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Errata MH-10

In the second coliimn below, the unstarred integers indicate

the number of lines from the top of the page, while the starred

integers indicate the number of lines from the bottom.

Page No « Line No » Corrections

^ , . It!
5 3)hs5 -The expressions in A ^ A and A. should

be set equal to zero.

^ ii* -Replace H x 7 x H by H x (v x H)

.

7 8" In the matrix equation (2,9), the entry

1/2
[0, H in the second row and third column

^ 1/2
should be \x ' B .

9 1 -Replace cos 9 in equation (3.8) by |cos ©[.

10 6,7 -Replace ... in the ranges r < l/2

l/2<r<l, r = l l<r<2, r>2...
by ,.. in the ranges r < l/2, 1/2 < r < 1,

i" = 1, 1 < r < 2, r > 2 ..i

.Replace yC= tan"-'"(l/2) by^* « tan*'-^(2).

^Replace ... slow branch by iit slow or

Alfven branches*

-Replace . , , we introduce 9 as ... by

, . , we introduce 9 , < 6 < n, as . .

,

u — u — '

-Replace (c./u) on the right margin hy (-c./u).
/V A

-Replace p • Va and p in equations (U.20),

(U.21) and (li.22) by p . Va and p, respectively,

dp*
19 2,3,6 -In the ^ equations of (U,23)-(li.25),

replace pxVx[ ] andpxVx()
by p x-f V X [ 11 and p X [v X ( )1

respectively, -^

21 2* -Replace ± (^ /p)^^^ E.(t-t^) by i(p./p)^/^
sgn(H ) H(t-t^),

j-O -Av

16
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Page No . Line No. Correction

21 1^ -A curly bracket is missing in the right member

of (U.36). It should have the form...
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ABSTRACT

A theoretical discussion is given of the propagation of weak hydro-

magnetic discontinuities (e.g., weak shocks) in an infinitely conducting,

perfect, compressible fluid. The undisturbed flow is assumed to be steady

and isentropic. It is shown that, in general, six wave fronts will evolve

from a given initial manifold. As in geometrical optics, these wave fronts

are constructed by means of rays. In addition, formulas are derived, describ-

ing the variation of the discontinuity "strength" of a given propagating

mode along rays associated with that mode. In the special case where the

undisturbed state is homogeneous, simple explicit formulas are given for

the wave fronts evolving from an arbitrary initial manifold and for the

strength of the disturbance on these fronts. These results are employed to

solve a mixed initial boundary-value problem that has been designed to

illustrate i) a method of producing hydromagnetic disturbances and ii) the

fact that an initial disturbance gives rise, in general, to several propa-

gating waves.
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I. INTRODUCTION

We shall be concerned here with the propagation of (smt.ll) hydi'omagnetic

cistiirbances (e.g., weak shocks) in a perfect, compressltle, Infinitely con-

ducting fluid. In treating such waves thf basic hydrornagnetic equations

(see S. Lundqulst and K.O. Friedrichs ) may be linearized. Then, as was

pointed out by Friedrichs , the resulting set of equations shares with

Maxwell's equations and the linearized equations of gas dynamics the

property of being a symmetric -hyperbolic system of linear partial differ-

ential equations. Disturbances governed by such equations are propagated

with finite speeds. The common mathematical structure of the three systems

suggests the possibility of treating the hydrornagnetic equations by a

method that has been successfia in treating the others; namely, the method

of R.K. Luneberg^ and J.B. Keller . In this work, we ehall employ this method

to study the propagation of weak hydromagnetic discontinuities. Our analysis

k
will be patterned chiefly after the work of J.B. Keller .

The basic problem to be treated in this paper (Part l) is: Let )J denote

the boundary of a disturbance at time t = t . For the sake of concreteness,

it may be imagined that the disturbance lies wholly within a closed region

boiinded by v/ ° and that the complementary region is undisturbed. If we

assume that the state of the undlstiirbed medium ajid the 'strength' of the

initial discontinuity are known, the problem is i) to determine the wave fronts

evolving from ^° - there will be six of them, in general - and ii) to find

how the strength of the discontinuity varies with time on each of these fronts.

1. S. Lundquist, Arkiv f. fysik, ^, 297(1952).

2. K.O. Friedrichs, Nonlinear Wave Motion in 1-fe.gneto-hydrodynamics , Los Alamos

Report No. 2105 (written 195^, distributed 1957). See also a later version

of this work by K.O. Friedrichs and H. Kranzer, Report No. MH-8, AEC Com-

puting and Applied Math. Center, Inst, of Math. Sci., N.Y.U. (1958)-

3. See, for example, the lecture notes by R.K. Lvmeberg, Mathematical Iheo^r of

Optics , Brown University (19^^+); Propagation of Electromagnetic Waves , Hew

York University (19^9).

h. J.B. Keller, J. Appl. Phys. 25, 938(195^).



A second group of problems, to be treated in Part II of this series, in-

volves the reflection and refraction of small disturbances at curved svirfaces

of discontinuity in the undisturbed flow. The basic problem is to determine

the hydromagnetic analogs of Snell's laws and to obtain the reflection and

transmission coefficients. In general, one encounters the phenomena of multiple

reflection and refraction. Conical refraction is also possible when the Alfven

speed coincides with the sovmd speed (see the end of Section IV).

In the last decade, work on linearized, compressible hydromagnetic flow

has been confined mainly to the study of continuous time-harmonic wave motion.

The investigations of N. Herlofson^, H.C. van de Hulst , A. Banos, Jr.^ - to

mention Just a few of many - typify this approach to the subject. The fact

that compressible hydromagnetic motion admits of essentially three modes of

propagation was pointed out by Herlofson and van de Hulst in these papers.

The first to treat the propaestlon of small hydromagnetic discontinuitiec

2directly appears to have been Friedrichs who catalogued the various types

of disturbance waves and described the wave fronts emanating from a point

disturbance. Two recent works dealing with propagation phenomena as

well as with other aspects of hydromagnetic wave motion are a paper by

8 Q
G.B. Whitham and a report by H. Grad .

5. N. Herlofson, Natxzre I65, 1020(1950).

6. H.C. van de Hulst, Interstellar Polarization and Magneto-^rdrodynamic

waves . Appears in Problems of Cosmical Aerodynamics , p. k6 (Central

Air Documents Office, Dayton, Ohio, (1951).).

7. A. Banos, Jr., Phys. Rev. 97, 1^+55(1955); Proc. Roy. Soc. A, 233, 550(1955)-

8. G.B. Whitham, Comm. Pure Appl. Math. 12, (1959).

9. H. Grad, Propagation of Magneto -bydrodynamic Waves without Radial Attenixation

Report No. NYO 2-537, Inst, of Math. Sci., N.Y.U., (1959).
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Our discussion begins with a Bvanmary of the relevant hydromagnetlc

equations and a listing of the three basic types of propagating disturbances

(Sections II and III). In Section IV the noticns of rays and wave fronts are

introduced. The surface of wave normals and the reciprocal surface, Fresnel's

ray sxrrface, are analyzed. The use of rays to construct wave fronts is explained.

In the special case where the undistiirbed flow is constant, explicit formulas are

given for the wave fronts evolving frcan an initial manifold. A graphical method

for constructing these wave fronts is described. The section ends with a de-

scription of an ancanalouB sort of propagation which is closely related to the

phenomena of conical refraction. In Section V, we state and sketch the deri-

vation of the formulas giving the variation of the discontinuity strength of

a given propagating mode along the rays associated with that mode. Sections

IV and V contain the main theoretical results of the paper. In the final

section, we give an application of the theory. The problem discussed is related

2
to a non-linear problem treated elsewhere by the K.O. Friedrichs and later

by J.Bazer''-^. This problem illustrates i) how weak hydromagnetic distur-

bances may be produced and ii) the fact that an initial discontinuity requires

for its 'resolution', in general, more than one propagating mode.

