

AUG 51976

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may resulf in dismissal from the University.
UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

Center for Advanced Computation

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, ILLINOIS 61801

CAC Document No. 7
ECONOMIC RESEARCH GROUP WORKING PAPER NO. I
Progress Report on the Development of a Large-Scale Conditional Consistent

Economic and Manpower
Forecasting Model
By: Roger H. Bezdek

ECONOMIC RESEARCH GROUP WORKING PAPER NO. I
 Progress Report on the Development of a Large-Scale Conditional Consistent Economic and Manpower Forecasting Model

By

Roger H. Bezdek

July 27, 1971

This work was supported in part by the Advanced Research Projects Agency of the Department of Defense and was monitored by the U.S. Army Research Office-Durham under Contract No. DAHCO4 72-C-0001.

ABSTRACT

This paper summarizes the progress in the development of a largeale economic and manpower impact model at the Center for Advanced Computation of July 1971. The first two sections of this report provide the rationale the model and give a nontechnical description of the methodology and rkings of the general system. The third section of this report indicates type of computerized system which is presently (summer 1971) on-line and ailable for use in the study of pressing economic and social problems. The urth section tells of improvements in the model being undertaken and outlines plans for the development of an expanded system in the near future. Appendices clude several tables specifying the economic categories contained in the iel, a list of references where additional information pertaining to this dal may be obtained, and a mathematical statement of the model.

TABLE OF CONTENTS

Page
ntroduction 1
he Workings of the Model 1
he On-Line Empirical System 4
ending Improvements in the Model 7
eferences 27
ppendix 28

LIST OF TABLES

Page
Table 1 Economic Activity Categories 11
Table 2 Industry Numbering for Recent Input-Output Studies by the U.S. Office of Business Economics 15
Table 3 Occupational Manpower Categories 19

INTIRODUCTION

Certain effects upon the economy and the labor market are likely to be generated by expenditures upon different types of economic programs and activities reflecting alternate national priorities. Knowledge of these effects is critically required for a variety of purposes. This type of information can prove invaluable in relation to a number of problem areas including economic and manpower policy formulation, manpower forecasting, the development of adequate educational and vocational training programs, the analysis of requirements for critical occupations, and assessment of the feasibility and potential for reordering national priorities to emphasize different goals and objectives. A large-scale computerized economic model capable of accurately and consistently generating this type of information in great detail is presently being developed at the Center for Advanced Computation at the University of Illinois under the supervision of Roger Bezdek and Hugh Folk. The purpose of this report is threefold: 1) to familiarize the reader with the basic methodology and workings of this model; 2) to indicate the stage of development of the model at the present time and the type of empirical system presently on-line; and 3) to indicate the extensions of the model presently being developed and planned. THE WORKINGS OF THE MODEL

Theoretically the model is entirely straightforward and is based on economic input-output analysis. A brief mathematical statement of the
model has been included as an appendix to this report; here the workings of the model shall be explained in less rigorous terms.

Economic input-output analysis is essentially an empirical simplification of general equilibrium theory and, subject to a number of restrictions, is capable of yielding a large amount of data relating to the workings of the economy. The economic model developed here represents an extension of the open input-output model in several directions. Holding the structure of the economy and labor market constant it generates detailed economic and manpower effects from alternate distributions of national expenditures reflecting different goals and priorities. As illustrated in Figure 1 , the generating mechanism of the model operates in the following sequence:

1) The goals, priorities, and objectives to be simulated and analyzed are specified in advance. The model is general and is capable of handling a wide range of different types of priority and economic program reorientations. The precise set of economic, social, and political programs analyzed may be developed by the researcher, administrato or government decision maker utilizing the model.
2) This hypothetical program-priority decision is next translated into expenditures upon distinct types of public and private economic activities. The model accounts for all public and private expenditures, but the programs of the Federal and the state and local governments are singled out for special attention.
3) Each individual economic activity has unique requirements for the atput of different industries, and the sum of all these output requirements comprise ne direct output requirements associated with a specific set of national riorities and program expenditures.
4) Due to the need which industries have for the outputs of other adustries as inputs to themselves the total output requirements from any single ndustry will be considerably larger than those created directly, and the tal output of the economy is the sum of the direct and the indirect output equirements from every industry. The direct output requirements are felt mediately and are usually concentrated in certain industries; the indirect itput requirements take longer to be felt and are present in all industries.
5) Assuming that employment requirements in every industry are :oportional to output requirements, each distinct level of industrial output equirements generates an associated level of employment within that industry. ice again, both direct and indirect requirements for employment are generated thin each industry.
6) Finally, occupational employment demands are generated according the industrial distribution of occupational employment. Several different types occupational manpower information can be generated the total employment :quirements generated directly and indirectly for each occupation, the cupational requirements generated within any specific industry, the cupational requirements generated by any specific industry, and the structure interindustry employment demands generated for a particular occupation.

