PROJECTIVE GEOMETRY

BY
OSW ALD VEBLEN
proferssor of matifrmatics, princhion university
AND
\section*{JOIIN WESLEY YOUNG}
phoi lisor of mathematios, darmmoutif college

VOLUME I

GINN AND COMPANY
BOSTON . NEW YORK - CIICAGO • LONDON ATLANTA - DALLAS • COLUMBUS • BAN FRANCISCO

5221

N: 1

4

$\mathrm{Ham}_{4} 4$

PREFACE

Geometry, which had been for centuries the most perfect example of adednctive science, durug the creative period of the nineteenth century outgrew its old logical forms. The most recent perrod has lowwever bronglt a clearer mulerstanding of the logieal foundations of mathematies and thes has male it possible for the exposition of gemetry to resume the purely dednctive form. But the treatment in the books which lave litherto appoared makes the woplk of laying the fommelations seem so formudable as cither to require for itself a seprarate treatise, or to le passed over without attention to more than the outlines. This is partly due to the fact that m giving the complete foundation for orlinary real or complex geometry, it is necessary to make a sturly of limear orler and continuity, - a study whied is not only extremely delicate, but whose methods are those of the theory of functions of a real variable rather than of elemelntary geometry.

The present work, which is to consist of two volumes and is intended to be available as a toxt in courses offered in American universilies to upper-class and graduate students, seeks to avod this dilfieulty by deferring the study of order and continuity to the seeond volume. The more elementary part of the subject rests on a very simple set of assumptions which characterize what may be calleyl "greneral projective geometry." It will be found that the theorems selected on this basis of logical simpheity are also elementary in the senso of being easily comprehencled and often used.

Bven the limited space devoted in this volume to the foundations may seem a drawhack from the pedagogical point of view of some mathematicians. To this we can only reply that, in our opinion, an adequate knowledge of geometry camnot be obtained without attention to the foundations. We believe, moreover, that the abstract treatment is peculiarly desirable in projective geometry, because it is through the latter that the other geometric disciplines are most readily coördinated, Since it is more natural to derive
the geometrical disciplines associated with the names of Euclid, Descartes, Lobatchewsky, etc., from projective geometry than it is to derive projective geometry from one of them, it is natural to take the foundations of projective geometry as the foundations of all geometry.

The deferring of lincar order and contmuity to the second volume has necessitated the deferring of the discussion of the metric geometries characterized by certain subgroups of the general projective group. Such elementary applications as the metric properties of conics wall therefore be found in the second volume. This will be a disadvantage if the present volume is to be used for a short course in which it is desired to include metric applications. But the arrangement of the material will make it possible, when the second volume is ready, to pass durectly from Chapter VIII of the first volume to the study of order relations (which may themselves be passed over without detanled discussion, if this is thought desirable), and thence to the development of Euclidean metric geometry. We think that much is to be gained pedagogically as well as scientifically by maintainng the sharp distinction between the projective and the metric.

The introduction of analytic methods on a purely synthetic basis in Chapter VI brings clearly to light the generality of the set of assumptions used in this volume. What we call "general projective geometry" is, analytically, the geometry associated with a general number field. All the theorems of this volume are valid, not alone in the ordinaxy real and the ordmary complex projective spaces, but also in the ordinary rational space and in the finte spaces. The bearing of this general theory once fully comprehended by the student, it is hoped that he will gain a vivid conception of the organic unity of mathematics, which recent developments of postulational methods have so greatly emphasized.

The form of exposition throughout the book has been conditioned by the purpose of kceping to the fore such general ideas as group, configuration, lnear dependence, the correspondence be tween and the logical interchangeability of analytic and synthetic methods, etc. Between two methods of treatment we have choser the more conventional in all cases where a new method did not seem to have unquestionable advantages. We have tried also tc
avoid in general the introduction of new terminology. The use of the word on m comnection with duality was suggested by Professor Frank Morley.

We have included among the exercises many theorems which in a largor treatise would naturally have formed part of the text. The moro important and difficult of these have been accompanied by references to other textbooks and to journals, which it is hoped will introduce the student to the literature in a natural way. There has been no systematic effort, however, to trace theorems to their original sources, so that the book may be justly criticized for not always giving due credit to geometors whose results have been usecl.

Our cordial thanks are due to several of our colleagues and studonts who have given us help and suggestions. Dr. H. H. Mitchell has made all the drawings. The proof sheets have been read in whole or in part ly Professors Birkhoff, Eisenhart, and Wedderburn, of Princoton University, and by Dr. R. L. Borger of the University of Illmois. Finally, we desire to express to Ginn and Company our sincero appreciation of the courtesies extended to us.
O. VEBLEN
J. W. YOUNG

August, 1910

In the second impression we have corrected a number of typographical and other errors We have also added (p. 343) two pages of "Notes ant Corrections" dealng with inaccuracies or obscurities which could not be readily dealt with in the text. We wish to express our cordial thanks to those readers who have kindly called our attention to errors and ambiguities.
O.V.
J.W.Y.

August, 1916

INTRODUCTION

ghotion pagm
1 Undefined olements and unproved propositions 1
2. Consistency, categoricalness, undependence. Example of a mathomatical senence 2
3. Ldeal clements in grometry 7
4. Consistency of the notion of points, lines, and plane at infinity 9
5. Projective and metric geometry 12
CHAPTER I
TIIEOREMS OF ALIGNMENTI AND THE PRINCIPLE OF DUALITY
6. The assumptions of alignmont 15
7. Tho plane 17
8 Tho finst assmmption of extension 18
0) The theo-space 20
10. The remaining assumptions of extension for a space of three dimensions 24
11. Tho principle of duality 26
12. Tho theoroms of alignment for a space of n dimensions 29
GIIAPTER II
PROJECTION, SECIION, PERSPEGIIVITY. ELEMENTARY OONFIGURATIONS
18. Projoction, saction, perspectivity 34
14. Thes complete n-pomit, etc. 36
15. Conliguations 38
16. The Destargues ennfiguration 30
17. Perspectave totrahedra 48
18. The quadrangle-quadrilateval configuration 44
10. The fundrmental theorem on quadrangular sets 47
20. Additional remarks concerning the Desargues conflguration 51
CHAPTER III
PROJEOTIVITIES OF TFFE PRIMITIVE GEOMETRIC FORMS OF ONE TWO, AND THREE DIMENSIONS
21. The nine primitive geometric forms 55
22. Perspectivity and projectivity 58
28. The projectivity of one-dimensional primitive forms 59
seOtion vagha
24. General theory of coriespondence. Symbohe tieatment (i4
25. The notion of a group (6)
26. Groups of corrospondences. Invariant elements and figures ${ }^{67}$
27. Gioup properties of projectivities (88
28. Projective transformations of two-dimensional forms 71
20 Projective collmeations of three-dmmensional forms 75
CHAPTER IV
HARMONIO CONSTRUOTIONS AND TIIE FUNDAMENTAL TIIEOREM OE PROJECTIVE GEOMEIRY
30. The projectivity of quadrangular sets 70
31. IImmonie sets 80
32. Nets of rationality on a line 81
33. Nets of rationality in the plane 86
34 Nets of rationality in space. 89
35. The fundamental theorom of projectivity 113
86. The configuration of Pappus Mutually inseribod and cncumscribed tri- angles 18
37. Construction of projectivitios on one-dimensional forms 100
38. Involutions 10\%
80. Axis and center of homology 103
40. Types of collneations in the plane 10%
CHAPTER V
CONIO SECTIONS
41. Definitions. Pascal's and Branchon's theorems 109
42. Tangents. Points of contact 112
43. The tangents to a point conic form a line conic. 116
44. The polar system of a conce 120
45. Degenerate conics 120
46. Desnrgues's theorem on comes 127
47. Pencils and rangos of conics. Order of contrat 128
CIIAPTER VI
ALGEBILA OF POINTS AND ONE-DIMENSIONAL OOÖRDINATE SYSTEMS
48. Addition of points 141
40. Multlpication of points 144
50. The commutative law for multiplication 148
51. The inverse operations 148
52. The abstract concept of a number system. Isomorphism 149
58. Nonhomogeneous cobrdinates 150
54. The analytic expression for a projectivity in a one-dimensional primitive form 152
55. Von Staudt's algebra of throws 157
aECTION pagn
50 The cross ratio 159
57 Coordinates in a not of ratiomality on a che 102
58. Homogenoous coordinates on a hine 103
50. Projective correspondence between the points of two different lines 106
CHAPTER VII
COORDINATE SYSTTEMS IN TWO- AND THREE-DIMENSIONAL FORMS
60. Nonhomogeneous coordmates in a plane 109
01 Simultaneous point and lime coordmates 171
(32. Condition that a point be on a lme 172
63. Ifomogoncous coordmates in the plane 174
64. The lme on two points. The point on two lines 180
05. Pencils of points and lines. Projectivity 181
(68. The equation of a come 185
(i7. Limenr transformations in a plane 187
68. Colhmeations between two different planes 100
60. Nonhomogeneous cobrrlinatios in space 100
70 Homogeneous coordmates in apaco. 104
71. Imear transformations in space 109
72. Finite spacos 201
CIIAlPTER VIII
PIROHECTIVITLES IN ONE-DIMICNSIUNAL FURMS
73. Charactoristic throw and cross ratio 205
74. Projective projectivities 208
75. Groups of projectivities on a lino 209
73. Projective transformations between conics 212
77. Projectivitios on a conic 217
78. Involntions 221
70. Involutions associaterl with a given projectivity 225
80 Harmonic transformations 290
81. Scale on a conic 281
82. Parametric represontation of a conic 284
CIIAPTER IX
aEOMBTRIC CONSTRUCTIONS. INVARIANTS
88. The degree of a geometric problem 236
84. The intersection of a given line with a given conic 240

* 85. Improper clements. Proposilion K_{2} 241

86. Probloms of the second degres 245
87. Invariants of linear and quadratic binary forms 251
88. Proposition K_{n} 254
89. Taylor's theorem. Polar forms 255
SECTION PAGE
90. Invariants and covariants of binary forms 257
91. Ternary and quaternary forms and them mpariants 258
92. Proof of Proposition K_{n} 260
CIIAPTER X
PROJECTIVE TRANSFORMATIONS OF TWO-DIMENSIONAL FORMS
93. Correlations between two-dmensional forms 262
94. Analytic representation of a correlation between two planes 260
05 General projective group. Representation by matrices 208
95. Double points and double lines of a collimation in a plane 271
96. Double pars of a correlation 278
97. Fundamental come of a polarity in a plane 282
98. Poles and molars with respect to a comic. Tangents 284
99. Various definitions of comics 285
100. Pairs of conics 287
102 Problems of the third and fourth degrees 294
CHAPTER XI
Families of lines
101. The regulus 208
102. The polar system of a regulus 300
103. Projective conics 304
104. Linear dependence of lines 311
105. The linear congruence 812
106. The hear complex 810
107. The Plucker line cobrdmates 827
108. Linear families of lines 820
109. Interpretation of line coordinates as point coordinates in S_{5} 381
INDEX 885

PROJECTIVE GEOMETRY

INTRODUCTION

1. Undefined elements and unproved propositions. Geometry deals with the properties of figures in space. Every such figure is made up of various elements (points, lines, curves, planes, surfaces, etc), and these elements bear certann relations to each other (a point lies on a lme, a line passes through a point, two planes intersect, etc). The propositions stating these properties are logically interdependent, and it $1 s$ the object of geometry to discover such propositions and to exhibit their logical interdependence.

Some of the elements and relations, by virtue of their greater simplicity, are chosen as fundamental, and all other elements and relations are defined m terms of them. Since any defined element or relation must be defined in terms of other elements and relations, it is necessary that one or more of the elements and one or more of the relations between them remain enturely undefined; otherwise a vicious carcle is unavoidable. Likewise certain of the propositions are regarded as fundamental, in the sense that all other propositions are derivable, as logical consequences, from these fundamental ones. But here again it is a logical necessity that one or more of the propositions remain entriely unproved; otherwise a vicious circle is again inevitable.

The starting point of any strictly logical treatment of geometry (and indeed of any branch of mathematics) must then be a set of undefined elements and relations, and a set of unproved propositions involving them; and from these all other proposituons (theorems) are to be derived by the methods of formal logic. Moreover, since we assumed the point of view of formal (i.e symbolic) logic, the undefined elements are to be regarded as mere symbols devoid of content, except as implied by the fundamental propositions. Since it is manifestly absurd to speak of a proposition unvolving these symbols as
self-evident, the unproved propositions referred to above must he regarded as mere assumptions. It is customary to refer to these fundamental propositions as axioms or postulates, but we prefer to retain the term assumption as more expressive of their real logical character.

We understand the term a mathematical science to mean nay set of propositions arranged according to a sequence of logical deduction. From the point of view developed above such a science is purely abstract If any concrete system of things may be regarded as satisfying the fundamental assumptions, this system is a conercte appplication or rapresentation of the abstract science. The practical mportance or triviality of such a science depends simply on the importance or triviallity of its possible applications. These idens will be illustrated and further cliscussed in the next section, where it will appear that an abstract treatment has many advantagos quile apart from that of logical rigor.
2. Consistency, categoricalness, independence. Example of a mathematical science. The notion of a class* of objects is fundomental in logic and therefore in any mathematical science. The objects which make up the class are called the clements of the class. The notion of a class, moreover, and the relation of belonging to a class (being included in a class, being an element of a class, etc.) are primitive notions of logic, the meaning of which is not here called in question. \dagger

The development of the preceding section may now be illustrated and other important conceptions introduced by considering a simple example of a mathematical science. To this end let S be a class, the elements of which we will denote by A, B, C, \ldots Further, let there be certain undefined subclasses \ddagger of S, any one of which we will call an m-class Concerning the elements of S and the m-classes we now make the following

Assumptions:

I. If A and B are distinct elements of S , there is at least one m-class containing both A and B.

[^0]II. If A and B are distinct elements of S , there is not more than one m-clnss containing both A and B.
III. Any two m-classes lutwe at least one element of S in romanon.

IV There exists at least one m-class
V. Every m-class contanns at least lhree elenents of S .
VI. All the elements of S do not belong to the same m-class.
VII. No m-class contains more than three elements of S .

The reader will observe that in this set of assumptions we have just two undefined terms, viz, element of S and m-class, and one undefined relation, belonging to a class The undefined terms, moreover, are entirely devoid of content except such as is implied in the assumptions

Now the first question to ask regardung a set of assumptions is: Are they logrcally consistent? In the example above, of a set of assumptions, the reader will find that the assumptions are all true statements, of the class S is interpreted to mean the digits $0,1,2,3$, $4,5,6$ and the m-classes to mean the columns in the following table:

0	1	2	3	4	5	6
1	2	3	4	5	6	0
3	4	5	6	0	1	2

This interpretation is a concrete representation of our assumptions. Every proposilion derived from the assumptions must be true of this system of triples. Hence none of the assumptions can be logically inconsistent with the rest; otherwise contradictory statements would be true of this system of triples.

Thus, in general, a set of assumptions is said to be consistent if a single concrete representation of the assumptions ean be given.*

Knowing our assumptions to be consistent, we may proceed to derive some of the theorems of the mathematical science of which they are the basis:

Any two distinct elements of S determine one and only one m-class containing both these elements (Assumptions I, II).

[^1]The m-class containing the elements A and B may conveniently be denoted ly the symbol $A B$

Any two m-rlasses have one and only one element of S in commons (Assumptions II, III).

Therc exist three elements of S which are not all in the same m-class (Assumptions IV, V, VI).

In accordance with the last theorem, let A, B, C be three elements of S not in the same m-class. By Assumption V there must be a third element in each of the m-classes $A B, B C, C A$, and by Assumption II these elements must be distinct from each other and from A, B, and C Let the new elements be D, E, G, so that each of the triples $A B D, B C E, C A G$ belongs to the same m-class. By Assumption III the m-classes $A E$ and $B G$, which are distinct from all the m-classes thus far obtained, have an element of S in common, which, by Assumption II, is distinct from those hitherto mentioned; let it be denoted by F, so that each of the triples $A E F F$ and $B F G$ belong to the same m-class. No use has as yet been made of Assumption VII. We have, then, the theorem.

Any class S subject to Assumptions I-VI contains at least seven elements.

Now, making use of Assumption VII, we find that the m-classes thus far obtained contain only the elements mentioned. The n_{l}-classes $C D$ and "AEF have an element in common (by Assumption III) which cannot be A or E, and must therefore (by Assumption VII) be F. Similarly, $A C G$ and the m-class $D E$ have the element G in common. The seven elements A, B, C, D, E, F, G have now been arranged into m-classes according to the table

$\left(1^{\prime}\right) \quad$| A | B | C | D | B | F | G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| B | C | D | E | F | G | A |
| D | H | F | G | A | B | C |

in which the columns denote m-classes The reader may note at once that this table is, except for the substitution of letters for digits, entirely equivalent to Table (1); indeed (1^{\prime}) is obtained from (1) by replacing 0 by $A, 1$ by $B, 2$ by C, etc. We can show, furthermore, that S can contain no other elements than $A, B, C, D, E i, F, G$. For suppose there were another element, T. Then, by Assumption III,
the n-classes $T A$ and $B F G$ would have an element in common. This element caunot be B, for then $A B T D$ would belong to the same m-class; it camnot be F, for then $A F T E$ would all belong to the same m-class, and it cannot be G, for then $A G T C$ would all belong to the same m-class. These three possiblities all contradict Assumption VII. Hence the existence of T would imply the existence of four elements in the m-class $B F G$, which is likewise contrary to Assumption VII.

The properties of the class S and its m-classes may also be represented vividly by the accompanying figure (fig. 1). Here we have represented the elements of S by points (or spots) in a plane, and have joined by a line every triple of these points which form an m class. It is seen that the points may be so chosen that all but one of these lines is a stranght line. This suggests at once a smilanty to ordinary plane geometry. Suppose we interpret the elements of

Fig 1 S to be the points of a plane, and interpret the m-classes to be the straight lines of the plane, and let us reread our assumptions with this interpretation Assumption VII is false, but all the others are true with the exception of Assumption III, which is also true except when the lines are parallel. How this exception can be removed we will discuss in the next section, so that we may also regard the ordinary plane geometry as a representation of Assumptions I-VI.

Returning to our mmature mathematical science of triples, we are now in a position to answer another important question. To what extent do Assumptions I-VII characterize the class S and the m-classes? We have just seen that any class S satisfying these assumptions may be represented by Table (1^{\prime}) merely by properly labeling the elements of S. In other words, if S_{1} and S_{2} are two classes S subject to these assumptions, every element of S_{1} may be made to correspond* to a unique element of S_{2}, in such a way that every element of S_{2} is the correspondent of a unique element of S_{1}, and that to every m-class of S_{1} there corresponds an m-class of S_{2}. The two classes are

[^2]then said to be in one-to-one recrprocal correspondence, or to be simply isomorphic.* Two classes S are then absiractly equivalent; 1 e there exists essentially only one class S satisfying Assumptions I-VII This leads to the following fundamental notion:

A set of assumptions is said to be cateyorical, if there us essentially only one system for which the assumptions are valud; ie. if any two such systems may be made simply isomorphic.

We have just seen that the set of Assumptions I-VII is categor1cal. If, however, Assumption VII be omitted, the remaining set of six assumptions is not categorical. We have already observed the possibulity of satisfying Assumptions I-VI by ordinary plane geomtry. Since Assumption III, however, occupies as yet a doubtful position in this interpretation, we give another, which, by virtue of its simplicity, is pecularly adapted to make clear the distinction between categorical and noncategorical. The reader will find, namely, that each of the first six assumptions is satisfied by interpreting the class S to consist of the dıgits $0,1,2, \ldots, 12$, arranged according to the following table of m-classes, every column constituting one m-class:

(2) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 |
| 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Hence Assumptions I-VI are not sufficient to characterize completely the class S, for it is evident that Systems (1) and (2) cannot be made isomorphic. On the other hand, it should be noted that all theorems derivable from Assumptions I-VI are valid for both (1) and (2). These two systems are two essentially different concrete representations of the same mathematical science.

This brings us to a third question regardng our assumptions: Are they independent? That is, can any one of them be derived as a logical consequence of the others 2 Table (2) is an example which shows that Assumption VII is independent of the others, because it shows that they can all be true of a system in which Assumption VII is false. Again, if the class S is taken to mean the three letters A, B, C,

[^3]and the m-classes to consist of the pairs $A B, B C, C A$, then it is cleqr that Assumptions I, II, III, IV, VI, VII are true of this class S , and therefore that any logical consequence of them is true with this interpretation. Assumption V, however, is false for this class, and cannot, therefore, be a logical consequence of the other assumptions. In like manuer, other examples can be constructed to show that each of the Assumptions I-VII is independent of the remaining ones.
3. Ideal elements in geometry. The miniature mathematical science which we have just been studying suggests what we must do on a larger scale in a geometry which describes our ordinary space. We must first choose a set of undefined elements and a set of fundamental assumptrons This chonce is in no way prescribed a priori, but, on the contrary, is very arbitrary. It is necessary only that the undefined symbols be such that all other elements and relations that occur are definable in terms of them; and the fundamental assumpthons must satisfy the prime requirement of logical consistency, and be such that all other propositions are derivable from them by formal logre. It is desirable, further, that the assumptions be independent* and that certain sets of assumptions be categorical. There 1s, further, the desideratum of utmost symmetry and generality in the whole body of theorems. The latter means that the applicability of a theorem shall be as wide as possible. This has relation to the arrangement of the assumptions, and can be attained by using in the proof of each theorem a minımum of assumptions. \dagger

Symmetry can frequently be obtained by a judicious choice of terminology. Thus is well illustrated by the concept of "points at infinily" which is fundamental in any treatment of projective geometry. Let us note first the reciprocal character of the relation expressed by the two statements:

A point lies on a line. A line passes through a point.
To exhibit clearly this reciprocal character, we agree to use the phrases
A point is on a line; A line is on a point

[^4]to express this relation Let us now consider the following two propositions:

1. Any two distinct points of a plane are on one and only one line.*
1^{\prime} Any two distinct lines of a plane are on one and only one pont.

Either of these propositions is obtained from the other by simply interchanging the words point and line. The first of these propositions we recognize as true without exception in the ordinary Euclidean geometry. The second, however, has an exception when the two lines are parallel. In view of the symmetry of these two propositions it would clearly add much to the symmetry and generality of all propositions derivable from these two, if we could regard them both as true without exception. This can be accomplished by attributing to two parallel lines a point of intersection. Such a pount is not, of course, a point in the ordinary sense; it is to be regarded as an ideal point, whech we suppose two parallel lines to have in common. Its introduction amounts merely, to a change in the ordinary terminology. Such an ideal point we call a point at infinity; and we suppose one such point to exist on every line \dagger

The use of thas new term leads to a change in the statement, though not in the meaning, of many familiar propositions, and makes us modify the way in which we think of points, lmes, etc. Two nonparallel lines cannot have in common a point at infinity without doing violence to propositions 1 and 1^{\prime}; and smee each of them has a point at infinity, there must be at least two such points Proposition 1, then, requires that we attach a meaming to the notion of a line on two points at infinity. Such a line we call a line at infinity, and think of it as consisting of all the points at infinity in a plane. In like manner, if we do not confine ourselves to the points of a single plane, it is found desirable to introduce the notion of a plane through three points at infinity which are not all on the same line at infinity. Such a plane we call a plane at infinity, and we think

[^5]of it as consisting of all the points at mfinty in space. Every ordinary plane is supposed to contann just oue lue at infinity, every system of parallel planes in space is supposed to have a line at infinity in common with the plane at infinty, etc

The fact that we have difficulty in presenting to our imagmation the notions of a point at infinity on a line, the line at infinty in a plane, and the plane at infinity in space, need not disturb us in this connection, provided we can satisfy ourselves that the new termmology is self-consistent and cannot lead to contradictions The latter coudution amounts, in the treatment that follows, simply to the condition that the assumptions on which we buld the subsequent theory be consistent. That they are consistent will be shown at the time they are introduced. The use of the new terminology may, however, be justified on the basis of ordmary analytic geometry. Thus we do in the next section, the developments of which will, moreover, be used frequently in the sequel for proving the consistency of the assumptions there made.
4. Consistency of the notion of points, lines, and plane at infinity. We will now reduce the question of the consistency of our new terminology to that of the consistency of an algebraic system For this purpose we presuppose a knowledge of the elements of analytic geometry of three dimensions.* In this geometry a point is equivalent to a set of three numbers (x, y, z). The totality of all such sets of numbers constitute the analytic space of three dimensions. If the numbers are all real numbers, we are dealng with the ordinary "real" space; If they are any complex numbers, we are dealng with the ordtnary " complex" space of three dimensions. The following discussion applies primarily to the real case

A plane is the set of all points (number triads) which satisfy a single linear equation

$$
a x+b y+c z+d=0
$$

A line is the set of all points which satisfy two linear equations,

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0, \\
& a_{2} x+b_{2} y+c_{2} z+d_{2}=0,
\end{aligned}
$$

[^6]provided the relations
$$
\frac{a_{1}}{c_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$
do not hold *
Now the points (x, y, z), with the exception of $(0,0,0)$, may also be denoted by the direction cosines of the lme joming the point to the orgin of coordinates and the dsstance of the point from the origin; say by
$$
\left(l, m, n, \frac{1}{d}\right),
$$
where $d=\sqrt{ } x^{2}+y^{2}+z^{2}$, and $l=\frac{x}{d}, m=\frac{y}{d}, n=\frac{z}{d}$. The origin itself may be denoted by ($0,0,0, k$), where k is arbitrary. Moreover, any four numbers ($\left.x_{1}, x_{2}, x_{3}, x_{4}\right)\left(x_{4} \neq 0\right)$, proportional respectively to $\left(l, m, n, \frac{1}{d}\right)$, will serve equally well to represent the point (x, y, z), provided we agree that ($\left(x_{1}, x_{2}, x_{8}, x_{4}\right)$ and ($c x_{1}, c x_{2}, c x_{8}, c x_{4}$) represent the same point for all values of c different from 0 . For a point (x, y, z) determines
\[

$$
\begin{array}{cc}
x_{1}=\begin{array}{cc}
c x & \sqrt{x^{2}+y^{2}+z^{2}}=c l, \\
x_{2}= & c y \\
\sqrt{ } x^{2}+y^{2}+z^{2} & =c m, \\
x_{3}= & \\
\sqrt{ } x^{2}+y^{2}+z^{2} & =c n, \\
x_{4}= & \begin{array}{c}
c \\
\sqrt{2} x^{2}+y^{2}+z^{2}
\end{array}=\frac{c}{d},
\end{array},
\end{array}
$$
\]

where c is arbitrary $(c \neq 0)$, and ($\left.x_{1}, x_{2}, x_{3}, x_{4}\right)$ determines

$$
\begin{equation*}
x=\frac{x_{1}}{x_{4}}, \quad y=\frac{x_{2}}{x_{4}}, \quad z=\frac{x_{8}}{x_{4}}, \tag{1}
\end{equation*}
$$

provided $x_{4} \neq 0$.
We have not assigned a meaning to $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ when $x_{4}=0$, but it is evident that if the point $\left(c l, c m, c n, \frac{c}{d}\right)$ moves away from the origin an unlimited distance on the line whose direction cosines are l, m, n, its coördinates approach ($c l, c m, c n, 0$). A little consideration will show that as a point moves on any other line with direction

[^7]cosines l, n, n, so that its distance from the origm increases indefinitely, its coördinates also approach (cl, cm, cn, 0) Furthermore, these values are approached, no matter in which of the two opposile directions the point moves away from the origin. We now define (x_{1}, x_{2}, $x_{8}, 0$) as a point at infinity or an ideal point We have thus associated with every set of four numbers ($x_{1}, x_{2}, x_{3}, x_{4}$) a point, ordinary or ideal, with the exception of the set ($0,0,0,0$), which we exclucle entirely from the discussion The ordmary points are those for which x_{4} is not zero; their ordinary Cartesian coordinates are given by the equations (1). The ideal points are those for which $x_{4}=0$. The numbers ($x_{1}, x_{2}, x_{3}, x_{4}$) we call the homogencous coördinates of the point.

We now define a plane to be the set of all points ($x_{1}, x_{2}, x_{3}, x_{4}$) which satisfy a lunear homogeneous equation.

$$
a x_{1}+b x_{2}+c x_{3}+d x_{4}=0 .
$$

It is at once clear from the preceding discussion that as far as all ordmary points are concerned, this definition is equivalent to the one given at the beginning of this section. However, according to this definition all the ideal points constritute a plane $x_{4}=0$. This plane we call the plane at infinity In like manner, we define a line to consist of all points ($x_{1}, x_{2}, x_{3}, x_{4}$) which satisfy two distinct linear homogeneous equations:

$$
\begin{aligned}
& a_{1} x_{1}+b_{1} x_{2}+c_{1} x_{3}+d_{1} x_{4}=0, \\
& a_{2} x_{1}+b_{2} x_{2}+c_{2} x_{8}+d_{2} x_{4}=0 .
\end{aligned}
$$

Since these expressions are to be distinct, the corresponding coefficients throughout must not be proportional. According to this definition the points common to any plane (not the plane at infinity) and the plane $x_{4}=0$ constitute a line Such a line we call a line at infinity, and there is one such in every ordinary plane. Finally, the line defined above by two equations contans one and only one point with coördinates ($x_{1}, x_{2}, x_{8}, 0$); that is, an ordınary lune contains one and only one point at infinity. It is readily seen, moreover, that with the above definitions two parallel lines have ther points at infinity in common.

Our discussion has now led us to an analytic definition of what may be called, for the present, an analytic projective space of three dimensions. It may be defined, in a way which allows it to be either real or complex, as consisting of;

Points: All sets of four numbers ($x_{1}, x_{2}, x_{8}, x_{4}$), except the set $(0,0,0,0)$, where ($c x_{1}, c x_{2}, c x_{3}, c x_{4}$) is regarded as identical with ($x_{1}, x_{2}, x_{3}, x_{4}$), provided c is not zero.

Planes: All sets of points satisfying one linear homogeneous equation.

Lines: All sets of points satisfyng two distnct linear homogeneous equations.

Such a projective space cannot involve contradictions unless our ordinary system of real or complex algebra is inconsistent. The definitions here made of points, lines, and the plane at infinity are, however, precisely equivalent to the corresponding notions of the preceding section. We may therefore use these notions precisely in the same way that we consider ordinary points, lines, and planes. Indeed, the fact that no exceptional properties attach to our ideal elements follows at once from the symmetry of the analytic formulation; the coördunate x_{4}, whose vanishng gives rise to the ideal points, occupies no exceptional position in the algebra of the homogeneous equations. The ideal points, then, are not to be regarded as dufferent from the ordinary points.

All the assumptions we shall make in our treatment of projective geometry will be found to be satisfied by the above analytic creation, which therefore constitutes a proof of the consistency of the assumptions in question This the reader will verify later.
5. Projective and metric geometry. In projective geometry no distinction is made between ordinary points and points at infinity, and it is evident by a reference forward that our assumptions provide for no such distanction. We proceed to explain this a little more fully, and will at the same time indıcate in a general way the difference between projective and the ordinary Euclidean metric geometry.

Confining ourselves first to the plane, let m and m^{\prime} be two distinct lines, and P a point not on either of the two lmes. Then the points of m may be made to correspond to the points of m^{\prime} as follows: To every point A on m let correspond that pount A^{\prime} on m^{\prime} in. which m^{\prime} meets the line joming A to P (fig. 2). In this way every point on either line is assigned a unique corresponding point on the other line. This type of correspondence is called perspective, and the points on one line are said to be transformed into the points of the other by
a perspective transformation with center P If the points of a line m be transformed into the points of a lme m^{\prime} by a perspective transformation with center P, and then the points of m^{\prime} be transformed into the points of a third line $m^{\prime \prime}$ by a parspective transformation with a new center Q; and if this be contmued any finite number of times, ultimately the points of the lime m will have been lorought into correspondence with the points of a line $m^{(n)}$, say, in such a way that every point of m corresponds to a unique point of $m^{(n)}$. A correspondence obtained in this way is called projective, and the points of m are said

Fig 2
to lave been transformed moto the points of $m^{(n)}$ by a projective transformation.

Similarly, in three-dimensional space, if lines are drawn joining every point of a plane figure to a fixed point P not in the plane π of the figure, then the pounts an whinch thes totality of lines meets another plane π^{\prime} will form a new figure, such that to every point of π will correspond a unique point of π^{\prime}, and to every line of π will correspond a umque lime of π^{\prime} We say that the figure in π has been transformed into the figure in π^{\prime} by a perspective transformatron with center P. If a plane figure be subjected io a succession of such perspective transformations with different centers, the final figure will still be such that its points and lines correspond uniquely to the points and lines of the orignal figure. Such a transformation is again called a projective transformation. In projective geometry two figures that may be made to correspond to each other by means of a projective transformation are not regarded as different. In other words,
projective geometry is concerned wuth those propertics of figures that are left unchanged when the figures arc subjectced to a projective transformation.

It is evident that no properties that involve essentially the notion of measurement can have any place in projective geometry as such;* hence the term projective, to distnguish it from the orliuary geometry, which is almost exclusively concerned with properties involving the idea of measurement. In case of a plane figure, a perspective transformation is clearly equivalent to the chauge brought about in the aspect of a figure by looking at it from a dufferent angle, the observer's eye being the center of the perspective transformation The properties of the aspect of a figure that remain unaltered when the observer changes his position will then le properties with which projective geometry concerns itself. For this reason von Staudt called this science Geometrie der Lage

In regard to the points and lines at mfinty, we can now see why they cannot be treated as in any way different from the ordinary points and lines of a figure. For, in the example given of a perspective transformation between lines, it is clear that to the point at infinty on m corresponds in general an ordmary point on m^{\prime}, and conversely. Aud in the example given of a perspective transformation between planes we see that to the line at infinity in one plane corresponds in general an ordnary line in the other. In projective geometry, then, there can be no distinction between the ordinary and the ideal elements of space.

[^8]
CHAPTER I

THEOREMS OF ALIGNMENT AND THE PRINCIPLE OF DUALITY

6. The assumptions of alignment. In the followmg treatment of projective geometry we have chosen the point and the line as undefined elements We consider a class (cf. § 2, p. 2) the elements of which we call points, and certain undefined classes of points which wo call lancs Here the words point and line are to be regarded as mere symbols devoid of all content except as mpphed in the assumptions (presently to be made) concernung them, and which may represent any elements for which the latter may be valid propositions. In other words, these elements are not to be considered as having properties in common with the points and lines of ordinary Euclidean geometry, except in so far as such properties are formal logical consequences of explicitly stated assumptions.

We shall in the future generally use the capital letters of the alphabet, as A, B, C, P, etc., as names for points, and the small letters, as a, b, c, l, etc, as names for lunes. If A and B denote the same point, this will be expressed by the relation $A=B$, if they represent distinct points, by the relation $A \neq B$ If $A=B$, it is sometimes said that A coincides with B, or that A is coincident with B. The same remarks apply to two lues, or indeed to any two elements of the same kind.

All the relations used are defined in general logical terms, mamly by means of the relation of belonging to a class and the notion of one-to-one correspondence. In case a point is an element of one of the classes of points which we call lines, we shall express this relation by any one of the phrases: the point is on or lies on or us a point of the line, or is united with the line; the line passes through or contains or is united with the point. We shall often find it comvenient to use also the phrase the line is on the point to express this relation. Indeed, all the assumptions and theorems in this chapter will be stated consistently in this way. The reader will quickly become accustomed to this " on" language, which is introduced with the purpose
of exhrbiting in its most elegant form one of the most far-reaching theorems of projective geometry (Theorem 11). Two lines which have a point in common are sald to entersect in or to meet in that pount, or to be on a common point. Also, if two distinct points lee on the same line, the line is sadd to join the points. Points which are on the same line are said to be collinear; points which are not on the same line are said to be noncollinear. Lines which are on the same point (1.e contain the same point) are said to be copunctal, or concurrent*

Concerning points and lines we now make' the following assumptions:

The Assumptions of Alignment, A•
A1. If A and B are distinct points, there is at least one line on both A and B.

A2 If A and B are distinct points, there is not more than one line on both A and B.
A. 3 If A, B, C are points not all on the same line, and D and $E(D \neq E)$ are points such that B, C, D are on a line and C, A, E

Fig 3 are on a line, there is a point F such that A, B, F are on a line and also D, E, F arc on a line (fig 3). \dagger

It should be noted that this set of assumptions is satisfied by the triple system (1), p 3, and also by the system of quadruples (2), p. 6, as well as by the points and lmes of ordinary Euchdean geometry with the notion of "points at mfinity" (cf. § 3, p. 8), and by

[^9]the "analytic projective space" described in § 4. Any one of these representations shows that our set of Assumptions A is consistent.*

The following three theorems are immediate consequences of the first two assumptions.

Tireorem 1 Two distinct points are on one and only one line. (A1, A 2) \dagger

The line determmed by the points $A, B(A \neq B)$ will often be denoted by the symbol or name $A B$.

Theorem 2 If C and $D(C \neq D)$ are points on the line $A B, A$ and B are points on the line $C D$. (A1, A2)

Theorig 3. Two dustnnet lines cannot be on more than one common point. (A 2)

Assumption A 3 will be used in the derivation of the next theorem. It may be noted that under Assumptions A1, A2 it may be stated more conveniently as follows. If A, B, C are points not all on the same line, the line joining any point D on the line $B C$ to any point $E(D \neq E)$ on the line $C A$ meets the line $A B$ in a point F. This is the form in which thus assumption is generally used in the sequel.
7. The plane. Definition. If P, Q, R are three points not on the same lme, and l is a line joining Q and R, the class S_{a} of all points on the lines joining P to the points of l is called the plane determined by P and l.

We shall use the small leiters of the Greek alphabet, $\alpha, \beta, \gamma, \pi$, etc, as names for planes. It follows at once from the definition that P and every point of l are points of the plane determined by P and l.

Theorem 4 If A and B are points on a plane π, then every point on the line $A B$ is on π. (A)

Proof. Let the plane π under consideration be determined by the point P and the line l.

[^10]1 If both A and B are on l, or if the lime $A B$ contains P, the theorem is inmediate.
2. Suppose A is on l, B not on l, and $A B$ does not contain P (fig. 4). Since B is a pount of π, there is a poiut B^{\prime} on l collinear with B and P.

Fis. 4

If C be any point on $A B$, the line joining C on $A B$ to P on $B B^{\prime}$ will have a point T in common with $A B^{\prime}=l(\mathrm{~A} 3)$. Hence C is a point of π.
3. Suppose neither A nor B is on l and that $A B$ does not contain P (fig 5) Sunce A and B are points of π, there exist two points A^{\prime} and B^{\prime} on l collinear with A, P and B, P respectively. The line joining A on $A^{\prime} P$ to B on $P B^{\prime}$ has a point Q in common with $B^{\prime} A^{\prime}$ (A 3). Hence every point of the line $A B=A Q$ is a point of π, by the preceding case This completes the proof If all the points of a line are points of a plane, the line is said to be a line of the plane, or to lie in or to be $2 n$ or to be on the plane; the plane is said to pass through, or to contain the line, or we may also say the plane is on the line. Further, a point of a plane is said to be in or to lie in the plane, and the plane is on the point.

Fig. 5
8. The first assumption of extension. The theorems of the preceding section were stated and proved on the assumption (explicitly stated in each case) that the necessary points and lines exist. The assumptions of extension, E, insuring the existence of all the points which we consider, will be given presently. The first of these, however, it is desirable to introduce at this point.

An Assumption of Extension:
E 0. There are at least three points on every line.
This assumption is needed in the proof of the following
Theorem 5. Any two lines on the same plane π are on a common point. (A, E 0)

Proof. Let the plane π be determined by the point P and the line l, and let a and b be two distinct lines of π.

1. Suppose u coincades with l (fig 6). If l contains P, any point
 B of $b(\mathrm{E} 0)$ is collinear with P and some point of $l=a$, which proves the theorem when b contains P If b does not contain P, there exist on b two points A and B not on $l(\mathrm{E} 0)$, and since they are points of π, they are collinear with P and two points A^{\prime} and B^{\prime} of l respectively. The line joining A on $A^{\prime} P$ to B on $P B^{\prime}$ has a point R in common with $A^{\prime} B^{\prime}$ (A 3), 1.e. $l=a$ and b have a point in common. Hence every line in the plane π has a point in common with l.

2 Let a and b both be distinct from l. (1) Let a contain P (fig. 7) The line jouning P to any point B of b (E 0) has a point B^{\prime} in common wilh l (Case 1 of this proof) Also the lines a and b have points A^{\prime} and R respectively in common with l (Case 1). Now the line $A^{\prime} P=a$ contains the points A^{\prime} of

Fig 7 $R B^{\prime}$ and P of $B^{\prime} B$, and hence has a point A in common with $B R=b$.

Fig 8

Hence every line of π has a point in common with any line of π through P. (ii) Let neither a nor b contain P (fig. 8). As before, a and b meet l in two points Q and R respectively. Let B^{\prime} be a point of l distinct from Q and R (E 0). The line $P B^{\prime}$ then meets a and b in two points A and B respectively (Case 2, (i)). If $A=B$, the theorem is proved. If $A \neq B$, the line b has the point R in common with $Q B^{\prime}$ and the point B in common with $B^{\prime} A$, and hence has a point in common with $A Q=a(\mathrm{~A} 3)$.

Theorem 6 The plane a determined by a line l and a point P is identical with the plane β determined by a line in and a point Q, provided on and Q are on $a(\mathrm{~A}, \mathrm{E} 0)$

Proof. Any point B of β is collinear with Q and a point A of m (fig. 9) A and Q are both points of α, and hence every point of the line $A Q$ is a point of α (Theorem 4). Hence every point of β is a point of α. Conversely, let B be any point of a. The line $B Q$ meets m in a point (Theorem 5). Hence every point of α is also a point of β.

Corollary. There is one and only one plane determined by thrce noncollinear points, or by a line and a point not on the line, or by two intersecting lines. ($\mathrm{A}, \mathrm{E} 0$)
The data of the corollary are all equivalent by virtue of E 0 . We will denote by $A B C$ the plane determined by the points A, B, C; by $a A$ the plane determined by the line a and the point A, etc.

Tineorem 7. Two distinet planes which are on two common points $A, \mathcal{B}(A \neq B)$ are on all the points of the line $A B$, and on no other common points. (A, E 0)

Proof. By Theorem 4 the line $A B$ lies in each of the two planes, which proves the first part of the proposition. Suppose C, not on $A B$, were a point common to the two planes. Then the plane determined by A, B, C would be identical wilh each of the given planes (Theorem 6), which coniradicts the hypothesis that the planes are distinct.

Corollary. Two distinet planes cannot be on more than one common line. ($\mathrm{A}, \mathrm{E} 0$)
9. The three-space. Derinition. If P, Q, R, T are four points not in the same plane, and if π is a plane containing Q, R, and T, the class S_{a} of all points on the lines joining P to the points of π is called the space of three dimensions, or the three-space determined by P and π.

If a point belongs to a three-space or is a point of a three-space, it is said to be in or to lie in or to be on the three-space. If all the points of a line or plane are points of a three-space S_{β}, the line or plane is said
to lie in or to be in or to be on the S_{3} Also the three-sprace is sadd to be on the point, line, or plane. It is clear from the defimiton that P^{\prime} and every point of π are pomis of the three-space determined by P and π.

Tineormm 8 If A and B are distnnct ponts on a three-space S_{3}, every point on the line $A B$ is on S_{3} (A)

Fig. 10

Proof. Let S_{3} be determined by a plane π and a point P.

1. If A and B are both in π, the theorem is an immediate consequence of Theorem 4.

2 If the lime $A B$ contains P, the theorem is obvious.

3 Suppose A is in π, B not in π, and $A B$ does not contain P (fig. 10) There then exists a point $B^{\prime}(\neq A)$ of π collinear with B and P (def). The line joining any point M on $A B$ to P on $B B^{\prime}$ has a point M^{\prime} in common with $B^{\prime} A(\mathrm{~A} 3)$. But M^{\prime} is a point of π, snce it is a point of $A B^{\prime}$. Hence $M I_{\text {is a point of } \mathrm{S}_{3} \text { (def.). }}^{\text {is }}$.
4. Let neither A nor B he in π, and let $A B$ not contam P (fig. 11). The lines $P A$ and $P B$ meet π in two points A^{\prime} and B^{\prime} respectively. But the line joining A on $A^{\prime} P$ to B on $P B^{\prime}$ has a point C in common with $B^{\prime} A^{\prime} \quad C$ is a point of π, which reduces the proof to Case 3

It may be noted that in this proof no use has been made of E 0 .

In discussing Case 4 we have proved uncidentally, in connection with E0 and Theorem 4, the following corollary:

Fig. 11

Corollary 1 If S_{3} is a three-space determined by a point P and a plane π, then π and any line on S_{s} but not on π are on one and only one common point. ($\mathrm{A}, \mathrm{E} 0$)

Corollary 2 Every point on any plane determined by three noncollinear points on a three-space S_{8} is on S_{3}. (A)

Proof As before, let the three-space be determined by π and P, and let the three noncollinear points be A, B, C. Every point of the line $B C$ is a point of S_{3} (Theorem 8), and every point of the plane $A B C^{*}$ is collmear with A and some point of $B C$

Corollary 3 If a three-space S_{3} is determinced by a point P and a plane π, then π and any plane on S_{3} distinct from π are on one and only one common line ($\mathrm{A}, \mathrm{E} 0$)

Proof. Any plane contains at least three lines not passing through the same point (def., A1). Two of these lines must meet π in two distinct points, which are also points of the plane of the lines (Cor. 1). The result then follows from Theorem 7.

Theorem 9 If a plane a and a line a not on a are on the same three-space S_{8}, then α and a are on one and only one common point. (A, E 0)

Proof. Let S_{s} be determined by che plane π and the point P.

1. If α coincides with π, the theorem reduces to Cor. 1 of Theorem 8.
2. If α is distinct from π, it has

Fig. 12 a line l in common with π (Theorem 8, Cor 3). Let A be any point on α not on l (E 0) (fig. 12) The plane. $a A$, determined by A and a, meets π in a line $m \neq l$ (Theorem 8, Cor. 3). The lines l, m have a point B in common (Theorem 5) The line $A B$ in $a A$ meets a in a point Q (Theorem 5), which is on α, sunce $A B$ is on α. That α and a have no other point in common follows from Theorem 4.

Corollary 1. Any two distinct planes on a three-space are on one and only one common line. ($\mathrm{A}, \mathrm{E} \mathbf{0}$)

The proof is simular to that of Theorem 8, Cor. 3, and is left as an exercise.

Corollary 2 Conversely, if two planes are on a common line, there exists a three-space on bath. ($\mathrm{A}, \mathrm{E} 0$)

[^11]Proof If the planes α and β are distinct and have a line l in common, any point P of β noi on l will determme with r a threespace containing l and P and hence containng β (Theorem 8, Cor 2)

Corollary 3. Thure planes on a threc-space which are not on a common line are on one and only one common point ($\mathrm{A}, \mathrm{E} 0$)

Proof. This follows without difficulty from the theorem and Cor. 1.
Two planes are sald to determine the line which they have in common, and to intersect or meet in that line. Likewise if three planes have a point in common, they are said to intersect or meet in the point.

Corollary 4. If α, β, γ are three distinct planes on the same S_{3} but not on the same line, and of a line l is on each of two planes μ, ν which are on the lines $\beta \gamma$ and $\gamma \alpha$ respectively, then it is on a plane λ which is on the lane $\alpha \beta(\mathrm{A}, \mathrm{E} 0)$

Proof. By Cor. 3 the planes α, β, γ have a point P in common, so that the lines $\beta \gamma, \gamma \alpha, a \beta$ all cuntain P. The line l, being common to planes through $\beta \gamma$ and $\gamma \alpha$, must pass through P, and the lines l and $\alpha \beta$ therefore intersect in P and hence determune a plane λ (Theorem 6, Cor.).

Tifeorem 10. The three-space S_{s} determined by a plane π and
 a point P is identical with the three-space S_{s}^{\prime} determined by a plane π^{\prime} and a point P^{\prime}, provided π^{\prime} and P^{\prime} are on S_{B}. (A, E0)

Proof. Any point A of S_{3}^{\prime} (fig 13) is collinear with P^{\prime} and some point A^{\prime} of π^{\prime}; but P^{\prime} and A^{\prime} are both points of S_{s} and hence A is a point of S_{s} (Theorem 8). Hence every point of $\mathrm{S}_{\mathrm{s}}^{\prime}$ is a point of S_{8}. Conversely, if A is any point of S_{3}, the line $A P^{\prime}$ meets π^{\prime} in a point (Theorem 9). Hence every point of S_{s} is also a point of S_{3}^{\prime}.

Corollary. There is one and only one three-space on four given points not on the same plane, or a plane and a point not on the plane, or two nonintersecting lines. ($\mathrm{A}, \mathrm{E} 0$)

The last part of the corollary follows from the fact that two nonintersecting lines are equivalent to four points not in the same plane (E O).

It is convenent to use the term coplanar to describe points in the same plane. And we shall use the term skew lines for lines that have no point in common. Four noncoplanar points or two skew lues are sadd to determine the three-space in wheh they lie.
10. The remaining assumptions of extension for a space of three dimensions. In § 8 we gave a first assumption of extension We will now add the assumptions which insure the existence of a space of three dimensions, and will exclude from our consideration spaces of higher dimensionality.

Assumptions of Extenston, E:
E1. There exists at least one line.
E 2 . All points are not on the same line
E 3. All points are not on the same plane.
$\mathrm{E} 3^{\prime}$. If S_{8} is a three-space, every point is on S_{8}.
The last may be called an assumption of closure.*
The last assumption might be replaced by any one of several equivalent propositions, such as for example:

Every set of five points lie on the same three-space; or
Any two distinct planes have a line in common (Cf. Cor. 2, Theorem 9)

There is no logical dufficulty, moreover, in replacing the assumption (E 3^{\prime}) of closure given above by an assumption that all the points are not on the same three-space, and then to define a "four-space" in a manner entirely analogous to the definitions of the plane and to the three-space already given. And indeed a meanmg can be given to the words point and line such that this last assumption is satisfied as well as those that precede it (excepting E 3^{\prime} of course). We could thus proceed step by step to define the notion of a linear space of any number of dimensions and derive the fundamental properties of alignment for such a space. But that is aside from our present purpose. The derivation of these properties for a four-space will furnish an excellent exercise, however, in the formal reasoning here emphasized (cf Ex. 4, p. 25). The treatment for the n-dimensional case will be found in § 12, p. 29.

[^12]The following corollaries of extension are readily derived from the assumptions just made The proofs are left as exercises

Corollary 1 At least three coplanar lines are on every point.
Corollary 2 At least three distinct planes are on every line.
Corollary 3. All planes are not on the same line.
Corollary 4 All planes are not on the same point.
Corollary 5. If S_{a} is a three-space, every plane is on S_{a}.

EXERCISES

1 Prove that through a given point P not on either of two skew lines l and l^{\prime} there $1 s$ one and only one line meeting both the lines l, l^{\prime}.

2 Prove that any two lines, each of which meets thiee given skew lines, are skew to each other.

3 Our assumptions do not as yet determine whether the number of points on a lue is finite or infinite Assuming that the number of points on one line is finte and equal to $n+1$, prove that
i. the number of points on every line is $n+1$;
ii. the number of points on every plane is $n^{2}+n+1$;
iii. the number of pounts on evely three-space is $n^{8}+n^{2}+n+1$;
iv. the number of lines on a three-space is $\left(n^{2}+1\right)\left(n^{2}+n+1\right)$;
v. the number of lines meeting any two skew lines on a three-space is $(n+1)^{2}$,
vi the number of lines on a point or on a plane is $n^{2}+n+1$.
4 Using the defintion below, prove the following theorems of algnment for a four-space on the lasis of Assumptions A and E 0 .

Definition. If P, Q, R, S, T are five points not on the same three-space, and S_{8} is a three-space on Q, R, S, T, the class S_{4} of all points on the lines joinng P to the points of S_{8} is called the four-space determined by P and S_{8}.
i. If A and B are distunct points on a four-space, every point on the line $A B$ is on the four-space.
11. Every lune on a four-space $P Q R S T$ which is not on the three-space QRST has one and only one point in common with the three-space
iii Every point on any plane determined by thee noncollinear points on a four-space is on the four-space.

1v. Every point on a three-space determined by four noncoplanar points of a four-space is on the four-space.
v. Every plane of a four-space determined by a point P and a three-space S_{s} has one and only one line in common with S_{8}, propided the plane is not on S_{3}.
vi. Every three-space on a four-space determined by a point P and a threespace S_{9} has one and only one plane in common with S_{3}, provided it does not coincide with S_{3}.
vil If a three-space S_{3} and a plane a not on S_{3} are on the same four-space, S_{3} and a have one and only one line in common.
vin If a three-space S_{3} and a line l not on S_{3} ane on the same four-space, S_{3} and l have one and only one point in common
ix Two planes on the same four-space but not on the same thee-space have one and only one point in common
x. Any two distinct three-spaces on the same four-space have one and only one plane in common
xi If two three-spaces have a plane in common, they he in the same four-space
xin The four-space S_{4} determined by a three-space S_{3} and a point P is identical with the four-space determmed by a three-space S_{3}^{\prime} and a point P^{\prime}, provided S_{3}^{\prime} and P^{\prime} are on S_{4}.

5 On the assumption that a line contains $n+1$ points, exiend the results of $\operatorname{Ex} 3$ to a fou-space.
11. The principle of duality. It is in order to exhibit the theorem of duality as clearly as possible that we have mntroduced the symmetrical, if not always elegant, terminology:
A point is on a lne.
A line is on a point.
A point is on a plane
A plane is on a point.
A line is on a plane.
A plane is on a line.
A point is on a three-space.
A three-space is on a point.
A line is on a three-space.
A three-space is on a line.
A plane is on a three-space.
A three-space is on a plane.

The theorem in question rests on the following olservation: If any one of the preceding assumptions, theorems, or corollaries is expressed by means of this "on" terminology and then a new proposition is formed by simply interchangmg the words point and plane, then this new proposition will be vald, $1 e$ will be a logical consequence of the Assumptions A and E. We give below, on the left, a complete list of the assumptions thus far made, expressed in the "on" terminology, and have placed on the right, opposite each, the corresponding proposition obtained by interchanging the words point and plane together with the reference to the place where the latter proposition occurs in the preceding sections:

Assumptions A1, A2. If A and B are distinct pounts, there is one and only one line on A and B.

Theorem 9, Cor. 1. If α and β are distinct planes, there is one and only one line on α and β.*

[^13]Assumption A3. If A, B, C are points not all on the same line, and D and $E(D \neq E)$ are points such that B, C, D are on a line and C, A, E are on a lune, then there is a point F such that A, B, F are on a line and also D, E, F are on a line.

Assumption E0. There are at least three points on every line

Assumption E1 There exists at least one line.

Assumption E 2 Allpoints are not on the same line.

Assumption E3 All points are not on the same plane.

Assumption $\mathrm{E} 3^{\prime}$. If S_{3} is a three-space, every point is on S_{3}.

Timorem 9, Cor. 4. If α, β, γ are planes not all on the same line, and μ and $\nu(\mu \neq \nu)$ are planes such that β, γ, μ are on a line and γ, α, ν are on alne, then there is a plane λ such that α, β, λ are on a line and also μ, ν, λ are on a line.

Cor. 2, p. 25. There are at least three planes on every line.

Assumption E 1. There exists at least one line.

Cor 3, p. 25. All planes are not on the same line

Cor. 4, p. 25. All planes are not on the same point.

Cor. 5, p. 25. If S_{3} is a threespace, every plane is on S_{3}

In all these propositions it is to be noted that a line is a class of points whose properties are determined by the assumptions, while a plane is a class of points speccfied by a definition This defintion in the "on" language is given below on the left, together with a definition obtained from it by the interchange of point and plane. Two statements in thas relation to one another are referred to as (space) duals of one another

If P, Q, R are points not on the same line, and l is a line on Q and R, the class S_{2} of all points such that every point of S_{2} is on a lune with P and some point on l is called the plane determined by P and l.

If λ, μ, ν are planes not on the same line, and l is a line on μ and ν, the class B_{2} of all planes such that every plane of B_{2} is on a line with λ and some plane on l is called the bundle determined by λ and l.

Now it is evident that, since λ, μ, ν and l all pass through a point O, the bundle determined by λ and l is sumply the elass of all planes on the point O. In like manner, it is evident that the dual of the definıtion of a three-space is sumply a definition of the olass of all planes on a three-space. Moreover, dual to the class of all planes on a line we have the class of all points on a line, i.e. the line itself, and conversely.

With the ald of these observations we are now ready to establish the so-called principle of duality.

Theorem 11 The theorem of duality for a space of timee dimensions. Any proposition deducible from Assumptions A and E concerning points, lines, and planes of a threc-space remains valid, if stated in the " on" terminology, when the words "point" and "plane" are interchanged (A, E)

Proof. Any proposition deducible from Assumptions A and E is obtained from the assumptions given above on the left by a certan sequence of formal logical inferences Clearly the same sequence of logical mferences may be applied to the corresponding propositions given above on the right. They will, of course, refer to the class of all planes on a line when the origmal argument refers to the class of all points on a line, i.e. to a line, and to a bundle of planes when the orignal argument refers to a plane. The steps of the original argument lead to a conclusion necessarily stated in terms of some or all of the twelve types of "on" statements enumerated at the beginning of this section The derived argument leads in the same way to a conclusion which, whenever the orignal states that a point P is on a lune l, says that a plane π^{\prime} is one of the class of planes on a line l^{\prime}, i.e. that π^{\prime} is on l^{\prime}, or whoh, whenever the original argument states that a plane π is on a point P, says that a bundle of planes on a point P^{\prime} contains a plane π^{\prime}, ie that P^{\prime} is on π^{\prime}. Applying similar considerations to each of the twelve types of "on" statements in succession, we see that to each statement in the conclusion arrived at by the orginal argunent corresponds a statement arrived at by the derived argument in which the words point and plane in the original statement have been simply interchanged.

Any proposition obtained in accordance with the principle of duality just proved is called the space dual of the original proposition. The point and plane are said to be dual elements; the line is selfdual. We may derive from the above sumular theorems on duality in a plane and at a point. For, consider a plane π and a point P not on π, together wilh all the lines joining P with every point of π. Then to every point of π will correspond a line through P, and to every line of π will correspond a plane through P Hence every proposition concerning the points and lines of π is also valid for the corresponding lines and planes through P. The space dual of the latter
proposition is a new proposition concerning lines and points on a plane, which could have been oltaned directly by interchanging the words point and line in the original proposition, supposing the latter to be expressed in the "on" language. This gives

Theorem 12. Tife timborem of duality in a plane. Any proposition deducible from Assumptions A and E concerning the pounts and lines of a plane remains valid, if stated in the "on" terminology, when the words "point" and "line" are interchanged. (A, E)

The space dual of this theorem then gives
Theorem 13. Tife theorem of duality at a point Any proposition deducible from Assumptions A and E concerning the planes and lines through a point remains valid, if stated in the "on" terminology, when the words "plane" and "line" are interchanged (A, E)

The punciple of duality was first stated explocitly by Gergonne (1826), but was led up to by the writungs of Poncelet and others duing the first quarter of the mineteenth century It should be noted that this principle was for several years after 1ts publication the subject of much discussion and often acrimonious dispute, and the treatment of this principle in many standard texts is far from convincing. The method of formal inference from explicitly stated assumptions makes the theoiems appear almost self-evident This may well be regarded as one of the mportant advantages of this method

It is highly desirable that the reader gann proficiency in forming the duals of given propositions. It is therefore suggested as an exercise that he state the duals of each of the theorems and corollanes in this chapter. He should in this case state both the orrginal and the dual proposition in the ordinary terminology in order to gain facilty in dualizing propositions without first stating them in the often cumbersome "on" language. It 28 also desirable that he dualize several of the proofs by writing out in order the duals of each proposition used in the proofs in question.

EXERCISE

Prove the theorem of duality for a space of four dimensions - Any proposition derivable from the assumptions of alignment and extension and closure for a space of four dimensions concerning points, hnes, planes, and threespaces 1 emains vald when stated in the "on" termmology, if the words point and three-space and the words line and plane he interchanged.

* 12. The theorems of alignment for a space of n dimensions. We have already called attention to the fact that Assumption E3', whereby we limited ourselves to the consideration of a space of only

> - `* This section may be omitted on a first reading.

$$
516 \cdot 5 \quad 5221
$$

three dimensions, is entirely arbitrary. This section is devoted to the discussion of the theorems of alignment, ie. theorems derivable from Assumptions A and $E 0$, for a space of any number of dimensions. In this section, then, we make use of Assumptions A and E 0 only.

Definition. If $P_{0}, P_{1}, P_{1}, \cdots, P_{n}$ are $n+1$ points not on the same $(n-1)$-space, and S_{n-1} is an $(n-1)$-space on $P_{1}, P_{2}, \cdots, P_{n}$, the class S_{n} of all points on the lines jorning P_{0} to the points of S_{n-1} is called the n-space determined by P_{0} and S_{n-1}.

As a three-space has already been defined, this definition clearly determines the meaning of " n-space" for every positive integral value of n. We shall use S_{n} as a symbol for an n-space, calling a plane a 2 -space, a line a 1 -space, and a point a 0 -space, when this is convenient. S_{0} is then a symbol for a point.

Definition. An S_{r} is on an S_{t} and an S_{t} is on an $\mathrm{S}_{\text {, }}(r<t)$, provided that every point of S, is a point of S_{r}.

Definition. k points arc said to be independent, if there is no $\mathrm{S}_{\mathrm{L}_{-2}}$ which contains them all

Corresponding to the theorems of $\S \S 6-9$ we shall now estabhsh the propositions contained in the following Theorems $\mathrm{S}_{n} 1, \mathrm{~S}_{n} 2$, $\mathrm{S}_{n} 3$. As these propositions have all been proved for the case $n=3$, it is sufficient to prove them on the hypothesis that they have already been proved for the cases $n=3,4, \cdots, n-1$; ie we assume that the propositions contained in Theorem $\mathrm{S}_{n-1} 1, a, b, c, d, e, f$ have been proved, and derive Theorem $\mathrm{S}_{n} 1, a, \quad \cdot, f$ from them. By the prncuple of mathematical mduction this establishes the theorem for any n.

Theorem $\mathrm{S}_{n} 1$ Let the n-space S_{n} be defined by the point R_{0} and the ($n-1$)-space R_{n-1}.
a There is an n-space on any $n+1$ indcpendent pounts.
b. Any line on two points of S_{n} has one point in common with R_{n-1}, and is on S_{n}.
c. Any $\mathrm{S}_{r}(r<n)$ on $r+1$ independent points of S_{n} is on S_{n}.
d. Any $\mathrm{S}_{r}(r<n)$ on $r+1$ independent points of S_{n} has an S_{r-1} in common with R_{n-1}, provided the $r+1$ points are not all on R_{n-1}.
e. Any line l on two, points of S_{n} has one point in common with any S_{n-1} on S_{n}.
f. If T_{0} and $T_{n-1}\left(T_{0}\right.$ not on $\left.T_{n-1}\right)$ are any point and any ($n-1$)-space respectively of the n-space determined by R_{0} and R_{n-1}, the latter n-space is the same as that determined by T_{0} and T_{n-1}.

Proof. a. Let the $n+1$ independent poinis be $P_{0}, P_{1}, \cdot, P_{n}$. Then the points $P_{1}, P_{2}, \cdots, P_{n}$ are independent; for, otherwise, there would exist an S_{n-2} containing them all (definition), and this S_{n-2} with P_{0} would determine an S_{n-1} contaming all the points $P_{0}, P_{1}, \cdots, P_{n}$, contrary to the hypothesis that they are independent. Hence, by Theorem $\mathrm{S}_{n-1} 1 a$, there is an S_{n-1} on the points $P_{1}, P_{2}, \cdot, P_{n}$; and this S_{n-1} wilh P_{0} determines an n-space which is on the points $P_{0}, P_{1}, P_{2}, \cdots, P_{n}$.
b. If the line l is on R_{0} or R_{n-1}, the proposition is evident from the definition of S_{n}. If l 1s not on R_{0} or R_{n-1}, let A and B be the given points of l which are on S_{n} The lines $\mathrm{R}_{0} A$ and $\mathrm{R}_{0} B$ then meet R_{n-1} in two points A^{\prime} and B^{\prime} respectively. The lme l then meets the two lines $B^{\prime} \mathrm{R}_{0}, \mathrm{R}_{0} A^{\prime}$; and heuce, by Assumption $A 3$, it must meet the line $A^{\prime} B^{\prime}$ in a point P which is on R_{n-1} by Theorem $\mathrm{S}_{n-1} 1 b$ To show that every point of l is on S_{n}, consider the points A, A^{\prime}, P. Any line joining an arbitrary point Q of l to R_{0}, meets the two lines $P A$ and $A A^{\prime}$, and hence, by Assumption A3, neets the third line $A^{\prime} P$. But every point of $A^{\prime} P$ is on R_{n-1} (Theorem $\mathrm{S}_{n-1} 1 b$), and hence Q is, ly definition, a point of S_{n}
c. This may be proved by mduction with respect to r. For $r=1$ it reduces to Theorem $\mathrm{S}_{n} 1 b$ If the proposition is true for $r=k-1$, all the points of an S_{k} on $k+1$ mdependent points of S_{n} are, by definition and Theorem $\mathrm{S}_{1} 1 f$, on lunes joiming one of these points to the points of the S_{h-1} determined by the remaining k points. But under the hypothesis of the induction this S_{h-1} is on S_{n}, and hence, by Theorem $\mathrm{S}_{n} 1 b$, all points of S_{h} are on S_{n}.
d. Let $r+1$ modependent points of S_{n} be $P_{0}, P_{1}, \cdots, P_{r}$ and let P_{0} be not on R_{n-1} Each of the lines $P_{0} P_{k}(k=1, \cdot \cdot, r)$ has a point Q_{α} in common with R_{n-1} (by $\mathrm{S}_{n} 1 b$). The points $Q_{1}, Q_{2}, \cdots, Q_{r}$ are independent; for if not, they would all be on the same S_{-2}, which, together with P_{0}, would determine an S_{r-1} containing all the prints P_{k} (by $\mathrm{S}_{r-1} 1 b$). Hence, by $\mathrm{S}_{-1} 1 a$, there is an S_{r-1} on $Q_{1}, Q_{2}, \cdots, Q_{r}$ which, by c, is on both S , and S_{n}.
e. We will suppose, first, that one of the given pomts is R_{0} Let the other be A. By definition l then meets R_{n-1} in a point A^{\prime}, and, by $S_{n-1} 1 b$, in only one such point If R_{0} is on S_{n-1}, no proof is required for this case. Suppose, then, that R_{0} is not on S_{n-1}, and let C be any point of S_{n-1}. The line $R_{0} C$ meets R_{n-1} in a point C^{\prime} (by definition). By d, S_{n-1} has in common with R_{n-1} an ($n-2$)-space, S_{n-2}, and, by

Theorem $S_{n-1} 1 e$, this has in common with the line $A^{\prime} C^{\prime}$ at least one point D^{\prime}. All points of the line $D^{\prime} C$ are then on S_{n-1}, by $\mathrm{S}_{n-1} 1 b$. Now the line l meets the two lines $C^{\prime} D^{\prime}$ and $C C^{\prime}$; hence it meets the line $C D^{\prime}$ (Assumption A3), and has at least one point on S_{n-1}.

We will now suppose, secondly, that both of the given points are distinct from R_{0}. Let them be denoted by A and B, and suppose that R_{0} is not on S_{n-1}. By the case just considered, the lines $\mathrm{R}_{0} A$ and $\mathrm{R}_{0} B$ meet S_{n-1} in two points A^{\prime} and B^{\prime} respectively. The line l, which meets $\mathrm{R}_{0} A^{\prime}$ and $\mathrm{R}_{0} B^{\prime}$ must then meet $A^{\prime} B^{\prime}$ in a pount which, by Theorem $\mathrm{S}_{n-1} 1 b$, is on S_{n-1}

Suppose, finally, that R_{0} is on S_{n-1}, still under the hypothesis that l is not on R_{0}. By d, S_{n-1} meets R_{n-1} in an $(n-2)$-space Q_{n-2}, and the plane $\mathrm{R}_{0} l$ meets R_{n-1} in a line l^{\prime}. By Theorem $\mathrm{S}_{n-1} I e, l^{\prime}$ and Q_{n-2} have in common at least one point P. Now the lines l and $R_{0} P$ are on the plane $R_{0} l$, and hence have in common a point Q (by Theorem $\mathrm{S}_{2} 1 e=$ Theorem 5). By $\mathrm{S}_{n-1} 1 b$ the point Q is common to S_{n-1} and l.
f. Let the n-space determined by T_{0} and T_{n-1} be denoted by T_{n}. Any point of T_{n} is on a line joining T_{0} with some point of T_{n-1}. Hence, by b, every point of T_{n} is on S_{n} Let P be any point of S_{n} distinct from T_{0}. The line $T_{0} P$ meets T_{n-1} in a point, by e. Hence every point of S_{n} is a point of T_{n}.

Corollary. On $n+1$ independent points there is one and but one S_{n}.
This is a consequence of Theorem $\mathrm{S}_{n} 1 a$ and $\mathrm{S}_{n} 1 f$. The formal proof is left as an exercise

Theorem $\mathrm{S}_{n} 2$ an S_{r} and an S_{h} having in common an S_{p}, but not an S_{p+1}, are on a commion S_{r+2-p} and are not both on the same S_{n}, if $n<r+k-p$.

Proof. If $k=p, \mathrm{~S}_{k}$ is on S_{r}. If $k>p$, let P_{1} be a point on S_{k} not on S_{p} Then P_{1} and S_{r} determine an S_{r+1}, and P_{1} and S_{p} an S_{p+1}, such that S_{p+1} is contained in S_{r+1} and S_{k}. If $\pi>p+1$, let P_{2} be a point of S_{k} not on S_{p+1}. Then P_{2} and S_{r+1} determine an S_{r+2}, while P_{2} and S_{p+1} determine an S_{p+2}, which is on S_{r+2} and S_{k}. This process can be contmued untll there results an S_{p+i} containing all the points of S_{k}. By Theorem $\mathrm{S}_{n} 1, \mathrm{Cor}$, we have $i=k-p$. At this stage in the process we obtain an S_{r+k-p} which contains both S_{r} and S_{k}.

The argument just made shows that $P_{1}, P_{2}, \cdots, P_{k-p}$, together wilh any set $Q_{1}, Q_{2}, \cdots, Q_{r+1}$, of $r+1$ independent points of S_{r}, constitute
a set of $r+k-p+1$ independent points, each of which is either in $\mathrm{S}_{\text {, or }} \mathrm{S}_{k}$ If S_{r} and S_{k} were both on an S_{n}, where $n<r+k-p$, these could not be independent.

Theorem $\mathrm{S}_{n} 3$. An S_{r} and an S_{k} contained in an S_{n} are both on the same S_{1+1-n}.

Proof. If there were less than $r+k-n+1$ independent points common to S_{r} and S_{k}, say $r+k-n$ pomts, they would, by Theorem $\mathrm{S}_{n} 2$, determine an S_{n}, where $q=r+k-(r+k-n-1)=n+1$.

Theorems $\mathrm{S}_{n} 2$ and $\mathrm{S}_{n} 3$ can be remembered and applied very easily by means of a dagram in which S_{n} is represented by $n+1$ points. Thus, if $n=3$, we have a set of four points That any two S_{2} 's have an S_{1} in common corresponds to the fact that any two sets of three must have at least two points in common. In the general case a set of $r+1$ points and a set of $k+1$ selected from the same set of $n+1$ have in common at least $r+k-n+1$ points, and this corresponds to the last theorem. This diagram is what our assumptions would describe directly, if Assumption E 0 were replaced by the assumption:

Evory line contains two and only two points.
If one wishes to confine one's attention to the geometry in a space of a given number of dimensions, Assumptions E 2, E 3, and E 3^{\prime} may be replaced by the following:

En. Not all points are on the same S_{h}, if $k<n$.
En^{\prime} If S is an S_{n}, all points are on S .
For every S_{n} there is a principle of duality analogous to that which we have discussed for $n=3$. In S_{n} the duality is between S_{h} and S_{n-k-1} (counting a point as an S_{0}), for all k's from 0 to $n-1$ If n is odd, there is a self-dual space in S_{n}; if n is even, S_{n} contains no self-dual space.

EXERCISES

1. State and prove the theorems of duality in S_{5}, in S_{n}.
2. If $m+1$ is the number of points on a line, how many S_{h} 's are there in an S_{n} ?

* 3. State the assumptions of extension by which to replace Assumption En and En^{\prime} for spaces of an infinite number of dimensions. Make use of the transfinite numbers.

[^14]
CHAPTER II

PROJECTION, SECTION, PERSPECTIVITY. ELEMENTARY CONFIGURATIONS

13. Projection, section, perspectivity. The point, line, and plane are the simple elements of space *, we have seen in the preceding chapter that the relation expressed by the word on is a reciprocal relation that may exist between any two of those simple elements. In the sequel we shall have little occasion to return to the notion of a line as being a class of points, or to the definition of a plane; but shall regard these elements simply as entities for which the relation "on" has been defined. The theorems of the preceding chapter are to be regarded as expressing the fundamental properties of this relation. \dagger We proceed now to the study of certan sets of these elements, and begin with a series of definitions.

Definition. A figure is any set of points, lines, and planes in space. A plane figure is any set of points and lines on the same plane. A point figure is any set of planes and lines on the same point.

It should be observed that the notion of a point figure is the space dual of the notion of a plane figure. In the future we shall frequently place dual definitions and theorems side by side. By virtue of the principle of duality it will be necessary to give the proof of only one of two dual theorems.

Definition. Given a figure F and a point P, every point of F distunct from P determines with P a line, and every line of F not on P determines with P a plane, the set of these lines and planes through P is called the projection

Definition. Given a figure F and a plane π; every plane of F distinct from π determines with π a line, and every line of F not on π determines with π a point; the set of these lines and points on π is called the section \ddagger of F

[^15]of F from P. The individual lines and planes of the projection are also called the projoctors of the respective points and lmes of F.
by π. The individual lines and points of the section are also called the tracos of the respective planes and lines of F

If $F_{\text {is a plane figure and the point } P \text { is in the plaue of the figure, the }}$ defintion of the projection of F from P has the following plane dual:

Definition. Given a plane figure F and a line l in the plane of F; the set of points in which the lines of F distinct from l meet l is called the sectron of F by l The line l is called a transversal, and the pounts are called the traces of the respective lines of F.

As examples of these defintions we mention the followng: The projection of three mutually intersecting nonconcurrent lines from a point P not in the plane of the lines consists of three planes through P; the lines of intersection of these planes are part of the projection only if the points of intersection of the lines are thought of as part of the projected figure The section of a set of planes all on the same line by a plane not on this line consists of a set of concurrent lines, the traces of the planes The section of this set of concurrent lines in a plane by a line in the plane not on therr common point consists of a set of points on the transversal, the points being the traces of the respective lines.

Definition. Two figures F_{1}, F_{2} are said to be in $(1,1)$ correspondence or to correspond in a one-to-one recoprocal way, if every element of F_{1} corresponds (cf. footnote, p 5) to a unique element of F_{2} in such a way that every element of F_{2} is the correspondent of a unique element of F_{1}. A figure is in $(1,1)$ correspondence with itself, if every element of the figure corresponds to a unique element of the same figure in such a way that every element of the figure is the corre, spondent of a umque element. Two elements that are associated in this way are said to be corresponding or homologous elements.

A correspondence of fundamental importance is described in the following definitions:

Definition. If any two homologous elements of two corresponding figures have the same projector from a fixed point O, such that all the projectors are

Definition. If any two homologous elements of two corrsponding figures have the same trace in a fixed plane ω, such that all the traces of either
distunct, the figures are said to be perspective from 0 . The point O is called the center of perspectivity.
figure are distinct, the figures are saud to be perspectrve from ω. The plane ω is called the plane of perspectivity.

Definition. If any two homologous lues in two corresponding figures in the same plane have the same trace on a lue l, such that all the traces of either figure are distinct, the figures are said to be perspective from l. The line l is called the axis of perspectivity.

Additional definitions of perspective figures will be given in the next chapter (p 56). These are sufficient for our present purpose.

Definition. To project a figure in a plane a from a point 0 onto a plane α^{\prime}, distinct from α, is to form the section by α^{\prime} of the projection of the given figure from 0 . To project a set of poonts of a line l from a point O onto a line l^{\prime}, distinct from l but in the same plane with l and 0 , is to form the section by l^{\prime} of the projection of the set of points from 0

Clearly in either case the two figures are perspective from O, provided O is not on either of the planes a, a^{\prime} or the lines l, l^{\prime}.

EXERCISE

What is the dual of the process described in the last definition?
The notions of projection and section and perspectivity are fundamental in all that follows.* They will be made use of almost immedrately in deriving one of the most important theorems of projective geometry. We proceed first, however, to define an important class of figures
14. The complete n-point, etc. Definition. A complete n-point in space or a complete space n-point is the figure formed by n points, no four of which lie in the same plane, together with the $n(n-1) / 2$ lines joining every pair of the points and the $n(n-1)(n-2) / 6$ planes joining every set of three of the points. The points, lines, and planes of this figure are called the vertices, edges, and faces respectively of the complete n-point.

[^16]The simplest complete n-point in space is the complete space four-point. It consists of four vertices, six edges, and four faces, and is called a tetrahedron It is a self-dual figure.

EXERCISE

Define the complete n-plane in space by dualuzing the last definition. The planes, lmes, and points of the complete n-plane are also called the fuce, edlyps, and vertices of the n-plane
Definition. A complete n-point in a plane or a complete plane n-point is the figure formed by n points of a plane, no three of which are collnear, together with the $n(n-1) / 2$ lines joming every par of the points. The points are called the vertices and the lines are called the sidcs of the n-pomt. The plane dual of a complete plane n-point is called a complete plane n-lnne. It has n sides and $n(n-1) / 2$ vertices. The smplest complete plane n-pont consists of three vertices and three sides and is called a trangle.

Derinition. A simple space n-point is a set of n points $P_{1}, P_{2}, P_{\mathrm{g}}, \cdots, P_{n}$ taken in a certavn order, in which no four consecutive ponts are coplanar, together with the n lines $P_{1} P_{3}, P_{2} P_{3}, \cdots, P_{n} P_{1}$ joming successive points and the n planes $P_{1} P_{2} P_{3}, \quad, P_{n} P_{1} P_{2}$ determined by successive limes. The points, lines, and planes are called the vertices, eilges, and faces respectively of the figure The space dual of a simple space n-point is a simple space n-plane
Defintition A simple plane n-pount is a set of n pounts $P_{1}, P_{2}, P_{3}, \cdots P_{n}$ of a plane taken in a certain order in which no three consecutive points are collinear, together with the n lines $P_{1} P_{2}, P_{3} P_{3}, \quad, P_{n} P_{1}$ joining successive points. The points and lines are called the vertices and sudes respectively of the figure The plane dual of a simple plane n-point is called a simple plane n-line.
Evidently the sımple space n-point and the simple space n-plane are identical figures, as likewise the simple plane n-point and the simple plane n-line. Two sides of a simple n-line whech meet in one of its vertices are adjacent. Two vertices are adjacent if in the dual relation. Two vertices of a simple n-point $P_{1} P_{2} \quad P_{n}$ (n even) are opposite if, in the order $P_{1} P_{2} \ldots P_{n}$, as many vertices follow one and precede the other as precede the one and follow the other. If n is odd, a vertex and a side are opposite if, in the order $P_{1} P_{2} \cdot P_{n}$, as many vertices follow the side and precele the vertex as follow the vertex and precede the side.

The space duals of the complete plane n-point and the complete plane n-lue are the complete n-plane on a point and the complete n-line ons a point respectively. They are the projections from a point, of the plane n-line and the plane n-point respectively
15. Configurations. The figures defined in the precedung section are examples of a more general class of figures of which we will now give a general definition

Defrimion. A figure is called a configuration, if it consists of a finite number of points, lines, and planes, with the property that each point is on the same number a_{12} of lines and also on the same number a_{13} of planes; each line is on the same number a_{21} of points and the same number a_{23} of planes, and each plane is on the same number a_{31} of points and the same number α_{32} of lines.

A configuration may convemently be described by a square matrix:

	1 point	2 line	3 plane
1 point	a_{11}	a_{12}	a_{13}
2 line	a_{21}	a_{22}	a_{23}
3 plane	a_{81}	a_{32}	a_{83}

In this notation, if we call a point an element of the first kind, a line an element of the second kind, and a plane one of the third kind, the number $a_{v^{j}}(i \neq \jmath)$ gives the number of elements of the j th kind on every element of the i th kind. The numbers a_{11}, a_{22}, a_{83} give the total number of points, lines, and planes respectively. Such a square matrix is called the symbol of the configuration.

A tetrahedron, for example, is a figure consisting of four points, six lines, and four planes; on every line of the figure are two points of the figure, on every plane are three points, through every point pass three lines and also three planes, every plane contams three lines, and through every line pass two planes A tetrahedron is therefore a configuration of the symbol

438
262
334

The symmetry shown in this symbol is due to the fact that the figure in question is self-dual. A triangle evidently has the symbol

$$
\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}
$$

Since all the numbers referring to planes are of no importance in case of a plane figure, they are omitted from the symbol for a plane configuration.

In general, a complete plane n-point is of the symbol

$$
\begin{array}{ll}
n & n-1 \\
2 & \frac{1}{2} n(n-1)
\end{array}
$$

and a complete space n-point of the symbol

$$
\begin{array}{ccc}
n & n-1 & \frac{1}{2}(n-1)(n-2) \\
2 & \frac{1}{2} n(n-1) & n-2 \\
3 & 3 & \frac{1}{8} n(n-1)(n-2)
\end{array}
$$

Further examples of configurations are figs 14 and 15 , regarded as plane figures.

EXERCISE

Prove that the numbers in a configuration symbol must satisfy the condition

$$
a_{i j} a_{i n}=a_{i i} a_{n}
$$

$$
(i, \jmath=1,2,3)
$$

16. The Desargues configuration. A very important configuration is obtanned by taking the plane section of a complete space five-point. The five-point is clearly a configuration with the symbol

and it is clear that the section by a plane not on any of the vertices is a configuration whose symbol may be obtained from the one just given by removing the first column and the first row This is due to the fact that every line of the space figure gives rise to a point in
the plane, and every plane gives rnse to a hue. The configuration in the plame has then the symbol

310
We proceed to study in detail the properties of the configuration just obtamed. It $1 s$ known as the configuration of Desargues.

We may consider the vertices of the complete space five-point as consisting of the vertices of a triangle A, B, C and of two points O_{1}, O_{2}

Fig. 14
not coplanar wilh any two vertices of the triangle (fig 14). The section by a plane α not passing through any of the vertices will then cousist of the following :
\triangle triangle $A_{1} B_{1} C_{1}$, the projection of the triangle $A B C$ from O_{1} on α.
A triangle $A_{2} B_{2} C_{2}$, the projection of the triangle $A B C$ from O_{2} on a.
The trace O of the line $O_{1} O_{2}$.
The traces A_{3}, B_{3}, C_{3} of the lines $B C, C A, A B$ respectively.
The trace of the plane $A B C$, which contains the points A_{8}, B_{3}, C_{8}.
The traces of the three planes $A O_{1} O_{2}, B O_{1} O_{3}, C O_{1} O_{2}$, which contain respectively the triples of points $O A_{1} A_{\mathrm{g}}, O B_{1} B_{2}, O C_{1} C_{2}$.

The configuration may then be considered (in ten ways) as consisting of two triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$, perspective from a point O and
having homologous sides meeting in three collinear points A_{3}, B_{3}, C_{3}. These considerations lead to the following fundamental theorem:

Theorem 1. Tife Tiliorem of Desargues* If two triangles in the same plane are perspective from a pont, the three pairs of homologous sudes meet in collnnear points, ie the truangles are perspective from a line (A, E)

Proof Let the two triangles be $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ (fig. 14), the lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ meeting in the point O Let $B_{1} A_{1}, B_{2} A_{2}$ intersect in the point $C_{3} ; A_{1} C_{1}, A_{2} C_{2}$ in $B_{8} ; B_{1} C_{1}, B_{2} C_{2}$ in A_{3}. It is required to prove that A_{3}, B_{3}, C_{8} are collnear Consider any line through O which is not in the plane of the triangles, and denote by O_{1}, O_{2} any two distinct points on this line other than O Since the lines $A_{2} O_{2}$ and $A_{1} O_{1}$ le in the plane $\left(A_{1} A_{2}, O_{1} O_{2}\right)$, they intersect in a point A. Similarly, $B_{1} O_{1}$ and $B_{2} O_{2}$ intersect in a point B, and likewise $C_{1} O_{1}$ and $\mathrm{C}_{2} \mathrm{O}_{2}$ m a point C. Thus $A B C O_{1} O_{2}$, together with the lines and planes determmed by them, forin a complete five-point in space of which the perspective triangles form a part of a plane section. The theorem is proved by completing the plane section Since $A B$ lies in a plane with $A_{1} B_{1}$, and also in a plane with $A_{2} B_{2}$, the lines $A_{1} B_{1}, A_{2} B_{2}$, and $A B$ meet in C_{3} So also $A_{1} C_{1}, A_{2} C_{2}$, and $A C$ meet in B_{3}, and $B_{1} C_{1}$, $B_{2} C_{2}$, and $B C$ meet m A_{3} Since A_{3}, B_{8}, C_{3} he in the plane $A B C$ and also in the plane of the triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$, they are collnnear.

Tineorem 1^{\prime} If two triangles in the same plane are perspectrve from a line, the lines joining pairs of homologous vertices are concurrent; ie the triangles are porspective from a point. (A, E)

This, the converse of Theorem 1, is also its plane dual, and hence requures no further proof.

Corollary If two truangles not in the same plane are perspective from a point, the pairs of homologous sides interseet in collinear points; and conversely. (A, E)

A more symmetrical and for many purposes more convenient notation for the Desargues configuration may be obtained as follows: Let the vertices of the space five-point be denoted by $P_{1}, P_{2}, P_{8}, P_{4}, P_{5}$ (fig. 15) The trace of the lue $P_{1} P_{2}$ in the plane section is then naturally denoted by P_{12}, - in general, the trace of the line $P_{i} P_{j}$ by P_{i} $(\imath, j=1,2,3,4, \dot{5}, \imath \neq j)$. Likewise the trace of the plane $P_{i} P_{\rho} P_{k}$ may

[^17]be denoted by $l_{v k}(i, j, k=1,2,3,4,5)$. This notation makes it possible to tell at a glance which lines and points are unted. Clearly a pount is on a line of the configuration if and only if the suffixes of the point are both among the suffixes of the line Also the third point on the line joining $P_{v j}$ and $P_{j k}$ is the point $P_{\text {ki }}$; two points are on the same line if and only if they have a suffix in common, etc.

EXERCISES

1. Prove Theorem 1' without making use of the principle of duality.
2. If two complete n-points in different planes are perspective from a point, the pairs of homologous sides intersect in collinear points. What is the dual theorem? What is the corresponding theorem concerning any two plane figures in dufferent planes?
3. State and prove the converse of the theorems in Ex. 2.
4. If two complete n-points in the same plane correspond in such a way that homologous sides intersect in points of a straight line, the lines joinng homologous vertices are concurrent; i.e. the two n-points are perspective from a point. Dualize.
5. What is the figure formed by two complete n-points in the same plane when they are perspective from a point? Consider particularly the cases $n=4$ and $n=5$. Show that the figure corresponding to the general case is a plane section of a complete space $(n+2)$-point. Give the configuration symbol and dualize,
6. If three triangles are perspective from the same point, the three axes of perspectivity of the three pairs of triangles are concurrent; and conversely. Dualize, and compare the configuration of the dual theorem with the case $n=4$ of Ex. 5 (cf. fig. 15, regarded as a plane figure).
7. Perspective tetrahedra. As an application of the corollary of the last theorem we may now derive a theorem in space analogous to the theorem of Desargues in the plane.

Theorem 2. If two tetrahedra are perspective from a point, the six pairs of homologous edges intersect in coplanar points, and the four pairs of homologous faces intersect in coplanar lines; i.e. the tetrahedra are perspective from a plane. (A, E)

Fig 10
Proof. Let the two tetrahedra be $P_{1} P_{2} P_{\mathrm{a}} P_{4}$ and $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime} P_{4}^{\prime}$, and let the lines $P_{1} P_{1}^{\prime}, P_{2} P_{2}^{\prime}, P_{8} P_{8}^{\prime}, P_{4} P_{4}^{\prime}$ meet in the center of perspectivity O. Two homologous edges $P_{i} P_{j}$ and $P_{i}^{\prime} P_{j}^{\prime}$ then clearly intersect; call the point of intersection P_{v}. The points P_{12}, P_{18}, P_{28} lie on the same line, since the triangles $P_{1} P_{2} P_{8}$ and $P_{1}^{\prime} P_{2}^{\prime} P_{8}^{\prime}$ are perspective from O (Theorem 1, Cor.). By similar reasoning applied to the other pairs of perspective triangles we find that the following triples of points are collinear:

$$
P_{12}, P_{18}, P_{28} ; P_{12}, P_{14}, P_{24} ; P_{18}, P_{14}, P_{84} ; P_{23}, P_{24}, P_{34}
$$

The first two triples have the point P_{12} in common, and hence determine a plane; each of the other two triples has a point in
common with each of the first two Hence all the points P_{i} lie in the same plane. The lines of the four triples just given are the lines of intersection of the pars of homologous faces of the tetiahedra The theorem is therefore proved.
Theorem 2^{\prime} If two tetrahedra are perspective from a plane, the lnnes joinung parrs of homologous vertices are concurrent, as likewnse the planes determined by parrs of homologous cdges; i.c. the tetrahedra are perspectuve from a point. (A, E)

This is the space dual and the converse of Theorem 2.

EXERCISE

Write the symbols for the configurations of the last two theoiems.

18. The quadrangle-quadrilateral configuration.

Definition. A complete plane four-point is called a complete quadrangle. It consists of four vertices and six sides Two sides not on the same vertex are called opposite The intersection of two opposite sides is called a diagonal pornt. If the three dagonal points are not collmear, the triangle formed by them is called the diagonal trangle of the quadrangle*

Drerinition. A complete plane four-line is called a completc quadrilateral It consists of four sides and six vertices Two vertices not on the same side are called opposite. The line joining two opposite vertices is called a dragonal line. If the three diagoual lines are not concurrent, the triangle formed by them is called the diagonal triangle of the quaclnlateral *

The assumptions A and E on which all our reasoning is based do not suffice to prove that there are more than three points on any line. In fact, they are all satisfied by the triple system (1), p. 3 (cf. fig. 17) In a case like this the diagonal points of a complete quadrangle are collmear and the diagonal lines of a complete quadrilateral concurrent, as may readuly be verified Two perspective triangles camnot exist in such a plane, and hence the Desargues theorem becomes

[^18]trivial. Later on we shall add an assumption* which excludes all such cases as this, and, in fact, provides for the existence of an infinte number of points on a line. A part of what is contaned in this assumption is the following.

Assumption H_{0}. The diagonal points of a complcte quadrangle are noncollinear.

Many of the important theorems of geometry, however, require the existence of no more than a finite number of points We shall therefore proceed without the use of

Fig 17 further assumptions than A and E , understanding that m order to give our theorems meanng there must be postulated the cxistence of the points specified in thevr hypotheses In most cases the existence of a sufficient number of points is insured ly Assumption H_{0}, and the reader who is takng up the subject for the first time may well take it as having been added to A and E . It is to be used in the solution of problems

We return now to a further study of the Desargues configuation. A complete space five-point may evidently be regarded (in five ways) as a tetrahedron and a complete four-lime at a point A plane section of a four-line is a quadrangle and the plane section of a tetrahedron is a quadrilateral. It follows that (in five ways) the Desargues configuration may be regarded as a quadrangle and a quadrilateral. Moreover, it is clear that the six sides of the quadrangle pass through the six vertices of the quadrilateral In the notation described on page 41 one such quadrangle is $P_{12}, P_{18}, P_{14}, P_{15}$ and the corresponding quadrilateral is $l_{244}, l_{235}, l_{245}, l_{245}$

The question now naturally arises as to placing the figures thus obtained in special relations. As an application of the theorem of Desargues we will show how to construct \dagger a quadrulateral which has the same diagonal triangle as a given quadrangle. We will assume in our discussion that the dagonal points of any quadrangle form a triangle.

[^19]Let $P_{1}, P_{2}, P_{3}, P_{4}$ be the vertices of the given complete quadrangle, and let D_{12}, D_{13}, D_{14} be the vertices of the diagoual iriangle, D_{12} being on the side $P_{1} P_{2}, D_{18}$ on the side $P_{1} P_{8}$, and D_{14} on the side $P_{1} P_{4}$ (fig. 18). We observe first that the diagonal triangle as perspective with each of the four triangles formed by a set of three of the vertuces of the quadrangle, the center of perspectivity being in each case the fourth vertex. This gives rise to four axes of perspectivity (Theorem 1), one corresponding to each vertex of the quadrangle.* These four lines clearly form the sides of a complete quadruateral whose diagonal triangle is D_{12}, D_{13}, D_{14}.

Fig. 18
It may readuly be verified, by selecting two perspecisve triangles, that the figure just formed is, indeed, a Desargues configuration. This special case of the Desargues configuration is called the quadranglequadrilateral configuration. \dagger

EXERCISES

1. If p is the polar of P with regard to the triangle $A B C$, then P is the pole of p with regard to the same trangle, that is, P is obtaned from p by a construction dual to that used in deriving p from P. Fiom this theorem it follows that the relation between the quadrangle and quadilateral in this

[^20]configuration is mutual, that is, if eithel is given, the other is determined. For a eason which will be evident later, exther is called a covariant of the other.

2 Show that the configuration consisting of two perspective tetraliedia, their center and plane of perspectivity, and the projectors and tiaces may be regarded in six ways as consisting of a complete 5-point $P_{13}, P_{18}, P_{14}, P_{15}, P_{16}$ and a complete 5 -plane $\pi_{3456}, \pi_{2450}, \pi_{2 a 50}, \pi_{2340}, \pi_{2346}$, the notation being analogous to that used on page 41 fol the Desargues configuration. Show that the edges of the 5 -plane are on the faces of the 5 -point.
3. If $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$, are vestaces of a complete space 5-point, the ten points D_{v}, in which an edge $p_{i j}$ meets a face $P_{k} P_{l} P_{m}(i, \eta, k, l, m$ all distinct $)$, are called duagonal points. The tetrahed a $P_{2} P_{8} P_{4} P_{5}$ and $D_{12} D_{13} D_{14} D_{15}$ are perspectuve with P_{1} as center Their plane of perspectivity, π_{1}, is called the polar of P_{1} with regard to the four veitices. In like mannel, the points $P_{2}, P_{3}, P_{4}, P_{5}$ detenmme their polar planes $\pi_{2}, \pi_{3}, \pi_{4}, \pi_{5}$ Piove that the 5-pount and the polat 5 -plane form the configuration of two perspectave tetrahedra; that the plane section of the 5-point by any of the five planes is a quadrangle-quadrilateral configuration; and that the dual of the above construction apphed to the 5-plane determines the original 5-point.
4. If P is the pole of π whth regard to the tetrahedron $\Lambda_{1} A_{2} A_{8} \Lambda_{4}$, then is π the polar of P with regaid to the same tetrahedion?

19. The fundamental theorem on quadrangular sets.

Tireorem 3 If two complete quadrangles $P_{1} P_{2} P_{3} P_{4}$ and $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime} P_{4}^{\prime}$ correspond - P_{1} to P_{1}^{\prime}, P_{2} to P_{2}^{\prime}, etc. - in such a way that five of the pairs of homologous sides intersect in points of a lane l, then the sixth pair of homologous sides will intersect in a point of l. (A, E)

This theorem holds whether the quadrangles are in the same or in different planes.

Proof. Suppose, first, that none of the vertices or sides of one of the quadrangles coincide with any vertex or side of the other. Let $P_{1} P_{2}, P_{1} P_{8}, P_{1} P_{4}, P_{2} P_{3}, P_{2} P_{4}$ be the five sides which, by hypothesis, meet their homologous sides $P_{1}^{\prime} P_{2}^{\prime}, P_{1}^{\prime} P_{8}^{\prime}, P_{1}^{\prime} P_{4}^{\prime}, P_{2}^{\prime} P_{3}^{\prime}, P_{2}^{\prime} P_{4}^{\prime}$ in points of l (fig. 19) We must show that $P_{8} P_{4}$ and $P_{8}^{\prime} P_{4}^{\prime}$ meet in a point of l. The triangles $P_{1} P_{2} P_{3}$ and $P_{1}^{\prime} P_{2}^{\prime} P_{8}^{\prime}$ are, by hypothesis, perspective from l; as also the triangles $P_{1} P_{2} P_{4}$ and $P_{1}^{\prime} P_{2}^{\prime} P_{4}^{\prime}$. Each pair is therefore (Theorem 1^{\prime}) perspective from a point, and this pomt is in each case the intersection O of the lines $P_{1} P_{1}^{\prime}$ and $P_{2} P_{2}^{\prime}$. Hence the triangles $P_{2} P_{8} P_{4}$ and $P_{2}^{\prime} P_{3}^{\prime} P_{4}^{\prime}$ are perspective from O and their pairs of homologous sldes intersect in the points of a line, which is eyidently l, since it contains two points of l. But $P_{8} P_{4}$ and $P_{8}^{\prime} P_{4}^{\prime}$ are
two homologous sides of these last two triangles. Hence they intersect in a point of the line l

If a vertex or side of one quadrangle coincides with a vertex or side of the other, the proof is made by considering a third quadrangle* whose vertices and sides are distinct from those of both of the others, and which has five of its sides passing through the five given points

of intersection of homologous sides of the two given quadrangles. By the argument above, its sixth side will meet the sixth side respectively of each of the two given quadrangles in the same point of l. This completes the proof of the theorem.

Note 1 It should be noted that the theorem is still valid if the line l contains one or mole of the duagonal pounts of the quadrangles. The case in which l contains two dagonal pounts is of particular importanco and will be discussed m Chap. IV, § 31.

Note 2. It is of importance to note in how far the quadrangle $P_{1}^{\prime} P_{1}^{\prime} P_{8}^{\prime} P_{4}^{\prime}$ is determined when the quadiangle $P_{1} P_{2} P_{8} P_{4}$ and the line l are given It may be readuly verufied that in such a case it is possible to choose any point P_{1}^{\prime} to correspond to any one of the verluces $P_{1}, P_{2}, P_{8}, P_{4}$, say P_{1}; and that if m is any line of the plane $l P_{1}^{\prime}$ (not passing through P_{1}^{\prime}) which meets one of the sides, say a, of $P_{1} P_{2} P_{8} P_{4}$ (not passing through P_{1}) in a point of l, then m may be chosen as the side homologous to a. But then the remainder of the figure is uniquely determined.