10. J. Bazer, Ap. J. 128, 686 (1958).
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II. LINEARIZED EQUATIONS OF HYDRC^IAGNHnC MOTION

1. Linearized System of Partial Differential Eqxiations

In dealing with the linearized system, it is necessary to distinguish

between the qiiantities that characterize the basic flow and small variations

of these quantities. If A is a basic-flow quantity (scalar, vector or dyadic),

then we shall employ A' to denote its (small) variation.

U
The following is a list of basic-flow quantities used in this paper »,

p: mass density,

T = p : specific volume (volxme per vaait mass),

p: pressxire,

e: specific internal energy,

S: Specific entropy,

u: fliild velocity,

H: magnetic intensity,

n: magnetic inductive capacity of free space,

E: electric intensity. E = (i^ x u In an Infinitely conducting medium.

All basic-flow q\iantities are assimied to be continuous and to have continuous

partial derivatives. By adding primes on p, t, etc. we obtain the corres-

ponding list for the variational quantities.

In standard dyadic notation the linearized system of partial differential

equations that governs the motion of a perfect, infinitely conducting, com-

1 2
presslble fluid is (cf. Lundquist and Friedrichs ):

11. The rationalized MKS Giorgl system of \mits is employed throughout.
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V • H' = 0,

H^ + V .(uH-Hu)' = 0,

A'

^

[1pu)']^ + v[^' + I (H^)^ + v.- [^(pu)-up]'L A^ (2.1)'

p^ + V
•Kp\j)J,

A^

[("ps)^ + V . [7pus)^, Aj;

p' = p p' + PqS' (variational equation of state). A*
p o ^

In these equations, the subscript 't' denotes partisLL differentiation

with respect to time and

(aA)' = o^A'

(A+B)' = A' + B' (2.2)

(A*B)' = A' * B + A * B'.

Here, a is a scalar constant (i.e., is independent of space and time vsLriahles )

,

A and B are arbitrary scalar, vector or dyadic qusmtities, and '»
' is any

scalar, vector or dyadic-type multiplication such that A*B makes sense.

If we ignore the primes, we recover the usual hydrcmagnetic equations.

For the saie of simplicity it will be assumed henceforth that the mediimi

is a polytropic gas and that the basic flow is steady and isentropic . Thue,

the basic flow is governed by the equations

V . H = 0, A^

Vx(ux H) = 0, A^

P'a • "7^^+ Vp + \xEX V X E = 0, Ag (2.1)

V • (pu) = 0, Aj

S = ccnstant (independent of x and t), A.

P = )\.P'^, A^



where >^ depends only on s, and y is the ratio of specific heats.

The assimrption of isentropy implies that

S' = , (2.5)

Vp' = V(p D' + p„S') = V(p p') {2.\)
p o p

The relation (£.5) replaces Aj| ahove.

2. Linearized Discontinviity Relations

In writing down the above system of equations, we have tacitly assumed that

the varlationail quantities are sufficiently regular - continuous with contin-

uous space and time-derivatives. When the variational quantities are dis-

continuous across some surface, it is necessary to supplonent these equations

by an appropriate set of discontinuity relations; specifically, by the linear-

ized hydromagnetic analogs of the Rankine-Hugoniot relations of gas dynamics.

For the purpose of discussing these relations, the following notation will

be employed:

/ (t): a surface of discontinuity at time t,

n = n(x): the xmit normal at points x on x/(t),(see equation (2.6) below),

U = U(x): the velocity of ^(t) at x (see (2.?))

U: the magnitude of U (see (2.7)')

u = u-n: the normal component of the fluid velocity at x on V(t),

H = H«n: the normal conrponent of the magnetic intensity at x^ on x/ (t),

1/2 -1 1/2
a ai (p )

' = (7PP )
'

: the speed of sound in a polytropic gas,

c = U-u : the velocity of v (t) along n relative to the normal fluid velocity,

5A = AJ-A': the Jump in the variation A* across /(t). A' is the value of A'

on the side of /(t) into which n points; A' is the value on the
-» o

other side,

6A^ = (A[-;£')*n: here. A' is a vector. 5A is the Jump of A^* in the normal

direction.



If

0(x,t) « 0, (2.5)

is the equation of J(t) then n and U are defined, respectively, as follows:

n = V0 / |V0|, (2.6)

U = -(0./ lV0|)n, (2.T)
AM. b AU

SO that

D = - 0^ / |V0|. (2.7)'

Qaploying a local coordinate system on ;4 (t) with the x-axls along

n we may express the linearized jump relations as follows;

5H = 0, 5A. (2.8)

the matrlcial system

1/2
-P c
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a^5p , it c ^

2 bJ^ (2.11)
a 6p+Pg6S, if c = .

^

To derive equations (2.8)-(2.1l) from (2.1); substitute V(a^p') for

7p' in (2.1) '-A^ (see (2.k)) and then replace the operators ( ) , V( ) and

V • ( ) by -U6( ), n6( ) and n • 5( ), respectively, and use 6A, to simplify

12
5A^ . A Justification of this formal procedure may be obtained by means of

elf a

the usual pill-box type argument applied to moving surfaces (cf. J.B.Keller ).

Another method would be to expand the explicit solution of the non-linear

Jump relations with respect to a suitable shock strength parameter and to retain

only the lowest order terms. This procedure has been carried out for a poly-

tropic gas by J. Bazer and W. Ericson ,

III. WEAK ffifDROMAGNETIC DISCONTINUITIES

Equation (2.9) may be rewritten as follows:

MR = XR, X =. p-'-Z^c (5.1)

In this equation, M represents the matrix in equaticn (2.9) with the diagonal

terms deleted and R is the column vector (n/p) ' 5H ,i\i/p) ' bE ,5u ,6u ,5u ,a6p/p

Using (3.1)^ we conclude that if a weak discontinviity R appears across yf (t)

then It is an eigenvector or possibly a combination of eigenvectors of the

matrix M. Since M is symmetric, it has a complete set of six mutually ortho-

gonal eigenvectors. In this section we shall tabulate these solutions and

discuss some of their properties.

All solutions will be referred to as modes ; however, only those solutions

associated with non-zero eigenvalues will be called w;aves or propagating modes.

32. Equation 5A, does not appear because it is an identity.
x,n

33. J. Bazer and W. Ericson, Ap. J. to be published May (1959). See also report

MH-8 of the Division of Electrcoiagnetic Research, New York Ifaiv., (1958).
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The secular equation associated with equation (5.1) is

« Det.(M-/p cl)

= (pc -t^r) -Kp c -(pa +nr)pc +pa uH~

= (pc%Hf)J( p=%a^)(pc%H^)-pc2n(H2-H^)

(3.2)

The zeros of this equation evidently occur in pairs + c' where c' > 0. Let

c. S b
A n (^bJ ,-V^^ (5.5)

- the so-C£Llled AlfVen disturbance speed - be the non-negative zero of the first

factor in the second (or third) line of (5.2) and let c^
(*^siow^

^"^
'^f ^^fast^

be the smallest and largest zeros, respectively, of the last factor. Then from

(5.2) it follows that

r

< c < Min.— s — a.b
' n

< Max. ]ei,h < c«.