Operationally there are three basic components comprising the model: activity-industry matrix, an interindustry-employment matrix, and an
industry-occupation matrix. The activity-industry matrix translates expenditre on economic programs and activities into direct industrial output requirement. Its columns index economic activities and its rows index industries. Readingdo a column of this matrix indicates how expenditures on a particular economic pogt or activity are distributed as direct output requirements from different indutr Reading across a row of this matrix shows how the direct requirements for outut from a specific industry are generated by expenditures on different programs ad activities. The interindustry-employment matrix transforms direct industrial output requirements into direct and indirect interindustry employment demands Reading down a column of this matrix shows how activity in a specific industr generates employment requirements within all industries. Reading across a ro this matrix illustrates the manner in which employment within an individual ilvs is generated by activity in all industries. The industry-occupation matrix translates total interindustry employment into occupational manpower requiremat. Its rows index industries and its columns index occupations. Reading across of this matrix shows the occupational distribution of employment within a speifi industry. Reading down a column of this matrix illustrates the industrial distribution of employment within an individual occupation.

THE ON-LINE EMPIRICAL SYSTEM

Several preliminary versions of the overall model have already been developed and these are presently on-line at the Center for Advanced Computation. Though preliminary, these models were painstakingly constructed, tested, debugged, and perfected and are currently capable of quickly and efficiently generating a large quantity of useful information in a level of accuracy and detail not obtainable elsewhere.

Basic models have been developed for 1960 and for the years 19721976. The base year for these models is 1958 ; that is, the models stated enter espenditures on economic programs and activities in terms of (constant) 1958 dollars. The dimensions of the matrix components of the models and the level of detail of the estimates generated vary according to the target year specified and the specific purpose for which the model is being used.

Input vectors for approximately 80 distinct types of economic programs and activities are presently available for use in the model. These programs and activities account for total gross national product, or national expenditures, and thus include all the components of GNP: personal consumption expenditures, exports and imports, investment, and government expenditures. Since changing priorities or program emphasis very often involves the activities of the Federal, state, and local governments, a special effort has been made to include as many distinct functional government program categories as possible in the model. The model is thus presently capable of analyzing expenditures on a wide range of different types of public programs such as different types of defense activities, educational programs, civilian safety and criminal justic programs, social welfare payments, research and levelopment activities, ecological and environmental programs, health programs, and so forth. A complete listing of the economic activities presently sontained in the model is given in Table 1 ; in addition 70 other types ff activities relating to detailed construction and personal consumption
categories are readily available for simulation and analysis if the user so desires. Several different activity input vectors pertaining to years in the period 1958-1976 are available for most of the categories listed in Table 1.

The 80 -order industry classification scheme used by the U.S. Office of Business Economics in their recent input-output studies is the basic one relied upon in the model, and these industries are listed in Table 2. Several of the industries in Table 2 have been modified so as to be consistent with tl industry conventions adhered to in the other components of the model and several unique industry groups have been added. In addition, data in 367 and 478 industry detail is available for the analysis of special problems requirit greater industrial disaggregation than is provided by the 80 -order classificato scheme. Occupational manpower requirements are generated for 185 occupational categories, and these are listed in Table 3. Data pertaining to more detailei census occupation categories are also available for use in the model for consideration of special problems.

The model itself is both comprehensive and consistent. It is
comprehensive and accounts in an integrated and efficient manner for total gris national product, total gross and net industrial output, total industrial employment, and total occupational employment. There is no overlapping or double counting contained in the activity categories or the industrial or occupational employment categories. The model is also consistent and the methodology followed and the control data used insure that the estimates generated are internally consistent and realistic and do not get out of hand.