[^21]Tireorem 3^{\prime} If two complete quadrilaterals $a_{1} a_{2} a_{3} a_{4}$ and $a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} a_{4}^{\prime}$ correspond - a_{1} to a_{1}^{\prime}, n_{2} to a_{2}^{\prime}, etc -in such a way that five of the lines joining homologous vertices pass through a point P, the line joining the sixth pair of homologous vertices wull also pass through P (A, E)

This is the plane dual of Theorem 3 regarded as a plane theorem.
Definition A set of points in which the sides of a complete quadrangle meet a line l is called a quadrangular set of points.

Any three sides of a quadrangle either form a triangle or meet in a vertex; m the former case they are said to form a triangle triple, in the latter a point triple of lmes In a quadrangular set of points on a line l any three points in which the lines of a triangle triple meet l is called a triangle triple of points in the set; three points in which the lines of a point triple meet l are called a point triple of points. A quadrangular set of points will be denoted by

$$
\mathrm{Q}\left(A B C, D E F^{\prime}\right),
$$

where $A B C$ is a point inple and $D E F$ is a triangle triple, and where A and D, B and E, and C and F are respectively the intersections with the lime of the set of the parrs of opposite sides of the quadrangle.

The notion of a quadrangular set is of great importance in much that follows It should be noted agam in this connection that one or two * of the pars A, D or B, E or C, F may consist of comeident points; ths occurs when the line of the set passes through one or two of the dagonal points \dagger

We have just seen (Theorem 3) that if we have a quadrangular set of points obtained from a given quadrangle, there exist other quadrangles that give rise to the same quadrangular set In the quadrangles mentioned in Theorem 3 there corresponded to every triangle triple of one a triangle triple of the other.

Definition When two quadrangles giving rise to the same quadrangular set are so related with reference to the set that to a triangle triple of one corresponds a triangle triple of the other, the

[^22]quadrangles are sald to be similarly placed (fig 20); ff a pomi triple of one corresponds to a triangle triple of the other, they are said to be oppositely placed (fig 21)

It will be shown later (Chap. IV) that quadrangles oppositely placed with respect to a quadrangular set are indeed possible.

Fig. 20

Fig. 21
With the notation for quadrangular sets defined above, the last theorem leads to the following

Corollary. If all but one of the points of a quadrangular set $\mathrm{Q}(A B C$, $D E F{ }^{\prime}$) are given, the remaining one is uniquely determined. (A, E)

For two quadrangles giving rise to the same quadrangular set with the same notation must be similarly placed, and must hence be in correspondence as described in the theorem.

The quadrangular set which is the section by a 1 -space of a complete 4-point in a 2 -space, the Desargues configuration which is the section by a 2 -space of a complete 5 -point in a 3 -space, the configmation of two perspective tetrahedra which may be considered as the section by a 3 -space of a complete 0 -poont in a 4 -space are all special cases of the section by an n-space of a complete $(n+3)$-point in an $(n+1)$-space The theorems which we lave developed for the thiee cases here considered are not wholly parallel. The reader will find it an entertaining and far from trivial exex cise to develop the analogy in full

EXERCISES

1 A necessary and sufficient condition that three lines contaning the vertices of a thiangle shall be concurent is that their inter sections P, Q, R with a line l form, with intersections E, F, G of corresponding sides of the tiangle with l, a quadrangular set $Q(P Q R, E F G)$

2 If on a given transveisal line two quadrangles determine the same quadrangular set and are sumularly placed, their dagonal triangles are perspective from the center of perspectivity of the two quadrangles

3 The polars of a point P on a line l with regard to all tirangles which meet l in three fixed points pass through a common point P^{\prime} on l
4. In a plane π let there be given a quadriateral $a_{1}, a_{2}, a_{8}, a_{4}$ and a point O not on any of these lines Let $A_{1}, A_{2}, A_{3}, A_{4}$ be any tetrahedron whose four faces pass through the lines $a_{1}, a_{2}, a_{3}, a_{4}$ respectively. The polar planes of O with respect to all such tetiahedra pass through the same line of π.
20. Additional remarks concerning the Desargues configuration. The ten edges of a complete space five-point may be regarded (in six ways) as the edges of two simple space five-points. Two such five-points are, for example, $P_{1} P_{2} P_{3} P_{4} P_{5}$ and $P_{1} P_{8} P_{5} P_{2} P_{4}$ Corresponding therelo, the Desargues configuration may be regarded in six ways as a pair of simple plane pentagons (five-points). In our previous notation the two corresponding to the two simple space five-points just given are $P_{12} P_{28} P_{34} P_{45} P_{51}$ and $P_{18} P_{35} P_{52} P_{24} P_{41}$. Every vertex of each of these pentagons is on a side of the other.

Every point, P_{12} for instance, has associated with it a unique line of the configuration, $v 12 l_{345}$ in the example given, whose notation does not contain the suffixes occurring in the notation of the point The line may be called the polar of the point in the configuration, and the point the pole of the line. It is then readily seen that the polar of any point is the axis of perspectivity of two triangles whose center of perspectivity is the point. In case we regard the configuration as consisting of a complete quadrangle and complete
quadrilateral, it is found that a pole and polar are homologous vertex and side of the quadrilateral and quadraugle. If we consider the configuration as consisting of two sumple pentaguns, a pole aud polar are a vertex and its opposile side, eg. P_{12} and $P_{31} P_{46}$
The Desargues configuration is one of a class of configurations having simlar properties. These configurations have been studied by a number of writers* Some of the theorems contained in these memoirs appear in the exercises below

EXERCISES

In duscussing these exercases the exustence shonld be assumed of a sufficlent number of points on each line so that the figupes in question do not degenercte. In some cuses ut may also be assumerl that the diagonal points of a romplete quatrangle ave not collnnear Without these assumptions oun theon ems are true, indeet, lut trinval

1 What is the peculiarity of the Desargues configuration ohtanned as the section of a complete space five-point by a plane which coutains the point of intersection of an edge of the five-point with the face not containung this edge? also by a plane containing two or thee such points?

2 Given a sumple pentagon in a plane, construet another pentagon in the same plane, whose veitices lie on the sides of the first and whose sides contain the veitices of the first (cf p 51) Is the second miquely determined when the first and one side of the second are given?

3 If two sets of thiee points A, B, C and $A^{\prime}, D^{\prime}, C^{\prime \prime}$ on two coplanar lines l and l^{\prime} respectively are so related that the limes $A A^{\prime}, B B^{\prime}, C C^{\prime \prime}$ are concurrent, then the points of intersection of the paiss of lines $A B^{\prime}$ and $B .1^{\prime}, B C^{\prime}$ and $C B^{\prime}$, $C A^{\prime}$ and $A C^{\prime}$ are collnneal with the point $l l^{\prime}$. The line thins determined is called the polar of the point $\left(A A^{\prime}, B B^{\prime}\right)$ with respect to l and l^{\prime}. I) unize

4 Using the theorem of Ex. 3, give a construction for a line joining any given point in the plane of two lines l, l^{\prime} to the point of intersection of l, l^{\prime} without making use of the latter point
5. Using the definition in Ex 8, show that if the point $P^{\prime \prime}$ is on the polar p of a point P with respect to two lines l, l^{\prime}, then the point P^{\prime} is on the polar p^{\prime} of P^{\prime} with respect to l, l^{\prime}
6. If the vertioes $A_{1}, A_{2}, A_{8}, A_{4}$ of a simple plane quadrangle are respectively on the sides $a_{1}, a_{2}, a_{3}, a_{4}$ of a simple plane quadrilateral, and if the intersection of the pair of opposite sides $A_{1} A_{2}, A_{3} A_{4}$ is on the line joining the pair of opposite points $a_{1} a_{4}, a_{2} a_{8}$, the remaining pair of opposite sides of the quadrangle will meet on the line joining the remaining pair of opposite vertices of the quadrilateral. Dualize.

[^23]7. If two complete plane n-points $A_{1}, A_{2}, \quad, A_{n}$ and $A_{1}^{\prime}, A_{2}^{\prime}, \cdots, A_{n}^{\prime}$ aro so related that the side $A_{1} A_{3}$ and the remaming $2(n-2)$ sides passing throngh A_{1} and A_{2} meet the corresponding sides of the other n-point in points of a hno l, the remaining pairs of homologous sides of the two n-points meet on l and the two n-points are perspective fiom a point. Dualize.
8. If five sides of a complete quadrangle $A_{1} A_{2} A_{3} A_{4}$ pass though five vertices of a complete quadrilateral $a_{1} a_{2} a_{3} a_{4} \mathrm{~m}$ such a way that $A_{1} A_{2}$ as on $a_{8} a_{4}, A_{2} A_{3}$ on $a_{4} a_{1}$, etc., then the sixth side of the quadrangle passes through the sixth vertex of the quadrilateral. Dualize.
9. If on each of three concuri ent lines a, b, c two points are given, $-A_{1}, A_{2}$ on $a ; B_{1}, B_{2}$ on $b ; C_{1}, C_{2}$ on c, -there can be formed four pairs of triangles $A_{i} B_{j} C_{h}(i, j, k=1,2)$ and the parrs of corresponding sides meet in six points which are the vertices of a complete quadnlateral (Veronese, Atti der Lincen, 1876-1877, p 649).

10 With nine points situated in sets of thee on three concurrent lines are formed 36 sets of thee perspective triangles For each set of three distinct triangles the axes of perspectivity meet in a point; and the 36 points thus obtaned from the 36 sets of triangles lie m sets of four on 27 lines, giving a configuation $\left.\begin{array}{cc}36 & 3 \\ 4 & 27\end{array} \right\rvert\,$ (Veronese, loc. cit).
11. A plane section of a 6 -point in space can be considered as 3 triangles perspective in pars from 3 collmear points with corresponding sides meeting in 3 collnnear points
12. A plane section of a 6 -point in space can be considered as 2 perspectave complete quadiangles with corresponding sides meeting in the vertices of a
complete quadrilateral.
13 A plane section of an n-pointin spacegives the configuration * $\left|\begin{array}{cc}C_{\mathrm{e}} & n-2 \\ 3 & { }_{n} C_{3}\end{array}\right|$ which may be considered ($\mathrm{n}_{n} C_{n-k}$ ways) as a set of ($n-k$) k-points perspective in pairs from $n-\lambda C_{2}$ points, which form a configuration $\left|\begin{array}{cc}n-k \\ 3 & C_{3} \\ n-\lambda & n-2\end{array}\right|$ and the points of intersection of corresponding sıdes form a configuration $\left|\begin{array}{cc}C_{2} & k-2 \\ 3 & { }_{k} C_{3}\end{array}\right|$
14. A plane section of a 7 -point in space can be considered (m 120 ways) as composed of three simple heptagons (7-points) cyclically circumscribing each other.

15 A plane section of an 11-point in space can be considered (in 0 ways) as composed of five 11 -points cychcally circumscribing each other.

16 A plane section of an n-point in space for n prime can be considered (in $\mid n-2$ ways) as $\frac{n-1}{2}$ simple n-points cyclically circumscribing each other.

[^24]17 A plane section of a 6 -point in space gives (in six ways) a 5-point whose sides pass though the points of a configuation $\left\lvert\, \begin{array}{cc}10 & 3 \\ 3 & 10\end{array}\right.$
18. A plane section of an n-point in space gives a complete ($n-1$)-point whose sides pass through the points of a configuation $\begin{array}{cc}n-1 & C_{2} \\ & n-3 \\ 3 & { }_{n-1} C_{3}\end{array}$

* 19 The n-space section of an m-noint $(m \geqq n+2)$ m an $(n+1)$-space can be considered in the n-space as ($m-k$) k-points ($\mathrm{n}_{m} C_{m-k}$ ways) perspective in pans from the vertices of the n-space section of one ($m-k$)-pont, the r-spaces of the k-point figures meet in $(r-1)$-spaces $(r=1,2, \quad, n-1)$ which form the n-space section of a k-point.
* 20. The figure of two perspective $(n+1)$-points in an n-space separates (in $n+3$ ways) into two dual figures, respectively an ($n+2$)-point cnemmscribing the figure of $(n+2)(n-1)$-spaces.
* 21. The section by a 3 -space of an n-pount in 4 -space is a configuration

${ }_{n} C_{2}$	$n-2$	${ }_{n-2} C_{2}$
8	${ }_{n} C_{3}$	${ }_{n-3}-3$
6	4	${ }_{n} C_{4}$

The plane section of this configuration is

$$
\begin{array}{cc}
{ }_{n} C_{8} & n-3 \\
4 & { }_{n} C_{4}
\end{array}
$$

22. Let there be three points on each of two concurrent lines l_{1}, l_{2}. The nine lines joinng points of one set of three to points of the other determine six triangles whose vertices are not on l_{1} or l_{2}. The point of intersection of l_{1} and l_{2} has the same polar with regard to all six of these triangles.
23. If two tnangles are perspective, then are perspective also the two triangles whose vertices are points of intersection of each side of the given triangles with a line joinng a fixed point of the axis of perspectivity to the opposite vertex.
*24. Show that the configuration of the two perspective tetrahedra of Theorem 2 can be obtained as the section by a 3 -space of a complete 6 -point in a 4 -space.

* 25. If two 5 -points in a 4 -space are perspective from a point, the corresponding edges meet in the vertrees, the corresponding plane faces meet in the lines, and the corresponding 8 -space faces in the planes of a complete 5 -plane in a 3 -space.
*26. If two $(n+1)$-points in an n-space are perspective from a point, their corresponding r-spaces meet in ($r-1$)-spaces which lie in the same ($n-1$)-space $(r=1,2 \cdots, n-1$) and form a complete oonfiguration of $(n+1)(n-2)$-spaces in $(n-1)$-space.

CHAPTER III

PROJECTIVITIES OF THE PRIMITIVE GEOMETRIC FORMS OF ONE, TWO, AND THREE DIMENSIONS

21. The nine primitive geometric forms.

Drfinition A pencil of points or a range is the figure formed by the set of all poinis on the same line. The line is called the axis of the pencil.

Definition. A poncib of planes or an axial pencil* is the figure formed by the set of all planes on the same line. The line is called the axis of the pencil.

As indrcated, the pencil of points is the space dual of the pencll of planes.

Definition. A pencil of lines or a flat pencil is the figure formed by the set of all lnes which are at once on the same point and the same plane; the point is called the vertex or center of the pencil.

The pencll of lines is clearly self-dual in space, while it is the plane dual of the pencil of points The pencll of points, the pencil of lines, and the pencil of planes are called the promitive geometrie forms of the first grade or of one dimension.

Definition The following are known as the primitive geometric forms of the second grade or of two dimensions:

The set of all points on a plane is called a plane of points. The set of all lines on a plane is called a plane of lines The plane is called the base of the two forms. The figure composed of a plane of points and a plane of hnes with the same base is called a planar field.

The set of all planes on a point is called a bundle of planes. The set of all lunes on a point is called a bundle of lines. The point is called the center of the bundles. The figure composed of a bundle of lines and a bundle of planes with the same center is called simply a bundle.

Defintition. The set of all planes in space and the set of all points in space are called the primitive geometric forms of the third grade or of three dimensions.

[^25]There are then, all told, nine primilive geometric forms in a space of three dimensions*
22. Perspectivity and projectivity. In Chap. II, § 13, we gave a definition of perspectivily This defimition we will now apply to the case of two primitive forms and will complete it where needed. We note first that, according to the definition referred to, two penculs of points in the same plane are perspective provided every two homologous points of the pencils are on a line of a flat pencul, for they then have the same projection from a point. Two planes of points (lines) are perspective, if every two homologous elements are on a line (plane) of a bundle of lines (planes) Two penculs of lines in the same plane are perspective, if every two homologous lines intersect in a point of the same pencll of pounts. Two pencils of planes are perspective, if every two homologous planes are on a point of a pencil of points (they then have the same section by a line). Two bundles of lines (planes) are perspective, of every two homologous lines (planes) are on a point (line) of a plane of points (lines) (they then have the same section by a plane), etc. Our previous defintion does not, however, cover all possible cases In the first place, it does not allow for the possibulity of two forms of different kmds being perspective, such as a pencil of points and a pencil of lines, a plane of points and a bundle of lunes, etc. This lack of completeness is removed for the case of one-dimens1onal forms by the following definition It should be clearly noted that it is in complete agreement with the previous definition of perspectivity; as far as one-dumensional forms are concerned it is wider in its applucation

Definition. Two one-dimensional primitive forms of different kinds, not having a common axis, are perspective, if and only of they correspond in such a (1,1) way that each element of one is on its homologous element in the other; two one-dimensional primitive forms of the same kind are perspective, if and only if every two homologous elements are on an element of a third one-dimensional form not having an axis in common with one of the given forms. If the third form is a pencil of lines with vertex P, the perspectivity is said to be

[^26]central with center P; if the third form is a pencil of points or a pencil of planes with axis l, the perspectivity is said to be ainal wilh axis l.

As examples of thus defintion we mention the following: Jwo pencils of points on skew lines are perspective, if every two homologous elements are on a plane of a pencll of planes; two pencils of lines in different planes are perspective, if every two homolugous lines are on a point of a pencil of points or a plane of a pencal of planes (either of the latter conditions is a consequence of the other); two pencils of planes are perspective, if every two homologous plancs are on a point of a pencil of pomts or a lune of a pencll of lines (in the latter case the axes of the pencils of planes are coplanar) A. pencil of points and a pencil of lines are perspective, of every point is on its homologous line, etc

It is of great importance to note that our definitions of perspective primitive forms are dual throughout; i.e. that if two forms are perspective, the dual figure will consist of perspective forms Hence any theorem proved concerning perspectivities can at once be dualized; in particular, any theorem concernng the perspectivity of two forms of the same kind is true of any other two forms of the same kind.

We use the notation $[P]$ to denote a class of elements of any kind and denote individuals of the class by P alone or with an index or subscript. Thus two ranges of points may be denoted by $[P]$ and $[Q]$. To indicate a perspective correspondence between them we write

$$
[P] \overline{\bar{\wedge}}[Q]
$$

The same symbol, $\overline{\bar{\lambda}}, 1 \mathrm{~s}$ also used to indicate a perspectivity between any two one-dumensional forms. If the two forms are of the same kind, it imphes that there exists a third form such that every pair of homologous elements of the first two forms is on an element of the third form The third form may also be exhibited in the notation by placing a symbol representing the third form immediately over the sign of perspectivity, $\overline{\bar{\lambda}}$.

Thus the symbols

$$
[P] \frac{A}{\bar{\Lambda}}[Q] \overline{\bar{\lambda}}[r] \stackrel{a}{\bar{\lambda}}[s]
$$

denote that the range $[P]$ is perspective by means of the center A with the range [Q], that each Q is on a line r of the flat pencil $[r]$, and that the pencil $[r]$ is perspective by the axis a with the flat pencil $[s]$.

A class of elements containing a fimte number of elements can be indicated by the symbols for the several elements. When this notation is used, the symbol of perspectivity indicates that elements appearing in corresponding places in the two sequences of symbols are homologous. Thus

$$
1234 \overline{\bar{\wedge}} A B C D
$$

imphes that 1 and $A, 2$ and $B, 3$ and $C, 4$ and D are homologous
Definition.* Two one-dimensional primitive forms $[\sigma]$ and $\left[\sigma^{\prime}\right]$ (of the same or different kinds) are said to be projective, provided there exists a sequence of forms $[\tau],\left[\tau^{\prime}\right], \cdots,\left[\tau^{(n)}\right]$ such that

$$
[\sigma] \overline{\bar{\Lambda}}[\tau] \overline{\bar{\Lambda}}\left[\tau^{\prime}\right] \overline{\bar{\Lambda}} \cdot \overline{\bar{\Lambda}}\left[\tau^{(n)}\right] \overline{\bar{\Lambda}}\left[\sigma^{\prime}\right]
$$

The correspondence thus established between [σ] and $\left[\sigma^{\prime}\right]$ is called a projective correspondence or projectivity, or also a projective transformation. Any element σ is sald to be projected into its homologous element σ^{\prime} by the sequence of perspectivities.

Thus a projectivity is the resultant of a sequence of perspectivities It is evident that $[\sigma]$ and $\left[\sigma^{\prime}\right]$ may be the same form, in which case the projectivity effects a permutation of the elements of the form. For example, it is proved later in this chapter that any four poinis A, B, C, D of a line can be projected into B, A, D, C respectively.

A projectivity establishes a one-to-one correspondence between the elements of two one-dımensional forms, which correspondence we may consider abstractly without direct reference to the sequence of perspectivities by which it is defined. Such a correspondence we denote by

$$
[\sigma]_{\Lambda}\left[\sigma^{\prime}\right] .
$$

Projectivities we will, in general, denote by letters of the Greek alphabet, such as π. If a projectrvity π makes an element σ of a form homologous with an element σ^{\prime} of another or the same form, we will sometimes denote this by the relation $\pi(\sigma)=\sigma^{\prime}$. In this case we may say the projectivity transforms σ into σ^{\prime}. Here the symbol π () is used as a functional symbol \dagger acting on the variable \ddagger σ, which represents any one of the elements of a given form.

[^27]23. The projectivity of one-dimensional primitive forms. The projectivity of one-dımensional prımitive forms will be discussed with reference to the projectivity of penculs of points. The corresponding properties for the other one-dımensional primitive forms will then follow immeduately by the theorems of duality (Theorems 11-13, Chap. I).

Theorem 1. If A, B, C are three points of a line l and $A^{\prime}, B^{\prime}, C^{\prime}$ three points of another line l^{\prime}, then A can be projected into A^{\prime}, B into B^{\prime}, and C into C^{\prime} by means of two centers of perspectivity. (The lines may be in the same or in different planes.) (A, E)

Proof. If the points in any one of the pairs $A A^{\prime}, B B^{\prime}$, or $C C^{\prime}$ are coincident, one center is sufficient, viz, the intersection of the lines determined by the other two pairs. If each of these parrs consists of distinct points, let S be any point of the line $A A^{\prime}$, distinct from A and A^{\prime} (fig 22). From S project A, B, C on any line $l^{\prime \prime}$ distinct from l and l^{\prime}, but containing A^{\prime} and a point of l. If $B^{\prime \prime}, C^{\prime \prime}$ are the points of $l^{\prime \prime}$ correspond-
 ing to B, C respectively, the point of intersection S^{\prime} of the lines $B^{\prime} B^{\prime \prime}$ and $C^{\prime} C^{\prime \prime}$ is the second center of perspectivity. This argument holds without modification, if one of the points A, B, C concides with one of the points $A^{\prime}, B^{\prime}, C^{\prime}$ other than its corresponding point.

Corollary 1. If A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ are on the same line, three centers of perspectivity are sufficient to project A, B, C into $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. (A, E)

Corollary 2. Any three distinet elements of a one-dimensional primitive form are projective with any three distinct elements of another or the same one-dimensional primitive form. (A, E)

For, when the two forms are of the same kind, the result is obtained from the theorem and the first corollary directly from the
theorems of duality (Theorems 11-13, Chap. I). If they are of different kinds, a projection or section is sufficient to reduce them to the same kind

Theorem 2 The projectivety $A B C D \backslash B A D C$ holds for any four distinct points A, B, C, D of a line. (A, E)

Proof. From a point S, not on the line $l=A B$, project $A B C D$ into $A B^{\prime} C^{\prime} D^{\prime}$ on a line l^{\prime} through A and distinct from l (fig 23). From D project $A B^{\prime} C^{\prime} D^{\prime}$ on the line $S B$. The last four points will then project into $B A D C$ by means of the center C^{\prime}. In fig. 23 we have

$$
A B C D \stackrel{S}{\bar{\wedge}} A B^{\prime} C^{\prime} D^{\prime} \stackrel{D}{\bar{\wedge}} B B^{\prime} C^{\prime \prime} S{\underset{\wedge}{\Lambda}}_{C^{\prime}} B A D C
$$

It is to be noted that a geometrical ordel of the points $A B C D$ has no bearing on the theorem. In fact, the notion of such order has not yet been introduced into our geometry and, indeed, cannot

Fig 23 be introduced on the basis of the present assumptrons alone The theorem mesely states that the cori esponclence obtained by interchangng any two of four collinear pornts and also interchangzng the remarning two is projective The notion of order 1s, however, ampled in our notation of projectivity and perspectivity. Thus, for example, we introduce the following definition.

Definition. Two ordered pairs of elements of any one-dimensional form are called a throw; if the pairs are $A B, C D$, this is denoted by $\mathrm{T}(A B, C D)$ Two throws are said to be equal, provided they are projective ; in symbols, $\mathrm{T}(A B, C D)=\mathrm{T}\left(A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right)$, provided we have $A B C D \bar{\Lambda} A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

The last theorem then states the equality of throws:

$$
\mathrm{T}(A B, C D)=\mathrm{T}(B A, D C)=\mathrm{T}(C D, A B)=\mathrm{T}(D C, B . A)
$$

The results of the last two theorems may be stated in the following form:

Theorem 1'. If 1, 2,3 are elements of any one-dimensional primitive form, there exist projective transformations which will effect any -one of the six permutations of these three elements.

Theorem 2^{\prime}. If 1, 2, 3, 4 are any four distinct clements of a onedimensional primitive form, there exist projective transformations which will transform 1234 into any one of the following permutations of itself: 1234, 2143, 3412, 4321.

A projective transformation has been defined as the resultant of any sequence of perspectivities. We proceed now to the proof of a chain of theorems, which lead to the fundamental result that any projective transformation between two distinct one-dımensional primitive forms of the same kind can be obtamed as the resultant of two perspectivities.

Theorem 3 If $[P],\left[P^{\prime}\right],\left[P^{\prime \prime}\right]$ are pencils of points on thrce distinct concurrent lines $l, l^{\prime}, l^{\prime \prime}$ respectively, such that $[P] \stackrel{S}{\bar{\wedge}}\left[P^{\prime}\right]$ and $\left[P^{\prime}\right] \frac{S^{\prime}}{\bar{\wedge}}$ $\left[P^{\prime \prime}\right]$, then lukewise $[P] \stackrel{S^{\prime \prime}}{\bar{\wedge}}\left[P^{\prime \prime}\right]$, and the three centers of perspectivity $S, S^{\prime} S^{\prime \prime}$ are collinear. (A, E)

Proof. Let O be the common point of the lines $l, l^{\prime}, l^{\prime \prime}$. If P_{1}, P_{2}, P_{8} are three points of $[P]$, and $P_{1}^{\prime} P_{2}^{\prime} P_{8}^{\prime}$ and $P_{1}^{\prime \prime} P_{2}^{\prime \prime} P_{8}^{\prime \prime}$ the corresponding points of $\left[P^{\prime}\right],\left[P^{\prime \prime}\right]$ (fig. 24), it is clear that the triangles $P_{1} P_{1}^{\prime} P_{1}^{\prime \prime}$, $P_{2} P_{2}^{\prime} P_{2}^{\prime \prime}, P_{8} P_{8}^{\prime} P_{8}^{\prime \prime}$ are perspective from 0^{*} By Desargues's theorem (Theorem 1, Chap II) homologous sides of any parr of these three triangles meet in collmear points. The conclusion of the theorem then follows readily from the hypotheses

[^28]Corollary. If n concurrent lines $l_{1}, l_{2}, l_{8}, \quad, l_{n}$ are connected by perspectivnties $\left[P_{1}\right] \frac{S_{12}}{\Lambda}\left[P_{2}\right] \frac{S_{28}}{\Lambda}\left[P_{8}\right] \stackrel{S_{34}}{\Lambda} \quad \frac{S_{n-1, n}}{\wedge}\left[P_{n}\right]$, and if l_{1} and l_{n} are distinet lines, then we have $\left[P_{1}\right] \overline{\bar{\wedge}}\left[P_{n}\right] \quad(\mathrm{A}, \mathrm{E})$

Proof. This follows almost immeduately from the theorem, except when it happens that a set of four successive lmes of the set $l_{1} l_{2} l_{\mathrm{g}} \cdots l_{n}$ are such that the first and thard coincide and likewise the second and fourth. That this case forms no exception to the corollary may be shown as follows: Consider the perspectivities connecting the pencils of pounts on the lines $l_{1}, l_{2}, l_{3}, l_{4}$ on the hypothess that $l_{1}=l_{3}, l_{2}=l_{4}$ (fig. 25.) Let l_{1}, l_{2} meet in O, and let the line $S_{12} S_{23}$ meet l_{1} in A_{1},

Fig. 25
and l_{2} in A_{2}; let $A_{8}=A_{1}$ and A_{4} be the corresponding points of l_{8} and l_{4} respectively. Further, let $B_{1}, B_{2}, B_{8}, B_{4}$ and $C_{1}, C_{2}, C_{3}, C_{4}$ be any other two sequences of corresponding points in the perspectivities. Let S_{41} be determined as the intersection of the lines $A_{1} A_{4}$ and $B_{1} B_{4}$. The two quadrangles $S_{12} S_{23} B_{2} C_{2}$ and $S_{41} S_{34} B_{4} C_{4}$ have five pairs of homologous sides meeting $l_{1}=l_{8}$ in the points $O A_{1} B_{1} B_{8} C_{8}$. Hence the side $S_{41} C_{4}$ meets l_{1} in C_{1} (Theorem 3, Chap. II).

Theorem 4. If $\left[P_{1}\right],\left[P_{2}\right],[P]$ are pencils of points on distinct lines l_{1}, l_{2}, l respectively, such that $\left[P_{1}\right] \frac{S_{1}}{\bar{\wedge}}[P] \frac{S_{9}}{\lambda}\left[P_{2}\right]$, and if $\left[P^{\prime}\right]$ is the pencil of points on any line l^{\prime} containing the intersection of l_{1}, l and also a point of l_{n}, but not containing S_{2}, then there exists a point S_{1}^{\prime} on $S_{1} S_{2}$, such that $\left[P_{1}\right] \frac{S_{1}^{\prime \prime}}{\bar{\Lambda}}\left[P^{\prime}\right] \frac{S_{2}}{\bar{\Lambda}}\left[P_{2}\right]$. (A, E)

Proof. Clearly we have

$$
\left[P_{1}\right] \stackrel{S_{1}}{\stackrel{S_{1}}{\Lambda}}[P] \stackrel{S_{2}}{\bar{\Lambda}}\left[P^{\prime}\right] \frac{S_{2}}{\bar{\Lambda}}\left[P_{2}\right] .
$$

But by the preceding theorem and the conditions on l^{\prime} we have $\left[P_{1}\right] \stackrel{S_{1}^{\prime}}{\bar{\Lambda}}\left[P^{\prime}\right]$, where S_{1}^{\prime} is a pount of $S_{1} S_{2}$ Hence we have

$$
\left[P_{1}\right] \stackrel{S_{1}^{\prime}}{\stackrel{S_{n}}{\prime}}\left[P^{\prime}\right] \stackrel{S_{2}}{\stackrel{ }{\lambda}}\left[P_{2}\right] .
$$

This theorem leads readily to the next theorem, which is the result toward which we have been working We prove first the following lemmas:

Lemma 1. Any axial perspectivity between the points of two skew lines is equivalent to (and may be roplaced by) two central perspectivitucs (A, E)

For let $[P],\left[P^{\prime}\right]$ be the pencils of points on the skew lines. Then If S and S^{\prime} are any two points on the axis s of the axial perspectivity, the pencils of lines $S[P], S^{\prime}\left[P^{\prime}\right]^{*}$ are so related that pars of homologous lines intersect in points of the line common to the planes of the two pencils $S[P]$ and $S^{\prime}\left[P^{\prime}\right]$, since each pair of homologous lines lie, by hypothesss, in a plane of the axial pencil $s[P]=s\left[P^{\prime}\right]$.

Lemma 2. Any projectivity between pencils of points may be defined by a sequence of central perspectivities.

For any noncentral perspectivities occurring in the sequence defining a projectivity may, in consequence of Lemma 1, be replaced by sequences of central perspectivities.

Theorem 5. If two penculs of points $[P]$ and $\left[P^{\prime}\right]$ on distinct lines are projective, there exists a pencil of points [Q] and two points S, S^{\prime} such that we have $[P] \stackrel{S}{\bar{\Lambda}}[Q] \frac{S^{\prime}}{\bar{\Lambda}}\left[P^{\prime}\right] . \quad(\mathrm{A}, \mathrm{E})$

Proof, By hypothesss and the two preceding lemmas we have a sequence of perspectivities

$$
[P] \frac{S_{1}}{\bar{\Lambda}}\left[P_{1}\right] \frac{S_{8}}{\bar{\Lambda}}\left[P_{2}\right] \frac{S_{8}}{\bar{\Lambda}}\left[P_{8}\right] \frac{S_{4}}{\bar{\Lambda}} \cdots \frac{S_{n}}{\bar{\Lambda}}\left[P^{\prime}\right] .
$$

[^29]We assume the number of these perspectivities to be greater than two, since otherwise the theorem is proved. By applying the corollary of Theorem 3, when necessary, this sequence of perspectivities may be so modufied that no three successive axes are concurrent. We may also assume that no two of the axes $l, l_{1}, l_{2}, l_{3}, \cdots, l^{\prime}$ of the pencils $[P],\left[P_{1}\right],\left[P_{2}\right],\left[P_{3}\right], \quad \cdot\left[P^{\prime}\right]$ are comerdent; for Theorem 4 may evidently be used to replace any $l_{k}\left(=l_{1}\right)$ by a line $l_{k}^{\prime \prime}\left(\neq l_{2}\right)$. Now let l_{1}^{\prime} be the line joining the points $l l_{1}$ and $l_{2} l_{3}$, and let us suppose that it does not contain the center S_{2} (fig 26). If then [P_{1}^{\prime}] is the pencil of pounts on l_{1}^{\prime}, we may (by Theorem 4) replace the given sequence of perspectivities by $[P] \frac{S_{1}^{\prime}}{\bar{\Lambda}}\left[P_{1}^{\prime}\right] \frac{S_{2}}{\bar{\Lambda}}\left[P_{2}\right] \frac{S_{3}}{\bar{\Lambda}}\left[P_{3}\right] \stackrel{S_{2}}{\bar{\Lambda}} \cdots$ and this sequence may in turn be replaced by

Fig 26

$$
[P] \frac{S_{1}^{\prime}}{\bar{\Lambda}}\left[P_{1}^{\prime}\right] \frac{S_{8}^{\prime}}{\stackrel{S_{8}}{\Lambda}}\left[P_{3}\right] \frac{S_{4}}{\Lambda} \cdots
$$

(Theorem 3). If S_{2} is on the line jouning $l l_{1}$ and $l_{2} l_{3}$, we may replace l_{1} by any line $l_{1}^{\prime \prime}$ through the intersection of $l_{1} l_{2}$ which meets l and does not contain the point S_{1} (Theorem 4). The line joining $l_{2} l_{8}$ to $l l_{1}^{\prime \prime}$ does not contain the point $S_{2}^{\prime \prime}$ which replaces S_{2}. For, since S_{2} is on the line joining $l_{3} l_{2}$ to $l l_{1}$, the points $l_{8} l_{2}$ and $l l_{1}$ are homologous points of the pencils $\left[P_{8}\right.$] and $[P]$; and if $S_{2}^{\prime \prime}$ were on the line joining $l_{\mathrm{g}} l_{2}$ to $l l_{1}^{\prime \prime}$, the point $l_{\mathrm{a}} l_{2}$ would also be homologous to $l l_{1}^{\prime \prime}$. We may then proceed as before. By repeaied application of this process we can reduce the number of perspectivities oue by one, until finally we obtain the pencil of points [Q] and the perspectivaties

$$
[P] \stackrel{S}{\bar{\wedge}}[Q] \frac{S^{\prime}}{\bar{\Lambda}}\left[P^{\prime}\right] .
$$

As a consequence we have the important theorem:
Theorem 6. Any two projective pencils of points on skew lines are axially perspective (A, E)

Proof. The axis of the perspectivity is the line $S S^{\prime}$ of the last theorem.
24. General theory of correspondence. Symbolic treatment. In - preparation for a more detailed study of projective (and other) correspondences, we will now develop certain general ideas applicable to
all one-to-one reciprocal correspondences as defined in Chap. II, § 13, p. 35 , and show in particular how these ideas may be conveniently represented in symbolic form * As previously indıcated (p. 58), we will represent such correspondences in general by the letters of the Greek alphabet, as A, B, Γ, \cdots. The totality of elements affected by the correspondences under consideration forms a system which we may denote by S . If, as a result of replacing every element of a system S_{1} by the element homologous to it in a correspondence A, the system S_{1} is transformed into a system S_{2}, we express this by the relation $\mathrm{A}\left(\mathrm{S}_{1}\right)=\mathrm{S}_{2}$ In particular, the element homologous with a given element P is represented by A (P).
I. If two correspondences A, B are applied successively to a system S_{1}, so that we have $A\left(S_{1}\right)=S_{2}$ and $B\left(S_{2}\right)=S_{3}$, the single correspondence Γ which transforms S_{1} into S_{3} is called the resultant or product of A by B; in symbols $\mathrm{S}_{3}=\mathrm{B}\left(\mathrm{S}_{2}\right)=\mathrm{B}\left(\mathrm{A}\left(\mathrm{S}_{1}\right)\right)=\mathrm{BA}\left(\mathrm{S}_{1}\right)$, or, more briefly, $\mathrm{BA}=\Gamma$ Simularly, for a succession of more than two correspondences.

II Two successions of correspondences $\mathrm{A}_{m} \mathrm{~A}_{m-1} \cdots \mathrm{~A}_{1}$ and $\mathrm{B}_{q} \mathrm{~B}_{q-1} \ldots \mathrm{~B}_{1}$ have the same resultant, or their products are equal, provided they transform S into the same S^{\prime}; in symbols, from the relation
follows

$$
\begin{gathered}
\mathrm{A}_{m} \mathrm{~A}_{m-1} \quad \mathrm{~A}_{1}(\mathrm{~S})=\mathrm{B}_{q} \mathrm{~B}_{q-1} \quad \cdot \mathrm{~B}_{1}(\mathrm{~S}) \\
\mathrm{A}_{m} \mathrm{~A}_{m-1} \cdot \mathrm{~A}_{1}=\mathrm{B}_{q} \mathrm{~B}_{q-1} \cdots \mathrm{~B}_{1} .
\end{gathered}
$$

III. The correspondence which makes every element of the system correspond to itself is called the identical correspondence or simply the identity, and is denoted by the symbol 1. It is then readily seen that for any correspondence A we have the relations

$$
\mathrm{A} 1=1 \mathrm{~A}=\mathrm{A}
$$

IV. If a correspondence A transforms a system S_{1} into S_{2}, the correspondence which transforms S_{g} into S_{1} is called the inverse of A and is represented by A^{-1}, i.e. if we have $A\left(S_{1}\right)=S_{2}$, then also $A^{-1}\left(S_{2}\right)=S_{1}$. The inverse of the inverse of A is then clearly A, and we evidently have also the relations

$$
\mathrm{AA}^{-1}=\mathrm{A}^{-1} \mathrm{~A}=1
$$

[^30]Conversely, if $\mathrm{A}, \mathrm{A}^{\prime}$ are two correspondences such that we have $\mathrm{AA}^{\prime}=1$, then A^{\prime} is the inverse of A . Evidently the identity is its own inverse.
V. The product of three correspondences $\mathrm{A}, \mathrm{B}, \Gamma$ always satisfies the relation ($\Gamma \mathrm{B}) \mathrm{A}=\Gamma(\mathrm{BA})$ (the associative law). For from the relations $A\left(S_{1}\right)=S_{2}, B\left(S_{2}\right)=S_{8}, \Gamma\left(S_{8}\right)=S_{4}$ follows at once $B A\left(S_{1}\right)=S_{3}$, whence $\Gamma(B A)\left(\mathrm{S}_{1}\right)=\mathrm{S}_{4}$; and also $\Gamma B\left(\mathrm{~S}_{2}\right)=\mathrm{S}_{4}$, and hence ($\left.\Gamma \mathrm{B}\right) \mathrm{A}\left(\mathrm{S}_{1}\right)$ $=S_{4}$, which proves the relation in question. More generally, in any product of correspondences any set of successive correspondences may be inclosed in parentheses (provided their order be left unchanged), or any pair of parentheses may be removed; in other words, in a product of correspondences any set of successive correspondences may be replaced by thexr resultant, or any correspondence may be replaced by a succession of which the given correspondence is the resultant.
VI. In particular, we may conclude from the above that the inverse of the product $M . B A$ is $A^{-1} B^{-1} \cdots M^{-1}$, sunce we evidently have the relation $\mathrm{M} \cdots \mathrm{BAA}^{-1} \mathrm{~B}^{-1} \cdots \mathrm{M}^{-1}=1$ (cf. IV).
VII. Further, it is easy to show that from two relations $\mathrm{A}=\mathrm{B}$ and $\Gamma=\Delta$ follows $A \Gamma=B \Delta$ and $\Gamma A=\Delta B$. In particular, the relation $\mathrm{A}=\mathrm{B}$ may also be written $\mathrm{AB}^{-1}=1, \mathrm{~B}^{-1} \mathrm{~A}=1, \mathrm{BA}^{-1}=1$, or $\mathrm{A}^{-1} \mathrm{~B}=1$.
VIII. Two correspondences A and B are sald to be commutative if they satisfy the relation $\mathrm{BA}=\mathrm{AB}$.
IX. If a correspondence A is repeated n times, the resultant is written AAA $\cdots=\mathrm{A}^{n}$. A correspondence A is said to be of period n, if n is the smallest positive integer for which the relation $\mathrm{A}^{n}=1$ is satisfied. When no such integer exists, the correspondence has no period; when it does exist, the correspondence is said to be periodic or cyclic.

X . The case $n=2$ is of particular importance. A correspondence of period two is called involutoric or reflexive.
25. The notion of a group. At this point it seems desirable to introduce the notion of a group of correspondences, which is fundamental in any system of geometry. We will give the general abstract definition of a group as follows:*

Definition. A class G of elements, which we denote by a, b, o, \cdots, is said to form a group with respect to an operation or law of

[^31]combination \circ, acting on pairs of elements of G, provided the following postulates are satisfied:

G1. For every pair of (equal or distinct) elements a, b of G , the result $a \circ b$ of acting with the operation o on the parr in the order given* is a uniquely detcrmined element of G.

G2. The relation $(a \circ b) \circ c=a \circ(b \circ c)$ holds for any three (equal or distinct) elements a, b, c of G.

G3 There occurs in G an element i, such that the rclation $a \circ i=a$ holds for every element a of G

G4. For every element a in G there exists an element a^{\prime} satisfying the relation $a \circ a^{\prime}=i$.

From the above set of postulates follow, as theorems, the following.
The relations $a \circ a^{\prime}=i$ and $a \circ i=a$ imply respectively the relations $a^{\prime} \circ a=i$ and $i \circ a=a$

An element i of G is called an identity element, and an element a^{\prime} satisfying the relation $a \circ a^{\prime}=i$ is called an inverse element of a.

There is only one adentity element in G.
For every element a of G there is only one inverse.
We omit the proofs of these theorems.
Definition A group which satisfies further the following postulate is said to be commutative (or abelian):

G5. The relation $a \circ b=b \circ a$ is satisfied for every pair of elements a, b in G .
26. Groups of correspondences. Invariant elements and figures. The developments of the last two sections lead now immediately to the theorem:

A set of correspondences forms a group provrded the set contains the inverse of any correspondence in the set and provided the resultant of any two correspondences is in the set

Here the law of combination o of the preceding section is simply the formation of the resultant of two successive correspondences

Defintition. If a correspondence \mathbf{A} transforms every element of a given figure F into an element of the same figure, the figure F is sald to be invariant under A , or to be left invariant by A In particular,

[^32]an element which is transformed into itself by A is said to be an invariant element of A, the latter is also sometınes called a double element or a fixed element (point, line, plane, etc).

We now call attention to the following general principle:
The set of all correspondences in a group G which leave a given figure invariant forms a group

This follows at once from the fact that if each of two correspondences of G leaves the figure invariant, their product and their inverses will likewise leave it invariant, and these are all in G, since, by hypothesis, G is a group. It may happen, of course, that a group defined in this way consists of the identity only

These notions are lllustrated in the following section:
27. Group properties of projectivities. From the definition of a projectivity between one-dımensional forms follows at once

Theorem 7 The inverse of any projectivity and the resultant of any two projectivetres are projectivities.

On the other hand, we notice that the resultant of two perspectivities is not, in general, a perspectivity; if, however, two perspectivities connect three concurrent lines, as in Theorem 3, their resultant is a perspectivity. A perspectivity is its own inverse, and is therefore reflexive. As an example of the general principle of $\S 26$, we have the important result:

Theorem 8. The set of all projectivities leaving a given pencil of points invarıant forn a group.

If the number of points in such a pencil is unlımited, this group contains an unlimited number of projectivities. It is called the general projective group on the line Lakewise, the set of all projectivities on a line leavng the figure formed by three distanct pomis invariant forms a subgroup of the general group on the line. If we assume that each permutation (cf. Theorem 1') of the three pounts gives rise to only a single projectivaty (the proof of which requires an addutional assumption), this subgroup consists of six projectivities (includang, of course, the identity). Again, the set of all projectivities on a line leaving each of two given distinct points invariant forms a subgroup of the general group.

We will close this section with two examples illustrative of the principles now under discussion, in which the projectivities in question are given by explicit constructions.

Example 1. A group of projectivities leaving each of two given points invariant. Let M, N be two distunct pounts on a lune l, and let m, n be any two limes through M, N respectively and coplanar with l (fig. 27). On m let there be an arbitrary given point S. If S_{1} is any other point on m and not on l or n, the points S, S_{1} together with the line n define a projectivity π_{1} on l as follows: The point $\pi_{1}(A)=A^{\prime}$ homologous to any point A of l is obtained by the two perspectivities $[A] \stackrel{S}{\bar{\Lambda}}\left[A_{1}\right] \stackrel{S_{1}}{\Lambda}\left[\Lambda^{\prime}\right]$, where $\left[A_{1}\right]$ is the pencil of pounts on n Every point S_{2} then, if not on l or n, defines a unique projectivity π_{i}; we are to slow that the set of all these projectivities π_{i} forms a group. We show first that the product of any two π_{1}, π_{2} is a uniquely determined projectivity π_{3} of the set (fig. 27). In the figure, $A^{\prime}=\pi_{1}(A)$ and $A^{\prime \prime}=\pi_{2}\left(A^{\prime}\right)$ have been

Fig. 27
constiucted. The pomit S_{8} giving $A^{\prime \prime}$ directly from A by a similar construction is then umquely determned as the mtersection of the lwes $A^{\prime \prime} A_{1}, m$. Let B be any other point of l distinct from $M r, N$, and let $B^{\prime}=\pi_{1}(B)$ and $B^{\prime \prime}=\pi_{2}\left(B^{\prime}\right)$ be constructed; we must show that we have $B^{\prime \prime}=\pi_{\mathrm{g}}(B)$. We recognize the quadrangular set $\mathrm{Q}\left(M B^{\prime} A^{\prime}, N A^{\prime \prime} B^{\prime \prime}\right)$ as defined by the quadrangle $S S_{2} B_{2} A_{2}$ But of this quadrangular set a.l points except $B^{\prime \prime}$ are also obtained from the quadrangle $S_{1} S_{8} B_{1} A_{1}$, whence the line $S_{8} B_{1}$ determues the point $B^{\prime \prime}$ (Theorem 3, Chap II) It is necessary further to show that the inverse of any projectivity in the set is in the set For this purpose we need sumply determine S_{2} as the intersection of the line $A A_{2}$ with m and repeat the former argument. This is left as an exercise Finally, the identity is in the set, since it is π_{1}, when $S_{1}=S$.

It is to be noted that in this example the points M and N are double points of each projectivity in the group; and also that if P, P^{\prime} and Q, Q^{\prime} are any two parrs of homologous points of a projectzvity we have $Q\left(M P Q, N Q^{\prime} P^{\prime}\right)$. Moreover, it is clear that any projectivity of the group is unquely determined by a paur of homologous elements, and that there exists a projectivity whech wall transform any point A of l into any other point B of l, provided only that A and B are distinct from M and N By virtue of the latter property the group is sald

Fig. 28
Example 2. Commutative projectivities. Let M be a point of a line l, and let m, m^{\prime} be any two lmes through M distinct from l, but in the same plane with l (fig. 28.) Let S be a given point of m, and let a projectivity π_{1} be defined by another point S_{1} of m which determines the perspectivities $[A] \stackrel{S}{\bar{\lambda}}\left[A_{1}\right] \stackrel{S_{1}}{\bar{\Lambda}}\left[A^{\prime}\right]$, where $\left[A_{1}\right]$ is the pencil of points on m^{\prime}. Any two projectivities defined $\imath n$ this way by points \mathbb{S}_{i} are commutative Let π_{2} be another such projectivity, and construct the points $A^{\prime}=\pi_{1}(A), A^{\prime \prime}=\pi_{2}\left(A^{\prime}\right)$, and $A_{1}^{\prime}=\pi_{2}(A)$. The quadrangle $S S_{2} A_{1} A_{2}$ gives $\mathrm{Q}\left(M A A^{\prime}, M A^{\prime \prime} A_{1}^{\prime}\right)$; and the quadrangular set determined on l by the quadrangle $S S_{1} A_{1} A_{2}^{\prime}$ has the first five points of the former in the same positions in the symbols. Hence we have $\pi_{1}\left(A_{1}^{\prime}\right)=A^{\prime \prime}$, and therefore $\pi_{1} \pi_{2}=\pi_{2} \pi_{1}$.

EXERCISES

1. Show that the set of all projeotivities π_{i} of Example 2 above forms a group, which is then a commutative group.
2. Show that the projectivity π_{1} of Example 1 above is identical with the projectivity obtained by choosing any other two points of m as centers of perspectivity, provided only that the two projectivities have one homologous
pair (distinct from M or N) in common Investigate the general question as to how far the constiuction may be modified so as still to preserve the proposition that the projectivaties are determined by the double points M, N and one pair of homologous elements

3 Discuss the same general question for the projectivities of Example 2.
4. Apply the method of Example 2 to the projectivities of Example, 1. Why does it fall to show that any two of the lattel are commutative? State the space and plane duals of the two examples.
$5 A B C D$ is a tetrahedron and a, β, γ, δ the faces not containing A, B, C, D respectively, and l is any line not meeting an edge. The planes ($l A, l B, l C, l D$) are projective with the points ($l a, l \beta, l \gamma, l \delta$).

6 On each of the ten sides of a complete 5-point in a plane there are three diagonal points and two vertuces. Write down the projectivities among these ten sets of five points each

28. Projective transformations of two-dimensional forms.

Definition. A projective transformation between the elements of two two-dimensional or two three-dimensional forms is any one-toone reciprocal correspondence between the elements of the two forms, such that to every one-dimensional form of one there corresponds a projective one-dimensional form of the other.

Definition. A collineation is any (1,1) correspondence between two two-dimensional or two three-dimensional forms in which to every element of one of the forms corresponds an element of the same kind in the other form, and in which to every one-dimensional form of one corresponds a one-dımensional form of the other. A projective collnneatzon is one in which this correspondence is projective. Unless otherwrse specified, the term collineation will, in the future, always denote a projective collineation.*

In the present chapter we shall confine ourselves to the discussion of some of the fundamental properties of collineations In this section we discuss the collineations between two-dimensional forms, and shall take the plane (planar field) as typical; the corresponding theorems for the other two-dimensional forms will then follow from duality.

The simplest correspondence between the elements of two distinct planes π, π^{\prime} is a perspective correspondence, whereby any two homologous elements are on the same element of a bundle whose center O is on nerther of the planes π, π^{\prime}. The simplest collineation in a plane,

[^33]i.e. which transforms every element of a plane into an element of the same plane, is the followng:

Definition. A perspective collineation in a plane is a projective collineation leaving invariant every point on a given line o and every line on a given point O. The line o and the point O are called the axis and center respechively of the perspective collnneation. If the center and axis are not united, the collineation is called a planar homology; if they are united, a planar elatron.

A perspective collneation in a plane π may be constructed as follows: Let any line 0 and any point 0 of π be chosen as axis and center respectively, and let π_{1} be any plane through o distinct from π. Let O_{1}, O_{2} be any two points collnear with O and in nether of the planes π, π_{1}. The perspective collneation is then obtamed by the two perspectivities $[P] \frac{O_{1}}{\stackrel{ }{\Lambda}}\left[P_{1}\right] \frac{O_{2}}{\stackrel{ }{\Lambda}}\left[P^{\prime}\right]$, where P is any point of π and P_{1}, P^{\prime} are points of π_{1} and π respectively. Every point of the lime o and every line through the point O clearly remain fixed by the transformation, so that the conditions of the definition are satisfied, if only the transformation is projective. But it is readily seen that every pencll of points is transformed by this process into a perspective pencil of points, the center of perspectivily being the point O; and every pencil of lines is transformed into a perspective pencil, the axis of perspectivity being 0 . The above discussion applies whether or not the point O is on the line 0 .

Theorem 0 . A perspective collineation in a plane is uniquely defined if the center, axis, and any two homologous points (not on the awis or center) are given, with the single rostriction that the homologous points must te collinear with O. (A, E)
Proof. Let O, o be the center and axis respectively (fig. 29). It is clear from the definition that any two homologous points must be collinear with O, since every line through O is invariant; similarly (dually) any two homologous lines must be concurrent with 0 . Let A, A^{\prime} be the given pair of homologous points collinear with O. The
point \mathcal{B}^{\prime} homologous to any point B of the plane is then determined. We may assume B to be distinct from O, A and not to be on o. B^{\prime} is on the line $O B$, and af the line $A B$ meets o in C, then, since C is invariant by defintion, the line $A B=A C$ is transformed into $A^{\prime} C$. B^{\prime} is then determmed as the intersection of the lines $O B$ and $A^{\prime} C$. This apphes unless B is on the line $A A^{\prime}$; in this case we determine as above a pair of homologous points not on $A A^{\prime}$, and then use the two points thus determined to construct B^{\prime}. Thus shows that there can be no more than one perspective collineation in the plane with the given elements

To show that there is one we may proceed as follows: Let π_{1} be any plane through o distmet from π, the plane of the perspectivity, and let O_{1} be any point on neither of the planes π, π_{1} If the line $A O_{1}$ meets π_{1} in A_{1}, the line $A^{\prime} A_{1}$ meets $O O_{1}$ in a point O_{2}. The perspective colluneation determined by the two centers of perspectivity O_{1}, O_{3} and the plane π_{1} then has O, o as center and axis respectively and A, A^{\prime} as a paur of homologous points.

Corollary 1. A perspective collineation in a plane transforms every one-dimensional form into a perspective one-dimensional form. (A, E)

Corollary 2. A perspective collineation with center O and axis o transforms any triangle none of whose vertices or sudes are on o or O into a perspective triangle, the center of perspectivity of the triangles berng the center of the collineation and the axis of perspectivity being the axis of the collineation (A, E)

Corollary 3. The only planar collineations (whether required to be projective or not) which leave invariant the points of a line 0 and the lines through a point O are homologies of O is not on 0 , and elations if O is on 0 . (A, E)

Proof. This will be evident on observing that in the first paragraph of the proof of the theorem no use is made of the hypothesis that the collineation is projective.

Corollary 4. If H is a perspective collineation such that $\mathrm{H}(0)=0$, $\mathrm{H}(o)=0, \mathrm{H}(A)=A^{\prime}, \mathrm{H}(B)=B^{\prime}$ where $A, A^{\prime}, B, B^{\prime}$ are collinear weth a point K of o, then we have $\mathrm{Q}\left(O A B, K B^{\prime} A^{\prime}\right)$. (A, E)

Proof. If C is any point not on $A A^{\prime}$ and $\mathrm{H}(C)=C^{\prime}$, the lines $A C$ and $A^{\prime} C^{\prime}$ meet in a point L of o, and $B C$ and $B^{\prime} C^{\prime}$ meet in a point M of o; and the required quadrangle is $C C^{\prime} L M$ (cf fig. 32, p.77).

Theorem 10. Any complete quadrangle of a plane can be transformed into any complete quadrangle of the same or a different plane by a projective collineation which, if the quadrangles are in the same plane, zs the resultant of a finite number of perspective collineatrons. (A, E)

Proof. Let the quadrangles be in the same plane and let therr vertices be A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ respectively. We show first that there exists a collineation leaving any three vertices, say $A^{\prime}, B^{\prime}, C^{\prime}$, of

Fig. 30
the quadrangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ invariant and transforming into the fourth, D^{\prime}, any other point D_{g} not on a side of the triangle $A^{\prime} B^{\prime} C^{\prime}$ (fig. 30). Let \bar{D} be the intersection of $A^{\prime} D_{\mathrm{g}}, B^{\prime} D^{\prime}$ and consuler the homology with center A^{\prime} and axis $B^{\prime} C^{\prime}$ transforming D_{s} into \bar{D}. Next consider the homology with center B^{\prime} and axis $C^{\prime} A^{\prime}$ transforming \bar{D} into D^{\prime}. Both these homologies exist by Theorem 9. The resultant of these two homologies is a collineation leaving fixed $A^{\prime}, B^{\prime}, C^{\prime}$ and transforming D_{s} into D^{\prime}. (It should be noticed that one or both of the homologies may be the identity.)

Let O_{1} be any point on the line containing A and A^{\prime} and let O_{1} be any line not passing through A or A^{\prime}. By Theorem 9 there exists a
perspective collneation π_{1} transforming A to A^{\prime} and having O_{1} and o_{1} as center and axis. Let B_{1}, C_{1}, D_{1} be poinis such that

$$
\pi_{1}(A B C D)=A^{\prime} B_{1} C_{1} D_{1}
$$

In like manner, let o_{2} be any line through A^{\prime} not containing B_{1} or \mathcal{B}^{\prime} and let O_{2} be any point on the lue $B_{1} B^{\prime}$. Let π_{2} be the perspective collmeation with axis o_{2}, center O_{2}, and transforming B_{1} to B^{\prime}. Let $C_{2}=\pi_{2}\left(C_{1}\right)$ and $D_{2}=\pi_{2}\left(D_{1}\right)$ Here

$$
\pi_{2}\left(A^{\prime} B_{1} C_{1} D_{1}\right)=A^{\prime} B^{\prime} C_{2} D_{2}
$$

Now let O_{3} be any point on the line $C_{2} C^{\prime}$ and let π_{a} be the perspective collneation which has $A^{\prime} B^{\prime}=o_{3}$ for axis, O_{3} for center, and transforms C_{2} to $C^{\prime \prime}$. The existence of π_{3} follows from Theorem 9 as soon as we observe that C^{\prime} is not on the line $A^{\prime} B^{\prime}$, by hypothesis, and C_{2} is not on $A^{\prime} B^{\prime}$; because if so, C_{1} would be on $A^{\prime} B_{1}$ and therefore C would be on $A B$. Let $\pi_{3}\left(D_{2}\right)=D_{3}$. It follows that

$$
\pi_{3}\left(A^{\prime} B^{\prime} C_{2} D_{2}\right)=A^{\prime} B^{\prime} C^{\prime} D_{3}
$$

The point D_{3} cannot be on a side of the triangle $A^{\prime} B^{\prime} C^{\prime}$ because then D_{2} would be on a side of $A^{\prime} B^{\prime} C_{2}$, and hence D_{1} on a side of $A^{\prime} \mathcal{B}_{1} C_{1}$, and, finally, D on a side of $A B C$. Hence, by the first paragraph of this proof, there exists a projectivity π_{4} such that

$$
\pi_{4}\left(A^{\prime} B^{\prime} C^{\prime} D_{3}\right)=A^{\prime} B^{\prime} C^{\prime} D^{\prime}
$$

The resultant $\pi_{4} \pi_{3} \pi_{2} \pi_{1}$ of these four collineations clearly transforms A, B, C, D into $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ respectively If the quadrangles are in different planes, we need only add a perspective transformation between the two planes.

Corollary There exist projective collincations in a plane which will effect any one of the possible 24 permutations of the vertices of a complete quadrangle in the plane. (A, E)
29. Projective collineations of three-dimensional forms. Projective collineations in a three-dimensional form have been defined at the beginning of § 28.

Definition. A projective collineation in space which leaves invariant every point of a plane ω and every plane on a point O is called a perspective collineation. The plane ω is called the plane of perspectivity; the point O is called the center. If O is on ω, the collineation is said to be an elation in space; otherwise, a homology in space.

Theorem 11. If O is any point and ω any plane, there exists one and only one perspective collineation in space having O, ω for conter and plane of perspectivtty respectively, which transforms an2y point A (distinct from O and not on ω) into any other point A^{\prime} (distinet from O and not on ω) collinear with AO. (A, E)

Proof. We show first that there cannot be more than one perspective collineation satisfying the conditions of the theorem, by showing that the point B^{\prime} homologous to any point B is uniquely

Fig 31
determined by the given conditions. We may assume \boldsymbol{B} not on ω and distinct from O and A. Suppose first that B is not on the line $A O$ (fig. 31). Since $B O$ is an invariant line, B^{\prime} is on $B O$; and if the line $A B$ meets ω in L, the line $A B=A L$ is transformed into the line $A^{\prime} L$. Hence B^{\prime} is determined as the intersection of $B O$ and $A^{\prime} L$. There remains the case where B is on $A O$ and dislinet from A and O (fig 32). Let C, C^{\prime} be any pair of homologous points not on $A O$, and let $A C$ and $B C$ meet ω in L and $M C$ respectively. The line $M B=M C$ is transformed into $M C^{\prime}$, and the point B^{\prime} is then determined as the intersection of the lines $B O$ and $M C^{\prime}$. That this point is independent of the choice of the pair C, C^{\prime} now follows from the fact that the quadrangle $M L C C^{\prime}$ gives the quaclrangular set $\mathrm{Q}\left(K A A^{\prime}, O B^{\prime} B\right)$, where X is the point in which $A O$ meets ω (K may coincide with O without affecting the argument). The point B^{\prime} is then uniquely determined by the five points O, K, A, A^{\prime}, B.

The correspondence defined by the construction in the paragraph above has been proved to be one-to-one throughout. On the line 10 it is projective because of the perspectivities (fig. 32)

$$
[B] \stackrel{C}{\bar{\Lambda}}[M] \stackrel{C^{\prime}}{\bar{\Lambda}}\left[B^{\prime}\right]
$$

On $O B$, any other line through O, it is projective because of the perspectivities (fig. 31)

$$
[B] \frac{A}{\bar{\Lambda}}[L] \frac{A^{\prime}}{\bar{\Lambda}}\left[B^{\prime}\right] .
$$

That any pencil of points not through O is transformed into a perspective pencil, the center of perspectivity being O, is now easily seen and is left as an exercise for the reader From this it follows

Fig 32
that any one-dimensional form is transformed into a projective form, so that the correspondence which has been constructed satisfies the definition of a projective collineation.

Tifeorem 12. Any complete five-point in space can be transformed into any other complete five-point in space by a projective collineation which is the resultant of a finate number of perspective collineations. (A,E)

Proof. Let the five-points be $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ respectively. We will show first that there exisis a collineation leavmg $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ invariant and transforming into E^{\prime} any point I_{0} not coplanar with three of the points $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Consider a homology having $A^{\prime} B^{\prime} C^{\prime}$ as plane of perspectivity and D^{\prime} as center. Any such homology transforms E_{0} into a point on the line $E_{0} D^{\prime}$ Simularly, a homology with plane $A^{\prime} B^{\prime} D^{\prime}$ and center C^{\prime} transforms I^{\prime} into a point on the line $E^{\prime} C^{\prime \prime}$. If $E_{0} D^{\prime}$ and $E^{\prime} C^{\prime}$ intersect in a point E_{1}, the resultant of two homologres of the kind described, of which the first transforms E_{0} into E_{1} and the second transforms E_{1} into E^{\prime}, leaves $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ invariant and transforms E_{0} into E^{\prime}. If the lines $E_{0} D^{\prime}$ and $E^{\prime} C^{\prime}$ are skew, there is a line through B^{\prime} meeting the lunes $E_{0} D^{\prime}$ and $E^{\prime} C^{\prime}$ respectively
in two points E_{1} and E_{2}. The resultant of the three homologies, of which the first has the plane $A^{\prime} B^{\prime} C^{\prime}$ and center D^{\prime} and transforms E_{0} to E_{1}, of which the second has the plane $A^{\prime} C^{\prime} D^{\prime}$ and center B^{\prime} and transforms E_{1} to E_{2}, and of which the third has the plane $A^{\prime} B^{\prime} D^{\prime}$ and center C^{\prime} and transforms E_{2} to E^{\prime}, is a collineation leaving $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ invariant and transforming E_{0} to E^{\prime}. The remainder of the proof is now entirely analogous to the proof of Theorem 10. The detalls are left as an exercise.

Corollary There exist projoctive collineations which will effect any one of the possible 120 permutations of the vertices of a complete five-point in space. (A, E)

EXERCISES

1 Prove the existence of perspective collneations in a plane without making use of any points outside the plane

2 Discuss the figure formed by two triangles which ano homologons under an elation. How is this special form of the Desargues configuration obtained as a section of a complete five-point in space?

3 Given an elation in a plane with center O and axis o and two homologous parrs A, A^{\prime} and B, B^{\prime} on any line through 0 , show that we always have $Q\left(O A A^{\prime}, O B^{\prime} B\right)$.

4 What permutations of the vertices of a complete quadrangle leave a given dagonal point invariant? every diagonal point?
5. Wirte down the permutations of the six sides of a complete quadrangle brought about by all possible permutations of tha vertices.
6. The set of all homologies (elations) in a plane with the same center and axis form a group.
7. Prove that two elations in a plane having a comınon axis and center are commutative. Will this methoil apply to prove that two homologies wilh common axis and center are commutalave?
8. Prove that two elations in a plano having a common axis are commutative. Dualize. Prove the corrosponding theorem in space.
9. Prove that the resultant of two elations having a common axis is an elation. Dualize. Prove the corresponding theorem in space. What groups of elations are defined by these theorems?
10. Discuss the effect of a perspective collineation of space on: (1) a pencil of lines; (2) any plane; (3) any bundle of lines; (4) a tetrahedron; (B) a complete five-point in space.
11. The set of all collineations in space (in a plane) form a group.
12. The set of all projectave collineations in sproe (in a plane) form a group.

13 Show that under certain conditions the configuration of two perspective tetrahedra is left anvanant by 120 collineations (cf. Ex. 8, p. 47).

CHAPTER IV

HARMONIC CONSTRUCTIONS AND THE FUNDAMENTAL THEOREM OF PROJECTIVE GEOMETRY

30. The projectivity of quadrangular sets. We return now to a more detaled discussion of the notion of quadrangular sets introduced at the end of Chap. II. We there defined a quadrangular set of points as the section by a transversal of the sides of a complete quadrangle; the plane dual of this figure we call a quadrangnlar set of lines; * it consists of the projection of the vertices of a complete quadrilateral from a point which is in the plane of the quadrilateral, but not on any of its sides; the space dual of a quadrangular set of points we call a quadrangular set of planes; it is the figure formed by the projection from a point of the figure of a quadrangular set of lines. We may now prove the following 1 m portant theorem:

Theorem 1. The section by a transversal of a quadrangular set of lines is a quadrangular set of points. (A, E)

Fig. 88

Proof By Theorem 3', Chap. II, p. 49, and the dual of Note 2, on p 48 , we may take the transversal l to be one of the sides of a complete quadrilateral the projection of whose vertices from a point P forms the set of lmes in question (fig. 33). Let the remaining three sıdes of such a quadrilateral be a, b, c. Let the points $b c, c a$, and $a b$

[^34]be denoted by A, B, and C respectively. The sides of the quadrangle $P A B C$ meet l in the same points as the lunes of the quadrangular set of lines.

Corollary. A set of collinear points which is projective with a quadrangular set us a quadrangular set (A, E)

Theorem 1'. The projection from a point of a quadrangular set of points is a quadrangular set of lines. (A, E)

This is the plane dual of the precedung; the space dual is:
Theorem 1" $^{\prime \prime}$. The section by a plane of a quadrangular set of plancs is a quadrangular set of lines. (A, E)

Corollary. If a set of elements of a primitive one-dimensional form is projective with a quadrangular set, it is itself a quadrangular set. (A, E)
31. Haṛmonic sets. Definition. A quadrangular set $Q(123,124)$ is called a harmonic set and is denoted by $\mathrm{H}(12,34)$. The elements 3, 4 are called harmonic conjugates with respect to the elements 1,2 ; and 3 (or 4) is called the harmonve conjugate of 4 (or 3) with respect to 1 and 2.

From this definition we see that in a harmonic set of points $\mathrm{H}(A C, B D)$, the points A and C are diagonal points of a complete

Fig. 34

Fig. 85
quadrangle, while the points B and D are the intersections of the remamng two opposite sides of the quadrangle with the line $A C$ (fig. 34). Likewise, in a harmonic set of lines $\mathrm{H}(\alpha c, b d)$, the lines α and c are two diagonal lines of a complete quadrilateral, while the
lnes b and d are the lines joinng the remaining pair of opposite vertices of the quadrulateral to the point of intersection ac of the lines a and c (fig. 35). A harmonic set of planes ts the space dual of a harmome set of points, and is therefore the projection from a point of a harmonic set of lines.

In case the diagonal points of a complete quadrangle are collnear, any three points of a line form a harmone set and any point is its own harmonic corjugate with regaid to any two points collnnear with it Theorems on harmonic sets are therefore tivial in those spaces for which Assumption H_{0} is not tiue. We shall therefore base our reasoning, in this and the following two sections, on Assumption H_{0}, though most of the theorems are obvionsly true also in case H_{0} is false. This is why some of the theorems are labeled as dopendent on Assumptions A and E, whereas the proofs given involve H_{0} also.

The corollary of Theorem 3, Chap. II, when applied to harmonic sets yelds the following:

Theorem 2 The harmonic conjugate of an element with respect to two other clements of a one-dimensional primutive form is a unique element of the form (A, E)

Theorem 1 applied to the special case of harmome sets gives
Theorem 3. Any section or projection of a harmonic set is a harmonic set. (A, E)

Corollary. If a set of four elements of any one-dimensional primitive form is projective with a harmonic set, et is itself a harmonve set. (Λ, E)

Theorem 4. If 1 and 2 are harmonve conjugates with respect to 3 and 4,3 and 4 are harmonic conjugates with respect to 1 and 2. (A, E, H_{0})

Proof. By Theorem 2, Chap III, there exists a projectivity

$$
1234 \pi 3412 .
$$

But by hypothesis we have $\mathrm{H}(34,12)$. Hence by the corollary of Theorem 3 we have $\mathrm{H}(12,34)$.

By virtue of this theorem the pairs 1, 2 and 3, 4 in the expression $\mathrm{H}(12,34)$ play the same rôle and may be interchanged.*

[^35]Theorem 5. Given two harmonic sets $\mathrm{H}(12,34)$ and $\mathrm{H}\left(1^{\prime} 2^{\prime}, 3^{\prime} 4^{\prime}\right)$, there exists a projectivity such that $1234 \pi^{\prime} 1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime}$. (A, E)

Proof. Any projectivity $123 \pi 1^{\prime} 2^{\prime} 3^{\prime}$ (Theorem 1, Chap. III) must transform 4 into 4^{\prime} by virtue of Theorem 3, Cor., and the fact that the harmonc conjugate of 3 with respect to 1 and 2 is unique (Theorem 2). This is the converse of Theorem 3, Cor.

Corollary 1. If $\mathrm{H}(12,34)$ and $\mathrm{H}\left(12^{\prime}, 3^{\prime} 4^{\prime}\right)$ are two hrermonic sets of different one-dimensional forms having the element 1 in connon, we have $1234 \overline{\bar{\lambda}} 12^{\prime} 3^{\prime} 4^{\prime} .(\mathrm{A}, \mathrm{E})$

For under the hypotheses of the corollary the projectivity $123 \pi^{1} 1^{\prime} 2^{\prime} 3^{\prime}$ of the preceding proof may be replaced by the perspectivity $123 \underset{\bar{\wedge}}{\bar{\sim}} 12^{\prime} 3^{\prime}$.

Corollary 2 If $\mathrm{H}(12,34)$ is a harmone set, there exists a projectivity $1234-1243$. (A, E)

This follows directly from the last theorem and the evident fact that if $\mathrm{H}(12,34)$ we have also $\mathrm{H}(12,43)$. The converso of this corollary is likewise valid; the proof, however, is given later in this chapter (cf. Theorem 27, Cor. 5)

We see as a result of the last corollary and Theorem 2, Chap. III, that if we have $H(12,34)$, there exist projectavities which will trinsform 1234 into any one of the eight permutations

$$
1234, \quad 1243, \quad 2134, \quad 2143,3412, \quad 3421, \quad 4312, \quad 4321 . *
$$

In other words, if we have $\mathrm{H}(12,34)$, wo have likewise $\mathrm{H}(12,43)$, $\mathrm{H}(21,34), \mathrm{H}(21,43), \mathrm{H}(34,12), \mathrm{H}(34,21), \mathrm{H}(43,12), \mathrm{H}(4.3,21)$.

Theorem 6. The two sides of a complete quadrangle which meet in a diagonal point are harmonic conjugates with respect to the two sides of the diagonal triangle which meet in this point. (A, E)

Proof. The four sides of the complete quadrangle which do not pass through the dugonal point in question form a quailrilateral which defines the set of four lines mentioned as harmonic in the way indrcated (fig. 36).

It is sometimes convenient to spoak of a pair of elements of a form as harmonic with a pair of elements of a form of different kind. For example, we may say thai two points are harmonic with two lines in a plane with the points, if the points determine two

[^36]lines through the intersection of the given lmes which are harmome with the latter; or, what is the same thing, if the line joinng the points moets the limes in two points harmonic with the given points With this understanding we may restate the last theorem as follows: The sides of a complete quadrangle which meet in a diagonal point are harmonic with the other two diagonal points. In like manner, we may say that two points are harmonic with two planes, if the line jomng the points meets the planes in a pair of pounts harmones with the given points; and a pair of lines is harmone with a pair of planes, if

Fig 36 they intersect on the intersection of the two planes, and if they determme with this intersection two planes harmonic with the given planes

EXERCISES

1 Pıove Theorem 4 dinectly from a figure without using Theorem 2, Chap. III.
2. Prove Theorem 5, Col. 2, drectly fiom a figuse.

3 Through a given point in a plane constuct a lime which passes through the point of untersection of two given lines in tho plane, without making use of the latter point.
4. A line meets the sides of a triangle $A B C$ in the points A_{1}, B_{1}, C_{1}, and the harmonic conjugates A_{2}, B_{2}, C_{2} of these points with respect to the two vertices on the same side are determined, so that we have $\mathrm{H}\left(A B, C_{1} C_{2}\right)$, $\mathrm{H}\left(B C, A_{1} A_{2}\right)$, and $\mathrm{H}\left(C A, B_{1} B_{\mathrm{g}}\right)$. Show that $A_{1}, B_{2}, C_{2}, B_{1}, C_{2}, A_{2} ; C_{1}, A_{2}, B_{2}$ are collinear; that $A A_{2}, B B_{2}, C C_{2}$ are concurrent; and that $A A_{2}, B B_{1}, C C_{1}$, $A A_{1}, B B_{2}, C C_{1} ; A A_{1}, B B_{1}, C C_{2}$ are also concurrent.
5. If each of two sides $A B, B C$ of a triangle $A B C$ meets a pair of opposite edges of a tetrahedron in two points which are harmonic conjugates with respect to A, B and B, C respectively, the third side $C A$ will meet the thurd pair of opposite edges in two pounts which are harmonic conjugates with respect to C, A.
6. A, B, C, D are the vertices of a quadrangle the sides of whuch meet a given transversal l in the sux points $P_{1}, P_{2}, P_{8}, P_{4}, P_{5}, P_{8}$; the harmonic conjugate of each of these points with respect to the two corresponding vertuces of the
quadrangle is constructed and these six points are denoted by $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, P_{4}^{\prime}$, $P_{6}^{\prime}, P_{G}^{\prime}$ respectively The thice lines joining the pairs of the latter points wheh he on opposite sides of the quadiangle meet ma pomi, P, whinch is the hamome conjugate of each of the points in which these thice lines meet l with respect to the pais of points P^{\prime} defining the lines.

7 Defining the polar lue of a point with respect to a pan of lines as the hamome conjugate lme of the point with regard to the pan of lines, prove that the three polar lines of a point as to the pairs of lines of a tiangle form a triangle (called the cogredient tirangle) perspective to the given tiangle
8. Show that the polar line defined in Ex 7 is the same as the polar line defined in Ex. 3, p. 52.
9. Show that any lme through a point O and meeting two mersecting lines l, l^{\prime} meets the polar of O with respect to l, l^{\prime} in a point which is the haimonic conjugate of O with respect to the points in which the line through O meets l, l^{\prime}

10 The axis of perspectivity of a triangle and its cogredient triangle is the polar line (cf. p 46) of the triangle as to the given point.

11 If two triangles are perspective, the two polar lines of a point on then axis of perspectivily mect on the axis of perspectivity

12 If the lines joining corresponding vertices of two n-lines meet in a point, the points of intersection of conesponding sides meet on a line.

13 (Generalization of Exs 7,10) The n polar lines of a point P as to the n ($n-1$)-lines of an n-line an a plane form an n-line (the cogredient n-line) whose sides meet the coriesponding sides of the given n-line in the points of a line p. The line p is called the polar of P as to the n-line *
14. (Genealization of Ex. 11.) If two n-lines are perspectıve, the two polar lines of a point on their axis of perspectivity meet on this axis.
15. Obtain the plane dnals of the last two problems. Generalize them to three- and n-dmensional space. These theorems are fundamental for the construction of polars of algebianc curves and surfaces of the n-th degree.
32. Nets of rationality on a line. Defrinition a point P of a line is sald to be harmonically related to three given distinct points A, B, C of the line, provided P is one of a sequence of points $A, B, C, H_{1}, H_{2}, H_{3}$, ... of the line, finite in number, such that H_{1} is the harmonic conjugate of one of the points A, B, C with respect to the other two, and such that every other poini. H_{i} is harmonic wilh three of the set A, B, C, $H_{v}, H_{2}, \cdots, H_{i-1}$. The class of all points harmonically related to three distinct points A, B, C on a line is called the one-dimensional net of rationality defined by A, B, C; it is denoted by $\mathrm{R}(A B C)$. A net of rationality on a line is also called a linear net.

[^37]Theorem 7. If A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are respectively points of two lines such that $A B C D \backslash A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, and of D is harmonically rolated to A, B, C, then D^{\prime} is harmonvcolly related to $A^{\prime}, B^{\prime}, C^{\prime}$. (A, E)

Thus follows durectly from the fact that the projectivity of the theorem makes the set of pomis H_{j} which defines D as harmomically related to A, B, C projective with a set of points H_{j}^{\prime} such that every harmome set of points of the sequence $A, B, C, H_{1}, H_{2}, \cdots, D$ is homologous with a harmonic set of the sequence $A^{\prime}, B^{\prime}, C^{\prime}, H_{1}^{\prime}, H_{2}^{\prime}, \cdot ., D^{\prime}$ (Theorem 3, Cor).

Corollary. If a class of points on a line is projective with a net of rationality on a line, it is itself a net of rationality.

Theorem 8. If K, L, M are three distınct points of $\mathrm{R}(A B C), A, B, C$ are points of $\mathrm{R}(K L M)(\mathrm{A}, \mathrm{E})$

Proof. From the projectivity $A B C K$ - $B A K C$ follows, by Theorem7, that C is a point of $\mathrm{R}(A B K)$. Hence all points harmonically related to A, B, C are, by defimition, harmomically related to A, B, K Since K is, by hypothesis, in the net $\mathrm{R}(A B C)$, the definition also requires that all points of $\mathrm{R}(A B K)$ shall be points of $\mathrm{R}(A B C)$. Hence the nets $\mathrm{R}(A B C)$ and $\mathrm{R}(A B K)$ are identical; and so $\mathrm{R}(A B C)=\mathrm{R}(A B K)$ $=\mathrm{R}(A M K)=\mathrm{R}(K L M)$.

Corollary. A net of rationaluty on a line us determined by any distinct three of its points.

Theorem 9. If all but one of the six (or five, or four) points of a quadrangular set are points of the same net of rationality R , thus one point is also a point of R . (A, E)

Proof. Let the sides of the quadrangle $P Q R S$ (fig 37) meet the line l as indicated in the points $A, A_{1} ; B, B_{1} ; C, C_{1}$, so that $B \neq B_{1}$; and suppose that the first five of these are points of a net of rationality

$$
\mathrm{R}=\mathrm{R}\left(A A_{1} B_{1}\right)=\mathrm{R}\left(B C B_{1}\right)=\cdots
$$

We must prove that C_{1} is a point of R. Let the pair of lines $R S$ and $P Q$ meet in \mathcal{B}^{\prime}. We then have

$$
B C B_{1} A \frac{S}{\bar{\lambda}} B Q B^{\prime} P \frac{R}{\bar{\lambda}} B A_{1} B_{1} C_{1}
$$

Since A is in $\mathrm{R}\left(B C B_{1}\right)$, it follows from this projectivity, in view of Theorem 7, that C_{1} is in $\mathrm{R}\left(B A_{1} B_{1}\right)=\mathrm{R}$.

Definition. A point P of a line is said to be quadrangularly related to three given distinct points A, B, C of the line, provided
P is one of a sequence of points $A, B, C, H_{1}, I I_{2}, I I_{3}, \cdots$ of the line, finte in number, such that H_{1} is the harmonic conjugate of one of the points A, B, C with respect to the other two, and such that every other point H_{8} is one of a quadrangular set of wheh the other tive belong to the set $A, B, C, H_{1}, I_{2}, \quad, H_{\imath-1}$.

firg 37
Corollary The class of all points quadrangularly relatell to three distinct collinear points A, B, C is $\mathrm{R}(A B C)$. (Λ, E)

From the last corollany it is plain that $\mathrm{R}(A B C)$ consists of all joints that can be constructed from A, B, C ly means of points and lines alone; that is to say, all points whose existence can be infer red from Assunptions A, $\mathrm{E}, \mathrm{H}_{\mathrm{n}}$. The existence or nonexistence of further points on the line $A B C$ is undetermmed as yet. The analogous class of points in a plane is the system of all pounts constructible, by means of points and lines, out of four points A, B, c^{\prime}, n, no three of which are collinear. This class of points is studied by an indirect method in the next section.
33. Nets of rationality in the plane. Defrinition. A point is aaid to be rationally related to two noncollinear nets of rationality R_{y}, R_{g} having a point in common, provided it is the intersection of two lines each of which joins a point of R_{1} to a distinct point of R_{x}. A line is said to be rationally related to R_{1} and R_{2}, provided it joins two points that are rationally related to them. The set of all points and lines rationally related to R_{1}, R_{2} is called the net of rationality in a plane (or of two dimensions) determined by R_{1}, R_{8}, it is also oalled the planar net defined by $\mathrm{R}_{1}, \mathrm{R}_{\mathrm{g}}$.

From this defnition it follows directly that all the pojnts of R_{2} and R_{2} are points of the planar net defined by $R_{12} R_{2}$...

Theorem 10. Any line of the planar net R^{2} defined by $\mathrm{R}_{1}, \mathrm{R}_{2}$ meets R_{1} and R_{2}. (A, E)

Proof We prove first that if a line of the planar net R^{2} meets R_{1}, it meets R_{2}. Suppose a line l meets R_{1} in A_{1}; it then contains a second point P of R^{2}. By definition, through P pass two lines, each of which joins a point of R_{1} to a distmet point of R_{2}. If l is one of these lines, the proposition is proved; if these lines are distinct from l, lei them meet R_{1} and R_{2} respectively in the points B_{1}, B_{2} and P_{1}, P_{2} (fig 38). If O is the common point of R_{1}, R_{2}, we then have

$$
O A_{1} B_{1} P_{1} \frac{P}{\bar{\Lambda}} O A_{2} B_{2} P_{2}
$$

where A_{2} is the point in which l meets the line of R_{2} Hence A_{2} is a point of R_{2} (Theorem 7).

Now let l be any line of the net R^{2}, and let P, Q be two points of the net and on l (def.). If one of these points is a point of R_{1} or R_{2}, the theorem is proved by the case just considered. If not, two lines, each joining a point of R_{1} to a distinct point of R_{2}, pass through P; let them meet R_{1} in A_{1}, B_{1}, and R_{2} in A_{2}, B_{2} respectively (fig 38). Let the lines $Q A_{1}$ and $Q B_{1}$ meet R_{2} in A_{2}^{\prime} and B_{2}^{\prime} respectively (first case).

Fig. 38
Then if l meets the lines of R_{1} and R_{2} in P_{1} and P_{2} respectively, the quadrangle $P Q A_{1} B_{1}$ gives rise to the quadrangular set $\mathrm{Q}\left(P_{2} A_{2} B_{2}\right.$, $O B_{2}^{\prime} A_{2}^{\prime}$) of which five points are points of R_{2}; hence P_{2} is a point of R_{2} (Theorem 9). P_{1} is then a point of R_{1} by the first case of this proof.

Throrem 11. The intersection of any two lines of a planar net is a point of the planar net (A, E)

Proof This follows directly from the definition and the last theorem, except when one of the hnes passes through O, the point common to the two linear nets R_{1}, R_{2} definng the planar net. In the latier case let the two lines of the planar net be l_{1}, l_{2} and suppose l_{2} passes through O, while l_{1} meets $\mathrm{R}_{1}, \mathrm{R}_{2}$ in A_{1}, A_{2} respectively (fig. 39). If the point of intersection P of $l_{1} l_{2}$ were not a point of the planar net, l_{2} would, by defintion,

Fig 39 contain a point Q of the planar net, distinct from O and P. The lines $Q A_{1}$ and $Q A_{2}$ would meet R_{3} and R_{1} in two points B_{2} and B_{1} respectively. The point C_{3} in which the lime $P B_{1}$ met the line of R_{2} would then be the harmonic conjugate of B_{2} whth respect to O and A_{2} (through the quadrangle $P Q A_{1} B_{1}$); C_{2} would therefore be a point of R_{2}, and hence P would be a point of the planar net, being the intersection of the lines $A_{1} A_{2}$ and $B_{1} C_{2}$.

Theorem 12. The points of a planar net R^{2} on a line of the planar. net form a linear net. (A, E)

Proof. Let the planar net be defined by the hnear nots $\mathrm{R}_{1}, \mathrm{R}_{\mathrm{g}}$ and let l be any line of the planar net. Let P be any point of the planar net not on l or R_{1} or R_{2}. The lines joining P to the points of R^{2} on l meet R_{1} and R_{2} by Theorems 10 and 11. Hence P is the center of a perspectivity which makes the points of R^{2} on l perspective will points of R_{1} or R_{2}. Hence the points of l belonging to the planar net form a linear net. (Theorein 7, Cor.)

Corollary. The planar net R_{1}^{2} defined by two linear nets $\mathrm{R}_{1}, \mathrm{R}_{2}$ is identrcal with the planar net R_{2}^{2} defined by two linear nets $\mathrm{R}_{3}, \mathrm{R}_{4}$, provided R_{3}, R_{4} are linear nets in R_{1}^{2}. (A, E)

For every point of R_{1}^{2} is a point of R_{2}^{2} by the above theorem, and every point of R_{2}^{2} is a point of R_{1}^{2} by Theorem 10.

EXERCISE

If A, B, C, D are the ventices of a complete quadrangle, there is one and only one planar net of rationality containung them; and a point P bolongs to this net if and only of P is one of a sequence of points $\alpha\left(B C D I_{1} D_{3} \cdots\right.$, fimite in number, such that D_{1} is the intersection of two sides of the origmal quadrangle and such thai every other point D_{i} is the untersectron of two hnes joining paus of points of the set $A B C D D_{1} \cdot D_{\imath-1}$.
34. Nets of rationality in space. Definition. A point is said to be rationally related to two planar nets R_{1}^{2}, R_{2}^{2} in different planes but having a lnear net in common, provided it is the intersection of two lines each of which joins a point of R_{1}^{2} to a distinct point of R_{2}^{2} A line is said to be rationally rclated to R_{2}^{2}, R_{2}^{2}, if it joins iwo, a plane if it joms three, points which are rationally related to them. The set of all points, limes, and planes rationally related to R_{1}^{2}, R_{2}^{2} is called the net of rationality in space (or of three dimensions) determined by $\mathrm{R}_{1}^{2}, \mathrm{R}_{2}^{2}$, it is also called the spatial net defined by $\mathrm{R}_{1}^{9}, \mathrm{R}_{2}^{2}$

Theorems analogous to those derived for planar nets may now be derved for nets of rationality in space. We note first that every point of R_{1}^{2} and of R_{2}^{2} is a point of the spatial net R^{3} defined by R_{1}^{2}, R_{2}^{2} (the definition apphes equally well to the points of the linear net common to R_{1}^{2}, R_{2}^{2}); and that no other points of the planes of these planar nets are points of R^{3}. The proofs of the fundamental theorems of alignment, etc., for spatial nets can, for the most part, be readily reduced to theorems concernung planar nets. We note first:

Lemma. Any line joining a point A_{1} of R_{1}^{2} to a distinct point P of R^{8} meets R_{2}^{2}. (A, E)

Proof. By hypothesss, through P pass two lines, each of which jouns a point of R_{1}^{2} to a distinct pount of R_{2}^{2}. We may assume these lines distinct from the line $P A_{1}$, since otherwise the lemma is proved. Let the two lines through P meet $\mathrm{R}_{1}^{2}, \mathrm{R}_{2}^{2}$ in \mathcal{B}_{1}, B_{2} and C_{1}, C_{2} respectively (fig. 40). If A_{1}, B_{1}, C_{1} are not collinear, the planes $P A_{1} B_{1}$ and $P A_{1} C_{1}$ meet R_{1}^{2} in the lines $A_{1} B_{1}$ and $A_{1} C_{1}$ respectively, which meet the linear net common to R_{1}^{2}, R_{2}^{2} in two pomis S, T respectively (Theorems 11, 12). The same planes meet the plane of R_{2}^{2} in the lines $S B_{2}$ and $T C_{2}$ respectively, which are lines of R_{2}^{2}, since S, T are points of R_{2}^{2}. These lines meet in a point A_{2} of R_{2}^{2} (Theorem 11), which is evidently the point in which the line $P A_{1}$ meets the plane of R_{2}^{2}. If A_{1}, B_{1}, C_{1} are collinear, let A_{2} be the intersection of $P A_{1}$ with the
plane of R_{2}^{2}, and S the intersection of $\Lambda_{1} B_{1}$ with the linear net common to R_{1}^{2} and R_{2}^{2} Sunce A_{1} is in $\mathrm{R}\left(S B_{1} C_{1}\right)$, the perspectivity $S C_{1} B_{1} A_{1} \stackrel{P}{\stackrel{ }{\wedge}} S C_{2} B_{2} A_{2}$ implies that A_{2} is in $\mathrm{R}\left(S B_{3} C_{\mathrm{a}}\right)$ and hence in R_{2}^{*}.

Fia 40
Theorem 13. Any line of the spatial uet R^{n} definued ly $\mathrm{R}_{1}^{2}, \mathrm{R}_{2}^{2}$ mrets

Fic. 41
Proof. By definition the given line l contains two points A and B of the net R^{8} (fig. 41). If A or B is on R_{1}^{2} or R_{g}^{8}, the theorem reduces to the lemma. If not, let P_{1} be a point of R_{1}^{g}, and A_{2} and B_{g} the points in which, by the lemma, $P_{1} A$ and $P_{1} B$ meet R_{2}^{2}; also let P_{1}^{\prime} be any
point of R_{1}^{2} not in the plane $P_{1} A B$, and let $P_{1}^{\prime} A$ and $P_{1}^{\prime} B$ meet R_{2}^{2} in A_{2}^{\prime} and B_{2}^{\prime}. The lines $A_{2} B_{2}$ and $A_{2}^{\prime} B_{2}^{\prime}$ meet in a point of R_{2}^{2} (Theorem 11), and this point is the point of intersection of l with the plane of R_{8}^{2}. The argument is now reduced to the case considered in the lemma.

Theorem 14. The points of a spatial net lying on a line of the spatial net form a linear net (A, E)

Proof. Let l be the given lime, R_{1}^{2} and R_{2}^{2} the planar nets defining the spatial net R^{3}, and L_{1} and L_{2} the ponts in which (Theorem 13) l meets R_{1}^{2} and R_{2}^{3} (L_{1} and L_{2} may coincide). Let A_{1} be any point of R_{1}^{2} not on l or on R_{2}^{2}, and S the point in which $A_{1} L_{1}$ meets the linear net common to R_{1}^{2} and R_{2}^{2} (fig. 42). If L_{1} and L_{2} are distmet, the lines

Fig. 42

Fig. 48
$S L_{1}$ and $S L_{2}$ meet R_{1}^{2} and R_{3}^{2} in lmear nets (Theorem 12); and, by Theorem 13, a lune joining any point P of R^{3} on l to A_{1} meets each of these linear nets. Hence all points of R^{3} on l are in the planar net determined by these two linear nets. Moreover, by the definition of R^{3}, all the points of the projection from A_{1} of the linear net on $S L_{2}$ upon l are points of R^{3}. Hence the points of R^{3} on l are a linear net

If $L_{1}=L_{2}=S$, then, by defintion, there is on l a point A of R^{8}, and the line $A A_{1}$ meets R_{2}^{2} in a point A_{2} (fig. 43). The lines $S A_{1}$ and $S A_{2}$ meet R_{1}^{2} and R_{2}^{2} in linear nets R_{1} and R_{2} by Theorem 12. If B_{1} is any point of R_{1} other than A_{1}, the line $A B_{1}$ meets R_{2}^{2} in a point B_{2} by Theorem 13. By Theorem 12 all points of l in the planar net determined by R_{1} and R_{2} form a linear net, and they obviously belong to R^{8}. Moreover, any point of R^{8} on l, when joined to A_{1}, meets R_{2}^{2} by Theorem 13, and hence belongs to the planar net determined by R_{1} and R_{2}. Hence, in thas case also, the points of R^{8} on l constitute a linear net.

Theorem 15. The points and lines of a spatial net R^{3} which lie on a plane α of the net form a planar net. (A, E)

Proof. By definition α contains three noncollmear points A, B, C of R^{3}, and the three lines $A B, B C, C A$ meet the planar nels R_{1}^{2} and R_{2}^{2}, which determine R^{8}, in points of two linear nets R_{1} and R_{g}, consisting entirely of points of R^{3}. These linear nets, if distinct, determine a planar net R^{2} in α, which, by Theorem 10, consists entirely of points and lines of R^{3}. Moreover, any lme joinmg a point of R^{3} in α to A or B or C must, by Theorem 13, meet R_{1} and R_{2} and hence be in R^{3}. Hence all points and lines of R^{3} on α are points and lines of R^{2}. This completes the proof except in case $R_{1}=R_{y}$, which case is left as an exercise.

Corollary 1. A net of rationality in space is a space satisfying Assumptions A and E, if "line" be interpretced as "linear nel" and "plane" as "planar net." (A, E)

For all assumptions A and E, except $A 3$, are evilently satisficil; and A 3 is satisfied because there is a planar net of points through any three points of a spatial net R^{3}, and any two lincar nets of this planar net have a point in common.

This corollary establishes at once all tho theorems of alignment in a net of rationality in space, which are proved in Chap. I, as also the principle of duality. We conclude then, for example, that two planes of a spatial net meet in a line of the net, and that three planes of a spatial net meet in a point of the net (rf they do not meet in a lines), etc. Moreover, we have at once the following corollary:

Corollary 2. A spatial net is determined by any two of its pletnar nets. (A, E)

EXERCISES

1. If A, B, C, D, E are the vertices of a completes space five-point, there is one and only one net of rationality containing them all. A point P bolongs to this net if and only if P is one of a sequence of points $A B C D E I_{1} I_{2} \cdots$, finite in number, such that I_{1} is the point of intersection of throe fuces of the original five-point and every other point X_{i} is the antorseation of three distinct planes through triples of points of the set $A B C D E I_{1} \cdots I_{1-1}$.

2 Show that a planar net is determined if three noncollinear points and a line not passing through any of these points are given.

3 Under what condition is a planar net determined by a linear net and two points not in this net? Show that two distinct planar nets in the same plane can have at most a lunear net and one other point in common.
4. Show that a set of pomts and lines which is projective with a planar net is a planar net

5 A line joining a point P of a planar net to any point not in the net, but on a line of the net not contammg P, has no other pomt than P in common with the net
6. Two points and two hnes m the same plane do not in gencial belong to the same planar net

7 Discuss the determination of spatial nets by points and planes, similarly to Exs. 2, 3, and 0.

8 Any class of points projective with a spatial net is itself a spatial net.
9 If a perspective colluneation (homology or elation) in a plane with center A and axis l leaves a net of rationality in the plane unvariant, the net contans A and l

10 Prove the corresponding proposition for a not of rationality in space invariant under a perspective transformation.

11 Show that two hnear nets on skew hnes always belong to some spatial net, in fact, that the number of spatial nets containing two given linear nets on skew lines is the same as the number of linear nets through two given points.
12. Three mutually skew lnes and three distinct points on one of them determine one and only one spatial net in which they he.

13 Give further examples of the determination of spatial nets by lines.
35. The fundamental theorem of projectivity. It has been shown (Chap III) that any three distmet elements of a one-dimensional form may be made to correspond to any three distinct points of a line by a projective transformation. Lıkewise any four elements of a two-dimensional form, no three of which belong to the same onedimensional form, may be made to correspond to the vertices of a complete planar quadrangle by a projective transformation; and any five elements of a three-dımensional form, no four of which belong to the same two-dımensional form, may be made to correspond to the five vertices of a complete spatial five-point by a projective transformation.

These transformations are of the utmost importance. Indeed, it is the principal object of projective geometry to discover those properties of figures which remain invariant when the figures are subjected to projective transformations. The question now naturally arnses, Is it possible to transform any four elements of a onedumensional form into any four elements of another one-dimensional form? This question must be answered in the negative, since a harmonic set must always correspond to a harmonic set. The question
then anses whether or not a projective correspondence between onedimensional forms is completely determined wheu three pairs of homologous elements are given. A partial answer to this fundamental question is given in the next theorem

Lemma 1 If a projectivity leaves three distinct points of a line fired, it leaves fixed every point of the linear net defined by these points.

This follows at once from the fact that if three poinis are lefi movariant by a projectivity, the harmonic conjugate of any one of these points wath respect to the other two must also be left invariant by the projectivity (Theorems 2 and 3, Cor.). The projectivity in question must therefore leave invariant every point harmonically related to the three given points

Theorem 16. The fundamental tieorim or pronfetivity for a net of rationality on a line. If A, B, C, D are distinct points of a linear net of rationality, and $\Lambda^{\prime}, B^{\prime}, C^{\prime}$ are any three distinct points of another or the same linear net, then for any projectivitics giving $A B C D \pi A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $A B C D \bar{\Lambda} A^{\prime} B^{\prime} C^{\prime} D_{1}^{\prime}$, we have $D^{\prime}=D_{1}^{\prime} \quad(\mathrm{A}, \mathrm{E})$

Proof. If π, π_{1} are respectively the two projectivities of the theorem, the projectrvity $\pi_{1} \pi^{-1}$ leaves $A^{\prime} B^{\prime} C^{\prime}$ fixed and transforms D^{\prime} into D_{1}^{\prime}. Sunce D^{\prime} is harmonically related to $A^{\prime}, B^{\prime}, C^{\prime}$ (Theorem 7), the theorem follows from the lemma.

