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PREFACE.

This course in Elementary Graphics consists of four separate text-

books, each of which is intended to furnish daily work for a term of from

six to twelve weeks, or its equivalent. It includes the subjects of

1. Geometrical Drawing,

2. Projection Drawing,

3. Elements of Descriptive Geometry,

4. Linear Perspective,

and was originally prepared for the classes of the Kansas State Agricul-

tural (and Mechanical) College, but has been arranged here so that the

different volumes may be used separately and under varying conditions.

It is intended, however, that Geometrical Drawing should precede, and

Projection Drawing should follow the study of Plane and Solid Geometry.

J. D. WALTERS.

Manhattan, Kansas, October, 1894.
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PART I.

Definitions, Problems and Exercises.

INTRODUCTION.

1. Projective Geometry.

The objects of projective geometry are:

(I.) To represent, by drawings, geometrical magnitudes in space.

(2 )
To solve problems on forms in space by construction in a plane,

and to demonstrate by the method of projections the properties of form
and position.

Accordingly the subject matter of the science may be divided into

(1.) Projection Drawing
(2.) Descriptive Geometry.

2. Projection Drawing.

Projection drawing is the art of representing space forms upon plain

surfaces, so as to show their real dimensions and relations.

Conceptions of the form of solids or objects having three dimensions,
are at first obtained with difficulty from drawings. Especially is this the

case when the drawings are not perspectives and lack shading. (
Work-

ing drawings.) The systematic study of projection drawing is therefore

a matter of great importance to everyone intending to follow an indus-

trial, engineering or artistic pursuit. For the same reason, the study of

descriptive geometry is usually preceded by a course upon the methods of

representing objects having three dimensions. It is evident that the

student must learn to read and draw the language of space forms before

he can expect to make progress in the analysis or such forms, just as he

had to learn reading and writing before he could commence the study of

rhetoric or literature.

3. Different Methods of Projection.

There are at least four scientific methods of projection drawing:

(V) Orthographic projection.

(2 ) Axonometric projection.

(3 ) Conical projection.

(4 ) Spherical projection.
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Each of these has characteristics that make it suitable for certain

kinds of scientific or practical work. In mathematical and engineering

drawing, the first, or orthographic method, is commonly used. This book

treats orthographic and axonometric projection.

4. Method of Work.

Experience has proved that a series of problems of progressive diffi-

culty, which, taken in their logical order, the student can master alone,

or with little assistance on the part of the teacher, will accomplish the

desired ends better than any other.

Some of the work in projection drawing offers better opportunity for

artistic efforts, requires larger sheets of paper, and should be done under

the eye of the teacher, while a majority of the problems may be solved on

smaller sheets, simply with triangle and compasses. For this reason,

this book, like Book 1, has been divided into two parts:

Part I. Definitions, problems and exercises.

Part II. Shading and draughting.
The first part contains the subject matter of the home work, and the

second part that for the class room work. The study of both parts should

be commenced at the same time, and should be carried on together. One
day should be given to discussions and illustrations of new principles and
to blackboard recitations by the class; the next day should be devoted to

draughting in the class room.

FIG. 1

All home work in projection drawing should be done in ink and
should be finished uniformly, so as to permit binding at the close of the
term. Each plate should be drawn with a heavy borler line inclosing a
surface of 6i by 9 inches. Only one side of the paper should be used.
The sheet should not be rolled, but ought to be carried "flat" in a large
book or a portfolio. "What is worth doing at all is worth doing well !"

5. Tools and Materials.

The tools required for the home work in projection drawing are:

(1.) A pencil of rich quality and hardness that it will take and hold
a fine point.

(2.) An eraser.

(3.) A pair of solid white metal compasses with pencil and pen at-

tachment.

(4.) A drawing pen.

(5.) A drawing board, 12 to 14 inches bv 20 to 22 inches, (see illustra-

tion.)
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(6.) A small T-square.

(7.) A right angled isosceles triangle having sides of about 6 inches.

(8.) Four small white metal thumb tarks.

Of materials, will be needed a bottle of jet black writing ink not

writing fluid, as this would corrode the drawing pen and about three

dozen sheets of best American drawing paper, size 8i by 11 inches. This

paper is usually sold in sheets measuring 17 by 22 inches and has to be
folded and cut. If the finished work is to be bound, larger sheets should

be provided and the additional margin Should be arranged for on the left

side of each plate. Good grades of French linen paper will also be ser-

viceable.

The additional tools and materials needed in shading and draughting
are described in the Introduction of Part II of this book.

DIVISION B.

GENERAL PRINCIPLES.

6. The Planes of Projection.

The solid or object to be drawn is supposed to be placed above a hori-

zontal and in front or a vertical plane. These planes are called the planes

of projection.
FIG. 2.

Perpendiculars, named projectors, are then supposed to be dropped
from every corner or conspicuous point of the solid to both planes of pro-

jection. By connecting the ends of those projectors upon the planes of

projections by lines that represent the edges or outlines of the solid, two

pictures are obtained.
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It will be seen that these pictures, named the horizontal projection and

the vertical projection, form a perfect record of the solid or object, a record

that enables the reader to imagine and measure the represented form.

In practical draughting, the horizontal projection is called plan
and the vertical projection elevation.

A plan is a drawing made on a flat surface, which describes the

length and breadth of a solid or object on a surface that is considered as

always lying horizontal.

An elevation is a drawing made on a flat surface that is regarded as

always standing vertical perpendicular to the plan.

7. Plan and Elevation.

In figure 3,the student will recognize two vertical and two horizontal

projections.!. e.,the plans and elevations.of a dog house. A careful study
of all the features of this drawing will convince him of the facts stated in

paragraph 6.

FIG. 8.

FRONT ELEVATION. SIDE. ELEVATION.

FLOOR PLAN ROOF PLAN.
SCALE 1 INCH TO 2 FEET.
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A carpenter, asked so build a dog house like this, could go to work at

once and construct it without asking a single question regarding its form.

Understanding how to use the scale of one inch to two feet, which has been
used in making this draught, he could measure the height of the whole

object, the height of the sides and the height of the opening, in the two

elevations, while he could obtain the horizontal measure, the thickness

of the boards, etc., in the plans.

To read simple plans and elevations, like these, is not difficult, but

there are many questions arising in connection with the drawing and

reading of forms of three dimensions that will tax the student more

severely. Everyone can read an item in a book or newspaper without
much of an effort, yet few are able to write an article grammatically and

rhetorically correct. In order to acquire the ability to do this, language
must be studied systematically. The student must look for general

principles.

8. Seven Principles.

From the given figures, and from blackboard drawings and models

exhibited by the teacher, the following principles may readily be deduced:

(1 )
Two planes, at right angles to each other, are necessary to fully

represent the three dimensions, length, width and height, of a solid.

(2) These two planes may really consist -of one surface only. By
dividing it, i. e., the sheet of paper, the slate, or the blackboard, by a

horizontal line, we can readily imagine the upper part to be vertical and
the lower part to be horizontal.

This horizontal division line is called the ground line.

(3.) In order that dimensions shall be seen in the projections in their

true size and relative position, they must be parallel to that plane on
which they are shown.

(4.) Each plane shows two of the dimensions of the solid the two
which are parallel to it.

(5.) The dimension which is shown twice, is the one which is parallel

to both of the planes.

(6 )
The height of the vertical projection of a point above the ground

line, is equal to the height of the point itself, in space, above the horizon-

tal plane.

(7.) The perpendicular distance of the horizontal projection of a

point from the ground line, is equal to the perpendicular distance of the

point itself, in front of the vertical plane.

9. Examples and Problems.

Having established these principles, it should not be difficult to read

the following figures and to construct the projections required in this

paragraph.
Note that the ground line is marked G L and is drawn in full line,

while the projectors, and the edges not seen from above and from the front,

are drawn in dotted line. This should be done in all required work.
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In projection drawing, to draw means to tind the horizontal and verti-

cal projection. All solids should be drawn with their axis in vertical

position and standing upon H, unless otherwise specified.

PROBLEM 1. To draw the projections of a cube having edges of 2f

inches.

PROBLEM 2. To draw a hexagonal prism having a base diagonal of

2f inches and an altitude of 3 inches.

PROBLEM 3. To draw a pentagonal pyramid, 4 inches high; its base

having sides of H inches.

PROBLEM/! To draw a triangular pyramid, 4 inches high, with a
base having sides of 2 inches. Represent it as standing upon its apex.

PROBLEM 5. To draw a cone with its axis horizontal and parallel to

V; altitude 3 inches; diameter of base 3 inches.

FIG. 4. FIG 5. FIG. 6. FIG. 7. FIG. 8.

PROBLEM 6. To draw a sphere having a radius of If inches, and hav-
ing its center 2 inches from both planes of projection.

PROBLEM?. To draw the projections of a common thread spool,
consisting of a cylindric shaft and two truncated cones, the whole pierced
by a cylindric opening Length of spool 3 inches, length of shaft 2

inches, diameter of shaft 1 inch, diameter of ends 2 inches, diameter of

opening inch.

10. The Projection of the Straight Line.

From the last exercise the student has learned that a line in space can
have four radically different positions with regard to the planes of pro-
jection It may be

(1.) Parallel to both.

(2.) Parallel to one and perpendicular to the other.