The model in the format and detail discussed above is presently available for use in the analysis of a wide range of problems relating to nanpower forecasting and analysis, economic planning, feasibility and sensitivity analysis, educational and vocational planning, and national riority reodering. Although developed very recently the models discussed ere have already found widespread use and application. For example, the 1960 system was used to test hypothesis that the manpower requirements f the United States are sensitive to shifting national priorities, and it also used to classify occupations on the basis of their sensitivity to specific types of priority reorderings. The model relating to the mid-1970's as used to simulate in detail the economic and manpower effects which vould be generated by the Urban Coalition's suggested radical reorderings of ational priorities and Federal budget outlays. Further, this approach has 1so been used to develop broad guidelines for long-range university planning on a regional level. While these examples do suggest the widespread applicability f the models developed here they do not begin to exhaust the possibilities f these models and additional applied research is presently underway to idopt this approach to the study of other problem areas.

PENDING IMPROVEMENTS IN THE MODEL

Extensions and improvements of the existing models are currently roceeding simultaneously in a number of areas. But while the model will :ontinuously be in a state of being improved, expanded, and perfected, a basic odel utilizing the most contemporary data and techniques will always
be on-line for use in the study and analysis of pressing social and economic problems. In this sense, then, the system is very much "user oriented". One major and important type of extension of the model which is presently under way is the more accurate updating and projection of it and the addition of more detail to each of its components. The model pertaining to the mid-1970's is in the process of being revised, re-evaluated, and. retested, and work on other models relating to the early. $1980^{\prime \prime} \mathrm{s}$ is also beginning. Aside from this, additional detail relating to economic activitie: and industrial and occupational manpower categories is being integrated into various components of the existing models. For instance, major attention is being devoted to the activity-industry matrix so that more functional economi programs of the Federal and state and local governments can be included efficiently for analysis. Also, the tie-in between the industry specificatiols of the interindustry-employment matrix and those of the industry-occupation matrix is being revised and perfected.

Work is also progressing on the introduction of supply consideratio and constraints into the model. Essentially this requires the development of methods of projecting the supply of manpower likely to be available within each occupational category in the specified target year by using data on the present occupational manpower supply, rates of attrition for each occupation, and rates of transition among and within occupational groups. With the development of the supply side of the model the manpower demands generated by the model on the basis of a certain set of ssumptions for a particular year c. be compared with the manpower supply likely to exist in that year. This
ould allow determination of the feasibility of the policy in question and uld also pinpoint those categories likely to become bottlenecks if the ypothetical policy was actually adopted.

Coefficient sensitivity and error variance analyses are also presently eing conducted. These studies are serving a dual purpose: identification the sensitive and critical coefficients within each component of the model rves to indicate the formal mathematical and theoretical properties of the del and the accuracy of the estimates generated, and these analyses also erve to indicate those subcomponents of the model at which the data requirements e the most critical.

Finally, regionalization of the model is scheduled to begin shortly. nis improvement will allow the disaggregation of the national economic and mpower effects generated into effects generated within different regions the nation and this, in turn, shall aid greatly in the formulation of gional economic, manpower, and educational policies.

The empirical system is presently set up on a Burroughs 6500
quential digital computer. Early next year the model will be transferred the ILLIAC IV parallel computer. This transfer will greatly enhance the ta input and analytic capabilities of the system and will also make feasible almost unlimited number and type of computations and matrix operations volving the model. In addition, ILLIAC IV will be tied into a nationwide mputer net and the model will thus be able to accept inputs from any part of le nation and also be capable of delivering outputs nationwide.

