NEW YORK UNIVERSITY

 Institute of Mathematical Sciences Division of Electromagnetic ResearchRESEARCH REPORT No. MH-IO

Propagation of Weak Hydromagnetic Discontinuities

JACK BAZER and OWEN FLEISCHMAN

NEW YORK UNIVERSTY
NSTITUTE OF MATHEMATICAL SCIENCES LIBRARY
25 Waverly Picce, Hew Yosk 3, N. Y.

In the second column below, the unstarred integers indicate the number of lines from the top of the page, while the starred integers indicate the number of lines from the bottom.

Page No.	Line No.	Corrections
5	3,4,5	-The expressions in $A_{2}^{\prime}, A_{3}^{\prime}$ and A_{4}^{\prime} should be set equal to zero.
5	4^{*}	-Replace $H \times \nabla \times H$ by $H \times(\nabla \times H)$.
7	8*	In the matrix equation (2.9), the entry $\mu^{I / 2} H_{y}$ in the second row and third column should be $\mu^{I / 2} H_{Z}$.
9	$1 *$	-Replace $\cos \theta$ in equation (3.8) by $\|\cos \theta\|$.
10	6,7	-Replace ... in the ranges $r<I / 2$ $I / 2 \leq r<1, r=1 \quad 1<r<2, r>2 \ldots$ by... in the ranges $r \leq 1 / 2, I / 2<r<1$, $r=1, I<r<2, r \geq 2 \ldots 1$
16	3*	-Replace $\chi=\tan ^{-1}(1 / 2)$ by $\chi^{\prime}=\tan ^{-1}(2)$.
17	1	-Replace... slow branch by d slow or Alftén branches.
17	2	-Replace ... we introduce e_{u} as ... by ... we introduce $e_{u}, 0 \leq \theta_{u} \leq \pi$, as ...
17	14*********)	-Replace (c_{i} / \mathbf{u}) on the right margin hy ($\left.-c_{i} / u\right)$.
18	8,9,10	$\begin{aligned} & \text {-Replace } \hat{p} \cdot \nabla_{\hat{p}} \text { and } \hat{p} \text { in equations }(4.20) \text {, } \\ & \text { (4.2I) and }(4.22) \text { by } \hat{p} \cdot \nabla_{\hat{p}} \text { and } \hat{p} \text {, respectively. } \end{aligned}$
19	2,3,6	-In the $\frac{d p^{t}}{d t}$ equations of (4.23)-(4.25),
		$\begin{aligned} & \text { replace } p \times \nabla \times[\quad] \quad \text { and } p \times \nabla \times() \\ & \text { by } p \times\{\nabla \times[\quad]\} \quad \text { and } p \times[\nabla \times(,)] \\ & \text { respectively. } \end{aligned}$
21	2^{*}	$\begin{aligned} & \text {-Replace } \pm(\mu / \rho)^{I / 2} H\left(t-t_{0}\right) \text { by } \pm(\mu / \rho)^{I / 2} . \\ & \operatorname{sgn}\left(H_{r_{0}}\right) \underset{\sim}{H}\left(t-t_{0}\right) . \end{aligned}$

In some reports, it will be found that some of the following corrections have already been made. (This depends upon whether the cited page came from the second or first print-lot).
$\frac{\text { Page No. }}{12} \frac{\text { Inc No. }}{2^{\%}, 2^{*}}$
-The last sentence in footnote ill should read: The limiting expressions for the \hat{R}^{\prime}, wold the desired results, unless $r=1$ in which case trey lead to linear combinations of the tabulated solutions.
27 5* The first two terms in the right member of (5.9) should be

$$
\left.-\nabla \mathrm{x}\left[\left(\mathrm{H}_{m}^{\prime}\right) \dagger_{\mathrm{Xu}}\right]_{n v}\right]-\nabla \mathrm{x}\left[\operatorname{Hxc}_{v \sim w}\left(u^{\prime}\right)^{1}\right]
$$

$30 \quad 7$
-Replace the 5 by 3
32 1
-Replace 'procedure" by "procedure" .
36
-Replace Ep by (açpoi/o in the mit member of (6.3).

41 2* -Replace "propagated ard to infinity" by "propagated out to infinity".

Figure Rb
-Replace χ wherever it appears ry χ^{\prime} and $\arctan (1 / 2)$ by arc tan (2).

If in box (1,3) of the table on page (11), the expression for $\mathrm{EH}^{ \pm}$is $\underset{\mathrm{H}^{ \pm}}{ \pm}=-\frac{1}{\mathrm{t}} \hat{\mathrm{n}} \hat{\mathrm{w}}^{\prime}$, then all of the following corrections should be ignored. If on the other hand, the hat, ie.. \mathcal{A}, is missing on the
n, then all of the following corrections should remade.
Corrections For the Table on Ia pe 11
Box (1,I): Repiace ε iv $-\varepsilon$ in the expression for $\overline{u^{ \pm}}{ }^{ \pm}$.
Box (1,3): Replace ε by $\pm \varepsilon$ in the expressions for EFt $_{\sim}^{\sim}$ and GuN. Replace n by $\hat{m_{m}}$ in the expressions for $\varepsilon H^{ \pm}$and $\varepsilon u_{w}^{ \pm}$.
Box (1, 4): In the expression for $0 \mathrm{H}^{ \pm}$, replace ε by $-\varepsilon$. In the expression for cu in $_{u}^{-}$, replace ε b: $\pm \varepsilon$.
Box (3,I): In the expression for cum, replace the ε in the second term 5, $-\varepsilon$.

ASTIA Document No. AD 212264

NEW YORK UNIVERSITY
Institute of Mathematical Sciences
Division of Electromagnetic Research

Research Report No. MH-1O

Propagation of Weak Hydromagnetic Discontinuities

Jack Bayer and Owen Fleischman

Owen Fleischman

Acting Project Director
March, 1959
The research reported in this document has been sponsored by the Electronics Research Directorate of the Air Force Cambridge Research Center, Air Research and Development Command. The publication of this report does not necessarily constitute approval by the Air Force of the findings or conclusions contained herein.

ABSTRACT

A theoretical discussion is given of the propagation of weak hydromagnetic discontinuities (e.g., weak shocks) in an infinitely conducting, perfect, compressible fluid. The undisturbed flow is assumed to be steady and isentropic. It is shown that, in general, six wave fronts will evolve from a given initial manifold. As in geometrical optics, these wave fronts are constructed by means of rays. In addition, formulas are derived, describing the variation of the discontinuity "strength" of a given propagating mode along rays associated with that mode. In the special case where the undisturbed state is homogeneous, simple explicit formulas are given for the wave fronts evolving from an arbitrary initial manifold and for the strength of the disturbance on these fronts. These results are employed to solve a mixed initial boundary-value problem that has been designed to illustrate i) a method of producing hydromagnetic disturbances and ii) the fact that an initial disturbance gives rise, in general, to several propagating waves.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. LINEARIZED EQUATIONS OF HYDROMAGNETTC MOTION 4
III. WEAK HYDROMAGNETIC DISCONTINUITIES 8
IV. RAYS AND WAVE FRONTS 14

1. Surface of Wave Normals 14
2. Rays and Wave Fronts 17
3. Special Cases: Graphical Construction of Wave 21
Fronts; Fresnel's Ray Surface; Conical Propagation
3.1 Graphical Construction of Wave Fronts 21
3.2 Fresnel's Ray Surface 23
3.3 Conical Propagation 24
V. VARIATION OF THE MODE STRENGTH ALONG RAYS 26
4. The Orthogonality Relation 26
5. Variation of the Strength of the Discontinuity 31
6. Derivation of Formula (5.25) for the Alfvén Mode 32
VI. RESOLUITON OF AN INITIAL DISCONTINUITY 34
ACKNOWLEDGMENTS 41
TABLE I 11
FIGURES 1-5 $42-46$

We shall be concerned here with the propagation of (small) hydromagnetic cisturbances (e.g., weak shocks) in a perfect, comressible, infinitely conducting fluid. In treating such waves the basic hydromagnetic equations (see S. Lundquist ${ }^{1}$ and K.O. Friedrichs ${ }^{2}$) may be linearized. Then, as was pointed out by Friedrichs ${ }^{2}$, the resulting set of equations shares with Maxwell's equations and the linearized equations of gas dynamics the property of being a symmetric-hyperbolic system of linear partial differential equations. Disturbances governed by such equations are propagated with finite speeds. The common mathematical structure of the three systems suggests the possibility of treating the hydromagnetic equations by a method that has been successful in treating the others; namely, the method of R.K. Luneberg ${ }^{3}$ and J.B. Keller ${ }^{4}$. In this work, we shall employ this method to study the propagation of weak hydromagnetic discontinuities. Our analysis will be patterned chiefly after the work of J.B. Keller ${ }^{4}$.

The basic problem to be treated in this paper (Part I) is: Let \mathcal{X}° denote the boundary of a disturbence at time $t=t_{0}$. For the sake of concreteness, it may be imagined that the disturbance lies wholly within a closed region bounded by f° and that the complementary region is undisturbed. If we assume that the state of the undisturbed medium and the 'strength' of the initial discontinuity are known, the problem is i) to determine the wave fronts evolving from f° - there will be six of them, in general - and ii) to find how the strength of the discontinuity varies with time on each of these Pronts.

1. S. Lundquist, Arkiv f. fysik, 5, 297(1952).
2. K.O. Friedrichs, Nonlinear Wave Motion in Magneto-hydrodynamics, Los Alamos Report No. 2105 (written 1954, distributed 1957). See also a later version of this work by K.O. Friedrichs and H. Kranzer, Report No. MH-8, AEC Computing and Applied Math. Center, Inst. of Math. Sci., N.Y.U. (1958).
3. See, for example, the lecture notes by R.K. Luneberg, Mathematical Theory of Optics, Brown University (1944); Propagation of Electromagnetic Waves, New York University (1949).
4. J.B. Keller, J. Appl. Phys. 25, 938(1954).

A second group of problems, to be treated in Part II of this series, involves the reflection and refraction of small disturbances at curved surfaces of discontinuity in the undisturbed flow. The basic problem is to determine the hydromagnetic analogs of Snell's laws and to obtain the reflection and transmission coefficients. In general, one encounters the phenomena of multiple reflection and refraction. Conical refraction is also possible when the Alfvén speed coincides with the sound speed (see the end of Section IV).

In the last decade, work on linearized, compressible hydromagnetic flow has been confined mainly to the study of continuous time-harmonic wave motion. The investigations of N. Herlofson ${ }^{5}$, H.C. van de Hulst ${ }^{6}$, A. Baños, Jr. ${ }^{7}$ - to mention just a few of many - typify this approach to the subject. The fact that compressible hydromagnetic motion admits of essentially three modes of propagation was pointed out by Herlofson and van de Hulst in these papers. The first to treat the propazstion of small hydronagnetic discontinuitiec: directly appears to have been Friedrichs ${ }^{2}$ who catalogued the various types of disturbance waves and described the wave fronts emanating from a point disturbance. Two recent works dealing with propagation phenomena as well as with other aspects of hydromagnetic wave motion are a paper by G.B. Whitham ${ }^{8}$ and a report by H. Grad ${ }^{9}$.
5. N. Herlofson, Nature 165, 1020(1950).
6. H.C. van de Hulst, Interstellar Polarization and Magneto-Hydrodynamic waves. Appears in Problems of Cosmical Aerodynamics, p. 46 (Central Air Documents Office, Dayton, Ohio, (1951).).
7. A. Baños, Jr., Phys. Rev. 97, 1435(1955); Proc. Roy. Soc. A, 233, 350(1955).
8. G.B. Whitham, Comm. Pure Appl. Math. 12, (1959).
9. H. Grad, Propagation of Magneto -hydrodynamic Waves without Radial Attenuation Report No. NYO 2-537, Inst. of Math. Sci., N.Y.U., (1959).

Our discussion begins with a summary of the relevant hydromagnetic equations and a listing of the three basic types of propagating disturbances (Sections II and III). In Section IV the notions of rays and wave fronts are introduced. The surface of wave normals and the reciprocal surface, Fresnel's ray surface, are analyzed. The use of rays to construct wave fronts is explained. In the special case where the undisturbed flow is constant, explicit formulas are given for the wave fronts evolving from an initial manifold. A graphical method for constructing these wave fronts is described. The section ends with a description of an ancmalous sort of propagation which is closely related to the phenomena of conical refraction. In Section V, we state and sketch the derivation of the formulas giving the variation of the discontinuity strength of a given propagating mode along the rays associated with that mode. Sections IV and V contain the main theoretical results of the paper. In the final section, we give an application of the theory. The problem discussed is related to a non-linear problem treated elsewhere by the K.O. Friedrichs ${ }^{2}$ and later by J.Bazer ${ }^{10}$. This problem illustrates i) how weak hydromagnetic disturbances may be produced and ii) the fact that an initial discontinuity requires for its 'resolution', in general, more than one propagating mode.
10. J. Bezer, Ap. J. 128, 686 (1958).
II. LINEARIZED EQUATIONS OF HYDROMAGNEIIC MOTION
1.

Linearized System of Partial Differential Equations
In dealing with the linearized system, it is necessary to distinguish between the quantities that characterize the basic flow and small variations of these quantities. If A is a basic-flow quantity (scalar, vector or dyadic), then we shall employ A^{\prime} to denote its (small) variation.

