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PBEFACE

THIS book is a reproduction, with some amplifications, of the

notes prepared by the Author for two Courses of Postgraduate
Lectures given by him before the University of London in

the Fender Electrical Laboratory in 1910 and 1911, on the

Propagation of Electric Currents in Telephone and Telegraph
Conductors and on Electrical Measurements in connection with

Telephonic and Telegraphic work. These Lectures had their

origin in a request made to the University to provide a course

of instruction for Telegraphic and Telephonic Engineers which

should enable them to keep abreast of the most recent

scientific and technical researches in these branches of Electrical

Technology.
These Lectures were attended by a large class composed chiefly

of practical Telegraphic and Telephonic Engineers and experts ;

and at the request of many who attended, and some who did not,

the Author has written them out for publication.

As a considerable portion of the subject-matter included has not

yet found its way into text-books, although distributed through
various technical Journals and Proceedings, it seemed probable
that a service would be rendered to Electrical Engineers generally
if this material were collected and placed in an easily accessible

form. Students of this subject are well aware of the great value

of the pioneer work of Mr. Oliver Heaviside and of Prof. Pupin
in laying the sound theoretical and practical foundations for

improvements of great importance in telephony, and of the

classical labours of Lord Kelvin in connection with submarine

telegraphy. But the study of the writings of these originators

makes a demand for mathematical knowledge which is generally

beyond the attainments of the practical telegraphic and tele-

phonic engineer. Prof. A. E. Kennelly has rendered them,
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vi PREFACE

however, an immense service in elaborating mathematical

methods simple in character and capable of being applied in

practical calculations. Much of Prof. Kennelly's instructive

expositions are, however, contained in periodicals and journals

not very readily obtained by British telegraphists or readers.

The Author has accordingly provided in the first place a

simple mathematical introduction which will enable any technical

student to acquire easily a working knowledge of the mathe-

matical operations and processes required in conducting the

necessary calculations in connection with this subject. In the

next place he has endeavoured to simplify as far as possible

the theoretical treatment ; and thirdly, by illustrative examples,
to render it possible for every such student to carry out readily

the arithmetic calculations by means of hyperbolic functions

in accordance with the methods which have been admirably
elucidated by Prof. Kennelly in numerous papers.

The Author desires, in conclusion, to return thanks to those

who have assisted or furnished information. Major O'Meara,

C.M.G., Engineer-in-Chief of the General Post Office, has most

kindly permitted copious extracts and the loan of diagrams from

his paper read in 1911 before the Institution of Electrical

Engineers, describing the Loaded Anglo-Erench Telephone Cable

laid in 1910. Mr. F. Gill, M.Inst.E.E., Engineer-in-Chief of the

National Telephone Company, not only lent apparatus from the

investigation laboratory of the National Telephone Company for

illustrating the Lectures as given, but Has kindly furnished

information embodied in many of the tables in this book, and

also permitted special measurements to be made in his research

laboratory by Mr. B. S. Cohen. The Author desires to record

his particular thanks to Prof. A. E. Kennelly, of Harvard

University, for permitting a free use to be made of all his

valuable papers and writings on this subject and the appro-

priation of many useful tables such as the Tables of Hyperbolic
Functions of Complex Angles in Chapter I. and the Table of

Hyperbolic Functions in the Appendix. Papers published by
Messrs. Cohen and Shepherd, and read before the Institution

of Electrical Engineers, have also been laid under contribution,

and to them an acknowledgment is due. Mr. H. Tinsley also
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kindly furnished the results of special measurements made with

artificial cables, and also granted the use of diagrams of

apparatus made by his firm. The Author desires also to include

in the list of those who have assisted him, Mr. G. B. Dyke, B.Sc.,

who aided him efficiently in the Lectures by taking a practical

exercise class, and has also made or checked many of the

calculations and assisted in reading the proofs of the book. In

the hope, therefore, that these republished lectures may be

useful to a larger number of telegraphists and telephonists than

those to whom they were actually delivered, they are presented
in book form, and may serve at least as a stepping stone or

introduction to the work of original investigators of a more

advanced or difficult character.

J. A. F.

UNIVERSITY COLLEGE,

LONDON,

May, 1911.
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THE PROPAGATION OF ELECTEIC

CURRENTS IN TELEPHONE AND

TELEGRAPH CONDUCTORS

CHAPTEK I

MATHEMATICAL INTRODUCTION

1. Introductory Ideas and Definitions. -- The

object of these lectures is to discuss in as simple a manner

as possible the phenomena connected with the propagation

of electric currents in telephone and telegraph conductors.

This discussion is intended to provide telegraph and telephone

engineers with some necessary information to enable them to

follow the original writings of leading investigators, and also

with the means of solving for themselves practical problems
in connection with the subject.

Broadly speaking, the chief scientific problem which presents
itself for solution in connection with this matter is that of

calculating the current at any time and place in a linear con-

ductor of length very great in comparison with its diameter,

when an electromotive force of known type and magnitude is

applied at some point in it. Associated with this is the

investigation of the effects produced by varying the nature of

the conductor and of the terminal apparatus upon the current

so transmitted.

The conductors we shall consider may be either bare over-

head wires, underground or submarine cables, or telephone
wires or cables of different kinds. These conductors, in any case,

have four specific qualities which may be reckoned per unit of

length, say per mile or per kilometre.

B.C. 13
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These qualities are

(i.) The resistance of the conductor per unit of length (It).

(ii.) The inductance of the conductor per unit of length (L).

(iii.) The electrical capacity per unit of length taken with

reference to the earth or some other conductor (C).

(iv.) The insulation resistance of the dielectric surrounding the

conductor per unit of length, or its reciprocal the insulation

conductivity ($).

The above quantities are all of the type called scalar, that is

they are completely denned as to amount by reference to a unit

of the same kind.

It is usual to reckon the resistance in ohms per mile or

kilometre, the inductance in henrys or millihenrys per mile or

kilometre, the capacity in microfarads per mile or kilometre,

and the insulation resistance in megohms per mile or kilometre,

or conversely the insulation conductance in the reciprocal of

megohms per mile or kilometre, viz., in mhos per mile or

kilometre. We have then to consider the current and electro-

motive force at any point in the conductor. We may specify

either their instantaneous values, that is the value they have

at any instant, or if they vary cyclically we may specify

some function of their instantaneous values throughout the

period.

The instantaneous value of the current at any point in the

conductor is measured by the ratio of the quantity of electricity

dq which flows across the section of the conductor at that point
in any time dt to that interval of time, when the interval is taken

exceedingly small. If i denotes the current at any instant and

dq the quantity of electricity which flows past any section of the

conductor in the time dt, then we have

The letter q with a dot over it signifies the time rate of change
of q. If, however, the current varies in any manner, but so

that it passes through a cycle of values in the time T, called the

periodic time, then the insertion of a hot wire ammeter in the

circuit at that point will give us a reading which is proportional
to the square root of the mean of the squares of the instantaneous
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values of the current taken at small and numerous equidistant
intervals of time.

This function of the instantaneous values is called the root-

mean-square value or the R.M.S. value of the current.

Mathematically it is expressed by the equation

B.M.S. value of i= (It (2)

As a rule we are not much concerned with the true arithmetic

mean value of the instantaneous current throughout a period.

\

270 360

180\

\

FIG. 1. A Sine Curve.

When, however, we do have to mention it, it will be denoted by
the symbols T.M. value of i which is otherwise expressed

T.M. value of i= -^ (It (3)

In a large number of problems the current either varies or

can be assumed to vary as the ordinates of a simple curve of

sines.

Take any straight line to represent the periodic time and

divide it say into 24 parts. At successive points set up lines

proportional in length to Sin 0, Sin 15, Sin 30, etc. Join the

top of these lines by a smooth curve and we have the curve

called a aim- cur re (see Fig. 1). In this way two or more sine

curves may be drawn differing in amplitude or maximum value

and in jthaw or zero point (see Fig. 2).

Taking the point on the left hand at which the ordinate has

its zero value we can reckon the abscissa of any point on the

curve as equal to an interval of time t on the same scale that the

B 2
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whole period is equal to T. Hence this abscissa reckoned as an

angle in circular measure is denoted by 2ir ^ the periodic time

being denoted as an angle by 2/r. It is usual to write p for ^, and

hence the abscissa of any point on the sine curve may be

represented by pt in angular measure.

If the ordinate is denoted by i and the maximum ordinate by

I we have then the equation to the sine curve in the form

i=ISmpt (4)

If the origin from which we reckon our time is not the zero

point of the curve, but some point more to the left of it, such as

FIG. 2. Sine Curves differing in phaSe.

the point in Fig. 2, then the equation to the two curves in

that diagram may be written

*!==/! Sin(jp*-<k)

4= I2 Sin (pt-fa)

The angles <pi and
c/>2 are called the phase angles of the

zero point and the angle </>i <jf>2
is called the difference of phase

of the curves.

It is clear, therefore, that to fix the position and form of

these curves we require to know two parameters for each, viz.,

the maximum value I and the phase angle $ relative to some

point.

We can represent the curve in another manner.

Suppose a line OP of length equal to the maximum value I

to revolve round one extremity like the hand of a clock but in

a counter-clockwise direction (see Fig. 3). Then if we reckon
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angles from a fixed line OQ so that QOM = </>
and QOP = pt

and hence MOP = pt </>,
it is clear that the projection of

OP on the vertical OY, viz., Op, is equal to

OP Sin (pt-<l>)
=ISm (pt-<j>)

= i.

Accordingly the magnitude of the projection Op which

represents the instantaneous value of the current or electro-

FIG. 3. Clock Diagram.

motive force is determined by the length of the line OP and its

slope at the corresponding instant.

Hence an alternating or simple periodic current which varies

from instant to instant proportionately to the ordinates of a

sine curve can he represented by a radial line drawn in a certain

position on a clock diagram as above described.

It can easily be shown that the mean value of Sin2 6 taken at

equidistant numerous intervals of the angle 6 throughout a period

or between 0=0 and 6 = 360 is equal to L
For
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Now the mean value of Sin 6 or Cos 6 throughout one period

or from to 860 is zero ; because for every positive value of

the ordinate of the curve representing these functions there is an

equal negative value. Therefore the mean value of | Cos 2 6

throughout a period or from 6 = to 6 = 860 is zero, and

therefore the mean value of Sin2 6 is ^. Therefore the root-

mean-square value of the ordinate of a sine curve is
-/=

where /

is the maximum value. In a clock diagram, therefore, if the

revolving radii represent maximum values of the currents or

E.M.F., dividing them by V2 gives the li.M.S. values, assuming
that they follow a simple sine law.

We shall see later on that any wave form may be resolved into

the sum of a number of sine and cosine curves, and that therefore

certain propositions which are true of sine curves are true also of

periodic curves of any kind.

For the present, however, we may limit ourselves to the con-

sideration of simple periodic electric currents represented by a

simple sine curve.

2. The Representation of Simple Periodic
Currents by Complex Quantities. Having seen that

a simple periodic current may be represented by the projection

of a revolving radius on a diametral line through the centre

of revolution, we have next to consider how such a line can be

algebraically specified.

Suppose we draw two lines at right angles through any point,

one horizontal and one vertical, we can with the usual conven-

tions as to signs represent by + a anJ horizontal line a units

in length drawn to the right starting from the origin. Also by
a any horizontal line drawn to the left.

How then shall we represent a line a units in length drawn

vertically through the origin upwards or downwards ? We can

do this by making use of some symbol which shall denote that

the horizontal line + a is turned through a right angle round its

left extremity in a counter-clockwise or clockwise direction.

This symbol must be such that when prefixed to the symbol a

it denotes a line drawn vertically upwards through the origin.
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Also it must be such a symbol tbat when twice repeated it con-

verts + a into a
>
since turning the horizontal line through two

right angles reverses its direction. LetJ be this symbol. Then

ja is to signify a line of a units in length drawn vertically

upwards through the origin or the line a turned through one

right angle. Hence jja or j*a must signify a horizontal line + a

-CL

+J(L

-J -

FIG. 4.

turned through two right angles or reversed in direction. There-

fore, fa = a, and hence j V^l.
The symbol j therefore considered as an operator or sign of an

operation is equivalent in meaning to V 1.

We have then the following symbols. A line of a units in

length drawn horizontally from an origin is denoted by + a, a

line of the same length drawn vertically upwards is denoted

by ja, a line of the same length drawn to the left is -
a, and an

equal line drawn vertically downwards is ja (see Fig. 4).

If then we give to the sign of addition ( -h ) an extended meaning



8 PEOPAGATION OF ELECTEIC CUERENTS

to make it signify joint effect, we can say that the expression

a -\-jb signifies a straight line drawn from any point in such a

direction that its horizontal projection is a and its vertical

projection is b (see Fig. 5).

For the expression a-\-jb instructs us to measure a length a

starting from the origin in a horizontal direction. Then to

measure off a length b in a vertical position starting from the

end of a, and the joint effect of these two steps is the same as if

we had moved over a straight line of length \/a? + b~ inclined at

an angle 6 to the horizontal such that tan 6 = -. The quantity

a-\-jb equivalent to a + V 1 b is called a complex quantity,

+ a

FIG. 5.

is called its modulus or size, and = tan
* -

its
Cb

and Va2 +
slope.

The part a is called the horizontal step and b is called the vertical

step. Hence, a -\-jb stands for a straight line or anything which

has magnitude and direction, such as a force, velocity, or accelera-

tion. In other words, a-\-jb stands for a vector quantity;

whilst Va2 + ^
2 denotes its size, or mere magnitude apart from

direction. We shall in future, following a common custom,

denote vectors considered as vectors by letters printed in thick

or Clarendon type. Thus A signifies a vector or stands for

a -{-jb. We shall denote the mere size or modulus by an ordinary

Eoman capital. Thus A stands for Va2+ b2 . It is more con-

venient sometimes to denote the mere size or length of a vector A
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We

by brackets, e.a. (A). The student should note that a + jb

signifies not merely a line drawn from one origin, but any line of

the same length and with the same slope drawn from any point
in the same direction.

We have seen that a simple periodic or alternating electro-

motive force or current can be represented by a radial straight

line the length of which is proportional to the maximum value

of or amplitude of the periodic quantity and its slope to the

phase with respect to some instant of time. Accordingly such a

simple periodic current or E.M.F. can be denoted by a complex

quantity such as a -j- jb. The amplitude of the quantity will

be measured by Va2
-f- b

1 and its R.M.S. value by

have then to consider the rules for handling complex quantities
in calculations.

3. The Calculus of Complex Quantities. Let

A = a -\-jb and B = c -f jd be two complex quantities or

vectors
; then if A = B it

signifies that the vectors or

lines representing them are

equal and parallel. Accord-

ingly, if we draw these lines

and set off their horizontal

and vertical steps (see Fig. 6),

it is clear that the triangles

so formed are similar and

the side, A is equal to the

side B. Hence we have also

a = c and b = d. In other

words, if two complexes are

equal we may equate the

horizontal and vertical steps

respectively.

In the next place let us

consider the result of adding

together two complexes. In this process addition is equivalent

to joint effect. The complexes represent lines and must be

added, therefore, like forces, by the parallelogram law.

CL

c

FIG. 6.
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If a -\- jb and c + jd are two complexes representing lines

OA, OB drawn from the origin, then their resultant or vector

sum is OD, the diagonal of the parallelogram formed on them,
It is clear, therefore, from Fig. 7 that OD is a vector whose

horizontal step is a + c and vertical step b + d. Hence

a+jb+c+jd=a+c+j (b+d).

The second rule is then

To add together two complexes, add the respective horizontal

a c

FIG. 7. Addition of Vectors.

steps for the resultant horizontal step, and the respective veitical

steps for the resultant vertical step.

Ex.Md together 5 + j6 and 7 + j 9. Am. 12 +j 15.

The same process may be extended to any number of com-

plexes. If ai+j'&i, az-\-jb%, etc., are several vectors, then

their vector sum is 2& + feb, where 2a stands for the algebraic

sum of all the horizontal steps and 2b of all the vertical steps.

It follows that, if the vector sum is zero and if the lines be taken

to represent forces, these forces are in equilibrium ; also that

the sides of a polygon taken in order are parallel and propor-
tional to these forces in equilibrium.
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Example. (jive, expressions in complex form for the sides of

a hexagon.
Ans. Let one side be horizontal and of length a. The

next side is represented by |+y -^
a, the third by |+y -^ a,

the fourth by a, the fifth by
TJ

/-a" a
,
and the sixth by

9 j n a. The vector sum is zero. Hence forces parallel and

proportional to the sides of a hexagon taken in order are in

equilibrium.

As a preliminary to additional propositions we must exhibit

other expressions for complex quantities. If a -\- jb is a complex
and 6 its slope, then obviously a = A Cos and b = A Sin 6.

Hence we have

a+jb =A= & (Cos 0+j Sin 0).

The quantity A is the size of the vector or is Va2 + Ir. The

quantity (Cos 6 + j Sin 0) is called a rotating operator or rotator.

The effect of it when applied to a vector quantity is to turn the

vector through an angle 6 without altering its size. Thus

Va2 + b2 represents a length or line set off in a horizontal direc-

tion
;
but Va2 + b2 (Cos 6 -\- j Sin 0) is a line of the same length

making an angle with the horizontal. Hence any expression

of the form A (Cos 6 + j Sin 6) represents a line of length A
and slope 6.

We can easily prove that the modulus or size of the complex

quantity (a -\-jb) (Cos 9 -\-j Sin 6) is the same as the modulus

of a -\- jb, viz. Va2 + b2
,
but the slope of the former vector is

greater than that of the latter by an angle 6.

For (a +jb) (Cos + ./ Sin 0) = (a Cos - b Sin 0)

+ j (b Cos + a Sin 0).

Now the size of the latter complex is

J (a Cos b Sin 0)*+ (b Cos 0+a Sin fff
= \/a2+ 62

and the slope of this vector is an angle (f) whose tangent is

b Cos 0+a Sin J= a+Tan 6

a Cos b Sin 6
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tan i/r+tan 6
Hence tan $ = 1_ t^n . tan e

where tan \//
=

b/a. Accordingly

the slope of (a -\- jb) (Cos 6 + J Sin 0) is greater than the slope

of a + jb by an angle 6, but the sizes are the same.

It is proved in books on trigonometry that

and
'

Cos 0=-
2

where e is the base of the Napierian logarithms or the number

2-71828 and j signifies \/~^T
These are called the exponential values of the Sine and

Cosine, and should be committed to memory. If we substitute

these values in the expression Cos + j Sin we obtain e j
.

Hence the following are all equivalent expressions for a vector,

or complex quantity, viz., a_.+ jb, A (Cos + j Sin 0), A e^ 9 and

A I id, and they signify aline of length A vV _|_ 6
2 and slope

6 = tan- 1
b

.

a

The reader should practise himself in converting from one

form to the other.

Ex. Given 3 + j 4. Convert to the other forms.

Answer. The size is A/32 + 42 = 5 = A and -
tan~'|

= 53 7' 30" nearly. Hence Cos = 0.6, and Sin = 0.8. There-

fore 5 (0.6 +j 0.8) and 5 eJ <53 7 ' 30"> or 5/53 7' 30" are equivalent

to the given expression 3 + j 4.

We have next to consider the multiplication of two or more

complexes. If a + jb ~ A e j& is one complex and ai + jbi

AI j6i is another, then the products (a -f jb) (ai + j^i) =
A AI ^e + ei\ The rule then is, multiply the sizes of the vectors

and add the slopes. Thus the product of a + jb and ai -\- jbi

is a vector of which the size is A/a2 + & A/tfi
2 + V and the

slope is an angle whose tangent is < such that

a
'

at

It follows that the quotient of one complex quantity by another
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is obtained by the rule, divide the sizes and subtract the angles.

For if A t je is one vector and A\ t jei is the other, then

Again, a complex is reciprocated by reciprocating the size and

reversing the angle. For

Also we obtain any power of a complex by the rule, raise the size

to that power and multiply the slope by that power. Thus if

A t je is a complex then its square is A 2 j2e and its square root

'- - j-
is VA 2 and nth

power is A n
e jn

e and nth root is A* e .

It will be seen, then, that addition and subtraction are most

easily carried out, when the complexes are in the typical form

a + jb, but multiplication, division, and raising to powers or

extracting roots when the complex is in the form A c j0 . Accord-

ingly it is constantly necessary to convert from one form to the

other for calculation.

If we have any function of complex quantities formed of the

products, powers, quotients, or roots of complex quantities

such as

it is not necessary to go through the laborious process of reducing

it to the canonical form A + JB and to find the size VA 2 + 2
.

It follows at once from the rules already given that the size of

the product of two complexes is the product of their respective

sizes, also that the size of any power of a complex is the same

power of its size, and hence the size of the quotient of two

complexes is the quotient of their sizes. It is quite easy to

prove by actual multiplication that the size of the vector

(a -|_ ji>) (c _|_ jrf) is \/a
2 + I)

1
\/c

2 + d2
, or is the product of the

sizes of the separate vectors.

Also that the size of
^+L is

-

"

^.
Hence we can write

down at once the size of the complex function (1), for it is
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The reader should work the following exercises to familiarise

himself with these complex calculations.

Ex. 1. Draw the two vectors 3 + j 4 and 6 4- j 8 and give

their product and quotient of the last by the first in the forms

(a + jb) and Va2 + b* [0.

Ans. The first is a line of length 5 sloping at an angle
4

tan- 1 -= 53 1' 30", and the second is a line of length 10 at

the same angle. Hence they are represented by 5/53 1' 30" and

10/53 7' 30". Their product is a line 50/106 15', and their

quotient is a horizontal line of length 2. Hence their product
is 14 + j 48 and quotient 2 + j 0.

Ex.%. What is the size of the vector \J $ +^ n ?

2 3 *

Ans -

Ex. 3. Find the square root of the vector 60 + j 80 in the

form
A/_0.

Ans. 10/26 33' 45".

Ex. 4. Show how to calculate the value of e the base of the

Napierian logarithms.

Ans. By the exponential theorem we have

x 1 xz

eg= l-j-#-}_- -f + etc

Hence if x = 1

1 1

Hence e = 2 + + + +++ etc. = 2-71828 . . .

The reader should notice that each term of the expansion of

* is the differential of the next succeeding term. Hence it

follows that ^ (e
a-

)
= fx and^**=**

If we have any vector or complex quantity represented in the

form A.tje or -A&* where pt is a phase angle and t denotes

time, then the successive differential co-efficients with regard to

time are obtained by multiplying the function by jp, p**, jp
3

,
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.-f-j>
4

,
etc. Also, since the horizontal and vertical steps of the

vector are A Cos pt and A Sin pt, which are simple periodic

quantities as t continuously increases, it is more convenient to

operate in mathematical work with the function Ae-^ and to

take this as the symbolical representation of a simple periodic

quantity or sine curve alternating current, understanding this to

mean that the periodic variation of the horizontal or vertical

steps of Ac-"** represents the current at any instant.

We shall see that it considerably simplifies the mathematics

of alternating currents to deal only with the maximum values

and avoid the cumbersome trigonometrical expressions involved

if we deal with the time variations of the current throughout
the period. Hence in our discussions an alternating current or

electromotive force will be represented by a complex quantity

such as a -\-jl) or Ae^, and this is to mean that the vector or

line represented by these complexes is to represent by its length

the maximum value and be supposed to revolve round one

extremity so that its projection on a vertical line through the

origin represents the actual value of the periodic quantity at

that instant on the same scale that the line itself which revolves

represents the maximum value or amplitude of the alternating

current or E. M. F.

4. Hyperbolic Trigonometry. Since many of the

mathematical expressions involved in the theory of the

flow of alternating currents through cables can be most con-

veniently presented, for the purposes of arithmetic calculation,

in forms involving hyperbolic trigonometry, it is neces-

sary to explain briefly the nature and properties of these

functions. Ordinary trigonometry is called circular trigonometry

because the mathematical expressions employed, such as Sines

and Cosines, are functions of angles expressed in circular

measure or in their equivalent in degrees. These quantities

may also be regarded as functions of the area of circular sectors.

The shaded area in Fig. 8 represents a segment of a circle.

The area of this segment is equal to
^

r2 0, where 6 is the angle

PON in circular measure and r is the radius OP. If we call
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this area u we have 2 u/r
2 = 0. Now Sin = PM/OP

and Cos = OM/OP.
Hence if we denote PM by y and OM by a-,

. 2u y 2u x8m r
= - and Cos

-jr=-.

Accordingly the Sine and Cosine are here seen to be numerical
ratios of the sizes of two lines, and these ratios are functions of

a certain kind of the area and radius of a circular sector, the

FIG. 8.

said lines being the co-ordinates of the upper point denning the

size of the circular sector.

Now the hyperbolic functions with which we shall be. concerned
are similar functions of the area of the hyperbolic sector of an

equilateral hyperbola, and these functions are related to the

rectangular hyperbola in the same manner that the ordinary

trigonometrical functions are related to the circle.

We shall begin, therefore, by considering the mode of description
and the equation of the hyperbola.
The circle is a curve described by a point which moves so

that its distance from a fixed point called the centre is constant.

The ellipse is a curve described by a point which moves so

that the sum of its distances from two fixed points called the

foci is constant.
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The hyperbola is a curve described by a point which moves

so that the difference of its distances from two fixed points called

the foci is constant. Hence it may be described mechanically as

follows : On a sheet of paper take two fixed points F, F' and

provide a straight edge rule and a piece of inextensible thread

shorter than the rule by a certain amount.

Fix the rule so that one end is pivoted on one of the given

points and fasten one end of the thread to the other fixed point

FIG. 9. Description of an Hyperbola.

and attach the second end of the thread to the free end of the

rule. Then press the thread up against the edge of the rule

with the point P of a pencil and revolve the rule radially

round one fixed point whilst keeping the thread pressed up to its

edge by the pencil (see Fig. 9). The point of the pencil will

describe one branch of a hyperbola, and the other branch can

be described by reversing the attachments of the thread and

rule.

The fixed points F and F' (see Fig. 10) are called the foci of the

hyperbola, and the points A A' where the line FF' cuts the branches

E.G. c
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are called the vertices. The point bisecting AA' is called the

centre. The length OA' is called the semi-major axis and is denoted

by a. The distance OF = OF' = c is called the focal distance.

The distance \/c
2 a2 = b is called the semi-minor axis. Then

AF = c - a and AF' = c + a. Hence AF . AF! = c
2-a2=tf.

If then P is a point on the hyperbola the difference of the

FIG. 10. An Hyperbola.

distances PF' and PF is constant and is equal to 2a. Therefore

PF'PF^a, and if x and y are the co-ordinates of 7^ we
have

PF= ^-\-(x cY and PF' = Jy2
+(x+c)'

2
.

Therefore (PF'+PF) (PF'-PF) = cx . . . (3)

and

Accordingly

or

=, and PF'-PF=2a,
a
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Substituting these last values of PF&ud PF' in the equation (4)
we have

or

or

. (5)

This last is the equation to the hyperbola with origin at the

centre and rectangular

axes through the centre.

It is convenient to write

it in the form

(7)

FIG. 11.

We have in the next

place to obtain an ex-

pression for the area of

the hyperbola between

the vertex and any
ordinate.

The expression for

the area of an ele-

mentary slice of the

hyperbola contained
between two ordinates

of mean value y sepa-

rated by a small interval

dx is ydx. Hence the area of the hyperbola between the vertex

and any abscissa x is obtained when we know the value of the

fx I)
Cx

integral ydx, or the value of the integral
- U/z2-^ dx.

Jn' 'a

Let P be any point on the hyperbola (see Fig. 11) and let the

dotted area APM be denoted by A, then

A = - T Vz2 -a2 dx . . . (8)a Ja

We have then to find the value of the integral I V x2 a2 dx.

Now
f J=*dx= \^W f-y^ (9)
J J *jx*-a2'

J *Jx
2-a2

c 2
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Also =x sltf^tf-
J-^p^^ - - (

10
)

This last is obtained by noting that

d ,

Hence adding (9) and (10) and dividing by 2 we have

Therefore we have

b fx _ xy ab \x y]
ct> J a

~
2 2 e (a b\

If we draw the line OP then the area OAP (shaded) is called

the hyperbolic sector and is denoted by S.

It is obvious that the area of the triangle OMP (= 3
Xl
jj

is

equal to the sum of S and the dotted area AMP, which we have
7 /

'

denoted by A, which last is equal to -
I *Jx* a2 dx. Hence

we have

. . .(12)

If then we consider a rectangular hyperbola or one in which

a = b we have

2 S
Finally denoting ^ by it we have

<-?+*.

The ratio - is called the hyperbolic Sine of u and -
isis called te yperoc ne o u an

a

called the hyperbolic Cosine of n, and these are written Sink u

and Ccsh u respectively. Therefore

e^Coshtt+Sinhtt .... (14)

Now the equation to the hyperbola is
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and the equation to the rectangular hyperbola is therefore

*_
2

_2/
3

_i-

or

Dividing this last equation by the equation (14) we have

w-Sinh u

and therefore from (14) and (16) we obtain

Sinh u =
-, Cosh u =

(15)

(16)

(17)

We have therefore two definitions of Sinh u and Cosh u which

are consistent with each other.

Other hyperbolic functions are denned as follows. The ratio

= - is called the hyperbolic tangent and written Tanh u.
Cosh u x

The reciprocal of the hyperbolic Cosine is called the hyper-

bolic secant and written Secli u, whilst the reciprocals of the hyper-

bolic Sine and hyperbolic tangent are called the hyperbolic cosecant

and hyperbolic cotangent and written Cech u or Cosech u and

Coth u respectively. Hence we have,

y_--Bmh -*--
a

Cosh u = - = -
a

Cech u

Sech

Gothic-

(18)

These hyperbolic functions are analogous to the correspond-

ing circular functions in ordinary trigonometry, and form the

basis of a hyperbolic trigonometry which has many resemblances

to it, but is connected with the rectangular hyperbola in place
of the circle.
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The numerical values of Sinh u, Cosh u, Tanh u, etc., can be

calculated for various values of u as follows :

By the exponential theorem we have

u* u

r
i 9~S 1 9q1 . A .^9^ _L . Zi . O

But o (
c
"

e
~ tt

)
= Sinh u, and hence

Sinh?t = u
ir

. (19)

. (20)

+ etc.
1. 2. 3

+ 1.2. 3. 4. 5^ 1.2. 3. 4. 5. 6. 7
"J

= w+TS+l^+ T7+ etc
(
21

)__
Similarly since

^ (
1t+e-M

)
= Cosh w we have

Cosh w= +++ etc. (22)

If therefore we assign any numerical value to u the corre-

sponding values of Sinh u and Cosh u can be calculated with

any desired accuracy.

Tables o? these hyper-
bolic functions have
been calculated and are

to be found in many
books. A Table of

Hyperbolic Sines and

Cosines or values of

Sinh u and Cosh u from

u = to u = 4 has been

calculated by Mr. T. H.

Blakesley and is pub-
lished by Messrs. Taylor

and Francis, of Red

Lion Court, Fleet Street,

London, for the Physical

Society of London. A
very useful Table of all

the Hyperbolic Functions has been constructed by Dr. A. E.

Kennelly, based on Ligouski's Tables published in Berlin in

FIG. 12. Circular Sector.
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1890, which by kind permission is reproduced in the Appendix
of this hook.

Similar Tables are given in Geipel and Kilgour's Electrical

Pocket-hook, and in a collection of Mathematical Tables arranged

by Professor J. B. Dale, published by Messrs. Arnold & Co.

Also a small but useful Table of Hyperbolic Functions has been

published by Mr. P. Castle, called Five-Figure Logarithms and

other Tables (Macmillan & Co., London).
The student should endeavour to obtain a clear idea of the

mathematical meaning of these

hyperbolic functions and their

relation to the ordinary circular

trigonometrical functions. This

can be done by comparing the

diagrams in Fig. 12 and Fig. 13.

In circular trigonometry angles

are measured in radians or frac-

tions or multiples of a radian. An

angle POM is numerically ex-

pressed by the ratio of the length

of the corresponding circular seg-

ment PA to the radius OP of that

circle. Hence unit angle or 1

radian is an angle such that the

length of the arc is equal to the

radius.
FIG. 13. Hyperbolic Sector.

The measure of the angle, therefore, is a mere numeric or ratio.

The circular functions Sine, Cosine, etc., are also ratios of

lines, viz., the ratio of the vertical projection PM of the radius

OP to the radius, or of the horizontal projection OM to the

radius OP. These last ratios are considered to be functions of

the angle POM. On the other hand the area of the circular

segment POA is equal to
|

(OP)
2

multiplied by the angle

POA = in circular measure. Hence if we call S this area and

denote the radius OP by r, then we have
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If we take the radius r to be unity, then the number which

denotes the angle 6 is the same as that which measures the

area of the circular segment POP'. In other words, if the angle
PO'A is a unit angle in circular measure, then the area of the

circular sector POP' is a unit of area in square measure.

The unit angle is equal to 57 17' 45" nearly. Hence if we

set off a circular sector with radius 1 cm. and double angle POP'

equal to 114 35' 30" the area APOP' will be 1 square centi-

metre. The circular trigonometrical functions are therefore to

be regarded either as functions of the ratio of the arc to the

radius or of the area of the segment to the square of the radius.

In the same manner if we draw a rectangular hyperbola and

take any point P upon it we can set off a hyperbolic segment
OPAP' (shaded area) analogous to the area OPAP' of the

circular segment. If the radius OA is taken as unity and if the

area of the segment POA f

is denoted by S and OA by a, then
o o

-j-
has been represented by u, and by analogy we may call u

the hyperbolic angle.

The reader must carefully distinguish between the hyperbolic
measure of an angle and the circular measure of an angle.

Thus the circular measure of the angle POA (Fig. 13) may be

called 6. Its hyperbolic measure is u,

Now is such that tan 6 = -==
/ ^ x an(^ V are respectively

PM and OM. But -= Sinhw-and - Cosh u where a = OA.
Cb Qt

II

Hence - = tanh u, and we have tan 6 = tanh u.
oc

Thus for instance if the point P is so chosen on the rectangular

hyperbola of semi-axis OA \ that the sectorPOA has an area of

3 square unit or POP' has an area of 1 unit, then u = 1. Now
the tables show that for u = 1 we have tanh u = G'76159, and
also that tan 37 17' 30" = 0'76159.

Hence the angle POA in Fig. 13 in ordinary degree measure-
ment is 37 17' 30", and in circular measurement it is 0'651, but

in hyperbolic measurement it is unity.
The hyperbolic functions are therefore ratios of lines which
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are functions of the ratio of the area of a hyperbolic segment to

the square of the radius.

5. Formulae in Hyperbolic Trigonometry. Just

as there are certain relations between the circular functions of

ordinary trigonometry, so there are similar formulae in hyperbolic

trigonometry which are of great use.

Fundamental relations in circular trigonometry are

Cos2
<9+ Sin20= l (23)

Sin (a+ b)
= Sin a Cos b+ Cos a Sin b . . . (24)

Cos (a+ b)
= Cos a Cos b -Sin a Sin b . . . (25)

From the definitions Sinh a = ~
(

<t ~~
~") and

Cosh a =
g (*" + *

~ a
) and similar definitions for Sinh b and

Cosh b it is easy to prove by substitution that

Cosh2 6- Sinh2 = 1 .... (26)

Cosh20+ Sinh20=: Cosh 2(9 . . . (27)

also that

Sinh (ab) = Sinh a Cosh b Cosh a Sinh b . . (28)

Cosh (ab) = Cosh a Cosh b Sinh a Sinh 6 . . (29)

and hence that

,, 7 x
Tanh a + Tanh b /omTanh (a 6)

=
., Pfj ^p-^ _ .... (30)
1 Tanh a Tanh 6

These formulae are easily verified by substituting' for

Sinh a, o(e
a

e~"), and for Cosh a, o(e
ffl

-|-e-
ft

), and the same for

Sinh b and Cosh b. It will be seen that the formulae are identical

in form with the corresponding ones in circular trigonometry,

but that in some cases algebraic signs are different.

With the aid therefore of a table of hyperbolic Sines and

Cosines there is no difficulty in calculating out the results.

It will be well for the reader to plot curves representing the

variation of the hyperbolic functions as the hyperbolic angle in-

creases and compare these with the corresponding curves for the

circular functions. The curves in Fig. 14 represent the variation

of Sinh u, Cosh u, and Tanh u as the angle u increases. These

curves therefore are non-periodic and do not repeat themselves

like the curves representing Sin 0, Cos 0, Tan 6.
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In using hyperbolic trigonometry in connection with the

solution of problems on the propagation of electric currents in

conductors we shall find that we meet with such expressions as

0-5 1-0 3-0 3-5 4-01-5 2-0 2-5

Hyperbolic Angle.
FIG. 14. Curves representing the variation of the Hyperbolic Functions.

Sinh (a+jb), Cosh (a -\-jb), etc., where a and b are numerical

quantities and j as usual signifies \/~ 1. We have then to con-

sider the meaning of such an expression as Cosh ja or Sinh ja.
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g/a_ -./ ja 1 ja

If we remember that Sin a = - and Cos a
' = -

4/

f
U _ U U -\~~U

and also that Sinh u = anc^ Cosh u = o it will be

__

clear that Cosh ja = ^
an^ therefore that Cos a is identical

with Cosh ja. In other words the Cosine of a circular angle is

identical with the hyperbolic Cosine of a hyperbolic angle ja.

This last expression ja is called an imaginary angle.

Hence the Cosine of a real angle is equivalent to the hyperbolic
Cosine of an imaginary angle. Again from the exponential

values of Sin a and Sinh a it is evident that j Sin a = Sinh ja.

In a similar manner the following formulae can be proved :

Cos ja= Cosh a. Cos a= Cosh ja.

S'mja=j Sinh a. j Sin a= Sinhja . (31)

Tan ja=j Tanh a. j Tan a= Tanh ja.

If then we meet with such an expression as Sinh (a + jb) we

can expand it by the ordinary rule and eliminate the hyperbolic

functions of the imaginary angles by the aid of the above

expressions. Thus

Sinh (a +jb) = Sinh a Cosh jb+ Cosh a Sinh jb . (32)

or Sinh (a +J&) = Sinh a Cos b+j Cosh a Sin b . . (33)

In the same way we find

Cosh (a-\-jb)
= Cosh a Cos b+j Sinh a Sin b. . (34)

It is evident then that these equivalents for Sinh (a -{-jb) and

Cosh (a -\-jb) are vector or complex quantities of the form

A -\-jB because the quantities such as Cosh a Cos b and

Sinh a Sin b which form the A and B terms are numerical

quantities.

Hence the hyperbolic functions of complex angles such as

a -{-jb are vectors, such as Cosh a Cos b -{-j Sinh a Sin b.

The quantities a -\-jb when so used may be called complex

hyperbolic angles composed of a real angle and an imaginary

angle.

If we divide Sinh (a + jb) by Cosh (a + jb) we have Tanh
a + jb, and hence

Tanh (a+^) = ,
. . (35)

1+j T
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If we denote the size of the vector Sinh (a + jb) by putting

brackets round it thus (Sinh a -{-jb) we have

(Sinh a-\-jb)
= ^/Sinh- a Cos'2 b+ Cosh2 a Sin'2 b,

but Cos2 6 = 1- Sin2 b and Cosh2 a= 1+ Sinh2 a.

Hence _
(Sinh a+jb) = ^Sinh

2 a+ Sin2 b . . (36)

also _
(Cosh a+jb) = ^/Cosh^-Sin

2 b . . (37)

Again the slope of Sinh (a + jb) is an angle <p such that

Tan $= Coth a Tan 6,

and of Cosh a -{-jb is

Tan < = Tanh a Tan b.

Accordingly if any line or vector a -{-jb is given drawn on a

diagram we can draw other lines or vectors on the same diagram
to represent the quantities Sinh (a + jb), Cosh (a + jb),

Tanh (a +jb), Sech (a -{-jb), Cech (a + jb), and Coth (a + jb).

It will be frequently necessary to consider how such functions

vary as a or b have different magnitudes, that is to say, as the

size and slope of a -{-jb vary.

For example, find and draw the hyperbolic functions of

1 + 1-5/.

We have

Sinh (1+y 1-5)
= Sinh 1 Cos 1'5+j Cosh 1 Sin 1-5.

These numbers 1*5 and 1 are therefore angles in circular

and hyperbolic measure respectively. Since TI=. 3-1415 = 180

the angle in degrees corresponding to 1*5 in circular measure

is 180x^= 89 7' 44".

Hence Sin 1-5 - '99988 and Cos 1-5= -01525

also Sinh 1 = 1-17520 and Cosh 1 = 1-54308

Therefore

Sinh (1 +j 1-5)
= 1-1752 x -01525 +j (1-5431 x -99988)

or Sinh (1+; l-5)
= -018+./ 1-543.

Hence the size (Sinh (1+y 1-5))
= 1-54 nearly

and the slope is Tan- 1
.Q18

= 89 nearly.

Therefore Sinh (1 +y 1-5)
= 1 -54 /89.
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In the same manner we can, from the formula

Cos (a-\-jb)
= Cosh a Cos b-\-j Sinh a Sin 6,

find that

l

Cos (I +j 1-5)
= '0235 +j 1-175

Hence the size is 1*38 nearly and the slope 90 or

Cosh (1+y 1-5)
= 1-38 /90.

Therefore Tanh (1+j 1-5 = 1-11 /FT

Also Sech (1 +j 1-5)
= '072 /W.

and Cech (1+j 1-5= -065/89 and lastly

Goth (l+j 1-5) -'09 /P.

We can therefore plot out these vectors as in Fig. 15, where

the firm lines repre-

sent the hyperbolic

functions of 0'5 +
j 0*8, which are more

widely separated than

those of 1 +j 1*5. In

this last case the Sinh

and Cosh fall so nearly

on each other that

they cannot be shown

as separated lines.

Again, we may take

any given function

such as Sinh (a + jb)

and give various

ratios to -; that is,
CL

we may suppose the

vector a + jb to be

turned round its end

so that whilst retain-

ing the same size it

has various slopes,

and we may examine

the corresponding
variation in the hyper-
bolic functions.

The ordinary logarithms of the hyperbolic functions, that is

FIG .15. Vectors representing Hyperbolic
Functions of PI = 0*5 +/0-8.
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logio (Sinh u), logio (Cosh ), and logio (Tanh u), were calculated

by Dr. C. Gudermann and published in 1833 at Berlin in a

book entitled
" Theorie der Potenzial Cyklisch-hyperbolischen

Functionen." Unfortunately he only gives these logarithms for

values of u between 2 and 12. A copy of the book is in the

Graves Library of University College, London. These tables,

however, facilitate the calculation of the hyperbolic functions of

complex angles, because they enable us to calculate pretty easily

the values of Sinh a Cosh b and of Cosh a Sinh b, etc., and

hence of Sinh (a +jb), Cosh (a -\-jb\ etc., for values of a and b

between 2 and 12.

We can also obtain a graphical construction for the vectors

representing these hyperbolic functions of complex angles in

the following way.
In the case of an ellipse of eccentricity e and semi-axes a and b,

the distance from the centre to either focus being denoted by/,
we have the well-known relations

62

i
= l 62 or b"= cL* (Ler) and ae= f.

a*

Hence by substitution we can put the equation to the ellipse
3

7/2
with origin at the centre, viz. : ^+p = 1 in the form

MO i

^ H r& /OO\
c" X~+ l^tfl=f

If we take / to be unity and select such a hyperbolic angle a

that Cosh a = _, then Sinh a = v 1^2

, and the equation to the
e e

ellipse with origin at centre then takes the form

-1 . (39)

Again with regard to the hyperbola of eccentricity ci, and
7 O

semi-axes ai and 61 we have -
-^=1 ei

2
,

MI

or &i
2= of (e?

-
1) and /=^ e,.

If then the focal distance/= 1, and if we take such a circular

angle /3 that Cos /?=-, we can put the central equation of the

2x2
11

hyperbola, viz., 3
- = 1 m the form



MATHEMATICAL INTBODUCTION 31

^x"1-^ =1 . . (40)

cS/Tsri^r
1

<
41

>

If then we have an ellipse of eccentricity e = - = - anda Oosn a

a confocal hyperbola of eccentricity e\ = =
p ^ it is clear

that they intersect at some point P and that the co-ordinates of

FIG. 16.

this point x and y are obtained by solving as simultaneous

equations,
x2

y*

Cosh^a+ Sinh2^ 1 ' ' (42)

_ l ..v/
2
._._i .... (43)

It is obvious 'by inspection, having regard to the fact that

Cos2
|3 + Sin2

/3
= 1 and Cosh2 a - Sinh2 a = 1, that the solu-

tions of (42) and (43) are,

a Cos ft (44)

a Sin /3 . . , . (45)

because these satisfy the equations (42) and (43).
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The radius vector OP of the point of intersection of the

ellipse and hyperbola is expressed as a complex quantity by

x+j?/=Cosh a Cos (3+j Sinh a Sin /3
= Cosh (a+j/3). Accordingly

we can set off a line to represent Cosh (a+ JP) given a-j-j/3

as follows : Take a horizontal line and any point in it (see

Fig. 16). Set off distances OF OF' on either side of O of unit

FIG. 17.

length. Set off distances OA, OC representing to the same
scale the values of Cosh a and Cos (3 as given in the Tables.

Draw a line OB at right angles to OA and take a point B in it

such that BF=OA. Then describe an ellipse in the foci F and

F' and semi-axes OA, OB. This can be done by making a loop

of thread embracing the points F and F', and of length equal to

F'F + FB + BF f and moving a pencil point round so as to
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keep the thread tight. Then describe an hyperbola with the same

foci and semi-major axis OC Cos /3. The line OP represents to

scale Cosh(a+/j8) because it is x -\-j y, and these have been

proved above to be equal to one another. It is well known that

confocal ellipses and hyperbolas intersect each other at right

angles.

A very similar construction enables us to draw a vector

representing Sinh (a +J/3), having given a -\- j /3.

Draw vertical and horizontal lines intersecting at O (see

Fig. 17). Set off distances OF'
,
OF equal to unity on the

vertical line on either side of O. Set off a distance OA equal to

Cosh a to the same scale and a distance OC equal to Sin /3, and

with foci F r and F describe an ellipse with semi-major axis OA
and an hyperbola with semi-major axis OC. These will inter-

sect at P. The^i OP represents Sinh (a + j/3). Let the

co-ordinates of P be x and y. Then the equation to the ellipse is

#2
?/
2 b2

- +"^=1 and if e is the eccentricity -^ = 1 e2 . Also ae = 1,
t>
2 a1 J a2

and the equation to the ellipse is therefore

1 1 e2

but if a= = Cosh a, then ^-
= Sinh2 a and the equation takes

6 6""

the form

Sinh2 a
+
Cosh2 a^ 1 '

In the same way we can prove that the equation to the con-

focal hyperbola is

2/
2
_*!_-,

or
i

*

O

or ggs cos3/3
(
4?)

The solution of the equations (46) and (47) as simultaneous

equations gives us the co-ordinates of the point P of intersection.

It is obvious that the solution is

x = Sinh a Cos ft
)

y = Cosh a Sin (3 \

B.C.
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Hence
a Cos p+j Cosh a Sin /3

= Sinh (a+j ft).

Accordingly OP represents Sinh (a +j/3) on the same scale

that OA = Cosh a and OC represents Sin /3.

It is clear that since an ellipse of given foci is denned by its

semi-major axis and the same for the confocal hyperbola we

might describe a number of confocal ellipses and hyperbolas of

different eccentricities and affix to each a numerical value a

and p where a is such a quantity that Cosh a numerically

measures the semi-major axis of the ellipse and /3 such a

quantity that Cos p represents the semi-major axis of the

hyperbola, the focal distance OF for all being unity. Then we

can obtain the value of Cosh (a + j/3) by looking out the ellipse

marked a and the hyperbola marked /3 and joining the point of

intersection with the centre, that vector would then represent

Cosh (a+ j p). Such a series of confocal ellipses and hyperbolas

has been delineated by Messrs. Houston and Kennelly in a paper

entitled "Resonance in Alternating Current Lines," published in

the Transactions of the American Institute of Electrical Engineers,

Vol. XII., April, 1905, p. 208. Dr. Kennelly has also calculated

the values of Sinh (a +j /3), Cosh (a+ jp), Tanh (a +JP), Cech

(a +JP), Sech (a +jP), and Coth (a +J/3) for fifteen values of

/3

from to 1-5 and for values of
-

equal to 1, 2, 3, 4, 10,

and set them oat in Tables1 which by his very kind permission

are reproduced here.

Thus, for instance, the Table I. shows us that the hyperbolic

sine of a vector 1/45 of which the size therefore is unity and

ratio /3/a is also unity or slope 45 is a vector T0055 /54 32',

and from Table II. we find that the hyperbolic Cosine of the

same vector is a vector 1*0803 /27 29'.