FIGURE 1

Schematic Representation of the Manpower Demand Generating Mechanism of the Model
$\left.\begin{array}{|l|}\hline \begin{array}{l}\text { Specified } \\ \text { Priority } \\ \text { Consensus }\end{array}\end{array} \longrightarrow \begin{array}{l}\text { Allocation } \\ \text { of } \\ \text { Resources }\end{array}>\begin{array}{l}\text { Direct } \\ \text { Industry } \\ \text { Output } \\ \text { Requirements }\end{array}\right]$

TABLE 1

ECONOMIC ACTIVITY CATEGORIES

```
Personal Consumption Expenditures
    Food and tobacco
    Clothing, accessories, and jewelry
    Personal care
    Housing
    Household operation
    Medical care and death expenses
    Personal business
    Transportation
    Recreation
    Private education and research
    Religious and welfare activities
    Foreign travel and remittances, net
```

Gross Private Domestic Investment
Private fixed capital investment
Net inventory change
Net Exports
?ederal Government Expenditures
National defense
Intelligence and communications
Airlift and sealift
Research and development
Operation, maintenance, and administration
Other national defense
Health
Health facilities
National health insurance
Other health
Transportation
Highways
Railroad and mass transit
New facilities
Improvement of existing facilities

Supersonic transport and civil aviation Merchant marine
Inland navigation
Social Welfare
Law enforcement, criminal justice, and civilian safety
Education, arts, and humanities
Education.and cultural facilities
Other educational, arts, and humanities
Environment, natural resources, and sanitation
Water and sewer facilities
Flood control and irrigation
Waste treatment facilities
Multiple purpose water resource projects
Locks, dams, and reservoirs
Other environment, natural resources, and sanitation
Metropolitian development and housing
Urban renewal and model cities
Housing subsidies
Foreign economic and military assistance
Research and development
National Aeronautics and Space Administration
Atomic Energy Commission
Fiscal relief to state and local governments Educational grants
Revenue sharing and interest subsidies
Other Federal
State and Local Government Expenditures

Education

Health, welfare, and sanitation
Civilian safety

Table 1 (Cont.)
Highways
Transit

Public utilities

Electric utilities
Water and gas utilities
Conservation and development
Other state and local
New construction
Residential buildings, nonfarm
One-to-four family apartments
Five-or-more family apartments
Additions and alterations
Public dwelling units
Other residential construction
Nonresidential buildings, total
Offices
Industrial
Educational
Hospital and institutional
Other residential
Public utilities
Railroads and local transit
Gas and petroleum
Electric light and power
Telephone and telegraph
Highways
Military facilities
Oil and gas well drilling and exploration
Water systems
Sewer systems
Conservation and Development
All other public and private new construction

Table 1 (Cont.)

Maintenance and Repair Construction
Residential buildings, nonfarm
Nonresidential buildings
Railroads and local transit
Highways
Military facilities
Water systems and sewer systems
All other public and private maintenance and repair construction
Industry Numbering for Recent Input-Output Studies
by the U.S. Oifice of Business Economics
Related SIC codes (1957 edition)
013, pt. 014,0193, pt. 02, pt. 0729
011,012, pt. $014,0192,0199$, pt. 02
$074,081,082,084,086,091$
$071,0723, ~ p t .0729,085,098$
1011,106
$102,103,104,105,108,109$
11,12
1311,1321
$141,142,144,145,148,149$
147
138, pt. 15, pt. 16, pt. 17, pt. 6561 pt. 15, pt. 16, pt. 17
19
20
21
$221,222,223,224,226,228$
227,229
$225,23($ exc. 239$), 3992$
239
24 (exc. 244$)$

-2

Drugs, cleaning, and toilet preparations

$$
\begin{aligned}
& \text { Plastics and synthetic materials } \\
& \text { Drugs. cleaning. and toilct preparations }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ints and allied products } \\
& \text { troleum refining and related industries }
\end{aligned}
$$

Petroleum refining and related industries
Rubber and miscellaneous plastics products

$$
\begin{aligned}
& \text { Rubber and miscellaneous plastics products } \\
& \text { Leather tanning and industrial leather pros }
\end{aligned}
$$

244
251
25 (exc. 251)
26 (exc. 265)

Leather tanning and industrial leather products Footwear and other leather products
Footwear and other leather products
Glass and glass products

$$
\begin{aligned}
& \text { Stone and clay products } \\
& \text { Primary iron and steel m}
\end{aligned}
$$

Related SIC codes (1957 edition)

(cont'd)
 2
 Table

$$
\begin{aligned}
& \text { Other furniture and fixtures } \\
& \text { Paper and allied products, except containers } \\
& \text { and boxes } \\
& \text { Paperboard containers and boxes } \\
& \text { Frinting and publishing } \\
& \text { Chemicals and selected chemical products }
\end{aligned}
$$

primary iron and stee 1 manufacturing primary nonferrous metals manufacturing Metal containers Heating, plumbing, and fabricated structural metal products

