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"Ye  knowe  eek,  that  in  forme  of  speche  is  chaunge 
With-inne  a  thousand  yeer,  and  wordes  tho 

That  hadden  prys,  now  wonder  nyce  and  straunge 
Us  thinketh  hem ;  and  yet  they  spake  hem  so, 

And  spedde  as  wel  in  love  as  men  now  do." 
CHAUCER. 

"In  the  vocabulary  of  the  Sciences,  words  are  fixed  and  dead,  a  botanical  collec- 
tion of  colourless,  scentless,  dried  weeds,  a  hortus  siccus  of  proper  names,  each 

individual  symbol  poorly  tethered  to  some  single  object  or  idea.  No  wind  blows 

through  that  garden,  and  no  sun  shines  on  it,  to  discompose  the  melancholy  workers 

at  their  task  of  tying  Latin  labels  on  to  withered  sticks." 
RALEIGH. 

"The  method  of  'postulating'  what  we  want  has  many  advantages;  they  are  the 

same  as  the  advantages  of  theft  over  honest  toil.  Let  us  leave  them  to  others." 
RUSSELL. 



PREFACE 

THE  vitality  of  the  mathematical  form  of  speech  is  of  a  peculiar  kind. 
Words  grow,  not  by  continuous  and  subtle  variations  in  meanings  already 

possessed,  but  by  the  acquisition  of  meanings  entirely*  new;  meanings  that  are 
outgrown  are  neither  dead  nor  discarded,  but  survive  unchanged  to  be  used 
when  they  are  appropriate,  and  it  often  happens  that  an  assertion  can  be 
interpreted  to  give  a  number  of  different  theorems  that  are  all  true. 

The  first  half  of  the  present  work  is  an  account  of  the  principles  under- 
lying the  use  of  Cartesian  axes  and  vector  frames  in  ordinary  space.  The 

second  half  describes  ideal  complex  Euclidean  space  of  three  dimensions,  that 

is,  three-dimensional  'space'  where  'coordinates'  are  complex  numbers  and 
'parallel  lines'  do  meet,  and  develops  a  system  of  definitions  in  consequence 
of  which  the  geometry  of  this  space  has  the  same  vocabulary  as  elementary 
geometry,  and  enunciations  and  proofs  of  propositions  in  elementary  geometry 
remain  as  far  as  possible  significant  and  valid. 

The  arrangement  of  the  material  has  been  dictated  by  convenience  for  the 
structure  as  a  whole,  without  regard  to  the  logical  relations  between  the 
initial  assumptions.  For  this  reason  I  have  not  called  the  volume  a  treatise 
on  the  foundations  or  on  the  principles  of  analytical  geometry.  Either 
description  would  have  suggested  a  discussion  of  axioms,  and  the  field  to  which 
this  work  belongs  is  not  part  of  the  region  that  extends  for  English  readers 

from  Russell's  earliest  work  to  Baker's  latest ;  as  far  as  I  can  judge  yet,  this 
work  has  no  ground  in  common  with  the  Principles  of  Geometry,  and  my  debt 
to  Russell,  great  as  it  is,  is  for  the  methods  of  the  Principles  of  Mathematics, 

not  for  the  philosophy  of  the  Foundations  of  Geometry.  The  title  '  Principles 
of  Analytical  Geometry '  would  have  been  no  less  misleading  if  the  word  had 
been  associated  with  the  formal  logic  of  Principia  Mathematica,  or  with  the 
wide  survey  of  general  methods  to  which  Darboux  gave  that  very  name. 

The  discussion  falls  into  five  parts.  There  is  a  preparatory  book,  that  deals 
first  with  such  fundamental  matters  as  the  avoidance  of  ambiguity  in  the 
measurement  of  angles  and  the  meaning  of  the  sign  attached  to  the  volume 
of  a  tetrahedron,  and  afterwards  with  the  simplest  kind  of  projection. 

The  second  book  is  an  introduction  to  vector  analysis,  and  was  written 
only  after  many  efforts  to  utilise  one  or  other  of  the  current  text-books.  While 
ready  to  take  for  granted  an  acquaintance  with  the  formal  laws,  I  wished  to 
protest  both  against  the  confusing  notion  that  a  vector  is  a  piece  of  a  line  but 

*  Hence  the  bewilderment  of  the  man  in  the  street,  who  does  not  suspect,  for  example, 
that  when  an  event  is  described  as  'a  point  in  a  four-dimensional  space  where  time  is 

imaginary ',  five  terms  with  which  he  is  familiar  are  being  used  with  technical  meanings 
that  he  does  not  know. 

N.  6 
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is  in  some  mysterious  way  indistinguishable  from  equal  pieces  of  parallel 
lines,  and  against  the  assumption  that  lengths,  curvatures,  speeds,  and  the 
tensors  of  vectors  generally,  are  intrinsically  either  signless  or  positive,  a 
mischievous  supposition  which  not  only  would  encumber  the  geometry  and 
mechanics  of  real  space  beyond  endurance  if  it  was  not  in  practice  ignored 
whenever  it  becomes  inconvenient,  but  also  is  an  insurmountable  barrier  to 

the  extension  of  vector  analysis  from  real  to  complex  space.  It  seemed 
necessary  to  shew  that  the  formal  development  of  vector  analysis  is  not  com- 

plicated by  the  view*  of  the  vector  as  duplex,  and  ultimately  a  compound  of 
quotation  and  qualification  gave  place  to  a  straightforward  summary  of  the 
subject. 

The  beauty  of  the  calculus  of  quaternions  does  not  alter  the  fact  that  the 
geometer  deals  with  the  actual  cosine  of  an  angle  and  the  actual  square  of  a 
distance,  not  with  the  negatives  of  these  numbers.  I  have  therefore  taken  the 
line  of  Grassmann  and  Gibbs,  and  regarded  as  fundamental  the  negative  of 

Hamilton's  scalar  product,  and  this  I  have  ventured  to  call  the  projected 
product. 

Some  novelty  will  I  think  be  found  in  the  treatment  of  rotors.  Much  use 
has  been  made  of  the  conception  of  the  momental  product  of  two  rotors  or  of 
two  sets  of  rotors,  and  the  consideration  of  sets  of  rotors  begins  before  couples 
have  been  mentioned.  These  are  details  of  economy,  not  matters  of  principle, 
and  everywhere  I  have  refrained  from  lengthening  the  work  by  attack  or 
defence. 

The  third  book  applies  vector  analysis  to  obtain  formulae  for  use  with 
Cartesian  axes  and  with  vector  frames.  The  Cartesian  frame  is  not  assumed 

to  be  trirectangular,  nor  are  the  Hamiltonian  unit  vectors  i,  j,  k  mentioned. 
The  claim  that  oblique  frames  are  not  more  cumbersome  than  trirectangular 
in  theoretical  work  is  less  extravagant  than  might  be  supposed.  Vector  frames 
are  discussed  partly  because  the  discussion  introduces  in  its  simplest  form  a 
quantity  of  analysis  that  is  fundamental  in  differential  geometry,  and  partly 
because  in  complex  space  nul  vectors  are  invaluable  as  vectors  of  reference  but 
nul  lines  can  not  serve  as  axes  of  a  Cartesian  frame.  Problems  that  involve 

the  locating  of  lines  by  means  of  frames  of  reference  explain  the  range  of  the 
second  book  by  illustrating  the  utility  for  analytical  geometry  of  the  idea  of 
the  vector  product  and  of  the  elements  of  the  theory  of  rotors. 

The  following  book  is  devoted  to  the  construction  of  algebraic  space. 
Mathematicians  used  complex  space  for  many  years  without  perceiving  that 
the  question  of  its  existence  or  of  its  definition  was  one  that  needed  to  be 
considered.  No  flaw  was  recognised  in  the  argument  that  because  the  points 

*  With  regard  to  this  view,  I  can  not  do  better  than  repeat  the  words  of  the  r6tisseur's 
son :  " Au  reste,  je  ne  me  flatte  pas  de  tirer  grand  houneur  de  ces  revelations.  Les  uns 

diront  que  j'ai  tout  invente  et  que  ce  n'est  pas  la  vraie  doctrine ;  les  autres  que  je  n'ai  dit 

que  ce  que  tout  le  monde  savait." 
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of  intersection  of  a  line  and  a  circle  are  given  by  a  quadratic  equation,  there- 
fore a  circle  cuts  every  line  in  its  plane  in  two  points,  which  if  they  are  not 

real  are  ipso  facto  imaginary.  The  success  that  waited  on  audacity  blinded 

criticism.  "The  metaphysician,  who  should  invent  anything  so  preposterous 
as  the  circular  points,  would  be  hooted  from  the  field.  But  the  mathematician 

may  steal  the  horse  with  impunity*." 
By  the  time  the  mathematical  conscience  had  become  uneasy,  dispute 

on  the  desirability  of  admitting  complex  numbers  as  coordinates  was  riot 

possible,  but  on  the  justification  to  be  offered  different  views  have  been  held. 
The  elegance  of  the  theory  by  which  von  Staudt  reduced  every  proposition 
which  in  analytical  geometry  would  be  described  as  involving  a  complex  point 

to  a  proposition  about  real  involutions,  has  led  some  writers  to  look  for  com- 

plex space  within  real  space.  The  search  is  not  to  be  encouraged:  'real' space 
with  Euclidean  properties  is  no  less  a  creation  of  the  mind  than  the  complex 
space  that  is  wanted.  Accordingly,  other  mathematicians  have  constructed 

metrical  geometry  by  means  of  quasi-geometrical  axioms  imposed  on  undefined 

'points'  and  'lines'.  But  the  process  is  slow  ;  the  whittling  of  the  set  of 
axioms  down  to  a  logical  minimum  is  a  tedious  exercise  in  which  the  student 

of  analytical  geometry  may  feel  no  interest  and  by  which  he  should  not  be 
delayed. 

There  is  a  third  method.  "  II  semble  que,  pour  1'introduction  et  1'interpreta- 
tion  des  imaginaires",  wrote  Darbouxf,  "il  vaut  mieux  s'en  tenir  a  la  method  e 

analytique  qui  repose  sur  1'emploi  des  coordonnees  rectilignes."  In  other  words, 
analytical  geometry  is  to  be  developed  from  axioms  expressed  in  the  language 

of  analytical  geometry.  As  far  as  I  know,  the  details  of  such  a  development 
have  not  previously  been  worked  out. 

It  is  perhaps  necessary  to  emphasise  that  complex  space  can  not  be  con- 
structed by  the  simple  plan  of  attaching  complex  points  to  real  axes.  The 

assumption  that  we  can  take  an  ordinary  Cartesian  frame  and  '  let '  coordinates 
relative  to  it  have  complex  values  is  a  mistake  of  the  same  kind  as  the  illusion  J 

that  the  natural  numbers  occur  among  the  real  numbers.  A  theory  of  algebraic 
space  must  account  for  the  framework  as  well  as  for  the  points. 

The  fundamental  axioms  used  in  this  book  are  axioms  that  involve  vectors, 

and  points  are  introduced  only  by  their  relation  to  vectors.  The  only  reason  for 

my  adoption  of  this  plan  is  that  I  have  not  found  one  that  is  simpler.  To  achieve 

a  logical  construction  of  complex  space  and  a  logical  construction  of  ideal  space 
is  of  the  highest  importance,  but  attempts  to  distinguish  particular  construc- 

*  Russell,  Foundations  of  Geometry,  p.  45,  1897. 
t  Principes  de  Geometrie  Analytique,  p.  3,  1917. 
I  See  Russell,  Principles  of  Mathematics,  (1903),  p.  150,  and  elsewhere.  Without 

disputing  that  "the  confusion  of  entities  with  others  to  which  they  have  some  important 
one-one  relation... has  produced  the  greatest  havoc  in  the  philosophy  of  mathematics", may 
we  suggest  that  when  we  are  aware  of  the  confusion,  it  is  no  longer  an  error  but  a  valuable 
economy  ?  See  pp.  243,  244  below. 

62 
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tions  as  the  best  would  be  unprofitable*  if  not  futile;  so  long  as  complex 
geometry  and  ideal  geometry  mean  something,  it  does  not  much  matter  what 
the  meanings  are,  nor  is  it  even  desirable  for  the  geometer  to  be  conscious 
continually  of  an  interpretation  of  his  words  and  symbols.  It  is  however  in- 

teresting to  notice  that  in  the  axioms  which  Peano,  deeply  concerned  with 
their  interrelations,  has  formulated  f  for  Euclidean  space,  vectors  take  the  same 
precedence  of  points  as  here,  and  that  Silberstein  has  shewn  J  that  the  question, 
irrelevant  to  us,  whether  this  method  introduces  assumptions  distinctive  of 
Euclidean  geometry  at  a  stage  that  is  premature  from  the  standpoint  of  pure 
logic,  must  not  be  answered  hastily. 

The  notions  most  difficult  to  extend  to  algebraic  space  are  those  in  which 
direction  is  involved.  In  the  substance  of  the  chapter  explaining  the  extension, 
I  have  not  as  far  as  I  know  been  anticipated,  and  a  comparison  with  the  chapters 

of  Darboux's  Principes  de  Gdomdtrie  Analytique  on  the  foundations  of  metrical 
geometry  is  interesting.  Applied  to  anisotropic  lines,  the  assertion  §  that  to 
determine  a  sense  on  a  line  is  the  same  as  to  choose  between  the  two  values 

of  a  square  root,  is  adequate  for  practical  purposes,  but  a  Frege-Russell  de- 
finition of  direction  has  the  advantage  of  being  applicable  to  nul  lines. 

An  unusual  degree  of  attention  has  been  given  to  the  isotropic  plane,  and 
the  explicit  appreciation  of  what  are  here  called  the  two  aspects  of  an  isotropic 
plane  is  original. 

This  fourth  book  concludes  with  a  proof  that  whatever  are  the  values  of 
the  magnitudes  fundamental  in  the  frame  from  which  space  happens  to  have 
been  constructed,  a  frame  with  assigned  values  for  its  fundamental  magnitudes 
can  be  found:  complex  space  is  unique. 

This  work  was  begun  as  a  preliminary  chapter  to  an  introduction  to  differ- 
ential geometry.  A  collection  of  formulae  for  use  with  oblique  axes  was  wanted. 

Such  formulae  are  proved  most  readily  by  vector  analysis,  which  for  this 
purpose  it  would  be  barbarous  to  suppose  established  by  means  of  rectangular 
axes,  or  by  the  equivalent  means  of  i,  j,  and  k.  The  first  three  books  having 
been  designed,  the  extension  to  the  fourth  book  was  inevitable. 

But  when  it  became  clear  that  I  was  engaged  not  on  the  sections  of  a 

preliminary  chapter  but  on  a  substantive  treatise,  the  question  of  the  scope 
of  the  work  as  a  whole  had  to  be  faced.  Callous  though  it  might  be  to  leave 
complex  space  without  embracing  infinity  and  the  circular  points,  it  seemed 
unnecessary  to  add  another  to  the  accounts  of  ideal  space,  and  unprofitable  to 
touch  on  this  subject  unless  I  was -pre pared  to  go  as  far  as  to  include  the 
expression  of  distances  and  angles  by  means  of  the  absolute.  The  difficulty 

*  Compare  De  Morgan,  on  p.  94  of  the  little  masterpiece  Trigonometry  and  Double 

Algebra,  1849:  "The  student,  if  he  should  hereafter  inquire  into  the  assertions  of  different 
writers,  who  contend  for  what  each  of  them  considers  as  the  explanation  of  ̂ /  - 1,  will  do 
well  to  substitute  the  indefinite  article.'' 

t  See  Russell's  Principles  of  Mathematics,  p.  432. 
J  Protective  Vector  Algebra,  1919.  §  Principes,  pp.  138,  140,  180,  182. 
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vanished  with  the  appearance  in  1917  of  Darboux's  Principes;  it  is  easy  to  leave 
off  where  a  Darboux  is  beginning,  and  the  questions  with  which  this  volume  is 
concerned  are  precisely  those  whose  answers  Darboux  assumes  to  be  known. 

The  logical  construction  of  ideal  space  from  actual  space,  of  which  Darboux 

says  nothing,  was  effected  many  years  ago*,  and  the  connection  between  the 
use  of  homogeneous  coordinates  and  the  recognition  of  points  at  infinity,  on 

which  Darboux  touches  in  his  introductory  chapter,  is  familiar.  The  sub- 
stitution of  complex  space  for  real  space  makes  no  difference  to  the  arguments, 

but  as  exhibiting  for  Euclidean  space  the  geometrical  and  the  analytical 
theories  in  intimate  relation,  the  account  of  ideal  space  in  the  first  three 
chapters  of  book  five  is  more  than  a  mere  transcript  of  existing  material.  Also 
the  geometrical  theory  of  quadriplanar  coordinates  given  here  has  a  generality 
that  is  uncommon. 

The  next  chapter  is  somewhat  outside  the  scheme  of  the  volume.  Its 

primary  object  is  to  explain,  in  preparation  for  the  chapters  that  follow,  how 
for  algebraic  curves  and  algebraic  surfaces  the  ideas  of  tangents  and  tangent 
planes  and  of  multiple  points  can  be  introduced  without  reference  to  limits; 
the  subject  has  been  developed  considerably  beyond  the  actual  requirements. 
The  restriction  to  algebraic  loci  is  in  many  respects  unnecessary,  since  the 
multiplicity  of  a  number  a  as  a  root  of  an  equation  f(z)  =  0,  where  f(z)  is 
regular  near  a,  is  a  definable  integer  without  the  assumption  that  f(z)  is  a 
polynomial. 

Chapter  five  of  this  book  deals  with  circles,  and  chapter  six  with  spheres. 
Stress  is  laid  on  the  points  at  which  the  complex  or  ideal  nature  of  the  plane 
or  of  space  becomes  relevant,  on  the  peculiarities  of  circles  in  an  isotropic 
plane,  and  on  the  parabolic  character  of  the  section  of  a  sphere  by  such  a 
plane.  The  classification  of  coaxal  systems  of  circles  occupies  two  long  sections, 
and  illustrates  well  the  variety  of  cases  that  can  be  covered  by  a  single  enun- 

ciation. To  avoid  misunderstanding,  I  may  say  here  that  I  should  be  the  last 

to  discourage  the  student  from  asserting  theorems  as  true  'in  general'  without 
delaying  to  examine  exceptions  and  to  frame  conventional  interpretations  for 
their  avoidance;  it  may  be  that  these  sections  will  play  their  most  useful  part 
as  a  warning.  The  book  ends  with  a  section  on  the  rectilinear  generators  of 
the  sphere. 

The  nature  of  limits  in  complex  space  and  in  ideal  space  is  the  subject  of 
a  brief  appendix.  A  discussion  o'f  limits  in  the  body  of  the  work  on  a  scale comparable  with  that  on  which  other  questions  have  been  treated  would  have 
changed  the  balance  entirely,  but  since  the  two  extensions  of  space  with  which 
the  volume  is  concerned  introduce  characteristic  difficulties  into  the  conception 
of  a  limit,  some  reference  to  these  difficulties  seemed  desirable.  The  divorce 
of  the  notion  of  a  limit  from  that  of  distance,  which  is  essential  if  space  is  to 

*  See  e.g.  Kussell,  Principles  of  Mathematics,  ch.  xlvi,  or  Whitehead,  Axioms  of  Descrip- 
tive Geometry,  ch.  iii  (1907);  both  writers  give  references  to  the  original  sources. 
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be  made  complex,  was  effected  by  Jordan.  But  whereas  Jordan  defines  a  point 

P  at  infinity  to  be  a  limit  of  a  set  of  points  T  if  a  homographic  projection  of 

P  to  an  accessible  point  P'  transforms  F  into  a  set  of  which  P'  is  a  limit,  the 
definition  proposed  here  is  one  directly  in  terms  of  tetrahedral  coordinates,  to 
which  the  distinction  between  accessible  and  inaccessible  points  is  irrelevant; 
the  two  definitions  are  easily  reconciled. 

Nothing  is  said  of  cross  ratios,  nothing  of  the  generality  which  is  conferred 

on  theorems  that  are  nominally  about  circles  and  spheres  by  the  arbitrariness 

of  the  coefficients  in  the  fundamental  expression  for  the  square  of  a  distance. 
These  omissions  place  me  in  the  happy  position  of  being  able  to  offer  this 

volume  as  a  preface  to  Darboux's,  and  I  hope  that  they  will  also  encourage 
the  'practical'  reader  to  look  here  for  the  kind  of  account  of  complex  space 
that  he  wants. 

For  the  lack  of  uniformity  in  the  scale  and  style  of  different  parts  of  the 

volume  I  can  only  crave  indulgence.  The  work  grew  spasmodically,  sometimes 
forwards  and  sometimes  backwards,  during  six  years,  and,  as  I  have  hinted,  the 

reader  whom  at  first  I  had  in  view  was  the  beginner;  hence  some  'instructive' 
foot-notes  and  too  free  a  use  of  italics.  A  preoccupation  with  differential 

geometry  accounts  for  the  wish  to  reserve  suffixes  for  the  indication  of  deriva- 
tives, and  accounts  therefore  for  a  use  of  superior  affixes  that  within  the  limits 

of  the  present  volume  is  both  unnecessary  and  unnatural.  On  the  other  hand, 

the  extent  of  the  cross-references  made  it  impossible  for  me  to  make  any  con- 
siderable changes  when  the  final  scope  of  the  volume  had  become  apparent. 

A  certain  amount  of  formal  repetition  is  inevitable,  since  one  object  of  the 
work  is  to  shew  that  formal  repetition  can  be  made  possible ;  I  have  tried  to 
exercise  a  reasonable  moderation. 

The  background  has  long  been  common  ground  to  mathematicians.  The 
one  individual  debt  is  to  Mr.  Russell,  whose  influence  will  be  recognised 

throughout;  on  its  logical  side,  the  work  is  an  application  of  the  Frege-Russell 
method  of  definition  to  problems  that  the  pure  mathematician,  however  ill- 
disposed  to  philosophy,  can  neither  ignore  nor  delegate. 

For  fourfold  assistance  in  passing  the  volume  through  the  press  I  am  very 

grateful  to  Mr.  A.  Robson  of  Maryborough  College,  who  has  read  the  proofs, 
criticised  the  arguments,  verified  the  references,  and  compiled  the  indexes ; 

this  is  a  bald  acknowledgment  of  laborious  and  invaluable  help. 

To  praise  the  workmanship  of  the  printers  is  superfluous ;  the  reader  has 
the  result  before  him.  But  the  author  alone  experiences  the  unfailing  courtesy 
and  forbearance  of  Mr.  Peace  and  his  staff,  and  I  am  glad  to  acknowledge  my 

obligations;  the  casting  of  the  semicircular  brackets  (see  p.  123)  is  only  one 
instance  of  the  ready  humouring  of  my  whims. 
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NOTE  ON  NUMERATION 

It  seemed  necessary  to  present  many  of  the  logical  chains  in  this  volume  in 
some  detail,  both  to  guide  the  beginner  and  to  save  time  for  the  expert.  To 
print  as  a  theorem,  with  a  paragraph  to  itself  and  the  dignity  of  italics,  every 
assertion  of  which  subsequent  use  was  to  be  made,  would  have  been  preposterous. 
The  marginal  numbers  are  designed  to  make  reference  easy  with  a  minimum 
of  adaptation  of  the  text ;  the  precise  incidence  of  a  number  that  does  not 

refer  to  a  formula  or  to  a  theorem  set  out  formally  is  indicated  by  the  mark  °, 
which  does  not  interrupt  reading. 

The  system  of  numeration  will  be  found,  I  hope,  both  simple  and  economical. 
The  seventh  section  of  the  fourth  chapter  of  the  fifth  book  is  called  section  547. 

Within  each  section  are  subdivisions  marked  *1,  '2,  and  so  on,  and  definitions, 
equations,  and  assertions  bear  decimal  numbers  usually  of  two  digits  but 
occasionally  of  three ;  these  decimal  numbers  are  in  order,  but  their  second 
digits  do  not  always  run  consecutively.  When  reference  is  made,  the  decimal 
part  of  the  reference  number  is  given  in  full,  but  the  integral  part  is  filled  in, 
from  the  right,  only  as  far  as  it  differs  from  the  number  of  the  section  in  which 

the  reference  occurs.  Thus  the  references  in  section  333  to  '14,  l-75,  23'4, 
and  234' 25  are  to  a  sentence  in  the  text  of  the  same  section,  a  formula  whose 

complete  number  is  331 '75,  a  paragraph  323'4  in  the  preceding  chapter,  and 
a  proposition  in  an  earlier  book.  Ambiguity  is  impossible,  but  in  the  vast 
majority  of  references  decimal  entries  only  are  required. 

The  following  table  enumerates  the  paragraphs  in  which  details  peculiar  to 
isotropic  vecplanes  or  isotropic  planes  are  considered,  but  the  sequence  of 

paragraphs  is  not  a  self-contained  account  of  the  isotropic  plane,  for  the 
sequence  is  not  coherent  nor  are  the  paragraphs  intelligible  without  reference 
to  other  parts  of  the  volume.  In  many  cases  only  part  of  a  subsection  is 
involved. 

SUBSECTION  PAGE 
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isotropic  vecplanes  and  nul  veclines    205 
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SUMMARY  ACCOUNT  OF  SYMBOLS  IN  FREQUENT  USE 

Directions  and  their  images  are  denoted  by  capital  Greek  letters,  and  II  is 

used  for  the  centre  of  the  unit  sphere ;  P'  stands  for  the  direction  reverse  to 
P  or  the  point  diametrically  opposite  to  P.  Rays  are  denoted  by  small  Greek 
letters,  unprepared  lines  by  small  Latin  letters. 

Clarendon  type  is  appropriated  to  undissected  vectors ;  r'  is  the  reverse  of 
r,  and  0  is  the  zero  vector.  The  vector  in  which  the  number  r  is  associated 

with  the  direction  P  is  denoted  by  rp.  A  rotor  is  represented  in  the  form  rk 
or  in  the  form  rK  according  to  the  light  in  which  it  is  being  regarded.  A  couple 

is  expressed  in  terms  of  its  component  rotors  as  (r^,  r/),  or  in  terms  of  its 
momental  vector  and  the  lines  in  which  it  is  located  as  Rw. 

The  uses  of  script  letters  with  vectors  and  rotors  are  explained  as  follows : 

£# rs,  areal  product           ...         ...         ...  pp.  56,  217 

SeT,  Sr,  vector  derived  by  rotation         ...  47,  217 

,  projected  product    54,190 
i,  JtFQ,  momental  product           ...  70,    76 
,  spatial  product          62,  196 

^  rs,  vector  product             57,201 

The  angle  of  a  plane  Cartesian  frame  is  denoted  by  <y ;  in  space,  a,  /3,  7  are 
angles  between  axes  of  reference,  A,  B,  F  angles  between  planes  of  reference, 

and  T  is  the  sine  of  the  frame.  The  polars  of  OXY,  OXYZ  are  denoted  by 
OLM,  OLMN. 

For  a  plane  vector  frame  xy,  the  fundamental  magnitudes  are  E,  F,  G,  the 

areal  magnitude  is  C ;  in  three  dimensions,  the  fundamental  magnitudes  are 

L,  M,  N,  P,  Q,  R,  the  spatial  magnitude  is  J".  The  polars  of  xy,  xyz  are 
xy,  xyz,  and  this  derivative  notation  is  extended  to  associated  magnitudes. 

Amounts  of  the  vectors  of  reference  are  denoted  by  U,  V  or  U,  V,  W',  for  the 
use  of  amounts  in  an  isotropic  vecplane,  see  p.  221. 

With  reference  to  OXYZ,  coordinates  and  components  are  x,  y,  z,  projections 

are  I,  m,  n\  with  reference  to  a  vector  frame  attached  to  an  origin  0,  the 

corresponding  numbers  are  £,  77,  £  and  X,  /*,  v.  The  symbols  by  which  umbral 
notation  is  most  frequently  applied  are  given  by 

c  =  (x,  y,  z'),    p  =  {I,  m,  n),     %  =  Q,  77,  £),_   v  =  (\,  /*,  i/), 
£ra  =  <&  crc.  =  &>p,pn  =  SXrX»  =  Svrv9. 

The  determinant  whose  typical  element  is  amn  is  denoted  by  [[a]]. 
When  single  letters  are  adequate,  the  distinction  between  actual  and  ideal 

is  not  reflected  in  the  symbols  used.  But  the  ideal  point  which  is  determined 
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from  an  actual  origin  0  by  the  vector  r  and  the  number  t  is  written  as  (r,  t), 

and  the  ideal  vector  which  the  vector  r  and  the  number  R  combine  to  specify 
as  (r,  R). 

The  two  focal  points  in  an  anisotropic  plane  are  /  and  /;  K  is  used  for  the 
one  focal  point  in  an  iso tropic  plane,  and  also  for  an  unspecified  focal  point 

either  in  an  anisotropic  plane  or  in  space. 

General  rectilinear  coordinates  in  a  plane  are  a,  /3,  7,  in  space  a,  ft,  7,  8; 

Cartesian  coordinates  rendered  homogeneous  become  x,  y,  t  or  x,  y,  z,  t,  and 
the  coordinates  derived  from  an  attached  vector  frame  become  f,  77,  r  or  f,  77, 

f,  r.  By  the  use  of  e  for  (a,  (3,  7")  and  £a,  /3,  7,  8),  it  is  possible  to  denote  a 
homogeneous  polynomial  of  degree  n  in  rectilinear  coordinates  by  3>eM,  and 
the  corresponding  multilinear  function  of  n  sets  of  coordinates  by 
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CHAPTER  II 

DIRECTIONS  AND  ANGLES 

110.  Introduction.  111.  The  unit  sphere  and  unit  circles;  spherical  and  circular 
images  of  directions.  112.  Cyclic  conventions.  113.  Angles  between  coplanar  directions. 
114.  Spatial  conventions.  115.  Angles  between  directions  in  space.  116.  Prepared  lines, 
prepared  planes,  and  prepared  space. 

110.  INTRODUCTION. 

In  the  application  of  analysis  to  geometry  the  need  first  to  be  felt  is  of 
definiteness.  There  is  a  bewildering  multitude  of  angles  between  one  straight 
line  and  another,  and  there  are  numbers,  such  as  the  area  of  a  triangle  in  a 

plane,  that  acquire  in  an  algebraic  treatment  signs  for  which  primitive  de- 
finitions are  unable  to  account.  Our  immediate  object  is  to  develop  a  language 

in  which  freedom  and  precision  are  not  incompatible,  and  we  have  to  begin 

by  paying  elaborate  attention  to  elementary  considerations  relating  to  directions 
and  measurements. 

Generality  is  as  desirable  in  analytical  geometry  as  in  pure  algebra,  but  we 

can  not  follow  the  search  for  generality,  leading  in  one  direction  to  the  em- 
ployment of  complex  numbers  and  in  another  direction  to  the  construction  of 

a  space  with  points  at  infinity,  until  we  know  what  are  the  ideas  and  modes 

of  expression  that  deserve  generalisation. 

111.    THE  UNIT  SPHERE  AND  UNIT  CIRCLES;   SPHERICAL  AND 

CIRCULAR  IMAGES  OF  DIRECTIONS. 

*1.   The  study  of  relations  between  directions,  either  in  a  plane  or  in  three- 
dimensional  space,  is  much  facilitated  by  a  device  familiar  in  optics  and 

astronomy  and  used  in  pure  geometry  by  Gauss  as  long  ago  as  1827*.   If  H 
is  any  point,  the  points  at  unit  distance  from  O  compose  a  sphere;  each  point 
of  this  sphere  is  in  a  definite  direction  from  H,  and  conversely  in  each  direction 

from  fl  there  is  one  and  only  one  point  of  the  sphere;  by  °  taking  the  point  P        -11 
of  the  sphere  to  represent  the  direction  OP  we  have  a  one-to-one  correspondence 

between  the  points  of  the  sphere  and  directions  in  space,  and  °when  it  is       -12 
difficult  to  visualise  particular  relations  between  directions  in  space  it  is  often 

easy  to  understand  the  corresponding  relations  between  the  associated  points. 

*  In  the  great  memoir,  "Disquisitiones  generales  circa  superficies  curvas"  (Comment.  Soc. 
Scient.  Gottingensis  recentiores,  vol.  vi,  and  Ges.  Werke,  vol.  iv ;  reprinted  also  in  Liouville's 

edition  of  Monge's  Application  de  V Analyse  a  la  Geometrie,  and  translated  into  German  as  Nr.  5 
of  Ostwald's  Klassiker  der  Exakten  Wissenschaften  and  into  French  for  Gauthier-Villars'  series 
of  Maitres  de  la  Pensee  Scientifique}.  The  spherical  representation  of  directions,  which  is  often 
called  the  Gaussian  representation,  is  explained  in  the  first  section  of  the  paper. 

N.  1—2 
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A  sphere  of  unit  radius  used  for  the  representation  of  directions  is  called  a 

•14,  -15  °unit  sphere,  and  the  point  corresponding  to  any  direction  is  called  the  ° image 
or  the  spherical  image  of  that  direction.  We  use  li  always  to  denote  the  centre 
of  the  unit  sphere  we  employ,  and  we  use  capital  Greek  letters  to  denote 

points  of  this  sphere ;  also  if  P  is  any  point  of  the  sphere  we  denote  by  P'  the 
•19       point  diametrically  opposite,  so  that  °the  direction  of  which  P'  is  the  image  is 

the  reverse  of  the  direction  represented  by  P;  often  we  speak  of  the  direction 
whose  image  is  P  simply  as  the  direction  P. 

*2.   If  p  is  any  plane  in  space,  there  is  one  and  only  one  plane  through  O 
parallel  to  p,  and  if  this  plane  is  q,  every  direction  parallel  to  p  is  represented 
by  a  point  common  to  q  and  the  unit  sphere: 

•21  All  directions  parallel  to  a  single  plane  are  represented  spherically  by  points 
of  one  great  circle; 

the  two  poles  of  the  great  circle  represent  the  two  directions  at  right  angles 

to  the  plane. 

•22  Directions  which  are  parallel  to  one  plane  are  described  briefly  as  °coplanar 
directions,  but  we  have_to  remember  that  lines  in  different  planes  may  have 

•23        directions  that  are  coplanar;  °any  two  directions  are  coplanar,  since  through 
any  two  points  on  a  sphere  a  plane  can  be  drawn  to  pass  also  through  the 

centre  of  the  sphere,  but  between  three  or  more  directions  coplanarity  is  a 

significant  relation. 

•3.  If  all  the  directions  with  which  we  must  deal  are  coplanar,  and  in  par- 
ticular if  we  are  developing  the  theory  of  plane  curves,  a  unit  sphere  gives 

•34  place  to  a,°unit  circle.  When  our  whole  investigation  is  concerned  with  a  single 
plane,  naturally  we  use  a  unit  circle  lying  in  that  plane,  but  in  a  study  of 

three-dimensional  space  the  unit  circles  corresponding  to  different  planes  have 
a  common  centre  O  and  can  not  be  assumed  to  lie  in  the  planes  which  they 

represent.  Parallel  planes  are  represented  by  the  same  circle. 

112.  CYCLIC  CONVENTIONS. 

•1.  If  P,  2  are  points  of  a  unit  circle,  there  are  many  lengths  from  one  of 
these  points  to  the  other  round  the  circle,  and  a  length  from  P  to  S  is  also  a 
length  from  S  to  P  unless  measurement  in  one  direction  round  the  circle  is 
distinguished  from  measurement  in  the  reverse  direction.  The  first  step 
therefore  in  the  study  of  coplanar  directions  is  to  distinguish  as  positive  and 
negative  the  two  directions  of  measurement  round  a  unit  circle  whose  points 
represent  the  directions.  We  call  an  agreement  to  use  the  word  positive  of 

measurement  in  a  particular  direction  round  a  circle  and  negative  of  measure- 

•12  ment  in  the  opposite  direction  a.0 cyclic  convention  for  the  circle.  There  are 
two  cyclic  conventions  for  any  circle;  in  an  investigation  which  uses  only  one 
unit  circle  we  may  adopt  universally  one  of  the  conventions  for  that  circle,  and 
in  every  mathematical  formula  and  theorem  it  is  a  matter  of  indifference  which 
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convention  is  chosen,  all  that  is  essential  being  adherence  to  a  choice  once 

made.  A  cyclic  convention  actually  adopted  in  a  particular  plane  figure  can 
be  indicated,  as  on  pp.  15  and  18  below,  by  the  use  of  a  barbed  circle;  if  this 

indication  is  commonly  omitted,  that  is  because  the  counterclockwise  conven- 
tion is  taken  for  granted. 

A  circle  to  which  a  definite  cyclic  convention  is  attached  will  be  called  a 

''prepared  circle.  -13 

113.  ANGLES  BETWEEN  COPLANAR  DIRECTIONS. 

•1.   Even  after  the  adoption  of  a  cyclic  convention  for  a  unit  circle,  there 
is  an  infinity  of  angles,  some  positive  and  some  negative,  from  any  one  direc- 

tion OP  whose  image  is  in  that  circle  to  any  other  such  direction  OS,  but 

°any  two  of  these  angles  differ  by  an  integral  multiple  of  2?r.    We  say  that        -11 
two  angles  are  ° congruent  when  they  differ  if  at  all  by  an  integral  multiple        -12 
of  2?r ;  °  angles  congruent  in  this  sense  have  the  same  sine  and  the  same        -13 
cosine,  and  for  many  purposes  two  congruent  angles  are  equivalent.    It  is  not 

legitimate  to  speak  of  the  angle  from  OP  to  OS,  but  °with  a  cyclic  convention        -14 
for  the  great  circle  PS  we  may  speak  of  the  cosine  and  of  the  sine  of  the 

angles  from  OP  to  OS,  and  we  denote  these  functions  by  cos  PS  and  sin  PS ; 

we  speak  also  of  °  the  smallest  positive  angle  from  OP  to  OS,  remarking  that        -16 
this  angle  is  0,  not  2?r,  if  P  and  S  coincide*. 

*2.  °The  angles  from  OS  to  HP  are  the  negatives  of  the  angles  from  OP       -21 
to  OS,  and  therefore 

cos  SP  =  cos  PS,    sin  SP  =  —  sin  PS  :  -22,  -23 

we  can  speak  of  the  cosine  of  the  angles  between  the  two  directions,  but  for 

the  sine  the  measurement  must  be  explicitly  from  one  of  the  directions  to  the 

other.  Unless  P  and  S  coincide  or  are  diametrically  opposite,  the  smallest 

positive  angle  from  OS  to  OP  differs  from  the  smallest  positive  angle  from 

OP  to  OS,  and  the  smaller  of  these  two  angles  is  the  smallest  positive 

angle  ° between  the  directions;  in  the  case  in  which  P  and  S  represent  opposite  -25 
directions  the  smallest  positive  angle  between  the  directions  is  TT. 

•3.  When  P  is  neither  S  nor  S',  whether  the  smallest  positive  angle  between 
OP  and  OS  is  an  angle  from  OP  to  OS  or  an  angle  from  OS  to  OP  depends 

on  the  cyclic  convention  for  the  great  circle  PS.  Conversely,  °  it  is  often  con-  -32 
venient  to  choose  the  cyclic  convention  by  the  condition  that  the  smallest 

positive  angle  between  two  particular  directions  OP,  OS  is  an  angle  from 
OP  to  OS,  and  it  is  to  be  noticed  that  this  condition  is  ineffective  only  in 

the  cases  in  which  the  points  P,  S  fail  to  determine  a  unique  great  circle  on 

*  The  peculiarity  of  the  zero  of  directed  numbers  is  not  that  it  has  no  sign  but  that 
it  has  both  signs.  If  we  wish  to  exclude  zero,  we  shall  speak  of  numbers  that  are  strictly 
positive  or  strictly  negative  as  the  case  may  be.  Language  in  this  matter  is  elastic;  all 
that  is  incumbent  on  us  is  to  be  consistent,  and  the  usage  which  we  are  here  describing 
proves  on  the  whole  the  most  convenient  for  our  purposes. 
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the  unit  sphere  whose  centre  is  fi;  this  method  of  defining  a  particular 
direction  of  measurement  round  a  unit  circle  is  so  common  that  instead  of 

saying  that  the  angle  from  IIP  to  flS  which  is  numerically  less  than  TT  is  to 
be  positive  we  say  briefly  that  the  angle  from  OP  to  US  is  to  be  positive. 

•41  -4.    We  may  add  that  °  when  the  cyclic  convention  is  known  for  a  particular 
unit  circle  containing  a  point  P,  we  can  distinguish  between  the  point  in  that 

circle  which  represents  a  direction  which  makes  a  given  angle  e  with  HP  and 
the  point  in  the  circle  which  represents  a  direction  with  which  HP  makes  the 

angle  e;  the  distinction  is  especially  valuable  when  e  is  |TT,  each  of  the 

directions  distinguished  being  then  the  reverse  of  the  other. 

•5.  If  P,  S,  T  are  points  of  a  prepared  unit  circle  and  PS,  ST,  and  PT  are 
definite  angles  from  P  to  S,  from  2  to  T,  and  from  P  to  T,  it  does  not  usually 

•51  happen  that  PT  is  the  sum  of  PS  and  ST.  But  °  PT  is  always  congruent  with 
PS  +  ST  so  that 

•52  cosPT  =  cos(PS  +  ST),     sinPT  =  sin(PS  +  ST). 

If  we  regard  PS,  ST,  and  PT  as  indefinite  symbols,  each  of  which  may  denote 
any  one  of  the  angles  of  the  congruence  to  which  it  belongs,  then  every  value 
of  PS  +  ST  is  a  possible  value  of  PT,  and  conversely,  since  every  value  of 

PT  -  ST  is  a  value  of  PT  +  TS  and  therefore  of  PS,  every  value  of  PT  is  a 

possible  value  of  PS  4-  ST.  With  this  interpretation  of  the  symbols,  we  can 
invest  the  equation 
•55  PT  =  PS  +  ST 

with  the  meaning  that  any  value  of  either  side  is  a  value  of  the  other  side 
also. 

An  alternative  method  of  introducing  this  equation  is  to  regard  such  a 

symbol  as  AM  as  denoting  not  a  single  angle  but  the  actual  congruence  of 
which  the  angles  from  A  to  M  are  the  members;  it  must  then  be  shewn  that 
the  class  of  angles  obtained  by  adding  a  variable  member  of  one  congruence 

to  a  variable  member  of  another  is  itself  a  congruence,  and  '55  can  be  read  as 
stating  that  the  congruence  formed  in  this  way  from  PS  and  2T  is  the  con- 

gruence PT.  The  difference  between  the  two  modes  of  treating  the  equation 
is  not  in  the  theorem  that  is  asserted  but  in  the  meaning  borne  by  the 
symbols.  The  second  method  is  open  to  the  objection  that  it  would  become 
necessary  to  allow  symbols  for  congruences  with  differences  other  than  2?r, 

since,  for  example,  the  halves  of  angles  from  A  to  M  form  a  congruence  with 

difference  TT;  in  consequence,  the  congruence-difference  would  have  to  be 
shewn  explicitly,  and  this  would  rob  the  notation  of  its  advantages. 

To  say  that  the  equality  '55  does  not  usually  hold  if  the  symbols  stand  for 
definite  angles  is  to  understate  the  case ;  there  is  no  rule  which  picks  out 

a  definite  member  of  every  congruence  in  such  a  way  as  to  secure  this 

equality.  For  example,  if  AM  was  defined  to  denote  always  the  smallest 
positive  angle  from  A  to  M,  then  if  PS  and  ST  were  both  greater  than  TT  it 
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is  PS  +  ST  —  2-7T  that  would  be  PT.  Or  if  AM  was  restricted  to  denote  an 

angle  numerically  not  greater  than  TT,  then  if  PS  and  ST  were  both  between 

—  TT  and  —  |TT,  the  angle  denoted  by  PT  would  be  PS  +  ST  +  2?r.  A  refusal 
to  contemplate  limitations  on  the  magnitude  of  angles  might  be  defended 
adequately  on  the  ground  that  restrictions  are  unnecessary,  but  we  can  in  fact 
take  the  stronger  position  that  any  restriction  must  involve  the  denial  of 

"55  and  must  sooner  or  later  prove  tiresome,  on  that  account  if  for  no  other 
reason. 

114.  SPATIAL  CONVENTIONS. 

•1.   Cyclic  conventions  for  different  great  circles  on  a  unit  sphere  are  not 
sufficient  to  dispose  satisfactorily  of  the  difficulties  connected  with  angles 
between  directions  in  space.   We  can  indeed  frame  a  rule  assigning  the  cyclic 

convention  for  every  great  circle  on  the  sphere,  but0 every  such  rule  involves        -11 
a  kind  of  discontinuity  fatal  either  to  brevity  or  to  accuracy. 

•2.   Consider  for  example  only  the  great  circles  through  a  point  n  and  its  opposite; 

let  PSP'S'  be  the  great  circle  of  which  n,  n'  are  the  poles,  let  positive  measurement  round 
this  great  circle  take  the  four  points  in  the  order  named, 
and  let  positive  measurement  round  the  great  circle 
through  n  and  P  take  these  points  and  their  opposites 

in  the  order  n,  P,  n',  P* ;  the  position  of  any  point  T  in 
the  semicircle  P'SP'  may  be  denned  by  the  length  T  of  the 
arc  PT,  and  the  cyclic  convention  in  the  great  circle 
through  n  and  T  being  by  hypothesis  given  by  some 
definite  rule,  let  us  say  that  T  is  a  positive  point  or  a 
negative  point  according  as  positive  measurement  round 

the  great  circle  takes  T  after  n  and  before  n'  or  after  n' 
and  before  II;  since  by  definition  P  is  a  positive  point 

and  P'  is  negative,  and  since  every  point  of  the  semi- 
circle is  either  positive  or  negative,  it  follows  that  there 

are  a  positive  point  and  a  negative  point  indefinitely  close 
together  on  the  semicircle,  and  therefore  that  any  formula  involving  the  cyclic  convention 
for  a  variable  great  circle  through  n  must  present  a  discontinuity  either  as  T  leaves  0  or 
as  T  approaches  TT  or  as  T  passes  through  at  least  one  of  the  intermediate  values. 

•3.  The  simple  but  fundamental  fact  enabling  us  to  deal  with  angles 
between  directions  in  space  is  that  although  standard  directions  are  not  to  be 

imposed  prematurely  upon  great  circles,  nevertheless  °  by  a  universal  convention  -31 
each  of  the  two  directions  round  a  great  circle  on  any  sphere  may  be  associated 

with  one  of  the  two  hemispheres  separated  by  the  circle.  Travelling  on  the  out- 
side of  a  sphere  round  a  great  circle  in  one  direction  we  have  one  hemisphere 

always  on  the  right  and  the  other  always  on  the  left,  while  if  the  direction  in 

which  we  travel  is  reversed  the  hemispheres  exchange  characters;  with  respect 
to  all  the  points  in  one  of  these  hemispheres  the  circle  is  said  to  be  described 

positively,  while  with  respect  to  the  points  in  the  other  hemisphere  it  is  said 
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•35  to  be  described  negatively.  °  It  is  entirely  immaterial  ivhether  the  word  positive 
is  associated  with  the  hemisphere  on  the  right  or  with  the  hemisphere  on  the  left, 
but  in  any  one  investigation  the  association  must  be  the  same  in  all  the  cases 

which  occur.  A  convention  that  associates  in  this  connection  the  word  positive 
with  one  of  the  words  right  and  left  and  the  word  negative  with  the  other  we 

•37  call  for  brevity  a  °  spatial  convention.  There  are  two  spatial  conventions,  and 
in  our  figures  we  shall  adopt  that  which  associates  positive  with  left*,  but  the 
deduction  of  formulae  and  theorems  from  definitions  is  valid  with  either  con- 

vention provided  that  no  change  of  convention  is  permitted  in  the  process. 

•4.  To  appreciate  the  use  of  a  spatial  convention,  let  us  revert  to  the  example  used 
already  in  this  article.  Since  we  are  no  longer  attempting  to  assign  only  one  direction  of 

measurement  round  the  circle  lira',  we  can  no  longer  describe  the  point  T  as  either 
positive  or  negative,  and  if  we  make  any  use  of  the  words  we  must  say  that  every  point  is 
both  positive  and  negative.  If  the  spatial  convention  is  such  that  n  is  positive  with  respect 

to  measurement  from  P  to  P*  through  2,  then  if  E  is  the  point  whose  distance  from  P  round 
the  circle  P2P'2'  is  r+^n,  measurement  from  n  to  n'  through  T  is  positive  with  respect  to 
E,  whatever  the  value  of  r ;  if  the  spatial  convention  is  reversed,  and  E  is  still  denned  as 

distant  T+^TT  from  P,  then  for  every  position  of  T  measurement  from  n  to  n'  through  T  is 
negative  with  respect  to  E  ;  with  neither  convention  can  there  be  an  abrupt  change  of  sign 
if  T  changes  continuously. 

115.  ANGLES  BETWEEN  DIRECTIONS  IN  SPACE. 

•1.  Having  made  a  choice  between  the  two  spatial  conventions,  we  can 

•11  describe  with  precision  the  angles  between  directions  in  space.  °  If  P,  2  are 
distinct  points  of  the  unit  sphere  not  diametrically  opposed,  and  T  is  any 
point  of  the  sphere  not  on  the  great  circle  through  P  and  2,  one  of  the  two 
directions  of  motion  round  the  great  circle  is  positive  with  respect  to  T  and 

negative  with  respect  to  T',  and  the  other  of  these  directions  is  negative  with 

*  This  convention  is  much  the  more  natural  in  view  of  the  universal  convention  that  in 
a  plane  the  standard  rotation  is  counterclockwise;  the  most  important  works  in  which 

the  contrary  convention  is  adopted  are  Hamilton's,  and  his  practice  is  not  followed  even 
by  Tait  and  Joly,  the  chief  of  his  disciples.  The  two  conventions  are  usually  distinguished 

as  right-handed  and  left-handed,  and  here  we  have  to  record  an  anomaly  :  the  convention 
that  associates  positive  with  left  is  often  called  right-handed.  By  de  Candolle  the  botanist, 
to  whom  is  attributed  the  first  use  of  the  words  right-handed  and  left-handed  in  a  geo- 

metrical sense,  by  Listing,  the  first  to  emphasise  (Gottinger  Sludien,  1847 ;  see  pp.  817, 
818,  and  figures  on  pp.  842,  850)  the  importance  of  a  number  of  elementary  distinctions, 
by  Hamilton,  who  uses  this  convention  in  all  his  illustrations,  and  to  the  present  day  by 
writers  on  the  circular  polarisation  of  light,  it  is  the  association  of  positive  with  right  that 

is  called  right-handed ;  nevertheless  the  majority  of  mathematical  writers  call  the  alterna- 
tive convention  right-handed,  influenced  either  by  the  language  of  workshops  or  by  a 

prejudice  against  using  the  word  left-handed  of  the  convention  which  they  feel  to  be 
natural — the  prejudice  indeed  which  moved  Hamilton  to  adopt  the  less  natural  usage 
because  to  him  it  appeared  right-handed.  It  would  be  well  if  the  use  of  the  words  right- 
handed  and  left-handed  in  geometry  could  be  suspended  for  a  generation,  so  that  their 
reappearance  with  their  original  meanings  might  lead  to  no  confusion. 
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respect  to  T  and  positive  with  respect  to  T;  if  the  first  of  these  is  the  positive 
direction  for  the  great  circle  through  P  and  2,  the  angles  which  H2  makes 

with  HP  are  called  the  angles  from  the  direction  represented  by  P  to  the 

direction  represented  by  S  round  the  direction  represented  by  T,  while  the 
angles  which  fl2  makes  with  HP  if  the  positive  direction  of  motion  in  the  circle 

is  reversed  are  the  angles  from  the  direction  of  flP  to  the  direction  of  HS 

round  the  direction  represented  by  T'.  °If  e  is  one  angle  of  the  first  class,  the  -14 
angles  of  the  first  class  are  the  angles  congruent  with  e  and  the  angles  of  the 

second  class  are  the  angles  congruent  with  —  e ;  all  the  angles  between  two 
directions  fiP,  HS  have  the  same  cosine,  and  this  is  denoted  simply  by  cos  P2, 
but  the  sine  common  to  all  the  angles  from  HP  to  HS  round  a  third  direction 

flT  is  the  negative  of  the  sine  of  the  angles  from  HP  to  flS  round  the  reverse 

direction  HT'.  We  have  occasion  often  to  notice  that  just  as  a  choice  of  one 
of  two  opposite  directions  as  the  direction  round  which  to  measure  the  angles 

from  HP  to  HS  determines  the  sign  of  the  sine  of  these  angles,  so  on  the 

other  hand  cto  choose  this  sign  arbitrarily  is  to  determine  the  one  of  any  two  -18 

opposite  directions  flT,  HT'  round  which  the  angles  are  measured,  provided 
only  that  the  different  directions  HP,  OS,  HT  are  not  coplanar.  For  the  sake 

of  completeness  we  add  that  the  angles  from  one  direction  to  a  coincident 

direction  are  the  even  multiples,  negative  and  zero  as  well  as  positive,  of  TT, 

and  the  angles  from  any  direction  to  its  reverse  are  the  odd  multiples, 

negative  and  positive,  of  TT  ;  in  these  cases  no  reference  is  necessary  to  a  third 
direction. 

116.   PREPARED  LINES,  PREPARED  PLANES,  AND  PREPARED  SPACE. 

•1.   Every  line  in  space  has  two  directions,  one  the  reverse  of  the  other,  and 

°a  line  associated  specifically  with  one  of  its  two  directions  we  call  a  directed       -12 
line,  a  prepared  line,  or  a  ray*,  describing  the  ray  as  situated  in  the  line 

and  calling  the  line  the  °axis  of  the  ray ;  a  line  is  the  axis  of  two  different  rays,        '14 
and  each  of  these  rays  is  said  to  be  the  "reverse  of  the  other.    The  spherical        -16 
image  of  the  direction  of  a  ray  is  called  simply  the  spherical  image  of  the  ray, 
and  by  an  angle  between  two  rays  is  meant  an  angle  between  their  directions. 

On  a  unit  sphere  a  line  has  two  images,  the  points  representing  its  two  direc- 
tions; to  overlook  the  existence  of  one  of  these  images  is  to  be  inaccurate;  to 

deal  with  both  of  them  is  to  be  prolix;  to  use  instead  of  a  sphere  a  surface  on 

*  It  is  possible  to  define  a  ray  as  a  line  with  one  of  its  directions  chosen  as  positive, 
thus  allowing  to  each  ray  a  positive  and  a  negative  direction ;  the  effect  is  a  complication 
of  language,  as  far  as  I  can  see  without  compensation,  for  it  is  hardly  simpler  to  speak  of 
the  negative  direction  of  a  ray  than  to  speak  of  the  reverse  of  the  direction  of  a  ray,  while 
to  speak  of  the  direction  rather  than  of  the  positive  direction  is  a  considerable  advantage. 
The  reader  should  know  that  the  word  ray  is  not  consecrated  wholly  to  the  usage  we 
adopt ;  Hamilton  for  example  uses  the  word  sometimes  as  equivalent  to  vector  (Lectures  on 

Quaternions,  lect.  2, 1853)  and  sometimes  as  equivalent  to  half-line  (Elements  of  Quaternions, 

p.  119,  1866;  vol.  I,  p.  121  of  Joly's  edition). 



10  MEASUREMENT  AND  SIMPLE  PROJECTION  116 

which  every  line  has  a  unique  image*  is  to  secure  accuracy  at  an  excessive 
price:  the  advantages  of  dealing  rather  with  rays  than  with  lines  whenever 
direction  and  changes  of  direction  have  to  be  considered  are  exemplified 

abundantly  in  the  course  of  our  work,  but  they  are  only  such  as  we  should 

expect. 

•2.  In  a  plane  as  in  a  line  there  are  two  directions  of  measurement;  in  a 
line  they  are  directions  of  linear  measurement,  but  in  a  plane  they  are  direc- 

•21        tions  of  angular  measurement  or  as  we  may  say  ° cyclic  directions. 
•22  °  A.  plane  associated  with  one  of  its  cyclic  directions  is  called  a  directed  or 

prepared  plane,  and  if  the  cyclic  direction  is  reversed  the  directed  plane  itself 

•24, -25  is  said  to  be  ° reversed.  °Rays  in  a  prepared  plane  are  represented  on  a  unit 
sphere  by  points  in  a  great  circle;  this  great  circle,  which  is  said  to  represent 

•26  the  plane,  is  a  ° prepared  circle.  An  angle  from  a  ray  X  to  a  ray  p,  measured 
in  a  prescribed  cyclic  direction  will  often  be  denoted  by  e^. 

"3.  The  use  of  a  spatial  convention  in  three-dimensional  geometry  is  ana- 
logous to  the  use  of  a  cyclic  convention  in  plane  geometry,  and  it  is  natural 

'32  to  say  that  the  space  with  which  a  theorem  deals  is  &°  directed  or  prepared 
space  if  the  statement  of  the  theorem  involves  implicitly  or  explicitly  a  spatial 

convention.  The  one  feature  that  appears  to  dwellers  in  a  three-dimensional 
world  to  indicate  an  intrinsic  difference  between  spatial  conventions  and  cyclic 

conventions  is  that  they  themselves  can  perceive  no  process  analogous  to  the 
continuous  rotation  by  which  a  movable  prepared  great  circle  on  a  sphere  can 
turn  from  coincidence  with  one  directed  circle  to  coincidence  with  the  reverse 

circle  or  by  which  a  movable  prepared  plane  can  turn  from  coincidence  with 

one  prepared  plane  to  coincidence  with  the  reverse  plane. 

•4.    In  figures,  the  direction  of  measurement  in  a  ray  is  commonly  indicated 
by  an  arrow-head;  figure  2  shews  a  useful  method  of  in- 

dicating the  spatial  conventions  in  figures  drawn  in  per-      /-— j— ̂    — T— N 

spective.  ~^^      ~^^ Fig.  2. 

*  Such  a  surface  is  easily  defined :  let  y  be  half  of  a  great  circle  011  a  unit  sphere,  y  being 
defined  to  include  one  of  its  end  points  but  not  the  other ;  then  the  surface  consisting  of 
the  points  of  y  and  of  all  points  on  one  side  of  the  great  circle  to  which  y  belongs  is  quite 
strictly  a  hemisphere,  and  in  this  surface  every  line  has  only  one  image.  To  use  such  a 
surface  as  this  is  obviously  inconvenient,  and  is  moreover  not  to  deal  with  lines  instead  of 
rays  but  to  take  account  of  only  one  of  the  rays  contained  in  each  line. 
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MEASUREMENT  IN  PREPARED  LINES  AND  PLANES 

121.  The  partition  of  a  ray  by  a  point.  122.  Steps;  the  lengths  and  directions  of 
a  step;  congruent  steps;  addition  of  steps.  123.  Distances  from  one  line  to  another. 
124.  The  partition  of  a  prepared  plane  by  a  ray.  125.  The  sign  of  a  triangle  in  a  prepared 
plane.  126.  Distance  from  a  ray  in  a  prepared  plane ;  normals  to  a  ray.  127.  The  area 
of  a  triangle ;  the  universality  of  trigonometrical  formulae. 

121.    THE  PARTITION  OF  A  RAY  BY  A  POINT. 

•1.  Ordinary  language  recognises  that  it  is  natural  to  distinguish  the  points 
on  one  side  from  the  points  on  the  other  side  of  a  point  in  a  line,  of  a  line  in  a 

plane,  and  of  a  plane  in  space,  but  with  unprepared  lines,  unprepared  planes, 
and  unprepared  space,  any  association  of  the  two  sides  with  two  antithetical 

words  such  as  positive  and  negative  or  right  and  left  is  purely  arbitrary*. 
In  the  case  of  a  point  in  a  line,  it  is  obvious  that  if  direction  is  given  to  the 

line  a  satisfactory  convention,  independent  of  any  special  point  on  the  line, 

can  be  framed,  and  we  shall  see  shortly  that  the  use  of  prepared  lines  and 
planes  and  prepared  space  renders  a  definite  treatment  of  the  cases  of  a  line 

in  a  plane  and  a  plane  in  space  equally  within  our  power. 

•2.   If  Q  is  any  point  of  a  ray  p,  the  direction  of  another  point  R  of  p  from 
Q  is  the  direction  of  p  or  the  reverse  of  this  direction  according  as  R  is  on  one 

side  or  on  the  other  side  of  Q;  accordingly,  °R  is  said  to  be  on  the  positive  side        -22 
or  on  the  negative  side  of  Q  in  p  according  as  R  is  in  the  direction  of  p  or  in 
the  reverse  direction  from  Q. 

122.   STEPS  ;  THE  LENGTHS  AND  DIRECTIONS  OF  A  STEP  ; 
CONGRUENT  STEPS;  ADDITION  OF  STEPS. 

•1.  °The  pair  of  points  Q,  R  taken  in  this  order  is  called  f  the  step  QR,  or       -11 
the  step  from  Q  to  R;  the  same  pair  of  points  taken  in  the  opposite  order  is 

*  It  does  not  follow  that  the  association  is  useless.  For  example,  the  use  of  areal  co- 
ordinates x,  y,  z  with  the  identity  x+y  +  z=l  depends  on  the  convention  that  each  vertex 

of  the  triangle  of  reference  is  on  the  positive  side  of  the  corresponding  side  of  the  triangle, 
but  no  convention  is  implied  as  to  the  use  of  positive  and  negative  with  regard  either  to  the 
sides  of  other  lines  in  the  plane  or  to  directions  along  the  sides  of  the  fundamental  triangle. 

+  In  identifying  the  step  with  the  ordered  pair  of  points  instead  of  regarding  the  step 
as  some  abstract  entity  determined  by  the  pair  of  points,  we  are  following  the  trend  of  , 
modern  logical  mathematics  and  encouraging  an  attitude  from  which  for  example  the  use 
of  complex  numbers  in  geometry  can  be  treated  as  something  better  than  an  ingenious 
analytical  device.  One  advantage  of  the  identification  the  reader  can  appreciate  at  once : 
as  an  abstracted  entity  a  zero  step  presents  formidable  difficulties  to  the  imagination,  but 
an  ordered  pair  of  points  does  not  become  elusive  if  the  two  points  coincide. 
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•12       the  °  reverse  step  RQ.   If  R  coincides  with  Q,  the  step  degenerates  to  QQ,  the 

•13        ° zero  step  at  Q;  steps  which  are  not  zero  steps  are  distinguished  if  necessary 
•14, -15  as0 proper  steps.    A  proper  step  lies  in  a  definite  line,  called  its0 cum,  and  to 

specify  a  proper  step  QR  whose  origin  Q  and  axis  are  known  to  us,  we  must 
describe  also  the  distance  between  Q  and  R,  and  the  side  of  Q  on  which  R  is 

to  be  found;  it  follows  that  the  steps  which  are  simplest  to  describe  are  steps 
in  a  directed  line. 

•21  '2.  °  A  proper  step  QR  in  a  ray  p  is  called  a  positive  step  or  a  negative  step 
according  as  R  is  on  the  positive  or  the  negative  side  of  Q  in  p ;  if  .R  is  on  the 

positive  side  of  Q  in  p,  then  Q  is  on  the  negative  side  of  R  in  p  and  R  is  on 

•22  the  negative  side  of  Q  in  the  reverse  of  p;  thus  ° the  sign  of  a  step  in  a  ray  is 
changed  by  a  reversal  either  of  the  order  which  distinguishes  the  step  QR 
from  the  step  RQ  or  of  the  direction  of  the  ray. 

•31  '3.    By  the  "length  of  a  step  QR  in  a  ray  p  is  meant  the  distance  from  Q  to 
R  in  the  direction  of  p;  this  length  is  a  real  number,  zero  if  the  step  is  a  zero 
step  and  having  the  sign  of  the  step  if  the  step  is  proper;  the  magnitude  of 
the  length  is  the  signless  number  which  is  the  distance  between  Q  and  R,  and 
this  number  is  denoted  by  QR  \ . 

•41  '4.  °A  proper  step  QR  in  space  has  two  directions,  the  two  directions  of  its 
axis,  and  two  lengths,  its  lengths  in  these  directions;  the  direction  from  Q  to 

R  is  called  the  positive  direction  of  the  step,  and  the  direction  from  R  to  Q 

the  negative  direction,  and  the  corresponding  lengths  are  the  positive  length 

•43  and  the  negative  length.  °A  zero  step  has  the  single  length  zero  but  has  all directions. 

•5.    Two  steps  which  have  a  common  direction  and  the  same  length  in  that 

•51        direction  are  said  to  be  ° congruent* ',  if  P  represents  a  common  direction  of 
two  congruent  steps  and  r  is  their  length  in  that  direction,  either  r  is  different 

from  zero,  both  steps  are  proper,  and  the  steps  have  in  common  the  reverse 

direction  P'  and  have  the  same  length  —  r  in  that  direction,  or  r  is  zero  and  the 

•52        steps  are  both  zero  steps.    Whether  zero  or  proper,  °  congruent  steps  have  all 
their  directions  common  and  have  a  common  length  in  each  of  their  directions; 

•53       °all  zero  steps  are  congruent. 

•61  '6.  °  A  sum  of  two  steps  is  defined  as  a  single  step  only  if  the  second  of  the 

•62  components  begins  where  the  first  ends;0 the  sum  of  two  steps  QR,  RS  is 
•63  defined  to  be  the  step  QS,  and  °if  n  steps  can  be  arranged  in  a  single  chain 

QjRi,  R^Rz,  R2R3...Rn-iS  their  sum  can  be  expressed  as  a  single  step  QS. 
Since  the  sum  of  QR  and  RQ  appears  as  QQ  and  the  sum  of  RQ  and  QR  as 

•64  RR,  °we  are  compelled  to  allow  that  the  sum  of  a  number  of  steps  is  not 
independent  of  the  order  in  which  the  steps  are  taken,  even  if  the  addition 

•65  can  be  performed  in  more  ways  than  one.  °If  two  steps  begin  at  the  same  point 

*  Or  by  some  writers  equivalent. 
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there  is  a  unique  step  which  can  be  added  to  one  to  produce  the  other,  and 

this  step  is  a  difference  between  the  two  steps ;  more  precisely,  °  QS  —  QR  =  RS.       -66 
°If  0  is  any  point,  any  step  QR  can  be  expressed  in  the  form  OR  —  OQ,  and        -67 

therefore0 all  questions  concerning  steps  may  be  replaced  by  questions  con-        -68 
cerning  coinitial  steps  with  an  arbitrary  origin. 

123.  DISTANCES  FROM  ONE  LINE  TO  ANOTHER. 

•1.  If  a  ray  v  with  direction  represented  by  N  cuts  one  curve  or  surface  in 
a  point  F  and  in  no  other  point  and  cuts  another  curve  or  surface  in  only  one 

point  G,  the  distance  from  the  first  curve  or  surface  to  the  second  along  v  is 
the  length  of  the  step  FG  in  the  direction  N.  In  general,  we  can  not  describe 

this  distance  except  by  specifying  the  actual  ray  in  which  it  is  measured,  but 
there  are  two  cases  of  exception  which  are  important  because  examples  of 

them  occur  in  the  most  elementary  geometry:  °if  all  the  steps  from  one  curve  -13 
or  surface  to  another  along  different  rays  with  the  direction  N  are  congruent, 
the  common  length  of  these  steps  is  the  distance  from  the  first  curve  or  surface 

to  the  second  in  the  direction  N,  and  °if  there  is  one  and  only  one  ray  which  -14 
has  the  direction  N  and  cuts  each  of  two  curves,  it  is  the  length  of  the  step 
in  this  ray  which  is  the  distance  from  one  curve  to  the  other  in  the  direction 

N.  The  first  of  these  cases  arises  with  two  parallel  planes  and  any  direction 

which  is  not  parallel  to  them,  with  a  plane  and  a  line  parallel  to  the  plane 

and  any  direction  which  is  not  parallel  to  the  plane,  and  with  two  parallel 

lines  and  any  direction  which  is  parallel  to  a*  plane  containing  the  lines  but 
is  not  a  direction  of  the  lines  themselves;  the  second  case,  as  we  are  about  to 

shew,  arises  with  two  lines  which  are  not  parallel  and  any  direction  which  is 
not  coplanar  with  their  directions. 

•2.    Two  lines  in  a  plane  either  meet  or  are  parallel,  and  conversely  if  two  lines 
meet  or  are  parallel  there  is  a  plane  containing  them  both;  for  two  lines  in  space 
either  to  meet  or  to  be  parallel  is  the  exception.    If  two  lines  meet,  each  is  saidf 

to  be  a°  tractor  of  the  other;  if  several  lines  have  a  common  tractor,  the  lines  are        '21 
said  to  })e°cotractorial,  or  each  of  them  is  said  to  be  cotractorial  with  the  others.        -22 

Two  lines  which  neither  meet  nor  are  parallel  are  described  a,s°skew  to  each  other.        -23 

•3.  °  If  two  lines  I,  m  are  parallel,  every  plane  through  one  is  parallel  to  the        -31 
other,  but  if  the  lines  are  not  parallel,  the  tractors  of  I  which  are  parallel  to  m 

compose  a  plane  Lm,  the  plane  through  I  parallel  to  m,  and  the  tractors  of  m 
which  are  parallel  to  I  compose  a  parallel  plane  MI,  the  plane  through  m  parallel 

to  I.    If  n  is  any  line  not  parallel  to  the  planes  Lm,  MI,  the  planes  Ln,  Mn 

*  If  the  parallel  lines  are  distinct,  we  may  speak  of  the  plane  containing  them ;  if  they 
coincide,  every  direction  is  parallel  to  a  plane  containing  them,  but  the  statement  is  still  true.  / 

t  The  word  is  Cayley's  (Trans.  Camb.  Phil.  Soc.,  vol.  xi,  p.  297,  1869;  Coll.  Works,  vol. 
vn,  p.  73) ;  naturally  the  use  of  the  word  depends  on  the  use  of  the  word  meet ;  in  pro- 
jective  geometry  a  line  is  a  tractor  of  a  parallel  line,  but  in  metrical  geometry,  with  which 
alone  we  are  at  present  concerned,  the  only  line  which  is  both  parallel  to  a  line  I  and  a 
tractor  of  I  is  I  itself. 
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through  I,  m  parallel  to  n  neither  coincide  nor  are  parallel,  and  therefore  they 

•33  meet  in  a  definite  line:  °if  there  is  no  plane  to  which  three  lines  are  all  parallel, 
there  is  one  and  only  one  tractor  of  two  of  them  which  is  parallel  to  the  third, 
and  in  particular,  taking  the  third  at  right  angles  to  the  planes  which  are 

•34  parallel  to  the  other  two,  °two  lines  which  are  not  parallel  have  a  single  normal 
common  tractor.  These  theorems  remain  true  if  the  lines  whose  tractors  are 

considered  themselves  intersect,  but  not  if  they  are  distinct  and  parallel;  if 
two  distinct  lines  I,  m  cut  in  0,  and  if  n  is  a  line  not  parallel  to  the  plane 
containing  I  and  m,  the  line  through  0  parallel  to  n  is  the  one  line  parallel  to 
n  which  cuts  both  I  and  m,  and  their  one  normal  common  tractor  also  passes 
through  0.  Distinct  parallel  lines  have  no  tractors  which  do  not  lie  in  the 
plane  containing  them,  but  they  have  an  infinity  of  normal  common  tractors. 

•41  '4.  °  Measurement  of  distances  between  two  lines  by  means  of  real  numbers 
becomes  possible  if  we  consider  the  lines  in  a  definite  order  and  give  direction 
to  a  tractor.  If  I,  m  are  two  lines  which  are  not  parallel  and  N  is  the  image 
of  any  direction  not  coplanar  with  the  directions  of  the  lines,  there  is  one  and 

•42  only  one  line  n  of  which  N  is  a  direction  which  cuts  both  I  and  m,  and  °the 
distance  from  I  to  m  in  the  direction  N  is  the  distance  in  that  direction  from 
the  point  at  which  n  is  cut  by  I  to  the  point  at  which  n  is  cut  by  m ;  the  normal 

•43  distances  from  I  to  m  are  °the  distances  from  I  to  m  along  their  normal  tractor. 
If  I  and  m  are  concurrent,  their  distance  apart  along  every  common  tractor 
which  is  not  in  their  plane  is  zero,  and  in  particular  their  normal  distance 
apart  is  zero,  but  their  distance  apart  along  a  tractor  coplanar  with  them 
depends  on  the  position  of  the  tractor  as  well  as  on  its  directions.  If  however 
the  lines  are  parallel,  their  common  tractors  are  coplanar  with  them,  but  the 
distance  from  one  to  the  other  depends  only  on  the  direction  in  which  it  is 

•45  measured,  and  in  particular  °the  normal  distances  from  one  to  the  other  remain 
definite.  In  practice  the  distance  in  a  given  direction  from  one  line  to  another 

•49  can  be  calculated  more  readily  than  we  might  expect,  for  as  we  shall  see*  °it 
is  sometimes  possible  for  us  to  find  this  distance  without  discovering  a  par- 

ticular ray  in  which  it  is  to  be  measured. 

124.  THE  PARTITION  OF  A  PREPARED  PLANE  BY  A  RAY. 

•1.  To  give  direction  to  the  line  does  not  assist  us  to  give  names  to  the 
sides  of  a  line  in  a  plane  unless f  we  give  direction,  that  is,  cyclic  direction,  to 

*  On  p.  74  below ;  the  method  is  applied  later,  on  p.  162. 
t  An  unwary  reader  may  imagine  for  a  moment  that  it  is  possible  to  perceive  a  right 

side  and  a  left  side  of  a  ray  in  a  plane,  unassisted  by  a  cyclic  direction ;  the  perception 
however  implies  a  choice  of  a  particular  side  of  the  plane  in  space  from  which  to  observe, 
and  the  substitution  of  positive  and  negative  for  right  and  left  or  for  left  and  right  requires 
a  convention  similar  to  the  spatial  convention.  Given  a  spatial  convention,  the  choice  of 
one  side  of  a  plane  as  positive  is  in  fact  equivalent  to  the  choice  of  a  cyclic  direction  for 
the  plane,  but  since  the  choice  of  a  cyclic  direction  does  not  logically  imply  the  use  or  the 
existence  of  a  third  dimension,  to  appeal  to  a  third  dimension  at  this  stage  is  inartistic. 
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the  plane,  but  it  is  easy  to  give  a  universal  definition  of  the  positive  side  of 

a  ray  in  a  prepared  plane.  °If  Q  is  any  point  of  a  ray  p  in  a  prepared  plane, 
and  R  is  a  point  of  p  on  the  positive  side  of  Q,  then  if  S  is  any  point  of  the 

plane  not  on  p,  the  sign  of  the  one  angle  from  QR  to  QS  which  is  numerically 
between  0  and  TT  depends  on  the  cyclic  direction  for 

the  plane  and  on  the  side  of  the  ray  on  which  S  is 

situated,  but  is  independent  of  the  position  of  Q  on 

p  and  of  the  position  of  8  on  that  side  of  p;  °S  is 
said  to  be  on  the  positive  side  or  on  the  negative  side 

of  p  according  as  this  sign  is  positive  or  negative. 

°If  the  cyclic  direction  of  a  prepared  plane  is  reversed, 
the  positive  and  negative  sides  of  every  ray  in  the 

plane  exchange  characters,  a  fact  to  which  we  may  direct  attention  by  calling 
the  sides  of  a  ray  positive  and  negative  with  respect  to  the  cyclic  direction 

of  the  plane. 

Fig.  3. 

•12 

•13 

•14 

125.  THE  SIGN  OF  A  TRIANGLE  IN  A  PREPARED  PLANE. 

*1.  Understanding  the  association  of  signs  with  the  portions  of  a  prepared 
plane  on  the  two  sides  of  a  ray,  we  can  appreciate  the  characteristic  known 

as  the  sign  of  a  triangle.  If  to  the  sides  of  a  triangle  QRS  in  a  prepared  plane 
are  given  the  directions  from  R  to  S,  from  S  to  Q,  and  from  Q  to  R,  then 

0  either  every  point  within  the  triangle  is  on  the  positive  side  of  each  of  the 
rays  so  formed  or  every  point  within  the  triangle  is  on  the  negative  side  of 

each  of  these  rays ;  °the  triangle  is  said  in  the  first  case  to  be  positive,  in  the 

second  case  to  be  negative.  In  other  words,  °if  P  is  any  point  inside  a  triangle 

0 

QRS,  the  angles  numerically  less  than  TT  from  RS  to  RP,  from  SQ  to  SP,  and 

from  QR  to  QP  are  either  all  positive  for  every  position  of  P  within  the  tri- 

angle or  all  negative  for  every  position  of  P  within  the  triangle,  and  the  sign 

of  the  triangle  is  the  sign  of  these  angles.  °  A  reversal  of  the  cyclic  direction 
changes  the  sign  of  every  triangle  in  the  plane. 

•2.   In  elementary  geometry,  two  triangles  ABC,  FGH  whose  corresponding 
sides  and  angles  are  equal  are  themselves  said  to  be  equal,  but  if  the  triangles 

•12 

•13 
•15 

•16 
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are  in  one  plane  their  equality  may  be  accompanied  by  an  intrinsic  difference; 
although  the  angle  numerically  less  than  TT  from  AB  to  A G  is  equal  in  amount 

to  the  angle  numerically  less  than  TT  from  FG  to  FH,  the  directions  of  measure- 
ment of  these  two  angles  may  differ.  The  triangles  in  a  plane  which  are  equal 

to  a  given  triangle  accordingly  fall  into  two  classes,  and  the  division  is  often 

•21  of  importance;  two  coplanar  triangles  are  said  to  be  "congruent  with  each  other 
in  the  plane  containing  them  if  the  triangles  are  equal  and  the  assumption 
of  a  cyclic  direction  by  the  plane  confers  on  them  the  same  sign,  but  if  the 
triangles  are  equal  and  acquire  different  signs  when  their  common  plane  is 

•22  given  cyclic  direction,  each  triangle  is  said  to  be  a  ° reverse  of  the  other.  For 
triangles  in  different  unprepared  planes  the  relation  of  equality  is  not  analysed, 
but  naturally  two  triangles  in  prepared  planes  are  said  to  be  congruent  in 
those  planes  if  they  are  equal  and  have  the  same  sign,  and  a  triangle  in  one 
prepared  plane  is  said  to  be  reverse  of  a  triangle  in  another  prepared  plane  if 
the  triangles  are  equal  and  have  different  signs;  a  reversal  of  one  only  of 

the  two  planes  interchanges  congruence  and  reversion,  but  a  simultaneous* 
reversal  of  both  planes  is  without  effect  on  congruence  in  the  planes  and  on 
reversion.  The  difference  which  we  are  forced  to  recognise  as  possible  between 
equal  coplanar  triangles  we  can  perceive  also  as  one  of  the  possible  differences 
between  unequal  triangles  in  a  plane;  even  while  dealing  with  an  unprepared 
plane  we  can  see  that  the  difference  is  appropriately  marked  by  a  use  of  the 
words  positive  and  negative,  and  when  we  have  given  a  cyclic  direction  to  the 
plane  we  remain  in  no  doubt  as  to  the  manner  in  which  the  words  are  most 
suitably  to  be  applied. 

•31  *3.  It  is  to  be  noticed  that  °the  sign  of  a  triangle  depends  not  only  on  the 
position  of  its  vertices  but  also  on  the  order  in  which  those  vertices  are  takenf: 

the  sign  of  the  triangle  QSR  is  opposite  to  the  sign  of  the  triangle  QRS', 
•32  explicitly,  °sign  is  a  property  of  an  ordered  triangle  J  with  respect  to  a  cyclic 

direction  of  its  plane. 

*  It  is  for  this  reason  that  the  definitions  relating  to  triangles  in  a  common  unprepared 
plane  are  satisfactory ;  if  one  cyclic  direction  gave  to  the  triangles  a  common  sign  and  with 
the  reverse  direction  their  two  signs  were  different,  then  from  the  definitions  each  triangle 
would  be  both  congruent  with  and  a  reverse  of  the  other;  the  definitions  are  adequate 
because  this  case  can  not  occur. 

t  This  is  why  we  are  apt  to  overlook  for  a  time  the  importance  of  sign  except  with 
equal  or  similar  triangles.  Given  two  unrelated  triangles  we  automatically  denote  their 
vertices  in  such  a  way  as  to  give  the  triangles  the  same  sign,  but  if  equality  or  similarity 
determines  the  order  of  one  set  of  vertices  from  the  order  of  the  other  a  fundamental 

difference  of  sign  cannot  escape  our  notice. 
J  As  we  regard  the  step  QR  as  nothing  but  the  ordered  pair  of  points  $,  R,  so  we  may 

say  that  the  ordered  triangle  QRS  is  the  ordered  triplet  Q,  R,  S;  the  ordered  triplet  is 

naturally  changed  if  its  order  is  changed,  but  certain  functions  of  the  triplet  are  in- 
dependent of  the  order,  and  certain  functions  are  unaltered  by  some  changes  of  the  order 

though  other  changes  affect  them. 
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126.   DISTANCE  FROM  A  BAY  IN  A  PREPARED  PLANE;  NORMALS  TO  A  RAY. 

•1.  The  distance  of  a  point  from  a  ray  is  a  number  to  which  in  a  prepared 
plane  we  can  now  attach  a  sign  whenever  the  number  is  not  zero,  this  sign 
being  the  sign  attached  to  the  side  of  the  ray  on  which  the  point  is  situated ; 

the  distance  to  a  ray/rom  a  point  is  the  negative  of  the  distance  o/the  point 

from  the  ray.  To  put  the  matter  otherwise,  °in  a  plane  containing  a  point  R  -13 
and  a  line  t,  there  is  one  line  e  through  R  perpen- 

dicular to  t,  and  this  line  cuts  t  in  a  definite  point 

s*\  f  \>^\  Q>  if  definite  directions  are  given  both  to  t,  which 
becomes  a  ray  T,  and  to  angular  measurement  in 
the  plane,  the  direction  of  e,  for  the  measurement 

of  distances  to  and  from  r,  is  defined  as  the  direc- 

tion which  makes  a  positive  right  angle  with  the 
direction  of  T,  and  the  distances  of  R  from  r  and 
to  T  from  R  are  the  distances  from  0  to  R  and  from 

Ficr.  5. 

R  to  Q  measured  in  this  particular  direction.  Using 
the  second  form  of  definition  we  should  not  describe  a  vicious  circle  were  we 

to  define  the  positive  side  of  a  ray  in  a  prepared  plane  as  the  side  on  which 
are  the  points  whose  distances  from  the  ray  are  positive,  but  the  distinction 

of  sign  is  in  reality  more  elementary  than  the  ideas  involved  in  perpendicu- 
larity, and  there  is  no  technical  simplification  to  justify  an  inversion  of  the 

natural  order. 

"2.    The  rays  at  right  angles  to  a  ray  r  in  a  prepared  plane  may  be  classified 
into  those  whose  direction  is  from  the  negative  side  of  T  to  the  positive  and 

those  whose  direction  is  from  the  positive  side  of  T  to  the  negative;  rays  of 

the  former  class  are  called  °  normals  to  r,  and  rays  of  the  latter  class  are        -21 
therefore  normals  to  the  reverse  of  T  or  reversed  normals  to  r  itself.    In 

a  prepared  plane  °we  make  a  practice  of  using  EP  or  E^.  for  the  image  of  the        -22 
normals  to  rays  whose  direction  is  HP,  and  E  alone  in  the  case  of  normals  to 

rays  whose  direction  we  are  denoting  consistently  by  HT. 

•3.    °The  normal  to  the  normal  to  a  ray  r  is  not  T  but  the  reverse  of  T;  in        -31 

other  words  EE  is  identical  with  T'  and  never  with  T ;  to  the  unsymmetrical 
nature  of  the  relation  between  rays  and  their  normals  in  a  prepared  plane  can 

be  traced  a  want  of  symmetry  in  many  regions  of  geometry. 

127.   THE  AREA  OF  A  TRIANGLE;  THE  UNIVERSALITY 
OF  TRIGONOMETRICAL  FORMULAE. 

•1.   The  area  of  a  triangle  is  not  suffered  to  remain  signless,  an  only  survivor 

from  the  geometry  of  an  unprepared  plane,  but0 to  this  area  is  attached  the        -11 
sign  of  the  triangle  itself.    To  see  the  appropriateness  of  such  a  sign,  we  have 

only  to  consider  a  number  of  triangles  with  a  common  base  ST  and  vertices 
N.  2 
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-21 

•31 

•35 

on  a  single  line  through  a  point  Q  on  ST  at  right  angles  to  the  base ;  if  the 
altitude  QR  of  such  a  triangle  is  to  receive  a  sign, 
by  the  specification  of  a  direction  of  measurement 
along  the  line  containing  R,  and  if  the  area  is  to 
be  equal  to  ̂ QR.ST,  the  area  also  must  acquire 
a  sign;  to  give  the  area  the  sign  of  the  triangle 
itself  is  the  practice  that  enables  us  to  make 

unreflecting  use  of  familiar  trigonometrical  for- 
mulae. Fig.  6. 

•2.  To  avoid  detailed  examination  of  different  cases  in  subsequent  work,  it 

is  worth  our  while  to  notice  at  once  that0 we  can  use  the  formulae  of  plane 
trigonometry  without  modification  for  steps  of  negative  length,  provided  only 
that  the  directions  between  which  we  measure  the  angles  from  one  step  to 
another  are  the  directions  in  which  we  measure  the  lengths  of  the  steps. 

•3.  If  AEG  is  a  triangle,  and  D  is  the  foot  of  the  perpendicular  from  A  on 
BC,  the  fundamental  formulae 

BD  =  BAcosCBA,    DA=BAsmCBA,    &  =  \BC.DA, 

which  contain  implicitly  all  formulae  relative  to  the  triangle,  do  not  depend 
in  the  least  on  the  actual  directions  in  which  the  steps  are  measured  or  on  the 
signs  of  any  of  the  steps  involved,  but  require  only  that  ED  and  EG  should 
be  measured  in  the  same  direction,  that  the  direction  in  which  DA  is  measured 

should  make  a  positive  right  angle  with  this  common  direction,  and  that  CBA 
should  denote  an  angle  from  the  direction  in  which  ED  and  EG  are  measured 

to  the  direction  in  which  BA  is  measured.  °  It  is  necessary  to  allow  of  the 
angles  of  a  triangle  either  that  at  least  one  of  them  may  be  numerically 

greater  that  TT  or  that  their  sum  may  be  -  TT,  but  it  is  no  drawback  actually 
to  make  both  of  these  admissions. 

•4.  For  example,  if  the  angle  at  B  is  obtuse  and  BC  and  BA  are  measured  towards  B, 
the  numerically  smallest  angle  denoted  by  CBA  is  the  obtuse  angle  vertically  opposite  to 

O 

Fig.  7. 

the  internal  angle  at  B,  and  therefore  cos  CBA  is  negative.    Measured  towards  B,  the 
length  of  BC  is  negative  ;  hence  the  product  BCcoa  CBA  is  positive,  while  since  C  and  D 
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are  on  opposite  sides  of  B  the  length  of  BD,  measured  in  the  same  direction  as  the  length 
of  BC,  also  is  positive.  With  the  same  triangle,  the  direction  which  makes  a  positive  right 
angle  with  the  direction  of  B  from  C  is  the  direction  from  D  to  A  or  the  direction  from 
A  to  D  according  as  the  numerically  smallest  angle  denoted  by  CBA  is  negative  or 
positive ;  hence  the  sign  of  DA  is  opposite  to  the  sign  of  sin  CBA,  in  agreement  with  the 
hypothesis  that  the  length  of  DA  is  negative.  Lastly,  the  triangle  is  positive  or  negative 
according  as  sin  CBA  is  positive  or  negative,  that  is,  according  as  DA  is  negative  or 

positive,  and  therefore  the  sign  of  A  is  the  sign  of  BC '.  DA.  Of  course  the  generality  of 
the  fundamental  formulae  '31  does  not  require  to  be  established  by  a  direct  consideration 
of  all  possible  cases,  but  depends  on  the  generality  belonging  to  the  circular  functions 
themselves.  On  this  subject  see  also  311  below. 

2—2 



CHAPTER  I  3 

MEASUKEMENT  IN  SPACE 

131.  The  partition  of  space  by  a  prepared  plane.  132.  The  sign  of  a  tetrahedron. 
133.  The  normals  to  a  prepared  plane ;  distance  from  a  prepared  plane.  134.  The  volume 
of  a  tetrahedron.  135.  Angles  between  prepared  planes. 

131.  THE  PARTITION  OF  SPACE  BY  A  PREPARED  PLANE. 

*1.  A  plane  divides  space  as  a  line  divides  a  plane,  and  just  as  by  giving 
direction  to  the  line  and  to  the  plane  we  can  distinguish  the  positive  from  the 

•12  negative  side  of  the  line,  so  °by  giving  direction  to  the  plane  and  to  space 
we  can  describe  a  point  not  in  the  plane  as  on  the  positive  side  or  on  the 
negative  side.  If  Q  is  any  point  of  a  directed  plane  and  R  is  any  point  not 
in  the  plane,  the  sign  attached  by  a  given  spatial  convention  to  angular 
measurement  round  QR  in  the  cyclic  direction  of  the  plane  depends  on  the  side 
of  the  plane  on  which  R  is  situated,  and  is  otherwise  independent  of  the  positions 

•14  of  Q  and  R ;  °  the  side  of  the  plane  on  which  R  lies  is  called  the  positive  or 
the  negative  side  according  as  this  sign  is  positive  or  negative. 

•2.    The  bearing  of  the  spatial  convention  on  the  naming  of  the  sides  of  a 
directed  plane  is  seen  most  clearly  if  we  suppose  a  unit  sphere  described  with 
its   centre   actually  in   the   plane.     The   circle 
representing  rays  in  the  plane  is  then  the  circle 
in  which  the  plane  cuts  the  sphere,  and  the  cyclic 
convention  in  this  circle  agrees  with  the  cyclic 
direction  of  the  plane.    The  spatial  convention 
describes  the  points  of  the  sphere  on  one  side 
of  the  directed  circle  as  positive,  and  the  positive 
side  of  the  prepared  plane  is  the  side  on  which  Fi    8 
these  points  are  to  be  found. 

132.   THE  SIGN  OF  A  TETRAHEDRON. 

•11  •!.  °In  prepared  space  an  ordered  tetrahedron  has  a  definite  sign  which  is 
reversed  if  the  spatial  convention  is  changed  and  may  be  reversed  if  the  order  in 
which  the  vertices  of  the  tetrahedron  are  taken  is  disturbed.  If  cyclic  direction 
is  given  to  the  face  QRS  of  the  tetrahedron  QRST  by  the  convention  that  in 

•13  this  face  the  triangle  QRS  is  to  be  positive,  °the  ordered  tetrahedron  QRST  is 
said  to  be  positive  or  to  be  negative  according  as  T  is  on  the  positive  or  the 
negative  side  of  the  prepared  plane  QRS ;  if  p,  a;  r  are  the  rays  in  which  the 

•14       steps  QR,  QS,  QT  have  positive  lengths,  °  the  sign  of  the  tetrahedron  is  the 
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common  sign  of  the  angles  numerically  less  than  TT  from  a  to  r  round  p,  from  r 

to  p  round  cr,  and  from  p  to  tr  round  T.   It  is  easy  to  shew  that0 the  sign  of       -15 
the  tetrahedron  RQST  is  opposite  to  the  sign  of  QRST,  and  thence  that  °a       -16 
derangement  of  the  order  of  its  vertices  leaves  unaffected  or  reverses  the  sign 

of  an  ordered  tetrahedron  according  as  the  derangement  is  even  or  odd*. 

•2.  If  two  tetrahedra  have  corresponding  edges  equal  in  absolute  length,  then 
any  angle,  length,  area,  or  volume  intrinsic  to  one  of  the  tetrahedra  is  equal 
numerically  to  the  corresponding  angle,  length,  area,  or  volume  derived  from 
the  other,  and  the  two  tetrahedra  are  said  to  be  equal.  In  spite  of  equality, 

two  tetrahedra  may  exhibit  the  intrinsic  difference  which  presents  itself  as 

a  difference  in  sign  if  the  space  containing  the  tetrahedra  is  prepared,  and 

two  tetrahedra  are  said  to  be  °  congruent  if  they  are  equal  and  if  they  acquire  -23 
the  same  sign  when  a  spatial  convention  is  adopted;  if  two  tetrahedra  are 

equal  but  not  congruent,  each  is  said-f-  to  be  a  ° perverse  of  the  other.  '24 

133.   THE  NORMALS  TO  A  PREPARED  PLANE  ;  DISTANCE  FROM 
A  PREPARED  PLANE. 

•1.    If  a  line  is  perpendicular  to  a  plane,  both  of  the  rays  in  the  line  are  at 
right  angles  to  each  of  the  corresponding  prepared  planes,  but  in  prepared 

space0 each  ray  bears  a  special  relation  to  each  plane;  a  ray  is  said  to  be       '12 
0 normal  to  a  prepared  plane  if  it  is  at  right  angles  to  the  plane  and  if  its       -13 
direction  is  from  the  negative  side  to  the  positive  side  of  the  plane;  moreover, 

°to  say  that  a  ray  is  normal  to  a  plane  is  held  to  imply  that  the  plane  is  pre-        -15 
pared.   If  with  one  spatial  convention  a  ray  is  normal  to  a  plane,  then  with 
the  same  convention  the  reverse  of  the  ray  is  normal  to  the  reverse  of  the 
plane,  and  with  the  alternative  convention  the  ray  itself  is  normal  to  the 
reversed  plane. 

•2.  °The  normals  to  a  prepared  plane  are  the  rays  represented  by  the  -21 
positive  pole  of  the  corresponding  prepared  unit  circle.  Through  any  point  R 
of  space  passes  one  of  these  normals,  this  ray  cuts  the  plane  in  a  definite  point 
Q,  and  the  distance  of  R  from  Q  in  the  direction  of  the  ray  defines  the 

0  distance  of  the  point  from  the  plane,  while  the  negative  of  this  distance  is 
the  "distance  from  the  point  to  the  plane. 

134.   THE  VOLUME  OF  A  TETRAHEDRON. 

•1.  °The  volume  of  an  ordered  tetrahedron  QRST  is  given  the  sign  of  the       -11 
tetrahedron,  and  is  °  one-third  of  the  product  of  the  area  of  the  ordered  triangle        -12 

*  Every  derangement  of  a  finite  ordered  class  can  be  effected  in  many  ways  by  a  finite 
succession  of  simple  interchanges :  for  example,  to  pass  from  QRST  to  TRQS  we  may 
interchange  first  T  with  Q  and  then  Q  with  S,  or  proceeding  on  another  plan  we  may  pass 
through  the  orders  QRTS,  RQTS,  RTQS;  but  for  a  particular  derangement,  either  the 
number  of  interchanges  must  be  even  or  the  number  of  interchanges  must  be  odd,  and 
derangements  are  classified  accordingly  as  even  and  odd  derangements. 

t  Following  Listing  (loc.  cit.  p.  8  above,  p.  830). 
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RST  by  the  distance  of  Q  from  the  plane  of  this  triangle;  either  cyclic  direc- 
tion may  be  given  to  the  plane  containing  the  triangle,  provided  only  that  the 

same  cyclic  direction  determines  the  signs  both  of  the  triangle  and  of  the  side 
of  the  plane  on  which  Q  is  to  be  found,  but  a  spatial  convention  has  to  be 
adopted  before  the  sign  of  a  tetrahedron  is  determinate. 

•2.  The  area  of  a  triangle  ABC  is  one-half  of  the  area  of  the  parallelogram 
of  which  AB,  AC  are  adjacent  sides,  and  is  equal  to  £  A  B.  A  C .  sin  BAG; 

the  volume  of  a  tetrahedron  QRST  is  one-sixth  of  the  volume  of  the  paral- 
lelepiped of  which  QR,  QS,  QT  are  adjacent  edges,  and  it  is  written  in  the 

•23  form  ̂ QR .  QS .  QT.  sin  QRST,  where  the  last  factor  is  called*  the  °sine  of  the 
solid  angle  subtended  at  Q  by  the  ordered  triangle  RST.  Just  as  sin  BAG 

•24  depends  only  on  the  directions  of  B  and  C  from  A,  so  °sin  QRST  depends  only 
on  the  directions  of  R,  S,  T  from  Q  and  not  on  the  lengths  of  the  edges  QR, 

QS,  QT;  indeed,  if  B,  F  represent  AB,  AC  on  a  unit  circle  we  can  write 

sin  BF  instead  of  sin  BAG,  and  if  P,  2,  T  are  spherical  images  of  QR,  QS,  QT 
we  can  write  sin  HP2T  instead  of  sin  QRST,  and  it  is  only  because  sin  PST 

might  be  used  to  denote  the  sine  of  an  angle  at  %  between  the  great  circles 
SP  and  ST  that  it  is  unwise  to  use  this  simpler  symbol  for  the  sine  of  the 
solid  angle. 

If  the  lengths  QR,  QS,  QT  are  all  different  from  zero,  the  volume  of  the 
tetrahedron  QRST  is  zero  if  and  only  if  the  lines  QR,  QS,  QT  are  all  in  one 

plane;  hence 

•26  The  sine  sin  I1PST  is  zero  if  and  only  if  the  directions  P,  S,  T  are  coplanar. 

•3.  The  expressions  given  in  *1  and  "2  for  its  volume  regard  a  proper  or  un- 
degenerate  tetrahedron  as  derived  from  a  triangle  by  the  introduction  of  a  third 
dimension:  in  the  one  case  Q  is  taken  as  a  point  outside  the  plane  of  the  triangle 
RST,  and  in  the  other  case  QT  is  taken  as  a  step  not  coplanar  with  the  steps  QR, 

•32  QS.  "Another  derivation  from  a  triangle  regards  the  tetrahedron  as  generated 
by  a  variable  triangle  of  which  the  base  is  fixed  and  the  vertex  traces  a  line 

of  finite  length,  the  plane  of  the  triangle  revolving  round  the  fixed  base ;  thus 

•33  °a  triangle  XST  whose  vertex  X  moves  from  Q  to  R  along  the  line  joining 
these  points  traces  the  tetrahedron  QRST,  and  the  same  tetrahedron  may  be 

generated  similarly  in  five  other  ways.  Viewing  the  construction  in  this  light, 
we  concentrate  our  attention  on  two  opposite  edges  of  the  figure  instead  of  on 
one  vertex  and  a  face  or  on  three  conterminous  edges,  and  since  the  edges 

•35  which  we  choose  play  different  parts  °  there  are  two  distinct  modes  of  generation 
corresponding  to  each  pair  of  opposite  edges.  There  is  however  a  generation 
of  the  tetrahedron  by  means  of  opposite  edges  in  which  the  chosen  edges  play 

similar  parts,  and  this  is  among  the  most  useful  modes  of  developing  the  figure. 

*  This  application  of  the  word  sine  aa  well  as  the  introduction  of  the  function  is  due  to 

von  Staudt  (CrelUs  J.  f.  d.  J/".,  vol.  xxiv,  p.  255,  1842).  A  line  of  argument  different  from 
that  in  the  text  is  indicated  in  a  foot-note  on  p.  103  below. 
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•4.  Let  I,  m  be  the  lines  containing  opposite  edges  QR,  ST  of  a  tetrahedron, 
let  U  be  any  point  of  lt  and  let  Fbe  any  point  of  w;  the  tetrahedron  being 

supposed  not  to  degenerate  into  a  plane  figure,  there  passes  through  any  point 
Z  of  U  V  a  definite  plane  K  to  which  both  I  and  m  are  parallel,  and  if  this 

plane  cuts  the  four  lines  QS,  RS,  RT,  QT  mA,B,  C,  D,  the  lines  AB,  DC  are 

parallel  to  I  and  the  lines  AD,  BG  are  parallel  to  m;  °the  figure  ABCD  is  a  -41 
parallelogram  whose  sides  depend  in  length  on  the  position  of  Z  but  have  the 
directions  of  I  and  m,  and  the  tetrahedron  may  be  regarded  as  generated  by 

the  motion  of  this  variable  parallelogram  as  Z  moves  from  U  to  V,  the  sides 

parallel  to  I  decreasing  uniformly  in  numerical  length  from  \r\,  the  length  of 

QR,  to  zero,  the  sides  parallel  to  m  increasing  uniformly  in  numerical  length 

from  zero  to  \s\,  the  length  of  ST,  and  the  vertices  describing  straight  lines. 

•5.  The  volume  of  a  tetrahedron  is  determinate  if  a  pair  of  opposite  edges 
is  known,  and  the  actual  expression  for  the  volume  is  both  simple  and  valuable. 

With  the  notation  of  the  last  paragraph,  let  X,  //,  be  rays  in  I,  m,  let  v  be  a  ray 

in  the  line  through  U  and  V,  and  let  r,  s,  t  be  the  lengths  of  QR,  ST,  UV  in 

X,  //.,  v.  Since  the  distance  of  any  point 

X  in  X  from  the  plane  through  U  and 

fi  is  a  constant  multiple  of  the  distance 

of  X  from  U,  the  volume  of  the  tetra- 
hedron UXST,  as  far  as  this  volume 

depends  on  the  position  of  X,  also  is  a 
constant  multiple  of  this  distance,  and 

therefore  °  the  volume  of  the  tetrahedron  -51 
QRST  is  the  product  of  r  and  a  factor 
independent  of  the  positions  of  Q  and 

R  in  X.  Hence  °this  volume  is  the  pro-  -52 
duct  of  rs  and  a  factor  independent  alike 

of  the  positions  of  Q  and  R  in  X  and  of 

the  positions  of  S  and  T  in  yu,.  The  value 

of  the  independent  factor  is  readily  ob- 
tained: if  L,  M  are  the  points  at  unit 

distances  from  U,  V  along  X,  /i,  the  factor 

is  the  volume  of  the  tetrahedron  ULVM,  and  if  the  line  through  M  parallel 

to  UV  meets  the  line  through  [/"parallel  to  VM in  P,  this  volume  is  that  of  the 
tetrahedron  ULVP  and  is  ££sinQANM,  where  A,  M,  N  are  the  images  of 

X,  p,  v: 

The  volume  of  a  tetrahedron  of  which  opposite  edges  have  lengths  r,  s  in  rays        -54 
X,  fi  is  —  £rscZAMI,smflAMN,  where  d\^v  is  the  distance  from  X  to  p  along  any 
ray  v  which  cuts  them  and  A,  M,  N  represent  the  directions  of\  /*,  v. 

If  we  wish  to  take  v  at  right  angles  to  both  X  and  /u,,  we  may  appeal  to  the 
general  formula  or  we  may  note  that  in  this  case  the  area  of  the  triangle  UST, 

Fig.  9. 
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with  the  cyclic  direction  that  is  positive  with  respect  to  X,  is  —  £SC?AM  and  the 
distance  of  L  from  the  plane  of  this  triangle  is  sin  e\^: 

•55  The  volume  of  a  tetrahedron  of  which  opposite  edges  have  lengths  r,  s  in  rays 
X,  fi  is  —  ̂ rsd^  sin  eAM,  where  d^  is  a  normal  distance  from  \  to  p  and  eAfl  is 
an  angle  from  X  to  a  round  the  direction  in  which  d^  is  measured, 

a  result  which  is  probably  more  used  than  the  general  theorem  which  includes 

•56  it.  It  is  to  be  remarked  that0  the  last  two  theorems  are  true  without  any 
restrictions  on  the  directions  of  the  rays  concerned,  for  if  the  rays  X,  //,  are 
parallel  the  factors  sin  HAMN  and  sin  eA/t  are  zero,  while  if  X,  JJL  are  concurrent, 

then  in  the  one  theorem  the  factor  d^v  or  the  factor  sin  HAMN  is  zero  ac- 
cording as  v  is  not  or  is  coplanar  with  X  and  /*,  and  in  the  other  theorem  the 

factor  d^  is  zero. 

•6.  The  two  theorems  '54,  '55  may  of  course  be  deduced  from  the  generation 
of  the  volume  by  the  area  of  a  variable  parallelogram.  The  area  of  the  paral- 

lelogram described  in  '4  is  (UZ  .  ZV/UV^rssme^,  and  if  \z  ,UV  is  the 
distance  of  Z  from  the  midpoint  of  UV  this  area  is  \  (1  —  22)rssin  e^;  more- 

over, the  perpendicular  distance  of  Z  from  the  plane  parallel  to  I  and  m  and 

bisecting  UV  is  ̂ zd^;  hence  the  volume  is  numerically 

r+i 

•65  ±rsd>,n  sin  e*M        (1  -  ̂ 2)  dz, 
J  -i 

which  agrees  with  '55,  but  the  entry  of  the  negative  sign  is  more  difficult  to 
understand  if  the  volume  is  calculated  in  this  way. 

*7.   The  equivalence  of  '54  and  '55,  and  the  equivalence  of 

and  the  product  J  x  $QR.  QTsin  RQT  x  PS,  where  P  is  the  foot  of  the 
perpendicular  from  S  on  the  plane  QRT,  establish  what  is  perhaps  the  most 
useful  of  all  formulae  involving  the  sine  of  a  solid  angle:  if  P,  2,  T  are  three 

points  of  a  sphere  whose  centre  is  H,  and  II  is  a  pole  of  a  great  circle  through 
2  and  T,  then  if  the  angles  from  2  to  T  are  measured  round  II, 

•72  sin  HP2T  =  cos  PH  sin  ST. 

135.   ANGLES  BETWEEN  PREPARED  PLANES. 

•11  '1.  °An  angle  from  one  prepared  plane  to  another  may  be  defined  as  an 
angle  from  the  direction  normal  to  the  first  prepared  plane  to  the  direction 
normal  to  the  second ;  the  angles  between  two  prepared  planes  have  a  common 

cosine,  but  if  the  planes  are  not  parallel  we  can  not  give  a  definite  sign  to  the 

sine  of  angles  from  one  prepared  plane  to  another  except  by  reference  to  a 

•13  direction  which  is  not  at  right  angles  to  their  line  of  intersection.  °The  direc- 
tions of  the  actual  line  of  intersection  are  usually  the  most  convenient  directions 
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round  which  to  measure  the  angles  between  prepared  planes  which  are  not 

parallel;  round  each  of  these  directions  the  angles  from  one  of  the  planes  to 
the  other  compose  a  single  congruence. 

•2.  Angles  between  prepared  planes  may  be  studied  on  a  unit  sphere.  °If 
two  such  planes  are  parallel,  the  prepared  great  circles  which  represent  them 

coincide  in  position  and  have  the  same  direction  or  opposite  directions  ac- 

cording as  the  cyclic  directions  of  the  planes  are  identical  or  opposite.  °If  two 
prepared  planes  are  not  parallel,  they  are  represented  by  two  distinct  circles, 

and  their  line  of  intersection  is  represented  by  the  points  of  intersection  of 

the  circles;  let  these  points  be  A,  A',  and  let  the  points  at  distances  \tr 
from  A .  along  the  two  circles  be  P,  S ;  the  points  P,  S  and  the  opposite 

points  P',  2',  as  well  as  the  positive  poles  M,  N  of  the  two  prepared  circles, 
are  situated  on  the  great  circle  whose  poles  are  A  and  A',  and  whichever 
direction  of  measurement  round  this  circle  is  adopted,  the  congruences  of 

angles  from  P  to  2,  from  P'  to  2',  and  from  M  to  N,  are  identical.  At  A,  the 
prepared  circles  have  definite  directions,  which  are  the  directions  of  rays  in 
the  tangent  plane  to  the  sphere  at  A,  and  are  in  fact  also  the  directions  of 

•21 

•22 

Fig.  10. 

OP  and  n2  ;  instead  of  measuring  angles  from  the  one  prepared  plane  to  the 

other  round  HA  as  angles  from  M  to  N,  we  may  measure  them  as  angles 

°from  P  to  2,  or  as  angles  °at  A  from  the  direction  of  the  quadrant  AP  to  -25, -26 
the  direction  of  the  quadrant  A  2,  that  is,  from  the  first  prepared  circle  to  the 

second.    °The  directions  of  the  two  circles  at  A'  are  represented  not  by  P  and        -27 

2  but  by  P'  and  2',  but  the  angles  from  one  plane  to  the  other  round  the 

direction  whose  image  is  A'  can  still  be  described  as  the  angles  at  A'  from 
the  first  circle  to  the  second;  figure  10  is  intended  to  shew  the  same  sphere 

from  different  points  of  view,  and  to  illustrate  that0 the  angles  at  A'  are  the        -29 
negatives  of  the  angles  at  A. 
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141.   PARALLEL  PROJECTION  IN  A  PLANE;  ITS  EFFECT  ON  LENGTHS. 

•1.    If  £  and  p  are  any  two  intersecting  lines  in  a  plane,  and  S  is  a  point  of 
the  plane,  there  is  one  line  through  S  parallel  to  I,  and  this  line  meets  p  in 

•11        a  definite  point  P  which  is  called  the  ° l-projection  of  S  on  p;  if  I  is  at  right 

•12        angles  to  p,  the  ̂ -projection  is  called  the  ° normal  projection,  or  briefly  the 
projection,  of  S  onp,  and  if  we  wish  to  indicate  that  a  projection  is  not  assumed 

to  be  normal  we  call  it  a  projection  by  parallels  or  an  oblique  projection. 

•2.  A  step  ST  has  for  its  ̂ -projection  on  p  a  definite  step  PQ.  The  lengths  of 
PQ  depend  on  the  lengths  of  ST  and  on  the  directions  of  I  and  p  and  ofST,  and 

•22  °the  length  of  PQ  in  either  of  the  directions  of  p  can  be  compared  with  the 
length  of  ST  in  either  of  its  directions;  in  other  words,  if  a  step  of  length  e  in 

a  ray  a-  has  for  its  Z-projection  on  a  ray  -BT  a  step  of  length/,  the  ratio  of  /to 
e  is  expressible  trigonometrically  in  terms  of  the  directions  of  a  and  OT  and  the 
directions  of  I. 

•3.  Parallel  projection  in  a  plane  from  one  ray  on  another  has  one  charac- 
teristic which  is  not  numerical.  If  the  Z-projection  on  «r  of  S  in  cr  is  P,  then 

the  ̂ -projections  of  the  points  on  one  side  of  S  in  cr  are  the  points  on  one  side 

•32        of  P  in  or,  so  that  °the  positive  side  of  $  in  cr  projects  as  a  whole  either  into  the 

•33  positive  side  of  P  or  into  the  negative  side  of  P  in  or;  moreover, ° either  the 
two  sides  of  all  points  in  cr  retain  their  signs  after  projection  or  the  two  sides 

•34  of  all  points  in  cr  exchange  signs  after  projection,  and  we  say  that  °  l-projection 
from  cr  on  w  or  between  cr  and  vr  is  negative  or  positive  according  as  the  signs 

•35  of  sides  of  points  are  affected  or  unaffected  by  the  projection.  °The  points 
representing  cr  and  cr  on  a  unit  circle  lie  on  the  same  side  or  on  opposite  sides 
of  the  diameter  parallel  to  the  axis  of  projection  according  as  the  projection 

is  positive  or  negative. 

•4.  Three  methods  suggest  themselves  for  determining  the  ratio  of  the 
length  of  a  projected  step  to  the  length  of  the  original,  and  they  lead  to  three 
different  expressions.  With  the  notation  of  the  preceding  paragraphs,  if  i  is 

a  ray  at  right  angles  to  I,  and  if  the  lines  through  S  and  T  parallel  to  I,  which 
contain  the  points  P  and  Q,  meet  i  in  G  and  H,  the  step  GH  is  the  normal 
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projection  on  i  of  both  ST  and  PQ;  if  then  the  directions  of  <r,  -or,  i  are  repre- 
sented by  the  points  2,  H,  I,  the  length  of  GH  in  i  can  be  expressed  both  as 

ecos  IS  and  as /cos  III  and  therefore  °the  value  of//e  is  cos  IS/cos  III;  if  the 
reverse  of  i  is  used  the  expression  obtained  for//e  is  cos  I'S/cos  I'll,  which  has 
of  course  the  same  value  as  the  expression  found  from,  I.  Alternatively, 

A   Er 

Fig.  11. 

if  A  represents  either  direction  along  I,  and  PV,  $£7"  are  steps  in  the  direction 
of  A  with  the  same  arbitrary  length  g  in  that  direction,  then  since  the  areas 
of  the  triangles  PQV,  STU  are  equal  in  sign  and  amount,  it  follows  that 

^gfsin  HA  =  \ge  sin  2A, 

and  therefore  that  °f/e  is  equal  to  sin  AS/sin  AH,  on  the  assumption  that  angles from  A  to  2  and  from  A  to  H  are  measured  in  the  same  direction.  The  relation 

between  the  two  expressions  found  forf/e  is  obvious;  the  expression  in  terms 
of  sines  involves  only  directions  immediately  concerned  in  the  projection,  but 

is  slightly  ambiguous  in  form.  In  view  of  the  three-dimensional  problem  to 
which  we  must  proceed,  we  may  mention  a  third  method  of  expressing  the 

result.  If  E2,  En  represent  the  directions  normal  to  the  rays  a-,  vr,  cyclic 
direction  having  been  given  to  the  plane,  then  the  distances  of  U  from  a-  and 
V  from  &  are  gcos  AE2  and  #cosAEn,  and  the  areas  of  the  triangles  STU, 

PQV  are  \ge  cos  AE2,  ̂ gfcos  AEn;  thus  °f/e  is  expressed  as  cos  AE2/cos  AEn, 
a  ratio  easily  identified  with  cos  IS/cos  III. 

•5.  The  reader  will  not  fail  to  observe  the  advantage  we  have  gained  from  our  freedom* 
to  use  triangles  of  which  the  sides  are  real  numbers  and  the  angles  may  be  negative  or 
greater  than  it.  Fettered  to  triangles  with  signless  sides,  we  should  have  first  to  prove  the 
formula 

/sin  AH  =  e  sin  AS 

or  an  equivalent  for  rays  in  the  positive  directions  of  the  steps  ST,  PQ,  and  then  to 
generalise  the  result  by  means  of  the  identities 

/sin  All  =  -/sin  AH',   e  sin  AS  =  —  e  sin  AS'. 
Generalisation  of  results  is  a  tedious  distraction,  whose  avoidance  justifies  any  attention 
devoted  to  first  principles. 

*  In  fig.  11,  g  is  negative,  U  is  on  the  negative  side  of  <r,  and  Vis  on  the  positive  side 
of  or ;  A  is  E'I,  and  cos  AEs,  cos  AEn  are  the  negatives  of  cos  12,  cos  IEE. 

•42 

•43 

•44 

•46 
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•6.  Altogether  independent  of  the  quantitative  results  of  '4  is  the  theorem 
that 

•61  If  one  step  is  the  sum  of  a  finite  number  of  coplanar  steps,  any  parallel 
projection,  normal  or  oblique,  of  the  sum  on  a  line  in  the  plane  of  the  components 
is  the  sum  of  the  corresponding  projections  of  the  individual  components, 

an  immediate  deduction  from  definitions  '11  and  22'63,  which  might  well  be 
described  as  the  fundamental  theorem  of  plane  trigonometry. 

The  success  of  the  investigation  in  '4  emphasises  a  theorem  on  which  the 
very  possibility  of  success  depends : 

•62  In  any  parallel  projection  in  a  plane,  congruent  steps  project  on  parallel 
lines  into  congruent  steps. 

In  other  words, 

•63  In  a  parallel  projection  in  a  plane,  if  two  steps  that  are  congruent  are  projected 
on  two  rays  that  have  the  same  direction,  the  projections  have  the  same  length. 

We  must  not  attempt  to  prove  '62  or  the  corresponding  theorem  relating  to 
projection  in  space.  These  theorems;  in  some  form  or  other,  are  assumed  in 

the  geometrical  definitions  of  the  circular  functions  and  in  the  spherical  repre- 

sentation of  directions,  if  not  in  the  use  of  the  word  'direction'  itself,  and  to 
disentangle  hypotheses  from  deductions  would  carry  us  back  into  that  discussion 

of  the  logical  foundations  of  elementary  geometry  which  it  is  our  intention  to 

avoid;  the  assumptions  that  distinguish  Euclidean  geometry  have  been  made, 

though  not  avowed,  on  almost  every  page  of  our  first  two  chapters. 

142.  THE  TWO  KINDS  OF  PARALLEL  PROJECTION  IN  SPACE. 

•1.  In  space  of  three  dimensions  there  are  two  kinds  of  oblique  projection, 
projection  on  a  line  and  projection  on  a  plane.  Through  any  point  S  of  space 

there  pass  a  single  plane  parallel  to  any  given  plane  K  and  a  single  line 

parallel  to  any  given  line  I ;  the  plane  cuts  any  line  p  which  is  not  parallel  to 

•12        Km  a  definite  point  called  the  °  K-projection  of  S  on  p,  and  the  line  cuts  any 

•13  plane  N  which  is  not  parallel  to  I  in  a  definite  point  called  the  °  I -projection 
of  S  on  N',  if  K  is  at  right  angles  to  p  and  I  at  right  angles  to  N,  the 

•14  -ST-projection  and  the  /-projection  are  called  °the  projections,  or  more  fully  the 
normal  projections,  of  S  onp  and  N,  and  a  projection  not  assumed  to  be  normal 

•15        may  be  called  °oblique  or  parallel. 

•2.  There  is  an  obvious  relation  between  projection  on  a  plane  and  projection 
on  any  line  in  the  plane: 

•21  If  p  is  a  line  in  a  plane  N,  and  if  K  is  a  plane  not  parallel  top  and  I  a  line 
parallel  to  K  but  not  to  N,  then  the  K-projection  on  p  of  any  point  S  is  the 

m-projection  on  p  of  the  l-projection  of  S  on  N,  where  m  is  parallel  to  the  line 
of  intersection  of  K  and  N. 

Particular  cases  of  this  theorem  in  which  only  one  of  the  projections  is 
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normal  need  not  delay  us,  but  we  remark  that  if  K  is  at  right  angles  to  p,  the 

lines  at  right  angles  to  N  are  parallel  to  K,  whence 

If  p  is  a  line  in  a  plane  N,  the  projection  on  p  of  any  point  S  is  the  projection        '23 
on  p  of  the  projection  of  S  on  N. 

•3.  A  step  in  space  projects  on  a  line  or  on  a  plane  into  a  step,  and  one 
characteristic  of  parallel  projection  is  that 

In  parallel  projection  congruent  steps  project  into  congruent  steps,  -31 

a  theorem  that  we  shall  be  content  to  recognise,  as  in  1*6,  from  the  success 
of  calculations  which  would  inevitably  fail  if  the  result  were  not  true. 

The  numerical  effects  of  projection  on  steps,  on  triangles,  and  on  angles  can 

be  found -without  difficulty,  but  we  have  not  to  appeal  to  calculations  for  the 
theorem  that 

If  one  step  is  the  sum  of  a  finite  number  of  other  steps,  any  parallel  pro-        '32 
jection  of  the  sum,  normal  or  oblique,  on  a  line  or  on  a  plane,  is  the  sum  of  the 
corresponding  projections  of  the  individual  components. 

•4.  It  is  interesting  to  compare  the  values  of  the  analogous  theorems  T61,  '32.  Since 
the  whole  of  plane  trigonometry  may  be  made  dependent  on  1*61  without  reference  to 
•32,  the  range  of  application  of  1*61  is  far  wider  than  the  range  of  application  of  '32,  in 
spite  of  the  fact  that  the  latter  range  includes  the  whole  of  spherical  trigonometry.  On 

the  other  hand,  the  fundamental  theorems  derivable  from  1-61  can  be  proved  and  often 
have  been  proved  without  reference  to  the  theory  of  projection,  but  the  study  of  space 
offers  such  difficulties  to  perception  and  such  variety  in  the  different  aspects  of  a  single 
problem  that  to  satisfactory  progress  in  this  study  generality  of  treatment  is  essential  and 

not  merely  desirable ;  whereas  advance  without  1-61  is  sure  but  tiresome  (the  proof  of  the 
elementary  expression  of  cos  (A  +  B)  as  cos  A  cos  B  -  sin  A  sin  By  for  example,  requiring  the 

consideration  of  a  number  of  different  cases),  advance  without  '32  is  all  but  impossible. 

]  43.   PARALLEL  PROJECTION  ON  A  RAY  ;  ITS  EFFECT  ON  LENGTHS  ; 
DISTANCES  BETWEEN  LINES  IN  SPACE. 

•1.    Projection  from  one  ray  on  another  in  space,  as  in  a  plane,  has  a  definite 

sign,  and  °this  sign  is  positive  or  negative  according  as  the  images  of  the  rays        -11 
on  a  unit  sphere  lie  on  the  same  side  or  on  opposite  sides  of  the  great  circle 

representing  the  plane  which  guides  the  projection. 

•2.  If  a  step  ST  in  a  ray  cr  is  projected  on  a  ray  -a  by  planes  parallel  to 
a  plane  K,  the  ratio  of  the  length  e  of  ST  to  the  length /of  its  projection  PQ 

can  be  expressed  in  three  different  forms  in  terms  of  the  directions  of  cr  and  •or, 
whose  images  we  suppose  to  be  S,  II,  and  of  the  directions  at  right  angles  to 

the  plane,  which  we  represent  by  K  and  K'.  If  K  is  a  ray  in  the  direction  of 
K,  the  normal  projections  of  ST  and  PQ  on  K  are  identical,  and  ecos  KS 

and  /cos  KII  are  alternative  expressions  for  a  single  length;  hence  °f  is  -21' 
equal  to  ecos  KS/cos  KII.  If  a*  great  circle  through  2  and  II  cuts  the 

great  circle  representing  K  in  the  points  A,  A',  then  ST  can  be  projected 
*  In  general  we  might  say  t/ie  great  circle,  but  the  result  is  formally  valid  if  2  and  n 

coincide  or  are  opposite  to  each  other. 
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in  a  plane  parallel  to  HAS  by  lines  parallel  to  AA'  on  a  ray  parallel  to  -o,  and 

•22        the  projected  step  is  congruent  with  PQ;  hence  °/  is 
equal  toe  sin  A2/sin  AH,  on  the  assumption  that  AS 
and  AH  are  measured  in  the  same  direction  round  the 

great  circle  to  which  they  belong.  If  on  the  great  circle 

just  used,  I  is  a  point  distant  by  a  quadrant  from  A, 

•23        then  °f  is  equal  to  ecos  iS/coslII.   A  comparison  of 
the  third  of  the  expressions  for  /  with  the  first  gives 

the  equation 

•24  cos  KS/cos  KIT  =  cos  IlE/cos  III; 
if  we  are  acquainted  with  the  rudiments  of  spherical 

trigonometry  we  recognise  this  equation  as  a  conse- 

quence of  the  two  formulae* 
•25  cosK2  =  cosKIcosIS,  cos  KII  =cos  KIcoslII, 

•26       but0 the  simplest  basis  for  spherical  trigonometry  is  the  theory  of  projection, 
and  if  '24  is  to  be  connected  with  '25  it  is  best  to  replace  '24  by 

•27  cos  KS/cos  IS  =  cos  KO/cos  in, 

an  equation  which  shews  that  the  ratio  cos  K2/cos  1 2  is  actually  independent 
of  the  position  of  S  in  IA,  and  to  deduce^  that  the  value  of  cos  K2/cos  IS  for 

every  such  position  of  S  is  cos  KI,  its  value  when  £  is  at  I.  Viewed  apart 

from  the  theory  of  projection,  '24  shews  that  the  value  of  cos  KS/cos  KH  is 
cos  I2/cos  in  for  every  position  of  K  in  the  great  circle  through  I  and  K,  and 

•28  enables  us  to  state  a  result  including  '21  and  '23 :  °  if  H  represents  any 
direction  in  a  plane  at  right  angles  both  to  K  and  to  a  plane  to  which  a-  and 
iff  are  parallel,  other  than  a  direction  to  which  a  and  «r  are  both  at  right 

angles,  then /is  equal  to  ecos  H^/cos  Hn. 

•3.  A  valuable  application  of  the  idea  of  projection  on  a  line  is  to  the 
determination  of  the  distance  from  one  line  to  another  in  a  given  direction. 

Let  .fiT  be  a  plane  parallel  to  each  of  two  lines  I,  m,  let  n  be  any  line  which  is 

not  parallel  to  K,  let  I,  m  meet  their  tractor  parallel  to  n  in  F,  G,  and  let 

P,  Q  be  any  two  points  on  I,  m;  then  the  step  FG  is  the  ̂ "-projection  of  the  step 
•32  PQ  on  the  tractor,  and  is  therefore0 congruent  with  the  .fiT-projection  of  the 

step  PQ  on  n  itself;  hence  we  can  find  the  lengths  of  the  step  FG  in  its  two 

directions  without  determining  the  actual  positions  of  F  and  G.  In  particular, 
if  I,  m  are  not  parallel  and  n  is  any  line  at  right  angles  to  each  of  them,  or  if 

I,  m  are  parallel  and  n  is  any  line  at  right  angles  to  them  and  parallel  to  a 
plane  containing  them,  and  if  P  is  any  point  of  I  and  Q  any  point  of  m,  the 

*  See  313-14  on  p.  102  below. 
t  We  hasten  to  add  in  defence  of  the  claim  made  in  '26  that  this  is  not  the  natural 

method  of  deriving  the  elementary  theorem  used  in  -25  from  the  theory  of  projection ;  as 
we  shall  see  in  313'2,  this  theorem  is  an  immediate  corollary  of  2-23. 
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distance  from  I  to  w  in  either  direction  of  n  is  the  distance  in  that  direction 

from  the  projection  of  P  on  w  to  the  projection  of  Q  on  n,  or  in  other  words  is 

0  the  projection  in  that  direction  of  the  distance  from  P  to  Q.   From  the  last        -33 

result  it  follows  that0 the  distance  between  two  lines  along  a  normal  tractor        -34 
is  numerically  less  than  the  distance  between  them  along  any  other  common 

tractor,  and  the  numerical  value  of  this  distance  is  therefore  the  ° shortest       -35 
distance  between  the  lines. 

144.   PARALLEL  PROJECTION  ON  A  PREPARED  PLANE;  ITS  EFFECT 
ON  LENGTHS,  AREAS,  AND  ANGLES. 

•1.  More  strikingly  than  the  study  of  projection  on  a  line  the  study  of 

projection  on  a  plane  is  facilitated  by  the  use  of  a  unit  sphere.  Let  N,  N' 
represent  the  directions  at  right  angles  to  the  plane  N  on  which  we  are  to 

project,  and  A,  A'  the  directions  of  the  axis  of  projection  Z;  that  the  axis  can 

not  be  parallel  to  the  plane  implies  that  °A,  A'  are  not  in  the  great  circle  of  -12 
which  N,  N'  are  the  poles. 

•2.    °If  a  line  s  is  parallel  to  I,  all  points  of  s  have  the  same  ̂ -projection;        -21 

0  except  in  this  case,  the  lines  parallel  to  I  through  the  points  of  s  compose        -22 
a  plane  whose  intersection  with  the  plane  of  projection  is  a  line,  the  ̂ -projec- 

tion of  s.   On  the  unit  sphere  we  can  recognise  the  points  representing  the 

directions  of  this  projection ;  if  2,  2'  represent  s,  the  great  circle  through  A 
and  S  is  definite,  because  s  is  not  parallel  to  I,  and  does  not  coincide  with  the 

circle  representing  N,  because,  by  '12,  A  does  not  lie  in  this  circle;  °  the  points        -23 
II,  IT'  in  which  the  great  circle  through  A  and  2  cuts  the  great  circle  repre- 

senting N  are  the  images  of  the  directions  of  the  Z-projection  of  s  on  N. 

•3.    The  axis  of  a  ray  <r  projects  on  a  plane  N  into  a  definite  line  p,  and 
each  of  the  rays  in  p  is  a  projection  of  <r  by  lines  parallel  to  the  axis  of 

projection ;  °  the  ̂ -projection  of  <r  is  positive  on  one  of  the  two  rays,  negative        -32 
on  the  other,  and  the  rays  may  be  distinguished  accordingly  as  the  positive 
and  the  negative  projection  of  <r  on  N.    On  the  unit  sphere,  the  point  2 

representing  <r,  the  two  points  A,  A'  representing  the  axis  of  projection,  and 
the  two  points  II,  II'  representing^),  lie  in  one  great  circle,  and  A  and  A'  are 
distinct  from  the  others  and  divide  the  circle  into  two  semicircles;  of  the 

points  II,  II',  one  lies  in  the  same  semicircle  as  2,  and  °this  one  is  the  image        -34 
of  the  positive  ̂ -projection  of  a. 

•4.  The  effect  of  parallel  projection  on  the  length  of  a  step  in  a  ray  is  to 
be  found  by  an  application  of  the  results  of  the  last  article,  choice  having  been 

made  between  the  two  projections  of  the  ray.  °  A  ray  a-  and  an  ̂ -projection  ts  -41 
of  that  ray  on  a  plane  N  are  contained  in  a  single  plane  parallel  to  I,  and 

projection  from  or  to  CT  may  be  regarded  as  effected  either  by  lines  parallel  to 
/  or  by  planes  parallel  to  any  plane  containing  I  other  than  the  plane  parallel 
to  that  in  which  a-  and  is-  are  to  be  found. 
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•5.  For  us  the  most  important  case  of  projection  on  a  plane  is  parallel 
projection  from  one  prepared  plane  to  another,  and  this  form  of  projection  has 
the  characteristic  of  sign.  Let  2,  T  represent  two  rays  which  are  not  parallel 

in  a  prepared  plane  M,  and  let  II,  P  represent  the  positive  ̂ -projections  of 

these  rays  on  a  prepared  plane  N,  the  axis  having  A,  A'  for  its  images ;  then 
the  angles  numerically  less  than  TT  from  £  to  T  and  from  II  to  P  have 

•52  necessarily  the  same  sign  if  measured  round  A,  and  therefore  °if  measured  in 
the  cyclic  directions  of  the  two  planes  M,  N  these  angles  have  the  same  sign  or 

opposite  signs  according  as  the  cyclic  directions  have  the  same  sign  or  opposite 
signs  with  respect  to  A.  The  condition  is  independent  of  any  particular  pair 

•53  of  rays  in  M,  and  is  unaltered  by  a  substitution  of  A'  for  A,  and  °a  parallel 
projection  from  one  prepared  plane  on  another  is  called  positive  or  negative 
according  as  the  cyclic  directions  of  the  two  planes  have  the  same  sign  or 

opposite  signs  with  respect  to  a  direction  of  the  axis  of  projection.  An  analytical 

•54  criterion  is  readily  enunciated:  °  the  sign  of  a  projection  from  a  prepared  plane 
whose  normals  are  represented  by  M  on  a  prepared  plane  whose  normals  have 

the  image  N  is  the  sign  of  cos  AM/cos  AN,  where  A  represents  either  direction 

of  the  axis  of  projection.  In  the  case  of  normal  projection,  A  can  be  taken 

•55  coincident  with  N  and  °the  sign  of  a  normal  projection  from  one  prepared 
plane  on  another  is  that  of  the  cosine  of  the  angles  between  the  planes. 

•6.   From  the  considerations  adduced  before  the  sign  of  a  projection  was 
defined  it  follows  that 

•61  In  parallel  projection  from  one  prepared  plane  on  another,  the  two  sides  of 
a  ray  project  into  the  two  sides  of  the  projection,  and  the  sides  retain  or  exchange 
signs  according  as  the  projection  is  positive  or  negative. 

A  projection  of  an  ordered  triangle  is  an  ordered  triangle,  and  from  the  last 
result  we  deduce  that 

•62  In  parallel  projection  from  one  prepared  plane  on  another,  every  ordered 
triangle  preserves  or  reverses  its  sign  according  as  the  projection  is  positive  or 

negative. 

•7.  Perhaps  the  simplest  general  method  for  determining  the  effect  of 
parallel  projection  on  the  area  of  a  triangle  in  a  prepared  plane  corresponds 

to  the  last  method  given  in  1*4  for  dealing  with  the  corresponding  question 
in  two  dimensions.  If  the  ̂ -projection  of  a  triangle  RST  on  a  plane  N  is  the 
triangle  OPQ,  and  if  RU,  OF  are  congruent  steps  of  length  g  in  either  of  the 
directions  of  I,  then  the  volumes  of  the  tetrahedra  RSTU,  OPQ  V  have  the 

same  sign  as  well  as  the  same  amount;  but  if  the  direction  in  which  RU,OV 

have  the  length  g  is  represented  by  A  and  if  normals  to  the  directed  planes 

containing  the  triangles  have  images  M,  N,  then  the  distances  of  U  and  V 
from  these  planes  are  g  cos  AM  and  g  cos  AN,  and  therefore  the  volumes  of 
the  tetrahedra  are  $g  cos  AM  .  &RST  and  $g  cos  AN  .  A  OPQ ;  hence 

•75  If  an  ordered  triangle  of  area  A  in  a  prepared  plane  ivhose  normals  are 
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represented  by  M  is  projected  on  a  prepared  plane  whose  normals  are  repre- 
sented by  N,  by  parallel  lines  of  which  one  direction  has  the  image  A,  the  area 

of  the  projection  is  A  cos  AM/cos  AN;  if  the  projection  is  normal,  the  area  is 
A  cos  MN. 

•8.  Here  we  have  taken  the  result  for  normal  projection  as  a  corollary  of  the  more 
general  theorem,  but  it  is  possible  by  an  argument  similar  to  the  first  argument  used  in 
41  in  the  discussion  of  the  projection  of  steps  in  a  plane  to  derive  the  result  for  oblique 
projection  from  the  special  case.  That  the  area  of  a  normal  projection  of  a  triangle  is 
numerically  equal  to  A  cos  MN,  in  the  notation  we  are  using,  is  a  familiar  classical  theorem, 
and  leads  directly  to  the  numerical  value  of  the  area  in  any  parallel  projection,  but  an 

application  of  -62  and  of  either  '54  or  -55  must  be  made  if  the  simple  and  precise  theorem 
•75  is  to  be  deduced. 

•9.  The  effect  of  parallel  projection  on  angles  can  be  found  immediately 
from  the  effects  on  lengths  and  areas.  If  steps  QS,  QT  which  have  lengths 

s,  t  in  the  directions  S,  T  project  obliquely  into  steps  OP,  OR  which  have 
lengths  p,  r  in  the  directions  II,  P,  and  if  M,  N  represent  the  normals  to  the 

planes  QST,  OPR,  and  A  represents  a  direction  of  the  axis  of  projection,  then 

&OPR/&QST  =  cos  AM/cos  AN; 

but  &OPR  =  $prsmttP,  AQST=^sin2T, 

p/s  =  sin  AS/sin  AH,  rjt  =  sin  AT/sin  AP, 
and  therefore 

sin  HP/sin  2T  =  cos  A  M  sin  AH  sin  AP/cos  AN  sin  AS  sin  AT,  -98 

a  trigonometrical  formula  in  which  the  ambiguity  is  only  apparent,  since  AH, 

AP  belong  to  the  same  great  circles  as  AS,  AT  and  are  to  be  measured  in  the 
same  directions  round  those  circles. 

N. 
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210.  INTRODUCTION. 

In  England,  the  word  vector  and  its  companions  are  usually  held  to  belong 
to  the  vocabulary  of  applied  mathematics,  and  their  use  in  the  proof  of  a 
proposition  in  geometry  is  regarded  as  eccentric  if  not  unprofessional.  If  the 
adoption  of  this  attitude  here  is  mysterious,  since  Hamilton  looked  on  his 
conceptions  as  geometrical  and  it  was  at  Cambridge  that  kinematical  methods 
and  expressions  were  first  made  of  service  in  the  study  of  curves  and  surfaces, 
the  attitude  itself  is  mistaken.  Nothing  can  be  more  in  the  spirit  of  analytical 
geometry  than  to  associate  numbers  with  directions,  and  it  is  this  association 
that  gives  rise  to  the  idea  of  a  vector. 

When  we  have  described  the  particular  association  of  numbers  with  direc- 
tions to  which  the  name  of  vector  is  given,  the  definition  of  a  vector  will  be 

complete;  whatever  we  may  choose  to  add  by  way  of  comment,  the  concept 
of  a  vector  is  from  that  moment  determinate.  Moreover,  we  shall  not  have  to 

explain  what  we  mean  by  the  equality  of  two  vectors;  the  interpretation  of 
such  a  collection  of  symbols  as  r  =  s,  where  r  and  B  stand  for  vectors  resulting, 
we  may  suppose,  from  distinct  series  of  operations,  is  not  in  any  sense  arbitrary. 
But  if  into  a  theory  of  vectors  we  propose  to  introduce  words  and  symbols 
which  are  not  of  universal  application,  we  shall  have  to  explain  the  meanings 
to  be  attached  to  them.  It  is  open  to  us  to  adopt  from  arithmetic  and  analysis 
the  words  addition  and  subtraction  and  the  corresponding  signs,  instead  of 
inventing  new  terms  and  symbols,  but  what  is  to  be  meant  by  the  sum  of  a 

number  of  vectors  is  purely  a  matter  of  definition;  other  special*  uses  of  the 
word  sum  have  logically  nothing  to  do  with  the  case. 

*  If  r  and  a  are  any  two  vectors,  there  is  of  course  a  class  of  vectors  which  includes 
r  and  s  and  does  not  include  any  other  vectors,  but  this  class  is  not  in  any  sense  a  sum  of 
r  and  s ;  it  is  the  logical  sum  of  the  class  whose  only  member  is  r  and  the  class  whose  only 
member  is  s. 
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This  is  not  to  deny  that  in  preferring  the  word  addition  to  a  new  word,  we 
are  influenced  by  the  discovery  that  the  operation  to  which  it  is  to  be  attached 
has  so  much  resemblance  to  algebraical  addition  that  in  manipulating  symbols 
with  their  new  meanings  we  are  helped  and  not  misled  by  our  familiarity  with 
them  as  originally  used. 

211.  PROPER  VECTORS;  THE  TWO  DIRECTIONS  AND  THE  TWO  AMOUNTS 
OF  A  PROPER  VECTOR;  THE  ZERO  VECTOR;  MULTIPLICATION  OF  A  VECTOR 

BY  A  REAL  NUMBER. 

•11  '1.  A  °  proper  vector,  as  we  shall  use  the  phrase*,  is  a  real  number,  positive 
or  negative,  associated  with  a  direction,  together  with  the  opposite  number 
associated  with  the  reverse  direction;  if  we  denote  the  concept  of  the  real 
number  r  allied  with  the  direction  P  by  r  |,  P,  the  vector  into  which  this 

•13       concept  enters  is  the  °pair  of  concepts  (r  J,  P,  —  r^P').   The  vector  is  not  an 
•14        ordered  pair;  that  is  to  say,  it  is  to  be  understood  that°(—  r^  P',  r  ̂   P)  has 

the  same  meaning  as  (r  ̂  P,  —r^  P').   The  real  numbers  on  which  a  vector 
•15        partly  depends  are  called  the  °  amounts  of  the  vector,  and  the  vector  in  which 

the  amount  r  is  associated  with  the  direction  P  is  called  briefly  the  vector 

•16        °r  in  P  and  is  denoted  by  rp;  the  vector  r  in  P  is  identical  with  the  vector 
•18        —  r  in  P',  the  vector  r  in  P'  or  —  r  in  P  is  called  the  ° reverse  of  the  vector  rp 
•19       and  is  denoted  by  —  rp,  and  two  vectors  are  said  to  be  ° equal  and  opposite  if 

each  is  the  reverse  of  the  other. 

*2.  There  is  a  temptation  to  regard  the  vector  rp  as  the  simple  concept 
r^P  and  to  impose  the  equation 

-riF-r^P 

as  a  part  of  the  definition  of  identity  between  vectors.  Technically  such  a 
course  introduces  no  errors,  but  logically  it  is  indefensible ;  the  concept 

—  r  ̂  P'  is  not  the  same  as  the  concept  r  ̂  P,  and  to  introduce  a  notion  of  the 
technical  identity  of  two  concepts  which  are  actually  different  brings  us  by 
questionable  paths  to  a  point  which  it  is  far  better  to  take  as  the  point  of 
departure.  In  the  present  case,  if  we  assert  that  there  is  a  single  vector  which 

is  both  r  J,  P  and  —  r  |,  P',  we  have  still  to  admit  that  in  some  sense  this  vector 
has  two  directions  and  two  amounts,  and  to  make  this  admission  is  to  allow 
that  after  all  the  vector  is  not  the  simple  concept  r  J,  P. 

*  The  classical  account  of  the  word  vector  is  on  p.  15  of  the  Lectures  on  Quaternions 
(1853),  but  Hamilton  was  using  the  word  many  years  earlier  as  one  that  would  be  familiar. 
For  Hamilton  a  proper  vector  has  only  one  direction  and  has  a  signless  amount ;  towards 
the  end  of  his  work  he  deals  (p.  665)  with  concepts  obeying  the  laws  of  vectors  and  having 

complex  amounts,  and  these  he  calls  bivectors,  but  he  introduces  (p.  666)  definite  con- 
ventions, of  which  he  recognises  clearly  (p.  669)  the  disadvantages,  to  avoid  attributing 

two  directions  and  two  bitensors  to  each  bi vector.  Actually  mathematicians  have  not 

hesitated  to  use  vectors  with  negative  amounts,  but  that  this  practice  logically  involves 

giving  to  every  proper  vector  two  directions  and  two  amounts  is  not  commonly  noticed, 
and  there  are  many  writers  whose  deductions  are  inconsistent  with  their  definitions. 
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•3.  °Of  the  two  amounts  of  a  proper  vector  one  is  positive  and  one  negative,       -31 
mid  it  is  possible  to  study  systems  of  one-signed  and  signless  vectors,  defining 
a  positive  vector  as  a  positive  number  associated  with  a  direction  and  a  signless 

vector  as  a  signless  number  associated  with  a  direction;  °fonnulae  relating  to        -32 
signless  vectors  are  the  same  as  formulae  relating  to  positive  vectors,  and  since 
the   signless  vector  |  q  \  ̂  P  can  be  taken  as  corresponding  to  the  vector 

(+ 1  q  |  j,  P>  ~  1 1 1  4  P')>  °anv  chain  of  reasoning  involving  the  vectors  which  we        -33 
shall  use  certainly  can  be  conducted  by  means  of  signless  vectors.  The  signless 
vector  is  the  simpler  concept,  having  only  one  direction  and  one  amount,  but 
technical  convenience  attaches  to  the  vector  with  two  amounts,  and  in  mathe- 

matics it  is  relations,  not  concepts,  that  it  is  important  to  keep  simple. 

•4.  °Of  the  two  directions  of  a  proper  vector  we  call  one  the  positive  direc-        -41 
tion  and  the  other  the  negative  direction,  the  positive  direction  being  that  in 
which  the  amount  is  positive.   There  is  a  signless  number  |  q  \  such  that  the 

two  amounts  of  a  vector  r  are  +  q   and  —  |  q  \ ;  this  signless*  number  is  called 
the  ° tensor  of  the  vector  and  denoted  by  |  r  |;  if  r  is  either  amount  of  the  vector,        *43 
we  incur  no  liability  to  error  in  denoting  the  tensor  also  by  \r\. 

•5.  °As  in  other  cases  f,  the  implication  of  the  word  proper  applied  to  a        '51 
vector  is  that  the  amounts  of  the  vector  are  not  zero.    The  association  of  0 

with  a  direction  P  can  of  course  be  distinguished  from  the  association  of  0 
with  any  other  direction  2,  but  it  proves  convenient^  to  identify  the  vector 

02  with  the  vector  0P;  the0  zero  vector  has  all  directions,  and  the  number       -53 
associated  with  each  direction  of  the  zero  vector  is  zero ;  the  zero  vector  is 
denoted  simply  by  the  symbol  0  without  affix. 

•6.    It  is  natural  to  recognise  in  the  vector  of  amount  pr  in  the  direction 

P  the  ° product  of  the  vector  of  amount  r  in  the  same  direction  by  the  real        -61 
number  p,  positive,  zero  or  negative,  and  to  denote  the  product  of  the  vector  r 
and  the  real  number  p  by  pr.    The  vector  with  tensor  unity  and  positive 

direction  P  is  called  the  °unit  vector  in  the  direction  P,  and  °any  vector  can  -62,  -63 
be  expressed  as  the  product  of  the  unit  vector  in  either  of  its  directions  by  its 
amount  in  that  direction ;  the  unit  vector  in  the  direction  P  can  of  course  be 
denoted  by  1P.   Unit  vectors  are  known  also  as  radials  and  as  orts. 

'7.   A  vector  has  no  location  in  space,  but  it  is  often  convenient  to  speak 

of  a  vector  as  °in  a  line  when  it  has  the  directions  of  the  line,  and  °in  a  plane  71,  -72 
when  it  has  directions  possible  for  lines  in  the  plane.  °Coplanar  vectors  are        -73 
vectors  with  coplanar  directions.    °The  zero  vector  is  in  every  line  and  in        '74 
every  plane. 

*  Here  we  are  describing  Hamilton's  first  use  of  the  word  tensor  (Lectures  on  Quater- 
nions, p.  57,  1853),  abandoned  with  reluctance,  if  we  may  judge  from  a  foot-note  in  his  last, 

work  (Elements  of  Quaternions,  p.  108,  1866;  vol.  i,  p.  Ill  in  Joly's  edition).  Nowadays 
the  word  tensor  bears  an  entirely  different  meaning  in  mathematical  literature. 

t  Compare  122-14  on  p.  12  above.  J  See  3'26  on  p.  43  below. 
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212.  THE  REPRESENTATION  OF  VECTORS  BY  STEPS,  AND  OF 
SEQUENCES  OF  VECTORS  BY  CHAINS  OF  STEPS. 

*1.  The  relation  between  the  lengths  and  the  directions  of  a  step  in  space 
is  the  same  as  the  relation  between  the  amounts  and  the  directions  of  a 

12  vector;  whether  a  step  is  proper  or  zero,  ° there  is  a  single  vector  whose 
directions  are  the  directions  of  the  step  and  whose  amount  in  each  of  these 

directions  is  the  length  of  the  step  in  that  direction,  and  this  vector  is  called 

the  vector  of  the  step;  the  vector  of  a  zero  step  is  the  zero  vector*. 
Congruent  steps  are  steps  with  the  same  vector, 

and  a  step  of  which  r  is  the  vector  is  said  to  ° represent  r.   From  any  point  0 
one  and  only  one  step  OR  can  be  drawn  to  represent  a  given  vector  r,  and  the 

15       point  R  at  which  this  step  ends  is  itself  said  to  represent  r  °with  reference  to 
the  origin  0. 

The  vector  of  a  step  AB  is  itself  denoted  by  AB  when  there  is  no 

possibility  of  confusion;  when  a  distinction  must  be  made,  the  vector  is 

usually  denoted  by  AB. 

•2.  A  succession  of  vectors,  rlt  r2,  rs, . . . ,  finds  its  most  graphic  representation 
in  a  chain  of  steps.  The  origin  of  the  first  step  is  arbitrary,  but  each  sub- 

sequent step  begins  where  its  predecessor  ends,  and  the  chain  shews  not  only 
the  vectors  themselves,  the  &th  step  representing  r^,  but  the  order  in  which 

they  are  to  be  taken. 

If  S01S12,S12SW,  S^Ssi,  •••  and  T01T12,  T12TW,  TnTM, ...  are  two  chains  repre- 
senting the  same  succession  of  vectors  rlf  r2,  r3,  ...,  then  because  SP~i,PSp,p+i 

and  Tp_ltpTpip+1  are  congruent,  so  also  are  Sp-JipTp_l>p  and  Sp>  P+1TP>P+1. 
This  being  true  for  every  value  of^>,  the  steps  Sol  Tol,  S12TK,  S^T^,...  are  all 
congruent : 

21  If  two  chains  of  steps  represent  the  same  succession  of  vectors,  the  step  from 
any  point  of  one  to  the  corresponding  point  of  the  other  is  congruent  with  the 

step  from  the  origin  of  the  former  to  the  origin  of  the  latter. 