These Tables will be found of great use in subsequent

calculations.

If then we are given any vector within limits in the form

+ jb, we can convert it into the form Va2 + fr
2
/Tan

- l

bja and

1 See Dr. A. E. Kennelly. "The Distribution of Pressure and Current over

Alternating Current Circuits," Tlie Harvard Entfnicenncj Journal, 1905 190(5.
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look out in these Tables the hyperbolic functions and thus

determine Sinh (a + jb), Cosh (a +jb), etc., in the form of

vectors expressed as A /0, etc.

We sometimes require an expression for an inverse hyperbolic

function such as Cosh" 1

(a+jb). Since this quantity is a vector

it must have such a value that

Cosh"
1

(a+jb)=x+jy,
or Cosh (x +jy) = a+jb.

Hence a+jb= Cosh x Cos y+j Sinh x Sin y.

Equating vertical and horizontal steps we have

a= Cosh x Cos y

b Sinh x Sin y.

But Sin2 y+ Cos2
y = l and Cosh3 x- Sinh2 x= l.

Therefore by substitution we find

-^2-+ ^-= 1

Cosh x Sinh x

a2 62

or 2~+~ 2
=1.

Cosh x Cosh x 1

Multiplying up we arrive at a biquadratic equation

Cosh
4

x Cosh x+ a2= a3 Cosh x+ b* Cosh x

which can be written in the form,

a

{Cosh
*---

j

Hence

This last expression can be put in the form

which is an exact square. Therefore

Coshz=- ^p . . (49)

In the same manner we can show that

Cos y
^* ' '

2
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Accordingly

Cosh (a -f jb) =

. . (SO)

And by a similar process we can prove that

.4

These formulae have important applications.



CHAPTER II

THE PROPAGATION OF ELECTROMAGNETIC WAVES ALONG WIRES

1. Wave Motion. As the subject-matter of these lectures

is an exposition of the effects connected with the propagation of

electromagnetic waves along wires, it may be well to commence

by some explanation of the nature of wave motion generally.

Let us consider a material medium like the air composed of dis-

crete particles or atoms which we shall, for the sake of simplicity,

assume to be initially at rest. The medium has two fundamental

mechanical qualities. It possesses Inertia in virtue of which any

particle of it when set in motion tends to persist in that motion

unless compelled to change its motion by impressed force. This

is equivalent to stating that when any mass M of the medium is

moving without rotation with a velocity V it possesses kinetic or

motional energy measured by ^
MV2

. Also the medium possesses

some kind of Elasticity that is it resists change of form or

shape or motion. In the case of a fluid like air the elasticity is

resistance to change of volume of a given mass. It resists com-

pression or expansion. In consequence of these two qualities

inertia and elasticity the medium permits the propagation

through it of ware motion. This means that any change in the

medium made suddenly at one place is not instantly reproduced
or repeated at all points, but makes its appearance successively

at different points. Thus, if in an unlimited mass of air we cause

a sudden increase in pressure of the air at one spot by heating it,

say by an electric spark, the surrounding air does not imme-

diately relieve this pressure by moving outwards everywhere at

once, because in virtue of the inertia of the air the force due to

the initial compression cannot immediately create outward

motion in the surrounding shell of air. When, however, the
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immediately surrounding layer of air has been set in motion

outwards it relieves the pressure at the origin, and the original

state of compression is now transferred to a shell of air

embracing the original region of compression. This process again

repeats itself, and the state of compression is handed on to a still

larger spherical shell or layer, and thus the original state of com-

pression is propagated outwards in the form of a spherical shell

of compression which changes its locus progressively by con-

tinually increasing its size.

Whilst the general body of the air remains undisturbed this

thin spherical region or shell in which the air is compressed

CL CL'

,r --

y

PIG. 1.

continually becomes greater in radius and forms what is called a

wave of compression in the air.

The characteristic of wave motion is therefore that the

particular kind of disturbance (in this case compression) is

repeated successively and not simultaneously at all points of

the medium. If we take two points in the medium separated

by a certain distance x and note the time interval t between

the appearance of the disturbance at these places, then x/t is

called the icave velocity (W). This wave velocity depends upon
the specific qualities of the medium, viz., its density or inertia

per unit of volume and its elasticity.

To fix our ideas let us consider waves of longitudinal dis-

placement such as sound waves travelling up a tube of unit cross-

section filled with air. The particles of air lying on any section

of the tube will then move to and fro together. Let the density
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or mass of air per unit volume be denoted by />, and its elasticity

or the ratio of compressing force or pressure to the corresponding

compression in volume be denoted by e. Then if dp is the

increment of pressure causing a reduction of volume dr in a

volume of air r, we have c = - ^ . Consider a layer of air

particles lying on a section a b of the air in the tube (see Fig. 1).

Let x denote their distance from a fixed section at zero time, and

let x + y be their distance after a time t as the wave of longi-

tudinal displacement moves over them. Then y is the displace-

ment in the time t of the particles which form this section ab.

Suppose then that we fix our attention upon a slice of the air

bounded by two planes at distances x and x -f- bx from the origin.

As the wave passes over this slice the sections of it are moved
so that the particles which were initially at x are moved to

x + y, and the particles which were initially at x + dx are

moved to

x+y+ S

Hence the thickness of the slice which was originally bx becomes

bx + by. Its increase in volume is therefore by, and the ratio

of increase of volume to original volume is
^-,

or ultimately,

when bx is very small, it becomes
^|.

If the changes in pressure of the slice of air are made very

slowly, then the product of pressure p and volume r of a unit of

mass is constant, which may be expressed by the formula

pr a constant. If, however, the compression is very suddenly

applied so that the heat due to the compression remains in the

slice and augments its pressure or elasticity, then the relation of

p and v is given by the equation pv
a = a constant where a = T41

nearly, and is the ratio of the specific heat at constant pressure to

the specific heat at constant volume. This is the case in an air

wave. Hence we have by differentiation of pv
a = constant,

dpt
a + ai'

a ~ l

pdt = or dp ap or -, = e = ap.

The force moving the slice of air of thickness bx is the

difference of pressure on its two surfaces, viz., the value of
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-=-(dp)8x. But<fy>= ap and we have shown that for the air
dx"

' L
v

'

motion here considered we have ~^ m

Hence the moving force on the air section is

The displacement of the slice being y, it follows that its

acceleration is ~/T and since its mass is pbx, the equation of

motion is

..... W
The above is a type of differential equation which presents itself

very frequently in Physics. It is not difficult to show that it is

satisfied by any value of y which is made up of the sum of any

single valued functions of x \J -
t and x + \/- t.

* P * P

So that y=F (x~\/
e
-

*)
+ F

(
x+ \/

e

*)
. (2)

Any function such as F (x-^/
e

t\ represents a wave of

wave-form y = F (x) travelling forward with a velocity JF=/y/-.

For the function F (x \/
e
- M has the same value if for x we

\ v /

substitute x x', and for f, t t', provided that x'/t' =*\~> The

reader should carefully consider the physical meaning of this

statement.

Any function of x such as y = F (x) represents a stationary
curve whose ordinate y at any point is some function of its

abscissa x. It therefore represents a wave-form. If the curve

moves bodily forward without change of shape with a speed W,
then the ordinate having a value y at a time t corresponding to

an abscissa x has the same height as the ordinate y at a distance
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f]'J*

x -f tfo corresponding to a time t + dt, provided -j-
is the velocity

ctt .

W of the wave.

In other words, the characteristic of a wave motion is that the

same state is repeated at a distance dx ahead at a time dt ahead

provided v.- is the velocity of disturbance. Hence any mathe-

matical function such as F (x JJY) for which this is true

represents a wave advancing with a velocity jr.

Accordingly for a medium of density p and elasticity e the

wave velocity W is
;

e

V? '

2. The Electromagnetic Medium. It is now almost

universally agreed that the phenomena of electricity and

magnetism render it necessary to postulate an electromagnetic

space-filling medium or aether, and it has been shown that what

we call light and radiant heat as well as electric radiation are

waves of a particular kind in this medium. Moreover, a large

body of proof exists tending to show that the elements of material

substance described as atoms are built up of constituents called

negative electrons or corpuscles and of positive electrons
;
and

that these negative electrons collectively constitute so-called

negative electricity. The reader desirous of placing himself

an courant with what is known and believed on these matters

may be referred to the following excellent works for a full

exposition of them :

"
Electricity and Matter," by Sir J. J.

Thomson (Archibald Constable & Co., London);
" A Treatise

on Electrical Theory," by G. W. de Timzelmann (Charles

Griffin &Co.); "The Electron Theory," by E. E. Fournier

d'Albe (Longmans, Green & Co.) ;

"
Electromagnetic Theory," by

Oliver Heaviside (The Electrician Publishing Company, London).
The advanced reader will do well to consult "^Sther and

Matter," by Sir Joseph Larmor (Cambridge University Press),

and " The Theory of Electrons," by H. A. Lorentz (David Nutt

& Co., London).
The sum and substance of the scientific creed taught by these

writers is that the basis for all physical phenomena as well as
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the source of all gravitative Matter is to be found in the pro-

perties of the Universal ^Ether, and that not only Matter but also

Electricity has an atomic structure, and that the atoms of

electricity, or, to speak more correctly, of negative electricity,

are the electrons which are the constituents of the chemical

atom.

The hypothesis has been advanced that the electron itself is

a strain centre or focus of certain lines of strain in the aether of

a particular kind. Hence the movement of the electron is

merely a displacement of the strain form from one place to

another in a stagnant aether. Experimentally it is established

that an electron is a small charge of negative electricity assumed

to be distributed over a small sphere having a diameter about

one hundred thousandth of that of a chemical atom. It is

therefore a centre on which converge lines of electric force. The

phenomena of electricity and magnetism prove that in the

neighbourhood of electrified bodies there is a distribution along
curved or straight lines of electric strain, which strain is a

physical state of the material dielectric or the interpenetrating

aether. This state is also called electric displacement or polarisa- .

tion. Similarly near magnetic poles and conductors carrying

electric currents there is a distribution of magnetic flux or

induction.

The magnetic flux and electric strain are particular states of

the aether or matter occupying the field, which are vector

quantities having direction as well as magnitude at each point in

the field. Thus the electron is a centre of converging lines of

electric strain, and a wire conveying an electric current is

embraced by endless lines of magnetic flux. The important

question then arises whether these "lines of force" are merely

mathematical abstractions like lines of latitude and longitude or

whether we are to regard them as having objective existence.

Arguments of a weighty character have been advanced by Sir

J. J. Thomson for the view that these lines of magnetic and

electric force are not merely directions in the field, but, so to

speak, structures which compose it.
1 In other words, not only

matter and electricity but also electric and magnetic fields are

. i See Sir J. J. Thomson, Phil. Mag., Ser. 6, Vol. XIX., p. 301, February, 1910.
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atomic in nature. Accordingly the electron, as the atom of

electricity, is to be thought of as a centre on which converge a

certain definite number of lines of electric strain, and these lines

are in themselves states of strain in the aether, analogous in some

sense to vortex filaments in a liquid. To employ a somewhat

crude simile, the electron must be thought of as a ball from

which proceed in every direction long hairs or filaments radially

arranged which it carries about with it.

Sir Joseph Larmor has based an elaborate and consistent

theory of electrical phenomena on the supposition that these

lines of electric strain radiating from the electron as a centre are

lines of torsional strain in the aether. He assumes the aether to

be a continuous or extremely fine grained medium, every particle

of which resists absolute rotation. This resistance to rotation

may proceed from a whirling motion of these very small parts

which bestows a gyroscopic stiffness upon the particles. This,

however, is not the place to enter upon a discussion of aether

theories ; the reader may be referred to Sir J. Larmor's book
11 ^Ether and Matter

"
for a description of a working model of

this rotational aether based on the well-known properties of the

gyroscope. All we shall attempt here is to provide such clear

conceptions of the working processes of an electromagnetic field

as shall assist the end we have in view.

3. Electric and Magnetic Forces and Fluxes.
The region near electrified bodies, called an electric field, is

then the seat of a particular state called electric strain which we

shall consider is located along certain definite lines called lines

of electric strain or sometimes lines of electric force.

Strictly speaking the electric strain is the state in the dielectric

caused by an agency called electric force. In the same way the

region near magnets or electric currents, called a magnetic field,

is the seat of magnetic flux located along certain lines called

lines of magnetic flux. Electrified bodies and magnetic poles or

electric currents exercise attractive or repulsive forces on one

another which can be measured in absolute units or dynes. The

dyne is defined to be the force which, after acting on a mass of

1 gram for 1 second, gives it a velocity of 1 centimetre per

B.C. E
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second in the direction in which it acts. A unit magnetic pole

is one which acts on another unit magnetic pole at a distance of

1 centimetre with a force of 1 dyne. If a unit magnetic pole

is placed in a magnetic field the strength of the field or the

magnetic force at that point is measured by the force in dynes

acting on the unit magnetic pole placed there. We shall denote the

magnetic force at any point in a field so measured by the letter

H. The direction of the lines of magnetic flux in a field can be

mapped out by means of iron filings. In the case of a wire

carrying a current the lines of magnetic flux are closed lines

embracing the wire. The creation of an electric current in a

conducting circuit necessitates the existence in it of some

source of electromotive force. If the conducting circuit is

interrupted anywhere, the source of electromotive force still

existing in it, a difference of potential is created between parts of

it, and in the non-conducting region an electric force is pro-

duced tending to generate electric strain. The presence of an

electric field is detected by the existence of a mechanical force

acting on a small positively electrified body placed in the field.

Two small spheres charged with electricity exert a mechanical

force on each other which may be measured in dynes. A unit

charge is one which acts on another unit charge at a distance of

1 centimetre with a force of 1 dyne. From a mathematical

point of view these electric attractions and repulsions can be

regarded as simply the action at a distance of electrons

negative electrons repelling negative and attracting positive and

positive repelling positive and attracting negative ones. But as

an explanation of what really happens modern scientists do not

admit action at a distance, but only the immediate action of

contiguous parts of the same medium. Accordingly the forces

between electrified bodies must be sought for not in actions

at a distance between electrons, but in the immediate actions

of their associated lines of electric strain in the universal

aether.

It is found that a consistent theory can be built up on the

assumption -that the lines of electric strain exert a tension like

elastic threads and always tend to make themselves as short as

possible. Also they exert a lateral pressure, and their arrange-
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ment in a field is due to the conflict between their longitudinal
tension and lateral pressure.

An explanation of the properties of lines of electric strain is

only possible on the basis of some theory of the aether, but it

is possible to explain it if we assume a medium possessing
inertia and some sort of fine grained whirling structure.

Thus suppose a number of thin inextensible but flexible

spherical envelopes or bags to be filled with liquid. IE the

FIG. 2.

liquid in these bags is at rest it will assume a spherical form, but

if set in rapid rotation round an axis each spherical ball will

become converted into an oblate spheroid like an orange,

flattened at the poles and expanded at the equator. If the balls

are compelled to remain in contact with each other and if the

axes of rotation are arranged in parallel lines, this flattening and

expansion of the cells will cause the row of spheres to become

shorter along the axis of rotation and also by their equatorial

expansion to exert a pressure at right angles, as illustrated in

the diagrams in Fig. 2, in which the circles represent the

E 2
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spherical bags which by rotation have become spheroids, thus

contracting in length along the line of rotation and expanding

laterally.

By some such explanation the student will be able to see that

electric attractions and repulsions can be explained by these

properties of lines of electric strain. We have to assume that

a line of electric strain always starts from a negative electron

and ends on a positive one, unless it happens to be self-closed

or endless. Furthermore we must assume that in conductors

the electrons are quite free to move or that the ends of lines of

electric strain can slide along the surface of conductors but

cannot so move over the surface of insulators.

We have in the next place to consider the nature of lines of

magnetic flux.

Addressing ourselves first to the facts we find that a moving

charge of electricity or say an electron creates a magnetic field

along circular lines whose planes are perpendicular to its line of

motion and centres are on that line. Hence if a spherical

charge with radial lines of electric strain moves forward it creates

circular lines of magnetic flux embracing its line of motion.

The magnetic lines of flux are perpendicular to the directions of

the lines of strain and line of motion.

This was first shown experimentally to be the case by
H. A. Rowland in 1876 and was confirmed by Rowland and

Hutchinson in 1889 and also by Rontgen in 1885. Doubt was

thrown on the facts by M. V. Cremieu in 1900, but Rowland's

conclusions were reaffirmed by H. Fender in 1901 after a careful

research. 1 A brief general description of this classical experi-

ment is as follows :

A pair of circular glass plates are covered with gold leaf which

is divided by radial cuts. These plates are charged to a high

potential with electricity and set in rapid rotation round their

centres. The two plates are placed parallel and near to each

other. Between them is suspended a sensitive shielded magnetic
1 See H. A. Kowland, Pogg. Ann., 1876, Vol. CLVIIL, p. 487

;
Rowland and

Hutchinson, Phil. Mag., 1889, Vol. XXV1L, p. 445
; Rontgen, Her. <lcr liei-Un. Altd..

1885, p. 195; Cremieu, Comptes Renting 1900, Vol. CXXX., p. 1544; 1901,

Vol. CXXXL, pp. 578, 797
;
Vol. CXXXII., pp. 327, 1108

; H. Fender, Phil. Mag.,

1901, Vol. II., p. 179.
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needle. When the charged plates revolve at a high speed the

needle is deflected in the same manner as it would be if an

electric current were flowing round the periphery of the disk.

If the plates are charged positively the convection current, as

it is called, has the same magnetic effect as a voltaic current

flowing round the disk in the direction of rotation and if charged

negatively, in the opposite direction.

Hence we have an experimental proof that a moving charge of

electricity produces a magnetic field.

It follows that lines of electric strain moving transversely to

their own direction create lines of magnetic flux.

A very beautiful direct proof of the fact that a moving charged

body is equivalent to an electric current has been given by Professor

R. W. Wood. 1 When carbonic dioxide gas strongly compressed
in a steel bottle is allowed to escape from a nozzle the sudden

expansion creates a fall of temperature sufficient to solidify some

of the gas into small particles. These particles of C02 are

electrified by friction against the nozzle like the particles of

water when the steam escapes in Lord Armstrong's hydro-
electric machine. The particles of solid carbonic dioxide are

electrified positively. If this jet is sent along a glass tube it is

possible to obtain velocities of the electrified particles as high as

2,000 feet per second. Professor Wood found that a magnetic
needle suspended outside the tube was affected just as if the tube

had been a wire conveying an electric current.

In order that we may define more accurately the relation of

lines of electric strain and magnetic flux we must attend to the

following definitions.

Electric strain may be said to be produced in a dielectric by
electric force or stress just in the same manner that mechanical

strain is produced by mechanical force or stress. We call the

ratio of the stress to the homologous strain the elasticity of the

material, and similarly we may call the ratio of the electric stress

or force (E) to the electric strain (D) the electric elasticity.

Unfortunately the term dielectric constant (K) or specific

inductive capacity was the name given a long time ago to the

1 See PlilL May., 1902, 6th Ser., Vol. II., p. 659.



54 PROPAGATION OF ELECTRIC CURRENTS

4?r-D
ratio -^-. In other words the relation between the total dis-

!j

placement through the surface of a sphere of unit radius at the

centre of which is placed a unit
charge^to the electric force at a

unit of distance has been called the dielectric constant.

Suppose that a quantity of electricity Q reckoned in electrostatic

units is placed on an extremely small sphere and that we describe

round its centre a larger sphere of radius r. Then the surface

of this last sphere is 47rr
2 and the displacement per unit of area

or number of lines of electric strain passing through this sphere

being called D, the total displacement is 47rr
2
D, and this is denned

to be equal to Q. Hence the displacementD= 2
.

The electric force E at a distance r is ^ where K is the so-

called dielectric constant. Hence the ratio of stress to strain is

the ratio --
2

: T^2= ^ne electric elasticity and the ratio

47rD / E = K = the dielectric constant. We do not know the

actual number of lines of electric strain proceeding from an

electron or natural unit of electricity, but it is convenient to

consider that the total number of lines of electric strain pro-

ceeding from a charged body is numerically equal to the charge.

Thus if the charge is Q there are Q lines of strain passing through
the surface of a sphere of radius r described round it. Hence

the lines of strain per unit area or the density of the lines, also

called the displacement D, is such that 4 -n r2 D = Q.

We have next to consider the relation between the magnetic
flux and the electric strain. The magnetic flux (B) is considered

to be an effect due to magnetic force (H), and the ratio of the

flux to the force is called the magnetic permeability (/x). Hence

B = n II. The magnetic flux density B signifies the number of

lines of magnetic force which pass normally through unit of

area. Accordingly we have the two fundamental equations of

electromagnetism as follows :

B=^H . . . (4)

D=~E ..... (5)
7T
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The occurrence of this 4 it in the second equation is due to the

mode of definition adopted for the displacement Z). It would

have been preferable if the electric force E had been so defined

that the force at a distance r from a quantity Q were taken as

9 vt and then this would have given D = KE. Taking,4 7T T" J\.

however, the usual definition we have the relation as given in the

equations above.

We have next to consider the relation between magnetic flux B
and electric strain or displacement D. This is based upon the

two following facts :

(i.) That lines of electric strain when moved laterally through
a dielectric give rise to lines of magnetic force in a direction at

right angles to the lines of electric strain and the direction of

their motion.

(ii.) Also that lines of magnetic flux moved laterally through a

dielectric give rise to lines of electric strain in a direction at

right angles to the lines of flux and to the direction of their

motion.

The experimental proof of the first statement has already been

given by the experiments of Rowland and others on the magnetic
field of moving electric charges.

The second statement when made with regard to a conductor

is familiar to us as Faraday's Law of Induction.

If a bar of conducting material of length L is moved perpen-

dicularly to itself with a velocity F across lines of magnetic flux

of density B, then we know from Faraday's law that an electro-

motive force (E.M.F.) is set up in the bar such that

E.M.F.=BLV

reckoned in absolute electromagnetic units or BLV/1Q
8 reckoned

in volts.

Now the electric force E is the electromotive force per centi-

metre of length. Hence E = E.M.F./L. Therefore the electric

force E set up in the conductor is equal to [j.
HV where H is the

magnetic force.

The same will happen if the conductor stands still and the

lines of electric strain sweep or cut across it with a velocity V.

If the bar is an insulator of dielectric constant K, then it has
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been shown theoretically by Sir J. Larmor and experimentally

by Professor H. A. Wilson that there is an electric force set up in

the bar when lines of magnetic force cut across it with a velocity

V which is expressed by the equation

HV . . (6)

This formula was tested and verified by H. A. Wilson by

revolving a cylinder of ebonite at a high speed in a magnetic
field the lines of which were parallel to the axis of the cylinder

around which it revolved. The difference of potential between

the axis and perimeter was measured and the mean electric

force equal to the above difference of potential divided by the

radius of the cylinder was calculated and found to agree with

the above formula. For details the reader is referred to the

original paper (see Philosophical Transactions of the Eoyal

Society of London, Vol. 204A, p. 121, 1905
;
also Proc. Roy. Soc.,

Vol. 73, p. 490, 1904).

As regards the magnetic force produced by the lateral move-

ment of a line of electric strain, it can be shown that if E is

the electric force in the direction of the lines of electric strain

and if K is the dielectric constant of the medium, and if V is the

velocity of the lines parallel to themselves, then the magnetic
force H produced by the motion is given by the formula

H=KEV (7)

Otherwise, if D is the displacement or number of lines of

electric strain passing through unit area, and if they move with

a velocity V in a direction inclined at an angle to the direction

of the lines of strain, then the magnetic force II due to their

motion is given by
11=4: TrDV Sin e .... (8)

A statement of the connection between the electric force E
and the magnetic force PI can be arrived at in another way.

Suppose we describe any small area in an electric field, say a

rectangle of which the sides are dx and dy, and let the electric

force E at the centre of that area have rectangular components
Ex and Ey parallel to dx and dy respectively. Imagine that we
travel round the area in a counter-clockwise direction, multi-

plying the length of each side by the component of the electric
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force in its direction and reckoning the product as positive when
the force is in the direction of motion and negative when it is

against it, and finally add up algebraically all these products, we
obtain what is called the line integral of the force round the area.

Thus for the case in question we have for the line integral the

sum

* - - - 09

The above line integral is the electromotive force acting round

the area, and the quantity in the brackets, viz., ^~ ^ is

called the curl of the electric force at that point and written

Curl E. If there is a magnetic force // in a direction z at

right angles to the plane of xy, then the total magnetic flux

through the area fix by or the number of lines of electric force

passing through the area is pH Sx by where /x is the permeability.

If then the electromotive force is due to the variation of this

field we have by Faraday's law

or ur=-f^H .... (11)

where H stands for rr or the time variation of H. For the
at

above formula merely expresses the fact that the electromotive

force is due to the time rate of change of the magnetic flux

through the area.

Again, if H is the magnetic force in any field and if its

rectangular components are Hx and Hy the quantity -^--
-~^

formed in the same manner as in the case of the electric force

is called the Curl of the magnetic force. If then D is the

electric displacement normally through the area Sx By drawn in

the magnetic field, the time rate of change of this displacement

denoted by
-- or D is called the dielectric current and is the
CI L
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rate at which electricity is moved through the area. According
to Maxwell's theory this dielectric current produces magnetic
force according to the same laws as a current of conduction.

Hence 4-n- times the total current through the area is equal to

the line integral of magnetic force round the area. Applying
this to the above case of the dielectric current through the area

fix by we have

( ~^
y =-?

]
&x 8y = 4-7T ~bx by

\ dx dy ) dt

or CurlH=4irZ>

or CurlH=KE ..... (12)

The expressions therefore for the Curl of the magnetic force

and for the Curl of the electric force are quite similar and

involve the two constants of the dielectric, viz., the magnetic

permeability //,
and the dielectric constant K.

It can be shown that the velocity of propagation of any

electromagnetic disturbance or state through a dielectric is

equal to 1/Vx/L
For if we consider that E and H are both at right angles to

a common direction taken as the #-axis and vary in that direction

alone, that is are propagated in that direction, we have for the

Curl equations

^=-Kd^ . - (13)

^.= -A^ (14)
dx ^

dt

Hence differentiating with regard to x and t we can easily find

that

. (16)

Now these equations are precisely similar in form to those we

deduced for the velocity of sound (see Equation (1) ), and they
show that the velocity of an electromagnetic disturbance spreads

through the dielectric with a velocity such that u=

Thus if we suppose a current in a conductor buried in a

dielectric to be suddenly reversed in direction, the magnetic field
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due to it is not reversed in direction everywhere at once, but the

reversal begins at the surface of .the conductor and travels

outwards with a velocity 1/VKp where K and ^ are the electric

and magnetic constants of the dielectric. As regards numerical

values we do not know the separate absolute values of K and ^
for air or empty space, that is for the tether, but we do know
that the value of the velocity u is very nearly 3 X 1010 cms. per
second or about 1,000 million feet a second that is the velocity

of light.

Accordingly, if lines of electric strain are created at one point

in a dielectric they diffuse or travel through it with a velocity u

called the electromagnetic velocity, and as they move they give

rise to lines of magnetic flux at right angles to themselves and

to their direction of motion. If E is the electric force and K the

dielectric constant, then the magnetic force H resulting from the

sidewise motion of the lines of electric strain is given by
H=KEu (17)

Also if lines of magnetic flux move in a similar manner the

electric force E created is given by

E=fjiHu (18)

4. Electromagnetic Waves along Wines. We
are now in a position to explain more in detail the nature of an

electromagnetic wave.

As we are not concerned here with electric waves in space or

so-called free or Hertzian waves, but only with waves guided along

wires, we shall take a concrete case, viz., a pair of long parallel

wires of very good conducting material, and examine the effects

taking place when an electromotive force of particular type is

applied between them.

Let us suppose an alternator to be applied at one end giving

an electromotive force which rises suddenly to a certain value,

maintains it constant for a while, then vanishes and is shortly

afterwards replaced by a reversed electromotive force going

through the same cycle of values. The curve of electromotive

force or the variations of E.M.F. with time would then be repre-

sented by a square-shouldered curve as in Fig. 3.

If then the E.M.F. rises suddenly at one end of the pair of
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wires it implies that there is an electric force and therefore an

electric strain in the space between. Looking at the wires end

on, the strain would he distributed in curved lines as in Fig. 4,

FIG. 3.

where the small circles marked with a dot and a cross represent
the section of the wires. When looked at from the side the lines of

electric strain would project into straight lines as in Fig. 5, in

which the arrow heads represent the direction of the electric

strain. Now this strain

does not make its appear-

ance at all distances at

once, hut is propagated
outwards in the space
between and around the

wires at a certain speed,

and when the electro-

motive force at the send-

ing end dies down suddenly
it does not cease at all

points at once. The effect

is equivalent to a gradual

movement of lines of strain

along the space between

the wires. This movement

implies movement of elec-

tric charges along the wires. The ends of the lines of

electric strain, so to speak, slip along the wires, and we may
regard their ends as terminating on electric charges. But

this lateral movement of lines of electric strain and of longi-

tudinal movement of electric charges implies the flow of

FIG. 4. End-on view of Lines of Electric

and Magnetic Forco of parallel wires.

Firm lines are Magnetic lines, Dotted
lines are Electric lines.
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an electric current along the wires and the creation of lines

of magnetic flux in the interspace, which lines of flux are

everywhere perpendicular to the lines of electric strain and the

direction of the motion of the latter. The lines of flux are therefore

closed loops embracing the wires as shown by the dotted lines in

Fig. 4, and their section is represented by the dots in Fig. 5.

The two distributions of lines of strain and flux travel together,

and they both represent energy in different forms. If the electric

strain density or number of lines of electric strain per square

centimetre is represented by D and the number of lines of mag-
netic flux per square centimetre is represented by B, and if the

dielectric constant is K and the magnetic permeability is //, then

FIG. 5. Sidewise view of Lines of Electric and Magnetic Force of

parallel wires. The arrows are electric lines and dots the

magnetic lines.

the energy of electric strain per cubic centimetre is represented
1 ID2

by DE =
% j(>

an(i fcne energy of magnetic flux per cubic

1 1 .B2

centimetre by ^
HB ==, provided that the flux and strain

lines are respectively practically parallel through the cubic centi-

metre, and when B = /u H and D = KE. If, however, the values

of the electric and magnetic forces created by the motion are

controlled by the relations // = KEu and E = ^ Hu, then it

follows that

In other words, the total energy is equally divided between

electric and magnetic forms.

Hence as soon as the lines of electric strain begin to move
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freely they have to part with some energy or some have to go out

of existence to create the lines of magnetic strain, and the total

energy is equally divided between the two sets of lines.

If the lines stop moving, then the magnetic flux lines vanish,

but their energy cannot simply disappear, but it is conserved and

reappears as the energy of additional lines of electric strain

created. Conversely if the lines of electric strain disappear, then

their energy is transmitted into additional lines of magnetic
flux.

Such a block or group of lines of electric strain travelling

through a dielectric with associated lines of magnetic flux at right

angles to the lines of strain, the two groups being of equal

FIG. 6.

energy and mutually sustained by their motion, is called an

electromagnetic wave.

Generally speaking, in an electromagnetic wave the electric

lines or force do not begin and end sharply, but fade away fore

and aft in accordance with a sine law of variation, so that it may
be diagrammatically represented as in Fig. 6, where the close-

ness of the lines is supposed to denote the electric force and of

the dots the magnetic force. We may then mathematically

express the electric strain and magnetic flux symbolically as

follows :
:

D=DQ Sm(x-Vt) .... (19)

B=B 8m(x-Vt) .... (20)

where D and -Bo represent the maximum values of the electric

strain and magnetic flux and D and B their values at any
distance x from an origin and any time t, and V is the velocity

of propagation. For these expressions are periodic both in

space and time and remain the same if for x we put x + ^ and



ELECTROMAGNETIC WAVES ALONG WIRES 63

for t, t + T, provided \/T = F. The length A is called the wave

length and the time T is called the periodic time. The former

is the length in which the whole cycle or series of electric or

magnetic lines is contained at any instant, and the time T is

the time in which the whole cycle of variations completes itself

at any one place. If then we have an ordinary alternator attached

to the end of the line, producing a simple harmonic electromotive

force, we have sinoidal electromagnetic waves travelling up the

space between the wires with a velocity V presently to be deter-

mined and constituting a train of electromagnetic waves. In a

pure electromagnetic wave the energy is half electric and half

magnetic, and the two constituents, the magnetic component and

the electric component, travel together with the same speed and

are in step as regards phase. As regards the relative direction

of the electric force or strain, magnetic force or flux, and motion,

their direction can be remembered by holding the thumb, middle

finger, and fore finger of the right hand in directions as nearly as

possible at right angles. Let the direction in which the thumb

points indicate the direction of the wave motion or velocity, the

direction in which the middle finger points the direction of the

magnetic force or flux, and the direction in which the fore finger

points the direction of the electric force or strain. Then by

twisting round the hand into various directions with the thumb,
and two fingers held stiffly at right angles, we can always deter-

mine the directions of the magnetic and electric vectors, as they
are termed, with regard to the direction of wave propagation.

5. Reflection of Electromagnetic Waves at
the End of a Line. Before proceeding to discuss analy-

tically the propagation of waves along wires it will be found

profitable to consider the phenomena which occur when an

electromagnetic wave reaches the end of a line whether open or

closed.

First consider an open or insulated end. When the lines

of strain arrive at the end of the line they cannot proceed

farther because their ends cannot be detached from the metal

wires, but their inertia causes them to travel as far as they can

by stretching themselves
;
hence as they reach the end of the
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line they extend themselves in curved lines as shown in Fig. 7.

As soon, however, as they come to rest, the accompanying

magnetic flux, which is produced only by the sidewise motion of

the strain lines, vanishes, but its disappearance results in the

creation of additional lines of electric strain to conserve the

FIG. 7.

energy. Some of the electric strain lines are then in a state of

stretch, but owing to their longitudinal tension they tend to con-

tract and to start the whole mass of strain lines back again on

the return journey. As soon, however, as the lines begin to

travel their motion recreates the magnetic flux lines, and part of

the electric strain lines vanish to supply the magnetic energy.

Then the wave is re-established and runs back again to the

origin. Here it may be reflected again and so travel backwards

and forwards until its energy is dissipated. If the receiving end

FIG. 8.

of the cable is short circuited by a good conductor, then the

process of reflection is somewhat different. When the strain

lines arrive at the end their ends follow on round the short

circuit, and the strain lines therefore tend to shrivel up to

nothing, as shown in Fig. 8. But this process implies a move-

ment of each part of the strain line at right angles to itself and
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so gives rise to a line of magnetic flux embracing the end con-

ductor, which is left behind as the equivalent form of energy
when the electric strain lines disappear. Hence when the wave

reaches the closed circuit end all the lines of electric strain

vanish for the moment and are replaced by lines of magnetic
flux. But this state is not stable. The closed lines of magnetic
flux closely embracing the short circuit end begin to expand
outwards again like ripples on a pond, and the moment they
move their motion recreates electric strain lines, and presently
the energy is again divided equally between electric strain and

magnetic flux lines in lateral motion.

Accordingly we see that there are two general laws as follows.

1. When an electromagnetic wave is reflected at the open end

of a cable the magnetic component is reversed in direction, and

at the moment of reflection the magnetic component is suppressed
and the electric component doubled in intensity.

2. WT
hen an electromagnetic wave is reflected at the short

circuited end of a cable the electric component is reversed on

reflection, and at the moment of reflection the electric component
is suppressed and the magnetic component doubled in intensity.

If the electromagnetic waves continue to arrive and to be

reflected at the open or closed end, then the two trains of waves,

direct and reflected, pass through each other, and the resultant

state of affairs is said to be due to the interference of the direct

and reflected wave trains.

If the receiving end is not perfectly insulated or perfectly

short circuited the energy of the wave is partly reflected and

partly transmitted and the resulting condition becomes still more

complicated.

We may make an additional inference. If there be in any
cable a part in which there is greater inductance or capacity per

unit of length than at other parts, these lumps of capacity or

inductance will cause partial reflection of the wave.

The whole process of transmission and reflection of electro-

magnetic waves up the space between two conducting wires is

exactly analogous to the phenomena occurring when air waves

are travelling up a pipe such as an organ pipe.

In place of magnetic flux we have to consider the velocity of

B.C. P
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the air particles, and in place of electric strain we have air con-

densation or rarefaction. If the pipe is closed at the end then

when the air wave reaches it, it is reflected with change of the

direction of the velocity component. If the pipe is open at the

end the wave is also reflected, but with change of phase of the

density component, that is a condensation is reflected as a

rarefaction and vice versa.

In the air wave at any one point changes of density succeed

each other periodically, and also changes in the velocity of the

air particles. In the electromagnetic wave changes of electric

strain and electric force in amount and direction succeed each

other at any one point, and also similar changes in magnetic flux

or force.

If the wave could be arrested and fixed in its state at any one

moment we should find a periodic distribution of electric and

magnetic force in space, the two being in mutually perpendicular

directions and also at right angles to the direction of

propagation.

6. Differential Equations expressing the Pro-
pagation of an Electromagnetic Disturbance
along a pair of Wires. Having obtained a general con-

ception of the nature of the physical processes taking place when

a simple periodic electromotive force is applied to a pair of

parallel wires, we shall next proceed to translate these ideas into

mathematical language in order to give greater precision to

them.

Let us consider a transmission line consisting of two parallel

infinitely long wires having a resistance R ohms per mile of

line, that is per mile of lead and return, and a capacity C farads

per mile, an inductance L henrys per mile, and a dielectric

.conductance of S mhos per mile, the mho being the reciprocal of

the ohm.

Let v be 'the potential difference between the wires at any
distance x from the sending end and let i be the current at that

point. Then the potential 'difference and current at a distance

is v+ &r and? +,&r-
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The potential difference (P. /).) is partly expended in driving

the current against the ohrnic resistance and partly in over-

coming the back electromotive force due to inductance. Hence

for a length bjc we have the following equations.

^8x=R8xi+Ux^ .

(21)dx dt

- .

(22)dx dt

The first equation expresses the manner in which the fall in

voltage down the length bx is accounted for, and the second the

manner in which the current in the same length is expended

partly in charging the wire and partly in conduction across the

dielectric. From these equations we at once derive the

following :

l=B*+i| -... (23)

These are the differential equations for the propagation of a

current in a line having resistance, inductance, capacity, and

insulation conductance. W7
e need not consider at the present

moment the general solution of these equations, but for the

immediate purposes we shall limit our consideration to the case

in which both v and i are simple sine functions of the time.

Then if i I Sin pt and v = V Sin (pt + 0), these functions

indicate a simple sine variation of i and v with a difference of

phase but equal frequency n such that %im=p. Thus we have

Hence if we denote the

periodic current by a simple vector representing its maximum
value, then a vector p times as long at right angles to the vector

denoting the current will represent the maximum value of

the time rate of change of the current or the maximum value

t
di

oi
dt

If therefore any line is taken to represent RI, or the maximum

value of Ri
f
then for the maximum value of L -=- we must draw

dt

a line to the same scale representing Lpl at right angles to the

F 2
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vector RL The vector sum of these lines or RI+jpLI will be

dV
a line representing the maximum value of

^
. Hence when

the time variation of i and v are simple harmonic, we can, in place

of the scalar equation
dv ^ di

dx

write the vector equation
dV

where V and / are the maximum values of v and i during the

period. We thus eliminate the time variable and deal only with

the maximum values of the quantities during the period.

Hence we can write our two fundamental equations in the

form,

^=(R+jpL)I . . (25)

=(S+jpC)V . . . (26)

The quantity,/? + jpL is called the rector impedance, and the

quantity S + jpC is called the rector admittance.

By differentiating each of the equations above with regard to x

we can separate the variables and arrive at the two equations,

. (27)

. (28)

where P= jR+jpL s+j^C=a+jp . . . (29)

P is a complex quantity and therefore may be written in the

form a + jfi.

It is called the Propagation constant of the line.

Squaring the two sides of the expression (29) we have

a2
-/3

2 +y 2 ap = (RS-p*LC)+j (pLS+p CR\
and equating horizontal and vertical steps we have,

a*-(3
2=RS-p*LC .... (30)

and Za$=p(LS+ CR) .... (31)
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and equating the sizes of the vectors we have

or, a*+p2=^+P'2 L*(SP+p**) - (32)

whence we find that

=
\J

C*)+ (SR-p*LC) (33)

v - - (34)

These quantities a and /3 are very important, a is called the

attenuation constant, and /3 is called the wave length constant, and

P = a -\-jj3 is the Propagation constant of the line.

The expressions for aand'/3 may be modified by relative values

of 7i, L, $ and C, which last are called the primary constants of

the line, a, 8, and P being the secondary constants.

Thus if = or the line has no leakance, then

. (35)

. . . (36)

If S = and L = or the line has no inductance as well, then

In all these cases a and /3 are functions of p and therefore of

the frequency n, since p = 27m.

In the general expressions for a and /3, viz., in equations

(33) and (34), if we add and subtract the quantity ZjPCLSR
to and from the product (fl

2+^2 L2
) (S

2+p2 C2
) we can throw

the expressions for a and /3 in the form

-^ LC) - (38)

(39)

If tben the primary constants have such values that

LS-CB=QorLS= CB,
then we have

a= JSR . - (40)..... (41)
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For a reason to be explained later on, such a cable is called a

distorsionless cable, and in that case the value of a is the same for

all frequencies.

We have therefore obtained differential equations expressing

the relations of the potential and current at any point in a line

under the assumption that the current and potential are quantities

which vary in accordance with a simple sine law.

In the next chapter we shall discuss the solution of these simple

periodic equations in various cases, and deal with the general

solution of the differential equations (23) and (24) at a later

stage.



CHAPTEE III

THE PROPAGATION OF SIMPLE PERIODIC ELECTRIC CURRENTS IN

TELEPHONE CABLES

1. The Case of an Infinitely Long Cable with
Simple Periodic EEectnomotive Force at the
Sending End. Eeturning to the fundamental differential

equations we have now to find solutions for particular cases.

These equations are,

. .

where V and / are the maximum values during the period of the

potential and current at any point in the line. A differential

equation of this type can be satisfied by simple exponential

solutions of the form V = Ac +Px and V = B*~PX where .4 and B
are constants, as can be seen at once by double differentiation

of these last expressions. Hence a solution of these equations
is found by taking the sum of the above particular solutions,

viz.,
''x

. . . (3)

1'*
. . (4)

where A, B, C, and D are constants to be determined.

In obtaining the original differential equations (23) and (24)

(see Chapter II.) it is to be noticed that we assumed the current

and potential to increase with x. It is most convenient to reckon

the distance x from the sending end, and then V and / both

diminish with x. We can, however, make the necessary change
in our solutions by writing x for x. Making the change, we

have for the solutions of (1) and (2).

* .... (5)
v .... (6)
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Suppose that the cable is infinitely long, then when x = oo we
must have V and I 0, and therefore the constants B and D
must both be zero. Again when x = we must have V = E
where EQ is the potential difference of the two members of the

cable at the origin, or, in other words, the electromotive force

applied at the sending end. Hence A = EQ. Moreover, since

) I, it follows that
dx

K or C=

Hence in the case of the infinitely long cable with simple

periodic E.M.F. E applied at the sending end, the potential and

current at any distance x are given by the equations,

V=E&->'* (7)

(r
-

JR+jpL
where P= jR~+jpL jS+jpU~= .+jp.

The quantity P is called the propagation constant and Px is called

the propagation length or distance.

The quantity ~-^ . ^ is of great importance and is called

the Initial sending end Impedance and denoted by ZQ.

Bearing in mind that c~^ = Cos fix j Sin fix and that
~PX = c-M-Jfta it is seen that the solutions of the differential

equations for the case of the infinitely long cable can be put in

the form

V=E e-* (Cos PX -j Sin /Ete) .

'

'

. . (9)

jo -ax
(Cos PX-J Sin PX) .

^0

Each of these expressions is a complex quantity and therefore

represents a vector. The value of V is obtained by operating on

EQ with two factors ; one viz.,
~ ax

,
called the attenuation factor,

continually decreases in a geometric progression as x increases in

an arithmetic progression. The other factor (Cos fix j Sin fix),

called the phase factor, repeats itself over and over again in value

at intervals of distance equal to -Q as x continually increases,
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since Cos fix = Cos /3 (
x
^~~i~ and the same for the sine term.

It is clear, therefore, that as we move along the line the

potential and current rise and fall periodically, but so that the

maximum value in each space period dies gradually away.
Moreover at each point the potential and current are periodic
with time ; that is, run through a cycle of values.

This shows that as we proceed along the cable, taking the

potential and current at each point to be the maximum values

they have during the period, we find that these maximum values

attenuate in a certain ratio and are shifted backwards in phase

relatively to each other. At equal space intervals along the line

FIG. 1.

these maximum values form a geometric series as regards their

size and their phases differ by equal angles. The distance ~
is called the wave length and denoted by A.

We can represent the state of affairs in the cable by a model

made in the following manner :

Take a long wooden rod to represent the cable and a number
of wires the lengths of which form a geometric series, that is the

length of each wire is the same fraction or percentage of the

next longest one. Let holes be bored in the wooden rod at equal

distances and in such directions that these holes lie on a spiral

of equal pitch wound round the rod, the holes being otherwise

perpendicular to the axis.

Then if the wires are inserted into the holes we shall have a

structure as shown in Fig. 1.

Each wire will then represent in magnitude and direction the

maximum value and phase of the current or potential at the
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corresponding point in the cable. If the tips of all these wires

are joined by another wire, this last will form a spiral round the

rod, but the spiral will be like a corkscrew, decreasing in diameter

the further we move along the rod. If we wish to represent the

changes which take place from instant to instant in the potential

or current we must place this rod in the sunshine and cast the

shadow of it on a sheet of white paper held perpendicular to the

sun's rays. If then the rod is rotated the shadow of each of the

wires will increase and decrease and reverse direction at each

turn. The length of the shadow at any instant will denote the

actual current or potential at that point in the cable and runs

through a cycle of values at each revolution of the rod.

FIG. 2.

A line joining the tips of all the shadows will at any moment
be a wavy decrescent curve as in Fig. 2, and as the rod is rotated

the ends of these shadow lines will appear to move forward with

a wavy motion.

The curve formed by joining the tips of the shadow lines is a

curve like that in Fig. 2 whose equation is of the form

y=A ~ ax Cos
j8a? (11)

Hence if we suppose ourselves to stay permanently at a point

in the cable the distance of which from the sending end is x,

we should find the potential and current at that point varying

periodically with a frequency n or having a periodic time T.

If we could cause the current and potential at all points in

the line to be fixed permanently in the state in which they are

at any instant t, then we should find a distribution along the

line which is periodic with a wave length 2 ir/p, but the
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maximum values in each half wave length decreasing in the
7T

ratio e~ a
/3.

A model imitating the actual changes of potential from instant

to instant at any point in the cable can be made in the following
manner.

On a long axis are fixed a series of grooved eccentric wheels

the eccentricities of which decrease in geometric progression
that is the eccentricity of each one is the same fraction of that

of the preceding one all the way along. Also the angle of lead

of these wheels decreases progressively by equal angular steps.

In each wheel is a groove on which is hung a long loop of

string carrying a weight at the bottom. The loops are all of

equal length. These weights therefore are arranged along a

wavy decrescent curve. If the axis is rotated each bob moves up
and down with a nearly simple harmonic motion, but the

amplitudes of motion decay in a geometric progression and

the phases lag in arithmetric progression, and hence the bob

motion represents in phase and amplitude the potential or

current at various points along the cable.

A model of this kind has actually been constructed by the

author and exhibited in various places.
1

If then for any cable we are given the primary constants

R, L, C, S, in ohms, henrys, farads, and mhos, per mile, we can

calculate the values of the attenuation constant a and the wave

length constant (B and hence the attenuation factor
~ ax and the

phase factor Cos fix j Sin fix for any distance x. The attenua-

tion per mile, viz., e~ a
,
and the wave length 2-/T//3 are then at

once found.

The value of t~ ax can be calculated most easily by means of

a Table of Hyperbolic Sines and Cosines.

For ""*=: Cosh ax Sinh ax.

Hence V=E
() (Cosh ax- Sinh ax) (Cos fix-j Sin fix) . (12)

J=Q (Cosh cur -Sinh our)(Cos ftx-j Sin fix) . (13)
^o

'See "A Model illustrating the Propagation of a Periodic Current in a Tele-

phone (.'able and the Simple Theory of its operation," Phil. Mr(;/.. August, 1904,

an. I l'rin: /'////*. tin: Loud., Vol. XIX.
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If we reckon phase angles from the direction of EQ, then

symbolically we have

V= (E ) (Cosh ax - Sinh ax)\fix . . . (14)

J=
(?-

()VCosh ax ~ Sinh ax)\Bx. . (15)\/4 /

where the brackets round EQ and
-^-

denote the sizes of these

vectors.