Screw machine products, bolts, nuts, etc., and metal stampings Engines and turbines Other fabricated metal products Farm machinery and e Construction, mining, oil field machinery and equipment

Materials handing machinery and equipment Yetalworking machinery and equipment

Industry number and industry title

43. Special industry machinery and equipment	
49	Coneral industrial machinery and equipment
50. Machine-shop products	
51. Cifice, computing and accounting machines	
汭. Sezvice industry mashines	
53	Electric transmission and distribution equipment, and electrical industrial apparatus
	Household appliances
	Electric lighting and wiring equipment
	Racio, television, and communication equipment
	Electronic components and accessories
	Miscellaneous electrical machinery, equipment, and supplies
	Yotor vehicles and equipment
	Aircraft and paris
	Other transportation equipment
	Professionai, scientific, and controlling instruments and supplies
	optical, ophthalmic, and photographic equipment anc supplies
	Miscellaneous manufacturing
Transportation, comunication, electric, gas, sanitary services:	
65. Transportation and warehousing	
	Communcations, except radio and television broadcastine
	Radic and TV broadcasting
	Electric, gas, water, and sanitary services
	aie and retail trade:
	Wholesale ard retail trade

69. Wholesale and retail trade
Related SIC codes (1957 edition)
$60,61,62,63,64,66,67$
65 (exc. $6541 \&$ pt. 6561)
$70,72,76$ (esc. $7694 \& 7699$)
6541,73 (exc. $7361,7391, \&$ pt. 7399),
$7694,7699,81,89$ (exc. 8921)
--975
75,79
$0722,7361,80,82,84,86,8921$
Table 2
Industry number and industry title

Services:
70. Hotels and lodging places; personal and repair services, except automobile repair 73. Dusiness services
71. Research and development 75. Automobile repair and services 76. Amusements
72. Medical, educational services, and nonprofit organizations
Government enterprises:
73. Federal government enterprises
74. State and local government enterprises
75. Business travel, entertainment, and gifts 82. Office supplies 83. Scrap, used and secondhand goods

Special industries:

 84. Government industry 85. Rest of world industry Household industry
TABLE 3

OCCUPATIONAL MANPOWER CATEGORIES
?rofessional Technical, Kindred
Engineers, Technical
Engineers, Aeronatuical
Engineers, Chemical
Engineers, Civil
Engineers, Electrical
Engineers, Industrial
Engineers, Mechanical
Engineers, Metallurgy, etc.
Engineers, Mining
Other Engineers, Technical
Natural Scientists
Chemists
Agricultural Scientists
Biological Scientists
Geologists, Geophysicists
Mathematicians
Physicists
Other Natural Scientists
Technicians, Except Medical, Dental
Draftsmen
Surveyors
Air Traffic Controllers

Table 3 (Cont.)
Radio Operators
Technicians, Other
Medical, Other Health Workers
Dentists
Dietitians, Nutritionists
Nurses, Professional
Optometrists
Osteopaths
Pharmacists
Physicians and Surgeons
Psychologists
Technicians, Medical, Dental
Veterinarians
Other Medical, Health Workers
Teachers
Teachers, Elementary
Teachers, Secondary
Teachers, College
Teachers, Other

Social Scientists

Economists
Statisticians and Actuaries
Other Social Scientists

Table 3 (Cont.)
Other Professional, Technical and Kindred
Accountants and Auditors
Airplane Pilots, Navigators
Architects
Workers in Arts, Entertainment
Clergymen
Designers, Except Design Draftsmen
Editors and Reports
Lawyers and Judges
Librarians
Personnel and Labor Relations Workers
Photographers
Social and Welfare Workers
Professional, Technical, Kindred, Nec.*
Managers, Officials, Proprietors
Conductors, Railroad
Creditmen
Officers, Pilots, Engineers, Ship
Postmasters and Assistants
Purchasing Agents
Managers, Officials, Proprietors, Nec.*
Slerical and Kindred Workers
Stenos, Typists, Secretaries
Office Machine Operators

```
Other Clerical, Kindred Workers
    Accounting Clerks
    Bookkeepers, Hand
    Bank Tellers
    Cashiers
    Mail Carriers
    Postal Clerks
    Shipping, Receiving Clerks
    Telephone Operators
    Clerical and Kindred, Nec.*
Sales Workers
Craftsmen, Foremen and Kindred
    Construction Craftsmen
    Carpenters
    Brickmasons and Tile Setters
    Cement, Concrete Finishers
    Electricians
    Excavating, Grading Machine Operators
    Painters and Paperhangers
    Plasterers
    Plumbers and Pipefitters
    Roofers and Slaters
    Structural Metalworkers
```


