ＂＂＂ | $1{ }^{\frac{3}{3}}$ | $2 \frac{1}{2}$ ¢ | 1 | $\frac{5}{3}$ | 苟 | $\cdot 63$ |  | $\cdot 24$ | ¢ |
    | Average of several ${ }^{1}$ ．．．．．．．．．．．．．．．． | $1 \frac{1}{3}$ | 2 | 1 | $\frac{1}{3}$ | ） | $\cdot 77$ |  | $\cdot 16$ |  |

    From the preceding observations on the development of this species during its growth， it will be seen that much light as to the life－history and relationship of diflerent gemera of trilobites is to be gained by the study of the embryonic and larval stages，and，as I have shown in my former article on the Paradoxides，it is evident that the nearer we get to the embryo the more important are the phases of the trilobites，especially in reference to their primitive relationship．Nevertheless，the larval stages should not be neglected，for in these there are changes which，though not so momentous，are still of importance as con－ necting the embryonic form with the adult auimal．

    B－CONOCOR YPHE．

    ## 1．－Conocoryphe Baileyi．＂（Figs．22－27．） <br> Conocephalites Baileyi，Hartt． CEPHALIC SHIEI，D．

    Since Prof．Hartt originally described this species，other parts of the body have been recovered，and further particulars can be given in regard to the head－shield than are con－ tained in his description．

    Fucial suture.-This cuts obliquely across the anterior marginal fold, at the beginning of the lateral third, where the fold has already begun to bend rapidly toward the posterior margin; after crossing the fold, the suture runs along the side of the cheek and curves outward toward the posterior angle.

    Glabellar furrows.-The deseriber of the species states that there are none, or that they are but slightly marked, without specifying their number or position. It is true that on many hoads they are obseure, but on others they are sufficiently distinct to be easily seen. The posterior pair originates at a point on the side of the glabella more than two-thirds from the posterior cond, and arches backward at an angle of $45^{\circ}$, nearly attaining the summit of the glabella, and termmating quite close to its end. The second pair is less distinct, and is also directed barkward, but less decidedly than the posterior pair, reaching atoont half way to the summit of the glabella; this pair is about as far from the front, as the proterior pair, at their outer ends, is from the back of the glabella. The anterior pair of furrows is both faint and short, often to be detected only as shallow depressions on the surfac. of the glabella.
    diculure. - The outur surface is smooth. Some tests are distinctly granulated on the innor surfan: these markings are sometimes large enough to be seen by the naked eye, but ennerally canot be resolved without a lens; they are largest on the higher parts of the (aripital ring and glabolla. It is also on the inside of the test that the ocular ridge and its ramifications can be sem to the best advantage; on the outside of the shield both are but faintly visible. On tests that are anusmally well preserved, very fine granulations of the outer surfaer may be detented with a lens.

    ## TIIORAX.

    Only eight secrments of this region of the body are known.
    Aris.-The fiw rings of the axis preserved indicate that it was comparatively narrow; the rings are well arehed, roumded and smooth.

    The pleurn are strongly geniculated at the fulcrum, which is about half way from the axis. There is a wide and deep concave furrow on the inner half of each pleura; but beyond the fulcrum, the furrow narrows rapidly, and the bounding ridges slope away from it on each side: the furrow cinds rather abruptly on the median line, before reaching the extremity of the pleura. The pleure are not so strongly angulated at the middle of the thorax as near the head.

    ## PYGIDUM. (Fig. 24.)

    length, abont $10 \times 20 \mathrm{~mm}$. Broadly lenticnlar, and its width is twice its length.
    Axis narrowed posteriorly, scarcely reaching the extremity of the pygidium. Carries three rings, beside the articulating facet ; third ring faintly deffed ; terminal lobe rounded at the extremity and descending abruptly at the end. Each of the rings is indented with a sharp stria, nearly half of its length and parallel to its coursc. Each of these strix on the outside opposes a more distinct groove on the inside of the test.

    Lateral lobes.-The side lobe of the pydidium bears three ribs, beside the half rib in front; the third rib is only faintly raised above the general surface; a narrow, faint furrow, or stria, may be seen to pass outward from the posterior side of the inner end of the
    first and second ribs toward the anterior side of the outer end of these ribs. The first furrow both of the axis and marginal third are strongly impressed. The half rib connects at the outer angle of the pygidium with a distinct border, which at the inner edge is bounded by a sharp and straight, thread-like ridge.

    Sculpture.-Both the inner and outer surfaces of the test in this pygidium appear smooth, but with a lens the onter surface may be seen to be very finely granulated.
    [ N . B.-There is a broad variety of this pygidium ( $7 \times 18$, or $8 \times 20 \mathrm{~mm}$.) with more distinct ribs both on the axis and lateral lobes, and having a more quadrate end to the axis.]

    ## Varieties. (Figs. 23 and 23b.)

    Var. $\alpha$. arcuata. The distinctive features of this form are not very easily pointed out, but are sufficiently obvions on comparison of a number of individnals; the difference from the type is most conspicuous among the larger tests, and it is not so easily recognized among very small ones. It is quite possible that it may be only a sexual variation of form. This variety differs from the type in having a more conical glabella, rounded rather than squared in front, and having flattened slopes on each side of the axis. The anterior marginal fold is more strongly arched forward in the middle, is wider and has a longer slope to the furrow than the corresponding fold in the typical form; the furrow also is wider. The inner end of the ocular ridge is more prominent and rounder in this variety than in the type.

    ## Development of the Young.

    The heads of this species have been found from the length of two millimetres upward.
    Shield $2 \times 3 \mathrm{~mm}$. (Fig. 25.)-In this species the carliest known stage resembles the adult much more nearly than the yonngest, in the preceding species, does the mature individnal; and yet it presents important differences.

    The glabella is cylindrical and about two-thirds of the whole length of the shield, whereas in the adult it is not much more than one-half. But the disparity in width is greater, for at this stage the glabella is only one-fifth of the width of the bnckler, while in the larger tests it is about one-third Only the posterior pair of furrows can be detected at this age, and they are more strongly directed backward than those of the adult.

    The occipital ring is peculiar and quite different from that of the adult. It is triangular in outline, with the spine set well back on the axis; the two anterior angles merge into the corners of the cheeks at the point where, in the preceding species and in C.elegans, a small spine is situated.

    The posterior marginal fold is well defined, but sharp and narrow, and the genal spines are also narrow and abont as long as one-third of the posterior diameter of the shield.

    The cylindrical glabella at this stage recalls the form common in the genus Plychoparia, and when the ocular ridge peculiar to the Conocoryphea is obscure, it is sometimes difficult to distinguish the young of the Ptychoparians from the fry of this species.

    Shield $3 \times 4 \frac{1}{2} \mathrm{~mm}$. (Fig. 26.) - At this period the glabella shows much greater lateral volume, but only one pair of furrows is yet visible. The anterior marginal fold is now
    stronger，as is also the posterior，but the occipital ring preserves the same triangular form as in the stage last described．

    Sculpture．－Except the anterior marginal fold，which is minutely granulated，the sur－ face of the test at this stage appears scabrous under the lens．

    Shield $4 \times 6 \mathrm{~mm}$ ．（Fig．35．）－A shield of this size has been found which has some peculiar features．The glabella is conical，narrowed in front and with three sets of distinct furrows，as in C．elegans，and，like some shields of this species，it has raised ridges across the glabella between the furrows．But the eyelobe，cheek and anterior marginal fold are such as are found to characterize C．Baileyi．The surface is scabrous．

    Shield $7 \times 14 \mathrm{~mm}$ ．（Fig 27．）－The intermediate sizes between this and the preced－ ing have not been recovered，but at this stage the shield has nearly attained the proportions of the mature form．The glabella has more distinctly converging，straight sides than the last，and also possesses the sub－quadrate front which is found in most of the mature heads． All the furrows are distinctly impressed．The occipital ring is narrowed，and its spine， or tubercle，placed half way from the front．Respecting the succeeding sizes of this spe－ cies，there is little of moment to be said：both glabella and cheeks continue to increase in width at the base，and a greater amount of variation appears in the distinctness of the furrows on the glabella．

    The following table will more clearly show the variation in the form of the shield and the relative proportions of the glabella during growth．The figures given for the small tests are only rough approximations ：－
    comparitive size of heal and glabella of c．BaILEYI at different ages．${ }^{1}$

    |  | Size of Cephalic Shield． |  |  | Size of Glabella． |  |  | Proportion of Glabella to |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Lensth． | Width． |  | Iength． | Width． |  | Axial Diameter． | Transverse Diameter． |  |
    | Var．a．（Fig．23）． | 20 | 40 |  | 12 | 14 |  | － 60 | $\cdot 35$ | Well rounded． |
    | Like Fig． $22 .$. | 20 | 40 | 宝 | 12 | 14 | 宝 | －60 | $\cdot 35$ | $\left\{\begin{array}{l} \text { Somewhat flattened } \\ \text { and spread. } \end{array}\right.$ |
    |  | 18 | 34 | \％ | 10 | 12 | 号 | $\cdot 55$ | －35 | Well rounded． |
    |  | 17 | 36 | ） | 10 | 12 | 晏 | －59 | $\cdot 33$ | Rather flat and wide． |
    |  | 15 | 28 |  | 9 | 91 | \％ | －60 | －34 | Somewhat flattened． |
    | Var．$a . \ldots \ldots . .$. | 13 | 20 |  | 7 | $7 \frac{1}{2}$ | J | $\cdot 54$ | $\cdot 37$ | Narrowed． |
    | ＂＂ | 10 | 16 | \％ | 6 | 6 |  | －60 | －31 | Diagonally narrowed． |
    | ．．．．．．．．．．．．．．．．． | 9 | 15 | 告 | 5 | 5 | 灾 | $\cdot 55$ | －33 | Narrowed． |
    | Fig． $27 \ldots \ldots .$. | 7 | 14 | 柅 | 4 | 42 |  | $\cdot 57$ | －34 | Flattened． |
    | Fig． $35 . \ldots .$. ．${ }^{\text {，}}$ | 3 | 6 | 告 | 12 | $2 \frac{1}{3}$ | 念 | $\cdot 54$ | －38 | Shortened． |
    | Fig． $26 . . . . . .$. | 3 | $4 \frac{1}{2}$ |  | 112 | 13 | ）$\frac{\square}{\text { ¢ }}$ | $\cdot 50$ | －39 | $\left\{\begin{array}{l} \text { Flattened and cheeks } \\ \text { narrowed. } \end{array}\right.$ |
    | Fig． $25 . . .$. ．${ }^{\text {．}}$ | 2 | 3 |  | 13 | $\frac{1}{2}$ |  | －66 | $\cdot 20$ | Somewhat flattened． |


    2.-Conocoryphe elegans. (Figs. 28-34.)

    Conocephalites elegans, Hartt.
    Prof. Hartt's account of this species is not as full as that which he gives of Ctcnocephalus Matthevi, and a few words of additional description may be useful.
    cephalic shield. (Figs. 28, 29 and 34.)
    I find that, in shields which are not distorted, the occipital ring and spine project behind the posterior line of the shicld; and that the posterior marginal fold overhangs the furrow only in cases in which the shield is shortened by pressure. In the largest heads the wide part of the anterior marginal fold is as mneh as the seventh of an inch ( 31 mm .) in width. In flattened heads the glabella appears to be wider than it is long, but the relations are reversed when the natural form of the glabella is preserved, it being a little longer than its width. The posterior marginal fold is thin, sharp and high in the inner three-filths, but broader and flatter at the onter two-fifths. Viewed horizontally, the fold seems almost geniculated at the point where this change in width takes place; viewed from above, the border is here sharply angulated forward. The occipital furrow is deeply indented in the outer third, and arches back to the middle third, corresponding in its course to the glabellar furrows. I do not find that the bounding groove of the erlabella joins the anterior marginal furrow, though it often has that appearance in distorted heads because the intervening space is low. I have seldom found an owipital spine more than an eighth of an inch in length, incloding the slope of the ring, but the variation in the length of the spine in Ctenocephalus Mathewi wonld quite foad to the expectation that longer spines may be found on some shields of this species.

    Facial suture.-This begins at the side of the head, where the marginal fold becomes narrow, and usually at a point about as far from the front of the shield as the length of the glabella; it crosses the marginal furrow diagonally to the borker of the cheek, along which it runs for some distance, and then arches ontward toward the posterior angle of the shield.

    Ocular ridge.-Prof. Hartt does not refer to this feature, and in some heads it is scarcely distinguishable. It begins on the slope of the cheek, just behind the front of the glabella; there is no tuberculons elevation here, as in C. Baileyi, nor such a lenticular ridge as in Clenocephalus Matthewi, but the ridge is narrow and less elevated; its extension crosses the cheek more directly than in the other two species, descending toward the point where the facial suture, after cutting the anterior margin, curves in toward the cheok. The ocular ridge and its ramifications are more distinct in the undersized and young of this species than in the full grown trilobite. .

    Sculpture.-There is more regularity in the arrangement of the tubercles of this species than in the mature $C t$. Mathewi. The row of tubercles, which in this species crosses the glabella behind the first pair of furrows, consists of six, and arches forward on the slopes behind the furrow. There is another row, also consisting of six tubercles, less arched than the last, and terminating at the anterior ends of the same furrows. A more irregnlar row of tubercules crosses the glabella on the space between the second and third furrows. Between these three rows of tubercles, near the axial line, there is in each space a pair of less prominent tubercles. On some young heads the three principle lines of tubercles on
    the glabella are placed on slightly elevated, transverse ridges. In this species the tubercles are more equally distributed over the surface of the cheeks than in Ct . Muthewi.

    The test of this species is more heavily studded with minute elevations than the typical forms of other species of Acadian Conocorphea. The outer surface is covered almost everywhere with little projecting tubereles, which are nearly equal in size, and appear to be hased on an outer film of the shell. When this film is removed the test has quite a diflerent appearance, for, in place of closely set projections of nearly equal size and height, prominemes of two orders come into view, larger ones, of the nature of hollow spines, and smaller omes, similar in size to those on the onter film of the test, but more pointed. The monlds corresponding both to the spines and the tubereles may be seen on the cast of the inmer surface of the test: and it would seem that the hollow core of the spines passes throurh the test, but that the apex ol the core is veiled on the outside by tubercles similar in apparanee to the other tubereles with which the outer surface of the test is so abmulantly studded.

    ## 『(illidM. (Fig. 30.)

    liroadly lemtionlar, and about hall as long as it is wide.
    Axis subtriancular, ruming the whole lagith of the pygidimm. Marked by three rines. heside the artioulating facet, and a terminal lobe, which has a slight protuberanco oll "ath sutw of the axial line, near thw midalle, and thence slopes abruptly and narrows rapidle to the watrenity

    The side loles of the pyeqidimen hase theere ribs beside the half rib at the anterior margin; the first two ribs are wall defined, the third only by a furrow in front; all arch backward and downward to the margin. The two lirst ribs are crossed by narrow, faint furrows, wr stia, from the anturior side of the inmer and to the posterior side at the onter end.
    scuphur. - Th" ontw surface is distintly granulated all over; on the intermediate, or mader surfare. sometime a single, sumbetmes a double row ol small spines can be detected on the 1 wo first rines of the axis and ribs of the lateral third (abont four spines on the rings and about six on the ribs.) The mould of the inner surface is smooth.

    This pyeridium is supposed to belong to C. elegrans, because it is one of the three most aloundant pyedia of Conooryphen type found in the shales of Division $1 c$. at St. John; the granulate and punctate surface also accords with the ormamentation on the test of this species.

    ## Vabieties. (Fig. 34.)

    Var. ar. granulatus. This diflers from the typical form in the absence of spines and tubereles, the surface being closely granulated; only large individuals are known; the most perfect had very wide cheeks and three raised bars across the summit of the glabella; the front of the marginal fold appears to be narrow and not triangular, but this may be an accident of preservation.

    ## Growth and Deveiopment of the Young.

    The series of heads of this species is defective and the history of its growth is therefore imperfect.

    Shield $2 \times 4 \mathrm{~mm}$. (Fig. 31.)-This is widely different from the adult in many respects; the cheeks are unusually tumid, and the glabella and anterior marginal fold, especially the latter, already possess the form peculiar to this species.

    The anterior margin inclines to be straight across the front and angulated at the lateral third. The fold is thick and wide in front, but fades away near the front of the lateral third, where the tumid cheek is devoid of protecting rim ; the triangnlar enlargenent at the front is not so marked as in the adult, owing to the furrow being less decidedly impressed. The genal spines are about half as long as the posterior diameter of the shield, and are distinctly incurved at the points.