We have therefore completely determined the potential and

current at any point in the infinite cable.

Moreover, given the values of It, L, C, and S, per mile or per

kilometre, we can calculate the value of the attenuation constant

a and hence of e~ a
,
which gives us the attenuation per mile or

ratio in which the maximum values of the current and potential

are weakened by going a mile or kilometre along the cable.

Also we can calculate the value of the wave length constant,

which the formula (34), Chapter II., gives in radians, the radian

being the unit angle or angle whose arc is equal to the radius,

180
viz.,

: -=57 17' 45" nearly. Accordingly the angle of the
7T

vector denoting the current or potential is shifted backwards by

P degrees per mile or per kilometre.

Hence after running a distance the phase has shifted

backwards 360 and the cycle as regards phase begins again to

be repeated. The length 2ir//3
= A is called the wave length.

Now in all cases of wave motion the wave velocity W is

connected with the wave length A and the frequency u in the

L^ relation giv
7en by the formula

W=nK . .... (16)

But A =
27T//3 and 27m = p, and hence

W=P (17)A
s\

Accordingly the velocity of the wave is a function of the

frequency n.

It is therefore seen that in an ordinary cable alternating
currents or potentials of different frequency decay at different
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rates along the cable and travel with different velocities. There

is, however, one important case in which currents of all fre-

quencies attenuate equally and travel at the same speed. This

is when the primary constants have such values that

We have seen that under these conditions

and =

Hence W= ==. When this is the case both a and W are
\/ (JL

independent of the frequency, and currents and potentials of all

frequencies travel and attenuate alike.

Such a cable has been called by Mr. Oliver Heaviside a

distortionless cable, for reasons to be considered later on.

In the case of all ordinary cables the values of the constants

are such that the product R C is much greater than the product
L S. It is easily seen that under these conditions the lower the

frequency the less the attenuation and wave velocity but the

greater the wave length. Hence shorter waves travel faster and

attenuate more rapidly.

Thus for instance take the cable to be the National Telephone

Company's Standard Telephone Cable, which has the following

constants per loop mile, that is per mile run of lead and return,

R = 88 ohms, C = '05 microfarad, L = '001 henry, S = 0.

Suppose we apply a simple periodic E.M.F. at one end of

such a cable infinite or very great in length.

Let the frequency n be 83, which gives p = &vn = 500 nearly.

We have then
i 05

LP=~, cp=w ,

25
Hence

or a= -034, |8
=

and A= = 185 miles

o,2
12-5

2/3 -o6

= = 15,000 miles per second.
p
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Next suppose n = 830 or p = 5,000.

Then Lp= 5, Cp=~^, VB*+p*L*= QQ'l

88 1

4000" 00
a= '104

Hence A = 62'8 miles, W = 50,000 miles per second. Finally,

if n = 8,300, and p = 50,000, we find that a = -253, /3
= -435,

and \ = 16 miles, W = 125,000 miles per second.

This cable is therefore very far from being distorsionless.

As the frequency continually increases the wave velocity

approximates to the velocity of light, viz., 186,000 miles per

second, which, however, it can never exceed.

2. Propagation of Simple Periodic Currents
along a Cable of Finite Length. We have next to

consider the modifications produced in the above formulae when
the cable is finite in length. This is the case which presents

itself in practice. We then find that the reflection of the current

or potential wave at the receiving and sending ends of the cable

introduces considerable modifications into the above formulae.

Returning to the general expressions for the potential and

current at all points in an infinite cable, viz.,

K .... (19)

Let us write for e~^, Cosh Px - Sinh Px, and for e+p*,

Cosh Px + Sinh Px, and rearrange terms. We then transform

the above equations into

7= (A + B) Cosh Px - (A
-
B) Sinh Px . . (21)

1=~
|
(A
-
B) (Cosh Px- (A + B) Sinh Px 1 . (22)

Now if x = 0, Sinh Px = 0, and Cosh Px = 1, and if we
call FI and Ii the potential difference and current at the sending

end, then when x = 0, we find that

(A+B)= V, and (A-B) = ll ZQ
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Suppose that the potential and current at the receiving end

denoted by F2 and 72 and that the cable has a length /. Then
at a distance x from the sending end and l x from the receiving

end, if the potential and current are V and I, we can write the

expressions for V and I in two forms, viz.,

F= F! Cosh Px-I, Z()
Sinh Px . . . . (23)

= F2 Cosh P(l
-

x) + 12 ZQ Sinh P(l -x) . . (24)

1=1, Cosh Pz- -5 Sinh Pa; . . (25)
^o

(/-)+-5 Sinh P(Z-a) . (26)

The equations (23) and (25) are obtained from (21) and (22)

by substituting V\ for A 4- B and /i Z for ^. -- B.

The equations (24) and (26) are obtained by reckoning the

distance from the receiving end and assuming the voltage and

current at that end to correspond to x = 0. The signs are

changed because in the last case the current and voltage increase

along the cable with distance reckoned from the receiving end.

The above equations ^23) and (25) give the complete solution

of the problem for the case of a finite cable, and we have three

cases to consider, viz., (i.) when the receiving end is free or

insulated, (ii.) when the receiving end is short circuited, and (iii.)

when it is closed by a receiving instrument of known

impedance.

3. Propagation of Currents along a Finite Cable
Free or Insulated at the Receiving End. In this

case the current L2 must be zero. Hence in the general

equations corresponding to x = I we must have I 0, and

making this substitution in equation (25) this gives us,

= Il Cosh Pl-^ Sinh PI . . . (27)
^o

or I1 ^ =F1 TanhPZ . . (28)

Substituting this value for Ii Z in (23) we have

V= Vl [Cosh Px - Tanh PI Sinh Px] . . (29)

This equation gives us the potential difference F (maximum
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value) at any distance x along a cable Laving a Propagation
Constant P which is open at the far end.

Again from (28) we have

?= Zi=ZnCothP/ (30)A
The ratio of the applied voltage to the current at the sending

end is called the final sending-cnd impedance and denoted by Z\.

The reader should carefully distinguish between the final sending-

end impedance Zi = Vi/Ii and the initial sending-end impe-

dance z = VR +jpL/Vs+jpC.
If we compare the above expressions for V and Vi/Ii for the

finite cable with the corresponding expressions for the infinite

cable the reader will at once see how the hyperbolic expressions

are modified when there is reflection at the ends of the cable.

For in the case of the infinite cable we have seen that

V= V, f-r*= Vl [Cosh Px - Sinh Px] . . (31)

and T
I= ^O

J-i

whilst for the finite cable of length I we have

V= V, [Cosh Pz-Tauh PI Sinh Px] . . (32)

and j*=Z GothPl (33)

Hence the Tanh PI and the Goth PI sum up mathematically

the effect of the reflections at the ends of the cable.

If in the equation (32) we put x = I and therefore V = F2

we have

F2
= F! [Cosh PI- Tanh PI Sinh P/] . (34)

or F^FiSechPJ. . . . . (35)

This gives us an expression for the potential difference of the

two sides of the cable at the far end when a voltage V\ is applied

at the sending end.

Again from (28) we have

i^TanhPZ . . . (36)
^0

and the two last expressions give us therefore the current into

the cable at the sending end and the voltage at the distant end

when that end is open.
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Substituting this last value (36) for /i in the general equation

(25) for the current, we have for the current I at any distance x
the expression

!=- [Tanh PI Cosh Px - Sinh Px] (37)^o

If we refer hack to equation (13) for the current in an infinite

cable at any distance x from the sending end we see that it can

be written

I=p [Cosh Px- Sinh Px] . . . (38)

and on comparing the last two equations it will be evident that

the effect of making the cable finite in length is to introduce

the quantity Tanh PI in both the formulae for the current and

voltage at any point. Thus for the infinitely long cable the

equations
F= F, [Cosh Px - Sinh Px] . (39)

and I=p [Cosh Pa; --Sinh Pa] . . . (40)

give us the voltage and current at any distance x from the

sending end, whilst for the finite cable of length I we have

7- F! [Cosh Px - Tanh PI Sinh Px] . . (41)

and 1=~ [Tanh PI Cosh Px - Sinh Px] . (42)
^0

These formulae show us that the values for the current and

voltage in an infinite cable become greatly modified when we cut

off a length and make it finite in length.

The reason for this is, as above stated, that when the cable is

finite in length the current and voltage at any point are due to

the superposition of an infinite number of effects due to the

repeated reflection at the ends. We may in fact, as Dr. A. E.

Kennelly has shown, derive the formulae for the cable of finite

length by a process of summation of these direct and reflected

currents. 1

Thus suppose a voltage V\ is applied at the sending end, this

travels up the cable of length I and at the far end becomes

attenuated to V\e~
1>l

.

1 See A. E. Kennelly,
" On the Process of building up the Voltage and Current

in a Long Alternating Current Circuit," Proc. of the American Academy of Arts and

Sciences. Vol. XL! I., p. 710, May, 11)07.

E.C. G
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At the open end this potential difference is reflected and

doubled on reflection by the summation of the arriving and

reflected potentials. Hence it jumps up on reflection to 2 V\ e~w .

The reflected wave of potential runs back attenuating as it goes

to FI e~2Pl
,
and is reflected at the closed sending end of the cable

with sign changed as explained in Chapter II. The reflected

wave again returns to the receiving end, at which it has attenu-

ated to FI e~ 3p? and this is doubled on reflection to 2 VI~ BI>I

and so on.

Hence at the receiving end the actual potential difference is

the sum of all these separate voltages, or

Fa=2.F1 (---8 -f-6 --^etc.) . . (43)

The series in the brackets is a geometrical progression with

ratio
~2Pl and hence we have,

_
PI

or F^FjSechPZ .... (44)

The hyperbolic function Sech PI thus sums up the effect of

all the repeated reflections at the ends.

The student will be assisted to comprehend the nature of this

process by considering a similar effect in the case of light.

Suppose a candle placed in an otherwise dark room. The

illumination at any point would have a certain value depending
on the distance from the candle. If then a mirror were placed
at this point, the illumination just in front of the mirror would

be equal to that due to the candle together with that due to

another candle assumed to be placed as far behind the mirror as

the first candle is in front of it, in other words at the position

of the optical image of the first candle, the mirror being then

supposed to be removed. Hence the single mirror produces on

the illumination the effect of a second candle. In other words

it doubles the illumination. Imagine then that a second mirror

is placed behind the candle so that the candle stands between the

two mirrors
; the result will be that certain rays will be reflected

backwards and forwards and the illumination at a point any-
where between the mirrors will be the same as if the mirrors

were removed and an infinite number of candles were placed in
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positions coinciding with the optical images of the single candle

formed by repeated reflections in the mirrors.

It will be noticed that in all these formulae \ve are concerned with

the hyperbolic functions of complex angles. Since the propaga-
tion constant P and therefore the propagation length Px or PI

are complex quantities, viz., ax-\-j/3x or al+jfil the hyperbolic

functions are themselves vectors, and we must obtain their values

by the rules given in Chapter I.

Thus P= "+JP and Pl

and Cosh PI= Cosh
(

= Cosh al Cos fil+j Sinn al Sin ftl.

Since Sech PI = ^Qstl pf we can obtain the value of SechP/

by reciprocating Cosh PI after its vector value has been thrown

into the form A/6L

For example, suppose a=Ol, =0-1, Z= 10.

Their PI= 1 +/ 1 = 1-414 /45.

Cosh Pl= Cosh (1+J l)
= Cosh 1 Cos 1+; Sinh 1 Sin 1.

The 1 here in Cos 1 and Sin 1 means an angle of 1 radian or

180/77 degrees = 57 17' 45". Hence from the tables

Cosh (1 +/ 1)
= 1 5431 x 541 +j 1 1752 x -841

= 0-835 +j 0-988= 1 3 /49 45'.

Hence Sech (1 +j 1) = 0-77 /49 45'.

Again, if o= 0-l, = 0-1, and Z= 20

Pl= 2+j 2 = 2-828/45

Cosh (2+y 2)
= Cosh 2 Cos 2+/ Sinh 2 Sin 2

= - 3 7622 x 416+j 3 6269 x 909

-1 -565+y 3- 297-3 -66 /115 24^.

Hence Sech (2 +; 2)
= 0-27 /115 24'.

If a= 0-1, p= 0-3, 1= 5, PI= 1 6 /7135\

Cosh (0-5+y 1-5) = Cosh 5 Cos 1'5+j Sinh 0-5 Sin 1-5

= 1- 1276x0- 071 +y 0-521x0 -997

= 0-080+y 0-520= -526/81 1-V

and Sech (0 5 +; 1 5)
= 1 9 /$i~W.

It can be easily proved in the same way that if

1-5-1-5 /84 17' Sech PI= 6 /64" 23
'

nearly.

G 2
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It will be seen therefore that for various ratios of /3/a and

values of I V 2
+/3'

2 the value of the size of Sech PI may be

greater than unity.

Referring then to the formula (35) for the ratio of the voltage
at the open receiving end of a cable to that at the sending end,

viz.,

?2= Sech PI

it is clear that since Sech PI can have a size greater than unity,

the size of V^ or the numerical value of the voltage at the

receiving end can be greater than the numerical value of the

voltage at the sending end.

Thus, referring to the calculations just given, if a = 0*1 and

/3
= 0'3 and the length of the cable is five miles, then since

Sech PI in this case is 1'9 /81 15', it follows that the voltage

across the cable ends at the receiving end is 1'9 times the voltage

applied at the sending end. In other words there is a considerable

rise in voltage along the cable, instead of a fall, entirely due to

the action of reflection at the ends of the cable.

It is of course obvious that there will in general be a consider-

able difference in phase between the voltages at the sending and

receiving ends, whilst the actual numerical value of the voltage

at the open receiving end may be less than, equal to, or greater

than that at the sending end.

4. Propagation of Current along a Line Short
Circuited at the Receiving End. We have next to

consider the case of a line short circuited at the receiving end,

having a simple periodic electromotive force V\ applied at the

sending end. Then the voltage Vz at the receiving end is zero.

Hence in the general equations (23) and (25), viz.,

V= F! Cosh PX-I! Z Sinh Px . . (45)

1=1, Cosh Px-^ Sinh Px . . (46)
^o

Let us put Vz = 0, I = /2 ,
x = I, and eliminate Ii, then we

have

/ (47)
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This gives us the current through the short circuit at the

receiving end. Also from the equation (45), putting V = and
x = I, we have

0= F! Cosh PI -I, Z Sinh PL

Hence J1
=p Goth PZ ... . (48)

and from (48) and (47) we have

. . (49)

or j=SechJPZ ..... (50)

This gives us the ratio of the current at the receiving end to

that at the sending end, and it is clear that, since the size of

Sech PI can be greater than unit}
7
,

the current at the

receiving end can be larger than the current at the sending end.

It is easy to show, as in the case of the cable open at the far

end, that this increase is due to the accumulated effects of

reflection at the two ends.

The ratio Vi/Ii = Z\ is called the final sending end impedance,

and from equation (48) it is seen that

l .... (51)

Since Z =
,

.-. is a vector quantity and since Tanh PI
VS+jpC

is a vector, it follows that Z\ is a vector quantity, and this

impedance is said to be measured in vector-ohms, meaning that

the size is measured in ohms but that an angle giving direction

is appended. The ratio Fi//2 = ^2 is called the final rccdruni

cud impedance, and from equation (47) we have

^=^2
=^ SinhPZ . (52)

^2

We can measure experimentally for any line the values of

FI, Ii, and I2 ,
and hence determine Z\ and Z2 . Suppose the

ratio FI//I is measured with the far end of the line open or

insulated. Let this value of Z be denoted by Zs. Then from

equation (30) we have

Suppose FJA is then measured with the far end of the line
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short circuited, and call the ratio under these conditions Zn

then from (48) we have

PI.

Hence Zf Zc
=

Zj,
or

Z,= V^ZC . . . . . (53)

Hence the initial sending end impedance is the geometric
mean of the final sending end impedances with the far end open
and the far end closed. This measurement is the hest means of

finding the value of Vlt-\-jpL/VS+jpC for any actual line.

5. Propagation of Simple Periodic Currents
along a Transmission Line having a Receiving
Instrument of known Impedance at the End.
This is the practical telephone problem to the consideration of

which all that has previously been given is preliminary. We
assume that we have a line of known primary constants R, L,

C, S, and therefore known attenuation constant a and wave

length constant /3, and that a receiving instrument of known

impedance Zr is inserted across the line at the receiving end.

Assuming we apply a simple periodic electromotive force V\ at

the sending end, the problem before us is to calculate the

current and voltage at the receiving end, or at any distance.

If V% and /2 are the potential difference and current at the

receiving end, then the impedance of the receiving instrument ZT

is defined by the relation V* = I<*Zr. As V^ and 72 can be

measured by suitable methods, we can always find Z r.

Referring again to the fundamental equations (23) and (25) we

have

V= V, Cosh Px - 1, ZQ Sinh Px . . . (54)

y
/=/! Cosh Px-^r Sinh Px . . . (55)

Substituting for V, I, and x the values at the receiving end, viz.,

F2, /2, and /, we have

F2
= J2 Zr

= Fj Cosh PI- 1, ZQ Sinh PI . . (56)

I2= I, Cosh PI-~ Sinh PI . (57)
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Eliminating 1\ we have

2 ZQ Sinh Pl+Zr Cosh PI

and eliminating J2 we have

T _ViZ Gosh Pl+Zr Sinh PZ
l~Z*Zr Cosh P/+^o Sinh P '

These expressions give us the current at the receiving and

sending ends respectively. Hence also

Cosh PI +^ Sinh PI (60)H ^0

On comparing the above formula with the corresponding

formula (49) for the cable short circuited at the receiving end,

we see that the effect of the receiving instrument is to add a
r?

term -nr Sinh PI, and so make the ratio Ii/Iz larger. It is
**o

possible, however, for 1% to be greater than /i. From the above

formulae (59) and (58) we can obtain expressions for the final

sending end impedance Z\ = FI//I and for the final receiving

end impedance Z% = V\II%, viz.,

F!_ Zr Cosh Pl+ZQ Sinh PI
*i-

Ii

- *o
ZQ Cosh Pi+zr Sinh PI

l . (62)

The above expressions can be simplified by taking advantage

of two well-known theorems in circular and hyperbolic

trigonometry.

Theorem I. If 6 is any circular angle such that tan 6 = ,

and if $ is any other angle, then

A Sin $+B Cos <= </A*+B* Sin

If B/A = tan 0, then

^ = Sin and

but Sin ((/> + 0) = Sin <f>
Cos + Cos <f> Sin 0. Hence, substi-

tuting the values of Sin 6 and Cos 0, we have

A Sin 0+J3 Cos <= x/^r+5- Sin (^+ 0) . , (63)
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Theorem II. If y is any hyperbolic angle such that
73

tanh y = -T, and if 5 is any other hyperbolic angle, then
A.

A Sinh S+ Cosh 8= JA*-& Sinh (8+y),

Sinh B
For

and Cosh 2
y
- Sinh 2

y= 1 .

Hence Sinh y= and Cosh y=

But Sinh (8+ y)
= Sinh 8 Cosh y+Cosh 8 Sinh y

Hence A Sinh 8+5 Cosh 8= VA 2 -B* Sinh (8+y) . . (64)

Again, from the fundamental equation (23)

F2
= V, Cosh PZ-Ij ZQ Sinh PZ . . . (65)

and from the value obtained for I\ in (59) we have

T y T/ ^o Cosh Pl+Zr Sinh PI
ll -r % Cosh Pl+ Z, Sinh PI

Hence, substituting (66) in (65), we have

T/ T7 3 n K' P7 ^o Cosn
r

,

p
,

F2= 7,
1
Cosh PZ -

UTCosh Pl+ Z, Sinh Pz
Smh P/ ' (6?)

or since Cosh 2PZ Sinh 2P^ = 1 we have
V 7,

TT _ ' 1 ^J r
*~

Q Sinh Pl+Zr Cosh PI

Accordingly by the aid of the Theorem II. we can write the

formulae for the currents and final impedances as follows :

^=-^^2
Cosech (Pl+y) (69)

T7

I^^Coth (P^+y) . . (70)

^2= JZ^-Zf Sinh (P/+y) . . . (71)

^! =^ Tanh(PZ+y) . . . . (72)

where Tanh y=^ or y- Tanh- 1 (^) (73)^o \^o/
Hence it follows that

I^l! Cosh y Sech (P2+ y) . . . (74)
rf

Also from (68), bearing in mind that Tanh y =~ and therefore

Z
Sinh y = ,

r

=, we can express the ratio TV FI by
v^o ^*-

72=F! Sinh y Cosech (P/+ y) . . . (75)
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A consideration of these last five formulae and comparison of

them with the similar formulas for the short circuited cable

shows that the introduction of the receiving instrument of im-

pedance Zr has the same effect as if the line were made longer

by an amount I' such that PV = y and was then short

circuited at the receiving end. At the same time the effect

of this lengthening is to cause an alteration in the effective

initial sending end impedance as far as the current at the

receiving end is concerned, but not for the sending end current.

We have shown (equation (52)) that the final receiving

end impedance Vi/f* in the case of a line short circuited at the

receiving end is Z2 = ZQ Sinh PL
And also that the same quantity for the line with receiving

instrument of impedance Zr at the end is (by equation (62) )

given by
^2
=^ Sinh Pl+Zr Cosh PL

Hence if we denote the final receiving end impedance of the

short circuited line by Z^ we have

Z . (7G)

When the line is very long Coth PI approximates to unity and

then



CHAPTER IV

TELEPHONY AND TELEPHONIC CABLES

1. The Principles of Telephony. Telephony is the

art and science of transmitting articulate speech by means of

electric currents between two places connected by a wire or cable.

The conductor may be either a pair of overhead wires or a single

wire with earth return, or a twin cable.

At one end of this conductor is placed a telephone transmitter,

which comprises, generally speaking, an induction coil, the

secondary circuit of which is connected to the pair of line

wires or to the line wire and the earth. In the primary circuit

of the coil is included a battery and a microphone. This last

consists in one form of a shallow circular metal box with a

solid back
;
closed in front by a diaphragm of flexible metal

which is insulated by a ring of ebonite from the box itself.

The cavity is filled with granulated graphitic carbon. Wires

are connected to the diaphragm and to the box.

An electric circuit is thus formed, of which the granulated

carbon is part.

This arrangement constitutes the microphone, and it is joined

in series with the battery and with the primary circuit of the

induction coil. If the carbon granules are compressed by

pressing in the diaphragm the resistance of the circuit is

reduced and more current flows through the primary circuit of

the coil and hence induces a current in the secondary circuit,

which flows through the line.

If articulate speech is made in front of the diaphragm the

rapid changes of air pressure which constitute sound cause

a corresponding movement of the diaphragm and therefore

equivalent changes in resistance in the carbon granules. Hence

a secondary current is sent into the line the variations in which
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more or less perfectly follow the changes of air pressure in front

of the diaphragm.
The motion of the air molecules when transmitting a sound

wave is to and fro in the direction of transmission, but the

amplitude of their acoustic motion is extremely small.

Lord Eayleigh determined the amplitude of this air motion

for the sound of a whistle giving a note having a frequency of

2730, which was loud enough to be heard at a distance of 820

metres in every direction.
1 This amplitude he found to be

0*081 of one millionth of a centimetre or 0*00081 ^ where ^ is

the thousandth part of a millimetre. This is about one

thousandth part of the wave length of a ray of red light and

shows how extremely small an air motion the normal human ear

is capable of appreciating. In the case of articulate sounds this

motion of the air particles is a highly irregular one, but in the

case of musical sounds or prolonged vowel sounds the motion is

a regularly repeated or cyclical one which is to and fro in the

line of propagation of the sound. We can graphically represent

it by the displacement of a point which moves uniformly along
a straight line and at the same time executes a vibratory motion

at right angles to that line which copies the to and fro motion of

the air particle in the line of propagation. We then obtain for

continuous sounds a wavy line which is called the graph or wave

form of the sound.

The curves in Fig. 1 represent the wave forms of five vowel

sounds, A, E, 1, 0, U, pronounced in the Continental manner. If

the sound recorded is that of a tuning fork or open organ pipe

gently blown the wave form is a simple periodic curve such

that the displacement or ordinate y at any time t is given by
the expression y = Y Sin pi where Y is the maximum ordinate

and p = 2-7T times the frequency n.

On the other hand, if the sound is a consonantal sound or

noise, the wave form is an irregular non-repeated curve. If it

is a periodic or repeated curve the maximum amplitude is

determined by the loudness of the sound and its wave length or

period by the pitch.

1 Sec Lord Rayleigh, Proc. Roy. Soc., Vol. XXV I., p. 248, 1877, or Collected I><IJHTS.

Vol. I., p. 328.
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to ^ ^
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When any sound or speech is made in proximity to the

diaphragm of the microphone the aerial vibrations create a more

or less similar motion of the diaphragm, and a variation in the

resistance of the carbon granules takes place, which in turn

causes the current into the line wire to be varied in a manner
somewhat similar to the variations of the air pressure and

motion in front of the diaphragm.

Owing to the fact that the diaphragm has a natural period

of vibration of its own, this current variation in the line is

not an exact copy of the air pressure variation, but it is

sufficiently like it to achieve practical telephony. We may then

assume that there is in the line wire a current the wave

form of which at the sending end is somewhat similar to that

of the wave form of the air motion.

This current flows along the line, and being a periodic current

it is attenuated as it flows. At the receiving end it enters

the telephone receiver, which is generally a Bell magneto

telephone consisting of a permanent magnet of bar or horse-

shoe form, round the poles of which are coils of wire

inserted in series with the line wire. In close proximity to the

poles of this magnet is a flexible diaphragm of iron (ferrotype

plate). When the periodic current from the line flows through
the coils wound on the magnet it slightly increases or decreases

the magnetism and attracts more or less the iron diaphragm.
The result is that the diaphragm of the receiving instrument

experiences vibrations which are approximately a copy of the

variations of the line current and therefore of the vibrations of

the diaphragm of the transmitter. The air in proximity to the

receiving diaphragm is therefore set in vibration in a manner
which is not very dissimilar to that of the diaphragm of the

transmitter and therefore to that of the air in proximity to the

latter. We thus repeat in a distant place sounds made near the

transmitter. This repetition is, however, far from being perfect.

The transmission of articulate sounds is wonderfully assisted by
the power of the human intelligence to guess from a very

imperfect repetition the significance of the sound as a word

spoken to the transmitting diaphragm. There is, however, a

limit to this guesswork, and beyond a certain point a sound may
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be heard but it has no meaning. This constitutes the limitation

of telephony, and we have in the next place to consider the

causes of this limitation.

2. Fourier's Theorem. If we have any single valued

periodic curve, that is one having only one value of the ordinate

to one value of the abscissa and repeating itself at regular

intervals, then, no matter how irregular the curve may be provided

it does not exhibit discontinuities, it is always possible to imitate

this curve exactly by adding the ordinates of superimposed

simple periodic or sine curves of suitable amplitude and phase

difference, having wave lengths which are in integei' relation to

each other. Thus, for instance, if we draw sine curves having

wave lengths in the ratio of 1, J, J, J, etc., we can cut thin

sheets of zinc so that these curves form the outline of one edge

(see Fig. 2), and these templates can be used to draw sine curves

of certain relative amplitude and phase difference relatively to

one another.

We can then add together the ordinates of the several com-

ponents corresponding to any one abscissa, to form the ordinate

of a new compound curve which is then said to be made by the

synthesis of these several sine curves. There is no difficulty in

carrying out this synthetic process.

It is rather more difficult to perform the inverse process, i.e.,

when given an irregular but periodic single valued curve to find

the sine components of which it is built up, but it can be done in

virtue of Fourier's Theorem, which is as follows :

Let y be the ordinate of any periodic curve which is single

valued and without discontinuities
;
then y can be expressed by

the series

y=A^A l Smpt+ Bi Goapt+.-* z
Sin Zpt+B^ Cos Zpt

+A 3 Sin 3pt+Ba Cos 3pt etc. . . (1)

where p= ^\T and T is the periodic time of the fundamental

sine curve assuming it to be described by a point which moves

with uniform velocity in a horizontal direction.

Accordingly pt is the abscissa corresponding to y, such

abscissa being measured from the zero point of the fundamental

sine curve.
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FIG. 2. Templates of Curves representing Harmonic
Sine Curves.
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The problem then is to find the value of the constants

Aot A^ Bit AZ, B%, etc. This can be done by the aid of the

following theorems :

1. If 9 is any angle, then the average value of Sin or Cos

taken at equal small angular distances over four right angles

is zero.

2. The average value of both Sin2 9 and Cos2 9 taken in the

. 1
same way is

^.

3. The average value of Sin 9 Cos and of Sin n 9 Sin m 9

or Cos n 9 Cos m 9 taken in the same manner over four right

angles is zero.

The truth of Theorem 1 is obvious. If we describe a sine

curve extending over a complete period, taking this as 360, and

draw equi-spaced ordinates, then it is clear that for every positive

ordinate there will be an equal negative ordinate separated by
abscissa equal to 180, and when we add their values algebraically

the sum of the whole number is zero, and therefore the average

value is zero.

Theorem 1 expressed in the language of the integral calculus is

otherwise proved as follows :

f2

3in d . . . . (2)

where M Sin 6 stands for the average or mean value of Sin 9

taken at equal angular intervals cW between and STT. If then

27T

pt -r^t,
then

1 CT

iR\ Bmptdt .... (3)
J- Jo

l +
l)

= 0.

Theorem 2 can be proved as follows :

Since Cos 20 = Cos -0- Sin 2 = 1 - 2 Sin 2 = 2 Cos -0- 1

we have Sin2 =
^
-
g
Cos 20

and Cos'2 = + Cos 20.
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The average value of Sin 2# must therefore be
-^

because the

average value of Cos 20 taken at small equal angular intervals

between 6 = and = 2vr is zero. The same for Cos 2
#.

Theorem 3 is also easily proved ; for

Sin (n+m) = Sin nO Cos ??i0-|-Cos nO Sin mO
Sin (n m) = S'm n& Cos mO Cos nO Sin mO.

Hence Sin nO Cos m6=
-^
Sin (n+m) 0+^ Sin (n m) 0.

Accordingly whatever n and m may be, the average value of

Sin n 6 Cos m 6 must be zero because the average values of

Sin (tt+Hi) and Sin (n m) are individually zero.

Again it can be proved in the same way that

Sin nO Sin mO=
^
Cos (n m)0

-^
Cos (n-\-m)0

Cos nO Cos mO= n Cos (w w)0-fg
Cos (?i+w)0.

It is clear then that the average values of Sin n 6 Sin in and

Cos n 6 Cos in 6 are zero except when n = m, in which case their

average values are
g.

Eeturning then to the expression first given by Fourier for the

ordinate y of a single valued continuous curve by the series

y =A +A l Smpt+Bi Cospt+A z Sin 2pt+B2 Cos 2 pt etc.,

we have to show how the constants in this series can be found.

Suppose a number of equi-spaced ordinates yit y%, y3 to be

drawn to the curve over one complete period. Then the average
value of these ordinates throughout this period is the value of A Q

because the average value of all the Sine and Cosine terms is

zero.

Again let us multiply both sides by Sinp and take the average
value throughout the period, we have

y Sin pt=A Bmpt+A^ 8wPpt-\-Bi Cos 2^ Sin_p, + etc.

When we take the average, the value of all the terms on the right-
^

hand side is zero, except A\ Sin *pt which is equal to
-<p

Hence we have the average value of y Sin_p =
-^

or

AI = twice the average value of y Sin pt through a period.

B.C. H
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In the same way by multiplying successively by Cos pt, Sin 2 pt,

Cos 2 pt, etc., we can prove that

BI = twice the average value of y Cos pt,

A% = twice the average value of y Sin 2 pt,

B2 = twice the average value of y Cos 2 p, etc.

Accordingly we have the following rule for analysing a com-

pound periodic curve into its constituent harmonics.

Rule up, say, 24 ordinates at equal distances throughout one

complete period of the curve and measure off their lengths.

Call them yif ?/2 , y3 , 2A, etc.

Then, since 360/24 = 15 we must look out in the Tables the

values of Sin 0, Sin 15, Sin 30, Sin 45, Sin 60, etc., and

make a table in columns as follows :

Column I. has the 24 numerical values, y\ y y% . . . . 3/24 written

down one above the other.

Column II. has the values ?/i Sin 15, y% Sin 30, y3 Sin 45, etc.,

written above one another.

Column III. has the values of y\ Cos 15, 7/2 Cos 30, y3 Cos 45,

etc., written one above the other.

Column IV. has the values y\ Sin 30, y% Sin 60, y3 Sin 90, etc.,

written one above the other.

Column V. has the values y\ Cos 30, ?/2 Cos 60, y3 Cos 90, etc.,

written one above the other.

Column VI. has the values y\ Sin 45, y2 Sin 90, ?/3 Sin 135,

and so on, regard being taken to the algebraic sign of the Sine

or Cosine.

We have already shown (see Chap. III., 5) that

A Sin </>+ Cos <= \/A*+ B* Sin
(< + 0) . . (4)

-pt

where tan 6 =
-^

;
hence we can write Fourier's theorem

in the form,

y=A + yA2+ #i
2 Sin Qrf+ 004- vW+^22

Sin(2j^+ 2)
etc. . (5)

In this case the quantities \/Ai*+B *JA+B?t etc., are called

the amplitudes of the different harmonics, and the angles 0i, 2 ,

etc., are called the phase angles.

If the curve is a periodic curve of such kind that for every

ordinate of a certain length there is another ordinate half a wave

length further on of equal length but opposite sign, then the first
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or constant term A Q is zero, because the average value of all the

equi-spaced ordinates is then zero.

As an example of the Fourier analysis of a complex periodic

curve we may take the following
l

:

The firm line curve in Fig. 3 is a curve formed by adding

together the ordinates of three simple periodic or (dotted) sine

FIG. 3. Fourier Analysis of a Periodic Curve.

curves of which the wave lengths are in the ratio of 1 : J :
-J-
and of

which the amplitudes are respectively 4, 2*8, and 1'6. These curves

are shifted relatively to one another so that the second harmonic

lies 15 behind the first and the third about 4 30' behind the

first harmonic. These harmonics are represented by the three

dotted line curves in Fig. 3.

Hence the equation to the firm line curve is

7/
= 4 Sin < + 2-8 Sin 3

(< + 15)-l-6 Sin 5 (9+ * 30') . (6)

1 The method of numerical calculation here given was originally described by
Professor J. Perry in The Electrician, Vol. XXVI1L, p. 362, 1892.

H 2
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If we shift the origin to the zero point of the principal sine

curve, this is equivalent to substituting^ 15 for <p in the above

equation, and the expression then becomes,

y= 4 Sin Qrt-15) + 2-8 Sin 3^-1*6 Sin (5 jp*-52 30') . (7)

We then take the curve as drawn and rule up 12 equi-spaced
ordinates at intervals of 15 and find by actual measurement
that these ordinates have the values 0, 1*5, 2*4, 3'8, 4*0, 2*3,

-O'l, 0-4, 4'2, 7-0, 6'2, 2'7 and 0.

We then proceed to make two tables as follows : Table I.

contains the values of Sin pt, Cos pt, Sin 3pt, Cos Qpt, Sin 5pt,

Cos 5pt for values of pt from to 180.

TABLE I.

pt.
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a Fourier series. On comparing the expression thus obtained

by calculation, viz.,

7/
= 3-92 Sin (^-15 50') + 2 9 Sin (3_p+ 050')

-1-55 Sin (5 pt
- 51 30') . . . (8)

\yith the expression from which the curve was drawn as given
under Fig. 3, viz.,

7/
= 4-OSin (^-15) + 2-8 Sin 3^-1 -6 Sin (5jp*-52 30') . (9)

it will be seen that there are small differences in the amplitudes
and phase angles, but that the calculated value of the expression

agrees substantially with the expression from which the firm line

curve in Fig. 3 was drawn. The differences, such as they are,

are due to the fact that we .have only measured 12 ordinates

in the half wave, but it would require a larger number to secure

a better agreement.
TABLE II.

L
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3. The Analysis and Synthesis of Sounds.
The analysis of a periodic curve into its constituent sine curves

in accordance with Fourier's theorem is not merely a mathe-

matical conception or process, but it is in accordance with

the facts of acoustics.

We can by certain appliances cause the oscillatory motions

of sounding bodies to record the nature of their vibrations in

graphical form. Thus if we attach to the prong of a steel

tuning fork a bristle and hold the vibrating fork near a rapidly

revolving drum covered with smoked paper we can make the

bristle record the wave form of the vibration upon the paper.
It is found that this record is a sine curve. The aerial vibrations

produced by the fork and also those produced by open organ pipes

gently blown are in like manner simple sine vibrations. Such
sounds are smooth and not unpleasant to the ear, but they are

wanting in character or brilliancy. If, however, a special sound

such as a continuous vowel sound is made, we find by experiments
with the oscillograph or phonograph that the wave form is very

irregular although periodic. Von Helmholtz was led by these

considerations to his classical experiment of the synthesis of

vowel sounds. He provided a number of tuning forks the

frequencies of which were in the ratio 1 : J : J : J, etc., and each

tuning fork had a hollow brass sphere in proximity to it, the

said sphere having an opening in it. These spheres are called

resonators, and when constructed of such size that the corre-

sponding tuning fork can set the air in it in vibration they
re-enforce the sound, provided the aperture of the resonator is

open. The tuning forks were maintained in vibration continuously

by electromagnets, and by means of keys the operator could

more or less open the aperture of any resonator and so mix

together sounds of harmonic frequencies in various proportions
as regards amplitude or loudness. Von Helmholtz found that

he was thus able to imitate various vowel sounds, and that these

latter are therefore compounded of various simple sine vibrations

of different amplitude. The question then arises, has the relative

difference of phase of the simple sine components anything to

do with the production of the quality of the sound ?

We know from Fourier's theorem that the wave form of the
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complex curve depends not only on the amplitudes but on the

relative phase of the component sine curves. The question then

arises whether the ear when impressed by a complex vibration

takes note of the difference of phase as well as the difference in

amplitude of the component harmonics.

Von Helmholtz drew the conclusion from his experiments that

the quality of the sound depended only on the amplitudes of the

harmonics and not on their relative phase (see Helmholtz's

book "
Sensations of Tone," English translation by Ellis,

Chap. VI., p. 126).

Helmholtz's conclusion is not generally accepted. Lord

Rayleigh (see
"
Theory of Sound," Vol. II., Chap. XXIII.) has

given arguments to prove that the difference of phase is not

without effect. Also Konig, another great acoustician, asserts

that whilst quality in sound is mainly dependent upon the relative

amplitude of the harmonics the difference of phase makes some

contribution to it.

Hence when we hear a certain vowel sound the ear appreciates

the fact that it has a certain wave form as well as amplitude
and wave length, for we distinguish quality in sounds as well

as Iwulness and pitch.

All articulate sounds are made up of consonantal sounds and

vowel sounds. The latter are continuous or can be made so

to be, the former are modulations at the beginning or end of the

vowel sounds. Thus the simplest articulate sound is a syllable

which is composed of a vowel sound preceded or followed by a

consonantal sound. Thus the word'P.4P^4 is composed of two

identical syllables PA, each composed of an explosive consonantal

sound indicated by the P and followed by a vowel sound Ah
indicated by the A.

The vowel sound is made up of the sum of certain simple sine

curve aerial vibrations differing in phase and amplitude with

wave lengths or frequencies in harmonic relation.

Accordingly, if we are to transmit intelligible speech by tele-

phone it is essential that the broad features of each syllabic

sound shall be repeated at the receiving end. This means that

the wave form of the current which emerges from the line at

the receiving end shall not be extravagantly different from the
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wave form of the current at the sending end, which in turn must

not differ greatly from the wave form of the air motion in front

of the microphone diaphragm.
Hence the successful transmission of speech necessitates thatthe

various constituent harmonics which combine to make the wave

form of the current at the sending end of the line shall he

transmitted so that they are not much displaced in relative

phase or altered in relative amplitude.

4. The Reasons for the Limitations of Tele-

phony. We have already proved that the speed with which a

simple periodic wave of electric current is transmitted along a

line depends upon the wave length, and also we have shown

that the rate at which the amplitude is degraded depends also

upon the wave length or frequency.

The electrical disturbances of short wave lengths are more

rapidly degraded and travel faster than those of longer wave

length. Hence the different harmonic constituents into which

we may analyse by Fourier's theorem the complex wave form of

the line current representing any vowel or syllabic sound travel

at different speeds and attenuate at different rates as they move

along the line. If then they are synthesised by the ear aided by
a receiving telephone at the end of a long line, the result may
be so different from that impressed on the line at the sending

end that the ear may no longer recognise the meaning of the

sound. This change in the wave form of the current wave sent

along the line as it travels from the sending to the receiving end

is called the distorsion due to the line. If the distorsion is not

very great the ear recognises the articulate sound to which that

current wave corresponds, but if the distorsion has proceeded

beyond a certain point it is no longer recognisable. The process

resembles that of caricaturing a face. The caricature is a draw-

ing in which the various features or details are not accurately

drawn but distorted, some being increased or decreased more

than others. If the process has not been carried beyond a

certain limit we still guess for whom it is meant, but beyond
that point it is unrecognisable. Hence the practical limits of

telephony are found in this distorsion due to the line. Thus, for
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instance, with a certain type of cable we may obtain excellent

speech transmission over twenty miles, good over thirty miles,

fair or not very bad over forty miles, but extremely bad or

impossible over sixty miles. In this matter we leave out of

account for the moment all questions of imperfection of the

transmitter, receiver, speaker's voice, or listener's ear. We
assume that these are the best possible, yet nevertheless the

line itself by reason of its distorsion, viz., by the unequal
attenuation and velocity of simple periodic disturbances of

different frequencies, imposes a limit on the distance over which

good speech can be transmitted.

The improvement of telephony is therefore bound up with the

improvement in the qualities of the line. We have to construct

a line which shall be non-distorsional or distorsionless, or at

least less distorsional than existing cables, and that we proceed
to discuss.

5. The Improvement of Practical Telephony.
The earliest attempts to conduct telephony over long distances

or through submarine cables brought prominently before tele-

phonists the influence of the line. It soon became clear that

both resistance and capacity in the line were obstacles per se

to long distance telephony and that to improve it the resistance

of the line should be kept low and its capacity small. Hence

aerial lines were found better adapted for it than underground or

submarine cables, and copper wire better than iron wire. It

was assumed by some persons imperfectly acquainted with

electrical theory that the inductance of the line was also an

obstacle to telephony. A little knowledge is proverbially a

dangerous thing. Electricians of the old school, educated chiefly

in connection with continuous currents or with the kind of

currents required in slow speed telegraphy, had acquired just

sufficient information on the subject to know that the inductance

of a circuit in general hinders sudden changes in the current

when the electromotive force is suddenly changed. Hence it

was but natural to suppose that the rapid variations of current

involved in telephony would also be resisted by the inductance

of the line. Inductance in the line was therefore assumed to be
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detrimental and to be regarded as an enemy to be overcome.

Moreover, the practicians. of this school had been obliged to

master some elementary knowledge of the theory of the sub-

marine telegraph cable, which will occupy us in a later chapter,

and, applying this without hesitation to the more difficult and

different problem of telephony, had come to the conclusion that

the great remedy for the difficulties introduced by distributed

capacity in the cable was to be found in decreasing the resistance.

Hence an empirical rule was enunciated which endeavoured to

associate good telephony with less than a certain value for the

product of the capacity and resistance per mile of the telephonic

cable. This rule was commonly called the "K E" law. But

accumulated experience showed that it had no true scientific

basis (see Oliver Heaviside's work "
Electromagnetic Theory,"

Vol. I., p. 321, footnote). The problem of telephonic transmission

is essentially different from that of telegraphic transmission.

The first physicist who endeavoured to place before practical

telephonists a valid theory of telephonic transmission was Mr.

Oliver Heaviside, who gave the fundamentals of the right theory
in a paper on Electromagnetic Induction and its Propagation
in the Electrician in 1887, Vol. XIX., p. 79 (see also his Collected

Papers, Vol. II., p. 119). He also published in The Electrician in

1893 writings of considerable originality and power (see issues

for July, August, September, 1893) on the same subject, and

these were collected into a book on Electromagnetic Theory

(Vol. L, pp. 409453), published in 1893.

Meanwhile the conception that the effects of. distributed

capacity could be annulled by inductance or leakage had arisen

in other minds.

Professor S. P. Thompson took out a British patent (No. '22,304)

in 1891, in which this was clearly stated, and he followed it by
other patents in 1893 (Nos. 13,064 and 15,217), in the specifica-

tions of which he describes various modes of carrying the idea

out in practice. Professor S. P. Thompson also read an interest-

ing paper on Ocean Telephony before the Electrical Congress at

the Chicago World's Fair in 1893 which attracted considerable

attention to the subject, in which the methods proposed in the

above-mentioned specifications were described, and the general
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question of improving telephony and telegraphy discussed.

Professor Thompson took out a fourth patent (No. 13,581) in

1894.

Mr. Heaviside's mathematical investigations had led him to

see that the true obstacle to long-distance telephony was not

capacity or inductance in themselves, but the unequal attenuation

and velocity of the component simple periodic waves of currents

travelling along the cable. We have shown in Chapter III. that

the attenuation of a simple periodic wave of current travelling

along a cable is dependent upon a certain quantity a, called the

attenuation constant, which is a function of the primary constants

of the cable R, C, L, and S and of the frequency.

The amplitude is decreased in the ratio 1 : e~ a
per mile of

transmission. Also the speed W with which the wave is trans-

mitted is given by W = nk = p/(B, where n is the frequency

p %-nn and /3 is a function of K, C, L, S and p called the

wave length constant. Hence waves of different frequency or

wave length travel at different speeds and attenuate at different

rates.

Now Mr. Heaviside showed, as proved in Chapter III., that

if the primary constants of the cable were so related that

CR=LS, or the product of the capacity and resistance per mile

was numerically equal to the product of the inductance and leakage

per mile in homologous units, then this inequality of attenuation

and velocity was destroyed, and simple periodic waves of all

frequencies would travel on such a cable with the same speed

and attenuation. Also the wave form of a complex wave would

travel without distorsion. Hence he called such a cable a

distorsionless cable.

The reason for this name is as follows : In a distorsionless

cable current waves of all frequencies travel along the cable at

the same speed, viz., 1/VCL, and attenuate at the same rate, viz.,

are reduced in amplitude by e~ ^8M per mile.

Therefore the different sine curve constituents or harmonics

which compose a current wave representing any given vowel

sound are not relatively altered as the wave proceeds. In other

words, the wave form of the current is not altered in form

though it may be diminished in actual size. Hence the current
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wave arrives afc the receiving end minified or reduced in scale,

but otherwise a fair copy of that which set out from the sending
end. The distorsion, which is therefore a great obstacle to

intelligibility, is cured by making the cable have such constants

that CE = LS. Since in all ordinary cables the value of CR
is much greater than LS, the problem of making a cable distor-

sionless is capable of solution in many ways. For example,

(i.) We may reduce the resistance per mile R to the necessary

degree of smallness.

(ii.) We may decrease the capacity per mile C.

(iii.) We may increase the inductance per mile L.

(iv.) We may increase the leakage of the cable per mile S.

(v.) We may change two or more of the primary constants of

the cable and endeavour to make the product CR as nearly equal

to the product LS as possible.

All problems in engineering are, however, ultimately questions

of cost, and we have to take into account also practicabilities of

construction or erection.

It was long ago noticed, however, that a leak in a telegraph

or telephone line was not always a detriment, and that

distributed leaks sometimes appeared to improve telephonic

speech.

A very interesting account is given in Mr. Heaviside's book
"
Electromagnetic Theory

"
(Vol. I., pp. 420433, 1st ed.)

of the effect of leaks and shunts upon telegraphic and telephonic

transmission in certain cases. The reader would do well to refer

to this account. Mr. Heaviside's work made it quite clear that

inductance up to a certain degree in a telephone line, instead of

being an obstacle to long-distance transmission, was the tele-

phonist's best friend, and that what most telephonic cables

required to improve speech through them was not less but more

inductance. He discussed in a general manner the effect of

leaks and also proved that these were in certain cases an

advantage.
Mr. Heaviside, however, did not reduce his general principles

to such detailed instructions as to compel the attention of

practical telephonic engineers. Part of the neglect his sugges-

tions suffered may have been due to the belief that though
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theoretically correct his ideas could not be economically carried

into practice, and that a more practical approach to improve-
ment was to be found in reducing the capacity and resistance of

the line rather than in increasing its inductance. About the same

time two other suggestions were made by Professor S. P. Thomp-
son, as already mentioned, in a paper on Ocean Telephony read

to the Electrical Congress meeting in 1893 at Chicago, at the

World's Fair held in that city. In this paper he proposed,

amongst other methods, the adoption of inductive leaks or

shunts across the cable as a means of curing the distorsion.