(3.) Parallel to one and oblique to the other.

(4.) Oblique to both.

If the student will read figures 9-14 by illustrating them with his
pencil as representing the line in space, using the table to represent H
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and a standing book to represent V, he will notice that the projection of

a line in space is either

(a) equal to the real line,

(b) shorter than the real line, or

(c) a point.

FIG. 9. FIG. 10. FIG. 11. FIG. 12. FIG. 13. FIG. 14.

PROBLEM 8. To draw Mnee lines parallel to H and V, two lines par-
allel to V and oblique to H, three lines oblique to H and V.

n. Mensuration of the Line in Space.

In the first three cases of paragraph 10, the line in space may be

measured directly by measuring one of its projections. In the fourth case

both projections are shorter than the real line and this can therefore not

be measured directly. The length must be tomulindirectly, which may be

done in several ways.
From the following figure it will appear that the line in space is the

hypotenuse of a triangle of which in every case the two sides are shown.

A FIG. 15. B

AB* = ta'b').2

A B = =
VjiTbT

(m.b)

(m b)

In construction, the real length of the line in space may be found by
rotation, i. e., by revolving it about a known axis until it becomes parallel
to either of the planes of projection.

In Fig. B, the line A B has been revolved about the vertical axis A
M into V, where it now appears at full length. The student will see, that
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the line might have been revolved about a vertical axis through B, or a

horizontal axis through A, or a horizontal axis through B, or in fact,

about any vertical or horizontal axis in space. In every case there would
have been the same result

The ability of revolving or rotating any line in space about any verti-

cal or horizontal axis into a position parallel to V or H is very valuable

and the student should execute such rotations until he becomes proficient,

not only in measuring lines of all possible original positions, but also in

imagining such rotations in space, without any drawing or experimenting.

DIVISION C.

AUXILIARY AND SECANT PLANES, ROTATION.

12. The Auxiliary Plane.

Figure 2 gives two elevations of a dog house

resents the front and the second the side

Fio 16.

The first elevation rep-

Most objects require two eleva-

tions on two plans, i. e., they require an additional projection upon an

auxiliary plane of projection. Sucn a plane is usually, though not always,
a vertical plane placed perpendicular to the two main (co-ordinate) planes
of projection to right or left of the object.

An examination of the above figure will shovv how an auxiliary

projection may be obtained from the given main projections.
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The dot and dash lines represent auxiliary planes of projection, i. e.,

they are the intersections (truces) of auxiliary planes with H or V. (These
two capital letters are common aoreviations for vertical plane of projec-
tion and horizontal plane of projection.)

After having drawn the projectors orthogonal (rectangular) to the

auxiliary planes, these are rotated about their vertical traces into V (or H,
as the case may be) and become a part of V. The arcs show the move-
ment of the projections pending the rotation.

PROBLEM 10. To draw the horizontal and vertical projection of a

vertical heptagonal prism and to find two auxiliary vertical projections.

Place the right auxiliary plane perpendicular to V and H,and the left

auxiliary plane at 60 to V and 90- to 1 . Draw the figures so as to reason-

ably fill the space within the border line of the page (6| by 9 inches.) Draw
all projectors in dotted line or full red ink; the auxiliary planes in black

dot and dash line,tbe G L and the visible edges in the projectionsin strong
black line; the rear or invisible edges in dotted black line

13. Vertical Rotation.

Instead of using the auxiliary plane to obtain additional projections,

the object itself may be revolved or rotated so as to produce different pro-

jections upon V or H.
FIG. 17.

Figure 17 shows the rotation of a three-sided pyramid about an

imaginary axis The axis is a line perpendicular to Y through point A.
The plane of rotation is parallel to V. All points of the pyramid move in

arcs which record as arcs in V, and as straight lines parallel to G L in H.
As a result a second vertical projection is obtained which is equal to the

first, but has a different dip to H: and a second horizontal projection
which is entirely different from the first, but shows every point at an un-

changed distance from V.
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Solve the following problem:
PROBLEM 11. To rotate a vertical pentagonal pyramid through an

angle of 30; the rotation to be parallel to V and the axis of rotation to be

i inch above the apex.

14. Horizontal Rotation.

In the last paragraph the solids were rotated about horizontal axes.

This paragraph treats the rotation of single solids about vertical axes.

FIG. 18.

PROBLEM 12. To find the projections of a three-sided pyramid hav-

ing a base edge of 2 inches and an altitude of 3 inches. The solid is to be
drawn in four positions pending a rotation about a vertical axis, as

indicated in figure 18.

Solve the following problem:
PROBLEM 13. To find the projections of a cube having an edge of

2i inches, in four positions pending a rotation about a vertical axis

placed in front of the solid.

FIG. 19.

PROBLEM 14. To find the projections of a right hexagonal pyramid
21 inches high and If inches in diameter at its base, whose axis shall be
oblique to both planes of projection.
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The given illustration represents the method usually followed in"

placing an object in an oblique position to both planes, though descriptive

geometry gives additional solutions which will be explained in Book III

of this series. Figure A represents the pyramid standing on H and par-
allel to V. Figure B represents it tipped up and back to the left, and
moved forward parallel to V, s that every point in it remains the same
distance as before from V. The vertical projection remains the same,

except that it is oblique to G L. The horizontal projection is changed,
and can be found by drawing projectors and parallels. Figure C repre-

sents the pyramid, as it is in its second position, revolved 45 about a

vertical axis of rotation. This places the axis of the pyramid in the re-

quired position oblique to both planes of projection. The plan ia figure

C is the same as that of figure B, but the vertical projection is changed.
It can be found by drawing projectors from the third plan and parallels

to G L from the second elevation.

FIG. 20.

Solve the following problem:
PROBLEM 15. To draw a plinth (a low square prism), first, as lying

upon H; second, as having been pushed to the right a distance equal to

its length, and rotated 45 about a horizontal axis: third, as having been

pushed to the right once more and rotated 30- about a vertical axis. Di-

mensions 1 by 2i by 2* inches.

In Fig. 17, an auxiliary plane, U V X, has been placed oblique to H
and perpendicular to V, so as to coincide with one of the slanting edges
of the pyramid. As a result, the student will notice an additional pro-

jection to the right of the main vertical projection. How has it been ob-

tained? Has the oblique plane of projection been rotated about an axis?

Can you illustrate the movement by means of models, i. e., a solid and a

plane?
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It is frequently required to lay a pyramid or other object having faces

oblique to the axis, so upon H that it will appear to rest upon one of them.

The problem can be rapidly solved by this method.

15. The Secant Plane.

A secant plane is an imaginary plane passing through a solid or object

and cutting it into two parts. The; imaginary cut or surface is called

section. According to the position of the secant plane the cut may give

a horizontal section, a vertical section or an oblique section.

The secant plane, like the auxiliary, is usually represented by its

traces, i. e., its intersections with H and V. The traces are drawn in

lines consisting of dots and long dashes.

Figure 21 represents a hexagonal prism cut by a secant plane which

forms an angle of 45 with H, and of 90 with V. The section is evi-

dently an irregular hexagon, the real form of which is found by its

rotation of 45 about a horizontal axis of rotation through A and perpen-
dicular to G L. The study of the given figure will explain the method
and reveal the real form.

FIG. 21.

The rotation of a plane figure in space into a plane of projection |s

called rabattement.

Solve the following problem:
PROBLEM 16. To find the real form of the section of a given triangular

pyramid, produced by a secant plane forming an angle of *HJP to the left

and passing through the right base corner. ^9

16. Sections of an Irregular Pentagonal Prism.

Draw the projections of an irregular pentagonal prism resting with
one of its faces upon H and having its axis parallel to V. To the left

place an auxiliary plane perpendicular to G L. Upon this find the aux-

iliary vertical projection. The figure is now ready for the following
problem.
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PROBLEM 17. To find the real form of three characteristic sections

of an irregular pentagonal prism, produced by three intersecting planes
which intersect each other in a line in H and perpendicular to G L. One
section is to be a triangle, one an irregular pentagon, and one a tra-

pezium.
There are really four characteristic sections of this prism, the fourth

being a rectangle. The student will readily see where and how the

fourth section may be obtained.

DIVISION D.

PROJECTIONS AND SECTIONS OR THE CYLINDER
AND CONE.

17. The Conic Sections.

The cylinder and the cone are closely related solids. In higher
mathematics the first is considered as being only a special form of the

second, i. e., the cylinder is defined as being a cone having an infinitely

extended axis. For this reason the cone will form the chief object of

study of this division.
FIG. 22.

ft

G

Figure 22 gives the vertical projection of a vertical cone. It also

shows the traces upon V and through the cone of a secant plane in seven

different positions. Every one of these sections differs from every other,

yet they are evidently related to each other, because it can easily be

shown how by rotation of the intersecting plane each becomes the other

six by gradual changes.
At X assume an axis of rotation, perpendicular to V. Then let the in-

tersecting plane rotate on this from position A through B, C, D, E, F to G.
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The section at A will be a straight line.

The section at B will be an ellipse.

The section at C will be a circle.

The section at D will be an ellipse.

The section at E will be a parabola.

The section at F will be an hyperbola.

The section at G will be a straight line.

The sections at any place between A and C, and between C and E,

will be ellipses; and the sections between E and G, hyperbolas.