This theorem gives the answer to the question proposed in its relation to the transformation of the points of a linear net. The corresponding proposition for all the points of a line, i.e. the'proposition obtained from the last theorem by replacing "linear net" by "line," cannot be proved without the use of one or more additional assumptions (cf. $\S 50$, Chap. VI). We have seen that it is equivalent to the proposition: If a projectivity leaves three points of a line invariant, it leaves every point of the line invariant. Later, by means of a discussion of order and continuity (terms as yet undefined), we shall prove this proposition. This discussion of order and continuity is, however, somewhat tedious and more difficult than the rest of our subject; and, besides, the theorem in question is true in spaces,* where order and continuity do not exist. It has

[^38]therefore seemed desurable to give some of the results of this theorem before giving its proof in terms of order and continuity. To this end we introduce here the following provisional assumption of projectivity, which will later be proved a consequence of the order and continuity assumptions which will replace it This provisional assumption may take any one of several forms. We choose the following as leading most directly to the desured theorem:

An assumption of rrojectivity:
P. If a projectivaty leaves each of three distinct pounts of a line invariant, it leaves every point of the line invariant*

We should note first that the plane and space duals of this assumption are immedrate consequences of the assumption. The principle of duality, therefore, is still valid after our set of assumptions has been enlarged by the addation of Assumption P.

We now have •

Tieorem 17. Tife fundamental tieorem of projective geomETRY. \dagger If 1, 2, 3, 4 are any four elements of a one-dimensional primitive form, and $1^{\prime}, \mathscr{2}^{\prime}, 3^{\prime}$ are any three elements of another or the same onedimensional primitve form, then for any projectivetves giving 1234 $\bar{\wedge}$ $1^{\prime} \mathscr{W}^{\prime} 3^{\prime} 4^{\prime}$ and $12344^{1} 1^{\prime} \mathscr{W}^{\prime} 3^{\prime} 4_{1}^{\prime}$, we have $4^{\prime}=4_{1}^{\prime}$ (A, E, P)

Proof. The proof is the same under the priuciple of duality as that of Theorem 16, Assumption P replacing the previous lemma

This theorem may also be stated as follows:
A' 'projeetivity between one-dimensional primitive forms as uniquely determined when three pairs of homologous elements are given. (A, E, P)

Corollary. If two peneils of points on dufferent lines are projective and have a self-corresponding point, they are perspective. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

[^39]Proof. For if O is the self-corresponding pomt, and $A A^{\prime}$ and $B B^{\prime}$ are any two pairs of homologous points distinct from O, the perspectivity whose center is the intersection of the lines $A A^{\prime}, B B^{\prime}$ is a projectivity between the two lunes which has the three pairs of homologous points $O O, A A^{\prime}, B B^{\prime}$, which must be the projectivity of the corollary by virtue of the last theorem.

The corresponding theorems for two- and three-dmensional forms are now readily derved. We note first, as a lemma, the propositions in a plane and in space corresponding to Assumption P.

Lemma 2. A projective transformation which leaves invariant cach of a set of four points of a plane $\begin{gathered}\text { space } \\ \text { no } \\ \text { fluree } \\ \text { four }\end{gathered}$ line
plane leaves invariant every point of the plane $\begin{gathered}\text { space. }\end{gathered}(\mathrm{A}, \mathrm{E}, \mathrm{P})$

Proof. If A, B, C, D are four points of a plane no three of which are collinear, a projective transformation leaving each of them invariant must also leave the intersection O of the lines $A B, C D$ invariant. By Assumption P it then leaves every point of each of the lines $A B$, $C D$ invariant. Any line of the plane which meets the lines $A B$ and $C D$ in two distinct points is therefore invariant, as well as the intersection of any two such lines. But any point of the plane may be determined as the intersection of two such lines. The proof for the case of a projective transformation leaving invariant five points no four of which are in the same plane is entirely similar. The existence of perspective collineations shows that the condition that no three (four) of the poinis shall be on the same line (plane) is essential.

Tineorem 18. A projective collineation* between two planes (or within a single plane) is uniquely determined when four pairs of homologous points are given, provided no three of either set of four points are collinear. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

Proof. Suppose there were two collineations π, π_{1} having the given parrs of homologous points. The collineation $\pi_{1} \pi^{-1}$ is then, by the lemma, the identical collineation in one of the planes. This gives at once $\pi_{1}=\pi$, contrary to the hypothesis.

[^40]By precisely similar reasoning we have:
Theorem 19 A projective collneation in space is uniquely determined when five pairs of homologous points are given, provided no four of either set of five points are in the same plane. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

The fundamental theorem deserves its name not only because so large a part of projective geometry is logically connected with it, but also because it is used explicitly in so many arguments. It is indeed possible to announce a general course of procedure that appears in the solution of most "linear" problems, i.e problems which depend on constructions involving points, lines, and planes only. If it is desired to prove that certain three lines l_{1}, l_{2}, l_{3} pass through a point, find two other lines m_{1}, m_{2} such that the four points $m_{1} l_{1}, m_{1} l_{2}, m_{1} l_{3}, m_{1} m_{2}$ may be shown to be projective with the four points $m_{2} l_{1}, m_{2} l_{2}, m_{2} l_{8}, m_{2} m_{1}$ respectively. Then, since in this projectivity the point $m_{1} m_{2}$ is selfcorresponding, the three lines $l_{1}, l_{2}, l_{\mathrm{B}}$ joining corresponding points are concurrent (Theorem 17, Cor.) The dual of this method appears when three points are to be shown collenear. This method may be called the principle of projectivity, and takes its place beside the principle of duality as one of the most powerful mstruments of projective geometry. The theorems of the next section may be regarded as illustrations of this principle. They are all propositions from which the principle of projectrvity could be derived, ie. they are propositions which might be chosen to replace Assumption P.

We have already said that ordinary real (or complex) space is a space in which Assumption P is valid. Any such space we call a properly projective space. It will appear in Chap. VI that there exist spaces in which this assumption is not valid. Such a space, i.e. a space satisfying Assumptions A and E but not P, we will call an improperly projective space

From Theorem 15, Cor. 1 and Lemma 1, we then have
Theorem 20. A net of rationality in space is a properly projective space (A, E)

It should here be noted that if we added to our list of Assumptions A and E another assumption of closure, to the effect that all points of space belong to the same net of rationality, we should obtain a space in which all our previous theorems are valid, including the fundamental theorem (without using Assumption P).

Such a space may be called a rational space. In general, it is clear that any complete five-point in any properly or improperly projective space determines a subspace which is rational and therefore properly projective.
36. The configuration of Pappus. Mutually inscribed and circumscribed triangles.

Theorem 21. If A, B, C are any three distinct points of a lime l, and $A^{\prime}, B^{\prime}, C^{\prime}$ any three dastinct points of another line l^{\prime} mecting l, the three points of intersection of the pairs of lines $A B^{\prime}$ and $A^{\prime} B, B C^{\prime \prime}$ and $B^{\prime} C, C A^{\prime}$ and $C^{\prime} A$ are collinear ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

Frg. 44
Proof. Let the three points of intersection referred to in the theorem be denoted by $C^{\prime \prime}, A^{\prime \prime}, B^{\prime \prime}$ respectively (fig. 44). Let the line $B^{\prime \prime} C^{\prime \prime}$ meet the line $B^{\prime} C$ in a point D (to be proved identical with $A^{\prime \prime}$); also let $B^{\prime \prime} C^{\prime \prime}$ meet l^{\prime} in A_{1}, the line $A^{\prime} B$ meet $A C^{\prime}$ in B_{1}, the line $A B^{\prime}$ meet $A^{\prime} C$ in B_{1}^{\prime}. We then have the following perspectivilies:

$$
A^{\prime} C^{\prime \prime} B_{1} B \frac{A}{\bar{\Lambda}} A^{\prime} B_{1}^{\prime} B^{\prime \prime} C \frac{B^{\prime}}{\bar{\Lambda}} A_{1} C^{\prime \prime} \mathcal{B}^{\prime \prime} D
$$

By the pronciple of projectivity then, since in the projectivity thus established $C^{\prime \prime}$ is self-corresponding, we conclude that the three lines $A_{1} A^{\prime}, B^{\prime \prime} B_{1}, D B$ meet in the point C^{\prime}. Hence D is identical with $A^{\prime \prime}$, and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are collinear

It should be noted that the figure of the last theorem is a configuration of the symbol

It is known as the configuration of Pappus.* It should also be notéd:? O:. that this configuration may be consulered as a simple plane hexagon (six-pomt) inscribed m two mtersecting limes. If the sldes of such a hexagon be denoted in order by $1,2,3,4,5,6$, and if we call the sides 1 and 4 opposite, likewise the sides 2 and 5 , and the sides 3 and 6 (cf. Chap. II, § 14), the last theorem may be stated in the following form.

Corollary. If a simple hexagon be inscribed in two intersectrng lines, the three pairs of opposite sides will intersect in collinear points. \dagger

Finally, we may note that the nime points of the configuration of Pappus may be arranged in sets of three, the sets forming three triangles, $1,2,3$, such that 2 is inscribed in 1,3 in 2 , and 1 in 3. This observation leads to another theorem connected wilh the Pappus configuration.

Theorem 22. If $A_{2} B_{2} C_{2}$ be a triangle inscribed in a triangle

Fic. 45 $A_{1} B_{1} C_{1}$, there exists a certain set of triangles each of which is inscribed in the former and circumscribed about the latter. (A, E, P)

Proof. Let $[\alpha]$ be the pencil of lines with center $A_{1},[b]$ the pencil with center B_{1}; and $[c]$ the pencil with center C_{1} (fig. 45) Consider the perspectivities $[a] \xlongequal[\Lambda]{B_{2} A_{2}}[b] \xlongequal[\Lambda]{B_{2} C_{2}}[c]$. In the projectivity thus established between [a] and [c] the line $A_{1} C_{1}$ is self-corresponding; the pencils of lines $[a],[c]$ are therefore perspective (Theorem 17, Cor. (dual)). Moreover, the axis of this perspectivity is $C_{2} A_{2}$; for the lines $A_{1} C_{2}$ and $C_{1} C_{2}$ are clearly homologous, as also the lines $A_{1} A_{2}$ and $C_{1} A_{2}$. Any three homologous lines of the perspective pencils $[a],[b],[c]$ then form a triangle which is circumscribed about $A_{1} B_{1} C_{1}$ and inscribed in $A_{2} B_{2} C_{2}$.

[^41]
EXERCISES

1. Given a triangle $A B C$ and two distinet points A^{\prime}, B^{\prime}, determine a point C^{\prime} such that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concunent, and also the lines $A B^{\prime}, B C^{\prime}, C A^{\prime}$ are concurrent, 1 e. such that the two tiranglos are perspective from two different points The two trangles are then said to be doubly perspective

2 If two triangles $A B C$ and $A^{\prime} B^{\prime \prime} C^{\prime}$ are doubly perspective in such a way that the vertices A, B, C are homologous with $A^{\prime}, B^{\prime}, C^{\prime}$ respectively in one per spectivity and with $B^{\prime}, C^{\prime}, A^{\prime}$ respectavely in the other, they will also be perspective fiom a thisd point in such a way that A, B, C are homologous respectively with $C^{\prime}, \Lambda^{\prime}, B^{\prime}$; i e. they will be triply perspective.
3. Show that if $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are the centers of perspectivity for the triangles in Ex. 2, the three triangles $A B C, A^{\prime} D^{\prime} C^{\prime}, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ aue so related that any two are triply perspective, the centers of perspectivity being in each case the vertices of the remaining tiangle. The nine veitices of the three triangles form the points of a configuration of Pappus.
4. Dualize Ex. 3.

37. Construction of projectivities on one-dimensional forms.

Theorem 23. A necessary and sufficient condition for the projectivnty on a line $M N A B-M N A^{\prime} B^{\prime}(M \neq N)$ is $\mathrm{Q}\left(M A B, N B^{\prime} A^{\prime}\right) .(\mathrm{A}, \mathrm{E}, \mathrm{P})$

Fig. 40
Proof. Let n be any line on N not passing through A (fig. 46). Let O_{1} be any point not on n or on $M A$, and let A_{1} and B_{1} be the intersections respectively of $O_{1} A$ and $O_{1} B$ with n. Let O_{a} be the intersection of $A^{\prime} A_{1}$ and $B^{\prime} B_{1}$. Then

$$
N A B \frac{O_{1}}{\bar{\Lambda}} N A_{1} B_{1} \frac{O_{2}}{\frac{\Lambda}{\Lambda}} N A^{\prime} B^{\prime}
$$

By Theorem 17 the projectivily so determined on the line $A M$ is the same as $M N A B-M N A^{\prime} B^{\prime}$.
The only possible double points of the projectivity are N and the intersection of $A N$ with $O_{1} O_{2}$. Hence $O_{1} O_{2}$ passes through M, and $Q\left(M A B, N B^{\prime} A^{\prime}\right)$ is determined by the quadrangle $O_{1} O_{2} A_{1} B_{1}$.

Conversely, if $\mathrm{Q}\left(M A B, N B^{\prime} A^{\prime}\right)$ we have a quadrangle $O_{1} O_{2} A_{1} B_{1}$, and hence

$$
N A B \frac{O_{1}}{\Lambda} N A_{1} B_{1} \frac{O_{2}}{\Lambda} N A^{\prime} B^{\prime}
$$

and by this construction M is self-corresponding, so that

$$
M N A B \bar{\Lambda} M N A^{\prime} B^{\prime}
$$

If in the above construction we have $M=N$, we obtain a projecfivity with the sungle double point $M=N$

Definition A projectivily on a one-dımensional primitive form with a single double element is called parabolic. If the double element is M, and $A A^{\prime}, B B^{\prime}$ are any two homologous pairs, the projectivity is completely determined and is convenently represenied by MMAB $\bar{\Lambda}$ MM. $A^{\prime} B^{\prime}$.

Corollary. A necessary and sufficuent condition for a parabolic projectivity $M M A B{ }_{\wedge} M M A^{\prime} B^{\prime}$ is $\mathrm{Q}\left(M A B, M B^{\prime} A^{\prime}\right)$. (A, E, P$)$

Theorem 24 If we have
we have also $\quad \mathrm{Q}\left(A^{\prime} \mathcal{B}^{\prime} C^{\prime}, A B C\right)$
Proof By the theorem above,
implies
which is the inverse of

$$
\mathrm{Q}\left(A B C, A^{\prime} B^{\prime} C^{\prime}\right)
$$

$$
A A^{\prime} B C \bar{\Lambda} A A^{\prime} C^{\prime} B^{\prime}
$$

$$
A^{\prime} A B^{\prime} C^{\prime} \bar{\wedge} A^{\prime} A C B
$$

which, by the theorem above, imples

$$
\mathrm{Q}\left(A^{\prime} B^{\prime} C^{\prime}, A B C\right)
$$

The notation $\mathrm{Q}\left(A B C, A^{\prime} B^{\prime} C^{\prime}\right)$ imples that A, B, C are the traces of a point triple of sides of the quadrangle determining the quadrangular set. The theorem just proved states the existence of another quadrangle for which $A^{\prime}, B^{\prime}, C^{\prime \prime}$ are a point triple, and consequently A, B, C are a triangle triple. This theorem therefore establishes the existence of oppositely placed quadrangles, as stated in § 19, p. 50 This result can also be propounded as follows

Theorem 25 If two quadrangles $P_{1} P_{2} P_{3} P_{4}$ and $Q_{1} Q_{2} Q_{3} Q_{4}$ are so related - P_{1} to Q_{1}, P_{2} to Q_{2}, etc - that five of the sides $P_{i} P_{j}(i, j=1,2,3,4$; $i \neq j$) meet the five sides of the second which are opposite to $Q_{i} Q_{j}$ in points of a line l, the remaining sides of the two quadrangles meet on l. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

Proof. The sides of the first quadrangle meet l in a quadrangular set $\mathrm{Q}\left(P_{12} P_{13} P_{14}, P_{34} P_{24} P_{23}\right)$, hence $\mathrm{Q}\left(P_{34} P_{24} P_{23}, P_{12} P_{13} P_{14}\right)$. But, by hypothesis, five of the sides of the second quadrangle pass thiough these pouts as follows: $Q_{1} Q_{2}$ through $P_{34}, Q_{1} Q_{3}$ through $P_{24}, Q_{1} Q_{4}$ through P_{23}, $Q_{3} Q_{4}$ through $P_{12}, Q_{4} Q_{2}$ through $P_{13}, Q_{3} Q_{2}$ through P_{14} As five of these conditions are satisfied, by Theorem 3, Chap. II, they must all be satisfied.

EXERCISES

1. Given one double point of a projectivily on a line and two pars of homologous points, construct the other double point.
2. If a, b, c are thiee nonconcuurent hnes and $A^{\prime}, B^{\prime}, C^{\prime}$ are three collnear points, give a construction for a triangle whose vertices A, B, C are respectively on the given lines and whose sides $B C, C A, A B$ pass respectively through the given points. What happens when the three hnes a, b, c are concurrent? Dualze
3. Involutions. Defintrion. If a projectivity in a one-dimensional form is of period two, it is called an involution. Any pair of homologous points of an involution is called a conjugate pair of the involution or a pair of conjugates.

It is clear that if an involution transforms a point A into a point A^{\prime}, then it also transforms A^{\prime} into A; this is expressed by the phrase that the points A, A^{\prime} correspond to each other doubly. The effect of an involution is then simply a paring of the elements of a one-dimensional form such that each element of a pair corresponds to the other element of the pair. This justifies the expression "a conjugate pair" applied to an involution.

Theorem 26. If for a single point A of a line which is not a double point of a projectivity π on the line we have the relations $\pi(A)=A^{\prime}$ and $\pi\left(A^{\prime}\right)=A$, the projectivity is an involution. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

Proof. For suppose P is any other point on the line (not a double point of π), and suppose $\pi(P)=P^{\prime}$. There then exists a projectivity giving

$$
A A^{\prime} P P^{\prime} \pi A^{\prime} A P^{\prime} P
$$

(Theorem 2, Chap. III). By Theorem 17 this projectivity is π, since it has the three pairs of homologous points $A_{1} A^{\prime} ; A^{\prime}, A ; P, P^{\prime}$. But in this projectivity P^{\prime} is transformed into P. Thus every pair of homologous points corresponds doubly.

Corollary. An involution is completely determined when two pairs of conjugate points are given. (A, E, P)

Theorem 27. A necessary and sufficient condition that three paire of points $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ be conjugate pairs of an nuvolution is $\mathrm{Q}\left(A B C, A^{\prime} B^{\prime} C^{\prime}\right) . \quad(\mathrm{A}, \mathrm{E}, \mathrm{P})$

Proof. By hypothess we have

$$
A A^{\prime} B C-A_{\Lambda}^{\prime} A B^{\prime} C^{\prime}
$$

By Theorem 2, Chap. III, we also have

$$
A^{\prime} A B^{\prime} C^{\prime} \pi A A^{\prime} C^{\prime} B^{\prime}
$$

which, with the first projectivity, gives

$$
A A^{\prime} B C_{\bar{\Lambda}} A A^{\prime} C^{\prime} B^{\prime}
$$

A necessary and sufficient condition that the latter projectivity hold is $\mathrm{Q}\left(A B C, A^{\prime} B^{\prime} C^{\prime}\right)$ (Theorem 23).

Corollary 1 If an involution has double pornts, they are harmonic conjugates with respect to every pair of the involution. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

For the hypothesis $A=A^{\prime}, B=B^{\prime}$ gives at once $\mathrm{H}\left(A B, C C^{\prime}\right)$ as the condition of the theorem.

Corollary 2 An involution is completely determined when two double points are given, or when one double point and one pair of conjugates are given ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

Corollary 3. If M, N are distinct double points of a projectivity on a line, and $A, A^{\prime} ; B, B^{\prime}$ are any two pairs of homologous elements, the pairs $M I, N ; A, B^{\prime} ; A^{\prime}, B$ are conjugate pairs of an involution.* (A, E, P)

Corollary 4. If an involution has one double element, it has another distinct from the first. ($\mathrm{A}, \mathrm{E}, \mathrm{H}_{0}, \mathrm{P}$)

Corollary 5. The projectivity $A B C D \bar{\Lambda} A B D C$ between four distinct points of a line implies the relation $\mathrm{H}(A B, C D)$. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

For the projectivity is an involution (Theorem 26) of which A, B are double points The result then follows from Cor 1.

39. Axis and center of homology.

Theorem 28. If $[A]$ and $[B]$ Theorem 28'. If $[l]$ and $[m]$ are any two projective pencils are any two projective pencils of of points in the same plane on lines in the same plane on distinct

[^42]distinet lines l_{1}, l_{2}, there exists a line l such that if A_{1}, B_{1} and A_{2}, B_{2} arc any two pairs of homologous points of the two pencels, the lines $A_{1} B_{2}$ and $A_{2} B_{1}$ untersect on l. (A, E, P)

Derinition The line l as called the axis of homology of the two penculs of points.
pounts S_{1}, S_{2}, there cxists a point S such that if a_{1}, b_{1} and a_{2}, b_{2} are any two pairs of homoloyons lincs of the two pencels, the pounts $a_{1} b_{2}$ and $a_{2} b_{1}$ arc collinear with S (A, E, P)

Definition The point S is called the center of homology of the pencils of lines.

Proof. The two theorems being plane duals of each other, we may confine ourselves to the proof of the theorem on the left. From the
 jectivity the line $A_{1} B_{1}$ is self-corresponding, so that (Theorem 17, Cor)

Fig 47
the two penclls are perspective. Hence pairs of corresponding lines meet on a line l; e.g. the lines $A_{1} B_{3}$ and $B_{1} A_{8}$ meet on l as well as $A_{1} B_{2}$ and $B_{1} A_{2}$. To prove our theorem it remains only to show that $B_{2} A_{\mathrm{a}}$ and $A_{\mathrm{a}} B_{3}$ also meet on l. But the latter follows at once from Theorem 21, since the figure before us is the configuration of Pappus.

Corollary. If $[A],[B]$ are not perspective, the axis of homology is the line jorning the points homologous with the point $l_{1} l_{2}$ regarded first as a point of l_{1} and then as a point of l_{2}.

Corollary. If [$l \mathrm{l}]$, [$m \mathrm{l}]$ are not perspective, the center of homology us the point of intersection of the lines homologous with the line $S_{1} S_{2}$ regarded first as a line of $[l]$ and then as a line of $[\mathrm{m}]$.

For in the perspectivity $A_{1}[B] \stackrel{l}{\bar{\lambda}} B_{1}[A]$ the line l_{1} corresponds to $B_{1}\left(l l_{1}\right)$, and hence the point $l_{1} l_{2}$ corresponds to $l l_{1}$ in the projectivity $[B] \pi[A]$ Similarly, $l l_{2}$ corresponds to $l_{1} l_{2}$.

EXERCISES

1 There is one and only one projectivity of a one-dımensional form leaving unvariant one and only one element O, and t_{1} ansforming a given other element A to an clement B
2. Two projective 1 anges on skew lines are always perspective

3 Prove Cor 5, Theorem 27, without using the notion of involution
4. If $M N A B-M N A^{\prime} B^{\prime}$, then $M N A A^{\prime}-M N B B^{\prime}$

5 If P is any point of the axis of homology of two projective ranges $[A] \bar{\wedge}[B]$, then the projectivity $P[A]-P[B]$ is an involution. Dualize.
6. Call the faces of one tetrahedron $a_{1}, a_{2}, a_{3}, a_{4}$ and the opposite vertices $A_{1}, A_{2}, A_{3}, A_{4}$ respectively, and sumilarly the faces and vertices of another tetrahedron $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ and $B_{1}, B_{2}, B_{3}, B_{4}$. If $A_{1}, A_{2}, A_{3}, A_{4}$ lie on $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ respectively, and B_{1} lies on α_{1}, B_{2} on α_{2}, B_{3} on α_{3}, then B_{4} lies on α_{4} Thus each of the two tetrahedra related in this fashion is both inscribed and circumsoribed to the other.

7 Prove the theorem of Desargues (Chap II) by the pinciple of projectivity.

8 Given a thiangle $A B C$ and a point A^{\prime}, show how to construct two points B^{\prime}, C^{\prime} such that the thangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are perspective from four different centers.
9. If two trianglos $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are perspective, the three points

$$
\left(A_{2} B_{2}, A_{2} B_{1}\right)=C_{3},\left(A_{1} C_{2}, A_{2} C_{1}\right)=B_{3},\left(B_{1} C_{2}, B_{2} C_{1}\right)=A_{3},
$$

if not collinear, form a triangle perspective with the first two, and the three centers of perspectivity are collinear.

* 10. (a) If π is a piojectivity in a pencil of points [A] on a line a with invariant points Λ_{1}, A_{3}, and if $[L],[M]$ are the pencils of points on two lines l, m ihrough A_{1}, A_{2} respectively, show by the methods of Chap. III that there exist three points S_{1}, S_{2}, S_{3} such that we have

$$
[A] \frac{S_{1}}{\bar{\Lambda}}[L] \stackrel{S_{2}}{\stackrel{S^{2}}{\Lambda}}[M] \stackrel{S_{3}}{\stackrel{ }{\Lambda}}\left[A^{\prime}\right],
$$

where $\pi(A)=A^{\prime}$; that S_{1}, S_{2}, A_{2} are collnnear; and that S_{2}, S_{3}, A_{1} are collnear.
(b) Using the fundamental theorem, show that there exists on the line $S_{1} A_{2}$ a point S such that we have

$$
[A] \frac{S_{1}}{\bar{\Lambda}}[L] \frac{S}{\bar{\Lambda}}\left[A^{\prime}\right] .
$$

(c) Show that (b) could be used as an assumption of projectivity instead of Assumption P; i.e. P could be replaced by. If π is a projectivity with fixed points A_{1}, A_{2}, giving $\pi(A)=A^{\prime}$ in a pencil of points [A], and $[L]$ is a pencl of points on a line l through A_{1}, there exist two points S_{1}, S_{2} such that

$$
[A] \frac{S_{1}}{\stackrel{ }{\Lambda}}[L] \frac{S_{2}}{\bar{\Lambda}}\left[A^{\prime}\right] .
$$

* 11. Show that Assumption P could be replaced by the corollary of Theorem 17.
* 12 Show that Assumption P could be replaced by the following. If we have a projectivity in a pencil of points defined by the perspectivities

$$
[X] \stackrel{S_{1}}{\bar{\Lambda}}[L] \frac{S_{2}}{\bar{\Lambda}}\left[X^{\prime}\right]
$$

and $[M]$ is the pencil of points on the line $S_{1} S_{2}$, there exist on the base of $[L]$ two points $S_{1}^{\prime}, S_{2}^{\prime}$ such that we have also

$$
[X] \frac{S_{1}^{\prime}}{\bar{\Lambda}}[M] \frac{S_{2}^{\prime}}{\bar{\Lambda}}\left[\mathrm{X}^{\prime}\right]
$$

40. Types of collineations in the plane. We have seen in the proof of Theorem 10, Chap III, that if $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ is any triangle, there exists a collineation Π leaving O_{1}, O_{2}, and O_{3} invariant, and transforming any point not on a side of the triangle into any other such

II

IV

∇

Fig. 48
point. By Theorem 18 there is only one such collineation II. By the same theorem it is clear that Π is fully determined by the projectrity it determines on two of the sldes of the invariant triangle, say $O_{2} O_{8}$ and $O_{1} O_{3}$. Hence, if H_{1} is a homology with center O_{1} and axis $\mathrm{O}_{2} \mathrm{O}_{3}$, which determines the same projectivity as II on the line $\mathrm{O}_{1} \mathrm{O}_{8}$, and if H_{2} is a homology with center O_{2} and axis $O_{1} O_{3}^{\prime}$, which determines the same projectivity as Π on the line $O_{2} O_{2}$, then it is evident that

$$
\mathrm{II}=\mathrm{H}_{1} \mathrm{H}_{2}=\mathrm{H}_{2} \mathrm{H}_{1} .
$$

It is also evident that no point not a vertex of the invariant triangle can be fixed unless Π reduces to a homology or to the identity. Such a transformation Π when it is not a homology is said to be of Type I, and is denoted by Diagram I (fig. 48)

EXERCISE

Piove that two homologres with the same center and axis are commutative, and hence that two projectivities of Type I with the same nnvariant figme are commutative.

Consider the figure of two points O_{1}, O_{2} and two lines o_{1}, o_{2}, such that O_{1} and O_{2} are on o_{1}, and o_{1} and o_{2} are on O_{1}. A collineation Π which is the product of a homology H , leaving O_{2} and O_{2} invariant, and an elation E , leaving O_{1} and o_{1} invariant, evidently leaves this figure invariant and also leaves invariant no other point or line. If A and B are two points not on the lines of the invariant figure, and we require that

$$
\Pi(A)=B,
$$

this fixes the transformation (with two distinct double lines) among the lines at O_{1}, and the parabolic transformation among the lunes at O_{2}, and thus determines Π completely. Clearly if Π is not to reduce to a homology or an elation, the line $A B$ must not pass through O_{1} or O_{2}. Such a transformation Π, when it does not reduce to a homology or an elation or the identity, is said to be of Type $I I$ and is denoted by Diagram $I I$ (fig 48).

EXERCISE

Two projective collineations of Type II, having the same invariant figure, are commutative.

Definition. The figure of a point O and a line o on O is called a lincal element Oo.

A collineation having a lineal element as invariant figure must effect a parabolic transformation both on the points of the lme and on the lines through the point Suppose $A a$ and $B b$ are any two lineal elements whose points are not on O or collinear with O, and whose lines are not on O or concurrent with 0 . Let E_{1} be an elation with center O and axis $O A$, which transforms the point (oa) to the point (ob). Let E_{2} be an elation of center ($A B, 0$) and axis o, which transforms A to B. Then $\Pi=\mathrm{E}_{2} \mathrm{E}_{1}$ has evidently no other invariant elements than O and O and transforms $A a$ to $B b$.

Suppose that another projectivity Π^{\prime} would transfer $A a$ to $B b$ with Oo as only invariant elements The transformation Π^{\prime} would evilently have the same effect on the lmes of O and points of o as Π. Hence $\Pi^{\prime} \Pi^{-1}$ would be the identity or an elation. But as $\Pi^{\prime} \Pi^{-1}(B)=B$ it would be the identity. Hence Π is the only projectivily which transforms $A a$ to $B b$ with $O o$ as only invariant.

A iransformation having as invariant figure a lmeal element and no other invariant point or line is said to be of Type III, and is denoted by Diagram III (fig 48).

A homology is said to be of Type $I V$ and is denoted by Diagram $I V$.
An elation is said to be of Type V and is clenoted by Diagram V.
It will be shown later that any collineation can be regarded as belonging to one of these five types. The results so far oltamed may be summarized as follows :

Theorem 29 A projective collineation with given invariant fiy/ure F , if of Type I or II will transform any point P not on a line of F into any other such point not on a line jouning P to a print of F; if of Type III will transform any lineal element $P p$ suah that p is not on a point, or P on a line, of F into any other such clement (Qq; if of Type IV or V, will transform any point P into any other point on the line joining P to the center of the collineation.

The ${ }^{6}$ ole of Assumption P is well illustated by this theorem. In case of each of the finst three types the existence of the requred collineation was ,roved by means of Assumptions A and E , together with the exsistence of a sufficient number of pounts to effeet the construction. But ats uniquenpss was established only by means of Assumption P In case of Typas $I V$ and V, both existence and uniqueness follow from Assumptions \mathbf{A} and E .

EXERCISES

1. State the dual of Theorem 20.
2. If the number of points on a line is $p+1$, the number of collineations with a given invariant figure 18 as follows:

$$
\begin{aligned}
& \text { Type } I,(p-2)(p-3) \\
& \text { Type } I I,(p-2)(p-1) . \\
& \text { Type } I I I, p(p-1)^{2} . \\
& \text { Type } I V, p-2 . \\
& \text { Type } V, p-1 .
\end{aligned}
$$

In accordance with the results of this exercise, when the number of points on a line is infinte it is said that there are ∞^{2} transformainons of Type I or $I I$; ∞^{8} of Type III; and ∞^{1} of Types $I V$ and V.

CHAPTER V^{*}

CONIC SECTIONS

41. Defintions. Pascal's and Brianchon's theorems.

Definition The set of all points of intersection of homologous lines of two projective, nonperspective flat pencils which are on the same plane but not on the same point is called a point conic (fig. 49). The plane dual of a point conic is called a line conic (fig 50). The space dual of a point conic is called a cone of planes, the space dual

Fig. 49

Fig, 50
of a line conic is called a cone of lines. The point through which pass all the lunes (or planes) of a cone of lines (or planes) is called the vertex of the cone. The point conic, lune conic, cone of planes, and cone of lines are called one-dimensional forms of the second degree. \dagger

The following theorem is an immediate consequence of this definition.

Tireorem 1. The section of a cone of lines by a plane not on the vertex of the cone is a point conic The section of a cone of planes by a plane not on the vertex is a line conic.

Now let A_{1} and B_{1} be the centers of two flat pencils defining a point comc. They are themselves, evidently, points of the conic, for the line $A_{1} B_{1}$ regarded as a line of the pencll on A_{1} corresponds to some other line through B_{1} (since the pencils are, by hypothesis, projective

* All the developments of this chapter are on the basss of Assumptions A, E, P, and H_{0}.
\dagger A fifth one-dimensional form - a self-dual form of lines in space called the regulus - will be defined in Chap. XI Ths definition of the first four one-dimensional forms of the second degree is due to Jacob Steiner (1796-1863). Attention will be called to other methods of defintion in the sequel
but not perspective), and the intersection of these homologous lines is B_{1}. The conc is clearly determined by any other three of its points, say A_{2}, B_{2}, C_{2}, because the projectivily of the pencils is then determined by

$$
A_{1}\left(A_{2} B_{2} C_{2}\right) \pi B_{1}\left(A_{2} B_{2} C_{2}\right)
$$

(Theorem 17, Chap. IV).
Let us now see how to determine a sixth point of the conic on a line through one of the given points, say on a line l through B_{2}. If the line l is met by the lines $A_{1} A_{2}, A_{1} C_{2}, B_{1} A_{2}, B_{1} C_{\mathrm{a}}$ in the points S, I, U, A

Fia. 51
respectively (fig. 51), we have, by hypothesis, $S B_{\mathrm{a}} T \bar{\Lambda}^{U} U B_{2} A$. The other double point of this projectivity, which we will call C_{1}, is given by the quadrangular set $\mathrm{Q}\left(B_{2} S T, C_{1} A U\right)$ (Theorem 23, Chap. IV). A quadrangle which determines it may be obtained as follows: Let the lines $A_{2} B_{1}$ and $A_{1} B_{2}$ meet in a point C, and the lines $A C$ and $A_{1} C_{2}$ in a point B; then the required quadrangle is $A_{1} A_{2} C B$, and C_{1} is determined as the intersection of $A_{2} B$ with l.
C_{1} will coincide with B_{2}, if and only if B is on $A_{2} B_{9}$ (fg. 52). This means that $A C, A_{1} C_{2}$, and $A_{2} B_{2}$ are concurrent in B. In other words, A must be the point of intersection, of $B_{1} C_{2}$ with the line joining $C=\left(A_{8} B_{1}\right)\left(A_{1} B_{2}\right)$ and $B=\left(A_{1} C_{3}\right)\left(A_{2} B_{2}\right)$, and l must be the line joining B_{2} and A. This gives, then, a construction for a line whuch meets a gwen conic in only one poith.

The result of the preceding discussion may be summaxized as follows: The four points $A_{2}, B_{2}, C_{2}, C_{1}$ are points of a point conio
determined by two projective pencils on A_{1} and B_{1}, if and only if the three points $C=\left(A_{1} B_{2}\right)\left(A_{2} B_{1}\right), B=\left(A_{1} C_{2}\right)\left(A_{2} C_{1}\right), A=\left(B_{1} C_{2}\right)\left(B_{2} C_{1}\right)$ are coilinear. The three points in question are clearly the intersections of pairs of opposite sides of the simple hexagon $A_{1} B_{2} C_{1} A_{2} B_{1} C_{2}$.

Since A_{1}, B_{1}, C_{1} may be interchanged with A_{2}, B_{2}, C_{2} respectively in the above statement, it follows that $A_{1}, B_{1}, C_{1}, C_{2}$ are points of a couc determined by projective penclls on A_{2} and B_{2}. Thus, if C_{1} is any point of the first come, it is also a point of the second conc, and vice versa. Hence we have established the following theorem:

Theorem 2. Steiner's theorem. If A and B are any two given points of a conic, and P is a variable point of this convc, we have $A[P]{ }_{\wedge} B[P]$.

In view of this theorem the six points in the discussion may be regarded as any six points of a conic, and hence we have

Theorem 3. Pascal's theorem.* The necessary and sufficuent condition that six points, no three of which are collinear, bc points of the same conic us that the three pairs of opposite sudcs of a simple hexagon of which they are vertices shall meet in collinear points \dagger

The plane dual of this theorem is
Theorem 3'. Brianchon's theorem. The necessary and sufficrent condition that six lines, no three of whuch are concurrent, be lines of a line conic is that the lines joining the three pairs of opposite vertuces of any simple hexagon of which the given lines are sides, shall be concurrent. \dagger

As corollaries of these theorems we have
Corollary 1. A line in the plane of a point conic cannot have more than two points in common with the conic.

Corollary 1'. A point in the plane of a line conue cannot be on more than two lines of the conic

[^43]Also as immediate corollaries of these theorems we have
Theorem 4. There os one and only one pount convis contrintiny five given points of a plane no three of which are collinent.

Theorem 4^{\prime}. There is one and only one line conic containing five given lines of a plane no three of which are concurrent.

EXERCISES

1. What are the space duals of the above theorems?
2. Prove Branchon's theorem without making use of the principle of duality.

3 A necessary and sufficient condition that six poinis, no throe of which are collinear, be points of a point conc, is that they lee the fomits of minsection $\left(a b^{\prime}\right),\left(b c^{\prime}\right),\left(c a^{\prime}\right),\left(b a^{\prime}\right),\left(c b^{\prime}\right),\left(a c^{\prime}\right)$ of the sides a, b, c and $c^{\prime}, l^{\prime}, r^{\prime}$ of two perspective tilangles, in which a and a^{\prime}, b and b^{\prime}, c and c^{\prime} anc homologous.
42. Tangents. Points of contact. Definition. A line y in the plane of a point conic which meets the point conic in ono and only one point P is called a tangent to the point conis at P. A point P^{\prime} in the plane of a line conic through which passes one and only one line p of the line conic is called a point of contact of the line conic on p.

Theorem 5 Through any point of a point conic there is one and only one tangent to the point conic

Proof. If P_{0} is the given point of the point conio ancl P_{1} is any other point of the point conic, whle P is a variable point of this conic, we have, by Theorem 2,

$$
P_{0}[P] \pi P_{1}[P] .
$$

Any line through P_{0} meets its homologous line of the pencil on P_{1} in a point distinct from P_{0}, except when its homologous line is $I_{1} P_{0}$. Since a projectivity is a one-to-one correspondence, there is only one line on P_{0} which has $P_{1} P_{0}$ as its homologous line.

Theorem 5^{\prime}. On any line of a line conic there is one ant only one point of contact of the line conic.

This is the plane dual of the preceding theorem.

EXERCISE

Give the space duals of the preceding definitions and theorems.
Returning now to the construction in the preceding section for the points of a point come containing five given points, we recall that
the point of intersection C_{1} of a line l through B_{2} was determined by the quadrangular set $\mathrm{Q}\left(B_{2} S T, C_{1} A U\right)$. The points B_{2} and C_{1} can, by the preceding theorem, coincide on one and only one of the lines through $B_{2}{ }^{*}$ For thus particular line l, A becomes the intersection

Fig 52
of the tangent at B_{2} with $B_{1} C_{2}$, and the collmearity of the points A, B, C may be stated as follows:

Theorem 6. If the vertices of a simple plane five-point are points of a point conic, the tangent to the point conio at one of the vertices meets the opposite side in a point collinear woth the points of intersection of the other two pairs of nonadjacent sides.

This theorem, by its derivation, is a degenerate case of Pascal's theorem. It may also be regarded as a degenerate case in its statement, if the tangent be thought of as taking the place of one side of the simple hexagon.

It should be clearly understood that the theorem has been obtaned by specialzzing the figure of Theorem 3, and not by a contanuty argument The latter would be clearly impossible, snnce our assumptions do not require the conic to contain more than a fimte number of points.

Theorem 6 may be applied to the construction of a tangent to a point conic at any one of five given points $P_{1}, P_{2}, P_{3}, P_{4}, P_{6}$ of the point conic (fig. 53). By this theorem the tangent P_{1} at P_{1} must be

[^44]such that the points $p_{1}\left(P_{3} P_{4}\right)=A,\left(P_{1} P_{2}\right)\left(P_{4} P_{5}\right)=B$, and $\left(P_{2} P_{3}\right)\left(P_{5} P_{1}\right)=C$ are collinear. But B and C are determmed by $P_{1}, P_{2}, P_{8}, P_{4}, P_{8}$, and hence p_{1} is the line joining P_{1} to the intersection of the lines $B C$ and $P_{3} P_{4}$.

Fig. 63
In like manner, if $P_{1}, P_{2}, P_{3}, P_{4}$, and p_{1} are given, to construct the point P_{5} on any line l through P_{4} of a pout conic contannug $P_{1}, P_{2}, P_{3}, P_{4}$ and of which p_{1} is the tangent at P_{1}, we need only determine the points $A=p_{1}\left(P_{3} P_{4}\right), B=l\left(P_{1} P_{2}\right)$, and $C=(A B)\left(P_{2} P_{3}\right) ;$ then $P_{1} C$ meets l in P_{6} (fig 53).

Fig. 54
In case l is the tangent p_{4} at P_{4}, P_{5} coincides with P_{4} and the following points are collinear (fig. 54):

$$
A=p_{1}\left(P_{3} P_{4}\right), B=p_{4}\left(P_{1} P_{2}\right), C=\left(P_{1} P_{4}\right)\left(P_{2} P_{3}\right) .
$$

Hence we have the following theorem:
Tineorem 7 If the vertuces $P_{1}, I_{2}, P_{8}, P_{4}$ of a simple quredrangle are points of a pornt conic, the tanyent at I_{1}^{P} und the side $\Gamma_{3}^{P} P_{4}$, the ternyput at P_{4} and the sude $P_{1} P_{2}$, and the pair of sides $P_{1} P_{4}$ avul $I_{2}^{P} P_{\mathrm{d}}$ muct in three collinear points.

If $P_{1}, P_{2}, P_{8}, P_{5}$ and the tangeut p_{1} at P_{1} are given, the construction determined by Theorem 6 for a point P_{4} of the point conic on a line l through P_{3} is as follows (fig. 53): Determine $C=\left(P_{1} P_{6}\right)\left(P_{2} P_{3}\right), A=p_{1} l$, and $B=(A C)\left(P_{1} P_{2}\right)$; then $P_{6} B$ meets l in P_{4}.

In case l is the tangent at P_{3}, P_{4} coincides with P_{3} and we have the result that $C=\left(P_{1} P_{6}\right)\left(P_{2} P_{3}\right), A=p_{1} p_{\mathrm{B}}, B=\left(P_{1} P_{2}\right)\left(P_{6} P_{3}\right)$ are collinear points, which gives

Fig. 55
Theorem 8. If the vertices of a complete quadrangle are points of a pornt conic, the tangents at a pair of vertices meet in a point of the line joining the diagonal points of the quodrangle which are not on the side joinung the two vertices (fig 55).

The last two theorems lead to the construction for a point conic of which there are given three points and the tangents at two of them. Reverting to the notation of Theorem 7 (fig 54), let the given points be P_{4}, P_{1}, P_{3} and the given tangents be p_{4}, p_{1}. Let l be any line through P_{8}. If P_{2} is the other point in which l meets the point conic, the points $A=p_{1}\left(P_{8} P_{4}\right), B=p_{4}\left(P_{1} P_{2}\right)$, and $C=\left(P_{2} P_{8}\right)\left(P_{4} P_{1}\right)$ are collinear. Hence, if $C=l\left(P_{1} P_{4}\right)$ and $B=p_{4}(A C)$, then P_{2} is the intersection of l with $B P_{1}$.

In case l is the tangent p_{8} at P_{3}, the points P_{2} and P_{8} coincide, and the points

$$
p_{1}\left(P_{8} P_{4}\right), \quad p_{8}\left(P_{1} P_{4}\right), \quad p_{4}\left(P_{1} P_{3}\right)
$$

are collnear Hence the two triangles $P_{1} P_{3} P_{4}$ and $p_{1} p_{3} p_{4}$ are perspective, and we obtain as a last specialization of Pascal's theorem (fig. 56)

Theorem 9. A triangle whose vertzees are points of a point conic is perspective with the triangle formed by the tanuents at these points, the tangent at any vertex being homologous with the side of the first triangle whuch does not contain thes vertex.

Corollary. If P_{1}, P_{8}, P_{4} are three points of a point conic, the lines $P_{3} P_{1}, P_{8} P_{4}$ are harmonic with the tangent at P_{3} and the line joining P_{3} to the intersectron of the tangents at P_{1} and P_{4}

Proof. This follows from the definition of a harmonic set of lines, on considering the quadrilateral $P_{1} A, A B, B P_{4}, P_{4} P_{1}$ (fig. 56).

Fig. 56
43. The tangents to a point conic form a line conic. If $P_{1}, P_{3}, P_{y}, P_{4}$ are points of a point conic and $p_{1}, p_{2}, p_{3}, p_{4}$ are the tangents to the conic at these points respectively, then (by Theorem 8) the line joining the diagonal points $\left(P_{1} P_{2}\right)\left(P_{8} P_{4}\right)$ and $\left(P_{1} P_{4}\right)\left(P_{2}^{P} P_{8}^{P}\right)$ contains the intersection of the tangents p_{1}, p_{3} and also the intersection of p_{2}, p_{4}. This line is a daagonal line not only of the quadrangle $P_{1} I_{2}^{P} P_{8}^{P} I_{4}^{2}$, but also of the quadrulateral $p_{1} p_{2} p_{3} p_{4}$. Theorem 8 may therefure be stated in the form:

Theorem 10. The complete quadrangle formed ly four points of a point conic and the complete quadrilateral of the tangents at these points have the same diagonal triangle.

Looked at from a slightly different point of view, Theorem 8 gives also

Theorem 11. The tangents to a point conic form a line conio.

Proof. Let P_{1}, P_{2}, P_{3} be any three fixed points on a conic, and let I^{\prime} be a varrable point of this conic. Let p_{1}, p_{2}, p_{3}, p be respectively the tangents at these points (fig 57) By the corollary of Theorem 28 , Chap. IV, $P_{1} P_{2}$ is the axis of homology of the projectivily between the pencils of pomts on p_{1} and p_{2} defined by

$$
P_{1}\left(p_{1} p_{2}\right)\left(p_{1} p_{3}\right){ }_{\pi}\left(p_{2} p_{1}\right) P_{2}^{\prime}\left(p_{2} p_{3}\right) .
$$

But by Theorem 10, if $Q=\left(P_{1} P_{2}\right)\left(P_{3} P\right)$, the points $p p_{2}, p_{1} p_{3}$, and Q are collinear. For the same reason the points $p_{2} p_{3}, p p_{1}, Q$ are collinear. It follows, by Theorem 28, Chap. IV, that the homolog of the variable

Fig. 67
point $p_{1} p$ is $p_{2} p$; ie. p is the lue joinng pairs of homologous points on the two lines p_{1}, p_{2}, so that the totality of the lines p satisfies the definition of a line conic.

Corollary. The center of homology of the projectivity $P_{1}[P]{ }_{\Lambda} P_{2}[P]$ determined by the points P of a point conic containing P_{1}, P_{2} is the intersection of the tangents at P_{1}, P_{2}. The axis of homology of the projectivity $p_{1}[p] \pi p_{2}[p]$ determined by the lines p of a lone conic containing the lines p_{1}, p_{2} is the line joining the points of contact of p_{1}, p_{2}.

Theorem 12. If P_{1} is a fixed and P a variable point of a point conie, and p_{1}, p are the tangents at these two points respectively, then we have $P_{1}[P] \pi p_{1}[p]$.

Proof. Using the notation of the proof of Theorem 11 (fig 57), we have

$$
P_{1}[P] \frac{{ }_{\Lambda}}{} P_{3}[P] \overline{\bar{\Lambda}}[Q],
$$

where Q is always on $P_{1} P_{2} \quad$ But we also have

$$
[Q] \stackrel{p_{1} p_{8}}{\wedge} p_{\mathrm{a}}[p]
$$

and, by Theorem 11, $\quad p_{2}[p] \pi p_{1}[p]$.
Combining these projectivities, we have

$$
P_{1}[P] \pi p_{1}[p] .
$$

The plane dual of Theorem 11 states that the points of contact of a line conve form a point convc. In view of these two theorems and ther space duals we now make the followng

Definition. A conic section or a conic is the figure furmed by a point conic and its tangents. A cone is the figure formed by a cono of lines and its tangent planes.

The figure formed by a line conic and its points of contact is then likewise a conic as defined above; ie a conce (and also a cone) is a self-dual figure.

The duals of Pascal's theorem and its special cases now give us a set of theorems of the same consequence for point conics as for line conics. We content ourselves with restating Brianchon's theurem (Theorem 3^{\prime}) from this point of view.

Brianchon's theorem. If the sides of a simple hexagon are tangents to a conic, the lanes joining opposite vertices are concurrent; and conversely

It follows from the preceding discussion that in forming the plane duals of theorems concernmg conics, the word conic is left unchanged, while the words point (of a conic) and tangent (of a conic) are interchanged. We shall also, in the future, make use of the phrase a conic passes through a point P, and P is on the conic, when P is a point of a conic, etc.

Definition. If the points of a plane figure are on a conic, the figure is said to be inscribed in the conic; if the lines of a plane figure are tangent to a comic, the figure is said to be circumsoribed about the conic.

EXERCISES

1 State the plane and space duals of the speeral cases of l'ascal's theorem.
2 Constiuct a conic, given (1) five tangents, (2) fom fungents and the point of contact of one of them, (3) three tangents and the pomis of contact of two of them.
$3 A B X$ is a triangle whose veitices ane on a conic, and α, b, x are the tangents at A, B, X respectively If A, B are given points and X is varioble, determine the locus of (1) the center of perspectivity of the triangles $A B 3 \times$ and $a b h$, (2) the axis of perspectivity.
$4 X, Y, Z$ are the vertices of a variable triangle, such that X, Y aue always on two given hnes a, b iespectively, while the sides $X I, Z X, Z Y$ always pass through theee given points P, A, B respectively Show that the locus of the point Z is a point conic contaiming $A, D, D=(a d), A I=(A P) b$, and $N=(B P) a$ (Maclaumn's theorem). Dualize. (The plane dual of ths theorem is known as the theorem of Braikenridge.)
5. If a simple plane n-point varies in such a way that its sides always pass though n given points, while $n-1$ of its vertices are always on $n-1$ given lines, the nth vertex describes a conic (Poncelet).

6 If the vertices of two triangles are on a come, the six sides of these two tiangles are tangents of a second conic, and conversely. Corresponding to every point of the first come there exists a triangle having this point as a vertex, whose other two veitices are also on the first conic and whose sides are tangents to the second conic Dualize.
7. If two tisangles in the same plane are perspective, the points in which the sides of one triangle meet the nonhomologous sides of the other are on the same conic, and the lines joming the vertices of one triangle to the nonhomologous vertices of the other are tangents to another consc.
8. If A, B, C, D be the vertices of a complete quadiangle, whose sides $A B, A C, A D, B C, B D, C D$ are cut by a line in the points P, Q, R, S, T, V respectively, and if E, F, G, K, L, M are respectively the harmonic conjugates of these points with respect to the pairs of vertices of the quadrangle so that we have $\mathrm{H}(A B, P E), \mathrm{H}(A C, Q F)$, etc., then the six points E, F, G, K, L, M are on a conic which also passes though the diagonal points of the quadrangle (Holgate, Anuals of Mathematics, Ser. 1, Vol VII (1893), p. 73).
9. If a plane a cut the six edges of a tetrahedron min six distinct points, and the harmonic conjugates of each of these points with respect to the two vertices of the tetrahedron that lie on the same edge aro determined, then the lines joining the latier six points to any point O of the plane a are on a cone, on which are also the lines through O and meeting a pair of opposite edges of the tetrahedron (Holgate, Annals of Mathematics, Ser. 1, Vol. VII (1893), 1. 73).

10 Given four pomts of a conic and the tangent at one of them, construct the tangents at the other three points. Dualize.
11. $A, A^{\prime}, B, B^{\prime}$ are the vertices of a quadrangle, and m, n are two lines in the plane of the quadrangle which meet on $A A^{\prime}$. M is a variable point
on m, the lines $B M, B^{\prime} M$ meet n in the points N, N^{\prime} respectively; the lines $A N, A^{\prime} N^{\prime}$ meet in a point P. Show that the locus of the lines $P M$ is a line conic, which contains the lines $m, p=P\left(n, B B^{\prime}\right)$, and also the lines $A \cdot I^{\prime}, I B B^{\prime}$, $A^{\prime} B^{\prime}, A B$ (Amodeo, Lezioni di Geometria Projetiva, Naples (1005), j. 331).
12. Use the result of Ex 11 to give a construction of a line conic dehermined by five given lines, and show that by means of this construction it is possible to obtain two lines of the conic at the same trme (Amodeo, loc cit)
13. If a, b, c are the sides of a triangle whose vertices ale on a conse, and m, m^{\prime} are two hnes meeting on the conic which meet a, b, c in the pomts A, B, C ? and $A^{\prime}, B^{\prime}, C^{\prime}$ respectively, and which meet the conic again in N, N^{\prime} ruspectively, we have $A B C N \bar{\Lambda} A^{\prime} B^{\prime} C^{\prime} N^{\prime}$ (ef Ex 6).
14. If A, B, C, D are points on a conce and a, b, c, d are the tangents to the conce at these points, the four diagonals of the smple quadrangle $A B(D)$ and the simple quadrilateral abcd ane concurrent

44. The polar system of a conic.

Theorem 13. If P us a pount in the plane of a conuc, but not on the conic, the points of intersection of the tangents to the conve at all the pairs of points which are collinear with P are on a line, whuch also contains the harmonic conjugates of P with respect to these pairs of points.

Theorem 13'. If p is a line in the plane of a conic, but not tangent to the conic, the lines joining the poinls of contact of pairs of tarugcuts to the conic which meet on p pass therough a point P, throught which prass also the harmonic conjugates of p with respect to thesc pairs of tarugents.

Fig. 58
Proof. Let P_{1}, P_{2} and P_{8}, P_{4} be two pairs of points on the conic which are collhear with P, and let p_{1}, p_{2} be the tangents to the conic at P_{1}, P_{2} respectively (fig. 58). If D_{1}, D_{2} are the points $\left(P_{2} P_{4}\right)\left(P_{2} P_{3}\right)$ and. $\left(P_{1} P_{4}\right)\left(P_{2}^{2} P_{4}\right)$
respectively, the line $D_{1} D_{2}$ passes through the intersection Q of p_{1}, p_{2} (Theorem 8). Moreover, the point P^{\prime} in which $D_{1} D_{2}$ meets $I_{1}^{P} P_{2}$ is the harmonic conjugate of P with respect to I_{1}^{\prime}, I_{3}^{\prime} (Theorem 6, Chan1. IV). This shows that the lime $D_{1} D_{2}=Q P^{\prime}$ is completely determined ly the pair of points P_{1}, P_{2} Hence the same line $Q P^{\prime}{ }^{\prime}$ s obtained by replacing P_{3}, P_{4} by any other pair of points on the conic collnnear with P, and distinct from P_{1}, P_{2}^{2}. This proves Theorem 13. Theorem 13 ' is the plane dual of Theorem 13.

Definition The line thus associated with any point P in the plane of a come, but not on the conic, is called the polar of P with respect to the conic. If P is a point on the conic, the polar is defined as the tangent at P.

Theorem 14. The lane joining two diagonal points of any complete quadrangle whose vertices are points of a conic is the polar of the other diagonal point with respect to the conic

Defintrion. The point thus associated with any line p in the plane of a come, but not tangent to the conic, is called the pole of p with respect to the concc If p is a tangent to the conic, the pole is defined as the point of contact of P.

Throrem 14'. The point of intersection of two diagonal lines of any complete quadrilateral whose sides are tangent to a conic is the pole of the other diagonal line with respect to the conic.

Proof. Theorem 14 follows immediately from the proof of Theorem 13. Theorem 14^{\prime} is the plane dual of Theorem 14

Theorem 15. The polar of a Throrem 15'. The pole of a point P with respect to a conic passes through the points of contact of the tangents to the conic through P, if such tangents exist line p with respect to a conic is on the tangents to the conic at the points in which p meets the conic, थf such points exist.

Proof. Let P_{1} be the point of contact of a tangent through P, and let P_{2}, P_{3} be any pair of distinct points of the conic collmear with P. The lue through P_{1} and the intersection of the tangents at P_{2}, P_{8} meets the line $P_{8} P_{2}$ in the harmonic conjugate of P with respect to P_{3}, P_{2} (Theorem 9, Cor.). But the line thus determined is the polar of P (Theorem 13) This proves Theorem 15 Theorem 15^{\prime} is its plane dual.

Theorem 16 If p is the polar of a point P with respect to a conic, P is the pole of p with respeot to the same conic.

If P is not on the conic, this follows at once by comparing Theorrem 13 with Theorem 13' If P is on the conic, it follows immediately from the definition.

Theorem 17. If the polar of a point P passes through a point Q, the polar of Q passes through P.

Proof If P or Q is on the conic, the theorem is equivalent to Theorem 15. If nether P nor Q is on the conic, let $P P_{1}$ be a line

Fig. 59
meeting the conic in two points, P_{1}, P_{2}. If one of the lines $P_{1} Q, P_{1}^{2} Q$ is a tangent to the conic, the other is also a tangent (Theorem 13); the line $P_{1} P_{2}=P_{1} P$ is then the polar of Q, which proves the theorem under this hypothesis. If, on the other haud, the lnes $P_{1} Q, I_{2} Q$ meet the conic again in the points P_{8}, P_{4} respectively (fig. 59), the point $\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)$ is on the polar of Q (Theorem 14). By Theorems 13 and 14 the polar of $\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)$ contains the intersection of the tangents at P_{1}, P_{2} and the point Q. By hypothesis, however, and Theorem 13, the polar of P contains these points also. Hence we have $\left(P_{1} P_{2}\right)\left(P_{8} P_{4}\right)=P$, which proves the theorem.

Corollary 1. If two vertices of a triangle are the poles of their opposite sides with respect to a conic, the third vertex is the pole of its opposite side.

Definition. Any point on the polar of a point P is said to be conjugate to P with regard to the conic; and any line on the pole
of a line p is sazd to be conjugate to p with regard to the conic. The figure obtained from a given figure in the plane of a conic by constructing the polar of every point and the pole of every line of the given figure with regard to the conic is called the polar or polar reciprocal of the given figure with regard to the conic.* A triangle, of which each vertex is the pole of the opposite side, is said to be self-polar or self-conjugate with regard to the come

Corollary 2 The diagonal triangle of a complete quadrangle whose vertices are on a conic, or of a complete quadrilateral whose sides are tangent to a conic, is self-polar with regard to the conic; and, conversely, every self-polar triangle is the diagonal triangle of a complete quadrangle whose points are on the conic, and of a complete quadrilateral whose sides are tangent to the conic. Corresponding to a gwen self-polar triangle, one vertex or side of such a quadrangle or quadrilateral may be chosen arbitrarily on the convc.

Theorem 17 may also be stated as follows: If P is a variable point on a line q, its polar p is a variable line through the pole Q of q. In the special case where q is a tangent to the conic, we have already seen (Theorem 12) that we have

$$
[P] \pi[p] .
$$

If Q is not on q, let A (fig. 60) be a fixed point on the conic, a the tangent at A, X the point (distinct from A, if $A P$ is not tangent) in which $A P$ meets the conic, and x the tangent at X. We then have, by Theorem 12,

$$
[P]=A[X] \overline{\bar{\Lambda}}^{a} a[x] \overline{\bar{\Lambda}} Q[(\alpha x)] .
$$

By Theorem 13, (ax) is on p, and hence $p=Q(a x)$. Hence we have

$$
[P] \pi[p] .
$$

If P^{\prime} is the point $p q$, this gives

$$
[P] \pi\left[P^{\prime}\right] .
$$

But since the polar of P^{\prime} also passes through P, this projectivity is an involution. The result of this discussion may then be stated as follows:

[^45]Theorem 18. On any line not a tangent to a ginen conic the pairs of conjugate points are parrs of an involution. If the line meets the conic in two points, these points are the double points of the involutions Corollary. As a pount P varies over a pencil of points, its -polar wrth respect to any conic varies over a projertive pencil of lines.

Fig. 60
Defintition. The pairing of the points and lines of a plane brought about by associating with every point its polar and with every line its pole with respect to a given conic in the plane is called a polar system.

EXERCISES

1. If in a polar system two points are conjugate to a third point A, the line joining them is the polar of A
2. State the duals of the last two theorems.
3. If a and b are two nonconjugate lines in a polar system, every point A of a has a conjugate point B on b. The pencils of points $[A]$ and $[B]$ are projective; they are perspective if and only if a and b interseot on the conic of the polar system
4. Let A be a point and b a line not the polar of A with respect to a given conic, but in the plane of the conic. If on any line l through A we determine that point P which is conjugate with the point $l b$, the locus of P is a conic passing through A and the pole B of b, unless the line $A B$ is tangent to the
conic, in which case the locus of P is a hne. If $A B$ is not tangent to the conic, the locus of P also passes through the points in which b meats the given conic (if such points exist), and also throngh the points of contact of the tangonts to the given conic through A (if such tangents exist). Dualizo (Reyo-IIolgate, Geometiy of Position, p 106)
5. If the vertices of a tirangle are on a given conic, any line conjugate to one side meets the other two sides in a parr of conjugate points. Conversely, a line meeting two sides of the triangle in conjugate points passes thiough the pole of the third side (von Staudt).

6 If two lines conjugate with respect to a comic meet the conic in two pans of points, these pars are projected from any pomi on the come by a harmome set of lines, and the tangents at these pairs of points meet any tangent in a haimonic set of points

7 With a given point not on a given come as center and tho polar of this point as axis, the conic 18 tiansformed into itself by a homology of period two.
8. The Pascal hne of any sumple hexagon whose vertices are on a conic is the polar with respect to the conce of the Branchon point of the simple hexagon whose sides are the tangents to the come at the verinces of the first hexagon.

9 If the line joinng two points A, B, conjugate with respect to a conic, meets the come in two points, these two points ane harmonic writh A, B.

10 If in a plane theie are given two comias C_{1}^{2} and C_{2}^{2}, and the polars of all the points of C_{1}^{2} with respect to C_{2}^{2} are determined, these polars are the tangents of a third conic.

11 If the tangents to a given conic meet a second come in parrs of points, the tangents at these pars of points meet on a thind conic

12 Given five points of a conic (or four points and the tangent thiough one of them, or any one of the other conditions determining a conic), show how to construct the polar of a given point with respect to the conic.
13. If two pans of opposite sides of a complete quadrangle are parrs of conjugate hnes with respect to a conic, the third pair of opposite sides are conjugate with 1 espect to the conic (von Staudt)

14 If each of two triangles in a plane is the polar of the other with iespect to a conic, they are perspective, and the axis of perspectivity is the polar of the center of perspectıvity (Chasles).
15. Two triangles that are self-polar with respect to the same conc have therr six vertices on a second conic and their six sides tangent to a thind conic (Stemer).
16. Regarding the Desargues configuration as composed of a quadrangle and a quadılateral mutually inscribed (cf. § 18, Chap II), show that tho dagonal triangle of the quadrangle is perspective with the diagonal triangle of the quadrilateral.
17. Let A, B be any two conjugate points with respect to a conic, and let the lines $A M, B M$ jouning them to an arbitrary point of the conic meet the latter agann in the points C, D respectively. The lines $A D, B C$ will then meet on the cone, and the lines $C D$ and $A B$ are conjugate. Dualize.
45. Degenerate conics. For a variety of reasons it is desiruble tu regard two coplanar lines or one line (thought of as two coincildent lines) as degenerate cases of a ponit conic; and dually to regard two points or one point (thought of as two coincident points) us degenerate cases of a line conic This conception makes it possihhe to leave out the restriction as to the plane of section in Theorrm 1. For the section of a cone of lines by a plane through the vartex of the cone consists evidently of two (distinct or coincideni) lines, i.r. of a degenerate point conic; and the section of a cone of planes iny a plane through the vertex of the cone is the figure formed by soml or all the lines of a flat pencil, i.e a degenerate line conic.

EXERCISE

Dualze in all possible ways the degenerate and nondegenorate cawes of Theorem 1.

Historically, the first defintion of a conic section was given ly the ancient, Greek geometers (e.g. Menæchmus, about 350 в.c), who defined them an the plane sections of a "right circular cone." In a later chapter we will shuw that in the "geometry of reals" any nondegeneate pount comic is projuctively equivalent to a curcle, and thus that for the ordinary geometry the modern projective definition given in $\S 41$ is equivalent to the old definition. We arm here using one of the modern definitions because it can be applied before developing the Euclidean metric geometiy.

Degenerate conics would be included in our definition (p. 109), if we had not imposed the restriction on the generating projective pencils that they be nonperspective; for the locus of the point of intersection of pars of homologous lines in two perspective flat pencils in the same plane consists of the axis of perspectivity and the line joining the centers of the pencils.

It will be seen, as we progress, that many theorems regarding nondegenerate conics apply also when the conics are degenerate. For example, Pascal's theorem (Theorem 3) becomes, for the case of a degenerate conic consisting of two distinct lines, the theorem of Pappus already proved as Theorem 21, Chap. IV (cf. in particular the corollary). The polar of a point with regard to a degenerate conic consisting of two lines is the harmonic conjugate of the point with respect to the two lines (cf. the definition, p. 84, Ex. 7). Hence the polar system of a degenerate conic of two liness (and dually of two points) determines an involution at a pepnt (on aphos),

EXERCISES

1 State Brianchon's theorem (Theorem 3') for the case of a degenerate line conic consisting of two poimts
2. Examine all the theorems of the preceding sections with reforence to their behavior when the conic in question becomes degenerate.

46. Desargues's theorem on conics.

Tireorem 19. If the vertices of a complete quadrangle are on ac conic whuch meets a line in two points, the latter are a pair in the involution determined on the line by the pairs of opposite sides of the quadrangle.*

Proof Reverting to the proof of Theorem 2 (fig. 51), let the line meet the come in the points \mathcal{B}_{2}, C_{1} and let the vortices of the quadrangle be $A_{1}, A_{2}, B_{1}, C_{2}$. This quarrangle determines on the line an involution in which S, A and T, U are conjugate pars. But in the proof of Theorem 2 we saw that the quadrangle $A_{1} A_{2} B C$ determines $\mathrm{Q}\left(B_{2} S T, C_{1} A U\right)$. Hence the two quadrangles determine the same involution on the line, and therefore B_{2}, C_{1} are a pair of the involution determined by the quadrangle $A_{1} A_{2} B_{1} C_{2}$.

Since the quadrangles $A_{1} A_{2} B_{1} C_{2}$ and $A_{1} A_{2} B C$ determine the same molution on the line when the latter is a tangent to the conic, we have as a special case of the above theorem:

Corollary. If the vertices of a complete quadrangle are on a conic, the pairs of opposite sides meet the tangent at any other point in pairs of an involution of which the point of contact of the tangent is a double point.

The Desargues theorem leads to a slightly different form of statement for the construction of a conic through five given points. On any line through one of the points the complete quadrangle of the other four determine an mvolution; the conjugate in this involution of the given point on the line is a sixth point on the conic.

As the Desargues theorem is related to the theorem of Pascal, so are certain degenerate cases of the Desargues theorem related to the degenerate cases of the theorem of Pascal (Theorems 6, 7, 8, 9). Thus in fig 53 we see (by Theorem 6) that the quadrangle $B C P_{2} P_{5}$ determines on the line $P_{3} P_{4}$ an involution in which the points P_{8}, P_{4} of the conic are one pair, while the points determined by $p_{1}, P_{2} P_{5}$ and those

[^46]determined by $P_{1} P_{2}, P_{1} P_{5}$ are two other pars. This gives the followng specal case of the theorem of Desargues:
Theorem 20. If the vertices of a triangle are on a conic, and a line l meets the conic in two points, the latter are a pair of the involution determined on l by the pair of pounts in which two sides of the truangle meet l, and the parr in whuch the third sude and the tanyent at the opposite vertex meet l In case l is a tangent to the conic, the point of contact is a double poornt of this involution.

In terms of this theorem we may state the construction of a conic though four points and tangent to a line though one of them as follows. On any line through one of the points which is not on the tangent an involution is determined in which the taugent and the line passing through the other two points determine one parr, and the lines joining the point of contact to the other two points determine another pan. The conjugate of the given point on the line in this involution is a point of the conic.
A further degenerate case is derived either from Theorem 7 or Theorem 8. In fig. 54 (Theorem 7) let l be the lme $P_{2} P_{\mathrm{g}}$. The quadrangle $A B P_{1} P_{4}$ determines on l an meolution in which P_{2}, P_{8} are one pair, in which the tangents at P_{1}, P_{4} determine another pair, and in which the line $P_{1} P_{4}$ determines a double point. Hence we have
Theorem 21. If a lene l meets a concc in two points and P_{1}, P_{4} are any other two points on the conic, the points in which l meets the conic are a pair of an involution through a doulle point of which passes the line $P_{1} P_{4}$ and through a parr of conjugate points of which pass the tangents at P_{1}, P_{4}. If l is tangent to the conic, the point of contact is the second double point of thes involution.

The construction of the conic corresponding to this theorem may be stated as follows: Given two tangents and therr points of contact and one other point of the conic. On any line l through the latter point 18 determined an involution of which one double point is the intersection with l of the line joining the two points of contact, and of which one pair is the pair of intersections with l of the two tangents The conjugate in this involution of the given point of the conic on l is a ponnt of the conic

EXERCISE

State the duals of the theorems in this section
47. Pencils and ranges of conics. Order of contact. The theorems of the last section and their plane duals determine the properties of certain systems of conics which we now proceed to discuss briefly.

Definition. Theset of all conics through the vertices of a complete quadrangle is called a pencol of conics of Type I (fig 61)

Definition. The set of all conics tangent to the sides of a complete quadrilateral is called a range of conics of Type I (fig. 62).

Theorem 19 and its plane dual give at once:
Theorem 22. Any line (not Theorem 22'. The tangents through a vertex of the determining quadrangle) is met by the conics of a pencil of Type I in the parrs of an involutron.*

Fig 61
through any point (not on a side of the determining quadrilateral) to the conics of a range of Type I are the pairs of an involution.

Fig 68
Corollary. Through a gen-
al \dagger point in the plane there s
ge and only one, and tangent to
general line there are two or no
nics of a gwen pencil of Type I.
Corollary. Through a gen-
eral \dagger point in the plane there is
one and only one, and tangent to
a general line there are two or no
conics of a gwen pencil of Type I.
Corollary. Through a gen-
eral \dagger point in the plane there is
one and only one, and tangent to
a general line there are two or no
conics of a given pencil of Type I.
Corollary. Through a gen-
eral \dagger point in the plane there is
one and only one, and tangent to
a general line there are two or no
conics of a given pencil of Type I.
Corollary. Through a gen-
eral \dagger point in the plane there s
one and only one, and tangent to
a general line there are two or no
conics of a gwen pencil of Type I.

Fig. 62

Definition. Theset of all conics through the vertices of a triangle and tangent to a fixed lme through one vertex is called a pencil of conics of Type II (fig. 63).

Definition. The set of all comics tangent to the sides of a triangle and passing through a fixed point on one side is called a range of conics of Type II (fig. 64).

Theorem 20 and its plane dual then give at once:

Theorem 23. Any lune in the plane of a pencol of conics of Type II (which does not pass through a vertex of the determining triangle) is met by the conics of the pencil in the paurs of an involution.

Corollary. Through a general point in the plane there is one and only one conic of the pencil; and tangent to a general line in the plane there are two or no conics of the pencil.

Theorem 23'. The tangents through any point in the plane of a range of conics of Type II (which is not on a side of the determinung triangle) to the conics of the range are the pairs of an involution.

Corollary. Tangent to a general line in the plane there is one and only one conic of the range; and through a general point in the plane there are two or no conics of the range.
Defintrion. The set of all conics through two given points and tangent to two given lines through these points respectively is called

Fig. 65 a pencil or range of conics of Type IV* (fig. 65).

Theorem 21 now gives at once:
Theorem 24. Any line in the plane of a pencel of conics of TypeIV (which does not pass through either of the points common to all the conics of the pencil) is met by the conics of the pancil in the pairs of an involution. Through any point in the plane (not on either of the lines that are tangent to all the conics of the penoil) the tangents to the conics of the pencil are the parrs of an involution. The line joining the two points common to all the conics of the pencil meets

[^47]any line in a double point of the involution determined on that lune. And the point of intersectron of the common tangents is joined to any pwint by a double line of the involution determined at that pount

Corollary. Through any gencral pont or tangent to any general line on the plane there ws one and only one conic of the peneil.

EXERCISES

1. What are the degenerate conics of a pencll or range of Type I ? The diagonal triangle of the fundamental quadrangle (quadilateral) of the pencil (range) is the only triangle which is self-polar with respect to two conics of the pencil (range).
2. Let A^{2} and D^{2} be any two conces of a pencil of Type I, and let P be any point in the plane of the pencil. If p is the polar of P with respect to A^{2}, and P^{\prime} is the pole of p writh respect to B^{2}, the correspondence thus established between $[P]$ and $\left[P^{\prime}\right]$ is a projective collnneation of Type I, whose invariant triangle is the dagonal triangle of the fundamental quadrangle. Do all projective collneations thus determined by a pencll of conces of Type I form a group? Dualize.
3. What are the degenerate comes of a pencll or range of Type II ?

4 Let a pencil of comes of Type $I I$ be determined by a triangle $A B C$ and a tangent a through A. Further, let a^{\prime} be the harmonic conjugate of a with respect to $A B$ and $A C$, and let A^{\prime} be the intersection of a and $B C$. Then A, a and A^{\prime}, a^{\prime} are pole and polar with respect to every conic of the pencil, and no parr of concs of the pencil have the same polars with regard to any other points than A and A^{\prime} Dualize, and show that all the collineations determined as m Ex. 2 are in this case of Type II.

5 What are the degenerate conics of a pencll or range of Type IV?
6. Show that any point on the line joinng the two points common to all the conics of a pencll of Type $I V$ has the same polar with respect to all the comes of the pencil, and that these all pass through the point of antersection of the two common tangents.

7 Show that the collineations deterrnined by a pencil of Type $I V$ by the method of Ex 2 are all homologres (1 e of Type $1 H^{\top}$).

* The pencils and ranges of conics thus far considered have in common the properties (1) that the pencil (range) is completely defined as soon as two conics of the pencl (range) are given; (2) the comics of the pencil (range) determine an involution on any line (point) in the plane (with the exception of the lines (points) on the determining points (lines) of the pencil (range)). Three other systems of conics may be defined which likewise have these properties. These new systems

[^48]may be regarded as degenerate cases of the pencils and ranges already defined. Their existence is established by the theorems given below, which, together with their corollaries, may be regarded as degenerate cases of the theorem of Desargues. We shall need the following

Lemma. Any conve is transformed by a projective collineation in the plane of the conic anto a connc such that the tangents at homologous pornts are homologous.

Proof. This follows almost directly from the definition of a conic. Two projective flat penclls are transformed by a projective collmeation into two projective flat penclls. The intersections of pairs of homologous lines of one pencll are therefore transformed into the intersections of the corresponding pairs of homologous lines of the transformed pencils. If any line meets the first conic in a point P, the transformed line will meet the transformed conic in the point homologous with P. Therefore a tangent at a point of the first conic must be transformed into the tangent at the corresponding point of the second come.

Theorem 25. If a line p_{0} is a tangent to a conic A^{2} at a point P_{0}, and Q is any point of A^{2}, then through any pount on the plane of A^{2}

but not on A^{2} or p_{0}, there is one and only one conic B^{2} through P_{0} and Q, tangent to p_{0}, and such that there is no point of p_{0}, except P_{0}, having the same polar with regard to both A^{2} and \mathcal{B}^{2}.
Proof. If P^{\prime} is any point of the plane not on p_{0} or A^{2}, let P be the second point in which $P_{0} P^{\prime}$ meets A^{2} (fig. 66) There is one and only one elation with center P_{0} and axis $P_{0} Q$ changing P into P^{\prime} (Theorem 9, Chap. III). This elation (by the lemma alove) changes A^{2} into another concc B^{2} through the points P_{0} and Q and tangent to p_{0}. The lines through P_{0} are unchanged by the elation, whereas their poles (on p_{0}) are subjected to a parabolic projectivity. Hence no point on p_{0} (distinct from P_{0}) has the same polar with regard to A^{2} as with regard to B^{2}. Since A^{2} is transformed into B^{2} by an elation, the two conics can have no other points in common than P_{0} and Q.

That there is only one conic B^{2} through P^{\prime} satisfying the condulions of the theorem is to be seen as follows Let $Q P$ meet p_{0} in S, and $Q P^{\prime}$ meet p_{0} in S^{\prime} (fig. 66). The point S has the same polar wilh regard to A^{2} as S^{\prime} with regard to any come B^{2}, since this polar must be the harmonic conjugate of p_{0} with regard to $P_{0} Q$ and $P_{0} P$. Let p be the tangent to A^{2} at P and p^{\prime} be the tangent to B^{2} at P^{\prime}, and let p and p^{\prime} meet p_{0} in T and T^{\prime} respectively. The points

Fig 67
T and T^{\prime} have the same polar, namely $P_{0} P$, with regard to A^{2} and any conic B^{2}. By the conditions of the theorem the projectivity

$$
P_{0} S T T_{\grave{N}} P_{0} S^{\prime} T^{\prime}
$$

must be parabolic Hence, by Theorem 23, Cor, Chap. IV,

$$
\mathrm{Q}\left(P_{0} S T^{\prime}, P_{0} T^{\prime} S^{\prime}\right)
$$

Hence p and p^{\prime} must meet on $P_{0} Q$ in a point R so as to form the quadrangle $R Q P P^{\prime}$. This determines the elements $P_{0}, Q, P^{\prime}, p_{0}, p^{\prime}$ of B^{2}, and hence there is only one possible conce \mathcal{B}^{2}.

Corollary 1. The conics A^{2} and B^{2} can have no other points in common than P_{0} and Q.

Corollary 2. Any line l not on P_{0} or Q which meets A^{2} and B^{2} meets them in parrs of an involution on which the points of intersection of l with $P_{0} Q$ and p_{0} are conjugate

Proof. Let l meet A^{2} in N and N_{1}, \mathcal{B}^{2} in L and $L_{1}, P_{0} Q$ in M, and p_{0} in M_{1} (fig. 67). Let K and Π_{1} be the points of A^{2} which are transformed by the elation into L and L_{1} respectively. By the defintion of an elation K and K_{1} are collinear with M, while K is on the lune $L P_{0}$ and K_{1} on $L_{1} P_{0}$. Let $K N_{1}$ meet p_{0} in R, and $N P_{0}$ meet $K K_{1}$ in S.

Then, since N, K, N_{1}, K_{1} are on the conic to whech p_{0} is tangent at P_{0}, we have, by Theorem 6, applied to the degenerate hexagon $I_{0}^{P} I_{0} \Lambda_{1} \Gamma_{1} N N_{1} N$, that S, L_{1}, and R are collinear. Hence the complete quallilateral $S R, K N_{1}, K K_{1}, l$ has pars of opposile vertices on $P_{0} M$ and $I_{0} A I_{1}, I_{0}^{\prime} N$ and $P_{0} N_{1}, P_{0} L$ and $P_{0} L_{1}$. Hence $Q\left(M N L, M_{1} N_{1} L_{1}\right)$.*

Definition The set of all conics through a point Q and tangent to a line p_{0} at a point P_{0}, and such that no point of p_{0} except P_{0} has the same polar with regard to two conics of the set, is called a peneil of conres of Type III (fig. 68)

Definition Theset of all conics tangent to a line q and tangeut to a line p_{0} at a point P_{0}, and such that no line on P except p_{0} has the same pole with regard to two conics of the set, is called Ω range of conics of T'ype III (fig 69).

Two conics of such a pencll (range) are sald to have contact of the second order, or to osculate, at P_{0}.

Corollary 2 of Theorem 25 now gives at once:

Theorem 26. Any line in the plane of a pencil of conics of Type III, whuch is not on either of the common points of the percil, is met by the conics of the pencil in the pairs of an involution. Through any pornt in the plane except the common points there is one and only one conic of the pencil; and tangent to any line not through either of the common points there are two or no conics of the pencil.

Themenm 20'. Through any point in the plane of a ranye of comics of Type III, which is not on aither of the common tangents of the ranuye, the tungents to the conics of the peneil are the pairs of an inmalution. I'angent to any line in the plane excopt the common tanyents therc is one and only one comic of the runge; and throught any pinint not one either' of the commons tungents there are two or no conics of the range.

[^49]The pencll is determined by the two common points, the common tangent, and oue conic of the pencil.

The range is determined by the two common tangents, the common point, and one come of the range.

EXERCISES

1 What are the degenerate comes of ths pencil and range?
2 Show that the collrneation obtamed by making cor respond to any point P the point P^{\prime} which has the same polar p with regard to one given conic of the pencil (1ange) that P has with regard to another given conic of the pencil (range) is of Type III.

Theortm 27. If a line p_{0} es tangent to a conic A^{2} at a point P_{0}, there is one and only one conic tangent to p_{0} at P_{0} and passing through any other point P^{\prime} of the plane of A^{2} not on p_{0} or A^{2} which determines for every point of p_{0} the same polar line as does A^{2}.

Proof. Let P be the second point in which $P_{0} P^{\prime}$ meets A^{2} (fig. 70) There is one and only one elation of which P_{0} is center and p_{0} axis, changing P to P^{\prime}. This elation changes A^{2} into a come B^{2} through

Fig. 70
P^{\prime}, and is such that if q is any tangent to A^{2} at a point Q, then q is transformed to a tangent q^{\prime} of B^{2} passing through $q p_{0}$, and Q is transformed into the point of contact Q^{\prime} of q^{\prime}, collnear with Q and P_{0} Hence there is one conic of the required type through P^{\prime}.

That there is only one is evident, because if l is any lue through P^{\prime}, any conic \mathcal{B}^{2} must pass through the fourth harmonic of P^{\prime} with regard to $l p_{0}$ and the polar of $l p_{0}$ as to A^{2} (Theorem 13). By considering two lines l we thus determine enough points to fix B^{2}.

Corollary 1. By duality there is one and only one conic B^{2} tangent to any line not passing through P_{0}

Corollary 2. Any line l not on P_{0} which meets A^{2} and B^{2} meets them in pairs of an involution one double point of which as $l p_{0}$, and the other the point of l conjugate to $l p_{0}$ with respect to \mathcal{A}^{2}. A dual statement holds for any point L not on p_{0}.

Corollary 3. The conics A^{2} and B^{2} can have no other point in common than P_{0} and no other tangent in common than p_{0}.

Proof. If they had one other point P in common, they would have in common the conjugate of P in the involution determined on any line through P according to Corollary 2

Definition. The set of all comes tangent to a given line p_{0} at a given point P_{0}, and such that each point on p_{0} has the same polar with regard to all conics of the set, is called a peneil or range of conacs of Type V. Two conics of such a pencul are said to have contact of the third order, or to hyperosculate at P_{0}.

Theorem 27 and its first two corollaries now give at once:
Theorem 28. Any line l not on the common point of a peneil of Type V is met by the conics of the pencil in pairs of an involutron one double point of which is the antersection of l with the common tangent. Through any point L not on the common tangent the pairs of tangents to the conics of the pencol form an involution one clouble line of which is the line joining L to the common point. There is one conic of the set through each point of the plane not on the common tangent, and one connc tangent to each line not on the commons point.

The pencil or range is determined by the common point, the common tangent, and one conic of the set.

EXERCISES

1. What are the degenerate conics of a pencil of Type V ?
2. Show that the collmeation obtauned by making correspond to any point P the point Q which has the same pole p with regard to one conic of a pencal of Type V that P has with regard to another conic of the pencil is an elation.
3. The lunes polar to a point A with regard to all the conies of a pencel of any of the five types pass through a point A^{\prime}. The points A and Λ^{\prime} are double points of the involution determined by the pencil on the line $A A^{\prime}$. Construct A^{\prime}. Dualize. Derive a theorem on the complete quadrangle as a special case of this one.
4. Construct the polar line of a point A with regard to a conic C^{2} being given four points of C^{2} and a conjugate of A with regard to C^{2}.
5. Grven an involution I on a hine l, a parr of points A and A^{\prime} on l not conjugate in I , and any other point B on l, construct a point B^{\prime} such that A and A^{\prime} and B and B^{\prime} are pans of an involution I^{\prime} whose double points are a parr in I The involution I^{\prime} may also be descinbed as one which is commutative with I, or such that the product of I and I^{\prime} is an involution.

6 There is one and only one come through thiee points and having a given point P and line p as pole and polar.
7. The comics through three points and having a given pair of points as conjugate points form a pencil of conies.

MISCELLANEOUS EXERCISES

1. If O and o are pole and polar with regard to a conic, and A and B are two points of the conce collmear with O, then the come is generated by the two pencils $A[P]$ and $B\left[P^{\prime}\right]$ where P and P^{\prime} are parred in the involution on o of conjugates with regard to the conic.

2 Given a complete plane five-point $A B C D E$. The locus of all points X such that
is a comic.

$$
X(B C D E) \bar{\Lambda}^{A(B C D E)}
$$

3 Given two projective nonperspective pencils, [$p]$ and [q]. Every line l upon which the projectivity $l[p] \bar{\Lambda}^{l}[q]$ is involutoric passes thiough a fixed point O. The point O is the pole of the line joinng the centers of the penclls with respect to the come generated by them.
4. If two complete quadrangles have the same daagonal points, their eight verticesheon a conle (Cremona, Projective Geometry (Oxford, 1885), Chap.XX).
5. If two connes metersect in four points, the eught tangents to them at these points are on the same line comic Dualize and extend to the cases where the conics are in pencils of Types $I I-V$.
6. All conics with respect to which a given triangle is self-conjugate, and which pass through a fixed point, also pass through three other fixed points. Dualize.
7. Construct a conic through two given points and with a given selfconjugate triangle. Dualize.
8. If the sides of a triangle are tangent to a conic, the lines joinng two of its vertices to any point conjugate with regard to the conic to the third vertex are conjugate with regard to the conic. Dualzze.
9. If two points P and Q on a conce are joined to two conjugate points P^{\prime}, Q^{\prime} on a line conjugate to $P Q$, then $P P^{\prime}$ and $Q Q^{\prime}$ meet on the conc
10. If a simple quadriateral is oircumscribed to a conic, and if l is any transversal through the intersection of its diagonals, l will meet the conic and the pars of opposite sides in conjugate pairs of an involution. Dualize.
11. Given a conic and three fixed collinear points A, B, C. There 18 a fourth point D on the line $A B$ such that if three sides of a sample quadrangle inscribed in the conic pass through A, B, and C respectively, the fourth passes through D (Cremona, Chap. XVII).

12 If a vaurable simple n-line (n even) is inscubed in a come in such a way that $n-1$ of its sides pass though $n-1$ fixed collnear ponsts, then the othen side passes through another fixed point of the samo line Dualize this theorem
13. If two conces mintersect in two points $1, B$ (on ale tangent at a 1 point A) and two hnes through A and B respectively (or though the pomi of eontact A) meet the conics agan in O, O^{\prime} and L, L^{\prime}, then the lines $O L$ and $O^{\prime} L^{\prime}$ meet on the line joining the remaming poonts of mbersection (af existent) of the two comics.
14. If a conce C^{2} passes through the vertices of a triangle which is selfpolar with respect to another conco K^{2}, theie is a tiaangle inscinbed in C^{2} and self-polar with regard to K^{2}, and having one vertex at any point of C^{2} The lmes which out C^{2} and K^{2} in two parss of points which are hamonically conjugate to one another constitute a line connc C_{2}^{2}, which is the polar 1 eciprocal of C^{2} with regard to K^{2} (Ciemona, Chap. XXII).
15. If a variable tirangle is such that two of its sides pass respectively though two fixed points O^{\prime} and O lying on a given come, and the vertices opposite them lie respectively on two fixed lines u and u^{\prime}, while the third vertex hes always on the given come, then the third side touches a fixed conic, whech touches the lines u and u^{\prime}. Dualize (Cremona, Chap. XXII)
16. If P is a vanable point on a conce contaning A, B, C, and l is a variable line though P such that all throws $T(P A, P B, P C, l)$ are projective, then all lines l neet in a point of the conic (Schroter, Jour nal fur dee reme und angewandte Mathematik, Vol. LXII, p. 222).
17. Given a fixed coulc and a fixed line, and three fixed points A, B, C on the conic, let P be a variable point on the conic and let $P .1, P D, P C$ meet the fixed line in $A^{\prime}, B^{\prime}, C^{\prime}$ If O is a fixed point of the plane and ($\left.O A^{\prime}, P^{\prime} B^{\prime}\right)=K$ and ($K C^{\prime}$) $=l$, then K descubes a come and l a pencil of lines whose center is on the conic described by K (Schiuter, loc. crt.).
18. Two triangles $A B C$ and $P Q R$ are perspective in four ways Show that If $A B C$ and the point P are fixed and Q, R are variable, the locus of each of the latter points is a come (cf. Ex. 8, p. 105, and Schouter, Mathematische Annalen, Vol II (1870), p 553).
19. Given six points on a conic. By taking these in all possible orders 60 different simple hexagons inscribed in the come are obtanned. Each of these sumple hexagons gives rise to a Pascal line The figue thus associated with any six points of a conct is called the hexagrammum mysticum.* Prove the following properties of the hexagrammum mysticum:

1. The Pascal hines of the the ee hexagons $P_{1} P_{9} P_{3} P_{4} P_{5} P_{0}, P_{1} P_{4} P_{8} P_{6} P_{5} P_{2}$, and $P_{1} P_{8} P_{8} P_{8} P_{8} P_{4}$ are concurrent. The point thus associated with such a set of three hexagons is called a Steiner poont.
ii There are in all 20 Stener points.

[^50]iii. Fiom a given simple hexagon five others are obtained by permuting in all possible ways a set of thiee vertices no two of which are adjacent. The Pascal lines of these sux hexagons pass through two Stemer points, which are called conjugate Stemer points. The 20 Steiner points fall into ten paiss of conjugates.
iv The 20 Stemer points lie by fours on 15 lines called Steiner lines.
\checkmark What is the symbol of the configuation composed of the 20 Steiner. points and the 15 Steiner lines?
20. Discuss the problem corresponding to that of Ex. 19 for all the special cases of Pascal's theorem
21. State the duals of the last two exeronses
22. If in a plane there are given two conies, any point A has a polar with respect to each of them If these polars intersect in A^{\prime}, the pounts A, A^{\prime} are conjugate with respect to both conces. The polars of A^{\prime} likewnse meet in A. In this way every point in the plane is paired wath a unique other point. By the dual plocess every line in the plane is paned with a unique lme to which it is conjugate with respect to both conics Show that in this correspondence the points of a line correspond in genelal to the points of a conic. All such conics which correspond to lines of the plane have in common a set of at most three points. The polass of evely such common point coincide, so that to each of them is made to correspond all the points of a line. They form the exceptronal elements of the correspondence. Dualize (Reye-Holgate, p. 110).*

23 If in the last exercise the two given conics pass through the vertices of the same quadrangle, the diagonal points of this quadrangle are the "common points " mentioned in the preceding exercise (Reye-Holgate, p 110).

24 Given a cone of lines with vertex O and a line u thiough O. Then a one-to-one correspondence may be established among the lines thiough O by associating with every such line a its conjugate a^{\prime} with respect to the cone lying in the plane $a u$ If, then, a descubes a plane π, a^{\prime} will describe a cone of lines passing thiough u and through the polar line of π, and which has in common with the given cone any lines common to it and to the given cone and the polar plane of u (Reye-Holgate, p. 111)*
25. Two conics are determined by the two sets of five points A, B, C, D, E and A, B, C, H, K. Construct the fourth point of intersection of the two conics (Castelnuovo, Lezioni di Geometria, p 391).
26. Apply the result of the preceding Exercise to construct the point P such that the set of lines $P(A, B, C, D, E)$ joming P to the vertices of any given complete plane five-point be projective with any given set of five pounts on a lune (Castelnuovo, loc. cit.).
27. Grven any plane quadrilateral, construct a hme which meets the sides of the quadrilateral in a set of four points projective with any given set of four collinear points.

[^51]28. Two sets of five points A, B, C, D, E and A, B, H, K, L determine two conics which intersect agan in two points X, Y. Construct the line $X Y$ and show that the points X, Y are the double points of a certain involution (Castelnuovo, loc. cit.).
29. If three conics pass through two given points A, B and the three pairs of concs cut again in three pars of points, show that the three lines joinng these parss of points are concurrent (Castelnuovo, loc. cit).
30. Prove the converse of the second theorem of Desargues. The conics passing through thee fixed points and meeting a given line in the pairs of an involution pass through a fourth fixed point. This theorem may be used to construct a conce, given three of ats points and a pani of poinis conjugaie with respect to the come. Dualize (Castelnuovo, loc. cit.).
31. The poles of a line with respect to all the conics of a pencil of conics of Type I are on a conie which passes through the dagonal points of the quadrangle definng the pencil. Thus comc cuts the given line in the points in which the latter is tangent io conics of the pencil. Dualize.
32. Let p be the polar of a point P with regard to a triangle $A B C$. If P varies on a conce which passes through A, B, C, then p passes through a fixed point Q (Cayley, Collected Works, Vol I, p. 361).
33. If two conics are inscribed in a triangle, the six points of contact aie on a third conic.
34. Any two vertices of a triangle circumscribed to a conce are separated harmonically by the point of contact of the side containing them and the point where this side meets the line joinng the points of contact of the other sides.

CHAPTER VI

ALGEBRA OF POINTS AND ONE-DIMENSIONAL COÖRDINATE SYSTEMS

48. Addition of points. That analytic methods may be introduces into geometry on a strictly projective basis was first shown by von Staudt.* The point algebra on a line which is defined in this chapte wilhout the use of any further assumptions than $\mathrm{A}, \mathrm{E}, \mathrm{P}$ is essentiall equivalent to von Staudt's algebra of throws (p. 60), a brief accoun of whuch will be found in §55. The original method of von Staud 1 has, however, been considerably clarfied and simplfied by moderr researches on the foundations of geometry \dagger all the definitions ano theorems of this chapter before Theorem 6 are independent of As sumption P. Indeed, if desired, this part of the chapter may be read before taking up Chap IV.

Given a line l, and on l three distinct (arbitrary) fixed points which for convenience and suggestiveness we denote by P_{0}, P_{1}, P_{∞}, we define two one-valued operations \ddagger on parss of points of l with reference to the fundamental points P_{0}, P_{1}, P_{∞} The fundamental points are said to determine a scale on l.

Definition. In any plane through l let l_{∞} and l_{∞}^{\prime} be any two lines through P_{∞}, and let l_{0} be any line through P_{0} meeting l_{∞} and l_{∞}^{\prime} in points A and A^{\prime} respectively (fig 71). Let P_{x} and P_{y} be any two points of l, and let the lines $P_{x} A$ and $P_{\nu} A^{\prime}$ meet l_{∞}^{\prime} and l_{∞} an the points X and Y respectively. The point P_{x+y}, in which the line $X Y$ meets l, is called the sum of the points P_{x} and P_{y} (in symbols $P_{x}+P_{y}=P_{x+y}$) in

[^52]the scale P_{0}, P_{1}, P_{∞} The operation of obtaining the sum of two pomets is called additron*

Fig. 71
Theorem 1. If P_{x} and P_{y} are distinct from I_{0}^{\prime} and $I_{\infty}^{\prime}, \mathrm{Q}\left(P_{\infty} P_{\alpha} P_{0}\right.$, $P_{\infty} P_{y} P_{x+y}$) is a necessary and sufficient condition for the equality $P_{x}+P_{\nu}=P_{x+y^{*}} \quad(\mathrm{~A}, \mathrm{E})$

This follows mmedately from the definition, $A X A^{\prime} Y$ buing a quadrangle which determines the given quadrangular set.

Corollary 1. If P_{x} is any point of l, we have $P_{x}+P_{0}=P_{0}+P_{a}=P_{x}$, and $P_{x}+P_{\infty}=P_{\infty}+P_{x}=P_{\infty}\left(P_{x} \neq P_{\infty}\right)$. (A, I $)$

This is also an immediate consequence of the definition.
Corollary 2. The operation of addition is one-valued for revery paur of points P_{x}, P_{ν} of l, except for the pair P_{∞}, I_{∞}. (A, IV)

This follows from the theorem above and the corollary of

[^53]Theorem 3, Chap II, in case P_{x} and P_{ν} are distinct from P_{0} and P_{∞}. If one of the points P_{x}, P_{y} comedes wilh P_{0} or P_{∞}, it follows from Corollary 1

Corollary 3. The operation of addition is associative; i.e

$$
P_{x}+\left(P_{y}+P_{z}\right)=\left(P_{x}+P_{y}\right)+P_{z}
$$

for any three pornts P_{x}, P_{u}, P_{z} for which the above expressions are defined. (A, E)

Proof (fig. 73). Let $P_{x}+P_{y}$ be determined as in the definition by means of three lines $l_{\infty}, l_{\infty}^{\prime}, l_{0}$ and the line $X Y$. Let the line $P_{0} Y$ be denoted by l_{0}^{\prime}, and by means of $l_{\infty}, l_{\infty}^{\prime}, l_{0}^{\prime}$ construct the point $\left(P_{x}+P_{y}\right)+P_{x}$,

Fig 78
which is determined by the line $X Z$, say. If now the point $P_{u}+I_{z}$ be constructed by means of the lines $l_{\infty}, l_{\infty}^{\prime}, l_{0}^{\prime}$, and then the point $P_{s}+\left(P_{y}+P_{z}\right)$ be constructed by means of the lines $l_{\infty}, l_{\infty}^{\prime}, l_{0}$, it will be seen that the latter point is determmed by the same line $X Z$.

Corollary 4. The operation of addition is commutative; e.e.

$$
P_{x}+P_{y}=P_{y}+P_{x}
$$

for every pair of points P_{x}, P_{v} for which the operation is defined. (A, E)
Proof. By reference to the complete quadrangle $A X A^{\prime} Y$ (fig. 71) there appears the quadrangular set $\mathrm{Q}\left(P_{\infty} P_{\nu} P_{0}, P_{\infty} P_{x} P_{x+y}\right)$, which by the theorem implies that $P_{u}+P_{x}=P_{w+r}$ But, by defintion, $P_{x}+P_{v}=P_{x+y}$ Hence $P_{\nu}+P_{x}=P_{x}+P_{\nu}$.