Moreover, setting

and

r = a /b ,

we can easily show that

ll/2

^ =
^ I

(1+r) -
I

[7l+r)2-Jfr cos^I]

I
(1+r) -

I [7l-r)2 + kr sin^ej^
^

1/2

1/2

(5.J*)

(3.5)

(5.6)

(3.7)

— B cos 9, (3.8)
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^ -
j I

(1+r) +
I

[7l+r)2 - kr cos^ej^ ^l (3.9)

I
(1+r) + I l^l-r)^ + kr sin^el

In these equations, Is the angle between n and H. Figure 1 is a plot, on

polsir coordinate paper, of c /b, c./b and c_/b against © for several vsilues

of the parameter r. The curves of Figures la), lb), Ic), Id) and le) are

typical of curves that correspond to values of r in the ranges r < ^ ,

^<r<l, r = l, l<r<2, and r > 2, respectively. By rotating each

figure about the H-axis we obtain a siirface in three-space which is called

the s\irface of normal speeds .

In the table on the following page, we have listed the various types

of wave-mode solutions of equation (2.9) • Some contact discontinuities - i.e.,

solutions associated with c = - are also listed; but only those that are

connected to the wave modes by a limiting process. The reader is referred

2 15
to Friedrichs and Bazer and Ericson for a discussion of other contact

discontinuities; no use will be made of these in the sequel.

The quantity € in the table is a (small) dimensionless non-zero number.

The vectors n* and n are two mutually perpendicxilar imit vectors tangent to the

surface of discontinuity associated with the given mode of propagation. The

direction of n or of n* may be chosen arbitrarily thus fixing the direction of

the other except for sign. Given the direction n, then as we pointed out

earlier, there are two solutions associated with each of the speeds c , c.

and c_, one corresponding to a normal motion of X) (t) (with respect to the

basic flow) silong n and the other in the opposite direction. This explains

the presence of the pair of signs •+', •+' in the formulas of the table; the



I
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upper sign belongs to a propagation with a component along n, the lower sign

along -n. Thus each of the first three colunms lists six mutually orthogonal

propagating modes.

Assuming that n is neither parallel nor perpendicular to H, we have

collected in column (l) all wave-mode solutions of (2.8)-(2.10). The re-

maining columns, (2)- (4), list solutions corresponding to other orientations

of n with respect to H. Ihese solutions may he obtained from the correspond-

ing solutions in column (l) by carrying out various sorts of limiting processes.

Thus, assuming r ^ 1, the solutions in boxes (1,2) and (3,5) may be obtained

simply by rotating n into H. The solution for r = 1 in box (3,3) may then

be obtained by replacing € by e/(r~ -l) and then letting r approach unity.
^"^

However the solutions of columns (2)-(4) are derived, it is easy to verify

directly that they satisfy the basic discontinuity relations (2.9)-(2.1l).

Observe that two disturbance speeds in colTmm 2 and at least two dis-

turbance speeds in column 3 are the same. Our classification of the associated

waves as slow and Alfven and Alfven and fast, etc. is therefore, strictly

speaking, an arbitrary one - to be sure, one that is suggested by limiting

processes. The fact that at least two disturbance speeds coalesce implies

that X in equation (3.1) is a multiple eigenvalue. It follows that the

associated eigenvectors need not be orthogonal although we have chosen them

to be so for convenience of calculation.

To obtain the solutions listed in colirnm (l) frcan small-disturbance

2 2
waves catalogued by Friedrichs , it is necessary to replace k by e/pc and

s

€/pc„ in his slow and fast-wave formulas and by ^/pc in his Alfven-wave

formulas. A derivation of the solutions in Table I from the corresponding

33waves of finite amplitude has been given by Bazer and Ericson

1** • A more systematic derivation (up to a constant factor of the solutions

listed in columns (2) and (3) may be described as follows: Write each
A A A

mode R (see (3. 13) below) in the form R = €r where R.R = 1. Then rotate

n into H keeping the direction n x H fixed. The limiting expressions

for the R's yield the desired results as long as r ^ 1. When r = 1,
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One feature of the solutions of columns (2) and (3) - the solutions

in which n^ is psirallel to H - deserves special notice. In contrast to

the corresponding solutions of colvnnn (l), the colionm (2)-and (3)— solutions

are unpolarized . Specifically, the directions of the tangential components of

5H in the column (l)— solutions are fixed by the directions of n and H. This

is no longer true of the column (2)- and (5)— solutions; for vhen H is parallel

to n, a wave of any polarization can propagate along H. To prove this statement,

it is necessajiy only to form a suitable linear combination of the solutions in

boxes (2,2) and (5,2) or (1,5) and (2,5) of the table according as r < 1 or

r > 1. The H-direction here plays a role similar to that of an optic axis in

a doubly refracting crystal.

Hereafter, when we speak of a disturbance D on an initiaJ. surface J ,

we shall mean a six-vector,

D° = [7m/p)^/^6H°,(h/p)^/26H°,5u°,6u°,5u°, a5p^/^, (5. 11)

that may be represented as a sian of the form

D° = Rg + R; + R^ + R^ + rJ + R^. (5.12)

In these eqviations, 6H , 6H , 5u , etc., are prescribed (small) jumps of H ,y z n y

H , u , etc., across y . The R's are modes expressed in the form

R = [^|i/p)-'/^6Hy,(n/p)'-^^5H^,5u^,6u^5u^,a6p
/p
J. (5. 15)

+ + +

The values of 5H , 6H , 8u are to be chosen from the appropriate row and

colimm of the table, with proper heed being paid to the choice of the upper

or lower sign. The representation (5.12) may be obtained by making use of

the orthogonality properties of the R's and adjusting the e's in a suitable

manner I^ t= o for some R, that R is a absent in (3.12),

If it is desired to take into account contact discontinuities not connected

with the solutions listed in colimin (l) by means of a limiting process, it is
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+ + +

necessary to add a 6S-conrponent to the D and R , R . and R„ •» vectors and

to add a contact-discontinuity mode - R say - to the right member of

eqxiations (5.12).

IV. RAYS AND WAVE FRONTS

1. Surface of Wave Normals

Assuming 0.(x,t) ^ 0, we may write the equation 0(x,t) = (see (2.5))

as follows:

0(x,t) = W(x) - (t-t ). (k.l)^ '* o

The surfaces W(x) = constant are called wave fronts.

Setting"'-'

p = VW, p = |VW|, (1^.2)

we find, using the definition of n, U and c [see (2.6) and (2.?)'], that

n = p/p, {h.3)

U = 1/p, {h,k),

and

c = p"^ - (u.p)/p. (4.5)

Note that U is non-negative.

In terms of this notation, we may re-express the determinantal equation

(3.2) as

= p'^Mx,p) = p"^^i(x,p)^_(x,p);^Jx,p), {h.6)

where

15- In Sections I-III the symbol p was used to denote the pressure. Hereafter, we

shall use p to denote l^^'Wl. Ihe quantities p and p play roles similar to

those of the total and the vector momentimi variables in Mechanics - hence our

notation

.
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•^.(x,p) = (u-P-1)^ - pM(^'2.)> i = 1'2,5, (^.7)

the quantities c being defined by the equations

«! = ^A^^'S^'
C^.S)

c^ = c^(x,n). C^-IO)

The functions ^(x,p), ^^^Cx^p), ^2^x,p) and ^3(x,p) will be referred to as

the total, Alfven, slow and fast Hamiltonian ' s respectively. In equations (^.8)-

(^.lO), the right members are the (positive) disturbance speeds defined in

equations (3.7)-(3.9) t)Ut with cos^e replaced by (p-H)^/p^H^U(n-H)^/H^ . In

general, the distvirbance speeds depend on x as well as p; they are homogeneous

functions of degree zero in p.

The equation

;V(x,p) = c^.ii)

represents for fixed x a surface in p-space called the s\irface of wave normals .