Foremen Nec.*

Metalworking Crafts Except Mechanics
Machinists and related
Blacksmiths, Forgemen, Hammermen
Boilermakers
Heat Testers, Annealers
Mil1wrights
Mo1ders, Metal, Except Coremakers
Patternmakers, Metal, Wood
Ro11ers and Ro11 Hands
Sheet Metal Workers
Toolmakers and Diemakers
Printing Trades Craftsmen
Compositors, Typesetters
Electrotypers, Stereotypers
Engravers Except Photoengravers
Photengravers, Lithographers
Pressmen, Plate Printers
Transport and Public Utility Craftsmen
Linemen and Servicemen
Locomotive Engineers
Locomotive Firemen
Mechanics and Repairmen
Airplane Mechanics and Repairmen
Motor Vehicle Mechanics

Table 3 (Cont.)

```
    Office Machine Mechanics
    Radio and TV Mechanics
    Railroad and Car Shop Mechanics
    Other Mechanics and Repairmen
Craftsmen and Kindred
    Bakers
    Cabinetmakers
    Cranemen, Derrickmen, Hoistmen
    Glaziers
    Jewelers and Watchmakers
    Loom Fixers
    Opticians, Lens Grinders
    Inspectors, Log and Lumber
    Inspectors, Other
    Upholsterers
    Craftsmen and Kindred Nec.*
Operatives and Kindred Workers
    Drivers and Deliverymen
        Drivers, Bus, Truck, Tractor
        Deliverymen and Routemen
    Transportation and Public Utility Operatives
        Brakemen and Switchmen, Railroad
        Power Station Operators
        Sailors and Deckhands
```

```
Cable 3 (Cont.)
```

Semiskilled Metalworking Occupations
Furnacemen, Smeltermen, Pourers
Heaters, Metal
Welders and Flame Cutters
Assemblers, Metalwork, Class A
Assemblers, Metalwork, Class B
Inspectors, Metalwork, Class B
Machine Tool Operators, Class B
Electroplaters
Electroplaters Helpers
Semiskilled Textile Occupations
Knitters, Loopers, Toppers
Spinners, Textile
Weavers, Textile
Sewers and Stitchers, Manufacturing
Other Operatives and Kindred
Asbestos, insulation workers
Attendants, auto service, parking
Blasters and Powdermen
Landry, Dry Cleaning Operatives
Meat Cutters, Except Meat Packing
Mine Operators, Laborers, Nec.*
Operatives and Kindred, Nec.*

```
Service Workers
    Private Household Workers
    Protective Service Workers
        Firemen
    Guards, Watchmen, Doorkeepers
    Police, Other Law Enforcement Officials
    Food Service Workers
    Bartenders
    Cooks, Except Private Household
    Counter and Fountain Workers
    Waiters and Waitresses
    Other Service Workers
    Airline Stewards, Stewardesses
    Attendants, Hospital and Other Institutional
    Charwomen and Cleaners
    Janitors and Sextons
    Nurses, Practical
    Service Workers, Nec.*
Laborers, Except Farm and Mine
Farmers and Farm Workers
```

*Nec.: Not elsewhere classified

REFERENCES

terman, Jack. "Interindustry Employment Requirements." Monthly Labor Review, 88 (July 1965), 841-850.
mon, Clopper. The American Economy to 1975. New York: Harper and Row, 1966.
zdek, Roger H. Manpower Implications of Alternate Patterns of Demand for Goods and Services. Report prepared for the Manpower Administration of the U. S. Department of Labor, 1971.
. "Manpower Implications of Alternate Patterns of Demand for Goods and Services." 1970 Proceedings of the Business and Economics Section of the American Statistical Association, pp. 417-422.
. "A General Theoretical Framework for Rational Manpower Planning at the National Level." Paper presented at the New York State School of Industrial and Labor Relations, Cornell University, February 1971.

