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PKEFACE.

In the present edition this Treatise has been carefully

revised and considerably extended :
—

special attention

having been paid to passages where a difficulty had

been found.

For one of the most important additions I am indebted

to M. Amagat, who has very kindly enabled me to avail

myself of some of his splendid but hitherto unpublished

results. These relate to the compression of fluids exposed

to enormous pressures ; and, when published entire, will

form a singularly interesting and practically new branch

of the subject.

To some of the scientific critics of the first edition 1

am indebted for suggestions of real value, and I have

endeavoured to profit by them. I must except, however,

those which concern my treatment of the subject of Force.

I have seen so much mischief done by this quasi-personi-

fication of a mere sense -
impression that, even in an

elementary book, I am constrained to protest against it.

(See § 15 of the text.) I feel assured that the difficulties

which are now everywhere felt as to the great scientific

question of the day, the nature of what we call electricity,

are in great part due to the way in which our modes of
7
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thinking have been, by early training and subsequent

liabit, encouraged to run in this fatal groove.

To some of my other critics, more aggressive because

less scientific, I liave been indebted for genuine amuse-

ment. Nothing is, however, without its use in this

world, though it may occasionally be difficult to discover

that use. It would seem, then, that the function of the

unscientific critics of a scientific book is (like that of the

writers of slipshod English) to furnish examiners with
rich material for questions of the well - known kind :—"Point out all the errors in the following passage."

Nothing is more difficult than the attempt to make such

passages :
—and the results are usually forced and awkward.

From the critics I allude to they come in perfection.
There is one additional remark which I must make.

The majority of the illustrations in this work (whether
given in words or by diagrams) are, when the contrary is

not stated, to the best of my knowledge original. I make
the remark lest I should be supposed to have taken them
from some of the books in which they have been re-

produced without acknowledgment of their source. It is

flattering to have one's work thus appreciated, but the

honour has its little inconveniences.

P. G. TAIT.

College, Edinburgh,

JuJy 1, 1890.



PREFACE TO THE FIRST EDITION,

The subject of this elementary work still forms— in

accordance with tradition from the days of Robison,

Playfair, Leslie, and Forbes— the introduction to the

course of Xatural Philosophy in Edinburgh University.
The work is (with the exception of a few isolated

sections) intended for the average student
;
who is sup-

posed to have a sound knowledge of ordinary Geometry,
and a moderate acquaintance with the elements of

Algebra and of Trigonometry.
But he is also supposed to have—what he can easily

obtain from the simpler parts of the two first chapters of

Thomson and Tait's Elements of Natural Pldlosojyhij^ or

from Clerk-Maxwell's excellent little treatise on Matter

and Motion—a general acquaintance with the funda-

mental principles of Kinematics of a Point and of Kinetics

of a Particle. To have treated these subjects at greater

length than has here been attempted would have rendered

it imperative to omit much of the development of im-

portant parts of preHminary Physics, of Avhich, so far as

I know, there is no modern British text -book. The
work was peremptorily limited to a small volume

; so

that the parts of these auxiliary subjects which have
h
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been admitted are mainly of two kinds :
—those which

are really introdiidor]] to the books just mentioned,

because treating of matters usually deemed too simple

for special notice
;

and a few which are in a sense

siqjplementary, because giving valuable results not usually

included in elementary books.

It is my present intention to complete my series of

text-books by similar volumes on Dynamics, Sound, and

Electricity. Should I succeed in bringing out such

works, I shall thenceforth be enabled to introduce

references to one or other, instead of the digressions

which are absolutely necessary in every self-contained

elementary treatise devoted to one special branch of

Physics only.

P. G. TAIT.

College, Edixeuroh,
March 5, 1885.
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PROPERTIES OF MATTER.

CHAPTER I.

INTRODUCTORY.

1. We start with certain assumptions or Axioms, Avbich

are not of an d priori character, but which the observa-

tions and experiments of many generations have forced

upon us :
—

(1) Tho.t the physical universe lias an objective ex-

istence.