It  is  to  be  observed  that  neither  the  representation  nor  the  proposition 

requires  the  number  of  vectors  to  be  finite ;  the  succession  may  be  unending, 

provided  that  the  correspondence  between  the  vectors  and  the  natural 
numbers  1,  2,  3,  ...  is  maintained  throughout. 

213.  ADDITION  OF  VECTORS  ;  ITS  ASSOCIATIVE  AND  COMMUTATIVE 
CHARACTER  ;  SUBTRACTION  AND  THE  MINUS  SIGN. 

•1.  It  is  on  the  representation  just  described  that  the  definition  of  the  sum 
of  a  finite  number  of  vectors  is  based.  With  the  notation  of  the  last  paragraph, 

since  Sn>  „+!  Tn>  n+1  and  Svl  T01  are  congruent,  so  also  are  S01  Sn>  n+l  and 

*  This  is  one  reason  why  only  one  zero  vector  is  recognised :  the  step  00  itself  is  as 
definite  as  any  other  step. 
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TM  Tn>  n+1;  that  is  to  say,  °in  a  chain  representing  a  finite  succession  of  vectors       -11 
r, ,  r, , . . .  rn,  the  vector  of  the  step  from  the  beginning  of  the  chain  to  the  end  does 
not  depend  on  the  origin  of  the  chain  at  all,  but  depends  only  on  the  actual 
succession  of  vectors.   This  is  the  vector  which  is  called  the  sum  of  the  vectors 

r, ,  TO,  . . .  rn  and  is  denoted  by  rt  +  ra  +  . . .  +  rn. 
For  the  cases  of  two  vectors  and  of  three  vectors  there  are  alternative 

constructions  for  the  sum  that  deserve  mention. 

Let  OR  represent  a  vector  r,  and  let  OS  and  RN  both  represent  a  second 

vector  s;  then  by  the  definition,  ON  represents  r  +  s,  and  because  RN  is  con- 
gruent with  OS,  the  figure  ORNS  is  a  parallelogram  : 

If  the  coinitial  steps  OR,  OS  represent  two  vectors  r,  B,  the  diagonal  from  0       '13 
of  the  parallelogram  of  which  OR,  OS  are  adjacent  sides  represents  the  sum 
r+s. 

If  in  addition  a  third  vector  t  is  represented  both  by  OT  and  by  NK,  then 
because  OR,  RN,  NK  represent  r,  s,  t  the  sum  r  +  s  + 1  is  the  vector  of  OK, 
and  because  NK  and  OT  are  congruent,  TK  is  congruent  with  ON  and  the 
plane  through  K  parallel  to  ORS  passes  through  T: 

If  the  coinitial  steps  OR,  OS,  OT  represent  three  vectors  r,  s,  t,  the  diagonal       -14 
from  0  of  the  parallelepiped  of  which  OR,  OS,  OT  are  adjacent  edges  represents 
the  sum  r  +  s  + 1. 

The  constructions  in  '13  and  '14  are  inferior  to  the  general  construction  for 
a  sum,  not  only  because  the  method  is  essentially*  incapable  of  direct f  exten- 

sion to  a  larger  number  of  vectors,  but  also  in  principle.  They  have  however 

the  merit  of  putting  in  evidence  for  the  cases  with  which  they  deal  a  funda- 
mental property:  since  the  constructions  are  symmetrical, 

The  sum  of  two  vectors  or  of  three  vectors  is  independent  of  the  order  in  which       -15 
the  vectors  are  taken. 

In  fact,  in  the  parallelogram  of  '13,  SN  as  well  as  OR  represents  r,  and 
therefore  ON  represents  s  +  r,  and  it  is  equally  easy  to  associate  the  six  orders 
of  the  three  vectors  r,  B,  t  with  the  six  paths  from  0  to  K  along  edges  of  the 

parallelepiped  of  *14. 

•2.  The  operation  of  adding  whole  numbers  in  arithmetic  involves,  except  in 
the  simplest  cases,  assumptions  of  which  we  are  apt  to  remain  unconscious. 

*  Not  that  there  is  no  direct  interpretation  of  the  sum  of  any  number  of  vectors  repre- 

sented by  coinitial  steps.  One  that  is  extremely  valuable  is  given  as  6'31  on  p.  51  below. 
t  Having  found  r!  +  r2  by  -13,  we  could  of  course  find  (r1  +  r2)-t-r3  by  a  second  applica- 

tion of  the  same  theorem,  {(r1+r:>)  +  r3}  +  r4  by  a  third,  and  so  on,  and  it  is  easy  enough  / 

to  prove — the  result  is  a  particular  case  of  '22  below — that  (r1+r2  +  ...  +  rn_1)-|-rn  is 
ri  +  r2+---+rn-i+r»  and  that  therefore  the  sum  formed  in  this  way  by  repeated  use  of 

•13  would  be  the  same  as  the  sum  defined  by  means  of  *11.  But  this  is  not  a  direct  geo- 
metrical construction  like  that  of  *14,  nor  does  the  last  foot-note  refer  to  an  inductive  process 

of  this  kind. 
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An  example,  typical  except  that  it  does  not  introduce  the  complication  of  'carrying', 
presents  the  steps  of  the  process  as  follows  : 

=  100  +  20  +  3  +  500  +  10  +  4  +  300  +  40+1 

=  100  +  500  +  300  +  20+10+40  +  3  +  4+1 

=  (100  +  500  +  300)  +  (20  +  10  +  40)  +  (3+4  +  l) 
=  900  +  70+8 
=  978. 

Here  the  first  step  and  the  last  shew  the  use  of  juxtaposition  in  arithmetic,  and  it  is  only 
in  the  step  before  the  last  that  specific  addition  is  performed.  The  intermediate  steps 

depend  on  two  general  propositions  :  the  second  step  and  the  fourth  are  valid  because  in 
an  addition  of  this  kind  any  group  of  successive  numbers  may  be  replaced  by  the  sum  of 
those  numbers,  a  property  expressed  by  saying  that  the  addition  of  whole  numbers  is 
associative,  and  the  third  step  can  be  taken  because  the  value  of  the  sum  is  independent 
of  the  order  in  which  the  numbers  are  added,  an  independence  described  by  calling  the 
addition  commutative.  The  effect  of  the  two  properties  is  briefly  that  in  adding  any  finite 
number  of  integers  we  may  break  up  each  of  them  into  any  number  of  others  of  which  it 
is  the  sum  and  recombine  the  parts  in  any  convenient  manner.  It  is  hardly  necessary  to 

say  that  merely  to  call  a  vector  formed  in  a  particular  way  from  a  number  of  others  their 
sum  is  not  to  confer  any  of  the  properties  associated  with  addition  in  arithmetic  and 
algebra.  The  proof  that  addition  of  vectors  is  in  fact  both  associative  and  commutative 
may  be  based  on  relations  between  addition  of  vectors  and  addition  of  real  numbers,  but 
the  direct  proof  is  too  simple  to  be  worth  avoiding. 

That 

•22  Addition  of  vectors  is  associative 
follows  at  once  from  the  construction  for  the  sura.  LiR^R^R^R^,.  .  .  Rn-i,nRn,n+i 

is  a  chain  of  steps  representing  r1}  r2,  .  .  .  rn,  then  Rh-i,h.Rh,h+i,  Rh,h+i  Rh+i,h+*,  -  •  • 

Rk-i,kRk,k+i  is  one  chain  that  represents  rh,  rh+1  ,  ...Tk  and  therefore  Rh-^,hRk,k+i 
is  one  step  that  represents  rA  +  rA+1  +  ...  +  rk.  Hence  the  chain 

RQ\RW>  RI^R-SI  •••  Rh-2,h-i  Rh-i,h>  Rh-i,h  Rk,k+i>  Rk,k+i  Rk+\,k+z>  •••  ">n—\,n  «n,n+i 

represents  the  set  of  vectors 
r,,  r2,  ...  rA_j  ,  (rA  +  rA+i  +  ...  +rfc),rt+1,  ...  rn, 

and  the  vector  of  the  step  Rol  Rn,n+>,  which  is  the  sum  rx  +  r2  +  .  .  .  +  rn,  is  also 
the  sum  ra  +  r.2  +  .  .  .  +  rA_j  +  (rA  +  rA+1  +  .  .  .  +  r*)  +  rt+1  +  .,  .  +  rn. 

It  follows  from  '22  that  in  forming  the  sum  of  any  number  of  vectors  we  may 
replace  any  two  consecutive  members  of  the  succession  by  their  own  sum,  and 

•23        so  from  '15  that  °the  result  would  have  been  the  same  if  these  two  vectors  had 
come  originally  in  the  reverse  order.    Formally, 

rx  +  r2  +  ...  +  rn  =  T!  +  ...  +  rA_,  +  (rA  +  r,(+,)  +  rA+2+  ...  +ru  (-22) 

=  T!  +  .  .  .  +  rA_,  +  (rh+l  +  rh)  +  rA+2  +  .  .  .  +  rn  ("1  5) 

=  FJ  +  .  .  .  +  rA_!  +  rA+1  +  rh  +  rA+2  +  ...  +  rn  (-22). 
But  if  the  number  of  objects  in  an  ordered  class  is  finite  —  and  we  have 

given  no  meaning  to  the  sum  of  an  infinite  number  of  vectors*  —  any  one 
*  Series  of  vectors  are  of  the  utmost  importance,  but  their  study  naturally  begins  at 

a  later  stage. 
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arrangement  can  be  transformed  into  any  other  by  a  finite  number  of  inter- 

changes of  consecutive  members*.    Hence  the  sum  of  any  finite  number  of 
vectors  is  wholly  independent  of  the  order  in  which  the  vectors  are  arranged : 

Addition  of  vectors  is  commutative.  '24 

Taken  together,  '22  and  '24  imply  that°in  finding  the  sum  of  any  finite       -25 
number  of  vectors  we  may  replace  any  group  of  these  vectors  by  the  sum  of 

its  members,  for  '24  allows  us  to  bring  the  vectors  forming  the  group  into 

succession,  and  '22  is  then  applicable. 
It  is  in  order  to  secure  uniqueness  to  the  sum  in  all  cases  that  we  do  not  recognise 

different  zero  vectors:  let  r,  s  be  vectors  which  are  not  parallel,  and  let  A,  k  be  real 

numbers  different  from  zero ;  hr  —  hr,  ka  -  ka,  (hr+ka)  -  (hr  +  ka)  are  three  zero  vectors,  and 
if  the  first  is  said  to  have  only  the  directions  of  r  and  the  second  only  the  directions  of  B, 
the  third  must  be  associated  with  the  directions  of  hr+ka,  and  these  depend  on  the  ratio 

of  k  to  k;  if  further  (hr+ka)-(hr  +  ka)  is  to  be  identical  with  (Ar  -  hr)  +  (ka  -  ka)  we  must 
conclude  either  that  the  vectors  hr  —  hr,  ka  —  ka  themselves  depend  on  the  values  of  h  and  k, 
or  that  the  sum  of  two  zero  vectors  is  entirely  indeterminate  in  direction  even  if  the  com- 

ponents have  precise  directions;  briefly  ° we  have  to  choose  between  having  an  infinity  of  '26 
zero  vectors  in  a  single  pair  of  directions,  having  an  infinity  of  directions  for  a  single  zero 
vector,  and  having  an  infinity  of  different  sums  to  a  single  set  of  vectors,  and  it  is  the 
second  convention  which  we  adopt. 

•3.   Two  elementary  consequences  of  the  definition  of  addition  are  often 
used,  implicitly  if  not  explicitly : 

If  a  number  of  vectors  have  a  common  direction  their  sum  has  the  same       *3l 
direction  and  its  amount  in  that  direction  is  the  algebraic  sum  of  the  amounts 

of  the  individual  vectors ; 

The  sum  of  n  vectors  each  with  the  amount  r  in  the  direction  P  is  the  vector       -32 
of  the  amount  nr  in  this  direction. 

If  p  is  any  real  number  and  r  is  the  vector  rp,  it  has  been  already  agreed 

that  pr  denotes  the  vector  (pr\ ;  it  follows  from  '32  that  the  relation  between 
multiplication  by  real  numbers  and  addition  is  the  same  for  vectors  as  for  real 

numbers.  Since  we  can  interpret,  in  one  and  only  one  way,  any  expression 

of  the  form  piTi+p2T^+ ... +pnrn,  we  can  use  determinants  in  which  the 
elements  of  one  row  or  one  column  are  vectors  and  the  other  elements  are 

numbers.  That  such  determinants  are  natural  will  be  seen  from  examples  in 

334-4  and  337 '5  below. 

*4.   Two  obvious  properties  of  the  zero  vector  in  addition,  though  explicit 
reference  to  them  is  seldom  made,  are  important  in  connection  with  subtraction. 

Addition  of  the  zero  vector  produces  no  effect,  -41 
since  the  zero  vector  is  the  vector  of  zero  steps,  and 

If  any  vector  is  added  to  its  reverse  the  sum  is  the  zero  vector,  -42 

because  a  step  OP  followed  by  the  reverse  step  PO  gives  the  zero  step  00. 

*  A  process  that  must  be  effective  is  explained  adequately  by  an  example :  the  passage 
from  52413  to  12345  can  be  made  by  way  of  52143,  51243,  15243,  12543,  12534,  12354. 
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•5.    Subtraction  is  the  operation  which  is  cancelled  by  addition;  the  vector 
r  —  s  is  to  be  defined  by  the  equation 

•51  (r-B)  +  B  =  r, 

and  it  must  be  proved  that  there  is  one  and  only  one  vector  which  satisfies 

this  condition.   Let  a'  denote  the  reverse  of  B.   Then  if  there  is  a  vector  t 
such  that 

•52  t  +  s  =  r, 

•53       this  vector  is  such  that         (t  +  s)  +  s'  =  r  +  B'. 

But  identically  (t  +  a)  +  s'  =  t  +  B  +  B' 

by  '22,  *41  and  '42;  hence  '53  asserts  that  the  only  value  possible  for  t  is  r  +  s'. 
On  the  other  hand,  since 

(r  +  s')  +  s  =  r  +  B'  +  s  =  r  +  (s'  +  s)  =  r  +  0  =  r, 

•54  the  value  r  +  s'  of  t  does  in  fact  satisfy  '52.  Hence  °  subtraction  of  one  vector 
from  another  is  always  possible,  and 

•55  r  —  s  =  r  +  s'  : 

•56  To  subtract  a  vector  8  from  a  vector  r  is  to  add  to  r  the  vector  reverse  to  B. 

•61  '6.  In  '56  we  have  one  reason  why  °the  vector  reverse  to  s  can  be  denoted 
by  —  s;  since  the  reverse  of  —  s  is  B, 

•62  -  (-  s)  =  s, 

•63       while  '55  can  be  written  r  —  s  =  r  4-  (-  s), 

•64       and  r  —  B'  =  r  +  s 

•65       is  equivalent  to  r  —  (—  s)  =  r  +  s. 

•66       Also  by  the  definition  adopted  in  1*6,  °if  r  is  ?-P  the  product  of  r  by  —1  is 
•67  (-r)p,  and  this  again  is  the  reverse  of  r.  Thus  °  the  different  uses  of  the 

minus  sign  with  vectors  are  exactly  parallel  to  the  different  uses  of  the  same 

sign  with  real  numbers,  and  our  familiarity  with  the  sign  in  algebra  must  be 
a  help  and  not  a  hindrance  in  our  operations  with  vectors. 

214.  DECOMPOSITION  AND  PROJECTION  OF  VECTORS  IN  A 

PREPARED  PLANE;  ROTATION  AND  ERECTION. 

•11  *1.  °If  two  distinct  lines  m,  n  in  a  plane  meet  in  a  point  0,  if  R  is  any  point 
of  the  plane,  and  if  P  is  a  point  of  m  and  Q  a  point  of  n,  then  the  figure 

OPRQ  is  a  parallelogram  if  and  only  ifP  is  the  n-projection  of  R  on  in  and 
Q  is  the  ?ft-projection  of  R  on  n;  from  the  definition  of  the  sum  of  two  vectors 
it  follows  that 

•12  If  two  lines  in  a  plane  are  not  parallel,  any  vector  parallel  to  the  plane  can 
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be  expressed  in  one  and  only  one  way  as  the  sum  of  vectors  parallel  to  the  two 
lines; 

if  the  vector  is  r  and  the  lines  are  m  and  n,  the  component  vectors  are  called 

individually  °  the  w-component  of  r  in  m  or  parallel  to  m  and  the  w-component        '13 

of  r  in  n  or  parallel  to  n,  and  collectively  they  are  called  simply  °the  components        '14 
of  r  in  m  and  w.    It  is  important  to  notice  that  '12  is  true  of  the  zero  vector 

as  well  as  of  proper  vectors;  applied  to  the  zero  vector,  '12  is  equivalent  to  the 
following  composite  theorem : 

The  sum  of  two  zero  vectors  is  the  zero  vector;  the  sum  of  the  zero  vector  and       '16 
any  proper  vector  is  a  proper  vector,  and  the  sum  of  two  proper  vectors  can  not 
be  the  zero  vector  if  the  vectors  have  different  directions. 

If  two  lines  are  at  right  angles  they  are  not  parallel,  and  therefore  '12  can 
be  applied: 

Any  vector  parallel  to  a  plane  can  be  expressed  in  one  and  only  one  way  as  the       '17 
sum  of  a  vector  parallel  to  any  line  in  the  plane  and  a  vector  parallel  to  a  per- 

pendicular line  in  the  same  plane,  and  the  component  vectors  are  called  the 

projection  of  the  vector  on  or  parallel  to  the  line  and  the  projection  of  the  vector 
at  right  angles  to  the  line. 

•2.  °The  components  and  projections  of  which  we  have  just  been  speaking       -21 
are  vectors;  it  is  only  if  our  attention  is  fixed  on  one  of  the  directions  of  one  of 

these  vectors  that  it  is  naturally  concentrated  also  on  a  particular  amount,  but 

one  effect  of  using  directed  lines  and  planes  is  to  give  in  some  cases  precisely 
the  definiteness  we  desire.    If  we  form  a  component  or  projection  of  a  vector 

parallel  to  the  axis  of  a  ray,  we  can  distinguish  the  amount  of  the  component  or 

projection  in  the  direction  of  the  ray  from  the  amount  in  the  reverse  direction, 

and  this  °  amount  we  call  the  component  or  projection  of  the  vector  in  the        -22 

direction  of  the  ray;  °a  component  or  projection  of  a  vector  parallel  to  a  line        -23 
is  a  vector,  but  a  component  or  projection  of  a  vector  in  the  direction  of  a  ray 
is  a  real  number,  which  if  it  is  not  zero  is  positive  or  negative  according  as  the 

direction  of  the  ray  is  the  positive  direction  or  the  negative  direction  of  the 

component  or  projection  parallel  to  the  axis  of  the  ray;  instead  of  speaking  of 

a  component  or  projection  parallel  to  the  axis  of  a  ray  we  may  speak  of 

a  ° vector-component  or  vector-projection  parallel  to  the  ray,  and  we  may  use        '24 
the  same  compound  words  when  dealing  with  undirected  lines  if  we  wish  to 

emphasise  that  the  concepts  described  are  not  real  numbers.    In  a  prepared 

plane,  the  projection  of  a  vector  r  at  right  angles  to  a  ray  fj,  is  ° understood  to        '25 
be  the  projection  of  r  on  rays  normal  to  /A,  that  is,  on  rays  making  with  p,         , 
a  positive  right  angle ;  like  the  projection  on  //,  itself,  this  projection  is  a  definite 
real  number.    The  values  of  the  components  and  projections  described  in  the 
present  article  can  be  obtained  immediately  by  application  of  the  results  of 

141;  in  particular,  °the  projections  of  a  vector  rA  on  a  ray  //,  and  at  right        '26 
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angles  to  /i  are  r  cos  MA  and  rsin  MA,  where  M  is  the  spherical  image  of  /*, 
and  special  cases  of  this  result  assert  that 

•27  If  the  direction  of  a  ray  p  is  one  of  the  directions  of  a  vector  r,  the  projection 
ofTonp  is  the  amount  of  r  in  that  direction, 

and  conversely  that 

•28  If  the  projection  of  a  vector  r  on  a  ray  /*  is  an  amount  of  r,  the  direction  of  /* 
is  a  direction  of  r, 
and  that 

•29  The  projection  of  a  vector  on  a  ray  is  zero  if  and  only  if  the  two  are  perpen- 
dicular. 

•3.  If  two  vectors  in  a  plane  have  projection  zero  on  the  same  ray  in  that  plane, 
the  vectors  have  axes  at  right  angles  to  that  ray,  and  if  further  their  projec- 

tions at  right  angles  to  the  ray  are  equal  the  vectors  coincide;  it  follows  that 

•32  If  on  every  ray  in  a  plane  two  vectors  parallel  to  the  plane  have  the  same 
projection,  the  vectors  are  identical. 

It  need  hardly  be  remarked  that  the  hypothesis  of  '32  is  much  stronger  than 
is  necessary  for  the  deduction  of  identity,  but  there  are  important  applications 

in  which  the  stringent  condition  is  known  to  be  satisfied.  We  can  enunciate 

a  general  theorem  of  which  a  particular  case  gives  the  real  ground  of  '32; 
parallel  lines  which  have  one  point  in  common  coincide,  and  therefore 

•33  If  m,  n,  q,  r  are  four  lines  in  a  plane,  subject  to  the  conditions  that  q  and  r 
are  not  parallel,  that  m  and  q  are  not  parallel,  and  that  n  and  r  are  not 

parallel,  then  if  two  vectors  have  the  same  q-projection  on  m  and  the  same 

r-projection  on  n,  the  vectors  are  identical. 

To  take  q  coincident  with  n  and  r  with  m  and  to  assert  that  a  vector  in 

a  plane  is  completely  determined  by  its  components  in  any  two  distinct  inter- 
secting lines  in  the  plane  is  only  to  affirm  that  the  sum  of  two  vectors  is 

unique,  but  to  suppose  q  at  right  angles  to  m  and  r  at  right  angles  to  n 

enables  us  to  state  in  language  similar  to  that  of  '32  that 
•35  If  on  each  of  two  distinct  intersecting  rays  in  a  plane  two  vectors  parallel  to 

the  plane  have  the  same  projection,  the  vectors  are  identical, 

a  result  that  can  be  expressed  more  simply  and  more  usefully  in  the  form  that 

•36  A  vector  parallel  to  a  plane  is  completely  determined  by  its  projections  on  any 
two  rays  in  the  plane  provided  that  the  rays  are  not  parallel. 

•4.  From  141*61  and  the  definition  of  the  sum  of  a  number  of  vectors  follows 
the  fundamental  theorem 

•41  If  a  vector  r  is  the  sum  of  a  finite  number  of  coplanar  vectors,  and  n  is  any 
line  in  the  plane  of  the  components,  the  n-components  ofron  any  line  or  ray  in 

this  plane  is  the  sum  of  the  n-components  on  that  line  or  ray  of  the  vectors  com- 

posing r, 
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with  the  special  case 

If  a  vector  r  is  the  sum  of  a  finite  number  of  coplanar  vectors,  the  projections       '42 
ofron  and  at  right  angles  to  any  line  or  ray  in  the  plane  of  the  components 
are  the  sums  of  the  corresponding  projections  of  the  individual  components  of  r ; 

the  w-components  in  the  first  of  these  theorems  and  the  projections  in  the 

second  are0 vectors  or  real  numbers  according  as  the  components  and  projec-        -43 
tions  are  on  a  line  or  on  a  ray. 

•5.  If  K  is  any  direction  in  a  directed  plane  and  6  is  a  given  angle,  there  is 
one  and  only  one  direction  A  such  that  e  is  an  angle  from  K  to  A  in  the  plane, 
and  the  vector  rA,  said  to  be  obtained  by  rotating  rK  through  the  angle  e,  will 

be  denoted  by  Str^]  since  the  direction  which  makes  an  angle  e  with  K'  is  A', 
the  reverse  of  A,  the  vector  St(—  r)K  is  the  vector  (—  r)v»  which  is  identical 

with  StrK;  also  if  rK  is  zero  so  also  is  rA;  thus  if  r  is  any  vector0 there  is  a  -51 
definite  vector  £er  which  is  independent  of  the  direction  chosen,  among  the 
available  directions,  for  the  specification  of  r. 

A  case  of  especial  value  is  that  in  which  the  angle  e  is  a  positive  right 

angle;  °the  vector  ̂ r  we  denote  briefly  by  ST  and  call  the  vector  obtained       '52 
by  erecting  r.    It  is  hardly  necessary  to  add  that  for  any  two  angles  8,  e 

S&Sfv  =  SfS&T  =  <£&+tr,  -53 

and  that  £*r  =  £,r  =  -  r,  -54 

£2r  denoting  ̂ (^r). 
The  effect  of  rotation  on  the  sum  of  a  number  of  vectors  can  be  deduced 

from  a  series  of  elementary  theorems.  If  X  is  any  direction  and  T  is  the 

direction  making  with  2  the  angle  e,  and  if  ?-A  is  the  vector  £trK,  the  pro- 

jection of  rA  in  the  direction  T  is  ?^cosAT  and  the  projection  of  rK  in  the 
direction  2  is  r  cos  K2 ;  but  by  hypothesis  2T  is  equal  to  KA,  and  therefore 

AT  is  equal  to  KS : 

The  projection  of  the  vector  Ser  in  the  direction  making  an  angle  e  with  a        '55 
direction  2  is  equal  to  the  projection  ofr  in  the  direction  S; 

in  particular 

The  projection  of  r  in  any  direction  T  is  equal  to  the  projection  of  Sr  in  the       -56 
direction  making  a  positive  right  angle  with  T. 

Suppose  now  that  the  sum  2r(m>  of  a  finite  number  of  vectors  r(1>,  r(2),  ...  is 
the  vector  rK,  that  M  is  the  direction  making  a  positive  right  angle  with  K, 
and  that  A,  N  are  the  directions  making  a  given  angle  e  with  the  directions 

K,  M ;  by  '55,  the  projection  of  Ser(m)  on  N  is  equal  to  the  projection  of  r(m)  , 

on  M,  and  therefore  by  a  double  use  of  '42  the  projection  of  S  SfT(m)  on  N  is 
equal  to  the  projection  of  2r(m>  on  M ;  by  .hypothesis  the  latter  projection  is 
zero,  and  therefore  by  '29  the  vector  S<^r(m)  has  directions  at  right  angles  to 
N ;  because  KA,  MN  are  equal,  one  angle  from  A  to  N  is  a  positive  right 
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•57 

•58 

angle,  and  A  is  one  direction  of  the  vector  S<^er(m>;  lastly,  the  amount  of 

*2<&tY(m]  in  the  direction  A  is  by  '27  the  projection  of  S<Cr(m)  in  that  direction, 
and  so  by  another  double  use  of  '42  is  the  projection  of  2r(m)  in  the  direction 

K,  which  a  second  appeal  to  '27  shews  to  be  r  : 

If  each  of  a  finite  number  of  vectors  r(1),  r(2),  ...  is  rotated  through  an  angle  e, 
the  sum  of  the  vectors  is  rotated  through  the  same  angle  ; 

in  symbols,  2  S.T™  =  £,2  r<"«>. 

In  particular 

The  sum  of  the  vectors  obtained  by  erecting  any  finite  number  of  vectors  in  a 

directed  plane  is  the  vector  obtained  by  erecting  their  sum. 

215.  DECOMPOSITION  AND  PROJECTION  OF  VECTORS  IN  SPACE. 

•1.   In  space  of  three  dimensions  the  definitions  and  propositions  of  the  last 
section  have  analogues  of  two  distinct  kinds,  for  we  may  extend  them  either 

by  partial  substitution  of  planes  for  lines  or  by  an  increase  in  the  number 
of  lines  considered.  The  two  forms  of  extension  have 

interrelations,  but  their  uses  are  independent. 

One  geometrical  theorem  that  corresponds  to  4'11 
•11  is  that  °if  a  line  I  and  a  plane  K  meet  in  a  point  0, 

and  R  is  any  point  of  space,  and  if  P  is  a  point  of 
I  and  Q  a  point  of  K,  then  the  figure  OPRQ  is  a 

parallelogram  if  and  only  if  P  is  the  ̂ T-projection 
of  JR  on  I  and  Q  is  the  Z-projection  of  R  on  K; 
from  this  comes  the  theorem  that 

•12  If  a  line  and  a  plane  are  not  'parallel,  any  vector 
can  be  expressed  in  one  and  only  one  way  as  the  sum 

of  a  vector  parallel  to  the  line  and  a  vector  parallel  Fig  13 
to  the  plane; 

if  the  vector  is  r  and  the  line  and  plane  are  I  and  K,  the  component  vectors 

•13  are  called  the  °  K- component  of  r  in  I  or  parallel  to  I  and  the  l-component  of 
r  in  K  or  parallel  to  K.  Taking  the  line  and  the  plane  at  right  angles  we 
deduce  two  theorems,  which  justify  useful  definitions  : 

•14  Any  vector  can  be  expressed  in  one  and  only  one  way  as  the  sum  of  a  vector 
parallel  to  any  line  and  a  vector  at  right  angles  to  that  line,  and  the  components 
are  called  the  projection  of  the  vector  on  the  line  or  parallel  to  the  line  and  the 

projection  of  the  vector  at  right  angles  to  the  line; 

•15  Any  vector  can  be  expressed  in  one  and  only  one  way  as  the  sum  of  a  vector 
parallel  to  any  plane  and  a  vector  at  right  angles  to  that  plane,  and  the  com- 

ponents are  called  the  projection  of  the  vector  in  the  plane  or  parallel  to  the 

plane  and  the  projection  of  tlie  vector  at  right  angles  to  the  plane. 
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As  in  4*2,  we  can  distinguish  between  components  and  vector-components 

and  between  projections  and  vector- projections,  the  °real  numbers  occurring        -16 
with  components  and  projections  on  a  ray  or  at  right  angles  to  a  prepared 

plane ;  °a  component  parallel  to  a  plane  or  at  right  angles  to  a  line  is  essentially       -17 
a  vector-component.   The  values  of  components  and  projections  of  vectors  on 
rays  are  to  be  found  from  the  formulae  of  143  and  144. 

•2.  If  two  lines  are  such  that  every  line  at  right  angles  to  one  of  them  is  at 
right  angles  also  to  the  other,  the  two  lines  are  parallel;  arguing  somewhat  as 

in  4'3  we  conclude  that 

If  in  every  direction  two  vectors  have  the  same  projection,  the  vectors  are       '22 
identical; 

as  with  4'32,  the  hypothesis  of  '22  is  stronger  than  the  conclusion  requires  but 
is  actually  known  to  be  satisfied  in  certain  cases  which  present  themselves. 

To  reduce  the  hypothesis  of '22  to  its  weakest  form  we  remark  that  two  parallel 
planes  which  have  a  single  common  point  coincide  entirely,  whence  we  con- 

clude that 

If  three  planes  F,  G,  H  have  one  and  only  one  common  point,  and  if  I,  m,  n       -23 
are  any  three  lines  such  that  I  is  not  parallel  to  F,  m  to  G,  nor  n  to  H,a  vector 

is  completely  determined  by  its  F-component  in  I,  its  G-component  in  m,  and  its 
H-component  in  n. 

The  planes  F,  G,  H  must  be  distinct,  but  there  is  no  reason  why  two  of  the 
lines  I,  m,  n,  or  even  all  three  of  them,  should  not  coincide. 

If  three  directions  are  not  coplanar,  three  planes  to  which  these  directions 

are  at  right  angles  have  one  and  only  one  common  point ;  hence 

A  vector  in  space  of  three  dimensions  is  completely  determined  by  its  projec-       -24 
tions  in  any  three  directions  that  are  not  coplanar; 

in  particular 

A  vector  in  space  is  completely  determined  by  its  projections  on  any  three  rays       -25 
that  are  concurrent  but  not  coplanar. 

•3.  An  alternative  to  '11  as  an  extension  of  4'11  to  space  is  that  °if  I,  m,  n  -31 
are  three  lines  concurrent  in  a  point  0  and  not  coplanar  and  R  is  any  point 

of  space,  and  if  F,  G,  H  are  points  of  I,  m,  n,  then  OR  is  a  diagonal  of  a 
parallelepiped  of  which  OF,  OG,  OH  are  edges  if  and  only  if  F,  G,  H  are  the 

projections  of  R  on  I,  m,  n  by  planes  parallel  to  the  plane  through  m  and  n, 

the  plane  through  n  and  I,  and  the  plane  through  I  and  m.  From  this  it 
follows  that 

Provided  only  that  the  directions  of  three  lines  I,  m,  n  are  not  coplanar,  any       -32 
vector  r  in  space  can  be  expressed  in  one  and  only  one  way  as  the  sum  of  three 

vectors  parallel  to  the  lines;  the  component  of  r  parallel  to  I  is  the  K-component 
of  T  parallel  to  I,  where  K  is  any  plane  parallel  to  both  m  and  n, 
N.  4 
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a  result  that  can  be  obtained  otherwise  by  a  combination  of  '12  with  4'12  ;  an 

application  of  '23  shews  that  if  two  vectors  have  the  same  set  of  components 
in  three  directions  that  are  not  coplanar  the  vectors  are  identical,  but  unlike 

•23  and  '24  this  is  merely  a  particular  case  of  the  theorem  that  the  sum  of 
any  finite  number  of  vectors  is  a  unique  vector. 

*4.  From  142'32  and  the  definition  of  the  sum  of  a  number  of  vectors  follows 
the  fundamental  theorem  that 

•41  If  a  vector  r  is  the  sum  of  a  finite  number  of  other  vectors,  the  K-component 
of  T  parallel  to  any  line  or  in  the  direction  of  any  ray  is  the  sum  of  the  K- 
components,  parallel  to  that  line  or  in  the  direction  of  that  ray,  of  the  vectors 

composing  r,  K  being  any  plane  not  parallel  to  the  line  or  ray, 

which  we  use  repeatedly  without  explicit  reference.  Of  '41  the  special  case 
that 

•42  If  a  vector  r  is  the  sum  of  a  finite  number  of  other  vectors,  the  projection 
of  r  parallel  to  any  line  or  in  the  direction  of  any  ray  is  the  sum  of  the 

projections  parallel  to  that  line  or  in  the  direction  of  that  ray  of  the  vectors 

composing  r 

•43  is  invaluable ;  °if  the  projections  or  components  are  parallel  to  a  line,  they  are 
vectors,  but  if  they  are  in  a  given  direction  they  are  real  numbers  and  the 

sum  of  the  parts  is  an  algebraic  sum.  The  second  part  of  '32  enables  us  to 
deduce  from  142*32  also  that 

•44  If  a  vector  r  which  is  the  sum  of  a  finite  number  of  other  vectors  s,  t,  ... 
is  expressed  as  the  sum  of  vectors  with  three  assigned  directions  that  are  not 

coplanar,  each  of  the  three  components  of  r  is  the  sum  of  the  corresponding 
components  of  the  individual  vectors  s,  t,   

It  is  possible  to  prove  '32  directly  from  314  and  to  apply  142*32  to  prove 
•44  without  making  use  of  3'22  or  3'24,  modifying  the  enunciation  of  *44  to 
require  the  order  in  which  the  components  are  taken  to  be  the  same  as  the 

order  of  the  individual  vectors  s,  t,  —  Then  3'22  and  3'24  become  corollaries 
of  the  theorems  that  in  algebra  the  addition  of  real  numbers  is  both  associative 

and  commutative,  and  the  direct  proofs  in  3'2  are  superfluous. 

Complementary  to  '41  and  '42  and  following  in  the  same  way  from  142'32 
are  the  two  results 

•45  If  a  vector  r  is  the  sum  of  a  finite  number  of  other  vectors,  and  if  K  is  any 
plane  and  I  is  any  line  not  parallel  to  K,  the  l-component  of  r  parallel  to  K  is 

the  sum  of  the  l-components  parallel  to  K  of  the  vectors  composing  r  ; 

•46  If  a  vector  r  is  the  sum  of  a  finite  number  of  other  vectors,  the  projection  of 
r  parallel  to  any  plane  is  the  sum  of  the  projections  parallel  to  the  same  plane 
of  the  vectors  composing  r; 

in  these  theorems  the  components  and  projections  are  necessarily  vectors. 
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216.  MEAN  CENTRES  OF  SETS  OF  POINTS,  AND  OF  SETS  OF  LOADED  POINTS. 

•1.  Let  Rlt  Ry, ...  Rn  represent  the  vectors  r,,  r2,  ...  rn  with  respect  to  the 
origin  (),  and  let  the  vectors  of  the  steps  to  these  same  points  from  another 
origin  Q  be  Blt  s2,  ...  sn.  Then  if  q  is  the  vector  of  OQ, 

•i  =  1*1  -  q,     83  =  ra  -  q,  . . .     sn  =  rn  -  q, 

and  therefore  by  3'56  and  3'25 
B!  +  s2  +  ...  +  sn  =  (F!  +  r2  +  ...  +  rn)  - nq.  -12 

It  follows  that  °BI  +  &2  +  . . .  +  sn  is  the  zero  vector  if  and  only  if  Q  is  the  point        -13 
representing  (i^  +  ra  +  . . .  +  rn)/?i  with  respect  to  0  : 

Given  any  finite  number  of  points  Rlt  Rz, . . .  Rn,  there  is  one  and  only  one  point  C       -14 
such  that  the  sum  of  the  vectors  of  the  steps  CRl}  CR2, . . .  CRn  is  the  zero  vector. 

This  point  is  called  the  °mean  centre  of  the  set  of  points  Rlt  R2,  ...  Rn.  "15 
It  follows  from  5'45  and  5*41  that 

The  mean  centre  of  the  projections,  normal  or  oblique,  of  any  set  of  points  on       -16 
a  plane  or  a  line  is  the  projection  of  the  mean  centre  of  the  set. 

•2.  Geometrical  properties  of  the  mean  centre  are  easy  to  find.  It  follows 
from  -13  that 

The  mean  centre  of  a  set  of  points  R1}  R2,  ...  Rn  in  a  ray  is  the  point  whose       -21 
distance  from  any  point  0  of  the  ray  is  the  arithmetic  mean  of  the  distances  of 

Rly  R2,  ...  Rnfrom  0, 
and  from  16  that 

The  sum  of  the  distances  of  any  number  of  points  from  any  prepared  plane       '22 
through  their  mean  centre  is  zero. 

The  only  objection  to  using  one  or  other  of  these  properties  for  the  definition 
of  the  point  is  that  the  existence  of  a  point  having  the  property  requires  some 

proof. 
•3.   From  '13  and  '12  we  see  that 

If  Rlt  R2, ...  Rn  represent  with  respect  to  the  origin  0  the  vectors  rlt  r2, . . .  rn,       '31 
then  if  C  is  the  mean  centre  of  R1}R2,  ...  Rn,  the  sum  r1  +  T<t+  ...  +Tnis  n  times 
the  vector  represented  by  C. 

This  is  the  generalisation  of  3'13  and  314,  but  it  depends  on  3*24  and  is 
not  available,  unless  the  whole  mode  of  development  of  the  subject  is  changed, 

to  prove  that  the  sum  of  the  vectors  is  independent  of  their  order. 

•4.    An  immediate  development  of  the  idea  of  the  mean  centre  is  that  of  the 

mean  centre  of  a  set  of  loaded  points.    A  °  loaded  point  is  a  point  associated  with        -41 
a  number,  positive,  zero,  or  negative;    the  idea  of  a  loaded  point  is  older 
and  more  primitive  than  that  of  a  vector. 

Suppose  the  points  Rlt  Rz,  ...  Rn  to  be  associated  with  the  n  numbers 
m1,m2,  ...  mn.  Then  with  the  same  notation  as  in  1  we  have 

ml  BJ  +  m2  s2  +  . . .  +  mn  sn  =  (n^  i^  +  m2  r2  +  . . .  +  mn  rn)  —  (mt  +  m2  +  .  •  •  +  mn)  q.         -42 
4—2 
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The  conclusions  to  be  drawn  from  *42  depend  on  the  value  of  the  sum 
•43       ml  +  m2+  ...  +  mn,  which  is  called  the  ° total  load  of  the  set. 

•44  If  the  total  load  of  a  set  of  loaded  points  is  zero,  the  sum  of  the  corresponding 
loaded  vectors  of  steps  to  the  points  from  an  origin  does  not  depend  on  the 

position  of  the  origin. 

The  case  of  a  zero  sum  is  exceptional.    If  m1  +  m2  +  ...+mn  is  not  zero, 

there  is  a  definite  vector  (m^  FJ  +  w2  r2  4-  . . .  +  mn rn)/(?nj  +  m2+  ...  +  mn),  and 
therefore 

•45  If  the  total  load  of  a  set  of  loaded  points  R1} R2, ...  Rn  is  not  zero,  there  is 
one  and  only  one  point  0  such  that  the  sum  of  the  corresponding  loaded  vectors 

of  the  steps  CRi,  GR2, ...  GRn  is  the  zero  vector. 

This  point  C  is  called  the  mean  centre  of  the  set  of  loaded  points,  and  the  set 

•47       is  said  to  be  ° concentrated  at  the  mean  centre  if  the  mean  centre  is  associated 
with  the  total  load  of  the  set. 

•5.   From  '42  it  follows  that 

•51  Ifm1,m2)...  mn  are  any  n  numbers  whose  sum  is  not  zero,  and  if  Rl}  R2, . . .  Rn 
are  the  points  representing  with  respect  to  an  origin  0  the  vectors  r1?  r2, . . .  rn,  then 
the  sum  m^  +  m2r2  +  . . .  +  mnrn  is  the  product  bym1+m2  + ...  +mn  of  the  vector 

represented  by  the  mean  centre  of  the  loaded  set  obtained  by  associating 
R1}  R2>  ...  Rn  with  m1}  m2,  ...  ran. 

•52  In  other  words,  °  the  sum  of  the  loaded  vectors  is  the  loaded  vector  of  the 
concentrated  set  of  points. 

Applying  3'25  to  '52  we  find  that 
•53  In  concentrating  any  finite  set  of  loaded  points,  we  may  replace  any  group 

contained  in  the  set  by  the  loaded  point  obtained  by  the  concentration  of  that 

group. 
It  is  '53  that  enables  us  to  describe  an  inductive  construction  for  the  mean 

centre.  If  Wi  and  m^  are  not  both  zero,  m^  +  w2r2  can  not  be  zero  unless  TJ 

and  r2  are  parallel ;  hence  the  mean  centre  of  two  points  Rlt  R2  with  loads 
TWu  m2  is  collinear  with  R1}  R2:  it  is  therefore  the  point  C2  in  R^R«  such  that 

•54  mx .  CRi  +  m^ .  CR2  is  zero,  that  is,  °  the  point  dividing  R^  R2  in  the  ratio  of  ra2 
to  TO!.  Having  found  (72,  we  may  find  the  mean  centre  of  C2  loaded  with 

m1  +  m2  and  any  third  point  R3  loaded  with  a  number  m3  different  from 

—  (ml  +  m2),  and  the  process  may  be  continued  through  any  finite  number  of 
stages ;  the  order  in  which  the  points  are  taken  must  satisfy  the  condition 
that  none  of  the  partial  loads  ml  +  mz,  Wi  +  iH2  +  ra8, ...  are  zero,  but  if  the 
total  load  is  not  zero  this  will  not  prevent  the  set  from  being  exhausted. 

We  can  adapt  the  process  just  described  to  finding  the  mean  centre  of  a 
number  of  unloaded  points  by  supposing  the  points  given  equal  loads.  The 
fact  that  the  point  so  reached  is  independent  of  the  order  in  which  the  points 
are  taken  is  even  in  this  case  a  geometrical  theorem  of  some  complexity. 
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220.  Introduction.  221.  The  projected  product  of  two  vectors.  222.  The  areal 
product  of  two  vectors  in  a  prepared  plane.  223.  The  vector  product  of  two  vectors. 
224.  The  areal  vector  of  a  triangle.  225.  The  spatial  product  of  three  vectors. 

220.  INTRODUCTION. 

Multiplication,  like  addition,  is  a  word  whose  use  in  relation  to  vectors  is 

to  be  settled  by  definition.  It  was  the  triumph  of  Hamilton's  genius  to 
discover  how  the  word  could  usefully  be  applied.  Our  purpose  is  not  to  follow 

in  his  footsteps,  but  to  describe  individually  the  functions  that  are  of  the 

greatest  service  in  analytical  geometry,  shewing  their  interrelations  but 
making  no  attempt  to  exhibit  them  as  elements  in  a  complete  algebra.  Our 
attitude  is  that  there  are  certain  numbers  and  vectors  dependent  on  groups 

of  vectors  that  are  recognised  to  recur  so  persistently  that  it  is  worth  while 

to  attach  special  names  and  symbols  to  them*.  These  functions  are  all  dis- 
tributive with  respect  to  addition,  that  is  to  say,  if  r,  any  one  of  the  variable 

vectors  on  which  one  of  them  depends,  is  expressed  as  the  sum  of  a  finite 

number  of  vectors  i^,  r2,  ...  rn,  the  value  of  the  function  for  the  argument  r 

is  the  sum  of  its  values  for  the  arguments  i^,^,  ...  rn  severally.  For  this 
reason  the  functions  are  all  called  products,  the  distributive  property  being 

among  the  most  important  characteristics  f  of  multiplication  in  algebra,  where 
it  finds  expression  in  such  identities  as 

a  (p  +  q  +  .  .  .)  b  —  apb  +  aqb  +  .... 

Numerous  relations  between  the  functions  to  be  described  in  this  chapter  will 
be  found  in  chapter  IV  1  below.  The  order  of  development  of  this  subject,  as 
of  many  others,  is  to  a  considerable  extent  arbitrary,  and  some  different  routes 

are  followed  and  some  are  indicated  in  the  latter  of  these  two  chapters. 

*  To  illustrate  by  a  particular  case,  to  Hamilton  the  vector  product  ̂ )  rs  is  a  vector 
associated  with  the  product  rs  which  is  itself  a  definite  quaternion,  but  to  us  (compare 

Burali-Forti,  Proc.  Fifth  Int.  Congress  of  Math.,  vol.  II,  p.  488,  191  2)  <^rs  is  a  vector 
dependent  on  the  independent  vectors  r,  s  and  called  a  product  only  because 

t  Whitehead  (Universal  Algebra,  p.  26,  1898)  regards  the  distributive  property  as  the 
one  property  necessary  to  justify  the  name  of  product. 
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221.   THE  PROJECTED  PRODUCT  OF  TWO  VECTORS. 

•1.   If  r,  s  are  vectors  of  amounts  r,  s  in  the  directions  whose  images  are 

•11        P,  2,°  the  product  rscosP2  depends  in  value,  though  not  in  appearance,  only 
on  the  vectors  themselves,  for  if  r',  s'  are  the  amounts  of  r,  B  in  the  reverse 

directions,  then  since  r',  s  are  the  negatives  of  r,  s  we  have  identically 
r  s  cos  P2  =  r  s  cos  P'  2  =  r  s'  cos  P2'  =  r's'  cos  P'  2'. 

•12  °  The  product  rscosPS  is  symmetrical  with  respect  to  the  two  vectors,  but 
•13       it  can  be  described  unsymmetrically,  either  as0  the  product  of  the  amount  of 

s  in  either  of  its  directions  by  the  projection  of  r  in  that  direction,  or  similarly 
in  terms  of  an  amount  of  r  and  a  projection  of  a,  and  we  call  the  product  the 

•14       °  projected  product*  of  the  two  vectors  and  denote  it  by  «^rs.   Applying  15*42 
to  r  and  a  ray  in  one  of  the  directions  of  B  and  multiplying  the  projections 
by  the  amount  of  s  in  that  direction,  we  deduce  that 

•15  If  of  two  vectors  r,  s  the  former  is  the  sum  of  a  finite  number  of  components, 
the  projected  product  of  r  and  B  is  the  algebraical  sum  of  the  projected  products 

ofsby  the  several  components  of  r, 
with  the  extension  that 

•16  If  the  vectors  r,  B  are  the  sums  of  finite  numbers  h,  k  of  components,  the 
projected  product  of  r  and  B  is  the  algebraical  sum  of  hk  terms,  each  of  which 
is  the  projected  product  of  a  component  of  r  and  a  component  of  B, 

more  symmetrical  but  less  useful  than  the  theorem  from  which  it  is  derived  : 
symbolically  we  have 

r<m>)  (2  s<n>)  =  22  £  r<w>  s<n>, 77i  n  tn  n 

where  r(1>,  r(2),  ...  are  the  components  of  the  single  vector  2  r(m),  and  BW,  s<2),  ... 
the  components  of  2s(n).    There  are  two  modes  of  expressing  these  results 
briefly:  we  may  say  that 

•17  The  projected  product  of  two  vectors  is  a  linear  function  of  each  of  them, 

•18       a  magnitude  F(r)  involving  a  vector  r  being  called  a  °  linear  function  of  r  if 
identically 

or  we  may  assert  that 

•19  The  formation  of  the  projected  product  is  distributive  for  the  decomposition 
of  either  of  the  vectors  involved. 

*  It  is  the  negative  of  Hamilton's  scalar  product  and  is  a  special  case  of  Grassmann's 
inner  product  ;  we  do  not  propose  to  use  quaternions,  and  the  recurrence  of  negative  signs 
in  algebraical  work  is  inconvenient.  But  I  will  not  follow  even  Clifford  and  Gibbs  in  using 

Hamilton's  name  for  a  concept  contradicting  his,  and  I  avoid  the  symbol  ̂ deliberately  ; 
&  is  required  later,  and  c/  must  be  available  for  extracting  the  imaginary  part  of  a  com- 

plex expression,  but  <^  the  initial  of  Gibbs  and  Grassmann,  is  not  inappropriate. 
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*2.   The  projected  product  Jrs  of  two  vectors  r,  n,  being  the  product 

rs  cos  PS,  "vanishes  if  r  or  •  is  the  zero  vector  or  if  the  vectors  are  in  perpen-       '21 
dicular  directions,  and  it  is  worth  while  to  notice  that  owing  to  the  convention 

that  the  zero  vector  has  all  directions  we  can  say  that  °the  projected  product       '22 
of  two  vectors  vanishes  if  and  only  if  the  vectors  have  directions  at  right  angles', 
the  object  of  conventional  language  is  to  avoid  the  explicit  mention  of  cases 

apparently  exceptional,  and  in  this  example  the  object  is  completely  attained. 

*3.    From  the  form  of  the  projected  product  follow  the  two  results  that  °the       -31 
projected  product  of  two  vectors  is  unaltered  if  an  amount  of  one  vector  is  inter- 

changed with  an  amount  of  the  other,  of  which  the  principal  applications  are 

applications  of  the  particular  consequence  given  in  the  following  paragraph 

as  '43,  and  iha,t°the  projected  product  of  two  vectors  is  unaltered  if  one  is       '32 
multiplied  and  the  other  divided  by  any  real  number,  a  trivial  theorem  on  which 

the   simplicity  of  the   analysis  connected  with   curvilinear  coordinates  in 

differential  geometry  is  to  a  considerable  extent  dependent;  in  symbols  '31, 
•32  take  the  forms 

-33 

-34 

r,  8  denoting  any  real  numbers  and  p  denoting  any  real  number  other  than 

zero ;  '34  is  a  particular  case  of  the  simpler  theorem  that  if  two  vectors  are 
multiplied  by  any  two  real  numbers,  the  projected  product  of  the  vectors  is 

multiplied  by  the  algebraical  product  of  the  numbers: 

£  (pr)  (qs)=pq^  rs.  -35 

The  projected  product  of  a  vector  r  by  itself  is  naturally  denoted  by  c^r2 

and  may  be  called  the  ° projected  square  of  the  vector;  this  is  the  square  of  -36 
each  amount  of  the  vector  and  is  often  useful  in  the  calculation  of  amounts 

by  means  of  '16.  The  projected  square  of  the  vector  of  a  step  AB  is  the  square 
of  the  lengths  of  AB  and  may  be  denoted  usually  by  AB2  without  risk  of 
confusion.  More  generally,  it  is  almost  always  safe  to  use  for  the  projected 

product  of  the  vectors  of  two  collinear  steps  AB,  CD  the  elementary  notation 
AB.GD. 

•4.   That°£/ie  cosines  of  the  angles  between  two  directions  is  the  projection  in       '41 
either  of  the  directions  of  a  unit  vector  in  the  other  is  an  observation  so  ele- 

mentary that  it  is  instructive  to  find  it  valuable,  and  a  result  of  the  same  kind 

is  that°^e  projection  in  any  direction  of  any  vector  r  is  the  projected  product       -42 
of  r  by  a  unit  vector  in  the  given  direction,  from  which  follows  the  theorem  of 

symmetry  that  ° the  projection  in  a  direction  S  of  a  vector  of  amount  r  in  a  direc-       '43 
tion  T  is  equal  to  the  projection  in  the  direction  T  of  a  vector  of  the  same  amount 

in  the  direction  2,  the  most  useful  of  the  deductions  from  '31.    Even  simpler 
than  '41  is  the  statement  that 

The  cosine  of  the  angles  between  two  directions  is  the  projected  product  of       -44 
unit  vectors  in  those  directions, 
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from  which  in  313'1  below  we  derive  the  fundamental  theorem  of  spherical 
trigonometry.  One  advantage  of  replacing  directions  by  unit  vectors  is  that 

decomposition  becomes  possible,  and  for  this  purpose  '44  allows  more  freedom 
than  '41. 

222.  THE  AREAL  PRODUCT  OF  TWO  VECTORS  IN  A  PREPARED  PLANE. 

•1.   In  a  prepared  plane,  if  r¥,  s2  are  any  two  vectors  r,  s  the  product 
rs  sin  P2  no  less  that  the  product  rs  cos  P2  is  a  number  dependent  only  on 

•11        the  vectors  r,  B;  we  call  this  product  the  °areal  product  of  r  and  B,  and  denote 
it  by  £4  rs. 

•12  The  areal  product  of  two  vectors  in  a  prepared  plane  vanishes  if  and  only  if 
the  vectors  have  parallel  directions, 

the  cases  in  which  one  vector  is  the  zero  vector  being  formally  included. 

From  113-23, 

•13  The  areal  product  £4  sr  is  the  negative  of  the  areal  product  £4  rs, 
and  for  this  reason  it  is  sometimes  desirable  to  lay  stress  on  the  order  of  the 

vectors  by  speaking  of  £4  rs  as  a  product  of  r  into  s  or  of  s  by  r. 

If  r  is  the  vector  rp  and  II  is  the  direction  which  makes  a  positive  right 

angle  with  P,  the  vector  ru  is  the  vector  £r  obtained  by  erecting  r,  and  since 
sin  P2  is  cos  211,  it  follows  that 

^rs  =  /s(^r): 

•14  The  areal  product  £4  rs  is  the  projected  product  of  the  vector  B  by  the  vector 
£r  obtained  by  erecting  r. 

This  result  with  14'58  enables  us  to  apply  1'17  to  deduce  that 

•15  The  areal  product  of  two  vectors  in  a  prepared  plane  is  a  linear  function  of 
each  of  them: 

A  slight  change  in  '14  gives  a  useful  variation: 
•16  £4m(&T)  =  £n. 

•2.  The  concept  of  the  areal  product  enables  us  to  replace  14'12  by  a  theorem 
shewing  the  exact  magnitudes  of  the  components.  If  k,  a  vector  coplanar 

with  r  and  B,  is  identically  gr  +  hs,  then  since  £4  r2  and  ̂ s2  are  zero, 

»21  In  a  prepared  plane,  a  vector  k  is  decomposed  into  vectors  parallel  to  given 
vectors  r,  B  that  are  not  themselves  parallel  by  the  formula 

Naturally  if  r  and  s  are  themselves  parallel  the  decomposition  fails,  but  the 

formula  in  '21,  though  it  loses  interest,  does  not  actually  become  false;  S4TB 
vanishes,  but  if  r,  B  are  rT,  ST, 
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and  so  by  -13  the  zero  vector  appears  on  the  right  of  the  equation  as  well  as 
on  the  left:  for  any  three  vectors  k,  r,  a  in  a  prepared  plane, 

-22 

Actually  a  simpler  and  more  powerful  method  of  dealing  with  the  excepted 

case  is  to  rely  on  the  distributive  property.  If  r  and  a  are  parallel  but  r  is 
not  the  zero  vector,  then  if  d  is  any  vector  in  the  plane  that  is  not  parallel  to 

r,  the  vector  a  —  d  also  is  not  parallel  to  r;  that  is  to  say,  a  can  be  expressed 

as  d  -f  e  where  neither  d  nor  e  is  parallel  to  r.  Then 

=  r  (^kd  +  ̂ ke)  +  (d  +  e)  £4  rk 

as  in  general. 

Sometimes  the  vector  to  be  decomposed  is  given  not  directly  but  as  the 

vector  obtained  by  erecting  a  given  vector;  the  modification  to  meet  this  case 

is  given  at  once  by  16  and  '13: 

^k^ra  =  B^kr-r</ks.  -23 

If  we  suppose  the  vectors  in  '23  all  rotated  through  a  right  angle  we  have  the 
alternative  formula 

k^ra  =  ̂ r/ks-^a/kr.  -24 

From  '24  and  -16  comes 

^ik^rs  =  cf'irc^ka-c^isc^kr,  -25 
where  i  is  any  fourth  vector  in  the  plane. 

•3.  To  be  in  a  position  to  appreciate  corresponding  theorems  in  three 
dimensions,  it  is  worth  while  to  notice  that 

The  area  of  the  triangle  QRS  in  a  prepared  plane  is  one  half  of  the  areal       '31 
product  of  the  vectors  of  the  steps  QR,  QS. 

223.  THE  VECTOR  PRODUCT  OF  TWO  VECTORS. 

•1.  If  rP,  s2  are  two  vectors  r,  a  in  space,  sin  PS  has  meaning  only  if 
a  direction  T  is  assigned  round  which  angles  from  P  to  2  are  to  be  measured, 

and  the  sign  of  sin  P2  is  changed  if  the  direction  round  which  measurement 

takes  place  is  reversed.  If  II  is  one  direction  at  right  angles  to  both  P  and  2, 
we  can  avoid  ambiguity  by  taking  for  sin  P2  the  sine  of  angles  from  P  to  2 

round  II  and  associating  the  resulting  value  of  rs  sin  P2  definitely  with  the  , 

direction  II;  then  we  must  associate  also  with  the  reverse  direction  II'  a 
number  which  is  the  negative  of  the  number  associated  with  II,  and  therefore 

what  we  actually  consider  is  not  a  number  of  the  form  rs  sin  P2  but  the  vector 
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(?'ssin  P2)n,  and  this  vector,  which  is  called  the  vector  product  of  r  into  s  and 
denoted  by  fy  rs,  depends  only  on  r  and  B  and  on  the  spatial  convention.  Briefly 

•11  The  vector  product  ofr  into  a  is  the  vector  obtained  by  associating  with  each 
direction  at  right  angles  to  both  r  and  B  the  areal  product  of  r  and  B  in  a 
prepared  plane  to  which  that  direction  is  normal. 

A  number  of  simple  properties  can  be  asserted  at  once. 

•12  The  vector  product  WBT  is  the  reverse  of  the  vector  product  WTB; 
•13  The  vector  product  "1)  rs  is  the  zero  vector  if  and  only  if  the  vectors  r,  B  have 

parallel  directions, 

a  proposition  that  includes  the  statement  that  a  vector  product  is  the  zero 
vector  if  either  of  the  constituents  is  the  zero  vector.   The  symmetry  of  three- 
dimensional  space  is  responsible  for  the  theorem  that 

•14  Ifr,B,t  are  three  vectors  mutually  at  right  angles  of  which  the  first  is  a  unit 
vector,  and  if  t  is  the  vector  product  of  r  and  B,  then  B  is  the  vector  product  of 
t  and  r, 

which  is  used  explicitly  in  336'3.   An  extension  of  '14  can  be  expressed  in  the 
form 

•15  //8,  t  are  two  vectors  at  right  angles,  then 

and  we  can  remove  the  explicit  condition  from  this  enunciation  by  replacing  the 
vector  t  by  ̂  rs,  where  r  is  arbitrary,  for  ty  rs  is  necessarily  at  right  angles  to  B: 

•16  For  any  two  vectors  r,  B, 

rs)  [V  s  (V  rs)}  =  s  ̂ (^  rs)2, 

•2.  If  fill  is  at  right  angles  to  flP  and  f!2  and  if  flT  is  the  direction  at 
right  angles  to  fill  and  flP  such  that  there  is  a  positive  right  angle  from  OP 
to  flT  round  fill,  then  the  vector  product  of  rp  and  £T  is  (rt)n,  and  therefore 

^  rps2  is  the  vector  product  of  rf  and  (s  sin  P2)T,  that  is,  of  rp  and  (s  cos  £T)T, 
whence 

•21  The  vector  product  of  r  into  B  is  the  vector  product  of  r  into  the  vector  com- 
ponent of  B  at  right  angles  to  r; 

since  also 

•22  If  two  vectors  are  multiplied  by  any  two  real  numbers,  the  vector  product  of 
the  vectors  is  multiplied  by  the  algebraical  product  of  the  numbers, 

it  follows  that  the  vector  product  of  rf  into  B  is  the  product  by  r  of  the  vector 

product  of  lp  into  the  component  of  B  at  right  angles  to  P.  But  if  P  is  at  right 
angles  to  T  and  II  is  at  right  angles  to  both  of  them,  and  if  there  is  a  positive 
right  angle  from  P  to  T  round  II,  then  there  is  a  positive  right  angle  from  T 
to  II  round  P;  hence 

•23  If  the  vector  t  is  at  right  angles  to  the  direction  P,  the  vector  product  ty  lpt  is 
the  vector  obtained  by  erecting  t  in  a  prepared  plane  to  which  P  is  normal. 
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It  follows  from  14*58  that  iff1',  t<J>,  ...  t(t>  are  at  right  angles  to  P  then 

and  therefore  from  '22  that 

//  1«,  t(2),  .  .  .  t*  are  at  right  angles  to  r,  then  ty  r  (2t(n>)  =  2  V  rt(n).  -24 

It  follows  from  '21  that  if  any  k  vectors  s(1),  s(2>,  .  ..  s(*>  have  for  their  components 
at  right  angles  to  the  vector  r  the  k  vectors  t(1),  t(2),  ...  t<*>  and  if  their  sum  s 
has  for  its  component  at  right  angles  to  r  the  vector  t,  then 

but  -24  gives  2  V  rt(n)  =  Wr  (2t<n>) 

and  15-46  gives  t  =  2t(n>, 
and  therefore  for  any  set  of  vectors,  and  not  merely  for  a  set  at  right  angles 
to  r, 

^r(2s<»>)  =  S^rs'n>,  -25 

and  '12  enables  us  to  dispense  with  a  separate  proof  of  the  corresponding 
equation 

^(Sr<BI>)s  =  S^r(wl's;  -26 

combining  '25  and  '26  we  have 

fy  (2r(ni))  (2s(n>)  =  22  ̂   r(wl's(n>  : 

If  the  vectors  r,  a  are  £/te  sums  of  finite  numbers  h,  k  of  components,  the  vector       -27 
product  of  r  and  a  is  the  sum  of  hk  vectors  each  of  which  is  the  vector  product 

of  a  component  ofr  and  a  component  of  a, 

or  briefly 

The  vector  product  of  two  vectors  is  a  linear  function  of  each  of  them.  -28 

*3.  Since  the  vector  product  ̂   rs  is  at  right  angles  to  r  and  s,  and  the 
vector  product  ̂ (^rs)t  is  at  right  angles  to  ̂ rs,  the  vector  product 
fy  (ty  rs)  t  is  coplanar  with  r  and  s  and  is  therefore  expressible  in  the  form 

gr  +  ha.  An  explicit  formula  is  easily  obtained.  Consider  first  the  case  of  a 

vector  k  which  itself  is  coplanar  with  r  and  s.  Let  II  be  a  direction  of  ̂   rs  ; 

then  if  ̂   rs  is  the  areal  product  of  r  and  a  in  the  plane  to  which  II  is  normal, 
tyra  is  of  amount  ̂ rs  in  the  direction  II  and  therefore  ̂ (^rs)k  is  the 

product  by  ̂   rs  of  the  vector  obtained  by  erecting  k  in  this  plane.  That  is 

to  say,  ̂ (^rs)  k  is  precisely  the  vector  that  is  decomposed  in  2'23,  and 

^  (^  rs)  k  =  s  c^kr  -  r  ̂ ks.  -32 

But  any  vector  t  can  be  expressed  as  the  sum  of  a  vector  coplanar  with  r 
and  s  and  a  vector  perpendicular  to  both  r  and  s,  and  if  k  is  the  first  of  these 

components  it  follows  from  1*16  and  T22  that 

and  from  "21  that  "V  (V  rs)  k  =  *V  (V  rs)  t  ; 
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hence  t  can  be  substituted  for  k  throughout  *32 : 

•33  Ifr,B,t  are  any  three  vectors,  then  fy  (W  rs)  t  =  B  £  rt  -  r  g  st. 

The  identity  in  this  theorem,  of  which  '15  is  a  trivial  corollary,  is  invaluable. 

224.    THE  AREAL  VECTOR  OF  A  TRIANGLE. 

•1.  The  process  by  which  a  pure  number  in  the  geometry  of  a  prepared 
plane  leads  sometimes  to  a  vector  in  the  geometry  of  space  deserves  attention. 
The  example  we  have  had,  in  which  occurs  in  the  one  case  the  areal  product 

and  in  the  other  case  the  vector  product  of  two  vectors,  is  altogether  typical, 
and  it  is  easy  to  see  the  condition  that  renders  the  passage  natural :  by  the 
spatial  convention  each  direction  normal  to  an  unprepared  plane  in  space  is 
connected  with  one  of  the  cyclical  directions  that  can  be  given  to  the  plane, 

•11  and  therefore  "if  a  magnitude  is  such  as  to  depend  for  sign  but  not  for  absolute 
amount  on  the  cyclical  direction  of  a  plane,  the  association  of  the  magnitude 
with  a  vector  at  right  angles  to  the  plane  is  inevitably  suggested.  Whether  the 
introduction  of  the  vector  brings  advantages  is  a  question  for  discussion  in 

each  case,  and  the  answer  depends  on  the  use  that  can  be  made  of  properties 
characteristic  of  vectors,  that  is  to  say,  of  the  rules  of  vectorial  addition  and 

projection. 

*2.  It  is  3'27  that  justifies  the  introduction  of  the  vector  product;  125'16 
suggests  a  vector  derived  from  a  prepared  plane  that  requires  justification  of 

•21  a  different  kind.  By  the0 areal  vector  of  a  triangle  QRS  in  space  is  meant 
the  vector  obtained  by  associating  with  each  direction  at  right  angles  to  the 

plane  of  the  triangle  the  area  of  the  triangle  in  the  corresponding  prepared 

plane;  from  2'31  and  3'11, 

•22  The  areal  vector  of  the  triangle  QRS  is  one  half  of  the  vector  product  of  the 
vectors  of  the  steps  QR,  QS. 

Since  we  have  given  no  meaning  to  the  addition  of  triangles  in  different 

planes,  the  utility  of  areal  vectors  is  not  to  be  realised  from  propositions  such 

as  3'27  ;  but  there  is  one  operation,  that  of  projection,  which  may  be  performed 
both  on  triangles  and  on  vectors.  We  may  deduce  the  effect  of  projection  on 

an  areal  vector  from  144'75,  but  a  more  satisfactory  plan  is  to  discover  this 
effect  directly,  thereby  reducing  14475  to  dependence  on  results  in  143'2. 

Suppose  that  the  triangle  QRS  is  projected  by  lines  parallel  to  I  on  a  plane 

K  into  the  triangle  ABC,  and  by  the  same  lines  on  the  plane  through  Q 
parallel  to  K  into  the  triangle  QFG ;  the  triangles  ABC,  QFG  have  the  same 

areal  vector,  and  it  is  the  second  of  these  triangles  that  we  consider.  Let  the 

lines  through  R,  S  parallel  to  I  cut  the  plane  through  Q  at  right  angles  to  I 
in  X,  Y,  and  to  an  assigned  scale  let  QU,  QV,QW  represent  the  areal  vectors 
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of  QRS,  QFG,  QXY.  Since  RX,  SY  are  parallel  to  QW,  the  tetrahedra 

QRSW,  QXYW  have  the  same  volume;  if  however  T,  A  are  directions  of 

QU,  QW,  and/,  h  are  the  lengths  of  QU,  QW  in  those  directions,  the  volume 

of  QRSW  is  equal  to  J//t  cos  TA,  because  of  the  relation  of  QU  to  the  triangle 

QRS,  and  because  of  the  relation  of  Q W  to  the  triangle  QXY  the  same 

U 

Fig.  14. 

product  %fh  cos  FA  gives  the  volume  of  QXYU;  it  follows  that  the  tetra- 
hedra QXYW,  QXYU  have  the  same  volume,  and  therefore  that  the  plane 

through  U  at  right  angles  to  I  passes  through  W  ;  similarly  the  plane  through 
V  at  right  angles  to  I  passes  through  the  same  point,  and  therefore  Q  V  is  a 

projection  of  QU  by  planes  at  right  angles  to  I  : 

The  areal  vector  of  the  projection  of  a  triangle  QRS  on  a  plane  K  by  lines 

parallel  to  I  is  the  projection  of  the  areal  vector  of  QRS  on  a  line  at  right 

angles  to  K  by  planes  at  right  angles  to  L 

To  prove  the  same  result  directly  from  properties  of  the  vector  product,  let 
r,  s  be  the  vectors  of  QR,  QS,  and  let  them  be  expressed  as  b  +  m,  c  +  n, 

where  b,  c  are  parallel  to  the  plane  K  and  m,  n  are  parallel  to  the  line  L 

Then  b,  c  are  the  vectors  of  AB,  AC,  and  the  areal  vectors  of  the  triangles 

QRS,  ABC  are  £^rs,  -^^bc;  what  we  have  to  prove  is  that  these  vectors,  of 
which  the  second  is  necessarily  perpendicular  to  K,  differ  only  by  a  vector 

perpendicular  to  I,  and  this  follows  from  8*27,  for 

and  of  the  four  vectors  on  the  right, 

perpendicular  to  m  and  ty  bn  to  n. 

mn  is  the  zero  vector  while  fy  me  is 

•23 
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•3.  Although  our  work  is  to  be  confined  strictly  to  the  Euclidean  plane  and 
Euclidean  space  of  three  dimensions,  we  may  permit  ourselves  the  observation 
that  the  possibility  of  dealing  in  space  with  magnitudes  that  in  a  prepared 
plane  depend  on  cyclical  direction  by  means  simply  of  vectors  is  a  consequence, 

and  analytically  by  far  the  most  important  consequence,  of  the  three-dimen- 
sional character  of  space,  which  assures  to  a  prepared  plane  a  normal  direction 

that  is  unique  when  the  spatial  convention  is  established.  In  space  of  more 

dimensions  than  three,  directions  at  right  angles  to  two  directions  are  in- 
finitely numerous,  and  there  is  no  escape  from  the  use  of  hypervectors, 

numbers  associated  with  more  directions  than  one. 

225.    THE  SPATIAL  PRODUCT  OF  THREE  VECTORS. 

•1.  The  most  elementary  problems  involving  three  directions  P,  2,  T  in 
space  introduce  the  function  sin  OP^T,  and  so  with  three  vectors  r,  8,  t 
expressed  as  rf,  s?,,  £T,  we  have  to  consider  the  product  rs£sinHP2T;  to 
reverse  the  direction  in  which  r  is  measured  is  to  change  simultaneously  the 
signs  of  r  and  sin  OP2T,  and  therefore  the  product  rst  sin  HP^T  depends  on 
the  vectors  r,  s,  t  themselves,  not  on  the  choice  of  directions  for  measuring 

•11  them;  we  propose  to  call  the  product  the0  spatial  product*  of  r,  s,  t  and  to 

denote  it  by  ̂ rst.  The  spatial  product  S^rst  depends  for  its  sign  on  the  order 
of  the  vectors  involved  and  on  the  spatial  convention,  the  sign  but  not  the 
amount  being  changed  by  a  simple  interchange  of  two  vectors  : 

•12  JrBt  =  -  Jrts  =  -  jBTt. 

Also  from  134-26 

•13  The  spatial  product  of  three  vectors  vanishes  if  and  only  if  the  vectors  have 
coplanar  directions, 

the  degenerate  cases  in  which  one  of  the  vectors  is  zero  or  two  are  parallel 
being  formally  included,  and 

•14  If  three  vectors  are  multiplied  by  any  three  real  numbers,  the  spatial  product 
of  the  vectors  is  multiplied  by  the  algebraical  product  of  the  numbers. 

The  simplest  geometrical  use  of  the  spatial  product  is  evident  from  the 
definition  : 

•15  The  volume  of  the  tetrahedron  QRST  is  one  sixth  of  the  spatial  product  of 
the  vectors  of  the  steps  QR,  QS,  QT. 

*  This,  like  the  projected  product,  is  the  negative  of  Hamilton's  scalar  product  ;  still 
avoiding  9*,  I  have  adopted  £f  because  the  function  is  essentially  trilinear.  One  reason 
why  I  am  not  convinced  by  Burali-Forti's  arguments  (op.  tit.  p.  53  above,  pp.  487,  488) 
that  any  function  that  can  reasonably  be  called  a  product  should  have  an  operational  rather 
than  a  functional  symbol,  is  that  operational  notation  tends  to  put  bilinear  functions  on  a 
different  footing  from  the  majority  of  multilinear  functions  of  higher  orders. 
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•2.  Perhaps  the  most  important  property  of  the  spatial  product  comes  from 
13472  :  if  II  is  a  direction  at  right  angles  to  2  and  T  and  sin  ST  is  the  sine 
of  angles  from  2  to  T  round  II,  then 

sin  I1PST  =  cos  PIT  sin  2T  ; 

from  this  equation  we  have 

rst  sin  HPST  =  rst  sin  2T  cos  PII  =  <?rP  (st  sin  2T)n, 

that  is  Jnt  =  £r  (V  st)  :  -21 

The  spatial  product  of  any  three  vectors  is  the  projected  product  of  the  first       '22 
vector  by  the  vector  product  of  the  second  and  third. 

An  alternative  proof  of  '22  is  virtually  contained  in  4'2;  sometimes  the  formula 

^rst=^(^rs)t  '23 

is  wanted  instead  of  '21.    From  -22,  12  or  3'28,  and  117, 

The  spatial  product  of  three  vectors  is  a  linear  function  of  each  of  them,  -24 

that  is,  y(2r<™0(2s<"0(2t(p))  =  222^r<m>s<n>t<P'. m  n  p  m  n  p 

This  implies  J(fr  +  gs  +  hi)  st  =fj  rst,  -25 
for  gs  +  ht,  a,  t  are  coplanar  whatever  the  values  of  g  and  h,  and  so  from  13 

J  (gs  +  ht)  st  =  0. 
That  the  function  £(tyra)t  is  more  symmetrical  in  fact  than  in  appearance 

can  be  deduced  from  3'33  by  substitution  of  ty  tr  for  t.  Since  fy  tr  is  perpen- 
dicular to  r,  the  coefficient  of  s,  which  becomes  c^r(^tr),  is  then  zero,  and 

3-33  yields  <y  ̂   tr)  ̂   rs)  =  r  JB  (ty  tr).  .26 
Interchange  of  s  and  t  on  the  left  merely  reverses  the  vector,  and  therefore 

.  -27 

Incidentally  we  have  discovered  a  useful  identity.  Since  ̂ tr  and  ̂ rs  are 

both  perpendicular  to  r,  their  vector  product  is  a  multiple  of  r,  and  '26  shews 
the  multiplier  to  be  the  spatial  product  itself  : 

•3.  The  parts  played  by  the  areal  product  in  a  plane  are  shared  in  space 

between  the  vector  product  and  the  spatial  product.  In  the  extension  of  2'21 
it  is  spatial  products  that  are  concerned,  for  '25  shews  that  if  k  is  identical 
with  fr  +  ga  +  At,  then 

that  is,  that 

For  any  four  vectors  k,  r,  s,  t, 

-32 

This  theorem  supplies  in  its  most  compact  form  the  quantitative  element 

lacking  in  15'32.    If  r,  s,  t  are  coplanar,  the  theorem  does  not  become  false, 
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but  while  ceasing  to  give  a  decomposition  of  k  it  provides  an  identity  that  is 
anything  but  obvious: 

•33  If  r,  s,  t  are  coplanar  vectors  and  k  is  any  vector  whatever,  then 
r  ,7kst  +  B  J  rkt  +  1  ̂ rsk  =  0. 

There  is  a  valuable  companion  to  '32,  in  the  shape  of  a  decomposition  of  an 
arbitrary  vector  k  by  means  of  vector  products;  this  is  the  spatial  equivalent 

of  2-24.  Since  r  is  perpendicular  to  both  fytr  and  ̂ rs,  the  three  vectors  ̂ st, 
^tr,  ̂ rs  cannot  be  coplanar  if  they  are  all  proper  vectors.  Hence  if  r,  B,  t  are 

three  vectors  that  are  not  coplanar,  any  vector  k  must  be  expressible  in  the 

form  afyst  +  bfytr  +  ctyrB',  the  values  of  the  coefficients  a,  b,  c  can  be  found 

at  once,  for  by  '21 

•34  For  any  four  vectors  k,  r,  s,  t, 

This  result,  proved  first  under  the  restriction  that  r,  B,  t  are  not  coplanar,  can 
be  extended  to  the  excepted  case  by  decomposition  of  one  or  more  of  the 
vectors  r,  s,  t,  and  implies  therefore  that 

•35  //  r,  s,  t  are  coplanar  vectors  and  k  is  any  vector  whatever,  then 
Wat  /kr  +  tytr  /ks  +  ̂ rs  /kt  =  0. 

It  may  be  observed  that  '32  and  €34  are  equivalent,  for  on  the  one  hand  each 
of  them  implies  that 

•36  For  any  Jive  vectors  1,  m,  r,  s,  t, 
/1m  Jrst  =  /lr  JmBt  +  /Is  Jrmt  +  /It  Jnm, 

and  on  the  other  hand  each  of  them  is  deducible  from  '36  in  virtue  of  15'22, 
or  rather  of  the  still  narrower  theorem  that 

•37  If  for  every  vector  p  the  projected  products  /pr,  /ps  are  equal,  then  the 
vectors  r,  s  are  identical. 

•4.    The  spatial  product  plays  a  characteristic  part  in  the  deduction  from 

3'33  of  an  equally  important  identity.   From  3'33,  if  u  is  any  vector 
•41  /rt/BU-/ru/st  =  /{^(^rs)t}u; 

the  expression  on  the  left  only  changes  sign  if  t  and  u  are  interchanged, 

though  on  the  right  these  vectors  enter  differently.    We  have  however 

•42  /{^(^r8)t}u  =  ̂ (^rs)tu  =  /(^rs)(^tu), 

by  a  double  application  of  '22,  and  the  identity  is  now  simple  enough  : 

•43  For  any  four  vectors  r,  s,  t,  u, 

It  is  easy  to  return  from  '43  to  3'33  by  means  of  *37,  for  '42  and  '43  together 

imply  '41  ;  the  deduction,  vicious  in  logic,  is  useful  in  practice,  because  '43 
unlike  3'33  imposes  no  tax  on  the  memory  in  respect  of  signs. 
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231.  BOUND  VECTORS. 

•1.    A  vector  involves  a  number  associated  with  a  direction;  a  vector  ° localised        -11 
in  a  ray  or  a  line  involves  a  number  associated  not  only  with  a  direction  but 

also  with  a  ray  or  a  line  which  has  that  direction,  and  a  vector  ° anchored  to        '12 
a  point  involves  a  number  associated  with  a  point  as  well  as  with  a  direction. 

Localised  and  anchored  vectors  are  called  collectively  °bound  vectors,  and  in        '13 

contrast  with  them  simple  vectors  are  said  to  be  °  free ;  to  every  bound  vector       '14 
corresponds  a  definite  free  vector.   Any  two  free  vectors  have  a  single  free 
vector  as  their  sum,  but  the  sum  of  two  bound  vectors  remains  to  be  defined, 

and  the  definition  is  to  some  extent  arbitrary  and  to  some  extent  dependent 

on  the  nature  of  the  bond;    °it  is  not  supposed  that  two  bound  vectors        '15 
necessarily  can  be  added  to  form  a  single  vector,  bound  or  free,  but  two 

principles  are  adopted  in  the  definition  of  addition  if  the  word  vector  is  used 

even  with  a  qualification:  °the  sum  of  any  number  of  bound  vectors  is  in-        '16 

dependent  of  the  order  in  which  the  vectors  are  taken,  and  °if  the  sum  of  two       '17 
bound  vectors  is  a  single  vector,  bound  or  free,  the  free  vector  corresponding  to 
the  sum  is  the  sum  of  the  free  vectors  corresponding  to  the  parts.   These  principles 

often  require  little  supplementing  by  definitions  to  enable  us  to  discover 
criteria  for  the  equality  of  the  sums  of  two  sets  of  bound  vectors  and  standard 

forms  to  which  the  sum  of  a  set  of  bound  vectors  may  be  reduced. 

232.   VECTORS  ANCHORED  TO  A  POINT. 

•1.    The  extent  to  which  the  definition  of  a  sum  of  two  bound  vectors  is 
arbitrary  and  the  care  that  must  be  taken  if  inconsistencies  are  to  be  avoided 

are  well  illustrated  in  the  case  of  vectors  anchored  to  a  point;  a  vector  r  anchored 

to  a  point  0  is  often  called  a  °radius  vector  from  0,  and  we  denote  it  by  TO-       'H 
It  is  natural  to  agree  that%y  two  vectors  are  anchored  to  the  same  point  their       -12 
sum  is  a  vector  anchored  to  that  point,  and  since  the  free  vector  corresponding 

to  the  sum  is  given  by  a  general  principle,  this  agreement  is  sufficient  com- 
pletely to  determine  the  sum  in  this  case.   As  we  have  seen,  every  free  vector 

r  can  be  represented  relatively  to  a  point  0  by  a  definite  point  R  or  a  definite 
N.  5 
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step  OR ;  the  step,  but  not  the  point  alone,  involves  in  a  definite  manner  both 

the  vector  r  and  the  point  0,  and  can  serve  quite  precisely  as  a  representative 
of  the  radius  vector  ro.  It  follows  from  our  definitions  and  from  1313  that  if 

OR,  OS  represent  in  this  way  two  vectors  ro,  BO  anchored  to  0,  and  if  OT  is 

the  diagonal  from  0  of  the  parallelogram  of  which  OR  and  OS  are  sides,  then 

the  sum  ro  +  BO  is  the  anchored  vector  to  represented  by  OT,  but  it  will  be 
recalled  that  the  step  which  must  be  added  to  OR  to  give  OT  as  the  sum  is 
not  OS  but  RT. 

233.  ROTORS;  ADDITION  OF  CONCURRENT  ROTORS. 

•1.  The  study  of  vectors  localised  in  lines  is  incomparably  more  important 
than  the  study  of  vectors  associated  with  points;  mathematics  as  a  whole  has 

suffered  much  from  the  appropriation  of  this  subject  by  particular  branches 

of  applied  mathematics  when  it  should  be  regarded  from  the  beginning  as  a 
fundamental  part  of  pure  mathematics,  available  for  investigations  that  have 
no  concern  with  statics  and  dynamics  just  as  Cartesian  coordinates  may  be 
used  in  work  that  has  little  relation  to  analytical  geometry. 

•21  "2.  A  vector  localised  in  a  line  is  called*  a  ° rotor',  a  proper  rotor  has  two 
amounts,  one  in  each  direction  of  its  axis,  but  if  the  rotor  is  regarded  as  lying 

in  a  ray  its  amount  in  the  direction  of  the  ray  can  be  distinguished  from  its 
amount  in  the  opposite  direction.  Since  the  zero  vector  has  every  direction 

we  are  prepared  to  find  that  it  can  not  be  localised  in  any  line;  no  purpose  is 

•22  served  by  associating  the  number  zero  with  a  single  line,  and  the  °  zero  rotor 
is  the  number  zero  associated  with  every  line  in  a  plane  or  in  space  according 

•23  as  our  work  has  reference  to  two  dimensions  or  to  three.  We  °  denote  the 
rotor  with  vector  r  and  axis  k  by  rk,  and  the  reverse  rotor,  which  has  the  same 

axis  and  the  reverse  vector,  by  rk' ;  alternatively,  if  K  is  a  ray  in  the  line  k  and  the 
vector  r  has  amount  r  in  the  direction  of  K,  we  may  denote  the  rotor  r^  by  rK . 

The  rotor  r^  may  be  represented  by  any  step  in  k  which  has  r  for  its  vector. 

•25  °The  zero  rotor  may  present  itself  in  one  of  the  forms  0*,  0*,  but  when  we 
wish  to  introduce  it  without  reference  to  any  particular  axis  we  denote  it  by  0#. 

•3.  The  one  principle  of  addition  that  supplements  the  general  principles  T16, 

•31        I'lT  implied  in  the  use  of  the  word  vector  is  that  ° concurrent  rotors  have  for 
their  sum  a  rotor  through  their  point  of  concurrence.  This  principle  does  not  give 
us  a  direct  definition  of  the  sum  even  of  two  rotors  if  they  do  not  intersect,  but 

it  enables  us  to  give  meaning  to  any  assertion  in  which  two  sets  of  rotors  are 
said  to  have  or  not  to  have  the  same  sum.    In  the  case  of  a  set  of  concurrent 

rotors  an  actual  sum  is  implicitly  defined,  for  a  rotor  is  known  if  its  vector 

•33        and  one  point  of  its  axis  are  known,  and  therefore  °  the  sum  of  a  set  of  rotors 
concurrent  in  a  point  0  is  the  rotor  through  0  whose  vector  is  the  sum  of  the 
vectors  of  the  rotors  belonging  to  the  set. 

*  The  word  is  Clifford's  (Proc.  Land.  Math.  Soc.,  vol.  iv,  p.  381, 1873  ;  Math.  Papers,  p.  182). 
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234.  MOMENTS  OF  ROTORS  IN  A  PREPARED  PLANE. 

Among  the  most  important  concepts  related  to  rotors  is  that  of  the  moment 
of  a  rotor,  which  we  define  in  this  article  for  rotors  in  a  prepared  plane ;  the 
extension  of  the  idea  to  space  can  be  made,  as  in  so  many  other  cases,  in  two 
distinct  ways. 

•1.   Let  K  represent  one  direction  of  the  axis  k  of  a  rotor  rk,  let  K  denote 
the  ray  obtained  by  the  association  of  the  direction  K  with  k,  and  let  r  be  the 

amount  of  r  in  the  direction  K.   Then  if  Q  is  any  point,  and  if  a  plane  through 

Q  and  k  is  given  cyclic  direction,  the  product  of  r  and  the  distance  of  Q  from 

K  is  called  the  °  moment  ofr  about  Q  in  the  prepared  plane ;  to  use  K'  instead       -11 
of  K  involves  a  change  in  the  sign  of  r,  but  if  the  cyclic  convention  is  un- 

touched involves  also  a  reversal  of  K  and  therefore  a  change  in  the  sign  of  the 

distance  from  the  ray  to  the  point :  °if  Q  lies  in  k  the  moment  is  zero,  and        -12 
otherwise  the  moment  depends  only  on  Q,  on  rk,  and  on  the  cyclic  convention 

for  the  plane  through  Q  and  k\  °a  reversal  of  the  cyclic  convention  changes        -13 
the  sign  of  the  moment. 

•2.    If  rk  is  the  rotor  rK  and  X  is  the  ray  normal  to  K  through  Q,  and  if  the 
point  of  intersection  of  X  with  K  is  F,  the  distance  q 
of  Q  from  K  is  the  length  of  the  step  FQ  in  the  ray  X, 

O          and  it  is  the  product  rq  that  is  the  moment  of  rK 

'•*  about  Q;  moreover,  if  G  is  any  point  whatever  of  K, 
— > —    the  step  FQ  is  the  projection  on  X  of  the  step  GQ : 

The  moment  of  the  rotor  rk  in  a  prepared  plane  about       -21 

Fi    15  a  point  Q  of  the  plane  is  the  areal  product  of  the  vector 
rinto  the  vector  of  any  step  from  the  axis  k  to  the  point  Q. 

If  O  is  any  point  of  k  and  0,  Q  are  any  two  points  of  the  plane,  the  vector 
of  the  step  GQ  is  the  sum  of  the  vectors  of  the  steps  GO,  OQ : 

The  moment  of  the  rotor  rk  in  a  prepared  plane  about  any  point  Q  exceeds       -22 
the  moment  of  the  same  rotor  about  any  other  point  0  by  the  areal  product  of 
the  vector  r  into  the  vector  of  the  step  OQ; 

translating  the  areal  product  into  a  moment, 

The  moment  of  rk  about  Q  exceeds  the  moment  of  rk  about  0  by  the  moment       -23 
about  Q  of  the  rotor  through  0  with  the  vector  r. 

At  first  sight  '23  is  a  preposterous  dressing  up  of  the  simplest  of  theorems  on 
parallel  lines  and  -22  is  designed  solely  to  prevent  the  elementary  nature  of 
the  theorem  from  being  too  apparent ;  we  shall  see  however  that  '23  is  pre- 

cisely the  form  that  is  required  in  the  coordinate  geometry  of  the  plane  and 

that  both  theorems  have  in  three-dimensional  work  analogues  that  can  not 
be  enunciated  more  readily.  Moreover  we  need  not  wait  to  find  an  application 

of  -21  in  a  valuable  result  that  is  by  no  means  self-evident :  if  q  is  the  vector 5—2 
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of  the  step  GQ  and  rk,  BI,  tm,  ...  are  any  rotors  in  the  plane  concurrent  in  G, 
the  moments  of  these  rotors  about  Q  are  the  areal  products  ̂ rq,  ̂ sq, 

,  ...,  and  by  2215  the  sum  of  these  numbers  is  the  areal  product 

s-ft+...)q,  which  from  '21  is  the  moment  about  Q  of  the  rotor 
through  G  with  vector  r  +  s  + 1  +  . . . ,  that  is,  of  the  rotor  that  is  defined  in 

3'33  as  the  sum  of  the  concurrent  rotors  : 

•24  In  a  prepared  plane,  the  moment  of  the  sum  of  any  finite  number  of  con- 
current rotors  about  any  point  is  the  sum  of  the  moments  of  the  individual 

rotors  about  that  point; 

the  proof  has  the  merit  of  shewing  the  exact  bearing  of  the  concurrence — it 
is  only  because  the  axes  k,  I,  m,  ...  have  a  common  point  G  that  the  areal 
products  <S€  rq,  £4  sq,  ̂   tq,  . . .  involve  a  common  vector  q. 

In  passing  let  us  mention  another  simple  and  useful  deduction  from  "21. 
If  rk  is  the  rotor  of  a  step  ST,  and  if  s,  t  are  the  vectors  of  the  steps  to  S,  T 

from  a  point  Q,  then  from  '21  the  moment  of  r^  about  Q  is  —  J^rs;  but 
-^rs  =  ̂ s(t-s)  =  ̂ st: 

•25  In  a  prepared  plane,  the  moment  of  the  rotor  of  a  step  ST  about  a  point  Q 
is  the  areal  product  of  the  vectors  of  the  steps  from  Q  to  S  and  T. 

•31  -3.  °The  axis  of  a  proper  rotor  is  the  aggregate  of  points  about  which  the 
moment  of  the  rotor  is  zero ;  it  follows  that  if  the  vector  r  of  a  rotor  and  the 

moment  R  about  a  single  point  0  are  known,  the  axis  k  is  implicitly  determined, 

for  by  means  of  *22  it  can  be  discovered  whether  any  proposed  point  Q  is  or 
is  not  on  the  axis.  Actual  construction  is  simple  enough :  the  vector  being  given 

as  rK,  a  ray  is  drawn  through  0  making  a  positive  right  angle  with  the  direction 
K ;  the  axis  is  the  line  at  right  angles  to  this  ray  through  the  point  F  which 
is  such  that  the  length  FO,  measured  in  the  direction  of  the  ray,  is  R/r. 
The  construction  fails  if  r  is  zero,  but  then  the  rotor  is  zero  and  the  axis  is 

essentially  indeterminate ;  in  every  case, 

•32  A  rotor  in  a  prepared  plane  is  determined  completely  by  its  vector  together 
with  its  moment  about  any  one  point  of  the  plane, 

while  the  construction  proves  that  conversely 

•33  Given  a  point  0,  a  vector  rK,  and  a  number  R,  then  provided  that  if  r  is  zero 
so  also  is  R,  there  is  one  and  only  one  rotor  having  rK  for  its  vector  and  R  for 
its  moment  about  0. 

235.  THE  MOMENTAL  VECTOR  OF  A  ROTOR  ABOUT  A  POINT. 

•1.  In  space,  rotors  have  moments  of  two  kinds,  intimately  related  and 
equally  important.  No  convention  gives  sign  to  the  distance  of  a  point  from 
a  ray  except  in  a  prepared  plane,  and  in  space  the  moment  of  a  rotor  about 
a  point  is  a  vector,  but  in  space  rotors  have  moments  about  rays  as  well  as 
about  points,  the  moment  of  a  rotor  about  a  ray  being  a  real  number  definite 
in  sign  as  well  as  in  amount. 
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•2.  After  23'11  and  4'21  the  definition  of  the  moment  of  a  rotor  about  a 

point  is  both  easy  and  natural :  in  quite  elementary  terms,  if  a  prepared  plane 

is  passed  through  the  rotor  r«  and  the  point  Q,  the  moment  or  °momental  -21 
vector  of  r«  about  Q  is  the  vector  in  which  the  direction  normal  to  the  plane 

is  associated  with  the  product  by  r  of  the  distance  of  Q  from  K  in  the  plane, 
and  it  follows  at  once  that 

The  momental  vector  of  the  rotor  rk  about  the  point  Q  is  the  vector  product  of       -22 
the  vector  r  into  the  vector  of  any  step  from  the  axis  k  to  the  point  Q, 

whence  from  23'25  as  in  4r2  by  the  decomposition  of  the  step  we  have 

The  momental  vector  of  the  rotor  rk  about  the  point  Q  is  the  sum  of  the       -23 
momental  vector  of  the  same  rotor  about  any  point  0  and  the  vector  product  of 
the  vector  r  into  the  vector  of  the  step  OQ, 

the  proposition  fundamental  in  the  use  of  frames  of  reference  for  the  specifi- 
cation of  rotors,  which  may  be  expressed  in  the  more  homogeneous  form  that 

The  momental  vector  of  rk  about  Q  is  the  sum  of  the  momental  vector  of  rk       -24 
about  0  and  the  momental  vector  about  Q  of  the  rotor  with  vector  r  whose  oasis 
contains  0. 

By  the  decomposition  of  rk  into  any  set  of  concurrent  rotors  we  have  from  '22, 

The  momental  vector  of  the  sum  of  any  finite  number  of  concurrent  rotors       -25 
about  any  point  is  the  sum  of  the  momental  vectors  of  the  individual  rotors 
about  that  point. 

Corresponding  to  4'25  and  proved  in  the  same  way  is  the  theorem  that 

The  momental  vector  of  the  rotor  of  a  step  ST  about  a  point  Q  is  the  vector       -26 
product  of  the  vectors  of  the  steps  from  Q  to  S  and  T. 

•3.  The  argument  leading  to  4*32  can  be  repeated  almost  word  for  word  on 

the  basis  of  '23.  °The  axis  &  of  a  proper  rotor  rk  is  the  aggregate  of  points  -31 
about  which  the  momental  vector  is  zero,  and  if  r  and  the  momental  vector 

about  a  single  point  0  are  known,  "23  can  be  used  to  discover  whether  any 
suggested  point  is  or  is  not  on  the  axis ;  if  r  is  the  zero  vector,  the  rotor  is 
the  zero  rotor : 

A  rotor  in  space  is  determined  completely  by  its  vector  together  with  its       '32 
momental  vector  about  any  one  point. 

The  specification  is  redundant,  since  the  vector  and  the  momental  vector  are 

necessarily  at  right  angles,  but  in  spite  of  this  defect  it  remains  quite  the 

most  valuable  form  of  specification  in  practice.  The  converse  of  *32  must 
contain  explicitly  the  hypothesis  that  the  vectors  are  at  right  angles,  but  is  , 

in  other  respects  similar  to  4'33,  and  is  established  virtually  by  the  same 
construction :  if  the  momental  vector  about  0  is  JKA  and  is  not  the  zero  vector, 

the  prepared  plane  through  0  with  A  for  its  normal  direction  is  a  definite 
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plane  in  which  the  rotor  must  lie,  and  in  that  plane  the  moment  of  the  rotor 

about  0  is  R,  whence  by  application  of  4'33  follows  that 

•33  Given  a  point  0  and  two  vectors  rK,  RA,  then  provided  that  if  r  is  zero  so  also 
is  R  and  that  otherwise  the  directions  K,  A  are  at  right  angles,  there  is  one  and 
only  one  rotor  having  rKfor  its  vector  and  RA  for  its  momental  vector  about  0. 

236.  THE  MOMENTAL  PRODUCT  OF  TWO  ROTORS;  THE  MOMENT  OF  A  ROTOR 
ABOUT  A  RAY;  THE  MUTUAL  MOMENT  OF  TWO  RAYS. 

•1.  Let  rk,  BI  be  any  two  rotors,  let  P  be  a  point  of  the  axis  k,  let  Q  be  a 
point  of  the  axis  I,  and  let  q  be  the  vector  of  the  step  PQ.  By  5'22,  the  vector 
^  rq  is  the  momental  vector  of  rk  about  Q  and  is  independent  of  the  position 
of  P  in  k,  and  therefore  the  relation 

of  25'23  shews  that  the  spatial  product  ̂ rqs  also  is  independent  of  the  position 
of  P  in  k  ;  it  follows  that  the  spatial  product  is  independent  also  of  the  position 
of  Q  in  I  : 

•12  If  q  is  the  vector  of  the  step  PQ  from  a  point  in  the  axis  of  a  rotor  rk  to  a 
point  in  the  axis  of  a  rotor  Bt,  the  spatial  product  Srqs  is  a  number  independent 
both  of  the  position  of  P  in  k  and  of  the  position  of  Q  in  I. 

•13  The  number  S^rqs  we  call  the  °  momental  product  of  rk  and  st  and  denote  by 
Jlr**i\  to  obtain  the  momental  product  Ji^r^  we  have  both  to  reverse  the 

step  of  which  q  is  the  vector  and  to  interchange  r  and  s  in  the  spatial  product, 
and  since  each  operation  alone  changes  the  sign  of  3  rqs  the  combined  opera- 

tion is  without  effect  : 

*2.  We  can  discover  at  once  a  geometrical  interpretation  of  the  momental 
product  ;  if  P,  Q  are  points  in  k,  I,  if  PU  is  a  step  whose  vector  is  r  and  QV 

is  a  step  whose  vector  is  B,  and  if  PX  also  is  a  step  with  vector  B,  the  spatial 
product  ̂ rqs  is  six  times  the  volume  of  the  tetrahedron  PUQX,  and  since 

the  tetrahedra  UPQX,  UPQV  have  the  same  sign  as  well  as  the  same  absolute 
volume,  the  volume  of  PUQX  is  equal  to  the  volume  of  PUQV: 

•21  The  momental  product  .Mt^iis  six  times  the  volume  of  any  tetrahedron  which 
has  rk,  Bifor  the  rotors  of  a  pair  of  opposite  edges. 

We  can  express  the  equation 
•22 

to  which  11  shews  the  definition  of  JtrkBi  to  be  equivalent,  usefully  in  words, 

interpreting  ̂ rq  by  means  of  5'22: 

•23  If  R  is  the  momental  vector  of  a  rotor  rk  about  a  point  Q  and  BI  is  any  rotor 
through  the  same  point,  the  momental  product  of  the  rotors  rk,  BI  is  the  projected 
product  of  the  vectors  R,  B. 
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From  '21  comes  the  condition  of  vanishing: 

The  momental  product  of  two  rotors  is  zero  if  and  only  if  the  rotors  are       '24 
coplanar, 

the  rotors  being  actually  coplanar  if  their  axes  intersect  or  are  parallel,  and 

formally  coplanar  if  either  of  them  is  zero.   As  a  particular  case  of  25'24, 

and  this  equation  implies  that 

If  each  of  two  rotors  *k,  BI  is  the  sum  of  a  finite  number  of  concurrent  rotors,       -25 
the  momental  product  of  rk  by  BI  is  the  sum  of  the  individual  momental  pro- 

ducts of  components  ofrk  by  components  of  BI; 

we  run  little  risk  of  confusion  in  writing 

and  we  may  express  the  result  in  the  form  that 

The  momental  product  of  variable  rotors  through  fixed  points  is  a  linear        -26 
function  of  each  of  the  rotors. 

*3.   An  obvious  corollary  of  25'14  is 

^(AM^=/<7^r*s<>  '31 
a  formula  of  which  the  special  cases 

=  8jfrl  '32 

suggest  the  consideration  of  the  functions  jHrK\^  Jt\*\K>  which  bear  to 
momental  products  the  relations  that  projections  and  cosines  bear  to  projected 

products. 

•4.   The  momental  product  of  rK  and  1A  is  called  ihe°moment  of  the  rotor       -41 
rK  about  the  ray  A,. 

The  moment  of  a  rotor  about  a  ray  is  zero  if  and  only  if  there  is  a  plane       -42 
which  contains  them  both  ; 

unless  the  rotor  is  zero,  the  ray  and  the  rotor  must  be  either  parallel  or  con- 
current. From  *25, 

If  a  rotor  rk  is  the  sum  of  any  finite  number  of  concurrent  rotors,  the  moment        '43 
of  rk  about  any  ray  is  the  sum  of  the  moments  of  the  components  about  that  ray, 

and  '23  gives  the  useful  theorem  that 

The  moment  of  a  rotor  about  any  ray  through  a  point  Q  is  the  projection  on       -44 
the  ray  of  the  momental  vector  of  the  rotor  about  Q, i 

which  combines  with  5'24  to  give  a  theorem  of  the  same  kind  as  the  latter, 
namely, 

The  moment  of  a  rotor  rk  about  any  ray  X  exceeds  the  moment  of  rk  about       -45 
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any  ray  •sr  parallel  to  X  by  the  moment  about  \  of  a  rotor  with  the  vector  r 
through  any  point  of  CT, 

implying  incidentally,  since  the  point  of  or  is  arbitrary,  that 

•46  Two  rotors  with  a  common  vector*  have  equal  moments  about  any  ray  parallel 
to  the  plane  containing  their  axes, 

a  proposition  of  which  a  simple  and  important  application  is  made  in  43'5 
below. 

•5.  If  P  is  any  point  of  the  axis  of  a  rotor  r^,  and  X  is  any  ray,  there  passes 
through  P  one  and  only  one  prepared  plane  A  to  which  \  is  normal,  and  rt 

can  be  resolved  into  a  rotor  sm  through  P  parallel  to  X  and  a  rotor  tn  through 

P  in  A;  by  '42  the  moment  about  X  of  the  first  of  these  components  is  zero, 
and  therefore  by  *43 

•51  The  moment  of  a  rotor  about  a  ray  is  the  moment  about  the  same  ray  of  the 
projection  of  the  rotor  on  any  plane  which  cuts  it  and  is  at  right  angles  to 
the  ray. 

Again,  X  cuts  A  in  a  definite  point  Q,  and  in  the  prepared  plane  A  the 
rotor  tn  has  a  definite  moment  about  Q ;  it  follows  from  the  definition  of  the 

momental  vector  that  the  momental  vector  of  t,t  about  Q  has  for  its  amount 

in  the  direction  of  X  the  moment  of  tn  about  Q  in  A,  and  it  follows  from  -44 
that  this  amount  is  the  moment  of  t,t  about  X  in  space : 

•52  If  a  rotor  t»  is  at  right  angles  to  a  ray  X  and  the  prepared  plane  through  tn 
to  which  X  is  normal  cuts  X  is  Q,  the  moment  of  tn  about  X  in  space  is  the 
moment  oftn  about  Q  in  the  prepared  plane. 

For  giving  a  clear  notion  of  the  moment  of  a  rotor  about  a  ray,  the  con- 
struction we  have  just  made  repays  examination.  Since  r  is  the  sum  of  s  and 

t,  these  three  vectors  are  coplanar,  and  as- 
suming the  rotor  not  to  be  parallel  to  the 

ray,  the  resolution  of  rk  takes  place  in  the 
plane  through  k  parallel  to  the  ray,  and  this 

plane  is  unique.  If  P(l),  P(2)  are  different 
points  of  k,  the  lines  m^\  m®  are  parallel  to 
each  other  and  parallel  to  X,  and  the  lines 

n(1),  w(2)  are  parallel  to  each  other  and  at  right 

angles  to  X;  the  vectors  s(l),  t(1)  associated  with 
m^\  n®  are  the  same  as  the  vectors  B^\  t^ 

associated  with  m®,  n&\  The  absolute  dis- 

tance of  QM  from  n^  is  the  same  as  the 

absolute  distance  of  Q{2)  from  n(2),  this  dis-  Fig.  16. 
tance  being  simply  the  constant  distance  of 

X  from  the  plane  through  k  parallel  to  X ;  this  is  why  the  moment  of  t^  about 

*  And  therefore  with  parallel  axes. 
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X  is  independent  of  the  position  of  P.  The  absolute  distance  of  Q(l)  from  m(I) 
is  the  absolute  distance  between  Q(1)  and  P(l),  and  is  as  a  rule  different  from 

the  absolute  distance  of  Q(a)  from  m(s)  ;  there  is  no  difference  between  §{1)  and 

sw  to  counteract  this  difference,  but  because  the  lines  w(l),  m®  are  parallel  to 
X  the  moments  about  X  of  rotors  in  these  lines  vanish  independently  of  the 

positions  of  the  lines.  The  simplest  expression  for  the  ,  moment  of  a  rotor 
about  a  ray  is  evident  from  the  construction:  taking  the  rotor  as  rK,  denoting 

the  ray  through  P  parallel  to  X  by  p,  and  one  of  the  rays  through  P  in  n  by 
v,  the  amount  of  t  in  the  direction  of  v  is  rcose*,,,  and  if  II  is  the  direction 

making  a  positive  right  angle  with  N  round  M  and  d  is  the  distance  of  Q 

from  the  plane  through  p  and  v  in  the  direction  of  II,  the  moment  of  tn  about 

X,  and  therefore  also  the  moment  of  r*  about  X,  is  rdcoseKI,',  the  sign  of  d  is 

covered  by  the  choice  of  v,  which  distinguishes  II  from  II',  and  we  can  render 
the  convention  in  the  formula  more  obvious  by  substituting  sin  eM/c,  or  sin  e^, 
for  cos  eKV,  when  the  condition  is  that  e\K  is  measured  round  the  direction  in 

which  d  is  measured;  the  distance  of  Q  from  the  plane  is  the  shortest  distance 
from  K  to  X,  and  the  most  lucid  form  of  the  expression  under  consideration  is 

rrfXAsineA)t,  which  could  of  course  be  deduced  from  '21  and  134'55. 
It  is  evident  equally  from  the  formula  and  from  the  construction  that  if  h 

is  a  line  parallel  to  k  in  the  plane  through  k  parallel  to  X,  the  moment  of  rh 

about  X  is  the  same  as  the  moment  of  rk  about  X;  this  is  '46  above. 

It  is  possible  to  use  '51  and  '52,  or  the  explicit  expression  rd^  sin  e^  ,  to 
define  the  moment  of  a  rotor  about  a  ray;  the  whole  sequence  of  propositions 

relating  to  moments  is  changed,  and  in  particular  the  proof  of  '43  with 
a  minimum  of  labour  is  an  interesting  exercise. 

•6.  The  momental  product  ̂ l^lx  of  unit  rotors  in  rays  tc,  X  is  called  the 

0  moment  or  the  mutual  moment  of  the  two  rays.  -61 

The  mutual  moment  of  two  rays  is  zero  if  and  only  if  the  rays  are  coplanar;       -62 

The  moment  of  a  rotor  rK  about"  a  ray  X  is  the  product  by  r  of  the  mutual       -63 
moment  of  the  rays  K,  X; 

The  momental  product  of  two  rotors  rK,  s\  is  the  product  by  rs  of  the  mutual       -64 
moment  of  the  rays  K,  X. 

The  mutual  moment  is  a  magnitude  purely  geometrical  and  intrinsic  to  the 

two  rays,  and  a  variety  of  expressions  may  be  given  for  it.  If  P,  Q  are  any 
points  of  K,  X  and  if  the  step  PQ  has  the  length  p  in  the  direction  IT,  while 

K,  A  are  the  directions  of  K,  X,  it  follows  from  '64  that  the  mutual  moment  is 

If  p  is  the  distance  from  the  ray  K  to  the  ray  X  in  the  direction  II,  the  mutual       -65 
moment  of  the  rays  is  —  psinOIIKA; 

in  particular,  if  II  is  at  right  angles  to  both  tc  and  X  and  €K\  is  an  angle  from 
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K  to  X  round  IT,  the  sine  becomes  sine**  and  —  p  can  be  written  as  c?A)t,  the 
corresponding  shortest  distance  from  X  to  K  : 

•66  The  mutual  moment  of  the  two  rays  K,  X  is  the  product  d\K  sin  eK\}  where  d\K 
is  the  shortest  distance  from  \  to  K  and  eK>,  is  an  angle  from  K  to  X,  the  angle 
being  measured  round  the  direction  in  which  the  distance  is  measured. 

The  last  theorem  gives  the  mutual  moment  in  its  simplest  geometrical 

form ;  if  we  were  guided  by  '65  and  '66,  we  should  naturally  reverse  the  sign 

attached  to  this  magnitude,  but  the  theorem  most  important  to  secure  is  '44, 
and  an  identification  of  M  rkBi  with  ̂  qrs,  which  obviously  would  be  necessary 

to  remove  the  negative  sign  from  '65,  as  clearly  would  introduce  a  negative 

sign  into  '44;  we  may  be '  reconciled  on  purely  geometrical  grounds  to  the 
signs  in  '65  and  '66  by  observing  that  if  PU,  QV  are  positive  steps  in  the 
rays  K,  X,  the  sign  of  the  ordered  tetrahedron  P  UQ  V  is  opposite  to  the  sign 
of  the  product  dK*  sin  e^. 

When  we  know  the  mutual  moment  of  two  rays,  we  can  use  '65  to  calculate 
the  distance  from  one  to  the  other  in  a  given  direction  without  determining  a 
cotractor  along  which  this  distance  can  be  measured.  More  generally,  if  p  is 
a  given  vector  whose  directions  are  not  coplanar  with  those  of  two  lines  k,  I, 

•68  °  there  is  only  one  step  from  k  to  I  which  has  the  directions  of  p,  and  if  the 
vector  of  this  step  is  jp,  and  proper  rotors  rk,  BI  are  located  in  the  lines,  then 
from  the  definition  of  the  momental  product,  the  multiplier  j  satisfies  the 

equation 

•69 



CHAPTER  II  4 

SETS  OF  ROTORS 

241.  Equivalence  of  two  sets  of  rotors ;  the  vector  and  the  momental  vectors  of  a  set ; 
the  momental  product  of  two  sets.  242.  Examples  of  equivalence.  243.  Couples;  the 
moments  and  the  momental  vector  of  a  couple.  244.  Equivalence  of  couples ;  addition 
of  couples.  245.  Reduction  of  sets  of  rotors ;  reduced  sets.  246.  Poiiisot  sets  ;  motors ; 

addition  of  motors ;  screws ;  intensity  and  pitch ;  momental  products  and  virtual  co- 
efficients. 247.  The  reduced  sets  and  the  rotor-pairs  with  a  given  motor.  248.  Uses  of 

the  word  'sum'. 

241.  EQUIVALENCE  OF  TWO  SETS  OF  ROTORS;  THE  VECTOR  AND  THE  MOMENTAL 

VECTORS  OF  A  SET;  THE  MOMENTAL  PRODUCT  OF  TWO  SETS. 

•1.  Since  the  rotors  forming  a  given  set  can  not  as  a  rule  be  added  together, 
it  is  necessary  to  consider  how  a  set  can  be  modified  by  such  additions  and 

decompositions  as  are  possible. 
If  a  set  F  of  rotors  is  modified  by  the  inclusion  of  the  zero  rotor  or  by 

the  substitution  for  any  concurrent  rotors  which  it  contains  of  the  single  rotor 
which  is  their  sum,  a  set  G  is  obtained  which  is  a  different  set  from  F,  but 

F  and  G  are  said  to  be  °  equivalent ;  since  F  is  obtained  from  G  by  the  omis-        -ll 
sion  of  the  zero  rotor  or  by  the  substitution  for  a  rotor  contained  in  G  of 
concurrent  rotors  of  which  that  rotor  is  the  sum,  the  definition  implies  that 

0  either  of  these  operations  applied  to  a  set  gives  an  equivalent  set,  save  in        -12 
the  one  case  in  which  the  original  set  comprises  only  the  zero  rotor ;  further, 

0  two  sets  of  rotors  that  are  equivalent  to  the  same  set  are  said  to  be  equivalent        '13 
to  each  other.    For  example,  let  r^,  s/  be  two  rotors  which  do  not  intersect, 

let  m  be  a  line  cutting  both  k  and  I,  and  let  tm  be  a  rotor  in  m  and  tm'  be  its 
reverse ;  the  sum  of  tm  and  tm'  is  the  zero  rotor  0#,  while  the  sums  rk  +  tm, 

BI  +  t,n'  are  definite  rotors  up,  V9;  then  the  five  sets  of  rotors  (rk,  Sj),  (rk,  BI,  0*), 

(!•*,  BI,  tm,  tm'),  (up,  BI,  tw'),  (up,  v9)  are  different  but  equivalent. 

•2.    The  °  reverse  F'  of  a  set  F  of  rotors  is  the  set  whose  members  are  the        -21 

reverses  of  the  members  of  F,  and  the  °  compound  of  a  number  of  sets  F,  G,       -22 
H,  ...  is  the  set  composed  of  all  the  members  of  all  the  sets,  a  rotor  which 

occurs  in  k  of  the  components  occurring  k  times  in  the  compound.    It  is  easy 

to  prove  that  °the  compound  of  any  set  of  rotors  and  its  reverse  is  equivalent       '23 
to  the  zero  rotor,  and  that  °if  two  sets  of  rotors  are  equivalent  so  also  are  their       -24 

reverses,  and  from  these  theorems  it  follows  that  °if  two  sets  of  rotors  are        -25 
equivalent,  the  compound  of  either  with  the  reverse  of  the  other  is  equivalent  to 
the  zero  rotor. 
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*3.  There  are  certain  magnitudes  related  to  the  rotors  of  a  set  which  we 
can  add,  whether  or  not  we  can  add  the  rotors  themselves ;  we  can  add  the 

•31  vectors  of  the  rotors,  obtaining  a  single  vector  called  the  °  vector  of  the  set,  we 
can  add  the  momental  vectors  of  the  rotors  about  any  point,  obtaining  the 

momental  vector  of  the  set  about  that  point,  and  since  the  moment  of  a  rotor 
about  a  ray  and  the  momental  product  of  two  rotors  are  real  numbers,  we  can 

add  the  moments  of  the  rotors  of  a  set  about  a  ray,  obtaining  a  single  number 

•32       called  the  °  moment  of  the  set  about  the  ray,  we  can  add  the  momental  products 
•33  of  the  rotors  of  a  set  with  any  single  rotor,  obtaining  the  ̂ momental  product 

of  the  set  and  the  rotor,  and  we  can  add  the  momental  products  of  the 

34  members  of  one  set  and  the  members  of  another  set,  obtaining  the  ° momental 
product  of  the  two  sets.  It  follows  from  the  definition  of  equivalence  and  from 

theorems  13'25,  35'25,  36'43,  36'25  that 

•35  Equivalent  sets  of  rotors  have  the  same  vector,  the  same  momental  vector  about 
any  point,  the  same  moment  about  any  ray,  and  the  same  momental  product 
with  any  other  rotor  or  set  of  rotors, 
and  that 

• 

•36  The  momental  product  of  two  sets  of  rotors  is  unaltered  if  for  each  is  substi- 
tuted any  equivalent  set; 

these  theorems  account  for  the  importance  of  momental  products,  and  because 

of  this  importance  we  denote  the  momental  product  of  two  sets  F,  G  by 

•37       MFG  and  the  °  momental  square  of  a  set  F,  that  is,  the  momental  product 
of  F  and  any  set  equivalent  to  F,  by  Jt  F2.    The  theorem  that 

•38  The  moment  of  any  set  of  rotors  about  a  ray  is  the  projection  on  the  ray  of 
the  momental  vector  of  the  set  about  any  point  of  the  ray 

is  implied  by  35'25  and  36'44,  and  is  of  considerable  value ;  it  is  not  implied 
by  '35  and  36*44  alone,  for,  as  we  shall  see,  a  set  of  rotors  is  not  in  general 
equivalent  to  any  single  rotor.   From  35'24  and  35'25, 

•39  If  the  vector  of  a  set  of  rotors  is  r,  the  momental  vector  of  the  set  about  a  point 
Q  is  the  sum  of  the  momental  vector  of  the  set  about  any  point  0  and  the  momental 
vector  about  Q  of  the  rotor  through  0  with  vector  r. 

•4.  By  means  of  '35  we  can  prove  a  result  which  is  really  of  great  impor- 
tance although  it  is  so  naturally  taken  for  granted  that  in  practice  reference 

is  not  made  to  it.  It  is  certainly  not  self-evident  that  each  of  two  distinct 
rotors  can  not  be  equivalent  to  some  one  complicated  set  of  rotors.  But  if  T* 
and  8;  are  equivalent,  then  r  is  identical  with  8,  and  if  the  momental  vector  of 

TIC  about  a  point  is  zero  then  the  momental  vector  of  B{  about  the  same  point 
also  is  zero ;  it  follows  that  either  r  and  8  are  zero  or  I  passes  through  every 

point  which  lies  in  k,  and  since  we  regard  two  zero  rotors  as  identical  we  can 
assert  that 

•43  Rotors  which  are  equivalent  are  identical. 
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242.    EXAMPLES  OF  EQUIVALENCE. 

To  realise  the  extent  to  which  equivalent  sets  may  differ  in  form  although 

equivalence  depends  only  on  the  composition  and  resolution  of  concurrent 
rotors,  let  us  consider  three  examples. 

•1.  Let  rlt  r2,  ...  rn  be  n  parallel  vectors,  and  let  rotors  be  formed  by 
locating  these  vectors  in  lines  through  points  P,,  P2,  ...  PM;  let  c  be  any 
proper  vector  with  the  directions  of  the  given  vectors,  and  let 

r1  =  /«1c,     r2  =  A,c,     ...     rn  =  hnc.  -11 

Suppose  first  that  the  sum  of  the  given  vectors  is  not  the  zero  vector ;  then 

^i  +h*i+  •••  +  hn  is  not  zero,  and  therefore  if  we  associate  the  points  Pn  P2, 
...  Pn  with  the  numbers  hlt  h2,  ...  hn  we  have  a  loaded  set  with  a  definite 

mean  centre  C.  Let  0  be  the  point  such  that  the  vector  of  OG  is  c. 

By  the  fundamental  property  of  the  mean  centre,  rotors  with  vectors 

/ij .  CP1}  h.2 .  CPZ,  ...  hn .  CPn  located  in  the  lines  GP1}  CPZ,  . . .  CPn  are  together 

equivalent  to  the  zero  rotor;  hence  the  given  set  of  rotors  through  P1}  P2, 
...  Pn  can  be  modified  by  the  addition  of  these  rotors.  In  the  modified  set, 

there  are  two  rotors  through  the  point  Pk,  namely,  the  rotors  with  vectors 
Fjt  and  hjc.CPk,  that  is,  with  vectors  hk.OC  and  hk.CPk;  these  two  rotors 

combine  to  form  a  single  rotor  through  P^  with  vector  hjg .  OP*,  and  this  rotor, 

because  its  vector  is  a  multiple  of  the  vector  of  OP  it,  passes  through  0  as  well 
as  through  P^.  Thus  the  modified  set  is  equivalent  to  a  set  concurrent  in  0, 

and  this  set  is  equivalent  to  a  single  rotor  through  0.  The  vector  of  the 

single  rotor  is  of  course  (^  +  r2  +  . . .  +  rw),  as  is  in  fact  immediately  evident 

from  the  construction  in  virtue  of  16'51,  which  shews  also  why  the  axis  of 
this  rotor  passes  through  C. 

If  any  set  of  parallel  rotors  has  a  vector  that  is  not  the  zero  vector,  the  set  is       -13 
equivalent  to  a  single  proper  rotor. 

The  construction  for  the  axis  may  be  presented  as  a  property  of  the  mean 
centre : 

If  the  total  load  of  a  set  of  loaded  points  is  not  zero,  any  set  of  parallel  rotors       -14 
through  the  points  and  proportional  to  the  loads  has  the  zero  vector  for  its 
momental  vector  about  the  mean  centre  and  zero  for  its  moment  about  any  ray 
through  the  mean  centre. 

To  deal  with  a  set  of  parallel  rotors  in  the  excepted  case  in  which  the 

vector  of  the  set  is  zero,  let  BI  be  any  proper  rotor  parallel  to  the  set,  and 

modify  the  set  by  including  at  and  the  opposite  rotor  B{.  The  original  set  is 

equivalent  to  st  together  with  the  set  formed  by  adding  B{  to  the  original  set ; 

this  latter  set  has  vector  s',  which  is  not  the  zero  vector,  and  is  therefore 

equivalent  to  a  single  rotor  with  vector  B'  ;  if  the  axis  of  this  rotor  is  I  itself, 
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the  original  set  is  equivalent  to  the  zero  rotor,  but  in  general  the  axis  is 
different  from  L 

•16  If  the  vector  of  a  set  of  parallel  rotors  is  the  zero  vector,  the  set  is  equivalent 
either  to  the  zero  rotor  or  to  a  pair  of  rotors  with  vectors  equal  and  opposite. 

In  the  first  case  the  momental  vector  of  the  set  about  any  point  is  the  zero 
vector.  In  the  second  case  the  pair  of  rotors  is  not  unique. 

*2.  The  treatment  of  any  set  of  rotors  in  a  plane  is  simple  :  if  any  two  of 
the  rotors  are  not  parallel  they  intersect  and  can  be  added,  and  the  set  is 
therefore  equivalent  either  to  a  single  rotor,  which  may  be  the  zero  rotor,  or 
to  a  set  of  parallel  rotors;  applying  to  the  last  case  the  result  of  the  last 
paragraph  we  find  that 

•27  A  set  composed  of  any  finite  number  of  rotors  in  a  plane  is  equivalent  either  to 
a  single  rotor,  which  may  be  the  zero  rotor,  or  to  a  pair  of  rotors  with  equal 
and  opposite  vectors. 

'3.  One  form  of  reduction  of  a  set  containing  a  finite  number  of  rotors 
disposed  in  any  manner  in  space  is  now  evident.  The  number  of  rotors  being 
finite,  there  are  planes  which  have  points  in  common  with  every  axis,  for  if 
the  axes  are  represented  by  points  on  a  unit  sphere,  there  are  great  circles 
passing  through  none  of  these  points.  If  0  is  any  point  of  a  plane  K,  and  p 

is  any  line  not  parallel  to  K,  then  as  in  15'1  any  rotor  rk  through  0  can  be 
resolved  into  a  rotor  through  0  parallel  to  p  and  a  rotor  through  0  in  the 

•31  plane  K.  Using  the  results  of  the  last  two  paragraphs,  we  see  that  °  a  set 
containing  any  finite  number  of  rotors  is  equivalent  to  a  set  containing  not 
more  than  four  rotors ;  since  this  method  of  finding  a  simple  set  equivalent 
to  a  given  set  is  not  actually  convenient,  it  is  not  worth  while  to  enumerate 
the  different  cases. 

243.   COUPLES;  THE  MOMENTS  AND  THE  MOMENTAL  VECTOR  OF  A  COUPLE. 

*1.  It  is  by  no  accident  that  in  the  first  two  of  the  examples  we  have  just 
discussed  the  irreducible  set  takes  the  form  of  a  pair  of  rotors  with  distinct 
axes  and  vectors  equal  and  opposite,  for  the  very  feature  that  distinguishes 
rotors  from  vectors  is  that  if  two  rotors  r^,  TI  have  the  same  vector  r,  then 
unless  k  and  I  coincide  we  do  not  write  Tk  =  Ti  and  therefore  do  not  write 

Tk  —  TI  =  0# :  a  pair  of  rotors  with  equal  and  opposite  vectors  is  necessarily  an 
irreducible  element  in  the  theory,  and  the  manner  in  which  elements  of  this 
kind  combine  with  each  other  and  with  rotors  has  to  be  investigated. 

*2.  A  pair  of  rotors  rk,  r{  with  equal  and  opposite  vectors  r,  r'  and  therefore 
•21  with  parallel  axes  is  called  a  rotor-couple,  or  briefly  ac 'couple;  the  plane  through 
•22  the  axes  k,  I  is  definite  unless  the  axes  coincide,  and  is  called  the  ° plane  of  the 
•23  couple.  The  couple  (rk',  TI)  is  the  ° reverse  of  the  couple  (rk,  r/),  and  a  couple 
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which  is  equivalent  to  the  zero  rotor  is  called  a  c  zero  couple;  if  the  couple       -24 
(rt,  r/)  is  zero,  then  rk  is  equivalent  to  the  reverse  of  r/,  that  is,  to  rf:  hence 

from  1*43  °a  couple  is  zero  only  if  its  constituent  rotors  are  zero  or  if  the  axes  of       '25 
the  constituents  coincide,  and  from  this  it  follows  that 

Two  couples  located  in  the  same  pair  of  distinct  parallel  lines  are  equivalent       -26 
only  if  they  are  identical. 

•3.   A  set  of  rotors  and  couples  is  a  set  of  rotors  with  certain  pairs  taken 

together,  and  °two  such  sets  are  de/ined  to  be  equivalent  if  they  are  equivalent        '31 

if  no  pairing  is  recognised:  thus  the  set  formed  of  two  couples  (rh,  rk),  (BI,  sm') 
and  a  rotor  tn  is  equivalent  to  the  set  of  five  rotors  (rh,  rk,  Bt,  Bm',  !„)  by 
definition;  if  h  intersects  /  and  k  intersects  m,  there  are  rotors  (r-f  B)P  and 

(r'  -+-  Br)q,  and  since  if  r  +  s  is  u  then  r'  +  B'  is  u'  these  rotors  form  a  single 
couple  (up,  Uq),  and  in  this  case  the  original  set  of  two  couples  and  a  rotor 

is  equivalent  to  a  set  with  one  couple  and  a  rotor.    "The  vector  of  a  couple,        -32 
that  is,  the  sum  of  the  vectors  of  the  constituent  rotors,  is  the  zero  vector, 

and  therefore  °the  vector  of  a  set  of  couples  and  rotors  is  the  vector  of  the  set        '33 

of  rotors  alone,  and  °a  set  of  rotors  can  not  be  equivalent  to  any  set  of  couples        '34 
unless  the  vector  of  the  set  of  rotors  is  the  zero  vector. 

•4.  Neither  in  a  plane  nor  in  space  does  the  moment  of  a  couple  require 
fresh  definition,  for  in  every  case  the  moment  is  the  sum  of  the  moments  of 

the  constituent  rotors,  but  moments  of  couples  have  important  properties. 
In  what  follows  we  speak  of  moments  rather  than  of  momental  vectors  about 

a  point  in  space,  for  the  same  language  serves  then  to  conduct  parallel  in- 
vestigations. 

The  root  of  the  theory  of  couples  is  in  35*24;  let  (rk,  r/)  be  any  couple, 

let  0  be  any  point  of  I  and  let  Q  be  any  point  of  space ;  then  by  35'24  the 
moment  of  rk  about  Q  is  the  sum  of  the  moment  of  rk  about  0  and  the  moment 

of  TI  about  Q,  and  therefore  the  moment  of  the  couple  about  Q  is  the  moment 

of  r^.  about  0;  since  the  position  of  Q  is  independent  of  the  position  of  0  in  I, 

In  space  or  in  a  plane,  a  couple  has  the  same  moment  about  every  point,  and        '41 
this  moment  is  the  moment  of  either  of  the  constituent  rotors  about  any  point  in 
the  axis  of  the  other; 

the  constant  moment  is  naturally  called  simply  the  moment,  and  for  a  couple 

in  space  the  momental  vector  also,  of  the  couple.  From  "41  and  '25  it  follows 
that 

A  zero  couple  in  a  plane  is  a  couple  whose  moment  is  zero,  '42 
and  that  in  space 

A  zero  couple  is  a  couple  whose  momental  vector  is  the  zero  vector.  -43 
The  proposition 

The  moment  of  a  couple  about  any  ray  is  the  projection  on  the  ray  of  the        '44 
momental  vector  of  the  couple, 
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which  comes  from  T38,  with  its  corollaries 

•45  The  momental  product  of  a  couple  and  a  rotor  is  the  projected  product  of  the 
vector  of  the  rotor  by  the  momental  vector  of  the  couple, 

•46  The  momental  product  of  any  two  couples  is  zero, 

indicates  the  simplicity  of  the  theory  of  couples. 

•5.  The  fundamental  result  '41  may  of  course  be  verified  directly,  not  only  in  the 
elementary  case  of  a  couple  in  a  prepared  plane  but  also  for  a  couple  in  space. 

If  a  prepared  plane  through  any  point  Q  at  right  angles  to  the  lines  containing  a 

couple  (rfc,  rj')  meets  £,  I  in  JT,  L  and  r  is  the 
amount  of  r  in  the  direction  normal  to  the  plane, 
the  momental  vectors  of  rt,  r/  about  Q  are  vectors 

of  amounts  r .  QK,  —  r .  QL  in  directions  making 
positive  right  angles  with  the  directions  in  which 
QK,  QL  are  measured,  and  the  sum  of  these  vectors 
is  the  vector  of  amount  r.  KL  in  the  direction  making 
a  positive  right  angle  with  the  direction  in  which 
KL  is  measured ;  the  reference  to  Q  disappears 
when  the  vectors  are  added,  for  the  value  of  KL  is 
independent  not  merely  of  the  position  of  Q  in 
the  plane  QKL  but  also  of  the  position  of  Q  in 

space. 
An  interesting  alternative  method  uses  the  idea  of  the  moment  about  a  ray  as  a  mo- 

mental product,  replacing  the  ray  by  a  unit  rotor  that  can  be  decomposed.  From  34'22  it 
follows  that  a  couple  has  the  same  moment  R  about  all  rays  with  a  common  direction  N 
at  right  angles  to  its  plane,  and  therefore  that  the  momental  product  of  the  couple  and 
any  rotor  whose  vector  has  the  direction  N  and  the  amount  t  in  that  direction  is  tR; 
resolving  a  unit  rotor  in  any  ray  X  through  any  point  Q  into  a  component  of  amount 
cos  NA  in  the  ray  through  Q  with  the  direction  N  and  another  component  in  a  ray  parallel 

to  the  plane  of  the  couple,  we  deduce  from  36 '25  that  the  moment  of  the  couple  about  X  is 
the  sum  of  the  momental  products  of  the  couple  with  these  two  components,  and  from 

36'46  that  the  momental  product  of  the  couple  and  the  second  component  is  zero  what- 
ever the  magnitude  of  this  component ;  it  follows  that  the  moment  of  the  couple  about 

X  is  /ZcosNA,  and  the  importance  of  the  vector  BN  in  connection  with  the  couple  is 
manifest. 

61  *6.  °If  the  momental  vector  R  of  a  couple  (rk,  r{)  is  known,  then  r  can 
be  found  if  k  and  I  are  known  and  I  can  be  found  if  r^  is  known;  the  couple 

•62  may  conveniently  be°denoted  by  Rw;  there  is  a  certain  redundance  in  this 
notation,  for  the  directions  of  R  are  known  if  k  and  I  are  known,  but  there  is 

redundance  of  the  same  kind  if  a  single  rotor  is  denoted  by  such  a  combination 

of  symbols  as  r*.  It  should  be  added  that  a  couple  whose  momental  vector 

•63  has  P  for  one  of  its  directions  is  often  said  to  be  °  about,  round,  or  in  any  line 
or  ray  which  has  the  direction  P,  or  even  to  be  about,  round,  or  in  the  direc- 

tion P  itself. 
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244.   EQUIVALENCE  OF  COUPLES;  ADDITION  OF  COUPLES. 

*1.  In  the  matter  of  equivalence  there  is  a  vital  distinction  between  single 
couples  and  single  rotors;  as  we  have  seen  in  T4,  two  different  rotors  can  not 

be  equivalent,  but  with  couples  the  case  is  altered.  From  T35  it  follows  that 

Equivalent  couples  have  the  same  momental  vector,  -11 

and  we  proceed  to  establish  the  converse  of  this  theorem. 

•2.  If  (rk,  r/)  and  (sm,  sn')  are  two  couples  with  the  same  proper  momental 
vector  R,  then  k  and  I  are  parallel  lines  in  one  plane  perpendicular  to  R,  and 

m  and  n  are  lines  parallel  to  each  other,  but  not  necessarily  to  k  and  I,  in 

a  plane  parallel  to  the  plane  containing  k  and  /  but  not  necessarily  identical 
with  this  plane.  In  any  case  we  can  choose  a  pair  of  lines  p,  q  coplanar  with 
k,  I  and  parallel  to  m,  n,  and  we  can  find  a  vector  t  such  that  the  couple 

(tp,  t,')  has  the  momental  vector  R. 
The  four  vectors  rk,  r/,  t/,  tq  compose  a  coplanar  set  of  which  the  vector,  which 

is  r  +  r'  + t'  -f  t,  and  the  momental  vector  about  any  point,  which  is  R  +  R',  are 
both  zero.  Hence  from  2'27  and  3'43,  this  set  is  equivalent  to  the  zero  rotor, 

and  therefore  the  couple  (r^,  r/)  is  equivalent  to  the  couple  (tp,  tq'). 
The  four  vectors  sm>  Bn',  tp',  tq  compose  a  parallel  set  of  which  the  vector,  which 

is  B  -4-  B  + 1'  + 1,  and  the  momental  vector  about  any  point,  which  is  R  +  R',  are 
both  zero.  Hence  from  216  and  3'43,  this  set  also  is  equivalent  to  the  zero 

rotor,  and  therefore  the  couple  (sm ,  Bn')  is  equivalent  to  the  couple  (tp,  tq'). 
Combining  the  two  results,  we  find  that  (rk,  r/)  and  (sm,  sn')  are  equivalent. 

Adding  that  any  two  couples  with  momental  vector  zero  are  equivalent,  we 
conclude  that  in  any  case 

Couples  with  the  same  momental  vector  are  equivalent.  '24 

•3.  The  last  theorem  is  the  converse  of  *11,  and  the  two  may  be  combined 
to  give  the  simple  theorem  that 

Equivalent  couples  are  couples  with  the  same  momental  vector.  -32 

'4.   If  (rk,  r{)  and  (BP,  Bq')  are  couples  in  the  same  plane  or  in  parallel  planes, 

a  couple  (tp,  tq'}  equivalent  to  (rk,  r/)  can  be  located  in  p  and  q,  on  the 
assumption  that  these  are  distinct  lines,  and  since  the  pair  of  couples  (sp,  8q) 

and  (tp,  tq)  is  equivalent  to  the  single  couple  (s  +  t)p,  (s  +  t)q,  °the  pair  of       -41 

couples  (rk,  r/)  and  (sp,  s3')  also  is  equivalent  to  this  couple;  ifp  and  q  coincide, 
(sp,  Bq)  is  equivalent  to  the  zero  rotor  and  °the  pair  of  couples  (rk,  r/)  and        -42 

(BP,  Bq')  is  equivalent  to  the  one  couple  (r^,  r/).   Again,  if  (rkt  r/)  and  (BP,  Bq) 
are  couples  in  planes  which  intersect,  and  if  A,  B  are  any  distinct  points  on 
the  line  of  intersection,  then  through  A,  B  can  be  drawn  a  pair  of  distinct          , 

parallel  lines  m,  n  in  the  plane  of  the  first  couple  and  a  pair  of  distinct  parallel 

lines  s,  t  in  the  plane  of  the  second  couple ;  there  is  a  couple  (UTO,  un')  equivalent 
to  (rk,  TI),  and  there  is  a  couple  (vg,  v/)  equivalent  to  (BP,  aq);  um  +  vs  is  a 
N.  6 
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•43        rotor  t/  through  A,  and  u^'  +  vt'  is  a  rotor  tg'  through  B,  and  °the  two  rotors 
t/,  tg  compose  a  couple  equivalent  to  the  pair  of  couples  (rk,  r/)  and  (BP,  Bq'). 

-44        Hence  °any  pair  of  couples  is  equivalent  to  a  single  couple,  and  therefore 

'45  Any  set  formed  of  a  finite  number  of  couples  is  equivalent  to  a  single  couple, 

>46        which  is  called  a  °sum  of  the  set.    If  the  existence  of  an  equivalent  couple  is 
known  its  form  can  be  predicted,  for  by  1'35 

•47  The  momenta!  vector  of  a  couple  equivalent  to  a  set  of  couples  is  the  sum  of 
the  momental  vectors  of  the  individual  couples. 

Direct  proof  of  this  important  result  is  easy  to  construct  in  the  case  of  two 
components,  on  the  lines  of  the  work  proving  the  existence  of  a  sum,  and  the 
result  for  any  finite  number  of  couples  follows  at  once,  but  it  must  be  said 

that  the  ingenuity  which  constructs  such  proofs  is  to  a  considerable  extent 

wasted,  for  the  proofs  are  apt  to  leave  the  reader  wondering  why  the  theorem 

happens  to  be  true. 

•5.   The  last  theorem  is  of  such  a  form  as  to  imply  its  converse, 

•51  If  one  vector  is  the  sum  of  a  set  of  vectors,  any  couple  of  which  this  is  the 
momental  vector  can  lie  expressed  as  a  sum  of  couples  with  the  component  vectors 

for  momental  vectors, 

which  enables  us  to  apply  to  the  resolution  of  couples  known  results  on  the 

resolution  of  vectors.    To  take  only  the  result  immediately  required,  from 
15'12  we  see  that 

'52  If  a  line  k  and  a  plane  L  are  not  parallel,  any  couple  may  be  expressed  as 
the  sum  of  a  couple  in  any  plane  at  right  angles  to  k  and  a  couple  in  some  plane 
at  right  angles  to  L, 

and  taking  for  k  a  line  at  right  angles  to  a  plane  K  and  for  L  a  plane  at  right 
angles  to  a  line  I,  we  can  write  the  same  theorem  in  the  form  that 

•53  If  a  line  I  and  a  plane  K  are  not  parallel,  any  couple  may  be  expressed  as 
the  sum  of  a  couple  in  K  and  a  couple  in  some  plane  through  L 

245.    REDUCTION  OF  SETS  OF  ROTORS  ;  REDUCED  SETS. 

•1.  The  only  sets  of  rotors  which  as  yet  we  have  considered  in  detail  are 
sets  of  concurrent  rotors  and  sets  of  couples,  but  to  pass  from  these  special 

sets  to  sets  of  any  kind  requires  only  two  simple  results  concerning  the  com- 
bination in  a  particular  case  of  a  rotor  and  a  couple. 

If  TI  is  a  rotor  and  (sm,  sn')  is  a  couple  in  a  plane  containing  I,  then  if  B  is 
not  the  zero  vector,  r  is  different  either  from  a'  or  from  B,  and  whether  or  not 

I  is  parallel  to  m  and  n  the  set  (TI,  Bm,  Bn')  is  equivalent  either  to  a  set  of  the 

form  ((r  +  B)P,  Bn')  or  to  a  set  of  the  form  ((r  +  Bf)q,  sw);  further,  unless  r  is  the 
zero  vector  no  couple  can  have  either  of  these  forms,  and  the  pair  which  is 

•13  equivalent  to  (r^,  Bm,  Bn')  is  equivalent  to  a  single  rotor  rk:  °  a  couple  and  a 
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proper  rotor  parallel  to  the  plane  of  the  couple  are  together  equivalent  to  a 
single  rotor  with  the  vector  of  the  given  rotor.  On  the  other  hand,  if  F*  is  any 
rotor  and  0  is  any  point,  and  if  I  is  the  line  through  0  parallel  to  k,  the  rotor 

r^.-  is  equivalent  to  the  set  (r^,  TI,  r/)  which  is  equivalent  to  the  rotor  TI  and 

the  couple  (r^,  r/)  together:  °  any  rotor  is  equivalent  to  a  rotor  through  an  '16 
arbitrary  point  together  with  a  couple,  the  rotor  anchored  to  the  arbitrary 

point  0  having  the  vector  of  the  given  rotor  r^,  and  the  couple  having  for  its 
momental  vector  the  moraental  vector  of  r^  about  0. 

•2.  We  are  now  in  a  position  to  describe  the  simplest  forms  of  sets  of  rotors 
equivalent  to  any  given  set  F,  which  may  be  regarded  either  as  a  set  of  rotors 

and  couples  or  as  a  set  of  rotors  only.  If  0  is  any  point  of  space,  any  rotor 

belonging  to  F  is  equivalent  by  '16  to  a  rotor  through  0  together  with  a 
couple,  and  therefore  the  set  F  is  equivalent  to  a  set  of  rotors  concurrent  in  0 

together  with  a  set  of  couples  ;  the  set  of  concurrent  rotors  is  equivalent  by 

33'31  to  a  single  rotor  through  0,  and  the  set  of  couples  is  equivalent  by  4'45  to 
a  single  couple,  provided  only  that  the  numbers  of  rotors  and  couples  are  finite: 

Any  set  F  containing  a  finite  number  of  rotors  and  couples  is  equivalent  to  a        -21 
set  composed  of  a  single  rotor  through  an  arbitrary  point  0  and  a  single  couple; 
the  rotor  is  the  rotor  through  0  whose  vector  is  the  vector  of  the  set  F,  and  for 

the  couple  may  be  taken  any  couple  whose  momental  vector  is  the  momental 
vector  of  the  set  F  about  the  point  0, 

the  last  result  coming  simply  from  the  fact  that  the  momental  vector  about  0 

of  a  rotor  through  0  is  necessarily  the  zero  vector. 

•3.  A  set  composed  of  a  rotor  and  a  couple  is  called  a  ° reduced  set  of  rotors.  -31 
If  the  set  does  not  degenerate  into  a  rotor  alone  or  a  couple  alone,  the  axis  of 

the  rotor  is  called  the  axis  of  the  set  and  the  plane  of  the  couple  is  called  the 

plane  of  the  set ;  the  set  is  said  to  pass  through  any  point  of  its  axis  or  to  be 
a  reduced  set  at  any  such  point.  If  a  reduced  set  has  a  proper  rotor  but  a  zero 

couple,  the  set  has  a  definite  axis  but  no  unique  plane,  while  if  the  rotor  is 
zero  the  set  passes  through  every  point  of  space.  Should  a  reduced  set  formed 
of  the  rotor  s,  and  the  couple  Umn  be  equivalent  to  a  couple  VM,  the  vector 
s  is  zero  and  therefore  Vpq  is  equivalent  to  Umn  itself.  But  for  the  set  to  be 

equivalent  to  a  single  rotor  rfc,  it  is  sufficient  that  the  pair  of  rotors  (r^,  B{)  be 

equivalent  to  the  couple  UTO7l;  °a  reduced  set  is  equivalent  to  a  single  rotor  -35 
if  and  only  if  the  rotor  of  the  set  is  a  proper  rotor  parallel  to  the  plane  of  the 

couple.  If  two  reduced  sets  are  equivalent  their  rotors  have  the  same  vector, 
and  it  follows  that 

Equivalent  reduced  sets  of  rotors  have  parallel  axes,  and  if  two  such  sets  have        -36 
the  same  axis  their  rotors  are  identical  and  their  couples  are  equivalent. 

It  is  necessary  for  us  to  observe  that  the  second  part  of  this  theorem  has  a 

species  of  converse ;  if  equivalent  reduced  sets  have  rotors  FJ,  rp  with  distinct. 

6—2 
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axes,  and  if  the  couples  of  the  sets  are  Rmn,  8<]r,  then  Sqi.  is  the  sum  of  the 

couples  (r;,  rp'),  Rmn;  hence  if  Rmn,  Sgr  have  parallel  planes,  I  and  p  are 
parallel  to  these  planes  and  the  sets  are  equivalent  to  a  single  rotor : 

•37  If  equivalent  reduced  sets  have  distinct  axes,  the  planes  of  their  couples  can 
not  be  parallel  unless  the  sets  are  equivalent  to  a  rotor  alone; 

•38  moreover,  °if  a  reduced  set  is  equivalent  to  a  proper  rotor,  either  the  couple  is 
zero  or  the  plane  of  the  couple  is  parallel  to  the  axis  of  the  rotor. 

•4.  Let  K  be  any  plane  which  is  not  parallel  to  the  axis  I  of  a  reduced  set 

consisting  of  a  rotor  r^  and  a  couple  Rmn;  by  4'53  a  pair  of  couples  S^  and  Tgt 
can  be  found,  together  equivalent  to  Rmn,  with  h  and  k  parallel  to  I  and  the 

plane  through  s  and  t  parallel  to  K,  and  by  '13,  since  r;  is  parallel  to  the  plane 
through  h  and  k,  there  is  a  single  rotor  rq  equivalent  to  the  set  formed  of  the 

rotor  TI  and  the  couple  S^;  utilising  '21,  '36,  and  *37  we  have  the  theorem 

•41  If  K  is  any  plane  not  parallel  to  the  vector  of  a  set  of  rotors,  there  is  one 
and  only  one  line  q  parallel  to  this  vector  such  that  the  equivalent  reduced  sets 

with  qfor  axis  have  their  couples  in  planes  parallel  to  K. 

The  construction  by  which  this  result  has  been  proved  fails  if  the  vector  r 

is  zero,  for  there  is  then  no  single  rotor  equivalent  to  the  compound  of  r^  and 

&hk  unless  &M  also  is  zero;  in  the  same  case  '37  can  not  be  applied;  but  in  the 
last  enunciation  the  possibility  of  this  failure  is  formally  excluded,  for  if  r  is 

zero  there  are  no  planes  not  parallel  to  r.  If  r  is  not  zero,  the  construction 

does  not  fail  if  K  is  taken  at  right  angles  to  r,  and  if  r  is  zero  and  K  is 
parallel  to  a  couple  equivalent  to  the  set,  r  may  be  regarded  as  located  in  any 

line  at  right  angles  to  K ;  thus  follows  Poinsot's  theorem*: 
•43  Whatever  the  nature  of  a  set  of  rotors,  there  are  equivalent  reduced  sets  with 

axes  at  right  angles  to  their  planes,  and  unless  the  set  is  equivalent  to  a  single 
couple  the  reduced  sets  of  this  form  have  a  common  axis. 

246.   POINSOTSETS;  MOTORS;  ADDITION  OF  MOTORS;  SCREWS;  INTENSITY 
AND  PITCH;  MOMENTAL  PRODUCTS  AND  VIRTUAL  COEFFICIENTS. 

