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PREFACE 

Geometry,  which  had  been  for  centuries  the  most  perfect  example 

of  a  deductive  science,  during  the  creative  period  of  the  nineteenth 

century  outgrew  its  old  logical  forms.  The  most  recent  period  has 

however  brought  a  clearer  understanding  of  the  logical  foundations 

of  mathematics  and  thus  has  made  it  possible  for  the  exposition  of 

geometry  to  resume  the  purely  deductive  form.  But  the  treatment 

in  the  books  which  have  hitherto  appeared  makes  the  work  of  lay- 
ing the  foundations  seem  so  formidable  as  either  to  require  for  itself 

a  separate  treatise,  or  to  be  passed  over  without  attention  to  more 

than  the  outlines.  This  is  partly  due  to  the  fact  that  in  giving  the 

complete  foundation  for  ordinary  real  or  complex  geometry,  it  is 

necessary  to  make  a  study  of  linear  order  and  continuity,  —  a  study 
which  is  not  only  extremely  delicate,  but  whose  methods  are  those 

of  the  theory  of  functions  of  a  real  variable  rather  than  of  elemen- 
tary geometry. 

The  present  work,  which  is  to  consist  of  two  volumes  and  is  in- 
tended to  be  available  as  a  text  in  courses  offered  in  American  uni- 

versities to  upper-class  and  graduate  students,  seeks  to  avoid  this 

difficulty  by  deferring  the  study  of  order  and  continuity  to  the  sec- 
ond volume.  The  more  elementary  part  of  the  subject  rests  on  a 

very  simple  set  of  assumptions  which  characterize  what  may  be 

called  "general  projective  geometry."  It  will  be  found  that  the 
theorems  selected  on  this  basis  of  logical  simplicity  are  also  elemen- 

tary in  the  sense  of  being  easily  comprehended  and  often  used. 

Even  the  limited  space  devoted  in  this  volume  to  the  foundations 

may  seem  a  drawback  from  the  pedagogical  point  of  view  of  some 

mathematicians.  To  this  we  can  only  reply  that,  in  our  opinion, 

an  adequate  knowledge  of  geometry  cannot  be  obtained  without 
attention  to  the  foundations.  We  believe,  moreover,  that  the 

abstract  treatment  is  peculiarly  desirable  in  projective  geometry, 

because  it  is  through  the  latter  that  the  other  geometric  disciplines 

are  most  readily  coordinated.    Since  it  is  more  natural  to  derive 
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the  geometrical  disciplines  associated  with  the  names  of  Euclid, 

Descartes,  Lobatchewsky,  etc.,  from  projective  geometry  than  it 

is  to  derive  projective  geometry  from  one  of  them,  it  is  natural  to 
take  the  foundations  of  projective  geometry  as  the  foundations  of 

all  geometry. 

The  deferring  of  linear  order  and  continuity  to  the  second  vol- 
ume  has  necessitated  the  deferring  of  the  discussion  of  the  metric 

geometries  characterized  by  certain  subgroups  of  the  general  pro- 

jective group.  Such  elementary  applications  as  the  metric  proper- 
ties of  conies  will  therefore  be  found  in  the  second  volume.  This 

will  be  a  disadvantage  if  the  present  volume  is  to  be  used  for  a 

short  course  in  which  it  is  desired  to  include  metric  applications. 

But  the  arrangement  of  the  material  will  make  it  possible,  when 

the  second  volume  is  ready,  to  pass  directly  from  Chapter  VIII  of 

the  first  volume  to  the  study  of  order  relations  (which  may  them- 
selves be  passed  over  without  detailed  discussion,  if  this  is  thought 

desirable),  and  thence  to  the  development  of  Euclidean  metric 

geometry.  We  think  that  much  is  to  be  gained  pedagogically  as 

well  as  scientifically  by  maintaining  the  sharp  distinction  between 

the  projective  and  the  metric. 

The  introduction  of  analytic  methods  on  a  purely  synthetic  basis 

in  Chapter  VI  brings  clearly  to  light  the  generality  of  the  set  of 

assumptions  used  in  this  volume.  What  we  call  "  general  projective 

geometry  "  is,  analytically,  the  geometry  associated  with  a  general 
number  field.  All  the  theorems  of  this  volume  are  valid,  not  alone 

in  the  ordinary  real  and  the  ordinary  complex  projective  spaces,  but 

also  in  the  ordinary  rational  space  and  in  the  finite  spaces.  The 

bearing  of  this  general  theory  once  fully  comprehended  by  the 

student,  it  is  hoped  that  he  will  gain  a  vivid  conception  of  the 

organic  unity  of  mathematics,  which  recent  developments  of  postu- 
lational  methods  have  so  greatly  emphasized. 

The  form  of  exposition  throughout  the  book  has  been  condi- 
tioned by  the  purpose  of  keeping  to  the  fore  such  general  ideas  as 

group,  configuration,  linear  dependence,  the  correspondence  be- 
tween and  the  logical  interchangeability  of  analytic  and  synthetic 

methods,  etc.  Between  two  methods  of  treatment  we  have  chosen 
the  more  conventional  in  all  cases  where  a  new  method  did  not 

seem  to  have  unquestionable  advantages.    We  have  tried  also  to 
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avoid  in  general  the  introduction  of  new  terminology.  The  use 

of  the  word  on  in  connection  with  duality  was  suggested  by  Pro- 
fessor Frank  M  or  ley. 

We  have  included  among  the  exercises  many  theorems  which  in 

a  larger  treatise  would  naturally  have  formed  part  of  the  text- 

The  more  important  and  difficult  of  these  have  been  accompanied 

by  references  to  other  textbooks  and  to  journals,  which  it  is  hoped 
will  introduce  the  student  to  the  literature  in  a  natural  way.  There 

has  been  no  systematic  effort,  however,  to  trace  theorems  to  their 

original  sources,  so  that  the  book  may  be  justly  criticized  for  not 
always  giving  due  credit  to  geometers  whose  results  have  been 
used. 

Our  cordial  thanks  are  due  to  several  of  our  colleagues  and  stu- 
dents who  have  given  us  help  and  suggestions.  Dr.  H.  H.  Mitchell 

has  made  all  the  drawings.  The  proof  sheets  have  been  read  in  whole 

or  in  part  by  Professors  Birkhoff,  Eisenhart,  and  Wedderburn,  of 

Princeton  University,  and  by  Dr.  R.  L.  Borger  of  the  University 

of  Illinois.  Finally,  we  desire  to  express  to  Ginn  and  Company  our 

sincere  appreciation  of  the  courtesies  extended  to  us. 
O.  VEBLEX 
J.  W.  YOUNG 

August,  1910 

In  the  second  impression  we  have  corrected  a  number  of  typo- 
graphical and  other  errors.  We  have  also  added  (p.  343)  two 

pages  of  "Notes  and  Corrections"  dealing  with  inaccuracies  or 
obscurities  which  could  not  be  readily  dealt  with  in  the  text  We 

wish  to  express  our  cordial  thanks  to  those  readers  who  have  kindly 
called  our  attention  to  errors  and  ambiguities. 

O.V. 
J.W.Y. 

August,  1916 
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PROJECTIVE  GEOMETRY 

INTRODUCTION 

1.  Undefined  elements  and  unproved  propositions.  Geometry  deals 

with  the  properties  of  figures  in  space.  Every  such  figure  is  made  up 

of  various  elements  (points,  lines,  curves,  plaues,  surfaces,  etc.),  and 
these  elements  bear  certain  relations  to  each  other  (a  point  lies  on  a 

line,  a  line  passes  through  a  point,  two  planes  intersect,  etc.).  The 

propositions  stating  these  properties  are  logically  interdependent,  and 

it  is  the  object  of  geometry  to  discover  such  propositions  and  to 

exhibit  their  logical  interdependence. 

Some  of  the  elements  and  relations,  by  virtue  of  their  greater 

simplicity,  are  chosen  as  fundamental,  and  all  other  elements  and 

relations  are  defined  in  terms  of  them.  Since  any  defined  element  or 
relation  must  be  defined  in  terms  of  other  elements  and  relations, 

it  is  necessary  that  one  or  more  of  the  elements  and  one  or  more  of 

the  relations  between  them  remain  entirely  undefined;  otherwise  a 

vicious  circle  is  unavoidable.  Likewise  certain  of  the  propositions 

are  regarded  as  fundamental,  in  the  sense  that  all  other  propositions 

are  derivable,  as  logical  consequences,  from  these  fundamental  ones. 

But  here  again  it  is  a  logical  necessity  that  one  or  more  of  the  prop- 
ositions remain  entirely  unproved  ;  otherwise  a  vicious  circle  is  again 

inevitable. 

The  starting  point  of  any  strictly  logical  treatment  of  geometry 

{and  indeed  of  any  branch  of  mathematics)  must  then  be  a  set  of  un- 
defined elements  and  relations,  and  a  set  of  unproved  propositions 

involving  them  ;  and  from  these  all  other  propositions  {theorems)  are 

to  be  derived  by  (he  methods  of  formal  logic.  Moreover,  since  we 

assumed  the  point  of  view  of  formal  (i.e.  symbolic)  logic,  the  unde- 
fined elements  are  to  be  regarded  as  mere  symbols  devoid  of  content, 

except  as  implied  by  the  fundamental  propositions.  Since  it  is  mani- 
festly absurd  to  speak  of  a  proposition  involving  these  symbols  as 

1 
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self-evident,  the  unproved  propositions  referred  to  above  must  be  re- 

garded as  mere  assumptions.  It  is  customary  to  refer  to  these  funda- 
mental propositions  as  axioms  or  postulates,  but  we  prefer  to  retain  the 

term  assumption  as  more  expressive  of  their  real  logical  character. 

We  understand  the  term  a  mathematical  science  to  mean  any  set 

of  propositions  arranged  according  to  a  sequence  of  logical  deduction. 
From  the  point  of  view  developed  above  such  a  science  is  purely 

abstract.  If  any  concrete  system  of  things  may  be  regarded  as  sat- 

isfying the  fundamental  assumptions,  this  system  is  a  concrete  ap- 
plication or  representation  of  the  abstract  science.  The  practical 

importance  or  triviality  of  such  a  science  depends  simply  on  the 

importance  or  triviality  of  its  possible  applications.  These  ideas  will 
be  illustrated  and  further  discussed  in  the  next  section,  where  it  will 

appear  that  an  abstract  treatment  has  many  advantages  quite  apart 

from  that  of  logical  rigor. 

2.  Consistency,  categoricalness,  independence.  Example  of  a  math- 

ematical science.  The  notion  of  a  class*  of  objects  is  fundamental 
in  logic  and  therefore  in  any  mathematical  science.  The  objects 

which  make  up  the  class  are  called  the  elements  of  the  class.  The 

notion  of  a  class,  moreover,  and  the  relation  of  belonging  to  a  class 

(being  included  in  a  class,  being  an  element  of  a  class,  etc.)  are  primi- 
tive notions  of  logic,  the  meaning  of  which  is  not  here  called  in 

question.! 
The  developments  of  the  preceding  section  may  now  be  illustrated 

and  other  important  conceptions  introduced  by  considering  a  simple 

example  of  a  mathematical  science.  To  this  end  let  S  be  a  class,  the 

elements  of  which  we  will  denote  by  A,  B,  C,  .  .  .  Further,  let  there 

be  certain  undefined  subclasses  $  of  S,  any  one  of  which  we  will  call 

an  m-class.  Concerning  the  elements  of  S  and  the  m-classes  we  now 
make  the  following 

Assumptions  : 

I.  If  A  and  B  are  distinct  elements  of  S,  there  is  at  least  one 

m-class  containing  both  A  and  B. 

*  Synonyms  for  class  are  set,  aggregate,  assemblage,  totality ;  in  German,  Menge; 
in  French,  ensemble. 

t  Cf .  B.  Russell,  The  Principles  of  Mathematics,  Cambridge,  1003 ;  and  L.  Cou- 
turat,  Les  principes  des  math^matiques,  Paris,  1905. 

|  A  class  S'  is  said  to  be  a  subclass  of  another  class  S,  if  every  element  of  S'  is 
an  element  of  S. 
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II.  If  A  and  B  are  distinct  dements  of  S,  there  is  not  more  than 

one  m-class  containing  both  A  and  B. 

III.  Any  two  m-classes  have  at  least  one  element  of  S  in  common. 
IV.  There  exists  at  least  one  m-class. 

V.  Every  m-class  contains  at  least  three  elements  of  S. 

VI.  All  the  elements  of  S  do  not  belong  to  the  same  m-class. 
VII.  No  m-class  contains  more  than  three  elements  of  S. 

The  reader  will  observe  that  in  this  set  of  assumptions  we  have 

just  two  undefined  terms,  viz.,  element  of  S  and  m-class,  and  one 
undefined  relation,  belonging  to  a  class.  The  undefined  terms,  more- 

over, are  entirely  devoid  of  content  except  such  as  is  implied  in  the 

assumptions. 

Now  the  first  question  to  ask  regarding  a  set  of  assumptions  is : 

Are  they  logically  consistent?  In  the  example  above,  of  a  set  of 

assumptions,  the  reader  will  find  that  the  assumptions  are  all  true 

statements,  if  the  class  S  is  interpreted  to  mean  the  digits  0,  1,  2,  3, 

4,  5,  6  and  the  w-classes  to  mean  the  columns  in  the  following  table : 

(1) 

This  interpretation  is  a  concrete  representation  of  our  assumptions. 

Every  proposition  derived  from  the  assumptions  must  be  true  of  this 

system  of  triples.  Hence  none  of  the  assumptions  can  be  logically 

inconsistent  with  the  rest ;  otherwise  contradictory  statements  would 

be  true  of  this  system  of  triples. 

Thus,  in  general,  a  set  of  assumptions  is  said  to  be  consistent  if  a 

single  concrete  representation  of  the  assumptions  can  be  given* 
Knowing  our  assumptions  to  be  consistent,  we  may  proceed  to  de- 

rive some  of  the  theorems  of  the  mathematical  science  of  which  they 
are  the  basis: 

Any  two  distinct  elements  of  S  determine  one  and  only  one  m-class 
containing  both  these  elements  (Assumptions  I,  II). 

*  It  will  be  noted  that  this  test  for  the  consistency  of  a  set  of  assumptions 
merely  shifts  the  difficulty  from  one  domain  to  another.  It  is,  however,  at  present 
the  only  test  known.  On  the  question  as  to  the  possibility  of  an  absolute  test  of 
consistency,  cf.  Hilbert,  Grundlagen  der  Geometrie,  2d  ed.,  Leipzig  (1903),  p.  18,  and 
Verhandlungen  d.  III.  intern,  math.  Kongresses  zu  Heidelberg,  Leipzig  (1904), 

p.  174;  Padoa,  L'Enseignement  math^matique,  Vol.  V  <1903),  p.  85. 

0 1 2 3 4 5 6 

1 2 3 4 5 6 0 

3 4 5 6 0 1 2 
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The  m-class  containing  the  elements  A  and  B  may  conveniently 
be  denoted  by  the  symbol  AB. 

Any  two  m-classes  have  one  and  only  one  element  of  S  in  common 
(Assumptions  II,  III). 

There  exist  three  elements  of  S  which  are  not  all  in  the  same 

m-class  (Assumptions  IV,  V,  VI). 
In  accordance  with  the  last  theorem,  let  A,  B,  C  be  three  elements 

of  S  not  in  the  same  m-class.  By  Assumption  V  there  must  be  a 

third  element  in  each  of  the  m-classes  AB,  BC,  CA,  and  by  Assump- 
tion II  these  elements  must  be  distinct  from  each  other  and  from 

At  B,  and  C.  Let  the  new  elements  be  D,  E,  G,  so  that  each  of 

the  triples  ABB,  BC.E,  CAG  belongs  to  the  same  m-class.  By 
Assumption  III  the  m-classes  AE  and  BG,  which  are  distinct  from 

all  the  m-classes  thus  far  obtained,  have  an  element  of  S  in  common, 
which,  by  Assumption  II,  is  distinct  from  those  hitherto  mentioned ; 

let  it  be  denoted  by  F,  so  that  each  of  the  triples  AEF  and  BEG 

belong  to  the  same  m-class.  No  use  has  as  yet  been  made  of  As- 
sumption VII.    We  have,  then,  the  theorem : 

Any  class  S  subject  to  Assumptions  I—  VI  contains  at  least  seven 
elements. 

Now,  making  use  of  Assumption  VII,  we  find  that  the  m-classes 

thus  far  obtained  contain  only  the  elements  mentioned.  The  m-classes 
CD  and  AEF  have  an  element  in  common  (by  Assumption  III) 

which  cannot  be  A  or  E,  and  must  therefore  (by  Assumption  VII) 

be  F.  Similarly,  ACG  and  the  m-class  BE  have  the  element  G  in 
common.  The  seven  elements  A,  B,  C,  D,  E,  F,  G  have  now  been 

arranged  into  m-classes  according  to  the  table 

(i') 

in  which  the  columns  denote  m-classes.  The  reader  may  note  at  once 
that  this  table  is,  except  for  the  substitution  of  letters  for  digits, 

entirely  equivalent  to  Table  (1);  indeed  (1')  is  obtained  from  (1)  by 
replacing  0  by  A,  1  by  B,  2  by  C,  etc.  We  can  show,  furthermore, 
that  S  can  contain  no  other  elements  than  A,  B,  C,  D,  E,  F,  G.  For 

suppose  there  were  another  element,  T.    Then,  by  Assumption  III, 

A B C D E F G 

B C D E F G A 

D E F G A B C 
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the  m-classes  TA  and  BFG  would  have  an  element  in  common.  This 

element  cannot  be  B,  for  theu  ABTD  would  belong  to  the  same 

m-class ;  it  cannot  be  F,  for  then  AFTE  would  all  belong  to  the  same 

m-class ;  and  it  cannot  be  G,  for  then  AGTC  would  all  belong  to  the 

same  m-class.  These  three  possibilities  all  contradict  Assumption  VII. 
Hence  the  existence  of  T  would  imply  the  existence  of  four  elements 

in  the  m-class  BFG,  which  is  likewise  contrary  to  Assumption  VII. 

The  properties  of  the  class  S  and  its  ??*-classes  may  also  be  repre- 
sented vividly  by  the  accompanying  figure  (fig.  1).  Here  we  have 

represented  the  elements  of  S  by 

points  (or  spots)  in  a  plane,  and 
have  joined  by  a  line  every  triple 

of  these  points  which  form  an  m- 
class.  It  is  seen  that  the  points 

may  be  so  chosen  that  all  but  one 

of  these  lines  is  a  straight  line. 

This  suggests  at  once  a  similarity 

to  ordinary  plane  geometry.  Sup- 
pose we  interpret  the  elements  of 

S  to  be  the  points  of  a  plane,  and  interpret  the  m-classes  to  be  the 
straight  lines  of  the  plane,  and  let  us  reread  our  assumptions  with  this 

interpretation.  Assumption  VII  is  false,  but  all  the  others  are  true 

with  the  exception  of  Assumption  III,  which  is  also  true  except  when 

the  lines  are  parallel.  How  this  exception  can  be  removed  we  will 

discuss  in  the  next  section,  so  that  we  may  also  regard  the  ordinary 

plane  geometry  as  a  representation  of  Assumptions  I- VI. 
Returning  to  our  miniature  mathematical  science  of  triples,  we  are 

now  in  a  position  to  answer  another  important  question :  To  what  ex- 
tent do  Assumptions  I- VII  characterize  the  class  S  and  the  m-classes  ? 

We  have  just  seen  that  any  class  S  satisfying  these  assumptions  may 

be  represented  by  Table  (1')  merely  by  properly  labeling  the  ele- 
ments of  S.  In  other  words,  if  St  and  S2  are  two  classes  S  subject 

to  these  assumptions,  every  element  of  Sx  may  be  made  to  correspond  * 
to  a  unique  element  of  S2,  in  such  a  way  that  every  element  of  S2 

is  the  correspondent  of  a  unique  element  of  Sp  and  that  to  every 

m-class  of  Sx  there  corresponds  an  m-class  of  S2.   The  two  classes  are 

*  The  notion  of  correspondence  is  another  primitive  notion  which  we  take  over 
without  discussion  from  the  general  logic  of  classes. 
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then  said  to  be  in  one-to-one  reciprocal  correspondence,  or  to  be  simply 

isomorphic*  Two  classes  S  are  then  abstractly  equivalent ;  i.e.  there 
exists  essentially  only  one  class  S  satisfying  Assumptions  I-VII. 
This  leads  to  the  following  fundamental  notion : 

A  set  of  assumptions  is  said  to  he  categorical,  if  there  is  essentially 

only  one  system  for  which  the  assumptions  are  valid ;  i.e.  if  any  two 

such  systems  may  he  made  simply  isomorphic. 

We  have  just  seen  that  the  set  of  Assumptions  I-VII  is  categor- 
ical. If,  however,  Assumption  VII  be  omitted,  the  remaining  set  of 

six  assumptions  is  not  categorical.  We  have  already  observed  the 

possibility  of  satisfying  Assumptions  I-VI  by  ordinary  plane  geom- 

try.  Since  Assumption  III,  however,  occupies  as  yet  a  doubtful  posi- 
tion in  this  interpretation,  we  give  another,  which,  by  virtue  of  its 

simplicity,  is  peculiarly  adapted  to  make  clear  the  distinction  between 

categorical  and  noncategorical.  The  reader  will  find,  namely,  that 

each  of  the  first  six  assumptions  is  satisfied  by  interpreting  the  class  S 

to  consist  of  the  digits  0,  1,  2,  •  ■  •,  12,  arranged  according  to  the  fol- 

lowing table  of  m-classes,  every  column  constituting  one  m-class : 

(2) 

Hence  Assumptions  I-VI  are  not  sufficient  to  characterize  completely 
the  class  S,  for  it  is  evident  that  Systems  (1)  and  (2)  cannot  be  made 

isomorphic.  On  the  other  hand,  it  should  be  noted  that  all  theorems 

derivable  from  Assumptions  I-VI  are  valid  for  both  (1)  and  (2). 

These  two  systems  are  two  essentially  different  concrete  representa- 
tions of  the  same  mathematical  science. 

This  brings  us  to  a  third  question  regarding  our  assumptions :  j  t  re 

they  independent  ?  That  is,  can  any  one  of  them  be  derived  as  a  log- 
ical consequence  of  the  others  ?  Table  (2)  is  an  example  which  shows 

that  Assumption  VII  is  independent  of  the  others,  because  it  shows 

that  they  can  all  be  true  of  a  system  in  which  Assumption  VII  is 

false.  Again,  if  the  class  S  is  taken  to  mean  the  three  letters  A,  Ji.  C, 

*  The  isomorphism  of  Systems  (1)  and  (V)  is  clearly  exhibited  in  fig.  1,  where 
each  point  is  labeled  both  with  a  digit  and  with  a  letter.  This  isomorphism  may, 
moreover,  be  established  in  7-6-4  different  ways. 

0 1 2 3 4 5 6 7 8 9 
10 

11 12 

1 2 3 4 5 6 7 8 9 10 11 12 0 

3 4 5 6 7 8 9 
10 

11 12 0 1 2 

9 10 11 12 0 1 2 3 4 5 6 7 8 
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and  the  ra-classes  to  consist  of  the  pairs  AB,  BC,  CA,  then  it  is 

clear  that  Assumptions  I,  II,  III,  IV,  VI,  VII  are  true  of  this  class 

S,  and  therefore  that  any  logical  consequence  of  them  is  true  with 

this  interpretation.  Assumption  V,  however,  is  false  for  this  class, 

and  cannot,  therefore,  be  a  logical  consequence  of  the  other  assump- 
tions. In  like  manner,  other  examples  can  be  constructed  to  show 

that  each  of  the  Assumptions  I-VII  is  independent  of  the  remain- 
ing ones. 

3.  Ideal  elements  in  geometry.  The  miniature  mathematical  science 

which  we  have  just  been  studying  suggests  what  we  must  do  on  a 

larger  scale  in  a  geometry  which  describes  our  ordinary  space.  We 
must  first  choose  a  set  of  undefined  elements  and  a  set  of  funda- 

mental assumptions.  This  choice  is  in  no  way  prescribed  a  priori, 

but,  on  the  contrary,  is  very  arbitrary.  It  is  necessary  only  that  the 

undefined  symbols  be  such  that  all  other  elements  and  relations  that 

occur  are  definable  in  terms  of  them ;  and  the  fundamental  assump- 
tions must  satisfy  the  prime  requirement  of  logical  consistency,  and 

be  such  that  all  other  propositions  are  derivable  from  them  by  formal 

logic.  It  is  desirable,  further,  that  the  assumptions  be  independent* 
and  that  certain  sets  of  assumptions  be  categorical.  There  is,  further, 

the  desideratum  of  utmost  symmetry  and  generality  in  the  whole 

body  of  theorems.  The  latter  means  that  the  applicability  of  a  theo- 

rem shall  be  as  wide  as  possible.  This  has  relation  to  the  arrange- 
ment of  the  assumptions,  and  can  be  attained  by  using  in  the  proof 

of  each  theorem  a  minimum  of  assumptions.! 

Symmetry  can  frequently  be  obtained  by  a  judicious  choice  of 

terminology.  This  is  well  illustrated  by  the  concept  of  "points  at 

infinity"  which  is  fundamental  in  any  treatment  of  projective  geome- 
try. Let  us  note  first  the  reciprocal  character  of  the  relation  expressed 

by  the  two  statements : 

A  point  lies  on  a  line.  A  line  passes  through  a  point. 

To  exhibit  clearly  this  reciprocal  character,  we  agree  to  use  the  phrases 

A  point  is  on  a  line ;  A  line  isowa  point 

»  This  is  obviously  necessary  for  the  precise  distinction  between  an  assumption 
and  a  theorem. 

t  If  the  set  of  assumptions  used  in  the  proof  of  a  theorem  is  not  categorical,  the 
applicability  of  the  theorem  is  evidently  wider  than  in  the  contrary  case.  Cf.  exam- 

ple of  preceding  section. 
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to  express  this  relation.     Let  us  now  consider  the  following  two 

propositions : 

1.  Any  two  distinct  points  of  V.  Any  two  distinct  lines  of  a 

a  plane  are  on  one  and  only  one     plane  are  on  one  and  only  one 

line*  point. 

Either  of  these  propositions  is  obtained  from  the  other  by  simply- 
interchanging  the  words  point  and  line.  The  first  of  these  propositions 

we  recognize  as  true  without  exception  in  the  ordinary  Euclidean 

geometry.  The  second,  however,  has  an  exception  when  the  two 

lines  are  parallel.  In  view  of  the  symmetry  of  these  two  propositions 

it  would  clearly  add  much  to  the  symmetry  and  generality  of  all 

propositions  derivable  from  these  two,  if  we  could  regard  them  both 

as  true  without  exception.  This  can  be  accomplished  by  attributing 

to  two  parallel  lines  a  point  of  intersection.  Such  a  point  is  not, 

of  course,  a  point  in  the  ordinary  sense ;  it  is  to  be  regarded  as  an 

ideal  point,  which  we  suppose  two  parallel  lines  to  have  in  common. 

Its  introduction  amounts  merely  to  a  change  in  the  ordinary  termi- 
nology. Such  an  ideal  point  we  call  a  point  at  infinity ;  and  we 

suppose  one  such  point  to  exist  on  every  line.f 
The  use  of  this  new  term  leads  to  a  change  in  the  statement, 

though  not  in  the  meaning,  of  many  familiar  propositions,  and  makes 

us  modify  the  way  in  which  we  think  of  points,  lines,  etc.  Two  nonr 

parallel  lines  cannot  have  in  common  a  point  at  infinity  without 

doing  violence  to  propositions  1  and  1';  and  since  each  of  them  has  a 
point  at  infinity,  there  must  be  at  least  two  such  points.  Proposition 

1,  then,  requires  that  we  attach  a  meaning  to  the  notion  of  a  line  on 

two  points  at  infinity.  Such  a  line  we  call  a  line  at  infinity,  and 

think  of  it  as  consisting  of  all  the  points  at  infinity  in  a  plane. 

In  like  manner,  if  we  do  not  confine  ourselves  to  the  points  of  a 

single  plane,  it  is  found  desirable  to  introduce  the  notion  of  a  plane 

through  three  points  at  infinity  which  are  not  all  on  the  same  line 

at  infinity.    Such  a  plane  we  call  a  plane  at  infinity,  and  we  think 

*  By  line  throughout  we  mean  straight  line. 
t  It  should  be  noted  that  (since  we  are  taking  the  point  of  view  of  Euclid)  we  do 

not  think  of  a  line  as  containing  more  than  one  point  at  infinity  ;  for  the  supposi- 
tion that  a  line  contains  two  such  points  would  imply  either  that  two  parallels  can 

be  drawn  through  a  given  point  to  a  given  line,  or  that  two  distinct  lines  can  have 
more  than  one  point  in  common. 
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of  it  as  consisting  of  all  the  points  at  infinity  in  space.  Every  ordi- 

nary plane  is  supposed  to  contain  just  one  line  at  infinity ;  every  sys- 
tem of  parallel  planes  in  space  is  supposed  to  have  a  line  at  infinity 

in  common  with  the  plane  at  infinity,  etc. 

The  fact  that  we  have  difficulty  in  presenting  to  our  imagination 

the  notions  of  a  point  at  infinity  on  a  line,  the  line  at  infinity  in  a 

plane,  and  the  plane  at  infinity  in  space,  need  not  disturb  us  in  this 

connection,  provided  we  can  satisfy  ourselves  that  the  new  terminol- 

ogy is  self-consistent  and  cannot  lead  to  contradictions.  The  latter 

condition  amounts,  in  the  treatment  that  follows,  simply  to  the  con- 
dition that  the  assumptions  on  which  we  build  the  subsequent  theory 

be  consistent.  That  they  are  consistent  will  be  shown  at  the  time 

they  are  introduced.  The  use  of  the  new  terminology  may,  however, 

be  justified  on  the  basis  of  ordinary  analytic  geometry.  This  we 
do  in  the  next  section,  the  developments  of  which  will,  moreover, 

be  used  frequently  in  the  sequel  for  proving  the  consistency  of  the 

assumptions  there  made. 

4.  Consistency  of  the  notion  of  points,  lines,  and  plane  at  infinity. 

We  will  now  reduce  the  question  of  the  consistency  of  our  new  ter- 
minology to  that  of  the  consistency  of  an  algebraic  system.  For  this 

purpose  we  presuppose  a  knowledge  of  the  elements  of  analytic  geom- 

etry of  three  dimensions.*  In  this  geometry  a  point  is  equivalent 
to  a  set  of  three  numbers  (x,  y,  z).  The  totality  of  all  such  sets  of 

numbers  constitute  the  analytic  space  of  three  dimensions.  If  the 

numbers  are  all  real  numbers,  we  are  dealing  with  the  ordinary  "real" 
space ;  if  they  are  any  complex  numbers,  we  are  dealing  with  the  ordi- 

nary "  complex  "  space  of  three  dimensions.  The  following  discussion 
applies  primarily  to  the  real  case. 

A  plane  is  the  set  of  all  points  (number  triads)  which  satisfy  a 

single  linear  equation 

ax  +  by  -f-  cz  +  d  =  0. 

A  line  is  the  set  of  all  points  which  satisfy  two  linear  equations, 

axx  +  \y  +  cxz  +  d\  =  0, 
a%x  +  b2y  +  c^  +  d2  =  0, 

*  Such  knowledge  is  not  presupposed  elsewhere  in  this  book,  except  in  the  case 
of  consistency  proofs.  The  elements  of  analytic  geometry  are  indeed  developed 
from  the  beginning  (cf.  Chaps.  VI,  VII). 
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provided  the  relations 

ai      ̂ 1  _  ci 

a%  ~  b,     c2 
do  not  hold.* 

Now  the  points  (x,  y,  z),  with  the  exception  of  (0,  0,  0),  may  also  be 
denoted  by  the  direction  cosines  of  the  line  joining  the  point  to  the 

origin  of  coordinates  and  the  distance  of  the  point  from  the  origin ; 

say  by  f 

I,  m,  n,  -A, 

where  d  =  Vr2  +  f  +  z*,  and  I  =  -,  m  =  ̂>  n  =  -•    The  origin  itself dad 

may  be  denoted  by  (0,  0,  0,  k),  where  Jc  is  arbitrary.    Moreover,  any 

four  numbers   (xv  xv  xv  xA)    (x4  =£  0),  proportional  respectively  to 

I,  m,  n,—\>  will  serve  equally  well  to  represent  the  point  (x,  y,  z), 

provided  we  agree  that  (xv  as,,  x3,  x4)  and  (cxv  cx2,  cxs,  cx4)  represent 
the  same  point  for  all  values  of  c  different  from  0.  For  a  point 

(x,  y,  z)  determines 

ex  ,  en 
x  =  -  =  =  cl,     xn  =  =  =  cm, 

^af+yt+z2  '     Vx*+tf+? 
_  CZ  _  C  c 

v  a?  +y2+  z*  Vx2  +  if  +z*      d 

where  c  is  arbitrary  (c  =£  0),  and  (xv  x„,  xa,  x4)  determines 

(1)  x=  —  >     y  =  — >     z  =  —> 

provided  x4  =#=  0. 
We  have  not  assigned  a  meaning  to  (xv  x2,  xv  x4)  when  x4  =  0,  but 

it  is  evident  that  if  the  point  ( cl,  cm,  en,  -  J  moves  away  from  the 

origin  an  unlimited  distance  on  the  line  whose  direction  cosines  are 

I,  m,  n,  its  coordinates  approach  (cl,  cm,  en,  0).  A  little  consideration 

will  show  that  as  a  point  moves  on  any  other  line  with  direction 

*  It  should  be  noted  that  we  are  not  yet,  in  this  section,  supposing  anything 
known  regarding  points,  lines,  etc.,  at  infinity,  but  are  placing  ourselves  on  tho 
basis  of  elementary  geometry. 
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cosines  I,  m,  n,  so  that  its  distance  from  the  origin  increases  indefi- 
nitely, its  coordinates  also  approach  (el,  cm,  en,  0).  Furthermore,  these 

values  are  approached,  no  matter  in  which  of  the  two  opposite  direc- 
tions the  point  moves  away  from  the  origin.  We  now  define  (xv  x2, 

x3,  0)  as  a  point  at  infinity  or  an  ideal  point.  We  have  thus  associ- 
ated with  every  set  of  four  numbers  (xv  x2,  xs,  xt)  a  point,  ordinary 

or  ideal,  with  the  exception  of  the  set  (0,  0,  0,  0),  which  we  exclude 

entirely  from  the  discussion.  The  ordinary  points  are  those  for  which 

xt  is  not  zero ;  their  ordinary  Cartesian  coordinates  are  given  by  the 

equations  (1).  The  ideal  points  are  those  for  which  xt=  0.  The  num- 
bers (xv  x2,  xs,  x4)  we  call  the  homogeneous  coordinates  of  the  point. 

We  now  define  a  plane  to  be  the  set  of  all  points  (xv  x2,  xs,  xj 

which  satisfy  a  linear  homogeneous  equation : 

axx  +  bx2  +  cx3  -f  dxt  =  0. 

It  is  at  once  clear  from  the  preceding  discussion  that  as  far  as  all 

ordinary  points  are  concerned,  this  definition  is  equivalent  to  the  one 

given  at  the  beginning  of  this  section.  However,  according  to  this 

definition  all  the  ideal  points  constitute  a  plane  xt  =  0.  This  plane 
we  call  the  plane  at  infinity.  In  like  manner,  we  define  a  line  to 

consist  of  all  points  (xv  x2,  x3,  xt)  which  satisfy  two  distinct  linear 
homogeneous  equations : 

ai-ci+  \Xi+  ClXS+  rf1r4=  °> 

a2xx  +  b2x2  -f  c2x%  +  d2xt  =  0. 

Since  these  expressions  are  to  be  distinct,  the  corresponding  coefficients 

throughout  must  not  be  proportional.  According  to  this  definition 

the  points  common  to  any  plane  (not  the  plane  at  infinity)  and  the 

plane  x4=  0  constitute  a  line.  Such  a  line  we  call  a  line  at  infinity, 

and  there  is  one  such  in  every  ordinary  plane.  Finally,  the  line  de- 
fined above  by  two  equations  contains  one  and  only  one  point  with 

coordinates  (xv  x2,  x3, 0) ;  that  is,  an  ordinary  line  contains  one  and  only 
one  point  at  infinity.  It  is  readily  seen,  moreover,  that  with  the  above 

definitions  two  parallel  lines  have  their  points  at  infinity  in  common. 

Our  discussion  has  now  led  us  to  an  analytic  definition  of  what 

may  be  called,  for  the  present,  an  analytic  projective  space  of  three 
dimensions.  It  may  be  defined,  in  a  way  which  allows  it  to  be  either 
real  or  complex,  as  consisting  of: 
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Points :  All  sets  of  four  numbers  (xv  xv  xs,  #4),  except  the  set 

(0,  0,  0,  0),  where  (cxv  cx2,  cxa,  c#4)  is  regarded  as  identical  with 

(xv  x2,  xs,  #4),  provided  c  is  not  zero. 
Planes:  All  sets  of  points  satisfying  one  linear  homogeneous 

equation. 

Lines :  All  sets  of  points  satisfying  two  distinct  linear  homoge- 
neous equations. 

Such  a  projective  space  cannot  involve  contradictions  unless  our 

ordinary  system  of  real  or  complex  algebra  is  inconsistent.  The  defi- 
nitions here  made  of  points,  lines,  and  the  plane  at  infinity  are, 

however,  precisely  equivalent  to  the  corresponding  notions  of  the 

preceding  section.  We  may  therefore  use  these  notions  precisely  in 

the  same  way  that  we  consider  ordinary  points,  lines,  and  planes. 

Indeed,  the  fact  that  no  exceptional  properties  attach  to  our  ideal 

elements  follows  at  once  from  the  symmetry  of  the  analytic  formu- 
lation; the  coordinate  xv  whose  vanishing  gives  rise  to  the  ideal 

points,  occupies  no  exceptional  position  in  the  algebra  of  the  homo- 
geneous equations.  The  ideal  points,  then,  are  not  to  be  regarded 

as  different  from  the  ordinary  points. 

All  the  assumptions  we  shall  make  in  our  treatment  of  projective 

geometry  will  be  found  to  be  satisfied  by  the  above  analytic  creation, 

which  therefore  constitutes  a  proof  of  the  consistency  of  the  assump- 
tions in  question.    This  the  reader  will  verify  later. 

5.  Projective  and  metric  geometry.  In  projective  geometry  no 

distinction  is  made  between  ordinary  points  and  points  at  infinity, 

and  it  is  evident  by  a  reference  forward  that  our  assumptions  pro- 
vide for  no  such  distinction.  We  proceed  to  explain  this  a  little 

more  fully,  and  will  at  the  same  time  indicate  in  a  general  way 

the  difference  between  'projective  and  the  ordinary  Euclidean  metric 
geometry. 

Confining  ourselves  first  to  the  plane,  let  m  and  m'  be  two  distinct 
lines,  and  P  a  point  not  on  either  of  the  two  lines.  Then  the  points 

of  m  may  be  made  to  correspond  to  the  points  of  m'  as  follows :  To 

every  point  A  on.  m  let  correspond  that  point  A'  on  mr  in  which  m' 
meets  the  line  joining  A  to  P  (fig.  2).  In  this  way  every  point  on 

either  line  is  assigned  a  unique  corresponding  point  on  the  other 

line.  This  type  of  correspondence  is  called  perspective,  and  the  points 

on  one  line  are  said  to  be  transformed  into  the  points  of  the  other  by 
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a  perspective  transformation  with  center  P.  If  the  points  of  a  line  m 

be  transformed  into  the  points  of  a  line  m'  by  a  perspective  transfor- 

mation with  center  P,  and  then  the  points  of  m'  be  transformed  into  the 

points  of  a  third  line  m"  by  a  perspective  transformation  with  a  new 
center  Q ;  and  if  this  be  continued  any  finite  number  of  times,  ulti- 

mately the  points  of  the  line  m  will  have  been  brought  into  corre- 

spondence with  the  points  of  a  line  min),  say,  in  such  a  way  that  every 

point  of  m  corresponds  to  a  unique  point  of  m(B).  A  correspondence 
obtained  in  this  way  is  called  projective,  and  the  points  of  m  are  said 

Fig.  2 

to  have  been  transformed  into  the  points  of  m(n)  by  a  projective 
transformation. 

Similarly,  in  three-dimensional  space,  if  lines  are  drawn  joining 
every  point  of  a  plane  figure  to  a  fixed  point  P  not  in  the  plane  it 

of  the  figure,  then  the  points  in  which  this  totality  of  lines  meets 

another  plane  ir'  will  form  a  new  figure,  such  that  to  every  point  of 
ir  will  correspond  a  unique  point  of  ir\  and  to  every  line  of  it  will 

correspond  a  unique  line  of  ir'.  "We  say  that  the  figure  in  it  has  been 
transformed  into  the  figure  in  ir'  by  a  perspective  transformation  with 
center  P.  If  a  plane  figure  be  subjected  to  a  succession  of  such  per- 

spective transformations  with  different  centers,  the  final  figure  will 

still  be  such  that  its  points  and  lines  correspond  uniquely  to  the 

points  and  lines  of  the  original  figure.  Such  a  transformation  is  again 

called  a  projective  transformation.  In  projective  geometry  two  figures 

that  may  be  made  to  correspond  to  each  other  by  mean3  of  a  projec- 
tive transformation  are  not  regarded  as  different.    In  other  words, 
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'projective  geometry  is  concerned  with  those  properties  of  figures  that 
are  left  unchanged  when  the  figures  are  subjected  to  a  projective 

transformation. 

It  is  evident  that  no  properties  that  involve  essentially  the  notion 

of  measurement  can  have  any  place  in  projective  geometry  as  such  ;  * 
hence  the  term  projective,  to  distinguish  it  from  the  ordinary  geom- 

etry, which  is  almost  exclusively  concerned  with  properties  involving 

the  idea  of  measurement.  In  case  of  a  plane  figure,  a  perspective 

transformation  is  clearly  equivalent  to  the  change  brought  about  in 

the  aspect  of  a  figure  by  looking  at  it  from  a  different  angle,  the 

observer's  eye  being  the  center  of  the  perspective  transformation. 
The  properties  of  the  aspect  of  a  figure  that  remain  unaltered  when 

the  observer  changes  his  position  will  then  be  properties  with  which 

projective  geometry  concerns  itself.  For  this  reason  von  Staudt  called 
this  science  Geometrie  der  Lage. 

In  regard  to  the  points  and  lines  at  infinity,  we  can  now  see  why 

they  cannot  be  treated  as  in  any  way  different  from  the  ordinary 

points  and  lines  of  a  figure.  For,  in  the  example  given  of  a  per- 
spective transformation  between  lines,  it  is  clear  that  to  the  point  at 

infinity  on  m  corresponds  in  general  an  ordinary  point  on  m',  and 
conversely.  And  in  the  example  given  of  a  perspective  transforma- 

tion between  planes  we  see  that  to  the  line  at  infinity  in  one  plane 

corresponds  in  general  an  ordinary  line  in  the  other.  In  projective 

geometry,  then,  there  can  be  no  distinction  between  the  ordinary 
and  the  ideal  elements  of  space. 

*  The  theorems  of  metric  geometry  may  however  be  regarded  as  special  cases 
of  projective  theorems. 



CHAPTER  I 

THEOREMS  OF  ALIGNMENT  AND  THE  PRINCIPLE  OF  DUALITY 

6.  The  assumptions  of  alignment.  In  the  following  treatment  of 

projective  geometry  we  have  chosen  the  point  and  the  line  as  unde- 
fined elements.  We  consider  a  class  (cf.  §  2,  p.  2)  the  elements  of 

which  we  call  points,  and  certain  undefined  classes  of  points  which 
we  call  lines.  Here  the  words  point  and  line  are  to  be  regarded 

as  mere  symbols  devoid  of  all  content  except  as  implied  in  the  as- 
sumptions (presently  to  be  made)  concerning  them,  and  which  may 

represent  any  elements  for  which  the  latter  may  be  valid  propositions. 
In  other  words,  these  elements  are  not  to  be  considered  as  having 

properties  in  common  with  the  points  and  lines  of  ordinary  Euclidean 

geometry,  except  in  so  far  as  such  properties  are  formal  logical  conse- 
quences of  explicitly  stated  assumptions. 

We  shall  in  the  future  generally  use  the  capital  letters  of  the 

alphabet,  as  A,  B,  C,  P,  etc.,  as  names  for  points,  and  the  small  let- 
ters, as  a,  b,  c,  I,  etc.,  as  names  for  lines.  If  A  and  B  denote  the  same 

point,  this  will  be  expressed  by  the  relation  A  =  B;  if  they  repre- 
sent distinct  points,  by  the  relation  A  j=  B.  If  A  =  B,  it  is  sometimes 

said  that  A  coincides  with  B,  or  that  A  is  coincident  with  B.  The 

same  remarks  apply  to  two  lines,  or  indeed  to  any  two  elements  of 
the  same  kind. 

All  the  relations  used  are  defined  in  general  logical  terms,  mainly 

by  means  of  the  relation  of  belonging  to  a  class  and  the  notion  of  one- 

to-one  correspondence.  In  case  a  point  is  an  element  of  one  of  the 
classes  of  points  which  we  call  lines,  we  shall  express  this  relation 

by  any  one  of  the  phrases :  the  point  is  on  or  lies  on  or  is  a  point  of 

the  line,  or  is  united  with  the  line ;  the  line  passes  through  or  con- 
tains or  is  united  with  the  point.  We  shall  often  find  it  convenient 

to  use  also  the  phrase  the  line  is  on  the  point  to  express  this  relation. 

Indeed,  all  the  assumptions  and  theorems  in  this  chapter  will  be 

stated  consistently  in  this  way.  The  reader  will  quickly  become  ac- 

customed to  this  "  on  "  language,  which  is  introduced  with  the  purpose 
15 
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of  exhibiting  in  its  most  elegant  form  one  of  the  most  far-reaching 
theorems  of  projective  geometry  (Theorem  11).  Two  lines  which  have 

a  point  in  common  are  said  to  intersect  in  or  to  meet  in  that  point,  or 

to  he  on  a  common  point.  Also,  if  two  distinct  points  lie  on  the  same 

line,  the  line  is  said  to  join  the  points.  Points  which  are  on  the 

same  line  are  said  to  be  collinear  ;  points  which  are  not  on  the  same 

line  are  said  to  be  noncollinear.  Lines  which  are  on  the  same  point 

(i.e.  contain  the  same  point)  are  said  to  be  copunctal,  or  concurrent* 

Concerning  points  and  lines  we  now  make  the  following  assump- 
tions :    

he  Assumptions  of  Alignment.  A 

V<AL) If  A  and  B  are  distinct  points,  there  is  at  least  one  line  on 
both  A  and  B. 

\k.%/If  A  and  B  are  distinct  points,  there  is  not  more  than  one 
line  on  both  A  and  B. 

/A.3y)lf  A,  B,  C  are  points  not  all  on  the  same  line,  and  D  and 

E~(D  =£  E)  are  points  such  that  B,  C,  D  are  on  a  line  and  C,  A,  E 
are  on  a  line,  there  is  a  point  F 

such  that  A,  B,  F  are  on  a  line 

and  also  D,  E,  F  are  on  a  line 

(fig.  3).f 
It  should  be  noted  that  this  set 

of  assumptions  is  satisfied  by  the 

F  triple  system  (1),  p.  3,  and  also 
by  the  system  of  quadruples  (2), 

p.  6,  as  well  as  by  the  points  and  lines  of  ordinary  Euclidean  geom- 

etry with  the  notion  of  "points  at  infinity"  (cf.  §  3,  p.  8),  and  by 

*  The  object  of  this  paragraph  is  simply  to  define  the  terms  in  common  use  in 
terms  of  the  general  logical  notion  of  belonging  to  a  class.  In  later  portions  of 
this  book  we  may  omit  the  explicit  definition  of  such  common  terms  when  such 
definition  is  obvious. 

t  The  figures  are  to  be  regarded  as  a  concrete  representation  of  our  science,  in 

which  the  undefined  "points"  and  "lines"  of  the  science  are  represented  by 
points  and  lines  of  ordinary  Euclidean  geometry  (this  requires  the  notion  of  ideal 
points  ;  cf.  §  3,  p.  8).  Their  function  is  not  merely  to  exhibit  one  of  the  many 
possible  concrete  representations,  but  also  to  help  keep  in  mind  the  various  rela- 

tions in  question.  In  using  them,  however,  great  care  must  be  exercised  not 
to  use  any  properties  of  such  figures  that  are  not  formal  logical  consequences 
of  the  assumptions ;  in  other  words,  care  must  be  taken  that  all  deductions  are 
made  formally  from  the  assumptions  and  theorems  previously  derived  from  the 
assumptions. 
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the  "  analytic  projective  space  "  described  in  §  4.    Any  one  of  these 
representations  shows  that  our  set  of  Assumptions  A  is  consistent* 

The  following  three  theorems  are  immediate  consequences  of  the 
first  two  assumptions. 

Theorem  1.  Tiro  distinct  points  are  on  one  and  only  one  line. 

(Al,A2)f 

The  line  determined  by  the  points  A,  B  (A=f=  B)  will  often  be 
denoted  by  the  symbol  or  name  A  B. 

Theorem  2.  If  C  and  D  (C  =£  D)  are  points  on  the  line  AB,  A  and 
B  are  points  on  the  line  CD.    (A  1,  A  2) 

Theorem  3.  Two  distinct  lines  cannot  be  on  more  than  one  common 

point.    (A  2) 

Assumption  A3  will  be  used  in  the  derivation  of  the  next  theo- 
rem. It  may  be  noted  that  under  Assumptions  Al,  A  2  it  may  be 

stated  more  conveniently  as  follows :  If  A,  B,  C  are  points  not  all  on 

the  same  line,  the  line  joining  any  point  D  on  the  line  BC  to  any 

point  E  (D  =£  E)  on  the  line  CA  meets  the  line  AB  in  a  point  F. 
This  is  the  form  in  which  this  assumption  is  generally  used  in  the 
sequel. 

7.  The  plane.  Definition.  If  P,  Q,  R  are  three  points  not  on 

the  same  line,  and  /  is  a  line  joining  Q  and  B,  the  class  S2  of  all 

points  on  the  lines  joining  P  to  the  points  of  I  is  called  the  plane 
determined  by  P  and  /. 

"We  shall  use  the  small  letters  of  the  Greek  alphabet,  a,  /8,  7,  ir,  etc., 
as  names  for  planes.  It  follows  at  once  from  the  definition  that  P  and 

every  point  of  /  are  points  of  the  plane  determined  by  P  and  I. 

Theorem  4.  If  A  and  B  are  points  on  a  plane  it,  then  every  point 

on  the  line  AB  is  on  ir.    (A) 

Proof.  Let  the  plane  ir  under  consideration  be  determined  by  the 
point  P  and  the  line  I. 

*  In  the  multiplicity  of  the  possible  concrete  representations  is  seen  one  of  the 
great  advantages  of  the  formal  treatment  quite  aside  from  that  of  logical  rigor.  It 
is  clear  that  there  is  a  great  gain  in  generality  as  long  as  the  fundamental  assump- 

tions are  not  categorical  (cf.  p.  6).  In  the  present  treatment  our  assumptions  are 
not  made  categorical  until  very  late. 

t  The  symbols  placed  in  parentheses  after  a  theorem  indicate  the  assumptions 
needed  in  its  proof.  The  symbol  A  will  be  used  to  denote  the  whole  set  of  Assump- 

tions A  1,  A 2,  A3. 



18 THEOREMS  OF  ALIGNMENT  AND  DUALITY    [Chap  I 

Fig.  4 

1.  If  both  A  and  B  are  on  I,  or  if  the  line  AB  contains  P,  the 
theorem  is  immediate. 

2.  Suppose  A  is  on  I,  B  not  on  I,  and  AB  does  not  contain  P  (fig.  4). 

Since  B  is  a  point  of  ir,  there  is  a  point  B'  on  I  collinear  with  B  and  P. 
If  C  be  any  point  on  AB,  the  line 

joining  C  on  .42?  to  P  on  2?#' 
will  have  a  point  T  in  common 

with  .42?'  =  /  (A3).  Hence  C  is  a 

point  of  7r. 
3.  Suppose  neither  .4  nor  B  is 

on  Z  and  that  AB  does  not  con- 

tain P  (fig.  5).  Since  A  and  2?  are 

points  of  7r,  there  exist  two  points 

A'  and  2?'  on  I  collinear  with  A,  P  and  B,  P  respectively.  The  line  join- 
ing A  on  A'P  to  B  on  PB'  has  a  point  #  in  common  with  B'A'  (A  3). 

Hence  every  point  of  the  line  AB  =  A Q 

is  a  point  of  ir,  by  the  preceding  case. 
This  completes  the  proof. 

If  all  the  points  of  a  line  are  points 

of  a  plane,  the  line  is  said  to  be  a  line  of 

the  plane,  or  to  lie  in  or  to  be  in  or  to 

be  on  the  plane ;  the  plane  is  said  to 

pass  through,  or  to  contain  the  line, 

or  we  may  also  say  the  plane  is  on  the 

line.  Further,  a  point  of  a  plane  is  said 

to  be  in  or  to  lie  in  the  plane,  and  the 

plane  is  on  the^pomL___   
C3'  The  first  assumption  of  extension?  The  theorems  of  the  pre- 

ceding section  were  stated  and  proved  on  the  assumption  (explicitly 

stated  in  each  case)  that  the  necessary  points  and  lines  exist.  The 

assumptions  of  extension,  E,  insuring  the  existence  of  all  the  points 

which  we  consider,  will  be  given  presently.  The  first  of  these,  how- 
ever, it  is  desirable  to  introduce  at  this  point. 

A&Jlssumption  of  Extension  : 

c'E  0/  There  are  at  least  three  points  on  every  line. 
This  assumption  is  needed  in  the  proof  of  the  following 

Theorem  5.  Any  two  lines  on  the  same  plane  ir  are  on  a  common 
point.    (A,  E  0) 

Fig.  5 
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a=r 

Fig.  6 

Proof.  Let  the  plane  ir  be  determined  by  the  point  P  and  the  line  /, 
and  let  a  and  b  be  two  distinct  lines  of  it. 

1.  Suppose  a  coincides  with  I  (fig.  6).    If  b  contains  P,  any  point 
B  of  b  (E  0)  is  collinear  with  P  and 

some  point  of  l  =  a,  which  proves  the 
theorem  when  b  contains  P.  If  b  does 

not  contain  P,  there  exist  on  b  two 

points  A  and  J?  not  on  I  (E  0),  and 

since  they  are  points  of  tt,  they  are 

collinear  with  P  and  two  points  A' 
and  £'  of  /  respectively.  The  line 

joining  A  on  A'P  to  2?  on  P^'  has  a 
point  -B  in  common  with  A'B'  (A  3) 

La  /  =  a  and  b  have  a  point  in  common.   Hence  every  line  in  the  plane 
it  has  a  point  in  common  with  I. 

2.  Let  a  and  b  both  be  distinct 

from  /.  (i)  Let  a  contain  P  (fig.  7). 

The  line  joining  P  to  any  point 

B  of  b  (E  0)  has  a  point  B'  in  com- 
mon with  I  (Case  1  of  this  proof). 

Also  the  lines  a  and  b  have  points 

A'  and  R  respectively  in  common 
with  /  (Case  1).  .  Now  the  line 

AP=  a  contains  the  points  A'  of 

RB'  and  P  of  B'B,  and  hence  has  a  point  A  in  common  with  BR  =  b. 
Hence  every  line  of  it  has  a  point 
in  common  with  any  line  of  it 

through  P.  (ii)  Let  neither  a  nor 
b  contain  P  (fig.  8).  As  before, 
a  and  b  meet  I  in  two  points  Q 

and  R  respectively.  Let  B'  be  a 
point  of  I  distinct  from  Q  and  R 

(E  0).  The  line  PB'  then  meets 
a  and  b  in  two  points  A  and  B 

respectively  (Case  2,  (i)).  If 

A=  B,  the  theorem  is  proved.  If  A  3=  B,  the  line  b  has  the  point 

R  in  common  with  QB'  and  the  point  B  in  common  with  J?'^,  and 
hence  has  a  point  in  common  with  AQ  —  a  (A  3). 

Fig. 

Fig.  8 
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Fig.  9 

THEOREM  6.  The  plane  a  determined  by  a  line  I  and  a  point  P  is 

identical  with  the  plane  /3  determined  by  a  line  m  and  a  point  Q, 

provided  m  and  Q  are  on  a.    (A,  E  0) 

Proof.  Any  point  B  of  /3  is  collinear  with  Q  and  a  point  A  of  m 

(fig.  9).    A  and  Q  are  both  points  of  a,  and  hence  every  point  of  the 
line  AQ  is  a  point  of  a  (Theorem  4). 

Hence  every  point  of  yS  is  a  point 
of  a.  Conversely,  let  B  be  any  point 

of  a.  The  line  BQ  meets  m  in  a 

point  (Theorem  5).  Hence  every 
point  of  a  is  also  a  point  of  /3. 

Corollary.  There  is  one  and  only 

one  plane  determined  by  three  non- 
collinear  points,  or  by  a  line  and  a 

point  not  on  the  line,  or  by  two  inter- 
secting lines.    (A,  E0) 

The  data  of  the  corollary  are  all  equivalent  by  virtue  of  E  0.   We 

will  denote  by  ABC  the  plane  determined  by  the  points  A,  B,  C; 

by  a  A  the  plane  determined  by  the  line  a  and  the  point  A,  etc. 

Theorem  7.  Two  distinct  planes  which  are  on  two  common  points 

A,  B  (A^  B)  are  on  all  the  points  of  the  line  AB,  and  on  no  other  com- 
mon points.    (A,  E  0) 

Proof.  By  Theorem  4  the  line  AB  lies  in  each  of  the  two  planes, 

which  proves  the  first  part  of  the  proposition.  Suppose  C,  not  on  AB, 

were  a  point  common  to  the  two  planes.  Then  the  plane  determined  by 

A,  B,  C  would  be  identical  with  each  of  the  given  planes  (Theorem  6), 

which  contradicts  the  hypothesis  that  the  planes  are  distinct. 

Corollary.  Two  distinct  planes  cannot  be  on  more  than  one  com- 
mon line.    (A,  E  0) 

9.  The  three-space.  Definition.  If  P,  Q,  R,  T  are  four  points 
not  in  the  same  plane,  and  if  tr  is  a  plane  containing  Q,  R,  and  T, 

the  class  S3  of  all  points  on  the  lines  joining  P  to  the  points  of  ir  is 

called  the  space  of  three  dimensions,  or  the  three-space  determined 

by  P  and  it. 

If  a  point  belongs  to  a  three-space  or  is  a  point  of  a  three-space,  it 
is  said  to  be  in  or  to  lie  in  or  to  be  on  the  three-space.  If  all  the  points 

of  a  line  or  plane  are  points  of  a  three- space  S3,  the  line  or  plane  is  said 
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to  lie  in  or  to  be  in  or  to  be  on  the  S3.  Also  the  three-space  is  said  to 
be  on  the  point,  line,  or  plane.  It  is  clear  from  the  definition  that  P  and 

every  point  of  ir  are  points  of  the  three-space  determined  by  P  and  ir. 

Theorem  8.  If  A  and  B  are  distinct  points  on  a  three-space  S3, 
every  point  on  the  line  AB  is  on  Sg.    (A) 

Proof.  Let  S3  be  determined  by 

a  plane  ir  and  a  point  P. 
1.  If  A  and  B  are  both  in  ir,  the 

theorem  is  an  immediate  conse- 

quence of  Theorem  4. 

Fig.  10 

2.  If  the  line  AB  contains  P, 

the  theorem  is  obvious. 

3.  Suppose  A  is  in  it,  B  not  in 
ir,  and  AB  does  not  contain  P 

(fig.  10).  There  then  exists  a  point 

B'  (=£  A)   of  ir  collinear  with   B 

and  P  (def.).  The  line  joining  any  point  M  on  AB  to  P  on  BB'  has 

a  point  M'  in  common  with  B'A  (A  3).  But  M '  is  a  point  of  ir,  since 

it  is  a  point  of  AB'.   Hence  M  is  a  point  of  S3  (def.). 
4.  Let  neither  A  nor  B  lie  in  ir,  and  let  AB  not  contain  P  (fig.  11). 

The  lines  PA  and  PB  meet  ir  in 

two  points  A'  and  B'  respectively. 

But  the  line  joining  A  on  A'P  to 

B  on  PB'  has  a  point  C  in  common 

with  B'A'.  C  is  a  point  of  7r,  which 
reduces  the  proof  to  Case  3. 

It  may  be  noted  that  in  this 
proof  no  use  has  been  made  of  E  0. 

In  discussing  Case  4  we  have 

proved  incidentally,  in  connection 

with  E0  and  Theorem  4,  the  fol- 
lowing corollary: 

Corollary  1.  If  S5is  a  three-space  determined  by  a  point  P  and  a 
plane  ir,  then  ir  and  any  line  on  S3  but  not  on  ir  are  on  one  and  only 

one  common  point.    (A,  E  0) 

Corollary  2.  Every  point  on  any  plane  determined  by  three  non- 

collinear  points  on  a  three-space  Sg  is  on  S3.    (A) 

Fig.  11 
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Proof.  As  before,  let  the  three-space  be  determined  by  it  and  P, 
and  let  the  three  noncollinear  points  be  A,  B,  C.  Every  point  of  the 

line  BC  is  a  point  of  S3  (Theorem  8),  and  every  point  of  the  plane 

ABC*  is  collinear  with  A  and  some  point  of  BC. 

Corollary  3.  If  a  three-space  S3  is  determined  by  a  point  P  and 
a  plane  ir,  then  ir  and  any  plane  on  S3  distinct  from  it  are  on  one 

and  only  one  common  line.    (A,  E  0) 

Proof.  Any  plane  contains  at  least  three  lines  not  passing  through 

the  same  point  (del,  A 1).  Two  of  these  lines  must  meet  tt  in  two 

distinct  points,  which  are  also 

points  of  the  plane  of  the  lines 

(Cor.  1).  The  result  then  follows 
from  Theorem  7. 

Theorem  9.  If  a  plane  a  and 
a  line  a  not  on  a  are  on  the  same 

three-space  S3,  then  a  and  a  are 
on  one  and  only  one  common  point. 

(A,E0) 

Proof.  Let  S3  be  determined  by 

the  plane  it  and  the  point  P. 

1.  If  a  coincides  with  ir,  the  theo- 
rem reduces  to  Cor.  1  of  Theorem  8. 

2.  If  a  is  distinct  from  ir,  it  has 

a  line  /  in  common  with  ir  (Theorem  8,  Cor.  3).  Let  A  be  any  point 

on  a  not  on  I  (E0)  (fig.  12).  The  plane  aA,  determined  by  A  and  a, 

meets  ir  in  a  line  m  =£  I  (Theorem  8,  Cor.  3).  The  lines  I,  m  have 

a  point  B  in  common  (Theorem  5).  The  line  AB  in  a  A  meets  a  in 

a  point  Q  (Theorem  5),  which  is  on  a,  since  AB  is  on  a.  That  a 

and  a  have  no  other  point  in  common  follows  from  Theorem  4. 

Corollary  1.  Any  two  distinct  planes  on  a  three-space  are  on  one 
and  only  one  common  line.    (A,  E  0) 

The  proof  is  similar  to  that  of  Theorem  8,  Cor.  3,  and  is  left  as  an 
e  xercise. 

Corollary  2.  Conversely,  if  two  planes  are  on  a  common  line,  there 

exists  a  three-space  on  both.    (A,  E  0) 

Fig.  12 

*  The  proof  can  evidently  be  so  worded  as  not  to  imply  Theorem  6. 
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Proof.  If  the  planes  a  and  ft  are  distinct  and  have  a  line  I  in 

common,  any  point  P  of  y9  not  on  I  will  determine  with  a  a  three- 
space  containing  I  and  P  and  hence  containing  /3  (Theorem  8,  Cor.  2). 

Corollary  3.  Three  planes  on  a  three-space  which  are  not  on  a 
common  line  are  on  one  and  only  one  common  point.    (A,  E  0) 

Proof.  This  follows  without  difficulty  from  the  theorem  and  Cor.  1. 

Two  planes  are  said  to  determine  the  line  which  they  have  in  com- 
mon, and  to  intersect  or  meet  in  that  line.  Likewise  if  three  planes 

have  a  point  in  common,  they  are  said  to  intersect  or  meet  in  the  point. 

Corollary  4.  If  a,  /9,  y  are  three  distinct  planes  on  the  same  S3 

but  not  on  the  same  line,  and  if  a  line  I  is  on  each  of  two  planes  fi,  v 

which  are  on  the  lines  fiy  and  ya  respectively,  then  it  is  on  a  plane  X 

which  is  on  the  line  a/S.    (A,  E  0) 

Proof.  By  Cor.  3  the  planes  a, 

&  7  have  a  point  P  in  common, 

so  that  the  lines  &y,  ya,  afi  all 

contain  P.  The  line  /,  being  com- 
mon to  planes  through  &y  and  ya, 

must  pass  through  P,  and  the 
lines  I  and  aft  therefore  intersect 

in  P  and  hence  determine  a  plane 

X  (Theorem  6,  Cor.). 

Theorem  10.     The  three-space 
S3  determined  by  a  plane  tr  and 

a  point  P  is  identical  with  the  three-space  S3  determined  by  a  plane 

•jt'  and  a  point  P',  provided  ir'  and  P'  are  on  S3.    (A,  E0) 

Proof.  Any  point  A  of  S3  (fig.  13)  is  collinear  with  P'  and  some 
point  A'  of  7r';  but  P'  and  A'  are  both  points  of  S3  and  hence  A  is  a 
point  of  S3  (Theorem  8).  Hence  every  point  of  S3  is  a  point  of  S3. 

Conversely,  if  A  is  any  point  of  S3,  the  line  AP'  meets  it'  in  a  point 
(Theorem  9).    Hence  every  point  of  S3  is  also  a  point  of  S3. 

Corollary.  There  is  one  and  only  one  three-space  on  four  given 
points  not  on  the  same  plane,  or  a  plane  and  a  point  not  on  the  plane, 

or  two  nonintersecting  lines.    (A,  E0) 

The  last  part  of  the  corollary  follows  from  the  fact  that  two 

nonintersecting  lines  are  equivalent  to  four  points  not  in  the  same 

plane  (E0). 

Fig.  13 
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It  is  convenient  to  vise  the  term  coplanar  to  describe  points  in  the 
same  plane.  And  we  shall  use  the  term  skew  lines  for  lines  that  have 

no  point  in  common.  Four  noncoplanar  points  or  two  skew  lines 

are  said  to  determine  the  three-space  in  which  they  lie. 
10.  The  remaining  assumptions  of  extension  for  a  space  of  three 

dimensions.  In  §  8  we  gave  a  first  assumption  of  extension.  We  will 

now  add  the  assumptions  which  insure  the  existence  of  a  space  of 

three  dimensions,  and  will  exclude  from  our  consideration  spaces  of 

higher  dimensionality.   

^Assumptions  of  Ex  tension,  E 

(Jr^W  There  exists  at  least  one  line. 
2y/All  points  are  not  on  the  same  line. 

.All  points  are  not  on  the  same  plane. 

E3i/  If  S3  is  a  three-space,  every  point  is  on  S3. 

The  last  may  be  called  an  assumption  of  closure* 
The  last  assumption  might  be  replaced  by  any  one  of  several  equiv- 

alent propositions,  such  as  for  example : 

Every  set  of  five  points  lie  on  the  same  three-space  ;  or 
Any  two  distinct  planes  have  a  line  in  common.  (Cf.  Cor.  2,  Theo- 

rem 9) 

There  is  no  logical  difficulty,  moreover,  in  replacing  the  assumption 

(E3')  of  closure  given  above  by  an  assumption  that  all  the  points 

are  not  on  the  same  three-space,  and  then  to  define  a  "  four-space  " 
in  a  manner  entirely  analogous  to  the  definitions  of  the  plane  and 

to  the  three-space  already  given.  And  indeed  a  meaning  can  be  given 
to  the  words  point  and  line  such  that  this  last  assumption  is  satisfied 

as  well  as  those  that  precede  it  (excepting  E  3'  of  course).  We 
could  thus  proceed  step  by  step  to  define  the  notion  of  a  linear 

space  of  any  number  of  dimensions  and  derive  the  fundamental 

properties  of  alignment  for  such  a  space.  But  that  is  aside  from  our 

present  purpose.  The  derivation  of  these  properties  for  a  four-space 
will  furnish  an  excellent  exercise,  however,  in  the  formal  reasoning 

here  emphasized  (cf.  Ex.  4,  p.  25).  The  treatment  for  the  w-dimensional 
case  will  be  found  in  §  12,  p.  29. 

*  The  terms  extension  and  closure  in  this  connection  were  suggested  by  N.  J.  Lennes. 
It  will  be  observed  that  the  notation  has  been  so  chosen  that  Ei  insures  the  exist- 

ence of  a  space  of  i  dimensions,  the  line  and  the  plane  being  regarded  as  spaces  of 
one  and  two  dimensions  respectively. 
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The  following  corollaries  of  extension  are  readily  derived  from  the 

assumptions  just  made.    The  proofs  are  left  as  exercises. 

Corollary  1.  At  least  three  coplanar  lines  are  on  every  point. 

Corollary  2.  At  least  three  distinct  planes  are  on  every  line. 

Corollary  3.  All  planes  are  not  on  the  same  line. 

Corollary  4.  All  planes  are  not  on  the  same  point. 

Corollary  5.  If  S3  is  a  three-space,  every  plane  is  on  St. 

EXERCISES 

1.  Prove  that  through  a  given  point  P  not  on  either  of  two  skew  lines  I 

and  /'  there  is  one  and  only  one  line  meeting  both  the  lines  I,  V. 
2.  Prove  that  any  two  lines,  each  of  which  meets  three  given  skew  lines, 

are  skew  to  each  other. 

3.  Our  assumptions  do  not  as  yet  determine  whether  the  number  of  points 
on  a  line  is  finite  or  infinite.  Assuming  that  the  number  of  points  on  one  line 
is  finite  and  equal  to  n  +  1,  prove  that 

i.  the  number  of  points  on  every  line  is  n  +  1; 

ii.  the  number  of  points  on  every  plane  is  «2  +  n  +  1; 
iii.  the  number  of  points  on  every  three-space  is  n3  +  n2  +  n  +  1 ; 
iv.  the  number  of  lines  on  a  three-space  is  (n2  +  1)  (n2  +  n  +  1); 
v.  the  number  of  lines  meeting  any  two  skew  lines  on  a  three-space  is 

O  +  i)2; 
vi.  the  number  of  lines  on  a  point  or  on  a  plane  is  n2  +  n  +  1. 
4.  Using  the  definition  below,  prove  the  following  theorems  of  alignment  for 

a  four-space  on  the  basis  of  Assumptions  A  and  E  0 : 
Definition.  If  P,  Q,  R,  S,  T  are  five  points  not  on  the  same  three-space, 

and  S3  is  a  three-space  on  Q,  R,  S,  T,  the  class  S4  of  all  points  on  the 
lines  joining  P  to  the  points  of  S3  is  called  the  four-space  determined  by 
P  and  S,. 

i.  If  A  and  B  are  distinct  points  on  a  four-space,  every  point  on  the  line  AB 
is  on  the  four-space. 

ii.  Every  line  on  a  four-space  PQRST  which  is  not  on  the  three-space 
QRST  has  one  and  only  one  point  in  common  with  the  three-space. 

iii.  Every  point  on  any  plane  determined  by  three  noncollinear  points  on 

a  four-space  is  on  the  four-space. 

iv.  Every  point  on  a  three-space  determined  by  four  noncoplanar  points 
of  a  four-space  is  on  the  four-space. 

v.  Every  plane  of  a  four-space  determined  by  a  point  P  and  a  three-space 
S3  has  one  and  only  one  line  in  common  with  S3,  provided  the  plane  is  not  on  S3. 

vi.  Every  three-space  on  a  four-space  determined  by  a  point  P  and  a  three- 
space  S3  has  one  and  only  one  plane  in  common  with  S3,  provided  it  does 
not  coincide  with  S„. 
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vii.  If  a  three-space  S3  and  a  plane  a  not  on  S3  are  on  the  same  four-space, 

S3  and  a  have  one  and  only  one  line  in  common. 

viii.  If  a  three-space  S3  and  a  line  I  not  on  S3  are  on  the  same  four-space, 
S3  and  I  have  one  and  only  one  point  in  common. 

ix.  Two  planes  on  the  same  four-space  but  not  on  the  same  three-space 
have  one  and  only  one  point  in  common. 

x.  Any  two  distinct  three-spaces  on  the  same  four-space  have  one  and  only 
one  plane  in  common. 

xi.  If  two  three-spaces  have  a  plane  in  common,  they  lie  in  the  same  four-space. 

xii.  The  four-space  S4  determined  by  a  three-space  S3  and  a  point  P  is 

identical  with  the  four-space  determined  by  a  three-space  S3  and  a  point  P/, 

provided  S3  and  P'  are  on  S4. 
5.  On  the  assumption  that  a  line  contains  n  +  1  points,  extend  the  results 

of  Ex.  3  to  a  four-space.   

<llTThe_Brinciple  of  duality)  It  is  in  order  to  exhibit  the  theorem 

of  duality  as  clearly  as  possible  that  we  have  introduced  the  sym- 
metrical, if  not  always  elegant,  terminology: 

A  point  is  on  a  line.  A  line  is  on  a  point. 

A  point  is  on  a  plane.  A  plane  is  on  a  point. 

A  line  is  on  a  plane.  A  plane  is  on  a  line. 

A  point  is  on  a  three-space.  A  three-space  is  on  a  point. 

A  line  is  on  a  three-space.  A  three-space  is  on  a  line. 

A  plane  is  on  a  three-space.  A  three-space  is  on  a  plane. 

The  theorem  in  question  rests  on  the  following  observation :  If  any 

one  of  the  preceding  assumptions,  theorems,  or  corollaries  is  expressed 

by  means  of  this  "on"  terminology  and  then  a  new  proposition  is 
formed  by  simply  interchanging  the  words  'point  and  plane,  then 
this  new  proposition  will  be  valid,  i.e.  will  be  a  logical  consequence 

of  the  Assumptions  A  and  E.  We  give  below,  on  the  left,  a  complete 

list  of  the  assumptions  thus  far  made,  expressed  in  the  "  on  "  termi- 
nology, and  have  placed  on  the  right,  opposite  each,  the  corresponding 

proposition  obtained  by  interchanging  the  words  point  and  plane 

together  with  the  reference  to  the  place  where  the  latter  proposition 

occurs  in  the  preceding  sections  : 

Assumptions  A 1,  A  2.  If  A  and  Theorem  9,  Cor.  1.  If  a  and  £ 

B  are  distinct  points,  there  is  one  are  distinct  planes,  there  is  one  and 

and  only  one  line  on  A  and  B.  only  one  line  on  a  and  ft* 

*  By  virtue  of  Assumption  E  3'  it  is  not  necessary  to  impose  the  condition  that  the 
elements  to  be  considered  are  in  the  same  three-space.  This  observation  should  empha- 

size, however,  that  the  assumption  of  closure  is  essential  in  the  theorem  to  be  proved. 
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Assumption  A  3.  If  A,  B,  C  are 

points  not  all  on  the  same  line,  and 

D  and  E  (D^  E)  are  points  such 
that  B,  C,  D  are  on  a  line  and  C, 

A,  E  are  on  a  line,  then  there  is  a 

point  F  such  that  A,  B,  F  are  on  a 
line  and  also  D,  E,  F  are  on  a  line. 

Assumption  EO.  There  are  at 

least  three  points  on  every  line. 
Assumption  E 1.  There  exists 

at  least  one  line. 

Assumption  E  2.  All  points  are 
not  on  the  same  line. 

Assumption  E  3.  All  points  are 

not  on  the  same  plane. 

Assumption  E3'.  If  S8  is  a 
three-space,  every  point  is  on  Ss. 

Theorem  9,  Cor.  4.  If  a,  yS,  7 

are  planes  not  all  on  the  same  line, 

and  fi  and  v(fi^v)  are  planes  such 

that  j3, 7,  fi  are  on  a  line  and  7,  a,  v 

are  on  a  line,  then  there  is  a  plane  X 
such  that  a,  /8,  X  are  on  a  line  and 

also  fi,  v,  X  are  on  a  line. 

Cor.  2,  p.  25.  There  are  at 
least  three  planes  on  every  line. 

Assumption  E  1.  There  exists 

at  least  one  line. 

Cor.  3,  p.  25.  All  planes  are 
not  on  the  same  line. 

Cor.  4,  p.  25.  All  planes  are 
not  on  the  same  point. 

Cor.  5,  p.  25.  If  S,  is  a  three- 
space,  every  plane  is  on  S3. 

In  all  these  propositions  it  is  to  be  noted  that  a  line  is  a  class 

of  points  whose  properties  are  determined  by  the  assumptions,  while 

a  plane  is  a  class  of  points  specified  by  a  definition.  This  definition 

in  the  "on"  language  is  given  below  on  the  left,  together  with  a 
definition  obtained  from  it  by  the  interchange  of  point  and  plane. 
Two  statements  in  this  relation  to  one  another  are  referred  to  as 

(space)  duals  of  one  another. 

If  P,  Q,  R  are  points  not  on 
the  same  line,  and  /  is  a  line  on 

Q  and  R,  the  class  S2  of  all 

points  such  that  every  point  of 

Ss  is  on  a  line  with  P  and  some 

point  on  I  is  called  the  plane 

determined  by  P  and  I. 

If  X,  fjL,  v  are  planes  not  on  the 
same  line,  and  Ms  a  line  on  /* 

and  v,  the  class  Bs  of  all  planes 

such  that  every  plane  of  Bt  is  on 
a  line  with  X  and  some  plane  on 
I  is  called  the  bundle  determined 

by  X  and  I. 

Xow  it  is  evident  that,  since  X,  fi,  v  and  /  all  pass  through  a  point  O, 

the  bundle  determined  by  X  and  I  is  simply  the  class  of  all  planes  on 

the  point  0.  In  like  manner,  it  is  evident  that  the  dual  of  the  defini- 

tion of  a  three-space  is  simply  a  definition  of  the  class  of  all  planes  on 

a  three-space.  Moreover,  dual  to  the  class  of  all  planes  on  a  line  we 
have  the  class  of  all  points  on  a  line,  Le.  the  line  itself,  and  conversely. 
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With  the  aid  of  these  observations  we  are  now  ready  to  establish 

the  so-called  principle  of  duality : 

Seorem  IL^sThe  theorem  of  duality  for  a  space  of  three 
DIMENSIONS.  Any  proposition  deducible  from  Assumptions  A  and  E 

concerning  points,  lines,  and  planes  of  a  three-space  remains  valid,  if 

stated  in  the  "on"  terminology,  when  the  words  "point"  and  "plane" 
are  interchanged.    (A,  E) 

Proof.  Any  proposition  deducible  from  Assumptions  A  and  E  is 

obtained  from  the  assumptions  given  above  on  the  left  by  a  certain 

sequence  of  formal  logical  inferences.  Clearly  the  same  sequence  of 

logical  inferences  may  be  applied  to  the  corresponding  propositions 

given  above  on  the  right.  They  will,  of  course,  refer  to  the  class  of 

all  planes  on  a  line  when  the  original  argument  refers  to  the  class  of 

all  points  on  a  line,  i.e.  to  a  line,  and  to  a  bundle  of  planes  when  the 

original  argument  refers  to  a  plane.  The  steps  of  the  original  argu- 
ment lead  to  a  conclusion  necessarily  stated  in  terms  of  some  or  all 

of  the  twelve  types  of  "  on  "  statements  enumerated  at  the  beginning 
of  this  section.  The  derived  argument  leads  in  the  same  way  to  a 

conclusion  which,  whenever  the  original  states  that  a  point  P  is  on  a 

line  I,  says  that  a  plane  tt'  is  one  of  the  class  of  planes  on  a  line  /', 
i.e.  that  ir'  is  on  I';  or  which,  whenever  the  original  argument  states 
that  a  plane  w  is  on  a  point  P,  says  that  a  bundle  of  planes  on  a 

point  P'  contains  a  plane  ir',  i.e.  that  P'  is  on  ir'.  Applying  similar 

considerations  to  each  of  the  twelve  types  of  "  on "  statements  in 
succession,  we  see  that  to  each  statement  in  the  conclusion  arrived 

at  by  the  original  argument  corresponds  a  statement  arrived  at  by 

the  derived  argument  in  which  the  words  point  and  plane  in  the 

original  statement  have  been  simply  interchanged. 

Any  proposition  obtained  in  accordance  with  the  principle  of  dual- 
ity just  proved  is  called  the  space  dual  of  the  original  proposition. 

The  point  and  plane  are  said  to  be  dual  elements ;  the  line  is  self- 
dual.  We  may  derive  from  the  above  similar  theorems  on  duality  in 

a  plane  and  at  a  point.  For,  consider  a  plane  ir  and  a  point  P  not  on 

7r,  together  with  all  the  lines  joining  P  with  every  point  of  tr.  Then 

to  every  point  of  ir  will  correspond  a  line  through  P,  and  to  every 

line  of  7r  will  correspond  a  plane  through  P.  Hence  every  proposi- 

tion concerning  the  points  and  lines  of  ir  is  also  valid  for  the  corre- 
sponding lines  and  planes  through  P.    The  space  dual  of  the  latter 



§§  li,  12]  SPACE  OF  N  DIMENSIONS  29 

proposition  is  a  new  proposition  concerning  lines  and  points  on  a 

plane,  which  could  have  been  obtained  directly  by  interchanging 

the  words  point  and  line  in  the  original  proposition,  supposing  the 

latter  to  be  expressed  in  the  "on"  language.    This  gives 

Theorem  12./Jhe  theorem  of  duality  in  a  plaxe^  Any  prop- 
osition deducible  from  Assumptions  A  and  E  concerning  the  points 

and  lines  of  a  plane  remains  valid,  if  stated  in  the  "on"  terminology, 

when  the  words  "  point "  and  "Unejl  are  interchanged.    (A,  E) 
The  space  dual  of  this  theorem  then  gives 

Theorem  13.  The  theorem  of  duality  at  a  point.  Any  prop- 
osition deducible  from  Assumptions  A  and  E  concerning  the  planes 

and  lines  through  a  point  remains  valid,  if  stated  in  the  "on"  termi- 

nology, when  the  words  "plane"  and  "  line"  are  interchanged.  (A,  E) 
The  principle  of  duality  was  first  stated  explicitly  by  Gergonne  (1826),  but 

was  led  up  to  by  the  writings  of  Poncelet  and  others  during  the  first  quarter 

of  the  nineteenth  century.  It  should  be  noted  that  this  principle  was  for 

several  years  after  its  publication  the  subject  of  much  discussion  and  often 

acrimonious  dispute,  and  the  treatment  of  this  principle  in  many  standard 

texts  is  far  from  convincing.  The  method  of  formal  inference  from  explicitly 

stated  assumptions  makes  the  theorems  appear  almost  self-evident.  This  may 
well  be  regarded  as  one  of  the  important  advantages  of  this  method. 

It  is  highly  desirable  that  the  reader  gain  proficiency  in  forming  the  duals 

of  given  propositions.  It  is  therefore  suggested  as  an  exercise  that  he  state 

the  duals  of  each  of  the  theorems  and  corollaries  in  this  chapter.  He  should 

in  this  case  state  both  the  original  and  the  dual  proposition  in  the  ordinary 

terminology  in  order  to  gain  facility  in  dualizing  propositions  without  first 

stating  them  in  the  often  cumbersome  "on"  language.  It  is  also  desirable 
that  he  dualize  several  of  the  proofs  by  writing  out  in  order  the  duals  of  each 

proposition  used  in  the  proofs  in  question. 

EXERCISE 

Prove  the  theorem  of  duality  for  a  space  of  four  dimensions  :  Any  propo- 

sition derivable  from  the  assumptions  of  alignment  and  extension  and  closure 

for  a  space  of  four  dimensions  concerning  points,  lines,  planes,  and  three- 

spaces  remains  valid  when  stated  in  the  "  on  "  terminology,  if  the  words 
point  and  three-space  and  the  words  line  and  plane  be  interchanged. 

*  12.  The  theorems  of  alignment  for  a  space  of  n  dimensions.  We 

have  already  called  attention  to  the  fact  that  Assumption  E3', 
whereby  we  limited  ourselves  to  the  consideration  of  a  space  of  only 

*  This  section  may  be  omitted  on  a  first  reading. 
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three  dimensions,  is  entirely  arbitrary.  This  section  is  devoted  to  the 

discussion  of  the  theorems  of  alignment,  i.e.  theorems  derivable  from 

Assumptions  A  and  E  0,  for  a  space  of  any  number  of  dimensions. 

In  this  section,  then,  we  make  use  of  Assumptions  A  and  E  0  only. 

Definition.  If  P,,  Pv  Pv  •  •  • ,  Pn  are  n  +  1  points  not  on  the  same 

(n  —  l)-space,  and  Sn_1  is  an  (n  —  l)-space  on  Px,  P2,  •  •  •,  Pn,  the  class 
S„  of  all  points  on  the  lines  joining  P^  to  the  points  of  Sn_!  is  called 

the  n-space  determined  by  J^  and  S„_r 

As  a  three-space  has  already  been  denned,  this  definition  clearly 

determines  the  meaning  of  "w-space"  for  every  positive  integral  value 
of  n.  We  shall  use  Sn  as  a  symbol  for  an  %-space,  calling  a  plane  a 

2-space,  a  line  a  1-space,  and  a  point  a  0-space,  when  this  is  convenient. 
S0  is  then  a  symbol  for  a  point. 

Definition.  An  Sr  is  on  an  Sf  and  an  St  is  on  an  Sr  (r  <  t),  pro- 

vided that  every  point  of  Sr  is  a  point  of  Sr 

Definition,  k  points  arc  said  to  be  independent,  if  there  is  no  St_2 
which  contains  them  all. 

Corresponding  to  the  theorems  of  §§  6-9  we  shall  now  establish 

the  propositions  contained  in  the  following  Theorems  Snl,  Sn2, 

Sn  3.  As  these  propositions  have  all  been  proved  for  the  case  n  =  3, 

it  is  sufficient  to  prove  them  on  the  hypothesis  that  they  have  already 

been  proved  for  the  cases  *«  8,  4,  •  •  •,  n  —  1;  i.e.  we  assume  that  the 

propositions  contained  in  Theorem  S^^l,  a,  b,  c,  d,  e,  f  have  been 

proved,  and  derive  Theorem  Snl,  a,  •  •  • ,  /  from  them.  By  the  prin- 

ciple of  mathematical  induction  this  establishes  the  theorem  for  any  n. 

Theorem  Sb1.  Let  the  n-space  SB  he  defined  by  the  point  R0  and  the 

(n  —  l)-space  R„_r 

a.  There  is  an  n-space  on  any  n  +  1  independent  points. 

b.  Any  line  on  two  points  of  Sn  has  one  point  in  common  with  Rn_1} 

and  is  on  SM. 

c.  Any  Sr(r  <  n)  on  r  +  1  independent  points  of  SB  is  on  SH. 

d.  Any  Sr(r  <  n)  on  r  +  1  independent  points  of  S„  has  an  Sr_j  in 

common  with  R„_lf  provided  the  r  +  \  points  are  not  all  on  RH_V 

e.  Any  line  I  on  two  points  of  SB  has  one  point  in  common  with 

anV  Sn-1  °>l  S»- 

/.  If  T0  and  Tn_j  (T0   not    on   Tn_1)   are    any  point    and    any 

(n  —  \)-space  respectively  of  the  n-space  determined  by  R0  and  RB-1, 

the  latter  n-space  is  the  same  as  that  determined  by  T0  and  Tn_x. 
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Proof,  a.  Let  the  n  + 1  independent  points  be  P0,  Pv  ■  ■  • ,  Pn.  Then 

the  points  if,  P2,  •  •  • ,  P,  are  independent;  for,  otherwise,  there  would 
exist  an  S„_2  containing  them  all  (definition),  and  this  Sn_2  with  ijj 

would  determine  an  Sit_1  containing  all  the  points  P^,  Px,  •  •  •,  Pn,  con- 
trary to  the  hypothesis  that  they  are  independent.  Hence,  by  Theorem 

Sn_ll  a,  there  is  an  S)i_1  on  the  points  J£  JJ,  •  •  •,  j£;  and  this  Sa_1 

with  P,  determines  an  ?t-space  which  is  on  the  points  P„  if,  P2,  •  •  • ,  Pn. 
b.  If  the  line  I  is  on  R0  or  Rw_„  the  proposition  is  evident  from  the 

definition  of  S„.  If  I  is  not  on  R0  or  Rn_v  let  A  and  B  be  the  given 

points  of  /  which  are  on  S,,.  The  lines  R0.4  and  R0i?  then  meet  RM_1 

in  two  points  A'  and  B'  respectively.  The  line  I  then  meets  the  two 

lines  B'R0,  R0A';  and  hence,  by  Assumption  A3,  it  must  meet  the 

line  A'B'  in  a  point  P  which  is  on  R,^  by  Theorem  Sm_1  16.  To 

show  that  every  point  of  I  is  on  SB,  consider  the  points  A,  A',  P.  Any 
line  joining  an  arbitrary  point  Q  of  7  to  R0,  meets  the  two  lines  PA 

and  AA',  and  hence,  by  Assumption  A3,  meets  the  third  line  A' P. 

But  every  point  of  A'P  is  on  Ru_x  (Theorem  SI1_116),  and  hence  Q 
is,  by  definition,  a  point  of  Sm. 

c.  This  may  be  proved  by  induction  with  respect  to  r.  For  r  =  1  it 

reduces  to  Theorem  S.,1  b.  If  the  proposition  is  true  for  r  =  k  —  1,  all 
the  points  of  an  St  on  k  + 1  independent  points  of  SB  are,  by  definition 

and  Theorem  SA.l/,  on  lines  joining  one  of  these  points  to  the  points 
of  the  Si_1  determined  by  the  remaining  k  points.  But  under  the 

hypothesis  of  the  induction  this  S4_j  is  on  S,,,  and  hence,  by  Theorem 

Sml  b,  all  points  of  St  are  on  SB. 

d.  Let  r  -+- 1  independent  points  of  SB  be  P0,  Px ,  ■  •  • ,  Pr  and  let  P,  be 

not  on  Rn_  v  Each  of  the  lines  P>  Pk  (k  =  1,  •  •  • ,  r)  has  a  point  Qk  in 

common  with  R„_x  (by  SM1  b).  The  points  Qv  Q„,  •  •  •,  Qr  are  inde- 
pendent; for  if  not,  they  would  all  be  on  the  same  Sr_2,  which, 

together  with  7£,  would  determine  an  Sr_1  containing  all  the  pc;t^s 
Pk  (by  Sr_xl  b).  Hence,  by  Sr_xl  a,  there  is  an  Sr_x  on  Qv  Q„-  •  -,Qr 
which,  by  c,  is  on  both  Sr  and  Sm. 

e.  "We  will  suppose,  first,  that  one  of  the  given  points  is  R0.  Let 
the  other  be  A.  By  definition  /  then  meets  R„_1  in  a  point  A',  and,  by 
S^jlJ,  in  only  one  such  point.  If  R0  is  on  Sn_lt  no  proof  is  required 

for  this  case.  Suppose,  then,  that  R0  is  not  on  S„_1,  and  let  C  be  any 

point  of  S11_1.  The  line  RCC  meets  R.^  in  a  point  C  (by  definition). 

By  d,  Sn_j  has  in  common  with  R„_x  an  (n  —  2)-space,  S„_8,  and,  by 
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Theorem  Sn_xl  e,  this  has  in  common  with  the  line  A'C'  at  least 

one  point  D'.  All  points  of  the  line  D'C  are  then  on  Sn_v  by  Sm_jl  b. 
Now  the  line  I  meets  the  two  lines  C'D'  and  CC' ;  hence  it  meets  the 

line  CD'  (Assumption  A3),  and  has  at  least  one  point  on  Sn_r 
We  will  now  suppose,  secondly,  that  both  of  the  given  points  are 

distinct  from  R0.  Let  them  be  denoted  by  A  and  B,  and  suppose  that 

R0  is  not  on  Sn_v  By  the  case  just  considered,  the  lines  R0^4  and 

R0P  meet  Sn  _,  in  two  points  A'  and  B'  respectively.  The  line  I,  which 

meets  R0^4'  and  R0B'  must  then  meet  A'B'  in  a  point  which,  by 
Theorem  Sn_xl&,  is  on  Sn_x. 

Suppose,  finally,  that  R0  is  on  SB_X,  still  under  the  hypothesis  that  I 

is  not  on  R0.  By  d,  Sn_l  meets  Rn_x  in  an  (n  —  2)-space  Q„_2,  and 

the  plane  R0l  meets  Rn-1  in  a  line  I'.  By  Theorem  Sn_1le,  /'  and 
Qre_2  have  in  common  at  least  one  point  P.  Now  the  lines  I  and  R0P 

are  on  the  plane  R0/,  and  hence  have  in  common  a  point  Q  (by  Theorem 

S21  e  as  Theorem  5).    By  S,_jl  b  the  point  Q  is  common  to  Sn_j  and  I. 

f  Let  the  w-space  determined  by  T0  and  Tn_1  be  denoted  by  Tn. 
Any  point  of  Tn  is  on  a  line  joining  T0  with  some  point  of  Tnl. 

Hence,  by  b,  every  point  of  Tn  is  on  Sn.  Let  P  be  any  point  of  Sn 

distinct  from  T0.  The  line  T0P  meets  Tnl  in  a  point,  by  e.  Hence 

every  point  of  SB  is  a  point  of  Tn. 

Corollary.  Onn  +  1  independent  points  there  is  one  and  but  one  Sn. 

This  is  a  consequence  of  Theorem  Snl  a  and  Snl/.  The  formal 

proof  is  left  as  an  exercise. 

Theorem  Sn2.  An  Sr  and  an  S^  having  in  common  an  Sp,  but 

not  an  Sp  +  1,  are  on  a  common  Sr  +  jt_p  and  are  not  both  on  the  same 

S„>  if  n<r  +  k  —  p. 

Proof.  If  k=p,  Sk  is  on  Sr.  If  k>p,  let  Px  be  a  point  on  Sfc  not 

on  Sp.  Then  ij*  and  Sr  determine  an  Sr+1,  and  Px  and  Sp  an  Sp  +  1 
such  that  S;)  +  1  is  contained  in  Sr  +  1  and  SA„  If  k  >  p  +  1,  let  P2  be  a 

point  of  S^.  not  on  Sp  +  1.  Then  P%  and  Sr+1  determine  an  Sr  +  2,  while 

P2  and  Sp  +  1  determine  an  Sp  +  2,  which  is  on  Sr  +  2  and  SA..  This  process 

can  be  continued  until  there  results  an  S +{  containing  all  the  points 

of  Sk.  By  Theorem  Snl,  Cor.,  we  have  i  —  k—p.  At  this  stage  in  the 

process  we  obtain  an  Sr+k_p  which  contains  both  Sr  and  S^. 

The  argument  just  made  shows  that  Pv  P%,  ■  ■  •,  Pk_p,  together  with 

any  set  Qv  Q2,  •  •  •,  Qr  +  V  of  r  +  1  independent  points  of  Sr,  constitute 
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a  set  of  r  +  k  —  p  +  1  independent  points,  each  of  which,  is  either  in 

Sr  or  St.  If  Sr  and  S^.  were  both  on  an  Sn,  where  n  <  r  +  k  —  p,  these 
could  not  be  independent. 

Theorem  Sn3.  An  Sr  and  an  Sk  contained  in  an  Sn  are  both  on  the 

same  Sr+k_n. 

Proof.  If  there  were  less  than  r  +  k  —  n  +  1  independent  points 

common  to  Sr  and  Sk,  say  r  +  k  —  n  points,  they  would,  by  Theorem  SH2, 

determine  an  Sq,  where  a  =  r  +  h— (r  +  h —  *  —  l)  =  n  + 1. 
Theorems  Sn2  and  Sn3  can  be  remembered  and  applied  very  easily 

by  means  of  a  diagram  in  which  SB  is  represented  by  n  +  1  points. 

Thus,  if  n  =  3,  we  have  a  set  of  four  points.  That  any  two  S„'s  have 
an  Sx  in  common  corresponds  to  the  fact  that  any  two  sets  of  three 
must  have  at  least  two  points  in  common.  In  the  general  case  a  set 

of  r  +  1  points  and  a  set  of  k  +  1  selected  from  the  same  set  of  n  + 1 

have  in  common  at  least  r  +  k  —  n  +  1  points,  and  this  corresponds 
to  the  last  theorem.  This  diagram  is  what  our  assumptions  would 

describe  directly,  if  Assumption  E  0  were  replaced  by  the  assumption : 

Every  line  contains  two  and  only  two  points. 

If  one  wishes  to  confine  one's  attention  to  the  geometry  in  a  space 
of  a  given  number  of  dimensions,  Assumptions  E  2,  E  3,  and  E  3'  may 
be  replaced  by  the  following : 

En.  Not  all  points  are  on  the  same  St,  if  k  <  n. 

En'.  If  S  is  an  Sn,  all  points  are  on  S. 
For  every  Sn  there  is  a  principle  of  duality  analogous  to  that  which 

we  have  discussed  for  n  =  3.  In  Sn  the  duality  is  between  S^  and  Sn  _  k_  1 

(counting  a  point  as  an  S0),  for  all  k's  from  0  to  n  —  1.  If  n  is  odd, 
there  is  a  self-dual  space  in  Sn;  if  n  is  even,  Sn  contains  no  self -dual 
space. 

EXERCISES 

1.  State  and  prove  the  theorems  of  duality  in  S5;  in  S„. 

2.  If  m  +  1  is  the  number  of  points  on  a  line,  how  many  S^'s  are  there  in 
anS„? 

*  3.  State  the  assumptions  of  extension  hy  which  to  replace  Assumption  En 

and  En'  for  spaces  of  an  infinite  number  of  dimensions.  Make  use  of  the 
transfinite  numbers. 

*  Exercises  marked  *  are  of  a  more  advanced  or  difficult  character. 



CHAPTER  II 

PROJECTION,  SECTION,  PERSPECTIVITY.    ELEMENTARY 
CONFIGURATIONS 

13.  Projection,  section,  perspectivity.  ̂ The_^omt^line,  and  piano 

are  the  simple  elements  of  space  * ;  we  have  seen  in  the  preceding 
chapter  that  the  relation  expressed  by  the  word  on  is  a  reciprocal 

relation  that  may  exist  between  any  two  of  these  simple  elements. 
In  the  sequel  we  shall  have  little  occasion  to  return  to  the  notion  of 

a  line  as  being  a  class  of  points,  or  to  the  definition  of  a  plane ;  but 
shall  regard  these  elements  simply  as  entities  for  which  the  relation 

"  on  "  has  been  defined.  The  theorems  of  the  preceding  chapter  are  to 
be  regarded  as  expressing  the  fundamental  properties  of  this  relation. f 

We  proceed  now  to  the  study  of  certain  sets  of  these  elements,  and 
begin  with  a  series  of  definitions. 

Definition.  )  A  figure  is  any  set  of  points,  lines,  and  planes  in  space. 

A  plane  figure  is  any  set  of  points  and  lines  on  the  same  plane.  A 

point  figure  is  any  set  of  planes  and  lines  on  the  same  point. 

It  should  be  observed  that  the  notion  of  a  point  figure  is  the  space 

dual  of  the  notion  of  a  plane  figure.  In  the  future  we  shall  fre- 
quently place  dual  definitions  and  theorems  side  by  side.  By  virtue 

of  the  principle  of  duality  it  will  be  necessary  to  give  the  proof  of 
only  one  of  two  dual  theorems. 

Definition.  Given  a  figure  F  Definition.  Given  a  figure  F 

and  a  point  P;  every  point  of  F  and  a  plane  7r;  every  plane  of  F 
distinct  from  P  determines  with  distinct  from  it  determines  with 

P  a  line,  and  every  line  of  F  not  tt  a  line,  and  every  line  of  F  not 

on  P  determines  with  P  a  plane;  on  it  determines  with  it  a  point; 

the  set  of  these  lines  and  planes  the  set  of  these  lines  and  points 

through  P  is  called  the  projection     on  it  is  called  the  section  %  of  F 

*  The  word  space  is  used  in  place  of  the  three-space  in  which  are  all  the  elements 
considered. 

t  We  shall  not  in  future,  however,  confine  ourselves  to  the  "on"  terminology, 
but  shall  also  use  the  more  common  expressions. 

\  A  section  by  a  plane  is  often  called  a  plane  section. 

84 
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of  F  from  P.  The  individual  lines 

and  planes  of  the  projection  are 
also  called  the  projectors  of  the 

respective  points  and  lines  of  F. 

by  it.  The  individual  lines  and 

points  of  the  section  are  also 
called  the  traces  of  the  respective 

planes  and  lines  of  F. 

If  F  is  a  plane  figure  and  the  point  P  is  in  the  plane  of  the  figure,  the 

definition  of  the  projection  of  F  from  P  has  the  following  plane  dual : 

Definition.  Given  a  plane  figure  F  and  a  line  I  in  the  plane  of  F; 

the  set  of  points  in  which  the  lines  of  F  distinct  from  I  meet  I  is 

called  the  section  of  F  by  I.  The  line  I  is  called  a  transversal,  and 

the  points  are  called  the  traces  of  the  respective  lines  of  F. 
As  examples  of  these  definitions  we  mention  the  following:  The 

projection  of  three  mutually  intersecting  nonconcurrent  lines  from  a 

point  P  not  in  the  plane  of  the  lines  consists  of  three  planes  through  P; 

the  lines  of  intersection  of  these  planes  are  part  of  the  projection  only 

if  the  points  of  intersection  of  the  lines  are  thought  of  as  part  of  the 

projected  figure.  The  section  of  a  set  of  planes  all  on  the  same  line 

by  a  plane  not  on  this  line  consists  of  a  set  of  concurrent  lines,  the 

traces  of  the  planes.  The  section  of  this  set  of  concurrent  lines  in  a 

plane  by  a  line  in  the  plane  not  on  their  common  point  consists  of 

a  set  of  points  on  the  transversal,  the  points  being  the  traces  of  the 

respective  lines. 

^Definition./  Two  figures  F„  F?  are  said  to  be  in  (1,1)  correspond- 

ence or  to  correspondjjn  a  one-to-one  reciprocal  way,  if  every  element 

"6TT1  corresponds  (cf.  footnote,  p.  5}_to  a  unique  element  of  F2  in  such 
a  way  that  every  element  of  F,  is  the  correspondent  of  a  unique  ele- 

ment of  Fr  A  figure  is  in  (1,  1)  correspondence  with  itself,  ii  everv^ 

elemenL-Xit  Umiigrnrp.  nnrrfigpflruja  to  a  unique  element  of  the  same 

figure  in  such  a  way  that  every  element  of  the  figure,  is_the^  corre- 
spondent of  a  unique  elementT^Two  elements  that  are  associated  in 

"^tliis  Way^are  said  tojy  carre^ondjMq-^r-JwMLafoaoiis  elements. 
A  correspondence  of  fundamental  importance  is  described  in  the 

following  definitions : 

f  any  twoJiarnoL 

two — corre- 
DEFiNiTlONjIf  any  two  homol- 

ogous elements  of  two  corre- 

sponding  figures  hivn  Hm  nnmf—  sponding  figures  have  the  same 
projector  from  a  fixed  poipt  nj  trace  in  a  fixed  plane  <u,  such 
such  that  all  the  projectors  are     that    all    the    traces    of    either 
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distinct,  the  figures  are  said  to  figure  are  distinct,  the  figures  are 

be  perspective  from  0.  The  point,  _  said  to  be  perspective  from  a>. 

0  is  called  the  center  of  perspec-  ,  The  plane  a>  is  called  the  plane 
tivity.  of  perspectivity. 

Definition.  If  any  two  homologous  lines  in  two  corresponding 
figures  in  the  same  plane  have  the  same  trace  on  a  hue  I,  such 

that  all  the  traces  of  either  figure  are  distinct,  the  figures  are  said 

to  ̂ ^perspective  from  OThe  line  I  is  called  the  axis  of  perspectivity. 

Additional  definitions  of  perspective  figures  will  be  given  in  the 

next  chapter  (p.  56).    These  are  sufficient  for  our  present  purpose. 

Definition.  To  project  a  figure  in  a  plane  a  from  a  point  0  onto  a 

plane  a',  distinct  from  a,  is  to  form  the  section  by  a'  of  the  projection 
of  the  given  figure  from  0.  To  project  a  set  of  points  of  a  line  I  from 

a  point  0  onto  a  line  V,  distinct  from  I  but  in  the  same  plane  with  I 

and  0,  is  to  form  the  section  by  V  of  the  projection  of  the  set  of  points 
from  0. 

Clearly  in  either  case  the  two  figures  are  perspective  from  0,  pro- 

vided 0  is  not  on  either  of  the  planes  a,  a'  or  the  lines  I,  I'. 

EXERCISE  % 

What  is  the  dual  of  the  process  described  in  the  last  definition  ? 

The  notions  of  projection  and  section  and  perspectivity  are  fun- 

damental in  all  that  follows.*  They  will  be  made  use  of  almost 
immediately  in  deriving  one  of  the  most  important  theorems  of  pro- 

jective geometry.  We  proceed  first,  however,  to  define  an  important 
class  of  figures. 

14.  The  complete  n-point,  etc.  Definition.  A  complete  n-point  in 

space  or  a  complete  space  n-point  is  the  figure  formed  by  n  points,  no 

four  of  which  lie  in  the  same  plane,  together  with  the  n(n  — 1)/2 

lines  joining  every  pair  of  the  points  and  the  n(n—  l)(n  —  2)/6  planes 
joining  every  set  of  three  of  the  points.  The  points,  lines,  and  planes 

of  this  figure  are  called  the  vertices,  edges,  and  faces  respectively  of 

the  complete  w-point. 

*  The  use  of  these  notions  in  deriving  geometrical  theorems  goes  back  to  early 
times.  Thus,  e.g.,  B.  Pascal  (1623-1662)  made  use  of  them  in  deriving  the  theorem 
on  a  hexagon  inscribed  in  a  conic  which  bears  his  name.  The  systematic  treatment 

of  these  notions  is  due  to  Poncelet;  cf.  his  Traits  des  propri6te"s  projectives  des 
figures,  Paris,  1822. 
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The  simplest  complete  7i-point  in  space  is  the  complete  space 
four-point.  It  consists  of  four  vertices,  six  edges,  and  four  faces, 

and  is  called  a  tetrahedron.    It  is  a  self-dual  figure. 

EXERCISE 

Define  the  complete  n-plane  in  space  by  dualizing  the  last  definition.  The 

planes,  lines,  and  points  of  the  complete  n-plane  are  also  called  the  faces, 

edges,  and  vertices  of  the  n-plane. 

Definition.  A  complete  n-point  in  a  plane  or  a  complete  plane 

n-point  is  the  figure  formed  by  n  points  of  a  plane,  no  three  of 

which  are  collinear,  together  with  the  n(n  — 1)/2  lines  joining  every 
pair  of  the  points.  The  points  are  called  the  vertices  and  the  lines 

are  called  the  sides  of  the  w-point.  The  plane  dual  of  a  complete 

plane  %-point  is  called  a  complete  plane  n-line.  It  has  n  sides  and 

n(n  — 1)/2  vertices.  The  simplest  complete  plane  ?i-point  consists  of 
three  vertices  and  three  sides  and  is  called  a  triangle. 

Definition.  A  simple  space  n-point  is  a  set  of  n  points  ij,  J£,  i£,  •  •  -,Pn 
taken  in  a  certain  order,  in  which  no  four  consecutive  points  are 

coplanar,  together  with  the  n  lines  PXP2,  P2PZ,  •  •  •,  PnPx  joining  suc- 

cessive points  and  the  n  planes  PXP2PZ,  ■  •  •,  P^P^  determined  by 
successive  lines.  The  points,  lines,  and  planes  are  called  the  vertices, 

edges,  and  faces  respectively  of  the  figure.  The  space  dual  of  a  simple 

space  w-point  is  a  simple  space  n-plane. 

Definition.  A  simple  plane  n-point  is  a  set  of  n  points  Pv  P,,  2£,  •  •  •  P^ 
of  a  plane  taken  in  a  certain  order  in  which  no  three  consecutive  points 

are  collinear,  together  with  the  n  lines  P^,  P2PS,  •  •  • ,  PnPx  joining  suc- 
cessive points.  The  points  and  lines  are  called  the  vertices  and  sides 

respectively  of  the  figure.  The  plane  dual  of  a  simple  plane  ?&-point  is 
called  a  simple  plane  n-line. 

Evidently  the  simple  space  ?i-point  and  the  simple  space  ?i-plane  are 

identical  figures,  as  likewise  the  simple  plane  7i-point  and  the  simple 

plane  ?i-line.  Two  sides  of  a  simple  ?i-line  which  meet  in  one  of  its 
vertices  are  adjacent.  Two  vertices  are  adjacent  if  in  the  dual  relation. 

Two  vertices  of  a  simple  7i-point  PP^  ■  ■  ■  PH  (n  even)  are  opposite  if,  in 

the  order  i^  •  •  •  Pn,  as  many  vertices  follow  one  and  precede  the  other 
as  precede  the  one  and  follow  the  other.  If  n  is  odd,  a  vertex  and  a 

side  are  opposite  if,  in  the  order  PXP2  •  •  ■  PH,  as  many  vertices  follow  the 

side  and  precede  the  vertex  as  follow  the  vertex  and  precede  the  side. 
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The  space  duals  of  the  complete  plane  w-point  and  the  complete  plane 

n-lme  are  the  complete  n-plane  on  a  point  and  the  complete  n-line  on  a 
point  respectively.  They  are  the  projections  from  a  point,  of  the  plane 

w-line  and  the  plane  w-point  respectively. 
15.  Configurations.  The  figures  defined  in  the  preceding  section 

are  examples  of  a  more  general  class  of  figures  of  which  we  will  now 

give  a  general  definition. 

Definition.  A  figure  is  called  a  configuration,  if  it  consists  of  a 

finite  number  of  points,  lines,  and  planes,  with  the  property  that  each 

point  is  on  the  same  number  a12  of  lines  and  also  on  the  same  num- 

ber als  of  planes  ;  each  line  is  on  the  same  number  a21  of  points  and  the 

same  number  a2Z  of  planes  ;  and  each  plane  is  on  the  same  number  a31 

of  points  and  the  same  number  aa2  of  lines. 

A  configuration  may  conveniently  be  described  by  a  square  matrix : 

1 2 3 

point 

line 

plane 1  point 

«n 
«12 

«13 

2  line 

«21 

fl22 

«23 

3  plane 

«31 

«32 

«33 

In  this  notation,  if  we  call  a  point  an  element  of  the  first  kind,  a 

line  an  element  of  the  second  kind,  and  a  plane  one  of  the  third  kind, 

the  number  a~  (i  =#=  j)  gives  the  number  of  elements  of  the  yth  kind 
on  every  element  of  the  ith.  kind.  The  numbers  alv  a22,  aS3  give  the 

total  number  of  points,  lines,  and  planes  respectively.  Such  a  square 

matrix  is  called  the  symbol  of  the  configuration. 

A  tetrahedron,  for  example,  is  a  figure  consisting  of  four  points, 

six  lines,  and  four  planes ;  on  every  line  of  the  figure  are  two  points 

of  the  figure,  on  every  plane  are  three  points,  through  every  point 

pass  three  lines  and  also  three  planes,  every  plane  contains  three  lines, 

and  through  every  line  pass  two  planes.  A  tetrahedron  is  therefore 

a  configuration  of  the  symbol 

4 3 3 

1 

8 

0 

8 

2 

4 
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The  symmetry  shown  in  this  symbol  is  due  to  the  fact  that  the  figure 

in  question  is  self-duaL   A  triangle  evidently  has  the  symbol 

Since  all  the  numbers  referring  to  planes  are  of  no  importance  in 

case  of  a  plane  figure,  they  are  omitted  from  the  symbol  for  a  plane 

configuration. 

In  general,  a  complete  plane  ?i-point  is  of  the  symbol 

n    n  —  1 
i  „(„-!) 

and  a  complete  space  w-point  of  the  symbol 

n »-l l(„_l)(/i_2) 

0 Ift(ft-l) «-2 
a s 

1»(»-1)(»--') 

Further  examples  of  configurations  are  figs.  14  and  15,  regarded  as 

plane  figures. 

EXERCISE 

Prove  that  the  numbers  in  a  configuration  symbol  must  satisfy  the  condition 

Wii  =  aj,«jj  («» /  =  1 ,  2,  3) 

16.  The  Desargues  configuration^  A  very  important  configuration 

is  obtamedby  takingThe  plane^section  of  a  complete  space  five-point. 
The  five-point  is  clearly  a  configuration  with  the  symbol 

5 

2 

4 6 

'10 

3 

3 

i  3 

i 
10 

and  it  is  clear  that  the  section  by  a  plane  not  on  any  of  the  vertices 

is  a  configuration  whose  symbol  may  be  obtained  from  the  one  just 

given  by  removing  the  first  column  and  the  first  row.  This  is  due 

to  the  fact  that  every  line  of  the  space  figure  gives  rise  to  a  point  in 
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the  plane,  and  every  plane  gives  rise  to  a  line.    The  configuration  in 
the  plane  has  then  the  symbol 

We  proceed  to  study  in  detail  the  properties  of  the  configuration  just 

obtained.    It  is  known  as  the  configuration  of  Desargues. 

We  may  consider  the  vertices  of  the  complete  space  five-point  as  con- 
sisting of  the  vertices  of  a  triangle  A,  B,  C  and  of  two  points  Ov  02 

0, 

Fig.  14 

not  coplanar  with  any  two  vertices  of  the  triangle  (fig.  14).  The  sec- 
tion by  a  plane  a  not  passing  through  any  of  the  vertices  will  then 

consist  of  the  following : 

A  triangle  A1B1CV  the  projection  of  the  triangle  ABC  from  01  on  a. 

A  triangle  A2B2C2,  the  projection  of  the  triangle  ABC  from  02  on  a. 
The  trace  0  of  the  line  OxOr 

The  traces  A3,  B3,  C3  of  the  lines  BC,  CA,  AB  respectively. 
The  trace  of  the  plane  ABC,  which  contains  the  points  A3,  B3,  C3. 

The  traces  of  the  three  planes  AOx02,  BOx02,  COfi^,  which  contain 

respectively  the  triples  of  points  OAxA2,  OBxB„,  OCfiv 

The  configuration  may  then  be  considered  (in  ten  ways)  as  consist- 

ing of  two  triangles  AJ1lf!aru\  A  Ti  (7  .^erspp.r.H  v^  from  a  point  0  and 
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having  homologous  sides  meeting  in  three  collinear  points  As,  Bt,  Cv 
These  considerations  lead  to  the  following  fundamental  theorem : 

Theorem  1/The  Theorem  of  Desargues3  If  two  triangles  in  the 

same  plane  are  perspective  from  a  point,  the  three  pairs  of  homologous 
sides  meet  in  collinear  points;  i.e.  the  triangles  are  perspective  from 

a  line.    (A,  E) 

Proof  Let  the  two  triangles  be  AXBXCX  and  A^B^C^  (fig.  14),  the 

lines  AXA2,  BXB2,  CXC2  meeting  in  the  point  O.  Let  B1AV  B2A%  inter- 
sect in  the  point  Cs;  AlCv  AiCi  in  Bs;  BXCX,  B2C3  in  As.  It  is  required 

to  prove  that  As,  Bs,  Cs  are  collinear.  Consider  any  line  through  0 

which  is  not  in  the  plane  of  the  triangles,  and  denote  by  Ox,  0%  any 

two  distinct  points  on  this  line  other  than  0.  Since  the  lines  At02 

and  AxOx  lie  in  the  plane  (AXA2,  Ox02),  they  intersect  in  a  point  A. 

Similarly,  BxOx  and  B2Ot  intersect  in  a  point  B,  and  likewise  C1Ol  and 

C202  in  a  point  C.  Thus  ABCOx02,  together  with  the  lines  and  planes 

determined  by  them,  form  a  complete  five-point  in  space  of  which  the 
perspective  triangles  form  a  part  of  a  plane  section.  The  theorem 

is  proved  by  completing  the  plane  section.  Since  AB  lies  in  a  plane 

with  AXBX,  and  also  in  a  plane  with  A2B„,  the  lines  AXBX,  A2B2,  and 

AB  meet  in  Cs.  So  also  AXCX,  AsCit  and  AC  meet  in  Bs;  and  BXCX, 

B2C2,  and  BC  meet  in  A^.  Since  As,  Ba,  C5  lie  in  the  plane  ABC  and 

also  in  the  plane  of  the  triangles  AXBXCX  and  A2B%CV  they  are  collinear. 

/'Theorem  1'.  If  tv:o  triangles  in  the  same  plane  are  perspective 
from  a  line,  the  lines  joining  pairs  of  homologous  vertices  are  con- 

current; i.e.  the  triangles  are  perspective  from  a  point.    (A,  E) 

This,  the  converse  of  Theorem  1,  is  also  its  plane  dual,  and  hence 

requires  no  further  proof. 

Corollary.  If  two  triangles  not  in  the  same  plane  are  perspective 

from  a  point,  the  pairs  of  homologous  sides  intersect  in  collinear 

points;   and  conversely.    (A,  E) 

A  more  symmetrical  and  for  many  purposes  more  convenient  nota- 
tion for  the  Desargues  configuration  may  be  obtained  as  follows : 

Let  the  vertices  of  the  space  five-point  be  denoted  by  Bl,  J^,  Pt,  Pt,  Pb 
(fig.  15).  The  trace  of  the  line  PXP2  in  the  plane  section  is  then 

naturally  denoted  by  PX2,  —  in  general,  the  trace  of  the  line  P{PS  by  J?. 