(2) That we become cognisant of it solely by the aid

of our Senses.

(3) That the indications of the Senses are always im-

perfect, and often misleading ;
but

(4) That the patient exercise of Eeason enables us to

control these indications, and gradually, but

surely, to sift truth from falsehood.

2. If, for a moment, we use the word Thing to denote,

generally, Avhatever we are constrained to allow has

objective existence :
—i.e. exists altogether independently

of our senses and of our reason—we arrive at the follow-

ing conclusions :
—

A. In the physical universe there are but two classes

of things, Matter and Energy,
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B. Time and Space, though well known to all (in

Kewton's words, omnibus notissima), are not things.^

C. Number, Magnitude, Position, Velocity, etc., are

likewise not things.

D. Consciousness, Volition, etc., are not physical,

3. So says modern physical science, and to its gener-

ally received statements we cannot but adhere.

Metaphysicians, of course, who trust entirely to so-

called
"
light of nature," have their own views on this,

as on all other subjects; but the number and variety of

these views, some of which are entirely incompatible

with others, form a striking contrast to the general con-

sensus of opinion on the part of those who have at least

tried to deserve to know.

In the words of v. Ilelmholtz,^ one of the chief living

authorities in science properly so-called :
—

"The genuine metaphysician, in view of a presumed

necessity of thought, looks down with an air of superiority

on those who labour to investigate the facts. Has it

already been forgotten how much mischief this procedure

^
"Space is . . . regarded as a condition of tlie possibility of

phenomena, not as a determination produced by them ; it is a

representation a x>7-iori which necessarily precedes all external

phenomena :

"—
"Time is not an emphical concept deduced from any experience,

for neither co-existence nor succession would enter into our per-

ception, if tlie representation of time were not given a priori."
—

Kant, Critique of Pure Reason ; Max Miiller's Translation.

^ " Hier haben wir den achten Metaphysiker. Einer angeblichen

Penknothwendigkeit gegeniiber blickt er hochmiithig auf die,

welche sich uni Erforschung der Thatsachen bemllhen, herab. 1st

es schon vergessen, wie viel Uuheil dieses Verfahren in deu

friiheren Entwicklungsperioden der Naturwissenschaften ange

richtet hat ?

"—Preface to the German Translation of the second

part of Thomson and Tail's Natural Fhilosophy.
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wrought in the earlier stages of the development of the

sciences 1
"

Clerk-Maxwell develops the contrast more elabo-

rately :
—

"... In every human pursuit there are two courses—•

one, that which in its lowest form is called the useful, and

has for its ultimate object the extension of knowledge,

the dominion over Xature, and the welfare of mankind.

The objects of the second course are entirely self-con-

tained. Theories are elaborated for theories' sake, diffi-

culties are sought out and treasured as such, and no

argument is to be considered perfect unless it lands the

reasoner at the point from which he started. . . .

The education of man is so well provided for in the

world around him, and so hopeless in any of the worlds

which he makes for himself, that it becomes of the

iitmost importance to distinguish natural truth from

artificial system, the development of a science from the

envelopment of a craft."

Newton, however, had long before expressed essentially

the same ideas. He said :
—

"To tell us that every species of things is endoAved

with an occult specific quality, by which it acts and pro-

duces manifest effects, is to tell us nothing ;
but to

derive two or three general principles of motion from

phenomena, and afterwards to tell us how the proper-

ties of all cori^oreal things follow from those manifest

principles, would be a very great step in philosophy,

though the causes of those principles were not yet dis-

covered
;

and therefore I scruple not to propose the

principles of motion above mentioned, they being of

very general extent, and leave the causes to be found

out."
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Midway between Kewton's time and our own, another

very great man, Young, spoke as follows of the pernicious

effects of metaphysics in the ancient Avorld :
—

" 'None of the departments of human knowledge were

excluded from the pursuits ... of the Grecian sages,

until Socrates introduced, into the Ionian school, a taste

for metaphysical speculations, which excluded almost all

disposition to reason coolly and clearly on natural causes

and effects."