    The posterior margin (in the only example known) appears to extend into a mantle, or membrane, which connects the points of the genal spines with a central spine having a mesian furrow; this mantle arches forward between the three spines, and is of great tenuity; but is bounded posteriorly by a delicate, thongh distinet, thickened margin; no posterior marginal fold is visible, but a small tubercular elevation marks the point where the posterior fold in the adult is angulated; though the fold is absent, the posterior marginal furrow is distinctly impressed ; it arches forward in the inner twothirds, and outward in the outer third.

    The glabella at this stage appears cylindrical rather than conival, owing to the high relief of the anterior end, and the wide depression which at the posterior end separates it from the cheeks. The first pair of furrows is suffieiently distinct; they are directed batkward at a sharp angle, and reach the posterior slope of the glabella, but do not coment with each other; the second pair can be detected, but they are very faint ; their direction is nearly parallel to the first.

    The cheeks are quite tumid in the middle and at the anterior end, but are flattened at the posterior imer angle, and, in a less degree, toward the outer angle. The ocnlar ridge is distinct; it begius on the inner slope of the cherk, opposite the point wher the dorsal furrow begins to bend around toward the front of the glabella; at this point there is a small, sharp, lenticular elevation, from which the ridge arches forward across the front slope of the cheek, and descends, arching backward, along the outer slope mintil it is lost in the anterior marginal furrow, somewhat behind the middle of the lateral third of the anterior margin.

    The occipital ring is well marked and prominent; it projects behind the line of the posterior margin, and is crowned by a distinct, though not a long, spine. The onter third of the occipital furrow is heavily impressed, but does not extend far enough to sever the ring from the cheek, there being a narrow connecting ridge.

    Sculpture.-All projecting parts of the shield are finely but, when viewed with a lens, distinctly granulated, and a few tubercles are visible.

    Shield $4 \frac{7}{3} \times 8 \mathrm{~mm}$. (Fig. 32.) - At this age the shield has a much nearer resemblance, in general aspect, to the adult. The front margin is more distinctly arched, and the cheeks have the rhomboidal form of those of the full-grown animal. The facial suture can at this stage be detected; it cuts the anterior marginal fold as far from the posterior angle as that angle is from the occipital ring. The posterior marginal fold is thin but distinct.

    Sculpture.-Not only is the surface granulated, but the tubercles are distinct and are arranged as described in the account of the sculpture of the adult. A double row of
    tubercles may be seen at this stage, arching around the inner slope of the cheek, and other rows around the outer edge; the outer rows are not perfectly regular and continuous, as other rows run into them from the upper slopes of the cheek.

    Shield $8 \times 15 \frac{1}{2} \mathrm{~mm}$. (Fig 33.)—At this stage, in the examples I have, the tubercles on the cheeks do not show so regular an arrangement as in smaller tests; but those of the glabella continue to exhibit great regularity, as described of the adult on a previous page. In this size the general aspect of the shield is more like the adult than it is in the smaller tests. All the furrows are now present and are deeply impressed; the central, triangular part of the anterior marginal fold is wide and decidedly elevated. The posterior marginal fold, however, continues narrow and sharp. The ocular ridge now presents numerous branches spreading toward the anterior margin.

    SHield $19 \times 38 \mathrm{~mm}$.-At this, which is near the adult stage, the mature form, except in the matter of width, is nearly or quite attained, the tubercles are more irregularly scattered over the surface of the test, and the posterior margin is strengthened.

    SHAELD $20 \times 46 \mathrm{~mm}$.-This, the adult form, exhibits the completed expansion of the shield laterally. The simplicity in the arrangement of the tubercles, so well seen at the $8 \times 1.5 \frac{1}{2}$ stage, is here apparently lost, but, on careful examination, traces of it can still be detected in the apparently confused grouping of raised points on the surface of the glabella. And the same may be said of the tubercles on the cheeks, which along the front still "xhibit a rude parallelism. To the heavier tubercles along the back, or higher part of the anterior marginal fold, numbers of smaller tubercles are added in these later stages, the whole being graded to quite small tubercles along the verge of the shield. The additional tubercles scattered over the surface of the shield in the larger tests are not always present, there being smooth individuals, which have no more tubercles than those found on the smaller tests.

    The following table will show the changes in the proportions of the cephalic shield and glabella of C. elegans during growth :-

    COMPARATIVE SIZE OF HEAD AND GLABELLA OF C: ELEGANS AT DIFFERENT AGES.

    |  | Size of Cephalic Shield. |  | Size of Glabella. |  | Proportion of Glabella to |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Length. | Width. | Length. | Width. | $\underset{\text { Diameter }}{\text { Axial }}$ | $\begin{gathered} \text { Transverse } \\ \text { Diameter. } \end{gathered}$ |  |
    | One head..... | 21 | 44 | 12 | 13 | $\cdot 57$ | -29 | Flattened. |
    | Average of two | 192 | 38 | 11 | $10 \frac{1}{2}$ | $\cdot 56$ | -28 | Well rounded. |
    | One head..... | 16 | 30 ? | 9 | 9 | -56 | -30 | Narrowed ? |
    | " " ..... | 13 | 26? | 7 | 7 | $\cdot 54$ | -27 | Flattened. |
    | Average of two | 81 | 157 | $4 \frac{3}{4}$ | $4{ }^{3}$ | -58 | -30 | Somewhat shortened. |
    | One head..... | 43 | 8 | 21 | $2 \frac{1}{4}$ | $\cdot 50$ | - 28 | Well rounded. |
    | " " . . . . | 2 | 31 | $1 \frac{1}{3}$ | 4 | $\cdot 66$ | $\cdot 21$ | Tumid. |

    This species resembles C. bufo (Hicks) of the English Cambrian rocks, but differs in the following particulars : it grows to a larger size and has no eyes ${ }^{1}$, the front margin is not so heavily impressed, nor is the triangular part so wide, the tubercles on the shield are more numerous than represented in the figure of $C$. bufo, and there is no tuberele on the outer posterior corner of the cheek. It may be found at St. John, Radcliff's, etc., in Division $1 c$.

    $$
    \text { 3.-Conocoryphe Walcotti, n. sp. (Figs. } 36 \text { and 36b.) }
    $$

    Only the cephalic shield is known; this is semi-circular, without spines.
    The anterior margin well arched forward, with a narrow and well rounded fold. Suture in about the same position as that of C. Baileyi; in specimens that are shortened by pressure, the initial point is about as far from the apex of the shield as that is long; in others that are narrowed, the distance from the front equals the combined length of the glabella and occipital ring.

    The glabella rather flat, bounded by a distinct furrow. The glabellar furrows are three pairs, not well defined in the examples known, but apparently similar in course and length to those of C. Baileyi.

    The occipital ring as in that species, but with the tubercle more distinet, and always carrying a slender spine; in the examples known, the ring projects behind the posterior line of the shield.

    The posterior margin is bent forward at the extremity. Fold rather narrow. Furrow well marked, arched forward in the middle, widening toward the extremity.

    The cheeks are high next the glabella, descending toward the front and sides; they are rather higher than the glabella, and are connected in front. The ocular ridge begins more than a third from the front and extends across the cheek to the posterior corner; ramifying ridgelets are numerons, crowded, and not very distinct.

    Sculpture.-The surface is closely covered with fine granulations without, but marked on the inner surface also by numerous minute pittings, which, in the mould of the interior of the test, have the appearance of small spines. These pits, or pores, are connected by numerous fine, thread-like strix. These strixe are similar to those found on the inner surface of the test in Ctenocephalus Matthewi, but in the species Walcolli they have a more netlike arrangement, and are found covering a band that crosses the cheek behind the eyelobe; they are also found on the front of the glabella: in the two other tuberculated species occurring at St. John, the strix connecting the tubereles, or pores, are confined to the eyclobe and anterior marginal fold and the space between them.

    Thorax and Pygidium unknown.
    Development of the Young.-The examples of the young tests in this species are not sufficiently numerons or perfect to form the basis of remarks on changes during the period of growth. The following will show that it differed but little from C. Baileyi in its pro-portions:-

    |  | Size of Shield. <br> 1. W. | Sizo of Glabella. <br> L. W. | Proportion of Glabella |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | To Axial. | To Transverso. |
    | One, diagonally distorted.... | $19 \times 36$ | $11 \times 12$ | - 58 | $\cdot 33$ |
    | " well rounded........... | $15 \frac{1}{2} \times 30$ | $191 \times 11$ | -61 | -37 |
    | " narrowel.............. | 151.2 | $9 \times 7 \frac{1}{2}$ | -58 | -34 |
    | A werage of then heads ...... | $71 \times 13$ | $4 \frac{1}{2} \times 4$ | -56 | -33 |

    This som"what rare species seems to have had a very thin and flexible test, as all the "xamphe hown are more or less distorted. Owing to the granulated and porons test, frammente of it may vasily be mistakell for those of Ct. Matthenei or C. elegans, but the
    

    I hann at times luen in doubt as to whether this should not be considered a variety of 1 Imileyi. hat, althengh so very like that speres in outline, it is always distinct by its Hhatwand wiammend wrfar. It will be differnlt to distinguish its young from that Natro. happaramo this speries is mush like C. Sulzeri of Europe, but differs in the - nture, atc. It may be formad at st. John, in Division 1c.

    ## (omparinons ani) Concletsons.

    In comparing the development of the young in this gromp of trilobites (Conocoryphea) with that of the laradoxides, as described in my former paper, some points of reamblance and others of dissimilarity may be observed.

    1. In lamdoxides there is an "xtended anterior border which by degrees is absorbed; and the fold wif the rim ix strunthened. In the Conocoryphea there is no such expanded burder. lut the marwinal fold nevertheless grows, as in Paradoxides, from a comparatively woak "dombleur."
    ․ In laradoxides there is an entargement of the glabella in all direetions during growth, and a retreat of the anterior furrows from the front. This feature in the Conocorypha is manifested ditlerently; the shortening of the glabella in these carries the furrows backward; but the enlargement ot the glabella takes place at the base, in accordance with the different expression of development required by the characteristics of this group.
    2. In laradoxides there is a transverse lengthening and axial condensation of the occipital ring during growth. In this point the two groups are in harmony, thongh in the Conocorypheans the ring, in the early stages, is decidedly triangular.
    3. The enlargiment and strengthening of the posterior margin is common to both families.
    4. A longitndinal contraction of the eyelobe takes place in Paradoxides during growth. The change in the position of the eyelobe which occurs in the Conocoryphea may be considered parallel; it is most clearly seen in Ct. Matthewi, because in the adult of this species the glabella is small, and in the young we are able to recognize a more ele-
    mentary form than in the other Acadian species of this group; but it can be proved for the others of which embryonic and larval stages are known; for the retreat of the cyclobe from the front of the shield proceeds pari passu with the axial contraction of the glabella.

    Among the Acadian Conocorypheans occur several species which may be considered representative of Old World forms, as has already been remarked in the opening part of this paper; and it may be said that among the Paradoxides similar representation occurs. This is very obvious on a comparison of $P$. Eteminicus with $P$. rugulosus (Corda); and $P$. Acadicus, notwithstanding its diminutive size and differing eyclobe, may not inaptly be placed beside Plutonia Sedgwickii ; in both species we have a granulated surface and deeply cut glabellar grooves; and in both may be traced peculiarities of form which ally the shield to that of Anopolinus.

    It is a notable fact, however, that no Paradoxides with short cyelobes and no Anopoleni have been recovered from the Acadian strata, although the latter genus oceurs in Newfoundland and the large Paradoxides are found both there and in Massachusetts. It may be remarked, however, that in both of these areas the above types wanting in the Acadian region are associated with genera that range upward in the Cambrian formation; and the reason why they are not found at St. John is probably, that the known fossiliferons belt in the Acadian area belongs to a lower or older horizon in the Cambrian formation, than has yet been reached in these other Cambrian areas on the Atlantic roast.'

    The antiquity of the Acadian fama can best be appreciated when its forms are compared with those of the British Cambrian rocks, for that is the nearest of the European areas occupied by rocks of this age and the one which contains the largest number of similar species. The great thickness of the Welsh bed has distributed the genera of Cambrian age over a wide vertical range, and thus given a better opportunity of estimating their chronological value.

    It has been the custom to speak of the fama of the Acadian horizon in the St. Johu group as equivalent to the Menevian. But the Menevian, as now limited by Dr. Hicks, does not include all the measures originally assigned to it. These have been found to contain two faunas-an upper, which is now called Menevian, and a lower, that of the Solva group.

    The more we know of the Acadian fama, the less does the restricted Menevian seem the horizon to which it should be assigned. The wonderful richness and variety of the Mcnevian fauna tempts one to adopt this correlation; but this very feature of the Old World group should put us on our guard against carclessly associating with it an equally rich assemblage of living forms, which, from their very abundance, are likely to contain a number of representative specics.

    In the Acadian fauna, as thus far known, the great Paradoxides with short eyelobes are wanting; so also are the genera Anopolinus, Agraulos (Arionellas) of the type A. ceticephalus, Microdiscus of the type M. punctatus, ${ }^{2}$ Erinnys holocephalina, ctc. If, on the other hand, the fauna of the Acadian horizon be compared with the oldest British Cambrian fauna, a strong rescmblance between the species on the two sides of the Atlantic is at once ap-


    parent. Except the missing types, 6 and 7, all the Solva trilobites are represented by corresponding forms in the Acadian fauna, which shonld therefore be compared to the Solva or Iongmynd finma rather than to the Menevian :-
    

    > Acadian Fauna.
    > Microdiscus Dawsoni, Martl. l'tycopharia Robbii, \&c., Hartt (sp.) (tonocephalus Matthowi, " " Conocoryphe elegans, " " Paradoxides Etominicus, Matheu.
    > (")
    > (?)
    > Agnostus (sp.) undescribod.

    Another point bearing upon this question is the development of the eyelobe in Paradoxidn. In my first article read bofore this Society, on the Paradoxides of the St. John (ironp, it was hown that, among the hanges of lorm in varions parts of the eephalic shind whin werrend during the erowth of the individual trilobite, the shortening of the
     laradoxides have rontimons, or marly contimons, "yolobes, and therefore the contracfon of hhis member is mot ennepicuous; but there being such a change, even to a small "stont, during the growth of tha animal, a contimons eyelobe is likely to be an embryonic datur" of the later laradoxides and sugersts the inguiry as to whether there was a corrmpondiner hange in the spuides of laradoxides as they oceur in chronological -llorosion

    Takine the spures of the Pritish ('monbian rocks as at aterion, there may be oburved in the Middle solvat hods the speries P. Ifarkenssi with continnons eyelobes. Adrammer atade highor, there is fomm in the Upper Solva beds the species $P$. aurora,
     vian the spmana $P$. Hichsii, in whith the wontration of the eyelobes has proceeded so far as to leane a sutner bhime the reghe as long as the eyelobe itself. But the greatest advane of duvelopmont in rexpet of the "yolobe is manfested by the great Paradoxides of tho Whah measures. $P^{\prime}$. Duridis, whose oval "yelobe has left behind it a suture twice its longth. This suecits belongs to the Middlo Minevian. The shortening of the eyelobe in the Welsh Paradoxides therefore corresponds to the geological age of the species. As the Midllu Solva bels ar" the lritish strata which hold the Paradoxidean forms equivalent to the species of the Acadian measure, the latter may be regarded as older than Menevian.

    Another point, which is worthy of consideration in this comection, is the pecnliar dorsal suture of the Acadian species of Conocoryphe. This does not agree with the suture of the species taken as the type of this genus, nor with that of any in the Menevian group proper, but if it be compared with the suture of C. bufo of the Solva group a very close resemblance is apparent. But while this suture is shown for one only of the Welsh Cambrian species, it belongs to three of the species of the Acadian fauna.

    As the Conocoryphe of the St. John group differ in the course of the suture from the


    typical Bohemian form so also does the Ctenocephalus, for in it the suture extends on the underside only two-thirds toward the apex, but in Ct. coronatus about seven-eighths. In this genus also, as in Conocoryphe, the trilobites of the Acadian horizon present a peculiar facies agreeing on both sides of the Atlantic, but differing from the species which appeared in Bohemia, Spain and Britain in the Menevian period. The wall-like front and crest of Ct. coronatus are not found in the Ctenocepaloid species of the antecedent period. The fauna of Division $1 c$ of the St. John group may, therefore, be said to contain within itself evidence of a great antiquity, and at the same time is the richest in the number and variety of forms of any assemblage of species of similar age.