The following is a list of basic-flow quantities used in this paper?
$\rho:$ mass density,
$\tau=\rho^{-1}$: specific volume (volume per unit mass),
p: pressure,
e: specific internal energy,
S: Specific entropy,
u: fluid velocity,
H: magnetic intensity,
μ : magnetic inductive capacity of free space,
E: electric intensity. $E=\mu H_{x} \times \underset{\sim}{u}$ in an infinitely conducting medium.

All basic-flow quantities are assumed to be continuous and to have continuous partial derivatives. By adding primes on ρ, τ, etc. we obtain the corresponding list for the variational quantities.

In standard dyadic notation the linearized system of partial differential equations that governs the motion of a perfect, infinitely conducting, compressible fluid is (cf. Lundquist ${ }^{1}$ and Friedrichs ${ }^{2}$):
11. The rationalized MKS Giorgi system of units is employed throughout.

$$
\begin{aligned}
& \nabla \cdot \underline{E}^{\prime}=0, \quad A_{0}^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& {\left[(\rho \underline{u})^{\prime}\right]_{t}+\nabla\left[\underline{p}^{\prime}+\frac{\mu}{2}\left(\mathbf{H}^{2}\right)^{\prime}\right]+\nabla \cdot\left\{[\underline{u}(\rho \underline{\underline{u}})-\mu \underline{\underline{\underline{B}}-}]^{\prime}\right\},} \tag{2.1}\\
& \rho_{t}^{\prime}+\nabla \cdot[(\rho \underline{\text { un }})], \\
& {\left[(\rho S)^{\prime}\right]_{t}+\nabla \cdot\left[(\rho \underline{S})^{\prime}\right],} \\
& p^{\prime}=p_{\rho^{\prime}} \rho^{\prime}+p_{S^{\prime}} S^{\prime} \quad \text { (variational equation of state). }
\end{align*}
$$

In these equations, the subscript ' t ' denotes partial differentiation with respect to time and

$$
\begin{align*}
& (a A)^{\prime}=a A^{\prime} \\
& (A+B)^{\prime}=A^{\prime}+B^{\prime} \tag{2.2}\\
& (A * B)^{\prime}=A^{\prime} * B+A * B^{\prime} .
\end{align*}
$$

Here, a is a scalar constant (i.e., is independent of space and time variables), A and B are arbitrary scalar, vector or dyadic quantities, and '*' is any scalar, vector or dyadic-type multiplication such that $A * B$ makes sense.

If we ignore the primes, we recover the usual hydromagnetic equations.
For the sake of simplicity it will be assumed henceforth that the medium is a polytropic gas and that the basic flow is steady and isentropic. Thus, the basic flow is governed by the equations

$$
\begin{aligned}
& \nabla \cdot{ }_{\text {H }}=0, \\
& \nabla \times(\underline{u} \times \underline{\underline{w}})=0, \\
& \rho \underline{u} \cdot \nabla \underline{u}+\nabla p+\mu \underline{\underline{I}} \times \nabla \times \text { 酋 }=0 \text {, } \\
& \nabla \cdot(\mathrm{ou})=0 \text {, } \\
& S=\text { constant (independent of } x \text { and } t \text {), } \\
& p=k \rho^{\gamma}, \\
& \text { Ar } \\
& \mathrm{A}_{1} \\
& \mathrm{~A}_{2} \\
& A_{3} \\
& \mathrm{~A}_{4} \\
& A_{5}
\end{aligned}
$$

where K depends only on S, and y is the ratio of specific heats.
The assumption of isentropy implies that

$$
\begin{align*}
S^{\prime} & =0, \tag{2.3}\\
\nabla p & =\nabla\left(p_{\rho} \rho^{\prime}+p_{S^{\prime}} S^{\prime}\right)=\nabla\left(p_{\rho} \rho^{\prime}\right) \tag{2.4}
\end{align*}
$$

The relation (2.3) replaces A_{4}^{\prime} above.

2. Linearized Discontinuity Relations

In writing down the above system of equations, we have tacitly assumed that the variational quantities are sufficiently regular - continuous with continuous space and time-derivatives. When the variational quantities are discontinuous across some surface, it is necessary to supplement these equations by an appropriate set of discontiruity relations; specifically, by the linearized hydromagnetic analogs of the Rankine-fugoniot relations of gas dynamics. For the purpose of discussing these relations, the following notation will be employed:
$\ell(t):$ a surface of discontinuity at time t,
$n_{n}=n(x)$: the unit normal at points x on $\mathcal{S}(t)$, (see equation (2.6) below),
$\underset{\sim}{U}=\underset{\sim}{U}(\underline{x})$: the velocity of $f(t)$ at $\underset{\sim}{x}$ (see (2.7))
U : the magnitude of U (see (2.7)')
$u_{n}=\underline{u} \cdot \underline{n}$: the normal component of the fluid velocity at x on $f(t)$,
$H_{n}=\frac{H}{m} \cdot n$: the normal component of the magnetic intensity at x_{m} on $f(t)$, $a=\left(p_{\rho}\right)^{1 / 2}=\left(\gamma p^{-1}\right)^{1 / 2}$: the speed of sound in a polytropic gas, $c=U-u_{n}$: the velocity of $f(t)$ along n relative to the normal fluid velocity,
$8 A=A_{1}^{\prime}-A_{0}^{\prime}:$ the jump in the variation A^{\prime} across $\ell(t), A_{1}^{\prime}$ is the value of A^{\prime} on the side of $f(t)$ into which n points; A_{0}^{\prime} is the value on the other side,
$\delta A_{n}=\left(A_{1}^{\prime}-A_{0}^{\prime}\right) \cdot n$: here, A^{\prime} is a vector. δA_{n} is the jump of A^{\prime} in the normal direction.

If

$$
\begin{equation*}
\phi(\underset{\sim}{x}, \mathrm{t})=0, \tag{2.5}
\end{equation*}
$$

is the equation of $S(t)$ then $\underset{\sim}{n}$ and $\underset{\sim}{U}$ are defined, respectively, as follows:

$$
\begin{align*}
& \underset{\sim}{n}=\nabla \phi /|\nabla \phi|, \tag{2.6}\\
& \underset{\sim}{u}=-\left(\phi_{t} /|\nabla \phi|\right)_{n}, \tag{2.7}
\end{align*}
$$

so that

$$
\begin{equation*}
0=-\phi_{t} /|\nabla \phi| \tag{2.7}
\end{equation*}
$$

Employing a local coordinate system on $\delta(t)$ with the x-axis along ${ }_{n}^{n}$ we may express the inearized jump relations as follows:

$$
\begin{equation*}
\delta H_{n}=0, \quad \delta A_{0} \tag{2.8}
\end{equation*}
$$

the matricial system

and the equations

$$
\begin{equation*}
c \delta S=0 \tag{4}
\end{equation*}
$$

$$
\delta p= \begin{cases}a^{2} \delta p & \text { if } c \neq 0 \tag{2.11}\\ a^{2} \delta p+p_{S} \delta S, & \text { if } c=0\end{cases}
$$

To derive equations (2.8)-(2.11) from (2.1): substitute $\nabla\left(a^{2} p^{1}\right)$ for ∇_{p} ' in (2.1) '-A. (see (2.4)) and then replace the operators ($)_{t}, \nabla()$ and $\nabla \cdot()$ by $-U \delta(), n \delta()$ and $n \cdot \delta()$, respectively, and use δA_{3} to simplify $8 A_{2, n}{ }^{12}$. A justification of this formal procedure may be obtained by means of the usual pill-box type argment applied to moving surfaces (cf. J.B.Keller ${ }^{6}$). Another method would be to expand the explicit solution of the non-linear jump relations with respect to a suitable shock strength parameter and to retain only the lowest order terms. This procedure has been carried out for a polytropic gas by J. Bazer and W. Ericson ${ }^{33}$.

III. WEAK HYDROMAGNETIC DISCONTINUITIES

Equation (2.9) may be rewritten as follows:

$$
\begin{equation*}
M R=\lambda R, \quad \lambda=\rho^{1 / 2} c \tag{3.1}
\end{equation*}
$$

In this equation, M represents the matrix in equation (2.9) with the diagonal terms deleted and R is the column vector $\left[(\mu / \rho)^{l / 2_{\delta H_{y}}},(\mu / \rho)^{l / 2_{\delta H_{z}}}, \delta u_{n}, \delta u_{y}, \delta u_{z}, a \delta \rho / \rho\right]$. Using (3.1), we conclude that if a weak discontinuity R appears across $\mathscr{f}(t)$ then it is an eigenvector or possibly a combination of eigenvectors of the matrix M. Since M is symmetric, it has a complete set of six mutualiy orthogonal eigenvectors. In this section we shall tabulate these solutions and discuss some of their properties.

All solutions will be referred to as modes; however, only those solutions associated with non-zero eigenvalues will be called waves or propagating modes.
12. Equation $\delta A_{1, n}$ does not appear because it is an identity.
13. J. Bazer and W. Ericson, Ap. J. to be published May (1959). See also report MH-8 of the Division of Electromagnetic Research, New York Univ., (1958).

The secular equation associated with equation (3.1) is

$$
\begin{align*}
0 & =\operatorname{De\hbar } \cdot(M-\sqrt{\rho} c I) \\
& =\left(\rho c^{2}-\mu H_{n}^{2}\right)\left\{\rho^{2} c^{4}-\left(\rho a^{2}+\mu H^{2}\right) \rho c^{2}+\rho a^{2} \mu H_{n}^{2}\right\} \\
& =\left(\rho c^{2}-\mu H_{n}^{2}\right)\left\{\left(\rho c^{2}-\rho a^{2}\right)\left(\rho c^{2}-\mu H_{n}^{2}\right)-\rho c^{2} \mu\left(H^{2}-H_{n}^{2}\right)\right\} . \tag{3.2}
\end{align*}
$$

The zeros of this equation evidently occur in pairs $\pm c^{\prime}$ where $c^{\prime}>0$. Let

$$
\begin{equation*}
c_{A} \equiv b_{n}=\left(\mu H_{n}^{2} \rho^{-1}\right)^{1 / 2} \tag{3.3}
\end{equation*}
$$

- the so-called Alfven disturbance speed - be the non-negative zero of the first factor in the second (or third) line of (3.2) and let $c_{s}\left(c_{\text {slow }}\right)$ and c_{p} ($c_{\text {past }}$) be the smallest and largest zeros, respectively, of the last factor. Then from (3.2) it follows that

$$
\begin{equation*}
0 \leq c_{s} \leq \operatorname{Min} \cdot\left\{a, b_{n}\right\} \leq \operatorname{Max} \cdot\left\{a, b_{n}\right\} \leq c_{f} . \tag{3.4}
\end{equation*}
$$

Moreover, setting

$$
\begin{equation*}
b=\left(\mu \mathrm{H}_{\rho}^{2-1}\right)^{1 / 2} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
r=a^{2} / b^{2} \tag{3.6}
\end{equation*}
$$

we can easily show that

$$
\begin{align*}
\frac{c_{s}}{b} & =\left\{\frac{1}{2}(1+r)-\frac{1}{2}\left[(1+r)^{2}-4 r \cos ^{2} \theta\right]^{1 / 2}\right\}^{1 / 2}, \tag{3.7}\\
& =\left\{\frac{1}{2}(1+r)-\frac{1}{2}\left[(1-r)^{2}+4 r \sin ^{2} \theta\right]^{1 / 2}\right\}^{1 / 2}
\end{align*}
$$

$$
\begin{equation*}
\frac{c_{A}}{b}=\cos \theta \tag{3.8}
\end{equation*}
$$

$$
\begin{align*}
\frac{c_{p}}{b} & =\left\{\frac{1}{2}(1+r)+\frac{1}{2}\left[(1+r)^{2}-4 r \cos ^{2} \theta\right]^{1 / 2}\right\}^{1 / 2} \tag{3.9}\\
& =\left\{\frac{1}{2}(1+r)+\frac{1}{2}\left[(1-r)^{2}+4 r \sin ^{2} \theta\right]^{1 / 2}\right\}^{1 / 2} .
\end{align*}
$$

In these equations, θ is the angle between n_{m} and H_{m}. Figure 1 is a plot, on polar coordinate paper, of $c_{s} / b, c_{A} / b$ and c_{f} / b against θ for several values of the parameter r. The curves of Figures $l a), l b), l c$), ld) and le) are typical of curves that correspond to values of r in the ranges $r<\frac{1}{2}$, $\frac{1}{2} \leq r<1, r=1, l<r<2$, and $r>2$, respectively. By rotating each figure about the H-axis we obtain a surface in three-space which is called the surface of normal speeds.

In the table on the following page, we have listed the various types of wave-mode solutions of equation (2.9). Some contact discontinuities - i.e., solutions associated with $c=0$ - are also listed; but only those that are connected to the wave modes by a limiting process. The reader is referred to Friedrichs ${ }^{2}$ and Bazer and Ericson ${ }^{13}$ for a discussion of other contact discontinuities; no use will be made of these in the sequel.