Quotations like these might be multiplied indefinitely.

But we have given enough to justify fully the statements

made in the opening section. These statements must be

our guide in all that follows.

4. A stone, a piece of lead or brass, water, air, the

ether or luminiferous medium, etc., are portions of

Matter; wound-iip springs, water-power, wind, waves,

compressed air, hot bodies, electric currents, as well as the

objective phenomena corresponding to our sensations of

sound and light, are examples of Eiiergy associated with

matter.

5. All trustworthy experiments, without exception,

have been found to lead to the conviction that matter is

unalterable in quantity by any process at the command
of man.

This is one of the strongest arguments in favour of

the objective existence of matter. It was usefully

employed, at the very end of last century, by Eumford in

his memorable Inquiry concerning the Source of the Heat

excited by Friction?-

It forms also the indispensable foundation of modern

chemistry, whose main instrument is the balance, used

to determine quantity of matter with great exactness.

1 Phil. Trans., 1798.
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We may speak of this property, for the sake of future

reference, as the Conservation of Matter. It justifies oiie-

lialf of the statement in § 2, A.

It is to be remarked here that the statements just

made, being the direct result of experiment, are strictly

applicable to gross matter only. The Ether or lumini-

ferous and electrical medium is certainly matter, in the

sense of having Inertia (§ 9),
but we have at present no

means of investigating its conservation.

6. So far the reader (if he resemble at all the average

student of our acquaintance) is not likely to feel much

difficulty. His every-day experience must have long

ago impressed on him the conviction of the objectivity

of matter, though perhaps he may not have learned to

express it in such a form of words.

But it is usually otherwise when he is told that energy

has an objective existence quite as certainly as has matter.

He has been accustomed to the working of water-mills,

let us say, and he cannot but allow that a "head" of

water is something other than the water
;

it is something

associated icith the icater in virtue of its elevation. He

sees and (if he be of an economic turn) he deplores the

terrible icaste of water-power which is stupidly permitted

to go on all over the Avorld. He allows that water-power

does exist, but the waste which he laments he looks

upon as its annihilation. Till within the last forty years

or so the vast majority even of scientific men held pre-

cisely the same opinion.

7. The modern doctrine of the Conservation of Energy,

securely based upon the splendid investigations of Joule

and others, completes the justification of our preliminary

statement. Energy, like matter, has been experimentally

proved to be indestructible and uncreatable by man. It
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exists, therefore, altogether independently of human

senses and human reason, though it is known to man

solely by their aid.

One of the most curious passages in history is that

which describes the quest of 21ie Peiyetual Motion.

This was simply the attempt to discover a continuous

Source of fresh mechanical energy. In 1775 the Academy

of Sciences declined, for the future, to consider any

scheme which professed to furnish work without corre-

sponding and equivalent expenditure. But the race of

Perpetual Motionists is by no means even yet extinct.

The doctrine of the impossibility of the Perpetual Motion

is often valuable in modern physics (see, for instance,

§ 139 below), as it furnishes simple ex ahsurdo proofs of

important fundamental theorems.

The objectivity of energy is virtually admitted in a

curious Avay, by its being advertised for sale. Thus in

manufacturing centres, where a mill-owner has a steam-

engine too poAverful for his requirements, he issues a

notice to the effect, "Spare Power to let." Put, of

course, the common phrase "price of labour" at once

acknowledges the objectivity of work.

8. There is, however, a most important point to be

noticed. Energy is never found except in association

with matter. Hence we might define matter as the

Vehicle or Eecqjtacle of Energy ; and it is already more

than probable that energy will ultimately be found, in

all its varied forms, to depend upon Motion of matter.