Factoring the right member of (^.7), we may easily verify that this surface

consists of three branches whose equations may be obtained by setting each of

the following three pairs of functions equal to zero:

+

;V^ (x,p) = (u.p-1) + pc.(x,n) i = 1,2,5. (^.12)

Let us examine the svirface of wave normals in its simplest form - when

u = 0. Since p is non-negative, only branches ^ .(x,p) = 0, i = 1,2,5, are

•admissible'. Combining these equations with equations (J+.8)-(i4-.10) we find:

Alfven branch: p+ = ^-^ =
bJ^^ieT '

^""'^^^

slow branch: p^ = ^^^ = h'^U^) -
f

C(x,n^ , (k.lk)

s^-'-'
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fast branch: pj = ^-^ = ^'^^O^) •* | C(x,n7j''' \ {k.l^)

where C(x,n) is defined by

1 1

C(x,n) = [7l+r)^ - Mn-H)^/B^ = (7l+r)^ - i^r cos^e] . (I^.l6)

Here, 9 denotes the angle between H and p. Evidently, the wave-normal surface

is a svirface of revolution, the H-axis serving as the axis of symmetry. In

Figures 2a), b) and c) we have plotted cross sectional views of pb versus 9.

The parameter r is chosen to be l/2, 1 and 5/2. These curves may be obtained

from the corresponding curves of Figure 1 by inverting with respect to the

unit circle. The curves of Figures a) and c) are typical of the curves in

the parameter classes r < 1 and r > 1, respectively. Whatever the value of

r, the oval-like figures correspond to the fast branch; the solid straight

lines, perpendicular to the H-axis, correspond to the Alfve'n branch and the

hyperbola-like curves correspond to the slow branch. The pair of dotted

lines represent the traces on the cross section of the planes

1/?
pb|cos 9\= (1+r/r) '

, < 8 < 2it, (^.17)

to which the slow branch is asymptotic. The Alfven branch intersects the slow

branch, the fast branch or both on the H-axis according as r exceeds unity,

is less than unity or equals \mity. All branches have zero curvature on the

H-axis, as long as r ^ 1. When r = 1, both the slow and the fast branches are

singiilar on the H-axis 1 <» they have points in connnon at pb = 1, 0=0 and pb

=1, 9 = « and at each of these points form a cone of two nappes whose generators

make an angle of X = tan' (1/2) radians with the H-axls (see Figure 5b).

Any ray through the origin of p-space in the direction n intersects each

of the three branches in exactly one point unless n is perpendicular to the
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H-axis in which case there is no point of intersection with the slow branch.

To generalize these results to the case in which u ^ 0, we introduce 8 as

li-

the angle between u and p and rewrite the equations ^
i (^J^P) = 0, i = 1,2,

5, as follovs:

ri I - U7 = u cos 0^ + c^(x,n) i = 1,2,5. C+.lS)

For each i, i = 1,2,5, three cases must be distinguished: case (l), u/c. < 1;

case (2), u/c = 1; case (5), u/c^ > 1. Now we must have P^ > 0, i = 1,2,5;

it follows in case (l), the 'subsonic' case, that there can be only one inter-

section of a ray in the direction n with the i-th branch; namely, the one

corresponding to the '+' sign in (4.l8). The same applies to the case (2),

the 'sonic case', except that intersections corresponding to the rays making

an angle of = n with the u-direction are excluded. In case (5), the 'super-
u "^

sonic case', there are three alternatives. For all 6 = 6„(n) such that

< < cos" (c./u) there are two intersections; p in (^.l8) is positive

for either choice of sign. Only the positive sign leads to an intersection

when (n) is In the range cos" (c^/u) < ©^ < cos" (-c^/u). If ©^ > cos' (c^/n)

there is no intersection. It should be emphasized that both 9 and c. depend

on n so that all of the above relations are implicit conditions on n. An

explicit representation of the wave-normal svtrface could be given; but we shall

not do so here. It is enough to say, that these results may be readily under-

stood in terms of the vectorial addition of u and c.(x,n)n. The surface of
^H 1 .• •« V*

normal speeds (Figure l) is useful for this purpose.

2. Rays and Wave Fronts

Since p * VW. each of the equations
•<k J.

^~ (x.,pJ = 0, i = 1,2,5, (^.19)

i

is a first-order partial differential equation. In light of the foregoing

discussion, some of these equations are not 'admissible' in that they lead

l6. This argument closely parallels one given by J.B. Keller for the
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to negative values for p = |VW
| . Here, and hereafter it vlll be asstmed that ve

are dealing with admissible equations .

As is well known, first-order partial differential equations can be solved

by means of rays . Rays are simply curves in x-space that are obtained by solving

a system of ordinary differential equations In (x,p) space. If the time t is

chosen as the curve parameter, this system may easily be shown to take the following

form :

d^ ^^y
dt " /v „ ^ ' (^.20)

P

A

7a
P

" ' '
J~;~?r

'

* i *o
• (^-21)

Note
, A

^ die
P • dt = ^' t > t^ (^^.22)

with this parametrizatlon.

A
In these equations, ^ represents any one of six Hamiltonian factors

introduced in ih.l2) and x, p denote its arguments. The symbols V and V/>^ * p
are, respectively, the gradient operators in x and p-space. Executing the Indi-

A +
cated calculations for each ^^ = ^ ^ , 1 = 1,2,5, we obtain the following pairs

of ray systems:

17. Cf. R. Courant and D. Hilbert, Mathematlsche Physik , (Springer, Berlin, 1937)

Vol. 2, p. 82. Let w = W(x), p = VW and suppose ^ (x,w,p) = 0. According

to the general theory, the ray system associated with this first-order partial

differential equation is: |^ = VJ^ ; ||: = -(v;y+^^); 5^ = P -^^^ • Iden-

tifying w (cf. equation (i+.ll)) and (J'with t-t , ve obtain a system of the same

form as th?,t given in (4.20) and (if. 21).
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Alfven
— Rays

+ 1
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at points, x ^ t {i^,i^) ot J by solving the system of eqiiations

L -^ - 0, (4,27)

r • ^ = 0, (..28)

:?)(x°,p°) = 0. ik.29)

Equations (4.27) and (4.28) express the fact that p is normal to )/° at

X « f {i^,i^). Ttxey define a line through the origin of p-space whose inter-

sections with the branch ^ (x ,p) = determines two wave normals p and -p .

(As to whether these wave normals exist or not, see cur earlier discussion in

subsection 1,

)

2) Next obtain a solution of each system of ray equations corresponding

to each pair of initial values. Fixing on a given pair - (x ,p ) say - we

must find a solution of equations (4.20)-(4.21) of the form

X = F(|^,l2,t-t^), t > t^, (4.50)

such that

F(|^,l2,0) - f°(li,l2^ ° 5°* (^-52)

Ohis is the standard initial value problem for the system (4.20)-(4.2l). According

to the generaJ. theory it is always possible to obtain a solution in sufficiently
A

small neighborhoods of the point x = f (6,,5o) ^ ^>'(x,p) is continuous and

has continuous partial derivatives of no less than the second order and if
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XbX
sffsr^

-I

v.^
^

?^ {k.3h)

t«t
o

- i.e., if the initial ray-direction is not parallel to / st x . This

requirement is also a sufficient condition for the system {k.Zj)'{k.29) to

be solvable for p (provided of course that ^ = represents an admissible

branch)

.

5) Equation (4.50) expresses at each time t the equation of the wave

front in parametric form. The condition (4.5^) enables us to solve for t-t ,

1^ and Ip in the right member of (4. 50) in terms of the components of x in the

left manber. The resulting equation for t-t as a function of x yields the

equation of the wave front in the non-parametric form of eq\iation (4.1).

h) The above recipe applies to the case in which the surface ^f

shrinks to a point; but here, eqviations (4.2?) and (4.28) must be ignored.