(*,  j sal,  2, 3, 4, 5, *  ̂ j).  Likewise  the  trace  of  the  plane  PiPjPk  may 

*  Girard  Desargues,  1593-1662. 
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be  denoted  by  lijk  (i,j,  k  =  1,  2,  3,  4,  5).  This  notation  makes  it  pos- 
sible to  tell  at  a  glance  which  lines  and  points  are  united.  Clearly  a 

point  is  on  a  line  of  the  configuration  if  and  only  if  the  suffixes  of 

the  point  are  both  among  the  suffixes  of  the  line.  Also  the  third 

point  on  the  line  joining  i?.  and  Pk  is  the  point  PH\  two  points  are 

on  the  same  line  if  and  only  if  they  have  a  suffix  in  common,  etc. 

'  %>  E 
i       »  W 

*L     \\\ 

/ 
/ 
/ 
/ 

Fig.  15 

EXERCISES 

1.  Prove  Theorem  1'  without  making  use  of  the  principle  of  duality. 
2.  If  two  complete  n-points  in  different  planes  are  perspective  from  a  point, 

the  pairs  of  homologous  sides  intersect  in  collinear  points.  What  is  the  dual 

theorem  ?  What  is  the  corresponding  theorem  concerning  any  two  plane  figures 

in  different  planes  ? 

3.  State  and  prove  the  converse  of  the  theorems  in  Ex.  2.    . 

4.  If  two  complete  n-points  in  the  same  plane  correspond  in  such  a  way 

that  homologous  sides  intersect  in  points  of  a  straight  line,  the  lines  joining 

homologous  vertices  are  concurrent ;  i.e.  the  two  n-points  are  perspective  from 
a  point.   Dualize. 

5.  What  is  the  figure  formed  by  two  complete  n-points  in  the  same  plane 

when  they  are  perspective  from  a  point?  Consider  particularly  the  cases  n  =  4  and 
n  =  5.  Show  that  the  figure  corresponding  to  the  general  case  is  a  plane  section 

of  a  complete  space  (n  +  2)-point.   Give  the  configuration  symbol  and  dualize. 

6.  If  three  triangles  are  perspective  from  the  same  point,  the  three  axes  of 

perspectivity  of  the  three  pairs  of  triangles  are  concurrent ;  and  conversely. 

Dualize,  and  compare  the  configuration  of  the  dual  theorem  with  the  case  n  =  4 
of  Ex.  5  (cf.  fig.  15,  regarded  as  a  plane  figure). 
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17.  Perspective  tetrahedra.  As  an  application  of  the  corollary  of 

the  last  theorem  we  may  now  derive  a  theorem  in  space  analogous  to 

the  theorem  of  Desargues  in  the  plane. 

Theorem  2.  Iftu-o  tetrahedra  are  perspective  from  a  point,  the  six 
pairs  of  homologous  edges  intersect  in  coplanar  points,  and  the  four 

pairs  of  homologous  faces  intersect  in  coplanar  lines;  i.e.  the  tetra- 
hedra are  perspective  from  a  plane.    (A,  E) 

Fig.  16 

Proof  Let  the  two  tetrahedra  be  PJ^P^  and  P^'P^Pj,  and  let 

the  lines  i^',  P2P% ',  P3PZ',  Pi^'  meet  in  the  center  of  perspectivity  0. 
Two  homologous  edges  PPj  and  I^'I*'  then  clearly  intersect ;  call  the 
point  of  intersection  Py.  The  points  P12,  P^s,  P^  lie  on  the  same  line, 

since  the  triangles  P^P^  and  P^'P^P^  are  perspective  from  0  (The- 
orem 1,  Cor.).  By  similar  reasoning  applied  to  the  other  pairs  of 

perspective  triangles  we  find  that  the  following  triples  of  points  are 
collinear : 

P     P    P  •  P    P    P  •  P    P    P  -  P    P    P 

The  first  two  triples  have  the  point  PV1  in  common,  and  hence 

determine  a  plane;  each  of  the  other  two  triples  has  a  point  in 
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common  with  each  of  the  first  two.  Hence  all  the  points  Pu  lie  in 
the  same  plane.  The  lines  of  the  four  triples  just  given  are  the  lines 

of  intersection  of  the  pairs  of  homologous  faces  of  the  tetrahedra. 
The  theorem  is  therefore  proved. 

Theorem  2'.  If  two  tetrahedra  are  perspective  from  a  plane,  the 
lines  joining  pairs  of  homologous  vertices  are  concurrent,  as  likewise 

the  planes  determined  by  pairs  of  homologous  edges  ;  i.e.  the  tetrahedra 

are  perspective  from  a  point.    (A,  E) 

This  is  the  space  dual  and  the  converse  of  Theorem  2. 

EXERCISE 

Write  the  symbols  for  the  configurations  of  the  last  two  theorems. 

18.  The  quadrangle-quadrilateral  configuration. 

)efinition>)A  complete  plane 

four-point  is  called  a  complete 
quadrangle.  It  consists  of  four 
vertices  and  six  sides.    Two  sides 

not  on  the  same  vertex  are  called 

opposite.  The  intersection  of  two 

opposite  sides  is  called  a  diag- 
onal point.  If  the  three  diagonal 

points  are  not  collinear,  the  tri- 
angle formed  by  them  is  called 

the    diagonal    triangle    of    the 

Definition.  A  complete  plane 

four-line  is  called  a  complete 
quadrilateral.  It  consists  of  four 
sides  and  six  vertices.  Two  ver- 

tices not  on  the  same  side  are 

called  opposite.  The  line  joining 

two  opposite  vertices  is  called  a 

diagonal  line.  If  the  three  diag- 
onal lines  are  not  concurrent,  the 

triangle  formed  by  them  is  called 

the  diagonal  triangle  of  the 

quadrilateral.* 
quadrangle.* 

The  assumptions  A  and  E  on  which  all  our  reasoning  is  based  do 

not  suffice  to  prove  that  there  are  more  than  three  points  on  any  line. 

In  fact,  they  are  all  satisfied  by  the  triple  system  (1),  p.  3  (cf.  fig.  17). 

In  a  case  like  this  the  diagonal  points  of  a  complete  quadrangle  are 

collinear  and  the  diagonal  lines  of  a  complete  quadrilateral  concur- 
rent, as  may  readily  be  verified.  Two  perspective  triangles  cannot 

exist  in  such  a  plane,  and  hence  the  Desargues  theorem  becomes 

*  In  general,  the  intersection  of  two  sides  of  a  complete  plane  n-point  which  do 
not  have  a  vertex  in  common  is  called  a  diagonal  point  of  the  n-point,  and  the  line 
joining  two  vertices  of  a  complete  plane  ?i-line  which  do  not  lie  on  the  same  side 
is  called  a  diagonal  line  of  the  n-line.  A  complete  plane  n-point  (n-line)  then  has 
n(n  —  l)(n  —  2)  (n —  3)/8  diagonal  points  (lines).  Diagonal  points  and  lines  are 
sometimes  called  false  vertices  and  false  sides  respectively. 
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trivial.    Later  on  we  shall  add  an  assumption*  which  excludes  all 
such  cases  as  this,  and,  in  fact,  provides  for  the  existence  of  an  in- 

finite number  of  points  on  a  line.    A  part  of  what  is  contained  in 

this  assumption  is  the  following: 

(   Assumption  H0Tj  The  diagonal 
po i nts  of  a   complete   qu adranqle^ 
are  noncollinear.  I 

Many  of  the  important  theorems  J 

of  geometry,  however,  require  the        J 

existence  of  no  more  than  a  finite       /      /"^^X- - -— ^Tt**---^^ 

number  of  points.   "We  shall  there-      //^   --o—   
fore  proceed  without   the  use  of  j-1G  17 
further  assumptions  than  A  and  E, 

understanding  that  in  order  to  give  our  theorems  meaning  there  must 

be  postulated  the  existence  of  the  points  specified  in  their  hypotheses. 

In  most  cases  the  existence  of  a  sufficient  number  of  points  is 

insured  by  Assumption  H0,  and  the  reader  who  is  taking  up  the 

subject  for  the  first  time  may  well  take  it  as  having  been  added 

to  A  and  E.    It  is  to  be  used  in  the  solution  of  problems. 

"We  return  now  to  a  further  study  of  the  Desargues  configuration. 
A  complete  space  five-point  may  evidently  be  regarded  (in  five  ways) 

as  a  tetrahedron  and  a  complete  four-line  at  a  point.  A  plane  section 

of  a  four-line  is  a  quadrangle  and  the  plane  section  of  a  tetrahedron 

is  a  quadrilateral.  It  follows  that  (in  five  ways)  the  Desargues  con-  +  •  * 
figuration  may  be  regarded  as  a  quadrangle  and  a  quadrilateral. 

Moreover,  it  is  clear  that  the  six  sides  of  the  quadrangle  pass  through 

the  six  vertices  of  the  quadrilateral.  In  the  notation  described  on 

page  41  one  such  quadrangle  is  i^2,  i^„,  i?4,  i^5  and  the  corresponding 

quadrilateral  is  l^,  /235,  lUb,  l^.. 

The  question  now  naturally  arises  as  to  placing  the  figures  thus  ob- 

tained in  special  relations.  As  an  application  of  the  theorem  of  De- 
sargues we  will  show  how  to  construct  f  a  quadrilateral  which  has  the 

same  diagonal  triangle  as  a  given  quadrangle.  "We  will  assume  in  our 
discussion  that  the  diagonal  points  of  any  quadrangle  form  a  triangle. 

*  Merely  saying  that  there  are  more  than  three  points  on  a  line  does  not  insure 
that  the  diagonal  points  of  a  quadrangle  are  noncollinear.  Cases  where  the  diagonal 

points  are  collinear  occur  whenever  the  number  of  points  on  a  line  is  2"  +  1. 
t  To  construct  a  figure  is  to  determine  its  elements  in  terms  of  certain  given 

elements. 
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Let  Px,  P2,  P%,  P4  be  the  vertices  of  the  given  complete  quadrangle, 

and  let  Z>12,  D18,  Du  be  the  vertices  of  the  diagonal  triangle,  X>12  being 
on  the  side  PJ^,  X>13  on  the  side  P^PZ,  and  J>14  on  the  side  PXP4  (fig.  18). 
We  observe  first  that  the  diagonal  triangle  is  perspective  with  each  of  the 

four  triangles  formed  by  a  set  of  three  of  the  vertices  of  the  quadrangle, 

the  center  of  perspectivity  being  in  each  case  the  fourth  vertex.  This 

gives  rise  to  four  axes  of  perspectivity  (Theorem  1),  one  corresponding 

to  each  vertex  of  the  quadrangle.*  These  four  lines  clearly  form  the 
sides  of  a  complete  quadrilateral  whose  diagonal  triangle  is  X>12,  Dlg,  Du. 

It  may  readily  be  verified,  by  selecting  two  perspective  triangles, 

that  the  figure  just  formed  is,  indeed,  a  Desargues  configuration.  This 

special  case  of  the  Desargues  configuration  is  called  the  quadrangle- 
quadrilateral  configuration.^ 

EXERCISES 

1.  If  p  is  the  polar  of  P  with  regard  to  the  triangle  ABC,  then  P  is  the 

pole  of  p  with  regard  to  the  same  triangle  ;  that  is,  P  is  obtained  from  p  by 

a  construction  dual  to  that  used  in  deriving  p  from  P.  From  this  theorem  it 

follows  that  the  relation  between  the  quadrangle  and  quadrilateral  in  this 

*  The  line  thus  uniquely  associated  with  a  vertex  is  called  the  polar  of  the  point 
with  respect  to  the  triangle  formed  by  the  remaining  three  vertices.  The  plane  dual 
process  leads  to  a  point  associated  with  any  line.  This  point  is  called  the  pole  of  the 
line  with  respect  to  the  triangle. 

t  A  further  discussion  of  this  configuration  and  its  generalizations  will  be  found 
in  the  thesis  of  EL  F.  McNeish.  Some  of  the  results  in  this  paper  are  indicated  in 
the  exercises. 
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configuration  is  mutual ;  that  is,  if  either  is  given,  the  other  is  determined. 

For  a  reason  which  •will  be  evident  later,  either  is  called  a  covariant  of  the 
other. 

2.  Show  that  the  configuration  consisting  of  two  perspective  tetrahedra, 

their  center  and  plane  of  perspectivity,  and  the  projectors  and  traces  may  be 

regarded  in  six  ways  as  consisting  of  a  complete  5-point  P12,  P13,  P14,  P15,  P16 

and  a  complete  5-plane  ir84M,  7r2456,  tt2356,  tt2346,  ir2345,  the  notation  being 

analogous  to  that  used  on  page  41  for  the  Desargues  configuration.  Show 

that  the  edges  of  the  5-plane  are  on  the  faces  of  the  5-point. 

3.  If  P1?  P„,  P3,  P4,  P5,  are  vertices  of  a  complete  space  5-point,  the  ten 

points  DtJ,  in  which  an  edge  jty  meets  a  face  PkPiPm  (j,  /,  k,  I,  m  all  distinct), 

are  called  diagonal  points.  The  tetrahedra  P2P3PtP5  and  D^D^D^D^  are  per- 
spective with  Px  as  center.  Their  plane  of  perspectivity,  ir1,  is  called  the  polar 

of  Pj  with  regard  to  the  four  vertices.  In  like  manner,  the  points  P2,  P„,  P4,  P5 

determine  their  polar  planes  ir2,  ir3,  irt,  tt5.  Prove  that  the  5-point  and  the  polar 

5-plane  form  the  configuration  of  two  perspective  tetrahedra ;  that  the  plane 

section  of  the  5-point  by  any  of  the  five  planes  is  a  quadrangle-quadrilateral 

configuration ;  and  that  the  dual  of  the  above  construction  applied  to  the  5-plane 

determines  the  original  5-point.       , 

4.  If  P  is  the  pole  of  -k  with  res^M  to  the  tetrahedron  A1A„A3Ai,  then  is  it 

19.  The  fundamental  theorem  on  quadrangular;  fcets. 

^Theore.\T3.  If  tiro  complete  quadrangles  I^P2I3iPi  and  P^P^P^P^ 

correspond  —  Py  to  JJ' ',  P2  to  P2,  etc.  —  in  such  a  way  that  five  of  ifrg 
pairs  of  homologous  sides  intersect  in  points  of  a  line  I,  then  the  sixth 

pa  ir  of  homologous  sides  will  intersect  in  a  point  of  I.    (A,  E) 

This  theorem  holds  whether  the  quadrangles  are  in  the  same  or 

in  different  planes. 

Proof.  Suppose,  first,  that  none  of  the  vertices  or  sides  of  one  of 

the  quadrangles  coincide  with  any  vertex  or  side  of  the  other.  Let 

ij'P,  P^P3,  PiPi,  P2P3,  P^  be  the  five  sides  which,  by  hypothesis, 

meet  their  homologous  sides  %'Pj,  P^P/,  P^Pj,  P2!P3',  P^Pj  in  points 

of  I  (fig.  19).  "We  must  show  that  P3P±  and  P3P±  meet  in  a  point 
of  /.  The  triangles  PXP2P3  and  P^P^P*  are,  by  hypothesis,  perspec- 

tive from  I;  as  also  the  triangles  P^P^  and  P^P^P^'.  Each  pair  is 

therefore  (Theorem  1')  perspective  from  a  point,  and  this  point  is  in 

each  case  the  intersection  O  of  the  lines  i^'  and  P2P2.  Hence  the 

triangles  P2P3Pi  and  PJJI'PJ  are  perspective  from  O  and  their  pairs 
of  homologous  sides  intersect  in  the  points  of  a  line,  which  is  evi- 

dently I,  since  it  contains  two  points  of  I.    But  P3Pi  and  J%' ' PJ  are 
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two  homologous  sides  of  these  last  two  triangles.    Hence  they  inter- 
sect in  a  point  of  the  line  I. 

If  a  vertex  or  side  of  one  quadrangle  coincides  with  a  vertex  or 

side  of  the  other,  the  proof  is  made  by  considering  a  third  quadrangle  * 
whose  vertices  and  sides  are  distinct  from  those  of  both  of  the  others, 

and  which  has  five  of  its  sides  passing  through  the  five  given  points 

Fig.  19 

of  intersection  of  homologous  sides  of  the  two  given  quadrangles.  By 

the  argument  above,  its  sixth  side  will  meet  the  sixth  side  respectively 
of  each  of  the  two  given  quadrangles  in  the  same  point  of  I.  This 

completes  the  proof  of  the  theorem. 

Note  1.  It  should  be  noted  that  the  theorem  is  still  valid  if  the  line  /con- 

tains one  or  more  of  the  diagonal  points  of  the  quadrangles.  The  case  in  which 
I  contains  two  diagonal  points  is  of  particular  importance  and  will  be  discussed 
in  Chap.  IV,  §  31. 

Note  2.  It  is  of  importance  to  note  in  how  far  the  quadrangle  P^P^PgP^ 
is  determined  when  the  quadrangle  PxPiPiPi  and  the  line  /  are  given.  It  may 
be  readily  verified  that  in  such  a  case  it  is  possible  to  choose  any  point  P( 
correspond  to  any  one  of  the  vertices  Plt  P2>  P»->  Pn  say  P\,  and  that  if  m 

any  line  of  the  plane  IP{  (not  passing  through  P{)  which  meets  one  of  the  sides, 
say  a,  of  P1P2P8Pi  (not  passing  through  Pj)  in  a  point  of  I,  then  m  may  be 
chosen  as  the  side  homologous  to  a.  But  then  the  remainder  of  the  figure  is 
uniquely  determined. 

*  This  evidently  exists  whenever  the  theorem  is  not  trivially  obvious. 
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Theorem  3'.  If  two  complete  quadrilaterals  a^a^a^  and  a[a^a'9a[ 

correspond — ax  to  a[,  aa  to  a'%,  etc.  —  in  such  a  way  that  Jive  of  the  lines 
joining  homologous  vertices  pass  through  a  point  P,  the  line  joining  the 

sixth  pair  of  homologous  vertices  will  also  pass  through  P.     (A,  E) 

This  is  the  plane  dual  of  Theorem  3  regarded  as  a  plane  theorem. 

^Deftnition^A  set  of  points  in  which  the  sides  of  a  complete  quad- 
rangle meet  a  line  I  is  called JT Quadrangular  set\i  points. 

Any  three  sides  of  a  quadrangle  either  form  a  triangle  or  meet  in 

a  vertex ;  in  the  former  case  they  are  said  to  form  a  triangle  triple, 

in  the  latter  a  point__triple_j)t  lines.  In  a  quadrangular  set  of  points 
on  a  line  I  any  three  points  in  which  the  lines  of  a  triangle  triple  meet  I 

is  called  a  triangle  triple  of  points  in  the  set ;  three  points  in  which 

the  lines  of  a  point  triple  meet  I  are  called  a  point  triple  of  points. 

A  quadrangular  set  of  points  will  be  denoted  by 

Q(ABC,  DEF), 

where  ABC  is  a  point  triple  and  DEF  is  a  triangle  triple,  and 

where  A  and  D,  B  and  E,  and  C  and  F  are  respectively  the  inter- 
sections  with  the  line  of  the  set  of  the  pairs  of  opposite  sides  of 

the  quadrangle. 
The  notion  of  a  quadrangular  set  is  of  great  importance  in  much 

that  follows.  It  should  be  noted  again  in  this  connection  that  one 

or  two  *  of  the  pairs  A,  D  or  B,  E  or  C,  F  may  consist  of  coincident 
points ;  this  occurs  when  the  line  of  the  set  passes  through  one  or 

two  of  the  diagonal  points. f 

We  have  just  seen  (Theorem  3)  that  if  we  have  a  quadrangular 

set  of  points  obtained  from  a  given  quadrangle,  there  exist  ether 

quadrangles  that  give  rise  to  the  same  quadrangular  set  In  the 

quadrangles  mentioned  in  Theorem  3  there  corresponded  to  every 

triangle  triple  of  one  a  triangle  triple  of  the  other. 

Definition.  When  two  quadrangles  giving  rise  to  the  same 

quadrangular  set  are  so  related  with  reference  to  the  set  that  to  a 

triangle  triple  of  one  corresponds  a  triangle  triple  of  the  other,  the 

*  All  three  may  consist  of  coincident  points  in  a  space  in  which  the  diagonal  points 
of  a  complete  quadrangle  are  collinear. 

t  It  should  be  kept  in  mind  that  similar  remarks  and  a  similar  definition  may  re 
made  to  the  effect  that  the  lines  joining  the  vertices  of  a  quadrilateral  to  a  point  P 
form  a  quadrangular  set  of  lines,  etc.  (cf.  §  30,  Chap.  IV). 
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quadrangles  are  said  to  be  similarly  placed  (fig.  20);  if  a  point  triple 

of  one  corresponds  to  a  triangle  triple  of  the  other,  they  are  said  to 

be  oppositely  placed  (fig.  21). 

It  will  be  shown  later  (Chap.  IV)   that  quadrangles  oppositely 

placed  with  respect  to  a  quadrangular  set  are  indeed  possible. 

Fig.  21 

With  the  notation  for  quadrangular  sets  defined  above,  the  last 

theorem  leads  to  the  following 

Corollary.  If  all  but  one  of  the  points  of  a  quadrangular  set  Q  (ABC, 

DEF)  are  given,  the  remaining  one  is  uniquely  determined.    (A,  E) 

For  two  quadrangles  giving  rise  to  the  same  quadrangular  set 

with  the  same  notation  must  be  similarly  placed,  and  must  hence 

be  in  correspondence  as  described  in  the  theorem. 
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The  quadrangular  set  which  is  the  section  by  a  1-space  of  a  complete  4-point 

in  a  2-space,  the  Desargues  configuration  which  is  the  section  by  a  2-space  of 

a  complete  5-point  in  a  3-space,  the  configuration  of  two  perspective  tetra- 

hedra  which  may  be  considered  as  the  section  by  a  3-space  of  a  complete  6-point 

in  a  4-space  are  all  special  cases  of  the  section  by  an  n-space  of  a  complete 

(n  +  3)-point  in  an  (n  +  l)-space.  The  theorems  which  we  have  developed  for 
the  three  cases  here  considered  are  not  wholly  parallel.  The  reader  will  find 

it  an  entertaining  and  far  from  trivial  exercise  to  develop  the  analogy  in  full. 

EXERCISES 

1.  A  necessary  and  sufficient  condition  that  three  lines  containing  the  ver- 
tices of  a  triangle  shall  be  concurrent  is  that  their  intersections  P,  Q,  R  with 

a  line  I  form,  with  intersections  E,  F,  G  of  corresponding  sides  of  the  triangle 

with  /,  a  quadrangular  set  Q(PQR,  EFG). 

2.  If  on  a  given  transversal  line  two  quadrangles  determine  the  same  quad- 
rangular set  and  are  similarly  placed,  their  diagonal  triangles  are  perspective 

from  the  center  of  perspectivity  of  the  two  quadrangles. 

3.  The  polars  of  a  point  P  on  a  bine  I  with  regard  to  all  triangles  which 

meet  /  in  three  fixed  points  pass  through  a  common  point  P'  on  /. 
4.  In  a  plane  -n  let  there  be  given  a  quadrilateral  ax,  a2,  as,  a4  and  a  point  O 

not  on  any  of  these  lines.  Let  Av  A%,  As,  A4  be  any  tetrahedron  whose  four 

faces  pass  through  the  lines  ax,  a2,  as,  a4  respectively.  The  polar  planes  of  O 

with  respect  to  all  such  tetrahedra  pass  through  the  same  line  of  v. 

20.  Additional  remarks  concerning  the  Desargues  configuration. 

The  ten  edges  of  a  complete  space  five-point  may  be  regarded  (in 

six  ways)  as  the  edges  of  two  simple  space  five-points.  Two  such 

five-points  are,  for  example,  P^P^P^  and  P1PiPsP2Pi.  Corresponding 
thereto,  the  Desargues  configuration  may  be  regarded  in  six  ways 

as  a  pair  of  simple  plane  pentagons  (five-points).  In  our  previous 

notation  the  two  corresponding  to  the  two  simple  space  five-points 
just  given  are  P^P^P^  and  P^P^P^P^P^.  Every  vertex  of  each 

of  these  pentagons  is  on  a  side  of  the  other.  "  • 
Every  point,  PV1  for  instance,  has  associated  with  it  a  unique  line 

of  the  configuration,  viz.  lMb  in  the  example  given,  whose  notation 
does  not  contain  the  suffixes  occurring  in  the  notation  of  the  point. 

The  line  may  be  called  the  polar  of  the  point  in  the  configuration, 

and  the  point  the  pole  of  the  line.  It  is  then  readily  seen  that  the 

polar  of  any  point  is  the  axis  of  perspectivity  of  two  triangles 

whose  center  of  perspectivity  is  the  point.  In  case  we  regard  the 

configuration  as  consisting  of  a  complete  quadrangle  and  complete 
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quadrilateral,  it  is  found  that  a  pole  and  polar  are  homologous  vertex 

and  side  of  the  quadrilateral  and  quadrangle.  If  we  consider  the 

configuration  as  consisting  of  two  simple  pentagons,  a  pole  and  polar 

are  a  vertex  and  its  opposite  side,  e.g.  J^2  and  PZiPih. 

The  Desargues  configuration  is  one  of  a  class  of  configurations 

having  similar  properties.  These  configurations  have  been  studied 

by  a  number  of  writers.*  Some  of  the  theorems  contained  in  these 
memoirs  appear  in  the  exercises  below. 

EXERCISES 

In  discussing  these  exercises  the  existence  should  be  assumed  of  a  sufficient  number 

of  points  on  each  line  so  that  the  figures  in  question  do  not  degenerate.  In  some  cases 

it  may  also  be  assumed  that  the  diagonal  points  of  a  complete  quadrangle  are  not 

collinear.    Without  these  assumptions  our  theorems  are  true,  indeed,  but  trivial. 

1.  What  is  the  peculiarity  of  the  Desargues  configuration  obtained  as  the 

section  of  a  complete  space  five-point  by  a  plane  which  contains  the  point  of 

intersection  of  an  edge  of  the  five-point  with  the  face  not  containing  this  edge  ? 
also  by  a  plane  containing  two  or  three  such  points  ? 

2.  Given  a  simple  pentagon  in  a  plane,  construct  another  pentagon  in  the 

same  plane,  whose  vertices  lie  on  the  sides  of  the  first  and  whose  sides  con- 
tain the  vertices  of  the  first  (cf.  p.  51).  Is  the  second  uniquely  determined 

when  the  first  and  one  side  of  the  second  are  given? 

3.  If  two  sets  of  three  points  A,  B,  C  and  A',  B' ,  C  on  two  coplanar  lines 

I  and  V  respectively  are  so  related  that  the  lines  AA' ,  BB' ,  CC  are  concurrent, 

then  the  points  of  intersection  of  the  pairs  of  lines  AB'  and  BA' ,  BC  and  CB', 

CA'  and  A  C  are  collinear  with  the  point  IV.  The  line  thus  determined  is  called 

the  polar  of  the  point  (A  A',  BB')  with  respect  to  I  and  /'.    Dualize. 
4.  Using  the  theorem  of  Ex.  3,  give  a  construction  for  a  line  joining  any 

given  point  in  the  plane  of  two  lines  I,  V  to  the  point  of  intersection  of  I,  V 

without  making  use  of  the  latter  point. 

5.  Using  the  definition  in  Ex.  3,  show  that  if  the  point  P'  is  on  the  polar;? 

of  a  point  P  with  respect  to  two  lines  I,  V,  then  the  point  P  is  on  the  polar  p' 

of  P'  with  respect  to  I,  V. 

6.  If  the  vertices  Ax,  A2,  A3,  At  of  a  simple  plane  quadrangle  are  respec- 

tively on  the  sides  a1}  a2,  as,  at  of  a  simple  plane  quadrilateral,  and  if  the  inter- 
section of  the  pair  of  opposite  sides  AXA2,  -43.44  is  on  the  line  joining  the  pair 

of  opposite  points  a1ai,  a2a3,  the  remaining  pair  of  opposite  sides  of  the  quad- 
rangle will  meet  on  the  line  joining  the  remaining  pair  of  opposite  vertices  of 

the  quadrilateral.    Dualize. 

*  A.  Cayley,  Collected  Works,  Vol.  I  (1846),  p.  317.  G.  Veronese,  Mathema- 
tische  Annalen,  Vol.  XIX  (1882).  Further  references  will  be  found  in  a  paper  by 
W.  B.  Carver,  Transactions  of  the  American  Mathematical  Society,  Vol.  VI  (1905), 

p.  534. 



20] EXERCISES 53 

7.  If  two  complete  plane  n-points  Ax,  A2,  •  •  • ,  An and  A{,  A%,  •  •  • ,  A'n  are 
so  related  that  the  side  Av4.2  and  the  remaining  2  (n  —  2)  sides  passing  through 

A  j  and  A  „  meet  the  corresponding  sides  of  the  other  n-point  in  points  of  a  line  I, 

the  remaining  pairs  of  homologous  sides  of  the  two  n -points  meet  on  I  and  the 

two  n-points  are  perspective  from  a  point.    Dualize. 

8.  If  five  sides  of  a  complete  quadrangle  AlA2A3Ai  pass  through  five 

vertices  of  a  complete  quadrilateral  a1a„a3ai  in  such  a  way  that  AXA2  is  on 

a3at,  A2A3  on  a^,  etc.,  then  the  sixth  side  of  the  quadrangle  passes  through 
the  sixth  vertex  of  the  quadrilateral.    Dualize. 

9.  If  on  each  of  three  concurrent  lines  a,  b,  c  two  points  are  given, — AX,A2 

on  a;  jB1,  B„  on  b;  Cx,  C2  on  c, —  there  can  be  formed  four  pairs  of  triangles 

A{BjCk  (i,  j,  k  =  1,  2)  and  the  pairs  of  corresponding  sides  meet  in  six  points 
which  are  the  vertices  of  a  complete  quadrilateral  (Veronese,  Atti  dei  Lincei, 

1876-1877,  p.  649). 
10.  With  nine  points  situated  in  sets  of  three  on  three  concurrent  lines 

are  formed  36  sets  of  three  perspective  triangles.  For  each  set  of  three  dis- 
tinct triangles  the  axes  of  perspectivity  meet  in  a  point;  and  the  36  points 

thus  obtained  from  the  36  sets  of  triangles  lie  in  sets  of  four  on  27  lines, 

giving  a  configuration 
36      3 

4      27 (Veronese,  loc.  cit.). 

11.  A  plane  section  of  a  6-point  in  space  can  be  considered  as  3  triangles 
perspective  in  pairs  from  3  collinear  points  with  corresponding  sides  meeting 

in  3  collinear  points. 

12.  A  plane  section  of  a  6-point  in  space  can  be  considered  as  2  perspective 
complete  quadrangles  with  corresponding  sides  meeting  in  the  vertices  of  a 

complete  quadrilateral. 

13.  A  plane  section  of  an  n-point  in  space  gives  the  configuration* 

which  may  be  considered  (in  „Cn_i  ways)  as  a  set  of  (n  —  k)  £ -points  perspective 

in  pairs  from  »_»C,  points,  which  form  a  configuration 
_tC2  n-k-2 
3  71-1^3 

and 

the  points  of  intersection  of  corresponding  sides  form  a  configuration 

,C2  k-2 

3      *C3 

14.  A  plane  section  of  a  7-point  in  space  can  be  considered  (in  120  ways) 

as  composed  of  three  simple  heptagons  (7-points)  cyclically  circumscribing 
each  other. 

15.  A  plane  section  of  an  11-point  in  space  can  be  considered  (in  [9  ways) 
as  composed  of  five  11-points  cyclically  circumscribing  each  other. 

16.  A  plane  section  of  an  n-point  in  space  for  n  prime  can  be  considered  ,     _ 
n  —  1  .  •    •'^o 

(in  \n  —  2  ways)  as  — - —  simple  n-points  cyclically  circumscribing  each  other. 

*  The  symbol  „Cr  is  used  to  denote  the  number  of  combinations  of  n  things 
taken  r  at  a  time. 
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17.  A  plane  section  of  a  G-point  in  space  gives  (in  six  ways)  a  5-point  whose 

sides  pass  through  the  points  of  a  configuration 

10      3 

8     10 

18.  A  plane  section  of  an  n-point  in  space  gives  a  complete  (n  —  l)-point 

whose  sides  pass  through  the  points  of  a  configuration 

rlCt     r»-8 

3  "  ,._,<:• 

*  19.  The  n-space  section  of  an  m-point  (m  ?  n  +  2)  in  an  (n  +  l)-space  can  be 

considered  in  the  n-space  as  (m—k)  ̂ -points  (inmCm_  t.  ways)  perspective  in  pairs 

from  the  vertices  of  the  n-space  section  of  one  (in  —  A)-point;  the  r-spaces  of 

the  &-point  figures  meet  in  (r  —  l)-spaces  (r  =  1,  2,  •  •  • ,  n  —  1)  which  form  the 

n-space  section  of  a  £-point. 

*  20.  The  figure  of  two  perspective  (n  +  l)-points  in  an  n-space  separates 

(in  n  +  3  ways)  into  two  dual  figures,  respectively  an  (n  +  2)-point  circum- 

scribing the  figure  of  (n  +  2)  (n  —  l)-spaces. 
*21.  The  section  by  a  3-space  of  an  n-point  in  4-space  is  a  configuration 

c 
3 

n-2 
c 

nu  3 
n-2^2 

n-3 
6 4 »^4 

The  plane  section  of  this  configuration  is 

/' 

22.  Let  there  be  three  points  on  each  of  two  concurrent  lines  lv  l„.  The 

nine  lines  joining  points  of  one  set  of  three  to  points  of  the  other  determine 

six  triangles  whose  vertices  are  not  on  Zt  or  lr  The  point  of  intersection  of  Zx 

and  l2  has  the  same  polar  with  regard  to  all  six  of  these  triangles. 

23.  If  two  triangles  are  perspective,  then  are  perspective  also  the  two 

triangles  whose  vertices  are  points  of  intersection  of  each  side  of  the  given 

triangles  with  a  line  joining  a  fixed  point  of  the  axis  of  perspectivity  to  the 

opposite  vertex. 

*24.  Show  that  the  configuration  of  the  two  perspective  tetrahedra  of 

Theorem  2  can  be  obtained  as  the  section  by  a  3-space  of  a  complete  6-point 
in  a  4-space. 

*25.  If  two  5-points  in  a  4-space  are  perspective  from  a  point,  the  corre- 
sponding edges  meet  in  the  vertices,  the  corresponding  plane  faces  meet  in  the 

lines,  and  the  corresponding  3-space  faces  in  the  planes  of  a  complete  5-plane 
in  a  3-space. 

*  26.  If  two  (n  +  1) -points  in  an  n-space  are  perspective  from  a  point, 

their  corresponding  r-spaces  meet  in  (r  —  l)-spaces  which  lie  in  the  same 

(n  —  1)- space  (r  =  l,  2  •  •  • ,  n  —  1)  and  form  a  complete  configuration  of 

(n  +  1)  (n  —  2)-spaces  in  (n  —  l)-space. 



CHAPTER  III 

PROJECTIVITIES  OF  THE  PRIMITIVE  GEOMETRIC  FORMS  OF 
ONE,  TWO,  AND  THREE  DIMENSIONS 

21.  The  nine  primitive  geometric  forms. 

Definition.  A.  pencil  of  points         Definition.  A  pencil  of  planes 

or  a  range  is  the  figure  formed  by 

the  set  of  all  points  on  the  same 
line.  The  line  is  called  the  axis 

of  the  penciL 

or  an  axial  pencil  *  is  the  figure 
formed  by  the  set  of  all  planes  on 
the  same  line.  The  line  is  called 

the  axis  of  the  pencil. 

As  indicated,  the  pencil  of  points  is  the  space  dual  of  the  pencil 

of  planes. 

TJefinitjon. 2a  pencil  of  lines^pr  a.  flat  pencil  is  the  figure  formed^ by  the  set  of  all  lines  which  are  at  once  on  the  same  point  and  the 

same  plane;  the  point  is  called  the  vertex  or  center  of  the  penciL 

The  pencil  of  lines  is  clearly  self-dual  in  space,  while  it  is  the 
plane  dual  of  the  pencil  of  points.  The  pencil  of  points,  the  pencil 

of  lines,  and  the  pencil  of  planes  are  called  the  primitive  geometric 

forms  of  the  first  grade  or  of  one  dimension. 
Definition.  The  following  are  known  as  the  primitive  geometric 

forms  of  the  second  grade  or  of  two  dimensions : 

The  set  of  all  points  on  a  plane  The  set  of  all  planes  on  a  point 

is  called  a  plane  of  points^  The     is  called  a  bundle  of  planes.    The 

set  of  all  lines  on  a  plane  is  called 

a  plane  of  lines.  The  plane  is 
called  the  base  of  the  two  forms. 

The  figure  composed  of  a  plane 

of  points  and  a  plane  of  lines 
with  the  same  base  is  called  a 

planar  field. 

set  of  all  lines  on  a  point  is  called 

a  bundle  of  lines.  The  point  is 
called  the  center  of  the  bundles. 

The  figure  composed  of  a  bundle 
of  lines  and  a  bundle  of  planes 
with  the  same  center  is  called 

simply  a  bundle. 
Definition.  The  set  of  all  planes  in  space  and  the  set  of  all  points 

in  space  are  called  the  primitive  geometric  forms  of  the  third  grade 

or  of  three  dimensions. 

*  The  pencil  of  planes  is  also  called  by  some  writers  a  sheaf. 
55 
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There  are  then,  all  told,  nine  primitive  geometric  forms  in  a  space 

of  three  dimensions.* 
22.  Perspectivity  and  projectivity.  In  Chap.  II,  §  13,  we  gave  a 

definition  of  perspectivity.  This  definition  we  will  now  apply  to  the 

case  of  two  primitive  forms  and  will  complete  it  where  needed.  We 
note  first  that,  according  to  the  definition  referred  to,  two  pencils  of 

points  in  the  same  plane  are  perspective  provided  every  two  homol- 
ogous points  of  the  pencils  are  on  a  line  of  a  flat  pencil,  for  they 

then  have  the  same  projection  from  a  point.  Two  planes  of  points 

(lines)  are  perspective,  if  every  two  homologous  elements  are  on  a 

line  (plane)  of  a  bundle  of  lines  (planes).  Two  pencils  of  lines  in  the 
same  plane  are  perspective,  if  every  two  homologous  lines  intersect 

in  a  point  of  the  same  pencil  of  points.  Two  pencils  of  planes  are 

perspective,  if  every  two  homologous  planes  are  on  a  point  of  a  pencil 

of  points  (they  then  have  the  same  section  by  a  line).  Two  bundles  of 

lines  (planes)  are  perspective,  if  every  two  homologous  lines  (planes) 

are  on  a  point  (line)  of  a  plane  of  points  (lines)  (they  then  have  the 

same  section  by  a  plane),  etc.  Our  previous  definition  does  not,  how- 
ever, cover  all  possible  casSST  In  the  first  place,  it  does  not  allow  for 

the  possibility  of  two  forms  of  different  kinds  being  perspective,  such 

as  a  pencil  of  points  and  a  pencil  of  lines,  a  plane  of  points  and  a 
bundle  of  lines,  etc.  This  lack  of  completeness  is  removed  for  the 

case  of  one-dimensional  forms  by  the  following  definition.  It  should 
be  clearly  noted  that  it  is  in  complete  agreement  with  the  previous 

definition  of  perspectivity ;  as  far  as  one-dimensional  forms  are  con- 
cerned it  is  wider  in  its  application. 

Definition.  Two  one-dimensional  primitive  forms  of  different  kinds, 

not  having  a  common  axis,  are  perspective,  if  and  only  if  they  corre- 

spond in  such  a  (1,  1)  way  that  each  element  of  one  is  on  its  homol- 
ogous element  in  the  other ;  two  one-dimensional  primitive  forms  of 

the  same  kind  are  perspective,  if  and  only  if  every  two  homologous 
elements  are  on  an  element  of  a  third  one-dimensional  form  not 

having  an  axis  in  common  with  one  of  the  given  forms.  If  the  third 

form  is  a  pencil  of  lines  with  vertex  P,  the  perspectivity  is  said  to  be 

*  Some  writers  enumerate  only  six,  by  denning  the  set  of  all  points  and  lines  on 
a  plane  as  a  single  form,  and  by  regarding  the  set  of  all  planes  and  lines  at  a  point 
and  the  set  of  all  points  and  planes  in  space  each  as  a  single  form.  We  have  fol- 

lowed the  usage  of  Enriques,  Vorlesungen  iiber  Projektive  Geometrie. 
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central  with  center  P;  if  the  third  form  is  a  pencil  of  points  or  a  pencil 

of  planes  with  axis  /,  the  perspectivity  is  said  to  be  axial  with  axis  /. 

As  examples  of  this  definition  we  mention  the  following:  Two 

pencils  of  points  on  skew  lines  are  perspective,  if  every  two  homol- 
ogous elements  are  on  a  plane  of  a  pencil  of  planes ;  two  pencils  of 

lines  in  different  planes  are  perspective,  if  every  two  homologous 

lines  are  on  a  point  of  a  pencil  of  points  or  a  plane  of  a  pencil  of 

planes  (either  of  the  latter  conditions  is  a  consequence  of  the  other); 

two  pencils  of  planes  are  perspective,  if  every  two  homologous  planes 
are  on  a  point  of  a  pencil  of  points  or  a  line  of  a  pencil  of  lines  (in 

the  latter  case  the  axes  of  the  pencils  of  planes  are  coplanar).  A  pen- 
cil of  points  and  a  pencil  of  lines  are  perspective,  if  every  point  is  on 

its  homologous  line,  etc. 

It  is  of  great  importance  to  note  that  our  definitions  of  perspective 

primitive  forms  are  dual  throughout ;  Le.  that  if  two  forms  are  per- 
spective, the  dual  figure  will  consist  of  perspective  forms.  Hence  any 

theorem  proved  concerning  perspectivities  can  at  once  be  dualized ;  in 

particular,  any  theorem  concerning  the  perspectivity  of  two  forms  of 

the  same  kind  is  true  of  any  other  two  forms  of  the  same  kind. 

We  use  the  notation  [P]  to  denote  a  class  of  elements  of  any  kind 

and  denote  individuals  of  the  class  by  P  alone  or  with  an  index  or 

subscript.  Thus  two  ranges  of  points  may  be  denoted  by  [P]  and  [Q]. 

To  indicate  a  perspective  correspondence  between  them  we  write 

The  same  symbol,  ̂ ,  is  also  used  to  indicate  a  perspectivity  between 

any  two  one-dimensional  forms.  If  the  two  forms  are  of  the  same 
kind,  it  implies  that  there  exists  a  third  form  such  that  every  pair 
of  homologous  elements  of  the  first  two  forms  is  on  an  element  of 

the  third  form.  The  third  form  may  also  be  exhibited  in  the  notation 

by  placing  a  symbol  representing  the  third  form  immediately  over 

the  sign  of  perspectivity,  ̂ . 
TEus  the  symbols 

[n|t«=w=w 
denote  that  the  range  [P]  is  perspective  by  means  of  the  center  A  with 

the  range  [Q],  that  each  Q  is  on  a  line  r  of  the  flat  pencil  [r],  and 

that  the  pencil  [r]  is  perspective  by  the  axis  a  with  the  fiat  pencil  [s]. 
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A  class  of  elements  containing  a  finite  number  of  elements  can 

be  indicated  by  the  symbols  for  the  several  elements.  When  this 

notation  is  used,  the  symbol  of  perspectivity  indicates  that  elements 

appearing  in  corresponding  places  in  the  two  sequences  of  symbols 
are  homologous.    Thus 

12  3  ±  =  AB  C  D 
A 

implies  that  1,_gnd  A,  2  and  B,  3  and  C,  4  and  D  are  homologous. 

fl)EFiNiTiONj*  |  Two  one-dimensional  primitive  forms  [<x]  and  [or']  (of 
the  same  or  different  kinds)  are  said  to  be  projective,  provided  there 

exists  a  sequence  of  forms  [r],  [V],  •  •  •,  [rin)]  such  that 

LJALJALJA  AL        JALJ 

The  correspondence  thus  established  between  [a]  and  [a-']  is  called 
a  projective  correspondence  or  vroiectivitv.  or  also  a  projective  trans- 

formation. Any  element  a  is  said  to  be  projected  into  its  homologous 

element  a'  by  the  sequence  of  perspectivities. 
Thus  a  projectivity  is  the  resultant  of_a  sequence  of  nerspectiyities. 

It  is  evident  that  [a-]  and  [V]  may  be  the  same  form,  in  which  case 
the  projectivity  effects  a  permutation  of  the  elements  of  the  form. 

For  example,  it  is  proved  later  in  this  chapter  that  any  four  points 

A,  B,  C,  D  of  a  line  can  be  projected  into  B,  A,  D,  C  respectively. 

A  projectivity  establishes  a  one-to-one  correspondence  between  the 

elements  of  two  one-dimensional  forms,  which  correspondence  we  may 

consider  abstractly  without  direct  reference  to  the  sequence  of  perspec- 
tivities by  which  it  is  defined.    Such  a  correspondence  we  denote  by 

Projectivities  we  will,  in  general,  denote  by  letters  of  the  Greek 

alphabet,  such  as  rr.  If  a  projectivity  ir  makes  an  element  a  of  a 

form  homologous  with  an  element  a'  of  another  or  the  same  form, 

we  will  sometimes  denote  this  by  the  relation  hr(a)=  a'.  In  this 

case  we  may  say  the  projectivity  transforms  a  into  a'.  Here  the 
symbol  7r(  )  is  used  as^i  functional  symbol f  acting  on  the  variable^. 

a,  which  represents  any  one  of  the  elements  of  a  given  form. 

*  This  is  Poncelet's  definition  of  a  projectivity. 
t  Just  like  F(x),  sin(x),  log(x),  etc. 

t  The  definition  of  variable  is  "  a  symbol  x  which  represents  any  one  of  a  class 

of  elements  [x]."    It  is  in  this  sense  that  we  speak  of  "  a  variable  point." 
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23.  The  projectivity  of  one-dimensional  primitive  forms.  The 

projectivity  of  one-dimensional  primitive  forms  will  be  discussed 

with  reference  to  the  projectivity  of  pencils  of  points.  The  corre- 

sponding properties  for  the  other  one-dimensional  primitive  forms 
will  then  follow  immediately  by  the  theorems  of  duality  (Theorems 

1 l-JXXjiap.  I). 

JT^ngjVNMy  Tf  A^B^C  arejhreejpoints  of  a  line  I  and  A',  B',  C' 

three  points  of  another  line  I',  then  A  can  be  projected  into  A',  B  into 
B',  and  C  into  C  by  means  of  two  centers  of  perspectivity.  (The  lines 
may  be  in  the  same  or  in  different  planes.)    (A,  E) 

Proof.  If  the  points  in  any  one  of  the  pairs  AA',  BB\  or  CC  are 
coincident,  one  center  is  sufficient,  viz.,  the  intersection  of  the  lines 

determined  by  the  other 

two  pairs.  If  each  of  these 

pairs  consists  of  distinct 

points,  let  S  be  any  point 

of  the  line  AA',  distinct 

from  A  and  A'  (fig.  22). 
From  S  project  A,  B,  C 

on  any  line  I"  distinct 
from  I  and  V,  but  con- 

taining A'  and  a  point 
of  I.  If  B",  C"  are  the 

points  of  I"  correspond- 
ing to  B,  C  respectively, 

the  point  of  intersection  S'  of  the  lines  B'B"  and  C'C"  is  the  second 
center  of  perspectivity.  This  argument  holds  without  modification, 

if  one  of  the  points  A,  B,  C  coincides  with  one  of  the  points  A',  B',  C 
other  than  its  corresponding  point. 

Corollary  Wlf  A,  B,  C  and  A',  B',  C'  are  on  the  same  line,  three 

centers  of  perspectivity  are_suffi,cient  to  project  A,  B,  C  into  A'.  J: 
(A,E) 

iiict   elements   of  a   one-dimen»ional 
p  ri  m  xtive  Jortn   are^pxojeciiix   with   any   three   distinct   elements  of 

another  or  the  same  one-dimensional  primitive  form.    (A,  E) 

For,  when  the  two  forms  are  of  the  same  kind,  the  result  is  ob- 

tained from  the  theorem  and  the  first  corollary  directly  from  the 
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theorems  of  duality  (Theorems  11—13,  Chap.  I).  If  they  are  of  differ- 
ent kinds,  a  projection  or  section  is  sufficient  to  reduce  them  to  the 

same  kin(L___^^ 

J  Theorem  2.  \The_j^rojedivit^_ABCD-^  BADC  hqldsj&Z  any  four 
ajme.   (A,  E) 

Proof.  From  a  point  S,  not  on  the  line  I  =  AB,  project  ABCD  into 

AB'C'D'  on  a  line  I'  through  A  and  distinct  from  I  (fig.  23).  From  D 

project  AB'C'D'  on  the  line  SB.  The  last  four  points  will  then  project 
into  BADC  by  means  of  the  center  C.    In  fig.  23  we  have 

S  D  C 
ABCD  =  AB'C'D'  =  BB'C"S=  BADC. 
A  A   _________A.   , 

It  is  to  be  noted  that  a  geometrical  order  of  the  points  ABCD  has  no  bearing 

on  the  theorem.   In  fact,  the  notion  of  such  order  has  not  yet  been  introduced 

into  our  geometry  and,  indeed,  cannot 
be  introduced  on  the  basis  of  the 

present  assumptions  alone.  The  theo- 

rem merely  states  that  the  correspond- 
ence obtained  by  interchanging  any  two 

of  four  collinear  points  and  also  inter- 
changing the  remaining  two  is  projective. 

The  notion  of  order  is,  however,  im- 

JL  plied  in  our  notation  of  projectivity 

and  perspectivity.  Thus,  for  example, 

we  introduce  the  following  definition  : 

Definition.  Two  ordered  pairs  of  elements  of  any  one-dimensional 
form  are  called  a  throw;  if  the  pairs  are  AB,  CD,  this  is  denoted  by 

T (AB,  CD).  Two  throws  are  said  to  be  equal,  provided  they  are 

projective ;  in  symbols,  T(AB,  CD)  =  T(A'B',  C'D'),  provided  we  have 

ABCD-^A'B'C'D'. 
The  last  theorem  then  states  the  equality  of  throws : 

T(AB,  CD)  =  T(BA,  DC)  =  T(CD,  AB)  =  T(DC,  BA). 

The  results  of  the  last  two  theorems  may  be  stated  in  the  follow- 

ing form : 

Theorem  1'.  If  1,2,3  are  elements  of  any  one-dimensional  prim- 
itive form,  there  exist  projective  transformations  which  will  effect  any 

one  of  the  six  permutations  of  these  three  elements. 
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Theorem  2'.  If  1,  2,  3,  4  arc  any  four  distinct  elements  of  a  one- 
dimensional  primitive  form,  there  exist  projective  transformations 

which  will  transform  1234  ̂ nio  any  one  °f  ̂ e  following  permuta- 
tions of  itself:  1234,  2143,  3412,  4321. 

A  projective  transformation  has  been  defined  as  the  resultant  of  any 

sequence  of  perspeetivities.  We  proceed  now  to  the  proof  of  a  chain 

of  theorems,  which  lead  to  the  fundamental  result  that  any  projective 

transformation  between  two  distinct  one-dimensional  primitive  forms 
of  the  same  kind  can  be  obtained  as  the  resultant  of  two  perspeetivities. 

Theorem  3.  If  [P],  [P'],  [P"]  are  pencils  of  points  on  three  distinct 

S  S' 
concurrent  lines  I,  V,  I"  respectively,  such  that  [P]  =  [P']  and  [P']  = 

S,  S'  S"  are  collinear.    (A,  E) 

[P"],  then  likewise  [P]  =  [P"],  and  the  three  centers  of  perspectivity 
S"
 

Proof.  Let  0  be  the  common  point  of  the  lines  I,  I',  I".  If  Ply  Pv  Pt 

are  three  points  of  [P],  and  P^P^PJ  and  P^'P^'P^"  the  corresponding 

points  of  [P'],  [P"]  (fig.  24),  it  is  clear  that  the  triangles  P^P^", 

P%P^P^,  PZPZ'PZ"  are  perspective  from  0*  By  Desargues's  theorem 
(Theorem  1,  Chap.  II)  homologous  sides  of  any  pair  of  these  three 

triangles  meet  in  collinear  points.  The  conclusion  of  the  theorem  then 

follows  readily  from  the  hypotheses. 

*  If  the  points  in  each  of  these  sets  of  three  are  collinear,  the  theorem  is  obvious 
and  the  three  centers  of  perspec  ;ivity  coincide. 
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Corollary.  If  n  concurrent  lines  lv  l2,  l3, 

perspectivities  [%]  =  [P2]  ==  [Pa]  =  •  •  •  = 

•,  ln  are  connected  by 

[TjJ],  and  if  lx  and  ln 

are  distinct  lines,  then  we  have  [If]  =  [J£].    (A,  E) 

Proof.  This  follows  almost  immediately  from  the  theorem,  except 

when  it  happens  that  a  set  of  four  successive  lines  of  the  set  lxl2l3  •  •  •  /„ 
are  such  that  the  first  and  third  coincide  and  likewise  the  second  and 

fourth.  That  this  case  forms  no  exception  to  the  corollary  may  be 

shown  as  follows :  Consider  the  perspectivities  connecting  the  pencils 

of  points  on  the  lines  lv  l2,  ls,  Z4  on  the  hypothesis  that  ltm  l3,  l2  =  lt 
(fig.  25.)    Let  lv  l2  meet  in  0,  and  let  the  line  S12S23  meet  ll  in  Av 

A  =  A3      B,  B3 
Fig.  26 

Q a 

and  l2  in  A2 ;  let  As  =  A1  and  AA  be  the  corresponding  points  of  lz  and 
lt  respectively.  Further,  let  Bv  B2,  Bs,  Bt  and  Cv  C2,  C8,  C4  be  any 

other  two  sequences  of  corresponding  points  in  the  perspectivities. 

Let  Stl  be  determined  as  the  intersection  of  the  lines  ArA4  and  BXBA. 

The  two  quadrangles  S12S23B2C2  and  SilSsiBiCi  have  five  pairs  of 

homologous  sides  meeting  lx  =  Z8  in  the  points  OAxBxB3Cv  Hence 
the  side  StlCt  meets  lx  in  Cx  (Theorem  3,  Chap.  II). 

Theorem  4.  If  [JJ],  [P2],  [P]  are  pencils  of  points  on  distinct o.         >S2 

lines  lv  l2,  I  respectively,  such  that  [P^]  =  [P]  ==  [P2],  and  if  [P']  is 

the  pencil  of  points  on  any  line  I'  containing  the  intersection  of  lv  I 
and  also  a  point  of  l2,  but  not  containing  S2,  then  there  exists  a  point S'  S 

SI  on  SXS2,  such  that  [Px]  =  [P']  =!  [P2\    (A,  E) 
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Proof.  Clearly  we  have 

But  bv  the  preceding  theorem  and  the  conditions  on  I'  we  have 
s; 

[PJ  =  [P'],  where  S[  is  a  point  of  S^   Hence  we  have 

This  theorem  leads  readily  to  the  next  theorem,  which  is  the  result 

toward  which  we  have  been  working.  "We  prove  first  the  following lemmas : 

Lemma  1.  Any  axial  perspectivity  between  the  points  of  two  skew 

lines  is  equivalent  to  (and  may  be  replaced  by)  two  central perspectivities. 

(A,E)    
' 

.  For  let  [P],  [P']  be  the  pencils  of  points  on  the  skew  lines.  Then 

if  S  and  S'  are  any  two  points  on  the  axis  s  of  the  axial  perspectivity, 

the  pencils  of  lines  S[P],  S'[P']*  are  so  related  that  pairs  of  homol- 
ogous lines  intersect  in  points  of  the  line  common  to  the  planes  of  the 

two  pencils  S[P]  and  S'[P'],  since  each  pair  of  homologous  lines  lie, 

by  hypothesis,  in  a  plane  of  the  axial  pencil  s[P]=s[P']. 
Lemma  2.  Any  projectivity  between  pencils  of  points  may  be  defined 

by  a  sequence  of  central  perspectivities. 

For  any  noncentral  perspectivities  occurring  in  the  sequence  defining 

a  projectivity  may,  in  consequence  of  Lemma  1,  be  replaced  by  sequences 
of  central  perspectivities. 

Theorem  5.  If  two  pencils  of  points  [P]  and  [P']  on  distinct  lines 

are  projective,  there  exists  a  pencil  of  points  [Q]  and  two  points  S,  S' 

S        Sf such  that  we  have  [P]  =  [Q]  =  [P'].    (A,  E) 

Proof.  By  hypothesis  and  the  two  preceding  lemmas  we  have  a 

sequence  of  perspectivities 

o,  o„  o.  o.  >S_ 

*  Given  a  class  of  elements  [P];  the  symbol  S[P]  is  used  to  denote  the  class 

of  elements  SP  determined  by  a  given  element  S  and  any  element  of  [P"|.  Hence, 
if  [P]  is  a  pencil  of  points  and  S  a  point  not  in  [P],  S[P]  is  a  pencil  of  lines  with 
center  S;  if  s  is  a  line  not  on  any  P,  s  [P]  is  a  pencil  of  planes  with  axis  s. 
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We  assume  the  number  of  these  perspectivities  to  be  greater  than  two, 

since  otherwise  the  theorem  is  proved.  By  applying  the  corollary  of 

Theorem  3,  when  necessary,  this  sequence  of  perspectivities  may  be 

so  modified  that  no  three  successive  axes  are  concurrent.  We  may 

also  assume  that  no  two  of  the  axes  I,  lv  l2,  ls,  ■  •  • ,  I'  of  the  pencils 

[P],  [PJ,  [Jg],-[Jt3,  •  •  •  [P'J  are  coincident;  for  Theorem  4  may  evidently 
be  used  to  replace  any  lk(=  lt)  by  a  line  Z*  (=£  l{).  Now  let  l[  be  the 
line  joining  the  points  ttx  and  l2ls,  and  let  us  suppose  that  it  does  not 

contain  the  center  S2  (fig.  26).  If  then  [P/]  is  the  pencil  of  points 

on  /{,  we  may  (by  Theorem  4)  replace  the  given  sequence  of  per- 
&i  _    ._  $o         S,         & 

activities  by   [P]  ==  [P/]  =5  [P2]  =1  [P8] and  this   sequence 

[^]=m 

A   L  OJ   A 

may  in  turn  be  replaced  by 

A   L   sJ   A
"  '  * ' 

(Theorem  3).  If  S2  is  on  the  line 

joining  llx  and  l2lz,  we  may  replace 

lt  by  any  line  l"  through  the  inter- 
section of  lxl2  which  meets  I  and 

Fig.  26  does  not  contain  the  point  Sx  (The- 
orem 4).  The  line  joining  l2ls  to 

W[  does  not  contain  the  point  S"  which  replaces  S2.  For,  since  >^2  is 
on  the  line  joining  l3l2  to  llv  the  points  l3l2  and  llx  are  homologous 

points  of  the  pencils  [P8]  and  [P] ;  and  if  S2  were  on  the  line  join- 

ing lzl2  to  11",  the  point  lsl2  would  also  be  homologous  to  //{'.  We 
may  then  proceed  as  before.  By  repeated  application  of  this  process 

we  can  reduce  the  number  of  perspectivities  one  by  one,  until  finally 
we  obtain  the  pencil  of  points  [Q]  and  the  perspectivities 

As  a  consequence  we  have  the  important  theorem : 

Theorem  6.  Any  two  projective  pencils  of  points  on  skew  lines  are 

axially  perspective.    (A,  E) 

Proof.  The  axis  of  the  perspectivity  is  the  line  SS'  of  the  last 
theorem. 

24.  General  theory  of  correspondence.  Symbolic  treatment.  In 

preparation  for  a  more  detailed  study  of  projective  (and  other)  corre- 
spondences, we  will  now  develop  certain  general  ideas  applicable  to 
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all  one-to-one  reciprocal  correspondences  as  defined  in  Chap.  II,  §  13, 
p.  35,  and  show  in  particular  how  these  ideas  may  be  conveniently 

represented  in  symbolic  form.*  As  previously  indicated  (p.  58),  we 
will  represent  such  correspondences  in  general  by  the  letters  of  the 

Greek  alphabet,  as  A,  B,  T,  ••  • .  The  totality  of  elements  affected 
by  the  correspondences  under  consideration  forms  a  system  which  we 

may  denote  by  S.  If,  as  a  result  of  replacing  every  element  of  a  system 

Sx  by  the  element  homologous  to  it  in  a  correspondence  A,  the  sys- 
tem Sx  is  transformed  into  a  system  S2,  we  express  this  by  the  relation 

A  (Sj  =  S2.  In  particular,  the  element  homologous  with  a  given  ele- 
ment P  is  represented  by  A  (P). 

I.  If  two  correspondences  A,  B  are  applied  successively  to  a  sys- 

tem S1}  so  that  we  have  A(SX)=  S2  and  B(S2)  =  S3,  the  single  corre- 
spondence r  which  transforms  Sx  into  S3  is  called  the  resultant  or 

product  of  A  by  B;  in  symbols  S3=  B(S2)  =  B(A(S1))  =  BA(S1),  or, 

more  briefly,  BA  =  Y.  Similarly,  for  a  succession  of  more  than  two 
correspondences. 

II.  Two    successions    of    correspondences    AmAm_1  •  •  •  Ax    and 

BgB9_a  •  •  •  Bj  have  the  same  resultant,  or  their  products  are  equal, 

provided  they  transform  S  into  the  same  S';  in  symbols,  from  the 
relation 

A„An,_1---A1(S)  =  B,B,_1...B1(S) 

follows  A.A..,  •  •  •  A^B^B,.,-  -  -  Br 

III.  The  correspondence  which  makes  every  element  of  the  sys- 
tem correspond  to  itself  is  called  the  identical  correspondence  or  simply 

the  identity,  and  is  denoted  by  the  symbol  1.  It  is  then  readily  seen 

that  for  any  correspondence  A  we  have  the  relations 

A1  =  1A  =  A. 

IV.  If  a  correspondence  A  transforms  a  system  Sx  into  S2,  the  corre- 
spondence which  transforms  S2  into  Sx  is  called  the  inverse  of  A  and  is 

represented  by  A-1;  i.e.  if  we  have  A  (Sj  =  S2,  then  also  A-1  (S2)  =  Sr 
The  inverse  of  the  inverse  of  A  is  then  clearly  A,  and  we  evidently 
have  also  the  relations 

AA-1  =  A"1A  =  1. 

*  In  this  section  we  have  followed  to  a  considerable  extent  the  treatment  given 
by  H.  Wiener,  Berichte  der  K.  sacbsischen  Gesellschaft  der  Wissenschaften.  Leipzig. 
Vol.  XLII  (1890),  pp.  249-252. 
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Conversely,  if  A,  A'  are  two  correspondences  such  that  we  have 
AA'  =  1,  then  A'  is  the  inverse  of  A.  Evidently  the  identity  is  its 
own  inverse. 

V.  The  product  of  three  correspondences  A,  B,  T  always  satisfies 

the  relation  (rB)  A  =  V  (BA)  (the  associative  law).  For  from  the 

relations  A(S1)  =  S2,  B(S2)  =  S3,  r(S3)  =  S4  follows  at  once  BA(S1)  =  S;J, 

whence  T(BA)  (Sx)  =S4;  and  also  TB(S2)  =  S4,  and  hence  (rB)  A(S1) 
=  S4,  which  proves  the  relation  in  question.  More  generally,  in  any 
product  of  correspondences  any  set  of  successive  correspondences  may 

be  inclosed  in  parentheses  (provided  their  order  be  left  unchanged), 

or  any  pair  of  parentheses  may  be  removed ;  in  other  words,  in  a 

product  of  correspondences  any  set  of  successive  correspondences  may 

be  replaced  by  their  resultant,  or  any  correspondence  may  be  replaced 

by  a  succession  of  which  the  given  correspondence  is  the  resultant. 

VI.  In  particular,  we  may  conclude  from  the  above  that  the  inverse 

of  the  product  M  •  •  •  BA  is  A^B-1  •  •  •  M-1,  since  we  evidently  have 

the  relation  M  •  •  •  BAA^B"1  ■  •  •  M"x  =  l  (cf.  IV). 
VII.  Further,  it  is  easy  to  show  that  from  two  relations  A  =  B  and 

r  =  A  follows  Ar  =  BA  and  TA  =  AB.  In  particular,  the  relation 

A  =  B  may  also  be  written  AB"X  =  1,  6-^  =  1,  BA"^  1,  or  A"XB  =  1. 
VIII.  Two  correspondences  A  and  B  are  said  to  be  commutative 

if  they  satisfy  the  relation  BA  =  AB. 

IX.  If  a  correspondence  A  is  repeated  n  times,  the  resultant  is  writ- 

ten AAA  •  •  •  =  A".  A  correspondence  A  is  said  to  be  of  period  n,  if  n 

is  the  smallest  positive  integer  for  which  the  relation  An  =  1  is  satisfied. 
When  no  such  integer  exists,  the  correspondence  has  no  period  ;  when 

it  does  exist,  the  correspondence  is  said  to  be  periodic  or  cyclic. 

X.  The  case  n  =  2  is  of  particular  importance.  A  correspondence 
of  period  two  is  called  involutoric  or  reflexive. 

25.  The  notion  of  a  group.  At  this  point  it  seems  desirable  to 

introduce  the  notion  of  a  group  of  correspondences,  which  is  funda- 
mental in  any  system  of  geometry.  We  will  give  the  general  abstract 

definition  of  a  group  as  follows  :  * 
Definition.  A  class  G  of  elements,  which  we  denote  by  a,  h, 

c,  •  •  •,  is  said  to  form  a  group  with  respect  to  an  operation  or  lav  of 

*  We  have  used  here  substantially  the  definition  of  a  group  given  by  L.  E.  Dickson, 
Definitions  of  a  Group  and  a  Field  by  Independent  Postulates,  Transactions  of  the 
American  Mathematical  Society,  Vol.  VI  (1906),  p.  199. 
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combination  o,  acting  on  pairs  of  elements  of  G,  provided  the  fol- 
lowing postulates  are  satisfied : 

G 1.  For  every  pair  of  (equal  or  distinct)  elements  a,  b  of  G,  the 

result  aob  of  acting  with  the  operation  o  on  the  pair  in  the  order 

given  *  is  a  uniquely  determined  element  of  G. 
G  2.  The  relation  (a  o  b)  o  c  =  a  o  (b  o  c)  holds  for  any  three  (equal  or 

distinct)  elements  a,  b,  c  of  G. 
G  3.  There  occurs  in  G  an  element  i,  such  that  the  relation  a  o  i  =  a 

holds  for  every  element  a  of  G. 

G4.  For  every  element  a  in  G  there  exists  an  element  a'  satisfying 
the  relation  a  o  a'  =  i. 

From  the  above  set  of  postulates  follow,  as  theorems,  the  following : 

The  relations  a  o  a'  =  i  and  a  oi  =  a  imply  respectively  the  relations 
a'o a  =  i  and  ioa  —  a. 

An  element  i  of  G  is  called  an  identity  element,  and  an  element  a' 

satisfying  the  relation  aoa'=i  is  called  an  inverse  element  of  a. 
There  is  only  one  identity  element  in  G. 

For  every  element  a  of  G  there  is  only  one  inverse. 

"We  omit  the  proofs  of  these  theorems. 
Definition.  A  group  which  satisfies  further  the  following  postulate 

is  said  to  be  commutative  (or  abelian): 

G  5.  The  relation  a  ob  =  b  o  a  is  satisfied  for  every  pair  of  ele- 
ments a,  b  in  G. 

26.  Groups  of  correspondences.  Invariant  elements  and  figures. 

The  developments  of  the  last  two  sections  lead  now  immediately 
to  the  theorem: 

A  set  of  correspondences  forms  a  group  provided  the  set  contains 

the  inverse  of  any  correspondence  in  the  set  and  provided  the  resultant 
of  any  two  correspondences  is  in  the  set. 

Here  the  law  of  combination  o  of  the  preceding  section  is  simply 
the  formation  of  the  resultant  of  two  successive  correspondences. 

Definition.  If  a  correspondence  A  transforms  every  element  of  a 

given  figure  F  into  an  element  of  the  same  figure,  the  figure  F  is  said 

to  be  invariant  under  A,  or  to  be  left  invariant  by  A.    In  particular, 

*  I.e.  aob  and  boa  are  not  necessarily  identical.  The  operation  o  simply  defines 
a  correspondence,  whereby  to  every  pair  of  elements  a,  b  in  G  in  a  given  order  corre- 

sponds a  unique  element ;  this  element  is  denoted  by  a  o  6. 
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an  element  which  is  transformed  into  itself  by  A  is  said  to  be  an 
invariant  element  of  A;  the  latter  is  also  sometimes  called  a  double 

element  or  a,  fixed  element  (point,  line,  plane,  etc.). 

We  now  call  attention  to  the  following  general  principle : 

The  set  of  all  correspondences  in  a  group  G  which  leave  a  given 
figure  invariant  forms  a  group. 

This  follows  at  once  from  the  fact  that  if  each  of  two  corre- 

spondences of  G  leaves  the  figure  invariant,  their  product  and  their 
inverses  will  likewise  leave  it  invariant ;  and  these  are  all  in  G,  since, 

by  hypothesis,  G  is  a  group.  It  may  happen,  of  course,  that  a  group 
denned  in  this  way  consists  of  the  identity  only. 

These  notions  are  illustrated  in  the  following  section : 

27.  Group  properties  of  projectivities.   From  the  definition  of  a  pro- 

jectivity  between  one-dimensional  forms  follows  at  once 

Theorem  7.  The  inverse  of  any  projectivity  and  the  resultant  of 
any  two  projectivities  are  projectivities. 

On  the  other  hand,  we  notice  that  the  resultant  of  two  perspec- 

tivities  is  not,  in  general,  a  perspectivity ;  if,  however,  two  perspec- 
tivities  connect  three  concurrent  lines,  as  in  Theorem  3,  their  resultant 

is  a  perspectivity.  A  perspectivity  is  its  own  inverse,  and  is  therefore 

reflexive.  As  an  example  of  the  general  principle  of  §  26,  we  have 
the  important  result : 

Theorem  8.  The  set  of  all  projectivities  leaving  a  given  pencil  of 
points  invariant  form  a  group. 

If  the  number  of  points  in  such  a  pencil  is  unlimited,  tins  group  con- 
tains an  unlimited  number  of  projectivities.  It  is  called  the  general 

projective  group  on  the  line.  Likewise,  the  set  of  all  projectivities  on  a 

line  leaving  the  figure  formed  by  three  distinct  points  invariant  forms  a 

subgroup  of  the  general  group  on  the  line.  If  we  assume  that  each  per- 

mutation (cf.  Theorem  1')  of  the  three  points  gives  rise  to  only  a  single 
projectivity  (the  proof  of  which  requires  an  additional  assumption), 

this  subgroup  consists  of  six  projectivities  (including,  of  course,  the 

identity).  Again,  the  set  of  all  projectivities  on  a  line  leaving  each  of  two 

given  distinct  points  invariant  forms  a  subgroup  of  the  general  group. 

We  will  close  this  section  with  two  examples  illustrative  of  the 

principles  now  under  discussion,  in  which  the  projectivities  in  ques- 
tion are  given  by  explicit  constructions. 
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Example  1.  A  group  of  projectivities  leaving  each  of  two  given 

points  invariant.    Let  M,  JV  be  two  distinct  points  on  a  Hue  /,  and 

let  m,  n  be  any  two  lines  through  M,  JV  respectively  and  coplanar 

with  I  (fig.  27).    On  m  let  there  be  an  arbitrary  given  point  S.    If  Sx 

is  any  other  point  on  m  and  not  on  I  or  n,  the  points  S,  S1  together 
with  the  line  n  define  a  projectivity  irx  on  I  as  follows :  The  point 

irl(A)  =  A'  homologous  to  any  point  A  of  I  is  obtained  by  the  two S  S, 

perspectivities  [A]  ==  [Ax]  =  [A'],  where  \A^\  is  the  pencil  of  points 

on  n.    Every  point  S,  then,  if  not  on  I  or  n,  defines  a  unique  pro- 
jectivity 7r;;  we  are  to  show  that  the  set  of  all  these  projectivities  tri 

forms  a  group.  We  show  first  that  the  product 

of  any  two  irv  tt2  is  a  uniquely  determined  pro-  m       ̂ ,m 
jectivity  irs  of  the  set  (fig.  27). 

In  the  figure,  A'  =  irx  (A) 
and  A"=  7r2(-4')  have  been 

A'
 

Fig.  27  \ 

constructed.  The  point  Ss  giving  A"  directly  from  A  by  a  similar  con- 
struction is  then  uniquely  determined  as  the  intersection  of  the  lines 

A"AV  m.  Let  B  be  any  other  point  of  I  distinct  from  M,  JV",  and  let 
B '=  tt^B)  and  B"=  ir2(B')  be  constructed ;  we  must  show  that  we  have 

B"=tts(B).  We  recognize  the  quadrangular  set  Q(JIBA',  NA"B")  as 
defined  by  the  quadrangle  SS%B2A2.  But  of  this  quadrangular  set  all 

points  except  B"  are  also  obtained  from  the  quadrangle  S^B^; 
whence  the  line  S3B1  determines  the  point  B"  (Theorem  3,  Chap.  II). 
It  is  necessary  further  to  show  that  the  inverse  of  any  projectivity  in 

the  set  is  in  the  set.  For  this  purpose  we  need  simply  determine  S2 

as  the  intersection  of  the  line  JA2  with  m  and  repeat  the  former  argu- 
ment. This  is  left  as  an  exercise.  Finally,  the  identity  is  in  the  set, 

since  it  is  irv  when  Sx  =  S. 
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It  is  to  be  noted  that  in  this  example  the  points  M  and  N  are 

double  points  of  each  projectivity  in  the  group;  and  also  that  if  P,  P' 

and  Q,  Q'  are  any  two  pairs  of  homologous  points  of  a  projectivity 
we  have  Q(MPQ,  NQ'P').  Moreover,  it  is  clear  that  any  projectivity 
of  the  group  is  uniquely  determined  by  a  pair  of  homologous  elements, 
and  that  there  exists  a  projectivity  which 

will  transform  any  point  A  of  I  into  any 

other  point  B  of  I,  provided  only  that 
A  and  B  are  distinct  from 

M  and  N.    By  virtue  of  c 

the  latter  property  the  S, 

group    is    said 
to  be  transitive. 

Example  2.   Commutative  projectivities.    Let  M  be  a  point  of  a 

line  I,  and  let  m,  m'  be  any  two  lines  through  M  distinct  from  I,  but 
in  the  same  plane  with  I  (fig.  28.)    Let  S  be  a  given  point  of  m,  and 

let  a  projectivity  tt1  be  defined  by  another  point  S1  of  m  which  deter- S  aSj 

mines  the  perspectivities  [A]  —  [AJ  =  [A'],  where  [At]  is  the  pencil 

of  points  on  m'.  Any  two  projectivities  defined  in  this  way  by  points  S( 
are  commutative.  Let  7r2  be  another  such  projectivity,  and  construct 

the  points  A^tt^A),  A"  =  ir2(A'),  and  A[  =  tt2(A).  The  quadrangle 

SS^A^A^  gives  Q(MAA',  MA"A[);  and  the  quadrangular  set  determined 
on  7  by  the  quadrangle  SS^A^  has  the  first  five  points  of  the  former 

in  the  same  positions  in  the  symbols.  Hence  we  have  ̂ (^1')  =  A",  and 
therefore  ir^  =  7r27rr 

EXERCISES 

1.  Show  that  the  set  of  all  projectivities  ir,-  of  Example  2  above  forms  a 

group,  which  is  then  a  commutative  group. 

2.  Show  that  the  projectivity  tt1  of  Example  1  above  is  identical  with  the 

projectivity  obtained  by  choosing  any  other  two  points  of  m  as  centers  of 

perspectivity,  provided  only  that  the  two  projectivities  have  one  homologous 
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pair  (distinct  from  M  or  X)  in  common.  Investigate  the  general  question  as 

to  how  far  the  construction  may  be  modified  so  as  still  to  preserve  the  propo- 
sition that  the  projectivities  are  determined  by  the  double  points  M,  X  and 

one  pair  of  homologous  elements. 

3.  Discuss  the  same  general  question  for  the  projectivities  of  Example  2. 

4.  Apply  the  method  of  Example  2  to  the  projectivities  of  Example  1. 

Why  does  it  fail  to  show  that  any  two  of  the  latter  are  commutative?  State 

the  space  and  plane  duals  of  the  two  examples. 

5.  ABCD  is  a  tetrahedron  and  a,  8,  y,  8  the  faces  not  containing  A,B,C,D 

respectively,  and  /  is  any  line  not  meeting  an  edge.  The  planes  (I A ,  IB,  IC,  ID) 

are  projective  with  the  points  (la,  IB,  ly,  l&). 

6.  On  each  of  the  ten  sides  of  a  complete  5-point  in  a  plane  there  are  three 
diagonal  points  and  two  vertices.  Write  down  the  projectivities  among  these 

ten  sets  of  five  points  each. 

28.  Projective  transformations  of  two-dimensional  forms. 
Definition.  A  projective  transformation  between  the  elements  of 

two  two-dimensional  or  two  three-dimensional  forms  is  any  one-to- 
one  reciprocal  correspondence  between  the  elements  of  the  two  forms, 

such  that  to  every  one-dimensional  form  of  one  there  corresponds 

a  projective  one-dimensional  form  of  the  other. 
Definition.  A  collineation  is  any  (1,1)  correspondence  between 

two  two-dimensional  or  two  three-dimensional  forms  in  which  to  every 
element  of  one  of  the  forms  corresponds  an  element  of  the  same  kind 

in  the  other  form,  and  in  which  to  every  one-dimensional  form  of  one 

corresponds  a  one-dimensional  form  of  the  other.  A  projective  colline- 

ation is  one  in  which  this  correspondence  is  projective.  Unless  other- 
wise specified,  the  term  collineation  will,  in  the  future,  always  denote 

a  projective  collineation.* 
In  the  present  chapter  we  shall  confine  ourselves  to  the  discus- 

sion of  some  of  the  fundamental  properties  of  collineations.  In  this 

section  we  discuss  the  collineations  between  two-dimensional  forms, 

and  shall  take  the  plane  (planar  field)  as  typical ;  the  corresponding 
theorems  for  the  other  two-dimensional  forms  will  then  follow  from 

duality. 

The  simplest  correspondence  between  the  elements  of  two  distinct 

planes  ir,  ir'  is  a  perspective  correspondence,  whereby  any  two  homol- 
ogous elements  are  on  the  same  element  of  a  bundle  whose  center  0 

is  on  neither  of  the  planes  7r,  it'.    The  simplest  collineation  in  a  plane, 

*  In  how  far  a  collineation  must  be  projective  will  appear  later. 
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i.e.  which  transforms  every  element  of  a  plane  into  an  element  of  the 

same  plane,  is  the  following : 

Definition.  A  perspective  collineation  in  a  plane  is  a  projective 

collineation  leaving  invariant  every  point  on  a  given  line  o  and  every 

line  on  a  given  point  0.  The  line  o  and  the  point  0  are  called  the 

axis  and  center  respectively  of  the  perspective  collineation.  If  the 

center  and  axis  are  not  united,  the  collineation  is  called  a  planar 

homology;  if  they  are  united,  &  planar  elation. 

A  perspective  collineation  in  a  plane  ir  may  be  constructed  as 

follows :  Let  any  line  o  and  any  point  0  of  ir  be  chosen  as  axis  and 

center  respectively,  and  let  irx  be  any  plane  through  o  distinct  from  it. 

Let  Ov  02  be  any  two  points  collinear  with  0  and  in  neither  of  the 
planes  it,  irv    The  perspective  collineation  is  then  obtained  by  the 

two  perspectivities  [P]  ===  [PJ  =  [P '],  where  P  is  any  point  of  it  and 

Px,  P'  are  points  of  7rx  and  it  respectively.  Every  point  of  the  line  o 
and  every  line  through  the  point  0  clearly  remain  fixed  by  the  trans- 

formation, so  that  the  conditions  of  the  definition  are  satisfied,  if 

only  the  transformation  is  projective.  But  it  is  readily  seen  that 

every  pencil  of  points  is  transformed  by  this  process  into  a  perspec- 
tive pencil  of  points,  the  center  of  perspectivity  being  the  point  0; 

and  every  pencil  of  lines  is  transformed  into  a  perspective  pencil,  the 

axis  of  perspectivity  being  o.    The  above  discussion  applies  whether 
or  not  the  point  0  is  on  the  line  o. 

Theorem  9.  A  perspective  col- 
lineation in  a  plane  is  uniquely 

defined  if  the  center,  axis,  and  any 
two  homologous  points  (not  on  the 
axis  or  center)  are  given,  with  the 

single  restriction  that  the  homol- 
ogous points  must  be  collinear 

with  0.    (A,  E) 

Proof.  Let  0,  o  be  the  center  and  axis  respectively  (fig.  29).    It  is 

clear  from  the  definmonTTnat^anytwo  homologous  points  mustjie^ 
collinear  with  0,  since  every  line  through  olsinvamnt;  similarly 

(aliaTryy_any~Ewo  homologous  lines  must  be  concurrent  with  o.    Let 
A,  A'  be  the  given  pair  of  homologous  points  collinear  with  0.    The 

Fig.  29 
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point  B'  homologous  to  any  point  B  of  the  plane  is  then  determined. 
We  may  assume  B  to  be  distinct  from  0,  A  and  not  to  be  on  o. 

B'  is  on  the  line  OB,  and  if  the  line  AB  meets  o  in  C,  then,  since  C 

is  invariant  by  definition,  the  line  AB  =  AC  is  transformed  into  A'  C. 
B'  is  then  determined  as  the  intersection  of  the  lines  OB  and  A'C. 

This  applies  unless  B  is  on  the  line  AA';  in  this  case  we  determine 

as  above  a  pair  of  homologous  points  not  on  AA',  and  then  use  the 
two  points  thus  determined  to  construct  B'.  This  shows  that  there 
can  be  no  more  than  one  perspective  collineation  in  the  plane  with 
the  given  elements. 

To  show  that  there  is  one  we  may  proceed  as  follows :  Let  irx  be 

any  plane  through  o  distinct  from  ir,  the  plane  of  the  perspectivity, 

and  let  01  be  any  point  on  neither  of  the  planes  it,  ttv  If  the  line  A  Ox 

meets  irx  in  Av  the  line  A'AX  meets  OOx  in  a  point  0„.  The  perspec- 
tive collineation  determined  by  the  two  centers  of  perspectivity  Ov  0o 

and  the  plane  ir1  then  has  O,  o  as  center  and  axis  respectively  and  A,  A' 
as  a  pair  of  homologous  points. 

Corollary  1.  A  perspective  collineation  in  a  plane  transforms  every 

one-dimensional  form  into  a  perspective  one-dimensional  form.    (A,  E) 
Corollary  2.  A  perspective  collineation  with  center  0  and  axis  o 

transforms  any  triangle  none  of  whose  vertices  or  sides  are  on  o  or  0 

into  a  perspective  triangle,  the  center  of  perspectivity  of  the  triangles 

being  the  center  of  the  collineation  and  the  axis  of  perspectivity  being 

the  axis  of  the  collineation.    (A,  E) 

Corollary  3.  The  only  planar  collineations  (whether  required  to 

be  projective  or  not)  which  leave  invariant  the  points  of  a  line  o  and 

the  lines  through  a  point  0  are  homologies  if  0  is  not  on  o,  and 

elations  if  0  is  on  o.    (A,  E) 

Proof.  This  will  be  evident  on  observing  that  in  the  first  paragraph 

of  the  proof  of  the  theorem  no  use  is  made  of  the  hypothesis  that  the 
collineation  is  projective. 

Corollary  4.  If  H  is  a  perspective  collineation  such  that  H(0)  =  0, 

H(o)  =  o,  U(A)  =  A',  U(B)  =  B'  where  A,  A',  B,  B'  are  collinear  with 

a  point  K  of  o,  then  we  have  Q(OAB,  KB' A').    (A,  E) 

Proof  If  C  is  any  point  not  on  AA'  and  H(C)  =  C",  the  lines  AC 

and  A'C  meet  in  a  point  L  of  o,  and  BC  and  B'C  meet  in  a  point  M 
of  o;  and  the  required  quadrangle  is  CC'LM  (cf.  fig.  32,  p.  77). 
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Theorem  10.  Any  complete  quadrangle  of  a  plane  can  he  trans- 
formed into  any  complete  quadrangle  of  the  same  or  a  different  plane 

by  a  projective  collineation  which,  if  the  quadrangles  are  in  the  same 

plane,  is  the  resultant  of  a  finite  number  of  perspective  collineations. 

(A,E) 

Proof  Let  the  quadrangles  be  in  the  same  plane  and  let  their  ver- 

tices be  A,  B,  C,  D  and  A',  B',  C',  I)'  respectively.  We  show  first  that 

there  exists  a  collineation  leaving  any  three  vertices,  say  A',  B',  C,  of 

Fig.  30 

the  quadrangle  A'B'C'D'  invariant  and  transforming  into  the  fourth, 

D',  any  other  point  2>3  not  on  a  side  of  the  triangle  A' B'C (fig.  30).  Let 
D  be  the  intersection  of  A'I>S,  B'D'  and  consider  the  homology  with 

center  A'  and  axis  B'C  transforming  Z>8  into  D.  Next  consider  the 

homology  with  center  B'  and  axis  CA'  transforming  D  into  D'.  Both 
these  homologies  exist  by  Theorem  9.  The  resultant  of  these  two 

homologies  is  a  collineation  leaving  fixed  A',  B',  C  and  transforming 

Z>8  into  D'.  (It  should  be  noticed  that  one  or  both  of  the  homologies 
may  be  the  identity.) 

Let  Ox  be  any  point  on  the  line  containing  A  and  A'  and  let  ox  be 
any  line  not  passing  through  A  or  A'.    By  Theorem  9  there  exists  a 
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perspective  collineation  ttx  transforming  A  to  A1  and  having  Ox  and  ox 
as  center  and  axis.    Let  Bx,  Cx,  Dx  be  points  such  that 

ttx(ABCD)  =  A'BXCXDX. 

In  like  manner,  let  o,  be  any  line  through  A'  not  containing  Bx  or 

B'  and  let  02  be  any  point  on  the  line  BXB'.  Let  ir2  be  the  perspec- 

tive collineation  with  axis  o2,  center  02,  and  transforming  Bx  to  B'. 
Let  C2  =  Tr^Cj)  and  Z>2=  ̂ (DJ.    Here 

ir^A'B&DJ  =  A'B'C2D2. 

Now  let  03  be  any  point  on  the  line  C2C  and  let  7r3  be  the  per- 

spective collineation  which  has  A'B'=os  for  axis,  03  for  center,  and 

transforms  C2  to  C".  The  existence  of  irs  follows  from  Theorem  9  as 

soon  as  we  observe  that  C  is  not  on  the  line  A'B',  by  hypothesis, 

and  C2  is  not  on  A'B';  because  if  so,  C\  would  be  on  A'BX  and  there- 
fore C  would  be  on  AB.    Let  7r3(Z>2)  =  Dz.    It  follows  that 

7r3(A'B'C2D2)  =  A'B'C'DZ. 

The  point  D3  cannot  be  on  a  side  of  the  triangle  A'B'C'  because 

then  D2  would  be  on  a  side  of  A'B'C„,  and  hence  Dx  on  a  side  of 

A'BXCX,  and,  finally,  Dona  side  of  ABC.  Hence,  by  the  first  para- 
graph of  this  proof,  there  exists  a  projectivity  iri  such  that 

7r4(A'B'C'B3)  =  A'B' CD'. 

The  resultant  7r47r37r27r1  of  these  four  collineations  clearly  transforms 

A,  B,  C,  D  into  A',  B',  C,  D'  respectively.  If  the  quadrangles  are  in 
different  planes,  we  need  only  add  a  perspective  transformation  between 

the  two  planes. 

Corollary.  There  exist  projective  collineations  in  a  plane  which 

will  effect  any  one  of  the  possible  2fy  permutations  of  the  vertices  of 

a  complete  quadrangle  in  the  plane.    (A,  E) 

29.  Projective  collineations  of  three-dimensional  forms.  Projective 
collineations  in  a  three-dimensional  form  have  been  defined  at  the 

beginning  of  §  28. 

Definition.  A  projective  collineation  in  space  which  leaves  inva- 

riant every  point  of  a  plane  a>  and  every  plane  on  a  point  0  is  called  a 

perspective  collineation.  The  plane  a>  is  called  the  plane  of  perspectivity ; 

the  point  O  is  called  the  center.  If  0  is  on  <u,  the  collineation  is  said 

to  be  an  elation  in  space ;  otherwise,  a  homology  in  space. 
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Theorem  11.  If  0  is  any  point  and  co  any  plane,  there  exists  one 

and  only  one  perspective  collineation  in  space  having  0,  co  for  center 

and  plane  of  perspectivity  respectively,  which  transforms  any  point  A 

(distinct  from  0  and  not  on  co)  into  any  other  point  A'  (distinct  from  0 
and  not  on  co)  collinear  with  AO.    (A,  E) 

Proof  We  show  first  that  there  cannot  be  more  than  one  per- 

spective collineation  satisfying  the  conditions  of  the  theorem,  by- 

showing  that  the  point  B'  homologous  to  any  point  B  is  uniquely 

Fig.  31 

determined  by  the  given  conditions.  We  may  assume  B  not  on  co 
and  distinct  from  0  and  A.  Suppose  first  that  B  is  not  on  the  line 

AO  (fig.  31).  Since  BO  is  an  invariant  line,  B'  is  on  BO;  and  if 
the  line  AB  meets  co  in  L,  the  line  AB  =  AL  is  transformed  into 

the  line  A'L.  Hence  B'  is  determined  as  the  intersection  of  BO 

and  A'L.  There  remains  the  case  where  B  is  on  AO  and  distinct 

from  A  and  0  (fig.  32).  Let  C,  C  be  any  pair  of  homologous  points 

not  on  AO,  and  let  AC  and  BC  meet  co  in  L  and  M  respectively. 

The  line  MB  =  M C  is  transformed  into  M C,  and  the  point  B'  is  then 
determined  as  the  intersection  of  the  lines  BO  and  MC'.  That  this 
point  is  independent  of  the  choice  of  the  pair  C,  C  now  follows 

from  the  fact  that  the  quadrangle  MLCC'  gives  the  quadrangular 

set  Q(KAA',  OB'B),  where  K  is  the  point  in  which  AO  meets  co 
(K  may  coincide  with  O  without  affecting  the  argument).  The  point 

B'  is  then  uniquely  determined  by  the  five  points  0,  K,  A,  A',  B. 
The  correspondence  defined  by  the  construction  in  the  paragraph 

above  has  been  proved  to  be  one-to-one  throughout.  On  the  line  AO 
it  is  projective  because  of  the  perspectivities  (fig.  32) 
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On  OB,  any  other  line  through  0,  it  is  projective  because  of  the  per- 
spectivities  (fig.  31)  A        A' 

That  any  pencil  of  points  not  through  O  is  transformed  into  a 

perspective  pencil,  the  center  of  perspectivity  being  0,  is  now  easily 
seen  and  is  left  as  an  exercise  for  the  reader.    From  this  it  follows 

Fig.  32 

that  any  one-dimensional  form  is  transformed  into  a  projective  form, 
so  that  the  correspondence  which  has  been  constructed  satisfies  the 

definition  of  a  projective  collineation. 

Theorem  12.  Any  complete  Jive-point  in  space  can  he  transformed 

into  any  other  complete  five-point  in  space  by  a  projective  collineation 

which  is  the  resultant  of a  finite  number  of 'perspective  collineations.  (A,E) 

Proof  Let  the  five-points  be  ABCDE  and  A'B'C'D'E'  respectively. 
We  will  show  first  that  there  exists  a  collineation  leaving  A'B'C'D' 
invariant  and  transforming  into  E'  any  point  E0  not  coplanar  with 

three  of  the  points  A'B'C'D'.  Consider  a  homology  having  A'B'C'  as 

plane  of  perspectivity  and  D'  as  center.  Any  such  homology  trans- 

forms E0  into  a  point  on  the  line  E0D'.  Similarly,  a  homology  with 

plane  A'B'JD'  and  center  C  transforms  E'  into  a  point  on  the  line  E'C'. 
If  EQD'  and  E'C'  intersect  in  a  point  Ev  the  resultant  of  two  homol- 

ogies of  the  kind  described,  of  which  the  first  transforms  Eo  into  Ex 

and  the  second  transforms  Ex  into  E',  leaves  A'B'C'D1  invariant  and 

transforms  EQ  into  E'.  If  the  lines  EQD'  and  E'C  are  skew,  there 

is  a  line  through  B'  meeting  the  lines  E0D'  and  E'C'  respectively 
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in  two  points  S%  and  Er  The  resultant  of  the  three  homologies,  of 

which  the  first  has  the  plane  A'B'C'  and  center  D'  and  transforms 
E0  to  Ev  of  which  the  second  has  the  plane  A'C'D'  and  center  B' 

and  transforms  Ex  to  E2,  and  of  which  the  third  has  the  plane  A'B'D' 

and  center  C'  and  transforms  Bt  to  E',  is  a  collineation  leaving  A'B'C'D' 

invariant  and  transforming  E0  to  E'.  The  remainder  of  the  proof  is 
now  entirely  analogous  to  the  proof  of  Theorem  10.  The  details  are 
left  as  an  exercise. 

COROLLAKY.  There  exist  projective  collineations  vjhich  will  effect 

any  one  of  the  possible  120  permutations  of  the  vertices  of  a  complete 

five-point  in  space.    (A,  E) 

EXERCISES 

1.  Prove  the  existence  of  perspective  collineations  in  a  plane  without 
making  use  of  any  points  outside  the  plane. 

2.  Discuss  the  figure  formed  by  two  triangles  which  are  homologous 
under  an  elation.  How  is  this  special  form  of  the  Desargues  configuration 

obtained  as  a  section  of  a  complete  five-point  in  space? 
3.  Given  an  elation  in  a  plane  with  center  0  and  axis  o  and  two  homol- 

ogous pairs  A,  A'  and  B,  B'  on  any  line  through  0,  show  that  we  always 

have  Q(OAA',  OB'B). 
4.  What  permutations  of  the  vertices  of  a  complete  quadrangle  leave  a 

given  diagonal  point  invariant?  every  diagonal  point? 
5.  Write  down  the  permutations  of  the  six  sides  of  a  complete  quadrangle 

brought  about  by  all  possible  permutations  of  the  vertices. 
6.  The  set  of  all  homologies  (elations)  in  a  plane  with  the  same  center 

and  axis  form  a  group. 
7.  Prove  that  two  elations  in  a  plane  having  a  common  axis  and  center 

are  commutative.  Will  this  method  apply  to  prove  that  two  homologies  with 
common  axis  and  center  are  commutative? 

8.  Prove  that  two  elations  in  a  plane  having  a  common  axis  are  commu- 
tative.   Dualize.    Prove  the  corresponding  theorem  in  space. 

9.  Prove  that  the  resultant  of  two  elations  having  a  common  axis  is  an 

elation.  Dualize.  Prove  the  corresponding  theorem  in  space.  What  groups 
of  elations  are  defined  by  these  theorems? 

10.  Discuss  the  effect  of  a  perspective  collineation  of  space  on :  (1)  a  pencil 

of  lines ;  (2)  any  plane ;  (3)  any  bundle  of  lines ;  (4)  a  tetrahedron ;  (5)  a 
complete  five-point  in  space. 

11-  The  set  of  all  collineations  in  space  (in  a  plane)  form  a  group. 
12.  The  set  of  all  projective  collineations  in  space  (in  a  plane)  form  a  group. 
13.  Show  that  under  certain  conditions  the  configuration  of  two  perspective 

tetrahedra  is  left  invariant  by  120  collineations  (cf.  Ex.  3,  p.  47). 



CHAPTER  IV 

HARMONIC  CONSTRUCTIONS  AND  THE  FUNDAMENTAL  THEOREM 

OF  PROJECTIVE  GEOMETRY 

30.  The  projectivity  of  quadrangular  sets.  We  return  now  to  a 

more  detailed  discussion  of  the  notion  of  quadrangular  sets  introduced 

at  the  end  of  Chap.  II.  We  there  defined  a  quadrangular  set  of  points 

as  the  section  by  a  transversal  of  the  sides  of  a  complete  quadrangle ; 

the  plane  dual  of  this  figure  we  call  a  quadrangular  set  of  lines;* 
it  consists  of  the  projection  of  the  vertices  of  a  complete  quadrilateral 

from  a  point  which  is  in  the  plane  of  the  quadrilateral,  but  not  on 

any  of  its  sides;  the  space  dual  of  a  quadrangular  set  of  points  we 

call  a  quadrangular  set  of  planes;  it  is  the  figure  formed  by  the 
projection  from  a  point  of  the 

figure  of  a  quadrangular  set 

of  lines.  We  may  now  prove 

the  following  im- 
portant theorem : 

Theorem  1. 

The  section  by  a 

transversal  of  a 

quadrangular 
set  of  lines  is  a 

quadrangular 

set  of  points. 

(A,  E) 

Proof  By  Theorem  3',  Chap.  II,  p.  49,  and  the  dual  of  Note  2,  on 
p.  48,  we  may  take  the  transversal  I  to  be  one  of  the  sides  of  a  com- 

plete quadrilateral  the  projection  of  whose  vertices  from  a  point  P 

forms  the  set  of  lines  in  question  (fig.  33).  Let  the  remaining  three 

sides  of  such  a  quadrilateral  be  a,  b,  c.    Let  the  points  be,  ca,  and  ab 

*  It  would  be  more  natural  at  this  stage  to  call  such  a  set  a  quadrilateral  set  of 
lines;  the  next  theorem,  however,  justifies  the  term  we  have  chosen,  which  has  the 
advantage  of  uniformity. 

Fig.  33 
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be  denoted  by  A,  B,  and  C  respectively.  The  sides  of  the  quadrangle 

T ABC  meet  I  in  the  same  points  as  the  lines  of  the  quadrangular  set 

ofjines,   -^ 
(  Corollary. jA  set  of  collinear  points  which  is  projective  with  a 

quadrangular  set  is  a  quadrangular  set.    (A,  E) 

Theorem  1'.  The  projection  from  a  point  of  a  quadrangular  set  of 
points  is  a  quadrangular  set  of  lines.    (A,  E) 

This  is  the  plane  dual  of  the  preceding ;  the  space  dual  is : 

Theorem  1".  The  section  hy  a  plane  of  a  quadrangular  set  of  planes 
is  a  quadrangular  set  of  lines.    (A,  E) 

Corollary.  If  a  set  of  elements  of  a  primitive  one-dimensional  form 
is  projective  with  a  quadrangular  set,  it  is  itself  a  quadrangular  set. 
(A,E)_ 

Jefinition.    A  quadrangular  set  Q(123, 124) 

is  calleda  harmonic  set  and  is  denoted  by  H(12,  34).  The  elements 

3,  4  are  called  harmonic  conjugates  with  respect  to  the  elements  1,  2 ; 

and  3  (or  4)  is  called  the  harmonic  conjugate  of  4  [or  3)  with  respect 
to  1  and  2. 

From  this  definition  we   see  that  in  a  harmonic  set  of  points 

H(AC,  BD),  the  points  A  and  C  are  diagonal  points  of  a  complete 

Fig.  34 Fig.  35 

quadrangle,  while  the  points  B  and  D  are  the  intersections  of  the 

remaining  two  opposite  sides  of  the  quadrangle  with  the  line  AC 

(fig.  34).  Likewise,  in  a  harmonic  set  of  lines  H  (ac,  Id),  the  lines  a 

and  c  are  two  diagonal  lines  of  a  complete  quadrilateral,  while  the 
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lines  b  and  d  are  the  lines  joining  the  remaining  pair  of  opposite 
vertices  of  the  quadrilateral  to  the  point  of  intersection  ac  of  the 

lines  a  and  c  (fig.  35).  A  harmonic  set  of  planes  is  the  space  dual 

of  a  harmonic  set  of  points,  and  is  therefore  the  projection  from  a 

point  of  a  harmonic  set  of  lines. 

In  case  the  diagonal  points  of  a  complete  quadrangle  are  collinear,  any 

three  points  of  a  line  form  a  harmonic  set  and  any  point  is  its  own  harmonic 

conjugate  with  regard  to  any  two  points  collinear  with  it.  Theorems  on  har- 

monic sets  are  therefore  trivial  in  those  spaces  for  which  Assumption  H0  is 

not  true.  We  shall  therefore  base  our  reasoning,  in  this  and  the  following 

two  sections,  on  Assumption  H0;  though  most  of  the  theorems  are  obviously 

true  also  in  case  H0  is  false.  This  is  why  some  of  the  theorems  are  labeled  as 

dependent  on  Assumptions  A  and  E,  whereas  the  proofs  given  involve  i/0  also. 

The  corollary  of  Theorem  3,  Chap.  II,  when  applied  to  harmonic 
sets  yields  the  following: 

Theorem  2.  The  harmonic  conjugate  of  an  element  with  respect  to 

two  other  elements  of  a  one-dimensional  primitive  form  is  a  unique 
element  of  the  form.    (A,  E) 

Theorem  1  applied  to  the  special  case  of  harmonic  sets  gives 

Theorem  3.  Any  section  or  projection  of  a  harmonic  set  is  a 
harmonic  set.    (A,  E) 

Corollary.  If  a  set  of  four  elements  of  any  one-dimensional  prim- 
itive form  is  projective  with  a  harmonic  set,  it  is  itself  a  harmonic  set. 

(A,  E) 

Theorem  4.  If  1  and  2  are  harmonic  conjugates  with  respect  to 

3  and  4,  3  and  4  are  harmonic  conjugates  with  respect  to  1  and  2. 
(A,  E,  H0) 

Proof.  By  Theorem  2,  Chap.  Ill,  there  exists  a  projectivity 

1234^3412. 

But  by  hypothesis  we  have  H(34,  12).  Hence  by  the  corollary  of 
Theorem  3  we  have  H(12,  34). 

By  virtue  of  this  theorem  the  pairs  1,  2  and  3,  4  in  the  expression 

H(12,  34)  play  the  same  r61e  and  may  be  interchanged.* 

*  The  corresponding  theorem  for  the  more  general  expression  Q  (123,  456) 
cannot  be  derived  without  the  use  of  an  additional  assumption  (cf.  Theorem  24, 
Chap.  IV). 
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Theorem  5.  Given  two  harmonic  sets  H(12,  34)  and  H(1'2',  3'4'), 

there  exists  a  projectivity  such  that  1234-^- 1'2'3'4'.    (A,  E) 

Proof.  Any  projectivity  123^  1'2'3'  (Theorem  1,  Chap.  Ill)  must 
transform  4  into  4'  by  virtue  of  Theorem  3,  Cor.,  and  the  fact  that 
the  harmonic  conjugate  of  3  with  respect  to  1  and  2  is  unique  (Theo- 

rem 2).   This  is  the  converse  of  Theorem  3,  Cor. 

Corollary  1.  If  H  (12,  34)  and  H  (12',  3'4')  are  two  harmonic  sets 
of  different  one-dimensional  forms  having  the  element  1  in  common, 

we  have  1234=  12'3'4'.    (A,  E) 

For  under  the  hypotheses  of  the  corollary  the  projectivity  123  -r  1'2'3' 

of  the  preceding  proof  may  be  replaced  by  the  perspectivity  123  =  12 '3'. 

Corollary  2.  If  H  (12,  34)  is  a  harmonic  set,  there  exists  a  projec- 
tivity 1234  =  1243.    (A,  E) 

This  follows  directly  from  the  last  theorem  and  the  evident  fact 

that  if  H(12,  34)  we  have  also  H(12,  43).  The  converse  of  this 

corollary  is  likewise  valid ;  the  proof,  however,  is  given  later  in  this 

chapter  (cf.  Theorem  27,  Cor.  5). 

We  see  as  a  result  of  the  last  corollary  and  Theorem  2,  Chap.  Ill, 

that  if  we  have  H(12,  34),  there  exist  projectivities  which  will  trans- 
form 1234  into  any  one  of  the  eight  permutations 

1234,     1243,     2134,     2143,     3412,     3421,     4312,     4321.* 

In  other  words,  if  we  have  H(12,  34),  we  have  likewise  H(12,  43), 

H(21,  34),  H(21,  43),  H(34,  12),  H  (34,  21),  H(43,  12),  H(43,  21). 

Theorem  6.  The  two  sides  of  a  complete  quadrangle  which  meet  in 

a  diagonal  point  are  harmonic  conjugates  with  respect  to  the  two  sides 

of  the  diagonal  triangle  which  meet  in  this  point.    (A,  E) 

Proof  The  four  sides  of  the  complete  quadrangle  which  do  not 

pass  through  the  diagonal  point  in  question  form  a  quadrilateral 
which  defines  the  set  of  four  lines  mentioned  as  harmonic  in  the 

way  indicated  (fig.  36). 

It  is  sometimes  convenient  to  speak  of  a  pair  of  elements  of  a 

form  as  harmonic  with  a  pair  of  elements  of  a  form  of  different 

kind.  For  example,  we  may  say  that  two  points  are  harmonic  with 

two  lines  in  a  plane  with  the  points,  if  the  points  determine  two 

*  These  transformations  form  the  so-called  eight-group. 
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lines  through  the  intersection  of  the  given  lines  which  are  harmonic 

with  the  latter ;  or,  what  is  the  same  thing,  if  the  line  joining  the 

points  meets  the  lines  in  two  points 

harmonic  with  the  given  points. 

With  this  understanding  we  may 
restate  the  last  theorem  as  follows: 

The  sides  of  a  complete  quadrangle 

which  meet  in  a  diagonal  point  are 

harmonic  with  the  other  two  diago- 
nal points.  In  like  manner,  we  may 

say  that  two  points  are  harmonic 

with  two  planes,  if  the  line  joining 

the  points  meets  the  planes  in  a 

pair  of  points  harmonic  with  the 

given  points ;  and  a  pair  of  lines  is 
harmonic  with  a  pair  of  planes,  if 

they  intersect  on  the   intersection 

of  the  two  planes,  and  if  they  determine  with  this  intersection  two 

planes  harmonic  with  the  given  planes. 

EXERCISES 

1.  Prove  Theorem  4  directly  from  a  figure  without  using  Theorem  2, 

Chap.  III. 

2.  Prove  Theorem  5,  Cor.  2,  directly  from  a  figure. 

3.  Through  a  given  point  in  a  plane  construct  a  line  which  passes  through 

the  point  of  intersection  of  two  given  lines  in  the  plane,  without  making  use 

of  the  latter  point. 

4.  A  line  meets  the  sides  of  a  triangle  ABC  in  the  points  Ax,  BX,  Cx,  and 

the  harmonic  conjugates  A2,  B„,  Ca  of  these  points  with  respect  to  the  two 

vertices  on  the  same  side  are  determined,  so  that  we  have  H(AB,  CXC^), 

H(JBC,^r42),andH(C.4,£1fi2).  Show  that  Ax,  B3,  C,;  Blf  C„  At ;  Cv  As,  Bs 
are  collinear:  that  AA„,  BB.2,  CC2  are  concurrent;  and  that  AA2,  BBX,  CCX; 

AAX.  BB„,  CCX;  AAX,  BBX,  CC*  are  also  concurrent. 

5.  If  each  of  two  sides  AB,  BC  of  a  triangle  ABC  meets  a  pair  of  opposite 

edges  of  a  tetrahedron  in  two  points  which  are  harmonic  conjugates  with 

respect  to  A,  B  and  B,  C  respectively,  the  third  side  CA  will  meet  the  third 

pair  of  opposite  edges  in  two  points  which  are  harmonic  conjugates  with 

respect  to  C,  A. 

6.  A,  B,  C,  D  are  the  vertices  of  a  quadrangle  the  sides  of  which  meet  a 

given  transversal  I  in  the  six  points  Px,  P2,  P3,  Pt,  P5,  P6  ;  the  harmonic  conju- 
gate of  each  of  these  points  with  respect  to  the  two  corresponding  vertices  of  the 
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quadrangle  is  constructed  and  these  six  points  are  denoted  by  P{,  Pj,  P%,  P^, 

Pg,  Pg  respectively.  The  three  lines  joining  the  pairs  of  the  latter  points 

which  lie  on  opposite  sides  of  the  quadrangle  meet  in  a  point  P,  which  is  the 

harmonic  conjugate  of  each  of  the  points  in  which  these  three  lines  meet  I 

with  respect  to  the  pairs  of  points  P'  denning  the  lines. 
7.  Denning  the  polar  line  of  a  point  with  respect  to  a  pair  of  lines  as  the 

harmonic  conjugate  line  of  the  point  with  regard  to  the  pair  of  lines,  prove 

that  the  three  polar  lines  of  a  point  as  to  the  pairs  of  lines  of  a  triangle  form 

a  triangle  (called  the  cogredient  triangle)  perspective  to  the  given  triangle. 

8.  Show  that  the  polar  line  denned  in  Ex.  7  is  the  same  as  the  polar  line 

defined  in  Ex.  3,  p.  52. 

9.  Show  that  any  line  through  a  point  O  and  meeting  two  intersecting 

lines  I,  V  meets  the  polar  of  0  with  respect  to  Z,  V  in  a  point  which  is  the 

harmonic  conjugate  of  0  with  respect  to  the  points  in  which  the  line  through  O 

meets  I,  V. 

10.  The  axis  of  perspectivity  of  a  triangle  and  its  cogredient  triangle  is  the 

polar  line  (cf .  p.  46)  of  the  triangle  as  to  the  given  point. 

11.  If  two  triangles  are  perspective,  the  two  polar  lines  of  a  point  on  their 

axis  of  perspectivity  meet  on  the  axis  of  perspectivity. 

12.  If  the  lines  joining  corresponding  vertices  of  two  n-lines  meet  in  a  point, 
the  points  of  intersection  of  corresponding  sides  meet  on  a  line. 

13.  (Generalization  of  Exs.  7, 10.)  The  n  polar  lines  of  a  point  P  as  to  the  n 

(n  —  l)-lines  of  an  n-line  in  a  plane  form  an  n-line  (the  cogredient  n-line) 

whose  sides  meet  the  corresponding  sides  of  the  given  n-line  in  the  points  of 

a  line  p.    The  line  p  is  called  the  polar  of  P  as  to  the  n-line.* 

14.  (Generalization  of  Ex.  11.)  If  two  n-lines  are  perspective,  the  two 
polar  lines  of  a  point  on  their  axis  of  perspectivity  meet  on  this  axis. 

15.  Obtain  the  plane  duals  of  the  last  two  problems.  Generalize  them  to 

three-  and  n-dimensional  space.  These  theorems  are  fundamental  for  the  con- 

struction of  polars  of  algebraic  curves  and  surfaces  of  the  n-th  degree. 

32.  Nets  of  rationality  on  a  line.  Definition.  A  point  P  of  a  line 

is  said  to  be  harmonically  related  to  three  given  distinct  points  A,  B,  C 

of  the  line,  provided  P  is  one  of  a  sequence  of  points  A,  B,  C,  Hv  H2,  Hv 

■  •  •  of  the  line,  finite  in  number,  such  that  Hx  is  the  harmonic  conju- 
gate of  one  of  the  points  A,  B,  C  with  respect  to  the  other  two,  and 

such  that  every  other  point  Hi  is  harmonic  with  three  of  the  set  A,  B,  C, 

Hv  H2,  •  •  •,  Ht_v  The  class  of  all  points  harmonically  related  to  three 

distinct  points  A,  B,  C  on  a  line  is  called  the  one-dimensional  net  of 
rationality  defined  by  A,  B,C\  it  is  denoted  by  R(ABC).  A  net  of 

rationality  on  a  line  is  also  called  a  linear  net. 

*  This  is  a  definition  by  induction  of  the  polar  line  of  a  point  with  respect  to  an 
n-line. 
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Theorem  7.  If  A,  B,  C,  D  and  A',  B',  C',  D'  are  respectively  points 

of  tv;o  lines  such  that  ABCD-^  A'B'C'D',  and  if  D  is  harmonically 
related  to  A,  B,  C,  then  D'  is  harmonically  related  to  A',  B',  C.    (A,  E) 

This  follows  directly  from  the  fact  that  the  projectivity  of  the  theo- 
rem makes  the  set  of  points  H.  which  defines  D  as  harmonically  related 

to  A,  B,  C  projective  with  a  set  of  points  Hj  such  that  every  harmonic  set 

of  points  of  the  sequence  A,  B,  C,  Hx,  Hv  ■  •  -,  D  is  homologous  with  a 

harmonic  Set  of  the  sequence^',  B',  C,  H[,  E'%,    •  ,D'  (Theorem  3,  Cor.). 
Corollary.  If  a  class  of  points  on  a  line  is  projective  with  a  net 

of  rationality  on  a  line,  it  is  itself  a  net  of  rationality. 

Theorem  8.  If  K,  L,  M  are  three  distinct  points  of  R  (ABC),  A,  B,  C 

are  points  of  R  (KLM).    (A,  E) 

Proof.  From  the  projectivity  ABCK-^  BAKC  follows,  by  Theorem  7, 
that  C  is  a  point  of  R  (ABK).  Hence  all  points  harmonically  related 

to  A,  B,  C  are,  by  definition,  harmonically  related  to  A,  B,  K.  Since  K 

is,  by  hypothesis,  in  the  net  R(ABC),  the  definition  also  requires  that 

all  points  of  R(ABK)  shall  be  points  of  R(ABC).  Hence  the  nets 

R(ABC)  and  R(ABK)  are  identical;  and  so  R(ABC)  =R(ABK) 

=  R  (AMK)  =  R  (KLM). 

Corollary.  A  net  of  rationality  on  a  line  is  determined  by  any 
distinct  three  of  its  points. 

Theorem  9.  If  all  but  ane  of  the  six  (or  five,  or  four)  points  of  a 

quadrangular  set  are  points  of  the  same  net  of  rationality  R,  this 

one  point  is  also  a  point  of  R.    (A,  E) 

Proof  Let  the  sides  of  the  quadrangle  PQBS  (fig.  37)  meet  the 

line  I  as  indicated  in  the  points  A,  Ax ;  B,BX;  C,  Cv  so  that  B  =*=  Bx\ 
and  suppose  that  the  first  five  of  these  are  points  of  a  net  of  rationality 

R  =  R  (AAXBX)  =  R  (BCBX)  =  •  •  • . 

"We  must  prove  that  Cx  is  a  point  of  R.    Let  the  pair  of  lines  RS  and 
PQ  meet  in  B'.   We  then  have 

S  R 
BCB,A=BQB'P=BA,B.C,. 

1      A       *  A  ill 

Since  A  is  in  R(BCBX),  it  follows  from  this  projectivity,  in  view  of 

Theorem  7,  that  Cx  is  in  R  (BAXBX)  =  R. 
Definition.  A  point  P  of  a  line  is  said  to  be  quadrangularly 

related  to  three  given  distinct  points  A,  B,  C  of  the  line,  provided 
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P  is  one  of  a  sequence  of  points  A,  B,  C,  Hv  H2,  Ha,  •  •  •  of  the  line, 
finite  in  number,  such  that  H1  is  the  harmonic  conjugate  of  one  of 

the  points  A,  B,  C  with  respect  to  the  other  two,  and  such  that  every 

other  point  Ht  is  one  of  a  quadrangular  set  of  which  the  other  five 

belong  to  the  set  A,  B,  C,  Hv  H2,  ■ 

Fig.  37 

CoEOLLARY.  The  class  of  all  points  quadr angularly  related  to  three 

distinct  collinear  points  A,  B,  C  is  R(ABC).    (A,  E) 

From  the  last  corollary  it  is  plain  that  R  (ABC)  consists  of  all  points  that 

can  be  constructed  from  A ,  B,  C  by  means  of  points  and  lines  alone ;  that  is 

to  say,  all  points  whose  existence  can  be  inferred  from  Assumptions  A,  E,  HQ. 

The  existence  or  nonexistence  of  further  points  on  the  line  ABC  is  unde- 

termined as  yet.  The  analogous  class  of  points  in  a  plane  is  the  system  of  all 

points  constructible,  by  means  of  points  and  lines,  out  of  four  points  A ,  B,  C,  D, 

no  three  of  which  are  collinear.  This  class  of  points  is  studied  by  an  indirect 
method  in  the  next  section. 

33.  Nets  of  rationality  in  the  plane.  Definition.  A  point  is  said 

to  be  rationally  related  to  two  noncollinear  nets  of  rationality  Rx,  R2 
having  a  point  in  common,  provided  it  is  the  intersection  of  two  lines 

each  of  which  joins  a  point  of  Rx  to  a  distinct  point  of  R2.  A  line  is 

said  to  be  rationally  related  to  Rx  and  R2,  provided  it  joins  two  points 
that  are  rationally  related  to  them.  The  set  of  all  points  and  lines 

rationally  related  to  Rx,  R2  is  called  the  net  of  rationality  in  a  plane 

(or  of  two  dimensions)  determined  by  Rx,  R2;  it  is  also  called  the 
planar  net  defined  by  Rx,  R2. 

From  this  definition  it  follows  directly  that  all  the  points  of  Rx 

and  R„  are  points  of  the  planar  net  defined  by  Rx,  Ra. 
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Theorem  10.  Any  line  of  the  planar  net  R2  defined  by  Rv  R2  meets 
Rx  and  R2.    (A,  E) 

Proof.  "We  prove  first  that  if  a  line  of  the  planar  net  R2  meets  Rv 
it  meets  R,.  Suppose  a  line  I  meets  R1  in  Ax;  it  then  contains  a  second 

point  P  of  R2.  By  definition,  through  P  pass  two  lines,  each  of  which 
joins  a  point  of  Rx  to  a  distinct  point  of  R2.  If  I  is  one  of  these  lines, 

the  proposition  is  proved ;  if  these  lines  are  distinct  from  I,  let  them 

meet  Rx  and  R2  respectively  in  the  points  Bv  B2  and  I[,  P2  (fig.  38). 

If  0  is  the  common  point  of  Rp  R2,  we  then  have 

OAvBxPx=OAJ*tS>, 

where  A2  is  the  point  in  which  I  meets  the  line  of  R2.    Hence  A2  is  a 

point  of  R2  (Theorem  7). 