    In conclusion, I would here return my thanks to several gentlemen who have aided me in the investigation of these ancient fossils. To Dr. Henry Hicks I am greatly indebted for copies of his papers on the Cambrian fauna of Wales and of others relating to the earlier formations of Great Britain. To Mr. C. D. Walcott, of the United States Geological Survey, I am indebted for communicating in advance of publication the principal points of his study of the type-specimens of the Cambrian species, described by Prof. Hartt, and now deposited in Cornell University. I have to thank Prof. Alpheus Hyatt for information respecting Ct. coronatus, and Mr. J. F. Whiteaves for affording me facilities at the Museum in Ottawa.

    ## EXPLANATION OF PLATE．

    Fig．1．－Paradoxides Acadicus，Fry，magnified 5 diam．
    

    N．B．－A specimen，having only the part of the head below the，dotted line a ．．．．, ，possesses genal spine and part of thorax．
    ＂ $20 \%$ ．＂Syments of this thorax enlarged to show spines on the edges of the pluræ．
    ＂ 21.
    ＂22．Comucorypl＂，
    Individual nearly full grown with pentagonal frontal lobe．
    ＂oo（ Bailielln）Bail，y，$\}$ Hartt，sp．，typical form shortened by pressure，with distinct furrows．
    －o．＂．Var．a．，with smooth test．
    ＂ $23 b$. ＂$"$ Same variety in profile．
    ＂ 24. ＂＂Pygidium．
    ＂25．＂＂A very young individual，magnified 5 diam．
    ＂26．＂＂Another small shield，magnified 4 diam．
    ＂ 27.4 ＂Larger，＂＂ $1 \frac{3}{4}$＂
    ＂28．＂clegans，Hartt，sp．，below the adult size．
    ＂29．＂＂Front view of a head of this species．
    ＂30．＂＂Pygidium．
    ＂31．＂＂A very young individual，magnified 5 diam．
    ＂32．＂A larger one，＂ $2 \frac{1}{2}$＂
    ＂33．＂＂A still larger shield，＂1⿳亠丷厂⿰㇒⿻土一𧘇＂
    ＂ 34.4 ＂Var．，flattened by pressure，shewing transverse ridges on the glabella．
    ＂ 35 ． 4 Baileyi ？Young，magnified 3 diam．，shewing transverse ridges on the glabella．
    ＂36．＂Walcotti，N．sp．，somewhat distorted．
    ＂ 366 ．＂Markings of inside or test，magnified．

    # VI.-A Historical Account of the Tuconic Question in Geology, with a Discussion of the Relations of the Taconic Series to the Oller Crystalline and to the Cambrian Rocks. By Thomas Sterry Hunt, LL.D. (Cantab.), F.R.S. 

    SECOND PART.

    (Presented May 21, 1884.)


    #### Abstract

    VIII.-The Taconic History Revicued.-Types of American Cambrian. Recent laleontologital studies. Variuns opinions as to the age of the Lower Taconic rocks. The metamorphic hypethesis considerel. IX.-Conclusion.-Summary. Wide distribution of rocks like Twonian. Contents of sections and Note.


    ## ViII.-The Taconic History Reviewfe.

    § 136. In the Transanctions of this Society for 1883, (Vol. I, Part IV, pages 217-270), will be found the first part of this account of the Taconic Question. In this second and concluding part, we shall continue the numbering of chapters and of sections begun in the first. It is proposed to notice, in the first place, some of the characteristic differences of the Cambrian or Upper Taconic rocks as seen in different parts of North America, to follow the results of paleontological investigation from the disturbed region in castern Camada southward into Vermont and New York, and thus to prepare the way for a consideration of the varying and contradictory hypotheses which have been from time to time put forth as to the age of both the Upper and Lower Taconic series.
    § 137. The Cambrian rocks of New York, as originally described by its Geological Survey, were known only in the stable and little disturbed region arond the Adirondack Mountains, including the area west of Lake Champlain and the Ottawa basin, where the series is represented by the quartzites and maguesian limestones of the Potsdan and Calciferous subdivisions, which are shallow-water deposits, corresponding, apparently, to small portions only of Cambrian time. The conditions of the Mississippi area are similar to those of the Adirondack region. In Wisconsin, where the Potsdam beds rest in a nearly horizontal position upon highly disturbed strata, often of Keweenian age, these sandstones and magnesian limestones of the Cambrian, lying in undisturbed succession, have about 1,000 feet in thickness, and are overlaid by the St. Peter sandstone, which divides them from the succeeding Trenton and may itself be regarded as the base of the Ordovician. When, however, we reach the Cordilleras, we find a great augmentation in the thickness of these lower rocks. In the Eureka district of Nevada, according to the late studies of Arnold Hague and Wolcott, the fauna of the so-called Lower and Upper Potsdam ranges through more than 6,000 feet of strata, and is succeeded by that of the Chazy and Trenton subdivisions.
    $\S 138$. A similar great development of these lower rocks exists in north-western Newfoundland, where, from his studies of their organic remains, the late Mr. Billings was led to admit a succession of over 9,000 feet of paleozoic strata below the Trenton horizon.

    The subdivisions there recognized by him in ascending order were: 1. Lower Potsdam; 2. Upper Potsdam ; 3. Lower Calciferous ; 4. Upper Calciferous ; 5. Levis ; and 6. Phyllograptus beds. The second and third of these were regarded by Billings as the representatives of the Adirondack Potsdam and Calciferous, while the Phyllograptus beds at the summit were considered the equivalent of the Welsh Arenig, which belongs to the base of the Bala group, or the second famma. It is evident, as Billings declared, that we have, in this great thickness in north-western Newfoundland, a much more complete sequence than in the Adirondack region, where the Upper l'otsdam, Calciferons and Chazy subdivisions represent the whole sucession from the ancient gneiss up to the Trenton limestone.
    © 139 . Kepping in viow the great theropment of the Cambrian alike in the CordilWras and in Xowfombland, as compared with the C'anbrian of the Adirondack and Mississippiaras, we are better proparel to mulerstand the remarkable type assumed by this serion in the Appabahian area, on the eastern margin of the American paleozoic basin, from near the (Gulf of Wexion north-matward to the (inlf of St. Lawrence and to Newfoundlame along the western base of the Atantio or Appalathian belt. These Cambrian rocks throughout this extent. wherempreserved, are charaterized by great thickness and considerable diversities in compesition, due to the aremmulation of mechanical sediments derisenf from the disinteration and denay of the various groups of pre-Cambrian rocks which mate up, the adjarent worn land. To this, and to repoated movements of the land during and altur the Cambrian perion, they owe their complex constitution, their great volume, their disturbex and fantod comblion, and their unconformities. All of these characters ars. todictimenish thell widn! from the horizontal and comparatively thin quartzites and magresian limenome, their repmentatives along the northern border of the great basin ats - $\quad 4$ in th. Alirondan and Mississippi areas. It is this Appalachian Cambrian, many thonsand fie⿻ in thichuess, whidh as we have already seen, constitutes the First (ireywacke of Eathn, the L'per 'Tanonic of Emmons, the Quebee and Potsdam group of lagan, and a large part of the original Hadson River group.
    \& 140 That the Levis limestones and Phyllograptus shales, found at the summit of this series mark the lemgmings of the second fanna, has already been noticed, as well as the fact that still higher strata, of Ordovician and Siluvian ages, are found over portions of this Appalachian ('ambrian series, among the strata of which they have sometimes been involved by subsequent morem"nts. It will also be borne in mind, first, that this great mass of 10,000 feet or more of diversified and folded Cambrian strata is soon exchanged to the west for a far more simple type of but a few hundred feet in thickness; and, secondly, that erosion has removed this great series wholly or in part from over large portions of its original area, particularly south of the parallel of $45^{\circ}$ north latitude.
    \$ 141 . With these explanations before us, we are now prepared to consider the relations of the Cambrian and Ordovician series, in their two unlike types of the Appalachian and Adirondack areas, to the Lower Taconic limestones. It has already been shown that Immons, in 1842, in his final Report on the Geology of the Northern District of New York, defined, with the present names, the lower subdivisions of the New York paleozoic system, from the Potsdam to the Oneida, both inclusive, to which he gave the collective appellation of the Champlain division. He at the same time proposed for the granular quartz-rock and the granular lime-rock of Eaton, found in western Massachusetts, the name of the Taconic system, which he followed Eaton in assigning to a lower horizon than
    the Potsdam sandstonc, and in regarding as entirely distinct from the New York system. The upper limits of this Taconic system, and its relations to the members of the Champlain division on the east side of the Champlain and Hudson valleys, were not at that time clearly defined by Emmons.
    § 142. In 1843 appeared the final leport by Mather upon the Geology of the Southern District of New York, in which he rejected entirely the notion of the Taconic system, and the whole teaching of Eaton, asscrting that the Taconic was nothing more than a modified form of the Champlain division of Emmons. The granular quartz-rock of the Taconic he declared to be Potsdam ; the granular lime-rock, the Calciferous sand-rock with the succeeding Chazy and Trenton limestones; while the overlying argillites, including the socalled Hudson River group, were the Utica and the Loraine shales. A similar suggestion had been put forth by Messrs. H. D. and W. B. loogers, in 1841, tor the like rocks in New Jersey and Pennsylvania, and was cited by Mather in smpport of his view. When, later, in 1858, H. D. Rogers published his final Report on the Goology of Pemsylvania, the Lower Taconic rocks of Massachusetts had been by limmons traced sonth-westward throngh the great Appalachian valley, in Pemsylvania, and the adjacent and subordinate Lancaster valley. These rocks, under the names of Primal, Anroral and Matinal, were now described by H. D. liogers as local modifications of the Champlain series, -the great Auroral limestone being assumed to be the representative of the Calciferons, the (hazy and the socalled Birdscye and Black River subdivisions, while the Matinal slatex were supposed to represent the upper part of the Trenton, with the Ttira and the Loraine shates. For many extended details with regard to the facts in $\$ 141$ and 142 , and for other points in the Taconic history, the reader is referred to the anthor's volume on Azoic Rorks, published as Report E of the Second Geologieal Survey of Pemsylvania, in 1878.
    § 143. Coupled with this hypothesis of Mather was that of a progressive alteration of these uncrystalline rocks of the Champlain division, supposed to be traced through the Taconic strata into the crystalline sehists of western New England, designated by Mathere as Metamorphic rocks; between which and the Taconic, it was said by him: "No wellmarked line of distinction can be drawn, as they blend into each other by insusible shades of difference." He was at length led to extend this same view to the more massive gneisses and crystalline limestones of southern New York, and to conclude that these also were, wholly or in great part, but altered rocks of the Champlain division,-a notion which has lately found an advocate in Dana, who has also revived Mather's view of the Champlain age of the Taconic quartz-rock and granular limestone, as will be noticed farther on.
    § 144. In Chapters V and VI of this essay we have told the story of the Taconic scries as farther studied by Emmons. He soon became aware that the uncrystalline and occasionally fossiliferous series of sandstones, shales and linestones, constituting the the First Graywacke, was not, as maintained by Mather, newer, but older than the Trenton, and coupled these with the original Taconic, under the name of Upper Taconic. This upper division was subsequently clearly recognized by him as a distinct and well defined group, which, as early as 1846 , he declared to be the stratigraphical equivalent of the Potsdam and the Calciferous of the Champlain division, while the whole Lowcr Taconic, including not only the granular quartz-rock and the granular lime-rock, but the immediately succeeding schists and argillites (Transition Argillite of Eaton), was assigned to an horizon below the base of the Champlain division, and consequently older than the Pots-
    dan. It was in 1846 that he declared the so-called Red Sand-rock of Vermont to belong to the base of the Champlain series, and to overlie the Lower Taconic, but it was not till 18.50 that this Sand-rock, with its succeeding Graywacke scries, was described under the name of Upper Taconie.
    \$14. These conclusions as to the age of the Red Sand-rock of Vermont were opposed by ( 13 Adams and by W. B. Rogers. The former maintained in 1846, after the announcment of Emmons, the opinion that this sand-rock was newer than the Champlain division, and refirred it to "the period of the Medina sandstone and the Clinton group," White W. IS liogers, in 18.51, discussing the same subject, conceived that the reddish limeston:s whih, near Burlington, Vermont, are associated with this sand-rock, were probably "a pernliar development of the upper portion of the Medina gronp." As regards the rolations of this liol sand-rock and its succeeding limestone to the granular quartzront and eranular limorock of the Lower Taconie, Adams maintained that "the Taconic fuart\%onk wan probably but a metamorphic equivalent of the Red Sand-rock," and
    
    
     -tonne of hlu' (hamplain division, as has been commonly supposed." Allusion is here made ly Abams th the vinws of Mathor and the brothers logers, who, as already seen, had
     This "pinion of Ahams, which, in ls.⿹1, was, as wo have shown, supported by W. B. linera. Wan atan maintaimed by the kattor in 1860, when, alter the reading of an essay l,y (: H. Hitumok butore the lhostm somety ol Natural History, Rogers cited from his paper af 1 ait the molusions above montioned, and annonnced his opinion, "that there i- mofomation for what Mr. Emmons called his Tanonic system-a mixture of Silurian and Decrmian-amd that the lorset limestome (the stockbridge limestone of the Lower Tanoniv) is newer than the Lowersilurian, and probably Upper Silurian or Devonian." ${ }^{1}$
    \& 146 . The exhlanation of this new opinion as to the horizon of the Lower Taconic limatom, is made apparent by reforence to the Report on the Geology of Vermont, then in procan of pulbiation by thu Messrs. Ifitchcock. Therein Dr. Edward IIteheock writes, with reward to the limestone in question, then named by him Eolian limestone, and said 10 be best dicplayed in borset Mountain: "We have found, mostly in strata from below the middle of the limestones, lossils which, though olscure from metamorphism, are 1. Warly rufurable to genera characteristic of Devonian rocks, viz: Euomphalus, Stromatopra, Zaphrentis, Chactetes and encrinal stems." "Nor is it at all improbable, as we shall shorty show, that the Dolian limestone may be as recent as the Carboniferous rocks." " Accompanying this will be found a notice of these organic forms as determined by Prof. Inmes Hall, who declared them to be of Upper Silurian and Devonian types. They are compared by Hitchcock to those found to the cast of the Green Mountains, in the valley of Lake Memphramagog, the horizon of which is well known.
    § 147. We have already noticed the occurrence of outliers of Lower Helderberg limestone on St. Helen's Island, near Montreal, and on Belœil Mountain, a few miles farther


    east; in the first locality resting unconformably upon Ordovician strata, and in the second, upon a mass of eruptive rock which breaks through similar strata ( $\$ 117$ ). In this connection may be recalled the like occurrence at Becraft's Mountain, near the town of Hudson, on the east side of the Hudson River, long known, and lately re-examined by W. M. Davis. Here, resting upon shales referred to the Hudson River group and, from the locality, probably of Loraine age, there is found, in a small synclinal area, a mass of contorted strata, including 150 feet or more of fossiliferous Lower Helderberg limestones orerlaid by as great a thickness of Cauda-galli shales, to which succeed a few feet of cherty limestone regarded as the equivalent of the Corniferous or Upper Helderberg. ${ }^{3}$ In all of these localities, as well as at Rondont, also reexamined by Davis, we note the absence, beneath these Silurian strata, of the great mass of mechanical sediments, including the Oneida and Medina sandstones, which, farther west, are so conspienous in the lower part of the Silurian series, and belong to the Second Graywacke of Eaton.
    § 148. As already mentioned in § 118 , Augustus Wing, laving detected in Vermont fossiliferous limestones of Trenton age, the locality was examined by Pillings. In a section eastward from Crown Point, in New York, the latter found what was described as the Red Sand-rock, with Olenellus, brought up by a fault, on the east side of the Loraine shales, and followed eastward by strata carrying the fanna of the Calciferous sand-rock, succeeded by some forms of the Levis, and then by the Chazy and Trenton; to the east of which another dislocation brings up again a limestone abounding in the typical fama of the Levis limestone. The close association of the latter with the white marbles quarried in this region, led Billings to refer these to the Levis horizon.' It is worthy of notice that it was in the same vicinity, which furnished Billings with Calciferous, Levis, Chazy and Trenton forms, that the organic remains had been found which were referred by Hall to the Niagara and still higher horizons, and which led Edward Hitchcock and W. B. Rogers to conjecture that the marbles of this region might be of Devonian age or younger. So perplexing were these facts to Wing, that we find him led to the conclusion, announced in a letter to J. D. Dana in 1875, and recently cited with approval by the latter, ${ }^{5}$ that "The Eolian limestone of the Vermont Geological Report embraced not only the Trenton and the Hudson River beds, but all the formations of the Lower Silurian as well, and even limestones and dolomites of the Red Sand-rock (Potsdam sandstone) series."
    §149. Another hypothesis touching the age of the Taconic marbles was now offered to the perplexed geologist, and this time by the Geological Survey of Canada. We have already shown that forced by the paleontological evidence (which had previously been urged by Emmons), Logan, in 1860, adopted the views of the latter as regards the horizon of the Upper Taconic, long before traced from New York to below Quebee on the St. Lawrence. This, in accordance with the conclusions of Mather, and the earlier published view of Emmons, had been described by Logan as consisting of the Hndson River group with


    the addition of the Oneida sandstone. The study of its fossils by Billings now led Logan to see that its position was really below and not above the Trenton limestone; but instead of adopting limmons' name of Upper Taconic, he gave to the series, as seen near Quebec, the name of the Quebec group, then described by Logan as a stratigraphical equivalent of the Cakeiferous sand-rock. Taking as a type the well-known section there displayed upon the sit. Lawrence, he called the apparently superposed sandstone the Sillery, and tho nudirl ying fossiliferons limestones and shales (the Sparry lime-rock of Eaton,) the Levis division. This was a reversal of the order described by former observers, and there can be no donbt that the section at Queber is really an inverted one, the Sillery sandstono buine the oldera and not the youngest member of the series as there displayed. This hiso fory has alromy buen given at length in Chapter VI of this essay.