5. Special Cases: Graphical Construction of Wave Fronts; Fresnel's Ray

Surface; Conical Propagation

5-1 Graphical Construction of Wave Fronts. In this and in the next two sub-

sections it will be assumed that p, H are constant and u = 0. Let svf ° be

a small neighborhood of the initial s\irface J°, located at x°. Let n° denote the

unit normal at x°. Then, it follows from equations (4, 25) -(4. 25), that i)

n = p/p is constant in each of the ray systems; ii) n = + n depending upon

whether forward or backward propagating waves are being considered and iii)

the rays axe straight lines whose equations are:

Alfven rays: x - x** «= + in/pn^ H(t-t ), (4.55)
•4* <«te "^ -*» Q

b2r(H J^)
Slow rays: x - x" = + c^n" + __-S_ (g - h ^n^Xt-t^), (4.56)
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Fast rays: x - x° = + c^° + 32 (H - H n°) (t-t ). (^.57)

In these equations, c , c_ and C are constant on the rays; they depend on
S X

orientation of n° with respect to H [see (^.7)-(5.9) and (4.16)^ which, as

we have seen, is constant. In geometric terms l)-lll) ahove tell us that

the six elemental wave fronts, into which 6v splits, are carried along their

rays parallel to themselves and to 5 / .

Alfven wave fronts evolving from J are especially easy to describe. For

the sake of concreteness let us assume that V is a sphere. Then i/ splits

1/2
up Into two congruent spheres propagating along H with velocities (n/p) ' H and

-(n/p) ''^, respectively, (see Figure 5a). In short, Alfven wave fronts

18
propagate one-dlmenslonally

To learn how to construct the slow and fast wave fronts, let us turn to

Figure 3b. In this figure, s/. represents the element of the wave front that,

at time t, has evolved from 6 v alo^g the fast forward ray passing throxigh ^ .

It is assumed that H and n lie in the plane of the page; hence so does the ray-

segment x-x° (see equation (^.57)). The line i is the trace, in the plane

of the page, of the tangent plane to 6 V ^ • Ite point y is the intersection

of the line through x and perpendicular to /; - i.e., y - x is directed

along n°. The basis of the construction is this: The length y - x is slnrply

c_(t-t )n°, where c_ is the disturbance speed associated with the direction

n°. This result follows inmedlately from (^.37) on projecting x - x along

n° and suggests the following graphical method: At each x on y , lay off

a line segment of length c_(t-t^) along n° = n°(x°). Let y = y(x ;t) denote

the endpoint of this segment. Ibrough each jr pass a plane normal "to y - x^ -

18. The propagation of elements bj° ot J° having normals that are perpendicular

to H require a more careful analysis than is given here; for among other things,

condition {h.^k) is violated. This remark applies to the slow as well as to

the ALT'- en wave.
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i.e., normal to n°. The fast wave front (in the forward direction) is then

formed by the envelope of these planes. The same construction applies to

the backward propagating fast waves and forward and backward-propagating

Blow and Alfven waves.

2
IHiis construction has already been employed by Friedrichs to determine

the wave fronts emanating from a point disturbance.

It should be observed that the parametric equations for the slow and

fast wave fronts evolving frcjm a sphere of radius R are relatively simple.

For example, the eqviations for the slow wave front are (cf . (^.56)):

8 RCO60
b -+ CO80

s rfl+cos 6)
b (c„/b)C

(t-t^). (^.58)

^ ^ R8in9cos0 ^ ^^^^^^^
c 2-
s reOS 9

b (Cg/b)C
(t-t^). (^.39)

!i = R8i°esin0
^3i^e3i^0

^s rcos^e
b (Cg/b)C

(t-t )^ o'
{hM)

In these equations, H is assimied to be directed along the positive x-axis. The

angles and 9 are measured frtjm the x and y-axes, respectively. The quantities

c and C depend only on cos 9 (see equations (5«7) and (if.l6)).

5.2 Fresnel's Ray Surface. Setting R = in (^.58)-(i»-.4o) and in the corres-

ponding equations for the Alfven and fast wave fronts we obtain the parametric

equations of the wave fronts emanating fr«n a point disturbance. It is easily

verified that the slow and fast wave fronts sire surfaces of revolution about

the H-axis eind that the Alfven wave consists of two points located at

1/2
+ (|i/p) H(t-t ). Figures 4a-^c are cross sections through the H-axis of

these wave fronts. The wave fronts in Figures 4a and 4c are typical of those

associated with values of r less than or greater than iinity, respectively.

See also H. Grad's work, reference [9]
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The Alfven waves are Indicated, by large dots; these dots are connected to the

slow wave, the fast wave or to both according as r > 1, r < 1 or r = 1.

The surfaces depicted in these figures are called Fresnel ray surfaces .

They are related to the surfaces of wave normals as follows: First, the normal

at a point of a Fresnel ray surface is directed along n = p/p and the normal

at a point p of a wave-normal surface is directed along the ray associated with

J5
= p/p- Second, each surface may be obtained from the pedal surface of the other

19by an inversion with respect to the unit circle ^
. Hhe pedal surface of a given

surface / is constructed as follows: Let T be the ttuigent plane at a point

X of ;/ . From the origin, draw a line perpendicular to T. Let y = y(x) denote

the foot of this perpendicular. As x varies over, J , y traces out a surface

called the pedal siirface of J . Thus the surface _jr = jf(x°,t) in subsection

5.1 is the pedal surface of the wave front in that discussion.

3.5 Conical Propagation. When g is directed along H and r ji^ 1, the slow and

fast rays on Fresnel 's ray surfaces are also directed along H. This follows

directly from equations {h.'^Q)-{k.ko) and the corresponding fast wave equations

on setting R and 9 equal to zero (see also Figures 2a, 2c, ^a and 4c). On the

other hand, when r = 1 - i.e., when the Alfven speed is sonic - the same formulas

yield two rays s and s' (see Figure kh) for each 0. These rays are of equal

length and make an angle of X = ^^^ (l/2) radians with the H-axis. In Figure

kh s and s' correspond to the two normals N and N' at the point K in Figure

2b. As is varied the endpoints of s and s' trace out a circle ^ of radius

p (t-t ) on the ray stirface. Similar remarks apply to the case in which n is

directed along (-H); denote by S the circle associated with this direction.

The planes of Q, are normal to H and their centers are located at +(n/p) ' H(t-t )

19. Proofs of these facts are given in References 5 and 17.
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This, however, is not the ccmplete picture. It is known from the general

theory of symmetric-hyperbolic partial differential equations that the

20
domain of dependence of a general disturbance must be convex . In the

present case, this inrplies that all points of the discs whose outer edges

* 21
are ^ must belong to the Fresnel's ray surface . In Figure ^b dashed

line segments PP' and QQ' represent these discs in cross section.

Iliese facts support the existence of the following exceptional sort

OO ft rt

of propagation . Let Jj „ be a circiilar disc of radius R centered at the

origin and normal to the H-axis. Suppose that r = 1 and that there is an

unpoleirized disturbance (see Section III) on ^^^ „ at time t = t . Then
n O

Ji _, will give rise to two disc's £> and ^ _ propagating with the
K R+ R

velocities (|i/p) H and -(n/p) '"^ along the H-axis and radii of these

discs increase with time by an amoimt equal to half the disteince travelled

frOTi ^ p - i.e.,

R* = R" = R +
I (t-t^).