The figure shows how the line, an element of the cone at A, is trans-

fortned into the other 4 forms the circle, the ellipse, the parabola&nd the

hyperbola and how the last of these forms again becomes a line as the

plane is rotated out of the cone at G.

By moving point X, together with the intersecting planes A, B, C,

D, E, F and G, toward the apex of the cone, another interesting trans-

formation takes place, which culminates, when this point is reached,

into the following series of real or imaginary limiting forms:

The circle becomes a point.

The ellipse becomes a point.

The parabola becomes an element.

The hyperbola becomes an isoceles triangle.

By extending the axis of the cone, the parabola and hyperbola grad-

ually approach each other and finally merge into the same limiting form.

Both branches of both curves become one cylinder element.

A contraction (shortening) of the axis of the cone causes the section

curves in space to gradually approach their horizontal projections, until

the limiting form of the hyperbola, the straight line (chord), is reached.

The student should convince himself of these interesting relations of

the different sections of the cone by carefully experimenting with a large

cone, upon the curved surface of which he should draw crayon lines rep-

resenting the sections named in this paragraph. He should make an
effort to imagine the horizontal and vertical projections of these sections

by looking at the model from different positions, and should familiarize

himself with the names.

The conic section curves appear also as loci apart from the cone, but
the cone is the most convenient form to observe their relation to each
other.

In order to study the mathematical character of these figures or

sections, it will be well to lake them up separately, leaving out the circle,

which has been studied to some extent in plain and solid geometry.

18. The Ellipse.

If a point moves in such a manner that the sum of its distances from
two fixed points (foci) is constant, the locus traced by the moving point is

an ellipse.
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Figure 23 illustrates this definition and shows how, by means of two

pins, a string and a pencil, an ellipse may he drawn.

The ellipse has twofoci at A and B. It is a symmetrical curve about
two lines, one of which is called major axis and contains the foci, and

another, which is called the conjugate or minor axis. The axes are mutu-

ally perpendicular and bisect each other. The extremities of the major
axis are called vertices. Any line from a focus to the ellipse is called

radius vector. Any line perpendicular to the major axis is called ordinate.

A tangent to an ellipse touches but does not cut the curve. A normal is a

perpendicular to a tangent at the point of contact; it bisects the angle
formed by the radii. The sum of the radii vector of the moving point
in every position is equal to the major axis.

FIG. 23. FIG. 24.

x^
PROBLEM 17. (Figs. 23 and 24.) To construct an ellipse.

(1 ) its major axis and one focus, or

(2) its major and minor axis, or

(3) its minor axis and one focus, or

(4) its two axes, or

(5) its two foci and one point in the ellipse being given.

The given definition and statements of mathematical qualities of the

ellipse show that the problem is really the same in all five cases. In all

cases it is necessary to find first the two foci and the length of the major
axis, i. e., the sum of the/ocaZ distances.

After having found the foci and the major axis, the problem may be

solved either with the string or the compasses.

In figure 23, pins are inserted at the foci and a string or a thread is

tied there, equal in length, between the pins, to the major axis, or, which
is the same, reaching from one focus to the extremity of the minor axis

and back to the other focus. The inserted pencil will then describe the

required locus.

In figure 24, the major axis is cut at random as shown. With A 1,

A 2, A3, as the radii and F and F' as centers, arcs are described in each

quadrant. With B 1, B 2, B 3, etc., as tlie radii, and F and F' as centers,
these arcs are intersected. A free-hand curve drawn through the points
of intersection will be the required ellipse.
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There are many other methods of constructing the ellipse. Some of

these are simple, (compare figures 30, 32, 48, 49 and 59) and others are com-

plex, but all involve the knowledge of some branch of analytic, or pro-

jective geometry, which the student may not have studied.

19 The Parabola.

The parabola is a curve which at all points, is equally distant from a

fixed point (focus,) and from a fixed straight line (directnx.) Figure 25

represents a parabola with the directrix (M N,) the focus (F,) the axis, an

ordinate, three radii, three co-ordinates, a tangent, a normal, and a chord.

Find these lines and note that the radius vector of every point in the

curve is equal to the co-ordinate of the same point.

The parabola is sometimes defined as an infinitely long ellipse. Fig.

22 shows how by gradual change of the angle, which the intersect-

ing plane forms with the axis of the cone, the elliptic section becomes

longer until the parabola is approached. The ellipse intersects all ele-

ments of the cones of which it is a section. The parabola intersects all

elements except one the one which is parallel to it.

The circle may be considered as one limiting form of the ellipse, the

parabola as a second, and the straight line as a third.

FIG. 26.

PROBLEM 18. (Fig. 25.) Given, the directrix and focus, to describe
the curve of a parabola.

Assume a directrix M N and a focus F. Draw the axis perpendicular
to the directrix. Bisect F A. This is evidently a point in the curve,

being equidistant from directrix and focus. Next draw a series of in-

definite ordinates, on both sides of the axis, and find points upon them
in the following manner: Measure 1 A and with the focus as center,
cut the ordinate in H. Then the distance of F H is equal to the distance
from II to the directrix. It is therefore a point in the required curve.
In a similar manner, a series of additional points may be found, which,
connected by a free-hand curve, will give the required parabola.
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PROBLEM 19. (Fig. 26 )
To inscribe a parabola within a given rect-

angle.

The figure shows that the parabola consists of diagonals in the trape-

zoids formed within the given rectangle by the two sets of connecting
lines.

20. The Hyperbola,

If a point moves in such a manner that its distance from a fixed point

is always greater than its perpendicular distance from a fixed straight

line, in a constant ratio, the curve traced by the moving point is an

hyperbola.

The fixed point is the focus, and the fixed straight line is the directrix.

In other words, an hyperbola is a curve that is equidistant at every

point from two unequal circles. See figure 28

The properties and functions of the hyperbola are similar to those of

the ellipse and the parabala.

FIG. 27. FIG-. 28.

PROBLEM. 20. To inscribe an hyperbola within a given rectangle.

The solution will be plain from a study of figure 27.

PROBLEM 21. To draw a plane curve equidistant from two given

circles.

The solution will be apparent from figure 28.

21. Projection of the Circle, the Cylinder and the Cone.

A circle may assume four radically different positions to the planes

of projection. It may be

(1.) Perpendicular to both.

(2.) Perpendicular to one and parallel to the other.

(3. ) Perpendicular to one and oblique to the other.

(4.) Oblique to both.

In case (1) both projections are straight lines.
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In case (2) one projection is a line and the other a circle.

In case (3) one projection is a line and tha other an ellipse.

In case (4) both projections are ellipses.

In all cases the greatest length of the projection is equal to the di-

ameter of the represented circle, because in every position of the circle

one of its diameters must be parallel to each plane of projection.
If the projection is an ellipse, the length of the minor axis depends

on the angle which the plane of the circle in space forms with the plane
of projection. In case (4) the minor axes of the two ellipses may be, but

are not necessarily, equal.

FIG. 29.

Having thoroughly comprehended these elementary principles, and
illustrated every case by means of a circular disc and two coordinate

planes, the projection of the cylinder and cone should not be difficult.

Figure 29 represents a horizontal cylinder lying upon H, with its axis

oblique to V. This horizontal projection is a rectangle, and must be
drawn first. The vertical projection is obtained from the horizontal pro-
jection as follows: Project the centers of the circles into V and draw
the top element. The end circles of the cylinder will appear as two equal
ellipses in V. Find their axes by drawing the necessary projectors.
Having found these, the ellipses may be drawn as shown in figure 23 or
24.

Another method consists in rotating the rear circle into V, about a



PROJECTION DRAWING. 23

vertical axis Z, marking a number of points in it as C, D, E and F.and re-

volving it back again to C Z. Pending this revolution, or counter rota-

tion, as it is called, each point, except Z, describes a horizontal arc in

space, which can easily be drawn in II and V Parallels to G L and pro-

jectors will give the positions of the marked points in the required
vertical projections. The outline is drawn freehand through the estab-

lished points. The ellipse representing the front circle can be be drawn
in the same manner.

The student will recognize in this work a method of constructing an

ellipse of given dimensions.

Solve the following problems:
PROBLEM 22. To find the projections of a cylinder oblique to H and

parallel to V.
PROBLEM 23. To find the projections of a cylinder of given dimen-

sions, oblique to both planes of projections.

The problem is to be solved like problem 15, figure 20.

22. The Elliptic Section of the Cylinder and Cone.

The study of figures 30 and 31, which illustrate two simple methods
of obtaining the real form of elliptic sections of the cylinder, ought to

be sufficient to enable the student to find the real form of elliptic sec-

tions of the cone also

FIG 30 FIG. 31

The first method rotates the intersecting plane into H and obtains
the required ellipse as as a horizontal projection. The rotation is like

that of figures 21 and 29 and is called rabattement.

The second method rotates the ellipse on its major axis into V- The
ordinates, i. e., the perpendiculars to the major axis are obtained by
measuring the chords in the liorizonial section which is a circle.

Solve the following problems:
PROBLEM 24. Find the horizontal projection and the real form of
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an elliptic section of a given cone. The real form is to be found by the

first method.

PROBLEM 25. Find the horizontal projection and the real form of

an elliptic section of a given cone. The real form is to be found by the

second method.