This is advanced, for the moment, as a mere introductory

statement, instances of which will be discussed even in

the present work
; but its complete treatment would

require the introduction of branches of physics with
which we have here nothing to do. One great argument
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in its favour is, that matter is found to consist of parts

which preserve their identity, while energy is manifested

to us only in the act of transformation, and (though

measurable) cannot be identified. For this is precisely

what Ave should expect to find if energy depends in-

variably on motion of matter.

9. Beside their common characteristic, conservation,

and in strange contrast to it, we have their characteristic

difference. Matter is simply passive {inert is the scientific

word) ; energy is perpetually undergoing transformation.

The one is, as it were, the body of the physical universe ;

the other its life and activity. All terrestrial phenomena,

from winds and waves to lightning and thunder, eruptions

and earthquakes, are transformations of energy. So are

alike the brief flash of a falling star, and the fiery glow

from the mighty solar outbursts of incandescent hydrogen.

10. From the strictly scientific point of view, the greater

part of the present work would be said to deal with energy

rather than with matter. In fact, were we to speak of

weight as a, property of matter, in the sense that a stone

of itself has weight, or even in the sense that the earth

attracts the stone, we should go directly in the teeth of

Newton's distinct assertion.

For such a statement (because confined to the attract-

ing bodies alone) implies the existence of Action at a

Distance, a very old but most pernicious heresy, of which

much more than traces still exist among certain schools,

even of physicists, (See Xewton's words on this subject,

§ 160 below.)

Gravitation, like all other mutual actions between

particles of matter, such as give rise to cohesion,

elasticity, etc., must, with our present knowledge, be

set down to the energy which particles of matter are
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found to possess wlien separated. The intervening

mechanism by wliich this is to be accounted for has, as

yet, only been guessed at, and none of the guesses have

been successful Clerk-Maxwell's success in explaining

electric and magnetic attractions by something analogous

to stresses and rotations in the luminiferous ether shows,

however, that we need not despair of being able to

explain the ultimate mechanism of gravitation.

But there is great convenience in separating, as far

as possible, the treatment of Mass, "Weight, Cohesion,

Elasticity, Viscosity, etc., which we range under the

general title, ProjJerties of Matter, from that of Heat,

Light, Electric Energy, etc., which can all in great

measure be studied without express reference to any
one special kind of matter— though, of course, as forms

of energy, they exist only (§ 8 above) in association with

matter. Along with these forms of energy must of

course be treated the allied properties of matter, such

as sjiecific heat, refractive index, conductivity, etc. Such,

therefore, are foreign to the present work. And it must

be remarked that, even in popular language, we invariably

speak of the hardness of a body, its rigidity, its elasticity,

as belonging to it in much the same sense as does its

density or its atomic weight
— and certainly in a much

more intimate sense than does its temperature or its

electric potential.

It is, therefore, on the two grounds of custom and

convenience that we use the term Properties of Matter as

the title of this work. The error involved is not by any
means so monstrous as that which all agree to perpetuate

by the use of the term Centrifugal Force.

11. The word Force must often, were it only for

brevity's sake, be used in the present work. As it does



INTRODUCTORY. 9

not denote either matter or energy, it is not a term for

anything objective (§ 2, A). The idea it is meant to

express is suggested to us by the "muscular sense," just

as the ideas of brightness, noise, smell, or pain are sug-

gested by other senses :
—though they do not correspond

directly to anything which exists outside us.

It is exceedingly difficult to realize fully the fact that

noise is a mere subjective impression, even when reason

has convinced us that outside the drum of the ear there

is nothing to correspond to it except a periodic com-

pression and dilatation of the air.

Still more difficult is it to realize that outside us all is

dark; and that the objective cause of even the most

gorgeous of optical phenomena is an excessively rapid

quivering motion of the ethereal jelly which extends

through all space.

We need not, therefore, be surprised at the tenacity

Avith which the great majority, even of scientific men,

still cling to the notion of force as something objective.