This type of propagation may be contrasted with the normal sort of

propagation along H that occiirs whenever r ^ 1 . In this case A „ gives

rise to four discs, two moving along H; one with the sound speed and the

other with the Alfven disturbance speed, and two mirror images of these discs

moving along (-E). Here, the radii of the discs i^main fixed and equal to

the radius ot ^ namely R.

20. See reference l6, p. 585.

21. Observe that this general result is suggested by the envelope construction

sketched in subsection 3.I and is consistent with fact that the wave-normal

and Fresnel's ray surfaces are reciprocal.

22. We make no claim to rigor in the following discussion.
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We shall henceforth refer to this type of anomalous propagation as

conical propagation . A similar sort of propagation occxirs In crystal optics

and is intlaately related with the phenomena of conicfiil refraction. We

mij^t add that heuristic arguments analogous to those employed in optics

suggest that the disturbance in -Op and o8p will be concentrated in

circular discs of radius R at the centers of -Oj^ and =C^ and in rings of

vldth 2R at the outer edges of "=^0 and <£)".
R R

V. VARIATIOir OF THE MODE STREKJTH ALOHG RAYS

1. The Orthogonality Relation

Let D be a disturbance on the initial manifold sq . Hben, as we showed

o * *
In Section III, D may be expressed as the sxmi of propagating modes, R., R ,

R- (see (5.12) and (5.13)) • Hiis decojnposition furnishes the Initial conditions

± * * lo
for each of these modes - i.e., it furnishes the values of R., R and R. on 3^ .

Hie problem we wish to study, therefore, reduces to the following one: Let

R(t) denote any one of the above modes. Assume that R(t) is known at all

points X on sO . Ve wish to determine how R(t) varies on the appropriate

ray through each x on jO • First, a general relation (the so-called

Orthogonality relation) will be derived whose form is independent of the mode

being considered. Specialization of this relation then enables one to deter-

mine the variation of each mode along its associated systan of rays.

The variation of R(t) along a ray is determined by making use of the

variational equations (2.1)' emd (2.2). Let us consider the variational

Induction equation which, according to (2.1)'-A' emd (2.2), may be expressed

as follows:

Hi + V X (H'Xu) + V X (H X u') = 0. (5.1)

Let A = A(x,t) be any quantity, scalar, vector or dyadic and let A (x)

be the value of A(x,t) on the wave front - specifically, let

23. Our derivation of this relation is patterned after J.B. Keller's

derivation of the acoustic orthogonality relation.
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A^(x) - A(x,t^+W(x)) . (5.2)

There exists one such function for each side of the wave front - ^(t), say.

On the wave front, (5«l) becomes

(5')^ + [^V X (H'X u)]^ +
1^

X (HX u')]^ » 0. (5.5)

From (5.2) it follows that

V«A^ = (V-f^A)"*^ + p^^A^ , (5.1+)

where

t
3A(x,t)

\ = —^F (5.5)
t-t^ = w(x)

and where the opei^tion * denotes any multiplication, scalar or vector (cf .(2.2)).

In particular, we may conclude that

V .(H')^ = (V-H-)^ + P -(H')^ (5.6)

Vx r(H' X u)V = Ivx (H- X ujV + px (h; X u)^ , (5.7)

VxRhxu')]^ =|vx(Hxu')T+px(HXu')I . (5.8)

Combining (5.?) with these equations, and utilizing the fact that the basic

-1 2h
flow is continuous, that c = (p -u ) = U-u and n = p/p, we find that

pjI(H^)^ - H(u^)^ .n+Hju^)^]j = - V [(H')'x ^ - VX [^ (u') ^

+ u[(^V . H')^ - ^ -(H')"^! . (5.9)

The daggers have been omitted over c, p and u in this equation because these

2k. Here, and in the sequel c represents one of the disturbance speeds, + c ,^ s

+ c. or + c_ .— A - f
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quantities do not depend upon time explicitly; i.e., A (x) = A(x) for

such quantities.

Let (5-9) t)e the equation on that side of >/(t) into which n points.

Subtracting this equation from the corresponding equation on the opposite

side and making use of the definition of 6A and 5A ( see list of definitions

Section II) and the fact that V • ^' = on both sides of </(t) (see equation

(2.1) '-A'), we conclude that

- = 5H^-^HS%n- \^\ = ^r (5.10)

where

f, = V X (8H X u) + V X (H X 6u) + uV . 5H. (5.11)

Proceeding in a similar fashion, we may express (2.1) '-Al and (2.1)-A4

as follows;

- 00 5u^ + 5 a^6p^ + mH . 5H^ - nH^5H^ = Wg' (5-12)

- c 5p^ + p 5u^ ^ = Vty (5.15)

where f^ and f , are defined by

o
t^ = V(a 6p) + u5H XVXJ+^HXVX6H+ P&u-Vu + pu;V5u

i^p + H X V X HI^P (5.1^)

f^ = V • (5pu + p6u). (5.15)

In deriving the expression tor _t^, we have made use of equations (2.l)-A2

and the fact that 5S = for propagating modes (see equation (2.10)). Multi-

plying both sides of equations (5.IO), (5-12) and (5.I5), respectively, by

)/^, l/'/p and a//p and transforming to a coordinate system on >/ (t) with the

X-axis directed along n we find that the resulting equations imply the

following matricial system:
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1/2
-P c
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Equation (5«19) may be derived from (5.I8) by making use of i) standard

vector identities and ii) the fact that 6H - (5p/p)H is collinear with

6u in all propagating modes (see 6A^ and 5A, of equation (2.9)).

Equation (5 •19) and the following result furnish the basis for deter-

mining the variation of R(t) along its associated ray for each of the

possible modes of propagation. Let 6.6' denote a differential area on the

wave front J (t) at time t = t . Let x = x(t) be the equation of a typical

ray of the bundle passing throiogh dcT at time t = t • This bundle is, of00
course, assumed to consist of rays belonging to the mode of propagation in

question. Let dd' be the differential area on >/(t) at the time t > t

that corresponds to del, the correspondence being effected by the rays.

Finally, set

8. = § , (5.20)

and define the quantity E = E(t) - the so-called expansion ratio along the

ray - by the equation

E(t) = ^ , (5.21)
o

Then it can be shown, (see second reference in footnote ^, p. 87) that

V • 8 =
ft R°8 E(t)U(tT], (5-22)

provided that the vector field defined by a[ is sufficiently regular. U(t)

is defined as the speed of the surface element d6' at x(t)j specifically

u(t) = ^ . (5.25)

The quantity p(t) is obtained by solving the ray equations (see (i^.25)-(^.25)).

When the rays axe straight lines it can be shown that
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E(t) = K /K, (5.24)

where K is the Gaussian curvature of the element of the wave front 6>/(t )

at X = x(t ) and K = K(t) is the Gaussian curvature of 5 J (t) at x(t)

2. Variation of the Strength of the Discontinuity

It is convenient for technical reasons to employ the magnitude of 5u -

2 2
actually (5u) = 6u - as a measure of the strength of the discontinuity of

2
a given mode of propagation. Once the veuriation of 6u along the rays

appropriate to the mode in question has been derived, the variation of the

other discontinuities may be determined by means of the formulas collected

2
in the Table I of Section III. Specifically, the variation of 6u along a

ray fixes the variation along the ray of the 'constant' e in these fonnulas.

This, in turn, fixes the variation of the remaining discontin\iities.

As in the above discussion, let /) {t) denote the wave front of a pro-

pagating mode that at time t = t reduces to the initial manifold >/ .

Let x(t) denote a typicsJ. ray of the ray system that is employed in the con-

struction of )/(t), t > t . Then, it can be shown, whatever the propagating

2 2S
mode, that 6u satisfies an equation of the form

E(t)U(t) p6u
x=x(t)

E(t')U(t') P^iL
x=x(t')

exp T(t)dt

i-t' -J

(5.25),

along X = x(t). In this equation U(t) and E(t) are the quantities defined

2 2
in equations (5.23) and (5.21) above; p6u I _ /. x is the quantity p5u

evaluated on the ray at time t;and t' is any time such that t < t' < t.