The quantity ϵ in the table is a (small) dimensionless non-zero number. The vectors \underline{n}^{*} and $\hat{\underline{m}}$ are two mutually perpendicular unit vectors tangent to the surface of discontinuity assoriated with the given mode of propagation. The direction of $\hat{\underline{n}}$ or of n^{*} may be chosen arbitrarily thus fixing the direction of the other except for sign. Given the direction n, then as we pointed out earlier, there are two solutions associated with each of the speeds c_{s}, c_{A} and c_{f}, one corresponding to a normal motion of $\delta(t)$ (with respect to the basic flow) along $\underset{m}{ } \mathfrak{n}$ and the other in the opposite direction. This explains the presence of the pair of signs ' \pm ', ' + ' in the formulas of the table; the

	$\begin{aligned} & (1) \dagger \\ & r>0 \end{aligned}$	$\begin{gathered} (2) \\ r<1 \end{gathered}$	$\begin{aligned} & (3) \\ & r \geq 1 \end{aligned}$	$\begin{gathered} (4) \\ r>0 \end{gathered}$		
SLOW WAVE	$(2,1)$ H neither $\\|$ nor 1 to n	$\begin{aligned} & (1,2) \\ & \text { H } \\| \text { to } \underline{n}\left(\underline{E}=\mathbb{H}_{\underline{p}}\right) \\ & c_{B}=a, \\ & \delta \underline{H}^{ \pm}=0, \\ & \delta \underline{u}^{ \pm}=\mp \epsilon a\left(\frac{1}{r}-1\right) \underline{n}, \\ & \delta \rho^{ \pm}=-\epsilon \rho\left(\frac{1}{r}-1\right), \\ & \delta S^{ \pm}=0 . \end{aligned}$				
ALFVEEN WAVE	$\begin{aligned} &(2,1) \\ & c_{A}= b_{n}, \\ & \delta \underline{H}^{ \pm}= \pm \epsilon \underline{n} \times \underline{B}, \\ & \delta \underline{u}^{ \pm}=-\epsilon \frac{\mathcal{H}_{n}}{\rho b_{n}} \underline{n} \times \underline{B}, \\ & \delta P^{ \pm}= \delta S^{ \pm}=0 . \end{aligned}$	$\begin{aligned} & (2,2) \\ & c_{A}=b, \\ & \delta \mathbb{H}^{ \pm}= \pm \epsilon \text { En }^{*}, \\ & \delta \underline{u}^{ \pm}=-\epsilon b \operatorname{sgn}\left(H_{n}\right) \underline{n}_{n}^{*}, \quad i \dagger \\ & \delta \rho^{ \pm}=\delta S=0 . \end{aligned}$	$(2,3)$ same as the entry in column (2)	$\begin{aligned} & \quad(2,4) \\ & c_{A}=0 \\ & \delta \mathbf{H}^{ \pm}= \pm \epsilon \underline{n} \times \underline{\mathrm{B}} \\ & \delta u^{ \pm}=-\epsilon \mathrm{n} \times \underline{\mathrm{H}} \\ & \delta 0^{ \pm}=0, \quad \delta S^{ \pm}=0 \end{aligned}$ (Contact discontinuity)		
PAST WAVE ${ }^{\text {(3) }}$	$(3,1)$			$\begin{aligned} & (3,4) \\ & c_{\mathrm{f}}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{1 / 2} \\ & \delta \mathrm{H}^{ \pm}=-\epsilon \mathrm{n} \times(\mathrm{n} \times \mathrm{B}) \\ & \delta \mathrm{u}^{ \pm}= \pm \epsilon\left[\mathrm{a}^{2}+b^{2}\right]^{1 / 2} \mathrm{n} \\ & \delta \mathrm{P}^{ \pm}=\epsilon 0 \\ & \delta S^{ \pm}=0 \end{aligned}$		
$\begin{aligned} & \dagger r=a^{2} / b^{2} \\ & i f s g n\left(k_{a}\right) \text { is } \end{aligned}$	$\text { de sign of } H_{n}$		Replace $\in\left(\frac{1}{r}-1\right)$ by ϵ when $r=1$.			

upper sign belongs to a propagation with a component along n, the lower sign along -n . Thus each of the first three columns lists six mutually orthogonal propagating modes.

Assuming that n is neither parallel nor perpendicular to H, we have collected in column (1) all wave-mode solutions of (2.8)-(2.10). The remaining columns, (2)-(4), list solutions corresponding to other orientations of n with respect to H. These solutions may be obtained from the corresponding solutions in column (1) by carrying out various sorts of limiting processes. Thus, assuming $r \neq 1$, the solutions in boxes $(1,2)$ and $(3,3)$ may be obtained simply by rotating n into $\underset{m}{ }$. The solution for $r=1$ in box $(3,3)$ may then be obtained by replacing ϵ by $\epsilon /\left(r^{-1}-1\right)$ and then letting r approach unity. ${ }^{1 / 4}$ However the solutions of columns (2)-(4) are derived, it is easy to verify directly that they satisfy the basic discontinuity relations (2.9)-(2.11).

Observe that two disturbance speeds in colum 2 and at least two disturbance speeds in column 3 are the same. Our classification of the associated Waves as slow and Alfvén and Alfvén and fast, etc. is therefore, strictly speaking, an arbitrary one - to be sure, one that is suggested by limiting processes. The fact that at least two disturbance speeds coalesce implies that λ in equation (3.1) is a multiple eigenvalue. It follows that the associated eigenvectors need not be orthogonal although we have chosen them to be so for convenience of calculation.

To obtain the solutions listed in column (1) from small-disturbance waves catalogued by Friedrichs ${ }^{2}$, it is necessary to replace k by $\epsilon / \rho c_{s}^{2}$ and $\epsilon / \rho c_{f}^{2}$ in his slow and fast-wave formulas and by $\epsilon / \rho c_{A}$ in his Alfvén-wave formulas. A derivation of the solutions in Table I from the corresponding waves of finite amplitude has been given by Bazer and Ericson ${ }^{3 j}$.
14. A more systematic derivation (up to a constant factor of the solutions listed in columns (2) and (3) may be described as follows: Write each mode R (see (3.13) below) in the form $R=\epsilon \hat{R}$ where $\hat{R} \cdot \hat{R}=1$. Then rotate \underline{n} into H keeping the direction $n \times \underline{H}$ fixed. The limiting expressions for the \hat{R} 's yield the desired resuits as long as $r \neq 1$. When $r=1$,

One feature of the solutions of columns (2) and (3) - the solutions in which $\underset{\sim}{n}$ is parallel to $\underset{m}{H}$ - deserves special notice. In contrast to the corresponding solutions of column (1), the column (2)-and (3)-solutions are unpolarized. Specifically, the directions of the tangential components of 6H in the column (1) - solutions are fixed by the directions of n and H_{H}. This is no longer true of the column (2) and (3)- solutions; for when H is parallel to n , a wave of any polarization can propagate along H. To prove this statement, it is necessary only to form a suitable linear combination of the solutions in boxes $(2,2)$ and $(3,2)$ or $(1,3)$ and $(2,3)$ of the table according as $r<1$ or $r \geq 1$. The \quad-direction here plays a role similar to that of an optic axis in a doubly refracting crystal.

Hereafter, when we speak of a disturbance D° on an initial surface \mathcal{S}°, we shall mean a six-vector,

$$
\begin{equation*}
D^{\circ}=\left[(\mu / \rho)^{I / 2} \delta H_{y}^{0},(\mu / \rho)^{I / 2} \delta H_{z}^{\circ}, \delta u_{n}^{O}, \delta u_{y}^{o}, \delta u_{z}^{\circ}, \varepsilon \delta \rho_{0} / \rho\right] \tag{3.11}
\end{equation*}
$$

that may be represented as a sum of the form

$$
\begin{equation*}
D^{o}=R_{s}^{+}+R_{s}^{-}+R_{A}^{+}+R_{A}^{-}+R_{f}^{+}+R_{f}^{-} . \tag{3.12}
\end{equation*}
$$

In these equations, δH_{y}°, δH_{z}°, δu_{n}°, etc., are prescribed (small) jumps of H_{y}, H_{z}, u_{n}, etc., across \mathcal{S}°. The $R^{\prime} s$ are modes expressed in the form

$$
\begin{equation*}
\stackrel{ \pm}{R^{ \pm}}=\left[(\mu / \rho)^{l / 2} \delta H_{y}^{ \pm},(\mu / \rho)^{1 / 2} \delta H_{z}^{ \pm}, \delta u_{\mathrm{n}}^{ \pm}, \delta u_{y}^{ \pm}, \delta u_{z}^{ \pm}, \mathrm{\theta} \delta \rho^{ \pm} / \rho\right] \tag{3.13}
\end{equation*}
$$

The values of $\delta H_{y}^{ \pm}, \delta H_{z}^{ \pm}, \delta u_{n}^{ \pm}$are to be chosen from the appropriate row and colum of the table, with proper heed being paid to the choice of the upper or lower sign. The representation (3.12) may be obtained by making use of the orthogonality properties of the R 's and adjusting the ϵ^{\prime} 's in a suitable manner. If $\varepsilon=0$ for some R, that R is a absent in (3.12).

If it is desired to take into account contact discontinuities not connected with the solutions listed in column (1) by means of a limiting process, it is
necessary to add a δS-component to the D° and $R_{s}^{ \pm}, R_{A}^{ \pm}$and $\frac{ \pm}{R_{f}}$ - vectors and to add a contact-discontinuity mode - R_{c} say - to the right member of equations (3.12).

IV. RAYS AND WAVE FRONTS

1. Surface of Wave Normals

Assuming $\phi_{t}(x, t) \neq 0$, we may write the equation $\phi(x, t)=0($ see $(2.5))$ as follows:

$$
\begin{equation*}
\phi(x, t)=W(\underset{m}{x})-\left(t-t_{0}\right) . \tag{4.1}
\end{equation*}
$$

The surfaces $W(\underset{\sim}{x})=$ constant are called wave fronts.
Setting ${ }^{15}$

$$
\begin{equation*}
\underset{m}{p}=\nabla W, \quad p=|\nabla W|, \tag{4.2}
\end{equation*}
$$

we find, using the definition of n, U and $c[$ see (2.6) and (2.7)'], that

$$
\begin{align*}
& \mathrm{n}=\mathrm{p} / \mathrm{p}, \tag{4.3}\\
& \mathrm{U}=1 / \mathrm{p}, \tag{4.4}
\end{align*}
$$

and

$$
\begin{equation*}
c=p^{-1}-(\underline{u} \cdot p) / p \tag{4.5}
\end{equation*}
$$

Note that U is non-negative.
In terms of this notation, we may re-express the determinantal equation (3.2) as

$$
\begin{equation*}
0=p^{-6} \not / /(x, p)=p^{-6} \mathscr{A}_{1}(x, p) \mathcal{N}_{2}(x, p) \mathcal{N}_{3}(x, p), \tag{4.6}
\end{equation*}
$$

where
15. In Sections I-III the symbol p was used to denote the pressure. Hereafter, we shall use p to denote $|\nabla W|$. The quantities p and p play roles similar to those of the total and the vector momentum variables in Mechanics - hence our notation.

$$
\begin{equation*}
\mathbb{V}_{i}(x, p)=(u \cdot p-1)^{2}-p^{2} c_{i}^{2}(x, n), \quad i=1,2,3, \tag{4.7}
\end{equation*}
$$

the quantities c_{i} being defined by the equations

$$
\begin{align*}
& c_{1}=c_{A}(x, n), \tag{4.8}\\
& c_{2}=c_{s}(\underline{x}, \underline{n}), \tag{4.9}\\
& c_{3}=c_{p}(x, n) . \tag{4.10}
\end{align*}
$$

The functions $\mathcal{H}_{(}(x, p), \mathcal{H}_{1}(\underline{x}, \underline{p}), \mathcal{H}_{2}(x, p)$ and $\mathcal{H}_{3}(\underset{m}{x}, \underline{p})$ will be referred to as the total, Alfvén, slow and fast Hamiltonian's respectively. In equations (4.8)(4.10), the right members are the (positive) disturbance speeds defined in equations (3.7)-(3.9) but with $\cos ^{2} \theta$ replaced by $(\underline{p} \cdot \underline{H})^{2} / p^{2} H^{2}\left[=(\underline{n} \cdot \underline{H})^{2} / H^{2}\right]$. In general, the disturbance speeds depend on x as well as p; they are homogeneous functions of degree zero in p.