    S 1:0. Wr have there also explained how Logan's view of the position of tho Sillery fandson was made to support the notion that the erystalline schists which have been found to materlie it were the altored representatives of the sedimentary strata found betwen the rillery and the Levis, whith he had called the Latzon division. Following
     of the Lonser Tambic, hosan was led to inclmbe these also in the Quebec group, and to re Lard them as the Luvis linestum in an altered condition. This, as already set forth in
     lishod in wink, alin he hand :l"nt some time in tracing these rocks through western Ver1unnt and Masamhatt: into maturn Now Vork. Therein the Lower Taconic limestono
    
     orerlyine it, smassixuly, the Latmm and sillery divisions,-these, on the west side of the ant linal, havine the ordinary typ of the morystalline First Greywacke or Upper
     Monntain range, their -upposid "quivahnts. Fiw will now question that Logan was Wrong in this lanter puint, we will doubt the greater antignity of these crystalline rocks. On far onher hand it is to be nut dhat, in thas asserting the infraposition of the Lower Taconic mathers to the l'irst (irayware or Lper Taconte series, Logan but confirmed the older olsurvation of Eaton and Emmons, and only urred in having, by a false interpretation of the sucession of the latter series near Quebee, assigned the Levis limestone to its base, by whinh he was led to ronfound it with the Lower Thonic limestone. In either view, he placed the latter bolow the series of several thousand feet of sandstones, conglomerates aml shales, which constitute the First Graywacke of Eaton and the Upper Taconic of Eminons.
    § 1.51 . We have already seen that Jimmons, as carly as 1846 , had recognized the fossiliferons character of the JFirst Graywacke, which he afterwards called Upper Taconic; that he described and figured, in $1855^{5}$, trilobitic forms found therein, and did not hesitate, in 1861, to declare that it corresponded with the Primordial zone of Barrande. ${ }^{6}$ Thus it happened that Barrande, Marcon, and after him Perry assumed the Taconic system to be the equivalent of the Primordial zone or Cambrian of Great Britain, Bohemia and Spain,-they having failed to recognize the distinction which Emmons had made between the Lower


    or original Taconic, and the Upper Taconic or Cambrian. In 1867, J. B. Perry described the Taconic system of Vermont as composed of three parts: 1. Lower, consisting of quartzites, marbles and talcoid schists, the original or Lower Taconic of Lmmons; 2 and 3. Middle and Upper, including the uncrystalline fossiliferous Scranton and Georgia slates, and the overlying Red Sand-rock, which he regarded as the equivalent of Potsdam. The succeeding graywacke, constituting a great part of the Upper Taconic of Emmons, was by Perry supposed to be separated by an unconformity from the Red Sand-rock, and he was disposed to divide it from the Taconic and connect it with the Champlain division.?
    § 152. Still more recently Mareon has given us his own latest viows of these rocks in Vermont. The true or typical Taconic is, according to him, the Upper Taconic of Emmons, and rests unconformably upon the Lower Taconic. This upper series he divides into four parts, in ascending order, designated the St. Albans, Georgia, Phillipsburg and Scranton groups. In these are found, bosides the Primordial fanna, fossils of the second fauna in included limestones, a fact which he explains as indicating centres of creation in which the forms of the scoond fanna first made their appearance; the whole of these being, according to him, below the horizon of the Red Sand-rock, which he supposes to overlic, muconformably, the Upper Taconic.' That the forms of the second fauna, found in portions of this region, belong to a lower horizon than the Potsdam, is in discordance alike with with the facts of paleontology and of stratigraphy, and is opposed to the conchasions of all other abservers in that region, including alike Emmons, Logan and Perry. Marcon's conclusions would seem to be based on some of the frequent cases of inversion of strata, or of dislocation and upthrow, to which we have elsewhere alluded, and which led Logan to place the Levis limestone near Quebec at the base of his Quebec group, and to represent the Taconic marbles of soathern Vermont as passing below the crystalline schists of the Green Mountain range.

    It should, however, here be said, at the same time, that in a disturbed region like eastern Vermont, where areas of the higher rocks of the second fanna exist, and have probably at one time been more widely spread than now, it is not impossible that there may be outliers of a sandstone of Oncida or Medina aqe, such as in Pemsylvania we hare described as orerlying unconformably Lower Taconic roeks, and also that such Silurian sandstones may have been confounded with the older Cambrian or Potsdam sandstone, and thus afford a seeming justification for the strange hypothesis advanced by Mareon, that the whole of the Appalachian Cambrian in Vermont is older than the Potsdam sandstone. The absence of these Silurian sandstones at the base of the outliers of Silurian limestones at Montreal, at Hndson and elsewhere, as already noticed in § 147, rondors, however, their prosence in Vermont less probable.
    § 153. The studies of the last few years have thrown much light on the character of the lower portions of the Cambrian in its development to the east and south-east of the Adirondack area. It has boen noticed that the Red Sand-rock, and its accompanying slates and limestones near Burlington, Vermont, referred by Emmons to the Potsdam, but by Adams, and W.B. Rogers to the Medina, and by Logan to the summit of the Hudson River group, were subsequently by Billings called Lower Potsdam, to indicate that the fauna of these rocks belongs to a somewhat lower horizon than the typical Potsdam of the New

    York system. The subsequent studies of Iogan in western Vermont, as given by him in 1863, showed that these ancient rocks are bronght up by a north and sonth dislocation, with upthrow on the east, from beneath rocks of Trenton, of Chazy, or of Levis age, which latter here occupy their natural position at the summit of the Upper Taconic or First Graywacke group. Billings, also in 1868, as already pointed out, had shown that farther sonthward in Vermont the Red Sand-rock, or Lower Potsdam, is in like manner bronght up by a dislocation, so as to overlie on the east the Loraine shales.
    $\$ 154$. It now became clear that much of what had been called Hadson River gronp, to the east of the Hudson Yalley, and of Lake Champlain, consisted, not as taught by Mather and his followers, of disturbed and altered strata newer than the Trenton limestome, and of the age of the Loraine shales, but of older rocks, carrying in part, at least, the forms of the lirst fama. We have already seen (\$112) how, in riew of these facts, Hall "xpresol hin opinion in 18 tie, as to the relations of these newer strata to the older ones. In 187T, he returned io the suljeet and, after retracing the history of investigation, concluded that " we now know appoximately the limits between the newer and the older forma-tion- and thre is now no longer any guestion that the newer series, or the rocks above the Trenton limestone, do orrupy both sides of the Hudson River for nearly one hundred miles, and continu along the valley for many miles farther towards lake Champlain. The term, Hudson liver group, has, therefore, a definite signification, from absolute knowledgo of suprposition and fowil remans. The error lay in extending the term to rocks on the cast ward at a time when their fossil contents had not been studied, and were, in fact, unknown, and thar erolorical position had not been determined by critical examination." ${ }^{10}$ WH: have alrady show, in s 1\%-14, how Vannem had devised this term to include, besidne the true Lomane shalm, other disturbed and apparently non-fossiliferous rocks of controserterl age, whimh hesposed might be included with the former, and thus introduced murd of that confusion which has prevailed in the use of the name of Hudson River group as the "quivalent to that ol horaine shales.
    § 155. The eastern limit of the rocks of the second fama, along the Hudson valley, being dufined, as sated by Hall, and as already shown by him for that region on Logan's geolo[ical map previously published, it was important to determine the age of the uncrystalline rows along their eastern border, and to decide whether these were, (as mapped by Logan), portions of the so-called Quebee group, or of the still older Potsdam, which had been found in this position at sereral points in Vermont. Nothing has contributed more to the solution of this prohlem than the carefnl studies of Mr. S. W. Ford, who, in 1871, discovered the existence of lissiliferous rocks of this lower horizon at Troy, New York, and, following up his inventigations, showed that these strata, containing an abnudant fauna of Lower Potsdan age, (corresponding to the Olenellus slates of Georgia, Vermont, and to the beds at llic, Quebec, and at the Strait of Belleisle, in Labrador,) are at Troy brought up on the eastern side of a fault, against the Loraine shales." Contimuing his stndies, Ford has recently traced these Iower Potsdam rocks, under similar conditions, through various parts of Columbia and Duchess Comnties, the stratigraphical break and the upthrow of the Cambrian strata on its eastern side being well defined. He does not attempt to estimate


    the thickness of this series of Cambrian sandstones, shales, conglomerates and limestones, but says that it "is manifestly very great in eastern New York." ${ }^{12}$
    § 156. It is hardly necessary to mention that this series of Cambrian fossiliferous rocks, traced by Ford through Rensselaer, Columbia and part of Duchess Counties, along the eastern side of a belt of Loraino shales, is a part of the great Graywacke belt, the age of which was disputed between Emmons and Mather, (the Hudson River group of the latter), and which Logan, after his examination of the region with Hall, in 1863, described and subsequently mapped as Quebec group. These observers, as has been already stated ( $\$ 115$ ), and as may be seen on Logan's map of 1866, then traced a narrow but persistent belt of Loraine shales along the eastern side of the Hudson, from Washington County sonthward to a point a little above Hyde Park, where they found the boundary between these shales and the older group to cross to the west side of the IIudson. The aceuracy of this delineation is confirmed by Ford, who, while remarking that the distribution of the upper rocks might entitle them to be called the IIndson River group, suggests, in view of the perplexities which have attended its use, that it would be better "to discard altogether the designation, and go back to the old term, Loraine shales." Ford farther speaks of the "great dislocation," which, at so many points from western Vermont to the IIudson in Duchess County, brings up the Cambrian rocks against newer strata of Ordovician age. A reference to the sections of Logan and Billings, already cited, will, however, show the existence, not of a single dislocation, but of parallel dislocations, with npthrows on the east side, towards the barrier of older rocks. Of such parallel faults we find, in fact, ripeated examples, not only east of the Itudson, but farther southward, along the wastern border of the Appalachian valley, as already shown in § 101.
    § 157. The one continuous break, with an upthrow on the south and east of 7,000 feet, extending from Gaspé to Alabama, imagined by Logan, was required in his stru:tural seheme, because he had assumed the Levis limestone, (which near Quebec is brought to adjoin the Loraine shales,) to occupy a position at the base of his Queber group, and to have been originally buried 7,000 feet beneath the Loraine shales in a great conformable series. The strata along the west side of these dislocations in Canada and in Vermont are, according to Logan, either Levis, Chazy, Trenton or Loraine, the Lower Potsdam being on the east side. In a section described by Billings, and already noticed ( $\$ 148$ ), where the first dislocation brings up the Lower Potsdam-which is successively overlaid by Calciferons, Levis, Chazy and Trenton-against the Loraine, a second parallel fanlt, a little farther to the east, brings up the Levis against the Trenton. We see, from the late studies of Ford, that the great belt along the eastern border of the Loraine shales, which Logan described and mapped as Quebec group, is in large part Lower Potsdam. The whole series must now be farther studied in the present light: we must know the real thickness of the Cambrian in the region in question; the interval therein which separates the Lower Potsdam from the Levis fauna; and how much of the Quebee group of Logan is to be included in the Potsdam.
    § 158. As regards the relations of the Cambrian and Ordovician rocks over this area, we have already shown that there is every reason to believe that there exists a stratigraphical break between them, (as is also the case between the Lower Taconic and Cambrian),
    ${ }^{12}$ Amer. Jour. Science, 1884, xxviii, pp. 35 and 206.
    and, farther, that the lower members of the Ordovician series, (the limestones of the Trenton group), thin out and present irregularities to the sonth and east. Althongh, according to Hall and Logan, it appeared that the line between the Loraine shales and the inferior series passed from the cast to the west bank of the Hudson near Hyde Park in Duchess County, subsequent studies have shown the existence of the higher strata farther southwarl, on the east bank. ${ }^{13}$ Dale, in 187h, found fossils of the Loraino period in shales at Poughkeopsic, and Dwight soon after detected abundant forms of Trenton age in the limeston of the Wappinger valley, a little farther south, as well as at Newburg, on the west bank of the Hulson. These discoveries were soon followed by that of a remarkable fauna of Calcifurous agw in other limestones in the Wappinger valley, thus showing the presence hurr, as in Virmont, to the east of the outerop of the Potsdam, of strata carrying the fosah of the Calciferons, the Trumon and the Loraine subdivisions. These remarkable disnowrins hy Dwight wre made in 187i-1880," and, joined to the observations of Dale, and then of ford, , how the existence, in what has been called Indson River group and Quebee uroup, of fomiliferms strata rallging from the Lower Potsdam to the Loraine, both in-Wuive.-a resndt ilentical to that already arrived at in Canada for the area which had 1wown sumesively mapped as Hulson River gronp and Quebee gronp.

    S159. Having this rwalled the latest results of paleontological research among
     the predmuinant Canlrian, we may proceed to notice the views of Prof. J. D. Dana on
     the rocks of the Tawnin ranew as seen in Berkshire County, Massachnsetts, and reasoning from the organic forms fomd in association with similar limestones in Vermont, reached tha "ondu-im that the Stockbridge limestone "is mainly Trenton," the overlying sehists b, wine of the Hudnom liver group." This latter statement, supported by a stratigraphical argumme, may be fonnd in a papor on the (ieologieal Age of the Taconie System, in the '?uarturly Journal of the '(eoolorical Society of London, for Angust, 1882. Herein, giving a hitorial introcuction to the sulbeent, Dana takes for a delinition of the Taconic system the statmmems made by Emmons in his Geology of the Northern District of New York, puldished in [4.2, while his views were yet ragne, and before he had clearly defined, or wrin studiod the relations of the gramular quart\%-rock, the granular lime-rock, and the inturstratifind and immediately overlying schists and argillites, together constituting the lower Taronic, with the great Graywacke series which Eaton, Emmons, Mather and Logan have alike plawed above it, and which was subsequently called Upper Taconie by Emmons. This latter series, as we have seen, appears along the western base of the Taconic range, and presents a great mass of faulted and disturbed uncrystalline strata betweell that rauge and the narrow band of Loraine shales which extends for a long distance southward along the enst bank of the Hudson.
    § 160. In describing, in 1842, the rocks of the Taconie range in western Massachusetts, Eimmons notices the occurrence of three parallel belts of limestone, with accompanying shales, the western one of which he designates as the Sparry limestouc-the Sparry lime-


    rock of Eaton-followed to the east by two other belts, differing from the first in lithological characters, and constituting the Granular lime-rock of Eaton. Emmons then procceds to inquire whether these three may not be one and the same bed repeated, or, in case there should be two or more distinct beds, which belt is the oldest. "It is," he says, " a question whether these three several belts of limestone may not belong to one bed; it is at least worthy of attentive examination. It is, however, a question that I have often songht to solve, but I have not yet succeeded in a way which is satisfactory to my mind, but I have concluded to regard them as distinct, inasmuch as there are differences of some importance," etc. It had been customary, he tells us, to look upon the most easterly belt as the oldest, and that at the western base of the Taconic range as the newest, notwithstanding the fact that the most westerly belt seems to dip beneath the eastern. At the same time he remarks that, in the absence of lossils, "we must judge of their age by their relative position, or by superposition, and, so long as the most western belt, by this rule, is the inferior one, I can see no necessity in the case to suppose a series of complicated changes, in order to make it coincide with our conjectures." 16
    §161. A carefnl perusal of the page from which these extracts are taken, and, indeed, of the citations themselves, suffices to show that Emmons was at that time-1842-in doubt which of these limestones should be regarded as older and which younger, or, indeed, whether they were not all repetitions of the same belt. These doubts were, however, resolved by him, and those familiar with his subsequent studies and publications are well aware that be soon afterward saw reason to follow Eaton in assigning the Sparry lime-rock of the western belt to the summit of the great Greywacke or Upper Taconie series, which he showed to be fossiliferous and Cambrian in age. The whole history of this is before the world in Emmons' later publications of $1846,18 \% 5$ and 1860 , but of this, in 1882, Dana tells us nothing, and, after asserting that the Taconic rocks constitute one conformable series-which, so far as regards the lower Taconic, has never been questioned -refers to the well-known fact that the limestones of the western belt described by Emmons, have since yielded not only a Cambrian, but an Ordovician fanna, and then, falling back on the words of Emmons in 1842, already cited, declares that "if Professor Emmons' view is right with regard to the western and eastern limestones and the intermediate Taconic schists, namely, that the order of superposition is the order of age, then the western is the oldest of the three;" but, "inasmuch as the western limestone is partly of Trenton age, it makes the eastern limestone younger still, or, a part of the Hudson River group." ${ }^{17}$ Dana, however, adds that he accepts the alternative conjecture of Emmons in 1842,-which he assumes to be established,-that the eastern and western limestone belts in question are but repetitions of one and the same stratum, and thence argues that the granular marbles of the Taconic range are altered lower paleozoic limestone.
    § 162. The different views with regard to the geological horizon of the Lower Taconic or Stockbridge limestones of Emmons-the Granular lime-rock of Eaton-may be resumed as follows :-
    I. That they are pre-Cambrian, and occupy a position below the Potsdam sandstone or Red Sand-rock, and the Quebec group of Logan, which together constitute the First or