23. Parabolic and Hyperbolic Sections.

Both sections are frequently met with in mechanical work; it is

impossible, however, to learn to draw them correctly and rapidly in all

different positions without the knowledge of analytic geometry, which

teaches their mathematical properties and relations as plain geometry
teaches the properties and relations of the circle. No student who would

master drawing can afford to neglect the study of this highly important
branch of mathematics.

FIG. 32.

Figure 32 shows how to find an hyperbola from its given projections.
The cone is posed so that both projections of the section are straight
lines. The drawing of a number of elements will locate points that can

be determined in all required positions.

Solve the following problems:

PROBLEM 26. Given the projections of a cone and the horizontal

projection of an hyperbolic section, to find the vertical projection and
the real form of the section.

PROBLEM 27. Given the vertical projection of a cone and the verti-
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cal projection of a parabolic section, to find the horizontal projection of

the cone and the parabola, and to find the real form of the parabola.
PROBLEM 28 Given tha vertical projection of a cone with the verti-

cal projection of a parabolic section, to find the vertical projection after

a rotation of 4-5 about the axis of the cone.

DIVISION E.

DEVELOPMENT OR SURFACES.

34 The Development of Rectilinear Surfaces.

If a surface of a geometric solid be rolled upon a plane so as to bring
each consecutive face, or each consecutive element if the solid is a single

curved surface, in contact with that plane without stretching, folding or

tearing the face or element, the surface is said to be developed, and the

plane figure which results therefrom is termed its development.
The cube, the rectangular block, the prism, the pyramid, and all

polyhedrons are developable.

Figures 33 and 34 represent the developed surface of a right hex-

agonal prism and a right hexagonal pyramid, and explain how the

development has been obtained.

FIG. 33. FIG. 34.

Solve the following problems:
'

PROBLEM 29. To find the development of a cube having a right

square pyramid upon two opposite faces.

PROBLEM 30. To find the development of a truncated pentagonal
pyramid.

PROBLEM 31. To find the development of a cube cut into halves by
any oblique plane, and having sides of 1 inch.

PROBLEM 32. To find the development of a tetrahedron.
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PROBLEM 33. To find the development of an octahedron.

25. The Development of the Cylinder.

The development of a right cylinder is an oblong or square, having a

height equal to the axis or an element, and a base equal to the circum-

ference. In practical work of ordinary character the circumference

is usually measured by dividing the base circle into twelve equal parts

and measuring the chord of such an arc of 30 twelve times. The result-

ing perimeter is, of course, slightly less than the circumference, because

the chord is shorter than its arc.

In plane geometry the student has learned that the ratio of the di-

ameter of the circumscribed circle to the perimeter of the inscribed

dodecagon is 1 : 3.1058. ., while the ratio of the diameter to the circle is

1 : 3.1416. . The above method of approximation is, therefore, nearly cor-

rect.

Solve the following problem:
PROBLEM 34. To find the development of a cylinder having an axis

of 3 inches and a diameter of 2f inches.

PROBLEM 35. To find the development of a rectangular stove-pipe
elbow consisting of two equal pices of sheet iron Length of axis of each

part, 24 inches; diameter of pipe, 8 inches; scale, 1 inch to 4 inches.

NOTE. The tinsmith cuts both parts out of one piece of sheet iron

measuring about 26 by 48 inches. How can he do this V

26 The Development of the Cone.

The development of the curved surface of a co 1 e is a sector.

Solve the following problems for which no figures or solutions are

given:
PROBLEM 36. To draw the patterns required by the tinner in mak-

ing a funnel consisting of a combination of two truncated cones. Axis
of large cone, 4 inches; axis of small cone, 3 inches; diameters of large

cone, 5 inches and 1 inch; diameters of small cone, 1 inch and finch.
No handle.

PROBLEM 37. To find the development of a cone truncated by an

oblique plane. Axis of complete cone, 5 inches; axis of truncated part,

2J inches; diameter of base, 3i inches; slant of section, 30 to H.

27. Miscellaneous Problems Pertaining to Development.

A double curved surface is one that has no straight elements, like the

surface of the sphere, the torus, the ellipsoid, etc. Such a surface can not
be fully developed. All that can be done is to find a close approxima-
tion by dividing the surface by means of meridians into a number of

lunes and arranging these on a plane. The larger the number of lunes is

made, the less stretching or folding there will be. Tinners, who are

often required to construct such forms out of tin, sheet iron, sheet zinc,
or sheet copper, seldom use more than 12 lunes.

PROBLEM 38. To draw the covering for a sphere.
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Draw the elevation or plan of the solid. Divide the circumference
into 12 equal parts and lay these off on a straight line. With a radius of

9 of these parts draw a right and left arc through each division point,

except the end points which require only one arc. These arcs will inter-

sect above and below the straight line and form the required twelve lunes

an approximate covering for the sphere.
PROBLEM 39. To draw the covering for a sphere having a diameter

of 4 inches. The covering to consist of four zones of equal width.

Tinners and coppersmiths sometimes construct globes of zones in-

stead of lunes. When copper or some other highly malleable metal can
be used, a little hammering of the four conic surfaces, which form the

zones will give the required sphere.

DIVISION F.

THE HELIX.

28. General Principles of the Helix,

The curves may properly be divided into plane curves, such as the

circle, the conic sections, the spiral, the trochoids, etc., and into space
curves, such as the helix or screw line which forms the subject of investi-

gation of paragraphs 28, 29 and 30.

A helix is the locus of a point which moves along the surface of a

cylinder in such a way that a constant ratio is maintained between the
measure of its rotation and ascent.

FIG. 40.

It is sometimes defined as a spiral line that constantly advances in the
direction of a straight line called its axis. The student who has mastered
the principles of Division E may assist his mind in imagining this line
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by developing the curved surface of a cylinder, drawing a diagonal or

any oblique line in the development, and winding this again upon the

solid. After the rewinding the diagonal becomes a helix.

The helix is sometimes called screwline, because it is found in the

thread of every screw. See figures 35, 36, 37, 38 and 39.

If the curve ascends and passes from left to right in front of the axis,

when the axis is vertical, the helix is said to be right-hand, and if it

passes from right to left it is said to be left hand.

The pitch of a helix is the distance it advances along the axis in mak-

ing one revolution.

FIGS. 35, 36, 37, 38, 39.

Solve the following problems:
PROBLEM 40. (Fie. 37). To draw the projections of a right-hand

/ helical line 2 inches in diameter, 5 inches long, and 3 inches pitch.
PROBLEM 41. To draw a left-hand helix having the same dimen-

sions and pitch as that of the last problem.
Careful study of figure 40. which is drawn I the required scale, will

reveal the method of construction. The helix is draw n free-hand, through
the located points.
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(2.)

(3.)

(4.)

(5.)

29. The Helical Band, the Helical Flange, the Helicoid.

u ^ * * - *All surfaces may be divided into:

(1.) Planes,

Single curved surfaces (cylinder, cones),

Double curved surfaces (sphere, torus, ellipsoid),

Warped surfaces (helical flange, helicoid),

Irregular surfaces.

One of the surfaces named in the headline of the this paragraph be-

longs to the second, and two belong to the fourth class.

A helical band is the surface ota cylinder between equal and parallel

helices. See figures 35, 38 and 42

A helical flange is a warped surface that is between two parallel but
unequal helices and is perpendicular to their common axis. See figure

41.

FIG. 41.

A helicoid is a warped surface that is between two parallel but un-

equal helices and is at an invariable acute angle t > their axis. See figure
42.

It may be said that, as the circle and the straight line are the limit-

ing forms of the ellipse, the helical flange is a limiting form of the
helicoid.

A serpentine is a bent cylinder the axis of which is a helix. It is some
times defined as the locus of a sphere, the center of which moves along a
helix. The bed-spring and the cork screw furnish illustrations of this

highly interesting space form. The groove of figure 37 is a semi set-pen
tine. So is the groove of the drill described in problem 47
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Solve the following problems:
PROBLEM 42. To find the projections of a right-hand helical band,

i inch wide. Diameter of cylinder, 3 inches; pitch, H inch*

PROBLEM 43 To draw the projections of a left-hand helical flange

4 inch wide, 2 inches in outer diameter, 4 inches long, and H inch pitch.

PROBLEM 44. To draw the projections of a left-hand helicoid screw.

Diameter of outer helix, 3 inches; diameter of inner helix, 2 inches;

pitch, 1 inch. Compare with figure 42.

PROBLEM 45. To draw a right-hand flange screw of two threads

(jack screw). Diameter of the four outer helices, 4 inches; diameter of

the four inner helices, 3 inches; pitch of each thread, 2 inches. Compare

figure 41.

FIG. 42.

30. Additional Problems on the Helix.

PROBLEM 46. To find the approximate projections of a three-inch

rope consisting of 3 equal strands. Pitch, 6 inches.

PROBLEM 47. To find the approximate projections of a drill with a

conical point.

A drill is simply a steel cylinder with a dull conical point, and a

slightly enlarged square rear end for fastening it in the brace. It has
one helical groove of two revolutions and about 21 inches pitch. The
groove extends from the square rear end to the conical point and is semi-

cylindric at every point. Compare figure 37.

PROBLEM 48. To.find the projections of a helical stairway winding
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about a column of 2 feet in diameter. Distance from floor to floor 10

feet, 8 inches; height of riser, 8 inches; diameter of whole stairwell, 18

feet. Handrails, nosing and nosing moulds not required.