Again, in the same year, Mr. C. J. Reed, following one of

Professor S. P. Thompson's suggestions, took out .United States

patents (Nos. 510,612, 510,613, December 12, 1893) for improve-
ments in telephone lines cut up into sections by transformers.

Professor S. P. Thompson urged the trial of his method in his

presidential address to the Institution of Electrical Engineers of

London in 1899. Other persons also either suggested or patented
methods for increasing the inductance of telephone lines.

Meanwhile practical telephonic engineers confined their efforts

to reducing the capacity of telephonic cables, and as far as

possible consistently with economy decreased their resistance

by the use of heavy high conductivity copper wires or cables.

A considerable reduction in capacity in underground cables

was brought about by the introduction of paper insulated cables

and cables called dry core or air insulated cables, in which the

copper wire was loosely wrapped with spirals of dry paper
sufficient to keep the wires insulated but the dielectric

consisting in fact of air. These cables were then lead covered to

keep them dry. In long-distance lines and cables the heaviest

copper conductor was adopted consistent with economy.
In 1899 and 1900 two very important papers were published

by Professor M. I. Pupin, in which he described a masterly

investigation, both experimental and mathematical, into the

properties of loaded cables, that is, cables having inductance coils

inserted at intervals in them.

Pupin's valuable contribution to this subject was the proof

given by him that a non-uniform cable having inductance coils

inserted at intervals could perform the same function as a cable
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of equal total inductance and resistance, but with the inductance

and resistance smoothly distributed, provided that the wave

length of the electrical disturbance travelling along the cable

extended over at least nine or ten coils.

Pupin was thus led to enunciate a suggestion at once

scientifically sound and practically possible, viz., to improve

telephonic transmission by loading the cable or line at equidistant

intervals, small compared with a wave length, with coils of

small resistance and sufficiently high inductance.

The ideas of Heaviside were thus extended into the region of

practical engineering, and Pupin's loaded cable has been proved
to result in a most important improvement in long-distance

telephony.

It is by no means an obvious truth that a number of separate

inductance coils could act in this manner to improve telephony.

It has already been pointed out that when a wave of electric

current or potential is travelling along a conductor, if it arrives

at a place at which the inductance or capacity per unit of length

suddenly changes, there will be a reflection of part of the wave

just as in the case of a ray of light when passing from one

medium to another of a different refractive index. Accordingly
an inductance coil inserted in a uniform line causes a loss of

wave amplitude by reflection, part of the wave being transmitted

through the coil with diminished amplitude. If then a series

of such coils are inserted at intervals in a uniform cable, a

series of reflections may take place, the result of which may be

to immensely diminish the amplitude of the transmitted wave.

This is always the case when the intervals between the coils

are large compared with the wave length of the disturbance.

If, however, the wave length is large compared with the length

of the coil intervals, then the so loaded cable acts as if the added

inductance were uniformly distributed.

As this is a very important matter we shall give here an

analytical proof following that originally given by Professor

Pupin.

6. Pupin's Theory of the Unloaded Cable.

Pupin prefaces his mathematical treatment of the problem of
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the loaded cable by a discussion of the case of the pro-

pagation of periodic electric currents along a cable of

ordinary type, which is essential for the sake of com-

parison. In the following discussion we shall follow Pupin's
method with some little amplification for the sake of

clearness.1

Let us consider a cable in the form of a loop (see Fig. 4)

having an alternator A at the sending end and a receiving
instrument B at the receiving end. Let the alternator generate
a simple periodic electromotive force which may be represented
as the real part or horizontal step of a function of the time

denoted by E '>'.

Let the cable have per unit length on each side an inductance

L, resistance It, and capacity with respect to the earth C.

FIG. 4.

Let distance be measured from the alternator and let the

distance between the alternator and receiving instrument be

denoted by I. At distance x take any small length Bx. Let i

be the current in the cable at this point. Then the capacity of

this length with respect to the earth is CSx, and the capacity

with respect to a similar element in the return half of the

cable is C8x.

If then v is the potential and i the current at a distance x, the

potential and current at x + bx are v -

^~
bx and i -r- bx

respectively. Hence the fall in voltage down the element 8x is

1

Pupin's two important papers are to be found in the Transactions of the

AiiH'i'li'iui. Institute of Electrical KiHjlncers, Vol. XVI., p. 93, 1899, and Vol. XVII.,

p. 4l.->, 19<)<). The first is entitled "
Propagation of Line Electrical Waves" (read

March, 1899), and the second "Wave Transmission over Non-uniform Cables and

Long Distance Air-Lines
"
(read May, 1900).
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^ Bx and the loss in current is -T- Bx. Hence these must be

equated to the equivalent expressions, viz.,

~
at

di dv

It will be noticed that Pupin considers a cable without leakage
or dielectric conductance. If we differentiate the first of these

equations with regard to t and the second with regard to x to

eliminate v, we arrive at the equation,
_ d*i . T-, di 1 d2

i

This is the differential equation for the propagation of an

electrical disturbance in a cable having inductance L, resistance

R, and capacity C per unit length of both lead and return

separately, the leakage being negligible.

To formulate the boundary conditions we assume that the

alternator has a resistance 7i
,
an inductance LO, and that its

capacity is equivalent to a capacity <7 in series with its

armature.

Suppose then that iQ is the current in the alternator and at

the sending end of the cable and that v is the potential difference

of the two sides of the cable at the sending end.

If then the real part of E e^ represents the electromotive

force of the alternator, the potential difference r at the sending

end of the cable is the difference between this E. M. F. and the

drop in voltage down the alternator circuit and the capacity in

series with it.

Hence we have the equation

L^+Rfo+^i^t+v^EW.
. (11)

Again, if the potential difference between the ends of the cable

at the receiving end is v\ and if the receiving apparatus is equi-

valent to an inductive resistance (Lb EI) in series with a capacity

Ci and if ii is the current at the receiving end, we have a second

boundary equation, viz.,

^-^= . (12)
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If the E.M.F. of the alternator is a simple periodic function

of the time, then after a short time the current at all parts of the

line will also be proportional to e-K Hence, if i varies as e'pt
,

^-will
be equal tojpi and ~ equal to p*i.

If then we differentiate equations (11) and (12) with regard to

t and make the above substitutions, we have

. . (13)

If we write Mor ^ (1-C L ^H^CW . . . (14)

and DutoTJpCEcJpt .... (15)

we can transform (13) into the equation
dvnC^=D -h i .... (16)
ctt

Now, since CBx is the capacity of an element of length Bx with

regard to the earth, the capacity of a length Bx with regard to a
r\

similar element in the return cable must be
-^ Bx, and hence the

fall in current down the initial element Bx at the sending end

which is expressed by ^ Bx must be equal to
-^

&%
-^j-

or ^~df~~
^
rT .... (17)

Making the substitution in (16) we have as the boundary

equation at the sending end

-2 T^=D -/i 2 . . . . (18)

Similarly at the receiving end

*= -M, .... (19)

We have next to consider the solution of the differential equa-

tion (10). A solution applicable in the present case is

where AI and K% are functions of the time only proportional

tO ./>'.

It is easy to see that the above is a solution provided that

fjp
=C(p2L+jpR). . . . (21)

B.C. i
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For if we differentiate (20) with regard to t and x and substitute

in the original equation (10) we arrive at equation (21).

Since ju
2
is a complex quantity \L is also a complex quantity,

and we can write ^ = 3 + ja=j (a j(3).

Hence p+ja = VCp (pL-jR) . . . (22)

or p*- a*+j2ap=Cp(pL-jR).
Therefore p*- a*= LCp*}

2/3= -CRp\
but equating the sizes of the vectors in (22) we have.... (24)

and from (23) and (24) we arrive at

- (25)

Now, since (a+ x)
n an + xnan

~ l

nearly, when x is small com-

pared with a, and we can therefore neglect terms involving the_
square and higher powers of x, it follows that ^/R'

2+p1L i
*=pL -f

when pL is large compared with R, and therefore that

Hence when pL/R is a large number we have

_R f(T)
~^V_L .... (26)

/3=p V CL )

and the wave velocity W= n\ = _I
V CL

Accordingly the attenuation constant a and the wave velocity W
are independent of the frequency when the inductance per mile
is large compared with the resistance per mile for moderate

frequencies.

For very high frequencies pL tends to be always greater than
R under any circumstances.

If 4=^ Cos
/A (/-)+ Sin

/A (Z-ar) . . ., (27)
it follows that at the sending end where x = and i = io we

*Z . . (28)
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Also at the receiving end where x = I and i = ii we have

2 -T-
1 = -2Zow, (29)ax

but by (18) -2-^ = A-V'o I ... (30)

and by (19) 2
^.

= _ Wl
j

Also from (27)

and ^Cos^
+
^Sm^j

_ ^ _ (31)

Hence from (27), (28), (29), (30) and (81) it can easily be found

that

where

^=(yi1-4/
x
2
)Sin /

zZ+ 2
/*(/i +7i 1)Cos /

^ . . (32)

Accordingly we can write (27) in the form

(l-x)+h1 $mp(l-x)}
. . (33)

and this is the complete solution of the differential equation (10).

When 7/o = hi we have

"2,* Sin,**

In the ahove equations /x stands for fi+ja where a is the

attenuation constant and ft the wave length constant. Hence

the wave length is and the attenuation for a distance x is e""*.

Equation (33) is the general solution of the differential

equation for oscillations either free or forced. If, however, the

oscillations are free oscillations, then D and hence in this

last case /x must have such a value as to make F= 0, otherwise i

would be always zero. Accordingly the condition for free

oscillations is

(7z h,
- 4 ^2) Sin pL+ 2

/x (h + hj Cos /x/
=

. . (35)

Suppose then that the transmitting and receiving apparatus
are removed and replaced by a short circuit. This is equivalent

to assuming Co and C\ both to be infinitely large. Then we
have 7*o

= hi = 0.

i 2
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The equation (35) then reduces to Sin \d 0, and hence we

must have ^ = ~ where s is some integer from 1 upwards.
i

S27T2

Accordingly /x
2=

p

Referring to equation (21) we have

-~
. . (36)

If we write k for jp in the above equation it becomes

. . - (37)

Solving this quadratic equation we have

E I 1 S27T2 W
If 2L is large compared with It, then

Hence the frequencies of the possible oscillations are obtained

from the equation

1 STT I 1

"=2. TV EEC '

by giving s various integer values. The velocity of propagation

of the waves is W =
. -, and hence the possible wave

lengths are the values of 2Z/s for various integer values of s,

viz., 2//1, 2//2, 2Z/8, etc.

In the next place, suppose that the transmitter has no

resistance or inductance but very large capacity, and that the

receiving end is open. Then we must have //o
= 0, and

/<i = infinity. Equation (35) then reduces to Cos ^1 = or

/ 2'

where s is any integer. ,

We find then in the same manner as in the former case that

E //m
-a?

and if L is large compared with R

(42)
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and the wave lengths for possible free vibrations are 4//1, 4//3,

41/5, etc.

7. Pu pin's Theory of the Loaded Cable. In the

papers previously mentioned Pupin discusses also the mathe-

matical theory of the cable loaded with inductance coils at

equal intervals. He supposes a cable to have coils of inductance

L and resistance E inserted at equal intervals and a condenser

of capacity C to be connected between the earth and the junction

between each coil. Also that a transmitter having inductance

and resistance L and It with capacity C is placed at A and a

receiver with similar constants Lb Kif C\ placed at B. A simple

I

F
=
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down the condensers. Then the currents through the condensers

are

gi=cf^, </.=c,' etc.,

and also gi = ii
-

i^ r/2
= i% is, etc. Consider then in the

first place the case oi forced oscillations in such a loaded cable.

For each mesh or circuit we can write an equation as follows :

1st circuit
(

2nd circuit L ^+jR a -ft?a t?i=0

di
(n
-

1)th circuit L
js-

1

-f-K^-i+ vw -i
-

v, t
_2
=

nth circuit

(43)

When the steady state is reached the currents will be all

simple periodic currents and proportional to eH

Hence for -=- .we can write jp and for
-^

we can put
- p

2
.

The above equations can then be written

. (44)

where

, . (44a)

Following the analogy with the solution of the differential

equation (10) in the previous section, it is clear that a solution

of the equations (43) can be found in the form

im=K1 Cos 2 (n-m) 0+K2 Sin 2 (n-m) 6 . . (45)

If h + 2 = 2 Cos 2 0, then all the equations (44) except

the first and last will be satisfied for all values of KI and K%.
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These two equations, which correspond to the boundary condi-

tions in the case of the uniform cable, will be satisfied if

* Sin 20

K =
^ Sin 2 (n

-
1) 6- 4 Sin^ e Sin 2w0 + 2

(fe + h\) Sin <9 Cos (2n -1)0
We have then a solution for im in the form

. _ [2 Sin 6 Cos (2/t-2//t+ l) +//i Sin 2 Q-w) 0] 7?
lM*~Mi Sin 2 (-!) 0-4 Sin* Sin 2/<0+2 (7/ +/<i) Sin 6 Cos (2/4-1)

*

is a complex angle, and hence forced oscillations of a

simple periodic type on a non-uniform cable of this kind are

finally simple harmonic damped oscillations.

Suppose the transmitter and receiver absent, and the cable

short-circuited, then we have // = hi = 0, and

2 Sin 6 Sin Zn

In the next place let us consider the free oscillations.

The expression for the current given in equation (47) must

hold for free as well as forced oscillations. When the oscillations

are free, then the E.M.F. of the transmitter is zero, and hence

DQ = 0. Accordingly the denominator of (47) must then be

zero to prevent the current vanishing.

Hence we must have in the case of free oscillations

//. hi Sin (2;i--2) (9-4 Sin 2
<9 Sin 2?i <9+

2 (Vhfei)Sin0Cos (2n-l) (9-0 . . (49)

The first important case to consider is when the transmitter

and receiver are absent, and the cable short-circuited at both

ends. Then /*<,
= hi = and im = B Cos (2/i

-- 2wi + 1) 6.

If in equations (44) we substitute the values of cji
= ii i2 ,

2
= f2 ? 3 , etc., we have

*-*.;-0= -M
Now it is found from (49) that the value

is a solution of the differential equations (50) for 7/ = //i
= DO =
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provided that 5-, where s is some positive integer from

1 to 2w.

Hence the most general solution for the current is then

STT
' (51)

Also im is a periodic function of the time, and may be written

V - - "S 7T c r> a t /|9\^m * A
8
e a . . . . (M)

s=l

Hence in (51) each amplitude contains the factor e^'

The constant ps ,
which determines the period and the

damping, is determined as follows :

From the second equation in (50) we have

Now im varies as Cos (2ra 2m + 1) 6. Hence, giving m
values 1, 2, 3, successively, we have

i
: : i

z : i
3
= Cos (2w 1) ; Cos (2w 3) : Cos (271-5) <9

7 ,

Cos (271-1) 0+Cos (271-5) 6
and ^+2=

Cos (2,1-3)0

The quantity on the right-hand side is equal to 2 Cos 2 6.

Hence h = 2 Cos 2(9 - 2 = - 4 Sin 2
<9.

Hence for free oscillations we have

h=p* LC+p8 BC= -4 Sin2 0= -4 Sin2 ^ . (53)

Before solving the equation (53) it is desirable to make the

following substitutions :

Let I/', R r

,
and C r be the total inductance, resistance, and

capacity of one half of the loaded conductor. Then

L=^ E=K, C= 91.
n' n* n

Let I denote the distance between the ends or half-length of a

line having inductance, resistance, and capacity per unit of

length denoted by u, r, and c, and let this uniform line have

such values that

lu=L', lr=B', k= C'.
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This uniform line will be called the corresponding uniform
conductor.

We can then write the equation (53) in the form

^(P'
2uc +P* cr)= - 4Sin '

2^ (54)

where ps takes the place of jp in equations (44a).

Solving this quadratic, we have

or P,= ~,.
If u is large compared with r we have

. 2tt Q. S7T /T
A-'V 2SV^'

and the possible frequencies /8 are given by

.

The equation for the current can then be written

r s=2n P_
*'
Bl
= e-5' 2 .4, Cos (2ra-2w+l) ~- Cos (kj-fy . (57)

S=:l ^^

The oscillations in the non-uniform cable have therefore the same

damping coefficient as those in the equivalent uniform conductor.

The second important case is when the transmitter end of the

cable is short-circuited and the receiver end is open. Then we

have //o
= 0, hi = oo and D = 0.

Accordingly from equation (47) we find that then

im=B Sin (2n^m) 6,

provided also that Cos 2 (n 1) 6 to make the denominator

of (47) always zero.

Hence 6 can have the values

and therefore, as in the other case, the possible frequencies /,

are given by the equation
In . 2s+l TT T

and the current by
r s=2n

im= *-*S S A.2u^ Sin (2w-2w+ 2) Cos
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The angles ^and i \ nave a definite physical meaning.

If we consider the sth harmonic oscillation, then the current at

the mth coil, which is denoted by (im )M is given by

(O.=A Cos (2w-2w+l) |^Cos (k.t-4).

The current at the with coil is also

(V).=^. Cos (2^-2^+1) ~ Cos (ktt-4>)'

If these coils are one wave length apart, then (im) 8
=

(*,ni )s ,
and

mi ??i is the number of coils covered by one wave. But then

we must have

Hence mi n = = /> and this last expression is there-
o

fore the number of coils covered by one wave length of the sth

harmonic.

In the second case it can be shown in a similar manner that

A 4- V .

S7r 1 2S+ 1 7T 1 2?T

Accordingly instead of and ~~ we can wn ^e *

If we consider 27r to represent the wave length and y the angle

which is the same fraction of 2?? that the distance d between

two consecutive coils is of a wave length, then 2-Tr : y = \ : d, and

therefore ZTT/VS
= y.

1 TT Sir - _.. 1 . STT

Hence
3 7 == -= ^ and Sin

g y
= Sin ^.

Now on comparing equation (40) for the frequency of free

oscillations in a uniform cable with equation (56), which gives

the same quantity for the non-uniform loaded cable, it is clear

that if the coils are so close that o 7 is practically the same

as Sin -& y, then the loaded line has free vibrations like the

equivalent equally loaded cable. Accordingly Pupin reduced

the solution of the problem to a verbal statement, which may be

called Pupin's Law, as follows :
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If there be a non-uniform cable line loaded with inductance

coils at equal intervals, and if we consider the total inductance

and resistance to be smoothly distributed along the line, then

these two lines, the non-uniform and uniform lines, having the

same total resistance and inductance, will be electrically equiva-

lent for transmission purposes as long as one half of the distance

between two adjacent coils expressed as a fraction of 2w taken

as the wa've length, is an angle so small that its sine has practi-

cally the same numerical value as that angle in circular

measure.

Thus, for instance, if there are ten coils per wave the angular
distance of two successive coils is 36, and

But Sine 18 = 0*3090, and therefore
*
y exceeds Sin y by 1*6%.

If there are five coils per wave, then o 7 36 0*628 radian ;

Zi

and Sin
2 y Sine 36 = 0*588.

Here
^ y exceeds Sin

^ 7 by 6*8%.

If there are four coils per wave, then ^ y 45 == 0*785

radian, whilst Sin
^ y Sine 45 = 0*707, and \ y exceeds Sin

^ y

by nearly 11%.

Accordingly it is clear that if there are at least nine coils per

wave the non-uniform cable is for that frequency practically

equivalent to a cable in which the same inductance and resistance

is smoothly distributed.

Pupin then shows in the papers mentioned that the same law

holds good for forced as for free oscillations and -also for a cable

in which capacity is added in series with each loading inductance

coil.

Pupin was therefore led to a very practical solution of the

problem of constructing a telephone line which, if not absolutely

distorsionless, was at least much less distorsional than ordinary

unloaded lines.
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Consider, for instance, the National Telephone Company's
standard line, viz., a telephone cable having a resistance of

88 ohms per loop mile, an inductance of 0*001 henry per loop

mile, a capacity of '05 microfarad per loop mile, and no sensible

leakage. Then E = 88, C = '05 X 10~ 6
,
L = O'OOl, S = 0.

Therefore for this cable /3
= y -j- |

,J'R*+p*L*+Lp\ where

p = %TT times the frequency.
As regards the frequency or range of frequency employed in

telephony, the actual frequencies of the simple periodic oscilla-

tions with which articulate sounds may be analysed vary
between 100 and 2,000 or so. It has been found, however, that

a mean value of about 800 may be employed in the formuhe for

the attenuation and wave length constants, or in round numbers

we may take p = 5,000 for the case of articulate speech. Put-

ting, then, p 5,000 in the above formula, we have pL = 5,

p C - 25 X 10~ 5
,
and

Hence we have (3= V12-5x93-lxlO- 5 =0-108.

Therefore A =
27T//3

= 58'2 miles.

The wave length for the frequency of about 800 is therefore

nearly 60 miles. Also the attenuation constant a is

A/12-5 x 83-1 x!0- 5= 0-102.

Suppose then that the above cable has inserted in it every two

miles a loading coil or inductance coil having an inductance

of 0*2 heavy and negligible resistance. Then the inductance

per mile becomes O'l henry, and for the loaded line and same

frequency we have E = 88, L 0*1, C = 5 X 10~ 8
, p = 5000.

Hence p L = 500 p C = 25 X 10~ 5
. Therefore

v
/ 7744+ 25-104-500

[=0-031,
OK

(

\

2W\ V 7744+ 25-10H 500
j

-=0-354,

and A = ~ = 18 nearly.

Accordingly the effect of loading is to reduce the original attenua-

tion constant to
q-

and the wave length in the same ratio.
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Since there is one loading coil every two miles, and since the wave

length of the loaded line is 18 miles, it follows that there are nine

coils per wave length of the loaded line. Hence the inter-coil

distance is short compared with the wave length. It is found

that under these conditions the loss by reflection at each coil is

not serious. If, however, the inter-coil distance were large

compared with the wave length, the loss of wave energy at each

reflection would be considerable. We have already shown in

Chapter III. that when a wave of current passes across a point

which marks a change in the constant of the line, say a sudden

variation of inductance per mile, then reflection occurs, part of

the wave being transmitted and part reflected. If this process

is repeated at intervals long compared with the wave length the

wave energy is soon frittered away. Hence if the wave form is

complex and if it passes over a line loaded with lumps of

inductance placed at intervals which are short compared with

the fundamental wave length, but long compared with the higher

harmonic wave length, then the effect will be to stop these latter

or filter out the harmonics and let pass only the fundamental

sine curve component.
Hence any sudden change in the capacity or inductance per

mile is a source of energy loss to the transmitted wave owing
to a reflection of part of the wave at this surface. An analogous
effect is produced in the case of light. Suppose a tube down

which a ray of light is sent. Let a partition of glass be placed
in the tube. Then at this point there is a sudden change in

the refractive index of the medium. Accordingly part of the

wave is transmitted and part reflected back. If we were to

place many plates of glass in the tube separated by intervals

large compared with a wave length there would be a loss of

light at each reflection, and the wave would pass through

considerably weakened by the reflections.

If the thickness of the plates and of the interspaces were short

compared with the wave length this would not occur.

Pieturning then to the above-mentioned standard cable when

unloaded and loadeJ, it is clear that for the unloaded cable the

propagation constant P = a -\-jfi is a vector

P= 0-102+/ 0-108 -0-149 /45
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nearly, whereas after loading the cable the propagation constant

becomes P' = a' + jfi
r

,
or is a vector

P' = 0-031 +j 0-354= 0-356 /85.

Hence the loading not only increases the size of the propaga-
tion constant, but increases its slope.

Accordingly in this cable after loading every two miles the

wave length is 18 miles and there are nine coils per wave.

The wave velocity W \\VCL before loading is nearly 143,000

miles per second, but after loading it is reduced to 14,300

miles per second, or about 7,000 coils would be passed through

per second.

Again, since ZQ, the initial sending end impedance, is equal

to ^
:-, the result of loading the cable is to increase Z

,

v K+jpC
and this decreases the current into the sending end for a given

impressed E.M.F. Accordingly we see that loading the cable

has the effect of producing five great improvements, as follows :

1. It increases the value of the propagation constant P both

as regards size and slope.

2. It reduces the value of the attenuation constant a.

3. It reduces the wave length A for a given frequency and

also the wave velocity W.
4. It gives the cable a larger initial sending end impedance,

and therefore reduces the current into the cable with a given

impressed voltage.

5. It tends to unify or equalise the attenuation constants and

also the wave velocities for different frequencies.

The result is that the wave form is propagated not only with

less attenuation, but with less distorsion or loss of individuality,

owing to the more equal attenuation and velocity of the various

harmonic constituents.

8. Campbell's Theory of the Loaded Cable.
As long as the loading coils are placed at such intervals that

there are eight or nine coils per. wave length calculated on the

assumption that the added inductance is smoothly or uniformly

distributed, experience shows that the so calculated attenuation

constant agrees with the results of experiment.
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It is, however, necessary to establish a more general theory of

the loaded line and to show how the propagation constant P,

attenuation constant a, and wave length constant /3 can be

calculated from the values of the primary constants of the line

when unloaded and from the inductance and resistance of the

loading coils and their distance apart, knowing of course the

frequency. A general theory of the loaded line has been given

by Mr. G. A. Campbell.
1

In the paper in which he gives the theory Campbell assumes

that the line is of very considerable length and is loaded at

intervals of distance equal to d with coils of impedance Z.

FIG. 6.

A diagrammatic representation of the line is as shown in.

Fig. 6.

The distance d is measured from the centre of one loading

coil A to the centre of the next coil B, and the impedance Z of

each coil is the sum of the two parts in the lead and return

respectively.

If the line is very long we may assume that the average

propagation constant is the same as the average propagation
constant of one single section of length d, comprising the two

half loading coils at each end and the length of line between

them. The length of this section of line will always be very

long compared with the length of a loading coil.

Furthermore we may assume that in the loading coil itself the

current is the same at all parts of the wire composing it, and

therefore the same at the centre as at the end.

We can then imagine a short circuit made at the centre of one

1 Sec /V//V. .)/,/,/.. Vol. V., p. 319, March, 11)03.
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coil B so that the current at the centre of that coil, which we
shall call 72 , remains the same as before. Also we can imagine
such an electromotive force applied between the centres of the

two parts of the coil A that the current there retains the same
value Ii. Hence the current in all parts of the section AB of

the infinite line remains the same, and we can suppose that the

parts of the line beyond B and before A are removed. We have

then simply to find the average propagation constant of this

finite line to solve our problem. Following a suggestion of

Dr. A. E. Kennelly, we may regard this finite line in one of two

ways :

(i.) As a line of propagation constant P, which is the same as

that of the unloaded line or lengths of line between the coils,

which is closed at the receiving end through a receiving

instrument of impedance Z/2.

(ii.) We may regard the line as one having an average propa-

gation constant P r

,
which is short-circuited at the receiving end.

In both cases the line itself is assumed to have the same

initial sending end impedance ZQ.

If then the current at the sending end is Ii and that at the

receiving end is /2, we have already shown (see Chapter III.,

equation (60)) that in a line of initial sending end impedance Z
and having a receiving instrument of impedance Zr at the end

the currents /i and 1% are related as follows :

= Cosh PI + SinhPZ (60)
^2 ^o

In the present case the length of line is d, and the propagation

constant is P, and the impedance of the supposed receiving

instrument is Z/2.

Hence we have then

^ = Cosh Pd+<Hr Sinh Pd . (61)
*a ^^

o .

Again, we have shown (see Chapter III., equation (49)) that in

the case of a line of length d and average propagation constant

P', which is short-circuited at the receiving end, the ratio of the

currents is given by

^ = Cosh Pel (62)
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Hence this applies to the case (ii.). Equating these values of

Ii/I*) we have
n>

Cosh P'd= Cosh Pd+n^ Sinh Pel (63)^Z Q

The above equation is that given by Mr. Campbell (see Phil.

Mag., Vol. V., p. 319, 1903), but the process of reasoning by
which he arrives at it is based upon a consideration of the

coefficients of reflection and transmission of each coil. His

argument is much more difficult to follow than that given above,

and in the opinion of the author contains one small inconsistency

between his lettered diagram and the text which is extremely

puzzling. Accordingly we shall not reproduce his proof

verbatim here, but leave the reader to consult the original

paper.

We can put Campbell's equation into another form.
a>

If we denote ^- by tanh y, as before, we have
A<&

Cosh P'd= Cosh Pd+ tanh y Sinh Pd . . (64)

which can be written

(66)

We have already given the expressions for calculating the value

of an inverse hyperbolic function such as Cosh" 1^ or Sinh" 1
^.

Hence if P, d, and y are given, we can reduce the value of

Cosh (PcZ+y)/Coshy

to the form x + jy, and we have then for the value of P r = a' -\-j(3
r

F=lcosh-i(a;+jy) .... (67)
(Ju

But this last is a vector quantity, and, in accordance with the

proof given at the end of Chapter L, can be written in the form

Hence, equating horizontal and vertical steps, we have for the

B.C. K
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value of the average attenuation constant a' of the loaded line

the expression

3!1L'
. (69)

and for the average wave length constant

^ . (70)
Cl A

The above formulae lend themselves without difficulty to

numerical calculation, but require some care in use. They enable

us to calculate the attenuation constant for a line of certain

known primary constants loaded at intervals of distance d with

inductance coils of impedance Z.

On the other hand, when the coils are spaced apart so closely

that the distance d does not exceed 5 TT, or one-ninth of a wave
y p

length on the loaded cable, then we can obtain just as good a

value for a r and ft' by considering the inductance of the coils

smoothly distributed along the line.

If, however, the coils are fewer than about nine per wave length,

then the resultant or true attenuation constant of the loaded

line is greater than that calculated on the assumption that the

added inductance is smoothly distributed over the line.

Let a' be this true attenuation constant and a" the attenuation

constant calculated from the assumption of uniformly distributed

inductance, and let ft' and ft" and A' and A" be the corre-

sponding wave length constants and wave lengths.

Suppose that an unloaded line has a resistance of R ohms and

an inductance of L henrys per mile, the inductance being very

small. Let this line be loaded with impedance coils such that

the total added resistance makes the line equivalent to one having
R + R' ohms per mile and the total inductance equal to a line

of L + L 1

henrys per mile.

Then these values of the total resistance and inductance may
be used as the R and L in the formula for calculating the

attenuation and wave length constants, and they give us

respectively the values of a" and ft".

Suppose then that R' is given such a value that it is about

equal to J/2, then the attenuation constant a", calculated from
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the smoothly distrihuted resistance and inductance, is nearly

equal to the true attenuation constant a' when there are nine coils

per wave. If, however, there are less coils per wave, then a' is

greater than a" by a certain percentage, as shown in the table below.

Number of coils per
wave length A.".



132 PKOPAGATION OF ELECTEIC CURRENTS

Experiment shows also that \/d cannot practically be less than

4 or 3. Hence 7,200/3 2,400 is the highest frequency we
can be concerned with in practical telephony.
For such a rate of load traversing and for such frequencies we

can consider that the unequally distributed impedance at the rate

of nine coils per wave gives us a line which is for all practical

purposes an equally or smoothly loaded line of approximately
distorsional character.

Thus, for instance, if a line having 90 ohms per mile resistance

andO'OOl henry inductance and !05 X 10~ 6 farads capacity had

inductance coils of approximately 0*2 henry inductance and

20 ohms resistance inserted every two miles, this would be

equivalent to adding 10 ohms and O'l henry per mile
;
then the

total resistance would be 100 ohms per mile, and the product
CR per mile would be equal to 5 X 10~ 6

. Hence, if the insula-

tion resistance were reduced to 20,000 ohms per mile, we should

have S = 5 X 10~ 5 and LS = 5 X lO" 6
.

Such a line would be theoretically distorsionless in that all

wave frequencies would travel along it at the same rate. The

attenuation constant a' would be approximately equal to 0'07,

whereas that of the unloaded line would be at least O'l.

These explanations will suffice to show the very great improve-
ment that is made in the transmission properties of a telephone
line by suitable loading with impedance coils, and that, provided
the insulation is not too good, we can approximate to the

properties of a distorsionless line.

9. Other Methods of reducing the Distorsion
of Telephone Lines. In addition to the method above

explained of loading the line with impedances, two other

methods have been suggested for overcoming the distorsional

quality of a telephone cable. One of these, due to Professor

S. P. Thompson, consists in the insertion of inductive shunt

circuits or leaks across the two members of the cable or between

the line and the earth. It is clear from the explanations already'

given that the distorsional quality of the line depends essentially

upon the excess of numerical value of the product CR over the

product LS p^r mile of line. Hence, since CR is numerically
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larger than LS for any ordinary cable, we can effect the adjust-

ment either by increasing L, as already explained, or increasing

the insulation conductance S. Thus for a standard telephone

line, where R = 88 ohms, C = 0'05 X 10~ 6
farad, and L =

O'OOl henry, we should have to reduce the insulation resistance to

227 ohms per mile to bring about the necessary equalisation.

This might be done by putting fifty equidistant shunts per mile,

each of 10,000 ohms, between the members of the cable.

The result, however, would be to immensely increase the

attenuation constant of the cable, and, although it would equalise

the attenuation for different frequencies and therefore contribute

to produce clearness of articulation, it would certainly decrease

the volume or loudness of the sound, and loudness is as essential

as clearness for intelligibility. Even if we did not lower the

insulation to the full amount above given, yet the insertion of

suitable non-inductive shunts across the cable does something to

assist telephonic transmission.

Nevertheless it remains evident that the increase of leakage in

some degree acts as an alternative method for curing distorsion

in the case of telephone cables.

The subject of the effect of leakage in telephone and telegraph
lines is complicated by the nature of the receiver used. The

reader will, however, find some valuable information on this

subject in Mr. Oliver Heaviside's book "
Electromagnetic

Theory," Vol. L, 213, under the heading of
" A Short History

of Leakage Effects on a Cable Circuit," in which the effect of

leakage on signalling speed for different types of receiving

instrument is most clearly explained.

1O. The Theory of the Thompson Cable. The

theory of the type of cable suggested in 1891 and 1893 by
Professor S. P. Thompson for overcoming distorsion has been

discussed by Dr. E. F. Kosher in an able paper following the

same lines as the discussion of the Pupin cable already given.
1

The Thompson cable consists of a lead and return conductor

between which at equal intervals are connected shunt circuits

1 See The Electrical World and Kinjineer of New York, Vol. XXXVII., pp. 440,

477, and 5!0, March 16tb, 23rd, and 30th, 1901.
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having inductance and resistance (see Fig. 7). The problem
to be discussed is the right distance to place these shunts and

the value of their impedance so as to effect an improvement in the

distorsional qualities of the non-shunted cable.

Let the inductive shunts each have resistance E and induct-

ance L
,
and let n such shunts be bridged across in the run of

the cable. Let I be the distance between the transmitter and

receiver. Let the cable itself have resistance 11, inductance L,

and capacity C per unit of length, and suppose a simple harmonic

FIG. 7. Thompson Cable with Inductive Shunts.

electromotive force denoted by the real part of Et jpi be operative
'in the transmitter.

Let # + jp L = z and R -f- jp L = z.

Let im be the current in the line at a point between the wth

and (?? + l)th shunt at a distance x from the with shunt.

Then at that point we can write a differential equation for

the current tm as already proved for a uniform line, viz.,

As already proved, this differential equation has a solution

applicable in the present case in the form

im= Ki Cos fjiX+ Kz Sm.fjLX . . . (72)

where ^= - C
( -p*L +jpR) .

If
JJL
=

/3 + ja, then, as already shown,

=x/J
. (73)

The integral (72) expressing the value of inl .has to fulfil n

boundary conditions at the terminations of tbe shunt coils.
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Let r/i, r/2 , #3, etc., be the currents in the shunt coils
; then

9i
= fa)x=un-(ii)*=Q, etc. . . (74)

0m=(%-iXc=*/-(0)*=o (75)

where (io)x=ifn stands for the current in the run of the cable in

that section just before the first shunt close up to the junction of

the shunt and (ii)x=o stands for the current in the section after

the first shunt at a point close to the junction of the shunt.

Let vi, r2 ,
vs , etc., be the potentials atone end of the shunts,

and let vi ,
r2', v3

'

, be the potentials at the other ends. Then

ri i'i , etc., are the drops in potential down the shunts.

Let Vm stand for the potential in the run of the cable at any

point between the mth and (w+l)
th shunt.

Then Vm satisfies a differential equation of the type of (71),

and this has an integral like (72), viz.,

Vm =Nl CosfjLX+Nz Sin/x^ . . . (76)

also (Vm)x = iin=vm= (Vm+1)x=0 . . . . (77)

using the same notation as in the case of the currents. Likewise

vm-vn;
= E,gm+L,

d

jf . . . (78)

But when the currents and potentials are steady vm v m
'

varies as A^pt
.

, .... (79)

fJV rli

Now it is clear thatC=-, and hence from (72) and (76)

Therefore vm=N and vm+l=N, Cos ^+ 2̂ Sin &.
tit tii

And K!= ^
^
("+ w Cos p.

-
J

V

Therefore, substituting these values of KI and 7i 2 in (72), we have .

jpc
Cos

fjiX
vm Cos /A (

- x
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This equation is correct only from m = 1 to m = n 1, but

for i and in , viz., the currents in the end sections, we have to

develop special formulae. It is not difficult to see that the

currents in the transmitter and receiver sections are

v, Cos fix
-
1
EeM Cos p ( -x\\ . (81)

in= _ --^~-T Cos fi ( L-x] vn . . . (82)

/*
Sin

|^
V2^ /

We can now write the boundary equations.

2/x Sin
j

Let 0-=----7r-
1
- -4Sin2 -

. . . (83)

2M Sin ,

,+2= -+200 . . (84)

Then the boundary equations are as follows

K?l"titL-o (

^
(<T+ 2J Vw_! V w _ 2 ^=
(cr+8) Vn Vn-!

If the transmitting and receiving instruments have no

impedance, then // = /! = 0, 7i = <r = -- 4 Sin2
^, and let

Then we have

I , . Sin (2?z-

as an equation which determines the potential at the end of a

shunt coil.

The question then arises how far apart must or may the

inductive shunts be placed in order that the Thompson cable may
be electrically equivalent to a certain uniform line called the

equivalent conductor. In the case of the Pupin loaded line the

equivalent conductor is a conductor having the same total

inductance and resistance as the loaded line, but spread
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uniformly, and we have shown that if the angular distance

between the coils is y on the same scale that the wave length

is 2w, then as long as ~ y is not very different from Sin ~ y a line
A A

so loaded may for transmission purposes be replaced by the

equivalent uniform line. In the case of the Thompson line we

have, however, first to define what we mean by the
"
corre-

sponding uniform conductor."

Let us consider the equation (83) by which a- is determined,

we have

2/x Sin
p.
-

,

If
jot
=

|3 + ja where ft is large compared with a, then the wave

length on the unloaded uniform wire is A = 27T//3, and the angular
distance between the consecutive coils for the wave length A is y,

where

r-T0 (88)r n A M

If then y is so small that Sin y = y nearly, the above equation

for a- can be written

Hence we get Sin = ^ ,,.

2

If we insert in the above equation the values of /x and ZQ , viz.,

^ = PQ + j>L and /z
= \/

{
C ( y2L -\-jpR) \

we reach an

equation,

-^^C^p^+jpE,). . (90)

in which

' ' ' (92)

Suppose then that we have a uniform line the inductance and

resistance of which per unit of length are LI and RI as given by
the above equations, its capacity per unit of length being (7,
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then this line is the "
corresponding uniform line

"
with which

the Thompson cable has to be compared.
We can now prove the equivalence of the Thompson loaded

line to the equivalent uniform line defined as above.

If ^ /3i + jai we have /3i
= T where AI is the wave

Ai

length for the frequency p/2-x in the corresponding uniform

conductor just defined. If Aj is represented as an angle 2-77, then

the angular distance between two successive shunts is yi, such that

If we assume
^yi

is so small that
^yi

= Sin
^yi nearly, and

also
2^/3x

so small that e'
J " = 1 + y-ft,

we get 6 =
2 n^i,

and our equation (86) for the value of vm on the Thompson
line becomes identical with the value for a corresponding
uniform cable as above defined.

Accordingly we can summarise the results by saying that

A loaded cable of the Thompson type with inductive shunts

at equal intervals is equivalent to its corresponding uniformly
loaded cable characterised by inductance and resistance per unit

of length as defined in equations (91) and (92) as long as the

sine of half the angle denoting distance between two consecutive

shunts is not sensibly different from the angle itself, the angle

being reckoned on such a scale that the wave length for the

frequency considered is equal to 27r. We see then that the rule

for spacing the shunts in a Thompson cable is verbally the same

as the rule for spacing the inductance coils in a Pupin cable.

The difference between the Pupin and Thompson methods is,

however, that in the former we increase the effective inductance

of the cable to cure distorsion and necessarily increase its resist-

ance as well, which resistance increase we must, however, keep

as small as possible. In the latter we reduce the resistance of

the cable and necessarily reduce its effective inductance as well.

This reduction in inductance must, however, be kept as small as

possible. Hence the necessity for the use of inductive shunts

and not inductionless shunts,



TELEPHONY AND TELEPHONIC CABLES 139

We can obtain an expression for the average attenuation of

the Thompson loaded line very much on the same principles that

we have obtained one for the Pupin line in 8. We can

consider the Thompson line to be made up of a series of

sections, each of which consists of a double length d of plain

line having a propagation constant P and a coil connected across

the end having an impedance X,..

Let us suppose that the P.D.'s across the ends of these inductive

shunts are denoted by Fi, F2 ,
F3 , etc., then each section may be

regarded as a short line of length d having a receiving instrument

of impedance Zr across its far end and a P.D. across this coil

represented by Fn+1> whilst the P.D. across the sending end is

VH . Then from the expressions given in Chapter III., if FI is

the sending end P.D. and Ii the sending end current and Zi
the final sending end impedance and F2 ,

J2 and Z2 the corre-

sponding quantities for the receiving end, we have

Ia Zi , F2 Zr
Hence T= ^r and ^ -&-

-LI ^2 "\ ^2

Again, since the sending end voltage for the second section is

equal to the P.D. at the ends of the shunt coil terminating the

first section, we have for the second section

In the same way we can prove that

But V1

=Hence IT
or 7

=f^,.)- 2 .... (95)
J-\ ><i

But -" = t- 1
"

11 ' 1

where P 1

is the average propagation constant
*i

of the Thompson line.

Again by equations (61) and (62) in Chapter III.

^1_^0_ /Qg\Z~Z Cosh Pd+Zr Sinh Pd
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We have then

c
-P'nd_

(97)Z Cosh Pd+Zr Sinh Pd

If then we are given Z ,
Zr , P, n and d, we can calculate

-p'nrf= Cosh p'^-Sinh P'nd.

If, therefore, we denote by a' the equivalent attenuation constant

of the Thompson line, we can say that ^-a 'nd
is equal to the

real part of the expression on the right-hand side of equation (97),

and therefore that a'nd is equal to its Napierian logarithm.

We can then find a f

in terms of the given quantities.

The arithmetic, however, would be tedious.

The general result of experimental investigation on the matter

as far as it has gone goes, however, to show that for a given

amount of iron and copper in the form of impedance coils it

results in a less attenuation constant to employ them in the

Pupin fashion as coils in series rather than in the Thompson
fashion as coils in parallel.

11. Other proposed Methods of constructing
Distorsionless Cables. In addition to the methods com-

prising the addition of inductance in series with the line and that

FIG. 8. Thompson Transformer Cable.

of inserting inductive shunts across the line, a third method was

proposed by Professor S. P. Thompson in his paper on Ocean

Telephony in 1893, consisting in cutting up the cable into

sections inductively connected by tranformers (see Fig. 8).

This plan was also proposed by Mr. C. J. Reed in 1893,
1

although it had been previously mentioned and specified by
Professor S. P. Thompson.

If these transformers have a 1 : 1 ratio of transformation, or

1 See United States Patent Specification of C. J. Reed, Nos. 510,612 and 510,613.

u
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indeed any other ratio, they are electrically equivalent to the

addition of inductance in series with the line associated with

inductive shunts across the line. Accordingly it has been proved

mathematically by Dr. E. F. Eoeber that such a transformer

cable as in Fig. 8 is electrically equivalent to the arrange-
ment shown in Fig. 9.

1 He has also proved mathematically by
an analysis on the lines of that already given for the Pupin and

the Thompson cable that the transformer cable can be replaced

by a certain line having a uniform distribution of inductance,

resistance and capacity called the
"
corresponding uniform line

"

provided that the intervals between the transformers are short

FIG. 9.

compared with the wave length, or if that interval is denoted by
an angle y on the same scale that the wave length is denoted by
277, then the transformer line differs from the

"
corresponding

uniform line
"

to the same extent that Sin
^y

differs from
-^y.

It is hardly necessary to give the full analytical theory of this

transformer cable, as the writer is not aware that it has yet been

employed in practice, but the reader can be referred to Dr. Roeber's

article for additional information.

The type of loaded cable suggested by Pupin has, however,

come into extensive use, and in a later chapter we shall describe

some of the results of practical experience and the confirmation

they give of the above theory.

1 See Wie Electrical World and Engineer of New York, Vol. XXXVII., p. 510,

1910. Dr. Roeber calls this transformer line a Reed-cable.



CHAPTEE V

THE PROPAGATION OF CURRENTS IN SUBMARINE CABLES

1 . The Differential Equation expressing the
Propagation of an Electric Current in a Cable.
If we assume a cable to have resistance R, inductance L,

capacity C, and leakance S, all per unit of length, and if the

current at any distance x from the origin at any time t is i and

the potential is v, then we have seen (see Chapter III.) that we

can express the state of affairs at that point x by two differential

equations, viz.,

'

The first of these equations expresses the fact that the fall in

potential down an element of the cable is due to the combined

effect of resistance and reactance or inductance, and the second

that the change in the value of the current in passing along an

element of the cable is due to the combined effect of capacity and

of leakage. If we differentiate the first equation with regard to

cl^i

x and the second with regard to t and eliminate , ,. we obtain

. (2)

and a similar equation in i can also be reached by reversing the

order of the differentiations. The above differential equation (2)

is of the type

The full discussion of this equation would lead us into mathe-

matical questions of an advanced nature. Suffice it to say that
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it can be satisfied by many functions of x and t. Thus for

instance it can be satisfied by a function of the form

y
~ rt * Sin bx, provided there are certain relations between the

constants.

Thus if v = ~at Sin bx, and we find the values of -^ -^

and T~I from the above expression and substitute them in (2),

we have

CLa'*-(BC+LS)a+BS+ b2= . . . (4)

Solving the above quadratic equation we obtain

IB Sy I

iU~cy ~~CL

The quantity b is determined by the distribution of potential

along the origin of time or when t = 0. If then we take a point

at a unit of distance from the origin or take x = 1, we have

v Sin b or b = Sin" 1
r. In other words, b is the inverse

sine of the potential at a unit of distance from the sending end

at the instant from which time is reckoned.

Suppose we assume an initial distribution such that the

potential varies along the cable according to a simple sine law of

distribution. Then St/h is the wave length. If then the con-

stants of the cable are such that T(T~(^\ ig greater than

b'
2

Y^ the quantity under the square root sign in (5) is real, and

the quantity a is therefore real, and the potential at any point in

the cable dies away exponentially or according to a geometric
1 / 7? S!\ 2

law of decrease, but without oscillations. If, however, ^ \jj~(j)

b2

is less than
;
the value of a is a complex quantity, viz.,

** .... (6)

TO ~t / T~)

where (f stands for
~LC~ \Z~

Hence 0= Tvi^c/
1 Sin bx (Cos qt j Sin qt),

which indicates that there is at any fixed point in the cable
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a decadent oscillation of potential with time, the potential

ultimately becoming zero.

Another solution of the differential equation (2) more applic-

able in the case with which we are concerned is

v= A*-\ (l
+
?)' Sin (bx qt) . . . (7)

This represents a damped or decaying oscillation of wave

length 2 ir/b propagated with a velocity q/b along the cable.