Theorem 2. Any three points $P_{x}, P_{y}, P_{a}\left(P_{a} \neq P_{\infty}\right)$ satisfy the relation
ie. the correspondence establushed by making cach point P_{r} of l correspond to $P_{x}^{\prime}=P_{x}+P_{a}$, where $P_{a}\left(\neq P_{\infty}\right)$ is any fixed point of l, is projcctive. (A, E)

Proof The definition of addition (fig 71) gives this projectivity as the result of two perspectivities :*

$$
\left[P_{x}\right] \frac{A}{\bar{\Lambda}}[X] \frac{Y}{\bar{\Lambda}}\left[P_{x}^{\prime}\right] .
$$

The set of all piojectivities determmed by all possible choices of P_{n} in the formula $P_{x}^{\prime}=P_{x}+P_{a}$ is the group described in Example 2, p. 70. The snum of two points P_{a} and P_{b} might indeed have been defined as the point mio whech P_{b} is transformed when P_{0} is tiansformed into P_{a} by a projectivity of this group. The associative law for addition would thus appear as a special case of the associative law which holds for the composition of correspondences in general; and the commutative law for addition would be a consequence of tho commutativity of this particular gioup.

Fig 74
49. Multiplication of points. Definition In any plane through l let l_{0}, l_{1}, l_{∞} be any three lines through P_{0}, P_{1}, P_{∞} respectively, and let l_{1} meet l_{0} and l_{∞} in points A and B respectively (fig. 74). Let P_{x}, P_{ν} be any
 X and Y respectively. The point $P_{x y}$ in which the line $X Y$ neets l is

[^54]called the product of P_{x} by P_{y} (in symbols $P_{x} \cdot P_{y}=P_{x y}$) in the scale P_{0}, P_{1}, P_{∞} on l. The operation of obtaining the product of two points is called multuplication* Each of the points P_{x}, P_{y} is called a factor of the product $P_{x} P_{y}$.

Theorem 3 If P_{x} and P_{y} are any two points of l distrnct from $P_{0}, P_{1}, P_{\infty}, \mathrm{Q}\left(P_{0} P_{x} P_{1}, P_{\infty} P_{y} P_{x y}\right)$ is necessary and sufficient for the equality $P_{x} \quad P_{y}=P_{x j} .(\mathrm{A}, \mathrm{E})$

This follows at once from the definition, $A X B Y$ being the defining quadrangle.

Corollary 1 For any point $P_{x}\left(\neq P_{\infty}\right)$ on l we have the relatrons $P_{1} \cdot P_{x}=P_{x} \cdot P_{1}=P_{x} ; P_{0} \quad P_{x}=P_{x} \quad P_{0}=P_{0} ; P_{\infty} P_{x}=P_{x} \quad P_{\infty}=P_{\infty}\left(P_{x} \neq P_{0}\right)$.

This follows at once from the definition
Corollary 2. The operation of multiplication is one-valued for every pair of points P_{x}, P_{y} of l, except $P_{0} \quad P_{\infty}$ and $P_{\infty} \quad P_{0}$. (A, E)

This follows from Corollary 1 , if one of the points P_{x}, P_{y} coincides with P_{0}, P_{1}, or P_{∞}. Otherwise, it follows from the corollary, p .50 , in connection with the above theorem.

Fig. 75

* The origin of this construction may also be seen in a simple construction of metric Euclidean geometry, which results from the construction of the definition by letting the line l_{∞} be the "line at unfinity" (cf. p 8) In the attached figure which gives this metric construction we have readuly, from sımular triangles, the proportions:

$$
\frac{P_{0} P_{1}}{P_{0} P_{y}}=\frac{P_{0} A}{P_{0} Y}=\frac{P_{0} P_{x}}{P_{0} P_{x y}},
$$

whioh, on taking the segment $P_{0} P_{1}=1$, gives the desired result $P_{0} P_{x y}=P_{0} P_{x} \cdot P_{0} P_{y}$

Corollary 3 The operation of multiplication is associative, i.e we have $\left(P_{x} \cdot P_{y}\right) \cdot P_{z}=P_{z}\left(P_{y} P_{z}\right)$ for every three points P_{x}, P_{y}, P_{z} for which these products are defined (A, E)

Proof (fig 76). The proof is entirely analogous to the proof for the associative law for addition. Let the point $P_{x} P_{y}$ be constructed

Fig 70
as in the definition by means of three fundamental lines l_{0}, l_{1}, l_{∞}, the point $P_{x y}$ being determmed by the line $X Y$. Denote the line $P_{1} Y$ by l_{1}^{\prime}, and construct the point $P_{r y} \cdot P_{z}=\left(P_{x}, P_{y}^{\prime}\right) \cdot P_{z}$, using the lincs $l_{0}, l_{1}^{\prime} l_{\alpha}$ as fundamental Further, let the point $P_{y} P_{s}=P_{y z}$ be constructed by means of the lines $l_{0}, l_{1}^{\prime}, l_{\infty}$, and then let $P_{x} \cdot P_{y z}=P_{x} \cdot\left(P_{y} \cdot P_{z}\right)$ be constructed by means of l_{0}, l_{1}, l_{∞}. It is then seen thai the points $I_{a}^{P} \cdot P_{y z}$ and $P_{x y} P_{z}$ are determined by the same line.

By analogy with Theorem 1, Cor. 4, we should now prove that multiplication is also commutative. It will, however, appear presently that the commutativity of multiplication cannot be proved withont the use of Assumption P (or its equrvalent). It must indeed be clearly noted at this point that the definition of multiplication requires the first factor P_{x} in a product to form with P_{0} and P_{1} a point triple of the quadrangular set on l (cf. p. 49); the construction of the product is therefore not independent of the order of the factors. Moreover, the fact that in Theorem 3, Chap. II, the quadrangles giving the points of the set are similarly placed, was essential in the proof of that
theorem We cannot therefore use this theorem to prove the com mutative law for multiplication as in the case of addition.

An mportant theorem analogous to Theorem 2 is , however, independent of Assumption P [it is as follows.

Tineortam 4 If the relation $P_{x} \cdot P_{y}=P_{x y}$ holds between any thrce points $P_{\imath}, P_{y}, P_{1 y}$ on l dustinct from I_{0}^{3}, we have $P_{\infty} P_{0} P_{1} P_{x} P_{\wedge} P_{0} P_{0} P_{\eta} P_{x y}$ and ulso $P_{\infty} P_{0} P_{1} P_{y} \bar{\wedge} P_{\infty} P_{0} P_{x} P_{x y} ; i$ ie. the correspondence established by making each point P_{x} of l correspond to $P_{x}^{\prime}=P_{a} \cdot P_{a}$ (or to $P_{x}^{\prime}=P_{a} \cdot P_{\text {, }}$), where P_{a} is any fixed point of l distinct from P_{0}, is projective. (A, E)

Proof. The definition of multiplication gives the first of the above projectivities as the result of two perspectivities (fig. 76):

$$
\left[P_{x x}\right] \frac{A}{\bar{\wedge}}[X] \frac{Y}{\bar{\wedge}}\left[P_{x y}\right]
$$

The second one is obtained sumularly In fig 76 we have

$$
\left[P_{y}\right] \frac{B}{\wedge}[Y] \frac{X}{\bar{\wedge}}\left[P_{x y}\right] .
$$

The set of all projectivities determined ly all chorces of P_{a} in the formula $P_{x}^{\prime}=P_{x} P_{a}$ is the group described in Example 1, p 69 The properthes of muluplication may be regarded as properties of that group in the same way that the properties of addition anse fiom the group descinbed in Example 2, 1. 70 In particular, thas furnshes a second proof of the associative law for multiphcation.

Theorem 5. Multiplication is distributive with respect to addition; i.c. if P_{x}, P_{y}, P_{z} are any three points on l (for whech the operations below are defined), we have

$$
\begin{aligned}
& P_{z} \cdot\left(P_{x}+P_{y}\right)=P_{z} \cdot P_{x}+P_{z} \cdot P_{y}, \text { and }\left(P_{x}+P_{y}\right) \cdot P_{z}=P_{x} \cdot P_{z}+P_{y} \cdot P_{z} \cdot(\mathrm{~A}, \mathrm{E}, \\
& \text { Proof Place } \\
& \quad P_{x}+P_{y}=P_{x+y}, P_{z} \cdot P_{x}=P_{z}, P_{z} P_{y}=P_{z y}, \text { and } P_{z} \cdot P_{x+y}=P_{z(x+y)} .
\end{aligned}
$$

By Theorem 4 we then have

$$
P_{\infty} P_{0} P_{1} P_{x} P_{y} P_{x+y} \bar{\Lambda} P_{\infty} P_{0} P_{z} P_{z x} P_{z y} P_{z(x+y)} .
$$

But by Theorenn 1 we also hare $\mathrm{Q}\left(P_{\infty} P_{x} P_{0}, P_{\infty} P_{\nu} P_{x+y}\right)$ Hence, by Theorem 1, Cor., Chap IV, we have $Q\left(P_{\infty} P_{x x} P_{0}, P_{\infty} P_{x y} P_{x(x+y)}\right)$ which, by Theorem 1, implies $P_{z x}+P_{z y}=P_{z(x+y)}$. The relation

$$
\left(P_{x}+P_{y}\right) P_{x}=P_{x} \cdot P_{x}+P_{\nu} P_{x}
$$

is proved sımularly.
50. The commutative law for multiplication. With the and of Assumption P we will now derive finally the commutative law for multiplication:

Theorem 6. The operation of multiplicatzon is rommutative; i.e. we have $P_{2} P_{y}=P_{y} P_{x}$ for every pair of points I_{v}, I_{y}^{\prime} of l for which these two products are defined. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

Proof. Let us place as before $P_{x} \cdot P_{v}=P_{x y}$, and $P_{y} \cdot P_{2}=P_{y r}$. Then, by the first relation of Theorem 4, and inierchanging the points P_{N}, P_{ν}, we have

$$
P_{\infty} P_{0} P_{1} P_{y}-P_{\infty} P_{0} P_{x} P_{y,} ;
$$

and from the second relation of the same theorem we have

$$
P_{\infty} P_{0} P_{1} P_{y} \pi P_{\infty} P_{0} P_{x} P_{x y} .
$$

By Theorem 17, Chap. IV, this requires $P_{y x}=P_{x y}$.
In view of the fact already noted, that the fundamental theorem of projective geometry (Theorem 17, Chap. IV) is equivalent to Assumption P, it follows (cf. § 3, Vol. II) that:

Theorem 7. Assumption P is necessary and sufficient for the commutative law for multiplication.* (A, E)
51. The inverse operations. Definition. Given two pomtis $I_{a}^{\prime}, A_{b}^{\prime}$ on l, the operation determining a point P_{x} satisfying the relation $P_{a}+P_{x}=P_{b}$ is called subtraction; in symbols $P_{b}-P_{a}=P_{\alpha}$. The point P_{x} is called the difference of P_{b} from P_{a}. Subtraction is the invorse of addition.

The construction for addition may readily be reversed to give a construction for subtraction. The preceding theorems on addition then give:

Theorem 8 Subtraction is a one-valued operation for every pair of points P_{a}, P_{b} on l, except the pair P_{∞}, P_{∞}. (A, IK)

Corollary. We have in particular $P_{a}-P_{a}=P_{0}$ for evory point $P_{a}\left(\neq P_{\infty}\right)$ on l. $\quad(\mathrm{A}, \mathrm{E})$

[^55]Definition. Given two points P_{a}, P_{b} on l; the point P_{x} determined by the relation $P_{a} \cdot P_{x}=P_{b}$ is called the quotient of P_{b} by P_{a}^{\prime} (also the ratio of P_{b} to P_{a}); in symbols $P_{b} / P_{a}=P_{a}$, or $P_{b}: P_{a}=P_{a}$. The operation determinung P_{b} / P_{a} is called duvision; it is the mverse of multiplication.*

The construction for multiplication may also be reversed to give a construction for division. The preceding theorems on multiplication then give readly :

Theorem 9. Division is a one-valued operatzon for every parr of points P_{a}, P_{b} on l except the pairs P_{0}, P_{0} and $P_{\infty}, P_{\infty}(\mathrm{A}, \mathrm{E})$

Corollary. We have in particular $P_{a} / P_{a}=P_{1}, P_{0} / P_{a}=P_{0}, P_{a} / P_{0}=P_{\infty}$, etc., for every point P_{a} on l distinct from P_{0} and P_{∞}. (A, E)

Addition, subtraction, multaplication, and division are known as the four rational operations
52. The abstract concept of a number system. Isomorphism. The relation of the foregoing discussion of the algebra of pounts on a line to the foundations of analysis must now be briefly considered. With the aid of the notion of a group (cf. Chap. III, p. 66), the general concept of a number system is described simply as follows:

Definition. A set N of elements is said to form a number system, provided two distinct operations, which we will denote by \oplus and 0 respectively, exist and operate on pairs of elements of N under the following conditions:

1. The set N forms a group with respect to \oplus.

2 The set N forms a group whth respect to \odot, except that if i_{+}is the identity element of N with respect to \oplus, no inverse with respect to \odot exists for $i_{+}+$If a is any element of $\mathrm{N}, a \circ i_{+}=i_{+} \circ a=i_{+}$.
3. Any three elements a, b, c of N satisfy the relations $\alpha \odot(b \oplus c)$ $=(a \odot b) \oplus(a \circ c)$ and $(b \oplus c) \odot a=(b \circ \alpha) \oplus(c \odot a)$

The elements of a uumber system are called numbers, the two operations \oplus and \bigcirc are called addetion and multiplzcation respectively. If a number system forms commutative groups with respect to both addition and multiplication, the numbers are said to form a field. \ddagger

[^56]On the basis of this definition may be developed all the theory relating to the rational operations - i.e. addition, multiplication, subtraction, and division - in a number system The ordnary algebra of the rational operations applying to the set of ordmary rational or ordinary real or complex numbers is a special case of such a theory. The whole terminology of this algebra, in so far as it is definable in terms of the four ratwonal operations, will in the future be assumed as defined. We shall not, therefore, stop to define such terms as reciprocal of a number, exponent, equation, satisfy, solution, root, etc. The element of a number system represented by a letter as a will be spoken of as the value of a. A letter which represents any one of a set of numbers is called a varuable; variables will usually be denoted by the last letters of the alphabet.

Before applying the general defimtion above to our algebra of points on a line, it is desirable to introduce the notion of the abstract equvalence or isomorphism between two number systems.

Definition. If two number systems are such that a one-to-one reciprocal correspondence exists between the numbers of the two systems, such that to the sum of any two numbers of one system there corresponds the sum of the two corresponding numbers of the other system; and that to the product of any two numbers of one there corresponds the product of the correspondng numbers of the other, the two systems are said to be abstractly equivalent or (simply) isomorphic.*

When two number systems are isomorphe, if any series of operations is performed on numbers of one system and the same series of operations is performed on the corresponding numbers of the other, the resulting numbers will correspond.
53. Nonhomogeneous coordinates. By comparing the corollaries of Theorem 1 with the definition of group (p .66), it is at once seen that the set of points of a line on which a scale has been established, forms a group with respect to addition, provided the point P_{∞} be excluded from ihe set. In this group P_{0} is the identity element, and the existence of an inverse for every element follows from Theorem 8. In the same way it is seen that the set of points on a line on wheh a scale has been established, and from which the

[^57]point P_{∞} has been excluded, forms a group with respect to multiplication, except that no mverse with respect to multiphcation exists for $P_{0} ; P_{1}$ is the identity element in this group, and Theorem 9 insures the existence of an inverse for every point except P_{0}. These considerations show that the first two conditions in the defintion of a number system are satisfied by the points of a line, if the operations \oplus and \odot are identrfied with addition and multaplication as defined in $\S \S 48$ and 49 . The third condition in the defintion of a number system is also satisfied in view of Theorem 5. Finally, in view of Theorem 1, Cor 4, and Theorem 6, this number system of points on a line is commntative with respect to both addition and multiplication This gives then:

Tifrorem 10 The set of all points on a line on which a scale has been establusherd, and from which the point P_{∞} is exoluded, forms a field with respect to the operations of addutron and multrplicatron previously defined. (A, E, P)

This provides a new way of regardıng a point, viz., that of regarding a pount as a number of a number system This conception of a point will apply to auy point of a line except the one chosen as P_{∞}. It is desirable, however, both on account of the presence of such an exceptional point and also for other reasons, to keep the notion of point distinct from the notion of number, at least nominally. Thas we do by introducung a field of numbers $a, b, c, \cdots, l, k, \cdots, x, y, z, \cdots$ which is isomorphic with the field of points on a line. The numbers of the number field may, as we have seen, be the points of the line, or they may be mere symbols which combine according to the condutions specified in the definition of a number system; or they may be elements defined in some way in terms of points, lines, etc.*

In any number system the identity element with respect to addition is called zero and denoted by 0 , and the identity element with respect to multiplication is called one or unity, and is denoted by 1. We shall, moreover, denote the numbers $1+1,1+1+1, \cdots, 0-a, \cdots$ by the usual symbols $2,3, \cdots,-a, \cdots, \dagger$ In the isomorphism of our system of numbers with the set of points on a line, the point P_{0} must correspond to 0 , the point P_{1} to the number 1 ; and, in general, to every

[^58]point will correspond a number (except to P_{∞}), and to every number of the field will correspond a pount In this way every point of the line (except P_{∞}) is labeled by a number. This number is callel the (nonhomogeneous) coordinate of the pomt, to which it corresponds. Thus enables us to express relations between points by means of equations between their coördmates The coorrdmates of points, or the points themselves when we think of them as numbers of a number system, we will denote by the small letters of the alphabet (or by numerals), and we shall frequently use the phrase "ihe point x " in place of the longer phrase "the point whose coordınate is x." It should be noted that this representation of the points of a lune by numbers of a number system is not in any way dependent on the commutativity of multiplication; ie. it holds in the general geometries for which Assumption P is not assumed.

Before leaving the present discussion it seems desirable to point out that the algebra of points on a line is merely representative, under the principle of duality, of the algebra of the elements of any one-dimensional primitive form. Thus three lines l_{0}, l_{1}, l_{∞} of a flat pencll determine a scale in the pencil of lines; and three planes $\alpha_{0}, \alpha_{1}, \alpha_{\infty}$ of an axial pencil determine a scale in this pencil of planes; to each corresponds the same algebra.
54. The analytic expression for a projectivity in a one-dimensional primitive form. Let a scale be established on a line l by choosing three arbitrary points for P_{0}, P_{1}, P_{∞}; and let the resulting field of points on a line be made isomorphic with a field of numbers $0,1, a, \cdots$, so that P_{0} corresponds to $0, P_{1}$ to 1 , and, in general, P_{a} to a. For the exceptional point P_{∞}, let us introduce a special symbol ∞ with exceptional properties, which will be assigned to it as the need arises. It should be noted here, however, that this new symbol ∞ does not represent a number of a field as defined on p 149.

We may now derve the analytic relation between the coördinates of the points on l, which expresses a projective correspondence between these points. Let x be the coördinate of any point of l. We have seen that if the point whose coördinate is x is made to correspond to either of the points

$$
\begin{array}{ll}
x^{\prime}=x+a, & (\alpha \neq \infty) \tag{I}\\
x^{\prime}=a x, & (\alpha \neq 0)
\end{array}
$$

where a is the coördnate of any given point on l, each of the resulting correspondences is projective (Theoren 2 and Theorem 4). It is readily seen, moreover, that if x is made to correspond to

$$
\begin{equation*}
x^{\prime}=\frac{1}{x}, \tag{III}
\end{equation*}
$$

the resulting correspondence is likewise projective. For we clearly have the followmg construction for the point $1 / x$ (fig. 77). With the same notation as before for the construction of the product of two

numbers, let the line $x A$ meet l_{∞} in X. If Y is determined as the intersection of $1 X$ with l_{0}, the line $B Y$ determines on l a point x^{\prime}, such that $x x^{\prime}=1$, by definition. We now have

$$
[x] \stackrel{A}{\bar{\Lambda}}[X] \frac{1}{\bar{\Lambda}}[Y] \stackrel{B}{\bar{\Lambda}}\left[x^{\prime}\right] .
$$

The three projectivities (I), (II), and (III) are of fundamental importance, as the next theorem will show. It is therefore desirable to consider their properties briefly; we will thus be led to define the behavior of the exceptional symbol ∞ with respect to the operations of addition, subtraction, multiplication, and division.

The projectivity $x^{\prime}=x+a$, from its definition, leaves the point P_{∞}, which we associated with ∞, invariant. We therefore place $\infty+a=\infty$ for all values of $a(a \neq \infty)$. This projectivity, moreover, can have no other invariant point unless it leaves every point invariant; for the equation $x=x+a$ gives at once $a=0$, if $x \neq \infty$. Further, by properly choosing a, any point x can be made to correspond to any point x^{\prime};
but when one such parr of homologous pomis is assigned in addition to the double point ∞, the projectivity is completely cletermuned. The resultant or product of auy iwo projectivities $x^{\prime}=a+t$ and $x^{\prime}=x+b$ is clearly $x^{\prime}=x+(a+b)$. Two such projectivities are therefore commutative.

The projectivity $x^{\prime}=a x$, from its definition, leaves the points 0 and ∞ nnvariant, and by the fundamental theorem (Theorem 17, Chap IV) cannot leave any other point memant without reducing to the identical projectivity. As another property of the symbol ∞ we have therefore $\infty=a \infty(a \neq 0)$ Here, also, by properly choosing a, any point x can be made to correspond to any point x^{\prime}, but then the projectivity is completely determined. The fundamental theorem m this case shows, moreover, that any projectivity with the double pomts $0, \infty$ can be represented by this equation The product of two projectivities $x^{\prime}=a x$ and $x^{\prime}=b x$ is clearly $x^{\prime}=(a b) x$, so that any two projectivilies of this type are also commutative (Theorem 6).

Finally, the projectivity $x^{\prime}=1 / x$, by its defintion, makes the point ∞ correspond to 0 and the point 0 to ∞. We are therefure led to assign to the symbol ∞ the following further properties: $1 / \infty=0$, and $1 / 0=\infty$. This projectivity leaves 1 and -1 (defined as $0-1$) invariant Moreover, it is an involution because the resultant of two applications of this projectivity is clearly the identity; i.e. if the projectivity 1 s denoted by π, it satisfies the relation $\pi^{2}=1$.

Theorem 11. Any projectivity on a line is the product of projectivitues of the three types (I), (II), and (III), and movy be expressed on the form

$$
x^{\prime}=\begin{align*}
& a x+b \tag{1}\\
& c x+d^{2}
\end{align*}
$$

Conversely, every equation of this form represents a projectivity, if $a d-b c \neq 0 \quad(\mathrm{~A}, \mathrm{E}, \mathrm{P})$

Proof. We will prove the latter part of the theorem first. If we suppose first that $c \neq 0$, we may write the equation of the given transformation in the form

$$
x^{\prime}=\frac{a}{c}+\begin{gather*}
b-\frac{a d}{c} \tag{2}\\
c x+d
\end{gather*}
$$

This shows first that the determinant $a d-b c$ must be different from 0 , otherwise the second term on the right of (2) would vanish, which
would make every x correspond to the same point a / c, while a projectivity is a one-to-one correspondence. Equation (1), moreover, shows at once that the correspondence established by it is the resultant of the five:

$$
x_{1}=c x, \quad x_{2}=x_{1}+d, \quad x_{8}=\frac{1}{x_{2}}, \quad x_{4}=\left(b-\frac{a d}{c}\right) x_{a}, \quad x^{\prime}=x_{4}+\frac{a}{c} .
$$

If $c=0$, and $a d \neq 0$, this argument is readily modified to show that the transformation of the theorem is the resultant of projectivities of the types (I) and $(I I)$. Since the resultant of any series of projectivihes is a projectivity, this proves the last part of the theorem.

It remains to show that every projectivity can indeed be represented by an equation $x^{\prime}=\begin{gathered}a x+b \\ c x+d\end{gathered}$. To do this simply, $1 t$ is desirable to determine first what point is made to correspond to the point ∞ by this projectivity. If we follow the course of this point through the five projectivilies into which we have just resolved this transformation, it is seen that the first two leave it invariant, the third transforms it into 0 , the fourth leaves 0 invariant, and the fifth transforms it into a / c; the point ∞ is then transformed by (1) into the point a / c This leads us to attribute a further property to the symbol ∞, viz,

$$
\begin{aligned}
& a x+b \\
& c x+d
\end{aligned}=\frac{a}{c} \text {, when } x=\infty .
$$

According to the fundamental theorem (Theorem 17, Chap. IV), a projectivity is completely determined when any three pairs of homologous points are assigned. Suppose that in a given projectivity the points $0,1, \infty$ are transformed into the points p, q, r respectively. Then the transformation

$$
x^{\prime}=\begin{gathered}
r(q-p) x+p(r-q) \\
(q-p) x+(r-q)
\end{gathered}
$$

clearly transforms 0 into $p, 1$ into q, and, by virtue of the relation just developed for ∞, it also transforms ∞ into r. It is, moreover, of the form of (1) The determinant $a d-b c$ is in this case $(q-p)(r-q)(r-p)$, which is clearly dfferent from zero, if p, q, r are all distinct. This transformation is therefore the given projectuvity.

- Corollary 1. The projectivity $x^{\prime}=a / x(a \neq 0$, or $\infty)$ transforms 0 into ∞ and ∞ into 0 . (A, E, P)

For it is the resultant of the two projectivities, $x_{1}=1 / x$ and $x^{\prime}=a x_{1}$, of which the first interchanges 0 and ∞, while the second leaves them both invariant. We are therefore led to definc the symbols $a / 0$ and a / ∞ as equal to ∞ and 0 respectively, when a is neither 0 nor ∞

Corollary 2. Any projectuvity leaving the point ∞ invariant may be expressed in the form $x^{\prime}=a x+b$. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

Corollary 3 Any projectivity may be expressal analytically by the blinear equation cxx $x^{\prime}+d x^{\prime}-a x-b=0$; and converscly, any bilinear equation defines a projective correspondence between its two variables, provnded $a d-b c \neq 0$. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

Corollary 4. If a projectuvity leaves any points invarivnt, the coordnnates of these double points satisfy the quadratic cquation $c x^{2}+(d-a) x-b=0$. (A, E, P)

Definition. A system of $m n$ numbers arranged in a rectangular array of m rows and n columns is called a matriv. If $m=n$, it is called a square matrix of order n *

The coefficents $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of the projective trausformation (1) form a square matrix of the second order, which may be conveniently used to denote the transformation Two matrices $\left(\begin{array}{cc}c & b \\ c & d\end{array}\right)$ and $\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$ represent the same transformation, if and only if $a: a^{\prime}=b: b^{\prime}=c: c^{\prime}=d: d^{\prime}$.

The product of two projectivities

$$
x^{\prime}=\pi(x)=\begin{gathered}
a x+b \\
c x+d
\end{gathered} \text { and } x^{\prime \prime}=\pi_{1}\left(x^{\prime}\right)=\begin{aligned}
& a^{\prime} x^{\prime}+b^{\prime} \\
& d^{\prime} \cdot x^{\prime}+d^{\prime}
\end{aligned}
$$

is given by the equation

$$
x^{\prime \prime}=\pi_{1} \pi(x)=\begin{aligned}
& \left(a a^{\prime}+c b^{\prime}\right) x+b a^{\prime}+d b^{\prime} \\
& \left(a c^{\prime}+c d^{\prime}\right) x+b c^{\prime}+d d^{\prime}
\end{aligned}
$$

This leads at once to the rule for the multiplication of matrices, which is similar to that for determinants.

Definition. The product of two matrices is defined by the equation

$$
\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a a^{\prime}+c b^{\prime} & b c^{\prime}+d b^{\prime} \\
a a^{\prime}+c d^{\prime} & b c^{\prime}+d d^{\prime}
\end{array}\right) .
$$

[^59]This gives, in connection with the result just derived,
Theorem 12. The product of two projectivitues

$$
\pi=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { and } \pi_{1}=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)
$$

is represcnted by the product of their matruces, in symbols,

$$
\pi_{1} \pi=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot(\mathrm{A}, \mathrm{E}, \mathrm{P})
$$

Corollary 1. The determinant of the product of two projectivities is equal to the product of therr determinants ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

Corollary 2. The inverse of the projectivaty $\pi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is given by $\pi^{-1}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=\left(\begin{array}{ll}A & C \\ B & D\end{array}\right)$, where A, B, C, D are the cofactors of a, b, c, d rospectrvely in the determinant $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

This follows at once from Corollary 3 of the last theorem by interchanging x, x^{\prime} We may also verify the relation by forming the product $\pi^{-1} \pi=\left(\begin{array}{cc}a d-b c & 0 \\ 0 & a d-b c\end{array}\right)$, which transformation is equivalent to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. The latter is called the adentrcal matrix

Corollary 3. Any involution is represented by $\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)$, that is by $x^{\prime}={ }_{c x-a}^{a x+b}$, woth the condition that $a^{2}+b c \neq 0 \quad(\mathrm{~A}, \mathrm{E}, \mathrm{P})$
55. Von Staudt's algebra of throws. We will now consider the number system of pouts on a line from a slightly different point of view On p .60 we defined a throw as consisting of two ordered pairs of points on a line; and defined two throws as equal when they are projective. The class of all throws which are projective (1.e. equal) to a given throw constitutes a class which we shall call a mark. Every throw determines one and only one mark, but each mark determines a whole class of throws.

Accordmg to the fundamental theorem (Theorem 17, Chap. IV), if three elements A, B, C of a throw and their places in the symbol $\mathrm{T}(A B, C D)$ are given, the throw is completely determmed by the mark to which it belongs. A given mark can be denoted by the symbol of any one of the (projective) throws which define it. We shall also denote marks by the small letters of the alphabet. And so, since the equality sign (\Rightarrow) indicates that the two symbols between
which it stands denote the same thing, we may write $\mathrm{T}(A B, C D)=$ $a=b$, if $a, b, \mathrm{~T}(A B, C D)$ are notations for the same mark. Thus $\mathrm{T}(A B, C D)=\mathrm{T}(B A, D C)=\mathrm{T}(C D, A B)=\mathrm{T}(D C, B A)$ are all symbouls denoting the same mark (Theorem 2, Chap. III).

According to the original definition of a throw the four elements which compose it must be distinct. The term is now to be extended to include the following sets of two ordered pairs, where A, B, C are distinct. The set of all throws of the type $\mathrm{T}(A B, C A)$ is callerl a mark and denoted by ∞; the set of all throws of the type $\mathrm{T}(113, C B)$ is called a mark and is denoted by 0 ; the set of all throws of the type $T(A B, C C)$ is a mark and is denoted by 1 . It is readily seen that if P_{0}, P_{1}, P_{∞} are any three points of a line, there exists for every ${ }^{1}$ wint P of the line a unique throw $\mathrm{T}\left(P_{\infty} P_{0}, P_{1} P\right)$ of the line; and conversely, for every mark there is a unique point P. The mark ∞, ly what precedes, corresponds to the point I_{∞}; the mark 0 to f_{0}^{\prime}, and the mark 1 to P_{1}.

Definition. Let $\mathrm{T}\left(A B, C D_{1}\right)$ be a throw of the mark a, and let $\mathrm{T}\left(A B, C D_{2}\right)$ be a throw of the mark b; then, if D_{8} is determined hy $\mathrm{Q}\left(A D_{1} B, A D_{2} D_{8}\right)$, the mark c of the throw $\mathrm{T}\left(A B, C D_{8}\right)$ is called the sum of the marks a and b, and is denoted by $a+b$; in symbols, $a+b=c$. Also, the point D_{8}^{\prime} determined by $\mathrm{Q}\left(A D_{1} C, B D_{2} D_{8}^{\prime}\right)$ determines a mark with the symbol $\mathrm{T}\left(A B, C D_{8}^{\prime}\right)=c^{\prime}$ (say), which is called the product of the marks a_{a} and b; in symbols, $a b=c^{\prime}$. As to the marks 0 and 1 , to which these two definitions do not apply, we define further: $a+0=0+a=a, a \cdot 0=0 \cdot a=0$, and $a \cdot 1=1 \cdot a=a$.

Since any three distinct points A, B, C may be projected into a fixed triple P_{∞}, P_{1}, P_{0}, it follows that the operation of adding or multiplying marks may be performed on their representative throws of the form $\mathrm{T}\left(P_{\infty} P_{0}, P_{1} P\right)$. By reference to Theorems 1 and 3 it is then clear that the class of all marks on a line (except ∞) forms a number system, with respect to the operations of addition and multiplication just defined, which is isomorphic with the number system of points previously developed.

This is, in brief, the method used by von Staudt to introduce analytic methods into geometry on a purely geometric basis.* We have

[^60]given it here partly on account of its hastorical importance; partly because it gives a conerete example of a mumber system isomorphic with the points of a line*; and partly hecause it gives a matural mintroduction to the fundamental concept of the cross ratio of four points. Thes we proceed to derive in the next section.
56. The cross ratio. We have seen in the preededing section that it is possible to associate a number with every throw of four points on a lme. By duality all the devolopments of thas section apply also to the other one-dimensionnl primtive forms, i.e. the pencil of lines and the pencal of planes. With every throw of four elements of any one-dimensional primitave form there may to associated a definite number, which must be the same for every throw projective with the first, and is therefore an invarmant under any projective transformation, i.c. a property of the throw that is not changed when the throw is replaced by any projective throw This number is called the oross rutio of the throw. It is also called the double rutio or the matharmonie ratio. The ruason for these names will appenr presently.

In general, four given points give risa to sia different cross ratios. For the $2 t$ possible permutations of the letters in the symbol $\mathrm{T}(A B, C D)$ fall into sets of four which, by virtue of Theorem 2 , Chap. III, have the same cross ratios. In the array bolow, the permutations in any line are projective with ench other, two permutations of different lines being in general not projective:

$A B, C D$	$B A, D C$	$D C, B A$	$C D, A B$
$A B, D C$	$B A, C D$	$C D, B A$	$D C, A B$
$A C, B D$	$C A, D B$	$I D B, C A$	$B D, A C$
$A C, D B$	$C A, B D$	$B D, C A$	$D B, A C$
$A D, B C$	$D A, C B$	$C B, D A$	$B C, A D$
$A D, C B$	$D A, B C$	$B C, D A$	$C B, A D$

If, however, the four points form a harmonic set $\mathrm{H}(A B, C D)$, the throws $\mathrm{T}(A B, C D)$ and $\mathrm{T}(A B, D C)$ are projective (Theorom 5 , Cor. 2, Chap. IV) In this case the permutations in the first two rows of the array just given are all projective and hence have the same cross ratio. The four elements of a harmonic set, therefore, give rise to only three cross ratios. The values of these cross ratios are readily seen

[^61]to be $-1, \frac{1}{2}, 2$ respectively, for the constructions of our number system give at once $\mathrm{H}\left(P_{\infty} P_{0}, P_{1} P_{-1}\right), \mathrm{H}\left(P_{\infty} P_{1}, I_{0}^{\prime} P_{1}\right)$, and $\mathrm{H}\left(I_{\infty}^{\prime} I_{1}^{\prime}, I_{0}^{\prime} I_{1}^{\prime}\right)$.

We now proceed to develop an analytic expression for tho cross ratio B ($x_{1} x_{2}, x_{8} x_{4}$) of any four points on a lunc (or, in general, of any four elements of any one-dimensional primitive form) whowe cö̈r nates in a given scale are given. It seems desirable (o) procerele this derivation by an exphat definition of this cross ratio, which is independent of von Staudt's algebra of throws.

Definition. The cross ratio $\mathrm{R}_{\mathrm{x}}\left(x_{1} x_{2}, x_{\mathrm{a}} x_{4}\right)$ of clements $x_{1}, x_{4}, x_{3}, x_{4}$ of any one-dimensional form is, if x_{1}, x_{2}, x_{8} are distmet, thot coiortinate λ of the element of the form minto wheh w_{4} is trinslinmed by the projectivity whech transforms x_{1}, x_{2}, x_{3} min $\infty, 0,1$ respectively ; ie the number, λ, defined by the projectivily $x_{1} x_{2} r_{1} x_{1} r_{1} \Lambda^{\sim \infty} 01 \lambda$. If two of the elements x_{1}, x_{2}, x_{3} coincide and x_{4} is distinct from all of
 $\left.x_{1} x_{2}\right), \mathbb{B}_{8}\left(x_{4} x_{3}, x_{2} x_{1}\right)$, for which the first three elements are distinct.

Theorem 13 The cross ratio $\mathrm{B}\left(x_{1} x_{2}, x_{8} x_{4}\right)$ of the four clements whose coordinates are respectively $x_{1}, x_{2}, x_{3}, x_{4}$ is giren ly the relution
(A, E, P)

$$
\lambda=\mathrm{B}\left(x_{1} x_{2}, x_{8} x_{4}\right)=\frac{\left(x_{1}-x_{8}\right)}{\left(x_{1}-x_{4}\right)}: \begin{aligned}
& \left(x_{2}-x_{1}\right) \\
& \left(x_{2}-x_{4}\right)
\end{aligned} .
$$

Proof. The transformation

$$
x^{\prime}=\begin{array}{cc}
x_{1}-x_{3} & x_{2}-x_{3} \\
x_{1}-x & x_{2}-x
\end{array}
$$

is evidently a projectivity, since it is reducible to the form of a linear fractional transformation, viz.,

$$
\begin{aligned}
x^{\prime}= & -\left(x_{1}-x_{8}\right) x+x_{2}\left(x_{1}-x_{\mathrm{a}}\right) \\
& -\left(x_{2}-x_{8}\right) x+x_{1}\left(x_{2}-x_{8}\right)
\end{aligned}
$$

in which the determinant $\left(x_{1}-x_{3}\right)\left(x_{2}-x_{8}\right)\left(x_{2}-x_{1}\right)$ is not zero, provided the points x_{1}, x_{2}, x_{8} are distinct. This projectivity transforms x_{1}, x_{2}, x_{8} into $\infty, 0,1$ respectively. By definition, therefore, this projectivity transforms α_{4} into the point whose coördinate is the cross ratio in question, i.e. into the expression given in the theorem. If x_{1}, x_{2}, x_{8} are not all distinct, replace the symbol $\mathrm{B}\left(x_{1} x_{9}, x_{8} x_{4}\right)$ by one of its equal cross ratios $\mathrm{R}\left(x_{2} x_{1}, x_{4} x_{3}\right)$, etc.; one of these must have the first three elements of the symbol distinct, since in a oross ratio of four points at least three must be distinct (def.).

Corollary 1. We have in particular
$\mathrm{B}\left(x_{1} x_{2}, x_{3} x_{1}\right)=\infty, \mathrm{K}\left(x_{1} x_{2}, x_{3} x_{2}\right)=0$, and $\mathrm{R}\left(x_{1} x_{2}, x_{3} x_{3}\right)=1$, if x_{1}, x_{2}, x_{3} are any three distinct elements of the form. (A, E)

Corollary 2. The cross ratzo of a harmonic set $\mathrm{H}\left(x_{1} x_{2}, x_{8} x_{4}\right)$ is $\mathrm{K}\left(x_{1} x_{2}, x_{\mathrm{g}} x_{4}\right)=-1$, for we have $\mathrm{H}(\infty 0,1-1) \quad(\mathrm{A}, \mathrm{E}, \mathrm{P})$

Corollary 3 If $\mathrm{B}\left(x_{1} x_{2}, x_{8} x_{4}\right)=\lambda$, the other five cross ratios of the throws composed of the four elements $x_{1}, x_{2}, x_{3}, x_{4}$ are

$$
\begin{array}{ll}
\mathrm{B}_{6}\left(x_{1} x_{2}, x_{4} x_{3}\right)=\frac{1}{\lambda}, & \mathrm{~B}_{0}\left(x_{1} x_{4}, x_{2} x_{3}\right)=\frac{\lambda-1}{\lambda}, \\
\mathrm{~B}_{6}\left(x_{1} x_{3}, x_{2} x_{4}\right)=1-\lambda, & \mathrm{B}_{8}\left(x_{1} x_{4}, x_{3} x_{2}\right)=\frac{\lambda}{\lambda-1} . \\
\mathrm{B}_{0}\left(x_{1} x_{3}, x_{4} x_{2}\right)=\frac{1}{1-\lambda}, &
\end{array}
$$

(A, E, P)
The proof is left as an exercise.
Corollary 4 If $x_{1}, x_{2}, x_{3}, x_{4}$ form a harmonic set $\mathrm{H}\left(x_{1} x_{2}, x_{3} x_{4}\right)$, we have
(A, E, P)

$$
\stackrel{2}{x_{2}-x_{1}}=\stackrel{1}{x_{8}-x_{1}}+\frac{1}{x_{4}-x_{1}}
$$

The proof is left as an exercise.
Corollary 5. If a, b, c are any three distinct elements of a onedimensional primitive form, and $a^{\prime}, b^{\prime}, c^{\prime}$ are any three other distinct elements of the same form, then the corrcspondence estableshed by the relation $\mathrm{R}(a b, c x)=\mathrm{R}_{\mathrm{x}}\left(a^{\prime} b^{\prime}, c^{\prime} x^{\prime}\right)$ is projective. ($\mathrm{A}, \mathrm{E}, \mathrm{P}$)

Proof. Analytically this relation gives

$$
\frac{a-c}{a-x} \frac{b-x}{b-c}=\frac{a^{\prime}-c^{\prime}}{a^{\prime}-x^{\prime}} \frac{b^{\prime}-x^{\prime}}{b^{\prime}-c^{\prime}},
$$

which, when expanded, evidently leads to a bilinear equation in the varables x, x^{\prime}, which defines a projective correspondence by Theorem 11, Cor. 3.

That the cross ratio

$$
\frac{x_{1}-x_{3}}{x_{1}-x_{4}} \frac{x_{2}-x_{8}}{x_{2}-x_{4}}
$$

is invariant under any projective transformation may also be verified directly by observing that each of the three types (I), (II), (III) of projectivities on pp. 152, 158 leaves it invariant That every projectivity leaves it mpariant then follows from Theorem 11.
57. Coordinates in a net of rationality on a line. We now consider the numbers associated with the pounts of a net of rationality on a line. The connection between the developments of this chapter. and the notion of a linear net of rationality is containod in the following theorem:

Theorem 14. The coordinates of the points of the net of rationality $\mathrm{R}\left(P_{0} P_{1} P_{\infty}\right)$ form a number system, or field, which consists of cell numbers each of which can be obtained by a finite number of rutionnal alyedortie: operations on 0 and 1 , and only these (A, E)

Proof. By Theorem 14, Chap. IV, the linear net is a line of the rational space constituted by the points of a three-dimensional not of rationality. By Theorem 20, Chap. IV, this three-dimensional net is a properly projective space. Hence, by Theorem 10 of the present chapter, the numbers associated with $R(01 \infty)$ form a field.

All numbers obtainable from 0 and 1 by the operations of additron, subtraction, multiplication, and division are in $R(01 \infty)$, hecause (Theorem 9, Chap. IV) whenever x and y are in $\mathrm{R}(01 \infty)$ the quatrungular sets determining $x+y, x y, x-y, x / y$ have five out of six elements in $R(01 \infty)$. On the other hand, every number of $R(01 \infty)$ can be obtained by a finte number of these operations. This follows from the fact that the harmonic conjugate of any point a in $R(01 \infty)$ with respect to two others, b, c, can be obtained by a finite number of rational operations on a, b, c. This fact is a consequence of Theorem 13 , Cor 2 , which shows that x is connected with $a, ~ ర, c$ by the relation

$$
(x-b)(a-c)+(x-c)(a-b)=0
$$

Solving this equation for x, we have

$$
x=-\begin{gathered}
2 b c-a b-a c \\
2 a-b-c
\end{gathered},
$$

a number* which is clearly the result of a finite number of rational operations on a, b, c. This completes the proof of the theorem. We have here the reason for the term net of rationality.

It is well to recall at this point that our assumptions are not yet sufficient to identify the numbers associated with a net of rationality with the system of all ordinary rational numbers. We need only recall the example of the miniature geometry described in the Introduction, § 2, which contained only

[^62]three points on a line. If in that triple-system geometry wo perform the construction for the number $1+1$ on any line in which we have assigned the numbers $0,1, \infty$ to the thiee points of the line 10 any way, it will be found that this constancion yields the point 0 This is due to the fact previously noted that in that geometay the dagonal points of a complete quadiangle are collnneal In every geometry to wheh Assumptions A, E, P apply we may constiuct the points $1+1,1+1+1$, , thus forming a sequence of points which, wath the usual notation fon these sums, we may denote by 0,1 , 2, 3, 4, . Two possibilities then 1 resent themsolves. either the points thus obtaned are all distinct, in wheh case the net $R(01 \infty)$ contans all the orduary rational numbers; or some point of thes sequence coincides with one of the preceding points of the sequence, in which case the number of points in a net of ationality is finite. We shall consider this situation in detan in a later chapter, and will then add further assumptions Here it should be emphasized that our iesults hitheito, and all subsequent results depending only on Assumptions A, E, P, are valid not only in the ordmany real or complex geometries, but in a much more general class of spaces, which are characterized merely by the fact that the coordmates of the points on a line are the numbers of a field, finite or infinte.
58. Homogeneous coördinates on a line. The exceptional character of the point P_{∞}, as the coordnate of which we introduced a symbol ∞ with exceptional properties, often proves troublesome, and is, moreover, contrary to the spirit of projective geometry in which the points of a line are all equivalent; indeed, the choice of the point P_{∞} was entirely arbitrary. It is exceptional only in its relation to the operations of addition, multiplcation, etc., which we have defined in terms of it. In this section we will describe another method of denoting points on a line by numbers, whereby it is not necessary to use any exceptional symbol

As before, let a scale be established on a line by choosing any three points to be the points P_{0}, P_{1}, P_{∞}; and let each point of the line be denoted by its (nonhomogeneous) coördinate in a number system ssomorphic with the points of the line. We will now associate with every point a parr of numbers (x_{1}, x_{2}) of this system in a given order, such that if x is the (nonhomogeneous) coordmate of any point distinct from P_{∞}, the pair (x_{1}, x_{2}) associated with the point x satisfies the relation $x=x_{1} / x_{2}$. With the point P_{∞} we associate any pair of the form ($k, 0$), where k is any number ($k \neq 0$) of the number system isomorphic with the line To every point of the line corresponds a pair of numbers, and to every pair of numbers in the field, except the pair
$(0,0)$, corresponds a unique point of the line. These two numbers are called homogeneous coordinates of the point with which they are associated, and the pair of numbers is said to represent the point This representation of points on a lue by pairs of numbers is not unique, since only the ratio of the two coordinates is determined; 1e. the pairs (x_{1}, x_{2}) and ($m x_{1}, m x_{2}$) represent the same point for all values of m different from 0 The point P_{0} is characterized by the fact that $x_{1}=0$; the point P_{∞} by the fact that $x_{2}=0$; and the point P_{1} by the fact that $x_{1}=x_{2}$.

Theorem 15. In homogeneous coürdinates a projectivity on a line as represented by a linear homogeneous transformation in two variables,

$$
\begin{array}{lc}
\rho x_{1}^{\prime}=a x_{1}+b x_{2}, & (a d-b c \neq 0) \\
\rho x_{2}^{\prime}=c x_{1}+d x_{2}, &
\end{array}
$$

where ρ is an arbitrary factor of proportionality. (A, E, P)
Proof. By division, this clearly leads to the transformation

$$
x^{\prime}=\begin{align*}
& a x+b \tag{2}\\
& c x+d
\end{align*},
$$

provided x_{2}^{\prime} and x_{2} are both different from 0 . If $x_{2}=0$, the transformation (1) gives the point $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=(a, c)$; ie. the point $P_{\infty}=$ (1,0) is transformed by (1) into the point whose nonhomogeneous coordmate is a / c And if $x_{2}^{\prime}=0$, we have in (1) $\left(x_{1}, x_{2}\right)=(d,-c)$; ie (1) transforms the point whose nonhomogeneous coördinate is $-d / c$ into the point P_{∞}. By reference to Theorem 11 the validaty of the theorem is therefore established.

As before, the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of the coefficients may conveniently be used to represent the projectivity The double points of the prom jectivity, if existent, are obtained in homogeneous coördinates as follows: The coördinates of a double point (x_{1}, x_{2}) must satisfy the equations

$$
\begin{aligned}
& \rho x_{1}=a x_{1}+b x_{2}, \\
& \rho x_{2}=c x_{1}+d x_{2} .
\end{aligned}
$$

These equations are compatible only if the determinant of the system

$$
\begin{align*}
& (a-\rho) x_{1}+b x_{2}=0 \tag{3}\\
& c x_{1}+(d-\rho) x_{2}=0
\end{align*}
$$

vanishes. This leads to the equation

$$
\left|\begin{array}{cc}
a-\rho & b \\
c & d-\rho
\end{array}\right|=0
$$

for the determination of the factor of proportionality ρ. This equation is called the charactorsstic equation of the matrix representing the projectivity. Every value of ρ satisfymg this equation then leads to a double point when substituted in one of the equations (3); viz, If ρ_{1} be a solution of the characteristic equation, the point

$$
\left(x_{1}, x_{2}\right)=\left(-b, a-\rho_{1}\right)=\left(d-\rho_{1},-c\right)
$$

is a double point.*
In homogeneous coordınates the cross ratio $\mathbb{B}(A B, C D)$ of four points $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right), C=\left(c_{1}, c_{2}\right), D=\left(d_{1}, d_{2}\right)$ is given by

$$
\mathrm{K}(A B, C D)=\frac{(a c)}{(a d)}: \frac{(b c)}{(b d)},
$$

where the expressions (ac), etc , are used as abbreviations for $a_{1} c_{2}-a_{2} c_{1}$, etc Thus statement is readuly verified by writmg down the above ratio in terms of the nonhomogeneous coördnates of the four points

We will close this section by giving to the two homogeneous cooirdinates of a point on a line an explicit geometrical signuficance. In view of the fact that the coördmates of such a point are not uniquely determined, a factor of proportionality being entirely arbitrary, there may be many such interpretations. On account of the existence of this arbitrary factor, we may impose a further condition on the coördinates (x_{1}, x_{2}) of a point, in addition to the defining relation $x_{1} / x_{2}=x$, where x is the nonhomogeneous coördinate of the point in question. We choose the relation $x_{1}+x_{2}=1$ If this relation is satisfied,

$$
\begin{aligned}
& \left.x_{1}=\left|\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right| \begin{array}{ll}
1 & -1 \\
x_{1} & x_{2}
\end{array}\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right| \begin{array}{cc}
0 & 1 \\
x_{1} & x_{2}
\end{array} \right\rvert\,=\mathrm{R}(-10, \infty x), \\
& x_{2}=\left|\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right|:\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|, ~=R(-1 \infty, 0 x) .
\end{aligned}
$$

Thus homogeneous coördinates subject to the condition $x_{1}+x_{2}=1$ can be defined by choosing three points A, B, C arbitrarily, and leting $x_{1}=\mathrm{B}(A B, C X)$ and $x_{2}=\mathrm{R}(A C, B X)$ The ordinary homogeneous coördinates would then be defined as any two numbers proportional to these two cross ratios.

[^63]59. Projective correspondence between the points of two different lines. Hitherto we have confined ourselves, in the developmont of analytic methods, to the points of a smgle line, or, under duality, to the elements of a sungle one-dimensioual primitive form. Sulpose now that we have two hnes l and m with a scale on each, and let the nonhomogeneous coordinate of any point of l be represented by x, and that of any point of m by y The question then arises as to how a projective correspondence between the point x and the punt y may be expressed analytically. It as necessary, first of all, to give a meaning to the equation $y=x$. In other words: What is meant by saying that two points - x on l, and y on m-have the same coördunate? The coordmate x is a number of a field and corresponds to the point of whech it is the coördinate in an isomorphism of this field with the field of points on the line l. We may think of this same field of numbers as isomorphic with the field of points on the line m. In bringing about this isomorphism nothing has been specified except that the fundamental points P_{0}, P_{1}, P_{∞} determining the scale on m must correspond to the numbers 0,1 and the symbol ∞ respectively. If the correspondence between the points of the line and the numbers of the field were entirely determined by the respective correspondences of the points P_{0}, P_{1}, P_{∞} just mentioned, then we should know precisely what points on the two lines l and m have the same coördinates. It is not true of all fields, however, that this correspondence is uniquely determined when the points corresponding to $0,1, \infty$ are assigned.* It is necessary, therefore, to specily more definitely how the isomorphism between the points of m and the numbers of the field is brought about. One way to bring at about is to make use of the projectivity which carries the fundamental points $0,1, \infty$ of l into the fundamental points $0,1, \infty$ of m, and to assign the coördinate x of any point A of l to that point of m into which A is transformed by this projectivity. In this projectivity pairs of homologous points will then have the same coördmates. That the field of points and the field of numbers are indeed made isomorpluic by this process follows directly from Theorems 1 and 3 in connection with Theorem 1, Cor., Chap.IV. We may now readlly prove the following theorem:

[^64]Theorem 16. Any projective correspondcnee between the points [x] and [y] of two distinct lines may be represented anulytically by the relation $y=x$ ly proporly choosing the coardinates on the two lincs If the coordinates on the two lanes are so relatcd that the relation $y=x$ represents a projective correspondence, then any projective correspondence between the points of the two lines is given by a relation
(A, E, P)

$$
y=\begin{aligned}
& a x+b \\
& a x+d
\end{aligned}, \quad(a d-b c \neq 0)
$$

Proof. The first part of the theorem follows at once from the preceding discussion, since any projectivity is determined by three pairs of homologous points, and any three points of erther line may be chosen for the fundamental points. In fact, we may represent any projectivity between the points of the two lunes by the relation $y=x$, by choosing the fundamental points on l arbitrarily; the fundamental points on m are then uniquely determined. To prove the second part of the theorem, let π be any given projective transformation of the points of the line l into those of m, and let π_{0} be the projectivity $y=x$, regarded as a transformation from m to l. The resultant $\pi_{0} \pi=\pi_{1}$ is a projectivity on l, and may therefore be represented by $x^{\prime}=(a x+b) /(c x+d)$ Since $\pi=\pi_{0}^{-1} \pi_{1}$, this gives readily the result that π may be represented by the relation given in the theorem

EXERCISES

1. Give constructions for subtraction and division in the algebra of points on a line.
2. Give constuructions for the sum and the product of two hnes of a pencil of lines in which a scale has been established.

3 Develop the point algebia on a line by using the properties expressed in Theorems 2 and 4 as the definitions of addition and multiphcation respectively. Is it necessary to use Assumption P from the beginning?
4. Using Cor 3 of Theorem 9, Chap III, show that addrtion and multiplication may be defined as follows. As before, choose three points P_{0}, P_{1}, P_{∞} on a line l as fundamental points, and let any line through P_{∞} be labeled l_{∞}. Then the sum of two numbers P_{x} and P_{y} is the point P_{x+y} into which P_{y} is transformed by the elation with axis $l_{\infty \infty}$ and center P_{∞} which transforms P_{0} into P_{x}; ond the product $P_{x} P_{y}$ is the point $P_{a y}$ into which P_{y} is transformed by the homology with axis l_{∞} and center P_{0} which transforms P_{1} into P_{x}. Develop the point algebra on this basis without using Assumption P, except in the proof of the commutativity of multiphoation.

5 If the relation $a x=b y$ holds between four points a, b, x, y of a linc, show that we have $Q(0 b a, \infty y x)$. Is Assumption P necessary for this 1 esnlt?

6 Prove by direct computation that the expression $\frac{x_{1}-x_{3}}{x_{1}-x_{4}} \frac{x_{3}-x_{3}}{x_{2}-x_{4}}$ is unchanged in value when the foun points $x_{1}, x_{2}, x_{3}, x_{4}$ are subjected to any linear fractional transformation $x^{\prime}=\frac{a x+b}{c x+d}$
7. Prove that the transformations

$$
\lambda^{\prime}=\lambda, \lambda^{\prime}=\frac{1}{\lambda}, \lambda^{\prime}=1-\lambda, \lambda^{\prime}=\frac{1}{1-\lambda}, \lambda^{\prime}=\frac{\lambda}{\lambda-1}, \lambda^{\prime}=\frac{\lambda-1}{\lambda}
$$

form a group. What are the periods of the vallous transformations of this group? (Cf Theorem 13, Cor. 3.)
8. If $A, B, C, P_{1}, P_{2}, \cdots, P_{n}$ are any $n+3$ points of a line, show that every cross latio of any four of these points can be expressed rationally in terms of the n cross ratios $\lambda_{1}=\mathrm{K}_{(}\left(A B, C P_{i}\right), i=1,2, \cdots, n$. When $n=1$ this reduces to Theorem 13, Cor. 3. Discuss in detanl the case $n=2$.
9. If $\mathrm{Be}_{0}\left(x_{1} x_{2}, x_{3} x_{4}\right)=\lambda$, show that

$$
\frac{1-\lambda}{x_{8}-x_{4}}=\frac{1}{x_{3}-x_{2}}-\frac{\lambda}{x_{3}-x_{1}}
$$

The relation of Cor. 3 of Theorem 13 is Ω special case of this relation.
10. Show that if $\mathrm{K}(A B, C D)=\mathrm{R}(A B, D C)$, the points fom a harmonic set $\mathrm{H}(A B, C D)$
11. If the cioss ratio $\mathrm{B}_{x}(A B, C D)=\lambda$ satisfies the equation $\lambda^{2}-\lambda+1=0$,
then and

$$
\mathrm{R}(A B, C D)=\mathrm{R}(A C, D B)=\mathrm{R}(A D, B C)=\lambda,
$$

$$
\mathrm{R}(A B, D C)=\mathrm{B}(A C, B D)=\mathrm{B}(A D, C H)=-\lambda^{2}
$$

12. If A, B, X, Y, Z are any five distinct points on a line, show that

$$
\mathbb{R}(A B, X Y) \cdot \mathbb{R}\left(A B, I^{\prime} Z\right) \mathbb{B}(A B, Z X)=1
$$

13. State the corollanes of Theorem 11 in homogenpous courtinates.
14. By direct compntation show that the two methods of determining the double points of a projectivity described in $\$ 554$ and 58 arc equivalent.

15 If $\mathrm{Q}(A B C, X Y Z)$, then

$$
\mathrm{B}(A X, Y C)+\mathrm{R}(B Y, Z A)+\mathrm{B}(C Z, X B)=1
$$

16. If $M_{1}, M M_{2}, M_{3}$ are any thee points in the plane of a line l but not on l, the cross ratios of the lines $l, P M_{1}, P M_{2}, P M_{3}$ are different for any two points P on l
17. If A, B are any two fixed points on a line l, and X, Y are two variahle points such that $\mathrm{R}(A \cdot B, X Y)$ is constant, the set $[X j$ is [rojective with the set $[Y]$.

CHAPTER VII

COÖRDINATE SYSTEMS IN TWO- AND THREE-DIMENSIONAL* FORMS

60. Nonhomogeneous coördinates in a plane. In order to represent the pounts and lines of a plane analytically we proceed as follows: Choose any two distinct lines of the plane, which we will call the axes of coördinates, and determine on each a scale (§48) arbitrarily, except that the point of intersection O of the lines shall be the 0 -pount on each scale (fig. 78). This point we call the origin Denote the fundamental points on one of the lines, which we call the x-axis, by $0_{x}, 1_{x}, \infty_{x}$; and on the other line, which we will call the y-axis, by 0_{y}, $1_{v}, \infty_{y}$. Let the line $\omega_{x} \infty_{y}$ be denoted by l_{∞}.

Fig 78

Now let P be any point in the plane not on l_{∞}. Let the lines $P \infty_{y}$ and $P \infty_{x}$ meet the c-axis and the y-axis in points whose nonhomogeneous coördinates are α and b respectively, in the scales just established The two numbers a, b uniquely determine and are uniquely determined by the point P. Thus every point in the plane not on l_{∞} is represented by a pair of numbers; and, conversely, every pair of numbers of which one belongs to the scale on the x-axis and the other to the scale on the y-axis determines a point in the plane (the pair of symbols ∞_{x}, ∞_{y} being excluded). The exceptional character of the points on l_{∞} will be removed presently ($\$ 63$) by considerations simlar to those used to remove the exceptional character of

[^65]the point ∞ in the case of the avalytic treatment of the points of a line (§58) The two numbers just described, determmng the point P, are called the nonhomogeneous coordunates of P with reference to

Fig 79
the two scales on the x - and the y-axes. The point P is then represented analytically by the symbol (a, b). The number a is called the x-coördinate or the abscissa of the point, and is always written first in the symbol representing the pount; the number b is called the y-coordunate or the ordinate of the point, and is always written last in this symbol.

The plane dual of the process just described leads to the corresponding analytic representation of a line in the plane. For this purpose, choose any two distinct points in the plane, which we will call the centers of cooirdinates; and in each of the pencils of lines with these centers determine a seale arbitrarily, except that the line o joining the two points shall be the 0 -line in each scale. This line we call the origin. Denote the fundamental lines on one of the points, which we will call the u-center, by $0_{u}, 1_{u}, \infty_{u}$; and on the other point, which we will call the v-center, by $0_{v}, 1_{v}, \infty_{v}$. Let the point of intersection of the lunes ∞_{u}, ∞_{v}, be denoted by P_{∞} (fig. 79).

Now let l be any line in the plane not on P_{∞}. Let the points $l \infty_{v}$ and $l \infty_{u}$ be on the lines of the u-center and the v-center, whose nonhomogeneous coördinates are m and n respectively in the scales just established. The two numbers m, n uniquely determine and are uniquely determined by the line l. Thus every line in the plane not on P_{∞} is represented by a pair of numbers; and, conversely, every pair of numbers of which one belongs to the scale on the u-center and the other to the scale on the v-center determines a line in the plane (the pair of symbols ∞_{v}, ∞_{v} being excluded). The exceptional character
of the lmes on P_{∞} will also be removed presently. The two numbers just described, determining the line l, are called the nonhomogeneous coordinates of l with reference to the two scales on the u - and v-centers. The line l is then represented analytically by the symbol [m, n]. The number m is called the u-coördinate of the lne, and is always written first in the symbol just given; the number n is called the v-coördunate of the line, and is always written second in this symbol. A variable point of the plane will frequently be represented by the symbol (x, y); a variable lme by the symbol $[u, v]$. The coördınates of a point referred to two axes are called point coordinates, the coordinates of a line referred to two centers are called line coördinates. The line l_{∞} and the point P_{∞} are called the singular line and the singular point respectively.
61. Simultaneous point and line coördinates. In developing further our analytic methods we must agree upon a convenient relation between the axes and centers of the point and line coördinates respectively. Let us consider any triangle in the plane, say with vertices

O, U, V. Let the lines $O U$ and $O V$ be the y - and x-axes respectively, and in establishing the scales on these axes let the points U, V be the points ∞_{y}, ∞_{x} respectively (fig. 80). Further, let the points U, V be the u-center and the v-center respectively, and in establishing the
scales on these centers let the lines $U O, V O$ be the lines ∞_{u}, ∞_{v} respectively. The scales are now established except for the choice of the 1 points or lnes in each scale. Let us choose arbitrarily a point 1_{x} on the x-axis and a point 1_{y} on the y-axis (dustinct, of course, from the points $O, U, V)$. The scales on the axes now being determmed, we determme the scales on the centers as follows: Let the hne on U and the point -1_{x} on the x-axis be the line 1_{u}; and let the lino on V and the point -1_{y} on the y-axis be the line 1_{v}. All the scales are now fixed. Let π be the projectivity ($\$ 59$, Chap. VI) between the points of the x-axis and the lines of the u-center in which ponts and lues correspond when their x - and u-coordinates respectively are the same. If π^{\prime} is the perspectivity in which every line on the u-center corresponds to the point in which it meets the x-axis, the product $\pi^{\prime} \pi$ transforms the x-axis into itself and interchanges O and ∞_{x}, and 1_{x} and -1_{x}. Hence $\pi^{\prime} \pi$ is the involution $x^{\prime}=-1 / x$ Hence it follows that the line on U whose coordinate us u us on the point of the x-axis whose coordinate is $-1 / u$; and the point on the x-axis whose coordinate is x is on the line of the u-centcr whose coordinate is $-1 / x$. This is the relation between the scales on the x-axis and the u-center.

Similar considerations with reference to the y-axis and the v-center lead to the corresponding result in this case: The line on V whose coördinate is v is on that point of the y-axis whose coordnate is $-1 / v$; and the point of the y-axis whose coordinate is y is on that line of the v-center whose coordinate is $-1 / y$.
62. Condition that a point be on a line. Suppose that, referred to a system of point-and-line coördnates described above, a point I^{\prime} has coördinates (a, b) and a line l has coördnnates [m, n]. The condition that P be on l is now readily obtainable. Let us suppose, first, that none of the coördinates a, b, m, n are zero. We may proceed in eithor one of two dual ways. Adopting one of these, we know from the results of the preceding section that the line $[m, n]$ meets the x-axis in a point whose x-coordinate is $-1 / m$, and meets the y-axis in a point whose y-coordmate is $-1 / n$ (fig 81). Also, by definition, the line joining $P=(a, b)$ to U meets the x-axis in a point whose x-coördinate is a; and the lune joining P to V meets the y-axis in a point whose y-coordinate is b. If P is on l, we clearly have the following perspectivity:

$$
\begin{equation*}
-\frac{1}{m} O a \infty_{x} \frac{P}{\bar{\Lambda}}-\frac{1}{n} O \infty_{y} b . \tag{1}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\mathrm{R}\left(-\frac{1}{m} O, a \infty_{x}\right)=\mathrm{R}\left(-\frac{1}{n} O, \infty_{y} b\right), \tag{2}
\end{equation*}
$$

which, when expanded (Theorem 13, Chap.VI), gives for the desired condation

$$
\begin{equation*}
m a+n b+1=0 . \tag{3}
\end{equation*}
$$

This condation has been shown to be necessary. It is also sufficient, for, if it is satisfied, relation (2) must hold, and hence would follow (Theorem 13, Cor. 5, Chap. VI)

$$
-\frac{1}{m} O a \infty_{n} \pi-\frac{1}{n} O \infty_{y} b .
$$

But since this projectivity has the self-corresponding element O, it is a perspectivity which leads to relation (1). But this implies that P is on l.

Fig 81
If now $a=0(b \neq 0)$, we have at once $b=-1 / n$; and if $b=0(a \neq 0)$, we have likewise $a=-1 / m$ for the condition that P be on l But each of these relations is equivalent to (3) when $a=0$ and $b=0$ respectively. The combination $a=0, b=0$ gives the origin 0 which is never on a line $[m, n]$ where $m \neq \infty \neq n$ It follows in the same way directly from the definition that relation (3) gives the desired condition, if we have either $m=0$ or $n=0$. The condition (3) is then valid for all cases, and we have

Theorem 1 The necessary and sufficient condition that a point $P=(a, b)$ be on a line $l=[m, n]$ is that the relation $m a+n b+1=0$ be satrsfied.

Definition. The equation which is satisfied by the coordunates of all the points on a given line and no others is called the pornt equation of the line.

Corollary 1. The point equatron of the line $[m, n]$ is
$m x+n y+1=0$.

Definition. The equation which is satistied by the coordhnates of all the lmes on a given point and no others is called the line equation of the point.

Corollary 1'. The line cquation of the pount (a, b) is

$$
a u+b v+1=0
$$

EXERCISE

Derive the condition of Theorem 1 by dualizing the proof given.
63. Homogeneous coordinates in the plane. In the analytic representation of points and lines developed in the preceding sections the points on the line $U V=0$ and the lmes on the point O were left unconsidered. To remove the exceptional character of these points and lines, we may recall that in the case of a similar problem in the analytic representation of the elements of a one-dimensional form we found it convenient to replace the nonhomogeneous coördinate x of a point on a lune by a pair of numbers x_{1}, x_{2} whose ratio x_{1} / x_{2} was equal to $x(x \neq \infty)$, and such that $x_{2}=0$ when $x=\infty$.

A simular system of homogeneous coörlinutes can bo established for the plane. Denote the vertices O, U, V of any triangle, which we will call the triangle of reference, by the "coorclinates" $(0,0,1),(0,1,0)$, $(1,0,0)$ respectively, and an arbitrary point T, not on a side of the triangle of reference, by ($1,1,1$). The complete quadrangle oUVT is called the frame of reference* of the system of coördinates to be established The three lines $U T, V T, O T$ meet the other sides of the triangle of reference in points which we denote by $1_{x}=(1,0,1)$, $1_{y}=(0,1,1), 1_{z}=(1,1,0)$ respectively (fig. 82).

We will now show how it is possible to denote every point in the plane by a set of coördnates $\left(x_{1}, x_{2}, x_{8}\right)$. Observe first that we have thus far determined three points on each of the sides of the triangle

[^66]of reference, viz. $(0,0,1),(0,1,1),(0,1,0)$ on $O U ;(0,0,1),(1,0,1)$, $(1,0,0)$ on $O V$; and $(0,1,0),(1,1,0),(1,0,0)$ on $U V$. The coórdnates which we have assigned to these points are all of the form $\left(x_{1}, x_{2}, x_{3}\right)$. The three points on $O U$ are characterized by the fact that $x_{1}=0$. Fixing attention on the remaining coodrdinates, we choose the points $(0,0,1),(0,1,1),(0,1,0)$ as the fundamental points $(0,1)$, $(1,1),(1,0)$ of a system of homogeneous coördinates on the line $O U$. If in this system a point has coordinates (l, m), we denote it in our planar system by ($0, l, m$). In hike manner, to the points of the other two sides of the triangle of reference may be assigned coördunates of the form $(k, 0, m)$ and $(k, l, 0)$ respectively. We have thus assigned coördinates of the form $\left(x_{1}, x_{2}, x_{3}\right)$ to all the points of the sides of the triangle of reference. Moreover, the coordinates of every point on these sides satisfy one of the three relations $x_{1}=0, x_{2}=0, x_{3}=0$.

Now let P be any pount in the plane not on a side of the triangle of reference. P is uniquely determmed if the coordmates of its projections from any two of the vertices of the triangle of reference on the opposite sides are known Let its projections from U and V on the sides $O V$ and $O U$ be $(k, 0, n)$ and ($0, l^{\prime}, n^{\prime}$) respectively. Since under the hypothesis none of the numbers $l, n, l^{\prime}, n^{\prime}$ is zero, it is clearly possible to choose three numbers (x_{1}, x_{2}, x_{8}) such that $x_{1}: x_{3}$ $=k: n$, and $x_{2}: x_{3}=l^{\prime} . n^{\prime}$ We may then denote P by the coördnates $\left(x_{1}, x_{2}, x_{3}\right)$. To make this system of coördmates effective, however, we must show that the same set of three numbers (x_{1}, x_{2}, x_{3}) can be obtained by projecting P on any other pair of sides of the triangle of reforence In other words, we must show that the projection of $P=\left(x_{1}, x_{2}, x_{3}\right)$ from O on the line $U V$ is the point ($\left.x_{1}, x_{2}, 0\right)$. Since this is clearly true of the point $T=(1,1,1$), we assume P distinct from T. Since the numbers x_{1}, x_{2}, x_{8} are all different from 0 , let us place $x_{1}: x_{3}=x$, and $x_{2}: x_{3}=y$, so that x and y are the nonhomogeneous coördinates of ($x_{1}, 0, x_{8}$) and ($0, x_{2}, x_{3}$) respectively in the scales on $O V$ and $O U$ defined by $O=0_{x}, 1_{x}, V=\infty_{x}$ and $O=0_{y}, 1_{y}, U=\infty_{y}$. Finally, let $O P$ meet $U V$ in the point whose nonhomogeneous coordinate in the scale defined by $U=0_{z}, 1_{n}, V=\infty_{z}$ is z; and let $O P$ meet the line $1_{x} U$ in A. We now have

$$
\infty_{n} 0_{x} 1_{x} z \stackrel{O}{\underset{\Lambda}{\wedge}} 1_{x} 0_{k} T A \stackrel{V}{=} 0_{y} \infty_{y} 1_{y} C,
$$

where C is the point in which $V A$ meets $O U$. This projectivity between the lunes $U V$ and $O U$ transforms 0_{z} mito ∞_{p}, ∞_{z} into 0_{y}, and 1_{z} into 1_{y}. It follows that C has the coürchate $1 / z$ in the scale on OU. We have also

$$
\infty_{x} 0_{x} 1_{x} x \frac{U}{\bar{\Lambda}} z 0_{x} A P \stackrel{V}{\bar{\Lambda}} \infty_{y} 0_{v} \frac{1}{z} y,
$$

which gives

$$
x=\mathrm{B}\left(\infty_{x} 0_{x}, 1_{x} x\right)=\mathrm{R}\left(\infty_{y} 0_{y}, \frac{1}{\approx} y\right)=z y .
$$

Substituting $x=x_{1}: x_{8}$, and $y=x_{2}$: x_{n}, this gives the dosired relation $z=x_{1} x_{2}$. The results of this discussion may he summarized as follows:

Fig. 82
Theorem 2. Definition. If P is any point not on a side of the triangle of reference OUV, there cxist three numbers x_{1}, x_{2}, x_{3} (all different from 0) such that the projections of P from the vertices O, U, V on the opposite sides have coordinates $\left(x_{1}, x_{2}, 0\right),\left(x_{1}, 0, x_{8}\right),\left(0, x_{2}, x_{8}\right)$ respectively. These three numbers are called the homogeneous coördi i nates of P, and P is denoted by $\left(x_{1}, x_{2}, x_{3}\right)$. Any set of three numbers (not all equal to 0) determine uniquely a point whose (homogeneous) coordinates they are.

The truth of the last sentence in the above theorem follows from the fact that, if one of the coördinates is 0 , they determine uniquely a point on one of the sides of the triangle of reference; whereas, if none is equal to 0 , the lines joining U to $\left(x_{1}, 0, x_{8}\right)$ and V to $\left(0, x_{2}, x_{3}\right)$ meet in a point whose coordunates by the reasoning above are (x_{1}, x_{2}, x_{3}).

Coroliary. The coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(k x_{1}, k x_{2}, k x_{3}\right)$ determine the same point, of k is not 0

Homogeneous line coördmates arise by dualizng the above discussion in the plane. Thus we choose any quadrlateral in the plane as frame of reference, denoting the sides by $[1,0,0],[0,1,0],[0,0,1]$, $[1,1,1]$ respectively. The points of intersection with $[1,1,1]$ of the lines $[1,0,0],[0,1,0],[0,0,1]$ are jomed to the vertices of the triangle of reference opposite to $[1,0,0],[0,1,0],[0,0,1]$ respectively by lines that are denoted by $[0,1,1],[1,0,1],[1,1,0]$. The three lines $[1,0,0],[1,1,0],[0,1,0]$ are then taken as the fundamental lines $[1,0],[1,1],[0,1]$ of a homogeneous system of coördinates in a flat pencil. If in this system a line is denoted by $\left[u_{1}, u_{2}\right]$, it is denoted in the planar system by $\left[u_{1}, u_{2}, 0\right]$ In like manner, to the lines on the other vertices are assigned coordinates of the forms $\left[0, u_{2}, u_{\mathrm{a}}\right]$ and $\left[u_{1}, 0, u_{\mathrm{g}}\right]$ respectively As the plane dual of the theorem and defimition above we then have at once

Theorem 2'. Defintiton. If l is any line not on a vertex of the triangle of refcrence, there exist three numbers u_{1}, u_{2}, u_{s} all different from zero, such that the traces of l on the three sides of the triangle of reference are projected from the respective opposite vertices by the lincs $\left[u_{1}, u_{2}, 0\right],\left[u_{1}, 0, u_{\mathrm{g}}\right],\left[0, u_{2}, u_{\mathrm{g}}\right]$. These three numbers are called the homogeneous coordinates of l, and l is denoted by $\left[u_{1}, u_{z_{2}}, u_{2}\right]$. Any set of three numbers (not all zero) determine uniquely a line whose coordinates they are.

Homogeneous point and line coördinates may be put into such a relation that the condition that a point $\left(x_{1}, x_{2}, x_{8}\right)$ be on a line [u_{1}, u_{2}, u_{8}] is that the relation $u_{1} x_{1}+u_{2} u_{3}+u_{8} u_{8}=0$ be satisfied. We have seen that if $\left(x_{1}, x_{2}, x_{8}\right)$ is a point not on a side of the triangle of reference, and we place $x=x_{1} / x_{8}$, and $y=x_{2} / x_{3}$, the numbers (x, y) are the nonhomogeneous coördnates of the point (x_{1}, x_{2}, x_{3}) referred to $O V$ as the x-axis and to $O U$ as the y-axis of a system of nonhomogeneous coördinates in which the point $T=(1,1,1)$ is the point $(1,1)(0, V, V$ being used in the same significance as in the proof of Theorem 2). By duality, if $\left[u_{1}, u_{2}, u_{3}\right]$ is any line not on any vertex of the triangle of reference, and we place $u=u_{1} / u_{s}$ and $v=u_{2} / u_{3}$, the numbers $[u, v]$ are the nonhomogeneous coördinates of the line $\left[u_{1}, u_{2}, u_{2}\right]$ referred to two of the vertices of the triangle of reference
as U-center and V-center respectively, and in which the line $[1,1,1]$ is the line [1, 1] If, now, we superpose these two systens of nonhomogeneous coordinates in the way described in the preceding section, the condition that the point (x, y) be on the line $[u, v]$ is that the relation $u x+v y+1=0$ be satisfied (Theorem 1). It is now easy to recognize the resulting relation between the systems of homogeneous coorrdinates with which we started. Clearly the point $(0,1,0)=U$ is the U-center, $(1,0,0)=V$ is the V-center, and $(0,0,1)=0$ is the third

vertex of the triangle of reference in the homogeneous system of line coördınates Also the line whose points satisly the relation $x_{1}=0$ is the line $[1,0,0]$, the line for wheh $x_{2}=0$ is the line $[0,1,0]$, and the line for which $x_{3}=0$ is the line $[0,0,1]$. Finally, the line $[1,1]=[1,1,1]$, whose equation in nonhomogeneous coördinates is $x+y+1=0$, meets the live $x_{1}=0$ in the point $(0,-1,1)$, and the line $x_{2}=0$ in the point $(-1,0,1)$. The two coördinate systems are then completely determuned (fig. 83).

It now follows at once from the result of the preceding section that the condition that (x_{1}, x_{9}, x_{3}) be on the line $\left[u_{1}, u_{n}, u_{8}\right]$, is $u_{1} x_{1}+u_{2} x_{2}+u_{8} x_{2}=0$, if none of the coon
is zero. To see that the same condition holds also when one (or more) of the coördinates is zero, we note first that the points ($0,-1,1$) $(-1,0,1)$, and $(-1,1,0)$ are collmear. They are, in fact (fig 83), on the axis of perspectivity of the two perspective triangles $O U V$ and $1_{\alpha} 1_{y} 1_{z}$, the center of perspectivity being T. It is now clear that
the line $[1,0,0]$ passes through the point $(0,1,0)$,
the line $[0,1,0]$ passes through the point $(1,0,0)$,
the line $[1,1,0]$ passes through the point ($-1,1,0$).
There is thus an mvolution between the points ($x_{1}, x_{2}, 0$) of the line $x_{3}=0$ and the traces ($\left.x_{1}^{\prime}, x_{2}^{\prime}, 0\right)$ of the lines with the same coordinates, and this involution is given by the equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{3}, \\
& x_{2}^{\prime}=-x_{1} .
\end{aligned}
$$

In other words, the line $\left[u_{1}, u_{2}, 0\right]$ passes through the point ($-u_{2}, u_{1}, 0$). Any other point of this line (except ($0,0,1$)) has, by definition, the coördmates $\left(-u_{2}, u_{1}, x_{3}\right)$ Hence all points (x_{1}, x_{2}, x_{3}) of the line [$\left.u_{1}, u_{2}, 0\right]$ satisfy the relation $u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}=0$. The same argument applied when any one of the other coördmates is zero estabhishes this condition for all cases. A system of point and a system of line coördınates, when placed in the relation described above, will be sard to form a system of homogeneous point and line coordinates in the plane. The result obtained may then be stated as follows .

Tieorem 3. In a system of homogencous point and line coordinates in a plane the necessary and sufficient condition that a point (x_{1}, x_{2}, x_{3}) be on a line $\left[u_{1}, u_{2}, u_{3}\right]$ is that the relation $u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}=0 \quad b_{6}$ satisfied

Corollary. The equation of a line through the origin of a system of nonhomogeneous coordinates is of the form $m x+n y=0$.

EXERCISES

1 The line $[1,1,1]$ is the polar of the point $(1,1,1)$ with regard to the triangle of reference (cf. p. 46)
2. The same point is represented by (a_{1}, a_{2}, a_{8}) and (b_{1}, b_{2}, b_{8}) if and only If the two-rowed determinants of the matrix $\left(\begin{array}{lll}a_{1} & a_{2} & a_{8} \\ b_{1} & b_{2} & b_{8}\end{array}\right)$ are all zero

3 Describe nonhomogeneous and homogeneous systems of line and plane coordnates in a bundle by dualizing in space the preceding discussion. In such a bundle what is the condition that a line be on a plane?
64. The line on two points. The point on two lines. Given two points, $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}\right)$, the question now arnses as to what are the coordinates of the line joming them; and the dual of this problem, namely, given two lines, $m=\left[m_{1}, m_{2}, m_{3}\right]$ and $n=$ [n_{1}, n_{2}, n_{3}], to find the coördmates of the pomt of intersection of the two lines.

Theorem 4. The equation of the lune joinung the pornts (a_{1}, a_{2}, a_{3}) and $\left(b_{1}, b_{2}, b_{3}\right)$ is

$$
\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}=0 .
$$

Tireorem 4'. The equation of the pornt of intersection of the lines $\left[m_{1}, m_{2}, n_{3}\right.$] and $\left[n_{1}, n_{2}, n_{3}\right]$ is

$$
\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
m_{1} & m_{2} & m_{3} \\
n_{1} & n_{2} & n_{3}
\end{array}=0 .
$$

Proof. When these determinants are expanded, we get

$$
\begin{aligned}
& \left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| x_{1}+\left|\begin{array}{ll}
a_{3} & a_{1} \\
b_{3} & b_{1}
\end{array}\right| x_{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| x_{3}=0, \\
& \left|\begin{array}{ll}
m_{2} & m_{3} \\
n_{2} & n_{3}
\end{array}\right| u_{1}+\left|\begin{array}{ll}
m_{3} & m_{1} \\
n_{3} & n_{1}
\end{array}\right| u_{2}+\left|\begin{array}{ll}
m_{1} & m_{2} \\
n_{1} & n_{2}
\end{array}\right| u_{3}=0,
\end{aligned}
$$

respectively. The one above is the equation of a line, the one below the equation of a point. Moreover, the determinants above both evidently vansh when the variable cooirduates are replaced by the coordinates of the given elements. The expanded form just given leads at once to the following:

Corollary 1. The coordinates of the line joining the points $\left(a_{1}, a_{2}, a_{8}\right),\left(b_{1}, b_{2}, b_{3}\right)$ are $u_{1}: u_{\mathrm{g}}: u_{\mathrm{s}}=\left|\begin{array}{ll}a_{2} & a_{3} \\ b_{2} & b_{8} \\ b_{8}\end{array}\right|:\left|\begin{array}{ll}a_{3} & a_{1} \\ b_{8} & b_{1}\end{array}\right|:\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right| . \quad x_{1}: x_{2}: x_{8}=\left|\begin{array}{ll}m_{2} & m_{\mathrm{s}} \\ n_{2} & n_{\mathrm{s}}\end{array}\right|:\left|\begin{array}{ll}m_{\mathrm{s}} & m_{1} \\ n_{3} & n_{1}\end{array}\right|:\left|\begin{array}{ll}n_{1} & m_{\mathrm{a}} \\ n_{1} & n_{4}\end{array}\right|$.
There also follows immedately from this theorem:

Corollary 2. The condition that three points A, B, C be collinear is

$$
\begin{array}{lll}
a_{1} & a_{2} & a_{8} \\
b_{1} & b_{2} & b_{\mathrm{s}} \\
c_{1} & c_{2} & c_{8}
\end{array}=0 .
$$

Corolimary 1'. The coördinutes of the point of intersection of the lines $\left[m_{1}, m_{2}, m_{3}\right],\left[n_{1}, n_{2}, n_{8}\right]$ are

Corollary 2^{\prime}. The condition that three lines m, n, p be conourrent is

$$
\begin{array}{lll}
m_{1} & m_{2} & m_{\mathrm{s}} \\
n_{1} & n_{2} & n_{\mathrm{a}}=0 . \\
p_{1} & p_{2} & p_{\mathrm{B}}
\end{array}
$$

Example. Let us verify the theorem of Desargues (Theorem 1, Chap. II) analytically. Choose one of the two perspective triangles as triangle of reference, say $A^{\prime}=(0,0,1), B^{\prime}=(0,1,0), C^{\prime}=(1,0,0)$, and let the center of perspectivity bo $P=(1,1,1)$. If the other triangle is $A B C$, we may plaoe
$A=(1,1, a), D=(1, b, 1), C=(c, 1,1)$, for the equation of the line $P A^{\prime}$ is $x_{1}-x_{22}=0$, and smec A is, by hypothesis, on this line, its finst two coordinates must be equal, and may therefone be assumed equal to 1 , the thind coordmate is anlutiary Similaily for the other points. Now, from the above theorems and then corollanes we readily obtain in succession the following :

The codidnates of the line $A^{\prime} B^{\prime}$ are $[1,0,0]$.
The coordinates of the lime $A B$ are $[1-a b, a-1, b-1]$.
Hence the coordnates of their intersection $C^{\prime \prime}$ are

$$
C^{\prime \prime}=(0,1-b, a-1)
$$

Similaily, we find the coordinates of the intersection $A^{\prime \prime}$ of the lines $B^{\prime} C^{\prime}, B C$ to be

$$
A^{\prime \prime}=(1-c, b-1,0)
$$

and, finally, the coordinates of the intersection $B^{\prime \prime}$ of the lines $C^{\prime \prime} A^{\prime}, C A$ to be

$$
B^{\prime \prime}=(c-1,0,1-a)
$$

The points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are readily seen to satisfy the condition for collinearity.

EXERCISES

1 Work through the dual of the example just given, choosing the sides of one of the triangles and the axis of perspectivity as the fundamental lines of the system of coordinates Show that the work may be made identical, step for step, with that above, except for the interpretation of the symbols.

2 Show that the system of coordinates may be so chosen that a quadianglequadilateral configuration is represented by all the sets of coordmates that can be formed from the numbers 0 and 1. Dualize
3. Derive the equation of the polar line of any point with regard to the triangle of reference. Dualize.
65. Pencils of points and lines. Projectivity. A convenient analytic representation of the points of a pencil of points or the lunes of a pencil of limes is given by the following dual theorems:

Theorem 5. Any point of a Theorem 5'. Any line of a pencil of points may be represented by pencil of lines may be represented by

$$
\begin{array}{r}
P=\left(\lambda_{2} a_{1}+\lambda_{1} b_{1}, \lambda_{2} a_{2}+\lambda_{1} b_{2},\right. \\
\left.\lambda_{3} a_{3}+\lambda_{1} b_{8}\right),
\end{array}
$$

$$
\begin{array}{r}
p=\left[\mu_{2} m_{1}+\mu_{1} n_{1}, \mu_{2} m_{2}+\mu_{1} n_{2},\right. \\
\left.\mu_{2} m_{3}+\mu_{1} n_{3}\right],
\end{array}
$$

where $A=\left(a_{1} a_{2}, a_{3}\right)$ and $\mathcal{B}=$ where $m=\left[m_{1}, m_{2}, m_{3}\right]$ and $n=$ $\left(b_{1}, b_{2}, b_{8}\right)$ are any two distinct $\left[n_{1}, n_{2}, n_{8}\right]$ are any two distinct points of the pencil. lines of the pencil.
Proof. We may confine ourselves to the proof of the theorem on the left. By Theorem 4, Cor. 2, any point (x_{1}, x_{2}, x_{3}) of the pencil of points on the line $A B$ satisfies the relation

$$
\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
a_{1} & a_{2} & a_{3}=0 . \tag{1}\\
b_{1} & b_{2} & b_{3}
\end{array}
$$

We may then determine three numbers $\rho, \lambda_{2}^{\prime}, \lambda_{1}^{\prime}$, such that we have

$$
\begin{equation*}
\rho x_{i}=\lambda_{2}^{\prime} a_{i}+\lambda_{1}^{\prime} b_{2} . \quad(i=1,2,3) \tag{2}
\end{equation*}
$$

The number ρ cannot be 0 under the hypothesis, for then we should have from (2) the proportion $a_{1}: a_{9}: a_{3}=b_{1}: b_{2}: b_{8}$, which would imply that the points A and B concide. We may therefore divide by ρ. Denoting the ratios $\lambda_{2}^{\prime} / \rho$ and $\lambda_{1}^{\prime} / \rho$ by λ_{2} and λ_{1}, we see that every point of the pencil may be represented in the manner specfied. Conversely, every point whose coördinates are of the forin specified clearly satisfies relation (1) and is therefore a point of the pencil

The points A and B in the above representation are called the basc pornts of this so-called parametric representation of the elements of a pencil of points. Evidently any two distinct points may be chosen as base points in such a representation. The ratio $\lambda_{1} / \lambda_{2}$ is called the parameter of the point it determines. It is here written in homoyjeneous form, which gives the point A for the value $\lambda_{1}=0$ and the point B for the value $\lambda_{2}=0$. In many cases, however, it is more convenient to write this parameter in nonhomogeneous form,

$$
P=\left(a_{1}+\lambda b_{1}, a_{2}+\lambda b_{2}, u_{3}+\lambda b_{3}\right),
$$

which is obtained from the preceding by dividing by λ_{2} and replacing $\lambda_{1} / \lambda_{2}$ by λ. In this representation the point \mathcal{B} corresponds to tho value $\lambda=\infty$. We may also speak of any point of the pencil under this representation as the point $\lambda_{1}: \lambda_{2}$ or the point λ when it corresponds to the value $\lambda_{1} / \lambda_{2}=\lambda$ of the parameter. Similar remarks and the corresponding terminology apply, of course, to the parametric representation of the lmes of a flat pencil It is sometimes convenient, moreover, to adopt the notation $A+\lambda B$ to denote any point of the pencil whose base points are A, B or to denole the pencil itself; also, to use the notation $m+\mu n$ to denote the pencil of lines or any line of this pencil whose base lines are m, n

In order to derive an analytic representation of a projectivity between two one-dimensional primitive forms in the plane, we seek first the condition that the point λ of a pencil of points $A+\lambda B$ be on the line μ of a pencil of lines $m+\mu n$. By Theorem 3 the condition that the point λ be on the line μ is the relation

$$
\sum_{i=1}^{i=3}\left(n_{i}+\mu n_{i}\right)\left(a_{i}+\lambda b_{i}\right)=0
$$

When expanded this relation gives

$$
\mu \lambda \sum_{i=1}^{i=8} n_{i} b_{i}+\mu \sum_{i=1}^{i=8} n_{t} a_{i}+\lambda \sum_{i=1}^{i=8} m_{i} b_{t}+\sum_{i=1}^{i=8} m_{1} a_{t}=0 .
$$

This is a blinear equation whose coefficients depend only on the coördinates of the base points and base lines of the two pencils and not on the individual points for which the condition is sought Placing

$$
\sum n_{2} b_{2}=C, \sum n_{i} c_{2}=D, \sum m_{i} b_{i}=-A, \sum m_{1} a_{i}=-B
$$

this equation becomes $\quad C \mu \lambda+D \mu-A \lambda-B=0$, which may also be written*

$$
\mu=\begin{align*}
& A \lambda+B \tag{1}\\
& C \lambda+D
\end{align*}
$$

The result may be stated as follows: Any perspective relatzon between two one-dimensional primittve forms of different kinds as obtained by establishing a projective correspondence between the parameters of the two forms. Since any projective correspondence between two onedumensional primitive forms is obtained as the resultant of a sequence of such perspectivities, and since the resultant of any two linear fractional transformations of type (1) is a transformation of the same type, we have the following theorem:

Tineorem 6. Any projective correspondence between two one-dimensional primitive forms in the plane is obtained by establishing a projcctive relation

$$
\mu=\begin{array}{ll}
\alpha \lambda+\beta \\
\gamma \lambda+\delta
\end{array} \quad(\alpha \delta-\beta \gamma \neq 0)
$$

between the parameters μ, λ of the two forms.
In partieular we have
Corollary 1. Any projectivity in a one-dimensional primitive form in the plane is given by a relation of the form

$$
\lambda^{\prime}=\begin{aligned}
& \alpha \lambda+\beta \\
& \gamma \lambda+\delta
\end{aligned}, \quad(\alpha \delta-\beta \gamma \neq 0)
$$

where λ is the parameter of the form.

[^67]Corollary 2. If $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ are the purameters of four clements $A_{1}, A_{2}, A_{3}, A_{4}$ of a one-dimensionul prinutive form, the cross roteto $\mathrm{B}\left(A_{1} A_{2}, A_{3} A_{4}\right)$ is given by

$$
\mathfrak{B}\left(A_{1} A_{2}, A_{3} A_{4}\right)=\mathrm{Rk}\left(\lambda_{1} \lambda_{2}, \lambda_{3} \lambda_{4}\right)=\frac{\lambda_{1}-\lambda_{3}}{\lambda_{1}-\lambda_{4}}: \frac{\lambda_{2}-\lambda_{3}}{\lambda_{2}-\lambda_{4}}
$$

A projectivity between two dufferent one-dimensional forms may be represented in a particularly simple form by a judicious choice of the base elements of the parametric representation. To fix ileas, let us take the case of two projective pencils of points. Chouse any two drstinct points A, B of the first pencll to le the base points, and let the homologous points of the second pencil be base points of the latter. Then to the values $\lambda=0$ and $\lambda=\infty$ of the first pencil must correspond the values $\mu=0$ and $\mu=\infty$ respectively of the seconcl. In this case the relation of Theorem 6, however, assumes the form $\mu=k \lambda$. Hence, since the same argument applies to any distinct forms, we have

Corollary 3. If two destinct projective one-limensionel primitive forms in the plane are represented parametrically so that the lurse elements form two homologous pairs, the projectivity is represunted by a relation of the form $\mu=k \lambda$ between the paraineters μ, λ of the two forms.

This relation may be still further sumplified Taking again the cnse discussed above of two projective pencils of points, we have seen that, in general, to the point ($a_{1}+b_{1}, a_{2}+b_{2}, a_{8}+b_{8}$), ie. to $\lambda=1$, corrosponds the point ($a_{1}^{\prime}+k b_{1}^{\prime}, a_{2}^{\prime}+k b_{2}^{\prime}, a_{3}^{\prime}+k b_{8}^{\prime}$), i.c. the 1 romt $\mu=k$. Sunce the point $B^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}, b_{a}^{\prime}\right)$ is also represented by the set of coürdinates ($\left.k b_{1}^{\prime}, k b_{2}^{\prime}, k b_{8}^{\prime}\right)$, it follows that if we choose the latier values for tho coördnates of the base point B^{\prime}, to the value $\lambda=1$ will corresuond the value $\mu=1$, and hence we have always $\mu=\lambda$. In other worils, we have

Corollary 4. If two distinct one-tlimensional forms are projection, the base elements may be so chosen that the purameters of any two homologous elements are equal.

Before closing this section it seems desirable to call athention explicitly to the forms of the equation of any line of a pencil and of the equation of any point of a pencll which is mplied hy Theorom 5^{\prime} and Theorem 5 respectively. If we place $m=m_{1} x_{1}+m_{4} x_{1}+m_{8} x_{3}$ and
$n=n_{1} x_{1}+n_{2} x_{2}+n_{3} x_{3}$, it follows from the first theorem mentioned that the equation of any line of the pencil whose center is the mtersection of the limes $m=0, n=0$ is given by an equation of the form $m+\mu n=0$. Similarly, the equation of any point of the line joining $A=a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{8}=0$ and $B=b_{1} u_{1}+b_{2} u_{2}+b_{3} u_{8}=0$ is of the form $A+\lambda B=0$.
66. The equation of a conic. The results of $\S 65$ lead readily to the equation of a conic. By this is meant an equation in point (line) coordnates which is satisfied by all the points (lines) of a conic, and by no others. To derive thus equation, let A, B be two distinct points on a conic, and let

$$
\begin{align*}
& m=m_{1} x_{1}+m_{2} x_{2}+m_{\mathrm{s}} x_{\mathrm{s}}=0, \\
& n=n_{1} x_{1}+n_{2} x_{2}+n_{\mathrm{s}} x_{3}=0, \tag{1}\\
& p=p_{1} x_{1}+p_{2} x_{2}+p_{8} x_{\mathrm{B}}=0
\end{align*}
$$

be the equations of the tangeni at A, the tangent at B, and the line $A B$ respectively. The comc is then generated as a point locus by two projective pencils of hnes at A and B, in which m, p at A are homologous with p, n at B respectively This projectivity between the pencils

$$
\begin{align*}
m+\lambda p & =0 \\
p+\mu n & =0 \tag{2}
\end{align*}
$$

is given (Theorem 6, Cor. 3) by a relation

$$
\begin{equation*}
\mu=k \lambda \tag{3}
\end{equation*}
$$

between the parameters μ, λ of the two pencils. To obtain the equatron which is satisfied by all the points of intersection of pairs of homologous lines of these pencils, and by no others, we need simply elımnate μ, λ between the last three relations. The result of this elimination is

$$
\begin{equation*}
p^{2}-k m n=0 \tag{4}
\end{equation*}
$$

which is the equation requred. By multiplying the coordinates of one of the lines by a constaut we may make $k=1$

Conversely, it is obvious that the points which satisfy any equation of type (4) are the points of intersection of homologous lines in the pencils (2), provided that $\mu=k \lambda$ If m, n, p are fixed, the condition that the conic (4) shall pass through a point (a_{1}, a_{2}, a_{8}) is a linear equation in k. Hence we have

Theorem 7. If $m=0, n=0$, $p=0$ are the equations of two distinct langents of a conic and the line joinung therr points of contact respectively, the pount equation of the connc is of the form

$$
p^{2}-k n n=0
$$

The coefficient k is determined by any thurd point on the conic. Conversely, the points which satrsfy an equation of the above form constitute a conic of which $m=0$ and $n=0$ are tangents at points on $p=0$.

Corollary. By properly choosing the triangle of reference, the point equation of any conic may be put in the form

$$
x_{2}^{2}-k x_{1} x_{8}=0,
$$

where $x_{1}=0, x_{3}=0$ are two tangents, and $x_{2}=0$ us the line joinang their points of contact.

Tifeorem 7' If $A=0, B=0$, $C=0$. are the equations of two distrnct points of a conic and the intersectron of the tangents at these points respectively, the line equation of the conic is of the form

$$
C^{2}-k A B=0
$$

The coefficient lo is determined by any thurd line of the conic Conversely, the lines whuch satisfy an equation of the above form constitute a conic of which $A=0$ anud $B=0$ are points of contuct of the tangents through $C=0$.

Corollary. By properly choosing the triangle of reference, the line equation of any conic may be put in the form

$$
u_{2}^{2}-i u_{1} u_{8}=0,
$$

where $u_{1}=0, u_{8}=0$ are two points, and $u_{2}=0$ is the intersection of the tangents at these points.