•1.  The  last  theorem  shews  that  a  rotor  and  a  couple  whose  momental 
vector  is  parallel  to  the  rotor  form  a  set  of  a  kind  far  more  widely  applicable 

•11, -12  than  is  at  first  apparent;  such  a  set  is  called  a  °  Poinsot  set.  c  Equivalent 
Poinsot  sets  have  the  same  rotor  and  their  couples  have  the  same  momental 

vector ;  the  vector  and  the  rotor  are  parallel,  and  unless  the  rotor  is  zero  the 

•13        sets  have  a  definite  axis.   Conversely,  °all  Poinsot  sets  with  the  same  rotor 

*  Enunciated  and  proved  by  Poinsot  (J.  de  VEc.  Poly.,  vol.  vi  (cah.  13),  p.  184 ;  read 
1804,  pub.  1806)  for  the  concrete  case  offerees ;  so  far  were  mathematicians  at  that  time  from 
appreciating  the  common  element  in  dissimilar  concepts  that  many  years  elapsed  before  the 
same  theorem  was  proved  for  the  case  of  angular  velocities,  and  the  fundamental  identity  of 
the  theorems  escaped  the  notice  not  only  of  Chasles,  the  first  to  enunciate  the  kinematical 
result,  but  of  Poinsot  himself,  who  discovered  this  result  independently. 
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and  the  same  momental  vector  are  equivalent.    Thus  Poinsot's  theorem  pre- 
pares us  for  the  concept  of  a  motor,  the  fundamental  element  in  a  calculus 

more  comprehensive  and  not  less  beautiful  than  the  vector  calculus :  a  motor 

is  *  °  a  rotor  associated  with  a  parallel  momental  vector.  Completely  decomposed,        •  l  ~> 
0  a  motor  which  is  in  no  way  degenerate  depends  on  an  axis  I  with  its  two       '18 

directions  A,  A',  a  vector  r  with  its  two  amounts  r,  —  r  in  ,the  directions  A,  A', 
which  is  located  in  the  axis  to  form  the  rotor  r^,  and  a  momental  vector  R 

with  two  amounts  R,  —  R  in  the  same  directions,  which  is  not  located  in  I  but 

is  limited  by  the  condition  that  R/r  is  a  linear  magnitude. 

•2.    °  A  motor  is  not  a  set  of  rotors.   °  Every  Poinsot  set  has  a  definite  motor,  -21,  -22 
and  if  F  is  any  set  of  rotors,  the  Poinsot  sets  equivalent  to  F  have  a  common 

motor, •  which  is  called  °the  motor  of  F:  -23 

Every  set  of  rotors  has  one  definite  motor,  and  equivalent  sets  are  sets  with       '24 
the  same  motor. 

The  axis  of  the  motor  of  a  set  of  rotors  is  called  the  ° Poinsot  axis  or,  for       -25 

reasons  that  will  be  apparent  in  our  next  article,  the  °  central  axis  of  the  set,        -26 
and  the  rotor  and  the  momental  vector  of  the  motor  are  called  the  principal  rotor 

or  Poinsot  rotor  and  the  principal  moment  or  Poinsot  moment  of  the  set.   °The       -27 
principal  directions  are  definite  even  if  the  Poinsot  rotor  is  zero,  unless  the 

Poinsot  moment  also  is  zero.    °If  m  and  n  are  any  two  distinct  parallel  lines        '28 
whose  plane  is  at  right  angles  to  the  axis  of  a  motor  with  momental  vector  R,  a 

couple  Rmw  with  this  momental  vector  can  be  located  in  m  and  n  and  com- 
bined with  the  rotor  of  the  motor  to  form  a  Poinsot  set  with  the  given  motor; 

thus  not  only  has  every  set  of  rotors  a  definite  motor  but  °  every  motor  is  the       -29 
motor  of  an  infinity  of  sets  of  rotors. 

•3.  Theorems  '24  and  "29  provide  the  foundations  for  the  theory  of  addition 
of  motors :  if  M  is  any  finite  set  of  motors,  each  member  of  M  is  the  motor  of 
some  set  of  rotors,  and  sets  of  rotors  corresponding  to  the  different  members 

of  M  can  be  compounded  to  form  a  single  set  of  rotors ;  this  set  has  a  definite 

motor,  which  depends  only  on  the  members  of  M,  and  is  called  the0 sum  of  '31 
M  or  of  the  members  of  M.  The  importance  of  motors  depends  partly  on 

*  This  use  of  motor  is  Clifford's  (Proc.  L.M.S.,  vol.  iv,  p.  382, 1873 ;  Math.  Papers,  p.  183). 
A  combination  of  a  force  in  a  line  and  a  couple  round  the  same  line  is  usually  called  a  dyname, 
and  this  name  is  adopted  by  Ball  for  what  Clifford  calls  a  motor. 

The  word  dyname  is  due  to  Pliicker,  whose  language  in  introducing  it  (Phil.  Trans.,  vol. 

CLVI,  p.  362,  1866)  is  far  from  clear ;  Routh's  view  (Anal.  Statics,  vol.  I,  p.  187, 1896)  that  to 
Pliicker  a  dyname  was  any  set  formed  of  one  force  and  one  couple  is  defensible,  though  possibly 
the  word  was  intended  to  denote  any  set  of  forces  which  is  not  equivalent  to  a  single  force, 
but  it  is  at  least  certain  that  the  idea  was  of  some  set  of  forces,  and  a  motor  is  not  a  set  of 
rotors,  for  the  momental  vector  of  a  couple  is  not  identical  with  the  couple  itself.  The  word 
having  been  coined,  mathematicians  may  use  it  as  they  find  best,  and  may  even  transfer  it 
to  the  vocabulary  of  pure  mathematics,  leaving  its  place  to  be  filled  by  the  word  lorench 
which  Ball  employs,  but  the  origin  of  the  word  dyname  can  not  be  concealed,  and  although 

Clifford's  word  has  a  kinematical  suggestion,  this  defect  is  a  link  with  the  word  vector. 
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theorem  *24,  but  the  analytical  elegance  of  the  motor  calculus  is  due  entirely 

•32       to  the  fact  that  °  every  finite  set  of  motors  has  a  sum  which  is  itself  a  motor*. 

•4.  The  linear  magnitude  which  is  the  quotient  of  the  momental  vector  R 
of  a  motor  by  the  vector  r  of  the  rotor  r{,  or  of  the  amount  of  R  in  either  of 

•41  its  directions  by  the  amount  of  r  in  the  same  direction,  is  called  the  °  pitch  of 
the  motor  ;  if  r  is  not  zero  the  motor  with  rotor  r^  and  pitch  p  has  momental 

•42  vector  pr,  but0  although  motors  with  the  zero  rotor  and  different  momental 
vectors  are  different  motors  it  is  impossible  to  distinguish  between  them  on 
the  basis  of  pitch.  The  elements  determining  a  motor  may  be  introduced  in 

any  order,  and  by  considering  the  pitch  in  advance  of  the  individual  vectors 
of  which  it  is  the  ratio  we  find  the  relation  between  the  motor  calculus  and 

•43  the  theory  of  screws.  A  °  screw  is  a  ray  associated  with  a  linear  magnitude 
which  is  the  pitch  of  the  screw.  The  motor  with  rotor  rj,  momental  vector  R, 

and  pitch  p  has  the  two  screws  obtained  by  associating  the  pitch  p  with  the 

two  rays  X,  X'  in  the  axis  I  ;  if  one  of  these  screws  is  given,  the  specification 
of  the  motor  may  be  completed  by  a  statement  of  the  amount  of  r  in  the 

'44  direction  of  the  screw,  and  this  amount  is  called  the  °  intensity  of  the  motor 

on  the  particular  screw  ;  if  the  screws  with  pitch  p  on  the  rays  X,  X'  are  denoted 
by  a,  a'  and  if  the  amounts  of  r  in  the  directions  of  X,  X'  are  r,  —  r,  the  motor 

•45  may  be  described  as0  the  motor  of  intensity  r  on  the  screw  a  or  as  the  motor 

of  intensity  —  r  on  the  screw  a',  or  more  briefly  as  the  motor  r  on  a  or  —  r  on 

•46       a'.   It  is  to  be  noticed  that0  the  two  screws  belonging  to  one  motor  differ  in 

•47  direction  but  not  in  pitch  ;  °with  the  same  numerical  value  \p  \  for  the  pitch 
and  the  same  axis  I  for  the  ray  there  are  four  screws,  that  with  pitch  p  in  X, 

that  with  pitchy  in  X',  that  with  pitch  —  p  in  X,  and  that  with  pitch  —  p  in  X',  and 
•48       these  are  all  distinct;  it  is  the  second  that  is  the  °  reverse  of  the  first,  and  a  screw 

•49        with  pitch  —  p  is  a  °  perverse  of  a  screw  with  pitch  p  on  the  same  axis. 

•51  -5.  Since  the  two  vectors  r,  R  of  a  motor  are  parallel,  °their  projected  product 
is  the  algebraic  product  rR  of  their  amounts  in  a  common  direction;  if  there  is 

a  proper  finite  pitch  p,  the  projected  product  is  expressible  both  as  p>£  and  as 

R2/p',  if  the  pitch  is  either  zero  or  infinite,  the  projected  product  is  zero.  While  in 
many  respects  less  important  than  the  pitch,  the  product  rR  is  far  more  easily 
calculated  in  the  common  case  in  which  the  motor  is  given  not  directly  but  as 
the  motor  of  a  specified  set  of  rotors,  and  also  therefore  if  the  motor  is  given  as 

the  sum  of  a  number  of  motors.  To  understand  this,  we  have  only  to  consider 

the  form  of  the  momental  product  of  two  reduced  sets  of  rotors.  From  3'45 

•52  and  3'46,  °the  momental  product  of  a  reduced  set  with  rotor  r^  and  couple  "Rhk 
and  a  reduced  set  with  rotor  Bm  and  couple  8fg  is  the  sum 

if  I  is  coplanar  with  ra,  and  in  particular  if  r  coincides  with  B,  the  first  term  is 

*  In  technical  language,  for  the  operation  of  addition  motors  and  vectors  yield  groups 
but  rotors  do  not  yield  a  group. 
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zero,  and  if  further  R  coincides  with  8  the  second  and  third  terms  are  equal : 

°the  momental  product  of  any  two  reduced  sets  of  which  the  rotors  have  the       -53 
same  vector  r  and  tlie  couples  have  the  same  momental  vector  R  is  twice  the 

projected  product  of  r  and  R;  thus 

The  momental  square  of  any  reduced  set  is  twice  the  projected  product  of  the       '54 
vector  of  its  rotor  by  the  momental  vector  of  its  couple. 

If  then  we  define  the  °  momental  product  of  two  motors  as  the  momental  product        -65 
of  any  two  sets  of  rotors  having  those  motors,  we  have  the  theorem  that 

The  product  of  the  amounts  of  the  two  vectors  of  a  motor  in  either  of  the       '57 
directions  of  the  axis  is  half  the  momental  square  of  the  motor, 

with  the  implication  that 

The  momental  square  of  a  set  of  rotors  is  zero  if  the  set  is  equivalent  either       -58 
to  a  single  rotor  or  to  a  couple,  but  not  otherwise. 

•6.  To  give  a  trigonometrical  expression  for  the  momental  product  of  two 
motors,  we  must  suppose  the  rotors  TI,  sm  and  the  momental  vectors  R,  S  given 

in  the  forms  r\,  s^  and  J?A,  $M  in  terms  of  rays  X,  //,  in  the  axes  and  amounts 

in  the  directions  of  these  rays ;  then  by  '52,  36'66,  and  3'45  the  momental 
product  is 

rsd^  sin  e^  +  Rs  cos  eAAt  +  Sr  cos  6xM ;  '61 
if  neither  of  the  rotors  TI,  Bm  is  zero, 

The  momental  product  of  two  motors  with  intensities  r,  s  on  screws  a,  /3  with        62 

finite  pitches  pa,  pp  is 

rs  {(pa  +  pi)  cos  ea/}  -  dap  sin  ea^}, 

—  daft  being  written  for  dpa .   The  linear  magnitude  which  multiplies  rs  in  this 
expression  proves  to  be  of  great  importance  in  the  theory  of  screws,  and  its 

half  is  called  the  ° virtual  coefficient  of  the  two  screws  a,  ft  and  is  denoted        -63 

usually  by  ora^;  by  T36  °the  product  2rstsra)3  for  the  motors  of  two  sets  of       -64 
rotors  can  be  evaluated  directly  from  the  sets  themselves.    The  expression 

given  in  '62  for  the  momental  product  of  two  motors  is  indeterminate  if  either 
of  the  motors  has  the  zero  rotor,  but  the  momental  product  itself  is  in  any 

case  definite  and  is  given  by  the  earlier  expression  '61;  °if  both  motors  have        -65 
the  zero  rotor,  the  momental  product  is  zero  whatever  the  momental  vectors 

may  be,  but  if  one  has  a  proper  rotor  rA  and  the  other  has  the  zero  rotor  and 

momental  vector  $M,  °the    momental  product  is  r$coseAM>  the  projected        -66 
product  of  the  vectors  rA,  $M.   It  is  to  be  added  that0 the  virtual  coefficient       -67 
«rao  of  two  identical  screws  is  simply  the  pitch  pa . 

'7.   The  general  question  of  the  relation  of  the  sum  of  a  number  of  motors 
to  the  individual  components  we  do  not  propose  to  consider,  but  we  remark 

that  °it  is  only  the  position  of  the  axis  of  which  the  determination  remains  to       -71 
be  effected.   If  the  components  have  rotors  with  vectors  r1}  ra,  ...  on  axes  llt 
12,  ...  and  have  momental  vectors  R1}  R2,  ...,  while  the  sum  has  rotor  rt  and 
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•72  momental  vector  R,  then  °the  vector  r  is  the  sum  of  the  vectors  r1}  r2, ...,  and 
the  vector  R,  though  it  is  not  the  sum  of  the  vectors  R1(  R.J, ...,  is  given  in 

general  if  r  is  not  zero  by  '62  and  36'66,  for  if  the  components  can  all  be  re- 
garded as  motors  with  intensities  rlt  rz,  ...  on  screws  «!,«.;,  ...  and  if  the  virtual 

coefficient  of  the  screws  Om,  an  is  nrmn,  then  r2,  being  the  projected  square  of 
1*1  +  r2  +  . . . ,  is  given  by 

•74  r-  =  r^  +  r22  +  ...  -f  2r1r2  cos  e12  +  . . . , 

and  for  the  product  rR  of  the  amounts  of  r  and  R  in  one  of  their  common 

directions  we  have  from  '57 

•75  rR  =  Wnn8  +  -BT22  r22  +  . . .  4-  2srJ2?-1r2  +  . . . . 

We  leave  to  the  reader  the  discussion  of  the  cases  in  which  some  of  the  com- 

ponents have  the  zero  rotor  and  of  those  in  which  r  itself  is  zero,  and  refer 

him  to  Ball's  treatise  for  developments  of  the  subject. 

247.  THE  REDUCED  SETS  AND  THE  ROTOR-PAIRS  WITH  A  GIVEN  MOTOR. 

*1.  It  is  an  easy  matter  to  describe  all  the  reduced  sets  equivalent  to  a 
given  Poinsot  set,  and  we  have  two  reasons  for  giving  a  description  in  detail : 

Poinsot's  theorem  shews  us  that  in  fact  we  are  considering  the  most  general 
distribution  of  equivalent  reduced  sets,  and  we  become  acquainted  with  an 
arrangement  of  lines  which  is  of  importance  in  geometry. 

•2.    Let  the  rotor  rt  and  the  couple  R^  form  a  Poinsot  set  with  a  given 
motor,  let  A  denote  one  direction  of  I,  let  the  amounts  of  the  vectors  r,  R  in 

the  direction  A  be  r,  R,  and  let  the  pitch  R/r 

be  p.   Through  a  point  Q  of  space  draw  a  line  / 

parallel  to  I,  a  line  m  at  right  angles  to  /  to  inter- 
sect I  in  a  point  0,  and  a  line  n  at  right  angles  to 

both  f  and  m;  let  M  represent  a  direction  of  m, 
let  N  represent  the  direction  of  n  which  makes  with 

M  round  A  a  positive  right  angle,  and  let  q  be  the  /^J^  ̂  

distance  from  0  to  Q  in  the  direction  M.    There  ^Jtn  'n 
are  reduced  sets  through  Q  equivalent  to  the  given 
Poinsot  set  F,  and  these  sets  have  a  common  rotor 

Tf  and  a  common  momental  vector  S;  if  Sst  is  the 

couple  of  one  of  these  sets,  the  rotor  r/  and  the  couple 

Sst  are  together  equivalent  to  the  rotor  FJ  and  the  couple  R^,  and  therefore 

the  couple  Sst  is  a  sum  of  the  couples  RAfc,  (FJ,  r/);  hence  by  4'47  S  is  the 
sum  of  the  vector  of  amount  R  in  the  direction  A  and  the  vector  of  amount 

rq  in  the  direction  N.  For  all  positions  of  Q  in  in  the  vector  S  is  therefore 

at  right  angles  to  m,  and  a  direction  of  S  may  be  specified  by  the  angles  which 
the  direction  A  makes  with  it  round  the  direction  M ;  if  one  of  these  angles 
is  S  and  the  corresponding  amount  of  S  is  S,  then 

•21,  -22  8  cos  8  =  R,  S  sin  8  =  rq. 

t 

c!p 

Fig.  18. 
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If  neither  R  nor  r  is  zero,  and  if  8  varies  continuously  with  q  and  is  zero  when 

Q  is  at  0,  then  °8  tends  steadily  towards  £TT  as  q  increases  from  zero  through        -23 
positive  values,  and  tends  steadily  towards  —  ̂ TT  as  q  decreases  from  zero 

through  negative  values ;  8  has  everywhere  the  sign  of  R  and  its  numerical 

value  increases  steadily  and  indefinitely  with  the  numerical  value  of  q ;  °at       '24 
points  equidistant  from  0  and  on  opposite  sides  of  0,  the  values  of  S  are  the 

same  and  the  values  of  8  are  equal  and  opposite.   If  R  but  not  r  is  zero,  S  is 

not  zero  except  when  Q  is  at  0,  and  therefore  8  is  £TT  or  —  £TT  except  when 

q  is  zero;  the  conventions  that  present  the  distribution  in  this  case  most 

clearly  as  a  limiting  form  of  the  general  distribution0 define  8  either  to  be        -25 
^TT  when  q  is  positive,  0  when  q  is  zero,  and  —  ̂ TT  when  q  is  negative,  or  to 

be  —  ̂ TT  when  q  is  positive,  0  when  q  is  zero,  and  ̂ TT  when  q  is  negative; 

then  °$  has  everywhere  except  at  0  the  same  sign,  and  its  numerical  value       *26 
increases  steadily  and  indefinitely  with  the  distance  between  0  and  Q,  and  it 

is  still  true  that  at  points  equidistant  from  0  and  on  opposite  sides  of  0  the 

values  of  S  are  the  same  and  the  values  of  8  are  equal  and  opposite.  °If  r  but       -27 
not  R  is  zero,  it  is  natural  to  regard  8  as  everywhere  zero  and  S  as  equal  to 

R ;  °if  R  and  r  are  both  zero,  S  is  everywhere  zero  and  8  is  entirely  arbitrary ;       '28 

°in  the  last  two  cases,  no  simple  conventions  restore  an  analogy  to  the  general        -29 
distribution,  and  0  is  not  distinguished  intrinsically  from  other  points  of  the  line. 

•3.  We  are  now  acquainted  with  the  relations  between  equivalent  reduced 
sets  through  different  points  on  one  line  parallel  to  the  axis  of  their  common 

motor  and  through  different  points  on  one  line  intersecting  this  axis  at  right 

angles,  or  in  brief  through  different  points  of  a  plane  through  the  central 

axis;  to  complete  our  view  we  must  consider  different  planes,  and  since 

equations  '21,  '22  involve  no  magnitude  dependent  on  the  position  of  the 

plane  we  may  say  that  °  the  relation  of  a  reduced  set  with  any  axis  to  the  «32 
plane  through  that  axis  and  the  central  axis  is  independent  of  the  actual 

position  of  this  plane.  If  we  imagine  the  line /of  the  last  paragraph  to  rotate 

round  I,  tracing  a  circular  cylinder  with  radius  q  and  axis  I,  then  °  in  every  -33 
position  of  Q  and  /  the  line  through  Q  with  the  directions  of  S  touches  this 

cylinder,  and  the  acute  angle  from  a  direction  of  this  line  to  a  direction  of 

/  round  an  outward  normal  to  the  cylinder  is  everywhere  the  same,  being  the 

acute  angle  whose  tangent  is  rq/R,  that  is,°q/p,  where  p  is  the  pitch  of  the  -35 
motor ;  the  name  of  central  axis  needs  no  further  justification,  and  we  note 

that  °the  distribution  about  the  central  axis  depends  only  on  the  pitch.  -36 

•4.  With  the  notation  of  '2,  we  impose  no  restriction  on  the  motor  if  we 
take  one  of  the  lines  in  which  the  couple  8st  is  located  to  intersect  the  axis  of 

the  rotor  ly.  But  if  s  intersects/,  the  rotors  in  these  lines  are  together  equi- 

valent to  a  single  rotor,  and  therefore  the  rotor  iyand  the  couple  Sgt  are  together 
equivalent  to  a  pair  of  rotors: 

There  is  an  infinity  of  rotor-pairs  with  any  given  motor.  -41 
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If  the  pair  of  rotors  (SK,  <*)  is  equivalent  to  a  given  set  of  rotors  F,  the  set 

F—sx,  obtained  by  compounding  with  F  the  reverse  of  SK,  is  equivalent  to  the 

single  rotor  t\,  and  therefore  Jl(F  —  s^f  is  zero.  On  the  other  hand,  by  6'58, 
if  M(F—s^  is  zero,  then  F  is  equivalent  either  to  SK  together  with  a  single 
rotor  or  to  SK  together  with  a  couple;  the  latter  case  is  easily  recognised,  since 
it  occurs  if  and  only  if  the  vector  of  SK  is  the  vector  of  F. 

Expressing  the  condition  for  <M(F  —  s^f  to  be  zero  in  the  form 

•42  J^F2-2sJ/Fllc  =  Q, 

we  can  distinguish  several  possibilities.  If  Ji  Fz  is  zero,  the  condition  requires 

s  to  be  zero  unless  jflF~\.K,  the  moment  of  F  about  the  ray  K,  is  zero,  but  is 
satisfied  for  every  value  of  s  in  the  exceptional  case;  this  conclusion  can  be 

verified  without  difficulty  by  elementary  arguments.  If  MF*  is  not  zero,  '42 
is  satisfied,  for  a  given  ray  K,  by  one  definite  value  of  s  if  the  moment  of  F 
about  K  is  not  zero,  but  can  not  be  satisfied  at  all  if  this  moment  does  vanish. 

•51  '5.    We*  shall  call  a  ray  ° impotent  for  a  set  of  rotors  if  the  moment  of  the 

•52        set  about  the  ray  is  zero.    °If  K  is  impotent  for  a  set  F,  so  also  is  the  reverse 
•53        of  K,  and  the  term  may  be  applied  to  the  line  in  which  the  rays  lie.    °A  line  or 

a  ray  that  is  impotent  for  F  is  impotent  for  every  set  equivalent  to  F,  and 
therefore  is  said  to  be  impotent  for  the  motor  of  F. 

It  follows  from  T38  that 

•54  A  line  through  a  point  Q  is  impotent  for  a  given  set  of  rotors  if  and  only  if 
it  is  perpendicular  to  the  momental  vector  of  the  set  about  Q. 

If  the  momental  vector  is  proper,  the  condition  limits  the  line  to  a  definite 

plane  through  Q;  to  discuss  the  relation  of  this  plane  to  the  central  axis  and 

the  pitch  would  be  to  repeat  the  substance  of  *2. 

•6.  Returning  to  '42,  we  can  now  substitute  for  '41  the  more  complete 
theorem  that 

•61  If  «•  line  is  neither  impotent  for  a  set  of  rotors  nor  in  the  principal  directions 

of  the  set,  there  is  one  and  only  one  rotor-pair  that  is  equivalent  to  the  set  and 
has  one  of  its  constituents  located  in  the  line. 

•62  °The  momental  square  of  a  rotor-pair  is  twice  the  momental  product  of  the 
two  constituents;  hence 

•63  If  two  rotor-pairs  are  equivalent,  the  momental  product  of  the  constituents 
of  one  is  equal  to  the  momental  product  of  the  constituents  of  the  other. 

•64  ^  A  cotractor  of  two  lines  is  impotent  for  any  rotor-pair  located  in  the  lines. 
If  the  rotor  r^  and  the  couple  Rmn  compose  a  Poinsot  set  equivalent  to  a  rotor- 
pair  (BP,  tg),  then  because  r  is  s  + 1,  a  line  perpendicular  both  to  B  and  to  t  is 
perpendicular  to  r  and  therefore,  if  r  is  proper,  to  R  also.  Hence  a  normal 

*  We  have  to  avoid  the  accepted  term  nul,  because  of  its  established  position  in  the 
theory  of  complex  space. 
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cotractor  of  p  and  q  is  impotent  both  for  the  couple  Rmn  alone  and  for  the  Poinsot 
set;  it  follows  that  the  moment  of  r*  about  the  normal  cotractor  is  zero: 

If  a  rotor-pair  is  not  equivalent  to  a  couple,  its  central  axis  cuts  at  right  angles       '66 
any  normal  cotractor  of  the  two  lines  in  which  the  rotor-pair  is  situated. 

248.  USES  OF  THE  WORD  '  SUM  '. 

•1.  Every  set  of  vectors  has  a  definite  sum  which  is  a  vector,  every  set  of 
motors  has  a  definite  sum  which  is  a  motor,  but  with  the  concepts  of  rotors 

and  couples,  which  in  a  sense  are  intermediate  between  the  concept  of  vectors 

and  the  concept  of  motors,  addition  presents  features  of  difficulty. 

*2.   The  case  of  couples  is  indeed  peculiar;    we  can  add,  in  a  perfectly 

natural  sense,  any  number  of  couples,  and  the  result  is  a  couple,  but  °  there  is       '21 
no  one  couple  which  has  the  right  to  be  called  the  sum;  different  processes  of 

addition  in  general  lead  to  couples  which  though  equivalent  are  distinct.    If 

we  devote  attention  only  to  the  momental  vectors  of  couples,  uniqueness  of  sum 

reappears,  but  a  °  momental  vector  is  not  itself  a  rotor  or  a  set  of  rotors,  nor  is  it        '22 
in  any  general  sense  a  sum  of  a  set  of  rotors,  and  momental  vectors  alone  are 

intrinsically  incapable  of  serving  the  purposes  for  which  couples  are  required. 

•3.  With  rotors  it  is  still  more  evident  than  with  couples  that  there  is 
difficulty  in  defining  a  sum,  for  in  this  case  addition  even  is  not  generally 

possible.  Were  there  only  one  Poinsot  set  equivalent  to  any  set  of  rotors  we 

might  call  that  Poinsot  set  the  sum,  but  in  fact  there  is  an  infinity  of  such  sets. 
We  can  find  a  pair  of  rotors  equivalent  to  any  set  of  rotors,  but  there  is  an 

infinity  of  such  pairs  and  no  one  of  them  has  an  intrinsic  claim  to  precedence. 

P4.  In  short,  we  can  not  speak  in  an  elementary  sense  of  the  sum  of  a  number 
of  couples  or  of  a  number  of  rotors;  nevertheless,  there  are  two  different  methods 
of  effecting  the  economies  which  result  from  the  use  of  the  word  sum. 

•5.    We  can  °define  the  use  of  certain  phrases  into  which  the  WOED  'sum'       -51 
enters,  and  as  long  as  our  work  contains  the  word  only  in  the  phrases  defined, 
the  absence  of  a  concept  corresponding  to  the  word  can  lead  to  no  fallacies. 

On  this  plan,  we  agree  to  say  that  two  sets  of  rotors  °  have  the  same  sum  or       '52 
that  one  is  a  sum  of  the  other  as  an  alternative  method  of  expressing  that  the 

sets  are  equivalent,  and  to  say  that  one  set  of  rotors  is  °  a  sum  of  a  number       '53 
of  sets  if  the  one  set  is  equivalent  to  the  compound  .of  the  others ;  in  this 

sense  °a  Poinsot  set  is  a  sum  of  any  set  to  which  it  is  equivalent.  '54 

•6.  But  the  method*  of  Frege  and  Russell  can  be  used  to  define  a  definite 
concept  as  the  sum  of  a  set  of  couples  or  of  rotors,  and  the  definition  can  be 

*  Devised  first  by  Frege  (Orundlagen  der  Arithmetik,  1879)  and  independently  by  Russell 
(Principles  of  Mathematics,  1903)  for  dealing  with  the  classical  difficulties  of  number,  and 
applied  by  these  writers  and  others  to  the  solution  of  a  multitude  of  mathematical  and 
philosophical  problems. 
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made  in  a  number  of  ways  which  are  not  equivalent.  In  the  case  of  couples, 

we  can  discover  of  any  couple  whether  it  is  or  is  not  equivalent  to  a  sum  of 
a  number  of  couples  in  the  elementary  sense,  merely  by  examining  whether 
the  momental  vector  of  the  proposed  couple  is  or  is  not  the  sum  of  the 
momental  vectors  of  the  individual  couples;  thus  if  C  is  any  finite  set  of 

couples,  there  is  a  definite  class  composed  of  all  the  couples  that  are  equivalent 

•62  to  the  set  C,  and  °this  class  of  couples  may  be  defined  as  the  sum  of  C  or  of 
the  members  of  C:  .that  the  class  is  itself  infinite,  in  the  sense  of  containing 
an  infinity  of  members,  does  not  render  the  concept  of  the  class  less  definite. 

•63  From  the  definition  it  follows  that  °sets  of  couples  with  the  same  sum  are 

•64  equivalent  sets;  a  sum  of  a  number  of  couples  may  be  defined  to  mean  °a 
couple  belonging  to  the  sum;  with  this  definition  we  can  not  speak  of  a  set 
of  two  couples,  for  example,  as  a  sum  of  a  set  of  five  couples,  but  in  the  case 
of  couples  the  word  sum  is  naturally  used  to  imply  that  reduction  to  the  form 

of  a  single  couple  has  been  effected. 

'7.   With  rotors  there  is  a  difficulty  of  practice  but  none  of  principle  ;  the 
sum  of  a  set  F  is  to  be  a  class  of  sets  equivalent  to  F,  and  we  have  to  decide 

•71,  -72  whether  this  class  is  to  consist  of  °  all  sets  equivalent  to  F,  or  of  °all  reduced 

•73       sets  equivalent  to  F,  or  of  °  all  Poinsot  sets  equivalent  to  F.   In  any  case  we 

•74        have  a  definite  concept,  and  in  any  case  the  statement  that  °  equivalent  sets 
are  sets  with  the  same  sum  follows  from  the  definition  and  is  not  itself  a 

definition  ;  it  is  unnecessary  for  us  to  make  an  irre  vocable  choice,  and  indeed 

we  may  distinguish  the  three  classes  as  the  complete  sum,  the  reduced  sum, 

•75       and  the  Poinsot  sum,  but  we  notice  that  °  if  every  compound  of  a  number  of 
sets  is  to  be  a  sum  of  the  sets  we  must  use  the  complete  sum  and  sacrifice 

any  advantages  that  might  follow  from  supposing  a  sum  necessarily  to  have 
a  simple  form. 

•8.    Whatever  our  language,  notation  must  allow  the  equation 

where  F,  G,  H  refer  to  three  sets  of  rotors,  to  assert  that  H  is  equivalent  to 
a  compound  of  F  and  G.  Thus  arises  a  problem  similar  to  that  presented  in 

our  first  chapter  (see  p.  6)  by  the  addition  of  angles.  To  effect  a  solution,  we 

may  suppose  F,  G,  H  to  be  indefinite  symbols,  denoting  unspecified  members 
of  classes  of  equivalent  sets,  or  we  may  regard  them  as  symbols  for  the  classes 
themselves.  With  either  interpretation,  the  sign  of  equality  has  its  universal 

meaning  and  is  not  misappropriated  to  serve  as  a  sign  of  equivalence  in  the 

special  sense  which  the  latter  word  bears  in  the  theory  of  rotors. 
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TRIGONOMETRY  OF  PLANE  AND  SPHERICAL  TRIANGLES 

311.  Plane  triangles  with  directed  sides.  312.  Spherical  triangles;  the  polar  and  the 
colunars  of  a  spherical  triangle.  313.  Fundamental  formulae  and  simple  deductions. 
314.  The  index  of  measurement  and  its  uses. 

311.  PLANE  TRIANGLES  WITH  DIRECTED  SIDES. 

•1.   An  instructive  exercise,  and  a  valuable  introduction  to  the  work  on 
spherical  triangles  in  the  succeeding  sections,  which  is  essential  to  our  progress, 
is  the  formation  of  definitions  for  an  ordered  triangle  whose  sides  are  rays.   We 

take  three  rays  a,  ft,  7  in  a  plane  ;  for  the  plane  we  assume  a  cyclic  direction,  and 

°of  the  rays  we  assume  only  that  no  two  of  their  axes  are  parallel.   Then  ft  and  7       -12 
intersect  in  a  point  A,  while  7  and  a  intersect  in  a  point  B,  and  a  and  ft  in  a 

point  C,  and  "either  A,  B,  0  are  three  distinct  points,  or  they  coalesce  in  a  single        -13 
point.  The  distances  from  B  to  C  in  the  direction  of  a,  from  C  to  A  in  the  direction 

of  ft,  and  from  A  to  B  in  the  direction  of  7,  are  called  the  °  sides,  or  more  fully        "14 
the  lengths  of  the  sides,  of  the  triangle,  and  are  denoted  by  a,b,c;  each  of  these 
sides  is  a  definite  real  number,  but  there  is  no  reason  to  suppose  any  of  them 

positive,  nor  is  there  any  relation  between  their  signs.    Angles  at  A  from  ft 

to  7  are  called  °  external  angles  of  the  triangle  at  A;  the  supplement  of  an        -17 
external  angle  at  A  is  an  angle  from  7  to  the  reverse  of  ft,  and  is  called  an 

"internal  angle  at  A  ;  all  internal  angles  at  A  are  congruent,  and  one  of  these*        -18 

angles  is  chosen  arbitrarily  to  be  described  as  "the  first  angle  of  the  triangle        -19 
and  is  denoted  by  A  ;  the  definitions  of  external  and  internal  angles  at  B  and 

C  are  similar,  and  selection  from  among  the  internal  angles  provides  B  and  C, 
the  second  and  third  angles  of  the  triangle;  instead  of  making  the  selections 

at  A  ,  B,  C  entirely  independent,  we  may  make  one  choice  depend  on  the  other 

two  in  such  a  way  as  to  retain  the  familiar  value  for  the  sum  of  the  angles, 

but  with  any  combination  of  selections  the  sum  is  congruent  with  TT,  and  there 

is  little  to  be  gained  by  a  limitation. 

•2.    It  is  to  be  noticed  that  °the  values  of  the  sides  and  angles  of  a  triangle        -21 
of  rays  depend  on  the  order  of  the  rays  ;  if  the  triangle  afty  has  sides  a,  b,  c 

*  In  order  not  to  confuse,  we  describe  a  procedure  in  accord  with  elementary  usage, 
but  the  reader  will  recognise  that  there  is  something  to  be  said  in  favour  of  expressing 

formulae  in  terms  of  external  angles  A',  B',  C'.  Theoretically  this  practice  is  natural,  and 
of  the  two  formulae 

the  former  leads  to  the  more  elegant  identities,  but  the  expression  of  a  as  -  b  cos  C'  —  c  cos  B' 
has  nothing  to  recommend  it,  and  for  a  right-angled  triangle  the  use  of  external  angles  is 
quite  indefensible. 
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and  external  angles  A',  B',  C',  the  triangle  ay  ft  has  sides  —a,  —  c,  —b,  and 
•22  may  be  taken  as  having  external  angles  —  A',  —  C',  —B'.  °A  triangle  of  rays 

is  an  ordered  triangle  in  every  definition,  not  merely  in  definitions  involving 

•23  implicitly  the  sign.  °The  sign  of  the  triangle  afty  is  taken  to  be  the  same  as 
the  sign  of  the  triangle  ABC,  and  not  to  depend  on  the  directions  of  or,  ft,  7 
along  the  undirected  lines  BC,  CA,  AB. 

•3.   The  perpendicular  distances  of  A  from  a,  of  B  from  ft,  of  C  from  7,  are  the 

•31        three  °altitudes  of  the  triangle,  and  we  denote  them  by  p,  g,  r.   If  a  is  positive, 
A  is  on  the  positive  or  the  negative  side  of  a  according  as  the  sign  of  the 

triangle  is  positive  or  negative,  and  the  sign  of  p  is  the  sign  of  the  triangle; 

•34 

•35 

•41 

•42 
•43 

•45 

•46 

•49 

o 

Fig.  19. 

if  a  is  negative,  the  direction  from  B  to  C  is  the  reverse  of  the  direction  of  a 

and  the  sign  of  p  is  opposite  to  the  sign  of  the  triangle;  thus  in  any  case 

°the  sign  of  the  product  ap  is  the  sign  of  the  triangle,  and  ̂   ap  is  A,  the  area 
of  the  triangle  : 

2  A  =  ap  =  bq  =  cr. 

•4.   If  we  denote  the  actual  vectors  of  the  steps  BG,  CA,  AB  by  a,  b,  c,  the 
trigonometry  of  the  triangle  is  contained  in  the  relations 

a  +  b  +  c  =  0, 
=  —  be  cos  A, 

Thus 

gives and 

gives 
while  from  '41 
whence 

giving 

a2  = 
=  -  <^a  (b  +  c)  =  a  (b  cos  C  +  c  cos  B) 

a  =  b  cos  C  +  c  cos  B, 

a2  =  62  +  c2  -  26c  cos  A, 

<$4  a  (a  +  b  +  c)  =  0, 

6$  ca  =  £4  ab, 

c  sin  B=  b  sin  C. 
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•5.   Further,  if  s  denotes  ̂ (a  +  b  +  c),  '46  gives 

6c(l  +  cos  J.)  =  2s(s  —  a),   6c(l  —cos  ^4)=  2  («  —  &)(«  —  c),  -51 
whence  on  the  one  hand 

cos"  ̂   A  =  s  (s  —  a)/bc,   sin2  \A  —  (s  —  b)  (s  —  c)/bc,  -52 
and  on  the  other  hand 

A  cot  ̂   A  =  s  (s  —  a),   A  tan  \A  =  (s  —  b)  (s  —  c),  -53 

leading  to  A2  =  s  (s  —  o)  (s  —  b)(s  —  c),  -54 

55 

'56 

--  --          j  —  , 
s  s  —  a  b  +  c  a 

sin  $B  cos  £  G     sm%Ccos$B     sin  %(B  -  C)     sin  ̂ (B+G) 
—  =  —         —  j—  '•  —j-  —         —  =  —  . s—  c  s  —  b  b—c  a 

Since  we  have  extracted  no  square  roots,  there  can  be  no  ambiguities  in  these 

formulae,  but  °it  is  not  open  to  us  to  argue  that  the  sines  and  cosines  of  the        -57 
angles  \A,  \B,  %G  are  necessarily  positive  or  to  replace  cos  %  (B  +  C)  and 
sin  \(B  +  G)  by  sin  \  A  and  cos  £  A. 

•6.   If  certain  formulae  of  plane  trigonometry  threaten  to  evade  us,  we  can 
recapture  them  by  a  simple  device.   The  value  of  k  given  by 

A+B  +  G=(2n  +  k)7r,  -61 

where  n  is  an  integer  and  k  is  either  +1  or  —  1,  depends  not  only  on  the 
triangle  itself,  but  on  the  measurements  adopted  for  the  angles;  let  k  be 

called  the0  index  of  measurement.    Then  since  cos  %(B  +  G),  sin  \(B  +  G}  can        -62 
be  identified  with  sin^A,  cos  \A  if  A;  is  +  1  and  with  —  sin^.4,  —cos  \A  if 
k  is  —  1,  we  can  write 

cos^(B  +  O)  =  ksm^A,   sm$(B  +  G)  =  kcos^A,  -63 
and  therefore 

cos  \(B—  G)  _  ksin^A     sin^(B-C)  _  &cos^.4 
b+c  a  b—c  a 

^Bsm^=k(s  —  a)&.  -65 
It  is  to  be  remembered  that  there  is  only  one  index;  in  formulae  deduced  by 

transposition  from  those  given  in  full,  k  is  unaltered. 

312.  SPHERICAL  TRIANGLES;  THE  POLAR  AND  THE  COLUNARS 
OF  A  SPHERICAL  TRIANGLE. 

•1.  The  spherical  triangle*  which  is  of  use  in  analytical  geometry  is  a 
triangle  in  which  definite  directions  are  given  to  the  three  great  circles  forming 

the  sides.  To  specify  a  triangle  of  rays  in  a  plane  we  may  give  the  three 

*  With  this  section  compare  the  early  paragraphs  in  ch.  19  of  Leathem's  edition  (1901) 
of  Todhunter's  Spherical  Trigonometry  ;  there  the  sides  and  the  external  angles  are  chosen 
to  be  positive  and  less  than  27r,  but  it  is  equally  useful  in  practice  to  suppose  them  positive 

or  negative  but  numerically  less  than  TT,  and  we  prefer  not  to  commit  ourselves  to  a  parti- 

cular system.  The  chapter  on  spherical  trigonometry  in  Darboux's  Principe*  (pp.  201-215), 
N.  7 
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•22 

•25 

•31 

vertices  and  the  directions  of  the  three  sides,  or  we  may  state  simply  the  three 
rays  which  form  the  sides;  to  describe  a  spherical  triangle,  we  may  state  the 
three  vertices  and  the  directions  of  the  three  sides,  but  it  is  not  sufficient  to 

specify  only  the  three  prepared  circles  which  form  the  sides  without  indicating 
which  of  the  two  points  of  intersection  of  each  pair  of  sides  is  to  be  used  as 
a  vertex.  For  the  sake  of  brevity  we  speak  of  the  spherical  triangle  with 
assigned  vertices,  but  it  is  to  be  understood  that  definite  directions  are  given 
to  the  sides. 

•2.  There  is  one  characteristic  of  a  spherical  triangle  ABF  which  does  not 
depend  on  the  directions  of  the  sides.  If  the  directions  of  the  sides  of  the 
triangle  are  determined  by  the  convention  that  the  least  positive  angles  from 
B  to  F,  from  F  to  A,  and  from  A  to  B,  in  the  directions  of  the  sides,  are  all 

less  than  TT,  then*  ° either  each  vertex  is  on  the  positive  side  of  the  opposite 
great  circle  or  each  vertex  is  on  the  negative  side  of  the  corresponding  circle, 
and  the  triangle  itself  is  said  to  be  positive  in  the  one  case,  negative  in  the 
other  case ;  the  sign  of  a  particular  spherical  triangle  is  of  course  dependent 
on  the  spatial  convention,  but  whether  two  ordered  spherical  triangles  have 
the  same  sign  or  different  signs  depends  on  no  arbitrary  convention,  and  it  is 

always  a  comparison  of  different  triangles  that  is  fundamental.  °The  sign  of 
the  spherical  triangle  ABF  on  a  sphere  whose  centre  is  O  is  the  sign  of  the 
tetrahedron  OABF;  two  spherical  triangles  whose  corresponding  parts  are 
equal  numerically  are  congruent  if  they  have  the  same  sign,  but  if  their  signs 
differ  each  is  a  perverse  of  the  other. 

*3.  If  a,  b,  c  are  three  prepared  great  circles  forming  the  sides  of  a  spherical 
triangle  ABF,  the  angles  from  B  to  F  along  a,  from  F  to  A  along  b,  and  from 

Fig.  20. 
A  to  B  along  c,  compose  three  congruences,  and  representative  angles  are 

chosen  arbitrarily  from  these  congruences  to  be  called  °the  sides  of  the  triangle 
and  to  be  denoted  by  BF,  FA,  AB,  or  by  a,  /3,  7.  Similarly  the  angles  from  6 

develops  the  formulae  without  supposing  the  elements  even  to  be  real ;  it  will  be  found 
that  the  treatment  of  complex  space  in  Book  V  below  does  not  depend  on  the  formulae  of 

this  section  or  the  next,  but  on  the  contrary  enables  us  to  interpret  these  sections  retro- 
spectively as  valid  on  complex  spheres.  Darboux  uses  the  external  angles  as  a  matter  of 

course. 

*  The  right-hand  diagram  in  fig.  20,  in  which  one  of  the  least  positive  angles  is  between 
TT  and  2n-,  helps  us  to  realise  that  the  conclusion  is  dependent  on  the  hypothesis. 
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to  c  round  A,  from  c  to  a  round  B,  and  from  a  to  b  round  F,  compose  three 

congruences,  and  chosen  members  of  these  congruences  are  called  °the  external        -32 

angles  of  the  triangle  and  are  denoted  by  FAB,  A'BF,  BTA  or  by  A,  B,  F ;  by 
subtracting  the  external  angles  from  ?r  we  obtain  the  °  internal  angles.    Any        -33 
one  of  the  sides  or  angles  of  a  spherical  triangle  may  have  any  value,  positive 

or  negative,  which  is  not  an  integral  multiple  of  TT,  and  between  the  circular 
functions  of  the  three  sides  and  the  three  external  angles  there  are  many 

relations,  whose  systematic  study  is  the  first  concern  of  spherical  trigonometry. 
If  O  is  the  centre  of  the  sphere  on  which  the  spherical  triangle  ABF  is 
situated,  the  function  sin  OABF  of  which  we  have  already  spoken  is  called 

the  °sine  of  the  triangle  itself;  this  function  is  independent  of  the  directions       -34 
of  the  sides  of  the  triangle,  and  its  sign  is  that  of  the  triangle ;  every  change 
in  the  order  of  the  vertices  is  without  effect  on  the  numerical  value  of  the 

sine,  but  while  a  cyclic*  change  leaves  the  sign  also  unaffected,  a  change  that 
is  not  cyclic  reverses  the  sign  : 

sin  O  ABF  =  sin  OBFA  =  sin  OFAB,  -35 

sin  OAFB  =  -  sin  OABF. 

For  brevity  we  shall  °denote  sin  OABF  by  TABr,  or  when  no  ambiguity  is       -36 
possible  by  T  simply. 

•4.  A  definite  spatial  convention  gives  to  the  directed  great  circles  a,  b,  c  which 
form  the  sides  of  the  triangle  ABF  definite  positive  poles,  and  these  we  can 

denote  without  risk  of  confusion  by  a,  ft,  y.    Because  ft  is  a  pole  of  b,  A/3  is  a 

quadrant,  and  because  7  is  a  pole  of  c,  Ay  is  a  quadrant ;  hence  °  A  is  a  pole        -42 
of  the  great  circle  through  ft  and  7,  and  similarly  B,  F  are  poles  of  the  great 
circles  through  7  and  a  and  through  a  and  ft ;   to  say  that  A,  B,  F  are  the 

positive  poles  of  the  great  circles  fty,  ya,  aft,  is  to  assign  particular  directions 
to  these  great  circles,  and  the  circles  with  directions  so  determined  we  denote 

by  A,  B,  C.    The  triangle  with  a,  ft,  7  for  vertices  and  A,  B,  C  for  sides  is 

called  the  ° polar  of  the  triangle  with  A,  B,  F  for  vertices  and  a,  b,  c  for  sides,        -44 
and  a  reader  who  is  becoming  impatient  of  our  insistence  on  the  possibility  of 

distinguishing  between  positives  and  negatives  will  welcome  a  definite  justi- 

fication of  the  drawing  of  such  distinctions  in  the  result  that  °  if  one  spherical        -45 

triangle  is  the  polar  of  another  the  second  is  the  polar  of  the  first.    °The  sides        -46 
of  the  polar  triangle  afty  are  congruent  with  the  external  angles  of  the  original 
triangle  ABF,  and  conversely  the  external  angles  of  afty  are  congruent  with 

the  sides  of  ABF;  in  view  of  this  result  we  actually  °choose  A,  B,  F  for  the        '47 

*  Fundamentally,  the  decisive  feature  is  not  whether  the  change  is  cyclic  or  acyclic 
but  whether  there  is  an  even  or  an  odd  derangement  of  the  four  letters  O,  A,  B,  r  (see 

132'16  on  p.  21  above,  and  the  accompanying  foot-note) ;  the  position  of  O  being  un- 
alterable, the  question  is  one  of  transpositions  in  the  three  letters  A,  B,  r,  and  it  is  a 

peculiarity  of  interchanges  with  three  symbols  that  cyclic  changes  are  even  and  acyclic 
changes  are  odd ;  with  any  odd  number  of  symbols  all  cyclic  changes  are  even,  but  if  the 
number  is  greater  than  three  there  are  also  acyclic  changes  which  are  even. 

7—2 
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sides  and  a,  /9,  7  for  the  external  angles  of  the  triangle  a/3y  when  we  wish  to 
dwell  on  the  relation  between  the  two  triangles ;  the  statement  that 

•48  //  two  spherical  triangles  are  polars  of  each  other,  the  sides  of  each  are  the 
external  angles  of  the  other, 

adds  a  definition  to  a  theorem,  and  is  typical  of  a  number  of  enunciations  of 

value  in  analytical  geometry.  The  consideration  of  the  sides  and  angles  of 
the  polar  0/87  of  a  triangle  ABF  introduces  to  us  no  angles  which  we  are  not 

compelled  to  use  in  studying  ABF  itself,  but  the  sine  of  the  polar  triangle, 
which  is  called  the  polar  sine  of  ABF,  is  not  expressible  merely  as  a  function 

of  sin  OABF,  and  has  an  independent  importance*;  it  is  to  be  remarked  that 

•49  the  polar  of  a  positive  triangle  may  be  either  positive  or  negative.  °The  sine 
of  the  polar  triangle  will  be  denoted  by  uABr  or  by  v  alone. 

*5.  By  the  perimeter  of  the  triangle  ABF  is  meant  the  sum  of  the  sides ; 
this  is  usually  denoted  by  2er.  The  sum  of  the  angles  is  denoted  by  2S  and 
may  be  called  the  polar  perimeter.  The  amount  by  which  22  falls  short  of 

2-7T  is  the  amount  by  which  the  sum  of  the  internal  angles  exceeds  TT  and  is 

•52  called  for  this  reason  the ° angular  excess  of  the  triangle;  if  this  angle  is 
denoted  f  by  E  and  the  corresponding  angle  associated  with  the  polar  triangle 

by  e,  we  have 
•55  2o-  =  a  +  /3+7,     22  =  A  +  B+F, 

•57  e  =  2(7r-<r)>        E  =  2(7r-2). 

*6.  The  polar  triangle  is  not  the  only  triangle  which  can  usefully  be  asso- 
ciated with  a  given  triangle. 

The  circles  6,  c  which  meet  in  A  meet  also  in  the  diametrically  opposite 

point  A',  and  the  triangle  with  sides  a,  b,  c  and  vertices  A',  B,  F  is  called  the 
•61  ° first  colunar  of  the  triangle  with  sides  a,  b,  c  and  vertices  A,  B,  F.  To  leave 

unchanged  the  directions  of  a,  b,  c  is  to  say  that  the  vertices  of  the  polar  of 

A'BF  are  to  be  the  same  as  the  vertices  of  the  polar  of  ABF,  but  since  in 

reference  to  A'BF  the  circle  through  /3  and  7  is  to  have  A'  for  its  pole,  the 
sides  of  the  polar  of  A'BF  are  not  the  circles  A,  B,  C  but  the  circles  A',  B,  C. 

•63  Since  the  directions  of  measurement  along  a,  b,  c  are  unchanged,  °the  sides 

BF,  FA',  A'B  of  the  colunar  are  congruent  with  a,  ft  +  TT,  7  —  TT,  while  the 

*  The  reader  should  be  warned  that  writers  on  spherical  trigonometry  are  in  the  habit 
of  taking  as  fundamental  the  halves  of  the  sines  of  a  triangle  and  of  its  polar,  which  they 
call  the  norm  of  the  sides  and  the  norm  of  the  angles  of  the  triangle  and  denote  by  n  and 

N.  One  elementary  text-book  quotes  Salmon  in  support  of  calling  the  functions  n  and  N 

sines ;  Salmon's  phrase  in  the  article  quoted  is  ambiguous,  but  his  practice  is  clear  and 
consistent,  and  is  that  of  von  Staudt,  which  is  followed  in  the  text.  The  use  of  the  norms 

is  due  to  a  comparison  of  3*63  and  3-69  below  with  the  classical  formula  1'54  for  the  area 
of  a  plane  triangle. 

+  Sometimes  2E  is  used,  and  often  the  excess  is  called  the  spherical  excess.  Name  and 
notation  are  alike  unhappy,  for  the  differential  geometry  of  any  surface  requires  the  angular 
excess  of  an  arbitrary  triangle,  but  not  the  half  of  the  excess. 
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angles  are  congruent  with  —  A,  B,  F;  we  define*  the  sides  and  the  angles  to 

have  these  values.    °The  perimeter  of  the  colunar  is  then  equal  to  the  peri-        -64 

meter  2<r,  and  the  polar  perimeter  has  the  value  2  (2  —  A).    °The  sine  of  the        -65 
colunar  is  —  T,  and  its  polar  sine  is  v. 

Mere  reversal  of  the  side  a  of  ABF  gives  a  triangle  which  bears  to  ABF 

the  relation  which  the  polar  of  the  first  colunar  of  ABF  bears  to  the  polar  of 

ABF.    This  is  a  triangle  whose  polar  is  a'fiy,  and  we  may  °take  its  sides  to       -66 

be  -a,  0,  7  and  its  angles  to  be  A,  B  +  TT,  F-TT;  "its  perimeter  is  then       -67 

2  (o-  -  o)  and  its  polar  perimeter  22,  while  °its  sine,  independently  of  any       -68 
convention,  is  T  and  its  polar  sine  is  —  v. 

If  the  internal  angles  of  a  triangle  on  a  sphere  of  unit  radius  are  all  positive 

and  less  than  TT,  the  triangle  and  its  first  colunar  together  compose  a  lune  of 

angle  A,-,  where  At-  is  the  internal  angle,  and  therefore  the  sum  of  the  areas  of 
these  two  triangles  is  the  fraction  Af/27r  of  the  area  of  the  sphere,  that  is,  is 
2Af.  But  the  triangle  and  its  opposite  together  with  the  three  colunars  and 

their  opposites  compose  the  whole  surface  of  the  sphere.  Hence  4  (A{  +  B<  +  F<) 
exceeds  the  area  of  the  sphere  by  four  times  the  area  of  the  triangle  : 

On  a  sphere  of  unit  radius,  the  area  of  a  triangle  each  of  whose  internal       «69 
angles  is  positive  and  less  than  two  right  angles  is  equal  to  the  angular  excess 

of  the  triangle.  - 

It  is  this  theorem  which  gives  interest  to  the  angular  excess,  and  to  formulae 

by  which  it  can  be  calculated  logarithmically  from  the  sides  alone,  without  the 
evaluation  of  the  individual  angles. 

•7.  The  effect  of  the  existence  of  triangles  related  to  any  given  triangle  as 
we  have  described  in  '4  and  '6  is  that  if 

/(a,/3,7,A,B,F)  =  0 
is  a  relation  which  holds  between  the  sides  and  the  external  angles  of  any 

spherical  triangle,  the  relation 

is  equally  general,  and  so  also  are 

and  the  eight  relations  derivable  from  these  four  by  allowing  /3  and  7  to  play 
the  parts  here  assigned  to  a;  it  need  hardly  be  said  that  the  various  changes 
do  not  necessarily  yield  distinct  formulae. 

*8.  The  fundamental  relations  between  the  sides  and  the  angles  of  a  triangle 
on  a  sphere  can  be  thrown  into  many  forms,  differing  in  elegance  and  in  utility, 
but  the  number  of  these  results  required  for  the  purposes  of  analytical  geometry 

*  It  is  seldom  necessary  to  distinguish  the  colunar  with  sides  a,  #  +  «-,  y-  IT  from  the 
colunar  with  sides  a,  ft  —  ir,  y  +  ir. 
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•11 

•12 

•13 

•14 

and  for  the  manipulation  of  oblique  axes  is  surprisingly  small;  usually  we  make 

direct  application  of  the  principles  of  projection  and  of  the  decomposition  of 

vectors  (notably  of  the  theorems  given  in  215'3  and  221*1,  applied  by  means 
of  221*41),  and  if  we  proceed  to  obtain  a  few  trigonometrical  results,  it  is  rather 
to  illustrate  the  application  of  these  principles  and  to  emphasise  the  generality 
of  the  formulae  than  from  any  insistent  need  of  the  formulae  themselves. 

313.  FUNDAMENTAL  FORMULAE  AND  SIMPLE  DEDUCTIONS. 

•1.   Let  the  directed  circles  b  and  c  meet  the  circle  A  in  the  pairs  of  points 

2u  2,'  and  Tj,  T/,  the  points  2j,  Tj  being  distinguished  from  their  opposites 
as   the   points  of  b,  c  _-— r   —  A 

among  whose  distances  .s^/     ̂ N^C^/^*^^ 
from    A    are    positive  />          /     >XX\  ̂ >S<.      v\      CJ_P> 
quadrants;  then  in  A 
the  quadrants  from  Sx 

to  ft  and  from  Tj  to  7 

are  positive,  and  there- 
fore cos  SjTj  is  cos  A 

and  cos  2/Tj  is  —  cos  A; 
also,  one  of  the  angles 

from  2/  to  F  is  ̂ TT  —  ft, 
and  one  of  the  angles 

from  B  to  Tj  is  £TT  —  7. 
A  unit  vector  in  F  is 
therefore  the  sum  of 

cos  ft  in  A  and  sin  ft  in 
2/,  and  a  unit  vector  in 
B  the  sum  of  cos  7  in  A 

and  sin  7  in  T,;  sym-  Fig.  21. bolically, 

lr  =  (cos  /3)A  +  (sin  j8)2/,   1B  =  (cos  7)A  +  (sin  7)^. 

By  221-44,  cos  FB,  which  is  cos  or,  can  be  regarded  as  £ lrlB,  and  by  221*16 

we  can  calculate  this  projected  product  from  *11  as  the  sum  of  four  parts;  since 

cosAA  =  l,  cosAT^O,  cos21'A  =  0,  cos  2iTa  =  —  cos  A, 
the  equality  deduced  is 

cos  a  =  cos  ft  cos  7  —  sin  ft  sin  7  cos  A, 

the  fundamental  equation  of  spherical  trigonometry,  which  implies  not  only 
the  corresponding  formulae  for  cos  ft  and  cos  7  but  also  the  complementary 

formulae  obtained  by  its  application  to  the  polar  triangle,  namely, 

cos  A  =  cos  B  cos  F  —  sin  B  sin  F  cos  a 

and  its  correlatives.   For  any  triangle  right-angled  at  A,  *12  gives 
cos  a  =  cos  ft  cos  7, 
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and  for  any  triangle  of  which  a  is  a  quadrant,  '13  gives 

cos  A  =  cos  B  cos  F.  "15 

Of  '14  and  '15,  the  first  is  especially  simple  to  use,  since  the  cosines  involved 
are  independent  of  the  directions  of  the  sides  of  the  triangle ;  moreover,  it 

can  be  proved  with  less  attention  to  detail  than  is  necessary  in  the  proof  of 

the  general  formula  '12,  for  if  the  triangle  is  right-angled  at  A  and  2  is 
either  intersection  of  b  with  A  and  T  either  intersection  of  c  with  A,  the  pro- 

jected product  of  (cos  y)A  +  m-s.  and  (cos  #)A  4-  nT  is  cos  /9  cos  7  whatever  the 

values  of  m  and  n.  In  '15,  the  cosines  are  independent  of  the  directions  of 
the  sides  of  the  polar  triangle  a/3y,  but  depend  on  the  directions  of  the  sides 
of  ABF. 

•2.  It  is  easy  to  frame  proofs  of  '12  and  its  consequences  on  the  basis  of  projection  and 
decomposition  without  the  use  of  projected  products.  Since  there  are  angles  IT  —  A  from  TX 

to  2t'  and  A  -  £  IT  from  2j'  to  y,  the  vector  sin  ft  in  2t'  is  the  sum  of  —  sin  y  cos  A  in  Tt  and 
sin  y  sin  A  in  y,  and  the  unit  vector  in  r  is  the  sum  of  these  two  vectors  and  cos  ft  in  A; 

since  y  is  at  right  angles  to  B,  the  projection  cos  a  of  lr  on  B  is  the  sum  of  the  two  pro- 

jections cos /3  cosy,  —  sin  ft  cos  A  sin  y.  This  proof  of  '12  lacks  the  symmetry  of  the  earlier 
proof,  but  is  equally  simple ;  in  more  complicated  problems  the  use  of  projected  products 
often  imparts  simplicity  otherwise  unobtainable,  permitting  as  it  does  the  decomposition 

of  two  vectors  instead  of  the  resolution  of  only  one.  In  the  case  of  a  right-angled  triangle, 
the  simplest  projective  proof  is  perhaps  an  unsymmetrical  proof :  if  the  angles  at  A  are 

right  angles,  the  projection  of  lr  on  the  plane  OAB  has  the  directions  of  A  and  A'  and  its 
amount  in  the  former  of  these  directions  is  cos  ft;  the  fundamental  formula  -14  is  therefore 

an  immediate  consequence  of  142-23. 

•3.  The  triangle  T2'«A,  where,  in  agreement  with  the  notation  of  "1,  T2'  is 
the  point  of  intersection  of  c  and  B  separated  from  7  by  a  positive  quadrant, 

is  right-angled  at  T2' ;  also  one  value  of  T2' A  is  |TT  —  7  and  one  value  of  T2'a  is 
B  —  |TT;  hence  by  '14 

cos  Aa  =  sin  7  sin  B,  -33 

and  by  applying  this  formula  to  the  polar  triangle  we  have 

cos  a  A  =  sin  /3  sin  T,  -34 

so  that  also*  sin  /3  sin  F  =  sin  7  sin  B;  -35 

at  once  comes  the  set  of  formulae 

sin  a  _  sin  (3  _  sin  7 

sin  A      sin  B      sin  F ' 

•4.  The  use  of  the  functions  T,  v  enables  us  to  introduce  symmetry  with- 

out loss  of  brevity:  the  result  134'72,  proved  in  a  manner  which  implied  its 

*  From  -35  we  have  sin  a  sin  ft  sin  r  =  sin  y  sin  a  sin  B,  and  therefore  the  three  products 
sin  ft  sin  y  sin  A,  sin  y  sin  a  sin  B,  sin  a  sin  ft  sin  r  have  a  common  value.  The  function  sin  OABr 

is  often  defined  as  the  function  with  this  value.  Since  then  '41,  which  is  13472,  follows  at 
once  from  -33,  the  relation  of  sin  QRST  to  the  volume  of  the  tetrahedron  QRST  is  readily 
deduced. 

•30 
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generality,  gives  on  application  to  a  triangle  and  its  polar  the  two  sets  of 
formulae 

•41  T  =  cos  Aa  sin  a  =  cos  Bft  sin  ft  =  cos  Ty  sin  7, 

•42  v  =  cos  Aa  sin  A=  cos  B/3  sin  B  =  cos  Ty  sin  F ; 

whether  in  these  we  substitute  expressions  of  the  form  contained  in  '33  or 
expressions  of  the  form  contained  in  '34  the  result  is  the  same,  the  two  sets 
of  formulae 

•43  T  =  sin  ft  sin  7  sin  A  =  sin  7  sin  a  sin  B  =  sin  a  sin  ft  sin  F, 

•44  v  =  sin  B  sin  F  sin  a  =  sin  F  sin  A  sin  ft  =  sin  A  sin  B  sin  7, 

which  give  the  sines  of  the  triangles  in  the  forms  which  are  the  most  con- 

venient although  unsymmetrical.  We  can  replace  "36  by 

T  _  sin  a  _  sin  /3  _  sin  7 

v     sin  A     sin  B     sin  F ' 
The  commonest  symmetrical  expression  involving  the  sine  of  a  triangle 

expresses  the  square  of  this  function;  we  may  obtain  this  formula  without 

difficulty  from  '43  and  *12,  which  give 

T2  =  sin2  ft  sin2  7  —  (cos  B  cos  7  —  cos  a)2 
and  therefore 

•46  T*  =  1  —  cos2  a  —  cos2  ft  —  cos2  7  +  2  cos  a  cos  ft  cos  7, 
but  the  essence  of  the  formula  is  that  it  can  be  exhibited  in  the  form 

•47  T2=       1        cos  7     cos/3 

cos  7        1        cos  a 

cos  ft     cos  a        1 

and  we  shall  presently  find  a  point  of  view  from  which  this  determinantal  form 

is  understood  and  the  crude  passages  from  '43  and  '12  to  '46  and  '47  are  seen 
to  lack  even  the  virtue  of  necessity.  Correlative  to  *46  and  '47  are 

•48  vz  - 1  -  cos2  A  -  cos2  B  -  cos2  F  +  2  cos  A  cos  B  cos  F, 

•49  v2  = 1  cos  F  cos  B 

cos  F  1  cos  A 

cos  B  cos  A  1 

•5.   Any  deduction  from  the  fundamental  formulae  already  proved  is  valid 
if  it  does  not  involve  extraction  of  a  root. 

For  example,  elimination  of  cos  {3  and  sin  ft  between 

cos  a  =  cos  ft  cos  7  —  sin  ft  sin  7  cos  A, 

cos  ft  —  cos  7  cos  a  —  sin  7  sin  a  cos  B, 

sin  ft  sin  A  =  sin  a  sin  B, 

gives  the  relation 

•51  cos  B  cos  7  +  cot  A  sin  B  -f  cot  a  sin  7  =  0, 
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as  useful  as  it  is  inelegant;  '51  is  typical  of  a  group  of  six,  and  application  of 
this  group  to  the  polar  triangle  reproduces  the  same  group  in  a  different 
order. 

Again, 

Ta  =  sin  a  sin  /3  sin  F  .  sin  7  sin  a  sin  B  =  sin  a  sin  ft  sin  7  .  sin  a  sin  B  sin  F, 

that  is,  T2  =  v  sin  a  sin  /3  sin  7,  -52 

and  similarly  or  from  the  polar  triangle, 

w»  =  T  sin  A  sin  B  sin  F.  -53 

*6.   From  *12  we  have 

fsin  /9  sin  7(1  +  cos  A)  =  cos  (/3  —  7)  —  cos  a  =  2  sin  (cr  -  /3)  sin  (<r  —  7), 

Lsin  /9  sin  7(1—  cos  A)  =  cos  a  —  cos  (/3  -f  7)  =  2  sin  a-  sin  (o-  —  a), 
whence  we  can  write  both 

:cos2  |  A  =  sin  (cr  -  /3)  sin  (a-  —  y)/sm  /3  sin  7,  -61 

sin2  J  A  =  sin  cr  sin  (cr  —  a)/sin  /3  sin  7, 
and 

T  cot  |  A  =  2  sin  (a-  —  /3)  sin  (cr  —  7),    T  tan  \  A  =  2  sin  cr  sin  (cr  —  a),  -62 

obtaining  the  valuable  expression 

T2  =  4  sin  cr  sin  (cr  —  o)  sin  (cr  —  /3)  sin  (cr  —  7),  -63 

and  the  equalities 

:sin  (cr  —  a)  sin  |B  sin  £F  =  sin  cr  cos  ̂ B  cos  £F,  -64 

sin  (cr  —  7)  cos  £Fsin  |B  =sin  (cr  —  /3)cos  £Bsin  |F, 
which  enable  us  to  write 

cos  |B  cos  ̂ F     sin  |B  sin  £F  _        cos  £(B  -  F)  cos  |  (B  +  F) 

C 

C 

sin(cr  —  a)  sine-         ~  2  cos  |  a  sin  ̂ (/3  +  7)     —  2sin|a  cos  ̂ (/3  +7) 
sin  ̂ B  cos  |F     sin  ̂ F  cos  ̂ B  sin  |(B  -  F)  sin  |(B  +  F) 

sin(cr  —  /3)          sin(cr  —  7)     ~  —  2cos|asin^(/3  —  7)"  2  sin  |a  cos  |(/S  —  7)' 
The  correlatives  of  -61,  '62,  '63  are 

Tcos2  \a  -  sin  (S  -  B)  sin  (2  -  F)/sin  B  sin  F,  -67 

|_sin2  ̂a  =  sin  2  sin  (2  -  A)/sin  B  sin  F, 

v  cot  |a  =  2  sin  (2  -  B)  sin  (2  -  F),   v  tan  £a  =  2  sin  2  sin  (2  -  A),  -68 

v2  =  4  sin  2  sin  (2  -  A)  sin  (2  -  B)  sin  (2  -  F).  -69 

Certain  of  these  formulae  are  ambiguous  in  form  though  not  in  fact.  For 

example,  sin  cr  depends  on  the  actual  selections  of  a,  /3,  7,  but  a  change  of  any  one 

of  these  angles  by  2?r,  which  alters  the  sign  of  sin  cr,  alters  the  sign  also  of 

every  other  denominator  in  '65. 
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314.  THE  INDEX  OF  MEASUREMENT  AND  ITS  USES. 

•1.   From  3-61  it  follows  that 

Bin'jBsin'ir     cos'jA 
sin'o-  sin2  a  ' 

•12        that  is,  that  4T2  sin2  £  A  sin2  £  B  sin2 1 F  =  v2  sin2  <r, 

and  it  is  evident  that  3'65  and  3'66  could  be  simplified  to  a  considerable 
extent  if  the  square  roots  could  be  extracted  in  -11.   Let  us  then  write 

13  2Tsin|A  sin|Bsin|F= /cusino-, 
where  k  is  necessarily  either  + 1  or  -  1.   The  value  of  k  is  not  intrinsic  to  the 

triangle,  for  to  substitute  A  +  2-7T  for  A  in  '13  without  changing  any  of  the 
14  other  measurements  would  involve  a  change  in  k\  we  call  k  the  ° index  of 

measurement  of  the  triangle.    It  follows  from  3'65  that,  with  the  value  of  k 
defined  by  '13, 
15  2T  sin  |  A  cos  |B  cos  £F  =  kv  sin  (a  —  a). 

The  value  of  the  equal  ratios  in  3'65  is  kv/2T  sin  |  A,  that  is,  k  cos  £  A/sin  a, 
and  the  value  of  the  equal  ratios  in  3'66  is  kv/ZT  cos£  A,  that  is,  k  sin  £  A/sin  a. 

•2.    We  have  now,  using  these  values  of  the  ratios,  Delambre's  formulae 
21  fcos  £a  cos  £  (B  +  F)  =  —  k  cos  \  A  cos  \  (0  +  7), 

|_sin  £a  cos £  (B  —  F)  =      k  cos  |  A  sin £  ($  +  7), 

[
C
O
 

si
l 

the  first  or  last  member  of  this  group,  applied  to  the  polar  triangle,  suffices  to 

23  shew  that  °  the  index  of  the  polar  triangle  is  the  same  as  the  index  of  the 
original  triangle,  and  when  this  is  known,  the  group  reproduces  itself.    The 

identity  of  index  can  be  expressed  in  many  ways ;   for  example,  we  have 

from  -13 
24  sin  o-  sin  2  =  4  sin  £a  sin  £  /3  sin  £7  sin  |  A  sin  £B  sin  £F. 

"3.  The  problem  of  expressing  2  in  terms  of  the  sides  only  is  equivalent  to 
that  of  evaluating  the  angular  excess  or  in  elementary  cases  the  area  of  the 

triangle,  and  is  one  on  which  some  ingenuity  has  been  expended. 

Cagnoli's  solution  is  given  by  combining 
31  2u  sin  |«sin  £/3sin£7  =  £Tsin  2, 

the  correlative  of  -13,  with  3'52,  when  we  have 

32  4<k  cos  £  a  cos  %ft  cos  £7  sin  2  =  T. 

The  numerical  value  of  T  is  given  in  terms  of  the  sides  by  3'63,  and  we  can 
write  explicitly 

34  4  cos2  \  a  cos2  £  /8  cos2  £  7  sin2  2  =  sin  <r  sin  (o-  —  a)  sin  (a-  -  /8)  sin  (<r  —  7). 

•22  pcos|asin|(B  + F)=      &  sin  £  A  ops 
a  sin  £  (B  —  F)  =  —  k  sin  |  A  sin  £  (/3  —  7); 
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•4.   The  modification  of  a  formula  due  to  Lhuilier  is  more  difficult.   From  '21 

and  -22,  treating  2  as  £  A  -I-  £  (B  +  T),  we  have 

cos  £  a  (1  +  k  cos  2) 

=  cos"!  A  {cos  Ja  -  cos  |  (£  +  7)}  +  sin2  1  A  (cos  $a  -  cos  £  (£  -  7)}, 

cosijta(l  —  &cos£) 

=  cos4  £  A  {cos  |  a  +  cos  \  (£  +  7)}  +  sin8  £  A  {cos  £  a  +  cos  £  (0  -  7)}  , 

whence  by  use  of  3'61 

cos  £  a  sin  /3  sin  y  (l+£cos2)  '41 

cos  £  a  sin  /3  sin  y  (1  -£cos2)  -42 

But  identically* 

cos  $(<r-0)  cos  £  (<r  -  7)  -  cos  !  <r  cos  £  (<r  -  a)  =  sin  £/9  sin  £7,  '43 

sin  £  (a-  -  /3)  sin  £  (<r  -  7)  +  sin  £<r  sin  £  (<r  -  a)  =  sin  |/8  sin  ̂ 7.  '44 

Substituting  in  '41,  '42  we  have 

^cos£aeos£/3cos^7(l  +  &cos2)  "45 

=  sin  |cr  sin  |(o-  —  a)  sin  £  (cr  —  $)  sin  £  (<r  —  7), 

^  cos  \  a  cos  |  ft  cos  £7(1  —  &  cos  2)  '46 

=  cos  |<r  cos  \  (a  -r  a)  cos  |(o-  —  /8)  cos  £  (o-  —  7), 

and  of  these  formulae,  one  gives  cos2  £$  and  the  other  sin2  ̂ S,  whether  the  index 
is  positive  or  negative.  To  make  a  formal  reduction  we  may  write  k  cos  2  as 

cos  {2  +  1(1  —  k)  TT),  and  division  of  one  result  by  the  other  gives 

cot2  {|S  +  i  (1  -  k)  TT]  =  tan  |<r  tan  \  (a-  -  a)  tan  |(o-  -  £)  tan  £  (o-  -  7),  '47 

or  on  the  substitution  of  \TT  —  JE  for  ̂ S, 

tan8{£E  +  i(l  -  A;)TT}  =  tan  £<r  tan  \(a  -  a)  tan  £  (<r  -  /3)  tan  £  (<r  -  7)  5  >48 

this  is  the  adaptation  to  the  general  triangle  of  Lhuilier's  elegant  formula  for 
calculating  the  angular  excess. 

*  Direct  proof  of  these  identities  is  superfluous.    It  follows  from  3'61  that 
sin  (o-  -  /3)  sin  (a  -  y)  +  sin  <r  sin  (<r  -  a)  =  sin  £  sin  y, 

and  since  a,  £,  y  are  independent,  this  relation  must  be  an  identity  deducible  from  the 
relation 2o-=a+/3+y. 

Hence  one  consequence  of  the  relation 

is  the  identity  '44,  and  one  consequence  of  the  relation 

v-\vss\(a- 
is  the  identity  -43. 
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•5.  All  the  formulae  of  this  article  have  of  course  their  correlatives,  and  it 
will  be  found  that  changes  also  take  place  when  they  are  applied  to  the 

colunars.  If  the  first  colunar  is  measured  according  to  the  conventions  speci- 

fied in  2'6,  the  only  terms  of  '13  to  change  are  T  and  sin|A,  which  change 
sign,  and  therefore  the  index  of  the  colunar  is  the  same  as  that  of  the  original 
triangle.  As  examples  of  the  deductions  that  are  possible  may  be  mentioned 

•51  \  cos  |a  sin  |/9  sin  £7  (1  +  k  cos  (2  —  A)} 

=  sin  \  a  sin  |  (a  —  a)  cos  |  (o-  —  $)  cos  \(<r  —  7), 

•52  £  cos  £a  sin  £y3  sin  £7  {1  —  k  cos  (2  —  A)} 

=  cos  \a cos  \ (<r  —  a) sin |(<r  —  /3) sin  £ (cr  —  7), 

which  come  from  "45,  '46  without  further  investigation.   Also  from  '21,  '22  we 
have 

—  k  cos  |a  cos  2  =  cos2  \  A  cos  \  (/3  +  7)  +  sin2 1 A  cos  \  (fi  —  7) 

=  cos  ̂ /3  cos  £7  —  sin  £/3  sin  £7  cos  A, 

and  therefore  on  substitution  for  cos  A, 

•53  —  4&  cos  £a  cos  £/9  cos  \  7  cos  2  =  1  +  cos  a  +  cos  /3  4-  cos  7; 

application  of  this  formula  to  the  first  colunar  gives 

•54  —  4&  cos  ̂ a  sin  |/3  sin  1 7  cos  (S  —  A)  =  1  +  cos  a  —  cos  /S  —  cos  7. 
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321.  CARTESIAN  AXES  IN  A  PLANE;  COUNTERSYMMETRY; 
THE  POLAR  OF  A  PLANE  FRAME. 

•1.  The  Cartesian  framework  in  a  plane  is  composed  only  of  two  distinct 
directed  lines,  the  axes,  concurrent  in  a  single  point,  the  origin.  The  origin 

we  denote  by  0,  the  axes  are  distinguished  as  the  first  axis  or  #-axis,  denoted 

by  X'OX  or  by  £,  and  the  second  axis  or  ̂ /-axis,  denoted  by  F'OFor  by  77; 
the  pair  of  axes  forms  the  frame  OX  Y.  The  points  of  an  axis  which  lie  on  the 

positive  side  of  the  origin  in  that  axis  are  said  to  compose  the  positive  half  of 

the  axis,  and  the  points  which  lie  on  the  negative  side  to  compose  the  negative 

half.  Usually  the  symbols  X ,  X',  Y,  Y'  are  not  assigned  to  definite  points  in 
the  axes;  if  X  does  denote  a  point,  that  point  lies  in  the  positive  half  of  £, 

and  in  any  case  °a  point  F  is  said  to  lie  in  OX  if  it  is  at  0  or  on  the  positive  -18 
side  of  0  in  £,  even  if  X  has  been  assigned  to  a  definite  point  which  in  the 

literal  sense  is  in  OF;  corresponding  conventions  attach  to  the  uses  of  X',  Y,  Y'. 

•2.  We  denote  the  images  of  f,  97  in  a  unit  circle  with  centre  fl  by  5,  H. 

The  two  rays  S'OE,  H'OH,  denoted  also  by  fn,  ?/Q,  determine  a  frame  liSH 
parallel  to  OXY  which  is  called  the  °  anchored  frame  corresponding  to  OXY',  -22 
if  we  have  to  deal  with  only  one  frame  in  a  plane,  often  we  can  suppose  H  to 
coincide  with  0  and  avoid  the  mention  of  anchored  frames,  but  if  we  have  to 

compare  frames  with  different  origins  the  comparison  of  the  directions  of  their 
axes  is  assisted  by  the  use  of  parallel  frames  with  a  common  independent 

origin.  We  notice  that  in  the  frame  OHH  the  symbol  E  is  assigned  to  a 
definite  point,  the  point  of  fn  whose  distance  from  fl  in  the  direction  of  f a  is 

unity,  but  we  say  that  a  point  F  is  in  HE  even  if  literally  F  is  in  the  pro- 
longation of  HE  beyond  E. 

•3.  The  use  of  Cartesian  axes  in  a  plane  does  not  imply  the  adoption  of 
a  cyclic  convention  for  the  plane:  many  of  the  results*  of  algebraical  geometry 
are  proved  by  means  of  coordinates  but  without  reference  to  the  measurement 

of  angles.  But  in  kinematical  plane  geometry  cyclic  direction  is  indispensable 

*  For  example,  results  relating  to  the  analysis  of  multiple  singularities  of  curves  and 
propositions  in  the  theory  of  residuation . 
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and  is  assumed  throughout.    The  fundamental  characteristic  which  a  cyclic 

•31        convention  confers  on  a  frame  is  a  sign:  °a  frame  is  said  to  be  positive  or 
negative  according  as  the  positive  half  of  the  second  axis  is  on  the  positive 
side  or  on  the  negative  side  of  the  first  axis,  and  a  positive  frame  differs  from 

a  negative  frame  even  if  the  angles  between  the  axes  are  the  same  in  the  two 
frames.    It  is  to  be  remarked  that  if  the  positive  half  of  77  is  on  the  positive 

•33        side  of  £  then  the  positive  half  of  £  is  °  necessarily  on  the  negative  side  of  rj; 
fundamentally  this  is  the  asymmetrical*  feature  of  plane  geometry  to  which 

allusion  has  been  made  already  in  126'3. 

•4.    In  a  prepared  plane,  the  angles  from  the  #-axis  to  the  y-axis  of  a  frame 

•41  compose  a  congruence,  and  of  these  angles  we  select  one  to  be  called  °the  angle 
of  the  frame;  this  angle  we  denote  by  &>,  adding  if  necessary  some  mark 

•42  indicative  of  the  frame  to  which  it  belongs.  °The  circular  functions  cosa>, 
sin  a)  are  independent  of  all  that  is  arbitrary  in  the  choice  of  <u,  and  cos  o>  is 

•44  independent  also  of  the  cyclic  direction  of  the  plane,  but  °the  sign  of  sin  o>  is 
the  sign  of  the  frame  OXY  itself  and  depends  on  this  direction.  If  we  have 

only  one  frame  to  consider  and  the  cyclic  direction  of  the  plane  is  not  otherwise 
determined,  we  may  decide  that  the  angle  numerically  less  than  TT  from  £  to 

77  is  to  be  positive;  if  the  cyclic  direction  and  the  two  rays  which  are  to  serve 
as  axes  are  given,  it  may  be  possible  for  us  to  allot  the  parts  of  the  two  symbols 

£,  77  in  such  a  way  that  the  frame  is  positive;  but  if  both  the  cyclic  direction 
and  the  frame  are  given,  the  frame  may  be  positive  or  negative,  and  if  we  have 

to  compare  different  frames  we  must  be  prepared  to  find  them  of  different 

•46       signs;  °to  assume  either  coso>  or  sinw  to  be  essentially  positive  is  to  impose 
•47  on  our  formulae  a  restriction  at  once  unwarrantable  and  unnecessary.  °The 

angle  &>  is  subject  to  only  the  one  condition  that  it  can  not  be  an  integral 

•48  multiple  of  TT.  °The  congruence  to  which  the  angle  of  the  frame  OSH  belongs 
is  the  congruence  to  which  &>  belongs,  and  when  we  use  I13H  as  the  anchored 

•49  frame  corresponding  to  OJTFwe  °  define^  the  angle  of  the  anchored  frame  to be  identical  with  <w. 

•51  '5.  Two  frames  in  a  plane  are  said  to  be  ° congruent  if  on  the  giving  of 
direction  to  the  plane  the  frames  acquire  congruent  angles,  and  one  frame  in 

•52  a  plane  is  said  to  be  a  ° reverse  of  another  if  the  angle  of  one  is  congruent  with 
the  negative  of  the  angle  of  the  other;  the  frames  congruent  with  OX  Y  and 

•53  the  reverses  of  OXY  are  the  frames  °  equal  to  OX  Y  in  the  plane  of  OXY. 
A  frame  in  one  prepared  plane  may  be  congruent  with,  or  a  reverse  of,  a  frame 
in  another  prepared  plane,  but  the  relation  of  equality  between  two  frames  in 
different  planes  can  not  be  analysed  if  either  plane  is  unprepared. 

*  The  use  of  this  word  implies  that  symmetry  is  certainly  absent ;  unsymmetrical  is 
used  if  symmetry  is  not  known  to  be  impossible  but  is  known  to  be  accidental, 

t  Compare  the  comment  on  12-48  above! 
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•6.  Let  x,  y  be  two  lines  in  a  plane,  concurrent  in  a  point  0,  and  let  I,  m  be 
the  lines  through  0  at  right  angles  to  x,  y\  then  the  relation  of  the  pair  of 
lines  x,  y  to  the  pair  of  lines  I,  m  is  the  same  as  the  relation  of  the  pair  of 
lines  I,  m  to  the  pair  of  lines  x,  y.  If  however  for  lines  we  substitute  rays, 
direct  symmetry  disappears  and  the  restoration  of  some  form  of  symmetry  is 

an  important,  matter;  no  angle  from  X  to  £  is  congruent  with  any  angle  from 
£  to  A,  unless  £  and  X  are  parallel,  and  if  an  angle  from  £  to  X  is  a  positive 

right  angle  the  ray  making  a  positive  right  angle  with  X  is  the  reverse  of  £ 
The  species  of  symmetry  which  we  can  secure,  which  we 

(_)  call  °  counter  symmetry,  is  easily  perceived  from  a  figure,  -63 
and  is  suggested  by  the  consideration  that  if  an  angle  from 
£  to  77  is  a  positive  right  angle  the  ray  chosen  for  X  is  to 
coincide  with  £  and  the  ray  chosen  for  /*  is  to  coincide 

with  77;  °we  take  X  to  be  a  reversed  normal  to  77  and  /*  to  -64 
be  a  direct  normal  to  f ;  then  £  is  a  reversed  normal  to  //, 

and  77  is  a  direct  normal  to  X,  and  therefore  °  the  relation  -es 
of  £  and  77  to  X  and  /*  is  the  same  as  the  relation  of  X  and  //, 

to  £  and  77.    °Countersy  name  try  results  also  if  we  take  for  X  a  direct  normal  to        -66 
77  and  for  /*  a  reversed  normal  to  £,  and  since  in  this  case  X  and  /j,  coincide  with 

£  and  77  if  an  angle  from  £  to  77  is  a  negative  right  angle,  we  may  refer  to  this 

symmetry  as  ° negative  countersymmetry  to  distinguish  it  from  the  positive        -67 
countersymmetry  first  described;  if  there  is  positive  countersymmetry  between 

£,  »/  and  X,  p,  there  is  negative  countersymmetry  between  £,  77  and  X',  /*'. 

•7.    If  two  rays  are  not  parallel,  a  ray  at  right  angles  to  one  of  them  is  not 
parallel  to  a  ray  at  right  angles  to  the  other.    Hence  if  two  rays  £,  77  are  the 
axes  of  a  frame  OX  Y  in  a  directed  plane,  the  reversed  normal  X  through  0  to 

77  and  the  direct  normal  /u,  through  0  to  £  are  the  axes  of  a  frame  OLM;  this 

frame  is  called  the  ° polar  frame,  or  the  direct  polar  frame,  of  OX  Y,  and  its        -73 

angle,  which  is  congruent  with  TT  —  &>,  is  °defined  to  be  TT  —  &>.    The  frame        -73 
OL'M'  is  called*  the  retrograde  polar  frame  of  OXY,  and  when  used  in  that 

capacity  is  defined  also  to  have  the  angle  IT—  o>.    °The  frame  OXY  is  itself       -74 

the  direct  polar  of  OLM  and  the  retrograde  polar  of  OL'M',  while  the  direct 
polar  of  OL'M'  and  the  retrograde  polar  of  OLM  are  the  same,  the  frame 

OX'  Y',  which  is  the  reflection  of  OX  Y  and  is  defined  to  have  the  angle  &>. 
We  °denote  the  polar  of  a  frame  OXY  consistently  by  OLM,  and  the  corre-        -79 
spending  anchored  frame  by  HAM. 

If  the  axes  of  a  frame  are  rays  selected  from  those  intrinsic  to  a  problem, 

they  may  be  denoted  already  by  symbols  other  than  £,  77,  and  a  derivative 

notation  for  the  polar  frame  may  be  wanted;  we  denote  the  polar  of  pa-  by  pa 
of  QRS  by  QRS. 

*  To  speak  of  the  polar  frames  as  the  positive  polar  and  the  negative  polar  would  be 
misleading,  since  the  two  frames  have  the  same  sign,  which  is  that  of  the  frame  from 
which  they  are  derived. 
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322.   CARTESIAN  AXES  IN  SPACE;  THE  POLAR  OF  A  FRAME  IN  SPACE. 

•1.   In  space  of  three  dimensions  the  axes  of  a  frame  are  three  rays,  concurrent 

•12       in  the  origin  and  not  coplanar.    We  °  denote  the  origin  by  0,  the  axes  by 
X'OX,  TOY,  Z'OZ  or  £  77,  £  and  the  frame  by  OXYZ;  as  in  a  plane,  an  axis 
has  a  positive  half  and  a  negative  half,  and  a  point  which  is  in  £  but  not  on 

the  negative  side  of  0  in  £  is  said  to  be  in  OX.    Rays  £0,  ̂ n,  £n  parallel  to 

'15        £>  ij,  £  through  a  point  O  are  the  axes  of  a  frame  OH  HZ  which  is  the  "anchored 
frame  corresponding  to  OXYZ;  the  points  E,  H,  Z,  the  images  of  the  axes 

£,  77,  £,  are  the  vertices  of  a  spherical  triangle  which  is  called  the  spherical 

•16        triangle  of  the  frame,  or  briefly  the  ° frame  triangle.   In  prepared  space  a  frame 
•17        has  a  definite  sign,  dependent  on  the  spatial  convention;  °this  sign  is  the  sign 

of  the  frame  triangle,  and  it  is  the  common  sign  of  the  angles  numerically  less 
than  TT  from  77  to  £  round  £,  from  £  to  £  round  77,  and  from  £  to  77  round  f,   Often 

if  only  one  frame  has  to  be  considered,  we  can  determine  the  spatial  convention 

by  requiring  this  frame  to  be  positive,  or  we  can  determine  the  direction  of 
one  axis  in  the  undirected  line  containing  it  by  requiring  the  frame  to  be 

positive,  but  sometimes  we  have  to  take  the  sign  of  a  frame  as  we  find  it;  to 

be  really  general,  definitions  and  formulae  must  be  applicable  to  frames  of 
either  sign. 

•2.  The  planes  OYZ,  OZX,  OX Y are  called  the  planes  of  the  frame  OXYZ; 
they  are  definite  planes,  for  if  two  of  the  axes  ff ,  77,  £  lay  in  the  same  line  the 
three  axes  would  be  coplanar;  the  plane  OYZ  is  called  the  first  reference 

plane,  the  7/s-plane,  or  the  #-plane,  and  the  planes  OZX,  OXY  have  corre- 
sponding names.  On  the  unit  sphere  the  planes  of  the  frame  OXYZ  are 

represented  by  the  three  great  circles  in  which  are  the  sides  of  the  frame 

triangle  BHZ.  It  is  not  for  all  purposes  necessary  to  adopt  a  spatial  conven- 
tion, and  still  less  is  it  essential  to  give  cyclic  direction  to  the  planes  of  a 

frame ;  moreover,  to  give  cyclic  direction  to  the  planes  of  a  particular  frame 

is  not  to  place  ourselves  in  a  position  to  give  a  satisfactory*  cyclic  direction 
to  every  plane.  Nevertheless  for  the  sake  of  brevity  we  give  direction  to  the 

planes  of  a  frame;  we  denote  the  prepared  reference  planes  by  A,  M,  N. 

•3.  The  angles  in  A  from  77  to  f  form  one  congruence,  the  angles  in  M 
from  £  to  £  form  a  second  congruence,  and  the  angles  in  N  from  £  to  77  form 

•31  a  third  congruence;  °from  each  of  these  congruences  one  member  is  chosen, 
arbitrarily  or  in  accordance  with  some  principle  that  is  itself  arbitrary,  and 
the  three  chosen  angles,  which  we  denote  by  a,  ft,  7,  are  called  the  biaxial 

•32  angles  of  the  frame  OXYZ.  Similarly  three  °biplanar  angles  A,  B,  F  of  the 
frame  are  obtained  by  selection  from  the  congruences  of  angles  from  M  to  N 

•33  round  £,  from  N  to  A  round  77,  and  from  A  to  M  round  £  °0f  the  angles 
«,  ft,  7,  A,  B,  F  none  can  be  integral  multiples  of  TT,  and  of  the  angles 
±a±/8  +  7,  +A  +  B  +  F  none  can  be  integral  multiples  of  2?r,  but  the 

*  Compare  114'11  on  p.  7  above. 
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biaxial  angles  and  biplanar  angles  of  a  frame  are  not  restricted  in  sign  or 
mjuired  to  lie  within  any  specified  limits,  nor  is  the  choice  of  one  of  these 

angles  from  the  congruence  to  which  it  belongs  dependent  in  any  way  on 
the  selections  made  from  the  other  congruences. 

•4.  In  every  congruence  which  does  not  consist  of  integral  multiples  of  ir  there  is  one 
and  only  one  angle  numerically  less  than  ir,  and  our  formulae  are  unchanged  if  we  assume 

the  biaxial  angles  and  the  biplanar  angles  of  a  frame  to  lie  between  —  -n  and  ir ;  also,  to 
n-viT.se  A  is  to  change  the  sign  of  a  while  leaving  unaffected  /3  and  y  and  the  directions  of 
|,  77,  f.  Thus  with  given  axes  we  may  fix  our  ideas  by  supposing  the  biaxial  angles  and 
the  biplanar  angles  to  be  numerically  less  than  ir  and  the  biaxial  angles  to  be  positive; 
the  cyclic  directions  of  the  planes  of  reference  are  then  implicitly  determined,  and  the 
biplanar  angles  are  all  positive  or  all  negative  according  as  the  frame  itself  is  positive  or 
negative.  No  complications  are  caused  by  the  adoption  of  the  set  of  conventions  just 
described,  but  in  using  a  common  phrase  we  have  criticised  the  common  practice: 
unnecessarily  to  fix  an  idea  is  almost  always  wrong,  for  an  idea  shews  its  strength  in  its 

mobility.  In  this  connection  see  the  end  of  435*2  on  p.  231  below. 

•5.  By  giving  direction  to  the  plane  OYZ  we  give  direction  also  to  the 
great  circle  through  H  and  Z,  and  to  a  frame  which  has  prepared  planes  as 
well  as  directed  axes  corresponds  a  spherical  triangle  of  the  kind  considered 

in  the  last  chapter.  The  sides  of  this  triangle  are  congruent  with  the  biaxial 

angles  of  OXYZ,  and  the  external  angles  with  the  biplanar  angles  of  OXYZ, 

and  having  chosen  definite  biaxial  angles  and  biplanar  angles  for  a  frame,  we  • 

"define  the  sides  and  the  external  angles  of  the  frame  triangle  to  be  identical  -51 
with  the  chosen  angles.  The  trigonometrical  functions  of  the  biaxial  angles 

and  biplanar  angles  of  a  frame  are  not  independent,  but  the  system  of  re- 
lations between  these  functions  is  a  direct  consequence  of  the  relation  of  the 

angles  to  the  frame  triangle. 

•6.  The  normals  through  0  to  the  prepared  planes  A,  M,  N  are  called  the 
normals  of  the  frame  OXYZ ;  they  are  three  rays  which  we  denote  by  A,,  /*,  v, 

and  they  are  the  axes  of  a  frame  OLMN.  Since  //.  is  at  right  angles  to  £  and  £", 
and  v  is  at  right  angles  to  £  and  77,  the  plane  through  p,  and  v  is  at  right 
angles  to  £,  and  we  denote  this  plane  with  the  cyclic  direction  that  renders  £ 

one  of  its  normals  by  H;  similarly  H,  Z  denote*  the  planes  through  0  of 
which  77,  £  are  normals,  and  these  are  prepared  planes  of  the  frame  OLMN. 
The  frame  OLMN  with  X,  //,,  v  for  axes  and  H,  H,  Z  for  planes  is  called  the 

0 polar  of  the  frame  OXYZ  with  £,  77,  £  for  axes  and  A,  M,  N  for  planes ;  the  -62 

relation  between  the  frames  is  °  symmetrical  and  is  described  most  simply  by  -63 
the  statement  that  the  normals  of  each  frame  are  the  axes  of  the  other.  As 

the  points  E,  H,  Z  are  the  images  of  the  normals  to  the  prepared  planes 
denoted  by  the  same  letters,  so  we  denote  by  A,  M,  N  the  images  of  the 
normals  to  the  prepared  planes  A,  M,  N  ;  the  frame  HAMN  is  the  anchored 

frame  corresponding  to  OLMN,  and  is  the  polar  of  the  anchored  frame  HE  HZ. 

*  The  use  of  S,  H,  Z  for  prepared  planes  as  well  as  for  points  of  the  unit  sphere,  and  of 
A,  M,  N  for  points  of  the  unit  sphere  as  well  as  for  prepared  planes,  involves  no  confusion. 
N.  8 
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The  spherical  triangle  AMN  is  the  frame  triangle  of  OLMN,  and  it  is  the 

triangle  described  in  12'4  as  the  polar  of  HHZ.  As  with  the  polar  of  a 

^66  spherical  triangle  so  with  the  polar  of  a  frame,  we  °  define  the  biaxial  angles 
of  OLMN  to  be  the  biplanar  angles  of  OXYZ  and  the  biplanar  angles  of 

OLMN  to  be  the  biaxial  angles  of  OXYZ;  the  signs  of  a  three-dimensional 
frame  and  of  its  polar  are  not  necessarily  the  same. 

*7.  Many  functions  of  the  six  angles  of  a  frame  present  themselves  in  work 
with  oblique  axes.  The  most  important  are  indubitably  the  three  cosines 

cos  a,  cos  /3,  cos  7,  which  are  independent  not  merely  of  the  selections  of  a,  ft,  7 

from  the  congruences  to  which  they  belong  but  also  of  the  cyclic  directions  of 

the  planes  of  reference  and  of  the  spatial  convention  adopted.  Next  in  value 

comes  the  sine  of  the  frame  triangle,  which  is  called  the  sine  of  the  frame ; 

•71  this  function,  which  we  °denote  always  by  T,  has  the  sign  of  the  frame,  and 

as  we  shall  see  in  4'4  its  square  is  given  in  determinantal  form  by 
•72  T2  = 

•75 

cos  /3    cos  a       1 

arid  therefore  in  an  expanded  form  by 

•73  T2  =  1  —  cos2  a  —  cos2  /3  —  cos2  7+2  cos  a  cos  /8  cos  7, 

but  T  itself  can  not  be  expressed  rationally  in  terms  of  the  biaxial  angles 

•74  alone,  for  °two  frames  may  have  the  same  biaxial  angles  but  be  of  opposite 
signs.  Complementary  to  the  cosines  of  the  biaxial  angles  are  the  cosines 

cos  A,  cos  B,  cos  F,  which  depend  on  the  cyclic  directions  of  the  planes  of  the 

frame  but  not  on  the  directions  of  the  axes  or  on  the  spatial  convention,  but 

of  more  frequent  occurrence  in  the  sequel  are  cot  A,  cot  B,  cot  F,  functions 

which  depend  on  the  directions  both  of  axes  and  of  planes.  The  sine  of  the 

polar  frame,  denoted  by  v  and  determined  from  the  equation 

1  cos  F  cos  B 

cos  F  1  cos  A 

cos  B  cos  A  1 

by  the  condition  that  its  sign  is  the  sign  of  the  polar  frame,  proves  of  less 

value  than  we  should  expect. 

In  terms  of  angles  of  both  kinds  we  have  as  in  13*43,  13*44 

•76  T  =  sin  /3  sin  7  sin  A  =  sin  7  sin  a  sin  B  =  sin  a  sin  ft  sin  F, 

•77  v  =  sin  B  sin  F  sin  a  =  sin  F  sin  A  sin/3  =  sin  A  sin  B  sin  7, 

formulae  which  shew  more  clearly  than  '72  and  '75  that  for  all  undegenerate 
frames  T  and  v  are  different  from  zero,  and  that  it  is  only  when  all  the  angles 

are  congruent  with  right  angles,  positive  or  negative,  that  either  T  or  v  is 

not  numerically  less  than  unity,  while  in  the  exceptional  cases  T  and  v  attain 

their  numerical  maximum  together.  The  results  corresponding  to  13'41, 
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13*42  compose  an  important  group  of  formulae,  obtainable  by  direct  applica- 
tion of  13472,  which  we  need  usually  in  the  form 

"cos  AS  =  T  cosec  a  =  v  cosec  A,  -78 
cos  MH  =  T  cosec  $  =  v  cosec  B, 

_cos  NZ  =  T  cosec  y=v  cosec  F  ; 

the  cosine  of  the  angles  between  an  axis  of  OX  YZ  and  an  axis  of  OLMN  is 

zero  unless  the  axes  correspond,  so  that  of  the  nine  cosines  of  this  form  six  are 

zero  and  the  remaining  three  have  their  values  given  by  '78.  If  the  sines  of 
the  biaxial  angles  of  a  frame  are  not  positive,  the  sign  of  the  frame  is  seen 

most  readily  from  the  set  of  formulae  '76 ;  the  set  '78  then  gives  the  signs  of 
cos  AH,  cos  MH,  cos  NZ,  and  the  cyclic  directions  of  the  planes  follow  at  once. 

The  formulae 

T  sin  A  sin  B  sin  F  =  v 2,     v  sin  a  sin  /3  sin  7  =  T2,  -79 

direct  results  of  '76  and  '77,  are  of  interest  as  shewing  that  the  sine  of  a  frame 
can  be  expressed  rationally  in  terms  of  the  biplanar  angles  alone.  Of  the 

relations  between  the  six  angles  of  a  frame  we  have  repeated  those  which  we 
are  to  find  most  useful,  but  every  relation  between  the  sides  and  the  angles 
of  a  spherical  triangle  can  be  interpreted  as  a  relation  between  the  angles  of 
a  frame. 

•8.  If  the  six  angles  of  one  frame  are  congruent  with  the  six  angles  of 

another,  the  frames  are  said  to  be  °  congruent,  and  if  the  six  angles  of  one  -81 
frame  are  congruent  with  the  negatives  of  the  six  angles  of  another  each 

frame  is  called  a  ° perverse  of  the  other.  From  the  angles  a,  /3,  7  and  the  sine  -82 
T,  13'12  gives  cos  A  uniquely  and  13'43  gives  sin  A  uniquely;  T2  is  given  in 
terms  of  a,  /3,  7  by  13*46,  and  the  sign  of  T  is  without  effect  on  cos  A  but 
determines  the  sign  of  sin  A.  The  frames  equal  to  OXYZ  are  the  frames 
whose  biaxial  angles  have  the  same  cosines  as  the  biaxial  angles  of  OXYZ, 
and  a  frame  of  this  kind  is  congruent  with  OXYZ  or  a  perverse  of  OXYZ 

according  as  its  sign  in  prepared  space  is  the  same  as  or  different  from  the 

sign  of  OXYZ. 

'9.  Compared  with  plane  geometry  the  study  of  space  of  three  dimensions 
has  difficulties:  to  some  mathematicians  visualisation  in  space  is  almost 

impossible  and  spatial  geometry  is  analysis  of  a  particular  kind ;  in  problems 
of  all  kinds  the  presence  of  a  third  dimension  involves  a  multiplication  of 

possibilities.  But  in  one  respect  at  least  geometry  of  three  dimensions  is  the 
simpler :  there  is  nothing  in  space  analogous  to  countersymmetry  in  a  plane, 
for  in  three  dimensions  to  obtain  a  symmetrical  relation  between  a  frame  and 

its  polar  we  have  only  to  take  for  each  axis  of  the  one  the  corresponding  normal 

of  the  other ;  not  until  we  become  familiar  with  the  extent  to  which  counter- 
symmetry  affects  the  analysis  relating  to  functions  on  a  surface  do  we  realise 

the  simplicity  to  be  expected  when  this  feature  is  absent. 
8—2 
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323.  COMPONENTS  AND  PROJECTIONS. 

•1.  Success  in  dealing  with  oblique  axes  depends  entirely  on  an  abandon- 
ment of  the  classical  attitude  to  an  oblique  frame ;  always  it  has  been  under- 
stood that  with  respect  to  such  a  frame  a  direction  may  be  specified  either  by 

three  ratios  or  by  three  cosines  and  that  the  elegance  of  a  formula  relating  to 
directions  depends  on  the  judicious  use  of  the  double  specification,  but  it  has 
been  taken  for  granted  that  a  point  must  be  indicated  by  its  coordinates  and 
a  vector  by  its  components.  The  failure  to  realise  that  there  is  a  double 
specification  for  points  and  vectors  as  well  as  for  directions  is  responsible  for 
an  avoidance  of  oblique  frames  which  is  both  unwarrantable  and  mischievous. 

•2.   The  coordinates  of  a  point  with  respect  to  a  frame  are  familiar  lengths. 

•21  In  a  plane, c the  coordinates  of  R  with  respect  to  OXY  axe  the  distances  from 
0,  in  the  directions  H,  H,  of  the  Tj-projection  of  R  on  f  and  the  ̂ -projection 

•22  of  R  on  77,  and  they  are  denoted  by  xs,yR.  In  space,  °the  coordinates  xB>  yR, 
ZR  of  R  with  respect  to  OXYZ  are  the  distances  from  0,  in  the  directions 

5,  H,  Z,  of  the  A-projection  of  R  on  £,  the  M-projection  of  R  on  17,  and  the 
N -projection  of  R  on  £,  where  A,  M,  N  are  as  usual  the  planes  of  the  frame. 
By  the  projections  of  R  with  respect  to  a  frame,  in  space  or  in  a  plane,  we 

•23  mean  °the  distances  of  the  normal  projections  of  R  on  the  axes  from  the 
origin,  these  distances  being  measured  in  the  directions  of  the  axes ;  we 
denote  the  projections  in  a  plane  by  IB,  mB  and  in  space  by  l£,  ms,  nR. 

The  components  of  a  vector  r  with  respect  to  a  frame  are  the  numbers 

already  defined  in  214  and  215  as  the  components  of  r  with  respect  to  the 

•24  axes;  °the  components  of  r  are  the  amounts,  in  the  directions  of  the  axes,  of 
vectors  parallel  to  the  axes  with  r  for  sum,  and  we  denote  them  in  a  plane 

•25  by  XT,  yr  and  in  space  by  xr,  yr,  zr.  °The  projections  of  a  vector  with  respect 
to  a  frame  are  its  projections  on  the  axes ;  the  projection  of  a  vector  on  an 

axis  of  a  frame  differs  in  no  respect  from  the  projection  on  any  other  ray.  We 
denote  the  projections  of  r  in  a  plane  by  k,  wt,  and  in  space  by  lr,  irir,  ?*,. 

The  components  and  projections  of  a  given  vector  with  respect  to  two 
different  frames  are  the  same  if  the  corresponding  axes  of  the  frames  have 

•26  the  same  directions,  and  in  particular  ° the  components  and  projections  of  a 
vector  with  respect  to  any  frame  are  the  same  as  the  components  and  pro- 

jections of  the  same  vector  with  respect  to  the  corresponding  anchored  frame. 
This  result  depends  of  course  on  the  freedom  of  the  vector ;  for  example,  the 

coordinates  XR,  yR)  ZR  of  a  point  R  with  respect  to  the  frame  OXYZ  may  be 
regarded  as  the  components  of  a  vector,  and  this  vector  like  any  other  has 
the  same  components  relative  to  HHHZ  as  relative  to  OX  YZ,  but  in  general 
the  coordinates  of  R  with  respect  to  H3HZ  are  not  XR,  yR,  ZR  ;  there  is  no 
contradiction,  for  the  coordinates  of  R  relative  to  HE  HZ  are  the  components 

not  of  the  vector  of  the  step  OR  but  of  the  vector  of  the  step  flR,  and  the 

two  vectors  differ  by  the  vector  of  the  step  OH. 
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•3.    Each  of  the  two  sets  of  numbers  used  for  specifying  a  vector  has  its 
chaiacteristic  property:  in  terms  of  the  components,  the  vector  can  be  de- 

scribed simply  as0 the  sum  of  the  three  vector-components,  x  in  OX,  y  in  OF,        -31 
z  in  OZ;  on  the  other  hand,  each  of  the  components  is  dependent  on  the 

directions  of  all  the  axes,  but  °each  projection  depends  on  the  direction  of  the       -32 
corresponding  axis  alone,  being  in  fact  the  projected  product  of  the  vector  by 
a  unit  vector  in  the  axis. 

•4.    With  respect  to  any  frame,  the  ratios  and  cosines  of  the  direction  whose 

image  is  P  may  be  identified  with  °the  coordinates  and  projections  of  the  point        -41 

at  unit  distance  from  the  origin  in  the  direction  in  question,  with  °  the  co-        -42 
ordinates  and  projections  of  the  point  P  itself  with  respect  to  the  corresponding 

anchored  frame,  and  with0 the  components  and  projections  of  the  unit  vector        '43 
IP  in  the  direction  P;  naturally  we  denote  the  first  ratio  by  XP  and  the  first 

cosine  by  lf,  and  we  notice  that  °1P  is  merely  a  brief  alternative  to  cos  HP.  -45 

*5.    The  use  of  a  unit  circle  or  unit  sphere  in  connection  with  points  and 
vectors  given  by  projections  is  obvious : 

Referred  to  a  frame  OX  Y  in  a  plane,  the  vector  rp  in  the  plane  and  the  point       '51 
in  the  plane  at  distance  r  from  0  in  the  direction  P  have  projections  r  cos  HP, 
rcos  HP; 

Referred  to  a  frame  OXYZ  in  space,  the  vector  rp  and  the  point  at  distance  r       -52 
from  0  in  the  direction  P  have  projections  rcos  HP,  rcos  HP,  rcosZP. 

Equally  important  and  hardly  less  evident  are  the  relations  of  coordinates 

and  components  in  the  one  case  to 

the  points  H,  H,  P  and  in  the  other 
case  to  the  points  H,  H,  Z.  P.  In  a 

plane,  let  F,  G  be  the  points  in  £,  rj 
such  that  OR  is  a  diagonal  of  the 

parallelogram  of  which  OF,  OG  are 
sides,  and  let  X,  Y  be  the  points  in 

£,  77  at  unit  distance  from  0 ;  then 

XR  =  OF  I  OX  =  AOFF/AOZF; 

thus    rXs  =  AO#FAOXF,  -53 

and  since  OX,  OF,  OR  are  of  lengths 
Fig-  23-  1,  1,  r  in  the  directions  H,  H,  P, 

If  X,  Y  are  the  points  at  unit  distance  from  the  origin  along  the  axes  of  a  -54 
frame  OXY  in  a  plane,  the  components  of  the  vector  rp  in  the  plane  and  the 
coordinates  of  the  point  R  in  the  plane  at  distance  r  from  0  in  the  direction  P 

are  the  ratios  of  the  areas  of  the  triangles  ORY,  OXR  to  the  area  of  the 
triangle  OXY,  and  can  be  expressed  trigonometrically  as  r  cosec  o>  sin  PH, 
r  cosec  &>  sin  HP. 
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In  space  the  argument  is  parallel ;  if  X,  Y,  Z  are  the  points  at  unit  distance 

from  0  along  the  axes,  and  F  is  the  Z-projection  of  R  on  £,  then  XR  is  the  ratio 
of  the  volumes  of  the  ordered  tetrahedra  OFYZ,  OXYZ,  and  of  these  volumes 
the  first  is  that  of  the  tetrahedron  ORYZ  and  is  ̂ rsinflPHZ,  and  the  second 
is  £  sin  HEHZ,  that  is,  £T : 

•55  If  X,  Y,  Z  are  the  points  at  unit  distance  from  the  origin  along  the  axes  of 
a  frame  OXYZ,  the  components  of  the  vector  rp  and  the  coordinates  of  the 
point  R  at  distance  r  from  0  in  the  direction  P  are  the  ratios  of  the  volumes 

of  the  tetrahedra  ORYZ,  OXRZ,  OXYR  to  the  volume  of  the  tetrahedron  OXYZ, 

and  are  expressible  trigonometrically  as  rT~l  sin  HPHZ,  rT"1  sin  fiEPZ, 
rT-1  shifts  HP. 

Comparing  '55  with  '54  we  observe  in  *54  the  feature  of  countersymmetry ; 
sin  flEPZ,  sin  HEHP  may  be  written  as  sin  flPZE,  sin  HPSH,  and  the  three 
functions  sin  OPHZ,  sin  OPZ3,  sin  H  P3H  depend  symmetrically  on  the  three 

points  3,  H,  Z,  but  sin  HP  is  —  sin  P5,  and  the  dependence  of  the  two  functions 

sin  PH,  sin  PE'  on  the  two  points  E,  H  is  countersym metrical. 

324.  RELATIONS  BETWEEN  COMPONENTS  AND  PROJECTIONS. 

•1.  Of  the  two  sets  of  elements  relating  a  vector  to  an  oblique  frame,  either 
alone  suffices  to  determine  the  vector,  and  the  vector  determines  the  other ; 

hence  components  can  be  expressed  in  terms  of  projections  and  projections  in 
terms  of  components,  and  we  proceed  to  obtain  the  actual  formulae,  first  for  a 
frame  in  a  plane  and  then  for  a  frame  in  space.  Since  the  coordinates  and 
projections  of  a  point  can  be  regarded  as  the  components  and  projections  of  a 
radius  vector,  and  since  the  ratios  and  cosines  of  a  direction  can  be  regarded 
as  the  components  and  projections  of  a  unit  vector,  the  formulae  obtained  in 
connection  with  a  vector  apply  without  modification  to  elements  determining 
a  point  or  a  direction,  a  fact  that  we  indicate  by  omitting  from  the  symbols 
for  components  and  projections  the  affix  which  might  seem  to  limit  their  scope. 

'2.  The  simplest  formulae  involving  both  components  and  projections 
express  relations  between  elements  of 
one  kind  relative  to  one  frame  and 
elements  of  the  other  kind  relative  to 

the  polar  frame.  In  themselves  inter- 
esting, they  are  also  useful  in  enabling 

us  with  a  minimum  of  labour  to  dupli- 
cate many  of  our  results. 

In  a  plane,  the  line  through  a  point 
R  which  is  perpendicular  to  the  axis  \ 
of  the  polar  of  a  frame  OX  Y  is  parallel 
to  the  axis  r)  of  OXY;  hence  (see 

figure  24,  in  which  w  is  supposed  to 
be  negative  and  the  cyclic  direction  to  be  clockwise)  the  projection  U  of  R  on 

O 
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\  is  also  the  projection  on  X  of  the  ̂ -projection  F  of  R  on  f.  The  lengths  of 
OF,  OU,  in  the  directions  of  £,  \,  are  x,  I,  and  one  angle  from  \  to  £  is  \TT  —  a> ; 

hence  £  is  equal  to  as  sin  &>.  Similarly,  since  one  angle  from  /*  to  17  is  &>  —  \TT 
and  the  cosine  of  this  angle  also  is  sin  G>,  the  projection  m  is  equal  to  y  sin  &>. 

We  may  find  I,  m  in  terms  of  x,  y  directly,  by  drawing  lines  through  R 

parallel  to  A,,  /z,  but  we  may  avoid  the  geometrical  examination  by  recalling 
that  OXY  is  the  polar  of  OLM  and  noticing  that  the  multipliers  are  as 
before  cos  HA,  cos  HM,  and  have  still  the  value  sino>;  from  the  theorem 

first  proved,  we  deduce  at  once  that  I,  m  are  equal  to  x  sin  &),  y  sin  &> : 

In  a  plane,  components  x,  y  and  projections  I,  m  relative  to  a  frame  of  angle       -22 
o>  are  related  to  projections  I,  m  and  components  x,  y  relative  to  the  polar  frame 

by  the  formulae 
I  =  x  sin  &>,     m  =  y  sin  &>, 
I  =  x  sin  &),     m  =  y  sin  &>. 

In  space,  the  same  principle  leads  to  similar  results  :  the  projection  of  R  on 
the  first  axis  of  the  polar  of  the  frame  OXYZ  is  again  the  projection  on  that 

axis  of  the  A-projection  of  R  on  the  axis  f ;  accordingly,  °l  is  equal  to  x  cos  E  A,  -23 
and  similarly  I  is  equal  to  x  cos  E A ;  from  the  values  of  the  cosine  given  in 

2*78  we  see  that  I  is  equal  to  xT  cosec  a,  and  that  we  can  assert  that  I  is  equal 
to  xv  cosec  A  if  we  wish  to  lay  stress  on  reciprocity,  or  that  x  is  equal  to 

IT~1  sin  a  if  we  wish  to  keep  the  polar  frame  in  a  subordinate  position  : 

Components  ac,  y,  z  and  projections  I,  m,  n  relative  to  the  polar  of  a  frame       -24 
OXYZ  are  related  to  projections  and  components  relative  to  OXYZ  itself  by 

the  formulae 
£  =  #Tcoseca,     m  =  yT  cosec  y8,     n  =  2T  cosec  y, 

x  =  IT~1  sin  a,       y  =  mT~l  sin  /3,     z  =  n  T-1  sin  7. 
The  results  of  the  last  two  paragraphs  may  usefully  be  regarded  in  another 

light.  In  a  plane,  the  distances  of  a  point  R  from  the  rays  £,  77  are  the 
distances  from  0  of  the  projections  of  R  on  the  rays  through  0  normal  to  £,  77, 
that  is  to  say,  on  the  rays  /i,  V : 

In  a  plane,  the  point  whose  distances  from  the  axes  of  a  frame  OXY  aref,  g  is       -25 

the  point  whose  projections  relative  to  the  polar  of  OXY  are  —ff,f,  and  the  coor- 

dinates of  this  point  with  respect  to  the  frame  OXY  itself  are  —  g  cosec  &>,/  cosec  o>. 

Conversely,  °  the  normal  distances  of  the  point  R  from  the  axes  %,  77  are       -26 
yR  sin  &),  —  XR  sin  eu,  a  result  of  less  value  to  us  than  is  '25.    In  "25  and  '26 
countersymmetry  appears,  and  the  corresponding  propositions  relative  to  space 
are  simpler  and  if  possible  more  obvious : 

The  point  whose  distances  from  the  planes  of  a  frame  OX  YZ  are  f,  g,  h  is       -27 
the  point  having  with  respect  to  the  polar  frame  the  projections  f,  g,  h  and  with 

respect  to  the  frame  OXYZ  the  coordinates  fT~l  sin  a,  gT~lsin.f3,  AT"1  sin  7; 

The  distances  of  the  point  R  from  the  planes  of  the  frame  OXYZ  are       '28 
x R  T  cosec  a,  y^  T  cosec  ft,  ZR  T  cosec  7. 
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*3.  If  x,  y  are  the  components  relative  to  a  plane  frame  OXY  of  a  vector 
r  in  the  plane  of  the  frame,  then  r  is  the  sum  of  the  vectors  XB,  yH,  and  so  by 

215'42  the  projection  of  r  on  any  ray  is  the  sum  of  the  projections  of  #a,  yK 
on  that  ray.  But  the  projections  of  #a,  yH  on  £  are  x,  ycosco  and  the  pro- 

jections of  xs,  yH  on  if  are  a; cos  co,  y: 

•31  Relative  to  a  frame  of  angle  co,  projections  I,  m  are  given  in  terms  of  com- 
ponents x,  y  by  the  pair  of  formulae 

I  •=  x  +  y  cos  co, 
m  =  x  cos  co  +  y. 

Applying  this  theorem  to  the  polar  frame,  which  has  angle  TT  —  co,  and  sub- 
stituting for  I,  m  and  x,  y  their  values  in  terms  of  x,  y  and  I,  m,  we  deduce  that 

•32  Relative  to  a  frame  of  angle  co,  components  x,  y  are  given  in  terms  of  pro- 
jections I,  m  by  the  pair  of  formulae 

x  sin  co  =      I  cosec  co  —  m  cot  co, 

y  sin  co  =  —  I  cot  co  +  m  cosec  co. 

We  can  of  course  deduce  the  formulae  in  '32,  in  the  form 
x  sin2  co  =      l  —  m  cos  co, 

y  sin2  co  =  —  I  cos  co  4-  m, 

by  a  mere  algebraical  reversal  of  the  formulae  in  '31,  but  it  is  noteworthy  that 
in  some  branches  of  geometry  we  meet  more  often  with  the  pairs  of  coefficients 

cosec  co,  —  cot  co  and  —  cot  co,  cosec  co  than  with  the  pairs  of  coefficients  1,  —  cos  co 
and  —  cos  co,  1. 

The  arguments  by  which  '31  and  '32  have  been  obtained  are  adequate  to 
provide  the  corresponding  theorems  for  a  frame  in  space.  The  projections  of 

#E>  2/Hj  2z  °n  f  are  x>  2/0087,  z  cos  ft,  the  projections  of  the  same  vector-com- 

ponents on  the  rays  77,  £  can  be  expressed  similarly,  and  corresponding  to  *31 
we  have  the  result  that 

•33  Relative  to  any  frame  in  space,  projections  are  given  in  terms  of  components 
by  the  set  of  formulae 

I  =  x  +  y  cos  7  +  z  cos  ft, 

m  =  x  cos  7  4-  y  4-  z  cos  a, 

n  =  x  cos  ft  4  y  cos  a  +  z. 

Applying  "24,  we  find  that  x  is  given  in  terms  of  /,  m,  n  by 

xT  cosec  a  =  IT~1  sin  a  4-  mT~l  sin  ft  cos  F  +  wT"1  sin  7  cos  B  : 

•34  Relative  to  any  frame  in  space,  components  are  given  in  terms  of  projections 
by  the  set  of  formulae 

~x  =  IT-*-  sin2  a  4-  raT'1  cot  F  +  nT-1  cot  B, 

y  =  IT'1  cot  F  4-  wT"2  sin2  ft  +  nT~l  cot  A, 

z  =  IT'1  cot  B  +  mT'1  cot  A  +  nT~2  sin2  7. 
The  absence  of  negative  signs  from  these  formulae  is  one  of  the  minor  advantages 

secured  by  the  use  of  external  angles  of  the  frame  triangle. 
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•4.  The  direct  passage  from  '33  to  '34  is  a  superfluous  exercise  in  algebra 
and  trigonometry.  What  is  interesting  to  remark  is  that  the  equivalence  of 
the  sets  of  formulae  in  these  two  theorems  rests  only  on  the  values  given  in 

13472  for  cos  AS,  cosMH,  cos  NZ,  and  is  an  adequate  logical  basis  for 

spherical  trigonometry,  implying  as  it  does  that 

Each  of  the  determinants  -41 
1  cos  7  cos  y3 

cos  7  1  cos  a 

cos  y8  cos  a  1 

T-*  si  n2  a  T-1  cot  T  T"1  cot  B 

T-1  cot  T  T-2  sin2  /3  T-1  cot  A 

T-1  cot  B  T-1  cot  A  T~2  sin2  7 

is  the  reciprocal  of  the  other. 

Since  the  divisor  that  converts  the  cofactor  1  —cos2  a  of  the  leading  element 

of  the  first  determinant  into  the  leading  element  T~2  sin2  a  of  the  second  is  T2, 
this  is  the  value  of  the  first  determinant;  also  the  product  of  the  determinants 
is  unity: 

The  determinants  in  '41  have  the  values  T2,  T~2.  -42 

The  first  part  of  this  theorem  has  been  quoted  already  in  13'47  and  2'72. 

Knowing  the  value  of  the  first  determinant,  we  have  from  the  cofactor  of  cos  a, 

Y  cot  A  =  cos  /3  cosy  —  cos  a,  -43 

a  version  of  the  fundamental  formula  13'12.   Further,  '41  implies  three  formulae  typified  by 

Y~2  sin2  a+  Y-1  cot  r  cos  y  +  Y"1  cot  B  cos  /3=  1,  -44 
and  six  typified  by 

Multiplication  by  Y2  and  substitution  from  the  group  to  which  '43  belongs  converts  '44  into 

Y2=l  —  cos2a  —  cos2£  —  cos2y  +  2cos  a  cos  ji  cosy,  '46 

the  expanded  form  of  the  determiuantal  expression,  given  previously  as  13'46  and  2'73. 
The  same  operations  reduce  '45  to  an  identity,  but  multiplication  by  Y  sin  B  alone  gives 

cos  B  cos  y  +  cot  A  sin  B  +  Y~1cosasin2ysin  B=0,  -47 
which  is  equivalent  to  13-51. 

•5.    By  the  definitions  of  the  magnitudes  involved,  the  fundamental  theorem 

22T15  implies  that,  in  the  notation  of  3'2, 

The  projected  product  of  two  vectors  r,  B  is  expressible  in  the  two  forms  -51 

whatever  the  reference  frame, 

a  result  that  includes  a  large  number  of  useful  particular  cases,  of  which  the 

most  elementary  come  from  the  less  general  theorem 

The  value  of  the  projection  of  the  vector  r  in  the  direction  represented  by  II        -52 
is  expressible  in  the  two  forms 

Xrln  +  y*ma  +  Zrnn  ,     l^x^  +  mrl/n  +  Mr^n  , 

which  follows  from  the  preceding  if  the  projection  is  regarded  as  the  projected 

product  of  r  by  a  unit  vector  in  nil.   It  is  really  on  the  first  expression  in  '51 
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•53 

•54 

•55 

•56 

•57 

that  '52  is  based;  that  the  projection  can  be  written  also  as  lr®n  +  ̂ r^ 

is  not  an  immediate  deduction  from  215'42,  but  instead  of  appealing  to  the 
notion  of  a  projected  product  we  may  apply  the  elementary  theorem  to  express 

the  projection  by  means  of  the  polar  frame  in  the  form  xrln  +  yr^u  +  ̂ r^n  ', 
using  '24,  we  obtain  at  once  the  expression  completing  '52. 

By  means  of  '33  and  '34,  we  can  give  to  '51  a  form  in  which  only  components 
are  involved  and  another  form  in  which  projections  appear  alone: 

The  projected  product  of  two  vectors  r,  s  is  given  in  terms  of  their  com- 
ponents by 

XT®*  +  yry»  +  ZrZ*  +  (y*z*  +  *ry«)  cos  a  +  (ztxt  +  xtzn)  cos  ft  +  (xryn  +  yrxn)cos  7 

and  in  terms  of  their  projections  by 

IT  lu  T~2  sin2  a  +  w,  m.  T~2  sin2  ft  +  nr  w»  T~2  sin2  7 

+  (fttrft,  +  r^rag)  T-1  cot  A  +  (M.  +  ̂w.)  T"1  cot  B  +  (7rm.  +  WrM  T~l  cot  T. 
If,  instead  of  substituting  for  ln,  mn,  nn  in 

cfrs  =  xrln  +  yrmn  +  zrnn 

from  equations  of  the  form  *33,  we  eliminate  acx,  yr,  zrfrom  *54  and  equations 
of  this  form,  we  have 

1  cos  7  cos  ft 

cos  7  1  cos  a 

cos  ft  cos  a  1 

=  0, 

that  is cos  7 

cos/9 

I. 

cos  7 

1 
cos  a 

cos  ft      lr 
cos  a 

nr 

0 

and  a  similar  process  gives  the  correlative  formula 
T-2sin2a 
T-1  cot  T 
T-JcotB 

T'1  cot  B 
T-1  cot  A 

T~2  sin2  7 

2/r 

0 

T-1  cot  T 
T-2sin2/9 
T-1  cot  A 

2/8 

these  results  are  of  course  equivalent  to  those  contained  in  '53. 
Projected  products,  as  will  appear  more  clearly  in  Book  IV,  are  the  very  stuff 

of  which  analytical  geometry  is  made,  and  it  is  important  that  expressions  for 

them  should  be  as  simple  as  possible  to  write.  There  is  little  need  to  be  dis- 

satisfied with  '51,  but  repeatedly  to  set  down  in  full  the  expressions  in  *53 
would  be  intolerable,  and  we  must  consider  what  form  of  abbreviation  is 

natural;  we  shall  find  that  an  improvement  even  in  '51  will  suggest  itself. 
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325.  UMBRAL  NOTATION. 

•1.  The  first  expression  given  in  4'53  is  linear  and  homogeneous  in  each  of 
the  sets  of  variables  XT,  yr,  zr  and  xn,  yn,  zn  and  is  symmetrical  in  the  two 

sets;  we  abbreviate  it  first  to* 

^Ot,2/r,  *r}[#«,  y«,*«>  '11 

calling  ̂   the  component  symbol  of  the  frame.  Similarly  the  second  expression, 
a  symmetrical  bilinear  homogeneous  function  of  the  two  sets  lr,  m,,  nr  and 

lm>  mi,  nn,  we  denote  by 

^Gr,  rrir,  nr$Z.,  mm,  ??.),  >13 

and  we  call  &*  the  projection  symbol  of  the  frame.  If  the  two  sets  of  variables 

in  one'  of  the  expressions  coincide,  naturally  we  use  an  index,  writing 

<&  O,  y,  zy  for  ̂   (x,  y,  z~&x,  y,  z)  and  0>(l,  m,  n)*  for  @(l,  m,  n~$l,  m,  n). 

*2.  Expressions  of  the  two  forms  '11,  "13  are  so  common  that  a  further 
contraction  which  is  often  possible  is  very  desirable.  The  three  variables 

/,  g,  h  which  compose  a  set  occurring  in  an  expression  of  the  form  '11  are  not 
usually  given  as  the  components  of  a  vector,  though  there  is  of  course  a  vector 

with  these  three  components.  Often  however  there  is  a  vector  r  such  that/" 
depends  on  XT,  g  on  yr,  and  h  on  zr,  and  the  dependence  is  the  same  in  each 
case,  or  there  are  several  vectors  such  that  /  depends  in  a  particular  fashion 

on  their  first  components,  and  g  and  h  depend  in  the  same  way  on  their 

second  and  third  components ;  for  example,  if  xr,  yr,  ZT  are  functions  of  a 
variable  t,  we  have  to  deal  with  bilinear  functions  of  the  form 

r$(jdxr/dt,  dyr/dt,  dzr/dt^xB,  yB,  z^), 
and  in  connection  with  two  vectors  r,  s  the  form  of 

^  (jixt  +  bxu,  ayr  +  byB,  azT  +  bzB~)z 
as  a  function  of  a  and  b  deserves  attention.  Accordingly,  °  when  f,  g,  h  stand  -21 
for  three  groups  of  symbols  derivable  from  a  group  involving^  an  undefined 
symbol  by  the  substitution  for  this  undefined  symbol  of  x,  y,  z  in  turn,  the  link 

C/>  9>  ft)  is  replaced  by  the  same  group  with  the  undefined  symbol  replaced  by  c, 
this  group  being  enclosed  in  semicircular  brackets  only  if  some  enclosure  is 

typographically  necessary.  Thus  instead  of  ̂   (jdxr/dt,  dyr/dt,  dzr/dfQxB,  yB,  z^) 

we  write  ̂ (jdcr/df)  CB,  and  instead  of  %?  (axT  +  bxB,  ayT  +  by9,  azT  +  bz^y*  we 
write  ̂   QicT  +  bc^y.  In  these  cases  there  is  simultaneously  a  reduction  in  both 

*  The  brackets  which  it  is  best  to  use  in  these  contractions  are  not  of  precisely  the 
ordinary  form  ;  we  call  them  semicircular  brackets. 

+  We  have  to  avoid  the  word  function,  since  we  wish  to  include  such  cases  as  that  of 
the  first  of  the  two  examples  just  given.  There  is  no  reason  to  suppose  that /does  not 
involve  y  or  z,  or  that  every  occurrence  of  x  in  f  is  replaced  in  the  passage  to  g  and  h :  for 
example,  if  (f)  (M,  v,  w)  is  a  function  of  three  variables,  /,  g,  h  may  have  the  forms  <£  (x,  x,  z) 
(f>  (x,  y,  2),  <f>  (x,  z,  z},  and  the  link  is  replaced  by  0  (x,  c,  z).  The  matter  is  much  easier  to 
understand  than  to  express  in  terms  sufficiently  general. 
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sets  of  variables,  but  the  use  of  the  notation  in  one  link  is  quite  independent 

of  its  use  in  another  :  thus  whether  or  not  further  contraction  is  possible, 

<@  (JK,  y,  zQq,  r,  s~)  may  be  replaced  by  ̂c  (jc[,  r,  s~). 

'3.    We  do  not  attempt  to  identify  c  with  one  or  other  of  the  components 
x,y,z\  it  is  because  c  in  isolation  is  meaningless  that  we  can  often  omit  semi- 

circular brackets  without  danger  of  confusion.    Adopting  Sylvester's  name* 
•31        for  a  symbol  meaningless  in  isolation,  we  call  c  the  °  umbra  of  the  set  of  symbols 

x,  y,  z,  and  we  denote  the  relation  between  c  and  the  set  by  writing 

•32  c  =  O,  y,  O- 

An  umbra  of  the  coordinates  of  a  point  with  respect  to  orthogonal  axes  is 
usedf  by  Lame,  but  work  with  orthogonal  axes  can  not  reveal  the  extensive 

possibilities  of  an  umbral  notation. 

For  use  with  expressions  containing  the  projection  symbol  &  it  is  of  the  set 
of  symbols  I,  m,  n  that  an  umbra  is  required,  and  we  write 

•33  p  =  Q,m,n). 

•4.  In  elementary  work  it  is  with  bilinear  and  quadratic  expressions  con- 
taining ^  and  8*  that  the  use  of  umbral  notation  effects  the  most  striking 

economy,  but  having  introduced  the  notation  we  employ  it  as  extensively  as 

we  can.  The  function  xrlB  +  yrmn  +  zrnB  which  appears  in  4'51  and  elsewhere 
may  be  regarded  as  a  linear  function  of  lB,m9,  n^  with  SCT,  yr,  ZT  for  coefficients; 
in  this  aspect  it  is  denoted  by  (#r,  yT,z^§lB,  in*,  ??8),  and  in  the  last  form  the 

links  may  be  replaced  by  umbrae  and  the  expression  denoted  by  cTpB  ;  when 
we  regard  the  same  function  as  linear  in  Xf,  yr>  zr,  with  coefficients  1B,  mn,  nm, 

we  denote  it  more  naturally  by  (lu,  mt,  ns]£#r,  yr,  z^)  or  by  pBCr;  the  function  is 
the  same  in  the  two  cases,  and  the  distinction  between  Crpt  and  ptCr,  like  the 

distinction  between  d'2<j>/dxdy  and  d2(f>/oydx  when  <£  is  a  regular  function,  need 
not  be  remembered  in  the  performance  of  analytical  operations.  To  put  the 

*  Introduced  in  1851  in  connection  with  determinants  (Phil.  Mag.,ser.  4,  vol.  i,  p.  296; 
Coll.  Works,  vol.  I,  p.  242). 

t  First  in  his  Lefons  sur  les  Fonctions  Inverses  des  Transcendantes  et  les  Surfaces 
Isothermes  (1857)  ;  the  use  is  explained  on  p.  6.  Accustomed  to  read  that  Lam^  introduced 
the  use  of  the  symbol  S  to  denote  summation  with  respect  to  the  three  coordinates,  and 
denoted  k(x)+fc(y)+  k(z),  where  k(x)  is  any  group  of  symbols  involving  x  but  not  y  or  z, 

by  S  k  (x\  I  was  amazed  on  making  a  belated  first-hand  acquaintance  with  his  work  to 

find  that  actually  Lame  denotes  this  sum  always  by  Sk(u).  Considering  that  Lame's 
method  is  not  only  more  elegant  but  also  more  effective  than  that  ascribed  to  him,  since 

for  example  Lame*  can  distinguish  the  two  functions 
a*0     820     92^     <)20      o^      92  (ft ' 

by2  dz2  '  3#2  (Sx'dy 
as  S(d2<j>/du?)  and  S(dz<p/dxdu)  but  his  professed  followers  have  only  the  one  contraction 
£(32</>/9A'2),  it  is  difficult  to  understand  the  departure  that  has  been  made.  Lame  regards 
his  symbol  u  as  denoting  ambiguously  one  of  the  coordinates,  a  view  which  has  dis- 

advantages as  well  as  advantages.  In  order  to  reserve  u  strictly  for  use  as  a  curvilinear 
coordinate,  I  use  c,  suggested  like  ̂   by  the  words  component  and  coordinate. 
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present  use  of  linked  brackets  more  generally,  we  have  only  to  write  as 

a  definition  the  formula  °(/,  g,  hQq,  r,  s)  =fq  +  gr  +  hs,  and  to  say  that  any       -44 
contraction  in  use  for  either  of  the  links  £/,  g,  A),  (^q,  r,  s)  may  be  employed 
to  effect  further  abbreviation*. 

•5.  An  attempt  must  be  made  to  answer  one  question  :  why  cannot  the 
notation  /rs  for  the  projected  product  serve  implicitly  as  a  contraction  for  the 

bilinear  functions  that  occur  in  4'51  and  4'53? 
One  reply  is  that  often  the  vectors  are  unknown  until  bilinearity  in  algebra 

calls  attention  to  them. 

Another  reply,  that  to  confuse  the  intrinsic  function  c^rs  with  its  expression 

by  means  of  a  particular  frame  is  to  obscure  the  very  nature  if  not  to  lose  the 

advantages  of  coordinate  geometry,  can  be  explained  by  a  simple  example.  If 

r'1',  r<2>,  ...  r(A)  and  s(1),  s<2>,  ...  s'*>  are  two  sets  of  vectors,  and  if  #r<m>,  yr(w",  zr(m} 
are  the  components  of  r(m)  and  xn(n},  yt(n},  £«(w)  the  components  of  s(n),  then  in 

•^  2  Cr(m)  2  C.(n>  =  22  ̂ Cr(m)  Cg(n>  "54 

we  have  an  identity  in  pure  algebra  which  may  logically  be  made  the  basis  of 
the  vectorial  theorem 

£  2r(m>  2s  (»>  =  22  /r<w>  s  <w>  ,  .55  . 

but  the  reasoning  will  be  impossible  to  follow  if  the  symbols  in  '55  have  to 
serve  in  a  double  capacity. 

*6.  We  have  described  the  use  of  umbral  notation  with  reference  to  two 
particular  bilinear  functions  already  known  to  be  wanted,  but  the  method  of 

contraction  is  applicable  with  any  expression  that  is  linear  and  homogeneous 
in  each  of  several  sets  of  variables.  Since  however  there  is  a  notation,  such  as 

SogWfVi,    i,j=l,  2 
to  denote  dnu1vl  +  a^u^  +  a^u^  +  a^u2v2, 

available  for  the  general  multilinear  function,  there  is  little  to  be  said  against 

restricting  the  umbral  notation  to  the  case  of  multilinear  functions  symmetrical 
in  the  different  sets  of  variables  involved,  and  since  further  the  notation 

can  be  used  much  more  freely  with  symmetrical  than  with  unsymmetrical 
functions  this  restriction  is  in  fact  desirable. 

If  Tuv  denotes  a  symmetrical  homogeneous  bilinear  function  of  the  two  sets 

of  variables  (u1}  u2,  u3),  (v1}  v2,  v3),  we  shall  denote  the  coefficient  of  UiVj  in  Tuv 

by  T^\  since  Tuv  is  assumed  to  be  symmetrical, 
2*32  _  ̂ 23  f\S  _  ̂ 31  fZl  _  ̂ "12  .gj 

In  Tuv,  the  coefficient  of  uk  is  Tklv1  +  Tk2v.i+Tlc3v3,  a  linear  function  of 

(vlt  v2>  v3),  and  the  coefficient  of  vk  is  T^u^  +  T2*t<,,+  T3ku3,  which  on  account 

*  For  example,  if  k(x}  is  a  group  of  symbols  involving  x,  the  expression  ̂ 1,  1,  \~)k(c} 
denotes  the  sum  &(#)  +  &  (#)  +  £($),•  and  by  writing^  for  £l,  1,  l^we  could  recover  Lamp's 
notation,  with  c  for  u. 



126  CARTESIAN  AXES  AND  VECTOR  FRAMES  325 

of  the  symmetry  is  the  same  linear  function  of  (ultu2,  u3)  as  TklVi  +  T^VZ  +  Tk3vs 
is  of  (vi,  t>2,  v3).   If  then  we  write 

•62  Tk  —  f  T*i    V7*2    Tte~\   f  T7'*    7'2*    T'&"\ ~  \,-*-     >  •*•    >  •*•     J  —  V.       '         '         J> 

the  coefficient  of  uk  in  Tuv  can  be  written  as  Tkv  and  the  coefficient  of  vk  in 

the  same  function  as  Tku.   Thus  identically 

•63  Tuv  =  (Tlu)  Vj  +  (T2u)  va  +  (T3u)  vs  =  (Tlv)  u^  +  (T-v)  u*  +  (T3v)  u3, 

and  Tu  may  itself  be  regarded  as  an  umbra  of  (TJw,  T*u,  T3u*).   To  write 
•64  Tuv  =  (TH)  v  =  (Tv)  u 

is  to  express  symbolically  the  precise  form  of  the  dependence  of  the  function 
on  the  individual  sets  of  variables. 

It  is  here  that  the  condition  of  symmetry  is  valuable.  We  can  of  course  denote  by 

Tuv  an  unsymmetrical  function  227Ti'-'w<t>;,  and  shew  the  distinction  between  the  linear 
functions  Tk> l  ivl  +  Tk< 2 w>2  +  Tk- 3 w3  and  Tl> k wl  +  T2< kwz+  T3- k w3  by  writing  Tk- w  for  the  one 

and  T>kw  for  the  other,  but  then  to  distinguish  an  umbra  of  (Tl-w,  Tz-w,  T3-w~)  from 
an  umbra  of  (^T^w,  T'2w,  T>3w)  with  a  view  to  giving  significance  to  some  such  collection 
of  symbols  as  '64  requires  a  further  complication  that  leaves  the  notation  with  few  ad- 

vantages over  the  elementary  form  with  a  symbol  of  summation. 

The  reader  will  observe  that  to  propose  contractions  for  the  linear  functions 

subsidiary  to  a  given  bilinear  function  is  not  to  indulge  in  intelligent  antici- 
pation but  simply  to  recall  the  manner  in  which  the  bilinear  functions  already 

found  were  actually  constructed:  4'33  and  4'34  introduced  three  functions 

of  #,  y,  z  that  we  express  as  <^>1c,  ̂ c,  ̂ 3c  by  writing 
•65 

and  three  functions  of  I,  m,  n,  that  we  express  as  ̂ p,  gfip,  $*p  by  writing 

•66  ^u  =  T~2  sin2  a,      ̂ 12  =  T~1cotr,     ̂ 13  =  T~1cotB, 
^21  _  T-I  C0f;  Y}     gfa  —  T~2  sin2  fi,     0*®  =  T~l  cot  A, 

pji  _  f  -i  cot  B,      ̂   =  T"1  cot  A ,     &*  =  T ~2  sin2  7 ; 

it  was  the  substitution  of  these  functions  in  4'51,  with  arguments  x»,y%,  zm 
and  1H,  mH,  na)  that  gave  4'53,  and  our  abbreviations  have  been  designed  to 
give  this  important  theorem  the  concise  symbolical  form 

67  c^rs  =  ̂ crcs  = 

'7.  Merely  as  shorthand  the  umbral  notation  which  we  have  been  explain- 

ing is  invaluable*.  But  the  symbolism  is  too  algebraical  in  form  to  serve 
only  as  shorthand ;  inevitably  such  notation  suggests  a  comparison  between 

different  groups  of  symbols  which  would  be  equivalent  if  the  various  symbols 

had  a  purely  algebraical  meaning,  and  if  the  laws  of  analysis  are  obeyed  to 

*  See  for  example  article  332  below. 



325 THE  CARTESIAN  FRAMEWORK 
127 

any  extent  by  the  symbols  the  notation  effects  to  that  extent  economy  in 

thought  as  well  as  in  material,  while  on  the  other  hand  if  there  is  consider- 
able departure  from  obedience  to  these  laws  then  until  the  symbolism  is  very 

familiar  the  mental  effort  involved  in  its  accurate  use  is  a  counterpoise  to 
the  mechanical  effort  avoided  by  its  brevity. 

We  do  not  propose  to  elaborate  the  use  of  umbral  notation  into  a  formal 
calculus,  and  for  the  present  we  give  only  some  simple  formulae,  verifiable 

immediately,  from  which  the  reader  will  gather  that  the  notation  is  not 

readily  misused.  Using  f  and  g  for  ordinary  numbers,  we  have  for  any 

symmetrical  bilinear  function  Tuv, 

T  {fu  +  gvy  =/2  TV  +  2/gr  Tuv  +  gz  Ttf, 

d(Tuv)/dui  =  Tiv, 
and  if  the  variables  ul}  u^,  u3  and  vlt  vz,  v3  depend  on  a  variable  t  while  the 
coefficients  of  the  bilinear  function  are  constants, 

d  (Tuv)/dt  =  T  (du/df)  v  +  Tu  (dv/df), 

d  (Tu?)fdt  =  2Tu  (du/df). 

'8.  It  is  for  use  with  multilinear  functions  that  we  introduce  umbral 
notation,  but  having  umbral  symbols  at  our  command  we  use  them  also  to 
abbreviate  determinants.  The  determinants  which  occur  most  frequently  in 

the  early  parts  of  analytical  geometry  are  of  the  two  forms 

IT 

mx 

nr 

l* 

nt 

r,  s,  t  being  known  vectors,  and  we  agree  to  write  for  these  determinants 

[CT',  c9;  ct],     [pr',  P»]  Pt]- 
Should  cases  arise  in  which  the  constituents  of  one  column  or  of  one  row  of 

a  determinant  must  be  given  explicitly  while  umbral  notation  is  available  for 

other  columns  or  rows,  we  may  proceed  as  in  the  parallel  case  of  links,  writing 
for  example 

;  /,  g,  h ;  ct]  = 
/ 

ff 
h 

y* 

The  limit  of  brevity  is  attained  when  a  determinant  can  be  contracted 

both  vertically  and  horizontally.  For  example,  if  q  is  an  umbral  symbol  for 
<>,  s,  t),  it  is  possible  to  replace  [c,;  c.;  ct],  [pr;  pn;  pt]  by  [[cq]], 
With  this  notation,  [[^]],  [[^]]  denote 

1 
cos  7 

cos  7 

1 
cos  a 

cos/3 

cos  a 

1 

T-2  sin2  a  T"1  cot  T  T~:  cot  B 

T-1  cot  T  T-2  sin2  ft  T'1  cot  A 

T-1  cos  B  T-1  cot  A  T~2  sin3  7 

•71 

•72 

•73 
•74 
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Already  in  4'5  we  have  had  examples  of  determinants  obtained  by  bordering. 
The  determinants  bordered  in  analytical  geometry  are  almost  all  symmetrical 

in  the  first  place,  and  such  a  determinant  bordered  by  a  vertical  and  a  hori- 
zontal row  with  zero  for  their  common  element  yields  a  symmetrical  bilinear 

function  of  the  bordering  elements.    We  shall  therefore  use  a  notation  ex- 

plained sufficiently  by  saying  that  the  determinant  in  4'55  will  be  denoted  by 

prpml  c^rsj,  and  the  determinants  in  4*56,  4*57  simply  by  [[[^]]  Pip*], 
crcm].    Doubly  bordered  determinants  are  not  unknown,  and  it  would 

be  natural  to  denote 
1        cos  7     cos/8      1T      lt 

cos  7        1  cos  a  fYif  mt 

cos  f3  cos  a        1  nr  nt 

lt  mm         /'s  0  0 

la.  win  nu  0  0 

',  Pt$.p»',  PTL)],  but  a  notation  derived  from  the  determinant  is 
•84       sometimes  superfluous  in  view  of  the  fact  that  °this  determinant  has  the 

value 

*9.  Contractions  will  be  used  as  freely  in  plane  geometry  as  in  three- 
dimensional  work.  It  is  true  that  the  economy  must  be  less  marked,  but  it 

is  far  from  negligible,  and  naturally  it  is  easier  to  compare  two-dimensional 
with  three-dimensional  formulae  if  all  are  expressed  in  the  same  style. 