But if it were objective, what an absolutely astounding

difficulty would have to be faced by one who tries to

explain the nature of hydrostatic pressure ;
and who

finds that by the touch of a finger on a little piston

he can produce a pressure of a pound weight on every

square inch of the surface of a vessel, however large, if

full of water, and the same amount on every square inch

of surface of every object immersed in it, even if that

object consisted of hundreds of square miles of sheets

of tinfoil far enough apart to let the water penetrate

between them.

When we communicate energy to a body, as in push-

in" or drawing a carriage, the impression produced upon

our muscular sense does not correspond to the energy
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communicated per second, but to the energy communi-

cated per inch of the motion. For experiment has proved

that what appears to oui- muscular sense as a definite

tension (in a cord, let us say) is associated with the

communication of energy, to any mass of matter what-

ever, in direct proportion to the (linear) space through

which it is exerted, altogether independently of the speed

with which the mass may be already moving in the

direction of the tension
;
so that in equal times energy

is communicated in direct proportion to that speed.

"When there is no motion, no energy is communicated ;

and this would certainly not be the case if communica-

tion of energy corresponded to the time during which the

tension was said to act.

12. The muscular sense is far more deceptive than

any other, except, perhaps, that of touch. Conjurors,

ventriloquists, perfumers, and cooks make their liveK-

hood by practising on the imperfections of our senses

of sight, hearing, smell, and taste respectively. But he

who has tried the simple experiment of rolling a pea on

the table between his first and second fingers, after

crossing one over the other, will at once recognise the

extreme deceitfulness of the sense of touch. And the

muscular sense well deserves a place beside it. So, as

we know that there is but one pea, though the sense of

touch vividly impresses us with the notion that there

are two, we must be very Avary when the muscular

sense plainly gives us the notion of force as an objective

reality.

13. Many of the terms which are now used in a strictly

scientific sense had a humbler origin, having been devised

entirely for the popular expression of common ideas. The
term Work is a specially illustrative one. Thus, in a draw-
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"well, the work done in bringing water to the surface would

be reckoned at first in terms of the quantity of Avater

raised :
—two raisings of a full bucket lifting twice as

much water as one. But then it was found that, for the

same quantity of Avater raised, the work depended on

the depth of the well :
—doubled depth corresponding to

doubled Avork. Again, if the bucket were filled Avith sand

instead of AA^ater, more Avork Avas required, in proportion

as sand is heavier than AA'ater. All these statements Avere

soon found to be comprehended in the simple form :
—

the work done is directly proportional to the Aveight

raised and also to the height through which it is raised.

Here the indications of the muscular sense stepped in,

and work came to have a general meaning, viz. the

l)roduct of the so-called force exerted, into the distance

through which it is exerted.

Had they not possessed the muscular sense, men might

perhaps have been longer than they have been in recognis-

ing the important thing j^otential energy ; but Avhen they

had come to recognise it, they Avoidd haA'e stated that

Avhen water is raised it gains potential energy in pro-

portion as it is raised, and perhaps they might have

found it convenient to use a single term for the rate at

Avhich such energy is gained per foot of ascent. This

Avould probably not have been the Avord "
Force," but it

Avould have expressed precisely Avhat the Avord force noAv

expresses.

Then they Avould have recognised that Avhen energy is

transmitted by a driving-belt, the amount transmitted is

{ceteris paribus) directly proportional to the space through
Avhich the belt has run. They might have invented a

name for the rate of transmission per foot -run of the

belt
; they might even have called it the tension of the
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belt
; but, anyliow, it would be precisely what is now

called force.

Let us look at the matter from another point of view.

14. A stone, if let fall, gradually gains kinetic energy,

or energy of motion, and experiment shows that the

energy gained is directly proportional to the vertical space

fallen through. Hence we have come to say that the

stone is acted upon by a force (its weight, as we call it)

whose amount is practically the same at all moderate

distances from the earth's surface.