- Occupational Manpower Impacts of Shifting National Priorities. Center for Advanced Computation: Economic Research Group Working Paper No. 2, July, 1971.
, Hugh Folk, Anthony Graziano, and George Russell. College-Educated Manpower in the State of Illinois, 1970-1980. Report prepated for the long-range planning committee of the University of Illinois, May, 1971.
, and James G. Scoville. Manpower Implications of Reordering National Priorities. Washington, D.C.: National Urban Coalition, 1971.

Ik, Hugh. The Shortage of Scientists and Engineers. Iexington, Massachusetts: D. C. Heath, 1970.

- "Manpower Research Alternatives and Imperatives." Paper represented "Manpower for the Manpower Field," a conference by the New York State School of Industrial and Iabor Relations, Cornell University, Ithaca, New York, October 13, 1970.

1dman, Morris R., Martin L. Marimont, and Beatrice N. Vaccara. "The Interindustry Structure of the United States: A Report on the 1958 Input-Output Study." Survey of Current Business, 44 (November 1964), 10-17.
ontief, Wassily W. The Structure of the American Economy. New York: Oxford University Press, 1951.
S. Department of Labor, Bureau of Labor Statistics. Projections 1970:

Interindustry Relationships, Potential Demand, Employment. Bulletin 1536. Washington, D.C.: U.S. Government Printing Office, 1967. - Patterns of U.S. Economic Growth. Bulletin 1672. Washington, D.C.: U.S. Government Printing Office, 1970.

APPENDIX

Formal Statement of the Basic Theoretical Model

Notation

$j:$ Number of industrial categories.
u: number of economic activity categories.
k : number of occupational employment categories.
y : a j-by-l vector giving the industrial requirements of final demand.
g's: j-by-1 vectors showing the industrial requirements of the relevant nat: economic programs.
a's: percentages of total national expenditures devoted to the correspondin\} economic activities.

L: a (partitioned) Leontief matrix.
Z: a j-by-j matrix indicating intermediate product flows.
w: a l-by-j vector showing the values added in each industrial category.
x : a j-by-1 (total) output vector whose elements are $x_{1}, x_{2}, \ldots, x_{i}$.
$d: \quad a \quad j-b y-1$ vector of ones.
$X: \quad a \quad j-b y-1$ diagonal matrix whose diagonal elements are the elements of t vector x.

A: a j-by-j matrix of input-output coefficients indicating the source and quantity of inputs to each industrial category per specified dollar amount of output from that category.

I: an identity matrix of order j.
P: a j-by-u activity-industry matrix showing the industrial requirements the economic activity categories.
$\mathrm{q}: ~ a \quad u-b y-1$ vector indicating the distribution of national expenditures among the economic activity categories.

F: a j-by-j diagonal matrix of employment-output ratios.

```
APPENDIX (Cont.)
```

ε : a j-order vector indicating the portion of final demand consumed by each exogenous activity.

M: a j-by-j interindustry-employment matrix showing the total employment generated per delivery of a specified dollar amount of output to final demand.

T: a j-by-1 industry employment vector showing the total employment generated in every industry by a specified distribution of final demand.

N: a j-by-k industry-occupation matrix giving the occupational distribution of industry employment in percentage coefficients.

T: a j-by-k industry-occupation matrix showing the occupational distribution of total industrial employment.

Total adjusted net national expenditure is divided among the economic activity categories in a specified manner:

An input-output model which represents a complete economic system is usually referred to as a Leontief model, and a convenient way of representing an input-output transaction table is by a partitioned Leontief matrix:
(2)

--the zero in the lower right hand corner of the Leontief matrix is present because the non-production accounts of the system are assumed to have been consolidated.