Now  let  I  be  any  line  of  the  net  R2,  and  let  P,  Q  be  two  points 
of  the  net  and  on  I  (def.).  If  one  of  these  points  is  a  point  of  Rx  or 

R2,  the  theorem  is  proved  by  the  case  just  considered.  If  not,  two 

lines,  each  joining  a  point  of  Rx  to  a  distinct  point  of  R„,  pass  through 

P;  let  them  meet  R1  in  Av  Bv  and  R2  in  A2,  B2  respectively  (fig.  38). 

Let  the  lines  QAX  and  QBX  meet  R2  in  A2  and  B2  respectively  (first  case). 

Then  if  /  meets  the  lines  of  Rx  and  R2  in  J»  and  P2  respectively,  the 
quadrangle  PQA1B1  gives  rise  to  the  quadrangular  set  Q(P,A2B2, 

OB'2A'2)  of  which  five  points  are  points  of  R2;  hence  P2  is  a  point  of  R0 
(Theorem  9).    Pl  is  then  a  point  of  Rx  by  the  first  case  of  this  proof. 

Theorem  11.   The  intersection  of  any  two  lines  of  a  planar  net  is 

a  point  of  the  planar  net.    (A,  E)  * 
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Proof.  This  follows  directly  from  the  definition  and  the  last  theo- 

rem, except  when  one  of  the  lines  passes  through  0,  the  point  common 

to  the  two  linear  nets  Rt,  R2  defining  the  planar  net.  In  the  latter 

case  let  the  two  lines  of  the  planar  net  be  lv  l2  and  suppose  l2  passes 
through  0,  while  lt  meets  Rv  R2  in  Av  A2  respectively  (fig.  39).  If  the 

point  of  intersection  P  of  lxl2  were  not  a  point  of  the  planar  net,  l2 
would,  by  definition, 
contain  a  point  Q  of 

the  planar  net,  dis- 
tinct from  0  and  P. 

The  lines  QAl  and 

QA2  would  meet  R2 
and  Rx  in  two  points 

B2  and  Bl  respec- 
tively. The  point  C2 

in  which  the  line 

PB1  met  the  line  of 

FlG  R2  would  then  be  the harmonic  conjugate 

of  B2  with  respect  to  0  and  A2  (through  the  quadrangle  PQA^); 
C2  would  therefore  be  a  point  of  R2,  and  hence  P  would  be  a 

point  of  the  planar  net,  being  the  intersection  of  the  lines  AXA2 
and  BXC2. 

Theorem  12.  The  points  of  a  planar  net  R2  on  a  line  of  the  planar 
net  form  a  linear  net.    (A,  E) 

Proof.  Let  the  planar  net  be  defined  by  the  linear  nets  Rv  R2  and 

let  I  be  any  line  of  the  planar  net.  Let  P  be  any  point  of  the  planar 

net  not  on  I  or  Rx  or  R2.  The  lines  joining  P  to  the  points  of  R2  on  I 
meet  Rt  and  R2  by  Theorems  10  and  11.  Hence  P  is  the  center  of 

a  perspectivity  which  makes  the  points  of  R2  on  /  perspective  with 
points  of  Rj  or  R2.  Hence  the  points  of  I  belonging  to  the  planar  net 

form  a  linear  net.    (Theorem  7,  Cor.) 

Corollary.  The  planar  net  R/  defined  by  two  linear  nets  R,,  R2  is 

identical  with  the  planar  net  R2  defined  by  two  linear  nets  R8,  R4,  pro- 

vided R8,  R4  are  linear  nets  in  R2.    (A,  E) 

For  every  point  of  R2  is  a  point  of  R2  by  the  above  theorem,  and 

every  point  of  R2  is  a  point  of  R2  by  Theorem  10. 
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EXERCISE 

If  A ,  B,  C,  D  are  the  vertices  of  a  complete  quadrangle,  there  is  one  and 

only  one  planar  net  of  rationality  containing  them ;  and  a  point  P  belongs  to 

this  net  if  and  only  if  P  is  one  of  a  sequence  of  points  ABCDDxDt  •  •  ■ ,  finite 

in  number,  such  that  Dx  is  the  intersection  of  two  sides  of  the  original  quad- 

rangle and  such  that  every  other  point  Z)t-  is  the  intersection  of  two  bines  join- 

ing pairs  of  points  of  the  set  ABCDDX  •  •  •  Di_1. 

34.  Nets  of  rationality  in  space.  Definition.  A  point  is  said  to 

be  rationally  related  to  two  planar  nets  R 2,  R2  in  different  planes  but 
having  a  linear  net  in  common,  provided  it  is  the  intersection  of  two 

lines  each  of  which  joins  a  point  of  R2  to  a  distinct  point  of  R2. 

A  line  is  said  to  be  rationally  related  to  R2,  R.2,  if  it  joins  two,  a  plane 
n  it  joins  three,  points  which  are  rationally  related  to  them.  The  set 

of  all  points,  lines,  and  planes  rationally  related  to  R 2,  Ra2  is  called  the 
net  of  rationality  in  space  (or  of  three  dimensions)  determined  by 

R^,  R.2;  it  is  also  called  the  spatial  net  defined  by  Rj2,  Ra2. 
Theorems  analogous  to  those  derived  for  planar  nets  may  now  be 

derived  for  nets  of  rationality  in  space.  We  note  first  that  every  point 

of  R2  and  of  R2  is  a  point  of  the  spatial  net  R3  defined  by  R 2,  R2  (the 
definition  applies  equally  well  to  the  points  of  the  linear  net  common 

to  R 2,  R 2) ;  and  that  no  other  points  of  the  planes  of  these  planar  nets 

are  points  of  R3.  The  proofs  of  the  fundamental  theorems  of  align- 
ment, etc.,  for  spatial  nets  can,  for  the  most  part,  be  readily  reduced 

to  theorems  concerning  planar  nets.    We  note  first : 

Lemma.  Any  line  joining  a  point  Ax  of  R2  to  a  distinct  point  P  of 
R8  meets  R  *.    (A,  E) 

Proof  By  hypothesis,  through  P  pass  two  lines,  each  of  which 

joins  a  point  of  R2  to  a  distinct  point  of  R2.  We  may  assume  these 
lines  distinct  from  the  line  PAV  since  otherwise  the  lemma  is  proved. 

Let  the  two  lines  through  P  meet  R2,  R 2  in  Bv  Bt  and  Cv  C2  respec- 
tively (fig.  40).  If  Av  Bv  Cx  are  not  collinear,  the  planes  PAXBX  and 

PAXCX  meet  R2  in  the  lines  AXBX  and  A1C1  respectively,  which  meet 

the  linear  net  common  to  R2,  R22  in  two  points  S,  T  respectively 

(Theorems  11, 12).  The  same  planes  meet  the  plane  of  R42  in  the  lines 

SB,  and  TC2  respectively,  which  are  lines  of  R22,  since  S,  T  are  points 

of  R2.  These  lines  meet  in  a  point  A2  of  R2  (Theorem  11),  which 

is  evidently  the  point  in  which  the  line  PA%  meets  the  plane  of  R22. 
If  Av  Bv  (7,  are  collinear,  let  A„  be  the  intersection  of  PAX  with  the 
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plane  of    R22,  and  S  the  intersection  of  AXBX  with  the  linear  net 

common  to  R2  and  R22.    Since  Ax  is  in  R(SBXCX),  the  perspectivity 
P 

SCXBXAX  =  SC„B^A2  implies  that  A 2  is  in  R(SB2C2)  and  hence  in  R2. 

Fig.  40 

Theorem  13.  Any  line  of  the  spatial  net  R8  defined  by  R2,  R2  meets 
R2  and  R 2.    (A,  E) 

Fig.  41 

Proof.  By  definition  the  given  line  I  contains  two  points  A  and  B 

of  the  net  R8  (fig.  41).  If  A  or  B  is  on  R2  or  R2,  the  theorem  reduces 
to  the  lemma.  If  not,  let  j^bea  point  of  R2,  and  A2  and  B2  the  points 
in  which,  by  the  lemma,  PXA  and  PXB  meet  R2;  also  let  Pj  be  any 
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point  of  R2  not  in  the  plane  P^AB,  and  let  PXA  and  PX'B  meet  R2  in  A't 

and  B'r  The  lines  A%B%  and  A'%Bf%  meet  in  a  point  of  R2  (Theorem  11), 
and  this  point  is  the  point  of  intersection  of  I  with  the  plane  of  R2. 
The  argument  is  now  reduced  to  the  case  considered  in  the  lemma. 

Theorem  14.  The  points  of  a  spatial  tut  lying  on  a  line  of  the 

spatial  net  form  a  linear  net.    (A,  E) 

Proof.  Let  I  be  the  given  line,  R2  and  R22  the  planar  nets  denning 
the  spatial  net  R\  and  Lx  and  L%  the  points  in  which  (Theorem  13) 

I  meets  R2  and  R2  (Lx  and  Z2  may  coincide).  Let  Ax  be  any  point  of 
R2  not  on  I  or  on  R2,  and  S  the  point  in  which  AlL1  meets  the  linear 

net  common  to  R 2  and  R2  (fig.  42).    If  Lx  and  Z2  are  distinct,  the  lines 

Fig.  42  Fig.  43 

SLX  and  SL2  meet  R*  and  R2  in  linear  nets  (Theorem  12);  and,  by 

Theorem  13,  a  line  joining  any  point  P  of  R3  on  I  to  Ax  meets  each 

of  these  linear  nets.  Hence  all  points  of  R3  on  I  are  in  the  planar 
net  determined  by  these  two  linear  nets.  Moreover,  by  the  definition 

of  R3,  all  the  points  of  the  projection  from  Ax  of  the  linear  net  on  SL2 

upon  I  are  points  of  R'\  Hence  the  points  of  R3  on  /  are  a  linear  net. 

If  ij  =  i2  =  S,  then,  by  definition,  there  is  on  I  a  point  A  of  R3,  and 

the  line  AAX  meets  R2  in  a  point  A2  (fig.  43).  The  lines  SAX  and  SAt 

meet  R2  and  R2  in  linear  nets  Rx  and  R,  by  Theorem  12.  If  Bx  is 

any  point  of  Rt  other  than  Av  the  line  ABX  meets  R22  in  a  point  Bs  by 
Theorem  13.  By  Theorem  12  all  points  of  /  in  the  planar  net  deter- 

mined by  Rx  and  R2  form  a  linear  net,  and  they  obviously  belong  to  Rs. 

Moreover,  any  point  of  R8  on  I,  when  joined  to  Av  meets  R2  by  Theo- 
rem 13,  and  hence  belongs  to  the  planar  net  determined  by  Rx  and  R„. 

Hence,  in  this  case  also,  the  points  of  R3  on  /  constitute  a  linear  net. 
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Theorem  15.  The  points  and  lines  of  a  spatial  net  R3  which  lie  on 
a  plane  a  of  the  net  form  a  planar  net.    (A,  E) 

Proof  By  definition  a  contains  three  noncollinear  points  A,  B,  C  of 

R3,  and  the  three  lines  AB,  BC,  CA  meet  the  planar  nets  R2  and  R22, 

which  determine  R3,  in  points  of  two  linear  nets  Rx  and  R2,  consisting 
entirely  of  points  of  R3.  These  linear  nets,  if  distinct,  determine  a 

planar  net  R2  in  a,  which,  by  Theorem  10,  consists  entirely  of  points 
and  lines  of  R3.  Moreover,  any  line  joining  a  point  of  R3  in  a  to  A 
or  B  or  Cmust,  by  Theorem  13,  meet  Rj  and  R2  and  hence  be  in  R2. 

Hence  all  points  and  lines  of  R3  on  a  are  points  and  lines  of  R2.  This 
completes  the  proof  except  in  case  Rx=  R2,  which  case  is  left  as  an 
exercise. 

Corollary  1.  A  net  of  rationality  in  space  is  a  space  satisfying 

Assumptions  A  and  E,  if  "  line "  be  interpreted  as  "  linear  net "  and 
"plane"  as  "planar  net."    (A,  E) 

For  all  assumptions  A  and  E,  except  A  3,  are  evidently  satisfied ; 

and  A  3  is  satisfied  because  there  is  a  planar  net  of  points  through 

any  three  points  of  a  spatial  net  R3,  and  any  two  linear  nets  of  this 
planar  net  have  a  point  in  common. 

This  corollary  establishes  at  once  all  the  theorems  of  alignment  in 

a  net  of  rationality  in  space,  which  are  proved  in  Chap.  I,  as  also  the 

principle  of  duality.  We  conclude  then,  for  example,  that  two  planes 

of  a  spatial  net  meet  in  a  line  of  the  net,  and  that  three  planes  of  a 

spatial  net  meet  in  a  point  of  the  net  (if  they  do  not  meet  in  a  line), 

etc.    Moreover,  we  have  at  once  the  following  corollary : 

Corollary  2.  A  spatial  net  is  determined  by  any  two  of  its  planar 
nets.    (A,  E) 

EXERCISES 

1.  If  A,B,  C,D,E  are  the  vertices  of  a  complete  space  five-point,  there  is 
one  and  only  one  net  of  rationality  containing  them  all.  A  point  P  belongs  to  this 

net  if  and  only  if  P  is  one  of  a  sequence  of  points  ABCDEIXI2  •  •  • ,  finite  in 
number,  such  that  It  is  the  point  of  intersection  of  three  faces  of  the  original 

five-point  and  every  other  point  It  is  the  intersection  of  three  distinct  planes 

through  triples  of  points  of  the  set  ABCDETX  •••/,■_!• 
2.  Show  that  a  planar  net  is  determined  if  three  noncollinear  points  and  a 

line  not  passing  through  any  of  these  points  are  given. 

3.  Under  what  condition  is  a  planar  net  determined  by  a  linear  net  and  two 

points  not  in  this  net?  Show  that  two  distinct  planar  nets  in  the  same  plane 

can  have  at  most  a  linear  net  and  one  other  point  in  common. 
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4.  Show  that  a  set  of  points  and  lines  which  is  projective  with  a  planar 

net  is  a  planar  net. 

5.  A  line  joining  a  point  P  of  a  planar  net  to  any  point  not  in  the  net,  but 

on  a  line  of  the  net  not  containing  P,  has  no  other  point  than  P  in  common 
with  the  net. 

6.  Two  points  and  two  lines  in  the  same  plane  do  not  in  general  belong  to 

the  same  planar  net. 

7.  Discuss  the  determination  of  spatial  nets  by  points  and  planes,  similarly 

to  Exs.  2,  3,  and  6. 

8.  Any  class  of  points  projective  with  a  spatial  net  is  itself  a  spatial  net. 

9.  If  a  perspective  collineation  (homology  or  elation)  in  a  plane  with 
center  A  and  axis  I  leaves  a  net  of  rationality  in  the  plane  invariant,  the 
net  contains  A  and  I. 

10.  Prove  the  corresponding  proposition  for  a  net  of  rationality  in  space 

invariant  under  a  perspective  transformation. 

11.  Show  that  two  linear  nets  on  skew  lines  always  belong  to  some  spatial 

net ;  in  fact,  that  the  number  of  spatial  nets  containing  two  given  linea- 
nets  on  skew  lines  is  the  same  as  the  number  of  linear  nets  through  two  given 

points. 
12.  Three  mutually  skew  lines  and  three  distinct  points  on  one  of  them 

determine  one  and  only  one  spatial  net  in  which  they  lie. 

13.  Give  further  examples  of  the  determination  of  spatial  nets  by  lines. 

35.  The  fundamental  theorem  of  projectivity.  It  has  been  shown 

(Chap.  Ill)  that  any  three  distinct  elements  of  a  one-dimensional 
form  may  be  made  to  correspond  to  any  three  distinct  points  of  a 

line  by  a  projective  transformation.")  Likewise  any  four  elements  of 
a  two-dimensional  form,  no  three  of  which  belong  to  the  same  one- 
dimensional  form,  may  be  made  to  correspond  to  the  vertices  of  a 

complete  planar  quadrangle  by  a  projective  transformation ;  and  any 

five  elements  of  a  three-dimensional  form,  no  four  of  which  belong 

to  the  same  two-dimensional  form,  may  be  made  to  correspond  to 

the  five  vertices  of  a  complete  spatial  five-point  by  a  projective 
transformation. 

These  transformations  are  of  the  utmost  importance.  Indeed,  it  is 

the  principal  object  of  projective  geometry  to  discover  those  prop- 
erties of  figures  which  remain  invariant  when  the  figures  are  sub- 

jected to  projective  transformations.  The  question  now  naturally 

arises,  ijs  it  possible  to  transform  any  four  elements  of  a  one- 
dimensional  form  into  any  four  elements  of  another  one-dimensional 

form  ?  This  question  must  be  answered  in  the  negative,  since  a  har- 
monic set  must  always  correspond  to  a  harmonic  set.    The  question 
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then  arises  whether  or  not  a  projective  correspondence  between  one- 

dimensional  forms  is  completely  determined  when  three  pairs  of 

homologous  elements  are  given.  A  partial  answer  to  this  funda- 
mental question  is  given  in  the  next  theorem. 

Lemma  1.  If  a  projectivity  leaves  three  distinct  points  of  a  line  fixed, 

it  leaves  fixed  every  point  of  the  linear  net  defined  by  these  points. 

This  follows  at  once  from  the  fact  that  if  three  points  are  left 

invariant  by  a  projectivity,  the  harmonic  conjugate  of  any  one  of 

these  points  with  respect  to  the  other  two  must  also  be  left  inva- 

riant by  the  projectivity  (Theorems  2  and  3,  Cor.).  The  projectivity 

in  question  must  therefore  leave  invariant  every  point  harmonically 
related  to  the  three  given  points. 

Theorem  16.  The  fundamental  theorem  of  projectivity  for  a 

net  OF  rationality  ON  A  LINE.  If  A,  B,  C,  D  are  distinct  points  of 

a  linear  net  of  rationality,  and  A',  B',  C  are  any  three  distinct  points 
of  another  or  the  same  linear  net,  then  for  any  projectivities  giving 

ABCD  -^  A'B'C'D'  and  ABCD  -%  A'B'C'D[,  we  have  D'  =  D[.    (A,  E) 
Proof.  If  it,  irx  are  respectively  the  two  projectivities  of  the  theorem, 

the  projectivity  Trjr~x  leaves  A'B'C'  fixed  and  transforms  D'  into  D[. 
Since  D'  is  harmonically  related  to  A',  B',  C'  (Theorem  7),  the  theorem 
follows  from  the  lemma. 

This  theorem  gives  the  answer  to  the  question  proposed  in  its 

relation  to  the  transformation  of  the  points  of  a  linear  net.  The 

corresponding  proposition  for  all  the  points  of  a  line,  i.e.  the  prop- 

osition obtained  from  the  last  theorem  by  replacing  "  linear  net "  by 

"line,"  cannot  be  proved  without  the  use  of  one  or  more  additional 
assumptions  (cf.  §  50,  Chap.  VI).  We  have  seen  that  it  is  equiva- 

lent to  the  proposition:  If  a  projectivity  leaves  three  points  of  a 

line  invariant,  it  leaves  every  point  of  the  line  invariant.  Later,  by 

means  of  a  discussion  of  order  and  continuity  (terms  as  yet  unde- 
fined), we  shall  prove  this  proposition.  This  discussion  of  order 

and  continuity  is,  however,  somewhat  tedious  and  more  difficult 

than  the  rest  of  our  subject ;  and,  besides,  the  theorem  in  question 

is  true  in  spaces,*  where  order  and  continuity  do  not  exist.    It  has 

*  Different,  of  course,  from  ordinary  space;  "rational  spaces"  (cf.  p.  98  and 
the  next  footnote)  are  examples  in  which  continuity  does  not  exist;  "  finite  spaces," 
of  which  examples  are  given  in  the  introduction  (§  2),  are  spaces  in  which  neither 
order  nor  continuity  exists. 



§35]  THE  FUNDAMENTAL  THEOREM  95 

therefore  seemed  desirable  to  give  some  of  the  results  of  this 

theorem  before  giving  its  proof  in  terms  of  order  and  continuity. 

To  this  end  we  introduce  here  the  following  provisional  assumption 

of  projectivity,  which  will  later  be  proved  a  consequence  of  the  order 

and  continuity  assumptions  which  will  replace  it.  This  provisional 

assumption  may  take  any  one  of  several  forms.  We  choose  the  fol- 
lowing as  leading  most  directly  to  the  desired  theorem: 

An  assumption  of  projectivity: 

P.  If  a  p>vojectivity  leaves  each  of  three  distinct  points  of  a  line 

invariant,  it  leaves  every  point  of  the  line  invariant* 

We  should  note  first  that  the  plane  and  space  duals  of  this  assump- 
tion are  immediate  consequences  of  the  assumption.  The  principle  of 

duality,  therefore,  is  still  valid  after  our  set  of  assumptions  has  been 

enlarged  by  the  addition  of  Assumption  P. 
We  now  have : 

Theorem  17.  The  fundamental  theorem  of  projective  geom- 

etry.! Ifl>  ®>  3>4-  are  any  four  elements  of  a  one-dimensional  primitive 

form,  and  1',  2' ,  3'  are  any  three  elements  of  another  or  the  same  one- 
dimensional  primitive  form,  then  for  any  projectivities  giving  1234  -r 

1'2'3'4'  and  1234  x  1'2'3%  we  have  4'  =  4[.    (A,  E,  P) 
Proof.  The  proof  is  the  same  under  the  principle  of  duality  as  that 

of  Theorem  16,  Assumption  P  replacing  the  previous  lemma. 

This  theorem  may  also  be  stated  as  follows : 

A  projectivity  between  one-dimensional  primitive  forms  is  uniquely 
determined  when  three  pairs  of  homologous  elements  are  given.  (A,  E,  P) 

Corollary.  If  two  pencils  of  points  on  different  lines  are  projective 

and  have  a  self-corresponding  point,  they  are  perspective.   (A,  E,  P) 

*  We  have  seen  in  the  lemma  of  the  preceding  theorem  that  the  projectivity 
described  in  this  assumption  leaves  invariant  every  point  of  the  net  of  rationality 
denned  by  the  three  given  points.  The  assumption  simply  states  that  if  all  the  points 
of  a  linear  net  remain  invariant  under  a  projective  transformation,  then  all  the  points 
of  the  line  containing  this  net  must  also  remain  invariant.  It  will  be  shown  later 
that  in  the  ordinary  geometry  the  points  of  a  linear  net  of  rationality  on  a  line  corre- 

spond to  the  points  of  the  line  whose  coordinates,  when  represented  analytically,  are 
rational  numbers.  This  consideration  should  make  the  last  assumption  almost,  if 
not  quite,  as  intuitionally  acceptable  as  the  previous  Assumptions  A  and  E. 

t  On  this  theorem  and  related  questions  there  is  an  extensive  literature  to  which 
references  can  be  found  in  the  Encyklopadie  articles  on  Projective  Geometry  and 
Foundations  of  Geometry.  It  is  associated  with  the  names  of  von  Staudt,  Klein, 
Zeuthen,  Liiroth,  Darboux,  F.  Schur,  Pieri,  Wiener,  Hilbert.  Cf .  also  §  50,  Chap.  VI. 
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Proof.  For  if  0  is  the  self-corresponding  point,  and  AA'  and  BB' 
are  any  two  pairs  of  homologous  points  distinct  from  0,  the  perspec- 

tivity  whose  center  is  the  intersection  of  the  lines  AA',  BB'  is  a 
projectivity  between  the  two  lines  which  has  the  three  pairs  of 

homologous  points  00,  AA',  BB',  which  must  be  the  projectivity  of 
the  corollary  by  virtue  of  the  last  theorem. 

The  corresponding  theorems  for  two-  and  three-dimensional  forms 
are  now  readily  derived.  We  note  first,  as  a  lemma,  the  propositions 

in  a  plane  and  in  space  corresponding  to  Assumption  P. 

Lemma  2.  A  projective  transformation  which  leaves  invariant  each 

of  a  set  of    „      points  of  no    ,        of  which  belong  to  the  same 
J  J    jive  r  J     space         four  J  y 
line    7  .         .  .   ,     .the  plane.    .  .    „  _, 
,        leaves  invariant  every  point  of       *  (A,  E,  P) 
plane  9  *  space.       v  ' 

Proof.  If  A,  B,  C,  D  are  four  points  of  a  plane  no  three  of  which 

are  collinear,  a  projective  transformation  leaving  each  of  them  inva- 
riant must  also  leave  the  intersection  0  of  the  lines  AB,  CD  invariant. 

By  Assumption  P  it  then  leaves  every  point  of  each  of  the  lines  AB, 

CD  invariant.  Any  line  of  the  plane  which  meets  the  lines  AB  and 

CD  in  two  distinct  points  is  therefore  invariant,  as  well  as  the  inter- 
section of  any  two  such  lines.  But.  any  point  of  the  plane  may  be 

determined  as  the  intersection  of  two  such  lines.  The  proof  for  the 

case  of  a  projective  transformation  leaving  invariant  five  points  no 

four  of  which  are  in  the  same  plane  is  entirely  similar.  The  existence 

of  perspective  collineations  shows  that  the  condition  that  no  three 

(four)  of  the  points  shall  be  on  the  same  line  (plane)  is  essential. 

Theorem  18.  A  projective  collineation  *  between  two  planes  (or 
within  a  single  plane)  is  uniquely  determined  when  four  pairs  of 

homologous  points  are  given,  provided  no  three  of  either  set  of  four 
points  are  collinear.    (A,  E,  P) 

Proof.  Suppose  there  were  two  collineations  ir,  7rt  having  the  given 

pairs  of  homologous  points.  The  collineation  tt^1  is  then,  by  the 
lemma,  the  identical  collineation  in  one  of  the  planes.  This  gives  at 

once  7r1  =  7r,  contrary  to  the  hypothesis. 

*  We  confine  the  statement  to  the  case  of  the  collineation  for  the  sake  of  sim- 
plicity of  enunciation.  Projective  transformations  which  are  not  collineations  will 

be  discussed  in  detail  later,  at  which  time  attention  will  be  called  explicitly  to  the 
fundamental  theorem. 
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By  precisely  similar  reasoning  we  have : 

Theorem  19.-4  projective  collineation  in  space  is  uniquely  deter- 
mined when  Jive  pairs  of  homologous  points  are  given,  provided  no 

four  of  either  set  of  five  points  are  in  the  same  plane.    (A,  E,  P) 

The  fundamental  theorem  deserves  its  name  not  only  because  so 

large  a  part  of  projective  geometry  is  logically  connected  with  it,  but 

also  because  it  is  used  explicitly  in  so  many  arguments.  It  is  indeed 

possible  to  announce  a  general  course  of  procedure  that  appears  in 

the  solution  of  most  "  linear  "  problems,  ie.  problems  which  depend  on 
constructions  involving  points,  lines,  and  planes  only.  If  it  is  desired 

to  prove  that  certain  three  lines  lv  l2,  l3  pass  through  a  point,  find  two 

other  lines  mv  m2  such  that  the  four  points  mjv  mj2,  m1/3,  m1m2  may 

be  shown  to  be  projective  with  the  four  points  mjv  m2l2,  mjs,  m2ml 

respectively.  Then,  since  in  this  projectivity  the  point  m1ma  is  self- 
corresponding,  the  three  lines  lv  l2,  l3  joining  corresponding  points 
are  concurrent  (Theorem  17,  Cor.).  The  dual  of  this  method  appears 

when  three  points  are  to  be  shown  collinear.  This  method  may  be 

called  the  principle  of  projectivity,  and  takes  its  place  beside  the 

principle  of  duality  as  one  of  the  most  powerful  instruments  of  pro- 
jective geometry.  The  theorems  of  the  next  section  may  be  regarded 

as  illustrations  of  this  principle.  They  are  all  propositions  from  which 

the  principle  of  projectivity  could  be  derived,  Le.  they  are  propositions 

which  might  be  chosen  to  replace  Assumption  P. 

"We  have  already  said  that  ordinary  real  (or  complex)  space  is  a 
space  in  which  Assumption  P  is  valid.  Any  such  space  we  call  a 

properly  projective  space.  It  will  appear  in  Chap.  VI  that  there 

exist  spaces  in  which  this  assumption  is  not  valid.  Such  a  space, 

ie.  a  space  satisfying  Assumptions  A  and  E  but  not  P,  we  will  call 

an  improperly  projective  space. 
From  Theorem  15,  Cor.  1  and  Lemma  1,  we  then  have 

Theorem  20.  A  net  of  rationality  in  space  is  a  properly  projective 

space.    (A,  E) 

It  should  here  be  noted  that  if  we  added  to  our  list  of  Assump- 
tions A  and  E  another  assumption  of  closure,  to  the  effect  that  all 

points  of  space  belong  to  the  same  net  of  rationality,  we  should 

obtain  a  space  in  which  all  our  previous  theorems  are  valid,  in- 
cluding the  fundamental  theorem  (without  using  Assumption  P). 
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Such  a  space  may  be  called  a  rational  space.  In  general,  it  is  clear 

that  any  complete  five-point  in  any  properly  or  improperly  projective 
space  determines  a  subspace  which  is  rational  and  therefore  properly 

projective. 

36.  The  configuration  of  Pappus.    Mutually  inscribed  and  circum- 
scribed triangles. 

Theorem  21.  If  A,  B,C  are  any  three  distinct  points  of  a  line  I, 

and  A',  B',  C'  any  three  distinct  points  of  another  line  V  meeting  I, 

the  three  points  of  intersection  of  the  pairs  of  lines  AB'  and  A'B,  BC' 
and  B'C,  CA'  and  C'A 
are  collinear.   (A,  E,  P)  r^^V 

Proof.  Let  the  three  points  of  intersection  referred  to  in  the  theorem 

be  denoted  by  C",  A",  B"  respectively  (fig.  44).  Let  the  line  B"C" 

meet  the  line  B'C  in  a  point  D  (to  be  proved  identical  with  A"); 

also  let  B"C"  meet  I'  in  Av  the  line  A'B  meet  AC  in  Bv  the  line  AB' 

meet  A'C  in  B[.   We  then  have  the  following  perspectivities : 

A  B' A'C"B'B  =  A'B[B"C  =  A£"B"D. 1      A  *  A      * 

By  the  principle  of  projectivity  then,  since  in  the  projectivity  thus 

established  C"  is  self-corresponding,  we  conclude  that  the  three  lines 

AXA',  B"BV  DB  meet  in  the  point  C  Hence  D  is  identical  with  A", 
and  A",  B",  C"  are  collinear. 

It  should  be  noted  that  the  figure  of  the  last  theorem  is  a  con- 
figuration of  the  symbol 

\ 
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It  is  known  as  the  configuration  of  Pappus.*  It  should  also  be  noted 
that  this  configuration  may  be  considered  as  a  simple  plane  hexagon 

(six-point)  inscribed  in  two  intersecting  lines.  If  the  sides  of  such  a 
hexagon  be  denoted  in  order  by  1,  2,  3, 4,  5,  6,  and  if  we  call  the  sides 

1  and  4  opposite,  likewise  the  sides  2  and  5,  and  the  sides  3  and  6  (cf. 

Chap.  II,  §  14),  the  last  theorem  may  be  stated  in  the  following  form : 

Corollary.  If  a  simple  hexagon  he  inscribed  in  two  intersecting  lines, 

the  three  pairs  of  opposite  sides  will  intersect  in  collinear  points.^ 

Finally,  we  may  note  that  the  nine  points  of  the  configuration  of 

Pappus  may  be  arranged  in  sets  of  three,  the  sets  forming  three 

triangles,  1,  2,  3,  such 
that  2  is  inscribed  in 

1,  3  in  2,  and  1  in  3. 
This  observation  leads 

to  another  theorem  con- 

nected with  the  Pappus 

configuration. 

Theorem  22.  // 

A2B2Ca  be  a  triangle 

inscribed  in  a  triangle 

A1B1CV    there    exists    a 

certain  set  of  triangles  each  of  which  is  inscribed  in  the  former  and 

circumscribed  about  the  latter.    (A,  E,  P) 

Proof  Let  [a]  be  the  pencil  of  lines  with  center  Ax\  [b]  the  pencil 

with  center  Bx\  and  [c]  the  pencil  with  center  Cx  (fig.  45).  Consider  the 
BtAt  BtCt 

perspectivities  [a]  =====  [b]  =====  [c].  In  the  projectivity  thus  estab- 

lished between  [a]  and  [c]  the  line  AXCX  is  self-corresponding;  the 
pencils  of  lines  [a],  [c]  are  therefore  perspective  (Theorem  17,  Cor. 

(dual)).  Moreover,  the  axis  of  this  perspectivity  is  C2AS;  for  the  lines 

A]Ci  and  C^,,  are  clearly  homologous,  as  also  the  lines  AXAS  and  CXAV 
Any  three  homologous  lines  of  the  perspective  pencils  [a],  [6],  [c]  then 
form  a  triangle  which  is  circumscribed  about  AXBXCX  and  inscribed 
in  A2B2CV 

*  Pappus,  of  Alexandria,  lived  about  340  a.d.  A  special  case  of  this  theorem  may 
be  proved  without  the  use  of  the  fundamental  theorem  (cf.  Ex.  3,  p.  52). 

t  In  this  form  it  is  a  special  case  of  Pascal's  theorem  on  conic  sections 
(cf.  Theorem  3,  Chap.  V). 
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EXERCISES 

1.  Given  a  triangle  A BC and  two  distinct  points  A',  B';  determine  a  point  C" 

such  that  the  lines  A  A',  BB',  CC  are  concurrent,  and  also  the  lines  A  B',  BC,  CA ' 
are  concurrent,  i.e.  such  that  the  two  triangles  are  perspective  from  two  dif- 

ferent points.    The  two  triangles  are  then  said  to  be  doubly  perspective. 

2.  If  two  triangles  ABC  and  A'B'C  are  doubly  perspective  in  such  a  way 

that  the  vertices  A,  B,  C  are  homologous  with  A',  B',  C  respectively  in  one 

perspectivity  and  with  B',  C,  A'  respectively  in  the  other,  they  will  also  be  per- 
spective from  a  third  point  in  such  a  way  that  A ,  B,  C  are  homologous  respec- 

tively with  C,  A',  B';  i.e.  they  will  be  triply  perspective. 

3.  Show  that  if  A" ',  B",  C"  are  the  centers  of  perspectivity  for  the  triangles 

in  Ex.  2,  the  three  triangles  ABC,  A'B'C,  A"B"C"  are  so  related  that  any  two 
are  triply  perspective,  the  centers  of  perspectivity  being  in  each  case  the  vertices 

of  the  remaining  triangle.  The  nine  vertices  of  the  three  triangles  form  the 

points  of  a  configuration  of  Pappus. 
4.  Dualize  Ex.  3. 

uction  of  projectivities  on  one-dimensional  forms. 

[EOREM  23,3^4  necessary  and  sufficient  condition  for  the  projectivity 

on  a  line  MNAB-^MNA'B'(M=^  N)  is  Q(MAB,  NB'A').    (A,  E,  P) 

Proof.  Let  n  be  any  line  on  N  not  passing  through  A  (fig.  46).  Let  Ot 

be  any  point  not  on  n  or  on  MA,  and  let  A1  and  Bx  be  the  intersections 

respectively  of  OxA  and  OxB  with  n.  Let  02  be  the  intersection  of  A!AX 

and  B'BV    Then  0  0 
NAB  =  NA.  B,  ~  NA'B'. A  1    x  A 

By  Theorem  17  the  projectivity  so  determined  on  the  line  AM  is  the 
same  as 

MNAB  -^  MNA'B'. 
The  only  possible  double  points  of  the  projectivity  are  N  and  the 

intersection  of  AN  with  Ox02.  Hence  Ox02  passes  through  M,  and 

Q(MAB,  NB'A')  is  determined  by  the  quadrangle  0,0,-4,-Bj. 
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Conversely,  if  Q(MAB,  NB'A')  we  have  a  quadrangle  OlOiA1Bv 
and  hence  ~  _ 

NAB  =±  ̂ AXBX  -J  NAB1, 
A  "     *  A  ' 

and  by  this  construction  M  is  self-corresponding,  so  that 

MNAB^MNA'B'. 
If  in  the  above  construction  we  have  J/=JV,  we  obtain  a  projec- 

tivity with  the  single  double  point  M=N. 

Definition.  A  projectivity  on  a  one-dimensional  primitive  form 

with  a  single  double  element  is  called  parabolic.  If  the  double  ele- 

ment is  M,  and  AA',  BB'  are  any  two  homologous  pairs,  the  pro- 
jectivity is  completely  determined  and  is  conveniently  represented 

by  MMAB  -^  MMA'B'. 
Corollary.  A  necessary  and  sufficient  condition  for  a  parabolic 

projectivity  MMAB-^MMA'B'  is  Q(MAB,  MB' A').    (A,  E,  P) 
Theorem  24  If  we  have 

Q(ABC,  A'B'C), 
we  have  also  Q  (A'B'C,  ABC). 

Proof.  By  the  theorem  above, 

Q(ABC,  A'B'C) 
implies  AA'BC  -%  AA'C'B', 
which  is  the  inverse  of      A'AB'C'-^A'ACB, 

which,  by  the  theorem  above,  implies 

Q(A'B'C,  ABC). 

The  notation  Q  (ABC,  A'B'C)  implies  that  A,  B,  C  are  the  traces  of  a 
point  triple  of  sides  of  the  quadrangle  determining  the  quadrangular  set. 

The  theorem  just  proved  states  the  existence  of  another  quadrangle 

for  which  A',  B',  C  are  a  point  triple,  and  consequently  A,  B,  C  are  a 
triangle  triple.  This  theorem  therefore  establishes  the  existence  of 

oppositely  placed  quadrangles,  as  stated  in  §  19,  p.  50.  This  result 
can  also  be  propounded  as  follows: 

Theorem  25.  If  two  quadrangles  PJ^P^  and  Q^Q^t  are  so  related 

—  P  to  Q1,P2to  Q2,  etc.  —  that  five  of  the  sides  P{Pj(i,j  =  1,2,3,4\ 
i  ¥*j)  meet  the  Jive  sides  of  the  second  which  are  opposite  to  QtQj  in  points 
of  a  line  /,  the  remaining  sides  of  the  two  quadrangles  meet  on  I.  (A,E,P) 
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Proof.  The  sides  of  the  first  quadrangle  meet  /  in  a  quadrangular 

set  Q(P12P1SPU,  PSiP2iP23);  hence  Q(P3iP2iP23,  Pl2PX3PXi).  But,  by  hypoth- 
esis, five  of  the  sides  of  the  second  quadrangle  pass  through  these 

points  as  follows  :  QXQ2  through  P3i,  QXQ3  through  P2i>  #t#4  through  P23, 

Q3Qt  through  P12,  QAQ2  through  Pl3,  Q3Q2  through  Pu.  As  five  of  these 
conditions  are  satisfied,  by  Theorem  3,  Chap.  II,  they  must  all  be 
satisfied. 

EXERCISES 

1.  Given  one  double  point  of  a  projectivity  on  a  line  and  two  pairs  of 

homologous  points,  construct  the  other  double  point. 

2.  If  a,  b,  c  are  three  nonconcurrent  lines  and  A',  B',  C  are  three  collinear 
points,  give  a  construction  for  a  triangle  whose  vertices  A ,  B,  C  are  respectively 
on  the  given  lines  and  whose  sides  BC,  CA,  AB  pass  respectively  through  the 
given  points.  What  happens  when  the  three  lines  a,  b,  c  are  concurrent?  Dualize. 

38.  Involutions.jOPEFiNiTiON.  If  a  projectivity  in  a  one-dimensional 

form  is  oTperiod  two,  it  is  called  an  involution.  Any  pair  of  homol- 
ogous points  of  an  involution  is  called  a  conjugate  pair  of  the  involution 

or  a  pair  of  conjugates. 

It  is  clear  that  if  an  involution  transforms  a  point  A  into  a  point  A', 
then  it  also  transforms  A'  into  A ;  this  is  expressed  by  the  phrase  that 

the  points  A,  A'  correspond  to  each  other  doubly.  The  effect  of  an  invo- 
lution is  then  simply  a  pairing  of  the  elements  of  a  one-dimensional 

form  such  that  each  element  of  a  pair  corresponds  to  the  other  ele- 

ment of  the  pair.  This  justifies  the  expression  "a  conjugate  pair" 
applied  to  an  involution. 

Theorem  26.  If  for  a  single  point  A  of  a  line  which  is  not  a  double 

point  of  a  projectivity  ir  on  the  line  we  have  the  relations  ir  (A)  =  A' 

and  7r(A')  —  A,  the  projectivity  is  an  involution.    (A,  E,  P) 
Proof  For  suppose  P  is  any  other  point  on  the  line  (not  a  double 

point  of  7r),  and  suppose  ir  (P)  =  P'.    There  then  exists  a  projectivity 

giving  AA'PP'^A'AP'P 

(Theorem  2,  Chap.  III).  By  Theorem  17  this  projectivity  is  tr,  since 

it  has  the  three  pairs  of  homologous  points  A,  A';  A',  A;  P,  P'.  But 

in  this  projectivity  P'  is  transformed  into  P.  Thus  every  pair  of 
homologous  points  corresponds  doubly. 

Corollary.  An  involution  is  completely  determined  when  two  pairs 

of  conjugate  points  are  given.    (A,  K,  V) 
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Theorem  27.  A  necessary  and  sufficient  condition  that  three  pair? 

of  points  A,  A';  B,  B' ;   C,  C  he  conjugate  pairs  of  an  involution  is 

Q(ABC,A'B'C).    (A,  E,  P) 
Proof  By  hypothesis  we  have 

AA'BC-^AAB'C. 

By  Theorem  2,  Chap.  Ill,  we  also  have 

AAB'C'-^AA'C'B', 

which,  with  the  first  projectivity,  gives 

AA'BC-^AA'C'B'. 
A  necessary  and  sufficient  condition  that  the  latter  projectivity  hold 

is  Q(ABC,  A'B'C)  (Theorem  23). 
Corollary  1.  If  an  involution  has  double  points,  they  are  harmonic 

conjugates  with  respect  to  every  pair  of  the  involution.    (A,  E,  P) 

For  the  hypothesis  A  =  A',  B  =  B'  gives  at  once  H  (AB,  CC')  as  the 
condition  of  the  theorem. 

Corollary  2.  An  involution  is  completely  determined  when  two 

double  points  are  given,  or  when  one  double  point  and  one  pair  of 

conjugates  are  given.    (A,  E,  P) 

Corollary  3.  If  M,  N  are  distinct  double  points  of  a  projectivity 

on  a  line,  and  A,  A';  B,  B'  are  any  two  pairs  of  homologous  elements, 

the  pairs  M,  N;  A,  B' ;  A',  B  are  conjugate  pairs  of  an  involution* 
(A,  E,  P) 

Corollary  4.  If  an  involution  has  one  double  element,  it  has  another 

distinct  from  the  first.    (A,  E,  HQ,  P) 

Corollary  5.  The  projectivity  ABCD-^  ABDC  between  fcnir  dis- 
tinct points  of  a  line  implies  the  relation  H  (AB,  CD).    (A,  E,  P) 

For  the  projectivity  is  an  involution  (Theorem  26)  of  which  A,  B 
are  double  points.    The  result  then  follows  from  Cor.  1. 

39.  Axis  and  center  of  homology. 

Theorem  28.  If  [A]  and  [B]  Theorem  28'.  If  [I]  and  [m] 
are  any  two  projective  pencils  are  any  two  projective  pencils  of 

of  points  in  the  same  plane  on      lines  in  the  same  plane  on  distinct 

*  This  relation  is  sometimes  expressed  by  saying,  "The  pairs  of  points  are  in 
involution."  From  what  precedes  it  is  clear  that  any  two  pairs  of  elements  of  a 
one-dimensional  form  are  in  involution,  but  in  general  three  pairs  are  not. 
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distinct  lines  lv  l2,  there  exists  a 

line  I  such  that  if  Ax,  Bx  and  A2,  B2 
are  any  two  pairs  of  homologous 

points  of  the  two  pencils,  the  lines 

AXB„  and  AnBx  intersect  on  I. 

(A,  E,  P) 
Definition.  The  line  I  is  called 

the  axis  of  homology  of  the  two 

pencils  of  points. 

points  Sx,  S2,  there  exists  a  point  S 
such  that  if  av  bx  and  a2,  b2  are 

any  two  pairs  of  homologous  lines 

of  the  two  pencils,  the  points  a1b2 

and  a2bx  are  collinear  with  S. 

(A,  E,  P) 
Definition.  The  point  S  is 

called  the  center  of  homology  of 

the  pencils  of  lines. 

Proof  The  two  theorems  being  plane  duals  of  each  other,  we  may 
confine  ourselves  to  the  proof  of  the  theorem  on  the  left.  From  the 

projectivity  [B]  y-  [A]  follows  AX[B]  ̂  BX[A]  (fig.  47).  But  in  this  pro- 
jectivity the  line  A1B1  is  self-corresponding,  so  that  (Theorem  17,  Cor.) 

I, 

B,  Bi  B, 
Fig.  47 

the  two  pencils  are  perspective.  Hence  pairs  of  corresponding  lines 

meet  on  a  line  I ;  e.g.  the  lines  AxBa  and  BXAS  meet  on  /  as  well  as 

AXB2  and  BXA2.  To  prove  our  theorem  it  remains  only  to  show  that 

B2AS  and  A2BS  also  meet  on  I.  But  the  latter  follows  at  once  from 

Theorem  21,  since  the  figure  before  us  is  the  configuration  of  Pappus. 

Corollary.  If  [A],  [B]  are  not  Corollary.  If  [I],  [m]  are  not 
perspective,  the  axis  of  homology  is     perspective,  the  center  of  homology 

the  line  joining  the  points  homol- 
ogous with  the  point  lxl2  regarded 

first  as  a  point  of  lx  and  then  as 
a  point  of  lv 

is  the  point  of  intersection  of  the 
lines  homologous  with  the  line  SxS2 

regarded  first  as  a  line  of  [I]  and 
then  as  a  line  of  [m]. 

I 

For  in  the  perspectivity  AX[B]=BX[A]  the  line  lx  corresponds  to 

Bx(llx),  and  hence  the  point  lxl2  corresponds  to  11  x  in  the  projectivity 

[B]  -^  [A].    Similarly,  ll2  corresponds  to  lxl2. 
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EXERCISES 

1.  There  is  one  and  only  one  projectivity  of  a  one-dimensional  form  leaving 
invariant  one  and  only  one  element  O,  and  transforming  a  given  other  element 
A  to  an  element  B. 

2.  Two  projective  ranges  on  skew  lines  are  always  perspective. 

3.  Prove  Cor.  5,  Theorem  27,  without  using  the  notion  of  involution. 

4.  If  MXAB  —  MNA'B',  then  MNAA'-rMNBB'. A  A 

5.  If  P  is  any  point  of  the  axis  of  homology  of  two  projective  ranges 

{\A~\~r  [B~\,  then  the  projectivity  P[A~\-r  P[B~\  is  an  involution.    Dualize. 
6.  Call  the  faces  of  one  tetrahedron  ax,  a?,  aj,  a4  and  the  opposite  vertices 

Av  A2,  A3,  At  respectively,  and  similarly  the  faces  and  vertices  of  another  tetra- 

hedron Bx,  /32,  B3,  Bt  and  Bt,  Bi7  Bs,  Bt.  If  if,,  A%,  Az,  At  lie  on  Bx,  B2,  B3,  Bt 

respectively,  and  Bx  lies  on  ax,  B«  on  a^,  B3  on  o3,  then  Bt  lies  on  a4.  Thus 

each  of  the  two  tetrahedra  related  in  this  fashion  is  both  inscribed  and  cir- 
cumscribed to  the  other. 

7.  Prove  the  theorem  of  Desargues  (Chap.  II)  by  the  principle  of  pro- 
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(AXB2,  A2BX)  =  C„  (AC2,  ASCX)  =  Bs,  (BXCV  B3CX)  =  .4,, 

if  not  collinear,  form  a  triangle  perspective  with  the  first  two,  and  the  three 

centers  of  perspectivity  are  collinear. 

*  10.  (a)  If  7r  is  a  projectivity  in  a  pencil  of  points  [^4]  on  a  line  a  with  inva- 
riant points  Av  A2,  and  if  [£],  [Af  ]  are  the  pencils  of  points  on  two  lines  I,  m 

through  A .,  .4.,  respectively,  show  by  the  methods  of  Chap.  Ill  that  there  exist 

three  points  Sv  S2,  Ss  such  that  we  have 

where  it  (A  )  =  A' ;  that  5^5,,^,  are  collinear;  and  that  52,55,  A  x  are  collinear. 
(b)  Using  the  fundamental  theorem,  show  that  there  exists  on  the  Une  SXA^ 

a  point  5  such  that  we  have 

M§  [£]=£-<]. (c)  Show  that  (6)  could  be  used  as  an  assumption  of  projectivity  instead  of 

Assumption  P ;  i.e.  P  could  be  replaced  by  :  If  w  is  a  projectivity  with  fixed 

points  At,  A2,  giving  ir(A)  =  A'  in  a  pencil  of  points  [-4],  and  [L]  is  a  pencil 
f>f  points  on  a  line  I  through  .4r  there  exist  two  points  Sv  S2  such  that 

5,         S2 
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*  11.  Show  that  Assumption  P  could  be  replaced  by  the  corollary  of 
Theorem  17. 

*  12.  Show  that  Assumption  P  could  be  replaced  by  the  following:  If  we 
have  a  projectivity  in  a  pencil  of  points  defined  by  the  perspectivities 

s*     st 

and  [M~]  is  the  pencil  of  points  on  the  line  S^,  there  exist  on  the  base  of  [Z] 
two  points  Sj,  S%  such  that  we  have  also 

Oi  On 

40.  Types  of  collineations  in  the  plane.  We  have  seen  iu  the 

proof  of  Theorem  10,  Chap.  Ill,  that  if  OlOiO&  is  any  triangle,  there 

exists  a  collineation  IT  leaving  Ov  02,  and  03  invariant,  and  trans- 
forming any  point  not  on  a  side  of  the  triangle  into  any  other  such 

Ul 

Fig.  48 

point.  By  Theorem  18  there  is  only  one  such  collineation  IT.  By  the 

same  theorem  it  is  clear  that  II  is  fully  determined  by  the  projec- 
tivity it  determines  on  two  of  the  sides  of  the  invariant  triangle,  say 

02Os  and  O^g.  Hence,  if  Hx  is  a  homology  with  center  Ol  and  axis 

0203,  which  determines  the  same  projectivity  as  n  on  the  line  OrOa, 

and  if  H2  is  a  homology  with  center  02  and  axis  0^0^  which  deter- 
mines the  same  projectivity  as  II  on  the  line  02Oa,  then  it  is  evident 

that  n  =  H1H8=H2H1. 
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It  is  also  evident  that  no  point  not  a  vertex  of  the  invariant  triangle 

can  be  fixed  unless  II  reduces  to  a  homology  or  to  the  identity.  Such 

a  transformation  II  when  it  is  not  a  homology  is  said  to  be  of  Type  I, 

and  is  denoted  by  Diagram  /  (fig.  48). 

EXERCISE 

Prove  that  two  homologies  with  the  same  center  and  axis  are  commutative, 
and  hence  that  two  projectivities  of  Type  /  with  the  same  invariant  figure  are 
commutative. 

Consider  the  figure  of  two  points  Ov  0%  and  two  hues  ov  o%,  such 

that  Ox  and  02  are  on  ov  and  ox  and  o2  are  on  Ov  A  collineation  II 

which  is  the  product  of  a  homology  H,  leaving  02  and  o2  invariant, 

and  an  elation  E,  leaving  Ot  and  ov  invariant,  evidently  leaves  this 

figure  invariant  and  also  leaves  invariant  no  other  point  or  line.  If  A 

and  B  are  two  points  not  on  the  lines  of  the  invariant  figure,  and  we 

require  that  tj  ij\  _  ̂  

this  fixes  the  transformation  (with  two  distinct  double  lines)  among 

the  lines  at  Ov  and  the  parabolic  transformation  among  the  lines  at  02, 
and  thus  determines  II  completely.  Clearly  if  II  is  not  to  reduce  to  a 

homology  or  an  elation,  the  line  AB  must  not  pass  through  Ox  or  02. 

Such  a  transformation  II,  when  it  does  not  reduce  to  a  homology  or 

an  elation  or  the  identity,  is  said  to  be  of  Type  II  and  is  denoted  by 

Diagram  //  (fig.  48). 
EXERCISE 

Two  projective  collineations  of  Type  II,  having  the  same  invariant  figure, 
are  commutative. 

Definition.  The  figure  of  a  point  0  and  a  line  o  on  O  is  called  a 
lineal  element  Oo. 

A  collineation  having  a  lineal  element  as  invariant  figure  must  effect 

a  parabolic  transformation  both  on  the  points  of  the  line  and  on  the 

lines  through  the  point.  Suppose  Aa  and  Bb  are  any  two  lineal  ele- 
ments whose  points  are  not  on  o  or  collinear  with  0,  and  whose  lines 

are  not  on  0  or  concurrent  with  o.  Let  Et  be  an  elation  with  center  0 

and  axis  OA,  which  transforms  the  point  (oa)  to  the  point  (ob).  Let  E2 

be  an  elation  of  center  (AB,  o)  and  axis  o,  which  transforms  A  to  B. 

Then  II  =  E2E1  has  evidently  no  other  invariant  elements  than  0  and  o 
and  transforms  Aa  to  Bb. 
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Suppose  that  another  projectivity  n'  would  transfer  Aa  to  Bb  with 

Oo  as  only  invariant  elements.  The  transformation  II'  would  evidently 
have  the  same  effect  on  the  lines  of  0  and  points  of  o  as  II.  Hence 

n'n-1  would  be  the  identity  or  an  elation.  But  as  WU-1(B)  =  B  it 
would  be  the  identity.  Hence  n  is  the  only  projectivity  which  trans- 

forms Aa  to  Bb  with  Oo  as  only  invariant. 

A  transformation  having  as  invariant  figure  a  lineal  element  and  no 

other  invariant  point  or  line  is  said  to  be  of  Type  III,  and  is  denoted 
by  Diagram  III  (fig.  48). 

A  homology  is  said  to  be  of  Type  /Kand  is  denoted  by  Diagram  IV. 

An  elation  is  said  to  be  of  Type  V  and  is  denoted  by  Diagram  V. 

It  will  be  shown  later  that  any  collineation  can  be  regarded  as  be- 

longing to  one  of  these  five  types.  The  results  so  far  obtained  may  be 
summarized  as  follows : 

Theorem  29.  A  projective  collineation  with  given  invariant  figure  F, 

if  of  Type  I  or  II  will  transform  any  point  P  not  on  a  line  of  F  into 

any  other  such  point  not  on  a  line  joining  P  to  a  point  of  F;  if  of 

Type  III  will  transform  any  lineal  element  Pp  such  that  p  is  not  on 

a  point,  or  P  on  a  line,  of  F  into  any  other  such  element  Qq ;  if  of 

Type  IV  or  V,  will  transform  any  point  P  into  any  other  point  on  the 

line  joining  P  to  the  center  of  the  collineation. 

The  r61e  of  Assumption  P  is  well  illustrated  by  this  theorem.  In  case  of 

each  of  the  first  three  types  the  existence  of  the  required  collineation  was  proved 

by  means  of  Assumptions  A  and  E,  together  with  the  existence  of  a  sufficient 

number  of  points  to  effect  the  construction.  But  its  unu/ueness  was  established 

only  by  means  of  Assumption  P.  In  case  of  Types  IV  and  V,  both  existence 

and  uniqueness  follow  from  Assumptions  A  and  E. 

EXERCISES 

1.  State  the  dual  of  Theorem  29. 

2.  If  the  number  of  points  on  a  line  is  p  +  1,  the  number  of  collineations 

with  a  given  invariant  figure  is  as  follows : 

Type/,  0-2)(;>~3). 

Type//,  (p-2)(p-l). 

Type///,  p(p-  iy. 

Type  IV,  p-2. 

TypeF,  P-\. 
In  accordance  with  the  results  of  this  exercise,  when  the  number  of  points 

on  a  line  is  infinite  it  is  said  that  there  are  oo2  transformations  of  Type  I  or  II; 

oo8  of  Type  ///;  and  oo1  of  Types  /Fand  V. 



CHAPTER  V* 
CONIC  SECTIONS 

41.  Definitions.  Pascal's  and  Brianchon's  theorems. 
Definition.  The  set  of  all  points  of  intersection  of  homologous 

lines  of  two  projective,  nonperspective  flat  pencils  which  are  on  the 

same  plane  but  not  on  the  same  point  is  called  a  point  conic  (fig.  49). 

The  plane  dual  of  a  point  conic  is  called  a  line  conic  (fig.  50).  The 

space  dual  of  a  point  conic  is  called  a  cone  of  planes;  the  space  dual 

Fig.  49 Fig.  50 

of  a  line  conic  is  called  a  cone  of  lines.  The  point  through  which 

pass  all  the  lines  (or  planes)  of  a  cone  of  lines  (or  planes)  is  called 

the  vertex  of  the  cone.  The  point  conic,  line  conic,  cone  of  planes, 

and  cone  of  lines  are  called  one-dimensional  forms  of  the  second  degree.^ 

The  following  theorem  is  an  immediate  consequence  of  this  defi- 
nition. 

Theorem  1.  The  section  of  a  cone  of  lines  by  a  plane  not  on  the 

vertex  of  the  cone  is  a  point  conic.  The  section  of  a  cone  of  planes  by 
a  plane  not  on  the  vertex  is  a  line  conic. 

Xow  let  Ax  and  Bx  be  the  centers  of  two  flat  pencils  defining  a 

point  conic.  They  are  themselves,  evidently,  points  of  the  conic,  for  the 

line  AXBX  regarded  as  a  line  of  the  pencil  on  Ax  corresponds  to  some 

other  line  through  Bx  (since  the  pencils  are,  by  hypothesis,  projective 

»  All  the  deyelopments  of  this  chapter  are  on  the  basis  of  Assumptions  A,  E.  P. 
and  H0. 

t  A  fifth  one-dimensional  form  —  a  self-dual  form  of  lines  in  space  called  the 
regulus  —  will  be  defined  in  Chap.  XI.  This  definition  of  the  first  four  one-dimen- 

sional forms  of  the  second  degree  is  due  to  Jacob  Steiner  (1796-1863).  Attention 
will  be  called  to  other  methods  of  definition  in  the  sequel. 

109 
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but  not  perspective),  and  the  intersection  of  these  homologous  lines 

is  By  The  conic  is  clearly  determined  by  any  other  three  of  its 

points,  say  A2,  B2,  C2,  because  the  projectivity  of  the  pencils  is  then 
determined  by 

(Theorem  17,  Chap.  IV). 

Let  us  now  see  how  to  determine  a  sixth  point  of  the  conic  on  a 

line  through  one  of  the  given  points,  say  on  a  line  I  through  B„.  If  the 

line  I  is  met  by  the  lines  AXA2,  AXC2,  BXA2,  BXC2  in  the  points  S,  T,  U,  A 

At 

V 
B, 

"U 

C      J; 

A, 

SB* 

C2 

Fig.  51 

respectively  (fig.  51),  we  have,  by  hypothesis,  SB2T~^  UB2A.  The  other 
double  point  of  this  projectivity,  which  we  will  call  Cx,  is  given  by  the 

quadrangular  set  Q(B2ST,  CXAU)  (Theorem  23,  Chap.  IV).  A  quad- 
rangle which  determines  it  may  be  obtained  as  follows :  Let  the  lines 

A2BX  and  AXB2  meet  in  a  point  C,  and  the  lines  AC  and  AXC2  in  a 

point  B;  then  the  required  quadrangle  is  AX A2CB,  and  Cx  is  determined 
as  the  intersection  of  A2B  with  I. 

Cj  will  coincide  with  B2,  if  and  only  if  B  is  on  A2B2  (fig.  52).  This  means 
that  A  C,  ArC2,  and  A2B2  are  concurrent  in  B.  In  other  words,  A  must  be  the 

point  of  intersection  of  BXC2  with  the  line  joining  C  =  (A2B1)(AlB2)  and 

B  =  (/11C2)(>42B2),  and  Zmust  be  the  line  joining  B2  and  A.  This  gives,  then, 
a  construction  for  a  line  which  meets  a  given  conic  in  only  one  point. 

The  result  of  the  preceding  discussion  may  be  summarized  as 

follows :   The  four  points  A2,  B2,  C2,  Cx  are  points  of  a  point  conic 
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determined  by  two  'projective  pencils  on  Ax  and  Bv  if  and  only  if  the 

three  points  C=(A1B2)  {A2BX),  B  =  (AXC2)  (A2CX),  A  =  (BXC2)  (B2CX)  are 
collinear.  The  three  points  in  question  are  clearly  the  intersections 

of  pairs  of  opposite  sides  of  the  simple  hexagon  AxB2CxA2BxCr 

Since  Av  Bv  Cx  may  be  interchanged  with  A2,  B2,  C2  respectively 
in  the  above  statement,  it  follows  that  Av  Bx,  Cx,  C2  are  points  of  a 

conic  determined  by  projective  pencils  on  A2  and  Br  Thus,  if  Cx  is 

any  point  of  the  first  conic,  it  is  also  a  point  of  the  second  conic, 
and  vice  versa.   Hence  we  have  established  the  following  theorem : 

Theorem  2.  Steixer's  theorem.  If  A  and  B  are  any  two  given 
points  of  a  conic,  and  P  is  a  variable  point  of  this  conic,  we  have 

A[P\TB[P\ 

In  view  of  this  theorem  the  six  points  in  the  discussion  may  be 

regarded  as  any  six  points  of  a  conic,  and  hence  we  have 

Theorem  3.  Pascal's  theorem.*  The  necessary  and  sufficient  con- 
dition that  six  points,  no  three  of  which  are  collinear,  be  points  of 

the  same  conic  is  that  the  three  pairs  of  opposite  sides  of  a  simple 

hexagon  of  which  they  are  vertices  shall  meet  in  collinear  points.^ 

The  plane  dual  of  this  theorem  is 

Theorem  3'.  Briaxchon's  theorem.  The  necessary  and  sufficient 
condition  that  six  lines,  no  three  of  which  are  concurrent,  be  lines  of 

a  line  conic  is  that  the  lines  joining  the  three  pairs  of  opposite  vertices 

of  any  simple  hexagon  of  which  the  given  lines  are  sides,  shall  be 
concurrent.^ 

As  corollaries  of  these  theorems  we  have 

Corollary  1.  A  line  in  the  plane  of  a  point  conic  cannot  have  more 

than  two  points  in  common  with  the  conic. 

Corollary  1'.  A  point  in  the  plane  of  a  line  conic  cannot  be  on 
more  than  two  lines  of  the  conic. 

*  Theorem  3  was  proved  by  B.  Pascal  in  1640  when, only  sixteen  years  of  age. 
He  proved  it  first  for  the  circle  and  then  obtained  it  for  any  conic  by  projection 

and  section.  This  is  one  of  the  earliest  applications  of  this  method.  Theorem  3' 
was  first  given  by  C.  J.  Brianchon  in  1806  (Journal  de  l'£cole  Polytechnique, 
Vol.  VI,  p.  301). 

t  The  line  thus  determined  by  the  intersections  of  the  pairs  of  opposite  sides  of 
any  simple  hexagon  whose  vertices  are  points  of  a  point  conic  is  called  the  Pascal 
line  of  the  hexagon.  The  dual  construction  gives  rise  to  the  Brianchon  point  of  a 
hexagon  whose  sides  belong  to  a  line  conic. 
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Also  as  immediate  corollaries  of  these  theorems  we  have 

Theorem  4.   There  is  one  and  only  one  point  conic  containing  Jive 

given  points  of  a  plane  no  three  of  which  are  collinear. 

Theorem  4'.   There  is  one  and  only  one  line  conic  containing  Jive 
given  lines  of  a  plane  no  three  of  which  are  concurrent. 

EXERCISES 

1.  What  are  the  space  duals  of  the  above  theorems? 

2.  Prove  Brianchou's  theorem  without  making  use  of  the  principle  of 
duality. 

3.  A  necessary  and  sufficient  condition  that  six  points,  no  three  of  which 

are  collinear,  be  points  of  a  point  conic,  is  that  they  be  the  points  of  inter- 

section (ab'),  (be'),  (ca'),  (ba'),  (c6'),  (ac')  of  the  sides  a,  b,  c  and  a',  b',  c'  of  two 

perspective  triangles,  in  which  a  and  a',  b  and  b',  c  and  c'  are  homologous. 

42.  Tangents.  Points  of  contact.  Definition.  A  line  p  in  the 

plane  of  a  point  conic  which  meets  the  point  conic  in  one  and  only 

one  point  P  is  called  a  tangent  to  the  point  conic  at  P.  A  point  P  in 

the  plane  of  a  line  conic  through  which  passes  one  and  only  one  line 

p  of  the  line  conic  is  called  a  point  of  contact  of  the  line  conic  on  p. 

Theorem  5.  Through  any  point  of  a  point  conic  there  is  one  and 

only  one  tangent  to  the  point  conic. 

Proof.  If  PQ  is  the  given  point  of  the  point  conic  and  Px  is  any 

other  point  of  the  point  conic,  while  P  is  a  variable  point  of  this 

conic,  we  have,  by  Theorem  2, 

Any  line  through  P0  meets  its  homologous  line  of  the  pencil  on  Px  in 

a  point  distinct  from  P0,  except  when  its  homologous  line  is  P^. 

Since  a  projectivity  is  a  one-to-one  correspondence,  there  is  only  one 
line  on  P>  which  has  i^ijj  as  its  homologous  line. 

Theorem  5'.  On  any  line  of  a  line  conic  there  is  one  and  only  01 
point  of  contact  of  the  line  conic. 

This  is  the  plane  dual  of  the  preceding  theorem. 

L      U 

me 

EXERCISE 

Give  the  space  duals  of  the  preceding  definitions  and  theorems. 

Returning  now  to  the  construction  in  the  preceding  section  for  the 

points  of  a  point  conic  containing  five  given  points,  we  recall  that 
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the  point  of  intersection  Cx  of  a  line  I  through  B2  was  determined  by 

the  quadrangular  set  Q(B2ST,  CXAU).  The  points  B2  and  Cx  can, 

by  the  preceding  theorem,  coincide  on  one  and  only  one  of  the  lines 

through  Br*    For  this  particular  line  I,  A  becomes  the  intersection 
A, 

Fig.  52 

of  the  tangent  at  B2  with  B  C ,  and  the  collinearity  of  the  points  A,  B,  C 
may  be  stated  as  follows : 

Theorem  6.  If  the  vertices  of  a  simple  plane  five-point  are  points 
of  a  point  conic,  the  tangent  to  the  point  conic  at  one  of  the  vertices 

meets  the  opposite  side  in  a  point  collinear  with  the  points  of  inter- 
section of  the  other  two  pairs  of  nonadjacent  sides. 

This  theorem,  by  its  derivation,  is  a  degenerate  case  of  Pascal's 
theorem.  It  may  also  be  regarded  as  a  degenerate  case  in  its  state- 

ment, if  the  tangent  be  thought  of  as  taking  the  place  of  one  side 

of  the  simple  hexagon. 

It  should  be  clearly  understood  that  the  theorem  has  been  obtained  by 

specializing  the  figure  of  Theorem  3,  and  not  by  a  continuity  argument. 

The  latter  would  be  clearly  impossible,  since  our  assumptions  do  not  require 

the  conic  to  contain  more  than  a  finite  number  of  points. 

Theorem  6  may  be  applied  to  the  construction  of  a  tangent  to 

a  point  conic  at  any  one  of  five  given  points  7^,  P2,  i£,  Piy  J^  of  the 

point  conic  (fig.  53).    By  this  theorem  the  tangent  px  at  Py  must  be 

*  As  explained  in  the  fine  print  on  page  110,  this  occurs  when  I  passes  through 
the  point  of  intersection  of  B^C^  with  the  line  joining  C  —  {AXB»)  (AoB{)  and 
B  =  (A1C2){A,Bi). 
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such  that  the  points  p^P^)  =  A,  (JJJ»)  (P4P5)  =  B,  and  (P2P8)  (P6PX)  =  C 
are  collinear.  But  B  and  C  are  determined  by  Pv  P2,  Pa,  PK,  P&,  and 

hence  pt  is  the  line  joining  Px  to  the  intersection  of  the  lines  BC 
and  P^. 

Fig.  53 

In  like  manner,  if  Px,  P2,  Pa,  Piy  and  px  are  given,  to  construct  the 

point  P5  on  any  line  /  through  Pi  of  a  point  conic  containing  Pv  P2,  Pa,  P± 

and  of  which  px  is  the  tangent  at  Pv  we  need  only  determine  the  points 

A  =pl(PiPi),B  =  l(P1P2),  and  C  =  (AB)(P2Pa);  then  PXC  meets  Z  in  Pt 

(%  53). 

Fig.  64 

In  case  /  is  the  tangent  pA  at  P4,  P6  coincides  with  Pt  and  the  fol- 
lowing points  are  collinear  (fig.  54) : 

A  =  p1(P3Pi),  B^p^P,),  C=(i^)(i^). 
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Hence  we  have  the  following  theorem : 

Theorem  7.  If  the  vertices  Pv  Pv  P8,  Pt  of  a  simple  quadrangle  are 

points  of  a  point  conic,  the  tangent  at  Px  and  the  side  P3Piy  the  tangent 

at  Pt  and  the  side  iji£,  and  the  pair  of  sides  P^  and  P%P%  meet  in  three 
collinear  points. 

If  I{,  P2,  Ps,  P5  and  the  tangent  px  at  Px  are  given,  the  construction 
determined  by  Theorem  6  for  a  point  PA  of  the  point  conic  on  a  line  I 

through  Ps  is  as  follows  (fig.  53):  Determine  C  =  (P1Pi)(PiPi),  A  =  pj, 
and  B  =  (AC^P^);  then  PB  meets  I  in  Pt. 

In  case  I  is  the  tangent  at  P3,  Pi  coincides  with  P3  and  we  have  the 

result  that  C  =  (PlPi)(PiPa)f  A=plp3,  B  =  (P.P,)  (P5P3)  are  collinear 
points,  which  gives 

Fig.  65 

Theorem  8.  If  the  vertices  of  a  complete  quadrangle  are  points  of 

a  point  conic,  the  tangents  at  a  pair  of  vertices  meet  in  a  point  of  the 

line  joining  the  diagonal  points  of  the  quadrangle  which  are  not  on 

the  side  joining  the  two  vertices  (fig.  55). 

The  last  two  theorems  lead  to  the  construction  for  a  point  conic 

of  which  there  are  given  three  points  and  the  tangents  at  two  of 

them.  Reverting  to  the  notation  of  Theorem  7  (fig.  54),  let  the  given 

points  be  Pt,  Pv  P3  and  the  given  tangents  be  pv  pv  Let  I  be  any  line 

through  Pv  If  P%  is  the  other  point  in  which  I  meets  the  point  conic, 

the  points  A  =  px  (P^),  B  =  pt  (P^),  and  C  =  (P%Pt)  (P^)  are  collinear. 
Hence,  if  C  =  1{P1P^)  and  B=p4(AC),  then  Pj  is  the  intersection  of  I 
with  BPX. 

In  case  I  is  the  tangent  p3  at  P3,  the  points  Pt  and  Pz  coincide,  and 
the  points 

Piitt),    2>s(tt)>    PAtt) 
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are  collinear.  Hence  the  two  triangles  P^P^  and  plpzpi  are  per- 

spective, and  we  obtain  as  a  last  specialization  of  Pascal's  theorem 
(fig.  56) 

Theorem  9.  A  triangle  whose  vertices  are  points  of  a  point  conic 

is  perspective  with  the  triangle  formed  by  the  tangents  at  these  points, 

the  tangent  at  any  vertex  being  homologous  with  the  side  of  the  first 
triangle  which  does  not  contain  this  vertex. 

Corollary.  If  Pv  Pz,  P±  are  three  points  of  a  point  conic,  the  lines 

PZPV  PZP±  are  harmonic  with  the  tangent  at  Pz  and  the  line  pining  Pz 

to  the  intersection  of  the  tangents  at  Px  and  Pv 

Proof.  This  follows  from  the  definition  of  a  harmonic  set  of  lines, 

on  considering  the  quadrilateral  PXA,  AB,  BPV  i^TJ  (fig.  56). 

Fig.  56 

43.  The  tangents  to  a  point  conic  form  a  line  conic.    If  Pv  P2,  Pa,  P^ 

are  points  of  a  point  conic  and  pv  p2,  pz,  pt  are  the  tangents  to  the 

conic  at  these  points  respectively,  then  (by  Theorem  8)  the  line  join- 

ing the  diagonal  points  (iji^)  (^^)  and  (P^)  (P2PZ)  contains  the  inter- 
section of  the  tangents  pv  pz  and  also  the  intersection  of  p2,  pt.  This 

line  is  a  diagonal  line  not  only  of  the  quadrangle  P^P^,  but  also  of 

the  quadrilateral  px'pi'Pz'Pv  Theorem  8  may  therefore  be  stated  in 
the  form: 

Theorem  10.  The  complete  quadrangle  formed  by  four  points  of 

a  point  conic  and  the  complete  quadrilateral  of  the  tangents  at  these 

points  have  the  same  diagonal  triangle. 

Looked  at  from  a  slightly  different  point  of  view,  Theorem  8  gives 
also 

Theorem  1 1.  The  tangents  to  a  point  conic  form  a  line  conic. 
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Proof.  Let  Pv  Pv  Pa  be  any  three  fixed  points  on  a  conic,  and  let  P 

be  a  variable  point  of  this  conic.  Let  pv  p2,  p3,  p  be  respectively  the 

tangents  at  these  points  (fig.  57).  By  the  corollary  of  Theorem  28, 

Chap.  IV,  PXP2  is  the  axis  of  homology  of  the  projectivity  between  the 

pencils  of  points  on  px  and  p„  defined  by 

Pl(PlPt)  (PlP,)  ̂   (P*Pl)P2(PM* 

But  by  Theorem  10,  if  Q  =  (P1Pi)  (P,P),  the  points  pp2,  p^pz,  and  Q  are 
collinear.  For  the  same  reason  the  points  p2ps,  ppv  Q  are  collinear. 
It  follows,  by  Theorem  28,  Chap.  IV,  that  the  homolog  of  the  variable 

Fig.  57 

point  ptp  is  p2p ;  i.e.  p  is  the  line  joining  pairs  of  homologous  points 
on  the  two  lines  pv  p2,  so  that  the  totality  of  the  lines  p  satisfies  the 
definition  of  a  line  conic. 

Corollary.  The  center  of  homology  of  the  projectivity  Px  [P]  j-  Pa  [P] 
determined  by  the  points  P  of  a  point  conic  containing  Plt  P%  is  the 

intersection  of  the  tangents  at  Pv  P%.  The  axis  of  homology  of  the 

projectivity  Pl[p]~^p2[p]  determined  by  the  lines  p  of  a  line  conic 
containing  the  lines  pv  pt  is  the  line  joining  the  points  of  contact 
°f  Pv  Pr 

Theorem  12.  If  Pxis  a  fixed  and  P  a  variable  point  of  a  point 

conic,  and  pv  p  are  the  tangents  at  these  two  points  respectively,  thtn 
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Proof.  Using  the  notation  of  the  proof  of  Theorem  11  (fig.  57), 
we  have 

where  Q  is  always  on  P1P2.    But  we  also  have 

[QY==pApI 

and,  by  Theorem  11,  p^p]  ̂ p^p]. 

Combining  these  projectivities,  we  have 

The  plane  dual  of  Theorem  11  states  that  the  points  of  contact  of 

a  line  conic  form  a  point  conic.  In  view  of  these  two  theorems  and 

their  space  duals  we  now  make  the  following 

Definition.  A  conic  section  or  a  conic  is  the  figure  formed  by  a 

point  conic  and  its  tangents.  A  cone  is  the  figure  formed  by  a  cone 

of  lines  and  its  tangent  planes. 

The  figure  formed  by  a  line  conic  and  its  points  of  contact  is  then 

likewise  a  conic  as  defined  above ;  i.e.  a  conic  (and  also  a  cone)  is  a 

self-dual  figure. 

The  duals  of  Pascal's  theorem  and  its  special  cases  now  give  us  a 
set  of  theorems  of  the  same  consequence  for  point  conies  as  for  line 

conies.  We  content  ourselves  with  restating  Brianchon's  theorem 

(Theorem  3')  from  this  point  of  view. 

Brianchon's  theorem.  If  the  sides  of  a  simple  hexagon  are  tan- 
gents to  a  conic,  the  lines  joining  opposite  vertices  are  concurrent; 

and  conversely. 

It  follows  from  the  preceding  discussion  that  in  forming  the  plane 

duals  of  theorems  concerning  conies,  the  word  conic  is  left  unchanged, 

while  the  words  point  (of  a  conic)  and  tangent  (of  a  conic)  are  inter- 
changed. We  shall  also,  in  the  future,  make  use  of  the  phrase  a  conic 

passes  through  a  point  P,  and  P  is  on  the  conic,  when  P  is  a  point 
of  a  conic,  etc. 

Definition.  If  the  points  of  a  plane  figure  are  on  a  conic,  the  figure 
is  said  to  be  inscribed  in  the  conic ;  if  the  lines  of  a  plane  figure 

are  tangent  to  a  conic,  the  figure  is  said  to  be  circumscribed  about 
the  conic. 
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EXERCISES 

1.  State  the  plane  and  space  duals  of  the  special  cases  of  Pascal's  theorem. 
2.  Construct  a  conic,  given  (1)  five  tangents,  (2)  four  tangents  and  the 

point  of  contact  of  one  of  them,  (3)  three  tangents  and  the  points  of  contact 
of  two  of  them. 

3.  ABX  is  a  triangle  whose  vertices  are  on  a  conic,  and  a,  h,  x  are  the  tan- 

gents at  A,  B,  X  respectively.  If  A,  B  are  given  points  and  A'  is  variable, 
determine  the  locus  of  (1)  the  center  of  perspectivity  of  the  triangles  ABX 

and  abx ;  (2)  the  axis  of  perspectivity. 

4.  A',  Y,  Z  are  the  vertices  of  a  variable  triangle,  such  that  X,  Y  are  always 
on  two  given  lines  a,  b  respectively,  while  the  sides  AT,  ZX,  ZY  always  pass 

through  three  given  points  P,  A,  B  respectively.  Show  that  the  locus  of  the 

point  Z  is  a  point  conic  containing  A,  B,  D=  (ab),  M  =  (AP)b,  and  X  =  (BP)a 

(Maclaurin's  theorem).  Dualize.  (The  plane  dual  of  this  theorem  is  known 
as  the  theorem  of  Brai  ken  ridge.) 

5.  If  a  simple  plane  n-point  varies  in  such  a  way  that  its  sides  always  pass 

through  72  given  points,  while  n  —  1  of  its  vertices  are  always  onn-1  given 
lines,  the  nth  vertex  describes  a  conic  (Poncelet). 

6.  If  the  vertices  of  two  triangles  are  on  a  conic,  the  six  sides  of  these  two 

triangles  are  tangents  of  a  second  conic ;  and  conversely.  Corresponding  to 

every  point  of  the  first  conic  there  exists  a  triangle  having  this  point  as  a 
vertex,  whose  other  two  vertices  are  also  on  the  first  conic  and  whose  sides 

are  tangents  to  the  second  conic.    Dualize. 

7.  If  two  triangles  in  the  same  plane  are  perspective,  the  points  in  which 

the  sides  of  one  triangle  meet  the  nonhomologous  sides  of  the  other  are  on 

the  same  conic ;  and  the  lines  joining  the  vertices  of  one  triangle  to  the  non- 
homologous vertices  of  the  other  are  tangents  to  another  conic. 

8.  If  A,  B,  C,  D  be  the  vertices  of  a  complete  quadrangle,  whose  sides 

AB,  AC,  AD,  BC,  BD,  CD  are  cut  by  a  line  in  the  points  P,  Q,  R,  S,  T,  V 

spectively,  and  if  E,  F,  G,  K,  L,  M  are  respectively  the  harmonic  conjugates 

of  these  points  with  respect  to  the  pairs  of  vertices  of  the  quadrangle  so  that 

we  have  H  {AB,  PE),  H  (A  C,  QF),  etc.,  then  the  six  points  E,  F,  G,  K,  L,  M 

are  on  a  conic  which  also  passes  through  the  diagonal  points  of  the  quadrangle 

(Holgate,  Annals  of  Mathematics,  Ser.  1,  Vol.  VII  (1893),  p.  73). 

9.  If  a  plane  a  cut  the  six  edges  of  a  tetrahedron  in  six  di$tinct  points, 

and  the  harmonic  conjugates  of  each  of  these  points  with  respect  to  the  two 

vertices  of  the  tetrahedron  that  lie  on  the  same  edge  are  determined,  then  the 

lines  joining  the  latter  six  points  to  any  point  0  of  the  plane  a  are  on  a  cone, 

on  which  are  also  the  lines  through  0  and  meeting  a  pair  of  opposite  edges  of  the 

tetrahedron  (Holgate,  Annals  of  Mathematics,  Ser.  1,  Vol.  VII  (1893),  p.  73). 

10.  Given  four  points  of  a  conic  and  the  tangent  at  one  of  them,  construct 

the  tangents  at  the  other  three  points.    Dualize. 

11.  A,  A',  B,  B'  are  the  vertices  of  a  quadrangle,  and  m,  n  are  two  lines 
the  plane  of  the  quadrangle  which  meet  on  AA'.    M  is  a  variable  point 
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on  m,  the  lines  BM,  B'M  meet  n  in  the  points  N,  N'  respectively ;  the  lines 

AN,  A'N'  meet  in  a  point  P.  Show  that  the  locus  of  the  lines  PM  is  a  line 

conic,  which  contains  the  lines  m,  p  =  P(n,  BB'),  and  also  the  lines  A  A',  BB', 

A'B',  AB  (Amodeo,  Lezioni  di  Geometria  Projettiva,  Naples  (1905),  p.  331). 
12.  Use  the  result  of  Ex.  11  to  give  a  construction  of  a  line  conic  deter- 

mined by  five  given  lines,  and  show  that  by  means  of  this  construction  it  is 

possible  to  obtain  two  lines  of  the  conic  at  the  same  time  (Amodeo,  loc.  cit.). 
13.  If  a,  b,  c  are  the  sides  of  a  triangle  whose  vertices  are  on  a  conic,  and 

m,  m'  are  two  lines  meeting  on  the  conic  which  meet  a,  b,  c  in  the  points  A,  B,  C 

and  A',  B',  C  respectively,  and  which  meet  the  conic  again  in  N,  N'  respec- 

tively, we  have  ABCN-^A'B'C'N'  (cf.  Ex.  6). 
14.  If  A,  B,  C,  D  are  points  on  a  conic  and  a,  b,  c,  d  are  the  tangents  to 

the  conic  at  these  points,  the  four  diagonals  of  the  simple  quadrangle  ABCD 

and„the  simple  quadrilateral  abed  are  concurrent. 

44.  The  polar  system  of  a  conic. 

Theorem  13.  If  Pis  a  point  in         Theorem  13'.  Ifp  is  a  line  in  the 
the  plane  of  a  conic,  but  not  on  the 

conic,  the  points  of  intersection  of 

the  tangents  to  the  conic  at  all  the 

pairs  of  points  which  are  collinear 

with  P  are  on  a  line,  which  also  con- 

tains the  harmonic  conjugates  of  P 

with  respect  to  these  pairs  of  points. 

plane  of  a  conic,  but  not  tangent  to 
the  conic,  the  lines  joining  the  points 

of  contact  of  pairs  of  tangents  to  the 
conic  which  meet  on  p  pass  through 

a  point  P,  through  which  pass  also 
the  harvionic  conjugates  of  p  with 

respect  to  these  pairs  of  tangents. 

Fig.  58 

Proof.  Let  Pv  P2  and  P%,  PK  be  two  pairs  of  points  on  the  conic  which 

are  collinear  with  P,  and  let  pv  p2  be  the  tangents  to  the  conic  at  Pv  P2 

respectively  (fig.  58).  If  Dv  D2  are  the  points  (ij^)(i^)  and  (P^P^ 
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respectively,  the  line  DlDt  passes  through  the  intersection  Q  of  pv  p2 

(Theorem  8).  Moreover,  the  point  P'  in  which  DxDt  meets  PXP2  is  the 
harmonic  conjugate  of  P  with  respect  to  Plt  P2  (Theorem  6,  Chap.  IV). 

This  shows  that  the  line  D^D^  QP'  is  completely  determined  hy  the 

pair  of  points  Pv  P2.  Hence  the  same  line  QP'  is  obtained  by  replacing 
P3,  Pt  by  any  other  pair  of  points  on  the  conic  collinear  with  P,  and 

distinct  from  Pv  l'y  This  proves  Theorem  13.  Theorem  13'  is  the 
plane  dual  of  Theorem  13. 

Definition.  The  line  thus  asso- 

ciated with  any  point  P  in  the 

plane  of  a  conic,  but  not  on  the 

conic,  is  called  the  polar  of  P 

with  respect  to  the  conic.  If  P 

is  a  point  on  the  conic,  the  polar 

is  defined  as  the  tangent  at  P. 

Theorem  14.  The  line  joining 

two  diagonal  points  of  any  com- 
plete quadrangle  whose  vertices 

are  points  of  a  conic  is  the  polar 

of  the  other  diagonal  point  with 
respect  to  the  conic. 

Deftnitiox.  The  point  thus 

associated  with  any  line  p  in  the 

plane  of  a  conic,  but  not  tangent 
to  the  conic,  is  called  the  pole  of  p 

with  respect  to  the  conic  If  p  is 

a  tangent  to  the  conic,  the  pole  is 

defined  as  the  point  of  contact  of  P. 

Theorem  14'.  The  point  of 
intersection  of  two  diagonal  lines 

of  any  complete  quadrilateral 
whose  sides  are  tangent  to  a  conic 

is  the  pole  of  the  other  diagonal 

line  with  respect  to  the  conic. 

Proof  Theorem  14  follows  immediately  from  the  proof  of  Theo- 

rem 13.    Theorem  14'  is  the  plane  dual  of  Theorem  14 

Theorem  15.   The  polar  of  a         Theorem  15'.   The  pole   of  a 
point  P  with  respect  to  a  conic     line  p  with  respect  to  a  conic  is 

passes  through  the  points  of  con- 
tact of  the  tangents  to  the  conic 

through  P,  if  such  tangents  exist. 

on  the  tangents  to  the  conic  at  the 

points  in  which  p  meets  the  conic, 

if  such  points  exist. 

Proof  Let  PY  be  the  point  of  contact  of  a  tangent  through  P,  and 

let  P2,  i^  be  any  pair  of  distinct  points  of  the  conic  collinear  with  P. 

The  line  through  Pl  and  the  intersection  of  the  tangents  at  P2,  Pt 

meets  the  line  P^  in  the  harmonic  conjugate  of  P  with  respect  to 

Ps,  P,  (Theorem  9,  Cor.).  But  the  line  thus  determined  is  the  polar  of  P 

(Theorem  1 3).    This  proves  Theorem  1 5.    Theorem  1 5'  is  its  plane  dual 

Theorem  16.  If  p  is  the  polar  of  a  point  P  with  respect  to  a  conic, 
P  is  the  pole  of  p  with  respect  to  the  same  conic. 
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If  P  is  not  on  the  conic,  this  follows  at  once  by  comparing  Theo- 

rem 13  with  Theorem  13'.  If  P  is  on  the  conic,  it  follows  immediately 
from  the  definition. 

Theorem  11.  If  the  polar  of  a  point  P  passes  through  a  point  Q, 

the  polar  of  Q  passes  through  P. 

Proof.  If  P  or  Q  is  on  the  conic,  the  theorem  is  equivalent  to 
Theorem  15.    If  neither  P  nor  Q  is  on  the  conic,  let  PPX  be  a  line 

Fig.  69 

meeting  the  conic  in  two  points,  Pv  Pr  If  one  of  the  lines  PXQ,  P2Q 

is  a  tangent  to  the  conic,  the  other  is  also  a  tangent  (Theorem  13); 

the  line  P^  =  PXP  is  then  the  polar  of  Q,  which  proves  the  theorem 

under  this  hypothesis.  If,  on  the  other  hand,  the  lines  PXQ,  P2Q  meet 

the  conic  again  in  the  points  P3,  Pt  respectively  (fig.  59),  the  point 

(P^)  (P^)  is  on  the  polar  of  Q  (Theorem  14).  By  Theorems  13  and  14 

the  polar  of  (P^)  {PtP^  contains  the  intersection  of  the  tangents  at 

Pv  P2  and  the  point  Q.  By  hypothesis,  however,  and  Theorem  13,  the 

polar  of  P  contains  these  points  also.  Hence  we  have  {P^P^)  (^^)  =  P, 
which  proves  the  theorem. 

Corollary  1.  If  two  vertices  of  a  triangle  are  the  poles  of  theii 

opposite  sides  with  respect  to  a  conic,  the  third  vertex  is  the  pole  of 
its  opposite  side. 

Definition.  Any  point  on  the  polar  of  a  point  P  is  said  to  be 

conjugate  to  P  with  regard  to  the  conic;  and  any  line  on  the  pole 
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of  a  line  p  is  said  to  be  conjugate  to  p  with  regard  to  the  conic. 

The  figure  obtained  from  a  given  figure  in  the  plane  of  a  conic  by 

constructing  the  polar  of  every  point  and  the  pole  of  every  line  of 

the  given  figure  with  regard  to  the  conic  is  called  the  polar  or  polar 

reciprocal  of  the  given  figure  with  regard  to  the  conic*  A  triangle, 
of  which  each  vertex  is  the  pole  of  the  opposite  side,  is  said  to  be 

self-polar  or  self -conjugate  with  regard  to  the  conic. 

Corollary  2.  The  diagonal  triangle  of  a  complete  quadrangle  whose 

vertices  are  on  a  conic,  or  of  a  complete  quadrilateral  whose  sides  are 

tangent  to  a  conic,  is  self-polar  with  regard  to  the  conic  ;  and,  conversely, 

every  self-polar  triangle  is  the  diagonal  triangle  of  a  complete  quad- 
rangle ivhose  points  are  on  the  conic,  and  of  a  complete  quadrilateral 

whose  sides  are  tangent  to  the  conic.  Corresponding  to  a  given  self-polar 
triangle,  one  vertex  or  side  of  such  a  quadrangle  or  quadrilateral  may 
be  chosen  arbitrarily  on  the  conic. 

Theorem  17  may  also  be  stated  as  follows :  If  P  is  a  variable  point 

on  a  line  q,  its  polar  p  is  a  variable  line  through  the  pole  Q  of  q.  In  the 

special  case  where  q  is  a  tangent  to  the  conic,  we  have  already  seen 
(Theorem  12)  that  we  have 

If  Q  is  not  on  q,  let  A  (fig.  60)  be  a  fixed  point  on  the  conic,  a  the 

tangent  at  A,  X  the  point  (distinct  from  A,  if  AP  is  not  tangent)  in 

which  AP  meets  the  conic,  and  x  the  tangent  at  X.  "We  then  have,  by 
Theorem  12, 

By  Theorem  13,  (ax)  is  on  p,  and  hence  p  =  Q  (ax).   Hence  we  have 

If  P'  is  the  point  pq,  this  gives 

But  since  the  polar  of  P'  also  passes  through  P,  this  projectivity  is 
an  involution.  The  result  of  this  discussion  may  then  be  stated  as 
follows : 

*  It  was  by  considering  the  polar  reciprocal  of  Pascal's  theorem  that  Brianchon 
derived  the  theorem  named  after  him.  This  method  was  fully  developed  by  Poncelet 
and  Gergonne  in  the  early  part  of  the  last  century  in  connection  with  the  principle 
of  duality. 
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Theorem  18.  On  any  line  not  a  tangent  to  a  given  conic  the  pairs 

of  conjugate  points  are  pairs  of  an  involution.  If  the  line  meets  the 

conic  in  two  points,  these  points  are  the  double  points  of  the  involution. 

Corollary.  As  a  point  P  varies  over  a  pencil  of  points,  its  polar 

with  respect  to  any  conic  varies  over  a  projective  pencil  of  lines. 

Definition.  The  pairing  of  the  points  and  lines  of  a  plane  brought 

about  by  associating  with  every  point  its  polar  and  with  every  line  its 

pole  with  respect  to  a  given  conic  in  the  plane  is  called  a  polar  system. 

EXERCISES 

1.  If  in  a  polar  system  two  points  are  conjugate  to  a  third  point  A,  the 

line  joining  them  is  the  polar  of  A. 
2.  State  the  duals  of  the  last  two  theorems. 

3.  If  a  and  b  are  two  nonconjugate  lines  in  a  polar  system,  every  point  A 

of  a  has  a  conjugate  point  B  on  b.  The  pencils  of  points  [/l]  and  [Z?]  are 

projective ;  they  are  perspective  if  and  only  if  a  and  b  intersect  on  the  conic 

of  the  polar  system. 

4.  Let  ilea  point  and  b  a  line  not  the  polar  of  A  with  respect  to  a  given 

conic,  but  in  the  plane  of  the  conic.  If  on  any  line  I  through  A  we  determine 

that  point  P  which  is  conjugate  with  the  point  lb,  the  locus  of  P  is  a  conic 

passing  through  A  aDd  the  pole  B  of  b,  unless  the  line  A  B  is  tangent  to  the 
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conic,  in  which  case  the  locus  of  P  is  a  line.  If  AB  is  not  tangent  to  the  conic, 

the  locus  of  P  also  passes  through  the  points  in  which  b  meets  the  given  conic 

(if  such  points  exist),  and  also  through  the  points  of  contact  of  the  tangents  to 

the  given  conic  through  A  (if  such  tangents  exist).  Dualize  (Reye-Holgate, 
Geometry  of  Position,  p.  106). 

5.  If  the  vertices  of  a  triangle  are  on  a  given  conic,  any  line  conjugate  to 

one  side  meets  the  other  two  sides  in  a  pair  of  conjugate  points.  Conversely, 

a  line  meeting  two  sides  of  the  triangle  in  conjugate  points  passes  through 

the  pole  of  the  third  side  (von  Staudt). 

6.  If  two  lines  conjugate  with  respect  to  a  conic  meet  the  conic  in  two 

pairs  of  points,  these  pairs  are  projected  from  any  point  on  the  conic  by  a 

harmonic  set  of  lines,  and  the  tangents  at  these  pairs  of  points  meet  any 

tangent  in  a  harmonic  set  of  points. 

7.  "With  a  given  point  not  on  a  given  conic  as  center  and  the  polar  of  this 
point  as  axis,  the  conic  is  transformed  into  itself  by  a  homology  of  period  two. 

8.  The  Pascal  line  of  any  simple  hexagon  whose  vertices  are  on  a  conic  is 

the  polar  with  respect  to  the  conic  of  the  Brianchon  point  of  the  simple  hexagon 

whose  sides  are  the  tangents  to  the  conic  at  the  vertices  of  the  first  hexagon. 

9.  If  the  line  joining  two  points  A,  B,  conjugate  with  respect  to  a  conic, 

meets  the  conic  in  two  points,  these  two  points  are  harmonic  with  A,  B. 

10.  If  in  a  plane  there  are  given  two  conies  Cf  and  C22,  and  the  polars  of 

all  the  points  of  Cf  with  respect  to  C*  are  determined,  these  polars  are  the 
tangents  of  a  third  conic. 

11.  If  the  tangents  to  a  given  conic  meet  a  second  conic  in  pairs  of  points, 

the  tangents  at  these  pairs  of  points  meet  on  a  third  conic. 

12.  Given  five  points  of  a  conic  (or  four  points  and  the  tangent  through 

one  of  them,  or  any  one  of  the  other  conditions  determining  a  conic),  show 

how  to  construct  the  polar  of  a  given  point  with  respect  to  the  conic. 

13.  If  two  pairs  of  opposite  sides  of  a  complete  quadrangle  are  pairs  of 

conjugate  lines  with  respect  to  a  conic,  the  third  pair  of  opposite  sides  are 

conjugate  with  respect  to  the  conic  (von  Staudt). 

14.  If  each  of  two  triangles  in  a  plane  is  the  polar  of  the  other  with  respect 

to  a  conic,  they  are  perspective,  and  the  axis  of  perspectivity  is  the  polar  of  the 

center  of  perspectivity  (Chasles). 

15.  Two  triangles  that  are  self-polar  with  respect  to  the  same  conic  have 
their  six  vertices  on  a  second  conic  and  their  six  sides  tangent  to  a  third 

conic  (Steiner). 

16.  Regarding  the  Desargues  configuration  as  composed  of  a  quadrangle 

and  a  quadrilateral  mutually  inscribed  (cf.  §  18,  Chap.  II),  show  that  the 

diagonal  triangle  of  the  quadrangle  is  perspective  with  the  diagonal  triangle 
of  the  quadrilateral. 

17.  Let  J,  B  be  any  two  conjugate  points  with  respect  to  a  conic,  and  let 

the  lines  AM,  BM  joining  them  to  an  arbitrary  point  of  the  conic  meet  the 

latter  again  in  the  points  C,  D  respectively.  The  lines  AD,  BC  will  then  meet 

on  the  conic,  and  the  lines  CD  and  AB  are  conjugate.    Dualize. 
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45.  Degenerate  conies.  For  a  variety  of  reasons  it  is  desirable  to 

regard  two  coplanar  lines  or  one  line  (thought  of  as  two  coincident 

lines)  as  degenerate  cases  of  a  point  conic;  and  dually  to  regard 

two  points  or  one  point  (thought  of  as  two  coincident  points)  as 

degenerate  cases  of  a  line  conic.  This  conception  makes  it  possible 

to  leave  out  the  restriction  as  to  the  plane  of  section  in  Theorem  1. 

For  the  section  of  a  cone  of  lines  by  a  plane  through  the  vertex  of 

the  cone  consists  evidently  of  two  (distinct  or  coincident)  lines,  i.e. 

of  a  degenerate  point  conic ;  and  the  section  of  a  cone  of  planes  by 

a  plane  through  the  vertex  of  the  cone  is  the  figure  formed  by  some 

or  all  the  lines  of  a  flat  pencil,  i.e.  a  degenerate  line  conic. 

EXERCISE 

Dualize  in  all  possible  ways  the  degenerate  and  nondegenerate  cases  of 
Theorem  1. 

Historically,  the  first  definition  of  a  conic  section  was  given  by  the  ancient 

Greek  geometers  (e.g.  Mensechmus,  about  350  B.C.),  who  defined  them  as  the 

plane  sections  of  a  "right  circular  cone."  In  a  later  chapter  we  will  show 

that  in  the  <<  geometry  of  reals  "  any  nondegenerate  point  conic  is  projectively 
equivalent  to  a  circle,  and  thus  that  for  the  ordinary  geometry  the  modern 

projective  definition  given  in  §  4 1  is  equivalent  to  the  old  definition.  We  are 

here  using  one  of  the  modern  definitions  because  it  can  be  applied  before  devel- 
oping the  Euclidean  metric  geometry. 

Degenerate  conies  would  be  included  in  our  definition  (p.  109),  if 

we  had  not  imposed  the  restriction  on  the  generating  projective 

pencils  that  they  be  nonperspective ;  for  the  locus  of  the  point  of 

intersection  of  pairs  of  homologous  lines  in  two  perspective  flat 

pencils  in  the  same  plane  consists  of  the  axis  of  perspectivity  and 
the  line  joining  the  centers  of  the  pencils. 

It  will  be  seen,  as  we  progress,  that  many  theorems  regarding  non- 
degenerate  conies  apply  also  when  the  conies  are  degenerate.  For 

example,  Pascal's  theorem  (Theorem  3)  becomes,  for  the  case  of  a 
degenerate  conic  consisting  of  two  distinct  lines,  the  theorem  of 

Pappus  already  proved  as  Theorem  21,  Chap.  IV  (cf.  in  particular  the 

corollary).  The  polar  of  a  point  with  regard  to  a  degenerate  conic 

consisting  of  two  lines  is  the  harmonic  conjugate  of  the  point  with 

respect  to  the  two  lines  (cf.  the  definition,  p.  84,  Ex.  7).  Hence  the 

polar  system  of  a  degenerate  conic  of  two  lines  (and  dually  of  two 

points)  determines  an  involution  at  a  point  (on  a  line). 
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EXERCISES 

1.  State  Brianchon's  theorem  (Theorem  3')  for  the  case  of  a  degenerate 
line  conic  consisting  of  two  points. 

2.  Examine  all  the  theorems  of  the  preceding  sections  with  reference  to 

their  behavior  when  the  conic  in  question  becomes  degenerate. 

46.  (pesargues's  theorem  on  conics.^^) 
Theorem  19.  If  the  vertices  of  a  complete  Quadrangle  are  an  a  conic 

which  meets  a  Jinjuin  ttt*o  point0,  the,  lnftfir  "*•»  n  pnji-  in  tJjf  jnvn-^ 
lution  determined  on  the  line  by  the  pairs  of  opposite  sides  of  the 

quadrangle* 
Proof  Reverting  to  the  proof  of  Theorem  2  (fig.  51),  let  the  line 

meet  the  conic  in  the  points  B2,  Cx  and  let  the  vertices  of  the  quad- 
rangle be  Av  A2,  Bx,  C2.  This  quadrangle  determines  on  the  line  an 

involution  in  which  S,  A  and  T,  U  are  conjugate  pairs.  But  in  the 

proof  of  Theorem  2  we  saw  that  the  quadrangle  AXA2BC  determines 

Q(B2ST,  CXAU).  Hence  the  two  quadrangles  determine  the  same 

involution  on  the  line,  and  therefore  B2,  Cx  are  a  pair  of  the  involution 

determined  by  the  quadrangle  AxA2BxCr 

Since  the  quadrangles  AXA2BXC2  and  AXA2BC  determine  the  same 
involution  on  the  line  when  the  latter  is  a  tangent  to  the  conic,  we 

have  as  a  special  case  of  the  above  theorem : 

Corollary.  If  the  vertices  of  a  complete  quadrangle  are  on  a  conic, 

the  pairs  of  opposite  sides  meet  the  tangent  at  any  other  point  in  pairs 

of  an  involution  of  which  the  point  of  contact  of  the  tangent  is  a  double 

point. 
The  Desargues  theorem  leads  to  a  slightly  different  form  of  statement  for 

the  construction  of  a  conic  through  five  given  points :  On  any  line  through 

one  of  the  points  the  complete  quadrangle  of  the  other  four  determine  an 

involution  ;  the  conjugate  in  this  involution  of  the  given  point  on  the  line 
is  a  sixth  point  on  the  conic. 

As  the  Desargues  theorem  is  related  to  the  theorem  of  Pascal,  so 

are  certain  degenerate  cases  of  the  Desargues  theorem  related  to  the 

degenerate  cases  of  the  theorem  of  Pascal  (Theorems  6,  7,  8,  9).  Thus 

in  fig.  53  we  see  (by  Theorem  6)  that  the  quadrangle  BCP2PS  deter- 
mines on  the  line  PJ\  an  involution  in  which  the  points  P3,  PA  of  the 

conic  are  one  pair,  while  the  points  determined  by  pv  P2Pb  and  those 

*  First  given  by  Desargues  in  1639;  cf.  (Euvres,  Paris.  Vol.  I  (1864),  p.  188. 
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determined  by  P1P2,  PXP5  are  two  other  pairs.    This  gives  the  following 
special  case  of  the  theorem  of  Desargues : 

Theorem  20.  If  the  vertices  of  a  triangle  are  on  a  conic,  and  a  line  I 

meets  the  conic  in  two  points,  the  latter  are  a  pair  of  the  involution 

determined  on  I  by  the  pair  of  points  in  which  two  sides  of  the  triangle 

meet  I,  and  the  pair  in  which  the  third  side  and  the  tangent  at  the 

opposite  vertex  meet  I.  In  case  I  is  a  tangent  to  the  conic,  the  point  of 
contact  is  a  double  point  of  this  involution. 

In  terms  of  this  theorem  we  may  state  the  construction  of  a  conic  through 
four  points  and  tangent  to  a  line  through  one  of  them  as  follows  :  On  any  line 

through  one  of  the  points  which  is  not  on  the  tangent  an  involution  is  deter- 
mined in  which  the  tangent  and  the  line  passing  through  the  other  two  points 

determine  one  pair,  and  the  lines  joining  the  point  of  contact  to  the  other  two 
points  determine  another  pair.  The  conjugate  of  the  given  point  on  the  line 
in  this  involution  is  a  point  of  the  conic. 

A  further  degenerate  case  is  derived  either  from  Theorem  7  or 

Theorem  8.  In  fig.  54  (Theorem  7)  let  I  be  the  line  P2P3.  The  quad- 
rangle ABPlPi  determines  on  I  an  involution  in  which  P2,  P8  are  one 

pair,  in  which  the  tangents  at  Pv  Pt  determine  another  pair,  and  in 

which  the  line  P1Pi  determines  a  double  point.    Hence  we  have 

Theorem  21.  If  a  line  I  meets  a  conic  in  two  points  and  ij,  ij  are 
any  other  two  points  on  the  conic,  the  points  in  which  I  meets  the  conic 

are  a  pair  of  an  involution  through  a  double  point  of  which  passes  the 

line  PXP±  and  through  a  pair  of  conjugate  points  of  which  pass  the 

tangents  at  Pv  Pt.  If  I  is  tangent  to  the  conic,  the  point  of  contact  is 
the  second  double  point  of  this  involution. 

The  construction  of  the  conic  corresponding  to  this  theorem  may  be  stated 
as  follows :  Given  two  tangents  and  their  points  of  contact  and  one  other  point 
of  the  conic.  On  any  line  I  through  the  latter  point  is  determined  an  involution 

of  which  one  double  point  is  the  intersection  with  /  of  the  line  joining  the  two 
points  of  contact,  and  of  which  one  pair  is  the  pair  of  intersections  with  I  of 
the  two  tangents.  The  conjugate  in  this  involution  of  the  given  point  of  the 
conic  on  I  is  a  point  of  the  conic. 

EXERCISE 

State  the  duals  of  the  theorems  in  this  section. 

47.  Pencils  and  ranges  of  conies.  Order  of  contact.  The  theorems 

of  the  last  section  and  their  plane  duals  determine  the  properties  of 

certain  systems  of  conies  which  we  now  proceed  to  discuss  briefly. 
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Definition.  The  set  of  all  conies 

through  the  vertices  of  a  complete 

quadrangle  is  called  a  pencil  of 

conies  of  Type  I  (fig.  61). 

Theorem  19  and  its  plane  dual 

Theorem  22.  Any  line  (not 

through  a  vertex  of  the  deter- 

mining quadrangle)  is  met  by  the 

conies  of  a  pencil  of  Type  I  in  the 

pairs  of  an  involution.* 

Definition.  The  set  of  all  conies 

tangent  to  the  sides  of  a  complete 

quadrilateral  is  called  a  range  of 

conies  of  Type  I  (fig.  62). 

give  at  once : 

Theorem  22'.  The  tangents 

through  any  point  (not  on  a  side 

of  the  determining  quadrilateral) 

to  the  conies  of  a  range  of  Type  I 

are  the  pairs  of  an  involution. 

Fig.  63 

Corollary.  Through  a  gen- 

eral f  point  in  the  plane  there  is 

one  and  only  one,  and  tangent  to 

a  general  line  there  are  two  or  no 

conies  of  a  given  pencil  of  Type  I. 

Fig.  64 

Corollary.  Tangent  to  a  gen- 
eral line  in  the  plane  there  is  one 

and  only  one,  and  through  a  gen- 

eral point  there  are  two  or  no 

conies  of  a  given  range  of  Type  I. 

*  This  form  of  Desargues's  theorem  is  due  to  Ch.  Sturm,  Annales  de  Math£ma- 
tiques.  Vol.  XVII  (1826),  p.  180. 

t  The  vertices  of  the  quadrangle  are  regarded  as  exceptional  points. 



130 CONIC  SECTIONS 
[Chap.  V 

Definition.  The  set  of  all  conies 

through  the  vertices  of  a  triangle 

and  tangent  to  a  fixed  line  through 

one  vertex  is  called  a  pencil  of 

conies  of  Type  II  (fig.  63). 

Definition.  The  set  of  all  conies 

tangent  to  the  sides  of  a  triangle 

and  passing  through  a  fixed  point 
on  one  side  is  called  a  range  of 

conies  of  Type  II  (fig.  64). 

Theorem  20  and  its  plane  dual  then  give  at  once 

Theorem  23.  Any  line  in  the 

plane  of  a  pencil  of  conies  of 

Type  II  {which  does  not  pass 

through  a  vertex  of  the  determin- 
ing triangle)  is  met  by  the  conies 

of  the  pencil  in  the  pairs  of  an 
involution. 

Corollary.  Through  a  general 

point  in  the  plane  there  is  one  and 

only  one  conic  of  the  pencil;  and 

tangent  to  a  general  line  in  the 
plane  there  are  two  or  no  conies 

of  the  pencil. 

Theorem  23'.  The  tangents 
through  any  point  in  the  plane 

of  a  range  of  conies  of  Type  II 

(which  is  not  on  a  side  of  the 

determining  triangle)  to  the  conies 

of  the  range  are  the  pairs  of  an 
involution. 

Corollary.  Tangent  to  a  gen- 
eral line  in  the  plane  there  is  one 

and  only  one  conic  of  the  range; 

and  through  a  general  point  in 

the  plane  there  are  two  or  no 
conies  of  the  range. 

Definition.  The  set  of  all  conies  through  two  given  points  and 

tangent  to  two  given  lines  through  these  points  respectively  is  called 
a  pencil  or  range  of  conies  of  Type 
IV*  (fig.  65). 

Theorem  2 1  now  gives  at  once : 

Theorem  24.  Any  line  in  the  plane 

of  a  pencil  of  conies  of  Type  IV  (which 

does  not  pass  through  either  of  the 

points  common  to  all  the  conies  of 

the  pencil)  is  met  by  the  conies  of  the 

pencil  in  the  pairs  of  an  involution. 

Through  any  point  in  the  plane  (not 
on  either  of  the  lines  that  are  tangent 

to  all  the  conies  of  the  pencil)  the 

tangents  to  the  conies  of  the  pencil  are  the  pairs  of  an  involution.  TJie 

line  joining  the  two  points  common  to  all  the  conies  of  the  pencil  meets 

Fig.  65 

*  The  classification  of  pencils  and  ranges  of  conies  into  types  corresponds  to  the 
classification  of  the  corresponding  plane  collineations  (cf.  Exs.  2,  4,  7,  below). 
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any  line  in  a  double  point  of  the  involution  determined  on  that  line. 

A  ml  the  point  of  intersection  of  the  common  tangents  is  joined  to  any 

point  by  a  double  line  of  the  involution  determined  at  that  point. 

Corollary.  Through  any  general  point  or  tangent  to  any  general 
line  in  the  plane  there  is  one  and  only  one  conic  of  the  pencil. 

EXERCISES 

1.  "What  are  the  degenerate  conies  of  a  pencil  or  range  of  Type  II  The 
diagonal  triangle  of  the  fundamental  quadrangle  (quadrilateral)  of  the  pencil 

(range)  is  the  only  triangle  which  is  self -polar  "with  respect  to  two  conies  of 
the  pencil  (range). 

2.  Let  A*  and  B2  be  any  two  conies  of  a  pencil  of  Type  I,  and  let  P  be  any 

point  in  the  plane  of  the  pencil.  If  p  is  the  polar  of  P  with  respect  to  A2,  and 

P'  is  the  pole  of  p  with  respect  to  B2,  the  correspondence  thus  established 

between  [P]  and  \P'~\  is  a  projective  collineation  of  Type  I,  whose  invariant 
triangle  is  the  diagonal  triangle  of  the  fundamental  quadrangle.  Do  all  pro- 

jective collineations  thus  determined  by  a  pencil  of  conies  of  Type  I  form  a 

group  ?    Dualize. 

3.  What  are  the  degenerate  conies  of  a  pencil  or  range  of  Type  III 

4.  Let  a  pencil  of  conies  of  Type  7/  be  determined  by  a  triangle  ABC  and 

a  tangent  a  through  A .  Further,  let  a'  be  the  harmonic  conjugate  of  a  with 

respect  to  AB  and  AC,  and  let  A'  be  the  intersection  of  a  and  BC.  Then 

A ,  a  and  A',  a'  are  pole  and  polar  with  respect  to  every  conic  of  the  pencil ;  and 
no  pair  of  conies  of  the  pencil  have  the  same  polars  with  regard  to  any  other 

points  than  A  and  A'.  Dualize,  and  show  that  all  the  collineations  determined 
as  in  Ex.  2  are  in  this  case  of  Type  II. 

5.  What  are  the  degenerate  conies  of  a  pencil  or  range  of  Type  IV? 

6.  Show  that  any  point  on  the  line  joining  the  two  points  common  to  all 

the  conies  of  a  pencil  of  Type  IV  has  the  same  polar  with  respect  to  all  the 

conies  of  the  pencil,  and  that  these  all  pass  through  the  point  of  intersection 

of  the  two  common  tangents. 

7.  Show  that  the  collineations  determined  by  a  pencil  of  Type  IVbj  the 

method  of  Ex.  2  are  all  homologies  (i.e.  of  Type  I]'). 

*  The  pencils  and  ranges  of  conies  thus  far  considered  have  in  com- 
mon the  properties  (1)  that  the  pencil  (range)  is  completely  defined 

as  soon  as  two  conies  of  the  pencil  (range)  are  given ;  (2)  the  conies 

of  the  pencil  (range)  determine  an  involution  on  any  line  (point)  in 

the  plane  (with  the  exception  of  the  lines  (points)  on  the  determining 

points  (lines)  of  the  pencil  (range)).  Three  other  systems  of  conies  may 

be  defined  which  likewise  have  these  properties.    These  new  systems 

*  The  remainder  of  this  section  may  be  omitted  on  a  first  reading. 
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may  be  regarded  as  degenerate  cases  of  the  pencils  and  ranges  already 

denned.  Their  existence  is  established  by  the  theorems  given  below, 

which,  together  with  their  corollaries,  may  be  regarded  as  degenerate 

cases  of  the  theorem  of  Desargues.    We  shall  need  the  following 

Lemma.  Any  conic  is  transformed  by  a  'projective  collineation  in 
the  plane  of  the  conic  into  a  conic  such  that  the  tangents  at  homologous 
points  are  homologous. 

Proof.  This  follows  almost  directly  from  the  definition  of  a  conic. 

Two  projective  flat  pencils  are  transformed  by  a  projective  collineation 

into  two  projective  flat  pencils.  The  intersections  of  pairs  of  homologous 
lines  of  one  pencil  are  therefore  transformed  into  the  intersections 

of  the  corresponding  pairs  of  homologous  lines  of  the  transformed 

pencils.  If  any  line  meets  the  first  conic  in  a  point  P,  the  transformed 

line  will  meet  the  transformed  conic  in  the  point  homologous  with  P. 

Therefore  a  tangent  at  a  point  of  the  first  conic  must  be  transformed 

into  the  tangent  at  the  corresponding  point  of  the  second  conic. 

Theorem  25.  If  a  line  p0  is  a  tangent  to  a  conic  A2  at  a  point  P0, 

and  Q  is  any  point  of  A2,  then  through  any  point  on  the  plane  of  A2 
but  not  on  A2  or  p0, 
there  is  one  and  only 

one  conic  B2  through 

Pq  and  Q,  tangent  to 

p0,  and  such  that  there 
is  no  point  of  p  ,  ex- 

cept P,,  having  the  same 

polar  with  regard  to 
both  A2  and  B\ 

Proof.  If  P'  is  any  point  of  the  plane  not  on  p0  or  A2,  let  P  be 

the  second  point  in  which  P0P'  meets  A2  (fig.  66).  There  is  one  and 

only  one  elation  with  center  P0  and  axis  P0Q  changing  P  into  P' 
(Theorem  9,  Chap.  III).  This  elation  (by  the  lemma  above)  changes 

A2  into  another  conic  B2  through  the  points  P0  and  Q  and  tangent 
to  p0.  The  lines  through  Pa  are  unchanged  by  the  elation,  whereas 

their  poles  (on  p0)  are  subjected  to  a  parabolic  projectivity.  Hence 

no  point  on  p0  (distinct  from  P0)  has  the  same  polar  with  regard  to  A2 
as  with  regard  to  B2.  Since  A2  is  transformed  into  B2  by  an  elation, 
the  two  conies  can  have  no  other  points  in  common  than  P0  and  Q. 
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That  there  is  only  one  conic  B2  through  P'  satisfying  the  con- 
ditions of  the  theorem  is  to  be  seen  as  follows :  Let  QP  meet  p0  in 

S,  and  QP'  meet  p  in  S'  (fig.  66).  The  point  S  has  the  same  polar 

with  regard  to  A2  as  S'  with  regard  to  any  conic  B2,  since  this  polar 
must  be  the  harmonic  conjugate  of  p0  with  regard  to  PQQ  and  P0P. 

Let  p  be  the  tangent  to  A'2  at  P  and  p'  be  the  tangent  to  B2  at  P', 
and  let  p  and  p'  meet  p0  in  T  and  T'  respectively.    The  points 

T  and  T'  have  the  same  polar,  namely  P0P,  with  regard  to  A*  and 

any  conic  B2.    By  the  conditions  of  the  theorem  the  projectivity 

P.ST^P.S'T' must  be  parabolic.    Hence,  by  Theorem  23,  Cor.,  Chap.  IV, 

Q(P0ST,  P0T'S'). 

Hence  p  and  p'  must  meet  on  P0Q  in  a  point  B  so  as  to  form  the  quad- 

rangle RQPP'.  This  determines  the  elements  P0>  Q,  P'}  p0,  p'  of  B2, 

and  hence  there  is  only  one  possible  conic  B2. 

Corollary  1.  The  conies  A2  and  B2  can  have  no  other  points  in 
common  than  P0  and  Q. 

Corollary  2.  Any  line  I  not  on  P0  or  Q  which  meets  A2  and  B2 
meets  them  in  pairs  of  an  involution  in  which  the  points  of  intersection 

of  I  with  PQQ  and  p0  are  conjugate. 