The equation

$$
\begin{equation*}
N(\underset{n}{x}, p)=0 \tag{4.11}
\end{equation*}
$$

represents for fixed x_{m} a surface in p-space called the surface of wave normals. Factoring the right member of (4.7), we may easily verify that this surface consists of three branches whose equations may be obtained by setting each of the following three pairs of functions equal to zero:

$$
\begin{equation*}
\mathcal{N}_{i}^{ \pm}(x, p)=(u \cdot p-1) \pm p c_{i}(x, n) \quad i=1,2,3 . \tag{4.12}
\end{equation*}
$$

Let us examine the surface of wave normals in its simplest form - when $\underset{\sim}{u} \equiv 0$. Since p is non-negative, only branches $\eta_{i}^{+}(\underset{\sim}{x}, \underline{p})=0, i=1,2,3$, are 'admissible'. Combining these equations with equations (4.8)-(4.10) we find:

Alfvén branch: $\quad \mathrm{p}_{\mathrm{A}}^{+}=\frac{l}{c_{A}(\underset{\sim}{x}, \underline{m})}=\frac{1}{\mathrm{~b}|\cos \theta|}$,
slow branch: $\quad p_{s}^{+}=\frac{1}{c_{s}(\underline{x}, \underline{n})}=b^{-1}\left[\left(\frac{1+r}{2}\right)-\frac{1}{2} c(x, n)\right]^{-1 / 2}$,
fast branch: $\quad p_{f}^{+}=\frac{1}{c_{f}(\underset{m}{x}, \underline{n})}=b^{-1}\left[\left(\frac{1+r}{2}\right)+\frac{1}{2} C(x, \underline{n})\right]^{-1 / 2}$,
where $C(x, \underline{m})$ is defined by

$$
\begin{equation*}
C(x, n)=\left[(1+r)^{2}-4 r(\underset{\sim}{n} \cdot \underline{H})^{2} / \dot{H}^{2}\right]^{\frac{1}{2}}=\left[(1+r)^{2}-4 r \cos ^{2} \theta\right]^{\frac{1}{2}} \tag{4.16}
\end{equation*}
$$

Here, θ denotes the angle between $\underset{\sim}{H}$ and $\underset{\sim}{\text {. Evidently, the wave-normal surface }}$ is a surface of revolution, the H-axis serving as the axis of symmetry. In Figures 2a), b) and c) we have plotted cross sectional views of pb versus θ. The parameter r is chosen to be $1 / 2,1$ and $3 / 2$. These curves may be obtained Prom the corresponding curves of Figure 1 by inverting with respect to the unit circle. The curves of Figures a) and c) are typical of the curves in the parameter classes $r<1$ and $r>1$, respectively. Whatever the value of r, the oval-like figures correspond to the fast branch; the solid straight lines, perpendicular to the H-axis, correspond to the Alfvén branch and the hyperbola-like curves correspond to the slow branch. The pair of dotted lines represent the traces on the cross section of the planes

$$
\begin{equation*}
\mathrm{pb}|\cos \theta|=(1+r / r)^{1 / 2}, \quad 0 \leq \theta<2 \pi, \tag{4.17}
\end{equation*}
$$

to which the slow branch is asymptotic. The Alfvén branch intersects the slow branch, the fast branch or both on the H-axis according as r exceeds unity, is less than unity or equals unity. All branches have zero curvature on the H-axis, as long as $r \neq 1$. When $r=1$, both the slow and the fast branches are singular on the H-axis they have points in common at $\mathrm{pb}=1, \theta=0$ and pb $=1, \theta=\pi$ and at each of these points form a cone of two nappes whose generators make an angle of $\chi=\tan ^{-1}(1 / 2)$ radians with the H-axis (see Figure $3 b$).

Any ray through the origin of p-space in the direction \underline{n} intersects each of the three branches in exactly one point unless n is perpendicular to the

H-axis in which case there is no point of intersection with the slow branch.
To generalize these results to the case in which ${\underset{m}{m}}^{=0} 0$, we introduce θ_{u} as the angle between u_{m} and $\underset{\sim}{p}$ and rewrite the equations ${\underset{i}{t}}_{ \pm}^{(x, p)}=0,1=1,2$, 3, 4 s follors:

$$
\begin{equation*}
\left(p_{i}^{ \pm}\right)^{-1}=\underset{U_{i}}{ \pm}=u \cos \theta_{u} \pm c_{i}\left(\underline{x}, n_{m}\right) \quad i=1,2,3 \tag{4.18}
\end{equation*}
$$

For each $1,1=1,2,3$, three cases must be distinguished: ${ }^{16}$ case (1), $u / c_{1}<1$; case $(2), u / c_{1}=1$; case (3), u/c $c_{1}>1$. Now we must have $p_{1}^{ \pm} \geq 0,1=1,2,3$; it follows in case (1), the 'subsonic' case, that there can be only one intersection of a ray in the direction n with the $1-t h$ branch; namely, the one corresponding to the ' + ' sign in (4.18). The same applies to the case (2), the 'sonic case', except that intersections corresponding to the rays making an angle of $\theta_{u}=\pi$ with the u-direction are excluded. In case (3), the 'supersonic case', there are three alternatives. For all $\theta_{u}=\theta_{u}(n)$ such that $0 \leq \theta_{u}<\cos ^{-1}\left(c_{i} / u\right)$ there are two intersections; p_{i} in (4.18) is positive for either choice of sign. Only the positive sign leads to an intersection when $\theta_{u}(\underline{n})$ is in the range $\cos ^{-1}\left(c_{i} / u\right) \leq \theta_{u}<\cos ^{-1}\left(-c_{i} / u\right)$. If $\theta_{u} \geq \cos ^{-1}\left(c_{i} / u\right)$ there is no intersection. It should be emphasized that both θ_{u} and c_{i} depend on n so that all of the above relations are implicit conditions on $\underset{\sim}{n}$. An explicit representation of the wave-normal surface could be given; but we shall not do so here. It is enough to say, that these results may be readily understood in terms of the vectorial addition of u_{a} and $c_{1}(x, n) n$. The surface of normal speeds (Figure l) is useful for this purpose.
2. Rays and Wave Fronts

Since $p=\nabla W_{1}$ each of the equations

$$
\begin{equation*}
X_{1}^{ \pm}\left(\underline{x}_{1}, p_{1}\right)=0, \quad 1=1,2,3 \tag{4.19}
\end{equation*}
$$

is a first-order partial differential equation. In light of the foregoing discussion, some of these equations are not 'admissible' in that they lead
16. This argument closely parallels one given by J.B. Keller ${ }^{4}$ for the
to negative values for $p=|\nabla W|$. Here, and hereafter it will be assumed that we are dealing with admissible equations.

As is well known, first-order partial differential equations can be solved by means of rays. Rays are simply curves in x-space that are obtained by solving a system of ordinary differential equations in (x, p) space. If the time t is chosen as the curve parameter, this system may easily be shown to take the following form ${ }^{17}$:

$$
\begin{align*}
& \frac{d \hat{x}}{d t}=\frac{\nabla_{\hat{p}} \hat{\mathcal{V}}}{\hat{p} \cdot \nabla_{\hat{p}} \hat{H}}, \tag{4.20}\\
& \frac{d \hat{p}}{d t}=-\frac{\nabla \hat{H}}{\hat{p} \cdot \nabla_{\hat{p}} \mathcal{H}}, \quad t \geq t_{0}
\end{align*}
$$

Note

$$
\begin{equation*}
\hat{p} \cdot \frac{d \hat{x}}{d t}=1, \quad t \geq t_{0} \tag{4.22}
\end{equation*}
$$

with this parametrization.
In these equations, $\widehat{夕^{\prime}}$ represents any one of six Hamiltonian factors introduced in (4.12) and \hat{m}, \hat{p} denote its arguments. The symbols ∇ and $\nabla_{\hat{p}}$ are, respectively, the gradient operators in \hat{x} and \hat{p}-space. Executing the indicated calculations for each $\hat{\gamma}=\lambda_{1}^{ \pm}, i=1,2,3$, we obtain the following pairs of ray systems:
17. If. R. Courant and D. Hilbert, Mathematische Physik, (Springer, Berlin, 1937) Vol. 2, p. 82. Let $w=W(x), p=\nabla W$ and suppose $N(x, w, p)=0$. According to the general theory, the ray system associated with this first-order partial differential equation 1s: $\frac{d x}{d \sigma}=\nabla_{p} \mathcal{H} ; \frac{d p}{d \sigma}=-\left(\nabla N+N_{w} p\right) ; \frac{d w}{d \sigma}=p \cdot \nabla_{p} N$. Identifying w (cf. equation (4.11)) and σ with $t-t_{o}$, we obtain a system of the same form as tint given in (4.20) and (4.21).

$$
\begin{equation*}
\frac{d x^{ \pm}}{d t}=\underset{\sim}{u} \pm(\mu / \rho)^{\frac{1}{2}} \operatorname{sgn}(\underset{\sim}{H} \cdot \underline{p}) \underline{R} \tag{4.23}
\end{equation*}
$$

Alpévén

$$
\frac{\mathrm{dp}_{\underline{\sim}}^{ \pm}}{\mathrm{dt}}=-(\underset{\mu}{p} \cdot \nabla)\left[\underline{\underline{u}} \pm(\mu / \rho)^{\frac{1}{2}} \operatorname{sgn}(\underset{\sim}{H} \cdot \underline{\underset{\sim}{p}) \underset{\sim}{H}}]-\underset{\sim}{p} \times \nabla \times\left[\underline{\underline{u}} \pm(\mu / \rho)^{\frac{1}{2}} \operatorname{sgn}(\underline{H} \cdot \underline{p}) \underline{H}\right],\right.
$$

Slow

$$
\frac{d x^{ \pm}}{d t}={\underset{m}{u}}^{d} c_{s^{n}}^{n} \pm \frac{b^{2} r\left(H_{n} / H^{2}\right)}{c_{s}(x, \underline{n}) C}\left(H_{a}-H_{n}^{n}\right)
$$ Rays

Fast Rays

$$
\begin{equation*}
\frac{\frac{d p}{ \pm}}{d t}=-(\underline{p} \cdot \nabla) \underset{\sim}{u}-\underset{\sim}{p} \times \nabla \times \underset{\sim}{u} \mp p \nabla c_{p} . \tag{4.25}
\end{equation*}
$$

In (4.23), $\operatorname{sgn}(\underset{m}{\mathrm{H}} \cdot \underline{\mathrm{p}})$ is the sign of $\mathrm{E} \cdot \underline{\mathrm{p}}$. As in the optics of crystals. the rays are in general not perpendicular to the wave fronts.

We turn now to the problem of constructing the wave fronts. Let

$$
\begin{equation*}
\underline{x}^{0}=\underline{f}^{0}\left(\xi_{1}, \xi_{2}\right) \tag{4.26}
\end{equation*}
$$

be a parametric representation of $\forall 0$. We shall suppose that $f, \partial f_{\alpha}^{\circ} / \partial \xi_{1}$, $\partial f^{0} / \partial \xi_{2}$ are continuous and

$$
\frac{\partial f^{0}}{\partial \xi_{1}} \times \frac{\partial f^{0}}{\partial \xi_{2}} \neq 0
$$

so that the normal is defined at all points of ℓ°.
A recipe for constructing the wave fronts is the following:

1) Find the wave normal

$$
\hat{\underline{p}}^{0}=\hat{p}^{0}\left(\xi_{1}, \xi_{2}\right)
$$

$$
\begin{align*}
& \frac{d p^{ \pm}}{d t}=-(p \cdot \nabla) \underset{\sim}{u}-p \times \nabla \times \underset{\sim}{u} \mp p \nabla c_{s}, \tag{4.24}\\
& \frac{d x^{ \pm}}{d t}=u \pm c_{f^{n}} \mp \frac{b^{2} r\left(H_{n} / H^{2}\right)}{c_{f}\left(x, \frac{n}{m}\right) C}\left(H_{m}-H_{n^{n}}\right)
\end{align*}
$$

at points, $x^{0}=f^{0}\left(\xi_{1}, \xi_{2}\right)$ of f^{0} by solving the system of equations

$$
\begin{align*}
& \hat{p}^{0} \cdot \frac{\partial f_{m}^{0}}{\partial \xi}=0, \tag{4.27}\\
& \hat{p}_{1}^{0} \cdot \frac{\partial \rho_{r}^{0}}{\partial \xi_{2}}=0, \tag{4.28}\\
& \hat{H}\left(\underline{x}^{0}, \hat{\underline{p}}^{0}\right)=0 . \tag{4.29}
\end{align*}
$$

Equations (4.27) and (4.28) express the fact that \hat{p}^{0} is normal to s^{0} at $\underline{x}^{0}=\underline{f}^{0}\left(\xi_{1}, \xi_{2}\right)$. They define a line through the origin of \underline{p}-space whose intersections with the branch $\hat{\mathcal{H}}\left(\underline{x}^{0}, \underline{p}\right)=0$ determines two wave normals $\hat{\underline{p}}^{0}$ and $-\hat{p}^{0}$. (As to whether these wave normals exist or not, see ourearlier discussion in subsection 1.)
2) Next obtain a solution of each system of ray equations corresponding to each pair of initial values. Fixing on a given pair - ($\hat{\underline{x}}^{0}, \hat{p}^{0}$) say - we must find a solution of equations (4.20)-(4.21) of the form

$$
\begin{array}{ll}
\hat{\hat{x}}=\hat{\tilde{F}}\left(\xi_{1}, \xi_{2}, t-t_{0}\right), & t \geq t_{0}, \\
\hat{\underline{p}}=\hat{P}\left(\xi_{1}, \xi_{2}, t-t_{0}\right), & t \geq t_{0}, \tag{4.31}
\end{array}
$$

such that

$$
\begin{align*}
& \hat{F}\left(\xi_{1}, \xi_{2}, 0\right)={\underset{m}{p}}^{0}\left(\xi_{1}, \xi_{2}\right)=\underline{x}^{0} \tag{4.32}\\
& \hat{P}\left(\xi_{1}, \xi_{2}, 0\right)=\hat{P}^{0}\left(\xi_{1}, \xi_{2}\right)=\hat{p}^{0} . \tag{4.33}
\end{align*}
$$

This is the standard initial value problem for the system (4.20)-(4.21). According to the general theory it is always possible to obtain a solution in sufficiently small neighborhoods of the point ${\underset{x}{ }}^{0}=f^{0}\left(\xi_{1}, \xi_{2}\right)$ if $\hat{\gamma}(\underline{\hat{x}}, \underline{\hat{p}})$ is continuous and has continuous partial derivatives of no less then the second order and if

- i.e., if the initial ray-direction is not parallel to ℓ° at x°. This requirement is also a sufficient condition for the system (4.27)-(4.29) to be solvable for $\hat{\sim}^{0}$ (provided of course that $\hat{\lambda}=0$ represents an admissible branch).