But, so far as we know the question scientifically, we

can say no more than that the stone has potential energy

(just as water in a mill-pond has head) in proportion to

its elevation above the earth's surface
;
and consequently,

by the conservation of energy, it must acquire energy of

motion in proportion to the space through which it

descends. Why it has potential energy Avhen it is raised,

and why that potential energy takes the first opportunity
of transforming itself into kinetic energy :

—thus requiring

that the stone shall fall unless it be supported :
— are

questions to be approached later. (Chap. VII.)
15. That the statement above is complete, without the

introduction of the notion of force, is seen from the fact

that a knowledge of the kinetic energy acquired, after a

given amount of descent, enables us to determine fully

the nature of the resulting motion even when the stone is

projected, obliquely or vertically, not merely allowed to

fall. The question is easily reduced to one of mathe-

matics, or rather of Kinematics, and as such the non-

mathematical student must, for the present, simply accept
the statement as true.

And thus we have another of the many distinct and

independent proofs that Force is a mere phantom sugges-
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tion of our muscular sense
; though there can be no doubt

tbat, in the present stage of development of science, the

use of the term enables i;s greatly to condense our

descriptions.

But it is a matter for serious consideration whether we

do not connive at a species of mystification by thus

employing, in the treatment of objective phenomena, a

term for a mere sensation, corresponding to nothing

objective :
—even although it be employed solely to shorten

our statements or our demonstrations.

Every one knows that matter {e.g. corn, gold, diamonds)
has its price ;

so (as we saw in § 7) has energy. "We are

not aware of any case in which force has been offered for

sale. To " have its price
"

is not conclusive of objectivity,

for we know that Titles, Family Secrets, and even Degrees,

are occasionally sold; but "not to have its price" is at

least all but conclusive against objectivity.

16. These introductory remarks have been brought
in with the view of warning the reader that we are

dealing with a subject so imperfectly known that at almost

any part of it we may pass, by a single step as it were,

from Avhat is acquired certainty to what is still subject

for mere conjecture.

An exact or adequate conception of matter itself,

could we obtain it, would almost certainly be something

extremely unlike any conception of it which our senses

and our reason will ever enable us to form. Our object,

therefore, in what follows, is mainly to state experimental

facts, and to draw from them such conclusions as seem to

be least unwarrantable.

17. But, for the classification of the properties of

matter, whether our classification be a good one or not,

it is necessary that we should have a definition of matter.
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From wlii.it was said in last section it is obvious that

no definition we can give is likely to be adequate. All

that we can attempt, tlien, is to select a definition which

(while not obviously erroneous) shall serve as at least a

temporary basis for the classification we adopt.

18. Numberless definitions of matter have been pro-

posed.^ Here are a few of the more important :
—

(a) That which possesses hiertia (§ 9).

{P) Tlie Rf'.ceptade or Vehicle of Energy (§ 8).

(y) Whatever exerts or can be acted on by Force.

(8) Whatever can be perceived by our senses, especi-

ally the sense of Touch. This is closely akin

to the well-known definition of matter as a

Permanent Possibility of Sensation.

(e) Whatever can occupy space.

{C) Whatever, in virture of its motion, possesses Energy.

{yj) Whatever, to set it in motion, requires the ex-

penditure of Work.

(6) [Torricelli, Lezioni Accademiche, 1715, p. 25.] La
materia altro non 6, die un vaso di Circe incaii-

tato, il quale serve per ricettacolo della forza, e de'

momenti dell' impeto. La forza poi, e gl' impeti,

sono astratti tanto sottili, son quintessenze tanto

spiritose, che in altre ampolle non si posson

racchiudere, fuor che nell' intima corpulenza de'

solidi naturali.

(0 [The Vortex Hypothesis of Sir W. Thomson.] The

rotating parts of an inert perfect fluid
;
whose

motion is absolutely co7itinuous, which fills all

space, but which is, wdien not rotating, absolutely

unperceived by our senses.

^ A remarkable collection of such (noAV historical) speculations,

due to Professor Flint, is given in Appendix I,
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19. The mutual incompatibility of certain pairs of

these definitions shews that some of t'hem, at least, must

be of the so-called metaphysical species (§ 3).