Proof.  Let  I  meet  A'2  in  2V  and  Nv  B2  in  L  and  Lv  P0Q  in  M,  and 
p0  in  J/x  (fig.  67).  Let  K  and  Kx  be  the  points  of  A2  which  are  trans- 

formed by  the  elation  into  L  and  Ll  respectively.  By  the  definition  of 

an  elation  K  and  Kx  are  collinear  with  31,  while  K  is  on  the  line  LPQ 

and  Kx  on  Z^.     Let  KKX  meet  p0  in  B,  and  NPa  meet  XJTX  in  & 
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Then,  since  N,  K,  Nv  Kx  are  on  the  conic  to  which  p0  is  tangent  at  P0,  we 

have,  by  Theorem  6,  applied  to  the  degenerate  hexagon  P^K^N^N, 
that  S,  Lv  and  B  are  collinear.  Hence  the  complete  quadrilateral 

SR,  KNV  KKV  I  has  pairs  of  opposite  vertices  on  PaM  and  P0MV  P0N 

and  P0NV  P0L  and  P0LV   Hence  Q(MNL,  MxNtLx)* 
Definition.  The  set  of  all  conies         Definition.  The  set  of  all  conies 

through  a  point  Q  and  tangent  to     tangent  to  a  line  a  and  tangent  to 

a  line  p0  at  a  point  ijj,  and  such 

that  no  point  of  p0  except  P0  has 
the  same  polar  with  regard  to  two 

conies  of  the  set,  is  called  a  pencil 

of  conies  of  Type  III  (fig.  68). 

a  line  pQ  at  a  point  P0,  and  such 
that  no  line  on  P  except  p0  has 

the  same  pole  with  regard  to  two 
conies  of  the  set,  is  called  a  range 

of  conies  of  Type  III  (fig.  69). 

Fig.  68 Fig.  69 

Two  conies  of  such  a  pencil  (range)  are  said  to  have  contact  of  the 
second  order,  or  to  osculate,  at  Pr 

Corollary  2  of  Theorem  25  now  gives  at  once: 

Theorem  26.  Any  line  in  the 

plane  of  a  pencil  of  conies  of 

Type  III,  which  is  not  on  either  of 

the  common  points  of  the  pencil,  is 

met  by  the  conies  of  the  pencil  in  the 

pairs  of  an  involution.  Through 

any  point  in  the  plane  except  the 
common  points  there  is  one  and 

only  one  conic  of  the  pencil;  and 

tangent  to  any  line  not  through 

either  of  the  common  points  there 

are  two  or  no  conies  of  the  pencil. 

Theorem  26'.  Through  any  point 
in  the  plane  of  a  range  of  conies  of 

Type  III,  which  is  not  on  either  of 
the  common  tangents  of  the  range, 

the  tangents  to  the  conies  of  the  pen- 
cil are  the  pairs  of  an  involution. 

Tangent  to  any  line  in  the  plane  ex- 
cept the  common  tangents  there  is 

one  and  only  one  conic  of  the  range; 

and  through  any  point  not  on  either 

of  the  common  tangents  there  are 
two  or  no  conies  of  the  range. 

*  This  argument  has  implicitly  proved  that  three  pairs  of  points  of  a  conic,  as 
KKi,  NNU  PoQ,  such  that  the  lines  joining  them  meet  in  a  point  M,  are  projected 
from  any  point  of  the  conic  by  a  quadrangular  set  of  lines  (Theorem  16,  Chap.  VIII). 
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The  pencil  is  determined  by  The   range   is    determined   by 

the  two  common  points,  the  com-  the  two    common  tangents,  the 
mon  tangent,  and  one  conic  of  the  common  point,  and  one  conic  of 

pencil.  the  range. 

EXERCISES 

1.  What  are  the  degenerate  conies  of  this  pencil  and  range? 

2.  Show  that  the  collineation  obtained  by  making  correspond  to  any  point  P 

the  point  P'  which  has  the  same  polar  p  with  regard  to  one  given  conic  of  the 
pencil  (range)  that  P  has  with  regard  to  another  given  conic  of  the  pencil  (range) 
is  of  Type  III. 

Theorem  21.  If  a  line  p0  is  tangent  to  a  conic  A2  at  a  point  P0, 
there  is  one  and  only  one  conic  tangent  to  p0  at  PQ  and  passing 

through  any  other  point  P'  of  the  plane  of  A2  not  on  p0  or  A2 

which  determines  for  every  point  of  p0  the  same  polar  line  as  does  A'2. 

Proof  Let  P  be  the  second  point  in  which  PQP'  meets  A2  (fig.  70). 
There  is  one  and  only  one  elation  of  which  PQ  is  center  and  p0  axis, 

changing  P  to  P'.    This  elation  changes  A2  into  a  conic  B2  through 

P',  and  is  such  that  if  q  is  any  tangent  to  A2  at  a  point  Q,  then  q  is 
transformed  to  a  tangent  q'  of  B2  passing  through  qp0,  and  Q  is  trans- 

formed into  the  point  of  contact  Q'  of  q',  collinear  with  Q  and  i£. 

Hence  there  is  one  conic  of  the  required  type  through  P'. 

That  there  is  only  one  is  evident,  because  if  I  is  any  line  through  P', 

any  conic  B2  must  pass  through  the  fourth  harmonic  of  P'  with  regard 
to  lp0  and  the  polar  of  lpQ  as  to  A2  (Theorem  13).  By  considering  two 
lines  I  we  thus  determine  enough  points  to  fix  B2. 

Corollary  1.  By  duality  there  is  one  and  only  one  conic  B2  tangent 
to  any  line  not  passing  throvgh  PQ. 
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Corollary  2.  Any  line  I  not  on  P0  which  meets  A2  and  B2  meets 
them  in  pairs  of  an  involution  one  double  point  of  which  is  lp0,  and 

the  other  the  point  of  I  conjugate  to  lp0  with  respect  to  A2.  A  dual 
statement  holds  for  any  point  L  not  on  p0. 

Corollary  3.  The  conies  A2  and  B2  can  have  no  other  point  in 
common  than  P0  and  no  other  tangent  in  common  than  p0. 

Proof  If  they  had  one  other  point  P  in  common,  they  would  have 

in  common  the  conjugate  of  P  in  the  involution  determined  on  any 

line  through  P  according  to  Corollary  2. 

Definition.  The  set  of  all  conies  tangent  to  a  given  line  p0  at  a 

given  point  P0,  and  such  that  each  point  on  p0  has  the  same  polar 

with  regard  to  all  conies  of  the  set,  is  called  a  pencil  or  range  of 

conies  of  Type  V.  Two  conies  of  such  a  pencil  are  said  to  have 

contact  of  the  third  order,  or  to  hyperosculate  at  P0. 

Theorem  27  and  its  first  two  corollaries  now  give  at  once: 

Theorem  28.  Any  line  I  not  on  the  common  point  of  a  pencil  of 

Type  V  is  met  by  the  conies  of  the  pencil  in  pairs  of  an  involution 

one  double  point  of  which  is  the  intersection  of  I  with  the  common 

tangent.  Through  any  point  L  not  on  the  common  tangent  the  pairs 

of  tangents  to  the  conies  of  the  pencil  form  an  involution  one  double 

line  of  which  is  the  line  joining  L  to  the  common  point.  There  is  one 

conic  of  the  set  through  each  point  of  the  plane  not  on  the  common 

tangent,  and  one  conic  tangent  to  each  line  not  on  the  common  point. 

The  pencil  or  range  is  determined  by  the  common  point,  the  common 

tangent,  and  one  conic  of  the  set. 

EXERCISES 

1.  What  are  the  degenerate  conies  of  a  pencil  of  Type  VI 
2.  Show  that  the  collineation  obtained  by  making  correspond  to  any 

point  P  the  point  Q  which  has  the  same  pole  p  with  regard  to  one  conic  of 
a  pencil  of  Type  V  that  P  has  with  regard  to  another  conic  of  the  pencil  is 
an  elation. 

3.  The  lines  polar  to  a  point  A  with  regard  to  all  the  conies  of  a  pencil 

of  any  of  the  five  types  pass  through  a  point  A'.  The  points  A  and  A'  are 
double  points  of  the  involution  determined  by  the  pencil  on  the  line  A  A'. 
Construct  A'.  Dualize.  Derive  a  theorem  on  the  complete  quadrangle  as  a 
special  case  of  this  one. 

4.  Construct  the  polar  line  of  a  point  A  with  regard  to  a  conic  C2  being 
given  four  points  of  C2  and  a  conjugate  of  A  with  regard  to  C2. 
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5.  Given  an  involution  I  on  a  line  I,  a  pair  of  points  A  and  A'  on  I  not 

conjugate  in  I,  and  any  other  point  B  on  /,  construct  a  point  B'  such  that  A 
and  A'  and  B  and  B'  are  pairs  of  an  involution  I'  whose  double  points  are  a 
pair  in  I.  The  involution  I'  may  also  be  described  as  one  which  is  commu- 

tative with  I.  or  such  that  the  product  of  I  and  I'  is  an  involution. 
6.  There  is  one  and  only  one  conic  through  three  points  and  having  a 

given  point  P  and  line  p  as  pole  and  polar. 
7.  The  conies  through  three  points  and  having  a  given  pair  of  points  as 

conjugate  points  form  a  pencil  of  conies. 

MISCELLANEOUS  EXERCISES 

1.  If  0  and  o  are  pole  and  polar  with  regard  to  a  conic,  and  A  and  B  are 

two  points  of  the  conic  collinear  with  0,  then  the  conic  is  generated  by  the 

two  pencils  A  [P]  and  B  [-P']  where  P  and  P'  are  paired  in  the  involution 
on  o  of  conjugates  with  regard  to  the  conic. 

2.  Given  a  complete  plane  five-point  ABCDE.    The  locus  of  all  points  X 
such  that 

X(BCDE)  —A  (BCDE) 
is  a  conic.  A 

3.  Given  two  projective  nonperspective  pencils,  [p]  and  [7].  Every  line  I 

upon  which  the  projectivity  ̂ [/>]-r-^[?]  is  involutoric  passes  through  a  fixed 
point  0.  The  point  O  is  the  pole  of  the  line  joining  the  centers  of  the  pencils 
with  respect  to  the  conic  generated  by  them. 

4.  If  two  complete  quadrangles  have  the  same  diagonal  points,  their  eight 
vertices  lie  on  a  conic  (Cremona,  Projective  Geometry  (Oxford,  1885),  Chap.  XX). 

5.  If  two  conies  intersect  in  four  points,  the  eight  tangents  to  them  at 
these  points  are  on  the  same  line  conic.  Dualize  and  extend  to  the  cases 

where  the  conies  are  in  pencils  of  Types  II-V. 
6.  All  conies  with  respect  to  which  a  given  triangle  is  self-conjugate,  and 

which  pass  through  a  fixed  point,  also  pass  through  three  other  fixed  points. 
Dualize. 

7.  Construct  a  conic  through  two  given  points  and  with  a  given  self- 
conjugate  triangle.    Dualize. 

8.  If  the  sides  of  a  triangle  are  tangent  to  a  conic,  the  lines  joining  two 
of  its  vertices  to  any  point  conjugate  with  regard  to  the  conic  to  the  third 
vertex  are  conjugate  with  regard  to  the  conic.    Dualize. 

9.  If  two  points  P  and  Q  on  a  conic  are  joined  to  two  conjugate  points  P',  Q? 
on  a  line  conjugate  to  PQ.  then  PP'  and  QQ'  meet  on  the  conic. 

10.  If  a  simple  quadrilateral  is  circumscribed  to  a  conic,  and  if  /  is  any 

transversal  through  the  intersection  of  its  diagonals,  I  will  meet  the  conic  and 
the  pairs  of  opposite  sides  in  conjugate  pairs  of  an  involution.    Dualize. 

11.  Given  a  conic  and  three  fixed  collinear  points  A,  B,  C.  There  is  a  fourth 

point  D  on  the  line  AB  such  that  if  three  sides  of  a  simple  quadrangle  in- 
scribed in  the  conic  pass  through  A,  B,  and  C  respectively,  the  fourth  passes 

through  D  (Cremona,  Chap.  XVDI). 
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12.  If  a  variable  simple  n-line  (n  even)  is  inscribed  in  a  conic  in  such  a  way 

that  n  —  1  of  its  sides  pass  through  n  —  1  fixed  collinear  points,  then  the  other 
side  passes  through  another  fixed  point  of  the  same  line.   Dualize  this  theorem. 

13.  If  two  conies  intersect  in  two  points  A,  B  (or  are  tangent  at  a  point  A) 

and  two  lines  through  A  and  B  respectively  (or  through  the  point  of  contact 

A)  meet  the  conies  again  in  0,  0'  and  L,  L' ,  then  the  lines  OL  and  O'L'  meet 
on  the  line  joining  the  remaining  points  of  intersection  (if  existent)  of  the 
two  conies. 

14.  If  a  conic  C2  passes  through  the  vertices  of  a  triangle  which  is  self- 

polar  with  respect  to  another  conic  K 2,  there  is  a  triangle  inscribed  in  C2  and 

self -polar  with  regard  to  K 2,  and  having  one  vertex  at  any  point  of  C2.  The 

lines  which  cut  C2  and  K2  in  two  pairs  of  points  which  are  harmonically  con- 

jugate to  one  another  constitute  a  line  conic  C2,  which  is  the  polar  reciprocal 

of  C2  with  regard  to  K2  (Cremona,  Chap.  XXII). 
15.  If  a  variable  triangle  is  such  that  two  of  its  sides  pass  respectively 

through  two  fixed  points  0'  and  0  lying  on  a  given  conic,  and  the  vertices  oppo- 

site them  lie  respectively  on  two  fixed  lines  u  and  u' ,  while  the  third  vertex 
lies  always  on  the  given  conic,  then  the  third  side  touches  a  fixed  conic,  which 

touches  the  lines  u  and  u'.    Dualize  (Cremona,  Chap.  XXII). 
16.  If  P  is  a  variable  point  on  a  conic  containing  A,  B,  C,  and  Ms  a  vari- 

able line  through  P  such  that  all  throws  T  (PA,  PB;  PC,  I)  are  projective, 

then  all  lines  /  meet  in  a  point  of  the  conic  (Schroter,  Journal  f ur  die  reine  und 

angewandte  Mathematik,  Vol.  LXII,  p.  222). 

17.  Given  a  fixed  conic  and  a  fixed  line,  and  three  fixed  points  A,  B,  C  on 

the  conic,  let  P  be  a  variable  point  on  the  conic  and  let  PA ,  PB,  PC  meet 

the  fixed  line  in  A',  B',  C .  If  O  is  a  fixed  point  of  the  plane  and  (OA',  PB')  =  K 
and  (KC)  =  I,  then  K  describes  a  conic  and  I  a  pencil  of  lines  whose  center  is 

on  the  conic  described  by  K  (Schroter,  loc.  cit.). 

18.  Two  triangles  ABC  and  PQR  are  perspective  in  four  ways.  Show  that 

if  ABC  and  the  point  P  are  fixed  and  Q,  R  are  variable,  the  locus  of  each  of 

the  latter  points  is  a  conic  (cf.  Ex.  8,  p.  105,  and  Schroter,  Mathematische 

Annalen,  Vol.  II  (1870),  p.  553). 

19.  Given  six  points  on  a  conic.  By  taking  these  in  all  possible  orders 

60  different  simple  hexagons  inscribed  in  the  conic  are  obtained.  Each  of 

these  simple  hexagons  gives  rise  to  a  Pascal  line.  The  figure  thus  associated 

with  any  six  points  of  a  conic  is  called  the  hexagrammum  mysticum.*  Prove  the 
following  properties  of  the  hexagrammum  mysticum  : 

i.  The  Pascal  lines  of  the  three  hexagons  P^^P^Pc  P^P^P^, 

and  PiP^PaPiP^Pt  are  concurrent.    The  point  thus  associated  with  such  a  set 

of  three  hexagons  is  called  a  Steiner  point. 

ii.  There  are  in  all  20  Steiner  points. 

*  On  the  Pascal  hexagram  cf.  Steiner-Schroter,  Vorlesungen  iiber  Synthetische 
Geometrie,  Vol.  II,  §  28 ;  Salmon,  Conic  Sections  in  the  Notes ;  Christine  Ladd, 
American  Journal  of  Mathematics,  Vol.  II  (1879),  p.  1. 
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iii.  From  a  given  simple  hexagon  five  others  are  obtained  by  permuting 

in  all  possible  ways  a  set  of  three  vertices  no  two  of  which  are  adjacent.  The 

Pascal  lines  of  these  six  hexagons  pass  through  two  Steiner  points,  which  are 

called  conjugate  Steiner  points.  The  20  Steiner  points  fall  into  ten  pairs  of 

conjugates. 

iv.  The  20  Steiner  points  lie  by  fours  on  15  lines  called  Steiner  lines. 

v.   What  is  the  symbol  of  the  configuration  composed  of  the  20  Steiner 

points  and  the  15  Steiner  lines  ? 

20.  Discuss  the  problem  corresponding  to  that  of  Ex.  19  for  all  the  special 

cases  of  Pascal's  theorem. 
21.  State  the  duals  of  the  last  two  exercises. 

22.  If  in  a  plane  there  are  given  two  conies,  any  point  A  has  a  polar  with 

respect  to  each  of  them.  If  these  polars  intersect  in  A',  the  points  A,  A'  are 

conjugate  with  respect  to  both  conies.  The  polars  of  A'  likewise  meet  in  A. 
In  this  way  every  point  in  the  plane  is  paired  with  a  unique  other  point.  By 

the  dual  process  every  line  in  the  plane  is  paired  with  a  unique  line  to  which 

it  is  conjugate  with  respect  to  both  conies.  Show  that  in  this  correspondence 

the  points  of  a  line  correspond  in  general  to  the  points  of  a  conic.  All  such 

conies  which  correspond  to  lines  of  the  plane  have  in  common  a  set  of  at  most 

three  points.  The  polars  of  every  such  common  point  coincide,  so  that  to  each 

of  them  is  made  to  correspond  all  the  points  of  a  line.  They  form  the  excep- 

tional elements  of  the  correspondence.    Dualize  (Reye-Holgate,  p.  110).* 
23.  If  in  the  last  exercise  the  two  given  conies  pass  through  the  vertices  of 

the  same  quadrangle,  the  diagonal  points  of  this  quadrangle  are  the  "common 

points  "  mentioned  in  the  preceding  exercise  (Reye-Holgate,  p.  110). 
24.  Given  a  cone  of  lines  with  vertex  O  and  a  line  u  through  0.  Then  a 

one-to-one  correspondence  may  be  established  among  the  lines  through  0  by 

associating  with  every  such  line  a  its  conjugate  a'  with  respect  to  the  cone 

lying  in  the  plane  au.  If,  then,  a  describes  a  plane  ir,  a'  will  describe  a  cone  of 
lines  passing  through  u  and  through  the  polar  line  of  tt,  and  which  has  in 

common  with  the  given  cone  any  lines  common  to  it  and  to  the  given  cone 

and  the  polar  plane  of  u  (Reye-Holgate,  p.  111).* 

25.  Two  conies  are  determined  by  the  two  sets  of  five  points  A,  B,  C,  D,  E 

and  .1 ,  B,  C,  H,  K.  Construct  the  fourth  point  of  intersection  of  the  two  conies 

(Castelnuovo,  Lezioni  di  Geometria,  p.  391). 

26.  Apply  the  result  of  the  preceding  Exercise  to  construct  the  point  P  such 

that  the  set  of  lines  P(A,  B,  C,  D,  E)  joining  P  to  the  vertices  of  any  given 

complete  plane  five-point  be  projective  with  any  given  set  of  five  points  on  a 
line  (Castelnuovo,  loc.  cit.). 

27.  Given  any  plane  quadrilateral,  construct  a  line  which  meets  the  sides 

of  the  quadrilateral  in  a  set  of  four  points  projective  with  any  given  set  of 
four  collinear  points. 

*  The  correspondences  defined  in  Exs.  22  and  24  are  examples  of  so-called 
quadratic  correspondences. 
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28.  Two  sets  of  five  points  A,  B,  C,  D,  E  and  A,  B,  H,  K,  L  determine 

two  conies  which  intersect  again  in  two  points  A",  Y.  Construct  the  line  XY 
and  show  that  the  points  X,  Y  are  the  double  points  of  a  certain  involution 

(Castelnuovo,  loc.  cit.). 

29.  If  three  conies  pass  through  two  given  points  A,  B  and  the  three  pairs 

of  conies  cut  again  in  three  pairs  of  points,  show  that  the  three  lines  joining 

these  pairs  of  points  are  concurrent  (Castelnuovo,  loc.  cit.). 

30.  Prove  the  converse  of  the  second  theorem  of  Desargues :  The  conies 

passing  through  three  fixed  points  and  meeting  a  given  line  in  the  pairs  of 

an  involution  pass  through  a  fourth  fixed  point.  This  theorem  may  be  used 

to  construct  a  conic,  given  three  of  its  points  and  a  pair  of  points  conjugate 

with  respect  to  the  conic.    Dualize  (Castelnuovo,  loc.  cit.). 

31.  The  poles  of  a  line  with  respect  to  all  the  conies  of  a  pencil  of  conies 

of  Type  /  are  on  a  conic  which  passes  through  the  diagonal  points  of  the 

quadrangle  defining  the  pencil.  This  conic  cuts  the  given  line  in  the  points 

in  which  the  latter  is  tangent  to  conies  of  the  pencil.    Dualize. 

32.  Let  p  be  the  polar  of  a  point  P  with  regard  to  a  triangle  ABC.  If  P 

varies  on  a  conic  which  passes  through  A,  B,  C,  then  jP  passes  through  a  fixed 

point  Q  (Cayley,  Collected  Works,  Vol.  I,  p.  361). 

33.  If  two  conies  are  inscribed  in  a  triangle,  the  six  points  of  contact  are 
on  a  third  conic. 

34.  Any  two  vertices  of  a  triangle  circumscribed  to  a  conic  are  separated 

harmonically  by  the  point  of  contact  of  the  side  containing  them  and  the  point 

where  this  side  meets  the  line  joining  the  points  of  contact  of  the  other  sides. 



CHAPTER  VI 

ALGEBRA  OF  POINTS  AND  ONE -DIMENSIONAL  COORDINATE 
SYSTEMS 

48.  Addition  of  points.  That  analytic  methods  may  be  introduced 

into  geometry  on  a  strictly  projective  basis  was  first  shown  by  von 

Staudt*  The  point  algebra  on  a  line  which  is  defined  in  this  chapter 
without  the  use  of  any  further  assumptions  than  A,  E,  P  is  essentially 

equivalent  to  von  Staudt's  algebra  of  throws  (p.  60),  a  brief  account 
of  which  will  be  found  in  §  55.  The  original  method  of  von  Staudt 
has,  however,  been  considerably  clarified  and  simplified  by  modern 

researches  on  the  foundations  of  geometry,  f  All  the  definitions  and 

theorems  of  this  chapter  before  Theorem  6  are  independent  of  As- 
sumption P.  Indeed,  if  desired,  this  part  of  the  chapter  may  be  read 

before  taking  up  Chap.  IV. 

Given  a  line  /,  and  on  I  three  distinct  (arbitrary)  fixed  points  which 

for  convenience  and  suggestiveness  we  denote  by  PQ,  Pv  Px>  we  define 

two  one-valued  operations  J  on  pairs  of  points  of  I  with  reference  to 
the  fundamental  points  P0,  Pv  P*.  The  fundamental  points  are  said 
to  determine  a  scale  on  I. 

Definition.  In  any  plane  through  I  let  7,  and  11  be  any  two  lines 

through  JP ,  and  let  lQ  be  any  line  through  PQ  meeting  /„  and  li  in 

points  A  and  A'  respectively  (fig.  71).  Let  Px  and  Pv  be  any  two  points 

of  I,  and  let  the  hues  PXA  and  P9A'  meet  C  and  lm  in  the  points  X 
and  Y  respectively.  The  point  Px+9,  in  which  the  line  XY  meets  I,  is 

called  the  sum  of  the  points  Px  and  Py  (in  symbols  Px+  P¥  =  Px+r)  in 

*  K.  G.  C.  von  Staudt  (1798-1867),  Beitrage  zur  Geometrie  derLage,  Heft  2  (1857), 
pp.  166  et  seq.  This  book  is  concerned  also  with  the  related  qnestion  of  the  inter- 

pretation of  imaginary  elements  in  geometry. 
t  Cf.,  for  example,  G.  Hessenberg,  Ueber  einen  Geometrischen  Calcul,  Acta 

Mathematica,  Vol.  XXIX,  p.  1. 

|  By  a  one-valued  operation  o  on  a  pair  of  points  A,  B  is  meant  any  process 
whereby  with  every  pair  A,  B  is  associated  a  point  C,  which  is  unique  provided 

the  order  of  A,  B  is  given;  in  symbols  AoB  =  C.  Here  "order"  has  no  geo- 
metrical significance,  but  implies  merely  the  formal  difference  of  AoB  and  Bo  A. 

If  AoB  =  BoA.  the  operation  is  commutative;  if  (AoB)oC  =  Ao(BoC),  the  opera- 
tion is  associative. 

141 
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the  scale  P^P^P^.    The  operation  of  obtaining  the  sum  of  two  points 

is  called  addition* 

Fig.  71 

Theorem  1.  If  Px  and  Py  are  distinct  from  P0  and  Pm,  Q(PmPTP0, 

P^PyPx+y)  is  a  necessary  and  sufficient  condition  for  the   equality 

p<+p,-pmfg.  <a,e) 
This   follows  immediately  from  the  definition,  AXA'Y  being  a 

quadrangle  which  determines  the  given  quadrangular  set. 

Corollary  1.  If  Px  is  any  point  of  I,  we  have  Px+ P0  —  PQ  +  Px  =  Px) 

a«dPx  +  Pm=Pm+Px  =  Pm(Px*Pm).    (A,E) 

This  is  also  an  immediate  consequence  of  the  definition. 

Corollary  2.   The  operation  of  addition  is  one-valued  for  every 

pair  of  points  Px,  Py  of  I,  except  for  the  pair  Px,  P„.    (A,  E) 

This  follows  from  the  theo-  ,     ̂     a' 

rem  above  and  the  corollary  of  j^   \     /       \ 

*  The  historical  origin  of  this  con- 
struction will  be  evident  on  inspection 

of  the  attached  figure.  This  is  the 
figure  which  results,  if  we  choose  for 
IL  the  "line  at  infinity"  in  the  plane 
in  the  sense  of  ordinary  Euclidean 
geometry  (cf.  p.  8).  The  construction 
is  clearly  equivalent  to  a  translation 
of  the  vector  PqPv  along  the  line  I, 
which  brings  its  initial  point  into  coincidence  with  the  terminal  point  of  the 
P0PX,  which  is  the  ordinary  construction  for  the  sum  of  two  vectors  on 

vector 
a  line. 
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Theorem  3,  Chap.  II,  in  case  Px  and  JJ  are  distinct  from  P0  and  Pm, 

If  one  of  the  points  Px,  Pv  coincides  with  J?  or  Pm,  it  follows  from 
Corollary  1. 

Corollary  3.   The  operation  of  addition  is  associative ;  i.e. 

for  any  three  points  Px,  Pt,  Px  for  which  the  above  expressions  are 

defined.    (A,  E) 

Proof  (fig.  73).  Let  Px  +  Py  be  determined  as  in  the  definition  by 
means  of  three  lines  lm,  11,  l0  and  the  line  XY.  Let  the  line  PQY  be 

denoted  by  V0,  and  by  means  of  lm,lL,  V0  construct  the  point  (Px  +  Py)  +  Pz, 

I* 

which  is  determined  by  the  line  XZ,  say.  If  now  the  point  Py  +  Pz 

be  constructed  by  means  of  the  lines  lm,  11,  /0',  and  then  the  point 
Px  +  (Pt  +  Pz)  be  constructed  by  means  of  the  lines  L,ll,l0,  it  will  be 
seen  that  the  latter  point  is  determined  by  the  same  line  XZ. 

Corollary  4.   The  operation  of  addition  is  commutative;  i.e. 

PX+P„  =  P¥  +  PX 

for  every  pair  of  points  Px,  Pw  for  which  the  operation  is  defined.  (A,  E; 

Proof.  By  reference  to  the  complete  quadrangle  AXA'Y  (fig.  71) 
there  appears  the  quadrangular  set  QiP^P^Pj,  PxPxPx+v),  which  by  the 
theorem  implies  that  Pv+Px  =  Px+r  But,  by  definition,  Px  +  P,  =  Px+r 
Hence  Py  +  p  =  Px  +  p. 
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Theorem  2.  Any  three  points  Px,  Py,  Pa(Pa^  P>)  satisfy  the  relation 

P  PPP  —  P  PP     P 

i.e.  the  correspondence  established  by  making  each  point  Px  of  I  corre- 

spond to  Pj =  Px  +  Pa,  where  Pa(=f=  Px)is  any  fixed  point  of  I,  is  projective. 
(A,E) 

Proof.  The  definition  of  addition  (fig.  71)  gives  this  projectivity  as 

the  result  of  two  perspectivities :  * 

[px]=m=[pji 

The  set  of  all  projectivities  determined  by  all  possible  choices  of  Pa  in  the 

formula  Px  =  Px  +  Pa  is  the  group  described  in  Example  2,  p.  70.  The  sum  of 
two  points  Pa  and  Pb  might  indeed  have  been  defined  as  the  point  into  which 
Pb  is  transformed  when  P0  is  transformed  into  Pa  by  a  projectivity  of  this 
group.  The  associative  law  for  addition  would  thus  appear  as  a  special  case 
of  the  associative  law  which  holds  for  the  composition  of  correspondences  in 

general ;  and  the  commutative  law  for  addition  would  be  a  consequence  of  the 
commutativity  of  this  particular  group. 

Fig.  74 

49.  Multiplication  of  points.  Definition.  In  any  plane  through  I 

let  l0,  lv  lw  be  any  three  lines  through  P0,  Pv  Pn  respectively,  and  let  lx 

meet  l0  and  /„  in  points  A  and  B  respectively  (fig.  74).  Let  Px,  Py  be  any 

two  points  of  I,  and  let  the  lines  PXA  and  PyB  meet  ln  and  l0  in  the  points 

X  and  Y  respectively.    The  point  Pxy  in  which  the  line  XY  meets  I  is 

*  To  make  fig.  71  correspond  to  the  notation  of  this  theorem,  P„  must  be 
identified  with  Pa. 
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called  the  product  ofPx  by  Py  (in  symbols  Px  ■  P9=P^)  in  the  scale  P0,  P17  P„ 
on  /.  The  operation  of  obtaining  the  product  of  two  points  is  called 

multiplication*  Each  of  the  points  Px,  Py  is  called  a,  factor  of  the 

product  Px  •  Pr 

Theorem  3.  If  Px  and  Py  are  any  two  points  of  I  distinct  from 

P0,PVPX,Q  {P0PXPV  P*  PyPxy)  is  necessary  and  sufficient  for  the  equality 

Zp,=p*  (A,E) 
This  follows  at  once  from  the  definition,  AXBY  being  the  defining 

quadrangle. 

Corollary  1.  For  any  point  Px(=£Pm)  on  I  we  have  the  relations 

P1PX=PXP1=PJC;  P0PX  =  PXP0  =  P0;  Pa,Px  =  PxP»  =  R(Px*P). 
This  follows  at  once  from  the  definition. 

Corollary  2.  The  operation  of  multiplication  is  one-valued  for 

every  pair  of  points  Px,  Py  of  I,  except  PQ  ■  P*  and  Pm  •  P>.    (A,  E) 

This  follows  from  Corollary  1,  if  one  of  the  points  Px,  Py  coincides 

with  PQ,  P^,  or  Pm.  Otherwise,  it  follows  from  the  corollary,  p.  50,  in 
connection  with  the  above  theorem. 

*  The  origin  of  this  construction  may  also  be  seen  in  a  simple  construction  of 
metric  Euclidean  geometry,  which  results  from  the  construction  of  the  definition 

by  letting  the  line  lx  be  the  "line  at  infinity"  (cf.  p.  8).  In  the  attached  figure 
which  gives  this  metric  construction  we  have  readily,  from  similar  triangles,  the 
proportions : 

PpP^PoA  _  P0PX 
PqP»      Po  7      PoPxf 

which,  on  taking  the  segment  P0Pi  —  1,  gives  the  desired  result  P0Pxf=  PqPx-  PqPv- 
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Corollary  3.  The  operation  of  multiplication  is  associative ;  i.e.  we 

have  {Px-Py)-Pz=Px.(Py.Pi)  for  every  three  points  Px,  Py,  Pz  for  which 
these  products  are  defined.    (A,  E) 

Proof  (fig.  76).  The  proof  is  entirely  analogous  to  the  proof  for 

the  associative  law  for  addition.    Let  the  point  Px  •  Py  be  constructed 

B Px    Pz     Bf  Pty     Pyt       P?y)z~Pxft%) 
Fig.  76 

as  in  the  definition  by  means  of  three  fundamental  lines  l0,  lv  lm, 

the  point  Pxy  being  determined  by  the  line  XY.  Denote  the  line  P^Y 

by  l[,  and  construct  the  point  Pxy>  Pz  —  (Px-  Py)  ■  Pz,  using  the  lines  l0,  l'v  /„ 
as  fundamental.  Further,  let  the  point  Py-  PS  =  P/Z  be  constructed  by 

means  of  the  lines  l0,  l[,  l„,  and  then  let  Px  •  Pyz  =  Px-  {Py-  Pz)  be  con- 

structed by  means  of  l0,  lv  /„.  It  is  then  seen  that  the  points  Px  •  Pyz 

and  Pxy  •  Pz  are  determined  by  the  same  line. 
By  analogy  with  Theorem  1,  Cor.  4,  we  should  now  prove  that  mul- 

tiplication is  also  commutative.  It  will,  however,  appear  presently 

that  the  commutativity  of  multiplication  cannot  be  proved  without 

the  use  of  Assumption  P  (or  its  equivalent).  It  must  indeed  be  clearly 

noted  at  this  point  that  the  definition  of  multiplication  requires  the 

first  factor  Px  in  a  product  to  form  with  P>  and  P1  a  point  triple  of 

the  quadrangular  set  on  I  (cf.  p.  49) ;  the  construction  of  the  product 

is  therefore  not  independent  of  the  order  of  the  factors.  Moreover, 

the  fact  that  in  Theorem  3,  Chap.  II,  the  quadrangles  giving  the  points 

of  the  set  are  similarly  placed,  was  essential  in  the  proof  of  that 
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theorem.    We  cannot  therefore  use  this  theorem  to  prove  the  com 

mutative  law  for  multiplication  as  in  the  case  of  addition. 

An  important  theorem  analogous  to  Theorem  2  is,  however,  inde- 
pendent of  Assumption  P.    It  is  as  follows : 

Theorem  4.  If  the  relation  Px-  Py  =  Pxw  holds  between  any  three 

points  Px,  Py,  P^  on  I  distinct  from  PQ,  we  have  P^P^P^  P^P^P^ 

and  also  P.P^P^P^ P^P^P^;  i.e.  the  correspondence  established  by 

making  each  point  Px  of  I  correspond  to  Px=Px  -Pa  (pr  to  Pt'  =  Pa-  Px), 
where  Pa  is  any  fixed  point  of  I  distinct  from,  P^,  is  projective.    (A,  E) 

Proof.  The  definition  of  multiplication  gives  the  first  of  the  above 

projectivities  as  the  result  of  two  perspectivities  (fig.  76): 

The  second  one  is  obtained  similarly.    In  fig.  76  we  have 

The  set  of  all  projectivities  determined  by  all  choices  of  Pa  in  the  for- 
mula Px  =  Px-  Pa  is  the  group  described  in  Example  1 ,  p.  69.  The  proper- 

ties of  multiplication  may  be  regarded  as  properties  of  that  group  in  the  same 
way  that  the  properties  of  addition  arise  from  the  group  described  in  Example 
2,  p.  70.  In  particular,  this  furnishes  a  second  proof  of  the  associative  law 
for  multiplication. 

Theorem  5.  Multiplication  is  distributive  with  respect  to  addition; 

i.e.  if  Px,  P,  Pz  are  any  three  points  on  I  {for  which  the  operations 

below  are  defined),  we  have 

pz- (^+^)  =  ̂ - r*+P>- P*  ™d  (Z+%) •  Z=Z  Z+P,' P-  (A,E, 
Proof.  Place 

PX  +  P,  =  P*  +  V,  P.  PX  =  P~>  Pz   P,  =  P:„  and  PzPI  +  ,  =  Pz(x+,r 

By  Theorem  4  we  then  have 

PPPPPP     —PPPPPP 

But  by  Theorem  1  we  also  have  Q(PX)PXP0,  HPtPx+t).  Hence,  by 

Theorem  1,  Cor.,  Chap.  IV,  we  have  Q(^i^^,  P»Pz,PZ(X+,))  which, 

by  Theorem  1,  implies  1^+  P„=  PzCx+vX    The  relation 

is  proved  similarly. 
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50.  The  commutative  law  for  multiplication.  With  the  aid  of 

Assumption  P  we  will  now  derive  finally  the  commutative  law  for 

multiplication : 

Theorem  6.  The  operation  of  multiplication  is  commutative;  i.e. 

we  have  Px-  Py  =  P/-  Px  for  every  pair  of  points  Px,  P,  of  I  for  which 
these  two  products  are  defined.    (A,  E,  P) 

Proof.  Let  us  place  as  before  P,-  Py  =  Pxy,  and  Py-  Px  =  Pyx.  Then,  by 
the  first  relation  of  Theorem  4,  and  interchanging  the  points  Px,  Pyi 

we  nave  r>  p  r>  p   j>  t>  t>  p  . 
-roo-roJriJry  /\  Jr<*>-rQJ^x-ryxl 

and  from  the  second  relation  of  the  same  theorem  we  have 

P  PPP  —  P  PPP 

By  Theorem  17,  Chap.  IV,  this  requires  Pyx  =  Pxy. 
In  view  of  the  fact  already  noted,  that  the  fundamental  theorem 

of  projective  geometry  (Theorem  17,  Chap.  IV)  is  equivalent  to 

Assumption  P,  it  follows  (cf.  §  3,  Vol.  II)  that : 

Theorem  7.  Assumption  P  is  necessary  and  sufficient  for  the  com- 

mutative law  for  multiplication*    (A,  E) 
51.  The  inverse  operations.  Definition.  Given  two  points  Pa,  P. 

on  I,  the  operation  determining  a  point  Px  satisfying  the  relation 

Pa  +  Px  =  i£  is  called  subtraction ;  in  symbols  Pb  —  Pa  =  Px.  The  point 
Px  is  called  the  difference  of  i£  from  Pa.  Subtraction  is  the  inverse  of 
addition. 

The  construction  for  addition  may  readily  be  reversed  to  give  a  con- 
struction for  subtraction.  The  preceding  theorems  on  addition  then  give : 

Theorem  8.  Subtraction  is  a  one-valued  operation  for  every  pair 

of  points  Pa,  Pb  on  I,  except  the  pair  i^,  Pm.    (A,  E) 

Corollary.  We  have  in  particular  Pl  —  Pa  =  Il  for  every  point 

Pa{^Pn)onl.    (A,  E) 

*  The  existence  of  algebras  in  which  multiplication  is  not  commutative  is  then 
sufficient  to  establish  the  fact  that  Assumption  P  is  independent  of  the  previous 
Assumptions  A  and  E.  For  in  order  to  construct  a  system  (cf.  p.  6)  which  satisfies 
Assumptions  A  and  E  without  satisfying  Assumption  P,  we  need  only  construct  an 
analytic  geometry  of  three  dimensions  (as  described  in  a  later  chapter)  and  use  as  a 
basis  a  noncommutative  number  system,  e.g.  the  system  of  quaternions.  That  the 
fundamental  theorem  of  projective  geometry  is  equivalent  to  the  commutative 
law  for  multiplication  was  first  established  by  Hilbert,  who,  in  his  Foundations  of 
Geometry,  showed  that  the  commutative  law  is  equivalent  to  the  theorem  of  Pappus 

(Theorem  21,  Chap.  IV).  The  latter  is  easily  seen  to  be  equivalent  to  the  funda- 
mental theorem. 
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Definition.  Given  two  points  Pa,  Pb  on  I;  the  point  Pz  determined  by 

the  relation  Pa  •  Px  =  Pb  is  called  the  quotient  of  i£  by  Pa  (also  the  ratio 

of  J£  to  £) ;  in  symbols  PjPa  =  Px,  or  Pb:Pa  =  Px.  The  operation  deter- 

mining PbfPa  is  called  division;  it  is  the  inverse  of  multiplication.* 
The  construction  for  multiplication  may  also  be  reversed  to  give  a 

construction  for  division.  The  preceding  theorems  on  multiplication 

then  give  readily : 

Theorem  9.  Division  is  a  one-valued  operation  for  every  pair  of 

points  Pa,  Pb  on  I  except  the  pairs  P>,  P>  and  Pm,  Pm.    (A,  E) 

Corollary.  We  have  in  particular  PalPa  =  Px,P^/Pa  =  P^PalP{)  =  Pnt 

etc.,  for  every  point  Paonl  distinct  from  P^  and  T^.    (A,  E) 

Addition,  subtraction,  multiplication,  and  division  are  known  as 

the  four  rational  operations. 

52.  The  abstract  concept  of  a  number  system.  Isomorphism.  The 

relation  of  the  foregoing  discussion  of  the  algebra  of  points  on  a  line 

to  the  foundations  of  analysis  must  now  be  briefly  considered.  With 

the  aid  of  the  notion  of  a  group  (cf.  Chap.  Ill,  p.  66),  the  general  con- 
cept of  a  number  system  is  described  simply  as  follows : 

Definition.  A  set  N  of  elements  is  said  to  form  a  number  system, 

provided  two  distinct  operations,  which  we  will  denote  by  ©  and  0 

respectively,  exist  and  operate  on  pairs  of  elements  of  N  under  the 
following  conditions : 

1.  The  set  N  forms  a  group  with  respect  to  ffi. 

2.  The  set  N  forms  a  group  with  respect  to  0,  except  that  if  i+  is 

the  identity  element  of  N  with  respect  to  ©,  no  inverse  with  respect 

to  o  exists  for  i+.f    If  a  is  any  element  of  N,  a o i+  =  t+oa  =  t'+. 
3.  Any  three  elements  a,  b,  c  of  N  satisfy  the  relations  «0(6©c) 

=  (a  ©  b)  ©  (a  ©  c)  and  (b  ©  c)  ©  a  =  (b  0  a)  ©  (c  0  a). 
The  elements  of  a  number  system  are  called  numbers;  the  two  oper- 

ations ©  and  0  are  called  addition  and  multiplication  respectively. 

If  a  number  system  forms  commutative  groups  with  respect  to  both 

addition  and  multiplication,  the  numbers  are  said  to  form  &feld.% 

*  What  we  have  defined  is  more  precisely  right-handed  division.  The  left-handed 
quotient  is  defined  similarly  as  the  point  Px  determined  by  the  relation  PxPa  =  Pb- 
In  a  commutative  algebra  they  are  of  course  equivalent. 

t  The  identity  element  i+  in  a  number  system  is  usually  denoted  by  0  (zero). 
J  The  class  of  all  ordinary  rational  numbers  forms  a  field ;  also  the  class  of  real 

numbers;  and  the  class  of  all  integers  reduced  modulo  p  (p  a  prime),  etc. 
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On  the  basis  of  this  definition  may  be  developed  all  the  theory 

relating  to  the  rational  operations  —  i.e.  addition,  multiplication,  sub- 

traction, and  division  —  in  a  number  system.  The  ordinary  algebra 
of  the  rational  operations  applying  to  the  set  of  ordinary  rational  or 

ordinary  real  or  complex  numbers  is  a  special  case  of  such  a  theory. 

The  whole  terminology  of  this  algebra,  in  so  far  as  it  is  definable  in 

terms  of  the  four  rational  operations,  will  in  the  future  be  assumed 

as  defined.  We  shall  not,  therefore,  stop  to  define  such  terms  as 

reciprocal  of  a  number,  exponent,  equation,  satisfy,  solution,  root,  etc. 

The  element  of  a  number  system  represented  by  a  letter  as  a  will  be 

spoken  of  as  the  value  of  a.  A  letter  which  represents  any  one  of  a 

set  of  numbers  is  called  a  variable ;  variables  will  usually  be  denoted 

by  the  last  letters  of  the  alphabet. 

Before  applying  the  general  definition  above  to  our  algebra  of 
points  on  a  line,  it  is  desirable  to  introduce  the  notion  of  the 

abstract  equivalence  or  isomorphism  between  two  number  systems. 

Definition.  If  two  number  systems  are  such  that  a  one-to-one 
reciprocal  correspondence  exists  between  the  numbers  of  the  two 

systems,  such  that  to  the  sum  of  any  two  numbers  of  one  system 

there  corresponds  the  sum  of  the  two  corresponding  numbers  of  the 

other  system ;  and  that  to  the  product  of  any  two  numbers  of  one 

there  corresponds  the  product  of  the  corresponding  numbers  of  the 

other,  the  two  systems  are  said  to  be  abstractly  equivalent  or  (simply) 

isomorphic* 
When  two  number  systems  are  isomorphic,  if  any  series  of  oper- 

ations is  performed  on  numbers  of  one  system  and  the  same  series 

of  operations  is  performed  on  the  corresponding  numbers  of  the 

other,  the  resulting  numbers  will  correspond. 

53.  Nonhomogeneous  coordinates.  By  comparing  the  corollaries 

of  Theorem  1  with  the  definition  of  group  (p.  66),  it  is  at  once 

seen  that  the  set  of  points  of  a  line  on  which  a  scale  has  been  estab- 
lished, forms  a  group  with  respect  to  addition,  provided  the  point  JZ 

be  excluded  from  the  set.  In  this  group  P0  is  the  identity  element, 

and  the  existence  of  an  inverse  for  every  element  follows  from 

Theorem  8.  In  the  same  way  it  is  seen  that  the  set  of  points  on 
a  line  on  which  a  scale  has  been  established,  and  from  which  the 

*  For  the  general  idea  of  the  isomorphism  between  groups,  see  Burnside's  Theory 
of  Groups,  p.  22. 
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point  li  has  been  excluded,  forms  a  group  with  respect  to  multipli- 
cation, except  that  no  inverse  with  respect  to  multiplication  exists 

for  i^;  I[  is  the  identity  element  in  this  group,  and  Theorem  9  insures 

the  existence  of  an  inverse  for  every  point  except  %.  These  con- 
siderations show  that  the  first  two  conditions  in  the  definition  of  a 

number  system  are  satisfied  by  the  points  of  a  line,  if  the  operations  e 
and  o  are  identified  with  addition  and  multiplication  as  defined  in 

§§48  and  49.  The  third  condition  in  the  definition  of  a  number 
system  is  also  satisfied  in  view  of  Theorem  5.  Finally,  in  view  of 
Theorem  1,  Cor.  4,  and  Theorem  6,  this  number  system  of  points  on 

a  line  is  commutative  with  respect  to  both  addition  and  multipli- 
cation.   This  gives  then : 

Theorem  10.  The  set  of  all  points  on  a  line  on  which  a  scale  has 

been  established,  and  from  which  the  point  H,  is  excluded,  forms  a  field 

with  respect  to  the  operations  of  addition  and  multiplication  previously 

defined.    (A,  E,  P) 

This  provides  a  new  way  of  regarding  a  point,  viz.,  that  of  regarding 

a  point  as  a  number  of  a  number  system.  This  conception  of  a  point 

will  apply  to  any  point  of  a  line  except  the  one  chosen  as  JZ.  It  is 

desirable,  however,  both  on  account  of  the  presence  of  such  an  excep- 
tional point  and  also  for  other  reasons,  to  keep  the  notion  of  point 

distinct  from  the  notion  of  number,  at  least  nominally.  This  we  do 

by  introducing  a  field  of  numbers  a,b,  c,  •  •  •  ,l,h,  •  •  -,x,y,z,-  •  •  which 
is  isomorphic  with  the  field  of  points  on  a  line.  The  numbers  of  the 

number  field  may,  as  we  have  seen,  be  the  points  of  the  line,  or  they 

may  be  mere  symbols  which  combine  according  to  the  conditions 

specified  in  the  definition  of  a  number  system ;  or  they  may  be  ele- 

ments defined  in  some  way  in  terms  of  points,  lines,  etc.* 
In  any  number  system  the  identity  element  with  respect  to  addi- 

tion is  called  zero  and  denoted  by  0,  and  the  identity  element  with 

respect  to  multiplication  is  called  one  or  unity,  and  is  denoted  by  1. 

We  shall,  moreover,  denote  the  numbers  1  +  1,  1  +  1  +  1,  •••,0 — a,  •  •  • 

by  the  usual  symbols  2,  3,  •  •  • ,  —  a,  •  •  • .  f  In  the  isomorphism  of  our 
system  of  numbers  with  the  set  of  points  on  a  line,  the  point  ijj  must 

correspond  to  0,  the  point  Px  to  the  number  1 ;  and,  in  general,  to  every 

*  See,  for  example,  §  55,  on  von  Staudt's  algebra  of  throws,  where  the  numbers 
are  thought  of  as  sets  of  four  points. 

t  Cf.,  however,  in  this  connection  §  57  below. 
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point  will  correspond  a  number  (except  to  Ji),  and  to  every  number 

of  the  field  will  correspond  a  point.  In  this  way  every  point  of  the 

line  (except  i^)  is  labeled  by  a  number.  This  number  is  called  the 

(nonhomogeneous)  coordinate  of  the  point,  to  which  it  corresponds. 

This  enables  us  to  express  relations  between  points  by  means  of 

equations  between  their  coordinates.  The  coordinates  of  points,  or 

the  points  themselves  when  we  think  of  them  as  numbers  of  a 

number  system,  we  will  denote  by  the  small  letters  of  the  alphabet 

(or  by  numerals),  and  we  shall  frequently  use  the  phrase  "the  point  x" 

in  place  of  the  longer  phrase  "  the  point  whose  coordinate  is  x."  It 
should  be  noted  that  this  representation  of  the  points  of  a  line  by 

numbers  of  a  number  system  is  not  in  any  way  dependent  on  the 

commutativity  of  multiplication ;  i.e.  it  holds  in  the  general  geom- 
etries for  which  Assumption  P  is  not  assumed. 

Before  leaving  the  present  discussion  it  seems  desirable  to  point 

out  that  the  algebra  of  points  on  a  line  is  merely  representative, 

under  the  principle  of  duality,  of  the  algebra  of  the  elements  of  any 

one-dimensional  primitive  form.  Thus  three  lines  l0,  lv  lx  of  a  flat 
pencil  determine  a  scale  in  the  pencil  of  lines ;  and  three  planes 

a0,  av  «„  of  an  axial  pencil  determine  a  scale  in  this  pencil  of  planes ; 

to  each  corresponds  the  same  algebra. 

54.  The  analytic  expression  for  a  projectivity  in  a  one-dimensional 
primitive  form.  Let  a  scale  be  established  on  a  line  I  by  choosing 

three  arbitrary  points  for  P0,  i^,  £> ;  and  let  the  resulting  field  of  points 

on  a  line  be  made  isomorphic  with  a  field  of  numbers  0,  1,  a,  •  •  •,  so 
that  i£  corresponds  to  0,  ̂   to  1,  and,  in  general,  Pa  to  a.  For  the 

exceptional  point  Ji,  let  us  introduce  a  special  symbol  oo  with  excep- 
tional properties,  which  will  be  assigned  to  it  as  the  need  arises. 

It  should  be  noted  here,  however,  that  this  new  symbol  oo  does  not 

represent  a  number  of  a  field  as  defined  on  p.  149. 

We  may  now  derive  the  analytic  relation  between  the  coordinates  of 

the  points  on  I,  which  expresses  a  projective  correspondence  between 

these  points.  Let  x  be  the  coordinate  of  any  point  of  I.  We  have  seen 

that  if  the  point  whose  coordinate  is  x  is  made  to  correspond  to  either 

of  the  points 

(I)  x'=x  +  a,    (a  =£00) 

or    (II)  x'  =  ax,         (a  4=-  0) 
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where  a  is  the  coordinate  of  any  given  point  on  I,  each  of  the  result- 
ing correspondences  is  projective  (Theorem  2  and  Theorem  4).  It  is 

readily  seen,  moreover,  that  if  as  is  made  to  correspond  to 

(III)  a/=-, x 

the  resulting  correspondence  is  likewise  projective.  For  we  clearly 

have  the  following  construction  for  the  point  1/x  (fig.  77) :  With  the 

same  notation  as  before  for  the  construction  of  the  product  of  two 

numbers,  let  the  line  xA  meet  lm  in  X.  If  Y  is  determined  as  the 

intersection  of  1 X  with  l0,  the  line  B  Y  determines  on  I  a  point  x1, 
such  that  xxf=l,  by  definition.   We  now  have 

The  three  projectivities  (I),  (II),  and  (III)  are  of  fundamental 
importance,  as  the  next  theorem  will  show.  It  is  therefore  desirable 

to  consider  their  properties  briefly ;  we  will  thus  be  led  to  define  the 

behavior  of  the  exceptional  symbol  oo  with  respect  to  the  operations 

of  addition,  subtraction,  multiplication,  and  division 

The  projectivity  x1  =  x  +  a,  from  its  definition,  leaves  the  point  li, 
which  we  associated  with  oc,  invariant.  We  therefore  place  oo  +  a  =  oo 

for  all  values  of  a  (a  =£  oo).  This  projectivity,  moreover,  can  have  no 
other  invariant  point  unless  it  leaves  every  point  invariant ;  for  the 

equation  x  =  x  4-  a  gives  at  once  a  =  0,  if  x  =£  00.  Further,  by  prop- 
erly choosing  a,  any  point  x  can  be  made  to  correspond  to  any  point  a/; 
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but  when  one  such  pair  of  homologous  points  is  assigned  in  addition 

to  the  double  point  co,  the  projectivity  is  completely  determined. 

The  resultant  or  product  of  any  two  projectivities  x'  =x-\-  a  and 

x'=x  +  b  is  clearly  x'=x  +  (a  +  b).  Two  such  projectivities  are 
therefore  commutative. 

The  projectivity  x'  =  ax,  from  its  definition,  leaves  the  points  0  and  oo 
invariant,  and  by  the  fundamental  theorem  (Theorem  17,  Chap.  IV) 

cannot  leave  any  other  point  invariant  without  reducing  to  the  iden- 
tical projectivity.  As  another  property  of  the  symbol  oo  we  have 

therefore  oo  =  a  oo  (a  =£  0).  Here,  also,  by  properly  choosing  a,  any 

point  x  can  be  made  to  correspond  to  any  point  x',  but  then  the  pro- 
jectivity is  completely  determined.  The  fundamental  theorem  in  this 

case  shows,  moreover,  that  any  projectivity  with  the  double  points  0,  oo 

can  be  represented  by  this  equation.  The  product  of  two  projectivities 

x'  =  ax  and  x'  =  bx  is  clearly  x'  =  (ab)  x,  so  that  any  two  projectivities  of 
this  type  are  also  commutative  (Theorem  6). 

Finally,  the  projectivity  x'  =  1  /x,  by  its  definition,  makes  the 
point  oo  correspond  to  0  and  the  point  0  to  oo.  We  are  therefore  led 

to  assign  to  the  symbol  oo  the  following  further  properties:  l/oo=-0, 

and  1/0  =  oo.  This  projectivity  leaves  1  and  —  1  (defined  as  0  —  1) 
invariant.  Moreover,  it  is  an  involution  because  the  resultant  of  two 

applications  of  this  projectivity  is  clearly  the  identity ;  i.e.  if  the 

projectivity  is  denoted  by  v,  it  satisfies  the  relation  7r2  =  1. 

THEOREM  11.  Any  projectivity  on  a  line  is  the  product  of  projec- 
tivities of  the  three  types  (I),  (II),  and  (III),  and  may  be  expressed 

in  the  form 

(i)  *--2S±|. v  '  cx  +  d 

Conversely,  every  equation  of  this  form  represents  a  projectivity,  if 

ad-bc^  0.    (A,  E,  P) 

Proof.  We  will  prove  the  latter  part  of  the  theorem  first.    If  we 

suppose  first  that  c  j=  0,  we  may  write  the  equation  of  the  given 
transformation  in  the  form 

,      ad 

(2)  X,==-  +  —TJ- v  '  c      cx  +  d 

This  shows  first  that  the  determinant  ad  —  be  must  be  different  from 

0 ;  otherwise  the  second  term  on  the  right  of  (2)  would  vanish,  which 
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would  make  every  x  correspond  to  the  same  point  a/c,  while  a  pro- 

jectivity is  a  one-to-one  correspondence.  Equation  (1),  moreover, 
shows  at  once  that  the  correspondence  established  by  it  is  the  result- 

ant of  the  five : 

x1  =  ex,     x2=xx  +  d,     x3  =  —  >    xt  =  f  b   J  x3,     x1  =  x4  -\   

If  c  =  0,  and  ad  =£  0,  this  argument  is  readily  modified  to  show  that 
the  transformation  of  the  theorem  is  the  resultant  of  projectivities  of 

the  types  (/)  and  (//).  Since  the  resultant  of  any  series  of  projectiv- 
ities is  a  projectivity,  this  proves  the  last  part  of  the  theorem. 

It  remains  to  show  that  every  projectivity  can  indeed  be  repre- 

sented  by  an  equation  x!  =    •   To  do  this  simplv,  it  is  desirable ex  +  d 

to  determine  first  what  point  is  made  to  correspond  to  the  point  oo  by 

this  projectivity.  If  we  follow  the  course  of  this  point  through  the 

five  projectivities  into  which  we  have  just  resolved  this  transforma- 
tion, it  is  seen  that  the  first  two  leave  it  invariant,  the  third  trans- 

forms it  into  0,  the  fourth  leaves  0  invariant,  and  the  fifth  transforms 

it  into  a/c;  the  point  oo  is  then  transformed  by  (1)  into  the  point 

a/c.    This  leads  us  to  attribute  a  further  property  to  the  symbol  oo, 
viz., 

ax  +  b      a        7 
   =  —  >   when  x  =  oo. 
ex  +  d      c 

According  to  the  fundamental  theorem  (Theorem  17,  Chap.  IV),  a  pro- 

jectivity is  completely  determined  when  any  three  pairs  of  homolo- 

gous points  are  assigned.  Suppose  that  in  a  given  projectivity  the 

points  0,  1,  oo  are  transformed  into  the  points  p,  q,  r  respectively. 
Then  the  transformation 

x,_r(q-p)x+p(r-q) 
(q-p)x  +  (r-q) 

clearly  transforms  0  into  p,  1  into  q,  and,  by  virtue  of  the  relation 
just  developed  for  oo,  it  also  transforms  oo  into  r.  It  is,  moreover,  of  the 

form  of  (1).  The  determinant  ad— be  is  in  this  case  (q—p){r—q)(r—p), 
which  is  clearly  different  from  zero,  if  p,  q,  r  are  all  distinct.  This 
transformation  is  therefore  the  given  projectivity. 

Corollary  1.  The  projectivity  x1  =  a/x(a  =£  0,  or  oc)  transforms  0 
into  oo  and  oo  into  0.    (A,  E,  F) 
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For  it  is  the  resultant  of  the  two  projectivities,  xl=l/x  and 

x'  =  axv  of  which  the  first  interchanges  0  and  oo,  while  the  second 
leaves  them  both  invariant.  We  are  therefore  led  to  define  the  symbols 

a/0  and  a /oo  as  equal  to  oo  and  0  respectively,  when  a  is  neither  0 
nor  oo. 

Corollary  2.  Any  projectivity  leaving  the  point  oo  invariant  may 

be  expressed  in  the  form  x'  =  ax  +  b.    (A,  E,  P) 
Corollary  3.  Any  projectivity  may  be  expressed  analytically  by 

the  bilinear  equation  cxx1  +  dx1  —  ax  —  b  =  0  ;  and  conversely,  any 
bilinear  equation  defines  a  projective  correspondence  between  its  two 

variables,  provided  ad  —  bc^  0.    (A,  E,  P) 
Corollary  4.  If  a  projectivity  leaves  any  points  invariant,  the 

coordinates  of  these  double  points  satisfy  the  quadratic  equation 

cx*  +  (d-a)x-b  =  0.    (A,  E,  P) 

Definition.  A  system  of  run  numbers  arranged  in  a  rectangular 

array  of  m  rows  and  n  columns  is  called  a  matrix.  If  m  =  n,  it  is 

called  a  square  matrix  of  order  n* 

The  coefficients  (  ,  J  of  the  projective  transformation  (1)  form  a 

square  matrix  of  the  second  order,  which  may  be  conveniently  used  to 

denote  the  transformation.  Two  matrices  [  ,)  and  (  ,  ,,)  repre- 

sent the  same  transformation,  if  and  only  if  a  :  a'  =  b :  b' =  c  :  c'  =  d :  d'. 
The  product  of  two  projectivities 

,  ax  +  b  „  ,       a'x'  +  V x  =  ir  (x)  =    and  x    =  it.  (x)  =  -r—,   ^ 
x  '      cx  +  d  1V    '      c'jJ  +  d' 

is  given  by  the  equation 

n  _  _  (aa'  +  cb')  x  +  ba'  +  db' -  tr^^x)  -  ̂   +  cd>)x  +  bc'  +  ddr 

This  leads  at  once  to  the  rule  for  the  multiplication  of  matrices, 
which  is  similar  to  that  for  determinants. 

Definition.  The  product  of  two  matrices  is  defined  by  the  equation 

a'  b'\/a  b\      /aa' +  cb'   ba' +  db' 
i    ji 

d'    \c  d        \ac'  +cd'  be'  +  del' 

*  For  a  development  of  the  principal  properties  of  matrices,  cf.  Bdcher,  Intro- 
duction to  Higher  Algebra,  pp.  20  ff. 
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This  gives,  in  connection  with  the  result  just  derived, 

Theorem  12.  The  product  of two  projectivities 

("  hd) and ''  -  (!'  t) 
is  represented  by  the  product  of  their  matrices  ;  in  symbols, 

«■"-(,  «)(:*}  <A-E-P> 
Corollary  1.  7Vi«  determinant  of  the  product  of  two  projectivities 

is  equal  to  the  product  of  their  determinants.    (A,  E,  P) 

Corollary  2.  The  inverse  of  the  projectivity  t  =  (       7)  is  given 

by  7T_1  =  (   {  )  =  \Ttr>)'  w^ere  A,  B,  C,  D  are  the  cof actors 

of  a,  b,  c,  d  respectively  in  the  determinant 
a  b 

c  d 
(A,  E,  P) 

This  follows  at  once  from  Corollary  3  of  the  last  theorem  by  inter- 

changing x,  x'.    We  may  also  verify  the  relation  by  forming  the 

product  7r-17r  =  (       ft     '      ,      ,   ),  which  transformation  is  equiva- 

lent to  (  -   ..  )  •   The  latter  is  called  the  identical  matrix. 

Corollary  3.  Any  involution  is  represented  by  I  ),  that  is 

by  x* '  =   >  with  the  condition  that  a'2  +  bc^O.    (A,  E,  P) ex  —  a 

55.  Von  Staudt's  algebra  of  throws.  We  will  now  consider  the 
number  system  of  points  on  a  line  from  a  slightly  different  point  of 

view.  On  p.  60  we  denned  a  throw  as  consisting  of  two  ordered 

pairs  of  points  on  a  line ;  and  denned  two  throws  as  equal  when  they 

are  projective.  The  class  of  all  throws  which  are  projective  (Le.  equal) 

to  a  given  throw  constitutes  a  class  which  we  shall  call  a  mark. 

Every  throw  determines  one  and  only  one  mark,  but  each  mark 
determines  a  whole  class  of  throws. 

According  to  the  fundamental  theorem  (Theorem  17,  Chap.  IV),  if 

three  elements  A,  B,  C  of  a  throw  and  their  places  in  the  symbol 

T(AB,  CD)  are  given,  the  throw  is  completely  determined  by  the 

mark  to  which  it  belongs.  A  given  mark  can  be  denoted  by  the 

symbol  of  any  one  of  the  (projective)  throws  which  define  it.  We 

shall  also  denote  marks  by  the  small  letters  of  the  alphabet.  And  so, 

since  the  equality  sign  (=)  indicates  that  the  two  symbols  between 
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which  it  stands  denote  the  same  thing,  we  may  write  T  (AB,  CD)  = 

a  =  b,  if  a,  b,  T  (AB,  CD)  are  notations  for  the  same  mark.  Thus 

T  (AB,  CD)  =  T  (B A,  DC)  =  T  (CD,  AB)  =  T(DC,  BA)  are  all  symbols 
denoting  the  same  mark  (Theorem  2,  Chap.  III). 

According  to  the  original  definition  of  a  throw  the  four  elements 

which  compose  it  must  be  distinct.  The  term  is  now  to  be  extended 

to  include  the  following  sets  of  two  ordered  pairs,  where  A,  B,  C  are 

distinct.  The  set  of  all  throws  of  the  type  T  (AB,  CA)  is  called  a 

mark  and  denoted  by  oo ;  the  set  of  all  throws  of  the  type  T  (AB,  CB) 
is  called  a  mark  and  is  denoted  by  0 ;  the  set  of  all  throws  of  the  type 

T  (AB,  CC)  is  a  mark  and  is  denoted  by  1.  It  is  readily  seen  that 

if  Pq,  I[,  H  are  any  three  points  of  a  line,  there  exists  for  every  point 

P  of  the  line  a  unique  throw  T  (j%  J^,  I(  P)  of  the  line ;  and  con- 
versely, for  every  mark  there  is  a  unique  point  P.  The  mark  oo,  by 

what  precedes,  corresponds  to  the  point  P* ;  the  mark  0  to  P> ;  and 
the  mark  1  to  i^. 

Definition.  Let  T(AB,  CDJ  be  a  throw  of  the  mark  a,  and  let 

T  (AB,  CD2)  be  a  throw  of  the  mark  b ;  then,  if  Ds  is  determined  by 

Q(AD1B,  AD2D8),  the  mark  c  of  the  throw  T(AB,  CDS)  is  called  the 
sum  of  the  marks  a  and  b,  and  is  denoted  by  a  +  b;  in  symbols, 

a  -f  b  =  c.  Also,  the  point  D'z  determined  by  Q(AD1C,  BD2D'3)  deter- 

mines a  mark  with  the  symbol  J  (AB,  CD'S)  =  c'  (say),  which  is  called 

the  product  of  the  marks  a  and  b ;  in  symbols,  ab  =  c'.  As  to  the 
marks  0  and  1,  to  which  these  two  definitions  do  not  apply,  we  define 

further :  a+0  =  0  +  a  =  a,  &  •  0  =  0  •  a  =  0,  and  a  •  1  =  1  •  a  =  a. 

Since  any  three  distinct  points  A,  B,  C  may  be  projected  into  a  fixed 

triple  P*,  P^,  1%,  it  follows  that  the  operation  of  adding  or  multiplying 

marks  may  be  performed  on  their  representative  throws  of  the  form 

J(PBPQ,  i?P).  By  reference  to  Theorems  1  and  3  it  is  then  clear  that 
the  class  of  all  marks  on  a  line  (except  oo)  forms  a  number  system,  with 

respect  to  the  operations  of  addition  and  multiplication  just  defined, 

which  is  isomorphic  with  the  number  system  of  points  previously 
developed. 

This  is,  in  brief,  the  method  used  by  von  Staudt  to  introduce  ana- 

lytic methods  into  geometry  on  a  purely  geometric  basis.*    We  have 

*  Cf.  reference  on  p.  141.  Von  Staudt  used  the  notion  of  an  involution  on  a  line 
in  defining  addition  and  multiplication  ;  the  definition  in  terms  of  quadrangular  sets 
is,  however,  essentially  the  same  as  his  by  virtue  of  Theorem  27,  Chap.  IV. 
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given  it  here  partly  on  account  of  its  historical  importance ;  partly 
because  it  gives  a  concrete  example  of  a  number  system  isomorphic 

with  the  points  of  a  line  * ;  and  partly  because  it  gives  a  natural 
introduction  to  the  fundamental  concept  of  the  cross  ratio  of  four 

points.    This  we  proceed  to  derive  in  the  next  section. 

56.  The  cross  ratio.  "We  have  seen  in  the  preceding  section  that 
it  is  possible  to  associate  a  number  with  every  throw  of  four  points 

on  a  line.  By  duality  all  the  developments  of  this  section  apply  also 

to  the  other  one-dimensional  primitive  forms,  i.e.  the  pencil  of  lines 
and  the  pencil  of  planes.  With  every  throw  of  four  elements  of  any 

one-dimensional  primitive  form  there  may  be  associated  a  definite 
number,  which  must  be  the  same  for  every  throw  projective  with  the 

first,  and  is  therefore  an  invariant  under  any  projective  transforma- 
tion, i.e.  a  property  of  the  throw  that  is  not  changed  when  the  throw 

is  replaced  by  any  projective  throw.  This  number  is  called  the  cross 
ratio  of  the  throw.  It  is  also  called  the  double  ratio  or  the  anhar- 

monic  ratio.   The  reason  for  these  names  will  appear  presently. 

In  general,  four  given  points  give  rise  to  six  different  cross  ratios. 

For  the  24  possible  permutations  of  the  letters  in  the  symbol 

T(AB,  CD)  fall  into  sets  of  four  which,  by  virtue  of  Theorem  2, 

Chap.  Ill,  have  the  same  cross  ratios.  In  the  array  below,  the  per- 

mutations in  any  line  are  projective  with  each  other,  two  permuta- 
tions of  different  lines  being  in  general  not  projective : 
AB, 

CD 

BA, 
DC 

DC, 

BA CD,  AB 
AB, DC 

BA, 

CD 

CD, 

BA DC,  AB 
AC, BD 

CA, 

DB 

DB, 

CA BD,  AC 
AC, 

DB 

CA, 

BD 

BD, 

CA DB,  AC 
AD, BC 

DA, 

CB 

CB, 

DA BC,  AD AD, CB 
DA, BC 

BC, 

DA CB,  AD 

If,  however,  the  four  points  form  a  harmonic  set  H  [AB,  CD),  the 

throws  T(AB,  CD)  and  T(AB,  DC)  are  projective  (Theorem  5, 
Cor.  2,  Chap.  IY).  In  this  case  the  permutations  in  the  first  two  rows 

of  the  array  just  given  are  all  projective  and  hence  have  the  same  cross 

ratio.  The  four  elements  of  a  harmonic  set,  therefore,  give  rise  to  only 
three  cross  ratios.    The  values  of  these  cross  ratios  are  readily  seen 

*  Cf.  §  53.  Here,  with  every  point  of  a  line  on  which  a  scale  has  been  estab- 
lished, is  associated  a  mark  which  is  the  coordinate  of  the  point. 
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to  be  —  1,  \,  2  respectively,  for  the  constructions  of  our  number 

system  give  at  once  H  (£  j»,  PXP_X),  H  (P^,  P0PX),  and  H  (£i>,  P0P2). 
We  now  proceed  to  develop  an  analytic  expression  for  the  cross 

ratio  R  (xxx2,  xsxt)  of  any  four  points  on  a  line  (or,  in  general,  of  any 

four  elements  of  any  one-dimensional  primitive  form)  whose  coordi- 
nates in  a  given  scale  are  given.  It  seems  desirable  to  precede  this 

derivation  by  an  explicit  definition  of  this  cross  ratio,  which  is  inde- 

pendent of  von  Staudt's  algebra  of  throws. 
Definition.  The  cross  ratio  R  (xxx2,  xsxt)  of  elements  xv  x2,  xa,  x4 

of  any  one-dimensional  form  is,  if  xv  x2,  x3  are  distinct,  the  coordi- 
nate \  of  the  element  of  the  form  into  which  xi  is  transformed  by 

the  projectivity  which  transforms  xv  x2,  xs  into  oo,  0,  1  respectively ; 

i.e.  the  number,  X,  defined  by  the  projectivity  a^ay^-^- ooOlX.  If 
two  of  the  elements  xv  x2,  xs  coincide  and  xt  is  distinct  from  all  of 

them,  we  define  R  (xxx2,  xzx^)  as  that  one  of  R  (x2xv  #4£8),  R  (xzxv 

xxx2),  R  (x4xs,  x2xx),  for  which  the  first  three  elements  are  distinct. 

Theorem  13.  The  cross  ratio  R  (xxx2,  xsxt)  of  the  four  elements 

whose  coordinates  are  respectively  xv  x2,  xs,  xt  is  given  by  the  relation 

X  =  R  (xxx2>  xsxt)  =  fc^l .  fez^al . 

(A,E,P)  
{X~Xi)    {X~Xi) 

Proof.  The  transformation 
I   ^1_ 

X  = 

is  evidently  a  projectivity,  since  it  is  reducible  to  the  form  of  a 
linear  fractional  transformation,  viz., 

.__      (xx     xs)  x  +  x2  (xx     xs) 
\X2        xs)  x  T  X\  \X1        xs) 

in  which  the  determinant  (xx  —  x3)  (x2  —  xs)  (x2  —  xx)  is  not  zero,  pro- 
vided the  points  xx,  x2,  x3  are  distinct.  This  projectivity  transforms 

xx,  x2,  xz  into  oo,  0,  1  respectively.  By  definition,  therefore,  this  pro- 
jectivity transforms  xA  into  the  point  whose  coordinate  is  the  cross 

ratio  in  question,  i.e.  into  the  expression  given  in  the  theorem.  If 

xx,  x2,  xs  are  not  all  distinct,  replace  the  symbol  R  (xxx2,  x3xt)  by  one 

of  its  equal  cross  ratios  R  (x2xv  xixz),  etc. ;  one  of  these  must  have 
the  first  three  elements  of  the  symbol  distinct,  since  in  a  cross  ratio 

of  four  points  at  least  three  must  be  distinct  (def.). 
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Corollary  1.  We  have  in  particular 

B  (x^,  x3xt)  =  oo,  B  (xxxv  xsxj  =  0,  and  B  (xxxv  x3x3)  =  1, 

i/*  xv  x2,  x3  are  any  three  distinct  elements  of  the  form.    (A,  E) 
Corollary  2.  The  cross  ratio  of  a  harmonic  set  H  (xtx2,  x3x^  is 

B  {xxx2,  x3xt)  =  —  1,  for  we  have  H  (oo  0,  1  —  1).    (A,  E,  P) 
Corollary  3.  If  B  {xxx2,  xsxt)  =  X,  the  other  Jive  cross  ratios  of  the 

throws  composed  of  the  four  elements  xv  x%,  x3,  xt  are 

B (xxxiy  xtx3)  =-,  B (xxxv  x2x3)  = 

B  (#,#    #,#.)  =  1  —  X,  _  ,  .  X 

B  (a^a:,,  ̂ 8)  = 1-X 

(A,  E,  P) 

The  proof  is  left  as  an  exercise. 

Corollary  4.  If  xv  x2,  x3,  xt  form  a  harmonic  set  H  {xxxit  xsxj, 
we  have 

J-+-J-. 
x%     xx      xs 

(A,  E,  P) 

The  proof  is  left  as  an  exercise. 

Corollary  5.  If  a,  b,  c  are  any  three  distinct  elements  of  a  one- 

dimensional  primitive  form,  and  a',  b',  d  are  any  three  other  distinct 
elements  of  the  same  form,  then  the  correspondence  established  by  the 

relation  B  (ab,  ex)  =  B  (a'b',  c'x!)  is  projective.    (A,  E,  P) 
Proof.  Analytically  this  relation  gives 

a  —  c    b  —  x_a'—c'    b'—x! 
a  —  x    b  —  c      a'  — x'    b'  —  c' 

which,  when  expanded,  evidently  leads  to  a  bilinear  equation  in 

the  variables  x,  x',  which  defines  a  projective  correspondence  by 
Theorem  11,  Cor.  3. 

That  the  cross  ratio 

is  invariant  under  any  projective  transformation  may  also  be  verified  directly 

by  observing  that  each  of  the  three  types  (I),  (II),  (III)  of  projectivities  on 

pp.  152,  153  leaves  it  invariant.  That  every  projectivity  leaves  it  invariant 
then  follows  from  Theorem  11. 
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57.  Coordinates  in  a  net  of  rationality  on  a  line.  We  now  con- 

sider the  numbers  associated  with  the  points  of  a  net  of  rationality 

on  a  line.  The  connection  between  the  developments  of  this  chapter 
and  the  notion  of  a  linear  net  of  rationality  is  contained  in  the 

following  theorem : 

Theorem  14.  The  coordinates  of  the  points  of  the  net  of  rationality 

R  (im^)  form,  a  number  system,  or  field,  which  consists  of  all  numbers 

each  of  which  can  be  obtained  by  a  finite  number  of  rational  algebraic 

operations  on  0  and  1,  and  only  these.    (A,  E) 

Proof.  By  Theorem  14,  Chap.  IV,  the  linear  net  is  a  line  of  the 

rational  space  constituted  by  the  points  of  a  three-dimensional  net  of 

rationality.  By  Theorem  20,  Chap.  IV,  this  three-dimensional  net  is 
a  properly  projective  space.  Hence,  by  Theorem  10  of  the  present 

chapter,  the  numbers  associated  with  R(01cc)  form  a  field. 

All  numbers  obtainable  from  0  and  1  by  the  operations  of  addi- 
tion, subtraction,  multiplication,  and  division  are  in  R(01oo),  because 

(Theorem  9,  Chap.  IV)  whenever  x  and  y  are  in  R(01oo)  the  quadran- 

gular sets  determining  x  +  y,  xy,  x  —  y,  x/y  have  five  out  of  six 
elements  in  R(01oo).  On  the  other  hand,  every  number  of  R(01oo) 
can  be  obtained  by  a  finite  number  of  these  operations.  This  follows 

from  the  fact  that  the  harmonic  conjugate  of  any  point  a  in  R(01oo) 

with  respect  to  two  others,  b,  c,  can  be  obtained  by  a  finite  number 

of  rational  operations  on  a,  b,  c.  This  fact  is  a  consequence  of  Theo- 
rem 13,  Cor.  2,  which  shows  that  x  is  connected  with  a,  b,  c  by  the 

relation  7 
(x  —  b)(a  —  c)  +  (x  —  c)  (a  —  o)  =  0. 

Solving  this  equation  for  x,  we  have 

2  be  —  ab  —  ac 

x  = 

2a— b— c 

a  number  *  which  is  clearly  the  result  of  a  finite  number  of  rational 

operations  on  a,  b,  c.  This  completes  the  proof  of  the  theorem.  "We 
have  here  the  reason  for  the  term  net  of  rationality. 

It  is  well  to  recall  at  this  point  that  our  assumptions  are  not  yet  sufficient 
to  identify  the  numbers  associated  with  a  net  of  rationality  with  the  system 
of  all  ordinary  rational  numbers.  We  need  only  recall  the  example  of  the 

miniature  geometry  described  in  the  Introduction,  §  2,  which  contained  only 

*  The  expression  for  x  cannot  be  indeterminate  unless  b  =  c. 
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three  points  on  a  line.  If  in  that  triple-system  geometry  we  perform  tho  con- 
struction for  the  number  1  +  1  on  any  line  in  which  we  have  assigned  the 

numbers  0,  1,  co  to  the  three  points  of  the  line  in  any  way,  it  will  be  found 

that  this  construction  yields  the  point  0.  This  is  due  to  the  fact  previously 

noted  that  in  that  geometry  the  diagonal  points  of  a  complete  quadrangle 

are  collinear.  In  every  geometry  to  which  Assumptions  A,  E,  P  apply  we 

may  construct  the  points  1  +  1,  1  +  1  +  1,  ..-,  thus  forming  a  sequence  of 

points  which,  with  the  usual  notation  for  these  sums,  we  may  denote  by  0,  1, 

2,  3,  4,  . ...  Two  possibilities  then  present  themselves:  either  the  points 

thus  obtained  are  all  distinct,  in  which  case  the  net  R(01x)  contains  all  the 

ordinary  rational  numbers  ;  or  some  point  of  this  sequence  coincides  with  one 

of  the  preceding  points  of  the  sequence,  in  which  case  the  number  of  points 

in  a  net  of  rationality  is  finite.  We  shall  consider  this  situation  in  detail  in 

a  later  chapter,  and  will  then  add  further  assumptions.  Here  it  should  be 

emphasized  that  our  results  hitherto,  and  all  subsequent  results  depending  only 

on  Assumptions  A,  E,  P,  are  valid  not  only  in  the  ordinary  real  or  complex 

geometries,  but  in  a  much  more  general  class  of  spaces,  which  are  character- 

ized merely  by  the  fact  that  the  coordinates  of  the  points  on  a  line  are  the 
numbers  of  a  field,  finite  or  infinite. 

58.  Homogeneous  coordinates  on  a  line.  The  exceptional  character 

of  the  point  H,  as  the  coordinate  of  which  we  introduced  a  symbol 

co  with  exceptional  properties,  often  proves  troublesome,  and  is,  more- 

over, contrary  to  the  spirit  of  projective  geometry  in  which  the  points 

of  a  line  are  all  equivalent;  indeed,  the  choice  of  the  point  R,  was 

entirely  arbitrary.  It  is  exceptional  only  in  its  relation  to  the  opera- 
tions of  addition,  multiplication,  etc.,  which  we  have  defined  in  terms 

of  it.  In  this  section  we  will  describe  another  method  of  denoting 

points  on  a  line  by  numbers,  whereby  it  is  not  necessary  to  use  any 
exceptional  symbol. 

As  before,  let  a  scale  be  established  on  a  line  by  choosing  any  three 

points  to  be  the  points  JJ,  J*,  H;  and  let  each  point  of  the  line  be 
denoted  by  its  (nonhomogeneous)  coordinate  in  a  number  system 
isomorphic  with  the  points  of  the  line.  We  will  now  associate  with 

every  point  a  pair  of  numbers  (xv  x„)  of  this  system  in  a  given  order, 

such  that  if  x  is  the  (nonhomogeneous)  coordinate  of  any  point  dis- 

tinct from  H,  the  pair  (xv  x2)  associated  with  the  point  x  satisfies  the 

relation  x  =  xjxr  With  the  point  H  we  associate  any  pair  of  the 

form  (k,  0),  where  k  is  any  number  (k  =£  0)  of  the  number  system 
isomorphic  with  the  line.  To  every  point  of  the  line  corresponds  a  pair 

of  numbers,  and  to  every  pair  of  numbers  in  the  field,  except  the  pair 
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(0,  0),  corresponds  a  unique  point  of  the  line.  These  two  numbers  are 

called  homogeneous  coordinates  of  the  point  with  which  they  are 

associated,  and  the  pair  of  numbers  is  said  to  represent  the  point. 

This  representation  of  points  on  a  line  by  pairs  of  numbers  is  not 

unique,  since  only  the  ratio  of  the  two  coordinates  is  determined; 

i.e.  the  pairs  (xv  x2)  and  (mxv  mx2)  represent  the  same  point  for  all 

values  of  m  different  from  0.  The  point  J^  is  characterized  by  the 

fact  that  x1  =  0 ;  the  point  H,  by  the  fact  that  x2  =  0  ;  and  the  point 

jfj*  by  the  fact  that  xl  =  x2. 
Theorem  15.  In  homogeneous  coordinates  a  projectivity  on  a  line  is 

represented  by  a  linear  homogeneous  transformation  in  two  variables, 

(1)  K -«*+**■  (ad-hc*0) QJ ,.,      —     CJC+     ~"f~     Ct/Jbcyy 

where  p  is  an  arbitrary  factor  of  proportionality.    (A,  E,  P) 

Proof  By  division,  this  clearly  leads  to  the  transformation 

(2)  «/=2*±» v  '  cx  +  d 

provided  SB,'  and  x2  are  both  different  from  0.  If  x2  =  0,  the  trans- 
formation (1)  gives  the  point  (#/,  x2)  =  (a,  c) ;  i.e.  the  point  R  = 

(1,  0)  is  transformed  by  (1)  into  the  point  whose  nonhomogeneous 

coordinate  is  a  J c.  And  if  x2  =  0,  we  have  in  (1)  (xv  x2)  =  (d,  —  c); 
i.e.  (1)  transforms  the  point  whose  nonhomogeneous  coordinate  is 

—  d/c  into  the  point  R.  By  reference  to  Theorem  11  the  validity 
of  the  theorem  is  therefore  established. 

As  before,  the  matrix  (       , )  of  the  coefficients  may  conveniently 

be  used  to  represent  the  projectivity.  The  double  points  of  the  pro- 
jectivity, if  existent,  are  obtained  in  homogeneous  coordinates  as 

follows :  The  coordinates  of  a  double  point  (xv  x2)  must  satisfy  the 

equations  pXl  =  axx  +  bx2, 

px2  =  cxx  +  dx2. 

These  equations  are  compatible  only  if  the  determinant  of  the  system 

(3)  «  (a-p)xl+bx2=0, {  )  cx1  +  (d-p)x2=0, 
vanishes.    This  leads  to  the  equation 

"-f  /     =0 
c       d  —  p 
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R  (AB,  CD) 

for  the  determination  of  the  factor  of  proportionality  p.  This  equa- 
tion is  called  the  characteristic  equation  of  the  matrix  representing 

the  projectivity.  Every  value  of  p  satisfying  this  equation  then  leads 
to  a  double  point  when  substituted  in  one  of  the  equations  (3);  viz., 

if  ox  be  a  solution  of  the  characteristic  equation,  the  point 

(xv  xn)  =  (-  b,  a  -  Pl)  =  (d-  Pv  -  c) 

is  a  double  point.* 
In  homogeneous  coordinates  the  cross  ratio  fy(AB,  CD)  of  four 

points  A=(av  a2),  B  =  (bv  b„),  C  =  (cv  c2),  D  =  (dv  dj  is  given  by 

(ac)  __  (be) 

^ufj'^d)' where  the  expressions  (ac),  etc.,  are  used  as  abbreviations  for  a^—a^c^, 
etc.  This  statement  is  readily  verified  by  writing  down  the  above 

ratio  in  terms  of  the  nonhomogeneous  coordinates  of  the  four  points. 

We  will  close  this  section  by  giving  to  the  two  homogeneous  coor- 
dinates of  a  point  on  a  line  an  explicit  geometrical  significance.  In 

view  of  the  fact  that  the  coordinates  of  such  a  point  are  not  uniquely 

determined,  a  factor  of  proportionality  being  entirely  arbitrary,  there 

may  be  many  such  interpretations.  On  account  of  the  existence  of 

this  arbitrary  factor,  we  may  impose  a  further  condition  on  the  coor- 

dinates (xv  x2)  of  a  point,  in  addition  to  the  defining  relation  xl/x2=x, 
where  x  is  the  nonhomogeneous  coordinate  of  the  point  in  question. 

We  choose  the  relation  xx  +  xt  =  1.   If  this  relation  is  satisfied, 

x,  = 

*.= 

1  -1 
1     0 

• 

0  1 
1  0 

1  -1 
xl    xi 

0    1 
xl  x3 

=  R(-10,ooa;), 

1  -1 
0     1 

1  0 

0  1 

1  -1 
xl     xi 

1    0 
Xl     X2 

=  R(-loo,0a:). 

Thus  homogeneous  coordinates  subject  to  the  condition  xx  +  x2  =  1 
can  be  defined  by  choosing  three  points  A,  B,  C  arbitrarily,  and  letting 

xt  =  R  (AB,  CX)  and  x„  =  R  (AC,  BX).  The  ordinary  homogeneous 
coordinates  would  then  be  defined  as  any  two  numbers  proportional 
to  these  two  cross  ratios. 

»  This  point  is  indeterminate  only  if  6  =  c  =  0  and  a  =  d.  The  projectivity  is 
then  the  identity. 
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59.  Projective  correspondence  between  the  points  of  two  different 

lines.  Hitherto  we  have  confined  ourselves,  in  the  development  of 

analytic  methods,  to  the  points  of  a  single  line,  or,  under  duality,  to 

the  elements  of  a  single  one-dimensional  primitive  form.  Suppose 
now  that  we  have  two  lines  I  and  m  with  a  scale  on  each,  and  let 

the  nonhomogeneous  coordinate  of  any  point  of  I  be  represented  by 

x,  and  that  of  any  point  of  m  by  y.  The  question  then  arises  as  to 

how  a  projective  correspondence  between  the  point  x  and  the  point  y 

may  be  expressed  analytically.  It  is  necessary,  first  of  all,  to  give  a 

meaning  to  the  equation  y  =  x.  In  other  words :  What  is  meant  by  say- 

ing that  two  points — x  on  I,  and  y  on  w — have  the  same  coordinate  ? 
The  coordinate  a;  is  a  number  of  a  field  and  corresponds  to  the  point 

of  which  it  is  the  coordinate  in  an  isomorphism  of  this  field  with  the 

field  of  points  on  the  line  I.  We  may  think  of  this  same  field  of 

numbers  as  isomorphic  with  the  field  of  points  on  the  line  m.  In 

bringing  about  this  isomorphism  nothing  has  been  specified  except 

that  the  fundamental  points  J£,  i^,  H  determining  the  scale  on  m 

must  correspond  to  the  numbers  0,  1  and  the  symbol  oo  respectively. 

If  the  correspondence  between  the  points  of  the  line  and  the  numbers 

of  the  field  were  entirely  determined  by  the  respective  correspond- 
ences of  the  points  i£,  Px,  i£  just  mentioned,  then  we  should  know 

precisely  what  points  on  the  two  lines  I  and  m  have  the  same  coor- 
dinates. It  is  not  true  of  all  fields,  however,  that  this  correspondence 

is  uniquely  determined  when  the  points  corresponding  to  0,  1,  co  are 

assigned.*  It  is  necessary,  therefore,  to  specify  more  definitely  how 
the  isomorphism  between  the  points  Of  m  and  the  numbers  of  the 

field  is  brought  about.  One  way  to  bring  it  about  is  to  make  use  of 

the  projectivity  which  carries  the  fundamental  points  0,  1,  oo  of  Z 

into  the  fundamental  points  0,  1,  oo  of  m,  and  to  assign  the  coordinate 

x  of  any  point  A  of  I  to  that  point  of  m  into  which  A  is  transformed 

by  this  projectivity.  In  this  projectivity  pairs  of  homologous  points 
will  then  have  the  same  coordinates.  That  the  field  of  points  and  the 

field  of  numbers  are  indeed  made  isomorphic  by  this  process  follows 

directly  from  Theorems  1  and  3  in  connection  with  Theorem  1,  Cor., 

Chap.  IV.   We  may  now  readily  prove  the  following  theorem : 

*  This  is  shown  by  the  fact  that  the  field  of  all  ordinary  complex  numbers  can 
be  isomorphic  with  itself  not  only  by  making  each  number  correspond  to  itself,  but 
also  by  making  each  number  o  +  ib  Correspond  to  its  conjugate  a  —  ib. 
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Theorem  16.  Any  projective  correspondence  between  the  points  [z] 

and  [y]  of  two  distinct  lines  may  be  represented  analytically  by  the 

relation  y  =  x  by  properly  choosing  the  coordinates  on  the  two  lines. 

If  the  coordinates  on  the  two  lines  are  so  related  that  the  relation 

y  =  x  represents  a  projective  correspondence,  then  any  projective  cor- 
respondence between  the  points  of  tlie  two  lines  is  given  by  a  relation 

y  =   ,  lad  —  bc^O). 
*      cx  +  d  v  ' 

(A,  E,  P) 

Proof.  The  first  part  of  the  theorem  follows  at  once  from  the  pre- 
ceding discussion,  since  any  projectivity  is  determined  by  three  pairs 

of  homologous  points,  and  any  three  points  of  either  line  may  be 

chosen  for  the  fundamental  points.  In  fact,  we  may  represent  any 

projectivity  between  the  points  of  the  two  lines  by  the  relation  y  =  x, 
by  choosing  the  fundamental  points  on  /  arbitrarily ;  the  fundamental 

points  on  m  are  then  uniquely  determined.  To  prove  the  second  part 

of  the  theorem,  let  ir  be  any  given  projective  transformation  of  the 

points  of  the  line  I  into  those  of  m,  and  let  ir0  be  the  projectivity 

y  =  x,  regarded  as  a  transformation  from  m  to  I.  The  resultant 

7r07r  =  ir1  is  a  projectivity  on  I,  and  may  therefore  be  represented  by 

xf  =  (ax  -f  b)/(cx  +  d).  Since  it  =  7r~l7rv  this  gives  readily  the  result 
that  7r  may  be  represented  by  the  relation  given  in  the  theorem. 

EXERCISES 

1.  Give  constructions  for  subtraction  and  division  in  the  algebra  of  points 
on  a  line. 

2.  Give  constructions  for  the  sum  and  the  product  of  two  lines  of  a  pencil 
of  lines  in  which  a  scale  has  been  established. 

3.  Develop  the  point  algebra  on  a  line  by  using  the  properties  expressed  in 

Theorems  2  and  4  as  the  definitions  of  addition  and  multiplication  respec- 
tively.   Is  it  necessary  to  use  Assumption  P  from  the  beginning  ? 

4.  Using  Cor.  3  of  Theorem  9,  Chap.  Ill,  show  that  addition  and  multi- 
plication may  be  defined  as  follows:  As  before,  choose  three  points  P0,  Plt 

Pa,  on  a  Kne  I  as  fundamental  points,  and  let  any  line  through  Pm  be  labeled 

L,.  Then  the  sum  of  two  numbers  Px  and  P9  is  the  point  Px+r  into  which  P9 

is  transformed  by  the  elation  with  axis  /„  and  center  P^  which  transforms 

P0  into  Px ;  and  the  product  Px  •  Py  is  the  point  P^  into  which  Pf  is  trans- 
formed by  the  homology  with  axis  /„  and  center  P0  which  transforms  Px  into 

P„.  Develop  the  point  algebra  on  this  basis  without  using  Assumption  P, 

except  in  the  proof  of  the  commutativity  of  multiplication. 
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5.  If  the  relation  ax  =  by  holds  between  four  points  a,  b,  x,  y  of  a  line, 

show  that  we  have  Q(0ba,  <x>yx).    Is  Assumption  P  necessary  for  this  result? 
X    — *  X         X    —~  X 

6.  Prove  by  direct  computation  that  the  expression  -*   s  :  -*   s  is 

unchanged  in  value  when  the  four  points  xx,  x2,  xs,  xi  are  subjected  to  any 

ax  -l~  b linear  fractional  transformation  x?  —   
ex  +  a 

7.  Prove  that  the  transformations 

*-*•  x'4  x'  =  1-x-  *-T=T  *-z=T  k'=^ 
form  a  group.    What  are  the  periods  of  the  various  transformations  of  this 

group?   (Cf.  Theorem  13,  Cor.  3.) 

8.  If  yl ,  B,  C,  Plt  P2,  •••,  P„  are  any  n  +  3  points  of  a  line,  show  that 
every  cross  ratio  of  any  four  of  these  points  can  be  expressed  rationally  in 

terms  of  the  n  cross  ratios  A,-  =  R  (-45,  CP{),  i  =  1,  2,  •  •  • ,  n.  When  n  =  1 
this  reduces  to  Theorem  13,  Cor.  3.    Discuss  in  detail  the  case  n  =  2. 

9.  If  R  (XjXjj,  x3x4)  =  X,  show  that 

1,-A   1_  X 
Xj      xi      Z|      x2      x3      Xj 

The  relation  of  Cor.  3  of  Theorem  13  is  a  special  case  of  this  relation. 

10.  Show  that  if  R  (AB,  CD)  =  R  (AB,  DC),  the  points  form  a  harmonic 

set  H(AB,  CD). 

11.  If  the  cross  ratio  R  (^4  B,  CD)  =  X  satisfies  the  equation  A2  —  X  +  1  =  0, 

then  R  (AB,  CD)  =  R  (A C,  DB)  =  R  (AD,  BC)  =  A, 

and  R  (AB,DC)  =  R  (AC,  BD)  =  R  (AD,  CB)  =-  A2. 

12.  If  A,  B,  X,  Y,  Z  are  any  five  distinct  points  on  a  line,  show  that 

R  (AB,  XY)  •  R  (AB,  YZ)  ■  R  (AB,  ZX)  =  1. 

13.  State  the  corollaries  of  Theorem  11  in  homogeneous  coordinates. 

14.  By  direct  computation  show  that  the  two  methods  of  determining  the 

double  points  of  a  projectivity  described  in  §§  54  and  58  are  equivalent. 

15.  If  Q(ABC,  XYZ),  then 

R  (AX,  YC)  +  R  (BY,  ZA)  +  R  (CZ,  XB)  =  1. 

16.  If  Mv  M2,  M3  are  any  three  points  in  the  plane  of  a  line  I  but  not  on 
I,  the  cross  ratios  of  the  lines  I,  PMX,  PM2,  PM5  are  different  for  any  two 

points  P  on  I. 

17.  If  A,  B  are  any  two  fixed  points  on  a  line  /,  and  A',  Y  are  two  variable 
points  such  that  R(^4iJ,  AT)  is  constant,  the  set  [Aj  is  projective  with  the 
set  [F]. 



CHAPTER  VII 

COORDINATE  SYSTEMS  IN  TWO-  AND  THREE-DIMENSIONAL* 
FORMS 

60.  Nonhomogeneous  coordinates  in  a  plane.  In  order  to  repre- 
sent the  points  and  lines  of  a  plane  analytically  we  proceed  as  follows : 

Choose  any  two  distinct  lines  of  the  plane,  which  we  will  call  the 

axes  of  coordinates,  and  determine  on  each  a  scale  (§  48)  arbitrarily, 

except  that  the  point  of  intersection  0  of  the  lines  shall  be  the 

0-point  on  each  scale  (fig.  78).  This  point  we  call  the  origin.  Denote 
the  fundamental 

points  on  one  of 
the  lines,  which 

we  call  t\m  x-axis, 

°y  0X,  !x»  °°x  5  and 
on  the  other  line, 
which  we  will  call 

the  y-axis,  by  0y, 
lf,  ocy.  Let  the 

lini  ccxccr  be  de- 
noted by  /». 

Xow  let  P  be  any  point  in  the  plane  not  on  /..  Let  the  lines  Pocf 

and  Pzcx  meet  the  #-axis  and  the  y-axis  in  points  whose  nonhomoge- 

neous  coordinates  are  a  and  b  respectively,  in  the  scales  just  estab- 
lished. The  two  numbers  a,  b  uniquely  determine  and  are  uniquely 

determined  by  the  point  P.  Thus  every  point  in  the  plane  not  on  /«, 

is  represented  by  a  pair  of  numbers;  ard,  conversely,  every  pair  of 

numbers  of  which  one  belongs  to  the  scale  on  the  x-axis  and  the 

other  to  the  scale  on  the  y-axis  determines  a  point  in  the  plane  (the 

pair  of  symbols  ocx,  ocy  being  excluded).  The  exceptional  character 

of  the  points  on  /„  will  be  removed  presently  (§  63)  by  considera- 
tions similar  to  those  used  to  remove  the  exceptional  character  of 

*  All  the  developments  of  this  chapter  are  on  the  basis  of  Assumptions 
A,E,P. 
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Fig.  78 
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the  point  oo  in  the  case  of  the  analytic  treatment  of  the  points  of  a 

line  (§  58).  The  two  numbers  just  described,  determining  the  poiut 

P,  are  called  the  nonhomoyeneous  coordinates  of  P  with  reference  to 

Fig.  79 

the  two  scales  on  the  x-  and  the  y-axes.  The  point  P  is  then  repre- 
sented analytically  by  the  symbol  (a,  b).  The  number  a  is  called  the 

x-coordinate  or  the  abscissa  of  the  point,  and  is  always  written  first 
in  the  symbol  representing  the  point;  the  number  b  is  called  the 

y-coordinate  or  the  ordinate  of  the  point,  and  is  always  written  last 
in  this  symbol. 

The  plane  dual  of  the  process  just  described  leads  to  the  corre- 

sponding analytic  representation  of  a  line  in  the  plane.  For  this  pur- 
pose, choose  any  two  distinct  points  in  the  plane,  which  we  will  call 

the  centers  of  coordinates;  and  in  each  of  the  pencils  of  lines  with 

these  centers  determine  a  scale  arbitrarily,  except  that  the  line  o  join- 

ing the  two  points  shall  be  the  0-line  in  each  scale.  This  line  we  call 
the  origin.  Denote  the  fundamental  lines  on  one  of  the  points,  which 

we  will  call  the  u-center,  by  0M,  lu,  oou ;  and  on  the  other  point,  which 

we  will  call  the  v-center,  by  0„,  1„,  oo„.  Let  the  point  of  intersection 
of  the  lines  oott,  oov  be  denoted  by  P,  (fig.  79). 

Now  let  I  be  any  line  in  the  plane  not  on  P*.  Let  the  points  lcov 

and  lcou  be  on  the  lines  of  the  w-center  and  the  v-center,  whose  non- 
homogeneous  coordinates  are  m  and  n  respectively  in  the  scales  just 

established.  The  two  numbers  m,  n  uniquely  determine  and  are 

uniquely  determined  by  the  line  7.  Thus  every  line  in  the  plane  not 

on  Pc  is  represented  by  a  pair  of  numbers ;  and,  conversely,  every  pair 

of  numbers  of  which  one  belongs  to  the  scale  on  the  w-center  and  the 
other  to  the  scale  on  the  v-center  determines  a  line  in  the  plane  (the 

pair  of  symbols  oou,  oo„  being  excluded).    The  exceptional  character 
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of  the  lines  on  H  will  also  be  removed  presently.  The  two  numbers 

just  described,  determining  the  line  I,  are  called  the  nonhomogeneous 
coordinates  of  I  with  reference  to  the  two  scales  on  the  u-  and 

^-centers.  The  line  I  is  then  represented  analytically  by  the  symbol 

[ra,  ri\.  The  number  in  is  called  the  u-codrdinate  of  the  line,  and  is 
always  written  first  in  the  symbol  just  given ;  the  number  n  is  called 

the  v-coordinate  of  the  line,  and  is  always  written  second  in  this 
symbol.  A  variable  point  of  the  plane  will  frequently  be  represented 

by  the  symbol  (x,  y) ;  a  variable  line  by  the  symbol  [u,  v].  The  coor- 
dinates of  a  point  referred  to  two  axes  are  called  point  coordinates ; 

the  coordinates  of  a  line  referred  to  two  centers  are  called  line  coor- 

dinates. The  line  l^  and  the  point  li  are  called  the  singular  line  and 
the  singular  point  respectively. 

61 .  Simultaneous  point  and  line  coordinates.  In  developing  further 

our  analytic  methods  we  must  agree  upon  a  convenient  relation 

between  the  axes  and  centers  of  the  point  and  line  coordinates  respec- 
tively.  Let  us  consider  any  triangle  in  the  plane,  say  with  vertices 

Fig.  80 

0,  U,  V.  Let  the  lines  0  U  and  0  V  be  the  y-  and  z-axes  respectively, 
and  in  establishing  the  scales  on  these  axes  let  the  points  U,  V  be 

the  points  oc,,  oox  respectively  (fig.  80).  Further,  let  the  points  U,  V 

be  the  w-center  and  the  r-center  respectively,  and  in  establishing  the 
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scales  on  these  centers  let  the  lines  UO,  VO  be  the  lines  oou,  oov 

respectively.  The  scales  are  now  established  except  for  the  choice  of 

the  1  points  or  lines  in  each  scale.  Let  us  choose  arbitrarily  a  point 

lx  on  the  «-axis  and  a  point  ly  on  the  y-axis  (distinct,  of  course,  from 
the  points  0,  U,  V).  The  scales  on  the  axes  now  being  determined, 
we  determine  the  scales  on  the  centers  as  follows :  Let  the  line  on 

U  and  the  point  —  lx  on  the  #-axis  be  the  line  lu;  and  let  the  line 

on  V  and  the  point  —  ly  on  the  y-axis  be  the  line  1„.  All  the  scales 
are  now  fixed.  Let  ir  be  the  projectivity  (§  59,  Chap.  VI)  between 

the  points  of  the  a>axis  and  the  lines  of  the  w-center  in  which  points 

and  lines  correspond  when  their  x-  and  ̂ -coordinates  respectively 

are  the  same.  If  nr'  is  the  perspectivity  in  which  every  line  on  the 
%-eenter  corresponds  to  the  point  in  which  it  meets  the  ic-axis,  the 

product  7r'7r  transforms  the  #-axis  into  itself  and  interchanges  0  and 

oox,  and  lx  and  —  1^  Hence  7r'7r  is  the  involution  x'  =  —  1/x.  Hence 
it  follows  that  the  line  on  U  whose  coordinate  is  u  is  on  the  point  of 

the  x-axis  whose  coordinate  is  — 1/u;  and  the  point  on  the  x-axis 

whose  coordinate  is  x  is  on  the  line  of  the  u-center  whose  coordinate 

is  —1/x.  This  is  the  relation  between  the  scales  on  the  x-axis  and 
the  w-center. 

Similar  considerations  with  reference  to  the  y-axis  and  the  v-center 

lead  to  the  corresponding  result  in  this  case  :  The  line  on  V  whose  coor- 

dinate is  v  is  on  that  point  of  the  y-axis  whose  coordinate  is  —1/v; 

and  the  point  of  the  y-axis  whose  coordinate  is  y  is  on  that  line  of  the 

v-center  whose  coordinate  is  —  1/y. 
62.  Condition  that  a  point  be  on  a  line.  Suppose  that,  referred  to 

a  system  of  point-and-line  coordinates  described  above,  a  point  P  has 
coordinates  (a,  o)  and  a  line  I  has  coordinates  [m,  n\  The  condition 

that  P  be  on  I  is  now  readily  obtainable.  Let  us  suppose,  first,  that 
none  of  the  coordinates  a,  b,  m,  n  are  zero.  We  may  proceed  in  either 

one  of  two  dual  ways.  Adopting  one  of  these,  we  know  from  the 

results  of  the  preceding  section  that  the  line  [m,  n]  meets  the  aj-axis 

in  a  point  whose  ic-coordinate  is  —  1  /m,  and  meets  the  y-axis  in  a 
point  whose  y-coordinate  is  —1/n  (fig.  81).  Also,  by  definition,  the 

line  joining  P  =  (a,  b)  to  U  meets  the  a>axis  in  a  point  whose  a>coor- 

dinate  is  a ;  and  the  line  joining  P  to  V  meets  the  y-axis  in  a  point 
whose  y-coordinate  is  b.  If  P  is  on  /,  we  clearly  have  the  following 

perspectivity : 
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(l) 

Hence  we  have 

(2) 

1  ?     1 
  Oaocr  =   Occb. 

x  A        <•> m n 

» (-£<>.««.)-»(- ;*■*»)■ 

which,  when  expanded  (Theorem  13,  Chap.  VI),  gives  for  the  desired 
condition 

(3)  ma  +  nb  +  1  =  0. 

This  condition  has  been  shown  to  be  necessary.  It  is  also  sufficient, 

for,  if  it  is  satisfied,  relation  (2)  must  hold,  and  hence  would  follow 

(Theorem  13,  Cor.  5,  Chap.  VI) 

  Oaocx  -r   Oxl 
m  zA       n        ' 

But  since  this  projectivity  has  the  self-corresponding  element  0,  it 
is  a  perspectivity  which  leads  to  relation  (1).  But  this  implies  that 
P  is  on  /. 

Fig.  81 

If  now  a  =  0  (b  =£  0),  we  have  at  once  b  =  —  1  /n ;  and  if  b  =  0  (a  =t=  0), 
we  have  likewise  a  =  —  l/m  for  the  condition  that  P  be  on  I.  But 

each  of  these  relations  is  equivalent  to  (3)  when  a  =  0  and  5  =  0 

respectively.  The  combination  a  =  0,  b  =  0  gives  the  origin  0  which 

is  never  on  a  line  [m,  n]  where  m  =£  oc  =£  n.  It  follows  in  the  same 

way  directly  from  the  definition  that  relation  (3)  gives  the  desired 
condition,  if  we  have  either  m  =  0  or  n  =  0.  The  condition  (3)  is 
then  valid  for  all  cases,  and  we  have 
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Theorem  1.  The  necessary  and  sufficient  condition  that  a  point 

P  =  {a,  b)  be  on  a  line  I  =  [m,  n]  is  that  the  relation  ma  -f  nb  +  1  =  0 
be  satisfied. 

Definition.  The  equation  Definition.  The  equation 

which  is  satisfied  by  the  coordi-  which  is  satisfied  by  the  coordi- 
nates of  all  the  points  on  a  given  nates  of  all  the  lines  on  a  given 

line  and  no  others  is  called  the  point  and  no  others  is  called  the 

point  equation  of  the  line.  line  equation  of  the  point. 

Corollary  1.  The  point  equa-         Corollary  1'.   The  line  equa- 
tion of  the  line  [m,  n]  is  tion  of  the  point  (a,  b)  is 

mx  +  ny  +  1  =  0.  au  -f  bv  +  1  =  0. 

EXERCISE 

Derive  the  condition  of  Theorem  1  by  dualizing  the  proof  given. 

63.  Homogeneous  coordinates  in  the  plane.  In  the  analytic  repre- 
sentation of  points  and  lines  developed  in  the  preceding  sections  the 

points  on  the  line  UV=o  and  the  lines  on  the  point  0  were  left 
unconsidered.  To  remove  the  exceptional  character  of  these  points 

and  lines,  we  may  recall  that  in  the  case  of  a  similar  problem  in  the 

analytic  representation  of  the  elements  of  a  one-dimensional  form  we 
found  it  convenient  to  replace  the  nonhomogeneous  coordinate  x  of 

a  point  on  a  line  by  a  pair  of  numbers  xv  x2  whose  ratio  xjx%  was 

equal  to  x  (x  =£  oo),  and  such  that  x2  =  0  when  x  =  oo. 
A  similar  system  of  homogeneous  coordinates  can  be  established  for 

the  plane.  Denote  the  vertices  0,  U,  V  of  any  triangle,  which  we  will 

call  the  triangle  of  reference,  by  the  "  coordinates  "  (0,  0,  1),  (0,  1,  0), 
(1,  0,  0)  respectively,  and  an  arbitrary  point  T,  not  on  a  side  of  the 

triangle  of  reference,  by  (1,  1,  1).  The  complete  quadrangle  OUVT 

is  called  the  frame  of  reference  *  of  the  system  of  coordinates  to  be 
established.  The  three  lines  UT,  VT,  OT  meet  the  other  sides  of  the 

triangle  of  reference  in  points  which  we  denote  by  la.  =  (l,  0,  1), 

lv  =  (0, 1,  1),  1,-(1, 1,  0)  respectively  (fig.  82). 
We  will  now  show  how  it  is  possible  to  denote  every  point  in  the 

plane  by  a  set  of  coordinates  (xv  x2,  x3).  Observe  first  that  we  have 

thus  far  determined  three  points  on  each  of  the  sides  of  the  triangle 

*  Frame  of  reference  is  a  general  term  that  may  be  applied  to  the  fundamental 
elements  of  any  coordinate  system. 
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of  reference,  viz. :  (0, 0, 1),  (0, 1, 1),  (0, 1, 0)  on  OU;  (0, 0, 1),  (1, 0, 1), 

(1,  0,  0)  on  OV;  and  (0,  1,  0),  (1,  1,  0),  (1,  0,  0)  on  UV.  The  coordi- 
nates which  we  have  assigned  to  these  points  are  all  of  the  form 

(xv  xv  xs).  The  three  points  on  OU  are  characterized  by  the  fact  that 

xt  =  0.  Fixing  attention  on  the  remaining  coordinates,  we  choose  the 

points  (0,  0,  1),  (0,  1,  1),  (0,  1,  0)  as  the  fundamental  points  (0,  1), 
(1,  1),  (1,  0)  of  a  system  of  homogeneous  coordinates  on  the  line  OU. 

If  in  this  system  a  point  has  coordinates  (I,  m),  we  denote  it  in  our 

planar  system  by  (0,  I,  m).  In  like  manner,  to  the  points  of  the  other 

two  sides  of  the  triangle  of  reference  may  be  assigned  coordinates  of 

the  form  (k,  0,  m)  and  (k,  I,  0)  respectively.  We  have  thus  assigned 
coordinates  of  the  form  (xv  xti  x^  to  all  the  points  of  the  sides  of  the 

triangle  of  reference.  Moreover,  the  coordinates  of  every  point  on 

these  sides  satisfy  one  of  the  three  relations  xl  =  0,  x3  =  0,  xs  =  0. 

Now  let  P  be  any  point  in  the  plane  not  on  a  side  of  the  triangle 

of  reference.  P  is  uniquely  determined  if  the  coordinates  of  its  pro- 
jections from  any  two  of  the  vertices  of  the  triangle  of  reference  on 

the  opposite  sides  are  known.  Let  its  projections  from  U  and  V  on 

the  sides  OV  and  OU  be  (k,  0,  n)  and  (0,  /',  »')  respectively.  Since 
under  the  hypothesis  none  of  the  numbers  k,  n,  /',  n'  is  zero,  it  is 
clearly  possible  to  choose  three  numbers  {xv  xv  x^  such  that  xx :  xx 

=  k :  n,  and  xa:xs  =  l':  n'.  We  may  then  denote  P  by  the  coordinates 
(xv  xv  xs).  To  make  this  system  of  coordinates  effective,  however, 

we  must  show  that  the  same  set  of  three  numbers  (xv  xv  xa)  can  be 
obtained  by  projecting  P  on  any  other  pair  of  sides  of  the  triangle 

of  reference.  In  other  words,  we  must  show  that  the  projection  of 

P  =  (xv  xv  xa)  from  O  on  the  line  UV  is  the  point  (xv  xv  0).  Since 
this  is  clearly  true  of  the  point  T  =  (l,  1,  1),  we  assume  P  distinct 

from  T.  Since  the  numbers  xv  xv  xs  are  all  different  from  0,  let  us 

place  xl :  x3  =  x,  and  xt :  xs  =  y,  so  that  x  and  y  are  the  nonhomoge- 
neous  coordinates  of  (xv  0,  xs)  and  (0,  xt,  x3)  respectively  in  the  scales 

on  OV  and  OU  denned  by  O  =  0X,  lx,  F=  oox  and  O  =  0,,  19,  U=  ooK 
Finally,  let  OP  meet  UV  in  the  point  whose  nonhomogeneous  coor- 

dinate in  the  scale  defined  by  U=  0S,  12,  V=  oo,  is  z;  and  let  OP 
meet  the  line  \JJ  in  A.   We  now  have 
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where  C  is  the  point  in  which  VA  meets  OU.    This  projectivity 

between  the  lines  UV  and  OU  transforms  0Z  into  oo„,  ooz  into  0y,  and 
lz  into  ly.    It  follows  that  C  has  the  coordinate  1/z  in  the  scale  on 
OU.   We  have  also 

U  V  i 

x  x  x     A      x         A      »  »*" 

a;  =  B  (cox0x,  lxx)  =  B  (  ccvOy,  -y)  =  zy. 

which  gives 

Substituting  x  =  xx :  a^3,  and  y  =  x2: x3,  this  gives  the  desired  relation 

z  =  xx :  #2.  The  results  of  this  discussion  may  be  summarized  as 
follows : 

u=(oio)=ot 

Fig.  82 

Theorem  2.  Definition.  If  P  is  any  point  not  on  a  side  of  the 

triangle  of  reference  OUV,  there  exist  three  numbers  xv  xv  x3  (all  dif- 
ferent from  0)  such  that  the  projections  of  P  from  the  vertices  0,  U, 

V  on  the  opposite  sides  have  coordinates  (xv  x2,  0),  (xv  0,  xs),  (0,  x2,  xa) 
respectively.  These  three  numbers  are  called  the  homogeneous  coordi- 

nates of  P,  and  P  is  denoted  by  (xv  x2,  xa).  Any  set  of  three  numbers 

(not  all  equal  to  0)  determine  uniquely  a  point  whose  (homogeneous) 
coordinates  they  are. 

The  truth  of  the  last  sentence  in  the  above  theorem  follows  from 

the  fact  that,  if  one  of  the  coordinates  is  0,  they  determine  uniquely 

a  point  on  one  of  the  sides  of  the  triangle  of  reference;  whereas,  if 

none  is  equal  to  0,  the  lines  joining  U  to  (xv  0,  x8)  and  V  to  (0,  x2,  x3) 

meet  in  a  point  whose  coordinates  by  the  reasoning  above  are  (xvx2,xs). 
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Corollary.  The  coordinates  (xv  x2,  x3)  and  (kxv  kx2,  kxs)  determine 
the  same  point,  if  k  is  not  0. 

Homogeneous  line  coordinates  arise  by  dualizing  the  above  discus- 
sion in  the  plane.  Thus  we  choose  any  quadrilateral  in  the  plane  as 

frame  of  reference,  denoting  the  sides  by  [1,  0,  0],  [0,  1,  0],  [0,  0,  1], 

[1, 1, 1]  respectively.  The  points  of  intersection  with  [1, 1, 1]  of  the 

lines  [1,  0,  0],  [0,  1,  0],  [0,  0,  1]  are  joined  to  the  vertices  of  the  tri- 
angle of  reference  opposite  to  [1,  0,  0],  [0, 1,  0],  [0,  0, 1]  respectively 

by  lines  that  are  denoted  by  [0,  1,  1],  [1,  0,  1],  [1,  1,  0].  The  three 

lines  [1,  0,  0],  [1,  1,  0],  [0,  1,  0]  are  then  taken  as  the  fundamental 

lines  [1,  0],  [1, 1],  [0, 1]  of  a  homogeneous  system  of  coordinates  in 

a  flat  penciL  H  in  this  system  a  line  is  denoted  by  \uv  wj,  it  is 

denoted  in  the  planar  system  by  [uv  u2,  0].  In  like  manner,  to  the 
lines  on  the  other  vertices  are  assigned  coordinates  of  the  forms 

[0,  u2,  u3]  and  [uv  0,  u3]  respectively.  As  the  plane  dual  of  the 
theorem  and  definition  above  we  then  have  at  once 

Theorem  2'.  Definition.  If  I  is  any  line  not  on  a  vertex  of  the 
triangle  of  reference,  there  exist  three  numbers  uv  u2,  ut  all  different 

from  zero,  such  that  the  traces  of  I  on  the  three  sides  of  the  triangle  of 

reference  are  projected  from  the  respective  opposite  vertices  by  the  lines 

[uv  u2,  0],  [uv  0,  u3],  [0,  u2,  u3\  These  three  numbers  are  called  the 
homogeneous  coordinates  of  I,  and  I  is  denoted  by  [uv  u2,  u3\  Any 
set  of  three  numbers  (not  all  zero)  determine  uniquely  a  line  whose 
coordinates  they  are. 