As  far  as  possible,  the  same  symbols  are  used  as  umbrae  in  plane  geometry 

as  in  solid  geometry,  the  context  being  trusted  to  prevent  confusion.  Thus 
we  write 

•92  c  =  O,  y), 

•93  p  -  (I,  m"), 

•94       Then  the  formulae  /rs  =  CrpB  =p,cn 

are  valid  in  the  plane,  the  theorem  being  proved  by  the  same  argument  as 

establishes  the  corresponding  theorem  in  space,  and  we  shall  purposely  use  ̂  

and  &  for  the  component  and  projection  symbols  in  a  plane  in  order  to 

reproduce  literally  the  formulae 

•95  /rs  =  ̂'CrCB  =  ̂ prps  ', 

it  follows  from  4'31  and  4*32  that  the  necessary  definitions  are 

•96  ^  CT  c.  =  XrXn  +  (^y.  +  yxx*}  cos  «  +  yryn  , 

•97  ^Prprn  =  kl*  cosec2  o)  —  (lrmn  +  mrl^)  cosec  &>  cot  w  +  m,  mu  cosec2  o>, 

•98       implying  ^>11  =  (^>22  =  1,     ̂ 12  =  ̂ »  =  cos  o>, 

•99  &"  =  &*  =  cosec2  w,  •  .&*  =  &*1  *  -  cosec  o>  cot  w. 
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330.  INTRODUCTION. 

The  apparatus,  geometrical  and  algebraical,  required  for  the  use  of  Cartesian 
axes,  is  now  at  our  command.  To  see  how  it  is  handled,  we  can  not  do  better 

than  consider  a  number  of  fundamental  questions  of  an  elementary  kind. 

331.  THE  EVALUATION  OF  PROJECTED  PRODUCTS  IN  A  PLANE; 

THE  SPECIFICATION  OF  ANGLES  IN  A  PREPARED  PLANE  ; 
THE  EVALUATION  OF  AREAL  PRODUCTS. 

•1.   In  plane  geometry,  with 

c  —  (jc,  y~),    p  =  Q,  in),  -11 
221  '15  gives  for  any  two  vectors  r,  B 

£rs  =  crpu=pIcn,  .  -12 

and  24'31  and  24*32  shew  how  the  expression  can  be  expanded  in  terms  of 
components  alone  or  in  terms  of  projections  alone.    Writing 

<@  crc.  =  xrx*  +  (xtym  +  ytxn)  cos  &>  +  yry9,  -13 

^Prp»  =  hi*  cosec2  ft)  -  (lrmn  +  mrin)  cosec  G>  cot  to  +  m^m*  cosec2  to,  -14 
we  can  assert  that 

The  value  of  the  projected  product  of  two  vectors  r,  B  in  a  plane  is  the  value       -15 
of  the  four  equal  expressions 

^CrC.,     Crpn,     prC,,     &  prpn. 

The  notation  implies  that 

The  projections  of  any  vector  are  given  in  terms  of  the  components  by  -16 

l  =  <$lc,     m  =  <@*c 

and  the  components  in  terms  of  the  projections  by 

N. 
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and  elimination  between  '12  and  '16  gives  the  equations 

•17  COTW*  5  c?  rs]  =  0,    [[OT]  crc.  ;  j  rs]  =  0, 
shewing  that 

•18  J%e  projected  product  of  two  vectors  r,  s  i/i  a  pJane  Aas  £Ae  wa/W  o 
expressions 

-  COT  M^i/pra.  -  COT  ** 
•19       °The  determinants  denoted  here  by  [[*$]],  [[^]]  have  the  values  sin2<u,  cosecao>. 

•2.    Recalling  the  substance  of  23'4  and  221  -4,  we  can  write  down  the 

following  corollaries  of  '15  and  '18  : 

•21  The  value  of  the  projection  of  the  vector  r  in  the  direction  2  is  the  value  of 
the  six  equal  expressions 

•22  7%e  cosine  of  the  angles  between  two  directions  P,  S  ts  £Ae  va£we  o/"  the  six 
equal  expressions 

•23  Two  vectors  r,   s  /^ave  perpendicular  directions  if  and  only  if  the  equal 
expressions 

vanish,  and  if  and  only  if  the  determinants  [[[^]]  pr  PB]>  [[[^J]crCB]  vanish. 

•24  The  square  of  the  amounts  of  a  vector  is  the  common  value  of  the  equal 
expressions <$*,   cP, 

•25  The  square  of  the  distances  of  the  point  Q  from  the  origin  of  the  reference 
frame  is  the  common  value  of 

and  the  square  of  the  lengths  of  the  step  R8  is  the  common  value  of 

•26  The  ratios  and  the  cosines  of  any  direction  P  satisfy  identically  the  equations 
2;  1   =  0. 

•3.  In  a  prepared  plane  the  use  of  actual  angles  for  the  specification  of 
directions  has  obvious  advantages.  With  respect  to  a  frame  OXY  we  may  of 

course  describe  the  direction  whose  image  is  T  merely  by  stating  an  angle 

from  H  to  T,  but  to  adopt  this  plan  is  to  abandon  hope  of  symmetry.  Two 
courses  suggest  themselves,  and  of  both  use  is  made  on  occasion  :  we  may 
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use  explicitly  both  an  angle  from  H  to  T  and  an  angle  from  T  to  H,  or  we 
may  use  an  angle  to  T  from  a  bisector  of  the  angles  between  H  and  H. 

In  the  first  case,  we  "denote  a  chosen  angle  from  H  to  T  by  a,  and  a  chosen        -31 
angle  from  T  to  H  by  /9 ;  the  sum  of  a  and  /3  is  necessarily  congruent  with  G>, 
and  we  choose  a  and  /9  to  satisfy  the  equality 

a  +  /3  =  (a.  -32 

In  the  second  case,  we  "denote  by  £  an  angle  to  T  from  the  bisecting  ray  which        -33 
makes  an  angle  equal  to  \  a  with  the  first  axis ;  moreover,  when  passing  from 

one  method  of  description  to  the  other  we  assume  the  equalities 

«  =  £«  +  £,     /3  =  £«-£,  -34 

which  are  of  course  consistent  with  '32.  The  choice  of  the  angles  a,  /5,  £  is  in 
no  respect  governed  by  the  choice  of  &>,  but  when  one  of  the  three  angles  has 
been  chosen  the  others  are  determinate ;  the  expression  of  a  and  /3  in  terms 

of  £  given  by  '34  is  unique,  but  we  can  express  £  in  terms  of  a  and  /3  in  a 
variety  of  ways,  of  which  the  most  useful  is 

£  =  £(«-£).  -35 
We  speak  of  the  direction  £  or  of  the  direction  {a,  /3} ;  the  direction  which 

makes  an  angle  e  with  this  direction  is  the  direction  £+  e  or  [a  +  e,  /3  —  e},  and 
in  particular  the  direction  normal  to  £  or  (a,  /S}  is  £  +  ̂7r  or  {CC  +  ̂TT,  /3  — ^TT|. 

With  the  familiar  mixture  of  theorem  and  convention,  the  angles  derived 

from  the  polar  of  OXY  to  correspond  to  a  and  /3  may  be  defined  by 

d  =  |7r  — /3,     yS  =  ̂ 7r  — a;  -37 

from  '32,  the  sum  of  these  angles  is  TT  —  &>,  which  we  have  already  agreed  to 
regard  as  the  angle  of  the  polar  frame,  while  the  difference  between  the  angles 

is  a  —  /3  and  therefore 

!  =  £;  -38 
the  bisectors  of  the  angles  between  the  axes  of  any  frame  are  the  bisectors 

also  of  the  angles  between  the  axes  of  the  polar  frame,  and  '38  shews  that  the 

conventions  embodied  in  '34  and  2T73  imply  that  £  and  f  are  measured  from 
the  same  direction. 

•4.  Naturally  the  relations  between  the  angles  a,  /3  and  the  ratios  and  co- 
sines of  the  direction  {a,  /3]  are  simple  and  useful.  If  we  regard  the  angles  as 

fundamental,  we  have 

I  =  cos  a,     m  =  cos  /3,  '41 

x  =  sin  /3/sin  a>,     y  =  sin  a/sin  a>,  -42 

the  last  pair  of  formulae  being  a  consequence  of  23'54.  If  on  the  other  hand 
we  wish  to  replace  trigonometrical  symbols  by  algebraical  we  use  the  same 
pairs  of  formulae  in  the  forms 

cos  a  =  I,     cos  /3  =  m,  -43 

sin  a  =  y  sin  a>,     sin  /3  =  x  sin  o>.  -44 

9—2 
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The  fact  that  each  of  the  pairs  x,  y  and  I,  m  can  be  expressed  in  terms  of 

the  other  is  equivalent  to  the  fact  that,  on  account  of  '32,  each  of  the  pairs 
cos  a,  cos  ft  and  sin  a,  sin  ft  can  be  expressed  rationally  in  terms  of  the  other  ; 
actually,  from 

ft  =  to  —  a,     a  =  o>  —  ft 
we  have 

•45  sin  to  cos  a  =  sin  &  +  cos  a>  sin  a,     sin  to  cos  /3  =  sin  a  +  cos  to  sin  ft, 

46  sin  a)  sin  a  =  cos  ft  —  cos  to  cos  a,    sin  to  sin  ft  =  cos  a  —  cos  a>  cos  /3, 

and  of  these  formulae,  which  explain  the  introduction  of  symmetry  by  the  use 

of  the  pair  of  angles  or,  ft  connected  by  '32,  the  pair  '45  is  equivalent  to  24'31 
and  the  pair  '46  to  24'32  ;  it  is  obvious  also  that  '45  and  '46  imply  that  a  +  ft 
is  congruent  with  to.  An  elementary  illustration  of  the  use  of  the  angles  a,  ft 

is  to  be  remarked  in  the  simplicity  of  the  deduction  from  "37,  "43,  and  '44  of 
the  relations  between  ratios  and  cosines  relative  to  one  frame  and  cosines  and 

ratios  relative  to  the  polar  frame.  As  a  second  illustration  we  obtain  the  ratios 
and  cosines  of  the  direction  HE  making  a  positive  right  angle  with  a  given 
direction  I1T  :  we  have 

•47  aE  =  aT  +  ̂7r,     ft^  =  ftf-^ir, 

•48        and  therefore  #E  =  —  WT  cosec  to,     i/E  =  1T  cosec  GO, 

•49  ZE  =  —  7/T  sin  to,     WZE  =  #T  sin  to  ; 

it  is  easy  to  see  that  either  of  the  equations 

•491  IfX-E  +  mT2/E  =  0,     XflE  +  2/T^E  =  0 

together  with  the  relations  between  ratios  and  cosines  of  a  single  direction 

given  in  '26  implies  the  relations 

#E  =y*=      *E      =    m*    =  __  L_ 
—  mT      1T      —  2/T  sin2  to     #T  sin2  a>      ij(su&  to)  ' 

but  '491,  and  therefore  also  '492,  is  true  not  only  of  the  elements  defining  the 

direction  HE  but  also  of  the  elements  defining  the  reverse  direction  HE',  and 
we  can  not  discover  from  '491  alone  which  value  of  \/(sin2  to)  in  '492  is  associated 
with  E  and  which  value  with  E'. 

•5.   Actual  angles  may  be  introduced  in  the  study  of  vectors  and  steps  as 
well  as  of  directions.   If  r  is  the  vector  of  amount  r  in  the  direction  {a,  J3],  then 

'51  1T  =  r  cos  a,     mT  =  r  cos  ft, 

•52  xr  =  r  sin  yS/sin  to,     yr  =  r  sin  a/sin  to, 

and  if  the  step  ST  has  the  length  r  in  the  direction  {a,  ft],  then 

"53  lT—ls  =  r  cos  or,     m?  —  nig  =  r  cos  ft, 

•54  XT  —  xs  =  r  sin  /9/sin  to,     yT  —  ys  =  r  sin  a/sin  to. 

•61  -6.   If  r  is  a  length  of  the  step  ST,  °the  direction  in  which  ST  has  this 
length  has  ratios  (xT  —  xs)lr,  (yT—ys)/^  and  cosines  (IT  —  ̂S)/^  (WT~  ws)M 

•62       and  therefore  by  '48  and  -49  the0  normal  direction  has  cosines  —{(yr—^)/r}  sino>> 
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{(XT—  %s)/r]  sin  «">  and  ratios  —  {(mT—  ms)lr}  cosec  &>,  {(IT—  la)lr}  cosec  w,  and 
the  projection  in  this  direction  of  any  vector  r  is  expressible  in  either  of  the 
forms 

r"1  sin  <u 

yr-ys 
or  otherwise  in  either  of  the  forms 

sin  &)     0     x,     ?/r 
®s     ys 

XT    yT 

cosec  &> 

r~l  cosec  G> 

IT  —  la 

y  —  ins 

0 

lr 
ls 

IT 

Taking  for  r  the  vector  of  a  step  PR  we  have  expressions  for  the  projection 

of  this  step  normally  to  the  ray  in  which  ST  has  the  length  r ;  in  particular 
we  can  find  the  distance  of  R  from  this  ray  by  placing  P  anywhere  in  the  line 

through  S  and  T.  For  example,  by  giving  to  XT,  yr,  lr,  m,  the  values 

®R  —  ®s>  yR  —  ys>  IR  —  1$,  WR  —  MS  we  find  for  the  perpendicular  distance  the 

expressions* r"1  sm  &) 

VR 

ys 
yT 

cosec  &> 

IE ls 

IT 

Multiplying  these  expressions  by  \r  we  conclude  that 

The  area  of  the  triangle  RST  in  a  prepared  plane  is  given  in  terms  of  the 
coordinates  and  in  terms  of  the  projections  of  the  vertices  with  respect  to  a  frame 

of  angle  &>  by  the  expressions 

In  the  form 

sin  G) 1     OCR    VR 
,        \  cosec  &) 

1     1R     mR 

1     xa 

ys 

1     Is     ms 
1     XT    yT 1     IT    m,T 

1     IR     MR = 100 
1     aB    yR 

1     ls     ms 0          1      cos  &> 
1     xs     ys 

1     IT    mT 0       cos  &)       1 

1     XT    yT 

the  relation  between  the  two  determinants  in  "66  appears  as  an  immediate 

consequence  of  24'31,  and  the  cyclic  direction  of  the  plane  governs  the  sign 
of  the  area  by  determining  the  sign  of  the  factor  sin  <o  or  cosec  &>. 

Using  umbral  notation  as  suggested  in  25'8,  we  can  contract  the  expres- 
sions in  *63  to 

T  —  Cs',  Pr],     r~l  cosec  w  [p  T—  ps\  Pr]- 

*  Algebraically  it  is  evident  that  the  same  expressions  will  result  if  we  substitute 
XR  -  (Affg+£*r)  f°r  xr>  and  so  on,  if  h,  k  are  any  two  numbers  whose  sum  is  unity.  That 
is,  with  this  condition  hxs  +  kxT,  %,s-  +  %2'  are  necessarily  the  coordinates  of  some  point 

on  the  line  ST,  and  24-31  implies  that  hls  +  klT,  hms  +  kmT  are  the  projections  of  the  same 
point.  This  is  to  anticipate. 

•63 

•64 

•65 

•66 

•67 
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•68       To  abbreviate  those  in  *65  and  '66  we  may  use  °an  umbra  P  for  (\R,  S,  T^), 
when  the  expressions  in  question  become 

•69  £[1,  1,  1;  xp\  yj/jsinw,     £[1,  1,  1;  lp\  mp]  cosec  o>. 

•7.  Having  worked  in  the  last  few  paragraphs  from  first  principles,  we  are 
able  to  appreciate  that  the  use  of  wider  notions  enables  us  to  recover  the 
same  results  with  much  less  labour.  The  vectors  r,  B  can  be  expressed  as 

#rla  +  yrlH>  #«lE  +  2/BlH>  and  therefore  from  222'15,  that  is,  because  the 
areal  product  is  distributive, 

-71  ^  rs  =  XrX%  £4  la2  +  a»y»  <$&  IH!H  +  yr#.  -54  1H1H  +  y*y*  -54,  1H2 ; 
but  from  the  definition  of  the  areal  product, 

•72  ^1S2  =  0,     ̂ lHlH  =  sina>,     £4  IH^H  =  -sino>,     ̂ 1H2  =  0, 
and  therefore 

•73  The  areal  product  of  the  vectors  r,  B  is  given  in  terms  of  the  components  of 
the  vectors  by  the  formula 

£4  rs  =  (x*y%  -  2/r#g)  sin  o>, 

and  in  terms  of  the  projections  by  the  formula 

£#  TB  =  (lrmi  —  mrlt)  cosec  o>, 

the  second  part  of  the  theorem  coming  by  an  application  of  24'22  and  21 '73. 

Umbral  notation  can  be  used  in  the  formulae  of  '73,  giving 

•74  £#  TB  =  [CT]  CB]  sin  a  =  [pT]  pB]  cosec  o>. 

A  particular  case  of  this  gives  the  expressions  in  -63,  already  in  the  abbreviated 
forms  of  '67.   From  222'31  arid  '74  the  area  of  the  triangle  RST  is  expressible 
in  the  forms 

•75  \  [cs  -  CR }  CT-  CR~\  sin  ay,     %  [  ps  -  pR ;  pT  -  PR]  cosec  o>, 

identifiable  at  once  with  those  given  in  *69. 

332.    THE  EVALUATION  OF  PROJECTED  PRODUCTS  IN  SPACE,  OF  VECTOR 

PRODUCTS,  AND  OF  SPATIAL  PRODUCTS :  LAGRANGE'S  IDENTITIES. 

After  our  experience  of  the  application  of  222*15  to  the  proof  of  the 
theorems  of  the  last  paragraph,  we  retain  our  full  equipment  for  the  first 

consideration  of  corresponding  theorems  in  space. 

•1.   In  the  geometry  of  space  we  have  agreed  to  write 

c  =  O,  y,  z),    p  =  (/,  ??i,  n), 

.  =  XTSC*  +  yry*  +  z-t  z* 
+  (yr*«  +  Zry*)  cos  a  +  Or#»  +  afc*B)  cos  ft  +  (xryt  +  ytxn)  cos  7, 

13        &prp»  =  Irlnf-*  sin2  a  +  mPwgT-2  sin2  £  +  Wx^BT-2  sin2  7 

+  (WT/I.  +  r^w,)  T-1  cot  A  +  (ntln  +  Z,n,)  T"1  cot  B  +  (lrmn  +  wi,  i«)  T-1  cot  T, 
for  we  have  found  in  24'33  and  24*34  that  with  this  notation 
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The  projections  of  any  vector  are  given  in  terms  of  the  components  by  -14 

and  the  components  in  terms  of  the  projections  by 

x  =  g»p,  y  =  g»P,  z  =  &*p, 
and  that  consequently 

The  value  of  the  projected  product  of  two  vectors  r,  8  is  the  value  of  the  six 
equal  expressions 

where  now,  by  24'42,  [[^]],  [[#>]]  have  the  values  T2,  T~a. 

*2.  The  corollaries  of  1*15  and  T18  enunciated  in  1*2  can  be  repeated*, 
word  for  word  and  symbol  for  symbol  ;  the  interpretation  of  the  symbols  has 

changed,  but  the  basis  of  the  deductions  is  again  in  23'4  and  221  '4  : 

The  value  of  Hie  projection  of  the  vector  r  in  the  direction  S  is  the  value  of       -21 
the  six  equal  expressions 

The  cosine  of  the  angles  between  two  directions  P,  S  is  the  value  of  the  six       -22 
equal  expressions 

Two  vectors  r,  s  have  perpendicular  directions  if  and  only  if  the  equal       -23 
expressions 

vanish,  and  if  and  only  if  the  determinants  [[[*$]]  p^p*],  [[[^]]crC8]  vanish. 

The  square  of  the  amounts  of  a  vector  is  the  common  value  of  the  equal       '24 
expressions 

<$c\     cp,     &p\     -[[[^]]P2]/[OT],     -[[OT]c2]/[[^]]. 

The  square  of  the  distances  of  the  point  Q  from  the  origin  of  the  reference       -25 
frame  is  the  common  value  of 

and  the  square  of  the  lengths  of  the  step  RS  is  the  common  value  of 

The  ratios  and  the  cosines  of  any  direction  P  satisfy  identically  the  equations       -26 

'  ;  1    =  0,      [[^]]  cp2;  l   =  0. 
*  Habitually  to  indulge  in  repetitions  of  this  kind  is  to  forgo  the  advantages  implicit 

in  the  notation,  but  a  few  examples  at  this  stage  may  be  allowed. 
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•3.   From  the  identities 

•31  r 

which  simply  express  the  meaning  of  components,  using  223'27  and  the 
results  of  the  forms 

•32  ^1H2  =  0,     ̂ lzlH  =  -^lHlz, 
we  have 

•33  V  rs  =  (yr£g  -  Zrym)V  1H1Z  +  (Zr<V»  ~  XT?*)®  Ma  +  («ry«  ~  2/r^s)^  Ma  J 

since  ̂   IH!Z>  ̂   IZ!B>  ̂ '  IE^H  are  the  vectors  of  amounts  sine,  sin/8,  sin  7  in 
the  directions  normal  to  the  planes  of  reference, 

•34  The  vector  product  of  r  and  B  is  the  vector  whose  components  in  the  polar  of 
the  frame  OX  YZ  are  (yrz»  —  z*y*)  sin  o,  (ZT  xt  —  XfZm)  sin  ft,  (xry»  —  yT  #,)  sin  7, 

and  this,  in  virtue  of  24'24,  is  equivalent  to  the  assertion  that  the  projections 
of  the  vector  product  ̂   rs  in  the  frame  OXYZ  itself  are  T  (yTz*  —  zry»), 

T(2r#B  —  tfr-Zg),  T  (xryn  —  2/r#»);  the  vectors  r  and  s  being  the  vectors  whose 

components  in  the  polar  of  OXYZ  are  lrv~l  sin  A,  mrv~l  sin  B,  nrv~l  sin  T  and 
/gf"1  sin  A,  mtv~l  sin  B,  Wgu"1  sin  T,  '34  gives  the  components  of  the  vector  pro- 

duct in  OX  YZ  directly  as  T-1(??irr?g  -nr  wg),  T-^^r^i  -  kwg),  T-J(k?ng  -  mr£B), 
since  by  2279  the  factor  i/~2  sin  A  sin  B  sin  F  which  enters  has  the  value  T"1: 

•35  Ifp  is  the  vector  product  ofr  and  s,  then* 
(off, IT     mr    nt m 

p, 

yt 

*4.   To  evaluate  the  spatial  product  we  make  use  of  the  identity 
•41  ^rst 

proved  in  225'2,  which  gives 
•42  $  rst  = 

where  p  denotes  ̂   rs  ;  on  substitution  from  '35,  we  find  that 

•43  The  spatial  product  of  the  three  vectors  r,  B,  t  is  given  by 

S  rst  =  T-1  Or;  pg;  pt]  =  T  [c,;  cg;  ct]. 

Direct  proofs  of  '43  are  easy  to  construct.  It  follows  fromf  225*24  that 
^rst  is  a  linear  function  of  the  set  of  components  #r,  yr,  ZT,  a  linear  function 

of  the  set  x*,  yt,  zm,  and  a  linear  function  of  the  set  #t>  yt,  z\.,  and  from  225*12 
*  To  write  (x^  x2,  ...  xn)  =  M  \\A\\,  where  A  is  a  rectangular  array  with  n  columns  and 

n-l  rows,  means  that  for  r=l,  2,  ...  n,  xr=(-)r-1  MAr,  where  Ar  is  the  determinant  of 
the  square  array  obtained  by  omitting  from  A  the  rth  column.  In  other  words,  the 
notation  means  that  for  arbitrary  values  of  n  parameters  Xj,  X2,  ...  Xn, 

where  A  is  the  determinant  of  the  square  array  obtained  by  placing  above  A  the  row 

AI,  A2,  ...  Xn. 

t  In  the  text,  225-24  was  deduced  from  225-22,  which  is  practically  the  relation  from 

which  -43  has  just  been  deduced,  but  it  is  easy  to  prove  225-24  without  225-22. 
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that  this  function  suffers  a  reversal  of  sign  but  no  other  alteration  if  any 

two  of  the  sets  are  interchanged;  these  conditions  are  sufficient*  to  imply  that 

&nt  is  a  constant  multiple  of  the  determinant  [CT',  cn\  Ct],  and  the  multiplier 
is  necessarily  ̂ 7  la  lnlz,  which  is  T.  To  avoid  appealing  to  a  general  theorem 
on  conditions  implying  a  determinantal  form,  we  can  express  &  rrt  as 

,7(^12  +  yrln  +*rlz)(a?»lH  +y«ln  +  *»lz)(«tlH  +  ytlH  4- *tlz) and  use  22513 

and  225'1 2,  when  it  becomes  evident  that  3 'rst/T  is  constructed  from  the 
components  precisely  by  the  rules  which  govern  the  expansion  of  the  de- 

terminant [CT;  cg;  Ct].  From  one  part  of  '43  the  whole  theorem  can  be 

reconstructed,  and  *35  follows  without  difficulty,  for  the  first  projection  of  ̂ ra 
is  <?  1H  (^rs),  that  is,  S  lsrs. 

•5.    The  simplest  geometrical  interpretations  of  '35  and  '43  are  evident : 

If  II  is  a  direction  at  right  angles  to  both  the  directions  P  and  2,  and  if  e  is        -51 
an  angle  from  P  to  2  round  IT,  then 

IP    mP 

l-s    m (In,  ™n,  7in)sine  = 

yv 
2/2 

//  P,  2,  T  are  any  three  directions  in  space,  -52 

The  areal  vector  of  the  triangle  QRS  lias  the  components  -53 

£T-'[1,  1,  1;  mP;  np],     ̂ [l,  1,  1;  nP;  1P],     |T^[1,  1,  1;  1P 
and  the  projections 

P  is  an  umbra  of(^Q,  R,  $). 

The  volume  of  the  tetrahedron  QRST  is  given  by  the  two  expressions  -54 

£T[1,  1,  1,  1;  XP\  yP;  ZP],     ̂ T^fl,  1,  1,  1;  lp]  mp;  np], 

where  P  is  an  umbra  of  (^Q,  R,  8,  T~). 
If  any  one  of  these  theorems  is  known,  the  others  can  be  deduced  immediately. 

The  classical  proof  of  -53  may  be  presented  as  follows  :  if  the  triangle  QRS  is  projected 
normally  on  the  #-plane,  then  by  224'23  the  areal  vector  of  the  projection  is  the  projection 
of  the  areal  vector  of  QRS  on  the  normal  to  the  plane  ;  but  by  142'23,  the  projection  of  Q 
on  the  x-  plane  is  the  point  whose  projections  in  that  plane,  referred  to  the  frame  OYZ, 
are  mQ,  nQ,  and  therefore  by  T66,  which  we  may  suppose  established  by  elementary 
methods,  the  areal  vector  of  the  projection  is  of  amount  ̂ [1,  1,  1  ;  mp;  %>]coseca;  this 
then  is  the  projection  of  the  areal  vector  of  QRS  on  OL,  and  the  first  component  of  the 
areal  vector  in  OXYZ  follows  from  24-24. 

There  is  a  far  more  elementary  method,  effective  though  inelegant,  of  proving  a  result         », 

equivalent  to  '52.   The  fact  that  the  equation  of  every  plane  has  the  formfx  +  c[y  +  hz  =  d, 
which  can  be  proved  independently  of  any  of  the  results  of  this  article,  implies  algebraically 

that  the  equation  of  the  plane  through  K  parallel  to  the  plane  ODV  is  [c  —  CK;  cv;  cK]=0, 

*  Compare  Salmon,  Modern  Higher  Algebra,  foot-note  to  §  13  (p.  9  of  4th  ed.,  1885). 
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•62 

•63 

•71 

•72 

•73 

•74 

or  in  other  words  implies  that  if  J  is  on  this  plane  then  \Cj-f  cv;  cr]  =  [cK;  cv;  cv]; 
if  then*  the  plane  through  R  parallel  to  OST  meets  OX  in  F,  the  plane  through  S  parallel 
to  OFT  meets  OY  in  G,  and  the  plane  through  T  parallel  to  OFO  meets  OZ  in  S, 

[cn;  cs;  CT]=[CJ,;  cs;  CT]  =  [CF;  CG;  cr]  =  [cF;  ca  ;  CH]; 

but  the  construction  makes  the  volumes  of  the  tetrahedra  ORST,  OFST,  OFGT,  OFGH 
equal,  in  sign  as  well  as  in  amount,  the  volume  of  OFGH  is  JY  xfyGzH,  and  since  in  the 
determinant  [CF  ;  ce  ;  ca]  only  the  leading  diagonal  survives,  the  value  of  this  determinant 
is  the  simple  product  xFy0zH;  hence  the  volume  of  ORST  is  jY[c^;  c&.;  CT]. 

'6.   It  is  interesting  to  observe  that  in  the  relation 

which  forms  part  of  '52,  every  element  can  be  described  without  reference  to 
the  fact  that  the  directions  HE,  HH,  HZ  have  been  supposed  to  be  those  of 
axes  of  coordinates,  and  that  we  can  write 

sin  HE  HZ  sin  I1P2T  = cosSP cos  HP 

cos  H2 

cosHT 

cosZP 
cos  Z2 

cosZT 

COS  tA2, 

cosET 

an  identity  that  includes  13'47  as  a  special  case;  since  the  proof  of  '52  does 
not  require  P,  2,  T  not  to  be  coplanar,  the  symmetry  of  '62  in  the  two  sets  of 
directions  shews  that  the  result  is  true  unless  both  sets  are  coplanar,  and  it  is 

easy  to  prove  directly  that  in  fact  there  are  no  exceptional  cases. 

Multiplying  '62  by  the  product  xyzrst  of  any  six  numbers,  we  have  the identity 

<^  xr    £  yr    c^  zr 

c^  xs    £  ys    £  ZB 

c^xt    c^yt    c^zt 

valid  for  any  six  vectors  whatever. 

*7.    Since,  like  any  other  sets  of  direction  ratios  and  cosines,  those  given  in 
*51  satisfy  the  identities  of  '26,  we  have. 

sin2  e  =  T~2 
sin2  e  = 

sin2  e  = 
sin2  e  =  —  1 cos  7 

cos  7 

1 

cos  a 

cos  /3 

cos  a 

0 

*  In  certain  cases,  the  construction  in  this  precise  form  will  fail,  unless  the  symbols 
R,  S,  T  are  permuted  :  the  reader  is  left  to  fill  in  the  outlines. 
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sin2  e  =  - T~s  sin2  o 
T-J  cot  T 

T-1  cot  B 

T-1  cot  T 
T-8sina/3 

T-1  cot  A 

T-1  cot  B 
T-1  cot  A 

T-2  sin2  7 
wPn2  - 
ZPw2  -  mv 

0 

and  from  25'84  it  appears  that  71,  '73  can  be  given  the  elegant  form 

•75 

and  that  '72  is  equivalent  to 

sin2  e  = 
0 

1 

0 

IP     nip 

l-s.     m-z 

0     £/p     2/2 

wp      0      0 

ns      0      0 

which  can  be  transformed  into  '76  or  *77  immediately. 

•8.  The  formulae  of  the  last  paragraph  are  not  independent  of  those  giving 
cos  e,  but  the  identities  to  which  our  attention  is  drawn  by  a  comparison 

take  a  more  general  form  if  derived  from  "35  ;  the  elementary  identity 

(rs  sin  e)2  =  ?"2s2  —  (rs  cos  e)2 

gives  for  any  two  vectors 

£  (^rs)2  =  J  r2  £  s2  -  (/rs)2, 
and  therefore 

+  n,z, 

+  nBzr mr 

*r 

Xr 

y* y* 

2/r      *« 

2/8     *t 
<@cr2<@cB--(<@crcB}2  = 

The  second  of  these  identities  is  true  independently  of  relations  between 

I,  m,  n  and  x,  y,  z,  and  is  a  simple  case  of  an  identity  invaluable  in  the  appli- 
cations of  determinants  to  pure  algebra;  the  first  and  third,  which  have 

often  been  used  to  establish*  '71  and  '73,  are  associated  with  the  name  of 
Lagrange. 

Even  '82,  '83,  '84  may  be  generalised,  for  '81  is  only  a  particular  case  of 
225-43 : 

i)  (^tu)  =  /  rt  S  su  -  S  ru  S  at. 

•76 
•77 

•78 

•81 

•82 

•83 

•84 

•85 

For  trirectangular  axes. 
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Algebraically  the  identity 

•  mryt  +  nrzt     lra 

332 

nr 

ra 

Vt 

IT 
I. 

m 

m 

is  verified  even  more  easily  than  *83. 
By  means  of  a  determinant  we  can  express  c^(^rs)  (^tu)  in  terms  of  com- 

ponent symbols  and  the  projections  of  ̂ rs  and  ̂ tu,  and  therefore  by  means 
of  component  symbols  and  the  components  of  r,  B,  t,  u.  Thus  comes  the identity 

0 

which  is  independent  of  the  meaning  attached  to  the  bilinear  function 

and  can  be  verified  at  once  if  the  determinant  on  the  right  is  multiplied  by 

yr      zt      0 
VB      z~      0 

and  the  product  by 

00 m      « 01 

n      0 

n    o 
,000: 

where  m,  n  are  arbitrary.  There  is  a  similar  identity  with  projections  and 
projection  symbols,  but  this  is  not  algebraically  a  distinct  result,  for  the 

algebraic  proof  of  '87  is  not  affected  by  the  particular  values  of 

333.  THE  SPECIFICATION  OF  ROTORS,  OF  RAYS,  AND  OF  LINES, 
IN  A  PREPARED  PLANE. 

*1.  We  have  seen  in  234'32  that  a  rotor  in  a  prepared  plane  is  known  com- 
pletely if  its  vector  and  its  moment  about  any  one  point  of  the  plane  are 

known,  and  if  we  are  studying  the  plane  by  means  of  a  Cartesian  frame  OX  Y 
it  is  natural  to  suppose  that  it  is  about  the  origin  0  that  the  moment  is  given. 
It  is  important  to  know  the  moment  of  a  rotor  rfc  about  any  point  Q  of  the 
plane  in  terms  of  the  vector  r  and  the  moment  R  of  r^  about  0,  and  here 
again  the  results  are  ready  for  us :  the  vector  of  the  step  OQ  is  of  course  the 
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vector  with  components  XQ,  yq  and  projections  IQ,  mq,  and  therefore  by  234'22 
and  1-73 

If  the  vector  of  a  rotor  in  a  prepared  plane  is  r  and  the  moment  of  the  rotor       -12 
about  the  origin  of  a  frame  OXY  is  R,  the  moment  of  the  rotor  about  any  point 
Q  can  be  expressed  in  the  two  forms 

(x,yq  —  yt®Q)  sin  «  +  R,    (JrwiQ  —  m,  lq)  cosec  w  +  R* 

Two  simple  corollaries  deserve  mention.  If  r  is  a  proper  vector,  the  points 
about  which  the  rotor  has  moment  zero  are  the  points  whose  coordinates  and 

projections  satisfy  the  equations 

(y,x—xry)sina)  =  R,     (mrl  —  kw)  cosec  CD  =  R',  -13 
these  then  are  equations  of  the  axis  of  the  rotor,  and  incidentally  we  have 

verified  that  the  rotor  is  determined  completely  by  r  and  R,  for  if  r  is  not 

zero  the  line  in  which  the  rotor  is  localised  is  determined  uniquely  by  either 

of  the  equations  '13.  And  if  a  rotor  is  given  by  its  vector  r  and  by  a  point 

P  through  which  it  passes,  °the  moment  of  the  rotor  about  the  origin  is  -14 
expressible  in  the  two  forms  (yr®p  —  ̂ yp)  sin  w,  (mrlp  —  1T  mp)  cosec  o>  ;  this 

is  of  course  merely  an  analytical  version  of  234*21. 
The  vector  of  a  step  8T  in  a  plane  has  components  XT  —  xs,  yT  —  ys  and 

projections  IT—IS>  my  —  ms',  it  follows  from  '14  that  °  the  moment  of  the        *15 
step,  that  is,  the  moment  of  the  rotor  of  the  step,  about  the  origin,  is 

expressible  in  the  two  forms 
cosec  &>. 

It  is  even  simpler  to  quote  234'25  than  to  use  '14,  for  '15  then  comes  at  once  from 
1'73,  and  the  moment  about  an  arbitrary  point  is  deducible  from  1*66  or  1'75. 

•2.  There  are  many  ways  of  specifying  a  ray  in  a  plane,  and  the  last  para- 

graph directs  us  to  one  of  the  most  effective.  We  know  (compare  23'4  above) 
that  in  describing  a  direction  K  by  means  of  ratios  we  are  virtually  decomposing 
a  unit  vector  1K,  and  similarly  the  means  adopted  for  describing  a  unit  rotor 

IK  in  a  ray  K  are  valuable  for  identifying  the  ray  K  itself.  From  this  point  of 

view,  °a  ray  K  in  a  prepared  plane  is  specified  with  reference  to  a  Cartesian  -21 
frame  by  three  numbers,  of  which  the  first  two  are  ratios  or  cosines  defining 

the  direction  of  the  ray  and  are  not  independent,  being  subject  to  1*26,  and 
the  third  is  the  moment  of  the  ray,  that  is,  of  a  unit  vector  located  in  the  ray, 

about  the  origin  of  the  frame;  we  denote*  the  ratios  by  XK,  yK,  the  cosines 
by  lt,mK,  and  the  moment  by  aK  . 

We  may  take  a  more  elementary  view  of  the  moment  as  an  element  assisting 

us  to  identify  a  ray,  for  this  moment  is  simply  °  the  distance  of  the  origin  from  -23 
the  -ray.  If  the  ray  K  has  moment  aK,  the  projection  of  0  on  K  is  the  point 
at  distance  aK  from  0  in  the  direction  making  a  negative  right  angle  with 

the  direction  of  K,  and  is  therefore  by  1'48  and  T49  the  point  of  coordinates 
*  These  symbols  are  of  the  kind  we  have  used  for  rotors,  but  confusion  is  unlikely. 
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aKmK  cosec  &>,  —  aKlK  cosec  to  and  projections  aKyK  sin  <a,  —  aKxK  sin  o>.  Provided 
that  aK  is  not  zero,  the  axis  of  the  ray  is  determined  by  the  position  of  this 

point,  but  the  direction  of  the  ray  in 
the  line  remains  unknown,  and  the 

determination  of  this  direction  is  pre- 
cisely analogous  to  the  determination 

from  1'26  of  yK  or  mK  when  XK  or  1K  is 

given,  or,  in  the  notation  of  1*3,  to  the 
determination  of  one  of  the  functions 

cos  a,  sin  a  from  the  other.  If  aK  is 

zero,  the  pairs  of  numbers  aKxK,  aKyK 
and  aKlK,  aKmK  fail  to  indicate  the 

direction  of  the  ray.  We  meet  with 
little  encouragement  if  we  attempt  to 

specify  a  ray  by  means  of  two  inde- 

pendent numbers.    Returning  in  '12  from  moments  to  distances  we  see  that 

•25  The  distance  of  a  point  Q  in  a  prepared  plane  from  a  ray  K  is  expressible  in 
the  forms 

(xKyq  —  yKxo)  sin  a>  +  aK  ,     (lKmq  —  mK  IQ)  cosec  co  +  aK, 
where  aK  is  the  distance  of  the  origin  from  the  ray, 

•26        and  we  see  also  that  if  P  is  any  point  of  the  ray,  °the  distance  aK  is  expressible 
as  (yKxp  —  xKyp)  sin  o>  or  (mKlp—  lKmp)  cosec  o>. 

There  are  two  reasons  for  regarding  aK  first  as  a  moment.  On  the  one  hand,  we  have 
then  a  definite  reason  for  choosing  the  distance  of  0  from  <  rather  than  the  distance  from  0 

to  <;  algebraically,  (xKyP-yKXp)s\not  would  serve  as  well  as  (yKxP  —  xKyP)sma>,  and  by 
regarding  the  function  primarily  as  a  moment  we  avoid  a  tax  on  memory.  On  the  other 
hand,  a  rotor  has  two  directions  and  two  distances  from  the  origin,  and  to  pass  from  the 
distance  of  a  ray  to  the  moment  of  a  rotor  would  be  to  repeat  much  of  234.  Moreover,  as 
we  are  about  to  find,  in  the  extension  to  the  geometry  of  space  the  conceptions  of  distance 
and  moment  are  both  required,  for  while  they  are  of  equal  utility  they  are  applied  to 
distinct  problems. 

•3.    Equations  for  the  axis  of  the  ray  K  are  given  from  '25  : 

•31  The  coordinates  of  a  point  on  the  axis  of  the  ray  K  satisfy  the  equation 

(yKx-xKy)s\.K<*  =  aK, 
and  the  projections  of  a  point  on  the  same  line  satisfy  the  equation 

(mKl  —  lKm)  cosec  &>  =  aK. 
This  result  may  be  regarded  in  two  ways  as  the  interpretation  of  an  equation 

satisfied  by  the  vector  from  the  origin  to  any  point  of  the  axis.   If  this  vector 
is  r  and  the  vector  of  the  ray  is  k,  the  moment  of  the  ray  about  the  origin  is 

given  by  234*21  as  ̂ kr': 
•32  The  vector  r  from  the  origin  to  any  point  on  the  ray  K  satisfies  the  equation 

where  k  is  the  vector  of  the  ray  and  aK  is  the  distance  of  the  origin  from  the  ray. 
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The  alternative  point  of  view,  natural  if  a  ray  in  a  plane  is  taken  as  analogous 
to  a  plane  in  space,  is  to  suppose  the  ray  K  specified  by  the  unit  vector  n< 
normal  to  K  together  with  the  distance  a.K ;  then  if  R  is  any  point  on  the  ray, 
the  projection  of  RO  in  the  normal  direction  is  of  length  a« : 

The  vector  r  from  the  origin  to  any  point  on  the  ray  K  satisfies  the  equation         *33 

/nKr  +  aK  =  0, 

where  nK  is  the  unit  vector  normal  to  the  ray  and  aK  is  the  distance  of  the  origin 

from  the  ray. 

•4.  If  what  is  to  be  specified  is  not  a  ray  but  an  undirected  line,  the 
advantage  of  dealing  with  unit  vectors  disappears :  a  line  may  be  identified 
by  means  of  any  proper  vector  located  in  it  or  by  means  of  any  proper  vector 
to  which  it  is  perpendicular. 

The  first  method  repeats  *13 : 

The  coordinates  and  projections  of  the  points  on  a  given  line  satisfy  the       -41 
equivalent  linear  equations  (y^ao  —  ac^y)  sin  ca  =  H,  (m^l  —  l^m)  cosec  <u  =  H, 
where  h  is  any  vector  with  the  directions  of  the  line  and  H  is  the  moment  about 

the  origin  of  the  rotor  obtained  by  locating  h  in  the  line. 

The  vector  h  is  ineffective  unless  it  is  a  proper  vector,  and  we  have  to  notice 
that  the  line  determined  by  the  vector  A;h  and  number  kH  is  the  same  as  the 

line  determined  by  the  vector  h  and  number  H :  on  this  account  the  descrip- 
tion of  the  line  by  means  of  h  and  H  or  by  means  of  the  three  numbers  x^, 

yk,  H  or  the  three  numbers  £h,  ra^,  H  is  said  to  be  ° homogeneous.  We  can  of  -42 
course  give  '41  a  form  purely  vectorial : 

The  vector  r  from  the  origin  0  to  a  variable  point  of  a  given  line  satisfies  the       -43 
equation 

£#rh  =  H, 

where  h  is  any  vector  with  the  directions  of  the  line  and  H  is  the  moment  about 
0  of  the  rotor  obtained  by  locating  h  in  the  line. 

For  the  alternative  method,  suppose  n  to  be  any  vector  perpendicular  to 
the  line,  and  r,  s  to  be  the  vectors  from  0  to  two  points  R,  S  of  the  line.  Then 

r  —  s  is  the  vector  of  SR,  and  is  therefore  perpendicular  to  n  ;  that  is 

<?  (r  -  s)  n  =  0, 

and  therefore  £  rn  = 

If  n  is  any  vector  perpendicular  to  a  given  line,  the  vector  r  from  the  origin       -46 
to  a  variable  point  of  the  line  satisfies  an  equation 

where  N  depends  on  n  but  is  independent  of  the  position  of  the  point  on  the  line. 
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In  algebraical  terras, 

•47  The  coordinates  and  projections  of  the  points  on  a  given  line  satisfy  the 
equivalent  linear  equations 

where  n  is  any  vector  perpendicular  to  the  line  and  N  depends  only  on  the  line 
and  on  the  choice  of  n. 

•48  Here  again  we  have  a  homogeneous  specification  of  the  line  :  °the  line  deter- 
mined by  kn  and  kN  is  the  same  as  the  line  determined  by  n  and  N,  but  we 

can  not  say  that  the  line  is  determined  by  n/N,  since  N  may  be  zero. 

•5.   The  converse  of  '46  is  easily  proved.   Let  the  vector  r  from  the  origin 
to  a  variable  point  R  satisfy  the  condition 

•51  Jrn  =  N, 

where  n  is  an  arbitrary  proper  vector  and  N  is  a  given  number.  Since  n  is 

a  proper  vector,  it  is  possible  first  to  find  a  particular  vector  t  such  that  c^tn 
is  not  zero,  and  then  by  taking  8  as  (JT/cftn)  t  to  find  a  particular  vector  s 
such  that 
•52  ^BU  =  N. 

But  from  '51  and  '52  follows 
•53  /  (r  -  s)  n  =  0, 

and  this  implies  that  if  S  is  the  point  such  that  OS  has  the  vector  B,  the  point 

R  satisfies  '51  if  and  only  if  the  step  8R  is  perpendicular  to  n. 

•54  If  n  is  any  proper  vector  in  a  plane  and  N  is  any  number,  the  points  in  the 
plane  whose  vectors  satisfy  the  condition 

£rn  =  N 
compose  a  definite  line. 

•55  It  follows  that  °  every  linear  relation  between  the  coordinates  of  a  variable 
point  expresses  that  there  is  some  definite  line  on  which  the  point  is  restricted 
to  lie,  for  ax  +  by  can  be  regarded  as  the  projected  product  of  the  vector  of 

components  (x,  y)  and  the  vector  of  projections  (a,  b),  and  the  latter  is  not  the 

•56  zero  vector  unless  a,  b  are  both  zero.  Similarly  °a  linear  relation  between 
projections  implies  a  linear  restriction  on  the  point. 

The  converse  of  '43  may  be  deduced  from  *54  and  222  14,  or  may  be  proved 
directly  by  arguments  parallel  to  those  just  used;  having  found  one  point  S 
whose  vector  a  satisfies 

•58       we  can  replace  ^  rh  =  H 

by  64  (r  -  s)  h  =  0, 
which  by  22212  expresses  that  the  point  whose  vector  is  r  lies  on  the  line 

•59        through  8  with  the  directions  of  h  :  "every  relation  of  the  form  of  '58  restricts 
the  point  which  represents  r  with  reference  to  a  particular  origin  to  a  par- 

ticular line. 
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334.  THE  SPECIFICATION  OF  PREPARED  AND  UNPREPARED 
PLANES  IN  SPACE. 

•1.  A  prepared  plane  in  space  is  identified  with  reference  to  a  frame  OXYZ 
by  the  direction  of  its  normals  and  the  distance  from  it  of  the  origin  0  ;  if  the 

plane  is  S,  we  denote  the  ratios  and  the  cosines  of  the  normal  direction  by 

xs>  ys>  zs  and  1$,  mg,  ns,  and  the  distance  of  0  from  S  by  as.  If  SQ  is  the  plane 
through  0  parallel  to  S  and  with  the  same  cyclic  direction,  the  distance  of  any 

point  Q  from  S  is  the  sum  of  the  distances  of  0  from  S  and  of  Q  from  So  ',  the 
first  of  these  distances  is  as,  and  the  second  is  the  projection  of  the  step  OQ 

•  on  any  ray  normal  to  S  : 

The  distance  from  a  prepared  plane  S  to  a  point  Q  is  expressible  in  the  four       -12 

forms 

We  deduce  that  if  we  are  given  the  direction  normal  to  a  prepared  plane  S 

and  one  point  P  of  the  plane,  we  can  obtain  °the  distance  as  as  the  value  of       '13 
the  four  equal  expressions 

-cspP,     - 

and  this  is  otherwise  evident,  for  the  distance  of  0  from  the  plane  is  the  pro- 
jection normal  to  the  plane  of  any  step  to  0  from  a  point  in  the  plane. 

The  normal  projection  of  0  on  the  plane  S  is  the  point  at  distance  —  a$  from 
0  in  the  direction  normal  to  S  ;  if  as  is  not  zero,  the  plane  is  determined  save 

for  its  cyclic  direction  by  the  position  of  this  point,  but  it  is  impossible  to 

identify  even  an  unprepared  plane  by  means  of  this  point  if  the  plane  contains 
the  origin. 

•2.  It  follows  from  *12  that  the  points  of  the  plane  S  are  the  points  of  which 
the  coordinates  satisfy  the  equation 

psc  +  as  =  0  -21 
and  the  projections  the  equation 

CsP  +  as=0.  -22 

As  equations  however  '21  and  *22  have  little  to  recommend  them  :  on  the  one 
hand  the  equations  alone  are  insufficient  to  characterise  the  prepared  plane, 
while  on  the  other  hand  for  the  unprepared  plane  there  is  no  advantage  in 

dealing  with  a  unit  vector.  If  n  is  any  vector  perpendicular  to  a  plane  and 

r,  s  are  vectors  from  0  to  points  of  the  plane,  £  (r  —  B)  n  is  zero,  and  therefore 
c^rn,  where  r  may  be  regarded  as  variable,  has  a  value  independent  of  the 
position,  in  the  plane,  of  the  point  to  which  r  corresponds. 

If  n  is  any  vector  perpendicular  to  a  given  plane,  the  vector  r  from  the       -23 
origin  to  a  variable  point  of  the  plane  satisfies  an  equation 

/rn  =  #, 

N.  10 
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where  N  depends  on  n  but  is  independent  of  the  position  of  the  point  in  the 

plane. 
•24       °The  specification  of  the  plane  by  means  of  a  proper  vector  n  and  a  number 

N  is  a  homogeneous  specification. 

The  converse  of  '23,  subject  only  to  the  restriction  that  n  is  not  the  zero 
vector,  is  also  true.  If  n  is  not  zero,  we  can  find  some  vector  t  such  that  /tn 

is  not  zero,  and  then  writing  s  for  (N/^tn}t  we  have 
c?sn  =  N, 

and  therefore  <^rn  =  N 

is  equivalent  to  £  (r  —  s)  n  =  0, 

which  expresses  that  the  step  from  the  fixed  point  S  which  represents  a  to 
the  variable  point  R  which  represents  r  is  always  perpendicular  to  n. 

•28  //  n  is  any  proper  vector  and  N  is  any  number,  the  points  representing  with 
reference  to  an  origin  0  a  variable  vector  r  that  is  subject  only  to  the  condition 

Jm  =  N 
compose  a  definite  plane. 

*3.   The  algebraical  equivalent  of  '23  is  that 
•31  The  coordinates  and  projections  of  a  variable  point  in  a  fixed  plane  satisfy 

the  equivalent  equations 

where  n  is  any  vector  perpendicular  to  the  plane  and  N  is  a  number  independent 
of  the  position  of  the  point  in  the  plane. 

•32  Since  any  set  of  three  numbers  is  the  set  of  projections  of  some  vector,  °  every 
linear  relation  between  the  coordinates  of  a  variable  point  of  space  corresponds 
to  a  definite  plane,  and  since  any  set  of  three  numbers  is  the  set  of  components 

•33  of  some  vector,  °so  also  does  every  linear  relation  between  the  projections  of  a 
variable  point. 

•4.  It  is  to  be  emphasised  that  in  the  solution  of  problems  '23  can  be  used 
directly,  and  not  merely  after  translation  into  '31.  As  an  example  we  may 
consider  the  determination  of  the  point  common  to  three  planes  given  vectorially 

by  equations 
•41  Jrsi  =  A, 

If  the  vectors  a,  b,  c  are  not  coplanar,  the  vector  r  which  satisfies  '41  is1 
expressible,  like  any  other  vector,  both  in  the  form  /a  +  #b  +  Ac  and  in  the 

form  ifybc+jfyca.  +  ktya.'b,  where  /,  g,  h  and  i,j,  k  are  numbers,  and  the 
values  of  these  numbers  are  given  by  substitution  in  '41.  The  simpler  ex- 

pressions are  those  for  i,  j,  k,  for  225*23  and  225'25  give  at  once  three  equations 
of  which  the  first  is 

f^abc  =  A, 

•43       and  therefore  r  J  abc  =  A  <V  be  +  B  <V  ca  +  C  <V  ab. 
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The  alternative  substitution  is  not  more  difficult  and  yields 

A         B        C      0 

which  must  of  course  be  precisely  equivalent  to  '43.  If  actual  coordinates  or 
projections  of  the  point  of  intersection  are  wanted,  they  are  easily  obtained 

from  -43  or  '44  by  means  of  2'15,  2'35,  and  2'43,  but  if  we  prefer  to  obtain  the 

coordinates,  for  example,  by  replacing  "41  by 

p&c  =  A,    pbc  =  B,    pcc  =  C 

we  can  actually  recover  2'35  from  '43  and  2'43. 

335.  THE  SPECIFICATION  OF  ROTORS  IN  SPACE  AND  OF  MOTORS  ; 
THE  DETERMINATION  OF  PITCH  AND  OF  A  CENTRAL  AXIS. 

•1.  A  rotor  in  space  is  specified  with  reference  to  a  Cartesian  frame  by  its 
vector  and  its  momental  vector  about  the  origin  of  the  frame.  It  is  convenient 

sometimes  to  denote  rotors  by  simple  unaffected  symbols,  and  if  the  rotor  is  p 
we  denote  its  vector  by  r  and  its  momental  vector  about  the  origin  by  R,  but 

we  use  xp  for  the  first  component  of  r  and  Xp  for  the  first  component  of  R,  and 
so  on,  and  write  also  in  this  connection 

•44 

-45 

-12 

Since  
the  

vectors  
r,  R  are  necessarily  

at  right  
angles, 

£  Rr  =  0,  -13 

a  relation  that  may  be  expressed  in  any  of  the  forms 

<&Cpcp  =  0,     Cppp  =  0,     Ppcp  =  Q,     &Pppp  =  0.  -14 

Often  °  the  components  of  r  and  R  are  called  the  six  components  of  p  and  the        -15 
projections  of  r  and  R  the  six  projections  of  p,  but  it  is  a  consequence  of  '14 
that  usually  it  is  advisable  to  associate  the  components  of  one  of  the  vectors 

r,  R  with  the  projections  of  the  other;  the  components  and  projections  of  R  are 

called  the  °  momental  components  and  projections  of  p.    That  °any  two  vectors  -16,  -17 
r,  R  subject  to  *13  determine  a  rotor,  provided  only  that  if  r  is  zero  so  also  is 

R,  follows  from  235'33. 

•2.   The  rotor  p  is  equivalent  to  the  compound  of  the  rotor  through  0  with 
vector  r,  which  is  denoted  by  po,  and  any  couple  with  momental  vector  R  ; 

the  rotor  p0  can  be  resolved  into  rotors  of  amounts  xp,  yp,  zp  in  the  rays  £,  77,  £ 
and  a  couple  with  momental  vector  R  can  be  regarded  as  the  sum  of  couples  ̂ 

about  £,  77,  £  with  moments  Xp,  Yp,  Zp  about  those  rays.  Thus  the  single  rotor 

is  expressed,  with  reference  to  any  frame,  as  °a  compound  of  three  rotors  in        -21 
the  axes  of  the  frame  and  three  couples  round  the  axes  of  the  frame,  and  the 

10—2 



148  CARTESIAN  AXES  AND  VECTOR  FRAMES  335 

six  components  of  the  rotor  are  the  amounts  of  the  component  rotors  and 

•22  momenta!  vectors.  As  for  the  six  projections,  while  °lp,  mp>  np  are  the  projec- 
ts tions  of  r  on  the  axes  £,  77,  f,  it  follows  from  236'44  that°Zp,  Mp,  Np  are  the 

•24  moments  of  the  rotor  about  the  axes;  °like  the  projection  lp,  the  moment  Lp 
is  independent  of  the  directions  of  rj  and  £  as  well  as  of  the  position  of  0  in  £. 

*3.   The  fundamental  problem  of  determining  the  moment  of  p  about  an 

arbitrary  point  Q  is  solved  by  the  association  of  235'23  with  2*35  : 

•31  The  momental  vector  of  the  rotor  p  about  any  point  Q  is  the  vector  with 
components 

Xp  +  T-1  (mpnq  -  npmQ), 

and  projections 

We  may  use  this  result  as  we  used  the  corresponding  result  3'12.  First  we 
remark  that 

•32  The  coordinates  and  projections  of  points  on  the  axis  of  the  rotor  p  satisfy 
the  sets  of  equations 

T  (yzp  -  zyp}  =  Lp,     T  (zxp  -  xzp)  =  Mp,     T  (xyp  -  yxp)  =  Np> 

T-1  (mnp  -  nmp)  =  Xp,     T~:  (nlp  -  lnp)  =  Yp,     T~J  (lmp  -  mlp)  =  Zp; 

the  equations  of  the  first  set  are  equations  of  planes  through  the  axis  of  the 
rotor  parallel  to  the  axes  of  the  frame  of  reference,  and  the  equations  of  the 
second  set  are  equations  of  planes  through  the  same  line  at  right  angles  to 

the  planes  of  reference.  Unless  the  vector  r  is  zero,  at  least  two  of  the 

equations  in  each  of  the  sets  are  significant*  and  represent  planes  that  are 
not  parallel;  multiplying  the  equations  of  the  first  set  by  xp,  yp,  zp  and  adding, 
and  multiplying  the  equations  of  the  second  set  by  lp,  mp,  np  and  adding,  we 
find  that  in  each  set,  if  r  is  not  zero,  the  three  equations  are  either  incompatible 

or  equivalent  to  only  two  equations,  and  that  it  is  in  virtue  of  the  perpen- 
dicularity of  r  and  R,  expressed  in  14,  that  the  equations  are  compatible  and 

represent  a  definite  line.  Next  we  note  that 

•33  The  rotor  with  vector  r  through  a  point  P  has  the  six  components 

XT,  2/r,  ZT,     T-J  (nTmP  -  w^p),     T"1  (lrnP  -  nrlp),     T~x  (m,lP  -  lrmP) 
and  the  six  projections 

lr,mr>nr,     "[(zryp-yrZp),     T  (XTZP  -  zrxP),     'T(yTxP-xryP). 

The  vector  of  the  step  ST  has  components  XT  —  xs>  yT  —  ys,  ZT—  zs  and  pro- 

jections IT—  ls>  niT  —  ms,  ny—  ns\  we  may  deduce  the  momental  components 

and  projections  of  the  rotor  of  the  step  from  '33,  but  it  is  preferable  to  appeal 

*  An  equation  is  significant  if  it  is  not  merely  an  identity. 
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to  235f26  and  2'35,  which  give  at  once  the  components  and  projections 
required: 

The  rotor  of  the  step  ST  has  the  six  components  '35 

and  the  six  projections 

IT  —  IS>    m?—  ms,    n^—ns, 

T  (ysZT  -  zsyT\     T  (ZSXT  -  XSZT},    T  (xsyT  -  ysxT}. 

•4.   A  vectorial  equation  for  the  axis  of  the  rotor  p  is  given  by  235*22: 

The  vector  r  from  the  origin  to  any  point  of  the  axis  of  the  rotor  -DT  which  has       '41 
vector  p  and  momental  vector  P  satisfies  the  equation 

This  equation  implies  '32,  and  is  sufficient  to  determine  the  axis  ;  indeed,  from 
2'35  and  '41  we  can  write  down  at  once  the  equations  of  '32,  but  as  a  rule  we 

make  direct  use  of  '41,  either  implicitly  or  explicitly;  examples  of  the  applica- 
tion of  '41  are  to  be  found  in  section  7  of  this  chapter. 

•5.  It  is  easy  to  obtain  analytical  expressions  for  the  momental  product  of 
two  rotors  a,  r,  by  regarding  each  as  compounded  of  a  rotor  through  0  and  a 

couple,  and  arguing  as  in  246  '5.  The  two  rotors  intersecting  in  0  have 
momental  product  zero,  and  the  momental  product  of  any  two  couples  is  zero; 

hence  from  243'45, 

The  momental  product  of  two  rotors  a;  r  is  the  sum  of  the  projected  product       -51 

c^'St  and  the  projected  product  d?Ts,  and  may  be  calculated  by  means  of  a  frame 
OX  YZ  with  origin  0  by  the  addition  of  any  one  of  the  numbers 

<@CaCT,       PaCr,       C,pT, 

to  any  one  of  the  numbers 
<&CTc,,    Prc9,     CTpa, 

the  two  rotors  are  coplanar  if  the  sum  so  found  is  zero. 

•6.  Every  finitely  numerous  set  of  rotors  has  a  vector  and  has  with  reference 
to  any  point  a  momental  vector,  and  it  follows  from  first  principles  that  each 
component  or  projection  of  each  of  these  vectors  with  regard  to  any  frame  is 
the  sum  of  the  corresponding  components  or  projections  of  the  individual 

members  of  the  set.  Symbolically,  if  p  is  a  typical  rotor  of  a  set,  the  vector 
whose  components  and  projections  with  respect  to  a  frame  OXYZ  are 

2#p,  2^/p,  2zp  and  2lp,  ̂ mp,  £?ip  is  the  vector  of  the  set,  and  the  vector  whose 
components  and  projections  with  respect  to  the  same  frame  are  2^TP,  2  Fp,  2#p 

and  SZP,  SATp,  2-ZVp  is  the  momental  vector  of  the  set  about  0.  For  a  set  F  of 

rotors,  we  denote  the  sums  2#p,  ££p,  2XP,  2-£p,  and  so  on,  by  xp,  1F,  Xp,  Lp, 
and  so  on,  we  write  as  for  a  single  rotor 
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and  we  call  Xp  and  Lp  the  first  momental  component  and  the  first  momental 

projection  of  the  set  relative  to  the  frame  OXYZ;  sometimes  we  call  the  com- 
ponents Xp,  yp,  zp,  Xp,  Yp,  Zp  collectively  the  six  components  of  the  set  F, 

and  the  corresponding  projections  collectively  the  six  projections.  A  set  of 

rotors  is  not  determined  by  its  six  components  or  by  its  six  projections,  but 

by  241-35 
•63  Equivalent  sets  of  rotors  are  sets  which  have  with  reference  to  any  frame  the 

same  six  components  and  the  same  six  projections, 

and  we  may  call  the  components  and  projections  the  six  components  and  the 
six  projections  of  the  motor  of  the  set,  when  we  find  that 

•64  A  motor  is  determined  completely  by  its  six  components  or  its  six  projections 
with  respect  to  any  frame. 

•65  We  have  to  observe  that  °  for  a  motor  or  for  a  set  of  rotors  there  is  no 
quantitative  relation  between  the  six  components  or  between  the  six  pro- 

jections. The  relation  '13  expressing  that  any  momental  vector  of  a  single  rotor 
is  at  right  angles  to  the  vector  of  the  rotor  has  no  counterpart  in  the  case  of 
sets  of  rotors,  for  given  any  two  vectors  r,  R,  we  have  only  to  take  the  rotor 
ro  through  the  point  0  and  any  couple  of  rotors  with  the  momental  vector  R, 
to  have  a  set  of  three  rotors  of  which  the  vector  is  r  and  the  momental  vector 

about  0  is  R;  if  as  in  247  '4  we  suppose  one  of  the  rotors  composing  the 
couple  to  intersect  ro,  we  may  add  this  rotor  to  ro  and  obtain  a  rotor-pair 
with  the  given  vector  and  the  given  momental  vector. 

•7.  The  expressions  given  in  '31  for  components  and  projections  of  the 
momental  vector  of  a  single  rotor  about  any  point  are  linear  in  the  components 
and  projections  of  the  rotor,  and  therefore 

•71  The  momental  vector  of  any  set  F  of  rotors  about  any  point  Q  has  with 
reference  to  the  frame  OX  YZ  the  components 

Xp  +  T-^mpnQ-npmq),     Tp  +  T-5  (nplq-lFnq), 
and  the  projections 

If  the  vector  of  the  set  is  zero,  the  momental  vector  is  everywhere  the  same 
in  directions  and  amounts,  but  if  the  vector  is  not  zero,  the  set  has  a  definite 

pitch  qF,  which  may  be  zero  but  is  not  infinite,  and  the  central  axis  may  be 

found  from  '71  as  the  locus  of  points  about  which  the  momental  vector  is  the 
vector  with  components  qpXp,  qpyp,  qpZp  and  projections  qplp,  qpmF,  qpnp. 
From  this  argument  we  find  two  sets  of  equations  for  the  central  axis,  one  set 

typified  by 

•72  XF  +  T"1  (mpn  —  npm)  = 
and  the  other  set  by 

•73  LF  +  T  (ypz  -  zpy)  = 
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the  three  equations  of  the  first  set  would  be  incompatible  without  the  equality 

pFCF=qF.pFcF,  74 

and  the  three  equations  of  the  second  set  without  the  correlative  equality 

cFPF=qF.cFpF;  75 

•74  and  '75  give  analytical  expressions  for  the  pitch  qF.  A  slightly  different 
line  of  reasoning  leads  to  the  same  result  :  if  the  vector  of  the  set  F  is  f  and 

the  central  axis  is  k,  the  set  formed  of  the  rotor  f^  together  with  any  couple 

whose  momental  vector  is  qFf  is  equivalent  to  the  set  F\  hence  the  set  obtained 

by  subtracting  from  F  a  couple  with  momental  vector  qFf  is  equivalent  to  a 
single  rotor  and  the  axis  of  this  rotor  is  the  central  axis  of  F.  But  in  order  that 

®F,    yp,     ZF,     Xp  —  qpxF,     Yp  —  qFyp,    ZF  —  qFzF 

should  be  the  six  components  and 

1F,     mF,     nF,     LF—qFlF,     MF—qFmF>     NF—qFnF 

the  six  projections  of  a  single  rotor,  equations  "74  and  *75  must  be  satisfied, 

and  the  axis  of  the  rotor  is  then  given  by  equations  such  as  "72  or  P73. 
Vectorially,  the  axis  and  the  pitch  are  given  simultaneously  by  the  one  equation 

Wrrp=np-qprp,  77 

which  implies  qptfr/  =  £"RFrF,  -78 

since  £  (*l)  rrF)  rF  is  identically  zero. 

336.    THE  SPECIFICATION  OF  RAYS  AND  LINES  IN  SPACE. 

•1.  A  ray  is  identified  by  means  of  the  same  numbers  as  a  unit  rotor  in  the 
ray,  and  the  language  and  notation  relating  to  the  rotor  are  appropriated  for 
the  ray.  If  k  is  the  unit  vector  in  the  direction  of  the  ray  K,  and  K  is  the 
momental  vector  of  the  ray  about  the  origin,  then 

relations  which  may  be  translated  in  the  usual  fashion  into  equations  involving 
components  and  projections;  only  four  of  the  twelve  elements  defining  a  ray 
are  algebraically  independent,  but  a  fifth  is  necessary  if  no  ambiguous  irrational 

is  to  appear.  The  three  projections  1K,  mK,nK  are  the  cosines  of  angles  between 
the  ray  K  and  the  coordinate  axes,  and  the  three  momental  projections 

LK,  MK,  NK  are  the  mutual  moments  of  K  and  these  axes.  From  5  '51 

The  mutual  moment  dvll,  sin  e^  of  two  rays  p,  v  is  the  sum  £  Mn  +  «/  Nm.        -12 
and  the  rays  are  coplanar,  that  is,  either  concurrent  or  parallel,  if  this  sum  is 
zero. / 

From  5'41,  the  vector  r  of  the  step  from  the  origin  to  a  variable  point  of 
the  ray  satisfies  the  relation 

-13 
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•2.  The  merit  of  the  momental  vector  as  a  means  of  specifying  a  ray  is  that 
this  vector  involves  no  reference  to  a  particular  point  of  the  ray  or  to  a 

particular  plane  through  the  ray,  but  since  rays  often  are  defined  by  means  of 
particular  points  or  particular  planes  we  gain  confidence  by  discovering  that 
in  the  commonest  cases  the  momental  vector  can  readily  be  ascertained. 

Thus  it  is  a  corollary  to  5'33  that 

•21  The  ray  with  direction  A  through  a  point  S  has  the  six  coordinates 

«A,     #A,     *A,     T-l( 
and  the  six  projections 

If  S,  T  are  two  distinct  points  and  if  r  is  a  distance  from  S  to  T,  the  unit 
rotor  in  the  ray  through  S  and  T  with  the  direction  in  which  r  is  measured  is 

the  rotor  found  by  dividing  the  rotor  of  the  step  ST  by  r;  hence  from  5'35 
•22  If  r  is  a  distance  from  one  point  S  to  a  distinct  point  T,  the  ray  in  which  the 

distance  is  measured  has  the  six  coordinates 

(xT-xs)/r,     (yT-ys)lr,     (zT-zs)lr, 

T"1  (msn>r  —  nsmT)/r,     T"1^^  —  Ignj^/r,     T~l(lsm>r  —  mslT)lr, 
and  the  six  projections 

(fa  -  ls)/r>     (mT  -  ms}lr,     (nT  -  ns)/r, 
T  (y^zy  —  z^yj^jr,     T  (z^Xf  —  x^zj^/r,    T  (x^yx  —  ysxT}lr> 

To  the  two  values  of  r,  namely  the  two  square  roots  of  r2,  correspond  the 
two  rays  through  8  and  T, 

A  third  case  of  importance  is  that  of  a  ray  given  by  means  of  two  planes 
which  contain  it,  and  for  the  sake  of  the  comparison  we  treat  this  problem  by 
three  different  methods.  We  take  the  planes  to  be  prepared  planes  S,  T,  and 

we  denote  the  rays  through  the  origin  normal  to  these  planes  by  a-,  T.  Any 
angle  whose  cosine  is  given  by  2*22  is  an  angle  between  the  planes,  and  if 
such  an  angle  eST  is  to  be  from  S  to  T  round  the  common  ray  K,  this  ray  is 

determinate  and  its  direction  is  given  by  2'51. 
The  plane  through  0  normal  to  K  contains  cr  and  r  and  the  momental 

vector  K  of  K  about  0 ;  moreover,  if  this  plane  cuts  K  in  R,  the  momental 
vector  is  the  vector  obtained  by  rotating  the  vector  of  RO  through  a  positive 
right  angle.  Hence  the  projections  of  K  in  directions  making  positive  right 
angles  with  <r,  T  are  equal  to  the  projections  of  RO  on  <r,  T  themselves,  that 

is,  to  the  distances  as,ar  of  0  from  S,  T.  It  follows  from  24'25  that  K  is  the 
sum  of  —  a?  cosec  eST  in  <r  and  as  cosec  CST  in  T. 

•24  If  eST  is  an  angle  from  a  prepared  plane  S  to  a  prepared  plane  T,  the 
common  ray  round  which  this  angle  is  measured  has  the  six  coordinates 

•  —  UT^S)  cosec  CST, 

T"1  (nslT  —  Igny}  cosec  €$?, 

T-1  (lsmT  —  mslT)  cosec  eST, 

(asyT  —  arys)  cosec  eST , 
cosec  CST> 
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and  the  six  projections 

T  (y$  ZT  —  ZSI/T)  cosec  CST  >  (as  IT  —  «r  Is)  cosec  egT , 

T  (ZS&T  ~~  XSZT)  cosec  eg?,  (a^m^  —  ttyw^)  cosec  e^y, 

_T  (x$yT  —  ysxT)  cosec  e^r,         L(a^77r  ~~  aTns)  cosec  e^r, 

where  as,  «r  are  £/ie  distances  of  the  origin  from  the  two  planes  and  the  ratios 
and  cosines  are  those  of  the  normals  to  the  planes. 

Again  we  observe  that  there  are  two  rays,  distinguished  by  the  sign  of 
sinewy,  the  function  sin^y  being  given  by  271  or  273. 

It  is  not  difficult  to  avoid  the  geometrical  investigation  that  has  preceded 

the  enunciation  of  '24.  An  equation  to  the  plane  through  the  line  of  inter- 
section of  two  planes  S,  T  and  parallel  to  the  first  axis  of  the  frame  OXYZ  is 

to  be  found  by  eliminating  x  from  the  pair  of  equations 

psc  +  as  =  0,    pyc  +  OT  =  0,  -241 

and  the  simplest  form  of  the  eliminant  is 

(l^mT  —  IT^S)  y  ~^~  \"S^T  —  IT^S)  %  ~^~  (J'S^T  —  IT^S)  =  0  >  '242 

if  the  ray  to  be  found  is  K,  5*32  gives  an  equation  for  the  same  plane  in  the 
form 

and  since  from  2*51,  TzK  is  equal  to  (Is^T  ~~  ms^T)  cosec  €ST  and  —  TyK  is  equal 
to  (lsnT  —  US^T)  cosec  e^y,  it  follows  that  LK  is  equal  to  (dg^T  —  ctrls)  cosec  CST- 

A  third  method  treats  the  problem  by  vectors  alone,  and  it  is  not  to  be 

denied  that  this  is  the  best  plan ;  if  s,  t  are  unit  vectors  normal  to  the  planes, 

and  r  is  the  vector  of  the  step  from  0  to  any  point  in  the  line  of  intersection, 

d?  rs  +  as  =  0,     <^  rt  +  ay  =  0 ;  -244 

but  if  the  ray  of  which  we  are  in  search  has  vector  k  and  momental  vector  K, 
then 

k  =  ̂  st  cosec  €ST  '245 

by  definition,  and  K  =  ̂   rk,  -246 

from  '13 ;  substituting  from  '245  in  *246  and  using  223*33  we  have 

K  =  (sc^rt  —  tc^  rs)  cosec  e^r  =  (a^*  —  aT  s)  cosec  e8T ',  '247 

•245  and  '247  together  are  equivalent  to  '24. 

•3.    In  using  the  momental  vector  in  the  specification  of  a  ray  we  are  not 
compelled  to  sacrifice  such  advantages  as  there  are  in  knowing  a  particular 

point  on  the  ray,  for  there  is  one  point  whose  coordinates  and  projections  have  , 
a  form  both  simple  and  definite. 

In  '13,  k  is  a  unit  vector,  and  therefore  if  r  can  be  taken  perpendicular  to 

k,  223*14  will  become  applicable  and  will  shew  that  r  is  <^kK;  to  take  r 
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perpendicular  to  k  is  to  let  r  be  the  vector  from  0  to  the  normal  projection 
of  0  on  K  : 

•31  The  vector  of  the  step  from  the  origin  0  to  its  normal  projection  on  a  ray  K 
is  the  vector  product  W  kK,  and  therefore  this  point  has  coordinates 

T->  (mKNK  -  nKMK),    T~>  (nK  LK  -  1KNK),     T~>  (1KMK  -  mKLK) 

and  projections 

T(yKZK-zKYK),     r^X.-x.ZJ,    T(xKY.-yKXK). 

•32  It  follows  that0  the  first  coordinate  and  the  first  projection  of  any  point  on 

the  ray  are  8XK  +  T"1  (mKN,e  —  nKMK)  and  slK  +  T  (yKZK  —  ZK  YK),  where  s 
denotes  the  distance  of  the  point  in  question  from  the  projection  of  0  on  K. 

•4.  A  line  is  identified  by  means  of  any  rotor  of  which  it  is  the  axis,  that 
is,  by  means  of  any  proper  vector  h  which  has  its  directions,  together  with 
the  momental  vector  H,  about  the  origin  of  coordinates,  of  the  rotor  obtained 

by  locating  h  in  the  line  ;  the  two  vectors  are  perpendicular,  so  that •42 

but  from  235*33  it  follows  that  they  are  not  subject  to  any  other  restriction 
except  the  negative  one  that  h  must  not  be  the  zero  vector.   The  specification 

•43  is  variable,  since  h  is  not  determinate,  but  it  is  also0  homogeneous,  for  the 
pair  of  vectors  &h,  &H,  for  any  proper  value  of  k,  fixes  the  same  line  as  the 
pair  of  vectors  h,  H  ;  this  line  will  be  called  the  line  (h,  H),  or,  if  confusion 

is  impossible,  the  line  h. 
Referred  to  a  frame  of  reference,  a  line,  like  a  ray,  has  six  coordinates  and 

six  projections  ;  but  whereas  the  coordinates  of  a  ray  are  six  numbers  indi- 
vidually significant  and  connected  by  two  relations,  the  coordinates  of  a  line 

will  be  proved  to  have  only  one  relation  between  them,  but  significance 

•44  attaches  only  to  their  ratios  :  °any  expression  which  involves  coordinates  or 
projections  of  a  line  except  through  ratios  alone  is  really  concerned  not  with 
the  line  itself  but  with  some  particular  rotor  located  in  the  line. 

As  an  example,  we  can  not  attach,  in  relation  to  two  lines  (m,  M),  (n,  N), 

any  intrinsic  value  to  the  expression  £  Mn  +  </  Nm,  but  the  equation 

is  unaltered  if  (Am,  AM),  (kn,  kN)  are  substituted  for  (m,  M),  (n,  N),  and 

the  equation,  being  the  condition  for  the  rotors  obtained  by  locating  m,  n  in 
the  lines  to  have  coplanar  axes,  describes  a  property  of  the  lines  : 

•45  The  two  lines  (m,  M),  (n,  N)  are  coplanar  if  and  only  if 

From  5'41  it  follows  that  the  vectorial  equation  of  the  line  (h,  H)  is 
•46 
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Combining  this  with  235'33  we  can  assert  that 

If  h,  H  are  any  two  vectors  of  which  the  first  is  not  the  zero  vector,  the  points       -47 
representing  with  reference  to  an  origin  0  a  variable  vector  r  subject  only  to 
the  condition 

compose  a  definite  line. 

To  illustrate  the  direct  application  of  the  vectorial  equation,  let  8  be  a 

point  on  the  line  (m,  M)  and  T  a  point  on  the  line  (n,  N).    Then 

<?Mn  =  £(tyrsm)n  =  ,yrsmn,  -48 

£  Nm  =  £  (<VrTu)  m  =  SrTnm,  -49 

and  therefore  £  Mn  +  £  Nm  =  Sm(rT-  rs)  n, 

from  which  '45  follows  at  once. 

•5.   We  can  translate  the  three  propositions  5'32,  5'33,  5'35  into  assertions 
regarding  a  line  ;  the  first  becomes 

If  a  set  of  coordinates  and  projections  of  a  line  is  -51 

®h>  yh,  Zh,  Xh,  Yh,  Zh,  lh,  mh,  nh,  Lh,  Mh,  Nh, 

the  planes  through  the  line  parallel  to  the  axes  of  reference  have  equations 

T  (yzh  -zyh)  =  Lh)     T  (zxh  -  xzh}  =  Mh,     T  (xyh  -  yxh)  =  Nh  , 

and  the  planes  through  the  line  perpendicular  to  the  planes  of  reference  have 
equations 

T-1  (mnh  -  nmh)  =  Xh,  T"1  (nlh  -  lnh)  =  Yh,  T~»  (lmh  -  mlh)  =  Zh, 

and  the  second  becomes  a  corollary  of  this.  A  comparison  of  the  third  with  '22 
suggests  a  similar  modification  of  '24,  but  if  the  intersection  is  to  be  treated 
as  an  unprepared  line,  there  is  no  object  in  dealing  with  prepared  planes; 

either  by  using  '24  or  by  adapting  one  of  the  proofs  of  that  theorem,  we  find 
that 

If  s,  t  are  vectors  that  are  not  parallel,  the  planes  -54 

intersect  in  the  line  which  has  coordinates 

T-1  (wi.nt  -  n.wt),     T"1  (nnlt  -  lmnt),     T 

Sxt-Tx%,    Syt-Tynt    8zt-Tz^ 
and  projections 

T  (y9zt  -  z»yt),     T  (zBxt  -  x%zt),     T  (x^yt  - 

Slt  -  Tl»,    Smt  -  Tma,     Snt  -  Tnt. 

If  (h,  H)  defines  a  line  and  k  is  such  that 

then  &h  is  a  unit  vector  and  (&h,  &H)  defines  a  ray  K.   It  follows  from  '31  that 
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•55       °the  vector  of  the  step  from  the  origin  to  its  normal  projection  on  the  line  is 
k*  *l)  hH,  that  is,  V  hH/c?  h2 : 

•56  The  normal  projection  of  the  origin  Oon  the  line  h  has  for  its  first  coordinate 
and  its  first  projection 

T-1  (mhNh  -  nhMh)l&ph*,     T  (yhZh  - 

337.  SOME  PROBLEMS  IN  THE  ANALYTICAL  GEOMETRY  OF  LINES  AND  RAYS. 

•1.  We  have  often  to  deal  with  a  plane  through  one  ray  parallel  to  another 
ray  ;  the  plane  is  definite  provided  that  the  two  rays  are  not  parallel,  and  the 
choice  of  a  definite  angle  from  one  ray  to  the  other  corresponds  to  the  choice 

of  a  definite  cyclic  direction  for  the  plane.  If  the  rays  are  a,  r,  and  an  angle 
from  er  to  T  is  €„,  the  ratios  and  cosines  of  the  direction  II  of  the  normal  to 

the  plane  through  cr  parallel  to  T  are  given  by  2*51,  and  only  the  distance  of 
the  origin  0  from  the  plane  remains  to  be  determined  ;  this  distance  a  is  the 
distance  in  the  direction  II  from  <r  to  the  ray  ro  through  0  parallel  to  r,  and 

therefore,  by  236*66,  —a  sin  €<„.  is  the  mutual  moment  of  o-  and  TO,  and  by  236'44 
this  is  the  projection  in  the  direction  of  T  of  the  momental  vector  of  <r  about 

0.  By  221*42,  this  projection  of  the  momental  vector  is  the  projected  pro- 
duct £  St,  given  in  terms  of  components  and  projections  by 

J  St  =  <&  CCCT  =  P.CT  =  C0pr  =  &P.pr> 
and  we  see  that 

•11  The  distance  of  the  origin  from  the  plane  through  a  ray  a  parallel  to  a  ray 
r  is  —  £  Stcosec  ear,  where  €<„.  is  an  angle  from  a  to  T  measured  round  the 
direction  in  which  the  distance  is  measured. 

If  €„  continues  to  denote  an  angle  from  a-  to  T,  the  distance  of  the  origin 
from  the  plane  through  T  parallel  to  a-  is  /Ts  cosec  eOT;  the  condition  for  the 
rays  to  intersect  is 
•12  (<§  St  +  £  Ts)  cosec  €„  =  0. 

This  agrees  with  6'12  ;  the  rays  must  be  coplanar  but  not  parallel. 
Applied  to  4*21  and  4*22,  '11  shews  that  the  points  on  the  plane  through 

<j  parallel  to  r  satisfy  the  equations 

•13  pa  c  —  £  St  cosec  e^  =  0,     cnp  —  £  St  cosec  eaT  =  0  ; 

if  sin  effT  is  not  zero,  we  may  write  these  equations  in  the  form 
T 

XT 

_  ««_!         7  7  7       C  fit* 

I      i'  "<r          »T        —  c-'   •""•> 
m     ma     mT 

n     na      nr 

•14       that  is,  T  [c ;  c,;  cr]  =  T-1  [p ;  jp,,;  pT]  =  ̂   St, 

and  it  is  in  fact  evident  from  5*32  that  the  plane  represented  by  '14  passes 
through  <r,  and  from  the  form  of  the  equations  that  this  plane  is  parallel  to  T 
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as  well  as  to  a.  We  can  write  down  the  equations  '14,  or  rather  the  equi- 
valent vectorial  equation,  without  any  algebraic  argument :  if  R  is  any  point 

of  the  plane  through  tr  parallel  to  T,  if  TO  is  the  ray  through  0  parallel  to  r 

and  CTR  is  the  ray  through  R  parallel  to  <r,  then  by  236*46  the  mutual  moment 
of  (TR  and  TO  is  the  same  as  the  mutual  moment  of  a-  and  TO,  which  by 

236-44  is  /St,  and  by  236'1 3  this  moment  has  the  value  ̂ trs,  where  r  is 
the  vector  of  the  step  OR. 

The  equation  of  the  plane  through  a  ray  a-  parallel  to  a  ray  r  is  -15 
J?TBt  =  /St. 

Another  proof  of  this  equation  is  virtually  contained  in  6 '46 ;  if  S  is  any  point 
on  <r,  the  point  R  is  in  the  plane  with  which  we  are  dealing  if  the  vector  of 

RS  is  coplanar  with  the  vectors  B,  t,  that  is,  if  S  rat  is  equal  to  *7  r^st,  and 
since  tyrss  is  S,  this  last  spatial  product  is  £  St. 

But  when  we  come  to  the  equation  of  a  plane,  we  are  really  dealing  with 

an  unprepared  plane,  and  instead  of  rays  we  should  be  considering  lines.  The 
last  argument  by  which  15  has  been  proved  is  independent  of  the  assumption 
that  s,  t  are  unit  vectors,  and  therefore 

The  equation  of  the  plane  through  the  line  (m,  M)  parallel  to  the  line  (n,  N)  is       -16 
yrmn  =  £  Mn, 

it  being  assumed  that  the  lines  are  not  parallel. 

•2.  To  find  the  point  of  intersection  of  a  given  line  with  a  given  plane  is  to 
find  a  vector  r  satisfying  simultaneously 

^  rs  =  S,     £  rt  =  T,  -21 

where  T  is  a  given  number  and  s,  S,  t  are  given  vectors  such  that  s,  t  are  not 
zero  and  that 

£  Ss  =  0 ;  -22 

the  algebraic  problem  is  to  solve  the  set  of  equations 

r(yzs-zy8)  =  Ls,     T(zxs-xzt)  =  Mt,    T (xys -  yxs}  =  Ns>  -23 

ltoc  +  mty  +  ntz  =  T,  -24 

where  Lsxs  +  Msys  +  Nsz8  =  0.  -25 

If  F  is  a  particular  point  on  the  line,  Tp+JcB  is  the  typical  vector  of  any 
point  on  the  line,  and  this  point  is  in  the  plane  if 

JrPt  +  k<?*t=T',  '26 

with  the  value  of  k  given  by  '26, 

r  /st  =  TpJ  at  +  (T-  £  i>t)  s  =  Ts  + 1>  /st  -  s  /i>t  =  TB  +  <V  (^si>)  t, 

by  223'33,  and  therefore  since  F  is  on  the  line, 

-27 
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an  equation  which  gives  r  explicitly  unless  8  is  perpendicular  to  t,  when  the 
line  is  parallel  to  the  plane  and  the  problem  is  either  insoluble  or  indeterminate. 

The  algebraic  solution  gives  the  same  result  almost  more  simply,  since  in 

this  case  the  plausible  assumption  that  a  satisfactory  solution  is  to  be  obtained 

by  finding  x  from  the  last  three  of  the  four  equations  '23,  "24  is  not  misleading; 
obviously  these  equations  give 

•29  pt  cs  •  oc  =  Tx8  +  T~J  (rat  Ng  - 
•3.    The  conditions  for  the  line 

•32       to  lie  in  the  plane  /rt  =  T 

can  be  deduced  from  '27  or  *29.    One  necessary  condition  is  of  course 

•33  c?st  =  0, 

and  '27  gives  further  conditions  in  the  form 
•34  TB  +  WtB  =  0. 

It  is  to  be  noted  however  that  '22  and  '33  together  imply  that  s  and^tS  are 

parallel,  so  that  only  one  additional  relation  is  implied  by  '34  ;  this  relation  is 
naturally  taken  in  the  form 

•36       that  is, 

We  can  associate  this  condition  with  6'55  ;  if  the  line  is  parallel  to  the  plane, 
the  line  is  in  the  plane  if  a  single  point  of  the  line  is  in  the  plane,  and  the 

equation  that  expresses  that  the  normal  projection  of  the  origin  on  the  line  is 
in  the  plane  is 

which  is  equivalent  to  "36. 

•4.  A  particular  case  of  the  problem  solved  by  '27  is  to  determine  the  point 
in  which  a  line  (p,  P)  cuts  the  plane  through  a  point  Q  containing  two  given 

vectors  s,  t.  The  equation  of  the  plane  is 

•41  Srat  =  SrQst, 

•42       that  is,  /r  (V  st)  =  JrQst, 

and  therefore  the  point  is  given  by 

which  by  223'33  is  equivalent  to 
•44 

A  simple  alternative  to  quoting  -27  is  to  assume  the  required  value  of  r  to  be  /p  +gs  +  At  j 
substitution  in  -41  gives/,  and  tjrand  h  come  from  substitution  in  the  equation  of  the  line. 

As  a  matter  of  pure  algebra  we  have  to  take  '23,  with  p  written  for  s,  with  the  equation 
[c;  CB;  ct]  =  [cQ;  CB;  Ct], 

and  we  have  at  once 

xv\cQ't  c.;  ct]=[ffpa?,  i/px-Y~lJ!fp, 
which  is  easily  seen  to  lead  to  '44. 
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On  the  other  hand  it  is  not  difficult  to  reach  the  results  by  reasoning  more  geometrical. 
Let  a0,  T0  be  rays  through  0  such  that  the  vectors  a,  t  are  vectors  of  amounts  *,  t  in  these 
rays,  and  let  the  line  (p,  P)  meet  the  plane  containing  these  rays  in  the  point  J;  let  this 
plane  be  given  a  cyclic  direction,  let  CD  be  an  angle  from  <r0  to  r0,  and  let  6  be  an  angle 
between  the  direction  normal  to  the  plane  and  one  direction  of  the  line.  Then  if  p  is 

expressed  &sfp+ga  +  ht,  the  equation 

expresses  that  r  -  r0  is  coplanar  with  s  and  t,  and  gs,  ht  are  the  coordinates  of  J  in  the  plane. 

Hence  by  24'26the  distances  of  ./from  the  axes  are  A^sinw,  —  gssinw,  and  the  momental 
vectors  of  <TO,  TO  about  J  are  vectors  with  these  amounts  in  the  direction  normal  to  the 

plane.  So  from  236'44  the  momental  products  of  unit  vectors  located  in  <TO)  r0  by  the 
rotor  or  located  in  the  given  line  are  hpt  sin  o>  cos  0,  -gps  sin  «  cos  0,  where  p  is  the  amount 
of  p  in  the  direction  associated  with  the  angle  0,  and  so  finally  the  momental  products  of 
rotors.  with  vectors  s,  t  located  through  0  by  the  rotor  or  in  the  given  line  are 

hpst  sin  o>  cos  0,   —gpst  sin  CD  cos  0, 

that  is  to  say,  are  hS  pst,  —  g^/pst,  and  since  these  same  momental  products  are  other- 

wise given  by  236  '23  as  c^Ps,  £  Pt,  the  values  already  found  for  g,  h  are  recovered. 

•5.  An  attempt  to  anticipate  every  question  that  can  arise  concerning 
intersections  of  lines  and  planes  would  be  an  absurdity,  but  there  is  one  more 

set  of  problems  of  this  kind  that  deserves  explicit  mention. 

Let  <T,  r  be  any  two  rays  that  are  not  parallel,  and  let  €OT  be  an  angle 
between  them  ;  then  there  is  one  definite  ray  BJ  which  cuts  both  a  and  T  at 

right  angles  and  has  a  direction  round  which  effT  is  an  angle  from  a-  to  T  ;  it 
is  often  necessary  to  know  this  ray  and  the  points  S,  T  in  which  it  cuts  a-,  r. 
The  ratios  and  cosines  of  or  are  given  in  2*51. 

This  problem  is  included  in  a  more  general  one  which  is  in  fact  easier  to 

discuss.  If  (s,  S),  (t,  T)  are  two  lines  that  are  not  parallel  and  k  is  any  vector 
not  coplanar  with  s  and  t,  there  is  one  and  only  one  line  parallel  to  k  which 

cuts  both  (s,  S)  and  (t,  T),  and  the  problem  is  to  find  the  points  S,  T  in 
which  this  line  meets  the  given  lines  and  the  momental  vector  K  of  the  rotor 
obtained  by  locating  k  in  the  line. 

The  simplest  determination  of  K  comes  from  225'34.   From  6'42  and  6'45, 

.  -51 

Substituting  in  the  identity  of  225'34,  taken  in  the  form 

we  have  K^Tkst  =  /Sk^kt-c^Tk^ks,  -52 

which  is  sufficient  to  determine  K,  since  /Sk  and  <^Tk  are  known  and 
o7  kst  is  not  zero. 

The  positions  of  S  and  T  can  be  found  from  *15  ;  identically  from  225*32, 

rs  J  kst  =  k  J  rsst  +  s  S  kr^t  +  t  J  ksrs, 

rT  J  kst  =  k  J  i>st  +  s  J  krrt  +  1  J  ksr  r, 
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but  from  -15, 

•55 

•56 

=  /  St,     J  rrts  =  /  Ts, 

=  £  Sk,     ̂ r^tk  =  ̂ 7rrtk  =  /  Tk, 

rs  J  kst  =     k  /  St  +  s  /  Tk  -  1  /  Sk, 

rr  ,7  kst  =  -  k  /  Ts  +  s  /  Tk  -  t  /  Sk. 
From  -545  and  '546, 

and  therefore  these  formulae  imply  not  only 

(rr  -  rg)  ̂kst  =  -  k  (/  St  +  £  Ts), 

but  also  <^rss:r,ykBt=-K(/St  +  /Ts), 

from  '52,  in  agreement  with  235*26,  for  if  S  and  T  do  not  coincide,  (rr-rs,  *vrsrr)  is  the 
same  line  as  (k,  K).   But  whether  or  not  S  and  T  coincide, 

by  the  very  definition  of  K,  and  this  enables  us  to  reproduce  -52  from  '545  and  '546. 

We  may  find  K  not  in  terms  of  vector  products,  but  in  the  forin/k  +  ga  +  fa, 

.for  substituting  this  expression  in  "51  we  have 

and  therefore kt  +  g  fat  M- 

=  -  /  Tk, 

/k2 

/s2      /st 

/  st      / 12 

0          k          s  t 

0  /k2  /ks  /kt 

/Sk  /ks  /s2  /st 

/Tk  /kt  /st  /t2 

If  the  cotractor  of  (s,  S)  and  (t,  T)  is  to  be  perpendicular  to  them  both, 
we  may  take 

Then 

•571      and  therefore •572 

•573 

/Sk  =  a7Sst, 

3  kst  =  /  (^  st)2  =  /  s2  /  12  -  (/  st)2, 

r^  /  (^  st)2  =  s  J  Tst  -  1  J  Sst  +  ̂  st  /  St, 

TT  /  (^  st)2  =  s  ,y  Tst  -  1  3  Sst  -  ̂   st  /  Ts, 

K/(^st)2=;       0  s         t 
^Sst     /s2    /st 

,yTst    /st    /t2 

to  substitute  in  '52  from  '56  and  then  to  apply  223'33  is  to  reach  '573  by  a 
more  difficult  route. 

The  effect  of  dealing  with  rays  instead  of  lines  is  that  certain  of  the  vectors 
become  unit  vectors.    This  has  no  bearing  on  the  general  investigation,  but  if 
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tj  is  to  be  a  ray  perpendicular  to  <r  and  T  and  if  eaT  is  to  be  an  angle  from  <r 

to  T  round  -or,  the  vector  denoted  in  '56  by  k  becomes  p  sin  e«,T  and  the  momental 
vector  P  of  the  ray  is  K  cosec  ear.  Instead  of  '571,  '572,  '573  we  have 

ra  sin2  e,v  «=  •  J  Tst  - 1 3  Sst  +  p  sin  €„  /  St, 

TT  sin2  €„  =  s  J  Tst  - 1 J  Sst  -  p  sin  eaT  /  Ts, 

P  sin3  egr  = t 
COS  €„ 

WT  3  kst  =  - 

we  can  make  a  similar  version  of  '55,  but  in  general  simpler  expressions  come 
from  '52,  which  gives 

0 

/Sk 

/Tk 

,  LK[cK;  cg;  Ct]  =  - 

0       y, 

/Sk    y. 

/Tk    7/t 

formulae  deducible  immediately,  the  first  from  the  set  of  linear  equations 

pKCK  =  0,  PsCK  =  -  /  Sk,  ptCK  =  -  /  Tk, 

the  second  from  the  equivalent  set 

Perhaps  the  simplest  process  for  discovering  '591  algebraically  is  to  suppose 
F,  G  to  be  particular  points  of  the  lines  s,  t  and  fs,  Jk,  #t  to  be  the  vectors 

of  the  steps  FS,  ST,  TO  ;  then  /,  j,  g  are  determined  by  the  set  of  equa- 
tions +fy 

_ZF +  gy\  =  ye, 

+  gzt  =  ZQ. 
If  between  these  equations  and 

we  eliminate  /,  j,  g,  we  have  xs  given  by  the  equation 

>8-xF      #8      0       0     =0, 
'Q  —  Xp       Xn       X^       Xfc 

'G-yp    y*    yt    y*. 

ZG~ 

•581 

•582 
•583 

Tst    cos  e(Tr         1 

Translated  into  elements  referring  to  a  Cartesian  frame,  '545,  '546  give 
for  any  coordinate  or  projection  w, 

ws  J  kst  =     iv*  /  St  +  wt  /  Tk  -  wt  /  Sk,  -591 

Ts+w./Tk-Wt/Sk;  -592 

•593 

•594 

N. 11 
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that  is,  by 
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;  ct; 1      0      0 

XmZp 

0  a?t     a?k 

2/t     2/k 

that  is,  by  Tafc  [ck;  cg;  ct]  =  «kP«ct  +  ̂ PeCk  -  a?tP«Ck, 

and  this  is  one  of  the  formulae  covered  by  -591;  the  process  fails  to  make 
clear  why  all  the  formulae  to  be  found  should  have  the  same  form. 

Since  jk  is  the  vector  of  a  step  from  the  line  s  to  the  line  t,  the  spatial 

product  ̂ s  (^"k)  t  is  by  definition  the  momental  product  of  the  rotors  by  which 
the  lines  are  being  identified  ;  hence  from  5'51, 

By  this  equation,  which  may  be  verified  from  '545  and  '546  or  from  '594,  we  can 
determine  the  coefficient  j  without  finding  the  positions  of  the  points  8,  T. 
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340.  INTRODUCTION. 

In  many  investigations,  vectors  may  profitably  be  described  not  by  reference 
to  a  Cartesian  frame  but  by  their  relations  to  a  given  set  of  vectors,  or  as  we 

may  say  by  reference  to  a  vector  frame. 

Examples  are  to  be  found  in  36'2  and  37'5:  in  36-247  and  37'573  a  desired 
vector  was  regarded  as  found  when  it  was  expressed  in  the  form  6s  +  ct  with 

known  values  of  b  and  c,  the  vectors  s  and  t  being  given,  and  in  37'545  and 

37'55,  with  three  known  vectors  k,  s,  t  the  problem  was  taken  to  be  the 
expression  of  unknown  vectors  in  the  form  ak  +  6s  +  ct. 

These  cases  are  isolated,  if  characteristic,  and  do  not  indicate  a  need  for  a 

systematic  treatment,  but  since  the  construction  of  algebraic  space,  real  or 

complex,  depends  on  familiarity  with  vector  frames,  some  consideration  of 

vector  frames  is  part  of  our  task.  The  notation  adopted  is  in  part  traditional 

in  differential  geometry  and  in  part  designed  for  use  in  that  subject. 

341.   COEFFICIENTS  AND  POLAR  COEFFICIENTS;  THE  POLAR 
OF  A  VECTOR  FRAME. 

*1.    Three  vectors  x,  y,  z  in  space  are  adequate  to  be  the  constituents  of  a 
vector  frame  if  every  vector  in  space  can  be  expressed  in  the  form  fx,  +  gy  +  hz, 

where/,  g,  h  are  numbers;  the  condition  both  necessary  and  sufficient  for  this 

is  that0 the  vectors  x,  y,  z  are  not  coplanar;  an  equivalent  form  is  that  the        '12 
spatial  product  ̂ xyz  is  not  zero.  Assuming  this  condition  fulfilled,  we  must 
take  the  vectors  of  reference  in  a  definite  order,  but  we  have  no  selections  to 

make  analogous  to  those  which  determine  the  angles  of  a  Cartesian  frame ; 

a  spatial  convention  is  however  assumed,  and  this  gives  to  the  spatial  pro- 

duct ^xyz  a  definite  value  which  we  denote  by  J  and  call  the0 spatial       -13 

magnitude  of  the  frame.   °  The  spatial  magnitude  of  a  vector  frame  is  necessarily       -14 
different  from  zero. 

x 

*2.   If  r  is  any  vector,  we  denote  by  £r,  r)r,  £r  the  three  numbers  such  that 

r  =  £rx  +  77r  y  +  £rz,  -21 

and  we  call  these  numbers  the  ° coefficients  of  r  in  the  vector  frame  xyz.    We      -22 

11—2 
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can  exhibit  the  coefficients  individually  as  ratios  of  spatial  products,  for  we 

have  seen  in  225*32  that 

r  ,7xyz  =  x  ,v7ryz  +  y  ̂ 7xrz  +  z  ,x7xyr, 

and  this,  in  our  present  notation,  is  equivalent  to 

•23  £r:7;r:£r:l  =  ,7ryz:^xrz:,7xyr:<7. 

The  numbers  which  correspond  to  the  projections  in  a  Cartesian  frame  are 

projected  products,  and  we  write 

•24  Xr  =  c?xr,    Atr  =  c^yr,    i/r  =  ̂ zr. 

•25       It  will  appear  in  '4  that  these  numbers  are  appropriately  called  the  °  polar 
coefficients  of  r. 

For  contracted  notation  we  write 

•26  f  =  (x,  y,  z), 

•27  X-Cfc*O.     v  =  O*/*»"> 

•29  Thus  '21  is  written  r  =  ̂ rf. 

•3.  The  frame  to  be  taken  as  polar  of  the  vector  frame  xyz  is  of  course  a 
frame  xyz  in  which  each  constituent  is  perpendicular  to  two  of  the  three 

vectors  composing  the  original  frame: 

•31  c^yx  =  /zx  =  c^zy  =  c^xy  =  c^xz  =  ̂ yz  =  0. 

These  conditions  are  not  sufficient  to  determine  the  polar  frame,  and  we  utilise 

the  freedom  that  remains,  to  secure  a  simplicity  unapproachable  with  Cartesian 
axes. 

From  "3-1,  if  r  can  be  expressed  both  as  fx4-  yy  +  £z  and  as  |x  +  rjy  +  £z, 
then  identically 

•32  /xr  =    ̂ xx, •33 

and  it  is  evident  that  the  maximum  of  simplicity  will  be  attained  if  we  are 
able  to  take 
•34  c^xx  =  c^yy  =  /zz  =  1. 

Now  if  p  is  any  proper  vector  perpendicular  to  both  y  and  z,  a  vector  x  satisfies 
the  last  two  of  the  conditions 

•35  /xx=l,     /yx  =  0,     c?zx  =  0 

if  and  only  if  it  is  a  multiple  op  of  p.   The  first  condition  then  becomes 

since  x  is  not  coplanar  with  y  and  z,  £  xp  is  not  zero,  and  '36  is  satisfied  by 
a  unique  value  of  a,  which  is  not  zero.  Thus  there  is  one  and  only  one  vector 

•37  x  that  satisfies  '35,  and  this  is  a  proper  vector:  °a  vector  frame  in  space  has 
a  unique  polar.  Moreover,  from  the  form  of  '31  and  '34, 

•38  The  relation  between  a  vector  frame  and  its  polar  is  a  symmetrical  relation. 
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•4.    With  the  simplification  which  i,  y,  z  have  been  chosen  to  effect,  '32, 

•33  become  <^xr  =        ̂ r  =  f      ̂ zr  =  -41 

c?xr  =  f,    c?yr  =  77,    ̂   zr  =  £  -42 
and  may  be  summarised  in  the  assertion  that 

The  polar  coefficients  of  a  vector  in  a  vector  frame  are  the  coefficients  of  the       '43 
same  vector  in  the  polar  frame. 

Explicitly,  if  X,,  /^r,  vr  are  defined  as  in  '24,  then 

r  =  Xrx-f  //,ry  +  vrz,  -44 

or  in  contracted  notation,  r=vrf.  '45 

From  '43  comes  a  theorem  that  we  might  have  derived  directly  from  215*24: 

A  vector  in  space  is  completely  determined  by  its  projected  products  with  any       -46 
three  vectors  that  are  not  coplanar. 

•5.  Since  x  is  perpendicular  to  both  y  and  z,  it  is  a  multiple  of  their  vector 
product.  It  follows  therefore  from  the  identity  of  c^x(^yz)  with  ̂ xyz  that 

^  yz  is  Jx.  The  same  conclusion  follows  a  comparison  of  '44  with  225'34,  which 
can  be  written 

Jr  =  \r^yz  +  i^ty  zx  +  vr  tyxy  : 

The  polar  of  the  frame  xyz  is  formed  of  the  vectors  '51 

J-^yz,    J-l«Vzx,     J-'^xy. 

Here  the  reciprocal  nature  of  the  relation  between  the  frames  is  concealed. 

From  -51  and  225*28 
^yz  =  J-2xa7xyz  =  /-1x;  -52 

but  if  J  is  the  spatial  magnitude  of  the  polar  frame, 

^yz  =  Jx,  -53 

since  '51  applies  to  the  polar  frame;  hence 

JJ=1:  '54 

The  spatial  magnitude  of  the  polar  of  a  frame  is  the  reciprocal  of  the  spatial       -55 
magnitude  of  the  frame. 

A  direct  proof  of  '54  is  furnished  by  32'63,  on  substitution  from  '31  and  '34. 

342.  THE  EVALUATION  OF  PROJECTED  PRODUCTS;  THE  FUNDAMENTAL 

MAGNITUDES  AND  THE  POLAR  MAGNITUDES  OF  A  VECTOR  FRAME; 
RELATIONS  BETWEEN  COEFFICIENTS  AND  POLAR  COEFFICIENTS. 

•1.  If  the  first  of  two  vectors  r,  s  is  given  by  its  coefficients  and  the  second 
by  its  polar  coefficients,  the  projected  product  is  determinable  from  first 

principles;  we  have 

^rs  =  ̂ (|rx  +  ̂ ry+frz)s  =  |r^xs  +  ̂ r^ys  +  ̂ ^zs,  -11 
that  is,  £  TB  =  x*v»>  '12 

and  similarly  ^rs=vrXa-  -13 
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In  these  formulae  the  vectors  x,  y,  z  are  not  involved,  except  in  so  far  as  the 
coefficients  and  polar  coefficients  depend  on  them,  but  it  is  otherwise  if  the 

vectors  r,  a  are  given  both  by  coefficients  or  both  by  polar  coefficients. 

•2.  It  follows  from  the  distributive  and  commutative  properties  that  the 
projected  product  <£  (frx  +  r)ry  +  £r  z)  (£Bx  +  77,7  +  £gz)  of  any  two  vectors  r,  B 
is  given  by 

•21  3  TB  =  Lr 

where 

•22  Z  =  c?x2,    M=Jy*,    N  =  £tf,    P 

The  coefficients  L,  M,  N,  P,  Q,  R  are  called  the  fundamental  magnitudes  of 

the  frame  ;  in  order  to  write  '21  briefly  in  the  form 

•23  c?rs  =  SXTX»> 

24       we  put  L  =  Sn,    P  =  S23  =  S3* 

and  so  on,  and  we  observe  that  from  32'63 

•25  J2=     L     R     Q 
R    M    P 

Q     P     N 
a  formula  that  we  can  abbreviate  to 

The  projected  product  c^xr,  which  is  the  polar  coefficient  Xr,  is  the  co- 

efficient of  £B  in  '21  ;  explicitly  this  coefficient  is  the  linear  function 

denoted  by  SIYV: 
J  /V*  ' 

•28  The  polar  coefficients  of  any  vector  are  given  in  terms  of  the  coefficients 
themselves  by  the  formulae 

•3.   In  terms  of  their  polar  coefficients  the  vectors  r,  B  take  the  forms 
XrX  +  prj  +  *>rz,  XBx  +  fiBy  +  z/Bz,  and  therefore 

•31  £  TB  =  jLXpXB  +  M^IT/J.S  +  Nvr  VB 

where  L,  M,  N,  P,  Q,  R  are  constants  called  the  polar  magnitudes  of  the  frame 
xyz  and  given  by 
.00  I"   _     <?~2  P  _     (?vv «5Z  1 J  —   •/  X  .         .1     —  c/  V36) 

and  so  on.   To  abbreviate  '31  we  write 

and  so  on,  so  that  with  v  for  (\,  /JL,  v),  '31  becomes 
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The  coefficients  of  Xt,  /*»,  vt  in  '31  are  S*vr,  &*vr,  S3vr,  and  these  are  the 
polar  coefficients  of  r  in  the  frame  xyz,  and  therefore  are  the  coefficients 

fr,  »7r,  («: 

The  coefficients  of  any  vector  are  given  in  terms  of  the  polar  coefficients  by       -35 

the  formulae  fasglv>     y^&v,     S=&v. 

•4.  Since  either  of  the  frames  xyz,  xyz  is  deducible  from  the  other,  the 
fundamental  magnitudes  of  the  frames  are  related.  Either  set  of  magnitudes 

can  indeed  be  determined  from  the  other;  the  explicit  results  are  all  de- 
rivable from  the  relation 

^(^rs)(^tu)  =  /rt/su-^ru/8t  -41 

which  we  have  seen  in  225*43  to  hold  between  any  four  vectors,  for  this 
equality  combines  with  T51  to  give  at  once  the  typical  equations 

J*L  =  MN-P*,    J2P  =  QR-LP,  .42 

J2L  =  MN  -  P2,     J*P=QR-  LP.  -43 
But  results  such  as  these  are  seldom  used,  the  relation  between  the  sets  of 

magnitudes  being  applied  as  a  rule  in  another  form.  If  we  substitute  for  X, 

/j,,  v  from  '28  in  '35  we  have 
*£  -44 

where,  in  agreement  with  25*62  and  25*44,  &&  denotes 
and  since  the  formulae  in  *44  are  true  for  any  vector  whatever,  they  are 
identities;  hence 

The  value  of  the  sum  8*$  is  unity  or  zero  according  as  i  and  j  coincide  or       -46 
differ. 

On  the  assumption  that  J"2  is  not  zero,  the  relation  asserted  by  '46  between 
the  two  sets  of  magnitudes  is  algebraically  equivalent  to  the  relation  deduced 

from  *41,  for  on  the  one  hand  '46  can  be  verified  from  '42  or  '43,  and  on  the 

other  hand  '46  by  giving  the  values  of  the  three  expressions  tyS1,  8*8*,  B^S3 
provides  three  linear  equations  of  which  one  is  not  homogeneous  for  the  de- 

termination of  8il,  Si2,  S1'3  as  functions  of  L,  M,  N,  P,  Q,  R. 
The  substance  of  the  last  paragraph  can  be  regarded  in  the  light  of  pure 

algebra.  The  sets  of  coefficients  £,  97,  £  and  X,  fi,  v  are  two  sets  of  variables, 
related  linearly  to  each  other  ;  one  set  of  formulae  of  transformation  is  given 

in  '28,  and  the  set  given  in  '35  is  the  reciprocal  set.  If  we  lay  no  stress  on 
this  aspect,  it  is  not  only  because  we  are  concerned  primarily  with  geometry, 
but  also  because  the  work  as  it  presents  itself  to  us  involves  a  restriction  of 

symmetry  and  a  restriction  in  the  number  of  variables  :  to  pursue  an  algebraical 
investigation  in  which  these  restrictions  are  irrelevant  without  abandoning 
them  would  be  only  less  undesirable  than  to  enter  here  on  a  discussion  of  the 
elements  of  the  general  theory  of  linear  substitutions. 
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343.  THE  EVALUATION  OF  VECTOR  PRODUCTS  AND  OF  SPATIAL  PRODUCTS. 

•1.  We  have  seen  that  the  vector  products  ̂   yz,  ̂   zx,  ̂   xy  are  Jx,  Jy,  Jz, 

and  that  the  vector  products  ty  y  z,  fy  zx,  W  xy  are  J~*x,  J~lj,  J~lz  ;  we  deduce 
the  equations 

•11  V  (&x  +  77,  y  +  frz)  (?.x  +  w  +  &•) 

=  J(Vr&  ~  ?ri7«)  *  +  •/(&•£•-  £r  £•)  y  +  •/X&'fc  -  i7r£«)  5, 

•12  ^(Xri  +  /^y  +  i'r5)(X,:t  +  Ai.y  +  i-,5) 

=  J~l  (fJirv»  —  Vrfv)  X  +  J~l  (VrX8  —  X,  i/B)  y  +  </-1  (XP/tB  —  /^X,)  Z  : 

•13  7w  $Ae  vector  frame  xyz,  tfAe  vector  product  of  the  vectors  r,  s  Aos  £Ae  coefficients 

J~l  (f*r  v»  -  Vrftm),     J~l  Or  Xg  -  Xr  v.),      J 

tf/ie  poZar  coefficients 

*2.   We  can  infer  the  theorem  that 

•21  For  any  three  vectors  q,  r,  s  the  spatial  product  is  given  with  reference  to  a 
vector  frame  by 

Jqrz  =  J  [xq  ;  ̂ r  5  %s]  =  J~l  [wq  5  vr  ;  wj, 

from  '13  and  225*21,  but  it  is  more  interesting  to  remark  that 

•22  JS  qrs  =  [uq  ;  ur  ;  vt] 

is  a  version  of  32*63,  and  that  if  we  regard  the  coefficients  of  q,  r,  s  as  pro- 
jected products  in  the  polar  frame,  then 

•23  Ja7qrs  =  [x<1;  Xr;  Xn] 

is  another  version  of  the  same  theorem.    The  distributive  property  of  the 
spatial  product  also  leads  to 

•24  ,7qrs  =  J[xq;  %r;  %g] 

if  the  coefficients  of  the  vectors  are  taken  to  have  their  primary  meaning. 

•3.  Algebraical  identities  can  be  derived  from  '13  as  from  32*35  in  32*8. 
But  in  geometry  it  is  usually  easier  to  appeal  directly  to  the  vectorial  relations 
which  such  identities  represent  than  to  use  the  identities  themselves. 

344.  VECTOR  FRAMES  IN  A  PLANE. 

•1.  The  theory  of  a  vector  frame  in  a  plane  agrees  in  its  main  lines  with 
the  theory  of  a  frame  of  the  same  kind  in  space,  but  at  one  point  there  is  a 

divergent  track  due  to  the  countersymmetry  of  the  prepared  plane. 

A  plane  vector  frame  is  formed  of  two  vectors  x,  y  which  are  not  parallel, 
taken  in  a  definite  order  ;  the  areal  product  £4  xy,  which  is  not  zero,  we  denote 

•12  by  C  and  call  the  °  areal  magnitude  of  the  frame. 
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The  vector  r  can  be  expressed  as  £rx  +  77,  y,  and  £r,  77,  are  called  the 

coefficients  of  r,  while  c^xr,  =^yr  are  called  the  polar  coefficients  and  denoted 

by  Xr,  /ur. 

•2.   The  polar  frame  xy  is  defined  by  the  equations 

0,  -21 

1,  -22 

exactly  as  in  three-dimensional  work,  and  again  these  equations  lead  to 

and  being  symmetrical  in  the  two  sets  of  vectors  imply  also 

'24 

The  polar  coefficients  of  a  vector  in  one  frame  are  the  coefficients  in  the  polar       -25 

frame. 

The  vectors  x,  y,  having  the  pairs  of  directions  at  right  angles  to  y,  x,  are 

multiples  of  the  vectors  §j,  <£x  obtained  by  erecting  y,  x,  and  it  follows  from 
the  identities 

cases  of  222'14,  that  §  y  =  -  Cx,     <£  x  =  Of  :  -26 

The  frame  polar  to  xy  is  formed  by  -  G-1  <£y  and  C~l  <£x.  -27 
The  relation  between  the  areal  constants  of  a  frame  and  its  polar  is  given 

most  directly  by  222*25,  for 

reduces  on  account  of  '21  and  '22  to 

0(7=1:  -28 

The  areal  magnitude  of  the  polar  of  a  frame  is  the  reciprocal  of  the  areal       -29 
magnitude  of  the  frame. 

The  same  result  comes  if  "26  is  applied  to  the  polar  frame,  for  then 

and  therefore  (f2  x  =  —  CCx, 
a  relation  that  must  be  reconciled  with  the  universal  relation 

&  r  =  -  r. 

•3.   Since  r  =  £rx  +  7?ry> 

the  erected  vector  £r  is  given  by 

<£r  =  £r(£x+77r<£y,  -32 

and  therefore  by  Sr  =  G(^,f  —  77,  x)  ;  '   -33 

hence  j  ($  r)  s  =  C  (£r  ̂  ys  -  77,  c?  xs), 

that  is,  £4  TB  =  C  (^s  -  ̂ r  %*)•  '35 
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This  formula,  expressed  in  terms  of  the  polar  frame,  becomes 

•36  £4  TB  =  C~l  (Xr/xg  -  /zrX,), 

which  multiplied  by  C  is  simply  a  version  of  222'25  : 

•37  The  areal  product  of  the  vectors  r,  a  is  given  by 

£4  TB  =  C  (&,,.  -  K  |.)  =  a-'  (Xr  ̂   -  ̂   X.). 

•4.   For  work  in  a  plane  we  write 
•41  # 

•42  # 

and  we  see  that  because  the  projected  product  is  distributive 

143  <?  rs  =  J 

•44  £  rs  = 

To  express  these  formulae  briefly,  we  write 

•45  .E^S11,    F=Sl*  =  8",    G^S™, 

•46  E  =  S",    F=S"  =  S2\    G  =  Sa, 

•v  %=a^,  V=(\P) 
•48       so  that  £  rs  =  ̂ P%8  =  Bvrva, 

•49       to  which  we  may  add  cf  rs  =  %rVB  =  ̂ ^8- 

'5.   The  relations  between  f,  77  and  X.,  ̂   for  any  vector  take  symbolically  the 
same  form  as  the  corresponding  relations  in  space  :  on  the  one  hand 

•51  X  =  S>%,     /*  =  £«*, 

•52       and  on  the  other  hand  £  =  $X     v)  =  S2v. 

•53       Explicitly, 
•54 

•6.   The  relations  between  the  polar  magnitudes  ̂ ,  F,  G  and  the  fundamental 
magnitudes  E,  F,  G  may  be  found  explicitly  by  applications  of  the  identity 

•61  £(£r}(g&)  =  grB, 

•62       which  gives  C2E  =  G,     C*F  =  -F,     C2G  =  E, 

•63  C2E=G,     C*F=-F,    C2G  =  K 

But,  again  as  in  the  case  of  frames  in  space,  the  valuable  identities  are  not 
these,  but  simpler  relations  which  come  from  the  identities 

•64  -S' 

where  now  tyS*  denotes  SilSv  '  +  8i2S2J;  from  *64  we  have  a  theorem  expressed 

by  the  enunciation  of  2*46,  with  the  present  interpretation  of  the  symbols, 
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but  it  is  not  a  laborious  matter*  to  write  out  all  the  identities  implied : 

they  an- 

EE  +  FF=l,    EF+FG  =  0,    FE  +  &F=0,    FF+GG=l.  -67 

It  is  not  G  itself  but  (72  which  enters  into  '62,  and  C2  is  given  in  terms  of 
E,  F,  G  by  the  identity 

(S4  xy)2  =  c?  x2  £  y2  -  (/  xy)2, 

which  is  a  particular  case  of  222'25  and  implies 

CZ  =  EG-F*;  -68 

the  correlative  formula  C*  =  E&-  Fz  -69 

does  not  need  independent  proof. 

345.  ATTACHED  FRAMES  AND  THEIR  USE. 

•1.  The  processes  described  in  the  last  chapter  for  the  location  of  points 
and  planes,  rays  and  rotors,  by  means  of  a  Cartesian  frame  OXTZ,  are  essen- 

tially definitions  of  vectors  which  relate  the  entities  in  question  to  the  one 

point  0 ;  the  vectors  having  been  defined,  the  subsequent  use  of  the  frame 

OXYZ  in  their  specification  is  merely  one  way  of  discussing  their  interrela- 
tions. It  follows  that  to  use  a  vector  frame  xyz  for  similar  work  we  have  only 

to  associate  with  the  frame  a  definite  origin  of  reference  0.  Then,  for  example, 

a  prepared  plane  is  located  by  the  direction  normal  to  the  plane  together  with 
the  length  in  that  direction  of  the  normal  step  to  0  from  the  plane ;  the 

direction  can  be  treated  as  a  unit  vector,  and  the  length  as  the  amount  of  a 

given  vector  in  a  given  direction. 
The  frame  xyz  attached  to  an  origin  0  we  denote  by  Oxyz.  There  is  no 

reason  why  the  coefficients  and  polar  coefficients  of  the  vector  of  a  step  OR 

should  not  be  called  the  coordinates  and  projections  of  R  in  the  vector  frame. 
Attached  frames  may  be  used  in  a  plane  as  well  as  in  space ;  there  are  no 

special  features  that  call  for  comment. 

•2.  The  vectorial  equations  of  planes  and  lines  involve  only  the  origin  of 
reference  and  are  the  same  whether  a  vector  frame  or  a  Cartesian  frame  is 

being  used,  but  in  the  algebraic  equations  which  replace  these  vectorial 

equations  the  variables  naturally  are  numbers  appropriate  to  the  frame  in  use. 
With  a  Cartesian  frame  the  variables  associated  with  a  variable  point  R  are 

coordinates  or  projections  of  R ;  with  an  attached  vector  frame  Oxyz  they  are 
coefficients  or  polar  coefficients  of  the  vector  of  OR. 

*  In  the  branch  of  differential  geometry  which  is  the  developed  subject  to  which  this 
article  is  most  nearly  allied,  it  has  not  been  usual  to  introduce  symbols  for  the  magnitudes 
E,  F,(jf;  I  am  convinced  that  the  presentation  of  the  subject  has  suffered  not  a  little  from 
the  omission. 
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In  the  matter  of  algebra  the  change  is  slight.  If  the  vectors  x,  y,  z  are 
vectors  of  amounts  U,  V,  W  in  the  directions  of  the  axes  of  a  Cartesian  frame 
OXYZ,  then 

•22       and  therefore  xr=U^r>     yt=Vrjt,     zt=  W£r, 
while  on  the  other  hand 

•23  c?xr=£T/rls,     c?yr=Fc?rlH,     <?zr= 

•24       and  therefore  Xr=  Ulr,    t^^Vm*,     vr=Wnr. 

*3.   The  modifications  of  34'31  and  36'51  are  obvious,  and  can  be  made 

either  by  means  of  '22  and  '24  or  from  the  vectorial  equations. 
In  place  of  the  equations  in  34'31  appear 

•31  VnX  =  N,     xnv  =  N, 
and  conversely  every  linear  relation  between  the  coordinates  of  a  point  in  a 

vector  frame  corresponds  to  a  definite  plane,  and  so  does  every  linear  relation 
between  the  projections. 

In  a  vector  frame  a  line  (k,  K)  has  six  coordinates,  %k,  r)k,  &,  H*,  H*,  Zk, 

the  coefficients  of  k  and  K,  and  six  projections  X*,  /*&,  vk,  At,  Mk,  N*,  the 

polar  coefficients  of  the  same  vectors  ;  the  specification  is  homogeneous,  and 
the  coordinates  and  projections  are  connected  by  the  identity 

•33  Xu  =  Tx  =  0, 

•34       where  X  =  (B,  H,  Z),     T  =  (A,  M,  N> 
Equations  of  the  line,  that  is,  of  particular  planes  through  the  line,  are  given 

with  reference  to  the  vector  frame  simply  by  translation  of  their  vectorial 

forms  ;  thus,  since  every  vector  r  from  0  to  a  point  on  the  line  satisfies 

V  rk  =  K, 

it  follows  from  313  that  every  point  on  the  line  satisfies 

•36  J(il&-&lk)=Ak, 

which  is  the  equation  of  a  plane  parallel  to  x,  and  also 

•37  «/"-»  (M  —  vfik)  =  Hfc  , 
which  is  the  equation  of  a  plane  parallel  to  x. 

346.  ATTACHED  FRAMES  AND  CARTESIAN  FRAMES  ;  LOADED 
CARTESIAN  FRAMES. 

•1.  The  Cartesian  frame  OXYZ  can  be  compared  with  the  vector  frame 
Olaliilz,  the  components  x,  y,  z  and  the  projections  I,  iny  n  of  a  vector  in  the 

Cartesian  frame  being  the  coefficients  £,  77,  £  and  the  polar  coefficients  A.,  /u,  v 
of  the  same  vector  in  the  vector  frame.  In  this  way  many  results  in  the 

previous  two  chapters  can  be  deduced  as  particular  cases  of  the  corresponding 
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theorems  in  the  present  chapter.  But  the  deduction  fails  if  there  is  explicit 

i/it'/ttiuit  of  the  polar  frame,  for  the  polar  of  the  vector  frame  Ifllulz  is  formed 
of  the  vectors  (sec  HA)A,  (sec  HM)M>  (secZN)N,  and  in  general  these  are  not 
unit  vectors,  and  the  vector  frame  which  they  compose  does  not  correspond  to 

the  frame  OLMN  which  is  the  polar  of  OXYZ;  in  fact  the  polar  coefficients 

\,  /*,  v  of  a  vector  r  in  ls!Hlz  are  the  projections  I,  ra,  n  of  r  in  OXYZ,  and 
these  are  not  the  components  of  r  in  OLMN.  In  defining  the  polar  of  a 
vector  frame  we  have  taken  advantage,  of  the  possibility  of  choosing  the 

magnitudes  of  the  polar  vectors  to  secure  a  simplicity  more  complete  than  is 
attainable  with  the  Cartesian  frame,  where  only  the  directions  of  the  polar  are 
at  our  command. 

•2.  Instead  of  deducing  Cartesian  formulae  from  vectorial,  we  can  describe 
what  is  effectively  a  vector  frame  attached  to  a  point  0  by  means  of  a  Car- 

tesian frame  in  such  a  manner  that  the  vectors  themselves  are  thrown  into 

the  background.  Suppose  U,  V,  W  to  be  three  numbers,  subject  to  the  con- 
dition that  no  one  of  them  is  zero  but  unrestricted  in  sign,  let  X,  Y,  Z  be  the 

points  at  unit  distance  from  0  on  the  axes  of  a  Cartesian  frame  OXYZ,  and 
let  F,  G,  H  be  the  points  on  the  same  axes  at  distances  U,  V,  W  from  0. 

The  Cartesian  coordinates  x,  y,  z  of  a  point  R  are  the  ratios  of  the  volumes 

ORYZ,  OXRZ,  OXYR  to  the  volume  OXYZ,  but  the  position  of  R  is  de- 
scribed equally  well  by  the  ratios  of  the  volumes  ORGH,  OFRH,  OFGR  to 

the  volume  OFGH  ;  the  latter  ratios  we  call  the  °  adapted  coordinates  of  R  in  '21 

the  frame  obtained  by  °  loading  OXYZ  with  the  set  of  numbers  U,  V,  W,  and  '22 
we  denote  these  adapted  coordinates  by  £,  tj,  £  From  the  equalities  such  as 

ORGH  /OFGH  =  OR  YZ/OFYZ  =  (OR  YZ/OX  YZ)/(OF/OX)  -23 
we  have  the  relations  between  the  adapted  and  the  Cartesian  coordinates: 

-24 

'3.  The  ratios  of  a  direction  and  the  components  of  a  vector  are  adapted  to 
a  loaded  frame  in  the  same  way  as  the  coordinates  of  a  point.  The  set  of 

formulae  giving  projections  I,  ra,  n  in  terms  of  adapted  components  £,  77,  £  is 

found  by  the  substitution  of  U£,  Vrj,  W£  for  x,  y,  z  in  24-33  and  is 

-  I  =  U%  +  Vtj  cos  7  +  TF£cos  j3, 
m=  Ug  cos  7  +  Vij  +  W£cos  a, 

_n  =  U%cosfi+Vri  cos  a  -f  F£; 

this  set  lacks  the  symmetry  of  the  set  from  which  it  has  been  derived,  the 

coefficient  TFcosa  of  £  in  m  differing  from  the  coefficient  Fcosa  of  vj  in  n, 

but  symmetry  is  at  once  restored  if  we  take  the  equations  in  the  form 

'   Ul  =  %U2  +  rjUVcosy  +  ZWUcosP,  '-31 
Vm  =  gUV  cos  7  +  77  F2  +  £FTFcos  a, 

m  Wn  =  %WU  cos  0  +  rj  FIT  cos  a  + 
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•32       We  write  therefore  X  =  Ul,     /*  =  Vm,     v  =  Wn, 

•33       L=U*,    M=V\    N=WZ,    P=FTFcosa,     Q=WUcosj3,    R=UVcosy, 

•34       and  we  have  X,  /t,  v,  the  °  adapted  projections  of  a  point  or  vector,  or  the 
adapted  cosines  of  a  direction,  given  in  terms  of  adapted  coordinates,  com- 

ponents, or  ratios,  by  the  symmetrical  set  of  formulae 

•35  \  =  L£  +  Rr,  +  Qt;,     ft^Rg  +  Mrj  +  PS,      v 

which  leads  necessarily  to  a  symmetrical  set 

•36  %=L\  +  RH  +  QV,  >n  =  R\  +  Mn  +  pv, 
expressing  £,  17,  £  as  functions  of  X,  /A,  z/.  That  the  use  of  Ul,  Vm,  Wn  is  the 
natural  complement  to  the  use  of  as/  U,  y/  V,  zj  W  is  seen  otherwise  if  we  aim 

at  presenting  the  cosine  of  angles  between  two  directions  II,  K  in  a  form 

^n^K  +  ̂ n^K  +  ̂ n^K  analogous  to  the  elementary  form  IU^'K.  +  fnnyK  +  nnzK. 

Expressions  for  the  coefficients  in  '35  in  terms  of  V,  V,  W  and  frame  angles 
are  found  by  a  comparison  of  '36  with  24'34 ;  writing  Ug  for  x,  \/U  for  I,  and 
so  on,  and  putting  also 
•37  J=TUVW, 

we  have  from  24'34  three  formulae  of  the  type 

•38  f  =  X  /~2  F2  W2  sin2  a  +  /*  J-1  W  cot  T  +  v  J~l  V  cot  B, 

•39       and  therefore  1  =  J~2  V2  Wz  sin2  a,     P  =  J~1U  cot  A. 

•4.  The  polar  of  the  loaded  frame  with  which  we  are  dealing  is  of  course 
to  be  a  frame  obtained  by  loading  the  polar  of  the  Cartesian  frame  OXYZ, 

but  the  numbers  U,  V,  W  to  be  associated  with  this  polar  are  at  our  disposal, 

to  be  selected  in  the  manner  which,  while  retaining  the  symmetry  of  the  rela- 
tion between  a  frame  and  its  polar,  leads  to  the  simplest  relations  between 

adapted  components  in  one  frame  and  adapted  projections  in  the  other. 

Whatever  numbers  are  chosen,  we  have  from  24*23 

•41  X  =  f£/77cosEA,     /Z  =  7?FFcosHM,    v  =  £W  Fcos  ZN, 

•42  X  =  f*7CfcosEA,     At  =  ̂ FFcosHM,     z^  =  ̂ lfFcosZN; 

if  then  we  define  the  polar  amounts  to  satisfy 

•43  UUcos  SA  =  FFcos  HM  =  TFFcos  ZN  =  1, 

a  definition  that  is  always  valid  since  none  of  the  cosines  can  vanish,  we 

secure  all  the  symmetry  and  simplicity  we  can  wish.    Explicitly, 

•44  0"=(T-1sina)/CT,     F=(T-1siny8)/F,     F=  (T"1  sin  7)/  W, 
and  with  these  polar  amounts 

•45  The  adapted  components  of  any  vector  in  a  loaded  frame  are  the  adapted 
projections  of  the  same  vector  in  the  polar  frame. 

It  follows  from  '45  and  '33  that  the  coefficients  in  '36  are  given  by 
•46  1=  U2,     P=  FFcos  A, 

and  so  on,  and  it  is  an  easy  matter  to  return  from  '44  and  '46  to  '39. 
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*5.  The  vector  frame  attached  to  an  origin  marks  the  limit  of  our  work. 
Let  us  consider  for  a  moment  the  extensions  which  are  most  evident. 

A  vector  attached  to  a  point  gives  place  readily  to  a  rotor  located  in  a 

definite  line  through  the  point,  and  if  in  the  same  way  a  vector  frame  attached 

to  0  can  be  regarded  as  a  frame  composed  of  three  rotors  concurrent  in  0, 

there  is  an  immediate  extension  to  a  frame  composed  of  three  rotors  that  are 

not  assumed  to  be  concurrent.  It  is  true  that  in  general  a  rotor  p  can  be 
specified  completely  by  its  relations  to  three  given  rotors  :  the  vector  r  of  the 

rotor  can  be  expressed  in  terms  of  the  vectors  of  the  given  rotors,  and  the 
axis  is  determinate  if  the  momental  product  of  p  and  each  of  the  rotors  of 

reference  is  known.  But  it  is  not  possible  to  express  an  arbitrary  rotor  as  a 
sum  of  multiples  of  three  standard  rotors,  however  these  rotors  are  chosen  ; 

indeed,  if  we  are  to  construct  a  rotor  frame  to  deal  with  rotors  by  decomposing 
them  we  must  have  not  fewer*  than  six  rotors  of  reference.  If  we  can  decom- 

pose any  rotor  we  can  decompose  any  f  motor,  since  we  can  then  resolve  the 
constituents  of  any  set  of  rotors,  and  if  the  unit  of  our  work  is  the  motor  we 
shall  construct  our  frame  of  motors  rather  than  of  rotors.  The  ultimate  frame 

for  analysis  in  which  motors  play  the  leading  part  is  composed  then  of  six 

motors,  unrestricted  except  by  the  condition  that  they  are  independent,  and 

between  the  attached  vector  frame  and  the  general  motor  frame  the  only 
frame  deserving  of  detailed  study  is  a  frame  bearing  to  the  motor  frame  the 

same  relation  as  that  of  the  Cartesian  frame  to  the  attached  vector  frame  ; 

this  I  is  the  frame  formed  of  six  screws  of  arbitrary  axis  and  pitch,  and  its  use 

is  developed  exhaustively  in  Ball's  classical  work. 
The  conception  of  a  loaded  Cartesian  frame  is  a  timorous  one,  from  which 

the  formulae  fundamental  in  the  theory  of  a  vector  frame  are  reached  by 
steps  that  are  tentative.  Nevertheless,  the  weaker§  idea  is  not  without  value. 

*  The  theorem  is  virtually  Mobius's.  If  the  rotors  of  reference,  specified  with  the  help 
of  an  origin  0,  are  (p1}  Pj),  (p2,  P2),  ...,_the  problem  of  decomposing  the  rotor  (r,  R)  is 
equivalent  to  that  of  finding  a  single  set  of  numbers  a1}  a2,  ...  such  that 

r=a1p1+a2p2+...,     R  = 

There  are  six  scalar  equations,  and  the  problem  may  be  expected  to  be  insoluble  unless 

there  are  six  variables,  implying  six  rotors  of  reference.  In  the  problem  of  utilising  an 
attached  vector  frame,  the  equations  are  of  the  form 

and  the  six  variables  imply  only  three  vectors  of  reference.  This  simple  enumeration 
renders  the  result  intelligible,  but  of  course  does  not  afford  a  proof. 

t  This  is  why  five  rotors  can  not  form  a  frame  adequate  for  the  decomposition  even  of 
pure  rotors,  although  a  rotor  requires  only  five  magnitudes  to  characterise  it  ;  a  motor 
involves  six  independent  numbers. 

J  Compare  246*4  on  p.  86  above. 
§  Weaker  because  in  complex  space  there  are  attached  vector  frames  that  have  no 

loaded  Cartesian  counterparts. 
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The  loaded  frame  can  be  introduced  with  effect  into  analytical  work  from 
which  the  explicit  mention  of  vectors  is  excluded :  here  is  a  concession  to 

prejudice,  for  vectors  and  rotors  are  not  less  native  to  the  realms  of  geometry 
than  are  circles  and  planes.  A  stronger  case  for  the  consideration  of  this 

frame  rests  on  its  relative  finality ;  it  is  difficult  to  see  how  in  three  dimen- 
sions the  idea  of  a  Cartesian  frame  is  to  be  modified  further,  unless  there  is 

some  sense  in  which  the  origin  as  well  as  the  axes  can  be  loaded.  But  it  is 

impossible  to  conjecture  the  value  of  motor  frames  in  geometry,  and  if  we  are 
to  pause  at  the  attached  vector  frame,  it  is  satisfactory  to  recognise  that  there 

is  one  aspect  in  which  this  frame  does  not  admit  of  generalisation. 
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350.   INTRODUCTION. 

The  method  adopted  in  36'2  and  37 '4  for  finding  elements  to  specify  a 
required  ray  or  point  with  reference  to  a  frame  OXYZ,  is  virtually  the  dis- 

covery of  corresponding  elements  with  reference  to  another  frame,  followed 

by  a  passage  from  this  frame  to  OXYZ;  in  36*2  the  subsidiary  frame  was  the 

Cartesian  frame  formed  by  the  rays  through  0  parallel  to  K,  <r,  r,  in  37 '4  it 
was  the  attached  vector  frame  that  we  should  now  denote  by  Opst. 

Again  and  again  this  feature  presents  itself  in  analytical  geometry :  there 

is  no  effort  to  describe  all  the  points  which  have  to  be  considered  in  a  single 
investigation  by  means  of  a  single  frame,  but  at  every  stage  reference  is  made 
to  the  frame  which  appears  best  adapted  for  immediate  use.  The  process  in 

the  paragraphs  quoted  is  entirely  characteristic,  and  as  it  was  possible  for  us 

to  use  it  without  having  explicit  '  formulae  of  transformation '  at  hand,  so  as  a 
rule  no  reference  should  be  made  to  general  formulae,  but  reliance  should  be 
placed  in  individual  cases  on  the  methods,  obvious  in  themselves,  by  which 
such  formulae  are  obtainable.  If  after  this  assertion  we  proceed  to  obtain 

general  formulae,  the  reason  is  that  this  course  seems  the  simplest  along  which 
to  indicate  the  methods  themselves. 

351.    RATIO  SCHEMES  AND  COSINE  SCHEMES. 

•1.  Let  OXYZ,  0°X0Y°Z0  be  any  two  Cartesian  frames,  and  let  us  dis- 
tinguish all  symbols  relating  to  the  second  frame  by  the  affix  indicated ;  thus 

we  are  to  denote  by  T  the  sine  of  the  first  frame,  by  ̂°  the  component  symbol 

of  the  second  frame,  by  |  the  ray  OX,  and  by  yT,  ra°r  the  second  component 
of  a  vector  r  with  reference  to  the  first  frame  and  the  second  projection  of 

the  same  vector  with  reference  to  the  second  frame,  while  nno,  n\o  denote  the 

cosines  of  the  angles  between  the  2/-axis  of  the  second  frame  and  the  z-axes  of 

the  two  frames, — the  second  of  these  cosines  is  expressible  otherwise  as  cos  ft0, 
but  the  first  depends  on  the  relations  between  the  two  frames. 
N.  12 
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*2.  If  a  frame  is  used  for  the  identification  of  vectors  only,  the  position  of 
the  origin  is  irrelevant.  It  is  therefore  worth  while  to  consider  in  detail  the 
manner  of  describing  the  relations  between  the  directions  of  the  axes,  before 

discussing  questions  that  involve  the  origin. 

The  directions  of  f  °,  77°,  f °  with  respect  to  OX  YZ  may  be  given  either  by 
ratios  or  by  cosines,  the  complete  specification  being  expressed  in  a  scheme  or 
matrix  of  one  of  the  forms 

•23,  -24 

Xp 

while  a  similar  scheme  of  one  of  the  forms 

Of        f         2° 

•25,  -26 

•11 

•21 

•22 

X 

Y 

Z y°t 

& 

X 

Y 

Z 

m° 

m 

expresses  the  directions  of  axes  of  OXYZ  with  reference  to  0°X°Y'>ZI>.  In 
general  no  two  of  these  schemes  are  identical,  but  there  are  intimate  relations 
between  the  four  of  them. 

352.    EFFECTS  OF  A  CHANGE  OF  AXES  ON  THE  COMPONENTS 
AND  PROJECTIONS  OF  A  VECTOR. 

•1.  The  most  important  question,  and  perhaps  also  the  simplest  to  answer, 
concerns  the  relation  between  the  components  and  projections  of  a  vector  r 
relative  to  OXYZ  and  the  components  and  projections  of  the  same  vector 

relative  to  0°X°Y(>Z0.  To  abbreviate  the  formulae  that  occur  we  write 

%  =  (£'?,  O- 
•2.  By  the  definition  of  components,  r  is  the  sum  of  the  vector  xf  in  £,  the 

vector  yr  in  77,  and  the  vector  z,  in  £  and  to  obtain  a?T,  y°T,  z°r  we  have  only 
to  decompose  the  same  vector  into  vectors  in  f°,  77°,  £°;  supposing  the  elements 
of  the  ratio  scheme  T25  known,  we  can  express  a  unit  vector  in  £  as  the  sum 

of  #°f  ,  2/°f  ,  z°t  in  |°,  77°,  £°,  and  we  can  dissect  in  the  same  way  unit  vectors  in 

77,  5";  there  follows  then  the  set  of  formulae 

that  is,  #°r  =  Cr#°x,      #°r  =  Crfx,      Z°T  =  CTZ°X. 

The  constitution  of  the  formulae  is  perhaps  clearer  in  umbral  notation  than 

when  the  expressions  are  written  in  full. 
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If  it  is  the  ratio  scheme  1/23  that  is  supposed  known,  we  have  in  the  same 

and  because  this  set  of  equations  giving  arr,  yr,  zt  in  terms  of  a?r,  y°r,  z°r  is 

equivalent  to  the  set  '22  which  gives  #°r,  y°r,  z?T  explicitly  in  terms  of 
•>'r,  !/r,  zr,  the  set  of  coefficients  occurring  in  one  of  the  sets  of  equations  is  said 
to  be  the  reciprocal  of  the  set  of  coefficients  occurring  in  the  other  set  of 

equations,  and  the  scheme  composed  of  one  set  of  ratios  is  called  the  °  reciprocal 
of  the  scheme  composed  of  the  other  set. 

If  knowing  the  elements  of  the  scheme  1/23  we  wish  to  determine 

#°r>  y°r>  z°r  in  terms  of  acr,  yr,  zr,  we  may  reverse  the  set  of  equations  '23 
algebraically,  obtaining* 

'  #°r  :  y°r  '  z°r  •  1  =  [cr  ',  c,o  ;  c$  o]  :  [cf  o  ;  C,  ;  cf  o]  :  [cf  o  ;  c,o  ;  c,]  :  [cf  o  ;  c,o  ;  c^o]  . 

The  significance  of  '26  is  apparent  from  23'55  and  32'43:  £T  [cr  ;  c,,o  ;  c^o] 
and  £T  [cfo  ;  0,0  ;  c^o]  are  the  actual  volumes,  calculated  by  means  of  the  frame 

OXYZ,  of  two  tetrahedra  whose  volumes  have  the  ratio  of  #°r  to  unity. 

•3.  The  last  consideration  shews  immediately  that  if  it  is  the  cosine  scheme 
1/24  that  is  given,  then 

#°r  :  y°,  :  z\  :  1  =  [pr  ;p,0  ;^o]  :  [p?  ;  PT  ;  pfo]  :  [>fo  \p#  ;pv]  :  {p^p^pp], 

for  by  32*43  the  volumes  of  the  same  two  tetrahedra  are  expressible  also  as 

&T-1  [pr  \pn»  ;^0]  and  ̂ T-1  [p^  ;  p^  ;^.]. 

*  Not  all  text-books  give  the  simplest  method  of  effecting  such  a  reversal.  To  find  y°r, 
for  example,  it  is  sufficient  to  regard  the  equations  as  three  equations,  linear  and  not  homo- 

geneous, in  the  two  variables  ̂ °r,  y°r;  the  condition  of  coexistence  is  the  determinantal 
equation 

Of!  ̂ Vy"^  c<r>]=0> 
in  which  no  confusion  of  signs  is  possible.  Similarly  to  find  from  the  set  of  equations  '23 
the  value  in  terms  of  xr,  yr,  zr  of  a  given  linear  function  f^r+gy0r  +  h^r-L;  we  merely 
add  to  the  given  set  the  equation 

where  it  is  the  value  of  p  that  we  have  to  find  ;  eliminating  from  the  four  equations  the 

three  variables  x°r,  y°r,  z°r  we  have  the  equation 

p  +  k   f      g  h 

^IT       ̂ 'fO       ̂ T)0  *^/"0 

yx   y$>   y*p  y  ̂  
2j»               0>()                Z     n  2fQ 

which  gives  p  without  risk  of  error  in  the  form 

k      f      g      h 

y* 

zr 

=o, 

9* 

'23 

-25 

-26 

'31 

12—2 
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Just  as  '26  comes  from  the  reversal  of  '23,  so  '31  is  equivalent  to 

•32  lr  =  C\lxo,       mr  =  C0rmKo,       7?p  =  C°rry> 

and  these  formulae  can  in  fact  be  deduced  by  an  argument  parallel  to  that 

giving  -21:  r  being  decomposed  into  £°r,  »?0P,  i'°r  along  the  axes  of  0°X0Y°Z0, 
the  projections  of  r  and  its  parts  on  OY  for  example  are 

mr,     #°r?nfo,      f/V^V,      zPrmfo. 

Regarding  /,,  mr,  nr  as  projections  of  r,  we  may  calculate  them  from  the  frame 

0>X*Y°Z°  by  any  of  the  formulae  in  32'21;  thus  we  have 

•33  lt  =  ̂ VrC°*  =  C0r/>°*  =  p°rC^  =  ̂Op°rp0(. 

To  pass  from  components  in  one  frame  to  components  in  another  when  it  is 
a  cosine  scheme  that  is  given,  it  is  best  to  use  projections,  implicitly  if  not 

explicitly,  as  stepping  stones.  Thus  we  may  use  32'14  to  replace  '32  by 

•34  <@1Cr=C°rlx<>, 

or  we  may  take  from  '31 
•35  #°r  =  [< 

and  so  on,  where  <$  serves  as  an  umbra  for  (&,  ffi,  ̂ ),  that  is  to  say,  where 
flfo-  Gta, 

353.  RELATIONS  BETWEEN  THE  SCHEMES  OF  A  TRANSFORMATION. 

•1.    Since  no  restriction  has  been  placed  on  the  vector  r  whose  relations  to 
the  two  frames  have  been  considered,  the  formula 

which  is  part  of  2'33  can  be  nothing  but 
lr  =  c°Tlxo 

which  appears  in  2'32,  and  therefore 

l°t  =  1(0,     m°f  =  l^o,     n°t  =  ̂ o. 

These  relations  between  the  two  cosine  schemes  are  perfectly  straightforward, 

concealed  only  by  our  notation  ;  by  definition,  the  elements  of  the  first  column 

of  1'24  are  the  cosines  of  angles  between  OX  and  the  three  axes  of  the  second 
frame,  and  the  elements  of  the  first  row  of  1*26  are  these  same  cosines  : 

•13  The  two  cosine  schemes  connecting  two  Cartesian  frames  are  composed  of  the 
same  elements,  but  the  rows  of  each  scheme  are  the  columns  of  the  other. 

•2.  The  relation  between  the  two  ratio  schemes  is  not  as  elementary  as  that 
between  the  two  cosine  schemes.  Generally  speaking,  the  two  ratio  schemes 
have  no  elements  in  common. 