All output is accounted for by either intermediate or final demand:
(3) $\mathrm{x}=\mathrm{Zd}+\mathrm{y}$

Relying on a basic assumption of input-output analysis--that inputs vary proportionately with outputs--the technical coefficient matrix, A, may be obtained by dividing the elements in each column of Z by the output total in the corresponding row of the transaction table:
(4) $Z=Z X^{-1}$

Solving equation (4) for Z :
(5) $\mathrm{Z}=\mathrm{AX}$

Substituting the above result into equation (3):
(6) $x=A X d+y=A x+y$

With input-output coefficient matrix A and output vector x, $A x$ is the vector of input requirements from these outputs; and the vector of net outputs (the quantities available for disposal outside of the production sec is given by:
(7) $\mathrm{x}-\mathrm{Ax}=(\mathrm{I}-\mathrm{A}) \mathrm{x}$

Interest centers on investigating the effects on employment demands of alternate specified lists of net outputs (final demands or bills of goods). For final demand vector y we have from equations (6) and (7):
(8) $(I-A) x=y$

Assuming (I-A) to be nonsingular, x may be solved for directly:
(9) $x=(I-A)^{-1} y$
$(I-A)^{-1}$ is the Leontief inverse matrix and from it may be obtained the 0 and indirect requirements per specified dollar amount of final demand. To determine the level at which all industries must operate to produce a specif bill of goods, y, equation (9) is solved for x. Premultiplication of the Leontief inverse by a diagonal employment-output ratio matrix yields an interindustry-employment matrix indicating the total employment generated by and in every industry per specified dollar of delivery to final demand:
(10) $\quad M=F(I-A)^{-1}$

Postmultiplication of the interindustry-employment table by the final demand vector yields an industry employment vector showing the total employn generated in every industry by a specific bill of goods:
(11) $m^{T}=M y$

Premultiplication of the industry-occupation matrix by the diagonal indr employment matrix yields a total industry-occupation matrix indicating the occupational distribution of industrial employment demands generated by a specified bill of goods:
(12) $N^{T}=M^{T} N$

Finally, the final demand vector itself can be disaggregated into the product of an activity-industry matrix and an activity-expenditure vector:
(13) $y=P q$

This last step represents a generalization of the system and permits the simulation and analysis of a large number of alternate national priorityexpenditure distributions.

Security Clasaification

DOCUMENT CONTROL DATA.R\& D

(Sacurfiy clanalficaflon of Hille, body of abatrect and indezine amotatlon mual be antered whon tho overall report is ciasalfed) IRIGINATING ACTIVITY (Corporalo author) enter for Advanced Computation niversity of Illinois at Urbana-Champaign rbana, Illinois 61801

UNCIASSIFIED
2b. GROUP

IEPORT TITLE
CONOMIC RESEARCH GROUP WORKING PAPER NO. 1
rogress Report on the Development of a Large-Scale Conditional Consistent
Economic and Manpower Forecasting Model
JESCRIPTIVE NOTES (TYpe of ropori and Incluelve defee)
esearch Report
UUTHOR(S) (Firal name, middle Inlilel, leet name)
ioger H. Bezdek

PEPORT DATE	7e. TOTAL NO. OFPAGES	76. NO. OF REFS
-uly 27, 1971	37	

CONTRACT OR GRANT NO.
9. ORIGINATOR'S REPORT NUMEER(S)

AHFO4 $72-\mathrm{C}-0001$
project no.
RPA Order 1899
CAC Document No. 7
b. OTHER REPORT NOIS) (Any other numbers thal may be aeeldined chic repori)

DISTRIBUTION STATEMEN

;opies may be requested from the address given in (l) above.

SUPPLEMENTARY NOTES

12. 3PONSORING MILITARY ACTIVITY
U.S. Army Research Office-Durham Duke Station, Durham, North Carolina

This paper summarizes the progress in the development of a largecale economic and manpower impact model at the Center for Advanced Computation s of July 1971. The first two sections of this report provide the rationale or the model and give a nontechnical description of the methodology and orkings of the general system. The third section of this report indicates he type of computerized system which is presently (summer 1971) on-line and vailable for use in the study of pressing economic and social problems. The ourth section tells of improvements in the model being undertaken and outlines he plans for the development of an expanded system in the near future. Appendices nclude several tables specifying the economic categories contained in the model, list of references where additional information pertaining to this model lay be obtained, and a mathematical statement of the model.

Security Classification