3) Equation (4.30) expresses at each time t the equation of the wave front in parametric form. The condition (4.34) enables us to solve for $t-t_{o}$, ξ_{1} and ξ_{2} in the right member of (4.30) in terms of the components of x in the left member. The resulting equation for $t-t_{0}$ as a function of x yields the equation of the wave front in the non-parametric form of equation (4.1).
4) The above recipe applies to the case in which the surface \forall° shrinks to a point; but here, equations (4.27) and (4.28) must be ignored.
3. Special Cases: Graphical Construction of Wave Fronts; Fresnel's Ray Surface; Conical Propagation
3.1 Graphical Construction of Wave Fronts. In this and in the next two subsections it w:lll be assumed that ρ, H are constant and $\underline{w} \equiv 0$. Let $\delta \ell^{\circ}$ be a small neighborhood of the initial surface \mathcal{S}^{0}, located at \underline{x}^{0}. Let ${\underset{n}{n}}^{0}$ denote the unit normal at x^{0}. Then, it follows from equations (4.23)-(4.25), that i) $\underset{\sim}{n}=p / p$ is constant in each of the ray systems; ii) $\underset{\sim}{n}= \pm \frac{n^{\circ}}{o}$ depending upon whether forward or backward propagating waves are being considered and iif) the rays are straight lines whose equations are:

Alfvén rays: $\quad x-x^{0}= \pm(\mu / 0)^{1 / 2} \underset{\sim}{H}\left(t-t_{0}\right)$,
Slow rays:

$$
\begin{equation*}
x-x^{\circ}= \pm c_{s} n^{o} \pm \frac{b^{2} r\left(H_{n^{\circ}} / H^{0}\right)}{c_{s} C}\left(H-H_{n^{\circ}}^{n^{\circ}}\right)\left(t-t_{o}\right), \tag{4.35}
\end{equation*}
$$

In these equations, c_{s}, c_{f} and C are constant on the rays; they depend on orientation of n^{0} with respect to H $[$ see (3.7)-(3.9) and (4.16)] which, as we have seen, is constant. In geometric terms 1)-ii1) above tell us that the six elemental wave fronts, into which $\delta \sqrt{\prime}^{\circ}$ splits, are carried along their rays parallel to themselves and to $\delta \&{ }^{\circ}$.

Alfivén wave fronts evolving from χ° are especially easy to describe. For the sake of concreteness let us assume that χ° is a sphere. Then γ^{0} splits up into tro congruent spheres propagating along $H_{\text {Hith }}$ velocities $(\mu / \rho)^{1 / 2}$ H and $-(\mu / \rho)^{1 / 2}$ H, respectively, (see Figure $3 a$). In short, Alfivén wave fronts propagate one-dimensionally ${ }^{18}$.

To learn how to construct the slow and fast wave fronts, let us turn to Figure 3b. In this figure, δf_{f} represents the element of the wave front that, at time t, has evolved from δV° along the fast forward ray passing through x°. It is assumed that H_{m} and n^{o} lie in the plane of the page; hence so does the raysegment $x-x^{0}$ (see equation (4.37)). The line l is the trace, in the plane of the page, of the tangent plane to $\delta \forall f$. The point y is the intersection of the line through x^{0} and perpendicular to l; - i.e., $y-x^{0}$ is directed along n°. The basis of the construction is this: The length $y-x^{0}$ is simply $c_{f}\left(t-t_{0}\right) n_{n}^{0}$, where c_{f} is the disturbance speed associated with the direction n^{0}. This result follows irmediately from (4.37) on projecting $x-x^{0}$ along n^{0} and suggests the following graphical method: At each x^{0} on χ^{0}, lay off a line segment of length $c_{p}\left(t-t_{0}\right)$ along $\underline{m}^{0}=\underline{n}^{0}\left(\underline{x}^{0}\right)$. Let $\underset{y}{y}=\underset{\sim}{y}\left(\underline{x}^{0} ; t\right)$ denote the endpoint of this segment. Through each y pass a plane normal to $y-x^{0}-$
18. The propagation of elements $\delta \sqrt{\prime}^{0}$ of \mathcal{J}^{0} having normals that are perpendicular to II require a more careful analysis than is given here; for among other things, condition (4.34) is violated. This remark applies to the slow as well as to the Als on wave.
1.e., normal to n°. The fast wave front (in the forward direction) is then formed by the envelope of these planes. The same construction applies to the backward propagating fast waves and forward and backward-propagating slow and Alfé́n waves.

This construction has already been employed by Friedrich ${ }^{2}$ to determine the wave fronts emanating from a point disturbance. ${ }^{\dagger}$

It should be observed that the parametric equations for the slow and fast wave fronts evolving from a sphere of radius R are relatively simple. For example, the equations for the slow wave front are (cf. (4.36)):

$$
\begin{align*}
& \frac{x_{s}}{b}=\frac{R \cos \theta}{b} \pm \cos \theta\left[\frac{c_{s}}{b}-\frac{r\left(1+\cos ^{2} \theta\right)}{\left(c_{s} / b\right) c}\right]\left(t-t_{0}\right), \tag{4.38}\\
& \frac{y_{s}}{b}=\frac{R \sin \theta \cos \phi}{b} \pm \sin \theta \cos \phi\left[\frac{c_{B}}{b}-\frac{r \cos ^{2} \theta}{\left(c_{s} / b\right) c}\right]\left(t-t_{0}\right), \tag{4.39}\\
& \frac{z_{s}}{b}=\frac{R \sin \theta \sin \phi}{b} \pm \sin \theta \sin \phi\left[\frac{c_{s}}{b}-\frac{r^{2} \cos ^{2} \theta}{\left(c_{s} / b\right) c}\right]\left(t-t_{0}\right) . \tag{4.40}
\end{align*}
$$

In these equations, $\underset{\sim}{H}$ is assumed to be directed along the positive x-axis. The angles ϕ and θ are measured from the x and y-axes, respectively. The quantities c_{s} and C depend only on $\cos ^{2} \theta$ (see equations (3.7) and (4.16)).
3.2 Fresnel's Ray Surface. Setting $R=0$ in (4.38)-(4.40) and in the coresbonding equations for the Alfven and fast wave fronts we obtain the parametric equations of the wave fronts emanating from a point disturbance. It is easily verified that the slow and fast wave fronts are surfaces of revolution about the $\frac{H}{H-a x i s}$ and that the Alfven wave consists of two points located at $\pm(\mu / \rho)^{1 / 2}{ }_{H}\left(t-t_{0}\right)$. Figures $4 a-4 c$ are cross sections through the $H-a x i s$ of these wave fronts. The wave fronts in Figures $4 a$ and $4 c$ are typical of those associated with values of r less than or greater than unity, respectively.

The Alfvén waves are indicated by large dots; these dots are connected to the slow wave, the fast wave or to both according as $r>1, r<1$ or $r=1$.

The surfaces depicted in these figures are called Fresnel ray surfaces. They are related to the surfaces of wave normals as follows: First, the normal at a point of a Fresnel ray surface is directed along $\underline{n}=p / p$ and the normal at a point p of a wave-normal surface is directed along the ray associated with $\mathrm{n}=\mathrm{p} / \mathrm{p}$. Second, each surface may be obtained from the pedal surface of the other by an inversion with respect to the unit circle ${ }^{19}$. The pedal surface of a given surface \mathscr{S} is constructed as follows: Let T be the tingent plane at a point x of \mathscr{A}. From the origin, draw a line perpendicular to T. Let $y=y(x)$ denote the foot of this perpendicular. As x varies over, \mathcal{f}, y traces out a surface called the pedal surface of ℓ^{\prime}. Thus the surface $y=y\left(x^{\circ}, t\right)$ in subsection 3.1 is the pedal surface of the wave front in that discussion.
3.3 Conical Propagation. When n is directed along \underline{H} and $r \neq 1$, the slow and fast rays on Fresnel's ray surfaces are also directed along H. This follows directly from equations (4.38)-(4.40) and the corresponding fast wave equations on setting R and θ equal to zero (see also Figures $2 a, 2 c, 4 a$ and $4 c$). On the other hand, when $r=1$ - i.e., when the Alfvén speed is sonic - the same formulas yield two rays s and $s^{\prime \prime}$ (see Figure $4 b$) for each ϕ. These rays are of equal length and make an angle of $X=\tan ^{-1}(1 / 2)$ radians with the $H-a x i s$. In Figure $4 b$ s and s^{\prime} correspond to the two normals N and N^{\prime} at the point K in Figure 2 b . As ϕ is varied the exdpoints of s and s^{\prime} trace out a circle ζ^{+}of radius $\frac{b}{2}\left(t-t_{0}\right)$ on the ray surface. Similar remarks apply to the case in which n is directed along (-H); denote by b^{-}the circle associated with this direction. The planes of $G^{ \pm}$are normal to $\underset{\sim}{H}$ and their centers are located at $\pm(\mu / \rho)^{1 / 2} H\left(t-t_{0}\right)$.

[^0]This, however, is not the complete picture. It is known from the general theory of symmetric-hyperbolic partial differential equations that the domain of dependence of a general disturbance must be convex ${ }^{20}$. In the present case, this implies that all points of the discs whose outer edges are $C^{ \pm}$must belong to the Fresnel's ray surface ${ }^{21}$. In Figure $4 b$ dashed line segments PP^{\prime} and $Q Q^{\prime}$ represent these discs in cross section.

These facts support the existence of the following exceptional sort of propagation ${ }^{22}$. Let δ_{R}^{0} be a circular disc of radius R centered at the origin and normal to the H-axis. Suppose that $r=1$ and that there is an unpolarized disturbance (see Section III) on δ_{R}^{0} at time $t=t_{0}$. Then \mathcal{S}_{R}^{0} will give rise to two disc's $\mathscr{D}_{\mathrm{R}^{+}}^{+}$and $\mathcal{O}_{\mathrm{R}^{-}}^{-}$propagating with the velocities $(\mu / \rho)^{1 / 2}$ 其 and $-(\mu / \rho)^{I / 2} \underset{\sim}{H}$ along the H-axis and radif of these discs increase with time by an amount equal to half the distance travelled from $\delta_{R}^{o}-1 . e .$,

$$
R^{+}=R^{-}=R+\frac{b}{2}\left(t-t_{0}\right)
$$

This type of propagation may be contrasted with the normal sort of propagation along $\underset{\sim}{H}$ that occurs whenever $r \neq 1$. In this case $\delta{\underset{R}{0} \text { gives }}_{0}$ rise to four discs, two moving along H; one with the sound speed and the other with the Alfvén disturbance speed, and two mirror images of these discs moving along (-H). Here, the radii of the discs remain fixed and equal to the radius of $>\int_{R}^{0}$ namely R.
20. See reference 16, p. 385.
21. Observe that this general result is suggested by the envelope construction sketched in subsection 3.1 and is consistent with fact that the wave-normal and Fresnel's ray surfaces are reciprocal.
22. We make no claim to rigor in the following discussion.

We shall henceforth refer to this type of anomalous propagation as conical propagation. A similar sort of propagation occurs in crystal optics and is intimately related with the phenomena of conical refraction. We might add that heuristic arguments analogous to those employed in optics suggest that the disturbance in \mathcal{D}_{R}^{+}and \mathcal{D}_{R}^{-}will be concentrated in circular discs of radius R at the centers of D_{R}^{+}and \mathcal{D}_{R}^{-}and in rings of width $2 R$ at the outer edges of \oint_{R}^{+}and D_{R}^{-}.

V. VARIATION OF THE MODE STRENGTH ALOFG RAYS

1. The Orthogonality Relation

Let D° be a disturbance on the initial manifold δ°. Then, as we showed In Section III, D^{0} may be expressed as the sum of propagating modes, $R_{A}^{ \pm}, R_{s}^{ \pm}$, R_{f}^{t} (see (3.12) and (3.13)). This decomposition furnishes the initial conditions for each of these modes - 1.e., it furnishes the values of $R_{A}^{\frac{t}{2}}, R_{s}^{ \pm}$and $R_{f}^{ \pm}$on $\nless J^{0}$. The problem we wish to study, therefore, reduces to the following one: Let $R(t)$ denote any one of the above modes. Assume that $R(t)$ is known at all points ${\underset{\sim}{x}}^{0}$ on δ^{0}. We wish to determine how $R(t)$ varies on the appropriate ray through each x^{0} on \mathcal{J}°. First, a general relation (the so-called orthogonality relation) will be derived ${ }^{23}$ whose form is independent of the mode being considered. Specialization of this relation then enables one to determine the variation of each mode along its associated system of rays.