It, S
If the constants of the cable have such relation that -=- -=0,

Li

that is if CR = LS, or if the cable is distorsionless, then

the quantity a is always real and q* = j^, or ^
= /,- ,

that

is, . the oscillations of all frequencies are propagated with the

same velocity, 1/VLC.
If we assume that v is a simple periodic quantity and can be

represented by the real part of Atjpt
,
then -r, = jpv and

p
= p

2
v

,
so that the differential equation (2) then takes the

form

or =(S+jpC)(It+jpL)v . (8)

This is the equation we have already fully discussed in dealing

with the propagation of currents in telephone cables where we

can assume that v varies in accordance with some function of

the time which by Fourier's theorem can be resolved into the

sum of a number of simple periodic terms.

In dealing with the problem of the submarine telegraph cable,

however, the differential equation can be somewhat simplified as

in the next section.

2. The Discussion of the Telegraph Equation.
In telegraphic signalling the changes of current or potential at

the sending end are generally so slow and the inductance of the

cable so small that the quantity pL or 27mL, where n is the

frequency, is small compared with the resistance R. Also the



CURRENTS IN SUBMARINE CABLES 145

leakage is so small that S is negligible. Hence the general

equation (2) reduces to

=*'* ..... (9)

This equation is called the "
telegraph equation." It first

presented itself in connection with a problem on the conduction

of heat in a bar, but was established as the fundamental

differential equation in the theory of the telegraphic cable

by Lord Kelvin (then Professor William Thomson) in a

celebrated classical paper ''On the Theory of the Electric

Telegraph
"
communicated to the Royal Society of London in

May, 1855 (see
" Mathematical and Physical Papers of Lord

Kelvin," Vol. II., article Ixxiii., p. 61).

The discussion of this equation as given by Lord Kelvin is

not exactly suited for an elementary treatise, but it has been

simplified, especially by the late Professor Everett in a volume

on electricity and magnetism forming part of a revised edition of

Deschanel's " Natural Philosophy." We shall follow the general
method of this latter treatment.

Consider the equation
d*v - dv

The following are two particular solutions :

v=B+Dx ..... (11)

v=A-*?'Smpx .... (12)

where k = 1/RC and A, B, and C are constants.

It is clear that (11) satisfies (10). Also, if (12) is differen-

tiated twice with regard to x it gives /3*v, and if differentiated

with regard to t and multiplied by EC = l/k we have also

/3

2
r. Therefore (12) is a solution of (10) subject to k =

l/R C. A precisely similar equation to (10) presents itself in

considering the conduction of heat along a bar and also the

diffusion of salt through a tube of water or other solvent.

Thus if we have a metal bar of unit cross section and thermal

conductivity k, composed of a material of specific heat c, and if

we consider a small section of length Sx, and if the temperature

on one side of the section is v and on the other v + ^ 8x,

E.C. L



146 PEOPAGATION OF ELECTRIC CURRENTS

s/jj

the temperature gradient down the section is
j-

and the rate

dv
of flow of heat into the section is k -j- . Hence the rate of

accumulation of heat in the section is expressed by j- (& y )
&#

But this can also be expressed by cr
j.,

where c&x is the

amount of heat required to raise the section &x one degree in

temperature. Equating these two identical expressions we have

d2v c dv

dx"2
=

k~di'

Again, if we have a tube of solvent of unit section and con-

sider the diffusion of some salt along it, we have a precisely

similar equation, only in this case k stands for the diffusivity of

the salt and c for the mass of salt required to produce unit

concentration per cubic unit of volume of the solvent. Lastly,

the same type of differential equation comes to notice in con-

sidering the gradual penetration of an electric current into a

conductor, since all the above cases, propagation of potential

along a submarine cable, salt diffusion, and thermal conduction

are really cases of diffusion of electricity, matter, or heat.

3. The Theory of the Submarine Cable.

Suppose a cable of length I to have its distant or receiving end

earthed and to have a distribution of potential made along it

which is represented by the equation
mirX

v=A Sin T- .... (13)

This means that the potential at the sending end (x = 0) is to

be zero, and that at the receiving end (x = I) is to be zero, and

that a maximum potential v = A exists at some intermediate

point.

Let this potential distribution be left to itself, then the first

question is what function of the distance x and the time t will

represent the distribution after the lapse of any stated time.

It must be such a function that it satisfies the equation

d?v_Tf
~dv d2v_1 dv

dtf-^dt
or
dx*~kdT
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Also it must satisfy the boundary conditions ; that is, have a

zero value both for x =.
:

/. r= 0. Such a function is

zero value both for x = and x = I and a value A Sin - - for

.. (14)

For it obviously reduces to (13) when t = and it is zero when

x = or x = /. If twice differentiated with regard to x it becomes

^- v, and if differentiated with regard to t it yields m*nv.

2

Hence if u =
-ftj

the expression (14) satisfies the differential
-Zl/O 6^

equation (10).

Accordingly it is seen that the expression for the distribution

of potential at zero time, viz.,

. ~ . tJlTT

0=4 Sin -y-
a; .... (15)

is changed by lapse of time t to the expression

v=A (-*'") Sin
7

-^?
. . . . (16)

9

and both of these satisfy all the conditions
; provided u = ^^ .

If we assume any distribution of potential it must be capable
of being represented by a single valued curve, because the

potential can only have one value at any one point at the same
instant. Now such a curve can be resolved by the Fourier

analysis into the sum of a number of simple periodic or sine

curves of different amplitude and phase. Hence if we can

express in the form of a Fourier series the initial distribution

of potential, then after the lapse of a time t this distribution if

left to subside will be changed into one which is expressed by

multiplying each term of the above Fourier series, which is a

term of the form A Sin -
-,

, by an exponential factor of

the form e~ m2 'lt

,
since each term of the original and each term

of the so altered series satisfies the differential equation and also

the boundary conditions.
9

For the same cable the quantity u = J( has a constant

L 2
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value, and hence the exponential factors for the different terms

will have the same value at times t which are inversely as

w2 or directly proportional to the square of the wave length A

because the quantity -y- must be equal to ~. Accordingly

the terms representing waves of short \vave length die away more

quickly than long ones.

Suppose then that at the sending end of the cable we apply
one pole of a battery and raise the end to a potential V, the

receiving end remaining connected to earth. There will after a

time be a final distribution of potential gradually diminishing
from V at the sending end to zero at the receiving end, and the

FIG. 1.

potential at any distance x from the sending end will be

represented by the expression

v=V^ (17)

For this expression (17) represents a potential gradient in the

form of a straight line. (See Fig. 1.)

If this steady state is altered by putting the sending end to

earth at the time t = 0, then the potential becomes zero at the

sending end or v = for x = 0, and at every other point it is

represented by v = V j-
-

To find the subsequent distribution we have to expand the

last expression into a series of sine terms and find the co-

efficients.

I X TlX _,. %TfX
, t ft' mnX .

If y = T- = A 1 Sin -f-f^a Sin j- -fete. -\-Am Sin * . (18)III i
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We proceed to find the values of the co-efficients AI, A 2 , . . . Am

in the manner already explained in Chapter IV. Multiply both

sides of the expression by Sin ~ &x and take the average

value of each term between x and x = 2/. Then all

products on the right hand side vanish except one, because the

average value of such an expression as Sin n 6 Sin m is zero

when taken over one complete period.

Hence we have left

Now
J^SnSp &*=

jSin "^ to-f| Sin"^
&r

but .

f
Sin^ &r= - Cos '-^

J t m?r I

, f ?/l7T^ /
2

. 77l7T^ Za?
also 1 x Bin r 8^=

2 ^
Sm

^

^ m-rrX
Cos -

Hence
l x mi
^Sm
i I

mirx . / mTra; Z WTT#
,

a? _ m>ra;8x=- -Cos-y- rrsSin-^ h- - Cos ;

lllTT I m^TT2'

I tllTT I

(l x) _ rmrx I m-n-x- "* VyOS^ 7~" n & Olll -,

-
.

tllTT I m2
7T

2
I

The value of this last integral between the limits x = and

x = 2Z is -~
1

-.

Again, the integral sin^ &*= Cos

and the value of this between the limits x = and x = 2 is /.

Hence the result of multiplying both sides of equation (18)

by Sin
^

Sx and integrating between x = and x = Zl or

taking 2 times the average value of each term is to give us the

equation

or A=
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I x
Hence for the expansion of

7 we have

I X 2 ( n . TTX
.
1 27TX'

,
1 STTX

Therefore the potential at any point x in the cable at zero time

or when t = is expressed by
O m= <*> / 1 7>?7rr\

v^V~ 5 (4 Sin) . . . (21)v m = 1 \w { /

where 2 stands for the sum of a number of terms like

1 . m-nx , . . .

Sin
-~Y- ,

m being given various values, from m - - 1 to

m =
infinity.

Each of these terms is therefore a term of the type A Sin
j

.

We can therefore find an expression for the potential at any

point in the cable after the lapse of a time t when the initial

distribution is left to subside by simply multiplying each sine

term of the above series by a factor of the type e~m2 "', as already

explained.

If then we denote by ?' the potential at a distance x at a time

t 0, and by v
t the potential at x after a time t, we can express

r and v
t
as follows :

(22)
77 m=1

(23)

m

Suppose next that we alter the origin of time, and, instead of

reckoning the origin of time from the instant when the sending
end is earthed after having been raised to a potential V and kept

there long enough for the whole potential distribution to reach a

steady state, let us suppose that the sending end has a battery

applied to it or a source of steady potential V, and that we

reckon the time from this instant of applying the voltage V to

the sending end. At that instant when t = 0, the potential at

the sending end jumps up to F, and at all other points rises up

gradually to a limit which is given by the expression (22).

Hence at any time t reckoned from the instant of applying

the steady voltage to the sending end, the potential v at any
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distance x from that sending end is given by the difference between

the values of v and v
t ,
as given in (22) and (23). In other

words, if we apply a steady potential V to the sending end at a

time t = 0, then at a time t and at a distance x the potential in

the cable is given by

m =i m (24)

The part of the expression in square brackets will be denoted by
< (x, t), so that

v = V<f> (x,t) ..... (25)

gives the potential at any time and place. This function < (x, t)

satisfies all the conditions. It satisfies the differential equation

T-
2
= 11C

j~.
,

for it is the difference of two expressions

which separately satisfy it. It also fulfils the boundary con-

FIG. 2.

ditions, because when t = (x, t)
= 0, and when t = infinity

(x, t)
= Hence it must be the expression for the

potential in the cable at a distance x and at a time t.

We may represent it graphically as follows : Let AB (Fig. 2)

represent the cable, A being the sending end. Let a voltage V
be applied at the sending end, represented by AC. Then at a

time t, after the application of this voltage, the potential all

along the cable will be represented by the ordinates of the firm

line curve CDB. After a long time this potential everywhere

approximates to a uniform fall represented by the ordinates of

the dotted line CB. The ordinate of the firm line curve corre-

sponding to any distance x represents the potential v and is given
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by the expression v = F< (x, t). The current i in the cable at

any point is obtained from the potential v by differentiation with

regard to x, since by Ohm's law

Hence, performing the operation denoted by (26) on v = V $ (x, t),

we obtain the expression for the current i at any time t and any
distance x, viz.,

The current at the receiving end will be denoted by /,,, and it is

obtained from (27) by putting x = I and giving m increasing

integer values from 1 to oo. Hence

It is convenient to denote e~ M *

by 6 and to write (28) in the

form

Ir=r 2 -e+ei-0+e i*-e^+e-zte . (29)Ml
\j& )

The above is the expression for the current flowing into the

earth at the receiving end at any time t after applying a steady

voltage V at the sending end. Since is a proper fraction, the

series in the brackets in (29) is rapidly convergent, and in

general it is quite sufficient to take the sum of the first six or

seven terms to obtain a close approximation to the actual value.

If we are given the numerical value of the whole resistance of

the cable in ohms, which is equal to 111, where I is the length,

and the whole capacity of the cable in farads, which is equal
2 9 f87

to Cl, then we can at once calculate u =
7]J772 ci-IU*

an^

hence we can calculate e~ nt = from the expression

= e- = Cosh ut - Sinh ut

for any assigned value of the time t. We can then find 6*,
9

,

etc., easily by the use of a slide rule or table of logarithms. For

Iogi
4 = 4 Iogi 0, and therefore 4 = logic"

1

(4 logic #), etc. It

is most convenient to arrange the series as follows :
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We shall denote the above series by f(u, t). Accordingly we

have for the received current
OT7"

J
r
=m /(M) . (30)

and for any assigned value of the time t we can calculate the

current Ir flowing to earth at the receiving end.

4. Curves of Arrival. The series denoted by/ (u, t) has

the curious property that its value is zero for all values of t

from t = up to * = CRP X 0*0233 nearly.

Consider the series

0-04 +/? s>-0 1G+025 -<93G ,
etc.

Assume t =
; then = e~ tlt = 1, and the series (28) becomes

equal to 1-1 + 1-1 + 1-1 + 1, etc., to infinity. Let

the sum of this last series to infinity be denoted by S ; then

5= 1-1+ 1-1+ 1-1+ 1, etc.

Hence 5-1= -1+ 1-1+ 1-1+ 1-1, etc.

Adding the above two series, we have

25-1 = or S = l.

Accordingly the sum 1 1 + 1-1 + 1, etc., to infinity is

equal to
,
and therefore the series

f(u, t)= -0+04 -00+ 0io _025+ 086, etc.,

is equal to zero when = 1.

Also it can be shown by trial that for any value of 6 between

01 and = 0'8 or 0*9 the value of /(//., t) is zero.

Thus if = 0-79 we can easily find that 4 = 0'389,
9 = 0119,

6>
16 = 0-023, and 25 = 0'003.

Hence + 9 + 25 = 0-912 and <9
4 + 1G = 0-412. Therefore

and/(if, 0=0 when = e""' = 0'79. Also it can be shown
that if = 0-9, then + 9 + 25 = 1-38, and 4 + 16 = '88,

and thereforef (n, t) =. 0.

Lord Kelvin originally gave 6 = 0*75 as the limiting value
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required to make / (M, t) equal to zero, and he denoted the time

corresponding to this by the letter a.
1

Since 6 = ~ ut
, we have t = -

Logcfgl,
and if 6 = 0'75 then

1 /4\t= -lge(g). Hence Lord Kelvin's symbol a is a time
U \6/

such that

Professor Fleeming Jenkin, another great telegraphic autho-

rity, gave as the limiting value = 0*79 = 10'
'

1
.

Tirrue reckoned, frorrv instCLrtt of depressing Sending Key.

FIG. 3. Curve of Arrival.

Now loge (10
'

1

)
= 0-23, and 7i

2 = 9'87.

Accordingly we can say that

O-23 = CR x 0-0233 . . . (31)

where C and R denote the capacity in farads and resistance

in ohms of the whole cable.

Hence if the key is put down at the sending end connecting
that end with a battery of constant potential V, then during an

1 See Lord Kelvin, "On the Theory of the Electric Telegraph," Proc. Roy. Sue.,

London, May, 1855, or "Mathematical and Physical Papers," Vol. II., p. 71.
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interval of time equal to a defined as above, no current capable
of being detected by any receiving instrument, however sensitive,

would be found flowing to earth at the receiving end. If,

however, the sending key is kept down, then the current will

begin to rise at the receiving end and steadily increase. After

an interval equal to about 4a it will reach nearly half its final

value, and after an interval Wa it will reach a final steady
value.

If we plot a curve the ordinates of which denote to some

scale the received current and the abscissae the time reckoned

0-5

0-4-

03

2345 67
vut

FIG. 4. Curve of Arrival.

JO

from the instant of applying the battery at the sending end,

the curve so drawn is called a curve of arrival. It is generally

drawn with abscissas representing ut and ordinates representing

/ (11, t), and has the form represented in Fig. 3.

Lord Kelvin was the first to give in 1855 curves of arrival

drawn for different conditions.

The table below gives values of / (n, t) for various values of

ut calculated by Professor J. D. Everett, and the curve in Fig. 4

graphically represents these values.
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The value of /(//, t) approximates to 0'5 as ut reaches a value

of about 10 and upwards. Below u = 0'23 f(u, t)
= 0.

ut.
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5. The Transmission of Telegraphic Signals
along a Cable. We have next to consider the mode of

making, and the effect of transmission along the cable on tele-

graphic signals.

The alphabetic code usually employed in cable telegraphy
is the International Morse Alphabet, according to which each

FIG. 5. Syphon Kecorder for Submarine Cable working as made by
H. Tinsley & Co.

letter of the alphabet is denoted by one or more intermittent

applications of a constant potential battery to the sending end of

the cable, such application being made by a key which connects

the cable to the battery for a certain short interval of time.

The battery of voltaic cells used has its centre connected to the

earth, and a key is employed which connects either one or other

terminal of the battery to the sending end of the cable and there-

fore raises it either to a positive potential + J
7 or lowers it to a

negative potential V.
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In signalling over land lines by hand-made signals the alpha-

betic signals are composed of short and long signals called

respectively a dot and a dash.

Thus the letter A is represented by a dot followed by a dash

Tinue

Dot, Signal
FIG. 6.

(
-

). The dot is made by connecting the sending end of the

line for a short interval of time with one terminal of a battery.

This is then removed and after an equal space of time connected

again for a period about three times as long to form the dash.

O T Time cu&is.

FIG. 7.

The currents into line are thus always in the same direction, but

vary in duration.

In the case of cable signalling the currents which form the dot

and dash signals are always of the same duration, but differ in

sign or direction, those forming the dashes being say positive

currents and those forming the dots being negative currents.

The receiving instruments are therefore differently constructed.
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For the land line hand sending either a needle instrument or

else a Morse Inker is employed when printed signals are required,

and the message is printed down in dots and dashes on paper

strip.

In the case of submarine cables the receiving instrument used

is the syphon recorder in which a delicate pen moves over a

strip of paper, and the dot and dash signals are made by slight

but sudden deflections to the right or left (see Fig. 5).

To make a dot signal the positive battery pole is applied to

the sending end of the cable and causes the potential there to

rise suddenly to + J
7 After an interval of time T the battery

is removed and the end put to earth. The variation of potential

at the sending end may therefore be represented by the line in

Fig. 6.

To make a dash signal the same process is followed with the

reversal of the battery pole, so that the variation of potential at

the sending end in making the dash signal is represented by the

firm line in Fig. 7.

We have then to consider the nature of the potential changes
at distant points in the cable and of the current flowing out at

the receiving end.

We may regard the dot signal as created by applying to the

sending end a source of positive potential and keeping it on for

an infinite time, but after the lapse of a time T superimposing

upon that state the application of an equal source of negative

potential which reduces the sending end to zero and keeps it

zero.

We have seen that the effect at distant points in the cable of

applying a potential + V at the sending end is to raise the

potential at a point at a distance x after a time t to a value

r = V $ (x, t). Hence the effect of applying a negative

potential V after the lapse of the time T is represented by
r = V $ (x, (t T) ). Hence the potential in the cable at

any distance x due to a dot signal made at the sending end is

represented by
0F{+(0,Q~+-(4'-'2)} (

32
)

Also the potential due to a dash signal is represented by

v =V{<l>(x,(t-T))-<i>(x,t)} . . . (33)
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Again, we have seen that the effect of applying a source of

potential + V to the cable at the sending end and keeping it on

is to cause a current i to flow out at the receiving end which is

27
represented by l=

El f(u> ^'

Hence the effect of making a dot signal at the sending end

must be to cause a current at the receiving end represented by

*'=^{ /(,*)-/(,(<- 2))} - (34)

and similarly the effect of making a dash signal at the sending

end must be to cause a current at the receiving end represented

by

/ (,*)} (35)

We can therefore select any combination of dot and dash

signals, in other words any letter of the alphabet, and predict

exactly by an equation the current which will at any instant be

found at the receiving end of the cable flowing into or out of the

earth. The expressions (34) and (35) are in fact the equations to

the curves representing the dot and dash signals as recorded at

the receiving end by a syphon recorder or some equivalent

instrument.

Thus, for instance, let us consider the nature of the received

current corresponding to a dot signal.

We may consider the constant factor ZV/Rl to be unity and

the duration T of the dot such that uT = ^-^ T is, for example,

0-3. Then we have = *-* and Ol
= f-0-*> = t~ ut x t

uT = 1-0,

say. Then / (u, t)
= \

- + 4 -
6>
9 + 6>

16 -
<9
25

, etc., and

/ (n, (t
-

T)) = \
- Ol + Of - 0!

9 + 0!
16 -

0!
25

,
etc.

If we assign to ut various increasing values, 0'4, 0'5, 0'6, etc.,

we can calculate the values of

= e- ut= Cosh ut - Sinh ut,

09= c
- 9^= Cosh 9ut -Sinh 9ut,

and so on, and hence obtain the value of f(u, i) in the form
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/ (u, t)
= -Cosh M + Sinh 7^+Cosh 4?^ -Sinh ut

- Cosh 9 ut -{- Sinh 9ut+ Cosh I6ut - Sinh 16^ - etc. . (36)

These values are easily obtained from any good table of hyper-
of

"Tbolic functions. We then find the value

equation k = c"r - Cosh uT - Sinh uT.

Hence 0,= k (Cosh ut- Sinh ut) ,

Ol
*= k* (Cosh 4?^- Sinh 4wQ, etc.

Therefore

/ (w, (t-T)) = -k Cosh ut+k Sinh ^+ A* Cosh hit-k* Sinh

from the

-A;9 Cosh 9ut+kQ Sinh 9^, etc. . . . (37)

This series can be calculated without difficulty by means of a

table of hyperbolic functions and one of powers of e.

It is then easy to find, by subtracting the sums of the two

series (36) and (37), the value of f(u, t) f(u, (tT) ) =f(ut, T)
for various values of ut.

Thus, if uT = 0*3, the following values of the above function

were calculated by Everett :

ut.
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The curve representing the above values or the "curve of

arrival
"

for this dot signal is shown plotted in Fig. 8. It will

be seen, therefore, that the effect of pressing down the sending

0-09

0-03

0-06

W03-
*

0-02.

0-01

wt
s

"

ElG. 8. Curve of Arrival of Dot Signal.

key for a short time and applying a brief constant steady

voltage to the sending end appears at the receiving end in the

form of a current which rises up gradually to a maximum value

and then fades away. Hence these dot signals cannot be repeated

r

T 2T 3T 4T 5T
Time.

"S"Signed;.

FIG. 9.
" S "

Signal as sent.

faster than a certain limiting speed, or else the effect at the

receiving end is indistinguishable from a prolonged dash signal.

We here see the reasons for the limitation of the speed of cable

telegraphy. The larger the value of CRP or of the product CR,

viz., the product of the total capacity in farads and resistance
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in ohms of the cable, the smaller the value of u, and the longer
will be the time before the current at the receiving end reaches

its maximum value after the sending key is depressed. Also,

the smaller the value of u, the less will be the maximum value

of the received current, and in general the less quickly can the

intermittent signals succeed each other consistently with retaining
an interpretable form at the receiving end.

The above method of calculation enables us to predict the

form of the curve representing the received current as a function

of the time for any assigned signal made with the key at the

sending end. Thus, for instance, take the letter S. This is

V

o-J <>;> (>;>, M 05 o <> 0-1 O-S 0-9 1-0

TVrrve in xccondLs.
FIG. 10. The dotted line represents the " S "

Signal as sent, and the
firm lines as received on Cables of various CR values, and lengths.
For Curve II. length == 1,000 miles, CR = 1-0, and for Curve III.,

length = 1,581 miles, CR = 2-5.

represented in the International Morse Alphabet by three dots,

each space between the dot signals being equal in duration to

that of the dot. Hence to make this signal the key at the sending
end is tapped three times, and this applies to the sending end of the

cable a variation of potential F, represented by the curve in Fig. 9.

Let the duration of each dot and each space be represented by
T. Then the current at the receiving end is expressed as a

function of the time by the equation
2F|

(38)
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To calculate Ir we have to give to the symbol t various

increasing values, 0*1, 0'2, 0*3, etc., and calculate the value of the

function on the right-hand side of the expression (38). To do

this we must have the length of the cable I, the sending voltage

F, and the capacity C and resistance R per mile given. We can

then calculate - and u n-- Also the value of T must

be given in fractions of a second, so that uT is known.

With some considerable labour the value of Ir for various

values of t can be calculated and the curve of arrival for the

S signal graphically depicted. This has been done for the

author by Mr. G. B. Dyke as shown in Fig. 10, which represents

the form of the curve of arrival for an S signal on certain

hypothetical cables.

6, The Speed of Signalling : Comparison of
Different Cables. Every type of receiving instrument

used for recording telegraphic signals is characterised by

requiring a certain minimum current to actuate it. Hence, in

order that the particular instrument used may record a legible

signal, it must be traversed by a current of not less than this

critical value and for a certain period of time. We have seen

that the current at the receiving end of the cable is a function of

the quantity ut. For the same value of ut and for the same

mode of working or making the signal the current at the

receiving end will be the same.

It is therefore necessary to have a particular minimum value

of ut below which no signal will be recorded. Accordingly this

value of ut may be taken as a working constant. Now the cable

2

has a particular value of u =
(jwn>

which is characteristic of

it, and hence the time required to establish the minimum or

necessary working current at the receiving end for a given cable

and impressed voltage varies inversely as u or directly as CUP.

Hence for cables made in the same manner, but of various

lengths, this time varies as the square of the length. The speed

of signalling varies inversely as the time required for the

received current to reach the minimum strength, as it is clear
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the signals cannot succeed each other more frequently than N
per second where 1/iY is the time required to affect the receiving
instrument. Hence the signalling speed varies inversely as the

product CRl2 and inversely as the square of the length for cables

of the same make.

This means that there is no definite
"
velocity of electricity."

The interval of time which elapses between closing the circuit at

the sending end and recording the signal depends not only on the

sending voltage, but upon the nature of the receiving instrument

and upon the length of the cable. This explains how it is that

the older electricians and telegraphists obtained such very
various and different results in their endeavours to measure the

supposed velocity of electricity along a wire or cable.

The speed of signalling can be increased by decreasing the

total resistance and total capacity of the cable. This latter,

however, is not much under control, as it is determined chiefly

by the dielectric constant of the insulator which is used, and for

submarine cables no substance has yet been found to take the

place of gutta-percha. Accordingly the increase in speed chiefly

depends upon an increase in the diameter of the copper
conductor. Long cables must therefore necessarily be heavy
cables if we are to preserve reasonable speed in signalling. An
empirical rule for speed of signalling is given in Mr. Jacobs'

article
" Submarine Telegraphy

"
in the Encyclopedia Britannica

(supplement to the tenth edition) as follows : If S is the number of

five-letter words which can be sent per minute through a cable

when using the Kelvin syphon recorder as receiver, and if C is

the total capacity and R the total resistance of the cable, then

120
S =- . The capacity must be measured in farads and the

resistance in ohms.

For example, suppose a cable 8,142 nautical miles or nauts

in length to have a resistance of three ohms per naut and a

capacity of 0'33 microfarad per naut. Then

=~x (3,142)2
= 9-87,

and u = = 1, since 7r
2 = 9*87 nearly.
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120
Hence by the above rule S = -^TJ-= 12 13, and the sending

speed would be twelve to thirteen five-letter words, or sixty to

sixty-five letters per minute.

We are therefore able to predict not only the form of the

current curve at the receiving end for a given kind of signal

made at the sending end, but also the speed with which the

signals can succeed each other in cables with various values of

C, R, and I.

7. Curb-sending. It will be clear from the above

explanations that the obstacle to signalling speed is the effect

0-03

FIG. 11. Curve of Arrival for Curbed Dot Signal.

of the capacity and resistance of the cable in dragging out a

sharply made signal or voltage change made at the sending end

into a slow rise and fall of current at the receiving end. Hence
until the cable is cleared of a previous signal another one

cannot be usefully despatched, or if it is the two run together

into a received signal indistinguishable as two.

One method by which speed of signalling can be increased is

by means of curb-sending.

By this method in sending a dot signal the cable at the

sending end is first raised a positive potential for a certain time,

then lowered instantly to an equal negative potential, and after

about two-thirds of the above time put again to earth. In other

words, we send into the cable a current in one direction and then
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follow it instantly by another in the opposite direction for a

somewhat shorter time. The effect of this is to clear the cable

more quickly for the following signal.

The operation at the sending end may be represented by a

rectangular line, which shows the application of a positive

potential to the cable followed by an equal negative potential
for a shorter time, and then by an earthing or reduction to zero

potential.

Let us consider then the effect of the above operation carried

out at the sending end upon the cable at other different points.

If + V and V are the positive and negative potentials

applied to the sending end, the former for a time T\ and the

latter for a time T2
-- r

l\, then the potential v at any distance x

along the cable at any time t is given by
v= V{4>(x,t)

-^(Xl (t
-

T,)) + +(x(t
-

and the received current by

Thus, for instance, if the value of u
r

l\ = 0*3 and uTz = 0'5,

then the values of the received current have been calculated by
Professor Everett on the assumption that the factor 2 V/Rl 1

for various values of ut as follows :

*t.
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On comparing it with the curve in Fig. 8 representing the

uncurbed signal it is seen that the uncurbed signal rises more

slowly and dies away more slowly, but it has a larger maximum
value than the curbed signal.

It is found that if condensers are inserted in series with the

cable both at the sending and receiving end the effect is to curb

the signals to a considerable extent. In modern practice the

cable, however, is nearly always duplexed, that is to say arranged
with an artificial line of equal total capacity and resistance in

the manner shown in Fig. 12.

In this case C\ and C2 are two large condensers. C is the

cable, and C3 is an artificial line which consists of sheets of

tinfoil placed on one side of sheets of paraffined paper, the

FIG. 12. Arrangements for Duplex Transmission in a Submarine Cable.

opposite side of the paper sheet being coated with a strip of

tinfoil cut in zigzag fashion. The zigzag tinfoil strip has

resistance and capacity with respect to the other sheet of metal,

which is earthed. Such a line can be adjusted to represent a

cable of any length and of any capacity and resistance per unit

of length. The receiving instrument, generally a syphon
recorder r, is connected between the ends of the real and

artificial cable, and another condenser <75 is placed in series

with it. The battery B and sending key K are joined in as

shown. The artificial line can so be balanced against the real

line that on depressing a key the current flows equally into the

two condensers C\ and C% and into the real and artificial lines,

and the points a and b remain at the same potential. Hence

the current sent out through the cable does not affect the local

receiving instrument.

On the other hand, if a current arrives it flows to earth partly
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through the receiving instrument and the artificial line and partly
to earth through the local battery. The cable is then duplexed,
and signals can be sent and received at the same moment.

It is now usual to dispense with the condenser C5 in series

with the recording instrument and in place of it to insert an

inductive shunt L across the terminals of the coil of the syphon
recorder. The effect of this inductive shunt is to curb the signals

and clear the cable quickly for the next signal. The sudden quick
rise of potential at the terminals of the recorder which accom-

panies the reception of the first part of the signal affects the

recorder, but the slow fall which takes place after the maximum
is past causes a current to flow through the inductive shunt, and

the recorder coil falls back quickly to zero.

In the case of a short cable or one with small CR the signals

made by the syphon recorder are sharp and well defined. The

syphon recorder consists of a light coil of insulated wire hung
by a bifilar suspension in the field of a strong magnet like a

movable coil galvanometer. To this coil is attached a light glass

pen, the point of which rests on a strip of paper tape which is

moved by clockwork beneath the pen. If then the coil is at rest

the pen traces a straight line along the centre of the tape. If a

brief current from the cable is sent through the coil the latter is

jerked on one side, and when the current ceases it falls back to its

normal position.

The effect is to make a dot signal which is a square notch on

the line if the cable is very short. If, however, the current rises

up slowly and falls again slowly, then the ink line is a rounded

mark. The dash is made by reversing the direction of the

current and therefore of the motion of the pen. In the case of

short cables the alphabetic signals made by groups of these dots

and dashes are quite legible, but in the case of long cables it

requires some skill to guess the meaning, since the marks on the

tape are, as it were, parts of
" curves of arrival

"
running into each

other. The reproductions of syphon recorder tapes in Fig. 13

are from experiments kindly made for the author by Mr. H.

Tinsley with artificial lines of different capacities and resistances

to show this rounding effect on the signals with increasing values

of CR.



CHAPTER VI

THE TRANSMISSION OF HIGH FREQUENCY AND VERY LOW

FREQUENCY CURRENTS ALONG WIRES

1. The Modifications in the General Equation
for Transmission in the Cases of very High and
very Low Frequency. Returning to the general equation

for the transmission of electrical disturbances along a cable, we

can write it in the form

a)

where v is the potential in the cable at a point at a distance x

from the sending end and at a time t.

The above is the general equation for the propagation of

potential changes of any type along a cable having resistance,

capacity, inductance, and leakage. It may be called the telephone

equation. It has been fully discussed in Chapter IV. Secondly,
if the cable is such that L and S are very small relatively to R
and C and if the frequency is low we can neglect the terms

involving L and S and write the equation in the form

d~ v
-pr

dv
fo\

-5 a= .n/C -jT ..... (2)dx2 dt

This is the case of the submarine telegraph cable, and the

above equation (2) may therefore be called the telegraph equation.

In this form it has been considered in Chapter V. Thirdly, if

R and S are very small or negligible and if the frequency is very

high we can neglect the terms involving R and S and write the

equation (1) in the reduced form

d*v
T

d*v

3&=CLW ..... (3)

Since this applies in the case of electric oscillations or very

high frequency alternating currents as employed in wireless
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telegraphy, we may call the above equation (3) the radiotelegraph

equation.

Lastly, if the line is an aerial line of small capacity and induct-

ance operated at low frequency or with continuous current so

that the principal constants are the resistance R and leakage S
we can neglect L and C, and the general equation reduces to

Since this applies in the case of lines operated at very low

frequency or with continuous currents and with such high voltage
as to make the leakage important, we may call the above equation
the leaky line equation.

Furthermore, if the variation of potential with time is simply

harmonic, that is if the applied electromotive force is a simple
sine curve E.M.F., then, neglecting the effects at first contact,

we can say that after a short time the variation of potential is

simply harmonic everywhere and varies as the real part of t
jpt

.

Hence jj=JP
v and^ = -p*v. Accordingly the equations (1),

(2), (3), and (4) above then take the form

. . (5)

fa\

d'2V

...... (8)
dx*

We have already discussed the equations (1) and (
;

2) and (5)

and (6) in Chapters IV. and V., dealing with telephony and sub-

marine cable telegraphy. Hence we need not say more about

them. The equations (3) and (7) and (4) and (8) remain,

however, to be discussed.

2. The Propagation of High Frequency
Currents along Wires. Taking, then, the equation (3),

viz.,
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we find that one particular solution applicable to the case

considered is

For if we differentiate the above expression (10) twice with

regard to x and twice with regard to t, we find that when the

last expression is multiplied by GL it is the same as the former.

d*o A*
and d^

= -cL
Hence (10) is a solution of (9).

We see that it implies that v is periodic in space, that is, along

the wire as well as with time. Therefore, in the case of a wire

traversed by a high frequency current, at any one instant the

potential varies along the line in a simple harmonic manner.

If, however, we fix attention upon the variation of potential at

any one point in the line, it is also periodic or varies as a simple

cosine function of the time.

If we substitute #+-? f r x m the expression (10), whilst

keeping t constant, we see that its value remains unaltered,

because Cos* (0 + 2?r) = Cos 0. Hence at distances along the

line equal to = A the potential value repeats itself.

Accordingly this distance is the wave length of the potential

along the line. If we keep x constant and substitute t~\
---

-j

for t in (10) we see that its value also remains unchanged.

Hence at any one point in the line the values of the potential

repeat themselves at intervals of time equal to T = -
j

This is therefore the periodic time of the potential variation.

The velocity W with which the wave of potential travels is

given by W = *. Hence, since A = *? and T = **^
L

9

we have
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If then we apply at the end of a very long wire having induct-

ance L and capacity C per unit of length a simple periodic high

frequency electromotive force, the effect will be to make waves

of electric potential travel along the wire with a velocity 1/VOL
centimetres per second, and at any one point in the line there

will be oscillations of potential with a frequency
A.

3. Stationary Oscillations on Finite Wines.
We are not much concerned practically with the propagation

of high frequency currents along extremely long lines, but when

the wires are of length less than or comparable with the wave

length we may have the phenomena of stationary waves pre-

sented. Thus suppose a thin wire of not very great length,

having a capacity C and inductance L per unit of length, to

have a high frequency electromotive force applied in the centre,

the frequency n being such that the quotient of W = -r=- by n,

1
or

jTffj
is e(lual to about twice the length of the wire. Then

a wave of potential would run outwards in each direction

and be reflected at the open ends of the wire and return again to

find that the electromotive force had changed its phase by half

a period. The oscillations of electromotive force are thus in step

with the movements of the wave of potential, and therefore the

latter are maintained and amplified. The whole process is

exactly like that by which stationary oscillations are maintained

on a rope fixed at one end by administering little jerks to the

other end when held in the hand. The frequency of the jerks

must agree with the interval of time taken by the wave motion

to run along the rope and return.

Moreover, if we make jerks more quickly, say twice as quickly,

the cord can accommodate itself to this increased frequency by

dividing itself into two vibrating sections separated by a

stationary point called a node, each loop or ventral segment

being half the length of the cord.

In the same manner an experienced violinist, by lightly

touching a string at one point and bowing at another, can cause

the string to vibrate in sections and give out musical notes which
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are harmonics of the fundamental vibration. An exactly similar

phenomenon can be exhibited electrically.

4. The Production of Loops and Nodes of
Potential in a Conductor by High Frequency
Electromotive Forces. To obtain a conductor suitable

for exhibiting these effects in a convenient space we require a

conductor along which waves of electric potential travel rather

slowly.

In the case of ordinary straight single wires of good con-

ductivity, waves of electric potential travel along the wire with

the speed of light, or about 1,000 million feet per second. If,

therefore, we can create high frequency oscillations having a

frequency of one million, the length of the wave of potential

would be 1,000 feet or so, and we should require a wire 500 feet

long to exhibit the phenomena. If, however, we coil a fine silk-

covered wire on an ebonite rod so as to form a long helix of one

layer of closely adjacent turns, we can make a conductor which

will have a capacity of approximately the same value per unit of

length as a metal cylinder of the same dimensions as the helix,

but an inductance per unit of length much larger than that

of any single wire.

If a long helix of insulated wire is made as above described

such that the length is at least fifty times the diameter, the

inductance per unit length of the helix will be (irl)N)
2 absolute

electromagnetic units of inductance, that is, centimetres, or

JQ^- (irDN)
2
henry s, where D is the mean diameter of the helix

and N the number of turns of wire per unit of length of the helix.

The capacity of such a helix will depend on its proximity to

the ground, but if placed say 50 cms. above a table it will be given
1-5*

approximately by the expression
^

21'

It will be found on trial that it is easy to construct a helix

along which electric waves of potential will travel so slowly that

for frequencies of one million or so the wave length will bear

comparison with such lengths of helix as can be conveniently

constructed.
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Thus, for instance, on a round ebonite rod about 2-J metres

long the author wound a spiral of silk-covered No. 30 S.W.G.

copper wire in a helix of one single layer 215 cms. long and having

5,470 turns. The helix had a mean diameter of 4'75 cms.

The inductance L of such a helix per unit of length is then

given by

T /3-1415x4-75x5470\2

\ 215 -j
=0-149 xlO6 cms.

The capacity per unit of length calculated by the formula

3

21 gave C = 0*187 X 10" 6
microfarads, and by actual

4 loge 5
measurement was found to be 0*21 X 10

~ G microfarads when the

helix was supported horizontally and 50 cms. above a table.

The velocity of propagation of a wave of electric potential along

this helix is then equal to 1/VCL, where L =
^r-= =^3 henry

45
and C = OTK Tni2 farad, and hence

1 215 x A/1000 xlO6

W= -7= = , = 174 x 10b cms. per second.
VCL V45x32

The velocity of light is 30,000 X 106 cms. per second, and hence

the velocity of a wave of potential along the above helix is only

1/172 part of that of the velocity of light.

If then we apply to the end of such a helix a high frequency

alternating electromotive force having a frequency of about

200,000 per second, the result will be to create a wave of potential

which travels a distance of four times the length of the helix in

the time of one complete oscillation. For, the velocity of propa-

gation being 174 X 106 cms. per second and the frequency

2 X 105
,
the corresponding wave length A must be 870 cms., which

is not far from four times 215.

An alternating E.M.F. of this frequency is best obtained by
means of the oscillating discharge of a condenser.1

i For a full discussion of this mode of discharge the reader is referred to the

following books by the Author :

" The Principles of Electric Wave Telegraphy and

Telephony," 2nd Edition, Chapter I. (Longmans & Co.) ;
"An Elementary Manual

of Radiotelegraphy and Radiotelephony," Chapter I. (Longmans & Co.).
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If a condenser or Leyden jar of capacity C\ is joined in series

with an inductance LI and with a short spark gap, and if the

spark balls are connected to an induction coil, oscillatory dis-

charges of the condenser will take place through the inductance

coil having a frequency given by the formula n = -
/7rT-

A 7T V Cj-L/j

where C\ is measured in farads and L\ in henrys, or else by the

. 5-033 xlO6
, n . , .

formula n -
, where C\ is measured in microfarads

VCl xLl

and LI in centimetres.

Thus the capacity of the condenser used was 0'005835 mfd.

and the inductance of the coil was 110,000 cms. The frequency
of the oscillations set up was therefore 0'197 X 106

,
or nearly

200,000.

If the above-mentioned helix is connected to one end of the

inductance coil and the other end of the coil is to earth, as shown

in Fig. 1, then the oscillations set up in the inductance coil by
the discharge of the condenser or Leyden jars create electric

impulses on the end of the helix AB equivalent to the action of

an electromotive force having a frequency of 197,000. The
helix has thus produced upon it stationary waves of electric

potential, and owing to the cumulative action the amplitude of

the potential variation at different parts of the helix increases

from a minimum at the end by which it makes contact with the

condenser circuit to a maximum at the free end. At this last

place the amplitude of potential variation may be so great that

it reaches a value at which sparks and electric brushes fly off the

end of the helix. In any case the gradual increase along the

helix can be proved by holding near the helix a vacuum tube of

the spectrum type (see Fig. 1) filled with the rare gas neon or

in default one with carbon dioxide. The tube glows when held

in a high frequency electric field, and the brilliancy of the glow
will be found to decrease as the tube is moved from a place near

the open end of the helix to a place near the end at which it is

attached to the condenser circuit. We may represent this

variation of potential along the helix by drawing a cylinder or

double line to denote the helix and a dotted line in such position

that the distance between the dotted line and the line representing

E.G. N
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the helix denotes the amplitude of the potential variation at that

point in the helix.

An analogy is found in the case of a strip of steel held at one

end in a vice and made to vibrate by pulling it on one side and

letting it go. The amplitude of the motion of the different parts
of the strip increases from zero at the bottom end, where it is

gripped, up to a maximum at the free end. We can, however,
make the above steel strip vibrate in such a manner that there is

a node of vibration at a point about one-third of the way from

the free end. In the same manner if we decrease the capacity

FIG. 1. Arrangement of Apparatus for producing stationary electric

oscillations on a helix A B. C, C, are Leyden Jars, L is an
inductance coil, and S is a spark gap.

and inductance in the condenser circuit to which the helix is

attached so as to make the frequency of the electromotive force

acting on the end of the helix three times that required to pro-

duce the fundamental vibration, or say about 600,000 in the case

of the helix above described, then the effect will be that to

accommodate itself to the tripled frequency the stationary waves

of potential on the helix must have a node of potential at about

one-third of the way from the free end, and the distribution of

potential amplitude can be denoted by the ordinates of the dotted

line in Fig. 2.

In the same manner by increasing the frequency to 5, 7, 9,
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etc., times that required to excite the fundamental oscillations on
the helix, we can create harmonic oscillations whicli have 2, 3, 4,

l I

E
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FIG. 2. Diagram illustrating the formation of nodes and loops of potential
upon a helix by means of electromotive forces of progressively increasing
frequency.

etc., nodes of potential. The existence of these nodes can be

proved by holding a neon vacuum tube near the helix and moving
N 2
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it along from one end to the other. When near a node the tube

will not glow, but when opposite to an antinode or ventral segment
it will glow very brightly.

The distance between two adjacent nodes is half a wave length
of the stationary oscillations. Hence from this measured wave

length A and the calculated speed of propagation W we can

determine the frequency n = IF/A and prove that this agrees

with the frequency of the condenser circuit which excites that

oscillation. In the case of the helix above mentioned the

measurement of this internodal distance for two consecutive

nodes for the various harmonics was as follows : for the 1st

harmonic 140 cms., for the 2nd harmonic 86 cms., for the 3rd

harmonic 62 cms., for the 4th harmonic 48 cms., and for the

5th harmonic 39 cms. These distances are the half wave lengths.

Hence, doubling them, we have 280, 172, 124, 96, and 78 for the

harmonic series of observed wave lengths A. Correspondingly

it was necessary to adjust the condenser capacity C\ and induc-

tance LI so that the frequencies n calculated from the formula

n = -
/-frr gave values respectively of

ZTT *
C/I.L/I

0*588 X 106 to produce the 1st harmonic,

0*977 X 106 to produce the 2nd harmonic,

1*379 X 106 to produce the 3rd harmonic,

1*70 X 106 to produce the 4th harmonic,

1*9 X 106 to produce the 5th harmonic.

Taking the observed values of the wave length A and the

calculated values of the frequency n, we can deduce the wave

velocities W= ?iA, and these are respectively 165 X 106
,
168 X 106

,

171 X 106
,
163 X 106

, and 148 X 106
. The mean value is

163 X 106 = W. This compares fairly well with the calculated

value 172 X 10G determined from the measured capacity and

inductance of the helix per unit of length, having regard to the

small value of these last quantities and consequent difficulty in

measuring them exactly.

It is sufficient to show that all the harmonic oscillations

travel with equal velocity, and that this velocity is equal to the

value of 1/VCL, where C and L are the capacity and inductance

per unit of length of the helix.
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The condition then for obtaining stationary electric waves on

the helix is that the time taken for the wave to run twice to

and fro on the helix must bear some integer ratio to the period

of the applied electromotive force. If I is the length of the

helix and W the wave velocity, then the time taken for the wave

to run twice there and back along it is 41/W. But W 1/VCL.
Hence t = 4lVCL.

Suppose then that the time period of the applied electro-

motive force is T = 4lVCL, the wave will travel twice to and fro

in this time, and we shall have the ratio T/=l, or the oscillation

excited will be the fundamental oscillation.

The wave length A will then be such that A r= WT = 41, or

the fundamental wave length will be four times the length of

the helix, or 4 X 215 = SCO cms.

If, however, the frequency of the applied electromotive force

_
is three times greater, or TI = -jrCL, then the ratio T\ft = o,

4:1

and the wave length A x = WT\ =
-^

. If the frequency of the

applied electromotive force is increased respectively to 5, 7,

9, 11, etc., times that required to create the fundamental

oscillation, we shall have time periods 7'2 = jrVCL, T3 =
y-
VCL,

4:1 11
Ti =

9 VCL, etc., and ratios
r

l\\t -g,
T3/t

=
^ , etc., and

41 41 4:1 4:1

therefore wave lengths A 2 = v-, A3 = -=-,
A 4 =

g-, A^.=-JJ.

In the case of the helix described these harmonic wave

lengths should therefore be 860/3, 860/5, 860/7, 860/9, 860/11

cms., or 286, 172, 123, 95, and 79 cms. respectively.

But the observed values as obtained from twice the internodal

distances were 280, 172, 124, 96, and 78 cms. respectively, so

the observed values of A2 ,
A3 , etc., agree very well with those

which theory requires.

Hence any such helix of length I can have stationary waves

produced upon it, fundamental or harmonic oscillations of wave

41 41 41 4:1 4:1

length A = 41, Ax
=

,
A2=

-^,
A3= j,

X 4
=

-g,
A5
=

.Q, etc.,



182 PEOPAGATION OF ELECTEIC CUEEENTS

by applying to its end alternating electromotive forces of

increasing frequency in the ratios 1, 3, 5, 7, 9, etc.

These facts have application in wireless telegraphy. An
essential feature of the arrangements for producing the electric

waves which are radiated through space to conduct wireless

telegraphy is a long wire insulated at one end and connected

to the earth or to a balancing capacity at the other end. The

wire is called the aerial or antenna. At some point near the

earthed end a high frequency electromotive force is applied in

the wire,
1 and the frequency of this electromotive force is

adjusted with reference to the length of the wire so as to produce

stationary oscillations in the wire subject to the condition that

the earthed or lower end must be a node of potential and the

upper or insulated end of the wire a loop or antinode of potential.