The  whole  theory  is  implicit  in  the  assertion  that  the  two  sets  of  equations 

2'22,  2-23,  regarded  as  connecting  the  two  sets  of  variables  (a-r,  yr,  zf\ 
(#°r>  y°r>  -2°r)>  are  algebraically  equivalent.  This  consideration  alone,  for  example, 
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shews  that  the  elements  of  one  ratio  scheme  can  be  deduced  from  those  of  the 

other  without  any  knowledge  of  the  angles  of  either  frame.  Explicit  results 

are  ready  to  hand,  for  we  need  only  compare  2'22  with  2'26  to  find  the  typical 
formulae 

.  ;  c,o  ;  c(o]  .  -22 
But  the  simplest  and  for  many  purposes  the  most  useful  relations  between 

elements  of  the  two  schemes  are  not  relations  expressing  elements  of  one 

scheme  in  terms  of  elements  of  the  other,  but  are  relations  involving  three 

elements  from  each  scheme;  if  in  the  equations  of  the  set  2'22  we  substitute 

for  XT,  yr,  zr  their  values  given  in  2'23  we  have 

-23 

+  z°r and  similar  expressions  for  y°r,  z°r,  and  since  afr,  y°r,  z°,  are  independent,  these 
are  only  the  identities 

x»r  =  x\,    y°r  =  y°r,    z\  =  z°r- 

in  the  same  way  substitution  from  2'22  in  2'23  gives  expressions  equivalent 
to  the  identities 

xf  =  xr,    yr  =  yr,    z*=z*', 
eighteen  distinct  relations  between  the  elements  of  the  ratio  schemes  can  be 
deduced,  but  they  are  all  comprised  in  the  statement  that 

If  each  element  of  any  one  row  of  one  of  the  mutually  reciprocal  ratio  schemes       -24 
relating  the  directions  of  the  axes  of  two  frames  is  multiplied  by  the  corresponding 

element  of  any  column  of  the  other  of  the  two  schemes,  and  the  three  products 

are  added,  the  result  is  unity  if  the  row  and  the  column  correspond  but  is  other- 
wise zero. 

We  can  express  the  results  of  '24  in  umbral  notation,  the  typical  set  of 

formulae  apparent  from  '23  being 

Ct«x\  =  I,     cnoX°x  =  Q,     C£oa;0x  =  0.  '25 

The  identities  implied  in  *24  involve  all  the  relations  between  the  elements 
of  the  two  ratio  schemes  which  are  independent  of  the  angles  of  the  frames  ; 

for  example,  the  three  identities 

cp>x°x  =  1,     Ci»y°x  =  0,     cpz°x  =  0  -26 

can  be  solved  as  simultaneous  equations  for  expressing  x?,  yp,  z&  in  terms  of 

the  elements  of  the  first  ratio  scheme,  and  the  three  identities  '25  as  simul- 

taneous equations  for  expressing  x°f,  a;0,,  a^-in  terms  of  elements  of  the  second 
ratio  scheme;  each  element  of  one  scheme  may  in  fact  be  found  in  this  way 

from  two  distinct  sets  of  equations,  but  the  two  solutions  give  expressions' 
which  are  identical  and  not  merely  equivalent. 
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•3.  That  '26  has  the  same  form  as  2'22  is  of  course  no  coincidence;  from 

one  point  of  view,  "26  merely  makes  for  one  special  vector  the  assertion  that 
2'22  makes  for  every  vector.  It  must  not  be  forgotten  that  the  elements  of 
ratio  schemes  and  cosine  schemes  are  actual  ratios  and  cosines  of  directions. 

For  this  reason,  for  example,  32'26,  32'22  can  be  applied  to  give 

(o  =  COS  tt°, 
and  for  this  reason  also  32'52  implies  that  the  determinant  of  each  cosine 
scheme  is  the  product  of  the  sines  of  the  two  frames,  and  that  the  determinant 

of  the  scheme  describing  the  direction  ratios  of  00X°Y°ZI)  with  reference  to 

354.   CHANGE  OF  AXES  IN  A  PLANE. 

•1.  Of  change  of  axes  in  two  dimensions  in  cases  which  have  parallels  in 
the  three-dimensional  problems  already  considered  we  say  nothing,  but  the 

description  of  directions  by  means  of  actual  angles,  as  in  31 '3,  presents  the 
question  in  a  simple  manner  peculiar  to  plane  geometry,  for  with  the  obvious 
notation  we  have  for  any  vector  r 

While  the  whole  theory  is  implicit  in  *11,  these  formulae  are  not  specially 
adapted  to  serve  us  here.  They  deserve  mention  rather  for  the  light  which 

they  throw  on  the  theory  of  moving  axes  in  a  plane,  which  is  beyond  the  scope 
of  this  volume. 

355.   CHANGE  OF  VECTOR  FRAMES. 

The  problem  of  changing  from  one  vector  frame  to  another  need  engage 
our  attention  only  for  a  short  space,  for  we  did  in  effect  transform  the  same 

problem  for  Cartesian  frames  into  a  special  case  of  the  present  one. 

•1.  The  relation  between  two  frames  xyz,  x°y°z0  is  supposed  defined  either 
by  one  of  the  schemes 

xyz  x°      y°      z° 

x°
~ 

•11, -12  7° 
z 

which  state  the  coefficients  of  the  elements  of  one  frame  in  the  other  frame, 

or  by  one  of  the  schemes 

xyz  x°      y°      z° 

x°
~ 

•13,  -14  -  y° 

z° 

XyO         flyO         Vy»  y 

Xj«          fj^ff          Vf,*  Z 
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which  give  polar  coefficients,  and  we  find  it  convenient  to  denote  the  first  two 

of  these  schemes  by  X  (F/f),  X  (f/F),  and  the  last  two  by  T  (f°/f  ),  T  (f/F),  where 
X,  T  are  suggested  by  ̂,  v. 

Since  each  element  of  a  polar  scheme  is  the  projected  product  of  the  vectors 

which  determine  its  position  in  the  scheme,  v°y  for  example  denoting  <^yz°, 
the  two  polar  schemes  T  (F/f),  T  (f/F)  are  formed  of  the  same  nine  elements, 

the  rows  of  one  scheme  being  the  columns  of  the  other;  we  describe  the 

relation  between  the  schemes  by  saying  that  each  is  obtained  by  transposing 
the  other,  and  we  write 

T  (F/f)  =  %  {T  (f/F)},     T  (f/F)  =  %  {T  (F/f)}.  '17 
The  relation  between  the  schemes  X(F/f),  X(f/F)  is  the  same  as  the 

relation  between  the  schemes  of  ratios  in  the  earlier  work:  the  equations 

defining  x°,  y°,  z°  in  terms  of  x,  y,  z  are  algebraically  equivalent  to  the  equa- 
tions defining  x,  y,  z  in  terms  of  x°,  y°,  z°,  and  we  say  that  each  of  the  schemes 

X  (F/f),  X  (f/F)  is  the  reciprocal  of  the  other,  writing 

X  (F/f)  =  </{X  (f/F)},     X  (f/F)  =  /{X  (F/f)}.  -19 

•2.  Given  the  relation  between  xyz  and  x°y°z°,  the  relation  between  either 

of  the  frames  xyz,  xyz  and  either  of  the  frames  x°y°z0,  x°y°z0  is  implicitly 
determined,  and  the  object  of  the  notation  of  the  last  paragraph  is  to  enable 
us  to  express  this  relation  briefly  in  the  three  cases.  The  fundamental  relation 

by  means  of  which  we  pass  from  a  frame  to  its  polar  is 

X(F/f)  =  T(F/f),  -21 

which  is  merely  a  version  of  41*43,  adapted  to  frames;  since  the  relation  of 

xyz  to  xyz  is  symmetrical,  '21  implies 

T(F/f)  =  X(F/f).  -22 

Combining  '22  and  *21  with  '19  and  '17,  we  have 

T  (F/f)  =  X  (F/f)  =  </{T  (f/F)}  =  j%  {T  (F/f)},  -23 

X  (F/f)  =  T  (F/f)  =  %  (X  (f/F)}  =  <%f/{X  (F/f)}.  -24 

It  will  be  observed  that  in  double  changes  of  the  special  kinds  that  occur 
here  the  order  of  transformation  does  not  matter:  it  makes  no  difference 

whether  we  interchange  rows  and  columns  before  or  after  constructing  the 

reciprocal  scheme;  symbolically, 

-25 

•3.  To  evaluate  the  magnitudes  connected  with  a  frame  x^z0  by  means  of 
a  frame  xyz  to  which  x°y0z0  is  related  we  have  only  to  bear  in  mind  intrinsic 

interpretations  of  these  magnitudes.  Because  J**  is  the  spatial  product 
0,  we  have  from  43'21 

;  Xy.  ;  XZD]  =  J"-1  [>xo  ;  ty  ;  v*>],  -31 
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and  because  L°,  P°  are  the  projected  products  £  (x0)2,  £  y°z°,  we  have  from  42'23 
•32 

•33       and  from  42-34 

To  write  down  the  polar  magnitudes  of  x°y°z°  we  appeal  to  -24,  for  the 
relation 

is  equivalent  to  the  set  of  relations 

•34          x°  =  f°xx  +  f  °y  y  +  £°z  z,     y  °  =  7?0xx  +  ̂fly  y  +  17°Z  z,     z°  =  ̂ °x 

•35       and  implies  L°  =  S  Cl°f)2>     ̂ °  —  B^f^f, 

•36       and  so  on,  and  also  ,7°  =  J[f°f ;  770f ;  f°f], 
which  being  identical  with 

is  equivalent  to  J  =  J°  [^°x  ;  x°y  ;  %°z], 

and  restates  a  part  of  "31,  reversing  the  roles  of  the  two  frames.  The  resem- 
blance between  '35  and  '32  is  deceptive;  it  is  somewhat  of  an  accident  that  we 

can  denote  with  so  little  trouble  functions  connected  with  the  rows  of  the 

scheme  $f{X(f/f°)},  and  for  the  rows  of  the  scheme  ̂ {T(t/f°)},  which  would 

occur  in  formulae  analogous  to  '33,  we  have  no  notation  ready. 

*4.   The  formulae  connecting  the  coefficients  of  any  vector  r  in  xyz  with 
the  coefficients  of  the  same  vector  in  x°y°z0  depend  simply  on  the  identity 

•41  X0rf°  =  ;>Crf, 

or  on  the  interpretation  of  the  coefficients  as  ratios  of  spatial  products.  Since 
polar  coefficients  are  coefficients  in  a  polar  frame,  a  single  set  of  formulae 

combines  with  the  transformations  of  '2  to  give  the  results  in  every  case 
required,  but  we  can  deal  directly  with  polar  coefficients  by  treating  them  as 

projected  products.  To  read  f°r>  77°,,  £°r  from  '41  as  coefficients  of  x°,  y°,  z°,  we 
must  be  able  to  express  each  of  the  vectors  x,  y,  z  in  terms  of  the  vectors 

x°,  y°,  z°,  that  is  to  say,  we  must  know  the  scheme  X  (f/f);  we  have  then 

•42  x  =  %"xfo,    y  =  x°yf°,     z  =  %0zf<>, 

and  so  from  '41  X°'fo  =  £rX°xf°  +  VrX0^  +  kx°zf° 

•43  The  coefficients  of  any  vector  in  the  frame  x°y°z0  are  given  in  terms  of  the 
coefficients  of  the  same  vector  in  the  frame  xyz  by  the  formulae 

where  the  coefficients  in  each  expression  are  the  elements  of  the  corresponding 

column  of  the  scheme  X  (f/f°). 

•44  In  X°r=i'r%xP,      At°r:=^^yo,      "°r  =  VT%T!> 

we  have  merely  versions  of  42'13,  but  we  can  exhibit  '44  as  a  deduction  from 
•43  by  observing  that  if  X°r,  /u,°r,  *>°T  are  to  be  expressed  in  terms  of  Xr,  /zr,  vr, 
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the  coefficients  come  from  the  columns  of  X  (?/?"),  and  therefore  by  '24  from 

the  rows  of  X  (f°/f).    Reference  to  42'12  or  to  the  identity 

gives  US  X°r  =  Xr  v»  ,     /*°r  =  XT  fy°  »      "°r  =  X*  v*"  >  '45 
which  can  be  written  also  as 

There  remains  the  expression  of  £°r,  77°,,  £°r  in  terms  of  Xr,  /*,,  i/r,  involving 
the  elements  of  the  scheme  X  (F/f°),  which  is  ,/(T  (f°/f)};  we  have 

ft  =  l>r  ;  A;  "°f]/l>0f  ;  A;  *],  <47 
or  in  another  form          £°r  =  [i>r  ;  t»yo  ;  Uzo]/[uxo  ;  t»yo  ;  vz<i],  '48 
and  so  on,  a  formula  that  can  be  deduced  either  from  the  nature  of  the  scheme 

c/{T(f°/f)j,  or  by  an  algebraical  reversal  of  '46  or  '45  followed  by  an  inter- 

change of  the  two  frames  xyz,  x°y°z°,  or  from  43'21,  which  asserts  that 

[vr  ;  fyo  ;  fzo]  has  the  value  </^ry°z°  ;  reference  to  43'21  gives  in  the  same  way 

£°r  =  [X*  ;  xr>  ;  x*>]/[x*>  ;  XT>  ;  **>]>  -49 
for  direct  use  if  X  (f°/f  )  is  known. 

356.   CHANGE  OF  ORIGIN  ;  EFFECTS  OF  A  CHANGE  ON  THE 
VECTORS  USED  TO  SPECIFY  POINTS  AND  ROTORS. 

•1.  To  describe  the  relation  of  one  Cartesian  frame  to  another  or  of  one 
attached  vector  frame  to  another  requires,  in  addition  to  a  scheme  relating  the 
unattached  frames  in  the  one  case  or  the  directions  of  the  axes  in  the  other 

case,  only  a  specification  of  the  vector  of  the  step  from  one  origin  to  the  other; 

this  vector  may  be  given  by  its  components  or  its  projections  in  either  of  the 
Cartesian  frames,  or  by  its  coefficients  or  its  polar  coefficients  in  either  of  the 
vector  frames.  As  far  as  the  frames  are  used  only  for  the  analysis  of  vectors, 

no  change  is  produced  by  the  attachment. 

•2.  To  see  the  effect  of  a  change  of  axes  on  the  specification  of  directions, 

points,  and  other  concepts  with  which  we  have  to  deal,  we  have  only  to  con- 
sider the  intrinsic  nature  of  the  numbers  used  in  the  specification. 

The  ratios  and  cosines  of  a  direction  are  the  components  and  projections  of 

a  vector  which  in  itself  is  independent  of  the  frame  of  reference,  and  the  for- 
mulae of  sections  2  and  5  of  this  chapter  apply  to  this  as  to  any  other  vector. 

The  coordinates  and  projections  of  a  point  are  the  components  and  projections 
of  a  vector,  but  this  vector  depends  on  the  origin  of  the  frame.  Formulae 

already  given  in  this  chapter  connect  the  description  of  the  vector  of  the  step  , 

OnR  by  means  of  the  frame  00X°Y°Z0  or  O^y*^0  with  the  description  of  this 
same  vector  by  means  of  the  frame  OXYZ  or  Oxyz.  But  in  the  frames  OXYZ 

and  Oxyz  it  is  the  vector  of  the  step  OR,  not  the  vector  of  the  step  0°R,  that 
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is  fundamental,  and  if  we  wish  to  pass  from  coordinates  or  projections  of  R 

relative  to  one  frame  to  coordinates  or  projections  relative  to  the  other  frame 

we  must  remember  that  the  vector  of  OR  is  the  sum  of  the  vector  of  0°R  and 

the  vector  of  00°. 
A  plane  is  described  by  means  of  a  direction  and  a  distance;  the  relations 

between  the  elements  describing  the  direction  with  reference  to  one  frame 

and  the  elements  describing  the  same  direction  by  means  of  another  frame 
are  such  as  we  have  been  considering;  the  relation  between  the  distances  of 

0  and  0°  from  the  plane  is  given  in  terms  of  the  position  of  0°  relative  to 

OXYZ  or  of  0  relative  to  0°X0Y°Z0  by  an  application  of  34'1 2. 
The  vector  of  a  rotor  is  intrinsic  to  the  rotor,  and  calls  for  no  discussion ; 

the  momental  components  and  momental  projections  of  a  rotor  with  respect 
to  a  frame  are  derived  from  the  momental  vector  of  the  rotor  about  the  origin 

of  the  frame ;  the  formulae  that  connect  the  components  and  projections  of 
the  momental  vector  of  a  rotor  about  a  point  Q  with  respect  to  one  frame 

with  the  components  and  projections  of  the  momental  vector  about  the  same 

point  Q  with  respect  to  another  frame  are  in  no  particular  affected  by  the 
nature  of  the  vector,  but  the  application  of  these  formulae  to  the  momental 

components  and  projections  of  the  rotor  with  respect  to  the  frame  0°X0Y°Z0 
or  0°x0y°z0  gives  the  components  and  projections  with  respect  to  OXYZ  or 
Oxyz  of  the  momental  vector  of  the  rotor  about  the  point  0° ;  the  momental 
components  and  projections  of  the  rotor  with  respect  to  OXYZ  and  Oxyz 

depend  on  the  momental  vector  about  0,  and  an  application  of  some  propo- 

sition of  the  type  of  35'31  is  necessary  if  they  are  to  be  derived  from  the 
momental  vector  about  0°.  There  is  a  method  of  deriving  momental  com- 

ponents and  projections  differing  slightly  from  the  method  just  indicated ; 
momental  projections  with  respect  to  any  Cartesian  frame  are  moments  of  a 

rotor  about  the  axes  of  the  frame,  and  momental  projections  with  respect  to 

any  attached  vector  frame  are  actual  momental  products ;  playing  this  part, 
momental  projections  relative  to  one  frame  can  be  calculated  directly  by 

means  of  35'51  from  specifications  relative  to  another  frame,  and  the  passage 
from  momental  projections  to  momental  components  can  then  be  made  if 
necessary  by  means  of  the  usual  formulae  connecting  components  in  a  frame 
with  projections  in  the  same  frame. 

What  has  been  said  of  a  single  rotor  applies,  mutatis  mutandis,  to  a  set  of 
rotors  and  to  a  ray.  The  vector  of  a  set  of  rotors  is  independent  of  the  origin, 

as  is  the  unit  vector  by  which  the  direction  of  a  ray  is  subjected  to  analysis. 

But  the  vector  to  which  the  momental  components  and  projections  belong  is 
the  momental  vector  about  the  origin,  and  suffers  an  intrinsic  change,  given 

by  241*39  or  235'24,  if  the  origin  moves  from  0°  to  0. 
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410.   Introduction.     411.   The  fundamental  properties  of  a  three-dimensional  algebraic 
vector  field  ;  triplets  and  inner  products.    412.  Projected  products  and  fundamental  magni- 
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isotropic  veclines  and  vecplanes. 

410.  INTRODUCTION. 

The  formulae  of  Chapter  III  4  and  article  355  suggest  the  means  of  con- 
structing an  algebraic  space  whose  properties  depend  only  on  those  of  real 

numbers.  One  outcome  of  this  construction  is  to  prove  that  the  properties  of 

geometrical  space  which  are  reproduced  in  algebraic  space  are  mutually  con- 
sistent— in  other  words,  that  in  the  assumptions  of  Euclidean  geometry  there 

is  no  latent  contradiction.  Were  this  its  whole  effect,  the  formation  of  the 
algebraic  space  corresponding  to  the  space  of  geometry  would  be  the  concern 
only  of  those  philosophers  who  investigate  the  logical  foundations  of  mathe- 

matics. But  there  are  developments  of  another  kind.  A  construction  with 
real  numbers  is  always  a  challenge  to  perform  a  corresponding  construction 
with  complex  numbers,  and  there  is  in  fact  no  stage  in  the  construction  of 
algebraic  space  at  which  a  hypothesis  as  to  the  nature  of  the  numbers  used  is 

necessary:  it  is  no  harder*  to  build  an  algebraic  space  that  is  complex  than 
to  build  one  that  is  real.  Complex  algebraic  space  as  a  whole  does  not  in  any 
sense  correspond  to  the  space  with  which  we  have  been  dealing  hitherto,  but 
just  as  the  algebra  of  complex  numbers  is  more  uniform  than  the  algebra  of 
real  numbers  and  gives  invaluable  help  in  the  study  of  theorems  relating  to 
real  numbers  alone,  so  the  space  in  which  coordinates  are  complex  is  the  space 
in  which  analysis  can  work  most  freely,  and  attracts  mathematicians  both  for 
this  reason  and  because  many  of  its  features  imply  properties  of  real  algebraic 

*  And  of  course  no  easier:  to  'let'  the  coordinates  be  complex  instead  of  real,  while 
the  axes  are  still  vaguely  supposed  to  be  Cartesian,  is  an  absurdity  the  acceptance  of  which 

should  have  disposed  long  ago  of  the  claim  that  mathematics  is  a  training  in  accuracy  of 
thought,  and  yet  writers  as  scrupulous  as  possible  to  face  all  analytical  difficulties  seem  to 
admit  complex  points  in  this  very  way. 

Hamilton's  bi vector,  regarded  as  a  pair  of  vectors  (just  as  a  complex  number  is  a  pair  of 
real  numbers),  has  no  logical  flaw,  and  there  is  a  corresponding  complex  space  of  which  the 
element  is  a  pair  of  ordinary  points,  but  the  direct  contemplation  of  the  bivector  and  the 

point-pair  seems  to  me  to  be  a  hindrance  rather  than  a  help  in  the  technical  task  of  framing 
definitions  and  constructions  by  which  the  language  of  ordinary  geometry  acquires  useful 
significance  in  complex  space. 
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space  which  can  be  transferred  to  the  space  of  ordinary  geometry.  The  services 

of  complex  vectors  and  complex  frames  in  the  study  of  Euclidean  space  alone 
render  some  account  of  complex  space  a  natural  part  of  our  work.  Difficulties 

arise  because,  whereas  in  dealing  with  ordinary  space  we  have  accepted  position 
and  direction  as  undefined  and  avoided  the  explicit  recognition  that  absolute 

position  and  absolute  direction  are  indeterminable  if  not  meaningless,  in  con- 

structing algebraic  space  we  are  unable  to  shirk  issues  by  appealing  to  pre- 
conceptions that  it  is  not  our  business  to  criticise. 

411.    THE  FUNDAMENTAL  PROPERTIES  OF  A  THREE-DIMENSIONAL 

ALGEBRAIC  VECTOR  FIELD ;   TRIPLETS  AND  INNER  PRODUCTS. 

•1.   The  propositions  of  geometry  depend  not  at  all  on  any  hypothesis  as  to 
the  nature  of  points  and  vectors  themselves,  but  on  the  relations  which  are 

assumed  to  hold  between  vectors  and  vectors  and  between  vectors  and  points. 

The  relations  which  are  suggested  by  Euclidean  geometry  and  reproduced 
in  algebraic  space  of  three  dimensions  are  as  follows : 

•11  °Any  three  vectors  subject  only  to  the  condition  expressed  by  saying  that 
they  are  not  coplanar  or  that  their  spatial  product  is  not  zero  can  form  a 
vector  frame ; 

•12  °If  x,  y,  z  form  a  frame,  an  arbitrary  vector  r  can  be  expressed  symbolically 
in  one  and  only  one  way  in  the  form  £rX  +  ?7ry+  £rZ,  written  briefly  as  %rf, 

where  %=a^o>  f-cxy.o, 
and  £r,  r)r,  £r  are  numbers;  no  two  vectors  have  the  same  set  of  coefficients 

in  a  given  frame ; 

•13  ° There  is  a  vector  (%r  +  %g)  f,  that  is,  (£r  +  £•)  x  +  (^  +  77.)  y  +  (£.  +  f.)  z, 
and  this  vector  depends  only  on  the  vectors  r,  a,  of  which  it  is  called  the  sum, 
not  on  the  vectors  x,  y,  z  ; 

•14  °  Associated  with  any  two  vectors  r,  a  there  is  a  number  £ta,  their  projected 
product,  which  is  independent  of  the  vectors  of  reference  x,  y,  z,  and  the 
function  c^rs  is  linear  and  homogeneous  in  each  of  the  sets  of  coefficients 

(£r>  '/r,  £r),  (£B>  ̂ s,  £•)  and  is  a  symmetric  function  of  the  two  vectors; 

•15  °The  difference  of  position  between  any  two  points  P,  Q  is  determined  by, 
and  may  in  fact  be  identified  with,  a  definite  vector,  the  vector  of  the  step  PQ  ; 
if  this  vector  and  the  position  of  one  of  the  points  are  known,  the  position  of 

the  other  point  is  fixed ; 

•16  °If  R,  S,  T  are  any  three  points,  the  sum  of  the  vectors  of  the  steps  RS,  ST 
is  the  vector  of  the  step  RT. 

In  the  geometry  of  ordinary  space,  two  other  conditions  are  fulfilled  : 

•17  ° Projected  products,  and  the  coefficients  of  vectors  in  vector  frames,  are 
real  numbers ; 

•18  °The  projected  square  «^r2  is  essentially  positive  unless  the  three  coefficients 
£r,  ̂r,  £r  are  simultaneously  zero. 
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To  say  that  if  the  former  of  these  additional  restrictions  is  removed  there 
is  no  object  in  retaining  any  restriction  similar  to  the  latter,  is  to  understate 
the  case;  it  is  in  no  slight  degree  for  the  sake  of  analytical  processes  requiring 
freedom  from  the  latter  that  it  is  worth  while  to  break  away  from  the  former. 
We  proceed  therefore  to  investigate  consequences  of  the  first  six  assumptions, 
without  any  suggestion  as  to  what  points  and  vectors  are  supposed  to  be :  to 

us  a  field  of  vectors  or  &°  vecspace*  is  to  mean  primarily  a  class  for  whose  -19 
members  the  first  four  assumptions  are  true, — with  some  interpretation  of  the 
plus  signs  in  the  identity  r  =  |rx  +  rjry  +  £Pz  that  allows  the  symbols  to  be 
manipulated  exactly  as  in  algebra, — and  a  space  is  to  be  a  class  with  whose 
members  some  field  of  vectors  is  associated  in  the  manner  prescribed  by  the 
fifth  and  sixth  conditions.  For  convenience  we  use  always  definite  words  that 
are  applicable,  strictly  speaking,  only  in  the  study  of  a  given  vector  field  and 
a  given  space,  but  in  this  we  are  merely  adopting  a  custom  which  is  common, 
though  sometimes  concealed,  in  every  branch  of  geometry  as  well  as  in  other 
parts  of  mathematics. 

Geometry  is  the  study  of  relations  between  points,  but  since  we  propose 
to  derive  the  properties  of  space  from  the  relation  of  points  to  vectors,  we 
find  it  convenient  to  discuss  relations  between  vectors  and  the  problems  of 
measurement  in  a  vecspace  before  giving  any  attention  to  points. 

•2.  Something  must  be  said  of  the  numbers  f  that  are  to  serve  as  coefficients 
or  as  projected  products.  In  the  conditions  already  made,  it  is  implicitly 
assumed  that  these  numbers  compose  a  single  group  such  that  the  sum  and 
the  product  of  any  two  of  them  belong  to  this  group.  Doubtless  some  progress 
could  be  made  without  further  assumptions,  but  to  work  rapidly  we  not  only 
subtract  and  divide  but  extract  square  roots  and  introduce  angles  by  defining 

numbers  to  serve  as  sines  and  cosines.  In  fact  the  only  number-groups  that 
we  really  contemplate  are  the  group  formed  of  all  the  real  numbers  and  the 
group  formed  of  all  the  complex  numbers.  The  real  group  provides  a  real 
algebraic  vecspace  and  real  algebraic  space,  while  the  complex  group  gives  a 
complex  vector  field  and  complex  space.  Our  object  is  to  suggest  definitions 
and  constructions  which,  while  they  enable  the  language  of  ordinary  geometry 
to  be  transferred  to  the  geometry  of  real  algebraic  space,  are  significant  when 
the  space  is  complex. 

•3.    By  assuming  the  possibility  of  subtraction,  we  assume  implicitly  that 
there  is  a  °  zero  vector,  definable  as  a  vector  which  can  be  added  to  any  vector       -31 
without  producing  any  effect;  °if  0  denotes  a  zero  vector,  r  +  0  is  identical        -32 

*  The  need  for  this  word  and  the  cognate  vecplane  and  vecline,  all  of  which  are  used  in 
my  fourth  Dimension  (1921),  seems  imperative  if  vectors  are  discussed  before  points. 

t  These  are  supposed  to  be  of  one  of  the  kinds  with  which  elementary  algebra  is 
familiar :  we  are  not  concerned  to  tabulate  such  properties  as  that  subtraction  is  possible 
and  multiplication  commutative. 
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with  r.    Thus  (f,  +  |0)  x  +  0?r  +  *?o)  7  +  (&•  +  to)  z  as  well  as  frx  +  77,7  +  rrz 
is  an  expression  for  r,  and  therefore 

'33  £r  +  £o=£r,      »7r  +  *?0  =  *7r,      £r  +  £o  =  (*• 

•34        Hence  in  any  field  "there  is  only  one  zero  vector,  and  that  is  a  vector  whose 
•35        coefficients  in  every  frame  are  all  zero*.  °If  the  coefficients  in  any  one  frame 

are  zero,  the  vector  satisfies  '33  and  therefore  '32,  and  is  therefore  the  zero 
vector. 

•4.  One  doubt  may  be  dispelled  at  once  :  to  shew  that  we  are  not  about  to 
waste  time  by  studying  self-contradictory  concepts,  we  can  give  an  example 
in  which  the  properties  ascribed  to  vectors  and  points  are  certainly  to  be  found. 

Let  an  ordered  set  of  three  numbers  be  called  a  triplet,  and  let  the  number 

fp  +  gq  +  hr  be  called  the  inner  product  of  the  triplets  (f,  g,  h),  (p,  q,  r). 

Also  let  K  (I,  m,  n),  where  K  is  any  number  of  the  same  kind  as  the  elements 

of  the  triplets,  mean  the  triplet  (icl,  icm,  /en),  and  let  (/,  g,  h)  +  (p,  q,  r)  mean 

(f+p,g  +  q,h  +  r).  Then  the  arbitrary  triplet  (as,  y,  z)  is  expressible  in  terms 
of  three  given  triplets  (/,  g,  h),  (I,  m,  n),  (p,  q,  r)  in  the  form 

£  (/,  9,  h}  +  V  (I,  m,n)+£  (p,  q,  r) 

if  and  only  if  £,  77,  £  can  be  found  simultaneously  to  satisfy  the  three  equations 

q  =  y,          +  ijn  +   r  =  z: 
any  three  triplets  whose  determinant  does  not  vanish  can  serve  as  a  frame. 

If  the  two  triplets  (as,  y,  z),  (a,  b,  c)  are  expressed  in  the  forms 

£  (/,  ff,  A)  +  17  (I,  m,  n)  +  £  (p,  q,  r),     a  (/,  g,h)  +  @  (I,  m,  n)  +  y  (p,  q,  r), 

their  inner  product  xa  +  yb  +  zc  is 

+  (|A  +  rjn  -f  £r)  (ah  +  /3n  +  yr). 

As  a  function  of  £,  77,  £,  a,  J3,  y  this  expression  has  coefficients  depending  on 

the  three  triplets  (/,  g,  h),  (I,  m,  n),  (p,  q,  r),  but  the  value  of  the  expression 
for  a  given  pair  of  triplets  (x,  y,  z),  (a,  b,  c)  does  not  depend  on  the  triplets  of 
reference,  the  simple  explanation  being  that  a  change  in  the  triplets  of  reference 
affects  the  values  of  f,  77,  £,  a,  /3,  7  no  less  than  the  values  of  the  six  numbers 

lp+mq  +  nr,    pf+  qg  -f  rh,    fl  +  gin  4-  hn, 
which  are  the  coefficients  of 

*  The  meaning  of  zero  in  this  assertion  varies  with  the  kind  of  numbers  in  use,  though 

the  same  symbol  is  employed  in  every  case.- 
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in  the  expression  for  the  inner  product ;  and  it  is  to  be  observed  that  as  a 

function  of  the  sets  of  variables  (£,  77,  £),  (a,  /9,  7),  the  inner  product  xa  +  yb  +  zc 
is  homogeneous,  bilinear,  and  symmetrical. 

Thus  triplets  with  their  inner  products  possess  relations  exactly  of  the  kind 

postulated  of  vectors  with  their  projected  products.  Further,  the  triplet  (x,  y,  z) 
is  obtainable  from  the  triplet  (a,  6,  c)  by  the  addition  of  the  triplet 

(x-a,y-b,z-  c), 

and  for  any  third  triplet  (I,  m,  n), 

(I  —  a,  m  —  b,n  —  c)  +  (x  —  l>y  —  m>z  —  n)  =  (x  —  a,y  —  b,z  —  c). 

Hence  if  triplets  can  serve  as  vectors,  they  can  serve  equally  well  as  points. 

And  all  that  is  necessary  if  a  complex  vector-field  and  complex  space  are 
required  is  to  use  complex  numbers  as  the  elements  of  the  triplets. 

Here  it  must  be  said  that  there  are  arguments  against  the  obvious  and  easy 

course  of  defining  vectors  and  points  as  triplets  and  reducing  analytical  geometry 
to  a  branch  of  the  calculus  of  extension.  Comparison  with  ordinary  geometry 
is  sufficient  to  arouse  discontent  with  this  method :  a  proposal  to  identify  a 

point  with  its  set  of  coordinates  in  some  particular  frame  could  emanate  only 
from  a  logician  in  difficulties  or  a  teacher  in  a  hurry,  and  the  logician  at  any 
rate  would  have  no  reason  to  choose  a  trirectangular  frame.  But  discontent 

is  no  argument;  the  course  taken  by  a  puzzled  logician  might  be  logically 
necessary,  and  it  is  for  us  to  shew  that  in  this  case  the  plan  apparently  simple 
is  really  both  unnecessary  and  undesirable. 

To  suppose  it  necessary  to  define  vectors  otherwise  than  by  their  mutual 
relations  is  to  mistake  the  nature  of  mathematics.  The  normal  form  of  a 

mathematical  theorem  is  an  assertion  that  if  certain  relations  hold  then  other 

relations  also  hold.  What  the  concepts  are  between  which  the  relations  hold 

is  always*  a  matter  of  indifference;  to  find  that  in  a  particular  instance  the 
relations  do  hold  is  important  if  the  instance  is  so  interesting  in  itself  that  it 

is  desirable  to  know  what  general  theories  are  applicable  in  its  study,  and  may 
be  of  service  if  no  other  proof  is  available  that  the  relations  are  mutually 

compatible,  but  to  present  the  consequences  of  a  set  of  relations  as  a  theory 
of  one  particular  set  of  concepts  between  which  the  relations  hold  is  a  double 

error,  apt  on  the  one  hand  to  obscure  the  effects  of  the  relations  by  modifica- 

tions due  only  to  the  nature  of  the  subject-matter,  and  on  the  other  hand  to 
cause  ambiguities  of  language  if  not  of  thought  if  later  the  same  relations  are 
recognised  between  concepts  of  a  different  kind. 

It  is  precisely  when  regarded  as  a  deduction  from  relations  of  a  prescribed 
form  without  any  assumption  as  to  what  a  vector  is,  that  the  theory  of  vectors 
has  its  purest  and  most  adaptable  form. 

*  Compare  Kussell  (Mysticism  and  Logic,  p.  75,  1917 ;  reprinted  from  International 

Monthly,  1901) :  "Mathematics  may  be  defined  as  the  subject  in  which  we  never  know  what 
we  are  talking  about,  nor  whether  what  we  are  saying  is  true." 
N.  13 
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Even  if  attention  is  concentrated  on  the  relations,  at  first  sight  the  inner 
product  seems  only  a  special  case  of  a  projected  product  and  it  can  not  be 
taken  for  granted  that  all  relations  between  triplets  imply  relations  of  exactly 
the  same  form  between  vectors  of  every  kind.  If  it  is  in  fact  true  that  in  every 
class  that  we  are  prepared  to  call  a  field  of  vectors  there  must  be  a  frame  such 
that  the  projected  product  of  any  two  vectors  is  the  inner  product  of  their  sets 
of  coefficients  in  this  frame,  not  only  is  this  a  matter  that  requires  proof,  but 
the  proof  must  be  based  on  a  study  of  the  general  relation,  and  until  the  proof 
is  forthcoming  it  remains  an  open  question  whether  the  assumption  that  the 
projected  product  has  the  form  of  an  inner  product  is  not  an  implicit  limitation 
on  the  vecspace  to  be  studied. 

To  produce  a  last  argument,  we  can  say  that  a  treatment  that  defines  vectors 
as  triplets  can  hardly  avoid  defining  points  in  the  same  way.  But  if  no  dis- 

tinction can  be  drawn  between  vectors  and  points,  it  becomes  almost  impossible 
to  reproduce  the  language  of  elementary  geometry,  and  premature  simplicity 
exacts  as  usual  a  heavy  toll :  for  example,  it  is  necessary  to  say  that  any  three 
triplets  are  punctually  coplanar,  but  that  the  triplets  (/,  g,  h),  (I,  m,  ri),  (p,  q,  r) 
are  vectorially  coplanar  only  if 

/    9     h    =  0, I     m     n 

p     q      r 
and  that  the  four  triplets  (/,  g,  h),  (I,  m,  ri),  (p,  q,  r),  (a,  y,  z)  are  punctually 

coplanar  if 

/>  9,  h,  1 
/,  m,  n,  1 

p,  q,  r,  1 
x,  y,  z,  1 

=  0. 

412.   PROJECTED  PRODUCTS  AND  FUNDAMENTAL  MAGNITUDES; 
SPATIAL  PRODUCTS  AND  SPATIAL  DIRECTIONS;  PREPARED  VECSPACE; 

THE  POLAR  OF  A  FRAME. 

*1.    From  the  assumption  as  to  its  character,  the  projected  product 
necessarily  given  by  a  formula  that  can  be  written 

£  n  =  L 

s •n 

•12       or  briefly  £TB  =  $%r%«> 

where  the  six  coefficients  L,  M,  N,  P,  Q,  R  are  independent  of  r  and  s  and 

have  therefore  the  values  of  the  six  particular  projected  products  /x2, 
£  z2,  £  yz,  £  zx,  S  xy.   It  is  convenient  to  have  symbols  for  the  three  pro- 
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jected  products  c^xr,  c^yr,  c^zr,  which  are  given  in  terms  of  the  fundamental 

magnitudes  L,  M,  N,  P,  Q,  R  and  of  fr,  r)r,  &  by  -11,  and  we  write 

Ar  =  c?xr=S'xr,    f*  =  £yr  =  S*xr,    vr  =  Jzr  =  S*Xt,  -14 

V  =  (^\,  /JL,  V*).  '15 

Then  identically  £  rs  =  i/r^B  =  %rf«>  "16 

and  in  particular  <^r2  =  uP%r.  -17 

It  is  to  be  observed  that  no  additional  hypothesis  is  required  to  secure  the 
important  identity 

-is 

*2.  For  ordinary  space,  spatial  direction  is  accepted  from  experience,  and 
spatial  products  are  defined  without  reference  to  projected  products  or  to  the 
decomposition  of  vectors.  We  have  now  to  shew  that  we  can  introduce  spatial 

directions  and  spatial  products  into  the  theory  of  algebraic  space  without 
additional  indefinables,  in  such  a  way  as  to  reproduce  the  algebraic  relations 

that  hold  between  spatial  products  and  projected  products  in  ordinary  space. 

The  corresponding  questions  for  vector  products  and  areal  products  are  con- 
sidered in  due  course. 

If  x,  y,  z  are  themselves  given  in  terms  of  three  vectors  x°,  y°,  z°  by 
expressions 

X  =  %°xf°,      y  =  %°yf°»       Z  =  X°zf°,  -21 

then  r  =  frx  +  r)ry  +  £rz  =  Xrf  f  x°  +  %r^°f  y°  +  %r  ?t  z°; 

hence  x°,  y°,  z°  form  a  frame,  and  the  coefficients  of  r  in  this  frame  are  given  by 

fr  =  X»ff.      *?°r  =  Xr>?0f,      ?*  =  X'?f-  '22 

Since  the  vectors  x,  y,  z  as  well  as  the  vectors  x°,  y°,  z°  compose  a  frame,  an 

arbitrary  set  of  values  of  f°r>  ̂ V  £°r  must  lead  to  a  corresponding  set  of  values 
of  £r>  VT,  £r  which  is  unique,  and  therefore  the  determinant  of  the  set  of 

equations  '22,  regarded  as  equations  to  determine  £P,  r)r,  £P  in  terms  of 
IrV  ̂ °P>  £°r>  must  not  be  zero;  this  determinant  is  expressible  as  [[x°f]]. 

From  '22  and  the  rule  for  forming  the  product  of  two  determinants,  it  follows 
that  if  r,  s,  t  are  any  three  vectors  and  p  denotes  (^r,  s,  t),  then 

[[%°p]]  =  [[%p]][[%°f]];  -23 
thus  [[^V]]  is  the  ratio  of  a  function  independent  of  x,  y,  z  to  a  function  in- 

dependent of  x°,  y°,  z°,  or  since  it  depends  on  nothing  but  these  six  vectors, 

°is  the  ratio  of  a  number  depending  only  on  the  frame  x°y°z0  to  a  number        -24 
depending  only  on  the  frame  xyz. 

The  last  conclusion  is  easily  confirmed.  If  [[8]]  denotes  the  value  of  the 
determinant 

L     R     Q 

R    M    P 

Q    P    N 
13—2 
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which  may  otherwise  be  denoted  by  [[^fT]],  '14  gives 
•25 

and  -16  gives 
hence  [[£]]  =  [[#]]  [[&  ]?, 

•28        °and  [[x°f]]  is  the  ratio  of  a  square  root  of  [[$]]  to  a  square  root  of  [[S0]]. 

*3.  Let  us  describe  a  set  of  three  vectors  (r,  8,  t)  associated  with  a  particular 

square  root  p  of  [[=^pp]]  as  a  directed  triplet*  of  spatial  product  p,  and  let  us 

say  that  the  directed  triplet  in  which  (r',  a',  t')  is  associated  with  p  is 
spatially  codirectional  with  the  directed  triplet  in  which  (r",  a",  t")  is  associated 
with  p"  if  when  the  vectors  are  referred  to  a  frame  xyz 

•31  /[[XP'<]]=/'[[XP<]]. 

From  -23  it  follows  that  if  two  directed  triplets  are  spatially  codirectional 
with  a  third  triplet  whose  spatial  product  is  not  zero  they  are  spatially  co- 

directional with  each  other.  Hence  directed  triplets  fall  naturally  into  two 

classes  such  that  any  two  members  of  the  same  class  are  spatially  codirectional. 

If  (r,  s,  t)  associated  with  p  is  a  member  of  one  class,  (r,  a,  t)  associated  with 

—  p  is  a  member  of  the  other  class;  any  directed  triplet  of  spatial  product 

•32        zero  belongs  to  both  classes.    The  two  classes  are  called  the  two  "spatial  direc- 
tions, and  if  (r,  8,  t)  associated  with  p  is  a  member  of  one  of  these  classes,  p 

•33        is  called  the  °  spatial  product  of  rst  in  this  direction.   There  is  no  difference  of 
character  between  the  two  spatial  directions  —  in  fact  if  (r,  s,  t)  associated 

with  p  is  in  one  direction,  (s,  r,  t)  associated  with  p  is  in  the  other  direction  — 
but  it  is  always  to  be  assumed,  in  the  absence  of  specific  assertion  to  the 
contrary,  that  spatial  products  are  measured  in  the  same  direction.    In  other 

•34        words,  the  space  which  is  studied  is  a  °  prepared  space,  in  which  it  is  a  definite 
square  root  of  [[c^pp]]  that  is  associated  with  (r,  8,  t);  this  square  root  can 

•35        be  called  simply  °the  spatial  product  of  rst,  and  is  denoted  by  ̂rst.    Then 

for  any  two  sets  of  vectors  (r',  B',  t'),  (r",  s",  t")  referred  to  any  frame, 

•36  ^r'8't'.[[%p,]]  =  ̂ r"s"t".[[Xp,]]. 
We  denote  the  spatial  product  of  the  three  vectors  forming  the  frame  xyz 

by  J,  and  since  the  determinant  [[^f]]»  in  which  every  element  of  the  principal 
diagonal  is  1  and  every  other  element  is  0,  has  the  value  1,  we  have  as  a 

particular  case  of  '36,  for  any  three  vectors  referred  to  this  frame, 

whence  &  (q  +  r)  st  =  &  qst  +  S  rst, 

*4.  There  is  one  case  in  which  the  discussion  just  completed  seems  super- 

fluous. It  is  not  inconsistent  with  the  assumptions  I'll  —  1*14  to  suppose  that 
every  determinant  of  the  form  [[<^pp]]  is  zero.  But  the  algebraic  space  which 

*  This  use  of  the  word  triplet  is  of  course  entirely  distinct  from  the  use  in  T4  above. 
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results  from  this  supposition*  has  so  liltle  resemblance  to  Euclidean  space 
that  it  is  outside  our  province  to  pursue  the  investigation.  We  add  therefore 
an  explicit  assumption  to  those  already  made: 

For  at  least  one  set  of  three  vectors  r,  a,  t  the  determinant  -42 

/sr     /s2 

does  not  vanish. 

And  it  follows  from  '37  that 

The  necessary  and  sufficient  condition  for  three  vectors  to  form  a  frame  is        -43 
that  their  spatial  product  is  not  zero. 

With  the  introduction  of  spatial  products,  '25  may  be  changed  to 

[(Vf  ]]  =  /<></,  -44 
or  with  r,  s,  t  substituted  for  x°,  y°,  z°,  to 

[[^pf]]  =  ̂ rst^xyz,  -45 

which  is  more  obviously  general  and  requires  no  restrictions  whatever  to  be 

placed  on  the  six  vectors,  for  if  either  side  of  '45  is  zero  so  also  is  the  other. 
Another  form  of  '45  is  a  formula  for  a  spatial  product  in  terms  of  polar 
coefficients,  namely, 

^rrst  =  J-1[[i;p]].  -46 

The  identity  [[/  pp]]  =  (J  rst)a,  -47 

a  special  case  of  *45  that  we  need  for  reference,  only  reiterates  part  of  the 
definition  of  tf  rst. 

*5.   The  actual  coefficients  of  a  vector  r  in  a  frame  xyz  can  be  found  at  once 
from  the  consideration  that 

The  spatial  product  of  three  vectors  is  zero  if  two  of  the  three  coincide,  -51 

for  this  proposition,  with  '38,  implies 

x  (£rx  +  rj,y  +  £rz)  z  =  rjrS  xyz, 

that  is,  J%r  =  S  ry  z,    Jr}t  =  S  xrz,    J£r  =  J  xyr,  -53 

or  in  one  formula,     r^xyz  =  x,yryz  +  y,yxrz  +  z,yxyr.  .54 

'6.  The  assumption  that  the  determinant  [[$]]  of  the  frame  xyz  does  not 

vanish  has  a  bearing  on  '14,  since  this  is  the  condition  for  £r,  77,,  £P  to  be  deter- 
minable  from  this  set  of  equations  if  X,,  /*,,  i/r  are  given: 

*  But  so  far  is  the  supposition  in  question  from  being  logically  absurd,  that  complex     -f 

space  of  four  dimensions  necessarily  has  three-dimensional  '  sections  '  with  this  very  pecu- 
liarity, just  as  in  the  complex  space  with  which  we  are  dealing  there  are  planes,  called 

isotropic  planes,  in  which  geometry  takes  a  form  that  is  anything  but  commonplace. 

A  space  in  which  '42  is  not  true  is  said  to  be  isotropic, 
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•61  If  the  spatial  product  of  three  vectors  is  not  zero,  any  fourth  vector  is 
determinate  if  its  projected  products  with  these  three  are  known. 

On  the  assumption  that  every  set  of  numbers  is  a  possible  set  of  coeffi- 
cients in  the  frame  xyz,  it  follows  also  that  every  set  of  numbers  is  a 

possible  set  of  projected  products  in  this  frame.    In  particular,  the  sets  of 

equations  * 

•62 

determine  three  definite  vectors  x,  y,  z.    From  these  equations 

•63  c^x  (Ax  +  fty  +  vz)  =  X,     c^y  (Ax  +  yuy  +  vz)  =  JJL,     £z  (Ax 

and  therefore  the  three  equations  "14  are  equivalent  simply  to 

•65  The  vectors  x,  y,  z  compose  a  frame,  and  the  coefficients  of  any  vector  in  this 
frame  are  its  projected  products  in  the  frame  xyz. 

The  frame  xyz  is  called  the  polar  of  the  frame  xyz,  and  the  projected  pro- 
ducts XP,  /ir,  z/r  are  called  the  polar  coefficients  of  r  in  xyz.  The  relation 

between  the  two  sets  of  vectors  x,  y,  z  and  x,  y,  z  defined  by  '62  is  symmetrical, 

and  *45  shews  that  the  product  of  the  spatial  products  of  the  two  sets  is  unity, 
confirming  that  if  one  set  forms  a  frame,  so  also  does  the  other.  The  relations 

between  the  fundamental  magnitudes  of  a  frame  and  the  fundamental  magni- 
tudes of  its  polar  are  implied  by  the  symmetry  of  the  relation  between  the 

two  frames ;  the  fundamentals  of  the  polar  are  the  six  numbers  such  that  for 

every  vector 

is  equivalent  to  Zr  =  Slvr,     rjr  =  S2vr,     ̂ r  =  S3vr- 

To  set  out  the  consequences  of  this  equivalence  would  be  formally  to  re- 

produce the  algebra  of  342*4,  which  nowhere  depends  on  any  hypothesis  as  to 
whether  the  numbers  employed  are  real  or  complex. 

In  virtue  of  '65,  we  can  replace  '16  by  the  theorem  that 

•67  ^/"xyz  and  xyz  are  frames  polar  to  each  other,  then  for  any  two  vectors  r,  a, 
£  rs  =  <•?  xr  £  xs  4-  £ yr  cfys  +  £zr  £  zs. 

413.  VECLINES  AND  VECPLANES;  PERPENDICULARITY. 

•1.    Two  vectors  of  which  one  is  a  multiple  of  the  other  are  said  to  be 

•11        ° parallel  or  collinear.   The  zero  vector  is  collinear  with  every  vector,  but  if  r,  s 
are  proper  vectors,  a  proper  vector  can  be  collinear  with  both  r  and  s  only  if 
r  and  B  are  themselves  collinear,  in  which  case  every  vector  collinear  with  one 

*  The  meaning  of  1,  like  the  meaning  of  0,  depends  on  the  numbers  which  are  used, 
but  the  property  utilised  here  is  common  to  all  numerical  meanings  of  the  symbol. 
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of  the  two  is  collinear  with  the  other.   The  class  composed  of  all  the  vectors 

collinear  with  a  proper  vector  r  is  called  the  vector  line  or°vecline  containing       -12 

r.   °The  zero  vector  belongs  to  every  vecline,  but  no  two  veclines  have  any        -13 
proper  vector  in  common. 

If  r  and  s  are  collinear,  the  spatial  product  of  these  two  and  any  third  vector 

is  zero ;  on  the  other  hand  if  r  and  s  are  not  collinear,  it  follows  from  2*37 
that  it  is  possible  to  find  a  third  vector  such  that  the  spatial  product  of  the 

three  is  not  zero:  °two  vectors  can  serve  as  two  of  the  axes  of  a  vector  frame        '15 
if  and  only  if  they  are  not  collinear. 

*2.  Two  vectors  whose  projected  product  is  zero  are  said  to  be  ° perpendicular*.        -21 
If  two  vectors  are  perpendicular,  any  multiple  of  the  one  is  perpendicular  to 
any  multiple  of  the  other;  if  either  of  the  vectors  is  not  zero,  we  may  say  that 

it  is  the  vecline  containing  this  vector  that  is  perpendicular  to  the  other 
vector;  if  neither  vector  is  zero,  the  veclines  containing  them  are  perpendicular 

veclines.  °  The  zero  vector  is  perpendicular  to  every  vector  and  to  every  vecline,        '24 
and  since  the  simultaneous  vanishing  of  Xr,  /ir,  vr  identifies  r  with  the  zero 
vector,  this  property  belongs  to  the  zero  vector  alone. 

*3.  Let  r,  s  be  two  vectors  that  are  not  collinear  and  let  t  be  a  third  vector 
associated  with  them  to  form  a  vector  frame.  Then  the  vector  t  determined 

by  the  equations 

c?rt  =  0,     c?st  =  0,     c^tt  =  l  -31 
is  by  definition  perpendicular  to  both  r  and  s  and  is  not  zero  because  it  is  not 

perpendicular  to  t ;  moreover,  any  multiple  of  t  is  perpendicular  to  both  r  and 
B,  and  any  vector  perpendicular  to  both  r  and  s  is  a  multiple  of  t : 

If  two  vectors  are  not  collinear,  there  is  one  and  only  one  vecline  which  is        '32 
perpendicular  to  them  both, 

and  every  vector  perpendicular  to  them  both  is  contained  in  this  vecline. 

*4.  By  the  vector  plane  or  °  vecplane  determined  by  two  vectors  x,  y  that  -41 
are  not  collinear,  we  mean  the  class  to  which  a  vector  belongs  if  and  only  if 

it  is  expressible  in  the  form  £x  +  777.  The  vectors  in  the  vecplane  determined 

by  two  vectors  x,  y  that  are  not  collinear  have  two  distinguishing  properties 
which  are  easily  found  by  associating  with  x  and  y  a  third  vector  z  to  form 

a  frame.  The  vector  r  then  belongs  to  the  vecplane  determined  by  x  and  y 

if  and  only  if  for  some  choice  of  z  the  coefficient  fr  is  zero;  but  for  any 
vector  r, 

c?zr=&/zz  =  £r,  -42 

where  z  is  the  polar  vector  described  in  2 '62,  and  as  in  2*53 

,^xyr=fra7xyz  =  t/^,  -43 

and  therefore  the  vanishing  of  £r  is  equivalent  both  to  the  vanishing  of  *7  xyr, 

a  condition  in  which  z  does  not  even  seem  to  be  involved,  and  to  the  vanishing 

*  Note  that  the  phrase  '  at  right  angles '  is  to  be  avoided  for  the  present. 
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of  c^Ir.  Since  £  zr  is  zero  if  and  only  if  the  vecline  containing  z,  that  is,  the 

vecline  perpendicular  to  both  x  and  y,  is  perpendicular  to  r, 

•44  The  vectors  that  belong  to  a  particular  vecplane  are  those  which  are  perpen- 
dicular to  some  definite  vecline. 

If  r  and  8  are  any  two  vectors  in  the  vecplane  determined  by  x  and  y,  the 

vecline  perpendicular  to  x  and  y  is  perpendicular  also  to  r  and  B,  and  therefore 

if  r  and  a  are  not  themselves  collinear  this  is  the  only  vecline  perpendicular 
to  them  both,  and  the  vecplane  determined  by  r  and  s  is  identical  with  the 

vecplane  determined  by  x  and  y.  Hence  if  two  vectors  are  not  collinear,  the 
vecplane  which  they  determine  is  the  only  vecplane  which  includes  them  both, 
or  in  other  words, 

•45  If  two  veclines  are  distinct,  there  is  one  and  only  one  vecplane  which  contains 
them  both. 

The  correlative  of  this  result  is  easily  proved.  If  two  vecplanes  are  distinct, 
the  veclines  perpendicular  to  them  are  distinct,  and  the  vectors  common  to 

the  two  vecplanes  are  the  vectors  perpendicular  to  the  two  perpendiculars ; 

hence  from  '32 

•46  If  two  vecplanes  are  distinct,  the  vectors  common  to  them  compose  a  single 
definite  vecline. 

*5.  Since  every  vector  perpendicular  to  all  the  vectors  composing  a  vecplane 
is  in  a  definite  vecline,  it  is  impossible  for  two  vecplanes  to  be  so  related  that 

every  vector  in  one  is  perpendicular  to  every  vector  in  the  other,  and  the  word 

perpendicular  is  available  to  describe  some  other  relation  between  vecplanes. 

•51  °  Two  vecplanes  are  said  to  be  perpendicular  to  each  other  if  the  veclines 
perpendicular  to  them  are  perpendicular  veclines.  This  definition  shews  the 
relation  to  be  symmetrical,  but  there  is  a  condition,  unsymmetrical  at  first 

sight,  which  it  is  useful  to  know ;  if  r  and  a  are  proper  vectors,  r  is  in  the  vec- 
plane perpendicular  to  s  if  and  only  if  r  is  perpendicular  to  B,  that  is,  if  and 

only  if  the  vecplanes  perpendicular  to  r  and  s  are  perpendicular  vecplanes  : 

•52  Perpendicular  vecplanes  are  vecplanes  one  of  which  contains  the  vecline 
perpendicular  to  the  other. 

Thus  all  the  vecplanes  which  are  perpendicular  to  a  given  vecplane  have  one 
vecline  in  common,  namely,  the  vecline  perpendicular  to  that  vecplane,  just  as 
the  veclines  perpendicular  to  a  given  vecline  are  all  in  a  single  vecplane, 

namely,  the  vecplane  perpendicular  to  that  vecline. 

•6.  Vectors  or  veclines  to  any  number  are  naturally  described  as  coplanar 
if  there  is  a  single  vecplane  which  contains  them  all : 

•62  A  number  of  vectors  are  coplanar  if  and  only  if  there  is  a  vecline  to  which 
they  are  all  perpendicular. 

For  r  to  be  coplanar  with  x  and  y  if  x  and  y  are  not  collinear,  3  xyr  must  be 
zero ;  if  x  and  y  are  collinear,  &  xyr  is  zero  whatever  r  may  be,  but  in  this 
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case  any  third  vector  is  coplanar  with  z  and  y  ;  thus  in  the  special  case  of 
three  vectors  there  is  a  simple  criterion  of  coplanarity  : 

Three  vectors  are  coplanar  if  and  only  if  their  spatial  products  are  zero;  '63 
if  the  spatial  product  of  three  vectors  taken  in  one  order,  is  zero,  their  spatial 
product  in  any  other  order  is  of  course  zero. 

We  may  use  '63  to  replace  2'43: 

Three  vectors  can  form  a  frame  if  and  only  if  they  are  not  coplanar.  -64 

To  shew  that  we  are  gaining  real  strength  and  not  simply  acquiring  a  useless 
vocabulary,  let  us  turn  to  the  expansion 

r  S  abc  =  a  J  rbc  -f  b  ,J  arc  -I-  c  S  abr,  -65 

proved  in  2'54  on  the  hypothesis  that  a,  b,  c  form  a  frame.    If  a,  b,  c,  r  are 
any  four  vectors,  either  they  are  all  coplanar,  in  which  case  the  four  spatial 

products  in  '65  all  vanish  and  '65  remains  formally  true,  or  three  vectors  can 
be  selected  from  them  in  at  least  one  way  so  as  not  to  be  coplanar  and  these 
three  can  form  a  frame  ;  if  rbc  is  a  frame  to  which  a  is  referred,  then 

a  &  rbc  =  r  ,J  abc  +  b  ̂ 7  rac  +  c  S  rba, 

which  is  simply  a  rearrangement  of  '65,  and  a  similar  reproduction  of  '65 
occurs  if  rac  or  rab  is  the  frame.  Thus  '65  is  true  whether  or  not  a,  b,  c  form 
a  frame: 

For  any  four  vectors  r,  a,  b,  c,  -66 

r  S  abc  =  a  S  rbc  +  b  ,y  arc  +  c  &  abr. 

An  immediate  corollary  is  that 

//  a,  b,  c  are  coplanar  vectors  and  r  is  any  vector  whatever,  then  '67 
a  ,y  rbc  +  b  ,y  arc  +  c  ,y  abr  =  0. 

414.   VECTOR  PRODUCTS. 

*1.  Among  the  vectors  perpendicular  to  each  of  two  vectors,  there  is  one 
that  is  of  special  importance.  Let  x,  y  be  two  vectors  that  are  not  parallel, 
and  z  a  vector  taken  with  them  to  form  a  frame.  Also  let  k  be  perpendicular 
to  both  x  and  y,  and  let  r  be  an  arbitrary  vector.  Then 

ckr  =  rkz.  -11 

It  follows  that  if  £  kz  =  ̂ Txyz,  -12 

then  also  £  kr  =  S  xyr  ;  -13 

thus  '12,  when  combined  with  the  conditions  of  perpendicularity 

^kx  =  0,     /ky  =  0,  f  -14 

does  not  really  involve  the  vector  z.  Moreover,  '12  and  '14  together  determine 
k,  for  they  give  explicitly  the  three  functions  \k,  /j^,  v^  in  a  frame  obtained 

by  associating  a  third  vector  z  with  x  and  y.  The  vector  k,  defined  by  '12 
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•15  and  '14,  is  called  the  °  vector  product  of  x  and  y,  and  denoted  by  ̂  xy.  It  is  to 
be  observed  that  since  ,^xyx,  ̂ xy2  both  vanish  necessarily,  '12  includes  '14, 
and  '12  alone  may  be  regarded  as  defining  k: 

•16  The  vector  product  ty  at  is  the  one  vector  q  which  is  such  that  for  every 
vector  r,  ^  rq  =  j  rst 

This  definition  succeeds,  where  the  original  investigation  fails,  with  collinear 

vectors,  for  if  s  and  t  are  collinear,  then  3  rst  is  necessarily  zero,  and  there- 
fore q  is  not  indeterminate  but  must  be  the  zero  vector. 

If  a,  b,  c  are  any  three  vectors, 

and  therefore  /  (^  ab  +  ̂  ac)  r  =  S  a  (b  +  c)  r ; 

hence,  because  r  is  arbitrary, 

And  because  S  bar  =  -  J  abr 

for  every  vector  r,  therefore 

•2.   From  3'66  we  see  that 

•21  For  any  five  vectors  1,  m,  r,  s,  t, 
£  1m  S  rst  =  /  Ir  S  mst  +  ̂  Is  S  mtr  +  /  It  J  mrs, 

and  substituting  from  '16  we  have  the  formula 
•22  £  1m  <y  rst  =  £  \ 

which  can  be  written 

"23  tf  m  ̂ 1  9^  rs 

since  ̂ rst,  £  Ir,  c^ls,  £  It  are  mere  numbers.    But  '23  can  be  true  ivhatever 
vector  m  may  be  only  if 

•24  For  any  four  vectors  k,  r,  s,  t, 

The  last  theorem  shews  that 

•25  If  the  three  vectors  x,  y,  zform  a  frame,  so  also  do  the  three  vector  products 

tyyz,  fyzx,  ty-xy, 

and  shews  that  the  coefficients  of  r  in  this  frame  are  J"1  Xr,  J~l  //»,  J~lvt. 
These  results  are  in  agreement  with  '12  and  '14,  which  taken  together  express 
that  in  the  frame  xyz  the  vector  product  ̂ xy  has  the  polar  coefficients 

0,  0,  J,  that  is  to  say,  that  this  vector  product  is  Jz  : 

•26  Ifiyzis  the  frame  polar  to  xyz,  then 

Thus  there  is  no  radical  difference  between  '22  and  2'67. 
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•3.    An  elegant  use  of  '16  is  to  express  the  vector   product  Wat  with 
reference  to  a  frame  acyz.   In  terms  of  the  coefficients  of  r,  2'16  and  2'37  give 

and  therefore  for  '16  to  be  an  identity  as  far  as  r  is  concerned, 

(Xq,  /Aq,   V^)  =  J       %m       Tfg        £i 

similarly  from  2'16  and  2'46, 

and  the  coefficients  of  the  vector  product  are  given  by 

AB      /ig       /' 

*4.  An  immediate  application  of  '34  is  to  the  evaluation  of  ̂ r(^st),  a 
vector  which  being  perpendicular  to  ̂   st  is  coplanar  with  a  and  t.  In  a  frame 

xyz,  the  polar  coefficients  of  x  are  the  projected  products  /x2,  /xy,  /xz,  and 
the  polar  coefficients  of  <^yz  are  ,7  xyz,  0,  0.  Hence  ̂ x(^yz)  has  the 
coefficients  r 

that  is  c?x2 
1          0 

and  therefore  if  r,  s,  t  are  not  coplanar, 

0 0 

/xz 
0 

If  s  is  collinear  with  t,  the  vectors  ̂   r  (^st)  and  s  £  rt  -  t  /rs  are  both  zero, 
and  if  s  is  not  collinear  with  t,  then  r,  even  if  coplanar  with  s  and  t,  is 
expressible  as  the  sum  of  two  vectors  1,  in  neither  of  which  is  coplanar  with 

s  and  t,  and  a  double  application  of  '41,  justified  by  '17,  '18  and  218,  gives 
0  r  (^st)  =  1)  1  (0st)  +  ̂  m  (^st) 

=  s  (c^t  +  c?  mt)  -  1  (/  Is  +  c?  ms) 

Hence  there  are  no  cases  of  exception,  and 

For  any  three  vectors  r,  s,  t, 

Intimately  related  to  "42  is  a  valuable  expression  for  the  projected  product 
of  two  vector  products.  If  q,  r,  s,  t  are  any  four  vectors,  then  by  a  double  appli- 

cation of  -16 

and  therefore  from  '42  it  follows  that 

For  any  four  vectors  q,  r,  s,  t, 

/rs 

•31 

•32 

•33 

•34 

•41 

•42 

•43 
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•44 

This  result  includes  all  the  relations  between  the  fundamentals  of  a  frame 

and  those  of  its  polar,  but  it  is  recorded  not  for  this  reason  only  but  because 

it  is  of  continual  service.  If  the  use  of  "42  enables  us  to  avoid  treating  any 

particular  cases  of  "43  as  exceptional,  it  is  only  by  going  behind  '42  that  we 
can  realise  that  the  determinantal  form  into  which  the  result  is  thrown  is  not 

accidental.  One  explanation  is  derived  from  2'45,  which  gives 
/  qr     £  qs     £  qt 

/rs 0 c?rt 0 

implying  '43  unless  S~  rst  is  zero.  Or  if  we  go  back  only  to  the  expression  in 
the  last  paragraph  for  the  coefficients  of  ty  x  (^yz)  in  the  frame  xyz,  we  see 
that  since  the  vector  q  has  in  this  frame  the  polar  coefficients 
the  projected  product  /q  f^x(^yz)}  has  the  value 

c^qy     <^qz 
•  >  xy     •>  xz 

0          0 

and  this  again  establishes  '43  except  for  the  case  in  which  r,  s,  t  are  coplanar. 
Yet  another  proof  is  furnished  by  the  algebraical  identity 

L  R  Q 

R  M  P 

Q  P  N 

VnSt  0 

which  differs  only  in  notation  from  332*87. 
A  particular  case  of  '43  is 

•45  £  (*V  st)2  =  c^s2  /t2  -  (/st)2, 
an  identity  of  fundamental  importance. 

415.   NUL  VECTORS;  ISOTROPIC  VECLINES  AND  VECPLANES. 

•11  "1.  A  vector  whose  projected  square  is  zero  is  said  to  be  °  nul  or  isotropic*. 
In  ordinary  space  and  in  the  algebraic  space  which  exactly  corresponds  to 
ordinary  space  the  only  nul  vector  is  the  zero  vector.  But  for  r  to  be  nul  all 
that  is  necessary  is  that  the  three  coefficients  of  r  in  a  frame  xyz  should  satisfy 

.12        the  one  equation  gy*  —  Q, 

and  there  is  therefore  in  complex  space  a  quadruple -f*  infinity  of  nul  vectors. 
It  is  of  complex  space  that  we  are  understood  to  speak  when  nul  vectors  are 
used  or  discussed. 

*  This  word  was  introduced  into  geometry  by  Laguerre,  who  explained  his  choice  care- 
fully (Nouv.  Ann.  des  Math.,  ser.  2,  vol.  ix,  p.  165,  1870 ;  Oeuvres,  vol.  n,  p.  89). 

t  '12  is  equivalent  to  two  relations  between  six  real  numbers. 
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It  would  of  course  be  possible  nominally  to  exclude  mil  vectors  or  nul  vectors  other  than 

the  zero  vector  by  explicit  hypothesis,  simply  by  including  among  the  essential  character- 
istics of  a  proper  vector  that  the  projected  square  is  not  zero.  But  (i)  nul  vectors  form 

the  basis  of  many  of  the  applications  of  complex  geometry  to  ordinary  space ;  (ii)  if  their 
existence  was  a  disease,  their  exclusion  would  be  no  remedy,  since  it  would  result  in  some 
frames  having  no  polars  and  some  pairs  of  vectors  having  no  vector  product,  and  would 

falsify  such  theorems  as  3-46  and  3  62 :  two  vecplanes  might  have  no  proper  vectors  in 
common,  and  there  would  be  vecplanes  with  no  veclines  perpendicular  to  them ;  (iii)  it 
would  remain  true  that  in  complex  space  something  corresponds  to  a  set  of  coefficients 

satisfying  '12  just  as  a  proper  vector  corresponds  to  a  set  of  coefficients  not  satisfying  -12 ; 
this  new  concept  would  demand  study,  and  the  change  would  reduce  to  a  mere  change  of 

vocabulary,  3-46  for  example  taking  the  form  that  two  distinct  vecplanes  have  in  common 
either  a  vecline  or  a  quasivecline  but  not  both. 

*2.  Since  every  multiple  of  a  nul  vector  is  nul,  the  nul  vectors  in  complex 
geometry  compose  definite  veclines,  themselves  described  as  nul  or  isotropic. 
But  the  nul  vectors  in  the  vecplane  through  two  vectors  x,  y  that  are  not 
collinear  are  the  vectors  of  the  form  £x  +  7/y  where 

If  +  2R&  +  Mrf  =  0,  -23 

L,  R,  M  having  the  same  meaning  as  in  2'11,  and  since  the  determinant 
0     0      Q 

OOP 

Q    P    N 
to  which  [[8]]  reduces  if  L,  R,  M  are  simultaneously  zero,  vanishes  identically, 
one  at  least  of  the  three  coefficients  L,  R,  M  must  be  different  from  zero,  and 

'23  is  necessarily  an  effective  equation,  not  an  identity.    Hence  °  there  are  no        '24 
vecplanes  that  consist  wholly  of  nul  vectors. 

*3.    Mere  comparison  of  definitions  shews  that 

A  nul  vector  or  vecline  is  one  that  is  perpendicular  to  itself.  "31 
From  -23  it  follows  that 

Two  distinct  nul  veclines  or  two  nul  vectors  that  are  not  collinear  can  not  be        "33 

perpendicular, 

for  if  x  and  y  are  nul,  L  and  M  are  zero  and  it  is  impossible  for  R,  which  is 
c^xy,  also  to  be  zero. 

To  imagine  a  paradox  in  '31  is  to  mistake  completely  the  relation  of  complex  geometry 
to  ordinary  space.  Of  the  assumptions  of  Euclidean  geometry,  complex  geometry  accepts 
some  and  rejects  others,  and  therefore  of  the  properties  of  ordinary  space  complex  space 

shares  some  but  not  all.  There  are  no  self-perpendicular  lines  in  real  space,  but  equally 
there  are  no  nul  vectors  except  the  zero  vector.  Analogy  is  to  be  sought  by  comparing 
perpendicular  veclines  in  complex  space  with  conjugate  diameters  of  a  given  conicoid;  in 

general,  conjugate  diameters  are  distinct,  but  asymptotes,  if  there  are  any,  are  self-conjugate. 

*4.    Because  of  '24,  no  vecplane  can  be  called  nul,  but  a  vecplane  is  said  to 

\>&°  isotropic  if  the  vecline  to  which  it  is  perpendicular  is  isotropic.   From  '31        '41 
and  this  definition, 
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•42  An  isotropic  vecplane  is  a  vecplane  that  contains  the  vecline  to  which  it  is 
perpendicular, 
and  '33  enables  us  to  add  that 

•43  //  a  vecplane  is  isotropic,  the  vecline  to  which  it  is  perpendicular  is  the  only 
nul  vecline  that  it  contains. 

From  -31  and  3'51 

•44  An  isotropic  vecplane  is  one  that  is  perpendicular  to  itself. 
The  vecplane  containing  the  two  vectors  x,  y  of  a  frame  xyz  is  isotropic  if 

<^z2  is  zero,  and  therefore  if 
•45  LM  -  &  =  0. 

Since  the  equation  '23  is  a  quadratic  equation  in  f :  77  with  LM  —  R*  for  its 
discriminant, 

•46  If  a  vecplane  is  not  isotropic,  it  contains  two  and  only  two  distinct  nul  veclines. 
On  the  other  hand,  if  a  is  a  vecline  and  ft  is  a  nul  vecline  in  an  isotropic 

vecplane  that  contains  a,  then  because  the  vecplane  perpendicular  to  ft 

contains  a,  therefore  the  vecplane  perpendicular  to  a  contains  ft :  that  is,  ft  is 
one  of  the  nul  veclines  in  the  vecplane  perpendicular  to  a;  conversely  if  ft  is 

a  nul  vecline  in  the  vecplane  perpendicular  to  a,  the  vecplane  perpendicular 

to  ft  is  an  isotropic  vecplane  containing  a.  Since  the  vecplane  perpendicular 
to  a  is  or  is  not  isotropic  according  as  a  is  or  is  not  nul, 

•47  If  a  vecline  is  nul,  the  vecplane  to  which  it  is  perpendicular  is  the  only  isotropic 
vecplane  that  contains  it, 
and 

•48  If  a  vecline  is  not  nul,  there  are  two  and  only  two  distinct  isotropic  vecplanes 
in  which  it  is  contained. 

'5.  For  the  vecplane  determined  by  two  vectors  r,  8  that  are  not  collinear 
to  be  isotropic,  the  proper  vectors  perpendicular  to  both  r  and  s  must  be  nul ; 
the  vector  product  W  rs  is  not  the  zero  vector  unless  r  and  s  are  collinear ; 

moreover,  if  r  and  s  are  collinear  and  the  vector-field  is  complex,  there  is  one 
isotropic  vecplane  if  not  two  containing  them  both: 

•51  Two  vectors  in  complex  space  are  contained  in  a  vecplane  that  is  isotropic  if 
and  only  if  their  vector  product  is  nul. 

From  4*45  it  follows  that  the  equation 
•52 

•53       is  equivalent  to 
a  form  which  will  be  found  essential  to  the  discovery  of  the  most  peculiar 

properties  of  vectors  in  isotropic  vecplanes;  the  condition  is  expressible  readily 
in  words : 

•54  Two  vectors  in  complex  space  are  contained  in  a  vecplane  that  is  isotropic  if 
and  only  if  the  product  of  their  projected  squares  is  the  square  of  their  projected 

product. 



CHAPTER  IV  2 

DIRECTIONS  AND  ANGLES  IN  ALGEBRAIC  VECSPACE 

420.  Introduction.  421.  The  amounts  of  a  vector;  measured  vectors;  directions. 

422.  Congenial  directions ;  the  two  aspects  of  an  isotropic  vecplane.  423.  Traversed  vector- 
pairs  ;  cyclic  directions ;  prepared  vecplanes ;  angles ;  right  angles  and  perpendicularity. 
424.  Areal  products;  erection  in  an  anisotropic  vecplane.  425.  Vector  frames  in  a 
vecplane. 

420.   INTRODUCTION. 

Vectors  in  an  algebraic  vecspace,  real  or  complex,  no  less  than  in  the  space 
of  real  geometry,  have  directions  and  amounts.  The  difference  is  that  directions 
are  defined  by  means  of  vectors  instead  of  vectors  by  means  of  directions,  but 
the  mathematical  relations  and  phraseology  are  unaltered ;  moreover,  it  is  a 
simple  step  from  directions  to  angles. 

The  problem  of  defining  direction  might  be  solved  for  a  real  algebraic  vec- 
space by  identifying  a  direction  with  a  vector  whose  projected  square  is  unity, 

or  rather,  to  use  terms  that  we  are  about  to  define,  with  a  measured  vector  of 

unit  amount.  In  complex  space  however,  not  merely  would  this  obvious  plan 
fail  completely,  since  it  would  leave  nul  vectors  wholly  without  direction,  but 
the  failure  is  intrinsic  in  the  nature  of  the  method  rather  than  due  to  any 
difficulty  that  technical  ingenuity  might  hope  to  remove.  To  be  applicable 
universally  a  solution  must  proceed  from  the  start  along  other  lines,  and  it  is 

one  of  the  triumphs  of  the  Frege-Russell  method  of  definition  to  furnish  a 
theory  satisfactory  in  every  respect. 

421.   THE  AMOUNTS  OF  A  VECTOR  ;  MEASURED  VECTORS  ;  DIRECTIONS. 

•1.  The  square  roots  of  the  projected  square  </r2  are  called  the  ° amounts  of  -11 
the  vector  r.  In  the  real  algebraic  vecspace  constructed  to  correspond  to 
Euclidean  space,  the  zero  vector  is  the  only  vector  of  amount  zero,  and  for 

every  other  vector  <^r2  is  positive  and  the  amounts  are  distinct  real  numbers, 
one  positive  and  the  other  negative.  In  complex  vecspace,  any  vector  that  is 
nul  has  zero  for  its  only  amount,  and  a  vector  that  is  not  nul  has,  like  the 
proper  vectors  of  ordinary  space,  two  amounts,  each  of  which  is  the  negative 
of  the  other. 

•2.   A  vector  associated  specifically  with  one  of  its  amounts  is  called  a 

°  measured  vector.   A  vector  r  of  which  r  is  an  amount  gives  rise  to  the  two       -21 
measured  vectors  r,.,  !•_,.,  which  are  distinct  unless  r  is  nul. 
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If  r  is  an  amount  of  the  vector  r,  the  vector  kr  has  the  amounts  kr,  —  kr ; 
naturally  it  is  the  measured  vector  in  which  AT  is  associated  with  kr  that  is 

•22       said  to  be  the  °  multiple  of  rr  by  k.  The  measured  vector  in  which  kr  is  associated 
with  —  kr  is  a  multiple  of  r.^,  but  not  of  rr  unless  r  is  zero. 

•31  "3.   Two  measured  vectors  are  said  to  be  °codirectional  if  one  of  them  is  a 
multiple  of  the  other.  For  rr,  ss  to  be  codirectional,  there  must  be  numbers 
h,  k  not  both  zero  such  that 

•32  kr  =  hs,     kr  =  hs ; 

in  general  both  numbers  h,  k  are  different  from  zero,  but  if  one  but  not  the 
other  of  the  vectors  is  the  zero  vector,  one  but  not  the  other  of  the  numbers 

•33       must  be  zero.  °If  rr,  ss  are  codirectional,  r,  s  are  of  course  parallel.    If  either 
r  or  s  is  different  from  zero,  the  pair  of  equations  '32  is  equivalent  simply  to 
•34  sr  =  rs, 

but  we  can  not  reduce  the  condition  always  to  this  form,  since  '34  is  satisfied 

by  any  two  nul  vectors,  though  '32  makes  no  exception  in  favour  of  nul  vectors 
in  requiring  the  vectors  to  be  parallel.  It  is  important  to  observe  that 

•35  Two  measured  vectors  that  are  both  codirectional  with  a  measured  vector 

other  than  that  derived  from  the  zero  vector  are  codirectional  with  each  other. 

•41  -4.    The  °  direction  of  a  proper  measured  vector  rr  is  defined  as  the  class 
formed  of  all  the  measured  vectors  codirectional  with  rr.  This  class  includes 

the  zero  measured  vector  whatever  rr  may  be,  but  it  follows  from  '35 — and 
this  is  the  value  of  that  proposition — that  no  two  distinct  directions  have  any 
proper  measured  vector  in  common.  Since  a  direction  is  a  class  of  measured 

vectors,  a  happy  accident  of  language  enables  us  to  speak  of  a  measured  vector 

quite  literally  as  in  a  direction.  Thus 

•42  Codirectional  measured  vectors  are  measured  vectors  in  the  same  direction, 

but  there  is  not  even  an  appearance  of  circularity  in  our  definitions. 

•5.  If  one  measured  vector  in  a  direction  is  derived  from  a  proper  vector 
that  is  nul,  every  measured  vector  in  that  direction  is  derived  from  a  nul 
vector,  and  the  direction  is  a  nul  direction. 

'6.  If  rr,  BS  are  codirectional,  then  also  r_r,  s_«  are  codirectional.  Thus  to 
every  direction  corresponds  a  second  direction  such  that  the  measured  vectors 
in  the  two  directions  are  derived  from  the  same  vectors,  and  each  of  these 

vectors  is  associated  in  each  direction  with  the  negative  of  the  amount  with 
which  it  is  associated  in  the  other  direction.  Of  two  directions  related  in  this 

•64  way,  one  is  said  to  be  opposite  to,  or  the  reverse  of,  the  other.  °  A  nul  direction 
is  its  own  reverse,  but  a  direction  that  is  not  nul  is  necessarily  distinct  from 
its  reverse. 

•7.  By  a  direction  of  a  vector  r  is  meant  the  direction  of  the  measured 
vector  rr  obtained  by  associating  r  with  an  amount  r  of  r,  and  r  is  said  to 
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have  the  amount  r  in  this  direction.    Thus°a  vector  that  is  not  nul,  like  a       -72 
proper  vector  in  real  space,  has  two  directions,  one  the  reverse  of  the  other, 
and  its  amount  in  one  direction  is  the  negative  of  its  amount  in  the  other 

direction.    Also  °the  zero  vector  in  complex  as  in  real  space  has  every  direction        "73 

and  its  amount  in  every  direction  is  zero.    But  °a  proper  nul  vector  gives  rise        '74 
to  only  one  measured  vector  and  therefore  has  but  a  single  direction. 

Let  II  be  the  direction  of  a  proper  measured  vector  pp  that  is  not  nul.  Then 

if  r  is  any  number,  the  vector  (r/p)  p  is  a  vector,  and  is  the  only  vector,  which 
has  II  for  a  direction  and  r  for  its  amount  in  that  direction : 

A  vector  with  a  direction  that  is  not  nul  is  determined  by  its  amount  in  that       -75 
direction. 

But  there  is  no  corresponding  specification  of  a  nul  vector. 

If  x  is  a  proper  vector,  a  vector  r  collinear  with  x  can  be  expressed  in  one  way  only  as 
£rx,  and  if  x  is  given,  £r  serves  as  a  numerical  measure  of  r,  whether  or  not  x  is  nul.  That 
is,  quantitative  comparison  of  different  vectors  in  a  single  vecline  is  always  possible,  and 
the  basis  of  comparison  is  arbitrary.  But  vectors  in  different  veclines  can  not  be  compared 
effectively  if  one  of  the  veclines  is  nul,  even  if  the  other  vecline  also  is  nul. 

422.  CONGENIAL  DIRECTIONS  ;  THE  TWO  ASPECTS  OF  AN  ISOTROPIC  VECPLANE. 

*1.  One  property  of  codirectional  measured  vectors  has  to  be  recorded.  If 
rr  is  the  multiple  of  ss  by  k,  then 

/rs  =  &  /  s2  =  &s2  =  rs : 

If  two  vectors  are  parallel,  their  projected  product  is  the  product  of  their        -11 
amounts  in  a  common  direction. 

In  real  space  the  converse  of  this  theorem  is  true :  if  the  projected  product 
of  two  vectors  is  the  product  of  an  amount  of  one  and  an  amount  of  the  other, 

the  vectors  are  parallel  vectors  measured  in  the  same  direction.  In  complex 

space  however  this  converse  fails,  as  is  apparent  from  the  identity 

/r2  £  s2  -  (/rs)2  =  /  (V  rs)2 

of  14-45 ;  if  (/rs)2  is  the  product  of  /r2  and  /s2,  it  is  possible  to  choose 
square  roots  of  /r2  and  /s2  whose  product  is  /rs,  and  therefore  by  15'51 

The  projected  product  of  two  vectors  is  the  product  of  an  amount  of  one  and        '13 
an  amount  of  the  other  if  the  vectors  are  in  an  isotropic  vecplane. 

•2.    It  is  worth  while  to  press  a  little  farther  the  analysis  of  this  case.    Let 

us  describe  two  measured  vectors  as  ° 'congenial  if  their  projected  product  is  the        -21 
product  of  their  amounts;  rr,  BS  are  congenial  if 

/rs  =  rs.  -22 

If  two  measured  vectors  are  congenial,  every  multiple  of  the  one  is  congenial 

with  every  multiple  of  the  other.    The  property  therefore  belongs  essentially 
N.  14 
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to  the  directions  of  the  measured  vectors,  and  the  directions  also  are  to  be 

described  as  congenial.  Thus  '11  asserts  that 

•23  Every  direction  is  congenial  with  itself, 

and  '13  that 

•24  If  two  directions  are  in  an  isotropic  vecplane,  either  they  are  congenial  or 
each  is  congenial  with  the  reverse  of  the  other; 

1*64  and  '24  emphasise  that 

•25  The  nul  direction  in  an  isotropic  vecplane  is  congenial  with  every  direction 
in  the  vecplane: 

the  projected  product  of  a  proper  nul  vector  r  and  another  vector  is  not  in 

general  zero,  but  the  isotropic  vecplane  which  contains  r  is  formed  of  precisely 
those  vectors  for  which  this  projected  product  does  vanish. 

*3.  If  r,  s,  t  are  any  three  vectors  in  a  given  isotropic  vecplane,  then  because 
the  vectors  ̂ rs,  <^rt  are  parallel  nul  vectors,  the  projected  product  of  these 

vector  products  is  zero.  But  by  14443, 

J  (*V  rs)  (<V  rt)  =  /r2  /  st  -  /rs  /rt. 
Hence  if  rr,  8S,  t(  are  measured  vectors  derived  from  r,  8,  t,  and  if  st)  tt  are 

both  congenial  with  rr,  then 
r2  (/st  -  st)  =  0, 

and  if  r  is  not  zero,  /st  is  the  product  st  : 

33  If  two  directions  in  an  isotropic  vecplane  are  both  congenial  with  a  third 
direction  that  is  not  nul,  they  are  congenial  with  each  other. 

•34  Thus0  the  directions  in  an  isotropic  vecplane  compose  two  classes  such  that 
two  directions  are  congenial  if  and  only  if  they  belong  to  the  same  class  ; 

•35  these  classes  will  be  called  the  °  aspects  of  the  isotropic  vecplane.  The  directions 
in  one  aspect  of  an  isotropic  vecplane  are  the  reverses  of  the  directions  in  the 

•37  other  aspect;  "the  nul  direction  in  the  vecplane  belongs  to  both  aspects,  and 
is  the  only  direction  common  to  them  both. 

•4.    To  assert  that 

•41  The  projected  product  of  two  vectors  in  an  isotropic  vecplane  is  the  product 
of  their  amounts  in  congenial  directions 

is  to  assemble  the  results  at  which  we  have  arrived  in  their  most  concise  and 

convenient  form.  To  make  a  direct  application  of  this  theorem,  let  pp  be  a 
measured  vector  that  is  not  nul,  in  an  isotropic  vecplane,  and  let  rr,  st,  ...  be 

any  measured  vectors  in  the  same  aspect  of  the  vecplane  as  pp,  so  that 
•42 

from  these  equations,  if  the  number  of  vectors  is  finite, •43 
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and  therefore  r  +  s  +  ...  is  the  amount  of  r  +  B  +  . . .  in  the  direction  of 

r  +  s  4- . . .  that  is  congenial  with  the  direction  of  pp : 

If  any  finite  number  of  vectors  in  an  isotropic  vecplane,  and  their  sum,  are       -44 
all  measured  in  congenial  directions,  the  amount  of  the  sum  is  the  sum  of  the 
amounts. 

It  will  be  found  that  the  two  aspects  of  an  isotropic  vecplane  are  analogous 

not  to  the  two  cyclic  directions  by  which  a  plane  in  ordinary  space  can  be 

prepared  but  to  the  two  directions  of  a  line. 

•5.  It  follows  from  13*44  and  13'46  that  a  vecplane  which  does  not  consist 
wholly  of  vectors  perpendicular  to  a  given  proper  vector  r  contains  one  and 
only  one  vecline  perpendicular  to  r.  Hence 

In  general,  the  vectors  in  a  given  vecplane  that  are  perpendicular  to  a  given        '52 
proper  vector  in  the  vecplane  compose  a  definite  vecline.    Exception  occurs  only 
when  the  vecplane  is  isotropic  and  the  vector  is  in  the  nul  vecline  which  is  both 

in  the  vecplane  and  perpendicular  to  it. 

If  r  is  a  vector  in  an  isotropic  vecplaae,  the  nul  vecline  in  the  vecplane  is 

perpendicular  to  r,  and  therefore  '52  implies  that  if  r  is  not  itself  nul,  the 
only  vectors  in  the  vecplane  that  are  perpendicular  to  r  are  those  in  the  nul 
vecline : 

In  an  isotropic  vecplane,  two  vectors  are  perpendicular  if  and  only  if  one  of       *53 
them  is  in  the  nul  vecline. 

This  theorem  accounts  for  some  peculiarities  in  the  analysis  connected  with 

a  vector  frame  in  an  isotropic  vecplane,  to  which  we  refer  in  the  last  section 

of  this  chapter. 

423.  TRAVERSED  VECTOR-PAIRS;  CYCLIC  DIRECTIONS;  PREPARED 
VECPLANES;  ANGLES;  RIGHT  ANGLES  AND  PERPENDICULARITY. 

•1.  The  introduction  of  angles  into  an  algebraic  vecspace  presents  no  diffi- 

culty. Angles  are  defined  in  the  first  place  as  related  to  measured  *  vectors, 
but  it  is  immediately  evident  that  directions  alone  are  really  relevant. 

The  angles  between  the  measured  vectors  rr,  BS  are  the  values  of  eP2  that 

satisfy  the  equation 
rs  cos  eP2  =  /rs ;  -11 

it  is  perhaps  superfluous  to  remark  that  these  angles  are  simply  numbers, 

real  or  complex  according  as  the  field  under  consideration  is  real  or  complex. 
Since  identically 

c?r2  c^s2  -  (/rs)2  =  ̂   (^rs)2, 

•11  and  I'll  imply  r2s2  sin2  eP2  =  £  (<^rs)2,  -;2 

*  The  dependence  of  directions  and  angles  in  algebraic  space  on  measured  vectors  was 
indicated  in  a  paper  read  to  the  Mathematical  Association  in  1920  (see  Math.  Gazette, 
vol.  x,  p.  26). 

14—2 
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and  therefore 

•13  If  eP2  is  an  angle  between  rr  and  BS,  then  rs  sin  eP2  is  an  amount  of6!)  rs. 

With  the  aid  of  this  proposition  it  is  easy*  to  render  almost  t  all  the 
language  of  elementary  geometry  concerning  angles  significant  when  used  of 

algebraic  space. 

•2.   The  ordered  pair  of  measured  vectors  (rr,  sg)  associated  with  an  angle 

•21  eP2  satisfying  '11,1  propose  to  callj  a  °  traversed  vector-pair.  A  cyclic  direction 
in  algebraic  geometry  is  a  class  of  traversed  vector-pairs  with  the  property 
that  if  eP2  is  the  angle  associated  with  (rr,  B8)  to  form  a  member  of  the  class 

then  rssin  eP2  as  well  as  rs  cos  eP2  is  determinate.  From  '13  it  appears  that 
to  distinguish  between  different  values  of  rssin  eP2  consistent  with  '11  is  to 
distinguish  between  different  amounts  of  the  vector  product  ̂ rs.  If  ̂ rs 
really  has  more  than  one  amount,  that  is,  if  ̂ rs  is  not  nul,  its  two  amounts 

can  be  separated  only  if  its  two  directions  are  known ;  moreover,  ̂ rs  is  always 

perpendicular  to  r  and  s,  and  therefore  for  ̂ rs  to  be  in  a  given  vecline  and 
not  to  be  nul,  r  and  B  must  be  in  the  vecplane  perpendicular  to  that  vecline. 
This  is  why  in  algebraic  geometry  no  less  than  in  the  space  suggested  by 

•22  experience  °it  is  with  coplanar  directions  that  cyclic  direction  is  primarily 
associated.  It  proves  in  fact  simplest  to  make  coplanarity  an  essential  con- 

dition, not  a  rule  to  which  exceptions  can  occur,  and  so  we  say  that  the 

traversed  vector-pair  in  which  eP2  is  associated  with  (rr,  BS)  and  the  traversed 

•23        vector-pair  in  which  eMN  is  associated  with  (mm,  nn)  are  °  cyclically  codirectional 
if  and  only  if  the  four  vectors  r,  8,  m,  n  are  coplanar  and  the  vector 
measured  by  the  amount  rssineP2  is  codirectional  with  the  vector 

•24  measured  by  the  amount  mnsineMN.  A  °  cyclic  direction  is  then  definable  as 
a  class  of  cyclically  codirectional  traversed  vector-pairs  such  that  no  traversed 
vector-pair  excluded  from  the  class  is  cyclically  codirectional  with  every 
member  of  the  class.  With  this  definition,  the  vectors  from  which  the  differ- 

ent pairs  in  a  cyclic  direction  are  constructed  are  simply  the  vectors  in  a 

*  For  the  sake  of  brevity  I  have  followed  the  method  of  the  text  rather  than  a  line  of 
argument  in  many  respects  preferable.  If  P,  2,  T  are  coplanar  directions  and  €p2,  e2T  are 
angles  between  P  and  2  and  between  2  and  T,  then  except  in  special  cases,  one  but  only 

one  of  the  angles  fP2  +  «2T,  «P2  —  e2T  is  an  angle  between  P  and  T;  this  consideration  may 
be  used  to  determine  without  reference  to  a  third  dimension  which  of  the  angles  e2T,  -  «2T 

is  measured  in  the  same  cyclic  direction  as  6p2>  Yet  another  order  is  adopted  in  section  5'3 
of  my  Fourth  Dimension. 

t  The  exception  is  that  in  complex  space  an  angle  can  not  be  described  as  from  one 
direction  to  another  round  a  third  unless  the  third  is  perpendicular  to  each  of  the  others ; 

the  complex  number  —  z  is  the  negative  of  z,  but  there  is  no  fundamental  relation  between 
complex  numbers  that  corresponds  to  the  possession  of  the  same  sign  by  real  numbers. 

J  The  phrase  is  suggested  by  a  term  in  gunnery ;  my  attempts  to  express  the  substance 
of  the  paragraphs  that  follow  without  the  adoption  of  some  equivalent  abbreviation  were 
verbose. 
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single  vecplane,  and  the  vector  products  are  all  measured  in  a  definite  direc- 
tion perpendicular  to  this  vecplane;   the  vecplane  in  association  with  the 

cyclic  direction  is  said  to  be  "prepared,  and  the  perpendicular  direction  is        -26 
called  the  direction  ° normal  to  the  prepared  vecplane  or  to  the  cyclic  direction;        -26 
angles  are  said  to  be  traversed  or  measured  in  the  cyclic  direction  or  round 
the  normal  direction. 

There  are  as  many  cyclic  directions  that  can  be  given  to  a  vecplane  as  there 

are  directions  perpendicular  to  the  vecplane ;   that  is  to  say,  in  a  vecplane 
that  is  not  isotropic  angles  may  be  traversed  in  two  different  directions,  but 

in  an  isotropic  vecplane  only  one  cyclic  direction  is  possible.   If  two  cyclic 
directions  involve  the  same  pairs  of  measured  vectors  but  the  vector  products 

are  measured  in  opposite  directions,  each  cyclic  direction  is  called  the  reverse 

of  the  other.    °If  one  cyclic  direction  can  be  associated  with  a  given  vecplane,        '28 
the  only  other  cyclic  direction  that  this  vecplane  can  have  is  the  reverse 

direction.    °The  cyclic  direction  of  a  prepared  isotropic  vecplane  is  its  own        -29 
reverse. 

*3.  It  will  help  us  to  observe,  without  distinguishing  definitions  from 
deductions,  how  exactly  the  assertions  of  elementary  geometry  have  become 

significant  and  to  what  an  extent  they  remain  true.  °If  rr,  BS  are  measured  -31 
vectors  in  a  prepared  vecplane,  the  angles  from  rr  to  s,  in  this  prepared 
vecplane  are  the  values  of  eP2  such  that  rscosepj  is  the  projected  product 
<^rs  and  rssin  ePs  is  the  amount  of  the  vector  product  ̂ rs  in  the  direction 

normal  to  the  prepared  vecplane.  If  the  projected  product  of  r  and  s  is 

rscos  eP2,  the  projected  product  of  hr  and  ks  is  hrks  cos  eP2,  and  if  the  vector 

product  of  r  and  s  has  the  amount  rs  sin  eP2  in  a  given  direction,  the  vector 
product  of  hr  and  ks  has  the  amount  hrks  sin  eP2  in  the  same  direction  ;  hence 

0  the  angles  defined  by  the  pair  of  equations  '32 
rs  cos  eP2  =  £  rs,     rs  sin  ePs  =  p,  -33 

where  p  is  the  amount  of  ̂ rs  in  a  given  direction,  depend  on  the  directions 
of  rr  and  sg ,  and  not  at  all  on  the  individual  measured  vectors  themselves. 

The  angles  from  a  direction  2  to  a  direction  P  in  one  cyclic  direction  are 
the  negatives  of  the  angles  from  P  to  S  in  the  same  cyclic  direction,  and  so 

also  are  the  angles  from  P  to  S  in  the  reverse  direction.  In  a  given  prepared 

vecplane,  an  angle  that  differs  by  an  even  multiple  of  TT  from  an  angle  from 
P  to  S  is  itself  an  angle  from  P  to  2.  An  angle  that  differs  by  an  odd 

multiple  of  TT  from  an  angle  from  P  to  S  is  an  angle  from  P'  to  2  and  is  also 

an  angle  from  P  to  2',  where  P',  2'  are  the  directions  opposite  to  P,  2 ;  the 
angles  from  P'  to  2'  are  the  angles  from  P  to  2. 

•4.  For  the  pair  of  equations  '33  can  be  substituted  an  equivalent  pair 
sometimes  more  useful.  Let  k*  be  any  measured  vector  in  the  direction  in 
which  the  vector  product  ̂ rs  is  to  be  measured.  Then 

kp  =  £  k  (0  rs)  =  J  krs,  -41 
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and  therefore  if  k  is  not  zero  the  equation 
rssin  fp^—p 

•42       can  be  replaced  by  krs  sin  eP2  =  S  krs. 
If  the  vecplane  in  which  the  angles  are  traversed  is  not  isotropic,  k  is  different 

from  zero  if  k  is  not  the  zero  vector.  If  the  vecplane  is  isotropic,  k  can  not  be 

different  from  zero,  and  '42  reduces  to  an  identity,  but  this  is  precisely  the 
case  in  which  ras2  sin2  eP2  is  necessarily  zero  and  no  information  is  added  by 
the  adjunction  of 

rs  sin  eP2  =  p 

to  the  original  equation  rs  cos  eP2  =  <^  rs. 

Thus  there  is  no  exception  to  the  rule  that 

•43  IfTt-k  is  any  proper  measured  vector  in  a  direction  K,  and  rr,  Bg  are  measured 
vectors  in  the  prepared  vecplane  to  which  K  is  the  normal  direction,  the  angles 
from  rr  to  Bg  in  this  vecplane  are  the  values  of  eP2  satisfying  the  pair  of  equations 

rs  cos  eP2  =  £  rs,     krs  sin  eP2  =  S  krs. 

•51  '5.    °In  general  the  angles  from  one  direction  to  another  in  a  prepared 
vecplane  form  a  single  congruence,  for  unless  r  or  s  is  zero,  both  the  cosine 
and  the  sine  of  these  angles  are  determinate.  If  r  or  s  is  zero  because  the 
corresponding  vector  is  the  zero  vector,  the  equations  to  be  satisfied  by  an 
angle  from  Tr  to  ss  reduce  to  identities  and  every  angle  is  possible,  as  is  only 
natural  since  the  zero  vector  has  every  direction.  But  to  consider  the  angles 

between  directions  of  which  one  is  nul,  is  to  suppose  r  or  s  to  be  zero  while  r 
or  s  is  nul  but  not  zero.  Then  either  the  projected  product  is  zero  and  the 

vector  product  is  nul,  as  happens  if  the  isotropic  vecplane  containing  the 
direction  assumed  to  be  nul  contains  the  other  direction  also,  or  the  projected 

product  and  the  amounts  of  the  vector  product  are  simultaneously  different 
from  zero,  the  two  directions  determining  then  a  vecplane  that  is  not  isotropic. 
The  first  case  does  not  differ  in  effect  from  that  in  which  one  vector  is  zero : 

every  angle  is  possible ;  the  second  case  admits  no  finite  angles,  but  for  many 

purposes  any  infinite  complex  number  of  which  the  imaginary  part  is  not 
zero  may  be  regarded  as  satisfying  the  necessary  conditions.  These  results 

may  be  expressed  briefly  if  a  little  vaguely  in  the  assertion  that 

•54  If  P,  2  are  two  directions  of  which  the  first  is  nul,  the  angles  from  P  to  2 
and  the  angles  from  S  to  P  are  wholly  indeterminate  if  S  is  in  the  isotropic 

vecplane  that  contains  P,  but  if  2  is  not  in  this  vecplane  the  only  angles  possible 
are  infinite. 

Here  the  character  of  2  is  not  described,  but  since  there  is  only  one  nul 
direction  in  an  isotropic  vecplane, 

•55  A  nul  direction  makes  every  angle  with  itself,  but  the  only  angles  possible 
between  two  distinct  nul  directions  are  infinite  angles. 
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•6.  The  vanishing  of  ̂ (^rs)',  unlike  the  vanishing  of  /r3  or  <^§a,  intro- 
duces peculiarities  rather  than  difficulties.  If  r  and  s  are  not  nul  but  ̂ rs  is 

nul,  then  whether  WTB  is  the  zero  vector  or  a  proper  nul  vector,  the  angles 
between  rr  and  s,  are  multiples  of  IT,  the  even  multiples  or  the  odd  multiples 
according  as  £  rs  is  rs  or  —  rs.  It  is  if  r  and  s  are  parallel  that  ̂   rs  is  the 
zero  vector,  and  in  this  case  our  definitions  have  the  desirable  consequence 
that 

The  angles  between  two  parallel  measured  vectors  that  are  not  nul,  in  any       -61 
prepared  vecplane  that  contains  the  vecline  in  which  they  lie,  are  the  even  or  the 
odd  multiples  of  TT  according  as  they  are  measured  in  the  same  direction  or  in 

opposite  directions. 

For  ̂ 'rs  to  be  nul  but  not  zero,  r  and  s  must  belong  to  the  isotropic  vec- 
plane perpendicular  to  ̂   rs,  and 

In  an  isotropic  vecplane,  the  angles  between  two  directions  that  are  not  nul        -62 
are  the  even  or  the  odd  multiples  of  TT  according  as  the  directions  are  congenial 

or  uncongenial. 

It  need  hardly  be  added  that  if  sin  eP2  is  zero  then  ̂ rs  is  mil,  and  that 

therefore  °the  directions  which  make  an  angle  zero  with  a  given  direction  P  -63 
are  the  directions  congenial  with  P  in  isotropic  vecplanes  containing  P  ;  that 

in  complex  space  two  directions  may  be  distinct  when  an  angle  between  them 
is  zero  is  as  natural  as  that  in  this  space  the  amount  of  a  vector  can  be  zero 
when  the  vector  itself  is  not  the  zero  vector. 

'7.  It  is  not  necessary  to  prove  analytically  that  if  P,  2,  T  are  directions  in 
a  prepared  vecplane  and  if  nul  directions  are  in  no  way  involved,  then  the 

sum  of  an  angle  eP2  and  an  angle  e2T  is  an  angle  ePT;  the  reproduction  of  the 

formal  relations  subsisting  in  real  space  between  angles  and  vectors  is  suffi- 
cient evidence.  A  direct  proof  is  however  surprisingly  simple. 

Let  rr,  S8,  t(  be  proper  measured  vectors  in  the  directions  P,  S,  T,  and  let 

kfc  be  a  proper  measured  vector  in  the  normal  direction  K  round  which  the 

angles  are  to  be  traversed  ;  also  let  p,  q  be  the  amounts  of  ̂ rs,  tyst  in  the 
direction  K.  Then 

rs  cos  eP2  =  c^rs,          steos  e2T  =  £  st,  -71 

rs  sin  eP2  =  p,  st  sin  e2T  =  q, 

krs  sin  eP2  =  ̂ krs,     kst  sin  e2T  = 
and  therefore 

rs*t  cos  (eP2  +  e2T)  =  £  rs  /st  -  pq,  -74 

krs*t  sin  (eP2  +  e2T)  =  £  rs  y  kst  +  /st  J  krs.  -75 

But  since  p,  q  are  the  amounts  of  <^rs,  ̂ st  in  a  common  direction, 

=  /rs  c?  st  -  s2  /rt, 
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and  since  r,  s,  t  are  coplanar,  the  universal  relation 

s^krt  =  k^srt  +  r  ̂ kst  +  t  ̂ krs 

implies  r  &  kst  +  1  tf  krs  =  s  S  krt, 

and  therefore,  the  spatial  products  being  simply  numbers, 

S  TB  Skat  +  <?  st  SkrB  =  S  s2  3  krt 

Hence  '74,  75  are  equivalent  to 

•76  s*rt  cos  (eP2  +  e2T)  = 

•77  s*krt  sin  (eP2  +  e2T)  =  s2  *7  krt, 

and  if  s  is  not  zero,  this  is  the  pair  of  equations  defining  the  angles  from  P 
to  T  ;  thus  we  have  a  result  in  which  are  already  included  all  but  one  of  the 

cases  that  would  have  required  special  examination  if  the  deduction  had  been 
made  from  elementary  geometry  : 

•78  If  P,  2,  T  are  three  directions  in  a  prepared  vecplane,  then  provided  only  that 
2  is.  not  nul,  the  sum  of  an  angle  from  P  to  2  and  an  angle  from  2  to  T  is  an 
angle  from  P  to  T. 

The  exception  is  inevitable,  for  if  2  is  nul,  eP2  and  e2T  are  arbitrary  or  in- 
finite, and  their  sum  is  subject  to  no  conditions  whatever.  If  neither  2  nor  T  is 

nul,  then  the  sum  of  an  angle  ePT  and  an  angle  eT2  is  an  angle  eP2,  and  therefore 

any  angle  ePT  can  be  expressed  as  the  difference  between  an  angle  eP2  and  an 
angle  eT2,  that  is,  as  the  sum  of  an  angle  eP2  and  an  angle  e2T;  even  if  the 
direction  T  is  nul,  this  result  is  true  in  the  sense  that  ePT  and  eP2  +  e2T  are 

together  arbitrary  or  together  infinite,  and  therefore  '78  can  be  replaced  by 
the  assertion  of  an  equivalence  : 

•79  If  P,  2,  T  are  three  directions  in  a  prepared  vecplane,  then  provided  only  that 
2  is  not  nul,  the  angles  from  P  to  T  are  the  angles  obtained  by  adding  an  angle 

from  2  to  T  to  an  angle  from  P  to  2. 

There  is  no  failure  of  '79  if  the  vecplane  is  isotropic,  but  the  result  is  then 
a  trivial  deduction  from  '62. 

*8.   From  '11  and  the  definition  in  13'21,  it  follows  that 

•81  If  two  directions  are  at  right  angles  they  are  perpendicular. 

If  we  allow  that  conversely 

•82  If  two  directions  are  perpendicular  they  are  at  right  angles, 

we  must  be  careful  not  to  confuse  this  assertion  with  the  assertion  that  "  if  e 
is  an  angle  between  two  directions  P,  2  that  are  perpendicular  then  e  is  an 

odd  multiple  of  |TT  ",  which  '54  and  '55  shew  to  be  false  in  complex  vecspace. 
It  is  quite  true  that  a  nul  direction  is  a  direction  that  is  at  right  angles  to 
itself,  but  we  must  not  forget  three  significant  facts:  the  right  angle  which  a 

complex  direction  makes  with  a  perpendicular  direction  is  not  the  real  number 
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\TT  at  all,  but  is  the  complex  number  ̂ TT  +  OI,  that  is,  the  pair  of  numbers 

(£TT,  0);  a  nul  direction  does  not  succeed  in  being  at  right  angles  to  itself  at 

the  expense  of  the  more  commonplace  habit  of  being  in  the  same  direction  as 
itself;  the  complex  right  angle  does  not  occupy  a  position  in  the  least 
privileged  among  the  angles  which  a  nul  direction  makes  with  itself,  these 

angles  composing  simply  the  entire  aggregate  of  complex  numbers. 

424.   AREAL  PRODUCTS  ;  ERECTION  IN  AN  ANISOTROPIC  VECPLANE. 

'1.  Having  used  vector  products  for  defining  cyclic  direction,  we  need  not 
scruple  to  use  them  in  other  definitions  associated  with  a  prepared  vecplane. 

For  example,  if  r,  s  are  two  vectors  in  a  prepared  vecplane,  the  amount  of 

^  rs  in  the  normal  direction  is  the  °  areal  product  £4  rs.  The  identities  -11 

(64  rs)2  =  c?r2  /a2  -  (^rs)2,  -12 

^qr^st  =  c^qs/rt-c?qt^rs  -13 

come  from  the  application  of  211  to  14'45  and  14'43,  and 

In  an  isotropic  vecplane,  every  areal  product  is  zero.  -14 

*2.  If  r  is  any  vector  in  an  anisotropic  vecplane  in  which  x,  y  are  vectors 
of  reference,  the  areal  products  6$  rx,  64  ry  are  definite  numbers,  and  there  is 

one  and  only  one  vector  t  which  is  such  that 

<^tx=^rx,     c?ty  =  ̂ ry.  -21 
Moreover,  these  equations  imply  for  any  values  of  the  numbers  £,  tj 

/t  (£x  +  TJJ)  =  64  r  (£x  +  Tjy), 

and  therefore  in  an  anisotropic  vecplane  there  is  one  definite  vector  t  related 

to  a  given  vector  r  in  such  a  manner  that  for  every  vector  s  in  the  plane  the 

numbers  c^ts,  64  TB  are  equal;  this  vector  is  said  to  be  obtained  by  "erecting        -23 
r,  and  is  denoted  by  §r.    For  every  pair  of  vectors, 

£(£T)*  =  64vB,  -24 

whence  from  -12  {/  (<£r)  s}2  =  <^r2  =?s2  -  (c?rs)2.  -25 

*3.  Since  ̂   r2  is  the  zero  vector,  64  r2  is  necessarily  zero,  and  '24  gives  as 
a  special  case 

^(^r)r=0:  -31 

&T  is  perpendicular  to  r.    This  implies  that  °  Sr  is  nul  if  and  only  if  r  is  nul.        -32 
If  in  the  identity 

<^rs  /rt, 

-34 

which  is  a  particular  case  of  '13,  we  substitute  Sf  for  s  and  use  '24  and  '31, 
we  have  for  all  values  of  r  and  t 
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unless  r  is  the  zero  vector,  £4  it  is  not  necessarily  zero,  and  *34  implies 
•35 

while  if  r  is  the  zero  vector  both  sides  of  '35  vanish.    Hence 

•36  For  any  vector  r,  £&  r  (ST)  =  £  r2. 

Writing  ST  for  B  in  '24  we  have 

•37  ^r(<£r)  =  /(<£r)2, 

•38       and  this  with  '36  implies  <$(£*?  =  c£'r2, 

which  we  can  combine  with  *31  in  a  descriptive  proposition: 

•39  The  vector  obtained  by  erecting  r  is  a  vector  perpendicular  to  r  with  the  same 
amounts  as  r. 

But  there  is  nothing  in  '39  to  distinguish  ST  from  its  reverse  or  to  enable  us 
to  discover  ST  when  r  is  nul. 

*4.   If  in  '13  we  write  ST  for  t  we  have 
•41 

•42       whence  for  all  values  of  s         Si  (ST)  B  =  —  <£TB, 

•43       that  is,  /  {S  (S  r)}  s  =  -  c^rs  ; 

•44       hence  £(&T)=-T. 

•5.  The  effect  of  erecting  a  nul  vector  is  remarkable.  If  r  is  nul,  ST  is  a 

multiple  of  r,  and  in  virtue  of  '25 

•51  j^(^r)q}2  =  -(^rq)2 

•52       for  any  vector  q;  thus  °the  ratio  of  ST  to  T  is  a  square  root  of  —I.    Moreover, 
•24  gives  for  any  two  vectors 

•53  c?(<£r)s  =  -/r(<£s); 
if  r  and  s  are  collinear  nul  vectors,  ST,  SB  are  collinear  with  them  and  both 

sides  of  '53  vanish,  but  if  r  and  8  are  nul  vectors  that  are  not  collinear  and  if 

•54  ST=JT,     SB  =  kB, 

•55        '53  implies  j  =  —  k: 

•56  In  any  prepared  anisotropic  vecplane,  each  of  the  square  roots  of  —  1  is 
associated  with  one  of  the  nul  veclines  as  the  ratio  of  ST  to  T  when  r  is  in  that 
vecline. 

•57  °  To  know  which  square  root  belongs  to  a  particular  nul  vecline  is  to  know  the 
cyclic  direction  of  the  vecplane. 

*6.  In  an  isotropic  vecplane,  erection  is  not  a  feasible  operation.  For  '24  to 
be  true  for  every  value  of  8,  the  vector  ST  would  have  to  be  in  the  vecline 

perpendicular  to  the  vecplane,  that  is  to  say,  in  the  nul  vecline  of  the  vec- 
plane, whatever  the  value  of  r,  and  therefore  ST  could  not  have  the  same 
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amounts  as  r  unless  r  itself  was  nul.  The  cause  of  the  failure  is  in  14,  which 

shews  that  for  an  isotropic  vecplane  the  pair  of  equations  '21  is  satisfied  if 
and  only  if  t  is  in  the  nul  vecline. 

*7.  We  may  use  the  erected  vector  £r  to  shew  that  constructions  which 
we  are  accustomed  to  make  in  ordinary  geometry  can  usually  be  postulated 

in  algebraic  space.  Let  r  be  any  proper  anisotropic  measured  vector  in  a  pre- 
pared anisotropic  vecplane,  and  let  e  be  any  angle,  that  is  to  say,  any  number, 

real  or  complex  according  as  the  algebraic  space  with  which  we  are  concerned 
is  real  or  complex.  Let  s  be  any  number  other  than  zero,  and  let  s  denote  the 

vector  (a/r)  {r  cos  e  +  ̂ r  sin  e}.  By  '31,  '38,  '36, 

c^s2  =  s2,     /  rs  =  rs  cos  e,     ̂ rs  =rssin  e;  -71 

hence  s  is  an  amount  of  s,  and  the  direction  of  s.  makes  an  angle  e  with  the 
direction  of  rr.  Thus 

In  any  prepared  anisotropic  vecplane  there  is  a  direction  making  any  given        -72 
angle  with  any  given  anisotropic  direction; 

by  3'51,  there  is  not  more  than  one  such  direction.  Construction  and  result 
alike  fail  if  the  direction  is  nul  or  the  vecplane  isotropic. 

425.  VECTOR  FRAMES  IN  A  VECPLANE. 

'1.  It  follows  from  13*45  that  any  two  vectors  in  a  given  vecplane  can 
serve  as  vectors  of  reference  for  that  vecplane  if  they  are  not  collinear.  If  two 

vectors  r,  s  are  given  in  terms  of  two  vectors  x,  y  by 

r  =  X*f>  s  =  %8f,  -ll 
where  for  work  in  two  dimensions  we  write, 

x-CfciO,  f=C*,y),  -12 
then  their  projected  product  is  given  by 

/  rs  =  £  (£rx  + 

that  is,  by         <? rs  =#£P£g  +  ̂ (£,77.+  i/r£«)  + 

where  Sll  =  E  =  <? x2,  S12  =  S21  =  F=  £ xy,  S22  =  0  =  /y2.  -14 

For  the  projected  products  <^xr,  <^yr,  denoted  by  \r,  /nr,  we  have  as  in 
ordinary  space 

Xr  =  E&  +  Fvr>  f*  =  F£r  +  GVr,  -15 

or  concisely  ^r  =  $1%r,  Atr=  $2%r.  -16 

•2.   From  1417,  the  vector  product  of  two  vectors  in  the  vecplane  that    -, 
includes  x  and  y  is  given  by 

^rs  =  (|r77.-77r^)^xy.  -21 

When  the  vecplane  is  prepared,  a  direction  is  given  in  which  vector  products 
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are  to  be  measured,  and  if  C  is  used  for  the  amount  of  ̂   xy  in  this  direction, 

that  is,  for  the  areal  product  ̂ xy,  then  '21  implies 
•23  Stn^Cfato-Kfo 

Since  the  vectors  x,  y  are  not  collinear,  ̂   xy  is  not  the  zero  vector,  and  G 

is  zero  if  and  only  if  fy  xy  is  in  a  nul  vecline  : 

•24  The  areal  magnitude  of  a  vector  frame  in  a  vecplane  is  zero  if  and  only  if 
the  vecplane  is  isotropic. 

•25  From  4-12,  C*  =  EG-  F\ 

whether  or  not  the  vecplane  is  isotropic,  and  therefore 

•26  If  the  fundamental  magnitudes  of  a  frame  in  a  vecplane  are  E,  F,  G,  the 
vecplane  is  isotropic  if  and  only  if  EG  —  F2  is  zero  ; 

this  proposition  differs  from  15'54  only  because  the  vectors  of  reference  can 
not  be  collinear. 

If  the  vecplane  is  not  isotropic,  '23  is  equivalent  to  '21;  in  the  exceptional 

case,  '23  reduces  to  4'14,  but  '21  retains  its  full  significance;  the  vector 
product  is  not  the  zero  vector  unless  r  and  8  are  collinear. 

*3.    If  the  vecplane  is  not  isotropic,  there  are  vectors  Si,  <£"y,  and  we  have 
from  4-24  and  4'31, 

Hence  if  x,  y  denote  —  C~l£y,  C~lgx,  we  have 
•31 

and  therefore  from  413,  ^xy  -S4xy  =  1, 

•32       that  is,  £&  xy  =  C~\ 

•33       Since  '32  implies  that  £4  xy  is  not  zero,  °  the  vectors  x,  y  form  a  frame,  the 
polar  of  xy. 

If  r  is  any  vector,  '31  implies 

•34       that  is, 

Hence  the  vector  XPx  +  /*ry  has  the  same  projected  products  in  the  frame  xy 

as  the  vector  r.  But  by  '26,  EG  —  F"  is  not  zero,  and  therefore  the  pair  of 
equations  '15  determines  £r,  ̂ P  uniquely  in  terms  of  Xr,  /ir.  It  follows  that 
Xrx  +  /iry  has  the  same  coefficients  in  xy  as  r,  and  this  implies  that  the 
vectors  are  the  same  : 

•35  r  =  AxX  +  fj.rf. 

In  other  words,  \r,  /XT  are  the  coefficients  of  r  in  the  polar  frame  xy. 

The  definition  of  the  polar  magnitudes  and  their  relation  to  E,  F,  G  follow 

as  for  ordinary  space  in  344. 
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•4.  In  an  isotropic  vecplane,  the  projected  products  Xr,  /j,  of  a  vector  r  can 
be  defined  as  usual,  and  they  are  related  to  the  coefficients  £r,  r)t  by  the  pair 

of  formulae  '15,  but  it  follows  from  '26  that  this  pair  of  formulae  can  not  be 
reversed  to  give  £r,  »/r  in  terms  of  \r,  /*r,  and  that  the  projected  products  can 
not  be  independent. 

We  understand  these  peculiarities  if,  bearing  2'53  in  mind,  we  try  to  form  a 
frame  polar  to  xy.  If  neither  x  nor  y  is  nul,  any  two  vectors  of  which  one  is 
perpendicular  to  y  and  the  other  to  x  are  both  nul  and  are  therefore  collinear 
and  unable  to  form  a  frame.  If  x  is  nul,  it  is  possible  to  find  vectors  x,  y 
perpendicular  to  y,  x  and  not  themselves  collinear,  but  since  x  is  in  this  case 
perpendicular  to  every  vector  in  the  vecplane,  it  is  certainly  impossible  to 
satisfy  the  further  condition 

/xx  =  l 

used  to  complete  the  definition  of  x  : 

In  an  isotropic  vecplane,  the  definition  of  the  polar  of  a  frame  fails  completely.        -41 

Since  the  frame  in  which  we  are  accustomed  to  find  Xr,  ̂   serving  as  coefficients 
no  longer  exists,  it  is  not  surprising  that  in  fact  the  two  projected  products 
do  not  suffice  to  determine  the  vector. 

Formulae  are  all  simpler  if  the  isotropic  vecplane  is  given  a  definite  aspect. 
In  this  aspect,  let  the  vectors  of  reference  x,  y  have  amounts  U,  V\  then 

by  241 
E=U\    F=UV,    0=V\  -42 

and  the  condition  in  '26  is  reduced  to  an  identity. 
If  the  vector  r  has  amount  r  in  the  same  aspect, 

Xr  =  Ur,     ywr  =  Vr,  -43 

and  since  these  projected  products  depend  on  the  amount  alone,  not  on  the 
direction  of  r,  naturally  it  is  impossible  by  means  of  them  to  infer  the  direction. 

Since  r  is  the  sum  of  vectors  £rx,  ?;ry  which  have  amounts  U%r,  Vrjr,  it  follows 

from  2*44  that  because  the  plane  is  isotropic  with  a  definite  aspect 

r=Uj-r+  Vnt.  -44 

This  formula  combines  with  -43  to  give  '15,  but  we  might  have  reversed  the 
argument  and  made  no  appeal  to  2'44,  for  '15,  '42,  '43  give 

Ur=U(U%r  +  Vrjr),     Vr=V(U^+Vr)r\  -45 
and  since  x,  y  are  not  collinear  they  are  not  both  nul,  and  one  of  the  two 
numbers  U,  V  is  certainly  different  from  zero.  With  this  line  of  reasoning, 
2*44  is  an  obvious  deduction  from  '44. 

We  have  for  any  two  vectors  r,  s,  from  *13  and  "42, 

V  '-46 
but  this  is  only  the  relation  2'41  which  results  from  confining  the  measure- 

ments to  one  aspect  of  the  vecplane. 
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*5.   If  U,  Fare  amounts  of  the  vectors  of  reference  x,  y  in  any  vecplane,  then 

•51  E  =  U\     G=V"-. 

If  neither  U  nor  V  is  zero,  the  equations 

•52  UVcosa>  =  F,     UVsma>=C, 

which  are  compatible  in  virtue  of  '25,  determine  a  congruence  of  angles,  and 
one  member  of  this  congruence  can  be  selected  to  be  the  angle  of  the  frame 
formed  of  the  measured  vectors  x^,  y>. 

If  U  or  V  is  zero,  there  is  no  longer  an  angle  that  can  serve  a  useful  purpose, 
but  the  validity  of  formulae  that  involve  F  and  C  is  not  brought  into  question ; 

the  magnitudes  E,  F,  G,  C  are  fundamental,  and  the  failure  of  a  derived 

magnitude  such  as  the  angle  does  not  react  on  theorems  in  which  this  derived 

magnitude  is  not  introduced. 
In  an  anisotropic  vecplane,  U  and  V  may  both  be  zero,  for  proper  vectors 

may  be  taken  one  from  each  of  the  nul  veclines  to  form  the  frame.  Then  F,  C 
are  definite  finite  numbers  subject  to  the  relation 

•55  F*  +  C*  =  0, 

and  the  projected  product  of  two  vectors  is  given  by  the  simple  formula 

•57  «?n-Jl(&i7.  +  '7r&). 
For  the  polar  coefficients  of  r,  we  have 

•58  Xr  =  *V     /*,  =  ̂ r; 
by  reversing  this  pair  of  formulae,  we  see  that  the  polar  magnitudes  are  0, 

F~l,  0,  and  that  the  polar  frame  is  formed  of  the  vectors  F~lj,  F~*x. 
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431.   LINES  AND  PLANES. 

*1.  The  elegance  revealed  in  such  theorems  as  13'45  and  13*46  must  not 
beguile  us  into  forgetting  that  veclines  and  vecplanes  are  analogous  to  lines 

and  planes  all  concurrent  in  a  single  point,  and  that  for  us  the  study  of  vec- 

space  is  not  an  end  in  itself*  but  a  means  to  the  study  of  a  space  resembling 
the  space  of  elementary  geometry.  We  have  to  define  lines  and  planes. 

If  0,  P  are  any  two  points  of  space,  there  is  by  hypothesis  associated  with 
the  step  from  0  to  P,  that  is,  with  the  ordered  pair  of  points  (0,  P),  a  definite 
vector,  to  be  called  the  vector  of  the  step. 

0  The  aggregate  of  the  positions  of  P  for  which  the  vector  OP  belongs  to  a        '12 
given  vecline  or  vecplane  is  called  the  line  or  plane  through  0  with  this  vec- 
line  or  vecplane.    If  P  is  on  the  line  or  plane  through  0  with  vecline  or 
vecplane  a  and  Q  is  on  the  line  or  plane  through  P  with  the  same  vecline  or 
vecplane,  then  OQ,  being  the  sum  of  OP  and  PQ,  also  belongs  to  a,  and 
therefore  Q  is  on  the  line  or  plane  through  0  with  this  vecline  or  vecplane ; 

that  is  to  say,  °  if  P  is  on  the  line  or  plane  through  0  with  vecline  or  vecplane  a,        -13 
then  the  line  or  plane  through  P  with  vecline  or  vecplane  a  is  contained  in  the 
line  or  plane  through  0  with  vecline  or  vecplane  a.    Also  because  PO  belongs 

to  the  same  vecline  and  to  the  same  vecplanes  as  OP,  it  follows  that  °  if  P  is        -14 
on  the  line  or  plane  through  0  with  a  given  vecline  or  vecplane,  then  0  is  on 
the  line  or  plane  through  P  with  the  same  vecline  or  vecplane.    Combining 
this  result  with  the  last  we  can  assert  that 

If  P  is  any  point  on  the  line  or  plane  through  a  point  0  with  a  given  vecline        -15 
or  vecplane  a,  the  line  or  plane  through  P  with  the  vecline  or  vecplane  a  is 
identical  with  the  line  or  plane  through  0  with  the  same  vecline  or  vecplane. 

Thus  °  a  line  or  plane,  though  defined  in  the  first  instance  with  reference  to  a        -16 
particular  point,  which  is  a  point  on  it  because  the  zero  vector  is  the  vector  of 

> 

*  The  student  of  non-euclidean  geometry  will  find,  and  will  lose  his  sense  of  unreality 
in  the  subject  on  finding,  that  the  vector-field  of  ordinary  space  is  an  '  elliptic  plane ' ;  as 
such  it  repays  careful  attention.  Compare  Sommerville,  Elements  of  Non-Euclidean  Geometry, 
p.  90,  1914. 
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the  zero  step  and  is  included  in  every  vecline  and  in  every  vecplane,  bears  in 
fact  no  relation  to  any  one  of  its  points  that  it  does  not  bear  to  any  other. 

Every  line  has  a  definite  vecline,  every  plane  a  definite  vecplane,  and  the 

description  nul  or  isotropic  is  transferred  to  the  line  or  plane  if  it  belongs  to 
the  vecline  or  vecplane. 

*2.  If  P,  Q  are  any  two  distinct  points,  a  line  through  P  includes  Q  if  and 
only  if  its  vecline  includes  the  vector  PQ ;  since  this  vector  is  not  the  zero 

vector,  there  is  one  and  only  one  vecline  to  which  it  belongs.  Hence 

•21  Through  two  points  that  are  distinct  there  passes  one  and  only  one  line. 

And  since  any  vecplane  that  includes  the  vector  PQ  includes  every  multiple 
of  this  vector, 

•22  Every  plane  that  includes  two  distinct  points  of  a  line  contains  the  whole  line. 

*3.  If  P,  Q,  R  are  three  points  that  are  not  collinear,  the  vectors  PQ,  PR 
are  not  collinear,  and  there  is  therefore  one  and  only  one  vecplane  which 

includes  them  both;  a  plane  through  P  passes  through  Q  and  R  if  and  only  if 
it  has  this  vecplane : 

•31  Through  three  points  that  are  not  collinear  there  passes  one  and  only  one 

plane. Hence  further : 

•32  If  a  given  point  is  not  on  a  given  line,  there  is  one  and  only  one  plane  that 
includes  the  point  and  contains  the  line ; 

•33  If  two  distinct  lines  have  one  point  in  common  there  is  one  and  only  one  plane 
that  contains  them  both. 

The  correlative  of  this  last  theorem  is  proved  with  equal  ease.  If  two  distinct 

planes  have  one  point  0  in  common,  the  point  P  also  is  common  to  the  two 

planes  if  and  only  if  the  vector  OP  is  common  to  the  corresponding  vecplanes; 

if  these  vecplanes  were  not  distinct  the  two  planes  through  0  would  coincide  ; 

hence  the  vectors  common  to  the  vecplanes  compose  a  definite  vecline,  and 

•34  If  two  distinct  planes  have  a  single  point  in  common,  the  points  common  to 
them  compose  a  definite  line. 

432.   PARALLELISM;  INTERSECTIONS  OF  LINES  AND  PLANES. 

•1.    Two  lines  with  the  same  vecline  or  two  planes  with  the  same  vecplane 
are  said  to  be  parallel,  and  a  line  is  said  to  be  parallel  to  a  plane  if  the  vecline 
of  the  one  is  contained  in  the  vecplane  of  the  other. 

•13  It  follows  from  the  definitions  of  lines  and  planes  that  °  parallel  lines  or 
parallel  planes  that  have  a  single  point  in  common  coincide  completely,  and 

•14        that  °  if  a  line  and  a  plane  that  are  parallel  have  one  point  in  common  the 
line  is  contained  in  the  plane. 
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*2.  Let  p,  q  be  two  parallel  lines,  and  let  P  be  a  point  on  p  and  Q  a  point 
on  q.  Then  a  vecplane  that  contains  the  vecline  of  p  and  includes  the  vector 
PQ  also  contains  the  vecline  of  q;  the  plane  through  P  with  this  vecplane 

contains  p  and  includes  Q,  and  because  it  includes  Q  it  coincides  with  the 

parallel  plane  through  Q,  which  contains  q;  hence  if  two  lines  are  parallel, 

there  is  a  plane  that  contains  them  both,  and  1'34  shews  that  there  is  not 
more  than  one  such  plane  if  the  lines  are  distinct : 

If  two  distinct  lines  are  parallel,  there  is  one  and  only  one  plane  that  contains        -21 
them  both. 

The  converse  of  the  combination  of  '21  with  T33  must  be  proved.  Let  p,  q 
be  lines  in  a  given  plane,  let  P  be  a  point  on  p  and  Q  a  point  on  q,  and  let  p 

be  a  proper  vector  in  the  vecline  of  p  and  q  a  proper  vector  in  the  vecline  of 

q.  Then  if  p,  q  are  not  parallel,  p,  q  are  not  collinear,  and  the  vector  PQ, 
being  in  the  vecplane  which  includes  p  and  q,  can  be  expressed  in  the  form 

VP  —  £<!>  where  77,  £  are  numbers.  Let  R  be  the  point  such  that  the  vector  QR 
is  £q ;  then 

PR  =  PQ  +  QR  =  (TJP  -  g-q)  +  £q  =  *?p. 
Because  PR  is  a  multiple  of  p,  the  point  R  is  on  p,  and  because  QR  is 
a  multiple  of  q,  this  same  point  is  on  q.    Hence 

If  two  lines  in  one  plane  are  not  parallel,  they  have  one  and  only  one  point        -22 
in  common. 

If  a  line  is  not  parallel  to  a  plane,  it  is  not  parallel  to  any  line  in  that  plane. 
Let  p  be  a  line  that  is  not  parallel  to  a  given  plane,  and  let  Q  be  any  point  in 

the  plane.  A  plane  through  Q  containing  p  necessarily  cuts  the  given  plane, 
which  also  includes  Q,  in  a  line,  and  this  line,  since  it  is  not  parallel  to  p  and 

lies  in  a  plane  that  contains  p,  has  one  point  in  common  with  p ;  this  point 
belongs  to  both  p  and  the  given  plane,  and  no  other  point  can  belong  to  them 
both  since  p  is  not  in  the  plane. 

If  a  line  and  a  plane  are  not  parallel,  they  have  one  and  only  one  point  in        -23 
common. 

If  two  vecplanes  are  distinct,  each  contains  veclines  which  are  not  contained 

in  the  other.  Hence  if  two  planes  are  not  parallel,  each  contains  lines  that  are 

not  parallel  to  the  other,  whence  from  '23  and  1*34 

Two  planes  that  are  not  parallel  necessarily  intersect  in  a  line.  -24 

0  Parallel  planes  either  coincide  or  have  no  points  in  common.  -25 

433.   EQUATIONS  OF  LINES  AND  PLANES. 

'1.  The  vectorial  equations  describing  the  relations  of  lines  and  planes  to 
a  fixed  point,  and  the  algebraic  equations  of  lines  and  planes  referred  to  an 
attached  vector  frame,  have  the  same  forms  in  algebraic  space,  real  or  complex, 
as  in  ordinary  space,  and  for  reasons  expressible  in  the  same  words. 
N.  15 
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•2.    Thus  the  reasoning  leading  to  334'23  and  334'28  may  be  repeated,  to 

•21        the  conclusions  that  °  every  plane  has  an  equation  of  the  form 
•2-2  £fk  =  K, 

•23       and  that  °  every  equation  of  this  form,  if  k  is  not  the  zero  vector,  is  the  equation 
of  a  definite  plane.  It  is  to  be  emphasised  that  the  argument  does  not  suppose  k 

to  be  a  unit  vector  or  a  multiple  of  a  unit  vector,  and  is  applicable  if  k  is  nul. 

Attaching  a  vector  frame  xyz  to  the  point  to  which  '22  refers  the  plane, 
we  have  the  equation  in  the  equivalent  forms 

•24  WLV  =  K,     v*X  =  K- 
Since  the  three  numbers  £K,  77*,  &  are  not  all  zero,  one  of  the  three  sets  of 

numbers  (K/%*.,  0,  0),  (0,  Kfrj^,  0),  (0,  0,  K/&)  certainly  survives;  if  %*.  is 
not  zero,  the  point  whose  projections  are  Kj^,  0,  0  is  the  point  in  which  the 

plane  '24  is  met  by  the  line  through  0  perpendicular  to  the  plane  whose 
vecplane  contains  y  and  z.  Similarly  if  A*  is  not  zero,  the  point  whose  co- 

ordinates are  K/\K,  0,  0  is  the  point  in  which  the  same  plane  cuts  the  line 
through  0  whose  vecline  contains  x;  certainly  one  of  the  three  numbers 

AH.  /ik>  *>k  is  different  from  zero,  and  therefore  one  point  on  the  plane  can  be 
indicated  by  its  coordinates  in  the  attached  vector  frame.  In  real  space  there 

is  always  a  vector  (K/  £  k2)  k  which  leads  from  the  origin  to  one  point  on  the 

plane  given  by  '22;  in  complex  space,  this  particular  construction  fails  if  <^k2 
is  zero,  but  the  plane  is  none  the  less  determinate. 

*3.  The  line  through  a  point  S  with  vecline  determined  as  including  a 
proper  vector  k  is  the  locus  of  a  point  R  which  is  such  that  the  vector  of  SR 
is  a  multiple  of  k.  If  then  the  vectors  of  the  steps  to  S,  R  from  an  origin  0 

are  s,  r,  the  point  R  is  on  the  line  if  and  only  if  r  —  s  is  collinear  with  k,  that 
is,  if  and  only  if  the  vector  product  ̂   (r  —  s)  k  is  the  zero  vector,  or  if  and 

•31  onlyif                                              ^rk  =  K, 

•32  where                                                K=^sk. 

•33  Thus°every  line  has  a  vectorial  equation  of  the  form  *31,  which  involves 
.34  the  condition                                   g  j^  _  Q 

The  only  difficulty  in  proving  the  converse  is  in  shewing  that  the  equation 

•31  can  not  be  altogether  insoluble  if  '34  is  satisfied  and  k  is  a  proper  vector, 

for  the  argument  used  above  proves  that  if  there  is  one  point  satisfying  '31 
the  complete  locus  is  a  line.  A  simple  plan  is  to  use  an  attached  vector  frame. 

Then  '31,  '34  are  equivalent  to 

•35  ./•-1((*i7-i7k$)  =  x«,    J"-1  (&£-(*£)  =  /**, 
•36       with  the  condition  £k AK  +  ̂ K/AK  +  ̂ H^K  =  0> 

and  also  to 

•37  J(vnn  —  IJ>IS.V)  =  £K,     J(\is.v  —  VkA)  =  i7K> 

•38        with  the  condition  AIE£K  +  PVJTK  +  "k£k  =  0. 
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If  fk  is  not  zero,  (0,  —  Jvf.11-*.,  J^K/^L)  is  a  set  of  numbers  indicating  a  point 
on  the  locus,  and  since  not  more  than  two  of  the  three  numbers  £*,  77^,  £it 

can  be  zero,  one  point  certainly  is  discoverable. 

An  equation  of  the  form  '39 
^rk  =  K 

represents  a  definite  line  if  only  k  is  a  proper  vector  and 

With  the  line  as  with  the  plane  one  construction  possible  in  real  space  may 

fail  in  complex  space:  '34  and  14'42  imply 

shewing  that  if  k  is  not  nul  the  vector  ̂ kK/c^k*  determines  a  point  on 
the  line,  but  the  exceptional  case  must  not  be  overlooked.  The  fact  is  that  in 

constructions  in  real  space  we  use  the  theorem  that  if  two  proper  vectors  are 

perpendicular  they  are  not  parallel,  and  for  complex  space  the  theorem  is 
not  true. 

*4.    In  considering  what  is  implied  by  the  equation 

JT  -41 

in  the  geometry  of  a  plane,  we  have  to  be  on  our  guard.  If  there  is  one  vector 

s  which  satisfies  the  equation,  the  equation  is  equivalent  to 

c?(r-s)k  =  0  -42 

and  expresses  that  r  —  s  is  perpendicular  to  k.  If  two  vectors  r  —  s,  p  —  s  are 
both  perpendicular  to  k,  either  they  are  collinear  or  k  is  perpendicular  to  the 

vecplane  that  they  determine;  if  by  hypothesis  k  belongs  to  the  vecplane 

determined  by  r  —  s,  p  —  s,  the  latter  case  can  not  arise  unless  the  vecplane  is 

isotropic,  but  in  an  isotropic  vecplane,  '42  asserts  only  that  one  of  the  two 
vectors  r  —  s,  k  is  nul,  and  therefore  if  k  is  itself  nul  '42  involves  no  restriction 
on  r  —  s.  Again,  in  an  anisotropic  vecplane  containing  k,  a  second  vector  can 
be  associated  with  k  to  form  a  frame,  and  any  vector  r  which  has  K  for  its 

first  polar  coefficient  in  this  frame  satisfies  '41.  But  in  an  isotropic  vecplane, 
not  only  is  this  process  at  fault,  but  the  actual  existence  of  the  vector  is  con- 

ditional :  if  k  is  not  nul  but  has  an  amount  k  in  one  aspect  of  the  vecplane, 

any  vector  whose  amount  in  the  same  aspect  is  K/k  satisfies  "41,  and  there  is 
a  vector  of  this  amount  in  every  anisotropic  direction  in  the  vecplane;  but  if 

k  is  nul,  £  rk  is  zero  for  every  vector  in  the  vecplane  and  '41  is  ineffective  or 
insoluble  according  as  K  is  or  is  not  zero. 

Thus0  '41   represents  a  definite  line  perpendicular  to  k  if  the  plane  is        -43 
anisotropic  and  k  is  not  zero,  or  if  the  plane  is  isotropic  and  k  is  not  nul.  The 

observation  that  in  the  latter  case  the  line  represented  necessarily  is  nul,  shews 

that  the  converse  question,  as  to  what  lines  are  representable  in  the  form  *41, 
15—2 
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•44        must  not  be  ignored.    °If  k  is  a  proper  vector  perpendicular  to  a  given  line, 
and  if  r,  •  are  vectors  defining  points  of  the  line,  then 

and  therefore  £  rk  =  £  sk, 

•45  an  equation  of  the  form  '41;  °the  vecline  to  which  k  belongs  is  determinate 
unless  the  plane  is  isotropic  and  the  given  line  is  nul. 

It  is  to  be  noticed  that  the  exception  is  not  the  same  in  '43  as  in  '45  :  in 
the  latter  case  it  is  the  line  concerned  that  must  not  be  nul,  but  in  the  former 

it  is  the  perpendicular  vecline.  In  an  isotropic  plane,  the  lines  that  can  be 

represented  in  the  form  '41  are  the  nul  lines,  but  the  representation  is 
arbitrary  in  the  extreme:  any  anisotropic  vector  in  the  plane  can  be  used  in 

the  specification  of  any  nul  line;  for  a  line  that  is  not  nul,  '44  remains  true, 
but  fails  to  distinguish  the  points  that  belong  to  the  line  from  those  that  do 
not:  k  must  be  nul,  and  c^rk  is  zero  for  every  point  in  the  plane,  whatever 
the  origin. 

In  an  anisotropic  plane,  the  equation 

•46  <S4  rk  =  A 

is  equivalent  to  £  r  (^k)  =  —  A  ; 

•47  °  hence  "46  is  an  alternative  form  of  equation  to  any  line  in  such  a  plane,  and 
is  effective  if  <£k  is  not  the  zero  vector,  that  is,  if  k  is  not  the  zero  vector. 

Whereas  '41  represents  a  line  perpendicular  to  k,  the  line  given  by  '46  is 
parallel  to  k,  as  is  directly  evident  since  if  s  is  any  one  vector  satisfying  '46 
the  equation  is  equivalent  to 

£4  (r  -  B)  k  =  0. 

In  an  isotropic  plane,  this  method  of  representing  a  line  necessarily  fails  com- 
pletely, since  the  areal  product  is  then  always  zero. 

We  must  not  conclude  that  there  is  no  representation  of  a  line  in  a  plane 
that  is  always  valid.  If  the  plane  is  referred  to  an  attached  vector  frame,  the 
step  from  the  point  Q  to  the  point  of  coordinates  £,  77  has  the  vector  whose 

coefficients  are  £—  £Q,  »?  —  »?Q>  and  this  vector  belongs  to  the  vecline  which 
includes  a  given  proper  vector  d  if  and  only  if 

•48 

this  equation  is  necessarily  significant,  since  £d  and  yA  are  not  both  zero,  and 

conversely,  if  two  numbers  %&,  r)&  are  not  both  zero,  there  is  a  proper  vector 

d  of  which  they  are  the  coefficients,  and  '48  expresses  that  (f,  77)  is  in  the 
line  through  Q  whose  vecline  includes  d.  Thus  the  assertion  that 

•49  In  a  plane,  a  line  is  the  locus  of  a  point  whose  coordinates  satisfy  a  linear 
equation, 

is  true  without  any  reservation  as  to  isotropic  planes  or  lines. 
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434.   SIMULTANEOUS  VECTORIAL  EQUATIONS. 

*1.    Theorems  regarding  intersections  of  lines  and  planes  can  always  be 
interpreted  as  theorems  concerning  simultaneous  vectorial  equations. 

*2.    If  a  is  a  proper  vector,  the  equation 

£ra.  =  A  -21 

represents  in  a  prepared  anisotropic  plane  a  definite  line,  and  so  also  does  the 

equation 
^ra  =  P;  -22 

the  first  line  is  perpendicular  to  a  and  the  second  is  parallel  to  a.  Hence  the 

two  lines  have  one  and  only  one  point  in  common  unless  a  is  self- perpendicular, 
that  is,  unless  a  is  nul. 

If  a  is  an  anisotropic  vector  in  a  given  anisotropic  vecplane,  the  vecplane  con-       '23 
tains  one  and  only  one  vector  r  which  satisfies  simultaneously  the  two  equations 

£ra.  =  A,    ̂ ra  =  P, 
A,  P  being  given  numbers. 

If  a  is  nul,  ( <#  ra)2  +  («=?  ra)s  =  0  -24 

identically,  by  24'12,  and  the  two  equations  '21,  '22  are  incompatible  unless 
P2  +  A*-  =  0.  -25 

*3.    In  space,  the  two  planes 

£  ra  =  A,     £  rb  =  B  -31 
are  not  parallel  unless  the  vectors  a,  b  are  collinear,  and  if  they  are  not 

parallel  they  intersect  in  a  line  whose  vecline  contains  fy  ab. 

If  a,  b  are  any  two  vectors  that  are  not  collinear,  the  equations  '32 
/ra,  =  A,     £rb  =  B 

can  be  satisfied  simultaneously,  and  if  d  is  a  particular  vector  satisfying  these 
equations,  every  solution  is  of  the  form,  d+pfy  ab,  where  p  is  a  number  varying 
from  solution  to  solution. 

•4.    The  plane  £  ra  =  A  -41 
is  perpendicular  to  a,  and  the  line 

^  re  =  C  -42 

is  parallel  to  c;  hence  the  two  are  not  parallel  unless  a  and  c  are  perpendicular. 

Unless  £  ac  is  zero,  the  two  equations  -43 

Jn  =  Af    <%rc  =  C 

are  satisfied  by  one  and  only  one  vector  r,  provided  only  that  £  Cc  is  zero. 

An  explicit  formula  comes  from  14'42;  since  identically 
<%>  a  (fy  re)  =  r  £  ac  -  c  £  ra,  -44 

the  equations  to  be  satisfied  together  imply 

C.  -45 
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If  we  wish  to  use  vectorial  algebra  alone  to  prove  '43,  we  have  only  to 

remark  that  '45  implies 
•46  c^  ra  £  ac  =  A  £  ac 

•47       and  ^  re  £  ac  =  C  £  ac  —  a  £  Cc, 

and  therefore  implies  '41  and  '42  if  c  is  perpendicular  to  C  but  not  to  a. 

435.    MEASUREMENT  IN  ALGEBRAIC  SPACE. 

*1.  The  language  concerning  directions  and  angles  is  transferred  bodily  to 
lines  and  planes  from  their  veclines  and  vecplanes.  And  as  we  have  said 

already,  a  line  with  a  mil  vecline  is  called  a  nul  line  or  an  isotropic  line,  and 

a  plane  whose  vecplane  is  isotropic  is  itself  said  to  be  isotropic. 

*2.  The  amounts  of  the  vector  of  the  step  from  P  to  Q  are  called  the  lengths 
of  the  step,  or  the  distances  from  P  to  Q.  If  two  points  are  distinct,  then  if 
the  line  through  them  is  nul,  zero  is  the  only  distance  from  one  to  the  other, 

but  if  the  line  through  them  is  not  nul,  there  are  two  distances  from  one  to 

the  other,  each  distance  being  the  negative  of  the  other. 

A  step  associated  with  one  of  its  lengths  is  a  measured  step,  and  has,  unless 
it  is  the  zero  step,  a  definite  direction.  Parallel  steps,  that  is  to  say,  steps 
whose  vectors  are  collinear,  have  the  same  directions.  To  describe  steps  which 
have  a  common  direction  and  the  same  length  in  that  direction  as  congruent 

is  equivalent  simply  to  the  definition  that 

•24  Congruent  steps  are  steps  with  the  same  vector. 
A  line  associated  with  one  of  its  directions  is  a  ray,  and  a  step  in  a  ray  has 

in  the  direction  of  that  ray  a  length  which  is  completely  determinate.  Equally 

definite  is  measurement  in  a  chosen  aspect  of  an  isotropic  plane. 