It is clear that if we choose the point $(1,1,1)$ on the conic, we have $k=1$. Supposing the choice to have been thus made, we inquire regarding the condition that a line $\left[u_{1}, u_{2}, u_{8}\right]$ be tangent to the conic

$$
x_{2}^{2}-x_{1} x_{\mathrm{a}}=0
$$

This condition is equivalent to the condition that the line whose equation is

$$
u_{1} x_{1}+u_{2} x_{2}+u_{8} x_{8}=0
$$

shall have one and only one point in common with the conic. Mliminating x_{3} between this equation and that of the come, the points common to the line and the conic are determined by the equation

$$
u_{1} x_{1}^{2}+u_{2} x_{1} x_{2}+u_{8} x_{2}^{2}=0
$$

The roots of this equation are equal, if and only if we have

$$
u_{2}^{2}-4 u_{1} u_{8}=0
$$

Since this is the line equation of all tangents to the conic, and since it is of the form given in Theorem 7^{\prime}, Cor, above, we have here a new proof of the fact that the tangents to a point conic form a line conic (cf Theorem 11, Chap V).

When the linear expressions for m, n, p are substituted in the equathon $p^{2}-k m n=0$ of any conic, there results, when multiplied out, a homogeneous equation of the second degree in x_{1}, x_{2}, x_{8}, which may be written in the form

$$
\begin{equation*}
a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{88} x_{8}^{2}+2 a_{12} x_{1} x_{2}+2 a_{18} x_{1} x_{8}+2 a_{28} x_{2} x_{8}=0 . \tag{1}
\end{equation*}
$$

We have seen that the equation of every conic is of this form. We have not shown that every equation of this form represents a conic (see § 85, Chap. IX).

EXERCISE

Show that the come

$$
a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+2 a_{12} x_{1} x_{2}+2 a_{18} x_{1} x_{3}+2 a_{23} x_{2} x_{3}=0
$$

degenerates into (distinct or comeldent) stiaight lines, if and only if we have

$$
\left|\begin{array}{cc}
a_{11} & a_{12} \\
a_{12} & a_{21} \\
a_{22} & a_{28} \\
a_{18} & a_{28}
\end{array} a_{88}\right|=0
$$

Dualize ($\mathrm{A}, \mathrm{E}, \mathrm{P}, \mathrm{H}_{0}$)
67. Linear transformations in a plane. We inquire now concerning the geometric properties of a linear transformation

$$
\begin{align*}
& \rho x_{1}^{\prime}=a_{11} x_{1}+a_{12} x_{2}+a_{18} x_{8}, \\
& \rho x_{2}^{\prime}=a_{21} x_{1}+a_{22} x_{2}+a_{28} x_{9}, \tag{1}\\
& \rho x_{8}^{\prime}=a_{31} x_{1}+a_{32} x_{2}+a_{88} x_{3} .
\end{align*}
$$

Such a transformation transforms any point (x_{1}, x_{2}, x_{8}) of the plane into a unique point ($x_{1}^{\prime}, x_{2}^{\prime}, x_{\mathrm{a}}^{\prime}$) of the plane. Reciprocally, to every point x^{\prime} wall correspond a unique point x, provided the determinant of the transformation

$$
A=\begin{array}{lll}
a_{11} & a_{12} & a_{18} \\
a_{21} & a_{22} & a_{28} \\
a_{31} & a_{32} & a_{88}
\end{array}
$$

is not 0 . For we may then solve equations (1) for the ratios $x_{1}: x_{2}: x_{8}$ in terms of $x_{1}^{\prime}: x_{2}^{\prime}: x_{8}^{\prime}$ as follows:

$$
\begin{align*}
& \rho^{\prime} x_{1}=A_{11} x_{1}^{\prime}+A_{21} x_{2}^{\prime}+A_{81} x_{8}^{\prime}, \\
& \rho^{\prime} x_{2}=A_{12} x_{1}^{\prime}+A_{22} x_{2}^{\prime}+A_{88} x_{2}^{\prime}, \tag{2}\\
& \rho^{\prime} x_{8}=A_{18} x_{1}^{\prime}+A_{28} x_{2}^{\prime}+A_{88} x_{8}^{\prime} ;
\end{align*}
$$

here the coefficients $A_{i j}$ are the cofactors of the elements $a_{i j}$ respectively in the determinant A.

Further, equations (1) transform every line in the plane into a unique line In fact, the pounts x satisfying the equation

$$
u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}=0
$$

are, by reference to equations (2), transformed into points x^{\prime} salisfying the equation

$$
\begin{aligned}
\left(A_{11} u_{1}+A_{12} u_{2}+A_{18} u_{3}\right) x_{1}^{\prime} & +\left(A_{21} u_{1}+A_{22} u_{3}+A_{23} u_{3}\right) x_{2}^{\prime} \\
& +\left(A_{31} u_{1}+A_{32} u_{2}+A_{33} u_{3}\right) x_{8}^{\prime}=0,
\end{aligned}
$$

which is the equation of a line. If the coördinates of this new line be denoted by $\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{8}^{\prime}\right.$], we clearly have the following relations between the coordinates $\left[u_{1}, u_{2}, u_{3}\right.$] of any line and the coordinates [$u_{1}^{\prime}, u_{2}^{\prime}, u_{8}^{\prime}$] of the lune into which it is transformed by (1):

$$
\begin{align*}
& \sigma u_{1}^{\prime}=A_{11} u_{1}+A_{12} u_{2}+A_{13} u_{3}, \\
& \sigma u_{2}^{\prime}=A_{21} u_{1}+A_{22} l_{2}+A_{23} u_{3}, \tag{3}\\
& \sigma u_{8}^{\prime}=A_{31} u_{1}+A_{32} u_{2}+A_{32} u_{3} .
\end{align*}
$$

We have seen thus far that (1) represents a collineation in the plane in point coörduates The equations (3) represent the same collincation in line cootrdinates

It is readily seen, finally, that this collneation is projective. For this purpose it is only necessary to show that it transforms any pencll of lines into a projective pencll of lines But it is clear that if $m=0$ and $n=0$ are the equations of any two lines, and if (1) transtorms them respectively into the lines whose equations aro $m^{\prime}=0$ and $n^{\prime}=0$, any line $m+\lambda n=0$ is transformed into $m^{\prime}+\lambda n^{\prime}=0$, and the correspondence thus established between the lines of the pencils has been shown to be projective (Theorem 6).

Having shown that every transformation (1) represents a projective collineation, we will now show conversely that every projective colluneation in a plane may be represented by equations of the form (1) To this end we recall that every such collineation is completaly determined as soon as the homologous elements of any complete quadrangle are assigned (Theorem 18, Chap. IV). If we can show that likewise there is one and only one transformation of the form *(1) changing a given quadrangle into a given quadrangle, it will follow that, since the linear transformation is a projective collineation, it is the given projective collineation.

Given any projectave collineation in a plane, let the fundamental points $(0,0,1),(0,1,0),(1,0,0)$, and $(1,1,1)$ of the plane (which form a quadrangle) be transformed respectively into the points $A=\left(a_{1}, a_{2}, a_{3}\right), B=\left(b_{1}, b_{2}, b_{3}\right), C=\left(c_{1}, c_{2}, c_{3}\right)$, and $D=\left(d_{1}, d_{2}, d_{3}\right)$, formmg a quadrangle. Suppose, now, we seek to determine the coefficients of a transformation (1) so as to effect the correspondences just indicated Clearly, if ($0,0,1$) is to be transformed into (a_{1}, a_{2}, a_{8}), we must have

$$
a_{13}=\lambda a_{1}, a_{23}=\lambda a_{2}, a_{33}=\lambda a_{8},
$$

λ being an arbitrary factor of proportionality, the value ($\neq 0$) of which we may choose at pleasure. Similarly, we obtain

$$
\begin{array}{lll}
a_{12}=\mu b_{1}, & a_{22}=\mu b_{2}, & a_{32}=\mu b_{3}, \\
a_{11}=\nu c_{1}, & a_{21}=\nu c_{2}, & a_{31}=\nu c_{3} .
\end{array}
$$

Since, by hypothesis, the three points A, B, C are not collinear, it follows from these equations and the condition of Theorem 4, Cor. 2, that the determinant A of a transformation determined in this way is not 0 Substituting the values thus obtaned in (1), it is seen that if the point $(1,1,1)$ is to be transformed into $\left(d_{1}, d_{2}, d_{3}\right)$, the following relations must hold:

$$
\begin{aligned}
& \rho d_{1}=c_{1} \nu+b_{1} \mu+a_{1} \lambda, \\
& \rho d_{2}=c_{2} \nu+b_{2} \mu+a_{2} \lambda, \\
& \rho d_{3}=c_{3} \nu+b_{3} \mu+a_{3} \lambda .
\end{aligned}
$$

Placing $\rho=1$ and solving this system of equations for ν, μ, λ, we obtain the coefficients $a_{i j}$ of the transformation. This solution is unique, since the determinant of the system is not zero. Moreover, none of the values λ, μ, ν will be 0 ; for the supposition that $\nu=0$, for example, would imply the vanishing of the determinant

$$
\begin{array}{lll}
d_{1} & b_{1} & a_{1} \\
d_{2} & b_{2} & a_{2} \\
d_{8} & b_{3} & a_{8}
\end{array}
$$

which in turn would imply that the three points D, B, A are collinear, contrary to the hypothesis that the four points A, B, C, D form a complete quadrangle.

Collecting the results of this section, we have
Theorem 8. Any projective collineation in the plane may be represented in point coördinates by equations of form (1) or in line coördinates by equations of form (3), and on each case the determinant of
the transformation is different from 0, conversely, any transformation of one of these forms in which the determinant is different from 0 represents a projective collineation in the plane.

Corollary 1. In nonhomogeneous point coordinates the equations of a projective collineation are

$$
\begin{aligned}
& x^{\prime}=\begin{array}{ll}
a_{11} x+a_{12} y+a_{13} \\
a_{31} x+a_{32} y+a_{33}
\end{array} \quad \begin{array}{llll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}=0 . \\
& y^{\prime}=\begin{array}{l}
a_{21} x+a_{29} y+a_{38}, \\
a_{31} x+a_{32} y+a_{83}
\end{array} \quad a_{31} a_{32} a_{32}
\end{aligned}
$$

Corollary 2. If the sungular line of the system of nonhomogeneous point coordinates is transformed into itself, these equations can be written

$$
\begin{aligned}
& x^{\prime}=a_{1} x+b_{1} y+c_{1}, \\
& y^{\prime}=a_{2} x+b_{2} y+c_{2},
\end{aligned} \quad\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \neq 0
$$

68. Collineations between two different planes. The analylic form of a collineation between two different planes is now readily derived. Let the two planes be α and β, and let a system of coördinates be established in each, the point coördinates in α being (x_{1}, x_{2}, x_{3}) and the point coördinates in β being ($y_{1}, y_{2}, y_{\mathrm{B}}$). Further, let the isomorphism between the number systems in the two planes be established in such a way that the correspondence established by the equations

$$
y_{1}=x_{1}, \quad y_{2}=x_{2}, \quad y_{3}=x_{3},
$$

is projective. It then follows, by an argument (cf. § 59, p. 166), which need not be repeated here, that any collineation between the two planes may be obtained as the resultant of a projectivity in the plane α, which transforms a point X, say, into a point X^{\prime}, and the projectivity $Y=X^{\prime}$ between the two planes. The analytic form of any projective collineation between the two planes is therefore:

$$
\begin{aligned}
& y_{1}=a_{11} x_{1}+a_{12} x_{2}+a_{18} x_{3}, \\
& y_{2}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}, \\
& y_{3}=a_{31} x_{1}+a_{38} x_{2}+a_{38} x_{3},
\end{aligned}
$$

with the determinant Δ of the coefficients different from 0 . And, conversely, every such transformation in whuch $\Delta \neq 0$ represents a projective collineation between the two planes.
69. Nonhomogeneous coördinates in space. Point coördinates in space are introduced in a way entirely analogous to that used for the introduction of point coördinates in the plane. Choose a tetrahedron of reference $O U V W$ and label the vertices $O=0_{\infty}=0_{y}=0_{w}, U=\infty_{w}$,
$V=\infty_{y}, W=\infty_{z}$ (fig. 84) ; and on the lines $0_{x} \infty_{x}, 0_{y} \infty_{y}, 0_{z} \infty_{z}$, called respectively the x-axis, the y-axis, the z-axis, establish three scales by choosing the points $1_{z}, 1_{y}, 1_{z}$. The planes $O \infty_{2} \infty_{y}, O \infty_{x} \infty_{z}, O \infty_{y} \infty_{z}$ are called the $x y$-plane, $x z$-plane, $y z$-plane respectively. The point O is called the origrn. If P is any point not on the plane $\infty_{x} \infty_{y} \infty_{z}$, which is called the singular plane of the coordnate system, the plane $P \infty_{y} \infty_{z}$ meets the x-axis in a point whose nonhomogeneous coórdinate in the scale $\left(0_{x}, 1_{x}, \infty_{x}\right)$ we call a. Similarly, let the plane $P_{\infty_{x} \infty_{z}}$ meet the y-axis in a point whose nonhomogeneous coördinate in the scale ($0_{y}, 1_{y}, \infty_{y}$) is b; and let the plane $P \infty_{x} \infty_{y}$ meet the z-axis in a point whose nonhomogeneous coördinate in the scale $\left(0_{z}, 1_{z}, \infty_{z}\right)$ is c. The numbers a, b, c are then the nonhomogeneous x-, y-, and z-coor dinates of the point P Conversely, any three numbers a, b, c determine three points A, B, C on
 the x-, y-, and z-axes respectively, and the three planes $A \infty_{y} \infty_{z}, B \infty_{x} \infty_{x}$, $C \infty_{x} \infty_{y}$ meet in a point P whose coördinates are a, b, c. Thus every point not on the singular plane of the coördınate system determines and is determined by three coördinates. The point P is then represented by the symbol (a, b, c).

The dual process gives rise to the coördinates of a plane. Point and plane coördinates may then be put into a convenient relation, as was done in the case of point and line coördinates in the plane, thus giving rise to a system of simultaneous point and plane coordinates in space. We will describe the system of plane coördinates with reference to this relation. Given the system of nonhomogeneous point coorrdinates described above, establish in each of the pencils of planes on the lines $V W, U W, U V$ a scale by choosing the plane $U V W$ as the zero plane $0_{u}=0_{v}=0_{w}$ in each of the scales, and letting the planes $O V W, O U W, O U V$ be the planes $\infty_{u}, \infty_{v}, \infty_{w}$ respectively. In the u-scale
let that plane through $V W$ be the plane 1_{u}, which meets the x-axis in the point -1_{x} Simılarly, let the plane 1_{v} meet the y-axis in the point -1_{y}; and let the plane 1_{w} meet the z-axis in the point -1_{z} The u-scale, v-scale, and w-scale being now complately determined, any plane π not on the point O (which is called the singular point of this system of plane coördinates) meets the x-, y-, and z-axes in three points L, M, N which determine in the $v-, v$-, and w-scales planes whose coordinates, let us say, are l, m, n. These three numbers are called the nonhomogeneous plane coordinates of π. They completely determine and are completely determined by the plane π. The plane π is then denoted by the symbol $[l, m, n]$.

In this system of coördunates it is now readily seen that the condition that the point (a, b, c) be on the plane $[l, m, n]$ is that the relation $l a+m b+n c+1=0$ be satisfied. It follows readily, as in the planar case, that the plane $[l, m, n]$ meets the x-, y-, and z-axes in points whose coördinates on these axes are $-1 / l,-1 / m$, and $-1 / n$ respectively.* In deriving the above condition we will suppose that the plane $\pi=[l, m, n]$ does not contain two of the poinls U, V, W, leaving the other case as an exercise for the reader. Suppose, then, that $U=\infty_{x}$ and $V=\infty_{u}$ are not on π. By projecting the $y z$-plane with U as center upon the plane π, and then projecting π with V as center on the $x z$-plane, we obtam the following perspectivities:

$$
[(0, y, z)] \stackrel{U}{\bar{\Lambda}}[(x, y, z)] \stackrel{\frac{V}{\Lambda}}{\bar{\Lambda}}[(x, 0, z)]
$$

where (x, y, z) represents any point on π. The product of these two perspectivities is a projectivity between the $y z$-plane and the a x-plane, by which the singular line of the former is transformel into the singular line of the latter. Denoting the z-coördinate of points in the $y z$-plane by z^{\prime}, this projectivity is represented (according to Theorem 8, Cor. 2, and § 68) by relations of the form,

$$
\begin{align*}
& y=\alpha_{1} x+b_{1} z+c_{1}, \tag{1}\\
& z^{\prime}=z .
\end{align*}
$$

We proceed to determine the coefficients a_{1}, b_{1}, c_{1}. The point of intersection of π with the y-axis is ($0,-1 / m, 0$), and is clearly

[^68]transformed by the projectivity in question into the point ($0,0,0$) Hence (1) gives
$$
c_{1}=-\frac{1}{m}
$$

The point of intersection of π with the z-axis is, if $n \neq 0,(0,0,-1 / n)$ and is transformed into itself. Hence (1) gives
or

$$
-\frac{b_{1}}{n}-\frac{1}{m}=0,
$$

$$
b_{1}=-\frac{n}{m} .
$$

If $n=0$, we have at once $\quad b_{1}=0$.
Finally, the point of intersection of π with the x-axis is $(-1 / l, 0,0)$, and the transform of the point $(0,0,0)$ Hence we have

$$
-\frac{a_{1}}{l}-\frac{1}{m}=0
$$

or

$$
\begin{aligned}
a_{1} & =-\frac{l}{m} . \\
y & =-\frac{l}{m} x-\frac{n}{m} z-\frac{1}{m},
\end{aligned}
$$

a relation which must be satisfied by the coördinates (x, y, z) of any point on π. This relation is equivalent to

$$
l x+m y+n z+1=0 .
$$

Hence (a, b, c) is on $[l, m, n]$, if

$$
\begin{equation*}
l a+m b+n c+1=0 . \tag{2}
\end{equation*}
$$

Conversely, if (2) is satisfied by a point (a, b, c), the point $(0, b, c)=\boldsymbol{P}$ is transformed by the projectivity above into $(a, 0, c)=Q$, and hence the lines $P U$ and $Q V$ which meet in (a, b, c) meet on π.

Definition. An equation which is satisfied by all the pounts (x, y, z) of a plane and by no other points is called the pornt equation of the plane.

The result of the precedung discussion may then be stated as follows:
Theorem 9. The point equation of the plane $[l, m, n]$ is
$l x+m y+n z+1=0$.
$a u+b v+c w+1=0$.
70. Homogeneous coördinates in space. Assign to the vertices O, U, V, W of any tetrahedron of reference the symbols $(0,0,0,1),(1,0,0,0)$, $(0,1,0,0),(0,0,1,0)$ respectively, and assign to any fifth point T not on a face of this tetrahedron the symbol ($1,1,1,1$). The five points O, U, V, W, T are called the frame of reference of the system of homogeneous coördinates now to be described. The four lines joining T to the points O, D, V, W meet the opposite faces in four points, which we denote respectively by $(1,1,1,0),(0,1,1,1),(1,0,1,1)$, $(1,1,0,1)$. The planar four-point $(0,0,0,1),(0,0,1,0),(0,1,0,0)$, $(0,1,1,1)$ we regard as the frame of reference $(0,0,1),(0,1,0)$, $(1,0,0),(1,1,1)$ of a system of homogeneous coördinates in the plane. To any point in this plane we assign the coördnates ($0, x_{2}, x_{3}, x_{4}$), if its coördinates in the planar system just indicated are ($\left.x_{2}, x_{3}, x_{4}\right)$. I_{n} like manner, to the points of the other three faces of the tetrahedron of reference we assign coordinates of the forms ($\left.x_{1}, 0, x_{3}, x_{4}\right),\left(x_{1}, x_{2}, 0, a_{4}\right)$, and ($x_{1}, x_{2}, x_{3}, 0$) The coordinates of the points in the faces opposito the vertices $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$ satisfy respectively the equations $x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=0$

To the points of each edge of the tetrahedron of reference a notation has been assigned corresponding to each of the two faces which meet in the edge. Consider, for example, the line of intersection of the planes $x_{1}=0$ and $x_{2}=0$. Regarding this edge as a line of $x_{1}=0$, the coordinate system on the edge has as ats fuudamental points ($0,0,1,0$), $(0,0,0,1),(0,0,1,1)$. The first two of these are verticos of the tetrahedron of reference, and the third is the trace of the line joining $(0,1,0,0)$ to $(0,1,1,1)$. On the other hand, regarding this edge as a line of $x_{2}=0$, the coördinate system has the vertices $(0,0,1,0)$ and $(0,0,0,1)$ as two fundamental points, and has as $(0,0,1,1)$ the trace of the line joining $(1,0,0,0)$ to $(1,0,1,1)$. But by construction the plane $(0,1,0,0)(1,0,0,0)(1,1,1,1)$ contains both $(0,1,1,1)$ and ($1,0,1,1$), so that the two determinations of $(0,0,1,1)$ are identical. Hence the symbols denoting points in the two planes $x_{1}=0$ and $x_{2}=0$ are identical along their line of intersection. A similar result holds for the other edges of the tetrahedron of reference.

Theorem 10. Definition. If P is any point not on a face of the tetrahedron of reference, there exist four numbers $x_{1}, x_{2}, x_{3}, x_{4}$, all dufferent from zero, such that the projections of P from the four vertices $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$ respectively upon their
opposite faces are $\left(0, x_{2}, x_{8}, x_{4}\right),\left(x_{1}, 0, x_{8}, x_{4}\right),\left(x_{1}, x_{2}, 0, x_{4}\right),\left(x_{1}, x_{2}, x_{8}, 0\right)$ These four numbers are called the homogencous coordinates of P and P is denoted by $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ Any ordered set of four numbers, not all zero, determıne uniquely a poant in space wolose coordinates they are.

Proof. The line joming P to ($1,0,0,0$) meets the opposite face in a point ($0, x_{2}, x_{8}, x_{4}$), which is not an edge of the tetrahedron of reference, and such therefore that none of the numbers x_{2}, x_{8}, x_{4} is zero. Likewise the line joining P to ($0,1,0,0$) meets the opposite face in a point ($x_{1}^{\prime}, 0, x_{8}^{\prime}, x_{4}^{\prime}$), such that none of the numbers $x_{1}^{\prime}, x_{8}^{\prime}, x_{4}^{\prime}$ is zero. But the plane $P(1,0,0,0)(0,1,0,0)$ meets $x_{1}=0$ in the lme joining $(0,1,0,0)$ to ($0, x_{2}, x_{3}, x_{4}$), and meets $x_{2}=0$ in the line joining ($1,0,0,0$) to ($x_{1}^{\prime}, 0, x_{8}^{\prime}, x_{4}^{\prime}$). By the analytic methods already developed for the plane, the first of these lines meets the edge common to $x_{1}=0$ and $x_{2}=0$ in the point ($0,0, x_{3}, x_{4}$), and the second meets it in the point ($0,0, x_{3}^{\prime}, x_{4}^{\prime}$). But the points ($0,0, x_{9}, x_{4}$) and ($0,0, x_{8}^{\prime}, x_{4}^{\prime}$) are identical, and hence, by the preceding paragraph, we have $x_{8} / x_{4}=x_{8}^{\prime} / x_{4}^{\prime}$. Hence, if we place $x_{1}=x_{1}^{\prime} x_{4} / x_{4}^{\prime}$, the point ($x_{1}^{\prime}, 0, x_{8}^{\prime}, x_{4}^{\prime}$) is identical with ($x_{1}, 0, x_{8}, x_{4}$). The line joining P to $(0,0,1,0)$ meets the face $x_{3}=0$ in a point ($x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, 0, x_{4}^{\prime \prime}$). By the same reasoning as that above it follows that we have $x_{1}^{\prime \prime} / x_{4}^{\prime \prime}=x_{1} / x_{4}$ and $x_{2}^{\prime \prime} / x_{4}^{\prime \prime}=x_{2} / x_{4}$, so that the point ($x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, 0, x_{4}^{\prime \prime}$) is identical with ($x_{1}, x_{2}, 0, x_{4}$). Finally, the line joinung P to $(0,0,0,1)$ meets the face $x_{4}=0$ in a point which a like argument shows to be ($x_{1}, x_{2}, x_{3}, 0$).

Conversely, if the coördinates ($x_{1}, x_{2}, x_{8}, x_{4}$) are given, and one of them is zero, they determine a point on a face of the tetrahedron of reference. If none of them is zero, the lines joining ($1,0,0,0$) to ($0, x_{2}, x_{8}, x_{4}$) and ($0,1,0,0$) to ($x_{1}, 0, x_{8}, x_{4}$) are in the plane $(1,0,0,0)(0,1,0,0)\left(0,0, x_{3}, x_{4}\right)$, and hence meet in a point which, by the reasoning above, has the coördinates ($x_{1}, x_{2}, x_{8}, x_{4}$)

Corollary. The notations ($x_{1}, x_{2}, x_{3}, x_{4}$) and ($k x_{1}, k x_{2}, k x_{8}, k x_{4}$) denote the same point for any value of k not equal to zero

Homogeneous plane coördinates in space arise by the dual of the above process. The four faces of a tetrahedron of reference are denoted respectively by $[1,0,0,0],[0,1,0,0],[0,0,1,0]$, and $[0,0,0,1]$. These, together with any plane $[1,1,1,1]$ not on a vertex of the tetrahedron, form the frame of reference. The four lines of intersection of the plane $[1,1,1,1]$ with the other four planes in the order
above are projected from the opposite vertices by planes which are denoted by $[0,1,1,1],[1,0,1,1],[1,1,0,1],[1,1,1,0]$ respecinvely The four planes $[0,1,0,0],[0,0,1,0],[0,0,0,1]$, and $[0,1,1,1]$ form, if the first 0 in each of these symbols is suppressed, the frame of reference of a system of homogeneous coordmates in a bundle (the space dual of such a system in a plane). The center of this bundle is the vertex of the tetrahedron of reference opposite to $[1,0,0,0]$. To any plane on this point is assigned the notation $\left[0, u_{1}, u_{1}, u_{4}\right]$, if its coördinates in the bundle are $\left[u_{2}, u_{3}, u_{4}\right]$. In like manner, to the planes on the other vertices are assigned coordmates of the forms $\left[u_{1}, 0, u_{3}, u_{4}\right],\left[u_{1}, u_{2}, 0, u_{4}\right],\left[u_{1}, u_{2}, u_{3}, 0\right]$. The space dual of the last theorem then gives:

Theorem 10'. Definition. If π is any plane not on a vertex of the tetrahedron of reference, there exist four numbers $u_{1}, u_{2}, u_{3}, u_{4}$, all difforent from zero, such that the traces of π on the four faces $[1,0,0,0]$, $[0,1,0,0],[0,0,1,0],[0,0,0,1]$ respectively are projected from the opposite vertices by the planes $\left[0, u_{2}, u_{3}, u_{4}\right],\left[u_{1}, 0, u_{3}, u_{4}\right],\left[u_{1}, u_{2}, 0, u_{4}\right]$, [$\left.u_{1}, u_{2}, u_{8}, 0\right]$ These four numbers are called the homogeneous coordinates of π, and π is denoted by $\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$. Any ordered set of four numbers, not all zero, determine uniquely a plane whose coordinates they are.

By placing these systems of point and plane coordinates in a proper relation we may now readily derive the necessary and sufficient condition that a point ($x_{1}, x_{2}, x_{3}, x_{4}$) be on a plane $\left[u_{1}, u_{2}, u_{8}, u_{4}\right]$. This condition will turn out to be

$$
u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}+u_{4} x_{4}=0 .
$$

We note first that in a system of point coördinates as described above the six points $(-1,1,0,0),(-1,0,1,0),(-1,0,0,1),(0,-1,1,0)$, $(0,0,-1,1),(0,-1,0,1)$ are coplanar, each berng the harmonic conjugate, with respect to two vertices of the tetrahedron of reference, of the point into which ($1,1,1,1$) is projected by the line joming the other two vertices The plane containing these is, in fact, the polar of ($1,1,1,1$) with respect to the tetrahedron of reference (cf. Ex. 3, p. 47). Now choose
as the plane $[1,0,0,0]$ the plane $x_{1}=0$,
as the plane $[0,1,0,0]$ the plane $x_{2}=0$,
as the plane $[0,0,1,0]$ the plane $x_{8}=0$, as the plane $[0,0,0,1]$ the plane $x_{4}=0$,
s the plane $[1,1,1,1]$ the plane containng the points $(-1,1,0,0)$, $-1,0,1,0),(-1,0,0,1)$.
With this choice of coordinates the planes $[1,0,0,0],[0,1,0,0]$,), $0,1,0]$, and $[1,1,1,0]$ through the vertex V_{4}, say, whose point ördinates are ($0,0,0,1$), meet the opposite face $x_{4}=0$ in lines hose equations in that plane are

$$
x_{1}=0, x_{2}=0, x_{3}=0, x_{1}+x_{2}+x_{3}=0
$$

ence the first three coördinates of any plane $\left[u_{1}, u_{2}, u_{3}, 0\right]$ on V_{4} 'e the line coördmates of its trace on $x_{4}=0$, in a system so chosen tat the point $\left(x_{1}, x_{2}, x_{8}\right)$ is on the line $\left[v_{1}, u_{2}, u_{3}\right]$ if and only if the lation $u_{1} x_{1}+u l_{2} x_{2}+u_{9} x_{2}=0$ is satisfied Hence a point ($x_{1}, x_{2}, x_{3}, 0$) 3s on a plane [$\left.u_{1}, u_{2}, u_{8}, 0\right]$ if aud only if we have $u_{1} x_{1}+u_{2} x_{2}+$ $x_{8}=0$. But any point ($x_{1}, x_{2}, x_{8}, x_{4}$) on the plane $\left[u_{1}, u_{2}, u_{3}, 0\right]$ has, r definition, its first three coordinates identical with the first three iordinates of some point on the trace of this plane with the plane $=0$. Hence any point ($x_{1}, x_{9}, x_{8}, x_{4}$) on [$\left.u_{1}, u_{2}, u_{3}, 0\right]$ satisfies the wdition $u_{1} x_{1}+u_{9} x_{9}+u_{3} x_{3}+u_{4} x_{4}=0$ Applying this reasoning to ch of the four vertices of the tetrahedron of reference and dualizing, 3 find that of one coordinate of $\left[u_{1}, u_{9}, u_{3}, u_{4}\right]$ is zero, the necessary id sufficient condition that this plane contain a point ($x_{1}, x_{2}, x_{3}, x_{4}$) that the relation

$$
u_{1} x_{1}+u u_{2} x_{2}+u u_{3} x_{3}+u u_{4} x_{4}=0
$$

satisfied; and if one coordinate of ($x_{1}, x_{2}, x_{3}, x_{4}$) is zero, the necesry and sufficerent condition that this point be on the plane $\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$ likewise that the relation just given be satisfied
Confining our attention now to points and planes no coördinate of iich is zero, let $x_{1} / x_{4}=x, x_{2} / x_{4}=y, x_{3} / x_{4}=z$, and let $u_{1} / u_{4}=u$, $/ u_{4}=v, u_{8} / u_{4}=w$. Since x, y, z are the ratios of homogeneous ördinates on the lunes $x_{2}=x_{3}=0, x_{1}=x_{8}=0$, and $x_{1}=x_{2}=0$ respec'ely, they satisfy the definition of nonhomogeneous coördinates ren in § 69. And since the homogeneous coördinates have been chosen that the plane ($u_{1}, u_{2}, u_{3}, u_{4}$) meets the line $x_{2}=x_{3}=0$ in ${ }^{3}$ point $\left(-u_{4}, 0,0, u_{1}\right)=(-1 / u, 0,0,1)$, it follows that u, v, w are nhomogeneous plane coördinates so chosen that a point (x, y, z), ne of whose coördinates is zero, is on a plane $[u, v, w]$ none of lose coördnates is zero, if and only if we have (Theorem 9)

$$
u x+v y+w z+1=0 ;
$$

that is, if and only if we have

$$
u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}+u_{4} x_{4}=0
$$

This completes for all cases the proof of
Theorem 11. The necessary and sufficient condution that a point $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be on a plane $\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$ is that the relation
le satrsfied.

$$
u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{8}+u_{4} x_{4}=0
$$

By methods analogous to those employed in §§ 64 and 65 we may now derive the results of Exs. 1-8 below.

EXERCISES

1 The equation of the plane through the three points $A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, $B=\left(b_{1}, b_{2}, b_{3}, b_{4}\right), C=\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$ is

$$
\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4}
\end{array}=0
$$

Dualize
2 The necessary and sufficient condition that four points A, B, C, D be coplanar is the vanishing of the determinant

$$
\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
d_{1} & d_{2}^{2} & d_{3} & d_{4}
\end{array}
$$

3. The necessary and sufficient condition that three points A, B, C be collinear is the ramshing of the thee-rowed determinants of the matrix

$$
\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{8} & b_{4} \\
c_{1} & c_{2} & c_{8} & c_{4}
\end{array}\right)
$$

4. Any point of a pencil of points containing 1 and B may be represented by

$$
P=\left(\lambda_{2} a_{1}+\lambda_{1} b_{1}, \lambda_{2} a_{2}+\lambda_{1} b_{2}, \lambda_{2} a_{3}+\lambda_{1} b_{3}, \lambda_{2} a_{4}+\lambda_{1} b_{4}\right) .
$$

5 Any plane of a pencll of planes containing $m=\left[m_{1}, m_{2}, m_{8}, m_{4}\right]$ and $n=\left[n_{1}, n_{3}, n_{3}, n_{4}\right]$ may be represented by

$$
\pi=\left[\lambda_{2} m_{1}+\lambda_{1} n_{1}, \lambda_{2} m_{2}+\lambda_{1} n_{2}, \lambda_{2} m_{8}+\lambda_{1} n_{3}, \lambda_{2} m_{4}+\lambda_{1} n_{4}\right] .
$$

6 Any projectivity between two one-dimensional primitive forms (of points or planes) in space is expressed by a relation between their parameters λ, μ of the form

$$
\mu=\frac{a \lambda+\beta}{\gamma \lambda+\delta} .
$$

If the base elements of the pencil are homologous, this relation reduces to $\mu=\rho \lambda$

7 If $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ are the parameters of four points or planes of a penci) then closs ratio is

$$
\mathbb{R}\left(\lambda_{1} \lambda_{2}, \lambda_{3} \lambda_{4}\right)=\frac{\lambda_{1}-\lambda_{8}}{\lambda_{1}-\lambda_{4}} \frac{\lambda_{2}-\lambda_{3}}{\lambda_{2}-\lambda_{4}} .
$$

8 Any point (plane) of a plane of points (bundle of planes) containing the noncollnear points A, B, C (planes a, β, γ) may be repiesented by $P=\left(\lambda_{1} a_{1}+\lambda_{2} b_{1}+\lambda_{8} c_{1}, \lambda_{1} a_{2}+\lambda_{2} b_{2}+\lambda_{3} c_{2}, \lambda_{1} a_{8}+\lambda_{2} b_{3}+\lambda_{8} c_{8}, \lambda_{1} a_{4}+\lambda_{2} b_{4}+\lambda_{8} c_{4}\right)$.
9. Derive the equation of the polar plane of any point with regard to the tetrahedron of reference
10. Derive the equation of a cone.
*11. Derive nonhomogeneous and homogeneous systems of coordinates in a space of four dimensions.
71. Linear transformations in space. The properties of a lnear transformation in space

$$
\begin{align*}
& \rho x_{1}^{\prime}=a_{11} x_{1}+a_{12} x_{2}+a_{18} x_{3}+a_{14} x_{4}, \\
& \rho x_{2}^{\prime}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}, \tag{1}\\
& \rho x_{3}^{\prime}=a_{31} x_{1}+a_{82} x_{2}+a_{38} x_{3}+a_{34} x_{4}, \\
& \rho x_{4}^{\prime}=a_{41} x_{1}+a_{48} x_{2}+a_{48} x_{3}+a_{44} x_{4}
\end{align*}
$$

are similar to those found in § 68 for the linear transformations in a plane. If the determinant of the transformation

$$
A=\begin{array}{llll}
a_{11} & a_{12} & a_{18} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{38} & a_{84} \\
a_{41} & a_{42} & a_{48} & a_{44}
\end{array}
$$

is different from zero, the transformation (1) will have a unique inverse, viz.:

$$
\begin{align*}
& \rho^{\prime} x_{1}=A_{11} x_{1}^{\prime}+A_{21} x_{2}^{\prime}+A_{91} x_{8}^{\prime}+A_{41} x_{4}^{\prime}, \\
& \rho^{\prime} x_{2}=A_{12} x_{1}^{\prime}+A_{22} x_{2}^{\prime}+A_{32} x_{8}^{\prime}+A_{42} x_{4}^{\prime}, \\
& \rho^{\prime} x_{3}=A_{18} x_{1}^{\prime}+A_{28} x_{2}^{\prime}+A_{38} x_{8}^{\prime}+A_{48} x_{4}^{\prime}, \tag{2}\\
& \rho^{\prime} x_{4}=A_{14} x_{1}^{\prime}+A_{24} x_{2}^{\prime}+A_{34} x_{8}^{\prime}+A_{44} x_{4}^{\prime \prime},
\end{align*}
$$

where the coefficients $A_{i j}$ are the cofactors of the elements $a_{i j}$ respectively in the determinant A.

The transformation is evidently a collineation, as it transforms the plane into the plane

$$
u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}+u_{4} x_{4}=0
$$

$$
\begin{aligned}
& \left(A_{11} u_{1}+A_{12} u_{2}+A_{18} u_{8}+A_{14} u_{4}\right) x_{1}^{\prime} \\
+ & \left(A_{21} u_{1}+A_{22} u_{2}+A_{28} u_{3}+A_{24} u_{4}\right) x_{2}^{\prime} \\
+ & \left(A_{81} u_{1}+A_{22} u_{2}+A_{88} u_{8}+A_{34} u_{4}\right) x_{8}^{\prime} \\
+ & \left(A_{41} u_{1}+A_{48} u_{2}+A_{48} u_{8}+A_{44} u_{4}\right) x_{4}^{\prime}=0
\end{aligned}
$$

Hence the collineation (1) produces on the planes of space the transformation

$$
\begin{align*}
& \sigma u_{1}^{\prime}=A_{11} \imath_{1}+A_{12} u_{2}+A_{13}{ }^{2 u_{3}}+A_{14} 2 v_{11}, \\
& \sigma u_{2}^{\prime}=A_{21} u_{1}+A_{22} u_{2}+A_{43} u_{3}+A_{21} u_{4} u_{4}, \tag{3}\\
& \sigma u u_{\mathrm{8}}^{\prime}=A_{\mathrm{B} 1} v_{1}+A_{82} v_{\mathrm{a}}+A_{33} u_{\mathrm{d}}+A_{\mathrm{B} 4}{ }^{2 u_{1}}, \\
& \sigma u_{4}^{\prime}=A_{41} u_{1}+A_{42} u_{2}+A_{43} u_{3}+\lambda_{41} u_{4} u_{4} .
\end{align*}
$$

To show that the transformation (1) is projective consider any pencil of planes

$$
\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{9}+a_{4} x_{4}\right)+\lambda\left(b_{1} x_{1}+b_{3} x_{3}+b_{3} x_{3}+b_{4} x_{4}\right)=0 .
$$

In accordance with (2) this pencll is transformed mito a pencil of the form

$$
\left(a_{1}^{\prime} x_{1}+a_{2}^{\prime} x_{2}+a_{3}^{\prime} x_{8}+a_{4}^{\prime} x_{4}\right)+\lambda\left(b_{1}^{\prime} x_{1}+b_{2}^{\prime} x_{2}+b_{3}^{\prime} x_{3}+b_{4}^{\prime} \cdot x_{4}\right)=0
$$

and these two pencils of planes are projective (Nx. 6, p. 108).
Finally, as in $\S 67$, we see that there is one and only one timusformation (1) changing the points $(0,0,0,1),(0,0,1,0),(0,1,0,0)$, ($1,0,0,0$), and ($1,1,1,1$) into the vertices of an arbitrary complete five-pont in space. Since this transformation is a projective collintrition, and snce there is only one projective collineation transforming one five-point into another (Theorem 19, Chap. IV), it follows that every projective collmeation in space may be representer by a linear transformation of the form (1). This gives

Theorem 12. Any projective collination of spmés maty be represented in point coordinates by equations of the firm (1), or in phlune coordinates by equations of the form (3). In cornh ease the determinuat of the transformation is different from zero. Cumversely, unl/ trus. formation of this form in which the deterninuent is ithiffrent from zero represents a projective collineation of spacec.

Corollary 1. In nonhomogeneous point coürrilinutps a projective collineation is represented by the linear fractionul ciluctions

$$
\begin{aligned}
& x^{\prime}=a_{11} x+a_{12} y+a_{12} z+a_{14}, \\
& a_{41} x+a_{42} y+a_{48} z+a_{44} \\
& y^{\prime}=\frac{a_{81} x+a_{22} y+a_{212} z+a_{24},}{a_{41} x+a_{42} y+a_{42} z+a_{44}} \\
& z^{\prime}= a_{81} x+a_{32} y+a_{88} z+a_{84}, \\
& a_{41} x+a_{42} y+a_{48} z+a_{44}
\end{aligned}
$$

in which the determinant A is different from zero.

Corollary 2. If the singular plane of the nonhomageneous system is transformed into atself, these equations recluce to

$$
\begin{array}{ll}
x^{\prime}=a_{1} x+a_{2} y+c_{3} z+a_{4}, & a_{1} a_{2} a_{B} \\
y^{\prime}=b_{1} x+b_{2} y+b_{d} z+b_{4}, & b_{1} b_{2} b_{3} \neq 0 \\
z^{\prime}=c_{1} x+c_{2} y+c_{3} z+c_{4}, & c_{1} c_{2} c_{3}
\end{array}
$$

72. Finite spaces. It will be of interest at this point to emphasize again the generality of the theory which we are developing. Since all the developments of this chapter are on the basis of Assumptions A, E, and P only, and since these assumptions mply nothing regarding the number system of points on a line, except that it be commutative, it follows that we may assume the points of a line, or, indeed, the elements of any one-dimensional form, to be in one-to-one reciprocal correspondence with the elements of any commutative number system. We may, moreover, study our geometry entirely by analytic methods. From this point of view, any point in a plane is simply a set of three numbers (x_{1}, x_{2}, x_{8}), it being understood that the sets (x_{1}, x_{2}, x_{8}) and ($k x_{1}, k x_{2}, k x_{3}$) are equivalent for all values of k in the number system, provided k is different from 0 . Any line in the plane is the set of all these points which satisfy any equation of the form $u_{1} x_{1}+u u_{2} x_{2}+\imath u_{3} x_{3}=0$, the set of all lines being obtained by giving the coefficients (coordinates) [u_{1}, u_{2}, u_{8}] all possible values in the number system (except $[0,0,0]$), wilh the obvious agreement that $\left[u_{1}, u_{2}, u_{8}\right.$] and [k $k u_{1}, k u_{2}, k u_{8}$] represent the same line ($k \neq 0$). By letting the number system consist of all ordınary rational numbers, or all ordinary real numbers, or all ordinary complex numbers, we obtain respectively the analytic form of ordinary rational, or real, or complex projective geometry in the plane. All of our theory thus far applies equally to each of these geometries as well as to the geometry obtained by choosing as our number system any field whatever (any ordinary algebraic field, for example).

In particular, we may also choose a finite field, ie. one which contains only a finite number of elements The simplest of these are the modular fields, the modulus being any prime number p.* If we

[^69]consider, for example, the case $p=2$, our number system contains only the elements 0 and 1 There are then seven points, whinch we will label A, B, C, D, E, F, G, as follows: $A=(0,0,1), B=(0,1,0)$, $C=(1,0,0), D=(0,1,1), E=(1,1,0), F=(1,1,1), G=(1,0,1)$. The reader will readuly verify that these seven points are arranged in lines according to the table

A	B	C	D	E	F	G
B	C	D	E	F	G	A
D	E	F	G	A	B	C,

each column constituting a line For example, the line $x_{1}=0$ clearly consists of the points $(0,0,1)=A,(0,1,0)=B$, and $(0,1,1)=D$, these being the only points whose first coördinate is 0 We have labeled the points of this finite plane in such a way as to exhibit clearly its abstract identity with the system of triples used for illustrative purposes in the Introduction, § 2.*

EXERCISES

1. Verffy analytically that two sides of a complate quadrangle containing a diagonal point are harmonic with the other two diagonal points.

2 Show analytically that if two piojective penculs of lines in a plane have a self-coriesponding line, they are perspective. (This is equvalent to Assumption P)

3 Show that the lines whose equations are $x_{1}+\lambda x_{2}=0, x_{2}+\mu x_{8}=0$, and $x_{8}+\nu x_{1}=0$ are concurent of $\lambda \mu \nu=-1$; and that they meet the opposite sides of the triangle of reference respectively in collinear points, if $\lambda \mu \nu=1$

4 Find the equations of the lines joining (c_{1}, c_{2}, c_{8}) to the four points ($1, \pm 1, \pm 1$), and determine the cross ratios of the pencil.
and multrplication, of not equal to one of these elements, is replaced by the element to which it is congruent. The modular field with modulus 5 , for example, consists of the elements $0,1,2,3,4$, and we have as examples of addition, subtraction, and multiplication $1+8=4,2+3=0$ (since $5 \equiv 0$, mod. 5), $1-4=2,2 \cdot 3=1$, etc. Furthermore, if a, b are any two elements of this field $(a \neq 0)$, there is a unique element x determined by the congruence $a x \equiv b$, mod, p; this element is defined as the quotzent b / a (For the proof of this proposition the reader may refer to any standard text on the theory of numbers.) In the example discussed we have, for example, $4 / 3=3$.

* For references and a further discussion of finite projective geometries see a paper by 0 Veblen and W. H. Bussey, Finite Projective Geometries, Transactions of the American Mathematical Society, Vol. VII (1906), pp, 241-259 Also a subsequent paper by 0 . Veblen, Collineations in a Finite Projective Geometry, Transactions of the American Mathematical Society, Vol. VIII (1007), pp. 266-268,

5. Show that the throw of lines determined on (c_{1}, c_{2}, c_{3}) by the four points $(1, \pm 1, \pm 1)$ is projective with (equal to) the throw of lines deterinined on (b_{1}, b_{2}, b_{3}) by the points ($a_{1}, \pm a_{2}, \pm a_{3}$), if the following relations hold:

$$
\begin{array}{r}
a_{1}+a_{2}+a_{8}=0, \\
a_{1} c_{1}^{2}+a_{2} c_{2}^{2}+a_{3} c_{8}^{2}=0, \\
a_{2} a_{3} b_{1}^{2}+a_{1} a_{3} b_{2}^{2}+a_{1} a_{2} b_{3}^{2}=0,
\end{array}
$$

and that the six cross ratios are $-a_{2} / a_{3},-a_{3} / a_{1},-a_{1} / a_{2},-a_{3} / a_{2},-a_{1} / a_{3}$, $-a_{2} / a_{1}$ (C. A. Scott, Mod. Anal. Geons, p 50).

6 Wirte the equations of transformation for the five types of planal collineations descubed in $\S 40$, Chap. IV, choosing points of the tiaangle of reference as fixed points
7. Generalize Ex. 6 to space

8 Show that the set of values of the parameter λ of the pencll of lines $m+\lambda n=0$ is isomorphic with the scale determined in this pencil by the lines for which the fundamental lïnes are respectively the lines $\lambda=0,1, \infty$.

9 Show directly fiom the discussion of § 61 that the points whose nonhomogeneous cooldinates x, y satisfy the equation $y=x$ are on the line joining the ongin to the point $(1,1)$.

10 Theic is then established on this line a scale whose fundamental points are respectively the origin, the point $(1,1)$, and the point in which the line meets the line l_{∞}. The lines joming any point P in the plane to the points ∞_{y}, ∞_{x} meet the line $y=x$ in two points whose coorrdnates in the scale just determined are the nonhomogeneous coordmates of P, so that any point in the plane (not on l_{∞}) 18 represented by a pair of points on the line $y=x$. Hence, show that in general the points (x, y) of any line in the plane determine on the line $y=x$ a projectivity with a double point on l_{∞}; and hence that the equation of any such line is of the fom $y=a x+b$. What lines are exceptions to this proposition?
11. Discuss the modular plane geometny in which the modulus is $p=3$; and by properly labelng the points show that it is abstractly identical with the system of quadruples exhibited as System (2) on p. 6.
12. Show in geneal that the modular projective plane with modulus p contains $p^{2}+p+1$ points and the same number of hnes; and that there are $p+1$ points (lines) on every line (point).
13. The diagonal points of a complete quadrangle in a modular plane projective geometry are collinear if and only if $p=2$
14. Show that the points and lnes of a modular plane all belong to the same net of rationality. Such a plane is then properly projective without the use of Assumption P.
15. Show how to construct a modular three-space. If the modulus is 2 , show that its points may be labeled $0,1, \ldots, 14$ in such a way that the planes are the sets of seven obtained by cyclic permutation from the set 0146111218 (i.e. 1257121314 , etc.), and that the lines are obtained from the lines $014,028,0510$ by cyclio permutations. (For a
study of this space, see G M. Conwell, Annals of Mathematics, Vol 11 (1910), p. 60)
16. Show that the ten diagonal points of a complete five-point in space $(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0),(1,1,1,1)$ are given by the remaning sets of coordinates in which occur only the digits 0 and 1.
17. Show that the ten diagonal points in Ex 16 determine in all 45 planes, of which each of a set of 25 contans foun diagonal points, while each of the remaining 20 contains only three diagonal points. Through any diagonal point pass 16 of these planes. The dagonal lnes, i.e. lines joining two diagonal points, are of two kinds through each of the diagonal lines of the first kind pass five duagonal planes; through each line of the second kmd pass four daagonal planes

18 Show how the results of Ex 17 are modified in a modular space with modulus 2 , with modulus 3 . Show that in the modular space with modulus 5 the results of Ex. 17 hold without modification.

* 19. Derive homogeneous and nonhomogeneous coordinate systems for a space of n dmensions, and establish the formulas for an n-dimensional projectuve collineation.

CHAPTER VIII

PROJECTIVITIES IN ONE-DIMENSIONAL FORMS*

73. Characteristic throw and cross ratio.

Theorem 1. If M, N are double points of a projectivity on a line, and $A A^{\prime}, B B^{\prime}$ are any two pairs of homologous points (ie. if $\left.M N A B-M N A^{\prime} B^{\prime}\right)$, then $M N A A^{\prime} \bar{\wedge} M N B B^{\prime}$.

Proof. Let S, S^{\prime} be any two dustinct points on a line through M (fig. 85), and let the lines $S A$ and $S^{\prime} A^{\prime}$ meet in $A^{\prime \prime}$, and $S B$ and

Fig. 85
$S^{\prime} B^{\prime}$ meet in $B^{\prime \prime}$. The points $A^{\prime \prime}, B^{\prime \prime}, N$ are then collinear (Theorem 23, Ohap. IV). If the line $A^{\prime \prime} B^{\prime \prime}$ meets $S S^{\prime}$ in a point Q, we have

$$
M N A A^{\prime} \frac{A^{\prime \prime}}{\Lambda} M Q S S^{\prime} \frac{B^{\prime \prime}}{\bar{\Lambda}} M N B B^{\prime}
$$

This proves the theorem, which may also be stated as follows:
The throws consisting of the pair of double points in a given order and any pair of homologous points are all equal.

Definition. The throw $\mathrm{T}\left(M N, A . A^{\prime}\right)$, consisting of the double points and a pair of homologous points of a projectivity, is called the characteristic throw of the projectivity; and the cross ratio of this throw is called the characteristic cross ratio of the projectivity. \dagger

* All the developments of this chapter are on the basis of Assumptions A Tr $\mathbf{P} \boldsymbol{H}_{n}$
t Since the double points enter symmetrically, the throws $\mathrm{T}^{/ \text {rax }}$ $\mathrm{T}\left(N M, A A^{\prime}\right)$ may be used equally well for the characteristic th sponding cross ratios $\mathrm{R}_{6}\left(M N, A A^{\prime}\right)$ and $\mathrm{B}_{0}\left(N M, A A^{\prime}\right)$ are recipm^ (of. Theorem 13, Cor. 3, Chap. VI).

Corollary 1. A projectivety on a line wath two given distinct double points is unvquely determined by its characteristic throw or cross ratzo.

Corollary 2. The characteristic cross ratio of any involution with double points is -1 .

This follows directly from Theorem 27, Cor 1, Chap. IV, and Theorem 13, Cor 2, Chap VI

If m, n are nonhomogeneous coördmates of the double points, and k is the characteristic cross ratio of a projectivity on a line, we have

$$
\frac{x^{\prime}-m}{x^{\prime}-n} \cdot \frac{x-n}{x-n}=k
$$

for every parr of homologous points x, x^{\prime} This is the analytic expression of the above theorem, and leads at once to the following analytic expression for a projectivity on a line with two distinct double points m, n :

Corollary 3 Any projectivity on a line with two distinct double pornts m, n may be represented by the equation

$$
\frac{x^{\prime}-m}{x^{\prime}-n}=k \frac{x-m}{x-n},
$$

x^{\prime}, x being any pair of homologous points.
For when cleared of fractions this is a bilinear equation in x^{\prime}, x which obviously has m, n as roots. Moreover, since any projectivity with two given distmet double points is uniquely determined by one additional pair of homologous elements, it follows that any projectuvity of the kind described can be so represented, in view of the fact that one such pair of homologous points will always determine the multipher k. These considerations offer an analytic proof of Theorem 1, for the case when the double points M, N are dustinct.

It is to be noted, however, that the proof of Theorem 1 applies equally well when the points M, N coincide, and leads to the following theorem:

Theorem 2. If in a parabolic projectivity with, double pornt M the points $A A^{\prime}$ and $B B^{\prime}$ are two pairs of homologous points, the parabolic projectivity with double point M which puts A into B also puts A^{\prime} into B^{\prime}.

Corollary. The characteristic cross ratio of any parabolic projectivity is unity.

The characteristic cross ratio together wilh the double point is therefore not sufficient to characterize a parabohe projectivity completely Also, the analytic form for a projectivity wilh double points m, n, obtained above, breaks down when $m=n$. We may, however, readily derive a characteristic property of parabohc projectivities, from which will follow an analytic form for these projectivities.

Theorem 3. If a parabolic projectivity with double point MI transforms a point A into A^{\prime} and A^{\prime} into $A^{\prime \prime}$, the pair of points $A, A^{\prime \prime}$ थs larmonic with the pair $A^{\prime} M$; i.e we have $\mathrm{H}\left(M A^{\prime}, A A^{\prime \prime}\right)$.

Proof By Theorem 23, Chap IV, Cor., we have Q (MAA', MA1" A^{\prime}). Analytically, if the coordmates of $M, A, A^{\prime}, A^{\prime \prime}$ are $m, x, x^{\prime}, x^{\prime \prime}$ respectively, we have, by Theorem 13, Cor. 4, Chap. VI,

$$
\frac{2}{x^{\prime}-m}=\frac{1}{x-n}+\stackrel{1}{x^{\prime \prime}-m}
$$

This gives

$$
\frac{1}{x^{\prime}-n}-\frac{1}{x-m}=\stackrel{1}{x^{\prime \prime}-n}-\stackrel{1}{x^{\prime}-m},
$$

which shows that if each member of this equation be placed equal to t, the relation

$$
\begin{equation*}
\underset{x^{\prime}-m}{1}=\frac{1}{x-m}+t \tag{1}
\end{equation*}
$$

is satisfied by every pair of homologous points of the sequence obtained by applying the projectivity successıvely to the points $A, A^{\prime}, A^{\prime \prime}$, . . It 1s, however, readly seen that this relation is satisfied by every pair of homologous points on the line. For relation (1), when cleared of fractions, clearly gives a bilinear form in x^{\prime} and x, and is therefore a projectivity; and this projectivity clearly has only the one double point m. It therefore represents a parabolic projectivity with the double point m, and must represent the projectivity in question, since the relation is satisfied by the coordinates of the pair of homologous points A, A^{\prime}, which are sufficient with the double point to determine the projectivity.

We have then :
Corollary 1. Any parabolve projectivity with a double point, M, may be represented by the relation (1).

Definition. The number t is called the characteristic constant of the projectivity (1).

Corollary 2. Conversely, if a projectivity with a double point M transforms a point A into A^{\prime}, and A^{\prime} into $A^{\prime \prime}$, such that we have $\mathrm{H}\left(M A^{\prime}, A A^{\prime \prime}\right)$, the projectivity is parabolic.

Proof The double point M and the two pairs of homologous pounts $A A^{\prime}, A^{\prime} A^{\prime \prime}$ are sufficient to determine the projectivity uniquely; and there is a parabolic projectivity satisfying the given conditions.
74. Projective projectivities. Let π be a projectivity on a line l, and let π_{1} be a projectivity transforming the points of l into the points of another or the same lime l^{\prime}. The projectivity $\pi_{1} \pi \pi_{1}^{-1}$ as then a projectivity on l^{\prime}. For π_{1}^{-1} transforms any point of l^{\prime} into a point of l, π transforms this point into another point of l, which in turn is transformed into a point of l^{\prime} by π_{1}. Thus, to every point of l^{\prime} is made to correspond a unique point of l^{\prime}, and this correspondence is projective, since it is the product of projective correspondences. Clearly, also, the projectivity π_{1} transforms any parr of homologous poinis of π into a parr of homologous points of $\pi_{1} \pi \pi_{1}^{-1}$.

Definition. The projectivity $\pi_{1} \pi \pi_{1}^{-1}$ is called the transform of π by π_{1}; two projectivities are said to be projective or conjugate if one is a transform of the other by a projectivity.

The question now arrses as to the conditions under which two projectivities are projective or conjugate. A necessary condition is evident. If one of two conjugate projectiviies has two distinct double points, the other must likewise have two distinct double points; if one has no double points, the other likewise can have no double points; and if one is parabolhe, the other must be parabolic. The further conditions are readuly dervable in the case of two projectivities with distinct double points and in the case of two parabolic projectivities. They are stated in the two following theorems:

Theorem 4. Two projectivities each of which has two distinct double points are conjugate if and only if their characteristic throws are equal.

Proof. The condition is necessary. For if π, π^{\prime} are two conjugate projectivities, any projectivity π_{1} transforming π into π^{\prime} transforms the double points M, N of π into the double points M^{\prime}, N^{\prime} of π^{\prime}, and also transforms any pair of homologous poinis A, A_{1} of π into a pair of homologous points $A^{\prime}, A_{1}^{\prime}$ of π^{\prime}; ie.

$$
\pi_{1}\left(M N A A_{1}\right)=M^{\prime} N^{\prime} A^{\prime} A_{1}^{\prime}
$$

But this states that their characteristic throws are equal.

The condation is also sufficient; for if it is satisfied, tho projectivity π_{1} defined by

$$
\pi_{1}(M N A)=M^{\prime} N^{\prime} A^{\prime}
$$

clearly transforms π into π^{\prime}.
Corollary. Any two involutions with double points are conjugate. Theorem 5. Any two parabolic projectivities are conjugate.
Proof. Let the two parabolec projectivities be defined by

$$
\pi(M M A)=M M A_{1}, \text { and } \pi^{\prime}\left(M^{\prime} M^{\prime} A^{\prime}\right)=M^{\prime} M^{\prime} A_{1}^{\prime}
$$

Then the projectivity π_{1} defined by

$$
\pi_{1}\left(M A A_{1}\right)=M^{\prime} A^{\prime} A_{1}^{\prime}
$$

clearly transforms π into π^{\prime}.
Since the characteristic cross ratio of any parabolic projectivity is unity, the condition of Theorem 4 may also be regarded as holding for parabolic projectivities.
75. Groups of projectivities on a line. Definition. Two groups G and G^{\prime} of projectivities on a line are said to be conjugate if there exists a projectivity π_{1} which transforms every projectivity of G into a projectivity of G^{\prime}, and conversely. We may then write $\pi_{1} \mathrm{G} \pi_{1}^{-1}=\mathrm{G}^{\prime}$; and G^{\prime} is said to be the transform of G by π_{r}.

We have already seen (Theorem 8, Chap III) that the set of all projectivities on a lune form a group, which is called the general projective group on the line. The following are important sulgroups:

1. The set of all projectivities leaving a given point of the line invariant.

Any two groups of this type are conjugate For any projectivity transforming the invariant point of one group into the mvariant point of the other clearly transforms every projectivity of the one into some projectivity of the other Analytically, if we choose $x=\infty$ as the invariant point of the group, the group consists of all projectivities of the form

$$
x^{\prime}=a x+b .
$$

2. The set of all projectivities leaving two given distinct points invariant.

Any two groups of this type are conjugate. For any projectivity transforming the two invariant points of the one into the invariant points of the other clearly transforms every projectivity of the one
monto a projectivity of the other Analytically, if x_{1}, x_{2} are the two invariant points, the group conssists of all projectivities of the form

$$
\begin{aligned}
& x^{\prime}-x_{1} \\
& x^{\prime}-x_{2}
\end{aligned}=k \frac{x-x_{1}}{x-x_{2}} .
$$

The product of two such projectivities with multipliers k and k^{\prime} is clearly given by

$$
\begin{aligned}
& x^{\prime}-x_{1}=k k^{\prime} \frac{x-x_{1}}{x-x_{2}} . \\
& x^{\prime}-x_{2}
\end{aligned} .
$$

Thus shows that any two projectivities of thus group are commutative. This result gives
Thborem 6. Any two projectivities whicll have two double points in common are commutative.

This theorem is equivalent to the commutative law for multiplication. If the double points are the points 0 and ∞, the group consists of all projectivities of the form $x^{\prime}=a x$.
3. The set of all parabolic projectivitices with a common dorble point

In order to show that this sel of projectivities is a group, it is only necessary to show that the product of two parabolic projectiviles with the same double point is parabolic This follows readily from the analytic representation. The set of projectivilies above described consists of all transformations of the form

$$
x_{x^{\prime}-x_{1}}^{1}=\frac{1}{x-x_{1}}+t
$$

where n_{1} is the common double point (Theorem 3, Cor. 1). If

$$
\frac{1}{x^{\prime}-x_{1}}=\frac{1}{x-x_{1}}+t_{1} \text {, and } \underset{x^{\prime}-x_{1}}{1}=\frac{1}{x-x_{1}}+t_{2}
$$

are two projectivities of this set, the product of the first by the second is given by

$$
{ }_{x^{\prime}-x_{1}}^{1}=\frac{1}{x-x_{1}}+t_{1}+t_{2}
$$

which is clearly a projectivity of the set. It shows, moreover, that any two projectivities of this group are commutative. Whence

Theorem 7. Any two parabolic projectivities on a line with the same double pornt are commutative.

This theorem is independent of Assumption P, although this assumption ${ }^{1 s}$ mplied in the proof we have given. The thoorem has already been proved without this assumption in Example 2, p. 70.

Any two groups of thus type are conjugate. For every projectuvity trausforming the double point of one group into the double point of the other transforms the one group into the other, swce the projeclive transform of a parabolic projectivaty is parabolic

Definition. Two subgroups of a group G are said to be conjugate under G if there exists a transformation of G which transforms one of the subgroups into the other. A subgroup of G is said to be selfconjugate or invariant under G if it is transformed into itself by every transformation of G; ie if every transformation in G transforms any transformation of the subgroup into another (or the same) transformation of the subgroup.

We have seen that any two groups of any one of the three types are conjugate subgroups of the general projective group on the line. We may now give an example of a self-conjugate subgroup.

The set of all parabolvc projectivities in a group of Type 1 above is a self-conjugate subgroup of this group. It is clearly a subgroup, since it is a group of Type $\dot{3}$. And it is self-conjugate, since any conjugate of a parabolic projectivity is parabolic, and since every projectivity of the group leaves the common double point invariani.

EXERCISES

1. Wiite the equations of all the projective transformations which permute among themselves (a) the points $(0,1),(1,0),(1,1),(b)$ the points $(0,1)$, $(1,0),(1,1),(a, b),(c)$ the points $(0,1),(1,0),(1,1),(-1,1)$. What are the equations of the self-conjugate subgroup of the group of transformathons (a)?
2. If a projectivity $x^{\prime}=(a x+b) /(c x+d)$ having two distnnct double elements be written in the form of Cor. 3, Theorem 1, show that

$$
k=\frac{a-c x_{1}}{a-c x_{2}}=\frac{x_{2}}{x_{1}} \cdot \frac{b-d x_{1}}{b-d x_{2}} ; \text { and that } \begin{gathered}
(1+k)^{2} \\
k
\end{gathered}=\begin{gathered}
(a+d)^{2} \\
a d-b c
\end{gathered} .
$$

3. If a parabolic projectivity $x^{\prime}=(a x+b) /(c x+d)$ be written in the form of Theorem 3, Cor. 1, show that $m=(a-d) / 2 c$, and $t=2 c /(a+d)$
4. Show that a projectivity with distinct double points x_{1}, x_{2} and charac. teristic cross ratio k can be written in the form

$$
x^{\prime}=\begin{array}{ccc}
x & 0 & 1 \\
x_{1} & x_{1} & 1 \\
x_{2} & k & x_{2} \\
x & 0 & 1 \\
x_{1} & 1 & 1 \\
x_{2} & k & 1
\end{array} .
$$

5. Show that the parabohe projectivity of Theorem 3, Cor. 1, may be writien in the form

$$
x^{\prime}=\begin{array}{cccc}
x & 0 & 1 \\
a_{1} & x_{1} & 1 \\
1 & t x_{1} & +1 & 0 \\
x & 0 & 1 & \\
x_{1} & 1 & 1 & \\
1 & t & 0
\end{array} .
$$

6. If by means of a suitably chosen transformation of a group any of the elements transformed may be tiansformed muto any other element, the group is saad to be transitue. If by a surtably chosen transfor mation of a group any set of n distmet elements may be tuansformed into any other set of n distmet, elements, and of this is not true for all sets of $n+1$ distinct elements, the gooup is sad to be n-ply transitive. Show that the gencral projective group on a line is tuply transilive, and that of the subgroups listed $m \mathrm{~m} 75$ the first is doubly tananitive and the other two are simply tansilive.
7. If two 1 rojectivities on a line, each having two distinct double points, have one double point in common, the characterstic cross iatio of them product is equal to the product of their characteristic cross ratios.
8. Projective transformations between conics. We have considered hitherto projectivities between one-dumensional forms of the first degree ouly. We shall now see how projectivities exist also hetween onc-dimensional forms of the second degree, and also between a one-dimensional form of the first and one of the second degree. Many familar theorems will hereby appear in a new light.

As typical for the one-dimensional forms of the second degree wo choose the conic. The corresponding theorems for the cone thon follow by the principle of duality.

Let π_{1} be a projective collineation between two planes α, α_{1}, ancl let C^{2} be any conic in α. Any two projective pencils of lines in α are then transformed by π_{1} into two projective pancils of lines in α_{1}, such that any two homologous lines of the pencils in $c c$ are transformed into a pair of homologous lines in α_{1}; for if π be the projoctivity between the pencils in $\alpha, \pi_{1} \pi \pi_{1}^{-2}$ will he a projectivily between the pencils in α_{1} (cf. § 74). Two projective pencils of lines generating the conic C^{2} thus correspond to two pencils of lines in α_{1} generating a conic C_{1}^{2}. The transformation π_{1} then transforms every point of C^{2} into a unique point of C_{1}^{2}. Similarly, it is seen that π_{1} transforms every tangent of C^{2} into a unique tangent of C_{1}^{2}.

Defintrion. Two conics are said to be projective if to every point of one corresponds a point of the other, and to every tangent of one
corresponds a tangent of the other, m such a way that this correspondence may be brought about by a projective collineation between the planes of the conics The projective collineation is then said to gencrate the projectivity between the comcs.

Two conies in different planes are projective, for example, if one is the projeetion of the other from a point on nerther of the two planes If the second of these is projected back on the plane of the first from a new center, we obtann two conics in the same plane that are projective We will see presently that two projective concs may also comcide, in which case we obtann a projectuvity on a conce.

Theorem 8. Two conics that are projective with a third are projective.

Proof. This is an immedate consequence of the defintion and the fact that the resultant of two collhneations is a collineation.

We proceed now to prove the fundamental theorem for projectivities between two comes.

Theorem 9. A projectivity between two conics is uniquely determined if three drstinct points (or tangents) of one are made to correspond to three distinct points (or tangents) of the other.

Fia 80

Proof. Let C^{2}, C_{1}^{2} be the two conics (fig. 86), and let A, B, C be three points of C^{2}, and $A^{\prime}, B^{\prime}, C^{\prime}$ the corresponding points of C_{1}^{2}. Let P and P^{\prime} be the poles of $A B$ and $A^{\prime} B^{\prime}$ with respect to C^{2} and C_{1}^{2} respectively. If now the collineation π is defined by the relation $\pi(A B C P)=A^{\prime} B^{\prime} C^{\prime} P^{\prime}$ (Theorem 18, Chap. IV), it is clear that the conic C^{2} is transformed by π into a conic through the points $A^{\prime}, B^{\prime}, C^{\prime}$, with tangents $A^{\prime} P^{\prime}$ and $B^{\prime} P^{\prime}$. This conic is uniquely determined by these specifications, however, and is therefore identical with C_{1}^{2}. The collineation π then transforms C^{2} into C_{1}^{2} in such a way that the points A, B, C are transformed into $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Moreover,
suppose π^{\prime} were a second collmeation transforming C^{2} into C_{1}^{2} in the way specrified Then $\pi^{1-1} \pi$ would be a collineation leaving A, B, C, P invariant, i.e $\pi=\pi^{\prime}$.

The argument apphes equally well if $A^{\prime} B^{\prime} C^{\prime}$ are on the conic C^{2}, 1 e. when the two conics C^{2}, C_{1}^{2} coincide. In this case the projectivity is on the come C. This gives

Corollary 1. A projectivity on a conic is uniquely determined when three pairs of homologous elements (points or tangents) are given.

Also from the proof of the theorem follows
Corollary 2. A collineation in a plane which transforms three distrnct points of a conve into three distinct points of the same conic and which transforms the pole of the line joinnng two of the first three points into the pole of the line joining the two corresponding points transforms the conic into itself.

The two following theorems establish the connection between projectivities between two conics and projechivities between one-dimensional forms of the first degree.

Theorem 10 If A and B^{\prime} are any two points of two projective conics C^{2} and C_{1}^{2} respectively, the pencils of lines with centers at A and B^{\prime} are projectve if every pair of homologous lines of these pencils pass through a pair of homologous points on the two conics respectively.

Tineorem 10^{\prime}. If a and b^{\prime} are any two tangents of two projective conics C^{2} and C_{1}^{2} respectrvely, the pencils of points on a and b^{\prime} are projective if evory pair of homoloyous points on these lines is on a pair of honologous tangents of the conics respectively.

Proof. It will suffice to prove the theorem on the left. Let A^{\prime} be the point of C_{1}^{2} homologous with A. The collneation which generates the projectivity between the conics then makes the pencils of lines at A and A^{\prime} projective, in such a way that every pair of homologous lines contains a pair of homologous points of the two conics. The pencal of lines at B^{\prime} is projective with that at A^{\prime} if they correspond in such a way that pairs of homologous lines intersect on G_{1}^{2} (Theorem 2, Chap. V). This establishes a projective correspondence between the penculs at A and B^{\prime} in which any two homologous lines pass through two homologous points of the conics and proves the theorem.

It should be noted that in this projectivily the tangent to C^{2} at A corresponds to the line of the pencil at B^{\prime} passing through A^{\prime}.

Corollary. Conversely, af two conics correspond on such a way that every puir of homologous points is on a pair of homologous lines of two projective penculs of lines whose centers are on the conics, they are projective.

Corollary. Conversely, if two conics correspond in such a way that every pair of homologous tangents is on a pair of homologous points of two projective penculs of points whose axes are tangents of the conics, they are projective.

Proof. This follows from the fact that the projectivity between the pencils of lines is uniquely determined by three pairs of homologous lines A projectivity between the conics is also determmed by the three parrs of puints (Theorem 9), in which three pairs of homologous lines of the penclls meet the conics. But by what precedes and the theorem above, this projectivity is the same as that described in the corollary on the left The corollary on the right may be proved similarly If the two comes are in the same plane, it is sumply the plane dual of the one on the left.

By means of these two theorems the construction of a projectivity between two conics is reduced to the construction of a projectivity between two primilive one-dımensional forms.

It is now in the spirit of our previous definitions to adopt the following:

Definition. A point conic and a pencll of lines whose center is a point of the conic are said to be perspective if they correspond in such a way that every point of the come is on the homologous line of the pencil. A point conic and a pencil of points are said to be perspective if every two homologous points are on the same line of a pencil of lines whose center is a point of the conic.

Definition. A line conic and a pencl of points whose axis is a line of the conic are said to be perspective if they correspond in such a way that every line of the conic passes through the homologous point of the pencil of points. A lone conic and a pencil of lines are said to be perspective if every two homologous lines meet in a point of a pencil of points whose axis is a line of the conic.

The reader will now readily verify that with this extended use of the term perspective, any sequence of perspectivities leads to a projectivity. For example, two pencils of lines perspective with the same point conic are projective by Theorem 2, Chap. V; two point conics

216

perspective with the same pencil of lines or with the same pencil of points are projective by Theorem 10, Cor., etc.

Another illustration of this extension of the notion of perspectivily leads readuly to the following important theorem:

Theorem 11. Two conics which are not in the sance plane and have a common tangent at a point A are sections of one and the sanne cone.

Proof. If the two conics C^{2}, C_{1}^{2} (fig 87) are made to correspond in such a way that every tangent x of one is assuciated with that
 tangent $: x^{\prime}$ of the other which ineets x in a point of the common tangent α of the conics, they are projective. For the tangents of the conics are then perspective with the same pencil of points (cf. Theorem 10^{\prime}, Cor.). Every pair of homologous tangents of the two comics determines a plane. If we consider the point O of intersection of three of these planes, say, those determined by the pairs of tangents $b b^{\prime}, c c^{\prime}, d d^{\prime}$, and project the conic C_{1}^{2} on the plane of C^{2} from O, there results a conic in the plane of C^{2}. This conic has the lines b, c, d for tangents and is tangent to a at A; it therefore coincides with C^{2} (Theorem 6', Chap. V). The two conics C^{2}, C_{1}^{2} then have the same projection from O, which proves the theorem.*

EXERCISES

1. State the theorems concerning cones dual to the theorems of the preceding sections.

2 By dualizing the definitions of the last article, define what is meant by the perspectivity between cones and the primitive one-dimensional forms.

3 If two projectuve comes have three self-corresponding points, they are perspective with a common pencil of lines.
4. If two projective conics have four self-corresponding elements, they comcide.
5. State the space duals of the last two propositions.
*It will be seen later that this theoxem leads to the proposition that any conic may be obtained as the projection of a cyrqle tangent to it in a different plane.

6 If a pencil of lines and a conic in the plane of the pencil are projective, but not perspective, not more than thee lines of the pencil pass through then homologous points on the come (Hint. Consider the points of intersection of the given conc with the conc generated by the given pencil and a pencil of lines perspective with the given conce) Dualize.
7. The homologous lmes of a lme conce and a projective pencil of lines 111 the same plane intersect in points of a "cuive of the third order" such that any line of the plane has at most three points in common with it. (This follows readily from the last exercise)

8 The homologous elements of a cone of lines and a projective pencil of planes meet in a "space curve of the third order" such that any plane has at most thiee points in common with it.
9. Dualize the last two propositions
77. Projectivities on a conic. We have seen that two projective conics may coincide (Theorems 8-10), in which case we obtain a projective correspondence among the points or the tangents of the

Fig. 88
conic. The construction of the projectivity in this case is very simple, and leads to many mportant results. It results from the following theorems:

Theorem 12. If A, A^{\prime} are any two distinct homologous points of a projectivity on a conic, and B, B^{\prime}; C, C^{\prime}; etc, are any other pairs of

Tileorem 12 If a, a^{\prime} are any two distinct homologous tangents of a projectivity on a conic, and $b, b^{\prime} ; c, c^{\prime}$; etc., are any other pairs
homologous points, the lines $A^{\prime} B$ and $A B^{\prime}, A^{\prime} C$ and $A C^{\prime}$, ctc, meet in points of the same lave; and this line as independent of the paur $A A^{\prime}$ chosen.
of homalogous thengents, the prints
 rollinerar mith tha sume quint; and the point is indeproudent of the putir wet chosch.

Proof The penclls of lines $A^{\prime}(A B C \cdots)$ and $A\left(A^{\prime} B^{\prime} C^{\prime \prime} \cdots\right)$ are projective (Theorem 10), and since they lave a sell-corresponding line $A A^{\prime}$, they are perspective, and the pairs of homologous lines of thess two pencils therefore meet m the points of a line (iig. 88). This proves the first part of the theorem on the left. That the line thins determined is mdependent of the homologous pair $A A^{\prime}$ chosen then follows at once from the fact this line is the Pascul line of the simple hexagon $A B^{\prime} C A^{\prime} B C^{\prime}$, so that the lines $B^{\prime} C$ and $B C^{\prime}$ and all other analogously formed pairs of hnes meet on it. The theorem on the right follows by duality.

Definition. The line and the point determined loy the above dual theorems are called the atars and the center of the projectivity respectively.

Corollary 1. A (nonidentical) projectivity on a conic is uniquely determined when the axis of projectivity and one pair of distinct homologous points are given.

Corollary 1'. A (nomidentical) projectivity on a conio is uniquely determnined when the center and one pair of distinct homologous tangents are given.

These corollaries follow directly from the construction of the projectivity ansing from the above theorem. This constrnction is as follows: Given the axis o and a pair of distinct homologous points $A A^{\prime}$, to get the point P^{\prime} homologous with any point P on the conic; join P to A^{\prime}; the point P^{\prime} is then on the line joining A to the point of intersection of $A^{\prime} P$ with 0 . Or, given the center O and a pair of distinct homologous tangents $\alpha \alpha^{\prime}$, to construct the tangent p^{\prime} homologous with any tangent p; the line joining the point $a^{\prime} p$ to the center meets a in a point of p^{\prime}.

Corollary 2 Every double point of a projectivnty on a conic is on the axis of the projectivity; and, conversely, every point common to the axis and the conic is a double point.

Corollary 2'. Every double line of a projectivity on a conic contains the center of the projectivity; and, conversely, every tangent of a comic through the oenter is a, doyblle tone of the xrojeativity.

Corollary 3. A projectivity among the points on a conno is parabolic of and only of the axis is tangont to the conic.

Corollary 3'. A projectivity among the tangents to a conic is parabolic of and only if the center. is a point of the conic.

Theorem 13 A projectivity among the points of a conic determines a projectivity of the tangents in which the tangents at pairs of homologous points are homologous

Proof. This follows at once from the fact that the collineation in the plane of the conce which generates the projectivity transforms the tangent at any point of the conic into the tangent at the homologous point, and hence also generates a projectrvity between the tangents.

Theorem 14. The center of a projectivity of tangents on a convc and the axus of the corresponding projectivity of pornts are pole and polar with respect to the conic.

Fig 89
Proof Let $A A^{\prime}, B B^{\prime}, C C^{\prime}$ (fig. 89) be three pairs of homologous points ($A \cdot A^{\prime}$ being distinct), and let $A^{\prime} B$ and $A B^{\prime}, A^{\prime} C$ and $A C^{\prime}$, meet in points R and S respectively, which determine the axis of the projectivity of points. Now the polar of R with respect to the come is determined by the intersections of the pairs of tangents at A^{\prime}, B and A, B^{\prime} respectively; and the polar of S is determined by the pairs of tangents at A^{\prime}, C and A, C^{\prime} respectively (Theorem 13, Chap. V). The pole of the axis $R S$ is then determined as the intersection of these
two polars (Theorem 17, Chap V). But by definition these two polars also determine the center of the projectivity of tangents.

This theorem is obvious if the projectivity has double elements ; the proof given, however, applies to all cases.

The collneation generating the projectivity on the conic transforms the come into itself and clearly leaves the center and axis invariant. The set of all collineations in the plane leaving the conic invariant form a group (cf. p 67). In determining a transformation of this group, any point or any line of the plane may be chosen arbitranly as a double point or a double line of the collmeation; and any two points or lhnes of the comic may be chosen as a homologous pair of the collineation. The collneation is then, however, uniquely determuned. In fact, we have already seen that the projectivity on the conic is uniquely determined by its center and axis and one pair of homologous elements (Theorem 12, Cor. 1); and the theorem just proved shows that if the center of the projectivity is given, the axis is uniquely determined, and conversely

Corollary 1 A plane projective collineation which leavos a nondegenerate convc un ots plane invariant is of Type I if it has two double points on the conic, unless it is of period two, in whuch case it is of Type IV; and is of Type III if the corresponding projectivity on the conic is parabolic

Corollary 2. An elation or a collineation of Type II transforms every nondegenerate conic of its plane into a different conic.

Corollary 3. A plane projective collineation which leaves a conic in its plane invarsant and has no double point on the conic has one and only one double point in the plane.

Theorem 15 The group of projective collineations in a plane leavung a nondegenerate conic invariant is simply isomorphic* with the general projective group on a line.

Proof. Let A be any point of the invariant conic. Any projectivity on the conic then gives rise to a projectivity in the flat pencil at A in which two lines are homologous if they meet the conic in a pair of homologous points. And, conversely, any projectivity in the flat

[^70]pencll at A gives rise to a projectivity on the conic. The group of all projectivulies on a conic is therefore sumply isomorphic wrth the group of all projectivities in a flat pencil, since it is clear that in the correspondence described between the projectivities in the flat pencil and on the conic, the products of corresponding pairs of projectivities will be corresponding projectivithes. Hence the group of plane collineations leaving the come invariant is sımply isomorphic with the general projective group in a flat pencil and hence with the general projective group on a line
78. Involutions. An involution was defined (p. 102) as any projectivity in a one-dimensional form which is of period two, i.e. by the relation $I^{2}=1(I \neq 1)$, where I represents an involution. This relation is clearly equivalent to the other, $\mathrm{I}=\mathrm{I}^{-1}(\mathrm{I} \neq 1)$, so that any projectwity (not the identity) in a one-dimensional form, which is identical with its inverse, is an mvolution It will be recalled that since an involution makes every pair of homologous elements correspond doubly, i.e. A to A^{\prime} and A^{\prime} to A, an involution may also be considered as a pairing of the elements of a one-dimensional form; any such paur is then called a conjugate pair of the mvolution. We propose now to consider this important class of projectivities more in detall. To this end it seems desurable to collect the fundamental properties of involutions which have been obtamed in previous chapters. They are as follows:

1. If the relation $\pi^{2}(A)=A$ holds for a single element A (not a double element of π) of a one-dimensional form, the projectivity π is an involution, and the relation holds for every element of the form (Theorem 26, Chap. IV).
2. An involution is uniquely determined when two pairs of conjugate elements are given (Theorem 26, Cor., Chap. IV).
3. The opposite pairs of any quadrangular set are three pairs of an involution (Theorem 27, Chap. IV).
4. If M, N are distinct double elements of any projectivity in a one-dimensional form and A, A^{\prime} and B, \mathcal{B}^{\prime} are any two parrs of homologous elements of the projectivity, the pairs of elements $M N, A B^{\prime}$ $A^{\prime} B$ are three pairs of an involution (Theorem 27, Cor. 3, Chap. IV),
5. If M, N are double elements of an involution, they are distinct, and every conjugate pair of the involution is harmonic with M, N (Theorem 27, Cor. 1, Chap. IV).
6. An involution is uniquely determined, if two double elemonts are given, or if one double element and another conjugate pair are givon. (This follows directly from the preceding.)
7. An involution is represented analytically by a bilinear form $e x x^{\prime}-a\left(x+x^{\prime}\right)-b=0$, or by the transformation

$$
x^{\prime}=\begin{array}{ll}
a x+b \\
c x-a
\end{array} \quad a^{2}+b c \neq 0
$$

(Theorem 12, Cor. 3, Chap. VI).
8. An anvolution with double elemonts m, n may be represented by the transformation

$$
\frac{x^{\prime}-m}{x^{\prime}-n}=-\frac{x-m}{x-n}
$$

(Theorem 1, Cors. 2, 3, Chap. VIII).
We recall, finally, the Second Theorem of Desargues and its various modifications (§ 46, Chap. V), which need not be repeaied at this place. It has been seen in the preceding sections that any projectivity in a one-dumensional primitive form may be transformed into a projectivity on a conic. We shall find that the construction of an involution on a conic is especially simple, and may be used to advantage in deriving further properties of involutions. Under duality we may
 confine our consideration to the case of an involution of points on a conic.

Theorem 16. The lines joining the conjugatc points of an involution on a conic all pass through the center of the involution.

Proof. Let A, A^{\prime} (fig. 90) be any conjugate pair (A not a double point) of an involution of points on a conic C^{2}. The line $A A^{\prime}$ is then an invariant line of the collineation generating the involution. Every line joining a pair of distinct conjugate points of the involution is therefore invariant, and the generating collineation must be a perspective collineation, since any conineation leaving four lines invariant is either perspectiver of the pentity
(Theorem 9, Cor. 3, Chap III) It remams only to show that the center of this perspective collueation is the center of the involution. Let B, B^{\prime} (B not a double pomt) be any other coujugate parr of the involution, distinct from A, A^{\prime}. Then the lines $A B^{\prime}$ and $A^{\prime} B$ intersect on the axis of the involution. But smce B, B^{\prime} correspond to each other doubly, it follows that the lines $A B$ and $A^{\prime} B^{\prime}$ also intersect on the axis. This axis then joins two of the diagonal pounts of the quadrangle $A A^{\prime} B B^{\prime}$ The center of the perspective collineation is determoned as the intersection of the lines $A A^{\prime}$ and $B B^{\prime}, 1 e$ it is the third dagonal point of the quadrangle $A A^{\prime} B B^{\prime}$. The center of the collneation is therefore the pole of the axis of the involution (Theorem 14, Chap. V) and is therefore (Theorem 14, above) the center of the involution

Since this center of the mvolution is clearly not on the conic, the generating collineation of any involution of the come is a homology, whose center O and axis o are pole and polar with respect to the conic. A homology of period two is sometimes called a harmonic homology, since it transforms any point P of the plane into its harmonic conjugate with respect to O and the point in which $O P$ meets the axis. It is also called a projectrve reflection or a point-line reflection. Clearly this is the only kind of homology that can leave a conic invariant

The construction of the pairs of an involution on a conce is now very simple. If two conjugate pairs A, A^{\prime} and B, B^{\prime} are given, the lines $A A^{\prime}$ and $B B^{\prime}$ determine the center of the involution The conjugate of any other point C on the conic is then determined as the intersection with the conce of the line joining C to the center. If the involution has double points, the tangents at these points pass through the center of the involution; and, conversely, if tangents can be drawn to the come from the center of the involution, the points of contact of these tangents are double pounts of the involution.

The great importance of involutions is in part due to the following theorem:

Theorem 17. Any projectivity in a one-dimensional form may be obtained as the product of two involutions.

Proof. Let II be the projectivity in question, and let A be any point of the one-dimensional form which is not a double point.

Further, let $\Pi(A)=A^{\prime}$ and $\Pi\left(A^{\prime}\right)=A^{\prime \prime}$ Then, if I_{1} is the involution of which A^{\prime} is a double point and of which $A A^{\prime \prime}$ is a connjugate par (Prop. 6, p. 222), we have

$$
\mathrm{I}_{1} \cdot \Pi\left(A A^{\prime}\right)=A^{\prime} A
$$

so that in the projectivaty $I_{1} \cdot \Pi$ the parr $A A^{\prime}$ corresponds to itself doubly. $I_{1} \Pi$ is therefore an involution (Prop. 1, p. 221). If it be denoted by I_{2}, we have $I_{1} \cdot \Pi I=I_{2}$, or $I I=I_{1} I_{2}$, which was to be proved

This proof gives at once:
Corollary 1 Any projectivity II may be represented res the product of two involutions, $\Pi=\mathrm{I}_{1} \cdot \mathrm{I}_{2}$, cither of which (but not both) hus an arbutrary point (not a doublc point of II) for a dondble point.

Proof We have seen above that the involution I_{1} may have an arbitrary point (A^{\prime}) for a double point If in the above argument we let I_{2} be the involution of which A^{\prime} is a double point and $A A^{\prime \prime}$ is a conjugate-parr, we have $\Pi I_{2}\left(A^{\prime} A^{\prime \prime}\right)=A^{\prime \prime} A^{\prime}$; whence $\Pi \cdot I_{2}$ is an involution, say I_{1}. We then have $\Pi=I_{1} l_{2}$, in which I_{2} lass the arlitrary point A^{\prime} for a double point.

The argument given above for the proof of the theorem apphes without change when $A=A^{\prime \prime}$, i.e. when the projectivity ΠI is an involution This leads readuly to the following important theorem:

Corollary 2 If $A A^{\prime}$ is a conjugato pair of an involution I , the involutuon of which A, A^{\prime} are double points transforms I into itsolf, and the two involutions are commutative.

Proof The proof of Theorem 17 gives at once $\mathrm{I}=\mathrm{I}_{2} \cdot \mathrm{I}_{2}$, where I_{1} is determined as the involution of which A, A^{\prime} are clouble points. We have then $I_{1} I=I_{2}$, from which follows, by taking the inverse of both sides of the equality, $\mathrm{I} \cdot \mathrm{I}_{1}=\mathrm{I}_{2}^{-1}=\mathrm{I}_{2}$, or $\mathrm{I}_{1} \cdot \mathrm{I}=\mathrm{I} \cdot \mathrm{I}_{1}$, or $\mathrm{I}_{1} \cdot \mathrm{I} \cdot \mathrm{I}_{1}=\mathrm{I}$.

As an immediate corollary of the preceding we have
Corollary 3. The product of two involutions with double points A, A^{\prime} and B, B^{\prime} respectively transforms into itself the involution in whech $A A^{\prime}$ and $B B^{\prime}$ are two conjugate pairs.

Involutions related as are the two in Cor. 2 above are worthy of special attention.

Definitron. Two involutions are said to be harmonio if their product is an involution.

Theorem 18. Two harmonic involutions are commutative.
Proof. If $\mathrm{I}_{1}, \mathrm{I}_{2}$ are harinonic, we have, by defintion, $\mathrm{I}_{1} \cdot \mathrm{I}_{2}=\mathrm{I}_{3}$, where I_{3} is an involution. This gives at once the relations $I_{1} \cdot I_{2} \cdot I_{3}=1$ and $\mathrm{I}_{1} \mathrm{I}_{2}=\mathrm{I}_{2} \cdot \mathrm{I}_{1}$.

Corollary Conversely, if two distinct involutions are commutatzve, they are harmonic.

For from the relation $I_{1} \cdot I_{2}=I_{2} \cdot I_{1}$ follows $\left(I_{1} \cdot I_{2}\right)^{2}=1$; i.e. $I_{1} \cdot I_{2}$ is an involution, since $I_{1} I_{2} \neq 1$.

Definition. The set of involutions harmonic with a given involution is called a pencel of involutions.

It follows then from Theorem 17, Cor. 2, that the set of all involuthons in which two given elements form a conjugate paur is a pencil. Thus the double points of the involutions of such a pencil are the pars of an involution
79. Involutions associated with a given projectivity. In deriving further theorems on involutions we shall find it desirable to suppose the projectivities in question to be on a conic.

Theorem 19. If a projectivity on a conic is represented as the product of two involutions, the axis of the projectivity is the line joining the centers of the two involutions

Proof. Let the given projectivity be $\Pi=I_{2} \cdot I_{1} ; \mathrm{I}_{1}, \mathrm{I}_{2}$ being two involutions. Let O_{1}, O_{2} be the centers of I_{1}, I_{2} respectively (fig 91), and let A and B be any two points on the couic which are not double points of either of the involutions I_{1} or I_{2} and which are not a conjugate pair of I_{1} or I_{2}. If, then, we have $\Pi(A B)=A^{\prime} B^{\prime}$, we have, by hypothesis, $\mathrm{I}_{1}(A B)=A_{1} B_{1}$ and

Fig 91 $\mathrm{I}_{2}\left(A_{1} B_{1}\right)=A^{\prime} B^{\prime} ; A_{1}, B_{1}$ being uniquely determined points of the conic, such that the lines $A A_{1}, B B_{1}$ intersect in O_{1} and the lines $A_{1} A^{\prime}, B_{1} B^{\prime}$ intersect in O_{2}. The Pascal line of the hexagon $A A_{1} A^{\prime} B B_{1} B^{\prime}$ then passes through O_{1}, O_{2} and the intersection of the lines $A B^{\prime}$ and $A^{\prime} B$. But the latter point is a point on the axis of II. This proves the theorem.

Corollary. A projectivity on a conic is the produrt of tho involutoons, the center of one of whuch may be any arbitrary point (not " double point) on the axus of the projectivity; the center of the other is then uniquely determined.

Proof Let the projectivity $I I$ be delermined ly its axis l and any parr of homologous points A, A^{\prime} (fig. 91). Let O_{1} be any print on the axis not a double point of I, and let I_{1} be the involution of which O_{1} is the center. If, then, $\mathrm{I}_{1}(A)=\Lambda_{1}$, the center O_{2} of the involution I_{2} such that $\Pi=I_{2} I_{1}$ is clearly determinerl as the intersection of the line $A_{1} A^{\prime}$ with the axis. For by the theorem the product $I_{2} \cdot I_{1}$ is n projectivity having l for an axis, and it has the points A, A^{\prime} as a homologous parr. This shows that the center of the first involution may be any point on the axis (not a double point). The modification of this argument in order to show that the center of the second involution may be chosen arbitrarily (instead of the center of the first) is obvious.

Theorem 20. There is one and only one involution commutrtive with a grven nonparabolic noninvolutoric projectivity. If the projectivity is represented on a conic, the center of this involution is the center of the projectivity.

Proof Let the given nonparabolic projectivity II be on a conic, and let I be any involution commutative with Π; i.e. such that we have $\Pi \cdot I=I \cdot \Pi$. This is equivalent to $\Pi \cdot I \cdot \Pi^{-1}=I$. That is to say, I is transformed into itself by II. Hence the center of I is transformed into itself by the collineation generating II. But by hypothesis the only invariant pounts of this collineation are its center and the points (If exastent) in which its axis meets the conic. Since the center of I cannot be on the conic, it must coincide with the center of II. Moreover, if the center of I is the same as the center of $I I, I$ is transformed into itself by the collineation generating $I I, I I \cdot I \cdot I^{-1}=I$. Hence $\Pi \cdot I=I \cdot I I$. Hence I is the one and only involution commutative with II.

Corollary 1. There is no involution commutative with a parabolic projectivity.
Definition. The involution commutative "with a given nonparabolic noninvolutoric projectivity is called the involution belonging to the given prajectivity. An involution belongs to itgelf:

Corollary 2 If a nonparabolic projectivity has double points, the anvolution belongrng to the projectivity has the saine double points.

For if the axis of the projectivity meets the conic in two points, the tangents to the conce at these ponts meet in the pole of the axis

It is to be noted that the involution I belonging to a given projectivity Π transforms Π mto 1 tself, and is transformed into itself by Π. Indeed, from the relation $\Pi \cdot I=I \cdot \Pi$ follow at once the relations $I \cdot \Pi I=\Pi$ and $\Pi \cdot I \cdot \Pi^{-1}=I$. Conversely, from the equation $\Pi \cdot I \cdot \Pi^{-1}$ follows $\Pi \cdot I=I \cdot \Pi$.

Theorem 21. The neccssary and sufficient condition that two involutrons on a conic be harmonic is that their centers be conjugate with respect to the conic.

Proof. The condition is sufficient For let $\mathrm{I}_{1}, \mathrm{I}_{2}$ be two mvolutions on the conic whose centers O_{1}, O_{2} respectively are conjugate with respect to the conic (fig. 92). Let A be any point

Fia. 02 of the conic not a double point of either involution, and let $\mathrm{I}_{1}(A)=A_{1}$ and $\mathrm{I}_{2}\left(A_{1}\right)=A^{\prime}$. If, then, $\mathrm{I}_{1}\left(A^{\prime}\right)=A_{1}^{\prime}$, the center O_{1} is a diagonal point of the quadrangle $A A_{1} A^{\prime} A_{1}^{\prime}$, and the center O_{2} is on the side $A_{1} A^{\prime}$. Since, by hypothesss, O_{2} is conjugate to O_{1} with respect to the conic, it must be the dragonal point on $A_{1} A^{\prime}$, i.e. it must be collinear with $A A_{1}^{\prime}$. We have then $\mathrm{I}_{2} \cdot \mathrm{I}_{1}\left(A A^{\prime}\right)=A^{\prime} A$, i.e. the projectivity $\mathrm{I}_{2} \cdot \mathrm{I}_{1}$ is an involution I_{3}. The center O_{8} of the mvolution I_{8} is then the pole of the line $O_{1} O_{2}$ with respect to the conic (Theorem 19). The triangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{\mathrm{s}}$ is therefore self-polar with respect to the conic. It follows readuly also that the condation is necessary. For the relation $\mathrm{I}_{1} \cdot \mathrm{I}_{2}=\mathrm{I}_{3}$ leads at once to the relation $I_{2}=I_{1} \cdot I_{3}$. If O_{1}, O_{2}, O_{3} are the centers respectively of the involutions I_{1}, I_{2}, I_{3}, the former of these two relations shows (Theorem 19) that O_{3} is the pole of the line $O_{1} O_{2}$; while the latter shows that O_{2} is the pole of the line $O_{1} O_{3}$. The triangle $O_{1} O_{2} O_{3}$ is therefore self-polar.

Corollary 1. Given any two moolutuons, there exists a third involution which is harmonic wuth each of the given involutions

For if we take the iwo involutions on a come, the involution whose center is the pole with respect to the comic of the lme joinug the centers of the given involutions clearly satisfies the condition of the theorem for each of the latter

Corollary 2 Three involutrons each of which is harmonic to the other two constrtute, together with the identity, a group.

Corollary 3. The centers of all involutions in a pencil of involutions are collinear.

Theorem 22. The set of all projectiveties to which belongs the same involution I forms a commutative group.

Proof If Π, Π_{1} are two projectivities to each of which belongs the involution I, we have the relations $I \cdot \Pi \cdot I=\Pi$ and $I \cdot \Pi_{1} \cdot I=\Pi_{1}$, from which follows $I \cdot \Pi^{-1} I=\Pi^{-1}$ and, by multiplication, the relation I. $\Pi I \cdot I \cdot \Pi_{1} I=I \cdot \Pi \cdot \Pi_{1} \cdot I=\Pi \cdot \Pi_{1}$, which shows that the set

Fig. 98 forms a group. To show that any two projectivities of this group are commutative, we need only suppose the projectivities given on a conic. Let A be any point on this conic, and let $\Pi(\Lambda)=A^{\prime}$ and $\Pi_{1}\left(A^{\prime}\right)=A_{1}^{\prime}$, so that $\Pi_{1} \cdot \Pi(A)=A_{1}^{\prime}$. Since the same involution I belongs, by hypothesis, both to Π and Π_{1}, these two projectivities lhave the same axis; let it be the lne l (fig. 93). The point $\Pi_{1}(A)=A_{1}$ is now readily determined (Theorem 12) as the intersection with the conic of the line jonning A^{\prime} to the intersection of the line $A A_{1}^{\prime}$ with the axis l. In like manner, $\Pi\left(A_{1}\right)$ is determined as the intersection with the conic of the line joming A to the intersection of the line $A_{1} A^{\prime}$ with the axis l. Hence $\Pi\left(A_{1}\right)=A_{1}^{\prime}$, and hence $\Pi \cdot \Pi_{1}(A)=A_{1}^{\prime}$.