We can therefore set up oscillations which are the fundamental

or higher harmonics, and which have frequencies in the ratio of

1, 3, 5, 7, 9, etc. These oscillations on the wire create electric

waves in the space around. In the same manner we can set up
on spiral wires stationary oscillations of various kinds. The

possible types of oscillation on an aerial wire or antenna as used

in radiotelegraphy are illustrated in Fig. 2, where the ordinates

of the dotted line or its distance from the thick black line,

representing the antenna, denotes the amplitude of the potential

oscillation at that point in the wire.
2

5, The Propagation of Currents along Leaky
Lines. Turning then to the fourth reduced case of the general

equation, we have to discuss equation (4) for the case in which

the frequency is very low, or the current even continuous, and

the inductance and capacity small, but the resistance and

leakance large. In this case, when the quantity pL can be

1 For details sec the Author's works on Wireless Telegraphy, "An Elementary
Manual of Radiotelegraphy and Radiotelephony,

"
or "The Principles of Electric

Wave Telegraphy and Telephony
"
(Longmans, Green & Co., 39, Paternoster Row,

London).
For further information on the production of stationary fundamental and

harmonic oscillations in wireless telegraph antennas the reader is referred to the

Author's book " The Principles of Electric Wave Telegraphy and Telephony,"

Chapter IV., 2nd Edition.
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neglected in comparison with R and also pC in comparison with

S, the general equation reduces to

Let us write a2 for RS. Then the equation becomes

dto~=a2v.
dx2

This is a well-known differential equation, which is satisfied by
v =. Aeax or v = B~ax

,
where A and B are constants. Hence

the solution in the above case is

Instead of e
ax and t~ax substitute in the above equation the

equivalent expressions,
t
ax= Cosh a#-f Sinn ax' and
e
-a*_ Cogh ax Sinh ax.

We have then on collecting terms

v= (A + B) Cosh ax+ (A- B) Sinh ax . . (12)

If we take the origin at the sending end of the cable and

assume that an electromotive force V\ is applied at that

end, then when x = we have v = Fi, but when x

Cosh ax = 1, Sinh ax = 0. Hence V\ A + 5.

Again, the current i at any point in the line is equal to

~~' smce ^e current ig measured by the drop in potential

down a length dx divided by the resistance of that length. If

we differentiate

for the current

we differentiate (12) and multiply by
- we have the expression

Smliax-~(A-B) Cosh ax . (13)

But when x i = Ii = current at the sending end. Therefore

we have

and also A -f- B V\.

Substituting these values of A + B and A - B in (12), we

have

v= F! Cosh ax-
1

Sinh ax . . . (14)
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, . . 1 dv ~
-,

and, since ^ = ^ ^, we find

V a
i= I1 Cosh ax

jj-
Sinh ax (15)

Let us denote the insulation resistance of the line per mile by

r; then r =
1/S, and, since a = VRS, we have a = \ ,

and

substituting this value of a in (14) and (15), we arrive finally at

the expressions

v = F! Cosh ax-I^Wr Sinh ax . . (16)

i=Ij, Cosh ax -7^=- Sinh ax . . . (17)

which give us the potential v and current i at any distance x

from the sending end of a line of conductor resistance 11 and

insulation resistance r per unit of length.

We will then consider various cases in which the line is

(i.) insulated, (ii.) earthed at the far end, and (iii.) earthed

through a receiving instrument of known resistance.

(i.) Line insulated at the far end. In this case we have zero

current at the extremity. Hence in equation (17) put i = and

x =
I, where I is the length of the line ;

then

/! Cosh aZ=^= Sinh al . . . (18)

or /i VRr= FI Tanh al . . . . (19)

Substituting from equation (19) in (16), we have

v= FjICosh ax- Sinh ax Tanh al} . . (20)

This gives us the potential v at any point in a leaky line.

If we take x I, then (20) becomes

v=Vl Sechal .... (21)

and as I increases v continually diminishes.

If the line had no leakage, that is if r = x
, then we should

have had v = Fi at the far end when that end is insulated.

Also from (19) and (17) we find

i= I1{Cosh ax Sinh ax Coth al} . . . (22)

which gives us the current at any point in the leaky line.

We can put the formulae (20) and (22) for the voltage and

current in a simpler form if we measure the distances from the
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free end. Let x f be the distance of a point from the free end, and

let x' -- I x.

Then formula (20) is equivalent to

i7= 7r
Jj

=.Cosh 00' . . . (23)Cosh al

and (22) can be written

x' .... (24)
Sinh al

Hence the potential at any point in the leaky line is pro-

portional to the hyperbolic cosine of ax' and the current to the

hyperbolic sine of ax'. Hence when x' = we have

v= Fj/Cosh al= F! Sech al,

as before. Let us consider next,

(ii.) The line earthed at the far end. Then for x = I we have

v = 0, and therefore substituting these values in (16), we have

I^~Br Sinh al= Vl Cosh al (25)

and substituting this last, (25), in both (16) and (17), we arrive at

the equations
v= FijCosh ax - Sinh ax Coth al} .

, (26)

i = /!{ Cosh ax Sinh ax Tanh al} . . (27)

If we reckon distances from the earthed end and let x' be such

distance, so that x' = I -
x, then, substituting in the above

formulae, we have

v= Q .

V
S

7
Sinbaa;' .... (28)Smh al

*=_A Cosh ax' .... (29)Cosh al

Hence at the earthed or receiving end the current is given by

and when I is very large this received current is zero.

We have then to consider the case

(iii.) When the line is earthed through a receiving instrument of
known resistance. We shall consider that the receiving instru-

ment has a resistance p and a negligible inductance. Then the

current through the receiving instrument is 72 = T2/p.



186 PKOPAGATION OF ELECTKIC CUEKENTS

Keferring to the general equations (16) and (17),

v=Vi Cosh ax J
x
Vltr Sinh ax,

y
i=I1 Cosh ax r;=Sinh ax,

we put x = Z, and we have

Fa
= Ia p=Fx Cosh aZ-Ij v'Br Sinh aZ . . (31)

Ij Cosh aZ- -/sinh al . . . (32)

Eliminating Ii from these two last equations we obtain

y
j ___Y i

p Cosh aZ+ V .Rr Sinh al

Also eliminating I2 ,
we have

/Ifr Cosh aZ+p Sinh aZ

(33)

Cosh aZ+ Vlfr Sinh al

Consider a hyperbolic angle y such that Tanh y = p/Vlir, and

therefore Sinh y -/== and Cosh y = =.
vBr p

1 vEr p
2

Then we can write the expressions (33) and (34) in the form

/2= Cosech (a7+y) ' (85)

' ' ' (36)

On comparing the above expressions with those given in

Chapter III. for the propagation of telephone currents in a line

with constants E, L, C, and S, it will be seen that the

expressions are similar, but that the quantity Vlir here takes

the place of the initial sending end impedance and p that of the

impedance of the receiving instrument.

The ratio of the received to the sending end current is

' ' ' '37)

which reduces to (30) when p = 0. All these expressions are

applicable to continuous currents flowing in leaky lines. For a

given line of given leak per mile the effect of placing a receiving

instrument at the receiving end is equivalent to increasing the

length of the line by an amount Z' such that



CHAPTER VII

ELECTRICAL MEASUREMENTS AND DETERMINATION OF THE

CONSTANTS OF CABLES

1. Necessity for the Accumulation of Data by
Practical Measurements. As a long submarine cable

or telephone line is a costly article, the predetermination of its

performance is a matter of the utmost importance. It is

therefore necessary to bring to bear upon its construction and

testing a large knowledge of the results of previous constructions

of the same or similar cables. This requires electrical testing.

In fact, we may say that out of the attempts to lay the first

very long submarine cables the whole of our practical and

absolute system of electrical measurements has arisen. We
have to determine for every cable and line the primary constants,

viz., conductor resistance, inductance, capacity, and the insula-

tion resistance, all per statute or nautical mile or kilometre, and

especially measurements of the attenuation constants, to provide

a store of knowledge on which we can draw in designing other

cables. Experimental means are therefore required for accurately

measuring these quantities as well as others, such as line and

instrumental impedances, and the currents and phase angles to

enable forecasts to be made of the operation of proposed lines

or cables when constructed in a predetermined manner. For

much of the information on the methods of electrical measure-

ments generally the reader must be referred to existing text-

books, but it will be convenient to epitomise some of the most

necessary information in this chapter.
1

1 The reader may be referred to a treatise by the Author entitled "A Handbook
for the Electrical Laboratory and Testing Room," 2 vols., The Mcctrir'uui Printing

and Publishing Company, Ld., 1, Salisbury Court, Fleet Street, and also to the

well-known work by Mr. H. R. Kempe on ' Electrical Testing."
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2. The Predetermination of Capacity. Since a

telegraph or telephone wire is only a long cylinder of metal or

else a similar structure composed of stranded wires of which the

section is approximately circular, we have first to consider the

capacity of such a long cylinder in various positions with regard

to the earth or other conductors.

Definition. The electrical capacity of a body is measured by
the quantity of electricity or charge which must be imparted to

it to raise its potential by one unit when all other neighbouring
conductors are maintained at zero potential.

Definition. The potential at any point due to any charge on

an extremely small conductor at any other point is measured

by the quotient of the small charge or quantity of electricity by
the distance between the conductor and the. point in question.

Hence if we have any small charge dq on a conductor the

potential at a distance r from that charge is dq/r. The

potential due to a finite charge is the sum of all the potentials

due to the elements of the charge respectively. Thus if a body
has a charge Q, and we divide it into elements of charge dQ,

then the potential at any point is the sum of all the quantities

dQ/r, where r is the distance from the point in question to each

element of the total charge.

Two other facts connected with electric potential and charge
are (i.) that electric charge resides only on the surface of

conductors, and (ii.) that the potential of all parts of a conductor

is the same. These principles enable us to calculate the

capacity of conductors of a certain symmetry of form in simple

cases. For example, we may find the capacity of a conducting

sphere as follows : Let a charge Q be supposed to be uniformly
distributed over it, and let it be assumed to be divided into

elements of charge dQ. Let the radius of the sphere be R.

Then the potential at the centre of the sphere due to each

element of charge is dQjll, and, since all elements are situated

similarly with regard to the centre of the sphere, the potential

at the centre of the whole charge is Q/R. But this must

therefore be the potential V of any point in the sphere.

Hence Q/R = V or Q/V = R. Now the ratio of charge to

potential is defined to be the capacity C of the conductor. Hence
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for such a sphere C = It, or the capacity in electrostatic units is

numerically equal to the radius of the sphere.

Since 9 X 10 5
electrostatic units capacity are equal to

1 microfarad, we find that the capacity of the sphere of

radius R is equal to 11
/'(9 X 105

) microfarads, where R is measured
in centimetres.

This, however, is on the assumption that the sphere has a

uniformly distributed charge, and that all other conductors

are at a very great distance. The actual capacity of a con-

ducting sphere of radius R cms. hung up in a room, for

instance, would be found to be somewhat more than R/ (9 X 105
)

microfarads.

For instance, let a conducting sphere be surrounded by a

concentric spherical shell, and let the radius of the outer surface

of the inner sphere be RI and that of the inner -surface of the

outer shell be 11%. Then if a positive charge Q is placed on the

inner sphere it will induce an equal negative charge on the

inner surface of the outer shell, and if this outer shell is earthed

the potential at any point in the inner sphere will be ~----^-= V,
J*i -"a

O 7? 7?

and hence ~~ = C = l

_^ electrostatic units, or the capacity

7? 7? 1

of the inner sphere in microfarads will be p
l

_^> j^mfds.,

which becomes equal to ll\j (9 X 105
) when R% is infinite. The

capacity of the sphere is therefore increased by the proximity
of another conductor even though the latter is connected to

earth.

In the same manner we can obtain an expression for the

capacity of a long cylindrical wire of circular section. Take a

point on the central axis for origin, and consider any element

of the surface cut off by two transverse planes. Let the radius

of the circular section be r, and the axial length of the element

be bx, and the axial distance of the elements from the origin

be x. Then the surface of that element is %xrSx
t
and if p is

the surface density of a charge uniformly distributed over

the wire, the charge on that element of surface is ZirrpSx.

The distance of all parts of this element of charge from the



190 PROPAGATION OF ELECTRIC CURRENTS

origin is Vr2 + x2
,
and hence the potential of the element at

the origin is

Hence the potential V of the whole charge spread uniformly

over a wire of length I is obtained from the integral

(
2

)

r J f \

The integral

Hence 7=4wrP
|

loge

{ ^+^r*+ ~) -log.
r\

'
(
3

)

But, since Q %irrpl is the whole charge on the wire, the

capacity C = Q/V. Therefore we have for the capacity of the

circular-sectioned wire of length I and diameter cl = 2r the

expression

w
log r

and if r is small compared with - this becomes

2 log,

(5)

The above formula gives the capacity in electrostatic units.

If we use ordinary logarithms and reckon in microfarads it

becomes

0(inmfds.) =- 07 (
6
)

4-6052x9x 10s
xlogM -^

The length I must be expressed in centimetres.

This formula is useful in calculating the capacity of a single

vertical wire used as an antenna in radiotelegraphy, but in

practice it will generally give a value about 10 per cent, or so,

too small on account of the proximity of the antenna wire to the

earth. The formula (4) is in fact the capacity of a wire at an

infinite distance from all other conductors.
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Another useful expression for the potential of a long, straight,

thin-charged wire at a point outside the wire may be obtained as

follows : Let P be the point and PO a perpendicular let fall

on the wire. Take as origin and measure off any distance x

(see Fig. 1) along the wire. Let Bx be an element of length at

this distance, and let the charge on the wire be q electrostatic

<fcc

FIG. 1.

units per unit of length of the wire. Then the electric force

due to the charge q&x on 8x at P in the direction PO is

where r is the length PO.

Hence the electric force at P due to the whole charge on the

infinitely long wire resolved in the direction PO is

of rqSx-
(8)

But

Hence

1

r&c

dV
dr

since the force F is the rate of decrease of the potential V at P
in the direction of F.
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dV 2g
Accordingly we have ~dr

==
r

1

dr
or dV=-2q .

Hence, integrating this last equation, we have

7= -2grloge r+ C . . (10)

where C is some constant of integration. Availing ourselves of

this expression, we can obtain approximate expressions for the

capacity of aerial telegraph and telephone wires.

3; The Capacity of Overhead Telegraph Wires.
Consider the case of two long circular sectioned wires stretched

parallel to each other with their centres at a distance I) which is

large compared with the diameter of the wires. If then this

distance is sufficiently large to prevent the charge on each wire

disturbing the uniformity of distribution of the charge on the

other wire we may consider that the charge on each wire is

uniformly distributed round the surface and equivalent to a

number of uniformly electrified filaments arranged on the surface

of a cylinder parallel to its axis.

Let one wire be denoted by A and be supposed to be charged

positively and the other wire be B and be charged negatively.

Then the potential at the centre of A may be denoted by VA ,
and

bearing in mind the expression for the potential of a filament at

any point outside it, it will be clear that this potential VA is given

by'
VA= (-2qlogr+C)-(-2qlogD+C) . . (11)

because the distance of all the charge on A from the centre of A
is r and the distance of all the charge on B from the centre of A
is nearly D.

Similarly the potential VB at the centre of B is

F =-(-2^1ogr+C) + (-2^1ogD+ C) . . (12)

and hence

VA-VB=q (log, D - loge r) =4g log ^ . (13)

But the charge per unit of length of the wires is q, and their

difference of potential is VA VB ,
therefore the capacity per

unit of length C is. q/(VA VB) = -
^,

electrostatic units.
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Accordingly the mutual capacity for a length I cms. of the two

wires, each of diameter d cms. and distance D cms., where D is

large compared with d, is given in microfarads by the expression

C(inmfds.) =
4 x 2-3026 x 9 x 105 x Iog10

:

The factor 2'3026 is the multiplier for converting logarithms

to the base 10 to Napierian logarithms. The above reduces to

, 0-0000001208/
C(mmfds.) =- . . . (15)

lo**T
Since 1 mile = 160934*4 cms., the capacity per mile of two

such parallel wires at a distance D is

. . . . (16)

provided D is large compared with d and the wires are both very

high above the earth.

If the wires are at all close together the capacity per unit of

length is greater than that given by the above formulae. The

mutual attractions disturb the uniform perimetral distribution of

the charges, and the calculation of the capacity becomes much
more difficult.

In ordinary overhead telephone wires the lead and return will

generally be sufficiently far apart to make the formulae approxi-

mately correct, but for twin wires enclosed in the same insulating

sheath where the wires are not more than two or three diameters

apart the above formulae are not sufficiently correct to do more
than give an approximation. Moreover, in the latter case the

expressions for the capacity have to be multiplied by a factor

called the dielectric constant, or specific inductive capacity of the

dielectric.

A derivative case of the above is that of a single wire placed

parallel to, and at a height h above, the surface of the earth.

If we suppose the earth's surface to be a good conductor and

at zero potential, then the difference of potential between the

charged wire at a height h above the earth and the earth would

be half of that between the charged wire and a similar oppositely
B.C. o
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charged wire at a depth h below the surface of the earth, supposing
all the earth then removed. Hence the capacity of the single

wire at a height h above the earth must be double that of two

parallel wires at distance 2/i apart. Accordingly the capacity of

a length I of telegraph wire parallel to the earth and at a height
07

h above it is C = - '

^ electrostatic units, where d is the

410^
diameter of the wire.

In microfarads we have

C(inmfds.) = - -& - - (17)

2x2-3026x9xl05
xlog10 j

and the capacity per mile in microfarads is given by

. . (18)

log,. -3

A rather more accurate formula is given in The Electrician for

January 28th, 1910, p. 645. It is

C (in electrostatic units) = ==. . (19)'

where r is the radius of the section of the wire.

4. The Capacity of Concentric Cylinders and
of Submarine Cables. The next important case is that

of the capacity of a pair of concentric cylinders.

Let us suppose a conducting cylinder having a circular cross

section of radius RI to be placed concentrically in the interior of

a conducting cylinder of inner radius R%. Let the inner cylinder

be charged with positive electricity. Then this will induce an

equal negative charge on the inner surface of the outer cylinder,

and we shall assume that this outer cylinder is connected to

earth. These charges may be considered to be made up of

filamentary charges laid along the surfaces.

Let the cylinders be so long that the effect of the end distri-

butions may be neglected, and let the charge per unit of length

on the inner or outer cylinder be q electrostatic units. Then,

since all the filamentary charges are at the same distance from
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the centre, the potential at the centre of the inner cylinder, which

we shall call V, is given by

V=(-2q loge B 1+ C)
-

(
-

2tf loge R2+ C),

or
F=2glog^|

..... (20)

But the whole charge on the cylinders, assuming them to have

a length I and supposing the irregularity in distribution at the

ends to be neglected, is ql
= Q.

The capacity per unit of length of the cylinders is then

q/V := tf,and

C=-^ .... (21)

2 log, I
If the capacity is reckoned in microfarads and ordinary

logarithms used we have

C (in mfds.) =--- -
(22)

2 x 2-3026 xlog10E
2 x9xlO

If the dielectric used between the cylinders has a dielectric

constant K, then the capacity for a length I is

TCI

C (in mfds.)-- -g-
- (23)

4-6052x9xl05 xlog10 -^

Since 1 mile = 160934'4 cms., and since the constant

1609344

?6052x9xlOs==

we have for the capacity per mile the expression

0-0388^
C (in mfds.)= p . . . (24)

where K is the dielectric constant. For gutta-percha K = 2*46,

for india-rubber (pure) K 2*12, for india-rubber (vulcanised)

K = 2*69, and for paper insulation K = about 1'25 or less.

5. Formulae for the Inductance of Cables.
The inductance of a circuit is that quality of it in virtue of

which energy is associated with the circuit when a current

exists in it. It is defined numerically by the total magnetic
flux or total number of lines of magnetic flux which are linked

o 2
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with the circuit when unit current flows in it and when no

other currents or magnetic fields are in its neighbourhood.
The creation of the magnetic field embracing a circuit when

an electric current is started in it, requires the expenditure of

energy, and as long as it exists it represents a store of energy.

This energy is measured by ^Li
2

,
where i is the current and

L is the inductance of the circuit. This is proved in the

following manner :

If an electromotive force v is applied to a circuit and creates

in it a current i, and if this state of affairs endures for a

small time dt, then the work done on the circuit is vi dt. If

the circuit has a resistance 72 the energy dissipated in it by
resistance is Ri2

dt, and hence the difference (vi Ri2
)dt must

represent the energy stored up in connection with the circuit

in the time dt. The expression may be written (v Ri)idt,

and therefore v Ri must be a counter-electromotive force

created in the circuit as the current increases in it. By
Faraday's law of induction the electromotive force must be

measured by the time rate of increase of the total self-linked

magnetic flux. Let L be the inductance of the circuit ;
then Li

is the self-linked magnetic flux when a current i exists in the

circuit, and therefore L-^ must be the counter-electromotive

force due to the variation of this self-linked flux. Accordingly

we have the equation
di

or

Ljt
+Ri= v .... (25)

as the differential equation connecting the current in the circuit i

with the impressed electromotive force v at any instant.

Also the energy stored up in connection with the circuit in

di
a time dt must be L-^ i dt = Li di, and in establishing a

current which starts from zero and reaches a final value I the

total energy stored up must be equal to
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If L is a certain coefficient or number called the inductance

of the circuit, then when a current i flows in the circuit the

total magnetic flux produced which is self-linked with the circuit

is measured by Li. The total energy associated with the circuit

is measured by JLi'
2
,
and the counter-electromotive force due

to the variation of this self-linked flux is measured by L -i -

The quantity L, or the inductance, is measured in terms of a

unit called one henry, and since the dimensions of this quantity
in electromagnetic measure are those of a length, the absolute

electromagnetic measurement of inductance is expressed in

centimetres. The calculation of the inductance of a circuit is

effected by ascertaining the potential energy associated with two

FIG. 2.

similar circuits when unit current flows in each, and the circuits

are placed parallel and at a certain distance apart. This may be

accomplished by means of a formula due to Neumann, the proof

of which is to be found in many advanced text-books on electrical

theory. It is as follows : Let ds and ds' be elements of length,

one in each of the two circuits, and let 6 be the angle between

their direction, and r the distance between them. Then the

mutual inductance M of the two circuits can be found by taking

the integral
,. ffCos 7 ,

,M= II dsds' .... (26)

where the integration is extended to every possible pair of

elements.

Suppose, for instance, we consider two very thin, straight

parallel wires of length I placed at a distance b apart. Then,
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taking the origin at the end of each wire, we define one element, dx,

in one wire by its distance x from the origin, and the other

element, dy, by its distance y from the other origin. The distance

apart of these elements is V(x-yy
2+b* 9

and their inclination is

zero. Hence Cos 1 (see Fig. 2).

The mutual induction is then given by

(27)

The integral -==p=
(

l dx , ^and hence -_ _- = log

Again, {(Z-2/) + V(l-y)*+b*} dy

we can write M=^og _ ^qrp+6 . (33)

and if 6 is small compared with Z this reduces to

lf=:2/{log|-l}
.... (34)

or M=%1 log 2^-2^-2? log 6.

Therefore the expression for M if is constant and b varies is of

the form

M=A-Blogb .... (35)

where A and B are constants, and the logarithms are Napierian.

The above formulae apply to the case of a pair of infinitely thin

or filamentary currents. In the case of actual conductors we
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have the current distributed over a finite area or circumference.

We may either have the current uniformly distributed over the

cross section of the conductor, as in the case of steady or of low

frequency currents, or we may have it distributed over the surface

of the conductor or round the periphery, as in the case of high

frequency currents. If then we deal with a pair of parallel wires

of finite section we must consider the actual current as made up
of filamentary currents either laid round the circumference of

the wire or closely packed together uniformly over the cross

section. In any case we shall have to obtain the actual mutual

inductance by taking the mean value of a number of expressions

such as M A + B log b, where the b applies to the perpen-
dicular distance of a pair of selected filaments, one in one wire

and the other in the other wire. The final result will be that in

place of b we shall have a certain distance E such that log E is

the mean value of all the values of log b for all possible pairs of

filaments. If

log R= -

n (log &!+log &2+log 6,+etc.),
71

1

then fisfyt.^.^,)* . (36)

and E is called the geometric mean of bi, 62, b3 , etc.

Hence the mutual inductance of two wires of finite section and

length I is given by the expression
97

g-J-l|
. . (37)

where E is the geometric mean distance (G.M.D.) of all possible

filamentary elements into which we can divide the currents, one

being taken in one wire and one in the other.

The determination of this G.M.D. is a purely mathematical

operation, and it can be shown that if the current is distributed

over the surface of a circular-sectioned wire, as it is in the case

of very high frequency currents, we have to find the G.M.D. of

all possible pairs of elements, in the circumference of two circles,

whilst if the current is a low frequency or continuous current we

have to find the G.M.D. of all elements of area in the cross

section of the two wires, one element being taken in or on each

wire.

By the self-induction or inductance of a circuit we mean the
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inductance of the circuit on itself or the total flux per unit of

current which is self-linked with the circuit. Hence to calculate

the inductance of a straight wire we apply the above formula,

but the quantity E becomes the G.M.D. of all the elements of

current in that conductor itself.

If the current is a high frequency current or confined to the

surface, say, of a circular-sectioned wire, we have then to find

the G.M.D. of all possible pairs of points on the circumference

of a circle, and Maxwell has shown that if d is the diameter of

this circle, then the G.M.D. of all pairs of elements of the

circumference is -~.
1

If, however, the current is a direct or low frequency current,

then we have to find the G.M.D. of all possible elements of the

cross-sectional area ; and if the cross section is a circle, Maxwell

has shown that this G.M.D. is equal to 2^*= 2
X '7788

>

where e is the base of the Napierian logarithms. Hence if we

have a single straight wire of circular section, diameter d and

length Z, its inductance L is found by substituting in the formula

for the value of b either b =
-^oic

b =
^

t
4

according as the

current is assumed to be distributed over the surface only or

over the whole cross section.

For the kind of wires and for the frequencies with which we
are concerned in telegraphy we may generally assume that the

current is distributed uniformly over the cross section of a

circular wire, and hence, putting b = e
, we have

. . . . (38)

as the expression for the inductance of a wire of diameter d and
o

length 1. For high frequency currents the constant -j- is

replaced by 1.

1 See Maxwell,
" Treatise on Electricity and Magnetism," 2nd Ed., Vol. II.,

p. 298, 691.
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The above formula (38) enables us to calculate the inductance

per unit of length of an overhead telephone wire provided it is

made of non-magnetic material and is sufficiently far removed

from all other wires.

It cannot, however, be applied to a wire made of iron or to a

submarine telegraph cable in which a single stranded insulated

copper wire is enclosed in steel armour, since in these cases the

magnetic permeability of the iron increases the inductance by a

certain unknown amount very difficult to predict.

In the case of a pair of parallel wires, if the wires are not so

near that the distribution of current over the cross section

of the wires is disturbed or if the wires are very thin we can

calculate the inductance as follows : If one of these wires is a

lead and the other a return, then their inductance is defined to

be the magnetic flux per unit of current which is self-linked

with this circuit. It is therefore equal to twice the difference

between the mutual induction of the two wires when close

together and when separated by a distance D.

If we consider a circular-sectioned wire of diameter d to have

a filamentary conductor placed close to it and therefore at a

mean distance
^ the mutual inductance is equal to A Zl log H.

If then the filament is removed to a distance D the mutual

inductance is equal to A %l log D.

Accordingly the self-induction or inductance is equal to twice

2D
the difference, or to 4.1 log r- .

The formula holds good approximately for a pair of wires of

small diameter parallel to each other. Hence

9D
or =9-2104nog10 -f-

. . (39)

gives us a rough expression for the inductance of a length I of a

pair of parallel wires each of diameter d with their axes separated

by a distance D. All lengths must be measured in centimetres,

and the inductance is then in centimetres, and must be divided

by 109 to reduce it to henrys. An expression for the inductance
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of a concentric cable is sometimes required. Let us suppose
that two conducting tubes are placed concentrically, and that the

space between the two is filled with some dielectric. If the

tubes are made of non-magnetic material, and if RI and R% are

the radii of the inside and outside of the inner tube and R3 and /?4

are the inner and outer radii of the outer tube, then Lord

Rayleigh has shown that the inductance per unit of length of

such a conductor is given by the expression

0,^8, 2
f 22-32 BS JR

S
1 los +^ ~~ + log

The logarithms are Napierian.
If the inner conductor is a solid rod of radius 7?2, then RI is

zero, and the expression becomes somewhat simplified, since

7? 1

then the first two terms become 2 log -^ + ^ an^ the third term

comes in as a correcting factor.

6. The Practical Measurement of the Capacity
of Telegraph and Telephone Cables. We shall not

attempt to discuss all the various methods which have been

proposed or used for measuring the capacity of cables. The

difficulties with which this measurement is attended depend

chiefly upon the fact that when an electric force is applied to a

dielectric the displacement which takes place is not merely a

function of the force and nature of the dielectric, but also of the

time of application of the force and its mode of variation. Thus

if the electric force is applied and kept steadily applied the

displacement increases very rapidly at first and afterwards

moves slowly, and even after a long time there is a slow increase

in the displacement, which may be only a true dielectric current

or may be a conduction current superimposed on the dielectric

current.

The conduction current is, however, distinguished from the

dielectric current by the fact that the energy absorbed in

creating it is dissipated as heat in the dielectric and is not

recoverable, whilst the energy taken up in producing the true
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dielectric current is recovered ia the discharge current when

the condenser is short-circuited.

Nevertheless there is a considerable difference between the

instantaneous or the high frequency capacity of a condenser and

its capacity with steady unidirectional electric force applied

continuously. The latter is considerably larger than the former

for some dielectrics.

In the case of telephone cables the capacity with which we are

concerned is that which corresponds to a frequency n of the

electric force of about 800 or 750, or say for which '2-nn = 5,000.

In the case of submarine cables or low frequency alternating

current power supply we may consider that the steady capacity

is the more important.
Full discussion will be found in good text-books on electrical

measurements concerning the various methods of measuring the

capacity of cables with steady or low frequency alternating

electric force. We shall here only refer to one method which

enables us to measure the capacity of a cable for telephonic

frequencies if necessary.

This method is that known as the commutator method. The

length of cable to be tested is charged with a battery

of a certain electromotive force and then discharged through
a galvanometer. This process is repeated one hundred or several

hundred times per second by means of a revolving commutator,
and the successive discharges are sent through a galvanometer.
This practically constitutes a continuous current the value of

which in fractions of an ampere can be ascertained by employing
the same battery or voltage to reproduce the same deflection

on the galvanometer when a known resistance is placed in series

with it.

The details of the commutator will be found described in

other books by the author, so that it is unnecessary to repeat

them here. 1
Suffice it to say that the arrangements are such

1 See J. A. Fleming, "A Handbook for the Electrical Laboratory and Testing

Room," Vol. II., p. 202, The Electrician Printing and Publishing Company, Ld.,

1. Salisbury Court, Fleet Street, London, also "The Principles of Electric Wave

Telegraphy and Telephony," 2nd Ed., p. 170, and "An Elementary Manual of

Kadiotelegraphy and Radiotelephony," p. 279, both the latter published by Messrs.

Longmans, Green & Co., 39, Paternoster U<>\\. London.
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that the cable or capacity to be determined is charged and

discharged a known number of times per second through a

galvanometer by a known voltage.

One terminal of the galvanometer and one of the battery are

connected together and to the earth or to one of the twin con-

ductors or the outside sheath of the cable to be tested, and the

other conductor is connected to the middle terminal of the

commutator, the remaining battery and galvanometer connection

being made to the two outer terminals of the commutator.

If there are N commutations per second and if the charging

voltage is V and the capacity is C microfarads, then the

current through the galvanometer is A7

CT/10
6

. If this same

deflection is restored when the voltage V is applied to the

galvanometer through a resistance E which includes that of the

galvanometer itself, then we must have

NCV V IGft

Hence the capacity is measured in microfarads by the reciprocal

of the product of the total resistance in megohms and the frequency

or number of discharges per second.

This method has the advantage that by employing a commu-

tator running at a suitable speed we can determine the capacity

corresponding to any required frequency within limits.

The method, however, does not separate out the true dielectric

current from any conduction current unless certain precautions

are taken. It is always desirable to make two sets of measure-

ments, one with the galvanometer arranged so as to measure

the series of charges given to the condenser and one in which it

is arranged to measure the discharge current. If these two sets

of measurements give different results the condenser has leakage

as well as capacity.

Certain types of gutta-percha-covered wire or cable are known

to be characterised by considerable true leakance as well as

capacity. That is, the gutta-percha as a dielectric has a true

conductivity, perhaps owing to moisture present in it, as well as

dielectric quality. Hence many of the methods proposed for

measuring capacity do not give correct results in the case of

gutta-percha-covered wire or cable,
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By any of the ordinary methods of measuring capacity it is

difficult, if not impossible, to separate out the true conduction

current from the true dielectric current. They can, however, be

distinguished as follows :

If an alternating current is employed to send a current through

FIG. 3. General view of Dr. Sumpner's Wattmeter,

a condenser the part of that current which depends upon capacity

is expressed by Cjr, and if the potential difference of the plates,

viz. r, is a simple sine function of the time of the form v = V Sin pt,

then the capacity current is measured by CpV Cos pt, and is

in quadrature as regards phase with the potential difference. If,

however, the condenser possesses any true conductivity S, then

the conduction current is Sv or SV Sin pt, and this current is in

step with the condenser potential difference.
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Accordingly we can separate out these two components by

any method which takes account only of the component in

quadrature with the potential difference.

This is achieved by the use of Dr. Sumpner's iron-cored watt-

meter. 1 This wattmeter, the general appearance of which

is shown in Fig. 3, consists of a specially shaped laminated

iron electromagnet (I) as in Fig. 4, wound over with a

very thick copper wire. If this winding is connected to an

alternating current circuit the impressed electromotive force is

almost wholly expended in overcoming the reactance of the

circuit, since the resistance is negligible. Accordingly if the

instantaneous value of this impressed voltage is v, and if the

FIG. 4. Arrangement of Circuits in Dr. Sumpner's
Wattmeter.

corresponding total flux in the air gap of the electromagnet is

represented by b, then, in accordance with Faraday's law, we

, ^dbhave v=
-N-fi]

where N is the number of windings on the core of the electro-

magnet.
If then v varies in accordance with a simple sine law the

magnetic flux must differ 90 in phase with it. In the narrow

gap of this electromagnet a coil of wire can swing, and when a

current i passes through this wire a force the mean value of

1 See Dr. W. E. Sumpner, "New Alternate Current Insiruments," Jour. Inst.

Elec. Eng., Vol. XLI., p. 237, 1908.
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which is ib is excited causing the coil to move across the lines of

flux. This is resisted by the torsion of a spring, and hence the

deflection of the coil becomes a measure of the mean value of

the product of the magnetic flux in the gap and the current i in

the coil. Suppose then that this current is the current through
a condenser which is placed in series with the coil and connected

across the same terminals which supply the alternating voltage r.

The current through this condenser, supposed to have leakance,

consists, as above shown, of a component in step with the

voltage and a component in quadrature with it. But this

latter is in step with the magnetic field of the electromagnet,

WATTS

FIG. 5. Scale of Dr. Sumpner's Wattmeter.

and the former is in quadrature with the field as regards phase.

Accordingly it is only the true capacity current which contributes

to deflect the coil, as that alone is in step with the magnetic
field. The deflection of the coil is proportional to the mean

product of ib, and therefore, if the scale over which the indicating

needle moves is graduated, as shown in Fig. 5, to give the value

of this product by inspection, we can obtain from the scale

deflections the ratio between the known true capacity of a con-

denser which is placed in series with the coil and the true

capacity of any other condenser or cable substituted for it, and

dielectric leakage causes no error in this measurement.

This method is in extensive use for measuring the capacity of

condensers for telephone work. For additional information on
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the measurement of the capacity of cables the reader is referred

to the author's " Handbook for the Electrical Laboratory and

Testing Room," Vol. II., p. 145, and to a paper by Mr. J. Elton

Young on "
Capacity Measurements of Long Submarine Cables,"

Jour. List. Elec. Eng. Lond., Vol. XXVIIL, p. 475, 1899.

7. The Practical Measurement of Inductance.
We shall also not attempt to mention all the various methods

which have been suggested for the measurement of inductance,

but confine ourselves to the consideration of one or two methods

suitable for the deter-

mination of the

inductance of cables

with such frequencies

as are used in tele-

phony.
The author's ex-

perience has shown

that one of the best

of these is the method

devised by Professor

Anderson as modified

by the author.

In this method the

conductor R, L of

which the inductance

L is to be measured

is inserted in one arm

PIG. 6. Anderson-Fleming method of

measuring small inductances.

of a Wheatstone's bridge (see Fig. 6). If, for instance, we have

to determine the inductance of a twin cable, it can be short-

circuited at the far end and the two home ends joined into

the bridge arm. If it is a single wire, such as an over-

head telephone wire, then a loop of some kind must be formed

enclosing a sufficiently large area so that the inductance is

practically equal to that of a straight wire with the return far

removed. The same applies to an armoured cable like a sub-

marine cable. We cannot properly determine the inductance of

such a single wire or cable when coiled in a tank or in a ship,
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because then the inductance of the cable is increased by the

mutual inductance of the various coils or turns.

In any case, the conductor having been joined into the

bridge, the bridge circuits, P, Q, and S are balanced in the

usual way. The galvanometer must then have placed in series

with it an adjustable resistance r and a condenser C arranged
as in Fig. 6. The battery circuit must have a buzzer, or

interrupter, K, placed in it so as to interrupt the battery

current several hundred times per second. In place of the

galvanometer a telephone T is inserted. The bridge arms

having been adjusted to obtain a steady balance, so that no

current flows through the galvanometer when the buzzer

is short-circuited, we switch over to the telephone and replace

the buzzer. A loud sound will then be heard in the telephone,

and this must be annulled by inserting resistance r in series with

the telephone. When silence has been obtained the inductance L
of the cable under test is given by the formula below.

Let the four resistances forming the arms of the bridge be

P, Q, E, S, R being the resistance of that arm which includes

the inductance L. Let x be the current in arm Q, and let z be

the current in the resistance r and y that in the inductive

resistance LR.

If then the bridge is balanced so that P : Q = R : S there will

be no current in the galvanometer when the battery current is

steady. If r is so adjusted that there is no current in the tele-

phone when the battery current is interrupted, then the fall of

potential down S must be equal to the fall of potential down Q
and r, and the current in r must be the same as the condenser

current. Also the fall of potential down P must be the same as

that down the inductive resistance LR. These conditions

expressed in symbols are

PS= QR, and ^ (zdt= Sy.

From these equations we easily find that

B.C.
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Hence L = C{S(r+P)+Er},

or L= C{r(R+S)+BQ}. . (41)

In measuring small inductances the capacity C should be small.

The method is sufficiently sensitive to measure the inductance of

a few yards of wire provided that the value of C is accurately

known. If the inductive resistance has iron involved in its con-

struction, then the inductance willvary with the current through
it unless that current is either very large or very small. For

the purposes of this test it is a great convenience to have a small

alternator giving an electromotive force which can be varied

by the excitation and a frequency which is between 500 and

1,000. We can then determine the inductance for telephonic

frequencies.

8. The Measurement of Small Alternating
and Direct Currents. The small alternating or periodic

currents with which we are concerned in telephony are best

measured by means of some form of thermoelectric ammeter.

The ordinary telephonic current is a current of a few milliamperes

created by an electromotive force of 2 to 10 volts, and is of

complex wave form.

According to Mr. B. S. Cohen, the frequency of the fundamental

harmonic lies generally between 100 and 300, and that of the

highest harmonic between 4,000 and 5,000, although harmonics

above 1,500 are comparatively unimportant.
1

The average frequency of the telephone speech current is about

800. Hence for currents of such frequency almost the only

reliable method of current measurement is by some form of

thermal ammeter.

Mr. Duddell has devised a very sensitive thermoelectric

ammeter with negligible inductance. The current to be mea-

sured is passed through a small wire or metallic strip, which may
be gold-leaf, supported on a non-conducting base. Over this strip

is suspended by a quartz fibre a light bismuth-antimony thermo-

couple, one junction of which nearly touches the wire or strip.

1 See Mr. B. S. Cohen,
" On the Production of Small Variable Frequency Alternat-

ing Currents suitable for Telephonic and other Measurements," Phil. Mag.,

September, 1908, also Proc. Phys. Soc, Land., Vol. XXI,
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This thermocouple hangs in a strong magnetic field, and when a

current is passed through the strip it is heated
;
this heats the

thermoj unction by radiation and convection, and the current so

created causes the thermocouple, which is in the form of a long

narrow loop, to be deflected. The deflection is rendered visible

by a light mirror attached to the thermocouple, from which a

ray of light is reflected to a scale. A general view of

the instrument is shown in Fig. 7. It can be calibrated

FIG. 7. Duddell's Thermogalvanometer.

by passing known small continuous currents through the

heated strip. To secure good readings the instrument must

be placed on a very steady support free from every trace of

vibration. It is, however, a very suitable instrument for the

measurement of the root-mean-square (R.M.S.) values of such

currents as are usual in telegraph and telephone cables. By the

employment of suitable heater resistances it can be used for

large alternating currents.

Another useful current-measuring instrument is the barretter

p 2
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of Mr. B. S. Cohen. The sensitive portion consists of a pair of

small carbon filament 24-volt glow-lamps. When the carbon

filament is heated the resistance decreases. The two glow-lamps
are joined up as shown in Fig. 8. Each glow-lamp, called in this

Adjustable
resistance

FIG. 8. Arrangement of Circuits in Cohen's Barretter.

connection a barretter, has a pair of 2-mfd. condensers attached

to its terminals and a shunt connecting them. On the other side

a few cells of a storage battery and an adjustable resistance and

inductance coil are connected as shown in the diagram. The

batteries can send current through the carbon filaments, but not

through the con-

densers, whilst, on the

other hand, alter-

nating currents can

pass through the con-

den sers, but are

throttled by the in-

ductance coils. I n

each alternating cur-

rent branch of each

circuit there is an

interruption, marked

A and B respectively.

In using the instru-

ment the adjustable

resistances are given
such values that the continuous currents balance one another,
and the galvanometer, G, remains at zero. Suppose then the

alternator removed, and that some circuit in which there is a

FIG. 9. General appearance of the Cohen
Barretter as made by Mr. E. Paul.
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feeble alternating current is connected on at one gap, A. This

alternating current flows partly through one barretter and lowers

the resistance of the filament, and, the balance being upset, the

galvanometer deflects. The instrument may be calibrated by

sending through it various vsmall alternating currents, which

pass also through a known inductionless resistance. The drop

in potential down this- resistance can be measured by an electro-

static voltmeter, also previously standardised, and the measured

fall in potential gives the value of the alternating current, which

can then.be compared with the observed deflection of the galvano-

meter. The process of calibration is more difficult than in the

case of a simple thermal ammeter, but when once carried out the

barretter can be used to determine the ratio of the currents at

two distant points in a telephone cable, and hence the attenuation

constant of the cable. The general appearance of the barretter

is as shown in Fig. 9.

9. The Measurement of Small Alternating
Voltages. The Alternate Current Potentio-
meter. When the voltage to be measured is not very small

it can be conveniently determined by a Dolezalek electrometer,

which consists of a quadrant electrometer of the Kelvin pattern
but having a " needle

" made of silver paper suspended by a

quartz fibre. The instrument is used as an idiostatic electro-

meter by connecting the needle to one of the quadrants. If,

however, the voltage in question amounts only to a few volts or

fractions of a volt, an idiostatic quadrant electrometer will hardly
be sufficiently sensitive. Recourse may then be had to an

alternating current potentiometer, such as the Drysdale-Tinsley

form, which is admirably suited for many of the measurements

to be made in connection with cables. This last instrument

consists of a standard form of potentiometer as used for direct

current work, but it is supplemented by means for passing

through the standard wire an alternating current of known

value derived from the same source as the potential to be

measured, and also with means for shifting the phase of this

current and changing its amplitude.

The phase shifting is accomplished by one of Dr. Drysdale's
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phase-shifting transformers (see Fig. 10). If a laminated iron ring

is wound over in four quadrants with coils connected pair and pair,

and if these two pairs are joined into the two sides of a two-

phase alternator giving

two simple harmonic

voltages differing 90

in phase, we can pro-

duce thereby a rotating

magnetic field in the

interior space. If in

this space is placed a

core wound over with

one winding in one

plane, then if this

winding is placed with

its plane perpendicular

to the field of one pair

of coils on the stator,

an E.M.F. will be in-

duced in it, and if the

coil is turned so as to

be perpendicular to the

other stator field it will

have an E.M.F. differ-

ing. 90 in phase from

the former induced in

it. By turning this

secondary coil into any
intermediate position

it will have an E.M.F.

induced in it which has

the same amplitude
but with intermediate

FIG. 10. Drysdale Phase Shifting Transformer h and shifted pro-
as made by Mr. H. Tmsley. .. , i ,1

portionately to the

angle through which it is turned. We can obtain the two stator

currents in quadrature from one single-phase alternator by intro-

ducing a shunted condenser into one circuit, as shown in Fig. 11.
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Hence the phase-shifting transformer can be made up as one

self-contained appliance workable off any constant single-phase
circuit giving a simple sine curve E.M.F. 1

Keturning then to the Drysdale-Tinsley potentiometer, we

give in Fig. 12 a perspective view of the instrument and in

Fig. 13 a diagram of the connections.2 The instrument consists

of a standard form of direct current Tinsley's potentiometer,
to which is added an electrodynamometer or mil-ampere meter

for indicating the current in its slide wire. A phase-shifting
transformer can have its secondary circuit put in series with

this wire by a throw-over switch. Then, when using an

alternating current, the

ordinary movable coil

galvanometer is re-

placed by a vibration

galvanometer in which

the needle is a small

piece of soft iron

suspended by a wire

in .the field of a strong

magnet, which can be

varied by a magnetic
shunt (see Fig. 14). A
coil behind the iron

carries the alternating

current. When an alternating current passes through this

coil the needle is set in vibration, and if the magnetic field

is varied so that the natural time period of the vibrating needle

is the same as that of the alternating current, the amplitude of

motion becomes very large, and is observed by throwing a ray of

light upon a mirror attached to the needle. Means are provided
for varying by rheostats the current in the slide wire of the

potentiometer. If, therefore, we desire to know the value as

regards magnitude and phase of the alternating potential

1 See Dr. C. V. Drysdale,
" The Use of a Phase-shifting Transformer for Wattmeter

and Supply Meter Testing," The Electrician, Dec. llth, Vol. LXIL, p. 341, 1908.
2 See Dr. C. V. Drysdale,

" The Use of the Potentiometer on Alternate Current

Circuits," Phil. Mag., March, Vol. XVII., p. 402, 1909, or Proc. Phy*. An-. Loud.,

Vol. XXI., p. 561, 1909.

Meter or Wattmeter

FIG. 11. Diagram showing the manner in

which two currents in phase quadrature
can be obtained from a single phase
current by means of a shunted condenser.
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difference between two points or between the ends of a non-

inductive resistance carrying an alternating current, we bring

from these points two wires to the potentiometer in the usual

way, and balance this unknown alternating potential difference

(A.P.D.) against the fall of potential (also alternating) down the

slide wire, and adjust the strength and phase of this fall by the

rheostats and phase shifter until the vibration galvanometer
shows no current (see Fig. 15). To do this the current in the

slide wire must be provided from the same source as that which

FIG. 14. Tmsley Vibration Galvanometer for use with A. C.

Potentiometer.

supplies the current or potential difference under test, so that

the frequency is the same. The phase of the A.P.D. under test

is then read off at once on the dial of the phase-shifting trans-

former, which is shown at the right-hand bottom corner in

Figs. 12 and 13. We have to balance the A.P.D. to be tested

against the known A.P.D. between two points on a slide wire

in which is a current of known value, the phase of which can

be shifted if need be through 360. The current in this wire is

kept at a known value and equal to that of a standard direct

current, which last can be adjusted by a standard Weston cell in

the usual way.
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The instrument forms therefore a valuable means of measuring
small alternating currents both for strength and phase difference.

We can by means of it determine the current and phase of that

'Cvvwwwv
Luw Resistanc Load

FIG. 15. Scheme of Connections used in

making tests with the Drysdale-Tinsley
A. C. Potentiometer. The points A, B
are the terminals of a 100-volt alternator

or transformer.

current at any point in a long cable to which an alternating

electromotive force is applied.

1O. The Measurement of Attenuation Con-
stants of Cables. If the current at any point in a cable

is Ii and that at any other point separated by a distance I is 72 ,
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and if a is the attenuation constant of the cable, then the

equation which connects the above quantities is

where (7i) and (72) signify the strengths of these currents without

regard to phase difference.