The variation of $R(t)$ along a ray is determined by making use of the variational equations (2.1)' and (2.2). Let us consider the variational induction equation which, according to (2.1)'-A' and (2.2), may be expressed as follows:

$$
\begin{equation*}
{\underset{w}{\prime}}_{\prime}^{\prime}+\nabla \times\left({\underset{\sim}{\prime}}^{\prime} \times \underset{\sim}{u}\right)+\nabla \times(\underset{\sim}{H} \times \underset{\sim}{u})=0 \text {. } \tag{5.1}
\end{equation*}
$$

Let $A=A(x, t)$ be any quantity, scalar, vector or dyadic and let $A^{+}(x)$ be the value of $A(x, t)$ on the wave front - specifically, let

[^1] derivation of the acoustic orthogonality relation.
\[

$$
\begin{equation*}
A^{\dagger}(x)=A\left(x, t_{0}+W(x)\right) . \tag{5.2}
\end{equation*}
$$

\]

There exists one such function for each side of the wave front - $f(t)$, say. On the wave front, (5.1) becomes

$$
\begin{equation*}
\left(\text { H }^{\prime}\right)^{\dagger}+\left[\nabla \times\left(\text { He}^{\prime} \times \underset{\sim}{u}\right)\right]^{\dagger}+\left[\nabla \times\left(\underset{\sim}{(H} \times{\underset{\sim}{u}}^{\prime}\right)\right]^{\dagger}=0 . \tag{5.3}
\end{equation*}
$$

From (5.2) it follows that

$$
\begin{equation*}
\nabla * A^{+}=(\nabla * A)^{+}+\underline{p} * A_{t}^{+}, \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{t}^{+}=\left.\frac{\partial A(x, t)}{\partial t}\right|_{t-t_{0}=W(x)} \tag{5.5}
\end{equation*}
$$

and where the operation * denotes any multiplication, scalar or vector (cf.(2.2)). In particular, we may conclude that

$$
\begin{align*}
& \nabla \cdot\left(\underline{H}^{\prime}\right)^{\dagger}=\left(\nabla \cdot \underline{H}^{\prime}\right)^{\dagger}+\underline{p} \cdot\left(\underline{H}^{\prime}\right)_{t}^{\dagger} \tag{5.6}\\
& \nabla \times\left[\left(\underline{H}^{\prime} \times \underset{m}{u}\right)\right]^{\dagger}=\left[\nabla \times\left(\text { He}^{\prime} \times \underset{\sim}{u}\right)\right]^{\dagger}+\underset{\sim}{p} \times\left({\underset{m}{\prime}}^{\prime} \times \underset{\sim}{u}\right)_{t}^{\dagger}, \tag{5.7}
\end{align*}
$$

Combining (5.3) with these equations, and utilizing the fact that the basic flow is continuous, that $c=\left(p^{-1}-u_{n}\right)=U-u_{n}$ and $n=p / p$, we find that ${ }^{24}$

$$
\begin{align*}
& +\underset{m}{u}\left[\left(\nabla \cdot \text { H }_{n}\right)^{\dagger}-\nabla \cdot\left(\text { He }_{m}\right)^{\dagger}\right] \text {. } \tag{5.9}
\end{align*}
$$

The daggers have been omitted over c, ρ and u in this equation because these
24. Here, and in the sequel c represents one of the disturbance speeds, $\pm \mathrm{c}_{\mathrm{s}}$, $\pm c_{A}$ or $\pm c_{P}$.
quantities do not depend upon time explicitly; i.e., $A^{\dagger}(\underset{\sim}{x})=A(x)$ for such quantities.

Let (5.9) be the equation on that side of $f(t)$ into which n points. Subtracting this equation from the corresponding equation on the opposite side and making use of the definition of δA and δA_{n} (see list of definitions Section II) and the fact that $\nabla \cdot$ He $^{\prime}=0$ on both sides of $S(t)$ (see equation (2.1)'- A_{0}^{\prime}), we conclude that

$$
\begin{equation*}
-c \delta{\underset{-}{t}}_{t}+\underset{m}{H} \delta u_{t, n}-H_{n} \delta u_{t}=U_{m}^{f}, \tag{5.10}
\end{equation*}
$$

where

$$
\begin{equation*}
{\underset{\sim}{f}}_{1}=\nabla \times(\delta \underline{\underline{H}} \times \underset{\sim}{u})+\nabla \times(\underset{\sim}{H} \times \delta \underline{u})+\underline{u} \nabla \cdot \delta \underline{\underset{\sim}{H}} . \tag{5.11}
\end{equation*}
$$

Proceeding in a similar fashion, we may express (2.1)'-A' and (2.1)-A A_{j}^{\prime} as follows:

$$
\begin{align*}
& -\rho c \delta u_{t}+n\left[a^{2} \delta \rho_{t}+\mu H_{m} \cdot \delta{\underset{n}{t}}^{t}\right]-\mu H_{n} \delta H_{t}=U \mathcal{P}_{2}, \tag{5.12}\\
& -c \delta \rho_{t}+\rho \delta u_{t, n}=U f_{3}, \tag{5.13}
\end{align*}
$$

where f_{2} and f_{3} are defined by

$$
\begin{align*}
& \underset{m Q}{f}=\nabla\left(a^{2} \delta \rho\right)+\mu \delta \underline{H} \times \nabla \times \underset{\sim}{H}+\mu \underset{\sim}{H} \times \nabla \times \delta \underline{H}+\rho \delta \underset{\sim}{u} \cdot \nabla \underset{\sim}{u}+\rho \underset{\sim}{u} \cdot \nabla \delta \underset{\sim}{u} \\
& +\frac{\delta \rho}{\rho}\left[a^{2} \nabla \rho+\frac{H}{m} \times \nabla \times \underset{\sim}{\text { H }}\right] \tag{5.14}\\
& \mathbf{f}_{3}=\nabla \cdot\left(\delta_{\underline{u}}+\rho \delta_{\underline{u}}\right) . \tag{5.15}
\end{align*}
$$

In deriving the expression for ${\underset{\sim}{f}}_{2}$, we have made use of equations (2.1)- A_{2} and the fact that $\delta S=0$ for propagating modes (see equation (2.10)). Multiplying both sides of equations (5.10), (5.12) and (5.13), respectively, by $\sqrt{\mu}, 1 / \sqrt{\rho}$ and $a / \sqrt{\rho}$ and transforming to a coordinate system on $f(t)$ with the x-axis directed along $\underset{m}{n}$ we find that the resulting equations imply the following matricial system:

$-\rho^{1 / 2} c$	0	$\mu^{1 / 2} \mathrm{H}_{\mathrm{y}}$	$-\mu^{1 / 2} \mathrm{H}_{y}$	0	0	$\left[(\mu / \rho)^{2 / 2} \delta H_{t, y}\right.$		$\mathrm{H}^{1 / 2} \mathrm{f}_{1, \mathrm{y}}$
0	$-\rho^{1 / 2} c$	$\mu^{1 / 2} \mathrm{H}_{z}$	0	$-\mu^{1 / 2} H_{n}$	0	$(\mu / \rho)^{1 / 2} 2^{\text {H }}{ }_{t, z}$		$\mu^{1 / 2} \mathrm{r}_{1,2}$
$\mu^{1 / 2} \mathrm{H}_{\mathrm{y}}$	$\mu^{1 / 2} \mathrm{H}_{z}$	$-\rho^{1 / 2} c$	0	0	$\rho^{1 / 2} a$	$\begin{equation*} \delta u_{t, n} \tag{5.16} \end{equation*}$		$\mathrm{f}_{2, \mathrm{n}} / \mathrm{p}^{1 / 2}$
$-\mu^{1 / 2} H_{n}$	0	0	$-\rho^{1 / 2} c$	0	0	${ }^{\delta} u_{t, y}$	$=U X$	$\mathrm{f}_{2, \mathrm{y}} / \mathrm{p}^{1 / 2}$
0	$-\mu^{1 / 2} \mathrm{H}_{n}$	0	0	$-0^{1 / 2} \mathrm{c}$	0	$\delta u_{t, z}$		$\mathrm{f}_{2, \mathrm{z}} / \mathrm{p}^{1 / 2}$
0	0	$p^{1 / 2}{ }_{B}$	0	0	$-p^{1 / 2} \mathrm{c}$	a $\delta \rho_{t} / 0$		$\mathrm{ap}_{3} / \mathrm{o}^{1 / 2}$

Observe now that the matrix in the left member of this equation is identical with that appearing in the left member of (2.9). Since this matrix is a symmetrical one, it follows that (5.16) is solvable if and only if the right member is orthogonal to the vector $R=\left[\left(\mu / \rho^{l / \partial_{H}} H_{y}(\mu / \rho)^{l / \partial_{H}}, \delta u_{n}, \delta u_{y}, \delta u_{z}, \Omega \delta \rho / \rho\right]\right.$ associated with the disturbance speed c. This orthogonality condition may be expressed as follows:

$$
\begin{equation*}
\mu{\underset{\sim}{f}}_{1} \cdot \delta \underset{\sim}{H}+{\underset{w}{w}}^{f_{2}} \cdot \delta \underset{\sim}{u}+\frac{a^{2}}{\rho} \mathbf{f}_{3}=0 . \tag{5.17}
\end{equation*}
$$

Note that

$$
\begin{equation*}
f_{1} \cdot \delta_{u m}^{H}=f_{1, y} \delta H_{y}+f_{1, z} \delta H_{z} \tag{5.18}
\end{equation*}
$$

because $\delta H_{n}=0$. Employing the definitions of the f_{1}, f_{2} and f_{3}, we may reexpress equation (5.18) as:

$$
\begin{align*}
& \nabla \cdot\left\{\mu \delta \underline{H} \times(\delta \underline{u} \times \underset{\sim}{H})+a^{2} \delta \rho \delta \underline{u}\right\}+\left\{\mu \delta H^{2}+\frac{(a \delta \rho)^{2}}{\rho}\right\} \nabla \cdot \underline{u} \\
& +\frac{u}{2} \cdot\left\{\mu \nabla(\delta \underline{\mu})^{2}+\rho \nabla(\delta \underline{u})^{2}+\frac{a^{2}}{\rho} \nabla(\delta \rho)^{2}\right\} \\
& +\rho[(\delta \underline{u} \cdot \nabla) \underset{\underline{u}}{]}] \cdot \delta \underline{u}-\mu[(\delta \underline{H} \cdot \nabla) \underline{-}] \cdot \delta \underline{\underline{u}}]=0 \text {. } \tag{5.19}
\end{align*}
$$

Equation (5.19) may be derived from (5.18) by making use of i) standard vector identities and ii) the fact that $\delta \underline{H}$ - ($\delta \rho / \rho$) ㅍ is collinear with $\delta \underline{u}$ in all propagating modes (see δA_{1} and δA_{3} of equation (2.9)).

Equation (5.19) and the following result furnish the basis for determining the variation of $R(t)$ along its associated ray for each of the possible modes of propagation. Let $\alpha \sigma_{o}$ denote a differential area on the wave front $f(t)$ at time $t=t_{0}$. Let $x=x(t)$ be the equation of a typical ray of the bundle passing through $d \sigma_{0}$ at time $t=t_{0}$. This bundle is, of course, assumed to consist of rays belonging to the mode of propagation in question. Let do be the differential area on $f(t)$ at the time $t>t_{0}$ that corresponds to $d \sigma_{0}$, the correspondence being effected by the rays. Finally, set

$$
\begin{equation*}
\underset{m}{s}=\frac{d x}{d t}, \tag{5.20}
\end{equation*}
$$

and define the quantity $E=E(t)$ - the so-called expansion ratio along the ray - by the equation

$$
\begin{equation*}
E(t)=\frac{\mathrm{d} \sigma}{\mathrm{~d} \sigma_{0}} \tag{5.21}
\end{equation*}
$$

Then it can be shown, (see second reference in footnote 5, p. 87) that

$$
\begin{equation*}
\nabla \cdot \underset{\sim}{s}=\frac{d}{d t}[\log E(t) U(t)], \tag{5.22}
\end{equation*}
$$

provided that the vector field defined by s is sufficiently regular. $U(t)$ is defined as the speed of the surface element d σ at $x(t)$; specifically

$$
\begin{equation*}
U(t)=\frac{1}{p(t)} . \tag{5.23}
\end{equation*}
$$

The quantity $p(t)$ is obtained by solving the ray equations (see (4.23)-(4.25)). When the rays are straight lines it can be shown that

$$
\begin{equation*}
E(t)=K_{0} / K, \tag{5.24}
\end{equation*}
$$

where K_{o} is the Gaussian curvature of the element of the wave front $\delta \&\left(t_{0}\right)$ at $x^{0}=x\left(t_{0}\right)$ and $K=K(t)$ is the Gaussian curvature of $\delta \&(t)$ at $x(t)$.
2. Variation of the Strength of the Discontinuity

It is convenient for technical reasons to employ the magnitude of δ u actually $(\delta u)^{2}=\delta u^{2}$ - as a measure of the strength of the discontinuity of a given mode of propagation. Once the variation of δu^{2} along the rays appropriate to the mode in question has been derived, the variation of the other discontinuities may be determined by means of the formulas collected in the Table I of Section III. Specifically, the variation of δu_{u}^{2} along a ray fixes the variation along the ray of the 'constant' ϵ in these formulas. This, in turn, fixes the variation of the remaining discontinuities.