A  nul  line  has  only  one  direction,  and  if  P,  Q  are  two  points  of  a  nul  line,  there 

is  only  one  distance  from  P  to  Q,  namely,  zero;  this  is  not  to  say  that  P  and  Q 

may  not  be  distinct,  or  that  the  vector  of  QP  is  not  distinguishable  from  the 
vector  of  PQ.  If  PQ,  ES  are  proper  steps  in  parallel  nul  lines,  the  vector  of  PQ 

can  be  described  as  a  definite  multiple  of  the  vector  of  RS,  although  the  rela- 
-  tion  can  not  be  expressed  significantly  as  a  relation  between  lengths ;  but  we 

can  make  no  quantitative  comparison  of  nul  steps  that  are  in  different  directions. 
A  Cartesian  frame  in  algebraic  space,  as  in  real  space,  is  formed  of  three  rays 

concurrent  in  an  origin,  but  it  is  the  essence  of  Cartesian  geometry  that  the 

positions  of  points  on  the  axes  are  determined  by  distances  measured  from  the 
origin.  The  axes  of  a  Cartesian  frame  must  therefore  be  anisotropic.  It  is  not 
essential  to  suppose  the  planes  also  anisotropic,  but  if  a  plane  is  isotropic,  the 

polar  frame  is  no  longer  available  and  all  formulae  dependent  on  the  polar 
or  involving  the  biplanar  angles  of  the  frame  become  liable  to  suspicion. 
Cartesian  formulae  can  be  employed  freely  only  on  the  understanding  that 

the  axes  and  planes  of  the  frame  are  all  anisotropic;  this  is  sufficient  reason 

for  regarding  the  attached  vector  frame  as  the  ultimate  standard. 



435  ALGEBRAIC  SPACE  231 

The  angles  of  a  Cartesian  frame  belong  to  six  congruences  which  are  definite  when  the 
axes  and  the  planes  of  the  frame  are  given.  To  correspond  at  all  closely  to  the  system  of 
conventions  that  is  usually  adopted  for  choosing  the  angles  from  the  congruences  in  ordinary 
space,  a  system  of  conventions  for  complex  space  must  be  highly  artificial,  and  if  we  had 
introduced  any  particular  system  of  conventions  explicitly  in  our  earlier  work,  we  should 

have  been  forced  now  into  a  digression  to  consider  whether  the  conventions  bad  in  fact  in- 
fluenced the  formulae.  But  by  instating  for  ordinary  space  that  if  only  it  belongs  to  the 

right  congruence  one  angle  is  as  good  as  another,  we  have  avoided  all  need  to  recognise  one 
distinction  between  real  space  and  complex  space  that  might  otherwise  have  seemed  rele- 

vant here  and  elsewhere. 

*3.  Naturally  we  attempt  to  define  distances  in  which  lines  or  planes  are 
involved  exactly  as  in  real  space,  but  there  are  cases  that  we  can  not  afford  to 
ignore  in  which  the  familiar  definitions  break  down.  For  example,  the  defini- 

tion on  the  plan  suggested  in  1231  of  the  distance  from  a  point  P  to  a  plane  q 
in  a  given  direction  fails  if  the  direction  is  parallel  to  the  plane,  for  then  if  P 
is  not  in  q  there  is  no  second  point  to  which  to  measure,  while  if  P  is  in  q  the 
second  point  is  arbitrary  on  a  particular  line  and  therefore  the  distance  also 

is  arbitrary  unless  *  the  direction  is  nul.  In  real  space  to  insist  on  a  definition 
of  a  distance  from  a  plane  in  a  direction  parallel  to  the  plane  is  perhaps  un- 

necessary, but  in  complex  space  a  direction  perpendicular  to  a  plane  may  be 
parallel  also,  and  to  be  in  doubt  as  to  the  meaning  of  the  normal  distance  from 
a  point  to  a  prepared  plane  would  be  an  intolerable  handicap.  The  difficulty 
is  typical,  and  so  also  are  the  methods  by  which  it  is  overcome. 

There  are  three  of  these  methods,  of  which  two  are  not  fundamentally  dis- 
tinct. The  first,  somewhat  tentative,  aims  at  discovering  an  intrinsic  general 

formula  in  which  the  distance  plays  a  part,  and  defines  the  distance  when 
necessary  as  the  number  that  gives  the  intrinsic  formula  freedom  from 
exceptional  cases.  The  second  refers  the  whole  problem  to  a  frame  of  reference 
having  no  intrinsic  relation  to  the  point  and  plane  concerned,  discovers 
a  formula  for  the  distance  in  the  general  case,  and  defines  the  distance  by  the 
formula  in  every  case  of  doubt.  The  third  method  constructs  a  space  in  which 
the  difficulty  no  longer  arises ;  this  is  a  space  with  points  at  infinity  where 
parallel  lines  do  meet,  and  when  we  have  seen  how  this  space  is  formed  we 
shall  find  that  the  results  of  the  less  systematic  methods  are  confirmed. 

Let  P  be  a  given  point  and  q  a  given  plane,  and  let  WN  be  a  proper  vector  n 
perpendicular  to  the  plane.  Then  if  Q  is  a  point  of  the  plane,  the  value  of  the 
projected  product  of  n  and  PQ  is  a  number  K  which  is  independent  of  the 
position  of  Q  in  the  plane,  and  is  therefore  equal,  if  the  ray  through  P  with 
direction  N  does  cut  the  plane  in  a  unique  point  M,  to  the  product  of  n  by 
the  distance  of  M  from  P  along  the  ray,  since  PM  and  n  are  collinear  vectors. 

*  In  fact  the  distance  proves  to  be  arbitrary  even  in  this  case,  for  although  every 

'accessible'  point  is  at  distance  zero  from  P,  the  distance  of  the  'point  at  infinity'  is  found 
to  be  neither  definitely  zero,  although  the  direction  is  nul,  nor  definitely  infinite,  although 

the  point  is  '  at  infinity ',  but  essentially  indeterminate.  This  subject  is  considered  in  534 
below. 
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That  is,  if  a  normal  distance  d  from  P  to  q  in  the  direction  N  perpendicular 
to  q  is  definable  in  the  elementary  manner,  then 

•32  K=dn, 

and  since  K  and  n  are  definite  numbers  in  any  case,  and  to  replace  n  by  any 

other  proper  vector  normal  to  q  is  to  multiply  K  and  n  by  the  same  number, 
we  agree  that  in  every  case  a  distance  from  P  to  q  is  to  be  any  number  not 

inconsistent  with  '32.  Since  n  is  zero  if  and  only  if  q  is  isotropic,  and  K  is 
zero  if  and  only  if  P  is  in  q, 

•33  The  normal  distance  from  a  point  to  an  isotropic  plane  is  indeterminate  or 
infinite  according  as  the  point  is  or  is  not  in  the  plane. 

If  we  prefer  to  attack  the  problem  analytically,  we  start  from  the  consideration 

that  if  an  anisotropic  plane  q  has  its  equation  given  in  the  form 

•34  VE%  +  e  =  0 
where  E  is  a  direction  normal  to  the  plane,  the  distance  d  of  a  point  P  from  q 

is  given  by  d  =  vExP  +  e. 

•35       To  reduce  the  equation  v^x  4-  K  =  0 

to  the  form  '34,  it  is  necessary  to  divide  by  a  number  k  such  that 
•36  k2  =  Si*?, 

and  therefore  the  distance  is  given  by  combining  '36  with 
•37  d  =  (wkX  +  JT)/A; 

the  ambiguity  in  the  distance  corresponds  to  the  fact  that  there  are  two  pre- 

pared planes  related  to  the  one  unprepared  plane  given  by  '35.  The  process 
fails  if  the  plane  is  isotropic,  for  then  k  is  zero  ;  if  we  take  the  distance  d  to 

be  defined  by  the  formula  *37,  the  distance  is  to  be  indeterminate  or  infinite 
according  as  the  numerator  is  or  is  not  zero,  and  this  agrees  with  '33. 

*4.  To  be  guided  to  a  definition  of  distance  from  a  point  P  to  a  plane  q  in 
a  given  direction  2  that  shall  be  significant  whether  or  not  2  is  in  q  or  q  is 
isotropic,  we  consider  that  in  ordinary  space  if  2  is  not  in  q  and  if  d  is  the 
distance  from  P  to  q  in  a  normal  direction  N  and  e  is  an  angle  between  N  and 
2,  then  the  distance  is  dsece,  or  in  other  words  is  the  number  r  which 

satisfies  the  equation 
'41  r  cos  e  =  d. 

To  remove  the  cosine,  let  nn,  s,  be  any  proper  measured  vectors  with  the 

directions  N,  2;  then  '41  becomes 
•42  r<£nB  =  dns, 

and  from  this  equality  we  can  remove  d  by  means  of  '32,  obtaining* 

*  Generally  speaking,  this  is  nothing  more  than  the  equation  r  c^ns  =  s  c^nr,  which 
expresses  an  obvious  relation  between  any  two  codirectional  measured  vectors  rr,  »,.  The 
discussion  shews  why  this  simple  consideration  is  effective. 
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where  K  has  the  same  meaning  as  in  the  last  paragraph.  No  difficulties  attach 

in  any  case  to  the  terms  <£nn,  s,  K,  and  therefore  a  distance  is  defined  as  a 

value  of  r  which  satisfies  *43. 

The  distance  from  a  point  to  a  plane  in  a  direction  parallel  to  the  plane  is       -44 
indeterminate  if  the  point  is  in  the  plane  or  if  the  direction  is  nul,  but  is  other- 

wise infinite. 

If  it  is  surprising  to  find  that  the  distance  is  not  definitely  zero  but  is  arbitrary 
if  the  direction  is  nul,  it  is  even  more  interesting  to  compare  this  result  with 

'33  and  to  discover  that  normal  distance  can  not  be  identified  always  with 
distance  in  a  normal  direction. 

To  discuss  this  problem  by  means  of  an  attached  vector  frame  is  to  define 

the  distance  r  as  a  number  such  that  the  point  fp  +  rf2,  rjp  +  rrj^,  £/>  +  r£2 
lies  in  the  plane 

vjtX  +  K^O;  '45 

thus  r  =  —  (fk%/>  4-  K)/VKXI-  '46 
If  2  is  given  as  the  direction  of  a  measured  vector  BS  that  is  not  nul,  £2,7/2,  £2 

must  be  replaced  by  £B/s,  tj^/s,  £»/s,  and  '46  becomes 

r  =  -  s  (VKXP  +  K^/vttXn,  '47 
which  is  the  formula  assumed  to  be  general. 

•5.  Distances  between  points  and  lines  in  a  directed  plane  that  is  not 
isotropic  are  exactly  like  distances  between  points  and  planes  in  space,  nul 

lines  taking  the  place  of  isotropic  planes.  In  particular, 

In  an  anisotropic  plane,  the  normal  distance  from  a  point  to  a  nul  line  is  in-        -51 
determinate  or  infinite  according  as  the  line  does  or  does  not  contain  the  point. 

The  peculiarities  of  isotropic  planes  are  the  subject  of  our  next  section. 

436.   THE  DISTRIBUTION  OF  ISOTROPIC  LINES  AND  PLANES; 
MEASUREMENT  AND  TRIGONOMETRY  IN  AN  ISOTROPIC  PLANE. 

•1.  Some  conclusions  as  to  the  distribution  of  nul  lines  and  isotropic  planes 
in  space  are  to  be  drawn  from  the  theorems  of  15'4. 

0  Through  a  line  that  is  not  nul  there  pass  two  distinct  isotropic  planes.        -11 

0  Through  a  nul  line  there  passes  only  one  isotropic  plane.    If  P,  Q  are  distinct        '12 
points  on  a  line  that  is  not  nul,  the  planes  through  P,  Q  perpendicular  to  the 
line  are  distinct  parallel  planes,  for  they  both  have  for  vecplane  the  vecplane 

perpendicular  to  the  vector  PQ  and  this  vecplane  does  not  include  PQ.    But 

if  P,  Q  are  distinct  points  on  a  nul  line,  the  vecplane  perpendicular  to  PQ 

includes  PQ,  and  therefore  the  plane  through  P  perpendicular  to  the  line 

includes  Q,  that  is,  contains  the  whole  line.    To  put  the  same  matter  differently, 
the  planes  perpendicular  to  a  given  line  are  in  every  case  parallel  planes ;  if 
the  line  is  not  nul,  these  planes  are  not  parallel  to  the  line,  and  each  of  them 
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cuts  the  line  in  one  and  only  one  point,  but  if  the  line  is  nul,  the  planes  per- 
pendicular to  the  line  are  also  parallel  to  the  line,  and  therefore  one  of  them 

contains  the  line  and  none  of  the  others  cut  the  line. 

*2.  A  nul  line  in  a  given  plane  must  have  for  vecline  a  nul  vecline  in  the 

•21  corresponding  vecplane.  Hence  °  in  a  plane  that  is  not  isotropic  there  are  two 
distinct  families  of  nul  lines;  each  family  consists  of  parallel  lines,  and  through 

•22  every  point  there  pass  two  nul  lines,  one  member  of  each  family.  °  In  an 
isotropic  plane  the  nul  lines  are  all  parallel,  and  every  point  is  on  one  and 
only  one  nul  line. 

*3.  In  an  isotropic  plane  the  elementary  definitions  of  distance  to  a  line  do 
not  necessarily  fail.  On  the  contrary,  if  q  is  any  line  that  is  not  nul,  there  is 
one  and  only  one  line  through  a  point  P  perpendicular  to  q,  namely,  the  nul 
line  through  P,  and  this  line  not  being  parallel  to  q  cuts  q  in  a  single  point : 
there  is  no  difficulty,  but  since  the  distance  along  the  nul  line  is  zero,  there  is 
the  peculiarity  that 

•31  In  an  isotropic  plane  the  normal  distance  from  any  point  to  any  ray  that  is 
not  nul  is  zero. 

But  if  q  is  nul,  every  direction,  including  the  direction  of  q  itself,  is  normal 
to  q ;  the  anisotropic  lines  through  any  point  P  of  the  plane  are  normal  to  q 
and  intersect  q,  and  the  distances  from  P  to  q  along  these  lines  are  not  zero 

unless  P  is  in  q.  On  the  other  hand,  it  follows  from  '31  that  the  points  at 
normal  distance  zero  from  a  line  that  is  not  nul  are  the  points  composing  the 
two  isotropic  planes  through  the  line,  and  we  are  tempted  to  agree  that 
the  points  at  normal  distance  zero  from  a  nul  line  are  the  points  forming  the 
one  isotropic  plane  that  contains  that  line,  a  conclusion  that  can  be  drawn  only 
if  zero  is  at  least  one  value  of  the  normal  distance  from  any  point  to  any  nul 
line  in  an  isotropic  plane.  The  convention  to  which  we  are  driven  is  that 

•32  In  an  isotropic  plane  the  normal  distance  from  any  point  to  any  nul  line  is 
indeterminate. 

To  confirm  this  decision  let  us  appeal  to  general  formulae.    In  the  plane 
with  fundamental  magnitudes  E,  F,  G,  the  normal  distance  d  of  the  point 
£p>  TIP  from  the  line 
•33  Xk£  + ^77  +  ̂ =0 
•34       is  given  by  d  =  (Xk£p  +  ̂ rjp  +  K)/k, 
•35       where  k*  =  (£\k2  -  2^Xk/*k  +  Ep.^)l(EG  -  F*). 

If  the  plane  is  isotropic,  A*,  pit  can  not  be  interpreted  as  polar  coefficients,  but 

'33  is  still  the  general  form  of  equation  for  a  line,  and  this  line  is  nul  if  and 
•36       onlyif  QW-ZF^wt+Eftf^O. 

•37       Since  EG  -F*  =  0, 

the  value  of  d  given  by  "34  and  '35  is  necessarily  zero  unless  the  line  is  nul, 
but  if  the  line  is  nul,  k  and  d  are  together  indeterminate. 
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•4.  The  line  through  £p,  t\P  in  a  direction  2  is  traced  by  giving  to  r  different 
values  in  £/.  +  r£2,  77  />  -f-  n;2,  where  £2,1/2,  being  the  coefficients  of  a  direction, 
satisfy 

and  r  is  the  actual  distance  of  the  variable  point  from  P.  Substituting 

?•/*»  W5  f°r  £s>  */2  we  8ee  that  in  general  the  distance  from  the  point  P  to 

the  line  given  by  -33  in  the  direction  of  the  measured  vector  BS  is  the  value 
of  r  given  by 

(\k  £p  +  ̂ rjp  +  K  )  +  (r/s)  (Xk  £•  +  /**?•)  =  0,  -42 

that  is,  by  r=-s  (\^P  +  /*k*?p  +  #)/(**£•  +  /*ki/«)  J  -43 

the  amount  s  must  satisfy  the  condition 

m+im.  -44 

If  we  use  the  formula  "43  for  a  definition  and  note  that  the  denominator 

^kfs  +  f**.i)»  is  zero  if  and  only  if  the  direction  is  parallel  to  the  line,  we  find 
that 

In  any  plane  the  distance  from  a  point  to  a  line  in  a  direction  parallel  to        -45 
the  line  is  indeterminate  if  the  line  contains  the  point  or  is  nul,  but  otherwise 
is  infinite. 

If  the  direction  is  not  parallel  to  the  line,  there  is  nothing  to  be  learnt  from 

'43  that  is  not  otherwise  evident. 

*5.  Applied  verbally  to  an  isotropic  plane,  the  familiar  theorems  on  which 
ordinary  geometry  is  built  are  for  the  most  part  not  false  but  either  tauto- 
logous  or  reducible  to  simpler  terms.  The  kind  of  change  that  takes  place  is 
most  obvious  when  the  measurement  of  angles  is  involved,  for  as  we  have  seen 

every  determinate  angle  in  an  isotropic  plane  is  a  multiple  of  TT. 

Thus,  of  the  relation  bsmC=c  sin  B  -51 

between  sides  and  angles  of  a  triangle  nothing  useful  survives,  though  we  may 
add  that  unless  the  side  BC  is  situated  in  a  nul  line,  zero,  which  is  the  value 
of  b  sin  C  and  c  sin  B,  is  also  the  normal  distance  of  A  from  BC. 

The  form  assumed  by         a=bcosG+c  cos  B,  .B2 

the  other  fundamental  formula  of  plane  trigonometry,  is  made  intelligible  by 

22-44.  If  P,  Q,  R  are  any  three  points,  then  if  PQ,  QR,  and  PR  are  all 
measured  in  congenial  directions,  the  length  of  PR  is  the  sum  of  the  lengths 

of  PQ  and  QR  ;  thus  to  reduce  '52  to  the  form* 

a  =  b  +  c  -53 
f 

*  Darboux  (Pnncipes,  p.  180)  has  this  theorem  in  the  form  ±d12±d23±d3l  =  0,  but  has 

no  plan  for  disposing  of  the  ambiguities  of  sign,  unless  indeed  the  whole  theory  of  'aspect' 
is  held  to  be  implicit  in  the  phrase  "exactement  comme  si  les  points  etaient  en  ligne  droite", 
to  which  he  gives  the  emphasis  of  italics. 
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is  to  suppose  CA,  AB,  and  GB  (not  BG)  measured  in  the  same  aspect  of  the 
plane.  It  is  better  to  give  the  theorem  a  more  symmetrical  shape  and  an 
obvious  extension,  asserting  that 

•54  In  an  isotropic  plane  with  a  definite  aspect  the  perimeter  of  every  closed 
polygon  is  zero. 

An  important  corollary  to  '53  comes  from  the  simple  observation  that  a  is 
equal  to  b  if  c  is  zero,  that  is,  if  the  step  of  which  c  is  a  length  is  in  a  nul 
line: 

•55  In  an  isotropic  plane  with  a  definite  aspect,  the  distance  from  a  point  P  to 
a  point  Q  of  a  nul  line  q  is  independent  of  the  position  of  Q  in  q. 

•56  In  other  words,  ° although  the  normal  distance  from  a  point  to  a  nul  line  in 
an  isotropic  plane  is  indeterminate,  there  is  a  definite  oblique  distance  in  each 

aspect  of  the  plane.  And  two  nul  lines  in  such  a  plane  stand  in  a  relation  to 
which  there  is  nothing  in  ordinary  geometry  to  correspond : 

•57  In  an  isotropic  plane  with  a  definite  aspect,  the  distance  from  a  point  of  one 
nul  line  to  a  point  of  another  depends  only  on  the  two  lines,  not  on  the  positions 

of  the  points  on  the  lines. 
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441.  GENERAL  CONSIDERATIONS. 

•1.  When  we  set  up  a  framework,  Cartesian  or  other,  in  ordinary  space,  we 
have  not  to  consider  the  possibility  that  the  space  owes  any  properties  to  the 
framework,  for  the  space  is  supposed  given  in  advance.  But  with  algebraic 

space  the  constants  associated  with  some  one  framework  have  to  be  assumed, 
and  it  is  reasonable  to  ask  whether  the  choice  of  constants  can  have  any  radical 

effect  on  the  space  constructed.  In  this  chapter  we  are  concerned  only  with 

complex  space,  and  it  must  be  remembered  that  the  existence  of  spatial 

products  different  from  zero  is  being  assumed  ;  in  what  may  be  called  isotropic 

space  there  is  a  type  of  plane  that  we  do  not  have  to  consider. 

*2.  We  must  deal  first  with  the  vecplane.  If  for  any  one  pair  of  vectors  of 

reference  EG  —  Fz  is  zero,  the  vecplane  is  isotropic  and  EG  —  F2  is  zero  for 

every  frame.  If  for  any  one  frame  EG  —  F2  is  different  from  zero,  then  the 

vecplane  is  anisotropic  and  EG  —  F'2  is  different  from  zero  for  every  frame. 
°The  distinction  between  the  two  kinds  of  vecplane  is  a  fundamental  dis-  -23 
tinction ;  what  we  prove  is  that  there  is  no  other. 

When  we  turn  to  vecspace  we  come  to  a  conclusion  that  is  really  similar, 

and  appears  different  only  because  isotropic  vecspace  has  been  explicitly  ex- 
cluded. The  reader  who  takes  the  trouble  to  develop  the  theory  will  have  no 

difficulty  in  finding  whether  or  not  two  isotropic  vecspaces  necessarily  have 
the  same  geometry. 

•3.  It  goes  without  say  ing  that  if  two  vecplanes  or  vecspaces  have  the  same 
geometry,  two  planes  or  spaces  constructed  by  means  of  them  have  the  same 

geometry. 

442.  THE  SIMILARITY  OF  ALL  ISOTROPIC  PLANES. 

•1.  As  described  in  25'4,  the  analytical  geometry  of  an  isotropic  vecplane 
with  a  definite  aspect  depends  wholly  on  two  numbers  U,  V  subject  only  to 
the  restriction  that  they  are  not  both  zero.  It  follows  that,  if  in  a  given 
isotropic  vecplane  a  can  be  found  a  frame  xy  with  reference  to  which  the 

fundamental  numbers  U,  V  have  the  particular  values  from  which  an  isotropic 
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vecplane  ft  has  been  constructed,  the  geometry  of  a  must  be  the  same,  quali- 
tatively and  quantitatively,  as  the  geometry  of  13. 

Suppose  then  that  a  is  an  isotropic  vecplane  and  that  U,  V  are  given 
numbers,  not  both  zero.  In  a,  let  k  be  a  proper  nul  vector,  and  let  d,  e  be 

two  proper  vectors,  of  amounts  d,  e,  that  are  neither  collinear  nor  nul*.  Then 
let  x  denote  k  if  U  is  zero,  (  U/d)  d  if  U  is  not  zero,  and  let  y  denote  k  if  V  is 

zero,  (  Vje)  e  if  F  is  not  zero.  With  this  construction,  x  and  y  are  not  collinear  ; 
and  x  has  the  amount  U  and  y  the  amount  F: 

•12  Given  any  two  numbers  U,  V  not  both  zero,  we  can  find  in  any  isotropic 
vecplane   with  given   aspect   a  frame   in  which   these  are   the  fundamental 
numbers. 

It  follows  that 

•13  All  isotropic  vecplanes  have  the  same  geometry, 
and  also  that 

•14  All  isotropic  planes  have  the  same  geometry. 

443.  THE  SIMILARITY  OF  ALL  ANISOTROPIC  PLANES. 

•1.  A  prepared  anisotropic  vecplane,  referred  to  a  frame  xy,  depends  on  the 
four  numbers  E,  F,  0,  C  such  that 

•11  £x?  =  E •12 

and  these  numbers  are  necessarily  subject  to  the  relations 
•13 

•14 

We  proceed  to  shew  that  conversely,  given  any  four  numbers  satisfying  '13 
and  '14,  in  any  complex  anisotropic  vecplane  we  can  find  a  pair  of  vectors  x,  y 
satisfying  *11  and  *12.  It  is  convenient  to  separate  the  case  in  which  E  and  G 
are  both  zero. 

*2.  If  E  and  G  are  both  zero,  vectors  x,  y  to  satisfy  "11  must  both  be  nul,  and 
since  they  are  not  to  be  collinear  one  of  them  must  belong  to  each  of  the  two 

nul  veclines.  Let  d,  e  be  any  proper  vectors  one  in  each  nul  vecline  ;  by  15'33, 
£  de  is  not  zero  ;  hence  there  is  a  vector  (F/<£  de)  e.  If  this  vector  is  g, 

•21  Jdg  =  F, 

•22       and  since  by  2412  (jtf  dg)2  =  -  (^  dg)2, 

we  have  from  '21  and  '13,  which  reduces  to 

<72  =  -  F2, 

•24       the  relation  (s4  dg)s  =  C\ 

*  If  d  is  not  nul,  d+k  is  neither  nul  nor  collinear  with  d. 
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If  £4dg  is  C,  '11  and  '12  are  satisfied  if  z  denotes  d  and  y  denotes  g;  if 
&l  dg  is  —  C,  then  ,$4  gd  is  C  and  '11  and  *12  are  satisfied  if  z  is  taken  as  g 
and  y  as  d. 

•3.    If  E  is  not  zero,  then  by  21*75  we  can  find  in  any  direction  that  is  not 
nul  a  vector  z  such  that 

g**  =  E,  -31 

and  by  34'23  we  can  find  then  one  and  only  one  vector  y  satisfying  simul- 
taneously the  two  equations 

£xj  =  F,    £4*y~C.  -32 
Comparing  the  identity 

with  -1.3,  we  have  Eg  y2  =  EG, 

and  since  E  is  not  zero  this  implies 

c?y2  =  £.  -33 

Thus  z  and  y  together  satisfy  "11  and  '12,  and  since  G  by  hypothesis  is  not 
zero,  '12  implies  that  z  and  y  compose  a  vector  frame  in  the  vecplane. 

This  argument  does  not  require  G  to  be  different  from  zero,  and  is  applicable, 

mutatis  mutandis,  if  E  is  zero  but  G  is  not  zero.  To  construct  a  direct  argu- 
ment for  this  last  case,  starting  with  z  as  a  multiple  of  a  definite  nul  vector, 

is  a  good  exercise  ;  the  steps  are  similar  to  those  of  4'3  below. 

•4.    Combining  the  conclusions  of  '2  and  '3  we  find  that 

Given  any  four  numbers  E,  F,  G,  C  subject  to  the  conditions  -41 

we  can  find  in  any  prepared  anisotropic  vecplane  a  frame  in  which  E,  F,  G  are 
the  fundamental  magnitudes  and  G  is  the  areal  constant, 
from  which  we  infer  that 

All  prepared  anisotropic  vecplanes  have  the  same  geometry,  *42 
and  that 

All  prepared  anisotropic  planes  have  the  same  geometry.  -43 

444.   THE  PROOF  THAT  COMPLEX  SPACE  is  UNIQUE. 

•1.   In  the  three-dimensional  problem,  we  suppose  given  seven  numbers 
L,  M,  N,  P,  Q,  R,  J  subject  to  the  relations 

IRQ,  -11 
R    M    P 

Q     P     N 

J±Q,  -12 
and  we  have  to  discover  whether  in  a  given  vecspace  can  be  found  a  frame 

zyz  in  which  these  numbers  play  the  parts  indicated  by  the  notation. 
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•21 

•22 

•23 

•24 

•25 

•2.    Suppose  first  that  LM  —  R2  is  not  zero.    Then  if  two  vectors  x,  y  are 
such  that 

c?x2  =  £,     Jxy  =  R,     <?y*  =  M, 

they  are  not  collinear  and  the  vecplane  containing  them  can  not  be  isotropic. 
We  begin  therefore  by  taking  any  anisotropic  vecplane  in  the  given  vecspace. 

In  this  vecplane,  by  3'41,  we  can  find  two  vectors  x,  y  satisfying  -21,  and 
since  the  vecplane  is  not  isotropic  and  these  vectors  are  not  collinear,  the 

vector  product  ̂   xy  is  not  coplanar  with  x  and  y,  and  a  third  vector  z  is  deter- 
minable  from  the  three  projected  products  <^xz,  ,/yz,  </(^xy)z;  that  is, 
when  x  and  y  have  been  chosen  there  is  one  and  only  one  vector  z  which 
satisfies  the  conditions 

Moreover,  12'47,  -11,  -21,  '22  imply L  R  Q 

R  M  P 

Q  P  £X 

L 

R 

Q 

R 

M 

P 

Q 
P 

and  therefore,  since  LM  —  R2  is  not  zero,  imply 

Taken  together,  '21,  '22,  '23  shew  that  the  frame  xyz  has  the  required  relation 
to  the  seven  numbers. 

It  is  easy  to  write  down  the  actual  expression  for  z.   In  the  frame  xyz,  the 

vector  product  ̂   xy  has  the  polar  coefficients  0,  0,  /;  hence 

and  therefore 

and  this  identity  is  effective  to  give  z  unless  LM  —  R2  is  zero. 

*3.  The  case  in  which  LM  —  R2  is  zero  is  equally  easy  to  circumvent  and 
to  solve. 

If  the  three  numbers  L,  LM  —  R2,  LN—Q2  were  all  zero,  then  the  three 
numbers  L,  R,  Q  would  all  be  zero,  and  therefore  /  would  vanish.  That  is,  if 

a  set  of  magnitudes  polar  to  the  given  set  is  calculated  from  the  formulae  of 

342'4,  one  of  the  three  numbers 

MN  -  P2,    LM  -  R2,    LN  -  Q2 

is  different  from  zero.  Hence  a  case  in  which  the  process  of  the  last  paragraph 
is  not  effective  to  describe  a  frame  with  the  given  fundamentals  either  with 

its  third  or  with  its  second  vecplane  arbitrary,  is  necessarily  a  case  in  which 

this  process  is  effective  for  the  construction  of  a  frame  from  the  polar  magni- 
tudes with  its  first  vecplane  arbitrary,  and  the  polar  of  any  frame  so  formed 

is  a  frame  with  the  given  numbers  in  their  required  parts. 
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To  deal  directly  with  this  case,  let  U,  V  be  two  numbers  such  that 

L=U\     R=UV,     M=V*; 

there  are  such  numbers,  since  by  hypothesis 

and  these  numbers  are  not  both  zero,  for  the  determinant 
0  0  Q 

OOP 

Q  P  N 
to  which  /2  would  reduce  if  U  and  V  were  both  zero,  vanishes  identically. 

In  any  isotropic  vecplane  can  be  found  two  vectors  1,  m  satisfying 

and  not  collinear.    In  space  the  planes 

not  being  parallel,  intersect  in  a  line  whose  vecline  is  perpendicular  to  the 

vecplane  containing  1  and  m,  and  since  this  vecplane  is  isotropic,  the  line 

determined  by  '334  is  parallel  to  the  plane  which  contains  the  origin  and  has 

1  and  m  in  its  vecplane.  It  follows  that  °  the  spatial  product  S'  Imr  has  the 
same  value  for  every  vector  r  satisfying  '334.  Moreover,  it  follows  from  12'47 
that  the  value  of  (S  imr)2  is  given  by 

C72      UV     Q 

UV      F2      P 

Q        P      /r2 

f/2      UV    Q 

UV     F2      P 

Q       P      N 

since  the  value  of  the  determinant  is  actually  independent  of  the  value  of 

the  element  occupying  the  position  of  N;  hence  °  if  r  satisfies  '334, 

whatever  the  value  of  £  r2. 

Let  us  now  take  x  =  1,    y  =  m,     q  =  r, 

if  3  Imr  is  J,  but  x  =  —  1,    y  =  —  m,     q  =  —  r, 

if  &  Imr  is  —  J.    In  either  case 

and  in  either  case  we  deduce  that  there  are  values  of  q  satisfying 
c?xq  =  Q, 

and  that  these  equations  imply 

If  d  is  a  particular  solution  of  '351,  the  general  solution  was  seen  in  34'32  to 
be  d  +  p  W  xy,  where  p  is  a  variable  number,  and  since  ̂   xy  is  nul  and  d 

satisfies  '352, 

•31 

•32 

•331 

•334 

•335 

•337 

•34 

•351 

•352 

/ 

•353 

N. 

16 
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Since  /  is  not  zero,  there  is  one  and  only  one  value  of  p  such  that 

c?da  +  2  Jp  =  N, 

where  N  is  a  given  number ;  thus  if 

•37  .  z  =  d  +  \(N  -  £  d2)/2/}  V  xy, 
z  satisfies  not  only 

•39       but  also  J?z2=N, 

and  -34,  -38,  -39  are  formally  the  same  as  -21,  '22,  -23. 

*4.    To  sum  up  the  conclusions  of  '2  and  '3, 

•41  Given  any  seven  complex  numbers  L,  M,  N,  P,  Q,  R,  J  subject  to  the  conditions L  R  Q 

R  M  P 

Q  P  N 
we  can  find  in  the  complex  vecspace  constructed  from  any  frame  whatever  a 
frame  which  has  L,  M,  N,  P,  Q,  R  for  its  fundamental  magnitudes  and  J  for 
its  spatial  constant. 
Hence 

•42  All  complex  vecspaces  have  the  same  geometry, 
and 

•43  All  complex  spaces  have  the  same  geometry; 

in  fact,  if  more  dimensions  than  three*  are  not  in  contemplation,  we  may 
assert  that 

•44  There  is  only  one  complex  space. 

*5.  Let  us  hasten  to  add  that  there  is  nothing  surprising  in  "41.  As  a 
matter  of  pure  algebra,  there  are  six  conditions  to  be  satisfied  and  as  many  as 
nine  independent  variables,  namely,  the  coefficients  of  the  three  vectors  x,  y,  z 
in  some  one  frame  of  reference.  The  details  of  an  algebraic  proof  cease  to  be 

tiresome  if  the  necessity  of  paying  attention  to  the  peculiarities  of  nul  vec- 
lines  and  isotropic  vecplanes  is  realised  from  the  first,  but  there  are  no 
advantages,  theoretical  or  practical,  in  treating  the  matter  as  merely  one  of 
solving  a  set  of  equations  of  no  intrinsic  elegance. 

*  There  is  a  sense  in  which  complex  space  has  six  dimensions ;  six  real  numbers  are 
necessary  to  specify  three  complex  numbers,  and  the  complex  line  corresponds  point  for 
point  to  the  real  plane.  To  express  the  arbitrary  complex  number  z  in  the  form 

where  a,  b  are  given  distinct  complex  numbers  and  j  :k  is  a  variable  complex  ratio,  is  to 

relate  the  value  of  z  to  the  value  of  (z  -  a)/(z  -  b),  a  familiar  problem  in  the  geometry  of  the 
Argand  plane. 
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445.  COMPLEX  GEOMETRY  AND  REAL  SPACE. 

•1.  The  theorems  of  this  chapter  explain  the  part  which  complex  geometry 
plays  in  the  study  of  real  space.  Suppose  that  a  real  plane  is  referred  to  a 
frame  with  fundamental  magnitudes  Er,  Fr>  Grt  Cr,  subject  necessarily  to  the 
conditions 

CS-ErGr-Fr'  +  Q. 

The  complex  numbers  E,  F,  G,  C  which  have  their  imaginary  parts  zero  and 

have  Er,  Fr,  Gr,  Cr  for  their  real  parts  satisfy  3'13  and  3'14,  and  can  therefore 
be  used  for  the  construction  of  an  anisotropic  complex  plane.  Let  the  points 

in  this  complex  plane  whose  coordinates  have  their  imaginary  parts  zero  be 

called  the  °  real  points  of  the  complex  plane,  and  let  the  real  point  whose  co-  •!! 
ordinates  have  the  real  parts  fy,  rjr  be  said  to  correspond  to  that  point  in  the 

real  plane  which  has  the  coordinates  %r,  r)r.  Then  °  the  distances  between  two  -12 
real  points  of  the  complex  plane  are  numbers  whose  imaginary  parts  are  zero 
and  whose  real  parts  are  the  distances  between  the  corresponding  points  of 

the  real  plane.  It  follows  that  °  if  one  set  of  relations  among  distances  between  -13 
real  points  in  the  complex  plane  implies  another  set  of  relations  among 

distances  also  between  these  real  points,  then  the  set  of  relations  among 

distances  between  points  in  the  real  plane  which  corresponds  to  the  first  set 
of  relations  implies  the  set  of  relations  among  distances  between  the  same 
points  which  corresponds  to  the  second  set  of  relations.  It  does  not  matter  in 
the  least  how  the  implication  in  the  complex  plane  has  been  established ;  if 

none  but  real  points  of  that  plane  have  been  involved  in  the  demonstration, 

the  proof  can  be  applied  word  for  word  in  the  real  plane,  but  even  if  points 

that  are  not  among  the  real  points  have  been  utilised,  the  result  can  be  trans- 
ferred back  to  the  real  plane. 

Real  space  may  be  correlated  in  the  same  way  point  for  point  with  a  real 

part  of  complex  space ;  the  assumption  that  the  space  is  not  isotropic  need  not 
Be  made  explicitly,  since  it  is  assumed  throughout  our  work,  and  our  conclusions 
can  be  summarised  in  the  statement  that 

If  a  theorem  concerning  an  anisotropic  complex  plane  or  concerning  complex        -15 
space  can  be  expressed  in  such  a  way  as  to  be  significant  when  asserted  of  a  real 
plane  or  of  real  space,  then  the  theorem  is  true  when  so  asserted,  provided  that 

the  conclusion  does  not  assume  or  assert  the  existence  of  any  points  whose  existence 
is  not  assumed  in  the  hypothesis. 

Needless  to  say,  there  are  some  existence-theorems  whose  enunciations  in  the 
geometries  of  real  and  complex  space  are  verbally  identical;  all  that  the 

restriction  in  '15  implies  is  that  such  theorems  are  not  necessarily  established 
for  real  space  when  they  are  proved  for  complex  space. 

It  is  '15,  together  with  3'43  and  4'43,  that  explains  why  the  uncritical  use 
of  complex  coordinates  as  a  technical  device  has  not  led  to  errors  in  ordinary 

16—2 
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geometry,  in  spite  of  the  indefensible  absurdities*  of  any  attempt  to  introduce 
complex  points  into  real  space  merely  by  letting  Cartesian  coordinates  be  com- 

plex. "To  use  geometrical  language",  writes  Russell  f,  "  ...is  only  a  convenient 

help  to  the  imagination  ",  and  this  is  true  whether  the  vocabulary  is  large  or 
small.  Reference  should  be  made  to  the  discussion  of  the  relation  of  complex 

geometry  to  real  space  in  Baker's  Principles  of  Geometry^. 

•2.  In  practice,  a  converse  of  '15  is  freely  used ;  theorems  proved  in  ele- 
mentary geometry  are  asserted  of  complex  space.  To  be  transferable  in  this 

way  a  theorem  must  of  course  retain  significance ;  for  example,  it  must  not 
involve  inequalities  §,  since  one  complex  number  can  not  be  described  as  greater 
than  another,  and  it  must  not  refer  to  one  of  three  collinear  points  as  between 

the  others,  since  there  is  no  corresponding  relation  between  three  arbitrary 
complex  numbers.  A  theorem  that  asserts  concurrence  of  lines  is  likely  to  be 

true  in  complex  space  even  if  nul  lines  become  involved,  but  if  metrical  relations 

occur,  a  reservation  excluding  nul  lines  and  isotropic  planes  may  be  essential. 
The  ground  for  the  translation  of  a  theorem  from  ordinary  geometry  to  the 

geometry  of  complex  space  is  that  the  theorem,  however  it  happens  to  have 
been  proved,  could  in  fact  have  been  demonstrated  analytically,  and  the  analysis, 
if  it  used  no  properties  of  real  numbers  that  complex  numbers  do  not  share, 

would  have  proved  the  result  for  complex  space.  As  De  Morgan  says  in  another 

connection)],  "The  perfect  confidence  which  a  mathematician  puts  in  these 
proofs  does  not  arise,  as  he  knows,  from  their  proving  that  their  conclusions  are 

true,  but  from  their  proving  that  they  can  (otherwise)  be  proved  to  be  true." 
There  is  little  difficulty  in  deciding  of  any  specific  proposition  whether  or 

not  it  can  be  translated,  and  for  a  general  theorem  we  content  ourselves  with 
an  enunciation  somewhat  narrow  : 

•21  If  a  theorem  concerning  real  space  can  be  expressed  in  such  a  way  as  to  be 
significant  when  asserted  of  complex  space,  then  it  is  true  when  so  asserted, 
provided  that  it  does  not  deny  the  existence  of  particular  points  or  the  possibility 

of  particular  constructions,  and  provided  also  that  if  it  is  metrical  in  character 
none  of  the  lines  or  planes  to  which  explicit  reference  is  made  are  isotropic. 

•3.  As  a  result  of  '15  and  '21,  the  mathematician  acquires  a  habit,  confusing 
and  illogical  at  first  sight  though  indeed  not  merely  defensible  but  inevitable, 

of  carrying  on  his  investigations  without  premising  whether  it  is  with  real 

space  or  with  complex  space  that  they  are  concerned,  and  of  deducing  theorems 
in  ordinary  geometry  from  constructions  that  may  be  invalid  in  real  space 
without  giving  a  hint  that  he  is  conscious  of  a  glaring  anomaly. 

*  Compare  Russell,  Foundations  of  Geometry,  pp.  42-46,  1897.  t  Loc.  cit.,  p.  45. 
J  Vol.  I.,  pp.  142  et  seq.,  1922.  §  See  in  particular  the  foot-note  on  p.  299  below. 
||  Trigonometry  and  Double  Algebra,  p.  106,  1849.  The  reference  is  to  the  proofs  of 

propositions  in  Euclid's  second  book  by  methods  applicable  only  to  b'nes  commensurable with  one  another. 
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IDEAL  SPACE  IN  GEOMETRY 

511.  Ideal  points;  accessible  ideal  points  and  ideal  points  at  infinity.  512.  Cohesion 
of  actual  planes  with  ideal  points ;  ideal  lines ;  cohesion  of  actual  planes  with  ideal  lines. 
513.  Ideal  planes.  514.  Intersections  of  ideal  lines  and  ideal  planes. 

511.   IDEAL  POINTS;  ACCESSIBLE  IDEAL  POINTS  AND  IDEAL 
POINTS  AT  INFINITY. 

*1.  In  the  conventional  language  introduced  by  Kepler  and  Desargues,  there 
are  two  cases  in  which  a  number  of  lines  are  said  to  be  concurrent;  if  the  lines 
all  pass  through  one  point,  they  are  concurrent  there,  and  if  they  are  all  parallel, 
they  are  said  to  be  concurrent  at  infinity. 

In  the  treatment  which  we  owe  to  the  genius  of  von  Staudt,  the  funda- 
mental element  is  not  a  point  but  a  class  of  concurrent  lines,  the  lines  being 

concurrent  in  the  wider  sense  which  allows  parallelism  as  a  particular  case, 
and  the  class  being  as  extensive  as  possible,  that  is  to  say,  containing  all  the 
lines  through  some  one  point  or  all  the  lines  with  some  one  vecline.  Such  a 

class  is  called  a,  sheaf  of  lines  or  an  ° ideal  point.  -11 
A  mere  extension  of  vocabulary  does  not  alter  the  facts  of  elementary 

geometry,  and  sheaves  or  ideal  points  are  of  two  kinds.    A  sheaf  consisting  of 

all  the  lines  through  an  actual  point  is  said  to  have  that  point  for0 vertex  or        -12 
to  be  associated  with  that  point.    A  sheaf  composed  of  parallel  lines  has  no 

actual  point  in  any  special  relation  to  it,  and  is  called  an  ideal  point  °  at       -13 
infinity.    No  pretence  is  made  that  there  are  any  actual  points  at  infinity; 
an  ideal  point  at  infinity  is  a  class  of  lines  which  individually  are  commonplace 
straight  lines,  real  or  complex  according  as  the  space  under  consideration  is 
itself  real  or  complex.    Infinity,  in  fact,  becomes  a  class  of  sheaves  of  lines :  if 
a  sheaf  belongs  to  this  class,  the  sheaf  is  said  to  be  at  infinity.    If  we  find  it 
convenient  to  describe  a  sheaf  or  an  ideal  point  that  is  not  at  infinity  as 

0  accessible,  this  term  must  not  be  taken  to  imply  that  such  a  sheaf  is  logically        -14 
on  any  more  secure  footing  than  the  sheaves  at  infinity. 

*2.  If  P  is  any  actual  point  and  A  is  any  ideal  point  other  than  the  sheaf 
formed  of  the  lines  through  P,  there  is  one  and  only  one  line  through  P 
belonging  to  A;  if  A  has  a  vertex,  this  is  the  line  joining  P  to  that  vertex, 
and  if  A  has  no  vertex,  it  is  the  line  through  P  with  the  vecline  then 
characteristic  of  the  members  of  A. 
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We  can  express  this  result  by  saying  that  there  is  one  and  only  one  line 
common  to  the  ideal  point  A  and  the  ideal  point  composed  of  lines  through  P: 

•23  Unless  two  distinct  ideal  points  are  both  at  infinity,  there  is  one  and  only  one 
line  which  belongs  to  them  both. 

•24  °If  the  ideal  points  are  both  accessible,  the  common  line  is  simply  the  line 
through  the  vertices. 

•31  *3.    A  line  p  belongs  to  an  infinity  of  ideal  points;  °it  belongs  to  every 
•32  ideal  point  which  has  an  actual  vertex  on  p;  °it  belongs  also  to  one  and  only 

one  ideal  point  at  infinity,  namely,  the  sheaf  formed  of  those  lines  which  are 
parallel  to  p. 

Here,  and  nowhere  more  mystical,  is  the  meaning  of  the  assertion  that 

every  line  has  one  and  only  one  point  at  infinity  associated  with  it.  The 
student  is  wholly  in  the  right  who  refuses  to  be  hypnotised  into  thinking  he 

believes  that  there  are  actual  points  at  infinity  to  be  reached  by  journeys  of 

infinite  length  along  actual  lines,  and  that  the  point  reached  by  such  a  journey 

in  one  direction  along  a  line  p  or  along  any  line  parallel  to  p  is  the  same  as 

the  point  reached  by  a  similar  journey  in  the  opposite  direction  along  any  of 
these  lines  but  different  from  any  point  reached  by  a  journey  along  a  line  not 
parallel  to  p;  all  statements  of  this  kind  are  nonsense,  not  the  less  because 

they  have  proved  precious.  Infinity  is  no  part  of  actual  space.  The  points  at 
infinity  are  ideal  points,  and  it  is  true,  if  obvious,  that  every  actual  line  bears 
to  just  one  ideal  point  at  infinity  the  relation  of  membership  which  it  bears  to 
those  accessible  ideal  points  whose  vertices  it  contains. 

512.  COHESION  OF  ACTUAL  PLANES  WITH  IDEAL  POINTS;  IDEAL  LINES; 
COHESION  OF  ACTUAL  PLANES  WITH  IDEAL  LINES. 

*1.  Naturally  an  ideal  line  is  to  be  a  class  of  ideal  points,  and  we  anticipate 
that  the  ideal  line  associated  with  an  actual  line  p  is  to  be  the  class  consisting 
of  those  ideal  points  to  which  p  belongs.  This  however  will  not  provide  us 
with  a  sufficiently  general  definition  of  an  ideal  line,  for  just  as  there  are  ideal 
points  without  vertices,  so  there  are  ideal  lines  to  which  no  actual  lines 
correspond.  To  encounter  the  difficulty  from  another  direction,  if  we  set  out 
to  find  a  definition  of  the  ideal  line  containing  two  given  distinct  ideal  points 
Q,  R,  we  can  usually  find  one  actual  line  p  which  belongs  to  both  these 
sheaves,  and  every  sheaf  that  contains  p  may  be  regarded  as  collinear  with 
Q  and  JR;  this  process  succeeds  if  the  ideal  points  are  both  accessible,  when 
p  is  the  line  through  their  vertices,  or  if  one  of  the  ideal  points  is  accessible 
and  the  other  is  at  infinity,  when  p  is  the  line  through  the  vertex  of  the  one 
parallel  to  the  members  of  the  other,  but  the  method  fails  if  both  of  the 
ideal  points  are  sheaves  of  parallel  lines,  for  there  is  then  no  actual  line 

common  to  the  two  sheaves.  Geometry  and  algebra  suggest  different  defini- 
tions of  the  ideal  line,  but  the  two  definitions  are  found  to  be  equivalent. 
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*2.  The  relation  of  a  plane  to  an  actual  point  P  when  the  plane  contains 
P  can  be  expressed  directly  in  terms  of  the  plane  and  the  sheaf  with  P  for 

vertex:  then-  arc  lines  of  the  sheaf  lying  in  the  plane.  If  we  say  that  a  plane 

° coheres  with  a  sheaf  or  an  ideal  point,  whether  or  not  the  sheaf  is  at  infinity,  -21 
when  there  are  lines  of  the  sheaf  lying  in  the  plane,  then  we  can  distinguish 
two  cases: 

If  a  plane  coheres  with  an  ideal  point,  then  if  the  ideal  point  is  accessible  its        '22 
vertex  is  in  the  plane,  but  if  the  ideal  point  is  at  infinity  the  lines  which  com- 

pose it  are  parallel  to  the  plane. 

It  is  important  to  observe  that 

If  a  plane  includes  an  actual  point  P  and  coheres  with  an  ideal  point  A,  then        -23 
mness  A  is  accessible  and  has  P  for  its  vertex,  the  plane  contains  the  one  line 
which  belongs  to  A  and  includes  P. 

*3.  In  elementary  geometry,  the  line  through  two  distinct  points  P,  Q  is 
the  aggregate  of  points  common  to  all  the  planes  that  include  both  P  and  Q. 
Prompted  by  this  consideration,  let  us  examine  the  planes  cohesive  with  two 
given  distinct  ideal  points  A,  B  and  discover  whether  there  are  any  ideal 
points  other  than  A,  B  with  which  these  planes  all  cohere. 

It  follows  from  '23  that  if  B  is  an  ideal  point  with  an  actual  vertex  Q  and 
A  is  any  ideal  point  distinct  from  B,  every  plane  that  coheres  with  both  A 
and  B  contains  the  line  through  Q  belonging  to  A.  Conversely,  since  this  line 
belongs  to  both  ideal  points,  every  plane  which  contains  it  does  cohere  with 
them  both.  That  is, 

Unless  two  distinct  ideal  points  are  both  at  infinity,  the  planes  that  cohere        -31 
with  them  both  are  the  planes  through  the  one  line  common  to  them. 

Hence 

If  two  distinct  ideal  points  A,  B  have  a  line  p  in  common,  the  ideal  points        -32 
that  cohere  with  all  the  planes  that  cohere  with  both  A  and  B  are  the  ideal  points 
to  which  p  belongs. 

If  two  ideal  points  A,  B  are  both  at  infinity,  they  have  no  common  member 
if  they  are  distinct,  but  there  are  still  planes  which  cohere  with  them  both. 
In  fact  if  0  is  any  point  of  space,  there  are  definite  lines  p,  q  through  0 
belonging  the  one  to  A  and  the  other  to  B,  and  the  plane  that  contains  p  and 

q  coheres  with  A  and  B  and  by  '23  is  the  only  plane  through  0  that  does 
cohere  with  them  both.  Since  the  directions  of  p  and  q  do  not  depend  on  the 
position  of  0,  any  two  planes  that  cohere  with  both  A  and  B  are  parallel, 
while  conversely  if  P  is  one  plane  that  coheres  with  A  and  B,  any  plane 
parallel  to  P  also  coheres  with  A  and  B. 

If  two  distinct  ideal  points  are  both  at  infinity,  the  planes  that  cohere  with        -33 
them  both  are  the  parallel  planes  whose  common  vecplane  contains  their  two 
veclines. 
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Hence 

•34  If  two  distinct  ideal  points  A,  B  are  both  at  infinity,  the  ideal  points  that 
cohere  with  all  the  planes  that  cohere  with  both  A  and  B  are  the  ideal  points  at 
infinity  with  veclines  in  the  vecplane  containing  the  veclines  of  A  and  B. 

Considering  -32  without  reference  to  the  line  p  itself,  or  '34  without 
mention  of  the  vecplane,  we  have  in  each  case  a  family  of  planes  and  a  family 

of  ideal  points;  each  plane  is  cohesive  with  each  ideal  point,  and  any  two  of 
the  ideal  points  or  any  two  of  the  planes  determine  the  whole  configuration, 

for  they  suffice  to  give  the  line  or  the  vecplane.  If  any  two  of  the  ideal  points 

are  at  infinity,  all  the  ideal  points  are  at  infinity,  by  1'32;  if  any  two  of  the 
planes  are  parallel,  all  the  planes  are  parallel. 

•35  We  can  now  see  the  results  of  defining  an  ideal  line  as°a  class  of  ideal 
points  each  of  which  is  cohesive  with  two  planes,  and  therefore  with  all  planes, 
that  cohere  with  any  two  of  them.  There  are  two  kinds  of  ideal  line. 

•36  °An  ideal  line  may  consist  of  all  the  ideal  points  to  which  a  particular 
actual  line,  called  its  axis,  belongs.  In  this  case,  the  ideal  line,  by  T32,  includes 
one  and  only  one  ideal  point  at  infinity.  A  plane  that  coheres  with  more  than 
one  of  the  ideal  points  is  a  plane  that  contains  the  axis  and  is  therefore 

a  plane  that  coheres  with  every  one  of  the  ideal  points;  such  a  plane  may  be 
said  to  cohere  with  the  ideal  line  itself.  If  a  plane  that  does  not  contain  the 

axis  is  parallel  to  the  axis  it  coheres  with  the  ideal  point  at  infinity  to  which 
the  axis  belongs;  if  a  plane  is  not  parallel  to  the  axis  it  cuts  the  axis  in  a 

definite  point  and  coheres  with  the  accessible  ideal  point  which  has  that  point 

•37  for  vertex:  in  any  case,  ° if  a  plane  does  not  cohere  with  every  ideal  point 
belonging  to  the  ideal  line,  there  is  one  and  only  one  of  these  ideal  points 
with  which  it  does  cohere. 

•38  °An  ideal  line  of  the  second  type  consists  of  all  the  ideal  points  at  infinity 
whose  veclines  lie  in  a  particular  vecplane.  Since  all  the  ideal  points  that  com- 

pose it  are  at  infinity,  such  an  ideal  line  is  itself  said  to  be  at  infinity,  and  by 
contrast  an  ideal  line  with  an  axis  is  described  as  accessible.  A  plane  that 

coheres  with  more  than  one  of  the  ideal  points  is  a  plane  with  the  vecplane 
characteristic  of  the  ideal  line  and  is  therefore  a  plane  that  coheres  with  every 
one  of  the  ideal  points;  again  the  plane  is  said  to  cohere  with  the  ideal  line.  The 

vecplane  of  the  ideal  line  and  the  vecplane  of  any  plane  that  does  not  cohere 
with  the  ideal  line  have  one  vecline  in  common,  and  the  ideal  point  at  infinity 
which  has  this  vecline  is  an  ideal  point  that  belongs  to  the  ideal  line  and 

•39  coheres  with  the  actual  plane:  °if  a  plane  does  not  cohere  with  every  ideal 
point  belonging  to  the  ideal  line,  there  is  one  and  only  one  of  these  ideal 
points  with  which  it  does  cohere. 

*4.   The  verbal  identity  of  '37  and  '39  is  valuable;  we  can  assert  simply  that 

•41  A  plane  that  does  not  cohere  with  an  ideal  line  coheres  with  one  and  only  one 
ideal  point  on  that  line. 
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The  discussion  leading  to  the  definition  of  an  ideal  line  implies  that 

Given  any  two  distinct  planes,  there  is  one  and  only  one  ideal  line  with  which       -42 
they  both  cohere; 

it  follows  from  '41  and  '42  that 

If  three  planes  do  not  all  cohere  with  a  single  ideal  line,  there  is  one  and  only        -43 
one  ideal  point  with  which  they  all  do  cohere. 

Given  an  actual  point  0  and  a  line  that  does  not  include  0,  there  is  one 

and  only  one  plane  that  includes  0  and  contains  the  line;  given  an  actual 
point  and  any  vecplane,  there  is  one  and  only  one  plane  that  includes  0  and 
has  the  vecplane : 

Given  any  actual  point  and  any  ideal  line  other  than  an  accessible  ideal  line       *44 
whose  axis  passes  through  the  point,  there  is  one  and  only  one  plane  which  in- 

cludes the  actual  point  and  coheres  with  the  ideal  line. 

Hence  comes  a  correlative  of  '43 : 

If  three  ideal  points  are  not  all  at  infinity,  then  if  there  is  no  ideal  line  to        -45 
which  they  all  belong  there  is  one  and  only  one  plane  that  coheres  with  them  all. 

*5.    The  ideal  lines  that  cohere  with  a  particular  plane  P  are  to  be  found 
by  associating  with  P  a  variable  plane  Q  distinct  from  P.   If  Q  is  not  parallel 
to  P,  the  two  planes  cut  in  an  actual  line  and  determine  the  accessible  ideal 

line  of  which  that  line  is  the  axis.   If  Q  is  parallel  to  P,  the  two  planes  deter- 

mine the  ideal  line  at  infinity  characterised  by  the  vecplane  of  P.  °Thus  P        -51 
coheres  with  a  single  ideal  line  at  infinity,  and  with  an  infinity  of  accessible 
ideal  lines,  namely,  the  accessible  ideal  lines  whose  axes  are  actual  lines  in  P. 

°  All  the  inaccessible  ideal  points  that  cohere  with  P  are  on  the  one  inaccessible        -52 
ideal  line  that  coheres  with  p;  in  fact,  the  ideal  line  is  the  aggregate  of  these 

ideal  points. 

Let  a,  b  be  any  two  distinct  ideal  lines  that  cohere  with  p;  let  Q  be  a  second 
plane  that  coheres  with  a  and  R  a  second  plane  that  coheres  with  b.  The 

three  planes  P,  Q,  R  do  not  all  cohere  with  any  one  ideal  line,  and  therefore  by 

•43  there  is  one  and  only  one  ideal  point  with  which  they  all  cohere,  and  this 
point  belongs  to  a  because  P  and  Q  cohere  with  it  and  to  b  because  p  and  R 
cohere  with  it. 

Two  ideal  lines  that  both  cohere  with  one  plane  have  an  ideal  point  in  common.        -53 
If  two  distinct  ideal  lines  a,  b  have  an  ideal  point  C  in  common,  and  if 

A,  B  are  ideal  points  distinct  from  C  on  a,  b,  then  unless  a,  b  are  both  at 

infinity,  one  at  least  of  the  three  ideal  points  A,  B,  C  is  necessarily  accessible, 

and  therefore  by  '45  there  is  a  plane  that  coheres  with  the  three  ideal  points; 
this  plane  coheres  with  a,  since  it  coheres  with  both  A  and  C,  and  with  b, 
since  it  coheres  with  both  B  and  C: 

If  two  distinct  ideal  lines  have  an  ideal  point  in  common  and  are  not  both        -54 
at  infinity,  there  is  a  plane  that  coheres  with  them  both. 
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Since  two  ideal  lines  that  cohere  with  one  plane  can  not  both  be  at  infinity, 

the  case  excluded  from  '54  is  excluded  also  from  '53,  and  this  case  must  be 
examined.  The  vecplanes  characteristic  of  two  ideal  lines  at  infinity  necessarily 
have  one  vecline  in  common,  and  the  ideal  point  at  infinity  with  this  vecline 
is  an  ideal  point  common  to  the  two  ideal  lines: 

•55  Any  two  ideal  lines  that  are  both  at  infinity  have  an  ideal  point  in  common. 

The  three  results  '53,  '54,  '55  can  be  combined  in  a  single  enunciation: 

•56  Two  ideal  lines  have  an  ideal  point  in  common  if  they  are  both  at  infinity  or 
if  there  is  a  plane  which  coheres  with  them  both,  but  not  otherwise. 

513.    IDEAL  PLANES. 

•1.  If  the  language  of  elementary  geometry  is  to  be  available,  an  ideal 
plane  must  be  a  class  of  ideal  points  determined  by  three  of  its  members 
which  are  not  collinear,  and  such  that  the  ideal  line  joining  any  two  members 
of  the  class  is  part  of  the  class.  Thus  to  construct  from  first  principles  the 
ideal  plane  determined  by  three  ideal  points  A,  B,  C,  we  should  add  to  A,  B,  C 
first  all  the  ideal  points  on  the  ideal  lines  BC,  CA,  AB,  then  all  the  ideal 

points  on  ideal  lines  joining  ideal  points  on  one  of  these  ideal  lines  to  ideal 

points  on  another,  then  all  the  ideal  points  on  ideal  lines  joining  two  ideal 
points  of  the  last  kind,  and  so  on,  continuing  the  process  till  no  new  ideal 

points  were  introduced ;  it  is  obvious  that  if  F,  G,  H  are  any  three  non-collinear 
ideal  points  reached  by  this  process,  the  ideal  plane  determined  by  F,  G,  H  is 
contained  in  the  ideal  plane  determined  by  A,  B,  C,  but  to  prove  that  the 
two  ideal  planes  are  identical  it  would  be  necessary  to  shew  that  A,  B,  C  can 

be  reached  from  F,  G,  H  by  a  similar  process.  Actually  we  avoid  work  that 

might  prove  tedious  by  appealing  to  2'56. 

'2.  If  A,  B,  C  are  three  ideal  points  that  are  not  collinear  and  not  all  at 
infinity,  a  fourth  ideal  point  D  is  on  an  ideal  line  joining  A  to  an  ideal  point 

on  BC  if  AD  and  BC  have  an  ideal  point  in  common,  that  is,  from  2'56,  if 
there  is  an  actual  plane  p  that  coheres  with  the  four  points  A,  B,  G,  D;  the 

plane  P  is  determined  by  the  three  given  ideal  points,  and  every  ideal  point 

that  coheres  with  p  is  in  the  ideal  plane  determined  by  A,  B,  C.  Since  also 

every  ideal  point  on  every  ideal  line  joining  two  distinct  ideal  points  that 

cohere  with  P,  itself  coheres  with  p,  the  process  described  in  the  last  para- 
graph can  not  lead  us  from  ideal  points  that  cohere  with  p  to  ideal  points 

that  do  not  cohere  with  p.  Finally,  if  F,  G,  H  are  any  three  ideal  points 

reached  by  this  process  and  not  collinear,  P  is  the  only  plane  that  coheres  with 
all  three  of  them,  and  therefore  the  ideal  plane  determined  by  F,  G,  H  is 
identical  with  the  ideal  plane  determined  by  A,  B,  C. 

If  A,  B,  C  are  three  ideal  points  at  infinity  and  not  collinear,  it  follows  from 

2'34  that  every  point  to  which  the  process  of  '1  leads  is  at  infinity,  and  from 
2'55  that  this  process  leads  to  every  point  at  infinity. 
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Thus  ideal  planes,  like  ideal  lines  and  ideal  points,  are  of  two  kinds.  °An        -23 
accessible  ideal  plane  consists  of  all  the  ideal  points  with  which  some  actual 

plane  coheres.  °  The  aggregate  of  ideal  points  at  infinity  also  is  an  ideal  plane,       -24 
naturally  called  the  ideal  plane  at  infinity. 

514.   INTERSECTIONS  OF  IDEAL  LINES  AND  IDEAL  PLANES. 

•1.  Of  two  distinct  ideal  planes,  one  must  be  accessible.  The  ideal  points 
common  to  an  accessible  ideal  plane  and  the  ideal  plane  at  infinity  are  the 

inaccessible  ideal  points  in  the  accessible  ideal  plane,  and  from  2'38  it  follows 
that  these  compose  a  definite  ideal  line.  If  two  ideal  planes  are  both  accessible, 
the  ideal  points  common  to  the  ideal  planes  are  the  ideal  points  with  which 

the  corresponding  actual  planes  both  cohere,  and  these  are  seen  by  2'42  to 
form  a  definite  ideal  line. 

Any  two  distinct  ideal  planes  intersect  in  an  ideal  line.  '11 
This  is  one  example  of  the  simplification  introduced  into  geometrical 

language  by  the  completing  of  space;  a  second,  equally  useful,  is  furnished  by 

2'56,  which  becomes 

Two  ideal  lines  are  concurrent  if  and  only  if  they  are  coplanar.  -12 

From  '11  it  follows  that  if  A,  B,  C  are  three  distinct  ideal  planes,  A,  B  cut  C 
in  ideal  lines  a,  b;  unless  these  ideal  lines  coincide,  '12  shews  that  there  is  one 
and  only  one  ideal  point  common  to  them : 

Any  three  ideal  planes  have  an  ideal  point  in  common.  -13 

If  any  number  of  ideal  planes  have  in  common  two  distinct  ideal  points,  they 

have  the  whole  ideal  line  through  these  two  ideal  points ;  if  there  are  three 

common  ideal  points  that  are  not  collinear,  the  ideal  planes  necessarily 
coincide. 

*2.  Given  an  ideal  line  a  we  can  always  find  two  ideal  planes  intersecting 
in  a :  all  that  is  necessary  is  to  take  any  ideal  point  B  not  in  a  and  a  second 

ideal  point  G  not  in  the  ideal  plane  that  contains  a  and  includes  B  ;  the  ideal 
plane  that  contains  a  and  includes  C  then  cuts  the  ideal  plane  that  contains  a 

and  includes  B  in  the  ideal  line  a  itself.  It  follows  from  this  and  '13  that 

Any  ideal  line  that  is  not  contained  in  a  given  ideal  plane  cuts  the  ideal        -21 
plane  in  one  and  only  one  ideal  point. 

It  is  the  entire  absence  of  exceptional  cases  from  propositions  such  as  those 
of  this  section  that  is  alike  the  aim  and  the  justification  of  the  construction 
of  ideal  space. 



CHAPTER  V  2 

IDEAL  SPACE  IN  ANALYSIS 

521.  The  specification  of  an  ideal  point.  522.  Ideal  lines  and  ideal  planes  in  analysis. 

523.  Conditions  for  collinearity  and  coplanarity  of  ideal  points.  524.  Tetrahedral  co- 
ordinates as  coefficients  in  the  specification  of  an  ideal  point.  525.  The  loading  of  ideal 

points ;  addition  of  loads ;  mean  centres.  526.  Uses  of  loaded  ideal  points ;  tetrahedral 
coordinates  as  multipliers  in  a  loaded  tetrahedron.  527.  The  effect  of  a  change  in  the 
tetrahedron  of  reference ;  homogeneous  linear  equations. 

521.   THE  SPECIFICATION  OF  AN  IDEAL  POINT. 

•1.  The  introduction  of  elements  at  infinity  into  analytical  work  follows 
with  surprising  fidelity  the  steps  of  their  introduction  into  pure  geometry. 

The  position  of  a  point  R  may  be  determined  from  a  point  Q  by  means  of 

two  vectors,  the  vector  q'  of  the  step  from  Q  to  a  fixed  point  0,  and  the 
vector  r  of  the  step  from  0  to  R.  The  step  QR  is  the  step  which  represents 

the  vector  r  +  q'  with  reference  to  the  point  Q.  If  Q  is  distinct  from  R,  the 
steps  from  Q  with  vectors  of  the  form  kr  +  kq'  lie  all  in  the  line  QR,  and  for 
different  values  of  k  trace  out  the  whole  line.  Hence  given  a  vector  r  and  a 
number  t  different  from  zero,  the  steps  which  represent  from  Q  the  vectors  of 

the  form  k(r  +  tq'),  that  is,  kt  |(r/£)  +  q'},  trace  out  the  line  joining  Q  to  the 
point  whose  vector  from  0  is  r/t,  provided  only  that  Q  is  distinct  from  this 
last  point.  If  t  is  zero  but  r  is  not  the  zero  vector,  the  vectors  of  the  form 

k  (r  +  <q')  still  determine  a  definite  line,  though  this  is  no  longer  the  line 
through  Q  and  a  definite  point  but  is  the  line  through  Q  with  given  directions, 
those  of  the  vector  r.  In  either  case  the  line  is  determined  not  by  r  alone  or 
by  t  alone,  and  the  same  line  is  given  by  kr  and  kt  as  by  r  and  t,  provided  only 

that  r  +  tq'  is  not  zero.  Suppose  now  that  r  and  t  are  given  but  Q  is  allowed 
to  vary.  To  each  position  of  Q,  with  possibly  a  single  exception,  corresponds 
one  and  only  one  line ;  if  t  is  not  zero,  the  various  lines  are  concurrent  in  a 
definite  vertex,  the  point  whose  vector  from  0  is  r/t;  if  t  is  zero,  the  lines  are 
all  parallel.  In  other  words, 

•13  The  lines  determined  in  this  way  from  a  vector  r  and  a  number  t  which  are 
not  both  zero  compose  an  ideal  point. 

Moreover,  the  same  ideal  point  is  determined  by  hr  and  ht  as  by  r  and  t,  if  h 
has  any  value  other  than  zero :  the  specification  of  an  ideal  point  from  an 

•14        origin  by  means  of  a  vector  and  a  number  is  °  homogeneous.    The  ideal  point 
determined  by  r  and  t  will  be  described  simply  as  the  ideal  point  (r,  t). 
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•2.  The  definition  of  the  ideal  point  (r,  t)  is  equivalent  to  the  theorem  that 

7/"q  is  the  vector  from  the  origin  0  to  a  point  Q,  a  line  through  Q  belongs  to        -21 
the  ideal  point  (r,  t)  if  and  only  if  its  vecline  includes  the  vector  r  —  £q. 

If  r  —  tq  is  the  zero  vector,  every  vecline  includes  r—  tq,,  and  the  ideal  point 
is  accessible  and  has  Q  for  vertex.  In  every  other  case,  there  is  one  and  only 

one  line  through  Q  that  belongs  to  (r,  t). 

*3.  The  specification  of  a  particular  ideal  point  A  by  means  of  a  vector  r 
and  a  number  t  depends  of  course  on  the  origin  0.  The  effect  of  a  change  of 

origin  is  easily  deduced  from  '21.  If  the  origin  is  moved  to  a  point  S  such 
that  the  vector  of  OS  is  s,  and  if  t  is  the  vector  of  SQ,  we  have  q  =  s  + 1, 

and  therefore  a  line  through  Q  belongs  to  the  ideal  point  A  if  and  only  if  its 

vecline  includes  r  —  t  (B  + t),  that  is,  includes  (r  —  ts)  —  tt,  whence 

The  ideal  point  which  is  (r,  t)  when  referred  to  an  origin  0,  is  (r  —  ts,  t)  when        -32 
referred  to  the  point  S  which  is  such  that  the  vector  of  OS  is  B. 

If  we  have  reason  to  describe  the  new  origin  not  directly  but  as  the  vertex 

of  an  accessible  ideal  point  which  with  reference  to  0  is  (1,  I),  the  new  speci- 

fication {r  —  t  (l/l),  t}  is  conveniently  taken  in  °  the  form  (/r  —  tl,  It).   But  it  is       -33 
to  be  observed  that  °  there  is  no  possibility  of  using  an  inaccessible  origin  in        -34 
this  way:  if  /  is  zero,  (Ir  —  tl,  It)  reduces  to  (—  tl,  0)  and  fails  to  distinguish  one 
accessible  ideal  point  from  another.    The  utilisation  of  inaccessible  ideal  points 

as  points  of  reference  is  effected  along  quite  different  lines. 

•4.  To  describe  the  ideal  point  (r,  t)  by  means  of  a  Cartesian  frame  OXYZ 
or  an  attached  vector  frame  Oxyz,  what  is  wanted  in  addition  to  the  number  t 

is  a  set  of  numbers  to  specify  the  vector  r  by  means  of  the  chosen  frame. 

Taking  components  or  coefficients,  we  have  the  ideal  point  indicated  in  the 
one  case  by  the  set  of  four  numbers  x,  y,  2,  t  and  in  the  other  case  by  the  set 

of  four  numbers  £,  17,  £,  T,  where  r  is  substituted  for  t  for  the  sake  of  uni- 
formity in  appearance.  In  each  case,  one  at  least  of  the  four  numbers  is 

necessarily  different  from  zero,  and  the  ideal  point  depends  only  on  the  ratios 

oc:y:z:t  or  £  :  77 :  f :  T,  being  unaltered  if  the  four  numbers  are  multiplied 

simultaneously  by  any  number  other  than  zero:  in  fact,  °the  specification  -42 
remains  homogeneous  when  it  is  effected  by  means  of  four  numbers  instead 

of  by  means  of  a  vector  and  a  number.  But  it  is  impossible  to  replace  the 
homogeneous  specification  with  four  numbers  by  any  specification  with  three 
numbers  only,  without  loss  of  efficiency,  for  although  the  four  numbers  can 

not  all  be  zero  together,  there  is  no  one  of  them  that  is  not  zero  individually 

for  some  definite  class  of  ideal  points :  t  and  r  are  zero  for  the  points  at 
infinity. 

Any  accessible  point  A  has  one  and  only  one  specification  in  which  TA  is  1, 

and  the  values  of  £4,  17,4,  £A  in  this  specification  are  the  coordinates,  in  the 

elementary  sense,  relative  to  Oxyz,  of  the  actual  point  which  is  the  vertex  of  A. 
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522.  IDEAL  LINES  AND  IDEAL  PLANES  IN  ANALYSIS. 

•1.    In  the  geometrical  theory,  an  ideal  point  and  an  actual  plane  have 
been  said  to  cohere  if  the  plane  contains  a  line  belonging  to  the  point. 

Let  the  plane  be  given,  with  reference  to  the  origin  0,  by  the  equation 

•n  /ar=4, 
where  a  is  a  vector  perpendicular  to  the  plane  and  A  is  a  constant  for  the 

plane.  If  q  is  the  vector  from  0  to  a  point  Q  of  the  plane,  the  lines*  through 
Q  in  the  ideal  point  (1,  1)  are  the  lines  whose  veclines  include  the  vector  1  —  /q, 
and  there  is  one  of  these  lines  in  the  plane  if  and  only  if 

•12  c?a(l-Zq)  =  0, 

that  is,  since  q  satisfies  "11,  if  and  only  if 
•13  £al=Al, 

a  condition  from  which  q,  and  with  it  all  reference  to  the  particular  point  Q, 
has  disappeared. 

There  is  of  course  nothing  surprising  in  the  resemblance  of  '13  to  '11.  If 
the  ideal  point  (1,  I)  has  an  actual  vertex,  this  is  the  point  whose  vector  from 

0  is  I/  1,  and  the  ideal  point  coheres  with  the  plane  '11  if  the  vertex  is  in  the 
plane,  that  is,  if 

If  on  the  other  hand  the  ideal  point  is  the  sheaf  of  parallel  lines  with  veclines 

containing  1,  the  ideal  point  coheres  with  the  plane  if  the  vector  1  is  a  vector 

in  the  corresponding  vecplane,  that  is,  if 
/al  =  0, 

and  this  is  the  form  which  '13  assumes  if  I  is  zero. 

•2.  After  the  manner  in  which  vecplanes  are  defined,  it  is  natural  that 
when  we  are  given  two  distinct  ideal  points  (1,  I),  (m,  ra)  we  consider  the  class 

of  ideal  points  of  the  form  (il+jm,  il+jm)  for  varying  values  of  i  and  j. 
Because  the  specification  of  an  ideal  point  is  homogeneous,  the  ideal  point 

(il  +jm,  il  +jm)  depends  only  on  the  ratio  of  i  to  j,  not  on  the  absolute  values 
of  these  numbers.  Moreover,  the  relation  of  (il+jm,  il+jm)  to  (1,  I)  and 

(m,  m)  does  not  depend  on  the  origin  of  reference,  for  if  (1,  I),  (m,  m)  are 

replaced  by  (1  —  IB,  I),  (m  —  ras,  m),  then  (il  +jm,  il  +jm)  becomes 

{i(l-ls)+j(m-mB),  il+jm}, 
and  this,  since  it  can  be  written 

{(il  +jm)  —  (il  +jm)  B,  il  +jm], 
represents  the  same  ideal  point  with  respect  to  the  new  origin  as  does 

(il  +jm,  il  +jm)  with  respect  to  the  old. 

*  Unless  the  ideal  point  is  the  accessible  ideal  point  with  vertex  Q,  there  is  one  and 
only  one  line. 
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It  is  obvious  from  '13  that  °for  all  values  of  i  and  j,  the  ideal  point       -22 
(il  +  jm,  il  +jm)  coheres  with  every  plane  with  which  (1,  I)  and  (m,  ra)  both 
cohere. 

Conversely,  if  (1,  I)  and  (m,  m)  are  distinct  ideal  points  cohering  with  each 

of  the  distinct  planes  (a,  A),  (b,  B),  and  if  (n,  n)  is  a  third  ideal  point  which 
also  coheres  with  each  of  these  planes,  then 

Al,    £a.m=Am,    =^an  =  An,  -231 

Bl,     £l>m  =  Bm,     £bn  =  Bn,  -232 
and  therefore 

e?  (5a  -  4b)  1  =  0,     c?CBa-4b)m  =  0,     £  (Ba.  -  Alt)  n  =  0.  -233 
Unless  A  and  B  are  both  zero,  the  vector  Ba.  —  Ab  is  not  the  zero  vector, 

since  t.he  planes  are  distinct,  and  therefore  '233  implies  that  1,  m,  n  are 
coplanar,  that  is,  that  there  are  constants  f,  g,  h  such  that 

fl+gm  +  hn  =  Q;  '234 

this  being  the  case,  we  have  from  '231,  '232 

A(fl+gm  +  hn)  =  Q,     B  (fl  +  gm  +  hn)  =  0, 

and  this  requires  fl  +  gm  4-  hn  =  0.  -236 

Since  (1,  1)  and  (m,  m)  are  distinct,  h  is  not  zero,  for  there  are  no  numbers 

f,  g  such  that  simultaneously 

but  if  h  is  not  zero,  "234,  '236  become 

n  =  -(//A)l-(<7/A)m,     n  =  -(f/h)l-(gjh)m,  -237 

and  express  that  °(n,  n)  is  of  the  form  (il  +jm,  il  +jm).  -24 

To  deal  with  the  excepted  case,  we  may  either  move  the  origin  to  a  point 
which  is  not  common  to  the  two  planes,  or  observe  that  if  A  and  B  are  both 

zero,  a  and  b  are  not  collinear,  and  '231,  '232  express  that  1,  m,  n  are  all 
multiples  of  ̂ ab  ;  writing 

1  :  m  :  n  =  L  :  M  :  N,  -251 

then  since  mL  —  IM  can  not  be  zero,  for  ml  —  Im  is  a  proper  vector,  the  pair  of 
equations 

=  0  -252 

can  be  satisfied  by  values  off,  g,  h  such  that  h  is  not  zero. 

If  (1,  1),  (m,  m)  are  distinct  ideal  points,  and  P,  Q  are  distinct  planes  with        '26 
which  they  both  cohere,  the  ideal  points  ivhich  cohere  with  both  P  and  Q  are  the 

ideal  points  of  the  form  (il  +jm,  il  +jm). 

That  is  to  say, 

If  (1,  I)  and  (m,  m)  are  distinct  ideal  points,  the  ideal  points  of  the  form        '27 
(il  +jm,  il  +jm)  are  the  ideal  points  composing  the  ideal  line  through  (1,  I) 
and  (m,  m). 
N.  17 
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•31  -3.  °The  expression  (1  + jm,  I  +jm)  represents  by  the  variation  of  j  all  the 
ideal  points  of  the  ideal  line  joining  (1,  I)  to  (m,  m)  except  the  ideal  point 
(m,  w)  itself.  Hence  if  (1,  I)  is  not  collinear  with  (m,  m)  and  (n,  n),  the  ex- 

pression (1  +jm  +  kn,  I  +jm  +  kn)  represents  all  the  ideal  points  coplanar  with 
these  three  except  those  on  the  ideal  line  joining  (m,  m)  to  (n,  n),  and 

•32  If  (1,  I),  (m,  m),  (n,  n)  are  any  three  ideal  points  that  are  not  collinear,  the 
ideal  points  of  the  form  (il  +jn\  +  kn,  il  +jm  +  kn)  are  the  ideal  points  com- 

posing the  ideal  plane  through  these  three  ideal  points. 

523.   CONDITIONS  FOR  COLLINEARITY  AND  COPLANARITY  OF  IDEAL  POINTS. 

•1.   The  two  ideal  points  (1,  I),  (m,  m)  coincide  if  and  only  if  there  are 

numbers  i,j'  which  are  not  both  zero  such  that 

•11  j'm  =  il,   j'm  =  il. 

It  is  important  to  observe  that  in  fact  neither  of  the  numbers  i,  j'  can  be  zero, 
for  if  i  is  zero  but  notj',  "11  gives 

m  =  0,    m  =  0 

and  (m,  m)  fails  to  represent  an  ideal  point  at  all.  Thus  we  can  assert,  writing 

j  for  —  j',  both  that 
•13  The  two  ideal  points  (1,  I),  (m,  m)  coincide  if  and  only  if  there  are  two 

numbers  i,  j  both  different  from  zero  such  that 

il  +jm  =  0,     il  +jm  =  0, 
and  that 

•14  The  two  ideal  points  (1,  I),  (m,  m)  coincide  if  and  only  if  there  are  two 
numbers  i,  j  not  both  zero  such  that 

The  difference  between  the  two  forms  of  expression  which  is  trivial  in  this 

case  acquires  significance  in  the  corresponding  theorems  to  which  we  proceed. 

•2.  If  (1, 1),  (m,  m)  are  distinct,  a  third  ideal  point  (n,  n)  is  in  the  ideal  line 
through  them  if  and  only  if  there  are  numbers  i,  j  not  both  zero  and  a  number 

k'  not  zero  such  that 
k'n  =  il  +  jm,     k'n  =  il  +  jm ; 

remarking  that  if  i  is  zero,  (n,  n)  coincides  with  (m,  m),  and  if  j  is  zero,  (n,  n) 

coincides  with  (1,  1),  and  replacing  —  k'  by  k,  we  conclude  that 

•23  The  three  ideal  points  (1,  I),  (m,  m),  (n,  n)  are  collinear  and  all  distinct  if 
and  only  if  there  are  three  numbers  i,j,  k  all  different  from  zero  such  that 

il  +  jm  +  kn  =  0,     il  +  jm  +  kn  —  0. 

If  one  of  the  numbers  i,j,  k  in  '23  is  zero  but  one  of  them  is  not  zero,  the 
conditions  of  *14  reappear;  the  third  number  is  not  zero,  and  two  of  the  ideal 
points  coincide.  If  the  third  ideal  point  is  distinct  from  these  two,  there  is 
still  one  ideal  line  that  includes  them  all,  while  in  the  extreme  case  in  which 
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the  three  ideal  points  all  coincide,  there  is  an  infinity  of  ideal  lines  through 
them. 

The  three  ideal  points  (1,  l\  (m,  m),  (n,  n)  are  collinear  if  and  only  if  there       -24 
are  three  numbers  i,  j,  k  not  all  zero  such  that 

ft  +  JTO.  +  kn  =  0,     il  +jm  +  fcra  =  0. 

•3.  For  the  ideal  point  (p,  p)  to  be  coplanar  with  three  ideal  points  (1,  I), 
(m,  m),  (n,  n)  that  are  not  collinear,  there  must  be  numbers  i,  j,  k  not  all  zero 

and  a  number  h'  different  from  zero  such  that 

/i'p  =  il  +jtn  +  kn,     h'p  =  il  +jm  +  kn. 
If  one  of  the  numbers  i,  j,  k  is  zero,  (p,  p)  is  collinear  with  two  of  the  three 

ideal  points  (/,  1),  (m,  ra),  (n,  n);  hence 

The  four  ideal  points  (1,  I),  (m,  m),  (n,  n),  (p,  p)  are  coplanar  and  no  three        "33 
of  them  are  collinear  if  and  only  if  there  are  four  numbers  i,j,  k,  h  all  different 
from  zero  such  that 

il  +jm  +  kn  +  hp  =  0,     il  +jm  +  kn  +  hp  =  Q. 

And  corresponding  to  '24, 

The  four  ideal  points  (1,  I),  (m,  m),  (n,  n),  (p,  p)  are  coplanar  if  and  only  if       -34 
there  are  four  numbers  i,j,  k,  h  not  all  zero  such  that 

ft  +jm.  +  kn  +  hp  =  0,     il  +jm  +  kn 

524.   TETRAHEDRAL  COORDINATES  AS  COEFFICIENTS  IN  THE  SPECIFICATION 
OF  AN  IDEAL  POINT. 

•1.  If  A,  B,  C,  D  are  any  four  ideal  points  that  are  not  coplanar,  and  G  is  any 
ideal  point  whatever,  there  is  an  ideal  line  that  includes  D  and  G,  and  this 

ideal  line  has  an  ideal  point  in  common  with  the  ideal  plane  ABC: 

If  (1,  l\  (m,  ra),  (n,  n),  (p,  p)  are  any  four  ideal  points  that  are  not  coplanar,        -11 
every  ideal  point  can  be  expressed  in  the  form 

(/1 + #m  +  An  +  kp,    fl+gm  +  hn  +  kp). 

*2.  Here  is  the  beginning  for  completed  space  of  the  theory  of  tetrahedral 
coordinates,  which  describes  a  point  by  its  relations  to  four  points  of  reference, 

A,  B,  C,  D,  themselves  subject  to  no  essential  condition  except  that  of  not 
being  coplanar.  It  is  evident  that  something  must  be  given  in  addition  to 

the  four  ideal  points  of  '11  themselves  if  the  set  of  numbers  (/,  g,  h,  k)  is  to 
characterise  a  definite  ideal  point  G.  For  if/,  g,  h,  k  are  all  different  from 
zero  and  if  a,  b,  c,  d  are  any  four  numbers  also  all  different  from  zero,  then 
writing 

l'=/l/a,     m'=gm/b,     n'  =  An/c,     p'  =  kp/d, 

I' =fl/a,      m'  =  gmfb,      n'  =  hn/c,     p'  =  kp/d, 

17—2 
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we  have  in  (!',  /'),  (in',  m'),  (n',  n'),  (p', p)  the  same  ideal  points  A,  B,  C,  D 
as  (1,  /),  (m,  m),  (n,  71),  (p,  p),  and  yet  since  identically 

ai  +  6m'  +  en'  -t  dp'  =/l  +  ̂ m  +  hn  +  &p, 

a/'  +  6m'  -f  en'  +  dp'  =fl  +  gm  -\-hn-\-  kp, 

•22  °  the  ideal  point  G  formed  with  the  four  numbers  /,  g,  h,  k  can  equally  well 
be  formed  from  A,  B,  C,  D  with  the  four  numbers  a,  6,  c,  d  chosen  almost  at 

•23  random.  By  the  same  argument,  °any  other  ideal  point  not  coplanar  with  any 
three  of  the  ideal  points  A,  B,  C,  D  can  be  associated  with  the  four  numbers 

/,  g,  h,  k  first  used  of  G. 
This  analysis  itself  shews  clearly  the  point  of  indetermination  and  indicates 

how  precision  is  to  be  imparted.  In  passing  from  f,  g,  h,  k  to  a,  6,  c,  d  as  the 

numbers  associated  with  a  particular  ideal  point,  we  have  to  change,  not  in- 
deed the  ideal  points  A,  B,  G,  D  themselves  but  the  vectors  and  numbers 

used  to  specify  these  ideal  points.  If  1,  m,  n,  p  and  I,  m,  n,  p  are  regarded  as 

fixed,  as  well  as  the  actual  point  which  is  used  as  origin  in  the  specification 

of  the  ideal  points,  and  iff,  g,  h,  k  are  given  numbers  not  all  zero,  then  there  is 
of  course  one  and  only  one  ideal  point  (fl  +  gm  +  An  +  kp,  fl  +  gm  +  hn  +  kp). 
Conversely,  for  the  ideal  point  (al  +  6m  +  en  +  dp,  al  +  bm  +  cn  +  dp)  to  be 

the  same  as  the  ideal  point  (fl  +  gm  +  hn  +  kp,  fl  +gm  +  hn  +  kp),  there 
must  be  numbers  r,  s  both  different  from  zero  such  that  simultaneously 

r  (al  +  6m  +  en  +  dp)  =  s  (fl  +  gm.  +  hn  +  kp), 

r  (al  +  6m  +  en  +  dp)  =  s  (fl  +  gm  -f  hn  +  kp) ; 

writing  these  equations  in  the  form 

(ra  —  sf)  1  -f  (rb  -  sg) m  +  (re  -  sh)  n  +  (rd  —  sk)p  =  0, 

(ra  —  sf)  l  +  (rb  —  sg)  ra  +  (re  —  sh)  n  +  (rd  —  sk)  p=Q, 

we  see  from  3'34  that  they  imply  either  that  the  four  ideal  points  A,  B,  C,  D 
are  coplanar,  which  is  assumed  not  to  be  the  case,  or  that  the  coefficients 

ra  —  sf,  rb  —  sg,  re  -  sh,  rd  -  sk  are  all  zero,  and  since  neither  r  nor  s  is  zero, 
the  implication  is  simply 

•26  a  :  b  :  c  :  d  =f :  g  :h:  k. 

•27  Given,  an  actual  point  as  origin  of  reference,  and  definite  specifications  (1, 1), 
(m,  m),  (n,  n),  (p,  p)  of  four  ideal  points  that  are  not  coplanar,  any  ideal  point 
can  be  expressed  in  the  form 

(fl  +  gm  +  hn  +  kp,  fl  +  gm  +  hn  +  kp); 

the  four  numbers  f,  g,  h,  k  are  not  all  zero,  and  the  ideal  point  is  determined 
not  by  the  actual  values  of  these  numbers  but  by  the  ratios  f:  g  :  h:  k;  moreover, 

to  each  ideal  point  corresponds  only  one  set  of  ratios. 

*3.    If  with  the  change  of  origin  from  0  to  a  point  S  such  that  the  vector 
of  OS  is  s  the  specifications  of  the  four  ideal  points  (1, 1),  (m,  m),  (n,  n),  (p,  p) 
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take  the  simplest  modification  possible,  namely,  to  (1  —  In,  I),  (m  —  ma,  m), 
(n  —  na,  ?i ),  (p  —pa,p),  then  since  the  pair  of  equations 

r  =/l  +  r/m  +  hn  +  /,-p,     t  =fl  +  gm  +  hn  +  kp  -31 
is  equivalent  to 

r-tm  =/(!  -  IB)  +  g  (m  -  ma)  +  h(n  —  na)  +  k(p-  pa),  t  =fl  +  gm  +  hn  +  kp,  -32 

°the  set  of  ratios/:  g  :h:k  associated  with  any  ideal  point  G  is  unaltered,  for  '33 
(r  —  ts,  t)  describes  0  itself  with  reference  to  8. 

We  are  prompted  therefore  to  express  the  relation  of  the  set  of  ratios  f:g:h:k 

to  the  ideal  point  G  in  a  manner  independent  of  any  particular  actual  point 

used  as  origin  of  reference.  Two  ways  in  which  this  elimination  of  the  origin 
can  be  effected  are  described  in  the  following  paragraph  and  in  526  below. 

•4.  Perhaps  the  simplest  plan  is  to  appeal  to  the  argument  of  "2,  which 
shews  that0  whatever  the  origin  0  we  can  adapt  the  specifications  of  the  four  -41 
ideal  points  A,  B,  C,  D  to  secure  that  one  definite  ideal  point  V  not  coplanar 

with  any  three  of  these  ideal  points  is  associated  with  any  definite  set  of  four 
numbers  a,  b,  c,  d  that  we  choose,  subject  only  to  the  condition  of  being  all 

different  from  zero;  in  particular,  we  can  assign  to  a  particular  ideal  point  the 
set  of  numbers  1,  1,  1,  1.  This  done,  though  the  specifications  of  A,  B,  C,  D 

are  not  actually  determinate,  the  only  possible  change  is  a  simultaneous 

multiplication  of  the  four  vectors  1,  m,  n,  p  and  the  four  numbers  I,  m,  n,  p 

all  by  a  single  number,  and  this  change  ° leaves  unaltered  the  ratios/:^:  h:  k  -42 
associated  with  any  other  ideal  point  0. 

Moreover,  it  follows  from  '33  that  if  the  origin  is  changed  from  0  to  S,  the 
change  of  specification  from  (1,  /)  to  (1  —  la,  I)  and  so  on  is  sufficient  to  secure 
both  that  V  is  still  associated  with  a:b:c:d  and  also  that  G  is  still  associated 

•with  f :  g  :  h :  k.. 

If  A,  B,  C,  D  are  any  four  ideal  points  that  are  not  coplanar,  V  a  fifth  '44 
ideal  point  not  coplanar  with  any  three  of  them,  and  a,  b,  c,  d  four  numbers  no 
one  of  which  is  zero,  then  whatever  actual  point  is  adopted  for  origin  of  reference 

there  are  specifications  (1,  I),  (m,  m),  (n,  n),  (p,  p)  of  A,  B,  C,  D  that  give  to  V 
a  specification  (a\  +  6m  +  cn  +  dp,  al  +  bm  +  cn  +  dp),  and  associated  with  any 

ideal  point  G  there  is  a  definite  set  of  ratios  f:  g  :h:k  such  that  all  specifications 

of  A,  B,  G,  D  that  give  V  this  specification  allow  G  to  have  the  specification 

(fl  +  gra+hn  +  kp,  fl  +  gm  +  hn+kp). 
Any  set  of  four  numbers  /,  g,  h,  k  whose  ratios  are  associated  with  G  in  this 

manner  is  called  a  set  of  °  homogeneous,  quadriplanar,  or  tetrahedral  *  coordinates        '45 
of  G,  determined  from  the  tetrahedron  ABGD  by  assigning  to  V  the  chosen 

coordinates  a,  b,  c,  d.    If  a,  b,  c,  d  are  taken  all  to  be  unity,  the  system  of 

coordinates  is  said  to  have  V  for0 unit  point.  -46 

*  To  some  early  writers,  the  quadriplanar  coordinates  of  G  were  distances  of  G  from  the 
faces  of  the  tetrahedron,  and  the  tetrahedral  coordinates  were  ratios  of  the  volumes  OBCD, 
AGCD,  ABGD,  ABCG  to  the  volume  ABCD. 
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525.  THE  LOADING  OF  IDEAL  POINTS;  ADDITION  OF  LOADS; 
MEAN  CENTRES. 

•1.  The  alternative  method  of  dealing  with  the  ideal  tetrahedron  is  more 
elaborate,  but  the  notion  involved,  which  is  that  of  a  loaded  ideal  point,  is 
intrinsically  valuable. 

•11  The  ideal  point  G  is  said  to  be  ° properly  loaded  if  its  specification  with 
reference  to  every  actual  point  is  determinate  in  such  a  way  that  if  0,  8  are 

any  two  actual  points  such  that  the  vector  OS  is  s,  and  if  the  specification 
with  reference  to  0  is  (r,  t),  then  the  specification  with  reference  to  S  is 

(r  —  tB,  t).  If  T7  is  a  third  actual  origin  and  the  vector  OT  is  t,  the  specification 
with  respect  to  T  derived  from  that  with  respect  to  S  takes  the  form 

(r  —  tB  —  t  (t  —  B),  t),  and  this  is  identical  with  (r  —  tt,  t),  the  specification  with 

•12  respect  to  T  derived  directly  from  that  with  respect  to  0:  °the  definition  is 
therefore  consistent. 

•13  A  properly  loaded  ideal  point  can  be  determined  by  its  specification  with 
respect  to  any  actual  origin, 

•14  while  conversely,  °an  actual  point  of  reference,  a  vector,  and  a  number,  together 
specify  one  definite  properly  loaded  ideal  point,  provided  only  that  the  vector 

•15  is  not  the  zero  vector  if  the  number  is  itself  zero.  In  any  case  °the  number 
is  independent  of  the  origin  of  reference. 

•2.   To  define  the  load   of  a  properly  loaded  ideal  point  we  must  have 

•21        recourse  to  the  Frege-Russell  method  and  identify  the  load  with0 the  class  of 
specifications.   This  class  is  determined  by  any  one  of  its  members,  and  if  we 

use  (r<2,  t)  to  denote  the  association  of  the  vector  r  and  the  number  t  with  the 
point  Q,  we  may  speak  of  the  load  (r^,  t)  briefly  when  we  mean  the  load  of 
which  (rQ,  t)  is  one  member.    In  two  members  of  the  same  load  the  numbers 

are  necessarily  the  same,  and  further,  if  (rQ,  t),  (rs,  t)  belong  to  the  same  load 
and  B  is  the  vector  QS, 

•22  r^  =  rQ-te. 

If  we  regard  the  identity  '22  as  the  fundamental  property  of  a  load,  we  can 
make  an  extension  apparently  trivial  but  in  fact  of  considerable  value.  In 

the  specification  of  an  ideal  point  with  reference  to  an  origin  by  a  number 
and  a  vector,  either  the  vector  must  be  proper  or  the  number  must  not  be 

•23  zero,  but0 the  zero  vector  and  the  number  zero  together  can  be  taken  in 
association  with  an  actual  point  as  an  element  of  a  load.  It  follows  from  '22 
that  if  these  are  the  vector  and  number  associated  with  any  one  origin,  they 

•24  are  also  the  vector  and  number  associated  with  any  other  origin;  thus°there 
is  only  one  load  which  has  an  element  of  this  kind,  and  in  this  load,  which  is 

naturally  called  the  zero  load,  every  element  consists  of  the  zero  vector  and 
the  number  zero  associated  with  some  point. 
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*3.    We  can  now  give  a  definition  of  a  loaded  ideal  point  that  allows  the 

load  to  be  zero.    Let  us  say  that  a  load  is  °  suitable  for  an  ideal  point  if  on       *3l 
referring  them  to  a  common  origin  and  taking  a  definite  specification  for  the 
ideal  point  we  find  that  there  is  a  number  k  such  that  the  vector  and  number 

specifying  the  load  are  the  products  by  k  of  the  vector  and  number  specifying 

the  ideal  point,  and  let  us  define  a  loaded  ideal  point,  as  °  an  ideal  point       -32 
associated  with  a  suitable  load.    Whether  or  not  a  load  is  suitable  for  an  ideal 

point  does  not  depend  on  the  origin  by  means  of  which  the  load  and  the 
point  are  compared. 

The  definition  of  a  loaded  ideal  point  is  designed  to  be  the  same  m  form 

whether  the  ideal  point  is  accessible  or  not,  and  for  this  reason  it  is  the  more 
interesting  to  discover  that  the  definition  leads  in  each  case  to  precisely  the 
concept  that  would  be  selected  naturally  for  consideration  on  its  own  account. 

0  If  the  ideal  point  to  be  loaded  is  accessible,  it  is  completely  determined        -33 
by  its  vertex  and  the  number  t.    Referred  to  the  vertex  as  origin  the  ideal 

point  is  simply  (0,  t),  and  referred  to  any  other  point  S  it  is  (tr,  t)  where  r  is 

the  vector  of  the  step  from  S  to  the  vertex.    The  idea  is  the  natural  adaptation 
of  the  idea  of  a  loaded  point  in  elementary  work. 

On  the  other  hand,  if  the  ideal  point  is  at  infinity,  the  number  t  is 

necessarily  zero  and  there  is  neither  number  nor  vertex  to  distinguish  one 

point  from  another.  But  in  this  case,  because  t  is  zero,  the  vector  r  is  inde- 

pendent of  the  origin  of  reference.  °  A  properly  loaded  ideal  point  at  infinity  -34 
is  simply  an  inaccessible  ideal  point  specified  by  a  definite  proper  vector  with- 

out reference  to  any  particular  origin  at  all. 

0  The  zero  load  is  suitable  for  every  ideal  point.  An  ideal  point  associated  -35 
with  the  zero  load  is  said  to  be  °  annihilated,  and  an  ideal  point  associated  with  -36 
any  other  load  is  described  as  properly  loaded. 

0  If  a  load  is  proper,  there  is  one  and  only  one  ideal  point  for  which  it  is        '37 
suitable  ;  this  ideal  point  is  called  the  ° point  of  application  of  the  load.    Our        %38 
definitions  do  not  enable  us  to  give  the  same  load  to  different  ideal  points, 
but  the  drawback  proves  to  be  surprisingly  slight. 

•4.  It  is  perhaps  worth  while  to  emphasise  the  reasons  against  the  simple  plan  of  iden- 
tifying the  load  of  a  loaded  ideal  point  with  the  number  which  occurs  in  its  specification 

with  respect  to  any  origin,  for  this  number  is  independent  of  the  origin.  The  method,  in 
addition  to  its  simplicity,,  would  have  the  advantage  of  enabling  us  to  ascribe  loads  almost 
arbitrarily. 

One  objection,  of  which  it  is  not  easy  to  gauge  the  importance,  is  in  the  difficulty  of 
giving  a  logical  meaning  on  this  basis  to  the  ascription  of  the  zero  load  to  a  given  ideal 

point. 
The  second  obstacle,  complementary  to  this,  is  that  it  becomes  impossible  to  imagine 

any  proper  load  that  can  be  given  to  an  ideal  point  at  infinity,  and  this  is  a  more  serious 

matter  than  is  at  first  apparent :  the  whole  object  of  the  completing  of  space  is  the  avoid- 
ance of  exceptional  cases,  and  the  more  operations  we  find  ourselves  unable  to  perform 

with  ideal  points  at  infinity,  the  less  justification  have  we  for  introducing  ideal  points  at 
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all ;  we  might  as  well  treat  parallelism  itself  as  the  exceptional  phenomenon  as  go  to  the 
trouble  of  inventing  infinity  only  to  find  ourselves  still  hampered  by  its  peculiarities. 

To  admit  the  necessity  of  some  conception  mathematically  equivalent  to 
that  defined  above  as  the  load  is  not  to  deny  that  a  simpler  notion  may  have 

its  part  to  play.    We  will  describe  the  number  which  occurs  in  every  speci- 

al       fication  of  a  load  as  the  °  mass  of  the  load.    Then  the  special  features  of  the 
loading  of  inaccessible  ideal  points  are  that 

•42  The  ideal  point  to  which  a  proper  load  can  be  given  is  or  is  not  inaccessible 
according  as  the  mass  of  the  load  is  or  is  not  zero. 

•43        °  The  zero  load  is  the  only  load  of  zero  mass  that  can  be  given  to  an  accessible 
ideal  point. 

*5.  The  definition  of  the  sum  of  a  finite  number  of  loads  is  both  simple  and 
natural.  The  individual  loads,  if  proper,  imply  their  points  of  application,  and 

•51  °  the  process  of  adding  a  set  of  loads  can  be  regarded  as  one  of  concentrating 
a  set  of  loaded  ideal  points.  Let  A-^,  A2,  ...  An  be  ideal  points  specified  with 

respect  to  two  points  Q  and  S  by  (r^,  £,),  (r2Q,  t2),  ...  (rnQ,  tn)  and  (r^,  £,), 
(r/,  tz),  . . .  (rns,  tn\  so  that  if  8  is  the  vector  of  Q8 

•52  r,s  =  r^  -  *! s,    r/  =  T^-t2B,  ...  rns  =  rnQ  -  tn s, 
and  let  loads  suitable  for  these  ideal  points  be  specified  by 

&T&  W,  (Z2r2Q  I2t2),  ...  (lnrnQ,  lntn) 
with  respect  to  Q,  and  therefore  by 

(W,  l^\  (W,  W,  •••  (InTn8,  ̂ ntn) 

with  respect  to  8.    Then  since  '52  implies 

•53       (W  +  I2r/  +...  +  lnrns)  =  (lj£  +  I2r23  +...  +  lnrn^)  -(1^  +  1^+...+  lntn)  s, 

•54        °  the  load  whose  specification  with  respect  to  Q  is 

(faQ  +  Z2r2Q  +  . . .  +  lnrnQ,  1&  +  M2  +  •  •  •  +  ̂ A) 
is  the  same  as  the  load  whose  specification  with  respect  to  S  is 

(^r,8  +  I2r2s  +  ...+  lnrn8,  1&  +  1^+  ...  +  lntn). 

In  other  words,  this  load  bears  to  the  given  set  of  loaded  ideal  points 

a  relation  that  is  independent  of  any  particular  origin  of  reference.  If  the 
applied  loads  are  all  proper,  they  determine  their  points  of  application,  and 
the  resulting  load  depends  only  on  the  loads  given.  But  if  some  of  these  loads 
are  not  proper,  that  is,  if  some  of  the  numbers  ̂ ,  12, ...  ln  are  zero,  these  zero 
loads  produce  no  effect  on  the  final  load,  whatever  their  points  of  application, 
and  therefore  in  this  case  also  the  result  is  determined  by  loads  alone.  The 

•55  load  found  in  this  way  is  called  the  °  sum  of  the  loads  on  which  it  depends, 
and  if  the  sum  is  attached  to  any  ideal  point  for  which  it  is  suitable,  the  set 

of  loaded  ideal  points  is  said  to  be  concentrated  at  that  ideal  point,  which  is 

•56       called  a  °  mean  centre. 
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If  the  sum  is  the  zero  load,  the  set  of  ideal  {joints  is  said  to  be  °  annihilated       '57 
by  the  loading,  and  in  this  case  any  ideal  point  may  be  regarded  as. a  mean 

centre  of  the  loaded  set.  °  If  the  set  is  not  annihilated,  the  mean  centre  is       '58 
definite  as  well  as  the  resultant  load. 

0  The  mass  of  the  sum  of  a  number  of  loads  is  the  sum  of  their  masses.  If  "59 
this  sum  is  not  zero,  the  mean  centre  is  accessible  and  ,the  resultant  load  is 

determined  by  the  mean  centre  and  the  resultant  mass.  If  the  resultant 
mass  is  zero,  either  the  set  of  loaded  ideal  points  is  annihilated  by  the  loading, 

or  the  mean  centre  is  at  infinity ;  a  knowledge  of  the  mass  alone  does  not  en- 
able us  to  distinguish  between  these  two  cases,  or  in  the  case  of  an  inaccessible 

mean  centre  to  discover  the  resultant  load,  but  the  resultant  load  itself  is 

precise  in  every  event. 

*6.    The  product  of  the  load  of  which  a  specification  is  (p^,  p)  by  a  number  k 

is  the  load  of  which  a  specification  is  ((&p)Q,  kp);  this  is  °  a  load  independent  of       -61 
the  origin  Q,  and  suitable  for  any  ideal  point  for  which  the  original  load  is 

suitable.  °  Applied  to  the  loads  which  are  all  suitable  for  one  and  the  same        "62 
ideal  point,  multiplication  and  addition  stand  in  their  ordinary  relation. 

Without  defining  the  ratio  of  two  loads,  we  can  allow  the  expression  that 

0  the  members  Z15  L2,  ...  of  one  set  of  loads  are  proportional  to  the  members        -63 
J/i,  M.2>  ...  of  another  set  if  there  are  numbers  r,  s  not  both  zero  such  that 

the  sets  sL1}  sL2,  ...  and  rMl,  rMz,  ...  are  identical,  and  we  can  express  the 

relation  in  symbols  by  writing 

Ll'.Lt'....=Ml:Mt-.-...,  -64 

and  in  words  by  saying  that  °  the  ratios  in  the  two  sets  are  the  same.  -65 

*7.    Applications  require  the  simple  theorem  that 

If  each  of  a  set  of  loads  is  multiplied  by  the  same  number,  the  sum  of  the  set       -71 
is  multiplied  by  this  number, 

utilised  often  by  means  of  the  corollary  that 

If  the  loads  attached  to  a  number  of  ideal  points  are  all  multiplied  by  the        "72 
same  number,  any  ideal  point  which  is  a  mean  centre  under  the  original  loading 
remains  a  mean  centre, 

which  by  '35  and  '37  includes  the  theorem  that0 if  the  set  is  annihilated  by        73 
the  original  loading  it  is  annihilated  by  the  subsequent  loading. 

Since  addition  is  associative  both  for  vectors  and  for  numbers,  it  is  associative 

also  for  loads.  In  other  words,  we  can  repeat  for  loaded  ideal  points  the 

enunciation  of  216*53  above  : 

In  concentrating  any  finite  set  of  loaded  ideal  points,  we  may  replace  any        -74 
group  contained  in  the  set  by  the  loaded  ideal  point  obtained  by  concentrating 
that  group. 
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526.   USES  OF  LOADED  IDEAL  POINTS;  TETRAHEDRAL  COORDINATES  AS 
MULTIPLIERS  IN  A  LOADED  TETRAHEDRON. 

•1.   We  can  now  modify  many  of  the  propositions  of  2,  3  and  4  to  forms 
independent  of  any  origin  of  reference. 

•11  Two  ideal  points  are  distinct  if  and  only  if  the  only  loading  that  annihilates 
the  pair  is  that  in  which  the  individual  loads  are  zero. 

•12  The  ideal  line  through  two  distinct  ideal  points  is  the  locus  of  ike  'mean  centre 
for  a,  variable  loading  in  which  the  individual  loads  are  not  both  zero. 

•13  Three  ideal  points  are  collinear  and  all  distinct  if  and  only  if  they  form  a 
set  that  can  be  annihilated  by  some  loading  in  which  the  individual  loads  are 
all  proper. 

•14  Three  ideal  points  are  collinear  if  and  only  if  they  form  a  set  that  can  be 
annihilated  by  some  loading  in  which  the  individual  loads  are  not  all  zero. 

•15  The  ideal  plane  through  three  ideal  points  that  are  not  collinear  is  the  locus 
of  the  mean  centre  for  a  variable  loading  in  which  the  individual  loads  are  not 
all  zero. 

•16  Four  ideal  points  are  coplanar  but  not  collinear  if  and  only  if  they  form  a 
set  that  can  be  annihilated  by  some  loading  in  which  the  individual  loads  are 
all  proper. 

•17  Four  ideal  points  are  coplanar  if  and  only  if  they  form  a  set  that  can  be 
annihilated  by  some  loading  in  which  the  individual  loads  are  not  all  zero. 

•21  *2.   Every  set  of  five  ideal  points  can  be  annihilated  by  some  loading  in 
which  the  individual  loads  are  not  all  zero. 

•22  If  A,  B,  C,  D  are  any  four  ideal  points  that  are  not  coplanar  and  G  is  any 
ideal  point  whatever,  there  are  loads  that  are  not  all  zero  which  when  attached 
to  A,  B,  C,  D  bring  the  mean  centre  to  G. 

•23  If  A,  B,  C,  D  are  any  four  ideal  points  that  are  not  coplanar  to  which 
definite  proper  loads  are  attached,  then  if  G  is  any  ideal  point  whatever,  there 

are  four  numbers  f,  g,  h,  k  that  are  not  all  zero  such  that  if  the  loads  attached 

to  A,  B,  C,  D  are  multiplied  by  f,  g,  h,  k  the  mean  centre  of  the  resultant  set 
of  loaded  points  is  G. 

•24  If  a,  b,  c,  d  and  f,  g,  h,  k  are  two  sets  of  multipliers  that  bring  the  mean 
centre  of  a  given  loaded  ideal  tetrahedron  to  the  same  point,  then 

a  :  b:  c:d  =f:g  :h:k. 

•25  If  the  frame  of  reference  is  an  ideal  tetrahedron  with  given  proper  loads, 
every  set  of  four  numbers  not  all  zero  determines  one  ideal  point,  and  two  sets 

determine  the  same  point  only  if  the  ratios  of  corresponding  members  are  the 
same. 
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If  V  is  any  ideal  point  that  is  not  coplanar  with  any  three  of  the  four  vertices       «26 
of  an  ideal  tetrahedron  and  if  a,  b,  c,d  are  any  four  numbers  all  different  from 

zero,  the  ideal  tetrahedron  can  be  properly  loaded  so  that  a,  b,  c,  d  are  coordi- 
nates of  V;  the  ratios  of  the  loads  are  determinate,  and  so  also  are  the  ratios 

of  the  coordinates  of  every  other  ideal  point. 

*3.  It  is  to  be  observed  that  tetrahedral  coordinates  are  homogeneous  in 

a  far  deeper  sense  than  the  coordinates  (x,  y,  z,  t)  or  (£,  rj,  £,  T)  of  1'4,  for  the 
parts  they  play  are  all  of  the  same  kind;  they  are,  so  to  speak,  homogeneous 
naturally  as  well  as  mathematically. 

Nevertheless  it  is  important  to  notice  that  in  the  theory  of  tetrahedral 

coordinates  as  it  has  been  developed  here,  °  the  Cartesian  frame  and   the        -33 
attached  vector  frame  become,  as  far  as  analysis  is  concerned,  not  limiting 

cases  but  particular  cases  of  the  general  tetrahedral  frame.    To  regard 

r  =  £x  +  7?y  +  £z,     t  =  r 

as  the  form  assumed  by 

r  =  £1  +  Vm  +  £n  +  TP,     t  =  %l  +  ijm  +  £n  +  rp 

when  l  =  x,     m  =  y,     n  =  z,     p  =  0, 

£  =  0,     m=0,     %  =  0,    p  =  l, 

is  to  replace  the  attached  vector  frame  Oxyz  by  the  loaded  ideal  tetrahedron 

A,  B,  C,  D  in  which  A,  B,  C  are  the  loaded  ideal  points  at  infinity  with  vectors 

x,  y,  z,  and  D  is  the  accessible  ideal  point  with  vertex  0  and  load  unity.  The 

concepts  are  different,  but  the  analysis  is  unchanged. 
And  here  we  must  recognise  that  in  spite  of  all  appearance  to  the  contrary 

in  elementary  work,  ° projections  and  polar  coefficients  can  not  be  raised  to  '35 
the  same  rank  as  coordinates  and  components.  We  might  have  anticipated 

this  conclusion  when  we  found  that  in  isotropic  planes  coordinates  and  com- 
ponents only  are  available;  the  evidence  of  the  last  paragraph  may  be  taken 

as  final. 

It  is  of  course  easy  to  construct  a  system  of  tetrahedral  coordinates  in  un- 
completed space,  on  the  basis  of  the  theory  of  loaded  points  or  by  methods 

even  more  elementary.  But  there  are  reasons  for  regarding  this  development 
as  actually  undesirable.  The  chief  advantage  of  tetrahedral  coordinates  is  in 

their  homogeneity,  but  homogeneity  itself  loses  its  charm  if  exclusion  has  to 
be  made  of  sets  of  values  which  algebraically  have  no  essential  peculiarities: 

simultaneous  zero  values  we  must  expect  to  find  meaningless,  since  they 
correspond  to  no  definite  ratios  at  all,  but  with  tetrahedral  coordinates  in 

uncompleted  space  there  are  proper  sets  of  values  which  have  to  be  rejected 
not  because  they  lead  to  algebraical  difficulties  but  only  because  there  is  no 
interpretation  for  them. 
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527.   THE  EFFECT  OF  A  CHANGE  IN  THE  TETRAHEDRON  OF  REFERENCE  ; 
HOMOGENEOUS  LINEAR  EQUATIONS. 

•1.  The  character  of  the  formulae  for  transforming  from  one  set  of  tetra- 
hedral  coordinates  to  another  can  be  deduced  from  5'74.  If  the  tetrahedron 

of  reference  is  composed  of  four  loads  Lt>  Lz,  L3,  L4,  the  ideal  point  whose  co- 
ordinates are  a,  b,  c,  d  is  the  point  of  application  of  the  load  aLl  +  bL2  +  cL3+  dL±. 

If  the  four  loads  are  themselves  described  by  means  of  a  loaded  tetrahedron 
QRST  by 

111  Li-piP,  L2=p,P,  L3=p3P,  L4  =  ptP, 
where  p  =  (?,  r,  s,  f),   P  =  (&  R,  S,  T), 

•12        then  by  5'74         aL,  +  bL2  +  cL3  +  dL.  =  qQ  +  rR  +  sS  +  tT, 
where  q,  r,  s,  t  have  values  that  we  can  express  briefly  in  the  form 

by  writing  /for  (a,  b.  c,  d)  arid  using  u#  as  an  umbra  of  (^,  uz,  u3,  u4~)  for 
any  symbol  u.    That  is  to  say, 

'14  Coordinates  q,  r,  s,  t  with  reference  to  the  loaded  tetrahedron  QRST  are  con- 
nected with  coordinates  a,  b,  c,  d  in  the  loaded  tetrahedron  L^L^L^L^  by  the  set 

of  formulae  '13. 
Moreover,  since  the  points  of  application  of  Q,  R,  8,  T  are  not  coplanar, 

6'17  implies  that  q,  r,  s,  t  are  not  simultaneously  zero,  unless  a,  b,  c,  d  are  all 
zero;  hence  the  determinant  [[p#]]  is  not  zero.  Thus 

'15  To  pass  from  one  loaded  tetrahedron  of  reference  to  another  is  to  submit  the 
coordinates  to  a  homogeneovs  linear  substitution  that  is  not  degenerate. 

*2.  On  the  other  hand,  suppose  that  we  have  an  undegenerate  homogeneous 
linear  substitution 

with  given  coefficients  qlt  q2>  and  so  on,  connecting  the  set  of  variables  a,  b,  c,  d 
with  the  set  q,  r,  s,  t.   This  substitution  is  reversible  algebraically  to  the  form 

•22  a  =  a#p,    b  =  b+p,   c 

and  the  four  loads  Q,  R,  S,  T  defined  by 

•23  Q-/,i»,   R=f*L*, 

•24       are  such  that         L^  —  piP,   Lz=p*P,   L3  =  ps  P,   L4  =  pt  P, 

and  that  their  points  of  application  are  not  coplanar.    The  converse  of  '15  is 
therefore  true: 

•25  Any  undegenerate  homogeneous  linear  substitution  can  be  effected  on  tetra- 
hedral  coordinates  by  an  appropriate  change  in  the  tetrahedron  of  reference. 
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•3  It  follows  from  2'13  and  13'23  that  with  reference  to  a  tetrahedron  that 
gives  rise  to  the  same  formulae  as  an  attached  vector  frame,  an  accessible  ideal 
plane  is  characterised  by  an  equation 

^a£  +  ntf  +  v*£  =  A  r,  -31 

where  Xa>  /*a.  *>a  are  the  polar  coefficients  of  the  vector  a  in  the  attached  frame 
and  are  not  simultaneously  zero,  and  conversely  any  such  equation  characterises 
a  definite  accessible  plane.  Also  the  ideal  plane  at  infinity  is  the  aggregate 
of  ideal  points  satisfying 

A  -19 
T  =  0, 

which  is  the  form  of  '31  in  the  one  excepted  case.  That  is,  referred  to  this 

tetrahedron  every  ideal  plane  has  an  equation  of  the  form  of  '31,  and  every 
equation  of  this  form  determines  one  ideal  plane.  Since  a  homogeneous  linear 

transformation  of  the  variables  changes  '31  into  another  equation  of  the  same 
kind,  *15  implies  that 

Whatever  the  tetrahedron  of  reference,  every  homogeneous  linear  equation        '33 
between  the  coordinates  represents  a  definite  ideal  plane,  and  every  ideal  plane 

has  an  equation  of  this  form. 

We  have  used  '15  to  avoid  a  direct  examination  of  this  question,  but  the 

result  can  be  obtained  in  many  ways ;  for  example,  it  is  a  corollary  of  4'34. 
If  two  homogeneous  linear  equations  are  independent,  that  is,  if  one  of  them 

is  not  a  mere  multiple  of  the  other,  then  taken  together  they  represent  the 

ideal  line  which  is  the  common  part  of  the  ideal  planes  represented  by  the 

individual  equations.  But  this  specification  of  an  ideal  line,  like  the  corre- 
sponding representation  of  an  actual  line,  is  far  from  unique,  since  the  equations 

of  any  two  ideal  planes  through  the  line  may  be  used.  The  canonical  repre- 
sentation is  not  by  means  of  a  pair  of  independent  equations,  but  by  means 

of  four  interrelated  equations  obtained  by  eliminating  the  variables  in  turn 

from  a  pair  of  equations ;  these  are  equations  of  the  four  planes  each  of  which 
passes  through  the  line  and  includes  one  vertex  of  the  tetrahedron  of  reference. 

If  the  line  itself  passes  through  a  vertex,  the  corresponding  equation  disappears, 

and  if  the  line  is  coplanar  with  two  of  the  vertices,  two  of  the  equations  coin- 
cide, but  even  in  the  most  unfavourable  cases  two  distinct  equations  survive. 

With  Cartesian  axes  or  an  attached  vector  frame,  the  canonical  set  of  equa- 
tions of  a  line  is  the  scalar  equivalent  of  one  vector  equation  of  the  form 

^rk  =  K,  and  has  only  three  members,  but  the  equation  c^rK  =  0,  which 
corresponds  to  the  fourth  equation  for  tetrahedral  coordinates,  is  often  very 
useful. 

In  a  plane,  trilinear  coordinates  play  the  part  of  tetrahedral  coordinates  in 

space.  Formal  investigation  is  superfluous,  and  we  leave  the  reader  to  prove 
that 

In  a  plane,  ideal  lines  correspond  to  equations  that  are  homogeneous  and        -38 
linear  in  trilinear  coordinates. 
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530.  INTRODUCTION. 

Only  to  a  modified  extent  are  the  reasons  that  lead  to  the  invention  of 
points  at  infinity  operative  to  prompt  a  change  in  the  definition  of  a  vector. 
In  the  elementary  theory  of  veclines  and  vecplanes  there  are  no  cases  of  ex- 

ception to  complicate  the  theorems  that  deal  with  intersection;  that  is  to  say, 
the  initial  impulse  to  the  construction  of  infinite  vectors  is  lacking  completely 
if  the  mutual  relations  of  vectors  form  the  only  topic  of  study.  Moreover, 
since  the  difficulties  in  the  use  of  numbers  actually  infinite  are  not  logical  but 
technical,  it  would  seem  likely  that  if  the  need  for  infinite  vectors  should  arise 
it  could  be  met  by  the  simple  device  of  allowing  infinite  numbers  to  be 
associated  with  directions. 

The  desirability  of  infinite  vectors  is  apparent  as  soon  as  an  attempt  is  made 
to  extend  from  actual  space  to  ideal  space  the  relation  of  vectors  to  points. 
Every  step  from  an  actual  point  0  with  a  finite  vector  r  is  a  step  to  another 
actual  point  R\  we  can  associate  the  vector  r  with  the  ideal  step  from  the 
accessible  ideal  point  whose  vertex  is  0  to  the  accessible  ideal  point  whose 
vertex  is  R,  but  on  this  plan  there  can  be  no  finite  vector  to  ascribe  to  the 
step  from  the  same  ideal  point  to  one  that  is  inaccessible,  since  we  can  account 
for  every  finite  vector  without  bringing  in  the  inaccessible  ideal  points.  We 
anticipate  that  the  vector  to  be  associated  with  the  step  from  an  accessible  to 
an  inaccessible  ideal  point  is  in  some  sense  infinite,  but  that  since  there  is 
only  one  ideal  point  at  infinity  on  an  accessible  ideal  line  there  must  be  only 
one  infinite  vector  in  a  given  vecline. 

The  last  conclusion  makes  it  difficult  to  deal  with  infinite  vectors  on  the 

basis  of  directions  and  amounts.  In  the  realm  of  the  real  variable,  +  oc  is 

logically  distinguishable  from  —  oo ,  and  in  the  complex  domain  it  is  only  for 
some  purposes  that  different  infinite  numbers  are  confused.  With  nul  directions 
in  complex  space  the  difficulty  is  intensified;  since  every  finite  vector  in  a  nul 
direction  is  of  amount  zero,  any  vector  obtained  by  associating  a  number  other 
than  zero  with  a  nul  direction  would  seem  to  be  an  infinite  multiple  of  any 
finite  vector  in  this  direction. 
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531.   IDEAL  VECTORS  AND  THEIR  SPECIFICATIONS;  INFINITE  IDEAL  VECTORS; 
THE  VECLINE  OF  AN  IDEAL  VECTOR. 

•1.   The  solution  is  along  the  lines  now  familiar.    A  vector  associated  with 

a  finite  number  is  called  a,0  specification  of  an  ideal  vector,  and  two  specifications        -11 

(r,  R),  (B,  S)  are  said  to  be  °  congruent  if  there  are  numbers  h,  k  not  both  zero       -12 
such  that 

hB  =  kr,     hS  =  kR.  -13 

The  specification  in  which  the  vector  and  the  number  are  both  zero  is 

called  the  c ineffective  specification;  this  is  congruent  with  every  specification.        -14 
Two  specifications  that  are  both  congruent  with  the  same  effective  specifica- 

tion are  congruent  with  each  other,  and  therefore  we  can  define  an  ° ideal  vector        -15 
as  a  complete  class  of  congruent  specifications — complete  in  the  sense  that  it 
includes  every  specification  congruent  with  its  effective  members.   If  (r,  R)  is 

one  effective  specification  of  an  ideal  vector,  the  other  specifications  of  the 

same  ideal  vector  are  the  various  specifications  of  the  form  (kr,  kR)  for  values 

of  k  other  than  unity.  °  Every  ideal  vector  has  the  ineffective  specification,  but        -16 
two  ideal  vectors  which  have  an  effective  specification  in  common  coincide 

completely.    Naturally  we  speak  of  the  ideal  vector  (r,  R)  when  we  mean  the 

ideal  vector  of  which  (r,  R)  is  one  effective  specification. 

*2.    The  primary  meaning  of  multiplication  of  an  ideal  vector  by  a  number 
is  that  the  product  of  (r,  R)  by  p  is  (pr,  R).    It  follows  that  if  q  is  not  zero 

the  product  of  the  same  ideal  vector  by  p/q  is  (pT/q,  R),  which  is  (pr,  qR),  and 

we  therefore  say  that  °(pr,  qR)  is  the  product  of  (r,  R)  by  p/q  whether  or  not        -21 
q  is  zero.    This  natural  convention  has  an  immediate  bearing  on  our  vocabulary. 

As  a  rule,  the  vector  and  the  number  used  to  specify  a  definite  ideal  vector  vary 

together.    Exception  occurs  if  either  the  vector  or  the  number  is  zero,  and  since 

(pr,  qR)  has  zero  vector  if  p/q  is  zero  and  zero  number  if  p/q  is  infinite,  we 

are  led  to  call  the  ideal  vector  (B,  S)  a  ° zero  ideal  vector  if  s  is  the  zero  vector        -22 

and  S  is  not  zero  and  an  "infinite  ideal  vector  if  S  is  zero  and  B  is  not  zero.  -23 
If  r  and  B  are  both  zero,  '13  can  be  satisfied  whatever  the  values  of  R  and 

S]  hence 

There  is  only  one  zero  ideal  vector.  -24 

And  since  hs  is  zero  if  B  is  zero, 

Every  specification  of  the  zero  ideal  vector  involves  the  zero  vector.  -25 

Conversely 

Every  effective  specification  of  a  proper  ideal  vector  involves  a  proper  vector.       -26 
Similarly 

Every  specification  of  an  infinite  ideal  vector  involves  the  number  zero;  -27 

Every  effective  specification  of  a  finite  ideal  vector  involves  a  number  that  is  not        -28 
zero. 
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But  (r,  0),  (B,  0)  are  congruent  only  if  one  of  the  vectors  r,  s  is  a  multiple 
of  the  other,  and  therefore 

•29  There  is  one  and  only  one  infinite  ideal  vector  associated  with  any  vecline. 

*3.  To  have  a  particular  vecline  related  intimately  to  it  is  not  a  peculiarity 
of  infinite  ideal  vectors.  On  the  contrary,  the  vectors  involved  in  the  effective 

specifications  of  any  proper  ideal  vector  are  collinear  proper  vectors.  More- 

over, any  vector  collinear  with  the  proper  vector  r  is  expressible  uniquely  as 
kr,  and  therefore  there  is  one  and  only  one  specification  of  (r,  R)  corresponding 
to  each  vector  collinear  with  r.  That  is  to  say, 

•31  The  vectors  involved  in  the  specifications  of  a  particular  proper  ideal  vector 
are  the  vectors  composing  a  definite  vecline,  and  each  of  these  vectors  occurs  in 
only  one  of  the  specifications. 

•4.    Since  (pr,  qR)  is  the  zero  ideal  vector  if  pr  is  zero  and  qR  is  not  zero, 

•41  Every  finite  multiple  of  the  zero  ideal  vector  is  zero; 

•42  The  product  of  any  finite  ideal  vector  by  zero  is  the  zero  ideal  vector. 

And  since  if  qR  is  zero  and  pr  is  not  zero,  (pr,  qR)  specifies  the  same  ideal 
vector  as  (r,  0), 

•43  Every  proper  multiple  of  an  infinite  ideal  vector  coincides  with  that  infinite 
ideal  vector; 

•44  The  infinite  multiple  of  any  proper  ideal  vector  is  the  infinite  ideal  vector 
with  the  same  vecline. 

But  if  r  is  not  the  zero  vector  and  R,  p,  q  are  all  different  from  zero, 

(pr,  qR)  coincides  with  (r,  R),  that  is,  with  (^r,  pR),  only  if  p  is  equal  to  q: 

•45  A  proper  finite  ideal  vector  is  changed  if  it  is  multiplied  by  any  number  other 
than  unity. 

•46  °The  effect  of  multiplying  the  zero  ideal  vector  by  infinity  or  an  infinite 
ideal  vector  by  zero  is  wholly  indeterminate.  The  first  result  is  natural.  It 

might  be  supposed  that  in  the  second  case  the  product  should  be  associated 
with  the  same  vecline  as  the  infinite  ideal  vector;  it  would  be  easy  to  modify 
the  definitions  to  secure  this  limitation,  but  it  is  doubtful  whether  this  is 

worth  while,  for  examples  can  readily  be  constructed  in  which  two  sequences 

of  actual  vectors  (r^,  (r2)^2, ...  and  (r^r,,  (^T,,,  •••  are  such  that  the  common 

sequence  of  amounts  i\,  r2,  ...  tends  to  infinity,  and  the  sequences  of 
directions  2J(  22,  ...  and  T1}  T2,  ...  tend  to  limits  2  and  T  of  which  each  is 

the  reverse  of  the  other,  while  (r^  +  (r^,  (r2)^  +  (r2)^,  ...  tends  to  a  limit  r 
whose  directions  are  not  2  and  T. 

•51  *5.   °By  the  reverse  of  (r,  R)  is  meant  (—  r,  R)  or  (r,  —  R);  it  follows  from •41  that 

•52  The  zero  ideal  vector  is  its  own  reverse, 
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and  from  '43  that 

An  infinite  ideal  vector  is  its  own  reverse,  -53 

while  '45  implies  the  converse  that 

No  proper  finite  ideal  vector  is  its  own  reverse.  -54 

532.  DIRECTIONS  AND  ANGLES  IN  IDEAL  VECSPACE;  THE  AMOUNTS  OF 

AN  IDEAL  VECTOR;  IDEAL  VECLINES  AND  VECPLANES;  PROJECTED  PRODUCTS, 
SPATIAL  PRODUCTS,  AND  VECTOR  PRODUCTS,  OF  IDEAL  VECTORS. 

•1.  Definitions  framed  in  a  manner  dependent  on  1*31  would  be  inapplicable 
to  the  zero  ideal  vector :  for  example,  we  can  not  define  a  nul  ideal  vector  as 

one  whose  vecline  is  nul.  But  T31  is  invaluable  as  shewing  the  precise  impli- 

cation of  definitions  in  the  case  of  proper  ideal  vectors.  We  say  that°an  ideal  -11 
vector  is  nul  if  the  actual  vector  involved  in  any  of  its  effective  specifications 
is  nul,  and  then  we  appeal  to  1/31  to  deduce  that 

A  proper  ideal  vector  is  nul  if  and  only  if  its  vecline  is  nul,  -12 

but  our  definition  has  implied  also  that 

The  zero  ideal  vector  is  nul.  -13 

•2.  By  a  direction  of  an  ideal  vector  is  meant  °a  direction  of  the  actual  -21 
vector  involved  in  one  of  its  effective  specifications.  It  follows  from  1'25  that 

The  zero  ideal  vector  has  every  direction,  -22 
and  from  T31  that 

A  proper  ideal  vector  has  the  directions  of  its  vecline,  -23 
whence 

A  proper  ideal  vector  has  one  direction  or  two  directions  according  as  it  is  -24 
or  is  not  nul. 

Similarly  °two  ideal  vectors  are  perpendicular  if  actual  vectors  involved  in  '25 
effective  specifications  of  them  are  perpendicular,  and  therefore : 

The  zero  ideal  vector  is  perpendicular  to  every  ideal  vector  ;  -26 

Proper  ideal  vectors  are  perpendicular  if  and  only  if  their  veclines  are  per-  -27 
pendicular ; 

Nul  ideal  vectors  are  self-perpendicular.  -28 

And  °the  angles  between  two  ideal  vectors  are  the  angles  between  their       -29 
directions. 

•3.  If  the  vector  r  involved  in  the  effective  specification  (r,  R)  of  an  ideal 
vector  is  of  amount  r  in  a  direction  P,  then  d  is  said  to  be  an  amount  of  the 
ideal  vector  in  the  same  direction  if 

Rd  =  r:  -31 
N.  18 
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•32  The  zero  ideal  vector  is  of  amount  zero  in  every  direction  ; 

•33  A  proper  finite  ideal  vector  that  is  not  nul  has  equal  and  opposite  amounts 
in  its  two  directions ; 

•34  A  proper  finite  nul  ideal  vector  has  amount  zero ; 

•35  An  infinite  ideal  vector  that  is  not  nul  has  an  infinite  amount  in  each  of  its 
directions  ; 

•36  An  infinite  nul  ideal  vector  is  wholly  indeterminate  in  amount. 

The  precise  significance  of  '35  depends  on  the  conventions  regarding  infinity 
in  the  number-system  that  is  being  used.  It  is  particularly  important  to 

notice  that  in  consequence  of  *36  an  ideal  vector  of  finite  amount  is  not 
necessarily  a  finite  ideal  vector  if  the  space  is  complex. 

•4.  To  say  that  two  ideal  vectors  are  collinear  if  one  of  them  is  a  multiple 
of  the  other,  and  so  to  define  an  ideal  vecline  without  further  reference  to 
actual  vectors,  leads  to  difficulties  where  infinite  ideal  vectors  are  concerned. 

•41  It  is  better  to°define  collinear  ideal  vectors  as  ideal  vectors  whose  effective 
specifications  involve  collinear  actual  vectors.  Then  the  zero  ideal  vector  is 

included  in  every  ideal  vecline,  but  a  proper  ideal  vector,  finite  or  infinite, 
belongs  to  one  and  only  one  ideal  vecline. 

The  ideal  vecline  that  includes  the  ideal  vector  (r,  R)  is  composed  of  the 

zero  ideal  vector  together  with  the  ideal  vectors  of  the  form  (r,  T)  for  all 

•44  possible  values  of  T,  or  in  other  words  is  composed  of L  all  ideal  vectors  of  the 
form  (pr,  T). 

•45  Every  ideal  vecline  includes  one  and  only  one  infinite  ideal  vector. 

•5.    This  method  of  dealing  with  the  ideal  vecline  has  the  advantage  that 
we  can  apply  it  to  the  ideal  vecplane  before  discussing  the  addition  of  ideal 

•51        vectors.    Ideal  vectors  are  °coplanar  if  their  effective  specifications  involve 
coplanar  actual  vectors,  and  an  ideal  vecplane  is  a  complete  class  of  coplanar 
ideal  vectors.    The  zero  ideal  vector  is  included  in  every  ideal  vecplane.    Two 

•54        proper  ideal  vectors  that  are  not  collinear  determine  an  ideal  vecplane.  °The 
ideal  vecplane  that  includes  (r,  R)  and  (a,  S),  where  r  and  s  are  not  collinear, 
is  composed  of  all  ideal  vectors  of  the  form  ( pr  +  qa,  T). 

•55  If  two  ideal  veclines  are  distinct,  there  is  one  and  only  one  ideal  vecplane 
that  contains  them  both. 

•56  If  two  ideal  vecplanes  are  distinct,  there  is  one  and  only  one  ideal  vecline 
contained  in  them  both. 

•57  It  is  to  be  observed  that  °  the  infinite  ideal  vectors  in  an  ideal  vecplane  do  not 
compose  an  ideal  vecline. 

•6.  Projected  products  and  spatial  products  are  defined  by  means  of  the 

•61  same  device  as  amounts.  °The  projected  product  of  (r,  R)  and  (B,  S)  is  £  ra/RS 

•62,  -63  and  °the  spatial  product  of  these  two  and  (t,  T)  is  &  rat/RST.  °The  projected 
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product  of  two  ideal  vectors  is  indeterminate  if  the  ideal  vectors  are  perpen- 
dicular and  one  of  them  is  infinite,  and  it  is  infinite  if  they  are  not  perpendicular 

and  one  of  them  is  infinite;  in  other  cases  the  projected  product  has  a  definite 
fin itc  value,  which  is  zero  if  the  ideal  vectors  are  perpendicular  and  both  of 

tin  in  finite.  Similarly  ° the  spatial  product  is  infinite  if  the  factors  are  not  '64 
coplanar  and  one  of  them  is  infinite,  indeterminate  if  they  are  coplanar  and 
one  of  them  is  infinite,  and  otherwise  finite  and  definite.  It  is  true,  as  with 
actual  vectors,  that  two  vectors  are  perpendicular  if  and  only  if  they  have 
projected  product  zero  and  that  three  are  coplanar  if  and  only  if  they  have 
spatial  product  zero,  but  we  must  be  careful  not  to  assume,  by  ignoring  the 
indeterminate  cases,  that  two  ideal  vectors  are  not  perpendicular  if  they  have 
a  projected  product  different  from  zero  or  that  three  are  not  coplanar  if  they 
are  known  to  have  a  proper  spatial  product. 

'7.    The  vector  product  of  two  ideal  vectors  is  actually  simpler  to  express 

than  their  projected  product:  °the  vector  product  of  (r,  R)  and  (a,  S)  is        -71 
(ty  rs,  RS).  °The  vector  product  is  indeterminate  if  the  factors  are  collinear        '72 
and  one  of  them  is  infinite ;  otherwise  (^  rs,  RS)  is  an  effective  specification. 
The  vector  product  is  a  definite  infinite  ideal  vector  if  either  of  the  factors  is 
infinite  provided  that  the  factors  are  not  collinear ;  it  is  zero  if  the  factors  are 
finite  and  collinear. 

The  fundamental  identity 

J  {<V  (r,  R)  (a,  S)}  (t,  T)  =  J (r,  R)  (a,  S)  (t,  T)  -77 
is  completely  true,  that  is,  true  in  the  sense  that  any  value  possible  for  either 
of  the  products  is  possible  also  for  the  other  product. 

533.   IDEAL  STEPS;  ADDITION  OF  IDEAL  VECTORS. 

*1.   The  primary  relation  of  ideal  vectors  to  ideal  points  needs  no  emphasis, 
for  the  reader  will  hav.e  realised  that  ideal  vectors  were  virtually  used  again 

and  again  in  the  last  chapter.  °The  specifications  of  an  ideal  point  by  reference        •!! 
to  an  actual  origin  are  in  fact  the  effective  specifications  of  a  definite  ideal 
vector. 

*2.  If  A,  B  are  ideal  points,  the  ideal  step  AB  is  simply  the  pair  of  ideal 
points  taken  definitely  in  the  order  indicated ;  the  ideal  step  B  A  is  the  reverse 
of  the  ideal  step  AB.  If  A  is  accessible  and  has  vertex  P,  there  is  an  ideal 
vector  which  determines  B  with  reference  to  P ;  this  ideal  vector  is  the  ideal 
vector  of  the  ideal  step  AB.  If  A  and  the  ideal  vector  AB  are  known,  then  B 
is  determinate ;  B  is  accessible  or  inaccessible  according  as  the  ideal  vector  is 
finite  or  infinite. 

If  A,  B  are  both  accessible,  the  ideal  step  AB  itself  is  said  to  be  accessible. 
If  in  this  case  (r,  t)  specifies  the  ideal  vector  of  AB,  and  if  P,  Q  are  the  vertices 

of  A,  B,  then  r/t  is  the  vector  of  the  actual  step  PQ,  and  therefore  —  r/t  is 

18—2 
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•25        the  vector  of  the  actual  step  QP  and  (r,  -  t)  is  the  ideal  vector  of  BA  :  °if  an 
ideal  step  is  accessible,  the  ideal  vector  of  its  reverse  is  the  reverse  of  its  ideal 
vector. 

If  the  ideal  points  A,  B,  C  are  all  accessible  and  if  A  is  distinct  from  B, 

the  ideal  vector  CA  is  distinct  from  the  ideal  vector  CB,  and  therefore  by  '25 

•26       the  ideal  vector  AC  is  distinct  from  the  ideal  vector  BC:  ° ideal  steps  with 
the  same  finite  ideal  vector  and  different  accessible  initial  points  must  have 
different  accessible  end  points. 

For  ideal  steps  with  infinite  ideal  vectors  the  case  is  altered.    It  follows 

from  21-32  that 

•27  All  ideal  steps  with  the  same  inaccessible  end  point  and  an  accessible  starting 
point  have  the  same  ideal  vector. 

Since  an  ideal  point  at  infinity  can  not  be  used  as  an  origin  for  the  speci- 
fication of  other  ideal  points,  the  ideal  vector  of  an  ideal  step  which  has  its 

starting  point  at  infinity  must  be  defined  indirectly,  if  at  all.  The  natural  plan 

is  to  extend  '25  dogmatically  to  infinite  steps  with  one  accessible  extremity; 

•28  it.  follows  from  T53  that  this  amounts  to  saying  that0 if  A  is  an  ideal  point 
at  infinity,  all  ideal  steps  to  A  from  accessible  ideal  points  and  all  ideal  steps 
from  A  to  accessible  ideal  points  have  the  same  infinite  ideal  vector. 

No  plan  presents  itself  for  ascribing  a  definite  ideal  vector  to  an  ideal  step 
that  is  wholly  at  infinity.  The  question  is  bound  up  with  the  defining  of  the 
sum  of  two  ideal  vectors,  and  we  shall  return  to  it  shortly. 

•3.  The  addition  of  ideal  vectors  is  of  course  to  be  defined  in  such  a  way 
that  if  AB,  BC  are  ideal  steps  with  ideal  vectors  R,  S,  then  R  +  S  is  the  ideal 
vector  of  AC.  Now  if  the  ideal  vectors  AB,  BC  are  (r,  R),  (s,  S)  and  if  AB  is 

finite,  the  ideal  vector  BA  is  (-  r,  R)  and  21 '33  asserts  that  the  ideal  vector 
AC  is  (8r  +  Rs,  RS).  Thus  the  fundamental  formula  would  seem  to  be 

•31  (r,  R)  +  (s,  S)  =  (Sr  +  Rs,  RS), 
which  comes  more  simply  if  fractions  are  removed  from 

•32  (r/R,  1)  +  (*/S,  1)  =  (r/R  +  s/S,  1); 

•33        -31  implies  R  +  S  =  S  +  R. 

If  the  ideal  vectors  R,   S  are  both  finite,  '31   is  perfectly  satisfactory. 
Moreover,  writing 

•34  T  =  (t,  T)  =  (Sr  +  RB,  RS), 

we  have  T  -  S  =  (St  -  7s,  ST)  =  (S*r,  S*R)  =  (r,  R), 

since  S  is  not  zero ;  thus  for  finite  ideal  vectors  the  definition  implies  that 

•35  R-f  S  =  T 

•36        is  equivalent  to  T  —  S  =  R 

•37        and  similarly  to  T  —  R  =  S. 
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•4.  If  S  is  infinite  but  R  finite,  '32  fails  as  a  basis  for  '31,  but  21'33  remains 

applicable  and  '31  becomes 

(r,  R)  +  (*,  0)  =  (Rs.  0),  -41 

i  hat  is,  R  +  S  =  S,  '-12 

\\hidi  is  consistent  with  '27.    It  is  true  that  "42  is  equivalent  to 

8  -  R  =  S,  -43 

the  form  assumed  in  this  case  by  '37,  but  (Ra,  0)  —  (s,  0)  naturally  takes  the 
indeterminate  form  (0,  0). 

If  R  is  infinite,  the  original  basis  of  addition  is  unsound.  The  assumption 

that  -33  is  to  remain  true,  or  the  use  of  '31  as  a  definition,  gives 

R  +  S  =  S  '44 

if  S  is 'finite.    We  can  interpret  this  to  imply  that 

Any  finite  ideal  step  which  begins  at  infinity  ends  where  it  begins.  -45 

•5.    There  are  no  considerations  which  suggest  a  determinate  sum  for  two 

infinite  ideal  vectors."  A  direct  application  of  '31  would  give  the  sum  as  wholly 
indeterminate,  but  a  slight  restriction  is  imposed  if  we  insist  on  regarding  '36 
and  '37  as  equivalent  to  '35.    For  if  T  is  finite,  '36  and  1*53  imply  that  R  and  S 

are  identical.    We  can  therefore  say  that°£/«e  sum  of  two  infinite  ideal  vectors        -51 

can  not  be  finite  if  the  ideal  vectors  are  different,  but  °if  two  infinite  ideal  vectors       -52 
are  different,  any  infinite  ideal  vector  may  be  regarded  as  a  sum  of  them.  That 

°by  adding  an  infinite  ideal  vector  to  itself  any  ideal  vector  whatever,  finite  or       -53 
infinite,  can  be  obtained,  is  in  keeping  with  T53  and  T46,  for  T53  compels  us 
to  admit  that  if  R  is  infinite  then 

R  +  R  =  R  -  R.  -54 

Since  in  virtue  of  1*53  we  can  not  distinguish  between  R  — S  and  R  +  S 

if  S  is  infinite,  we  can  deduce  from  '51,  '52,  and  '53  the  conventions  to  be 
made  as  to  the  ideal  vector  of  a  step  that  is  wholly  at  infinity,  if  the  vector 
BC  is  to  be  in  every  case  the  difference  between  the  vectors  AB,  AC: 

If  A  is  an  ideal  point  at  infinity,  any  ideal  vector  whatever,  finite  or  infinite,        -55 
may  be  regarded  as  a  vector  of  the  ideal  step  A  A; 

If  A,  B  are  distinct  ideal  points  at  infinity,  any  infinite  ideal  vector  may  be       -56 
regarded  as  a  vector  of  the  ideal  step  AB,  but  no  finite  ideal  vector  can  be  so 

regarded. 

By  '52  and  2'63  we  are  reassured  as  to  the  necessity  of  dealing  first  with 
finite  vectors  and  introducing  later  the  modification  that  allows  vectors  to  be 

infinite.  For  it  follows  from  '52  that  an  infinite  ideal  vector  can  not  be  resolved 

into  components  from  which  it  can  be  reconstructed,  and  from  2'63  that  a 
projected  product  may  be  indeterminate  when  infinite  vectors  are  concerned. 

That  is  to  say,  the  two  features  adopted  as  characteristic  of  a  vector  field  are 
both  lacking  in  ideal  vecspace,  and  it  is  futile  to  hope  for  a  method  that  should 

depend  at  the  start  only  on  properties  common  to  finite  and  infinite  vectors. 
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•6.  The  problem  of  describing  an  ideal  vector  by  means  of  a  frame  is  vir- 

tually that  considered  in  21 '4,  of  describing  an  ideal  point  by  means  of  an 
attached  frame.  A  specification  of  the  ideal  vector  must  be  given,  and  the 

vector  involved  in  this  specification  may  be  described  in  any  way  convenient. 

We  may  suppose  the  frame  to  be  composed  not  of  actual  vectors  but  of  ideal 

vectors,  but  in  that  case  it  is  essential  because  of  '52  that  these  vectors  of 
reference  should  be  finite.  Any  finite  ideal  vector  can  be  expressed  by  means 
of  coefficients  in  a  frame  itself  formed  of  finite  ideal  vectors,  the  analysis  being 
the  same  as  for  actual  vectors,  and  the  ideal  vector  (r,  R)  is  known  if  the 

finite  ideal  vector  (r,  1)  and  the  number  R  are  both  given :  the  coefficients 

of  (r,  1)  in  the  frame  (a,  A),  (b,  B),  (c,  C)  are  the  same  as  the  coefficients  of  r 

in  the  frame  a./ A,  "b/B,  c/C,  and  these  three  and  R  are  homogeneous  coordi- 
nates of  (r,  R)  in  the  ideal  frame. 