PROBLEM 49. To draw a helix upon a cone.

With the exception of this problem the subject of conic helices has

been omitted here as being beyond the reach of elementary graphics.

DIVISION G.

AXONOMETRIC PROJECTION.

31. General Principles of Axonometric Projection.

The three imaginary straight lines which represent the three dimen-

sions, length, breadth and height of an object are called the axes of

dimension. All trained geometricians imagine these axes as intersecting

each other at right angles at the center of the solid, object or bulk to be

measured.
In axonometric projection the object is drawn so that two or all axes

of dimension form equal angles with the vertical plane of projection,

while the horizontal plane of projection is dispensed with entirely.

When a solid or object is posed so that two of its axes of dimension

are parallell to V and the third perpendicular to V, it is said to be in a

monodimetric position, and when it is placed so that all three axes form

equal angles with V, it is said to be in an isometric position. There are,

therefore, two systems or methods of axonometric projection:

(1.) Monodimetric projection.

(2.) Isometric projection.

32. Monodimetric Projection.

In monodimetric projection the object is placed so that its principle
arid most characteristic face is parallel to the plane of projection, and
can be drawn as it is. All other lines that are parallel to the principal
face lines are also projected at their real lengths and in their real posi-

tions, while the lines that form right angles with the face, i. e. the lines

parallel with the third axis of dimension, are drawn at angles of 4-1 to

the horizontal and vertical lines of the front face either to right or left,

up or down. The length of such a retreating line is made equal to the shortest

side of a triangle having angles of 105^, 4-5^. 3(P, and whose longest side equals
he line to be represented. A few worked problems will explain this some-
what complex statement.
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PROBLEM 50. (Fig. 43). To draw the monodimetfic projection of a

cube of given dimension.

Draw A B equal to the given edge. Draw the square ABED.
Draw C A at 3(P to A B, and B C at 45 to A B. The angle at will evi-

dently measure 105 Draw the remaining edges, representing those not

visible by dotted lines.

FIG. 43. FIG. 44.

B %

PROBLEM 51. (Fig. 44). To draw the monodimetric of a hori-

zontal cylinder.

Locate A and draw, full size, the face circle. Draw A B equal to the

length of the required axis. Draw C B at 30 and A C at 45 to A B.

With C as the center draw the rear circle. Add the outline elements.

Solve the following problems.
PROBLEM 52. To construct the monodimetric of a horizontal hex-

agonal prism having a base side of li inch and an axis of 31 inches.

It is evident that this solid could be drawn in four different posi-

tions. Its lateral edges could be drawn so as to retreat to right and

upward, to right and downward, to left and upward, to the left and down-
ward. Select any of the three latter positions.

PROBLEM 53. To draw the monodimetric of a grindstone ; radius,

2i inches ; thickness, i inch ; diameter of square hole at the center, i

inch.

No conditions as to position being given, it is evident that the grind-
stone may be drawn in any monometric position. What are these

positions ? Draw the object in one of the four positions stated above.

PROBLEM 54. To draw the monodimetric of a waterbucket having
an axis of 1 foot, abase diameter of 10 inches, atop diameter of 14 inches,
and a thickness in every part of 1 inch. Add two 1-inch hoops and a
semicircular wire handle. Finish the drawing neatly.

33. Monodimetric Projection of Non-Axial Lines.

The following worked problem is intended to answer the question of

how to represent and measure lines that are not parallel to axes of di-

mension.
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PROBLEM 55. (Fig. 45). To find the monodimetric of a horizontal

pentagon.

Draw a diagram of the figure (Fig. 32 or 36, Vol. I) and in it draw
the lines 5 6 and 3 4. Draw A B equal to 1 2. Draw 7 D at 45 to A B,
and make it equal to 5 6 by ^|33. Find point F in the same names.

Make F E and F C equal to the halves of 34. Draw the outline.

By drawing five equal vertical lines at the angular points of the

monodimetric pentagon, and by connecting the upper ends of these verti-

cals, the monodimetric of a pentagonal prism is obtained.

Still another monodimetric projection may be obtained by drawing
the lateral edges of the prism downward, making the number of possible
cases not four, but six.

Fio. 45.

Solve the following problems:

PROBLEM 56. To find the monodimetric of a vertical heptagonal

pyramid.

PROBLEM 57. To find the monodimetric of a truncated triangular

pyramid. Height of frustrum. 3 inches;, side of base, 3 inches; side of

section, 2 inches

It is difficult to find the monodimetric of a horizontal circle. When
a circular object is to be drawn, it should be posed so that the circles will

be parallel to V.

34. Additional Problems in Monodimetric Projection.

Monodimetric projection is much used in drawing details of stone

and lumber construction, such as mortise-joints, dovetail joints, miter-

joints, stretcher-joints, building hardware, brick and stone arches, etc It

is therfore often called shop perspective, false perspective, parallel perspect-

ive, or cabinet perspective. In as much as a monodimetric projection shows
the front and two sides of the object, it resembles a true perspective pict-

ure; but it is not drawn in accordance with the laws of linear perspective,

and these terms are entirely improper and confusing The student

should not use them.
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Solve the following problems:
PROBLEM 58. To draw the monodimetric of a table, foot-stool, or

tool bench.

PROBLEM 59. To draw the monodimetric of any three of the Egyp-
tian letters of fl 47, enlarging them to four diameters and giving them a

thickness of i inch.

PROBLEM 60. To draw the monodimetric of a dovetailed box with a

half-open sliding lid. Add the scale.

PROBLEM 61. To draw the monodimetric of a saw-horse. Add the

scale.

These figures are to be drawn on a large scale so that each will fill a

page. The rear edges are to be shown in dotted lines. The edges which

divide front faces from side faces are to be drawn in bold black lines,

and all other visible edges are to be made in light black lines.

35. General Principles of Isometric Projection.

The difference of monodimetric and isometric projection has already
been stated in paragraph 31. It is this:

In monodimetric projection the object is posed so that two of its axes

of dimension are parallel, and the third axis perpendicular, to V,while in

isometric projection the object is represented so that all three axes form

equal angles with V.
An isometric drawing of an object is, therefore, a real projection,

while a monodimetric drawing is not.

Careful study of the following isometric projections of a cube and an

oblong frame will make clear these statements.

FIG. 46 FIG. 47.

Every edge of these solids is parallel to one of the three axes of di-

mension and all form equal angles with V. It follows that all are
shortened equally, i. e., according to the same ratio. They bear the
same relation to each other in the projection as they do in reality.

Having fully mastered this principle, the student should now try to
understand that, if the projection of an object is enlarged so as to make
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every axis of dimension, and every line parallel to an axis of dimension,

equal to the real axis or line, no scale will be needed at all, i.e., that:

In an isometric projection every axial line (line parallel to an axis of

dimension) is directly measurable.

This principle, introduced by Prof. Moellinger, a noted Swiss mathe-

matician, is the one which has made isometric projection valuable, because

in almost every object of industrial art the axial lines abound.

With regard to position, it may be said, that in an isometric projec-

tion

(1.) The vertical lines remain vertical.

(2.) The horizontal axial lines form angles of 30, to right or left,

with G L.

(3.) The length and position of non-axial lines may be found by mak-

ing them face diagonals or space diagonals in rectangular blocks formed

by axial lines.

PROBLEM 62. To draw the isometric of a square box, open at the

top. Dimensions, 4 by 3 by 2 inches; thickness of boards, i inch. Show
its construction and the nail heads.

36. The Circle in Isometric.

The circle may be drawn in isometric by inclosing it in a square,

drawing this in isometric, and inscribing an ellipse.

FIG. 48. FIG. 49.

Thus, let A B C D (Fig. 48) be a square inclosing a circle, to be drawn
in isometric. The square will appear as a rhombus A B F E, having

angles of 60 and 120. Draw the diameters of the square and draw lines

representing these in the rhombus. Draw the diagonals in the square
and rhombus. Find the points where the ellipse crosses the rhombus

diagonals. The illustration shows how these points may be found. Draw
the ellipse freehand.

Fortunately, this special form of the ellipse can be easily imitated

with the compasses (oval). An examination of figure 49, representing a
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cube with circles inscribed within each visible face, will explain the

modus operandi of this convenient approximation.
Solve the following problems:
PROBLEM 63. To draw the isometric of a vertical cylinder. Axis,

3i inches; diameter, 2| inches.

PROBLEM 64. To draw the isometric of a horizontal cylinder having
the same dimensions.

37. Isometric Projection of Non=Isometric Lines.

The following worked problem illustrates how non-isometric lines or

figures are drawn in isometric, and how the real length of non-isometric

lines may be found by construction.

PROBLEM 65. (Figs. 50 and 51). To make an isometric drawing*;of
an hexagonal prism.

Draw a diagram of the base of the prism inclosed by a rectangle,
A B C D. Draw this rectangle in isometric where it will form a rhom-
boid with angles of 60 and 12(P. Make E' 1' equal to A 1, 2' F' equal to

2 B, E' 6' equal to A 6, etc. Tiiis will give the isometric of the regular
hexagon. Then draw the vertical edges equal to the real height of the

prism. Lastly connect the upper ends of the verticals by lines forming
the upper isometric hexagon.