As in the above discussion, let $A(t)$ denote the wave front of a propagating mode that at time $t=t_{0}$ reduces to the initial manifold δ_{0}. Let $x(t)$ denote a typical ray of the ray system that is employed in the construction of $\ell(t), t>t_{0}$. Then, it can be shown, whatever the propagating mode, that δu^{2} satisfies an equation of the form ${ }^{25}$

$$
E(t) U(t)\left[\left.\rho \delta u^{2}\right|_{\underset{\sim}{x}=\underset{\sim}{x}(t)}\right]=E\left(t^{\prime}\right) U\left(t^{\prime}\right)\left[\left.\rho \delta{\underset{u}{u}}^{2}\right|_{\underline{x}=x^{x}\left(t^{\prime}\right)}\right] \exp \left[\int_{t^{\prime}}^{t} T(t) d t\right] \text { (5.25), }
$$

along $x=x(t)$. In this equation $U(t)$ and $E(t)$ are the quantities defined in equations (5.23) and (5.21) above; $\left.\rho \delta u^{2}\right|_{x=x(t)}$ is the quantity $\rho \delta u^{2}{ }^{2}$ evaluated on the ray at time t;and t^{\prime} is any time such that $t_{0} \leq t^{\prime}<t$. When $t=t_{o}, E\left(t^{\prime}\right)$ reduces to unity. According as the mode under consideration is an Alfén, slow or fast mode, $T(t)$ is given by
25. This formula must not be expected to apply where the initial manifold is singular. Nor is conical propagation (see IV.3.3) covered by these results.

$$
\begin{align*}
T(t) \equiv T_{A}(t)= & \left.\frac{1}{2}(\underset{\sim}{u} \cdot \nabla \log \rho)\right|_{\underset{\sim}{x=x}(t)}, \tag{5.26}\\
T(t) \equiv T_{s}(t)= & \frac{-1}{\left(a^{2}+b^{2}-4 a^{2} b_{n}^{2}\right)^{1 / 2}}\left\{\frac{\mu}{\rho}[(\underset{\sim}{H} \cdot \nabla) \underset{\sim}{u}] \cdot H-c_{s}^{2}[(\underset{\sim}{n} \cdot \nabla) \underset{\sim}{u}] \cdot \frac{n}{m}\right. \\
& \left.+\frac{u}{2} \cdot\left[\left(c_{s}^{2}-a^{2}\right) \nabla \log \rho+\frac{\left(c_{s}^{2}-b_{n}^{2}\right)}{c_{s}^{2}} \nabla a^{2}\right]\right\}\left.\right|_{\underset{\sim}{x}=x(t)} \tag{5.27}
\end{align*}
$$

or

$$
\begin{align*}
& T(t)=T_{f}(t)=\frac{1}{\left(a^{2}+b^{2}-4 a^{2} b_{n}^{2}\right)^{1 / 2}}\left\{\frac{\mu}{\rho}[(\underline{\underline{H}} \cdot \nabla) \underline{\underline{u}}] \cdot \underline{H}-c_{\rho}^{2}[\underline{(\underline{n} \cdot \nabla) \underline{u}] \cdot \underline{n}}\right. \\
& \left.+\frac{\underline{u}}{2} \cdot\left[\left(c_{f}^{2}-a^{2}\right) \nabla \operatorname{iog} \rho+\frac{\left(c_{f}^{2}-b_{n}^{2}\right)}{c_{f}^{2}} \nabla_{a}^{2}\right]\right\}\left\{_{\underset{u}{x}=x(t)} \cdot\right. \tag{5.28}
\end{align*}
$$

When ρ and u are constant, it follows directly from (5.25)-(5.28) that

$$
\begin{equation*}
E(t) U(t)\left[\left.\rho \delta u^{2}\right|_{x=x}(t)\right]=E\left(t^{\prime}\right) U\left(t^{\prime}\right)\left[\left.\rho \delta u^{2}\right|_{x=x\left(t^{\prime}\right)}\right] \tag{5.30}
\end{equation*}
$$

in each of the propagating modes. If, in addition, H is constant, then, as we showed earlier, the rays are straight lines and $U(t)=p^{-1}(t)$ is constant along the ray. In this case equation (5.30) reduces to

$$
\begin{equation*}
E(t) \epsilon^{2}(t)=E\left(t^{\prime}\right) \epsilon^{2}\left(t^{\prime}\right) \tag{5.31}
\end{equation*}
$$

Furthermore, if the wave fronts are curved, we find, using equation (5.24), that

$$
\frac{\epsilon^{2}(t)}{K(t)}=\frac{\epsilon\left(t^{\prime}\right)^{2}}{K\left(t^{\prime}\right)}
$$

where $K(t)$ is the Gaussian curvature of the wave front at $x=x(t)$ and $K\left(t^{\prime}\right)$ is the curvature at $x=x\left(t^{\prime}\right)$.
3. Derivation of Formula (5.25) for the Alfvén Mode

To illustrate the procedure used to obtain (5.25)-(5.28), we shall give
here a detailed derivation of (5.25) for Alfvén-wave propagation. To be sure, this proceedure when applied to the slow and fast waves requires lengthier calculations, but no new ideas are involved.

We know that

$$
\begin{align*}
\delta u_{u} & =\mp \operatorname{sgn}\left(H_{n}\right)(\mu / \rho)^{1 / 2} \delta H_{n} \tag{5.33}\\
\operatorname{sgn}\left(H_{n}\right) & =\left\{\begin{array}{cl}
1, & H_{n}>0 \\
-1, & H_{n}<0,
\end{array}\right. \tag{5.34}
\end{align*}
$$

and

$$
\begin{equation*}
0=\underset{\sim}{H} \cdot \delta \underset{\sim}{H}=\delta \rho=\delta u_{n}, \tag{5.35}
\end{equation*}
$$

when the mode is an Alfiven mode (see the second row of Table I). From these relations it follows immediately that

$$
\begin{align*}
& \mu \delta \underline{H}^{2}+\rho \delta u_{u}^{2}=2 \mu \delta H^{2}=2 \rho \delta u^{2}, \tag{5.36}
\end{align*}
$$

$$
\begin{align*}
& H)= \pm \operatorname{sgn}\left(H_{n}\right)(\mu / \rho)^{I / 2}\left\{\mu \delta H_{m}^{2} H_{m}-\mu\left(\delta H_{M} \cdot \underline{H}\right) \delta\right\} \\
& = \pm \operatorname{sgn}\left(H_{n}\right)(\mu / \rho)^{I / 2}\left(\mu \delta H^{2}\right) \underline{E} \\
& = \pm \operatorname{sgn}\left(H_{n}\right)(\mu / \rho)^{l / 2} \underline{H}^{2}\left(\rho \delta u^{2}\right), \tag{5.37}
\end{align*}
$$

and

$$
\begin{equation*}
\rho[(\delta \underset{\sim}{u} \cdot \nabla) \underset{\sim}{u}] \cdot \delta \underset{\sim}{u}-\mu[(\delta \underline{\underset{\sim}{H}} \cdot \nabla) \underset{\underset{u}{u}}{ }] \cdot \delta \underline{H}=0 . \tag{5.38}
\end{equation*}
$$

Combining these equations with the orthogonality relation (5.19) we find that

$$
\begin{equation*}
\nabla \cdot\left[\pm \operatorname{sgn}\left(H_{n}\right)(\mu / \rho)^{1 / 2} \underset{m}{H}\left(\rho \delta{\underset{\sim}{u}}^{2}\right)\right]+\rho \delta u^{2} \nabla \cdot \underline{\sim}+\underline{u} \cdot \nabla\left(\rho \delta \underline{u}^{2}\right)-\delta{\underset{\sim}{u}}^{2} \frac{\underline{u}}{2} \cdot \nabla \rho=0 \tag{5.39}
\end{equation*}
$$

or equivalently that

$$
\begin{align*}
\rho \delta u^{2} \nabla \cdot\left[\frac{u}{\sim} \pm \operatorname{sgn}\left(H_{n}\right)(\mu / \rho)^{1 / 2} \underset{\sim}{H}\right] & +\left[u \pm \operatorname{sgn}\left(H_{n}\right)(\mu / \rho)^{l / \partial_{H}^{H}}\right] \cdot \nabla\left(\rho \delta u_{u}^{2}\right) \\
& -\left(\rho \delta \underline{u}^{2}\right) \frac{u}{2} \cdot \nabla \log \rho=0 . \tag{5.40}
\end{align*}
$$

But in an Alfvén mode

$$
\begin{equation*}
\underline{s}=\frac{d x}{d t}=\underline{u} \pm \operatorname{sgn}\left(H_{n}\right)(\mu / \rho)^{l / Z_{H}}, \tag{5.41}
\end{equation*}
$$

(see equations (5.20) and (4.23)). Moreover, we have seen that (see equation (5.22))

$$
\begin{equation*}
\nabla \cdot \underset{\sim}{s}=\frac{d}{d t} \log [E(t) U(t)] ; \tag{5.42}
\end{equation*}
$$

equation (5.39) may therefore be rewritten as the following ordinary linear differential equation (in $\rho \delta u^{2}$) along the ray:

$$
\begin{equation*}
\frac{d\left(\rho \delta u^{2}\right)}{d t}+\left\{\frac{d}{d t} \log [E(t) U(t)]+\frac{u}{2} \cdot \nabla \log \rho\right\}\left(\rho \delta u^{2}\right)=0 \tag{5.43}
\end{equation*}
$$

Integrating this equation from t ' to $t>t$ ', we obtain the desired results those stated in equations (5.25) and (5.26).

VI. RESOLUTION OF AN INITTAL DISCONTINUITY

The results of the foregoing sections enable us to construct the wave fronts evolving from an initial manifold and to find how the strengths of the initial disturbances on these fronts vary with time. The theory, as presented here, does not, in general, give information about the nature of the disturbances between or behind the wave fronts. There do exist, however, some problems with sufficiently simple geometries and initial conditions that may be solved completely and explicitly with the results at hand. One such problem will be treated now.

The geometric setup is shown in Figure 5a. In the region $x<0$, we have an infinitely conducting (rigid) magnet. The region $x>0$ is filled with an infinitely conducting fluid. The vectors x_{0}, y_{0}, z_{0} are the unit vectors directed along the positive x, y and z-axes respectively. It is assumed that the magnetic field H is everywhere uniform ${ }^{26}$ and that it makes an angle θ With the unit vector x_{0} which is taken normal to the face \mathcal{f}° of the magnet.

For the sake of simplicity, it will be assumed that $0 \leq \theta \leq \pi / 2$ and that the density is constant in $x>0$.

Assume at first that there is no relative motion between the magnet and the fluid. Now suppose the magnet is set in motion with a velocity - $\delta u_{y}^{0} y_{0}$ We claim, provided H $_{\text {H }} x_{0} \neq 0$, that i) a flow parallel as well as perpendicular to the x-axis will result and ii) this flow obeys the boundary conditions

$$
\begin{align*}
& \delta u_{0, x}=0, \tag{6.1}\\
& \delta u_{0, y}=-\delta u_{y}^{o} \tag{6.2}
\end{align*}
$$

on \mathcal{V}° for all $t>0$. In these equations the subscript ' O ' is used to denote the region bordering on the magnet and $\delta u_{0, x}$ and $\delta u_{0, y}$ are simply $\delta_{0} \cdot x_{0}$ and $\delta_{u_{0}} \cdot{\underset{y}{y}}$, respectively (see Figure 5b).

The first of these boundary conditions follows immediately from the rigidity of the magnet. The second is a consequence of the fact that the tangential electric field must be continuous across ℓ°. For, suppose that $\delta u_{0, y} \neq-\delta u_{y}^{0}$; then, an observer located at a point of J^{0} and moving with the magnet would experience no electric field within the magnet (a consequence of the infinite conductivity of the magnet) but would observe, initially, a tangential electric field
just within the fluid. Since the tangential electric field must be continuous across $f o$, we obtain (6.1)-(6.2) unless θ is $\pi / 2$ radians; but this angle was excluded at the outset by the requirement that $\mathbb{H}_{-x_{0}} \neq 0$.

This argument only explains the origin of the transverse motion or motion normal to the x-axis. It can, however, be supplemented by another argument one that is justified in light of the final results - that explains the origin of the longitudinal motion. For this purpose, it is better to think not in terns of discontinuities, but rather in terms of relatively thin layers in
which there occur abrupt but continuous transitions and to focus on the simplest case, namely, that in which H is directed along ${\underset{\sim}{0}}_{0}$. We begin with the fact that the fluid in the immediate neighborhood of the wall moves with the magnet when the latter is set in motion with the velocity $-\delta u_{y}^{0} y_{0}$. Since the magnetic lines of force in an infinitely conducting fluid are 'glued' to the fluid, the motion results in these lines being pulled downward in the vicinity of the magnet. This distortion of the lines of force has the effect of producing, in the neighborhood of y°, a transverse component of the magnetic field δH_{y} that varies with x. The variation of δH_{y} with x is accompanied by a current density of magnitude $\left|\delta J_{z}\right|=\left|\partial\left(\delta H_{y}\right) / \partial x\right|$ directed into the plane of the page. Hence, the fluid in the layer experiences a force per unit volume of magnitude $\delta J_{z}=\mu \delta H_{y}\left|\partial\left(\delta H_{y}\right) / \partial x\right|$ along the positive x-axis. It is this force that is responsible for the longitudinal motion.

The motion described here may also be initiated by electrical means. The idea is to produce a thin initial current layer through electrical discharge, thereby obtaining what corresponds to δJ_{2} above. R. M. Patrick ${ }^{27}$ has constructed a device based on this idea.

We are dealing here with a mixed initial boundary-value problem; the face of the magnet f^{0} serves both as an initial manifold and a boundary. Let D° represent the disturbance on f° for all $t \geq 0$. Without loss of generality, it may be assumed that D° has the following form (cf. equation (3.12)):

$$
\begin{equation*}
D^{0}=\left[(\mu / \rho)^{I / 2} \delta H_{0, y}, 0,0,-\delta u_{y}^{0}, 0, \delta \rho_{0}\right] \tag{6.3}
\end{equation*}
$$

That $\delta u_{0, x}=0$ and $\delta u_{o, y}=-\delta u_{y}^{0}$ follows from the boundary conditions (6.1) and (6.2). That the terms involving $\delta H_{0, z}$ and $\delta u_{0, z}$ may be assumed to vanish is a consequence of symmetry condiderations. At this point the

[^2]components $(\mu / \rho)^{1 / 2} \delta H_{0, y}$ and $\delta \rho_{0}$ must be regarded as unknowns to be determined after the boundary conditions have been met.