    Cambrian Graywacke of Eaton and the Upper Taconic of Emmons, as shown in the table, § 18. (Enton, Eminons, Perry, Marcou.)
    II. That, although lying beneath the greater part of this Graywacke series, they are not distinct therefrom, but are the altered representative of the Levis limestone or sparty lime-rock, imagined by Logan to lie between the Red Sand-rock below and the chief part of the Quebec group above. (Logan, in his geological map of 1866.)
    III. That they are the nltered representatives of the whole of the limestones which, in the New Jork system as seen in the Adirondack area, appear between the Potsdam sand--hone and the U゙tica slate. (Mather, H. D. and W. B. Rogers, J. D. Dana.)
    N. Allied to the last is the view expressed by Wing, in 1875, that they include the reprenentations of the limestones of the lotsdam and Quebec groups of Logan, together with the Trenton and the Loraine or Hudson liver group, or, in other words, the whole if the Champlain divisim ol the New York system, from the Potsdam to the base of the Un-ida

    1. That they bolong to a horizon above the Champlain division, and are trne Silurian and Weronian. (C'. B Adams, Ed. IItehook, W. B. Rogers.)
    \&14. Wr. have alrady bricfly sot lorth the arguments on which these varions and combatictory hypuhmes have been based. While the fifth supposes the Lower Taconic limesmu to hok a position atowe the Ondida sandstone, and consequently superior to the
     Wath, (mamaind Ly leaton and Emmons, hut duniod by Mather, had been again brought intofator ly theromversion of Logan to the teaching of Emmons, and by his farther admis-- Lon that the down Tammin limestomes in Vimont and Massachusets are inferior to a areal man of sambonms, wongharates amb shates many thousand feet in thickness, con--timiner what he wallod the lanzon and sillery divisions of the Quebec gronp.
    s litit. It was not matil after his whage of view as to the geological horizon of this ereat minnemary or Graywacku suries, or in other words, after he had recognized the fact that it phan was bulow and not above the Trenton limestone, that Logan began to exanin. tha Lowor Taconi" rocks in western New England. Having then, by a miseoncepbon, phad the Lavis or sparry limerock at the base instead of the summit of the Graywarke, and still holding to the notion of Mather that the crystalline rocks along the castern horder of the ervat Appalachian valley were but a portion of the paleozoic strata in a soralleal motamorphie condition, logan was led to look upon the Lower Taconic limestone as an alfored representative of the Levis limestone, and its underlying quartzite as l'otsdam; the immediately overlying schists and the sncceeding sandstones, conglomerates and shales of the Graywacke series being referred to the Lauzon and Sillery divisions of his Quebee group. Hence the wide difference between the view of Logan, giren mader II, and that of Mather and his followers, which we have numbered III. While both would place the Lower Taconic limestones above the Potsdam and below the Oneida, Mather imagined the slates and sandstones overlying them to be Ordorician and Silurian (that is, Utica, Loraine and Oncida) or the Second Graywacke of Eaton. Logan, on the other hand, conceived the same overlying beds, as seen by him in Vermont, Massachusetts and New York, to belong to the Cambrian or First Graywacke. The error of Mather and of H. D. Rogers was that both failed to recognize this great series of sandstones, conglomerates and slates, which are so conspicuous in the Appalachian
    valley, and coufounded them with the Second Graywacke. This error it was which completely misled the Geological Survey of Canada up to 1860 , and continues to obscure the subject in the minds of many American geologists to the present time.
    § 165. It should be remembered that, as already pointed out in Chapters II and III, the overlying Graywacke or Upper Taconic does not include the schistose rocks immediately above the Lower Taconic limestone, but that a considerable amount of crystalline schists and argillites occurs, both interstratified with and overlying this limestone, and forming an integral part of the Lower Taconic series. We have, moreover, set forth in Chapter V, evidences of the distinction between the Upper and the Lower Taconic, and have shown that the latter is not limited to the great Appalachian valley, which confines the former, but is met with in more or less interrupted belts lying upon the crystalline rocks of the Atlantic region, south and east of the great valley, from New Brunswick to Georgia. Thus, in North Carolina, not less than four distinct and separate parallel bands of the Lower Taconic are met with between that of the great valley and the overlying tertiary strata of the coast, while similar narrow bands of the same rocks are found in southern New York and New Jersey, lying upon the ancient gneisses. With none of these Lower Taconic belts outside of the great valley, so far as is known, is the Tpper Taconic to be found, its absence being due either to crosion, or more probably, as suggested by Emmons, to the elevation of these areas above the sea during Cambrian tine.
    § 166. On the other hand, it has been shown in Chapter VI, that what Mather regarded as a continuation of the great Graywacke series from the east of the Hudson, extends south-westward across Orange County and, aceording to IIorton, there rests, with a high eastern dip, on the north-west side of the erneissic belt of the Highlands. Firon central Vermont, north-eastward along the great valley, to the St. Lawrence below Qurber; the Lower Taconic is not known, and the Upper Taconic or Graywacke series rests directly upon older crystalline schists, as in Orange County, New York. The same condition of things is again seen in Newfoundland. These facts, already given in detail, serve to show the distinctness and independence of the crystalline Lower Taconic from the uncrystalline Upper Taconic or Cambrian series, which two were probably separated by a considerable interval of time, corresponding to the stratigraphical break, long since pointed out by Eaton, at the base of the First or Transition Graywacke.
    § 167. The student who refers to Dana's paper of 1882, already noticed, on "The Age of the Taconic System," will obtain no light on the question of the Graywacke series, nor indeed any evidence that the author has ever seriously studied the literature of the question, or comprehended its relation to the complex question before us. He will get no notion of the two opposing views as to this series of rocks, or its position as above or below the Trenton limestone, or even of its existence as a great succession of uncrystalline sediments, many thousand feet in thickness and distinct from the Lower Taconic limestones, as maintained alike by Eaton, by Emmons, by Mather, and by Logan, and as set forth in the preceding chapters. We leave it to the reader to seck for an explanation of this incompetent and partial statement of the great geological problem under discussion by one who assumes to be alike an investigator, a teacher, and a critie, and forbear to follow him into the details of his criticisms.
    § 168. The hypothesis of Mather and H. D. Rogers as to the Lower Taconic rocks was
    devised at a time when the progress of geology in New York had made known, in the northern distriet of that state, a great series of nearly horizontal fossiliferous strata resting upon the upturned granitoid gneiss of the Adirondacks and including the now wellknown subdivisions of the paleozoic, from the Potsdam sandstone upwards. The relations tions and suceession of these varions rocks were simple and evident. To the east and southeast of this region, however, beyond Lake Champlain and the Hudson River, there were found other wystalline rocks milike the ancient gneiss, and other uncrystalline sediments vary diflerent in physical character and in stratigraphical attitude from the paleozoic strata of the northern distriat of New York. The question then arose as to the correlation of these unlike rocks in the two regions. Amos Eaton, by a grand generalization, had alrendy arrivel at asstem of classification in which he recognized the existence in the castarn or Appatian region, of types of l'rimitive crystalline rocks other than the granitoid enorise, and of ervat masses of sedimentary strata to which nothing similar was found in the contmporary series in the Adirondack region.
    § 163. Rejortine the twathing of Eaton, and falling back on the metamorphic doctrine Whi ha was then su gemerally remiverl, Mather mantained, in 1843, that whatever to the mat of the Hudan differd litholowinally from the ancient gneiss on the one hand, and from the paldanie rows of Nrw lork oystrm, as seen in the Adirondack region, on the
     - Hownive Aaces of somalled metamorphinm, as sem in the Lower Taconic quartrites and marbhe and the rystallin" whists which arompany them, as well as those others that surated them farthor to the wat. All of these were, acoording to Mather, nothing but the morn or bise alteren entuivaluts of the members of the New York system, from the Pondam sambume to the Loratne shales, both indlasive; while the great Graywacke belt,
     Vemont. wan mat, an mintamed ly Daton, ohder than the Trenton limestone, but newer than the Loraine shathes
    \& 170 . The consinmations which hont probability to this scheme were, first, the gen"ral reswhbance of this (amywark suris to the Oncida, (linton, and Medina subdivisions wif the N.w loork syom. Wo which it was by Mather referred; and secondly, the fact that the areillites when mons sthins, gramlan limostones and granular quartaite, which he acred with Latom and Emmons in phang below the adjacent Graywacke, presented a certain rexmblanco to th. Loraine and Ctiea shales, the Trenton and Chazy limestones, the so-talled Caluiferons sand-rok, and the underlying Potsdam sandstone. This general parallelism from the top of the Graywacke downward, which suggested to the mind of Eaton only the great law of eycles in sedimentation (since generally recognized), was accepterd by II. D. Rogers and by Mather as a prof of identity. In fact the Lower Taconic, as seen along the Appalachian region, in its regular succession of gramular quartzites, with gramular limestones and intervening and overlying soft schists and argillites, presents, notwithstanding its many mineralogical differences, its crystalline character, and its great thickness, that general parallelism to the Champlain division which is so often remarked in groups of sedimentary strata at very rarions geological horizons. It is thus, in certain respects, more like the Adirondack Cambrian and Ordovician, with which it has been confounded, than their Appalachian representatives. These resemblances were coupled with the fact that along the base of the South Mountain, in Pennsylvania, this succession
    is found lying between the ancient granitoid gneiss beneath, and the Oneida sandstone abore, precisely as the Potsdam-Loraine snccession in northern New York intervenes between the same gneiss and the same sandstone.
    § 171. It was not, therefore, surprising, that the geologists then engaged in the study of Pennsylvania, New Jersey, and southern New York, should have accepted this plausible and, at first sight, natural explanation of the apparent lithological parallelism presented between these regions and northem New York, or that Mather endeavored to extend it to the rocks east of the Hudson. This attempt led him to assign to the great Graywacke series, which we now know to be of Cambrian age, a position above the Loraine shales, or, in other words, to confound it with the Oneida, Medina and Clinton subdivisions of northern New York and of Pennsylvania, and thus to mistake the First for the Second Graywacke of Laton, and, in fact, to deny the existence of the former as a great series lying above the Lower Taconic and below the horizon of the Trenton limestone. The brothers Rogers and Mather, forty years since, reasoning from the palcozoic succession as displayed in the Adirondack area, were not prepared to admit that, in a region so near as the great Appalachian valley, the paleozoic sediments beneath the Trenton horizon could assume a type so unlike the well-known Potsdam and Calciferons subdivisions of the northern district of New York, or that these subdivisions could be represented in the Appalachian area by the vast and lithologically unlike series of the First Graywacke, which Eaton had already, ten years before, assigued to its true position below the horizon of the Trenton limestone. Hence came the great mistake in Anerican stratigraphy, the denial by Mather and his followers of the distinctness of the Finst Graywacke of Eaton, and the assertion of its identity with the Second Graywacke of the same anthor. So long as this false position was maintained, there was a plausible argument to be made for the original hypothesis of the brothers Rogers and Mather as to the age of the Lower Taconic series; but with the recognition of the correctuess of Eaton's view of the Finst Graywarke, the fallacy of this hypothesis became obvions, and those who would still adrocate it can only do so by ignoriug alike the results of stratigraphical and palcontological study for the last gencration.
    § 172. The absence from the granular quartz-rock, the granular marbles and their intercalated and conformably overlying schists and argillites of the Lower Taconic series, of the organic remains of the various members of the Champlain division, or, indeed, of any organic form save the peculiar Scolithus of the gramular quartz-rock already noticed, ( $\$ 23$ ) was explained by those who maintained the paleozoic age of the series by the convenient hypothesis of a chemical change, attended by crystallization or so-called metamorphism, which was supposed to have effaced the original characters of the sediments and obliterated their organic remains. In accordance with this hypothesis, it was believed that great series of strata might, within short distances, assume a new aspect, not through any original differences in the sediments, but from transformations wrought in these after deposition, in virtue of which, fossiliferous and earthy limestones, losing all traces of their organic remains, could be converted into granular limestones containing, instead, only crystalline silicates, while ordinary sandstones and argillites might become micaceous, chloritic, or hornblendic schists, and even gueisses and granite-like rocks.
    § 173. These views, a development of the Huttonian school in geology, were, as is well known to students, accepted a generation since by a large number of geologists, both
    in Europe and America, and were carried to an extreme in America. Mather, in his final Report on the Geology of the Southern District of New York, declared that "the Taconic rocks are of the same age with those of the Champlain division, but modified by metamorphic ngency and by the intrusion of plutonic rocks." They were, however, designated by him as "imperfectly Metamorphic rocks," while the various crystalline schists of New York and western New lingland, included by him in his gromp of proper Metamorphic rocks, were declared to be the same series in a still more highly altered condition ( $\$ 121$ ). liespecting these, he asserted that where the Taconic and Metamorphic rocks come together, "no well-marked lime of distinction can be drawn, as they pass into each other by insensible shades of difference." Mather was disposed to admit, in addition to these, an older or so-called Primary series of crystalline rocks in the Highlands of the Hudson, but, in the course of his Ruport, and by declaring that the Primary limestones of sonthern Niw York and morthern New Jersey, with their associated granitic and hornblendic rocks, wore wothing more than modifuations of the members of the Champlain division. He had bren fed to lellieve that the Primary limestones in question "can be easily traced through all the thangen from a fossiliferons to a crystalline white limestone, containing crystalliwd minnals and plambaro." Firom the interstratification of these crystalline limestones, supporel by him to be patozoic, with gneissie and hornblendic rocks, he was brought to maintain the paloozoic age of these, and thus to donbt whether a part, at least, of what he hate called l'rimary theiss was not also palcozoic.
    §17. Apart from the crystalline rocks of the Highland or South Mountain belt, whose primary harabtor was in part questioned by Mather, the great area of crystalline rocks lying to the somth and bast of this ramge in New York, comprising those of Westehester and N゙.w liosk Comties, and mblaning Manhattan Island, was by him included, with the adjacent rock of westorn Now Jingland, in his Metanorphic series, and declared to be "nothing more than the rocks of the Champlain division, modified greatly by metamorphic agencin and by the intrusion of erranitic and trappean aggregates." ${ }^{18}$ In this area of wouthern Now lork he noticed hornblendir rocks, gneiss, mica-schists and crystalline Jimestomes, bexides granite, syenite and serpentine, the latter three being regarded by him as intrusive rocks.
    § 17.5 . The do trine of the Metamorphic sthool of forty years since, as then resumed and formulated by Mather, was briofly as follows: the different groups of crystalline stratified rocks in south-eastern New York and western New England, (with the doubtful exception of the gneissic belt which he had designated Primary), including the Jower Taconic series, the series of micaceous gucisses and mica-schists, as well as the massive granitoid and hormblendic gneisses with their crystalline limestones, all belong to one and the same geological period, and are contemporaneons in age with the palcozoic rocks of the Champlain division of northern New York, from the Potsdam sandstone to the Loraine shales, both inclusive. These various and unlike, though contiguous groups of crystalline rocks, were, according to Mather, all produced from the same uncrystalline Cambrian and Ordovician sediments, through a mysterions process of transformation, by