When t = t jE(t') reduces to unity. According as the mode under consideration

is an Alfven, slow or fast mode, T(t) is given by

25. This formula must not be expected to apply where the initial manifold

is singular. Nor is conical propagation (see IV. 3. 5) covered by these

results

.
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T(t) = T-(t)

T(t) E Tg(t)

|(u . Vlogp)|^^(^) ,

,^Xv)v4 'E-"'i'-"°-ll-"'i-

^f

/ 2 , 2v -1

( c -a )V log p + ^ Va
3 _«:

x=x(t)

(5-26)

(5-27)

or

T(t) = T^(t)
(a'+b'^-l+a'

i^^^a^h |Th-v)3 •&-=?[(.V)^-n

u
,2 2. -i)

/ 2 2x„
; ^ ^V n^ „ 2

(c.-a )V log p + g Va
x=x(t)

(5.28)

When p and u are constant, it follows directly frcsn (5'25)-(5'28) that

E(t)U(t) p5u
x=x(t)

E(f)U(t') p6u
x=x(f) (5.50)

in each of the propagating modes. If, in addition, H is constant, then, as

we showed earlier, the rays are straight lines and U(t) = p (t) is constant

along the ray. In this case equation (5.50) reduces to

E(t) e^(t) = E(t') e2(t') (5.51)

Furthermore, if the vave fronts are curved, we find, using equation (5 '2^), that

TcuT
ei

.^2
(5.52)

where K(t) is the Gaussian curvature of the wave front at x = x(t) and K(t') is

the curvature at x = x(t').

3. Derivation of Formula (5-25) for the Alfven Mode

To illustrate the procedure used to obtain (5.25)-(5.28), we shall give
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here a detailed derivation of (5-25) for Alfven-wave propagation. To be svire,

this proceedure when applied to the slow and fast waves requires len^hler

calculations ; but no new ideas are involved.

We know that

8u = I sgn(H^) (u/p)^/% (5.35)

(1, H >
8gn(H^) =4 "

(5.51,)

and

1, H^ < 0,

= H • 5H = 5p = 5u„, (5.55)

when the mode is an Alfven mode (see the second row of Table I). From these

relations it follows immediately that

H5H^ + p6uf = 2u6E^ = 2p6u^, (5.36)

u6H); (5ux> H) = + sgn(H^)(n/p)-'-/^-<n5H^.ti(5H-H)5H'

= + sga(H^)(^/p)^/2(n8H^)H

= + 8gn(H )(ti/p)^/^<p5u2), (5.37)

and

p (5u-V)u -Su - /if(5H-V)u • 6H = 0. (5-58)

Conbining these eqxiations with the orthogonaJJ-ty relation (5. 19) we find that

V • + 8gn(Hj^)(^/p)-'-/^(p5u^n+ p5uVu + u-V(p6u^)-6u^ | -Vp = (5-59)

or equivalently that

p8u^ •

[I 1 sgn(H^)(n/p)^/^ +
[^

+ sgn(H^)(n/p)^/^-V{p5u^)

-(psu.^) §• • Vlog p = 0. (5.'^0)
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But in an Alfven mode

8 = ^ = H ± 8gn(H^)(M/p)^/^, (5A1)

(see equations (5'20)and (^.23)) • Moreover, we have seen that (see equation

(5.22))

V . 8 = 1^ log E(t)U(tT]; (5.42)

equation (5 '39) may therefore be rewritten 8is the following ordinary linear

differentied. equation (in p5u ) along the ray:

^igi^ + \ ^ log[E(t)U(t7]+ I
-V logpl (p6u'^) = 0. (5.i^5)

Integrating this equation from t' to t > t', we obtain the desired results -

those stated in equations (5-25) and (5.26).

VI . RESOLUTION OF AH INITIAL DISCONTINUITT

The results of the foregoing sections enable ub to construct the wave

fronts evolving from an initial manifold and to find how the strengths of

the Initial distxarbances on these fronts vary with time. The theory, as

presented here, does not, in general, give information about the satuze of

the disturbances between or behind the wave fronts. There do exist, however,

seme problems with sufficiently simple geometries and initial conditions that

may be solved completely and exp3J.citly with the results at hand. One such

problem will be treated nofw.

The gecanetric setxrp is shown in Figure 5a. In the region x < 0, we

have an infinitely conducting (rigid) magnet. The region x > is filled with

an infinitely conducting fluid. The vectors x , y, z are the unit vectors

directed along the positive x, y and z-axes respectively. It is assumed that

the magnetic field H is everywhere uniform and that it makes an angle

with the unit vector x which is taken normal to the face >/ of the magnet.
-o

26. The magnetic inductive capacity \i is assumed that of free sx>ace everywhere.
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For the sake of siinplicity, it will be assumed that < © < )t/2 and that the

density is constant in x > 0.

Assime at first that there is no relative motion between the magnet aad

the fluid. Now suppose the magnet is set in motion with a velocity - 6u° y .

We claim, provided H • x / 0, that i) a flow parallel as well as perpendicular

to the X-axis will result and ii) this flow obeys the boundary conditions

Bu^,, = 0, (6.1)

6u = -6u°, (6.2)o,y y'
\^"^/

V^°on V for all t > 0. In these equations the subscript '0' is used to denote

the region bordering on the magnet and 5u and 6u are simply 5u * x

and 6u • y , respectively (see Figure 5h).

The first of these boundary conditions follows immediately from the

rigidity of the magnet. The second is a consequence of the fact that the

tangential electric field must be continuovus across / . For, suppose that

8u / -6u ; then, an observer located at a point of J and moving with
o,y y

*^ ^ -w,

the magnet would experience no electric field within the magnet (a consequence

of the infinite conductivity of the magnet) but would observe, initially, a

tangential electric field

E^ = nHJi y (5u +5u°) = • uH sin e(5u 4«u°)z
~*tan ^ -io^ o,y y '^ o,y y ~o

just within the fluid. Since the tangential electric field must be continuous

across 1)/°, we obtain (6.l)-(6.2) unless is n/2 radians; but this angle was

excluded at the outset by the requirement that H • x ;^ 0.

This argument only eaqplains the origin of the transverse motion or motion

normal to the x-axis. It can, however, be sirpplemented by another argument -

one that is justified in light of the final results - that explains the origin

of the longitudinal motion. For this purpose, it is better to think not in

terns of discontinuities, but rather In terms of relatively thin layers In
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which there occur abrupt hut continuous transitions and to focus on the

simplest case, namely, that in which H is directed along x . We begin with the

fact that the fluid in the Inanediate neighborhood of the wall aioves with the

magnet when the latter is set in motion with the velocity -6u°y . Since the

magnetic lines of force in an infinitely conducting fluid are 'glued' to the

fluid, the motion results in these lines being pulled dowmreurd in the vicinity

of the magnet. This distortion of the lines of force has the effect of pro-

ducing^ in the neighborhood of v °, a transverse component of the magnetic

field 5H that varies with x. The variation of 6H with x is accoanpanied

by a current density of magnitude |SJ
|

= |3(6H )/^x| directed into the plane
z y

of the page. Hence, the fluid in the layer experiences a force per unit

volume of magnitude 6J = pi5E |d(5H )/^| along the positive x-axis. It
2 y y

is this force that is responsible for the longitudinal motion.

The motion described here may also be initiated by electrical means.