Homogeneous  point  and  line  coordinates  may  be  put  into  such 

a  relation  that  the  condition  that  a  point  (xv  x2,  x3)  be  on  a  line 

[uv  u2,  us]  is  that  the  relation  u1x1+  u2x2-r  u3x3  =  0  be  satisfied.  We 
have  seen  that  if  (xv  x2,  x3)  is  a  point  not  on  a  side  of  the  triangle  of 

reference,  and  we  place  x  =  xjx3,  and  y  =  x2/x3,  the  numbers  (x,  y) 
are  the  nonhomogeneous  coordinates  of  the  point  (xv  x2,  x3)  referred 

to  O  V  as  the  a>axis  and  to  O  U  as  the  y-axis  of  a  system  of  nonho- 
mogeneous coordinates  in  which  the  point  T=(l,  1,  1)  is  the  point 

(1,1)  (O,  U,  V  being  used  in  the  same  significance  as  in  the  proof  of 

Theorem  2).  By  duality,  if  \uv  u2,  u3]  is  any  line  not  on  any  vertex 

of  the  triangle  of  reference,  and  we  place  u  =  uju3  and  v  =  uju3, 

the  numbers  [u,  v]  are  the  nonhomogeneous  coordinates  of  the  line 

[uv  u2,  u3]  referred  to  two  of  the  vertices  of  the  triangle  of  reference 
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as  ZT-center  and  F-center  respectively,  and  in  which  the  line  [1, 1,  1] 
is  the  line  [1, 1].  If,  now,  we  superpose  these  two  systems  of  nonhom- 

ogeneous  coordinates  in  the  way  described  in  the  preceding  section, 

the  condition  that  the  point  (x,  y)  be  on  the  line  [u,  v]  is  that  the 

relation  ux  +  vy  +  1  =  0  be  satisfied  (Theorem  1).  It  is  now  easy  to 
recognize  the  resulting  relation  between  the  systems  of  homogeneous 

coordinates  with  which  we  started.  Clearly  the  point  (0,  1,  0)  =  U  is 

the  ̂ -center,  (1,  0,  0)  =  V  is  the  F-center,  and  (0,  0,  1)  =  O  is  the  third 

V=(oio) 

v=(ioo) 

Fig.  83 

vertex  of  the  triangle  of  reference  in  the  homogeneous  system  of  line 

coordinates.  Also  the  line  whose  points  satisfy  the  relation  x1  =  0  is 

the  line  [1,  0,  0],  the  line  for  which  x2  =  0  is  the  line  [0,  1,  0],  and 

the  line  for  which  xz  =  0  is  the  line  [0,  0,  1].  Finally,  the  line 

[1,  1]  =  [1,  1,  1],  whose  equation  in  nonhomogeneous  coordinates  is 

x  +  V  +  1  =  0,  meets  the  line  x1  =  0  in  the  point  (0,  —  1,  1),  and  the 

line  x2  =  0  in  the  point  (—  1,  0,  1).  The  two  coordinate  systems  are 
then  completely  determined  (fig.  83). 

It  now  follows  at  once  from  the  result  of  the  preceding  section 

that  the  condition  that  (xv  x2,  xa)  be  on  the  line  [uv  u2,  u3]  is 

uxxx  +  u%x%  +  iizx%  =  0,  if  none  of  the  coordinates  xv  x2,  x3,  uv  u2,  u 
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is  zero.  To  see  that  the  same  condition  holds  also  when  one  (or  more) 

of  the  coordinates  is  zero,  we  note  first  that  the  points  (0,  —  1,  1) 

(—  1,  0, 1),  and  (—  1,  1,  0)  are  collinear.  They  are,  in  fact  (fig.  83),  on 
the  axis  of  perspectivity  of  the  two  perspective  triangles  OUV  and 

lxlylz,  the  center  of  perspectivity  being  T.    It  is  now  clear  that 

the  line  [1,  0,  0]  passes  through  the  point  (0,  1,  0), 

the  line  [0,  1,  0]  passes  through  the  point  (1,  0,  0), 

the  line  [1, 1,  0]  passes  through  the  point  (—  1,  1,  0). 

There  is  thus  an  involution  between  the  points  (xv  xv  0)  of  the  line 

x3  =  0  and  the  traces  (xf,  x2\  0)  of  the  lines  with  the  same  coordinates, 
and  this  involution  is  given  by  the  equations 

x[  =  x2, 

xl  =  -xv 

In  other  words,  the  line  [uv  u2,  0]  passes  through  the  point  (—  ut>  uv  0). 
Any  other  point  of  this  line  (except  (0,  0,  1))  has,  by  definition,  the 

coordinates  (—  w2,  uv  xa).  Hence  all  points  (xv  xv  xa)  of  the  line 

[uv  «2,  0]  satisfy  the  relation  uxxx  +  u2x2  +  u3xs  =  0.  The  same  argu- 
ment applied  when  any  one  of  the  other  coordinates  is  zero  estab- 
lishes this  condition  for  all  cases.  A  system  of  point  and  a  system 

of  line  coordinates,  when  placed  in  the  relation  described  above,  will 

be  said  to  form  a  system  of  homogeneous  point  and  line  coordinates  in 

the  plane.    The  result  obtained  may  then  be  stated  as  follows : 

Theorem  3.  In  a  system  of  homogeneous  point  and  line  coordinates 

in  a  plane  the  necessary  and  sufficient  condition  that  a  point  (xv  xit  x3) 

be  on  a  line  [uv  u2,  u3]  is  that  the  relation  uxxx  +  u2xt  -+•  u3xt  =04 
satisfied. 

Corollary.  The  equation  of  a  line  through  the  origin  of  a  system 

of  nonhomogeneous  coordinates  is  of  the  form  mx  +  ny  =  0. 

EXERCISES 

1.  The  line  [1,  1,  1]  is  the  polar  of  the  point  (1,  1,  1)  with  regard  to  the 

triangle  of  reference  (cf.  p.  46). 

2.  The  same  point  is  represented  by  (a1,  a2,  a8)  and  (bl9  52,  bt)  if  and  only 

if  the  two-rowed  determinants  of  the  matrix  J.1  ,2  ,8)  are  all  zero. 

3.  Describe  nonhomogeneous  and  homogeneous  systems  of  line  and  plane 

)6rdinates  in  a  bundle  by  dualizing  in  space  the  preceding  discussion.  In 

ich  a  bundle  what  is  the  condition  that  a  line  be  on  a  plane  ? 
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64.  The  line  on  two  points.  The  point  on  two  lines.  Given  two 

points,  A  =  (av  a2,  a3)  and  B  =  (bx,  b2,  b3),  the  question  now  arises  as 
to  what  are  the  coordinates  of  the  line  joining  them;  and  the  dual 

of  this  problem,  namely,  given  two  lines,  m  =  [mv  ra2,  ra3]  and  n  = 
[nx,  n2,n3],  to  find  the  coordinates  of  the  point  of  intersection  of  the 
two  lines. 

Theorem  4.  The  equation  of 

the  line  joining  the  points  (ax,a2,  a3) 

and  (bv  b2,  b3)  is 
=  0. 

Theorem  4'.  The  equation  of 
the  point  of  intersection  of  the 

lines  \mvm2,m3\  and  [nvn2,n3]  is 

X\     X2 

xz 

ax  a2 

m,. 

U2 

m2 

na 

us 

=  0. 

Proof  When  these  determinants  are  expanded,  we  get 

2     tti 

n. 
xx  + 

ux  + 

a3  ax 

h  \ 

ms  m n»    n. 

x*  + 
a,   ar 

».+ 
b\  b 
n,    na 

x3=0, 

u3=0, 

respectively".  The  one  above  is  the  equation  of  a  line,  the  one  below 
the  equation  of  a  point.  Moreover,  the  determinants  above  both 

evidently  vanish  when  the  variable  coordinates  are  replaced  by  the 

coordinates  of  the  given  elements.  The  expanded  form  ju*st  given 
leads  at  once  to  the  following: 

Corollary  1.  The  coordinates 

of  the  line  joining  the  points 

(av  a2,  a3),  (bv  b2,  b3)  are 

Corollary  1'.  The  coordinates 

of  the  point  of  intersection  of  the 

lilies  [mx,  m2,  m3],  [nv  n2,  n3]  are 

U'.U„\U,= 

a,  a, 
a3  ax ax  a2 

I'll      •     I'      — 

ra2ra8 
n2  ns 

m3m1 
n3  nx 

- 

mxm2 

nx  n2 

There  also  follows  immediately  from  this  theorem : 

Corollary  2.    The   condition         Corollary  2'.    The   condition 

that  three  points  A,  B,  C  be  col-     that  three  lines  m,  n,  p  be  con- 
linear  is  current  is 

ax  a2 

bx  b2 

«8 

cx   ca 

C8 

=  0. 

mx 
m2 

m3 nx 
U2 

n* 

Pi p* Ps 

=  0. 

Example.  Let  us  verify  the  theorem  of  Desargues  (Theorem  1,  Chap.  II) 

analytically.  Choose  one  of  the  two  perspective  triangles  as  triangle  of  refer- 

ence, say  A'  =  (0,0, 1),  &  =  (0,1,0),  C"  =  (1,0,0),  and  let  the  center  of  per- 
spectivity  he  P  =  (1,  1,  1).    If  the  other  triangle  is  ABC,  we  may  place 
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A -(1,1,  a),  B  =  (1,  b,  1),  C  =  (c,  1,  1) ;  for  the  equation  of  the  line  PA' 
is  Xj  —  x2  =  0  ;  and  since  .4  is,  by  hypothesis,  on  this  line,  its  first  two  coordi- 

nates must  be  equal,  and  may  therefore  be  assumed  equal  to  1 ;  the  third 

coordinate  is  arbitrary.  Similarly  for  the  other  points.  Now,  from  the  above 

theorems  and  their  corollaries  we  readily  obtain  in  succession  the  following  : 

The  coordinates  of  the  line  A'B'  are  [1,  0,  0]. 
The  coordinates  of  the  line  A B  are  [1  —  ab,  a  —  \,b  —  1]. 

Hence  the  coordinates  of  their  intersection  C"  are 

C"  =  (0,  1-6,  a-  1). 

Similarly,  we  find  the  coordinates  of  the  intersection  A"  of  the  lines  B'C ' ,  BC 

tobe  A"  =  (l-c,b-l,0); 

and,  finally,  the  coordinates  of  the  intersection  B"  of  the  lines  C'A',  CA  to  be 

B"  =  (c-1,  0,  1-a). 

The  points  A",  B",  C"  are  readily  seen  to  satisfy  the  condition  for  collinearity. 

EXERCISES 

1.  Work  through  the  dual  of  the  example  just  given,  choosing  the  sides  of 

one  of  the  triangles  and  the  axis  of  perspectivity  as  the  fundamental  lines  of 

the  system  of  coordinates.  Show  that  the  work  may  be  made  identical,  step 

for  step,  with  that  above,  except  for  the  interpretation  of  the  symbols. 

2.  Show  that  the  system  of  coordinates  may  be  so  chosen  that  a  quadrangle- 
quadrilateral  configuration  is  represented  by  all  the  sets  of  coordinates  that 
can  be  formed  from  the  numbers  0  and  1.    Dualize. 

3.  Derive  the  equation  of  the  polar  line  of  any  point  with  regard  to  the 

triangle  of  reference.    Dualize. 

65.  Pencils  of  points  and  lines.  Projectivity.  A  convenient  ana- 
lytic representation  of  the  points  of  a  pencil  of  points  or  the  lines  of 

a  pencil  of  lines  is  given  by  the  following  dual  theorems : 

Theorem  5.  Any  'point  of  a  Theorem  5'.  Any  line  of  a 
pencil  of  points  may  be  repre-  pencil  of  lines  may  be  represented 
seated  by  by 

P  =  (\al  +  \bv  X2a2  +  \bv  p  =  [jyw,  +  Hi>h>  Vj  +  /Vv 
\a%  -f-  \bs),  fi2m3  +  ̂ n,], 

where  A  =  (ax  a2,  a3)    and    B  =  where  m  =  [mv  ra2,  ms]  and  n  = 
(bv  b2,  bs)   are  any   two   distinct  \nv  nv  ns]  are  any  two  distinct 
points  of  the  pencil.  lines  of  the  pencil. 

Proof.  We  may  confine  ourselves  to  the  proof  of  the  theorem  on 

the  left.  By  Theorem  4,  Cor.  2,  any  point  (xv  xti  x3)  of  the  pencil  of 
points  on  the  line  AB  satisfies  the  relation 
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(1) 

""1 

a,   a„  a. 

=  0. 

&1      &2      &3 

We  may  then  determine  three  numbers  p,  X2,  X/,  such  that  we  have 

(2)  px^XX+KK  (t  =  l,  2,  3) 

The  number  p  cannot  be  0  under  the  hypothesis,  for  then  we  should 

have  from  (2)  the  proportion  al:  a„:  az  =  b1:b2:b&,  which  would  imply 
that  the  points  A  and  B  coincide.  We  may  therefore  divide  by  p. 

Denoting  the  ratios  X2//3  and  X//p  by  X2  and  \,  we  see  that  every 

point  of  the  pencil  may  be  represented  in  the  manner  specified. 

Conversely,  every  point  whose  coordinates  are  of  the  form  specified 

clearly  satisfies  relation  (1)  and  is  therefore  a  point  of  the  pencil. 

The  points  A  and  B  in  the  above  representation  are  called  the  base 

points  of  this  so-called  parametric  representation  of  the  elements  of 
a  pencil  of  points.  Evidently  any  two  distinct  points  may  be  chosen 

as  base  points  in  such  a  representation.  The  ratio  \/\  is  called  the 

parameter  of  the  point  it  determines.  It  is  here  written  in  homoge- 
neous form,  which  gives  the  point  A  for  the  value  \  =  0  and  the 

point  B  for  the  value  X2  =  0.  In  many  cases,  however,  it  is  more 
convenient  to  write  this  parameter  in  nonhomogeneous  form, 

P  =  («!  +  Xbv  a2  +  \b„,  a3  +  \b3), 

which  is  obtained  from  the  preceding  by  dividing  by  X2  and  replacing 

X./JL  by  X.  In  this  representation  the  point  B  corresponds  to  the 

value  X  =  co.  We  may  also  speak  of  any  point  of  the  pencil  under 

this  representation  as  the  point  \ :  X2  or  the  point  X  when  it  corre- 
sponds to  the  value  Xx/X2  =  X  of  the  parameter.  Similar  remarks  and 

the  corresponding  terminology  apply,  of  course,  to  the  parametric 
representation  of  the  lines  of  a  flat  pencil.  It  is  sometimes  convenient, 

moreover,  to  adopt  the  notation  A  +  \B  to  denote  any  point  of  the 

pencil  whose  base  points  are  A,  B  or  to  denote  the  pencil  itself ;  also, 
to  use  the  notation  m  +  pm  to  denote  the  pencil  of  lines  or  any  line 

of  this  pencil  whose  base  lines  are  m,  n. 

In  order  to  derive  an  analytic  representation  of  a  projectivity 

between  two  one-dimensional  primitive  forms  in  the  plane,  we  seel 

first  the  condition  that  the  point  X  of  a  pencil  of  points  A  +  \B  be 

on  the  line  p.  of  a  pencil  of  lines  m  +  pn.  By  Theorem  3  the  condition 
that  the  point  X  be  on  the  line  n  is  the  relation 
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1=3 

J(m1.+  rt(ai+XJ,)=0. •  =i 

When  expanded  this  relation  gives 
i=3  i=8  i=8  t=8 

i=l  i=l  i=\  i=l 

This  is  a  bilinear  equation  whose  coefficients  depend  only  on  the  coor- 
dinates of  the  base  points  and  base  lines  of  the  two  pencils  and  not 

on  the  individual  points  for  which  the  condition  is  sought.    Placing 

this  equation  becomes  CfiX  +  Dp  —  Ak  —  B  =  0, 

which  may  also  be  written* 

(1)  *~exT*' 
The  result  may  be  stated  as  follows :  Any  perspective  relation  between 

two  one-dimensional  primitive  forms  of  different  kinds  is  obtained  by 
establishing  a  projective  correspondence  between  the  parameters  of  the 

two  forms.  Since  any  projective  correspondence  between  two  one- 
dimensional  primitive  forms  is  obtained  as  the  resultant  of  a  sequence 

of  such  perspectivities,  and  since  the  resultant  of  any  two  linear  frac- 
tional transformations  of  type  (1)  is  a  transformation  of  the  same 

type,  we  have  the  following  theorem: 

Theorem  6.  Any  projective  correspondence  between  two  one-dimen- 
sional primitive  forms  in  the  plane  is  obtained  by  establishing  a 

projective  relation  a\  +  8 
/i  =  — — —  (aS-^7^0) 

7A.  +  o 
between  the  parameters  fi,  \  of  the  two  forms. 

In  particular  we  have 

Corollary  1.    Any  projectivity  in  a  one-dimensional  primitive 
form  in  the  plane  is  given  by  a  relation  of  the  form 

X'=^rl'  (a8-8y*0) 
y\  +  b 

where  X  is  the  parameter  of  the  form. 

*  The  determinant  L,  -^J  does  not  vanish  because  the  correspondence  between 
.and  fi  is  (1,  1). 



184  COORDINATE  SYSTEMS  [Chap,  vn 

Corollary  2.  If  \v  X2,  \3,  X4  are  the  parameters  of  four  elements 

Av  A2,  A3,  Ai  of  a  one-dimensional  primitive  form,  the  cross  ratio 
E  {AXA2,  AsAt)  is  given  by 

Q  {AXA2,  ASA<)  =  R  (XXX2,  X3X4)  =  ̂ »  :  \^ . 

A  projectivity  between  two  different  one-dimensional  forms  may 
be  represented  in  a  particularly  simple  form  by  a  judicious  choice  of 

the  base  elements  of  the  parametric  representation.  To  fix  ideas,  let 

us  take  the  case  of  two  projective  pencils  of  points.  Choose  any  two 

distinct  points  A,  B  of  the  first  pencil  to  be  the  base  points,  and  let 

the  homologous  points  of  the  second  pencil  be  base  points  of  the 

latter.  Then  to  the  values  X  =  0  and  X  =  oo  of  the  first  pencil  must 

correspond  the  values  fi  =  0  and  /a  =  oo  respectively  of  the  second. 
In  this  case  the  relation  of  Theorem  6,  however,  assumes  the  form 

H  =  k\.  Hence,  since  the  same  argument  applies  to  any  distinct 
forms,  we  have 

Corollary  3.  If  two  distinct  projective  one-dimensional  primitive 
forms  in  the  plane  are  represented  parametrically  so  that  the  base 

elements  form  two  homologous  pairs,  the  projectivity  is  represented  by 

a  relation  of  the  form  fi  =  k\  between  the  parameters  fi,  X  of  the  two 

forms. 
This  relation  may  be  still  further  simplified.  Taking  again  the  case 

discussed  above  of  two  projective  pencils  of  points,  we  have  seen  that, 

in  general,  to  the  point  (ax  +  bv  a2  -f  b2,  a3  +  bz),  i.e.  to  X  =  1,  corre- 

sponds the  point  (a[  +  kb(,  a2'  +  kb2,  a[  +  kb^),  Le.  the  point  fi  =  k. 

Since  the  point  B'  =  (J/,  b2\  &8' )  is  also  represented  by  the  set  of  coordi- 
nates (&&/,  kbl,  M>1),  it  follows  that  if  we  choose  the  latter  values  for  the 

coordinates  of  the  base  point  B',  to  the  value  X  =  1  will  correspond 
the  value  fi  =  1,  and  hence  we  have  always  fi  =  X.  In  other  words, 
we  have 

Corollary  4.  If  two  distinct  one-dimensional  forms  are  projective, 
the  base  elements  may  be  so  chosen  that  the  parameters  of  any  two 

homologous  elements  are  equal. 

Before  closing  this  section  it  seems  desirable  to  call  attention 

explicitly  to  the  forms  of  the  equation  of  any  line  of  a  pencil  and  of 

the  equation  of  any  point  of  a  pencil  which  is  implied  by  Theorem  5' 
and  Theorem  5  respectively.    If  we  place  m  =  mxxx  +  m2x2  +  msxs  and 
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n  =  n^  +  w2a,j  +  n3xa,  it  follows  from  the  first  theorem  mentioned 

that  the  equation  of  any  line  of  the  pencil  whose  center  is  the  inter- 
section of  the  lines  to  =  0,  n  =  0  is  given  by  an  equation  of  the  form 

to  +  fin  =  0.  Similarly,  the  equation  of  any  point  of  the  line  joining 

A  =  axux  +  aiui  +  asut  —  0  and  B  =  b^  +  htu%  +  b%u3  =  0  is  of  the 
form  A  +\B  =  0. 

66.  The  equation  of  a  conic.  The  results  of  §  65  lead  readily  to 

the  equation  of  a  conic.  By  this  is  meant  an  equation  in  point  (line) 

coordinates  which  is  satisfied  by  all  the  points  (lines)  of  a  conic,  and 

by  no  others.  To  derive  this  equation,  let  A,  B  be  two  distinct  points 
on  a  conic,  and  let 

to  =  w^  +  m,^  -+-  m3x3  =  0, 

(1)  n  =  n^  +  «sa;8  -f  nsxs  =  0, 

P  =  Pixi  +  P&  +  Pzxz  =  0 

be  the  equations  of  the  tangent  at  A,  the  tangent  at  B,  and  the  line 

AB  respectively.  The  conic  is  then  generated  as  a  point  locus  by 

two  projective  pencils  of  lines  at  A  and  B,  in  which  m,  p  at  A  are 

homologous  with  p,  n  at  B  respectively.  This  projectivity  between 

the  pencils 

2  TO  +  \p  =  0, 
K  '  p  +  fin  =  0 

is  given  (Theorem  6,  Cor.  3)  by  a  relation 

(3)  fi  =  k\ 

between  the  parameters  ft,  \  of  the  two  pencils.  To  obtain  the  equa- 
tion which  is  satisfied  by  all  the  points  of  intersection  of  pairs  of 

homologous  lines  of  these  pencils,  and  by  no  others,  we  need  simply 
eliminate  /x,  X  between  the  last  three  relations.  The  result  of  this 
elimination  is 

(4)  p2-kmn=0, 

which  is  the  equation  required.  By  multiplying  the  coordinates  of 

one  of  the  lines  by  a  constant  we  may  make  k  =  1. 

Conversely,  it  is  obvious  that  the  points  which  satisfy  any  equation 

of  type  (4)  are  the  points  of  intersection  of  homologous  lines  in  the 

pencils  (2),  provided  that  fi  =  k\.  If  to,  n,  p  are  fixed,  the  condition 

that  the  conic  (4)  shall  pass  through  a  point  (av  a%,  aj  is  a  linear 
equation  in  k.    Hence  we  have 
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Theorem  7.  If  m  =  0,  n  =  0, 

p  z=  0  are  £Ae  equations  of  two 
distinct  tangents  of  a  conic  and 

the  line  joining  their  points  of  con- 

tact respectively,  the  point  equa- 
tion of  the  conic  is  of  the  form 

p*  —  kmn  =  0. 

The  coefficient  k  is  determined  by 

any  third  point  on  the  conic.  Con- 
versely, the  points  which  satisfy 

an  equation  of  the  above  form 

constitute  a  conic  of  which  m  =  0 

and  n  =  0  are  tangents  at  points 

on  p  =  0. 

Corollary.  By  properly  choos- 
ing the  triangle  of  reference,  the 

point  equation  of  any  conic  may 

be  put  in  the  form 

where  xx  =  0,  xz  —  0  are  two  tan- 
gents, and  x2  =  0  is  the  line  join- 

ing their  points  of  contact. 

Theorem  7/  If  A  =  0,  B  =  0, 

C  =  0  are  the  equations  of  two 
distinct  points  of  a  conic  and  the 

intersection  of  the  tangents  at  these 

points  respectively,  the  line  equa- 
tion of  the  conic  is  of  the  form 

C2-kAB  =  0. 

The  coefficient  k  is  determined  by 

any  third  line  of  the  conic.  Con- 
versely, the  lines  which  satisfy  an 

equation  of  the  above  form  consti- 
tute a  conic  of  which  A  =  0  and 

B  =  0  are  points  of  contact  of  the 
tangents  through  C  =  0. 

Corollary.  By  properly  choos- 
ing the  triangle  of  reference,  the 

line  equation  of  any  conic  may 

be  put  in  the  form 

u£  —  kuxus  =  0, 

where  ux  =  0,  us  =  0  are  two  points, 

and  w2  =  0  is  the  intersection  of 
the  tangents  at  these  points. 

It  is  clear  that  if  we  choose  the  point  (1, 1,  1)  on  the  conic,  we  have 

k  =  1.  Supposing  the  choice  to  have  been  thus  made,  we  inquire 
regarding  the  condition  that  a  line  [uv  u2,  u3]  be  tangent  to  the  conic 

This  condition  is  equivalent  to  the  condition  that  the  line  whose 
equation  is  n 
*  uxxx  -f  w2#2  +  uax8  =  0 

shall  have  one  and  only  one  point  in  common  with  the  conic.  Elimi- 

nating xs  between  this  equation  and  that  of  the  conic,  the  points 

common  to  the  line  and  the  conic  are  determined  by  the  equation 

uxx*  +  u2xxx2  +  uax?  =  0. 

The  roots  of  this  equation  are  equal,  if  and  only  if  we  have 

u[  —  4  uxu3  =  0. 
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Since  this  is  the  line  equation  of  all  tangents  to  the  conic,  and  since 

it  is  of  the  form  given  in  Theorem  7',  Cor.,  above,  we  have  here  a  new 
proof  of  the  fact  that  the  tangents  to  a  point  conic  form  a  line  conic 

(cf.  Theorem  11,  Chap.  V). 

When  the  linear  expressions  for  m,  n,  p  are  substituted  in  the  equa- 

tion p2  —  kmn  =  0  of  any  conic,  there  results,  when  multiplied  out,  a 
homogeneous  equation  of  the  second  degree  in  xv  x2,  x3,  which  may 
be  written  in  the  form 

( 1)     "u*?  +  anxl  +  a83*s  +  2  ai2* A  +  2  aizxixz  +  2  anx2x*  =  °- 

We  have  seen  that  the  equation  of  every  conic  is  of  this  form.  We 

have  not  shown  that  every  equation  of  this  form  represents  a  conic 

(see  §  85,  Chap.  IX). 

EXERCISE 
Show  that  the  conic 

anx?  +  a22x'\  +  aj8x82  +  2  al2xxx2  +  2  al3xxx3  +  2  a23x2x3  =  0 
degenerates  into  (distinct  or  coincident)  straight  lines,  if  and  only  if  we  have 

Dualize.    (A,  E,  P,  H0) 

'11    "12    "13 

ri2    Q22    a23 

'18    "23    "33 

=  0. 

67.  Linear  transformations  in  a  plane.    We  inquire  now  concern- 
ing the  geometric  properties  of  a  linear  transformation 

px[  =  anXx  +  a12x2  +  altxs, 

(1)  px2'  =  a2lxx  +  a22x2  +  a23x3, 
Pxi  =  «,i*i  +  <*32x2  +  amxv 

Such  a  transformation  transforms  any  point  (xv  x2,  x3)  of  the  plane 

into  a  unique  point  (x{,  x2,  x3)  of  the  plane.  Reciprocally,  to  every 

point  x'  will  correspond  a  unique  point  x,  provided  the  determinant 
of  the  transformation 

A  = 

"'ll     ""18         13 

«21     a22     «2S 

a„,  a„„  a.. 

is  not  0.    For  we  may  then  solve  equations  (1)  for  the  ratios  xx:  xi:xs 

in  terms  of  x[:  x2:  x3'  as  follows : 

pxx  =  Anxt  -f-  A2Xx2  +  A3lx3, 

(2)  p'x2  =  AX2x[  +  A22x[  +  A32x3\ 
px3=  AX3xx  +  A23x2  +  A33x% ; 
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here  the  coefficients  A{.  are  the  cofactors  of  the  elements  atJ  respec- 
tively in  the  determinant  A. 

Further,  equations  (1)  transform  every  line  in  the  plane  into  a 

unique  line.    In  fact,  the  points  x  satisfying  the  equation 

«!«,  +  u2x2  -f-  u3x3  =  0 

are,  by  reference  to  equations  (2),  transformed  into  points  x'  satisfy- 
ing the  equation 

(4A  +  AUU2  +  AsW8)  Xi  +  (AlWl  +  ̂22W2  +  A*Uz)  X2 

+  {AlUX  +  AZ2U2  +  A3Us)  Xl  =  0. 

which  is  the  equation  of  a  line.    If  the  coordinates  of  this  new  line  be 

denoted  by  [u[,  u!v  w8'],  we  clearly  have  the  following  relations  between 

the  coordinates  [uv  u2,  u3]  of  any  line  and  the  coordinates  \u[,  u'2,  w8'] 
of  the  line  into  which  it  is  transformed  by  (1): 

au[  =  Anux  +  A12u2  +  ̂13w3, 

(3)  0-<  =  AlWl  +  ̂22M2  +  ̂23W8» 
9*1  =  Anul  +  AS2u2  +  AS3us. 

We  have  seen  thus  far  that  (1)  represents  a  collineation  in  the  plane 
in  point  coordinates.  The  equations  (3)  represent  the  same  collineation 
in  line  coordinates. 

It  is  readily  seen,  finally,  that  this  collineation  is  projective.  For 

this  purpose  it  is  only  necessary  to  show  that  it  transforms  any 
pencil  of  lines  into  a  projective  pencil  of  lines.  But  it  is  clear  that  if 

m  =  0  and  n  =  0  are  the  equations  of  any  two  lines,  and  if  (1)  trans- 

forms them  respectively  into  the  lines  whose  equations  are  m'  =  0 

and  n'=0,  any  line  m  +  \n=  0  is  transformed  into  m'+\n'—0, 
and  the  correspondence  thus  established  between  the  lines  of  the 

pencils  has  been  shown  to  be  projective  (Theorem  6). 

Having  shown  that  every  transformation  (1)  represents  a  projective 

collineation,  we  will  now  show  conversely  that  every  projective 

collineation  in  a  plane  may  be  represented  by  equations  of  the  form 

(1).  To  this  end  we  recall  that  every  such  collineation  is  completely 

determined  as  soon  as  the  homologous  elements  of  any  complete 

quadrangle  are  assigned  (Theorem  18,  Chap.  IV).  If  we  can  show 
that  likewise  there  is  one  and  only  one  transformation  of  the  form 

(1)  changing  a  given  quadrangle  into  a  given  quadrangle,  it  will 
follow  that,  since  the  linear  transformation  is  a  projective  collineation, 

it  is  the  given  projective  collineation. 
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Given  any  projective  collineation  in  a  plane,  let  the  fundamental 

points  (0,  0,  1),  (0,  1,  0),  (1,  0,  0),  and  (1,  1,  1)  of  the  plane  (which 
form  a  quadrangle)  be  transformed  respectively  into  the  points 

A  =  (av  av  as),  B  =  (bv  \,  bt),  C  =  (cv  c2,  c3),  and  D  =  (dv  d2,  ds),  form- 
ing a  quadrangle.  Suppose,  now,  we  seek  to  determine  the  coefficients 

of  a  transformation  (1)  so  as  to  effect  the  correspondences  just  indi- 

cated. Clearly,  if  (0,  0,  1)  is  to  be  transformed  into  (av  a2,  as),  we 
must  have  .  „ 

ai3=Xai>     a2S=Xa2>     «33=Xa3> 

X  being  an  arbitrary  factor  of  proportionality,  the  value  (^  0)  of  which 
we  may  choose  at  pleasure.    Similarly,  we  obtain 

aW=/*^     «22=/*&2»     «S2=^S> 

au=vcv    a21=vc2,    a3l=vcr 

Since,  by  hypothesis,  the  three  points  A,  B,  C  are  not  collinear,  it 

follows  from  these  equations  and  the  condition  of  Theorem  4,  Cor.  2, 

that  the  determinant  A  of  a  transformation  determined  in  this  way 
is  not  0.  Substituting  the  values  thus  obtained  in  (1),  it  is  seen  that 

if  the  point  (1,  1,  1)  is  to  be  transformed  into  (dv  dt,  ds),  the  following 
relations  must  hold : 

pd1  =  cj>  +  \fi  -f  axX, 
pd2  =  c2v  +  \n  +  a2X, 

Placing  p  =  1  and  solving  this  system  of  equations  for  v,  p,  X,  we 
obtain  the  coefficients  a(J  of  the  transformation.  This  solution  is 

unique,  since  the  determinant  of  the  system  is  not  zero.  Moreover, 

none  of  the  values  X,  p.,  v  will  be  0 ;  for  the  supposition  that  v  =  0, 

for  example,  would  imply  the  vanishing  of  the  determinant 

*, 

\ 

ai 

d* 

h 

«2 

d> 

K 

«8 

which  in  turn  would  imply  that  the  three  points  D,  B,  A  are  collinear, 

contrary  to  the  hypothesis  that  the  four  points  A,  B,  C,  D  form  a 
complete  quadrangle. 

Collecting  the  results  of  this  section,  we  have 

Theorem  8.  Any  projective  collineation  in  the  plane  may  be  repre- 

sented in  point  coordinates  by  equations  of  form  (1)  or  in  line  coordi- 

nates by  equations  of  form  (3),  and  in  each  case  the  determinant  of 
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the  transformation  is  different  from  0 ;  conversely,  any  transforma- 

tion of  one  of  these  forms  in  which  the  determinant  is  different  from  0 
represents  a  projective  collineation  in  the  plane. 

Corollary  1.  In  nonhomogeneous  point  coordinates  the  equations  of 
a  projective  collineation  are 

x'  = 
inx  -f-  any  +  ax 

y'
 

an  a\i  ax& 

a21     tt22     a28 
a„  a„a  a00 

^0. 

v  +  aS2y  +  «33 
anx  +  a22y  +  a23 

a31x  +  aZ2y  +  a33 

Corollary  2.  If  the  singular  line  of  the  system  of  nonhomogeneous 
point  coordinates  is  transformed,  into  itself,  these  equations  can  be 
written 

i  "i 

a„  b„ 

=£0. 

x'  =  axx  +  bxy  +  cv 
y'  =  a2x  +  b2y  +  c2, 

68.  Collineations  between  two  different  planes.  The  analytic  form 

of  a  collineation  between  two  different  planes  is  now  readily  derived. 

Let  the  two  planes  be  a  and  /3,  and  let  a  system  of  coordinates  be 

established  in  each,  the  point  coordinates  in  a  being  (xv  x2,  x3)  and 

the  point  coordinates  in  /3  being  (yv  y2,  y3).  Further,  let  the  isomor- 
phism between  the  number  systems  in  the  two  planes  be  established 

in  such  a  way  that  the  correspondence  established  by  the  equations 

yx  —  xv    y2  —  X2>    y$ =  x&> 

is  projective.  It  then  follows,  by  an  argument  (cf.  §  59,  p.  166), 
which  need  not  be  repeated  here,  that  any  collineation  between  the 

two  planes  may  be  obtained  as  the  resultant  of  a  projectivity  in  the 

plane  a,  which  transforms  a  point  X,  say,  into  a  point  X',  and  the  pro- 

jectivity Y  =  X'  between  the  two  planes.  The  analytic  form  of  any 
projective  collineation  between  the  two  planes  is  therefore : 

yx  —  anxx  -f-  al2x2  -f  aiax3, 
y2=  ct2lxx  +  a22x2+  a23x3, 

y3=  a3lxx+  a32x2+  a33x3, 

with  the  determinant  A  of  the  coefficients  different  from  0.  And,  con- 

versely, every  such  transformation  in  which  A^O  represents  a  projec- 
tive collineation  between  the  two  planes. 

69.  Nonhomogeneous  coordinates  in  space.  Point  coordinates  in 

space  are  introduced  in  a  way  entirely  analogous  to  that  used  for  the 

introduction  of  point  coordinates  in  the  plane.  Choose  a  tetrahedron 

of  reference  OUVW  and  label  the  vertices  0  =  0,.=  0y=  0„  U=  oox, 
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oo» 

F=ooy,  JF=.oo2  (fig.  84);  and  on  the  lines  Oxoox,  Oyoc,,  Ozccz,  called 

respectively  the  x-axis,  the  y-axis,  the  z-axis,  establish  three  scales  by 
choosing  the  points  lx,  1,,  1,.  The  planes  0ooxooy,  0ooxco2,  Ocoyoc2  are 

called  the  xy-plane,  xz-plane,  yz-plane  respectively.  The  point  0  is 
called  the  origin.  If  P  is  any  point  not  on  the  plane  ooxooyoo2,  which 

is  called  the  singular  plane  of  the  coordinate  system,  the  plane 

P  oo  co2  meets  the  z-axis  in  a  point  whose  nonhomogeneous  coordinate 

in  the  scale  (Ox,  lx,  oox)  we  call  a.  Similarly,  let  the  plane  Pccxooz 

meet  the  y-axis  in  a  point 
whose  nonhomogeneous 
coordinate  in  the  scale 

(0,,  1,,  co,)  is  b ;  and  let 

the  plane  Pccxccv  meet  the 

z-axis  in  a  point  whose 

nonhomogeneous  coordi- 
nate in  the  scale  (02, 12,  oc2) 

is  c.  The  numbers  a,  b,  c 

are  then  the  nonhomo- 

geneous x-,  y-,  and  z-co'dr- 
dinates  of  the  point  P. 

Conversely,  any  three 
numbers  a,  b,  c  determine 

three  points  A,  B,  C  on 

the  x-,  y-,  and  z-axes  respectively,  and  the  three  planes  Accyocz,  Bccxcozi 
Cooxccy  meet  in  a  point  P  whose  coordinates  are  a,  b,  c.  Thus  every 

point  not  on  the  singular  plane  of  the  coordinate  system  determines 

and  is  determined  by  three  coordinates.  The  point  P  is  then  repre- 
sented by  the  symbol  (a,  5,  c). 

The  dual  process  gives  rise  to  the  coordinates  of  a  plane.  Point 

and  plane  coordinates  may  then  be  put  into  a  convenient  relation,  as 

was  done  in  the  case  of  point  and  line  coordinates  in  the  plane,  thus 

giving  rise  to  a  system  of  simultaneous  point  and  plane  coordinates 

in  space.  We  will  describe  the  system  of  plane  coordinates  with 

reference  to  this  relation.  Given  the  system  of  nonhomogeneous  point 

coordinates  described  above,  establish  in  each  of  the  pencils  of  planes 

on  the  lines  VW,  UW,  UV  a  scale  by  choosing  the  plane  UVW  as 

the  zero  plane  0M  =  0,  =  0„  in  each  of  the  scales,  and  letting  the  planes 

0  VW,  OUW,OUV  be  the,  planes  co„,  Gcr,  ccw  respectively.   In  the  it-scale 

Fig.  84 
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let  that  plane  through  VW  be  the  plane  1„,  which  meets  the  #-axis 

in  the  point  —  lx.  Similarly,  let  the  plane  1„  meet  the  y-axis  in  the 

point  —  lj, ;  and  let  the  plane  lw  meet  the  z-axis  in  the  point  —  \z. 
The  ■w-scale,  v-scale,  and  w-scale  being  now  completely  determined, 
any  plane  ir  not  on  the  point  0  (which  is  called  the  singular  point 

of  this  system  of  plane  coordinates)  meets  the  x-,  y-,  and  z-axes  in 
three  points  L,  M,  N  which  determine  in  the  u-,  v-,  and  w-scales  planes 
whose  coordinates,  let  us  say,  are  I,  m,  n.  These  three  numbers  are 

called  the  nonhomogeneous  plane  coordinates  of  ir.  They  completely 

determine  and  are  completely  determined  by  the  plane  tt.  The  plane 

it  is  then  denoted  by  the  symbol  [I,  m,  n]. 

In  this  system  of  coordinates  it  is  now  readily  seen  that  the  con- 
dition that  the  point  (a,  b,  c)  be  on  the  plane  [I,  m,  n]  is  that  the  relation 

la  +  mb  4-  nc  +  1  =  0  be  satisfied.  It  follows  readily,  as  in  the  planar 

case,  that  the  plane  [I,  m,  n]  meets  the  x-,  y-,  and  z-axes  in  points 
whose  coordinates  on  these  axes  are  — 1/1,  —  1/m,  and  —  1/n  respec- 

tively.* In  deriving  the  above  condition  we  will  suppose  that  the 

plane  ir  =  [I,  m,  n]  does  not  contain  two  of  the  points  U,  V,  W,  leav- 
ing the  other  case  as  an  exercise  for  the  reader.  Suppose,  then,  that 

U—  oox  and  V—  ooy  are  not  on  tt.  By  projecting  the  3/z-plane  with 
U  as  center  upon  the  plane  it,  and  then  projecting  tt  with  V  as  center 

on  the  icz-plane,  we  obtain  the  following  perspectivities : 

[(0,  *  *)]  =  [(*,  y>  *)]  ~  [(«,  0,  z)], 

where  (x,  y,  z)  represents  any  point  on  tt.  The  product  of  these  two 

perspectivities  is  a  projectivity  between  the  yz-plane  and  the  icz-plane, 

by  which  the  singular  line  of  the  former  is  transformed  into  the  sin- 

gular line  of  the  latter.  Denoting  the  z-cobrdinate  of  points  in  the 

yz-plane  by  z',  this  projectivity  is  represented  (according  to  Theorem 
8,  Cor.  2,  and  §  68)  by  relations  of  the  form 

y  =  a1x  +  b1z  +  cv 
z  —  z. 

We  proceed  to  determine  the  coefficients   av  bv  cv    The  point  of 

intersection  of  rr  with  the  y-axis  is  (0,  —1/m,  0),  and  is^  clearly 

*  This  statement  remains  valid  even  if  one  or  two  of  the  numbers  I,  m,  n  are 
zero  (they  cannot  all  be  zero  unless  the  plane  in  question  is  the  singular  plane 
which  we  exclude  from  consideration),  provided  the  negative  reciprocal  of  0  be 
denoted  by  the  symbol  ao. 
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transformed  by  the  projectivity  in  question  into  the  point  (0,  0,  0). 

Hence  (1)  gives  1 
1         to 

The  point  of  intersection  of  it  with  the  z-axis  is,  if  w^O,  (0,  0,  —  1/w) 
and  is  transformed  into  itself.    Hence  (1)  gives 

n      to 

i           n 
or  o.  =   

m 

If  n  =  0,  we  have  at  once  bx  =  0. 

Finally,  the  point  of  intersection  of  ir  with  the  z-axis  is  (— 1/7,  0,  0), 
and  the  transform  of  the  point  (0,  0,  0).    Hence  we  have 

I       m 
I 

or  a.  =   
TO 

Hence  (1)  becomes  y  =   x   z   , TO  TO  TO 

a  relation  which  must  be  satisfied  by  the  coordinates  (x,  y,  z)  of  any 

point  on  ir.    This  relation  is  equivalent  to 

Ix  +  my  -f  nz  +  1  =  0. 

Hence  (a,  &,  c)  is  on  [/,  to,  «],  if 

(2)  la  +  mb  +  nc  +  l  =  0. 

Conversely,  if  (2)  is  satisfied  by  a  point  (a,  b,  c),  the  point  (0,  b,c)  =  P 

is  transformed  by  the  projectivity  above  into  (a,  0,  c)  =  Q,  and  hence 
the  lines  P  U  and  Q  V  which  meet  in  (a,  b,  c)  meet  on  it. 

Definition.  An  equation  which  Definition.  An  equation  which 

is  satisfied  by  all  the  points  (x,  y,z)  is  satisfied  by  all  the  planes  [w,t;,«7] 
of  a  plane  and  by  no  other  points  on  a  point  and  by  no  other  planes 

is  called  the  point  equation  of  the  is  called  the  plane  equation  of  the 

plane.  point. 

The  result  of  the  preceding  discussion  may  then  be  stated  as  follows : 

Theorem  9.  The  point  equation         Theorem  9'.  The  plane  equation 
of  the  plane  [I,  to,  ti]  is  of  the  point  (a,  b,  c)  is 

Ix  +  my  +  nz  +  1  =  0.  au  +  bv  +  cw  -f  1  =  0. 
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70.  Homogeneous  coordinates  in  space.  Assign  to  the  vertices  0,  U, 

V,  W  of  any  tetrahedron  of  reference  the  symbols  (0, 0, 0, 1),  (1, 0, 0, 0), 

(0,  1,  0,  0),  (0,  0,  1,  0)  respectively,  and  assign  to  any  fifth  point  T 

not  on  a  face  of  this  tetrahedron  the  symbol  (1,  1,  1,  1).  The  five 

points  O,  U,  V,  W,  T  are  called  the  frame  of  reference  of  the  system 

of  homogeneous  coordinates  now  to  be  described.  The  four  lines  join- 
ing T  to  the  points  O,  U,  V,  W  meet  the  opposite  faces  in  four  points, 

which  we  denote  respectively  by  (1,  1,  1,  0),  (0,  1,  1,  1),  (1,  0,  1,  1), 

(1,  1,  0, 1).  The  planar  four-point  (0,  0,  0,  1),  (0,  0,  1,  0),  (0, 1,  0,  0), 
(0,  1,  1,  1)  we  regard  as  the  frame  of  reference  (0,  0,  1),  (0,  1,  0), 

(1,  0,  0),  (1,1,1)  of  a  system  of  homogeneous  coordinates  in  the  plane. 

To  any  point  in  this  plane  we  assign  the  coordinates  (0,  x2,  x8,  #4),  if 

its  coordinates  in  the  planar  system  just  indicated  are  (x2,  x%,  xt).  In 
like  manner,  to  the  points  of  the  other  three  faces  of  the  tetrahedron  of 

reference  we  assign  coordinates  of  the  forms  (xv  0,  xs,  x4),  (xv  x2,  0,  x4), 

and  (xv  x2,  xg,  0).  The  coordinates  of  the  points  in  the  faces  opposite 

the  vertices  (1, 0, 0, 0),  (0, 1,  0,  0),  (0, 0, 1, 0),  (0, 0, 0, 1)  satisfy  respec- 
tively the  equations  xx  =  0,  x2  =  0,  x3  =  0,  xt  =  0. 

To  the  points  of  each  edge  of  the  tetrahedron  of  reference  a  notation 

has  been  assigned  corresponding  to  each  of  the  two  faces  which  meet 

in  the  edge.  Consider,  for  example,  the  line  of  intersection  of  the 

planes  xl=0  and  x2=  0.  Regarding  this  edge  as  a  line  of  xx=  0,  the 
coordinate  system  on  the  edge  has  as  its  fundamental  points  (0,0, 1,0), 

(0,  0,  0,  1),  (0,  0, 1, 1).  The  first  two  of  these  are  vertices  of  the  tetra- 
hedron of  reference,  and  the  third  is  the  trace  of  the  line  joining 

(0,  1,  0,  0)  to  (0,  1, 1, 1).  On  the  other  hand,  regarding  this  edge  as  a 

line  of  x2=0,  the  coordinate  system  has  the  vertices  (0,  0, 1,  0)  and 

(0,  0,  0,  1)  as  two  fundamental  points,  and  has  as  (0,  0, 1, 1)  the  trace 

of  the  line  joining  (1,  0,  0,  0)  to  (1,  0, 1,  1).  But  by  construction  the 

plane  (0,  1,  0,  0)(1,  0,  0,  0)(1,  1,  1,  1)  contains  both  (0, 1, 1, 1)  and 

(1,  0,  1, 1),  so  that  the  two  determinations  of  (0,  0,  1, 1)  are  identical. 

Hence  the  symbols  denoting  points  in  the  two  planes  xt=0  and 
x2  =  0  are  identical  along  their  line  of  intersection.  A  similar  result 
holds  for  the  other  edges  of  the  tetrahedron  of  reference. 

Theorem  10.  Definition.  If  P  is  any  point  not  on  a  face  of  the 

tetrahedron  of  reference,  there  exist  four  numbers  xv  x2,  xs,  xK,  all 

different  from  zero,  such  that  the  projections  of  P  from  the  four  vertices 

(1,  0,  0,  0),  (0,  1,  0,  0),  (0,  0,  1,  0),  (0,  0,  0,  1)  respectively  upon  their 
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opposite  faces  are  (0,  xv  xs,  x4),  (xv  0,  xs,  xj,  (xv  xv  0,  x^,  (xv  xv  x3, 0). 
These  four  numbers  are  called  the  homogeneous  coordinates  of  P  and 

P  is  denoted  by  (xv  x2,  x%i  x^.  Any  ordered  set  of  four  numbers,  not 

all  zero,  determine  uniquely  a  point  in  space  whose  coordinates  they  are. 

Proof  The  line  joining  P  to  (1,  0,  0,  0)  meets  the  opposite  face  in 

a  point  (0,  x2,  xs,  xt),  which  is  not  an  edge  of  the  tetrahedron  of  refer- 
ence, and  such  therefore  that  none  of  the  numbers  x2,  xs,  xt  is  zero. 

Likewise  the  line  joining  P  to  (0, 1,  0,  0)  meets  the  opposite  face  in 

a  point  (#/,  0,  x[,  x[),  such  that  none  of  the  numbers  x[,  #,',  x[  is  zero. 
But  the  plane  P(l,  0,  0, 0)  (0, 1,  0,  0)  meets  x1  =  0  in  the  line  joining 

(0,  1,  0,  0)  to  (0,  xv  xt,  arj,  and  meets  x2  =  0  in  the  line  joining 

(1,  0,  0,  0)  to  (xl,  0,  #8',  xl).  By  the  analytic  methods  already  devel- 
oped for  the  plane,  the  first  of  these  lines  meets  the  edge  common 

to  xt  =  0  and  x%  =  0  in  the  point  (0,  0,  x3,  #4),  and  the  second  meets 
it  in  the  point  (0,  0,  x3\  #4).  But  the  points  (0,  0,  xt,  #4)  and 

(0,  0,  a;,',  x£)  are  identical,  and  hence,  by  the  preceding  paragraph,  we 
have  xs/xA  =  x3J  x[.  Hence,  if  we  place  x1  =  x[xjx[,  the  point 

(x(,  0,  x'%,  x£)  is  identical  with  (xv  0,  xt,  xt).  The  line  joining  P  to 
(0,  0,  1,  0)  meets  the  face  xs  =  0  in  a  point  (x",  a?a",  0,  #4").  By  the 

same  reasoning  as  that  above  it  follows  that  we  have  x" / x"  =  xjxi 

and  x2/x"  =  xJxK,  so  that  the  point  (x",  x%",  0,  #4")  is  identical  with 
(xv  x%,  0,  x4).  Finally,  the  line  joining  P  to  (0,  0,  0, 1)  meets  the  face 

xA  =  0  in  a  point  which  a  like  argument  shows  to  be  (xv  xv  xs,  0). 
Conversely,  if  the  coordinates  (xv  xv  x3,  x4)  are  given,  and  one  of 

them  is  zero,  they  determine  a  point  on  a  face  of  the  tetrahedron 

of  reference.  If  none  of  them  is  zero,  the  lines  joining  (1,  0,  0,  0) 

to  (0,  xv  x9,  xj  and  (0,  1,  0,  0)  to  (xv  0,  xt,  aj  are  in  the  plan€ 

(1,0, 0,  0)(0, 1,  0,  0)(0,  0,  x3,xt),  and  hence  meet  in  a  point  which, 

by  the  reasoning  above,  has  the  coordinates  (xv  xt,  xt,  ajj. 

Corollary.  The  notations  (xv  xv  xs,  ajj  and  (Jcxv  kxit  kxt,  kx^ 
denote  the  same  point  for  any  value  of  k  not  equal  to  zero. 

Homogeneous  plane  coordinates  in  space  arise  by  the  dual  of  the 

above  process.  The  four  faces  of  a  tetrahedron  of  reference  are  denoted 

respectively  by  [1,  0,  0,  0],  [0,  1,  0,  0],  [0,  0,  1,  0],  and  [0,  0,  0,  1]. 
lese,  together  with  any  plane  [1, 1,  1, 1]  not  on  a  vertex  of  the 

tetrahedron,  form  the  frame  of  reference.  The  four  lines  of  inter- 
section of  the  plane  [1,  1, 1,  1]  with  the  other  four  planes  in  the  order 
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above  are  projected  from  the  opposite  vertices  by  planes  which  are 

denoted  by  [0,1,1,1],  [1,0,1,1],  [1,1,0,1],  [1,1,1,0]  respectively. 

The  four  planes  [0, 1,  0, 0],  [0, 0, 1, 0],  [0, 0, 0, 1],  and  [0, 1, 1, 1]  form, 
if  the  first  0  in  each  of  these  symbols  is  suppressed,  the  frame  of 

reference  of  a  system  of  homogeneous  coordinates  in  a  bundle  (the 
space  dual  of  such  a  system  in  a  plane).  The  center  of  this  bundle 

is  the  vertex  of  the  tetrahedron  of  reference  opposite  to  [1,  0,  0,  0]. 
To  any  plane  on  this  point  is  assigned  the  notation  [0,  u2,  uz,  ut],  if 
its  coordinates  in  the  bundle  are  [u2,  uz,  wj.  In  like  manner,  to  the 
planes  on  the  other  vertices  are  assigned  coordinates  of  the  forms 

[uv  0,  u3,  u4],  [uv  u2,  0,  wj,  [uv  u2,  us,  0].  The  space  dual  of  the  last 
theorem  then  gives : 

Theorem  10'.  Definition.  If  wis  any  plane  not  on  a  vertex  of  the 
tetrahedron  of  reference,  there  exist  four  numbers  uv  u2,  u3,  uv  all  differ- 

ent from  zero,  such  that  the  traces  of  ir  on  the  four  faces  [1,  0,  0,  0], 
[0,  1,  0,  0],  [0,  0, 1,  0],  [0,  0,  0,  1]  respectively  are  projected  from  the 
opposite  vertices  by  the  planes  [0,  u2,  us,  u4],  [uv  0,  us,  ut],  [uv  u2,  0,  wj, 
[uvu2,us,  0].  These  four  numbers  are  called  the  homogeneous  coordinates 

of  7r,  and  it  is  denoted  by  [uv  u2;  us,  w4].  Any  ordered  set  of  four  num- 

bers, not  all  zero,  determine  uniquely  a  plane  whose  coordinates  they  are. 

By  placing  these  systems  of  point  and  plane  coordinates  in  a  proper 

relation  we  may  now  readily  derive  the  necessary  and  sufficient  con- 

dition that  a  point  (xv  x2,  xs,  x4)  be  on  a  plane  [uv  u2,  us,  wj.  This 
condition  will  turn  out  to  be 

uxxx  +  u2x2  +  uzxz  +  utx4  =  0. 

We  note  first  that  in  a  system  of  point  coordinates  as  described  above 

the  six  points  (- 1, 1,  0,  0),  (- 1,  0, 1,  0),  (- 1,  0,  0, 1),  (0,  - 1, 1,  0), 

(0,  0,  —  1, 1),  (0,  —  1,  0, 1)  are  coplanar,  each  being  the  harmonic  con- 
jugate, with  respect  to  two  vertices  of  the  tetrahedron  of  reference,  of 

the  point  into  which  (1, 1, 1, 1)  is  projected  by  the  line  joining  the 

other  two  vertices.  The  plane  containing  these  is,  in  fact,  the  polar 

of  (1, 1, 1, 1)  with  respect  to  the  tetrahedron  of  reference  (cf.  Ex.  3, 
p.  47).   Now  choose 

as  the  plane  [1,  0,  0, 0]  the  plane  xx  =  0, 

as  the  plane  [0,  1,  0,  0]  the  plane  x2  =  0, 

as  the  plane  [0,  0,  1,  0]  the  plane  xa  =  0, 

as  the  plane  [0,  0,  0, 1]  the  plane  xi  =  0, 
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as  the  plane  [1, 1,  1,  1]  the  plane  containing  the  points  (—  1,  1,  0,  0), 

(-1,0,1,0),  (-1,0,0,1). 
With  this  choice  of  coordinates  the  planes  [1,  0,  0,  0],  [0, 1,  0,  0], 

[0,  0,  1,  0],  and  [1,  1, 1,  0]  through  the  vertex  Vt,  say,  whose  point 

coordinates  are  (0,  0,  0,  1),  meet  the  opposite  face  xt  =  0  in  lines 
whose  equations  in  that  plane  are 

xi =  0>  x2  —  0»  xz =  0>  xx+  xt+  xt  =  0. 

Hence  the  first  three  coordinates  of  any  plane  [uv  u2,  uv  0]  on  V4 

are  the  line  coordinates  of  its  trace  on  xt  =  0,  in  a  system  so  chosen 

that  the  point  (xx,xi,x3)  is  on  the  line  [uvu2,u3]  if  and  only  if  the 

relation  uxxx  +  u2x%  +  u^x3  =  0  is  satisfied.    Hence  a  point  (xv  x2,  x3,  0) 
lies  on  a  plane  [ux,  u2,  uv  0]  if  and  only  if  we  have  uxxx  +  u2x2  + 

u3x3  =  0.    But  any  point  (xx,  x2,  x3>  xt)  on  the  plane  [uv  u2,  us,  0]  has, 
by  definition,  its  first  three  coordinates  identical  with  the  first  three 

coordinates  of  some  point  on  the  trace  of  this  plane  with  the  plane 

xi  =  0.    Hence  any  point  (xx,  xv  xt,  #4)  on  [uv  u2,  uz,  0]  satisfies  the 

condition  uxxx  +  u„x2  -f-  u3x%  +  utxt  =  0.    Applying  this  reasoning  to 
each  of  the  four  vertices  of  the  tetrahedron  of  reference  and  dualizing, 

we  find  that  if  one  coordinate  of  \uv  uv  u3,  wj  is  zero,  the  necessary 

and  sufficient  condition  that  this  plane  contain  a  point  (xv  xs,  xv  x^ 
is  that  the  relation 

uxxx  +  u„x2  +  u3x3  +  utx4  =  0 

be  satisfied  ;  and  if  one  coordinate  of  (xv  xv  x3,  xt)  is  zero,  the  neces- 
sary and  sufficient  condition  that  this  point  be  on  the  plane  [uvui,ut,u^\ 

is  likewise  that  the  relation  just  given  be  satisfied. 

Confining  our  attention  now  to  points  and  planes  no  coordinate  of 

which  is  zero,  let  xx/xi=x,  xjxi=y,  x3/x^=z,  and  let  ux/ui  =  u, 

uJui=v>  u3/u4=w.  Since  x,  y,  z  are  the  ratios  of  homogeneous 

coordinates  on  the  lines  x2  =  x3  =  0,  xx  —  x3  =  0,  and  xx  =  x2  =  0  respec- 
tively, they  satisfy  the  definition  of  nonhomogeneous  coordinates 

given  in  §  69.  And  since  the  homogeneous  coordinates  have  been 

so  chosen  that  the  plane  (ux,  u2,  ti3,  u4)  meets  the  line  x2  —  x3=  0  in 

the  point  (—  «4,  0,  0,  ul)  =  (—  1/w,  0,  0, 1),  it  follows  that  u,  v,  w  are 
nonhomogeneous  plane  coordinates  so  chosen  that  a  point  (x,  y,  z), 

none  of  whose  coordinates  is  zero,  is  on  a  plane  [u,  v,  w\  none  of 

whose  coordinates  is  zero,  if  and  only  if  we  have  (Theorem  9) 

ux  +  vy  +  wz  +  1  =  0  ; 
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that  is,  if  and  only  if  we  have 

uxxx  +  u2x2  +  u3x3  +  uixi  =  0. 

This  completes  for  all  cases  the  proof  of 

Theorem  11.   The  necessary  and  sufficient  condition  that  a  point 

(xv  x2,  xa,  x4)  be  on  a  plane  [uv  u2,  u3,  u4]  is  that  the  relation 

uxxx  +  u2x2  +  u3x3  +  u4xt  =  0 
be  satisfied. 

By  methods  analogous  to  those  employed  in  §§  64  and  65  we  may 
now  derive  the  results  of  Exs.  1-8  below. 

EXERCISES 

1.  The  equation  of  the  plane  through  the  three  points  A  =  (ax,  a2,  as,  a4), 

B  =  (bx,  b2,  b3,  bt),  C  =  (clf  c2,  c3,  e4)  is 

%\    %2    "^8    "^4 
"l    «2    °3    «4    _  0 

bx  b2  b3  b4 

Cl     C1     CS     Ci 
Dualize. 

2.  The  necessary  and  sufficient  condition  that  four  points  A,  B,  C,  D  be 

coplanar  is  the  vanishing  of  the  determinant 

"l 

",. 

":>, 

ai 

», 

K K K 

cl 

C2 

CS 

C4 

rf, 

'A> 

d, 

4« 

3.  The  necessary  and  sufficient  condition  that  three  points  A,  B,  C  be 

collinear  is  the  vanishing  of  the  three-rowed  determinants  of  the  matrix 

«1    a2    «S    a4 
bx   b2   b3  b4 

\C1     C2     C8     C4 

4.  Any  point  of  a  pencil  of  points  containing  A  and  B  may  be  represented  by 

P  =  (X2a1  +  AA,  \a2  +  \xb2,  X^g  +  X^g,  X^  +  X^). 

5.  Any  plane  of  a  pencil  of  planes  containing  m  =  [wj,  »t2,  m3,  ot4]  and 

n  =  [nt,  n2,  n8,  n4]  may  be  represented  by 

7r  =  [^wij  +  X^ij,  A^wijj  +  Xxn2,  X^g  +  \xn3,  X„m4  +  X^]. 

6.  Any  projectivity  between  two  one-dimensional  primitive  forms  (of  points 

or  planes)  in  space  is  expressed  by  a  relation  between  their  parameters  X,  p 
of  the  form  x    ,   Q 

a\  +  p 

^-yX  +  S' 

If  the  base  elements  of  the  pencil  are  homologous,  this  relation  reduces  to 
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7.  If  Xv  Ag,  Xj,  A4  are  the  parameters  of  four  points  or  planes  of  a  pencil, 

their  cross  ratio  is  .    _  .       .    _  . 

n(XlK,X3Xi)  =  ̂ ^:^-^. 
8.  Any  point  (plane)  of  a  plane  of  points  (bundle  of  planes)  containing 

the  noncollinear  points  A,  B,  C  (planes  a,  8,  y)  may  be  represented  by 

P  =  (A.^  +  \ib1  +  A^j,  X^  +  A,^  +  XaC,,  XjOg  +  ̂ 63  +  XgCj,  A.^  +  A^  +  A,c4). 

9.  Derive  the  equation  of  the  polar  plane  of  any  point  with  regard  to  the 
tetrahedron  of  reference. 

10.  Derive  the  equation  of  a  cone. 

•11.  Derive  nonhomogeneous  and  homogeneous  systems  of  coordinates  in 
a  space  of  four  dimensions. 

71.  Linear  transformations  in  space.    The  properties  of  a  linear 

transformation  in  space 

px[  =  anxx  +  aux%  +  al3x3  +  auxt, 

Pxi  =  "21*1  +  Vj  +  "23*3  +  W. 

px3'  =  azxxx  +  a32x3  +  a33x3  +  a3ixt, 
px[  =  aiXxx  +  atixa  +  V,  +  aitxt 

are  similar  to  those  found  in  §  68  for  the  linear  transformations  in  a 

plane.    If  the  determinant  of  the  transformation 

(1) 

A  = 

21 

«si  a 
aA,  aAa  aA.  a. 

23     a24 a.,  a.. 

41     ~42         43     w44 

is  different  from  zero,  the  transformation  (1)  will  have  a  unique  in- 
verse, viz. : 

(2) 

pxl=  Anx1  +  A21x2  -f  Aslx3  +  A4lx4, 

P  X%  =  AuXy  +  A^X%  +  -^82^3  "I"  -^42^4 » 

PX3  =  A13X1  +  A^X^  -f"  ̂ 33^8  +  -^43^4' 

P  Xt  =  AUXX  -f  AUX2  +  ̂ 34^8  +  ̂ 44^4 > 

rhere  the  coefficients  Atj  are  the  cofactors  of  the  elements  atj  respec- 
tively in  the  determinant  A. 

The  transformation  is  evidently  a  collineation,  as  it  transforms  the 
Diane 

uxxx  +  u2xz  -f  u3x3  +  utxt  =  0 
lto  the  plane 

(Auux  +  AXiu%  +  Awu3  +  Altut)  x[ 

+  ( AiXux  +  A^u%  +  Auu3  +  ̂24w4)  x'% 
+  (^81W1  +  ̂82^2  +  ̂88^8  +  ̂84*0  X* 

+  (AiXux  +  Ai2u2  +  ̂48w8  +  A^  x[  =  0. 
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Hence  the  collineation  (1)  produces  on  the  planes  of  space  the  trans- 
formation 

<ru(  =  Anux  +  A12u2  +  Anua  +  Auut, 

<ru2'  =  Anul  +  A22u2  +  A2Zua  +  A2iuif 
*ul=  Atlux  +  At2ua  +  Aaaua  +  Aaiut, 

<TU[  m  Ai\U\  +  ̂42W2  +  AUUi  +  AUUV 

To  show  that  the  transformation  (1)  is  projective  consider  any 

pencil  of  planes 

(axxx  +  a2x2  +  aax3  +  a4«4)  +  X  (bxxx  +  Ms  +  hxz  +  MJ  =  °- 

In  accordance  with  (2)  this  pencil  is  transformed  into  a  pencil  of  the 
form 

(a(xx  +  a'2x2  +  a3\  +  «X)  +  x  (&X  +  &X  +  &X  +  &X)  =  °> 

and  these  two  pencils  of  planes  are  projective  (Ex.  6,  p.  198). 

Finally,  as  in  §  67,  we  see  that  there  is  one  and  only  one  trans- 
formation (1)  changing  the  points  (0,  0,  0,  1),  (0,  0, 1,  0),  (0, 1,  0,  0), 

(1,  0,  0,  0),  and  (1, 1, 1, 1)  into  the  vertices  of  an  arbitrary  complete 

five-point  in  space.  Since  this  transformation  is  a  projective  collinea- 
tion, and  since  there  is  only  one  projective  collineation  transforming 

one  five-point  into  another  (Theorem  19,  Chap.  IV),  it  follows  that 

every  projective  collineation  in  space  may  be  represented  by  a  linear 
transformation  of  the  form  (1).    This  gives 

Theorem  12.  Any  projective  collineation  of  space  may  he  repre- 
sented in  point  coordinates  by  equations  of  the  form  (1),  or  in  plane 

coordinates  by  equations  of  the  form  (3).  In  each  case  the  determinant 

of  the  transformation  is  different  from  zero.  Conversely,  any  trans- 
formation of  this  form  in  which  the  determinant  is  different  from  zero 

represents  a  projective  collineation  of  space. 
Corollary  1.  In  nonhomogeneous  point  coordinates  a  projective 

collineation  is  represented  by  the  linear  fractional  equations 

j  ̂axxx  +  aX2y +  aX3z  +  au  ? 

aiXx  +  at2y  +  a48*  +  a44' 
,  =  a2Xx  +  a22y  +  a23z  +  a2i  ̂ 

aixx  +  ai2y+ai3z  +  aj 

j  =  v  +  ffi82y  +  V  +  a«4 
aiXx  +  ai2y+ai3z  +  aJ 

in  which  the  determinant  A  is  different  from  zero. 
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Corollary  2.  If  the  singular  ■plane  of  the  nonhomogeneous  system 
is  transformed  into  itself,  these  equations  reduce  to 

tf=alx+ajj+aj+  a4,  a%  ffj  a% 
yJ=\x  +  bj/^-liz  +  bi,  \  \  bt  ̂ 0. 
z!=  cxx+ciy  +  ciz  +  c4,  ci   ct   c% 

72.  Finite  spaces.  It  will  be  of  interest  at  this  point  to  emphasize 

again  the  generality  of  the  theory  which  we  are  developing.  Since 

all  the  developments  of  this  chapter  are  on  the  basis  of  Assumptions 

A,  E,  and  P  only,  and  since  these  assumptions  imply  nothing  regard- 

ing the  number  system  of  points  on  a  line,  except  that  it  be  commu- 
tative, it  follows  that  we  may  assume  the  points  of  a  line,  or,  indeed, 

the  elements  of  any  one-dimensional  form,  to  be  in  one-to-one  recip- 
rocal correspondence  with  the  elements  of  any  commutative  number 

system.  "We  may,  moreover,  study  our  geometry  entirely  by  analytic 
methods.  From  this  point  of  view,  any  point  in  a  plane  is  simply  a 
set  of  three  numbers  (xv  xv  xa),  it  being  understood  that  the  sets 

(xv  x2,  xs)  and  (kxv  kx2,  kxs)  are  equivalent  for  all  values  of  k  in  the 

number  system,  provided  k  is  different  from  0.  Any  line  in  the  plane 

is  the  set  of  all  these  points  which  satisfy  any  equation  of  the  form 

uxxx  +  u2x2  +  u3x3  =  0,  the  set  of  all  lines  being  obtained  by  giving 
the  coefficients  (coordinates)  [uv  u2,  u3]  all  possible  values  in  the 

number  system  (except  [0,  0,  0]),  with  the  obvious  agreement  that 

[uv  u2,  u3]  and  [kuv  ku2,  kut]  represent  the  same  line  (k^0).  By 
letting  the  number  system  consist  of  all  ordinary  rational  numbers, 

or  all  ordinary  real  numbers,  or  all  ordinary  complex  numbers,  we 

obtain  respectively  the  analytic  form  of  ordinary  rational,  or  real,  or 

complex  projective  geometry  in  the  plane.  All  of  our  theory  thus 

far  applies  equally  to  each  of  these  geometries  as  well  as  to  the 

geometry  obtained  by  choosing  as  our  number  system  any  field 

whatever  (any  ordinary  algebraic  field,  for  example). 

In  particular,  we  may  also  choose  a  finite  field,  ie.  one  which  con- 
tains only  a  finite  number  of  elements.  The  simplest  of  these  are 

the  modular  fields,  the  modulus  being  any  prime  number  p.*    If  we 

*  A  modular  field  with  modulus  p  is  obtained  as  follows :  Two  integers  n,  n' 
(positive,  negative,  or  zero)  are  said  to  be  congruent  modulo  p,  written  n  =  n',  mod.p, 
if  the  difference  n  —  n'  is  divisible  by  p.  Every  integer  is  then  congruent  to  one 
and  only  one  of  the  numbers  0,  1,  2,  •  ■  -,  p  —  1.  These  numbers  are  taken  as  the 
elements  of  our  field,  and  any  number  obtained  from  these  by  addition,  subtraction, 
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consider,  for  example,  the  case  p  =  2,  our  number  system  contains 
only  the  elements  0  and  1.  There  are  then  seven  points,  which  we 

will  label  A,  B,  C,  D,  E,  F,  G,  as  follows :  A=(0,  0,  1),  B  =  (0, 1,  0), 

C  =  (l,  0,  0),  D  =  (0,  1,  1),  E  =  {1,  1,  0),  F  =  (l,  1,  1),  G=(l,  0,  1). 
The  reader  will  readily  verify  that  these  seven  points  are  arranged 
in  lines  according  to  the  table 

A B C D E F G 

B a n E F G A 

D E F G A B 

c, 

each  column  constituting  a  line.  For  example,  the  line  xx  =  0  clearly 

consists  of  the  points  (0,  0, 1)  =  A,  (0, 1, 0)  =  B,  and  (0, 1, 1)  =  D,  these 
being  the  only  points  whose  first  coordinate  is  0.  We  have  labeled 

the  points  of  this  finite  plane  in  such  a  way  as  to  exhibit  clearly  its 

abstract  identity  with  the  system  of  triples  used  for  illustrative  pur- 

poses in  the  Introduction,  §  2.* 

EXERCISES 

1.  Verify  analytically  that  two  sides  of  a  complete  quadrangle  containing  a 
diagonal  point  are  harmonic  with  the  other  two  diagonal  points. 

2.  Show  analytically  that  if  two  projective  pencils  of  lines  in  a  plane  have 

a  self-corresponding  line,  they  are  perspective.  (This  is  equivalent  to  Assump- 
tion P.) 

3.  Show  that  the  lines  whose  equations  are  xx  +  Xx2  =  0,  x2  +  fixa  =  0,  and 

r8  +  vxx  =  0  are  concurrent  if  Xfiv  =  —  1 ;  and  that  they  meet  the  opposite 
sides  of  the  triangle  of  reference  respectively  in  collinear  points,  if  X/xv  =  1. 

4.  Find  the  equations  of  the  lines  joining  (cx,  c2,  c3)  to  the  four  points 
(1,  ±  1,  ±  1.),  and  determine  the  cross  ratios  of  the  pencil. 

and  multiplication,  if  not  equal  to  one  of  these  elements,  is  replaced  by  the  element 
to  which  it  is  congruent.  The  modular  field  with  modulus  5,  for  example,  consists  of 
the  elements  0,  1,  2,  3,  4,  and  we  have  as  examples  of  addition,  subtraction,  and 
multiplication  1  +  8  =  4,  2  +  8  =  0  (since  6  =  0,  mod.  6),  1  -  4  =  2,  2  •  3  =  1,  etc. 
Furthermore,  if  a,  b  are  any  two  elements  of  this  field  (a^O),  there  is  a  unique 
element  z  determined  by  the  congruence  ax  =  b,  mod.  p;  this  element  is  defined 
as  the  quotient  b/a.  (For  the  proof  of  this  proposition  the  reader  may  refer  to  any 
standard  text  on  the  theory  of  numbers.)  In  the  example  discussed  we  have,  for 
example,  4/3  =  3. 

*  For  references  and  a  further  discussion  of  finite  projective  geometries  see  a 
paper  by  O.  Veblen  and  W.  H.  Bussey,  Finite  Projective  Geometries,  Transactions 
of  the  American  Mathematical  Society,  Vol.  VII  (1906),  pp.  241-259.  Also  a  sub- 

sequent paper  by  O.  Veblen,  Collineations  in  a  Finite  Projective  Geometry,  Trans- 
actions of  the  American  Mathematical  Society,  Vol.  VIII  (1907),  pp.  266-268. 
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5.  Show  that  the  throw  of  lines  determined  on  (clf  c2,  c3)  by  the  four 

points  (1,  ±  1,  ±  1)  is  projective  with  (equal  to)  the  throw  of  lines  determined 

on  (bv  b3,  b3)  by  the  points  (ax,  ±a2,  ±a3),  if  the  following  relations  hold: 

al  +  ai  +  a3  =  0, 

aici8  +  a2ci  +  a3c32  =  Of 

a2a3^1   +  aia3*2   +  a\aJ>Z  —  0, 

and  that  the  six  cross  ratios  are  —  az/a3,  —  a%/a^,  —  al/a2  ,  —  a3/a2,  —  at/a3, 

—  (!„/«!  (C.  A.  Scott,  Mod.  Anal.  Geom.,  p.  50). 

6.  Write  the  equations  of  transformation  for  the  five  types  of  planar  col- 
lineations  described  in  §  40,  Chap.  IV,  choosing  points  of  the  triangle  of 

reference  as  fixed  points. 

7.  Generalize  Ex.  6  to  space. 

8.  Show  that  the  set  of  values  of  the  parameter  X  of  the  pencil  of  lines 

m  +  An  =  0  is  isomorphic  with  the  scale  determined  in  this  pencil  by  the  lines 

for  which  the  fundamental  lines  are  respectively  the  lines  A.  =  0,  1,  oo« 

9.  Show  directly  from  the  discussion  of  §  61  that  the  points  whose  non- 

homogeneous  coordinates  x,  y  satisfy  the  equation  y  —  x  are  on  the  line  joining 

the  origin  to  the  point  (1,  1). 

10.  There  is  then  established  on  this  line  a  scale  whose  fundamental  points 

are  respectively  the  origin,  the  point  (1 ,  1),  and  the  point  in  which  the  line  meets 

the  line  /x.  The  lines  joining  any  point  P  in  the  plane  to  the  points  ooy,  xx 

meet  the  line  y  —  x  in  two  points  whose  coordinates  in  the  scale  just  determined 

are  the  nonhomogeneous  coordinates  of  P,  so  that  any  point  in  the  plane 

(not  on  kc)  is  represented  by  a  pair  of  points  on  the  line  y  =  x.  Hence,  show 

that  in  general  the  points  (x,  y)  of  any  line  in  the  plane  determine  on  the 

line  y  =  x  a  projectivity  with  a  double  point  on  Ix  ;  and  hence  that  the  equa- 

tion of  any  such  line  is  of  the  form  y  =  ax  +  b.  What  lines  are  exceptions  to 

this  proposition  ? 

11.  Discuss  the  modular  plane  geometry  in  which  the  modulus  is/)  =  3  ; 

and  by  properly  labeling  the  points  show  that  it  is  abstractly  identical  with 

the  system  of  quadruples  exhibited  as  System  (2)  on  p.  6. 

12.  Show  in  general  that  the  modular  projective  plane  with  modulus  p 

contains  p2  +  p  +  1  points  and  the  same  number  of  bines ;  and  that  there  are 
p  +  1  points  (lines)  on  every  line  (point). 

13.  The  diagonal  points  of  a  complete  quadrangle  in  a  modular  plane  pro- 

jective geometry  are  collinear  if  and  only  if  p  =  2. 

14.  Show  that  the  points  and  lines  of  a  modular  plane'all  belong  to  the 
same  net  of  rationality.  Such  a  plane  is  then  properly  projective  without  the 

use  of  Assumption  P. 

15.  Show  how  to  construct  a  modular  three-space.  If  the  modulus  is  2, 

show  that  its  points  may  be  labeled  0,  1,  .  . .  ,  14  in  such  a  way  that  the 

planes  are  the  sets  of  seven  obtained  by  cyclic  permutation  from  the  set 

0  1  4  6  11  12  13  (i.e.  1  2  5  7  12  13  14,  etc.),  and  that  the  lines  are  ob- 

tained from  the  lines  0  1  4,  0  2  8,  0  5  10  by  cyclic  permutations.    (For  a 
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study  of  this  space,  see  G.  M.  Conwell,  Annals  of  Mathematics,  Vol.   11 

(1910),  p.  60.) 
16.  Show  that  the  ten  diagonal  points  of  a  complete  five-point  in  space 

(0,  0,  0,  1),  (0,  0,  1,  0),  (0,  1,  0,  0),  (1,  0,  0,  0),  (1,  1, 1,  1)  are  given  by  the 
remaining  sets  of  coordinates  in  which  occur  only  the  digits  0  and  1. 

17.  Show  that  the  ten  diagonal  points  in  Ex.  16  determine  in  all  45  planes, 
of  which  each  of  a  set  of  25  contains  four  diagonal  points,  while  each  of  the 

remaining  20  contains  only  three  diagonal  points.  Through  any  diagonal 
point  pass  16  of  these  planes.  The  diagonal  lines,  i.e.  lines  joining  two 
diagonal  points,  are  of  two  kinds  :  through  each  of  the  diagonal  lines  of  the 

first  kind  pass  five  diagonal  planes  ;  through  each  line  of  the  second  kind  pass 
four  diagonal  planes. 

18.  Show  how  the  results  of  Ex.  17  are  modified  in  a  modular  space  with 
modulus  2  ;  with  modulus  3.  Show  that  in  the  modular  space  with  modulus 
5  the  results  of  Ex.  17  hold  without  modification. 

*  19.  Derive  homogeneous  and  nonhomogeneous  coordinate  systems  for 
a  space  of  n  dimensions,  and  establish  the  formulas  for  an  n-dimensional 
projective  collineation. 



CHAPTER  VIII 

PROJECTCVITIES  IN  ONE-DIMENSIONAL  FORMS* 

73.  Characteristic  throw  and  cross  ratio. 

Theorem  1.  If  M,  X  are  double  points  of  a  projectivity  on  a  line, 

and  AA',  BB'  are  any  two  pairs  of  homologous  points  (i.e.  if 

MXAB  -^  MXA'B),  then  MNAA'  ̂   MXBB'. 

Proof  Let  S,  S'  be  any  two  distinct  points  on  a  line  through 

M  (fig.  85),  and  let  the  lines  SA  and  S'A'  meet  in  A",  and  SB  and 
S 

S'B'  meet  in  B".  The  points  A",  B",  Xare  then  collinear  (Theorem  23, 

Chap.  IV).    If  the  line  A"B"  meets  SS'  in  a  point  Q,  we  have 
A"  B" 

MNAA'  =  MOSS'  =  MXBB1. A  A 

This  proves  the  theorem,  which  may  also  be  stated  as  follows : 

The  throws  consisting  of  the  pair  of  double  points  in  a  given  order 

and  any  pair  of  homologous  points  are  all  equal. 

Defixittox.  The  throw  T  ( MX,  AA'),  consisting  of  the  double  points 
and  a  pair  of  homologous  points  of  a  projectivity,  is  called  the  charac- 

teristic throw  of  the  projectivity ;  and  the  cross  ratio  of  this  throw 
is  called  the  characteristic  cross  ratio  of  the  projectivity.  f 

*  All  the  developments  of  this  chapter  are  on  the  basis  of  Assumptions  A,  E,  P,  Ho. 

t  Since  the  double  points  enter  symmetrically,  the  throws  T  (ifN,  AA')  and 
T  (XM,  AA')  may  be  used  equally  well  for  the  characteristic  throw.  The  corre- 

sponding cross  ratios  B  {ifX,  A  A')  and  B  (-^-If,  AA')  are  reciprocals  of  each  other 
(cf.  Theorem  13,  Cor.  3,  Chap.  VI). 

205 
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Corollary  1.  A  projectivity  on  a  line  with  two  given  distinct 
double  points  is  uniquely  determined  by  its  characteristic  throw  or 
cross  ratio. 

Corollary  2.  The  characteristic  cross  ratio  of  any  involution  with 

double  points  is  —  1. 

This  follows  directly  from  Theorem  27,  Cor.  1,  Chap.  IV,  and 

Theorem  13,  Cor.  2,  Chap.  VI. 

If  m,  n  are  nonhomogeneous  coordinates  of  the  double  points,  and 

k  is  the  characteristic  cross  ratio  of  a  projectivity  on  a  line,  we  have 
x'—m    x  —  iri      T -   :   =  k 
x  —  n    x  —  n 

for  every  pair  of  homologous  points  x,  x'.  This  is  the  analytic  expres- 
sion of  the  above  theorem,  and  leads  at  once  to  the  following  analytic 

expression  for  a  projectivity  on  a  line  with  two  distinct  double  points 

m,  n: 

Corollary  3.  Any  projectivity  on  a  line  with  two  distinct  double 

points  m,  n  may  be  represented  by  the  equation 
x'  —  m      ,  x  —  m 
— :   =  K   > 

x\  x  being  any  pair  of  homologous  points. 

For  when  cleared  of  fractions  this  is  a  bilinear  equation  in  x',  x 
which  obviously  has  m,  n  as  roots.  Moreover,  since  any  projectivity 

with  two  given  distinct  double  points  is  uniquely  determined  by  one 

additional  pair  of  homologous  elements,  it  follows  that  any  projec- 
tivity of  the  kind  described  can  be  so  represented,  in  view  of  the  fact 

that  one  such  pair  of  homologous  points  will  always  determine  the 

multiplier  Jc.  These  considerations  offer  an  analytic  proof  of  Theo- 
rem 1,  for  the  case  when  the  double  points  M,  JV  are  distinct. 

It  is  to  be  noted,  however,  that  the  proof  of  Theorem  1  applies 

equally  well  when  the  points  M,  N  coincide,  and  leads  to  the  follow- 
ing theorem : 

Theorem  2.  If  in  a  parabolic  projectivity  with  double  point  M  the 

points  A  A'  and  BB'  are  two  pairs  of  homologous  points,  the  parabolic 

projectivity  with  double  point  M  which  puts  A  into  B  also  puts  A' 
into  B'. 

Corollary.  The  characteristic  cross  ratio  of  any  parabolic  projec- 
tivity is  unity. 
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The  characteristic  cross  ratio  together  with  the  double  point  is 

therefore  not  sufficient  to  characterize  a  parabolic  projectivity  com- 
pletely. Also,  the  analytic  form  for  a  projectivity  with  double  points 

m,  n,  obtained  above,  breaks  down  when  m  =  n.  We  may,  however, 
readily  derive  a  characteristic  property  of  parabolic  projectivities, 

from  which  will  follow  an  analytic  form  for  these  projectivities. 

Theorem  3.  If  a  parabolic  projectivity  with  double  point  M  trans- 

forms a  point  A  into  A'  and  A'  into  A",  the  pair  of  points  A,  A"  is 

harmonic  with  the  pair  A'M;  i.e.  we  have  H(MA',AA"). 

Proof.  By  Theorem  23,  Chap.  IV,  Cor.,  we  have  Q(MAA',  MA" A'). 
Analytically,  if  the  coordinates  of  M,  A,  A',  A"  are  m,  x,  x1,  x" 

respectively,  we  have,  by  Theorem  13,  Cor.  4,  Chap.  VI, 

2  11 

This  gives 
x1  —  m      x  —  m      x"  —  m 

1  1  1 

x  —  m      x  —  m      x'  —m      x  —  m 

which  shows  that  if  each  member  of  this  equation  be  placed  equal  to 
t,  the  relation 

(i)  z^=— +t x  —  m      x  —  m 

is  satisfied  by  every  pair  of  homologous  points  of  the  sequence  obtained 

by  applying  the  projectivity  successively  to  the  points  A,  A',  A", 
It  is,  however,  readily  seen  that  this  relation  is  satisfied  by  every  pair 
of  homologous  points  on  the  line.  For  relation  (1),  when  cleared  of 

fractions,  clearly  gives  a  bilinear  form  in  x'  and  x,  and  is  therefore  a 
projectivity;  and  this  projectivity  clearly  has  only  the  one  double 

point  m.  It  therefore  represents  a  parabolic  projectivity  with  the 

double  point  m,  and  must  represent  the  projectivity  in  question,  since 

the  relation  is  satisfied  by  the  coordinates  of  the  pair  of  homologous 

points  A,  A',  which  are  sufficient  with  the  double  point  to  determine 
the  projectivity. 

We  have  then : 

Corollary  1.  Any  parabolic  projectivity  with  a  double  point,  M, 
may  be  represented  by  the  relation  (1). 

Definition.    The  number  t  is  called  the  characteristic  constant  of 

the  projectivity  (1). 
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Corollary  2.  Conversely,  if  a  projectivity  with  a  double  point 

M  transforms  a  point  A  into  A',  and  A'  into  A",  such  that  we  have 

H  (MA1,  AA"),  the  projectivity  is  parabolic. 
Proof.  The  double  point  M  and  the  two  pairs  of  homologous 

points  AA',  A' A"  are  sufficient  to  determine  the  projectivity  uniquely; 
and  there  is  a  parabolic  projectivity  satisfying  the  given  conditions. 

74.  Projective  projectivities.  Let  it  be  a  projectivity  on  a  line  I, 

and  let  ir1  be  a  projectivity  transforming  the  points  of  I  into  the 

points  of  another  or  the  same  line  I'.  The  projectivity  w1wfi  is  then 

a  projectivity  on  /'.  For  tt'1  transforms  any  point  of  V  into  a  point 
of  7,  7r  transforms  this  point  into  another  point  of  I,  which  in  turn  is 

transformed  into  a  point  of  V  by  irx.  Thus,  to  every  point  of  V  is  made 

to  correspond  a  unique  point  of  I',  and  this  correspondence  is  projec- 
tive, since  it  is  the  product  of  projective  correspondences.  Clearly, 

also,  the  projectivity  7rx  transforms  any  pair  of  homologous  points  of 

ir  into  a  pair  of  homologous  points  of  tTjIttt^1. 

Definition.  The  projectivity  tt^tttt^1  is  called  the  transform  of  tt 
by  ttx  ;  two  projectivities  are  said  to  be  projective  or  conjugate  if  one 
is  a  transform  of  the  other  by  a  projectivity. 

The  question  now  arises  as  to  the  conditions  under  which  two  pro- 

jectivities are  projective  or  conjugate.  A  necessary  condition  is  evi- 
dent. If  one  of  two  conjugate  projectivities  has  two  distinct  double 

points,  the  other  must  likewise  have  two  distinct  double  points;  if 

one  has  no  double  points,  the  other  likewise  can  have  no  double  points ; 

and  if  one  is  parabolic,  the  other  must  be  parabolic.  The  further 

conditions  are  readily  derivable  in  the  case  of  two  projectivities  with 

distinct  double  points  and  in  the  case  of  two  parabolic  projectivities. 

They  are  stated  in  the  two  following  theorems : 

Theorem  4.  Two  projectivities  each  of  which  has  two  distinct  double 

points  are  conjugate  if  and  only  if  their  characteristic  throws  are  equal. 

Proof.  The  condition  is  necessary.  For  if  it,  ir'  are  two  conjugate 

projectivities,  any  projectivity  7rx  transforming  ir  into  ir'  transforms 

the  double  points  M,  N  of  ir  into  the  double  points  M ',  N'  of  tr',  and 
also  transforms  any  pair  of  homologous  points  A,  Axol  rr  into  a  pair 

of  homologous  points  A',  A[  of  ir' ;  i.e. 

vx{MNAA^  =  M'N'A'A;. 
But  this  states  that  their  characteristic  throws  are  equaL 
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The  condition  is  also  sufficient;  for  if  it  is  satisfied,  the  projec- 
tivitv  it,  defined  by 

irl{MNA)  =  M'N'A' 

clearly  transforms  ir  into  ir1. 

Corollary.  Any  two  involutions  with  double  points  are  conjugate. 

Theorem  5.   Any  two  parabolic  projectivities  are  conjugate. 

Proof.  Let  the  two  parabolic  projectivities  be  defined  by 

ir(MMA)  =  MMAlf  and  •n,{M,M'At)  =  M'M'Al. 

Then  the  projectivity  irl  defined  by 

irx{MAA^  =  M'A'Al 

clearly  transforms  it  into  it'. 
Since  the  characteristic  cross  ratio  of  any  parabolic  projectivity  is 

unity,  the  condition  of  Theorem  4  may  also  be  regarded  as  holding 

for  parabolic  projectivities. 

75.  Groups  of  projectivities  on  a  line.  Definition.  Two  groups  G 

and  G'  of  projectivities  on  a  line  are  said  to  be  conjugate  if  there 
exists  a  projectivity  7rx  which  transforms  every  projectivity  of  G  into  a 

projectivity  of  G',  and  conversely.  We  may  then  write  7r1G7r~1  =  G'; 

and  G'  is  said  to  be  the  transform  of  G  by  irv 
We  have  already  seen  (Theorem  8,  Chap.  Ill)  that  the  set  of  all 

projectivities  on  a  line  form  a  group,  which  is  called  the  general  pro- 
jective group  on  the  line.   The  following  are  important  subgroups : 

1.  The  set  of  all  projectivities  leaving  a  given  point  of  the  line 
invariant. 

Any  two  groups  of  this  type  are  conjugate.   For  any  projectivity 

transforming  the  invariant  point  of  one  group  into  the  invariant  point 

of  the  other  clearly  transforms  every  projectivity  of  the  one  into 

some  projectivity  of  the  other.    Analytically,  if  we  choose  a;=oc  as 
the  invariant  point  of  the  group,  the  group  consists  of  all  projectivities 
of  the  form 

a/=  ax-\-b. 

2.  The  set  of  all  projectivities  leaving  two  given  distinct  points 
invariant. 

Any  two  groups  of  this  type  are  conjugate.  For  any  projectivity 

transforming  the  two  invariant  points  of  the  one  into  the  invariant 

points  of  the  other  clearly  transforms  every  projectivity  of  the  one 
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into  a  projectivity  of  the  other.  Analytically,  if  xv  x2  are  the  two 
invariant  points,  the  group  consists  of  all  projectivities  of  the  form 

— :    =  fC   • X  —  Xa 

The  product  of  two  such  projectivities  with  multipliers  k  and  k'  is 
clearly  given  by 

*aj+  7   7/        *^  ~"~"  ̂ i 

This  shows  that  any  two  projectivities  of  this  group  are  commuta- 
tive.   This  result  gives 

Theokem  6.  Any  two  projectivities  which  have  two  double  points 
in  common  are  commutative. 

This  theorem  is  equivalent  to  the  commutative  law  for  multiplication. 

If  the  double  points  are  the  points  0  and  x>,  the  group  consists  of  all  projec- 
tivities of  the  form  xf  =  ax. 

3.   The  set  of  all  parabolic  projectivities  with  a  common  double  point. 

In  order  to  show  that  this  set  of  projectivities  is  a  group,  it  is  only 

necessary  to  show  that  the  product  of  two  parabolic  projectivities 

with  the  same  double  point  is  parabolic.  This  follows  readily  from 

the  analytic  representation.  The  set  of  projectivities  above  described 
consists  of  all  transformations  of  the  form 

1  1 
x  —  x. +  t, 

where  x  is  the  common  double  point  (Theorem  3,  Cor.  1).    If 

—   =   (- 1.,  and  -;   m   f-  L ■  '  ■       "     t//-  1AJ  tAj-  IAS  «A/-  tAJ  %AJ+ 

are  two  projectivities  of  this  set,  the  product  of  the  first  by  the  second 

is  given  by  i  1   =  — —  +  <!+<„ 
•  '  >'    ,  *Aj  ■'   , 

which  is  clearly  a  projectivity  of  the  set.  It  shows,  moreover,  that 

any  two  projectivities  of  this  group  are  commutative.    Whence 

Theorem  7.  Any  two  parabolic  projectivities  on  a  line  with  the 
same  double  point  are  commutative. 

This  theorem  is  independent  of  Assumption  P,  although  this  assumption 

is  implied  in  the  proof  we  have  given.  The  theorem  has  already  been  proved 

without  this  assumption  in  Example  2,  p.  70. 
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Any  two  groups  of  this  type  are  conjugate.  For  every  projectivity 
„rausforniing  the  double  point  of  one  group  into  the  double  point  of 

the  other  transforms  the  one  group  into  the  other,  since  the  projec- 
tive transform  of  a  parabolic  projectivity  is  parabolic. 

Definition.  Two  subgroups  of  a  group  G  are  said  to  be  conjugate 
under  G  if  there  exists  a  transformation  of  G  which  transforms  one 

of  the  subgroups  into  the  other.  A  subgroup  of  G  is  said  to  be  self- 
conjugate  or  invariant  under  G  if  it  is  transformed  into  itself  by 

every  transformation  of  G;  i.e.  if  every  transformation  in  G  trans- 
forms any  transformation  of  the  subgroup  into  another  (or  the  same) 

transformation  of  the  subgroup. 

We  have  seen  that  any  two  groups  of  any  one  of  the  three  types 

are  conjugate  subgroups  of  the  general  projective  group  on  the  line. 

We  may  now  give  an  example  of  a  self-conjugate  subgroup. 
Tlie  set  of  all  parabolic  projectivities  in  a  group  of  Type  1  above  is 

a  self-conjugate  subgroup  of  this  group.  It  is  clearly  a  subgroup,  since 

it  is  a  group  of  Type  3.  And  it  is  self-conjugate,  since  any  conjugate 
of  a  parabolic  projectivity  is  parabolic,  and  since  every  projectivity  of 

the  group  leaves  the  common  double  point  invariant. 

EXERCISES 

1.  Write  the  equations  of  all  the  projective  transformations  which  permute 

among  themselves  (a)  the  points  (0, 1),  (1,0),  (1,1);  (b)  the  points  (0, 1), 

(1,0),  (1,1),  (a,  b);  (c)  the  points  (0,1),  (1,0),  (1,1),  (-1,1).  What 
are  the  equations  of  the  self-conjugate  subgroup  of  the  group  of  transforma- 

tions (a)? 

2.  If  a  projectivity  xf  =  (ax  +  b)/(cx  +  d)  having  two  distinct  double  ele- 
ments be  written  in  the  form  of  Cor.  3,  Theorem  1,  show  that 

k  =  <LZJ?l  =  ̂ .b^Li;  and  that  (l +  *?=<*  +  *? . 
a  —  cxt      Xj    b  —  dx*  k  ad  —  be 

3.  If  a  parabolic  projectivity  x"  =  (ax  +  b)/(cx  +  </)  be  written  in  the  form 
of  Theorem  3,  Cor.  1,  show  that  m  =  (a  —  d)/2  c,  and  t  =  2  c/(a  +  rf). 

4.  Show  that  a  projectivity  with  distinct  double  points  x1,  x2  and  charac- 
teristic cross  ratio  t  can  be  written  in  the  form 

x     0     1 

3?-
 

xx    xx    1 
r2  kx%  1 
x    0  1 

xt   1   1 
xs  k  1 
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5.  Show  that  the  parabolic  projectivity  of  Theorem  3,  Cor.  1,  may  be 
written  in  the  form 

X 

1 

0        1 

xx        1 txx  +  1  0 x   0  1 

xx  1  1 
1    t   0 

3/  = 

6.  If  by  means  of  a  suitably  chosen  transformation  of  a  group  any  of  the 
elements  transformed  may  be  transformed  into  any  other  element,  the  group 
is  said  to  be  transitive.  If  by  a  suitably  chosen  transformation  of  a  group  any 
set  of  n  distinct  elements  may  be  transformed  into  any  other  set  of  n  distinct 
elements,  and  if  this  is  not  true  for  all  sets  of  n  +  1  distinct  elements,  the 

group  is  said  to  be  n-ply  transitive.  Show  that  the  general  projective  group  on 
a  line  is  triply  transitive,  and  that  of  the  subgroups  listed  in  §  75  the  first 
is  doubly  transitive  and  the  other  two  are  simply  transitive. 

7.  If  two  projectivities  on  a  line,  each  having  two  distinct  double  points, 

have  one  double  point  in  common,  the  characteristic  cross  ratio  of  their  prod- 
uct is  equal  to  the  product  of  their  characteristic  cross  ratios. 

76.  Projective  transformations  between  conies.  We  have  consid- 

ered hitherto  projectivities  between  one-dimensional  forms  of  the 

first  degree  only.  We  shall  now  see  how  projectivities  exist  also  be- 
tween one-dimensional  forms  of  the  second  degree,  and  also  between 

a  one-dimensional  form  of  the  first  and  one  of  the  second  degree. 

Many  familiar  theorems  will  hereby  appear  in  a  new  light. 

As  typical  for  the  one-dimensional  forms  of  the  second  degree  we 
choose  the  conic.  The  corresponding  theorems  for  the  cone  then 

follow  by  the  principle  of  duality. 

Let  irx  be  a  projective  collineation  between  two  planes  a,  av  and 

let  C2  be  any  conic  in  a.  Any  two  projective  pencils  of  lines  in  a 
are  then  transformed  by  7rx  into  two  projective  pencils  of  lines  in  ax, 

such  that  any  two  homologous  lines  of  the  pencils  in  a  are  trans- 

formed into  a  pair  of  homologous  lines  in  ax ;  for  if  it  be  the  projec- 

tivity between  the  pencils  in  a,  ir^-mr^1  will  be  a  projectivity  between 
the  pencils  in  ax  (cf.  §  74).  Two  projective  pencils  of  lines  generating 

the  conic  C2  thus  correspond  to  two  pencils  of  lines  in  ax  generating 

a  conic  Cf.  The  transformation  irx  then  transforms  every  point  of  C2 
into  a  unique  point  of  C2.  Similarly,  it  is  seen  that  irx  transforms 

every  tangent  of  C2  into  a  unique  tangent  of  C2. 
Definition.  Two  conies  are  said  to  be  projective  if  to  every  point  of 

one  corresponds  a  point  of  the  other,  and  to  every  tangent  of  one 
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corresponds  a  tangent  of  the  other,  in  such  a  way  that  this  correspond- 
ence may  be  brought  about  by  a  projective  collineation  between  the 

planes  of  the  conies.  The  projective  collineation  is  then  said  to 

generate  the  projectivity  between  the  conies. 

Two  conies  in  different  planes  are  projective,  for  example,  if  one  is  the  pro- 
jection of  the  other  from  a  point  on  neither  of  the  two  planes.  If  the  second 

of  these  is  projected  back  on  the  plane  of  the  first  from  a  new  center,  we 
obtain  two  conies  in  the  same  plane  that  are  projective.  We  will  see  presently 

that  two  projective  conies  may  also  coincide,  in  which  case  we  obtain  a  pro- 
jectivity on  a  conic. 

Theorem   8.    Two  conies  that  are  projective  with   a    third   are 

projective. 

Proof.  This  is  an  immediate  consequence  of  the  definition  and  the 
fact  that  the  resultant  of  two  collineations  is  a  collineation. 

We  proceed  now  to  prove  the  fundamental  theorem  for  projec- 
tivities  between  two  conies. 

Theorem  9.  A  projectivity  between  two  conies  is  uniquely  deter- 

mined if  three  distinct  points  (or  tangents)  of  one  are  made  to  corre- 
spond to  three  distinct  points  (or  tangents)  of  the  other. 

Fig.  86 

Proof  Let  C2,  C*  be  the  two  conies  (fig.  86),  and  let  A,  B,  C  be 

three  points  of  C2,  and  A',  B',  C'  the  corresponding  points  of  C2.  Let 

P  and  P'  be  the  poles  of  AB  and  A'B'  with  respect  to  C2  and  C\ 
respectively.  If  now  the  collineation  v  is  defined  by  the  relation 

ir(ABCP)  =  A'B'C'P'  (Theorem  18,  Chap.  IV),  it  is  clear  that  the 

conic  C2  is  transformed  by  it  into  a  conic  through  the  points  A',  B',  C', 

with  tangents  A'P'  and  B'Pr.  This  conic  is  uniquely  determined  by 
these  specifications,  however,  and  is  therefore  identical  with  C2.  The 

collineation  ir  then  transforms  C2  into  C2  in  such  a  way  that  the 

points  A,  B,  C  are  transformed  into  A',  B',  C  respectively.    Moreover, 
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suppose  ir'  were  a  second  collineation  transforming  C2  into  C?  in  the 

way  specified.  Then  7r'_17r  would  be  a  collineation  leaving  A,  B,  C,  P 
invariant ;  i.e.  ir  =  ir'. 

The  argument  applies  equally  well  if  A'B'C'  are  on  the  conic  C2, 

i.e.  when  the  two  conies  C'\  C2  coincide.  In  this  case  the  projectivity 
is  on  the  conic  C.    This  gives 

Corollary  1.  A  projectivity  on  a  conic  is  uniquely  determined  when 

three  pairs  of  homologous  elements  (points  or  tangents)  are  given. 

Also  from  the  proof  of  the  theorem  follows 

Corollary  2.  A  collineation  in  a  plane  which  transforms  three 
distinct  points  of  a  conic  into  three  distinct  points  of  the  same  conic  and 

which  transforms  the  pole  of  the  line  joining  two  of  the  first  three 

points  into  the  pole  of  the  line  joining  the  two  corresponding  points 
transforms  the  conic  into  itself. 

The  two  following  theorems  establish  the  connection  between  pro- 

jectivities  between  two  conies  and  projectivities  between  one-dimen- 
sional forms  of  the  first  degree. 

Theorem  10.   If  A  and  B'  are  Theorem  10'.  If  a  and  V  are 
any  two  points  of  two  projective  any  two  tangents  of  two  projective 

conies  C2  and  C2  respectively,  the  conies  C2  and  C2  respectively,  the 
pencils  of  lines  with  centers  at  A  pencils  of  points  on  a  and  V  are 

and  B'  are  projective  if  every  pair  projective  if  every  pair  of  homol- 
of  homologous  lines  of  these  pencils  ogous  points  on  these  lines  is  on 

pass  through  a  pair  of  homologous  a  pair  of  homologous  tangents  of 

points  on  the  two  conies  respectively,  the  conies  respectively. 

Proof.  It  will  suffice  to  prove  the  theorem  on  the  left.  Let  A'  be 

the  point  of  C2  homologous  with  A.  The  collineation  which  generates 
the  projectivity  between  the  conies  then  makes  the  pencils  of  lines  at 

A  and  A'  projective,  in  such  a  way  that  every  pair  of  homologous 
lines  contains  a  pair  of  homologous  points  of  the  two  conies.  The  pen- 

cil of  lines  at  B'  is  projective  with  that  at  A'  if  they  correspond  in 

such  a  way  that  pairs  of  homologous  lines  intersect  on  C2  (Theorem 
2,  Chap.  V).  This  establishes  a  projective  correspondence  between 

the  pencils  at  A  and  B'  in  which  any  two  homologous  lines  pass 
through  two  homologous  points  of  the  conies  and  proves  the  theorem. 

It  should  be  noted  that  in  this  projectivity  the  tangent  to  C2  at  A 

corresponds  to  the  line  of  the  pencil  at  B'  passing  through  A'. 
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Cokollaky.  Conversely,  if  two 

conies  correspond  in  such  a  way 

that  every  pair  of  homologous 

points  is  on  a  pair  of  homologous 

lines  of  two  projective  pencils  of 
lines  whose  centers  are  on  the 

conies,  they  are  projective. 

Corollary.  Conversely,  if  two 

conies  correspond  in  such  a  way 

that  e'very  pair  of  homologous  tan- 
gents is  on  a  pair  of  homologous 

points  of  two  projective  pencils  of 
points  whose  axes  are  tangents  of 

the  conies,  they  are  projective. 

Proof.  This  follows  from  the  fact  that  the  projectivity  between  the 

pencils  of  lines  is  uniquely  determined  by  three  pairs  of  homologous 

lines.  A  projectivity  between  the  conies  is  also  determined  by  the 

three  pairs  of  points  (Theorem  9),  in  which  three  pairs  of  homolo- 
gous lines  of  the  pencils  meet  the  conies.  But  by  what  precedes 

and  the  theorem  above,  this  projectivity  is  the  same  as  that  described 

in  the  corollary  on  the  left.  The  corollary  on  the  right  may  be  proved 

similarly.  If  the  two  conies  are  in  the  same  plane,  it  is  simply  the 

plane  dual  of  the  one  on  the  left. 

By  means  of  these  two  theorems  the  construction  of  a  projectivity 
between  two  conies  is  reduced  to  the  construction  of  a  projectivity 

between  two  primitive  one-dimensional  forms. 
It  is  now  in  the  spirit  of  our  previous  definitions  to  adopt  the 

following : 

Definition.  A  point  conic  and 

a  pencil  of  lines  whose  center  is  a 

point  of  the  conic  are  said  to  be 

perspective  if  they  correspond  in 

such  a  way  that  every  point  of 

the  conic  is  on  the  homologous 

line  of  the  pencil.  A  point  conic 

and  a  pencil  of  points  are  said  to 

be  perspective  if  every  two  homol- 
ogous points  are  on  the  same  line 

of  a  pencil  of  lines  whose  center 

is  a  point  of  the  conic. 

Definition.  A  line  conic  and 

a  pencil  of  points  whose  axis  is 
a  line  of  the  conic  are  said  to  be 

perspective  if  they  correspond  in 
such  a  way  that  every  line  of  the 

conic  passes  through  the  homolo- 
gous point  of  the  pencil  of  points. 

A  line  conic  and  a  pencil  of  lines 

are  said  to  be  perspective  if  every 

two  homologous  lines  meet  in  a 

point  of  a  pencil  of  points  whose 
axis  is  a  line  of  the  conic. 

The  reader  will  now  readily  verify  that  with  this  extended  use  of 

the  term  perspective,  any  sequence  of  perspectivities  leads  to  a  pro- 
jectivity. For  example,  two  pencils  of  lines  perspective  with  the  same 

point  conic  are  projective  by  Theorem  2,  Chap.  V;  two  point  conies 
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perspective  with  the  same  pencil  of  lines  or  with  the  same  pencil  of 

points  are  projective  by  Theorem  10,  Cor.,  etc. 

Another  illustration  of  this  extension  of  the  notion  of  perspectivity 
leads  readily  to  the  following  important  theorem : 

Theokem  11.  Two  conies  which  are  not  in  the  same  plane  and  have 

a  common  tangent  at  a  point  A  are  sections  of  one  and  the  same  cone. 

Proof.  If  the  two  conies  C2,  C2  (fig.  87)  are  made  to  correspond 
in  such  a  way  that  every  tangent  x  of  one  is  associated  with  that 

tangent  a/ of  the  other 
which  meets  x  in  a 

point  of  the  common 
tangent  a  of  the  conies, 

they  are  projective. 
For  the  tangents  of 
the  conies  are  then 

F     g7  perspective  with  the 
same  pencil  of  points 

(cf.  Theorem  10',  Cor.).  Every  pair  of  homologous  tangents  of  the  two 
conies  determines  a  plane.  If  we  consider  the  point  0  of  intersection 

of  three  of  these  planes,  say,  those  determined  by  the  pairs  of  tangents 

oh',  cc',  dd',  and  project  the  conic  C2  on  the  plane  of  C2  from  0,  there 

results  a  conic  in  the  plane  of  C2.  This  conic  has  the  lines  b,  c,  d  for 

tangents  and  is  tangent  to  a  at  A;  it  therefore  coincides  with  C2 

(Theorem  6',  Chap.  V).  The  two  conies  C2,  Cx2  then  have  the  same 
projection  from  0,  which  proves  the  theorem.* 

EXERCISES 

1.  State  the  theorems  concerning  cones  dual  to  the  theorems  of  the  preced- 

ing sections. 
2.  By  dualizing  the  definitions  of  the  last  article,  define  what  is  meant  by 

the  perspectivity  between  cones  and  the  primitive  one-dimensional  forms. 

3.  If  two  projective  conies  have  three  self-corresponding  points,  they  are 
perspective  with  a  common  pencil  of  lines. 

4.  If  two  projective  conies  have  four  self-corresponding  elements,  they 
coincide. 

5.  State  the  space  duals  of  the  last  two  propositions. 

*  It  will  be  seen  later  that  this  theorem  leads  to  the  proposition  that  any  conic 
may  be  obtained  as  the  projection  of  a  circle  tangent  to  it  in  a  different  plane. 
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6.  If  a  pencil  of  lines  and  a  conic  in  the  plane  of  the  pencil  are  projective, 

but  not  perspective,  not  more  than  three  lines  of  the  pencil  pass  through  their 

homologous  points  on  the  conic.  (Hint.  Consider  the  points  of  intersection  of 

the  given  conic  with  the  conic  generated  by  the  given  pencil  and  a  pencil  of 

lines  perspective  with  the  given  conic.)    Dualize. 

7.  The  homologous  lines  of  a  line  conic  and  a  projective  pencil  of  lines  in 

the  same  plane  intersect  in  points  of  a  "  curve  of  the  third  order"  such  that 
any  line  of  the  plane  has  at  most  three  points  in  common  with  it.  (This  fol- 

lows readily  from  the  last  exercise.) 

8.  The  homologous  elements  of  a  cone  of  lines  and  a  projective  pencil  of 

planes  meet  in  a  "  space  curve  of  the  third  order"  such  that  any  plane  has 
at  most  three  points  in  common  with  it. 

9.  Dualize  the  last  two  propositions. 

77.  Projectivities  on  a  conic.  We  have  seeu  that  two  projective 

conies  may  coincide  (Theorems  8-10),  in  which  case  we  obtain  a 
projective  correspondence  among  the  points  or  the  tangents  of  the 

Fig.  88 

conic.  The  construction  of  the  projectivity  in  this  case  is  very 

simple,  and  leads  to  many  important  results.  It  results  from  the 

following  theorems": 

Theorem  12.  If  A,  A'  are  any 
txco  distinct  homologous  joints  of 

a  projectivity  on  a  conic,  a  nd  B,  B' ; 
C,  C;  etc.,  are  any  other  pairs  of 

Theorem  12'.  If  a,  a'  are  any 
tvjo  distinct  homologous  tangents 

of  a  projectivity  on  a  conic,  and 

b,  V;  c,  c';  etc.,  are  any  other  pairs 
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homologous  points,  the  lines  A'B  of  homologous  tangents,  the  points 
and  AB',  A'C  and  AG',  etc.,  meet  a'b  and  ab',  a'c  and  ac',  etc.,  are 
in  points  of  the  same  line ;  and  collinear   with   the   same  point; 

this  line  is  independent  of  the  pair  and  this  point  is  independent  of 

AA'  chosen.  the  pair  aa'  chosen. 

Proof.  The  pencils  of  lines  A' (ABC-  ■  •)  and  A(A'B'C-  •  •)  are  pro- 
jective (Theorem  10),  and  since  they  have  a  self-corresponding  line 

AA',  they  are  perspective,  and  the  pairs  of  homologous  lines  of  these 
two  pencils  therefore  meet  in  the  points  of  a  line  (fig.  88).  This 

proves  the  first  part  of  the  theorem  on  the  left.  That  the  line  thus 

determined  is  independent  of  the  homologous  pair  AA'  chosen  then 
follows  at  once  from  the  fact  this  line  is  the  Pascal  line  of  the  simple 

hexagon  AB'CA'BC',  so  that  the  lines  B'C  and  BC'  and  all  other 
analogously  formed  pairs  of  lines  meet  on  it.  The  theorem  on  the 

right  follows  by  duality. 

Definition.  The  line  and  the  point  determined  by  the  above  dual  theo- 
rems are  called  the  axis  and  the  center  of  the  projectivity  respectively. 

Corollary  1.  A  (nonidentical)  Corollary  1'.  A  (nonidenti- 

projectivity  on  a  conic  is  uniquely     cal)   projectivity   on'   a    conic   is 
determined  when  the  axis  of  pro- 

jectivity and  one  pair  of  distinct 

homologous  points  are  given. 

uniquely  determined  when  the 
center  and  one  pair  of  distinct 

homologous  tangents  are  given. 

These  corollaries  follow  directly  from  the  construction  of  the  pro- 
jectivity arising  from  the  above  theorem.  This  construction  is  as 

follows:  Given  the  axis  o  and  a  pair  of  distinct  homologous  points 

A  A',  to  get  the  point  P'  homologous  with  any  point  P  on  the  conic; 

join  P  to  A' ;  the  point  P'  is  then  on  the  line  joining  A  to  the  point 

of  intersection  of  A'P  with  o.  Or,  given  the  center  0  and  a  pair  of 

distinct  homologous  tangents  aa',  to  construct  the  tangent  p'  homolo- 

gous with  any  tangent  p ;  the  line  joining  the  point  a'p  to  the  center 

meets  a  in  a  point  of  p'. 
Corollary  2.  Every  double 

point  of  a  projectivity  on  a  conic 
is  on  the  axis  of  the  projectivity ; 

and,  conversely,  every  point  com- 
mon to  the  axis  and  the  conic  is 

a  double  point. 

Corollary  2'.  Every  double 
line  of  a  projectivity  on  a  conic 

contains  the  center  of  the  projec- 

tivity ;  and,  conversely,  every  tan- 
gent of  a  conic  through  the  center 

is  a  double  line  of  the  projectivity. 
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Corollary  3.   A   projectivity         Corollary  3'.    A  projectivity 
among  the  points  on  a  conic  is  among  the  tangents  to  a  conic  is 

parabolic  if  and  only  if  the  axis  parabolic  if  and  only  if  the  center 

is  tangent  to  the  conic.  is  a  point  of  the  conic. 

Theorem  13.  A  projectivity  among  the  points  of  a  conic  determines 

a  projectivity  of  the  tangents  in  which  the  tangents  at  pairs  of  homol- 
ogous points  are  homologous. 

Proof.  This  follows  at  once  from  the  fact  that  the  collineation  in 

the  plane  of  the  conic  which  generates  the  projectivity  transforms 

the  tangent  at  any  point  of  the  conic  into  the  tangent  at  the  homok 

ogous  point,  and  hence  also  generates  a  projectivity  between  the 

tangents. 

Theorem  14.  The  center  of  a  projectivity  of  tangents  on  a  conic 

and  the  axis  of  the  corresponding  projectivity  of  points  are  pole  and 

polar  with  respect  to  the  conic. 

A 

Fig.  89 

Proof  Let  AA',  BB',  CC  (fig.  89)  be  three  pairs  of  homologous 

points  {AA'  being  distinct),  and  let  A'B  and  A&,  A'C  and  AC',  meet 
in  points  R  and  S  respectively,  which  determine  the  axis  of  the  pro- 

jectivity of  points.  Xow  the  polar  of  R  with  respect  to  the  conic  is 

determined  by  the  intersections  of  the  pairs  of  tangents  at  A',  B  and 

A,  B'  respectively;  and  the  polar  of  S  is  determined  by  the  pairs  of 

tangents  at  A',  C  and  A,  C'  respectively  (Theorem  13,  Chap.  Y).  The 
pole  of  the  axis  RS  is  then  determined  as  the  intersection  of  these 
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two  polars  (Theorem  17,  Chap.  V).   But  by  definition  these  two  polars 

also  determine  the  center  of  the  projectivity  of  tangents. 

This  theorem  is  obvious  if  the  projectivity  has  double  elements  ;  the  proof 
given,  however,  applies  to  all  cases. 

The  collineation  generating  the  projectivity  on  the  conic  transforms 

the  conic  into  itself  and  clearly  leaves  the  center  and  axis  invariant. 

The  set  of  all  collineations  in  the  plane  leaving  the  conic  invariant 

form  a  group  (cf.  p.  67).  In  determining  a  transformation  of  this 

group,  any  point  or  any  line  of  the  plane  may  be  chosen  arbitrarily 

as  a  double  point  or  a  double  line  of  the  collineation ;  and  any  two 

points  or  lines  of  the  conic  may  be  chosen  as  a  homologous  pair  of 

the  collineation.  The  collineation  is  then,  however,  uniquely  deter- 
mined. In  fact,  we  have  already  seen  that  the  projectivity  on  the 

conic  is  uniquely  determined  by  its  center  and  axis  and  one  pair  of 

homologous  elements  (Theorem  12,  Cor.  1);  and  the  theorem  just 

proved  shows  that  if  the  center  of  the  projectivity  is  given,  the  axis 

is  uniquely  determined,  and  conversely. 

COROLLAKY  1.  A  plane  projective  collineation  which  leaves  a  non- 
degenerate  conic  in  its  plane  invariant  is  of  Type  I  if  it  has  two 

double  points  on  the  conic,  unless  it  is  of  period  two,  in  which  case  it 

is  of  Type  IV;  and  is  of  Type  III  if  the  corresponding  projectivity 

on  the  conic  is  parabolic. 