We begin our analysis by expressing D° as

$$
\begin{equation*}
D^{0}=R_{A}^{+}+R_{s}^{+}+R_{f^{\prime}}^{+} \tag{6.4}
\end{equation*}
$$

(see equations (3.11)-(3.13)) where

$$
\begin{align*}
& R_{s}^{+}=\epsilon_{s}\left[(\mu / \rho)^{1 / 2} H \sin \theta, 0,-c_{s}\left(\frac{b^{2} \cos ^{2}}{c_{s}^{2}}-1\right), \frac{-b^{2} \sin \theta \cos \theta}{c_{s}}, 0, a\left(1-\frac{b^{2} \cos ^{2} \theta}{c_{s}^{2}}\right)\right] \tag{6.5}\\
& R_{A}^{+}=\epsilon_{A}[0,-H \sin \theta, 0,0, b \cos \theta \sin \theta, 0], \tag{6.6}\\
& R_{f}^{+}=\epsilon_{f}\left[(\mu / \rho) ^ { 1 / 2 } \left[\begin{array}{ll}
H \sin \theta, & \left.0,-c_{f}\left(\frac{b^{2} \cos \theta^{2}}{c_{f}^{2}}-1\right), \frac{-b^{2} \sin \theta \cos \theta}{c_{f}}, 0, a\left(1-\frac{b^{2} \cos ^{2} \theta}{c_{f}}\right)\right](6.7)
\end{array}\right.\right.
\end{align*}
$$

Since the magnet is rigid, propagation along ($-x_{0}$) is excluded; this explains the absence of $R_{A}^{-}, R_{s}^{-}, R_{f}^{-}$in the right member of equation (6.4). The expressions for R_{s}^{+}, R_{A}^{+}and R_{f}^{+}are obtained from equation (3.13) and the entries in the first column of the Table I, in Section III. It is here assumed, in addition to the other requirements on θ, that $\theta \neq 0$. The results for $\theta=0$ will be derived by takiag limits. The values of $\epsilon_{g}, \epsilon_{A}$, and ϵ_{f} could now be obtained by making use of the orthogonality of the vectors R_{s}^{+}, R_{A}^{+}and R_{f}^{+}; but it is simpler to equate components. This proceedure leads to the following equations ${ }^{28}$:

$$
\begin{align*}
& \epsilon_{A}=0 \tag{6.9}\\
& \frac{\epsilon_{B}}{\delta_{S}}\left(b^{2} \cos ^{2} \theta-c_{s}^{2}\right)+\frac{\epsilon_{f}}{c_{f}}\left(b^{2} \cos ^{2} \theta-c_{f}^{2}\right)=0, \tag{6.10}\\
& \frac{\epsilon_{s}}{c_{B}}+\frac{\epsilon_{f}}{c_{f}}=\frac{\delta u_{Y}^{0}}{b^{2} \sin \theta \cos \theta} \tag{6.11}
\end{align*}
$$

28. $\delta H_{o, y}$ and $\delta \rho_{o}$ can be calculated once ϵ_{s} and ϵ_{f} have been found simply by adding $\delta H_{s, y}$ to $\delta H_{f, y}$ and $\delta \rho_{s}$ to $\delta \rho_{f}$ in the formulas listed below.

Evidently, the Alfvén mode plays no role in the resolution of the initial discontinuity. Solving equations (6.10) and (6.11) for ϵ_{s} and ϵ_{f} and substituting for ϵ_{s} and ϵ_{f} in (6.6) and (6.7), we find the following formulas for the components of R_{s} and R_{f}

$$
\begin{array}{ll}
\delta H_{y, s}=\frac{\left(c_{f}^{2} / b^{2}-\cos ^{2} \theta\right)}{\left[(1-r)^{2}+4 r \sin \theta\right]^{1 / 2}} \frac{H}{\cos \theta}\left(\frac{c_{s}}{b}\right) \frac{\delta u_{y}^{o}}{b}, & s_{1} \\
\delta u_{x, s}=\frac{-\sin \theta \cos \theta}{\left[(1-r)^{2}+4 r \sin ^{2} \theta\right]^{1 / 2}} \delta u_{y}^{o}, & s_{2, x} \\
\delta u_{y, s}=-\frac{\left(c_{f}^{2} / b^{2}-\cos ^{2} \theta\right)}{\left[(1-r)^{2}+4 r \sin ^{2} \theta\right]^{1 / 2}} \delta u_{y}^{0}, & s_{2, y} \tag{6.12}\\
\delta f_{s}=-\rho \frac{\sin \theta \cos \theta}{\left[(1-r)^{2}+4 r \sin n^{2} \theta\right]^{1 / 2}}\left(\frac{\delta u_{y}^{o}}{c_{s}}\right), & s_{3}
\end{array}
$$

and

$$
\begin{array}{ll}
\delta H_{y, f}=\frac{\left(\cos ^{2} \theta-c_{s}^{2} / b^{2}\right)}{\left[(1-r)^{2}+4 r \sin ^{2} \theta\right]^{1 / 2}} \frac{H}{\cos \theta}\left(\frac{c_{f}}{b}\right) \frac{\delta u_{y}^{0}}{b}, & f_{1} \\
\delta u_{x, f}=\frac{\sin \theta \cos \theta}{\left[(1-r)^{2}+4 r \sin ^{2} \theta\right]^{1 / 2}} \delta u_{y}^{\circ}, & f_{2, x} \\
\delta u_{y, f}=\frac{-\left(\cos ^{2} \theta-c_{s}^{2} / b^{2}\right)}{\left[(1-r)^{2}+4 r \sin ^{2} \theta\right]^{1 / 2}} \delta u_{y}^{0} & f_{2, y} \tag{6.13}\\
\delta \rho_{f}=\rho \frac{\sin \theta \cos \theta}{\left.\left[(1-r)^{2}+4 r \sin \theta\right]^{2}\right]^{1 / 2}}\left(\frac{\delta u_{y}^{0}}{c_{f}}\right) & f_{3}
\end{array}
$$

When $r=1$, equations (6.12) and (6.13) simplify to:

$$
\begin{array}{ll}
\delta H_{y, s}=H(1+\sin \theta)^{1 / 2}\left(\delta u_{y}^{0} / 2 b\right), & s_{1}^{\prime} \\
\delta u_{x, s}=-\cos \theta\left(\delta u_{y}^{0} / 2\right), & s_{2}^{\prime}, x \tag{6.14}
\end{array}
$$

$$
\begin{array}{ll}
\delta u_{y, s}=-(1+\sin \theta)\left(\delta u_{y}^{0} / 2\right), & s_{2, y}^{\prime} \\
\delta \rho_{0}=-\rho \frac{\cos \theta}{(1-\sin \theta)^{1 / 2}}\left(\delta u_{y}^{0} / 2 b\right), & s_{3}^{\prime} \tag{6.14cont'd}
\end{array}
$$

and

$$
\begin{array}{ll}
\delta H_{y, f}=H(1-\sin \theta)^{1 / 2}\left(\delta u_{y}^{0} / 2 b\right), & f_{1}^{\prime} \\
\delta u_{x, f}=\cos \theta\left(\delta u_{y}^{0} / 2\right), & f_{2, x}^{\prime} \tag{6.15}\\
\delta u_{y, f}=(1-\sin \theta)\left(\delta u_{y}^{\circ} / 2\right), & f_{2, y}^{\prime} \\
\delta \rho_{f}=\rho \frac{\cos \theta}{(1+\sin \theta)^{1 / 2}}\left(\delta u_{y}^{0} / 2 b\right) . & f_{3}^{\prime}
\end{array}
$$

In equations (6.12)-(6.15), components of R_{s}^{+}and R_{f}^{+}not mentioned are zero. Equations (6.12)-(6.15) determine R_{s}^{+}and R_{f}^{+}on the initial manifold \mathcal{N}°. But the rays associated with each mode are evidently parallel and the wave fronts evolving from \& ${ }^{\circ}$ planar. R_{s}^{+}and R_{f}^{+}, therefore, remain constant (see end of Section $V, 2$) as the waves propagate out from \mathscr{N}°. The discurbance is also constant between and behind the wave fronts.

In Figures 5b-5f we have sketched the wave forms. The ratio r is assumed to exceed unity and we have supposed, in addition, that

$$
\begin{equation*}
\left(\cos ^{2} \theta-c_{s}^{2} / b^{2}\right)\left(c_{f} / b\right)<\left(c_{f}^{2} / b^{2}-\cos ^{2} \theta\right)\left(c_{s} / b\right) \tag{6.16}
\end{equation*}
$$

this relation can always be satisfled by choosing θ sufficiently small. The regions labelled (2), (1) and (0) are, respectively, the undisturbed region, the region between the slow and fast wave fronts, and finally the region behind the slow wave front and \mathcal{J}°. In the (x, t)-plane (see Figure $5 b$) the paths of the slow and fast waves are the lines whose equations are

$$
\begin{array}{ll}
x_{s}=c_{s} t \\
x_{f}=c_{f} t, & t>0 \tag{6.18}
\end{array}
$$

and the width $\Delta_{1}(t)$ of region (1) is

$$
\begin{equation*}
\Delta_{1}(t)=\left(c_{f}-c_{s}\right) t, \quad t>0 \tag{6.19}
\end{equation*}
$$

No attempt has been made to depict accurately the relative sizes of the jumps in the various wave forms. We have merely tried to indicate when a jump δA of a quantity A is positive or negative and when $\left|\delta A_{s}\right|$ exceeds, equals, or is less than $\left|\delta A_{f}\right|$. In this regard, we observe that the relations $c_{s} \leq c_{f}$ and (6.16) in combination with equations (6.12) and (6.13) imply that

$$
\begin{align*}
& \left|\delta H_{y, s}\right|>\left|\delta H_{y, p}\right| \\
& \left|\delta u_{x, s}\right|=\left|\delta u_{x, f}\right| \tag{6.20}\\
& \left|\delta u_{y, s}\right|>\left|\delta u_{y, f}\right| \\
& \left|\delta p_{s}\right|>\left|\delta \rho_{f}\right|
\end{align*}
$$

It is easy to verify that the result of letting $\sin \theta$ approach zero in equations (6.12) and (6.13) is a single disturbance of Alfvén-wave type specifically the limit is

$$
\begin{array}{ll}
\delta H_{y} & =(\rho / \mu)^{I / 2} \delta u_{y, 0} \\
\delta u_{y} & =-\delta u_{y}^{\circ} \tag{6.21}\\
\delta \rho & =\delta u_{x}=0 \text { or } \pi
\end{array}
$$

These equations represent the limit of the slow mode or the fast mode according as $r>1$ or $r<l^{29}$; the disturbance on the remaining wave of the pair vanishes
29. When $r<1, c_{s}$ and c_{f} approach a and b respectively as θ approaches zero. When $r>l, c_{s}$ and c_{f} approach b and a respectively as t approaches zero.
in the limit. When $r=l$, neither the fast nor the slow disturbances vanishes entirely; however, in this case, the wave fronts coalesce since $\hat{S}_{1}(t)=t\left(c_{f}-c_{5}\right)$ vanishes. Superposing the slow and fast disturbances, we then arrive at equations (6.21). This result is in complete agreement with that obtained by Friedrichs ${ }^{2}$ and by one of us ${ }^{10}$ in a closely related problem.

The general effect of the wave motion is to adjust the motion of the fluid to that of the wall. In the final steady state, which is achieved in region (0) after the wave has propagatea out to infinity, the fluid is at rest with respect to the wall and the tangential magnetic field is increased.

ACKNOWLEDGEMENTSS

We would like to express our gratitude to Frofessor J.B. Keller for reading and criticizing parts of the manuscript. We have also benefited from several discussions with Professors J.B. Keller and H. Grad.

Thanks are also due to Mr. C. Bass for drawing Figures 1 - 5 and to Mrs. M. Vygantes, Miss L. Bader et al. of the hand-computing section of the Institute of Mathematical Sciences (N.Y.U.) for carrying out the computations on which Figures 1,2 , and 4 were based.

Figure 2. Surfaces of wave normals for several values of the parameter r.

Figure 3a. Depicting the one-dimensional propagation of Alfén disturbances waves.

Figure 3 b . Depicting the propagation of the element $\delta 0^{\circ}$ at x^{0} along the forward ray through x^{0}.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. The wave forms at time t that result when the magnet in the region $x<0$ (see ($a)$) is set in motion with a velocity ($-\delta u_{y}^{0}$) along the y-axis. It has been assumed that r exceeds unity and that θ is small (cf. equation (6.16)).

```
    MEw YORF! !mvers!TY
DSTITXTE OTMATHF IATICAZ SCIENCDC
                                    MRRRAE?
OG
```

This book may le kept
FOURTEEN DAYS
A fine will be chnrged for each day the book is lepe overtime.

[^0]: 19. Proofs of these facts are given in References 5 and 17.
[^1]: 23. Our derivation of this relation is patterned after J.B. Keller's
[^2]: 27. R. V. Patrick, Avco Research Laboratory Report No. 28 (1958).