Hence m =^ and a=yloge^ . . (43)
(
J-v * (**)

or, using ordinary logarithms,

a=j 2-3026 logMg . - (44)

The attenuation constant a is therefore quite easily measured

by inserting in the run of the cable at two points separated by
a known distance I two hot wire ammeters or two barretters

which agree absolutely together and measuring with them the

R.M.S. value of the currents in the cable at the two places.

The attenuation constant is the Napierian logarithm of the ratio

of these currents divided by the distance in miles or nauts.

11. Measurement of the Wave Length Con-
stant of a Cable. The wave length constant ft of a cable

is defined to be an angle ft in circular measure such that the

phase difference in the currents at two points in the cable

separated by a distance I is ftL Accordingly it can be measured

by means of a Drysdale-Tinsley alternate current potentiometer

or by any other means which enables us to measure the phase

difference between the currents.

12. Measurement of the Propagation Con-
stant of a Cable. The propagation constant P of a

cable is defined by the equation P=a + j/3, where a is the attenua-

tion constant and ft is the wave length constant. Accordingly P
is known when a and ft are separately determined. It is,

however, best measured by determining the final sending end

impedance with far end open and closed as shown in the next

section.

13. Measurement of the Initial Sending End
Impedance of a Cable. We have defined the initial
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sending end impedance ZQ of a cable in Chapter III., 4, as the

quantity

VB+jpLz
-s%+m

It is a vector quantity and is measured in vector ohms and

expressed in the form (X)/#, where (X) is some number of ohms

and is some phase angle.

We have also seen that the final sending end impedance Z^ is

defined by the equation

7 FlZi= j-
where V\ is the simple periodic electromotive force applied to

the sending end of a cable and I\ is the current flowing into

it at the sending end.

Suppose that the ratio FI//I is measured when the far end of

the cable is open or insulated and call the value Z/, then we

have seen (Chapter III.) that

Z,=Z CothPl .... (46)

Again, if the final sending end impedance is measured with

the far end of the cable short circuited, and if we call this

value Zc , we have seen that

Z
c
=:Z T&nhPl .... (47)

Hence multiplying together the equations (46) and (47) we have

ZQ=Vzf Ze (48)

The process of measuring the initial sending end impedance
consists therefore in measuring the ratio of the applied voltage V\

to the current at the sending end when the receiving end is

insulated and when it is short-circuited. It must be remembered

that FI and 1\ in both cases are quantities differing in phase as

well as magnitude. Hence their ratio is a vector, and therefore

the geometric mean *JZfZc
is a vector and is expressed in vector

ohms.

The measurement can be made either with a Drysdale-Tinsley

potentiometer or with a Cohen barretter. It involves measuring
the value of I\ in the two cases and the difference in phase of

this current and the impressed voltage V\ in the two cases, but it
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is the best means of measuring the initial sending end impe-
dance ZQ which appears in so many of the formulae. This

method of measurement enables us also to calculate the value

of S + jpC for any cable, as the values of S and C are less

easy to measure experimentally than those of R and L.

Since Zc
= Z tanh PI

and since ZQ = \/ZfZc
it follows that

? . . . . (49)

and therefore that

. . (50)

This gives the best means of determining the propagation
constant experimentally in the case of any given cable. Since P
is an abbreviation for the product V~R + jpL VS + jpC and ZQ

stands for the quotient Vlt +jpL/V'S +jpC it follows that

Hence substituting the values of P and Z given above we
have

R+jpL= -tanh" 1
. . . (51)

The experimental determination therefore of Zf and Zc leads

at once to a knowledge of the vector impedance R +jpL and the

vector admittance S + jpC.

14. Measurement of the Impedance of various
Receiving Instruments. The measurement of the induc-

tance effective resistance and vector impedance of various types

of receiving instrument is an extremely important matter because

no predeterminations can be made of the current at the receiving

end of a line unless we know the impedance of the receiving

instrument. Some very valuable measurements of this kind

have been carried out by Mr. B. S. Cohen in the investigation
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laboratory of the National Telephone Company and are recorded

in the National Telephone Journal 1 for September, 1909, by
methods described lower down. Also other methods of measure-

ment have been elaborated by Messrs. B. S. Cohen and

G. M. Shepherd which are described in a paper on Telephonic
Transmission Measurements read before the Institution of

Electrical Engineers of London in 1907,
2 in which the Cohen

barretter is employed. This instrument has already been

described in principle in 8 of this chapter.

By it the following measurements can easily be made :

1. The impedance of any piece of telephonic apparatus

expressed in ohms for any type of alternating current.

2. By employing an alternator giving a simple periodic or sine

form E.M.F. the actual inductance and effective resistance and

capacity of any piece of apparatus for these high frequency

currents can be obtained.

3. Small alternating currents can be measured with an ordinary

galvanometer.
4. The direct comparison of various types of cables with the

performance of a standard cable can be made.

The barretter can be used with modification to measure the

impedance of any piece of telephonic apparatus. For this pur-

pose a source of electromotive force must be provided having

approximately a simple sine wave form, and a frequency of

about 800. Also the shunt (see Fig. 8) must be replaced by a

telephone induction coil and a large condenser (10 mfd.) placed

across the galvanometer terminals.

Many forms of alternator have been devised for this purpose,
some of which are described in the author's work,

"
Principles of

Electric Wave Telegraphy and Telephony," Chap. I.

The Western Electric Company of America supply a machine

having an output of about 30 watts at frequencies varying from

800 to 1,800, and the wave form is stated to resemble a sine curve

closely at all loads.

Messrs. Siemens and Halske also make a machine with an

output of 3 or 4 watts with the same frequencies. This machine

1 Published at Telephone House, Victoria Embankment, London.
2 See Journal of Proc. Inst. Elec. Eng. Lond., Vol. XXXIX., p. 503, 1907.
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is of the inductor type, and the purity of the wave form is pre-

served by appropriately shaping the teeth.

The investigation department of the National Telephone

Company constructed a small inductor machine giving a small

output but approximately sine form of wave.

For accurate measurements this machine can be supplemented

by a wave filter consisting of a series of inductance coils of low

resistance with condensers parallelised across, and this circuit is

so designed as to obstruct the passage of harmonics and preserve

the fundamental sine term in the wave form.

Such a wave filter was described by Mr. G. A. Campbell in an

article in the Philosophical Magazine for March, 1903. 1

A fairly good test of the simple sine form of the E.M.F. of

an alternator is to employ it to charge some form of condenser

and measure the charging current. If this agrees with that

calculated from the expression A = -- where C is the

capacity in microfarads, V the P.D. of the condenser terminals

in volts, and A the charging current in amperes, then the E.M.F.

wave form is very probably a pure sine curve.

Returning then to the actual measurement of the impedance
of some form of telephonic apparatus, let R be the effective

resistance of the apparatus. This must not be confused with the

true steady or ohmic resistance. It is much greater, first, because

the H.F. current in the conductor is not uniformly distributed

over the cross section of the wire; secondly, because the

current in neighbouring turns of wire furthermore increases this

non-uniformity ;
and thirdly, because the dissipation of energy

in any iron core which may be present in the form of eddy
currents or magnetic hysteresis loss is a dissipation of energy

which counts as if due to an increase in the actual resistance.

In the next place the apparatus has inductance L
,
and at a

frequency n when n = p/Zir we have an impedance Vtt(? + p*L(?

in the apparatus.

Suppose then the telephonic apparatus under test is inserted

1 See also Mr. B. S. Cohen,
" On the Production of Small Variable Frequency

Alternating Currents," Phil. Mag., September, 1908, or Proa. Phys. Soc. Lond.,

Vol. XXI., p. 283, 1909.
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in one gap B in the Cohen barretter circuits (see Fig. 8) and a

variable inductionless resistance is inserted in the other gap A,
and let a high frequency sine wave alternator be connected in

as shown in the diagram.
Let the barretter or glow lamp and shunt across its terminals

together with the condensers in series (2 mfds.) have an equivalent

resistance r. The first step is to balance on the galvanometer

any inequality in the electromotive force of the two batteries

inserted in front of the barretters. This is done by the adjust-

able resistances. The alternator is then started and the variable

inductionless resistance RI in the gap A is altered until it balances

the effect of the impedance \/Ro
2 + p

2
L<j

2 in the gap B, and the

galvanometer then shows no current because the effective

impedance in the circuits of both barretters is the same. '

If then the resistance of each of the shunts in the barretter

across the pair of condensers in each side is denoted by r, and

since the E.M.F. in two circuits is the same and the currents

the same, we have an equality between the total resistances or

resistance and impedances, or in other words the equation

.Bi+r . . . (53)

We need not take into account the reduction in the shunt

resistance r which results from it being shunted by a galvano-
meter provided the latter has, as it should have, a resistance

of several thousand ohms.

Squaring both sides of (53) we have

(B +r)*+l>
2JV= (A+ r)

2
(54)

Hence R 2+P2V=^2+2r (R.-R,)
or VR *+p*L *= A/^+2r (R.-R,) - (55)

This gives us the impedance of the instrument.

To separate out the effective resistance E from the reactance

we may proceed as follows : Add in series with the telephonic

apparatus an inductionless resistance r\ and proceed as before to

obtain a balance against an inductionless resistance of value R%

in the other side of the barretter. Then we have the equation

(JB +r1+r)2+^o2= (^.+-)
2

(
56

)

and since by (54) we have

(R,+r)^p^LQ
^= (Rl+ rY . . (57)

we have two simultaneous equations to determine pL and R.

B.C. Q
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. . (58)

. . (59)

From which we obtain tan 6 = +-~, being the phase angle of

the vector impedance

Mr. Cohen finds that the above method of measuring the

effective resistance and inductance of telephonic apparatus can

give good results provided that the shunts shown in Fig. 8

FIG. 16. Arrangement of Circuits for measuring the

vector-impedance of any telephonic apparatus.

across the barretter circuits are replaced by telephone induction

coils separating the alternator and gaps A and B from the bar-

retter circuits, and also that a condenser of large capacity is

placed across the galvanometer terminals.

Another method of making these measurements which requires

no special instrument not usually found in the laboratory

except the high frequency alternator was adopted by Mr.

B. S. Cohen in making the measurements of instruments given

below. In this arrangement the alternator is applied to the

battery terminals of a Wheatstone's Bridge (see Fig. 16) and in
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the bridge circuit is placed a telephone receiver. The instrument

to be tested is placed in one arm of the bridge, and in the

adjacent arm is inserted a variable inductionless resistance

and a low resistance variable inductance. These are inde-

pendently adjusted to give silence in the telephone and enable

the effective resistance E and inductance L to be separately

equilibrated by resistance plugged out of the box and inductance

inserted in the arm. This inductionless resistance is made on a

plan suggested by Mr. Duddell. The resistance material is a kind

of cloth woven with a silk warp and fine resistance wire woof and

has the property of possessing extremely small inductance and

capacity, which is more than can be said for the ordinary plug

resistance boxes of most laboratories. The inductance is made
with two coils, one outside the other, the inner one capable of

rotating on an axis so as to be turned in such positions as to

vary the mutual inductance of the two parts and therefore the

self inductance of the two in series. Turning then to the

results obtained by Mr. Cohen, we give on p. 228 a table published

by him in the National Telephone Journal for- September,
1909.

The figures in the fourth and fifth columns give respectively

the scalar impedance in ohms and the vectorial angle tan" 1

^-
of the instrument.

It will be seen that the effective resistance is always much

greater than the ohmic or steady resistance. Thus a so-called

60 ohm Bell telephone receiver has an effective resistance of

134 ohms, an inductance of 18 millihenrys, an impedance of

176 ohms, and the angle of lag of current behind terminal P.D. is

40 24'.

The last column gives the power absorption of the instru-

ment in milliwatts per volt P.D. at the terminals, and the

total power loss is obtained by multiplying these num-
bers by the square of the terminal potential difference in

volts.

We thus have determined for us the value of the Zr which

appears in many formulae in Chapter III. as the vector

impedance of the terminal instruments.

Q 2
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Apparatus.
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15. The Power Absorption of various Tele-
phonic Instruments. The measurement of the energy
absorbed by telephonic apparatus under working conditions

presents, as Messrs. Cohen and Shepherd remark, considerable

difficulty.
1 This energy is extremely small, perhaps only a few

microwatts, and is always a variable quantity. The difficulty is

to find any instrument which when inserted in circuit wif/h the

instrument to be tested does not seriously alter the conditions of

test.

Messrs. Cohen and Shepherd have made a number of such

measurements, employing a method due to Mr. M. B. Field, as

follows. If a small transformer of suitable design has one of

its coils inserted in parallel with the instrument under test, and

if a suitable inductionless resistance is inserted in series with the

instrument, we can draw off from the secondary of the transformer

a current proportional to the P.I), at the terminals of the instru-

ment tested, and from the terminals of the inductionless

resistance a current proportional to the current in that

instrument. Let i be the current at any instant in the

instrument tested and therefore in the inductionless resist-

ance 11 in series with it. Then Hi is the voltage at the

terminals of this resistance. Let v be the potential difference

at the terminals of the instrument tested, then the P. I), at

the terminals of the secondary circuit will be Gv where G is

some constant.

A Duddell thermo-galvanometer having a heater with a

resistance of 100 ohms was then arranged with switches so that

either the sum or the difference of these two voltages could

be applied to send a current through a thermo-galvanometer
T.G.

Let DI and D2 be the instantaneous values of the sum or

differences of the above voltages, viz.,

TU D*-D
Then

1 See Messrs. Cohen and Shepherd on Telephonic Transmission Measurements,
Journal Imt. Elec. Enrj. Land., Vol. XXXIX., p. 521, 1907.
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Hence if we take mean values throughout a period and denote

these by (L>0
2
(D2)

2
, (I

7
), and (I) we have

Cos < . . . (60)

where < is the power factor. The right-hand side of the above

equation is the mean value of the power taken up in the tele-

phonic instrument and (Di)
2 and (Z)2)

2
will be proportional to the

deflections in the two cases of the thermo-galvanometer.
The above formula presupposes that the non-inductive resist-

ance R is very small compared with the resistance of the thermo-

galvanometer.
The transformer used by Messrs. Cohen and Shepherd had a

toroidal core of No. 40 S. W.G. iron wire 11*5 cm. outside diameter

and 5 cm. deep, and a cross section of 7 '89 cms. Its two windings
had respectively 2,000 and 100 turns and a transformation ratio

from 96*5 to 19*3 according to the number of secondary turns

used.

The following results were obtained. In a test mac.e with

30 miles of 20-lb. paper insulated telephone cable with far end

open, the sending end impedance was found as follows : At a

frequency of 810 the current into the line was 0'00658 amp. The

power absorbed by the line was 0*0163 watts, and the power factor

was 0'71. Hence since the cable is fairly long this gives us the

initial sending end impedance Z = 552 ohms with phase angle

44 48' downwards or Z
Q
= 552 \44 48'.

This is in fair agreement with the calculation made from the

four cable constants.

The reader should note that the same method can be employed
to determine the final sending end impedance when the cable is

open or short circuited at the receiving end. We have to

measure, in that case, the current into the cable at the sending

end Ii, the applied voltage or E.M.F. Vi, and the power taken

up by the cable W.
ry\

The ratio TTT- or the ratio of the R.M.S. value of the voltageW
and current gives the numerical value or size of the impedance
Zi. Also the ratio of the true power taken up W in watts to the

product of ( Vi) and (/i) or to the volt-amperes gives us Cos </>
or
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the power factor. From which we have

(Pi) W
Hence Wr = (ZV) and n7 . , r . = Cos d>

or the phase angle.

and the vector final

sending end impedance Z\ = (Zi) [$1

In the same manner we can find Zf,
and Zct and therefore ZQ .

For various receiving instruments the following results were

obtained by Messrs. Cohen and Shepherd.
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obtained since p 2im is known. Thus the four constants of

the cable can be obtained by two measurements made with the

Cohen barretter or any other means which enable us to

measure the impedance of the cable when open and when short

circuited or, which comes to the same thing, the sending end

current and its phase difference and the impressed voltage in

the two cases.

Thus, for instance, Messrs. Cohen and Shepherd (loc. cit.)

measured the constants for a 10-mile length of the National

Telephone Company's standard 201b. dry core paper insulated

cable and for a 10-mile length of an equivalent artificial cable

at a frequency of 750 as follows :



CHAPTER VIII

CABLE CALCULATIONS AND COMPARISON OF THEORY WITH
EXPERIMENT

1. Necessity for the Verification of Formulae.
Since the object of all our investigations is to obtain rules for

predetermining the performance of cables and improving their

action as conductors, it is essential to test the theory and formulae

at which we have arrived by comparing the predictions of the

theory with the actual results of measurement in as many cases

as possible in order that we may obtain confidence in them as a

means of foretelling the results in those cases in which we cannot

check the measurements because the cable is not then made.

Formulas are of no use to the practical telegraph or telephone

engineer unless they are reduced to such a form that they can

be used for arithmetic calculations of the above kind by the aid

of accessible tables.

It is essential therefore that the student in this subject should

be shown how to employ the formulas which have been obtained

in numerical calculations, assuming that the necessary data and

tables are available. In the last chapter of this book are given

sundry data and references to published tables of various kinds.

We shall proceed then to give a certain number of instances of

calculation and verification of formulae.

2. To Calculate the Current at any Point in a
Cable Earthed or Short Circuited at the Far
End when a simple Periodic Electromotive
Force is applied at the Sending End. The formula

required for this purpose is proved in Chapter III., 2, equation

(25).
_

It is as follows :

1=1, Cosh Px- Sinh Px . (1)
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where x is the distance from the sending end, I is the current

at this point, Ii the current at the sending end, P the

propagation constant, such that P = a + j/3, and Z is the initial

sending end or line impedance

= VB+jpL=B+jpL~

VS+jpC a+jfi"

The details of the following measurements made with an

artificial cable by Mr. H. Tinsley have been communicated by
him to the author. These measurements were made with a

Drysdale-Tinsley alternate current potentiometer as described in

the previous chapter. The cable was equivalent to a submarine

cable having a length of 230 nauts (nautical miles). The total

conductor resistance was 1,440 ohms and the total capacity

72 microfarads. The inductance and leakance were negligible.

Hence for this cable we have the constants

1440
Resistance per naut R = ^OTT 6*26 ohms.

72 0*313
Capacity per naut C =

230xlQ fi

= -^- farads.

An alternating electromotive of 1 volt of sine curve form was

applied at one end of the cable, the far end being earthed. The

frequency of the E.M.F. was n = 50. Hence p = Znn = 314.

Accordingly Cp = ^ per naut.

Since L and S are negligible we have for the attenuation and

wave length constants the values

a=p= ^/ CpB = 0-0175 per naut.

Also the initial sending end impedance Z = .__ . Hence
VjpC

(Z )
= 252-8 ohms.

The propagation constant P = a + 7/3.

Hence P = 0*0175 +j :

0175.

The sending end current /i under an E.M.F. of 1 volt was

0-003916 ampere, and this is so nearly equal to ^^ that it

shows that I\ = ~ nearly. In other words the cable is for all
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practical purposes extremely long. Hence the formula (1) for

the current may be written in this case

1=1, (Cosh Pz-Sinh Px)

= /! (Cosh ax Sinh ax) (Cos fix j Sin fix) . . (2)

Accordingly the strength of the current at any distance x is

/i (Cosh ax Sinh ax) amperes and the phase lags an angle $x
behind the current at the sending end.

If then we insert in the above formula a = 0*0175 and

/! = 0-003916 and give x various values, say 10, 20, 30, 100, 230,

etc., we shall have the predetermined values of the current in

magnitude and phase. This has been done in the table below.

TABLE I.

PREDETERMINATION OF THE CURRENT AT VARIOUS DISTANCES IN

NAUTS IN THE TlNSLEY ARTIFICIAL CABLE FOR WHICH

a = ft
= 0-0175.

x distance in

nauts from

sending end.
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Table I. it will be seen how nearly they agree. The formula

therefore may be regarded as verified within the limits of errors

of experiment.
It may perhaps be worth while to explain in detail how each

current value is calculated. Taking say the distance of 20 nauts.

We have a = = 0'0175. Hence ax = (3x 20 X (V0175 =0'35.

We look out in the Tables of Hyperbolic Sines and Cosines

Cosh 0-35 and Sinh 0'35 and find respectively 1-0618778 and

0-3571898. Their difference is 0'7047.

Multiplying this by 0*003916 amp. we have 0'0033 amp.,

Cable-0- 00391 6 Amps.

FIG. 1. Vector Diagram of Current at various distances along an
Artificial Cable.

which gives us the current in the cable at 20 nauts. The phase

angle is 0'35 radians or 20. Similarly for the other values.

3. To Calculate the Current at any Point in a
Cable having a Receiving Instrument of Known
Impedance at the Far End. In this calculation the first

step is to find the final sending end impedance Z\ and final

receiving end impedance Z% given the initial sending end impe-
dance ZQ and the impedance Z.r of the receiving instrument.

From equations (61) and (62) in Chapter III., 5, we have

Zr Cosh Pl+ZQ Sinh PI

Z Cosh Pl+Zr Sinh PI
'

l , . . (4)

and = Cosh Pl+ Sinh PI .. .
-

. (5)A ^o
whilst from equation (25) in Chapter III. we have

1= Ji Cosh Px - 5 Sinh Px (6)
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Therefore

r_ T7 fCoshPa?_Sinh Pa?) f
.

v\\
--

^ i? VU
1 *i ^o

A verification of these formulae was made for the author by
Mr. B. S. Cohen by kind permission of Mr. F. Gill in the

investigation laboratory of the National Telephone Company.
The cable employed was an artificial line equivalent to a length

of the National Telephone Company's standard cable having the

following line constants per mile.

E = 88*4 ohms per loop mile. C = 0'055 microfarads per

loop mile. L and S negligible. The sending end electromotive

force was generated by an alternator of which the frequency n

was 1000 and hence p = 2im was 6280. Hence since L and

S are zero the attenuation constant a and wave length

constant /8 were both equal to pCR or

-'VI x 6280 x 0-055 x 10- 6 x 88-4 = 0-123.
2

Therefore the propagation constant

P=z a +y/3
= 0-123-fy 0-123.

The initial sending end or line impedance

= 505X45 vector ohms.
v#C V/6280 x -055 x 10"

Next as regards the impedance of the receiving instrument Zr .

This was measured and found to vary with the current through
it as follows :

Current through receiver

in milliamperes.
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of 1000 was then sent through the line by means of one of the

induction coils from a small sine wave alternator. The current

at each end of the line was measured by Cohen barretters, each

barretter being shunted with a 100-ohm shunt and calibrated

under these conditions. The applied E.M.F. (Vi) at the

sending end of the line was measured with an Ayrton-Mather
electrostatic voltmeter and found to be 3'02 volts (R.M.S.

value).

A line equal to a length of 15 miles of the standard cable

was then employed and the currents measured at the sending
and receiving ends. The ratio of the sending end to receiving end

current or Ji//2 was found by measurement to be 5'3. The

received current /2 was found to be 1'25 milliamperes.
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Now Sinh 1-845 = 3-0850757,

Cosh 1-845 = 3-2431041,

Cos 105 44' = --271160,
Sin 105 44'= -962534.

Hence Sinh (1-845 +;l-845) = - 0-8364 +/3-1215
= 3-231\105

Also Cosh (l-845+yi-845) = -0-8792+y2-9694
= 3-097\106 30'.

Therefore Tanh (l-845+;l-845) = l-043\l 30'.

Also ^ = 505\45~ and Zr
= 860/66 54'.

Hence ^=1-7/111 54'.

Accordingly ^ SinhP/=505 \45x3-231 \105
= 1631/60
= 815+; 1412.

Zr Cosh P/=860 /66 54' x 3-097 \106 30'

= 2663\17334'
= -2646+;298.

Hence Z2
=~l=Z

Q Sinh Pl+Zr Cosh Pl= -1831+;1710
^2

= 2500\13340'.

Furthermore ^ Cosh Pf=505 \45 x 3-097 \106 30'

= 1564/61 30'

= 746+;1374.

Zr Sinh PI=860/66 54' x 3-231 /105
C

= 2778/171 54'

= -2750+;390.

Hence ^ Cosh Pl+Zr Sinh PI= - 2004+;1764

= 2667/138 35'.

7 ZT Cosh Pi+Z Sinh PZ
[ow ^-^ ^ Cosh P/+^r Sinh PI

_^xo
2667 \138 35'

= 473\4955':
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Accordingly the four impedances are

^ =505\45 = line impedance or initial sending end

impedance,

^= 473 \49 55' = final sending end impedance.
-2=2500 \133 40'= final receiving end impedance,

^.860 /66 54' =
receiving instrument impedance.

Now the impressed or sending end voltage was 3*02 volts.

Therefore we have

V 3*02
Il
=~- = sending end current = -r=Q =0-0064 amp.,

\ 4 1 o

V 3 -02
I*=-rr = received current

=gggg==(M)01108 amp.,

T^iaflB*
55^ ky calculation.

The ratio -F- was also found to be 5*3 by observation.
A

The received current /2 = 1'208 milliamperes by calculation,

and was found to be 1*25 milliamperes by observation.

Hence there is a very good agreement between the observed

values and those predicted by our formulae, which are thereby

confirmed.

An additional illustration of the above formulae may be given

as follows :

Suppose a length of ten miles of the same standard cable to

have a plain Bell receiving telephone placed across the receiving

end, we can then calculate the current through this receiver as

follows :

The received current I, = ^ Sinh p Cosh pl

In this case we have for a ten-mile length of the cable

^ =465-j415=625\41 45' ohms,

and Zr
= for a 60-ohm Bell receiver is given approximately by

the formula

Zr
= 134 +j'91 = 162/34 15' ohms.

We can then easily find that

PI= 10 x 0-1+jW x 0-1 = 1+jl,

and hence Sinh PI= 0-634 +jl -297 = 1-445/64,

and Cosh Pl= 0-83+ /-99
= 1-292/50 15'.
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Hence Zr Cosh PI= 20 +./207= 209/84 30'

and Z Sinh PI= 833 +;341= 900/22 15'.

Therefore

Zr Cosh Pl+ZQ Sinh PI= 853 +;548= 1014/32 40'.

Vl 10
Accordingly a

=
jTvfZ

=
i rn 4

~ ^ ^ niilliamperes.

The reader should notice that as PI increases, that is as the

length of the cable increases, the values of Sinh PI and Cosh PI

approximate. Since Sinh 4 is nearly equal to Cosh 4, and since

a and p for the standard cable are equal to about O'l, it follows

that for cable lengths of forty miles and upwards we can greatly

simplify the formulae by writing Sinh PI = Cosh PI in them.

Thus under these conditions we have the receiving end impedance

Zz given by

and the received current 72 by the reduced formula

j_ _V ,m
2
~

(ZQ+Zr)
Sinh Pi

and the sending end current by

Ii= ^- . . . . (10)

and the ratio /i//2 by

j
=

g
r
Sinh PI . . . (11)

Thus for forty miles of standard cable we have I = 40,

al = 4 =
pi, and Sinh PI = Sinh 4 (Cos 4 + j Sin 4) =

27'3 (Cos 4 +j Sin 4).

Now for the same cable and receiving instrument we have

91

35'

and Sinh Pl= 27-3/229 20'.

Hence Z,=(Z +Zr)
Sinh P= 18591-3/200 45'

and ^=^=623X41 45'.

Hence for ^= 10 /i = ^ ampere and I2
= ampere.

B.C.
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As regards the ratio of 7i/72 or of the sending end to receiving

end currents, we have always

I*~ ^o
If PI is very small, approximating to zero, because the length I

"
'

*v

3
'

N>

''

J Z 3 4 56 T S 9 30 11 12 IB J4 15 16 11 IS J9 20
-MiL&s of CaJblt's .

FIG. 3. Curves showing the variation of the sending end and receiving end
Currents in a Telephonic Cable (Cohen).

is small, then Cosh PI = 1 Sinh PI and /i//2
=

1, as it

should be.

If PI is very large, say, greater than 4, because I is large, then

Cosh PI Sinh PI, and we have

By equation (74) of 5, Chapter III., this equation for the

ratio 7i//2 generally may be written

I1= CosMP/+y)
Ij Cosh y

17

where y =
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For certain values of y and PI it is possible for Cosh (PI + y)

considered as a vector to have a smaller size than that of Cosh y.

If y and P are kept constant and I varied, then for some values

of y and P we shall have the ratio /i//2 equal to, less than, and

greater than unity as / progressively increases.

This signifies that the current at the receiving end may, under

certain conditions, be greater than the current at the sending
end. This takes place when / is small, and increasing from zero.

This variation in the ratio of /i//2, or of the sending end to

the receiving end current, as the length of the cable increases, is

well shown by the observations, represented by the curves in

Fig. 3, which were taken by Mr. B. S. Cohen in the Investigation

Laboratory of the National Telephone Company. For various

lengths of standard telephone cable and for the same receiving

instrument the currents /i and 1% were measured with two

barretters, and the observed values are represented by the

firm line curves for various lengths of cable. It will be seen

that when the length of cable is zero the two currents are

identical, as they should be. As the length of cable increases up
to about four miles the current at the receiving end is greater

than that at the sending end. At a length of about 4*4 miles the

two currents are again equal. Beyond that length the sending
end current is greater than the receiving end current.

4. To calculate the Voltage at the Receiving
End of a Cable when open or insulated, and
the Current when closed or short circuited.
The formulae in this case are

V^VtSoohPl .... (15)

1^=^- Cosech PI (16)
^o

where l\ is the impressed voltage at the sending end, and V*

and 72 the voltage and current at the receiving end.

Thus suppose that V\= 10 volts, and that we have to deal with

twenty miles of standard cable for which a = $ = O'l nearly.

Then PI = 20 a + /20 /3
= 2 +j2. Then from the table we have

Cosh 2 = 3-76, Sinh 2 = 3-627,

Cos 2= -0-416, Sin 2-0-909,
since an angle of two radians = 114 35' 30".

R 2
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Hence Cosh Pl= -3-76 x -416+y3-627 x -909

-1-564+J3-297
= 3-65/115 18',

Sinh Pl= -3-627 x-416+;3-76x "909

= -l-51+j3-42

Therefore Sech P/= 0-273\115 18',

Cosech PZ=0-266\114 12'.

Hence F2
= 10x0-273 = 2-73 volts.

Then Z-

For the standard cable R = 88 ohms, and L = *001 henry,

and if we takep = 5,000 we havepL = 5 and VR2 + p
2 L2 = 88*1.

Also Va? + /3

2 = 0-1414, and therefore i = 0'0016/41 45'.
"0

Therefore we have

/!= 10 x '0016 x -266= 0-004256.

Hence for an impressed voltage of 10 volts the voltage at the far

end is 2'73 volts if the receiving end is open, and the current is

4*25 milliamperes if the receiving end is short-circuited.

5. Calculation and Predetermination of
Attenuation Constants. The predetermination of the

attenuation constant a of a given type of telephone cable is a

most important matter, because it is the value of this quantity
that determines the speaking qualities of the cable. The funda-

mental formula for a is,

V \ {
^C^+F^2

) (Sz+p^+BS-ptLc}
. (17)

In this formula 7^ must be given in ohms, L in henrys, C in

farads, and S in mhos or the reciprocal of ohms, and p is 2?r

times the frequency of the current.
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Mr. H. R. Kempe has pointed out 1 that this formula is not

very convenient for calculation, because in the majority of cases

the quantity ^(R* + p
2L2

) (S* + p
2
C~) + RS is so nearly equal to

2)
2LC that a large error may be made in taking their difference

unless each is worked out to many decimal places. Also it is more

convenient to have a formula in which we can insert the value

of II in ohms, C, in microfarads, L in millihenrys, and the

reciprocal of S in ohms; that is the insulation resistance per

mile, naut, or kilometre in ohms, as given directly by measure-

ments. He has therefore changed the above expression for a

into another equivalent one as follows :

v c* I zumzzzzr 2007?a=/ v
/^+ (5^)2_5^+Jl+o-000128V^+ (5L

>2

)
. (18)

In the above formula p is taken as 5000 and C is to be

understood as the capacity in microfarads, L as the inductance

in millihenrys, R as the copper resistance in ohms, and r as the

insulation resistance in ohms, all per mile or per kilometre as

the case may be.

If the cable is a loaded cable then the value of R is the con-

ductor resistance per mile phis the effective resistance of the

loading coils per mile and the value of L is the inductance per
mile of the cable plus that of the loading coils per mile reckoned

in millihenrys.

In the case of well-constructed loading coils the effective

resistance is about 6 ohms for every 100 millihenrys of inductance.

In the case of the cable itself the inductance will be about

1 millihenry per mile. For some types of dry core land cable

the value of the insulation conductivity 8 is so small that it can

be neglected. Under these conditions we have

. . (19)

For unloaded cables, and for a frequency such that p = 5000,

we shall generally have R greater than pL, or at least not very

different from it.

1 See Appendix X to a paper by Major W. A. J. O'Meara, C.M.G., on " Submarine

Cables for Long Distance Telephone Circuits," Journal lust. Elec. Eny. Lond.,

Vol. XLVI., p. 309, 1911.
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There is then no difficulty in finding the value of

VB'2+p2L'2 -pL
with a fair amount of accuracy. If, however, L is large as in

the case of loaded artificial cables, then, as we have already

shown in Chapter IV.,
-

Hence when pL/R is large and S = we have the value of the

attenuation constant a given by the expression (see p. 297),

When 8 is not absolutely zero then a somewhat more accurate

approximation is given by the expression

If the leakance S can be neglected, but if the inductance L is

small, even as small as one millihenry per mile, it is preferable

to calculate the attenuation constant by the formula

a=
/v

Cp (V^+p^-Lp) . . . (23)

rather than by the formula

As an example of the difference the following values may be

given, which were furnished by Mr. A. W. Martin of the General

Post Office in a discussion at the Physical Society on a paper by
Professor J. Perry on "

Telephone Circuits."
1 The figures

show that for the constants given the inductance of the cable

though small should be taken into account in the calculation.

The value of L, the inductance per mile of various types of

cable, is approximately as follows :

L = O'OOl henry per mile for underground cables.

L = 0*0017 ,, submarine cables.

L = 0*0032 to 0*0042 for aerial copper wire lines.

1 See The Electrician, Vol. LXIV., p. 880, March 11, 1910, for Mr. Martin's

remarks, and Proceedings of the Physical Society, Vol. XX1L, p. 252, 1910, for

Prof. Perry's paper on "Telephone Circuits."
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TABLE II.

TABLE OF ATTENUATION CONSTANTS (a) CALCULATED AND

OBSERVED. >=27m=

Constants of the Cable per mile.
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"
periods per second), which had been used originally for carry-

"
ing out some experiments in connection with the improvement

"
of transmission of speech in subterranean cables between

"
Liverpool and Manchester. Calculations were made to

"
ascertain the best disposition of the coils in this particular

"
type of cable although neither the coils nor the cable were

"
really of the most suitable type and it was found that in

"
order to provide 55 millihenrys per mile they should be

"
inserted at intervals of 1J miles. A large number of speech

"
tests were made on loaded circuits formed by means of the

" No. 7 gutta percha wire, by myself, Messrs. H. Hartnell,
" A. W. Martin, and other members of my staff. It was
"
gratifying to find that the actual improvement in transmission

" was in complete agreement with the estimates based on the
"
calculations that had been made. (By calculation the attenua-

"
tion was 0*0427 per mile, and the observed result -was 0*0419

"
per mile.) We found that commercial speech was certainly

"practicable on 105 miles of this particular type of
'

coil
'

"
loaded gutta percha wire, and our doubts as to the feasibility

"
of the

' non-uniform
'

loading for submarine cables of moderate
"
length were set at rest."

In the case of loaded cables the calculation of the attenuation

constant can be carried out by the aid of Campbell's formula

given in 8 equation 63 of Chapter IV. This formula is, how-

ever, very troublesome to work with owing to the necessity of

calculating an inverse hyperbolic function that is the value of

Cosh" 1 or Sinh" 1
for some vector.

If the loading coils are placed at such intervals that there are

nine or ten per wave reckoned by assuming that the total

resistance and total inductance per mile, including that of the

cable itself and of the loading coils, are distributed uniformly,
and also assuming a frequency such that p = 5000, then if the

value of 2/T//3 where /3
is the wave length constant is at least nine

times the interval between the loading coils, we may assume
that the attenuation constant a will be given sufficiently for all

practical purposes by a calculation made in the usual manner
with this uniformly distributed resistance and inductance. An
illustration will make this clear :
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A paper insulated cable had a resistance per kilometre of

27*96 ohms, a capacity per kilometre of 0*07455 microfarad, and

an inductance per kilometre of 0*00056 henry. Loading coils

each of 15 ohms (effective) resistance and a total or double

inductance of 0*225 henry were inserted at intervals of 1*2 kilo-

metres. It is required to find the true attenuation constant for a

frequency n such that Zim = p = 5000.

We have R = 27'96, C = 0'07455 X 10~ 6
, L = 0'00056;

S = and p = 5000.

For the line proper the propagation constant P where

P = a + j/3 t
and a and ft are calculated from the usual

formula?,

is obtained by inserting in the above expressions the values of

the R, L and C for the line itself. Hence we obtain

JP= 0-06867 +; 0-07589= 0-10234/47 51*5'.

Now the coil interval d = 1*2 kilometres. Hence

Pd- 0-12281/47 51*5' = 0*082402 +; 0-091062.

Again for the line

VR+jpL^u .74\
N
42 R-4'.

^S+jpC
Now

Cosh Pd-Cosh (0-082402 +; 0-091062)

-Cosh 0-082402 Cos 0-091062 +; Sinh 0-082402 Sin 0-091062

-0-999173+; 0-007499.

Also

Sinh Pd= 0-082146+; 0-091219= 0*122347/47 59*8'.

The loading coil impedance = Z f = R r + jpL' is equal to

15+; 1125 -1125-1/89 14'.

Also 2^ =549-48\42 8*4'.

Hence ^-
= 2-Q476\131 22*4

f

and ^rSinh P^=0-25052\179 22-2'
AA Q

= -0-25050+; 0*0027532.
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By Campbell's formula (see Chapter IV.) if P f

is the effective

Propagation constant of the loaded line we have

Cosh PYZ= CoshPdr Sinh Pel

Therefore Cosh P'd= 0-74867 +; 0-010252.

Therefore PVZ^Cosh- 1

{0-74867+ t/0'010252}

By the formula in 5, Chapter I., we have then

P'd^Cosh- 1
(1 -000120) +j Cos- 1

(0-74858)
= 0-0155+; 0-7249.

But d= 1-2 kilometres. Hence

P' =0-0129+/ 0-604

=
a'-K//3'

where a is the effective attenuation constant of the loaded line.

Accordingly a' = 0-0129

and /3'
= 0-604

2_
Therefore the wave length V = - and A/ = 10'4 kilometres.

There are therefore 10'4/1'2 = 9 loading coils per wave, and the

spacing is by Pupin's law sufficiently close.

Suppose then that the total resistance and total inductance of

all the coils is smoothed out and added to that of the line, we

shall have a total resistance of 27*96 ohms per kilometre of

line and 15 ohms due to the loading coil per 1*2 kilometre or

15/1*2 = 12'4 ohms per kilometre. Hence a total resistance

(R") per kilometre of 27'96 + 12'4 - 40'36 ohms.

In the same way the total smoothed out inductance L"

per kilometre is 0'00056 + 0'225/1'2 = 0-18806 -

henry. If

then we calculate the attenuation constant a" and wave length

constant /3" for this smoothed out cable having a total

resistance li" = 40'36 ohms per kilometre and a total induct-

ance L" 0*18806 henrys per kilometre and capacity

C = 0-07455 X 106- farads per kilometre, using the formulae

. (25)

. (26)

we find we obtain values
"= 0-0128 /T= 0-590.

The smoothed out attenuation constant a" is therefore very
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nearly equal to the effective attenuation constant a' as calculated

by Campbell's formula. It has been shown by Mr. G. A. Campbell
that if the spacing of the coils is such that there are fewer than

9 coils per wave, then the actual attenuation constant a! of the

loaded line is greater than that predicted by assuming the total

resistance and inductance smoothed out (a") in the following

proportions
1

:

For 8 coils per wave a is greater than a" by 1%
7 9/

j
' ^ /o

,, 6 3%
3 no I

>> >> ' /o

4 1fi/
>> )> >> -t*J /O

3 200% or more.

As a rule, therefore, in calculating the attenuation of loaded

lines we can proceed as follows. Assume the total resistance and

inductance of the line and the loading coils to be smoothed out

and uniformly distributed and calculate the resulting E, L, and C

per mile or per kilometre of line. Then find the wave length
constant

/3
and the wave length A. =

2?r//3 for the highest

frequency to be used in practice or for the average frequency

(800) of the speaking voice. If this wave length A is more than

eight or nine times the distance between the loading coils, then

we may proceed to calculate the attenuation constant with this

smoothed out resistance and inductance, and the resulting value

will be quite near enough to the actual measured or real

attenuation constant. We thus avoid the troublesome calcula-

tions involved in using the Campbell formula.

As an example of this calculation we may take the loaded Anglo-
French telephone cable laid in 1910 by the General Post Office,

which is furthermore described in the next chapter of this book.

The constants of this cable as given by Major O'Meara are as

follows :

CONSTANTS OF THE UNLOADED CABLE.

R 14-42 ohms per knot or nautical mile of loop.

L= 0-002 henrys
C= 0-138 microfarad ,, ,,

K= 2-4 xlO5 mhos
n= 750 #= 27TW= 4710.

1 See Dr. A. E. Kcnnelly,
" The Distribution of Pressure and Current over

Alternating Current Circuits," Harvard Engineering Journtd, 1905 1906.



252 PEOPAGATION OF ELECTEIC CUKBENTS

The cable was loaded with coils having an effective resistance of

6 ohms at 750 p.p.s. and an inductance of 100 millihenrys. These

coils were placed 1 knot (naut. mile) apart. Hence the constants

of the loaded cable were

R = 20*45 ohms per knot loop of cable.

L= 0-1 henry ,,

C= 0-138 microfarad ,, ,, ,,

S= 2-4x10" mhos ,,

Hence for n 750 and p = 4710 we have

* = ^418+ 221841. Also

Vs*+p*C* = 10"
6
A/576+ 422500.

/-|
OU

Again we have VLC= / , Zp = 471,

Accordingly the wave length constant

/-I OQ
=
4710^7 {>

= 0-542,

and the wave length A =
27T//3

= 11*6 knots.

Therefore the coils are placed about 11 or 12 to the wave and

fulfil the necessary condition.

Then, since R may be neglected in comparison with Lp and

S in comparison with Cp, we have

2

The measured value was found to be 0'0166.

6. Tables and Data for assisting Cable Calcu-
lations- The calculations necessary in connection with the

subject here explained are facilitated by the possession of good
mathematical tables of various kinds. The reader will have

seen that part of the trouble connected with them depends upon
the necessity for constantly converting the complex expression
for a vector from one form, a + jb, into another form,

>V/o
2+ 62 / tan"

1

I/a, and the reverse. To add or subtract two

complexes they must be thrown into the form a +- jb, c +- jd,

and their sum and difference are then (a +- c) + j (b + d) and
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(a c) + j (b d). On the other hand, to multiply, divide, or

power them they must be put into the form A j 0, B / 0, where

A = Va? + 62 and tan =
b/a, and B = A/c2 + d2 tan < =

d/c ;

j
and then their product or quotient is AB / -\- $, ,

/ 0(f>,

and square root ^4 / 0/2, etc. This process is somewhat

assisted by possession of good tables of squares and square
roots of numbers, or by the use of a good slide rule or of tables

of four-figure logarithms.

We can then find from a and b pretty quickly Va? + b2. It

may also be done graphically, but with less accuracy, by drawing
a right-angled triangle whose sides are a and 6, and the hypo-

thenuse is then Va? -j- b
2

.

Very useful tables of squares and square roots, as well as of

circular and hyperbolic functions, have been drawn up by Mr.

F. Castle, and are published by Macmillan & Co., St. Martin's

Street, London, W.C., entitled
"
Five-Figure Logarithmic and

other Tables." What is really required is an extensive table

of the logarithms to the base 10 of hyperbolic functions, viz.,

logio Sinh u, logio Cosh u, Log10 Tanhu.from u = to u 12,

and similar tables of logio Sin 0, Logio Cos 0, for various values

of in radians from 6 = to = 12.

We then require tables of natural sines, cosines, and tangents.
If the vector is given in the form a + jb, to convert to A / we

have to find the angle 6 whose tangent is b/a, and if given in the

form A I 6 we have to find A Cos 6 + jA Sin 6 to convert it to

the other form.

Lastly, we have to provide tables of hyperbolic functions

Sink, Cosh, Tank, Seek, Cosech, and Coth. A table of these

functions is given in the Appendix.
The most troublesome matter is the calculation of the hyper-

bolic function of complex angles, that is, finding the value of

Cosh (a -\-jb), Sinh (a + jb), etc. No tables of these of any

great range have yet been published. The author understands

that such tables are in course of preparation by Dr. A. E.

Kennelly, and will be extremely valuable. We require to be able

to find these hyperbolic functions for any vector, so that we can
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enter the table with values of a and b and find at once

Sinh (a +jb), Cosh (a +jb), etc.

At present the worker has to calculate each case for himself

by the formula given in Chapter L, viz.,

Sinh (a + jb)
= Sinh a Cos b + j Cosh a Sin b, etc., etc.

This is a tedious business, but at present there is little available

assistance.

The labour can be somewhat relieved by the use of a mechanical

calculator for multiplying and dividing numbers. This performs
the brain-wasting labour, and the operator has then only to put
the decimal point rightly.

To some small extent the calculations are relieved by the

use of the tables of Sinh (a -\-jb), etc., given in Chapter I.

The following data for various types of line and receiving

instruments will be found very useful in practical calculations

and proposed undertakings. They have mostly been obtained by

experience and measurements made in the Investigation Labora-

tory of the National Telephone Company, and for permission to

make use of them here the author is indebted to the courtesy of

Mr. F. Gill, the Engineer-in-Chief of the National Telephone

Company.
In all the following tables the standard frequency n adopted

is 796 so that 2vm = 5,000. This is sufficiently near to

the average telephonic frequency to give results useful in

practice.

It was agreed at the Second International Conference of

Engineers of Telephone and Telegraph Administrations, held in

Paris, September, 1910, that this angular velocity, p 5,000,

should be the standard one for telephonic measurements, and

that these should be made with a pure sine wave curve of

electromotive force.

In the following tables the abbreviations used are :

L.B. for local battery. An L.B. instrument is one supplied

with current from cells fitted locally.

C.B. means central battery. By a C.B. termination is untfer-

stood the combination of a central battery telephone instrument

together with exchange cord circuit apparatus which constitutes

the termination of the junction or trunk line.
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The following symbols are used in the tables :

E = resistance of line per mile or per kilometre in ohms,
L = inductance of line per mile or per kilometre in henrys,
C = capacity of line per mile or per kilometre in farads,

S = dielectric conductivity per mile or per kilometre in mhos

or reciprocal ohms,

p = propagation constant = a+j0= Vli + jpL VS + jpC,
a - attenuation constant,

p = wave length constant,

A = wave length = 27T//2,

W wave velocity
=

p//3,

ZQ = line impedance or initial sending end impedance =

VR+jpL/VS+jpC,
Zr
= impedance of terminal instrument,

jfr
= transmission equivalent

= ratio of attenuation constant

of the standard line to attenuation constant of the line compared.
It gives the length of the line telephonically equivalent to one

mile of the standard cable.

The quantities P, Z ,
Zr,

Zr/Z ,
are vector quantities. Hence

they are expressed by stating their magnitude or size and phase

angle.

The following are useful figures for terminal impedances Zr of

National Telephone Company's instruments :

L.B., II.M.T. instrument (S.L. 13), 1060 /60 ohms.

No. 1 C.B. termination, consisting of No. 25 repeater, super-

visory relay, local line, and subscriber's instrument with zero

local line, 418 /44 ohms.

Ditto with 300-ohm line, 730 /30 ohms.

The following tables contain useful data and constants for

various lines and cables :
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TABLE I. DATA OF THE MORE IMPORTANT

British

Type.
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TYPES OF LINE FOR TRANSMISSION CALCULATIONS.

Unlit.

Secondary
Constants.
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TABLE II. DATA OF THE MORE IMPORTANT

Metric

Type.
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TYPES OF LINE FOR TRANSMISSION CALCULATIONS.

Secondary
Constants.
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TABLE III.--DATA OF THE LESS IMPOIITANT TYPES OF LINE FOE TRANSMISSION

CALCULATIONS.

British Units.

Type.
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TABLE IV. DATA OF THE LESS IMPORTANT TYPES OF LINE FOR TRANSMISSION

CALCULATIONS.