    what he called " metamorphic agencios," and the intrusion of igneous rocks, in which category he included not only the interbedded serpentines, but apparently, under the name of granites, much of the granitic gneiss, which characterizes large areas of the region, as well as the abundant endogenous granitic veins,--true intrusive or exotic granites being rare in the region. In Mather's cosmogony there was nothing in the geological sequence, at least in north-eastern America, between the New York palcozoic series, as seen in the Adirondack area, and the fundamental Iaurentian gneiss which there underlies it. Consequently all crystalline rocks which could not be referred to the latter, were, unless plutonic, the result of some unexplained transformation of the lower part of this paleo\%oie colnmn, designated by him as the Champlain division.
    § 176. This hỳpothesis, extravagant as it now seems, was, during the next lew years, accepted by many geological students on the authority of Mather and the brothers, II. I. and W. B. Rogers. These latter, in 1846, extended this view of Mather to the White Mountains of New Hampshire, and suggested that the gneissic, hormblendic and micaceous rocks of this series, since named Montalban, instead of belonging, as hitherto believed, to the "so-called Primary periods of geological time," were probably altered paleozoic strata of Silurian age, including the Oneida, Medina and Clinton subdivisions of the New York system. These observers then proceeded to name many species of characteristic organic forms of the Silurian period, which they thonght to recognize in certain crystalline aggregates in the mica-schists of the region. In 1847, however, the same observers announced that they no longer considered these forms of organic origin, ${ }^{19}$ and, although they did not then formally retract their opinion as to the palcozoic age of the gneisses and mica-schists of the White Mountains, are known, from their subsequent writings, to have abandoned it as unfounded, thongh it was for some years afterward maintained, with some variations, by Logan, Lesley and the present writer. ${ }^{21}$
    §177. As regards the ancient crystalline series of the Highlands of the Hudson and of New Jersey, which differs in lithological characters from the last, we find that II. D. Rogers, while he did not accept the notion of Nuttall and of Mather that its gneisses are altered paleozoic sediments, imagined the crystalline limestones, which are really interstratified with them, to be portions of a younger limestone, altered by supposed igneons agencies. In the words of Lesley, Rogers, while maintaining the Primary age of the Highland gneisses, "mistook the crystalline limestone engaged among the Highlands for metamorphosed syuclinal outlyers of No. II, as at Franklin," in New Jersey, whereas Cook has since shown that the horizontal strata of this later period overlie the upturned erystalline limestones of Franklin. ${ }^{21}$ As a consequence of this, H. 1). Rogers was quoted by Mather as supporting the extreme notions of metamorphism maintained by Nuttall in 1824, which Mather himself accepted, and which, as I have clsewhere said, "were adopted by H. D. Rogers, as far as regards the crystalline limestones of the Highlands in New Jersey," ${ }^{22}$ while he soon after applied the same doctrine, in its fullest extent, to the great gneissic series of the White Mountains.


    § 178. To sum up in a few words the views of the Metamorphic school forty years since (1840-1846) : we find that H. D. and W. B. Rogers then maintained the paleozoic age of the Lower Taconic series, of the White Monntain gneisses and mica-schists, and also of the crustalline limestones found among the gneisses of the New York and New Jersey Highlands, thongh admitting the primary age of these Highland gneisses. Mather, again, while holding, in like mamer, to the paleozoie age of the Lower Taconic, was not acquainted with the White Mombain series, but mantained that the whole of the gneisses, micas.hists and arystalline limestomes of sonth-eastem New York, with the possible exception of the Highland belt, were paleozoic, and of one age with the Taconic series.

    It is worthy of note that on the greological map of the State of New York, published
     himerlf, ther is mo distinction of color between the gneissic rocks of the Highlands and fhose lyiner adjacht to them on the south and east, described by him in his final Reprot, in the fillowing year, as metamorbin paleozoic strata. The serpentine of the region, an sen in in staten lalaml, is colored on the map like the adjacent intrusive triassic diabase, ${ }^{23}$ hin mattempt is there made to desimate other eruptive rocks than these.
    § 17! In apmosition to the views of this Metamorphic school, there were not wanting whe likw Fimmons and Charles T. Jackson, whomantained the Primitive age of the whole, or a part, of these wryalline rocks of New England, though recognizing, as Eaton had done, their litholorical distinctness from the gheiss of the Adirondacks, and of the Highlands of the Hndom. Alrendy, moreover, in 1824, Bigsby had discovered, around Lake fuperiot and beym, the existone of two serites of erystalline rocks, and distinguished the younger of then an bemering to the Transition series. More than twenty years later the (ieolocical survey ol' C'mada, while adopting lor the crystalline rocks of New England, and thir watrasion into Candat, the hypothesis of their paleooic age, reexamined these Tram-ition "rystallinu swhists of Bigsby as seen both on Lakes Superior and Huron, and on the upper Ghawat, and doscribed them as forming a distinct group between the base of the paltwoit soriws and the ancient gneiss, upon which it was found to rest unconformably: This intermediate seriss, first described in 1847, was by the present writer designabod, in 1 and by the name of Ifuronian, 一the underlying gneissic series having, in 1854, remedred the name ol Lanrentian.
    § 180 . In 18.88 appeared the final Report of H. J. Rogers on the Geology of Pennsylvania, in whith we lind no recognition of the extreme doctrines of metamorphism maintained hy Mather in 1843, and by W. B. Kogers and himself in 1846. Not haring come to ann understanding of the question of the First Graywacke, II. D. Rogers regarded the Lower Taconie series in Pennsylymia as an altered form of the Champlain division, and considcred the gramuar quart \% rock with scolithus to be the equivalent of the New York Potsdan sandstone. ${ }^{24}$ The characteristic crystalline rocks of western New England and southeastern New York, described by Mather as altered paleozoic, pass beneath the mesozoic sandstone in New Jersey und reappear in south-eastern Pennsylvania. These rocks were now, in 1858, described by H. D. Rogers as forming two great groups, an older or so-called

    Hypozoic gneiss system, and a younger one of crystalline schists, which he called Azoic and placed beneath the horizon of the Scolithus sandstone. The views of H. D. Rogers, in 1858 , with regard to the crystalline rocks of the Atlantic belt, were thus, as I have elsewhere said, "a return to those held by Eaton and by Emmons, but were in direct opposition to that of Mather, which had been adopted by Logan and the present writer," ${ }^{* 3}$ and, so far as regards the White Mountains, were maintained by the Messrs. Rogers themselves in 1846.
    § 181. Henry D. Rogers died in 1867, but his venerable brother, William B. Rorers, survived till 1882, and fully shared the views set forth by the former in 1858, as to the pre-paleozoic age of the great groups of crystalline rocks. His careful and extended studies in Virginia during many years had convinced him of the fallacy of the metamorphic hypothesis of Mather. In a sketeh of the geology of that state, contributed by him as late as 1878 to Macfarlane's "Geological Railroad Guide," logers makes it plain that the crystalline rocks of that region are all pre-paleozoic, and older than what he calls the Primal or Potsdam group. This he deseribes as lying on the western slopre, and in the west-flanking hills of the Blue lidge, "often by inversion dipping to the sonth-east, in seeming conformity, beneath the older rocks of the Bhae Ridge, but often, also, resting unconformably upon or against them." These older rocks, he thlls us, "comprise masses referable probably to Huronian and Lanrentian age," and, farther, he informs us that the letters, A, B, C and D, used in his tabular view, "mark four rather distinct eroups of Archean rocks fomd in Virginia, of which the first three may probably be referred to the Laurentian, Huronian and Montalban periods respectively, and the fourth to an intermediate stage,-the Norian or Upper Lanrentian."
    § 182. It should here be remarked that this Primal group of the valley of Vireinia, also called by Rogers, Lower Cambrian, is no other than the base of the Lower 'aconis: series, which he contimued to regard as in some sense: the representative of the (ambrian Potsdam of the Adirondack region. In this comection, as showing the relations of this group to the crystallinc rocks, and the apparent inverted succession, I venture to make the following extracts from a letter from W. B. Rogers, written to me in 1877, for publication in my volume on Azoic Rocks, after an examination with him of some forty unpmblished transverse sections, made across the Blue Ridge during his geological survey of Virginia. In many of these sections "illustrating the position of the Lower Cambrian, (our Primal conglomerate, etc., in their contact with the crystalline and metamorphic rocks of the Blue Ridge in Virginia," "the unconformity of the Cambrian upon and against these "rystalline and metamorphic rocks is ummistakable and conspicuous; the lower members of the Primal being seen to rest upon the slope of the Ridge, with north-west undulating, dips, on the edges of the steeply southeastward-dipping older rocks. In other cases, the Primal beds, thrown into south-east dips in the hills which flank the Bluc Ridge, are made to underlic, with more or less approximation to conformity, the older rocks forming the central mass of the mountain." Here follow details as to localities, for which the reader is referred to the letter as published. ${ }^{26}$
    § 183. While, therefore, the brothers Rogers and others with them held, and still hold,


    to the paleozoic nge of the Lower Taconic rocks, the view put forward by Mather, that the great region of gneisses and crystalline schists with limestones, lying to the east of these, consists of more highly altered paleozoic strata, had become discredited It was, as we have seen, abandoned by II. D. Rogers for Pennsylvania, in 1858, and by W. B. Rogers for Virginia, where he recognized in the pre-Taconian rocks the same great divisions which I had elsewhere pointed out. The history of the studies of Thomas Macfarlane and my own, which showed conclusively the pre-paleozoic age of the extension of the New England wrestalline shhists into the Province of Quebec, has already been told elsewhere. ${ }^{27}$
    § 184 . It was, therefore, with some surprise that geological students found J. D. Dana, in 1850. attempting to resuscitate, in its completeness, the discarded view of Mather. In an rlatwate paper on "The (Geologial Relations ol the Limestone Belts of Westchester Counts, New lork," which apporred that year, Dana, following up the reasoning already motiond (s 16: ) , by whin he someht to sustain the paleozoic age of the Lower Taconic ronk. proments 10 :asume that the rystalline marbles anclosed in the greisses, as well as the ern-jw. and wrwalling shist of the region named, are altered rocks of paleozoie as. Th fown his combsions: "The limestone of Westhester County and of New York
     and. forthor. "th. limn wom and the conformatly associated rocks of the Green Mountain wemon, fron Vamant to Niw lork lsland, are of Lower Silurian age." His argoment in favo of alus. arommuions, appeas to br bridy this: that the crystalline limestones of
     amd whevi ian limmones found among the morystalline sediments of the Appalachian salley, alonge the wasm flamk of the "rystalline belt north of the Highlands, are but three ditterent conditoms of one and the same calcareous series, and, hence, that the great arm if rymalline roks south of the harrow range of the lighlands of which he admits
    
    ( 1-i. Dana havins amounced his romelusions as above, adds: "The evidence which ha: bern addued. though then hut partly dise erned, led Professors W. B. and H. D. Rogers, and Jrofesser W. W. Mather, nearly to the results here reached." In support of this asser--rtion. he refirs to Mather's report of 1843 , in which, as we have seen, the hypothesis was and rancetl, and abon, under the head of "Professors Rogers," to a paper loy them in 1841, in the. Prowedings of the Ameriman Philosophical Society, as well as to a statement in the American Journal of science for 1872 (Vol. IV, page 363). This, the reader will find to be nothing inore than lhanals assertion that the Messrs. Rogers, in that same paper of 1841, mantained the Champlain age of the Lower Taconie series, -a view which, as we all are nware, one of them, sone years later, abandoned for that of its Devonian age. These "minent geolorists did, for a time, put forward the view (afterwards relinquished) that the $\underline{\text { encissic }}$ series of the White Monntains consists of altered Silurian (Oneida-Clinton strata), and Mather, in his argument, made the most of the error of H. D. Rogers, who mistook, in 1840, certain interstratified crystalline limestones among the Primary gneisses of New Jersey for superincumbent limestones in an altered condition, but Dana fails to show that the Messrs. Rogers ever maintained the paleozoic age of the great series of


    crystalline rocks in south-eastern New York, as he would have his readers infer. When, in 1858, H. D. Rogers had occasion, in his final Report on the Geology of Pennsylvania, to describe the continuation of these same rocks into that State, he distinctly assigned them to a horizon below the base of his paleozoic series, proposing, at the same time, a Hypozoic and an Azoic system to include them.
    § 186. The Highland range on the east side of the Hudson traverses Putnam county, and, passing south-westward to the river, occupies but a small area in the north-west corner of Westchester County. Along its south-east base, at Amesville and at Oregon, is met a narrow belt of scarcely crystalline limestone, accompanied by an argillite or talcoid slate, and resting unconformably upon the ancient gneiss. This belt, apparently a Lower Taconic outlier, is regarded by Dana as partially altered Lower Silurian, and "the grade of metamorphism" is declared by him to become more intense to the south and east, giving rise to the whole gneissic area of Westchester and New York Counties. The gneisses and conformably interstratified crystalline limestones of this large area are, as we have seen, supposed by Dana to be metamorphosed Lower Silurian, thongh they are really undistinguishable from the rocks of the adjacent Highland range, which he admits to be Archean or Primary. In support of his startling proposition, Dana might be expected to point ont some distinctions between the rocks of the two areas. He begins by suggesting certain differences as to more or less micaceous or hornblendic gueisses in the two regions in question, but confesses that "there are gradations between the two, in both respects, which make the application of a lithological test very perplexing," and admits that "the lithological evidence of diversity of age is weals," ${ }^{2 n}$ a criticism which the intelligent reader will conclude is equally applicable to Dana's stratigraphical argument. I am familiar with the rocks of many parts of Westchester Comnty, and since the publication of Dana's paper in 1880 have taken repeated opportunities to examine, in varions localities, the rocks called by him Metamorphic Lower Silurian, as at Singsing, Tarrytown, Yonkers, Spuyten Duyvil and Kingsbridge, along the Hudson. I have also studied the same rocks farther to the east, along the River Bronx and the Harlem Railroad to Pleasantrale, as well as between this line and the Hudson, and have crossed eastward to Long Island sound and examined the exposures on the shore at and near New Rochelle. Being already familiar with the Laurentian rocks throughout Canada, as well as in parts of the Adirondacks, and in the Highlands from Putnam County, New York, through New Jersey and Pemnsylvania to the Schuylkill and beyond, I do not hesitate to say that these grneisses and thoir associated crystalline limestones of Dana's so-called Metamorphic Lower Silurian, in Westchester County, cannot be distinguished from the typical Laurentian. I believe that the judgment of an impartial observer would be that the notion of any difference between the Laurentian gneisses and limestones of the areas mentioned, and the gneisses and their interstratified limestones of Westchester County, has no foundation in fact.
    § 187. Passing now from Westchester County to the adjacent Manhattan Island, the same Laurentian gneiss is seen in its northern portion, between Seventh and Eighth Avenues, especially in a cutting at One Hundred and Forty-fifth Street, and thence in a ridge some distance farther south, the strata being nearly vertical and of grayish horn-
    ${ }^{20}$ Amer. Jour. Science, 1850, xx, 373.
    blendic gneiss, and a band of crystalline limestone appearing a little farther to the east, on Harlem River. A quarter of a mile to the west of this ridge, in Mount St. Vincent, is secn a distinct type of highly micaccons gnciss and mica-schists, and similar rocks are exposed at intervals in the western part of the island, as far south as Fifty-uinth Street. Farther eastward, in the southern part of Central Park, just above Fifty-ninth Strect, the numerons rock-exposures are all of similar mica-schists and micaccous gncisses, often at moderate angles. They include endogenous granitic veins, occasionally presenting in their structure a marked hilateral symmetry, and sometimes transverse, but at other times interbedded. Several perched blocks here found are of similar endogenous granite, and are apparently boulders of decomposition, left in the subaerial decay of the rocks of the rarion. These micamons rocks are unlike those of Laurentian areas, but, on the contrary, closely resemble those of the White Mountains and of Philadelphia which I have called Montalhan, and are like the youngrencissic series of the Alps and the Scottish Highlanks. I, therefore as long ago as $1871,{ }^{3 n}$ noticed these rocks as belonging to this yomerer serins, and have since expressed the opinion that the Laurentian "of Manhattan lsland appears to be overlaid in parts by areas of younger gneisses and mica-schists, the remaining portions of a mantle of Montalban." ${ }^{31}$ It is, however, by an error for which I an mot ropmsible, that in Ma farlane's " (ieological Railroad Guide," in 1878, the Montalban of Manhatian Ishand has been represented as extending upward along the Hudson liver Railroad by 'puyten Duyvil, Yonkers, Tarrytown and Singsing, as far as Croton, before metine the Laturentian of the Ilighlands. There appears to be, however, an outlier of Montallan roks at Crmer's Station, just above (roton, and there may be others in various parts of Weathester Comety.
    § 1st. It has bern deremed newessary to notice thas at length, in this connection, Dana': remodation of the andent vins of Mather, for two reasons: first, because therein, both the bawn tamen rocks and varions crystalline rocks just noticed, are supposed by him to be contignous portions of the same ('ambrian and Ordovician (Lower Silurian) sodiments in different stages of transformation ; and secondly, because the manner in which the names of the brothers lingers are cited to Dana in conjunction with that of Mather is such as in laad the reader to the false conclusion, that those eminent geologists supported Mather's hypothesis of 1843 as to the Cambrian and Ordovician age of these same crystalline rocks, as well as of the Lower Taconic series; which latter view, as we have shown, W. H. Rogers repuliated a few years later, in 1851 and again in 1860.
    § 159. The rise and fall of the doctrine of regional metamorphism, which is but an extravagant development of the Inttonian hypothesis of the origin of crystalline rocks, forms a curious chapter in the history of geology. I have elsewhere related the early application of this doctrine to the erystalline rocks of Mont Blanc by Bertrand, about 1797, and its subsequent restatement by Keferstein in 1824, until it was taken up and popularized by lyell, Murchison, and varions continental geologists, so that the riew became generally accepted that the gneisses and miea-schists of the Alps are but altered secondary and tertiary strata. The story of the refutation of this hypothesis for the Alps by the