FIG 50. FIG. 51.

In this way all non-isometrical figures are drawn They are first in-

scribed within some figure that can be drawn in isometric.

Solve the following problems:
PROBLEM 67. To find the isometric of a pentagonal prism. Hori-

zontal edge, H inch; vertical edge, 3 inches.

PROBLEM 68. To draw the isometric of an irregular heptagonal
pyramid, from given orthographic projections.

PROBLEM 69. To draw the isometric of a carpenter's trestle.

PROBLEM 70. To draw the isometric of a tool bench with braces for

stiffening its legs.
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38. Cone and Sphere in Isometric.

PROBLEM 71. (Fig. 52). To draw a cone in isometric. Diameter,

3| inches; axis, 4 inches

PROBLEM 72. (Fig. 53) To make an isometric drawing of a hemi-

sphere having a radius of 2 inches.

Find the isometric of the great circle, as in the former problem.
Then draw a semicircle over the major axis of the ellipse. Remember
that a sphere projects as a circle, no matter how it may be posed

FIG. 52. FIG. 53.

PROBLEM 73 To find the real radius of a given isometric sphere.
This problem is more difficult lhan might appear at first. Remem-

berthat only axial lines ca-i be measured Such a lin" might be drawn
through the center, but it would evidently not terminate in the outline

(principal meridian) of the sphere Any diameter in the circle repre-
senting the sphere would be too long. In isometric all figures are drawn
larger than in orthographic in order that their axial lines may appear as

they are. How will you go to wqrk to find it ?

Let this problem be a test for you.

DIVISION H.

SHAIDOWS.

39. The Light Parallel to V.

The form of the shadow of an object depends on:

(1.) The object casting the shadow, i. e., the outline which the ob-

ject presents to the light.
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(2.) The surface upon which the shadow falls.

(3.) The source or direction of the light.

In mechanical drawing the rays of light are supposed to have
some fixed direction, and in all examples and problems of this division the

rays of light are assumed to be parallel, so that the direction of one ray
is the direction of all.

The simplest conditions prevail when the light is parallel to V and
falls upon H at an angle of 45. The horizontal projections of the rays
can then be drawn with the T-square and the vertical projections with
the right-angled isosceles triangle. All shadows will be on the right side

of the object and appear in H, the shadow of a point being where a ray
of light through the point would pierce the surface upon which the
shadow is cast.

The solution of problems under these stated conditions is so simple
that a study of figures 54 and 55 should be sufficient for the successful

working by the student of all such problems.

FIG. 54 FIG. 55.

c b a

Figure 54 solves the problem, to find the shadow of a rectangular
block; and figure 55, to find the shadow of an irregular pentagonal pyra-
mid.

Solve the following problems for which no figures or solutions are

given:
PROBLEM 74. To find the shadow of an irregular, obliquely trun-

cated pentagonal prism.
PROBLEM 75. To find the shadow of a right cylinder.
This problem can be solved by finding the shadow of a series of

points in the upper circle and by connecting these by a freehand stroke
with the shadow of the elments tangent to the light. A better way,
however, is to find the shadow of the upper base, remembering that the
shadow of any plane form cast upon a parallel plane must be equal to the
form, etc.
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PROBLEM 76. To find the shadow of a cylinder resting upon H and

having its axis perpendicular to V.
PROBLEM 77. To find the shadow of a truncated oblique cone.

40. The Light Oblique to H and V,

The next step is to assume the rays ot light oblique to both planes of

projection. The simplest conditions of this kind prevail when the

descending rays are assumed so as to give horizontal and vertical projec-

tions of 45 to G L. The student will observe that in this case the real

angle of inclination and declination is not 45, but that it is less. It is

equal to the angle which the space diagonal of a cube form with the base

of the cube, i. e., an angle of about 37|V
The shadow is cast to the right and rear of the object and if this

should stand close to V, a part of the shadow will fall upon V. Figure
56 represents a triangle in space placed obliquely to V and H. The
shadow falls upon both planes of projection and forms a dihedral, which

gives a pentagonal development. The direction which the shadow ofAB
and BC takes in crossing G L is found by obtaining th^ shadow of inter-

mediate points. Figure 57 shows how to find the shadow of a square

prism placed so that none of its lateral faces is parallel to V, and that

the shadow will fall upon H and V.

FIG. 56. FIG. 57.

The student who is able to read every line of these two figures

should have no great difficulty in solving the following problems. Let
him remember the following:

(1.) The shadow of a vertical line forms an angle of 45 with G L,

upon H, and is perpendicular to G L, upon V.

(2 ) The shadow of a line perpendicular to V forms an angle of 45

with G L, upon V, and is perpendicular to G L, upon H.
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(3.) The shadow of a line parallel to V is equal and parallel to the

line, upon V.

(4.) The shadow of a line parallel to H is equal and parallel to the

line, upon H.
Solve the following problems:
PROBLEM 78. To find the shadow cast upon II of a cube.

PROBLEM 79. To find the shadow cast upon H and V of a tall, ir-

regular pentagonal prism.

PROBLEM 80. To find the shadow cast upon H and V of a hexag-
onal pyramid standing upon its apex.

PROBLEM 81. To find the shadow of an irregular pentagonal

pyramid having its axis parallel to V and II.

41. Shadows of Circles and Curved Surfaces.

In problems 75, 76 and 77 the student has already solved problems per-

to taining'the shadows of objects having curved surfaces. In the following

problems the direction of the light rays is the same as in paragraph 40.

FIG. 58.

PROBLEM 82. To find the shadow upon H of a vertical circle whose
plane is parallel to V.

PROBLEM 83. To find the shadow upon H and V of a horizontal
circle.

PROBLEE 84. To find the shadows in H and V of a circle whose
plane is perpendicular to G L.

PROBLEM 85. To find the shadow in H and V of a vertical cone.
The method of solution (Fig. 58) is somewhat peculiar. Find the

shadow of the apex upon V, then imagine V as transparent and find
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where the shadow of the apex would fall if such were the case. It would

evidently be cast upon the extended or rear part of H, directly behind B,
i. e., at C. Draw tangents from C to the base circle, and you will ob-

tain the shadow of the cone upon H and its rear extension. Consider

now V as opaque and find the shadow upon it.

PROBLEM 86. To find the shadow of a cone standing upon its apex
near V.

42. The Shadow of the Sphere.

PROBLEM 87. (Fig. 59.) To find the shadow in H of a sphere.

FIG. 59.

I

The shadow of a sphere is equal to the shadow of the one of its great

circles which is perpendicular to the rays of light. If this great circle is

found, the remaining part of the problem can present but few difficulties.

The work may be done as follows:

(1.) Find the shadow of the center of the sphere.

(2 )
Locate an auxiliary plane perpendicular to H and parallel to the

descending rays of light.

(3.) Upon this plane draw an auxiliary vertical projection of the

sphere.

(4.) Draw QR, the great circle, at right angles to the rays of light.

This is done by finding the obstructed ray of light through the center A
from its horizontal projection, and by drawing Q R perpendicular to it.

(5 ) Draw tangent rays at Q R, parallel to a a'. These will give
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the major diameter of the ellipse which will form the shadow. The
minor diameter will be equal to the diameter of the sphere.

(6.) Draw the ellipse by one of the methods given in paragraph 18,

or find additional points by the method shown in figure 59, i. e., by using

planes parallel to H, like O P.

PROBLEM 88. To find the shadow of a sphere, cast upon V.
In monodimetric and isometric projection shades are often, but

shadows rarely, required. The rays of light are usually assumed so that

the shadow of every perpendicular line becomes a horizontal line equal

in length to the perpendicular, i. e , the rays are assumed to come from
the left, the front and above. In this case every obstructed ray can be
drawn with the right angled isosceles triangle placed against the T-square.

The shadows that are not cast upon parts of this object are assumed to

fall upon an imaginary horizontal plane supporting the object.

All shadows given in this book are assumed to be produced by
straight or circular outlines and to be cast upon H or V. Book III, De-

scriptive Geometry, continues the subject and shows how to find shadows
cast upon oblique and single curved surfaces by objects having more

complex outlines.



PART II.

Shading and Draughting.

43. The Object.

The object of this course in shading and draughting is to teach the

student the methods of representing complex objects; to familiarize him
with the use of the scale and the common measuring tools, and to de-

velop his taste with regard to the disposition of details, inscriptions, etc.

It is intended that this work should be carried on simultaneously with

the work of Part I, i. e., that every alternate lesson should be given to

draughting in the class-room under the supervision of the .teacher. While
all work in graphics must be done carefully and neatly, this work, re-

quiring larger sheets of paper and involving more complex subjects, will

be especially suited for the training of the aesthetic qualities of the stu-

dentan educational end never to be neglected, though difficult of

attainment.

44. Tools and Materials.

In addition to the tools required for the home work and described in

Part I, each student must be provided with the following:
FIG. 60

(1.) A drawing-board. The board needed in this work should meas-
ure 14 to 18 inches by

> to 24 inches, and should be made of good quality
of well-seasoned white pine lumber, glued together of about four strips.