•7.  The  relation  of  lines  and  planes  to  veclines  and  vecplanes  is  the  same 
in  ideal  space  as  in  actual  space  provided  only  that  the  lines  and  planes  are 
accessible.  For  if  0  is  an  accessible  ideal  point  and  (m,  M)  specifies  the  vector 

of  a  proper  step  OB,  then  since  (0, 1)  is  a  specification  of  00  it  follows  from 

22-27  that  the  ideal  line  which  contains  the  two  ideal  points  0,  B  is  the  locus 
of  an  ideal  point  P  such  that  the  ideal  vector  OP  is  of  the  form  (jm,  i+jM), 

and  this  is  a  typical  ideal  vector  collinear  with  (m,  M).  Similarly  if  (m,  M), 
(n,  2V)  are  the  ideal  vectors  of  proper  ideal  steps  OB,  00  that  are  not  collinear, 

an  ideal  vector  coplanar  with  these  is  an  ideal  vector  with  a  specification  of 

the  form  (jm  -f  kn,  i  +jM  +  kN),  and  by  22*32  this  is  the  ideal  vector  of  a 
step  from  0  to  an  ideal  point  in  the  ideal  plane  OBO. 

•72  An  ideal  line  or  plane  through  an  accessible  ideal  point  0  is  the  locus  of  an 
ideal  point  P  such  that  the  ideal  vector  of  the  ideal  step  OP  belongs  to  a  definite 
ideal  vecline  or  vecplane. 

It  is  easy  to  prove  that  the  ideal  vecline  or  vecplane  mentioned  in  this  propo- 
sition depends  only  on  the  ideal  line  or  plane  itself,  not  on  the  ideal  point  0. 

There  is  no  analogue  of  '72  if  the  ideal  point  0  is  at  infinity,  nor  is  it 
possible  to  associate  any  definite  ideal  vecline  with  an  inaccessible  ideal  line 
or  any  definite  ideal  vecplane  with  the  ideal  plane  at  infinity.  This  is  why  work 

on  ideal  space  is  naturally  developed  in  a  different  order  from  work  on  alge- 
braic space.  But  it  is  sometimes  convenient  to  regard  every  ideal  vecline  as 

belonging  to  every  inaccessible  ideal  line  and  every  ideal  vecplane  as  belonging 
to  the  plane  at  infinity.  We  can  then  say  that  any  two  ideal  lines  of  which 
one  is  at  infinity  are  necessarily  parallel,  and  this  is  consistent  both  with 

saying  that. two  ideal  lines  are  parallel  if  and  only  if  they  have  an  ideal  point 
at  infinity  in  common,  and  with  saying  that  two  ideal  lines  are  parallel  if  and 

only  if  they  possess  the  same  ideal  vecline.  It  will  be  noticed  that  with  the 
convention  just  accepted,  every  line  at  infinity  is  both  isotropic  and  anisotropic, 
and  so  also  is  the  plane  at  infinity. 
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534.   MEASUREMENT  IN  IDEAL  SPACE  ;  FOCAL  POINTS. 

•1.  From  the  ideal  vector  come  the  definitions  of  directions,  angles,  and 
lengths  in  ideal  space.  If  R  is  a  vector  of  the  ideal  step  AB,  a  direction  of  R 
is  a  direction  of  the  step,  or  a  direction  of  B  from  A ,  and  an  amount  of  R  in 
that  direction  is  a  corresponding  length  of  the  step  or  distance  of  B  from  A. 

°  If  A  and  B  are  both  accessible,  the  directions  and  lengths  of  the  ideal  step  -13 
AB  are  the  same  as  the  directions  and  lengths  of  the  actual  step  from  the 
vertex  of  A  to  the  vertex  of  B.  For  this  reason,  theorems  and  formulae  con- 

cerning actual  space  are  necessarily  true  of  the  accessible  part  of  ideal  space, 
while  conversely  results  proved  of  ideal  space  can  always  be  asserted  of  actual 
space  if  they  refer  only  to  ideal  points  that  are  accessible.  This  statement 
contemplates  actual  space  only  as  contrasted  with  ideal  space,  and  therefore 
as  either  real  or  complex ;  if  the  actual  space  is  complex,  reference  may  be 

made  to  445'15  and  445'21,  and  the  implication  is  simply  that,  subject  to 
certain  reservations,  a  proposition  significant  both  of  ideal  complex  space  and 
of  actual  real  space  is  true  of  either  space  if  it  is  true  of  the  other. 

°The  step  from  one  accessible  ideal  point  to  another  has  all  directions  and  -14 
length  zero  in  every  direction  if  the  two  points  coincide.  If  they  are  distinct 
and  the  step  is  nul,  it  has  one  direction  only  and  its  length  is  again  zero. 
If  the  points  are  distinct  and  the  step  is  not  nul,  there  are  two  distinct 
directions,  one  the  reverse  of  the  other,  and  two  distinct  lengths,  one  the 
negative  of  the  other. 

°A  step  between  an  accessible  ideal  point  and  an  ideal  point  at  infinity  is        -15 
infinite.    It  has  one  direction  and  every  length  if  it  is  nul.  and  it  has  two 
directions  and  an  infinite  length  if  it  is  not  nul. 

°The  step  from  one  ideal  point  at  infinity  to  another  has  every  direction        -16 
and  every  length  in  each  direction  if  the  two  points  coincide.    If  the  points 
are  distinct,  the  step  must  be  infinite  but  it  has  every  direction ;  in  directions 
that  are  not  nul  its  length  is  infinite,  but  in  each  nul  direction  it  has  every 

length*. 

'2.  The  conclusions  of  435*44  and  436'45  as  to  the  distance  from  a  point 
to  a  line  or  plane  in  a  direction  parallel  to  this  line  or  plane  are  in  entire 
agreement  with  the  present  results. 

If  P  is  an  accessible  ideal  point,  there  is  one  and  only  one  ideal  line  p 
through  P  with  a  given  direction  A.  An  ideal  line  or  plane  to  which  this 

*  Darboux  (Principes,  p.  141)  seems  to  me  mistaken  in  ascribing  only  the  zero  length 
to  the  nul  directions  and  looking  in  other  directions  for  the  finite  proper  lengths.  If  one 

of  two  points  moving  to  infinity  at  a  constant  distance  apart  along  a  given  curve  tends  to  -, 
a  definite  point  at  infinity,  the  other  tends  to  the  same  point ;  in  Darboux's  own  example, 
a  parabola  has  notoriously  only  one  point  at  infinity  to  which  the  points  could  tend !  By 
supposing  the  two  points  to  move  away  along  different  arms  of  the  parabola,  we  have  an 
excellent  view  of  a  point  at  infinity  at  an  infinite  distance  from  itself. 
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ideal  line  is  parallel  either  contains  p  or  cuts  p  definitely  at  infinity.  There 
is  an  ideal  point  Q  at  distance  d  from  P  in  the  direction  A  whatever  the 

value  of  d,  and  in  the  first  case  Q  is  necessarily  in  the  ideal  line  or  plane  to 
which  p  is  parallel  ;  thus  the  distance  from  P  to  this  ideal  line  or  plane  is 
indeterminate,  and  this  conclusion  is  not  affected  by  the  fact  that  if  the 
direction  is  nul  Q  is  at  infinity  unless  d  is  zero.  In  the  second  case  the  ideal 
point  in  which  p  is  cut  is  at  a  distance  from  P  which  is  indeterminate  or 
infinite  according  as  the  direction  is  or  is  not  nul. 

•3.  To  say  that  if  two  ideal  lines  are  parallel  and  one  of  them  is  nul,  then 
the  other  is  nul  also,  is  to  assert  that  if  K  is  the  point  at  infinity  on  one  nul 

ideal  line,  then  every  accessible  ideal  line  through  K  is  nul,  and  the  step  to  K 

from  any  accessible  ideal  point  is  a  nul  step.  It  appears  from  '15  that  such 
an  ideal  point  at  infinity  as  is  involved  here  has  special  properties  in  respect 
of  distance,  and  it  is  in  fact  impossible  to  overrate  the  importance  of  ideal 
points  of  this  kind  in  metrical  geometry.  For  reasons  into  which  we  can  not 

•31  enter*,  an  ideal  point  at  infinity  on  a  nul  ideal  line  is  called  a  °  focal  point  ; 
then 

•32  A  nul  ideal  line  is  an  ideal  line  which  contains  a  focal  point  ; 

'33  Parallel  nul  ideal  lines  are  ideal  lines  which  contain  the  same  focal  point  ; 

•34  The  distances  between  two  ideal  points  are  wholly  indeterminate  if,  one  of  the 
ideal  points  is  a  focal  point. 

•4.    From  415*43,  415-46  it  follows  that 

'41  An  accessible  ideal  plane  contains  one  focal  point  or  two  focal  points  accord- 
ing as  it  is  or  is  not  isotropic. 

We  have  seen  in  424'56  that  in  a  prepared  anisotropic  vecplane  we  can 
distinguish  between  the  two  nul  veclines  by  means  of  the  identity 

•42 

*  The  uncritical  reader  will  find  comfort,  and  the  critical,  food  for  thought,  in  a  crude 
explanation.  With  rectangular  coordinates,  the  origin  is  a  focus  of  a  given  couic  if  and 
only  if  the  equation  of  the  conic  has  the  form 

The  point  (h,  k)  is  on  a  tangent  from  the  origin  to  the  conic  if  and  only  if  the  two  values 
of  r  for  which  (hr,  kr]  is  on  the  conic  are  equal,  that  is,  if  and  only  if  the  equation 

regarded  as  an  equation  in  r,  has  equal  roots  ;  the  condition  is 

c2  {(ah  +  6/fc)2  -  (A2  +  #)}  =  c2  (ah  +  6£)2, 

that  is,  unless  c  is  zero,  A2  +  £2  =  0, 

which  expresses  that  the  distance  of  (A,  k)  from  the  origin  is  zero,  or  in  other  words  that 
(A,  k)  is  on  a  nul  line  through  the  origin.  The  point  0  is  a  focus  of  a  given  conic  if  and 
only  if  the  tangents  to  the  conic  from  0  are  the  lines  joining  0  to  the  focal  points  in  the  plane 

of  the  conic. 
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If  i  denotes  the  complex  number  (0, 1),  we  may  say  that  if  r  and  s  are  proper 
vectors  in  different  mil  veclines,  so  that  £  rs  and  £&  rs  are  different  from  zero, 
then  if 

£4  rs  =  i  £  rs  -43 
it  is  the  vecline  that  contains  r  that  is  to  be  called  the  first  mil  vecline  in 

the  prepared  vecplane,  and  the  vecline  containing  s  that  is  to  be  called  the 

second.  This  convention  extends  naturally  to  the  focal  points  in  any  aniso- 
tropic  prepared  ideal  plane.  The  two  focal  points  in  such  a  plane  are  denoted 

by*  /  and  J,  and  in  the  absence  of  indication  to  the  contrary  it  is  to  be 
assumed  f  that  /  is  the  first  and  J  the  second. 

A  characteristic  property  of  an  isotropic  ideal  plane  may  be  expressed  in 
the  form  that 

In  an  isotropic  ideal  plane  the  two  focal  points  coincide.  *46 

The  association  with  the  two  square  roots  of  —  1  fails  because  nothing  signi- 

ficant survives  of  '43:  £4ra  is  zero  if  r,  s  are  any  two  vectors  in  the  vecplane, 
and  £  rs  is  zero  if  either  of  the  two  is  nul.  We  shall  use  K  to  denote  the  one 

focal  point  in  an  isotropic  ideal  plane. 

*  Or  often  by  o>  and  w'  or  by  Q  and  Q'. 
t  The  convention  suggested  by  Laguerre  and  visually  adopted  is  the  reverse  of  this,  and 

an  inversion  of  order  disfigures  Laguerre's  angle-formula  in  consequence.  If  we  ha  veto  change 
from  rectangular  axes  OX,  0  Y  in  a  plane  to  axes  which  are  such  that  OX  bisects  the  angle 
between  them,  it  seems  natural  to  take  the  direction  in  the  fourth  quadrant  as  that  of  the 

new  #-axis,  and  that  in  the  first  quadrant  to  describe  the  new  y-axis :  in  other  words,  if 
the  new  axes  are  y  =  ±  x  tan  a,  to  suppose  the  angle  from  the  new  #-axis  to  the  new  y-axis 
to  be  2a,  not  -  2a.  By  analogy,  we  should  take.y  =  -  ix  to  contain  /and  y  =  ix  to  contain  J; 
if  r  is  the  vector  (1,  -  i)  and  s  the  vector  (1,  i\  then  <S4>  rs  is  2i  and  <•/  rs  is  2. 

Scott  (Modern  Analytical  Geometry,  p.  253,  1894)  avoids  inelegance  in  the  angle-formula 
by  using  py  for  an  angle  to  a  ray  p  from  a  ray  q. 
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540.  INTEODUCTION. 

Except  on  questions  of  existence,  it  is  only  if  isotropic  lines  or  planes  or 

inaccessible  points  become  involved  that  a  proposition  may  differ  in  enuncia- 
tion according  as  it  is  asserted  of  actual  real  space  or  of  ideal  complex  space. 

For  example,  if  BA,  CA  are  steps  of  equal  finite  length  with  vectors  r,  s,  then  since  the 
equality  ^rW* 

is  equivalent  to  c^r  (r  —  s)  =  <^s  (s-r), 

the  angles  between  BA  and  EC  are  the  same  definite  angles  as  those  between  CA  and  CB 
unless  one  of  the  sides  is  nul,  and  even  in  the  exceptional  case  the  angles  at  B  and  at  C 

are  equally  indeterminate.  We  may  go  even  further;  the  identity  £4(r  —  s)2=0  can 
be  written  as  r/J  r» 

cS#r  (r-s)=  -t>#s(s  —  r), 

and  this  combined  with  £  r  (r  -  s)  =       £  s  (s  -  r) 

enables  us  to  compare  angles  between  definite  directions:  if  b  is  a  length  common  to  AB 
and  AC,  the  angles  from  the  direction  in  which  BA  has  the  length  b  to  one  direction 
along  BC  are  the  negatives  of  the  angles  from  the  direction  in  which  CA  has  the  length 
b  to  the  opposite  direction  along  BC. 

To  illustrate  the  kind  of  care  that  is  necessary,  we  will  consider  in  the  next 

two  chapters  the  nature  of  circles  and  spheres  in  ideal  complex  space.  The 

subject  is  intrinsically  important,  and  the  student  who  appreciates  the  modi- 
fications of  elementary  theorems  concerning  circles  and  spheres  is  in  little 

danger  of  overlooking  exceptional  cases  in  more  advanced  work. 

In  order  that  the  discussion  of  circles  and  spheres  may  be  as  free  from 

interruption  as  possible,  an  explanation  of  certain  terms  used  in  connection 
with  curves  and  surfaces  occupies  the  present  chapter;  the  actual  requirements 

could  have  been  met  by  a  treatment  less  general  than  is  given  here,  but  it  is 
necessary  to  shew  that  as  far  as  conies  and  conicoids  are  concerned  the  idea 

of  a  tangent  need  not  presuppose  that  of  a  limit,  and  the  generality  consists 
in  postponing  restriction  on  the  degree  of  certain  polynomials  as  long  as  the 
restriction  is  irrelevant. 
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541.   PLANE  CURVES  AND  SURFACES;  COMPOSITE  LOCI;  THE  ORDER 
OF  A  PLANE  CURVE  OR  A  SURFACE. 

•1.  Throughout  this  chapter  we  shall  use  homogeneous  coordinates,  which 
we  shall  denote  by  a,  /9,  7  or  by  a,  /3,  7,  B  according  as  points  in  a  plane  or  in 
space  are  under  consideration  ;  also  we  shall  write  e  for  ([a,  /3,  7)  or  (ja,  /3,  7,  8), 

and  3>eM  will  denote  a  homogeneous  polynomial  of  degree  n  in  the  coordinates. 
The  aggregate  of  points  whose  coordinates  satisfy  the  equation 

4>en  =  0  -13 

is  called  simply  the  locus  <I>,  and  is  described  as  a  plane  curve  or  a  surface 
according  as  the  number  of  variable  coordinates  is  three  or  four.  We  make 
no  attempt  to  define  functions  or  curves  or  surfaces  in  general. 

In  general  a  polynomial  in  more  than  two  variables  can  not  be  resolved  into 

polynomial  factors  of  lower  degree,  but  it  is  better  for  us  to  classify  than  to  stipu- 

late. If  identically  3>en  is  the  product  of  polynomials 

where  nl  +  n2+  ...  +nm  must  equal  n,  then  <J>en  is  said  to  be  reducible;  a  point 
belongs  to  the  locus  <£  if  and  only  if  it  belongs  to  one  or  other  of  the  loci 

4>1;  <J>2,  ...  <l>m,  and  <E>  is  said  to  be  degenerate  or  to  be  a  composite  locus  of 
which  <I>i,  <J>2,  ...  <&m  are  constituents.  Since  a  transformation  of  coordinates 
which  changes 

into  <£?  en'  ,  <£?  ens  .  .  .  <E>*  enm 

necessarily  changes  the  product  of  the  original  polynomials  into  the  product 

of  the  transformed  polynomials,  the  question  whether  one  locus  forms  part  of 

another  does  not  depend  for  its  answer  on  the  coordinates  employed. 

*2.  The  formulae  of  transformation  in  27  have  their  counterparts  in  plane 
geometry,  and  from  these  formulae  it  is  evident  that  a  homogeneous  poly- 

nomial of  any  degree  in  the  coordinates  with  one  triangle  or  tetrahedron  of 
reference  transforms  into  a  homogeneous  polynomial  of  the  same  degree  with 
reference  to  any  other  triangle  or  tetrahedron.  Thus  if  a  curve  referred  to 

one  triangle,  or  a  surface  referred  to  one  tetrahedron,  has  an  equation  <£en  =  0, 

the  degree  of  <J>ew  does  not  depend  on  the  particular  triangle  or  tetrahedron 
but  is  a  number  associated  intrinsically  with  the  curve  or  surface  ;  it  is  called 

the  °  order  or  the  degree  of  the  curve  or  surface.  From  27'38  and  27*33,  -21 

A  curve  of  the  first  order  is  a  straight  line,  a  surface  of  the  first  order  is       -22 
a  plane. 

•3.  The  significance  of  the  order  of  a  curve  or  surface  is  exhibited  by  a  method 
duetoJoachimsthal.  If(ap,/3p,7p)>(aQ)^Q,7Q)or(ap,/3p,7p,8/>))(aQ,/3Q,7Q,gQ) 
are  definite  sets  of  coordinates  of  two  points  P,  Q,  or  in  other  words  specify 
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definite  loads  attached  to  these  points,  then  provided  only  that  the  points 
P,  Q  are  distinct, 

(haP  +  kciQ, 

or  (hap  +  kaQ  ,  h/3P  +  k@Q,  hyP  +  kyQ,  h 

is  a  set  of  homogeneous  coordinates  of  a  point  on  the  line  PQ  ;  the  particular 
point,  which  we  may  call  the  point  hP  +  kQ,  depends  on  the  ratio  h  :  k,  not 
on  the  absolute  values  of  h  and  k,  and  to  each  value  of  this  ratio  corresponds 
one  and  only  one  point  on  the  line. 

The  condition  that  the  point  hP  +  kQ  should  be  on  the  locus  <£>  is 

•31  4>  (AeP  +  A*Q}n  =  0, 

and  the  expression  here  equated  to  zero  is  homogeneous  and  of  degree  n  in 
h  and  k,  with  coefficients  dependent  on  the  coefficients  in  the  equation  of  the 
curve  and  on  the  coordinates  of  P  and  Q. 

There  are  two  possibilites:  '31  is  either  an  identity  or  an  equation  of  the 

•32        nth  degree.    Hence  °if  a  line  has  more  than  n  points  in  common  with  a  curve 
or  surface  of  the  nth  degree,  every  point  of  the  line  belongs  to  that  curve  or 

surface.   If  *31  is  not  an  identity,  it  is  equivalent  to  an  equation 

•33  (hh  -  kh^  (hkt  -  M2)n*  .  .  .  (hkm  -  khm)nm  =  0 

•34        where  n^  +  n2  +  .  .  .  +  nm  =  n, 

and  just  as  the  equation 

(Z  -  Zl)n>  (Z  -  Z^  ...(*-  ZmT™  =  0 

is  said  to  have  not  m  roots  but  n,  namely,  Jij  all  equal  to  zl}  n%  all  equal  to  z2, 
and  so  on,  so  the  line  PQ  is  said  to  intersect  the  curve  or  surface  in  n  points, 
the  points  of  intersection  being  hYP  +  hQ  counted  rij  times,  h2P  +  k2Q  counted 
n2  times,  and  so  on.  This  language  is  of  course  conventional,  and  it  proves  to 

be  invaluable.  To  absorb  '32  in  the  more  complete  statement  that 

•35  If  a  line  does  not  form  part  of  an  algebraic  curve  or  surface,  the  number  of 
points  common  to  the  line  and  the  curve  or  surface  is  equal  to  the  order  of  the 

curve  or  surface  but  the  points  of  intersection  are  not  necessarily  all  distinct, 

is  merely  to  assert  the  possibility  of  laying  down  conventions  having  the 
desired  result. 

It  should  be  added  that  on  the  one  hand  nothing  that  has  been  said  assumes 
the  line  PQ  or  either  of  the  points  P,  Q  to  be  accessible,  and  that  on  the 
other  hand  in  saying  that  to  every  ratio  h  :  k  there  is  some  one  point  of  PQ 

to  correspond  we  are  assuming  that  "space  is  ideal  ;  in  a  space  without  points 
at  infinity,  one  factor  of  -33  may  be  insusceptible  of  interpretation,  and  since 
the  power  to  which  that  factor  is  raised  may  have  any  value  not  greater  than 
n,  the  convention  as  to  multiplicity  of  accessible  points  of  intersection  fails 

altogether  to  provide  a  passage  from  "32  to  '35. 
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•4.  If  '13  is  the  equation  of  a  surface  and  P,  Q,  R  are  three  points  that  are 
not  collinear,  the  condition  for  the  point  iP+jQ  +  kR,  a  typical  point  in  the 
plane  PQR,  to  be  in  this  surface  is 

*  OP  +  jfQ  +  ̂J?)n  =  0,  -41 

and  this  is  either  an  identity  or  an  equation  homogeneous  and  of  degree  n  in 
the  set  of  variables  i,  j,  k.  Since  i,  j,  k  are  themselves  homogeneous  coordinates 
referring  a  variable  point  of  the  plane  PQR  to  the  triangle  PQR, 

If  a  plane  does  not  form  part  of  a  given  alyebraic  surface,  the  points  common        -42 
to  the  two  compose  a  curve  of  the  same  order  as  the  surface; 

this  is  a  corollary  of  '35,  but  not  of  '32.  If  the  surface  has  no  plane  constituents, 
and  in  particular  if  it  is  not  composite,  there  is  no  restriction  on  the  plane. 

•5.  The  coefficient  of  hn~rkr  in  4>  (^hep  +  keq)11  is  both  a  homogeneous 
polynomial  of  degree  n  —  r  in  the  coordinates  of  P  and  a  homogeneous  poly- 

nomial of  degree  r  in  the  coordinates  of  Q:  it  may  be  regarded  as  a  polynomial 
in  one  set  of  coordinates  with  coefficients  that  are  themselves  polynomials  in 

the  other  set.  If  Q  coincides  with  P,  the  function  <t  (hep  +  keq)11  becomes 

(h  +  k)n3>epn,  and  the  coefficient  of  hn~rkr  reduces  to  the  product  of  4>e/>n  by 
the  binomial  coefficient  (").  There  is  therefore  no  confusion,  and  there  are 
many  advantages,  in  denoting  the  coefficient  in  general,  divided  by  this  same 

binomial  coefficient,  by  3>€pn~r€Qr,  that  is,  in  writing 

-51 

+  JfcnOeQn; 

this  formula  defines  the  meaning  of  <3>6pn~reQr.    The  more  general  formula 

r...  -52 r 

the  summation  being  for  all  positive  integral  values  of  p,  q,  r,  .  .  .  such  that 

p  +  q  +  r+...=n, 

defines  the  multinomial  <&e/e29e3r  ...,  or  alternatively  if  the  multilinear 
function  <^>e1e2...€n  is  defined  as  the  quotient  by  nl  of  the  coefficient  of 

kjcz...kn  in  <I>  (Je^  €j  +  k2  e2  +  .  .  .  +  kn  en)n,  the  multinomial  <l>  ef  e2?  esr  .  .  .  is 
definable  as  the  function  derived  from  ̂ ele<,  ...  en  by  repetition  of  terms. 

If  a  change  of  coordinates  replaces  the  multilinear  function  ̂ e^  ...  en  by 

^>*e1  e2  .  .  .  en,  the  same  change  replaces  Qefeje-f  ,  .  .  by  <£*e1pe2?e3r  ...  for  all  values 

of  p,  q,  r,  .  .  .  ,  and  in  particular  replaces  <£en  by  <t>*en.  Thus  °if  a  relation  between  -56 
the  points  P,  Q,  R,  ...  and  the  locus  4>  is  expressed  with  reference  to  one 

triangle  or  tetrahedron  by  an  equation  of  the  form  <&epp€QqeRr  ...  =  0,  it  is  the 
same  relation  that  is  expressed  with  reference  to  another  triangle  or  tetrahedron 

by  the  equation  <&*epp€Qq€Rr  ...  =0,  where  the  function  ̂ >*€Pp€Q^€Sr  ...  is 
formed  from  the  function  <J>*en  into  which  <£en  changes  by  the  same  rules  as 

•••  from  3>en. 
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542.  THE  ORDER  OF  A  POINT  ON  A  PLANE  CURVE  OR  A  SURFACE. 

•1.  Suppose  the  point  P  to  be  on  the  locus  4>.  Then  the  equation  1-31 
lacks  the  term  in  hn,  whatever  the  position  of  Q.  It  is  possible,  though  ex- 

ceptional, for  the  equation  without  reducing  to  an  identity  to  lack  also  any 
number  smaller  than  n  of  successive  terms  following  this  first  term:  for  example, 

in  space,  if  P  is  the  point  for  which  8  is  unity  and  the  other  coordinates 

are  zero,  <!>  (hep  +  keo)n  becomes  3>(JcciQ,k(3Q,kfYQ,h  +  kSQ~)n,  and  if  further 
<t>en  does  not  contain  8,  no  change  is  made  by  the  substitution  of  k§Q  for 

h  +  k&Q  in  this  expression,  a  substitution  that  reduces  <3>  (hep  +  keq)n  in 
this  case  to  the  term  kn  <3>6Qn  without  imposing  any  condition  on  Q. 

In  other  words,  it  is  possible  for  a  point  P  on  a  curve  or  surface  to  be  such 

that  on  every  line  through  P  that  does  not  lie  wholly  in  the  curve  or  surface,  P  is 

a  multiple  point  of  intersection.  If  P  is  a  point  such  that  every  line  through 
P  that  does  not  form  part  of  a  given  curve  or  surface  cuts  this  curve  or 
surface  ra  times  at  P  but  that  on  some  lines  through  P  the  multiplicity  is  not 

•12  greater  than  m,  then  P  is  called  a  °  point  of  order  m  on  the  curve  or  surface. 

Algebraically,  the  condition  is  that  in  the  function  3>eP?l-r  e</,  regarded  as  a 
polynomial  in  the  coordinates  of  Q,  every  coefficient  vanishes  if  r  is  less  than  m, 
but  at  least  one  coefficient  is  not  zero  when  r  has  the  value  m.  If  every  term 

in  the  polynomial  <l>epn~se*  vanishes,  so  does  every  term  in  the  symmetrical 
multilinear  function  <&epn~8€1e2 ...  e«,  and  therefore  so  does  every  term  in  the 

•13  polynomial  <&epn~r6r  if?*  has  any  value  less  than  s.  Hence0  the  order  of  P  on  <I>  is 
definable  as  the  number  m  which  is  such  that  <&epn~m+1em~1  vanishes  identically 
but  <$>€pn~mem  does  not,  explicit  reference  to  polynomials  of  degree  lower  than 
m  —  1  being  superfluous.  The  equation 

•H  <|>ep»-«V»  =  0 

is  an  effective  equation,  not  an  identity,  and  the  line  PQ  cuts  O  at  P  exactly 

m  times  provided  that  Q  is  not  on  the  locus  corresponding  to  this  equation. 

•15  According  to  the  definition  just  given,  °  a  point  that  does  not  belong  to  the 
curve  or  surface  at  all  can  be  regarded  as  a  point  of  order  zero.  The  vanishing 

of  <$>epn  does  not  as  a  rule  imply  the  vanishing  of  the  coefficients  of  the  co- 

ordinates of  Q  in  <$>epn~1€Q,  and  therefore  in  general  the  order  of  a  point  taken 
at  random  on  a  curve  or  surface  is  unity.  A  point  of  order  unity  is  called  a 

•16,  -17  °  simple*  point,  a  point  of  higher  order  a  °  multiple  point. 

•2.   The  order  of  a  point  on  a  curve  or  surface  is  not  wholly  independent  of 
the  form  of  the  equation  of  the  curve  or  surface.    The  points  that  satisfy  the 

.21        equation  |<|>en}p  =  o, 

where  p  is  an  integer  greater  than  unity,  are  the  same  as  the  points  that  satisfy 

•22  <S>6»  =  0, 
*  A  distinction  can  be  made  between  simple  points  and  ordinary  points,  points  that  are 

simple  when  the  locus  is  given  by  '22  being  distinguished  as  ordinary  when  it  is  given  by  '21. 
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but  if  -22  leads  to  T33,  then  '21  leads  to 

(hk,  -  M  J)P»>  (hk,  -  kh^  . . .  (hkm  -  khm)P^  =  0 :  -23 

a  line  that  cuts  '22  in  m  points  coincident  at  P  cuts  '21  in pm  points  coincident 

at  the  same  place,  and  °  the  order  of  any  point  with  respect  to  '21  is  p  times  -24 
the  order  of  the  same  point  with  respect  to  '22.  It  is  for  this  reason  that  '21 
is  said  to  represent  not  the  same  locus  as  '22  but  this  locus  taken  p  times. 

No  point  of  '21  is  a  simple  point,  for  points  that  are  simple  on  '22  are  points 
of  order  p  on  *21. 

'3.    If  the  several  loci 
4>l6n>=0,     <f>2en»  =  0,  ...,  -31 

finite  in  number,  are  regarded  as  forming  a  single  composite  locus 

3>en  =  0,  -32 

where  n  =  nl  +  n^+ ...,     <&en  =  <&len> .  3>2en*. ...,  -33 

a  line  lies  wholly  in  <I>  if  and  only  if  it  lies  wholly  in  one  of  the  constituents 

3*1 ,  3*2,  •••!  and  if  P  is  any  point  on  a  line  A  that  does  not  lie  wholly  in  4>,  °  the  -34 
order  of  P  as  an  intersection  of  A  with  4>  is  the  sum  of  the  orders  of  P  as  an 

intersection  of  A  with  the  constituents  of  <I>,  for  the  binomial  1*33  whose  roots 
determine  the  intersections  of  A  with  <l>  is  the  product  of  the  corresponding 
binomials  for  <S>n  <J>2,  ...;  the  order  of  intersection  for  a  constituent  which  does 
not  contain  P  is  of  course  zero. 

It  follows  from  '34  that  the  order  of  a  point  P  on  a  composite  locus  is  not 
less  than  the  sum  of  the  orders  of  P  on  the  constituents.  Moreover,  we  have 

seen  that  the  lines  through  a  point  P  of  order  m  for  which  the  order  of  inter- 
section at  P  is  exactly  m  are  the  lines  joining  P  to  points  which  do  not 

satisfy  a  certain  equation.  Given  any  finite  number  of  equations,  it  is  always 

possible  to  find  a  set  of  values  of  the  variables  which  does  not  satisfy  any  of 

the  equations.  Hence 

The  order  of  a  point  on  a  composite  locus  is  the  sum  of  the  orders  of  that       -36 
point  on  the  constituent  loci. 

We  have  had  a  particular  case  of  this  theorem  in  '24. 

543.   THE  ORDER  OF  INTERSECTION  OF  A  LINE  WITH  A  PLANE  CURVE 

OR  A  SURFACE  ;  TANGENTS ;  SEGMENTS  OF  A  LINE. 

'1.  If  P  is  a  point  of  order  m  on  <E>,  every  line  through  P  either  forms  part 
of  4>  or  has  at  P  an  intersection  of  order  at  least  as  great  as  m,  and  distinction 
is  drawn  between  those  lines  on  which  the  order  is  exactly  m  and  other  lines 
through  P ;  the  exceptional  lines  are  said  to  touch  the  curve  or  surface  at  P : 

in  other  words  &°  tangent  to  a  curve  or  surface  at  a  point  P  is  a  line  through  -11 
P  which  either  forms  part  of  the  curve  or  surface  or  has  at  P  an  intersection 

of  an  order  higher  than  is  implied  by  the  mere  fact  of  passing  through  P. 
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To  see  that  in  complex  space  tangents,  in  this  sense  of  the  word,  exist  if  m. 
is  not  zero,  we  have  only  to  consider  the  relation 

•12  ^>€Pn-m€Qm  =  0. 

This  relation  can  not  be  satisfied  for  all  positions  of  Q,  for  if  it  were,  P  would 

be  a  point  of  order  greater  than  m  ;  since  the  variables  are  complex,  there  are 
some  values  of  the  coordinates  of  Q  that  satisfy  the  relation.  That  is  to  say, 

•13  (&€pn-mem  _  Q 

is  a  significant  equation,  and  the  line  joining  P  to  a  point  Q  distinct  from  P 

is  a  tangent  to  4>  at  P  if  and  only  if  Q  is  on  the  curve  or  surface  represented 
by  this  equation  ;  the  condition  is  satisfied  if  the  line  forms  part  of  the  curve 
or  surface,  and  this  is  one  reason  for  regarding  such  a  line  as  itself  a  tangent. 
Moreover,  if  the  condition  is  satisfied  by  a  point  Q,  it  is  satisfied  by  every 
point  of  the  line  PQ.  Hence 

•14  If  P  is  a  point  of  order  m  on  the  curve  or  surface 

the  equation  <J>ep«-»»€™  =  0 

is  the  equation  of  the  aggregate  of  tangents  to  the  curve  or  surface  at  P. 

•2.    If  P  is  a  simple  point  of  a  curve,  m  is  unity,  and  the  equation 

•21  t&ep"-1  e  =  0 

is  the  equation  of  a  single  line,  the  tangent  at  P  ;  every  line  through  P  except 

the  tangent  cuts  the  curve  once  at  P;  the  tangent  can  not  cut  the  curve  only 

once,  but  there  is  nothing  to  prevent  the  tangent  from  cutting  the  curve  more 
than  twice  at  P,  or  from  forming  part  of  the  curve. 

If  P  is  a  simple  point  of  the  curve 

•22  ^en  =  0 

and  if  PT  is  the  tangent  at  P,  any  line  through  P  other  than  PT  cuts 

•23  |4>en}P  =  0 
p  times  at  P  but  PT  cuts  this  curve  at  least  2p  times  or  forms  part  of  the 

curve.  Thus  the  only  line  which  touches  "23  at  P  is  the  line  which  touches  '22 
at  P,  but  a  property  that  depended  on  a  line  having  multiple  intersection  at  P 

would  belong  for  '23  to  every  line  through  P  and  for  *22  to  the  tangent  alone. 
If  it  is  with  a  curve  that  we  are  dealing,  and  if  the  order  of  P  is  m,  the 

equation  '13,  since  it  represents  nothing  but  lines  through  P,  represents  not 
more  than  m  of  these  lines  : 

•25  At  a  multiple  point  of  order  m,  a  plane  curve  has  m  tangents  but  these  are 
not  necessarily  all  distinct. 

It  is  to  be  noticed  that  the  equation  '13  derived  from  the  equation  of  a  plane 
curve  does  not  as  a  rule  represent  a  group  of  lines  ;  it  is  from  the  assumption 
that  P  is  of  order  m  that  we  have  deduced  that  the  locus  has  this  character. 
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•3.    If  P  is  a  simple  point  on  a  surface,  "13  becomes  the  equation  of  a  plane: 

At  a  simple  point  of  an  algebraic  surface,  the  tangents  compose  a  plane,  the       -31 
tangent  plane  at  that  point. 

But  there  is  no  reason  to  suppose  that  in  general,  because  it  represents  nothing 

but  lines  through  P,  '13  factorises  and  represents  a  number  of  planes:  all  that 
can  be  done  is  to  define  a  cone  with  vertex  P  as  a  surface  composed  of  lines 
through  P,  and  to  assert  that 

At  a  point  of  order  m  on  a  surface,  the  tangent  lines  compose  a  cone  of  order  m;       '32 
in  general  this  cone  is  not  composite,  but  exceptions  are  possible. 

If  the  tangent  plane  at  a  simple  point  P  of  a  surface  is  not  a  constituent 

of  the  surface,  any  line  through  P  in  the  tangent  plane  has  the  same  order  of 

intersection  at  P  with  the  curve  in  which  this  plane  cuts  the  surface  as  it  has 
with  the  surface  itself;  comparing  the  definition  of  a  tangent  to  a  surface  with 

that  of  a  multiple  point  on  a  curve,  we  infer  that 

If  the  tangent  plane  at  a  simple  point  of  a  surface  does  not  form  part  of  the        *33 
surface,  the  section  of  the  surface  by  this  plane  has  the  point  of  contact  for  a 
multiple  point. 

"4.  There  is  intrinsically  no  difference  between  supposing  a  point  A  to  belong 
to  a  given  curve  or  surface  and  supposing  a  number  of  points  coincident  in  A 
to  belong  to  that  curve  or  surface.  But  if  we  associate  with  A  a  definite  line 

through  .4,  it  becomes  possible  for  us  to  discriminate,  naturally  if  conventionally, 

between  a  curve  or  surface  that  has  one  point  in  common  with  the  line  at  A 

and  one  that  has  several  coincident*  points  in  common  with  the  line  there. 
For  many  reasons,  double  intersection  figures  not  merely  as  the  simplest 

type  of  multiple  intersection  but  with  an  importance  that  is  fundamental, 

and  it  is  the  vocabulary  by  means  of  which  we  include  double  intersection  at 

one  point  and  simple  intersections  at  two  distinct  points  in  one  description 
that  must  now  be  explained. 

Two  points  together  with  a  line  containing  them  are  said  to  constitute  a 

° linear  segment  or  a  segment  of  a  line;  the  points  are  called  the  ends  of  the  -41 
segment,  and  the  line  is  called  its  axis.  Unless  the  points  A,  B  coincide, 

there  is  only  one  line  which  contains  them  both,  and  therefore  there  is  only 

one  linear  segment  to  which  they  belong;  this  is  called  the  segment  AB. 

If  the  points  coincide,  the  propositions  which  we  have  in  view  require  us  to 
consider  them  as  coincident  in  a  definite  line,  and  it  is  for  this  reason  that 

the  idea  of  the  segment  is  necessary.  Any  theorem  concerning  a  proper  linear 

segment,  that  is,  a  linear  segment  with  distinct  points  A,  B,  can  be  expressed 

as  a  theorem  regarding  the  pair  of  points,  and  differs  from  a  theorem  regarding 

the  step  AB  only  in  imposing  no  order  on  the  two  points :  °the  segment  BA  -42 
is  the  same  as  the  segment  AB.  But  if  B  coincides  with  A,  the  identity  of 

the  segment  depends  on  the  line  through  A  in  which  the  two  coincident 

*  But  not,  on  any  tenable  interpretation,  consecutive. 
N.  19 
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points  are  conceived  to  be  situated ;  if  for  brevity  we  speak  of  the  segment 

AB  even  in  this  case,  it  must  be  understood  that  the  axis  of  the  segment  is 
assigned  in  some  way. 

In  accepting  the  meaning  now  suggested  for  the  word  segment,  we  have 
to  realise  that  in  complex  space  there  is  no  sense  in  which  a  point  can  be 
described  as  between  two  given  points  of  a  line  on  which  it  lies,  and  that 
therefore  the  word  is  not  required  with  its  familiar  intension.  The  use  of  the 

word  end  in  connection  with  complex  segments  is  purely  conventional ;  a 
segment  does  not  terminate  at  its  ends.  Just  as  we  speak  of  a  segment  of  a 

line,  so  we  may  define  a  segment  of  any  curve  by  associating  the  curve  with 
two  of  its  points ;  for  the  present  we  are  concerned  only  with  segments  of  lines, 
and  the  word  segment  unqualified  is  to  be  held  to  refer  to  a  linear  segment. 

There  is  no  need  to  indulge  in  formal  explanations  of  such  phrases  as  '  a 

length  of  a  segment',  'perpendicular  segments',  'the  angles  between  two 
'43  segments',  which  bear  their  obvious  meanings.  °A  segment  is  called  finite  if 

it  has  no  infinite  length,  that  is,  if  both  its  ends  are  accessible.  A  segment 
AB  that  is  not  wholly  inaccessible  has  a  midpoint,  which  is  a  point  C  such 
that  the  steps  AC,  GB  are  congruent;  this  midpoint  is  accessible  if  and  only 
if  both  ends  of  the  segment  are  accessible,  that  is,  if  and  only  if  the  segment 
is  finite.  To  a  segment  of  a  line  at  infinity  no  definite  midpoint  can  be 

assigned ;  every  point  of  the  line  can  serve  as  a  midpoint  of  any  segment  of 
the  line.  But  it  is  to  be  remarked  that  the  definition  of  the  midpoint  depends 
on  the  identity  of  two  vectors,  not  on  the  equality  of  two  lengths,  and  that 

therefore  the  midpoint  of  a  segment  not  wholly  at  infinity  is  no  more  uncer- 
tain if  the  axis  is  nul  than  if  the  axis  is  not  nul. 

•45  °A  proper  segment  AB  is  said  to  be  inscribed  in  a  curve  or  surface  if  the 
points  A,  B  both  belong  to  the  curve  or  surface,  and  the  curve  or  surface 

•46  is  said  to  be  a  curve  or  surface  through  the  segment.  °When  the  segment 
degenerates  into  two  coincident  points  A,  A  in  an  axis  I,  it  is  only  if  a  locus 
has  double  intersection  with  I  at  A  that  the  segment  is  said  to  be  inscribed 

•47  in  the  locus.  °If  A  is  a  simple  point,  to  say  that  a  zero  segment  A  A  with  a 
given  axis  is  inscribed  in  the  locus  is  equivalent  to  asserting  that  the  axis  is 

a  tangent  at  A. 

544.  ALTERSECTION  AND  ALTERCONTACT. 

•1.  The  definition  of  the  order  of  intersection  of  a  line  with  a  locus  fails 
altogether  if  the  line  forms  part  of  the  locus.  By  regarding  the  order  as 

infinite  we  can  reach  some  measure  of  uniformity,  but  this  convention  puts 
all  the  points  of  the  line  on  the  same  level,  whereas  it  is  evident,  for  example, 
that  in  a  composite  locus  formed  of  a  line  and  a  conic  the  points  of  intersection 
of  the  line  and  the  conic  have  some  peculiarity  in  relation  to  the  locus  as  a 

whole  and  that  this  peculiarity  is  modified  if  the  line  touches  the  conic. 
A  plane  locus  which  includes  the  whole  of  a  line  is  necessarily  composite; 
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definitions  are  obvious  when  the  locus  is  decomposed,  and  have  to  be  changed 

into  a  form  that  is  applicable  not  only  to  a  curve  for  which  the  decomposition 
has  not  actually  been  effected  but  also  to  a  surface. 

Let  the  equation  1*13  represent  a  plane  locus  that  includes  the  whole  of 
the  line  whose  equation  is  the  linear  equation 

Ae  =  0.  -11 

Then  Ae  is  a  factor,  but  not  necessarily  a  simple  factor,  of  <I>en.   Let 

<l>en  =  (Aey¥en-<,  -12 

where  "^€n~l  does  not  contain  Ae  as  a  factor;  I  is  the  °  order  of  the  line  A  as       '13 
a  constituent  of  the  locus.   The  line  A  does  not  form  part  of  the  locus 

•vpe»-'  =  0  -14 

and  therefore  cuts  this  locus  in  n  —  I  points,  not  necessarily  distinct ;  these 

points  are  the  °  altersections  of  A  with  the  original  locus  <l>,  and  °the  order  of -15, -16 
intersection  with  M*  is  the  order  of  altersection  with  4>.    With  the  natural 

convention  that  a  line  which  does  not  form  part  of  a  plane  locus  is  a  con- 
stituent of  order  zero,  we  can  assert  that 

The  sum  of  the  order  of  a  line  as  a  constituent  of  a  plane  locus  and  the       '17 
orders  of  its  altersections  with  that  locus  is  the  order  of  the  locus  itself. 

2.  It  follows  from  2'36  that  the  order  on  <I>  of  a  point  on  A  is  equal  to  or 
greater  than  I  according  as  its  order  on  ̂   is  or  is  not  zero,  that  is,  according 

as  it  does  or  does  not  belong  to  M*.  Hence 

The  order  of  a  line  A  as  a  constituent  of  a  plane  locus  <I>  is  the  least  value       '21 
which  the  order  of  a  point  P  can  have  on  <£  if  P  belongs  to  A. 

This  theorem  suggests  a  definition:  by  °the  order  of  a  line  in  a  locus,        -22 
plane  or  spatial,  composite  or  undegenerate,  is  meant  the  least  value  which 
the  order  of  a  variable  point  of  the  line  can  have  on  the  locus.    With  this 

definition  '21  becomes 

The  order  of  a  line  as  a  constituent  of  a  plane  locus  is  its  order  in  that  locus.       '23 

If  now  we  define  the  °  altersections  of  a  line  A  with  a  locus  <E>  as  the  points       -24 
of  A  whose  order  on  <f>  is  greater  than  the  order  of  A  in  <£>,  we  have  a 

definition  not  inconsistent  with  '15  and  significant  when  the  locus  is  a  surface 
in  space. 

°If  there  are  any  points  of  A  which  do  not  belong  to  <£,  the  order  of       '25 
these  points  on  <I>,  and  therefore  of  A  in  <I>,  is  zero,  and  the  altersections 
become  the  points  of  A  whose  order  on  4>  is  not  zero,  that  is,  become  the 
intersections  in  the  elementary  sense. 

^ 

•3.  To  say  that  the  order  of  intersection  of  a  line  with  a  locus  at  a  point  P 
may  be  greater  than  the  order  of  P  on  the  locus  is  only  to  assert  that  the  line 

may  touch  the  locus  at  P.  In  the  case  of  the  composite  plane  locus,  if  h  is 

19—2 
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the  order  of  altersection  of  A  with  4>  at  P  and  m  is  the  order  of  P  on  <t>,  then 

m  —  I  is  the  order  of  P  on  ̂ ,  and  this  is  less  than  or  equal  to  h  according 

as  A  is  or  is  not  a  tangent  to  M7"  at  P. 
•31  °If  the  multiplicity  of  A  as  a  tangent  to  4>  at  P  is  I,  then  h  is  determinate 

as  m  —  I,  but  in  general  h  does  not  depend  on  I  and  m  alone. 
If  P  is  on  A,  the  linear  function  A  (iep  +  J€Q)  reduces  to  jAeg,  and  therefore 

with  the  notation  of  *12 

•32  4>  (wp  +  jeQy  =  f  (  Aee)<  V  (ieP  +  jfQ>-', 
whence  for  all  values  of  r  from  I  to  n •33 

If  the  order  of  intersection  of  A  with  ̂   at  P  is  h,  the  coefficients  of  the 

highest  h  powers  of  i  in  ̂   (iep  +je<i)n~l  vanish  if  Q  is  on  A,  but  there  are 
positions  of  Q  on  A  for  which  the  coefficient  of  in~l~h  does  not  vanish;  in 

other  words,  the  polynomial  '^€pn~rer~l  vanishes  identically  or  contains  Ae 
for  a  factor  if  r  has  any  value  from  I  to  I  +  h  —  1  but  not  if  r  has  the  value 

•34  l  +  h,  and  therefore  °the  polynomial  <&epn~rer  vanishes  identically  or  contains 
A.efor  a  factor  to  a  power  greater  than  I  if  r  is  less  than  l  +  h  but  contains  Ae 

only  to  the  power  I  if  r  is  equal  to  l  +  h.  Retranslating  the  occurrence  of  Ae 
as  a  factor  of  a  polynomial  into  geometrical  terms  we  have  the  following 

enunciation,  which  is  consistent  with  '16  for  a  curve  and  defines  the  order  of 
altersection  for  a  surface: 

•35  Let  <I>  be  a  locus  of  order  n,  let  Abe  a  line  whose  order  in  <l>  is  I,  and  let  P 
be  a  point  of  altersection  of  order  h  on  A.    Then  the  equation 

<J>epn-rer  =  0 

reduces  to  an  identity  for  all  values  of  r  from  0  to  l—l,  either  reduces  to  an 
identity  or  represents  a  locus  in  which  A  is  of  order  greater  than  I  for  all 

values  of  r  from  I  to  l  +  h  — I,  represents  a  locus  in  which  A  is  of  order  exactly 
I  when  r  has  the  value  l  +  h,  and  either  reduces  to  an  identity  or  represents  a 

locus  in  which  A  is  of  order  not  less  than  I  for  all  values  of  r  from  I  +  h  +  1 
to  n. 

Recalling  that  the  order  m  of  P  on  <I>  is  definable  by  the  property  that 

3>epn~r  €r  vanishes  identically  for  all  values  of  r  from  0  to  m  —  t  and  not  when 
r  has  the  value  m,  we  see  that  m  is  not  less  than  I  and  not  greater  than  l  +  h. 
In  the  tangent  locus 

<£epM~OTem  =  0, 

A  is  of  order  not  less  than  I  and  not  greater  than  m,  and  we  have  only  to 

•38  compare  the  definitions  of  m  and  h  to  find  that  °if  the  order  of  A  in  the 
tangent  locus  is  exactly  I,  then  l  +  h  and  m  are  identical,  thus  extending 

to  the  general  locus,  curve  or  surface,  a  property  asserted  in  '31  of  the  de- 
composed plane  curve;  to  find  h  in  general  we  have  to  find  a  locus  in  which 
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the  order  of  A  is  I,  and  that  is  why  the  order  of  A  in  the  tangent  locus  is 

invK'v.-irit  except  in  the  case  when  it  has  this  particular  value. 

•4.    The  number  associated  most  simply  with  the  contact  of  a  line  A  with 
a  locus  4>  at  a  point  P  is  the  excess  of  the  order  of  intersection  at  P  over  the 

order  of  P  on  <I>.    To  say  that  A  is  a  tangent  is  simply  to  assert  that  this 

excess  is  not  zero,  and  the  excess  is  called  the0  order  of  contact.   If  A  forms        -41 

part  of  <I>,  the  order  of  contact  is  infinite,  and  its  place  is  taken  by  the  °  order        42 
of  altercontact,  defined  as  the  number  by  which  l  +  h,  the  sum  of  the  order  of 

A  in  <£  and  the  order  of  altersection  at  P,  exceeds  m,  the  order  of  P;  this 
number  is  zero  if  and  only  if  the  order  of  A  in  the  tangent  locus  at  P  is  the 
same  as  its  order  in  <&  itself. 

The  orders  of  contact  and  altercontact  make  no  allowance  for  a  possible  multi- 
plicity of  the  tangent  as  a  constituent  in  the  tangent  locus,and  in  some  problems 

a  number  occurs  that  differs  for  this  reason  from  the  order  of  altercontact. 

In  the  simple  case  of  a  plane  curve,  a  line  that  cuts  the  curve  at  a  point  P 

of  order  m  and  is  not  itself  a  tangent  has  an  intersection  of  order  m',  whether 

a  line  touches  the  curve  or  not  at  P,  we  may  say  that  °a  tangent  distinct  from        *43 
A  and  of  multiplicity  f  accounts  for  f  of  the  intersections  or  altersections  of 

A  at  P,  and  the  °  index  of  contact  or  altercontact  of  A  at  P  is  the  number  of       '44 
intersections  or  altersections  for  which  tangents  distinct  from  A  do  not  account. 
Since  the  total  number  of  tangents  at  P  is  m,  the  order  of  P,  the  number 

distinct  from  A  is  m  —  g  where  g  is  the  multiplicity  of  A  as  a  factor  of  the 
tangent  locus 

and  by  replacing  multiplicity  in  the  tangent  locus  by  order  in  this  locus  we 

can  frame  a  definition  applicable  equally  to  plane  curves  and  to  surfaces:  °if       -45 
the  order  of  altersection  of  A  with  <I>  at  P  is  h  and  if  the  orders  of  P  on  <f> 

and  of  A  in  the  tangent  locus  at  P  are  in  and  g,  the  index  of  altercontact  is 

the  number  g  +  h  —  m;  °the  index  of  contact  is  the  same  as  the  index  of  alter-        -46 
contact  if  A  does  not  form  part  of  4>  but  is  infinite  if  A  is  in  <i>. 

The  index  of  contact  exceeds  the  order  of  contact  by  the  multiplicity  of  the 
tangent;  the  difference  between  the  index  of  altercontact  and  the  order  of 

altercontact  is  the  same  as  the  difference  between  the  order  of  the  tangent  in 
the  original  locus  and  the  order  of  the  tangent  in  the  tangent  locus. 

Since  g  is  not  less  than  I,  the  order  of  A  in  <1>,  and  m  is  not  greater  than 
I  +  h,  the  index  defined  is  not  negative.  For  the  index  to  be  zero,  m  must  be 

as  large  as  possible  and  g  as  small,  that  is,  A  must  not  be  a  tangent  at  all.  If 

A  is  a  tangent,  g  is  not  less  than  l  +  l,  and  m  is  not  equal  to  l  +  h  and  there- 

fore is  not  greater  than  l  +  h  —  1:  the  index  is  not  less  than  2. 
If  the  index  of  altercontact  of  a  line  A  at  a  point  of  altersection  P  with  a 

plane  locus  is  k,  then  the  number  of  tangents  at  P  distinct  from  A  is  h  —  k; 
it  follows  from  '17  that 
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•49  If  the  order  of  a  line  A  in  a  plane  locus  <I>  of  order  n  is  I,  the  number  of 
tangents  distinct  from  A  whose  points  of  contact  are  points  of  A  is  less  than 

n  —  I  by  the  sum  of  the  indices  of  altercontact  of  A  at  its  points  of  altersection 
with  3>. 

545.  THE  RELATION  BETWEEN  ORDERS  OF  ALTERSECTION  WITH  A  SURFACE 
AND  ORDERS  OF  ALTERSECTION  WITH  PLANE  SECTIONS  OF  THE  SURFACE. 

•11  "1.   It  follows  from  2'13  that  if  P,  Q  are  any  two  distinct  points,  "the  point 
iP  +jQ  is  of  order  m  on  the  locus  <£  if  <I>  (ieP  +J€Q)n~m+1em~l  vanishes  identi- 

•12  cally  but  <I>  (ieP  +jeo)n-mem  does  not.  Hence  °the  order  of  the  line  PQ  is  the 
number  I  which  is  such  that  <t>  (iep  +J€o)n~rer  is  identically  zero  for  all  values 
of  i  :j  if  r  is  equal  to  I  —  1  but  not  for  all  values  of  i  :j  if  r  is  equal  to  I,  and 

•13  °the  altersections  of  PQ  with  <I>  are  the  points  that  correspond  to  values  of 
i  :j  for  which  every  coefficient  in  the  polynomial  <E>  (jiep  +jeq)n~lel  does  vanish. 

•14  °If  for  ̂ particular  value  of  s  we  knowthat  3>(iep+  J€o)n~ses  vanishes  identically 
for  all  values  of  i  and  j,  we  can  assert  that  the  order  of  PQ  in  <l>  is  greater 

than  s.  In  the  function  <&(iep  +  jfQ)n~l€Ml  regarded  as  a  polynomial  in  the 
coordinates  of  R,  each  coefficient  that  does  not  vanish  identically  is  a  homo- 

geneous binomial  in  i  and  j  of  degree  n  —  I,  with  coefficients  depending  on 
the  relation  of  P  and  Q  to  the  locus  <&.  We  have  therefore  a  number  of 

equations,  not  more  than  \(l  +  1)  (I  +  2)  if  <3>  is  a  curve  and  not  more  than 

£  (I  + 1)  (I  +  2)  (I  +  3)  if  <I>  is  a  surface,  each  of  degree  n  -  I  in  i  :j,  such  that 
the  ratios  corresponding  to  the  altersections  of  PQ  with  <l>  are  the  common 
roots  of  these  equations. 

If  j  is  a  factor  of  degree  h  in  every  one  of  these  equations,  it  is  a  factor  of 

this  degree  in  the  function  <&(iep+J€Qyi-lel  from  which  the  equations  are 
derived;  that  is  to  say,  the  function  <&€pn~l~seQ8el  vanishes  identically  for  every 

value  of  s  from  0  to  h  —  1,  and  so  also  does  the  function  ̂ >epn~l~8  (ieP  +J€Q)*€I 
for  every  one  of  these  values  of  s  and  for  arbitrary  values  of  i  and  j.  Con- 

versely if  the  function  &epn~l~s(iep+jeo)s€l  vanishes  identically  for  arbitrary 
values  of  i  and  j  and  for  every  value  of  s  from  0  to  h  —  1,  the  function 

&€pn~l~*€Qsel  vanishes  identically  and  jh  is  a  factor  of  <J>  (iep  +jeo)n~lel.  By 
referring  the  points  of  the  line  PQ  not  to  the  points  P,  Q  but  to  one  of  these 

•16  points  and  the  point  fP  +  gQ  we  deduce  that  °the  function  3>  (iep  +J€o)n~l€Rl 
has  a  factor  (ig  —jf)h  independent  of  the  coordinates  of  R  if  and  only  if 

^(ifep+geQyi~l~s(ji€p+J€Q)sel  vanishes  identically  for  arbitrary  values  of 
i  and  j  for  every  value  of  s  from  0  to  h  —  1,  that  is,  by  '14,  if  and  only  if  the 

order  of  PQ  in  the  locus  3>  C/eP  +  g€Q~)n~l~s€l+s  is  greater  than  I  for  every  value 
of  s  from  0  to  h  —  1,  that  is,  by  4'35,  if  and  only  if  the  order  of  altersection  of 
PQ  with  3>  at/P  +gQ  is  greater  than  h  -  1 : 

•17  The  degree  in  which  ig  —jf  occurs  as  a  factor  of  every  coefficient  in  the  function 

^>(^i€p+J€Q)n~1^  is  the  order  of  altersection  of  the  line  PQ  with  the  locus  <t> 
at  the  point  fP+gQ. 
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That  is  to  say,  °if  the  line  PQ  is  of  order  I  in  <t>  and  its  altersections  with  <I>        -18 

are  iiP+j^Q,  t'aP+jaQ,  ...  imP+jmQ>  °f  orders  An  hZ)  ...  hm,  the  function 
<t>  (^'ep  +J€Qyi~lel  is  the  product  of  the  binomial 

by  a  function  of  degree  I  whose  coefficients  are  of  degree  n  —  l  —  2A  in  i  and  j 
and  do  not  vanish  simultaneously  for  any  values  oft  andj. 

•2.   It  is  an  immediate  deduction  from  '18  that 

The  sum  of  the  orders  of  altersection  of  a  line  with  a  locus  of  order  n  in  which       -21 
its  own  order  is  I  is  not  greater  than  n  —  l. 

We  saw  in  1-35  that  if  the  altersections  are  intersections,  that  is  if  I  is  zero,  the 

sum  is  n,  and  in  4'17  that  in  the  case  of  a  plane  curve  the  sum  is  actually  equal 
to  n  —  I  whatever  the  value  of  I  ;  by  considering  the  sections  of  a  surface  by 

planes  through  a  line  it  is  easy  not  only  to  see  that  °for  a  surface  the  maximum       -22 
n  —  l  is  not  necessarily  attained  unless  I  is  zero  but  to  account  for  the  deficiency. 

Let  II  be  the  section  of  a  surface  <3>  by  a  plane  which  does  not  form  part  of 

<$,  and  let  P  be  a  point  of  this  plane.  Then  if  the  order  of  P  on  4>  is  m,  there 
are  lines  through  P  which  cut  <3>  only  m  times  at  P,  and  in  general  some  of 
these  lines  are  in  the  plane  of  the  section  ;  if  there  are  such  lines,  the  order 

of  P  on  FT  is  not  greater  than  m,  and  since  this  order  is  manifestly  not  less 

than  m,  °the  order  of  P  on  U  is  equal  to  the  order  of  P  on  <J>  unless  the  plane  of  -23 
section  forms  part  of  the  tangent  locus  to  <E>  at  P. 

Since  the  order  of  the  tangent  locus  is  m,  this  locus  can  not  include  more 

than  m  distinct  planes,  and  therefore  °if  P  is  a  given  point,  the  order  of  P  on        -24 
a  section  by  a  plane  through  P  is  the  same  as  the  order  of  P  on  <E>  except 
possibly  for  m  special  planes. 

If  A  is  a  line  of  order  I  in  <!>,  there  are  points  on  A  whose  order  on  <I>  is  I] 
indeed,  the  altersections  are  not  more  than  n  —  I  in  number,  since  the  sum  of 

their  orders  of  altersection  is  not  greater  than  n  —  l.   It  follows  from  '24  that 
0  there  are  not  more  than  I  planes  through  A  which  yield  sections  of  <I>  in        -25 
which  A  is  not  of  order  1.   Since  the  order  of  altersection  of  A  with  a  locus  <I> 

at  a  given  point  can  be  discovered  by  inspection  of  the  orders  of  A  in  a  finite 

number  of  loci  derived  from  <E>,  °  there  is  at  most  a  finite  number  of  planes        -26 
through  A  which  cut  <&  in  sections  which  do  not  have  at  the  altersections  of  A 
with  <i>  altersections  of  the  same  order  as  those  of  A  with  <I>  itself.   If  II  is  a 

section  with  which  A  has  the  altersections  which  it  has  with  <£>,  and  in  which  A  is 

of  order  I,  and  if  the  sum  of  the  orders  of  altersection  of  A  with  <I>  is  not  n-  I 

but  n—  I—  k,  4'  17  implies  that  °  there  are  altersections  of  A  with  II  which  are  not        -27 
altersections  of  A  with  <£  and  that  °the  sum  of  the  orders  of  these  additional       -28 
altersections  is  k,  a  number  independent  of  any  particular  plane  through  A. 

•3.  The  entry  of  the  additional  altersections  is  explained  by  '23.  A  point 
A  has  an  order  on  II  greater  than  I  if  its  order  on  <l>  is  greater  than  I,  or 

if  it  has  a  higher  order  on  II  than  on  <£.  In  the  first  case  the  point  is  an 
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altersection  of  A  with  <£;  in  the  second  case,  which  does  not  exclude  the  first, 

the  plane  of  section  is  part  of  the  tangent  locus  to  <£>  at  the  point.  If  P  is  a 
point  of  A  which  is  not  an  altersection  with  <l>  and  if  the  plane  of  II  is  part 

of  the  tangent  locus  at  P,  every  line  through  P  in  this  plane  has  an  inter- 
section with  II  at  P  of  order  greater  than  l\  hence  A  altersects  II  at  P  unless 

A  has  an  order  greater  than  I  in  II,  while  for  A  to  have  an  order  greater  than 

I  in  II,  the  plane  of  section  must  touch  4>  at  every  point  of  A  except  possibly 
at  the  altersections  of  A  with  4>. 

The  reader  familiar  with  ruled  surfaces  should  consider  the  case  of  a  developable  of 
which  A  is  a  generator,  and  distinguish  between  the  general  case  of  a  developable  with  an 
edge,  touched  by  A  at  a  midpoint  (7,  and  the  case  of  a  cone  with  a  vertex  V.  As  a  rule  in 
the  general  case  every  point  of  A  except  C  is  of  the  first  order  on  the  surface  and  C  is  of 
the  second  order ;  with  the  definitions  we  are  using,  the  plane  which  touches  the  surface 

elsewhere  on  A  touches  it  also  at  (7,  for  lines  through  C  in  this  plane  have  triple  intersec- 
tion there  with  the  surface.  The  tangent  locus  at  the  vertex  V  of  a  cone  is  identical  with 

the  cone  itself  and  does  not  as  a  rule  include  the  plane  which  touches  the  cone  at  other 
points  of  the  generator  A. 

546.  ASYMPTOTES. 

*1.  No  distinction  has  yet  been  made  in  this  chapter  between  accessible 
and  inaccessible  points,  but  it  is  on  the  disposition  of  their  inaccessible  points 
that  the  classification  of  conies  and  conicoids  depends. 

A  point  at  infinity  is  characterised  by  a  definite  vecline,  and  the  veclines 

corresponding  to  the  points  at  infinity  on  a  given  curve  or  surface  are  called 

•11        the  ° asymptotic  veclines  of  that  curve  or  surface;    their  directions  are  the 
asymptotic  directions. 

The  inaccessible  points  of  a  plane  curve  are  the  points  which  the  curve  has 
in  common  with  the  line  at  infinity  in  its  plane.  If  the  line  at  infinity  is  a 

constituent  of  the  curve,  every  direction  in  the  plane  is  asymptotic,  but  if  the 
line  at  infinity  is  not  a  constituent,  the  number  of  asymptotic  veclines  is  not 

greater  than  the  order  of  the  curve  and  is  actually  equal  to  this  order  if  the 
intersections  of  the  line  at  infinity  with  the  curve  are  all  simple. 

•12  A  tangent  at  an  inaccessible  point  of  a  curve  is  called  an  °  asymptote  of  the 
curve.  The  tangent  may  be  the  line  at  infinity  itself,  but  it  is  of  course  the 
exception  for  the  line  at  infinity  to  be  a  tangent,  just  as  it  is  the  exception 
for  an  accessible  line  taken  at  random  to  be  a  tangent.  If  the  intersections  of 

the  curve  by  the  line  at  infinity  are  all  simple,  the  number  of  them  is  equal 
to  the  order  of  the  curve,  and  the  asymptotes  are  all  accessible ;  also  no  two 

of  the  asymptotes  are  parallel,  for  a  point  at  infinity  common  to  two  distinct 

asymptotes  would  be  a  multiple  point  of  the  curve  and  would  give  a  multiple 
intersection  with  the  line  at  infinity,  contrary  to  hypothesis : 

•13  If  as  is  generally  the  case  the  intersections  of  a  plane  curve  of  order  n  by  the 
line  at  infinity  in  its  plane  are  all  simple,  then  the  asymptotes  of  the  curve  are 

.n  distinct  accessible  lines  no  two  of  which  are  parallel. 
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If  the  intersection  of  the  line  at  infinity  with  a  curve  at  a  point  P  is  of 

multiple  order  h,  two  possibilities,  different  in  their  effects  but  not  mutually 
exclusive,  have  to  be  considered.  If  the  order  of  the  point  P  on  the  curve  is  m, 

then  °if  h  is  equal  to  m,  the  line  at  infinity  is  not  a  tangent  at  P,  and  there       -14 
are  m  tangents,  not  necessarily  distinct,  which,  because  they  are  accessible 

liiH-s  through  P,  are  parallel  lines.   But°if  h  is  greater  'than  m,  the  line  at       -15 
infinity  is  a  tangent  at  P,  and  accounts  for  a  number  g  of  the  asymptotes 

through  P,  but  this  number  is  the  multiplicity  of  the  line  as  a  factor  of  the 

tangent  locus  at  P,  and  is  not  a  function  of  m  and  h  ;  the  number  of  accessible 

asymptotes  through  P  is  m  —  g,  and  in  general  no  two  of  them  coincide. 
Should  the  line  at  infinity  be  a  constituent  of  order  I  in  the  curve,  it  is  an 

l-fo\d  asymptote  on  that  account,  and  the  points  to  be  examined  are  its  points 

of  altersection  with  the  curve.  If  the  altersections  are  simple,  there  are  n  —  I 

distinct  accessible  asymptotes  of  which  no  two  are  parallel,  and  if  the  alter- 
sections are  multiple  but  do  not  number  among  them  any  points  of  altercontact 

there  are  still  n  —  I  accessible  asymptotes  of  which  some  perhaps  coincide  and 
some  are  certainly  parallel.  If  there  are  points  of  altercontact,  the  number  of 

accessible  asymptotes  can  not  be  predicted  ;  the  problem  of  counting  the  ac- 

cessible asymptotes  exactly  is  a  particular  case  of  the  problem  solved  in  4*49. 

•2.  If  the  triangle  of  reference  has  two  of  its  vertices  at  infinity,  or  if  the  plane 
is  referred  to  a  vector  frame  attached  to  an  accessible  origin,  —  which  comes  to 
the  same  thing  —  the  coordinates  are  naturally  denoted,  as  explained  for  three 

dimensions  in  21  '4  and  26  '3,  by  £,»/,T,and  the  asymptotic  directions  of  the  curve 

*Cf.^OBsaO  >21 
are  given  immediately  by  the  equation 

<K£^<On  =  °.  *22 
which  interpreted  as  an  equation  between  the  coordinates  of  a  point  is  the 

equation  of  the  lines  through  the  origin  with  asymptotic  directions.  If  <X>en 
has  T  for  a  factor,  to  power  I,  then  the  line  at  infinity  is  of  order  I  in  the  curve, 

and  if  the  quotient  of  <E>en  by  rl  is  ̂ fen~l,  the  points  of  altersection  of  the  line 
at  infinity  are  determined  by  the  equation 

°~z  =  °-  >23 

•3.    Two  curves  are  said  to  be  asymptotic  °  along  a  given  accessible  line  if       -31 
they  have  in  common  the  point  at  infinity  on  the  line  and  if  also  the  line  is  a 
tangent  to  both  of  them  there,  in  short,  if  the  line  is  an  asymptote  of  them 
both.   If  two  curves  have  a  common  point  P  at  infinity  and  if  the  line  at 

infinity  is  not  a  tangent  to  either  of  them  at  P,  the  curves  are  described  as 

asymptotic  °a£  P  if  they  have  there  the  same  asymptotes  each  with  the  same       "32 
multiplicity  for  the  two  curves.   We  call  two  curves  neither  of  which  has  the 

line  at  infinity  for  a  tangent  "asymptotic  to  each  other  if  their  asymptotes,        -33 
each  with  its  appropriate  order,  are  the  same. 
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•35  °If  the  plane  at  infinity  is  not  part  of  the  tangent  locus  at  any  point  of 
either  of  two  surfaces,  the  surfaces  are  said  to  be  asymptotic  to  each  other  if 

they  have  the  same  points  at  infinity  and  if  also  at  each  of  these  points  they 
have  the  same  tangent  locus:  the  surfaces  touch  each  other  along  their  common 

intersection  with  the  plane  at  infinity. 

No  mention  has  been  made  of  the  property  most  intimately  associated  with  the  word 
asymptotic,  namely,  the  property  of  indefinitely  near  approach  of  a  variable  point  on  a 
curve  to  a  variable  point  on  a  line,  or  more  generally  of  indefinitely  near  approach  of  a 
variable  point  on  one  curve  or  surface  to  a  variable  point  on  another.  This  is  because  all 
questions  involving  limits  are  being  deliberately  avoided.  But  it  must  not  be  forgotten 

that  questions  of  this  kind  concerning  asymptotes  have  their  exact  counterparts  in  ques- 
tions of  orders  of  approximation  relating  to  accessible  tangents ;  there  is  no  logical  ground 

for  dealing  with  the  former  type  of  question  and  not  with  the  latter*,  and  what  we  have 
omitted  to  consider  is  not  the  point  from  which  problems  of  asymptotes  should  be  approached 
but  a  point  from  which  geometrical  problems  of  many  kinds  may  be  approached. 

With  regard  to  asymptotic  surfaces,  little  can  be  said  without  mention  of  developables, 

and  the  definition  in  '35  is  designed  solely  to  meet  our  requirements  with  regard  to  spheres. 

547.  DEFINITIONS  OF  CONICS  AND  CONICOIDS  ;  DEGENERATE  CONICS  ; 
PARABOLAS  |  THE  EXISTENCE  OF  A  CONIC  THROUGH  FIVE 

COPLANAR  POINTS. 

•1.    Second  only  to  lines  and  planes  in  importance  are  curves  and  surfaces 

•11        of  the  second  order.    Plane  curves  of  the  second  order  are  called  °  conies,  surfaces 

•12        of  the  second  order  °conicoids.    It  is  not  to  be  imagined  that  in  interest  to  the 
mathematician  these  curves  and  surfaces  are  merely  somewhere  between  loci 

of  the  first  order  and  loci  of  the  third  order,  for  in  fact  the  place  of  conies  and 
conicoids  in  the  art  is  fundamental.   A  mathematician  who  is  not  investigating 

curves  and  surfaces  of  the  third  order  or  of  some  definite  higher  order  on  their 
own  account,  is  little  likely  to  require  ever  to  be  acquainted  with  even  their 

simplest  properties,  but  conies  and  conicoids,  of  special  forms  if  not  in  complete 

generality,  recur  in  every  branch  of  mathematics. 
It  is  only  with  certain  special  kinds  of  conies  and  conicoids  that  we  shall  deal 

explicitly,  and  the  present  section  merely  contains  those  properties  of  conies  and 
conicoids  in  general  that  follow  directly  from  the  principles  of  the  earlier  sections 

of  this  chapter  and  are  required  in  the  chapters  that  conclude  our  work. 

"2.   Applied  to  the  case  when  n  is  two,  1'32  asserts  that 
21  If  a  line  has  more  than  two  points  in  common  with  a  conic,  then  the  conic  is 

degenerate  and  has  the  line  for  a  constituent, 
and  that 

•22  If  a  line  has  more  than  two  points  in  common  with  a  conicoid,  then  every 
point  of  the  line  belongs  to  the  conicoid. 

*  With  regard  to  such  questions  see  Fowler's  tract,  Elementary  Differential  Geometry 
of  Plane  Curvet  (1920),  which  deals  only  with  the  real  plane  and  makes  no  reference  to 
points  at  infinity,  but  does  not  restrict  the  curves  to  be  algebraic. 
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The  points  in  these  propositions  need  not  be  distinct : 

If  a  line  has  double  intersection  with  a  conic  at  one  point,  the  two  have  no  other  '23 
point  in  common  unless  the  conic  is  degenerate  and  has  the  line  for  a  constituent; 

If  a  line  has  intersection  of  higher  order  than  the  second  with  a  conic,  the  '24 
conic  is  degenerate  and  has  the  line  for  a  constituent. 

From  3'25  it  follows  that  if  a  conic  has  a  double  point  C,  there  are  two  lines 
through  C  which  have  intersections  of  order  higher  than  two ;  hence  from  "24 

A  conic  is  degenerate  if  and  only  if  it  has  a  double  point.  '25 
Similarly 

If  a  line  has  intersection  of  higher  order  than  the  second  with  a  conicoid,  the  -26 

line  lie's  wholly  in  the  conicoid  ; 

A  conicoid  that  has  a  double  point  is  identical  with  its  tangent  cone  at  that  -27 

point. 
From  1-42, 

Any  plane  section  of  an  undegenerate  conicoid  is  a  conic,  '28 

and  therefore  from  '25  and  3'33, 

The  tangent  plane  at  any  simple  point  of  an  undegenerate  conicoid  cuts  the  '29 
surface  in  two  lines  both  of  which  pass  through  the  point  of  contact. 

'3.    Conies  are  classified  by  their  inaccessible  points.  A  ° parabola  is  a  conic        -31 
which  has  double  intersection  with  the  line  at  infinity  at  some  point.    A  conic 

that  is  not  a  parabola  has  simple  intersection  with  the  line  at  infinity  at  each 

of  two  distinct  points.    Hence  as  a  special  case  of  613*, 

An  aparabolic  conic  has  two  distinct  accessible  asymptotes,  and  these  are  not  -32 
parallel. 

Also  by  '25,  the  point  which  the  line  at  infinity  has  in  common  with  a  parabola 
is  a  simple  point  on  the  parabola  if  the  parabola  is  not  degenerate : 

An  undegenerate  parabola  has  the  line  at  infinity  for  its  only  asymptote.  .33 

A  constituent  of  a  degenerate  conic  is  a  tangent  to  the  conic  at  every  one 

of  its  own  points,  and  therefore 

If  a  conic  is  degenerate,  its  asymptotes  are  the  two  constituents  themselves.  -34 

If  the  constituents  are  accessible  and  not  parallel,  the  points  in  which  they 

cut  the  line  at  infinity  are  distinct.  If  one  of  the  constituents  is  the  line  at 

infinity  and  the  other  is  accessible,  the  conic  satisfies  the  definition  of  a 

parabola,  which  does  not  require  the  point  of  intersection  to  be  unique,  and 

it  remains  true  that  the  line  at  infinity  is  an  asymptote,  but  this  line  is  no 

*  Thus  in  complex  geometry  the  names  '  ellipse '  and  '  hyperbola'  are  misleading  and  out 
of  place.  For  a  given  conic,  the  square  of  the  eccentricity  is  a  definite  complex  number  ; 
to  say  that  this  number  is  not  equal  to  the  complex  number  1  is  intelligible,  but  to  say 
that  it  is  greater  than  1  or  that  it  is  less  than  1  is  nonsense. 



300  IDEAL  SPACE  547 

longer  the  only  asymptote,  unless  indeed  the  conic  is  merely  this  one  line 
duplicated.  If  the  constituents  are  accessible  and  parallel,  having  a  common 
.point  P  at  infinity,  the  line  at  infinity  has  double  intersection  with  the  conic 

at  P,  and  therefore  the  conic  is  a  parabola,  but  the  line  at  infinity  is  not  one 
of  the  tangents  at  P,  that  is,  is  not  an  asymptote. 

•4.  It  might  be  questioned  whether  the  definition  of  a  parabola  is  not 
undesirably  wide,  whether  in  fact  the  line  at  infinity  should  not  be  required 
to  be  a  tangent  rather  than  to  have  double  intersection.  The  answer  is  made 

most  convincingly  by  means  of  the  general  equation  of  a  conic  referred  to  a 
triangle  with  two  vertices  at  infinity.  This  equation  is 

•41  at?  +  2hfr  +  btf  +  2g%r  +  2fyr  +  cr*  =  0, 
and  the  points  at  infinity  correspond  to  the  equation 

•42  a£*  +  2A£i7  +  &i7«  =  0. 

If  this  last  equation  is  significant,  it  indicates  two  and  only  two  points  at 

infinity,  and  the  condition  for  these  points  to  coincide  is 

•43  ab  -  h?  =  0. 

If  the  coefficients  in  '42  are  all  zero,  '41  reduces  to 

•44  (2gg+2fy  +  cT)T  =  Q, 

the  equation  of  a  degenerate  conic  of  which  the  line  at  infinity  is  one  con- 

stituent, but  *43  does  remain  true.  Thus  according  to  the  definition  we  are 

using,  -43  is  the  necessary  and  sufficient  condition  for  '41  to  represent  a 
parabola. 

If  '43  is  satisfied  but  a,  h,  b  are  not  all  zero,  there  are  numbers  p,  q  such 
that  identically 

•45  af  +  2h&  +  kf  =  (p%  +  qiff, 

and  "41  represents  parallel  straight  lines  if  and  only  if  g%  +frj  is  a  multiple  of 
P%  +  yn>  that  ig>  if  and  only  if 

fp-gq  =  0, 
a  condition  which  is  equivalent  in  virtue  of  '45  to 

•46  a/2  -  2hfg  +  bg*  =  0. 

To  couple  the  positive  condition  '43  in  an  analytical  investigation  either 
with  the  negative  condition  that  a,  h,  b  are  not  all  to  vanish  or  with  the 

negative  condition  that  af2  —  2hfg  +  by*  is  not  to  vanish — a  condition  that 
introduces  the  ratio  of  /  to  g  which  is  not  otherwise  involved  in  the  discrim- 

ination— could  lead  to  nothing  but  confusion,  and  therefore  we  are  content 
with  the  definition  that  leads  to  a  simple  result: 

•47  If  the  triangle  of  reference  in  a  plane  is  equivalent  to  a  vector  frame  at- 
tached to  an  accessible  origin,  the  necessary  and  sufficient  condition  for  the  conic 

a?2  +  2h£r)  +  by*  +  2#f r  +  2frjr  +  cr2  =  0 
to  be  a  parabola  is  ab  —  h?=  0. 
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•5.  In  the  general  equation  of  a  conic,  as  given  in  '41,  there  are  six  coeffi- 
cients, and  whatever  the  values  of  these  coefficients,  unless  indeed  they  are  all 

zero,  it  is  a  conic  that  the  equation  represents.  To  multiply  the  equation 
throughout  by  a  constant  other  than  zero  does  not  affect  the  locus  represented; 

in  other  words,  the  locus  depends  on  the  Jive  independent  ratios  of  the  coeffi- 
cients, not  on  the  actual  values  of  the  coefficients  individually. 

In  general,  there  is  one  and  only  one  conic  which  contains  five  given  points  in 
a  plane. 

In  fact  the  conditions  that  five  points  P,  Q,  R,  S,  T  should  lie  on  the  conic, 

that  is,  that  the  coordinates  of  these  five  points  should  satisfy  the  equation 

•41,  are  five  equations  linear  and  homogeneous  in  the  coefficients  a,  h,  b,g,f,  c, 
and  unless  there  is  some  special  relation  between  the  five  given  points  these 
equations  determine  the  mutual  ratios  of  the  coefficients  and  therefore  give 

the  equation  of  a  unique  conic  through  the  points.  Instead  of  solving  the  five 

equations  and  making  a  substitution,  we  have  only  to  eliminate  the  six 

coefficients  between  the  general  equation  itself  and  the  five  equations  ex- 
pressing that  the  points  lie  on  the  conic  to  have  the  actual  equation  of  the 

conic  in  the  determinantal  form 

r 

=  0. 

It  is  not  necessary  for  us  to  examine  the  cases  in  which  this  equation  is 

evanescent,  or  even  to  prove  formally  that  the  equation  is  usually  significant, 

for  the  use  we  have  to  make  of  '51  is  purely  tentative.  But  we  note  that 
there  is  no  distinction  of  r61e  in  '52  between  the  coordinate  r  and  the  co- 

ordinates £  and  77;  no  distinction  has  to  be  drawn  between  accessible  and 

inaccessible  points  in  the  discussion  of  the  existence  and  uniqueness  of  a 

conic  through  five  of  them. 

•51 

•52 
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551.  ORDINARY  CIRCLES;  NUL  CIRCLES  AND  DEGENERATE  CIRCLES. 

•1.  Naturally  we  wish  the  locus  of  a  point  in  a  plane  at  a  constant  distance 
from  a  fixed  point  of  the  plane  to  have  the  name  of  circle,  at  any  rate  if  the 
fixed  point  is  accessible  and  the  distance  is  finite.  To  avoid  exceptional  cases 

it  is  necessary  in  due  course  to  allow  the  distance  to  be  infinite  or  the  fixed 

point  to  be  at  infinity,  but  the  locus  may  not  then  be  definable  by  means  of 
the  point  and  the  distance,  and  to  understand  the  extensions  to  be  made  we 
must  first  discover  properties  that  are  characteristic  of  the  locus  when  the 

•11  difficult  cases  are  expressly  excluded.  We  define  then  an  ° ordinary*  circle  as 
the  locus  of  a  point  in  a  plane  at  a  constant  finite  distance  from  a  given 

accessible  point  of  the  plane.  The  distance  is  called  a  radius  of  the  circle,  and 
the  fixed  point  a  centre;  we  must  not  prejudge  such  questions  as  whether  a 

circle  in  a  complex  plane  can  have  more  than  one  centre. 
The  ideal  vector  of  which  (r,  R)  is  an  effective  specification  is  the  vector  of 

a  step  from  Q  to  the  ordinary  circle  with  centre  Q  and  radius  q  if  and  only  if 

•12  J*=f&, 

it  being  assumed  that  r  belongs  to  the  necessary  vecplane. 
The  condition  for  (hr,  kR)  to  lead  from  Q  to  the  circle  is 

&*<&•*-£?£*&. 

Supposing  R  not  to  be  zero,  we  can  distinguish  four  possibilities.  If  neither 

c^r2  nor  q  is  zero,  the  equation  is  satisfied  by  two  distinct  values  of  h/k,  both 

finite,  one  the  negative  of  the  other.  If  <^r2  is  zero,  but  not  q,  the  equation 

requires  k  to  be  zero.  If  q  is  zero,  but  not  <^r2,  the  equation  requires  h  to  be 
zero.  If  both  q  and  c^r2  are  zero  no  condition  is  imposed  on  h  and  k.  Thus: 

*  In  one  respect  the  adjective  is.  misleading :  we  shall  find  that  in  an  isotropic  plane  it 

is  the  exception  for  a  'circle'  to  be  in  this  sense  'ordinary'.  If  we  are  to  use  '  actual'  still 
as  the  opposite  of  '  ideal,'  we  must  describe  the  circles  of  elementary  geometry  as  actual 
real  circles. 
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If  an  ordinary  circle  has  centre  Q  and  radius  different  from  zero,  an  aniso-       -13 
tropic  line  through  Q  lying  in  its  plane  cuts  the  circle  in  two  distinct  accessible 

points,  and  an  isotropic  line  through  Q  cuts  it  at  infinity  only; 

If  an  ordinary  circle  has  centre  Q  and  radius  zero,  an  anisotropic  line  through       -14 
Q  in  its  plane  cuts  it  nowhere  except  at  Q,  but  every  point  of  an  isotropic  line 
through  Q  belongs  to  the  circle. 

A  circle  is  said  to  be  degenerate  if  there  is  a  line  whose  points  all  belong  to 

the  circle,  and  '14  implies  that0  every  circle  of  radius  zero  is  degenerate.  -15 

•2.  The  last  proposition  is  evident  on  a  direct  examination  of  the  conditions 

involved.  An  ordinary  circle  of  radius  zero  is  called*  a°nul  circle.  In  real  -21 
space,  such  a  circle  consists  of  a  single  point,  its  centre,  but  in  complex  space, 

with  which  alone  we  are  now  concerned,  °the  nul  circle  with  centre  Q  is  formed  -22 
of  the  same  points  as  the  nul  lines  through  Q;  a  line  through  Q  either  coin- 

cides with  one  of  these  lines  or  cuts  it  nowhere  except  at  Q.  As  we  proved 

in  436'2,  if  the  plane  is  anisotropic  there  are  two  nul  lines  through  each  point, 
but  if  the  plane  is  isotropic  there  is  only  one.  That  a  circle  should  in  any 
circumstances  degenerate  into  a  pairf  of  lines  is  enough  to  warn  us  against 
taking  for  granted  that  all  the  properties  of  actual  real  circles  have  their 

counterparts  in  ideal  complex  space. 

•3.  In  an  isotropic  plane  it  is  not  only  nul  circles  that  are  degenerate.  We 

have  seen  in  436'5  that  in  an  isotropic  plane  the  points  whose  distances  from 
a  point  Q  in  one  aspect  of  the  plane  have  a  given  value  q  compose  a  definite 
nul  line ;  those  whose  distances  from  Q  in  the  other  aspect  have  the  value  q 
compose  another  nul  line,  distinct  from  the  first  unless  q  is  zero,  and  the  circle 
with  centre  Q  and  radius  q  is  formed  of  the  points  of  these  two  lines: 

In  an  isotropic  plane,  an  ordinary  circle  with  radius  different  from  zero  has        -31 
the  form  of  two  distinct  nul  lines. 

Whether  it  is  from  a  nul  circle  in  an  anisotropic  plane  or  from  a  circle  with 

proper  radius  in  an  isotropic  plane  that  we  regard  a  nul  circle  in  an  isotropic 

plane  as  degenerating,  we  have  to  think  of  the  line  as0 double  to  find  a  con-        -32 
ventional  interpretation  of  general  theorems  applicable  to  this  extreme  case. 

It  is  evident  that  °in  an  isotropic  plane  every  ordinary  circle  has  an  infinity        -33 
of  centres:  if  Q  is  one  centre,  every  point  on  the  nul  line  through  Q  is  a  centre 
also. 

•4.  The  most  striking  difference  descriptively  between  the  circles  of  ideal 
complex  space  and  the  circles  known  to  the  Greeks  was  discovered  by  Poncelet  J. 

*  It  will  be  proved  that  a  circle  can  not  be  of  zero  radius  with  respect  to  one  centre  and 
of  radius  different  from  zero  with  respect  to  some  other  centre. 

t  To  speak  of  the  circle  as  a  pair  of  lines  is  a  convenient  illogicality,  too  glaring  to  be 
harmful :  the  circle  is  a  class  of  points,  not  of  lines. 

J  Proprietes  Projectives  des  Figures,  p.  49,  1822. 
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Whatever  the  value  of  q,  the  fundamental  equation  12  is  satisfied  if  R  is  zero 

if  and  only  if  r  is  nul:  whatever  its  radius,  an  ordinary  circle  with  centre  Q 
contains  no  inaccessible  points  except  those  on  the  nul  lines  through  Q,  which 
we  have  already  noticed  to  belong  to  the  circle.  In  other  words 

•41  Every  ordinary  circle  contains  the  focal  points  of  its  plane,  and  no  ordinary 
circle  contains  any  points  at  infinity  except  these: 

On  account  of  their  relation  to  circles,  the  focal  points  in  a  plane  are  often 

•42        called  -the  circular  points  of  the  plane,  or  more  fully  the0  circular  points  at 
infinity  in  the  plane. 

552.  THE  PERPENDICULAR  BISECTOR  OF  A  SEGMENT;  THE  CENTRES 
AND  RADII  OF  ORDINARY  CIRCLES. 

•1.  Let  us  consider  the  locus  in  space  of  an  accessible  point  equidistant 
from  two  given  accessible  points  A.  B.  If  N  is  the  midpoint  of  AB,  the 

equation 

is  equivalent,  if  all  the  vectors  involved  are  finite,  to 

/  NA*  -  J'NB2  =  2  c?  QN.AB, 

and  therefore  to  £  QN.A  B  =  Q: 

•11  °the  step  QN  must  be  perpendicular  to  the  step  AB.  Expressed  in  this  form 
the  result  is  not  actually  false  if  A  and  B  coincide,  but  if  we  suppose  these 
points  distinct  we  can  envisage  a  definite  locus.  The  midpoint  N  is  a  definite 

point,  since  A  and  B  are  assumed  to  be  accessible,  and  if  A  and  B  are  distinct, 

the  vector  AB  belongs  to  only  one  vecline  and  '11  asserts  that  QN  belongs  to 
the  vecplane  to  which  this  vecline  is  perpendicular: 

•12  If  two  accessible  points  A,  B  are  distinct,  the  perpendicular  bisector  of  AB 
is  a  definite  plane,  and  the  accessible  points  of  this  plane  are  the  accessible 

points  equidistant  from  A  and  B. 

*2.  We  can  now  discover  the  positions  in  a  given  plane  possible  for  a  centre 
of  a  circle  through  two  distinct  accessible  points  A,  B  of  the  plane.  The  per- 

pendicular bisector  of  AB  has  certainly  one  point  in  common  with  the  given 

plane,  namely,  the  midpoint  of  AB]  it  therefore  either  coincides  with  the 

given  plane  or  cuts  the  given  plane  in  a  definite  line.  Coincidence  requires 
that  a  plane  perpendicular  to  AB  should  contain  AB,  that  is,  that  AB  should 
be  nul,  and  requires  further  that  the  plane  under  consideration  should  itself 

be  the  isotropic  plane  containing  AB. 

•21  In  general,  the  accessible  points  in  a  given  plane  equidistant  from  two  distinct 
accessible  points  A,  B  of  the  plane  are  the  accessible  points  of  a  definite  line, 
and  this  is  the  only  line  in  the  plane  to  bisect  AB  perpendicularly;  exception 

occurs  only  when  the  plane  is  isotropic  and  the  line  AB  is  nul,  in  which  case 



552  CIRCLES  IN  IDEAL  COMPLEX  SPACE  :ior, 

every  point  of  the  plane  is  equidistant  from  A  and  B  and  every  line  in  the  plane 

is  perpendicular  to  AB. 

"If  AB  is  nul  but  the  plane  is  not  isotropic,  the  peculiarity  is  that  the  per-        -22 

pendicular  bisector  coincides  with  AB.  °If  the  plane  is  isotropic  but  AB  is        -23 
not  nul,  the  perpendicular  bisector  is  the  nul  line  through  the  midpoint  of 

AB.    From  the  present  point  of  view,  the  fact  that  if  two  accessible  points  in 

an  isotropic  plane  are  on  the  same  nul  line  every  accessible  point  of  the  plane 

is  equidistant  from  them  seems  quite  natural,  and  yet  this  is  only  another  way 
of  saying  that 

In  an  isotropic  plane,  every  ordinary  circle  that  contains  a  point  P  includes       -24 
the  whole  of  the  nul  line  through  P, 

and  l'3'l  is  an  immediate  deduction  from  this. 

For  the  sake  of  reference  later,  we  must  supplement  '22;  if  A  is  an  accessible 
point  in  a  nul  line  I  and  if  Q  is  any  accessible  point  of  /,  the  circle  with  centre 
Q  which  contains  A  must  have  zero  radius,  since  the  length  of  QA  is  zero. 

Thus,  °if  A,  B  are  distinct  accessible  points  of  a  nul  line  in  an  anisotropic  -25 
plane,  every  ordinary  circle  through  A  and  B  in  that  plane  is  a  nul  circle  of 
which  the  line  AB  forms  part. 

•3.  If  two  accessible  points  A,  B  coincide,  there  is  no  sense  in  which  any 
point  can  fail  to  be  at  the  same  distances  from  A  as  from  B.  Also  there  is 

no  plane  which  can  be  regarded  as  the  perpendicular  bisector  of  the  zero  step 
AB. 

But  the  midpoint  of  the  step  is  perfectly  definite,  and  if  the  coincident 

points  are  associated  with  a  definite  line  through  them,  there  is  only  one  plane 

through  the  midpoint  perpendicular  to  this  line.  In  other  words,  °  if  it  is  -31 
ascribed  to  a  segment  rather  than  to  a  step  or  to  a  pair  of  points,  the  perpen- 

dicular bisector  does  not  evade  us  when  the  points  happen  to  coincide.  More- 
over, if  the  segment  lies  in  a  given  plane,  that  is,  if  the  axis  of  the  segment 

is  in  that  plane,  the  perpendicular  bisector  cuts  the  plane  in  a  definite  line 
unless  the  axis  is  nul  and  the  plane  isotropic,  whether  or  not  the  ends  of  the 

segment  coincide. 
Again,  although  if  A  and  B  coincide  every  point  is  equidistant  from  A  and 

B,  so  that  if  Q  is  any  accessible  point  in  a  plane  containing  A  there  is  a  circle 
with  centre  Q  which  contains  both  A  and  B,  it  is  not  true  that  if  A  and  B 

coincide  in  a  line  I  there  is  necessarily  a  circle  with  a  given  centre  Q  which 

circumscribes  the  segment  obtained  by  associating  A  and  B  with  1.  If  1  is  a 

proper  vector  in  the  vecline  of  I,  a  point  P  for  which  A  P  has  the  vector  r\  is 

on  the  circle  with  centre  Q  which  passes  through  A  if  and  only  if 
* 

-32 

that  is,  if  and  only  if  i*£ I2  +  2r=?  1.  QA  =  0;  -33 
N.  20 
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this  equation  has  one  zero  root,  because  the  circle  by  hypothesis  contains  A. 
The  second  root  satisfies  the  equation 

•34  rJl2  +  2£l.QA=0, 

which  can  be  satisfied  with  r  zero  only  if  £\.QA  is  zero,  that  is,  only  if  Q  is 
in  the  plane  through  A  perpendicular  to  1.  If  I  is  not  nul,  r  must  then  be 
zero,  and  I  cuts  the  circle  twice  at  A  but  does  not  form  part  of  the  circle.  If 
I  is  nul,  r  is  indeterminate,  and  I  is  a  constituent  of  the  circle,  but  it  is  still 

necessary  for  AQ  to  be  perpendicular  to  I. 
What  we  have  just  proved  may  be  expressed  in  the  form  that 

•35  If  a  line  I  has  double  intersection  with  a  circle  at  an  accessible  point  A  and 
Q  is  a  centre  of  the  circle,  then  Q  is  in  a  line  through  A  perpendicular  to  I. 

The  point  we  are  concerned  to  emphasise  is  that  this  result  and  '21  are  included 
in  the  single  assertion  that 

•36  The  centres  of  ordinary  circles  circumscribed  to  any  finite  segment  belong  to 
the  perpendicular  bisector  of  the  segment.  If  the  plane  of  the  circles  is  given, 
then  unless  this  plane  is  isotropic  and  the  axis  of  the  segment  is  nul,  the  centres 

are  the  accessible  points  of  a  definite  line,  which  is  the  only  line  in  the  plane 
that  bisects  the  segment  perpendicularly.  In  the  exceptional  case,  every  ordinary 
circle  through  either  end  of  the  segment  circumscribes  the  segment,  and  every 

line  that  passes  through  the  midpoint  and  lies  in  the  plane  is  a  perpendicular 

bisector  of  the  segment. 

•4.  To  find  the  points  which  a  given  line  has  in  common  with  the  ordinary 
circle  with  centre  Q  and  radius  q,  let  us  take  a  definite  point  A  of  the  line 

and  a  definite  vector  p  in  the  corresponding  vecline;  the  point  P  is  in  the 

line  if  and  only  if  the  vector  of  AP  is  a  multiple  of  p,  and  if  this  vector  is  rp, 
one  and  only  one  position  of  P  in  the  line  corresponds  to  each  value  of  r.  The 

point  P  belongs  to  the  circle  if  and  only  if 
•41 

that  is,  if  and  only  if 
•42 

and  since  this  equation  is  quadratic  in  r, 

•43  Jf  a  line  ha,s  more  than  two  points  in  common  with  an  ordinary  circle,  the 
circle  is  degenerate  and  the  line  is  a  constituent  of  it. 

A  line  which  is  a  constituent  of  a  circle  has  multiple  intersection  with  the 

circle  at  every  point.  It  follows  from  '35  that  if  I  is  such  a  line  and  Q  is  a 
centre  of  the  circle,  and  if  A,  B  are  two  points  of  I  distinct  from  each  other 
and  from  Q,  then  both  QA  and  QB  are  perpendicular  to  I.  The  lines  QA,  QB 

can  not  be  parallel  unless  they  coincide,  that  is  unless  Q  is  in  I.  For  proper 

steps  which  are  perpendicular  to  I  to  be  in  I,  the  line  I  must  be  nul;  on  the 
other  hand,  for  two  steps  coplanar  with  I  but  not  parallel  to.  each  other  both 

to  be  perpendicular  to  I,  the  plane  must  be  isotropic  and  still  I  must  be  nul. 
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If  an  ordinary  circle  is  degenerate,  its  constituents  are  nul  lines.  -44 

°In  an  isotropic  plane,  any  two  nul  lines  together  constitute  an  ordinary        45 
t-in-lt •,  and  the  circle  itself  is  not  nul  unless  the  constituents  coincide.    But  if 

the  plane  is  not  isotropic,  any  centre  Q  necessarily  belongs  to  any  constituent 
/,  and  since  I  is  nul,  zero  is  the  only  distance  between  Q  and  a  point  of  I,  and 
the  circle  is  the  nul  circle  whose  centre  is  Q: 

If  an  ordinary  circle  in  an  anisotropic  plane  is  degenerate,  the  constituents       -46 
are  nul  lines  which  are  not  parallel,  the  only  centre  is  the  point  of  intersection 

of  the  constituents,  and  zero  is  the  only  value  of  a  radius. 

It  is  sometimes  convenient  to  speak  of  two  nul  lines  in  a  given  plane  as 

"complementary  if  together  they  form  an  ordinary  circle  in  the  plane.  -47 

•5.  In  an  anisotropic  plane,  if  A,  B,  C  are  three  accessible  points  that  are 
not  collinear,  the  perpendicular  bisectors  of  AB  and  BC,  not  being  parallel, 
intersect  in  an  accessible  point  Q  which  is  the  only  point  common  to  them 

and  is  therefore  the  only  point  equidistant  from  the  three  points  A,  B,  C. 

Combining  this  result  with  -43  and  '46  we  can  assert  that 

In  an  anisotropic  plane,  no  ordinary  circle  has  more  than  one  centre,  '51 
a  proposition  of  which  1/33  shews  a  proof  to  be  by  no  means  superfluous.  If 
Q  is  the  only  centre  of  a  given  circle  and  A  is  an  accessible  point  of  the  circle, 
a  radius  of  the  circle  must  be  a  length  of  QA,  and  therefore 

In  an  anisotropic  plane,  an  ordinary  circle  that  is  not  nul  has  only  two        -52 
radii,  and  each  of  these  is  the  negative  of  the  other. 

In  the  course  of  proving  "51,  we  have  shewn  incidentally  that 

If  three  accessible  points  of  an  anisotropic  plane  are  not  collinear,  there  is       -53 
one  and  only  one  ordinary  circle  through  them. 

This  conclusion  is  supplemented  by  means  of  '43  and  '46  and  of  1'41:  °if       -54 
in  an  anisotropic  plane  three  points  are  collinear,  then  unless  the  line  in 

which  they  lie  is  nul  there  is  no  ordinary  circle  that  contains  them;  °if  three        '55 
points  in  an  anisotropic  plane  are  not  all  accessible,  there  is  an  ordinary  circle 
through  these  points  if  and  only  if  each  of  them  which  is  at  infinity  is  a  focal 

point  of  the  plane.    In  the  exceptional  cases  of  '54  and  '55,  the  circle  is  not 

unique:  °if  three  points  are  collinear  in  a  nul  line,  any  nul  circle  with  its        -56 
centre  on  this  line  includes  them  all;  °if  A  and  B  are  accessible  points  and  C       -57 
is  a  focal  point,  there  is  an  infinity  of  ordinary  circles  through  A  and  B  in 
the  plane  ABC,  and  each  of  these  circles  includes  C. 

•6.  In  an  isotropic  plane,  an  ordinary  circle  with  a  radius  different  from 
zero  consists  of  two  distinct  nul  lines;  if  then  the  nul  circle  with  centre  0  has 

also  centre  Q,  this  circle  must  be  the  nul  circle  with  centre  Q,  and  therefore  0 
and  Q  lie  in  the  same  nul  line: 

The  centres  of  a  nul  circle  in  an  isotropic  plane  are  the  points  composing  the        -61 
circle  itself,  and  zero  is  the  only  radius. 

20—2 
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From  '23  it  follows  that  if  a,  b  are  distinct  nul  lines  in  an  isotropic  plane, 
and  if  A,  B  are  points  of  a,  b,  the  circle  formed  of  the  points  of  a  and  b  can 
not  have  a  centre  that  is  not  on  the  nul  line  p  through  the  midpoint  of  AB. 
Every  point  ofp  is  however  a  centre  of  the  circle,  and  if  0,  Q  are  two  points  of  p, 
the  two  distances  of  A  from  Q  are  the  same  as  the  two  distances  of  A  from  0 : 

•62  In  an  isotropic  plane,  the  centres  of  any  ordinary  circle  are  the  accessible 
points  of  one  definite  nul  line ; 

•63  In  an  isotropic  plane,  an  ordinary  circle  that  is  not  nul  has  only  two  radii, 
and  each  of  these  is  the  negative  of  the  other;  either*  radius  may  be  used  in 
connection  with  any  of  the  centres  of  the  circle. 

From  the  degenerate  nature  of  the  circle  we  conclude  that 

•64  For  there  to  be  an  ordinary  circle  through  three  given  accessible  points  in  an 
isotropic  plane,  two  of  the  three  points  must  be  in  one  nul  line. 

If  one  of  the  points  is  at  infinity,  it  is  necessary  and  sufficient  that  this  point 
should  be  the  focal  point  of  the  plane;  if  two  of  the  points  are  at  infinity, 
no  ordinary  circle  is  possible. 

In  '64  we  have  the  first  direct  intimation  that  the  conception  of  a  circle  as 
arising  from  a  centre  and  a  radius  is  too  narrow  to  be  adapted  to  the  isotropic 
plane.  But  it  is  evident  that  any  definition  of  a  locus  in  terms  of  distances 
must  reduce  the  locus  in  an  isotropic  plane  to  a  set  of  nul  lines;  to  admit  of  a 
genuine  extension,  a  definition  must  be  either  analytical  or  descriptive. 

553.  THE  GENERAL  DEFINITION  OF  A  CIRCLE;  INFINITE  CIRCLES; 
UNDEGENERATE  PARABOLIC  CIRCLES  IN  AN  ISOTROPIC  PLANE; 

CENTRES  AND  RADII  IN  GENERAL. 

•1.  With  the  homogeneous  coordinates  of  21 '4  restricted  to  a  plane,  one  speci- 
fication of  the  ideal  vector  of  the  step  from  (£Q,  T)Q,  TQ)  to  (£,  ??,  T)  combines 

the  vector  whose  coefficients  are  TQ£  —  f  QT,  TQTJ  —  TJQT  with  the  number  TQT,  and 
this  specification  is  effective  unless  the  ideal  step  is  wholly  at  infinity.  Hence 
in  the  notation  of  425  the  equation  of  the  ordinary  circle  with  centre  Q  and 

•11        radius  ?  is  8  (JQX  -  XQ^y  =  22T02r2, 
and  since  this  is  homogeneous  and  quadratic  in  the  variable  coordinates  £,  77,  T, 

•12  An  ordinary  circle  is  a  conic. 
But  of  course  not  every  conic  is  a  circle,  and  we  have  to  find  a  condition, 
independent  of  any  particular  frame  of  reference,  by  which  to  recognise  or  to 
define  a  circle. 

It  is  47 '51  that  suggests  the  course  to  be  taken.  If  A,  B,  G  are  three  acces- 
sible points  of  an  anisotropic  plane  whose  focal  points  are  /  and  J,  in  general 

there  is  only  one  circle  through  the  three  points  A,B,C,  and  there  is  only  one 
conic  through  the  five  points  A,  B,  C,  I,  J,  and  since  the  circle  itself  is  a  conic 
containing  /  and  J,  the  circle  appears  definable  as  this  particular  conic.  Given 
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any  conic  through  /  and  J,  we  should  expect  by  taking  A,B,G  arbitrarily  upon 

it  to  be  able  as  a  rule  to  prove  that  the  conic  is  a  circle.  That  is,  we  suspect 

that  a  conic  is  usually  a  circle  if  it  contains  /  and  J,  but  since  we  have  not 

examined  the  cases  of  exception  to  47'51  we  must  make  a  direct  examination 

of  conies  through  /  and  «/.  We  observe  in  advance  that  a  conic  that  degene- 
rates into  two  lines  of  which  one  is  the  line  at  infinity  contains  the  focal 

points;  since  no  ordinary  circle  has  this  form,  we  commence  by  discussing 

conies  through  /  and  J  which  do  not  include  the  whole  of  the  line  at  infinity. 
For  the  conic 

a?  +  2hfr  +  bif  +  2g^r  +  2/^r  +  cr2  =  0 
to  contain  the  focal  points  and  no  other  points  at  infinity,  the  equation 

must  be  the  equation  satisfied  by  a  vector  if  and  only  if  the  vector  is  nul,  that 

is,  must  be  the  equation  «  2  _  Q 

and  we  may  take  a|2  +  2A^  +  brf  to  be  kSx2,  where  k  is  not  zero.   For  any 
values  of  £Q,  IJQ,  TQ, 

S  OQX  -  rXQ)2  =  TQ2%2  -  2rQrSXQX  +  ̂ XQ2, 
and  therefore  if  TQ  is  not  zero,  the  equation 

kSjf  +  2g£r  +  2/TjT  +  cr2  =  0  -13 
is  equivalent  to 

kS  (TQX  -  rXQy  +  2rQ  {(k&XQ  +  grQ)  %  +<fc#XQ  +/TQ)  *?}  r  =  (kSX<?  -  crQ2)  T\        -14 
Since  by  hypothesis  neither  k  nor  EG  —  F2  is  zero,  the  equations 

kSlX+gr  =  0,     kS*X+fr  =  0  -15 
represent  two  lines  that  are  not  parallel,  and  if  Q  is  the  point  common  to  these 

lines,  '14  is  equivalent  to 

kS  CTQX  -  rXQy  =  (kSX(f  -  CTQ2)  r2 
and  represents  the  ordinary  circle  with  Q  for  centre  and  (kSXq2  —  CTQ2)/&TQ2 
for  the  square  of  its  radii.    Hence 

In  an  anisotropic  plane,  every  conic  whose  only  points  at  infinity  are  the  focal        -16 
points  is  an  ordinary  circle. 

This  proposition  combines  with  '12  and  1*41  to  give  an  assertion  of 
equivalence  from  which  explicit  reference  to  distance  has  disappeared  : 

In  an  anisotropic  plane,  ordinary  circles  are  conies  which  contain  the  two        -17 
focal  points  and  no  other  points  at  infinity. 

We  note  in  passing  that  '12  converts  2'43  into  a  case  of  47'21. 

•2.  The  transformation  of  '13  depends  only  on  the  existence  of  a  solution  of 
•15  for  which  TQ  is  not  zero,  not  on  the  uniqueness  of  this  solution.  If  the 
plane  is  isotropic,  the  lines  given  by  '15  must  be  parallel,  but  they  may  co- 

incide ;  since  the  equations  are  equivalent,  if  the  plane  is  isotropic,  to 
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the  condition  for  coincidence  is 

•22  Uf-Vg  =  0, 

that  is,  is  the  existence  of  a  number  j  such  that 

•23  g=Uj,    f=Vj, 
and  if  this  condition  is  satisfied,  and  Q  is  any  point  of  the  nul  line 

•24   ̂   k(U£+  Vrl)+jr  =  0, 
the  reduction  of  '13  can  be  made  as  in  the  previous  case.   In  this  special  case, 

since  8%*  is  (U%  +  F??)2,  '13  is  equivalent  to 

k(U%  +  W+  2j(Z7f  +  Vr,)r  +  cr2  =  0, 

•25        that  is,  to  {k(U!-  +  Vvf)  +  jr}2  =  (  j2  -  kc)  r2, 
and  represents  a  pair  of  nul  lines  :  the  peculiar  character  of  an  ordinary  circle 

in  an  isotropic  plane  is  disclosed  analytically. 

•3.   The  expression  for  the  square  of  the  radius  of  the  circle  represented  by 

•13  can  undergo  a  useful  modification,  for  since  S^z  is  identically  equal  to 
>  substitution  from  '15  gives 

•31  If  Q  is  a  centre  of  the  ordinary  circle  represented  by  the  equation 

k  (E?  +  2Ffr  +  Grf)  +  2g%r  +  Zfyr  +  cr2  =  0, 
the  square  of  the  radii  of  this  circle  is 

Eliminating  £Q,  77  Q,  TQ  from  the  three  equations 

we  find  that 

•32  In  an  anisotropic  plane,  the  square  of  the  radii  of  the  circle 

k  (E?  +  2F&  +  Grf)  +  2g£r  +  Zfyr  +  cr2  =  0 
is  -\EFg 

F    G     f 

9     f    k<> Replacing  g^Q+fyq  by  j(U%q  +  Vyy)  from  '23  and  this  last  expression  by 
—j2TQ/k  from  '24,  we  infer  also  that 

•33  In  an  isotropic  plane,  the  square  of  the  radii  of  the  circle 

•  k(U%+  Vv?+  2j(U£+  VV)T  +  CT2=  0 
is  (f  -  kc)/k2; 

this  result  of  course  follows  directly  from  the  form  '25  of  the  equation. 

•4.   In  favour  of  extending*  the  word  circle  to  cover  every  conic  in  an  aniso- 
tropic plane  that  passes  through  the  focal  points  of  the  plane  there  are  many 

*  The  extension  was  made  by  Poncelet,  loc.  tit.  p.  303  above. 
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arguments,  cumulatively  adequate,  of  which  two  can  be  advanced  now.  It 

is  a  general  principle*  that  definitions  should  use  positive  properties,  not 
negative:  with  all  their  peculiarities,  isotropic  planes  are  not  refused  the  title 
of  plane,  nor  do  we  deny  that  the  zero  vector  is  a  nul  vector.  And  by  means 

of  the  degenerate  conic  formed  of  two  lines  of  which  one  is  the  line  at  infinity 

we  can  remove  the  restrictions  from  2'53:  if  three  accessible  points  are  col- 
linear,  the  line  containing  them  and  the  line  at  infinity  together  form  a  de- 

generate conic  of  this  kind  ;  and  given  two  accessible  points  and  one  point  at 
infinity,  the  line  through  the  accessible  points  and  the  line  at  infinity  again 

compose  a  degenerate  conic  containing  the  three  points  and  the  focal  points. 
Consistent  with  the  definition  of  a  circle  in  an  anisotropic  plane  as  a  conic 

through  the  two  focal  points,  two  definitions  that  are  not  equivalent  suggest 

themselves  for  a  circle  in  an  isotropic  plane  :  a  circle  must  pass  through  the 

focal  point  K,  and  if  it  does  not  include  the  line  at  infinity  must  be  charac- 
terised either  by  having  the  line  at  infinity  for  a  tangent  at  K  or  by  having 

intersection  of  the  second  order  with  this  line  there.  The  question  is  similar 

to  the  question  whether  the  name  of  parabola  is  to  cover  a  pair  of  parallel 

lines,  and  the  arguments  valid  in  the  discussion  of  this  other  matter  are 

reinforced  by  the  observation  that  the  Euclidean  definition  of  a  circle  has 

already  led  us  to  regard  pairs  of  nul  lines  in  an  isotropic  plane  as  circles. 
Hence  a  circle  in  an  isotropic  plane  is  to  be  defined  as  a  conic  which  has  the 

focal  point  as  a  multiple  point  of  intersection  with  the  line  at  infinity.  As  in 

an  anisotropic  plane,  the  line  at  infinity  combines  with  any  line  to  form  a 
circle  of  a  special  kind.  But  a  circle  which  does  not  include  the  line  at  infinity 

is  not  usually,  in  an  isotropic  plane,  an  ordinary  circle  in  the  sense  of  I'll,  for 
it  is  not  as  a  rule  degenerate. 

To  resume  formally,  we  define  a  °  circle  in  an  anisotropic  plane  as  a  conic        -41 

containing  the  two  focal  points,  a  °  circle  in  an  isotropic  plane  as  a  parabola        -42 
containing  the  focal  point.    By  47'21  and  47'23,  °a  circle  either  includes  the        -43 
whole  of  the  line  at  infinity  or  contains  no  points  of  this  line  that  are  not 

focal  ;  it  is  convenient  to  call  a  circle  of  which  the  line  at  infinity  forms  part 

BH9  infinite  circle.  -44 
We  have  seen  in  *1  that  in  an  anisotropic  plane,  for  values  of  k  other  than 

zero,  the  equation 

kStf  +  2#fr  +  2/7/r  +  cr2  =  0  -45 

represents  an  ordinary  circle.  In  an  isotropic  plane,  the  nul  vectors  are  those 
for  which  U%  +  Vij  is  zero,  and  the  general  equation 

a?  +  Zhfr  +  br)2+  2#fr  +  2fyr  +  cr2  =  0 

*  There  is  no  opposition  to  this  principle  in  our  neglect  of  isotropic  space  :  we  do  not 
deny  the  name  of  vecspace  to  a  class  of  vectors  constructed  with  the  condition  .7=0  instead 
of  the  condition  J^O,  but  the  subject  of  our  work  is  anisotropic  Euclidean  space,  not  space 
of  three  dimensions  in  general.  The  study  of  complex  anisotropic  space  of  n  dimensions 
always  involves  that  of  isotropic  space  of  n  -  1  dimensions. 
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represents  a  circle  that  does  not  include  the  line  at  infinity  only  if 

af3  +  2A£»j  +  677" 

is  a  multiple  of  (  C7£  +  FT;)",  that  is,  of  8%*.   Thus  whether  the  plane  is  or  is 

not  isotropic,  *45  for  values  of  k  other  than  zero  is  the  general  equation  of  a 
circle  that  does  not  include  the  line  at  infinity.    But  when  k  is  zero,  '45 
reduces  to 

•46  (2#£  +  2/77  +  CT)  T  =  0, 
and  represents  a  combination  of  two  lines  of  which  one  is  the  line  at  infinity 

•47        and  the  other,  which  will  be  called  the0 distinctive  constituent  of  the  circle,  is 
subject  to  no  restriction  whatever.    That  is  to  say, 

•48  The  general  equation  of  a  circle  in  any  accessible  plane,  isotropic  or  an- 
isotropic,  is 

k  (E?  +  2Ffr  +  <V)  +  2g%r  +  2fr,r  +  cr2  =  0, 
and  in  this  theorem  we  have  the  most  straightforward  reason  for  extending 

•49  the  name  of  circle  precisely  as  we  do.  °The  circle  represented  by  the  equation 
in  '48  is  or  is  not  infinite  according  as  k  is  or  is  not  zero.  The  distinctive 
constituent  of  an  infinite  circle  may  itself  be  the  line  at  infinity ;  the  circle 
is  then  this  line  duplicated. 

*5.   The  theorem  '16  can  be  expressed  in  the  form  that 

•51  In  an  amsotropic  plane,  a  circle  that  is  not  infinite  is  an  ordinary  circle, 

and  we  may  appeal  to  2*46  in  order  to  add  that 

•52  In  an  anisotropic  plane,  a  circle  is  degenerate  if  it  is  infinite  or  nul,  but  not 
otherwise, 

but  it  is  better  to  deduce  '52  from  the  relation  of  a  circle  to  the  focal  points: 
if  a  conic  consisting  of  two  lines  contains  the  two  points  /,  J,  either  one  of  the 

lines  is  the  line  IJ,  the  line  at  infinity,  or  one  of  the  lines  contains  /  and  not 
J,  the  other  J  and  not  /;  in  the  former  case  the  circle  is  infinite,  in  the  latter 

it  is  formed  of  two  nul  lines  that  are  not  parallel  and  is  therefore  the  nul  circle 
whose  centre  is  the  point  of  intersection  of  these  lines. 

In  an  isotropic  plane  '51  has  no  counterpart.  But  if  a  conic  consisting  of 
two  accessible  lines  has  double  intersection  with  the  line  at  infinity  at  K,  each 

of  the  constituent  lines  passes  through  K,  and  is  therefore  nul : 

•53  In  an  isotropic  plane,  a  circle  is  degenerate  if  it  is  infinite  or  ordinary,  but 
not  otherwise. 

We  can  combine  '52  and  '53  in  a  single  enunciation  which  indicates  the 
common  basis  of  the  theorems : 

•54  //  a  circle  is  degenerate,  either  its  constituent  lines  are  both  nul  or  one  of  them 
is  the  line  at  infinity. 

Since  a  circle  is  a  conic,  a  line  in  the  plane  of  a  circle  either  cuts  the  circle 
in  two  distinct  points,  or  has  double  intersection  with  the  circle  at  one  point, 
or  is  a  constituent  of  the  circle.  If  the  line  is  accessible  and  is  not  a 
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constituent  of  the  circle,  there  are  four  cases  to  distinguish,  for  there  may  be 

intersection  in  two  distinct  accessible  points,  simple  intersection  at  infinity 

accompanied  by  simple  intersection  at  one  accessible  point,  double  inter- 
section at  an  accessible  point,  or  double  intersection  at  infinity. 

If  a  line  m  that  is  not  nul  cuts  a  circle  at  an  inaccessible  point  M,  the  line 

at  infinity  cuts  the  circle  at  M  and  therefore  is  a  constituent  of  the  circle:  the 
circle  is  infinite,  and  the  intersection  with  m  is  simple  unless  the  distinctive 

constituent  also  contains  M ;  the  intersection  is  double  if  the  distinctive  con- 
stituent is  the  line  at  infinity  or  is  a  line  parallel  to  m,  and  any  order  whatever 

may  be  ascribed  to  the  intersection  if  m  is  itself  the  distinctive  constituent. 

We  have  just  seen  that 

//'  a  circle  is  finite  and  a  line  in  its  plane  is  not  nul,  the  two  must  have  simple        "55 
intersection  at  each  of  two  accessible  points  or  double  intersection  at  a  single 
accessible  point. 

This  conclusion  does  not  depend  on  the  nature  of  the  plane,  but  iu  discussing 
the  intersections  of  a  nul  line  with  a  circle  the  nature  of  the  plane  has  to  be 
taken  into  account. 

In  any  plane,  a  nul  line  cuts  any  circle  at  infinity.  If  the  plane  is  isotropic, 
the  focal  point  is  a  double  intersection  of  the  line  at  infinity  with  any  circle; 

if  this  same  point  is  a  double  intersection  of  any  other  line  with  the  circle,  it 
is  a  double  point  on  the  circle  and  the  circle  is  degenerate: 

In  an  isotropic  plane,  any  undegenerate  circle  cuts  any  nul  line  in  one  and       '56 
only  one  accessible  point,  and  the  intersection  is  simple. 

If  the  circle  is  infinite,  the  intersection  at  infinity  is  simple  unless  the  dis- 
tinctive constituent  is  nul.  If  the  circle  is  ordinary,  the  intersection  at  infinity 

is  exactly  double  unless  the  circle  includes  the  line. 

In  an  anisotropic  plane,  the  nul  line  joining  the  centre  of  a  finite  circle  that 
is  not  nul  to  a  focal  point  has  no  accessible  points  in  common  with  the  circle, 
and  therefore  has  double  intersection  with  the  circle  at  the  focal  point ;  if  any 

other  line  had  double  intersection  there,  the  point  would  be  a  double  point  of 

the  circle  and  the  circle  would  be  degenerate.  Hence 

In  an  anisotropic  plane,  a  nul  line  through  the  centre  of  an  ordinary  circle        -57 
has  double  intersection  with  the  circle  at  infinity  and  has  no  accessible  points  of 
intersection  unless  the  circle  is  nul;  a  nul  line  that  does  not  contain  the  centre 

has  simple  intersection  at  infinity  and  simple  intersection  at  one  accessible  point. 

Combined  with  T41,  '57  implies  that 
The  asymptotes  of  an  ordinary  circle  in  an  anisotropic  plane  are  the  nul  lines        -58 

through  the  centre  of  the  circle, 

and  '56  implies  that 

The  only  asymptote  of  an  undegenerate  circle  in  an  isotropic  plane  is  the  line        -59 
at  infinity  itself. 

If  a  circle  is  degenerate,  the  constituents  are  themselves  the  asymptotes. 
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*6.   If  A  ,  B,  C  are  three  given  points,  distinct  from  each  other  and  from  the 
focal  point  or  points,  the  equation 

r2 

=0 

if  it  is  not  an  identity  represents  a  circle  through  A,  B,  C.  In  this  equation, 

the  coefficient  of  /S^2  is  the  product  of  TATSTC  by  a  determinant  that  is  zero 
if  and  only  if  the  points  are  collinear.  Hence  whether  a  plane  is  isotropic  or 
not,  three  accessible  points  that  are  not  collinear  determine  one  and  only  one 
circle,  and  this  is  not  an  infinite  circle;  for  an  anisotropic  plane,  we  have  here 

a  verification  of  2'53.  If  the  three  points  are  collinear,  any  conic  to  which  they 
belong,  and  in  particular  any  circle,  must  include  the  whole  of  the  line  con- 

taining them.  Hence  from  47'21  and  '54,  if  the  points  are  collinear  in  an 
accessible  line  that  is  not  nul,  the  circle  formed  of  this  line  and  the  line  at 

infinity  is  the  only  circle  through  them.  If  one  of  the  points  is  at  infinity, 

then  by  '43  the  circle  includes  the  line  at  infinity,  and  therefore  if  one  of  the 
points  is  at  infinity  and  two  are  accessible,  the  circle  consists  of  the  line  at 
infinity  and  the  line  through  the  accessible  points;  in  this  case  also  the  circle 
is  unique.  But  if  the  three  points  are  collinear  in  a  nul  line,  this  line  may  be 
combined  with  any  complementary  nul  line  or  with  the  line  at  infinity,  if  two 
of  the  points  are  at  infinity  and  one  is  accessible,  the  line  at  infinity  may  be 
combined  with  any  line  through  the  accessible  point,  and  if  the  three  points 
are  at  infinity,  they  are  on  every  infinite  circle. 

The  results  for  an  anisotropic  plane  can  be  summarised  as  follows: 

•62  If  J,  J  are  the  focal  points  of  an  anisotropic  plane  and  A,  B,C  are  any  three 
points  of  the  plane  distinct  from  the  focal  points  and  from  each  other,  then  there 
is  one  and  only  one  circle  through  A,  B,  C  unless  four  of  the  Jive  points  A,  B, 
C,  I,  J  are  collinear;  if  four  of  these  points  are  collinear,  but  not  all  Jive  of 
them,  the  line  which  contains  the  four  combines  with  any  line  through  the  fifth 

point  to  give  a  circle  through  A,  B,C,  and  if  the  Jive  points  are  collinear,  the  line 
through  them,  which  is  the  line  at  infinity,  may  be  associated  with  any  line  in  the 
plane  to  give  a  circle  with  the  required  property. 

If  three  of  the  points,  but  not  four,  are  collinear,  the  circle  is  formed  of  the 

line  through  these  three  and  the  line  through  the  other  two,  and  is  nul  or  in- 
finite according  as  one  of  the  points  /,  J  is  on  each  line  or  both  of  these  points 

•64       are  on  one  line;  that  is,  ° the  circle  is  nul  if  and  only  if  two  of  the  points 
A,  B,  C  are  collinear  with  one  of  the  points  I,  J. 

For  an  isotropic  plane  the  summary  is  less  concise: 

•66  IfKis  the  focal  point  of  an  isotropic  plane  and  A,B,C  are  any  three  points 
of  the  plane  distinct  from  K  and  from  each  other,  then  there  is  one  and  only 
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one  circle  through  A,  B,  C  unless  either  the  four  points  A,  B,  C,  K  are  collinear 

or  two  of  the  points  A,  B,  C  are  at  infinity;  in  the  first  case,  any  circle  formed 
of  the  line  through  the  points  combined  with  a  line  through  K,  that  is,  with  the 

line  at  infinity  or  with  a  mil  line,  is  a  circle  through  A,  B,  C;  in  the  second  case, 

if  one  of  the  points  A,  B,  C  is  accessible,  a  circle  through  the  three  points  is 
formed  by  the  line  at  infinity  and  any  line  through  the  accessible  point,  while  if 
itie  three  points  are  all  at  infinity,  the  line  at  infinity  can  be  associated  with  any 
line  whatever  in  the  plane. 

This  is  precisely  the  form  taken  by  "62  if  /  and  J  are  both  replaced  by  K 
and  the  line  //  remains  definitely  the  line  at  infinity. 

•7.  To  disc-over  whether  centres  can  be  ascribed  to  circles  that  are  not 
ordinary,  we  appeal  to  equations  satisfied  by  the  coordinates  of  a  centre  of  an 

ordinary  circle;  a  pair  of  such  equations  we  have  seen  in  '1  and  '2  to  be 

kS1x+gr  =  0,    kS2x+fr  =  0,  -71 
and  we  define  a  centre  of  the  circle 

kStf  +  2g%r  +  2/V  +  cr2  =  0,  -72 
whatever  the  plane  and  whatever  the  nature  of  the  circle,  as  a  point  that 

satisfies  this  pair  of  equations;  it  appears  on  investigation  that  whether  a  given 

point  is  or  is  not  a  centre  of  a  given  circle  does  not  depend  on  the  frame  of 
reference  used. 

The  case  of  an  ordinary  circle  in  a  plane  that  is  not  isotropic  needs  no 

further  examination;  there  is  one  centre,  and  that  is  the  centre  in  the  elemen- 

tary sense.  For  an  ordinary  circle  in  an  isotropic  plane  the  centres  are  the 
points  of  a  certain  nul  line;  the  accessible  points  of  this  line  are  the  centres 

in  the  elementary  sense,  but  we  have  to  add  to  them  the  point  at  infinity  on 
the  line,  that  is,  the  focal  point  of  the  plane. 

If  the  plane  is  isotropic  but  the  circle  is  not  degenerate,  neither  k  nor 

Uf—  Vg  is  zero,  and  the  equations  '71,  taking  the  form 

kU(U^+Vr))+gr  =  Q,    kV(U%+Vy)+fT  =  0,  -73 

represent  distinct  parallel  lines,  and  °these  lines  have  no  common  point  except        -74 
the  focal  point  of  the  plane,  which  is  therefore  the  only  centre. 

There  remain  for  consideration  the  infinite  circles  in  planes  of  both  kinds, 

and  it  is  in  discussing  them  that  we  find  algebraic  support  most  useful.  If  a 

conic  degenerates  into  two  distinct  lines  whose  common  point  is  accessible, 
this  common  point  is  alone  the  centre  of  the  conic,  but  to  insist  that  the 

common  point  is  to  be  the  only  centre  whenever  the  conic  is  degenerate 
would  contradict  T33.  Moreover,  in  relation  to  the  circle  formed  of  the  line 

at  infinity  and  a  given  accessible  line  in  an  anisotropic  plane,  some  of  the 

properties  associated  with  the  centre  of  a  circle  in  elementary  geometry 
attach  themselves  to  the  point  at  infinity  whose  vecline  is  perpendicular  to 

the  vecline  of  the  accessible  part  of  the  circle,  for  the  perpendicular  bisectors 
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of  all  accessible  chords  of  the  circle  are  concurrent  in  this  point.  Let  us  refer 

to  *7l;  k  being  zero,  the  circle  is  formed  of  the  line  at  infinity  and  the 
distinctive  constituent 

which  is  accessible  unless  both  g  and  /  are  zero,  and  the  equations  to  be 
satisfied  by  the  centre  are 

•76  #T  =  0,  /r  =  0, 

which  require  r  to  be  zero  except  in  the  same  special  case,  when  the  centre  is 
subject  to  no  conditions  whatever: 

•77  In  any  plane,  the  circle  formed  of  the  line  at  infinity  taken  twice  has  every 
point  of  the  plane  for  a  centre,  and  every  other  infinite  circle  has  for  its  centres 
the  points  at  infinity  and  those  only. 

•78  °  If  A  is  an  accessible  point  and  B  is  a  point  at  infinity  that  is  not  a  focal 
point,  no  ordinary  circle  contains  B,  and  therefore  the  circles  through  A  and 
B  are  the  infinite  circles  whose,  distinctive  constituents  contain  A.  This  re- 

sult may  be  absorbed  into  2'36.  For  since  B  is  itself  the  midpoint  of  AB,  and 
since  the  accessible  lines  through  B  are  parallel  to  AB  and  therefore  are  not 

perpendicular  to  AB,  the  segment  AB  has  the  plane  at  infinity  definitely  for 

its  perpendicular  bisector. 

•79  If  one  end  of  a  segment  in  a  given  plane  is  accessible  and  the  other  end  is  not 
a  focal  point,  then  unless  the  plane  is  isotropic  and  the  axis  of  the  segment  is 

nul,  the  segment  has  a  definite  perpendicular  bisector  in  the  plane.  Every  point 
of  this  bisector  is  a  centre  of  a  circle  through  the  segment,  and  no  accessible 

point  of  the  plane  is  a  centre  of  any  such  circle  unless  it  does  belong  to  the 
bisector. 

It  is  to  be  noticed  that  to  include  *78  in  '79,  it  is  necessary  to  recognise  the 
point  at  infinity  on  the  perpendicular  bisector  of  a  finite  segment  as  a  centre 
of  the  infinite  circle  in  which  the  axis  of  the  segment  is  combined  with  the 

line  at  infinity.  Since  every  point  at  infinity  is  a  centre  of  this  circle,  we  can 

not  rest  satisfied  with  '79,  and  the  question  of  the  centres  of  circles  circum- 
scribing a  given  segment  is  one  to  which  we  shall  return. 

•8.  A  radius  of  a  circle  should  satisfy  two  conditions:  it  should  be  one 
distance  from  a  centre  to  any  point  of  the  circle,  and  its  square  should  be  not 

inconsistent  with  the  formulae  of  '3;  we  have  to  see  whether  these  conditions 
can  be  fulfilled. 

The  case  of  an  ordinary  circle  presents  no  difficulties.  If  the  plane  is 

anisotropic,  the  centre  and  the  squared  radius  are  those  from  which  the  circle 
was  first  defined.  If  the  plane  is  isotropic,  the  additional  centre  is  the  focal 

point  and  any  value  may  be  assigned  to  the  distance  between  this  point  and 

points  of  the  circle. 
If  the  plane  is  isotropic  and  the  circle  undegenerate,  #£  +fr)  is  not  a  multiple 
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of  £/£  +  FT;,  and  therefore  g%Q  +fyq  +  CTQ  is  not  zero  if  Q  is  the  focal  point. 

Since  in  t  liis  case  Tg  is  zero,  the  formula  of  '31  requires  the  radius  to  be  infinite: 

An  undegenerate  circle  in  an  isotropic  plane  has  the  focal  point  for  its  only        -83 
centre  and  its  radius  is  infinite. 

For  an  infinite  circle,  whether  the  plane  is  anisotropic  or  not,  krQ  is  zero 

and  the  radius  as  given  by  '31  is  indeterminate  or  infinite  according  as 
9%Q  +/7?Q  +  CT0  is  or  is  no*  zero  at  the  centre  Q.  If  the  distinctive  constituent 
is  accessible,  the  centres  are  all  at  infinity,  and  the  only  one  of  them  for  which 

9%  +  fa  +  CT  is  zero  is  tne  point  at  infinity  on  the  accessible  constituent  itself; 

denote  this  point  by  M.  For  any  centre  except  M,  the  formula  prohibits  a 
finite  radius;  for  any  centre  that  is  not  a  focal  point,  the  distance  from  an 
accessible  point  can  not  be  finite;  an  infinite  value  of  the  radius  satisfies  both 

the  prescribed  conditions,  but  no  finite  value  does  so  unless  M  is  a  focal  point: 

An  infinite  circle  with  an  accessible  constituent  p  has  an  infinite  radius  at        -84 
every  centre;  if  p  is  not  nul,  the  circle  has  no  finite  radii,  but  if  p  is  nul,  the 
radius  at  the  focal  point  on  p  is  arbitrary  while  the  radius  at  every  other  centre 
is  infinite, 

There  remains  the  case  of  the  circle  formed  of  the  duplicated  line  at  infinity. 

The  formula  for  the  square  of  the  radius  reduces  to  -  CTQ/&TQ  with  k  zero  and 
c  different  from  zero,  and  the  result  must  be  reckoned  as  indeterminate  for 

centres  at  infinity,  but  infinite  at  accessible  centres;  this  is  in  agreement 
with  3415  and  3416. 

We  can  speak  of  the  circle  with  centre  Q  and  radius  q  unless  q  is  finite  and 

Q  is  a  focal  point  or  q  is  infinite  and  Q  inaccessible;  if  Q  is  accessible  and  q 

finite,  the  circle  is  the  ordinary  circle  described  in  this  way;  if  Q  is  at  infinity 

and  not  focal  and  q  is  finite,  or  if  Q  is  accessible  and  q  infinite,  the  phrase 
denotes  the  duplicated  line  at  infinity. 

•9.  In  an  isotropic  plane  all  undegenerate  circles  have  an  infinite  radius. 
But  just  as  it  is  possible  to  make  metrical  comparison  of  two  nul  steps  pro- 

vided that  they  are  in  parallel  lines,  so  it  is  possible  to  make  metrical  com- 

parison of  two  undegenerate  circles  in  isotropic  planes  if  only  the  planes  are 

parallel. 
Suppose  that  a  reference  frame  for  a  given  isotropic  plane  is  constructed 

from  a  vector  frame  in  which  the  first  vector  is  a  nul  vector  x  and  the  second 

is  a  unit  vector  y,  and  that  homogeneous  coordinates  are  introduced  by  means 
of  the  constant  unity.  Then  since  every  nul  vector  in  the  plane  is  a  multiple  of 
z  and  every  unit  vector  differs  either  from  y  or  from  the  reverse  of  y  by  a 
multiple  of  x,  the  most  general  substitution  which  preserves  the  features  of 
the  frame  leaves  T  unchanged  and  replaces  £,  77  by  p%  +  qrj  +  rr,  ±rj  +  ST,  where 
p,  q,  r,  s  are  arbitrary  constants.  The  general  equation  of  a  finite  circle  with 
these  coordinates  is 

CT2  =  0,  -91 
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and  the  substitution  just  indicated  replaces  g  by  pg  and  therefore  is  without 
effect  on  g  provided  that  p  is  unity,  that  is,  provided  that  the  scale  on  which 
the  nul  vectors  are  measured  is  unaltered.  If  gl  and  <jr2  are  the  coefficients  for 
two  different  circles,  the  ratio  of  gl  to  g3  depends  only  on  the  circles,  not  on 
the  frame  of  reference.  The  value  of  g  measures  the  circle  with  reference  to 
a  particular  scale  of  nul  vectors.  Two  undegenerate  circles  which  have  the 
same  size  with  reference  to  one  scale  have  the  same  size  with  reference  to  any 

•92  other  scale  and  are  said  to  be  °  equal. 
If  g  is  zero,  '91  represents  a  pair  of  accessible  nul  lines,  that  is,  an  ordinary 

circle.  If  g  is  not  zero,  the  equation  can  be  put  into  the  form 

fo  +/V)2  +  2g  [f  +  {(c  -/>)/2<7}  r]  r  =  0 

•93        and  reduced  to  if  +  2<jf  T  =  0 

by  a  change  of  origin  alone.  The  line  £  =  0  has  double  intersection  with  '93 
at  the  origin,  but  no  accessible  line  parallel  to  this  has  double  intersection 

•94  with  the  circle.  Hence  "given  any  line  I  in  the  plane,  there  is  one  and  only 
one  accessible  point  of  the  circle  at  which  the  tangent  is  parallel  to  I,  provided 
only  that  I  is  not  nul. 

A  nul  line  cuts  an  undegenerate  circle  in  one  and  only  one  accessible  point; 

the  equation  of  the  circle  takes  the  form  '93  if  the  axes  of  reference  are  any 
nul  line  and  the  tangent  at  its  accessible  point  of  intersection  with  the  circle, 
and  takes  the  form 

rf  +  2g%r  +  cr2  =  0 
if  the  first  axis  is  nul  and  the  second  is  parallel  to  the  tangent  at  the  point 
where  the  first  axis  cuts  the  curve. 

In  elementary  algebraic  geometry,  we  reduce  the  equation  of  a  parabola  to  the  form 

by  taking  a  diameter  and  a  tangent  for  axes  of  reference,  and  the  value  of  I  depends  on  the 
point  of  contact  of  the  tangent,  I  being  the  semilatusrectum  only  if  this  point  is  the  vertex. 

If  the  equation  '91  is  reduced  by  change  of  axes  to  the  form 

the  value  of  g  depends  on  the  nul  scale  adopted  and  on  the  circle,  but  not  on  the  point 

chosen  for  origin.  But  we  must  remember  that  at  every  point  of  -91  the  tangent  is  perpen- 
dicular to  the  £-axis. 

In  an  isotropic  plane  as  in  an  anisotropic  plane,  if  a  parabola  that  is  not  circular  is 
referred  to  the  diameter  and  the  tangent  through  one  of  its  points,  the  coefficient  that 
occurs  in  the  equation  varies  with  the  position  of  the  origin  if  the  scales  of  measurement 
are  not  altered. 

Taking  an  arbitrary  value  of  q,  we  can  replace  '91  by 

and  therefore  by 

fo  +  (f-99)  T}*  +  2<7  (f  +  qr,)  r+{c-  (/-  gqfl  T*  =  0. 
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We  can  therefore  reduce  the  equations  of  two  finite  circles  in  an  isotropic 

piano  simultaneously  to  the  forms 

7?2  +  2g, £T  4  c, ra  =  0,     if  +  2#af T  +  c^  =  0  w> 

if  and  only  if  there  is  a  value  of  q  that  satisfies  the  condition 

/i-#i9=/2-<M- 

The  circles  whose  equations  are  given  in  '95  are  parallel,  that  is,  have  parallel 
tangents,  where  they  cut  the  nul  line  vj  =  0,  and  conversely  if  two  circles  are 
parallel  where  they  cut  a  given  nul  line  the  choice  of  this  line  for  an  axis 

reduces  their  equations  simultaneously  to  the  forms  in  '95.  Hence 

If  two  undegenerate  circles  in  an  isotropic  plane  are  unequal,  there  is  one        '96 
and  only  one  nul  line  that  cuts  them  in  points  at  which  they  are  parallel. 

But  if  gl  and  g*  are  equal,  the  condition  imposes  itself  on /j  and  /2: 

In  general  there  is  no  nul  line  that  cuts  two  given  equal  circles  in  an  isotropic        -97 
plane  in  points  where  the  circles  are  parallel,  but  if  two  such  circles  are  parallel 
where  they  are  cut  by  one  nul  line  they  are  parallel  where  they  are  cut  by  any 
nul  line. 

Two  undegenerate  circles  in  an  isotropic  plane  which  are  equal  and  are  parallel 

where  they  are  cut  by  a  nul  line  are  said  to  be  ° parallel.   The  equations  of       '98 
parallel  undegenerate  circles  can  be  reduced  simultaneously  to  the  forms 

T;2  +  2g£r  +  c^2  =  0,     if  +  2$f  T  +  c2r2  =  0, 
and  it  is  evident  therefore  that 

Distinct  parallel  undegenerate  circles  in  an  isotropic  plane  have  no  accessible        -99 
points  in  common. 

554.  THE  PROPERTIES  OF  THE  CONSTANT  RECTANGLE  AND 
THE  CONSTANT  ANGLE. 

•1.  There  is  no  need  for  us  to  prove  that  in  general  if  a  line  through  a 
point  0  cuts  a  circle  in  R  and  S,  the  product  of  the  lengths  OR,  OS  measured 
in  a  common  direction  depends  only  on  the  position  of  0  in  relation  to  the 
circle,  not  on  the  line  to  which  R  and  8  belong ;  the  classical  proofs  of  this 
theorem,  as  of  any  other,  fail  if  at  all  only  in  particular  cases.  But  it  is  worth 
while  to  see  in  an  actual  proof  which  cases  have  to  be  set  aside  for  special 
examination,  for  these  cases  are  fewer  than  we  might  expect. 

If  P  is  a  point  of  the  ordinary  circle  with  centre  Q  and  radius  q  and  if  0  is 
any  accessible  point  of  the  plane,  the  condition  that  P  belongs  to  the  circle 
can  be  written  in  the  form 

J  (QO  +  OP)2  =  q\ 

that  is,  /OP2  +  2  fQO.OP  +  (/QO2  -  ?2)  =  0. 
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If  p  is  a  given  proper  vector  in  the  line  OP  and  the  vector  of  OP  is  rp,  the 
factor  r  satisfies  the  equation 

•11  r2e?p2 

If  the  line  OP  is  not  mil,  we  may  take  a  unit  vector  in  this  line  for  p,  and  r 

is  then  the  length  of  OP  in  the  direction  of  this  unit  vector;  '11  determines 

two  values  of  r,  finite  but  not  necessarily  different,  and  since  ̂ p2  is  unity,  the 
product  of  the  two  values  is  Q02  —  q2.  From  its  relation  to  the  line  OP;  the 

number  QO2  —  q2  is  not  affected  by  any  freedom  possible  in  the  choice  of  Q 
or  q,  while  from  its  relation  to  Q  and  q  the  number  is  equally  independent  of 

the  direction  of  OP.  That  is,  QO*  —  q2  depends  only  on  the  circle  itself  and 

•12  on  the  position  of  the  point  0  ;  this  number  is  called  the  °  power  of  the  circle 
and  the  point  with  respect  to  each  other,  and  '11  implies  that 

'13  If  any  anisotropic  line  through  an  accessible  point  0  cuts  an  ordinary  circle 
in  R  and  S,  the  product  of  the  lengths  OR,  OS,  measured  in  a  common  direction, 
is  equal  to  the  power  of  the  circle  with  respect  to  0. 

Even  in  this  proof  nul  circles  and  isotropic  planes  do  not  call  for  special 
treatment,  but  an  algebraic  proof  that  is  equally  simple  is  of  wider  application. 

With  respect  to  a  frame  of  the  kind  already  used  in  this  chapter,  let  the 
equation  of  the  circle  be 

•14  kSx*  +  2<?£T  +  2/77T  +  cr2  =  0, 

and  let  a  finite  ideal  vector  be  determined  by  a  vector  p  with  coefficients  £p, 

ifjp  and  a  number  rp  ;  the  ideal  vector  of  the  step  from  the  origin  to  the  point 

(f^p,  f"np,  $Tp)  is  the  product  of  this  ideal  vector  by  r/s,  and  if  p  is  an  amount 
of  p,  the  distance  from  the  origin  to  the  point  (r£p,  rr}p,  STP)  in  the  direction 
in  which  p  has  the  amount  p  is  rp/srp.  For  the  point  in  question  to  be  on 

the  circle  '14,  the  ratio  r  :  s  must  satisfy  the  equation 

•15  r2kSxPz  +  2rs  (g%p  +fr}p)  TP  +  s2crp2  =  0, 

and  the  product  of  the  two  distances  corresponding  to  the  two  roots  of  this 

equation  is  cp2/kSxp2-  But  p2  is  equal  to  Sxp2  ;  if  then  we  define  c/k,  a  number 

•16  in  which  p  is  not  involved,  as  the  power  of  the  origin,  we  can  assert  that  °the 
product  of  the  two  distances  is  equal  to  the  power  unless  the  direction  is  nul, 
and  is  indeterminate  in  the  exceptional  case.  Since  c  is  zero  if  and  only  if  the 

•17  origin  is  on  the  circle,  and  k  is  zero  if  and  only  if  the  circle  is  infinite,  °the 
power  is  indeterminate  only  in  the  case  of  an  infinite  circle  and  a  point  actually 
upon  it,  is  zero  for  a  point  on  a  circle  that  is  not  infinite,  is  infinite  for  an 
infinite  circle  and  a  point  not  on  the  circle,  and  in  other  cases  is  a  definite 

proper  finite  number. 
This  second  proof  applies  equally  to  ordinary  and  extraordinary  circles,  but 

in  referring  the  plane  to  a  vector  frame  attached  to  the  point  whose  power  is 

in  question,  we  have  tacitly  supposed  this  point  to  be  accessible.  To  secure 
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complete  generality,  we  must  calculate  the  power  of  a  point  not  assumed  to 
be  the  origin. 

*2.  The  sum  of  the  ideal  vector  which  combines  the  vector  (£  P>  v)p)  with 
the  number  T>  and  the  ideal  vector  which  combines  the  vector  (r£p,  rrjp)  with 

the  number  STP  is  the  ideal  vector  which  combines  the  vector 

with  the  number  STPTP.   The  step  from  the  origin  with  this  ideal  vector  leads 

to  a  point  on  the  conic 

a?  +  2hfr  +  br?  +  2g%r  +  Zfyr  +  cr2  =  0  -21 

if         r»T/>3  (ttfp2  +  2/i£p77p  4  &V)  -22 
+  2rsTPTp  {(a%P  +  hr)P  +  grP)  fp  +  (h%  P  +  br)P  +frP)  i)v} 

+  s2Tp2  (a£P2  4-  2h%p<r)P  +  br)P*  +  2g%PTP  +  2fyPrP  +  CTP2)  =  0. 