    studies of Favre, Pillet, Gastaldi and others has also been told. ${ }^{32}$ A similar view was extended to crystalline rocks in other parts of continental Europe, in the British Islands, and in eastern North America, save that for all of these a paleozoic age was generally assigned. The opinions of Mather on this subject were adopted by Logan and others, including the present writer. The brothers Rogers, in 1846, advanced a similar view for the rocks of the White Mountains, but abandoned it before 1858. It was not until 1870 and 1871 that the present writer, rejecting entirely the views of this school, asserted the pre-Cambrian age of all the great areas of crystalline rocks, alike in North America and in Europe. Nearly coinciding in time with this, came the independent action of numerous continental geologists, including those already named, and the result has been such an advance of the views of the new school that, in 1881, Callaway conld say that "every case of supposed metamorphic Cambrian and Silurian has been invalidated by recint researches," and in 1883, Bonney, now President of the Geological Society ol London, wrote that the hitherto accredited "instances of metamorphism in Wales, and especially in Anglesea, in Cornwall, in Leicestershire, and in Worcostershire, have utterly broken down on careful study," ${ }^{33}$ as had already been the case in the Alps and in North America.
    § 190. The last stronghold of the metamorphie sehool in the British Islands was in the north-west of Scotland, where Cambrian and Ordovician fossiliferous sandstones, limestones and shales, resting upon the ancient granitoid gncisses to the west, are towards the east ovenlaid in apparent conformity by a great series of mike gneisses and mitaschists, which form the Scottish Highlands, and were declared by Murehison and Archibald Giekie, from their studies, to consist of still newer rocks in a so-called metamorphic condition. The structure of this north-western part of Scotland was in fact, according to their teaching, the precise counterpart of that of New England as formerly tanght by Mather and his followers, and still supported by Dana. The late Prof. Nicol, however, constantly opposed this view of the structure of the Highlands maintained by Murchison and by Giekie, while the present writer, from his lithological studies of the Lighland rocks, declared in 1871 his conviction that the upper gneisses of "the Scottish Highlands will be found . . . . to belong to a period anterior to the deposition of the Cambrian sediments, and will correspond with the newer gneissic series of our Appalachian region," ${ }_{31}$ then described as the White Mountain series,-an opinion which was reiterated, after farther examination of the rocks, in a communication in 1881 to the Geological Suciety of London, when these Highland gneisses were designated as Montalban. ${ }^{35}$
    § 191. The studies by Hicks of the geology of parts of this region from 1878, and the later and independent ones of Callaway and of Lapworth in other districts, had already, in the beginning of 1883, ${ }^{36}$ shown the fallacy of the views maintained by Murchison and Giekie as to the geological structure of the Highlands. The united testimony of these


    observers made it clear that in the remion in question were portions of two gncissic series, an older or granitoid gneiss, like that of the western coast, and a younger, very distinet in type, which has been variously designated as Upper Pebidian, Grampian and Caledonian, und is that described by me in 1871, and again in 1881, as of the White Mountain or Montalban type. This, the younger gneissic series of Murchison and Giekie, was clearly established to be of great thickness, and older than the fossiliferous Cambrian, which it is brought to overlin by a series of great folds, overturned to the west, and accompanied by parallel fanlts, with upthrows on the east side, as shown by Hicks in Ross and Inverness shires, as well as by Callaway in Assynt, and by Lapworth in Eriboll.
    $\$ 192$. The con ordant and independent results of the eminent observers just named having thus demonstrated the fallacy of the views of Murchison and Giekie that the anciss whith in the Highlands overlies the fossiliferons strata, is a still younger paleozoic series in an altered rondition, the Geological survey of Great Britain, of which Giekie is now Dirmtor, madnotok in 188 , and 1884, a rewxamination of the region in question. The rosult of this has completely disproved the former statements of Murchison and (ibohe and has wolfomed those of the new sehool. The Director of the Geological Survey, in a note very rewntly publishod, tells ws that he has "found the evidence altogether orrwheming against the upward sucession, whieh Murchison believed to exist in Liribell, from the lase of the Silurian strata into an upper conformable series of schists and trneisocs," and adds: "That there is no longer any evidence of a regular conformablo parsate from lissiliferous silurian quartzites, shales and linestones upwards into crystalline sehists. Which were suppesed to be metamorphosed Silurian sediments, must be frankly admited." The same conclusions are also reached by Giekie from the reexamination of the similar artions in lioss-shire, previously described by himself in acordance with the views of Murehison.

    The preliminary Report of the surveyors, Messrs Peach and Horne, which is subjoined to the lifertor's mote, shows the same structure as was already described by the late ohservers, mamely, overturned folds and great faults, with lateral thrusts westward, by which the erneisses are made to overlie the fossiliferous strata, - the horizontal displacemont of the gemises to the west, which are superimposed on the Cambrian rocks, being, in some rases, acoording to Giekie, not less than ten miles.
    \$ 193. Giekie notices the distinction between the older or granitoid gneiss, portions of which also appear in the Highlands, and the upper gneissic and mica-schists series, the pre-palenoic arge of which was shown by the observations alike of Hicks, and of Callaway and Lapworth. He calls attention to the laminated and schistose structure developed by the great pressure and friction along the lines of movement in gneissic and hornblendic rocks, and also to similar changes produced by the same agency in detrital rocks, such as arkose. Both of these structural alterations are apparently included by Giekie under the head of what he calls a "regional metamorphism,"-a misapplication of the term likely to confuse the reader, since local structural changes, induced by mechanical movemeuts in ancient erystalline rocks, have nothing in common with that mysterious process which has been supposed by the metamorphic school to generate similar crystalline rocks from uncrystalline sediments. As regards the changes wrought by the same agency on detrital


    masses, it may bo repeated that "the resemblance between primitive crystalline rocks and what we know to be detrital rocks compressed, recemented, and often exhibiting interstitial minerals of secondary origin, is too slight and superficial to deceive the critical student in lithology, and disappears under microscopical investigation." ${ }^{38}$
    § 194. We have already elsewhere in this essay (\$ 135) referred to the local development of crystalline silicates in sedimentary rocks by infiltration, and have, in another place considered the relation of such a process to the question of the origin of primitive crystalline rocks. These we believe to have been formed anterior to the existence of detrital sediments, and by a process which excludes alike all so-called metamorphic, metasomatic, and plutonic hypotheses of their origin. At the same time we reject the Wernerian or chaotic hypothesis, and its modification by Delabeche and Daubrée, which we have called thermochaotic, in favor of a new aqueons or neptminn hypothesis, which supposes the elements of these rocks to have been dissolved, and brought to the surface from a disintegrated layer of igneous basic rock, the superficial and last-solidified portion of a cooling globe, through the action of circulating waters. The soluble and insoluble prodncts of the subaerial decay, alike of igncous and aqueous rocks, are, however, supposed to have intervened in the process, especially during the period of the later crystalline or Transition rocks. This explanation of their genesis we have elsewhere proposed, and disenssed at length in a recent essay on "The Origin of Crystalline Rocks,", ${ }^{37}$ and, in allusion to their production through the intervention of springs, have valled it the crenitic hypothesis.

    ## IX. Conclusions.

    § 195. The task attempted in the preceding chapters, of discussing the history of the Taconic Question, has involved a review of much of the work done in American geology for more than sixty years, going back to the labors of Eaton, and even to those of Maclure. Of the somewhat extensive literature ${ }^{\text {th }}$ of the subject I have made use, so far as has seemed of importance in the controversies which have arisen on this question, and have supplemented the researches of varions investigators by personal observations extending over a wider field and a greater number of years than those of any of my predecessors. From all of these sources, I have here sought to bring together whatever has appeared to be of value for the elucidation of the important problems before us. In the following sections, the conclusions which have already been set forth at length are summed up.
    § 196. There exists in castern North America a great group of stratified rocks, consisting of quartzites, limestones, argillites and soft crystalline schists, which have together a thickness of 4,000 feet or more, and are found resting unconformably upon various more ancient crystalline rocks, from the Laurentian to the Montalban inclusive. This scries, called

    Transition by Machure, includes the Primitive Quartz-rock, the Primitive Lime-rock, and the Transition Argillite of Eaton, and is the Lower Taconic of Emmons, and the Itacolumitic group of Lieber. This series, which I have preferred to call Taconian, is essentially one of Transition crystalline rocks. The quartzites, which predominate in the lower portion, contain muth detrital matter, and are sometimes conglomerates. They are, however, often vitroous or gramular, the latter variety being sometimes flexible and elastic, and constituting what is called clastic sandstone or itncolumite. These quartzites, like the limestones of the series, often contain an indigenous micaceons substance, which is in most cases a hydrous mnscovitic mica, related to sericite or to damourite. A similar mineral predominates in metain layers of soft unctuons lustrous schists, which, from their aspect, have bern called tabood or magnesian, and are found intercalated alike with the quartzites and the limestones of the series. The latter, often more or less magnesian, aro generally finely gramar, and yiold marbles for statuary and for architecture. They are of fon sariegated in color or banded with green or gray, constituting cipolins. The min"ralory of the limestomes and their associated "rystallime sehists, has been noticed in
     i\%n, including. besides ereat deposits of magnotite, others of siderite and of pyrite. Both of the hathersperies, hep epienesis, wive rise to hydrous iron ores, which, throughout the Appathian reqiom, chamerize the outcrops of the series, and are generally imbedded in "lay. lhe result of the suharial deay of the "uclosing schists, which, it may thence ben conjertured, inthat, in many cases, latge proportions of a feldspathic mineral. The araillitus of the Tarnian, often yielding rosting-slates, are interstratified with more or less silicions beds :md own whefly in the upper part of the series. The mineralogy of the Taconian has been lurther discussed in the anthor's assay on "The Origin of Crystalline Rowks" in the Tramsactions of the Royal Socinty of C'anada, Vol. II, Sec. III, p. 63.
    \& 197. Thense Tamian rocks are not confined to the Appalachian valley. Extending southward therefrom, they are traced in Pemsylvania along the eastern base of the lihu lidge into North C'arolina, and are fomd in outliers to the east over the Atlanii. belt from Georgia to New lirnnswick. To the west of the great valley, they are known to underlic the eastern part of the paleozoic basin, and appear in eroded anticlinals from benoath the coal-measures, alike in Alabana and Pennsylvania, where they are directly overlaid by Ordovician strata. They are seen in similar conditions, lying un--onformatly beneath the Ordovician limestones of the Ottawa basin, in Hastings County, Ontario, and are believed to be represented by the great series of argillites, quart\%ites and limestones aromd Lake Superior, which, in 1873, I called the Animikie series, and which there underlie, unconformably, not only the Cambrian (Potsdam) of the Mississippi area, but, according to Irving, the Keweenian series also. The presence of Lower Taconic rocks was long since asserted by Houghton in the northern peninsula of Michigan, and it is probable that a part of what has siuco been called Huroninn belongs to this Animikie or Taconinn series ( $\$ 89,90$ ). The argillites and quartzites which, in the Black Hills of Dacotah, intervene between the older crystalline rocks and the Cambrian, resemble those of the Taconian.
    § 198. The Taconian series is not destitute of evidences of organic life, but contains, in the granular quartzites near its base, the typical Scolithus linearis at many points throughout the Appalachian valley. Similar markings in the silicious beds of the series in Hast-
    ings County, Ontario, have been noticed as probably worm-burrows by Sir J. W. Dawson, who has also described the Eozoon Canadense found in the associated limestones, while the argillites which I have referred to this series, from the western end of Lake Superior, have afforded the remains of a sponge. The Taconian, as I have suggested, may constitute a link between the older eozoic groups and those of paleo\%oic time.
    § 199. The Upper Taconic group, the First Graywacke of Jaton, the Potsdam and Quebee groups of Logan, (which include a large part of what was described by Mather and by Logan as Hudson River group, we have seen to be the Appalachian representative of the Cambrian period. It sometimes overlies the Taconian, but, in the absence of this, rests directly upon the older crystalline groups along the eastern border of the great Appalachian basin. Unlike the Taconian, however, it does not, so far as known, extend eastward of this limit, while to the west, as we recede from this border, it is soon replaced by the Adirondack type of the Cambrian.

    This Appalachian Cambrian series is wholly uncrystalline, and is separated from the Taconian by a stratigraphical break, and probably by at great interral of time. From the distribution of the Cambrian and the Orlovitian in eastern North America, there was evidently another great stratigraphical break, with crosion, followed by a considerable continental depression, which preceded the deposition of the Ordovician limestones. Similar disturbances seem to have intervened at the beginning of the Silurian period in this eastern region, for we find the Silurian limestones resting directly upon somewhat inclined and eroded Ordovician strata near Montreal, and, apparently, also in the ralley of the Hudson, while throughout this eastern border the great mechanical sediments of the Oneida, Medina and Clinton, which to the west of the River IIudson constitute the chief part of the Second Graywacke of Eaton, at the base of these limestones, are apparently absent, a fact pointing to the emergence of this easten region during the early part of Silurim time. The local disturbances which at this period prevailed in the eastern part of the great basin, are farther shown in the conglomerate character of these Silurian sandstones in parts of New York and Pennsylvania, though it should be noted that in these regions, as well as in Ontario, there appears to be an mbroken succession from the Loraine shales to the Oneida, Medina and Clinton subdivisions.
    § 200. As a result of all these varions movements which affected the eastern border of the Appalachian basin, we find that the Taconian is there in some parts directly overlaid by Cambrian, in others by Ordovician strata, and in parts, it wonld seem, by limestones belonging to the upper portion of the Silurian, or to Devonian time. The strata of all of these periods are more or less involved with each other, and with still older crystalline groups, by the successive movements of folding and dislocation which continued to affeet the Atlantic belt at intervals until after the close of paleozoic time. From the complex stratigraphical relations which have thus resulted, various observers have, during the past forty years, conjectured that the Taconian limestones are strata of Cambrian, of Ordovician, of Silurian, or even of Devonian age, which, by a process of so-called metamorphism, have been changed into granular non-fossiliferous marbles, often holding crystalline silicates.
    § 201. These varions conjectures are not only in contradiction with each other, but, as we have seen, are in direct conflict with the facts of stratigraphy, and are, moreover, based upon the unproved and now generally discredited hypothesis of progressive and regional
    metanorphism. This hypothesis, as long since maintained by Mather for the rocks of eastern North America, and later by Dana, asserts successive changes,-called by the latter "grades in metamorphism,"-from unerystalline sedinents through the Taconian and other more massive crystalline schists to the granitoid gneisses. These various and dissimilar groups of strata, as I maintained in 1878 , and as will to-day be admitted by nearly all geologists, "are not the result of different and unlike changes which one and the same uncrestalline paleo\%oic series has suffered in different geographical areas, but, on the contrary, belong to sucsessive periods in palcozoie and eozoic time. The great divisions of the latter . . . . present in ascending order a progressive change in mineral character, the nature of which has been shown ; . . . thus constituting a veritable passage in time from the granitoid Ottawa gheiss at the base of the Laurentian, through the intermediato Illuronian and Montalban divisions to the less markedly crystalline schists of the Taronian."" Such a sucerssion, I have since endeavored to shew, is the necessary result of the serular prows by which, from an undifferentiated primeval chaos, the various groups of l'rimitive and Transition crystalline rocks have been generated, as set forth in therentit hypothesis already noticed in $\$ 194$ of the present essay.
    ( 202. The Tamonian crstalline rocks were deposited over a large part of eastern Xurth Amerian upon the wroded surfaces of more ancient eozoic groups, and in their furn whlied ereatly from morements of the earth's crust, and from erosion, previous to the lueqiming of ('ambrian time. Over the more depressed portions of the worn surfaces, the marssalline sediments of Cambrian, Ordovician, Silurian, and later periods, were next she cesively laid down, alike on the Taronian and the more ancient crystalline groups, not howern withont intervening morements of the earth's crust, which along the matwrin portion of the oreat paleozoi" basin caused stratigraphical breaks, foldings, ame partial crosions of these latur gromps of sediments. Beyond the limits of this basin, to the sonth and east. the sparse distrilmion of areas of palcozoic sediments, and their absence from the higher levels among the erystalline rocks of the Atlantic belt, permit us to suppose that the paleozoin seas did not invade these higher regions; while the deposits madn. by some of them at lower levels among these same crystalline rocks, have been in grat part romoved be subsequent agencies. As a final result of this process, we find, within the ereat hasin, the Tatonian rocks resting on various older crystalline groups, and themolvers overlad direetly by ('ambrian, by Ordovician and by Silurian, while outside of the limits of the basin, areas of the same Taconian roeks are in parts overlaid by mesozoic and by tertiary strata.
    §208. As regards the existence in other lands of a similar series of rocks to the Taconian of North America, we have seen that Lieber, whose independent and careftul studies of this scries in South Carolina we have resumed in Chapter IV (§ 69-79), supposed them to be the stratigraphical equivalent of the Itacolumite or diamond-bearing series of Brazil,


    of the similar rocks of Bundelkhand in India, long since deseribed by Clanssen and by Jacquemont, and of those in Russia, where several areas of Itacolumite rocks, diamondbearing like those of Brazil and India, were discovered in the southern Urals by Helmersen and Hoffinan. ${ }^{* 3}$