The idea is to produce a thin initial current layer through electriceG. dis-

27
charge, thereby obtaining what corresponds to 6J above. R. M. Patirick

has constructed a device based on this idea.

We etre de«JJ.ng here with a mixed initisLL boundary-value problem; the

face of the magnet \} serves both as an iuitiaLL manifold and a boundary.

Let D° represent the disturbance on ;/ for all t > 0. Without loss of

generality, it may be aissumed that D° has the following fonn (cf. equation

(3-12)):

D° = |Tti/p)^'^^5H^^y»0,0,-6u°,0,5pJ (6.5)

That 6u =0 and 5u = -6u° follows flxnn the boxondary conditions (6.I)
o,x o,y y

and (6.2). That the tems involving 6H and 5u may be assumed to
o, z o,

z

vanish is a consequence of symmetry considerations. At this point the

27. R. V. Patrick, Avco Research Laboratory Report No. 28 (1958)-
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»l/2.
components (n/p) ' 6H and 6p must be regarded as unknowns to be determined

erfter the boundary conditions have been met.

We begin our analysis by expressing D as

D° . r; * b: . rJ, (6.k)

(see equations (5.1l)-(5.15)) vhere

K= s
/ / \l/2_„.^o r, _ /b cosO tx -b sinecosQ . /^ b cos Ov
(n/p) '^sine, 0,-e^( ^ 1), ^ , 0, a(l g )

'^s
«

*^8 -
(6.5)

K'- ^A 0, -HsinO, 0, 0, b cos © sin 9, (6.6)

K- (n/p)-'-/^in0, 0, -c^(

2 2 2 2 2
b cos9 ,x -b sinOcosO ^ /, b cos 0.1),— , 0, a(l ) (6.7)

Since the magnet is rigid, propagation along (-x ) is excluded; this explains

the absence of R', R", R~ in the right member of equation (6. it-). The
A S X

+ + +
expressions for R , R. and R- ar« obtained from equation (3.15) and the entries

S A X

in the first column of the Table I, in Section III. It is here assumed, in

addition to the other requirements on 0, that 0^0. The results for 0=0

will be derived by takijag limits. The values of € , €., and €» could now be
S A X

obtained by making use of the orthogonality of the vectors R , R. and R-,; but
S A X

it is simpler to equate components. This proceedure leads to the following

equations
28

0,

/ (b^cos^© - c?) + ^ (b^cos^© - cl) = 0,
s f

(6.9)

(6.10)

=8 ^f

5u"

b sin0co80
(6.11)

28. 5H and 6p can be calculated once e and e _ have been fo\md sinrply by adding
o,y o 8 f *: - » --^j

5H_ ^ to 5H_ „ and 6p_^ to 5p in the formulas listed below.
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Evidently, the Alfven mode plays no role in the resolution of the initial

discontinuity. Solving equations (6.10) and (6.11) for e^ and e^ and sub-

stituting for € and €- in (6.6) and (6.7), ve find the following fonmilas
S X

for the components of R and R-

-sinO cos

9

=, o s
'"-'« ~-

[(l-r)2^rsin2o]-/- V

(c^/b^-cos^e)
^

y>^ [(l-r)2H4rsin20]l/2 ^ ^'^

sin Q cos e / y^ g
Sp. = - P

— p —2 -tl/2 ''c ^' 3*
[(l-r)^44rsin'^0]-^^'^ ^'s

^

and

(cosV c^/b^) ^_ ,!f^ !!i f
5H

J
= — .2

, , 2^-1 1/2 cose ^b ' b ' 1
^' [(1-r) 44rsln Gj '

sin 9 cos Q o,o f
^'^ [(l-r)^+4rsln'^9]-^/"^ ^

, 2_ 2/,2v
.(cos 9-c /b ) o ,

8u - ^" •
^-^

SP^^ = p ^^°^°°''"2nl/2
-^-^^- -^5^ [(l-r)^44rsin29]^/^ °f

When r = 1, equations (6.12) and (6.15) siinplify to:

5H = H(l+8in9)^/^(8u°/2b),
y,s r

s'

(6.15)

Su „ = - cos © (5uO/2), s^,x (^-^^^
x,s y
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5u = - (l+sin0)(6u°/2), s'
y,s '^ y' " 2,y

cos Q ^R„0/o^,^ s*

(6.14 cont'd)

^Po = -P—22^^(6u"/2b)
° (l-8in0)^/^ ^

and

(6.15)

6H - = H(l-sinQ)^/^(6u°/2b), f'

5Uy^^ = (l-sin©)(6u^2),
,

f^^y

^ (l+sinO)-^/^ y ^

In equations (6.12)-(6.15), conrponents of R and R not mentioned are zero.

Equations (6.12)-(6.15) determine R and R« on the initial manifold (/ .

But the rays associated with each mode are evidently parallel and the wave

fronts evolving from J' ° planar. R"*" and R», therefore, remain constantSi
I

(see end of Section V, 2) as the waves propagate out from ^ . The dis-

turbance is also constant between and behind the wave fronts.

In Figures 5b-5f we have sketched the wave forms. The ratio r is

assumed to exceed unity and we have svrpposed, in addition, that

(co8VcJ/b^)(c^/b) < (c^/b2-cos^0)(Cg/b); (6.l6)

this relation can always be satisfied by choosing sufficiently small. The

regions labelled (2), (l) and (O) sire, respectively, the vindlsturbed region,

the region between the slow and fast wave fronts, and finally the region be-

hind the slow wave front and y/ °. In the (x,t) -plane (see Figure 5b) the

paths of the slow and fast waves are the lines whose equations are

x^ - c^t, (6.17)

X- = c- t, t > 0, (6.18)
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and the width A^(t) of region (l) is

No attempt has been made to depict accurately the relative sizes of the jumps

in the various wave forms. We have merely tried to Indicate when a Jump 6A

of a quantity A is positive or negative and when |6A | exceeds, equals, or is

less than |5A-| . In this regard, we observe that the relations c < c_ and

(6.16) in comibination with equations (6.12) and (6.13) imply that

|6H
I

> l6H J,
' y^s' ' y,f"

''"y,sl > l^y,fl'

|5p 1
> |5p^|

It is easy to verify that the result of letting sin © approach zero

in equations (6.12) and (6.15) is a single disturbance of Alfven-wave type -

specifically the limit is

1/2
8Hy = (p/n) ' SUy^^ e = or rt,

5u = -5u°, (6.21)
y y

These equations represent the limit of the slow mode or the fast mode according

29
as r>lorr<l, the disturbance on the remaining wave of the pair vanishes

29. When r < 1, c and c» approach a and b respectively as © approaches zero.
6 X

When r > 1, c and c_ approach b and a respectively as fe approaches zero.
s ±
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in the limit. When r = 1, neither the fast nor the slow disturbances vanishes

entirely; however, in this case, the wave fronts coalesce since A^(t) = t(c^-Cg)

vanishes. Superposing the slow and fast disturbances, we then arrive at equations

2
(6.21). This result is in complete agreement with that obtained by Friedrichs

and by one of us in a closely related problem.

The general effect of the wave motion is to adjiist the motion of the fluid

to that of the wall. In the final steady state, which is achieved in region

(O) after the wave has propagated out to infinity, the fluid is at rest with

respect to the wall and the tangential magnetic field is increased.
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(0)

(b)
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Figure 1 . Surfaces of normal speeds

for several values of the parameter r.

(e)
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(0)
1

Figure 3a . Depicting the one-dimensional propagation of Alfven disturbances waves,

through x

(b)

Figure 3b . Depicting the propagation of the element 5

at X along the forward ray through x .
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Figure h . Fresnel ray siirfaces,

or the wave fronts emantlng from

a point disturbance.
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