Corollary  2.  An  elation  or  a  collineation  of  Type  II  transforms 

every  nondegenerate  conic  of  its  plane  into  a  different  conic. 

Corollary  3.  A  plane  projective  collineation  which  leaves  a  conic 

in  its  plane  invariant  and  has  no  double  point  on  the  conic  has  one 

and  only  one  double  point  in  the  plane. 

Theorem  15.  The  group  of  projective  collineations  in  a  plane  leav- 

ing a  nondegenerate  conic  invariant  is  simply  isomorphic*  with  the 
general  projective  group  on  a  line. 

Proof.  Let  A  be  any  point  of  the  invariant  conic.  Any  projectivity 

on  the  conic  then  gives  rise  to  a  projectivity  in  the  flat  pencil  at  A  in 

which  two  lines  are  homologous  if  they  meet  the  conic  in  a  pair  of 

homologous   points.    And,  conversely,  any  projectivity  in  the  flat 

*  Two  groups  are  said  to  be  simply  isomorphic  if  it  is  possible  to  establish  a  (1,1) 
correspondence  between  the  elements  of  the  two  groups  such  that  to  the  product  of 
any  two  elements  of  one  of  the  groups  corresponds  the  product  of  the  two  corre- 

sponding elements  of  the  other. 
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pencil  at  A  gives  rise  to  a  projectivity  on  the  conic.  The  group  of  all 

projectivities  on  a  conic  is  therefore  simply  isomorphic  with  the  group 

of  all  projectivities  in  a  fiat  pencil,  since  it  is  clear  that  in  the  corre- 
spondence described  between  the  projectivities  in  the  flat  pencil  and 

on  the  conic,  the  products  of  corresponding  pairs  of  projectivities  will 

be  corresponding  projectivities.  Hence  the  group  of  plane  collineations 

leaving  the  conic  invariant  is  simply  isomorphic  with  the  general  pro- 
jective group  in  a  flat  pencil  and  hence  with  the  general  projective 

group  on  a  line. 

78.  Involutions.  An  involution  was  defined  (p.  102)  as  any  projec- 

tivity in  a  one-dimensional  form  which  is  of  period  two,  i.e.  by  the 

relation  I2  =  1  (I  =£  1),  where  I  represents  an  involution.  This  relation 

is  clearly  equivalent  to  the  other,  I  =  I-1(I=£  1),  so  that  any  projec- 
tivity (not  the  identity)  in  a  one-dimensional  form,  which  is  identical 

with  its  inverse,  is  an  involution.  It  will  be  recalled  that  since  an  in- 

volution makes  every  pair  of  homologous  elements  correspond  doubly, 

ie.  A  to  A'  and  A'  to  A,  an  involution  may  also  be  considered  as  a 
pairing  of  the  elements  of  a  one-dimensional  form ;  any  such  pair  is 
then  called  a  conjugate  pair  of  the  involution.  We  propose  now  to 

consider  this  important  class  of  projectivities  more  in  detail.  To  this 

end  it  seems  desirable  to  collect  the  fundamental  properties  of  invo- 
lutions which  have  been  obtained  in  previous  chapters.  They  are  as 

follows : 

1.  If  the  relation  ir2(A)  =  A  holds  for  a  single  element  A  {not  a 
douhle  element  of  ir)  of  a  one-dimensional  form,  the  projectivity  ir  is 
an  involution,  and  the  relation  holds  for  every  element  of  the  form 

(Theorem  26,  Chap.  IV). 

2.  An  involution  is  uniquely  determined  when  two  pairs  of  conju- 
gate elements  are  given  (Theorem  26,  Cor.,  Chap.  IV). 

3.  The  opposite  pairs  of  any  quadrangular  set  are  three  pairs  of 

an  involution  (Theorem  27,  Chap.  IV). 
4.  If  31,  N  are  distinct  double  elements  of  any  projectivity  in  a 

one-dimensional  form  and  A,  A'  and  B,  B'  are  any  two  pairs  of 

homologous  elements  of  the  projectivity,  the  pairs  of  elements  MX,  AB' 

A'B  are  three  pairs  of  an  involution  (Theorem  27,  Cor.  3,  Chap.  IV), 
5.  If  M,  N  are  double  elements  of  an  involution,  they  are  distinct, 

and  every  conjugate  pair  of  the  involution  is  harmonic  with  M,  N 

(Theorem  27,  Cor.  1,  Chap.  IV). 
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6.  An  involution  is  uniquely  determined,  if  two  double  elements  are 

given,  or  if  one  double  element  and  another  conjugate  pair  are  given. 

(This  follows  directly  from  the  preceding.) 

7.  An  involution  is  represented  analytically  by  a  bilinear  form 

cxx'  —  a  (x  +  x')  —  b  =  0,  or  by  the  transformation 
.     ax  +  b  , 

x'  = — 2—  a2+bc^0 
ex  —  a 

(Theorem  12,  Cor.  3,  Chap.  VI). 

8.  An  involution  with  double  elements  m,  n  may  be  represented  by 
the  transformation x' —  m 

x  —  m 

x'  —  n  x  —  n 

(Theorem  1,  Cors.  2,  3,  Chap.  VIII). 

We  recall,  finally,  the  Second  Theorem  of  Desargues  and  its  various 

modifications  (§  46,  Chap.  V),  which  need  not  be  repeated  at  this 

place.  It  has  been  seen  in  the  preceding  sections  that  any  projec- 

tivity  in  a  one-dimensional  primitive  form  may  be  transformed  into  a 
projectivity  on  a  conic.  We  shall  find  that  the  construction  of  an  in- 

volution on  a  conic  is  especially  simple,  and  may  be  used  to  advantage 

in  deriving  further  properties  of  involutions.    Under  duality  we  may 
confine  our  consideration 

0  IX  to  the  case  of  an  involu- 

"°  tion  of  points  on  a  conic. 
Theorem  16.  The  lines 

joining  the  conjugate  points 

of  an  involution  on  a  conic 

all  pass  through  the  center 

of  the  involution. 

Proof.  Let  ̂ M' (fig.  90) 
be  any  conjugate  pair  (A 

not  a  double  point)  of  an 

involution  of  points  on  a 

conic  C2.  The  line  A  A'  is  then  an  invariant  line  of  the  collineation  gener- 
ating the  involution.  Every  line  joining  a  pair  of  distinct  conjugate 

points  of  the  involution  is  therefore  invariant,  and  the  generating 

collineation  must  be  a  perspective  collineation,  since  any  collineation 

leaving  four  lines  invariant  is  either  perspective   or  the   identity 

Fig.  90 
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(Theorem  9,  Cor.  3,  Chap.  III).  It  remains  only  to  show  that  the 
center  of  this  perspective  collineation  is  the  center  of  the  involution- 

Let  B,  B1  (B  not  a  double  point)  be  any  other  conjugate  pair  of  the 
involution,  distinct  from  A,  A'.  Then  the  lines  A  B'  and  A'B  inter- 

sect on  the  axis  of  the  involution.  But  since  B,  B'  correspond  to  each 

other  doubly,  it  follows  that  the  lines  AB  and  A'B'  also  intersect 
on  the  axis.  This  axis  then  joins  two  of  the  diagonal  points  of  the 

quadrangle  AA'BB'.  The  center  of  the  perspective  collineation  is 
determined  as  the  intersection  of  the  lines  AA'  and  BB',  i.e.  it  is 

the  third  diagonal  point  of  the  quadrangle  AA'BB'.  The  center  of 
the  collineation  is  therefore  the  pole  of  the  axis  of  the  involution 

(Theorem  14,  Chap.  V)  and  is  therefore  (Theorem  14,  above)  the  center 
of  the  involution. 

Since  this  center  of  the  involution  is  clearly  not  on  the  conic,  the 

generating  collineation  of  any  involution  of  the  conic  is  a  homology, 

whose  center  0  and  axis  o  are  pole  and  polar  with  respect  to  the  conic 

A  homology  of  period  two  is  sometimes  called  a  harmonic  homol- 
ogy, since  it  transforms  any  point  P  of  the  plane  into  its  harmonic 

conjugate  with  respect  to  O  and  the  point  in  which  OP  meets 

the  axis.  It  is  also  called  a  projective  reflection  or  a  point-line  reflec- 
tion. Clearly  this  is  the  only  kind  of  homology  that  can  leave  a  conic 

invariant. 

The  construction  of  the  pairs  of  an  involution  on  a  conic  is  now 

very  simple.  If  two  conjugate  pairs  A,  A'  and  B,  B'  are  given,  the  lines 
AA'  and  BB'  determine  the  center  of  the  involution.  The  conjugate 
of  any  other  point  C  on  the  conic  is  then  determined  as  the  intersec- 

tion with  the  conic  of  the  line  joining  C  to  the  center.  If  the  involu- 
tion has  double  points,  the  tangents  at  these  points  pass  through  the 

center  of  the  involution ;  and,  conversely,  if  tangents  can  be  drawn  to 

the  conic  from  the  center  of  the  involution,  the  points  of  contact  of 

these  tangents  are  double  points  of  the  involution. 

The  great  importance  of  involutions  is  in  part  due  to  the  following 
theorem : 

Theorem  17.  Any  projectivity  in  a  one-dimensional  form  may  be 
obtained  as  the  product  of  two  involutions. 

Proof.  Let  IT  be  the  projectivity  in  question,  and  let  A  be  any 

point  of  the  one-dimensional   form  which  is  not  a  double  point 
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Further,  let  U(A)  =  A'  and  T1(A')  =  A".  Then,  if  Ix  is  the  involution 

of  which  A'  is  a  double  point  and  of  which  A  A"  is  a  conjugate  pair 
(Prop.  6,  p.  222),  we  have 

ll-U(AA')  =  A'A) 

so  that  in  the  projectivity  Ix- IT  the  pair  AA'  corresponds  to  itself 
doubly.  Ij-II  is  therefore  an  involution  (Prop.  1,  p.  221).  If  it  be 

denoted  by  I2,  we  have  Ij-  II  =  I2,  or  II  =  Ix- 12,  which  was  to  be 

proved. 
This  proof  gives  at  once : 

Corollaky  1.  Any  projectivity  II  may  be  represented  as  the  prod- 

uct of  two  involutions,  II  =  Ix  •  I2,  either  of  which  (but  not  both)  has 
an  arbitrary  point  {not  a  double  point  of  II)  for  a  double  point. 

Proof.  We  have  seen  above  that  the  involution  l1  may  have  an 

arbitrary  point  (A')  for  a  double  point.  If  in  the  above  argument  we 
let  I2  be  the  involution  of  which  A'  is  a  double  point  and  AA"  is  a 

conjugate  pair,  we  have  II  •  l2(A'A")  =  A" A';  whence  II  •  I2  is  an  invo- 
lution, say  L.  We  then  have  II  =  \x- 12,  in  which  I2  has  the  arbitrary 

point  A'  for  a  double  point. 
The  argument  given  above  for  the  proof  of  the  theorem  applies 

without  change  when  A  =  A",  i.e.  when  the  projectivity  II  is  an  in- 
volution.   This  leads  readily  to  the  following  important  theorem : 

Corollaky  2.  If  A  A'  is  a  conjugate  pair  of  an  involution  I,  the 

involution  of  which  A,  A'  are  double  points  transforms  I  into  itself, 
and  the  two  involutions  are  commutative. 

Proof.  The  proof  of  Theorem  17  gives  at  once  I  =  Ix«  I2,  where  Ix 

is  determined  as  the  involution  of  which  A,  A'  are  double  points.  We 
have  then  Ix«I=s  I2,  from  which  follows,  by  taking  the  inverse  of  both 

sides  of  the  equality,  I-I1  =  I~1  =  I2,  or  Ix  •  I  =  I-  Ij,  or  Ix - 1  -  It  =  I. 
As  an  immediate  corollary  of  the  preceding  we  have 

Corollary  3.  The  product  of  two  involutions  with  double  points 

A,  A'  and  B,  B'  respectively  transforms  into  itself  the  involution  in 

which  A  A'  and  B  B'  are  two  conjugate  pairs. 

Involutions  related  as  are  the  two  in  Cor.  2  above  are  worthy  of 

special  attention. 
Definition.  Two  involutions  are  said  to  be  harmonic  if  their 

product  is  an  involution. 
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Theorem  18.  Two  harmonic  involutions  are  commutative. 

Proof.  If  I„  I2  are  harmonic,  we  have,  by  definition,  Ix  •  I2  =  I3,  where 

Is  is  an  involution.    This  gives  at  once  the  relations  Ix  - 10  - 13  =  1  and 

Corollary.  Conversely,  if  two  distinct  involutions  are  commutative, 

they  are  harmonic. 

For  from  the  relation  Ij-Ijsl,*!,  follows  (I1-I2)2  =  l;   Le.  \X'\t 
is  an  involution,  since  I1«  I2=^=  1. 

Definition.  The  set  of  involutions  harmonic  with  a  given  involu- 
tion is  called  a  pencil  of  involutions. 

It  follows  then  from  Theorem  17,  Cor.  2,  that  the  set  of  all  involu- 

tions in  which  two  given  elements  form  a  conjugate  pair  is  a  pencil. 

Thus  the  double  points  of  the  involutions  of  such  a  pencil  are  the 

pairs  of  an  involution. 
79.  Involutions  associated  with  a  given  projectivity.  In  deriving 

further  theorems  on  involutions  we  shall  find  it  desirable  to  suppose 

the  projectivities  in  question  to  be  on  a  conic. 

Theorem  19.  If  a  projectivity  on  a  conic  is  represented  as  the  product 

of  two  involutions,  the  axis  of  the  projectivity  is  the  line  joining  the 

centers  of  the  two  involutions. 

Proof  Let  the  given  projec- 

tivity be  II  =  I2  •  Ix ;  lv  I3  being 
two  involutions.  Let  Ov  02  be 

the  centers  of  \x,  I2  respectively 

(fig.  91),  and  let  A  and  B  be 
any  two  points  on  the  conic 

which  are  not  double  points  of 

either  of  the  involutions  \x  or  I2 

and  which  are  not  a  conjugate 

pair  of  lx  or  I2.  If,  then,  we 

have  II  (AB)  =  A'B',  we  have,  by 
hypothesis,  lx(AB)  =  AXBX  and 

I2(AXBX)  =  A'B';  Ax,  B1  being  uniquely  determined  points  of  the  conic, 

such  that  the  lines  AAX,  BBX  intersect  in  Ox  and  the  lines  AXA',  BXB' 

intersect  in  Or  The  Pascal  line  of  the  hexagon  AAXA'BBXB'  then 

passes  through  Ov  02  and  the  intersection  of  the  lines  AB'  and  A'B. 
But  the  latter  point  is  a  point  on  the  axis  of  II.  This  proves  the  theorem. 

Fig.  91 
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Corollary.  A  projectivity  on  a  conic  is  the  product  of  two  involu- 
tions, the  center  of  one  of  which  may  he  any  arbitrary  point  (not  a 

double  point)  on  the  axis  of  the  projectivity  ;  the  center  of  the  other 

is  then  uniquely  determined. 

Proof.  Let  the  projectivity  IT  be  determined  by  its  axis  I  and  any 

pair  of  homologous  points  A,  A'  (fig.  91).  Let  Ox  be  any  point  on  the 
axis  not  a  double  point  of  LT,  and  let  Ix  be  the  involution  of  which 

Ol  is  the  center.  If,  then,  Ix  (A)  =  Av  the  center  02  of  the  involution 

I2  such  that  II  =  I2-  Ix  is  clearly  determined  as  the  intersection  of  the 

line  AXA'  with  the  axis.  For  by  the  theorem  the  product  I2  •  Ix  is  a 
projectivity  having  I  for  an  axis,  and  it  has  the  points  A,  A'  as  a  homol- 

ogous pair.  This  shows  that  the  center  of  the  first  involution  may 

be  any  point  on  the  axis  (not  a  double  point).  The  modification  of 

this  argument  in  order  to  show  that  the  center  of  the  second  involu- 
tion may  be  chosen  arbitrarily  (instead  of  the  center  of  the  first)  is 

obvious. 

Theorem  20.  There  is  one  and  only  one  involution  commutative 

with  a  given  nonparabolic  noninvolutoric  projectivity.  If  the  projec- 
tivity is  represented  on  a  conic,  the  center  of  this  involution  is  the 

center  of  the  projectivity. 

Proof.  Let  the  given  nonparabolic  projectivity  LT  be  on  a  conic, 
and  let  I  be  any  involution  commutative  with  LT ;  i.e.  such  that  we 

have  IT  •  I  =  I  •  LT.  This  is  equivalent  to  IT  •  I  •  LT~ 1  =  I.  That  is  to  say, 
I  is  transformed  into  itself  by  IT.  Hence  the  center  of  I  is  transformed 

into  itself  by  the  collineation  generating  IT.  But  by  hypothesis  the 

only  invariant  points  of  this  collineation  are  its  center  and  the  points 

(if  existent)  in  which  its  axis  meets  the  conic.  Since  the  center  of  I 

cannot  be  on  the  conic,  it  must  coincide  with  the  center  of  IT.  More- 

over, if  the  center  of  I  is  the  same  as  the  center  of  IT,  I  is  trans- 

formed into  itself  by  the  collineation  generating  IT,  nin-1  =  I. 
Hence  IT  •  I  =  I  •  IT.  Hence  I  is  the  one  and  only  involution  commu- 

tative with  n. 

Corollary  1.  There  is  no  involution  commutative  with  a  parabolic 

projectivity. 

Definition.  The  involution  commutative  with  a  given  nonpara- 
bolic noninvolutoric  projectivity  is  called  the  involution  belonging  to 

the  given  projectivity.    An  involution  belongs  to  itself. 
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Corollary  2.  1/  a  nonparabolic  projectivity  has  double  points,  the 

involution  belonging  to  the  projectivity  has  the  same  double  points. 

For  if  the  axis  of  the  projectivity  meets  the  conic  in  two  points, 

the  tangents  to  the  conic  at  these  points  meet  in  the  pole  of  the  axis. 

It  is  to  be  noted  that  the  involution  I  belonging  to  a  given  projec- 
tivity II  transforms  II  into  itself,  and  is  transformed  into  itself  by  II. 

Indeed,  from  the  relation  II  •  I  =  I  •  II  follow  at  once  the  relations 

1  •  II  •  I  =  II     and    II  •  I  •  II" l  =  I.     Conversely,    from    the    equation 
nin-1  follows  n  i=in. 

Theorem  21.  The  necessary  and  sufficient  condition  that  two  invo- 
lutions on  a  conic  be  harmonic  is  that  their  centers  be  conjugate  with 

respect  to  the  conic. 

Proof.  The  condi-  ^""^       ̂  tion  is  sufficient.  For 

let  Ij,  I„  be  two  invo- 
lutions on  the  conic 

whose  centers  Ov  02 

respectively  are  con- 
jugate with  respect 

to  the  conic  (fig.  92). 

Let  A  be  any  point 
of  the  conic  not  a 

double  point  of  either  involution,  and  let  l1(A)=Al  and  l2(A1)=A'. 
If,  then,  Ix  (A)  =  A[,  the  center  Ox  is  a  diagonal  point  of  the  quadrangle 

AAvi'A[,  and  the  center  02  is  on  the  side  AXA\   Since,  by  hypothesis, 
02  is  conjugate  to  01  with  respect  to  the  conic,  it  must  be  the  diago- 

nal point  on  AXA',  i.e.  it  must  be  collinear  with  AA[.  We  have  then 

l2-l1(AA')  =  A'A,  i.e.  the  projectivity  \2\x  is  an  involution  I3.  The 
center  03  of  the  involution  I3  is  then  the  pole  of  the  line  Ofi2  with 
respect  to  the  conic  (Theorem  19).  The  triangle  Ol0203  is  therefore 

self-polar  with  respect  to  the  conic.  It  follows  readily  also  that  the 
condition  is  necessary.  For  the  relation  1^1,  =  I,  leads  at  once  to 
the  relation  1,5=1^1,.  If  Ov  0,,  03  are  the  centers  respectively  of 
the  involutions  1^  I2,  I3,  the  former  of  these  two  relations  shows 

(Theorem  19)  that  03  is  the  pole  of  the  line  C^O, ;  while  the  latter 
shows  that  0,  is  the  pole  of  the  line  0^.  The  triangle  0,02<93  is 
therefore  self-polar. 

Fig.  92 
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Corollary  1.  Given  any  two  involutions,  there  exists  a  third  invo- 

lution which  is  harmonic  with  each  of  the  given  involutions. 

For  if  we  take  the  two  involutions  on  a  conic,  the  involution  whose 

center  is  the  pole  with  respect  to  the  conic  of  the  line  joining  the 
centers  of  the  given  involutions  clearly  satisfies  the  condition  of  the 
theorem  for  each  of  the  latter. 

Corollary  2.  Three  involutions  each  of  which  is  harmonic  to  the 

other  two  constitute,  together  with  the  identity,  a  group. 

Corollary  3.  The  centers  of  all  involutions  in  a  pencil  of  involu- 
tions are  collinear. 

Theorem  22.  The  set  of  all  projectivities  to  which  belongs  the  same 
involution  I  forms  a  commutative  group. 

Proof.  If  II,  U1  are  two  projectivities  to  each  of  which  belongs  the 

involution  I,  we  have  the  relations  I  •  II  •  I  =  II  and  I  •  II1  •  I  =  nx, 

from  which  follows  in_1I  =  II_1  and,  by  multiplication,  the  rela- 
tion I  •  II  •  I  •  I  •  nx- 1  =  I  •  II  •  II^  I  =  II .  nr  which  shows  that  the  set 

forms  a  group.  To  show 

that  any  two  projectivities 

of  this  group  are  commu- 
tative, we  need  only  sup- 

'  pose  the  projectivities 
given  on  a  conic.  Let  A 

be  any  point  on  this 

conic,  and  let  II  (A)  =  A' 
and  n^')  =  A[,  so  that 

U1-U(A)  =  A(.  Since  the 
same  involution  I  belongs, 

by  hypothesis,  both  to  II  and  Uv  these  two  projectivities  have  the 

same  axis ;  let  it  be  the  line  I  (fig.  93).  The  point  Tlx(A)  =  A1  is  now 
readily  determined  (Theorem  12)  as  the  intersection  with  the  conic  of 

the  line  joining  A'  to  the  intersection  of  the  line  AA[  with  the  axis  I. 
In  like  manner,  II  (^4X)  is  determined  as  the  intersection  with  the 

conic  of  the  line  joining  A  to  the  intersection  of  the  line  AXA'  with 
the  axis  I.   Hence  II  (AJ  =  A[,  and  hence  II  •  nx(^)  =  A[. 

It  is  noteworthy  that  when  the  common  axis  of  the  projectivities 

of  this  group  meets  the  conic  in  two  points,  which  are  then  common 

double  points  of  all  the  projectivities  of  the  group,  the  group  is  the 

Fig.  93 
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same  as  the  one  listed  as  Type  2,  p.  209.  If,  however,  our  geometry 

admits  of  a  line  in  the  plane  of  a  conic  but  not  meeting  the  conic,  the 

argument  just  given  proves  the  existence  of  a  commutative  group 

none  of  the  projectivities  of  which  have  a  double  point. 

Theorem  23.  Two  involutions  have  a  conjugate  pair  {or  a  double 

jwint)  in  common  if  and  only  if  the  product  of  the  two  involutions 

has  two  double  points  (or  is  parabolic). 

Proof  This  follows  at  once  if  the  involutions  are  taken  on  a  conic. 

For  a  common  conjugate  pair  (or  double  point)  must  be  on  the  line 

joining  the  centers  of  the  two  involutions.  This  line  must  then  meet 

the  conic  in  two  points  (or  be  tangent  to  it)  in  order  that  the  involu- 
tions may  have  a  conjugate  pair  (or  a  double  point)  in  common. 

EXERCISES 

1 .  Dualize  all  the  theorems  and  corollaries  of  the  last  two  sections. 

2.  The  product  of  two  involutions  on  a  conic  is  parabolic  if  and  only  if  the 
line  joining  the  centers  of  the  involutions  is  tangent  to  the  conic.    Dualize. 

3 .  Any  involution  of  a  pencil  is  uniquely  determined  when  one  of  its  con- 
jugate pairs  is  given. 

4.  Let  n  be  a  noninvolutoric  projectivity,  and  let  I  be  the  involution  be- 

longing to  II;  further,  let  U.(AA')  =  A' A",  A  being  any  point  on  which  the 
projectivity  operates  which  is  not  a  double  point,  and  let  1(A')  =  A'.  Show, 
by  taking  the  projectivity  on  a  conic,  that  the  points  A* At  are  harmonic 
with  the  points  A  A". 

5.  Derive  the  theorem  of  Ex.  4  directly  as  a  corollary  of  Prop.  4,  p.  221, 
assuming  that  the  projectivity  H  has  two  distinct  double  points. 

6.  From  the  theorem  of  Ex.  4  show  how  to  construct  the  involution  be- 

longing to  a  projectivity  II  on  a  line  without  making  use  of  any  double  points 
the  projectivity  may  have. 

7.  A  projectivity  is  uniquely  determined  if  the  involution  belonging  to  it 
and  one  pair  of  homologous  points  are  given. 

8.  The  product  of  two  involutions  I1?  L,  is  a  projectivity  to  which  belongs 
the  involution  which  is  harmonic  with  each  of  the  involutions  \,  I,. 

9.  Conversely,  every  projectivity  to  which  a  given  involution  I  belongs  can 
be  obtained  as  the  product  of  two  involutions  harmonic  with  I. 

10.  Show  that  any  two  projectivities  nx,  DI2  may  be  obtained  as  the 
luct  of  involutions  in  the  form  H^I-I,,  n^I^I;  and  hence  that  the 

product  of  the  two  projectivities  is  given  by  II,  •  YLX  —  \  ■  \. 
11.  Show  that  a  projectivity  II  =  IIX  may  also  be  written  n  =  L,I,  I, 

sing  a  uniquely  determined  involution :  and  that  in  this  case  the  two  invo- 
ltions  Ij,  I2  are  distinct  unless  D  is  involutoric. 
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12.  Show  that  if  Ix,  I2,  I3  are  three  involutions  of  the  same  pencil,  the 

relation  (I1-I2-I3)2=  1  must  hold. 
13.  If  aa',  W,  cc'  are  the  coordinates  of  three  pairs  of  points  in  involution, 

,        , ,    ,   a'  —  b    ¥  —  c    c'  —  a      , show  that    =  1. 
a'  —  c    o  —  a    c'  —  o 

80.  Harmonic  transformations.  The  definition  of  harmonic  involu- 

tions in  the  section  above  is  a  special  case  of  a  more  general  notion 

which  can  be  defined  for  (1,1)  transformations  of  any  kind  whatever. 
Definition.  Two  distinct  transformations  A  and  B  are  said  to  be 

harmonic  if  they  satisfy  the  relation  (AB~  vf  =  1  or  the  equivalent 

relation  (BA"1)9=  1,  provided  that  AB"1^  1. 
A  number  of  theorems  which  are  easy  consequences  of  this  defini- 

tion when  taken  in  conjunction  with  the  two  preceding  sections  are 

stated  in  the  following  exercises.  (Cf.  C.  Segre,  Note  sur  les  homo- 

graphies  binaires  et  leur  faisceaux,  Journal  fur  die  reine  und  ange- 

wandte  Mathematik,  Vol.  100  (1887),  pp.  317-330,  and  H.  Wiener, 

Ueber  die  aus  zwei  Spiegelungen  zusammengesetzten  Verwandt- 
schaften,  Berichte  d.  K.  sachsischen  Gesellschaft  der  Wissenschaften, 

Leipzig,  Vol.  43  (1891),  pp.  644-673.) 

EXERCISES 

1.  If  A  and  B  are  two  distinct  involutoric  transformations,  they  are  har- 
monic to  their  product  AB. 

2.  If  three  involutoric  transformations  A,  B,  T  satisfy  the  relations 

(ABr)2  =  1 ,  ABr  9^  1 ,  they  are  all  three  harmonic  to  the  transformation  AB. 
3.  If  a  transformation  5  is  the  product  of  two  involutoric  transformations 

A,  B  (i.e.  2  =  AB)  and  T  is  an  involutoric  transformation  harmonic  to  2,  then 

we  have  (ABr)2  =  1 . 
4.  If  A,  B,  C,  A',  B',  C  are  six  points  of  a  line,  the  involutions  A,  B,  T, 

such  that  T(AA')  =  B'B,  A(BB')  =  CC,  B(CC')  =  A' A,  are  all  harmonic  to 
the  same  projectivity.  Show  that  if  the  six  points  are  taken  on  a  conic,  this 

proposition  is  equivalent  to  Pascal's  theorem  (Theorem  3,  Chap.  V). 
5.  The  set  of  involutions  of  a  one-dimensional  form  which  are  harmonic 

to  a  given  nonparabolic  projectivity  form  a  pencil.  Hence,  if  an  involution 
with  double  points  is  harmonic  to  a  projectivity  with  two  double  points,  the 
two  pairs  of  double  points  form  a  harmonic  set. 

6.  Let  O  be  a  fixed  point  of  a  line  /,  and  let  C  be  called  the  mid-point  of  a 
pair  of  points  A,  B,  provided  that  C  is  the  harmonic  conjugate  of  O  with 

respect  to  A  and  B.  It  A,  B,  C,  A',  B',  Care  any  six  points  of  I  distinct 
from  O,  and  AB'  have  the  same  mid -point  as  A'B,  and  BC  have  the  sama 
mid-point  as  RC,  then  CA'  will  have  the  same  mid-point  as  CA. 

! 
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7.  Any  two  involutions  of  the  same  one-dimensional  form  determine  a 
pencil  of  involutions.  Given  two  involutions  A,  B  and  a  point  M,  show  how 

to  construct  the  other  double  point  of  that  involution  of  the  pencil  of  which 

one  double  point  is  M. 

8.  The  involutions  of  conjugate  points  on  a  line  /  with  regard  to  the  conies 

of  any  pencil  of  conies  in  a  plane  with  /  form  a  pencil  of  involutions. 

9.  If  two  nonparabolic  projectivities  are  commutative,  the  involutions 

belonging  to  them  coincide,  unless  both  projectivities  are  involutions,  in  which 

case  the  involutions  may  be  harmonic. 

10.  If  [II]  is  the  set  of  projectivities  to  which  belongs  an  involution  I  and 

A  and  B  are  two  given  points,  then  we  have  [II {Ay]  —  [II (if)]. 
11.  A  conic  through  two  of  the  four  common  points  of  a  pencil  of  conies 

of  Type  I  meets  the  conies  of  the  pencil  in  pairs  of  an  involution.  Extend 

this  theorem  to  the  other  types  of  pencils  of  conies.    Dualize. 

12.  The  pairs  of  second  points  of  intersection  of  the  opposite  sides  of  a 

complete  quadrangle  with  a  conic  circumscribed  to  its  diagonal  triangle  are  in 

involution  (Sturm,  Die  Lehre  von  den  Geometrischen  Verwandtschaften, 

Vol.  I,  p.  149). 

81.  Scale  on  a  conic.  The  notions  of  a  point  algebra  and  a  scale 

which  we  have  developed  hitherto  only  for  the  elements  of  one- 
dimensional  primitive  forms  may  also  be  studied  to  advantage  on  a 
conic.  The  constructions  for  the  sum  and  the  product  of  two  points 

(numbers)  on  a  conic  are  remarkably  simple.  As  in  the  case  on  the 

line,  let  0,  1,  oc  be  any  three  arbitrary  distinct  points  on  a  conic  C*. 
Regarding  these  as  the  fundamental  points  of  our  scale  on  the  conic, 

the  sum  and  the  product  of  any  two  points  x,  y  on  the  conic  (which 
are  distinct  from  oc)  are  defined  as  follows : 

Definition.  The  conjugate  of  0  in  the  involution  on  the  conic 

having  oo  for  a  double  point  and  x,  y  for  a  conjugate  pair  is  called 

the  sum  of  the  two  points  as,  y  and  is  denoted  by  x  +  y  (fig.  94,  left). 

The  conjugate  of  1  in  the  involution  determined  on  the  conic  by  the 

conjugate  pairs  0,  oo  and  x,  y  is  called  the  product  of  the  points  x, 

y  and  is  denoted  by  x  •  y  (fig.  94,  right). 
It  will  be  noted  that  under  Assumption  P  this  definition  is  entirely 

equivalent  to  the  definitions  of  the  sum  and  product  of  two  points  on 

a  line,  previously  given  (Chap.  VI).  To  construct  the  point  x  +  y  on 

the  conic  (fig.  94),  we  need  only  determine  the  center  of  the  involution 
in  question  as  the  intersection  of  the  tangent  at  oc  with  the  line  joining 

the  points  x,  y.  The  point  x  -f  y  is  then  determined  as  the  intersection 
with  the  conic  of  the  line  joining  the  center  to  the  point  0.   Similarly, 
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to  obtain  the  product  of  the  points  x,  y  we  determine  the  center  of  the 

involution  as  the  intersection  of  the  lines  Ooo  and  xy.  The  point  x  •  y 
is  then  the  intersection  with  the  conic  of  the  line  joining  this  center  to 

Fig.  94 

the  point  1.  The  inverse  operations  (subtraction  and  division)  lead  to 

equally  simple  constructions.  Since  the  scale  thus  denned  is  obviously 

projective  with  the  scale  on  a  line,  it  is  not  necessary  to  derive  again 

the  fundamental  properties  of  addition  and  subtraction,  multiplication 
and  division.  It  is  clear  from  this  consideration  that  the  points  of  a 

conic  form  a  field  with  reference  to  the  operations  just  defined.  This 

fact  will  be  found  of  use  in  the  analytic  treatment  of  conies. 

At  this  point  we  will  make  use  of  it  to  discuss  the  existence  of  the 

square  root  of  a  number  in  the  field  of  points.    It  is  clear  from  the 
x 

Fig.  95 

preceding  discussion  that  if  a  number  x  satisfies  the  equation  x2  =  a, 
the  tangent  to  the  conic  at  the  point  x  must  pass  through  the  inter- 

section of  the  lines  Ooo  and  1  a  (fig.  95).  A  number  a  will  therefore 

have  a  square  root  in  the  field  if  and  only  if  a  tangent  can  be  drawn  to 
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the  conic  from  the  intersection  of  the  lines  Ooo  and  la;  and,  conversely, 

if  the  number  a  has  a  square  root  in  the  field,  a  tangent  can  be  drawn 
to  the  conic  from  this  point  of  intersection.  It  follows  at  once  that  if 

a  number  a  has  a  square  root  x,  it  also  has  another  which  is  obtained 

by  drawing  the  second  tangent  to  the  conic  from  the  point  of  inter- 
section of  the  lines  Oco  and  la.  Since  this  tangent  meets  the  conic 

in  a  point  which  is  the  harmonic  conjugate  of  x  with  respect  to  Ooo, 

it  follows  that  this  second  square  root  is  —  x.  It  follows  also  from 

this  construction  that  the  point  1  has  the  two  square  roots  1  and  —  1 

in  any  field  in  which  1  and  —  1  are  distinct,  i.e.  whenever  H0  is  satisfied. 
We  may  use  these  considerations  to  derive  the  following  theorem, 

which  will  be  used  later. 

Theorem  24.  If  A  A',  BB'  are  any  two  distinct  pairs  of  an  involu- 
tion, there  exists  one  and  only  one  pair  CC'  distinct  from  BB'  such 

that  the  cross  ratios 

K(AA',   BB)    and 

B  (AAf,     CC)     are 
equal. 

Proof.  Let  the 
involution  be  taken 

on  a  conic,  and  let 

the  pairs  AA'  and 

BB'  be  represented 
by  the  points  Ooo 

and  la  respectively  (fig.  96).  Let  xx'  be  any  other  pair  of  the  invo- 
lution. We  then  have,  clearly  from  the  above,  xx'  =  a.  Further,  the 

cross  ratios  in  question  give 

Fig.  96 

B(0co,  la)  = 
B  (Ooo,  xxf)  =  - 

These  are  equal,  if  and  only  if  x'  =  ax,  or  if  xx1  =  ax2.  But  this  implies 
the  relation  a  =  ax2,  and  since  we  have  a  =£  0,  this  gives  x3  =  1.  The 
only  pair  of  the  involution  satisfying  the  conditions  of  the  theorem 

is  therefore  the  pair  CC'  =  —  1,  —  a. 

EXERCISES 

1.  Show  that  an  involution  which  has  two  harmonic  conjugate  pairs  has 

double  points  if  and  only  if  —  1  has  a  square  root  in  the  field. 

2.  Show  that  any  involution  may  be  represented  by  the  equation  x'x  =  a. 
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3.  The  equation  of  Ex.  13,  p.  230,  is  the  condition  that  the  lines  joining 

the  three  pairs  of  points  aa',  bb',  cc'  on  a  conic  are  concurrent. 
4.  Show  that  if  the  involution  x'x  =  a  has  a  conjugate  pair  W  such  that 

the  cross  ratio  R(0xi,  bb')  has  the  value  A,  the  number  a\  has  a  square  root 
in  the  field. 

82.  Parametric  representation  of  a  conic.  Let  a  scale  be  established 

on  a  conic  C2  by  choosing  three  distinct  points  of  the  conic  as  the 
fundamental  points,  say,  O=0,  M  =  oo,  A  =  1.  Then  let  us  establish 
a  system  of  nonhomogeneous  point  coordinates  in  the  plane  of  the 

conic  as  follows :    Let 

**^N  the  line  OM  be  the  x- 
axis,  with  0  as  origin 
and  M  as  oo^  (fig.  97). 

Let  the  tangents  at  0 
and  M  to  the  conic 

meet  in  a  point  N,  and 

let  the  tangent  ON  be 

the  y-axis,  with  N  as 

cOj,.  Finally,  let  the 
point  A  be  the  point 

(1,  1),  so  that  the  line 
AN  meets  the  a>axis 

in  the  point  for  which 

x  =  1,  and  AM  meets 

the  y-axis  in  the  point  for  which  y  =  1.  Now  let  P  =  X  be  any  point 
on  the  conic.  The  coordinates  (x,  y)  of  P  are  determined  by  the 

intersections  of  the  lines  PN  and  PM  with  the  #-axis  and  the  y-axis 
respectively.    We  have  at  once  the  relation 

y  =  \ 
since  the  points  0,  oo,  1,  X  on  the  conic  are  perspective  from  M  with 

points  0,  oo,  1,  y  on  the  y-axis.  To  determine  x  in  terms  of  X,  we  note, 
first,  that  from  the  constructions  given,  any  line  through  N  meets  the 

conic  (if  at  all)  in  two  points  whose  sum  in  the  scale  is  0.  In  par- 

ticular, the  points  1,-1  on  the  conic  are  collinear  with  N  and  the 
point  1  on  the  #-axis,  and  the  points  X,  —  X  on  the  conic  are  collinear 

with  N  and  the  point  x  on  the  #-axis.  Since  the  latter  point  is  also 

cm  the  line  joining  0  and  oo  on  the  conic,  the  construction  for  multi- 
plication on  the  conic  shows  that  any  line  through  the  point  x  on 

Fig.  97 
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the  £-axis  meets  the  conic  (if  at  all)  in  two  points  whose  product  is 

constant,  and  hence  equal  to  —  X2.  The  line  joining  the  point  x  on  the 
.r-axis  to  the  point  —  1  on  the  conic  therefore  meets  the  conic  again  in 

the  point  X'2.  But  now  we  have  0,  oo,  1,  X2  on  the  conic  perspective 
from  the  point  —  1  on  the  conic  with  the  points  0,  oo,  1,  #  on  the 

#-axis.    This  gives  the  relation 
x  =  \\ 

We  may  now  readily  express  these  relations  in  homogeneous  form. 

If  the  triangle  03IN  is  taken  as  triangle  of  reference,  OX  being 

xl  =  0,  031  being  x2  =  0,  and  the  point  A  being  the  point  (1,  1,  1), 
we  pass  from  the  nonhomogeneous  to  the  homogeneous  by  simply 

placing  x  =  xjxz,  y  =  xjxs.  The  points  of  the  conic  C2  may  then 
be  represented  by  the  relations 

(1)  ^:x2:^,=  X2:X:l. 

This  agrees  with  our  preceding  results,  since  the  elimination  of  X 
between  these  equations  gives  at  once 

X%  *£l**"3  =  ̂ > 

which  we  have  previously  obtained  as  the  equation  of  the  conic. 

It  is  to  be  noted  that  the  point  If  on  the  conic,  which  corresponds 

to  the  value  X  =  oc,  is  exceptional  in  this  equation.  This  exceptional 

character  is  readily  removed  by  writing  the  parameter  X  homogene- 

ously X  =  X1:X2.    Equations  (1)  then  readily  give 

Theorem  25.  A  conic  may  be  represented  analytically  by  the  equa- 

tions xx :  x2:xs=\12:  X,X2 :  X.2. 
This  is  called  a  parametric  representation  of  a  conic. 

EXERCISES 

1.  Show  that  the  equation  of  the  line  joining  two  points  Aj,  Xj  on  the  conic 

(1)  above  is  xx  —  (Xx  +  X>)  x2  +  A^Xg  =  0 ;  and  that  the  equation  of  the  tan- 

gent to  the  conic  at  a  point  \x  is  xx  —  2  \xxa  +  X2x3  =  0.    Dualize. 
2.  Show  that  any  collineation  leaving  the  conic  (1)  invariant  is  of  the  form 

x[  :  xi  :  Xi  =  a2x,  +  2  a#r8  +  /?-x3  :  ayx,  +  (aS  +  £y)  *2  +  0&r3  :  -fxx  +  2  y&r,  +  S»xr 
(Hint.  Use  the  parametric  representation  of  the  conic  and  let  the  projectivity 

generated  on  the  conic  by  the  collineation  be  A{  =  aXj  +  /2X,,  X^  =  y\l  +  8A-,.) 



CHAPTER  IX 

GEOMETRIC  CONSTRUCTIONS.   INVARIANTS 

83.  The  degree  of  a  geometric  problem.  The  specification  of  a  line 

by  two  of  its  points  may  be  regarded  as  a  geometric  operation*  The 
plane  dual  of  this  operation  is  the  specification  of  a  point  by  two 

lines.  In  space  we  have  hitherto  made  use  of  the  following  geometric 

operations :  the  specification  of  a  line  by  two  planes  (this  is  the 

space  dual  of  the  first  operation  mentioned  above) ;  the  specification 

of  a  plane  by  two  intersecting  lines  (the  space  dual  of  the  second 

operation  above) ;  the  specification  of  a  plane  by  three  of  its  points 

or  by  a  point  and  a  line ;  the  specification  of  a  point  by  three  planes 

or  by  a  plane  and  a  line.  These  operations  are  known  as  linear 

operations  or  operations  of  the  first  degree,  and  the  elements  deter- 
mined by  them  from  a  set  of  given  elements  are  said  to  be  obtained 

by  linear  constructions,  or  by  constructions  of  the  first  degree.  The 
reason  for  this  terminology  is  found  in  the  corresponding  analytic 
formulations.  Indeed,  it  is  at  once  clear  that  each  of  the  two  linear 

operations  in  a  plane  corresponds  analytically  to  the  solution  of  a 

pair  of  linear  equations ;  and  the  linear  operations  in  space  clearly 

correspond  to  the  solution  of  systems  of  three  equations,  each  of  the 

first  degree.  Any  problem  which  can  be  solved  by  a  finite  sequence 

of  linear  constructions  is  said  to  be  a  linear  problem  or  a  problem 

of  the  first  degree.  Any  such  problem  has,  if  determinate,  one  and 

only  one  solution. 

In  the  usual  representation  of  the  ordinary  real  projective  geometry  in  a 

plane  by  means  of  points  and  lines  drawn,  let  us  say,  with  a  pencil  on  a  sheet 

of  paper,  the  linear  constructions  are  evidently  those  that  can  be  carried 

out  by  the  use  of  a  straightedge  alone.    There  is  no  familiar  mechanical 

*  An  operation  on  one  or  more  elements  is  denned  as  a  correspondence  whereby 
to  the  set  of  given  elements  corresponds  an  element  of  some  sort  (cf.  §  48).  If  the 
latter  element  is  uniquely  defined  by  the  set  of  given  elements  (in  general,  the  order 
of  the  given  elements  is  an  essential  factor  of  this  determination),  the  operation  is 
said  to  be  one-valued.  The  operation  referred  to  in  the  text  is  then  a  one-valued 
operation  defined  for  any  two  distinct  points  and  associating  with  any  such  pair 
(the  order  of  the  points  is  in  this  case  immaterial)  a  new  element,  viz.  a  line. 

236 
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device  for  drawing  lines  and  planes  in  space.  But  a  picture  (which  is  the 

section  by  a  plane  of  a  projection  from  a  point)  of  the  lines  and  points  of 

intersection  of  linearly  constructed  planes  may  be  constructed  with  a  straight- 

edge (cf.  the  definition  of  a  plane). 

As  examples  of  linear  problems  we  mention :  (a)  the  determination 

of  the  point  homologous  with  a  given  point  in  a  projectivity  on  a 

line  of  which  three  pairs  of  homologous  points  are  given;  (b)  the 

determination  of  the  sixth  point  of  a  quadrangular  set  of  which  five 

points  are  given ;  (c)  the  determination  of  the  second  double  point 

of  a  projectivity  on  a  line  of  which  one  double  point  and  two  pairs  of 

homologous  points  are  given  (this  is  equivalent  to  (b) ) ;  (d)  the  deter- 
mination of  the  second  point  of  intersection  of  a  line  with  a  conic,  one 

point  of  intersection  and  four  other  points  of  the  conic  being  given,  etc. 

The  analytic  relations  existing  between  geometric  elements  offer 

a  convenient  means  of  classifying  geometric  problems.*  Confining 
ourselves,  for  the  sake  of  brevity,  to  problems  in  a  plane,  a  geometric 

problem  consists  in  constructing  certain  points,  lines,  etc.,  which  bear 

given  relations  to  a  certain  set  of  points,  lines,  etc.,  which  are  sup- 
posed given  in  advance.  In  fact,  we  may  suppose  that  the  elements 

sought  are  points  only  ;  for  if  a  line  is  to  be  determined,  it  is  sufficient 

to  determine  two  points  of  this  line  ;  or  if  a  conic  is  sought,  it  is  suffi- 

cient to  determine  five  points  of  this  conic,  etc.  Similar  considera- 
tions may  also  be  applied  to  the  given  elements  of  the  problem, 

to  the  effect  that  we  may  assume  these  given  elements  all  to  be 

points.  This  merely  involves  replacing  any  given  elements  that  are 

not  points  by  certain  sets  of  points  having  the  property  of  uniquely 

determining  these  elements.  Confining  our  discussion  to  problems  in 

which  this  is  possible,  any  geometric  problem  may  be  reduced  to 

one  or  more  problems  of  the  following  form :  Given  in  a  plane  a 

certain  finite  number  of  points,  to  construct  a  point  which  shall  bear 

to  the  given  points  certain  given  relations. 

In  the  analytic  formulation  of  such  a  problem  the  given  points 

are  supposed  to  be  determined  by  their  coordinates  (homogeneous  or 

nonhomogeneous),  referred  to  a  certain  frame  of  reference.  The  ver- 
tices of  this  frame  of  reference  are  either  points  contained  among  the 

given  points,  or  some  or  all  of  them  are  additional  points  which  we 

*  The  remainder  of  this  section  follows  closely  the  discussion  given  in  Castel- 
nuovo,  Lezioni  di  geometria,  Rome-Milan,  Vol.  I  (1904),  pp.  467  ff. 
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suppose  added  to  the  given  points.  The  set  of  all  given  points  then 

gives  rise  to  a  certain  set  of  coordinates,  which  we  will  denote  by 

1,  a,b,  c,  •  •  •  *  and  which  are  supposed  known.  These  numbers  to- 
gether with  all  numbers  obtainable  from  them  by  a  finite  number  of 

rational  operations  constitute  a  set  of  numbers, 

K  =  [1,  a,  b,  c,  •  •  •], 

which  we  will  call  the  domain  of  rationality  defined  by  the  data.-\  In 
addition  to  the  coordinates  of  the  known  points  (which,  for  the  sake 

of  simplicity,  we  will  suppose  given  in  nonhomogeneous  form),  the 

coordinates  (x,  y)  of  the  point  sought  must  be  considered.  The  con- 
ditions of  the  problem  then  lead  to  certain  analytic  relations  which 

these  coordinates  x,  y  and  a,  b,  c  •  •  •  must  satisfy.  Eliminating  one 
of  the  variables,  say  y,  we  obtain  two  equations, 

the  first  containing  x  but  not  y ;  the  second,  in  general,  containing 

both  x  and  y.  The  problem  is  thus  replaced  by  two  problems:  the 

first  depending  on  the  solution  of  fx(x)  =0  to  determine  the  abscissa 

of  the  unknown  point ;  the  second  to  determine  the  ordinate,  assum- 
ing the  abscissa  to  be  known. 

In  view  of  this  fact  we  may  confine  ourselves  to  the  discussion  of 

problems  depending  on  a  single  equation  with  one  unknown.  Such 

problems  may  be  classified  according  to  the  equation  to  which  they 

give  rise.  A  problem  is  said  to  be  algebraic  if  the  equation  on  which 

its  solution  depends  is  algebraic,  i.e.  if  this  equation  can  be  put  in 
the  form 

(1)  x"  +  a1xn~'l  +  a2xn-2-\   +  an=0, 

in  which  the  coefficients  «,,  av  •  •  •,  an  are  numbers  of  the  domain  of 
rationality  defined  by  the  data.  Any  problem  which  is  not  algebraic 

is  said  to  be  transcendental.  Algebraic  problems  (which  alone  will 

be  considered)  may  in  turn  be  classified  according  to  the  degree  n  of 

*  In  case  homogeneous  coordinates  are  used,  a,  b,  c,  •  •  •  denote  the  mutual  ratios 
of  the  coordinates  of  the  given  elements. 

t  A  moment's  consideration  will  show  that  the  points  whose  coordinates  are 
numbers  of  this  domain  are  the  points  obtainable  from  the  data  by  linear  construc- 

tions. Geometrically,  any  domain  of  rationality  on  a  line  may  be  defined  as  any 
class  of  points  on  a  line  which  is  closed  under  harmonic  constructions ;  i.e.  such 
that  if  A,  B,  C  are  any  three  points  of  the  class,  the  harmonic  conjugate  of  A  with 
respect  to  B  and  C  is  a  point  of  the  class. 
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the  equation  on  which  their  solutions  depend.  We  have  thus  problems 

of  the  first  degree  (already  referred  to),  depending  merely  on  the  solution 

of  an  equation  of  the  first  degree ;  problems  of  the  second  degree, 

depending  on  the  solution  of  an  equation  of  the  second  degree,  etc. 
Account  must  however  be  taken  of  the  fact  that  equation  (1) 

may  be  reducible  within  the  domain  K ;  in  other  words,  that  the  left 

member  of  this  equation  may  be  the  product  of  two  or  more  poly- 
nomials whose  coefficients  are  numbers  of  K.  In  fact,  let  us  suppose, 

for  example,  that  this  equation  may  be  written  in  the  form 

where  <f>1}  </>2  are  two  polynomials  of  the  kind  indicated,  and  of  degrees 

nx  and  /i2  respectively  (nt-{-nt  =  n).  Equation  (1)  is  then  equivalent 
to  the  two  equations 

Then  either  it  happens  that  one  of  these  two  equations,  e.g.  the  first, 

furnishes  all  the  solutions  of  the  given  problem,  in  which  case  <f>x  being 

assumed  irreducible  in  K,  the  problem  is  not  of  degree  n,  but  of  degree 

n  l  <  n  ;  or,  both  equations  furnish  solutions  of  the  problem,  in  which 

case  <j>2  also  being  assumed  irreducible  in  K,  the  problem  reduces  to 
two  problems,  one  of  degree  nl  and  one  of  degree  n2.  In  speaking  of 

a  problem  of  the  nth  degree  we  will  therefore  always  assume  that 

the  associated  equation  of  degree  n  is  irreducible  in  the  domain  of 

rationality  defined  by  the  data.  Moreover,  we  have  tacitly  assumed 

throughout  this  discussion  that  equation  (1)  has  a  root;  we  shall  see 

presently  that  this  assumption  can  always  be  satisfied  by  the  intro- 

duction, if  necessary,  of  so-called  improper  elements.  It  is  important 
to  note,  however,  since  our  Assumptions  A,  E,  P  do  not  in  any  way 
limit  the  field  of  numbers  to  which  the  coordinates  of  all  elements 

of  our  space  belong,  and  since  equations  of  degree  greater  than  one 

do  not  always  have  a  root  in  a  given  field  when  the  coefficients  of 

the  equation  belong  to  this  field,  there  exist  spaces  in  which  problems 

of  degree  higher  than  the  first  may  have  no  solutions.  Thus  in  the 

ordinary  real  projective  geometry  a  problem  of  the  second  degree 

will  have  a  (real)  solution  only  if  the  quadratic  equation  on  which 
it  depends  has  a  (real)  root. 

The  example  of  a  problem  of  the  second  degree  given  in  the  next 

section  will  serve  to  illustrate  the  general  discussion  given  above. 
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84.  The  intersection  of  a  given  line  with  a  given  conic.  Given  a 

conic  defined,  let  us  say,  by  three  points  A,  B,  C  and  the  tangents  at 

A  and  B ;  to  find  the  points  of  intersection  of  a  given  line  with  this 

conic.  Using  nonhomogeneous  coordinates  and  choosing  as  #-axis  one 

of  the  given  tangents  to  the  conic,  as  y-axis  the  line  joining  the  points 
A  and  B,  and  as  the  point  (1,1)  the  point  C,  the  equation  of  the  conic 

may  be  assumed  to  be  of  the  form 
x2-y=0. 

The  equation  of  the  given  line  may  then  be  assumed  to  be  of  the  form 

y  =  px  +  q* 
The  domain  of  rationality  defined  by  the  data  is  in  this  case 

K  =  [l,p,q]. 

The  elimination  of  y  between  the  two  equations  above  then  leads  to 

the  equation 

(1)  a?  —  px  —  q  =  0. 

This  equation  is  not  in  general  reducible  in  the  domain  K.  The 

problem  of  determining  the  points  of  intersection  of  an  arbitrary  line 

in  a  plane  with  a  given  conic  in  this  plane  is  then  a  problem  of  the 

second  degree.  If  equation  (1)  has  a  root  in  the  field  of  the  geometry,  it 

is  clear  that  this  root  gives  rise  to  a  solution  of  the  problem  proposed  ; 

if  this  equation  has  no  root  in  the  field,  the  problem  has  no  solution. 

If,  on  the  other  hand,  one  point  of  intersection  of  the  line  with  the 

conic  is  given,  so  that  one  root  of  equation  (1),  say  x  =  r,  is  known, 
the  domain  given  by  the  data  is 

K'  =  [hP,q,r], 

and  in  this  domain  (1)  is  reducible ;  in  fact,  it  is  equivalent  to  the 

equation 
(x  +  r  —  p)  (x  —  r)  =  0. 

The  problem  of  finding  the  remaining  point  of  intersection  then 

depends  merely  on  the  solution  of  the  linear  equation 

x  -f-r — p= 0  ; 

*  There  is  no  loss  in  generality  in  assuming  this  form ;  for  if  in  the  choice  of 
coordinates  the  equation  of  the  given  line  were  of  the  form  x  =  c,  we  should  merely 
have  to  choose  the  other  tangent  as  x-axis  to  bring  the  problem  into  the  form  here 
assumed. 
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that  is,  the  problem  is  of  the  first  degree,  as  already  noted  among 
the  examples  of  linear  problems. 

It  is  important  to  note  that  equation  (1)  is  the  most  general  form 

of  equation  of  the  second  degree.  It  follows  that  every  problem  of  the 

second  degree  in  a  plane  can  be  reduced  to  the  construction  of  the  points 

of  intersection  of  an  arbitrary  line  with  a  particular  conic.  We 

shall  return  to  this  later  (§86). 
85.  Improper  elements.  Proposition  K^.  We  have  called  attention 

frequently  to  the  fact  that  the  nature  of  the  field  of  points  on  a  line 

is  not  completely  determined  by  Assumptions  A,  E,  P,  under  which 
we  are  working.  We  have  seen  in  particular  that  this  field  may  be 

finite  or  infinite.  The  example  of  an  analytic  space  discussed  in  the 

Introduction  shows  that  the  theory  thus  far  developed  applies  equally 
well  whether  we  assume  the  field  of  points  on  a  line  to  consist  of  all 

the  ordinary  rational  numbers,  or  of  all  the  ordinary  real  numbers, 

or  of  all  the  ordinary  complex  numbers.  According  to  which  of  these 

cases  we  assume,  our  space  may  be  said  to  be  the  ordinary  rational 

space,  or  the  ordinary  real  space,  or  the  ordinary  complex  space. 
Xow,  in  the  latter  we  know  that  every  number  has  a  square  root. 

Moreover,  each  of  the  former  spaces  (the  rational  and  the  real)  are 

clearly  contained  in  the  complex  space  as  subspaces.  Suppose  now 

that  our  space  S  is  one  in  which  not  every  number  has  a  square 
root.  In  such  a  case  it  is  often  convenient  to  be  able  to  think  of  our 

space  S  as  forming  a  subspace  in  a  more  extensive  space  S',  in  which 
some  or  all  of  these  numbers  do  have  square  roots. 

We  have  seen  that  the  ordinary  rational  and  ordinary  real  spaces 

are  such  that  they  may  be  regarded  as  subspaces  of  a  more  exten- 
sive space  in  the  number  system  associated  with  which  the  square 

root  of  any  number  always  exists.  In  fact,  they  may  be  regarded  as 

subspaces  of  the  ordinary  complex  space  which  has  this  property. 

For  a  general  field  it  is  easy  to  prove  that  if  av  a2,  ••-,«„  are  any 

finite  set  of  elements  of  a  field  F,  there  exists  a  field  F',  containing 
all  the  elements  of  F,  such  that  each  of  the  elements  av  av  •  •  •,  anis  a 

square  in  F'.  This  is,  of  course,  less  general  than  the  theorem  that 

a  field  F'  exists  in  which  every  element  of  F  is  a  square,  but  it  is 
sufficiently  general  for  many  geometric  purposes.  In  the  presence  of 

Assumptions  A,  E,  P,  H0  it  is  equivalent  (cf.  §  54)  to  the  following 
statement : 



242  GEOMETRIC  CONSTRUCTIONS  [Chap,  ix 

Proposition  K2.  If  any  finite  number  of  involutions  are  given  in 

a  space  S  satisfying  Assumptions  A,  E,  P,  there  exists  a  space  S'  of 
which  S  is  a  subspace*  such  that  all  the  given  involutions  have 

double  points  in  S'. 
A  proof  of  this  theorem  will  be  found  at  the  end  of  the  chapter. 

The  proposition  is,  from  the  analytic  point  of  view,  that  the  domain 

of  rationality  determined  by  a  quadratic  problem  may  be  extended  so 

as  to  include  solutions  of  that  problem.  The  space  S'  may  be  called 
an  extended  space.  The  elements  of  S  may  be  called  proper  elements, 

and  those  of  S'  which  are  not  in  S  may  be  called  improper.  A  projec- 
tive transformation  which  changes  every  proper  element  into  a  proper 

element  is  likewise  a  proper  transformation;  one  which  transforms 

proper  elements  into  improper  elements,  on  the  other  hand,  is  called 

an  improper  transformation.  Taking  Proposition  K2  for  the  present  as 

an  assumption  like  A,  E,  P,  and  H0,  and  noting  that  it  is  consistent 

with  these  other  assumptions  because  they  are  all  satisfied  by  the  ordi- 
nary complex  space,  we  proceed  to  derive  some  of  its  consequences. 

Theorem  1.  A  proper  one-dimensional  projectivity  without  proper 
double  elements  may  always  be  regarded  in  an  extended  space  as 

having  two  improper  double  elements.    (A,  E,  P,  H0,  K2)f 

Proof.  Suppose  the  projectivity  given  on  a  conic.  If  the  involu- 
tion which  belongs  to  this  projectivity  had  two  proper  double  points, 

they  would  be  the  intersections  of  the  axis  of  the  projectivity  with 

the  conic,  and  hence  the  given  projectivity  would  have  proper  double 

points.  Let  S'  be  the  extended  space  in  which  (K2)  the  involution 

has  double  points.  There  are  then  two  points  of  S'  in  which  the 
axis  of  the  projectivity  meets  the  conic,  and  these  are,  by  Theorem  20, 

Chap.  VIII,  the  double  points  of  the  given  projectivity. 

Corollary  1.  If  a  line  does  not  meet  a  conic  in  proper  points,  it 

may  be  regarded  in  an  extended  space  as  meeting  it  in  two  improper 

points.    (A,  E,  P,  H0,  K2) 

Corollary  2.  Every  quadratic  equation  with  proper  coefficients  has 

two  roots  which,  if  distinct,  are  both  proper  or  both  improper.  (A,  E, 
P,  H0,  K2) 

*  We  use  the  word  subspace  to  mean  any  space,  every  point  of  which  is  a  point 
of  the  space  of  which  it  is  a  subspace.  With  this  understanding  the  subspace  may 
be  identical  with  the  space  of  which  it  is  a  subspace.  The  ordinary  complex  space 
then  satisfies  Proposition  K2.  t  Cf.  Ex.,  p.  261. 
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For  the  double  points  of  any  projectivity  satisfy  an  equation  of 

the  form  ex-  +  (d  —  a)  x  —  b  =  0  (Theorem  11,  Cor.  4,  Chap.  VI),  and 

any  quadratic  equation  may  be  put  into  this  form. 

Theorem  2.  Any  two  involutions  in  the  same  one-dimensional  form 

have  a  conjugate  pair  in  common,  which  may  be  proper  or  improper. 

(A.  E,  P,  H0,  K2) 

This  follows  at  once  from  the  preceding  and  Theorem  23,  Chap.  VIII. 

Corollary.  In  any  involution  there  exists  a  conjugate  pair,  proper 

or  improper,  which  is  harmonic  with  any  given-  conjugate  pair.  (A, 

E,  P,  H0,  K2) 

For  the  involution  which  has  the  given  pair  for  double  elements 

has  (by  the  theorem)  a  pair,  proper  or  improper,  in  common  with  the 

given  involution.  The  latter  pair  satisfies  the  condition  of  the  theorem 

(Theorem  27,  Cor.  1,  Chap.  IV). 

We  have  seen  earlier  (Theorem  4,  Cor.,  Chap.  VIII)  that  any  two 

involutions  with  double  points  are  conjugate.  Under  Proposition  K2 

we  may  remove  the  restriction  and  say  that  any  two  involutions  are 

conjugate  in  an  extended  space  dependent  on  the  two  involutions.  If 

the  involutions  are  on  coplanar  lines,  we  have  the  following : 

Theorem  3.  Tiro  involutions  on  distinct  lines  in  the  same  plane 

are  perspective  (the  center  of  perspectivity  being  proper  or  improper), 

provided  the  point  of  intersection  of  the  lines  is  a  double  point  for 

both  or  for  neither  of  the  involutions.    (A,  E,  P,  K2) 

Proof.  If  the  point  of  intersection  0  of  the  two  lines  be  a  double 

point  of  each  of  the  involutions,  let  Q  and  R  be  an  arbitrary  pair 

of  one  involution  and  Q'  and  R'  an  arbitrary  pair  of  the  other  involu- 

tion. The  point  of  intersection  of  the  lines  QQ'  and  RR'  is  then  a 
center  of  a  perspectivity  which  transforms  elements  which  determine 
the  first  involution  into  elements  which  determine  the  second.  If 

the  point  0  is  a  double  point  of  neither  of  the  two  involutions,  let 

Jf  be  a  double  point  of  one  and  M '  of  the  other  (these  double  points 

are  proper  or  else  exist  in  an  extended  space  S'  which  exists  by 

Proposition  K2).  Also  let  A'' and  Nf  be  the  conjugates  of  0  in  the  two 
involutions.  Then  by  the  same  argument  as  before,  the  point  of 

intersection  of  the  lines  MM',  NN'  may  be  taken  as  the  center  of 
the  perspectivity. 
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It  was  proved  in  §  66,  Chap.  VII,  that  the  equation  of  any  point 
conic  is  of  the  form 

(1)  anxf  +  a22x\  +  aZ3xl  +  2  auxxx2  +  2  a13xxx3  +  2  a23x2x3  =  0  ; 

but  it  was  not  shown  that  every  equation  of  this  form  represents  a 

conic.  The  line  xx  =  0  contains  the  point  (0,  x2,  x3)  satisfying  (1), 
provided  the  ratio  x2 :  x3  satisfies  the  quadratic  equation 

Similarly,  the  lines  x2  =  0  and  #3  =  0  contain  points  of  the  locus 
defined  by  (1),  provided  two  other  quadratic  equations  are  satisfied. 

By  Proposition  K2  there  exists  an  extended  space  in  which  these 

three  quadratic  equations  are  solvable.  Hence  (1)  is  satisfied  by  the 

coordinates  of  at  least  two  distinct  points  P,  Q  (proper  or  improper).* 
A  linear  transformation 

px[  =  bnxx  +  b12x2  +  b13x3 

(2)  pxl  =  b21xx  +  b22x2  +  b23x3 

px3  =  b31xx  +  o32x2  +  b33x3 

evidently  transforms  the  points  satisfying  (1)  into  points  satisfying 

another  equation  of  the  second  degree.  If,  then,  (2)  is  so  chosen  as 

to  transform  P  and  Q  into  the  points  (0,  0,  1)  and  (0,  1,  0)  respec- 
tively, (1)  will  be  transformed  into  an  equation  which  is  satisfied  by 

the  latter  pair  of  points,  and  which  is  therefore  of  the  form 

If  cx  =  0,  the  points  satisfying  (3)  lie  on  the  two  lines 

and  hence  (1)  is  satisfied  by  the  points  on  the  lines  into  which  these 

lines  are  transformed  by  the  inverse  of  (2).  If  cx  =£  0,  the  trans- 
formation 

(4)  x2  =  -Cfxl  +  xl 

ci 

XS  =  X8 

*  Proposition  K2  has  been  used  merely  to  establish  the  existence  of  points  satis- 
fying (1).  In  case  there  are  proper  points  satisfying  (1),  the  whole  argument  can  be 

made  without  K2. 
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transforms  the  points  (xv  x2,  xs)  satisfying  (3)  into  points  (x[,  x2',  x£) 
satisfying 

(5)  (a  -C-f)*Z  +  (frt  +  c3xl)  z»  =  0. 
But  (5)  is  in  the  form  which  was  proved  in  Theorem  7,  Chap.  VII, 

to  be  the  equation  of  a  conic.  As  the  points  which  satisfy  (5)  are 

transformed  by  the  inverse  of  the  product  of  the  collineations  (2)  and 

(4)  into  points  which  satisfy  (1),  we  see  that  in  all  cases  (1)  repre- 
sents a  point  conic  (proper  or  improper,  degenerate  or  nondegenerate). 

This  gives  rise  to  the  two  following  dual  theorems : 

Theorem  4.  Every  equation  of  the  form 

anxi  +  Vs  +  Vs*  +  2  avP\x*  +  2  fl«¥s  +  2  a2»XiX%  =  ° 
represents  a  point  conic  (proper  or  improper)  which  may,  liowever, 

degenerate ;  and,  conversely,  every  point  conic  may  be  represented  by 

an  equation  of  this  form.    (A,  E,  P,  H0,  K2) 

Theorem  4'.  Every  equation  of  the  form 

Auu?  +  A^u*  -f  A^u*  +  2Aliu1ui  +  2Alsu1us  +  2Ai3uius  =  0 

represents  a  line  conic  (proper  or  improper)  which  may,  however,  de- 
generate; and,  conversely,  every  line  conic  may  be  represented  by  an 

equation  of  this  form.    (A,  E,  P,  H0,  K2) 

86.  Problems  of  the  second  degree.  We  have  seen  in  §  83  that 

any  problem  of  the  first  degree  can  be  solved  completely  by  means 
of  linear  constructions ;  but  that  a  problem  of  degree  higher  than  the 

first  cannot  be  solved  by  linear  constructions  alone.  In  regard  to 

problems  of  the  second  degree  in  a  plane,  however,  it  was  seen  in 

§  84  that  any  such  problem  may  be  reduced  to  the  problem  of  find- 
ing the  points  of  intersection  of  an  arbitrary  line  in  the  plane  with 

a  particular  conic  in  the  plane.  This  result  we  may  state  in  the 
following  form : 

Theorem  5.  Any  problem  of  the  second  degree  in  a  plane  may  be 

solved  by  linear  constructions  if  the  intersections  of  every  line  in  the 

plane  with  a  single  conic  in  this  plane  are  assumed  known.  (A,  E, 
P,  H0,  KJ 

In  the  usual  representation  of  the  projective  geometry  of  a  real  plane  by 
means  of  points,  lines,  etc.,  drawn  with  a  pencil,  say,  on  a  sheet  of  paper,  the 

linear  constructions,  as  has  already  been  noted,  are  those  that  can  be  per- 
formed with  the  use  of  a  straightedge  alone.    It  will  be  shown  later  that  any 
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conic  in  the  real  geometry  is  equivalent  projectively  to  a  circle.  The  instru- 

ment usually  employed  to  draw  circles  is  the  compass.  It  is  then  clear  that 

in  this  representation  any  problem  of  the  second  degree  can  be  solved  by  means  of 

a  straightedge  and  compass  alone.  The  theorem  just  stated,  however,  shows  that 

if  a  single  circle  is  drawn  once  for  all  in  the  plane,  the  straightedge  alone 

suffices  for  the  solution  of  any  problem  of  the  second  degree  in  this  plane. 

The  discussion  immediately  following  serves  to  indicate  briefly  how  this  may 

be  accomplished. 

We  proceed  to  show  how  this  theorem  may  be  used  in  the  solution 

of  problems  of  the  second  degree.  Any  such  problem  may  be  reduced 

more  or  less  readily  to  the  first  of  the  following : 

Problem  1.  To  find  the  double  points  of  a  projectivity  on  a  line  of 

which  three  pairs  of  homologous  points  are  given.    We  may  assume 

Fig.  98 

that  the  given  pairs  of  homologous  points  all  consist  of  distinct  points 

(otherwise  the  problem  is  linear).  In  accordance  with  Theorem  5, 

we  suppose  given  a  conic  (in  a  plane  with  the  line)  and  assume 

known  the  intersections  of  any  line  of  the  plane  with  this  conic.  Let 

0  be  any  point  of  the  given  conic,  and  with  0  as  center  project  the 

given  pairs  of  homologous  points  on  the  conic  (fig.  98).  These  define 

a  projectivity  on  the  conic.  Construct  the  axis  of  this  projectivity 

and  let  it  meet  the  conic  in  the  points  P,  Q.  The  lines  OP}  OQ  then 

meet  the  given  line  in  the  required  double  poijits--^^-'' 
Problem  2.  To  find  the  points  of  intersection  of  a  given  line  with 

a  conic  of  which  five  points  are  given.  Let  A,  B,  C,  D,E  be  the  given 

points  of  the  conic.  The  conic  is  then  defined  by  theprojectivity 

D(A,  B,  C)-^E(A,  B,  C)  between  the  pencils  of  lines  at  D  antT~2f~ 



§86] SEXTUPLY  PERSPECTIVE  TRIAXGLES 

247 

This  projectivity  gives  rise  to  a  projectivity  on  the  given  line  of 
which  three  pairs  of  homologous  points  are  known.  The  double 

points  of  the  latter  projectivity  are  the  points  of  intersection  of  the 

line  with  the  conic.    The  problem  is  thus  reduced  to  Problem  1. 

Problem  3.  We  have  seen  that  it  is  possible  for  two  triangles  in 

a  plane  to  be  perspective  from  four  different  centers  (cf.  Ex.  8,  p.  105). 

The  maximum  number  of  ways  in  which  it  is  conceivable  that  two 

triangles  may  be  perspective  is  clearly  equal  to  the  number  of  per- 
mutations of  three  things  three  at  a  time,  i.e.  six.  The  question  then 

arises,  7s  it  possible  to  construct  two  triangles  that  are  perspective  from 

six  different  centers?  Let  the  two  triangles  be  ABC  and  A'B'C,  and  let 

xx  =  0,     xi=0,     xt=0 

be  the  sides  of  the  first  opposite  to  A,  B,  C  respectively.  Let  the 

sides  of  the  second  opposite  to  A',  B\  C  respectively  be 

xx  +  xt  +  x%  =  0,     xx  +  lJxt  +  k"xi  =  0,     xx  +  Vx%  +  l"xs  =  0. 

The  condition  for  ABC=  A'B'C  is  that  the  points  of  intersection  of 
corresponding  sides  be  collinear,  Le. 

1 

(1) 

0  1 -*"  0 
-I'    1 =  F-r=o. 

In  like  manner,  the  condition  for  BCA  =  A'B'C  is A 

(2) 

0 

-i" 

/' 

-1 

0 i 
-y 

i 0 
=  k>l"-l'=Q. 

From  these  two  conditions  follows 

0     -F  V 
-I"     0      1 
1-10 

=  H"-Jfc"=0, 

which  is  the  condition  for  CAB  =  A'B'C'.   Hence,  if  two  triangles  are 

in  the  relations  ABC  =  A'B'C  and  BCA  =  A'B'C,  they  are  also  in a  A  .  . 
the  relation  CAB  =  A'B'C.    Two  triangles  in  this  relation  are  said  to 
be  triply  perspective  (cf.  Ex.  2,  p.  100).    The  domain  of  rationality 

defined  by  the  data  of  our  problem  is  clearly K=[l]. 
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Since  numbers  in  this  domain  may  be  found  which  satisfy  equations 

(1)  and  (2),  the  problem  of  constructing  two  triply  perspective  tri- 
angles is  linear. 

The  condition  for  ACB  =  A'B'C  is A 

(3)  k'-l"=Q. 

If  relations  (1),  (2),  and  (3)  are  satisfied,  the  triangles  will  be  per- 

spective from  four  centers.  Let  k  be  the  common  value  of  k'  and  I" 

(3),  and  let  I  be  the  common  value  of  V  and  k"  (1).  Relation  (2)  then 
gives  the  condition  k2  —  I  =  0.    The  relations 

then  define  two  quadruply  perspective  triangles.  The  problem  of 

constructing  two  such  triangles  is  therefore  still  linear. 

If  now  we  add  the  condition  for  CBA  =  A'B'C,  the  two  triangles 
will,  by  what  precedes,  be  perspective  from  six  different  centers.  The 
latter  condition  is 

(4)  k"l'-l"=0. 

With  the  preceding  conditions  (1),  (2),  (3)  and  the  notation  adopted 
above,  this  leads  to  the  condition 

k*=l8=l. 

The  equation  k*  —  1  =  0  is,  however,  reducible  in  K ;  indeed,  it  is 
equivalent  to 

k-l=0,     k*  +  k  +  l  =  0. 

The  first  of  these  equations  leads  to  the  condition  that  A',  B',  C  are 
collinear,  and  does  not  therefore  give  a  solution  of  the  problem.  The 

problem  of  constructing  two  triangles  that  are  sextuply  perspective 
is  therefore  of  the  second  degree.    The  equation 

k*  +  k  +  l=  0 

has  two  roots  w,  v?  (proper  or  improper  and,  in  general,*  distinct). 
Hence  our  problem  has  two  solutions.  One  of  these  consists  of  the 
triangles 

xx  —  0,     x2  =  0,     x%  =  0 ; 

xi  +  x2  +  xz  —  0>     xi  +  wx2  +  ̂^s =  0>     xi  +  w*x*  +  wxs =  0- 
*  They  can  coincide  only  if  the  number  system  is  such  that  1  +  1  +  1  =  0;  e.g.  in 

a  finite  space  involving  the  modulus  3. 
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Two  of  the  sides  of  the  second  triangle  may  be  improper.*  The 
points  of  intersection  of  the  sides  of  one  of  these  triangles  with  the 

sides  of  the  other  are  the  following  nine  points : 

(0,     -1,1)     (   0,      w\     -w)     (  0,       w,    -w2) 
(5)       (-1,     0,     1)     (-vf,    0,        1   )     (-w,     0,        1    ) 

(-1,     1,     0)     (  w,     -1,     0   )     (  vf,    -1,      0   ) 

They  form  a  configuration 

9 4 

3 12 

tions 

9 3 

3 9 

which  contains  four  configurations 

of  the  kind  studied  in  §  36,  Chap.  IV.  All  triples  of  points  in  the 
same  row  or  column  or  term  of  the  determinant  expansion  of  their 

matrix  are  collinear.f  If  one  line  is  omitted  from  a  finite  plane  (in 

the  sense  of  §  72,  Chap.  VII)  having  four  points  on  each  line,  the 
remaining  nine  points  and  twelve  lines  are  isomorphic  with  this 

configuration. 

EXERCISES 

The  problems  in  a  plane  given  below  that  are  of  the  second  degree  are  to  be  solved 

by  linear  constructions,  with  the  assumption  that  the  points  of  intersection  of  any  line 

in  the  plane  icith  a  given  fixed  conic  in  the  plane  are  known  :  i.e.  "with  a  straight- 

edge and  a  given  circle  in  the  plane." 

1.  Construct  the  points  of  intersection  of  a  given  line  with  a  conic  deter- 

mined by  (i)  four  points  and  a  tangent  through  one  of  them  ;  (ii)  three  points 

and  the  tangents  through  two  of  them  ;  (iii)  five  tangents. 

2.  Construct  the  conjugate  pair  common  to  two  involutions  on  a  line. 

3.  Given  a  conic  determined  by  five  points,  construct  a  triangle  inscribed 

in  this  conic  whose  sides  pass  through  three  given  points  of  the  plane. 

*  It  may  be  noted  that  in  the  ordinary  real  geometry  two  sides  of  the  second 
triangle  are  necessarily  improper,  so  that  in  this  geometry  our  problem  has  no 
real  solution. 

t  They  all  lie  on  any  cubic  curve  of  the  form  x£  +  x£  +  x83  +  3  XxiX2a;»  =  0  for 
any  value  of  X,  and  are,  in  fact,  the  points  of  inflexion  of  the  cubic.  This  configura- 

tion forms  the  point  of  departure  for  a  variety  of  investigations  leading  into  many 
different  branches  of  mathematics. 
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4.  Given  a  triangle  A2B2C2  inscribed  in  a  triangle  AlBlCv  In  how 

many  ways  can  a  triangle  AsBaC3  be  inscribed  in  A2B2C2  and  circumscribed 

to  A1B1C1'{  Show  that  in  one  case,  in  which  one  vertex  of  A3BaC3  may  be 
chosen  arbitrarily,  the  problem  is  linear  (cf .  §  36,  Chap.  IV)  ;  and  that  in 

another  case  the  problem  is  quadratic.    Show  that  this  problem  gives  all  con- 

figurations of  the  symbol Give  the  constructions  for  all  cases  (cf. 

S.  Kantor,  Sitzungsberichte  der  mathematisch-naturwissenschaftlichen  Classe 
der  Kaiserlichen  Akademie  der  Wissenschaften  zu  Wien,  Vol.  LXXXIV 

(1881),  p.  915). 

5.  If  opposite  vertices  of  a  simple  plane  hexagon  Pi/J2P3P4P6P6  are  on 
three  concurrent  lines,  and  the  lines  PXP2,  P3P4,  P5P6  are  concurrent,  then  the 

lines  P2P3,  P4P5)  PqPi  are  also  concurrent,  and  the  figure  thus  formed  is  a 

configuration  of  Pappus. 

6.  Show  how  to  construct  a  simple  n-point  inscribed  in  a  given  simple 

n-point  and  circumscribed  to  another  given  simple  n-point. 

7.  Show  how  to  inscribe  in  a  given  conic  a  simple  n-point  whose  sides 

pass  respectively  through  n  given  points. 

8.  Construct  a  conic  through  four  points  and  tangent  to  a  line  not  meeting 

any  of  the  four  points. 

9.  Construct  a  conic  through  three  points  and  tangent  to  two  lines  not 

meeting  any  of  the  points. 

10.  Construct  a  conic  through  four  given  points  and  meeting  a  given  line 

in  two  points  harmonic  with  two  given  points  on  the  line. 

11.  If  A  is  a  given  point  of  a  conic  and  X,  Y  are  two  variable  points  of  the 

conic  such  that  AX,  AY  always  pass  through  a  conjugate  pair  of  a  given 

involution  on  a  line  I,  the  line  XY  will  always  pass  through  a  fixed  point  B. 

The  line  AB  and  the  tangent  to  the  conic  at  A  pass  through  a  conjugate  pair 

of  the  given  involution. 

12.  Given  a  collineation  in  a  plane  and  a  line  which  does  not  contain  a 

fixed  point  of  the  collineation  ;  show  that  there  is  one  and  only  one  point  on 

the  line  which  is  transformed  by  the  collineation  into  another  point  on  the  line. 

13.  Given  four  skew  lines,  show  that  there  are  in  general  two  lines  which 

meet  each  of  the  given  four  lines  ;  and  that  if  there  are  three  such  lines,  there 

is  one  through  every  point  on  one  of  the  lines. 

14.  Given  in  a  plane  two  systems  of  five  points  AlA2A3AiA6  and 

B1B2BaBiB6 ;  given  also  a  point  X  in  the  plane,  determine  a  point  Y  such 

that  we  have  X  {A1A2A3AiA^)  —  Y \BlB2BaBiB&).  In  general,  there  is  one 

and  only  one  such  point  Y.  Under  what  condition  is  there  more  than  one  ? 

(R.  Sturm,  Mathematische  Annalen,  Vol.  I  (1869),  p.  533.*) 

*  This  is  a  special  case  of  the  so-called  problem  of  projectivity.  For  references 
and  a  systematic  treatment  see  Sturm,  Die  Lehre  von  den  geometrischen  Ver- 
wandtschaften,  Vol.  I,  p.  348. 
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87.  Invariants  of  linear  and  quadratic  binary  forms.    An  expres- 
sion of  the  form  axxx  +  a2x2  is  called  a  linear  binary  form  in  the 

two  variables  xv  x3 The  word  linear  refers  to  the  degree  in  the 

variables,  the  word  binary  to  the  number  (two)  of  the  variables.  A 

convenient  notation  for  such  a  form  is  a^    The  equation 

ax  =  axxx  +  asx2  —  0 

defines  a  unique  element  A  of  a  one-dimensional  form  in  which  a 

scale  has  been  established,  viz.  the  element  whose  homogeneous  co- 

ordinates are  (xv  x2)  =  (a2,  —  ax).  If  bx  =  bxxx  +  bjc%  is  another  linear 
binary  form  determining  the  element  B,  say,  the  question  arises 
as  to  the  condition  under  which  the  two  elements  A  and  B  coincide. 

This  condition  is  at  once  obtained  as  the  vanishing  of  the  determinant 

A  formed  by  the  coefficients  of  the  two  forms ;  i.e.  the  elements  A 

and  B  will  coincide  if  and  only  if  we  have 

A  = 

=  o. 

Now  suppose  the  two  elements  A  and  B  are  subjected  to  any  pro- 
jective transformation  II : 

n   x1  =  axl+0x},  a  £  ̂ 0 

'x2  =  yxl+Sxj,  7  $ 

The  forms  ax  and  bx  will  be  transformed  into  two  forms  a'^  and  b[, 

respectively,  which,  when  equated  to  0,  define  the  points  A',  B'  into 
which  the  points  A,  B  are  transformed  by  II.  The  coefficients  of 

the  forms  a^,  b'^  in  terms  of  those  of  ax,  bx  are  readily  calculated  as 
follows : 

which  gives 

aix\  +  a*x*  =  ai  (axi  +  &xt)  +  a2  (yxi  +  &xs) 

=  (aal  +  ya2)  x[  +  (fiax  +  8a,)  z,', 

Similarly,  we  find 
a[  =  aax  +  ya2,     a\  =  fiax  +  8a2 

bl=a\  +  y\,       b;=/3bx+8br 

Now  it  is  clear  that  if  the  elements  A,  B  coincide,  so  also  will  the 

new  elements  A',  B'  coincide.   If  we  have  A  =  0,  therefore  we  should 
a'  a'\ 
A  A  =  0.    That  this  is  the  case  is  readily  verified. also  have  A'  = 

We  have 

,_|aa1+7a2  0ax+ 8a„ 
a-labx  +  y\   &\  +  Sb, 

7   * 
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by  a  well-known  theorem  in  determinants.    This  relation  may  also 
be  written 

a  0 

y   8 

A'  = 

The  determinant  A  is  then  a  function  of  the  coefficients  of  the  forms 

ax,  bx,  with  the  property  that,  if  the  two  forms  are  subjected  to  a  lin- 
ear homogeneous  transformation  of  the  variables  (with  nonvanishing 

determinant),  the  same  function  of  the  coefficients  of  the  new  forms 

is  equal  to  the  function  of  the  coefficients  of  the  old  forms  multiplied 

by  an  expression  which  is  a  function  of  the  coefficients  of  the  trans- 
formation only.  Such  a  function  of  the  coefficients  of  two  forms  is 

called  a  (simultaneous)  invariant  of  the  forms. 

Suppose,  now,  we  form  the  product  ax  •  bx  of  the  two  forms  ax,  bx. 
If  multiplied  out,  this  product  is  of  the  form 

ax  =  auxx  +  2  a12x1x2-\-  a22x2. 

Any  such  form  is  called  a  quadratic  binary  form.  Under  Proposi- 
tion K2  every  such  form  may  be  factored  into  two  linear  factors 

(proper  or  improper),  and  hence  any  such  form  represents  two  ele- 

ments (proper  or  improper)  of  a  one-dimensional  form.  These  two 

elements  will  coincide,  if  and  only  if  the  discriminant Da  =  a*2  — 
an  •  a22  of  the  quadratic  form  vanishes.  The  condition  Da  =  0  there- 

fore expresses  a  property  which  is  invariant  under  any  projectivity. 

If,  then,  the  form  ax  be  subjected  to  a  projective  transformation,  the 

discriminant  Da,  of  the  new  form  a'x  must  vanish  whenever  Da  van- 
ishes. There  must  accordingly  be  a  relation  of  the  form  Da,  =  k  •  Da. 

If  a*  be  subjected  to  the  transformation  II  given  above,  the  coefficients 

#ii >  aia>  ah  of  the  new  form  a'x  are  readily  found  to  be 

aL  =  ana*  +  2  ai2a7  +  «2272> 
(1)  a(2  =  ana/3  +  au  (aS  +  fiy)  +  a22y8, 

al2  =  an/32+2a12{38  +  a228i. 

By  actual  computation  the  reader  may  then  verify  the  relation 

a  /3  a 

•°«' =««-«  = 

7  8 

(a?2  -  ana22)  =  (a8  -  £y)2  •  Da. 

The  discriminant  Da  of  a  quadratic  form  ax  is  therefore  called  an 
invariant  of  the  form. 
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Suppose,  now,  we  consider  two  binary  quadratic  forms 

al  =  axxxi  +  2  auFix*  +  a*A  > 

Each  of  these  (under  A,)  represents  a  pair  of  points  (proper  or  im- 
proper). Let  us  seek  the  condition  that  these  two  pairs  be  harmonic. 

This  property  is  invariant  under  projective  transformations ;  we  may 

therefore  expect  the  condition  sought  to  be  an  invariant  of  the  two 

forms.  We  know  that  if  av  at  are  the  nonhomogeneous  coordinates 

of  the  two  points  represented  by  a  *  =  0,  we  have  relations 

a«  i  2  a 

an  aii 

with  similar  relations  for  the  nonhomogeneous  coordinates  bv  bt  of 

the  points  represented  by  bl  =  0.  The  two  pairs  of  points  av  at ;  bv  bt 
will  be  harmonic  if  we  have  (Theorem  13,  Cor.  2,  Chap.  VT) 

ai—  \ .  a*—K  m  _  j 

This  relation  may  readily  be  changed  into  the  following : 

which,  on  substituting  from  the  relations  just  given,  becomes 

A*  =  ai  A,  +  «*Ai  -  2  aj)u  =  0. 

This  is  the  condition  sought.  If  we  form  the  same  function  of  the 

coefficients  of  the  two  forms  a '*,  b'x2  obtained  from  a*,  b*  by  subjecting 
them  to  the  transformation  II,  and  substitute  from  equations  (1),  we 
obtain  the  relation 

In  the  three  examples  of  invariants  of  binary  forms  thus  far 

obtained,  the  function  of  the  new  coefficients  was  always  equal  to 

the  function  of  the  old  coefficients  multiplied  by  a  power  of  the 

determinant  of  the  transformation.  This  is  a  general  theorem  regard- 
ing invariants  to  which  we  shall  refer  again  in  §  90,  when  a  formal 

definition  of  an  invariant  will  be  given.  Before  closing  this  section, 

however,  let  us  consider  briefly  the  cross  ratio  R  (axav  btbt)  of  the 

two  pairs  of  points  represented  by  a  I  =  0,  b*  =  0.    This  cross  ratio 
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is  entirely  unchanged  when  the  two  forms  are  subjected  to  a  pro- 
jective transformation.  If,  therefore,  this  cross  ratio  be  calculated  in 

terms  of  the  coefficients  of  the  two  forms,  the  resulting  function  of 

the  coefficients  must  be  exactly  equal  to  the  same  function  of  the 

coefficients  of  the  forms  a'x,  bx ;  the  power  of  the  determinant  referred 
to  above  is  in  this  case  zero.  Such  an  invariant  is  called  an  absolute 

invariant;  for  purposes  of  distinction  the  invariants  which  when 

transformed  are  multiplied  by  a  power  =£  0  of  the  determinant  of 
the  transformation  are  then  called  relative  invariants. 

EXERCISES 

1.  Show  that  the  cross  ratio  R  {axa2,  b^b^)  referred  to  at  the  end  of  the 
last  section  is 

R  (c^a.,,  bj>2)  = 
J>nft  +  2VZ)gZ)ft. 

Dnh-2VDnD V 

and  hence  show,  by  reference  to  preceding  results,  that  it  is  indeed  an  absolute 
invariant. 

2.  Given  three  pairs  of  points  denned  by  the  three  binary  quadratic  forms 

a2  =  0,  b2  =  0,  c2  =  0 ;  show  that  the  three  will  be  in  involution  if  we  have X  '        X  7        X  ' 

"11  "12  "22 

bll  612  ft22 
Ci  1     £10    G* 

=  0. 

'11     "12     °22 

Hence  show  that  the  above  determinant  is  a  simultaneous  invariant  of  the 

three  forms  (cf.  Ex.  13,  p.  230). 

88.  Proposition  E^.  If  we  form  the  product  of  n  linear  binary 

forms  ax  •  ax .  a"  •    •  •  •  axn~l\  we  obtain  an  expression  of  the  form 

a?  =  a0x?  +  naxx[l ~ \  +  — — - — '  a2x[ * 2x£  H   h  naH_  xx^ ~ l  +  anx\. Li 

An  expression  of  this  form  is  called  a  binary  homogeneous  form  or 

quantic  of  the  nth  degree.  If  it  is  obtained  as  the  product  of  n  linear 

forms,  it  will  represent  a  set  of  n  points  on  a  line  (or  a  set  of  n  ele- 
ments of  some  one-dimensional  form). 

If  it  is  of  the  second  degree,  we  have,  by  Proposition  K2,  that  there 

exists  an  extended  space  in  which  it  represents  a  pair  of  points.  At 

the  end  of  this  chapter  there  will  be  proved  the  following  generali- 
zation of  K„ : 
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Proposition  K,,.  If  a*,  &&•  ••  are  a  finite  number  of  binary  homo- 
geneous forms  whose  coefficients  are  proper  in  a  space  S  which  satisfies 

Assumptions  A,  E,  P,  there  exists  a  space  S',  of  which  S  is  a  sub- 
space,  in  the  number  system  of  which  each  of  these  forms  is  a  product 

of  linear  factors. 

As  in  §  85,  S'  is  called  an  extended  space,  and  elements  in  S'  but 
not  in  S  are  called  improper  elements.  Proposition  Kn  thus  implies 

that  an  equation  of  the  form  a*  =  0  can  always  be  thought  of  as 
representing  n  (distinct  or  parti y  coinciding)  improper  points  in  an 

extended  space  in  case  it  does  not  represent  any  proper  points. 

Proposition  Kn  could  be  introduced  as  an  (not  independent)  assump- 
tion in  addition  to  A,  E,  P,  and  H0.  Its  consistency  with  the  other 

assumptions  would  be  shown  by  the  example  of  the  ordinary  com- 
plex space  in  which  it  is  equivalent  to  the  fundamental  theorem 

of  algebra. 

89.  Taylor's  theorem.  Polar  forms.  It  is  desirable  at  this  point 
to  borrow  an  important  theorem  from  elementary  algebra. 

Definition.  Given  a  term  Ax*  of  any  polynomial,  the  expression 

nAx*~x  is  called  the  derivative  of  Ax*  with  respect  to  x^  in  symbols 

— Ax?  =  nAx-*-\ 

The  derivative  of  a  polynomial  with  respect  to  xi  is,  by  definition,  the 

sum  of  the  derivatives  of  its  respective  terms. 

This  definition  gives  at  once  —  A  =  0,  if  A  is  independent  of  Xf. 

dxt 

Applied  to  a  term  of  a  binary  form  it  gives 

—  Tcx'x?  =  nkxT  ~  lx?,     —  kx?x?  =  ml'xfx?  ~  \ 
dx1  ̂   *         ̂        *       dxt  ̂   *  i   2 

With  this  definition  it  is  possible  to  derive  Taylor's  theorem  for  the 
expansion  of  a  polynomial.  *We  state  it  for  a  binary  form  as  follows : 

Given  the  binary  form 

Axv  **)  =  K  =  a*xi  +  natf-xxt  +  W(n~      arf-*x* 

H   h  na^x^;  ~ l  +  anxl. 

*  For  the  proof  of  this  theorem  on  the  basis  of  the  definition  just  given,  cf .  Fine, 
College  Algebra,  pp.  460-462. 
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If  herein  we  substitute  for  xv  x2  respectively  the  expressions  xx  +  \yv 

x2  +  \y2,  we  obtain, 

f(xi  +  xVv  x2  +  x3/2)  =f(xv  *•)  +  x (Vi  fa  +  V%  fa)f(xv  xd 

■  .:XV     a   ,      a\2       \ 

Here  the  parentheses  are  differential  operators.   Thus 

id         d\*       2ay  ,  0        ay       2ay 

ay  a  ran     a2/  a  ra/i    .     T. .       ,., where  — -.  means  —  —   '  — - —  means  —  —  >  etc.    It  is  readily 
dx{  dxx\dxx\    dx2dx1  dx2\_dx1j 

proved  for  any  term  of  a  polynomial  (and  hence  for  the  polynomial 

itself)  that  the  value  of  such  a  higher  derivative  as  cnf/dx2dxx  is 
independent  of  the  order  of  differentiation;  i.e.  that  we  have 

a2/  _  a2/ 
dx2dx1      dxxdx2 

Definition.  The  coefficient  of  X  in  the  above  expansion,  viz. 

y1df/dx1  +  y2df/dx2  is  called  the  first  polar  form  of  (yv  y2)  with 

respect  to  f  (xv  x2) ;  the  coefficient  of  X2  is  called  the  second ;  the 
coefficient  of  X"  is  called  the  nth  polar  form  of  (yv  y2)  with  respect 
to  the  form  f.  If  any  polar  form  be  equated  to  0,  it  represents  a  set 

of  points  which  is  called  the  first,  second,  •  •  • ,  nth  polar  of  the  point 

(yv  y2)  with  respect  to  the  set  of  points  represented  by  f  (xv  x2)  =  0. 
Consider  now  a  binary  form  /  (xv  x2)  =  0  and  the  effect  upon  it  of 

a  projective  transformation 

n  :  Xl=axi+Px2>  (a8-/3y  *  0) 
xi  ~  Yxi  +  °xv 

If  we  substitute  these  values  in  /  (xv  x2),  we  obtain  a  new  form 

F(x[,  x2).  A  point  (xv  x2)  represented  by  f(xv  x2)=  0  will  be  trans- 

formed into  a  point  (x[,  #2)  represented  by  the  form  F (x[,  x'2)  =  0. 
Moreover,  if  the  point  {yv  y2)  be  subjected  to  the  same  projectivity, 
it  is  evident  from  the  nature  of  the  expansion  given  above  that  the 

polars  of  (yv  y2)  with  respect  to  f(xv  x2)  =  0  are  transformed  into 

the  polars  of  (y[,  y2)  with  respect  to  F  {x[,  x2)  =  0. 
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We  may  summarize  the  results  thus  obtained  as  follows : 

Theorem  6.  If  a  binary  form  f  is  transformed  by  a  projective 

transformation  into  the  form  F,  the  set  of  points  represented  by  f=  0 

is  transformed  into  the  set  represented  by  F  =  0.  Any  polar  of  a 

point  (yv  y2)  with  respect  tof  =  0  is  transformed  into  the  correspond- 

ing polar  of  the  point  {y[,  y'2)  with  respect  to  F  =  0. 
The  following  is  a  simple  illustration  of  a  polar  of  a  point  with 

respect  to  a  set  of  points  on  a  line. 

The  form  xxx2  =  0  represents  the  two  points  whose  nonhomo- 
geneous  coordinates  are  0  and  oo  respectively.  The  first  polar  of  any 

point  (yv  y2)  with  respect  to  this  form  is  clearly  yxx2  +  y2xx  =  0,  and 

represents  the  point  (— yv  y2)',  in  other  words,  the  first  polar  of  a 
point  P  with  respect  to  the  pair  of  points  represented  by  the  given 

form  is  the  harmonic  conjugate  of  this  point  with  respect  to  the  pair. 

EXERCISE 

Determine  the  geometrical  construction  of  the  (n  —  l)th  polar  of  a  point 
with  respect  to  a  set  of  n  distinct  points  on  a  line  (cf.  Ex.  3,  p.  51). 

90.  Invariants  and  covariants  of  binary  forms.  Definition.  If  a 

binary  form  a  ■  =  a0x"  -f-  naxx"  ~  1x2  +  •  •  •  -f-  anx2  be  changed  by  the 
transformation  ,_         ,    a 

U:X\~  aXl  +  T*2'  (aS -  #y  *  0) X2  =  1X\  +  °X2 

into  a  new  form  A*,  =  A0x(n  +  A1x{n~1x2'  +  •  •  •  +  Anx^,  any  rational 

function  i"  (a0,  av  •  •  • ,  an)  of  the  coefficients  such  that  we  have 

I(A0,  Av---,  An)  =  <f>(a,  A  7,  8)  ■  I(a0,  av  • .  • ,  an) 

is  called  an  invariant  of  the  form  a".   A  function 

of  the  coefficients  and  the  variables  such  that  we  have 

C(A0,  AV---,AH;  x[,  x2)  =  ̂   (a,  0,  y,  8)  ■  C(a0,  av---,an;  xlt  x2) 

is  called  a  covariant  of  the  form  a".  Tlie  same  terms  apply  to  func- 

tions i"  and  C  of  the  coefficients  and  variables  of  any  finite  number 
of  binary  forms  with  the  property  that  the  same  function  of  the 

coefficients  and  variables  of  the  new  forms  is  equal  to  the  original 

function  multiplied  by  a  function  of  a,  0,  y,  B  only;  they  are  then 
called  simultaneous  invariants  or  covariants. 
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In  §  87  we  gave  several  examples  of  invariants  of  binary  forms, 

linear  and  quadratic.  It  is  evident  from  the  definition  that  the  con- 
dition obtained  by  equating  to  0  any  invariant  of  a  form  (or  of  a 

system  of  forms)  must  determine  a  property  of  the  set  of  points 

represented  by  the  form  (or  forms)  which  is  invariant  under  a  pro- 
jective transformation.  Hence  the  complete  study  of  the  projective 

geometry  of  a  single  line  would  involve  the  complete  theory  of  invari- 
ants and  covariants  of  binary  forms.  It  is  not  our  purpose  in  this 

book  to  give  an  account  of  this  theory.  But  we  will  mention  one 

theorem  which  we  have  already  seen  verified  in  special  cases. 

The  functions  <f>(a,  yS,  7,  8)  and  iff  (a,  /?,  7,  8)  occurring  in  the 

definition  above  are  always  powers  of  the  determinant  a8  —  fiy  of 

the  projective  transformation  in  question.* 
Before  closing  this  section  we  will  give  a  simple  example  of  a  cova- 

riant.  Consider  two  binary  quadratic  forms  a*,  bl  and  form  the  new 

quantic 
Cab  =  K&1  —  aA)  Xl  +  (aoh  ~  aA)  X1X2  +  (a  A  —  tt  A)  Xl ' 

By  means  of  equations  (1),  §  87,  the  reader  may  then  verify  without 
difficulty  that  the  relation 

Ca>bf  =  (ah-^).Cab 

holds,  which  proves  C^  to  be  a  covariant.  The  two  points  represented 

by  C^  =  0  are  the  double  points  (proper  or  improper)  of  the  involu- 

tion of  which  the  pairs  determined  by  a*  =  0,  b*  —  0  are  conjugate 
pairs.    This  shows  why  the  form  should  be  a  covariant. 

EXERCISE 

Prove  the  statement  contained  in  the  next  to  the  last  sentence. 

91.  Ternary  and  quaternary  forms  and  their  invariants.  The  remarks 

which  have  been  made  above  regarding  binary  forms  can  evidently  be 

generalized.  A  p-ary  form  of  the  nth  degree  is  a  polynomial  of  the  nth 
degree  homogeneous  in  p  variables.  When  the  number  of  variables  is 

three  or  four,  the  form  is  called  ternary  or  quaternary  respectively. 

The  general  ternary  form  of  the  second  degree  when  equated  to  zero 

has  been  shown  to  be  the  equation  of  a  conic.  In  general,  the  set  of 

points  (proper  and  improper)  in  a  plane  which  satisfy  an  equation 

a  x  =  a\x\  +  aixl  +  azxl  H   =  0 

*  For  proof,  ci.,  for  example,  Grace  and  Young,  Algebra  of  Invariants,  pp.  21,  22. 
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obtained  by  equating  to  zero  a  ternary  form  of  the  nth.  degree  is 

called  an  algebraic  curve  of  the  nth  degree  (order).  Similarly,  the  set 

of  points  determined  in  space  by  a  quaternary  form  of  the  nth  degree 

equated  to  zero  is  called  an  algebraic  surface  of  the  nth  degree. 

The  definitions  of  invariants  and  covariants  of  ̂ -ary  forms  is  pre- 
cisely the  same  as  that  given  above  for  binary  forms,  allowance  being 

made  for  the  change  in  the  number  of  variables.  Just  as  in  the 

binary  case,  if  an  invariant  of  a  ternary  or  quaternary  form  vanishes, 

the  corresponding  function  of  the  coefficients  of  any  protectively 

equivalent  form  also  vanishes,  and  consequently  it  represents  a  prop- 
erty of  the  corresponding  algebraic  curve  or  surface  which  is  not 

changed  when  the  curve  or  surface  undergoes  a  projective  transforma- 
tion. Similar  remarks  apply  to  covariants  of  systems  of  ternary  and 

quaternary  forms. 
Invariants  and  covariants  as  defined  above  are  with  respect  to  the 

group  of  all  projective  collineations.  The  geometric  properties  which 

they  represent  are  properties  unaltered  by  any  projective  collineation. 
Like  definitions  can  of  course  be  made  of  invariants  with  respect  to 

any  subgroup  of  the  total  group.  Evidently  any  function  of  the 

coefficients  of  a  form  which  is  invariant  under  the  group  of  all  col- 
lineations will  also  be  an  invariant  under  any  subgroup.  But  there 

will  in  general  be  functions  which  remain  invariant  under  a  subgroup 

but  which  are  not  invariant  under  the  total  group.  These  correspond 

to  properties  of  figures  which  are  invariant  under  the  subgroup  with- 
out being  invariant  under  the  total  group.  We  thus  arrive  at  the 

fundamental  notion  of  a  geometry  as  associated  with  a  given  group, 

a  subject  to  which  we  shall  return  in  detail  in  a  later  chapter. 

EXERCISES 

1.  Define  by  analogy  with  the  developments  of  §  89,  the  n  —  1  polars  of  a 
ternary  or  quaternary  form  of  the  nth  degree. 

2.  Regarding  a  triangle  as  a  curve  of  the  third  degree,  show  that  the  second 

polar  of  a  point  with  regard  to  a  triangle  is  the  polar  line  defined  on  page  46. 

3.  Generalize  Ex.  2  in  the  plane  and  in  space,  and  dualize. 
a,,  ata  a, 

4.  Prove  that  the  discriminant 

■21 

of  the  ternary  quadratic  form 

3    Q2S    ° 

is  an  invariant.    What  is  its  geometrical  interpretation?    Cf.  Ex.,  p.  187. 
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92.  Proof  of  Proposition  Kn.    Given  a  rational  integral  function 

<f>  (x)  =  aQxn  +  axxn~^  H   y  an,     a0  =£  0, 
whose  coefficients  belong  to  a  given  field  F,  and  which  is  irreducible  in 

F,  there  exists  a  field  F',  containing  F,  in  which  the  equation  <£>(#)  =  0 
has  a  root 

Let  f(x)  be  any  rational  integral  function  of  x  with  coefficients  in 

F,  and  let  j  be  an  arbitrary  symbol  not  an  element  of  F.  Consider 

the  class  F,  =  [/(/)]  of  all  symbols  /(/),  where  [/(#)]  is  the  class  of 
all  rational  integral  functions  with  coefficients  in  F.  We  proceed  to 
define  laws  of  combination  for  the  elements  of  F.  which  render  the 

latter  a  field.  The  process  depends  on  the  theorem  *  that  any  poly- 
nomial f(x)  can  be  represented  uniquely  in  the  form 

f(x)  =  q(x)<f>(x)  +  r(x), 

where  q(x)  and  r(x)  are  polynomials  belonging  to  F, —  i.e.  with 

coefficients  in  F,  —  and  where  r  (x)  is  of  degree  lower  than  the  degree 

n  of  <f>(x).  If  two  polynomials  fv  f%  belonging  to  F  are  such  that 
their  difference  is  exactly  divisible  by  <£  (x),  then  they  are  said  to  be 

congruent  modulo  <f>(x),  in  symbols/^  =/2,  mod.  4>(x). 

1.  Two  elements  fx(J)tft(j)  of  F^.  are  said  to  be  equal,  if  and  only 
if /j(x)  and/2(x)  are  congruent  mod.  <f>(x).  By  virtue  of  the  theorem 

referred  to  above,  every  element  /(/)  of  Fs  is  equal  to  one  and  only 

one  element  /'  (j)  of  degree  less  than  n.  We  need  hence  consider  only 
those  elements  /(/)  of  degree  less  than  n.  Further,  it  follows  from 

this  definition  that  </>  (J)  =  0. 

2.  If  fx (x)  +/2 (x)  s/,  (x),  mod.  4> (x),  then /, (j)  +/, (;)  =/8 (j). 

3-  If  A  (*)  ft  (*)  =/»  (*),  mod. «/,  (x),  then  fx  (j) ./,  (J)  =/8  (/)• 
Addition  and  multiplication  of  the  elements  of   Fj  having  thus 

been  denned,  the  associative  and  distributive  laws  follow  as  immedi- 

ate consequences  of  the  corresponding  laws  for  the  polynomials  f(x). 

It  remains  merely  to  show  that  the  inverse  operations  exist  and  are 

unique.  That  addition  has  a  unique  inverse  is  obvious.  To  prove 

that  the  same  holds  for  multiplication  (with  the  exception  of  0)  we 

need  only  recall f  that,  since  <f>(x)  and  any  polynomial/^)  have  no 
common  factors,  there  exist  two  polynomials  h  (x)  and  k(x)  with 
coefficients  in   F  such  that 

h(x)-f(x)  +  7c(x).<f>(x)  =  l. 

*  Fine,  College  Algebra,  p.  166.  t  Fine,  loc.  cit.,  p.  208. 
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This  gives  at  once  h  (j)  -f(j)  =  \, 

so  that  every  element  f(J)  distinct  from  0  has  a  reciprocal.  The  class 

Fj  is  therefore  a  field  with  respect  to  the  operations  of  addition  and 

mutiplication  defined  above  (cf.  §  52),  such  that  <£(/)  =  0.  It  follows 

at  once*  that  x—j  is  a  factor  of  <f>(x)  in  the  field  F.,  which  is  there- 
fore the  required  field  F.  The  quotient  <f>(z)/(x—j)  is  either  irre- 

ducible in  FJt  or,  if  reducible,  has  certain  irreducible  factors.  If  the 
degree  of  one  of  the  latter  is  greater  than  unity,  the  above  process  may 

be  repeated  leading  to  a  field  F}.  .„  j'  being  a  zero  of  the  factor  in 
question.  Continuing  in  this  way,  it  is  possible  to  construct  a  field 

F.;,  /m),  where  m<Ln—l,  in  which  <f>(x)  is  completely  reducible, 
i.e.  in  which  <f)(x)  may  be  decomposed  into  n  linear  factors.  This 

gives  the  following  corollary : 

Given  a  polynomial  <f>  (x)  belonging  to  a  given  field  F,  there  exists  a 

field  F'  containing  F  in  which  <f>  (x)  is  completely  reducible. 
Finally,  an  obvious  extension  of  this  argument  gives  the  corollary  : 

Given  a  finite  number  of  polynomials  each  of  which  belongs  to  a 

given  field  F,  there  exists  a  field  F',  containing  F,  in  which  each  of  the 
given  polynomials  is  completely  redticible. 

This  corollary  is  equivalent  to  Proposition  Kn.  For  if  S  be  any 

space,  let  F  be  the  number  system  on  one  of  its  lines.  Then,  as  in 

the  Introduction  (p.  11),  F'  determines  an  analytic  space  which  is 

the  required  space  S'  of  Proposition  Kn. 
The  more  general  question  at  once  presents  itself:  Given  a  field 

F,  does  there  exist  a  field  F',  containing  F,  in  which  every  polynomial 
belonging  to  F  is  completely  reducible  ?  The  argument  used  above 

does  not  appear  to  offer  a  direct  answer  to  this  question.  The  ques- 
tion has,  however,  recently  been  answered  in  the  affirmative  by  an 

extension  of  the  above  argument  which  assumes  the  possibility  of 

■  well  ordering  "  any  class. f 

EXERCISE 

Many  theorems  of  this  and  other  chapters  are  given  as  dependent  on 

A,  E,  P,  H0,  whereas  they  are  provable  -without  the  use  of  H0.  Determine 
which  theorems  are  true  in  those  spaces  for  which  H0  is  false. 

*  Fine,  College  Algebra,  p.  169. 
t  Cf.  E.  Steinitz,  Algebraische  Theorie  der  Kbrper,  Journal  fur  reine  u.  ange- 

wandte  Mathematik,  Vol.  CXXXVII  (1909),  p.  167  ;  especially  pp.  271-286. 



CHAPTER  X* 

PROJECTIVE  TRANSFORMATIONS  OF  TWO-DIMENSIONAL  FORMS 

93.  Correlations  between  two-dimensional  forms.  Definition.  A 

projective  correspondence  between  the  elements  of  a  plane  of  points 

and  the  elements  of  a  plane  of  lines  (whether  they  be  on  the  same 

or  on  different  bases)  is  called  a  correlation.  Likewise,  a  projective 

correspondence  between  the  elements  of  a  bundle  of  planes  and  the 

elements  of  a  bundle  of  lines  is  called  a  correlation.^ 

Under  the  principle  of  duality  we  may  confine  ourselves  to  a  con- 
sideration of  correlations  between  planes.  In  such  a  correlation,  then, 

to  every  point  of  the  plane  of  points  corresponds  a  unique  line  of  the 

plane  of  lines ;  and  to  every  pencil  of  points  in  the  plane  of  points 

corresponds  a  unique  projective  pencil  of  lines  in  the  plane  of  lines. 

In  particular,  if  the  plane  of  points  and  the  plane  of  lines  are  on  the 

same  base,  we  have  a  correlation  in  a  planar  field,  whereby  to  every 

point  P  of  the  plane  corresponds  a  unique  line  p  of  the  same  plane, 

and  in  which,  if  P,  Pv  Pv  Pt  are  collinear  points,  the  corresponding 

lines  pv  p2,  ps,  pt  are  concurrent  and  such  that 

That  a  correlation  T  transforms  the  points  [P]  of  a  plane  into  the 

lines  [p]  of  the  plane,  we  indicate  as  usual  by  the  functional  notation 

T(P)=p. 

The  points  on  a  line  I  are  transformed  by  T  into  the  lines  on  a 

point  L.  This  determines  a  transformation  of  the  lines  [I]  into  the 

points  [L],  which  we  may  denote  by  V,  thus : 

Y'(l)=L. 

That  V  is  also  a  correlation  is  evident  (the  formal  proof  may  be 

supplied  by  the  reader).  The  transformation  V  is  called  the  correla- 
tion induced  by  T.   If  a  correlation  T  transforms  the  lines  [/]  of  a 

*  All  developments  of  this  chapter  are  on  the  basis  of  Assumptions  A,  E,  P,  and 
Ho.    Cf .  the  exercise  at  the  end  of  the  last  chapter. 

t  The  terms  reciprocity  and  duality  are  sometimes  used  ih  place  of  correlation. 
262 
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plane  into  the  points  [L]  of  the  plane,  the  correlation  which  trans- 

forms the  points  [W]  into  the  lines  [LL']  is  the  correlation  induced 
by  T.  If  T'  is  induced  by  T,  it  is  clear  that  T  is  induced  by  T'. 
For  if  we  have 

we  have  also 

r'(  (%%)  (^) . . .  >  =  fey,,)  o^)  •  • . , 

and  hence  the  induced  correlation  of  V  transforms  P%  into  p2,  etc. 

That  correlations  in  a  plane  exist  follows  from  the  existence  of  the 

polar  system  of  a  conic.  The  latter  is  in  fact  a  projective  transforma- 
tion in  which  to  every  point  in  the  plane  of  the  conic  corresponds  a 

unique  line  of  the  plane,  to  every  line  corresponds  a  unique  point, 

and  to  every  pencil  of  points  (lines)  corresponds  a  projective  pencil 

of  lines  (points)  (Theorem  18,  Cor.,  Chap.  V).  This  example  is,  how- 

ever, of  a  special  type  having  the  peculiarity  that,  if  a  point  P  corre- 
sponds to  a  line  p,  then  in  the  induced  correlation  the  line  p  will 

correspond  to  the  point  P ;  i.e.  in  a  polar  system  the  points  and  lines 

correspond  doubly.  This  is  by  no  means  the  case  in  every  correlation. 

Definition.  A  correlation  in  a  plane  in  which  the  points  and 

lines  correspond  doubly  is  called  a  polarity. 

It  has  been  found  convenient  in  the  case  of  a  polarity  defined  by 

a  conic  to  study  a  transformation  of  points  into  lines  and  the  induced 

transformation  of  lines  into  points  simultaneously.  Analogously,  in 

studying  collineations  we  have  regarded  a  transformation  T  of  points 

Pv  1%,  Pit  P4  into  points  P^,  P2',  P9',  Pi,  and  the  transformation  T'  of 
the  lines  PXP%,  P2Pit  PsPt,  P^  into  the  lines  PJPJ,  P^,  PjPj,  PjJ?  as 

the  same  collineation.  In  like  manner,  when  considering  a  trans- 
formation of  the  points  and  lines  of  a  plane  into  its  lines  and  points 

respectively,  a  correlation  F  operating  on  the  points  and  its  induced 

correlation  T'  operating  on  the  lines  constitute  one  transformation  of 
the  points  and  lines  of  the  plane.  For  this  sort  of  transformation  we 
shall  also  use  the  term  correlation.  In  the  first  instance  a  correlation 

in  a  plane  is  a  correspondence  between  a  plane  of  points  (lines)  and 
a  plane  of  lines  (points).  In  the  extended  sense  it  is  a  transformation 

of  a  planar  field  either  into  itself  or  into  another  planar  field,  in 

which  an  element  of  one  kind  (point  or  line)  corresponds  to  an  ele- 
ment of  the  other  kind. 
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The  following  theorem  is  an  immediate  consequence  of  the  defini- 

tion and  the  fact  that  the  resultant  of  any  two  projective  correspond- 
ences is  a  projective  correspondence. 

Theorem  1.  The  resultant  of  two  correlations  is  a  projective  col- 

lineation,  and  the  resultant  of  a  correlation  and  a  projective  collinea- 
tion  is  a  correlation. 

We  now  proceed  to  derive  the  fundamental  theorem  for  correlations 
between  two-dimensional  forms. 

Theorem  2.  A  correlation  between  two  two-dimensional  primitive 
forms  is  uniquely  defined  when  four  pairs  of  homologous  elements  are 

given,  provided  that  no  three  elements  of  either  form  are  on  the  same 

one-dimensional  primitive  form. 

Proof.  Let  the  two  forms  be  a  plane  of  points  a  and  a  plane  of 

lines  a'.  Let  C2  be  any  conic  in  a',  and  let  the  four  pairs  of  homol- 

ogous elements  be  A,  B,  C,  Din  a  and  a',  b',  c',  d'  in  a'.  Let  A',  B', 
C',  D'  be  the  poles  of  a',  b',  c',  d'  respectively  with  respect  to  C2.  If 
the  four  points  J,  B,  C,  D  are  the  vertices  of  a  quadrangle  and  the 

four  points  A',  B',  C',  D'  are  likewise  the  vertices  of  a  quadrangle 

(and  this  implies  that  no  three  of  the  lines  a',  b',  c',  d'  are  concurrent), 
there  exists  one  and  only  one  collineation  transforming  A  into  A!,  B 

into  B',  C  into  C,  and  D  into  D'  (Theorem  18,  Chap.  IV).  Let  this 
collineation  be  denoted  by  T,  and  let  the  polarity  denned  by  the  conic 

C2  be  denoted  by  P.  Then  the  projective  transformation  T  which  is 
the  resultant  of  these  two  transforms  A  into  a',  B  into  b',  etc.  More- 

over, there  cannot  be  more  than  one  correspondence  effecting  this 

transformation.  For,  suppose  there  were  two,  T  and  T1.  Then  the 

projective  correspondence  r\-1  •  T  would  leave  each  of  the  four  points 
A,  B,  C,  D  fixed;  i.e.  would  be  the  identity  (Theorem  18,  Chap.  IV). 