(a), (/?), (^), (rj), above, have much in common, and,

with further knowledge, may perhaps be found to differ

in expression merely. At present, from want of informa-

tion, we cannot be certain that any two of them are

precisely equivalent.

Berkeley virtually asserted that all motion is produced

by the direct action of spirits on matter. Even then, the

statement (ft) that matter is the receptacle or vehicle of

energy holds good (but how then does energy exist in

the spirit 1).

But the statement that matter is whatever can exert

force (y) is to be rejected; though it was virtually intro-

duced by Cotes in his Preface to the second edition of

the Principia.

(S) must be rejected, if only because there is another

tiling besides matter (in the physical universe) which we

know of, and of course only through our senses (§ 1).

But this is not all the error
;

for we get the notion of

force through our muscular sense (§ 11), and force is not

matter, not even a tlting.

Torricelli's language is poetical, and therefore his

statement {6) must not be taken too literally. In his

time, as in all subsequent time till within the last

quarter of a century, energy and force were very rarely

distinguished from one another. Even now they are too

often confounded.

(t),
the most recent of these speculations, has the

curious peculiarity of making matter, as we can perceive

it, depend upon the existence of a particular kind of

motion of a medium which, under many of the defini-
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tions above, would be entitled to claim the name of

matter, even when it is not set in rotation.

20. But as we do not know, and are probably incapable
of discovering, what matter is, we must content ourselves

for the present with a definition which, while not at

least ohviously incorrect, shall for the time serve as a

working hypothesis.

We therefore choose (e) above, i.e. we define, for the

moment, as follows :

Matter is ichatever can orxujpij space.

Experience has proved that it is from this side that the

average student can most easily approach the subject, i.e.

here, as it Avere, the contour lines of the ascent (§ 80) are

most widely separated.

21. But this definition involves three distinct pro-

perties:
—

(1) the Volume, (2) the Form or Figure, of

the space occupied ;
and (3) the nature or quality of the

Occupation.

Hence the older classical works on our subject almost

invariably speak of matter as possessing
—

(1) Extension,

(2) Form, and (3) Impeyietrahilitij. It is mainly for the

sake of the first of these, and the preliminary discussions

which it necessarily introduces, that we have chosen the

above definition as our starting-point.

22. Before we take these up in detail, however, it may
be useful to devote a short chapter to a digression on

some of the more notable of the hypotheses which have

been propounded as to the ultimate structure of matter.

We advisedly use the Avord structure instead of nature,

for it must be repeated, till it is fully accepted, that the

discovery of the iiltimate nature of matter is probably

beyond the range of human intelligence.

Another chapter, of a very miscellaneous character, will
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follow, devoted to the examination of some of the terms

popularly applied to pieces of matter, and a rapid glance

at the physical truths which underlie them. This is

introduced to give the reader, at the very outset of his

work, a general idea of its nature and extent.

13



CHAPTER 11.

SOME HYPOTHESES AS TO THE ULTIMATE STRUCTURE OF

MATTER.

23. The hard Atom, gloiifieJ iu the grand poem of

Lucretius, but orighially conceived of, some 2400 years ago,

"by the Greek philosophers Demokritus and Leukippus,
survives (as at least an unrefuted, though a very improb-

able, hypothesis) to this day. Newton made use of the

hypothesis of finite, hard, atoms to explain why the speed
of sound in air was found to be considerably greater than

that given by his calculations
;
which were accurate in

themselves, but founded on erroneous or, rather, incom-

plete data. But in this problem Laplace found the vera

causa, and in consequence I^ewton's apparent support of

the hypothesis of hard atoms is no longer available.

Many of the postulates of this theory are with

difficulty reconciled with our present knowledge ;
some

have been contemptuously dismissed as "inconceivable."

But any one who argues on these lines becomes, ijiso

facto, one of the so-called metaphysicians.

Let us briefly consider the main statements of this

theory, but without regard to the order in which

Lucretius gives them.