One or both of the short ends should be providedwith a crosspiece

(header) of soft mapie, cherry or some other small-grained wood. The
header must, of course, be straight. Fig. 1 represents such a board with

two headers, and the above illustration shows how a larger and

better, though more expensive, board may be made.
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(2.) A T-square , with blade extending across the board. The simple

construction shown in Fig. 62 makes this form preferable to any other

for the beginner.
FIG. 61.

(3.) Two triartgles, 60, 30, 90, and 45, 90, respectively. The sides

of these should measure not less than 6 inches. Good work may be done
with the right-angled isosceles triangle alone. Many practical draughts-

men^use the tetrangle shown in Fig. 63, in preference to two triangles.

FIG. 62.

(4.) Four white metal thumb tacks to fasten the sheet to the drawing-
board.

FIG. 63.

(5.) Apaper measure, i. e., a strip of tough, smooth paper, li by 16

inches, printed with lines showing inches and halves, quarters, eighths
and sixteenths of inches. Paper measures are better than any other

cheap measuring tools, and cost but few cents per piece.

45. General Remarks.

In school where a considerable number of drawing-boards are used,
it will be cheaper to have them made to order in some carpenter shop.
The other tools, however, should be bought of the instrument dealer.

The cheaper grade of T-squares and triangles are usually made of beech
or pear wood; the best are the transparent celluloid tools called amber.
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For storing the drawing-boards between lessons, the class-room or

an adjoining closet-room ought to be provided with a, drawing-board rack.

i. e., a strong square case, open on one side, into which the boards may
be slit separately between cleats. The boards should lie horizontally
with the drawing sheet on the under side; the upper side will then serve

as a shelf for the deposition of the paper measure and the triangle The
top of the case should be of strong pine lumber, so that it may be used as

a table for paper cutting and the deposition of ink saucers, models, etc.

Wherever the conditions make it possible, it is well to provide the

drawing room with top-light, and to furnish it with drawing tables that

can be used either sitting or standing. There are a number of such

tables in the market. The best, though not the cheapest, school draw-

ing table known to the author of this book is the Eugene Dietzgen

patent drawing table I. X. L.

46. Use of Instruments and Materials.

The T-square is used to draw parallel lines by sliding its head along
the left side of the drawing-board and using the upper edge of the blade

as a straight edge. It should never be used on another side as the edges
of the board are seldom exactly parallel or at right-angles with each

other. Before ruling the line, the blade should be pressed firmly on the

paper, as the square is liable to move slight'y. unless the head of the

square and the board exactly coincide. The square should be moved

along the side of the board by the left hand, leaving the right hand free

for the use of the pencil or the pen.

Triangles are used as straight edges for drawing perpendicular and

oblique lines to those already drawn by the T-square. They are used

also for drawing parallel lines, by placing the edge of one along the line

to which the parallel is to be drawn, and by sliding the other triangle.

Ink. In practical draughting India ink is used, instead of writing ink.

The India-ink is preferable in that it can stand moisture without

spreading. It is also blacker and covers the paper better, though it is

more expensive, especially when bought jn liquid form. Many designers

buy India-ink sticks and prepare eac'i dav as much as they expect to use.

Fig. 64 represents a stick of dry India-ink.

FIG. 64.

To prepare the India-Ink. Rub a stick of the ink on a saucer or ink-

slab containing about a teaspoonful of water until the proper consistency
is obtained. To determine the latter, try thejnk from time to time

with a drawing-pen on a piece of paper, and if, when di~y, a perfectly black
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(not gray) line is left, the ink is ready for use. When ground it should

always be kept covered over, to prevent its drying quickly, and so becom-

ing thick. The end of the stick of ink should be wiped after rubbing, as

otherwise it is liable to crumble It is also a good plan, when a long
stick is used, to wrap tin-foil tightly around it, to prevent its thus

breaking or cracking.

Mounting the Paper Lay the pap^r upon the drawing-board smooth
side up. Insert one of the thumb tacks close to the edge in a corner of

the sheet. Square the sheet with the board by means of the T-square.
Insert the other thumb tacks.

Ihe Pencil Sketch All drawings should be made in pencil before

inking. The penciled lines should be made fine and. light with a hard

pencil, so as to be easily erased or inked over. To erase strong pencil

marks requires hard rubbing, which destroys the surface of the paper.
All penciling should be done carefully to avoid confusion in inking.

The tint lines and shade lines are usually drawn in ink without any
sketching.

Inking. Fill the drawin-g pen by means of a writing pen and keep
the outside of the blades clean Hold it ne irly upright and carry it along
the blade of the T-square from left to r ght, with the flat sides parallel to

the direction of the line. Use only the upper edge of the T-square.

Carefully clean the pen when through using In inking the horizontal

lines should be first drawn, commencing at the top, and then the vertical

lines commencing at the left. This will reduce the liability to blot the

work before it is dry. Never use the blotting paper.

47. Inscriptions.

It is important that the student of projection drawing should learn

to write and draw neat inscriptions. Well-made inscriptions greatly

enhance the beauty of a drawing. They serve as an indication of equal
care taken in the execution of the construction. Tor this reason the

plate of the so-called Egyptian capitals and numbers, printed in Vol I, is

here reprinted, not to be copied, but for reference. There is also added

a complete alphabet of capitals, small letters, and numbers of round wrik

ing, a style of letters so-called because of its predominant round form.

On account of its distinctness, beauty, and ease of construction, no
other style can surpass it for inscription purposes.

The letters and figures of this style should not be drawn, but written.

After some practice the writing -may be done with almost any large and
elastic pen. It is best, however, to procure a pen made specially for the

purpose, such as F. Soennecker's No. 2 or 3. Larger letters are made
with a good shading pen, or F. Soennecker's Parcel's pen No. 133. Stu-

dents who wish to practice round writing would do well to procure F.

Soennecker's Text Book of Round Writing, published by the Keuffel

Esser Co., New York, 127 Fulton Street.
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For many purposes a written plain vertical letter will answer best.

48. Blue-printing and Black-printing.

The invention of the beautiful processes of blue or black-printing and

photo zinc etching has, of late, greatly changed the methods of work in

practical draughting. Formerly most drawings were finished in colors

applied with the brush, but at present nearly all ordinary work is being
done in black lines.

In order to reproduce a drawing by the blue or black-printing pro-

cess, it is first made in pencil the same as every other drawing. It is

then traced in strong India-ink upon a sheet of transparent paper called

tracing paper or patera.

The next step is to coat the blue-print paper with sensitive material.

The paper is simply common drawing or writing paper, usually French

satin. The material is a mixture in nearly equal parts of dissolved

cit. iron and ammonium and pot. perrocyanide. These chemicals are dis-

solved separately in clean water, in a ratio of about two tablespoons of

each compound, finely ground, to one cup of water, and allowed to stand

in bottles in a dark place for about forty-eight hours. The paper is then

tacked to a wall in an entirely dark room, the two solutions are poured
into a cup, and the mixture is carefully applied to the paper with a large,

smooth paint-brush or a sponge. It dries rapidly and will be ready for

use in two to three hours.

The printing is done as follows: The sheet of sensitized paper is

laid, coated side up, upon a drawing-board; the tracing is laid over it;

a plate of thick glass is laid over the latter to hold it down at every point,

and the whole is exposed to the bright sunlight for about five minutes,
when the whole surface of the coated sheet will have turned from a light

yellow to a dirty bluish gray. It is then immediately immersed in a bath

of clean water. The water will wash off the coating where it was not

fixed by the sunlight, i. e , under the black lines of the tracing, and these

will appear white, while the rest of the surface will turn a brilliant blue.

It is evident that as many copies can be made of a tracing as may be

desired. In architects' and engineers' draughting rooms more complex
apparatus is used than the one here described, but the process is the

same.

Formerly every artisan or artist prepared his own paper. For the

last half-dozen years, however, factories of sensitized paper have been

established in all large cities, and carefully prepared
" blue paper" costs

now but little more than other paper. The difficulty with "
ready blue

paper
"

is in that it must be kept in a dark place. An exposure to sun-

light of only a few seconds will start the chemical action and render it

valueless. All schools of applied mathematics have blue-printing rooms
connected with their classrooms in draughting, and finish their work in

white upon blue ground.

The black-printing process does not differ from the blue-printing
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process in the manipulation of the drawing. The lines appear black

upon light gray or mottled ground. The paper is difficult to prepare and

is, therefore, bought ready for printing. The materials cost more than
those used in blue-printing. As a result the process is used almost only

by sculupturers and woodcarvers in whose drawings the blue-printing

process would reverse light and shade.

Photo-zinc etching requires a considerable amount of costly apparatus,
and the work of etching, though it is a purely chemical manipulation,

requires a good deal of skill. It is, therefore, done only in special art

establishments. The product, a relief plate, can be used in every print-

ing press. Nearly all line pictures in the books and newspapers of to-day
are printed from photo-zinc etchings made from pen drawings, and every
well-made pen drawing may thus be photograved. All the illustrations of

this book were printed from photo-zinc etching made from pen drawings
most of which were prepared by L. P. Brous. student assistant in the

Department of Industrial Art at the Kansas State Agricultural College.