    These diamond-bearing rocks in 3nndelkhand have since been deseribed by the Geological Survey of India as the Lower Vindhyan series." The studies of Hartt, of Gorccix, and of Derby have thrown farther light on the Itacolnmite series of Brazil, which, accurding to the latter, resis unconformably upon the older crystalline rocks, and consists in great part of quartzites, often granular and sometimes flexible, with unctuous talcoid schists containing hydrous micas, chloritie and argillite beds, specular schistose iron-ore (itabirite), and great masses of crystalline limestone. The resemblances, long since noticed by Lieber, between this Brazilian series and the American Taconian were made very evident by a collection of these rocks from the province of Minas Geraes, examined by the writer. This ancient series in brazil has atiorded no organie remains, but being unconformably overlaid by older paleoroic rocks has been by Derby supposed to be altered Cambrian, while others have assigned it to a pre-paleozoic age. The diamonels, (which are also met with in derived rocks,) are fom in tha provinee of Dismantina in unctuous banded clays of rarying colors, which are derived from the sularerial deray of castwarddipping schistose beds of the Itacolumite erroup. ${ }^{\text {b }}$
    § 204. A close resemblance between the oldrr rocks of Brazil and those of Guiana has been pointed ont by Jannetaz who, as remarked by Crosby, "has recognized in the latter country the itacolumite, with the hydromicaceous and other schists of the former, which have been connected with the Tacorian systen. The itacolumite of Guiana has aiso been observed by Schomburgk." ${ }_{2}^{t 6}$ Farther to the north-west, beyond the mouth of the Orinoco, we meet'a great development of a similar series. Crosby, writing in 1880, says these rocks." constitute the main mass of the great eastern branch of the Andes, or at least that part of it which skirts the Caribbean sea from Caracas eastward, and is known as the Littoral Cordillera of Venezuela." The Cordillera forms the Northern Mountains of Trini. dad, which have an altitude of 3,000 feet, and terminates in the neighbouring island of Tobago. These semi-crystallịne rocks of the Spanish Main and Trinidad were studied


    some twenty years since by Messrs Wall and Sawkins, ${ }^{17}$ by whom they were designated as the Caribbean gronp, more recently by Mr. R. J. Lechmere Guppy, and in 1878 were examined by Crosby.
    §205. The structure of the Northern Mountnins in Trinidad is monoclinal, high southerly dips being universal. The thickness of the strata exposed is not less than 10,000 feet, included in three divisions: a lower consisting of a quartzite, granular and usually more or less micaceous, followed by and alternating with hydrous micaceous schists and argillites, often lustrons ; a middle one of several thousand feet of crystalline limostones in massive beds, rarying in colour from white to nearly black, nnd often somewhat micaceons : and an upper division consisting of several alternations of argillites liko those of the first. freguently graphitic, and often passing into hydromicaceous schists, with layers of quartzite, sometimes detrital, and, towards the summit, thin beds of limestone. The whole suceession, acording to Crosly, strongly resembles the Taconian as seen in wostern Massachments. Oworlying unconformahy this ancient series, which appears to be unfinsiliferous, is a dank-culored compact fossiliferous limestone, with interbedded thales, in which, anomg many ohsemre forms, Guppy recognized Murchisonia Anna and M. linearis. Wowh found in the Condifirous sand-rock in Cimada.

    S Sthe suber"turnt observations of " 'rowly," in 1882, made in the mountains of eastern Coba, butwem bamoand the southrm coast, show that there exists to the south of the dividing ridge a belt six ur "ight miles wide of highly inclined strata, having an east and
     whiteryathine limetome, whon micarons. This group is entirely distinct from one madw up, from tiosile shatw, suft sandstones and impure carthy limestones, found chiefly on the northern slope of the same monntains, and regarded by him as probably equivalent to the eretaconn :and twriary strata of 'an Domingo and Jamaiea. Of the first named group he say:: "These rown bear a strong resmblance to the Taconian system of western New Fingland and arw "ssentially identical with the great series of semi-crystalline sehists and limestones of Trinidad and the Spanish Main, which I have elsewhere correlated with the Tanonian" From the published accounts of the geology of San Domingo and Jamaica, ('rosby conswives that these islands have a similar structure to that of south-eastern Cubn. Their wrystalline whists which, acording to him, have heen generally confounded with the cretarpons beds, he Jelieves to lee like those of Cuba, and of Taconian age. Cleve, in 1870, noticed in lorto Rico, Santa ('ru\% and the Virgin Islands an unfossiliferous series which he conjeetured might be metamorphosed cretaceous. These strata, which are vertical, or have a high northern inclination, consist chiclly of argillites and crystalline limestones like thos" of Cuba and Trinidad. ${ }^{\text {. }}$
    §207. There exists in the Alps, besides the ancient or central granitoid gneiss (Laurentian), the great pietre verdi series proper (Huronian) and the younger gneiss and mica-schist series (Montalban), a fourth great group, very widely distributed, made up in


    large part of crystalline schists,-the argillo-talcose schists of Favre, the gray lustrous schists of Lory, the sericite-schists and the glanzschiefer of others. This schistose series, to which a great thickness is assigned, includes quartzites, dolomites, micaceous limestones, banded and statuary marbles, serpentine, tale, karstenite and gypsum. These rocks, which among other localities, are well displayed on the line of the Mont Cenis tunnel, have been by many Alpine geologists regarded as altered jurassic or triassic. This view was, however, in 1872, combatted by the present writer, who then referred them to primitive or cozoic time; a view which has since been accepted by Favre, who had previously regarded them as mesozoic. ${ }^{50}$ Their pre-paleozoic age was afterwards maintained by Gastaldi, by Pillet, and by Jervis. I have since called attention to the fact that these lustrous schists greatly resemble those of the Taconian of North America, to which I have compared this whole Alpine series. In it are included, by Gastaldi and Jervis, the schists of the Apnan Alps, with their crystalline marbles, all of which, as seen in the monntains of Carrara, I have found to resemble the Taconian closely. These marbles, it may be remarked, have, like those of the American Taconian, been referred to very different geological horizons, having been successively called altered cretaceous, liassic, rhetie, infra-carboniferons and prepaleozoic, to which latter position they were assigned by Gastaldi in 1874.
    § 208. To the same horizon, apparently, belongs the Hercynian Primitive Clay-slate series, which, according to Gümbel, intervenes in Bavaria between the Hurcynian micaschist group and the fossiliferous Cambrian strata, by which it is overlaid. This clayslate series includes beds of crystalline limestone, sometimes magnesian, attaining in places three hundred and fifty feet in thickness, which contain hornblende and serpentine, and a form of Eozoon, named by Gümbel E. Bavaricum. It also includes siderite, which, by epigenesis, gives rise to valuable masses of limonite. The history of the group of lustrous schists in the Alps, and their related rocks, has been recently disenssed at some length by the writer in a chapter on the geology of the Alps and the Apennines, contained in an essay on "The Geological History of Serpentines, etc.," to which the reader is referred for details and for authorities. ${ }^{51}$

    In some parts of central Norway, the fossiliferous Cambrian, or so-called Primordial zone, is described by Kjerulf as resting directly upon the aneient gneiss, but in other parts it is nnderlaid by a series which, from the presence therein of detrital beds, is designated as the Sparagmite group, and sometimes attains a thickness of over 2,100 feet, as in Ostdalen. This underlying series, which itself rests upon the gneiss, includes red and grey sandstones and conglomerates, with considerable masses of limestone and of dolomite, besides various fissile rocks described as black argillites, lustrous schists, sometimes talcoid, and schistose quartzites. It is without observed fossils, and has been by Kjerulf compared with the Lower Taconic. ${ }^{52}$
    §209. The recent studies of Barrois in Spain, published in 1882, appear to throw a further light on the Alpine series which we have compared with the Taconian. The paleozoic rocks, containing at their base an abundant Cambrian fanua, are found in the province of

    Toledo resting, according to Cortazar, directly upon the ancient gneissic rocks, but in the Asturias, between these Cambrian strata and the ancient gneisses, there intervenes a volume of not less than 3000 metres of strata, described as argillites and quartzites, with dolomites and limestomes, sometimes saccharoidal and cipolin marbles, with beds of specular iron-ore. As there is no apparent stratigraphical break between this younger crystalline series and the strata holding the first fauna of Barrande, the name of Cambrian is applied by Barrois to the whole. ${ }^{13}$ The student of American geology, however, recalls the interpesition betwen the Appalachian Cambrian and the ancient gneisses of a similar great series, which sugests that in this region of Spain, as in parts of the Alps and in Norway, wh hav a pre-Cambian group that corresponds to the American Taconian.

    S 210. It has been thought well, in concluding this essay on the present state of our knwlenter of the 'Tamian series in North America, thus to bring together, in a condensed form, the principal facts with regard to certain rocks in the West India Islands, in South Americ:a, in Hindostan, in Russia, in the Atps, in Bavaria, in Norway and in Spain, which foml to shw that in all these varions regions there exists a series analogous to the Taconian, alike in mineral and hithougical chameters and in stratigraphical position. Should further amlios motirm this view, it will appear that the Taconian is a great and wide--gread armup ul stata which camot hamenth be overlooked in geognostical history.

    ## summary of Cuntents.

    ## BAKT 1 .

    
    
    
    
    
     Tammic--14i, Siluran cutlors mar Montreal and lludson, New York--148. Wing and Billings on
    
    
     forrd wh Lawer lonsham in castern Niw York.-15t. Its relation to the Loraine shales; dislocations of otrata,-15r. lagan and litlings on faults; relations of Quebee and lotsdam groups,-158. Dale and Wwight un Cambrian and Orduvician in Inchess County.-159. J. D. Dana on the Taconic question.-160,
    
    
     lawhian valluy ; ahwow of the Upher Taconic ; its distribution and distinctness.-167. Dana's statements riticisal.-dis. The mistake of Mather and 11. I). laggers explained; Eaton's view.-169. Mather on
     -171. The Second Graywacke.-172. The metamorphic hypothesis,-173-175. Its application by Mather.17imis. Ma application ly Messrs. Rogers; the two views compared; geologieal map of New York.-179. Views of Fmmons and JackRon; Bligshy ; diseovery of lluronian.-180. 11. D. Rogers in Pennsylvania in 185s; Hypmzite and Azoje systems.-181, 182. W. 13. Rogers in 1877 on the geology of Virginia.- $\mathbf{1 8 3}$. Mather's moctanorphic views discredited.-184. J. D. Dana on metamorphism in south-eastern New' York.


    #### Abstract

    -185. His citations of Messrs. Rogers.-186. Studies in Westchester County; the rocks chiefly Laurentian. -187. Gneisses and mica-schists of Manhattan Island described.-188. Dana's statements reviewed.-189. Rise and fall of the doctrine of metamorphism.-190. The Scottish Highlands ; views of Murchison and Giekie, of Nicol, and of Hunt.-191. Later studies of Hicks, Callaway and Lapworth; their conclusions. -192. Recent work of Giekie and his assistants; the views of Murchison discarded.-193. Giekie's socalled metamorphism criticised.-194. Origin of crystalline rocks; the crenitic hypothesis.


    Chapter IX.-Conclusions.-195. Sources of knowledge.-196. The Taconian characterized; its mineralogy.-197. Its distribution in North America.-198. Its relations to organic life.-199. The Upper Taconic or Cambrian; its relations to Ordovician and Silurian.-200. Relations of all these to Taconian, and views as to the age of the latter.-201. Succession of crystalline rocks in time.-202. Deposition of the Taconian.-203. Rocks related to Taconian in Brazil, India, Russia; studies in Brazil--204. In Guiana, Venezuela and Trinidad.-205. Crosby on Taconian in Trinidad.-206. In Cuba, Jamaica and San Domingo.-207. Lustrous schists of the Alps. - 208. Hercynian clay-slate group; Taconian rocks in Norway.-209. Studies of Barrois in Spain.-210. Apparent wide spread of the Taconian series.

    Note.-The late observations of Ford given in § 155, and those of Giekie and his assistants in $\S 192,193$, have been published since this second part of the present paper was presented in May, 1884.

    # VII.-On Some Deposits of Titaniferous Iron Ore in the Counties of Haliburton and. Hastings, Ontario.-By E. J. Chapman, Ph.D., LL. D. 

    (Read May 23, 1884.)

    Numerous deposits of iron ore, chiefly the magnetic oxide, oceur throughout the Comties of Victoria, Haliburton, Peterborough and Hastings, in Ontario. These deposits are, for the greater part, if not wholly, in the form of irregular massess, or "stocks," mostly of large dimensions, associated with dark-green pyroxenic or homblondic rock-matter, in gneissoid strata of Lanrentian age. The iron ore, therefore, of this district ocrurs under conditions closely similar to those of the great iron region of Arendal, in Norway, both as regards its chemical nature and conditions of occurrence, and its association with hornblendic or pyroxenic matter, - the later appeang in many cases partly to suround or enclose the iron ore, as in the so-called "Skotars" or "Stockscheiders" (i.e., sheatheel stocks) of Swedish and German miners. In Haliburton and adjacent cometire, these storks appear to lie, as a rule, in belts or zones of comntry extending in a general westerly and easterly direction. ${ }^{1}$ A belt of this kind, forming a comparatively high and broken range of considerable breadth, lies on each side of the stream known as larnt River, in tho townships of Snowdon, Glamorgan, Mommouth and Cardiff; and rextends into Hastings Connty in the townships of Faraday and Dimgannon.

    In the range immediately south of Bumt River, the ore is whefly of corse-nramular texture, while in the more northem range the ore presents a remarkably arstalline and cleavable structure. So striking are these structural peculiarities that one might almost infer the existence of some deeply-seated comection between the separate deposits of each respective range, were it not for the presence of a large anount of titanimm in one of the deposits, while in other places the ore is absolutely free from the slightest trace of that metal. In this immediate district the titaniferous ore oceurs in the more sonthern of these two ranges; but, as far as my observations go, at one spot only, known as the "Pine Lake location." This is on lot 35 of the fourth concession of Glamorgan, about half a mile south of Burnt River, and a couple of miles, or rather less, south of the Monk road. The mineral at this spot forms an enormous deposit of black magnetic ore, of granular texture, rising abruptly in an immense ledge, or succession of ledges, to a height of from eighty to one hundred feet above the general level of the ground. It is exposed in an casterly and westerly direction, over a length of at least 1,800 fect, with an average width of about 140 feet. Actual measurements vary from seventy feet in some places to 198 in others. Variations of this kind are found to occur more or less in all stock-formed deposits, owing to the ir-


    regular form of the ore-mass. The average specific gravity of the ore equals 4.437. The amount of ore practically above ground cannot be less, therefore, than from 200,000 to 300,000 Cunadian tons. An analysis made from samples of ore taken from different parts of the deposit gave me the following results :-

    ```
 Omf; brien at 212 F. Sp, or,==4.437.
 Fe```