But  this  would  imply  Tl  =  T. 

Theorem  3.  A  correlation  which  interchanges  the  vertices  of  a 

triangle  with  the  opposite  sides  is  a  polarity. 

Proof.  Let  the  vertices  of  the  given  triangle  be  A,  B,  C,  and  let 

the  opposite  sides  be  respectively  a,  b,  c.  Let  P  be  any  point  of  the 

plane  ABC  which  is  not  on  a  side  of  the  triangle.  The  line  p  into 

which  P  is  transformed  by  the  given  correlation  T  does  not,  then,  pass 

through  a  vertex  of  the  triangle  ABC.  The  correlation  T  is  deter- 
mined by  the  equation  F  (ABCP)  =  abcp,  and,  by  hypothesis,  is  such 
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that  T(abc)  =  ABC.  The  points  [Q]  of  c  are  transformed  into  the 

lines  [q]  on  C,  and  these  meet  c  in  a  pencil  [Q']  projective  with  [Q] 
(fig.  99).  Since  A  corresponds  to  B  and  B  to  A  in  the  projectivity 

[Q]  a"  t^']»  tn*s  ProJectivity  is  an  involution  I.   The  point  Q0  in  which 

C=[q] 

Fig.  99 

CP  meets  c  is  transformed  by  Y  into  a  line  on  the  point  cp;  and 

since  Q0  and  c/j  are  paired  in  I,  it  follows  that  cp  is  transformed 

into  the  line  CQ0  —  CP.  In  like  manner,  bp  is  transformed  into  BP. 

Hence  p  =  (cp,  bp)  is  transformed  into  P  =  (CP,  BP). 

Theorem  4.  Any  projective  collineation,  II,  in  a  plane,  a,  is  the 

product  of  two  polarities. 

Proof.    Let  Aa  be  a  lineal  element  of  a,  and  let 

n  (Aa)  =  A' a',  II  (AW)  =  ̂  V. 

L'nless  II  is  perspective,  Aa  may  be  so  chosen  that  A,  A',  A"  are  not 
collinear,  a  a' a"  are  not  concurrent,  and  no  line  of  one  of  the  three 
lineal  elements  passes  through  the  point  of  another.  In  this  case  there 

exists  a  polarity  P  such  that  P  (AA'A")  =  a" a' a,  namely  the  polarity 

defined  by  the  conic  with  regard  to  which  AA"(aa")  is  a  self-polar  tri- 

angle and  to  which  a'  is  tangent  at  A'.  If  II  is  perspective,  the  existence 
of  P  follows  directly  on  choosing  Aa,  so  that  neither  A  nor  a  is  fixed. 
We  then  have 

PII  (AA'aa')  =  a'aA'A, 

and  hence  the  triangle  AA'  (aa')  is  self-reciprocal.  Hence  (Theorem  3) 
PIT  =  Pj  is  a  polarity,  and  therefore  II  =  PPr 
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94.  Analytic  representation  of  a  correlation  between  two  planes. 

Bilinear  forms.  Let  a  system  of  simultaneous  point-and-line  coordi- 
nates be  established  in  a  planar  field.    We  then  have 

Theorem  5.  Any  correlation  in  a  plane  is  given  as  a  transforma- 
tion of  points  into  lines  by  equations  of  the  form 

pu(  =  anxx+  aux2+  al3xs, 

(  1 )  ?K  —  ai\X\  +  a22X2  +  Vi> 
pK  =  *nxt  +  az2x2  +  Vz, 

where  the  determinant  A  of  the  coefficients  a{j  is  different  from  zero. 
Conversely,  every  transformation  of  this  form  in  which  the  determinant 

A  is  different  from  zero  represents  a  correlation. 

The  proof  of  this  theorem  is  completely  analogous  to  the  proof  of 

Theorem  8,  Chapter  VII,  and  need  not  be  repeated  here. 
As  a  corollary  we  have 

Corollary  1.  The  transformation  pu[  =  xl,  pu2'=x2,  pu'3—x3  in 
a  plane  represents  a  polarity  in  which  to  every  side  of  the  triangle  of 

reference  corresponds  the  opposite  vertex. 

Also,  if  (u[,  u[,  u'3)  be  interpreted  as  line  coordinates  in  a  plane 
different  from  that  containing  the  points  (xlt  x2,  x3)  (and  if  the  num- 

ber systems  are  so  related  that  the  correspondence  X'  =  X  between 
the  two  planes  is  projective),  we  have  at  once 

Corollary  2.  The  equations  of  Theorem  5  also  represent  a  correla- 

tion between  the  plane  of  (xv  xv  x3)  and  the  plane  of  (u[,  u!2,  w8'). 
Returning  now  to  the  consideration  of  a  correlation  in  a  plane 

(planar  field),  we  have  seen  that  the  equations  (1)  give  the  coordi- 

nates (u[,  u'2,  w8')  of  the  line  u'=  T  (X),  which  corresponds  to  the 
point  X=  (xv  x2,  xs).    By  solving  these  equations  for  xit 

<rx1  =  Anu(+  A2lu^  +  A3lu'3, 

(2)  ax2  =  A12u(  +  A22u2'  +  A32u'3, 
<rx3  =  Al3Ui  +  A23u2  -f-  A33ua, 

we  obtain  the  coordinates  of  X—  Y~x  (u1)  in  terms  of  the  coordinates 

u{  of  the  line  to  which  X  is  homologous  in  the  inverse  correlation  T~\ 
If,  however,  we  seek  the  coordinates  of  the  point  X'  =  V  (u)  which 
corresponds  to  any  line  u  in  the  correlation  T,  we  may  proceed  as 
follows : 
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Let  the  equation  of  the  point  X'  =  (x[,  #2',  x£)  in  line  coordinates  be 

%b[x[  -f  V.[x[  +  Wg'iCj  =  0. 

Substituting  in  this  equation  from  (1)  and  arranging  the  terms  as  a 

linear  expression  in  xv  xt,  xt, 

uxxt  +  u%x2  +  UjC%  =  0, 
we  readily  find 

™i  =  aiX  +  anxL  +  Vs> 

(3)  to,  =  aux[  +  a^xl  +  a^c'3, 
ru3  =  a13x(+  «2X  +  a^. 

The  coordinates  of  X'  in  terms  of  the  coordinates  of  u  are  then 

given  by 
VX1  =  AlWl  +  ̂12WS  +  Asut> 

(4)  vx.l  =  A2lul  +  A22us  +  Anus, 

vxs'  =  A3Xux  +  A32u2  +  A33ur 

This  is  the  analytic  expression  of  the  correlation  as  a  transformation 

of  lines  into  points ;  Le.  of  the  induced  correlation  of  T.  These  equa- 
tions clearly  apply  also  in  the  case  of  a  correlation  between  two 

different  planes. 

It  is  perhaps  well  to  emphasize  the  fact  that  Equations  (1)  express  T  as  a 

transformation  of  points  into  lines,  while  Equations  (4)  represent  the  induced 

correlation  of  lines  into  points.  Since  we  consider  a  correlation  as  a  trans- 

formation of  points  into  lines  and  lines  into  points,  T  is  completely  represented 

by  (1)  and  (4)  taken  together.  Equations  (2)  and  (3)  taken  together  repre- 
sent the  inverse  of  T. 

Another  way  of  representing  T  analytically  is  obtained  by  observ- 
ing that  the  point  (xv  xv  x3)  is  transformed  by  T  into  the  line  whose 

equation  in  current  coordinates  (x[>  #,',  x3)  is 

u{x[  -f  u2x£+  u3xl=  0, or, 

(5)  (anXl  +  alax2  +  altx,)  x[  +  (a^i  attxt  +  a%3xs)  xt' 

+  (Vi  +  avF*  +  «»*»)  xi  =  0- 

The  left-hand  member  of  (5)  is  a  general  ternary  bilinear  form.  We 
have  then 

Corollaey  3.  Any  ternary  bilinear  form  in  which  the,  determinant 

A  is  different  from  zero  represents  a  correlation  in  a  plane. 
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95.  General  projective  group.  Representation  by  matrices.  The 

general  projective  group  of  transformations  in  a  plane  (which,  under 

duality,  we  take  as  representative  of  the  two-dimensional  primitive 
forms)  consists  of  all  projective  collineations  (including  the  identity) 

and  all  correlations  in  the  plane.  Since  the  product  of  two  collinea- 
tions is  a  collineation,  the  set  of  all  projective  collineations  forms  a 

subgroup  of  the  general  group.  Since,  however,  the  product  of  two 

correlations  is  a  collineation,  there  exists  no  subgroup  consisting 

entirely  of  correlations.* 
According  to  the  point  of  view  developed  in  the  last  chapter,  the 

projective  geometry  of  a  plane  is  concerned  with  theorems  which 

state  properties  invariant  under  the  general  projective  group  in  the 

plane.  In  particular,  the  principle  of  duality  may  he  regarded  as  a 

consequence  of  the  presence  of  correlations  in  this  group. 

Analytically,  collineations  and  correlations  may  be  regarded  as 

aspects  of  the  theory  of  matrices.    The  collineation 
3 

<-25v*  (t-i.2, 3) 

may  be  conveniently  represented  by  the  matrix  A  of  the  coefficients  a{J : 

(an
  al2  

a1 

«21  «22  o, 
tt81  

   
tt32  

   
aZ 

The  product  of  two  collineations  A  =  («0)  and  B  =  (btJ)  is  then  given 
by  the  product  of  their  matrices : 

'K  K  hn 
BA  =  (6.;.)K;.)  =  \b2l  b22  b 

I  au  a12  a13 

23 

1     ̂32 

21 

a0,   a 

a„„  a„ 

lbnan  +  bl2a21  +  bi3a31   bnan  +  b12a22  +  b13a32   bnals  +  bua28  +  bna33\ 

=  I  b.21an  +  b22a2l  +  b23a3l   b21a12  +  b22a22  +  b23a32   o21a13  +  b22a23  ■+-  b23a33 1 , 
\  Kiail  +  &82a21  +  \»aZl     h\aX2  +  \ian  +  K»a»i     \\aU  +  &82a28  +  J88a88  / 

the  element  of  the  *th  row  and  the  yth  column  of  the  matrix  BA 

being  obtained  by  multiplying  each  element  of  the  *th  row  of  B  by  the 

corresponding  element  of  the  /th  column  of  A  and  adding  the  products 

thus  obtained.  It  is  clear  that  two  collineations  are  not  in  general 
commutative. 

*  A  polarity  and  the  identity  form  a  group  ;  but  this  forms  no  exception  to  the 
statement  just  made,  since  the  identity  must  be  regarded  as  a  collineation. 
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Of  the  two  matrices 

a.,   a„  a„  \  and  /  a,.  aoa  a. 23         23 

a.,  a..  I 

either  of  which  is  obtained  from  the  other  by  interchanging  rows  and 

columns,  one  is  called  the  conjugate  or  transposed  matrix  of  the 
other.    The  matrix 

(Ax 
 Ax  Ax\

 
A*  ̂ 2S  As  I 
As   As   As/ 

is  called  the  adjoint  matrix  of  the  matrix  A.  The  adjoint  matrix  is 

clearly  obtained  by  replacing  each  element  of  the  transposed  matrix 

by  its  cofactor.  Equations  (2)  of  §  67  show  that  the  adjoint  of  a 

given  matrix  represents  the  inverse  of  the  collineation  represented  by 

the  given  matrix.   Indeed,  by  direct  multiplication, 

and  the  matrix  just  obtained  clearly  represents  the  identical  col- 
lineation. Since,  when  a  matrix  is  thought  of  as  representing  a 

collineation,  we  may  evidently  remove  any  common  factor  from  all 

the  elements  of  the  matrix,  the  latter  matrix  is  equivalent  to  the 

so-called  identical  matrix,* 
/l  0  0\ 
0  1  0  . 

\0  0  1/ 

Furthermore,  Equations  (3),  §  67,  show  that  if  a  given  matrix 
represents  a  collineation  in  point  coordinates,  the  conjugate  of  the 

adjoint  matrix  represents  the  same  collineation  in  line  coordinates. 

Also  from  the  representation  of  the  product  of  two  matrices  just 

derived,  follows  the  important  result : 

The  determinant  of  the  product  of  two  matrices  (collineations)  is 

equal  to  the  product  of  the  determinants  of  the  two  matrices  (col- 
lineations). 

*  In  the  general  theory  of  matrices  these  two  matrices  are  not,  however,  re- 
garded as  the  same.  It  is  only  the  interpretation  of  them  as  collineations  which 

renders  them  equivalent. 
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From  what  has  just  been  said  it  is  clear  that  a  matrix  does  not 

completely  define  a  collineation,  unless  the  nature  of  the  coordinates 

is  specified.  If  it  is  desired  to  exhibit  the  coordinates  in  the  nota- 
tion, we  may  write  the  collineation  x!  =  Sa^.  in  the  symbolic  form 

The  matrix  (a(J)  may  then  be  regarded  as  an  operator  transforming 

the  coordinates  x  =  (xv  xv  x3)  into  the  coordinates  x'  =  (x(,  x[,  x'z).  If 
we  place  a0  =  aJO  the  matrix  conjugate  to  (a(J)  is  (d^).  Also  by  plac- 

ing A{j  =  Aj{,  the  adjoint  matrix  of  («0)  is  (Ait).  The  inverse  of  the 
above  collineation  is  then  written 

Furthermore,  the  collineation  x'  =  (<zy)  x  is  represented  in  line  coordi- 
nates by  the  equation 

This  more  complete  notation  will  not  be  found  necessary  in  gen- 
eral in  the  analytic  treatment  of  collineations,  when  no  correlations 

are  present,  but  it  is  essential  in  the  representation  of  correlations 

by  means  of  matrices. 

The  correlation  (1)  of  §  94  may  clearly  be  represented  symbolically 

by  the  equation 
u'=(ai})x, 

where  the  matrix  (atj)  is  to  be  regarded  as  an  operator  transforming 

the  point  x  into  the  line  u'.  This  correlation  is  then  expressed  as  a 
transformation  of  lines  into  points  by 

x'=(AJu. 

The  product  of  two  correlations  u'  =  (a{J)  x  and  u'  =  (£>0)  x  is  there- 
fore represented  by 

(cf.  Equations  (4),  §  94),  or  by 

Also,  the  inverse  of  the  correlation  v!  =  (ay)  x  is  given  by 

x  =  (AiJ)uf, or  by 

u  =  (diJ)x'. 
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EXERCISE 

Show  that  if  [II]  is  the  set  of  all  collineations  in  a  plane  and  I\  is  any 

correlation,  the  set  of  all  correlations  in  the  plane  is  [IITJ,  so  that  the  two 

sets  of  transformations  [II]  and  [EH1!]  comprise  the  general  projective  group 
in  the  plane.  By  virtue  of  this  fact  the  subgroup  of  all  projective  collineations 

is  said  to  be  of  index  2  in  the  general  projective  group.* 

96.  Double  points  and  double  lines  of  a  collineation  in  a  plane. 

Eef erring  to  Equations  (1)  of  §  67  we  see  that  a  point  (xv  x2,  x3) 

which  is  transformed  into  itself  by  the  collineation  (1)  must  satisfy 

the  equations 
pxl=  anx1-\-  aX2x2-\-  «j3#3> 

px2  =  a21x1  -f-  #22#2  ~r  a23a'3» 

px3  =  a31xl  +  a32x2  +  «33#3, 

which,  by  a  simple  rearrangement,  may  be  written 

(all-p)xl  +      anx2      + 
(1) 

a„x, 

=  0, 

+  «32«2  +(a3Z-p)X3=Q' 

a13x3 

a„»x„ 

If  a  point  (xv  x2,  x3)  is  to  satisfy  these  three  equations,  the  deter- 
minant of  this  system  of  equations  must  vanish ;  Le.  p  must  satisfy 

the  equation 
au~P       au  «13 

(2)  a2l      a22-p      a23      =0. 

azx         a32      azz~P 

This  is  an  equation  of  the  third  degree  in  p,  which  cannot  have  more 

than  three  roots  in  the  number  system  of  our  geometry. 

Suppose  that  px  is  a  root  of  this  equation.  The  system  of  equa- 
tions (1)  is  then  consistent  (which  means  geometrically  that  the 

three  lines  represented  by  them  pass  through  the  same  point),  and 

the  point  determined  by  any  two  of  them  (if  they  are  independent, 

i.e.  if  they  do  not  represent  the  same  line)  is  a  double  point.  Solving 

the  first  two  of  these  equations,  for  example,  we  find  as  the  coordi- 
nates (xv  x2,  x3)  of  a  double  point 

(3) *Aj.    •   t//a    •   JU„  — 

a*-Pl     Cl* 

au~Pi a„. 
'l-Pl        «12 

«21  at»  —  Pi 

*  A  subgroup  [II]  of  a  group  is  said  to  be  of  index  n,  if  there  exist  n  —  1  trans- 
formations Ti{i  =  1,  2,  •••  n  —  1),  such  that  the  n  —  1  sets  [nT,]  of  transformations 

together  with  the  set  [II]  contain  all  the  transformations  of  the  group,  while  no  two 
transformations  within  the  same  set  or  from  any  two  sets  are  identical. 
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which  represent  a  unique  point,  unless  it  should  happen  that  all  the 

determinants  on  the  right  of  this  equation  vanish.  Leaving  aside 

this  possibility  for  the  moment,  we  see  that  every  root  of  Equation 

(2),  which  is  called  the  characteristic  equation  of  the  collineation  (or 

of  the  representative  matrix),  gives  rise  to  a  unique  double  point. 

Moreover,  every  double  point  is  obtainable  in  this  way.  This  is  the 

analytic  form  of  the  fact  already  noted,  that  a  collineation  which  is 

not  a  homology  or  an  elation  cannot  have  more  than  three  double 

points,  unless  it  is  the  identical  collineation. 

If,  however,  all  the  determinants  on  the  right  in  Equations  (3) 

vanish,  it  follows  readily  that  the  first  two  of  Equations  (1)  represent 

the  same  line.  If  the  determinants  formed  analogously  from  the  last 

two  equations  do  not  all  vanish,  we  again  get  a  unique  double  point ; 

but  if  the  latter  also  vanish,  then  all  three  of  the  equations  above 

represent  the  same  line.  Every  point  of  this  line  is  then  a  double  point, 

and  the  collineation  must  be  a  homology  or  an  elation.  Clearly  this 

can  happen  only  if  px  is  at  least  a  double  root  of  Equation  (2) ;  for 
we  know  that  a  perspective  collineation  cannot  have  more  than  one 

double  point  which  is  not  on  the  axis  of  the  collineation. 

A  complete  enumeration  of  the  possible  configurations  of  double 

points  and  lines  of  a  collineation  can  be  made  by  means  of  a  study 

of  the  characteristic  equation,  making  use  of  the  theory  of  elementary 

divisors.*  It  seems  more  natural  in  the  present  connection  to  start 
with  the  existence  of  one  fixed  point  (Proposition  K3)  and  discuss 

geometrically  the  cases  that  can  arise. 
By  Theorem  4  a  collineation  is  the  product  of  two  polarities.  Hence 

any  double  point  has  the  same  polar  line  in  both  polarities,  and  that 

polar  line  is  a  double  line.  Hence  the  invariant  figure  of  double  points 

and  lines  is  self-dual. 
Four  points  of  the  plane,  no  three  of  which  are  collinear,  cannot 

be  invariant  unless  the  collineation  reduces  to  the  identity.  If  three 

noncollinear  points  are  invariant,  two  cases  present  themselves.  If 

the  collineation  reduces  to  the  identity  on  no  side  of  the  invariant 

triangle,  the  collineation  is  of  Type  I  (cf.  §  40,  Chap.  IV).  If  the 

collineation  is  the  identity  on  one  and  only  one  side  of  the  invariant 

triangle,  the  collineation  is  of  Type  IV.f    If  two  distinct  points  are 

*  Cf.  Bdcher,  Introduction  to  Higher  Algebra,  Chaps.  XX  and  XXI. 
t  If  it  is  the  identity  on  more  than  one  side,  it  is  the  identical  collineation. 
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invariant,  but  no  point  not  on  the  line  I  joining  these  two  is  invariant, 

two  possibilities  again  arise.  If  the  collineation  does  not  leave  every 

point  of  this  line  invariant,  there  is  a  unique  other  line  through  one 

of  these  points  that  is  invariant,  since  the  invariant  figure  is  self-dual. 
The  collineation  is  then  of  Type  II.  If  every  point  of  the  line  is 

invariant,  on  the  other  hand,  all  the  lines  through  a  point  of  the 
line  /  must  be  invariant,  since  the  figure  of  invariant  elements  is 

self-dual.    The  collineation  is  then  of  Type  V. 
If  only  one  point  is  fixed,  only  one  line  can  be  fixed.  The  collinea- 

tion is  then  parabolic  both  on  the  line  and  on  the  point,  and  the 
collineation  is  of  Type  III. 

We  have  thus  proved  that  every  collineation  different  from  the 

identity  is  of  one  of  the  five  types  previously  enumerated.  Type  I 

may  be  represented  by  the  symbol  [1,  1,  1],  the  three  l's  denoting 
three  distinct  double  points.  In  Type  IV  there  are  also  three  distinct 

double  points,  but  all  points  on  the  line  joining  two  of  them  are  fixed 

and  Equation  (1)  has  one  double  root.  Type  IV  is  denoted  by  [(1, 1),  1]. 
In  Type  II,  as  there  are  only  two  distinct  double  points,  Equation 

(1)  must  have  a  double  root  and  one  simple  root.  This  type  is  ac- 
cordingly denoted  by  the  symbol  [2, 1],  the  2  indicating  the  double 

point  corresponding  to  the  double  root.  Type  V\s  then  naturally  repre- 
sented by  [(2, 1)],  the  parentheses  again  indicating  that  every  point 

of  the  line  joining  the  two  points  is  fixed.  Type  III  corresponds  to  a 

triple  root  of  (1),  and  may  therefore  be  denoted  by  [3].  We  have 
then  the  following : 

Theorem  6.  Every  projective  collineation  in  a  plane  is  of  one  of 

the  following  five  types  : 

[1,1.1] [(1?1),1] 

[2,1] [(2,  1)] 

[3] 

In  this  table  the  first  column  corresponds  to  three  distinct  roots 

of  the  characteristic  equation,  the  second  column  to  a  double  root, 

the  third  column  to  a  triple  root.  The  first  row  corresponds  to  the 

cases  in  which  there  exist  at  least  three  double  points  which  are 
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not  collinear ;  the  second  row  to  the  case  where  there  exist  at  least 

two  distinct  double  points  and  all  such  points  are  on  the  same  line ; 

the  third  row  to  the  case  in  which  there  exists  only  a  single  double 

point. 
With  every  collineation  in  a  plane  are  associated  certain  projec- 

tivities  on  the  invariant  lines  and  in  the  pencils  on  the  invariant 

points.  In  case  the  collineation  is  of  Type  I,  it  is  completely  deter- 
mined if  the  projectivities  on  two  sides  of  the  invariant  triangle  are 

given.  There  must  therefore  be  a  relation  between  the  projectivities 

on  the  three  sides  of  the  invariant  triangle  (cf.  Ex.  5,  p.  276).  In  a 

collineation  of  Type  7/  the  projectivity  is  parabolic  on  one  of  the 

invariant  lines  but  not  on  the  other.  The  point  in  which  the  two 

invariant  lines  meet  may  therefore  be  called  singly  parabolic.  The 

collineation  is  completely  determined  if  the  projectivities  on  the 

two  invariant  lines  are  given.  In  a  collineation  of  Type  III  the  pro- 
jectivity on  the  invariant  line  is  parabolic,  as  likewise  the  projectivity 

on  the  invariant  point.  The  fixed  point  may  then  be  called  doubly 

parabolic.  The  projectivities  on  the  invariant  lines  of  a  collineation 

of  Type  V  are  parabolic  except  the  one  on  the  axis  which  is  the 

identity.  The  center  is  thus  a  singly  parabolic  point.  In  the  table 

of  Theorem  6  the  symbols  3,  2,  and  1  may  be  taken  to  indicate 

doubly  and  singly  and  nonparabolic  points  respectively.* 
We  give  below  certain  simple,  so-called  canonical  forms  of  the 

equations  defining  collineations  of  these  five  types. 

Type  I.  Let  the  invariant  triangle  be  the  triangle  of  reference. 
The  collineation  is  then  given  by  equations  of  the  form 

pxx  =  anxv 

px2  =  a22x2, 

Pxz =  azsxs> 

in  which  alv  a22,  «33  are  the  roots  of  the  characteristic  equation  and 
must  therefore  be  all  distinct. 

Type  IV,  Homology.  If  the  vertices  of  the  triangle  of  reference 

are  taken  as  invariant  points,  the  equations  reduce  to  the  form  written 

above ;  but  since  one  of  the  lines  x^=  0,  x2  =  0,  x3=  0  is  pointwise 

*  For  a  more  detailed  discussion  of  collineations,  reference  may  be  made  to 
Newson,  A  New  Theory  of  Collineations,  etc.,  American  Journal  of  Mathematics, 
Vol.  XXIV,  p.  109. 
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invariant,  we  must  have  either  «22  -  «33  or  a33  =  an  or  au  =  a22.  Thus 
the  homology  may  be  written 

pxl  =  xv 
px-2  =     «v 

A  harmonic  homology  or  reflection  is  obtained  by  setting  a33  =  —  1. 
Type  II.  The  characteristic  equation  has  one  double  root,  p1  =  /?2, 

say,  and  a  simple  root  />3.  Let  the  double  point  corresponding  to 

px  as  p2  be  t^  =  (0,  0,  1),  let  the  double  point  corresponding  to  p3  be 
U3  =  (l,  0,  0),  and  let  the  third  vertex  of  the  triangle  of  reference 

be  any  point  on  the  double  line  u3  corresponding  to  ps,  which  line 

will  pass  through  the  point  Uv    The  collineation  is  then  of  the  form 

px1  =  Cl^X^ 

px2  =  a^x^, 

pX3  =  a32X2    '     ̂ 33^3' 

since  the  lines  ̂ =0  and  x2  =  0  are  double  lines  and  (1,  0,  0)  is  a 
double  point.   The  characteristic  equation  of  the  collineation  is  clearly 

(an-p)(a22-p)(a33-p)  =  0> 
and  since  this  must  have  a  double  root,  it  follows  that  two  of  the 

numbers  an,  a22,  a83  must  be  equal.  To  determine  which,  place 

p  =  a22 ;  using  the  minors  of  the  second  row,  we  find,  as  coordinates 
of  the  corresponding  double  point, 

(0,  (au  -  a22)  (a22  -  a33),  a32  (an  -  a22) ), 

which  is  Uv  and  hence  we  have  «.,2=«33.  The  collineation  then  is 

of  Type  II,  if  an  =fi=  a22.    Its  equations  are  therefore 

Pxx 
= 

axlx^ 
t 

px2' 

= 
a22X2 

> 

p4 
= 

«32^'2 

+ ^22^3' 

where  a32  ¥=  0  and  an  3=  a22. 
Type  III.  The  characteristic  equation  has  a  triple  root,  p1  =  p2  =  p3, 

say.  Let  Ux=  (0,  0,  1)  be  the  single  double  point,  and  the  line  xx  =  0  be 
the  single  double  line.  With  this  choice  of  coordinates  the  collineation 
has  the  form  ,_ px1  —  allxv 

pX2  =  «21^1  +  a22^2» 

px3  =  azlxl  +  a3„x2  -f-  a33%3- 
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By  writing  the  characteristic  equation  we  find,  in  view  of  the  fact 

that  the  equation  has  a  triple  root,  that  an  =  a22  =  a33.  The  form  of 
the  collineation  is  therefore 

pxl  =  xv 

px2  =  a21x1  -J-  x2, 

pXs  =  dzlXx  +  «32^2  "t*  Xt> 

where  the  numbers  a2V  a32  must  be  different  from  0. 

Type  V,  Elation.  Choosing  (0,  0,  1)  as  center  and  ̂ =0  as  axis, 
the  equations  of  the  collineation  reduce  to  the  form  given  for  Type  III, 

where,  however,  a32  must  be  zero  in  order  that  the  line  xx  =  0  be 
pointwise  invariant.  The  equations  for  Type  77  also  yield  an  elation 

in  case  an  =  a22.    Thus  an  elation  may  be  written 

pXy    =    XV 

px2  =      x2, 

pxs  =       aSix2  -f-  xs. 

EXERCISES 

1.  Determine  the  collineation  which  transforms  the  points  A  =  (0,  0,  1), 

B  a  (0,  1,  0),  C  =  (1,  0,  0),  D  =  (1,  1,  1)  into  the  points  B,  C,  D,  A  respec- 
tively. Show  that  the  characteristic  equation  of  this  collineation  is  (p  —  1) 

(p2  +  1)  =  0,  which  in  any  field  has  one  root.  Determine  the  double  point 
and  double  line  corresponding  to  this  root.  Assuming  the  field  of  numbers  to 
be  the  ordinary  complex  field,  determine  the  coordinates  of  the  remaining  two 
double  points  and  double  lines.  Verify,  by  actually  multiplying  the  matrices, 

that  this  collineation  is  of  period  4  (a  fact  which  is  evident  from  the  defini- 
tion of  the  collineation). 

2.  With  the  same  coordinates  for  A,  B,  C,  D  determine  the  collineation 

which  transforms  these  points  respectively  into  the  points  B,  A,  D,  C.    The 

resulting  collineation  must,  from  this  definition,  be  a  homology.    Why?   De- 
termine its  center  and  its  axis.    By  actual  multiplication  of  the  matrice 

verify  that  its  square  is  the  identical  collineation. 
3.  Express  each  of  the  collineations  in  Exs.  i  and  2  in  terms  of  line 

coordinates. 

4.  Show  that  the  characteristic  cross  ratios  of  the  one-dimensional  projec- 

tivities  on  the  sides  of  the  invariant  triangle  of  the  collineation  x'  =  axv 

x2'  —  bx2 ,  x'  =  cxs  are  the  ratios  of  the  numbers  a,  b,  c.  Hence  show  that  the 
product  of  these  cross  ratios  is  equal  to  unity,  the  double  points  being  taken 
around  the  triangle  in  a  given  order. 

5.  Prove  the  latter  part  of  Ex.  4  for  the  cross  ratios  of  the  projectivities 
on  the  sides  of  the  invariant  triangle  of  any  collineation  of  Type  /. 
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6.  Write  the  equations  of  a  collineation  of  period  3  ;  4  ;  5;  •  •  •;  n;  •  •  •. 

7.  By  properly  choosing  the  system  of  nonhomogeneous  coordinates  any 

collineation  of  Type  I  may  be  represented  by  equations  x'  =  ax,  y'  =  by.  The 
set  of  all  collineations  obtained  by  giving  the  parameters  a,  b  all  possible 

values  forms  a  group.  Show  that  the  collineations  x"  =  ax,  y"  =  aTy,  where  r 
is  constant  for  all  collineations  of  the  set,  form  a  subgroup.  Show  that  every 

collineation  of  this  subgroup  leaves  invariant  every  curve  whose  equation  is 

y  —  cxr,  where  c  is  any  constant.  Such  curves  are  called  path  curves  of  the 
collineations. 

8.  If  P  is  any  point  of  a  given  path  curve,  p  the  tangent  at  P,  and 

A,  B,  C  the  vertices  of  the  invariant  triangle,  then  B;  (p,  PA ,  PB,  PC)  is  a 
constant. 

9.  For  the  values  r  =—  1,  2,  £  the  path  curves  of  the  collineations  of  the 
subgroup  described  in  Ex.  7  are  conies  tangent  to  two  sides  of  the  invariant 

triangle  at  two  vertices. 

10.  If  r  =  0,  the  subgroup  of  Ex.  7  consists  entirely  of  homologies. 
11.  Prove  that  any  collineation  of  Type  I  may  be  expressed  in  the  form 

xf  =  k  (ax  +  by), 

y'  =  k  (bx  -  ay), 

with  the  restriction  a2  +  b%  =  1. 

12.  Prove  that  any  collineation  can  be  expressed  as  a  product  of  collinea- 
tions of  Type  I. 

13.  Let  the  invariant  figure  of  a  collineation  of  Type  II  he  A,  B,  I,  m, 

where  l  =  AB,  B  =  lm.  The  product  of  such  a  collineation  by  another  of 

Type  //  with  invariant  figure  A',  B,  I,  m'  is  in  general  of  Type  II,  but  may 
be  of  Types   777,  IV,  or  V.    Under  what  conditions  do  the  latter  cases  arise  ? 

14.  Using  the  notation  of  Ex.  13,  the  product  of  a  collineation  of  Type  II 

with  invariant  figure  A,  B,  I,  m  by  one  with  invariant  figure  A,  B",  I,  m'  is 
in  general  of  Type  II,  but  may  be  of  Types  ///  or  IV.  Under  what  conditions 
do  the  latter  cases  arise  ? 

15.  Prove  that  any  collineation  can  be  expressed  as  a  product  of  collinea- 
tions of  Type  //. 

16.  Two  collineations  of  Type  ///  with  the  same  invariant  figure  are  not 

in  general  commutative. 

17.  Any  projective  collineation  can  be  expressed  as  a  product  of  collinea- 
tions of  Type  ///. 

18.  If  II  is  an  elation  whose  center  is  C,  and  P  any  point  not  on  the 

axis,  then  P  and  C  are  harmonically  conjugate  with  respect  to  II-1(P) 
and  H  (P). 

19.  If  two  coplanar  conies  are  projective,  the  correspondence  between  the 

points  of  one  and  the  tangents  at  homologous  points  of  the  other  determines 
a  correlation. 

20.  If  in  a  collineation  between  two  distinct  planes  every  point  of  the 

line  of  intersection  of  the  planes  is  self-#orresponding,  the  planes  are  per- 
spective. 
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21.  In  nonhomogeneous  coordinates  a  collineation  of  Type  /  with  fixed 
points  (ax,  a2),  (bv  62)  (cv  c2)  may  be  written 

x    y  1  0 
ax  a2  1  ax 
6X  b2  1  £6X 
C|     Co     J.     fC  t> * 

x  y  1  0 

ax  a2  1  1 
6X  b2  1  & 

c,  c„  1  k' 

X 9 
1  0 

a, 
«| 

1  a2 

*, 
ft, 

lifcA, 

ci 

C2 

1  £'c2 

X 

!l 

1    0 

ai 

«., 

1    1 

6, 

ft, 

1   k 

<?i 

C2 

1  k' 

Type  77  may  be  written 

X 

ft, 

y  l  o a2  1  ax 
62  1  kbx 

*,  0  tax  + h 
x    y    1  0 

ax  a2  1  1 
&x  62  1   £ 
sx   s2  0  ( 

X 

«1 
ft, 

y  l  o 

a2  1  a2 
i2  1  £&2 
s2  0  ta2  + 

»« 

x    y    I  0 

ax  a2  1  1 
6X   i2  1  £ 
sx    «2  0  < 

and  Type  III  may  be  written 

x  y  1  0 
ax  a2  1  ax 
sx  s2  0  <ax  +  sx 

,        wx  m>2  0  (a/2  +  2/30ax  +  2asx*  +  wx 
x  y  1  0 

ax  a2  1  1 
sx  s2  0  t 
!Ox  M)2  0  a<2  +  2j8/ 

x     y    1   0 
ax   a2  1  a2 
sx    s2   0  /a2  +  .?2 

?«x  w2  0  (a<2  +  2  /ft)  a2  +  2  a.<t2*  +  «>2 

y  - 

x     y    1  0 

ax   a2    1  1 

sx    s2    0  * 
w1  w2  0  at2+2pt 

97.  Double  pairs  of  a  correlation.  We  inquire  now  regarding  the 

existence  of  double  pairs  of  a  correlation  in  a  plane.  By  a  double  pair 
is  meant  a  point  X  and  a  line  u  such  that  the  correlation  transforms 

X  into  u  and  also  transforms  u  into  X;  in  symbols,  if  T  is  the  cor- 

relation, such  that  V(X)=u  and  T{u)=X.  We  have  already  seen 
(Theorem  3)  that  if  the  vertices  and  opposite  sides  of  a  triangle  are 

double  pairs  of  a  correlation,  the  correlation  is  a  polarity. 

We  may  note  first  that  the  problem  of  finding  the  double  pairs  of 

a  correlation  is  in  one  form  equivalent  to  finding  the  double  elements 
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of  a  certain  collineation.  In  fact,  a  double  pair  X,  u  is  such  that 

r  (X)  =  u  and  T2  (X)  =  V  (u)  =  X,  so  that  the  point  of  a  double  pair 

of  a  correlation  T  is  a  double  point  of  the  collineation  T2.  Similarly, 
it  may  be  seen  that  the  lines  of  the  double  pairs  are  the  double  lines 

of  the  collineation  T2.  It  follows  also  from  these  considerations  that 

r  is  a  polarity,  if  T'2  is  the  identical  collineation. 
Analytically,  the  problem  of  determining  the  double  pairs  of  a 

correlation  leads  to  the  question :  For  what  values  of  (xv  x2,  x3)  are 
the  coordinates 

1*11*1    '     a2VC2    <     ̂Sl^S'      ai2*l  ~^~  a22X2  "T"  ̂32*3'       ̂ lS^l  ~^~  *23*2    '     ̂ ftj 

of  the  line  to  which  it  corresponds  proportional  to  the  coordinates 

Lail*l    I     ai2X2    I     ̂lS^S'      *21  Xl  "•"  ̂ 22*2  "•"  ̂ 23*3  >      aZlXl  "I     asiX2  ~^~  a33X3l 

of  the  line  which  corresponds  to  it  in  the  given  correlation  ?  If  p  is 

the  unknown  factor  of  proportionality,  this  condition  is  expressed  by 
the  equations 

(au  -  paxl)  xx  +  (al2  -  pan)  X%  +  (au  -  pan)  xs  =  0, 

(!)  Kl-f)«12)*i+K2-Pa22)*2+("23-^32)*3=  0> 

Kl  -  Pan)  Xl  +  K2  -  Pa*z)  X2  +  («33  -  P«3z)  *3  =  0, 

which  must  be  satisfied  by  the  coordinates  (xx,  x2,  xs)  of  any  point 

of  a  double  pair.  The  remainder  of  the  treatment  of  this  problem  is 

similar  to  the  corresponding  part  of  the  problem  of  determining  the 

double  elements  of  a  collineation  (§  96).  The  factor  of  proportionality 

p  is  determined  by  the  equation 

(2) 
an  —  pan      au  —  pan      ai3~Pa3i 
a21  —  Pai2         a22  —  pa22         a*3  —  PaS* 

a3l  —  PaU         a32  —  Pa23         a33  —  pa33 

=  0, 

which  is  of  the  third  degree  and  has  (under  Proposition  K2)  three 

roots,  of  which  one  is  1,  and  of  which  the  other  two  may  be  proper 

or  improper.    Every  root  of  this  equation  when  substituted  for  p  in 

(1)  renders  these  equations  consistent.    The  coordinates  (xlt  x2>  xs) 
are  then  determined  by  solving  two  of  these. 

If  the  reciprocity  in  question  is  a  polarity,  Equations  (1)  must  be 

satisfied  identically,  i.e.  for  every  set  of  values  (xv  x2,  x3).  This  would 
imply  that  all  the  relations 

«y-/>S=°  (i,y=l,  2,  3) 
are  satisfied. 
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Let  us  suppose  first  that  at  least  one  of  the  diagonal  elements  of  the 

matrix  of  the  coefficients  (atJ)  be  different  from  0.  If  this  be  an,  the 

relation  an  —  pan  =  0  gives  at  once  p  =  1 ;  and  this  value  leads  at 
once  to  the  further  relations 

aij=aJi,  (t,/=l,  2,  3). 

The  matrix  in  question  must  then  be  symmetrical.  If,  on  the  other 

hand,  we  have  an  =  a22  =  a33  =  0,  there  must  be  some  coefficient  a{J 

different  from  0.  Suppose,  for  example,  a12  =£  0.  Then  the  relation 

«12  —  ka21  =  0  shows  that  neither  k  nor  a2l  can  be  0.  The  substitution 
of  one  in  the  other  of  the  relations  a12  =  ka2l  and  a21  =  ka12  then  gives 

k2  =  1,  or  k  —  ±  1.  The  value  k  =  1  again  leads  to  the  condition  that 
the  matrix  of  the  coefficients  be  symmetrical  The  value  k  =  —  1 

gives  au  =  0,  and  aiJ=  —  aji,  which  would  render  the  matrix  skew 
symmetrical.  The  determinant  of  the  transformation  would  on  this 

supposition  vanish  (since  every  skew-symmetrical  determinant  of  odd 
order  vanishes),  which  is  contrary  to  the  hypothesis.  The  value 

k  =  —  1  is  therefore  impossible.  We  have  thus  been  led  to  the  fol- 
lowing theorem: 

Theorem  7.  The  necessary  and  sufficient  condition  that  a  reci- 
procity in  a  plane  be  a  polarity  is  that  the  matrix  of  its  coefficients 

be  symmetrical. 

If  the  coordinate  system  is  chosen  so  that  the  point  which  corre- 
sponds to  p=l  in  Equation  (2)  is  (1,  0,  0),  it  is  clear  that  we  must 

have  a2l  =  al2  and  a31  =  a13.  If  the  line  corresponding  doubly  to 
(1,  0,  0)  does  not  pass  through  it,  the  coordinates  [1,  0,  0]  may  be 
assigned  to  this  line.   The  equations  of  the  correlation  thus  assume 
the  form 

pu[=  anxt 

(3)                                 pu2'=          a22x2+ a2Sx8, 
pu3  =          aS2x2  -f-  azzxzy 

and  Equation  (2)  reduces  to 

(4)               MW) 
a3i~PaiS     azi~PaiS 

=  0. 

The  roots,  other  than  1,  of  this  equation  clearly  correspond  to  points 

on  [1,  0,  0].  Choosing  one  of  these  points  (Proposition  K2)  as  (0,  0, 1), 

we  have  either  a23  =  a32,  which  would  lead  to  a  polarity,  or  a83  ;=  0. 
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In  the  latter  case  it  is  evident  that  (4)  has  a  double  root  if  aS2  =  —  aB, 
but  that  otherwise  it  has  two  distinct  roots.  Therefore  a  correlation 

in  which  (1,  0,  0)  and  [1,  0,  0]  correspond  doubly,  and  which  is  not 
a  polarity,  may  be  reduced  to  one  of  the  three  forms : 

pu[=axv 
K=        bx%+cxx, (0¥=c=jt±l,a^0) 

pul=        x%, 
- 

pu[=  axv 
pul=       hxt—xt, (a  =£  0,  b  =£  0) 

/w,'  =        xv 

pu[=axv 

?*'%=        ~xt> 
(a=£0) 

pul=        x%. 

77 

IV 

The  squares  of  these  correlations  are  collineations  of  Types  /,  II,  IV 
respectively. 

If  the  line  doubly  corresponding  to  (1,  0,  0)  does  pass  through  it, 

the  coordinates  [0,  1,  0]  may  be  assigned  to  this  line,  and  the  equa- 
tions of  the  correlation  become 

pu'%  =  *,  +  anx2  +  aux%,  (a„  ̂ 0,anl=  aK) 

Equation  (2)  at  the  same  time  reduces  to 

«ss(1-P)8=0, 
and  the  square  of  the  correlation  is  always  of  Type  III  There  are 

thus  five  types  of  correlations,  the  polarity  and  those  whose  squares 

are  collineations  of  Types  I,  II,  III,  IV 

EXERCISES  * 

1.  The  points  which  lie  upon  the  lines  to  which  they  correspond  in  a  cor- 

relation form  a  conic  section  C~,  and  the  lines  which  lie  upon  the  points  to 

which  they  correspond  are  the  tangents  to  a  conic  K*.  How  are  C2  and  K2 
related,  in  each  of  the  five  types  of  correlations,  to  one  another  and  to  the 

doubly  corresponding  elements  ? 

*  On  the  theory  of  correlations  see  Seydewitz,  Archiv  der  Mathematik,  1st  series, 
Vol.  VUT  (1846),  p.  32 ;  and  Schroter,  Journal  fur  die  reine  und  angewandte  Mathe- 

matik, Vol.  LXXVII  (1874),  p.  105. 
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2.  If  a  line  a  does  not  lie  upon  the  point  A'  to  which  it  corresponds  in  a 
correlation,  there  is  a  projectivity  between  the  points  of  a  and  the  points  in 

which  their  corresponding  lines  meet  a.  In  the  case  of  a  polarity  this  pro- 
jectivity is  always  an  involution.  In  any  other  correlation  the  lines  upon 

which  this  projectivity  is  involutoric  all  pass  through  a  unique  fixed  point  O. 

The  line  o  having  the  dual  property  corresponds  doubly  to  0.  The  double 

points  of  the  involutions  on  the  lines  through  0  are  on  the  conic  C2,  and  the 
double  lines  of  the  involutions  on  the  points  of  A2  are  tangent  to  A2.  0  and  o 
are  polar  with  respect  to  C2  and  A2.  If  a  correlation  determines  involutions 
on  three  nonconcurrent  lines,  it  is  a  polarity. 

3.  The  lines  of  A2  through  a  point  P  of  C2  are  the  line  which  is  transformed 
into  P  and  the  line  into  which  P  is  transformed  by  the  given  correlation. 

4.  In  a  polarity  C2  and  K2  are  the  same  conic. 
5.  A  necessary  and  sufficient  condition  that  a  collineation  be  the  product  of 

two  reflections  is  the  existence  of  a  correlation  which  is  left  invariant  by  the 
collineation.* 

98.  Fundamental  conic  of  a  polarity  in  a  plane.  We  have  just 

seen  that  a  polarity  iu  a  plane  is  given  by  the  equations 

Pui  =  anxi~r  ai2x2-\~  als%s> 

(1)  pu2'  =  auxi  +  ̂22^2  +  anxs>  I  aij  I  ̂  0 
pK=  Vi+  v2+  w 

Definition.  Two  homologous  elements  of  a  polarity  in  a  plane  are 

called  pole  and  polar,  the  point  being  the  pole  of  the  line  and  the 

line  being  the  polar  of  the  point.  If  two  points  are  so  situated  that 

one  is  on  the  polar  of  the  other,  they  are  said  to  be  conjugate. 

The  condition  that  two  points  in  a  plane  of  a  polarity  be  conju- 

gate is  readily  derived.  In  fact,  if  two  points  P  =  (xv  x2,  x8)  and 

P'=(x[,  x[,  x'z)  are  conjugate,  the  condition  sought  is  simply  that 

the  point  P'  shall  be  on  the  line  p'=  [«/,  u2\  w8'],  the  polar  of  P;  i.e. 

u[x[  +  WjZj  +  u'zx'z  =  0.  Substituting  for  u[,  u[,  u[  their  values  in 
terms  of  xv  x2,  xs  from  (1),  we  obtain  the  desired  condition,  viz. : 

\r)  a11a;1a;1  +  a22x2x2  -f-  aS3xax3  -f-  a12  {xlx2  -+■  #2#i ) 

+  als  (xlxs  +  #8#i )  +  a2S  (x2xa  -j-  xax2)  =  0. 

As  was  to  be  expected,  this  condition  is  symmetrical  in  the  coordi- 

nates of  the  two  points  P  and  P'.    By  placing  x[  =  xt  we  obtain  the 

*  This  is  a  special  case  of  a  theorem  of  Dunham  Jackson,  Transactions  of  the 
American  Mathematical  Society,  Vol.  X  (1909),  p.  479. 
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condition  that  the  point  P  be  self-conjugate,  Le.  that  it  be  on  its  polar. 

"We  thus  obtain  the  result : 

Theorem  8.  The  self-conjugate  points  of  the  polarity  (1)  are  on 
the  conic  whose  equation  is 

(3)  altx*  +  a^*  +  aKxl  +  2  a^x,  +  2  altxxxt  +  2  an  xjc%  =  0  ; 

and,  conversely,  every  point  of  this  conic  is  self-conjugate. 

This  conic  is  called  the  fundamental  conic  of  the  polarity.  All  of 

its  points  may  be  improper,  but  it  can  never  degenerate,  for,  if  so, 

the  determinant  \a{j\  would  have  to  vanish  (cf.  Ex.,  p.  187).  By 
duality  we  obtain 

Theorem  8'.  The  self-conjugate  lines  of  the  polarity  (1)  are  lines 
of  the  conic 

(4)  Anu*  +  A„u*  +  A^ul  +  2  Auuxu%  +  2  ̂lswxw,  +  2  Anutut  =  0 ; 

and,  conversely,  every  line  of  this  conic  is  self-conjugate. 

Every  point  X  of  the  conic  (3)  corresponds  in  the  polarity  (1)  to 
the  tangent  to  (3)  at  X.  For  if  not,  a  point  A  of  (3)  would  be  polar 

to  a  line  a  through  A  and  meeting  (3)  also  in  a  point  B.  B  would 

then  be  polar  to  a  line  b  through  B,  and  hence  the  line  a  =  AB 

would,  by  the  definition  of  a  polarity,  be  polar  to  ab  =  B.  This  would 
require  that  a  correspond  both  to  A  and  to  B. 

If  now  we  recall  that  the  polar  system  of  a  conic  constitutes  a 

polarity  (Theorem  18,  Cor.,  Chap.  V)  in  which  all  the  points  and 

lines  of  the  conic,  and  only  these,  are  self-conjugate,  it  follows  from 
the  above  that  every  polarity  is  given  by  the  polar  system  of  its 

fundamental  conic  This  and  other  results  following  immediately 

from  it  are  contained  in  the  following  theorem : 

Theorem  9.  Every  polarity  is  the  polar  system  of  a  conic,  the 

fundamental  conic  of  the  polarity.  The  self-conjugate  points  are 

the  points  and  the  self -con jug  ate  lines  are  the  tangents  of  this  conic. 
Every  pole  and  polar  pair  are  pole  and  polar  with  respect  to  the 
fundamental  conic. 

This  establishes  that  Equation  (4)  represents  the  same  conic  as 

Equation  (3).  The  last  theorem  may  be  utilized  to  develop  the  ana- 
lytic expressions  for  poles  and  polars,  and  tangents  to  a  conic.  This 

we  take  up  in  the  next  section. 
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99.  Poles  and  polars  with  respect  to  a  conic.  Tangents.  We 

have  seen  that  the  most  general  equation  of  a  conic  in  point  coor- 
dinates may  be  written 

(1)  axxx2x  +  ai2xl+  azzx%  +  2  aX2xxx2  +  2  axzxxxz  +  2  a2Zx2xz  =  0. 

The  result  of  the  preceding  section  shows  that  the  equation  of  the 
same  conic  in  line  coordinates  is 

(2)  Axxux2+  A22u22+Azzuz2-\-2  AX2uxu2  +  2  Axzuxuz  +  2  A2Zu2uz  =  0, 
where  A-  is  the  cofactor  of  cl.  in  the  determinant 

«12     «l 

a,a  a„ 

This  result  may  also  be  stated  as  follows : 

Theorem  10.  The  necessary  and  sufficient  condition  that  the  line 

uxxx+  u2x2+  uzxz  =  0  be  tangent  to  the  conic  (1)  is  that  Equation  (2) 
be  satisfied. 

Corollary.    This  condition  may  also  be  written  in  the  form 

axx  aX2  axz  ux 
aa,  a„„  a„„  u„ 21 
«81     «8 

u,    u„ 
23 

azz  ui 

u„    0 

=  0. 

Equation  (2)  of  the  preceding  section  expresses  the  condition  that 

the  points  (xv  xv  xz)  and  (x[,  x2,  a?3')  be  conjugate  with  respect  to  the 

conic  (1).  If  in  this  equation  (x[,  x2,  #8')  be  supposed  given,  while 
(xv  x2,  xz)  is  regarded  as  variable,  this  condition  is  satisfied  by  all  the 

points  of  the  polar  of  (x[,  x2,  x'z)  with  respect  to  the  conic  and  by  no 
others.  It  is  therefore  the  equation  of  this  polar.  When  arranged 

according  to  the  variable  coordinates  xif  it  becomes 

(o)  V*!!^  "t"  ̂12^2  "T"  ̂ 13^8/  X\  ~^~  \a\2X\     '     ̂22^2  ""     ̂ 23^3/  X2 

+  (V(  +  Vi  +  amxl)  xs=°'> 
while  if  we  arrange  it  according  to  the  coordinates  */,  it  becomes 

(4)  (axxxx  +  aX2x2  +  aX9xz)  x[  +  (aX2xx  +  a22x2  +  a2Zxz)  x2' 

+  (axzxx  +  a2Zx2  +  azzxz)  x'z  =  0. 
Now  it  is  readily  verified  that  the  latter  of  these  equations  may 

be  derived  from  the  equation  (1)  of  the  conic  by  applying  to  the 

left-hand  member  of  this  equation  the  'polar  operator 
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,  c  ,  c  ,  d 

cxx  dx2  dxs 

(§  89)  and  dividing  the  resulting  equation  by  2.    Furthermore,  if 

we  define  the  symbols  —,*  —,>  —.  to  be  the  result  of  substituting 

cx[    dxi    ex', 
(x[,  x't,  x{)  for  (xv  x2,  x3)  in  the  expressions  ■£- >  •£- >  ~-  (/  being  any 

polynomial  in  xv  x2,  xs),  it  is  readily  seen  that  Equation   (3)  is 

equivalent  to 

ldx[        2dxl       *dxl 

where  now/  is  the  left-hand  member  of  (1). 
This  leads  to  the  following  theorem : 

Theorem  11.  If  f  —  0  is  the  equation  of  a  conic  in  homogeneous 

point  coordinates,  the  equation  of  the  polar  of  any  point  {x[,  x2,  ar3')  is 
given  by  either  of  the  equations 

x{V+x2'$£  +  x;V  =  0     or     ̂   +  ̂   +  .^=0. 
xdxx  dx2       3dxs  lBz[       2dx2'        zcxl 

If  the  point  (x(,  x2,  x'3)  is  a  point  on  the  conic,  either  of  these  equa- 
tions represents  the  tangent  to  the  conic  f  =  0  at  this  point. 

100.  Various  definitions  of  conies.  The  definition  of  a  (point) 

conic  as  the  locus  of  the  intersections  of  homologous  lines  of  two 

projective  flat  pencils  in  the  same  plane  was  first  given  by  Steiner  in 

1832  and  used  about  the  same  time  by  Chasles.  The  considerations 

of  the  preceding  sections  at  once  suggest  two  other  methods  of  defi- 
nition, one  synthetic,  the  other  analytic.  The  former  begins  by  the 

synthetic  definition  of  a  polarity  (cf.  p.  263),  and  then  defines  a  point 

conic  as  the  set  of  all  self-conjugate  points  of  a  polarity,  and  a  line 

conic  as  the  set  of  all  self -con  jugate  lines  of  a  polarity.  This  defini- 
tion was  first  given  by  von  Staudt  in  1847.  From  it  he  derived  the 

fundamental  properties  of  conies  and  showed  easily  that  his  definition 

is  equivalent  to  Steiner's.  The  analytic  method  is  to  define  a  (point) 
conic  as  the  set  of  all  points  satisfying  any  equation  of  the  second 

degree,  homogeneous  in  three  variables  xv  x2,  xs.  This  definition  (at 

least  in  its  nonhomogeneous  form)  dates  back  to  Descartes  and  Fermat 

(1637)  and  the  introduction  of  the  notions  of  analytic  geometry. 
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The  oldest  definition  of  conies  is  due  to  the  ancient  Greek  geometers,  who 
defined  a  conic  as  the  plane  section  of  a  circular  cone.  This  definition  involves 

metric  ideas  and  hence  does  not  concern  us  at  this  point.  We  will  return  to  it 
later.  It  is  of  interest  to  note  in  passing,  however,  that  from  this  definition 

Apollonius  (about  200  B.C.)  derived  a  theorem  equivalent  to  the  one  that  the 
equation  of  a  conic  in  point  coordinates  is  of  the  second  degree. 

The  reader  will  find  it  a  valuable  exercise  to  derive  for  himself 

the  fundamental  properties  of  polarities  synthetically,  and  thence  to 

develop  the  theory  of  conies  from  von  Staudt's  definition,  at  least  so 

far  as  to  show  that  his  definition  is  equivalent  to  Steiner's.  It  may 

be  noted  that  von  Staudt's  definition  has  the  advantage  over  Steiner's 
of  including,  without  reference  to  Proposition  K2,  conies  consisting 

entirely  of  improper  points  (since  there  exist  polarities  which  have 

no  proper  self-conjugate  points).  The  reader  may  in  this  connection 
refer  to  the  original  work  of  von  Staudt,  Die  Geometrie  der  Lage, 

Niirnberg  (1847);  or  to  the  textbook  of  Enriques,  Vorlesungen  iiber 

projective  Geometrie,  Leipzig  (1903). 

EXERCISES 

1.  Derive  the  condition  of  Theorem  10  directly  by  imposing  the  condition 

that  the  quadratic  which  determines  the  intersections  of  the  given  line  with 
the  conic  shall  have  equal  roots.    What  is  the  dual  of  this  theorem  ? 

2.  Verify  analytically  the  fundamental  properties  of  poles  and  polars  with 

respect  to  a  conic  (Theorems  13-18,  Chap.  V). 
3.  State  the  dual  of  Theorem  11. 

4.  Show  how  to  construct  the  correlation  between  a  plane  of  points  and  a 

plane  of  lines,  having  given  the  homologous  pairs  A,  a';  B,  V ';   C,  c';  Z>,  d'. 
5.  Show  that  a  correlation  between  two  planes  is  uniquely  determined  if 

two  pencils  of  points  in  one  plane  are  made  projective  respectively  with  two 
pencils  of  lines  in  the  other,  provided  that  in  this  projectivity  the  point  of 
intersection  of  the  axes  of  the  two  pencils  of  points  corresponds  to  the  line 

joining  the  two  centers  of  the  pencils  of  lines. 
6.  Show  that  in  our  system  of  homogeneous  point  and  line  coordinates  the 

pairs  of  points  and  lines  with  the  same  coordinates  are  poles  and  polars  with 

respect  to  the  conic  x2  +  x2  +  x2  =  0. 
7.  On  a  general  line  of  a  plane  in  which  a  polarity  has  been  defined  the 

pairs  of  conjugate  points  form  an  involution  the  double  points  of  which  are 

the  (proper  or  improper)  points  of  intersection  of  the  line  with  the  funda- 
mental conic  of  the  polarity. 

8.  A  polarity  in  a  plane  is  completely  defined  if  a  self-polar  triangle  is 
given  together  with  one  pole  and  polar  pair  of  which  the  point  is  not  on  a 
side  nor  the  line  on  a  vertex  of  the  triangle. 
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9.  Prove  Theorem  3  analytically. 

10.  Given  a  simple  plane  pentagon,  there  exists  a  polarity  in  which  to  each 
vertex  corresponds  the  opposite  side. 

11.  The  three  points  A',  R,  C  on  the  sides  BC,  CA,ABoi&  triangle  that 
are  conjugate  in  a  polarity  to  the  vertices  A,  B,  C  respectively  are  collinear 
(cf.  Ex.  13,  p.  125). 

12.  Show  that  a  polarity  is  completely  determined  when  the  two  involutions 

of  conjugate  points  on  two  conjugate  lines  are  given. 

13.  Construct  the  polarity  determined  by  a  self -polar  triangle  ABC  and  an 
involution  of  conjugate  points  on  a  line. 

14.  Construct  the  polarity  determined  by  two  pole  and  polar  pairs  A ,  a  and 
B,  b  and  one  pair  of  conjugate  points  C,  C. 

15.  If  a  triangle  STU  is  self -polar  with  regard  to  a  conic  C2,  and  A  is  any 
point  of  C2,  there  are  three  triangles  having  .4  as  a  vertex  which  are  inscribed 
to  C2  and  circumscribed  to  STU  (Sturm,  Die  Lehre  von  den  geometrischen 
Verwandtschaften,  Vol.  I,  p.  147). 

101.  Pairs  of  conies.  If  two  polarities,  Le.  two  conies  (proper  or 

improper),  are  given,  their  product  is  a  collineation  which  leaves 

invariant  any  point  or  line  which  has  the  same  polar  or  pole  with 

regard  to  both  conies.  Moreover,  any  point  or  line  which  is  not  left 

invariant  by  this  collineation  must  have  different  polars  or  poles 

with  regard  to  the  two  conies.  Hence  the  points  and  lines  which 

have  the  same  polars  and  poles  with  regard  to  two  conies  in  the 

same  plane  form  one  of  the  five  invariant  figures  of  a  nonidentical 
collineation. 

Type  I.  If  the  common  self-polar  figure  of  the  two  conies  is  of 

Type  I,  it  is  a  self-polar  triangle  for  both  conies.  Since  any  two  conies 
are  protectively  equivalent  (Theorem  9,  Chap.  YIII),  the  coordinate 

system  may  be  so  chosen  that  the  equation  of  one  of  the  conies,  A2,  is 

(1)  *"-a£+a£=0. 

With  regard  to  this  conic  the  triangle  (0,  0,  1),  (0,  1,  0),  (1,  0,  0)  is 

self-polar.  The  general  equation  of  a  conic  with  respect  to  which  this 

triangle  is  self-polar  is  clearly 

(2)  axxl  —  ajcl  +  a^l  =  0. 

An  equation  of  the  form  (2)  may  therefore  be  taken  as  the  equation 

of  the  other  conic,  B2,  if  (1)  and  (2)  have  no  other  common  self-polar 
elements  than  the  fundamental  triangle.    Consider  the  set  of  conies 

(3)  axx{  —  a.X;  +  a9x%  +  X  (z*  —  zf  +  x£)  =  0. 
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The  coordinates  of  any  point  which  satisfy  (1)  and  (2)  also  satisfy  (3). 

Hence  all  conies  (3)  pass  through  the  points  common  to  A2  and  B2. 
For  the  value  \  =  —  a,,  (3)  gives  the  pair  of  lines 

(4)  (tf,  -  a3)  x2  -  («,  -  a8)  z22  =  0, 

which  intersect  in  (0,  0,  1).  The  points  of  intersection  of  these  lines 

with  (1)  are  common  to  all  the  conies  (3). 

The  lines  (4)  are  distinct,  unless  al  =  a3  or  a2  =  a3.  But  if  al  =  a3, 

any  point  (a?/,  0,  x3)  on  the  line  x2=0  has  the  polar  x[xx  +  x3x3  =  0 

both  with  regard  to  (1)  and  with  regard  to  (2).  The  self-polar  figure 
is  therefore  of  Type  IV.  In  order  that  this  figure  be  of  Type  /,  the 

three  numbers  av  a2,  a3  must  all  be  distinct.  If  this  condition  is 

satisfied,  the  lines  (4)  meet  the  conies  (3)  in  four  distinct  points. 

Fig.  100 

The  actual  construction  of  the  points  is  now  a  problem  of  the  second 

degree.    We  have  thus  established  (fig.  100) 

Theorem  12.  If  two  conies  have  a  common  self -polar  triangle  (and 

no  other  common  self-polar  pair  of  point  and  line),  they  intersect  in 

four  distinct  points  (proper  or  improper).  Any  two  conies  of  the 

pencil  determined  by  these  points  have  the  same  self-polar  triangle. 
Dually,  two  such  conies  have  four  common  tangents,  and  any  two 
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Fig.  101 

conies  of  the  range  determined  by  these  common  tangents  have  the  same 

self-polar  triangle. 

COROLLAEY.    Any  pencil  of  conies  of  Type  I  can  he  represented  hy  * 

(5)  K-^+*«-«S)-4. 
the  four  common  points  being  in  this  case  (1, 1, 1),  (1, 1, 

and  (—  1,  1, 1). 

Type  II.  When  the 

common  self-polar  figure 
is  of  Type  //,  one  of  the 

points  lies  on  its  polar, 

and  therefore  this  polar  is 

a  tangent  to  each  of  the 

conies  A2,  B2.  Since  two 
tangents  cannot  intersect 

in  a  point  of  contact,  the 

two  lines  of  the  self-polar 

figure  are  not  both  tan- 
gents. Hence  the  point  B 

of   the    self-polar   figure 
which  is  on  only  one  of  the  lines  is  the  pole  ot  the  line  h  of  the  figure 

which  is  on  only  one  of  the  points  (fig.  101),  and  the  line  a  on  the  two 

points  is  tangent  to  both  conies  at  the  point  A  which  is  on  the  two  lines. 

Choose  a  system  of  coordinates  with  A  =  (1,  0,  0),  a  =  [0,  0,  1], 

B  =  (0,  1,  0),  and  b  =  [0, 1,  0].    The  equation  of  any  conic  being 

atx2  +  a.2x2  4-  a^l  +  2  bxx.jcz  +  2  b.jcxxz  +  2  b^cxx2  =  0, 

the  condition  that  A  be  on  the  conic  is  al  =  0 ;  that  a  then  be  tan- 
gent is  Z>8  =  0 ;  that  b  then  be  the  polar  of  B  is  bt  =  0.  Hence  the 

general  equation  of  a  conic  with  the  given  self-polar  figure  is 

(6)  ajc2  +  azxl  -f  2  b^xz  =  0. 

*  Equation  (5)  is  typical  for  a  pencil  of  conies  of  Type  J,  and  Theorem  12  is  a 
sort  of  converse  to  the  developments  of  §  47,  Chap.  V.  The  reader  will  note  that 
if  the  problem  of  finding  the  points  of  intersection  of  two  conies  is  set  up  directly, 
it  is  of  the  fourth  degree,  but  that  it  is  here  reduced  to  a  problem  of  the  third 

degree  (the  determination  of  a  common  self-polar  triangle)  followed  by  two  quad- 
ratic constructions.  This  corresponds  to  the  well-known  solution  of  the  general 

biquadratic  equation  (cf.  Fine,  College  Algebra,  p.  486).  For  a  further  discussion 
of  the  analytic  geometry  of  pencils  of  conies,  cf.  Clebsch-Lindemann,  Vorlesungen 
iiber  Geometrie,  2d  ed.,  Vol.  I,  Part  I  (1906),  pp.  212  ff. 
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Since  any  two  conies  are  projectively  equivalent,  A2  may  be  chosen 
to  be 

(7)  xl+  x*+ 2x^=0. 

The  equation  of  B2  then  has  the  form  (6),  with  the  condition  that 
the  two  conies  have  no  other  common  self-polar  elements.  Since  the 
figure  in  which  a  is  polar  to  A  and  b  to  B  can  only  reduce  to  Types 

IV  or  V,  we  must  determine  under  what  conditions  each  point  on  a 

or  each  point  on  b  has  the  same  polar  with  regard  to  (6)  and  (7). 

The  polar  of  {x[,  x2,  x^)  with  regard  to  (6)  is  given  by 

2       2       2  ™l        ̂ Q^Q^Q  ~l        OqJOndC-m    "y"    OqpC-tXn  ■— — ■     U« 

Hence  the  first  case  can  arise  only  if  a2  =  b2 ;  and  the  second  only 
if  az  =  br 

Introducing  the  condition  that  a2,  a8,  b2  are  all  distinct,  it  is  then 
clear  that  the  set  of  conies 

contains  a  line  pair  for  X  =  —  a2,  viz.  the  lines 

(a,  —  a2) xl  +2(b2—  a2) xxxz m  0. 

Hence  the  conies  have  in  common  the  points  of  intersection  with  (7) 
of  the  line 

This  gives 

Theorem  13.  If  two  conies  have  a  common  self -polar  figure  of 
Type  II,  they  have  three  points  in  common  and  a  common  tangent  at 

one  of  them.  Dually,  they  have  three  common  tangents  and  a  common 

point  of  contact  on  one  of  the  tangents.  The  two  conies  determine  a 
pencil  and  also  a  range  of  conies  of  Type  II. 

Corollary.  Any  pencil  of  conies  of  Type  II  may  be  represented 

by  the  equation  x2  —  xl  +  \xsx1  =  0.  The  conies  of  this  pencil  all  pass 

through  the  points  (0,  1,  1),  (0,  1,  —  1),  (1,  0,  0)  and  are  tangent  to 

*8  =  0. 

Type  III.  When  the  common  self-polar  figure  is  of  Type  ///,  the 
two  conies  evidently  have  a  common  tangent  and  a  common  point 

of  contact,  and  only  one  of  each.  Let  the  common  tangent  be  xs  =  0, 

its  point  of  contact  be  (1,  0,  0),  and  let  A2  be  given  by 

(8)  x22+  2^=0. 
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The  general  equation  of  a  conic  tangent  to  xa  =  0  at  (1,  0,  0)  is 

(9)  atxl  +  asxl  +  2  b^^  +  2  fc^a;,  =  0, 

with  regard  to  which  the  polar  of  any  point  {x[,  xt\  0)  on  xx  =  0  is 
given  by 

( 1 0)  ap[  x2  +  \x2xs  +  b.^c[xt  =  0. 

This  will  be  identical  with  the  polar  of  {x[,  x2,  0)  with  regard  to  Ai 
for  all  values  of  x[,  x2,  if  b.2  =  a.2  and  \  =  0.  Since  (1, 0,  0)  only  is  to 
have  the  same  polar  with  regard  to  both  conies,  we  impose  at  least 

one  of  the  conditions  b.2=t  aa,  6^0.  The  line  (10)  will  now  be 
identical  with  the  polar  of  (8)  for  any  point  (x{,  x%\  0)  satisfying  the 
condition  ,  , 

x[      b^+b^xl 

This  quadratic  equation  must  have  only  one  root  if  the  self-polar  figure 
is  to  be  of  Type  III.  This  requires  b2=  a2,  and  as  b.2,  a2  cannot  both 

be  0  unless  (9)  degenerates,  the  equation  of  B'2  can  be  taken  as 

(11)  xl+2xtxl+a^l+2b1xixt=0,  (^^0). 

The  conies  (8)  and  (11)  now  evidently  have  in  common  the  points  of 

intersection  of   (8)  with  the 

line  pair 

ajcl  +  2  bxx2xs  =  0, 

and  no    other  points.    Since 

x8  =  0  is  a  tangent,  this  gives 
two  common  points.    If  the 

second  common  point  is  taken  ~~A~=7l~00~)  a=[0  0ll to  be    (0,  0,  1),   the   set   of 
Fig.  102 

conies  which   have   in  com- 

mon the  points  (0,  0,  1)  and  (1,  0,  0)  =  A  and  the  tangent  a  at  A, 
and  no  other  points,  may  be  written  (fig.  102) 

(12)  x\  +2x1x,+ Xx^  =  0. 

Theorem  14.  If  two  conies  have  a  common  self-polar  figure  of 
Type  III,  they  have  two  points  in  common  and  a  common  tangent 

at  one  of  them,  and  one  other  common  tangent.  They  determine  a 

pencil  and  a  range  of  conies  of  Type  III. 
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Corollary.  A  pencil  of  conies  of  Type  III  can  he  represented  by 

the  equation  x22  +  2  xzx^  +  \x2xs  =  0. 

Type  IV.  When  the  common  self-polar  figure  is  of  Type  IV,  let  the 
line  of  fixed  points  be  xs  =  0  and  its  pole  be  (0,  0, 1).  The  coordinates 

being  chosen  as  they  were  for  Type  I,  the  conic  A2  has  the  equation 

and  any  other  conic  having  in  common  with  A2  the  self-polar  tri- 
angle (1,  0,  0),  (0,  1,  0),  (0,  0,  1)  has  an  equation  of  the  form 

The  condition  that  every  point  on  xs  =  0  shall  have  the  same  polar 

with  regard  to  this  conic  as  with  regard  to  A2  is  a1  =  —  a2.   Hence  B 
may  be  written  ,        ,     %    „      . 
J  x?—x2  +  \x2=Q. 

Any  conic  of  this  form  has  the  same  tangents  as  A2  at  the  points 
(1, 1,  0)  and  (1,  —  1,  0)  (fig.  103).   Hence,  if  X  is  a  variable  parameter, 

the  last  equation  represents 

1^h^~~^^  a  Pencil  °f  conies  of  Type  IV 
according  to  the  classification 

previously  made. 

Theorem  15.  If  two  conies 

have    a    common    self-polar 

(l'2QF'^^ZZ~    figure  °f  Type  IV,  they  have 
two   points   in  common  and 

Fig.  103  r  . 
the  tangents  at  these  points. 

They  determine  a  pencil  (which  is  also  a  range)  of  conies  of  Type  IV. 

Corollary.    A  pencil  of  conies  of  Type  IV  may  be  represented  by 
the  equation  2        2  2 

X^  —  X.2  -f-  A,X$  =  U  J 

and  also  by  the  equation 
0C-,  ~y~  \3CqOCa  ̂ ^  \), 

Type  V.  When  the  common  self-polar  figure  is  of  Type  V,  let  the 

point  of  fixed  lines  be  (1,  0,  0)  and  the  line  of  fixed  points  be  xt  =  0. 

As  in  Type  III,  let  A2  be  given  by 

(8)  x2+  2av»8=0. 

We  have  seen,  in  the  discussion  of  that  type,  that  all  points  of  xs  =  0 

have  the  same  polars  with  respect  to  (8)  and  (9),  if  in  (9)  we  have 
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b2  =  a2  and  5X  =  0.    Hence,  if  A2  and  B2  are  to  have  a  common  self- 

polar  figure  of   Type  V,  the  equation  of  B2  must  have  the  form 

(13)     a2 (x2 -f  2  xxxt)  +  a8.r32  =  0. 

From  the  form  of  equations  (8)  and 

(13)  it  is  evident  that  the  conies  have 

in  common  only  the  point  (1,  0,  0)  and 

the  tangent  x3  =  0,  and  that  every  point 

on  xz—  0  has  the  same  polar  with  re-     a=[00l]  A  =  Cioo) 
spect  to  both  conies  (fig.  104).  Hence 

they  determine  a  pencil  of  Type  V. 

Theorem  16.  If  two  conies  have  a  common  self-polar  figure  of 

Type  V,  they  have  a  lineal  element  (and  no  other  elements)  in  com- 
mon and  determine  a  pencil  (which  is  also  a  range)  of  conies  of 

Type   V  according  to  the  classification  already  given. 

Corollary.   A  pencil  of  conies  of  Type  V  can  be  represented  by  the 
equation 
*  x2-r2x1xz-r\x2=0. 

As  an  immediate  consequence  of  the  corollaries  of  Theorems  12—16 
we  have 

Theorem  17.   Any  pencil  of  conies  may  be  written  in  the  form 

f+\g=0, 
where  f=  0  and  g=0  are  the  equations  of  two  conies  (degenerate  or 
not)  of  the  pencil. 

EXERCISES 

1.  Prove  analytically  that  the  polars  of  a  point  P  with  respect  to  the 

conies  of  a  pencil  all  pass  through  a  point  Q.  The  points  P  and  Q  are  double 

points  of  the  involution  determined  by  the  conies  of  the  pencil  on  the  line  PQ. 

Give  a  linear  construction  for  Q  (cf.  Ex.  3,  p.  136).  The  correspondence 

obtained  by  letting  every  point  P  correspond  to  the  associated  point  Q  is  a 

"quadratic  birational  transformation. "  Determine  the  equations  representing 
this  transformation.  The  point  Q,  which  is  conjugate  to  P  with  regard  to  all 

the  conies  of  the  pencil,  is  called  the  conjugate  of  P  with  respect  to  the  pencil. 

The  locus  of  the  conjugates  of  the  points  of  a  line  with  regard  to  a  pencil  of 

conies  is  a  conic  (cf.  Ex.  31,  p.  140). 

2.  One  and  only  one  conic  passes  through  four  given  points  and  has  two 

given  poincs  as  conjugate  points,  provided  the  two  given  points  are  not  con- 

jugate with  respect  to  all  the  conies  of  the  pencil  determined  by  the  given 
set  of  four.    Show  how  to  construct  this  conic. 
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3.  One  conic  in  general,  or  a  pencil  of  conies  in  a  special  case,  passes 
through  three  given  points  and  has  two  given  pairs  of  points  as  conjugate 

points.    Give  the  construction. 
4.  One  conic  in  general,  or  a  pencil  of  conies  in  a  special  case,  passes 

through  two  given  points  and  has  three  pairs  of  given  points  as  conjugate 
points  ;  or  passes  through  a  given  point  and  has  four  pairs  of  given  points  as 

conjugate  points  ;  or  has  five  given  pairs  of  conjugate  points.  Give  the  cor- 
responding constructions  for  each  case. 

102.  Problems  of  the  third  and  fourth  degrees.*  The  problem  of 
constructing  the  points  of  intersection  of  two  conies  in  the  same 

plane  is,  in  general,  of  the  fourth  degree  according  to  the  classifi- 
cation of  geometric  problems  described  in  §  83.  Indeed,  if  one  of 

the  coordinates  be  eliminated  between  the  equations  of  two  conies, 

the  resulting  equation  is,  in  general,  an  irreducible  equation  of  the 

fourth  degree.  Moreover,  a  little  consideration  will  show  that  any 

equation  of  the  fourth  degree  may  be  obtained  in  this  way.  It 

results  that  every  problem  of  the  fourth  degree  in  a  plane  may 

be  reduced  to  the  problem  of  constructing  the  common  points  (or 

by  duality  the  common  tangents)  of  two  conies.  Further,  the  prob- 
lem of  finding  the  remaining  intersections  of  two  conies  in  a  plane 

of  which  one  point  of  intersection  is  given,  is  readily  seen  to  be  of 

the  third  degree,  in  general;  and  any  problem  of  this  degree  can  be 

reduced  to  that  of  finding  the  remaining  intersections  of  two  conies 

of  which  one  point  of  intersection  is  known.  It  follows  that  any 

problem  of  the  third  or  fourth  degree  in  a  plane  may  be  reduced 
to  that  of  finding  the  common  elements  of  two  conies  in  the 

plane,  f 
A  problem  of  the  fourth  (or  third)  degree  cannot  therefore  be 

solved  by  the  methods  sufficient  for  the  solution  of  problems  of  the 

first  and  second  degrees  (straight  edge  and  compass).  J  In  the  case 

of  problems  of  the  second  degree  we  have  seen  that  any  such  prob- 
lem could  be  solved  by  linear  constructions  if  the  intersections  of 

*  In  this  section  we  have  made  use  of  Amodeo,  Lezioni  di  Geometria  Projettiva, 

pp.  436,  437.    Some  of  the  exercises  are  taken  from  the  same  book,  pp.  448-451. 
t  Moreover,  we  have  seen  (p.  289,  footnote)  that  any  problem  of  the  fourth 

degree  may  be  reduced  to  one  of  the  third  degree,  followed  by  two  of  the  second 
degree. 

$  With  the  usual  representation  of  the  ordinary  real  geometry  we  should  require 
an  instrument  to  draw  conies. 
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every  line  in  the  plane  with  a  fixed  conic  in  that  plane  were  assumed 

known.  Similarly,  any  problem  of  the  fourth  (or  third)  degree  can 
be  solved  by  linear  and  quadratic  constructions  if  the  intersections 

of  every  conic  in  the  plane  with  a  fixed  conic  in  this  plane  are 

assumed  known.  This  follows  readily  from  the  fact  that  any  conic 

in  the  plane  can  be  transformed  by  linear  constructions  into  the 

fixed  conic.  A  problem  of  the  third  or  fourth  degree  in  a  plane 
will  then,  in  the  future,  be  considered  solved  if  it  has  been  reduced 

to  the  finding  of  the  intersections  of  two  conies,  combined  with 

any  linear  or  quadratic  constructions.  As  a  typical  problem  of  the 

third  degree,  for  example,  we  give  the  following: 

To  find  the  double  points  of  a  nonperspective  collineation  in  a  plane 

which  is  determined  by  four  pairs  of  homologous  points. 

Solution.  When  four  pairs  of  homologous  elements  are  given,  we 

can  construct  linearly  the  point  or  line  homologous  with  any  given 

point  or  line  in  the  plane.  Let  the  collineation  be  represented  by  II, 

and  let  A  be  any  point  of  the  plane  which  is  not  on  an  invariant 

line.  Let  U(A)=A'  and  U(A')  =  A".  The  points  A,  A',  A"  are  then 
not  collinear.  The  pencil  of  lines  at 

A  is  projective  with  the  pencil  at 

A',  and  these  two  projective  pencils 

generate  a  conic  C2  which  passes 
through  all  the  double  points  of  II, 

and  which  is  tangent  at  A'  to  the 

line  A' A"  (fig.  105).  The  conic  C2  is 
transformed  by  the  collineation  II 

into  a  conic  C2  generated  by  the  pro- 
jective pencils  of  lines  at  A'  and  A". 

C2  also  passes  through  A'  and  is  tangent  at  this  point  to  the  line 

AA'.  The  double  points  of  II  are  also  points  of  C2.  The  point  A' 
is  not  a  double  point  of  II  by  hypothesis.  It  is  evident,  however, 

that  every  other  point  common  to  the  two  conies  C2  and  C2  is  a 
double  point. 

If  C2  and  C2  intersect  again  in  three  distinct  points  L,  M,  iV,  the 

latter  form  a  triangle  and  the  collineation  is  of  Type  /  If  C2  and  C2 

intersect  in  a  point  JV,  distinct  from  A',  and  are  tangent  to  each  other 
at  a  third  point  L  =  M,  the  collineation  has  M,  X  for  double  points 
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and  the  line  MN  and  the  common  tangent  at  M  for  double  lines 

(fig.  106);  it  is  then  of  Type  77.  If,  finally,  the  two  conies  have 

contact  of  the  second  order  at  a  point  L  =  M=N,  distinct  from  A', 
the  collineation  has  the  single  double  line  which  is  tangent  to  the 

conies  at  this  point,  and  is  of  Type  III  (fig.  107). 

rL  =  M  L=M=N 
Fig.  106  Fig.  107 

EXERCISES 

1.  Give  a  discussion  of  the  problem  above  without  making  at  the  outset 
the  hypothesis  that  the  collineation  is  nonperspective. 

2.  Construct  the  double  pairs  of  a  correlation  in  the  plane,  which  is  not 
a  polarity. 

3.  Given  two  polarities  in  a  plane,  construct  their  common  pole  and 

polar  pairs. 
4.  On  a  line  tangent  to  a  conic  at  a  point  A  is  given  an  involution  I,  and 

from  any  pair  of  conjugates  P,  P'  of  I  are  drawn  the  second  tangents  p,  p'  to 
the  conic,  their  points  of  contact  being  Q,  Q'  respectively.  Show  that  the  locus 
of  the  point  pp'  is  a  line,  I,  passing  through  the  conjugate,  A',  of  A  in  the  invo- 

lution I ;  and  that  the  line  QQ'  passes  through  the  pole  of  I  with  respect  to 
the  conic. 

5.  Construct  the  conic  which  is  tangent  at  two  points  to  a  given  conic  and 

which  passes  through  three  given  points.    Dualize. 

6.  The  lines  joining  pairs  of  homologous  points  of  a  noninvolutoric  pro- 

jectivity  on  a  conic  A2  are  tangent  to  a  second  conic  B2  which  is  tangent  to 
A2  at  two  points,  or  which  hyperosculates  A2. 

7.  A  pencil  of  conies  of  Type  II  is  determined  by  three  points  A,  B,  C 

and  a  line  c  through  C.  What  is  the  locus  of  the  points  of  contact  of  the 
conies  of  the  pencil  with  the  tangents  drawn  from-a  given  point  P  of  c? 

8.  Construct  the  conies  which  pass  through  a  given  point  P  and  which  are 

tangent  at  two  points  to  each  of  two  given  conies. 

9.  If  f  =  0,  g  =  0,  h  =  0  are  the  equations  of  three  conies  in  a  plane  not 
belonging  to  the  same  pencil,  the  system  of  conies  given  by  the  equation 

V+  M  +  vA  =  0, 
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A,  /m,  v  being  variable  parameters,  is  called  a  bundle  of  conies.  Through  every 

point  of  the  plane  passes  a  pencil  of  conies  belonging  to  this  bundle  ;  through 

any  two  distinct  points  passes  in  general  one  and  only  one  conic  of  the  bundle. 

If  the  conies  /,  g,  h  have  a  point  in  common,  this  point  is  common  to  all  the 

conies  of  the  bundle.    Give  a  nonalgebraic  definition  of  a  bundle  of  conies. 

10.  The  set  of  all  conies  in  a  plane  passing  through  the  vertices  of  a  triangle 

form  a  bundle.  If  the  equations  of  the  sides  of  this  triangle  are  I  =  0,  m  =  0, 

n  =  0,  show  that  the  bundle  may  be  represented  by  the  equation 

Xmn  +  /ml  +  vim  =  0. 

What  are  the  degenerate  conies  of  this  bundle  ?  * 

11.  The  set  of  all  conies  in  a  plane  which  have  a  given  triangle  as  a  self- 
polar  triangle  forms  a  bundle.  If  the  equations  of  the  sides  of  this  triangle  are 

/  =  0,  m  =  0,  n  =  0,  show  that  the  bundle  may  be  represented  by  the  equation 

XP  +  /xro2  +  vn2  a  0. 

What  are  the  degenerate  conies  of  this  bundle  ? 

12.  The  conies  of  the  bundle  described  in  Ex.  11  which  pass  through  a 

general  point  P  of  the  plane  pass  through  the  other  three  vertices  of  the 

quadrangle,  of  which  one  vertex  is  P  and  of  which  the  given  triangle  is  the 

diagonal  triangle.  What  happens  when  P  is  on  a  side  of  the  given  triangle  ? 
Dualize. 

13.  The  reflections  whose  centers  and  axes  are  the  vertices  and  opposite 

sides  of  a  triangle  form  a  commutative  group.  Any  point  of  the  plane  not 

on  a  side  of  the  triangle  is  transformed  by  the  operations  of  this  group  into 

the  other  three  vertices  of  a  complete  quadrangle  of  which  the  given  triangle 

is  the  diagonal  triangle.  If  this  triangle  is  taken  as  the  reference  triangle, 

what  are  the  equations  of  transformation?  What  conies  are  transformed  into 

themselves  by  the  group,  and  how  is  it  associated  with  the  quadrangle- 
quadrilateral  configuration  ? 

14.  The  necessary  and  sufficient  condition  that  two  reflections  be  com- 
mutative is  that  the  center  of  each  shall  be  on  the  axis  of  the  other. 

15.  The  invariant  figure  of  a  collineation  may  be  regarded  as  composed  of 

two  lineal  elements,  the  five  types  corresponding  to  various  special  relations 
between  the  two  lineal  elements. 

16.  A  correlation  which  transforms  a  lineal  element  Aa  into  a  lineal 

element  Bb  and  also  transforms  Bb  into  Aa  is  a  polarity. 

17.  How  many  collineations  and  correlations  are  in  the  group  generated 

by  the  reflections  whose  centers  and  axes  are  the  vertices  and  opposite  sides 

of  a  triangle  and  a  polarity  with  regard  to  which  the  triangle  is  self -polar? 

*  In  connection  with  this  and  the  two  following  exercises,  cf.  Castelnuovo, 
Lezioni  di  Geometria  Analitica  e  Projettiva,  Vol.  I,  p.  395. 
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FAMILIES  OF  LINES 

103.  The  regulus.    The  following  theorem,  on  which  depends  the 

existence  of  the  figures  to  be  studied  in  this  chapter,  is  logically 

equivalent  (in  the  presence  of  Assump- 
tions A  and  E)  to  Assumption  P.  It 

might  have  been  used  to  replace  that 
assumption. 

Theorem  1.  If  lv  l2,  l3  are  three 

mutually  skew  lines,  and  if  mv  m2,  ms, 

mi  are  four  lines  each  of  which  meets 
each  of  the  lines  lv  l2,  la,  then  any  line  Z4 
which  meets  three  of  the  lines  mv  m2, 

m8,  mt  also  meets  the  fourth. 

Proof  The  four  planes  llmv  Z1m2, 

ljm3,  llmi  of  the  pencil  with  axis  lx  are 
perspective  through  the  pencil  of  points 
on  l3  with  the  four  planes  l2mv  l2m2, 

l2ms,  l2mi  of  the  pencil  with  axis  l2 

(fig.  108).  For,  by  hypothesis,  the  lines 
of  intersection  mv  m2,  ma,  mt  of  the 

pairs  of  homologous  planes  all  meet  /8. 

The  set  of  four  points  in  which  the  four  planes  of  the  pencil  on  lx 

meet  lt  is  therefore  projective  with  the  set  of  four  points  in  which 

the  four  planes  of  the  pencil  on  l2  meet  lv  But  lt  meets  three  of  the 

pairs  of  homologous  planes  in  points  of  their  lines  of  intersection, 

since,  by  hypothesis,  it  meets  three  of  the  lines  mv  m2,  ra8,  m4.  Hence 

in  the  projectivity  on  l4  there  are  three  invariant  points,  and  hence 

(Assumption  P)  every  point  is  invariant.  Hence  lt  meets  the  remain- 
ing line  of  the  set  mv  m2,  m8,  m4. 

*  All  the  developments  of  this  chapter  are  on  the  basis  of  Assumptions  A,  E,  P,  Ho. 
But  see  the  exercise  on  page  261. 

208 

Fig.  108 
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Definition.  If  lv  lv  lt  are  three  lines  no  two  of  which  are  in  the 

same  plane,  the  set  of  all  lines  which  meet  each  of  the  three  given  lines 

is  called  a  regulus.  The  lines  lv  l2,  l3  are  called  directrices  of  this  regulus. 

It  is  clear  that  no  two  lines  of  a  regulus  can  intersect,  for  other- 
wise two  of  the  directrices  would  lie  in  a  plane.  The  next  theorem 

follows  at  once  from  the  definition. 

Theorem  2.  If  lv  l2,  ls  are  three  lines  of  a  regulus  of  which 

mv  m2,  m8  are  directrices,  mv  mt,  mt  are  lines  of  the  regulus  of  which 

lv  lv  lt  are  directrices. 

It  follows  that  any  three  lines  no  two  of  which  lie  in  a  plane  are 

directrices  of  one  and  only  one  regulus  and  are  lines  of  one  and  only 

one  regulus. 

Definition.  Two  reguli  which  are  such  that  every  line  of  one 

meets  all  the  lines  of  the  other  are  said  to  be  conjugate.  The  lines  of 

a  regulus  are  called  its  generators  or  rulers ;  the  lines  of  a  conjugate 

regulus  are  called  the  directrices  of  the  given  regulus. 

Theorem  3.    Every  regidus  has  one  and  only  one  conjugate  regulus. 

This  follows  immediately  from  the  preceding.  Also  from  the  proof 
of  Theorem  1  we  have 

Theorem  4.  The  correspondence  Theorem  4'.  The  correspond- 
established  by  the  lines  of  a  regu-  ence  established  by  the  lines  of  a 
lus  between  the  points  of  two  lines  regidus  between  the  planes  on  any 

of  its  conjugate  regidus  is  projet-  two  lines  of  its  conjugate  regulus 
five.  is  projective. 

Theorem  5.  The  set  of  all  lines  Theorem  5'.  Th  e  set  of  all  lines  of 
joining  pairs  of  homologous  points  intersection  of  pairs  of  homologous 

of  two  projective  pencils  of  points  planes  of  two  projective  pencils  of 

on  skew  lines  is  a  regulus.  planes  on  skew  lines  is  a  regulus. 

Proof  "We  may  confine  ourselves  to  the  proof  of  the  theorem  on 
the  left.  By  Theorem  6,  Chap.  Ill,  the  two  pencils  of  points  are 

perspective  through  a  pencil  of  planes.  Every  line  joining  a  pair  of 

homologous  points  of  these  two  pencils,  therefore,  meets  the  axis  of 

the  pencil  of  planes.  Hence  all  these  lines  meet  three  (necessarily 

skew)  lines,  namely  the  axes  of  the  two  pencils  of  points  and  of  the 

pencil  of  planes,  and  therefore  satisfy  the  definition  of  a  regulus. 

Moreover,  every  line  which  meets  these  three  lines  joins  a  pair  of 

homologous  points  of  the  two  pencils  of  points. 
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Theorem  6.  If  [p]  are  the  lines  of  a  regulus  and  a  is  a  directrix 

of  the  regulus,  the  pencil  of  points  q  [p]  is  projective  with  the  pencil 

of  planes  q[p]- 

Proof  Let  q'  be  any  other  directrix.  By  Theorem  4  the  pencil  of 

points  q[p]  is  perspective  with  the  pencil  of  points  q'[p\  But  each 
of  the  points  of  this  pencil  lies  on  the  corresponding  plane  qp. 

Hence  the  pencil  of  points  q'[p]  is  also  perspective  with  the  pencil 
of  planes  q  [p]. 

EXERCISES 

1.  Every  point  which  is  on  a  line  of  a  regulus  is  also  on  a  line  of  its 

conjugate  regulus. 
2.  A  plane  which  contains  one  line  of  a  regulus  contains  also  a  line  of  its 

conjugate  regulus. 
3.  Show  that  a  regulus  is  uniquely  defined  by  two  of  its  lines  and  three 

of  its  points,*  provided  no  two  of  the  latter  are  coplanar  with  either  of  the 
given  lines. 

4.  If  four  lines  of  a  regulus  cut  any  line  of  the  conjugate  regulus  in  points 

of  a  harmonic  set,  they  are  cut  by  every  such  line  in  points  of  a  harmonic 
set.  Hence  give  a  construction  for  the  harmonic  conjugate  of  a  line  of  a 
regulus  with  respect  to  two  other  lines  of  the  regulus. 

5.  Two  distinct  reguli  can  have  in  common  at  most  two  distinct  lines. 
6.  Show  how  to  construct  a  regulus  having  in  common  with  a  given 

regulus  one  and  but  one  ruler. 

104.  The  polar  system  of  a  regulus.  A  plane  meets  every  line  of 

a  regulus  in  a  point,  unless  it  contains  a  line  of  the  regulus  in  which 
case  it  meets  all  the  other  lines  in  points  that  are  collineaf.  Since 

the  regulus  may  be  thought  of  as  the  lines  of  intersection  of  pairs  of 

homologous  planes  of  two  projective  axial  pencils  (Theorem  5'),  the 
section  by  a  plane  consists  of  the  points  of  intersection  of  pairs  of 

homologous  lines  of  two  projective  flat  pencils.  Hence  the  section 

of  a  regulus  by  a  plane  is  a  point  conic,  and  the  conjugate  regulus 

has  the  same  section.  By  duality  the  projection  of  a  regulus  and  its 

conjugate  from  any  point  is  a  cone  of  planes. 

The  last  remark  implies  that  a  line  conic  is  the  "  picture  "in  a  plane  ol 
a  regulus  and  its  conjugate.  For  such  a  picture  is  clearly  a  plane  section  of 
the  projection  of  the  object  depicted  from  the  eye  of  an  observer.  Fig.  108 
illustrates  this  fact. 

*  By  a  point  of  a  regulus  is  meant  any  point  on  a  line  of  the  regulus. 
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The  section  of  a  regulus  by  a  plane  containing  a  line  of  the  regu- 
lus  is  a  degenerate  conic  of  two  lines.  The  plane  section  can  never 

degenerate  into  two  coincident  lines  because  the  lines  of  a  regulus 

and  its  conjugate  are  distinct  from  each  other.  In  like  manner,  the 

projection  from  a  point  on  a  line  of  the  regulus  is  a  degenerate  cone 

of  planes  consisting  of  two  pencils  of  planes  whose  axes  are  a  ruler 
and  a  directrix  of  the  regulus. 

Definition.  The  class  of  all  points  on  the  lines  of  a  regulus  is 

called  a  surface  of  the  second  order  or  a  quadric  surface.  The  planes 

on  the  lines  of  the  regulus  are  called  the  tangent  planes  of  the  sur- 
face or  of  the  regulus.  The  point  of  intersection  of  the  two  lines  of 

the  regulus  and  its  conjugate  in  a  tangent  plane  is  called  the  point 

of  contact  of  the  plane.  The  lines  through  the  point  of  contact  in  a 

tangent  plane  are  called  tangent  lines,  and  the  point  of  contact  of  the 

plane  is  also  the  point  of  contact  of  any  tangent  line. 

The  tangent  hues  at  a  point  of  a  quadric  surface  include  the  lines 

of  the  two  conjugate  reguli  through  this  point  and  all  other  lines 

through  this  point  which  meet  the  surface  in  no  other  point.  Any 
other  line,  of  course,  meets  the  surface  in  two  or  no  points,  since  a 

plane  through  the  liue  meets  the  surface  in  a  conic.  The  tangent 

lines  are,  by  duality,  also  the  lines  through  each  of  which  passes  only 

one  tangent  plane  to  the  surface. 

Theorem  7.  The  tangent  planes  at  the  points  of  a  plane  section  of 

a  quadric  surface  pass  through  a  point  and  constitute  a  cone  of  planes. 

Dually,  the  points  of  contact  of  the  cone  of  tangent  planes  through  a 

point  are  coplanar  and  form  a  point  conic. 

Proof.  It  will  suffice  to  prove  the  latter  of  these  two  dual  theorems. 

Let  the  vertex  P  of  the  cone  of  tangent  planes  be  not  a  point  of  the 

surface.  Consider  three  tangent  planes  through  P,  and  their  points  of 

contact.  The  three  lines  from  these  points  of  contact  to  P  are  tan- 
gent lines  of  the  surface  and  hence  there  is  only  one  tangent  plane 

through  each  of  them.  Hence  they  are  lines  of  the  cone  of  lines  asso- 
ciated with  the  cone  of  tangent  planes.  Let  it  be  the  plane  through 

their  points  of  contact.  The  section  by  ir  of  the  cone  of  planes  through 
P  is  therefore  the  conic  determined  by  the  three  points  of  contact 

and  the  two  tangent  lines  in  which  two  of  the  tangent  planes  meet 

77.  The  plane  it,  however,  meets  the  regulus  in  a  conic  of  which  the 

three  points  of  contact  are  points.    The  two  lines  of  intersection  with 
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7r  of  two  of  the  tangent  planes  through  P  are  tangents  to  this  conic, 
because  they  cannot  meet  it  in  more  than  one  point  each.  The  section 

of  the  surface  and  the  section  of  the  cone  of  planes  then  have  three 

points  and  the  tangents  through  two  of  them  in  common.  Hence  these 

sections  are  identical,  which  proves  the  theorem  when  P  is  not  on 
the  surface. 

If  P  is  on  the  surface,  the  cone  of  planes  degenerates  into  two  lines 

of  the  surface  (or  the  pencils  of  planes  on  these  lines),  and  the  points 

of  contact  of  these  planes  are  all  on  the  same  two  lines.  Hence  the 
theorem  is  true  also  in  this  case. 

Definition.  If  a  point  P  and  a  plane  it  are  so  related  to  a  regulus 

that  all  the  tangent  planes  to  the  regulus  at  points  of  its  section 

by  7r  pass  through  P  (and  hence  all  the  points  of  contact  of  tangent 

planes  through  P  are  on  ir)y  then  P  is  called  the  pole  of  tr  and  ir  the 

polar  of  P  with  respect  to  the  regulus. 

Corollary.  A  tangent  plane  to  a  regulus  is  the  polar  of  its  point 

of  contact. 
Theorem  8.  The  polar  of  a  point  P  not  on  a  regulus  contains  all 

points  P'  such  that  the  line  PP'  meets  the  surface  in  two  points  which 
are  harmonic  conjugates  with  respect  to  P,  PJ 

Proof.  Consider  a  plane,  a,  through  PP'  and  containing  two  lines 
a,  b  of  the  cone  of  tangent  lines  through  P.  This  plane  meets  the 

surface  in  a  conic  C2,  to  which  the  lines  a,  b  are  tangent.  As  the  polar 
plane  of  P  contains  the  points  of  contact  of  a  and  b,  its  section  by  a 

is  the  polar  of  P  with  respect  to  C2.  Hence  the  theorem  follows 
as  a  consequence  of  Theorem  13,  Chap.  V. 

Theorem  9.  The  polar  of  a  point  of  a  plane  ir  with  respect  to  a 

regulus  meets  it  in  the  polar  line  of  this  point  with  regard  to  the  conic 
which  is  the  section  of  the  regulus  by  tr. 

Proof.  By  Theorem  8  the  line  in  which  the  polar  plane  meets  tr 

has  the  characteristic  property  of  the  polar  line  with  respect  to  a  conic 

(Theorem  13,  Chap.  V).  This  argument  applies  equally  well  if  the 

conic  is  degenerate.  In  this  case  the  theorem  reduces  to  the  following 

Corollary.  The  tangent  lines  of  a  regulus  at  a  point  on  it  are 

paired  in  an  involution  the  double  lines  of  ivhich  are  the  ruler  and 

directrix  through  that  point.  Each  line  of  a  pair  contains  the  polar 

points  of  all  the  planes  on  the  other  line. 
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Theorem  10.  The  polars  with  regard  to  a  regulus  of  the  points  of 

a  line  I  are  an  axial  pencil  of  planes  projective  with  the  pencil  of 

points  on  I. 

Proof.  In  case  the  given  line  is  a  line  of  the  regulus  this  reduces 

to  Theorem  6.  In  any  other  case  consider  two  planes  through  I.  In 

each  plane  the  polars  of  the  points  of  I  determine  a  pencil  of  lines 

projective  with  the  range  on  /.  Hence  the  polars  must  all  meet  the 

line  joining  the  centers  of  these  two  pencils  of  lines,  and,  being  per- 
spective with  either  of  these  pencils  of  lines,  are  projective  with  the 

range  on  /. 

Definition.  A  line  /'  is  polar  to  a  line  I  if  the  polar  planes  of  the 

points  of  /  meet  on  /'.  A  line  is  conjugate  to  I  if  it  meets  V.  A  point 

P'  is  conjugate  to  a  point  P  if  it  is  on  the  polar  of  P.  A  line  p  is 

conjugate  to  P  if  it  is  on  the  polar  of  P.  A  plane  ir'  is  conjugate  to 

a  plane  ir  if  ir'  is  on  the  pole  of  ir.  A  line  p  is  conjugate  to  ir  if  it 
is  on  the  pole  of  ir. 

EXERCISES 

Polar  points  and  planes  with  respect  to  a  regulus  are  denoted  by  corresponding 

capital  Roman  and  small  Greek  letters.  Conjugate  elements  of  the  same  kind  are 

denoted  by  the  same  letters  with  primes. 

1.  If  7r  is  on  R,  then  P  is  on  p. 

2.  If  /  is  polar  to  /,  then  /  is  polar  to  I. 

3.  If  one  element  (point,  line,  or  plane)  is  conjugate  to  a  second  element, 

then  the  second  element  is  conjugate  to  the  first. 

4.  If  two  lines  intersect,  their  two  polar  lines  intersect. 

5.  A  ruler  or  a  directrix  of  a  regulus  is  polar  to  itself.  A  tangent  line  is 

polar  to  its  harmonic  conjugate  with  regard  to  the  ruler  and  directrix  through 

its  point  of  contact.    Any  other  line  is  skew  to  its  polar. 

6.  The  points  of  two  polar  lines  are  conjugate. 

7.  The  pairs  of  conjugate  points  (or  planes)  on  any  line  form  an  involu- 
tion the  double  points  (planes)  of  which  (if  existent)  are  on  the  regulus. 

8.  The  conjugate  lines  in  a  flat  pencil  of  which  neither  the  center  nor  the 

plane  is  on  the  regulus  form  an  involution. 

9.  The  line  of  intersection  of  two  tangent  planes  is  polar  to  the  line 

joining  the  two  points  of  contact. 

10.  A  line  of  the  regulus  which  meets  one  of  two  polar  lines  meets  the  other. 

11.  Two  one-  or  two-dimensional  forms  whose  bases  are  not  conjugate  or 
polar  are  projective  if  conjugate  elements  correspond. 

12.  A  line  I  is  conjugate  to  I'  if  and  only  if  some  plane  on  /  is  polar  to 

some  point  on  /'. 
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13.  Show  that  there  are  two  (proper  or  improper)  lines  r,  s  meeting  two 
given  lines  and  conjugate  to  them  both.    Show  also  that  r  is  the  polar  of  s. 

14.  If  a,  b,  c  are  three  generators  of  a  regulus  and  a',  b',  c'  three  of  the  con- 
jugate regulus,  then  the  three  diagonal  lines  joining  the  points 

(be')  and  (b'c), 
(c'a)  and  (ca'), 

(aft')  and  (a'b) 

meet  in  a  point  S  which  is  the  pole  of  a  plane  containing  the  lines  of  intersec- 
tion of  the  pairs  of  tangent  planes  at  the  same  vertices. 

15.  The  six  lines  a,  b,  c,  a',  b',  c'  of  Ex.  14  determine  the  following  trios 
of  simple  hexagons 

(bc'ab'ca'),     (ba'ac'cb'),     (bb'aa'cc'), 
(bc'aa'cb'),     (bb'ac'ca'),     (ba'ab'cc'). 

The  points  S  determined  by  each  trio  of  hexagons  are  collinear,  and  the  two 

lines  on  which  they  lie  are  polar  with  regard  to  the  quadric  surface.* 
16.  The  section  of  the  figure  of  Ex.  14  by  a  plane  leads  to  the  Pascal 

and  Brianchon  theorems ;  and,  in  like  manner,  Ex.  15  leads  to  the  theorem 

that  the  60  Pascal  lines  corresponding  to  the  60  simple  hexagons  formed 
from  6  points  of  a  conic  meet  by  threes  in  20  points  which  constitute  10 

pairs  of  points  conjugate  with  regard  to  the  conic  (cf.  Ex.  19,  p.  138). 

105.  Projective  conies.  Consider  two  sections  of  a  regulus  by 

planes  which  are  not  tangent  to  it.  These  two  conies  are  both  per- 

spective with  any  axial  pencil  of  a  pair  of  axial  pencils  which  generate 

the  regulus  (cf.  §  76,  Chap.  VIII).  The  correspondence  established 

between  the  conies  by  letting  correspond  pairs  of  points  which  lie  on 

the  same  ruler  is  therefore  projective.  On  the  line  of  intersection,  I, 

of  the  two  planes,  if  it  is  not  a  tangent  line,  the  two  conies  determine 

the  same  involution  I  of  conjugate  points.  Hence,  if  one  of  them  inter- 

sects this  line  in  two  points,  they  have  these  two  points  in  common. 

If  one  is  tangent,  they  have  one  common  point  and  one  common 

tangent.  The  projectivity  between  the  two  conies  fully  determines  a 

projectivity  between  their  planes  in  which  the  line  /  is  transformed 

into  itself.  The  involution  I  belongs  to  the  projectivity  thus  deter- 
mined on  I.  The  converse  of  these  statements  leads  to  a  theorem 

which  is  exemplified  in  the  familiar  string  models : 

Theorem  11.  The  lines  joining  corresponding  points  of  two  pro- 

jective conies  in  different  planes  form  a  regulus,  provided  the  two 

conies  determine  the  same  involution,  I,  of  conjugate  points  on  the 

*  Cf.  Sannia,  Lezioni  di  Geometria  Projettiva  (Naples,  1895),  pp.  262-263. 
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line  of  intersection,  I,  of  the  two  planes  ;  and  provided  the  collineation 

between  the  two  planes  determined  by  the  correspondence  of  the  conies 

transforms  I  into  itself  by  a  projectivity  to  which  I  belongs  (in  par- 

ticular, if  the  conies  meet  in  two  points  which  are  self-corresponding 
in  the  projectivity). 

Proof    Let  L  be  the  pole  with  regard  to  one  conic  of  the  line  of 

intersection,  I,  of  the  two  planes  (fig.  109).    Let  A  and  B  be  two 

points  of  this  conic  collinear  with  L  and  not  on  I.  The  conic  is  gen* 

erated  by  the  two  pencils  A  [P]  and  B  [P']  where  P  and  P'  are  con- 
jugates in  the  involution  I  on  I  (cf.  Ex.  1,  p.  137).  Let  A  and 

B  be  the  points  homologous  to  A  and  B  on  the  second  conic,  and  let 

A  be  the  point  in  which  the  second  conic  is  met  by  the  plane  con- 

taining A,  A,  and  the  tangent  at  A ;  and  let  B  be  the  point  in  which 

the  second  conic  is  met  by  the  plane  of  B,  B,  and  the  tangent  at  B. 

The  line  AB  contains  the  pole  of  I  with  regard  to  the  second  conic 

because  this  line  is  projective  with  AB.  Since  the  tangents  to  the 

first  conic  at  A  and  B  meet  on  I,  the  complete  quadrangle  AABB  has 

one  diagonal  point,  the  intersection  of  A  A  and  BB,  on  I ;  hence  the 
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opposite  side  of  the  diagonal  triangle  passes  through  the  pole  of  /. 

Hence  it  intersects  AB  in  the  pole  of  I.  But  the  intersection  of  AB 

with  AB  is  on  this  diagonal  line.  Hence  AB  meets  AB  in  the  pole 

of  I.  Hence  the  pencils  A  [P]  and  B  [P1]  generate  the  second  conic. 
Hence,  denoting  by  a  and  b  the  lines  AA  and  BB,  the  pencils  of  planes 

a[P]  and  b[P']  are  projective  and  generate  a  regulus  of  which  the 
two  conies  are  sections. 

The  projectivity  between  the  planes  of  the  two  conies  established 

by  this  regulus  transforms  the  line  I  into  itself  by  a  projectivity  to 

which  the  involution  I  belongs  and  makes  the  point  A  correspond 

to  A.  The  projectivity  between  two  conies  is  fully  determined  by 

these  conditions  (cf.  Theorem  12,  Cor.  1,  Chap.  VIII).  Hence  the 

lines  of  the  regulus  constructed  above  join  homologous  points  in  the 

given  projectivity.   Q.E.D. 

It  should  be  observed  that  if  the  two  conies  are  tangent  to  I,  the 

projectivity  on  I  fully  determines  the  projectivity  between  the  two 

conies.  For  if  a  point  P  of  I  corresponds  to  a  point  Q  of  I,  the  unique 

tangent  other  than  I  through  P  to  the  first  conic  must  correspond  to 

the  tangent  to  the  second  conic  from  Q.  If  the  projectivity  between 

the  two  conies  is  to  generate  a  regulus,  the  projectivity  on  I  must  be 

parabolic  with  the  double  point  at  the  point  of  contact  of  the  conies 

with  I.  For  if  another  point  D  is  a  double  point  of  the  projectivity 

on  I,  the  plane  of  the  tangents  other  than  /,  through  D  to  the  two 

conies  meets  each  conic  in  one  and  only  one  point,  and,  as  these 

points  are  homologous,  contains  a  straight  line  of  the  locus  generated. 

As  this  plane  contains  only  one  point  on  either  conic,  it  meets  the 

locus  in  only  one  line,  whereas  a  plane  meeting  a  regulus  in  one 
line  meets  it  also  in  another  distinct  line. 

Since  the  parabolic  projectivity  on  /  is  fully  determined  by  the 

double  point  and  one  pair  of  homologous  points,  the  projectivity  be- 
tween the  two  conies  is  fully  determined  by  the  correspondent  of  one 

point,  not  on  I,  of  the  first  conic. 

To  show  that  a  projectivity  between  the  two  conies  which  is  para- 
bolic on  I  does  generate  a  regulus,  let  A  be  any  point  of  the  first 

conic  and  A'  its  correspondent  on  the  second  (fig.  110).  Let  the 

plane  of  A'  and  the  tangent  at  A  meet  the  second  conic  in  A". 
Denote  the  common  point  of  the  two  conies  by  B,  and  consider  the 
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Fig.  110 

two  conies  as  generated  by  the  flat  pencils  at  A  and  B  and  at  A" 
and  B.  The  correspondence  established  between  the  two  flat  pencilf 

at  B  by  letting  correspond  lines  joining  B  to  homologous  points  ot 

the  two  conies  is  perspective  because  the  line  I  corresponds  to  itself. 
Hence  there  is  a  pencil  of 

planes  whose  axis,  b,  passes 

through.  B  and  whose  planes 

contain  homologous  pairs 

of  lines  of  the  flat  pencils 

at  B.  The  correspondence 
established  in  like  manner 

between  the  flat  pencil  at  A 

and  the  flat  pencil  at  A"  may 
be  regarded  as  the  product 

of  the  projectivity  between 

the  two  planes,  which  car- 
ries the  pencil  at  A  to  the 

pencil  at  A',  followed  by 
the  projectivity  between  the 

pencils  at  A'  and  A"  generated  by  the  second  conic.  Both  of  these 
projectivities  determine  parabolic  projectivities  on  I  with  B  as  inva- 

riant point.  Hence  their  product  determines  on  I  either  a  parabolic 

projectivity  with  B  as  invariant  point  or  the  identity.  This  product 

transforms  the  tangent  at  A  into  the  line  A" A'.  As  these  lines  meet 
I  in  the  same  point,  the  projectivity  determined  on  I  is  the  identity. 

Hence  corresponding  lines  of  the  projective  pencils  at  A  and  A"  meet 
on  I,  and  hence  they  determine  a  pencil  of  planes  whose  axis  is  a  =  AAn. 

The  axial  pencils  on  a  and  b  are  projective  and  hence  generate  a 

regulus  the  lines  of  which,  by  construction,  pass  through  homologous 

points  of  the  two  conies.  We  are  therefore  able  to  supplement 
Theorem  11  by  the  following 

Corollary  1.  The  lines  joining  corresponding  points  of  two  pro- 
jective conies  in  different  planes  form  a  regulus,  if  the  two  conies 

have  a  common  tangent  and  point  of  contact  and  the  projectivity 

determined  between  the  two  planes  by  the  projectivity  of  the  conies 

transforms  their  common  tangent  into  itself  and  has  the  common 

point  of  the  two  conies  as  its  only  fixed  point. 
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The  generation  of  a  regulus  by  projective  ranges  of  points  on  skew 

lines  may  be  regarded  as  a  degenerate  case  of  this  theorem  and  cor- 
ollary. A  further  degenerate  case  is  stated  in  the  first  exercise. 

The  proof  of  Theorem  11  given  above  is  more  complicated  than  it  would 

have  been  if,  under  Proposition  K2,  we  had  made  use  of  the  points  of  inter- 
section of  the  line  I  with  the  two  conies.  But  since  the  discussion  of  linear 

families  of  lines  in  the  following  section  employs  only  proper  elements  and 
depends  in  part  on  this  theorem,  it  seems  more  satisfactory  to  prove  this 
theorem  as  we  have  done.  It  is  of  course  evident  that  any  theorem  relating 

entirely  to  proper  elements  of  space  which  is  proved  with  the  aid  of  Proposi- 
tion Kn  can  also  be  proved  by  an  argument  employing  only  proper  elements. 

The  latter  form  of  proof  is  often  much  more  difficult  than  the  former,  but  it 

often  yields  more  information  as  to  the  constructions  related  to  the  theorem. 

These  results  may  be  applied  to  the  problem  of  passing  a  quadric 

surface  through  a  given  set  of  points  in  space.  Proposition  K2  will  be 

used  in  this  discussion  so  as  to  allow  the  possibility  that  the  two  con- 
jugate reguli  may  be  improper  though  intersecting  in  proper  points. 

Cokollary  2.  If  three  planes  a,  /3,  y  meet  in  three  lines  a  =  fiy, 

b  =  ya,  c  =  a/3  and  contain  three  conies  A2,  B2,  C2,  of  which  B2  and  C2 

meet  in  two  points  P,  P'  of  a,  C2  and  A2  meet  in  two  points  Q,  Q'  of  b, 
and  A2  and  B2  meet  in  two  points  R,  R'  of  c,  then  there  is  one  and  but 
one  quadric  surface  *  containing  the  points  of  the  three  conies. 

Proof  Let  M  be  any  point  of  C2.  The  conic  B2  is  projected  from 

M  by  a  cone  which  meets  the  plane  a  in  a  conic  which  intersects  A2 

in  two  points,  proper  or  improper  or  coincident,  other  than  R  and  R'. 
Hence  there  are  two  lines  m,  m',  proper  or  improper  or  coincident, 

through  M  which  meet  both  A2  and  B2.  The  projectivity  determined 

between  A2  and  B2  by  either  of  these  lines  generates  a  regulus,  or, 
in  a  special  case,  a  cone  of  lines,  the  lines  of  which  must  pass  through 

all  points  of  C2  because  they  pass  through  P,  P',  Q1,  Q,  and  M,  all  of 

which  are  points  of  C2. 
The  conjugate  of  such  a  regulus  also  contains  a  line  through  M 

which  meets  both  A2  and  B2.  Hence  the  lines  m  and  m'  determine 

conjugate  reguli  if  they  are  distinct.  If  coincident  they  evidently  de- 

termine a  cone.  The  three  conies  being  proper,  the  quadric  must  con- 

tain proper  points  even  though  the  lines  m,  m'  are  improper. 

*  In  this  corollary  and  in  Theorem  12  the  term  quadric  surface  must  be  taken 
to  include  the  points  on  a  cone  of  lines  as  a  special  case. 
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If  six  points  1,  2,  3,  4,  5,  6  are  given,  no  four  of  which  are  co- 

planar,*  there  evidently  exist  two  planes,  a  and  /S,  each  containing 
three  of  the  points  and  having  none  on  their  line  of  intersection. 

Fig.  Ill 

Assign  the  notation  so  that  1,  2,  3  are  in  a.  A  quadric  surface  which 

contains  the  six  points  must  meet  the  two  planes  in  two  conies  A2, 

B2  which  meet  the  line  afi  =  c  in  a  common  point-pair  or  point  of 
contact ;  and  every  point-pair,  proper  or  improper  or  coincident,  of  c 
determines  such  a  pair  of  conies. 

Let  us  consider  the  problem  of  determining  the  polar  plane  to  of 

an  arbitrary  point  0  on  the  line  c.  The  polar  lines  of  0  with  regard 

to  a  pair  of  conies  A2  and  B2  meet  c  in  the  same  point  and  hence 
determine  eo.  If  no  two  of  the  points  1,  2,  3,  4,  5,  6  are  collinear 

with  0,  any  line  I  in  the  plane  a  determines  a  unique  conic  A2  with 
regard  to  which  it  is  polar  to  0,  and  which  passes  through  1,  2,  3. 