It is noteworthy that when the common axis of the projectivities of this group meets the conic in two points, which, are then common double points of all the projectivities of the group, the group is the
same as the one listed as Type 2, p 209. If, however, our geometry admuts of a line in the plane of a come but not meeting the conic, the argument just given proves the existence of a commutative group none of the projectivities of which have a double point

Theorem 23. Two involutions have a conjugate pair (or a double point) in comnon if and ouly if the product of the two anvolutions has two double points (or is paruboluc)

Proof Thus follows at once of the involutions are taken on a conic For a common conjugate pair (or double point) must be on the line joining the centers of the two involutions. This line must then meet the conic in two points (or be tangent to it) in order that the involutions may have a conjugate pair (or a double point) in common.

EXERCISES

1. Dualize all the theorems and conollanies of the last two sections.
2. The product of two involutions on a come is parabolic if and only if the line joining the centers of the involutions as tangent to the comc. Dualize.
3. Any involution of a pencil is uniquely determined when one of its conjugate pairs is given
4. Let II be a noninvolutoric projectrvity, and let I be the involution belonging to II; further, let II $\left(A A^{\prime}\right)=A^{\prime} A^{\prime \prime}, A$ being any point on which the projectivity operates which is not a double point, and let $\mathrm{I}\left(A^{\prime}\right)=A_{1}^{\prime}$ Show, by taking the projectivity on a conc, that the points $A^{\prime} A_{1}^{\prime}$ are harmonic with the points $A A^{\prime \prime}$.
5. Derive the theorem of Ex. 4 drectly as a corollary of Prop. 4, p. 221, assuming that the projectivity II has two distinct double points.

6 From the theorem of Ex. 4 show how to construct the meolution belonging to a projectivity II ou a line without making use of any double points the projectivity may have
7. A projectivity is umquely determmed if the meolution belonging to it and one pair of homologons points are given.
8. The product of two involutions I_{1}, I_{2} is a projectivity to which belongs the involution which is harmonic with each of the mnolutions I_{1}, I_{2}
9. Conversely, every projectivity to which a given involution I belongs can be olvtaned as the product of two mvolutions hamonic with I.
10. Show that any two piojectivities Π_{1}, Π_{2} may be obtained as the product of involutions in the form $\Pi_{1}=I I_{1}, \Pi_{2}=I_{2} I$; and hence that the product of the two projectivities is given by $\Pi_{2} \cdot \Pi_{1}=I_{2} \cdot I_{1}$.
11. Show that a projectivity $\Pi=I I_{1}$ may also be written $\Pi=I_{2} \cdot I, I_{2}$ being a unquely determined involution, and that in this case the two involutions I_{1}, I_{2} are distinct unless IJ is involutoric.
12. Show that if I_{1}, I_{2}, I_{3} are three involutions of the same pencil, the relation $\left(I_{1} I_{2} I_{8}\right)^{2}=1$ must hold

13 If $a a^{\prime}, b b^{\prime}, c c^{\prime}$ are the coordmates of three pains of points in involution, show that $\frac{a^{\prime}-b}{a^{\prime}-\iota} \frac{b^{\prime}-c}{b^{\prime}-a} \frac{c^{\prime}-a}{c^{\prime}-b}=1$.
80. Harmonic transformations. The defintion of harmonic involutrons in the section above is a special case of a more goneral notion which can be defined for $(1,1)$ transformatious of any kind whatover.

Definition Two distinct transformations \mathbf{A} and \mathbf{B} are said to be harmone if they satisfy the relation $\left(\mathrm{AB}^{-1}\right)^{2}=1$ or the equivalent relation $\left(\mathrm{BA}^{-1}\right)^{2}=1$, provided that $\mathrm{AB}^{-1} \neq 1$.

A number of theorems which are easy consequences of this definition when taken in conjunction with the two preceding sections are stated in the following exercises (Cf. C. Segre, Note sur les homographies binaires et leur farsceaux, Journal fur die reine und angewandte Mathematik, Vol. 100 (1887), pp. 317-330, and IF. Wiener, Ueber die aus zwei Spiegelungen zusammengesetzten Verwandtschaften, Berichte d. K. sächsischen Gesellschaft der Wissenschaften, Leipzig, Vol. 43 (1891), pp. 644-673)

EXERCISES

1 If A and B are two distinct involutoric transformations, they are harmonic to therr product AB.
2. If three involutoric transformations $\mathrm{A}, \mathrm{B}, \Gamma$ satisfy the relations $(A B \Gamma)^{2}=1, A B \Gamma \neq 1$, they are all the harmonic to the transformation $A B$.
3. If a transformation Σ is the product of two involutornc transformations A, B (i.e $\Sigma=A B$) and Γ_{18} an involutoric transformation harmonio to Σ, then we have $(A B I)^{2}=1$
4. If $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ are six points of a line, the involutions $\mathrm{A}, \mathrm{B}, \mathrm{\Gamma}$, such that $\Gamma(A A)=B^{\prime} B, \mathrm{~A}\left(B B^{\prime}\right)=C^{\prime} C, \mathrm{~B}\left(C C^{\prime}\right)=A^{\prime} A$, are all harmonio to the same projectavity. Show that if the six points are taken on a conic, this proposition is equivalent to Pascal's theorem (Theorem 3, Chap. V).
5. The set of involutions of a one-dimensional form which are harmonic to a given nonparabolic projectivity form a pencil. Hence, if an involution with double points is harmonle to a projectuvity with two double points, the two parrs of double points form a harmonic set.
6. Let O be a fixed point of a line l, and let C be called the mid-point of a pair of points A, B, provided that C is the harmonic conjugate of O with respect to A and B. If $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ are any sixx poinity of l distinct from O, and $A B^{\prime}$ have the same mid-point as $A^{\prime} B^{\prime}$, aind $B C^{\prime}$ haye the same ${ }^{\circ}$ mid-point as $B^{\prime} C$, then $C A^{\prime}$ will have the same nad ppoini gso
7. Any two involutions of the same one-dimonsional form detormine a pencil of involutions. Given two unvolutions A, B and a pont $M \Gamma$, slow how to construct the other double point of that involution of the pencel of wheh one double point is $M I$

8 The molutions of conjugate pomts on a line l with regard to the comes of any pencal of comes in a plane with l lom a penen of involutions.
9. If two nonparabolic projectivities are commutative, the mvolutions belonging to them coincide, unless both projectivities are involutions, in whech case the mvolutions may be harmone
10. If [II] is the set of projectivities to which belongs an mvolution I and A and B are two given points, then we have $[\Pi(A)] \pi[\Pi(B)]$.
11. A conic through two of the foul common points of a pencrl of conics of Type I meets the comes of the pencil in pans of an involution. Extend this theorem to the other types of pencils of conics. Dualuze
12. The pairs of second points of intersection of the opposite sldes of a complete quadrangle with a conic circumscribed to its diagonal triangle are in involution (Stuim, Die Lehie von den Geometnischen Verwandtschaften, Vol I, p. 149).
81. Scale on a conic. The notions of a point algebra and a scale which we have developed hitherto only for the elements of onedimensional primitive forms may also be studied io advantage on a conc. The constructions for the sum and the product of two points (numbers) on a come are remarkably sımple. As in the case on the line, let $0,1, \infty$ be any three arbitrary distinct points on a conic C^{2}. Regarding these as the fundamental points of our scale on the conic, the sum and the product of any two points x, y on the conic (which are distinct from ∞) are defined as follows:

Drfinition. The conjugate of 0 in the anvolution on the conic having ∞ for a double point and x, y for a conjugate pair is called the sum of the two points x, y and is denoted by $x+y$ (fig. 94, left). The conjugate of 1 in the involution determined on the come by the conjugate pairs $0, \infty$ and x, y is called the product of the points x, y and is denoted by $x \cdot y$ (fig. 94, right).

It will be noted that under Assumption P this definition is entirely equivalent to the definitions of the sum and product of two points on a line, previously given (Chap. VI). To construct the point $x+y$ on the conic (fig. 94), we need only determine the center of the involution in question as the intersection of the tangent at ∞ with the line joining the points x, y. The point $x+y$ is then determined as the intersection with the conic of the line joinng the center to the pount 0 . Similarly,
to obtain the product of the points x, y we determine the conter of the involution as the intersection of the lines 000 and $a y$. The 1 wint $: y$ is then the intersection with the conic of the line juming thus center to

Fig 04
the point 1. The inverse operations (subtraction and division) lead to equally smmple constructions Since the scale thus defined is obviously projective with the scale on a line, it is not necessary to derive again the fundamental properties of addition and sulbtraction, multiplication and division It is clear from this consideration that the points of a conve form a field with reference to the operations just definced. 'This fact will be found of use in thie analytic treatinent of conics.

At this point we will make use of at to discuss the existence of the square root of a number in the field of points. It is clear from the

Fig. 95
preceding discussion that if a number x satisfies the equation $x^{2}=a$, the tangent to the conic at the point x must pass through the intersection of the lines 0∞ and $1 a_{a}$ (fig. 95). A number a will therefore have a square root in the field if and only if a tangent can be drawn'to
the conic from the intersection of the lines 0∞ and $1 a$; and, conversely, if the number a has a square root in the field, a tangent can be drawn to the conic from this pount of untersection. It follows at once that if a number a has a square root x, it also has another which is obtaned by drawing the second tangent to the conic from the point of intersection of the lines 0∞ and $1 a$. Sunce this tangent meets the conic in a point which is the harmonic conjugate of x with respect to 0_{∞}, it follows that this second square root is $-x$. It follows also from this construction that the pont 1 has the two square roots 1 and -1 in any field in which 1 and -1 are distinct, i.e whenever H_{0} is satisfied.

We may use these considerations to derive the following theorem, which will be used later

Theorem 24. If $A A^{\prime}, B B^{\prime}$ are any two distinot pairs of an mvolution, there exists one and only one pair $C C^{\prime}$ distinct from $B B^{\prime}$ such that the cross ratios R ($A A^{\prime}, B B^{\prime}$) and $\mathrm{B}_{0}\left(A A^{\prime}, \quad C C^{\prime}\right)$ are equal.

Proof. Let the involution be taken on a conic, and let the parrs $A A^{\prime}$ and $B B^{\prime}$ be represented by the points 0∞ and $1 a$ respectively (fig. 96). Let $x x^{\prime}$ be any other pair of the involution. We then have, clearly from the above, $x x^{\prime}=a$. Further, the cross ratios in question give

$$
\mathrm{P}(0 \infty, 1 a)=\frac{1}{a}, \quad \mathrm{~B}\left(0 \infty, x x^{\prime}\right)=\frac{x}{x^{\prime}} .
$$

These are equal, if and only if $x^{\prime}=a x$, or if $x x^{\prime}=a x^{2}$. But this implies the relation $a=\alpha x^{2}$, and since we have $\alpha \neq 0$, this gives $x^{2}=1$. The only pair of the mvolution satisfyng the conditions of the theorem is therefore the pair $C C^{\prime}=-1,-\alpha$.

EXERCISES

1. Show that an involution which has two harmonic conjugate pairs has double points if and only if -1 has a square root in the field

2 Show that any involution may be represented by the equation $x^{\prime} x=a$.
3. The equation of Ex. 18, p. 230, is the condition that the lines joining the three parrs of points $a a^{\prime}, b b^{\prime}, c c^{\prime}$ on a conic are concurent.

4 Show that if the involution $x^{\prime} x=a$ has a conjugate jrair $b b^{\prime}$ such that the cross ratio $\mathbf{R}_{6}\left(0 \infty, b b^{\prime}\right)$ has the value λ, the number $a \lambda$ hats a stuuro root in the field
82. Parametric representation of a conic. Lel a scale be established on a conic C^{2} by choosing three distinct points of the conic as the fundamental points, say, $O=0, M=\infty, A=1$ Then let us establish a system of nonhomogeneous point coördinates in the plane of the come as follows: Let

Fig. 97 the line $O M$ be the x axis, with O as origin and M as ω_{x} (fig. 97). Let the tangents at 0 and M to the conic meet in a point N, and let the tangent $O N$ be the y-axis, with N as ∞_{y}. Finally, let the point Λ be the point $(1,1)$, so that the line $A N$ meets the x-axis in the point for which $x=1$, and $A M$ meets
the y-axis in the point for which $y=1$. Now let $P=\lambda$ be any point on the conc. The coördinates (x, y) of P are determined by the intersections of the lines $P N$ and $P M$ with the x-axis and the y-axis respectively. We have at once the relation

$$
y=\lambda,
$$

since the points $0, \infty, 1, \lambda$ on the conic are perspective from M with points $0, \infty, 1, y$ on the y-axis. To determine x in terms of λ, we note, first, that from the constructions given, any line through N meets the conic (if at all) in two points whose sum in the scale is 0 . In particular, the points $1,-1$ on the conic are collinear with N and the point 1 on the x-axis, and the points $\lambda,-\lambda$ on the conic are collinear with N and the point ∞ on the x-axis. Since the latter point is also on the line joining 0 and ∞ on the conie, the construction for multiplication on the conic show's that amy line through the polnt on on
the x-axis meets the conic (if at all) in two points whose product is constant, and hence equal to $-\lambda^{2}$. The line joiming the point x on the x-axis to the point -1 on the conic therefore meets the conic again in the point λ^{2}. But now we have $0, \infty, 1, \lambda^{2}$ on the conic perspective from the point - 1 on the conic with the points $0, \infty, 1, x$ on the x-axis. This gives the relation

$$
x=\lambda^{2} .
$$

We may now readily express these relations in homogeneous form If the triangle $O M N$ is taken as triangle of reference, $O N$ being $x_{1}=0$, OM being $x_{2}=0$, and the point A being the point $(1,1,1)$, we pass from the nouhomogeneous to the homogeneous by simply placing $x=x_{1} / x_{3}, y=x_{2} / x_{3}$. The points of the conac C^{2} may then be represented by the relations

$$
\begin{equation*}
x_{1}: x_{2}: x_{3}=\lambda^{2}: \lambda: 1 \tag{1}
\end{equation*}
$$

This agrees with our preceding results, since the elimination of λ betweon these equations gives at once

$$
x_{2}^{2}-x_{1} x_{3}=0,
$$

which we have previously obtaned as the equation of the conic.
It is to be noted that the point M on the conic, which corresponds to the value $\lambda=\infty$, is exceptional in this equation. This exceptional character is readily removed by writing the parameter λ homogeneously $\lambda=\lambda_{1} \cdot \lambda_{2}$. Equations (1) then readily give

Theorem 25. A conic may be represented analytically by the equations $x_{1}: x_{2}: x_{3}=\lambda_{1}^{2} \cdot \lambda_{1} \lambda_{2}: \lambda_{2}^{2}$.

This is called a parametric reprcsentation of a conic.

EXERCISES

1. Show that the equation of the line joining two points λ_{1}, λ_{2} on the come (1) above is $x_{1}-\left(\lambda_{1}+\lambda_{2}\right) x_{2}+\lambda_{1} \lambda_{2} x_{8}=0$, and that the equation of the tangent to the conic at a point λ_{1} is $x_{1}-2 \lambda_{1} x_{2}+\lambda_{1}^{2} x_{3}=0$. Dualize.
2. Show that any collineation leaving the conic (1) invariant is of the form $x_{1}^{\prime}: x_{2}^{\prime}: x_{8}^{\prime}=\alpha^{2} x_{1}+2 \alpha \beta x_{2}+\beta^{2} x_{8}: \alpha \gamma x_{1}+(\alpha \delta+\beta \gamma) x_{2}+\beta \delta x_{3} \cdot \gamma^{2} x_{1}+2 \gamma \delta x_{2}+\delta^{2} x_{3}$. (Hint Use the parametric representation of the conic and let the projectivity generated on the conic by the collineation be $\lambda_{1}^{\prime}=a \lambda_{1}+\beta \lambda_{2}, \lambda_{2}^{\prime}=\gamma \lambda_{1}+\delta \lambda_{2}$.)

CHAPTER IX

GEOMETRIC CONSTRUCTIONS. INVARIANTS

83. The degree of a geometric problem. The specification of a line by two of its points may be regarded as a gcometric operation.* The plane dual of this operation is the specification of a point by two lines In space we have hitherto made use of the following geometric operations the specification of a line by two planes (this is the space dual of the first operation mentioned above) ; the specification of a plane by two intersecting lines (the space dual of the second operation above) ; the specification of a plane by three of ils points or by a point and a line; the specification of a point by three planes or by a plane and a line. These operations are known as linear operations or operations of the first degrec, and the elements determined by them from a set of given elements are said to be obtained by linear constructions, or by constructions of the first deyree. The reason for this terminology is found in the corresponding analytic formulations Indeed, it is at once clear that each of the two linear operations in a plane corresponds analyizally to the solution of a parr of linear equations; and the lnear operations in space clearly correspond to the solution of systems of three equations, each of the first degree. Any problem which can be solved by a finite sequence of linear constructions is sald to be a linear problem or a problem of the first degree. Any such problem has, if determinate, one and only one solution.

In the usual representation of the ordnary real projective geometry in a plane by means of points and lines diawn, let us say, with a pencil on a sheet of paper, the linear constructions are evidently those that can be carried out by the use of a stranghtedge alone There is no familiar mechanical

[^71]device for diawing lines and planes in space. But a pucture (which is the section by a plane of a projection fiom a point) of the lines and points of mtersection of hnearly constructed planes may be constructed with a sti arghtedge (cf. the definition of a plane).

As examples of lmear problems we mention (a) the determination of the point homologous with a given point in a projectivity on a lime of which three pairs of homologous points are given; (b) the determmation of the sixth point of a quadrangular set of which five poinls are given; (c) the determination of the second double pount of a projectivity on a line of which one double point and two pairs of homologous points are given (this is equivalent to (b)); (d) the determunation of the second point of intersection of a line with a come, one point of miersection and four other points of the conic being given, etc.

The analytic relations existing between geometric elements offer a convenient meaus of classifying geometnc problems.* Confining ourselves, for the salke of brevily, to problems in a plane, a geometric problem consists in constructing certain points, lines, etc., which bear given relations to a certain set of points, lenes, etc, which are supposed given in advance. In fact, we may suppose that the elements sought are points only; for if a line is to be determined, it is sufficient to determine iwo points of this line; or if a conic as sought, it is sufficlent to determine five points of this conic, etc. Simlar considerations may also be apphed to the given elements of the problem, to the effect that we may assume these given elements all to be points. This merely involves replacing any given elements that are not points by certain sets of points having the property of umiquely determining these elements Confining our discussion to problems in which this is possible, any geometric problem may be reduced to one or more problems of the following form: Given in a plane a certain finite number of points, to construct a point which shall bear to the given points certain given relations.

In the analytic formulation of such a problem the given points are supposed to be determined by their coördinates (homogeneous or nonhomogeneous), referred to a certain frame of reference. The vertices of this frame of reference are either points contamed among the given points, or some or all of them are additional points which we

[^72]suppose added to the given points The set of all given points then gives rise to a certann set of coordinates, which we will denote by $1, a, b, c, \cdots$,* and which are supposed known These numbers together with all numbers obtanable from them by a finte number of rational operations constitute a set of numbers,
$$
\mathrm{K}=[1, a, b, c, \cdots],
$$
which we will call the domain of rationality defined by the data \dagger In addition to the coordinates of the known points (which, for the sake of simplicity, we will suppose given in nonhomogeneous form), the coordinates (x, y) of the point sought must be considered The conditions of the problem then lead to certain analytic relations which these coordinates x, y and a, b, c - must satisfy. Eliminating one of the variables, say y, we obtain two equations,
$$
f_{1}(x)=0, f_{2}(x, y)=0,
$$
the first containing x but not y; the second, in general, containing both x and y The problem is thus replaced by two problems: the first depending on the solution of $f_{1}(x)=0$ to determine the abscissa of the unknown point; the second to determine the ordinate, assuming the abscissa to be known

In view of this fact we may confine ourselves to the discussion of problems depending on a sungle equation wilh one unknown. Such problems may be classified according to the equation to which they give rise. A problem is sand to be algebraic if the equation on which its solution depends is algebraic, i.e. if this equation can be put in the form

$$
\begin{equation*}
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}=0 \tag{1}
\end{equation*}
$$

in which the coefficients $a_{1}, a_{2}, \cdots, a_{n}$ are numbers of the domain of rationality defined by the data. Any problem which is not algebraic is saad to be transcendental. Algebraic problems (which alone will be considered) may in turn be classified according to the degree n of

[^73]the equation on which their solutions depend. We have thus problems of the first degree (already referred to), depending merely on the solution of an equation of the first degree; problems of the second degree, depending on the solution of an equation of the second degree, etc.

Account must however be taken of the fact that equation (1) may be reducible within the doman K ; m^{2} other words, that the left member of this equation may be the product of two or more polynomials whose coefficients are numbers of K . In fact, let us suppose, for example, that this equation may be written in the form

$$
\phi_{1}(x) \cdot \phi_{2}(x)=0,
$$

where ϕ_{1}, ϕ_{2} are two polywomials of the kind indicated, and of degrees n_{1} and n_{2} respectively ($n_{1}+n_{2}=n$). Equation (1) is then equivalent to the two equations

$$
\phi_{1}(x)=0, \quad \phi_{2}(x)=0 .
$$

Then either it happens that one of these two equations, eg. the first, furnshes all the solutions of the given problem, in which case ϕ_{1} being assumed arreducible in K , the problem is not of degree n, but of degree $n_{1}<n$; or, both equations furnish solutions of the problem, in which case ϕ_{2} also being assumed irreducible in K , the problem reduces to two problems, one of degree n_{1} and one of degree n_{2}. In speaking of a problem of the nth degree we will therefore always assume that the associated equation of degree n is irreducible in the domain of rationality defined by the data. Moreover, we hare tacitly assumed throughout this discussion that equation (1) has a root; we shall see presently that this assumption can always be satisfied by the introduction, if necessary, of so-called improper elements. It is important to note, however, since our Assumptions A, E, P do not in eny way limit the field of numbers to which the coordinates of all elements of our space belong, and since equations of degree greater than one do not always have a root in a given field when the coefficients of the equation belong to this field, there exist spaces in which problems of degree higher than the first may have no solutions. Thus in the ordunary real projective geometry a problem of the second degree will have a (real) solution ouly if the quadratic equation on which it depends has a (real) root.

The example of a problem of the second degree given in the next section will serve to illustrate the general discussion given above.
84. The intersection of a given line with a given conic. Given a conic defined, let us say, by three points A, B, C and the tangents at A and B, to find the points of intersection of a given line with this conic. Using nonhomogeneous coordnates and choosing as x-axis one of the given tangents to the conic, as y-axis the line joming the points A and B, and as the point $(1,1)$ the point C, the equation of the conic may be assumed to be of the form.

$$
x^{2}-y=0
$$

The equation of the given line may then be assumed to be of the form

$$
y=p x+q \cdot *
$$

The domann of rationality defined by the data is in this case

$$
\mathrm{K}=[1, p, q] .
$$

The elimination of y between the two equations above then leads to the equation

$$
\begin{equation*}
x^{2}-p x-q=0 . \tag{1}
\end{equation*}
$$

This equation is not an general reducible in the domain K. The problem of determining the points of intersection of an arbitrary line in a plane with a given comic in this plane is then a problem of the second degree If equation (1) has a root in the field of the geometry, it is clear that this root gives rise to a solution of the problem proposed; if this equation has no root in the field, the problem has no solution.

If, on the other hand, one point of mtersection of the line with the conic is given, so that one root of equation (1), say $x=r$, is known, the doman given by the data is

$$
\mathrm{K}^{\prime}=[1, p, q, r],
$$

and in this domain (1) is reducible, in fact, it is equivalent to the equation

$$
(x+r-p)(x-r)=0
$$

The problem of finding the remaning point of intersection then depends merely on the solution of the linear equation

$$
x+r-p=0
$$

[^74]that is, the problem is of the first degree, as already noted among the examples of linear problems.

It is important to note that equation (1) is the mosi general form of equation of the second degree. It follows that every problem of the sccond degrce in a plane crn be reduced to the construction of the points of intersection of an arbitrary line with a particular conic. We shall return to thas later (§ 86).
85. Improper elements. Proposition K_{2}. We have called attention frequently to the fact that the nature of the field of points on a line is not completcly determined by Assumptions A, E, P, under which we are working We have seen in particular that this field may be finite or infinite. The oxample of an analytic space discussed in the Introduction shows that the theory thus far developed apphes equally well whether we assume the field of points on a line to consist of all the ordinary rational numbers, or of all the ordinary real numbers, or of all the ordinary complex numbers. According to which of these cases we assume, our space may be said to be the ordmary rational space, or the ordinary real space, or the ordinary complex space. Now, in the latter we know that every number has a square root. Moreover, each of the former spaces (the rational and the real) are clearly contained in the complex space as subspaces. Suppose now that our space S is one in which not every number has a square root. In such a case 16 is often convenient to be able to think of our space S as forming a subspace in a more extensive space S^{\prime}, in which some or all of these numbers do have square roots.

We have seen that the ordinary rational and ordinary real spaces are such that they may be regarded as subspaces of a more extensive space in the number system associated whth which the square root of any number always exists. In fact, they may be regarded as subspaces of the ordinary complex space which has this property. For a general field it is easy to prove that if $a_{1}, a_{2}, \cdots, a_{n}$ are any finite set of elements of a field F, there exists a field F^{\prime}, containing all the elements of F, such that each of the elements $a_{1}, a_{2}, \cdots, a_{n}$ is a square in F^{\prime}. This is, of course, less general than the theorem that a field F^{\prime} exists in which every element of F is a square, but it is sufficiently general for many geometric purposes. Tn the presence of
 statement:

Proposition K_{2} If any finite number of involutions are given in a space S satrsfying Assumptions $\mathrm{A}, \mathrm{E}, \mathrm{P}$, there exists a space S^{\prime} of which S is a subspace,* such that all the given involutions have double points in S^{\prime}

A proof of this theorem will be found at the end of the chapter. The proposition 1s, from the analytic point of view, that the domain of rationality determined by a quadratic problem may le extended so as to include solutions of that problem. The space S^{\prime} may be called an extended space. The elements of S may be called proper elements, and those of S^{\prime} which are not in S may be called improper. A projective transformation which changes every proper element into a proper element is likewise a proper transformation; one which transforms proper elements into improper elements, on the other hand, is called an umproper transformation. Takıng Proposition K_{z} for the present as an assumption like $\mathrm{A}, \mathrm{E}, \mathrm{P}$, and H_{0}, and noting that it is consistent with these other assumptions because they are all satisfied by the ordinary complex space, we proceed to derive some of its consequences.

Theorem 1. A proper onc-dimensional projectivity without proper double elements may always be regarded in an extended space as having two umproper double clements. ($\left.\mathrm{A}, \mathrm{E}, \mathrm{P}, \mathrm{H}_{0}, \mathrm{~K}_{2}\right) \dagger$

Proof. Suppose the projectivity given on a conic If the involution which belongs to this projectivity had two proper double points, they would be the intersections of the axis of the projectivily with the conic, and hence the given projectivity would have proper double points. Let S^{\prime} be the extended space in which $\left(\mathrm{K}_{2}\right)$ the involution has double points. There are then two points of S^{\prime} in which the axis of the projectivity meets the conic, and these are, by Theorem 20 , Chap VIII, the double points of the given projectivity.

Corollary 1. If a line does not meet a conic in proper points, it may be regarded in an extended space as meeting it in two improper points. ($\mathrm{A}, \mathrm{E}, \mathrm{P}, \mathrm{H}_{0}, \mathrm{~K}_{2}$).

Corollary 2. Every quadratic equation with proper coeflicients has two roots which, if distrnct, are both proper or both improper. (A, E, P, $\mathrm{H}_{0}, \mathrm{~K}_{2}$)

[^75]For the double points of any projectivity satisfy an equation of the form $c x^{2}+(r-") x-b=0$ ('Theorem 11, Cor 4, Chap VI), and any quadratice equation may be put mito this form.

Tinmorem 2 - 1 ny leo involutions in the same one-timenswonal form have at conguyate puir in cominan, whach may be proper or improper. (A, $\mathrm{E}, \mathrm{P}, \mathrm{II}_{0}, \mathrm{~K}_{\mathrm{n}}$)

This follows at once from the preceding and Theorem 23, Chap. VIII.
Conollary. In any involution there exists a conjugate panr, proper or improper, which is harmonic with any given conjugate prar. (A, $\mathrm{E}, \mathrm{P}, \mathrm{H}_{0}, \mathrm{~K}_{2}$)

For the involution which has the given pair for double elements has (by the theorem) a pair, proper or improper, in common with the given involution. The latier pair satisfies the condition of the theorem (Theorem 27, Cor. 1, Chap. IV).

We have seen earlier (Theorem 4, Cor., Chap VIII) that any two involutions with double points are conjugate. Under Proposition K_{a} we may remove the restriction and say that any two involutions are conjugute in an extenuled space dopendent on the two involations. If the involutions are on coplanar lines, we have the following-

Thronem 3. Two involutions on distinet lines in the same plane are perspective (the center of perspectivity being proper or impproper), provided the point of intersection of the lines is a doulle point for both or for neither of the involutions. ($\mathrm{A}, \mathrm{E}, \mathrm{P}, \mathrm{K}_{2}$)

Proof. If the point of intersection O of the two lines be a double point of each of the involutions, let Q and R be an arbitrary parr of one mvolution and Q^{\prime} and R^{\prime} an arbitrary pair of the othor meolution The point of intersection of the lines $Q Q^{\prime}$ and $R R^{\prime}$ is then a center of a perspectivity which transforms elements which determine the first involution into elements which determine the second. If the point O is a double point of neither of the two involutions, let M be a double point of one and M^{\prime} of the other (hhese double points are proper or else exist in an extended space S^{\prime} which exists by Proposition K_{2}). Also let N and N^{\prime} be the conjugates of O in the two involutions. Then by the same argument as before, the point of intersection of the lines $M M M^{\prime}, N N^{\prime \prime}$ may be taken as the center of the perspectivity.

It was proved in $\S 66$, Chap. VII, that the equation of any point conic is of the form

$$
\begin{equation*}
a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+2 a_{12} x_{1} x_{2}+2 a_{18} x_{1} x_{3}+2 a_{23} x_{2} x_{3}=0 ; \tag{1}
\end{equation*}
$$

but it was not shown that every equation of this form represents a conic The line $x_{1}=0$ contains the point ($0, x_{2}, x_{3}$) satisfying (1), provided the ratio $x_{2}: x_{8}$ satisfies the quadratic equation

$$
a_{\mathrm{g} 2} x_{2}^{2}+2 a_{28} z_{2} x_{3}+a_{38} x_{\mathrm{a}}^{2}=0 .
$$

Similarly, the lines $x_{2}=0$ and $x_{3}=0$ contain points of the locus defined by (1), provided two other quadratic equations are satisfied By Proposition K_{2} there exists an extended space in which these three quadratic equations are solvable. Hence (1) is satisfied by the coördinates of at least two distinct points P, Q (proper or improper).*

A linear transformation

$$
\begin{align*}
& \rho x_{1}^{\prime}=b_{11} x_{1}+b_{12} x_{2}+b_{13} x_{3} \\
& \rho x_{2}^{\prime}=b_{21} x_{1}+b_{22} x_{2}+b_{23} x_{3} \tag{2}\\
& \rho x_{3}^{\prime}=b_{31} x_{1}+b_{32} x_{2}+b_{33} x_{8}
\end{align*}
$$

evidently transforms the points satisfying (1) into points satisfyng another equation of the second degree. If, then, (2) is so chosen as to transform P and Q into the points $(0,0,1)$ and $(0,1,0)$ respectively, (1) will be transformed into an equation which is satisfied by the latter parr of points, and which is therefore of the form

$$
\begin{equation*}
a x_{1}^{2}+c_{1} x_{2} x_{\mathrm{a}}+c_{2} x_{1} x_{3}+c_{\mathrm{a}} x_{1} x_{\mathrm{a}}=0 . \tag{3}
\end{equation*}
$$

If $c_{1}=0$, the points satisfying (3) lie on the two lines

$$
x_{1}=0, \quad a x_{1}+c_{2} x_{\mathrm{a}}+c_{3} x_{2}=0 ;
$$

and hence (1) is satisfied by the points on the lines into which these lines are transformed by the inverse of (2). If $c_{1} \neq 0$, the transformation

$$
\begin{align*}
& x_{1}=x_{1}^{\prime} \\
& x_{2}=-\frac{c_{2}}{c_{1}} x_{1}^{\prime}+x_{2}^{\prime} \tag{4}\\
& x_{3}=x_{3}^{\prime}
\end{align*}
$$

[^76]transforms the points ($x_{1}, x_{1}, x_{\mathrm{i}}$) satisfyng (3) into points $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ salusfyug
\[

$$
\begin{equation*}
\left(a-\frac{c_{\mathrm{a}} \epsilon_{3}}{c_{1}}\right) \cdot x_{1}^{\prime 2}+\left(c_{1} x_{3}^{\prime}+c_{\mathrm{a}} x_{1}^{\prime}\right) x_{2}^{\prime}=0 . \tag{5}
\end{equation*}
$$

\]

But (5) is in the form wheh was proved in Theorem 7, Chap. VII, to be the equation of a conc. As the pomts whech satisfy (5) are transformed by the inverse of the product of the collineations (2) and (4) mento points which satisfy (1), we see that in all cases (1) represents a point conic (proper or improper, degenerate or nondegenerate).

This gives rise to the two following dual theorems:
Timbonem 4. Every equatron of the form

$$
a_{11} x_{1}^{2}+a_{\mathrm{ga}} x_{2}^{2}+\alpha_{33} x_{3}^{2}+2 a_{12} x_{11} x_{2}+2 a_{13} x_{1} x_{\mathrm{s}}+2 a_{23} x_{2} x_{3}=0
$$

represents a point connc (proper or improper) whurh may, however, degenerate; and, conversely, every point conic may be represented by an equation of this form. ($\mathrm{A}, \mathrm{F}, \mathrm{P}, \mathrm{H}_{0}, \mathrm{~K}_{2}$)

Tirborem 4' Every equation of the form

$$
A_{11} u_{1}^{2}+A_{\mathrm{g2}} u_{2}^{2}+A_{\mathrm{sa}} u_{\mathrm{g}}^{2}+2 A_{19} u_{1} u_{1} u_{\mathrm{a}}+2 A_{18} u_{1} u_{3}+2 A_{\mathrm{as}} u_{2} u_{\mathrm{a}}=0
$$

represents a line conic (proper or innproper) which may, however, degenerate; and, conversely, every line conic may be represented by an equation of this form. ($\mathrm{A}, \mathrm{H}, \mathrm{P}, \mathrm{II}_{0}, \mathrm{~K}_{\mathrm{a}}$)
86. Problems of the second degree. We have seen in $\S 83$ that any problem of the first degree can lee solved completely by means of linear constructions; but that a problem of degree higher than the first cannot be solved by linear constructions alone. In regard to problems of the second degree in a plane, however, it was seen in § 84 that any such problem may bo reduced to the problem of finding the points of intersection of an arbitrary line in the plane with a particular conic in the plane. This result we may state in the following form:

Throrem 5. Any problem of the second degree in a plane may be solved by linear constructions if the intersections of every line in the plane with a single conic in this plane are assumed known. (A, E, $\mathrm{P}, \mathrm{H}_{0}, \mathrm{~K}_{2}$)

In the nsual representation of the projective geometry of a real plane by means of points, lines, etc., drawn with a pencil, say, on a sheet of paper, the linear constructions, as hàs already been noted, are those that can be performed with the use of a strarghtedge alone. It will be shown later that any
come in the real geometry is equivalent projectively to a crrcle The instrument usually employed to draw crrcles 18 the compass It $1 s$ then clear that in this 1 epresentation any poblem of the second degree can be solved by means of a sta aightedye and compass alone The theonen just stated, however, shows that, if a single curcle is drawn once for all in the plane, the straightedge alone suffices for the solution of any problem of the second degree in this plane. The discussion immediately following serves to indicate briefly how this may be accomplished.

We proceed to show how this theorem may be used in the solution of problems of the second degree. Any such problem may be reduced more or less readlly to the first of the following:

Problem 1. To find the double points of a projectivity on a line of which three pairs of homologous points are given. We may assume

Fig. 08
that the given parrs of homologous points all consist of dastinct points (otherwise the problem is lnear) In accordance with Theorem 5 we suppose given a conic (in a plane with the line) and assume known the intersections of any line of the plane with this conic. Le O be any point of the given conic, and wilh O as center project thi given pairs of homologous points on the conic (fig. 98). These defin a projectivity on the conic. Construct the axis of this projectivit. and let it meet the conic in the points P, Q The lines $O P, O Q$ then meet the given line in the required double points.

Problem 2. To find the points of intersection of a given line wit, a conic of which five points are given. Let A, B, C, D, B be the give points of the conic The conic is then defined by the projectivit, $D(A, B, C) \pi E(A, B, C)$ between the pencils of lines at D and \boldsymbol{K}

This projectivity gives rise to a projectivity on the given line of which three pars of homologous points are known. The double points of the latier projectivity are the ponts of intersection of the line with the come The problem is thus reluced to Problen 1.

Pronlim 3. We have seen that it is possihle for two triangles in a plane to be perspective from four drfferent centers (cf. Ex $8, \mathrm{p}$ 105) The maximum number of ways in whel it is conceivable that two triangles may be perspective is clearly equal to the number of permutations of three things three at a tume, ie. six The question then arises, Is at possible to construct two trinngles that are perspective from siw diffirent centers? Let the two trianglos be $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, and let

$$
x_{1}=0, \quad x_{2}=0, \quad x_{3}=0
$$

be the sides of the first opposite to A, B, C respectively. Let the sides of the second opposite to $A^{\prime}, B^{\prime}, C^{\prime}$ respectively be

$$
x_{1}+x_{2}+x_{3}=0, \quad x_{1}+l^{\prime} x_{2}+l^{\prime \prime} x_{3}=0, \quad x_{1}+l^{\prime} x_{2}+l^{\prime \prime} x_{2}=0 .
$$

The condition for $A B C=A_{\bar{\Lambda}} B^{\prime} C^{\prime}$ is that the points of intersection of corresponding sides be collmear, ie.

$$
\begin{array}{ccc}
0 & 1 & -1 \tag{1}\\
-l^{\prime \prime} & 0 & 1 \\
-l^{\prime} & 1 & 0
\end{array}=k^{\prime \prime}-l^{\prime}=0 .
$$

In like manner, the condition for $B C A \overleftarrow{\wedge} A^{\prime} B^{\prime} C^{\prime}$ is

$$
\begin{array}{ccc}
0 & -l^{\prime \prime} & l^{\prime} \tag{2}\\
-1 & 0 & 1 \\
-l_{l^{\prime}} & 1 & 0
\end{array}=k^{\prime} l^{\prime \prime}-l^{\prime}=0 .
$$

From these two conditions fullows

$$
\begin{array}{ccc}
0 & -l^{\prime \prime} & k^{\prime} \\
-l^{\prime \prime} & 0 & 1 \\
1 & -1 & 0
\end{array}=k^{\prime} l^{\prime \prime}-k^{\prime \prime}=0,
$$

which is the condition for $C A B=A^{\prime} B^{\prime} C^{\prime}$. Hence, if two triangles are in the relations $A B C \overline{\bar{\lambda}} A^{\prime} B^{\prime} C^{\prime}$ and $B C A=A^{\prime} B^{\prime} C^{\prime}$, they are also in the relation $C A B=A^{\prime} B^{\prime} C^{\prime}$. Two triangles in this relation are said to be triply perspective (cf. Ex. 2, p. 100)", The domain of rationality defined by the data of our problem is clearly

$$
K=[1] .
$$

Snce numbers in this doman may be found which satisfy equalions (1) and (2), the problem of constructing iwo triply perspechive triangles is linear

The condition for $A C B \overline{\bar{\wedge}} A^{\prime} B^{\prime} C^{\prime}$ is

$$
\begin{equation*}
k^{\prime}-l^{\prime \prime}=0 . \tag{3}
\end{equation*}
$$

If relations (1), (2), and (3) are satisfied, the triangles will be perspective from four centers Let k be the common value of l^{\prime} and $l^{\prime \prime}$ (3), and let l be the common value of l^{\prime} and $k_{i}^{\prime \prime}(1)$ Relation (2) then gives the condition $k^{2}-l=0$. The relations

$$
k^{\prime}=l^{\prime \prime}=k, \quad l^{\prime}=k^{\prime \prime}=k^{2}
$$

then define two quadruply perspective triangles. The problem of constructing two such triangles is therefore still linear.

If now we add the condition for $C B A=A^{\prime} B^{\prime} C^{\prime}$, the iwo triangles will, by what precedes, be perspective from six dufferent centers The latter condition is

$$
\begin{equation*}
k^{\prime \prime} l^{\prime}-l^{\prime \prime}=0 \tag{4}
\end{equation*}
$$

With the preceding conditions (1), (2), (3) and the notation adopled above, this leads to the condition

$$
l^{8}=l^{3}=1 .
$$

The equation $k^{3}-1=0$ is, however, reducible in K; indeed, it is equivalent to

$$
k-1=0, \quad k^{2}+k+1=0 .
$$

The first of these equations leads to the condition that $A^{\prime}, B^{\prime}, C^{\prime}$ are collmear, and does not therefore give a solution of the problem The problem of constructing two triangles that are sextuply perspective is therefore of the second degree. The equation

$$
k^{2}+k+1=0
$$

has two roots w, w^{2} (proper or improper and, in general,* distinct). Hence our problem has two solutions. One of these consists of the triangles

$$
\begin{gathered}
x_{1}=0, \quad x_{2}=0, \quad x_{8}=0 ; \\
x_{1}+x_{2}+x_{3}=0, \quad x_{1}+w x_{2}+w^{2} x_{8}=0, \quad x_{1}+w^{2} x_{2}+w x_{8}=0
\end{gathered}
$$

[^77]Two of tho siles of the secoud triangle may be mproper:* The points of mitersection of the sides of one of these trangles with the sides of the other are the following mene points:

$$
\left.\begin{array}{rrrrrlll}
(0, & -1, & 1) & \left(\begin{array}{llll}
0, & w^{2}, & -w) & \left(\begin{array}{ll}
0, & w, \\
(-1, & 0,
\end{array}\right. \\
\left(-w^{2}\right)
\end{array}\right) & \left(-w^{2},\right. & 0, & 1
\end{array}\right)\left(\begin{array}{lll}
(-w, & 0, & 1 \tag{5}
\end{array}\right)
$$

They form a configuration

$$
0 \quad 4
$$

$$
\begin{array}{ll}
3 & 12
\end{array}
$$

whelh contains four configurations

$$
93
$$

$$
39
$$

of the kind studied in $\S 36$, Chap IV. All triples of points in the same row or column or term of the determinant expansion of ther matrix are collinear. \dagger If one line is onitled from a finite plane (in the sense of $\$ 72$, Chap VII) having four points on each line, the remaining nine points and twelve lines are isomorphic with this configuration.

HEXERCISES

The problems in a plane given luelno that are of the second degree are to be solved ly linear constructions, woth the assumptum that the points of intersertion of any line in the plane with a given fixel conic in the plane are known; i.e. " with a straughtcrlye and "If oen curcle in the plane."

1. Construct the points of intersection of a given line with a conic determined by (1) four points and a tangent throngh one of them ; (in) three pomis and the tangents through two of them; (in) five tangents.
2. Construct the conjugate pair common to two involutions on a line.
3. Given a conic datermined by five points, constrnct a triangle inscribed in this conic whose sides pass through three given points of the plane.
[^78]4. Given a triangle $A_{2} B_{2} C_{2}$ inscribed in a tiangle $A_{1} B_{1} C_{1}$. In how many ways can a tuangle $A_{8} B_{3} C_{3}$ be inscubed in $A_{2} B_{2} C_{2}$ and cucumseribed to $A_{1} B_{1} C_{1}$? Show that in one case, in which one vertex of $A_{3} B_{3} C_{3}$ may be chosen arbitiarily, the problem is linear (cf. §36, Chap IV), and that in another case the problem is quadratic. Show that this problem gives all configurations of the symbol $\left|\begin{array}{ll}9 & 3 \\ 3 & 9\end{array}\right|$. Give the consinuctions for all cases (cf. S. Kantor, Sitzungsberichte der mathematisch-nalurwissenschaflheheu Classe der Kaiserlichen Akademie der Wissenschaften zu Wien, Vol. LXXXIV (1881), p 915)
5. If opposite vertices of a simple plane hexagon $P_{1} P_{2} P_{3} P_{4} P_{6} P_{6}$ aro on three concurrent hnes, and the hes $P_{1} P_{2}, P_{3} P_{1}, P_{5} P_{6}$ ale concurrent, then the hnes $P_{2} P_{3}, P_{4} P_{5}, P_{0} P_{1}$ are also concurrent, and the figure thus formed is a configuration of Pappus
6. Show how to constiuct a simple n-point inscribed in a given simple n-point and circumscribed to another given simple n-point.

7 Show how to insciibe in a given conic a simple n-point whose sides pass respectively through n given points

8 Construct a conct through four points and tangent to a line not meeting any of the four points

9 Construct a conc though thee points and tangent to two lines not meeting any of the points.

10 Constiuct a conic though four given points and meeting a given lime in two points harmomes with two given points on the line.
11. If A is a given point of a conic and X, Y are two variable points of the come such that $A X, A Y$ always pass througle a conjugate pan of a gaven movolution on a line l, the line $X Y$ will always pass though a fixed point B. The line $A B$ and the tangent to the conic at A pass through a conjugate pair of the given involution
12. Given a collineation in a plane and a line whinch does not contun a fixed point of the collineation; show that thene is one and only one point on the line which is transformed by the collineation into another point on the line.
13. Given four skew lines, show that there are in general two lines which meet each of the given four lines; and that of there are three such lines, theie is one through every point on one of the lines.
14. Given in a plane two systems of five points $A_{1} A_{2} A_{3} A_{4} A_{5}$ and $B_{1} B_{2} B_{8} B_{4} B_{5}$, given also a point X in the plane, determine a point Y such that we have $X\left(A_{1} A_{2} A_{8} A_{4} A_{5}\right)-Y\left(B_{1} B_{2} B_{8} B_{4} B_{5}\right)$. In general, there is one and only one such point Y. Under what condition is there more than one? (R. Sturm, Mathematische Annalen, Vol. I (1869), p, 533.*)

[^79]87. Invariants of linear and quadratic binary forms. An expression of the form $a_{1} x_{1}+a_{2} x_{2}$ is called a linear bunary form in the two variables x_{1}, x_{2} The word linear refers to the degree in the variables, the word binary to the number (two) of the variables. A convenient notation for such a form is a_{x}. The equation
$$
a_{x}=a_{1} x_{1}+a_{2} x_{2}=0
$$
defines a unique element A of a one-dimensional form in which a scale has been established, viz. the element whose homogeneous coordmates are $\left(x_{1}, x_{9}\right)=\left(a_{2},-a_{1}\right)$. If $b_{v}=b_{1} x_{1}+b_{2} x_{2}$ is another hinear bmary form determmung the eloment B, say, the question arises as to the condition under which the two elements A and B coincide Thus condition is at once obtained as the vanishing of the determinant Δ formed by the coefficients of the two forms; i.e. the elements A and B will coincide of and only if we have
\[

\Delta=\left|$$
\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}
$$\right|=0
\]

Now suppose the two elements A and B are subjected to any projective transformation II:

$$
\Pi: \begin{aligned}
& x_{1}=\alpha x_{1}^{\prime}+\beta x_{2}^{\prime}, \\
& x_{2}=\gamma x_{1}^{\prime}+\delta x_{2}^{\prime},
\end{aligned}\left|\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right| \neq 0 .
$$

The forms a_{x} and b_{x} will be transformed into two forms $a_{x^{\prime}}^{\prime}$ and $b_{x^{\prime}}^{\prime}$ respectively, which, when equated to 0 , define the points A^{\prime}, B^{\prime} into which the points A, B are transformed by Π. The coefficients of the forms $a_{x^{\prime}}^{\prime}, b_{x}^{\prime}$, in terms of those of a_{x}, b_{x} are readily calculated as follows:

$$
\begin{aligned}
a_{1} x_{1}+a_{2} x_{2} & =a_{1}\left(\alpha x_{1}^{\prime}+\beta x_{2}^{\prime}\right)+a_{2}\left(\gamma x_{1}^{\prime}+\delta x_{2}^{\prime}\right) \\
& =\left(c a a_{1}+\gamma a_{2}\right) x_{1}^{\prime}+\left(\beta a_{1}+\delta a_{2}\right) x_{2}^{\prime},
\end{aligned}
$$

which gives

$$
a_{1}^{\prime}=\alpha a_{1}+\gamma a_{2}, \quad a_{2}^{\prime}=\beta a_{1}+\delta a_{2} .
$$

Similarly, we find

$$
b_{1}^{\prime}=\alpha b_{1}+\gamma b_{2}, \quad b_{2}^{\prime}=\beta b_{1}+\delta b_{2} .
$$

Now it is clear that if the elements A, B coincide, so also will the new elements A^{\prime}, B^{\prime} coincide. If we have $\Delta=0$, therefore we should also have $\Delta^{\prime}=\left|\begin{array}{ll}a_{1}^{\prime} & a_{2}^{\prime} \\ b_{1}^{\prime} & b_{\mathbf{a}}^{\prime}\end{array}\right|=0$. That this is the case is readily verified. We have

$$
\Delta^{\prime}=\left|\begin{array}{c}
\alpha a_{1}+\gamma a_{2} \beta a_{1}+\delta a_{2} \\
\alpha b_{1}+\gamma b_{2}
\end{array}\right|=\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \cdot\left|\begin{array}{ll}
\alpha & \beta \\
\boldsymbol{\gamma} & \delta
\end{array}\right|
$$

by a well-known theorem in determinants. This relation may also be written

$$
\Delta^{\prime}=\left|\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right| \cdot \Delta .
$$

The determinant Δ is then a function of the coefficients of the forms a_{x}, b_{x}, with the property that, if the two Corms are subjecter to a linear homogeneous transformation of the variables (with nonvanishng determinant), the same function of the coefficients of the new forms is equal to the function of the coefficients of the old forins multiplied by an expression which is a function of the coefficients of the transformation only. Such a function of the coeflicients of two forms is called a (simultaneous) invariant of the forms.
Suppose, now, we form the product $a_{x} \cdot b_{x}$ of the two forms a_{x}, b_{x}. If multiphed out, this product is of the form

$$
a_{x}^{2}=a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{24} x_{2}^{2} .
$$

Any such form is called a quadratic binary form. Under Propnsition K_{3} every such form may be factored into two luear factors (proper or mproper), and hence any such form represeuts two eloments (proper or 1 mproper) of a one-dimensional Corm. These two elements will coincide, if and only if the discriminant $D_{a}=a_{19}^{2}-$ $a_{11} \cdot \alpha_{22}$ of the quadratic form vanishes. The condition $D_{a}=0$ therefore expresses a property which is mvariant under any projectivity. If, then, the form a_{x}^{2} be subjected to a projective transformation, the discriminant $D_{a^{\prime}}$ of the new form a_{x}^{\prime} must vanish whenever D_{a} van1shes. There must actordungly be a relation of the form $D_{a^{\prime}}=k \cdot D_{a^{*}}$. If a_{x}^{2} be subjected to the transformation Π given above, the coefficients $a_{11}^{\prime}, a_{12}^{\prime}, a_{22}^{\prime}$ of the new form a_{x}^{\prime} are readily found to be

$$
\begin{align*}
& a_{11}^{\prime}=a_{12} a^{2}+2 a_{12} \alpha \gamma+a_{22} \gamma^{2}, \\
& \left.a_{12}^{\prime}=a_{11} \alpha \beta+a_{12} \alpha \delta+\beta \gamma\right)+a_{22} \gamma \delta, \tag{1}\\
& a_{22}^{\prime}=a_{11} \beta^{2}+2 a_{12} \beta \delta+a_{22} \delta^{2} .
\end{align*}
$$

By actual computation the reader may then verify the relation

$$
D_{a \gamma}=a_{12}^{\prime 2}-a_{11}^{\prime} a_{22}^{\prime}=\left|\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right|^{2} \cdot\left(a_{12}^{2}-a_{11} a_{22}\right)=(\alpha \delta-\beta \gamma)^{2} \cdot D_{a}
$$

The discriminant D_{a} of a quadratic form a_{s}^{2} is therefore called an invariant of the form.

Suppose, now, we consider two binary quadratic forms

$$
\begin{aligned}
& a_{x}^{2}=a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}, \\
& b_{x}^{2}=b_{11} x_{1}^{2}+2 b_{12} x_{1} x_{2}+b_{22} x_{22}^{2} .
\end{aligned}
$$

Each of these (under K_{n}) represents a pair of points (proper or improper). Let us seek the condition that these two pars be harmonic. This property is invariant under projective transformations; we may therefore expect the condition sought io be an invariant of the two forms. We know that if a_{1}, a_{2} are the nonhomogencous coordmates of the two points represented by $a_{x}^{2}=0$, we have relations

$$
a_{1} \cdot a_{2}=\frac{a_{22}}{a_{11}}, \quad a_{1}+a_{2}=-\frac{2 a_{12}}{a_{11}},
$$

with similar relations for the nonhomogeneous coördinates b_{1}, b_{2} of the points represented by $b_{x}^{2}=0$. The two pairs of points $a_{1}, a_{2} ; b_{1}, b_{2}$ will be harmonic if we have (Theorem 13, Cor. 2, Chap. VI)

$$
\begin{aligned}
& a_{1}-b_{1} \\
& a_{1}-b_{2}
\end{aligned} \cdot \frac{a_{2}-b_{2}}{a_{2}-b_{1}}=-1 .
$$

This relation may readily be changed into the following:

$$
a_{1} a_{2}+b_{1} b_{2}-\frac{1}{2}\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)=0,
$$

which, on substituting from the relations just given, becomes

$$
D_{a b}=a_{11} b_{22}+a_{22} b_{11}-2 a_{12} b_{12}=0 .
$$

This is the condition sought. If we form the same function of the coefficients of the two forms $a_{x}^{\prime 2}, b_{x}^{\prime 2}$ obtained from a_{x}^{2}, b_{x}^{2} by subjecting them to the transformation Π, and substitute from equations (1), we obtain the relation

$$
D_{\alpha^{\prime} b^{\prime}}=(\alpha \delta-\beta \gamma)^{2} \cdot D_{a b} .
$$

In the three examples of invariants of binary forms thus far obtained, the function of the new coefficients was always equal to the function of the old coofficients mulliplied by a power of the determinant of the transformation. This is a general theorem regarding invariants to which we shall refer again in § 90 , when a formal definition of an invariant will be given. Before closing this section, however, let us consider briefly the cross ratio $\mathrm{Z}_{8}\left(a_{1} a_{2}, b_{1} b_{2}\right)$ of the two parrs of points represented by $a_{x}^{2}=0, b_{w}^{2}=0$. This cross ratio
is entirely unchanged when the two forms are subjected to a projective transformation. If, therefore, this cross raino be calculated m terms of the coefficients of the two forms, the resulting function of the coefficients must be exactly equal to the same function of the coefficients of the forms $a_{a}^{\prime}, b_{x}^{\prime}$, the power of the determinant referred to above is in this case zero. Such an meariant is called an absolute invariant, for purposes of distinction the invariants which when transformed are multiphed by a power $\neq 0$ of the determinant of the transformation are then called relative invariants.

EXERCISES

1 Show that the cross 1atio $\mathrm{Rk}\left(a_{1} a_{2}, b_{1} b_{2}\right)$ referred to at the end of the last section is

$$
\mathrm{R}\left(a_{1} a_{2}, b_{1} b_{2}\right)=\frac{D_{a b}+2 \sqrt{D_{a} D_{b}}}{D_{a b}-2 \sqrt{D_{a} D_{b}} ;}
$$

and hence show, by reference to preceding results, that it is indeed an absolute invariant.
2. Guven three pans of points defined by the three binary quadratic forms $a_{x}^{2}=0, b_{x}^{2}=0, c_{x}^{2}=0$; show that the three will be in mnvolution of we have

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{22} \\
b_{11} & b_{12} & b_{22} \\
c_{11} & c_{12} & c_{22}
\end{array}\right|=0
$$

Hence show that the above determinant is a sumultaneous invariant of the three forms (cf. Ex 13, p. 230).
88. Proposition K_{n}. If we form the product of n linear binary forms $a_{x} \cdot a_{x}^{\prime} \cdot a_{x}^{\prime \prime} \cdot \cdots a_{x}^{(n-1)}$, we obtain an expression of the form
$a_{x}^{n}=a_{0} x_{1}^{n}+n a_{1} x_{1}^{n-1} x_{2}+\begin{gathered}n(n-1) \\ 2\end{gathered} a_{2} x_{1}^{n-2} x_{2}^{2}+\cdots+n a_{n-1} x_{1} x_{2}^{n-1}+a_{n} x_{2}^{n}$.
An expression of this form is called a brnary homogeneous form or quantic of the nth degree. If it is obtained as the product of n linear forms, it will represent a set of n points on a line (or a set of n elements of some one-dimensional form)

If it is of the second degree, we have, by Proposition K_{2}, that there exists an extended space in which it represents a pair of points. Ai the end of this chapter there will be proved the following generalization of K_{2} :

Proposition K_{n}. If a_{a}^{h}, a_{x}^{l}, . . are a finte number of binary homogeneous forms whose coofficients arc proper in a space S whuch satrsfies Assumptions A, E, P, there exists a space S^{\prime}, of whlich S is a subspace, in the number system of whuch each of these forms is a product of linear factors.

As in $\S 85, \mathrm{~S}^{\prime}$ is called an extended space, and elements in S^{\prime} but not in S we called improper elements Proposition K_{n} thus imples that an equation of the form $a_{x}^{n}=0$ can always be thought of as representing n (distinct or partly coincidng) improper points in an extended space m case it does not represent any proper points

Proposilion K_{n} could be introduced as an (not independent) assumption in addation to $\mathrm{A}, \mathrm{E}, \mathrm{P}$, and H_{0} Its consistency with the other assumptions would be shown by the example of the ordinary complex space in which it is equvalent to the fundamental theorem of algebra.
89. Taylor's theorem. Polar forms. It is desirable at this point to borrow an important theorem from elementary algebra

Definition. Given a term $A x_{i}^{n}$ of any polynomial, the expression $n A x_{i}^{n-1}$ is called the derivative of $A x_{i}^{n}$ with respect to x_{1} m symbols

$$
\frac{\partial}{\partial x_{i}} A x_{i}^{n}=n A x_{i}^{n-1} .
$$

The derivative of a polynominl with respect to x_{8} is, by defintion, the sum of the derivatives of its respective terms.

This definition gives at once $\frac{\partial}{\partial x_{i}} A=0$, if A is independent of x_{i}. Applied to a term of a binary form it gives

$$
\frac{\partial}{\partial x_{1}} k x_{1}^{n} x_{2}^{m}=n k x_{1}^{n-1} x_{2}^{m}, \quad \frac{\partial}{\partial x_{2}} k x_{1}^{n} x_{2}^{m}=m k x_{1}^{n} x_{2}^{m-1} .
$$

With this definition it is possible to derive Taylor's theorem for the expansion of a polynomial. *We state it for a binary form as follows:

Given the binary form

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)=a_{x}^{n}=a_{0} x_{1}^{n}+n a_{1} x_{1}^{n-1} x_{2} & +n(n-1) \\
& 2 \\
& a_{2} x_{1}^{n-2} x_{2}^{2} \\
& \cdots+n a_{n-1} x_{1} x_{2}^{n-1}+a_{n} x_{2}^{n} .
\end{aligned}
$$

[^80]If herem we substitute for x_{1}, x_{2} respectively the expressions, $r_{1}+\lambda y_{1}$, $x_{2}+\lambda y_{2}$, we obtain,

$$
\begin{aligned}
f\left(x_{1}+\lambda y_{1}, x_{2}\right. & \left.+\lambda y_{2}\right)=f\left(x_{1}, x_{2}\right)+\lambda\left(y_{1} \frac{\partial}{\partial x_{1}}+y_{2} \frac{\partial}{\partial x_{2}}\right) f\left(x_{1}, x_{2}\right) \\
& +\frac{\lambda^{2}}{21}\left(y_{1} \frac{\partial}{\partial x_{1}}+y_{2} \frac{\partial}{\partial x_{2}}\right)^{2} f\left(x_{1}, x_{2}\right) \\
& +\cdots+\frac{\lambda^{n}}{n^{1}}\left(y_{1} \frac{\partial}{\partial x_{1}}+y_{2} \frac{\partial}{\partial x_{2}}\right)^{n} f\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Here the parentheses are differential operators. Thus

$$
\left(y_{1} \frac{\partial}{\partial x_{1}}+y_{2} \frac{\partial}{\partial x_{2}}\right)^{2} f=y_{1}^{2} \frac{\partial^{2} f}{\partial x_{1}^{2}}+2 y_{1} y_{2} \frac{\partial^{2} f}{\partial x_{2} x_{2} \partial x_{1}}+y_{2}^{2} \frac{\partial^{2} f}{\partial x_{2}^{2}}
$$

where $\frac{\partial^{2} f}{\partial x_{1}^{2}}$ means $\frac{\partial}{\partial x_{1}}\left[\frac{\partial f}{\partial x_{1}}\right], \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}$ means $\frac{\partial}{\partial x_{2}}\left[\frac{\partial f}{\partial x_{1}}\right]$, ete IL is readly proved for any term of a polynomial (and hence for the prelynomial 1tself) that the value of such a lugher derivative as $\partial^{2} f / \partial x_{2} \partial c_{1}$ is independent of the order of diffcrentiation; i.e. that we have

$$
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}=\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}
$$

Definition The coefficient of λ in the above expansion, viz. $y_{1} \partial f / \partial x_{1}+y_{2} \partial f / \partial x_{2}$ is called the first polar form of $\left(y_{1}, y_{2}\right)$ writh respect to $f\left(x_{1}, x_{2}\right)$; the coefficient of λ^{2} is callerl the secontl; the coefficient of λ^{n} is called the nth polar form of $\left(y_{1}, y_{2}\right)$ with respect to the form f If any polar form be equated to 0 , it represents a set of points which is called the first, second, $\cdots, n t h$ polur of the point $\left(y_{1}, y_{2}\right)$ with respect to the set of points represented by $f\left(x_{1}, x_{2}\right)=0$.

Consider now a binary form $f\left(x_{1}, x_{2}\right)=0$ and the effect upon it of a projective transformation

$$
\Pi: \begin{array}{ll}
x_{1}^{\prime}=\alpha x_{1}+\beta x_{2}, & (\alpha \delta-\beta \gamma \neq 0) \\
x_{2}^{\prime}=\gamma x_{1}+\delta x_{2} .
\end{array}
$$

If we substitute these values in $f\left(x_{1}, x_{2}\right)$, we obtain a new form $F\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$. A point (x_{1}, x_{2}) represented by $f\left(x_{1}, x_{2}\right)=0$ will le transformed into a point ($x_{1}^{\prime}, x_{2}^{\prime}$) represented by the form $F^{\prime}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=0$. Moreover, if the point $\left(y_{1}, y_{2}\right)$ be subjected to the same projectivity, it is evident from the nature of the expansion given above that the polars of $\left(y_{1}, y_{2}\right)$ with respect to $f\left(x_{1}, x_{2}\right)=0$ are transformed into the polars of $\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ with respect to $F^{\prime}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=0$.

We may summarize the resulis thus obtained as follows:
Tiegorim 6 If a binary furm f is transformed by a projective transformation anto the form F, the set of poonts represented by $f=0$ is transformed into the set represented by $F=0$. Any polar of a point $\left(y_{1}, y_{2}\right)$ with respect to $f=0$ is transformed into the corresponding polar of the point $\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ with respect to $F=0$

The following is a simple illustration of a polar of a point with respect to a set of points on a line

The form $x_{1} x_{2}=0$ represents the two points whose nonhomogeneous coördinates are 0 and ∞ respectively. The first polar of any point (y_{1}, y_{2}) with respect to thus form is clearly $y_{1} x_{2}+y_{2} x_{1}=0$, and represents the point $\left(-y_{1}, y_{2}\right)$; in ouher words, the first polar of a point P with respect to the pair of points represented by the given form is the harmonic conjugate of this point with respect to the pair.

EXERCISE

Determine the geometnical constuction of the $(n-1)$ th polar of a point with iespect to a set of n distinet pomts on a line (of. Ex 3, p 51).
90. Invariants and covariants of binary forms. Definition. If a binary form $a_{x}^{n}=a_{0} x_{1}^{n}+n a_{1} x_{1}^{n-1} x_{2}+\cdots+a_{n} x_{2}^{n}$ be changed by the transformation

$$
\Pi: \begin{aligned}
& x_{1}^{\prime}=\alpha x_{1}+\beta x_{2}, \\
& x_{2}^{\prime}=\gamma x_{1}+\delta x_{2}
\end{aligned} \quad(\alpha \delta-\beta \gamma \neq 0)
$$

into a new form $A_{x^{\prime}}^{n}=A_{0} x_{1}^{\prime n}+A_{1} x_{1}^{\prime n-1} x_{2}^{\prime}+\cdots+A_{n} x_{2}^{\prime n}$, any rational function $I\left(n_{0}, a_{1}, \cdots, a_{n}\right)$ of the coefficients such that we have

$$
I\left(A_{0}, A_{1}, \cdots, A_{n}\right)=\phi(\alpha, \beta, \gamma, \delta) \cdot I\left(a_{0}, a_{1}, \cdots, a_{n}\right)
$$

is called an invarirnt of the form a_{2}^{n}. A function

$$
C\left(a_{0}, a_{1}, \cdots, a_{n} ; x_{1}, x_{2}\right)
$$

of the coefficients and the variables such that we have

$$
C\left(A_{0}, A_{1}, \cdots, A_{n} ; x_{1}^{\prime}, x_{2}^{\prime}\right)=\psi(\alpha, \beta, \gamma, \delta) \cdot C\left(a_{0}, a_{1}, \cdots, a_{n} ; x_{1}, x_{2}\right)
$$

is called a covariant of the form a_{x}^{n}. The same terms apply to functions I and C of the coefficients and variables of any finite number of binary forms with the properly that the same function of the coefficients and variables of the new forms is equal to the original function multiplied by a function of $\alpha, \beta, \gamma, \delta$ only; they are then called simultaneous invariants or covariants.

In $\S 87$ we gave several examples of invariants of hinary forms, linear and quadratic. It is evident from the definition that the condition obtained by equating to 0 any invariuent of a form (or of a system of forms) must determine a property of the set of purints represented by the form (or forms) which is inverriant under "unvjective transformation. Hence the complete study of the projective geometry of a single line would involve the complate theory of invariants and covariants of binary forms. It is not our purpose in this book to give an account of this theory. But we will mention one theorem which we have already scen verified in speenal casos.

The functions $\phi(\alpha, \beta, \gamma, \delta)$ and $\psi(n, \beta, \gamma, \delta)$ oecurriny in the definition above are alweys powers of the determinant a $\delta-\beta \gamma$ of the projective transformation in question.*

Before closmg this section we will give a simple example of a covariant. Consider two bmary quadratic forms a_{1}^{2}, b_{b}^{2} and form the now quantic

$$
C_{a b}=\left(a_{0} b_{1}-a_{1} b_{0}\right) x_{1}^{2}+\left(a_{0} b_{2}-a_{2} b_{0}\right) x_{1} x_{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right) x_{2}^{2} .
$$

By means of equations (1), $\S 87$, the reader may then verify wilhout dufficulty that the relation

$$
C_{a \gamma,}=(a \delta-\beta \gamma) \cdot C_{a b}
$$

holds, which proves $C_{a b}$ to be a covariant. The two points represented by $C_{a b}=0$ are the double points (proper or improper) of the involuthon of which the pars determined by $a_{x}^{2}=0, b_{x}^{2}=0$ are conjugate pairs. This shows why the form should be a covariant.

EXERCISE

Piove the statement contanned in the next to the last sentence.
91. Ternary and quaternary foi ms and their invariants. The remarks which have been made above regarding binary forms can evidently be generalized. A p-ary form of the nth degree is a polynomial of the nth degree homogeneous in p variables. When the number of variables is three or four, the form is called ternary or quaternary respectively. The general ternary form of the second degree when equated to zero has been shown to be the equation of a conic. In general, the set of points (proper and improper) in a plane which satisfy an equation

$$
a_{x}^{n}=a_{1} x_{1}^{n}+a_{2} x_{2}^{n}+a_{8} x_{8}^{n}+\cdots=0
$$

* For proof, cf., for example, Grace and Young, Algebra of Invariants, pp. 21, 22.
obtamed by equating to zero a ternary form of the nth degree is called an algotraic curve of the nthb degree (order). Simlarly, the set of pouts determwed in space by a quaternary form of the nth degree equated to zero is called an algebrane surface of the nth degree

The definitions of mvariants and covariants of p-ary forms is precisely the same as that given above for bmary forms, allowance being made for the change in the number of variables Just as in the bmary case, if an mvariant of a ternary or quaternary form vanishes, the corresponding function of the coefficients of any projectively equvaleut form also vanishes, and consequently it represents a property of the corrcsponding ulgebraic curve or surface which is not changed when the curve or surfuce undergoes a projective transformation. Sinilar remarks apply to covariants of systems of ternary and quaternary forms.

Invariants and covariants as defined above are with respect to the group of all projective collineations. The geometric properties which they represent are properties unallered by any projective collneation. Like definitions can of course be made of invariants with respect to any subgroup of the total group. Evidently any function of the coefficients of a form which is invariant under the group of all collineations will also be an invariant under any subgroup. But there will in general be functions which remain invariant under a subgroup but which are not invariant under the total group. These correspond to properties of figures which are invariant under the subgroup without being invariant under the iotal group. We thus arrive at the fundamental notion of a geometry as associated with a given group, a subject to which we shall return in detail in a later chapter.

EXERCISES

1. Define by analogy with the developments of $\S 89$, the $n-1$ polars of a ternary or quaternary form of the nth degree.
2. Regarding a triangle as a curve of the third degree, show that the second polar of a point with regard to a triangle is the polar hne defined on page 46.
3. Generalize Ex. 2 in the plane and in space, and dualze.
4. Prove that the discriminant $\left|\begin{array}{lll}a_{11} & a_{12} & a_{18} \\ a_{19} & a_{22} & a_{28} \\ a_{18} & a_{88} & a_{88}\end{array}\right|$ of the ternary quadratic form

$$
a_{11} x_{1}^{2}+a_{28} x_{2}^{2}+a_{88} x_{8}^{2}+2\left(a_{18} x_{1} x_{8}+a_{18} x_{1} x_{9}+a_{28} x_{2} x_{3}\right)=0
$$

is an Invariant. What is its geometrical interpretation? Cf. Ex., p 187.

92. Proof of Proposition K_{n}. Given a rational integral function

$$
\phi(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}, \quad a_{0} \neq 0,
$$

whose coefficents belong to a glven field F , and whuch is irreducille in F , there exusts a field F^{\prime}, contannung F , an whuch the equatron $\phi(x)=0$ has a root

Let $f(x)$ be any rational integral function of x with coefficients in F, and let \jmath be an arbitrary symbol not an element of F. Consider the class $\mathrm{F}_{j}=[f(j)]$ of all symbols $f(j)$, where $[f(x)]$ is the class of all rational integral functions with coefficients in F. We proceed to define laws of combination for the elements of F, which render the latter a field. The process depends on the theorem* that any polynomial $f(x)$ can be represented uniquely in the form

$$
f(x)=q(x) \phi(x)+r(x),
$$

where $q(x)$ and $r(x)$ are polynomials belonging to $F,-i e$ with coefficients in F , - and where $r(x)$ is of degree lower than the degree n of $\phi(x)$ If two polynomals f_{1}, f_{2} belonging to F are such that ther difference is exactly divisible by $\phi(x)$, then they are sad to be congruent modulo $\phi(x)$, in symbols $f_{1} \equiv f_{2}$, mod. $\phi(x)$.

1 Two elements $f_{1}(j), f_{2}(j)$ of F , are sald to be equal, if and only If $f_{1}(x)$ and $f_{2}(x)$ are congruent mod $\phi(x)$. By virtue of the theorem referred to above, every element $f(j)$ of F_{f} is equal to one and only one element $f^{\prime}(j)$ of degree less than n. We need hence consider only those elements $f(j)$ of degree less than n. Further, it follows from this definition that $\phi(j)=0$.
2. If $f_{1}(x)+f_{2}(x) \equiv f_{3}(x)$, mod. $\phi(x)$, then $f_{1}(j)+f_{2}(j)=f_{3}(j)$.
3. If $f_{1}(x) f_{2}(x) \equiv f_{3}(x)$, mod. $\phi(x)$, then $f_{1}(j) \cdot f_{2}(j)=f_{3}(j)$.

Addition and multiphcation of the elements of F_{j} having thus been defined, the associative and distributive laws follow as immediate consequences of the corresponding laws for the polynomials $f(x)$. It remains merely to show that the inverse operations exist and are unique. That addition has a unique inverse is obvious To prove that the same holds for multiplication (with the exception of 0) we need only recall \dagger that, sunce $\phi(x)$ and any polynomial $f(x)$ have no common factors, there exist two polynomials $h(x)$ and $h(x)$ with coefficients in F such that

$$
h(x) \cdot f(x)+k(x) \cdot \phi(x)=1 .
$$

[^81]This gives at once $h(j) f(j)=1$,
so that every element $f(j)$ distinct from 0 has a reciprocal. The class F_{j} is therefore a field with respect to the operations of addition and mutuplication defined above (cf. $\$ 52$), such that $\phi(j)=0$. It follows at once* that $x-j$ is a factor of $\phi(x)$ in the field F_{3}, which is therefore the required field F^{\prime}. The quotient $\phi(x) /(x-j)$ is either irreducible in F_{j}, or, if reducible, has certain urreducible factors If the degree of one of the latter is greater than unity, the above process may be repeated leadng to a field $\mathrm{F}_{\mathrm{j}, \mathrm{\prime},}, j^{\prime}$ being a zeio of the factor in question Continumg in this way, ii is possible to construct a field $\mathrm{F}_{3, j,} \quad{ }^{\prime}{ }^{(m)}$, where $m \leqq n-1$, in which $\phi(x)$ is completely reducible, i.e. in which $\phi(x)$ may be decomposed into n linear factors This gives the following corollary:

Given a polynomial $\phi(x)$ belonging to a given field F, there exists a ficld F^{\prime} containiny F in which $\phi(x)$ is completely reducible.

Finally, an obvious extension of thes argument gives the corollary
Given a finite numnler of polynomials each of whuch belongs to a given field F, there carists a ficld F^{\prime}, containing F , in whuch each of the given polynomuals is completely reducible.

This corollary is equivalent to Proposition K_{r}. For if S be any space, let F be the number system on one of its lines. Then, as in the Introduction (p. 11), F^{\prime} determines an analytic space which is the required space S^{\prime} of Proposition K_{n}.

The more general question at once presents itself: Given a field F, does there exist a field F^{\prime}, containing F, in which every polynomial belonging to F is completely reducible? The argument used above does not appear to offer a direct answer to this question. The question has, however, recently been answered in the affirmative by an extension of the above argument which assumes the posssbility of "well ordering" any class. \dagger

EXERCISE

Many theocems of this and other chapters are given as dependent on A, $\mathrm{E}, \mathrm{P}, \mathrm{H}_{0}$, whereas they are provable without the use of H_{0}. Determine which theorems are true in those spaces for which H_{0} is false.

[^82]
CHAPTER X*

PROJECTIVE TRANSFORMATIONS OF TWO-DIMENSIONAL FORMS

93. Correlations between two-dimensional forms. Definition. A projective correspondence between the elements of a plane of points and the elements of a plane of lines (whether they be on the same or on different bases) is called a correlation. Likewise, a projective correspondence between the elements of a bundle of planes and the elements of a bundle of lines is called a corrclatron \dagger

Under the principle of duality we may confine ourselves to a consideration of correlations between planes In such a correlation, then, to every point of the plane of points corresponds a unique line of the plane of lines; and to every pencll of points in the plane of points corresponds a unique projective pencil of lines in the plane of lmes. In particular, if the plane of points and the plane of lines are on the same base, we have a correlation in a planar field, whereby to every point P of the plane corresponds a unique line p of the same plane, and in which, if $P_{1}, P_{2}, P_{3}, P_{4}$ are collinear points, the corresponding lines $p_{1}, p_{2}, p_{3}, p_{4}$ are concurrent and such that

$$
\mathrm{B}\left(P_{1} P_{2}, P_{3} P_{4}\right)=\mathrm{R}\left(p_{1} p_{2}, p_{3} p_{4}\right) .
$$

That a correlation Γ transforms the points $[P]$ of a plane into the lines [p] of the plane, we indicate as usual by the functional notation

$$
\Gamma(P)=p
$$

The points on a line l are transformed by Γ into the lines on a point L This determines a transformation of the lines [l] into the points [L], which we may denote by Γ^{\prime}, thus:

$$
\Gamma^{\prime}(l)=L
$$

That Γ^{\prime} is also a correlation is evident (the formal proof may be supplied by the reader). The transformation Γ^{\prime} is called the correlation induced by Γ. If a correlation Γ transforms the lines $[l]$ of a

[^83]plane into the points [L] of the plaue, the correlation which transforms the points $\left[l l^{\prime}\right]$ mto the lines $\left[L L^{\prime}\right]$ is the correlation induced by Γ. If Γ^{\prime} is anduced by Γ, it is clear that Γ is mduced by Γ^{\prime}. For if we have
$$
\Gamma\left(P_{1} P_{2} P_{3}^{\prime} \cdots\right)=p_{1} p_{2} p_{3} \cdots,
$$
we have also
$$
\Gamma^{\prime}\left(\left(P_{1} P_{2}\right)\left(P_{\mathrm{a}} P_{\mathrm{a}}\right) \cdots\right)=\left(p_{1} p_{\mathrm{a}}\right)\left(p_{\mathrm{a}} p_{\mathrm{a}}\right) \cdots,
$$
and hence the induced correlation of Γ^{\prime} transforms P_{2} into p_{3}, etc.
That correlations in a plane exist follows from the existence of the polar system of a come. The latier is in fact a projective transformation in which to every point in the plane of the come corresponds a unique line of the plane, to every line corresponds a unique point, and to every pencil of points (lines) corresponds a projective pencil of lines (points) (Theorem 18, Cor, Chap. V). This example is, however, of a special type having the peculiarity that, if a point P corresponds to a line p, then in the induced correlation the line p will correspond to the point P; 1.e. in a polar system the points and lines correspond doubly. This is by no means the case in every correlation.

Definition. A correlation in a plane in which the points and lines correspond doubly is called a polarity.

It has been found convenient in the case of a polarity defined by a conic to study a transformation of points into lines and the induced transformation of lines into points simultaneously. Analogously, in studying collineations we have regarded a transformation T of points $P_{1}, P_{2}, P_{8}, P_{4}$ into points $P_{1}^{\prime}, P_{2}^{\prime}, P_{8}^{\prime}, P_{4}^{\prime}$, and the transformation T^{\prime} of the lines $P_{1} P_{2}, P_{2} P_{8}, P_{3} P_{4}, P_{4} P_{1}$ into the lines $P_{1}^{\prime} P_{2}^{\prime}, P_{2}^{\prime} P_{8}^{\prime}, P_{8}^{\prime} P_{4}^{\prime}, P_{4}^{\prime} P_{1}^{\prime}$ as the same collineation. In like mamer, when considering a transformation of the points and lines of a plane into its lines and points respectively, a correlation Γ operating on the points and its induced correlation Γ^{\prime} operating on the lines constitute one transformation of the points and lines of the plane. For this sort of transformation we shall also use the term correlation. In the first instance a correlation in a plane is a correspondence between a plane of points (lines) and a plane of lines (points). In the extended sense it is a transformation of a planar field either into itself or into another planar field, in which an element of one kind (point or line) corresponds to an element of the other kind.

The following theorem is an immediate consequence of the definition and the fact that the resultant of any two projective correspondences is a projective correspondence.

Theorem 1 The resultant of two correlations is a projective collineation, and the resultant of a corrolution and a projective collnneation is a correlation.

We now proceed to derve the fundamental theorem for correlations helween two-dimensional forms

Theorem 2. A corrclation between two two-dimensional primitive forms is uniquely defined when four pars of hornoloyous elements are given, provided that no three elements of either form are on the same one-dimensuonal primitive form.

Proof. Let the two forms be a plane of points α and a plane of lines α^{\prime}. Let C^{2} be any conic in α^{\prime}, and let the four pars of homologous elements be A, B, C, D in α and $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ m α^{\prime}. Let A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime} be the poles of $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ respectively with respect to C^{2}. If the four points A, B, C, D are the vertices of a quadrangle and the four points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are likewise the vertices of a quadrangle (and thes imphes that no three of the lines $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ are concurrent), there exists one and only one collneation transforming A into A^{\prime}, B into B^{\prime}, C nnto C^{\prime}, and D into D^{\prime} (Theorem 18, Chap. IV). Let this collineation be denoted by T , and let the polarity defined by the conic C^{2} be denoted by P. Then the projective transformation Γ which is the resultant of these two transforms A into a^{\prime}, B into b^{\prime}, etc. Moreover, there cannot be more than one corrospondence effecting this transformation. For, suppose there were two, Γ and Γ_{1}. Then the projective correspondence $\Gamma_{1}{ }^{-1}$. Γ would leave each of the four points A, B, C, D fixed; i.e would be the identily (Theorem 18, Chap. IV). But this would imply $\Gamma_{1}=\Gamma$.

Theormm 3. 1 correlation which interchanuges the vertices of a triangle with the opposite sides is a polarity.

Proof. Let the vertices of the given triangle bo A, B, C, and let the opposite sides be respectively a, b, c. Let P be any point of the plane $A B C$ which is not on a side of the triangle. The line p inic which P is transformed by the given correlation Γ does not, then, pas: through a vertex of the triangle $A B C$. The correlation Γ is deter mined by the equation $\Gamma(A B C P)=a b c p$, and, by hypothesis, is suck
that $\Gamma(a b c)=A B C$ The pomis [Q] of c are transformed into the lines $\left[q\right.$] on C, and these meet $c \mathrm{~m}$ a pencll [Q^{\prime}] projective with [Q] (fig 99) Smee A corresponds to B and B to A in the projectivity $[Q] \bar{\Lambda}\left[Q^{\prime}\right]$, this projectivity is an involution I. The pomi Q_{0} in which

$C P$ meets c is transformed by Γ into a line on the point $c p$; and since Q_{0} and $c p$ are paired in I, it follows that $c p$ is transformed into the line $C Q_{0}=C P$. In like manner, $b p$ is transformed into $B P$. Hence $p=(c p, b p)$ is transformed into $P=(C P, B P)$.

Tirmoram 4. Any projective collineation, II, in a plane, α, is the product of two polarities.

Proof. Let $A a$ be a lineal element of α, and let

$$
\Pi(\Lambda a)=A^{\prime} a^{\prime}, \Pi \Pi\left(A^{\prime} a a^{\prime}\right)=A^{\prime \prime} a^{\prime \prime}
$$

Unless II is perspective, $A a$ may be so chosen that $A, A^{\prime}, A^{\prime \prime}$ are not collinear, $a a^{\prime} a^{\prime \prime}$ are not concurrent, and no line of one of the three lineal elements passes through the point of another. In this case there exists a polarity P such that $\mathrm{P}\left(A A^{\prime} A^{\prime \prime}\right)=a^{\prime \prime} a^{\prime} a$, namely the polarity defined by the conic with regard to which $A A^{\prime \prime}\left(a a^{\prime \prime}\right)$ is a self-polar triangle and to which a^{\prime} is tangent at A^{\prime}. If Π is perspective, the existence of P follows directly on choosing $A a$, so that neither A nor a is fixed. We then have

$$
\operatorname{PII}\left(A A^{\prime} a a^{\prime}\right)=\alpha^{\prime} a A^{\prime} A,
$$

and hence the triangle $A A^{\prime}\left(\alpha a^{\prime}\right)$ is self-reciprocal. Hence (Theorem 3) $\mathrm{PII}=\mathrm{P}_{1}$ is a polarity, and therefore $\mathrm{II}=\mathrm{PP}_{1}$.
94. Analytic representation of a correlation between two planes. Bilinear forms. Let a system of simultaneous point-and-line coordinates be established in a planar field. We then have

Theorem 5. Any correlation in a plane is given as a transformatron of points into lines by equations of the form

$$
\begin{align*}
& \rho u_{2}^{\prime}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}, \\
& \rho u_{2}^{\prime}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}, \tag{1}\\
& \rho u_{3}^{\prime}=a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3},
\end{align*}
$$

where the determinant A of the coefficients a_{i}, ss dufferent from zero. Conversely, every transformation of this form in which the determununt A is different from zero represents a correlation.

The proof of this theorem is completely analogous to the proof of Theorem 8, Chapter VII, and need not be repeated here.

As a corollary we have
Corollary 1. The transformation $\rho u_{1}^{\prime}=x_{1}, \rho u_{2}^{\prime}=x_{2}, \rho u_{3}^{\prime}=x_{8}$ in a plane represents a polarty in which to every sule of the triaungle of reference corresponds the opposite vertex.

Also, if ($u_{1}^{\prime}, u_{2}^{\prime}, u_{s}^{\prime}$) be interpreted as line coördinates in a plane different from that containing the points (x_{1}, x_{2}, x_{3}) (and if the number systems are so related that the correspondence $X^{\prime}=X$ between the two planes is projective), we have at once

Corollary 2. The equations of Theorem 5 also represent a correlation between the plane of (x_{1}, x_{2}, x_{3}) and the plane of ($u_{1}^{\prime}, u_{2}^{\prime}, u_{8}^{\prime}$)

Returning now to the consideration of a correlation in a plane (planar field), we have seen that the equations (1) give the coördinates ($u_{1}^{\prime}, u_{2}^{\prime}, u_{8}^{\prime}$) of the line $u^{\prime}=\Gamma(X)$, which corresponds to the point $X=\left(x_{1}, x_{2}, x_{3}\right) \quad$ By solving these equations for x_{1},

$$
\begin{aligned}
& \sigma x_{1}=A_{11} u_{1}^{\prime}+A_{21} u_{2}^{\prime}+A_{31} u_{8}^{\prime}, \\
& \sigma x_{2}=A_{12} u_{1}^{\prime}+A_{22} u_{2}^{\prime}+A_{32} u_{3}^{\prime}, \\
& \sigma x_{3}=A_{13} u_{1}^{\prime}+A_{23} u_{2}^{\prime}+A_{33} u_{8}^{\prime},
\end{aligned}
$$

we obtain the coördinates of $X=\Gamma^{-1}\left(u^{\prime}\right)$ in terms of the coördinates u_{2}^{\prime} of the line to which $X_{1 s}$ homologous in the inverse correlation Γ^{-1}. If, however, we seek the coördinates of the point $X^{\prime}=\Gamma(u)$ which corresponds to any line u in the correlation Γ, we may proceed as follows:

Let the equation of the point $X^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ in line coördinates be

$$
u_{1}^{\prime} x_{1}^{\prime}+u_{2}^{\prime} x_{2}^{\prime}+u_{3}^{\prime} x_{3}^{\prime}=0 .
$$

Substituting in this equation from (1) and arranging the terms as a linear expression in x_{1}, x_{2}, x_{3},

$$
u_{1} x_{1}+u_{2} x_{\mathrm{a}}+u_{\mathrm{g}} x_{\mathrm{a}}=0,
$$

we readuly find

$$
\begin{align*}
& \tau u_{1}=a_{11} x_{1}^{\prime}+a_{21} x_{2}^{\prime}+a_{31} x_{3}^{\prime}, \\
& \tau u_{2}=a_{12} x_{1}^{\prime}+a_{292} x_{2}^{\prime}+a_{32} x_{3}^{\prime}, \tag{3}\\
& \tau u_{3}=a_{13} x_{1}^{\prime}+a_{23} x_{2}^{\prime}+a_{33} x_{3}^{\prime} .
\end{align*}
$$

The coordmates of X^{\prime} in terms of the coordinates of u are then given by

$$
\begin{align*}
& v x_{1}^{\prime}=A_{11} u_{1}+A_{12} u_{2}+A_{18} u_{8}, \\
& v x_{3}^{\prime}=A_{21} u_{1}+A_{29} u_{2}+A_{28} u_{3}, \tag{4}\\
& v x_{8}^{\prime}=A_{31} u_{1}+A_{32} u_{2}+A_{38} u_{8} .
\end{align*}
$$

This is the analytic expression of the correlation as a transformation of lines into points; i.e. of the induced correlation of Γ. These equathons clearly apply also in the case of a correlation between two different planes.

It is perhaps well to emphasize the fact that Equations (1) express Γ as a transformation of points into lines, while Equations (4) represent the induced correlation of lines into poinls. Since we consider a correlation as a transformation of points into lines and lines into points, Γ is completely represented by (1) and (4) taken together. Equations (2) and (3) taken together reprosent the inverse of Γ.

Another way of representing Γ analytically is oblained by observing that the point (x_{1}, x_{2}, x_{8}) is transformed by Γ into the line whose equation in current coördinates ($x_{1}^{\prime}, x_{2}^{\prime}, x_{8}^{\prime}$) is

$$
u_{1}^{\prime} x_{1}^{\prime}+u_{2}^{\prime} x_{2}^{\prime}+u_{\mathrm{s}}^{\prime} x_{8}^{\prime}=0,
$$

or,
(5) $\left(a_{11} x_{1}+a_{12} x_{2}+a_{18} x_{\mathrm{R}}\right) x_{1}^{\prime}+\left(a_{21} x_{1}+a_{28} x_{2}+a_{28} x_{\mathrm{g}}\right) x_{2}^{\prime}$

$$
+\left(a_{\mathrm{Bi} 1} x_{1}+a_{\mathrm{gx}} x_{2}+a_{88} x_{\mathrm{g}}\right) x_{8}^{\prime}=0 .
$$

The left-hand member of (5) is a general ternary bilinear form. We have then

Corollary 3. Any ternary bilinear form in which the determinant A is different from zero represents a correlation in a plane.
95. General projective group. Representation by matrices. The general projective group of transformations in a plane (which, under duality, we take as representative of the two-dumensional primitive forms) consists of all projective collmeations (ncluding the identity) and all correlations in the plane. Since the product of two collmeations is a collineation, the set of all projective collineations forms a subgroup of the general group Since, however, the product of two correlations is a collnneation, there exists no subgroup consisting entirely of correlations.*

According to the point of view developed in the last chapter, the projective geometry of a plane is concerned with theorems which state properties invariant under the general projective group in the plane. In particular, the principle of dualnty may be regarded as a consequence of the presence of correlations in this group.

Analytically, collneations and correlations may be regarded as aspects of the theory of matrices. The collnneation

$$
\begin{equation*}
x_{2}^{\prime}=\sum_{j=1}^{3} \alpha_{v} x_{j} \tag{i=1,2,3}
\end{equation*}
$$

may be conveniently represented by the matrix A of the coefficients $a_{i j}$:

$$
\mathbf{A}=\left(a_{v}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

The product of two collineations $\mathrm{A}=\left(a_{v}\right)$ and $\mathrm{B}=\left(b_{i v}\right)$ is then given by the product of their matrices:
the element of the i th row and the j th column of the matrix BA being obtained by multiplying each element of the i th row of \mathbf{B} by the corresponding element of the j th column of \mathbf{A} and adding the products thus obtamed. It is clear that two collineations are not in general commutative.

[^84]Of the two matrices

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{23} & a_{23} \\
a_{31} & a_{33} & a_{33}
\end{array}\right) \text { and }\left(\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right),
$$

either of which is oblained from the other by interchanging rows and columns, one is called the conjugate or transposed matrix of the other. The matrix

$$
\begin{array}{ll}
A_{11} & A_{21} \\
A_{31} & A_{31}^{\prime} \\
A_{11} & A_{12} \\
A_{32} \\
A_{18} & A_{23}
\end{array} A_{33}
$$

is called the adjoint matrix of the matrix A. The adjoint matrix is clearly obtained by replacing each element of the transposed matrix by lis cofactor Equations (2) of $\S 67$ show that the adjoint of a given matrux represents the inverse of the collineation represented by the given matrix. Indeed, by direct multipheation,

$$
\begin{array}{llllll}
a_{11} & a_{12} & a_{13} & A_{11} & A_{21} & A_{31}^{\prime} \\
a_{21}^{\prime 2} & a_{22} & a_{28} & A_{13} & 0 & A_{22}^{\prime} \\
a_{31} & A_{32}= & A_{32} & A & 0
\end{array} ;
$$

and the matrix just obtamed clearly represents the identical collmeation. Since, when a matrix is thought of as representing a collineation, we may evidently remove any common factor from all the elements of the matrix, the latter matrix is equvalent to the so-called identical matrix,*

$$
\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} .
$$

Furthermore, Equations (3), §67, show that if a given matrix represonts a collineation in point coordinates, the conjugate of the adjount matrix represents the same collineation in line coordinates. Also from the representation of the product of two matrices just derived, follows the important result:

The determinant of the product of two matrices (collineations) is equal to the product of the determinants of the two matrices (collineations).

[^85]From what has just been said it is clear that a matrix does not completely define a collineation, unless the nature of the coördinates is specified If it is desired to exhibit the coordinates in the notatoon, we may write the collineation $x_{i}^{\prime}=\Sigma a_{v} x_{\text {, }}$ in the symbolic form

$$
x^{\prime}=\left(a_{i j}\right) x .
$$

The matrix $\left(a_{v}\right)$ may then be regarded as an operator transforming the coördnates $x=\left(x_{1}, x_{2}, x_{3}\right)$ into the coordmates $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ If we place $\bar{a}_{v}=a_{v}$, the matrix conjugate to $\left(a_{i v}\right)$ is $\left(\bar{a}_{v i}\right)$ Also by placing $\bar{A}_{v j}=A_{j n}$, the adjoint matrix of $\left(a_{v}\right)$ is $\left(\bar{A}_{v}\right)$. The inverse of the above collneation is then written

$$
x=\left(\bar{A}_{i v}\right) x^{\prime} .
$$

Furthermore, the collineation $x^{\prime}=\left(a_{\mathrm{v}}\right) x$ is represented in line coordnates by the equation

$$
u^{\prime}=\left(A_{v}\right) u .
$$

This more complete notation will not be found necessary in general in the analytic treatment of collneations, when no correlations are present, but it is essential in the representation of correlations by means of matrices.
The correlation (1) of § 94 may clearly be represented symbolically by the equation

$$
u^{\prime}=\left(a_{v}\right) x,
$$

where the matrix $\left(\alpha_{v}\right)$ is to be regarded as an operator transformung the point x into the line $u l$. This correlation is then expressed as a transformation of lines into points by

$$
x^{\prime}=\left(A_{t j}\right) u .
$$

The product of two correlations $u^{\prime}=\left(\alpha_{y}\right) x$ and $u^{\prime}=\left(b_{v}\right) x$ is therefore represented by

$$
x^{\prime}=\left(B_{v j}\right)\left(a_{i j}\right) x
$$

(cf. Equations (4), § 94), or by

$$
u^{\prime}=\left(b_{v j}\right)\left(A_{i j}\right) u
$$

Also, the inverse of the correlation $u^{\prime}=\left(\alpha_{i}\right) x$ is given by
or by

$$
x=\left(\bar{A}_{i,}\right) u^{\prime},
$$

$$
u=\left(\bar{a}_{v}\right) x^{\prime} .
$$

EXERCISE

Show that if $[\Pi]$ is the set of all collneations in a plane and Γ_{1} is any comelation, the sch of all correlations in the plane is $\left[\Pi \Gamma_{1}\right]$, so that the two seis of transformations [Π] and $\left[\Pi \Gamma_{1}\right]$ comprise the general projective gioup in the plane By vatue of this fact the subgroup of all projectave collmeations is said to be of index $\boldsymbol{2}$ in the general projectave group.*
96. Double points and double lines of a collineation in a plane. Referming to Equations (1) of $\S 67$ we see that a point (x_{1}, x_{2}, x_{8}) whel is transformed into itself by the collineation (1) must satisfy the equations

$$
\begin{aligned}
& \rho x_{1}=a_{11} x_{1}+a_{12} x_{2}+a_{18} x_{8}, \\
& \rho x_{2}=a_{21} x_{1}+a_{22} x_{2}+a_{22} x_{3}, \\
& \rho x_{3}=a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3},
\end{aligned}
$$

which, by a simple rearrangement, may be written

$$
\begin{array}{r}
\left(a_{11}-\rho\right) x_{1}+a_{12} x_{2}+a_{12} x_{3}=0 \\
a_{21} x_{1}+\left(a_{22}-\rho\right) x_{2}+a_{23} x_{3}=0 \tag{1}\\
a_{31} x_{1}+a_{33} x_{2}+\left(a_{33}-\rho\right) x_{3}=0 .
\end{array}
$$

If a point $\left(x_{1}, x_{2}, x_{3}\right)$ is to satisfy these three equations, the determinant of this system of equations must vanish; 1.e. ρ must satisfy the equation

$$
\begin{array}{ccc}
a_{11}-\rho & a_{12} & a_{18} \tag{2}\\
a_{21} & a_{29}-\rho & \begin{array}{c}
a_{23} \\
a_{31}
\end{array} \\
a_{32} & a_{33}-\rho
\end{array}=0
$$

This is an equation of the third degree in ρ, which cannot have more than three roots in the number system of our geometry.

Suppose that ρ_{1} is a root of this equation. The system of equations (1) is then consistent (which means geometrically that the three lines represented by them pass through the same point), and the point determined by any two of them (if they are independent, 1.e. if they do not represent the same line) is a doulle point. Solving the first two of these equations, for example, we find as the coördinates (x_{1}, x_{2}, x_{3}) of a double point

$$
x_{1}: x_{2}: x_{3}=\left|\begin{array}{cc}
a_{12} & a_{13} \tag{3}\\
a_{22}-\rho_{1} & a_{23}
\end{array}\right|:\left|\begin{array}{cc}
a_{13} & a_{11}-\rho_{1} \\
a_{23} & \alpha_{21}
\end{array}\right|:\left|\begin{array}{cc}
a_{11}-\rho_{1} & a_{12} \\
a_{21} & a_{22}-\rho_{1}
\end{array}\right|
$$

[^86]which represent a unique point, unless it should happen that all the determinants on the right of this equation vanish. Leaving aside this possiblity for the moment, we see that every root of Equation (2), which is called the characteristic equatron of the collmeation (or of the representative matrix), gives rise to a unique double point. Moreover, every double point is obtainable in this way. This is the analytic form of the fact already noted, that a collineation whuch is not a homology or an elation cannot have more than three doulle points, unless it is the identical collineation

If, however, all the determinants on the right in Equations (3) vanish, it follows readuly that the first two of Equations (1) represent the same luie. If the determmants formed analogously from the last two equations do not all vanısh, we again get a unique double point; but if the latter also vamsh, then all three of the equations alove represent the same line. Every point of this line is then a double point, and the collneation must be a homology or an elation. Clearly this can happen only if ρ_{1} is at least a double root of Equation (2); for we know that a perspective collineation cannot have more than one double point which is not on the axis of the collineation.