49. Shades.

PLATE I. This figure represents the vertical and horizontal projec-

tions of a group of solids consisting of a square slab, broken off behind, an

octagonal prism, a cylinder and an octagonal pyramid.
The group is placed so that the source of light is to the front, the left

and above, and the shadow to the rear and right. Some of the faces of

the group, especially of the pyramid, are nearly at right angles to the

light rays, and receive evidently more light, proportionately, than the

horizontal surfaces, or some of the faces of the prism and parts of the

cylinder. Along two of the elements of the cylinder the light rays are

tangent only, i. e , they merely graze the object The parts of the solids

on the opposite or rear side of the group receive only reflected, but no

direct, light. It is these different light effects, which may be watched
on every object, that the shaded drawing represents.

In order to shade an object properly, the student must be able to

estimate approximately the quantity of light received by every part of

the surface, or, which is the same, the angle which every part of the sur-

face forms with the light rays.

There are, however, a few exceptions or modifications to this rule.

In the first place, there is the influence of the distance of the object from
the eye. Things near the eye display more contrasts of light and shade
than things farther away, while at any great distance all shades and

lights, and even colors, seem to blend into one general tone. This is due
to the fact that object^ appear smaller at a distance, and that the atmos-

phere is slightly opaque. It may be said then, that dark surfaces grow
lighter and light surfaces darker as they recede. In projection drawing it is

necessary to greatly exaggerate the difference of shade between the nearer
and farther parts of a surface in order to show the difference of distance
from the eye.
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In the second place, there is the influence of contrast. The light parts

appear lighter near dark parts, and the dark parts seem darker close to

light parts. This fact is well-known by every one and is taken advantage
of in decorating and drawing. As a consequence the shading of the

group of solids is strongest where the shaded surfaces are adjacent to

light surfaces, and vice versa.

Upon objects having curved surfaces like the cylinder, the depth of

shade must change at every element. The brightest part is a little

forward of the point in H where the horizontal projection of a ray of

light through the axis of the cylinder would pierce the circle which forms
the horizontal projection of the cylinder. This part of the curved sur-

face is called the brilliant line. It is placed forward of the element which
reclines the most to the light, because the light of this element, ac-

cording to a well-known law in physics, would be reflected back from
whence it came, while the light from elements a little more to the right
would be reflected forward in the direction of the observer. The latter

elements, though receiving less light, would really appear lighter.

The darkest parts of the surface are the elements nearest the point
of tangency. The surface from to the outline at the right should appar-

ently be of the same shade, being all in the shadow. But here another

principle has to be observed. There is always a small amount of light

coming in exactly the opposite direction from the orignal one. This is

called reflected light, and, owing to this, the surface to the right is made
a little lighter as it turns back. See figure 68.

This principle influences also the shading of the pyramid.
A careful study of the given group of solids will reveal a number of

applications of the exceptions mentioned. The student should not draw
a single line, the meaning of which he does not understand. In case he

cannot find reasons for drawing certain lines, he should ask the eacher

for an explanation.
The outlines of the shadows are found by drawing at 45 to G L,

tangent to the outlines in H. The shadow of the pyramid is found by

establishing the shadow of the apex uuon the level of the base of the

pyramid, and drawing from there, in H, tangent to the base of this solid.

The figure should be copied twice its linear dimensions, i. e., four

times as large as the given original. The outline should be carefully laid

out in pencil and inked. The shade lines should be drawn without any
sketching and should be made as near as possible like the original in

thickness not stronger. The figure being larger, there should be an in-

creased number of shade lines.

All outlines separating light from dark surfaces should be drawn

considerably stronger than those separating faces of equal or nearly equal

light effects. This rule should be followed in all mechanical drawing,
and must not be neglected in drawing the problems of Part I, though
nothing is said there about shading.

Provide the plate with a uniform border line.
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In the upper left corner of the plate write a neat inscription in round
writing, as described in paragraph 47.

In the lower right corner add your signature.

FIG. 68.

50. Shades upon Complex Surfaces.

PLATE II. This plate represents a group of solids consisting of tfcN^&

well-known geometric forms and a part of the shaft of a fluted column.
The direction of the light is the same as in the last plate, and there

are no new principles involved. The solids, however, are more complex
and require a more subtle grading of shade lines. The strongest shade
lines of the fluted shaft and the cone are made by drawing two light
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outlines for each and filling the space between the two by drawing an
other line or two with the drawing pen. To shade such a plate well

requires careful study of the principles involved and a close application
in the work.

Draw the figure not less than two diameters of the original.
Add a neat border line.

ILI the upper left corner inside the border line write a neat inscription
in round writing, as described in paragraph 47.

In the lower right corner sign your name.

51. Shades upon Double Curved Surfaces.

PLATE III shows a cavetto, a sphere and a cone, shaded by means
of irregularly placed points or dots. Such shading or tinting is called

stippling. It is done with the common writing pen, and is not difficult to

learn. The principles of shading are, of course, the same, no matter

what graphic method may be followed in producing the desired effect.

The student should take care not to place the dots in rows, but to

distribute them evenly over the surface, much as the farmer sows the

seed upon a field, i. e
, irregular in position, but regular in distribution.

Note that the sphere has its brilliant point not where the light is

perpendicular to the surface, but somewhat nearer the center of the pro-

jection. The reasons for this are those given with regard to the shading
of the cylinder in plate 1. The lisrht rays are tangent to the sphere along
a great circle which projects in H and V as an ellipse. The rear surface

of the sphere is somewhat lighter than the region where the light is

tangent, for reasons already stated.

The shadows of the cone upon the sphere aiid the shadow of the

sphere upon the scotia is not expected to be found by the pupil, but

should be copied from the original plate. The proper solution of these

two problems must be left to higher descriptive geometry. Remember that

all shadows appear strongest along the outline and lighter toward the

middle.

Fig. 68, which represents a carpenter's glue-pot with glue brushes in

it, taken from Walter's Object Drawing, shows how shading of double

curved surfaces is being done in freehand pen work. This method o^

shading is sometimes used in draughting to represent objects having

irregular or broken surfaces, such as rough cut stone or carved woodi

while stippling is used for smooth surfaces like paper, leather,

unpolished metal, etc. Fig. 68, belonging to the course of advanced

freehand drawing, is reprinted here for comparison only, and is not to be

copied.
Draw the plate twice as high and wide, i. e., four times as large as

the given original.

Draw a neat border line.

Write an inscription in the upper left corner, using the round writing

letter.

Add your signature in the lower left corner.
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52. Shaded Isometric Projections.

PLATE IV. This plate is to be given to shading of isometric projec-

tions. There will be two figures, to be drawn as follows:

Figure A is to be an enlarged copy of the given cubical frame ; side,

2* inches.

Figure B is to represent an isometric cube having a side of H inches.

Upon each face draw a square pyramid having an axis of H inches and a

base of 1 inch.

Ink the visible outline of both figures and erase all non-visible parts.

FIG. 71.

Shade the edges dividing light from dark faces, assuming the light to

come from the left and above.

Shade all faces to right by strong tintlines placed close. All shaded

faces but two of the second figure, will be vertical and must be shaded

by vertical tint lines. The two faces in the second figure, which are not

vertical, are the right faces of the top and bottom pyramids. These are

to be shaded in the direction of the altitude of the face triangles.

Ink the border line.

Add an inscription.

Sign your name.

53. Plan of a Home lot.

PLATE V. This plate is to consist of an enlarged copy of figure 72

(adopted, with some alterations, from Prof. W. B. Ware's Examples of

Building Construction).

The given plan is drawn to a scale of 1 inch to 32 feet, but the copy
is to be drawn four times as large, i.e., to a scale of 1 : 192. Remember
that plane figures are to each other as the squares of homologous lines.

Turn the plan around so that north will be above and south below,
which is the usual position of a landscape plan. Sketch the roads and
the outlines of the tree-clumps in pencil, measuring all positions by tri-

angulation from the base line. Finish the former with hard-rubber
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curve and drawing pen, and draw the latter freehand, using the

writing pen. Notice how the shading of the clumps and ground on the

east gives relief and naturalness to the lawn.

Draw a border line.

FIG. 72
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Add a neat inscription, "Homelot" over the plan. This may be
drawn in the simple and easily sketched Egyptian letter, but it should
not be enlarged, and the letters should be placed close together.

In the left corner, below, write in small, but neat letters,
"
Scale 1

Inch to 16 Feet."

In the right corner sign your name.

54. A Floor Plan.

PLATE VI. This plate is to consist of an enlarged copy of the given
floor plan (taken, with some alterations, from Soennecker's Textbook on
Round Writing.)

The given plan is drawn to the scale of 1 inch to 16 feet. Make the

copy four times as large, i. e , to the scale of 1 inch to 8 feet.

FIG. 73.
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Plastered partitions on studs are assumed to be 6 inches in thick,

ness, half partitions on each side of a sliding door, 3 inches; and the

space for the sliding door, 3 inches. Brick walls are usually made 12

inches in thickness. The line outside the wall represents the watertable,
a stone band even with the floor, which projects about 2 inches. Door

openings are left blank, and windows are shown by 3 lines connecting
two squares that represent boxjambs and are partly inserted in the brick

walls.

After copying this floor plan it would be good practice for the

student to draw a set of floor plans of his home, from measurements
taken by himself. This would give him, in addition, an insight into the
work of architectural construction, which mere copying of plans and eleva-

tions cannot give.

All inscriptions should be horizontal, straight, plain and small.

There should be no attempt at fancy work of any kind.

Always add scale and signature to mechanical drawings of this kind.
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