Hence0  the  product  of  the  lengths,  measured  in  the  direction  in  which  the        -23 
vector  p  is  of  amount  p,  of  the  distances  from  P  to  the  points  in  which  the 

line  through  P  with  this  direction  cuts  the  conic  '21,  is 

p*  (a|P«  +  Zhgprip  +  br,P*  +  2g£PTp  +  Zfyprp  +  CTP2)/(a£p2  +  2/^p  +  b  V)  rp\ 

From  the  value  of  p2  it  follows  that 

The  power  of  the  point  (£,  77,  T)  with  respect  to  the  circle  -24 

kSx>  +  tyfr  +  2/Tjr  +  cr2  =  0 

is  (kSX*  +  2#£r  +  2/77T  +  cr2)/^2. 
As  in  other  cases,  the  formula  provides  a  definition  when  the  elementary 

definition  fails.    For  a  point  at  infinity,  the  denominator  is  zero  and  the 
numerator  is  or  is  not  zero  according  as  the  point  is  or  is  not  on  the  circle  : 

°the  power  of  an  inaccessible  point  with  respect  to  a  circle  is  indeterminate  or        -25 
infinite  according  as  the  point  is  or  is  not  on  the  circle.    At  the  cost  of  re- 

petition, it  is  useful  to  set  down  that°£/ie  power  of  a,  point  with  respect  to  a        -26 
circle  to  which  it  belongs  is  zero  if  the  point  is  accessible  and  the  circle  is  not 

infinite  but  is  indeterminate  in  both  the  exceptional  cases. 

A  comparison  of  conventions  shews  that  the  expression  QO*  —  (f  is  in  no 
case  inconsistent  with  the  value  attached  to  the  power,  though  one  of  these 

numbers  may  be  indeterminate  when  the  other  has  a  definite  value.  For 

example,  if  0  is  at  infinity  and  q  is  finite,  Q0*  —  q*  is  infinite  if  Q  is  ac- 
cessible and  0  is  not  a  focal  point,  that  is,  if  the  circle  is  an  ordinary  circle 

and  does  not  contain  0,  but  QO2  —  q*  is  indeterminate  if  Q  is  at  infinity, 
that  is,  if  Q  is  focal  or  the  circle  is  the  duplicated  line  at  infinity,  or  if  0  is 

focal.  It  is  particularly  important  to  notice  that 

The  square  of  the  distances  between  two  points  is  the  power  of  one  of  them        -27 
with  respect  to  a  nul  circle  which  has  the  other  for  centre. 

The  nul  circle  is  unique  unless  the  point  to  serve  as  a  centre  is  a  focal  point, 

but  in  this  exceptional  case  the  power  and  the  distance  are  alike  arbitrary. 
N.  21 
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If  P  is  at  infinity,  '22  has  no  validity  in  determining  distances  from  P.  But 
if  0  is  at  infinity,  the  product  of  lengths  OR,  OS  is  either  infinite  or  indeter- 

minate, wherever  R  and  S  may  be,  and  so  also  is  the  power  of  0  with  respect 
to  a  given  circle.  We  can  therefore  affirm  that 

•28  If  0,  R,  S  are  collinear,  the  power  of  0  with  respect  to  any  given  circle 
through  R  and  S  and  the  product  of  the  lengths  OR,  OS  measured  in  a  common 
direction  are  equal  unless  one  or  other  of  these  numbers  is  wholly  indeterminate. 

•29  From  '23  we  see  that  °the  property  of  the  constant  rectangle  is  characteristic 
of  finite  circles,  no  less  in  isotropic  than  in  anisotropic  planes,  for  the  expression 
given  there  for  the  product  is  independent  of  p,  for  all  positions  of  P,  if  and 

only  if  a£p2  +  ̂ h^v  +  byj  is  a  multiple  of  p2,  that  is,  of  E&  +  ̂ F^pvp  +  Gijv2, 
for  all  values  of  £p  and  v)v. 

*3.  Closely  allied  to  the  property  of  the  constant  rectangle  is  that  of  the 
constant  angle.  If  P,  Q  are  points  on  one  line  through  0  and  R,  S  are  points 

on  another,  and  if  the  rectangles  OP.OQ,  OR.  OS  are  equal,  then  the  triangles 
OPS,  ORQ  are  inversely  similar,  and  the  angles  PSO,  OQR  determine  the 

same  congruences : 

"31  If  the  points  P,  Q,  R,  S  are  concyclic,  the  angles  between  QP  and  QR  are 
the  same  as  the  angles  between  SP  and  SR  unless  the  angles  in  one  case  or  the 

other  are  wholly  indeterminate. 

An  examination  of  different  cases  shews  that  the  result  '31  is  true  even 
when  the  proof  is  invalid.  For  example,  if  S  is  at  infinity  but  is  not  a  focal 

point,  and  if  P  and  R  are  accessible  and  the  line  joining  them  is  not  nul,  the 
circle  consists  of  the  line  at  infinity  and  the  line  PR,  and  the  angles  between 

SP  and  SR  are  the  multiples  of  TT;  if  Q,  assumed  neither  to  be  a  focal  point 
nor  to  coincide  with  P  or  R,  is  not  at  infinity  it  is  collinear  with  P  and  R, 

and  in  either  case  the  lines  QP  and  QR  have  the  same  vecline  and  the  angles 

between  them  also  are  the  multiples  of  TT. 

It  is  necessary  to  remember  that  the  circle  of  complex  space  is  not  in  any 

sense  cut  into  two  parts  by  a  pair  of  its  points.  The  points  of  a  complex 
line  or  of  a  complex  circle  are  as  numerous  as  the  values  of  a  complex 
variable,  that  is,  as  numerous  as  the  points  of  a  real  sphere,  and  the  removal 

of  one  or  two  of  them,  or  of  any  finite  number,  does  not  destroy  the  unity  of 
the  line  or  circle. 

Nor  is  there  any  division  of  the  circle  latent  in  '31.  Different  angles  de- 
termined by  a  pair  of  points  P,  R  at  a  variable  point  of  the  circle  may  have 

either  their  difference  or  their  sum  a  multiple  of  2?r;  to  compare  one  of  the 

congruences  at  Q  with  one  of  the  congruences  at  S,  it  is  necessary  to  correlate 
one  direction  of  QP  with  one  of  SP  and  one  direction  of  QR  with  one  of  SR, 

that  is,  to  correlate  one  length  of  QP  with  one  of  SP  and  one  length  of  QR 

with  one  of  SR.  This  is  precisely  the  correlation  which,  effected  in  real  space 

by  means  of  signs,  has  no  natural  basis  in  complex  space,  except  in  isotropic 
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planes.    In  an  isotropic  plane,  "31,  like  all  angular  relations,  is  necessarily 
trivial*. 

But  although  the  circle  can  not  be  divided,  the  distinction  between  the  two 
circles  on  which  a  given  pair  of  points  determines  the  same  sets  of  angles  can 
be  made  in  the  same  way  for  the  anisotropic  as  for  the  real  plane.   If  I,  m  are 
two  anisotropic  lines  in  a  prepared  plane,  any  angle  froip  a  direction  of  /  to  a 
direction  of  m  differs  from  any  other  angle  which  is  also  from  a  direction  of  I 

to  a  direction  of  m  by  a  multiple  of  TT.    That  is,  °  an  ordered  line-pair  has  an        -32 
angular  measurement,  which  is  definite  to  within  a  multiple  of  TT  if  neither 

line  is  inaccessible  or  nul.   By  an  ° angle  subtended  at  a  point  C  by  an  ordered       -33 
pair  of  points  AB  is  meant  f  an  angular  measurement  of  the  line-pair  (AC,  BC). 

Inverse  similarity  of  two  triangles  OPS,  ORQ  implies  that  the  angles  sub- 
tended by  OR  at  Q  are  the  negatives  of  those  subtended  by  OP  at  S  and  are 

therefore  the  same  as  those  subtended  by  PO  at  S.  But  if  P  is  in  OQ,  the 
angles  subtended  at  Q  by  PO  are  by  definition  the  same  as  those  subtended 
at  Q  by  PR,  and  similarly  if  R  is  in  OS  the  angles  subtended  at  S  by  PO  are 
the  same  as  those  subtended  at  S  by  PR.  The  steps  of  this  argument  are 

reversible,  and  '31  can  be  replaced  by  the  more  exact  theorem  that 
Four  distinct  accessible  points  P,  Q,  R,  S  in  an  anisotropic  plane  are  con-        '34 

cyclic  if  and  only  if  the  pair  of  points  PR  subtends  the  same  angles  at  Q  as  at  S. 

Not  only  segments  in  general,  in  the  sense  of  portions  of  circles,  but  semi- 

circles, are  lacking  in  complex  geometry.    We  can  however  say  that  °two        -35 
points  P,  R  are  diametrically  opposite  on  a  circle  if  the  midpoint  of  PR  is  a 
centre  of  the  circle,  and  classical  proofs  shew  that  in  general  a  right  angle 
is  among  the  angles  subtended  at  a  variable  point  of  a  circle  by  a  pair  of  points 

diametrically  opposed.    Euclid's  proof  and  the  use  of  straight  angles  are  alike 
ineffective  to  discover  whether  the  theorem  is  true  of  nul  circles,  but  a 

vectorial  proof  applicable  to  every  ordinary  circle  is  easily  found.    °A  pair  of       -36 
points  AB  subtends  a  right  angle  at  a  point  C  if  and  only  if  the  lines  AC,  BC 
are  perpendicular,  and  instead  of  referring  to  angles  we  may  say  that 

In  any  plane,  the  locus  of  a  variable  point  Q  which  is  such  that  there  are        -37 
perpendicular  lines  joining  Q  to  two  given  accessible  points  P,  R  is  the  ordinary 
circle  on  PR  as  diameter. 

If  for  an  isotropic  plane  we  make  the  natural  convention  that  °the  focal        '38 
point  is  diametrically  opposite  to  every  point  of  an  undegenerate  circle,  then 
since  PQ  and  RQ  are  necessarily  perpendicular  if  either  P  or  .R  is  the  focal 
point,  it  is  true  that 

*  In  contrast  with  -13,  which  we  have  seen  to  be  a  significant  property  of  finite  circles, 
undegenerate  as  well  as  degenerate.    This  observation  acquires  interest  from  the  fact  that    . 

it  is  not  unusual  in  elementary  geometry  to  deduce  the  property  of  the  constant  rectangle 
from  the  property,  seen  to  be  in  one  sense  narrower  in  scope,  of  the  constant  angle. 

+  This  meaning,  to  the  value  of  which  for  elementary  geometry  Picken  has  recently 

called  attention,  was  familiar  to  Laguerre  and  is  implicit  throughout  Darboux's  Principes. 
21—2 
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•39  On  any  circle  that  is  not  infinite,  the  lines  joining  one  point  to  two  points 
that  are  diametrically  opposed  are  perpendicular. 

'4.  Interesting  cases  of  "34  and  '37  are  those  in  which  the  circle  is  a  nul 
circle  in  an  anisotropic  plane.  If  PR,  QS  are  complementary  nul  lines,  then 
unless  one  of  the  points  P,  Q,  R,  8  is  either  the  point  of  intersection  of  these 

lines  or  a  focal  point,  the  lines  PQ,  QR,  PS,  SR  are  not  nul,  and  the  general 

proof  of  "34  applies  without  modification.  The  complete  circle  through  the 
four  points  is  formed  by  the  two  lines,  but  since  if  0  is  any  point  of  PR 
any  value  can  be  ascribed  to  an  angle  subtended  at  0  by  PR,  the  significant 
deduction  from  the  general  theorem  is  that 

•41  If  P,  R  are  distinct  accessible  points  of  a  nul  line  I  in  an  anisotropic  plane, 
the  line  joining  two  accessible  points  Q,  S  neither  of  which  belongs  to  I  is  a  nul 

line  complementary  to  I  if  and  only  if  PR  subtends  the  same  angles  at  Q  as  at  S. 

This  result  can  not  be  established  by  Euclid's  method  of  proving  '34.   The 
corresponding  case  of  '37  is  that 

•42  In  an  anisotropic  plane,  the  points  at  which  an  accessible  pair  of  points  PR 
belonging  to  a  nul  line  I  subtends  a  right  angle  without  subtending  an  arbitrary 

angle  are  the  points  of  the  nul  line  m  complementary  to  I  which  bisects  PR, 

exception  being  made  of  the  focal  point  on  m  and  of  the  midpoint  of  PR. 

Theorems  involving  nul  lines  always  evade  pictorial  representation,  but  rarely 
with  more  success  than  here. 

555.   CIRCLES  ABOUT  A  PAIR  OF  POINTS;  ASSOCIATED  LINEAR  SEGMENTS; 
MEASURES  OF  SEPARATION;  COAXAL  SYSTEMS  OF  CIRCLES  IN  GENERAL: 

ASSOCIATED  COAXAL  SYSTEMS. 

•1.    If  A,  B  are  given  points  and  r,  s  given  numbers,  the  condition 
•11  s.AP*  =  r.BP* 

becomes  in  terms  of  homogeneous  coordinates 

and  the  terms  independent  of  T  in  this  equation  are 

(s-r^rSTrfSx*. 
•12  In  any  plane,  the  locus  of  a  variable  point  the  squares  of  whose  distances 

from  two  distinct  accessible  points  are  in  a  given  ratio  other  than  unity  is  a 

finite  circle. 
Readers  of  Darboux's  last  work  will  find  this  theorem  exhibited  there* 

in  intimate  relation  to  the  property  of  the  constant  angle;  here  we  are  con- 
cerned with  only  its  most  elementary  aspect. 

In  an  isotropic  plane,  if  R  is  one  point  satisfying  '11,  every  point  of  the 
nul  line  through  R  also  satisfies  '11;  hence  the  circle  is  not  merely  finite  but 
ordinary,  whatever  the  nature  of  the  plane. 

*  Principes,  p.  151. 
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In  2'2  we  found  the  accessible  points  equally  distant  from  A  and  B  to  be 

in  general  the  accessible  points  on  a  definite  line,  the  perpendicular  bisector 

of  AB.  It  now  appears  that  °if  the  equation 

is  to  be  regarded  as  a  particular  case  of  '11,  the  locus  represented  is  the  in- 
finite circle  compounded  of  the  line  at  infinity  and  the  perpendicular  bisector. 

Nor  is  this  at  variance  with  the  natural  theorem  that 

The  centres  of  circles  through  two  given  points  in  a  given  plane  is  the  locus  of       '14 
points  from  which  these  two  are  equidistant: 

if  the  plane  is  anisotropic,  each  accessible  point  of  the  perpendicular  bisector 
of  AB  is  the  centre  of  one  and  only  one  of  the  finite  circles  through  A  and  B, 

and  every  point  at  infinity  is  a  centre  of  the  infinite  circle  formed  of  the  line 
AB  and  the  line  at  infinity;  if  the  plane  is  isotropic  and  the  line  AB  is  not 

mil,  every  point  of  the  nul  line  bisecting  AB  is  a  centre  of  the  ordinary  circle 
through  A  and  B,  every  point  at  infinity  is  a  centre  of  the  infinite  circle 
formed  of  the  line  AB  and  the  line  at  infinity,  and  the  focal  point  is  the  centre 

of  every  undegenerate  circle  through  A  and  B ;  if  the  plane  is  isotropic  and 
the  line  AB  is  nul,  every  point  of  the  plane  is  a  centre  of  a  circle  through  A 

and  B,  and  at  the  same  time  every  point  of  the  plane  is  at  the  same  distances 
from  A  as  from  B. 

•2.  Except  when  the  plane  is  isotropic  and  the  line  AB  is  nul,  the  con- 
dition '11  associates  a  particular  circle  with  each  value  of  the  ratio  r  :s.  The 

circles  of  this  kind  are  said  to  be  described  °  about  the  pair  of  points  A,  B.  '21 
Let  Q  be  any  accessible  point  of  the  plane.  Then  the  condition  for  the  circle 

about  A,  B  with  ratio  r  :s  to  contain  Q  is 

s.AQ*  =  r.BQ2.  -22 

°If  either  of  the  lengths  AQ,  BQ  is  different  from  zero,  there  is  one  and  only 
one  circle  about  A,  B  through  Q,  but°if  both  these  lengths  are  zero  every 
circle  about  A,  B  contains  Q.  To  put  the  argument  differently,  because  '11  is 
linear  and  homogeneous  in  r  and  s,  any  point  that  is  common  to  two  circles 

about  A,  B  belongs  to  every  circle  about  this  pair  of  points;  the  circle  for 
which  r  is  zero  is  the  nul  circle  with  centre  A,  and  the  circle  for  which  s  is 

zero  is  the  nul  circle  with  centre  B,  and  to  say  that  a  point  is  common  to 
these  circles  is  to  assert  that  its  distances  from  A  and  B  are  zero. 

Suppose  first  that  the  plane  is  not  isotropic  and  the  line  AB  is  not  nul. 
Then  the  points  at  zero  distance  from  A  compose  the  lines  A  I,  AJ,  and  the 

points  at  zero  distance  from  B  compose  the  lines  BI,  BJ,  and  no  two  of  these 
four  lines  coincide.  The  lines  AI,  BJ  are  not  parallel  and  therefore  cut 
in  a  definite  accessible  point  C;  similarly  AJ,  BI  cut  in  a  definite  accessible 

point  D.  Since  G  is  on  BJ  but  A  is  not,  C  is  distinct  from  A  ;  similarly  C  is 
distinct  from  B,  and  D  also  is  distinct  from  both  A  and  B ;  further,  since  G 
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is  on  A I  and  is  distinct  from  A,  C  is  not  on  AJ  and  is  therefore  distinct 
from  D. 

•246  From  '24,  ° every  circle  about  A,  B  contains  G  and  D.  Conversely,  if  Q  is  a 
point  distinct  from  C  and  D  and  from  the  focal  points  and  situated  on  a  given 
circle  through  C  and  D,  there  is  a  unique  circle  through  Q  about  A,  B,  and  since 

•247  this  circle  does  contain  C  and  D,  it  is  the  given  circle :  "every  circle  through 
C  and  D  is  a  circle  about  A,  B. 

Also  because  A  is  the  intersection  of  CI  and  DJ  and  B  is  the  intersection 

•25        of  GJ  and  DI,  °the  relation  between  the  pairs  of  points  A,  B  and  G,  D  is  re- 

•26  ciprocal,  and  '246  and  "247  imply  that0  the  circles  about  one  of  these  pairs  are 
the  circles  through  the  other  pair.  From  2'36,  A  and  B,  being  the  centres  of 
nul  circles  through  C  and  D,  are  on  the  perpendicular  bisector  of  CD,  and  the 

symmetry  implies  that  C  and  D  are  on  the  perpendicular  bisector  of  AB.  To 

•27  put  the  matter  otherwise,  ° the  figure  ABGD  is  a  parallelogram  whose  sides 
are  all  of  zero  length,  and  the  diagonals  AB  and  CD,  like  those  of  any  other 
rhombus,  bisect  each  other  at  right  angles.  If  0  is  the  common  midpoint  of 

•28  AB  and  CD, °the  sum  of  the  squares  on  OA  and  OC  is  the  square  on  AC, 
which  is  zero ;  hence 
•29  AB*  +  CD2  =  0. 

•3.  To  connect  with  a  pair  of  points  in  a  plane  the  pair  related  to  it  as  is 
C,  D  to  A,  B  is  often  useful.  But  if  theorems  are  to  be  enunciated  in  the 

most  general  manner,  allowance  must  be  made  for  the  possibility  of  degenera- 
tion :  definitions  must  be  framed  with  reference  to  segments  rather  than  to 

pairs  of  points.  In  an  anisotropic  plane,  if  B  coincides  with  A  in  an  accessible 

point  0,  then  C  and  D,  defined  as  the  intersection  of  A I  with  BJ  and  of  AJ 

with  BI,  coincide  in  the  same  point  0,  and  *29  remains  true,  but  the  various 
collinearities  do  not  connect  an  axis  for  C  and  D  with  a  given  axis  for  A  and 

B ;  the  perpendicularity  of  the  axes  has  to  be  secured  by  definition. 

•31  Accordingly,  two  coplanar  segments  AB,  CD  are  described  as  °  associated 
segments  if  their  axes  are  perpendicular  while  one  focal  point  is  collinear  both 

with  A  and  C  and  with  B  and  D  and  the  other  focal  point  is  collinear  both 

with  A  and  D  and  with  B  and  C ;  the  relation  between  the  segments  is  sym- 
metrical. 

•32  °If  the  plane  is  anisotropic  and  one  of  two  associated  segments  is  finite, 
proper,  and  anisotropic,  the  other  segment  also  is  finite,  proper,  and  anisotropic, 

and  the  relation  between  the  pairs  of  points  that  determine  the  segments  is 

that  between  the  pairs  A,  B  and  C,  D  in  '2.  The  perpendicularity  of  the  axes 
follows,  as  we  have  seen,  from  the  four  collinearities,  and  is  redundant  in  the 

definition.  If  we  call  the  circles  about  the  pair  of  points  A,  B  circles  about 

the  segment  AB,  we  can  replace  '26  by  the  self-contained  assertion  that 

•33  In  an  anisotropic  plane,  if  two  associated  segments  are  finite,  proper,  and 
anisotropic,  the  circles  about  either  of  them  are  the  circles  throtigh  the  other. 
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The  restriction  that  the  segments  are  to  be  anisotropic  is  easily  removed. 
It  is  evident  that 

In  an  anisotropic  plane,  a  finite  segment  in  a  nul  line  is  its  own  associate,  *34 

whether  or  not  the  segment  is  proper.  Also,  it  follows  from  2'25  that  if  the 
segment  is  proper  and  nul,  the  circles  through  the  segment  are  the  degenerate 
circles  which  have  the  axis  of  the  segment  for  a  constituent.  On  the  other 

hand,  merely  from  '24  it  follows  that  the  circles  about  the  ends  of  the  segment 
also  have  the  axis  for  a  constituent.  If  Q  is  any  point  of  the  plane  that  is 

neither  a  focal  point  nor  a  point  of  the  axis,  then  whether  Q  is  accessible  or 
not  there  is  one  and  only  one  circle  which  contains  Q  and  has  the  axis  for  a 
constituent,  and  this  is  therefore  both  the  circle  through  Q  about  the  segment 

and  the  circle  through  Q  circumscribed  to  the  segment : 

In  an  anisotropic  plane,  the  circles  about  a  finite  proper  segment  in  a  nul  line       '35 
are  the  circles  through  the  same  segment. 

To  combine  '34  with  '35  is  to  allow  the  segments  in  '33  to  be  isotropic.  The 
peculiarity  is  not  in  any  failure  of  the  definitions,  but  in  the  fact  that  if  AB 
and  EF  are  proper  finite  segments  of  the  same  nul  line,  the  circles  through 
and  about  AB  are  also  the  circles  through  and  about  EF;  in  general  the 

associate  of  a  segment  AB  can  be  identified  as  the  segment  inscribed  in  all 
the  circles  about  AB,  but  if  AB  is  in  a  nul  line  this  property  is  not  special  to 
AB  itself. 

To  allow  the  segments  in  '33  to  degenerate  is  a  matter  only  of  definition. 
The  ordinary  circles  through  a  degenerate  segment  A  A  with  axis  I  have  been 

considered  in  2'3,  and  if  A  is  accessible  and  the  plane  is  anisotropic,  the  seg- 
ment with  which  A  A  is  associated  degenerates  into  the  pair  of  coincident 

points  A  A  in  the  axis  perpendicular  to  I.  To  maintain  '33  is  to  define  the 
circles  about  the  latter  segment  as  the  circles  through  the  former.  This  is 

equivalent  to  saying  that  °in  an  anisotropic  plane,  by  an  ordinary  circle  about  -36 
a  segment  A  A  degenerate  at  an  accessible  point  of  a  line  I  is  meant  an  ordinary 
circle  through  A  with  its  centre  in  I,  and  by  the  infinite  circle  about  the  same 
segment  is  meant  the  infinite  circle  whose  distinctive  constituent  is  the  line 

through  A  perpendicular  to  1.  For  a  point  Q  on  the  nul  circle  with  centre  A, 

the  fundamental  condition  "22  is  satisfied  whatever  the  ratio  of  r  to  s ;  for  an 

accessible  point  on  any  undegenerate  circle  about  the  segment,  '22  is  satisfied 
only  if  r  and  s  are  equal,  and  a  value  of  r :  s  does  not  characterise  a  circle ; 
for  the  accessible  points  of  the  infinite  circle,  r :  s  must  be  unity  unless  I  is 
nul  but  is  arbitrary  in  the  exceptional  case. 

We  can  now  say  that 

In  an  anisotropic  plane,  if  two  associated  segments  are  finite  the  circles  about       *37 
either  of  them  are  the  circles  through  the  other. 

The  consideration  of  infinite  segments  and  of  segments  in  an  isotropic  plane 

is  postponed. 
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•4.   The  proof  that  the  condition 

leads  to  the  equation  of  a  circle  depends  not  on  the  precise  formulae  for  the 
squares  of  the  distances  involved  but  on  the  fact  that  in  each  of  these 

formulae  the  terms  independent  of  r  compose  a  multiple  of  S^.  Let  us 
write  2  for 

kSx*  +  2g%r  +  2/T/T  +  cr2, 

so  that  the  equation  2  =  0 

if  significant  represents  a  circle,  finite  unless  k  is  zero,  which  we  may  call  the 
circle  2.    Given  any  finite  number  of  circles  2j,  22,  ...  and  a  corresponding 
number  of  constants  pl,  />2>  ...,  the  terms  independent  of  r  in  the  function 

•41       jt)121+jp222+  ...  take  the  form  (pik1+pzkz  +  ...)  8%*',  hence  °the  equation 

pi'S,l+p^  +  ...  =0 
if  not  satisfied  identically  is  the  equation  of  a  circle,  finite  or  infinite.  To 

interpret  this  result,  which  we  propose  to  use  only  in  the  simplest  case,  we 
must  connect  some  number  which  does  not  depend  on  the  frame  of  reference 

with  the  value  of  the  function  2  for  the  coordinates  of  points  that  do  not  lie 
on  the  circle  for  which  the  function  vanishes. 

In  the  case  of  a  finite  circle  there  is  no  difficulty:  we  have  seen  in  4'24 
that  2/r2  is  proportional  to  the  power  of  the  circle  with  respect  to  the  variable 

•42        point  (|,  v),  T),  and  therefore  °^>2/T2  is  the  product  of  the  power,  not  as  a 
rule  by  p,  but  by  some  number  entirely  independent  of  the  variable  point. 

If  the  circle  is  infinite,  k  is  zero  and  the  circle  is  compounded  of  the  line  at 

infinity  and  the  line 

the  distinctive  constituent  of  the  circle  ;  in  this  case  2/r2  reduces,  for  accessible 
points,  to  A/T,  where  A  denotes  2$r£  +  2/77  +  cr.  If  the  distinctive  constituent 
is  accessible  and  if  p  is  any  unit  vector  not  parallel  to  this  line,  the  line 

through  (f,  r),  r)  with  vecline  containing  p  cuts  the  line  in  a  definite  point, 
and  the  distance  from  this  point  to  (ff,  17,  T)  is  r,  given  by  the  equation 

2<7  (£  -  rrfe)  +  2/fo  -  rrifr)  +  cr  =  0, 

that  is,  is  A/{2r  (g%p  +fnv}\-    The  factor  g%v  +fy?  is  independent  of  the  co- 

•43      ordinates  £,  77,  T,  and  therefore  in  this  case  °  p2/T2  is  a  multiple  of  the  distance 
°f  (£.  *?>  T)  fr°m  tne  distinctive  constituent  of  2  in  a  prescribed  direction. 

Lastly,  if  the  distinctive  constituent  is  the  line  at  infinity,  2/r2  has  the 

•44      constant  value  c,  and  °p2/T2  is  an  arbitrary  constant. 

•45  For  the  sake  of  brevity  we  shall  call  2/r*  a  °  measure  of  separation  of  the 
point  (£,  i),  r)  from  the  circle  2.  There  is  necessarily  an  arbitrary  factor  in 
this  measure,  since  to  multiply  the  function  2  by  an  arbitrary  constant  does 
not  affect  the  circle.  But  unless  the  circle  is  the  duplicated  line  at  infinity, 

to  say  that  two  accessible  points  have  the  same  measures  is  to  make  a  sig- 
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nificant  assertion,  implying  that  if  the  circle  is  finite  the  points  have  the 

same  power  and  that  if  the  circle  is  infinite  the  line  through  one  of  the  points 
parallel  to  the  distinctive  constituent  of  the  circle  contains  the  other  point. 

°For  an  accessible  point  a  measure  is  zero  only  if  the  point  is  on  the  circle,  '47 
and.  in  this  case  every  measure  is  zero.  A  measure  of  separation  becomes 
definite  if  its  value  is  given  for  any  one  accessible  point  that  is  not  on  the 
circle. 

•5.    We  can  now  study  the  equation 

s2,  -r22=0,  -51 

which  is  not  an  identity  unless  2j  and  22  are  the  same  circle.    From  its  form, 

this  equation  represents  a  circle,  finite  unless  s^  —  rk*  is  zero;  °the  circle  is        -52 
said  to  be  described  about  the  pair  of  circles  2j,  22;  to  each  value  of  the  ratio 
r  :  s  corresponds  one  and  only  one  circle  about  2n  22. 

A  circle  about  two  circles  is  a  circle  whose  accessible  part  is  the  locus  of  a        '53 
point  for  which  definite  measures  of  separation  with  respect  to  the  two  circles  have 
a  constant  ratio. 

It  will  be  noticed  that  a  circle  is  determined  by  its  accessible  points  except 

in  one  case;  the  accessible  points  of  a  nul  line  in  an  isotropic  plane  are  the 

accessible  points  both  of  the  nul  circle  formed  by  duplicating  the  line  and  of 
the  infinite  circle  formed  by  combining  the  line  with  the  line  at  infinity. 

Let  23  and  24  be  two  different  circles  described  about  the  circles  2^  22,  and 

suppose  that 

23  =  SsSj  -  r322,  24  =  s42j  -  r422.  '54 

Since  a  linear  combination  of  23  and  24  is  expressible  by  means  of  '54  as  a 
linear  combination  of  2i  and  22,  every  circle  about  23,  24  is  a  circle  about  2a,  22. 

But  since  23)  24  are  distinct,  rsst  —  s3rt  is  not  zero  and  therefore  '54  can  be 
used  to  express  2i  and  22  as  linear  combinations  of  23  and  24.  That  is  to  say, 
2i  and  22  are  circles  about  23,  24,  and  therefore  every  circle  about  21}  22 

is  a  circle  about  23,  24.  Hence  °the  circles  about  two  given  circles  form  a  -55 
system  in  which  the  original  circles  retain  no  distinctive  feature;  some  one 

pair  of  circles  renders  easy  the  identification  of  the  system,  just  as  sonje  one 

pair  of  points  is  useful  in  the  specification  of  a  line,  but  if  we  define  a  ° coaxal  *56 
system  or  a  system  of  coaxal  circles  indirectly  by  defining  the  coaxal  system 

containing  two  given  circles  as  the  aggregate  of  circles  described  about  those 
two,  we  must  add  at  once  that 

Of  any  three  circles  of  a  coaxal  system,,  each  is  a  circle  about  the  other  two,          -57 
and  that 

Every  circle  about  any  two  members  of  a  coaxal  system  is  itself  a  member  of       -58 
the  system. 

We  can  describe  the  structure  of  a  coaxal  system  otherwise  by  saying  that 

"three  circles  2n  22,  23  are  coaxal  if  there  are  constants  f,  g,  h  not  all  zero  -59 
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such  that  /2j  +  g^.z  +  h%3  is  identically  zero,  and  that  a  family  of  circles  is  a 
coaxal  system  if  three  circles  chosen  arbitrarily  from  the  family  are  necessarily 

coaxal  but  no  three  distinct  circles  can  be  coaxal  if  two  of  them  belong  to  the 
family  and  one  does  not. 

•6.   The  condition  for  the  circle  *51  to  be  infinite  is 

•61  sh  —  rk2  =  0, 

and  unless  k^  and  k2  are  both  zero  this  condition  is  satisfied  by  one  and  only 

•62        one  value  of  the  ratio  r  :  s  :  °  in  a  system  of  coaxal  circles  there  is  in  general 
one  and  only  one  infinite  member;  there  is  always  one  infinite  member,  and 
if  there  are  two  infinite  members  every  member  is  infinite. 

The  distinctive  constituent  of  an  infinite  member  of  a  coaxal  system  is 

•63  called  a  °  radical  axis  of  the  system.  Usually  there  is  only  one  such  line,  and 
to  speak  of  the  radical  axis  is  to  assume  implicitly  that  the  system  is  not 
formed  of  infinite  members.  As  a  rule,  the  radical  axis  is  accessible,  but  we 

shall  have  to  recognise  the  peculiarities  of  a  system  with  the  line  at  infinity 
for  its  only  radical  axis. 

If  Sj  and  22  are  both  finite,  kl  and  &2  are  both  different  from  zero,  and  we 

can  satisfy  '61  by  taking  l/fc:  for  s  and  l/&2  for  r;  the  equation  of  the  infinite 
circle  is  then 

whence  from  4'  24 

•64  Any  accessible  point  for  which  two  finite  circles  are  equipotent  is  on  the 
radical  axis  of  the  coaxal  system  containing  these  circles, 

and  conversely 

•65  All  the  circles  of  a  coaxal  system  have  the  same  power  for  any  accessible 
point  on  the  radical  axis  of  the  system. 

From  the  fundamental  property  of  a  circle  described  about  two  others, 

«66  If  a  variable  point  is  confined  to  one  circle  of  a  coaxal  system  with  an  ac- 
cessible radical  axis,  its  power  with  respect  to  any  other  circle  of  the  system  is 

proportional  to  its  distance  from  the  radical  axis,  the  distance  being  measured 

in  any  fixed  direction; 

•67  If  a  coaxal  system  has  the  line  at  infinity  for  radical  axis,  the  power  of  a 
variable  point  on  one  circle  of  the  system  with  respect  to  any  other  circle  of  the 
system  depends  only  on  the  two  circles. 

'7.  The  form  of  the  equation  '51  shews  that  any  point  which  is  common  to 
two  circles  is  on  every  circle  described  about  those  two  ;  hence  if  two  members 

of  a  coaxal  system  have  a  point  in  common,  that  point  belongs  to  every  member 

of  the  system.  For  accessible  points  this  result  is  a  corollary  of  "59  and  '47, 
for  if  there  is  a  homogeneous  linear  relation  between  three  measures  of 

separation,  a  point  for  which  two  of  the  measures  are  zero  is  a  point  for  which 
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the  third  also  is  zero  ;  but  the  algebraic  proof,  making  no  distinction  between 
accessible  and  inaccessible  points,  is  the  more  powerful. 

If  Q  is  any  point,  accessible  or  inaccessible,  that  is  not  on  both  the  circles 
Si,  2a,  the  numbers  2i(Q),  22(Q)  are  not  both  zero  and 

is  a  significant  equation  ;  it  is  the  equation  of  a  member  of  the  coaxal  system 
to  which  2j  and  22  belong,  and  it  is  satisfied  by  the  coordinates  of  Q.  Thus 
there  is  one  member  of  the  system  which  contains  Q  ;  if  there  were  two  such 

members,  Q  would  belong  to  every  member,  and  in  particular  to  both  2j  and 

2a,  contrary  to  hypothesis: 

Through  any  point,  accessible  or  inaccessible,  that  does  not  belong  to  every        «71 
member  of  a  system  of  coaxal  circles,  there  passes  one  and  only  one  member  of 
the  system. 

If  P  is  the  radical  axis  of  a  system  which  contains  a  finite  member  2,  the 

points  common  to  any  two  circles  of  the  system  are  the  points  common  to  2 
and  the  infinite  circle  of  which  P  is  the  distinctive  part,  that  is,  are  the  focal 

points  of  the  plane  together  with  the  points  common  to  2  and  P.  This  con- 
sideration enables  us  to  describe  the  features  usually  possessed  by  a  coaxal 

system,  and  to  discover  which  systems  are  to  be  regarded  as  peculiar.  It  is 
the  exception  for  a  plane  to  be  isotropic  or  a  line  nul,  or  for  a  line  to  cut  a 

circle  otherwise  than  in  two  distinct  accessible  points  only.  We  suppose  there- 
fore in  the  first  place  that  the  plane  is  not  isotropic,  that  P  is  not  nul,  and 

that  2  and  P  have  in  common  two  accessible  points  C,  D  and  no  other  points; 

it  is  not  necessary  for  us  to  suppose  C  and  D  to  be  distinct.  Then  every 
member  of  the  coaxal  system  circumscribes  the  segment  of  which  C  and  D 
are  the  ends  and  P  is  the  axis.  Conversely,  if  T  is  any  circle  through  the 

segment  and  Q  is  any  point  of  T  that  is  distinct  from  G  and  D  and  is  not  a 

focal  point,  T  is  the  only  circle  through  Q  circumscribing  the  segment,  and 
therefore  T  is  the  circle  through  Q  that  belongs  to  the  coaxal  system  :  every 

circle  that  circumscribes  the  segment  belongs  to  the  system. 

In  general,  the  circles  forming  a  coaxal  system  can  be  described  as  the  circles       '72 
through  a  definite  segment;  the  axis  of  the  segment  is  the  radical  axis  of  the 

system,  and  the  ends  of  the  segment  are  the  distinctive  common  points. 

If  the  circles  of  a  system  can  be  described  as  the  circles  through  a  finite 

segment  CD,  they  can  be  described  also  as  the  circles  about  the  segment  AE 
which  is  the  associate  of  CD.  By  13  and  14  the  axis  of  AB  is  the  distinctive 
constituent  of  the  infinite  circle  formed  of  centres  of  circles  through  AB,  and 

for  this  reason  the  axis  of  AB  is  called  the0  central  axis  of  the  system.  By  -73 
the  definition  of  associated  segments,  the  nul  circles  whose  centres  are  A  and 
B  both  contain  C  and  D  and  therefore  both  belong  to  the  coaxal  system  ;  they 
are  the  only  nul  members  of  the  system.  A  centre  of  a  nul  circle  belonging 

to  a  coaxal  system  is  called  a  °  limiting  point  of  the  system.  '74 
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•75  In  general,  the  circles  forming  a  coaxal  system  can  be  described  as  the  circles 
about  a  definite  segment ;  the  axis  of  the  segment  is  the  central  axis  of  the 
system,  and  the  ends  of  the  segment  are  the  limiting  points. 

If  the  limiting  points  A,  B  are  distinct,  the  nul  circles  with  these  points 
for  centres  are  two  distinct  members  of  the  system,  and  the  system  may  be 

constructed  either  about  the  two  points,  in  the  sense  of  '21,  or  about  the  two 
circles,  in  the  sense  of  '52 ;  this  concordance  has  its  origin  in  4'27. 

Since  a  circle  in  an  aniso tropic  plane  is  degenerate  only  if  it  is  nul  or  infinite, 

•76  In  an  anisotropic  plane,  a  coaxal  system  in  general  includes  only  three  de- 
generate circles,  namely,  the  two  nul  circles  whose  centres  are  the  limiting  points 

and  the  infinite  circle  whose  distinctive  constituent  is  tlie  radical  axis. 
But 

•77  If  a  coaxal  system  in  an  anisotropic  plane  has  an  anisotropic  radical  axis 
which  has  double  intersection  with  the  finite  members  of  the  system  at  a  point  0, 

the  two  limiting  points  coincide  at  0,  and  of  the  three  degenerate  circles  of  the 
system  the  two  that  are  nul  coincide. 

*8.    We  have  seen  that 

•81  In  general  in  an  anisotropic  plane  the  segment  determined  by  the  distinctive 
common  points  of  a  coaxal  system  in  the  radical  axis  is  the  associate  of  the 
segment  determined  by  the  limiting  points  of  the  system  in  the  central  axis. 

The  symmetry  of  the  relation  between  associated  segments  prompts  us  to 

•82        °  associate  with  the  coaxal  system  through  CD  and  about  AB  the  coaxal 
system  through  AB  and  about  CD. 

•83  In  general,  with  a  coaxal  system  of  circles  in  an  anisotropic  plane  can  be 
associated  a  second  coaxal  system  such  that  the  radical  axis  of  each  system  is 

the  central  axis  of  the  other  and  the  limiting  points  of  each  system  are  the 

distinctive  common  points  of  the  other. 

Through  any  point  Q  which  is  distinct  from  the  common  points  and  limiting 
points  and  from  the  focal  points  there  passes  one  circle  of  each  system,  and  if 
Q  is  accessible  and  is  not  on  either  of  the  lines  AB,  CD,  the  circle  QCD  has 
for  centre  an  accessible  point  P  on  AB  and  the  circle  QAB  has  for  centre  an 
accessible  point  R  on  CD.  Also  if  0  is  the  common  midpoint  of  AB  and  CD, 

PQ2  =  PC*  =  PO2  +  OC\    RQ*  =  RA*  =  RO*  +  OA2, 

since  AB  and  CD  are  perpendicular;  for  the  same  reason 
PR2  =  PO2  +  R0\ 

and  therefore  by  -28  PR2  =  PQ*  +  RQ? : 

the  steps  PQ  and  RQ  are  perpendicular.  To  suppose  one  of  the  steps  PQ,RQ 
to  be  zero  is  to  suppose  not  only  that  the  corresponding  circle  is  nul  but  that 
Q  is  at  the  centre  of  this  circle,  that  is,  at  one  of  the  points  A,  B,  C,  D.  This 
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being  contrary  to  the  as8umption  already  made,  it  follows  that  the  circles 
QAB,  QCD  have  definite  tangents  at  Q,  and  that  these  tangents  contain  the 

steps  PQ,  RQ  and  are  perpendicular  to  each  other.  We  may  allow  Q  to  be  on 

.1  />'  if  only  it  is  kept  distinct  from  A  and  B  and  from  0  :  if  Q  is  on  AB  but 
not  at  A  or  B  or  at  infinity,  the  circle  QAB  is  the  infinite  circle  which  includes 

the  line  AB,  and  the  tangent  to  this  circle  at  Q  is  the  line  AB  itself;  if  Q  is 
not  at  0,  the  circle  QCD  is  a  finite  circle  with  its  centre  at  an  accessible  point 

P  of  AB  distinct  from  Q,  and  the  tangent  to  this  circle  at  Q  is  perpendicular 
to  PQ,  that  is,  to  AB,  and  therefore  perpendicular  to  the  tangent  at  Q  to  the 

circle  QAB.  Similarly,  Q  may  be  on  CD  if  it  is  not  at  C,  D,  or  0.  Lastly,  if 
Q  is  at  0,  the  circles  QAB,  QCD  degenerate  and  have  constituents  AB,  CD, 

the  tangents  at  Q  are  the  lines  AB,  CD  themselves,  and  again  the  tangents 
are  perpendicular.  Hence 

If  two  circles  belonging  one  to  each  of  two  associated  coaxal  systems  intersect        '84 
at  an  accessible  point  that  is  not  a  common  point  of  either  system,  they  intersect 
at  right  angles. 

Briefly, 

Associated  coaxal  systems  of  circles  are  mutually  orthogonal.  *85 

Neither  '83  nor  '85  requires  modification  in  the  case  in  which  the  limiting 
points  coincide,  provided  that  the  system  presents  no  other  peculiarity,  that 
is,  provided  that  the  plane  and  the  radical  axis  are  anisotropic  and  the  point 

in  which  the  distinctive  common  points  coincide  is  accessible  ;  the  formulae 

used  in  the  proof  of  '85  are  simplified,  but  not  invalidated. 

From  -84  we  can  derive  an  excellent  example  of  the  services  which  complex  geometry 
can  render  to  real  geometry.  From  -29  it  is  evident  that  in  a  real  plane  there  are  no  pairs 
of  associated  segments  except  segments  of  zero  length  in  perpendicular  lines.  But  we  can 

express  '84,  except  for  special  cases,  in  the  form  that 

Jf  A,  B  are  distinct  accessible  points  in  an  anisotropic  plane  and  Q  is  any  accessible  point 

of  the  plane  that  is  neither  on  AB  nor  on  the  perpendicular  bisector  of  AB,  the  circle  through 

Q  about  A  and  B  and  the  circle  through  Q  which  contains  A  and  B  are  perpendicular  at  Q. 

If  the  plane  is  supposed  to  be  real,  this  proposition  remains  significant  and  therefore  is 

true  ;  it  is  a  well-known  and  important  theorem,  but  there  is  no  proof  of  it  in  terms  of  real 

points  alone  which  compares  for  simplicity  with  the  deduction  of  -84  from  the  theorem  of 
Pythagoras. 

For  subsequent  use  we  must  render  the  proof  of  "84  independent  of  reference 
to  the  point  0.  If  A,  P,  C,  R  are  any  four  points  of  space,  then  identically 

=  /  CR*  +  JAC*  +  2JAC.  CR, 

+  AC+CRf 
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hence 

•86  For  any  four  points  A,  P,  C,  R  of  space 

so  that  in  particular 

•87  If  A,  P,  C,  R  are  four  points  in  space,  then 

if  and  only  if  the  steps  AP,  GR  are  perpendicular, 
and  further 

•88  If  the  steps  AP,  CR  are  perpendicular  and  the  step  AC  is  nul,  then 

Pythagoras'  theorem  is  the  special  case  of  '88  in  which  AC  is  not  merely  nul 
but  zero.    To  deduce  '84  we  have  only  to  add  as  a  corollary  to  '88  that 

•89  If  AP  and  CR  are  coplanar  and  perpendicular  and  AC  is  nul,  then  if  a 
circle  through  C  with  centre  P  and  a  circle  through  A  with  centre  R  cut  in  an 

accessible  point  Q  the  tangents  to  these  circles  at  Q  are  perpendicular. 

556.   EXCEPTIONAL  FORMS  OF  COAXAL  SYSTEMS. 

•1.  Having  discussed  the  form  which  a  coaxal  system  of  circles  normally 
assumes  in  an  anisotropic  plane,  we  must  examine  the  exceptional  forms  that 
are  possible,  and  the  nature  of  coaxal  systems  in  an  isotropic  plane.  If  the 
system  contains  any  finite  members,  the  classification  is  made  to  depend  on 
the  relation  of  the  system  to  its  radical  axis. 

The  existence  of  a  central  axis  has  been  deduced  virtually  from  379.  An 

alternative  deduction,  from  5'87,  is  subject  to  different  exceptions  and  is  more 
useful  to  us  at  this  stage.  Let  a  coaxal  system  have  an  accessible  common 
point  C  and  a  unique  radical  axis,  and  let  one  circle  of  the  system  have  an 

accessible  centre  F.  Then  by  4'  12,  if  G  and  Q  are  any  two  accessible  points 
of  the  plane,  the  powers  of  Q  for  the  circles  through  C  with  centres  F,  G  are 

FQ*  -FC\  GQ2-GC2,  and  by  5'87  these  two  powers  are  equal  if  and  only  if  CQ 
and  FG  are  perpendicular.  Taking  Q  in  the  radical  axis,  we  infer  from  5*64 
that  G  is  a  centre  of  a  circle  of  the  system  if  and  only  if  FG  is  perpendicular 
to  the  radical  axis.  If  F,  G,  H  are  three  points  that  are  not  collinear,  the  lines 
FG,  FH  can  not  both  be  perpendicular  to  a  given  line  in  the  plane  FGH 
unless  the  plane  is  isotropic  and  the  given  line  is  nul.  Hence 

•11  If  a  coaxal  system  has  a  unique  radical  axis  and  if  there  is  one  accessible 
common  point,  then  unless  the  plane  of  the  system  is  isotropic  and  the  radical 
axis  is  nul,  the  accessible  centres  of  circles  of  the  system  are  the  accessible  points 

of  a  definite  line,  and  this  central  axis  is  perpendicular  to  the  radical  axis. 

It  follows  from  3'55  that  for  an  anisotropic  plane  the  contrast  between  575 
•12        and  '11  is  that  in  the  later  proposition  °the  radical  axis  may  be  supposed  nul; 



556  CIRCLES  IN  IDEAL  COMPLEX  SPACE  335 

the  central  axis,  whose  existence  is  proved,  is  then  parallel  to  the  radical  axis. 

Combining  '11  with  3*57,  we  find  that 

One  exceptional  form  of  coaxal  system  of  circles  in  an  anisotropic  plane  is        -13 
composed  of  the  circles  with  centres  on  a,  given  accessible  nul  line  and  a  com- 

mon point  that  is  accessible  and  is  not  on  the  central  axis;  the  radical  axis  of 
the  system  is  the  nul  line  through  the  common  point  parallel  to  the  central  axis. 

°The  only  finite  nul  circle  of  the  system  is  formed  of  the  central  axis,  which        -u 
we  will  denote  by  II,  together  with  the  nul  line  complementary  to  II  through 
the  common  point  C.    The  centre  A  of  this  nul  circle  is  the  only  accessible 

limiting  point.   But  °the  circle  formed  of  the  radical  axis  P  and  the  line  at        -15 
infinity  serves  not  only  in  its  ordinary  capacity  as  the  infinite  circle  of  the 
system  but  also  as  one  of  the  nul  circles,  and  the  focal  point  on  the  radical 

axis  acts  therefore  not  only  as  one  of  the  distinctive  common  points  but  also 

as  one  of  the  limiting  points;  this  same  focal  point  is  also  the  centre  of  the 
system,  for  it  is  the  point  common  to  the  radical  axis  and  the  central  axis. 

To  regard  the  present  system  as  degenerating  from  the  usual  form  we  have 

only  to  suppose  the  common  point  D  to  coincide  with  the  focal  point  J  while 
the  line  DJ  assumes  the  position  of  a  definite  accessible  nul  line  II  and  C 
remains  accessible  and  does  not  lie  in  II.  Then  A  is  the  intersection  of  CI 

and  II,  and  DI  is  the  line  at  infinity  and  cuts  GJ  nowhere  except  at  J:  °the  -16 
two  point  pairs  AB,  CD  are  associated  if  B  and  D  coincide  in  one  focal  point 
and  A  and  C  are  collinear  with  the  other  focal  point. 

°The  system  of  circles  to  be  associated  with  the  coaxal  system  having  II  for  '17 
central  axis  and  C  for  common  point  is  the  system  of  the  same  kind  with  P 

for  central  axis  and  A  for  common  point.  As  in  general,  the  radical  axis  and 

the  common  points  of  each  system  are  the  central  axis  and  the  limiting  points 

of  the  other.  Moreover,  5'89  is  valid  to  shew  that  the  two  systems  are 
orthogonal. 

'2.  The  radical  axis  of  a  system,  if  nul,  may  be  an  asymptote  or  a  con- 
stituent of  one  member  of  the  system,  and  therefore  of  every  member;  in 

other  words,  the  centres  of  the  finite  circles  of  the  system  may  belong  to  the 
radical  axis.  From  4rl2,  any  point  on  a  mil  line  through  a  centre  of  an 

ordinary  circle  of  radius  q  has  power  —  q*  with  respect  to  the  circle.  Hence  °if  -21 
two  finite  circles  have  centres  in  a  nul  line  P,  no  point  of  P  is  equipotent  for 

the  two  circles  if  they  are  unequal,  but  every  point  of  P  is  equipotent  for 
them  if  they  are  equal;  that  is,  P  is  the  radical  axis  in  the  latter  case  but  not 

in  the  former.  Hence  °if  in  an  anisotropic  plane  the  central  axis  and  the  *22 
radical  axis  of  a  system  coincide  in  a  nul  line  P,  the  finite  circles  belonging 
to  the  system  are  all  equal ;  P  is  a  constituent  of  the  circles  if  they  are  nul, 

but  not  otherwise.  Further,  if  P  is  a  given  nul  line  and  Q  is  any  accessible 
point  not  on  P,  and  if  q  is  any  given  number,  the  circle  with  centre  Q  and 
radius  q  has  one  of  its  asymptotes  parallel  to  P  and  distinct  from  P  and 
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therefore  cuts  P  in  one  and  only  one  accessible  point  R;  the  circle  with 
centre  R  and  radius  q  is  the  only  circle  with  centre  on  P  and  q  for  a  radius 
which  passes  through  Q.  From  this  it  follows  that 

•23  If  the   radical  axis  of  a  coaxal  system  in  an  anisotropic  plane  is  an 
asymptote  but  not  a  constituent  of  the  finite  circles  of  the  system,  the  finite 
circles  are  those  circles  with  a  given  radius  different  from  zero  which  have  their 
centres  in  the  radical  axis. 

•24  °  In  this  system,  the  distinctive  common  points  and  the  limiting  points  all 
coincide  in  the  focal  point  on  the  radical  axis.  The  only  degenerate  member 

is  formed  of  the  radical  axis  and  the  line  at  infinity. 

The  system  to  be  associated  with  a  system  of  this  kind  must  have  its  own 

radical  axis  and  central  axis  coincident  in  the  line  P  that  plays  the  double 

part  for  the  original  system,  and  must  have  no  accessible  common  points  or 

limiting  points;  that  is,  the  associated  system  must  share  the  peculiarities  of 

the  original  system.  This  condition  does  not  define  the  associated  system,  for 

it  leaves  the  size  of  the  circles  undetermined,  and  we  appeal  to  the  property 

of  orthogonality  to  suggest  a  definition.  If  P,  R  are  two  accessible  points  of 

a  nul  line,  PR2  is  zero,  and  therefore  two  accessible  steps  PQ,  RQ  are  perpen- 

ds dicular  if  and  only  if  PQ*  +  RQ*  is  zero.  For  this  reason  we  °  define  two 
systems  of  the  present  type  to  be  associated  if  they  have  a  common  axis  and 

the  sum  of  the  squared  radii  of  the  finite  members  of  one  and  the  squared 

•26  radii  of  the  finite  members  of  the  other  is  zero.  With  this  definition,  °  asso- 
ciated systems  are  orthogonal. 

If  a  nul  line  P  is  a  constituent  of  a  finite  circle  2,  it  is  a  constituent  of 

every  member  of  the  coaxal  system  which  includes  2  and  has  P  for  radical 

axis ;  that  is  to  say,  every  finite  circle  of  the  system  is  a  nul  circle  with  its 

centre  on  P.  Conversely,  since  through  any  accessible  point  Q  that  is  not  on 

P  there  passes  one  and  only  one  nul  circle  with  P  for  a  constituent,  namely, 

the  circle  formed  of  P  itself  and  the  nul  line  through  Q  that  is  not  parallel  to 

P,  every  nul  circle  with  its  centre  on  P  belongs  to  the  system. 

•27  The  circles  obtained  by  combining  a  definite  nul  line  P  with  the  line  at  infinity 
and  with  the  nul  lines  that  are  complementary  to  P  form  a  coaxal  system  of 
which  P  is  at  once  the  radical  axis  and  the  central  axis. 

•28  ° Every  point  of  the  axis  P  is  both  a  common  point  and  a  limiting  point. 
Every  member  of  the  system  is  degenerate,  but  only  one  member  is  infinite.  The 

system  is  its  own  associate,  and  is  orthogonal  to  itself,  for  if  Q  is  any  accessible 

point  that  is  not  on  the  axis  P,  the  tangent  at  Q  to  the  member  of  the  system 

through  Q  is  the  nul  line  which  combines  with  P  to  form  the  circle,  and  this 

tangent  is  self-perpendicular. 

The  system  of  '27  can  be  regarded  as  degenerating  from  every  one  of  the 
cases  already  treated.  The  circles  of  this  system  have  in  common  distinct 

accessible  points,  but  these  points  are  on  a  nul  line  and  there  are  more  than 
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t  wo  of  them.  All  the  circles  have  multiple  intersection  with  a  line  at  the  same 
accessible  point,  but  the  line  is  nul  and  the  point  is  not  unique.  The  circles 
have  their  centres  in  one  nul  line  and  have  a  common  accessible  point,  but 

tin-re  is  no  common  point  that  is  not  on  the  line  of  centres.  The  circles  are 
equal  and  have  their  centres  in  a  nul  line,  but  they  have  no  common  radius 
other  than  zero.  The  radical  axis  is  asymptotic  to  all  the,  circles,  but  it  is  also 
a  constituent  of  them. 

Taken  together,  '23  and  '27  enable  us  to  remove  one  of  the  restrictions  from 
•11,  for  they  shew  that  if  the  radical  axis  is  itself  accessible,  the  common 
points  may  be  coincident  at  infinity  : 

If  a  coaxal  system  in  an  anisotropic  plane  has  an  accessible  radical  axis  and        -29 
does  not  consist  only  of  infinite  circles,  then  it  has  an  accessible  central  axis  and 
the  two  axes  are  perpendicular. 

•3.  For  an  anisotropic  plane,  the  forms  possible  to  a  coaxal  system  of  circles 
with  a  unique  accessible  radical  axis  have  all  been  described.  There  remain 
two  possibilities  to  consider. 

The  form  of  the  system  which  has  the  line  at  infinity  for  radical  axis  and 

includes  an  ordinary  circle  2  is  shewn  by  5'67 :  since  the  points  which  have  a 
constant  power  with  respect  to  2  are  the  points  at  a  constant  distance  from 
the  centre  of  2,  and  since  there  is  only  one  circle  with  a  given  centre  which 
passes  through  a  given  point, 

A  coaxal  system  of  which  the  line  at  infinity  is  the  only  radical  axis  is  a        -31 
family  of  concentric  circles. 

°The  duplicated  line  at  infinity  is  the  only  infinite  member  of  the  system,  the  -32 
nul  lines  through  the  common  centre  form  the  only  finite  nul  member.  The 
focal  points  are  the  distinctive  common  points,  and  the  common  centre  is  one 
limiting  point,  but  it  proves  useful  to  regard  every  point  at  infinity  also  as  a 
limiting  point  of  the  system,  a  convention  that  we  may  justify  by  recalling 
that  the  duplicated  line  at  infinity  has  all  points  at  infinity  for  centres  and 
has  zero  for  a  radius  about  every  one  of  them. 

The  coaxal  system  described  about  two  infinite  circles  2,  T  has  no  finite 
members.  If  the  point  of  intersection  of  the  distinctive  constituents  of  2  and 
T  is  an  accessible  point  C,  every  circle  of  the  system  consists  of  the  line  at 
infinity  together  with  a  line  through  C,  and  conversely  every  line  through  C 
combines  with  the  line  at  infinity  to  form  a  circle  coaxal  with  2  and  T. 

In  one  form  of  coaxal  system,  the  various  circles  are  formed  by  combining        -33 
the  line  at  infinity  with  the  different  lines  through  a  definite  accessible  point. 

°This  system  has  for  its  distinctive  common  points  the  vertex  C  of  the  pencil  -34 
formed  by  the  distinctive  constituents  and  also  all  the  points  at  infinity  in 
the  plane.  The  only  members  of  the  system  that  can  be  called  nul  are  the 
two  that  involve  the  nul  lines  through  C,  and  although  each  of  these  circles 
has  every  point  at  infinity  for  a  centre,  it  is  only  about  a  focal  point  that  zero 
N.  22 
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is  a  possible  radius,  and  therefore  only  the  focal  points  are  to  be  regarded  as 
limiting  points.  The  system  to  be  associated  with  this  must  have  the  focal 
points  for  its  distinctive  common  points,  and  the  point  C  and  the  points  at 

•35  infinity  for  its  limiting  points;  hence  °the  associated  system  is  formed  of  con- 
centric circles,  the  common  centre  being  C.  And  to  say  that  in  this  case  also 

the  two  systems  are  orthogonal  is  only  to  repeat  that  at  any  point  of  an 
ordinary  circle  the  diameter  and  the  tangent  are  perpendicular. 

One  difficulty  must  not  be  overlooked.  There  is  nothing  unnatural  in 
describing  the  line  at  infinity,  which  is  the  radical  axis  of  a  concentric  system, 
as  the  central  axis  of  the  associated  system  of  infinite  circles.  But  the  grounds 
for  regarding  every  radical  axis  of  the  latter  system  as  a  central  axis  of  the 
former  are  more  obscure,  for  the  lines  through  the  common  centre  are  not 
composed  of  centres  of  finite  circles  of  the  system,  and  it  may  be  urged  that 
the  name  of  central  axis  is  misleading.  Nevertheless,  these  lines  do  acquire 
properties  that  in  general  belong  to  the  central  axis  alone,  since  each  of  them 
is  a  diameter  of  every  finite  circle  of  the  system  and  an  axis  of  symmetry  of 
every  circle.  Since  it  is  not  easy  to  see  in  what  sense  the  line  at  infinity  can 
be  an  axis  of  symmetry  of  some  circles  and  not  of  others,  we  may  be  content 
to  define  a  central  axis  of  a  coaxal  system  as  a  radical  axis  of  the  associated 
system.  With  this  definition,  the  significant  propositions  are  that  in  every 
case  a  central  axis  contains  a  centre  of  every  circle  and  that  in  general  the 
central  axis  is  unique  and  is  composed  of  centres  of  circles  belonging  to  the 

system. 
There  remain  for  consideration  the  cases  in  which  2  and  T  are  infinite  and 

their  distinctive  constituents  intersect  at  infinity.  Then  any  circle  about  2 
and  T  is  an  infinite  circle  whose  distinctive  constituent  has  no  accessible  point 
in  common  either  with  the  distinctive  constituent  of  2  or  with  the  distinctive 
constituent  of  T. 

•36  In  one  kind  of  coaxal  system,  lines  all  parallel  to  each  other  are  combined 
severally  with  the  line  at  infinity  to  form  the  circles. 

Systems  of  this  kind  have  the  duplicated  line  at  infinity  for  one  member,  and 
therefore  share  some  of  the  characteristics  of  systems  of  concentric  circles  as 

well  as  some  of  those  of  systems  of  the  type  of  '33.  The  common  points  of  the 
system  compose  the  line  at  infinity,  and  the  distinctive  constituents,  including 

among  them  the  line  at  infinity,  are  all  radical  axes.  Every  point  at  infinity 

is  a  limiting  point,  for  the  same  reason  as  in  '32 ;  the  distinctive  constituents 
may  form  one  of  the  two  families  of  nul  lines  in  the  plane,  and  then  every 

circle  of  the  system  is  nul,  but  as  a  rule  the  duplicated  line  at  infinity  is  the 

only  nul  member  of  the  system. 

•37  "The  associate  of  a  system  of  this  kind  is  a  system  of  the  same  kind,  chosen 
to  preserve  the  property  of  orthogonality,  that  is,  formed  with  distinctive 

constituents  perpendicular  to  those  of  the  original  system.  The  two  systems 
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coincide  if  and  only  if  the  distinctive  constituents  are  nul.   In  any  system  of 

the  kind  described  in  '36,  "every  line  that  is  perpendicular  to  the  parallel        -38 
constituents  is  a  central  axis. 

•4.  A  contrast  is  to  be  observed  between  the  association  of  segments  and 
the  association  of  coaxal  systems.  If  B  and  D  coincide  in  /,  the  condition  for 

AB  and  CD  to  be  associated  does  not  render  one  of  these,  segments  determinate 

when  the  other  is  given.  Also0 the  focal  segment  //  is  itself  an  associate  of  -41 
any  infinite  segment,  and  is  actually  the  associate  of  any  infinite  segment 
whose  axis  is  not  nul ;  for  this  very  reason,  there  is  no  segment  that  can  be 
called  the  associate  of  /«/.  In  fact,  we  have  to  admit  that 

No  infinite  segment  whose  axis  contains  a  focal  point  has  a  unique  associate.        '42 
But  the  assertions  with  regard  to  associated  coaxal  systems  in  an  anisotropic 

plane  are  perfectly  general : 

In  an  anisotropic  plane,  every  coaxal  system,  whatever  its  form,  has  a  definite  '      -43 
associate; 

°the  common  points  of  each  of  two  associated  systems  are  the  limiting  points        -44 

of  the  other;  ° through  any  ordinary  point,  that  is,  any  point  which  is  neither        -45 
a  focal  point  nor  one  of  these  common  and  limiting  points,  there  passes  one 

and  only  one  circle  of  each  system;  °the  two  circles  through  any  ordinary        '46 
point  have  definite  tangents  there,  and  these  tangents  are  perpendicular. 

•5.  No  attempt  to  adapt  to  an  isotropic  plane  an  argument  dependent  on 
associated  segments  can  be  successful.  If  K  is  the  focal  point  and  AB  is  a 

given  segment,  the  lines  AK,  BK  either  cut  in  K  alone  or  coincide.  If  AB 

is  not  nul,  the  associate  of  A  B  is  an  improper  segment  KK  to  which  it  is 
natural  to  ascribe  for  axis  the  nul  line  bisecting  AB.  If  AB  is  nul,  different 

comparisons  provide  different  suggestions  for  the  associate:  it  would  seem 
absurd  that  KK  in  the  axis  of  AB  should  not  be  one  associate,  or  that  AB 

should  not  be  self-associated,  or  that  the  zero  segment  00  in  any  line  through 
the  midpoint  0  of  AB  should  not  serve. 

But  the  reasoning  in  articles  5'4,  5'5,  5'6,  and  in  the  beginning  of  article  5*7 

is  valid,  and  it  is  unnecessary  for  us  to  reassert  any  of  the  results  from  5'41 

to  5'72.  °In  general,  a  coaxal  system  consists  of  the  circles  through  some  -51 
definite  segment.  The  axis  of  this  segment  is  the  radical  axis  of  the  system, 

and  the  only  infinite  member  of  the  system  is  formed  of  the  radical  axis  and 

the  line  at  infinity.  The  circumstances  to  be  regarded  as  normal  are  those  in 

which  the  radical  axis  is  not  nul.  The  distinctive  common  points  C,  .D  are 
then  accessible  points,  and  the  system  has  one  degenerate  member  that  is 

finite,  namely,  the  ordinary  circle  formed  of  the  nul  lines  through  C  and  D ; 

it  is  only  if  G  and  D  coincide  that  this  finite  degenerate  circle  is  of  zero  radius  - 
about  any  centre  except  the  focal  point  K. 

°  Coaxal  systems  of  infinite  circles  have  the  same  form  in  an  isotropic  plane        -52 
as  in  a  plane  that  is  not  isotropic ;  the  members  of  such  a  system  consist  of 

22—2 
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the  line  at  infinity  together  with  the  various  lines  through  some  definite  point, 
accessible  or  inaccessible.  The  systems  for  which  a  special  investigation  is 

required  are  those  for  which  the  radical  axis  is  unique  but  nul  or  inaccessible. 

We  saw  in  3'9  that  if  vectors  of  reference  are  suitably  chosen  the  typical 
equation  of  a  finite  circle  2  in  an  isotropic  plane  is 

•53  rf  +  (2ff£  +  %fn  +  cr)r  =  0. 

This  circle  is  degenerate  if  g  is  zero,  and  two  circles  2j,  22  are  equal  if  gt  and 

g2  are  equal.    For  r  to  be  a  factor  of  sSj  —  r*22  we  must  have  r  and  *  equal  : 
the  radical  axis  of  the  coaxal  system  defined  by  the  two  circles  21}  22  is 

•54  2(£1-5r2)£+2(/1-/2)7?  +  (c1-C2)T  =  0. 
Hence  follows  a  proposition  fundamental  in  the  classification  of  coaxal  systems  : 

•55  The  radical  axis  of  the  coaxal  system  described  about  two  finite  circles  in  an 
isotropic  plane  is  accessible  and  anisotropic  if  and  only  if  the  circles  are  unequal. 

Since  a  nul  line  which  is  not  a  constituent  of  a  circle  can  not  cut  the  circle 

in  more  than  one  accessible  point,  '55  implies  that 

•56  Two  equal  undegenerate  circles  in  an  isotropic  plane  can  not  have  two  accessible 
points  in  common. 

It  follows  from  '55  that  each  of  the  systems  that  we  have  yet  to  consider  is 
formed,  except  for  its  infinite  member,  of  equal  circles.  Suppose  first  that  a 
system  includes  one  finite  undegenerate  circle  2  and  has  for  radical  axis  an 

accessible  nul  line  P.  Then,  by  3'56,  the  intersection  of  P  with  2  at  K  is 
simple,  and  there  is  one  accessible  common  point  C.  Every  finite  circle  of  the 

system  is  a  circle  through  G  equal  to  2.  Conversely,  if  T  is  a  circle  through 
C  equal  to  2  and  Q  is  any  accessible  point  of  T  other  than  C,  the  circle 

through  Q  belonging  to  the  coaxal  system  is  a  circle  equal  to  T,  and,  by 

"56,  this  circle,  since  it  has  the  two  points  C,  Q  in  common  with  T,  is  T 
itself:  every  circle  through  G  equal  to  2  belongs  to  the  system. 

•57  In  one  form  of  coaxal  system  in  an  isotropic  plane,  the  distinctive  common 
points  are  the  focal  point  and  an  accessible  point  G  ;  the  radical  axis  is  the  nul 
line  through  C,  and  the  circle  formed  of  the  radical  axis  and  the  line  at  infinity 

is  the  only  degenerate  member  of  the  system  ;  the  undegenerate  members  of  the 

system  form  a  complete  family  of  equal  circles  through  the  common  point. 

The  nature  of  a  system  which  contains  an  undegenerate  circle  2  and  has 

the  line  at  infinity  for  radical  axis  is  now  evident  by  mere  exhaustion  :  the 
finite  circles  are  the  circles  parallel  to  2.  This  conclusion  is  confirmed  by  the 

simplest  analysis,  for  if  the  equation  of  2  is 

the  equation  w2  +  %g%T  +  cr2  =  0 
for  variable  values  of  c  represents  both  an  arbitrary  circle  parallel  to  2  and 

an  arbitrary  finite  member  of  the  system  described  about  2  and  the  duplicated 
line  at  infinity. 
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In  an  isotropic  plane,  a  family  of  parallel  undegenerate  circles  forms  together        -58 
with  the  duplicated  line  at  infinity  a  coaxal  system  which  has  the  line  at  infinity 
for  radical  axis  and  the  focal  point  for  the  only  common  point. 

•6.  In  conclusion  we  have  to  suppose  a  coaxal  system  in  an  isotropic  plane 
to  include  an  ordinary  circle,  that  is,  a  circle  formed  of  a  pair  of  accessible 
nul  lines,  and  to  have  a  radical  axis  that  is  either  an  accessible  nul  line  or  the 

line  at  infinity. 

Suppose  first  that  the  radical  axis  is  accessible  and  is  taken  for  the  first 
axis  of  reference.  Then  the  infinite  circle  formed  of  this  axis  and  the  line  at 

infinity  has  the  equation 

TJT  =  0,  -61 
and  if  one  ordinary  circle  of  the  system  is 

T?2  +  2/TjT  +  cr-  =  0,  '62 
any  other  ordinary  circle  of  the  system  is 

7?2+2(/+&)77T  +  CT2  =  0,  '63 

where  A;  is  a  variable  parameter.  Since  the  product  of  the  distances  of  the 
constituents  of  this  circle  from  the  radical  axis,  in  either  aspect  of  the  plane, 
is  c,  a  number  independent  of  k, 

One  form  of  coaxal  system  in  an  isotropic  plane  consists  of  pairs  of  nul  lines        -64 
such  that  the  product  of  the  distances  of  the  lines  in  each  pair  from  a  definite 
nul  line  in  the  plane  is  constant,  the  distances  being  measured  in  the  same  aspect 

of  the  plane;  the  fixed  nul  line  is  the  radical  axis  of  the  system. 

0  A  special  case  occurs  when  the  constant  is  zero;  in  this  case,  which  is  covered  by        -65 
•27  as  well  as  by  '64,  the  radical  axis  is  a  constituent  of  every  circle  of  the  system. 

If  the  radical  axis  is  the  line  at  infinity,  the  infinite  member  of  the  system 

has  the  equation 

r2  =  0,  -66 

and  the  equation  of  a  typical  member  is 

rf  +  2/rjT  +  (c  +  &)  T2  =  0  :  -67 

In  one  form  of  coaxal  system  in  an  isotropic  plane,  the  members  are  pairs  of       -68 
nul  lines  such  that  the  nul  line  midway  between  them  is  fixed;  the  radical  axis 
is  the  line  at  infinity. 

It  must  not  be  overlooked  that  there  is  a  system  in  which  the  line  at  infinity 

is  combined  with  the  nul  lines  of  the  plane ;  every  nul  line,  including  the  line 

at  infinity,  is  a  radical  axis.  But  this  system  is  covered  by  '52  and  is  in  no 
respect  peculiar  to  the  isotropic  plane. 

The  reader  will  recognise  that  '64  and  '68  can  be  expressed  together  in  the  form  that 
the  pairs  of  lines  cut  any  anisotropic  line  in  pairs  of  points  in  involution,  and  that  the 
radical  axis  is  the  nul  line  through  the  centre  of  the  involution.  The  nature  of  involution, 
and  the  intersection  of  coaxal  systems  in  general  with  a  transversal,  are  not  merely  outside 
our  scope  to  discuss,  but  are  protective  matters  that  it  would  be  a  mistake  to  approach 
from  our  metrical  standpoint. 
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561.  ORDINARY  SPHERES;  NUL  SPHERES;  THE  CENTRE  AND  THE  RADII 
OF  AN  ORDINARY  SPHERE  ;  INFINITE  SPHERES. 

•11  '1.    An  ° ordinary  sphere  is  the  locus  of  a  point  in  space  at  a  given  finite 
distance  from  a  definite  accessible  centre. 

The  ideal  vector  (r,  R)  is  the  vector  of  a  step  from  Q  to  some  point  of  the 
ordinary  sphere  with  centre  Q  and  radius  q  if  and  only  if 

•12  /r2  =  q*R\ 

•13  °The  section  of  an  ordinary  sphere  by  a  plane  through  its  centre  is  an 
ordinary  circle  with  that  centre.  If  the  sphere  had  two  centres  P,  Q,  the 
section  by  any  plane  through  the  line  PQ  would  be  an  ordinary  circle  with 
more  centres  than  one,  and  therefore  the  plane  would  be  isotropic ;  since  no 
line  has  the  property  that  every  plane  through  it  is  isotropic, 

•14  An  ordinary  sphere  has  only  one  centre,  and  the  square  of  its  radii  is  unique. 

*2.  Many  of  the  arguments  used  in  the  last  chapter  can  be  adopted  almost 
word  for  word.  For  example,  we  need  only  refer  to  the  proof  of  51'13  and 
51'14  to  realise  that  corresponding  propositions  are  true : 

•21  If  an  ordinary  sphere  has  centre  Q  and  radius  different  from  zero,  an  aniso- 
tropic  line  through  Q  cuts  the  sphere  in  two  distinct  accessible  points,  and  an 
isotropic  line  through  Q  cuts  it  at  infinity  only; 

•22  The  points  of  an  ordinary  sphere  with  centre  Q  and  radius  zero  are  the  points 
belonging  to  the  nul  lines  through  Q ;  an  anisotropic  line  through  Q  cuts  the 
sphere  nowhere  except  at  Q. 

•23  A  sphere  of  zero  radius  is  called  a  °nul  sphere ;  "22  implies  that 

•24  A  nul  sphere  is  a  cone  whose  vertex  is  the  centre  of  the  sphere. 

•31  *3.    From  '21  and  '22,  °an  ordinary  sphere,  whatever  its  centre  and  radius, 
contains  all  the  focal  points  of  space,  and  contains  no  other  points  at  infinity. 
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Also,  with  coordinates  (£,  77,  £,  T)  derived  from  a  vector  frame  as  in  21  '4,  the 
equation  of  the  ordinary  sphere  with  centre  Q  and  radius  q  is 

-32 

which  is  homogeneous  and  quadratic.    Hence 

An  ordinary  sphere  is  a  conicoid  that  contains  all  the  focal  points.  "33 

For  a  conicoid  to  contain  all  the  focal  points  and  no  other  points  at  infinity, 

the  equation  of  the  conicoid  must  be  of  the  form 

kSxz  +  2wfT  +  2077T  +  2w£r  +  dr*  =  0,  -34 

with  k  different  from  zero,  and  this,  for  arbitrary  values  of  £Q,  TJQ,  £Q,  TQ,  is 
equivalent,  if  TQ  is  not  zero,  to 

rj  +  ('XQ  +  ™TQ        T         -35 

Since  neither  k  nor  the  value  of  the  determinant  [[S]]  is  zero,  it  is  possible  to 

satisfy  the  set  of  equations 

kS1  XQ  +  UTQ  =  0,     kS*xq  +  VTQ  =  0,     kS*XQ  +  WTQ  =  ° 

by  a  set  of  values  £Q,  97  Q,  ̂Q,  TQ  such  that  TQ  is  not  zero  and  £Q,  77  Q,  £Q  are  all 

finite.  If  Q  is  the  accessible  point  whose  coordinates  satisfy  '36,  the  equation 
•35  is  equivalent  to  '32  if 

-37 

and  since  this  value  of  <?2  is  finite 

Every  conicoid  that  contains  all  the  focal  points  and  no  other  points  at  in-        '38 
finity  is  an  ordinary  sphere. 

•4.  With  k  different  from  zero,  '34  is  the  general  equation  of  an  ordinary 

sphere.  Writing  ̂ Q'S1XQ  +  77Q^'2%Q  +  ?Q^3XQ  f°r  $XQ2  in  '37  and  substituting 
from  '36  we  can  replace  '37  by 

-41 

and  if  we  express  this  last  formula  in  the  form 

U%Q  +  vr)Q  +  W£Q  +  (d  +  kqz)  TQ  =  0 

and  eliminate  the  coordinates  of  Q  between  '36  and  '42  we  find  that 

The  square  of  the  radii  of  the  sphere  -43 

kSx2  +  2wf  T  +  Zvrjr  +  2w£r  +  dr*  =  0 

is  the  quotient  of  L     R     Q      u 

R  M  P  v 

Q  P  N  w 
u  v  w  kd 
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by  —  k*J'*,  where  J*  denotes  the  value  of IRQ 

R  M  P 

Q  P  N 
•5.  There  are  fewer  varieties  of  spheres  to  be  considered  than  of  circles. 

This  is  not  merely  because  we  are  not  contemplating  isotropic  space,  for  in 

isotropic  space  there  are  planes  with  properties  different  from  those  of  any 
planes  in  anisotropic  space,  and  a  discussion  of  isotropic  space  while  it  would 
involve  new  kinds  of  spheres  would  introduce  also  new  kinds  of  circles. 

•51  The  general  definition  in  anisotropic  space  is  that  a°sphere  is  a  conicoid 
that  contains  all  the  focal  points.    It  follows  that 

•52  The  general  equation  of  a  sphere,  referred  to  a  vector  frame  attached  to  an 
accessible  origin,  is 

kSx"  +  2w£r  +  2vr)T  +  2w£r  +  dr*  =  0. 
If  k  is  not  zero,  the  equation  in  '52  has  already  been  shewn  to  represent  an 
ordinary  sphere.    If  k  is  zero,  the  equation  reduces  to 

•53  (2w£  +  2vrj  +  2w£  +  dr)  T  =  0 

and  represents  the  combination  of  two  planes  of  which  one  is  the  plane  at 

infinity  and  the  other  is  arbitrary;  such  a  combination,  regarded  as  a  sphere,  is 

•54  called  an0  infinite  sphere.  The  infinite  sphere  whose  equation  is  '53  has  the  plane 
•55  2w£  +  2vr)  +  2w£  +  dr  =  Q 

•56        for  its  °  distinctive  constituent. 

562.  SECTIONS  OF  SPHERES-BY  PLANES  ;  THE  FOCAL  CIRCLE  ; 
TANGENTS  AND  TANGENT  PLANES. 

•1.  From  1-31  and  47  '28,  combined  with  53'41,  53'42,  and  53'43,  it  follows 
that 

•11  The  points  common  to  an  accessible  plane  and  an  ordinary  sphere  compose 
in  all  cases  a  finite  circle. 

This  result  is  more  general  than  1*13,  since  the  plane  is  not  required  to  contain 
the  centre  of  the  sphere,  but  it  is  to  be  observed  that  the  circle  is  now  described 

only  as  finite,  not  as  ordinary. 

If  the  plane  is  anisotropic,  the  circle  is  of  course  ordinary  —  there  is  no  finite 
circle  in  the  plane  that  is  not.  We  can  confirm  this  conclusion  by  direct 
calculation.  There  is  a  line  through  the  centre  Q  of  the  sphere  perpendicular 

to  the  plane,  and  because  the  plane  is  anisotropic  this  line  is  not  parallel  to 

the  plane  but  cuts  it  in  a  definite  accessible  point  0.  If  P  is  any  point  of  the 

plane,  the  steps  OP,  OQ  are  perpendicular,  and  therefore  the  equation 

is  equivalent,  for  points  in  the  plane,  to 
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The  curve  of  section  of  an  ordinary  sphere  of  radius  q  by  an  anisotropic       '12 
plane  is  an  ordinary  circle  whose  radii  fiave  the  square  q*  —  w2,  where  n  is  a 
perpendicular  distance  of  the  centre  of  the  sphere  from  the  plane  ;  the  centre  of 
the  circle  is  the  foot  of  the  perpendicular  from  the  centre  of  the  sphere  on  the 

plane. 

•2.  It  follows  from  "12  that  the  ordinary  spheres  which  contain  a  given 
finite  circle  in  an  anisotropic  plane  all  have  their  centres  in  a  definite  line 
perpendicular  to  the  plane.  An  alternative  proof  of  this  proposition  dispenses 
with  the  condition  that  the  plane  is  anisotropic  and  enables  us  to  describe  the 
section  of  a  sphere  by  any  plane.  If  AB,  BC  are  finite  segments  inscribed  in 
u  finite  circle,  with  axes  I,  m  that  are  not  parallel,  it  follows  from  52  12  that 

every- ordinary  sphere  through  AB  has  its 'centre  in  a  definite  plane  perpen- 
dicular to  I  and  that  every  ordinary  sphere  through  BC  has  its  centre  in  a 

definite  plane  perpendicular  to  m ;  since  I  and  m  are  not  parallel,  the  planes 
are  not  parallel  but  intersect  in  an  accessible  line  which  is  perpendicular  to  I 
and  m,  that  is,  to  the  plane  of  the  circle,  and  if  Q  is  any  accessible  point  of 
this  line,  the  sphere  with  centre  Q  which  contains  the  point  B  contains  both 
the  segments  and  therefore  contains  the  circle  through  them. 

The  centres  of  ordinary  spheres  through  a  given  finite  circle  are  the  accessible        '21 
points  of  a  definite  line  perpendicular  to  the  plane  of  the  circle. 

The  line  is  called  the  °axis  of  the  circle. 

For  an  anisotropic  plane  the  latter  part  of  '12  is  reproduced.  But  '21  implies 
also  that 

Every  ordinary  sphere  through  an  ordinary  circle  in  an  isotropic  plane  has        '23 
its  centre  in  the  line  of  the  plane  which  contains  the  centres  of  the  circle  itself, 
and  that 

The  centres  of  ordinary  spheres  through  an  undegenerate  circle  in  an  isotropic        -24 
plane  occupy  a  nul  line  parallel  to  the  plane  but  not  included  in  the  plane. 

We  have  only  to  look  at  these  same  propositions  from  a  different  point  of 
view  to  assert  that 

The  finite  circle  in  which  an  isotropic  plane  cuts  an  ordinary  sphere  is  de-        *25 
generate  or  undegenerate  according  as  the  plane  does  or  does  not  contain  the 
centre  of  the  sphere. 

•3.  Suppose  that  we  are  given  a  finite  circle,  not  necessarily  ordinary,  and 
a  finite  segment  AB  which  has  one  end  A  in  the  circle  but  is  not  inscribed  in 
the  circle.  Then  the  ordinary  sphere  with  centre  Q  which  contains  A  includes 
the  whole  circle  if  and  only  if  Q  is  in  the  axis  of  the  circle,  and  circumscribes  , 
the  segment  if  and  only  if  Q  is  in  the  perpendicular  bisector  of  the  segment. 
The  axis  of  the  circle  is  parallel  to  the  perpendicular  bisector  of  the  segment 
if  and  only  if  the  axis  of  the  segment  is  parallel  to  the  plane  of  the  circle,  that 
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is,  since  the  latter  axis  and  plane  have  the  point  A  in  common,  if  and  only  if 
the  axis  of  the  segment  is  in  the  plane  of  the  circle. 

•31  Given  a  finite  circle  and  a  finite  segment  with  one  end  in  the  circle,  then  unless 
the  axis  of  the  segment  is  in  the  plane  of  the  circle  there  is  one  and  only  one 
ordinary  sphere  ivhich  includes  the  circle  and  is  circumscribed  to  the  segment. 

Since  the  infinite  sphere  through  the  circle  contains  the  segment  if  the  axis 
of  the  segment  is  in  the  plane  of  the  circle  or  if  the  segment  is  infinite,  but 
not  otherwise,  and  since  the  circle  must  be  the  complete  intersection  of  its 

plane  with  any  ordinary  sphere  that  includes  it,  '31  admits  of  an  extension  in 
which  the  restriction  on  the  segment  is  removed.  Moreover,  a  sphere  contains 

an  infinite  circle  if  and  only  if*  the  sphere  is  an  infinite  sphere  whose  dis- 
tinctive constituent  includes  the  distinctive  constituent  of  the  circle,  and  since 

the  addition  of  an  accessible  point  not  on  the  circle  or  of  an  accessible  line 
intersecting  the  distinctive  constituent  of  the  circle  renders  the  distinctive 
constituent  of  the  sphere  determinate  the  restriction  on  the  circle  can  be 
removed  also. 

•32  Given  any  circle,  and  any  segment  which  has  one  end  in  the  circle  but  is  not 
inscribed  in  the  circle  and  has  neither  end  at  a  focal  point,  there  is  one  sphere, 
and  unless  the  circle  is  infinite  and  the  axis  of  the  segment  is  at  infinity  there  is 

only  one  sphere,  which  includes  the  circle  and  is  circumscribed  to  the  segment; 

the  sphere  is  infinite  if  the  circle  or  the  segment  is  infinite,  or  if  the  axis  of  the 
segment  is  in  the  plane  of  the  circle,  but  not  otherwise. 

If  we  separate  the  case  of  a  proper  segment  from  that  of  a  degenerate 

segment  we  have  propositions  simpler  in  form  than  '31  and  '32 : 
•33  Given  a  circle  and  a  point  that  is  neither  a  focal  point  nor  a  point  of  the 

circle,  there  is  one  and  only  one  sphere  that  includes  the  circle  and  contains  the 

point;  the  sphere  is  infinite  if  the  point  is  at  infinity  or  is  in  the  plane  of  the 

circle,  or  if  the  circle  is  infinite,  but  not  otherwise', 

•34  Given  a  circle  and  an  accessible  line  ivhich  has  simple  intersection  with  the 
circle  at  a  point  P  that  is  not  a  focal  point,  there  is  one  and  only  one  sphere 
that  includes  the  circle  and  has  double  intersection  with  the  line  at  P;  the 

sphere  is  infinite  if  the  line  is  in  the  plane  of  the  circle  or  if  the  circle  is  infinite, 
but  not  otherwise. 

From  '33  can  be  deduced  the  fundamental  propositions  relating  to  spheres 
through  given  points : 

•35  Through  any  four  points  a  sphere  can  be  passed  ; 

•36  An  infinite  number  of  spheres  can  be  passed  through  four  given  points  if  the 
points  are  coney  lie,  if  one  of  the  points  is  focal,  or  if  two  of  the  points  are  at 
infinity  ;  except  in  these  cases,  the  sphere  through  the  points  is  unique ; 

*  The  convention  that  renders  this  statement  true  if  the  circle  is  a  duplicated  line  at 
infinity  is  easy  to  frame. 
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Four  points  are  not  on  any  finite  sphere  if  they  are  coplanar  but  are  not  con-  -37 
tained  in  any  finite  circle,  or  if  one  of  them  is  inaccessible  but  not  focal ; 

If  four  points  are  on  more  than  one  infinite  sphere,  every  sphere  through  them  -38 
is  infinite. 

•4.  °If  two  ordinary  spheres  have  the  same  centre,  they  have  no  common        -41 
accessible  points,  and  therefore  no  common  points  except  the  focal  points, 

unless  they  have  the  same  radii.    Hence  °the  sections  of  two  distinct  concentric        '42 
spheres  by  any  plane,  isotropic  or  anisotropic,  are  two  circles  which  have  no 

common  points  except  the  focal  points  of  their  plane.   If  the  plane  is  anise- 
tropic,  the  circles  are  concentric  circles,  as  we  have  seen  already  in  12.    But 
we  now  see  also  that 

The  parabolic  circles  in  which  an  isotropic  plane  cuts  a  number  of  concentric  '43 
spheres  are  parallel  circles. 

°The  circles  in  '43,  being  parallel,  are  equal,  and  their  size  depends  only  on  -44 
the  relation  of  the  plane  to  the  centre  of  the  spheres.  Let  x  be  a  proper 

nul  vector  in  the  plane,  let  y  be  a  unit  vector  in  the  plane,  and  therefore 

perpendicular  to  x,  and  let  z  be  the  vector  of  a  step  from  the  centre  Q  of  a 

sphere  to  some  point  0  of  the  plane.  Then  if  P  is  any  accessible  point  of  the 

plane,  the  vector  QP  can  be  expressed  in  the  form  fx  +  rjy  +  z,  and  since  <^x2 

and  c^xy  are  zero  and  c^y2  is  unity,  the  condition  for  P  to  belong  to  the  sphere 
with  centre  Q  and  radius  q  is 

7?2  +  2£/  xz  +  277/yz+c?z2=22;  -45 
hence  the  circle  is  measured,  with  respect  to  the  nul  vector  x,  by  the  projected 

product  c^xz,  which  is  of  course  independent  not  only  of  the  radius  q  but  of 
the  position  of  0  in  the  plane. 

Ifx  is  a  proper  nul  vector,  the  isotropic  plane  whose  equation  with  respect  to  '46 
a  given  point  Q  is 

£xr=A, 

where  A  is  a  constant  and  r  is  the  vector  of  the  step  from  Q  to  a  variable  point 

of  the  plane,  cuts  every  ordinary  sphere  whose  centre  is  Q  in  a  circle  whose 
measure  with  respect  to  x  is  A. 

If  A  is  zero,  Q  is  in  the  plane  and  the  circle  degenerates  into  the  ordinary 

circle  whose  radii  are  the  radii  of  the  sphere.  That  the  circles  for  different 

spheres  are  in  any  case  parallel  as  well  as  equal  is  apparent  in  '45  from  the 
fact  that  the  coefficient  of  77  as  well  as  the  coefficient  of  £  is  independent  of  q. 

•5.    Since  every  accessible  plane  cuts  any  ordinary  sphere  in  a  circle,  the 
name  of  circle  is  allowed  to  the  aggregate  of  points  common  to  an  ordinary 

sphere  and  the  plane  at  infinity;    the  focal  points  of  space,  the  points  at  ' 

infinity  on  nul  lines,  are  said  to  compose  °the  focal  circle.    This  circle  is  a        -51 
conic,  but  no  definite  centre  or  radii  can  be  ascribed  to  it.    The  focal  points 

of  any  plane  are  the  points  in  which  the  plane  cuts  the  focal  circle,  that  is,  in 
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•52  which  the  line  at  infinity  in  the  plane  cuts  the  focal  circle;  °if  the  line  is  a 
tangent  to  the  circle,  the  focal  points  of  the  plane  coincide  and  the  plane  is 
isotropic. 

No  conic  in  the  plane  at  infinity  except  the  focal  circle  is  given  the  name 
of  circle,  for  no  other  conic  contains  all  the  focal  points  that  are  in  that  plane ; 

•53        the  focal  circle  can  therefore  be  called  °the  circle  at  infinity. 
If  the  focal  circle  had  a  constituent  line  I,  any  accessible  plane  through  I 

would  be  such  that  every  line  in  it  was  nul,  and  the  corresponding  vecplane 

would  include  no  anisotropic  vectors;  we  have  seen  in  415'24  that  no  such 
vecplane  exists.  Hence 

•54  The  focal  circle  is  not  degenerate. 

'6.  For  the  complete  generalisation  of  '11  we  must  examine  not  only  the 
cases  in  which  the  plane  is  inaccessible  but  also  the  cases  in  which  the  sphere 
is  infinite.  If  the  sphere  is  infinite,  any  plane  which  is  neither  the  plane 
at  infinity  nor  the  distinctive  constituent  of  the  sphere  cuts  the  sphere  in  two 
lines  of  which  one  is  at  infinity ;  that  is,  the  section  is  an  infinite  circle  whose 

distinctive  constituent  is  the  line  in  which  the  plane  cuts  the  distinctive  con- 
stituent of  the  sphere.  If  the  plane  is  parallel  to  the  distinctive  constituent 

of  the  sphere,  the  circle  is  a  duplicated  line  at  infinity. 

•61  The  points  common  to  a  plane  and  a  sphere  compose  a  definite  circle  unless 
the  sphere  is  infinite  and  the  plane  is  one  of  its  constituents;  the  circle  is  an 

ordinary  circle  if  the  plane  is  accessible  and  the  sphere  is  finite,  an  infinite 
circle  if  the  plane  is  accessible  and  the  sphere  is  infinite,  and  the  focal  circle  if 

the  plane  is  at  infinity  and  the  sphere  is  finite. 

'7.  If  a  line  has  double  intersection  with  a  sphere  at  a  point  P,  it  has 
double  intersection  at  P  with  the  section  of  the  sphere  by  any  plane  that 
includes  the  line,  and  in  particular  with  the  section  by  a  plane  that  includes 
the  line  and  contains  the  centre  Q.  And  conversely,  if  a  line  has  double 
intersection  at  P  with  this  one  circle  it  has  double  intersection  at  P  with  the 

sphere.  Hence  from  52*35, 
•71  A  line  through  an  accessible  point  P  of  an  ordinary  sphere  whose  centre  is  Q 

has  double  intersection  with  the  sphere  at  P  if  and  only  if  it  is  perpendicular  to 
the  step  QP. 

Two  cases  are  to  be  distinguished,  for  the  line  is  unrestricted  or  is  limited 
to  a  definite  plane  according  as  the  step  is  or  is  not  a  zero  step.  For  the  step 
to  be  a  zero  step,  the  sphere  must  be  a  nul  sphere,  since  the  radii  of  the  sphere 
are  the  lengths  of  the  step,  and  even  for  a  nul  sphere  there  is  no  exception 
unless  P  is  at  the  centre.  It  is  obvious  that  a  line  through  the  centre  of  a 
nul  sphere  has  intersection  with  the  sphere  there  of  order  two  or  of  order 
greater  than  two  according  as  it  is  anisotropic  or  isotropic : 

•72  The  centre  of  a  nul  sphere  is  a  double  point  on  the  sphere,  and  the  tangents 
tftere  are  the  nul  lines  that  compose  the  sphere. 
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And  from  '71, 

Evert/  accessible  point  of  an  ordinary  sphere  that  is  not  nul,  and  every        -;:j 
accessible  point  of  a  nul  sphere  except  the  centre,  is  a  simple  point  of  the  surface ; 

the  tangents  at  a  simple  accessible  point  of  an  ordinary  sphere  compose  the 
j>/<ine  through  that  point  perpendicular  to  the  diameter. 

It  is  sometimes  useful  to  have  for  reference  the  explicit  statement,  implied 
in  '73,  that 

If  an  ordinary  sphere  has  a  double  point,  the  sphere  is  nul  and  the  point  is        -74 
its  centre.    . 

As  for  the  inaccessible  points,  they  are  all  simple.  For  if  K  is  a  focal  point, 
then  because  the  focal  circle  is  undegenerate,  every  line  at  infinity  through  K 
except  the  tangent  to  the  focal  circle  has  simple  intersection  with  the  focal 
circle  at  K,  and  therefore  also  has  simple  intersection  with  any  ordinary 
sphere  there.  The  tangent  at  K  to  the  focal  circle  is  one  line  having  double 
intersection  with  the  sphere  at  K ;  also  the  diameter  QK  has  multiple  inter- 

section with  the  sphere  at  K;  hence  the  tangent  plane  at  K  is  the  isotropic 
plane  through  the  nul  line  QK. 

We  can  verify  this  conclusion  without  reference  to  the  focal  circle.  If  K  is 

a  point  at  infinity  on  an  ordinary  sphere  with  centre  Q,  and  if  P  is  any  ac- 
cessible point,  the  line  PK  is  a  nul  line,  and  the  isotropic  plane  through  PK 

cuts  the  sphere  in  an  undegenerate  parabolic  circle  unless  this  plane  contains 

Q.  Hence  by  53'56  the  line  PK  has  simple  intersection  at  K  with  this  section, 
and  therefore  with  the  sphere,  unless  the  plane  contains  Q,  But  if  the  plane 
does  contain  Q,  the  section  is  an  ordinary  circle  in  the  isotropic  plane,  that  is, 
is  a  pair  of  lines  through  K,  and  the  intersection  of  PK  at  K  is  double  even 
if  PK  is  not  itself  one  of  the  lines. 

The  focal  points  are  all  simple  points  on  any  ordinary  sphere ;  the  tangent        -75 
plane  at  a  focal  point  is  the  isotropic  plane  through  the  nul  line  joining  that 
point  to  the  centre  of  the  sphere. 

It  follows  from  '75  that 

Ordinary  spheres  that  are  concentric  are  asymptotic  to  each  other,  -76 
and  therefore  that 

The  nul  sphere  concentric  with  a  given  ordinary  sphere  is  a  cone  asymptotic        -11 
to  the  surface. 

563.   GENERATORS. 

•1.  If  a  nul  line  has  double  intersection  with  an  ordinary  sphere  at  an 
accessible  point  P,  then  since  the  line  also  has  one  intersection  with  the 

sphere  at  infinity  every  point  of  the  line  belongs  to  the  sphere.  To  say  that 
if  P  is  a  double  point  of  the  sphere  then  every  nul  line  through  P  lies  wholly 

in  the  surface  is  merely  to  associate  T22  with  2*74.  But  if  P  is  any  accessible 
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simple  point  of  the  sphere,  the  tangent  plane  at  P  includes  two  nul  lines, 
distinct  or  coincident,  through  P,  and  these  lines  do  have  double  intersection 
at  P. 

A  different  argument,  more  powerful  because  it  allows  P  to  be  at  infinity, 

has  been  used  already  in  43'3.  If  through  a  point  P  of  a  sphere  there  passes 
a  plane  such  that  every  line  through  P  in  the  plane  has  double  intersection 
with  the  sphere  at  P,  then  the  section  of  the  sphere  by  the  plane  is  a  circle 
such  that  every  line  through  P  in  the  plane  has  double  intersection  with  the 
circle  at  P.  The  circle  is  therefore  degenerate,  and  its  constituents  are  lines 
that  lie  in  the  surface.  Such  lines  are  necessarily  nul  and  accessible,  since 
they  can  have  no  points  at  infinity  that  do  not  belong  to  the  sphere,  that  is, 

•11  that  are  not  focal.  Thus°in  every  plane  through  the  centre  of  a  nul  sphere 
•12  the  nul  lines  through  the  centre  lie  in  the  surface,  and  °the  tangent  plane  at 

any  simple  point,  accessible  or  inaccessible,  of  any  ordinary  sphere  cuts  the 
surface  in  a  pair  of  complementary  nul  lines. 

The  lines  whose  existence  we  have  just  proved,  which  lie  wholly  in  a  given 

•13        ordinary  sphere,  are  called  the  ° generators  of  the  sphere.    Because  these  lines 
are  nul  lines,  it  is  unprofitable  to  study  complex  space  without  paying  atten- 

tion to  the  peculiarities  of  nul  lines  and  isotropic  planes. 

•2.   In  all  that  concerns  generators,  nul  spheres  and  spheres  that  are  not 
nul  have  little  in  common.  What  we  have  to  say  of  generators  on  nul  spheres 
can  be  said  at  once. 

•21  °The  generators  of  a  nul  sphere  are  the  nul  lines  through  the  centre  of  the 
•22        sphere.  °  Every  anisotropic  plane  through  the  centre  cuts  the  surface  in  a  pair 
•23        of  distinct  generators.  °An  isotropic  plane  through  the  centre  touches  the 

surface  at  every  point  of  the  nul  line  through  the  centre  which  it  includes. 

•24        except  at  the  centre  itself.  "Planes  which  do  not  contain  the  centre  cut  the 
sphere  in  undegenerate  circles. 

*3.  If  P  is  an  accessible  point  of  an  ordinary  sphere  that  is  not  nul  and 
that  has  centre  Q  and  radius  q,  the  step  QP  is  not  a  zero  step  since  q  is  not 
zero,  and  the  line  QP  is  not  nul  since  P  is  not  at  infinity.  There  is  a  definite 
plane  through  P  perpendicular  to  QP,  this  plane  is  anisotropic,  P  is  itself  the 
foot  of  the  perpendicular  from  Q  on  the  plane,  and  q,  being  a  distance  from 

Q  to  P,  is  a  perpendicular  distance  from  Q  to  the  plane.  Hence  by  2' 12  the 
section  of  the  sphere  by  this  plane  is  a  circle  of  radius  zero  with  centre  P, 
that  is,  has  the  form  of  the  two  nul  lines  through  P  in  the  plane.  Conversely, 
if  two  nul  lines  /,  m  through  P  both  belong  to  the  surface,  the  section  of  the 
surface  by  the  plane  which  includes  both  lines  has  P  for  centre  and  therefore, 

by  2'12,  QP  is  perpendicular  to  this  plane.  Thus  we  have  a  direct  verification 
of  the  conclusions  already  reached : 

•31  Through  any  accessible  point  P  of  an  ordinary  sphere  with  centre  Q  and 
radii  different  from  zero  there  pass  two  and  only  two  generators  of  the  sphere ; 
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these  are  the  nul  lines  through  P  in  the  plane  perpendicular  to  QP,  and  they 
are  distinct. 

At  a  focal  point,  the  tangent  plane  is  an  isotropic  plane  through  the  centre, 
and  because  this  plane  contains  the  centre  the  section  is  an  ordinary  circle 
with  the  same  radii  as  the  sphere.  If  the  sphere  is  not  nul,  the  circle  is  not 
nul  and  the  nul  lines  that  form  it  are  distinct. 

Through  a  focal  point  K  there  pass  two  and  only  two  generators  of  an  ordinary        -32 
sphere  with  centre  Q  and  radii  different  from  zero ;  these  are  nul  lines  in  the 

isotropic  plane  through  QK,  and  they  are  distinct. 

To  a  certain  extent  '31  and  "32  can  be  combined : 

Through  any  point  of  an  ordinary  sphere  that  is  not  nul,  there  pass  two  and        '33 
only  two  generators ;  these  are  distinct  md  lines  in  the  tangent  plane  at  the  point. 

°In  all  cases  the  generators  determine  both  the  tangent  plane  and  its  point        '34 
of  contact,  but  the  point  and  the  plane  suffice  to  determine  the  generators 
only  if  the  point  is  accessible. 

Since  a  circle  that  contains  all  the  points  of  one  line  is  a  degenerate  circle 

formed  of  this  line  together  with  a  second  line,  the  section  of  a  sphere  by  any 
plane  through  one  generator  consists  of  this  generator  together  with  a  second 

line  ;  if  the  two  lines  have  a  point  P  in  common,  every  line  in  the  plane  which 
passes  through  P  has  double  intersection  with  the  sphere  at  P,  and  therefore 

the  plane  is  the  tangent  plane  at  P  and  the  two  lines  are  the  two  generators 
through  P. 

Any  plane  through  one  generator  of  an  ordinary  sphere  that  is  not  nul  includes       *35 
a  second  generator  distinct  from  the  first,  and  is  the  tangent  plane  at  the  point, 
accessible  or  inaccessible,  in  which  these  two  coplanar  generators  intersect;  the 

two  generators  together  form  the  complete  intersection  of  the  plane  with  the  sphere. 

•4.  Not  only  are  the  two  generators  through  any  one  point  distinct,  but 

it  is  possible  by  means  of  '35  to  divide  all  the  generators  of  the  sphere  into 
two  distinct  families.  Let  a  be  a  given  generator,  and  P  a  point  of  the  sphere 
that  is  not  on  a.  The  plane  through  a  which  contains  P  includes  a  second 

generator  p  distinct  from  a.  Since  the  two  generators  a,  p  together  form  the 
complete  intersection  of  the  plane  with  the  sphere,  the  point  P  which  is 

common  to  the  plane  and  the  sphere  and  is  not  a  point  of  a  is  necessarily  a 

point  of  p;  that  is,  p  is  one  of  the  generators  through  P.  Also  p,  being 
coplanar  with  a,  intersects  a.  But  the  second  generator  through  P  is  not 
identical  with  p,  since  the  two  generators  through  P  are  distinct,  and  is  not 

identical  with  a,  since  P  belongs  to  one  of  the  lines  and  not  to  the  other ; 

hence  this  second  generator  has  points  that  do  not  belong  to  either  a  or  p, 
and  these  points,  since  they  belong  to  the  surface,  are  not  in  the  plane  whose  , 

complete  intersection  with  the  sphere  consists  of  the  lines  a  and  p.  It  follows 

that  the  second  generator  through  P  does  not  lie  in  the  plane  through  P  and 
a,  and  therefore  does  not  intersect  a. 
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•41  If  a  is  any  generator  of  an  ordinary  sphere  that  is  not  nul,  and  P  is  any 
point  of  the  sphere  that  is  not  on  a,  then  one  of  the  generators  through  P  inter- 

sects a  and  the  other  does  not. 

Next  let  a,  b  be  two  generators  that  do  not  intersect,  and  let  p  be  a 

generator  distinct  from  b  which  intersects  b.  If  P  is  the  point  in  which  p 
cuts  b,  then  that  one  of  the  generators  through  P  which  intersects  a  is  not  b 
and  therefore  is  p : 

•42  If  two  generators  of  an  ordinary  sphere  that  is  not  nul  do  not  intersect,  the 
generators  which  intersect  one  of  them  are  the  generators  which  intersect  the  other. 

Note  also  that  if  two  distinct  generators  p,  q  both  intersect  a  generator  a 

distinct  from  them  both,  then  p  and  q  can  not  intersect  each  other  in  a  point 
of  a,  since  there  can  not  be  three  generators  through  one  point,  and  can  not 
intersect  each  other  in  a  point  that  is  not  on  a,  since  of  the  two  generators 
through  any  such  point  one  does  not  intersect  a.  In  short, 

•43  If  two  generators  of  an  ordinary  sphere  that  is  not  nul  both  intersect  a  third 
generator,  they  do  not  intersect  each  other. 

Suppose  now  that  p,  q  are  two  generators  each  of  which  intersects  a  given 
generator  a,  but  does  not  coincide  with  a,  and  that  m,  n  are  two  generators 

each  of  which  either  coincides  with  a  or  does  not  intersect  a.  Then  by  '43 

p  does  not  intersect  q,  by  '42  both  p  and  q  intersect  both  m  and  n,  and  there- 
fore by  *43  m  does  not  intersect  n.  That  is  to  say, 

•44  The  generators  of  an  ordinary  sphere  that  is  not  nul  fall  into  two  mutually 
exclusive  families  such  that  every  member  of  each  family  cuts  every  member  of 
the  other  but  no  two  members  of  either  family  cut  each  other. 

•45        Briefly,  "generators  do  or  do  not  intersect  according  as  they  belong  to  different 
families  or  to  the  same  family. 

It  is  an  immediate  deduction  from  47 '29  that  in  complex  space  all  conicoids 
have  generators,  and  one  reason  why  the  treatment  of  conicoids  in  general 

and  of  spheres  in  particular  is  in  many  respects  easier  for  complex  space  than 
for  real  space  is  that  the  existence  of  these  lines  renders  available  both 

geometrical  arguments  and  analytical  devices  which  in  elementary  geometry 

are  valid  only  for  hyperboloids.  In  *3  the  nul  character  of  the  generators  was 
assumed,  but  the  whole  of  '4  will  be  recognised  to  be  verbally  indistinguishable 
from  a  discussion  of  the  generators  of  an  ordinary  hyperboloid,  and  to  be 

verbally  applicable  to  the  general  conicoid  in  complex  space. 

•51  *5.    If  a  is  any  generator  of  an  ordinary  sphere  that  is  not  nul,  °an  individual 
generator  of  the  family  that  does  not  contain  a  may  be  identified  by  means 
of  the  point  in  which  it  intersects  a.  This  point,  which  we  will  denote  by  R, 

can  not  be  determined  by  distances  along  a,  for  a  is  nul,  but  it  can  be  deter- 
mined by  the  ratios  of  vectors.  For  example,  if  a  is  a  given  proper  vector  in 

the  vecline  of  a  and  A  is  a  given  point  of  a,  the  vector  of  the  step  AR  is  a 



563  SPHERES  IN  IDEAL  COMPLEX  SPACE  353 

definite  multiple  ra  of  a,  and  the  number  r  characterises  the  point  R  and  the 

generator  distinct  from  a  through  R.  Or  again,  if  Alt  A2  are  given  distinct 
points  of  a,  the  vectors  of  Al R  and  RAZ  are  collinear,  and  two  numbers  having 
the  ratio  of  these  two  vectors  can  be  used  as  homogeneous  coordinates  for  R. 

0  There  is  no  reason  why  a  variable  generator  that  intersects  a  should  not  '52 
be  identified  directly  by  means  of  the  plane  through  a  in  which  it  lies,  instead 

of  by  means  of  its  intersection  with  a.  The  plane  can  be  determined  by  means 
of  the  point  in  which  it  cuts  some  line  not  coplanar  with  a.  To  suppose  this 

line  itself  to  be  a  generator  b  is  merely  to  identify  the  variable  generator  by 
its  intersection  with  b  instead  of  by  its  intersection  with  a.  Thus  the  second 

method  includes  the  first  as  a  special  case.  It  is  essentially  the  more  adaptable 

method,  but  properties  of  the  sphere  are  likely  to  take  a  far  more  elegant 
form  if  associated  with  a  line  related  intrinsically  to  the  sphere  than  if 
developed  by  means  of  an  arbitrary  line  in  space. 

To  say  that 

Through  every  point  of  an  ordinary  sphere  that  is  not  nul  passes  one  and        -53 
only  one  member  of  each  family  of  generators 

is  merely  to  call  attention  to  the  fact  that  every  generator  belongs  to  one  of 
the  two  families.  But  any  method  of  identifying  the  two  generators  in  their 
respective  families  is  implicitly  a  method  of  identifying  their  point  of  inter- 

section. Thus  the  considerations  of  the  last  two  paragraphs  lead  to  various 
plans  for  associating  with  each  point  on  the  sphere  a  definite  pair  of  numbers 
to  serve  as  coordinates,  in  an  extended  sense  of  the  word,  or  even  a  pair  of 
pairs  of  numbers  to  serve  as  homogeneous  coordinates.  For  developments  the 
reader  must  look  elsewhere;  should  mathematics  make  no  aesthetic  appeal 
to  him,  he  will  still  find  that  the  ideas,  far  from  remaining  abstract,  yield 

immediately  in  Darboux's  skilful  hands  the  practical  formulae  of  spherical trigonometry. 

N. 
23 
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POINTS  AS  LIMITS  IN  COMPLEX  SPACE  AND  IN  IDEAL  SPACE 

FOR  elementary  geometry,  the  p-neighbourhood  of  a  point  P  is  the  aggregate 
of  points  at  distances  numerically  less  than  p  from  P,  and  P  is  a  limit  of  a 

set  of  points  F  if  every  existent*  neighbourhood  of  P  includes  some  member 
of  F  other  than  P. 

If  we  attempt  to  apply  these  definitions  either  to  complex  space  or  to  ideal 

space  simply  by  using  the  modulus  of  a  distance,  we  meet  with  difficulties. 

For  complex  space,  the  p-neighbourhood  of  P  would  include  every  point  on 
every  mil  line  through  P,  and  if  Q  is  any  member  of  a  set  F,  every  point 
except  Q  on  any  nul  line  through  Q  would  satisfy  the  definition  of  a  limit  of 

F.  For  ideal  space,  a  finite  neighbourhood  of  a  point  at  infinity  would  not 

include  any  accessible  points,  unless  the  point  was  focal,  and  there  would  be 

no  analytical  interpretation  of  our  instinctive  conception  of  a  point  at  infinity 
as  a  limit  of  a  set  of  accessible  points.  One  natural  method  of  avoiding  the 

difficulty  for  actual  complex  space  can  be  modified  to  apply  to  ideal  space, 
real  or  complex. 

We  require  first  to  associate  with  any  pair  of  points  some  number  which  is 

zero  if  and  only  if  the  points  coincide.  Given  a  finitely  numerous  set  of 

numbers  (plt  p2,  ...  pn\  real  or  complex,  let  the  greatest  among  the  moduli 
I  Pi  \>  \Pn\>  •••  \Pn\  be  called  the  number  dominating  the  set  and  be  denoted  by 

\p\.  And  if  (p1}  p2,  .  .  .  pn),  (q1}  q2,  ...  qn)  are  ordinally  similar  sets  of  numbers, 

let  the  number  dominating  the  set  of  differences  (Pi  —  qi,pz  —  qz,  •••  pn  —  qn) 

be  called  the  gap~\  between  the  sets  of  numbers  and  be  denoted  by  \p  —  q\. 
The  number  dominating  a  set  is  zero  if  and  only  if  every  constituent  of  the 

set  is  zero  ;  the  gap  between  two  sets  is  zero  if  and  only  if  the  sets  coincide. 
If  a  finite  vector  r  is  referred  to  a  vector  frame  xyz,  the  number  that 

dominates  the  set  of  coefficients  (£r,  i)r,  £r),  a  number  that  we  denote  by  |  ^r  |, 
is  zero  only  if  the  vector  is  zero,  not  if  the  vector  is  nul  ;  we  will  call  |  ̂r  the 
number  that  dominates  r  with  reference  to  xyz.  If  r  is  the  vector  of  a  step 

PQ,  the  number  |  %r  |  may  be  called  the  gap  between  P  and  Q  relatively  to  xyz. 

*  In  real  space,  the  zero-neighbourhood  of  P  has  no  members,  and  in  this  sense  is 
non-existent. 

t  For  the  purposes  of  this  note,  Jordan's  '  ecart  ',  which  is  the  sum 

could  be  used  instead  of  the  gap  as  here  denned.  But  it  is  the  gap  that  lends  itself  to  the 
extensions,  of  which  every  day  shews  more  clearly  the  importance,  in  which  the  number  of 
variables  is  not  restricted  to  be  finite. 
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It  is  impossible  to  express  the  number  that  dominates  a  vector  with  reference 
to  one  frame  in  terms  of  the  number  that  dominates  the  same  vector  with 

reference  to  another  frame.  But  it  follows  from  the  ordinary  formulae  of 

transformation,  given  in  355*43  on  p.  184  above,  that  if  the  greatest  among 
the  moduli  of  the  nine  elements  in  a  scheme  giving  the  coefficients  of  the 

vectors  x,  y,  z  in  a  frame  x°y°z0  is  m,  the  dominating  number  j  ^°r  |  is  not 

greater  than  3m  |  %r  .  Similarly  if  ra°  dominates  the  reciprocal  scheme,  |  XT  | 
is  not  greater  than  3m°  |  %°r  | .  Hence  there  are  definite  numbers  /,  g,  dependent 
only  on  the  two  frames,  such  that  for  any  vector  r,  the  number  |  ^°r  |  is  some- 

where in  the  interval  from/]  %r  \  to  g  %r  |. 
If  a  class  of  finite  vectors  and  a  vector  frame  xyz  are  given,  the  numbers 

each  of  which  dominates  one  or  more  of  the  vectors  form  a  definite  class,  and 

this  class,  whether  finitely  numerous  or  not,  has  a  lower  bound  I,  which  may 
be  either  an  isolated  member  of  the  class,  or  an  attained  lower  limit,  or  an 

unattained  lower  limit.  From  the  result  of  the  last  paragraph,  it  follows  that 

iff  and  g  have  the  same  values  as  there,  the  lower  bound  1°  with  reference  to 
a  frame  x°y°z°  is  necessarily  in  the  interval  from  //  to  gl.  Hence  1°  is  zero  if 
and  only  if  I  is  zero  : 

If  a  class  of  vectors  is  such  that  the  lower  bound  of  the  class  of  numbers 
dominating  its  members  with  respect  to  one  frame  of  reference  is  zero,  then  the 
lower  bound  of  the  class  of  numbers  dominating  its  members  with  respect  to  any 
other  frame  is  zero  also. 

In  general,  a  change  in  the  frame  of  reference  may  change  the  character  of 

the  lower  bound  of  the  class  of  dominating  numbers  associated  with  a  given 
class  of  vectors,  but  if  the  lower  bound  is  zero  such  a  change  is  impossible. 
For  zero  is  a  member  of  the  class  of  numbers  dominating  a  class  of  vectors 

with  reference  to  a  particular  frame  if  and  only  if  the  class  of  vectors  has  the 
zero  vector  for  one  of  its  members,  and  in  this  exceptional  case  zero  belongs 

to  the  class  of  dominating  numbers  for  any  frame  of  reference.  Hence 

If  the  class  formed  of  the  numbers  that  dominate  the  vectors  belonging  to  a 

given  class  with  reference  to  some  one  vector  frame  has  zero  for  an  unattained 

lower  limit,  the  class  formed  of  the  numbers  that  dominate  the  vectors  belonging 

to  the  same  class  with  reference  to  any  other  vector  frame  also  has  zero  for  an 
unattained  lower  limit. 

Now  let  C  denote  a  class  of  vectors  of  which  the  zero  vector  is  a  member,  but 

not  the  only  member,  and  let  C'  denote  the  class  consisting  of  all  the  members 
of  C  except  the  zero  vector.  Whatever  the  frame  of  reference,  zero  is  the  lower 
bound  of  the  class  of  numbers  dominating  members  of  C ;  but  zero  is  a  limit 
as  well  as  a  member  of  this  class  only  if  it  is  the  lower  bound  of  the  class  of 

numbers  dominating  members  of  C",  and  this  is  a  condition  independent  of 
the  choice  of  frame.  Thus 

If  the  class  of  numbers  dominating  the  members  of  a  given  class  of  vectors 
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with  reference  to  one  frame  has  zero  for  a  limit,  the  class  of  numbers  dominating 
the  members  of  the  same  class  of  vectors  with  reference  to  any  other  frame  also 
luts  zero  for  a  limit. 

We  are  now  in  a  position  to  frame  a  definition : 

The  zero  vector  is  a  limit  of  a  given  set  of  finite  vectors  if  when  the  vectors 

are  referred  to  some  one  vector  frame  the  numbers  which  dominate  them  form 
a  class  of  which  zero  is  a  limit. 

The  proposition  that  concludes  the  preceding  paragraph  implies  that  with 
this  definition, 

If  a  given  set  of  finite  vectors  has  the  zero  vector  for  a  limit,  then  if  the  vectors 
are  referred  to  any  vector  frame  whatever,  the  numbers  which  dominate  them 

form  a  class  of  which  zero  is  a  limit. 
We  add  that  a  set  C  of  vectors  is  said  to  have  a  vector  s  for  a  limit  if  the  set 

whose  typical  member  is  obtained  by  subtracting  s  from  the  typical  member 
of  C  has  the  zero  vector  for  a  limit. 

Returning  from  vectors  to  points,  we  say  that  an  actual  or  accessible  point 
P  is  a  limit  of  a  set  F  of  actual  or  accessible  points  if  the  set  of  vectors  each 
of  which  is  the  vector  of  the  step  from  P  to  some  member  of  F  has  the  zero 
vector  for  a  limit.  Reduced  to  more  elementary  terms,  this  definition  is 

equivalent  to  the  following  theorem  : 

The  point  P  is  a  limit  of  the  set  F  if  given  a  vector  frame  of  reference  and 
an  arbitrary  signless  number  p  other  than  zero,  independent  of  the  frame,  there 

is  some  member  of  F  distinct  from  P  separated  from  P  relatively  to  the  given 
frame  by  a  gap  that  is  less  than  p. 

In  other  words,  P  is  a  limit  of  F  if  given  an  attached  frame  Oxyz  and  an 

arbitrary  number  p  that  is  not  zero,  there  is  always  some  member  Q  of  F 

such  that  the  moduli  %P—  £Q|,  \r)p  —  V)Q\,  £?  —  £Q  |  are  all  less  than  p  but 
are  not  all  zero.  This  is  only  the  result  at  which  it  is  natural  to  aim,  but  it 

has  been  necessary  to  establish  that  it  is  not  possible  for  the  result  to  hold 
for  some  frames  of  reference  and  not  for  others. 

To  be  of  practical  value  in  analytical  geometry,  a  discussion  of  limits  that 

is  designed  to  be  applicable  equally  to  accessible  and  to  inaccessible  points 

must  admit  of  being  put  into  relation  with  the  theory  of  homogeneous  co- 
ordinates. And  we  recognise  at  the  outset  that  if  coordinates  are  homogeneous, 

the  simple  gap  between  a  set  of  coordinates  of  a  point  P  and  a  set  of  co- 
ordinates of  a  point  Q  can  not  be  of  fundamental  importance,  for  the  coordinates 

individually,  and  therefore  the  gap  between  two  sets  of  them,  can  be  made 
arbitrarily  small  without  ceasing  to  refer  to  the  same  two  points  P,  Q,  while 

on  the  other  hand  the  gap  between  two  different  sets  of  coordinates  of  one 
given  point  with  reference  to  a  given  tetrahedron  is  not  zero. 

Let  e  denote  as  in  Chapter  V  4  an  umbra  of  the  coordinates  with  reference 
to  a  definite  tetrahedron.  Then  |  ep  \  is  the  greatest  among  the  numbers  |  o.p 
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!  /8p  | ,  I  YP  | ,  |  8p  | ,  and  for  a  given  pair  of  numbers  h,  k,  \  hep  —  keq  \  is  the  gap 
between  the  set  of  numbers  (/mp,  /t/3/>,  /t7p,  hSp)  and  the  set  of  numbers 

(kaQ,  k@Q,  kyq,  kSQ). 
Although  with  assigned  values  of  the  coordinates  of  P  and  Q  the  gap 

\hep- keq\  may  be  made  to  assume  any  value  whatever  by  an  appropriate 
choice  of  h  and  k,  this  gap  is  not  arbitrary  to  the  same  extent  when  k  alone 

is  allowed  to  change.  To  prove  this,  let  us  consider  the  gap  |  ep  —  keq  \  as  a 

function  of  k.  Since  for  any  two  values  k',  k"  of  k  we  have 

|  6p  —  k'eq  I  ~  I  €p  —  k"€Q  I  ^    k'  —  k"  \  \  €Q  I , 

I  ep  —  keQ  |  is  a  continuous  function  of  k.  Hence  for  variation  of  k,  this  gap 
has  a  lower  limit  which  is  either  approached  as  k  tends  in  some  manner  to 

infinity  or  attained  for  one  or  more  finite  values  of  k.  The  first  alternative  is 

impossible,  since  the  gap  tends  to  infinity  with  \k\.  It  follows  that  the  lower 

bound  of  the  class  of  numbers  of  which  |  ep  —  keq  \  is  the  typical  member  is  a 
minimum  that  is  attained.  In  general  there  is  only  one  critical  value  of  k  for 

which  the  minimum  is  reached,  but  this  uniqueness  is  irrelevant  to  our  purpose 

and  we  will  not  delay  to  establish  it. 

The  minimum  of  j  ep  —  &CQ  j  may  be  zero.  That  is,  there  may  be  a  number 
ke  such  that  simultaneously 

ap  -  kcdQ  =  0,     /3p  —  kc@Q  =  0,     7p  —  kcyq  =  0,     8P  —  kc8Q  =  0. 
But  this  set  of  equations,  which  implies  incidentally  that  in  this  case  kc  is  not 

zero,  expresses  that  Q  is  the  same  point  as  P.    Since  zero,  if  it  is  a  value  of 

|  ep  —  keQ\,  is  necessarily  the  minimum,  the  converse  also  is  true. 

The  minimum  of  ep  —  keq,  regarded  as  a  function  of  k,  is  zero  if  and  only 
if  Q  coincides  with  P. 

This  result  proves  that  to  say  for  a  given  specification  of  P  and  a  given 

point  Q  that  there  are  some  sets  of  coordinates  of  Q  that  are  separated  from 
the  given  set  of  coordinates  of  P  by  gaps  less  than  an  assigned  number  p  is 
to  make  a  statement  that  is  significant  provided  only  that  Q  is  distinct  from 

P.  Hence  further,  to  say  that  a  set  of  points  F  is  such  that  some  member  of 
F  distinct  from  P  has  some  sets  of  coordinates  that  are  separated  from  a  given 

set  of  coordinates  of  P  by  gaps  less  than  an  assigned  number  p  is  to  describe 
a  relation  of  P  to  F  that  is  not  the  less  definite  because  it  involves  both  the 

tetrahedron  of  reference  and  the  particular  load  attached  to  P. 

In  other  words,  if  from  a  given  set  of  coordinates  of  a  point  P  and  a  given 

set  of  points  F  is  formed  the  class  of  numbers  each  of  which  is  the  gap  between 
the  set  of  coordinates  of  P  and  some  set  of  coordinates  of  some  member  of  F 

distinct  from  P,  the  lower  bound  of  this  class  of  numbers  is  not  necessarily 

zero,  and  if  this  bound  is  zero  it  is  an  unattained  limit.  Arguing  from  formulae 
of  transformation  for  tetrahedral  coordinates,  that  if  the  gap  between  two  sets 

of  coordinates  relative  to  one  tetrahedron  is  g  then  the  gap  between  the 

corresponding  sets  relative  to  another  tetrahedron  is  not  greater  than  4>mg, 
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where  m  is  a  constant  depending  only  on  the  two  tetrahedra,  we  deduce  that 
if  the  class  of  numbers  derived  from  P  and  F  by  means  of  one  tetrahedron 

has  zero  for  its  lower  bound,  then  the  class  derived  from  P  and  F  by  means 
of  any  other  tetrahedron  also  has  zero  for  its  lower  bound. 

There  is  still  a  tacit  reference  to  a  particular  set  of  coordinates  of  P.  But 

if  \€p  —  keq  |  is  I,  then  |  hep  —  hkeq  \  is  \h\l\  hence  if  the  lower  bound  of  the 
class  of  gaps  derived  from  ep  and  F  is  g,  the  lower  bound  of  the  class  derived 

from  hep  and  F  is  |  h  \g,  and  if  either  bound  is  zero,  so  also  is  the  other,  since 
h  must  not  be  zero. 

A  point  P  is  a  limit  of  a  set  of  points  F  if  given  any  one  tetrahedron  of 

reference,  and  any  one  set  of  coordinates  of  P  in  that  tetrahedron,  the  class  of 
numbers  each  of  which  is  the  gap  between  the  given  set  of  coordinates  of  P  and 
some  set  of  coordinates  relative  to  the  given  tetrahedron,  of  some  member  of  F 
distinct  from  P,  has  zero  for  its  lower  bound. 

In  other  words,  given  any  number  p  other  than  zero,  it  must  be  possible  to 

find  some  specification  («Q,  /3Q,  yq,  8Q)  of  some  member  Q  of  F  distinct  from 

P  such  that  ep  —  CQ  \  is  less  than  p.  And  if  this  condition  is  satisfied  with  any 
one  set  of  coordinates  of  P  in  any  one  tetrahedron,  then  it  is  satisfied  also  with 
any  set  of  coordinates  in  any  tetrahedron. 

It  will  be  noticed  that  the  condition  that  Q  is  to  be  distinct  from  P  is  not 

avoided  in  this  method  of  presenting  the  result,  for  if  P  is  a  member  of  F, 

zero  is  for  that  reason  alone  a  limit  of  the  class  of  gaps  that  has  been  used, 

and  can  not  be  an-  isolated  minimum.  For  this  reason,  it  is  perhaps  worth 
while  to  associate  with  P  and  Q  not  every  gap  of  the  form  |  e/>  —  keq  \  but  only 
the  least  gap  of  this  form.  If  to  emphasise  that  this  minimum  is  not  derived 
symmetrically  from  the  two  points  and  depends  on  the  actual  coordinates  in 

use  for  P  we  call  the  minimum  the  gap  from  e/>  to  Q,  the  validity  of  the  earlier 
arguments  is  restored,  with  the  result  that 

The  point  P  is  a  limit  of  the  set  F  if,  given  one  tetrahedron  of  reference  and 

one  set  of  coordinates  of  P  in  that  tetrahedron,  the  class  of  numbers  each  of 

which  is  the  gap  from  ep  to  some  member  of  I*  has  zero  for  a  limit. 

But  in  practice  it  may  be  tiresome  as  well  as  superfluous  to  find  the  minimum 
of  |  ep  —  keq  | . 

If  the  gap  from  eP  to  Q  is  7,  the  gap  from  hep  to  Q  is  |  h  \  7.  Hence  the 
quotient  y/\  ep  is  independent  of  the  load  attached  to  P.  Since  |  ep  is  itself 

the  value  of  •  ep  —  keq  \  when  k  is  zero,  ep  |  can  not  be  less  than  the  minimum 
of  |ep  —  keq\.  That  is,  the  quotient  j/  eP\  is  a  number  which  can  be  used  to 
measure,  relatively  to  a  given  tetrahedron  of  reference,  the  gap  from  P  to  Q ; 
this  number  is  independent  of  any  load  attached  to  either  point,  it  is  zero  only 
if  the  points  coincide,  and  unity  only  if  the  critical  value  of  k  is  zero,  and  in 

every  other  case  the  number  has  a  definite  value  between  zero  and  unity. 
The  number  is  however  not  symmetrical  as  between  P  and  Q,  and  its  value 
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in  relation  to  one  tetrahedron  is  not  deducible  from  its  value  in  relation  to 
another. 

As  an  example  of  the  application  of  the  definition  of  a  limit,  consider  the  set  of  points 
of  which  the  typical  member  Qn  has  in  a  frame  Oxyz  the  coordinates  (4  +  3?i,  5+?i,  6+2n), 
for  an  integral  value  of  n  ;  this  is  a  set  of  points  uniformly  spaced  on  a  line.  With  homo- 

geneous coordinates,  the  typical  set  of  coordinates  is  (4  +  3n,  5  +  »,  6  +  2»,  1),  and  one  loaded 
point  at  infinity  on  the  line  is  (3,  1,  2,  0),  which  does  not  belong  to  the  set.  The  gap  from 
the  loaded  point  at  infinity  to  Qn  is  the  smallest  value  possible  for  the  greatest  among  the 
numbers 

|3-(4+3»)*|,     |l-(5  +  »)A|,     |2-(6  +  2»)A|,     \-k\. 

It  is  not  necessary  to  determine  this  value,  since  it  is  certainly  not  greater  than  the  greatest 
among  the  four  numbers  that  correspond  to  the  particular  value  1/n  of  k,  which  are  4/|  n  |, 
5/|  n  |,  6/|  n  \  ,  l/\n\.  That  is,  the  gap  is  not  greater  than  6/|  n  |,  and  therefore  the  class  of 
gaps  has  zero  for  a  limit,  and  the  class  of  points  has  the  point  at  infinity  for  a  limit. 
Actually,  for  any  positive  value  of  n  the  critical  value  of  k  is  4w/(4%  +  9)  and  the  gap  is 

If  we  transform  coordinates  (£,  17,  £)  in  a  vector  frame  into  homogeneous 
coordinates  (£,  rj,  £,  T),  we  have  for  accessible  points  two  definitions  of  a  limit 
that  are  not  literally  identical  ;  if  P  is  a  given  accessible  point  and  Q  a  variable 

point  that  belongs  to  a  set  F  but  is  distinct  from  P,  then  according  to  one 
definition,  P  is  a  limit  of  F  if  zero  is  a  limit  of 

i£p  —  ZQ>  'np  —  'nq,  £p  —  £Q|, 
but  according  to  the  other,  it  is  sufficient  if  zero  is  a  limit  of 

£p-kaQ,r)P-kftQ<  fr-kyq,  l-kSQ\, 

where  k  is  variable,  SQ  is  zero  if  Q  is  at  infinity,  and 

«Q  :  £Q  :  7Q  :  SQ  =  £Q  :  *?Q  :  £Q  :  1 

if  Q  is  accessible.   In  proving  that  the  second  condition  does  imply  the  first, 
it  is  not  necessary  to  assume  the  multiplicative  axiom. 

Let  the  set  F  be  divided  into  two  parts  Tl}  F2,  of  which  the  second  contains 
all  the  points  of  F  at  infinity  and  also  any  accessible  point  for  which 

we  shew  first  that  |  ep  —  keq  ̂ .\  for  every  point  Q  of  F2  and  for  every  value 

of  k.  If  Q  is  at  infinity,  then  j  1  —  &8Q  |  =  1,  and  therefore  |  ep  —  keq  j  ̂  1.  If  Q 
is  not  at  infinity,  and  if  1  —  kSq  <  £,  then  \  kSq  \  >  %,  and  we  have 

as  required.  It  follows  that  zero  is  a  limit  of  |  ep  —  keq  \  when  Q  belongs  to  F 
if  and  only  if  it  is  a  limit  when  Q  is  confined  to  Fjj  that  is,  we  may  replace 

the  gap  |  ep  —  keQ  \  by  the  gap 
l-k 
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with  the  condition  |  XQ  |  <  in,  where  m  is  a  definite  finite  number  independent 
of  the  position  of  Q  in  r\  and  not  less  than  unity. 

Suppose  now  that  the  lower  limit  of  \XP~XQ   wnen  Q  *8  confined  to  F\  is 
;i  number  I  that  is  not  zero.    We  have 

it  /.-  has  any  value  such  that  \\  —  k\^.  \ljm,  then  if  Q  is  confined  to  r\, 

\XP~XQ\>I>    \l-k\\XQ\<#, 
and  therefore  \XP~^XQ\  >H   That  is,  if  Q  belongs  to  r,,  one  of  the  two 
conditions 

must  be  satisfied  whatever  the  value  of  k.    But  the  gap 

!  £P  ~  k%Q,  i)P  -  kt]Q,  &>  -  k£Q,  l-k\ 

is  itself  the  greater  of  the  two  numbers  %p  —  k%q  |,  1  —  k  ,  and  since  m  ̂   1, 
it  follows  that  the  gap  is  greater  than  \ljrn,  a  number  independent  both  of 
the  value  of  k  and  of  the  position  of  Q.  Hence  the  lower  limit  of  the  gaps  for 
different  values  of  k  and  different  positions  of  Q  in  r\  is  not  less  than  ty/m, 
and  is  not  zero  since  I  is  not  zero. 

For  accessible  points,  the  definition  of  a  limit  in  terms  of  tetrahedral  co- 
ordinates is  equivalent  to  the  definition  in  terms  of  an  attached  vector  frame. 
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Accessible  line  250,  plane  253,  point  247 
adapted  components,  coordinates  173,  cosines, 

projections  174,  ratios  173 
addition  of  actual  vectors  41,  190,  of  anchored 

vectors  65,  of  concurrent  rotors  66,  of  couples 
82, 92,  of  ideal  vectors  276,  of  infinite  vectors 
277,  of  loads  264,  of  motors  85,  of  rotors  92, 
of  steps  12 

altereontact  293 
altersection  291 
amount  of  actual  vector  38,  207,  of  ideal  vector 

273 
anchored  frame  109,  112,  vector  65 
angle  of  plane  frame  110,  subtended  by  pair  of 

points  323 
angles  between  directions  5,  9,  213,  between 

measured  vectors  211,  between  prepared  planes 
24,  of  frame  in  space  112,  231,  of  spherical 
triangle  98 

angular  excess  of  spherical  triangle  100,  mea- 
surement of  ordered  line-pair  323 

anisotropic :  see  isotropic 
annihilation  of  loaded  point  263,  of  set  of  ideal 

points  265 
area  of  triangle  17 
areal  magnitude  of  plane  vector  frame  168, 

product  of  two  vectors  56,  217,  vector  of  tri- 
angle 60 

aspect  of  isotropic  plane  210 
associated  coaxal  systems  332, 336,  segments  326 
asymptote  of  plane  curve  296 
asymptotic  directions  and  veclines  296 
attached  vector  frame  171 
axis  of  accessible  ideal  line  250,  of  Cartesian 

frame  109,  112,  of  circle  345,  of  motor  85,  of 
ray  9,  of  reduced  set  of  rotors  83,  of  rotor  66, 
of  segment  289,  of  step  12 

Bound  vector  65 

Cartesian  axes  109,  112,  230 
central  axis  of  coaxal  system  331,  338,  of  set  of 

rotors  85 
centre  of  circle  302,  315,  of  sphere  342 
chain  of  steps  12 
circle  about  pair  of  circles  329,  about  pair  of 

points  325,  about  segment  327,  at  infinity 
348,  in  ideal  complex  plane  302,  311 

circular  point  at  infinity  304 
coaxal  system  of  circles  329 
codirectional  measured  vectors  208 
coefficients  of  vector  in  frame  163, 169,  190,  278 
cohesion  of  actual  plane  with  ideal  line  250, 

with  ideal  point  249 
collinear  actual  vectors  198,  ideal  points  250, 

257,  ideal  vectors  274 
colunars  of  spherical  triangle  100 
complementary  nul  lines  307 

component  symbol  of  frame  123,  128,  134 
components  of  actual  vector  44,  48,  116,  of 

motor  150,  of  rotor  147,  of  set  of  rotors  149 
composite  locus  283 
compound  of  sets  of  rotors  75 
concentration  of  set  of  loaded  points  52,  264 
congenial  directions  210,  measured  vectors  209 
congruent  angles  5,  frames  110,  115,  specifica- 

tions of  ideal  vector  271,  steps  12,  230,  tetra- 
hedra  21,  triangles  16 

conic  298 
conicoid  298 
constituent  of  locus  283 
contracted  notation :  see  umbral  notation 
coordinates  of  ideal  point  255,  of  line  154,  of 

point  116,  of  ray  151 
coplanar  actual  vectors  39,  200,  directions  4, 

ideal  points  252,  258,  ideal  vectors  274 
cosine  scheme  178 
cosines  of  direction  117 
cotractorial  lines  13 
countersymmetry  111 
couple  78 
cyclic  convention  4,  directions  10,  212 
cyclically  codirectional  traversed  vector-pairs 

212 

Degenerate  circle  303,  312,  locus  283 
degree  or  order  of  locus  283 
direct  polar  of  plane  frame  111 
directed  triplet  196 :  see  also  prepared 
direction  of  nul  vector  209,  of  proper  measured 

vector  208 

directions  of  anisotropic  vector  209,  of  ideal 
step  279,  of  ideal  vector  273,  of  proper  actual 
vector  38,  of  zero  vector  39,  209,  273 

distance  of  point  from  prepared  plane  21,  from 
ray  17 

distances  between  lines  13,  in  algebraic  space 
230,  231,  in  ideal  space  279 

distinctive  constituent  of  infinite  circle  312,  of 
infinite  sphere  344 

dominating  number,  of  set  of  numbers  357 

dyname  85 

Effective  specifications  of  ideal  vector  271 
ends  of  segment  289 
equal  parabolic  circles  318 
equivalent  sets  of  rotors  75 
erection  of  vector  in  prepared  plane  47,  217 

Finite  segment  290 :  see  also  infinite 
focal  circle  347,  point  280 
frame  109,  112 
frame  triangle  112 
free  vector  65 
fundamental  magnitudes  in  plane  170,  219,  in 

space  166,  194 
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Gap  between  sets  of  numbers  357 
Gaussian  representation  of  direction  3 
generator  of  sphere  350 

Homogeneous  coordinates  261,  266,  353,  speci- 
fication 143,  146,  154,  254 

Ideal  line  250,  257,  plane  252,  258,  point  247, 
254,   step   275,   vecline   274,  vecplane   274, 
vector  271 

image  of  direction  4 
impotent  rays  and  lines,  for  a  given  set  of  rotors 

90 
inaccessible :  see  accessible 
index  of  altercontact  293,  of  contact  293 
index  of  measurement  of  plane  triangle  97,  of 

spherical  triangle  106 
ineffective :  see  effective 
infinite  circle  311,  ideal  vector  271,  sphere  344  : 

see  also  finite 
infinity  247 
inner  product  of  triplets  192 
inscribed  segment  290 
intensity  of  motor  on  screw  86 
isotropic  line  224,  plane  224,  space  197,  vecline 

205,  vecplane  205  :  see  also  nul 

Lagrange's  identities  139 
lengths  of  actual  step  12,  230,  of  ideal  step  279 
limH  of  set  of  points  359,  361 
limiting  points  of  coaxal  system  331 
line  at  infinity  250,  in  algebraic  space  223,  in 

ideal  space  250,  257 
linear  function  of  vector  54,  segment  289 
load  in  ideal  space  262 
loaded  actual  point  51,  Cartesian  frame  173, 

ideal  point  263,  tetrahedron  266 
localised  vector  65 
locus  283 

Mass  of  load  in  ideal  space  264 
mean  centre  of  set  of  points  51,  of  set  of  loaded 

points  52,  264 
measure  of  parabolic  circle  318,  of  separation 

from  circle  328 
measured  vector  207 
moment  of  couple  in  plane  79,  of  rotor  about 

ray  71,  of  rotor  in  plane  67,  of  set  of  rotors 
about  ray  76 

momenta!  components  and  projections  of  motor 
150,  of  rotor  147,  of  set  of  rotors  150 

momenta!  product  of  two  motors  87,  of  two 
rotors  70,  of  two  sets  of  rotors  76 

momenta!  square  of  set  of  rotors  76 
momenta!  vector  of  couple  79,  of  rotor  about 

point  69,  of  set  of  rotors  about  point  76 
motor  85 
multiple  point  on  locus  286 
multiplication  of   actual  vector  39,   of  ideal 

vector  271,  of  load  265,  of  measured  vector 
208 

multiplicity  of  intersection  284 
mutual  moment  of  two  rays  73 

Negative  countersymmetry  111 
norm  of  spherical  triangle  100 
normal  direction  to  prepared  vecplane  213, 

distance  17,  21,  231 
normal  projection  26,  28 

normals  of  Cartesian  frame  113,  to  prepared 
plane  21,  to  ray  17 

nul  circle  303,  direction  208,  ideal  vector  273, 
sphere  342,  vector  204 :  see  also  impotent  and isotropic 

Oblique  distance  between  nul  lines  in  isotropic 
plane  236,  projection  26,  28 

order  of  altercontact  293,  of  altersection  291, 
292,  of  contact  293,  of  intersection  284,  of 
line  as  constituent  291,  of  line  in  locus  291, 
of  locus  283,  of  point  on  locus  286 

ordinary  circle  302,  sphere  342 
ort39 

Parabola  299 
parabolic  circle  in  isotropic  plane  311 
parallel  circles  in  isotropic  plane  319,  lines  and 

planes  in  algebraic  space  224,  vectors  198 
parallel  projection  in  plane  26 ,  on  line  or  plane  28 
perpendicular  ideal  vectors  273,  veclines  199, 

vecplanes  200,  vectors  199 
perverse  of  frame  115,  of  screw  86,  of  tetrahedron 

21 

pitch  of  motor  and  screw  86 
plane  at  infinity  253,  in  algebraic  space  223,  in 

ideal  space  252,  258,  of  couple  78,  of  reduced 
set  of  rotors  83 

plane  curve  283 
Foinsot  axis,  moment,  and  rotor,  of  set  of  rotors 

85,  set  of  rotors  84 
point  at  infinity  247,  in  algebraic  space  191,  in 

ideal  space  247,  254,  of  application  of  load  263 
polar  coefficients  of  vector  164,  169,  198,  220, 

magnitudes  of  vector  frame  166,  170 
polar  of  Cartesian  frame  111,  113,  of  loaded 

frame  174,  of  spherical  triangle  99,  of  vector 
frame  164,  169,  198,  220 

power  of  point  with  respect  to  circle  320 
prepared  or  directed  circle  5,  line  9,  plane  10, 

space  10,  196,  vecplane  213 
principal  directions,  moment,  and  rotor,  of  set 

of  rotors  85 
product :  see  multiplication 
projected  product  of  two  actual  vectors  54, 190, 

of  two  ideal  vectors  274 
projection  symbol  of  frame  123,  128,  134 
projections  of  point  or  vector  in  frame  116,  of 

vector  on  line,  plane,  or  ray  45,  48 
proper  load  262,  segment  289,  step  12,  vector  38 

Quadriplanar  coordinates  261,  266 

Radial  39 
radical  axis  of  coaxal  system  330 
radius  of  circle  302,  316,  of  sphere  342 
radius  vector  65 
ratio  scheme  178 
ratios  of  direction  117 
ray  9 
real  points  in  complex  space  243 
reciprocal  schemes  179 
reduced  set  of  rotors  83 
reducible  or  composite  locus  283 
representation  of  direction  by  point  3,  of  vector 

by  step  40 
retrograde  polar  of  plane  frame  111 
reverse  of  actual  vector  38,  of  couple  78,  of 

cyclic  direction  10,  213,  of  direction  4,  208, 
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of  frame  110,  of  ideal  vector  272,  of  prepared 
plane  10,  of  ray  9,  of  rotor  66,  of  screw  86, 
of  set  of  rotors  75,  of  step  12,  of  triangle  16 

rotation  in  prepared  plane  47,  219 
rotor  66 

Screw  86 
segment  of  line  289 
sheaf  of  lines  247 
side  of  point  in  ray  11,  of  prepared  plane  20, 

of  ray  in  prepared  plane  15 
sides  of  spherical  triangle  98 
sign  of  Cartesian  frame  110,  112,  of  parallel 

projection  26,  29,  32,  of  spherical  triangle  98, 
of  step  12,  of  tetrahedron  20,  of  triangle  15 

simple  point  on  locus  286 
sine  of  Cartesian  frame  114,  of  solid  angle  22, 

103,  of  spherical  triangle  99 
skew,  of  lines  13 
spatial  convention  8,  directions  196,  magnitude 

of  vector  frame  163,  product  of  three  actual 
vectors  62,  196,  product  of  three  ideal  vectors 
274 

spatially  codirectional  directed  triplets  196 
specification  of  ideal  point  254,  of  ideal  vector 

271,  of  load  262 
sphere  in  ideal  complex  space  342,  344 
spherical  image  of  direction  4 
step  11,  223,  275 
subtraction  of  vectors  44,  191 
suitable  load  263 
sum :  see  addition 
surface  283 

Tangent  cone  289,  plane  289 
tangent  to  locus  287 
tensor  39 
tetrahedral  coordinates  261,  266 
tractor  13 
transposed  scheme  183 
traversed  vector-pair  212 

triplet  V.I-2 
Umbral  notation  for  determinants  127,  for  mul- 

tilinear functions  123 
umbral  symbols,  particular  123,  124,  127,  128, 

129,  134,  137,  147,  149,  164,  166,  170,  172, 
178,  190,  194,  195,  219,  268,  283 

unit  circle  4,  point  261,  sphere  4,  vector  39 

Vecline  199 
vecplane  199 
vecspace  191 
vector  38,  39,  191 
vector  frame  163,  191,  product  of  two  actual 

vectors  57,  201,  product  of  two  ideal  vectors 
275 

vector  of  step  40 
vector-components  and  vector-projections  45 
vertex  of  accessible  ideal  point  247 
virtual  coefficient  of  two  screws  87 

Wrench  85 

Zero  actual  vector  39, 191,  couple  79,  ideal  vector 
271,  rotor  66,  step  12 
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Baker      244 
Ball     85,  88,  175 
Burali-Forti      53,62 

Cagnoli      106 
Cayley      13 
Chasles      84 
Clifford      66,  85 

Darboux      Preface,  97,  235, 
279,  323,  324, 353 

de  Candolle    8 
Delambre    106 
De  Morgan     x,  244 
Desargues       247 

Fowler      298 
France     viii 
Frege      91 

Gauss      3 
Gibbs     viii,  54 
Grassmann      viii,  54 

Hamilton      8,  9,  38,  39, 
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Joachimsthal      283 
Jordan      xii,  357 

Kepler      247 

Lagrange    139 
Laguerre      204,  281,  323 
Lilllir        124 

Leathern      97 
Lhuilier      107 
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Mobius    175 

Neville     191,  211,212 

Peano     x 
Picken      323 
Pliicker    85 
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