A complete enumeration of the possible configurations of double points and lines of a collneation can be made by means of a study of the characternstic equation, making use of the theory of elementary divisors* It seems more natural in the present connection to start with the existence of one fixed point (Proposition K_{3}) and discuss geometrically the cases that can arise.

By Theorem 4 a collnneation is the product of two polarities. Hence any double point has the same polar line in both polarities, and that polar lune is a double line Hence the invariant figure of clouble points and lines $\imath s$ self-dual.

Four points of the plane, no three of which are collinear, cannot be invariant unless the collineation reduces to the identity. If three noncollinear pounts are invariant, two cases present themselves. If the collneation reduces to the identity on no side of the invariant triangle, the collmeation is of Type I (cf. § 40, Chap. IV). If the collmeation is the identity on one and only one side of the invariant triangle, the collmeation is of Type $I V . \dagger$ If two distinct points are

[^87]invariant, but no point not ou the lime l joimng these two is invariant, two possibiliises agam arise If the collneation does not leave every point of this lue invariaut, there is a unique other lue through one of these points that is invariant, since the invariant figure is self-dual. The collineation is then of Type II. If every point of the line is mvariant, on the other hand, all the lines through a point of the lme l must be invariant, smee the figure of invariant elements is self-dual. The collineation is then of Type V.

If only one point is fixed, only one line can be fixed. The collineataon is then parabolic both on the line and on the point, and the collineation is of Type III.

We have thus proved that every collineation dufferent from the identity is of one of the five types previously enumerated. Type I may be represented by the symbol $[1,1,1]$, the three 1 's denoting three distinct double points. In Type $I V$ there are also three distinct double points, but all points on the line joming two of them are fixed and Equation (1) has one double root. Type $I V$ is denoted by [(1, 1), 1]. In Type $I I$, as there are ouly two distinct double points, Equation (1) must have a double root and one simple root This type is accordingly denoted by the symbol [2, 1], the 2 indicating the double point corresponding to the double root. Type V is then naturally represented by $[(2,1)]$, the parentheses again mdicating that every point of the line joining the two points is fixed. Type $I I I$ corresponds to a triple root of (1), and may therefore be denoted by [3]. We have then the following:

Tirmorem 6. Every projective collineation in a plane is of one of the following five types:

$$
[1,1,1] \quad[(1,1), 1]
$$

$[2,1] \quad[(2,1)]$

[3]

In this table the first column corresponds to three distinct roots of the characteristic equation, the second column to a double root, the third column to a triple root. The first row corresponds to the cases in which there exist at least three double points which are
not collnear ; the second row to the case where there exist at least two distinct double points and all such points are on the same line; the third row to the case in which there exists only a single double point.

With every collneation in a plane are associated certain projectivities on the invarant lines and in the pencils on the invariant points. In case the collnneation is of Type I, it is completely determined of the projectivities on two sides of the invariant triangle are given. There must therefore be a relation between the projectivities on the three sides of the invariant triangle (cf. Ex. 5, p 276). In a collmeation of Type $I I$ the projectivity is parabolic on one of the invariant lines but not on the other. The point in which the two mvariant lines meet may therefore be called singly paraboluc. The collmeation is completely determined if the projectivities on the two invariant lmes are given In a collineation of Type III the projectivity on the mvariant line is parabolic, as likewise the projectivity on the invariant point. The fixed point may then be called doubly parabolic. The projectivities on the invariant lines of a collineation of Type V are parabolic except the one on the axas which is the identity. The center is thus a singly parabolic point. In the table of Theorem 6 the symbols 3, 2, and 1 may be taken to indicate doubly and singly and nonparabolic points respectively.*

We give below certain simple, so-called canonical forms of the equations defining collneations of these five types.

Type I. Let the invariant triangle be the triangle of reference. The collineation is then given by equations of the form

$$
\begin{aligned}
& \rho x_{1}^{\prime}=a_{11} x_{1}, \\
& \rho x_{2}^{\prime}=\quad a_{22} x_{2}, \\
& \rho x_{3}^{\prime}=
\end{aligned} \quad a_{38} x_{3},
$$

in which $\alpha_{11}, a_{22}, a_{93}$ are the roots of the characteristic equation and must therefore be all distinct

Type IV, Homology. If the vertices of the triangle of reference are taken as invariant points, the equations reduce to the form written above; but since one of the lines $x_{1}=0, x_{2}=0, x_{3}=0$ is pointwise

[^88]invariant, we must have either $a_{22}=a_{93}$ or $\alpha_{33}=a_{11}$ or $a_{11}=a_{22}$ Thus the homology may be writien
\[

$$
\begin{aligned}
& \rho x_{1}^{\prime}=x_{1}, \\
& \rho x_{2}^{\prime}=\quad x_{2}, \\
& \rho x_{3}^{\prime}=\quad a_{33} x_{3},
\end{aligned}
$$ \quad\left(a_{33} \neq 1\right) .
\]

A harmonic homology or reflection is obtained by setting $a_{33}=-1$.
Type II. The characteristic equation has one double root, $\rho_{1}=\rho_{2}$, say, and a sumple root ρ_{s} Let the double point corresponding to $\rho_{1}=\rho_{2}$ be $U_{1}=(0,0,1)$, let the double point corresponding to ρ_{3} be $U_{3}=(1,0,0)$, and let the third vertex of the triangle of reference be any point on the double line u_{3} corresponding to ρ_{3}, which line will pass through the pomt U_{1}. The collineation is then of the form

$$
\begin{array}{ll}
\rho x_{1}^{\prime}= & =a_{11} x_{1}, \\
\rho x_{2}^{\prime}= & a_{23} x_{2}, \\
\rho x_{3}^{\prime}= & a_{32} x_{2}+a_{33} x_{3},
\end{array}
$$

since the lines $x_{1}=0$ and $x_{2}=0$ are double lines and $(1,0,0)$ is a double point. The characterstic equation of the collineation is clearly

$$
\left(a_{11}-\rho\right)\left(a_{22}-\rho\right)\left(a_{33}-\rho\right)=0,
$$

and since this must have a double root, it follows that two of the numbers a_{11}, a_{22}, a_{88} must be equal. To determme which, place $\rho=a_{22}$; using the minors of the second row, we find, as coördmates of the corresponding double point,

$$
\left(0,\left(a_{11}-a_{22}\right)\left(a_{22}-a_{28}\right), a_{32}\left(a_{11}-a_{22}\right)\right),
$$

which is U_{1}, and hence we have $a_{22}=a_{33}$. The collineation then is of Type $I I$, if $a_{11} \neq a_{22}$. Its equations are therefore

$$
\begin{aligned}
& \rho x_{1}^{\prime}=a_{11} x_{1}, \\
& \rho x_{2}^{\prime}=\quad a_{22} x_{n}, \\
& \rho x_{8}^{\prime}=\quad a_{82} x_{2}+a_{23} x_{8},
\end{aligned}
$$

where $a_{32} \neq 0$ and $a_{11} \neq a_{22}$.
Type III. The characteristic equation has a triple root, $\rho_{1}=\rho_{2}=\rho_{3}$, say. Let $U_{1}=(0,0,1)$ be the single double point, and the line $x_{1}=0$ be the single double line. With this choice of coördinates the collineation has the form

$$
\begin{aligned}
& \rho x_{1}^{\prime}=a_{11} x_{1} \\
& \rho x_{2}^{\prime}=a_{21} c_{1}+a_{28} x_{2}, \\
& \rho x_{3}^{\prime}=a_{81} x_{1}+a_{82} x_{2}+a_{88} x_{8} .
\end{aligned}
$$

By writing the characteristic equation we find, in new of the fact that the equation has a triple root, that $a_{11}=a_{22}=a_{33}$. The form of the collmeation is therefore

$$
\begin{aligned}
& \rho x_{1}^{\prime}=x_{1}, \\
& \rho x_{2}^{\prime}=a_{21} x_{1}+x_{2}, \\
& \rho x_{3}^{\prime}=a_{31} x_{1}+a_{32} x_{2}+x_{3},
\end{aligned}
$$

where the numbers a_{21}, a_{39} must be different from 0
Type V, Elation Choosing ($0,0,1$) as center and $x_{1}=0$ as axis, the equations of the collineation reduce to the form given for Type $I I I$, where, however, a_{32} must be zero in order that the line $x_{1}=0$ be pointwise invariant. The equations for Type $I I$ also yield an elation in case $a_{11}=a_{22}$. Thus an elation may be written

$$
\begin{aligned}
& \rho x_{1}^{\prime}=x_{1}, \\
& \rho x_{2}^{\prime}=\quad x_{2}, \\
& \rho x_{3}^{\prime}=\quad a_{32} x_{2}+x_{3} .
\end{aligned}
$$

EXERCISES

1 Determine the collineation which transforms the points $A=(0,0,1)$, $B=(0,1,0), C=(1,0,0), D=(1,1,1)$ into the points B, C, D, Λ respectively Show that the characterstic equation of this collnneation is $(\rho-1)$ $\left(\rho^{2}+1\right)=0$, which many field has one 100t. Determme the double point and double hne corresponding to this root Assuming the field of numbers to be the orduary complex field, determine the coordmates of the remaiming two double points and double hnes. Verify, by actually multiplying the matrices, that this collneation is of period 4 (a fact which is evident from the definntion of the collineation).

2 With the same coordinates for A, B, C, D determme the collneation which transforms these points respectively unto the points B, A, D, C. The resulting collineation must, from this definition, be a homology. Why? Determine 1 ts center and 1 ts axis By actual multipheation of the matrices venfy that its square is the identical collineation.
3. Express each of the collneations in Exs. i and 2 in terms of line coordmates
4. Show that the characteristic cross ratios of the one-dimensional projectivitues on the sides of the invariant triangle of the collnneation $x_{1}^{\prime}=a x_{1}$, $x_{2}^{\prime}=b x_{2}, x_{8}^{\prime}=c x_{3}$ are the 1 atios of the numbers a, b, c. Hence show that the product of these cross ratios is equal to unty, the double points being taken around the tirangle in a given order.

5 Prove the latter part of Ex. 4 for the cross ratios of the projectivities on the sides of the invariant triangle of any collmeation of Type I.

6 Write the equations of a collineation of period $3 ; 4,5, \quad ; n ; \ldots$
7 By proporly choosing the systen of nonhomogeneous coondinates any collmeation of Typer I may be repesenterl by equations $a^{\prime}=a x, y^{\prime}=b y$ The set of all collmeations obtamed ly giving the parameters a, b all posssble values fonms a gioup. Show that the colmeations $x^{\prime}=a . x, y^{\prime}=a^{\prime} y$, where r is constant for all collmeations of the set, form a subgroup Show that evely collmeation of this subgroup leaves invanant every curve whose equation is $y=r x^{\prime}$, where c as any constant. Such curves ane called puth culves of the collmeations.
8. If P is any point of a given path curve, p the tangent at P, and A, B, C the vortices of the meriant tiangle, then $\mathrm{K}\left(p, P_{\perp} 1, P B, P C\right)$ is a coustant.
9. For the values $r=-1,2, \frac{1}{2}$ the path cur ves of the collineations of the sulggronj, described in Ex 7 are conics tangent to two sides of the invariant triangle at two vertices.
10. If $r=0$, the sulgroup of Ex 7 oonsists eutirely of homologies
11. Prove that any collmeation of Type I may be expressed in the form

$$
\begin{aligned}
& x^{\prime}=k(a x+b y), \\
& y^{\prime}=k(b x-a y),
\end{aligned}
$$

with the restriction $a^{2}+b^{2}=1$
12. Prove that any collineation oan be expressed as a product of collneations of Type I.
13. Let the mpariant figure of a collineation of Type $I I$ be A, B, I, m, whero $l=A B, B=l m$. The product of such Ω collnneation by another of Type $I I$ with invariant figure $A^{\prime}, B, l, m^{\prime}$ as in general of Type $I I$, but may be of Types $I I I, I V$, ol V. Under what conditions do the latter oases anse?
14. Using the notation of Ex. 13, the product of a collineation of Type II with invariant figure A, B, l, m by one with minvariant figure $A, B^{\prime}, l, m^{\prime}$ is in general of Type II, but may be of Types III or IV. Under what conditions do the latier cases arise?

15 Prove that any collineation can be expressed as a product of collineations of Type $I I$.
16. Two collineations of Type $I I I$ with the same invariant figure are not in general commutative.
17. Any projective collineation can be expressed as a product of collineations of Type III.
18. If II is an elation whose center is C, and P any point not on the axis, then P and C are harmonically conjugate with rospect to $\Pi^{-1}(P)$ and III (P),
19. If two coplanar conics are projective, the correspondence between the poinis of one and the tangents at homologous poinis of the other determines a correlation.
20. If in a collineation between two distinct planes every point of the line of intersection of the planes is self-corresponding, the planes are perspective.

21 In nonhomogeneous courdnates a collineation of Type I with fixed points (a_{1}, a_{2}), (b_{1}, b_{2}) (c_{1}, c_{2}) may be witten

Type II may be written
and Type $I I I$ may be written
97. Double pairs of a correlation. We inquire now regarding the existence of double pairs of a correlation in a plane. By a double pair is meant a point X and a line u such that the correlation transforms X into u and also transforms u into X; in symbols, if Γ is the correlation, such that $\Gamma(X)=u$ and $\Gamma(u)=X$. We have already seen (Theorem 3) that if the vertices and opposite sides of a triangle are double pairs of a correlation, the correlation is a polarity.

We may note first that the problem of finding the double pairs of a correlation is in one form equivalent to finding the double elements
of a certain collineation. In fact, a double pair X, u is such that $\Gamma(X)=u$ and $\Gamma^{2}(X)=\Gamma(u)=X$, so that the pomt of a double pair of a corvelation Γ is a double point of the collnneation Γ^{2}. Similarly, at may be seen that the lines of the double pars are the double lines of the collmeation Γ^{w} It follows also from these considerations that Γ is a polanty, if Γ^{2} is the identical collmeation.

Analytically, the problem of determinng the double pairs of a correlation leads to the question For what values of (x_{1}, x_{2}, x_{3}) are the coördinates

$$
\left[a_{11} x_{1}+u_{21} x_{2}+a_{31} x_{3}, \quad a_{12} x_{1}+a_{29} x_{2}+a_{32} x_{3}, \quad a_{19} x_{1}+a_{33} x_{2}+a_{38} x_{3}\right]
$$

of the line to which it corresponds proportional to the coördnates

$$
\left[\begin{array}{ll}
a_{11} x_{1}+a_{18} x_{2}+\alpha_{18} x_{3}, & a_{21} x_{1}+a_{28} x_{2}+a_{28} x_{8}, \\
\left.a_{31} x_{1}+a_{32} x_{2}+a_{38} x_{8}\right]
\end{array}\right.
$$

of the line which corresponds to it in the given correlation? If ρ is the unknown factor of proportionality, this condition is expressed by the equations

$$
\begin{align*}
& \left(a_{11}-\rho a_{11}\right) x_{1}+\left(a_{12}-\rho a_{21}\right) x_{2}+\left(a_{13}-\rho a_{31}\right) x_{3}=0, \\
& \left(a_{21}-\rho a_{12}\right) x_{1}+\left(a_{22}-\rho a_{92}\right) x_{2}+\left(a_{23}-\rho a_{82}\right) x_{3}=0, \tag{1}\\
& \left(a_{81}-\rho a_{13}\right) x_{1}+\left(a_{82}-\rho a_{23}\right) x_{2}+\left(a_{33}-\rho a_{83}\right) x_{3}=0,
\end{align*}
$$

which must be satisfied by the coördnates (x_{1}, x_{2}, x_{8}) of any point of a double pair. The remainder of the treatment of this problem is similar to the curresponding part of the problem of determining the double elements of a collineation (§96). The factor of proportionality ρ is determined by the equation

$$
\begin{array}{lll}
a_{11}-\rho a_{11} & a_{12}-\rho a_{21} & a_{13}-\rho a_{81} \tag{2}\\
a_{21}-\rho a_{12} & a_{22}-\rho a_{22} & a_{23}-\rho a_{32}=0, \\
a_{31}-\rho a_{18} & a_{32}-\rho a_{28} & a_{38}-\rho a_{33}
\end{array}
$$

which is of the third degree and has (under Proposition K_{2}) three roots, of which one is 1 , and of which the other two may be proper or improper Every root of this equation when substituted for ρ in (1) renders these equations consistent The coördinates (x_{1}, x_{2}, x_{8}) are then determined by solving two of these.

If the reciprocity in question is a polarity, Equations (1) must be satisfied identically, i.e. for every set of values $\left(x_{1}, x_{2}, x_{\mathrm{g}}\right)$. This would imply that all the relations

$$
a_{i j}-\rho a_{\mathfrak{H}}=0 \quad(i, j=1,2,3)
$$

are satisfied.

Let us suppose first that at least one of the diagonal elements of the matrix of the coefficients ($a_{i j}$) be different from 0 . If this be a_{11}, the relation $a_{11}-\rho a_{11}=0$ gives at once $\rho=1$; and this value leals at once to the further relations

$$
a_{i j}=a_{j 2}, \quad(i, j=1,2,3) .
$$

The matrix in question must then be symmetrical If, on the other hand, we have $a_{11}=a_{22}=a_{38}=0$, there must be some coefficient a_{v} different from 0 . Suppose, for example, $a_{12} \neq 0$ Then the relation $a_{12}-k a_{21}=0$ shows that neither k nor a_{91} can be 0 The subsitution of one in the other of the relations $\alpha_{13}=k a_{21}$ and $a_{21}=k a_{19}$ then gives $k^{2}=1$, or $k= \pm 1$. The value $k=1$ again leads to the condition that the matrix of the coefficients be symmetrical. The value $k=-1$ gives $\alpha_{i n}=0$, and $\alpha_{i j}=-a_{j t}$, which would render the matrix skew symmetrical. The determmant of the transformation would on this supposition vanish (since every skew-symmetrical determmant of odd order vanishes), which is contrary to the hypothesis The value $k=-1$ is therefore impossible. We have thus been led to the following theorem:

Theorem 7. The necessary and sufficient condition that a reciprocity in a plane be a polarity is that the matrix of its coefficients be symmetrical.

If the coördinate system is chosen so that the point which corresponds to $\rho=1$ in Equation (2) is ($1,0,0$), it is clear that we must have $a_{21}=a_{12}$ and $\alpha_{31}=a_{13}$. If the line corresponding doubly to ($1,0,0$) does not pass through it, the coördinates $[1,0,0]$ may be assigned to this line. The equations of the correlation thus assume the form

$$
\begin{align*}
& \rho u_{1}^{\prime}=a_{11} x_{1} \\
& \rho u_{2}^{\prime}=\quad a_{28} x_{2}+a_{28} x_{3}, \tag{3}\\
& \rho u_{8}^{\prime}=\quad a_{82} x_{2}+a_{38} x_{8},
\end{align*}
$$

and Equation (2) reduces to

$$
a_{11}(1-\rho)\left|\begin{array}{ll}
a_{22}-\rho a_{22} & a_{23}-\rho a_{82} \tag{4}\\
a_{82}-\rho a_{29} & a_{89}-\rho a_{83}
\end{array}\right|=0 .
$$

The roots, other than 1 , of this equation clearly correspond to points on $[1,0,0]$. Choosing one of these points (Proposition K_{2}) as ($0,0,1$), we have either $a_{28}=a_{32}$, which would lead to a polarity, or $a_{88}=0$.

In the latter casc it is cvident that (4) has a double root if $a_{92}=-\alpha_{23}$, but that otherwise it has two distmet roots. Therefore a conelation in which $(1,0,0)$ and $[1,0,0]$ correspond doubly, and whech is not a polarity, may be reduced to one of the three forms:

	$\rho u_{1}^{\prime}=a x_{1}$,	
I	$\rho u_{2}^{\prime}=\quad x_{2}+c x_{3}$,	$(0 \neq c \neq \pm 1, a \neq 0)$
	$\rho u_{3}^{\prime}=\quad x_{2}$,	
$I I$	$\rho u_{1}^{\prime}=a x_{1}$,	
	$\rho u_{2}^{\prime}=\quad x_{2}-x_{3}$,	$(a \neq 0, b \neq 0)$
	$\rho u_{3}^{\prime}=x_{2}$,	
$I V$	$\rho u_{1}^{\prime}=a x_{1}$,	
	$\rho u_{2}^{\prime}=-x_{3}$,	$(a \neq 0)$
	$\rho u_{3}^{\prime}=x_{2}$.	

The squares of these correlations are collneations of Types $I, I I, I V$ respectively.

If the line doubly corresponding to $(1,0,0)$ does pass through it, the coordinates $[0,1,0]$ may be assigned to this line, and the equations of the correlation become

$$
\begin{aligned}
& \rho u_{1}^{\prime}=\quad x_{2} \\
& \rho u_{2}^{\prime}=x_{1}+a_{22} x_{2}+a_{28} x_{8}, \quad\left(a_{33} \neq 0, a_{28} \neq a_{82}\right) \\
& \rho u_{8}^{\prime}=\quad a_{38} x_{2}+a_{88} x_{8} .
\end{aligned}
$$

Equation (2) at the same time reduces to

$$
a_{\mathrm{Bs}}(1-\rho)^{8}=0,
$$

and the square of the correlation is always of Type $I T I$. There are thus five types of correlations, the polarily and those whose squares are collineations of Types $I, I I, I I I, I V$.

EXERCISES *

1 The points which lie upon the lmes to which they correspond in a correlation form a conic section C^{2}, and the lmes which lie upon the points to which they correspond aro the tangents to a conic K^{2} IIow are C^{2} and K^{2} related, in each of the five types of correlations, to one another and to the doubly corresponding elements?

[^89]2. If a line a does not lie upon the point A^{\prime} to which it corresponds in a correlation, there is a projectivity between the points of a and the points in which their corresponding lines meet a. In the case of a polarity this projectivity is always an involution. In any other correlation the lines upon which this projectivity is involutoric all pass through a unique fixed point O The line o having the dual property coiresponds doubly to O The double points of the imvolutions on the lines through O are on the conic C^{2}, and the double lines of the involutions on the points of K^{2} are tangent to $K^{2} \quad O$ and o are polar with respect to C^{2} and K^{2}. If a correlation determines involutions on three nonconcurrent lines, it is a polarity.
3. The lines of K^{2} through a point P of C^{2} are the line which is thansformed into P and the line into which P is transformed by the given correlation.
4. In a polarity C^{2} and K^{2} are the same come
5. A necessary and sufficient condition that a collmeation be the product of two reflections is the existence of a correlation which is lelt invariant by the collneation *
98. Fundamental conic of a polarity in a plane. We have jusi seen that a polarity in a plane is given by the equations
\[

$$
\begin{array}{ll}
\rho u_{1}^{\prime}=a_{11} x_{1}+a_{12} x_{2}+a_{18} x_{3}, & \\
\rho u_{2}^{\prime}=a_{12} x_{1}+a_{22} x_{2}+a_{23} x_{3}, & \left|a_{i}\right| \neq 1 \\
\rho u_{3}^{\prime}=a_{13} x_{1}+a_{28} x_{2}+a_{38} x_{3} &
\end{array}
$$
\]

Definition. Two homologous elements of a polarity in a plane ar called pole and polar, the point being the pole of the line and th lune being the polar of the point. If two points are so situated the one is on the polar of the other, they are said to be conjugate.

The condition that two points in a plane of a polarity be conjr gate is readily derived. In fact, if two points $P=\left(x_{1}, x_{2}, x_{3}\right)$ an $P^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{8}^{\prime}\right)$ are conjugate, the condition sought is simply thi the point P^{\prime} shall be on the line $p^{\prime}=\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{8}^{\prime}\right]$, the polar of $P ; 1$ $u_{1}^{\prime} x_{1}^{\prime}+u_{2}^{\prime} x_{2}^{\prime}+u_{3}^{\prime} x_{3}^{\prime}=0$. Substituting for $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$ their values terms of x_{1}, x_{2}, x_{3} from (1), we obtain the desired condition, viz.:

$$
\begin{align*}
a_{11} x_{1} x_{1}^{\prime}+a_{22} x_{2} x_{2}^{\prime} & +a_{38} x_{3} x_{8}^{\prime}+a_{12}\left(x_{1} x_{2}^{\prime}+x_{2} x_{1}^{\prime}\right) \tag{2}\\
& +a_{13}\left(x_{1} x_{3}^{\prime}+x_{3} x_{1}^{\prime}\right)+a_{28}\left(x_{2} x_{8}^{\prime}+x_{9} x_{2}^{\prime}\right)=0 .
\end{align*}
$$

As was to be expected, this condition is symmetrical in the coör nates of the two points P and P^{\prime}. By placung $x_{i}^{\prime}=x_{i}$ we obtain i

[^90]condition that the point P be solf-conjuyate, i.e that it be on its polar. We thus obtain the result.

Theorem 8 The self-conjugate points of the polarity (1) are on the conic whose equation is
(3) $a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+2 a_{12} x_{1} x_{2}+2 a_{19} x_{1} x_{3}+2 a_{23} x_{2} x_{8}=0 ;$
and, conversely, cvery point of this conve is self-conjugate.
This come is colled the fundamontal conne of the polarity. All of its points may be mproper, but it can never degenerate, for, if so, the determmant $\left|a_{i j}\right|$ would have to vanish (cf. Ex., p. 187). By dualily we oltain

Theorem 8'. The self-conjugate lines of the polarity (1) are lincs of the conic
(4) $A_{11} u_{1}^{2}+A_{22} u_{2}^{2}+A_{33} u_{8}^{2}+2 A_{12} u_{1} u_{1}+2 A_{13} u_{1} u_{3}+2 A_{23} u_{9} u_{8}=0$, and, converscly, cvery line of this conic is self-conjugate.

Every point X of the come (3) corresponds in the polarity (1) to the tangent to (3) at X. For if not, a point A of (3) would be polar to a line a through A and meeting (3) also in a point B. B would then be polar to a line b through B, and hence the line $a=A B$ would, by the definition of a polarity, be polar to $a b=B$. This would require that a correspond both to A and to B

If now we recall that the polar system of a conic constitutes a polarity (Theorem 18, Cor., Chap. V) in which all the points and lines of the conic, and only these, are self-conjugate, it follows from the above that every polarity is given by the polar system of its fundamental conic. This and other results following immedıately from it are contained in the following theorem:

Theorem 9. Every polarity is the polar system of a conic, the fundamental conic of the polarity. The self-conjugate points are the points and the self-conjugate lines are the tangents of this conic. Every pole and palar pair are pole and polar with respect to the fundamental conic.

This establishes that Equation (4) represents the same conic as Equation (3). The last theorem may be utilized to develop the analytic expressions for poles and polars, and tangents to a conic. This we take up in the next section.
99. Poles and polars with respect to a conic. Tangents. We have seen that the most general equation of a come in point coördunates may be written
(1) $a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+2 a_{12} x_{1} x_{2}+2 a_{13} x_{1} x_{3}+2 a_{23} x_{2} x_{3}=0$.

The result of the preceding section shows that the equation of the same conic in line coordinates is
(2) $A_{11} u_{1}^{2}+A_{22} u_{2}^{2}+A_{33} u_{3}^{2}+2 A_{12} u_{1} u_{2}+2 A_{18}^{3} u_{1} u_{3}+2 A_{28} u_{2} u_{3}=0$,
where $A_{v j}$ is the cofactor of $\alpha_{\imath j}$ in the determusant

$$
\begin{array}{lll}
\alpha_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{18} & a_{28} & a_{38}
\end{array} .
$$

This result may also be stated as follows.
Theorem 10. The necessary and sufficient condition that the line $u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}=0$ be tangent to the conic (1) is that Equation (2) be satisfied.

Corollary. This condition may also be written un the form

$$
\begin{array}{llll}
a_{11} & a_{12} & a_{13} & u_{1} \\
a_{21} & a_{22} & a_{23} & u_{2} \\
a_{31} & a_{32} & a_{33} & u_{3} \\
u_{1} & u_{2} & u_{3} & 0
\end{array}
$$

Equation (2) of the preceding section expresses the condition that the points (x_{1}, x_{2}, x_{8}) and ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$) be colljugate with respect to the conic (1). If in this equation ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$) be supposed given, while $\left(x_{1}, x_{2}, x_{3}\right)$ is regarded as variable, this condition is satisfied by all the points of the polar of ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$) with respect to the conic and by no others It is therefore the equation of this polar. When arranged according to the variable coordinates x_{t}, it becomes

$$
\begin{align*}
&\left(a_{11} x_{1}^{\prime}+a_{12} x_{2}^{\prime}+a_{18} x_{8}^{\prime}\right) x_{1}+\left(a_{12} x_{1}^{\prime}+a_{22} x_{2}^{\prime}+a_{28} x_{3}^{\prime}\right) x_{2} \tag{3}\\
&+\left(a_{13} x_{1}^{\prime}+a_{23} x_{2}^{\prime}+a_{38} x_{3}^{\prime}\right) x_{3}=0 ;
\end{align*}
$$

while if we arrange it according to the coördinates x_{i}^{\prime}, it becomes

$$
\begin{align*}
\left(a_{11} x_{1}+a_{12} x_{2}+a_{18} x_{3}\right) x_{1}^{\prime} & +\left(a_{12} x_{1}+n_{22} x_{2}+a_{23} x_{3}\right) x_{9}^{\prime} \tag{4}\\
& +\left(a_{13} x_{1}+a_{23} x_{2}+a_{83} x_{8}\right) x_{3}^{\prime}=0 .
\end{align*}
$$

Now it is readily verified that the latter of these equations may be derived from the equation (1) of the conic by applying to the left-hand member of this equation the polar operator

$$
x_{1}^{\prime} \frac{\partial}{\partial x_{1}}+x_{2}^{\prime} \frac{\partial}{\partial x_{2}}+x_{3}^{\prime} \frac{\partial}{\partial x_{3}}
$$

($\S 89$) and dividing the resulting equation by 2 . Furthermore, if we define the symbols $\frac{\partial f}{\partial x_{1}^{\prime}}, \frac{\partial f}{\partial x_{2}^{\prime}}, \frac{\partial f}{\partial x_{3}^{\prime}}$ to be the result of substituting $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ for $\left(x_{1}, x_{2}, x_{3}\right)$ m the expressions $\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial x_{3}}(f$ being any polynomial in x_{1}, x_{2}, x_{3}), it is readily seen that Equation (3) is equivalent to

$$
x_{1} \frac{\partial f}{\partial x_{1}^{\prime}}+x_{2} \frac{\partial f}{\partial x_{2}^{\prime}}+x_{3} \frac{\partial f}{\partial x_{3}^{\prime}}=0
$$

where now f is the left-hand member of (1).
This leals to the following theorem:
Tinforkm 11. If $f=0$ is the equation of a conic in homogeneous point coordinatcs, the equation of the polar of any point $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ is grven by either of the equations

$$
x_{1}^{\prime} \frac{\partial f}{\partial x_{1}}+x_{2}^{\prime} \frac{\partial f}{\partial x_{2}}+x_{3}^{\prime} \frac{\partial f}{\partial x_{1}}=0 \quad \text { or } \quad x_{1} \frac{\partial f}{\partial x_{1}^{\prime}}+x_{2} \frac{\partial f}{\partial x_{2}^{\prime}}+x_{3} \frac{\partial f}{\partial x_{3}^{\prime}}=0 .
$$

If the point ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$) is a point on the connc, eather of these equations represents the tungent to the conic $f=0$ at this point.
100. Various defnitions of conics. The definition of a (point) conic as the locus of the intersections of homologous lines of two projective flat pencils in the same plane was first grven by Steiner in 1832 and used about the same time by Chasles. The considerations of the preceding sections at once suggest two other methods of definition, one synthetic, the other analytic. The former begins by the synthetic definition of a polarity (cf. p. 263), and then defines a point conic as the set of all self-conjungute points of a polarity, and a line conic as the set of all self-conjugate lines of a polarity. This definition was first given by von Staudt in 1847. From it he derived the fundamental properties of conics and showed easily that his definition is equivalent to Steiner's. The analytic method is to define a (point) conic as the set of all points satislying any equation of the second degree, homogeneous in three variables x_{1}, x_{2}, x_{3}. This dofinition (at least in its nonhomogeneous form) dates back to Descartes and Fermat (1637) and the introduction of the notions of analytic geometry.

The oldest definition of conics is due to the ancient Greek geometers, who defined a comc as the plane section of a circular cone. This definition involves meticic ideas and hence does not concern us at this point. We will ieturn to it later It is of interest to note in passing, however, that fiom this definition Apollonius (about 200 BC) derived a theorem equivalent to the one that the equation of a conic in point coordinates is of the second degiee.

The reader will find it a valuable exercise to derive for himself the fundamental properties of polarities synthetically, and thence to develop the theory of comes from von Staudt's definition, at least so far as to show that his defintion is equevalent to Stemer's. It may be noted that von Staudt's defintion has the advantage over Stemer's of including, without reference to Proposition K_{2}, conics consisting entrely of improper points (since there exist polarities which have no proper self-conjugate points) The reader may in this connection refer to the original work of von Staudt, Die Geometrie der Lage, Nurnberg (1847), or to the textbook of Enriques, Vorlesungen über projective Geometrie, Leıpzig (1903).

EXERCISES

1 Derive the condition of Theorem 10 dnectly by imposing the condition that the quadratic which determines the intersections of the given line with the come shall have equal ioots What is the dual of this theorem?
2. Verify analytically the fundamental pioperties of poles and polars with respect to a come (Theorems 13-18, Chap. V)

3 State the dual of Theorem 11.
4. Show how to constuct the correlation between a plane of points and a plane of lines, having given the homologous parrs $A, a^{\prime} ; B, b^{\prime} ; C, c^{\prime} ; D, d^{\prime}$

5 Show that a correlation between two planes is uniquely determined if two pencils of points in one plane are made projective respectively with two pencils of lines in the other, provided that in this projectivity the point of intersection of the axes of the two pencils of points corlesponds to the line joining the two centers of the pencils of lines.
6. Show that in our system of homogeneous noint and line coordmates the pairs of points and lines with the same coordinates are poles and polars with respect to the concc $x_{1}^{2}+x_{2}^{2}+x_{1}^{2}=0$.

7 On a general line of a plane in which a polaity has been defined the pairs of conjugate points form an involution the double points of which are the (proper or improper) points of intersection of the line with the fundamental conic of the polarity.

8 A polarity in a plane is completely defined if a self-polar triangle is given together with one pole and polar pair of which the point is not on a side nor the lune on a vertex of the triangle.
9. Prove Theorem 3 analytically
10. Given a smple plane pentagon, theie exists a polairly in which to each vertex conesponds the opposite side

11 The three points $A^{\prime}, B^{\prime}, C^{\prime \prime}$ on the sides $B C, C A, A B$ of a triangle that are conjugate in a polanity to the vertices A, B, C respectively are collinear (cf. Ex 13, p. 125).
12. Show that a polanity is completely determined when the two involutions of conjugate points on two conjugate lines are given.

13 Constauct the polarity determined ly a self-polar tinangle $A B C$ and an mevolution of conjugate promts on a line.
14. Construct the polarity determined ly two pole and polar pans A, a and B, b and one parr of conjugato points $C, C^{\prime \prime}$.

15 If a triangle $S T U$ is self-polar with iegard to a conic C^{2}, and A is any point of C^{2}, there are three triangles having A as a vertex which are inscribed to C^{2} and curcumscribed to $S T U$ (Sturm, Die Lehre von den geometrischen Verwandtschaften, Vol I, p. 147)
101. Pairs of conics. If two polarities, l.e. two comes (proper or mproper), are given, their product is a collineation which leaves invariant any point or hue which has the same polar or pole with regard to both conics. Moreover, any point or line which is not left invariant by this collneation must have dufferent polars or poles with regard to the two conics. Hence the points and lines which have the same polars and poles wath regard to two conics in the same plane form one of the five invarant figures of a nonidentical collineation.

Type I. If the common self-polar figure of the two conics is of Type I, it is a self-polar triangle for both conics. Since any two conics are projectively equivalent (Theorem 9, Chap. VIII), the coördinate system may be so chosen that the equation of one of the conics, A^{2}, is

$$
\begin{equation*}
x_{1}^{2}-x_{2}^{2}+x_{8}^{2}=0 \tag{1}
\end{equation*}
$$

With regard to this conic the triangle $(0,0,1),(0,1,0),(1,0,0)$ is self-polar. The general equation of a conic with respect to which this triangle is self-polar is clearly

$$
\begin{equation*}
a_{1} x_{1}^{2}-a_{2} x_{2}^{2}+a_{9} x_{\mathrm{a}}^{2}=0 \tag{2}
\end{equation*}
$$

An equation of the form (2) may therefore be taken as the equation of the other conic, B^{2}, if (1) and (2) have no other common self-polar elements than the fundamental triangle. Consider the set of conics

$$
\begin{equation*}
a_{1} x_{1}^{2}-a_{2} x_{2}^{2}+a_{8} x_{8}^{2}+\lambda\left(x_{1}^{2}-x_{2}^{2}+x_{8}^{2}\right)=0 . \tag{3}
\end{equation*}
$$

The coordinates of any point which satisfy (1) and (2) also satisfy (3). Hence all conics (3) pass through the points common to A^{2} and B^{2}. For the value $\lambda=-a_{3}$, (3) gives the parr of lines

$$
\begin{equation*}
\left(a_{1}-a_{3}\right) x_{1}^{2}-\left(a_{2}-a_{3}\right) x_{2}^{2}=0, \tag{4}
\end{equation*}
$$

which intersect in ($0,0,1$). The points of intersection of these lines with (1) are common to all the conics (3)

The lines (4) are distinct, unless $a_{1}=a_{3}$ or $a_{2}=a_{3}$ But if $a_{1}=a_{3}$, any point ($x_{1}^{\prime}, 0, x_{3}^{\prime}$) on the line $x_{2}=0$ has the polar $x_{1}^{\prime} x_{1}+x_{3}^{\prime} x_{3}=0$ both with regard to (1) and with regard to (2). The self-polar figure is therefore of Type $I V$ In order that this figure be of Type I, the three numbers a_{1}, a_{2}, a_{3} must all be disinct If this condition is satisfied, the lines (4) meet the conics (3) in four distinct points.

The actual construction of the points is now a problem of the second degree. We have thus established (fig. 100)

Theorem 12. If two conics have a common self-polar traangle (and no other common self-polar parr of point and lane), thay intersect in four destinct points (proper or umproper) Any two conncs of the pencrl determined by these points luave the same self-polar triangle. Dually, two such conics have four common tangents, and any two
conics of the range detcrmined by these common tangents have the same self-polar triangle

Corohlary Any pencel of comes of Type I can be represented by *

$$
\begin{equation*}
\left(x_{1}^{2}-x_{\mathrm{a}}^{2}\right)+\lambda\left(x_{2}^{2}-x_{3}^{2}\right)=0, \tag{5}
\end{equation*}
$$

the four common points being in this case $(1,1,1),(1,1,-1),(1,-1,1)$, and ($-1,1,1$).

Type II. When the common self-polar figure is of Type $I I$, one of the points hes on tis polar, and therefore this polar is a tangent to each of the comes A^{2}, b^{2}. Since two tangents cannot intersect in a point of contact, the two lines of the self-polar figure are not both tangents. Hence the point B

Fig. 101 of the self-polar figure which is on only one of the lines is the pole of the line b of the figure which is on only one of the points (fig 101), and the lhe a on the two points is langent to both conics at the point A which is on the two lines.

Choose a system of coördinates with $A=(1,0,0), a=[0,0,1]$, $B=(0,1,0)$, and $b=[0,1,0]$. The equation of any conic bemg

$$
a_{1} x_{1}^{2}+c c_{2} x_{2}^{2}+a_{3} x_{8}^{2}+2 b_{1} x_{2} x_{3}+2 b_{2} x_{1} x_{8}+2 b_{8} x_{1} x_{2}=0
$$

the condition that A be on the conic is $a_{1}=0$; that a then be tangent is $b_{8}=0$; that b then be the polar of B is $b_{1}=0$. Hence the general equation of a conic with the given self-polar figure is

$$
\begin{equation*}
a_{2} x_{2}^{2}+a_{8} x_{8}^{2}+2 b_{2} x_{1} x_{8}=0 \tag{6}
\end{equation*}
$$

* Equation (5) is typical for a pencil of conces of Type I, and Theorem 12 is a sort of converse to the developments of $\S 47$, Chap. V. The reader will note that if the problem of finding the points of intersection of two conics is set up directly, it is of the fourth degree, but that it is here reduced to a problem of the thind degree (the determination of a common self-polar triangle) followed by two quadratic constructions. This corresponds to the well-known solution of the general biquadratic equation (cf. Fine, College Algebra, p, 488). For a further discussion of the analytio geometry of pencils of conics, cf. Clebsclu-Lindemann, Vorlesungen uber Geometrie, 2d ed., Vol. I, Part I (1906), pp. 212 ff.

Since any two conics are projectively equivalent, A^{2} may be chosen to be

$$
\begin{equation*}
x_{2}^{2}+x_{\mathrm{s}}^{2}+2 x_{1} x_{\mathrm{s}}=0 . \tag{7}
\end{equation*}
$$

The equation of B^{2} then has the form (6), with the condition that the two conics have no other common self-polar elements Since the figure in which a is polar to A and b to B can only reduce to Types $I V$ or V, we must determine under what conditions each point on a or each point on b has the same polar with regard to (6) and (7). The polar of ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$) with regard to (6) is given by

$$
a_{2} x_{2}^{\prime} x_{2}+a_{3} x_{3}^{\prime} x_{3}+b_{2} x_{8}^{\prime} x_{1}+b_{2} x_{1}^{\prime} x_{3}=0 .
$$

Hence the first case can arse only if $a_{2}=b_{2}$; and the second only if $a_{3}=b_{\mathrm{s}}$
Introducing the condtion that a_{22}, a_{3}, b_{2} are all distinct, it is then clear that the set of comics

$$
a_{2} x_{3}^{2}+a_{3} x_{3}^{2}+2 b_{2} x_{1} x_{3}+\lambda\left(x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{3}\right)=0
$$

contams a line pair for $\lambda=-a_{2}$, viz the lines

$$
\left(a_{3}-a_{2}\right) x_{3}^{2}+2\left(b_{2}-a_{2}\right) x_{1} x_{3}=0
$$

Hence the conics have in common the points of intersection with (7) of the line

$$
\left(a_{3}-a_{2}\right) x_{\mathrm{a}}+2\left(b_{2}-a_{2}\right) x_{1}=0
$$

This gives
Theorem 13 If two connes have a common self-polar figure of Type II, they have three points in common and a common tangent at one of them. Dually, they have three common tangents and a common point of contaot on one of the tangents The two conics determine a pencil and also a range of conics of Type II.

Corollary. Any pencel of conics of Type II may be represented by the equation $x_{2}^{2}-x_{8}^{2}+\lambda x_{\mathrm{s}} x_{1}=0$. The conics of this pencel all pass through the points $(0,1,1),(0,1,-1),(1,0,0)$ and are tangent to $x_{8}=0$.
Type III. When the common self-polar figure is of Type III, the two conics evidently have a common tangent and a common point of contact, and only one of each. Let the common tangent be $x_{3}=0$, its point of contact be ($1,0,0$), and let A^{2} be given by

$$
\begin{equation*}
x_{2}^{2}+2 x_{8} x_{1}=0 \tag{8}
\end{equation*}
$$

The general equation of a come tangent to $x_{3}=0$ at $(1,0,0)$ is

$$
\begin{equation*}
a_{2} x_{2}^{2}+u_{11} r_{3}^{2}+2 b_{1} x_{2} x_{3}+2 b_{2} x_{1} x_{3}=0, \tag{9}
\end{equation*}
$$

with regard to which the polar of any point $\left(x_{1}^{\prime}, x_{2}^{\prime}, 0\right)$ on $x_{2}=0$ is given by

$$
\begin{equation*}
a_{2} x_{2}^{\prime} x_{2}+b_{1} x_{2}^{\prime} x_{3}+b_{2} x_{1}^{\prime} x_{3}=0 . \tag{10}
\end{equation*}
$$

This will be identical with the polar of ($x_{1}^{\prime}, x_{2}^{\prime}, 0$) with regard to A^{2} for all values of $x_{1}^{\prime}, x_{2}^{\prime}$, if $b_{2}=a_{2}$ and $b_{1}=0$. Since $(1,0,0)$ only is to have the same polar wilh regard to both comes, we impose at least one of the condltions $b_{2} \neq a_{2}, b_{1} \neq 0$. The line (10) will now be identical with the polar of (8) for any point ($x_{1}^{\prime}, x_{2}^{\prime}, 0$) satisfyng the condition

$$
\frac{x_{2}^{\prime}}{x_{1}^{\prime \prime}}=\frac{a_{2} x_{2}^{\prime}}{b_{1} x_{2}^{\prime}+b_{2} x_{1}^{\prime}}
$$

Thus quadratic equation must have only one root if the self-polar figure is to be of Type III. This requires $b_{2}=a_{2}$, and as b_{2}, a_{2} cannot both be 0 unless (9) degenerates, the equation of \mathcal{B}^{2} can be taken as

$$
\begin{equation*}
x_{2}^{2}+2 x_{8} x_{1}+a_{8} x_{3}^{2}+2 b_{1} x_{2} x_{3}=0, \quad\left(b_{1} \neq 0\right) . \tag{11}
\end{equation*}
$$

The conics (8) and (11) now evidently have in common the points of intersection of (8) with the line pair

$$
a_{8} x_{3}^{2}+2 b_{1} x_{2} x_{3}=0,
$$

and no other points. Since $x_{8}=0$ is a tangent, this gives two common points. If the second common point is taken to be ($0,0,1$), the set of conics which have in com-

Fig. 102 mon the points $(0,0,1)$ and $(1,0,0)=A$ and the tangent a at A, and no other points, may be written (fig. 102)

$$
\begin{equation*}
x_{2}^{2}+2 x_{1} x_{\mathrm{g}}+\lambda x_{2} x_{8}=0 . \tag{12}
\end{equation*}
$$

Theorem 14. If two conics have a common self-polar figure of Type III, they have two points in common and a common tangent at one of them, and one other common tangent. They determine a pencil and a range of conios of Type III.

Corollary A poncul of conucs of Type III can be represented by the equatron $x_{2}^{2}+2 x_{3} x_{1}+\lambda x_{2} x_{3}=0$.

Type IV. When the common self-polar figure is of Type $I V$, let the line of fixed points be $x_{8}=0$ and its pole be $(0,0,1)$ The coordinates being chosen as they were for Type I, the conic A^{2} has the equation

$$
x_{1}^{2}-x_{2}^{2}+x_{3}^{2}=0 ;
$$

and any other conic having in common with A^{2} the self-polar triangle $(1,0,0),(0,1,0),(0,0,1)$ has an equation of the form

$$
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{8}^{2}=0 .
$$

The condition that every point on $x_{8}=0$ shall have the same polar with regard to this conic as with regard to A^{2} is $a_{1}=-a_{2}$. Hence B may be written

$$
x_{1}^{2}-x_{2}^{2}+\lambda x_{8}^{2}=0
$$

Any conce of this form has the same tangents as A^{2} at the points $(1,1,0)$ and ($1,-1,0$) (fig. 103). Hence, if λ is a variable parameter, the last equation represents

Fig. 103 a pencil of conics of Type $I V$ according to the classification previously made.

Theorem 15. If two conics have a common self-polar. figure of Type IV, they have two points in common and the tanyents at these points. They determine a pencil (which is also a range) of conics of Type IV.

Corollary. A pencil of connes of Type IV may be represented by the equatron

$$
x_{1}^{2}-x_{2}^{2}+\lambda x_{8}^{2}=0 ;
$$

and also by the equation

$$
x_{1}^{2}+\lambda x_{2} x_{8}=0 .
$$

Type V. When the common self-polar figure is of Type V, let the point of fixed lines be $(1,0,0)$ and the line of fixed points be $x_{8}=0$. As in Type III, let A^{2} be given by

$$
\begin{equation*}
x_{2}^{2}+2 x_{1} x_{3}=0 \tag{8}
\end{equation*}
$$

We have seen, in the discussion of that type, that all points of $x_{3}=0$ have the same polars with respect to (8) and (9), if in (9) we have
$b_{2}=a_{2}$ and $b_{1}=0$. Hence, if A^{2} and B^{2} are to have a common selfpolar figure of Type V, the equation of B^{2} must have the form
(13) $a_{2}\left(x_{i}^{2}+2 x_{1} x_{3}\right)+a_{3} r_{3}^{2}=0$

From the form of equations (8) and (13) it is evident that the conics have in common only the point ($1,0,0$) and the tangent $x_{3}=0$, and that every point on $x_{3}=0$ has the same polar with respect to both conics (fig. 104). Hence they determine a pencil of Typo V.

Fig. 104

Timerrm 16. If two conics have a common self-polar figure of Type V, they lave a lineal element (and no othcer elements) in conmon and determine a pencil (which is also a range) of conics of Type V according to the classification already guven.

Corollary. A pencil of conics of Type V can be represented by the equation

$$
x_{2}^{2}+2 x_{1} x_{3}+\lambda x_{3}^{2}=0
$$

As an immediate consequence of the corollaries of Theorems 12-16 we have

Theormm 17. Any pencil of conics may be written in the form

$$
f+\lambda g=0
$$

where $f=0$ and $g=0$ are the equations of two conics (degenerate or not) of the pencil.

EXERCISES

1. Prove analytically that the polars of a point P with respect to the conics of a pencil all pass throngh a point Q. The points P aud Q are double points of the involution determined by the conies of tha pencal on the line $P Q$ Guve a linear construction for Q (cf. Ex. 3, p. 130). The correspondence obtained ly letting every point P correspond to the associated point Q is a "quadnatic birational transformation." Determine the equations reprresenting this transformation. The point Q, which $1 s$ conjugate to P with regard to all the conics of the penerl, is called the conjugate of P with respect to the penerl. The locus of the conjugates of the points of a line with regard to a plencil of conics is a conic (cf. Ex, 31, p. 140).
2. One and only one conic passes through four given points and hass two given poincs as conjugate points, provided the two given points are not conjugate with respect to all the conies of the pencil determined by the given set of four. Show how to construct this come.

3 One conic in general, or a pencil of comics in a special case, passes through three given points and has two given parrs of points as conjugate points. Glve the construction

4 One conic in geneial, or a pencil of conics in a special case, passes thiough two given points and has thice pans of given points as conjugate points ; or passes thiough a given point and has four pairs of given points as conjugate points ; or has five given pans of conjugate points. Give the corresponding constructions for each case
102. Problems of the third and fourth degrees.* The problem of constructing the points of intersection of two conics in the same plane is, in general, of the fourth degree according to the classification of geometric problems described in § 83 Indeed, if one of the coördunates be elminated between the equations of two comcs, the resulting equation is, in general, an irreducible equation of the fourth degree. Moreover, a little consideration will show that any equation of the fourth degree may be obtained in this way. It results that every problem of the fourth degree in a plane may be reduced to the problem of constructing the common points (or by duality the common tangents) of two comics. Further, the problem of finding the remaining intersections of two conics in a plane of which one point of intersection is given, is readuly seen to be of the third degree, in general; and any problem of this degree can be reduced to that of finding the remaaning intersections of two conics of which one point of intersection is known. It follows that any problem of the third or fourth degree in a plane may be reduced to that of finding the common elements of two conics in the plane. \dagger

A problem of the fourth (or third) degree cannot therefore be solved by the methods sufficient for the solution of problems of the first and second degrees (straight edge and compass) \ddagger In the case of problems of the second degree we have seen that any such problem could be solved by linear constructions if the intersections of

[^91]every line in the plane with a fixed come in that plane were assumed known. Sumilarly, any prollem of the fourth (or third) degree can be solved by lmear and quadratic constructions if the miersections of every conic in the plane with a lixel conic in this plane are assumed known. This follows readily from the fact that any come in the plane can be transformed by linear constructions into the fixed conic. A problem of the third or fourth degree in a plane will then, in the future, be considered solved if it has been reduced to the finding of the intersections of two conics, combined with any linear or quadratic constructions. As a lypical problem of the third degree, for example, we give the following:

To find the double points of a nonporspective collineation in a plane which is detcrmined by four pairs of homologous points.

Solution. When four pairs of homologous elements are given, we can construct linearly the point or line homologous with any given point or line in the plane. Let the collineation be represented by Π, and let Λ be any point of the plane which is not on an invariant line. Let $\Pi(A)=A^{\prime}$ and $\Pi\left(A^{\prime}\right)=A^{\prime \prime}$. The points $A, A^{\prime}, A^{\prime \prime}$ are then not collinear. The pencil of lines at A is projective with the pencil at A^{\prime}, and these two projective pencils generate a conic C^{2} which passes through all the double points of Π, and which is tangent at A^{\prime} to the line $A^{\prime} A^{\prime \prime}$ (fig. 105). The conic C^{2} is transformed by the collineation II into a conic C_{1}^{2} generated by the projective pencils of lines at A^{\prime} and $\mathcal{A}^{\prime \prime}$.

Frg. 105 C_{1}^{2} also passes through A^{\prime} and is tangent at this point to the line $A A^{\prime}$. The double points of $I I$ are also points of C_{1}^{2}. The point A^{\prime} is not a double point of II by hypothesis. It is evident, however, that every other point common to the two conics C^{2} and C_{1}^{2} is a double point.

If C^{2} and C_{1}^{9} intersect again in three distinct points L, M, N, the latter form a triangle and the collineation is of Type I. If C^{2} and C_{1}^{2} intersect in a point N, distinct from A^{\prime}, and are tangent to each other at a third point $L=M$, the collineation has M, N for double points
and the line $M N$ and the common tangent at M for double lmes (fig. 106), it is then of Type $I I$. If, finally, the two conics have contact of the second order at a point $L=M=N$, distinct from A^{\prime}, the collineation has the single double line which is tangent to the conics at this point, and is of Type III (fig. 107).

Fig. 106

Fig 107

EXERCISES

1. Give a discussion of the problem above without making at the outset the hypothesis that the collneation is nomperspective.

2 Construct the double pans of a correlation in the plane, whinch is not a polanty.
3. Given two polarties in a plane, construct their common pole and polar pains
4. On a line tangent to a come at a point A is given an involution I, and fiom any parr of conjugates P, P^{\prime} of I are drawn the second tangents p, p^{\prime} to the conc, their points of contact being Q, Q^{\prime} sespectively. Show that the locus of the point $p p^{\prime}$ is a line, l, passing through the conjugate, A^{\prime}, of A in the involution I, and that the line $Q Q^{\prime}$ passes through the pole of l with respect to the conic.
5. Construct the come which is tangent at two points to a given conse and which passes through three given points Dualye
6. The lines joming pairs of homologous points of a nonmvolutoric projectivity on a come A^{2} are tangent to a second conic D^{2} whinch is tangent to A^{2} at two points, or whel hyperosculates A^{2}.
7. A pencal of couics of Type $I I$ is determined by three points A, B, C and a line c through C. What is the locus of the points of contact of the comes of the pencil with the tangents drawn from a given point P of c ?
8. Construct the conics which pass through a given pount P and which are tangent at two points to each of two given conics.
9. If $f=0, g=0, h=0$ are the equations of thee conics in a plane not belonging to the same pencil, the system of conics given by the equation

$$
\lambda f+\mu g+v l=0
$$

λ, μ, ν being vanable pananeters, is callerl a bunile of comes Though evory pome of the plane passes a promel of comes belongeng to thas bundle ; thangh any two dastunct p pombs passes in geneal one and only one come of the bundle If the comes f, g, h have a jomt mo common, this pomt is common to all the comes of the bundle. Give a nomalgelnase defintion of a bundle of comes.

10 The set of all comes in a plane passing througlt the vertices of a triangle form a bundle. If the erpuatoms of the sudes of thas tianagle are $l=0, n=0$, $n=0$, slow that the bundle may be reprosented by the erfuation

$$
\lambda m n+\mu n l+\nu l m=0 .
$$

What are the degenerute connes of this bumule ?*
11. The set of all eowies an a plane which have a given tirangle as a selfpolat triangle forms a bundle. If the equations of the sides of this tiangle ane $l=0, n=0, n=0$, slow that the bundle may be represented ly the equation

$$
\lambda l^{2}+\mu n l^{2}+\nu n^{2}=0
$$

What are the degenerate comes of thus bundle?
12. The connes of the bundle deseribed in Ex. 11 which pass through a general point P of the plane pass through the other three veitices of the quadraugle, of which one vertex is P and of which the given triangle is the dagonal triangle. What happens when P is on a side of the given triangle? Dualize.
13. The reflections whose centers and axes ale the vertices and opposite sides of a triangle form a commutative group. Any point of the plane not on a side of the triangle is transformed by the operations of this group anto the other three vertices of a complete quadrangle of which the given triangle is the dagoual triangle If this triangle is taken as the reference triangle, what are the equations of transformation? What conics are transformed into themselves loy the group, and how is at associated with the quadranglequadrulateral coufiguration?
14. The necessary and sufficient condition that two reflections be commulative is that the center of each shall be on the axis of the other.
15. The invarrant figure of a collineation may be regarded as composed of two lineal elements, the five types corresponding to various special relations between the two lineal elements.
16. A correlation which transforms a lineal element $A a$ into a lineal element $B b$ and also transforms $B b$ mito $A a$ is a polarity

17 Ilow many collmeations and correlations are in the group generated by the reflections whose centers and axes are the vertices and opposite sides of a triangle and a polarily with regard to which the triangle is self-polan ?

[^92]
CHAPTER XI*

FAMILIES OF LINES

103. The regulus. The following theorem, on which depends the existence of the figures to be studied in this chapter, is logically equivalent (in the presence of Assump-

Fig 108 tions A and E) to Assumption P. It might have been used to replace that assumption

Theorem 1. If l_{1}, l_{2}, l_{3} are three mutually skew lines, and if m_{1}, m_{2}, m_{3}, n_{4} are four lines each of which meets each of the lunes l_{1}, l_{2}, l_{3}, then any lune l_{4} which meets three of the lines m_{1}, m_{2}, m_{8}, m_{4} also meets the fourth.

Proof The four planes $l_{1} m_{1}, l_{1} m_{2}$, $l_{1} m_{3}, l_{1} m_{4}$ of the pencll with axis l_{1} are perspective through the pencil of points on l_{3} with the four planes $l_{2} m_{1}, l_{2} m_{2}$, $l_{2} m_{8}, l_{2} m_{4}$ of the pencil wilh axis l_{2} (fig. 108). For, by hypothesis, the lines of intersection $m_{1}, m_{2}, m_{8}, m_{4}$ of the pairs of homologous planes all meet l_{3}. The set of four points in which the four planes of the pencil on l_{1} meet l_{4} is therefore projective with the set of four pounts in which the four planes of the pencil on l_{2} meet l_{4}. But l_{4} meets three of the pairs of homologous planes in points of their lines of intersection, since, by hypothesis, it meets three of the lines $m_{1}, m_{2}, m_{g}, m_{4}$. Hence in the projectivity on l_{4} there are three invariant points, and hence (Assumption P) every point is invariant H Hence l_{4} meets the remaining lune of the set $m_{1}, m_{2}, m_{8}, m_{4}$

[^93]Derinition. If l_{1}, l_{2}, l_{3} are three lines no two of which are in the same plane, the sct of all lines which meet each of the three given lines is called a regulus The lmes l_{1}, l_{2}, l_{3} are called directrices of thus regulus.

It is clear that no two lines of a regulus can intersect, for otherwise two of the directrices would lie in a plane. The next theorem follows at once from the definition.

Tinsorem 2. If $l_{1}, l_{\mathrm{a}}, l_{\mathrm{a}}$ are three lines of a regulus of which m_{1}, m_{1}, m_{3} are devectrices, m_{1}, m_{2}, m_{3} are lines of the regulus of which l_{1}, l_{12}, l_{3} are derectrices

It follows that any three lines no two of which lie in a plane are directrices of one and only one regulus and are lmes of one and only one regulus.

Definition. Two reguls which are such that every line of one meets all the lines of the other are said to be conjugate. The lmes of a regulus are called its generators or rulers; the lines of a conjugate regulus are called the directrices of the given regulus.

Tineorem 3. Every regulus has one and only one conjugate regulus.
This follows immedaately from the preceding. Also from the proof of Theorem 1 we have

Tineorem 4 The correspondence established by the lines of a regulus between the points of two lines of its conjugate regulus is projective.

Tireorem 5. The set of all lines joining pairs of homologous points of two projective penoils of points on skew lines is a regulus.

Theorem 4'. The correspondenee established by the lines of a regulus between the planes on any two lines of its conjugate regulus is projective.
Theorem 5^{\prime}. The set of all lines of intersection of pairs of llomologous planes of two projective pencils of planes on skevo lines is a regulus.

Proof. We may confine ourselves to the proof of the theorem on the left. By Theorem 6, Chap. III, the two pencils of points are perspective through a pencil of planes. Every line jouning a pair of homologous points of these two pencils, therefore, meets the axis of the pencil of planes. Hence all these lines meet three (necessarily skew) lines, namely the axes of the two pencils of points and of the pencil of planes, and therefore satisfy the definition of a regulus. Moreover, every line which meets these three lines joins a pair of homologous points of the two pencils of points.

Timeorem 6. If $[p]$ are the lines of a regulus and q is a directrix of the regulus, the peneil of points $q[p]$ is projective with the pencrl of planes $q[p]$.

Proof Let q^{\prime} be any other durectrix By Theorem 4 the pencll of points $q[p]$ is perspective with the pencl of points $q^{\prime}[p]$. But each of the points of this pencll lies on the corresponding plane $q p$. Hence the pencl of points $q^{\prime}[p]$ is also perspective with the pencıl of planes $q[p]$.

EXERCISES

1. Every point which is on a lune of a regulus is also on a line of its conjugate regulus
2. A plane which contains one line of a regulus contans also a line of its conjugate regulus.

3 Show that a regulus is uniquely defined by two of 1 ts lines and thee of its points,* provided no two of the latter are coplanar with erther of the given lines

4 If four lines of a regulus cut any line of the conjugate regulus in points of a harmonic set, they are cut by every such line in points of a larmonic set. Hence give a construction for the harmonie conjugate of a line of a regulus with respect to two other lines of the regulus
5. Two distinct reguli can have in cominon at most two distinct lines.

6 Show how to construct a regulus having in common with a given regulus one and but one iuler
104. The polar system of a regulus. A plane meets every line of a regulus in a point, unless it contains a line of the regulus, in which case it meets all the other lmes in points that are collinear. Since the regulus may be thought of as the lunes of intersection of pairs of homologous planes of two projective axial pencils (Theorem 5^{\prime}), the section by a plane consists of the points of intersection of pairs of homologous lines of two projective flat pencils. Hence the sechon of a regulus by a plane is a point conic, and the conjugate regulus has the same section. By duality the projection of a regulus and its conjugate from any point is a cone of planes.

The last remark implies that a line conce is the "proture" in a plane of a regulus and its conjugate For such a pucture is clearly a plane section of the piojection of the object depicted from the eye of an observer. Fig. 108 illustrates this fact.

[^94]The section of a regulus by a plane containing a line of the regr lus is a degenerate conic of two lines. The plane section can neve degenerate into two comedent lines because the lmes of a regult and its conjugate are distmet from each other. In like manner, th projection from a pomt on a line of the regulus is a degenerate cor of planes consisting of two penclls of planes whose axes are a rule and a directrix of the regulus.

Drmintition. The class of all points on the lines of a regulus called a surface of the second order or a quadric surface. The plant on the lines of the regulus are called the tangont planes of the su face or of the regulus. The point of intersection of the two lines c the regulus and its coujugate in a tangent plane is called the poir of contact of the plane. The lines through the point of contact in tangent plane are called tangent lines, and the point of contact of th plane is also the point of contact of any tangent line.

The tangent lines at a point of a quadric surface include the linc of the two conjugate roguln through this point and all other line through this point which meet the surface in no other point. An other line, of course, meets the surface in two or no points, since plane through the line meets the surface in a conc. The tanger lines are, by duality, also the lines through each of which passes onl one langent plane to the surface.

Theorem 7 The tangent planes at the points of a plane section $o_{\text {. }}$ a quadric surface pass through a point and constitute a cone of plane Dually, the points of contact of the cone of tangent planes through point are coplanar and form a point conic.

Proof It will suffice to prove the latter of these two dual theorem Let the vertex P of the cone of tangent planes be not a point of th surface. Consider three tangent planes through P, and their points (contact. The three lines from these points of contact to P are tar gent lines of the surface and hence there is only one tangent plan through each of them. Hence they are lines of the cone of lines ass, ciated wilh the cone of tangent planes. . Let π be the plane throug their points of contact. The section by π of the cone of planes throug P is therefore the conic determined by the three points of contas and the two tangent lines in which two of the tangent planes met π. The plane π, however, meets the regulus in a conic of which th three points of contact are points. The two lines of intersection wit
π of two of the tangent planes through P are tangents to this conic, because they cannot meet it in more than one point each The section of the surface and the section of the cone of planes then have three points and the tangents through two of them in common. Hence these sections are identical, which proves the theorem when P is not on the surface.

If P is on the surface, the cone of planes degenerates into two lines of the surface (or the penculs of planes on these lines), and the points of contact of these planes are all on the same two lines. Hence the theorem is true also in this case

Definition. If a point P and a plane π are so related to a regulus that all the tangent planes to the regulus at points of its section by π pass through P (and hence all the points of contact of tangent planes through P are on π), then P is called the pole of π and π the polar of P with respect to the regulus.

Corollary. A tangent plane to a regulus is the polar of ats point of contact.

Theorem 8. The polar of a point P not on a regulus contains all points P^{\prime} such that the lane $P P^{\prime}$ meets the surface in two points whuch are harmonic conjugates with respect to P, P !

Proof Consider a plane, α, through $P P^{\prime}$ and containing two lines a, b of the cone of tangent lines through P. This plane meets the surface in a conic C^{2}, to which the lines a, b are tangent. As the polar plane of P contains the points of contact of a and b, its section by α is the polar of P with respect to C^{2}. Hence the theorem follows as a consequence of Theorem 13, Chap. V.

Theorem 9. The polar of a point of a plane π with respect to a regulus meets π in the polar line of this point with regard to the conic which is the section of the regulus by π.

Proof. By Theorem 8 the line in which the polar plane meets π has the characterstic property of the polar line with respect to a conic (Theorem 13, Chap. V). This argument applies equally well if the conic is degenerate. In this case the theorem reduces to the following

Corollary. The tangent lines of a regulus at a point on it are paired in an involution the double lines of which are the ruler and directrix through that point. Each line of a pair contains the polar points of all the planes on the other line.

Tineorem 10 The polars with regard to a regulus of the points of a line l are an axial pencel of planes projective with the penesl of points on l.

Proof. In case the given line is a line of the regulus this reduces to Theorem 6. In any other case consuler two planes through l In each plane the polars of the pounts of l determine a pencil of hnes projective with the range on l. Hence the polars must all meet the line joming the centers of these two pencils of lines, and, being perspective with either of these pencils of lines, are projectıve with the range on l.

Definition A line l^{\prime} 1s polar to a line l if the polar planes of the points of l meet on l^{\prime}. A line is conjugate to l if it meets l^{\prime}. A point P^{\prime} is conjugate to a point P if it is on the polar of P. A line p is conjugate to P if it is on the polar of P. A plane π^{\prime} is conjugate to a plane π if π^{\prime} is on the pole of π. A line p is conjugate to π if it is on the pole of π.

EXERCISES

Polar points and planes wuth respect to a regulus are denoterl by corresponding captal Roman and small Greek letters. Conjugate elements of the same kind are denoted by the same letters wuth primes

1 If π is on R, then P is on ρ.
2. If l is polar to \bar{l}, then \bar{l} is polar to l.
3. If one element (point, line, or plane) is conjugate to a second element, then the second element is conjugate to the first.
4. If two lines intersect, thear two polar lines intersect.
5. A ruler on a duectrix of a regrulus is polar to atself. A tangent line is polar to its harmonic conjugate with regard to the ruler and durectrix through its point of contact. Any other line is skew to its polar.
6. The points of two polar lines are conjugate.
7. The pairs of conjugate points (or planes) on any line form an involutron the double points (planes) of which (if existent) are on the regulus.
8. The conjugate lines in a flat pencil of which neither the center nor the plane 18 on the regulus form an involution.
9. The line of intersection of two tangent planes is polar to the line joining the two points of contact.

10 A line of the regulus which meets one of two polar lines meets the other.
11. Two one- or two-dimensional forms whose bases are not conjugate or polar are projective if conjugate elements correspond.
12. A line l is conjugate to l^{\prime} if and only if some plane on l is polar to some point on l^{\prime}.

13 Show that there are two (proper or mproper) lines r, s meeting two. given lines and conjugate to them both Show also that r is the polar of s.

14 If a, b, c are thee generators of a regulus and $a^{\prime}, b^{\prime}, c^{\prime}$ three of the conjugate regulus, then the three diagonal lines joining the points

$$
\begin{aligned}
& \left(b c^{\prime}\right) \text { and }\left(b^{\prime} c\right), \\
& \left(c^{\prime} a\right) \text { and }\left(c a^{\prime}\right), \\
& \left(a b^{\prime}\right) \text { and }\left(a^{\prime} b\right)
\end{aligned}
$$

meet in a point S which is the pole of a plane contaning the lines of intersection of the pars of tangent planes at the same vertices.

15 The six lines $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ of Ex. 14 determine the following thos of simple hexagons

$$
\begin{array}{ll}
\left(b c^{\prime} a b^{\prime} c a^{\prime}\right), & \left(b a^{\prime} a c^{\prime} c b^{\prime}\right), \\
\left(b c^{\prime} a a^{\prime} c b^{\prime}\right), & \left(b b^{\prime} a a^{\prime} c c^{\prime}\right), \\
\left.c^{\prime} c a^{\prime}\right), & \left(b a^{\prime} a b^{\prime} c c^{\prime}\right)
\end{array}
$$

The points S determined by each trio of hexagons are collinear, and the two lines on which they lie are polar with jegard to the quadric sunface *

16 The section of the figure of Ex 14 by a plane leads to the Pascal and Bianchon theorems, and, in like manner, Ex 15 leads to the theorem that the 60 Pascal lines corresponding to the 60 simple hexagons formed fiom 6 points of a conic meet by threes in 20 points which constitute 10 pairs of ponts conjugate with regaid to the come (cf. Ex. 19, p 138).
105. Projective conics. Consider two sections of a regulus by planes which are not tangent to it. These two conics are both perspective with any axial pencil of a pair of axial penclls which generate the regulus (cf. § 76, Chap. VIII). The correspondence established between the comics by letting correspond pars of points which lie on the same ruler is therefore projective On the lue of intersection, l, of the two planes, if it is not a tangent line, the two conics determine the same involution \dot{I} of conjugate points Hence, if one of them intersects this lune in two points, they have these two points in common. If one is tangent, they have one common point and one common tangent. The projectivity between the two conics fully determines a projectivity between their planes in which the line l is transformed into itself. The involution I belongs to the projectivity thus determined on l. The converse of these statements leads to a theorem which is exemplified in the familar string models:

Theorem 11. The lines joining corresponding points of two projectire conves in dufferent planes form a regulus, provided the two conics determine the same anvolution, J , of conjugate points on the

[^95]line of intersection, l, of the two planes; and provnded the collineation betwecn the two plancs determinced by the corvespondence of the conics trausforms l into atself by a projectivity to which I belongs (in partucular, yf the conics mect in two points which are self-corresponding in the projectivaty).

Pronf. Let L le the pole with regard to one come of the line of intersection, l, of the two planes (fig. 109). Let A and B be two

points of this conic collinear with L and not on l. The conic is generated by the two pencils $A[P]$ and $B\left[P^{\prime}\right]$ where P and P^{\prime} are conjugates in the involution I on l (cf. Ex. 1, p. 137). Let \bar{A} and \bar{B} be the pomts homologous to A and B on the second conic, and let $\overline{\bar{A}}$ be the point in which the second conic is met by the plane containing A, \bar{A}, and the tangent at A; and let $\overline{\bar{B}}$ be the point in which the second conic is met loy the plane of B, \bar{B}, and the tangent at B.

The line $\bar{A} \bar{B}$ contains the pole of l with regard to the second conic becanse this live is projective with $A B$. Since the tangents to the first conic at A and B meet on l, the complete quadrangle $\bar{A} \overline{\bar{A}} \overline{\bar{B}} \overline{\bar{B}}$ has one diagonal point, the intersection of $\bar{A} \overline{\bar{A}}$ and $\bar{B} \overline{\bar{B}}$, on l; hence the
opposite side of the diagonal trangle passes through the pole of l. Hence it intersects $\bar{A} \bar{B}$ in the pole of l But the intersection of $\overline{\bar{A}} \overline{\bar{B}}$ with $\bar{A} \bar{B}$ is on this dagonal line. Hence $\overline{\bar{A}} \overline{\tilde{B}}$ meets $\bar{A} \bar{B}$ in the pole of l. Hence the pencils $\overline{\bar{A}}[P]$ and $\overline{\bar{B}}\left[P^{\prime}\right]$ generate the second conic. Hence, denoting by a and b the lines $A \overline{\bar{A}}$ and $B \overline{\bar{B}}$, the pencils of planes $a[P]$ and $b\left[P^{\prime}\right]$ are projective and generate a regulus of which the two conics are sections

- The projectivity between the planes of the two comics established by this regulus transforms the line l into itself by a projectivity to which the involution I belongs and makes the point A correspond to \bar{A}. The projectivity between two conics is fully determined by these conditions (cf. Theorem 12, Cor. 1, Chap. VIII). Hence the lunes of the regulus constructed above join homologous points in the given projectivity. Q e.D.

It should be observed that if the two conics are tangent to l, the projectivity on l fully determines the projectivity between the two comes. For if a point P of l corresponds to a point Q of l, the unique tangent other than l through P to the first conic must correspond to the tangent to the second conic from Q. If the projectivity between the two conics is to generate a regulus, the pfojectivity on l must be parabolic with the double point at the point of contact of the comics with l. For if another point D is a double point of the projectivity on l, the plane of the tangents other than l, through D to the two romics meets each conic in one and only one point, and, as these points are homologous, contains a straught line of the locus generated. As this plane contains only one point on either conic, it meets the locus in only one line, whereas a plane meeting a regulus in one line meets it also in another distinct line.

Since the parabolic projectivity on l is fully determmed by the double point and one pair of homologous points, the projectivity between the two comics is fully determuned by the correspondent of one point, not on l, of the first conic

To show that a projectivity between the two comics which is parabolic on l does generate a regulus, let A be any point of the first conic and A^{\prime} its correspondent on the second (fig. 110). Let the plane of A^{\prime} and the tangent at A meet the second conic in $A^{\prime \prime}$. Denote the common point of the two conics by B, and consider the
two coulcs as generated by the flat pencils at A and B and at $A^{\prime \prime}$ and B. The correspondenco established between the two flat pencils at B by letting correspond lines joming B to homologous pomis of the two comes as perspective because the line l corresponds to itself. Hence there is a penoll of planes whose axis, b, passes through B and whose planes contam homologous pairs of lines of the flat penculs at $I 3$ The correspondence established in like manner between the flat pencll at A and the flat pencil ai $A^{\prime \prime}$ may be regarded as the product of the projectivity between the two planes, which carries the pencil at A to the pencil ai A^{\prime}, followed by the projectivily between the

Fig 110 pencils at A^{\prime} and $A^{\prime \prime}$ generated by the second conic. Both of these projectivities determme parabolic projectivities on l with \mathcal{B} as mearant point. Hence their product determines on l either a parabolic projectivity with B as invarnant point or the identity. This product transforms the tangent at A into the line $A^{\prime \prime} A^{\prime}$. As these lines meet l in the same point, the projectivity determined on l is the identity. Hence corresponding lines of the projective pencils at A and $A^{\prime \prime}$ meet on l, and hence they determine a pencil of planes whose axis is $\alpha=A A^{h}$

The axial pencils on a and b are projective and hence generate a regulus the lines of which, by construction, pass through homologous points of the two conics. We are therefore able to supplement Theorem 11 by the following

Corollary 1. The lines joining corresponding points of two projective conics in different planes form a regulus, if the two conics have a common tangent and point of contact and the projectivity determined between the two planes by the projectivity of the conics transforms their common tangent into itself and has the common point of the two conics as its only fixed point.

The generation of a regulus by projective ranges of pounts on skew lines may be regarded as a degenerate case of this theorem and corollary. A further degenerate case is stated in the firsi exercise

The proof of Theorem 11 given above is more complicated than it would have been if, under Ploposition K_{2}, we had made use of the points of mitelsection of the line l with the two conics But since the discussion of linear familes of lines in the following section employs only proper elements and depends in part on this theorem, it seems more satisfactory to prove this theorem as we have done It is of course evident that any theorem relating enturely to proper elements of space which is proved with the aid of Pioposstion K_{n} can also be proved by an argument employing only poper elements. The latter form of proof is often much moie difficult than the former, but it often yields more information as to the constructions related to the theoiem.

These results may be applied to the problem of passing a quadric surface through a given set of points in space. Proposition K_{2} will be used in this discussion so as to allow the possibility that the two conjugate reguli may be improper though intersecting in proper points.

Corollary 2. If three planes α, β, γ meet in three lines $a=\beta \gamma$, $b=\gamma \alpha, c=\alpha \beta$ and contarn three conncs A^{2}, B^{2}, C^{2}, of whuch B^{2} and C^{2} meet in two points P, P^{\prime} of a, C^{2} and A^{2} neet in two pornts Q, Q^{\prime} of b, and A^{2} and B^{3} meet in two points R, R^{\prime} of c, then there is one and but one quadric surface * containing the points of the three convcs.

Proof. Let M be any point of C^{2}. The conic B^{2} is projected from M by a cone which meets the plane α in a conic which intersects A^{2} in two points, proper or improper or comendent, other than R and R^{\prime}. Hence there are two lines m, m^{\prime}, proper or improper or comedent, through M which meet both A^{2} and B^{2}. The projectivity determmed between A^{2} and B^{2} by either of these lines generates a regulus, or, in a special case, a cone of lines, the lines of which must pass through all points of C^{2} because they pass through $P, P^{\prime}, Q^{\prime}, Q$, and M, all of which are points of C^{2}.

The conjugate of such a regulus also contains a line through M which meets both A^{2} and B^{2}. Hence the lines m and m^{\prime} determine conjugate regul if they are distinct. If coincident they evidently determine a cone. The three conics being proper, the quadric must contain proper points even though the lines m, m^{\prime} are improper.

[^96]If six points $1,2,3,4,5,6$ are given, no four of which are coplanar, ${ }^{*}$ there evalently exast two planes, α and β, ench containing three of the ponts and having none on their line of intersection.

Frg. 111
Assign the notation so that 1,2,3 are in α. A quadric surface which contains the six points must meet the two planes in two conics A^{2}, \mathcal{B}^{2} which meet the line $\alpha \beta=c$ in a common point-pair or point of contact; and every point-parr, proper or improper or coincident, of c determines such a pair of conics.

Let us consider the problem of determining the polar plane ω of an arbitrary point O on the line c. The polar lines of O with regard to a pair of conics A^{2} and B^{2} meet c in the same point and hence determine ω. If no two of the points $1,2,3,4,5,6$ are collinear with O, any line l in the plane α determines a unique conic A^{2} with regard to which it is polar to 0 , and which passes through $1,2,3$. \mathcal{A}^{2} determines a unique conic \mathcal{B}^{2} which passes through $4,5,6$ and meets c in the same points as A^{2}; and with regard to this conic O

[^97]has a polar line m. Thus there is established a one-to-one correspondence II between the lines of α and the lines of β. This correspondence is a collmeation For consider a pencil of lines $[l]$ in α. The conics A^{2} determined by it form a pencl. Hence the point-pairs in which they meet c are an mvolution Hence the concs B^{2} determined by the point-pairs form a pencil, and hence the lines [m] form a pencil. Since every line l meets its corresponding line m on c, the correspondence Π is not only a collneation but is a perspectivity, of which let the center be C. Any two corresponding lines l and m are coplanar with C. Hence the polar planes of O wrth regard to quadrics through 1, 2, 3, 4, 5, 6 are the planes on C.

This was on the assumption that no two of the points $1,2,3,4,5,6$ are collnnear with O If two are collnear with O, every polar plane of O must pass through the harmonic conjugate of O with regard to them. This harmonic conjugate may be taken as the point C.

Now if nine points are given, no four being in the same plane, the notation may be assigned so that the planes $\alpha=123, \beta=456, \gamma=789$ are such that none of ther lines of mtersection $a=\beta \gamma, b=\gamma \alpha, c=\alpha \beta$ contains one of the nune points Let O be the point $\alpha \beta \gamma$ (or a point on the line $\alpha \beta$ if α, β, and γ are in the same pencil) By the argument above the polars of O with regard to all quadrics through the six points in α and β must meet in a point C. The polars of O with regard to all quadrics through the six points in β and γ must similarly pass through a point A, and the polars with regard to all quadrics through the six points in γ and α must pass through a point B.

If A, B, and C are not collinear, the plane $\omega=A B C$ must be the polar of O with regard to any quadric through the nme points. The plane ω meets α, β, and γ each in a line which must be polar to O with regard to the section of any such quadric But this determines three conics $A^{2} \mathrm{~m} \alpha, B^{2}$ in β, and C^{2} in γ, which meet by pairs in three ponnt-pairs on the lines a, b, c. Hence if α, β, γ are not in the same pencil, it follows, by Corollary 2 , that there is a unique quadric through the nine points. If α, β, γ have a line in common, the three conics A^{2}, B^{2}, C^{2} meet this line in the same point-pair. Consider a plane σ through O which meets the conics A^{2}, B^{2}, C^{2} in three pointpairs. These point-pairs are harmonically conjugate to O and the trace, s, on σ of the plane ω. Hence they lie on a conic D^{2}, which, with A^{2} and B^{2}, determines a unique quadric. The section of this
quadric by the plane γ has m common with C^{2} two point-pairs and the polar pair O, s. Hence the quadric has C^{2} as its section by γ. .. In case A, B, and C are collinear, there is a pencil of planes ω which meet them. There is thus determmed a famly of quadrics which is called a pencul and is analogous to a pencll of conces. In case A, B, and C concide, there is a bundle of possible planes ω and a quadric is determined for each one. This family of quadrics is called a bundle. Without mquiring at present under what condations on the points $1,2, \cdot \cdot, 9$ these cases can arise, we may state the following theorem:

Tireorem 12. Through nine points no four of which are coplanar there passes one quadric surfuce or a penurl of quadrics or a bundle of quadrics.

EXERCISES

1. The lines jouning homologons pomits of a projective conce and staaight line form a regulus, provided the line meets the conic and as not coplanar with $2 t$, and their point of intersection is self-corresponding.
2. State the duals of Theorems 11 and 12.
3. Show that two (proper or impoper) conjugate 1 egnli pass through two conics in dfferent planes having two points (proper or improper or conncident) in common and through a point not in the plane of either conic. Two such conics and a poimi not in either plane thus determine one quadric surface.
4. Show how to constiuct a regulus passing through six given points and a given line
5. Linear dependence of lines. Definition. If two lines are coplanar, the lines of the flat pencll containing them both are said to be linearly dependent on them. If two lines are skew, the only lines linearly dependent on them are the two lines themselves. On three skew lines are lenearly dependent the lines of the regulus, of which they are rulers. If $l_{1}, l_{2}, \cdots, l_{n}$ are any number of lines and $m_{1}, m_{2}, \cdots, m_{n}$ are lines such that m_{1} is linearly dependent on two or three of $l_{1}, l_{2}, \cdots, l_{n}$, and m_{2} is linearly dependent on two or three of $l_{1}, l_{2}, \cdots, l_{n}, m_{1}$, and so on, m_{k} being linearly dependent on two or three of $l_{1}, l_{2}, \cdots, l_{n}, m_{1}$, $m_{2}, \cdots, m_{k_{k-1}}$, then m_{k} is said to be linearly dependent on $l_{1}, l_{2}, \cdots, l_{n}$. A set of n lines no one of which is linearly dependent on the $n-1$ others is sad to be linearly independent.

As examples of these definitions there arise the following cases of linear dependence of lines on three linearly independent lines which may be regarded as degenerate cases of the regulus. (1) If lines a
and b intersect in a point P, and a line c skew to both of them meets their plane in a point Q, then in the first place all lines of the pencal $a b$ are lmearly dependent on a, b, and c; since the lue $Q P$ is in this pencll, all lines of the pencl determined by $Q P$ and c are in the set As these pencils have in common only the line $Q P$ and do not contain three mutually skew lines, the set contains no other lines. Hence in this case the lines linearly dependent on a, b, c are the flat pencll $a b$ and the flat pencil ($c, Q P$). (2) If one of the lines, as a, meets both of the others, which, however, are skew to each other, the sel of linearly dependent lines consists of the flat penculs $a b$ and $a c$ This is the same as case (1) (3) If every two intersect but not all in the same point, the three lines are coplanar and all lines of their plane are linearly dependent on them. (4) If all three intersect in the same point and are not coplanar, the bundle of lines through their common point is linearly dependent on them. The case where all three are concurrent and coplanar does not arise because three such lines are not independent.

This enumeration of cases may be summarized as follows:
Theorem 13. Definition. The set of all lines linearly dependent on three linearly indopendent lines is either a regulus, or a bundle of lines, or a plane of lines, or two flat pencils having difficrent centers and planes but a common line. The last three sets of lines are culled degenerate reguli.

Definition. The set of all lines linearly dependent ou four linearly independent lines is called a linear congruence The set of all lines linearly dependent on five linearly independent lines is called a linear complex *
107. The linear congruence. Of the four lines a, b, c, d upor which the lines of the congruence are linearly dependent, b, c, d determine, as we have just seen, ether a regulus, or two flat pencils with different centers and planes but with one common line, or a bundle of lines, or a plane of lines. The lines b, c, d can of course be replaced by any three which determine the same regulus or degenerate regulus as b, c, d

[^98]So in case b, c, d determue a nondegenerate regulus of which a is not a drrectrix, the congruence can be regarded as determmed by four mutually skew lines. In case a is a durectrix, the lines linearly dopendent on u, b, c, d cloarly include all tangent lines to the regulus $b c d$, whose points of contact are on a. But as a is in a flat pencil with any tangent whose point of contact is on a and one of the rulers, the family of lines dependent on a, b, c, d is the famuly dependent on b, c, d and a tangent line which does not meet b, c, d. Hence m elther case the congruence is determmed by four skew lines.

If one of the four skew lines meets the regulus determined by the other three in two distinct points, P, Q, the two durectrices p, q through these points meet all four lunes. The line not in the regulus determmes whth the rulers through P and Q, two flat pencils of lines which join P to all the points of q, and Q to all the points of p From this it is evident that all lnnes meeting both p and q are linearly dependent on the given four. For if P_{1} is any point on p, the line $P_{1} Q$ and the ruler through P_{1} determme a flat pencll joining P_{1} to all the points of q; sumlarly, for any point of q. No other hnes can be dependent on them, because if three lines of any regulus meet p and q, so do all the lines.

If one of the four skew lines is tangent to the regulus determined by the other three in a point P, the family of dependent lines includes the regulus and all lines of the flat pencll of tangents at P. Hence it includes the durectrix p through P and hence all the tangent lines whose points of contact are on p By Theorem 6 this family of lines can be described as the set of all lines on homologous pairs in a certain projectivity $I I$ between the points and planes of p. Any two lines in this set, if they intersect, determme a flat pencil of lines in the set. Any regulus determined by three skew lines l, m, n of the set determines a projectivity between the points and planes on p, but this projectivity sets up the same correspondence as Π for the three points and planes determined by l, m, and n. Hence by the fundamental theorem (Theorem 17, Chap. IV) the projectivity determined by the regulus $l m n$ is the same as Π, and all lines of the regulus are in the set. Hence, when one of four skew lines is tangent to the regulus of the other three, the family of dependent lines consists of a regulus and all lines tangent to it at points of a directrix. The directrix is itself in the family.

If no one of the four skew lines meets the regulus of the other three in a proper point, we have a case studied more fully below.

In case b, c, d determme two flat penculs with a common line, α may meet the center A of one of the pencils The linearly dependent lines, therefore, melude the bundle whose center is A The plane of the other flat pencil passes through A and contains three nonconcurrent lines dependent on a, b, c, d. Hence the family of lines also uncludes all lines of this plane. The famly of all lmes through a point and all lines in a plane containing this point has evidently no further lines dependent on it This is a degenerate case of a congruence If a is in the plane of one of the flat pencils, we have, by duality, the case just considered. If a meets the common line of the two flat pencls in a point distinct from the centers, the two flat pencils may be regarded as determined by their common line d^{\prime} and by lines b^{\prime} and c^{\prime}, one from each pencil, not meeting a. Hence the family of lines includes those dependent on the regulus $a b^{\prime} c^{\prime}$ and its directrix d^{\prime}. This case has already been seen to yield the family of all lines of the regulus $a b^{\prime} c^{\prime}$ and all lines tangent to it at points of d^{\prime}.

Fig 112
If a does not meet the common line, it meets the planes of the two penculs in points C and D. Call the centers of the pencils A and B (fig. 112). The first pencl consists of the lines dependent on $A D$ and $A B$, the second of those dependent on $A B$ and $B C$. As $C D$ is the line a, the family of lines is seen to consist of the lines which are linearly dependent on $A B, B C, C D, D A$ Since any point of $B D$ is joined by lines of the famuly to A and C, it is joined by lnes of
the family to every pomi of $A C$ Hence this case gives the famuly of all lines meeting both $A C$ and $B D$.

In case b, c, a determme a bundle of limes, a, leing mdependent of them, does not pass through the center of the bundle. Hence the family of dependent lincs maludes all lmes of the plane of a and the center of the bundle as well as the bundle atself.

Lastly, if b, c, d are coplanar, we have, by duality, the same case as if b, c, d were concurrent. We have thus proved

Timeorem 14. A linear congruence is euther (1) a set of lines linearly dependent on four linearly independent shew lines, sueh that no one of them meets the regulus contanning the other three in a proper point, or (2) it is the set of all lines meeting two shew lines; or (3) it is the set of all rullers and tongent lines of a given regulus which meet a fixed directrux of the reyulus, or (4) it consists of a bundle of lines and a plane of lines, the center of the Zundle benng on the plane.

Drfinition. A congruence of the first kind is called clliptec; of the second kind, hypervolic; of the third kind, prorabolic, of the fourth kind, degenerate. A line which has pomts in common with all lnes of a congruence is called a directrix of the congruence.

Corollary. A parabolic congruence consists of all lnnes on corresponding points and planes in a projectivity between the points and planes on a line. The directrix is a lane of the conggruence.

To study the general nondegenerate case, let us clenote four linearly independent and mutually skew lnes on which the other lines of the congruence depend by a, b, c, d, and let π_{1} and π_{a} be two planes intersecting in a. Let the pomts of intersection with π_{1} and π_{2} of b, c, and d be B_{1}, C_{1}, and D_{1} and B_{2}, C_{2}, and D_{2} respectively By letting the complete quadrilateral $a, B_{1} C_{1}, C_{1} D_{1}, D_{1} B_{1}$ correspond to the complete quadrilateral $a, B_{2} C_{2}, C_{2} D_{2}, D_{2} B_{2}$, there is established a projective collneation Π between the planes π_{1} and π_{2} in which the lines b, c, d join homologous points (fig. 113).

Among the lines dependent on a, b, c, d are the lines of the reguli $a b c, a c d, a d b$, and all reguli contaning a and two lines from any of these three reguli. But all such reguli meet π_{1} and π_{2} in lines (e.g. $B_{1} D_{1}, B_{8} D_{2}$) because they have a in common with π_{1} and π_{2}. Furthermore, the lines of the fundamental reguli join points
which correspond in Π (Theorem 5 of this chapter and Theorem 18, Chap. IV) Hence the reguln which contam a and lmes shown by means of such reguh to be dependent on a, b, c, d are those generated by the projectivilies determined by Π between lines of π_{1} and π_{2}

Fig 118
Now consider reguli containing triples of the lines already shown to be in the congruence, but not contanng a Three such lines, l, m, n, join three noncollnear points L_{1}, M_{1}, N_{1} of π_{1} to the points L_{2}, M_{2}, N_{2} of π_{2} whech correspond to them in the collneation II The regulus containing l, m, and n meets π_{1} and π_{2} in two comics which are projective in such a way that L_{1}, M_{1}, N_{1} correspond to L_{2}, M_{2}, N_{2}. The projectavity between the conics determines a projectivity between the planes, and as this projectivity has the same effect as Π on the quadrilateral composed of the sides of the triangle $L_{1} M_{1} N_{1}$ and the line a, it is identical with Π. Hence the lines of the regulus $l m n$ joun points of π_{1} and π_{2} which are homologous under Π and are therefore among the lines already constructed.

Among the lnes hnearly dependent on the family thus far constructed are also such as appear in flat pencils contaming two intersecting lines of the family If one of the two lines is a, the other must meet a in a double point of the projectivity determined on a by II. If neither of the two lines is a, they must meet π_{1} and π_{2}, the first in points P_{1}, P_{2} and the second in points Q_{1}, Q_{2}, and these four
points are clearly distinct from one another. But as the given lines of the congruence, $P_{1} P_{2}$ and $Q_{1} Q_{2}$, intersect, so must also the lines $P_{1} Q_{1}$ and $P_{2} Q_{2}$ of π_{1} and π_{2} intersect, and the projectivity determined between $P_{1} Q_{1}$ and $P_{2} Q_{2}$ by Π is a perspectivity. Hence the common point of $P_{1} Q_{1}$ and $P_{2} Q_{2}$ is a point of a and is transformed into itself by Π. Hence, if lines of the family intersect, II has at least one double point on a, which means, by $\S 105$,* that the lne a moets the regulus bed and the congruence has one or two drrectrices. Thus two lunes of a nondegenerate congruence intersect only in the parabolic and hyperbolic cases, and from our previous study of these cases we know that the lines of a congruence through a point of intersection of two lines form a flat pencil

We have thus shown that all the lines lmearly dependent on a, b, c, d, with the exception of a flat pencil at each double point of the projectivity on a, are obtamed by joining the points of π_{1} and π_{2} which are homologous under II. From this it is evident that any four linearly independent lines of the congruence coull have been taken as the fundamental lines instead of a, b, c, d These two results are summarized as follows:

Tineorem 15. All the lines of a linear congruence are linenrly dependent on any linearly independent four of its lines No lines not in the congruence are linearly dependent on four such lines

Theorem 16 If two planes meet in a line of a linear congruence and neither contains a directrix, the other lines of the congruence meet the planes in homologous points of a projectvvity. Converscly, if two planes are projective in such a way that their line of intersection corresponds to itself, the lines joining homologous points are in the same linear congruence.

[^99]The dual of Theorem 16 may be stated in the following form.
Theorem 17. From two points on the same line of a linear congruence the latter as projected by two projective bundles of planes. Conversely, two bundles of planes projective in such a way that the line jouning their centers is self-corresponding, generate a linear congruence

Definition A regulus all of whose rulers are in a congruence is called a regulus of the congruence and is said to be $2 n$ or to be contarned in the congruence

Corollary If three lines of a regulus are in a congruence, the regulus is in the congruence

In the hyperbohc (or parabolic) case the regulus bcd (in the notation already used) is met by a in two points (or one point), its points of intersection with the drectrices (or durectrix) In the elliptic case the regulus $b c d$ cannot be met by a in proper points, because if it were, the projectivity Π, between π_{1} and π_{2}, would have these points as double points. Hence no line of the congruence meets a regulus of the congruence without being itself a generator Hence through each point of space, without exception, there is one and only one line of the congruence. The involution of conjugate points of the regulus $b c d$ on the lme a is transformed into itself by Π, and the same must be true of any other regulus of the congruence, if it does not con$\operatorname{tain} a$. Since there is but one involution transformed into itself by a nomnvolutoric projectivity on a line (Theorem 20, Chap VIII), we have that the same involution of conjugate points is determmed on any lune of the congruence by all reguli of the congruence which do not contain the given line This is entrrely analogous to the hyperbolce case, and can be used to gain a representation in terms of proper elements of the improper directrices of an elluptic congruence.

The three kinds of congruences may be characterized as follows:
Theorem 18. In a paraboluc linear congruence each line is tanigent at a fixed one of its pornts to all reguli of the congruence of whivich it is not a ruler On each lene of a hyperbolve or elliptic congruence all reguli of the congruence not contarnung the given line determine the same involution of conjugate points Through each point of space there is one and only one line of an elluptic congruence For hyperbolic and parabolic congruences this statement is true except for points on a directrix.

EXERCISES

-

1. All hnes of a congruence can be constiucted from four lines by means of reguli all of which have two given lines in common.
2. Given two involutions (both having or both not having double points) on two skew lines Though each point of space there are two and only two lones which are axes of perspectivity projecting one involution into the other, 1 e. such that two planes through conjugato pans of the finst involution pass through a conjugate pair of the second involution. These lines constitute two congruences.
3. All hnes of a congiuence meeting a line not in the congiuence form a regulus.
4. A linear congruence is self-polar with regasd to any regulus of the congruence.
5. A degenerate hnear congruence consists of all lines meeting two intersecting lines.
6. The linear complex. Tirsorem 10. A linear complex consists of all lines linearly dependent on the cdgcs of a simple skew pentagon.*

Proof. By defimtion (§ 106) the complex consists of all lines lnearly dependent on five independent lines Let a be one of these which does not meet the other four, $b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}$. The complex consists of all lines dependent on a and the congruence $b^{\prime} c^{\prime} d^{\prime} e^{\prime}$. If this congruence is degenerate, it consists of all lines dependent on three sides of a triangle cde and a line b not m the plane of the triangle (Theorems 14, 15). As b may be any line of a bundle, it may be chosen so as to meet a; c may be chosen so as to meet b, and e may be so chosen as to meet a. Thus in this case the complex depends on five lines a, b, c, d, e not all coplanar, forming the edges of a sumple pentagon.

If the congruence is not degenerate, the four lmes $b^{\prime \prime}, c^{\prime \prime}, d^{\prime \prime}, e^{\prime \prime}$ upon which it depends may (Theorem 15) be chosen so that no two of them intersect, but so that two and ouly two of them, $b^{\prime \prime}$ and $e^{\prime \prime}$, meet a. Thus the complex consists of all lines linearly dependent on the two flat pencils $a b^{\prime \prime}$ and $a e^{\prime \prime}$ and the two lines $c^{\prime \prime}$ and $d^{\prime \prime}$. Let b and e be the lines of these pencils (necessarily distinct from each other and from a) which meet $c^{\prime \prime}$ and $d^{\prime \prime}$ respectively. The complex then consists of all lines dependent on the flat pencils $a b, b c^{\prime \prime}, a e, e d^{\prime \prime}$.

[^100]Finally, let c and d be two intersecting lines distinct from b and e, which are me the penclls $b c^{\prime \prime}$ and $e d^{\prime \prime}$. The complex consists of all hnes linearly dependent on the flat penculs $a b, b c, c d, d e, e a$. Not all the vertices of the pentagon abcde can be coplanar, because then all the lines would be in the same degenerate congruence.