Metric I'n'tt*.

Type.
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TABLE V. TRANSMISSION EQUIVALENTS.



CHAPTER IX

LOADED CABLES IN PRACTICE

1. Modern Improvements in Telephonic Cables
and Lines. The result of nearly twenty years' investigations

by mathematical physicists and practical telephonists, starting

from the date of Mr. Oliver Heaviside's first fertile suggestions,

has been to effect a great improvement in the transmitting

powers of telephonic lines by working in the direction indicated

by Heaviside, viz., that an increase in the inductance of the line

would reduce attenuation and distorsion. Although many
schemes were put forward for increasing the inductance of the

line by enclosing it in iron, and several alternative proposals, such

as those of Professor S. P. Thompson, for placing across it

inductive shunts, it cannot be said that the suggestions bore

much practical fruit until after Professor Pupin's important
contribution to the subject by his proposal to locate the induct-

ance in equispaced loading coils, coupled with a practical rule

for their effective spacing. The result of this has been that

practical experience has now accumulated to a considerable

extent in connection with the two methods of carrying out the

Heaviside-Pupin recommendations, viz., increasing the induct-

ance of the line by uniform loading and increasing it by loading
coils at intervals.

The uniform loading consists in wrapping or enclosing the

copper conductor in iron wire in such a manner that the

magnetic flux produced around it by the telephonic currents is

increased, with a corresponding increase in the effective induct-

ance, and therefore diminution of the attenuation constant, with

more or less reduction in the distorsion of the wave form produced

by the line.

Three cases present themselves for consideration, viz., aerial
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or overhead lines, underground cables, and submarine telephonic

cables. We shall describe briefly what has been attempted and

achieved in each case. The improvement of telephony con-

ducted through overhead or aerial conductors has been effected

solely through the use of loading coils. Aerial lines are not

adapted for uniform loading. It would involve a great increase

in the weight per mile and necessitate stronger cables and more

expensive supports, and also offer greater surface to wind and snow.

The writer is not aware that it has ever been tried. On the

other hand, aerial lines are well suited for loading coils, since

these can be attached at intervals to the posts which carry the

line.

So far, then, uniform loading has been restricted to under-

ground cables and to submarine cables, whilst the non-uniform

loading or application of loading coils has been extensively

tried on underground lines, and in a few cases, but with great

success, in the case of under-water cables.

In respect, however, of the improvement gained or to be

gained in the case of aerial lines and underground or under-

water cables respectively, the following remarks of Dr. Hammond
V. Hayes in a paper read before the St. Louis International

Electrical Congress are important
l

:

11 In the case of cables there is a distinct improvement in the
"
quality of the transmission produced by the introduction of

"
the loading coils, the voice of the speaker being received more

"
distinctly. The high insulation which can be maintained at

"
all times on cable circuits renders it possible to introduce

"
loading coils upon the circuits without danger of materially

"
augmenting leakage losses. The marked diminution in

"
attenuation, the improvement in quality of transmission, and

" the ease with which inductance coils can be placed on cable
"
circuits without introducing other injurious factors, such as

"
leakage or cross-talk with other circuits, renders the use of

"
loaded cable circuits especially attractive."
" The reduction of attenuation that can be obtained by the

" introduction of loading coils on air-line circuits, even under

1 See reprint of this paper in The Electrician, Vol. LIV., p. 362, December 16th,

1904, "Loaded Telenhone Lines in Practice."
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<k

theoretically perfect conditions, is less than can be obtained on
"
cable circuits. This difference in the effectiveness of loading

" between the two classes of circuits, as far as attenuation is con-
"
cerned, can be explained by the fact that on a cable circuit the

"
capacity is large and the inductance of the circuit itself is

"
practically negligible, due to the proximity of the two wires of

"
the pair. On aerial circuits, on the other hand, the distance

" between the outgoing and return wire is such as to make the
"
capacity of the circuit much less, and its inductance much

"greater. This larger self-induction of the open-wire circuit
"
operates to decrease the attenuation, and, as it were, to rob the

"
loading coils of part of their usefulness. Again, the insulation

"
of an aerial circuit cannot be maintained as high as that of a

"
cable circuit, so that the added inductance due to the intro-

" duction of loading coils upon the line tends to increase the
"
losses due to leakage."
"
Moreover, there is not the same improvement in the quality

"
of transmission on a loaded aerial circuit, as compared with a

"
similar circuit unloaded, as is found between loaded and

" unloaded cables. Initially, open-wire circuits are practically
"

free from distorsion, whereas the distorsion on cable circuits of
"
long length is considerable. The addition, therefore, of loading

"
coils to aerial circuits cannot be expected to effect any improve-

"
merit in the quality of transmission, whereas in the case of

"
cables the introduction of the additional inductance renders

"
the circuits practically distortionless and effects a marked

"
improvement in the clearness of the transmitted speech."

It is perhaps well to point out here that the two qualities

essential in telephonically transmitted speech are sufficient

fondness or volume of sound and clearness or distinctness. Both

these qualities are necessary for intelligibility. There may be

clearness, but the speech may be so faint that only people with

exceptionally good hearing can comprehend it. On the other

hand, there may be loudness but not clearness, and the speech is

then also not intelligible. The loss of volume is due to the

attenuation generally, but the loss of distinctness to the differ-

ence in the attenuation of the different harmonic frequencies and

consequent distorsion of the wave form.
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In the case of the aerial lines the want of loudness in the

transmitted sound is chiefly due to the resistance of the line, and
in so far as this is the cause it cannot be much alleviated by the

introduction of inductance. It is only the attenuation which

arises from distributed capacity which can be reduced by added

inductance. In cables, on the other hand, the predominant
cause of the attenuation is, generally speaking, capacity, and it

is therefore appropriately remedied by the introduction of

inductance.

Nevertheless experience shows that some advantage is gained

by the introduction of loading coils into aerial lines.

2. The Introduction of Loading Coils into
Overhead or Aerial Lines. The effect of introducing
inductance coils of low resistance into aerial lines has now been

FIG. 1. Loading Coil used in the Berlin-Magdeburg Aerial

Telephone Line.

tried on several long lines, and found to be an advantage. These

coils take the form of a closed iron circuit-choking coil having a

laminated or iron wire core, covered over with a low resistance

wire.

The general form of coil and core and leading-in sleeve may
be seen from the diagram in Fig. 1, which represents the coils



LOADED CABLES IN PEACTICE 267

used on the first German line so treated, viz., the Berlin-

Magdeburg line, 150 km. in length. The coils were mounted on

an arm together with a vacuum lightning arrester, mounted in

parallel with the coil.

After a preliminary trial on the Berlin-Magdeburg line it was

decided to equip a longer line, and the Berlin-Frankfort-on-Main

was chosen, as the distance is about 580 km. (= 360 miles).

A new bronze wire, 2'5 mm. in diameter, was accordingly run.

Also between the terminal points there existed two other bronze

wires, one 4 mm. in diameter and the other 5 mm. All lines

were double wire lines. The inductance or loading coils were

inserted every 5 km. on the 2'5-mm. line. The effective

resistance of each coil was 8'7 ohms, and its inductance O'll

henry. Hence the coils add 3*48 ohms to the resistance, and

0*044 henry to the inductance per kilometre of loop or distance.

The general result as regards speech transmission was that,

whereas before loading the speech volume on the 2'5-mm. line"

was of course less than that on the 5-mm. and 4-mm. lines,

after loading the loaded 2'5-mm. line was better than the 4-mm.
unloaded line, but not quite so good as the 5-mm. unloaded line.

The following are the constants and attenuation constants of

these four lines at a frequency of 900 :
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capacity wire to wire in microfarads per kilometre of loop ;
a is

the attenuation constant per kilometre of loop.

The loaded 2'5-mm. line is equivalent to an unloaded 4'7-mm.

line of the same material.

The product of the attenuation constant and the length of the

line, called the attenuation length, is as follows :

1. For the 5-mrn. line al = 0'95,

2. For the 4-mm. line al = 1*52,

3. For the 2'5-mrn. line unloaded al = 3*43,

4. For the 2'5-mm. line loaded al = 1*12.

The smaller the attenuation length al the better the speech-

transmitting qualities of the line. It is generally considered

that a line permits excellent talking when al is not more than 2*5,

and fair speech when al does not exceed 3*5. Hence the 2*5-mm.

unloaded line is efficient, but becomes better on loading.

It has been agreed that with an ordinary copper line joined

directly to the telephonic apparatus the relation between speech

and attenuation length al is as follows :

Speech up to Attenuation lengths </.

equal to

Very good ,, ,,
2*5

Good 3-5

Practical limit at 4-8

This corresponds to about forty-six miles of the National

Telephone Company's standard cable when using the standard

type of central battery instrument and circuit at either end of

the line, and a subscribers' line of 300-obms resistance.

The result therefore of loading, in the above manner, the

Berlin-Frankfort-on-Main 2'5-mm. line has been to effect a

sensible increase in the speech efficiency of the line.

Previously to the equipment of the above long distance line

experiments had been tried on the Berlin-Magdeburg overhead

line, 2-mm. bronze wire, 150 km. in length.

This line was equipped with loading coils having an effective

resistance of six ohms and an inductance of 0'08 henry placed

every 4 km. The result was better speech than that over

a 3-mm. bronze wire 180 km. in length running between the

same places.
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Also between Berlin and Potsdam (32*5 km.) on certain lines

coils of 4*1 ohms and 0*062 henry were introduced every 1/3 km.

The result was an increase in the inductance per km. of two

hundredfold and a reduction of the attenuation constant to

one-sixth of that of the unloaded line.

In loading an aerial line or a cable it is, however, necessary to

make arrangements to avoid losses by reflection at the point

where the loaded line joins on to an unloaded or terminal line.

It has already been ex-

plained that when a i-o

telephone wave passes

across, the junction of

two lines which differ

considerably in induct-

ance or capacity per

unit of length there is

a reflection of energy
which acts to produce
an increased attenuation

in certain cases. In

practice the effect of

reflection is very con-

siderable, particularly
when the loaded section

is relatively not long.

Theoretically this reflec-

tion can be eliminated

by the introduction of

a perfect transformer at

0-4

0-3

C-2

c-i

400 COO 800 1,000

Length of Line.
1,400

FIG. 2. Curves showing effect of loading
Coils on an aerial line 435 Ibs. to the
mile (H. V. Hayes).

every point of discontinuity in the line ; practically it is best over-

come by the employment of what is called a terminal taper. This

consists in a series of several inductance coils placed near the ends

of the loaded section, each one having somewhat less inductance

than the preceding one and less than that of the coils in the main

loaded section. Hence the inductance per mile or per kilometre

is not suddenly changed, but reduced gradually or tapered off

from that in the loaded section to that in an unloaded line. The

spacing of the coils in the taper is the same as that in the
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main part of the loaded line. This taper is introduced at

both ends.

The effect of taper and loading is well shown in some curves

which have been given by Dr. Hammond V. Hayes in an

interesting paper
1 entitled

" Loaded Telephone Lines in Practice."

The coils used were toroidal in shape, about 10 inches in diameter

and 4 inches high, and had an effective resistance of 15*5 ohms

at 2,000 periods per
second, but only 2'4

ohms steady resistance

and an inductance of

0'25 henry. On aerial

circuits such coils are

placed about two miles

or so apart, so as to give

an inductance of about

O'l henry per mile.

The curves in Fig. 2

show the effect of such

loading on an aerial line

weighing 435 Ibs. to the

mile. Curve 1 shows

the decrease in current

at the receiving end for

various lengths when the

line is unloaded, curve 2

when the transmitting

and receiving instru-

ments are connected to the loaded line without taper, and

curve 3 the same when the line is tapered at both ends.

The curves in Fig. 3 show the same results, but for a line

consisting of wire 176 Ibs. per mile, and, as before, curve 1 shows

the attenuation of the unloaded line, curve 2 of the loaded

untapered line, and curve 3 the loaded and tapered line. These

curves show clearly that for short lengths of line loading is not

1 Read before Section 6 of the St. Louis International Electrical Congress, 1004
;

also see T/te Electrician, December 16th, 1904, Vol. LIV., p. 362, or Se-lenre Abstract*,

VII. B, Abs. 2,968, 1904,

400 600 800 l.OCO

Lcnyth of Line.
1,200 1,400

FIG. 3. Curves showing effect of loading
on an aerial line 176 Ibs. to the mile

(H. Y. Hayes).
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beneficial, but, on the contrary, reduces the received current con-

siderably. This is because the added resistance increases the

attenuation constant at first more than the added inductance

reduces it.

3. Loaded Underground Cables. As already

remarked, the benefits to be expected from loading a line either

continuously or at intervals are likely to be more pronounced in

the case of cables than

of aerial lines, for the

reason that the capacity

per mile is always

greater in the case of

cables, and therefore its

peculiar effect in pro-

ducing attenuation and

distorsion is capable of

remedy by suitably
introduced inductance.

Moreover, in under-

ground cables there are

no particular difficulties

involved in introducing

the inductance coils

when spaced impedance
is added. The coils can

be of any convenient

size and can be located

in small watertight chambers placed at regular intervals on

the line.

Dr. Hammond V. Hayes has given in the same paper (loc. cit.)

some curves for loaded cables similar to those above given for

aerial lines.

Fig. 4 shows the result of loading a telephone cable having a

pair of wires each 0'03589-inch diameter and a resistance of

96 ohms per mile of circuit (double wire circuit). The capacity

is 0'068 microfarad per mile. The inductance added by the

loading coils amounted to about 0'6 henry per mile.

40 60 80 100 120

Length of Line.

FIG. 4. Curves showing effect of loading
on a Telephone Cable (H. V. Hayes).
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Curve 1 in Fig. 4 shows the attenuation on the unloaded

cable, curve 2 the same for the loaded cable without taper, and

curve 3 the attenuation for the loaded and tapered line. It will

be seen that the effect of loading without taper is to reduce

greatly the sending end current and to increase the received

current beyond a certain length of line.

The effect of loading with taper is to reduce somewhat the

sending end current, but

to greatly increase the

received current beyond
short distances when

compared with the un-

loaded line.

A comparison of

curves 2 and 3 shows

how great a factor the

reflection losses are be-

tween the terminal

apparatus and the loaded

line and how important
it is to employ taper

to reduce these losses.

In Fig. 5 are given two

curves. Curve 1 is the

attenuation curve of

unloaded line, and

10

0-9

0-8

07

06

0-5

0-4

0-3

0-2

01

60 80 100

Length of Line.
140

FIG. 5. Curves showing the effect of loading
on a Telephone Cable (H. V. Hayes).

an

curve 2 for the same

line lightly loaded and without taper. It is seen that the reflec-

tion losses are much reduced, and that when no taper is employed
it is easily possible to overload the line detrimentally.

The results of loading as far as the cable itself is concerned

can be predicted by means of the formulae given, but it is less

easy to foresee the exact results when tapering is not employed.
Hence in those numerous cases in which a loaded trunk cable

has aerial lines connected on at both ends the importance of

introducing suitable taper is very great.

The necessity for maintaining good insulation on loaded

cables is discussed in a later section of this chapter. Meanwhile



LOADED CABLES IN PRACTICE 273

it may be stated that loaded underground cables have been

extensively employed by the National Telephone Company in

Great Britain with great advantage.
The type of impedance coil adopted after careful experiment is

FIG. 6. Loading or Inductance Coil

(without case) as used by the
National Telephone Company of

Great Britain.

shown in Fig. 6. It consists of a choking coil having a closed

magnetic circuit formed of fine soft iron wire and overlaid with

silk-covered insulated copper wire. The finished toroidal coil

has an overall diameter of about 4*5 to 5 inches, and a central

aperture of about T5 inches, and a depth of nearly 2 inches.

FIG. 7. A Diagram showing the mode of Winding the

Loading Coil in two parts and their insertion in the

two sides of the Cable.

The effective resistance of such a coil may be from 3*5 to 15

ohms for currents of 1,000 frequency, and the inductance may
be from 0*06 to 0'25 henry. Each coil is wound in two parts,

one-half being inserted in the lead and one in the return (see

Fig. 7).

B.C. T
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The following table gives the data of some of the coils

employed :

DATA FOE LOADING COILS.

Loading.
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the problem of applying these methods to under-water cables

presents peculiar difficulties. Any considerable enlargements on

a submarine cable must not only add to its weight and to the

strains experienced during laying, but may also increase the

difficulties of laying very greatly. It was therefore with some

hesitation that telegraphic engineers approached this particular

work, and it was only when the great and certain improvements
made by loading land lines had clearly established beyond doubt

that submarine telephony must be equally improved, if the

mechanical difficulties of making and laying such a cable

could be overcome, that the matter was taken seriously in hand.

Even then it was felt that the difficulties of manufacture

and laying of a continuously loaded cable might be less than

those of a loaded cable, and the first efforts seem to have been in

this direction.

The continuously loaded cable has, however, two disadvan-

tages as compared with the non-uniformly loaded cable. It is

undoubtedly more expensive to make, and it is not possible to

predict with any certainty the attenuation constant of a cable so

made. This arises from the impossibility of determining
beforehand the permeability of the iron wire which is laid over

the core to increase its permeability, and also from changes
in that permeability during and after laying, and also from the

unknown increase in the effective resistance of the core which

results from the iron wire envelope due to hysteresis and eddy
currents.

The general construction of a continuously loaded cable is as

follows : The copper core is insulated and overlaid with several

windings of fine iron wire, and this is insulated either with

gutta-percha or with paper. If the latter is used, then a

continuous lead covering has to be put over the paper to keep
it dry, and over that protecting layers of jute or hemp and then

the usual steel armouring. The iron wire laid over the copper
then increases the inductance to a certain extent not easy to

foretell accurately. Cables on this plan have been laid in

Germany and Holland, and the following details and table are

taken from a valuable paper by Major O'Meara, C.M.G.,

Engineer-in-chief of the British Postal Telegraphs, read before

T 2
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the Institution of Electrical Engineers of London in November,

1910,
" On Submarine Cables for Long-distance Telephone

Circuits."

Major O'Meara states that the first continuously loaded cable

having the copper conductor wrapped with a layer of 0'008-inch

iron wire on the plan devised by Mr. C. E. Krarup, the

Engineer-in-chief of the Danish Telegraph Service, appears to

have been that laid by the Danish Government, in November,

1902, between Elsinore and Helsingborg.
1 Mechanical and

electrical data of this cable are given in the table. The dielectric

was gutta-percha, and, except in respect of the iron wrapping,
the cable did not differ materially from the ordinary type of

submarine cable. This was followed, as will be seen from the

table, by various paper-insulated cables having the conductors

wrapped with a single layer of 0*012-inch iron wire. The cable

distinguished by the letter E in the table on p. 278, was

laid in July, 1904. Each copper conductor consists of a

central wire about 0*089 inch in diameter surrounded by three

copper strips each 0*094 inch wide and 0*020 inch thick. The

sectional area of the copper is approximately 0*0124 square

inch, and the weight per knot 285 Ibs. The iron wrapping con-

sists of three layers of 0'008-inch wire, and the insulator is

gutta-percha having an external diameter of 0*354 inch. The

four cores are laid up with an inner serving of tanned jute

and an outer serving of tarred jute yarn to a diameter of 1*18 inch,

and sheathed with fifteen galvanised iron wires of roughly trape-

zoidal section. The external covering appears to be the usual

tarred yarn and compound.
The electrical constants of the cable per knot from Mr. Krarup's

figures are given on p. 277.

Of the paper-insulated lead-covered cables the Dano-German

telephone cable laid between Fehmarn and Lolland in 1907 may
be taken as representative. The copper conductor with its

triple soft iron wire wrapping is precisely similar to that used in

the Seeland-Samso-Jutland cable described above. The insulator

consists of paper cord laid on in an open spiral followed by a

1 " Modernc Telefonkabler," by C. E. Krarup, Elektroteltnilieren, December

10th, 1904.



LOADED CABLES IN PEACTICE 277

close wrapping of paper ribbon up to a diameter of 0*303 inch.

Four of the cores so formed are stranded together with the

necessary worming and then covered with paper to a diameter of

0'787 inch. The diagonal distance apart of the cores, centre to

centre, is 0*413 inch. The core after being thoroughly dried is

next sheathed with two layers of lead alloyed with 3 per cent,

of tin, each layer being 0'055 inch thick. The lead sheath is

seamless, watertight, and continuous throughout the entire

length of the core. Outside the lead sheath is a double layer of

asphalted paper and a layer of jute and compound. The armour

consists of thirteen galvanised iron wires or strips of trapezoidal
,. /0-315+0-252 . ,\

section f 5
- x 0-157 square inch), and over this is a

double layer of jute and compound.

Resistance.

Ohms per Knot of

Conductor.

Capacity.

Microfarads per Knot of

Conductor.

Inductance.

Steady
Current.
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A great difference seems to exist between the attenuation

constants of continuously loaded cables as actually measured

and that which theory would predict so far as the measured data

allow. Thus for a cable made for the Danish Telegraph Service

continuously loaded with three layers of iron wire 0'0079-inch

diameter the observed attenuation constant was 0*0296, whereas

that calculated from certain data as to the permeability of the

iron was !

0197.

An additional objection to continuous loading by envelopes of

iron wire is that it increases the capacity by increasing the

diameter of the conductor. Also, in the opinion of experts, its cost

is about twice as great as that of Pupin loading for equal effect.

Accordingly attention has more recently been directed to the

question of designing under-water cables loaded with Pupin coils

at intervals, and two successful examples of this are the loaded

lead-covered telephone cable laid by Messrs. Siemens and Halske

across Lake Constance in 1906 and the loaded submarine tele-

phone cable laid by the British Postal Telegraph Department in

1910 across the English Channel between Abbotscliff, in England,
and Grisnez, in France.

The Lake Constance cable is about 9J miles long. The
maximum depth of the cable is 138 fathoms, at which depth the

pressure is about 25 atmospheres. The cable contains seven

speaking circuits, and these cores are enclosed in insulation and

covered with steel armour, over which a continuous coating of

lead-tin alloy is pressed and then a jute covering and a second

armour. The loading coils are cylindrical and are slipped over

the cable and connected in circuit with one conductor. The

capacity wire to wire is 0*038 microfarad per kilometre, and

the inductance, including loading coils, is 0*20 henry, and the

effective resistance is 33*5 ohms per kilometre at a frequency
of 900. The attenuation constant is 0*0072 per kilometre. For

details of the work of laying and other information, which, how-

ever, is rather sparse, the reader is referred to an article on this

cable in The Electrician, Vol. LIX., p. 217, 1907.

The Anglo-French loaded Four-core telephone cable of 1910

laid by the British Post Office across the English Channel,

represents at present (in 1911) the latest achievement in the



280 PROPAGATION OF ELECTRIC CURRENTS

laying of loaded submarine cables, and the following is a

description of this cable taken verbatim from Major O'Meara's

valuable paper on the subject :

" The features of the device for loading in the accepted tender

are as follows :

" The two double coils required for the four conductors of the

cable, each coil being of slightly less than 6 ohms resistance and

having an inductance of 010 henry at 750 periods per second,

are inserted at intervals of 1 knot (1*153 miles), but the two

coils nearest the ends of the cable are inserted at a distance of

only half a knot from the terminal apparatus, as experiments
have shown that in this arrangement reflection losses are con-

siderably reduced. Each double coil consists of two windings on

the same iron core, and one winding is connected in series with

each conductor (see Fig. 9). By this means the gradual change
in permeability in the iron core due to ageing will not affect the

balance in the two limbs of the telephone circuit. Each coil is

protected with a sheet of metal foil in order to exclude all possi-

bility of the silk covering of the wires of the coils absorbing
moisture from the cylindrical envelope of gutta-percha in which

they are contained. The cores of the cable are connected to the

envelope at its two ends by tapered solid gutta-percha joints.

The diameter at the centre of the envelope is 3 inches, and at the

cores where the joints terminate 1 inch. An annular rubber

distance-piece is inserted between the two coils of a set to give

greater flexibility. The total length of the joint is 30'75 inch.

As the diameter of the cable at the points where the coils

are inserted is increased, a larger number of sheathing wires

are required at those points than over the conductors alone.

This difficulty is ingeniously overcome by starting a second

layer of sheathing wires over the cores, about 27 feet from

the centre of the coil envelope, and gradually working them into

a single layer with those over the bulge. Finally, they are

terminated as a second layer again over the cores at a distance

of about 27 feet from the centre of the coil envelope. The method

adopted in inserting the coils (British Patent Specification

No. 5,547, March, 1907) will perhaps be understood from the

diagrams (Fig. 9)."
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The following is the Post Office specification for the cable,

arrived at after most careful consideration of the problem by the

technical experts of the department :

SPECIFICATION FOR ANGLO-FRENCH SUBMARINE TELEPHONE

CABLE.

1. Conductors. The conductor of each coil shall be of an

approved stranded type, shall weigh not less than 160 Ibs. per

knot, and shall at a temperature of 75 F. have a resistance not

higher than 7 '452 standard ohms per knot for a conductor of

this gauge. The lay of the stranded conductor shall be left-

handed.

2. Insulator or Dielectric. The conductor of each coil shall be

insulated by being covered with three alternate layers of Chatter-

ton's compound and gutta-percha, beginning with a layer of the

said compound, and no more compound shall be used than may
be necessary to secure adhesion between the conductor and the

layers of gutta-percha. The dielectric on the conductor of each

coil shall weigh not less than 300 Ibs. per knot, making the total

weight of the conductor of each coil when covered with the

dielectric not less than 460 Ibs. per knot.

3. Inductive Capacity. The inductive capacity of each coil of

such insulated conductor (hereinafter called the core) shall not

exceed 0*275 microfarad per knot, and this shall apply equally to

the completed cable.

4. Insertion of Loading Coils. The loading coils will be

inserted so that diagonal cores in the cable will be used to form

a loop or pair, each pair of cores to be fitted with loading coils

equally spaced at such distances apart and of such inductance

and effective resistance as will make

(a) The volume of speech transmitted over a pair of wires in

the completed and laid cable at least equal to that

through one-seventh of the same length of standard

cable, not including terminal losses
1

;

1 Standard cable is that having a wire-to-wire capacity for each pair of wires of

0-054 microfarad per statute mile, a loop resistance of 88 ohms per statute mile,

and an average insulation resistance of not less than 200 megohms per statute mile

wire to wire.
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(/>) The quality of speech or articulation not inferior to that

of the speech throughout the standard cable equivalent
1

of the loaded cable pair.

5. Interference. The two loaded cable pairs to be free from

telephonic induction or interference, the one from the other,

and also from external disturbance from a contiguous cable.

6. Labelling. Each coil of core before being placed in the

temperature tank for testing shall be carefully labelled with the

exact length of conductor and the exact weight of copper and

dielectric respectively which it contains.

7. Insulation Iicsistance. The insulation resistance of each

coil of core, after such coil shall have been kept in water main-

tained at a temperature of 75 F. for not less than twenty-four

consecutive hours immediately preceding the test, shall be not

less than 400 nor more than 2,000 megohms per knot when
tested at that actual temperature, and after electrification during
one minute. The electrification between the first and the second

minutes to be not less than 3 nor more than 8 per cent., and to

progress steadily. The insulation to be taken not less than

fourteen days after manufacture.

Each coil of core may be subjected, before the ordinary

insulation test is taken, to an alternating electromotive force of

5,000 volts and 100 complete periods per second for fifteen

minutes.

8. Preservation. The core shall during the process of manu-

facture be carefully protected from sun and heat, and shall

not be allowed to remain out of water.

9. Joints. All joints shall be made by experienced workmen,

and the contractor shall give timely notice to the Engineer-in-

chief or other authorised officer of the Postmaster-General

whenever a joint is about to be made, in order that he may test

the same. The contractor shall allow time for a thorough testing

of each and every joint in the insulated trough by accumulation,

and the leakage from any joint during one minute shall be not

more than double that from an equal length of the perfect core.

1 By the standard cable equivalent of any loop is meant the number of statute

miles of loop in a standard cable through which the same volume of speech is

obtained as through the loop under test.
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10. Taping and Serving. The cores to be four in number, and

to be stranded with a left-handed lay, and during the process of

stranding be wormed with best wet fully tanned jute yarn, so

that the whole may be as nearly as possible of a cylindrical form,

and shall then be covered (1) with cut cotton tape prepared with

ozokerit compound, (2) with pliable brass tape 0*004 inch in

thickness and 1 inch in width, and (3) with another serving of

cotton tape, similar to the first, the lap in each case being not

less than 0'250 inch.

The cores, prepared as above specified, shall then be served

with best wet fully tanned jute yarn, sufficient to receive the

sheathing, hereafter specified, and no loose threads shall, in the

process of sheathing, be run through the closing machine. The

cores so served shall be kept in tanned water at ordinary tempera-

ture, and shall not be allowed to remain out of water except so

far as may be necessary to feed the closing machine.

11. Sheathing. The served core to be sheathed with sixteen

galvanised iron wires, each wire having a diameter of 280 mils,

or within 3 per cent, thereof above or below the same. The

breaking weight of each wire to be not less than 3,500 Ibs., with

a minimum of ten twists in 6 inches. The length of lay to be

18 inches, and to be left-handed.

The wire to be of homogeneous iron, well and smoothly

galvanised with zinc spelter. The galvanising will be tested by

taking samples from any coil or coils, and plunging them into a

saturated solution of sulphate of copper at 60 F., and allowing

them to remain in the solution for one minute, when they will be

withdrawn and wiped clean. The galvanising shall admit of this

process being four times performed with each sample without

there being, as there would be if the coating of zinc were too thin,

any sign of a reddish deposit of metallic copper on the wire. If,

after the examination of any particular quantity of iron wire, 10

per cent, of such wire does not meet all or any of the foregoing

requirements, the whole of such quantity shall be rejected, and

no such quantity or any part thereof shall on any account be

presented for examination and testing, and this stipulation shall

be deemed to be and shall be treated as an essential condition of

the contract. Before being used for the sheathing of the cable,
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the wire shall be heated in a kiln or oven, just sufficiently to

drive off all moisture, and whilst warm shall be dipped into pure
hot gas-tar (freed from naphtha). The iron wire so dipped shall

not be used for sheathing the cable until the coating of gas-tar is

thoroughly set. No weld or braze in any one wire of the sheatli

shall be within six feet of a weld or braze in any other wire. All

welds or brazes made during the manufacture of the cable shall

be regalvanised and retarred.

12. Compound and Serving. The sheathed cores shall be

covered with two coatings of compound and two servings of

three-ply jute yarn, the said compound being placed between the

two servings and over the outer serving of yarn aforesaid, the two

servings of yarn to be laid on in directions contrary to each

other.

The compound referred to in this paragraph shall consist of

pitch 85 per cent., bitumen 12J per cent., and resin oil 2^ per

cent., and the yarn referred to shall be spun from the best

quality of jute, and shall be saturated with gas-tar freed from

acid and ammonia, the yarn being thoroughly dried after

saturation and before being used, so as to have no superfluous

tar adhering.
13. Measurement and Marks. A correct indicator shall be

attached to the closing machine, and a mark to be approved

by the Engineer-in-chief shall be made on the cable at the

termination of each knot of completed cable, and also over each

joint or set of joints.

14. Laying. If the tender for laying be accepted, the contrac-

tors shall provide the necessary cable-laying ship and all

appliances and all apparatus in connection therewith for the

laying and testing of the cable during the laying operations.

Facilities must be provided for inspection of the work, if con-

sidered necessary, by an officer of the Postmaster-General

during the progress of the laying operations.

The cable to be laid over the course shown by the dotted

red line on the accompanying Admiralty chart, or as hereafter

agreed upon.

On completion of the laying operations the spare cable left

on board is to be delivered at the Post Office Cable Depot,
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Dover, or paid out and buoyed in the sea near Dover, as may
be directed by the Engineer-in-chief.

15. The contractors are required to guarantee that the com-

pleted cable shall reach and maintain the standard laid down

in the specification, and before final acceptance the cable shall

be subject to such tests and experiments as the Postmaster-

General may deem necessary during the manufacture, laying,

and for a period of thirty consecutive days from the completion
of the latter.

Major O'Meara states (loc. cit.) that
"
the investigations

that had been made left little doubt concerning the balance

of advantages in favour of the
'

coil
'

loaded type of cable

from the electrical standpoint, but as the expenditure involved

was very great, and as it was felt that the main difficulty in

connection with this type of cable would be in safely Ia3
7ing

the cable at the bottom of the sea, it was considered that

special precautions were necessary to ensure that the responsi-

bility for any defects that might be disclosed after it had been

laid should be definitely traced to the responsible party. To

afford the necessary protection to the department, it seemed

desirable to stipulate in the specification that the manufacturers

of the cable should also undertake to lay it, and to hand it

over in situ. This course was approved by the Postmaster-

General, and the invitations to tender were issued on these

lines. The conditions were accepted by Messrs. Siemens Bros.

& Co., who were the successful tenderers.
"

It will be recognised that the mechanical problem in connec-

tion with this type of cable was more difficult to solve than the

electrical problem, as it was necessary that the part of the cable

containing the coils should be so designed that it could be paid

over the sheaves of the cable-ship without any risk of damage to

the coils themselves. However, Major O'Meara said he was glad

to say that the manufacturers succeeded in solving this problem
in a most satisfactory manner.

" The cable was under the constant supervision of the Post Office

Engineering Department during the period of its manufacture,

and electrical tests were carried out from time to time. On

January 18th, 1910, after the completion of the cable, measure-
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merits to determine its attenuation constant were made at the

works of Messrs. Siemens Bros. & Co. at Woolwich. The con-

ductors of the cable were joined up so as to provide a metallic

circuit of 41*704 knots, and in order to get rid of terminal effects

artificial cable was joined to tha ends of the loaded cable

as shown in Fig. 10.

Current was supplied to this circuit by a generator giving 1*585

volts at a frequency of 750 alternations per second. Eeadings
were taken on a thermo-galvanometer placed successively at A
and 13, and the attenuation constant was calculated by the

formula /a = Ii f~ al
-

"With ten miles of
' standard

'

cable (attenuation constant

0'1187 per knot) at each end of the circuit the current values at

Artificial

Cable

A<- 41-704 Knots

FIG. 10.

.1 were found to be 0*327 milliampere, and at B 0*172 milliam-

pere, a therefore being 0'0154.

"With fifteen miles of
' standard

'

cable at each end of the

circuit the current values at A were found to be 0*212 milliam-

pere, at B 0*110 milliampere, from which we similarly obtain

a 0-0152.
" The volume of the speech transmitted over the loaded cable

was also compared with that over an artificial
" standard

"
cable,

the electrical constants of which are known. The result of these

tests indicated that the attenuation constant of the loaded cable

was 0*0147."

The table on p. 288, given by Major O'Meara, supplies the

details of the primary constants of this cable both with loading
coils inserted and without them, and it also shows the attenuation

constants before and after loading.

Mr. W. Dieselhorst was entrusted by Messrs. Siemens Bros,

with the actual operation of laying the cable, and Mr. F. Pollard,

Submarine Superintendent, Dover, was detailed to watch the

interests of the Post Office.
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For the full details of the laying of this cable and the manner

in which the engineering difficulties were overcome in the manu-

facture and laying by the contractors, Messrs. Siemens Bros.,

the reader must consult Major O'Meara's admirable paper on

the subject in the Journal of the Institution of Electrical

Engineers.

The photograph reproduced in Fig. 11 is taken by permission

from Major O'Meara's paper (loc. cit.), and represents the passing
of a loading coil in the 1910 Anglo-French cable over the sheaves

of the cable-ship Faraday during the process of laying the

cable. It will be seen that the type of loading coil adopted does

not render the cable to any extent cumbersome and unhandable.

The constants of the cable and some numerical values con-

nected therewith both for the unloaded cable and for the cable

with loads are very approximately as follows :

Unloaded Cable Loaded Cable

per nautical mile. per nautical mile.

E=14-42 ohms, ^= 20'45 ohms,
L= 0-002 henry, =01 henry,
C=-138 X 10- 6

farad, C= 138 x 1Q- 6
farad,

S=24 X 10- 5 mhos. S=2-4 x 10~ 5 mhos.

Hence for the loaded cable we have

Vti*+p*L*= ^418+ 2217841

2C2 =10- 6 A/576+ 422,500

Therefore for the loaded cable

a=y --
nearly =^/_=.016 (approximately);

= 4,710 = "542.

Hence
X=-|Wll'6nauts,

1=204-5 |=169

IRC /s 1Q ,'BC.
and a=

V-2-A/C
=1Vir
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The loading coils, being 1 naut apart, are therefore at the rate

of eleven or twelve per wave for the standard wave length,

corresponding to a frequency of ahout 800, and the spacing

complies with Pupin's law.

As regards the practical improvement introduced by the

loading coils in the above cable the following quotation from

Major O'Meara's paper (loc. cit.) is interesting and important.
He said :

" The cable has been under continuous observation since it was

laid, and a large number of tests have been carried out. Par-

ticulars of some of them are given in an appendix. It has

fortunately been possible to obtain independent testimony on the

question of the increase in the range, and in the improvement in

the quality of speech transmitted by means of the loaded cable

as compared with a similar cable unloaded. Speech tests were

made in July last by Messrs. W. E. Cooper, W. Duddell, F.E.S.,

W. Judd, and J. E. Kingsbury, and the results are interesting.

The cable was looped at the French end (Cape Grisnez), and the

English ends were connected to two telephone sets, one installed

in the cable hut at Abbot's Cliff and the other in the coastguard
look-out shelter some 100 feet distant. Graduated artificial cables

were provided so that the listener at the cable-hut could insert

various values of the
' standard

'

cable into the circuit until his

own limit of satisfactory audibility was reached. It was possible

to insert the
* standard

'

cable values equally at the two ends of

the cable (i.e., so as to form a symmetrical circuit in relation to

the submarine cable), or unequally, as desired. The results

shown in the table below were obtained.

Observer listening.



292 PKOPAGATION OF ELECTRIC CURRENTS

" The mean gain by the use of the new cable is therefore seven-

teen miles of
' standard

'

cable for the standard of audibility

accepted as commercial by the four observers named. When
the cables were alone in circuit some of the observers noticed

that in the case of the new cable there was a distinct improvement
in the quality of the speech as compared with the old cable.

" The employment of unloaded 800-lb. copper aerial conductors,

such as are in use for the most important long-distance trunk

circuits in this country, will render it possible for very satisfactory

conversations to take place from call-boxes between centres in

England and on the Continent when the added distances from

the ends of the cable do not exceed 1,700 miles; that is to say,

with land-lines of this description well-maintained conversations

between London and Astrakhan on the Caspian Sea would be

possible. In his inaugural address to the Institution,
1
Sir John

Gavey included a table of equivalents of the various types of

unloaded conductors. It may be assumed that in practice aerial

conductors of the smaller gauges can be improved by loading

twofold, and the conductors in cables threefold, so that it is not

difficult to determine the centres between which the new Anglo-
French telephone cable will provide communication, assuming
that a particular type of conductor is employed to complete the

circuit."

5. Effect of Leakance on Loaded Cables.
A brief reference has already been made to the influence of

leakance in the case of loaded cables upon the value of the

attenuation constant in connection with the doubt thrown upon
the possibility of effectively loading gutta-percha insulated cables.

This question is important, and must be considered a little more

at length. It has been dealt with in a paper by Dr. A. E. Kennelly
to which reference has already been made, viz.,

" On the Distri-

bution of Pressure and Current over Alternating Current

Circuits
"

(see Harvard Engineering Journal, 1905 1906),

under the heading
" Effect of Dielectric Losses on Loading."

Dr. Kennelly discusses this matter as follows :

1 See Sir John Gavey's Inaugural Address, Journal of the Institution of

Electrical Engineers, Vol. XXXVI., p. 26, 1905.
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Let the conductor impedance of the cable, viz., the quantity
E +jpL, be denoted by Zc / 6C as a vector. Then, equating

the sizes, we have

Z^Rt+ptL* and tan Oc=^.
The ratio Lp/R may be called the reactance factor of the

conductor at the angular velocity p.

Also the dielectric admittance of the cable, viz., the quantity
$ + JpVt may be denoted as a vector by YD / D ,

and hence

r^SH^C2 and tan D= .

>

The ratio of the susceptance Cp to the dielectric conductance S
at a particular angular velocity p may be called the susceptance
factor of the cable, although cable electricians generally deal

more with the quantity -^
as the ratio to be measured. In any

case - is the tangent of the angle of slope of the vector YD .

Loading a circuit obviously increases the slope of the vector

impedance Zc . This is particularly noticed in the case of

telephone cables, in which when unloaded the reactance factor

-- at a frequency of 800 or for p 5,000 may be of the order of

0'03 to 0'05, and the vectorial angle 6C may be 1 30' or 2'0 or

so. On the other hand, if there is no dielectric loss S is zero,

and the slope of the admittance vector is 90, since then its

tangent Cp/S is infinite. In such cases we may theoretically

diminish the attenuation constant without limit by increasing

the inductance of the line per unit of length. For the attenuation

constant a is the real part of the product of ^R-\-jpL and

+ jpC. The reader should remember that to square-root a

vector we have to square-root its size and reduce the slope to

half, whilst to obtain the product of two vectors we have to

multiply the sizes and add the slopes. Hence, leaving out of

account sizes, we may say that if L and S are both very small,

then the slope of the conductor impedance vector is nearly zero,

and that of the dielectric admittance vector is nearly 90. Hence
the vector representing the square root of their product, or the
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propagation constant, has a slope of 45. If we keep S small, but

make L very large, then the slope of both impedance and

admittance vectors is nearly 90, and the square root of their

product, or the propagation constant, has also aslope of nearly 90.

Hence its horizontal step, or real part which is the attenuation

constant, will be small. If, however, S is large, the slope of the

admittance vector is much less than 90 and that of its square
root much less than 45, and hence even if the slope of the

impedance vector is 90 the slope of the propagation constant is

something considerably less than 90, and that means that the

attenuation constant cannot be reduced to zero. In fact, if S is

not zero, but has an appreciable value, then it is useless to load

the cable beyond the point at which Lp/R becomes equal to

Cp/S. For the attenuation constant

and if we consider 7i, S, C, and p to be constant and L variable

it is very easy to prove in the ordinary way by finding the

differential coefficient -=- and equating it to zero that the

/nriD

above expression for a has a minimum value when L = -n ,

in other words when -^=-5?, that is when Oc
= D ,

or when
1 O

the cable is distorsionless. If then there is sensible leakance in

the dielectric the attenuation constant a cannot be reduced below

the value a =VSE which it has when the cable fulfils the

Heaviside conditions, L/E = C/S, for being distorsionless. It

follows then that in the case of loaded cables great care must be

taken to keep the leakance S very small, or nearly zero. This

accounts for part of the difficulty of loading aerial lines.

If we write down the already-given formula for the attenuation

constant a of a cable, viz.,

it is easily transformed into

If then =P
>
we have a
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If S is absolutely zero, then by making pL or L sufficiently

large compared with R we can reduce the value of a indefinitely.

But if S has a finite value, then beyond a certain point, viz.,

Q
when L =

R-^,
we do not decrease, but actually increase, the

value of a.

Accordingly, although in perfectly insulated lines we may
with advantage increase almost indefinitely the inductance,

provided we do not increase the resistance at the same time;

yet in imperfectly insulated lines there is a limit beyond which

increase of the inductance increases instead of diminishing the

attenuation constant.

The table on p. 296, taken from Dr. Kennelly's paper on " The

Distribution of Pressure and Current over Alternating Current

Circuits," shows the difference produced in loading a line of abso-

lutely zero leakance up to 200 niillihenrys per kilometre and the

same loading for a line having an insulation resistance of 10,000

ohms per kilometre, or a leakance of 10~ 4 mhos per kilometre.

In the first case the loading produces a remarkable reduction

in the attenuation constant, and in the second case it produces

very little.

It is abundantly clear, therefore, that a loaded cable must be

a well-insulated cable if we are to obtain the benefit of the loading
in the form of a small attenuation constant.

It is this fact, combined with the large dielectric current

of gutta-percha-covered cable, which threw doubt originally

upon the possibility of effectively loading submarine telephone

cables insulated with G.P, But these doubts have been re-

moved by the success of the 1910 Anglo-French Channel

telephone cable.

It is, however, essential to secure good insulation for the

loading coils themselves in underground telephone cables. The

practice of the National Telephone Company in this matter is to

build underground pits at regular intervals of a mile or two, as

the case may be, and place in these cast-iron watertight boxes in

which are contained the highly insulated loading coils.

The lead-covered paper-insulated cable enclosing many strands

or separate pairs of conductors passes through this pit (see
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Fig. 8), and the coils are connected into the different circuits.

In this manner good insulation is secured for the line and coils.

The attenuation constant of the loaded line can always be

calculated very approximately by the formula

This formula is arrived at in the following manner :

By the binomial theorem we have for the expansion of a

binomial (a + n)
n the series

If n =
,
then

- 1
x-\

^

~"

an~ 2 n2 +etc.

---{-etc.
2 a

Hence if x is small compared with a, so that we can neglect_ _ SY*

powers of x/a, we have v a + x = v a + ; /^ nearly.

Accordingly, if R is small compared with pL and S is small

compared with pC, we have

_ o o

and VS2+/2C2

=jpC+2^.

Since, then, 2 2 = VR*+p*L*VS*+p*C+SR-p*LC, it follows

that when R/pL and S/pC are both small quantities compared
with unity we have

or a =

Accordingly the attenuation is greatly affected by the value

of SIC.

No really satisfactory method has yet been found for measuring
the value of the leakance S or the ratio S/C for telephonic

frequencies, but it is found that by taking S/C=8Q this formula

gives attenuation constants which are in close agreement with
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observed values for loaded cables. Thus, in a discussion on a

paper by Professor Perry on "
Telephone Circuits," Mr. A. W.

Martin, of the General Post Office, gave some useful measure-

ments confirming this result for loaded cables.

Cables of various lengths were loaded with iron-cored inductance

coils, each having effective resistances of 5'4 ohms at 750 fre-

quency and 15'0 ohms at 2,000 and 3'5 ohms for steady currents,

also an inductance of 0'135 henry per coil. These coils were

inserted at various intervals in a line of conductor resistance

18 ohms per mile of loop, and capacity 0'055 m.f.d., and induct-

ance 0*001 henry per mile of loop. The attenuation constants

were then calculated from the above formula, taking S/C = 80,

and they were also measured, and the results were as follows :

Interval

between
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took place at the Physical Society of London on a paper by
Professor Perry in 1910 (see The Electrician, March llth, 1910,

p. 879), and also a longer and even more important discussion

which took place at the Institution of Electrical Engineers on

the paper by Major O'Meara on " Submarine Cables for Long
Distance Telephone Circuits" (see The Electrician, Vol. LXV.,

p. 609, 1910, and Vol.'LXVL, pp. 375, 417, 419, 589, and 615,

1911), in which all the leading experts in telephony and

telegraphy in England took part.





APPENDIX.

The table below is taken by kind permission from a paper by
Dr. A. E. Kennelly, published in the Harvard Engineering

Journal, May, 1903.

TABLE OF SINES, COSINES, TANGENTS, COTANGENTS, SECANTS AND COSECANTS
OP HYPERBOLIC ANGLES.

The Sines, Cosines, and Tangents have been taken from Ligowski's Tables

published in Berlin in 1890. The Cotangents, Secants, and Cosecants have been

deduced from the preceding quantities.

H.
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TABLE OF SINES, COSINES, TANGENTS, COTANGENTS, SECANTS AND COSECANTS
OP HYPERBOLIC ANGLES. continued.

u.
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TABLE OF SINES, COSINES, TANGENTS, COTANGENTS, SECANTS AND COSECANTS
OF HYPERBOLIC ANGLES. continued.

u.
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TABLE OP SINES, COSINES, TANGENTS, COTANGENTS, SECANTS AND COSECANTS
OF HYPERBOLIC ANGLES. continued.

u.
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TABLE OP SINES, COSINES, TANGENTS, COTANGENTS, SECANTS AND COSECANTS
OF HYPERBOLIC ANGLES. continued.

u.
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TABLE OF SINES, COSINES, TANGENTS, COTANGENTS, SECANTS AND COSECANTS
OP HYPERBOLIC ANGLES. continued.

u.
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TABLE OF SINES, COSINES, TANGENTS, COTANGENTS, SECANTS AND COSECANTS
OP HYPERBOLIC ANGLES. continued.

u.
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TABLE OF SINKS. COSINES, TANGENTS, COTANGENTS, SECANTS AND COSECANTS
OF HYPERBOLIC ANGLES. continued.

11.
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TABLE OF SINES, COSINES, TANGENTS, COTANGENTS, SECANTS AND COSECANTS
OF HYPERBOLIC ANGLES. continued.

It.
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