A2  determines  a  unique  conic  B2  which  passes  through  4,  5,  6  and 
meets  c  in  the  same  points  as  A2;  and  with  regard  to  this  conic  0 

*  The  construction  of  a  quadric  surface  through  nine  points  by  the  method  used 
in  the  text  is  given  in  Rohn  and  Papperitz,  Darstellende  Geometrie,  Vol.  II 
(Leipzig,  1896),  §§  676,  677. 
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has  a  polar  Hue  m.  Thus  there  is  established  a  oue-to-one  corre- 

spondence II  between  the  lines  of  a  and  the  lines  of  /3.  This  corre- 
spondence is  a  collineation.  For  consider  a  pencil  of  lines  [I]  in  a. 

The  conies  A2  determined  by  it  form  a  pencil.  Hence  the  point-pairs 

in  which  they  meet  c  are  an  involution.  Hence  the  conies  B2  deter- 
mined by  the  point-pairs  form  a  pencil,  and  hence  the  lines  [m]  form 

a  pencil.  Since  every  line  I  meets  its  corresponding  line  m  on  c,  the 

correspondence  II  is  not  only  a  collineation  but  is  a  perspectivity, 

of  which  let  the  center  be  C.  Any  two  corresponding  lines  I  and  m 

are  coplanar  with  C.  Hence  the  polar  planes  of  0  with  regard  to 

quadrics  through  1,  2,  3,  4,  5,  6  are  the  planes  on  C. 

This  was  on  the  assumption  that  no  two  of  the  points  1,  2,  3,  4,  5,  6 

are  collinear  with  0.  If  two  are  collinear  with  0,  every  polar  plane 

of  0  must  pass  through  the  harmonic  conjugate  of  0  with  regard  to 

them.    This  harmonic  conjugate  may  be  taken  as  the  point  C. 

Now  if  nine  points  are  given,  no  four  being  in  the  same  plane,  the 

notation  may  be  assigned  so  that  the  planes  a  =  123,  /3  =  456,  7=  789 

are  such  that  none  of  their  lines  of  intersection  a  =  fiy,  0  =  ya,  c  =  aj3 

contains  one  of  the  nine  points.  Let  0  be  the  point  afiy  (or  a  point 

on  the  line  a/3  if  a,  /3,  and  7  are  in  the  same  pencil).  By  the  argu- 
ment above  the  polars  of  0  with  regard  to  all  quadrics  through  the 

six  points  in  a  and  /3  must  meet  in  a  point  C.  The  polars  of  0  with 

regard  to  all  quadrics  through  the  six  points  in  /3  and  7  must  simi- 

larly pass  through  a  point  A,  and  the  polars  with  regard  to  all  quad- 
rics through  the  six  points  in  7  and  a  must  pass  through  a  point  B. 

If  A,  B,  and  C  are  not  collinear,  the  plane  a>  =  ABC  must  be  the 
polar  of  0  with  regard  to  any  quadric  through  the  nine  points.  The 

plane  a>  meets  a,  y8,  and  7  each  in  a  line  which  must  be  polar  to  0 

with  regard  to  the  section  of  any  such  quadric.  But  this  determines 

three  conies  A2  in  a,  B2  in  /3,  and  C2  in  7,  which  meet  by  pairs  in 
three  point-pairs  on  the  lines  a,  b,  c.  Hence  if  a,  /3,  7  are  not  in  the 
same  pencil,  it  follows,  by  Corollary  2,  that  there  is  a  unique  quadric 

through  the  nine  points.  If  a,  /3,  7  have  a  line  in  common,  the  three 

conies  A2,  B2,  C2  meet  this  line  in  the  same  point-pair.  Consider  a 

plane  cr  through  0  which  meets  the  conies  A2,  B2,  C2  in  three  point- 
pairs.  These  point-pairs  are  harmonically  conjugate  to  0  and  the 

trace,  .9,  on  cr  of  the  plane  a>.  Hence  they  lie  on  a  conic  J)2,  which, 

with  A2  and  B2,  determines  a  unique  quadric.    The  section  of  this 
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quadric  by  the  plane  7  has  in  common  with  C1  two  point-pairs  and 

the  polar  pair  0,  s.    Hence  the  quadric  has  C2  as  its  section  by  7. 
In  case  A,  B,  and  C  are  collinear,  there  is  a  pencil  of  planes  co  which 

meet  them.  There  is  thus  determined  a  family  of  quadrics  which  is 

called  a  pencil  and  is  analogous  to  a  pencil  of  conies.  In  case  A,  B, 

and  C  coincide,  there  is  a  bundle  of  possible  planes  <u  and  a  quadric  is 

determined  for  each  one.  This  family  of  quadrics  is  called  a  bundle. 

Without  inquiring  at  present  under  what  conditions  on  the  points 

1,  2,  •  •  •,  9  these  cases  can  arise,  we  may  state  the  following  theorem : 

Theorem  12.  Through  nine  points  no  four  of  which  are  coplanar 

there  passes  one  quadric  surface  or  a  pencil  of  quadrics  or  a  bundle 

of  quadrics. 

EXERCISES 

1.  The  lines  joining  homologous  points  of  a  projective  conic  and  straight 
line  form  a  regulus,  provided  the  line  meets  the  conic  and  is  not  coplanar 

with  it,  and  their  point  of  intersection  is  self-corresponding. 
2.  State  the  duals  of  Theorems  11  and  12. 

3.  Show  that  two  (proper  or  improper)  conjugate  reguli  pass  through  two 
conies  in  different  planes  having  two  points  (proper  or  improper  or  coincident) 
in  common  and  through  a  point  not  in  the  plane  of  either  conic.  Two  such 
conies  and  a  point  not  in  either  plane  thus  determine  one  quadric  surface. 

4.  Show  how  to  construct  a  regulus  passing  through  six  given  points 
and  a  given  line. 

106.  Linear  dependence  of  lines.  Definition.  If  two  lines  are  co- 

planar, the  lines  of  the  flat  pencil  containing  them  both  are  said  to 

be  linearly  dependent  on  them.  If  two  lines  are  skew,  the  only  lines 

linearly  dependent  on  them  are  the  two  lines  themselves.  On  three 

skew  lines  are  linearly  dependent  the  lines  of  the  regulus,  of  which 

they  are  rulers.  If  lv  Z2,  •  •  • ,  lm  are  any  number  of  lines  and  mv  ra2,  •  •  • , mk 

are  lines  such  that  ml  is  linearly  dependent  on  two  or  three  of  lv  l2,  •  •  • ,  ln, 

and  m2  is  linearly  dependent  on  two  or  three  of  lv  lv  •  ■  -,  lu,  mv  and 

so  on,  mk  being  linearly  dependent  on  two  or  three  of  lvK, •  •  -,  lH,  mv 

m2,  ■  •  •>  mk-n  then  mk  is  said  to  be  linearly  dependent  on  lv  l2,  •  •  • ,  ln. 

A  set  of  n  lines  no  one  of  which  is  linearly  dependent  on  the  n  —  1 
others  is  said  to  be  linearly  independent. 

As  examples  of  these  definitions  there  arise  the  following  cases  of 

linear  dependence  of  lines  on  three  linearly  independent  ]ines  which 

may  be  regarded  as  degenerate  cases  of  the  regulus.    (1)  If  lines  a 
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and  b  intersect  in  a  point  P,  and  a  line  c  skew  to  both  of  them  meets 

their  plane  in  a  point  Q,  then  in  the  first  place  all  lines  of  the  pencil 

ab  are  linearly  dependent  on  a,  b,  and  c ;  since  the  line  QP  is  in  this 

pencil,  all  lines  of  the  pencil  determined  by  QP  and  c  are  in  the  set. 

As  these  pencils  have  in  common  only  the  line  QP  and  do  not  con- 
tain three  mutually  skew  lines,  the  set  contains  no  other  lines. 

Hence  in  this  case  the  lines  linearly  dependent  on  a,  b,  c  are  the  flat 

pencil  ab  and  the  flat  pencil  (c,  QP).  (2)  If  one  of  the  lines,  as  a,  meets 
both  of  the  others,  which,  however,  are  skew  to  each  other,  the  set  of 

linearly  dependent  lines  consists  of  the  flat  pencils  ab  and  ac.  This 

is  the  same  as  case  (1).  (3)  If  every  two  intersect  but  not  all  in  the 

same  point,  the  three  lines  are  coplanar  and  all  lines  of  their  plane 

are  linearly  dependent  on  them.  (4)  If  all  three  intersect  in  the  same 

point  and  are  not  coplanar,  the  bundle  of  lines  through  their  common 

point  is  linearly  dependent  on  them.  The  case  where  all  three  are 

concurrent  and  coplanar  does  not  arise  because  three  such  lines  are 

not  independent. 

This  enumeration  of  cases  may  be  summarized  as  follows : 

Theorem  13.  Definition.  The  set  of  all  lines  linearly  dependent 

on  three  linearly  independent  lines  is  either  a  regulus,  or  a  bundle  of 

lines,  or  a  plane  of  lines,  or  two  flat  pencils  having  different  centers 

and  planes  but  a  common  line.  The  last  three  sets  of  lines  are  called 

degenerate  reguli. 

Definition.  The  set  of  all  lines  linearly  dependent  on  four  linearly 

independent  lines  is  called  a  linear  congruence.  The  set  of  all  lines 

linearly  dependent  on  five  linearly  independent  lines  is  called  a  linear 

complex* 
107.  The  linear  congruence.  Of  the  four  lines  a,  b,  c,  d  upor 

which  the  lines  of  the  congruence  are  linearly  dependent,  b,  c,  d 

determine,  as  we  have  just  seen,  either  a  regulus,  or  two  flat  pencils 

with  different  centers  and  planes  but  with  one  common  line,  or  a 

bundle  of  lines,  or  a  plane  of  lines.  The  lines  b,  c,  d  can  of  course  be 

replaced  by  any  three  which  determine  the  same  regulus  or  degen- 
erate regulus  as  b,  c,  d. 

*  The  terms  congruence  and  complex  are  general  terms  to  denote  two-  and  three- 
parameter  families  of  lines  respectively.  For  example,  all  lines  meeting  a  curve  or 
all  tangents  to  a  surface  form  a  complex,  while  all  lines  meeting  two  curves  or  all 
common  tangents  of  two  surfaces  are  a  corgruence. 
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So  in  case  b,  c,  d  determine  a  nondegenerate  regulus  of  which  a  is 

not  a  directrix,  the  congruence  can  be  regarded  as  determined  by  four 

mutually  skew  lines.  In  case  a  is  a  directrix,  the  lines  linearly  de- 
pendent on  a,  b,  c,  d  clearly  include  all  tangent  lines  to  the  regulus 

bed,  whose  points  of  contact  are  on  a.  But  as  a  is  in  a  flat  pencil 

with  any  tangent  whose  point  of  contact  is  on  a  and  one  of  the 

rulers,  the  family  of  lines  dependent  on  a,  b,  c,  d  is  the  family  de- 
pendent on  b,  c,  d  and  a  tangent  line  which  does  not  meet  b,  c,  d.  Hence 

in  either  case  the  congruence  is  determined  by  four  skew  lines. 

H  one  of  the  four  skew  lines  meets  the  regulus  determined  by  the 

other  three  in  two  distinct  points,  P,  Q,  the  two  directrices  p,  q 

through  these  points  meet  all  four  lines.  The  line  not  in  the  regulus 

determines  with  the  rulers  through  P  and  Q,  two  flat  pencils  of  lines 

which  join  P  to  all  the  points  of  q,  and  Q  to  all  the  points  of  p. 

From  this  it  is  evident  that  all  lines  meeting  both  p  and  q  are  linearly 

dependent  on  the  given  four.  For  if  ij  is  any  point  on  p,  the  line 

PXQ  and  the  ruler  through  Px  determine  a  flat  pencil  joining  Px  to 

all  the  points  of  q;  similarly,  for  any  point  of  q.  No  other  lines 

can  be  dependent  on  them,  because  if  three  lines  of  any  regulus 

meet  p  and  q,  so  do  all  the  lines. 

If  one  of  the  four  skew  lines  is  tangent  to  the  regulus  determined 

by  the  other  three  in  a  point  P,  the  family  of  dependent  lines  in- 
cludes the  regulus  and  all  lines  of  the  flat  pencil  of  tangents  at  P. 

Hence  it  includes  the  directrix  p  through  P  and  hence  all  the  tangent 

lines  whose  points  of  contact  are  on  p.  By  Theorem  6  this  family 

of  lines  can  be  described  as  the  set  of  all  lines  on  homologous  pairs 

in  a  certain  projectivity  n  between  the  points  and  planes  of  p.  Any 

two  lines  in  this  set,  if  they  intersect,  determine  a  flat  pencil  of  lines 

in  the  set  Any  regulus  determined  by  three  skew  lines  I,  to,  n  of 

the  set  determines  a  projectivity  between  the  points  and  planes  on  p, 

but  this  projectivity  sets  up  the  same  correspondence  as  n  for  the 

three  points  and  planes  determined  by  I,  to,  and  n.  Hence  by  the 

fundamental  theorem  (Theorem  17,  Chap.  IV)  the  projectivity  deter- 
mined by  the  regulus  hnn  is  the  same  as  n,  and  all  lines  of  the 

regulus  are  in  the  set.  Hence,  when  one  of  four  skew  lines  is  tangent 

to  the  regulus  of  the  other  three,  the  family  of  dependent  lines  consists 

of  a  regulus  and  all  lines  tangent  to  it  at  points  of  a  directrix.  The 

directrix  is  itself  in  the  family. 
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If  no  one  of  the  four  skew  lines  meets  the  regulus  of  the  other 

three  in  a  proper  point,  we  have  a  case  studied  more  fully  below. 
In  case  b,  c,  d  determine  two  flat  pencils  with  a  common  line,  a 

may  meet  the  center  A  of  one  of  the  pencils.  The  linearly  dependent 

lines,  therefore,  include  the  bundle  whose  center  is  A.  The  plane  of 

the  other  flat  pencil  passes  through  A  and  contains  three  noncon- 
current  lines  dependent  on  a,  b,  c,  d.  Hence  the  family  of  lines  also 

includes  all  lines  of  this  plane.  The  family  of  all  lines  through  a 

point  and  all  lines  in  a  plane  containing  this  point  has  evidently 

no  further  lines  dependent  on  it.  This  is  a  degenerate  case  of  a  con- 
gruence. If  a  is  in  the  plane  of  one  of  the  flat  pencils,  we  have,  by 

duality,  the  case  just  considered.  If  a  meets  the  common  line  of  the 

two  flat  pencils  in  a  point  distinct  from  the  centers,  the  two  flat 

pencils  may  be  regarded  as  determined  by  their  common  line  d'  and 

by  lines  V  and  c',  one  from  each  pencil,  not  meeting  a.  Hence  the 

family  of  lines  includes  those  dependent  on  the  regulus  ab'c'  and  its 

directrix  d'.  This  case  has  already  been  seen  to  yield  the  family  of  all 

lines  of  the  regulus  ab'c'  and  all  lines  tangent  to  it  at  points  of  d'. 

Fig.  112 

If  a  does  not  meet  the  common  line,  it  meets  the  planes  of  the 

two  pencils  in  points  C  and  D.  Call  the  centers  of  the  pencils  A  and 

B  (fig.  112).  The  first  pencil  consists  of  the  lines  dependent  on  AD 
and  AB,  the  second  of  those  dependent  on  AB  and  BC.  As  CD 

the  line  a,  the  family  of  lines  is  seen  to  consist  of  the  lines  which 

are  linearly  dependent  on  AB,  BC,  CD,  DA.  Since  any  point  of  BD 

is  joined  by  lines  of  the  family  to  A  and  C,  it  is  joined  by  lines  of 
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the  family  to  even-  point  of  AC.  Hence  this  case  gives  the  family 
of  all  lines  meeting  both  AC  and  BD. 

In  case  b,  c,  d  determine  a  bundle  of  lines,  a,  being  independent  of 
them,  does  not  pass  through  the  center  of  the  bundle.  Hence  the 

family  of  dependent  lines  includes  all  lines  of  the  plane  of  a  and  the 
center  of  the  bundle  as  well  as  the  bundle  itself. 

Lastly,  if  b,  c,  d  are  coplanar,  we  have,  by  duality,  the  same  case  as 

if  b,  c,  d  were  concurrent    We  have  thus  proved 

Theorem  14.  A  linear  congruence  is  either  (1)  a  set  of  lines 

linearly  dependent  on  four  linearly  independent  skew  lines,  such  that 

no  one  of  them  meets  the  regulus  containing  the  other  three  in  a  proper 

point;  or  (2)  it  is  the  set  of  all  lines  meeting  two  skew  lines ;  or  (3) 

it  is  the  set  of  all  rulers  and  tangent  lines  of  a  given  regulus  which 

meet  a  fixed  directrix:  of  the  regulus ;  or  (4)  it  consists  of  a  bundle 

of  lines  and  a  plane  of  lines,  the  center  of  the  bundle  being  on  the 

plane. 

Definition.  A  congruence  of  the  first  kind  is  called  elliptic;  of  the 

second  kind,  hyperbolic  ;  of  the  third  kind,  parabolic  ;  of  the  fourth 

kind,  degenerate.  A  line  which  has  points  in  common  with  all  lines 

of  a  congruence  is  called  a  directrix  of  the  congruence. 

Corollary.  A  parabolic  congruence  consists  of  all  lines  on  corre- 
sponding points  and  planes  in  a  projectivity  between  the  points  and 

pi  a  nes  on  a  line.    The  directrix  is  a  line  of  the  congruence. 

To  study  the  general  nondegenerate  case,  let  us  denote  four  linearly 

independent  and  mutually  skew  lines  on  which  the  other  lines  of  the 

congruence  depend  by  a,  b,  c,  d,  and  let  irl  and  tt2  be  two  planes  in- 
tersecting in  a.  Let  the  points  of  intersection  with  irl  and  7r,  of  b,  c, 

and  d  be  Bv  Cv  and  Dt  and  B2,  C„,  and  Z>2  respectively.  By  letting 

the  complete  quadrilateral  a,  BXCV  CtDv  B4lBl  correspond  to  the 
complete  quadrilateral  a,  B„Ct,  C„Da,  B2B„,  there  is  established  a 

projective  collineation  n  between  the  planes  irx  and  7r2  in  which 

the  lines  b,  c,  d  join  homologous  points  (fig.  113). 

Among  the  lines  dependent  on  a,  b,  c,  d  are  the  lines  of  the  reguli 

abc,  acd,  adb,  and  all  reguli  containing  a  and  two  lines  from  any 

of  these  three  reguli.  But  all  such  reguli  meet  irx  and  7r2  in  lines 

(e.g.  BXDX,  B„D.2)  because  they  have  a  in  common  with  irx  and 

7r,.    Furthermore,  the  lines  of  the  fundamental  reguli  join  points 
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which  correspond  in  II  (Theorem  5  of  this  chapter  and  Theorem  18, 

Chap.  IV).  Hence  the  reguli  which  contain  a  and  lines  shown  by- 
means  of  such  reguli  to  be  dependent  on  a,  b,  c,  d  are  those  gen- 

erated by  the  projectivities  determined  by  II  between  lines  of  tt1 
and  7r2. 

d  jit 

Fig.  113 

Now  consider  reguli  containing  triples  of  the  lines  already  shown 

to  be  in  the  congruence,  but  not  containing  a.  Three  such  lines,  I, 

m,  n,  join  three  noncollinear  points  Lv  Mv  Nx  of  irl  to  the  points 

Lv  Mv  N%  of  7r2  which  correspond  to  them  in  the  collineation  II.  The 

regulus  containing  I,  m,  and  n  meets  ir1  and  7r2  in  two  conies  which 

are  projective  in  such  a  way  that  Lv  Mv  A^  correspond  to  L2,  Mv  Nv 

The  projectivity  between  the  conies  determines  a  projectivity  between 

the  planes,  and  as  this  projectivity  has  the  same  effect  as  II  on  the 

quadrilateral  composed  of  the  sides  of  the  triangle  LlMlNl  and  the 

line  a,  it  is  identical  with  II.  Hence  the  lines  of  the  regulus  Imn 

join  points  of  tt1  and  7r2  which  are  homologous  under  n  and  are 
therefore  among  the  lines  already  constructed. 

Among  the  lines  linearly  dependent  on  the  family  thus  far  con- 

structed are  also  such  as  appear  in  flat  pencils  containing  two  inter- 
secting lines  of  the  family.  If  one  of  the  two  lines  is  a,  the  other 

must  meet  a  in  a  double  point  of  the  projectivity  determined  on  a  by 

n.  If  neither  of  the  two  lines  is  a,  they  must  meet  nrl  and  7r2,  the 

first  in  points  Pv  P%  and  the  second  in  points  Qv  Q2,  and  these  four 
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points  are  clearly  distinct  from  one  another.  But  as  the  given  lines  of 
the  congruence,  F^Pi  and  Q^,  intersect,  so  must  also  the  lines  P^  and 

j^<?2  °*  7ri  anc*  """i  intersect,  and  the  projectivity  determined  between 

PXQX  and  P2Q3  by  II  is  a  perspectivity.  Hence  the  common  point  of 

PQX  and  P1Ql  is  a  point  of  a  and  is  transformed  into  itself  by  II. 

Hence,  if  lines  of  the  family  intersect,  n  has  at  least  one  double  point 

on  a,  which  means,  by  §  105,*  that  the  line  a  meets  the  regulus  bed 
and  the  congruence  has  one  or  two  directrices.  Thus  two  lines  of  a 

nondegenerate  congruence  intersect  only  in  the  parabolic  and  hyper- 
bolic cases ;  and  from  our  previous  study  of  these  cases  we  know  that 

the  lines  of  a  congruence  through  a  point  of  intersection  of  two  lines 

form  a  flat  pencil. 

We  have  thus  shown  that  all  the  lines  linearly  dependent  on 

a,  1,  c,  d,  with  the  exception  of  a  flat  pencil  at  each  double  point  of 

the  projectivity  on  a,  are  obtained  by  joining  the  points  of  ttx  and  7r3 
which  are  homologous  under  n.  From  this  it  is  evident  that  any  four 

linearly  independent  lines  of  the  congruence  could  have  been  taken 
as  the  fundamental  lines  instead  of  a,  b,  c,  d.  These  two  results  are 
summarized  as  follows : 

Theorem  15.  All  the  lines  of  a  linear  congruence  are  linearly 

dependent  on  any  linearly  independent  four  of  its  lines.  No  lines  not 

in  the  congruence  are  linearly  dependent  on  four  such  lines. 

Theorem  16.  If  two  planes  meet  in  a  line  of  a  linear  congruence 

and  neither  contains  a  directrix,  the  other  lines  of  the  congruence  meet 

the  planes  in  homologous  points  of  a  projectivity.  Conversely,  if  two 

planes  are  projective  in  such  a  way  that  their  line  of  intersection  cor- 
responds to  itself,  the  lines  joining  homologous  points  are  in  the  same 

linear  congruence. 

*  If  there  are  two  double  points,  E,  F,  on  a,  the  conic  BiC\D\EF  must  be  trans- 
formed by  n  into  the  conic  B2C2DZEF,  and  the  lines  joining  corresponding  points  of 

these  conies  must  form  a  regulus  contained  in  the  congruence.  As  E  and  F  are 
on  lines  of  the  regulus  bed,  there  are  two  directrices  p,  q  of  this  regulus  which 
meet  E  and  F  respectively.  The  lines  p  and  q  meet  all  four  of  the  lines  a,  6,  c,  d. 
Hence  they  meet  all  lines  linearly  dependent  on  a,  6,  c,  d. 

In  the  parabolic  case  the  regulus  bed  must  be  met  by  a  in  the  single  invariant 
point  JET  of  the  parabolic  projectivity  on  a,  because  the  conic  tangent  to  a  at  H  and 
passing  through  B\C\D\  must  be  transformed  by  H  into  the  conic  tangent  to  a  at  H 
and  passing  through  B«  C2D2 ;  and  the  lines  joining  homologous  points  of  these  conies 
must  form  a  regulus  contained  in  the  congruence.  As  H,  a  point  of  a,  is  on  a  line 
of  the  regulus  bed,  there  is  one  and  only  one  directrix  p  of  this  regulus  which  meets 
all  four  of  a,  6,  c,  d  and  hence  meets  all  lines  of  the  congruence. 
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The  dual  of  Theorem  1 6  may  be  stated  in  the  following  form : 

Theorem  17.  From  two  points  on  the  same  line  of  a  linear  congru- 

ence the  latter  is  projected  by  two  projective  bundles  of  planes.  Con- 
versely, two  bundles  of  planes  projective  in  such  a  way  that  the  line 

joining  their  centers  is  self -corresponding,  generate  a  linear  congruence. 

Definition.  A  regulus  all  of  whose  rulers  are  in  a  congruence  is 

called  a  regulus  of  the  congruence  and  is  said  to  be  in  or  to  be  con- 
tained in  the  congruence. 

Corollary.  If  three  lines  of  a  regulus  are  in  a  congruence,  the 

regulus  is  in  the  congruence. 

In  the  hyperbolic  (or  parabolic)  case  the  regulus  bed  (in  the  notation 

already  used)  is  met  by  a  in  two  points  (or  one  point),  its  points  of 

intersection  with  the  directrices  (or  directrix).  In  the  elliptic  case  the 

regulus  bed  cannot  be  met  by  a  in  proper  points,  because  if  it  were, 

the  projectivity  II,  between  ttx  and  irv  would  have  these  points  as 

double  points.  Hence  no  line  of  the  congruence  meets  a  regulus  of 

the  congruence  without  being  itself  a  generator.  Hence  through  each 

point  of  space,  without  exception,  there  is  one  and  only  one  line  of 

the  congruence.  The  involution  of  conjugate  points  of  the  regulus 

bed  on  the  line  a  is  transformed  into  itself  by  n,  and  the  same  must 

be  true  of  any  other  regulus  of  the  congruence,  if  it  does  not  con- 
tain a.  Since  there  is  but  one  involution  transformed  into  itself  by  a 

noninvolutoric  projectivity  on  a  line  (Theorem  20,  Chap.  VIII),  we 

have  that  the  same  involution  of  conjugate  points  is  determined  on 

any  line  of  the  congruence  by  all  reguli  of  the  congruence  which  do 

not  contain  the  given  line.  This  is  entirely  analogous  to  the  hyper- 
bolic case,  and  can  be  used  to  gain  a  representation  in  terms  of  proper 

elements  of  the  improper  directrices  of  an  elliptic  congruence. 

The  three  kinds  of  congruences  may  be  characterized  as  follows : 

Theorem  18.  In  a  parabolic  linear  congruence  each  line  is  tangent 

at  a  fixed  one  of  its  points  to  all  reguli  of  the  congruence  of  which  it  is 

not  a  ruler.  On  each  line  of  a  hyperbolic  or  elliptic  congruence  all  reguli 

of  the  congruence  not  containing  the  given  line  determine  the  same 

involution  of  conjugate  points.  Through  each  point  of  space  there  is 

one  and  only  one  line  of  an  elliptic  congruence.  For  hyperbolic  and 

parabolic  congruences  this  statement  is  true  except  for  points  on  a 
directrix. 
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EXERCISES 

1.  All  lines  of  a  congruence  can  be  constructed  from  four  lines  by  means 

of  reguli  all  of  which  have  two  given  lines  in  common. 

2.  Given  two  involutions  (both  having  or  both  not  having  double  points) 

on  two  skew  lines.  Through  each  point  of  space  there  are  two  and  only  two 

lines  which  are  axes  of  perspectivity  projecting  one  involution  into  the  other, 

i.e.  such  that  two  planes  through  conjugate  pairs  of  the  first  involution  pass 

through  a  conjugate  pair  of  the  second  involution.  These  lines  constitute 

two  congruences. 

3.  All  lines  of  a  congruence  meeting  a  line  not  in  the  congruence  form 

a  regulus. 

4.  A  linear  congruence  is  self-polar  with  regard  to  any  regulus  of  the 
congruence. 

5.  A  degenerate  linear  congruence  consists  of  all  lines  meeting  two  inter- 
secting lines. 

108.  The  linear  complex.  Theorem  19.  A  linear  complex  con- 
sists of  all  lines  linearly  dependent  on  the  edges  of  a  simple  skew 

pentagon* 
Proof.  By  definition  (§  106)  the  complex  consists  of  all  lines 

linearly  dependent  on  five  independent  lines.  Let  a  be  one  of  these 

which  does  not  meet  the  other  four,  b',c',  d',  e'.  The  complex  consists  of 

all  lines  dependent  on  a  and  the  congruence  b'c'd'e'.  If  this  con- 
gruence is  degenerate,  it  consists  of  all  lines  dependent  on  three  sides 

of  a  triangle  cde  and  a  line  b  not  in  the  plane  of  the  triangle 

(Theorems  14,  15).  As  b  may  be  any  line  of  a  bundle,  it  may  be 

chosen  so  as  to  meet  a ;  c  may  be  chosen  so  as  to  meet  b,  and  e  may 

be  so  chosen  as  to  meet  a.  Thus  in  this  case  the  complex  depends 

on  five  lines  a,  b,  c,  d,  e  not  all  coplanar,  forming  the  edges  of  a  simple 

pentagon. 

If  the  congruence  is  not  degenerate,  the  four  lines  b",  c",  d",  e"  upon 
which  it  depends  may  (Theorem  15)  be  chosen  so  that  no  two  of 

them  intersect,  but  so  that  two  and  only  two  of  them,  b"  and  e", 
meet  a.  Thus  the  complex  consists  of  all  lines  linearly  dependent 

on  the  two  flat  pencils  ab"  and  ae"  and  the  two  lines  c"  and  d".  Let 
b  and  e  be  the  lines  of  these  pencils  (necessarily  distinct  from  each 

other  and  from  a)  which  meet  c"  and  d"  respectively.  The  complex 

then  consists  of  all  lines  dependent  on  the  flat  pencils  ab,  be",  ae,  ed". 

*  The  edges  of  a  simple  skew  pentagon  are  five  lines  in  a  given  order,  not  all 
coplanar,  each  line  intersecting  its  predecessor  and  the  last  meeting  the  first. 
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Finally,  let  c  and  d  be  two  intersecting  lines  distinct  from  b  and  e, 

which  are  in  the  pencils  be"  and  ed".  The  complex  consists  of  all  Hues 
linearly  dependent  on  the  flat  pencils  ab,  be,  ed,  do,  ea.  Not  all  the 

vertices  of  the  pentagon  abede  can  be  coplanar,  because  then  all  the 

lines  would  be  in  the  same  degenerate  congruence. 

Theokem  20.  Definition.  There  are  two  classes  of  complexes  such 

that  all  complexes  of  either  class  are  projectively  equivalent.  A  com- 
plex of  one  class  consists  of  a  line  and  all  lines  of  space  which  meet 

it.  These  are  called,  special  complexes.  A  complex  of  the  other  class 

is  called  general.  No  four  vertices  of  a  pentagon  which  determines  it 
are  coplanar. 

Proof.  Given  any  complex,  by  the  last  theorem  there  is  at  least 

one  skew  pentagon  abede  which  determines  it.  If  there  is  a  lineZ 

meeting  the  five  edges  of  this  pentagon,  this  line  must  meet  all  lines 

of  the  complex,  because  any  line  meeting  three  linearly  independent 

lines  of  a  regulus  (degenerate  or  not)  meets  all  lines  of  it.  Moreover, 
if  the  line  I  meets  a  and  b  as  well  as  c  and  d,  it  must  either  join 

their  two  points  of  intersection  or  be  the  line  of  intersection  of  their 

common  planes.  If  /  meets  e  also,  it  follows  in  either  case  that  four 

of  the  vertices  of  the  pentagon  are  coplanar,  two  of  them  being  on  e. 

(That  all  five  cannot  be  coplanar  was  explained  at  the  end  of  the 

last  proof.)  Conversely,  if  four  of  the  five  vertices  of  the  skew 

pentagon  are  coplanar,  two  and  only  two  of  its  edges  are  not  in  this 

plane,  and  the  line  of  intersection  of  the  plane  of  the  two  edges  with 

the  plane  of  the  other  three  meets  all  five  edges. 

Hence,  if  and  only  if  four  of  the  five  vertices  are  coplanar,  there  ex- 

ists a  line  meeting  the  five  lines.  Since  any  two  skew  pentagons  are  pro- 
jectively equivalent,  if  no  four  vertices  are  coplanar  (Theorem  12, 

Chap.  Ill),  any  two  complexes  determined  by  such  pentagons  are 

projectively  equivalent.  Two  simple  pentagons  are  also  equivalent 
if  four  vertices,  but  not  five,  of  each  are  coplanar,  because  any  simple 

planar  four-point  can  be  transformed  by  a  collineation  of  space  into 
any  other,  and  then  there  exists  a  collineation  holding  the  plane 

of  the  second  four-point  pointwise  invariant  and  transforming  any 

point  not  on  the  plane  into  any  other  point  not  on  the  plane.  There- 

fore all  complexes  determined  by  pentagons  of  this  kind  are  projec- 
tively equivalent.  But  these  are  the  only  two  kinds  of  skew  pentagons. 

Hence  there  are  two  and  only  two  kinds  of  complexes. 
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In  case  four  vertices  of  the  pentagon  are  coplanar,  we  have  seen 

that  there  is  a  line  I  meeting  all  its  edges.  Since  this  line  was 

determined  as  the  intersection  of  the  plane  of  two  adjacent  edges 

with  the  plane  of  the  other  three,  it  contains  at  least  two  vertices. 
It  cannot  contain  three  vertices  because  then  all  five  would  be 

coplanar.  As  one  of  the  two  planes  meeting  on  /  contains  three 

independent  lines,  all  lines  of  that  plane  are  lines  of  the  complex. 
The  line  /  itself  is  therefore  in  the  complex  as  well  as  the  two  lines 

of  the  other  plane.  Hence  all  lines  of  both  planes  are  in  the  complex. 

Hence  all  lines  meeting  I  are  in  the  complex.  But  as  any  regulus 

three  of  whose  lines  meet  /  has  all  its  lines  meeting  I,  the  complex 

satisfies  the  requirements  stated  in  the  theorem  for  a  special  complex. 

Fig.  114 

A  more  definite  idea  of  the  general  complex  may  be  formed  as 

follows.  Let  PtPzPsP^s  (fig-  H4)  be  a  simple  pentagon  upon  whose 
edges  all  lines  of  the  complex  are  linearly  dependent.  Let  q  be  the 

line  of  the  flat  pencil  p3pt  which  meets  pv  and  let  B  be  the  point  of 

intersection  of  q  and  pv  Denote  the  vertices  of  the  pentagon  by  Px„, 
P^,  P3i,  i?5,  Pil,  the  subscripts  indicating  the  edges  which  meet  in  a 

given  vertex. 

The  four  independent  lines  pxp2psq  determine  a  congruence  of  lines 

all  of  which  are  in  the  complex  and  whose  directrices  are  a  =  PP23 

and  «'  =  Pi2Pu.  In  like  manner,  qpipsp1  determine  a  congruence  whose 

directrices  are  b  =  BPi5  and  b'  =  PMPhV  The  complex  consists  of  all 
lines  linearly  dependent  on  the  lines  of  these  two  congruences.    The 
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directrices  of  the  two  congruences  intersect  at  R  and  PSi  respectively 

and  determine  two  planes,  ab=p  and  a'b'  =  ir,  which  meet  on  q. 
Through  any  point  P  of  space  not  on  p  or  it  there  are  two  lines 

I,  m,  the  first  meeting  a  and  a',  and  the  second  meeting  b  and  b' 
(fig.  115).  All  lines  in  the  flat  pencil  Im  are  in  the  complex  by  defi- 

nition.   This  flat  pencil  meets  p  and  7r  in  two  perspective  ranges  of 

Fig.  115 

points  and  thus  determines  a  projectivity  between  the  flat  pencil  ab 

and  the  flat  pencil  a'b',  in  which  a  and  a',  b  and  b'  correspond  and  q 
corresponds  to  itself.    The  projectivity  thus  determined  between  the 

pencils  ab  and  a'b'  is  the  same  for  all  points  P,  because  a,  b,  q  always 

correspond  to  a',  b',  q'.   Hence  the  complex  contains  all  lines  in  the 
fiat  pencils  of  lines  which  meet  homologous  lines  in  the  projectivity 
determined  by 

abq  -^  a'b'q. 
Denote  this  set  of  lines  by  S.  We  have  seen  that  it  has  the  property 

that  all  its  lines  through  a  point  not  on  p  or  ir  are  coplanar.  If  a 

point  P  is  on  p  but  not  on  q,  the  line  PR  has  a  corresponding  line  p' 

in  the  pencil  a'b'  and  hence  S  contains  all  lines  joining  P  to  points 

of  p'.  Similarly,  for  points  on  tt  but  not  on  q.  By  duality  every  plane 
not  on  q  contains  a  flat  pencil  of  lines  of  S. 

Each  of  the  flat  pencils  not  on  q  has  one  line  meeting  q.  Hence 

each  plane  of  space  not  on  q  contains  one  and  only  one  line  of  S 

meeting  q.  Applying  this  to  the  planes  through  P3i  not  contain- 
ing q,  we  have  that  any  line  through  Pu  and  not  on  p  is  not  in  the 
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set  S.  Let  /  be  any  such  line.  All  lines  of  S  in  each  plane  through 
I  form  a  flat  pencil  P,  and  the  centers  of  all  these  pencils  lie  on  a  line 

/',  because  all  lines  through  two  points  of  /  form  two  flat  pencils  each 
of  which  contains  a  line  from  each  pencil  P.  Hence  the  lines  of  S 

meeting  I  form  a  congruence  whose  other  directrix  V  evidently  lies  on 

p.  The  point  of  intersection  of  /'  with  q  is  the  center  of  a  flat  pencil 
of  lines  of  S  all  meeting  I.  Hence  all  lines  of  the  plane  Iq  form  a  flat 

pencil  Since  I  is  any  line  on  P34  and  not  on  tt,  this  establishes  that 

each  plane  and,  by  duality,  each  point  on  q,  as  well  as  not  on  q,  con- 
tains a  flat  pencil  of  lines  of  S. 

We  can  now  prove  that  the  complex  contains  no  lines  not  in  S 

To  do  so  we  have  to  show  that  all  lines  linearly  dependent  on  lines 

of  S  are  in  S.  If  two  lines  of  S  intersect,  the  flat  pencil  they  deter- 
mine is  by  definition  in  S.  If  three  lines  mv  m2,  mz  of  S  are  skew  to 

one  another,  not  more  than  two  of  the  directrices  of  the  regulus  con- 

taining them  are  in  S.  For  if  three  directrices  were  in  S,  all  the  tan- 
gent lines  at  points  of  these  three  lines  would  be  in  S,  and  hence  any 

plane  would  contain  three  nonconcurrent  lines  of  S.  Let  /  be  a 

directrix  of  the  regulus  mlmnmv  which  is  not  in  S.  By  the  argu- 
ment made  in  the  last  paragraph  all  lines  of  S  meeting  I  form  a  con- 

gruence. But  this  congruence  contains  all  lines  of  the  regulus  mjiijii^ 

and  hence  all  lines  of  this  regulus  are  in  S.  Hence  the  set  of  lines  S 

is  identical  with  the  complex. 

Theorem  21  (Sylvester's  theorem*).  If two  projective  fiat  pencils 
with  different  centers  and  planes  have  a  line  q  in  common  which  is 

self -corresponding,  all  lines  meeting  homologous  pairs  of  lines  in  these 
tico  pencils  are  in  the  same  linear  complex.  TJiis  complex  consists  oj 

these  lines  together  with  a  parabolic  congruence  whose  directrix  is  q. 

Proof  This  has  all  been  proved  in  the  paragraphs  above,  with  the 

exception  of  the  statement  that  q  and  the  lines  meeting  q  form  a 

linear  congruence.  Take  three  skew  lines  of  the  complex  meeting  q ; 

they  determine  with  q  a  congruence  C  all  of  whose  lines  are  in  the 

complex.  There  cannot  be  any  other  lines  of  the  complex  meeting  q, 

because  there  would  be  dependent  on  such  lines  and  on  the  congru- 
ence C  all  lines  meeting  q,  and  hence  all  lines  meeting  q  would  be  in 

the  given  complex,  contrary  to  what  has  been  proved  above. 

*  Cf.  Comptes  Rendus,  Vol.  LII  (1861),  p.  741. 
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Another  theorem  proved  in  the  discussion  above  is : 

Theorem  22.  Definition  of  Null  System.  All  the  lines  of  a 

linear  complex  which  pass  through  a  point  P  lie  in  a  plane  tt,  and  all 

the  lines  which  lie  in  a  plane  tt  pass  through  a  point  P.  In  case  of 

a  special  complex,  exception  must  be  made  of  the  points  and  planes  on 

the  directrix.  The  point  P  is  called  the  null  point  of  the  plane  ir  and 

ir  is  called  the  null  plane  of  P  with  regard  to  the  complex.  The  cor- 
respondence between  the  points  and  planes  of  space  thus  established  is 

called  a  null  system  or  null  polarity. 

Another  direct  consequence,  remembering  that  there  are  only  two 
kinds  of  complexes,  is  the  following : 

Theorem  23.  Any  five  linearly  independent  lines  are  in  one  and 

only  one  complex.  If  the  edges  of  a  simple  pentagon  are  in  a  given 

complex,  the  pentagon  is  skew  and  its  edges  linearly  independent.  If 

the  complex  is  general,  no  four  vertices  of  a  simple  pentagon  of  its 
lines  are  coplanar. 

Theorem  24.  Any  set  of  lines,  K,  in  space  such  that  the  lines  of  the 

set  on  each  point  of  space  constitute  a  flat  pencil  is  a  linear  complex. 

Proof  (a)  If  two  lines  of  the  set  K  intersect,  the  set  contains  all 
lines  linearly  dependent  on  them,  by  definition. 

(b)  Consider  any  line  a  not  in  the  given  set  K.  Two  points  A,  B  on 

a  have  flat  pencils  of  lines  of  K  on  different  planes ;  for  if  the  planes 

coincided,  every  line  of  the  plane  would,  by  (a),  be  a  line  of  K.  Hence 

the  lines  of  K  through  A  and  B  all  meet  a  line  a'  skew  to  a.  From 
this  it  follows  that  all  the  lines  of  the  congruence  whose  directrices 

are  a,  a'  are  in  K.  Similarly,  if  b  is  any  other  line  not  in  K  but  meet- 

ing a,  all  lines  of  K  which  meet  b  also  meet  another  line  b'.  More 

over,  since  any  line  meeting  a,  b,  and  b'  is  in  K  and  hence  also  meets 

a',  the  four  lines  a,  a',  b,  b'  lie  on  a  degenerate  regulus  consisting  of  the 

flat  pencils  ab  and  a'b'  (Theorem  13).  Let  q  (fig.  115)  be  the  common 

line  of  the  pencils  ab  and  a'b'.  Through  any  point  of  space  not  on  one 
of  the  planes  ab  and  a'b'  there  are  three  coplanar  lines  of  K  which 

meet  q  and  the  pairs  aa'  and  bb'.  Hence  K  consists  of  lines  meeting 
homologous  lines  in  the  projectivity 

qab  -r  qa'b', 
and  therefore  is  a  complex  by  Theorem  21. 
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Corollary.  Any  (1, 1)  correspondence  between  the  points  and  the 

planes  of  space  such  that  each  point  lies  on  its  corresponding  plane 
is  a  null  system. 

Theorem  ,25.  Two  linear  complexes  have  in  common  a  linear 

congruence. 

Proof.  At  any  point  of  space  the  two  flat  pencils  belonging  to  the 
two  complexes  have  a  line  in  common.  Obviously,  then,  there  are 

three  linearly  independent  lines  lv  l2,  /,  common  to  the  complexes. 

All  lines  in  the  regulus  ltljt  are,  by  definition,  in  each  complex.  But 

as  there  are  points  or  planes  of  space  not  on  the  regulus,  there  is  a 

line  lt  common  to  the  two  complexes  and  not  belonging  to  this  regulus. 

All  bines  linearly  dependent  on  lv  I.,,  l3,  lt  are,  by  definition,  common 
to  the  complexes  and  form  a  congruence.  No  further  line  could  be 

common  or,  by  Theorem  23,  the  two  complexes  would  be  identical. 

Corollary  1.  The  lines  of  a  complex  meeting  a  line  I  not  in  the 

complex  form  a  hyperbolic  congruence. 

Proof.  The  line  is  the  directrix  of  a  special  complex  which,  by  the 

theorem,  has  a  congruence  in  common  with  the  given  complex.  The 

common  congruence  cannot  be  parabolic  because  the  lines  of  the  first 

complex  in  a  plane  on  I  form  a  flat  pencil  whose  center  is  not  on  /, 

since  I  is  not  in  the  complex 

Corollary  2.  TJie  lines  of  a  complex  meeting  a  line  I  of  the  com- 
plex form  a  parabolic  congruence. 

Proof.  The  centers  of  all  pencils  of  lines  in  this  congruence  must 

be  on  I  because  I  is  itself  a  line  of  each  pencil. 

Definition.  A  bine  I  is  a  polar  to  a  line  V  with  regard  to  a 

complex  or  null  system,  if  and  only  if  /  and  V  are  directrices  of  a 

congruence  of  lines  of  the  complex. 

Corollary  3.  If  I  is  polar  to  I',  I'  is  polar  to  I.  A  line  is  polar 
to  itself,  if  and  only  if  it  is  a  line  of  the  complex. 

Theorem  26.  A  null  system  is  a  projective  correspondence  between 

the  points  and  planes  of  space. 

Proof.  The  points  on  a  line  I  correspond  to  the  planes  on  a  line  V 
by  Corollaries  1  and  2  of  the  last  theorem.  If  I  and  V  are  distinct, 

the  correspondence  between  the  points  of  I  and  planes  of  V  is  a  per- 

spectivity.  If  /  =  I',  the  correspondence  is  projective  by  the  corollary 
of  Theorem  14. 
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EXERCISES 

1 .  If  a  point  P  is  on  a  plane  p,  the  null  plane  w  of  P  is  on  the  null  point  R  of  p. 
2.  Two  pairs  of  lines  polar  with  regard  to  the  same  null  system  are  always  in 

the  same  regulus  (degenerate,  if  a  line  of  one  pair  meets  a  line  of  the  other  pair). 
3.  If  a  line  I  meets  a  line  m,  the  polar  of  I  meets  the  polar  of  m. 
4.  Pairs  of  lines  of  the  regulus  in  Ex.  2  which  are  polar  with  regard  to 

the  complex  are  met  by  any  directrix  of  the  regulus  in  pairs  of  points  of  an 
involution.  Thus  the  complex  determines  an  involution  among  the  lines  of 
the  regulus. 

5.  Conversely  (Theorem  of  Chasles),  the  lines  meeting  conjugate  pairs  of 
lines  in  an  involution  on  a  regulus  are  in  the  same  complex.  Show  that 
Theorem  21  is  a  special  case  of  this. 

6.  Find  the  lines  common  to  a  linear  complex  and  a  regulus  not  in  the 
complex. 

7.  Three  skew  lines  k,  I,  m  determine  one  and  only  one  complex  contain- 
ing k  and  having  I  and  m  as  polars  of  each  other. 
8.  If  the  number  of  points  on  a  line  is  n  +  1,  how  many  reguli,  how  many 

congruences,  how  many  complexes  are  there  in  space?  How  many  lines  are 
there  in  each  kind  of  regulus,  congruence,  complex  ? 

9.  Given  any  general  complex  and  any  tetrahedron  whose  faces  are  not 
null  planes  to  its  vertices.  The  null  planes  of  the  vertices  constitute  a  second 
tetrahedron  whose  vertices  lie  on  the  planes  of  the  first  tetrahedron.  The 

two  tetrahedra  are  mutually  inscribed  and  circumscribed  each  to  the  other  * 
(cf.  Ex.  6,  p.  105). 

10.  A  null  system  is  fully  determined  by  associating  with  the  three  vertices 
of  a  triangle  three  planes  through  these  vertices  and  having  their  one  common 
point  in  the  plane  of  the  triangle  but  not  on  one  of  its  sides. 

11.  A  tetrahedron  is  self-polar  with  regard  to  a  null  system  if  two  opposite 
edges  are  polar. 

12.  Every  line  of  the  complex  determined  by  a  pair  of  Mobius  tetrahedra 
meets  their  faces  and  projects  their  vertices  in  projective  throws  of  points  and 

planes. 
13.  If  a  tetrahedron  T  is  inscribed  and  circumscribed  to  Tx  and  also  to  Tv 

the  lines  joining  corresponding  vertices  of  7\  and  T2  and  the  lines  of  intersec- 
tion of  their  corresponding  planes  are  all  in  the  same  complex. 

14.  A  null  system  is  determined  by  the  condition  that  two  pairs  of  lines 
of  a  regulus  shall  be  polar. 

15.  A  linear  complex  is  self-polar  with  regard  to  a  regulus  all  of  whose 
lines  are  in  the  complex. 

16.  The  lines  from  which  two  projective  pencils  of  points  on  skew  lines 
are  projected  by  involutions  of  planes  are  all  in  the  same  complex.    Dualize. 

*  This  configuration  was  discovered  by  Mobius,  Journal  fur  Matheraatik,  Vol.  Ill 
(1828),  p.  273.   Two  tetrahedra  in  this  relation  are  known  as  Mobius  tetrahedra. 
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109.  The  Pliicker  line  coordinates.  Two  points  whose  coordinates  are 

\xv  x.2,  xs,  x{) 

{Vx>  y*>  y3>  y*) 

determine  a  line  /.  The  coordinates  of  the  two  points  determine  six 
numbers 

Px2  = 

P**  = which  are  known  as  the  Pliicker  coordinates  of  the  line.  Since  the 

coordinates  of  the  two  points  are  homogeneous,  the  ratios  only  of  the 

numbers  p(J  are  determined.  Any  other  two  points  of  the  line  deter- 

mine the  same  set  of  line  coordinates,  since  the  ratios  of  the  p^'s  are 

evidently  unchanged  if  (xv  xs,  xz,  xt)  is'replaced  by  (xl  +  \yv  x%  +  \y2, 
x%+\ys,  xt  +  Xy4).    The  six  numbers  satisfy  the  equation* 

(!)  Px*Pu  +  Px»P*  +  PxiP^=  °- 

This  is  evident  on  expanding  in  terms  of  two-rowed  minors  the 
identity 

iCg    xt   x$    xi =  0. 

Conversely,  if  any  six  numbers,  piJf  are  given  which  satisfy  Equa- 
tion (1),  then  two  points  P  =  (xlt  xt>  xv  0),  Q  =  (yv  0,  y%,  y4)  can  be 

determined  such  that  the  numbers  pi5  are  the  coordinates  of  the  line 

PQ.   To  do  this  it  is  simply  necessary  to  solve  the  equations 

-xj/x=Px*>      xsyt=Pi4> 

xxys  -  xzyx = Px*>  -  x2yt = p*2> 

■W«~>U.  X2ys  =  Pn> 

which  are  easily  seen  to  be  consistent  if  and  only  if 

PliPu  +  ̂13^42  +-Pl4-P2«  =  0. 
Hence  we  have 

Theorem  27.  Every  line  of  space  determines  and  is  determined 

by  the  ratios  of  six  numbers  piv  pu,  plt,  psv  piV  p2S  subject  to  the 

xx  xt 

x% 
X4 

Vx  y-2 

y% 
y* 

XX    Xi 

x* 
X4 

yx  y* 

y% 
y* 

*  Notice  that  in  Equation  (1)  the  number  of  inversions  in  the  four  subscripts  of 
any  term  is  always  even. 



328 FAMILIES  OF  LINES 
[Chap.  XI 

condition  p12pSi  +  pup42  +  pup23  =  ®>  suc^  ̂ at  if  (xv  a?2,  x3,  x4)  and 

(Vv  Vv  Vz>  Vi)  are  any  tw0  points  on  the  line, 

Pit*
* 

xx  x2 

Vx  y* 

>  Pit=> 

xz 

y* 

> 

Pu  = 

Vi.y* 

2>34=
 

XS     X4 

y3  y, 
>        P*2  = 

— 

X2 

y% 

x* 

y* 
>     Piz 

X2     XZ 

2/2  yz 

Cokollary.  Four  independent  coordinates  determine  a  line. 

In  precisely  similar  manner  two  planes  (uv  u2,  u3,  w4)  and  (vv  v2,  v3,  vt) 
determine  six  numbers  such  that 

?1«  = 

ux  u2 

Vl     V2 

>         ?18  = 

ux  u3 

Vl    vz 

»         ?14  = 

ur  w4 

?84  = 

VZ      Vi 

»         242  = 

u.  u„ 
4         2 

Vi     V2 

.         ?28  = 

u2  u3 

v2  va 

The  quantities  q{j  satisfy  a  theorem  dual  to  the  one  just  proved  for 

the  p^'s. 
Theorem  28.  The  p  and  a  coordinates  of  a  line  are  connected  by 

the  equations  p12 :  p13 :  pu  :  p3i :  pi2 :  p23  =  q3i :  qi2 :  q23 :  q12 :  q13 :  qu. 

Proof.  Let  the  p  coordinates  be  determined  by  the  two  points 

(xv  x2,  x3,  #4),  (yv  y2,  y3,  y4),  and  the  q  coordinates  by  the  two  planes 

(uv  u2,  u3,  uj,  (vv  v2,  v3,  v4).  These  coordinates  satisfy  the  four  equations 

11   *■  2      2  "•"    ̂ Q^Q  ™T~    IVa&a  ̂ =    U y 

vxxx  +  v2x„  +  v3xs  +  vtxt  =  0, 

v&i  +  u&  +  u3y3  +  w^4  =  0, 

^1  +  ̂ 2  +  v3y3  +  v4#4  =  °- 

Multiplying  the  first  equation  by  —  vy  and  the  second  by  ux  and  adding 
we  obtain  ,  ,  A 

qn^2  +  q13x3  +  qux4  =  0. 

In  like  manner,  from  the  third  and  fourth  equations  we  obtain 

M2  +  ?132/3+2l4#4=0- 

Combining  the  last  two  equations  similarly,  we  obtain 

?13^23-?14^42  =  0» 

or  —  =  —  • 
014       P* 

By  similar  combinations  of  the  first  four  equations  we  find 

Pu  :  PU  '  PU  '  Pit  '•  2*42  :  2>23  =  ?84  !  ?42  '  °2Z  !  Ql2  '  9.1Z  '  ?14« 
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EXERCISE 

Given  the  tetrahedron  of  reference,  the  point  (1,  1,  1,  1),  and  a  line  /, 
determine  six  sets  of  four  points  each,  whose  cross  ratios  are  the  coordinates 
of/. 

110.  Linear  families  of  lines.  Theorem  29.  The  necessary  and 

sufficient  condition  that  t\oo  lines  p  and  p'  intersect,  and  hence  are 
coplanar,  is 

PvipL  +PxzP*  +Pi*pL  +iWi'a +pap'x%  +p*p1* = °» 

where  ptj  are  the  coordinates  of  p  and  p!j  of  p'. 

Proof.  If  the  first  line  contains  two  points  x  and  y,  and  the  second 

two  points  3?  and  y',  the  lines  will  intersect  if  and  only  if  these  four 
points  are  coplanar ;  that  is  to  say,  if  and  only  if 

0  = 

xl 

x* 
*« 

X4 

9i y* y* y* 

< < < 

*L 

ill 9l yi yi 
PkpL + PnPL + PhP-L + p,*pL + PkP'xz + p„pU  ■ 

Theorem  30.  A  flat  pencil  of  lines  consists  of  the  lines  whose  coordi- 

nates are  Xp^  +  fip!Jf  if  p  and  p'  are  two  lines  of  the  pencil. 

Proof.  The  lines  p  and  p'  intersect  in  a  point  A  and  are  perspec- 
tive with  a  range  of  points  \C-\-  fiD.  Hence  their  coordinates  may  be 

written 
n.  n. 

,  etc., 
XCj  +  firfj  Xc.+  fid, 

which  may  be  expanded  in  the  form 

,  a,  a, i 
c,    e. 

+  A* 
d.  d. =  \pia_-\-fipl2,  etc. 

Theorem  31.    The    lines    whose    coordinates    satisfy    one    linear 

equation 

(!)  ai*Pl,+  ai*Pl3+  auPu+a34P3i+((i2P*2+  a23P23=   0 

form  a  linear  complex.  Those  whose  coordinates  satisfy  two  independ- 
ent linear  equations  form  a  linear  congruence,  and  those  satisfying 

three  independent  linear  equations  form  a  regulus.  Four  independent 

linear  equations  are  satisfied  by  two  (distinct  or  coincident)  lines, 

which  may  be  improper. 
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Proof.  If  (bv  b2,  bs,  bt)  is  any  point  of  space,  the  points  (xv  x2,  xs,  #4) 

which  lie  on  lines  through  bv  b.2>  b3,  bt  satisfying  (1)  must  satisfy 

X,  xa 
+  a, hK +  a, 

x,  xA 
+  aa 

x„  x. 

+a |M. 

42 \x,  x„ 
+  a0 x„  X. 

=  0, 

or 

(2)     (a12fc2  +  aj3  +  aubt)  xx  +  (-  al2\  +  aaJ3  -  anbt)  x2 

+  (~  «lA  ~  «23&2  +  «8A)  X3  +  (~  aUhl  +  Ci*A  -  aMXi  =  0> 

which  is  the  equation  of  a  plane.  Hence  the  family  of  lines  repre- 
sented by  (1)  has  a  flat  pencil  of  lines  at  every  point  of  space,  and  so, 

by  Theorem  24,  is  a  linear  complex. 

Since  two  complexes  have  a  congruence  of  common  lines,  two  linear 

equations  determine  a  congruence.  Since  a  congruence  and  a  complex 

have  a  regulus  in  common,  three  linear  equations  determine  a  regulus. 

If  the  four  equations 

auPl-2+  KiVlZ+  <Pu+  CLLPm  +  «49^«+  <^23=  0> 

anPl2+  «1>,8+  KVu+  <#M+  <2>42+  023  =  0> 

*li!Pu  +  auPu  +  *hPu  +  a«i,»4  +  a%P*  +  *uPu  =  °> 

<Pl2+  *SPt*+  <iPu+  «84>34+  <P42+  <PM=  0> 

are  independent,  one  of  the  four-rowed  determinants  of  their  coeffi- 
cients is  different  from  zero,  and  the  equations  have  solutions  of  the 

form  * 
Px%  =  XPL  +  A*K»     Pu  =  XK  +  PP'iv  ■••■ 

If  one  of  these  solutions  is  to  represent  the  coordinates  of  a  line,  it 

must  satisfy  the  condition 

^12^34  +PuP*  +  PiiPu  =  °» 

which  gives  a  quadratic  equation  to  determine  \//i.  Hence,  by  Propo- 
sition K2,  there  are  two  (proper,  improper,  or  coincident)  lines  whose 

coordinates  satisfy  four  linear  equations. 

Corollary  1.   The  lines  of  a  regulus  are  of  the  form 

Pi  =  \pl  +  \Pl'+KPl" 

where  p',  p",  p"'  are  lines  of  the  regulus.    In  like  manner,  the  lines  of 
a  congruence  are  of  the  form 

Pi  =  \p!  +  \p"  +  \p!"  +  Vn 
*  Cf.  Bocher,  Introduction  to  Higher  Algebra,  Chap.  IV. 
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and  of  a  complex  of  the  form 

p<=  \p! + \pl' + \p!"+  *&? + \p7- 
All  of  these  formulas  must  be  taken  in  connection  with 

PuPt*  +  PnP**  +  PuP*  =  °- 

Corollary  2.  As  a  transformation  from  points  to  planes  the  null 

system  determined  by  the  complex  whose  equation  is 

auPi2+  ai*PiS+  auPu+  "siPu-  ««i,«+  a«^»=  ° is 

mx=  0  +  <*„*,+  «„*,+  auxv 

w8  =  —  altxt  +0  +  a^xt  +  auxv 

us  -  -  auxl  —  aax3  +  0  +  aHxv 

u4=  —  al^e1  —  auxt—  aSixs  +  0. 

The  first  of  these  corollaries  simply  states  the  form  of  the  solu- 
tions of  systems  of  homogeneous  linear  equations  in  six  variables. 

The  second  corollary  is  obtained  by  inspection  of  Equation  (2)  the 
coefficients  of  which  are  the  coordinates  of  the  null  plane  of  the 

point  (bv  \,  bs,  bt). 

Corollary  1  shows  that  the  geometric  definition  of  linear  dependence  of 

lines  given  in  this  chapter  corresponds  to  the  conventional  analytic  concep- 
tion of  linear  dependence. 

111.  Interpretation  of  line  coordinates  as  point  coordinates  in  S5. 

It  may  be  shown  without  difficulty  that  the  method  of  introducing 

homogeneous  coordinates  in  Chap.  VII  is  extensible  to  space  of  any 

number  of  dimensions  (cf.  Chap.  I,  §  12).  Therefore  the  set  of  all  sets 
of  six  numbers 

(Pi»Pn*PwPu>Pn>Pn) 

can  be  regarded  as  homogeneous  point  coordinates  in  a  space  of  five 

dimensions,  S5.  Since  the  coordinates  of  a  line  in  Ss  satisfy  the 
quadratic  condition 

(1)  PnP»  +  Pi*P**  +  PUPn  =  °» 

they  may  be  regarded  as  forming  the  points  of  a  quadratic  locus  or 

spread,*  L42,  in  S5.  The  lines  of  a  linear  complex  correspond  to  the 
points  of  intersection  with  this  spread  of  an  S4  that  is  determined  by 

one  linear  equation.  The  lines  of  a  congruence  correspond,  therefore, 

to  the  intersection  with  L42  of  an  S3,  the  lines  of  a  regulus  to  the 

*  This  is  a  generalization  of  a  conic  section. 
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intersection  with  L42  of  an  S2,  and  any  pair  of  lines  to  the  intersec- 
tion with  L2  of  an  Sr 

Any  point  (p'n,  p'u,  p'u>  p'3i,  p'i2,  p[i3)  of  S5  has  as  its  polar*  S4,  with 
regard  to  L2, 

(2)      pLpu + pLpu + pLpu + p^Vzi + pLpu + pLp™  =  o, 

which  is  the  equation  of  a  linear  complex  in  the  original  S3.  Hence 

any  point  in  S5  can  he  thought  of  as  representing  the  complex  of  lines 

represented  by  the  points  of  S5  in  which  its  polar  S4  meets  L42. 
Since  a  line  is  represented  by  a  point  on  L4,  a  special  complex  is 

represented  by  a  point  on  L42,  and  all  the  lines  of  the  special  complex 
by  the  points  in  which  a  tangent  S4  meets  L4. 

The  points  of  a  line,  a  +  Xb,  in  S5  represent  a  set  of  complexes 
whose  equations  are 

(3)  (a3i  +  \bu)2\2  +  (ai2  +  \bi2)pi3  +  •  •  •  =  0, 

and  all  these  complexes  have  in  co*mmon  the  congruence  common  to 
the  complexes  a  and  b.  Their  congruence,  of  course,  consists  of  the 

lines  of  the  original  S3  represented  by  the  points  in  which  L4  is  met 

by  the  polar  S3  of  the  line  a  +  \b. 

A  system  of  complexes,  a  +  \b,  is  called  a  pencil  of  complexes,  and 

their  common  congruence  is  called  its  base  or  basal  congruence.  It 

evidently  has  the  property  that  the  null  planes  of  any  point  with 

regard  to  the  complexes  of  the  pencil  form  an  axial  pencil  whose 

axis  is  a  line  of  the  basal  congruence.  Dually,  the  null  points  of 

any  plane  with  regard  to  the  complexes  of  the  pencil  form  a  range 

of  points  on  a  line  of  the  basal  congruence. 

The  cross  ratio  of  four  complexes  of  a  pencil  may  be  denned  as 

the  cross  ratio  of  their  representative  points  in  S8.  From  the  form  of 

Equation  (3)  this  is  evidently  the  cross  ratio  of  the  four  null  planes 

of  any  point  with  regard  to  the  four  complexes. 

A  pencil  of  complexes  evidently  contains  the  special  complexes 

whose  directrices  are  the  directrices  of  the  basal  congruence.    Hence 

*  Equation  (2)  may  be  taken  as  the  definition  of  a  polar  S4  of  a  point  with 

regard  to  l_42.  Two  points  are  conjugate  with  regard  to  L'2  if  the  polar  S4  of  one 
contains  the  other.  The  polar  S4's  of  the  points  of  an  S,  (i  —  1,  2,  3,  4)  all  have  an 
S4_ ,•  in  common  which  is  called  the  polar  S4_,-  of  the  S,-.  These  and  other  obvious 
generalizations  of  the  polar  theory  of  a  conic  or  a  regulus  we  take  for  granted 
without  further  proof. 
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there  are  two  improper,  two  proper,  one,  or  a  flat  pencil  of  lines  which 

are  the  directrices  of  special  complexes  of  the  pencil.  These  cases 

arise  as  the  representative  line  a  +  Xb  meets  L42  in  two  improper 

points,  two  proper  points,  or  one  point,  or  lies  wholly  on  L4S.  Two 

points  in  which  a  representative  line  meets  L42  are  the  double  points 
of  an  involution  the  pairs  of  which  are  conjugate  with  regard  to  L42. 

Two  complexes  p,  p'  whose  representative  points  are  conjugate 

with  regard  to  L42  are  said  to  be  conjugate  or  in  involution.  They 
evidently  satisfy  Equation  (2)  and  have  the  property  that  the  null 

points  of  any  plane  with  regard  to  them  are  harmonically  conjugate 

with  regard  to  the  directrices  of  their  common  congruence.  Any 

complex  a  is  in  involution  with  all  the  special  complexes  whose 
directrices  are  lines  of  a. 

Let  a-j  be  an  arbitrary  complex  and  a2  any  complex  conjugate  to 
(in  involution  with)  it.  Then  any  representative  point  in  the  polar  S3 

with  regard  to  L42  of  the  representative  line  axa2  represents  a  complex 
conjugate  to  ax  and  a2.  Let  as  be  any  such  complex.  The  represent- 

ative points  of  av  a2,  a,  form  a  self-conjugate  triangle  of  L42.  Any 
point  of  the  representative  plane  polar  to  the  plane  axa2at  with 

regard  to  L2  is  conjugate  to  axa2az.  Let  such  a  point  be  a4.  In  like 
manner,  «5  and  a6  can  be  determined,  forming  a  self- polar  6-point  of 

L2,  the  generalization  of  a  self-polar  triangle  of  a  conic  section.  The 
six  points  are  the  representatives  of  six  complexes,  each  pair  of  which 
is  in  involution. 

It  can  be  proved  that  by  a  proper  choice  of  the  six  points  of  refer- 

ence in  the  representative  S5,  the  equation  of  L2  may  be  taken  as  any 
quadratic  relation  among  six  variables.  Hence  the  lines  of  a  three- 
space  may  be  represented  analytically  by  six  homogeneous  coordinates 

subject  to  any  quadratic  relation.  In  particular  they  may  be  repre- 

sented by  (xv  x2,---,  x6),  where 

z*+  x*+  x;  +  x*+  x*  +  x*=  0.* 

In  this  case,  the  six-point  of  reference  being  self-polar  with  regard 

to  L2,  its  vertices  represent  complexes  which  are  two  by  two  in 
involution. 

*  These  are  known  as  Klein's  coordinates.  Most  of  the  ideas  in  the  present  sec- 
tion are  to  be  found  in  F.  Klein,  Zur  Theorie  der  Liniencomplexe  des  ersten  und 

zweiten  Grades,  Mathematische  Annalen,  Vol.  II  (1870),  p.  198. 
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EXERCISES 

1.  If  a  pencil  of  complexes  contains  two  special  complexes,  the  basal  con- 
gruence of  the  pencil  is  hyperbolic  or  elliptic,  according  as  the  special  com- 

plexes are  proper  or  improper. 
2.  If  a  pencil  of  linear  complexes  contains  only  a  single  special  complex, 

the  basal  congruence  is  parabolic. 

3.  If  all  the  complexes  of  a  pencil  of  linear  complexes  are  special,  the 
basal  congruence  is  degenerate. 

4.  Define  a  pencil  of  complexes  as  the  system  of  all  complexes  having  a 
common  congruence  of  lines  and  derive  its  properties  synthetically. 

5.  The  polars  of  a  line  with  regard  to  the  complexes  of  a  pencil  form 

a  regulus. 
6.  The  null  points  of  two  planes  with  regard  to  the  complexes  of  a  pencil 

generate  two  projective  pencils  of  points. 

7.  If  C=  0,  C  —  0,  C"  —  0  are  the  equations  of  three  linear  complexes 

which  do  not  have  a  congruence  in  common,  the  equation  C  +  AC"  +  fiC"  =  0 
is  said  to  represent  a  bundle  of  complexes.  The  lines  common  to  the  three 

fundamental  complexes  C,  C",  C"  of  the  bundle  form  a  regulus,  the  con- 
jugate regulus  of  which  consists  of  all  the  directrices  of  the  special  com- 
plexes of  the  bundle. 

8.  Two  linear  complexes  So^/Jy  =  0  and  "^b^pfj  =  0  are  in  involution  if  and 
only  if  we  have 

ai2ft34  +  fl13ft42  +  aiAs  +  a34J12  +  a42613  +  Q23ft14  =  0' 

9.  Using  Klein's  coordinates,  any  two  complexes  are  given  by  2a,x,-  =  0 
and  SMt  =  0.    These  two  are  in  involution  if  2a,-6,-  =  0. 

10.  The  six  fundamental  complexes  of  a  system  of  Klein's  coordinates 
intersect  in  pairs  in  fifteen  linear  congruences  all  of  whose  directrices  are  dis- 

tinct. The  directrices  of  one  of  these  congruences  are  lines  of  the  remaining 
four  fundamental  complexes,  and  meet,  therefore,  the  twelve  directrices  of 
the  six  congruences  determined  by  these  four  complexes. 
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A.belian  group,  67 
Abscissa,  170 
Abstract  science,  2 
Addition,  of  points,  142,  231 ;  theorems 

on,  142-144 ;  other  definitions  of,  167, 
Exs.  3,  4 

Adjacent  sides  or  vertices  of  simple 
n-line,  37 

Algebraic  curve,  259 
Algebraic  problem,  238 
Algebraic  surface,  259 
Alignment,  assumptions  of,  16  ;  consist- 

ency of  assumptions  of ,  1 7 ;  theorems 

of,  for  the  plane,  17-20 ;  theorems  of, 
for  3-space,  20-24;  theorems  of,  for 
4-space,  25,  Ex.  4;  theorems  of,  for 
n-space,  29-33 

Amodeo,  F.,  120,  294 
Anharmonic  ratio,  159 
Apollonius,  286 
Associative  law,  for  correspondences, 

66;  for  addition  of  points,  143;  for 
multiplication  of  points,  146 

Assumption,  H0,  45 ;  H0,  r61e  of,  81, 
261 ;  of  projectivity,  95 ;  of  projec- 
tivity,  alternative  forms  of,  105,  106, 
Exs.  10-12  ;  298 

Assumptions,  are  necessary,  2;  exam- 
ples of,  for  a  mathematical  science, 

2 ;  consistency  of,  3 ;  independence 
of,  6 ;  categoricalness  of,  6 ;  of  align- 

ment, 16 ;  of  alignment,  consistency 
of,  17;  of  extension,  18,  24;  of  clo- 

sure, 24 ;  for  an  n-space,  33 
Axial  pencil.  55 
Axial  perspectivity.  57 
Axis,  of  perspectivity.  36;  of  pencil, 

55  ;  of  perspective  collineation,  72 ;  of 
homology,  104;  of  coordinates.  169, 
191 ;  of  projectivity  on  conic,  218 

Base,  of  plane  of  points  or  lines,  55 ;  of 
pencil  of  complexes.  332 

Bilinear  equation,  binary,  represents 
projectivity  on  a  line,  156;  ternary, 
represents  correlation  in  a  plane,  267 

Binarv  form,  251,  252,  254 
Bdcher,  M..  156,  272,  289,  330 
Braikenridge,  119 
Brianchon  point,  111 

Brianchon's  theorem,  111 

Bundle,  of  planes  or  lines,  27,  55;  of 
conies,  297,  Exs.  9-12 ;  of  quadrics, 
311 ;  of  complexes,  334,  Ex.  7 

Burnside,  W.,  150 
Bussey,  VV.  H.,  202 

Canonical  forms,  of  collineations  in 

plane,  274-276;  of  correlations  in  a 
plane,  281 ;  of  pencils  of  conies,  287- 293 

Castelnuovo,  G.,  139,  140,  237,  297 
Categorical  set  of  assumptions,  6 
Cayley,  A.,  52,  140 
Center,  of  perspectivity,  36 ;  of  flat  pen- 

cil, 55 ;  of  bundle,  65 ;  of  perspective 
collineation  in  plane,  72 ;  of  perspec- 

tive collineation  in  space,  75;  of 
homology,  104;  of  coordinates,  170; 
of  projectivity  on  conic,  218 

Central  perspectivity,  57 
Characteristic  constant  of  parabolic 

projectivity,  207 
Characteristic  equation  of  matrix,  165 
Characteristic  throw  and  cross  ratio,  of 

one-dimensional  projectivity,  205, 211, 
Exs.  2,  3,  4 ;  212,  Exs.  5,  7 ;  of  involu- 

tion, 206;  of  parabolic  projectivity, 
206 

Chasles,  125 
Class,  notion  of,  2 ;  elements  of,  2 ;  re- 

lation of  belonging  to  a,  2 ;  subclass  of 
a,  2;  undefined,  15;  notation  for,  57 

Clebsch,  A.,  289 
Cogredient  n-line.  84.  Ex.  13 
Cogredient  triangle,  84,  Exs.  7,  10 
Collineation,  defined,  71 ;  perspective,  in 

plane,  72 ;  perspective,  in  space.  75 ; 
transforming  a  quadrangle  into  a 
quadrangle,  74 ;  transforming  a  five- 
point  into  a  five-point,  77  ;  transform- 

ing; a  conic  into  a  conic,  132  ;  in  plane, 
analytic  form  of,  189,  190,  268 ;  be- 

tween two  planes,  analytic  form  of, 
190 :  in  space,  analytic  form  of,  200 ; 
leaving  conic  invariant,  214.  220,  235, 
Ex.  2 ;  is  the  product  of  two  polar- 

ities, 265 ;  which  is  the  product  of 
two  reflections,  282,  Ex.  5  ;  double  ele- 

ments of,  in  plane.  271  ;  character- 
istic equation  of,  272 ;  invariant  figure 

of,  is  self -dual,  272 
335 
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Collineations,  types  of,  in  plane,  106, 
273;  associated  with  two  conies  of 
a  pencil,  131,  Exs.  2,  4,  6 ;  135, 
Ex.  2  ;  136,  Ex.  2  ;  group  of,  in  plane, 

268;  represented  by  matrices,  268- 
270 ;  two,  not  in  general  commuta- 

tive, 268 ;  canonical  forms  of,  274- 276 

Commutative  correspondence,  66 
Commutative  group,  67,  70,  Ex.  1 ;  228 
Commutative  law  of  multiplication, 

148 
Commutative  projectivities,  70,  210,  228 
Compass,  constructions  with,  246 
Complete  n-line,  in  plane,  37 ;  on  point,  38 
Complete  n-plane,  in  space,  37 ;  on  point, 

38 

Complete  n-point,  in  space,  36 ;  in  plane, 
37 

Complete  quadrangle  and  quadrilat- 
eral, 44 

Complex,  linear,  312;  determined  by 
skew  pentagon,  319  ;  general  and  spe- 

cial, 320 ;  determined  by  two  projec- 
tive flat  pencils,  323 ;  determined  by 

five  independent  lines,  324 ;  deter- 
mined by  correspondence  between 

points  and  planes  of  space,  324 ;  null 

system  of,  324 ;  generated  by  involu- 
tion on  regulus,  326,  Ex.  5  ;  equation 

of,  329,  331 
Complexes,  pencil  of,  332  ;  in  involu- 

tion, 333 ;  bundle  of,  334,  Ex.  7 
Concrete  representation  or  application 

of  an  abstract  science,  2 
Concurrent,  16 
Cone,  118  ;  of  lines,  109;  of  planes,  109 ; 

section  of,  by  plane,  is  conic,  109; 
as  degenerate  case  of  quadric,  308 

Configuration,  38 ;  symbol  of,  38 ;  of 
Desargues,  40,  51 ;  quadrangle-quad- 

rilateral, 44  ;  of  Pappus,  98,  249 ;  of 
Mobius,  326,  Ex.  9 

Congruence,  linear,  312 ;  elliptic,  hyper- 
bolic, parabolic,  degenerate,  315;  de- 

termined by  four  independent  lines, 
317 ;  determined  by  projective  planes, 
317 ;  determined  by  two  ̂ complexes, 
325  ;  equation  of,  329,  330 

Conic,  109,  118 ;  theorems  on,  109-140 ; 
polar  system  of,  120-124;  equation 
of,  185,  245;  projectivity  on,  217; 
intersection  of  line  with,  240,  242, 
246 ;  through  four  points  and  tangent 
to  line,  250,  Ex.  8 ;  through  three 
points  and  tangent  to  two  lines,  250, 
Ex.  9 ;  through  four  points  and  meet- 

ing given  line  in  two  points  harmonic 
with  two  given  points,  250,  Ex.  10; 
determined  by  conjugate  points,  293, 
Ex.  2 ;  294,  Exs.  3,  4 

Conic  section,  118 

Conies,  pencils  and  ranges  of,  128-136, 
287-293 ;  projective,  212,  304 

Conjugate  groups,  209 
Conjugate  pair  of  involution,  102 
Conjugate  points  (lines),  with  regard  to 

conic,  122 ;  on  line  (point),  form  invo- 
lution, 124 ;  with  regard  to  a  pencil  of 

conies,  136,  Ex.  3  ;  140,  Ex.  31 ;  293, Ex.  1 

Conjugate  projectivities,  208;  condi- 
tions for,  208,  209 

Conjugate  subgroups,  211 
Consistency,  of  a  set  of  assumptions,  3 ; 

of  notion  of  elements  at  infinity,  9 ; 
of  assumptions  of  alignment,  17 

Construct,  45 
Constructions,  linear  (first  degree),  236 ; 

of  second  degree,  245,  249-250, 
Exs. ;  of  third  and  fourth  degrees, 
294-296 

Contact,  point  of,  of  line  of  line  conic, 
112 ;  of  second  order  between  two 
conies,  134;  of  third  order  between 
two  conies,  136 

Conwell,  G.  M.,  204 
Coordinates,  nonhomogeneous,  of  points 

on  line,  152 ;  homogeneous,  of  points 
on  line,  163;  nonhomogeneous,  of 

points  in  plane,  169 ;  nonhomogene- 
ous, of  lines  in  plane,  170 ;  homogene- 
ous, of  points  and  lines  in  plane,  174; 

in  a  bundle,  179,  Ex.  3;  of  quadran- 
gle-quadrilateral configuration,  181, 

Ex.  2;  nonhomogeneous,  in  space, 
190 ;  homogeneous,  in  space,  194 ; 
Pliicker's  line,  327  ;  Klein's  line,  333 

Coplanar,  24 
Copunctal,  16 
Correlation,  between  two-dimensional 

forms,  262,  263;  induced,  262;  be- 
tween two-dimensional  forms  deter- 
mined by  four  pairs  of  homologous 

elements,  264;  which  interchanges 
vertices  and  sides  of  triangle  is  polar- 

ity, 264 ;  between  two  planes,  analytic 
representation  of,  266,  267;  repre- 

sented by  ternary  bilinear  form,  267 ; 
represented  by  matrices,  270 ;  double 

pairs  of  a,  278-281 Correlations  and  duality,  268 
Correspondence,  as  a  logical  term,  5; 

perspective,  12 ;  (1,  1)  of  two  figures, 

35;  general  theory  of,  64-66;  iden- 
tical, 65;  inverse  of,  65;  period  of, 

66 ;  periodic  or  cyclic,  66 ;  involutoric 
or  reflexive,  66 ;  perspective  between 
two  planes,  71 ;  quadratic,  139,  Exs. 
22,  24;  293,  Ex.  1 

Correspondences,  resultant  or  product 
of  two,  65;  associative  law  for,  66; 
commutative,  66  ;  groups  of,  67;  leav- 

ing a  figure  invariant  form  a  group,  68 
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Corresponding  elements,  35;  doublv, 
102 

Covariant,  257 ;  example  of,  258 
Cremona,  L.,  137,  138 
Cross  ratio,  159 ;  of  harmonic  set,  159, 

161 ;  definition  of,  160 ;  expression  for, 
160;  in  homogeneous  coordinates, 
165 ;  theorems  on,  167,  168,  Exs. ; 
characteristic,  of  projectivity,  205; 
characteristic,  of  involution,  206 ;  as 
an  invariant  of  two  quadratic  binary 
forms,  254,  Ex.  1 ;  of  four  complexes, 
332 

Cross  ratios,  the  six,  defined  by  four  ele- 
ments, 161 

Curve,  of  third  order,  217,  Exs.  7,  8,  9; 
algebraic,  259 

Cyclic  correspondence,  66 

Darboux,  G.,  95 
Degenerate  conies,  126 
Degenerate  regulus,  311 
Degree  of  geometric  problem,  236 
Derivative,  255 
Dosargues,  configuration  of,  40,  51 ;  the- 

orem on  perspective  triangles,  41, 
180;  theorem  on  conies,  127,  128 

Descartes,  R.,  285 
Diagonal  point  (line),  of  complete  quad- 

rangle (quadrilateral),  44 ;  of  com- 
plete n-point  (n-line)  in  plane,  44 

Diagonal  triangle  of  quadrangle  (quad- 
rilateral), 44 

Dickson,  L.  E.,  66 
Difference  of  two  points,  148 
Differential  operators,  256 
Dimensions,  space  of  three,  20 ;  space  of 

n,  30  ;  assumptions  for  space  of  n,  33 ; 
space  of  five,  331 

Directrices,  of  a  regulus,  299 ;  of  a  con- 
gruence, 315 ;  of  a  special  complex, 

324 
Distributive  law  for  multiplication  with 

respect  to  addition,  147 
Division  of  points,  149 
Domain  of  rationality,  238 
Double  element  (point,  line,  plane)  of 

correspondence,  68 
Double  pairs  of  a  correlation,  97 
Double  points,  of  a  projectivity  on  a 

line  satisfy  a  quadratic  equation,  156  ; 
of  projectivity  on  a  line,  homogeneous 
coordinates  of,  164;  of  projectivity 
always  exist  in  extended  space.  242 ; 
of  projectivity  on  a  line,  construction 
of,  246 ;  of  involution  determined  by 
covariant,  258 ;  and  lines  of  collinea- 
tion  in  plane,  271,  295 

Double  ratio,  159 
Doubly  parabolic  point,  274 
Duality,  in  three-space,  28 ;  in  plane, 

29  ;  at  a  point,  29 ;  in  four-space,  29, 

Ex. ;  a  consequence  of  existence  of 
correlations,  268 

Edge  of  n-point  or  n-plane,  36,  37 
Elation,  in  plane,  72  ;  in  space,  75 

Element,  undefined.  1 ;  of  a  figure,  1'; fundamental,  1 ;  ideal,  7 ;  simple,  of 
space,   34 ;   invariant,  or  double,  or 
fixed,  68;  lineal,  107 

Eleven-point,  plane  section  of,  53,  Ex.  15 
Enriques.  F.,  56,  286 
Equation,  of  line  (point),  174;  of  conic, 

185,  245 ;  of  plane  (point),  193,  198 ; 
reducible,  irreducible,  239 ;  quadratic, 
has  roots  in  extended  space,  242 

Equivalent  number  systems,  150 
Extended  space,  242,  255 
Extension,  assumptions  of,  18,  24 

Face  of  n-point  or  n-plane,  36,  37 
Fermat,  P.,  285 
Field,  149  ;  points  on  a  line  form  a,  151 ; 

finite,  modular,  201 ;  extended,  in 
which  any  polynomial  is  reducible,  260 

Figure.  34 
Fine,  H.  B.,  255,  260,  261,  289 
Finite  spaces,  201 
Five-point,  plane  section  of,  in  space, 

39 ;  in  space  may  be  transformed  into 
any  other  by  projective  collineation, 
77 ;  diagonal  points,  lines,  and  planes 
of,  in  space,  204,  Exs.  16,  17,  18; 
simple,  in  space  determines  linear 
congruence,  319 

Five-points,  perspective,  in  four-space, 
54,  Ex.  25 

Fixed  element  of  correspondence,  68 
Flat  pencil,  55 
Forms,  primitive  geometric,  of  one,  two, 

and  three  dimensions,  55 ;  one-dimen- 
sional, of  second  degree,  109;  linear 

binary,  251 ;  quadratic  binary.  868  : 
of  nth  degree,  254;  polar  forn 
ternary  bilinear,  represents  correla- 

tion in  plane,  267 
Four-space,  25,  Ex.  4 
Frame  of  reference,  174 
Fundamental  elements,  1 
Fundamental  points  of  a  scale,  141,  231 
Fundamental  propositions,  1 
Fundamental  theorem  of  projectivity, 

94-97,  213,  264 

General  point,  129 
Geometry,  object  of,  1 ;  starting  point 

of,  1 ;  distinction  between  projective 
and  metric,  12  ;  finite,  201 ;  associated 
with  a  group,  259 

Gergonne,  J.  D.,  29,  123 
Grade,  geometric  forms  of  first,  second, 

third,  55 

Group,  66  ;  of  correspondences,  67 ;  gen- 
eral   projective,    on    line,    68,    209: 
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examples  of,  69,  70 ;  commutative,  70  ; 
general  projective,  in  plane,  268 

H0,  assumption,  45 ;  r&le  of,  81,  261 
Harmonic  conjugate,  80 
Harmonic  homology,  223 
Harmonic  involutions,  224 

Harmonic  set,  80-82 ;  exercises  on,  83, 
84  ;  cross  ratio  of,  159 

Harmonic  transformations,  230 
Harmonically  related,  84 
Hesse,  125 
Hessenberg,  G.,  141 
Hexagon,  simple,  inscribed  in  two  inter- 

secting lines,  99 ;  simple,  inscribed  in 
three  concurrent  lines,  250,  Ex.  5; 
simple,  inscribed  in  conic,  110,  111 

Hexagram,  of  Pascal  (hexagramma  mys- 
ticum),  138,  Exs.  19-21 ;  304,  Ex.  16 

Hilbert,  D.,  3,  95,  148 
Holgate,  T.  F.,  119,  125,  139 
Homogeneous  coordinates  in  plane, 

174 
Homogeneous  coordinates,  in  space,  11, 

194 ;  on  line,  163  ;  geometrical  signifi- 
cance of,  165 

Homogeneous  forms,  254 
Homologous  elements,  35 
Homology,  in  plane,  72 ;  in  space,  75 ; 

axis  and  center  of,  104 ;  harmonic, 
223,  275 ;  canonical  form  of,  in  plane, 
274,  275 

Hyperosculate,  applied  to  two  conies,  136 

Ideal  elements,  7 
Ideal  points,  8 
Identical  correspondence,  65 
Identical  matrix,  157,  269 
Identity  (correspondence),  65;  element 

of  group,  67 
Improper  elements,  239,  241,  242,  255 
Improper  transformation,  242 
Improperly  projective,  97 
Independence,  of  assumptions,  6 ;  neces- 

sary for  distinction  between  assump- 
tion and  theorem,  7 

Index,  of  subgroup,  271 ;  of  group  of  col- 
lineations  in  general  projective  group 
in  plane,  271 

Induced  correlation  in  planar  field,  262 
Infinity,  points,  lines,  and  planes  at,  8 
Inscribed  and  circumscribed  triangles, 

98,  250,  Ex.  4 
Inscribed  figure,  in  a  conic,  118 
Invariant,  of  two  linear  binary  forms, 

252 ;  of  quadratic  binary  forms,  252- 
254,  Ex.  1 ;  of  binary  form  of  nth 
degree,  257 

Invariant  element,  68 
Invariant  figure,  under  a  correspond- 

ence, 67 ;  of  collineation  is  self-dual, 272 

Invariant  subgroup,  211 
Invariant  triangle  of  collineation,  rela- 

tion between  projectivities  on,  274, 

276,  Ex.  5 
Inverse,  of  a  correspondence,  65;  of 

element  in  group,  67 ;  of  projectivity 
is  a  projectivity,  68 ;  of  projectivity, 
analytic  expression  for,  157 

Inverse  operations  (subtraction,  divi- 
sion), 148,  149 

Involution,  102 ;  theorems  on,  102,  103, 

124,  127-131,  133,  134,  136,  206,  209, 
221-229,  242-243  ;  analytic  expression 
for,  157,  222,  254,  Ex.  2;  character- 

istic cross  ratio  of,  206 ;  on  conic,  222- 
230 ;  belonging  to  a  projectivity,  226 ; 
double  points  of,  in  extended  space, 
242 ;  condition  for,  254,  Ex.  2  ;  dou- 

ble points  of,  determined  by  covari- 
ant,  258 ;  complexes  in,  333 

Involutions,  any  projectivity  is  product 
of  two,  223  ;  harmonic,  224  ;  pencil 
of,  225 ;  two,  have  pair  in  common, 
243 ;  two,  on  distinct  lines  are  per- 

spective, 243 
Involutoric  correspondence,  66 
Irreducible  equation,  239 

Isomorphism,  6;  between  number  sys- 
tems, 150;  simple,  220 

Jackson,  D..  282 
Join,  16 

Kantor,  S.,  250 
Klein,  F.,  95,  333,  334 

Ladd,  C,  138 

Lage,  Geometrie  der,  14 
Lennes,  N.  J.,  24 
Lindemann,  F.,  289 
Line,  at  infinity,  8 ;  as  undefined  class 

of  points,  15;  and  plane  on  the  same 
three-space  intersect,  22 ;  equation  of, 
174;  and  conic,  intersection  of,  240, 246 

Line  conic,  109 
Line  coordinates,  in  plane,  171 ;  in  space, 

327,  333 
Lineal  element,  107 
Linear  binary  forms,  251 ;  invariant  of, 

251 

Linear  dependence,   of  points,  30;   of 
lines,  311 

Linear  fractional  transformation,  152 
Linear  net,  84 
Linear  operations,  236 
Linear  transformations,  in  plane,  187; 

in  space,  199 
Lines,    two,    in   same   plane    intersect, 

18 

Li'iroth,  J.,  95 
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Maclaurin,  C,  119 
MacXeish,  H.  F.,  46 
Mathematical  science,  2 
Matrices,  product  of,  156,  268  ;  determi- 

nant of  product  of  two,  269 
Matrix,  as  symbol  for  configuration,  38 ; 

definition,  156;  used  to  denote  pro- 
jectivity,  156 ;  identical,  157,  269 ; 
characteristic  equation  of,  165,  272 ; 
conjugate,  transposed,  adjoint,  269; 
as  operator,  270 

Menaecbmus,  126 
Metric  geometry,  12 
Midpoint  of  pair  of  points,  230,  Ex.  6 
MQbius  tetrahedra,  105,  Ex.  6 ;  326, 

Ex.  9 

Multiplication  of  points,  145,  231 ;  the- 
orems on,  145-148 ;  commutative  law 

of,  is  equivalent  to  Assumption  P, 
148  ;  other  definitions  of,  167,  Exs. 

3,4 

n-line,  complete  or  simple,  37,  38;  in- 
scribed in  conic,  138,  Ex.  12 

n-plane,  complete  in  space,  37 ;  on  point, 
38 ;  simple  in  space,  37 

n-point,  complete,  in  space,  36 ;  complete, 
in  a  plane,  37 ;  simple,  in  space,  37 ; 
simple,  in  a  plane.  37 ;  plane  section  of, 
in  space,  53,  Exs.  13,  16  ;  54,  Ex.  18 ; 
m-space  section  of,  in  (n  +  l)-space, 
54,  Ex.  19 ;  section  by  three-space  of, 
in  four-space,  54,  Ex.  21 ;  inscribed 
in  conic,  119,  Ex.  5;  250,  Ex.  7 

n-points,  in  different  planes  and  per- 
spective from  a  point,  42,  Ex.  2 ;  in 

same  plane  and  perspective  from  a 
line,  42,  Ex.  4;  two  complete,  in  a 
plane,  53,  Ex.  7;  two  perspective,  in 
(n  —  l)-space,  theorem  on,  54,  Ex. 
26  ;  mutually  inscribed  and  circum- 

scribed, 250,  Ex.  6 
Net  of  rationality,  on  line  (linear  net), 

84;  theorems  on,  85;  in  plane,  86; 
theorems  on,  87,  88,  Exs.  92,  93;  in 

space,  89 ;  theorems  on,  89-92,  Exs.  92, 
93 ;  in  plane  (space)  left  invariant  by 
perspective  collineation,  93,  Exs.  9, 
10;  in  space  is  properly  projective, 
97 ;  coordinates  in,  162 

Xewson,  H.  B.,  274 
Nonhomogeneous  coordinates,  on  a  line, 

152;  in  plane,  169;  in  space,  190 
Null  system.  324 
Number  system,  149 

On,  7,  8,  15 
Operation,  one-valued,  commutative,  as- 

sociative, 141 ;  geometric.  236 ;  linear, 
236 

Operator,  differential,  256 ;  represented 
by  matrix,  270;  polar,  284 

Opposite  sides  of  complete  quadrangle, 

44  * 

Opposite  vertex  and  side  of  simple 
n-point,  37 

Opposite  vertices,  of  complete  quadrilat- 
eral, 44 ;  of  simple  n-point,  37 

Oppositely  placed  quadrangles,  50 
Order,  60 
Ordinate,  170 
Origin  of  coordinates,  169 
Osculate,  applied  to  two  conies,  134 

Padoa,  A.,  3 

Papperitz,  E.,  309 
Pappus,  configuration  of,  98,  99,   100, 

126,  148 
Parabolic  congruence,  315 
Parabolic  point  of  collineation  in  plane, 

274 
Parabolic  projectivities,  any  two,  are 

conjugate,  209 
Parabolic  projectivity,  101 ;  charac- 

teristic cross  ratio  of,  206;  analytic 
expression  for,  207  ;  characteristic  con- 

stants, 207 ;  gives  H(MA\  A  A"),  207 Parametric  representation,  of  points 
(lines)  of  pencil,  182;  of  conic,  234;  of 
regulus,  congruence,  complex,  330, 331 

Pascal,  B.,  36,  99,  111-116,   123,   126, 
127,  138,  139 

Pencil,  of  points,  planes,  lines,  55;  of 
conies,  129-136,  287-293;  of  points 
(lines),  coordinates  of,  181 ;  paramet- 

ric representation  of,  182  ;  base  points 

of,  182 ;  of  involutions,  225 ;  of  com- 
plexes, 332 Period  of  correspondence,  66 

Perspective  collineation,  in  plane,  71 ; 
in  space,  75;  in  plane  defined  when 
center,  axis,  and  one  pair  of  homol- 

ogous points  are  given,  72 ;  leaving  B2 
(B5)  invariant,  93,  Exs.  9,  10 

Perspective  conic  and  pencil  of  lines 

(points),  215 Perspective  correspondence,  12,  13 ;  be- 
tween two  planes,  71,  277,  Ex.  20 

Perspective  figures,  from  a  point  or 
from  a  plane,  35 ;  from  a  line,  36 ;  if 

A,B,C  and  A',  B',  C  on  two  coplanar lines  are  perspective,  the  points  (AB\ 

BA'),  {AC,  CA^,  and  (BC,  CR)  are collinear,  52,  Ex.  3 
Perspective  geometric  forms,  56 
Perspective  n-lines,  theorems  on,  84, 

Exs.  13, 14;  five-points  in  four-space, 
54,  Ex.  25 

Perspective  (n  +  l)-points  in  n-space, 
54,  Exs.  20,  26 

Perspective  tetrahedra,  43 
Perspective  triangles,  theorems  on,  41, 

53,  Exs.  9,  10,  11 ;  54,  Ex.  23 ;  84, 
Exs.  7,  10, 11 ;  246 ;  sextuply,  246 
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Perspectivity,  center  of,  plane  of,  axis 
of,  36 ;  notation  for,  57 ;  central  and 
axial,  57 ;  between  conic  and  pencil 
of  lines  (points),  215 

Pieri,  M.,  95 
Planar  field,  55 
Planar  net,  86 
Plane,  at  infinity,  8  ;  defined,  17 ;  deter- 

mined uniquely  by  three  noncollinear 
points,  or  a  point  and  line,  or  two  in- 

tersecting lines,  20 ;  and  line  on  same 
three-space  are  on  common  point, 
22;  of  perspectivity,  36,  75;  of  points, 
55;  of  lines,  55;  equation  of,  193, 
198 

Plane  figure,  34 
Plane  section,  34 
Planes,  two,  on  two  points  A,  B  are  on 

all  points  of  line  AB,  20;  two,  on 
same  three-space  are  on  a  common 
line,  and  conversely,  22 ;  three,  on  a 
three-space  and  not  on  a  common 
line  are  on  a  common  point,  23 

Pliicker's  line  coordinates,  327 
Point,  at  infinity,  8 ;  as  undefined  ele- 

ment, 15 ;  and  line  determine  plane, 
17,  20;  equation  of,  174,  193,  198;  of 
contact  of  a  line  with  a  conic,  112 

Point  conic,  109 
Point  figure,  34 
Points,  three,  determine  plane,  17,  20 
Polar,  with  respect  to  triangle,  46; 

equation  of,  181,  Ex.  3  ;  with  respect 
to  two  lines,  52,  Exs.  3,  5  ;  84,  Exs.  7, 
9  ;  with  respect  to  triangle,  theorems 
on,  54,  Ex.  22;  84,  Exs.  10,  11  ;  with 
respect  to  n-line,  84,  Exs.  13,  14  ;  with 
respect  to  conic,  120-125,  284,  285 

Polar  forms,  256  ;  with  respect  to  set  of 
n-points,  256;  with  respect  to  regu- 
lus,  302  ;  with  respect  to  linear  com- 

plex, 324 
Polar  reciprocal  figures,  123 
Polarity,  in  planar  field,  263,  279,  282, 

283  ;  in  space,  302  ;  null,  324 
Pole,  with  respect  to  triangle,  46 ;  with 

respect  to  two  lines,  52,  Ex.  3 ;  with 
respect  to  conic,  120 ;  with  respect  to 
regulus,  302;  with  respect  to  null 
system,  324 

Poncelet,  J.  V.,  29,  36,  58,  119,  123 
Problem,  degree  of,  236,  238 ;  algebraic, 

transcendental,  238 ;  of  second  de- 
gree, 245 ;  of  projectivity,  250,  Ex.  14 

Product,  of  two  correspondences,  65; 
of  points,  145,  231 

Project,  a  figure  from  a  point,  36 ;  an 
element  into,  68;  ABC  can  be  pro- 

jected into  A'B'C,  59 
Projection,  of  a  figure  from  a  point,  34 
Projective  collineation,  71 
Projective  conies,  212,  304 

Projective  correspondence  or  transfor- 
mation, 13,  58  ;  general  group  on  line, 

68  ;  in  plane,  268  ;  of  two-  or  three- 
dimensional  forms,  71,  152 

Projective  geometry  distinguished  from 
metric,  12 

Projective  pencils  of  points  on  skew 
lines  are  axially  perspective,  64 

Projective  projectivities,  208 
Projective  space,  97 
Projectivity,  definition  and  notation  for, 

58;  ABC -^  A'B'C,  59;  ABCD-jr 
BADC,  60 ;  in  one-dimensional  forms 
is  the  result  of  two  perspectivities,  63 ; 

if  #(12,  34),  then  1234  —  1243,  82; 
fundamental  theorem  of,  for  linear 
net,  94 ;  fundamental  theorem  of,  for 
line,  95 ;  assumption  of,  95 ;  funda- 

mental theorem  of,  for  plane,  96 ;  for 
space,  97  ;  principle  of,  97 ;  necessary 
and  sufficient  condition  for  MNAB  -%■ 
MNA'B'  is  Q(MAB,  NB'A'),  100; 
necessary  and.  sufficient  condition 

for  MMAB-rMMA'B'  is  Q(MAB, 
MB' A'),  101  ;  parabolic,  101 ;  ABCD 
-xABDC  implies  H  (AB,  CD),  103; 
nonhomogeneous  analytic  expression 

for,  154-157,206;  homogeneous  ana- 
lytic expression  for,  164;  analytic 

expression  for,  between  points  of  dif- 
ferent lines,  167  ;  analytic  expression 

for,  between  pencils  in  plane,  183 ; 
between  two  conies,  212-216;  on 
conic,  217-221 ;  axis  (center)  of,  on 
conic,  218 ;  involution  belonging  to, 
226 ;  problem  of,  250,  Ex.  14. 

Projectivities,  commutative,  example  of, 
70 ;  on  sides  of  invariant  triangle  of 
collineation,  274,  276,  Ex.  5 

Projector,  35 
Properly  projective,  97;  spatial  net  is,  97 

Quadrangle,  complete,  44 ;  quadrangle- 
quadrilateral  configuration,  46;  sim- 

ple, theorem  on,  52,  Ex.  6 ;  complete, 
and  quadrilateral,  theorem  on,  53, 

Ex.  8 ;  any  complete,  may  be  trans- 
formed into  any  other  by  projective 

collineation,  74;  opposite  sides  of, 
meet  line  in  pairs  of  an  involution, 
103 ;  conies  through  vertices  of,  meet 
line  in  pairs  of  an  involution,  127  ; 
inscribed  in  conic,  137,  Ex.  11 

Quadrangles,  if  two,  correspond  so  that 
five  pairs  of  homologous  sides  meet 
on  a  line  I,  the  sixth  pair  meets  on 
I,  47 ;  perspective,  theorem  on,  53, 
Ex.  12 ;  if  two,  have  same  diagonal 
triangle,  their  eight  vertices  are  on 
conic,  137,  Ex.  4 

Quadrangular  set,  49,  79 ;  of  lines,  79 ;  of 

planes,  79 
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Quadrangular  section  by  transversal  of 
quadrangular  set  of  lines  is  a  quad- 

rangular set  of  points,  79 ;  of  elements 
projective  with  quadrangular  set  is 
a  quadrangular  set,  80;  Q(MAB. 

NB'A') is  the  condition  for  MNAB-jc 
MNA'B',  100 ;  Q^fAB,  MB' A*)  is  the 
condition  for  MMAB—MMA'B\  101 ; 
Q{ABC,  A'B'C)  implies  Q(A'B'C, 
ABC),  101 ;  Q(ABC,  A'B'C)  is  the 
condition  that  A  A'.  BB\  CC'are  in  in- 

volution, 103 ;  Q(PX  P^Po.  P*  PvPx+9) 
is  necessary  and  sufficient  for  Px  +  P9 
=  P^y.  142;  Q(PxP,Pi,  PoPyP*,) 
is  necessarv  and  sufficient  for  Px  •  P, 
=  Pxy,  HO 

Quadrangularly  related,  86 
Quadratic  binary  form,  252;  invariant 

of,  252 
Quadratic  correspondence,  139,  Exs. 

22,  24 
Quadric  spread  in  S5,  331 
Quadric  surface,  301 ;  degenerate,  308 ; 

determined  by  nine  points.  311 
Quadrilateral,  complete,  44 ;  if  two  quad- 

rilaterals correspond  so  that  five  of  the 
lines  joining  pairs  of  homologous  ver- 

tices pass  through  a  point  P,  the  line 
joining  the  sixth  pair  of  vertices  will 
also  pass  through  P,  49 

Quantic,  254 
Quaternary  forms.  258 
Quotient  of  points,  149 

Range,  of  points.  55 ;  of  conies,  128-136 
Ratio,  of  points,  149 
Rational  operations,  149 
Rational  space,  98 
Rationality,  net  of,  on  line,  84, 85 ;  planar 

net  of,  86-88 ;  spatial  net  of,  89-93 ; 
domain  of,  238 

Rationally  related,  86.  89 
Reducible  equation,  239 
Reflection,    point-line,    projective,   223 
Reflexive  correspondence,  66 
Regulus,  determined  by  three  lines,  298  ; 

directrices  of,  299 ;  generators  or 
rulers  of,  299;  conjugate,  299;  gen- 

erated by  projective  ranges  or  axial 
pencils,  299  ;  generated  by  projective 
conies,  304,  307  ;  polar  system  of,  300 ; 
picture  of,  300 ;  degenerate  cases,  311 ; 
of  a  congruence,  318 

Related  figures,  35 
Resultant,  of  two  correspondences,  65; 

equal,  65;  of  two  projectivities  is  a 
projectivitv,  68 

Reye,  T.,  125,  139 
Rohn,  K.,  309 

Salmon,  G.,  138 
Sannia,  A.,  304 

Scale,  defined  by  three  points,  141,  231 ; 
on  a  conic,  231 

Schroter,  H.,  138.  281 
Schur,  F.,  95 
Science,  abstract  mathematical,  2 ;  con- 

crete application  or  representation  of,  2 
Scott,  C.  A.,  203 
Section,  of  figure  by  plane,  34 ;  of  plane 

figure  by  line,  35 ;  conic  section,  109 
Segre,  C,  230 
Self-conjugate  subgroup,  211 
Self-conjugate  triansrle  with  respect  to 

conic,  123 
Self-polar  triangle  with  respect  to  conic, 

123 

Set,  synonymous  with  class,  2 ;  quadran- 
gular, 49,  79;  of  elements  projective 

with  quadrangular  set  is  quadrangu- 
lar, 80;  harmonic,  80;  theorems  on 

harmonic  sets,  81 

Seven-point,  plane  section  of,  53,  Ex.  14 
Seydewitz,  F.,  281 
Sheaf  of  planes,  55 
Side,  of  n-point,  37 ;  false,  of  complete 

quadrangle,  44 
Similarly  placed  quadrangles,  50 
Simple  element  of  space,  39 
Simple  n-point,  n-line,  n-plane,  37 
Singly  parabolic  point,  274 
Singular  point  and  line  in  nonhomoge- 

neous  coordinates,  171 
Six-point,  plane  section  of,  54,  Ex.  17; 

in  four-space  section  by  three-space, 

54,  Ex.  24 
Skew  lines,  24;  projective  pencils  on, 

are  perspective,  105,  Ex.  2 ;  four,  are 
met  by  two  lines,  250,  Ex.  13 

Space,  analytic  projective,  11 ;  of  three 
dimensions,  20;  theorem  of  duality 
for,  of  three  dimensions,  28;  n-,  30; 
assumption  for,  of  n  dimensions,  33 ; 
as  equivalent  of  three-space,  34 ; 
properly  or  improperly  projective, 
97;  rational,  98;  finite,  201,  202; 
extended,  242 

Spatial  net,  89;  theorems  on,  89-92; 
is  properly  projective,  97 

von  Staudt,  K.  G.  C.,  14,  95,  125,  141, 
151,  158,  160,  286 

Steiner,  J.,  109,  111,  125,  138,  139,  285, 
286 

Steiner  point  and  line,  138,  Ex.  19 
Steinitz.  E..  261 
Sturm,  Ch.,  129 
Sturm,  R.,  231,  250,  287 
Subclass,  2 
Subgroup,  68 
Subtraction  of  points,  148 
Sum  of  two  points,  141,  231 
Surface,  algebraic,   259;   quadric,   301 
Sylvester,  J.  J.,  323 
System  affected  by  a  correspondence,  65 
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Tangent,  to  conic,  112 
Tangents  to  a  point  conic  form  a  line 

conic,  116;  analytic  proof,  187 

Taylor's  theorem,  255 
Ternary  form6,  258;  bilinear,  repre- 

sent correlation  in  a  plane,  267 
Tetrahedra,  perspective,  43,  44  ;  config- 

uration of  perspective,  as  section  of 
six-point  in  four-space,  54,  Ex.  24; 
Mobius,  105,  Ex.  6  ;  326,  Ex.  9 

Tetrahedron,  37;  four  planes  joining 
line  to  vertices  of,  projective  with 
four  points  of  intersection  of  line 
with  faces,  71,  Ex.  5 

Three-space,  20;  determined  uniquely 
by  four  points,  by  a  plane  and  a  point, 
by  two  nonintersecting  lines,  23 ;  the- 

orem of  duality  for,  28 
Throw,  definition  of,  60 ;  algebra  of,  141, 

157;  characteristic,  of  projectivity, 
205 

Throws,  two,  sum  and  product  of,  158 
Trace,  35 
Transform,  of  one  projectivity  by  an- 

other, 208 ;  of  a  group,  209 
Transform,  to,  68 
Transformation,  perspective,  13 ;  pro- 

jective, 13 ;  of  one-dimensional  forms, 
58;  of  two-  and  three-dimensional 
forms,  71 

Transitive  group,  70,  212,  Ex.  6 
Triangle,  37 ;  diagonal,  of  quadrangle 

(quadrilateral),  44 ;  whose  sides  pass 
through  three  given  collinear  points 
and  whose  vertices  are  on  three  given 
lines,  102,  Ex.  2 ;  of  reference  of 
system  of  homogeneous  coordinates 

in  plane,  174;  invariant,  of  collinea- 
tion,  relation  between  projectivities 
on  sides  of,  274,  276,  Ex.  5 

Triangles,  perspective,  from  point  are 
perspective  from  line,  41 ;  axes  of 
perspectivity  of  three,  in  plane  per- 

spective from  same  point,  are  con- 
current, 42,  Ex.  6 ;  perspective,  theo- 

rems on,  53,  Exs.  9,  10,  11 ;  105,  Ex. 
9 ;  116,  247 ;  mutually  inscribed  and 
circumscribed,  99;  perspective,  from 
two  centers,  100,  Exs.  1,  2,  3;  from 
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NOTES  AND   CORRECTIONS 

Page  22.  In  the  proof  of  Theorem  9,  under  the  heading  2,  it  is  assumed  that  A 
is  not  on  a.   But  if  A  were  on  a,  the  theorem  would  be  verified. 

Page  34.  In  the  definition  of  projection,  after  "P,"  in  the  last  line  on  the  page, 
insert  ",  together  with  the  lines  and  planes  of  F  through  P,". 

Page  34.  In  the  definition  of  section,  after  "  x,"  in  the  last  line  on  the  page,  insert 
"  together  with  the  lines  and  points  of  F  on  *■,". 

Page  35.  In  the  definition  of  section  of  a  plane  figure  F  by  a  line  i,  the  section 
should  include  also  all  the  points  of  F  that  are  on  I. 

Page  44,  line  6  from  bottom  of  page.  The  triple  system  referred  to  does  not, 

of  course,  satisfy  Ev  It  is  not  difficult,  however,  to  build  up  a  system  of  triples 
which  does  satisfy  all  the  assumptions  A  and  E.  Such  a  finite  S5  would  contain 

15  "points"  and  15  "planes''  (of  which  the  given  triple  system  is  one)  and  35 

"lines"  (triples).   See  Ex.  3,  p.  25,  and  Ex.  15,  p.  203. 
Page  47,  Theorem  3.  Add  the  restriction  that  the  line  I  must  not  contain  a 

vertex  of  either  quadrangle. 

Page  49.  In  the  definition  of  quadrangular  set,  after  "a  line  V  insert  ",  not 

containing  a  vertex  of  the  quadrangle,". 
Page  52,  Ex.  1.  The  latter  part  should  read:  "...  of  an  edge  joining  two 

vertices  of  the  five-point  with  the  face  containing  the  other  three  vertices  ? " 
Page  53,  Exs.  14,  15,  16.  The  term  circumscribed  may  be  explicitly  defined  as 

follows :  A  simple  n-point  is  said  to  be  circumscribed  to  another  simple  n-point 
if  there  is  a  one-to-one  reciprocal  correspondence  between  the  lines  of  the  first 

n-point  and  the  points  of  the  second,  such  that  each  line  passes  through  its  corre- 
sponding point.    The  second  n-point  is  then  said  to  be  inscribed  in  the  first. 

Page  53,  Ex.  16.  The  theorem  as  stated  is  inaccurate.  If  m  is  the  smallest 

exponent  for  which  2m  =  ±  1,  mod.  n,  the  vertices  of  the  plane  section  may  be 

divided  into     simple  n-points,  which  fall  into     cycles  of  m  n-points 2  2m 

each,  such  that  the  n-points  of  each  cycle  circumscribe  each  other  cyclically. 

Thus,  when  n  =  17,  there  are  two  cycles  of  4  n-points,  the  n-points  of  each  cycle 
circumscribing  each  other  cyclically. 

Page  85,  Theorem  9.  If  the  quadrangular  set  contains  one  or  two  diagonal 
points  of  the  determining  quadrangle,  these  diagonal  points  must  be  among  the 
five  or  four  given  points. 

Page  88,  Theorem  12.  To  complete  the  proof  of  this  theorem  the  perspectivity 

mentioned  must  be  used  in  both  directions — i.e.  it  also  makes  the  points  of  R1  or 
R.2  perspective  with  the  points  of  B?  on  I 

Page  99,  Theorem  22.    See  note  to  p.  53,  Exs.  14,  15,  16. 
Page  108,  Theorem  29.  Under  Type  III,  the  proviso  should  be  added  that  the 

line  PQ  is  not  on  the  center  of  F  and  the  point  pq  is  not  on  the  axis  of  F. 

Page  119,  Ex.  6.  The  latter  part  of  this  exercise  requires  a  quadratic  construc- 
tion.  See  Chap.  IX. 

Page  137,  Ex.  7  (Miscellaneous  Exercises).  The  two  points  must  not  be  collinear 
with  a  vertex  ;  or,  if  collinear  with  a  vertex,  they  must  be  harmonic  with  respect 
to  the  vertex  and  the  opposite  side. 
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344  NOTES  AND  CORRECTIONS 

Page  165,  last  paragraph.  The  point  (—1, 1)  forms  an  exception  in  the  definition 
of  homogeneous  coordinates  subject  to  the  condition  xx  +  x2  =  1.  An  exceptional 
point  (or  points)  will  always  exist  if  homogeneous  coordinates  are  subjected  to  a 
nonhomogeneous  condition. 

Page  168,  Ex.  10.   The  points  A,  B,  C,  B  must  be  distinct. 

Page  182,  bottom  of  page.  We  assume  that  the  center  of  the  pencil  of  lines  is 

not  on  the  axis  of  the  pencil  of  points  (cf.  the  footnote  on  p.  183). 

Page  186.  While  the  second  sentence  of  Theorem  7  is  literally  correct,  it  may 

easily  be  misunderstood.  If  the  left-hand  member  of  the  equation  of  one  of  the 
lines  m  =  0,  n  =  0,  or  p  =  0  be  multiplied  by  a  constant  p,  the  value  of  k  may 
be  changed  without  changing  the  conic.  In  fact,  by  choosing  p  properly,  k  may  be 
given  an,  arbitrary  value  (9*  0)  for  any  conic. 

As  pointed  out  in  the  review  of  this  book  by  H.  Beck,  Archiv  der  Mathematik, 
Vol.  XVIII  (1911),  p.  85,  the  equation  of  the  conic  may  be  written  as  follows : 

Let  (av  a2,  a3)  be  an  arbitrary  point  in  the  plane  of  the  conic,  and  let 

mx  —  m1x1  +  m2x2  +  m3x3, 

nx  ■=.  u,jX|  -+•  ti2x2  +  JijjXg, 

Px  =  Pxxt  +  p2x2  +  p3x3  ; 

then  the  equation  of  the  conic  may  be  written 

k2manapx  —  k^plmxtix  =  0. 
When  the  equation  is  written  in  this  form,  there  is  one  and  only  one  conic  for 

k 
every  value  of  the  ratio  —  • 

Kn 

Page  301.  The  first  sentence  is  not  correct  under  our  original  definition  of  section 

by  a  plane.    We  have  accordingly  changed  this  definition  (cf .  note  to  p.  34). 
Page  301.  In  the  sentence  before  Theorem  7  the  tangent  lines  referred  to  are 

not  lines  of  the  quadric  surface. 

Page  303,  Ex.  5.   The  tangent  line  must  not  be  a  line  of  the  surface. 

Page  303,  Ex.  7.   The  line  must  not  be  a  tangent  line. 

Page  304.  Theorem  11  should  read :  " .  .  .  form  a  regulus  or  a  cone  of  lines,  pro- 

vided .  .  . ".  In  case  the  collineation  between  the  planes  of  the  conies  leaves  every 
point  of  I  invariant,  the  lines  joining  corresponding  points  of  the  two  conies  form 

a  cone  of  lines.    In  this  case  A  =  A  and  B=  B,  and  the  lines  a  and  b  intersect. 

Page  306,  line  7.  After  "sections,"  insert  ",  unless  a  and  b  intersect,  in  which 

case  they  generate  a  cone  of  lines"  (cf.  note  to  p.  304). 
Page  308,  proof  of  Corollary  2.  Let  A\  be  the  projection  on  a  of  B2  from  the 

point  M.  A\  might  have  double  contact  with  A2  at  R  and  R\  or  might  have  con- 

tact of  the  second  order  at  R  or  R'.  However,  if  C2  is  not  degenerate,  it  is  possible 
to  choose  M  for  which  neither  of  these  happens.  For  if  all  conies  obtained  from 

[M ]  had  either  of  the  above  properties,  they  would  form  a  pencil  of  conies  of 

which  A2  is  one.  There  would  then  exist  a  point  M  for  which  A\  and  A2  would 
coincide.  C2  would  in  this  case  have  to  contain  three  collinear  points  and  would 
then  be  degenerate. 

Page  310,  paragraph  beginning  "Now  if  nine  points  .  .  .".  It  is  obvious  that 
no  line  of  intersection  of  two  of  the  planes  a,  /3,  7  will  contain  one  of  the  nine 

points,  no  matter  how  the  notation  is  assigned. 

Page  315,  line  12  from  bottom  of  page.  Neither  w,  nor  jt2  must  contain  a  directrix. 
Page  319,  Ex.  2.  If  the  two  involutions  have  double  points,  the  points  on  the 

lines  joining  the  double  points  are  to  be  excepted  in  the  second  sentence. 
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Pages  320,  321.  In  the  proof  of  Theorem  20  the  possibility  that  three  of  the 
vertices  of  the  simple  pentagon  may  be  collinear  is  overlooked.  Therefore  the 
third  sentence  of  the  last  paragraph  of  page  320  and  the  third  sentence  of 
page  321  are  incorrect.  It  is  not  hard  to  restate  the  proof  correctly,  as  all  the 
facts  needed  are  given  in  the  text,  but  this  restatement  requires  several  verbal 
changes  and  is  therefore  left  as  an  exercise  to  the  reader. 
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