Theorem 20. Definition There are two classes of complexes such that all complexes of either class are projectively equivalent. A complex of one class consists of a line and all lincs of space which meet it. These are called special complexes. A complex of the other class us called general. No four vertuces of a pentagon whuch deternurnes it are coplanar.

Proof. Given any complex, by the last theorem there is at least one skew pentagon abcde which determunes it If there is a line l meeting the five edges of thus pentagon, this line must meet all lines of the complex, because any line meeting three linearly independent lines of a regulus (degenerate or not) meets all lines of it. Moreover, if the line l meets a and b as well as c and d, it must erther join their two points of intersection or be the line of intersection of their common planes If l meets e also, it follows in erther case that four of the vertices of the pentagon are coplanar, two of them being on e. (That all five cannot be coplanar was explamed at the end of the last proof) Conversely, if four of the five vertices of the skew pentagon are coplanar, two and only two of its edges are not in this plane, and the line of intersection of the plane of the two edges with the plane of the other three meets all five edges.

Hence, if and only if four of the five vertuces are coplanar, there exists a lune meeting the five lines Since any two skew pentagons are projectively equivalent, if no four vertices ane coplanar (Theorem 12, Chap. III), any two complexes determined by such pentagons are projectively equivalent. Two simple pentagons are also equivalent if four vertices, but not five, of each are coplanar, because any simple planar four-point can be transformed by a collineation of space into any other, and then there exists a collineation holding the plane of the second four-point pointwise invariant and transforming any point not on the plane into any other point not on the plane. Therefore all complexes determined by pentagons of this kind are projectively equivalent But these are the only two kinds of skew pentagons Hence there are two and only two kinds of complexes

In case four vertices of the pentagon are coplanar, we have seen that there is a line l meeting all als edges Since this line was determined as the intersection of the plane of two adjacent edges with the plane of the other three, it contams at least two vertices. It cannot contam three verices because then all five would be coplanar. As one of the two planes meeting on l contains three independent lines, all lunes of that plane are lines of the complex. The lime l itself is thercfore in the complex as well as the two lines of the other plane. Hence all lines of both planes are in the complex. Hence all lines meeting l are in the complex But as any regulus three of whose lmes meet l has all its lines meeting l, the complex satisfies the requirements slated in the theorem for a special complex.

Fig. 114
A more definte idea of the general complex may be formed as follows Lot $p_{1} p_{\mathrm{a}} p_{3} p_{4} p_{5}$ (fig. 114) be a simple pentagon upon whose ellges all lines of the complex are linearly dependent. Let q he the line of the flat pencil $p_{a} p_{4}$ which mects p_{1}, and let R be the point of intersection of q and p_{1}. Denote the vertices of the pentagon by P_{13}, $P_{-3}, P_{84}, P_{45}, P_{51}$, the subscripts indicating the edges which meet in a given verlex.

The four independent lines $p_{1} p_{2} p_{\mathrm{a}} q$ determine a congruence of lines all of which are in the complex and whose directrices are $a=R P_{28}$ and $a^{\prime}=P_{12} P_{P_{4}}$. In like manner, $q p_{4} p_{5} p_{1}$ determine a congruence whose directrices are $b=R P_{46}$ and $b^{\prime}=P_{34} P_{61}$ The complex consists of all lines linearly dependent on the lines of these two congruences. The
directrices of the two congruences intersect at R and P_{34} respectively and determine two planes, $a b=\rho$ and $a^{\prime} b^{\prime}=\pi$, which meet on q.

Through any point P of space not on ρ or π there are two lmes l, m, the first meeting a and a^{\prime}, and the second meeting b and b^{\prime} (fig. 115) All lines in the flat pencll $l m$ are in the complex by definition This flat pencll meets ρ and π in two perspective ranges of

Fig 115
points and thus determines a projectivity between the flat pencil $a b$ and the flat pencll $a^{\prime} b^{\prime}$, in which a and a^{\prime}, b and b^{\prime} correspond and q corresponds to itself. The projectivity thus determined between the penclls $a b$ and $a^{\prime} b^{\prime}$ is the same for all points P, because a, b, q always correspond to $a^{\prime}, b^{\prime}, q^{\prime}$. Hence the complex contains all lines in the flat pencils of lines which meet homologous lines in the projectivity determined by

$$
a b q \frac{a^{\prime}}{} a^{\prime} b^{\prime} q
$$

Denote this set of lines by S . We have seen that it has the property that all its lines through a point not on ρ or π are coplanar. If a point P is on ρ but not on q, the line $P R$ has a corresponding line p^{\prime} in the pencil $a^{\prime} b^{\prime}$ and hence S contans all lines jouning P to points of p^{\prime}. Similarly, for points on π but not on q. By duality every plane not on q contams a flat pencil of lines of S.

Each of the flat penclls not on q has one line meeting q. Hence each plane of space not on q contains one and only one line of S meeting q. Applying this to the planes through P_{34} not containing q, we have that any line through P_{84} and not on p is not in the
set S . Lei l be any such line. All lines of S in each plane through l form a flat pencll P, and the centers of all these penculs lie on a line l^{\prime}, because all lmes through two points of l form two flat penclls each of which contaius a lme from each pencil P Hence the lines of S meetiug l forin a congruence whose other curectrix l^{\prime} evidently lies on p. The point of intersection of l^{\prime} with q is the center of a flat pencal of lines of S all meeing l Hence all lines of the plane $l q$ form a flat pencl Sunce l is any line on P_{34} and not on π, this establishes that each plane aull, ly dunlity, each point on q, as well as not on q, contans a llat pencil of limes of S.
We can now prove that the complex contanns no lines not in S To do so we have to show that all lines linearly dependent on lines of S are m S If two lines of S mutersect, the flat pencll they determune is by defiution m S . If three lines $m_{1}, m_{2}, m_{\mathrm{a}}$ of S are skew to one another, not more than two of the clurectrices of the regulus contaming them are in S . For if three drectrices were in S , all the tangent lines at points of these three lines would be in S , and hence any plane would contan three nonconcurrent lines of S . Let l be a directrix of the regulus $m_{2} n_{2} n_{3}$, which is not in S . By the argument made in the last paragraph all lines of S meeting l form a congruence. But this congruence contains all lines of the regulus $n_{1} m_{2} m_{3}$, and hence all lines of this regulus are in S. Hence the set of lines S is identical with the complex.
Theorem 21 (Sylvistrr's tieorem *). If two projective fat pencils with differont centers and planes have a line q in common which is self-correspondrng, all lines meeting homologous pairs of lines in these two pencils are in the same linear complex. This complex consists of these lines together with a parabolic congrucnce whose directrix is q.
Proof. Thus has all been proved in the paragraphs above, with the exception of the statement that q and the lines meeting q form a linear congruence Take three skew lines of the complex meeting q, they determine with q a congruence C all of whose lines are in the complex. There caunot be any other lines of the complex meeting q, because there would be dependent on such lines aud on the congruence C all lines meeting q, and henoe all lines meeting q would be in the given complex, contrary to what has been proved above.

[^101]Another theorem proved in the discussion above is:
Theorem 22. Definition of Null System. All the lines of a linear complex which pass through a point P lie in a plane π, and all the lines which lie in a plane π pass through a point P. In case of a special complex, exception must be made of the points and planes on the directrix. The point P is called the null pornt of the plane π and π us called the null plane of P wath regard to the complex. The correspondence between the pornts and planes of space thus established is called a null system or null polarity.

Another direct consequence, remembering that there are only two kinds of complexes, is the following.

Theorem 23. Any five linearly independent lines are in one and only one complex. If the edges of a simple pentagon are in a given complex, the pentagon is skew and its edges linearly independent. If the complex is general, no four vertices of a simple pentagon of its lines are coplanar.

Theorem 24. Any set of lines, K, in space such that the lines of the set on each pornt of space constitute a flat pencil is a linear complex.

Proof (a) If two lines of the set K intersect, the set contains all lines linearly dependent on them, by definition
(b) Consider any line a not in the given set K Two points A, B on a have flat penculs of lhees of K on different planes; for if the planes coincided, every line of the plane would, by (a), be a line of K Hence the lines of K through A and B all meet a line a^{\prime} skew to a. From this it follows that all the lines of the congruence whose directrices are a, a^{\prime} are in K . Simlarly, if b is any other line not in K but meeting a, all lines of K which meet b also meet another line b^{\prime}. Moreover, since any line meeting a, b, and b^{\prime} is in K and hence also meets a^{\prime}, the four lines $a, a^{\prime}, b, b^{\prime}$ le on a degenerate regulus consisting of the flat pencils $a b$ and $a^{\prime} b^{\prime}$ (Theorem 13). Let q (fig. 115) be the common line of the pencils $a b$ and $a^{\prime} b^{\prime}$. Through any point of space not on one of the planes $a b$ and $a^{\prime} b^{\prime}$ there are three coplanar lines of K which meet q and the parrs $a a^{\prime}$ and $b b^{\prime}$. Hence K consists of lines meeting homologous lines in the projectivity

$$
q a b \bar{\wedge} q^{a^{\prime} b^{\prime}}
$$

and therefore is a complex by Theorem 21.

Corollary. Any $(1,1)$ correspondence between the points and the planes of space such that ench point less on its corresponding plane is a null system.

Tieorem 25 Two linear complexes have in common a linear. congruence.

Proof. At any point of space the two flat pencils belonging to the two complexes have a line in common. Obviously, then, there are three hnearly independent lines l_{1}, l_{2}, l_{0} common to the complexes. All lines in the regulus $l_{1} l_{2} l_{3}$ are, by definition, in each complex. But as there are points or planes of space not on the regulus, there is a line l_{4} common to the two complexes and not bolonging to this regulus. All lines linearly dependent on $l_{1}, l_{1,}, l_{3}, l_{4}$ are, by definition, common to the complexes and form a congruence. No further line could be common or, by Theorem 23, the two complexes would be identical.

Corollary 1. The lines of a complex mecting a line l not in the complex form a hyperbolic congrucnec

Proof. The line is the durectrix of a special complex which, by the theorem, has a congruence in common with the given complex. The common congruence cannot be parabohe because the lines of the first complex in a plane on l form a flat pencil whose center is not on l, since l is not in the complex.

Corollary 2. The lines of a complex meeting a line l of the complex form a parabolic congruence.

Proof. The centers of all pencils of lines in this congruence must be on l because l is itself a line of each pencil.

Definition. A line l is a polur to a line l^{\prime} with regard to a complex or null system, if and only if l and l^{\prime} are directrices of a congruence of lines of the complex.

Corollary 3. If l is polar to l^{\prime}, l^{\prime} is polar to l. A line is polar to itself, if and only if it is a line of the complex.

Theorem 26. A null system is a projective correspondence between the points and planes of space.

Proof. The points on a line l correspond to the planes on a line l^{\prime} by Corollarnes 1 and 2 of the last theorem. If l and l^{\prime} are distinct, the correspondence between the points of l and planes of l^{\prime} is a perspectivity. If $l=l^{\prime}$, the correspondence is projective by the corollary of Theorem 14.

EXERCISES

1. If a point $P_{1 s}$ on a plane ρ, the null plane π of $P_{\text {is }}$ on the null point R of ρ

2 Two panis of lines polar with 1 egard to the same null system are always in the same regulus (degenerate, if a line of one pan meets a line of the other pan)

3 If a line l meets a line m, the polai of l meets the polar of m
4. Pairs of lines of the regulus in Ex. 2 which are polar with regard to the complex are met by any diectrix of the regulus in pans of points of an involution. Thus the complex determines an involution among the lines of the regulus.
5. Conversely (Theorem of Chasles), the lines meeting conjugate pans of lines in an involution on a regulus are in the same complex. Show that Theorem 21 is a special case of this.

6 Find the lines common to a linear complex and a regulus not in the complex
7. Three skew lines h, l, m determine one and only one complex containing k and having l and n as polars of each other
8. If the number of points on a line is $n+1$, how many regul, how many congruences, how many complexes are there m space? How many lmes are there in each kind of regulus, congiuence, complex?

9 Given any general complex and any tetiahedion whose faces are not null planes to its vertices The null planes of the vertices constrtute a second tetrahedron whose veitices lie on the planes of the first tetrahedron The two tetrahedia are mutually mscribed and cncumscribed each to the other* (cf. Ex. 6, p. 105).
10. A null system is fully determined by associating with the three vertices of a tirangle three planes through these vertices and having their one cominon point in the plane of the triangle but not on one of its sides

11 A tetrahedron is self-polar with regard to a null system if two opposite edges are polar.

12 Every line of the complex determined by a pair of Mobins tetrahedra meets their faces and projects their vertices in projective throws of points and planes

13 If a tetrahedron T is inscirbed and cncunscribed to T_{1} and also to T_{2}, the lines joining corresponding vertices of T_{1} and T_{2} and the lines of intersection of their corresponding planes are all in the same complex

14 A null system is determined by the condition that two parrs of lines of a regulus shall be polar

15 A hnear complex is self-polar with regard to a regulus all of whose lines are in the complex.

16 The lines from which two projective pencils of points on skew lines are projected by involutions of planes are all in the same complex Dualize

[^102]109. The Pliicker line coördinates. Two points whose coordinales are
\[

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, x_{1}\right) \\
& \left(y_{1}, y_{2}, y_{3}, y_{4}\right)
\end{aligned}
$$
\]

determine a hne l. The coodrdinates of the two points determine six numbers

$$
\begin{array}{ll}
p_{13}=\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{3}
\end{array}, \quad p_{13}=\left|\begin{array}{ll}
x_{1} & x_{3} \\
y_{1} & y_{3}
\end{array}\right|,\right. & p_{14}=\left|\begin{array}{ll}
x_{1} & x_{4} \\
y_{1} & y_{4}
\end{array}\right|, \\
p_{34}=\left|\begin{array}{ll}
x_{3} & x_{4} \\
y_{3} & y_{4}
\end{array}\right|, & p_{42}=\left|\begin{array}{ll}
x_{4} & x_{2} \\
y_{4} & y_{2}
\end{array}\right|,
\end{array} p_{23}=\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{3} & y_{3}
\end{array}\right|, ~ l
$$

which are known as the Pliicker coordinates of the line. Sunce the coordmates of the two points are homogeneous, the ratios only of the numbers $p_{v j}$ are determined Any other two points of the line determine the same set of line coördinates, since the ratios of the $p_{v j}$'s are evidently unchanged if ($x_{1}, x_{2}, x_{3}, x_{4}$) is replaced by ($x_{1}+\lambda y_{1}, x_{2}+\lambda y_{2}$, $x_{3}+\lambda y_{3}, x_{4}+\lambda y_{4}$. The six numbers satisfy the equation*

$$
\begin{equation*}
p_{19} p_{34}+p_{13} p_{42}+p_{14} p_{\mathrm{ea}}=0 \tag{1}
\end{equation*}
$$

This is evident on expanding in terms of two-rowed minors the identity

$$
\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{3} & y_{3} & y_{4}
\end{array} \equiv 0 .
$$

Conversely, if any six nuunbers, $p_{i,}$, are given which satisfy Equation (1), then two points $P=\left(x_{1}, x_{2}, x_{3}, 0\right), Q=\left(y_{1}, 0, y_{3}, y_{4}\right)$ can be determined such that the numbers $p_{i j}$ are the coördmaies of the line $P Q$. To do this it is simply necessary to solve the equations

$$
\begin{aligned}
-x_{2} y_{1} & =p_{12}, & x_{1} y_{4} & =p_{34}, \\
x_{1} y_{3}-x_{3} y_{1} & =p_{13}, & -x_{2} y_{4} & =p_{42}, \\
x_{1} y_{4} & =p_{14}, & x_{2} y_{3} & =p_{23},
\end{aligned}
$$

which are easuly seen to be consistent if and only if

$$
p_{12} p_{84}+p_{13} p_{42}+p_{14} p_{29}=0
$$

Hence we have
Theorem 27. Every line of space determines and is determined by the ratios of six numbers $p_{12}, p_{18}, p_{14}, p_{34}, p_{42}, p_{\text {as }}$ subject to the

[^103]condution $p_{12} p_{34}+p_{18} p_{42}+p_{14} p_{23}=0$, such that if $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and ($y_{1}, y_{2}, y_{8}, y_{4}$) are any two points on the line,
\[

$$
\begin{array}{lll}
p_{12}=\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|, & p_{13}=\left|\begin{array}{ll}
x_{1} & x_{3} \\
y_{1} & y_{3}
\end{array}\right|, & p_{14}=\left|\begin{array}{ll}
x_{1} & x_{4} \\
y_{1} & y_{4}
\end{array}\right|, \\
p_{34}=\left|\begin{array}{ll}
x_{3} & x_{4} \\
y_{3} & y_{4}
\end{array}\right|, & p_{42}=-\left|\begin{array}{ll}
x_{2} & x_{4} \\
y_{2} & y_{4}
\end{array}\right|, & p_{23}=\left|\begin{array}{ll}
x_{2} & x_{8} \\
y_{2} & y_{3}
\end{array}\right|
\end{array}
$$
\]

Corollary Four independent coordinates determine a line.
In precisely simular manner two planes ($u_{1}, u_{2}, u_{3}, u_{4}$) and ($v_{1}, v_{2}, v_{3}, v_{4}$) determine six numbers such that

$$
\begin{array}{ll}
q_{12}=\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|, & q_{13}=\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|,
\end{array} q_{14}=\left\lvert\, \begin{array}{ll}
u_{1} & u_{4} \\
v_{1} & v_{4} \\
q_{34}=\left|\begin{array}{ll}
u_{3} & u_{4} \\
v_{3} & v_{4}
\end{array}\right|, & q_{42}=\left|\begin{array}{ll}
u_{4} & u_{2} \\
v_{4} & v_{2}
\end{array}\right|, \\
q_{23}=\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| .
\end{array}\right.
$$

The quantities q_{v} satisfy a theorem dual to the one just proved for the p_{v} 's

Theorem 28. The p and q coordinates of a line are connected by the equations $p_{12}: p_{13}: p_{14} \cdot p_{34}: p_{42} \cdot p_{29}=q_{34} \cdot q_{42} \cdot q_{28} \cdot q_{12}: q_{13}: q_{14}$.

Proof Let the p coordinates be determined by the two points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$, and the q coördmates by the two planes ($\left.u_{1}, u_{2}, u_{8}, u_{4}\right),\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$. These coordmates satisfy the four equations

$$
\begin{array}{r}
u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}+u_{4} x_{4}=0, \\
v_{1} x_{1}+v_{2} x_{2}+v_{3} x_{3}+v_{4} x_{4}=0, \\
u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}+u_{4} y_{4}=0, \\
v_{1} y_{2}+v_{2} y_{2}+v_{3} y_{3}+v_{4} y_{4}=0 .
\end{array}
$$

Multiplyng the first equation by $-v_{1}$ and the second by u_{1} and adding we obtain

$$
q_{12} x_{2}+q_{13} x_{3}+q_{14} x_{4}=0
$$

In like manner, from the third and fourth equations we obtain

$$
q_{19} y_{2}+q_{18} y_{8}+q_{14} y_{4}=0
$$

Combining the last two equations similarly, we obtain

$$
\begin{aligned}
& q_{18} p_{18}-q_{14} p_{42}=0, \\
& \frac{q_{18}}{q_{14}}=\frac{p_{42}}{p_{28}} .
\end{aligned}
$$

or,
By similar combinations of the first four equations we find

$$
p_{12} \cdot p_{18}: p_{14}: p_{34}: p_{42}: p_{28}=q_{34}: q_{42}: q_{28}: q_{12}: q_{18}: q_{14}
$$

EXERCISE

Given the tetialiedron of reference, the point ($1,1,1,1$), and a line 1 , determine six sets of tour points each, whose cross 1 atios are the coordmates of l
110. Linear families of lines. Tinormm 29. The necessary and sufficient condition that two lines p and p^{\prime} intersect, ancl hence are coplanar, is

$$
p_{12} p_{14}^{\prime}+p_{13} p_{43}^{\prime}+p_{14} p_{23}^{\prime}+p_{11} p_{13}^{\prime}+p_{12} p_{13}^{\prime}+p_{23} p_{14}^{\prime}=0
$$

where p_{ι}, are the coordinates of p and $p_{i j}^{\prime}$ of p^{\prime}.
Proof. If the first line contains two points x and y, and the second two points x^{\prime} and y^{\prime}, the lmes will intersect if and only if these foun points are coplanar; that is to say, if and only if

$$
0=\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{3} & y_{3} & y_{4} \\
x_{1}^{\prime} & x_{2}^{\prime} & x_{8}^{\prime} & x_{4}^{\prime} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime}
\end{array}
$$

Theorem 30. A flat pencil of lines consists of the lines whose coordinates are $\lambda p_{1 j}+\mu p_{\imath j}^{\prime}$, if p and p^{\prime} are two lines of the pmucil

Proof. The lines p and p^{\prime} intersect in a poind A and are perspective with a range of points $\lambda\left(^{\prime}+\mu I\right)$. Hence their coordmates may be written

$$
\left|\begin{array}{cc}
a_{1} & a_{2} \\
\lambda c_{1}+\mu d_{1} \lambda c_{2}+\mu d_{2}
\end{array}\right|, \text { etc. }
$$

which may be expanded in the form

$$
\lambda\left|\begin{array}{ll}
a_{1} & a_{21} \\
c_{1} & c_{2}
\end{array}\right|+\mu\left|\begin{array}{ll}
a_{1} & a_{2} \\
d_{1} & d_{2}
\end{array}\right|=\lambda p_{12}+\mu p_{12}^{\prime}, \text { etc. }
$$

Theorem 31. The lines whose coordinates satisfy one linear equation

$$
\begin{equation*}
a_{12} p_{12}+a_{13} p_{13}+a_{14} p_{14}+a_{34} p_{34}+a_{42} p_{43}+a_{13} p_{23}=0 \tag{1}
\end{equation*}
$$

form a linear complex. Those whose coördinates satisfy two independent linear equations form a linear congruence, and those satisfynng three independent linear equations form a regulus. Four independent linear equations are satisfied by two (distinct or coincident) lines, which may be improper.

Proof If ($b_{1}, b_{2}, b_{3}, b_{4}$) is any point of space, the points ($x_{1}, x_{2}, x_{3}, x_{4}$) which he on lines through $b_{1}, b_{2}, b_{3}, b_{4}$ satisfymg (1) must satisfy
$a_{12}\left|\begin{array}{ll}b_{1} & b_{2} \\ x_{1} & x_{2}\end{array}\right|+a_{13}\left|\begin{array}{ll}b_{1} & b_{3} \\ x_{1} & x_{8}\end{array}\right|+a_{14}\left|\begin{array}{ll}b_{1} & b_{4} \\ x_{1} & x_{4}\end{array}\right|+u_{34}\left|\begin{array}{ll}b_{3} & b_{4} \\ x_{3} & x_{4}\end{array}\right|+a_{42}\left|\begin{array}{ll}b_{4} & b_{2} \\ x_{4} & x_{2}\end{array}\right|+a_{23}\left|\begin{array}{ll}b_{2} & b_{3} \\ x_{2} & x_{3}\end{array}\right|=0$, or

$$
\begin{align*}
& \left(a_{12} b_{2}+a_{13} b_{3}+a_{14} b_{4}\right) x_{1}+\left(-a_{12} b_{1}+a_{23} b_{3}-a_{42} b_{4}\right) x_{2} \tag{2}\\
& \quad+\left(-a_{13} b_{1}-a_{23} b_{2}+a_{34} b_{4}\right) x_{3}+\left(-a_{24} b_{1}+a_{42} b_{2}-a_{34} b_{3}\right) x_{4}=0,
\end{align*}
$$

which is the equation of a plane. Hence the family of lines represented by (1) has a flat pencll of hnes at every point of space, and so, ly Theorem 24, is a linear complex.

Since two complexes have a congruence of common lines, two linear equations determine a congruence Since a congruence and a complex have a regulus in common, three linear equations determine a regulus.

If the four equations

$$
\begin{aligned}
& a_{12}^{\prime} p_{12}+a_{13}^{\prime} p_{13}+a_{14}^{\prime} p_{14}+a_{34}^{\prime} p_{34}+a_{42}^{\prime} p_{42}+a_{23}^{\prime} p_{23}=0, \\
& a_{12}^{\prime \prime} p_{12}+a_{13}^{\prime \prime} p_{13}+a_{14}^{\prime \prime} p_{14}+a_{34}^{\prime \prime} p_{34}+a_{42}^{\prime \prime} p_{42}+a_{23}^{\prime \prime} p_{23}=0, \\
& a_{12}^{\prime \prime \prime} p_{22}+a_{13}^{\prime \prime \prime} p_{13}+a_{14}^{\prime \prime \prime} p_{14}+a_{34}^{\prime \prime \prime} p_{34}+a_{42}^{\prime \prime \prime} p_{42}+a_{22}^{\prime \prime \prime} p_{23}=0, \\
& a_{12}^{\prime V} p_{12}+a_{13}^{\prime \prime} p_{13}+a_{14}^{\text {IV }} p_{14}+a_{34}^{\prime V} p_{34}+a_{42}^{\prime \prime} p_{42}+a_{23}^{\prime v} p_{23}=0,
\end{aligned}
$$

are independent, one of the four-rowed determinants of their coefficients is different from zero, and the equations have solutions of the form *

$$
p_{12}=\lambda \rho_{12}^{\prime}+\mu p_{12}^{\prime \prime}, \quad p_{13}=\lambda p_{13}^{\prime}+\mu p_{18}^{\prime \prime}, \cdot .
$$

If one of these solutions is to represent the coordmates of a line, it must satisfy the condition

$$
p_{12} p_{34}+p_{13} p_{12}+p_{14} p_{23}=0,
$$

which gives a quadratic equation to determine λ / μ. Hence, by Propostion K_{2}, there are two (proper, improper, or coincident) lines whose cuördmates satisfy four linear equations.

Corollary 1. The lines of a regulus are of the form

$$
p_{i}=\lambda_{1} p_{t}^{\prime}+\lambda_{2} p_{i}^{\prime \prime}+\lambda_{3} p_{i}^{\prime \prime \prime}
$$

where $p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime}$ are lines of the regnulus. In like manner, the lines of a congruence are of the form

$$
p_{2}=\lambda_{1} p_{2}^{\prime}+\lambda_{2} p_{2}^{\prime \prime}+\lambda_{3} p_{2}^{\prime \prime \prime}+\lambda_{4} p_{2}^{1 v},
$$

* Cf Bocher, Introduction to Hıgher Algebra, Chap IV.
and of a complex of the form

$$
p_{i}=\lambda_{1} p_{2}^{\prime}+\lambda_{2} p_{1}^{\prime \prime}+\lambda_{3} p_{i}^{\prime \prime \prime}+\lambda_{4} p_{1}^{\mathrm{IV}}+\lambda_{5} p_{1}^{v} .
$$

All of these formalas must be taken an connectuon wuth

$$
p_{12} p_{34}+p_{13} p_{42}+p_{11} p_{23}=0
$$

Conollary 2. As a transformatzon from points to planes the nall system deternined by the complex whose cquation is

$$
\begin{gathered}
a_{12} p_{12}+a_{13} p_{13}+\alpha_{14} p_{14}+a_{34} p_{34}-a_{24} p_{49}+a_{23} p_{23}=0 \\
u_{1}=0+a_{12} x_{9}+a_{13} x_{3}+a_{14} x_{4}, \\
u_{2}=-a_{13} x_{1}+0+a_{23} x_{3}+a_{24} x_{4}, \\
u_{3}=-a_{13} x_{1}-a_{23} x_{2}+0+a_{34} x_{4}, \\
u_{4}=-a_{14} x_{1}-a_{24} x_{2}-a_{34} x_{3}+0 .
\end{gathered}
$$

The first of these corollaries sumply states the form of the solutions of systems of homogeneous linear equations in six variables. The second corollary is obtaned by inspection of Equation (2) the coefficients of which are the coordinates of the null plane of the point $\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$

Cocollary 1 shows that the geometric definition of huear dependence of lmes given in this chapter corresponds to the conventional analytic conception of linear dependence.
111. Interpretation of line coordinates as point coordinates in S_{6}. It may be shown without difficulty that the method of introducing homogeneous coördnates in Chap. VII is extensible to space of any number of dimensions (cf. Chap. I, § 12). Therefore the set of all sets of six numbers

$$
\left(p_{12}, p_{13}, p_{14}, p_{34}, p_{43}, p_{23}\right)
$$

can be regarded as homogencous point coördinates in a space of five dimensions, S_{8}. Since the coürdinates of a line in S_{3} satisfy the quadratic condation

$$
\begin{equation*}
p_{12} p_{34}+p_{18} p_{42}+p_{14} p_{28}=0 \tag{1}
\end{equation*}
$$

they may be garded as forming the pounts of a quadratic locus or spread,* L_{4}^{2}, in S_{b}. The lines of a hnear complex correspond to the points of intersection with this spread of an S_{4} that is determined by one linear equation The lines of a congruence correspond, therefore, to the intersection with L_{4}^{2} of an S_{3}, the lines of a regulus to the

[^104]ntersection with L_{4}^{2} of an S_{2}, and any parr of lines to the intersecron with L_{q}^{2} of an S_{1}.
Any point ($p_{12}^{\prime}, p_{18}^{\prime}, p_{14}^{\prime}, p_{34}^{\prime}, p_{42}^{\prime}, p_{23}^{\prime}$) of S_{5} has as ils polar ${ }^{*} \mathrm{~S}_{4}$, with regard to L_{4}^{2},
\[

$$
\begin{equation*}
p_{34}^{\prime} p_{12}+p_{42}^{\prime} p_{18}+p_{23}^{\prime} p_{14}+p_{12}^{\prime} p_{34}+p_{13}^{\prime} p_{42}+p_{14}^{\prime} p_{28}=0 \tag{2}
\end{equation*}
$$

\]

which is the equation of a hnear complex in the orginal S_{3} Hence any pount in S_{5} can be thought of as representing the complex of lines represented by the points of S_{5} an which its polar S_{4} meets L_{4}^{2}

Since a line is represented by a point on L_{4}^{2}, a special complex is represented by a point on L_{4}^{2}, and all the lines of the special complex by the points in which a tangent S_{4} meets L_{4}^{3}.

The points of a line, $a+\lambda b$, in S_{5} represent a set of complexes whose equations are

$$
\begin{equation*}
\left(a_{34}+\lambda b_{34}\right) p_{12}+\left(a_{42}+\lambda b_{43}\right) p_{18}+\cdots=0, \tag{3}
\end{equation*}
$$

and all these complexes have in common the congrnence common to the complexes a and b. Their congruence, of course, consists of the lines of the orginal S_{3} represented by the points in which L_{4}^{2} is met by the polar S_{s} of the line $a+\lambda b$

A system of complexes, $a+\lambda b$, is called a pencul of complexes, and therr common congruence is called ats base or basal congruence. It evidently has the property that the null plames of any point with regard to the complexes of the pencll form an axial pencll whose axis is a line of the basal congruence Dually, the null points of any plane with regard to the complexes of the pencil form a range of points on a line of the basal congruence

The cross ratio of four complexes of a pencil may be defined as the cross ratio of their representative points in S_{5} From the form of Equation (3) this is emdently the cross ratio of the four null planes of any pout with regard to the four complexes.

A pencll of complexes evidently contans the special complexes whose durectrices are the directrices of the basal congruence Hence

[^105]there are two improper, two proper, one, or a flat pencil of lines whach are the durectruces of special complexes of the pencil. These cases arise as the reprosentative line $a+\lambda b$ moets L_{4}^{2} in two improper points, two proper pomis, or one point, or hes wholly on L_{1}^{2} Two points in whech a representative line meets L_{4}^{2} are the double points of an involution the pars of which are conjugate with regard to L_{1}^{2}.

Two eomplexes p, p^{\prime} whose representahve points are conjugate with regard to L_{1}^{4} are sadd to be conjugate or in involution. They evidently satisfy Equation (2) and have the property that the null pomts of any phane with regard to them nre harmoncally conjugate with regard to the drectrices of their common congruence. Any complex a is in involution with all the special complexes whose drectrices are lines of a.

Let a_{1} be an arbitrary complex and a_{g} any complex conjugate to (in involution with) it. Then any representative point in the polar S_{s} with regard to L_{4}^{2} of the representative line $a_{1} a_{2}$ represents a complex conjugate to a_{1} and a_{2}. Lee a_{3} be any such complex. The representative points of a_{1}, a_{2}, a_{3} furm a self-conjugate trangle of L_{4}^{2} Any point of the representative plane polar to the plane $\alpha_{1} a_{2} a_{3}$ with regard to L_{4}^{4} is conjugate to $a_{1} \alpha_{2} a_{3}$. Let such a point be a_{4}. In like manner, a_{5} and α_{6} can le determined, forming a self-polar 6-point of L_{4}^{2}, the generalization of a self-polar triangle of a conic section The six pomts are the represontatives of six complexes, each pair of which is in involution.

It can be proved thai ly a proper choice of the six points of reference in the representative S_{6}, the erquation of L_{4}^{2} may be taken as any quadratic relation among six variables. Hence the lines of a threespace may be represented analytically by six homogeneous coördinates subject to any quadratic relation. In particular they may be represented by ($x_{1}, x_{2}, \cdots, x_{5}$), where

$$
x_{1}^{2}+x_{2}^{2}+x_{8}^{2}+x_{4}^{2}+x_{b}^{2}+x_{0}^{2}=0
$$

In this case, the six-point of reference being self-polar with regard to L_{4}^{2}, its vertices represent complexes which are two by two in anvolution.

[^106]
EXERCISES

1 If a pencil of complexes contains two special complexes, the basal congiuence of the pencil is hyperbolic or elliptic, according as the special coinplexes are pioper or improper
2. If a pencll of linear complexes contains only a smgle special complex, the basal congruence is parabolic.

3 If all the complexes of a pencll of hnear complexes are special, the basal congruence is degenerate.

4 Define a pencil of complexes as the system of all complexes having a common congruence of lines and derive its properties synthetically.
5. The polars of a line with regard to the complexes of a pencil form a regulus.
6. The null points of two planes with regaid to the complexes of a pencil generate two piojective pencils of points

7 If $C=0, C^{\prime}=0, C^{\prime \prime}=0$ are the equations of three linear complexes which do not have a congruence in common, the equation $C+\lambda C^{\prime}+\mu C^{\prime \prime \prime}=0$ is said to represent a bundle of complexes The lines common to the thee fundamental complexes $C, C^{\prime}, C^{\prime \prime}$ of the bundle form a regulus, the conjugate regulus of which consists of all the directices of the special complexes of the bundle.

8 Two linear complexes $\Sigma a_{v j} p_{v j}=0$ and $\Sigma b_{v} p_{v j}=0$ are $1 \underset{1}{ }$ involution of and only of we have

$$
a_{12} b_{34}+a_{13} b_{42}+a_{14} b_{23}+a_{34} b_{12}+a_{42} b_{13}+a_{23} b_{14}=0 .
$$

9 Using Klein's cooidinates, any two complexes are given by $\Sigma_{2} a_{2} x_{2}=0$ and $\Sigma b_{1} x_{2}=0$ These two are in involution if $\Sigma a_{2} b_{2}=0$

10 The six fundamental complexes of a system of Klen's coordinates intersect in pains in fifteen linear conginences all of whose directrices are distinct. The durectrices of one of these congruences are lines of the remaming four fundamental complexes, and meet, thenefore, the twelve durectrices of the six congruences determmed by these four complexes.

INDEX

The numbels rofor to pages

Abolian group, 67
Abscissa, 170
Abstract suances, 2
 mi, 12 111 い1 1 1.' b: 107, Exs 3, 4
Adjacont sules or vorticos of smplo n-lme, 37 ,
Algobrac curve, 250
Algebrac problem, 238
Algebrue surface, 26!
Alignmont, assumptions of, 10 ; onnsistency of assumptions of 17 ; theorems of, for the plane, 17-20, theorenis of, for 3 -spince, 20-24; thoorems of, for 4-space, 2n, Ex. 4, thoorems of, for n-space, 20-33
Ainoilen, F., 120, 204
Anhurmone zatio, 160
Apollomus, 286
Anbociative law, for eorrespondencos, 66, for addition of points, 143; for multiplication of points, 146
Assumption, $\mathrm{II}_{0}, 45$; I_{0}, role of, 81 , 261, of ?minctionv its; of projectivity, : ' $\quad 1 \quad$ ' \rightarrow of, 105, 106, Exs. 10-12, 208
Assmuptions, are ameessary, 2; examplos of, for a mathematical science, 2; consistency of, 8; indeprendence of; $B_{;}$categoricalness of, 3 ; of allgnmont, 18; of alignunont, consistoncy of, 17 ; of extansion, 18, 24; of closure, 24, for an n-space, 88
Axial pencil, 55
Axial porspectivity, 57
Axis, of perspectivity, 86 ; of pencll, S5; of perspectivo collineation, 72; of homolofy, 104; of coordinates, 160, 191; of projectivity on conio, 218

Basen, of plane of points or lines, 55 ; of pencil of complexas, 882
Bulinesur equation, binary, represents projectlvity on a line, 156; iomary, represents correlation in a plane, 267
Binary form, 251, 252, 254
Bócher, M., 156, 272, 289, 880
Braikenridge, 119
Brianchon point, 111
Brianchon's theorem, 111

Bundle, of planes or lines, 27, 55; of comes, 207, Exs. 0-12, of quadrics, 811; of complexos, 834, Ex 7
Burumilo, W., 150
I3ıssey, W. II., 202
Canonical forms, of collmentions in planc, 274-276, of correlations 111 a plane, 281 ; of jenells of conzes, 287 208
Caitohnovo, G., 130, 140, 237, 207
Categorical set of instumptions, 0
Cayley, A., 52, 140
Center, of prexpleetivity, 30, of fiat poneil, 5h, of humelle, 55 , of perspective collinuatan in phane, 72 , of prowneetive eollinention m sumee, 75 ; of

1 1 : ' 11 -1 $\quad 5.7$
(..11... $1-1$ of parabolic projectavity, 207
Charncteristic ofyation of matrix, 105
Charncteristle thirow and cross ratio, of onc-dimonsional projoctivity, 205, 211 , Exs, 2, 3, 4; 212, Exs. 5, 7; of mvolution, 200 ; of parabolic projectivity, 200
Chasles, 125
Class, notion of, 2; aloments of, 2; row lation of belonging to $n, 2$; stloclass of a, 2; undeflned, 15 ; notation for, 57
Clebseh, A., 280
Cogrediont n-lino, 84, Ex. 18
Cogredient trianglo, 84, Exs. 7, 10
Collineation, cletined, 71 ; perspective, in plane, 72 ; porqpoctiva, in spare, 75 ; transforining a quadrengle into a quadrangle, 74 ; transiomining 几 livepoint into a flve-point, 77; tranaforming a conle into a conic, 182 ; in planio, analytic form of, 180, 100, 208; 100 tween two planes, annlytio com of, 100 ; in apaco, annlytio form of, 200 ; -lowving conic invarignt, 214, 220, 235, Ex. 2 is the proluct of two pollinities, 205 ; which is the prodict of two reflections, 282, Ex. 5; doublo elements of, in plane, 271; charactoristio equation of, 272 ; invariant figure of, is solf-dual, 272

Collineations, types of, in plano, 106, 273 , associated with two conics of a pencul, 131, Exs 2, 4, 6, 135, Ex. 2, 136, Ex 2, group of, in plane, 268 , represented by matices, 268270 , two, not in general commutative, 268, canonical forms of, 274276
Commutative coirespondence, 66
Commutative group, 67, 70, Ex 1, 228
Commutative law of multiplication, 148
Commutative projectivities, $70,210,228$
Compass, constructions with, 246
Complete n-line, in plane, 37 , on point, 38
Complete n-plane, in space, 37 , on point, 38
Complete n-point, in space, 36 , in plane, 37
Complete quadrangle and quadrilateral, 44
Complex, linear, 312, determined by skew pentagon, 319 , general and special, 320 , determined by two piojectuve flat pencils, 323 , determined by five independent lmes, 324 , determined by correspondence between points and planes of space, 324 , null system of, 324, generated by involution on regulus, 326, Ex. 5 , equation of, 329, 331
Complexes, pencil of, 332 , in mvolution, 333 , bundle of, 334, Ex. 7
Concrete representation or application of an abstract science, 2
Concurrent, 16
Cone, 118, of lines, 100, of planes, 109 , section of, by plane, is comic, 109, as degenerate case of quadıc, 308
Configuration, 38 , symbol of, 38 , of Desargues, 40, 51 , quadrangle-quadrilateral, 44, of Pappus, 98, 249, of Mobus, 326, Ex. 9
Congruence, linear, 312 ; elliptıc, hyperbolic, parabolsc, degenerate, 815 , determined by four andependent lines, 317 , determuned by projective planes, 317, determined by two acomplexes, 325 , equation of, 329,330
Conic, 109, 118, theorems on, 109-140, polar system of, $120-124$, equation of, 185, 245, projectivity on, 217, intersection of line with, 240, 242, 246, through four points and tangent to line, 250, Ex 8, through three points and tangent to two lines, 250, Ex. 9, through four points and meeting given line in two points harmonic with two given points, 250, Ex 10, determined by conjugate points, 293, Ex. 2, 294, Exs 3, 4
Conie section, 118

Conncs, penculs and ranges of, 128-136, 287-298, projective, 212, 804
Conjugate groups, 200
Conjugate pair of involution, 102
Conjugate points (lines), with 1 egard to conic, 122 , on line (point), forin involution, 124 , with regaid to a pencil of conics, 136, Ex. 3, 140, Ex. 81, 293, Ex 1
Conjugate projectivities, 208; conditions for, 208, 209
Conjugate subgroups, 211
Consistency, of a set of assumptions, 3 , of notion of elements at infinity, 9 , of assumptions of alıgnment, 17
Construct, 45
Constructions, linear (first degree), 236, of second degree, 245, 249-250, Exs, of third and fourth degiees, 294-206
Contact, point of, of line of line conic, 112, of second order between two conics, 134, of third older between two conics, 136
Conwell, G M, 204
Coordmates, nonhomogeneous, of points on line, 152, homogeneous, of points on lime, 163, nonhomogeneous, of pounts in plane, 169, nonhomogeneous, of lines in plane, 170 , homogeneous, of points and lines in plane, 174 , in a bundle, 179, Ex 3, of quadran-gle-quadrilateral configuration, 181, Ex. 2, nonhomogeneons, in space, 190, homogeneous, in space, 194 , Plucker's line, 327, Klein's line, 333
Coplanar, 24
Copunctal, 16
Correlation, between two-dımensional forms, 262, 263, induced, 262, between two-dimensional forms determmed by four pars of homologons elements, 264, which interchanges vertices and sides of tiangle is polarity, 264 , between two planes, analytic representation of, 266, 267, repiesented by ternaly bilnear form, 267 represented by matuces, 270, double pails of a, 278-281
Corielations and duality, 268
Correspondence, as a logical term, 5 perspective, $12,(1,1)$ of two figures 35 , general theory of, 64-66; 1den tical, 65 , inverse of, 65, period of 66, periodic or cyclic, 06 , involutoris or reflexive, 60, perspective betweer two planes, 71, quadratic, 130, Exs 22, 24, 293, Ex. 1
Correspondences, resultant or produc of two, 65, associative law for, 66 commutative, 66 , groups of, 67 , leav ing a figure invariant form a group, 68

Corresponding elements, 85, loubly, 102
Covariant, 257, example of, 258
Cremont, L., 187, 138
Cross atio, 159, of hamome set, 159 , 161, defintion of, 160 , expression for, 100, in homogeneons coindinater, 165, theoroms on, 167, 108, Eas, charactoristic, of mogectivily, 205, chanacteristic, of mivolution, 2003, as an mearimit of two quadratic hamery forms, 254, Rx. 1 , of four complexes, 382
Crons ration, the six, dulinod by fome elements, 1 (i1
Curve, of threrl order, 217, Exs. 7, 8, 9 ; ahmolrale, 259
Cyche correspondenco, 00
I Marboux, (r., 05
Jegencrato comes, 123
1)egenerate regulus, 811

Dogree of geomethe problem, 280

1) (rivative, 255

Dising ines, contiguration of, 40, 51; thesorom on porspectavo triangles, 41, 180; thomrom on conics, 127, 128
1)escartes, R., 285

Diagonal point (line), of completa duxlrangl ((••少 $1:$ t '..') 4t; of complote, $-\because$, (--,) phane, 44
Diagonal triangle of quadranglo (quadrilnternal), 44
Dickson, L. F., 66
Difference of two pomes, 148
Differential oparators, 250
Dimensions, nymus of throe, 20 ; spaco of $n, 80$; assmuntaons for spuoct of $n, 88$; space of tive, 881
Directricas, of a regultus, 209; of \AA congrinence, 815 ; of a 324
Distributive law for multiplication with rospect to aldition, 147
Division of ponts, 149
Doman of rationtility, 288
Double element (point, line, plane) of correspontence, 38
Double pairs of a corrolaifon, 07
Double points, of a projectivily on a line satisfy a quadratic equation, 158; of projectivity on a line, homogencous coôrdinales of, 164; of projectivity always exist in extenderl space, 242; of projectivity on a line, construction of, 246 ; of Involution determined by covariant, 258 ; and lines of collineation in plane, 271, 295
Double ratio, 150
Doubly parabolio point, 274
Duality, in three-space, 28, in plane, 20 ; at a point, 20 , in four-space, 29 ,

Ex.; in consecurence of existence of corrclathons, 208
Edgo of n-pomt or n-plane, 36, 37
Elation, in plane, 72 , 11 space, 75
Element, undefined, 1 , of a flgure, 1 , fundamentral, 1, ilenl, 7 , smple, of space, 84 ; inviuriunt, or double, or fixoll, (i8, lmeal, 107
Elevon-punt, plane soction of, 58, Ex. 15
Enuriques, $\mathrm{F}^{\text {., }} 56,280$
Eipution, of lane (pomit), 174, of come, 185, 245; of plano (pмmi), 108, 198, reducible, mrochucible, 239) ; quadiatic, has roots in oxterulod spaco, 242
Thuivalent number systems, 150
Rxtembed space, 212,255
lixtonsion, assumptions of 18,24
Fites of n-pount or n-plano, 80,87
Fermal, P., 285
Fichl, 140, polnts on a line form a, 151, Hmte, modular, 201, oxtenidod, in which nury polynomal is reducible, 260 Figure, 34
Fine, Il. 13., 255, 200, 201, 280
Finte npaces, 201
Five-pomt, plane suction of, an space, 30 ; in space may be transtormod into any other hy projective onllineation, 77, dagonid ponts, haes, and planes of, m spuce, 204, Exs 16, 17, 18; simple, in space determines linour congruence, 310
Five-pomts, perspoctive, in four-spaco, 54, Ex. 25
Flxed elemont, of corrospondence, 08
Flet pencil, 55
 and $1,1 \cdot 1 \cdot$ in-1 - ji. one-dumunsional, of necond degreo, 109; linear binary, 251; yualratic binary, 252, of nilh degreo, 254 ; pular forms, 250 ; ternary billnonr, , oprosents correlation in plane, 207
Four-spuee, 25, 1Ex. 4
Frame of rofereuce, 1.74
Fundamental elements, 1
Fundanental pilnts of a soale, 141, 281
Fundamontal propositions, 1
Fundamential theorem of projectivity, 94-07, 218, 264

Genaral point, 120
Geometry, oljject of, 1 ; starting point of, 1; distinction betweon projective and metric, 12 ; Innite, 201; assoclated with a group, 259
Gergonne, J. D., 20, 128
Grade, geometric forms of first, second, third, 55
Group, 88 ; of correspondences, 67 ; general projective, on line, 68, 200 :
examples of, 69,70 , commutative, 70 , general projective, in plane, 268
H_{0}, assumption, 45, roble of, 81, 261
Harmonc conjugate, 80
Harmonic homology, 223
Harmonic involutions, 224
Harmonic set, 80-82, exercises on, 83, 84 , cross ratio of, 159
Harmome transformations, 230
Harmonically related, 84
Hesse, 125
Hessenberg, G, 141
Hexagon, simple, inscribed in two intersecting lines, 09, simple, inscubed in three concurient lmes, 250, Ex 5 , simple, inscribed in come, 110, 111
Hexagram, of Pascal (hexagramma mystıcum), 138, Exs 10-21, 304, Ex 16
Hulbert, D , 3, 95, 148
Holgate, T. F , 119, 125, 189
Homogeneous coordinates in plane, 174
Homogeneous coordmates, in space, 11, 194, on line, 163, geometrical sigmifcance of, 165
Homogeneous forins, 254
Homologous elements, 35
Homology, in plane, 72, in space, 75, axis and center of, 104, harmonic, 223, 275, canonical folm of, in plane, 274, 275
Hyperosculate, apphed to two comcs, 186
Ideal elements, 7
Ideal points, 8
Identical correspondence, 65
Identical matrix, 157, 269
Identity (correspondence), 65, element of group, 67
Improper elements, 239, 241, 242, 255
Improper transformation, 242
Impropeily projective, 97
Independence, of assumptions, 6 , necessary for distinction between assumption and theorem, 7
Index, of subgroup, 271; of group of collineations in general projective group in plane, 271
Induced correlation in planar field, 262
Infinity, points, lines, and planes at, 8
Inscribed and circumscibed triangles, 98, 250, Ex. 4
Inscribed figure, in a conic, 118
Invariant, of two linear binary forms, 252, of quadratic binary forms, 252 254, Ex. 1; of binaly form of nth degree, 257
Invariant element, 68
Invariant figure, under a correspondence, 67 , of collneation is self-dual, 272

Invaiant subgroup, 211
Invariant triangle of collineation, relation between projectivities on, 274, 276, Ex 5
Inverse, of a coriespondence, 65, of element in group, 67, of piojectivity is a plojectivity, 68, of plojectivity, analytic expiession for, 157
Inverse opelations (subtraction, division), 148, 149
Involution, 102 , theorems on, 102, 103, 124, 127-131, 133, 134, 136, 206, 200, 221-229, 242-243, analytic expression for, 157, 222, 254, Ex. 2, characteristic cross 1atio of, 203 , on come, 222230 , belonging to a projectivity, 226 , double points of, in extended space, 242 , conclition for, 254, Ex 2, double points of, determined by covailant, 258 , complexes in, 333
Involutions, any projectivity is product of two, 223 , hamonic, 224 , pencll of, 225, two, have pair in common, 243 , two, on distmet limes are perspective, 243
Involutoric coriespondence, 66
Irieducible equation, 239
Isomorphism, 6 , between number systems, 150 , simple, 220

Jackson, D. 282
Join, 16
Kanto1, S, 250
Klein, F , 95, 333, 334
Ladd, C , 138
Lage, Geometrie del, 14
Lennes, N J, 24
Lindemann, $\mathbf{F}, 280$
Line, at infinty, 8 , as undefined class of points, 15 , and plane on the same three-space intelsect, 22 , equation of, 174, and comic, inteisection of, 240, 246
Line conic, 109
Line coordinates, in plane, 171; in space, 327, 333
Lineal element, 107
Linear binary forms, 251, invariant of, 251
Linear dependence, of points, 30 , of lines, 311
Linear fractional tiansformation, 152
Linear net, 84
Linear operations, 286
Linear transformations, in plane, 187, in space, 199
Lines, two, in same plane intersect, 18
Luroth, J, 95

Maclamim, C., 119
MacNeısh, II F., 46
Mathonatical scienco, 2
Matrices, product of, 156, 268, dotermmnest of product of two, 260
Matrix, as symbol for configuration, 38 , dofinition, 150, used to demote projectivily, 150, identical, 157, 269, charnetonishac oquation of, 105, 272 ; conjugate, transposed, adjomt, 200, as onverther, 270
Menvechnuts, 126
Metric geometry, 12
Mulponit of pair of points, 230, Ex. 6
Mobius tetrahodra, 105, Ex. 3 ; 320, Ex. 9
Multiplication of points, 145, 281, theourens on, 145-148; commutulive law of, is equivalent in ${ }^{4}$ Assumption ${ }^{2}$, 148, other definitions of, 107, Exs. 8, 4
n-line, complete or simplo, 37, 38, mscribed in conc, 138, lix. 12
n-plane, complete in space, 37 ; on point, 38, simple in space, 87
n-polnt, eompleto, in space, 38 ; complete, in a plana, 87 , simple, in space, 37 , simple, in a plane, 37 ; plane soction of, in specou, 53, Exss. 18, 16, 54, Lxx. 18; m-space section of, in $(n+1)$-space, 54, Ex. 10, section hy three-sprece of, in four-space, 54, Ex. 21 ; mscribed in come, 110, Ex 5; 250, Ex. 7
n-pounts, in different plones and perspective from a point, 42, Ex. 2, h same plane and perspective from a line, 42, Ex. 4; two complete, in a plane 58, lex. 7; two perspective, in ($n-1$)-space, theorem on, 54, Ex. 20 ; mutually inserlbed and crroumscribed, 250, Ex. 6
Net of rationality, on lline (linear net), 84; theorems on, 85; in plane, 86; theorems on, 87, 88, Exs. 02, 08; in space, 80 ; theorems on, 80-92, Exs. 92 , 98, in plane (space) left invariant by perspective collineation, 08, Exs. θ, 10; In space is properly projective, 97; cobrdinates in, 182
Newson, H. B., 274
Nonlhomogeneous cobrdinates, on a line, 152; in plane, 160; in space, 100
Null system, 824
Number system, 149
On, 7, 8, 15
Operation, one-valued, commutative, associative, 141 ; geometric, 280; lineiar, 286
Operator, differential, 256\%; represented by matrix, 270; polar, 284

Opposite stides of complete quadranglo, 44
Opposito vertex and sido of simplo n-point, 37
Opposite ver tices, of complete quadinaterad, 44, of smple n-point, 87
Oppositeiy piaced guadiangles, 50
Order, 30
Ordmate, 170
Origin of coordinates, 100
Osculate, appled to two conies, 184
Puloa, A., 3
Prpperity, E, 300
Puppus, configuration of, $08,00,100$, 126, 148
Parabolic congrience, 315
Parabolic point of collinention m plane, 274
Parabolio projactivities, any two, are conjugate, 200
Parabolic projectivity, 101, characteristic cross ratio of, 208; analytic exprestion for, 207 ; chanacteristic constrints, 207; gives II ($M A^{\prime}, ~ A A^{\prime \prime}$), 207
larametric poprosentation, of points (lines) of poncol, 182; of come, 234; of regulus, congruenco, complex, 330,881
Prsen, B., 30, 00, 111-110, 123, 126 , 127, 188, 180
Poncil, of ponits, planes, lines, 55 ; of conics, 120)-180, 287-298; of points (limen), cobrimates of, 181, parametric representation of, 182 ; baso poluts of, 182 ; of involutions, 225 ; of complexes, 382
poriod of corrospondence, 00
Porspective collínortion, in plano, 71; in space, 75; in plano dofined when conter, axis, and one pair of homologous points are given, 72 , lenving R^{2} (² 8) invariant, 08, Exs. 0, 10
Perspective conic and pencll of lhos (points), 215
Perspective correspondence, 12, 18; between two planes, 71, 277, Ixx. 20
Perspective figures, from a point or from a plane 85 ; from a line, 30 ; if A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ on two coplanar lines are perspective, the points ($A . B^{\prime}$, $\left.B A^{\prime}\right),\left(A C^{\prime}, C A^{\prime}\right)$, and ($B C^{\prime}, C B^{\prime}$) are collinear, 52, Ex. 8
Perspective geometric forms, 56
Perspective n-lines, theorems on, 84, Exys, 18,14 ; five-points in four-space, 54, Ex. 25
Perspective $(n+1)$-points in n-space, 54, Exs. 20, 26
Perspective tetrahedra, 48
Perspective triangles, theorems on, 41, 68 , Exs. $9,10,11$; 64, Ex. 28; 84, Exs. 7, 10, 11; 246; sextupiy, 246

Perspectivity, center of, plane of, axis of, 36 , notation for, 57 , central and axial, 57 , between conic and pencil of lines (points), 215
Pierı, M, 95
Planar field, 55
Planar net, 86
Plane, at mfinity, 8 , defined, 17, determined umquely by three noncollinear points, or a point and line, or two intersecting lines, 20, and lime on same thee-space are on common point, 22 , of perspectivity, 36,75 , of points, 55 , of lines, 55 , equation of, 198, 198
Plane figure, 34
Plane section, 34
Planes, two, on two points A, B are on all points of line $A B, 20$, two, on same three-space are on a common line, and conversely, 22 , three, on a thee-space and not on a common line ale on a common point, 23
Plucker's line coordmates, 327
Point, at infinity, 8, as undefined element, 15 , and line determine plane, 17,20 , equation of, $174,193,198$, of contact of a line with a conic, 112
Point conic, 109
Point figure, 34
Points, thiee, determine plane, 17, 20
Polar, with respect to triangle, 46, equation of, 181, Ex 3, with respect to two lines. 52, Exs 3, 5, 84, Exs. 7, 9 , with respect to tirangle, theorems on, 54, Ex. 22, 84, Exs 10, 11, with respect to n-lme, 84 , Exs 13,14 , whth respect to conic, $120-125,284,285$
Polar forms, 256, with lespect to set of n-points, 256 , with lespect to regulus, 302 , with respect to linear complex, 324
Polar reciprocal figues, 123
Polanty, in planar field, 268, 279, 282, 283 , in space, 302 , null, 324
Pole, with respect to triangle, 46, with respect to two lines, 52, Ex 3, with respect to conic, 120 , with respect to regulus, 302 , with respect to null system, 824
Poncelet, J V , 29, 36, 58, 119, 123
Problem, degree of, 236, 238, algebraic, transcendental, 238, of second degiee, 245, of projectivity, 250, Ex 14
Product, of two correspondences, 65 , of points, 145,231
Project, a figure from a point, 36 , an element into, 58, $A B C$ can be projected into $A^{\prime} B^{\prime} C^{\prime}$, 50
Projection, of a figure from a point, 34
Projective collineation, 71
Projective comies, 212, 304

Projective correspondence or transfor. mation, 13, 58, general group on line, 68 , in plane, 268 , of two- or threedimensional forms, 71, 152
Projective geometry distinguished from metric, 12
Projective pencrls of points on skew lines are axially perspective, 64
Projective projectivities, 208
Projective space, 97
Projectivity, defimition and notation for, $58, A B C \pi A^{\prime} B^{\prime} C^{\prime}, 59 ; A B C D \pi$ $B A D C, 60$, in one-dimensional forms is the result of two perspectivities, 63 , if $H(12,34)$, then $1284 \pi 1243,82$, fundamental theorem of, for linear net, 94 , fundamental theorem of, for line, 95 , assumption of, 95 , fundamental theorem of, for plane, 96 , for space, 97 , principle ot, 97 , necessay y and sufficient condition for $M N A B-\pi$ $M N A^{\prime} B^{\prime}$ is $Q\left(M A B, N B^{\prime} A^{\prime}\right), 100$, necessary and sufficient condition for MMAB \quad T $M M A^{\prime} B^{\prime}$ is $Q(M A B$, $\left.M B^{\prime} A^{\prime}\right)$, 101, parabolic, 101, $A B C D$ $\pi A B D C$ implies $H(A B, C D), 103$, nonhomogeneous analytic expiession for, 154-157, 206, homogeneous analytic expression for, 164, analytic expiession for, between points of different lines, 167 , analytic expression for, between penculs in plane, 183, between two conics, 212-216, on conic, 217-221, axis (cente1) of, on conic, 218, involution belonging to, 226, problem of, 250, Ex. 14
Projectivities, commutative, example of, 70 , on sides of invariant triangle of colluneation, 274, 276, Ex 5
Projector, 35
Pioperly projective, 97 , spatial net 1 s, 97
Quadrangle, complete, 44, quadranglequadrilateral configuation, 46, simple, theorem on, 52 , Ex. 6, complete, and quadulateral, theorem on, 53, Ex 8, any complete, may be transformed into any other by piojective collineation, 74 , opposite sides of, meet line in paiss of an involution, 103, comics though vertices of, meet line in pairs of an involution, 127 , inscribed in come, 137, Ex. 11
Quadrangles, if two, correspond so that five pairs of homologous sides nieet on a line l, the sixth pair meets on l, 47, perspective, theorem on, 53, Ex. 12, if two, have same diagonal tiangle, their elght vertices are on conic, 137, Ex. 4
Quadrangular set, 49, 79, of lines, 79 ; of planes, 79

Quadrangular rection by transveinal of quadrangular set of hmes is a duaulrangulan set of points, 79; of olements projective with qualrangular sel is a qualrungular set, 80 ; (p) MAB, $N B^{\prime} A^{\prime}$) is the condition for $M N / B_{\pi}$ $M N A^{\prime} B^{\prime}, 100,\left(2\left(M A B, M B^{\prime} A^{\prime}\right)\right.$ is tho conditun for $M M A B ד M M A^{\prime} B^{\prime}, 101$, $Q\left(A B C, A^{\prime} B^{\prime} C^{\prime}\right)$ mplies $Q\left(A^{\prime} B^{\prime} C^{\prime}\right.$, $\left.A B C^{\prime}\right)$, $101,\left(A B C, A^{\prime} B^{\prime}\left(\prime^{\prime}\right)\right.$ is the condition that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are mintvolutiom, 10:3, $Q\left(P_{\infty}^{\prime} P_{1} P_{0}, P_{\infty} P^{\prime} P_{r+p}\right)$ is une essury and suthement fol $P_{1}+P_{11}$ $=P_{x+y}, 142 ; Q\left(P_{\infty} I_{x}^{\prime} P_{1}, P_{0} I_{y} I_{1} P_{1 /}\right)$ 1s neectumby and sufferant for $P_{x} \cdot P_{y}$ $=P_{x y}, 145$
Quahmagnlarly related, 80
Qumhratic buntry torm, 252; invarichit of, 252
Quadratic correspondenco, 18!), Ess. 22, 24
Quadrue spread in $\mathrm{S}_{6}, 381$
Qualric surface, 301 ; degenernto, 308 ; determmed by ninepomss, 811
Quadrilateral, complete, 44, if two guaulrilaterals correspone no that five of tho lmes jommg pars of homologrut versthees paas through a point I^{\prime}, the lime joming the suxth par of vertices wall alro puss through $P, 40$
Quantic, 251
Quaternary forms, 258
Quotient of pomts, 14:)
Raugo, of points, 55 ; of conics, 128-1.30
ratic), of points, 146
Rational operations, 149
Rational speuse, 18
Rationality, net of, on line, 84, 85 ; phonar not of, 80-88; spatial nat of, 80-08; dommin of, 238
Rationally relaterd, 80, 80
Reducible equation, 289
Reflection, pout-line, projectivo, 228
Redlexive (rnyrumon! (won if
 directrices of, 200); genorators or rulers of, 200; conjugato, 200; genterated by projective ranges or axial pencils, 2005; genorated ly projectivo comes, 804,807 ; polar systom ol, 800 ; picture of, 300 ; degenerate cuses, 811, of a congruenra, 818
Rolatod figures, 85
Resultant, of two correspondenocs, 015; equal, 65 ; of two projectivities is a projectivity, 88
Reye, T., 125, 180
Rohn, K., 809
Salmon, G., 188
Sannia, A., 304

Senle, defined by llireo pomts, 141, 231 , oll a connc, 231
Sehroter, II., 188, 281
schur, $\mathrm{F}, 05$
Science, abstazet mathematical, 2, eoncrete appleation or reprenentation of, 2
Scott, C $\mathrm{C}, 203$
Suetion, of thgure by plane, 34 , of plane figue by lus, 35, come section, 101)
Sumpu, C., 230
Solf-conjuyato subsroup, 211
Self-comjurith timangle with respeet to rone, 123
Self-poltur tringle with respect to come, 123
Set, synomymons with class, 2 , qualraugulnr, 40, 70, of clements projectave with quablungnlar not is qualrougrolint, 80), harmome, 80; theorens on hamome sets, 81
Soven-pmat, plano section of, 53, Ex. 14
Soyclewitz, $\mathrm{F}, 281$
Shenf of pilines, 55
Sule, of n-pomi, 37 ; false, of completo $\therefore:-11$
4 . . . qnalrangles, 50
ниирии (rement of spaco, 30
Simple n-pomet, n-luie, n-plane, 37
Shagly parabohe pomi, 274
Singular pont and line m nonhomogemeons coordmater, 171
Sux-point, plane section of, 54, Ex. 17 ; in fomr-sibuco scetion by three-space, 54, Ix. 24
Skew lmes, 24 , mojectivo poucis on, we perspectivo, 105,1 Ix. 2 ; Lom, are met by two lmes, 250, lix. 18
Spans, matylia projertive, 11; of three dmensions, 20 ; theorem of thutity for, of threce climensions, $28, n$-, 80 ; Rssumptam for, of n clinomsions, 88 ; as equybalent of throc-sprece, 84 ; propery or improporly projective, 07 ; xailemal, 08 ; finte, 201, 202 ; extenderd, 242
Spratinl net, 80; thoorems on, 80-02; is properly projertive, 97
von Stmilt, K. (i. C., 14, 05, 125, 141, $151,158,1180,280$
Stelner, J., 100, 111, [25, 188, 189, 285, 286
Stemer polnt and line, 188, Ex. 10
Sheinltw, F., 201
Sturni, (lh., 120
Sturm, R., 281, 250, 287
Subclass, 2
Subgroup, 88
Subtraction of points, 148
Sum of two points, 141, 281
Surface, algebralc, 250; quadrlo, 801
Sylvester, J. J., 828
System affected by a correspondence, 05

Tangent, to conic, 112
Tangents to a point come form a line conic, 116 , analytic proof, 187
Taylor's theorem, 255
Ternary foims, 258 , bilinear, represent correlation in a plane, 267
Tetrahedra, perspectıve, 43, 44, configuration of perspective, as section of six-point in four-space, 54, Ex. 24, Mobius, 105, Ex. 6, 326, Ex. 9
Tetıahedron, 37 , four planes joining line to vertices of, projective with four points of intersection of line with faces, 71, Ex 5
Three-space, 20 , determined unquely by four points, by a plane and a point, by two nonintersecting lines, 23, theorem of duality for, 28
Throw, defimition of, 60 , algebra of, 141, 157, characteristic, of projectivity, 205
Throws, two, sum and product of, 158
Trace, 35
Trausform, of one piojectivity by another, 208, of a group, 209
Transforin, to, 58
Tiansformation, perspective, 13, piojective, 13 , of one-dimensional foims, 58, of two- and thice-dimensional forms, 71
Tiansitive group, 70, 212, Ex 6
Triangle, 37; dıagonal, of quadiangle (quadrilateral), 44 , whose sides pass through three given collinear points and whose vertices are on three given lines, 102, Ex 2, of reference of system of homogeneous coordinates
in plane, 174 , invariant, of collineation, 16 ation between projectivities on sides of, 274, 276, Ex. 5
Triangles, perspective, from point are perspective from line, 41 , axes of perspectivity of three, in plane perspective from same point, are concurrent, 42, Ex. 6, peispective, theorems on, 58, Exs. 9, 10, 11, 105, Ex. 9 ; 116, 247 ; mutually inseribed and circumscribed, 99 , perspective, fiom two centers, 100, Exs. 1, 2, 3, from four centers, 105, Ex 8, 138, Ex 18, fiom six centers, 246-248, inscribed and chicumscribed, 250, Ex. 4
Triple, point, of lines of a quadrangle, 49, of points of a quadrangulas set, 49
Triple, triangle, of lines of a quadrangle, 49 ; of points of a quadrangular set, 49
Triple system, 3
Undefined elements in geometry, 1
United position, 15
Unproved propositions in geometry, 1
Variable, 58, 150
Veblen, $\mathrm{O}, 202$
Veronese, G., 52, 53
Vertex, of n-points, 36,37 , of n-planes, 37 , of flat pencil, 55 , of cone, 109 , false, of complete quadrangle, 44

Wiener, H, 65, 95, 230
Zeuthen, H. G., 95

NOTES AND CORRECTIONS

Page 22. In the proof of Theorem 9 , under the hoading 2, it is assumed that A is not on a. But if A were on α, the theorem would bo verified.

Page 34. In the definition of projection, after " P," in the last line on the page, insert ", together with the lines and planes of F through P,".

Page 34. In the defimtion of section, after " π," in the last line on the page, insert "together with the lines and points of F on π,".

Page 35. In the definition of saction of a plane figure F by a line l, the section should include also all the pomts of F that are on l

Page 44, line 5 from bottom of page. The triple system referred to does not, of course, satisfy I_{3}. It is not difficult, however, to bulld up a system of triples which does satisfy all the assumptions A and E. Such a finlts S_{3} would contan 15 "points" and 15 "planes" (of which the given triplo system is one) and 35 "lnes" (triples). See Ex. 8, p. 25, and Ex. 15, p. 208.

Page 47, Theorem 3. Add the restriction that the line l must not contain a vertex of either quadrangle.

Page 49 In the definition of quadrangular set, after "a lino l " insert ", not contaming a vertex of the quadranglo,".

Page 52, Ex. 1. The latter part should road. "... of an edge joining two vertices of the five-point with the face contaning tho other three vertices?"

Page 53, Exs. 14, 15, 16. The term circumscrbed may be explicitly defined as follows: A simple n-point is said to be circumscribed to another simple n-point if there is a one-to-one reciprocal corrospondence between the lines of the first n-point and the points of the second, such that each line passes through its corresponding point. The second n-point is then said to be inscrubed in the first.

Page 58, Ex. 16. The theorom as stated is inaccurate. If m is the smallest exponent for which $2^{m} \equiv \pm 1$, mod, n, the verticos of tho plane section may be divided into $\frac{n-1}{2}$ simple n-points, which fall into $\frac{n-1}{2 m}$ cycles of m-points each, such that the n-points of oach cycle circumscribe each other cychcally. Thus, when $n=17$, there are two cycles of $4 n$-points, the n-polnts of each cycle circumscribing each other cyclically.

Page 85, Theorem 9. If the quadrangular set contains one or two diagonal points of the determining quadrangle, these diagonal points must be among the five or four given points.

Page 88, Theorem 12. To complete the proof of this theorem the perspectivity mentioned must be used in both directions-i.o. it also makes the points of R_{1} or R_{2} perspective with the points of R^{2} on l.

Page 99, Theorem 22. See note to p. 58, Exss. 14, 15, 16.
Page 108, Theorem 29. Under Type III, the proviso should be added that the line $P Q$ is not on the center of F and the point $p q$ is not on the axis of F.

Page 119, Ex. 6. The latter part of this exercise requires a quadratic construction. See Chap. IX.

Page 187, Ex. 7 (Miscellaneous Exeroises). The two points must not be collinear with a verftex ; or, if collinear with a vertex, they must be harmonic with respect to the vertex and the opposite side.

Page 165, last paragraph. The point ($-1,1$) forms an exception in the definition of homogeneous coordinates subject to the condition $x_{1}+x_{2}=1$. An exceptional point (or points) will always exist if homogeneons coordinates are subjected to a nonhomogeneous condition

Page 168, Ex 10. The points A, B, C, D must be distinct
Page 182, bottom of page We assume that the center of the pencil of lines is not on the axis of the pencll of points (cf. the footnote on p. 183)

Page 186 While the second sentence of Theorem 7 is literally correct, it may easily be misunderstood If the left-hand member of the equation of one of the lines $m=0, n=0$, or $p=0$ be multiphed by a constant p, the value of k may be changed without changing the conic In fact, by choosing p properly, k may be given an arbitrary value ($\neq 0$) for any conic.

As pointed out in the review of this book by H. Beck, Archiv der Mathematik, Vol. XVIII (1911), p. 85, the equation of the come may be written as follows Let (a_{1}, a_{2}, a_{3}) be an arbitrary point in the plane of the come, and let

$$
\begin{aligned}
m_{x} & =m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}, \\
n_{x} & =n_{1} x_{1}+n_{2} x_{2}+n_{3} x_{8}, \\
p_{x} & =p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{8},
\end{aligned}
$$

then the equation of the come may be written

$$
k_{2} m_{a} n_{a} p_{x}^{2}-k_{1} p_{a}^{2} m_{x} n_{x}=0
$$

When the equation is written in this folm, there is one and only one conic for every value of the ratio $\frac{k_{1}}{k_{2}}$

Page 301. The first sentence is not correct under oul onginal definition of section by a plane. We have accordingly changed this definition (cf note to p . 34)

Page 301. In the sentence before Theorem 7 the tangent limes referred to are not lines of the quadric surface

Page 303, Ex 5 The tangent hne must not be a line of the surface.
Page 303, Ex. 7. The line mist not be a tangent line.
Page 304. Theorem 11 should read. ". . form a 1 egulus or a cone of lines, provided . .". In case the collineation between the planes of the comes leaves every point of l invariant, the lmes joining corresponding points of the two conics form a cone of lines. In this case $\bar{A}=\overline{\bar{A}}$ and $\bar{B}=\overline{\bar{B}}$, and the lines a and b intersect

Page 306, line 7 After "sections," msert ", unless a and b intersect, in which case they generate a cone of lines" (cf. note to p 304).

Page 308, proof of Corollary 2. Let A_{1}^{2} be the projection on α of B^{2} from the point $M \quad A_{1}^{2}$ might have double contact with A^{2} at R and R^{\prime}, or might have contact of the second order at R or R^{\prime} However, if C^{2} is not degenelate, it is possible to choose M for which neither of these happens For if all conics obtaned from [M] had ether of the above properties, they would form a pencil of conics of which A^{2} is one There would then exist a point M for which A_{1}^{2} and A^{2} would coincide C^{2} would in this case have to contain three collinear points and would then be degenerate.

Page 310, paragraph beginning "Now if nine points.. ". It is obvious that no line of intersection of two of the planes α, β, γ will contain one of the mine points, no matter how the notation is assigned.

Page 315 , line 12 from bottom of page. Neither π_{1} nor π_{2} must contain a directrix.
Page 319, Ex 2. If the two involations have double points, the points on the lines joining the double points are to be excepted in the second sentence.

NOTES AND CORRECTIONS

Pages 320,321 . In the proof of Theorem 20 the possibilhty that thee of the vertices of the simple pentagon may be collmear is overlooked. Theiefore the thurd sentence of the last paragraph of page 320 and the thrd sentence of page 321 are meoriect It is not hasd to restate the proof conrectly, as all the facts needed are given in the lext, but this restatement regunes several verbal changes and is theretore left as an exercise to the reader

[^0]: * Synonyms for class are set, aggregate, assemblage, totality; in German, Menge; in French, ensemble.
 \therefore † Of. B. Russell, The Principles of Mathematics, Cambridge, 1008; and L. Counturat, Les principes des mathématiques, Paris, 1905,
 \ddagger A class \mathbb{S}^{\prime} is said to be a subclass of another class S, if every element of \mathbb{S}^{\prime} is an element of S.

[^1]: * It will be noted that this test for the consistency of a set of assumptions merely shifts the difficulty from one domain to another. It 18, however, at present the only test known, On the question as to the possibility of an absolute test of consistency, of. Hillbert, Grundlagen der Geometrie, 2d ed., Leipzig (1903), p. 18, and Verhandlungen d. III. intern. math. Kongresses zu Heidelberg, Leipzig (1004), p. 174; Pad0a, L'Enseignement mathematíque, Vol. V (1908), p. 85.

[^2]: *The notion of correspondence is another primitive notion which we take over without discussion from the general logic of classes.

[^3]: * The isomorphism of Systems (1) and (1^{\prime}) is clearly exhibited in fig. 1, where each point is labeled both with a digit and with a letter. This isomorphism may, moreover, be established in 764 different ways.

[^4]: * This is obviously necessary for the precise distinction between an assumption and a theorem.
 \dagger If the set of assumptions used in the proof of a theorem is not categorical, the applicability of the theorem is evidently wider than in the contrary case. Of. example of preceding section.

[^5]: * By line throughout we mean strarght line.
 + It should be noted that (since we are takang the point of view of Euclid) we do not think of a line as containing more than one point at infinity ; for the supposition that a line contains two such points would mply either that two parallels can be drawn through a given point to a given line, or that two distinct lines can have more than one point in common.

[^6]: * Such knowledge is not presupposed elsewhere in this book, except in the case of consistency proofs. The elements of analytic geometry are indeed developed from the beginnmg (cf Chaps. VI, VII)

[^7]: * It should be noted that we are not yet, in this section, supposing anything known regarding points, lines, ete., at mflnity, but are placing ourselves on the basis of elementary geometry.

[^8]: * The theorems of metric geometry may however be regarded as special cases of projective theorems.

[^9]: * The object of this paragraph is smply to define the terms in common use in terms of the general logical notion of belonging to a class. In later portions of this book we may omit the explicit definition of such common terms when such definition is obvious.
 \dagger The figures are to be regarded as a concrete representation of our science, in which the undefined "points" and "lines" of the science are represented by points and lines of ordinary Euchidean geometry (ths requires the notion of ideal points, cf. § $3, p, 8$). Therr function is not merely to exhibit one of the many possible concrete representations, but also to help keep in mind the various relations in question. In using them, however, great care must be exercised not to use any properties of such figures that are not formal logical consequences of the assumptions; in other words, care must be taken that all deductions are made formally from the assumptions and theorems previously derived from the assumptions.

[^10]: * In the multiplicity of the possible concrete representations is seen one of the great advantages of the formal treatment quite aside from that of logical rigor. It is clear that there is a great gain in generality as long as the fundamental assumphons are not categorical (cf. p. 6). In the present treatment our assumptions are not made categorical until very late.
 \dagger The symbols placed in parentheses after a theorem mdicate the assumptions needed in its proof. The symbol A will be used to denote the whole set of Assumptions A 1, A. 2, A 3.

[^11]: * The proof can evidently be so worded as not to imply Theorem 6.

[^12]: *The terms extension and closure in this connection were suggested by N. J. Lennes. It will be observed that the notation has been so chosen that li insures the existence of a space of i dimensions, the line and the plane being regarded as spaces of one and two dimensions respectively.

[^13]: * By virtue of Assumption E 3' it is not necessary to impose the condition that the elements to be considered are in the same three-space This observation should emphasize, however, that the assumption of closure is essential in the theorem to be proved.

[^14]: * Exercises marked * are of a more advanced or difficult character.

[^15]: * The word space is used in place of the three-space in wheh are all the elements considered.
 † We shall not in future, however, confine ourselves to the "on" terminology, but shall also use the more common expressions
 \ddagger A seetion by a plane is often called a plane section.

[^16]: *The use of these notions in deriving geometrical theorems goes back to early times. Thus, e.g., B. Pascal (1628-1662) made use of them in deriving the theorem on a hexagon inscribed in a conlc which bears his name. The systematic treatment of these notions is due to Poncelet; cf. his Traité des propriétés projectives des figures, Paris, 1822.

[^17]: * Grard Desargues, 1593-1662.

[^18]: * In general, the intersection of two sides of a complete plane n-point which do not have a vertex in common is called a diagonal point of the n-pomit, and the line joining two vertices of a complete plane n-line which clo not he on the same side is called a dragonal line of the n-line. A complete plane n-point (n-line) then has $n(n-1)(n-2)(n-3) / 8$ diagonal points (lmes). Diagonal points and lines are sometimes called false vertrces and false sudes respectively.

[^19]: * Merely saying that theie are more than three points on a line does not insure that the diagonal points of a quadrangle are noncollinear Cases where the diagonal points are collinear occur whenever the number of points on a line is $2^{n}+1$
 \dagger To construct an figure is to determine its elements in terms of certain given elements.

[^20]: * The line thus uniquely associated with a vertex is called the polar of the point with respect to the triangle formed by the remaming three vertices The plane dual process leads to a point associated with any line. This point is called the pole of the line with respect to the triangle.
 \dagger A further discussion of this configuration and its generalizations will be found in the thesis of H. F. McNeish. Some of the results in this paper are indicated in the exercises

[^21]: * This evidently exists whenever the theorem is not trivially obvious.

[^22]: * All three may consist of coincident pomts in a space in which the diagonal points of a complete quadrangle are collnear.
 \dagger It should be kept in mind that similar remarks and a similar definition may be made to the effect that the lines joining the vertices of a quadrilateral to a point P form a quadrangular set of lines, etc. (cf. \& 30, Chap IV),

[^23]: * A Cayley, Collected Works, Vol. I (1846), p. 817. G. Veronese, Mathematische Annalen, Vol XIX (1882) Further references will be found in a paper by W B Carver, Transactions of the American Mathematical Society, Vol. VI (1905), p. 584

[^24]: * The symbol ${ }_{n} O_{r}$ is used to denote the number of combinations of n things taken r at a time.

[^25]: * The pencil of planes is also called by some writers a sheaf.

[^26]: * Some writers enumerate only six, by defining the set of all points and lines on a plane as a single form, and by regarding the set of all planes and lines at a point and the set of all points and planes in space each as a single form. We have followed the usage of Enriques, Vorlesungen über Projektive Geometrie.

[^27]: * This is Poncelet's definition of a projectivity.
 \dagger Just like $F^{\prime}(x), \sin (x), \log (x)$, etc.
 \ddagger The definition of variable is "a symbol x which represents any one of a class of elements [x]" It is in this sense that we speak of " a variable point."

[^28]: * If the points in each of these sets of three are collnnear, the theorem is obvious and the three centers of perspechivity coincide.

[^29]: * Given a olass of elements $[P]$; the symbol $S[P]$ is used to denote the class of elements $S P$ determined by a given element S and any element of $[P]$. Hence, if $[P]$ is a penoil of points and S a point not in $[P], S[P]$ is a pencil of lines with center S; if s is a line not on any $P, s[P]$ is a pencil of planes with axis s.

[^30]: * In this section we have followed to a considerable extent the treatment given by H. Wiener, Berichte der K sachsischen Gesellschaft der Wissenschaften, Leipzig, Vol. XLII (1890), pp. 249-252.

[^31]: * We have used here substantially the definition of a group given by L. E. Dickson, Definitions of a Group and a Field by Independent Postulates, Transactions of the American Mathematical Society, Vol. VI (1905), p. 199.

[^32]: * Ie $a \circ b$ and $b \circ a$ are not necessarily identical. The operation o simply defines a correspondence, whereby to every pair of elements a, b in G in a given order corresponds a unique element; this element is denoted by $a \circ b$.

[^33]: * In how far a collineation must be projective will appear later.

[^34]: * It would be more natural at this stage to call such a set a quadrilateral set of hnes; the next theorem, however, justifies the term we have chosen, which has the advantage of uniformity.

[^35]: * The corresponding theorem for the more general expression $Q(128,456)$ cannot be derived without the use of an additional assumption (ct. Theorem 24, Chap. IV).

[^36]: * These transformations form the so-called eight-group.

[^37]: * This is a definition by induction of the polar lune of a point with respect to ar n-line.

[^38]: "Different, of course, from ordinary space; "rational spaces" (of p. 98 and the next footnote) are examples in which continuity does not exist; "finite spaoes," of which examples are given in the introduction (§2), are spaces in whlch neither order nor continuity exists,

[^39]: * We have seen in the lemma of the preceding theorem that the projectivity described in this assumption leaves invariant every point of the net of rationality defined by the three given points. The assumption simply states that if all the points of a linear net remain mvariant under a projective transformation, then all the points of the line containing this net must also remain invariant. It will be shown later that in the ordinary geometry the points of a linear net of rationality on a line coirespond to the points of the line whose coördunates, when represented analytically, are rational numbers. This consideration should make the last assumption almost, if not quite, as intutionally acceptable as the previous Assumptions A and E.
 \dagger On this theorem and related questions there is an extensive literature to which references can be found in the Encyklopädie articles on Projective Geometry and Foundations of Geometry. It is associated with the names of von Staudt, Klein, Zeuthen, Iiluoth, Darboux, F. Schur, Pierı, Wiener, Hilbert. Cf, also §50, Chap. VI.

[^40]: * We confine the statement to the case of the collineation for the salke of aimplicity of enunciation. Projective transformations which are not collineations will be discussed in detail later, at which time attention will be called expliotily to the fundamental theorem.

[^41]: * Pappus, of Alexandria, lived about 840 A.d. A special case of this theorem may be proved without the use of the fundamental theorem (cf. Ex 3, p. 52).
 t In this form it is a special case of Pascal's theorem on conic sections (cf. Theorem 3, Chap, V).

[^42]: * This relation is sometimes expressed by saying, "The pairs of points are in involution." From what precedes it is clear that any two pairs of elements of a one-dimensional form are in involution, but in general three pairs are not.

[^43]: * Theorem 8 was proved by B Pascal in 1640 when only sixteen years of age He proved it first for the carcle and then obtained it for any conic by projection and section This is one of the earlest applications of this method Theorem 3^{\prime} was first given by C J. Brianchon in 1800 (Journal de l'ecole Polytechnique, Vol VI, p 301).
 \dagger The line thus determined by the intersections of the parrs of opposite sides of any simple hexagon whose vertices are points of a point conic is called the Pascal line of the hexagon The dual construction gives rise to the Brianchon point of a hexagon whose sides belong to a line conic.

[^44]: * As explained in the fine print on page 110, this occurs when l passes through the point of intersection of $B_{1} C_{2}$ with the line joining $C=\left(A_{1} B_{2}\right)\left(A_{2} B_{1}\right)$ and $B=\left(A_{1} C_{3}\right)\left(A_{2} B_{2}\right)$.

[^45]: * It was by considering the polar reciprocal of Pasoal's theorem that Brianchon derived the theorem named after him. This method was fully developed by Poncelet and Gergonne in the early part of the last centary in connection with the principle of duality.

[^46]: * First given by Desargues in 1680; of. CEuvres, Paris, Vol. I (1864), p. 188.

[^47]: * The classification of pencils and ranges of conics into types corresponds to the classification of the corresponding plane collineations (cf. Exs. 2, 4, 7, below).

[^48]: * The remainder of ths section may be omitted on a first reading.

[^49]: * This argument has implicitly proved that three pairs of points of a conic, as $K K_{1}, N N_{1}, P_{0} Q$, such that the lines joining them meet in a point M, are projected from any point of the come by a quadrangular set of lines (Theorem 16, Chap, VIII).

[^50]: * On the Pascal hexagram of Stemer-Schroter, Vorlesungen ther Synthetische Geometrie, Vol II, § 28, Salmon, Conic Sectıons un the Notes; Christne Ladd, American Journal of Mathematics, Vol, II (1879), p 1.

[^51]: * The correspondences defined in Exs. 22 and 24 are examnlas quadratic correspondences.

[^52]: * K G. C. von Staudt (1798-1867), Beitıage zur Geometrie derLage, Heft 2 (1857), pp. 160 et seq This book is concerned also with the related question of the interpretation of imaginary elements in geometry.
 \dagger Cf., for example, G. Hessenberg, Ueber emen Geometrischen Calcul, Acta Mathematica, Vol. XXIX, p 1.
 \ddagger By a one-valued operation o on a parr of points A, B is meant any process whereby with every pair A, B is associated a point C, which is unique provided the order of A, B is given; in symbols $A \circ B=C$ Here "order" has no geometrical significanoe, but imples merely the formal difference of $A \circ B$ and $B \circ A$ If $A \circ B=B \circ A$, the operation is commutatrve; if $(A \circ B) \circ C=A \circ(B \circ C)$, the operation is associatrve.

[^53]: * The historical origen of this construction will be evident on inspection of the attached figure This is the figure which results, if we choose for $l_{\text {' }}$ the "hne at infinity" in the plane in the sense of ordmary Euchdean geometry (cf p. 8). The construction is clearly equivalent to a translation of the vector $P_{0} P_{\nu}$ along the line l,

 Fig. 72 which brings its initial point into concidence with the terminal point of the vector $\boldsymbol{P}_{0} P_{x}$ which is the ordinary construction for the sum of two vectors on a line.

[^54]: * To make fig 71 correspond to the notation of this theorem, P_{y} must be identified with P_{a}.

[^55]: *The existence of algebras in which multiphcation is not commutative is then sufficient to establish the fact that Assumption P is independent of the previous Assumptions A and E For in order to construct a system (cf. p. (3) which satisfies Assumptions A and E without satisfying Assumption P, we need only construct an analytic geometry of three dimensions (as described in a later ohapter) and use as a basis a noncommutative number system, eg. the system of quaternions. That the fundamental theorem of projective geometry is equivalent to the commutative law for multiplication was first established by Filbert, who, in his Foundations of Geometry, showed that the commutative law is equivalent to the theorem of Pappus (Theorem 21, Chap. IV). The latter is easily seen to be equivalent to the fundam mental theorem

[^56]: * What we have defined is more precisely right-handed division The left-handed quotient is defined similarly as the point P_{x} determined by the relation $P_{x} \quad P_{a}=P_{b}$. In a commutative algebra they are of course equivalent.
 \dagger The identity element $i_{+} \mathrm{m}$ a number system is usually denoted by 0 (zero)
 \ddagger The class of all ordinary rational numbers forms a field; also the class of real numbers; and the class of all integers reduced modulo p (p a prime), etc.

[^57]: * For the general idea of the isomorphism between groups, see Burnside's Theory of Groups, p. 22.

[^58]: * See, for example, § 55, on von Staudt's algebra of throws, where the numbers are thought of as sets of four points.
 \dagger Cf., however, in this connection § 57 below.

[^59]: * For a development of the principal properties of matrices, ef., Boocher, Introduction to Higher Algebra, pp. 20 ff.

[^60]: * Cf. reference on p 141. Von Staudt used the notion of an involution on a lipe in defining addition and multiplication; the definition in terms of quadranguilar sets is, however, essentally the same as his by virtue of Theorem 2h, Chap. IV.

[^61]: * Cf. § 53. Here, with every point of a line on which a scale has been established, is associated a mark whioh is the corrdinate of the point.

[^62]: * The expression for x cannot be indeterminate unless $b=c$.

[^63]: * This point is indeterminate only if $b=c=0$ and $a=d$ The projectivity is then the identity.

[^64]: *This is shown by the fact that the field of all ordinary complex numbers can be isomorphic with itself not only by making each number correspond to itself, but also by making each number $a+i b$ correspond to its conjugate $a-i b$.

[^65]: * All the developments of this chapter are on the basis of Assumptions A, E, P.

[^66]: * Frame of reference is a general term that may be applied to the fundamental elements of any coordinate system

[^67]: * The determinant $\left|\begin{array}{ll}A & B \\ C & D\end{array}\right|$ does not vanish because the correspondence between λ and μ is (1,1).

[^68]: * This statement remains valid even if one or two of the numbers l, m, n are zero (they cannot all be zero unless the plane in question is the singular plane which we exclude from oonsideration), provided the negative reciprocal of 0 be denoted by the symbol ∞.

[^69]: * A modular field with modulus p is obtained as follows: Two integers n, n^{\prime} (positive, negative, or zero) are sald to be congruent modulo p, written $n \equiv n^{\prime}, \bmod . p$, if the difference $n-n^{\prime}$ is divisible by p. Every integer is then congruent to one and only one of the numbers $0,1,2, \cdots, p-1$ These numbers are taken as the elements' of our field, and any number obtained from these by addition, subtraction,

[^70]: * Two groups are said to be sumply isomorphic if it is possible to establish a $(1,1)$ correspondence between the elements of the two groups such that to the product of any two elements of one of the groups corresponds the product of the two corrssponding elements of the other.

[^71]: * An operation on one or more elements is defined as a correspondence whereby to the set of given elements corresponds an element of some sort (cf. §48). If the latter element is uniquely defined by the set of given elements (in general, the order of the given elements is an essential factor of this determination), the operation is sald to be one-valued The operation referred to in the text is then a one-valued operation defined for any two distinct points and associating with any such parr (the order of the points is in this case immaterial) a new element, viz. a line.

[^72]: * The remainder of this section follows closely the discussion given in Castel nuovo, Lezion di geometria, Rome-Milan, Vol. I (1904), pp. 467 ff.

[^73]: * In case homogeneous coordinates are used, a, b, c, \ldots denote the mutual ratios of the coordinates of the given elements.
 † A moment's consideration will show that the points whose coordinates are numbers of this domain are the points obtainable from the data by linear constructions Geometrically, any domain of rationality on a line may be defined as any class of points on a line which is closed under harmonic copstruetions; i.e. such that if A, B, C are any three points of the olass, the harmonie conjugaite of A with respect to B and C is a point of the class.

[^74]: *There is no loss in generality in assuming this form; for if in the ohoice of coordinates the equation of the given line were of the form $x=c$, we should merely have to choose the other tangent as x-axis to bring the problem into the form here assumed.

[^75]: * We use the word subspace to mean any space, every point of which is a point of the space of which it is a subspace With this understanding the subspace may be identical with the space of which it is a subspace. The ordinary complex space then satisfles Proposition K_{2}.
 \dagger Cf. Ex , p. 261.

[^76]: * Proposition K_{2} has been used merely to establish the existence of points satisfying (1). In case there are proper points satisfying (1), the whole argument can be made without K_{2}

[^77]: * They can comeade only if the number system is such that $1+1+1=0$; e.g. in a finite space involving the modulus 3 .

[^78]: * It may be noted that in the ordinary real geometry two sides of the second triangle are necessarily improper, so that in this geometry our problem has no real solution.
 \dagger They all lie on any cubic curve of the form $x_{1}^{8}+x_{2}^{8}+x_{8}^{8}+3 \lambda x_{1} x_{2} x_{8}=0$ for any value of λ, and are, in fact, the points of inflexion of the cubic. This configuration forms the point of departure for a variety of investigations leading into many different branches of mathematics,

[^79]: * This is a special case of the so-called problem of projectivity. For referenoes and a systematic treatment see Sturm, Die Lehre von den geometrischen Verwandtschaften, Vol, I, p 348.

[^80]: \cdot * For the proof of this theorem on the basis of the definition just given, cf. Fine, College Algebra, pp.; $460-462$.

[^81]: * Fine, College Algebra, p. 156.
 \dagger Fine, loc. cit., p. 208.

[^82]: * Fine, College Algebra, p, 169.
 \dagger Cf. E. Steinitz, Algebraische Theorie der Körper, Journal für reine u. angewandte Mathematak, Vol. CXXXVII (1909), p. 167; especially pp. 271-286.

[^83]: * All developments of this chapter are on the basis of Assumptions A, E, P, and H_{0} Cf. the exercise at the end of the last chapter.
 \dagger The terms recrprocty and duality are sometimes used in place of correlation.

[^84]: * A polarity and the identity form a group; but this forms no exception to the statement just made, since the identity must be regarded as a colluneation.

[^85]: * In the general theory of matrices these two matrices are not, however, regarded as the same. It is only the interpretation of them as collineations which renders them equivalent.

[^86]: * A subgroup [II] of a group is sald to be of index n, if there exist $n-1$ transformations $\Gamma_{i}(i=1,2, \cdots n-1)$, such that the $n-1$ sets [$\Pi \Gamma_{i}$] of transformations together with the set [II] contain all the transformations of the group, while no two transformations within the same set or from any two seta ale identical.

[^87]: * Cf Bôcher, Introduction to Hıgher Algebra, Chaps XX and XXI.
 \dagger If it is the identity on more than one side, it is the identical collineation.

[^88]: * For a more detailed discussion of collineations, reference may be made to Newson, A New Theory of Collineations, etc., American Journal of Mathematics, Vol. XXIV, p 109.

[^89]: * On the theory of correlations see Seydewitz, Archiv der Mathematik, 1st series, Vol VIII (1846), p. 32; and Schroter, Journal fur die reme und angewandte Mathematık, Vol. IXXVII (1874), p. 105.

[^90]: * This is a special case of a theorem of Dunham Jackson, Transactions of American Mathematical Society, Vol. X (1009), p 479.

[^91]: * In this section we have made use of Amodeo, Lezioni di Geometria Projettiva, pp. 430, 437. Some of the exercises are taken from the same book, pp. 448-451.
 \dagger Moreover, we have seen (p. 289, footnote) that any problem of the fourth degree may be reduced to one of the third degree, followed by two of the second degree.
 \ddagger With the usual representation of the ordinary real geometry we should require an instrument to draw comics

[^92]: * In connection with this and the two following exercises, of. Castelnuovo, Lezioni di Geometria Analitica e Projettiva, Vol. I, p, 395.

[^93]: * All the developments of this chapter are on the basis of Assumptions A, $\mathrm{E}, \mathrm{P}, \mathrm{H}_{0}$. But see the exercise on page 261

[^94]: * By a pount of a regulus is meant any point on a line of the regulus.

[^95]: * Cf Sanmia, Lezionı da Geometria Projettiva (Naples, 1895), pp. 262-263.

[^96]: * In this corollary and in Theorem 12 the term quadric surface must be taken to include the points on a cone of lines as a special case.

[^97]: *The construction of a quadric surface through mine points by the method used in the text is given in Rohn and Papperitz, Darstellende Geometrie, Vol. II (Leıpzig, 1896), $\$ \S 676,677$

[^98]: * The terms congruence and complex are general terms to denote two- and threeparameter familes of lines respectively For example, all lines meeting a curve or all tangents to a surface form a complex, while all lines meeting two curves or all common tangents of two surfaces are a corgruence.

[^99]: * If there are two double points, E, F, on a, the conic $B_{1} C_{2} D_{1} E F^{\prime}$ must be transformed by II into the conic $B_{2} C_{2} D_{2} E F$, and the lines joining corresponding points of these comics must form a regulus contaned in the congruence. As \mathbb{E} and F are on lines of the regulus bcd, there are two directrices p, q of this regulus which meet E and F respectively. The lines p and q meet all four of the lines a, b, c, d. Hence they meet all lines linearly dependent on a, b, c, d.

 In the parabolic case the regulus bcd must be met by a in the single invariant point H of the parabolic projectsvity on a, because the conic tangent to a at H and passing through $B_{1} C_{2} D_{1}$ must be transformed by II into the consc tangent to a at H and passing through $B_{2} C_{2} D_{2}$; and the lines joining homologous points of these conics must form a regulus contamed in the congruence As II, a point of a, is on a line of the regulus $b c d$, there is one and only one durectrix p of this regulus which meets all four of a, b, c, d and henoe meets all lines of the congruence.

[^100]: * The edges of a simple skew pentagon are five lines in a given order, not all coplanar, each line intersecting its predecessor and the last meeting the first.

[^101]: * Cf. Comptes Rendus, Vol. LII (1861), p. 741.

[^102]: * This configuration was discovered by Mobius, Journal fur Mathematik, Vol. III (1828), p 273 Two tetrahedra in this relation are known as Mobrus tetrahedra.

[^103]: * Notice that in Equation (1) the number of inversions in the four subscripts of any term is always even

[^104]: * This is a generalization of a conic section.

[^105]: * Efuation (2) may be taken as the definition of a polar S_{4} of a point with regard to L_{4}^{2} Two points are conyugate with regard to L_{4}^{2} if the polar S_{4} of one contains the other The polar S_{4} 's of the points of an $S_{2}(2=1,2,3,4)$ all have an S_{4-2} in common which is called the polar S_{4-2} of the S_{3} These and other obvious generalizations of the polar theory of a conic or a regulus we take for granted without further proof.

[^106]: * These are known as Klein's coorrdinates. Most of the ideas in the present section are to be found in F. Klein, Zur Theorie der Liniencomplexe des ersten und zwerten Grades, Mathematische Annalen, Vol. II (1870), p. 198.