24. Nature works by invisible things; thus paving-
is
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stones and plouglishares are gradually Avorn down -without

the loss of any visible particles.

Eeproduction [i.e. agglomeration of scattered particles

so as to produce visible bodies] is slower than decay

[i.e.
the breaking up of bodies into invisible

particles], and

therefore there must be a limit to breakage, else the

breaking of infinite past ages would have prevented any

reproduction "within finite time. Hence there exists a

least in things [i.e.
unbreakable parts or Atoms,

"
strong

in solid singleness "].

But there is also void in things, else they would be

jammed together, and unable to move. Here Lucretius

takes the case of a fish moving in Avater, showing that

void is necessary in order that it may be able to move.

[(")ur
modern knowledge of circulation, i.e. the motion of

fluids in re-entrant paths, shows that this reasoning is

baseless.]

There can be no third thing besides body and void.

For nothing but body can touch and be touched; and

what cannot be touched is void. [Here we have the germ
of the erroneous definition of matter (8) in § 18 above.]
The atoms are infinite in number, and the void in

which they move [space] is unlimited.

They have different shapes ;
but the number of shapes

is finite, and there is an infinite number of atoms of each

shape.

Nothing whose nature is apparent to sense consists of

one kind of atoms only.

The atoms move through void at a greater speed than

does sunlight.

Besides this, there is a great deal of curious speculation

as to how a vertical downpour of atoms [supposed to be

a result of their weight] is, in some arbitrary way, made
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consistent with their meeting one another and agglome-

rating into visible masses of matter.

The basis of the whole of Lucretius' reasoning in

favour of the existence of atoms lies in the gratuitous

assumption that reproduction is slower than decay. This

is by no means consistent with our modern knowledge,

for potential energy of different masses [whether gravita-

tional or chemical] is constantly tending to the agglomera-

tion of parts, and on a far grander scale than that in

which any known cause tends to decay or breaking up.

But if there be hard atoms, they must (in all known

bodies) have intervals between them; for compressi-

bility:
—i.e. capability of having the component atoms

brought more closely together :
—is a characteristic of all

known bodies. [Contrast this mode of arriving at the

conclusion that "there must be void in things," with the

erroneous mode employed by Lucretius.]

25. A refinement of this theory, mainly due to

Boscovich, gets rid of the material atom altogether,

substituting for it a mere mathematical point, towards

or from which certain forces tend. It is supported by

the assertion that Ave know matter only by the effects

which it produces (or seems to produce), and therefore

that, if these effects can be otherwise explained, we need

not assume the existence of substance or body at all.

This theory was, at least in part, accepted by so great an

experimenter and reasoner as Faraday. It virtually

substitutes force for matter as an objective thing (§ 2),

and it essentially involves the heresy of distance-action

(§ 10). But the fatal objection to which it is exposed is

that it does not seem capable of explaining inertia, which

is certainly a distinctive (perhaps the most distinctive)

property of matter.
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This theory must be regarded as a mere mathematical

fiction, very similar to that which (in tlie hands of

Poisson and Gauss) contributed so much to the theory

of statical Electricity ; though, of course, it could in no

way aid inquiry as to what electricity is.

26. A much more plausible theory is that matter is

continuous (i.e. not made up of particles situated at a

distance from one another) and compressible, but in-

tensely heterogeneous ;
like a plum-pudding, for instance,

or a mass of brick-work. The finite heterogeneousness

of the most homogeneous bodies, such as water, mercury,

or lead, is proved by many quite independent trains of

argument based on experimental facts. If such a con-

stitution of matter be assumed, it has been shown ^ that

gravitation alone would suffice to explain at least the

greater part of the phenomena which (for want of knoAV-

ledge) we at present ascribe to the so-called Molecular

Forces. But it does not seem to be compatible with

experimental facts
; especially some of the simpler

phenomena presented by gases. (§§ 55, 322.)

27. The most recent attempt at a theory of the

structure of matter, the hypothesis of Vortex Atoms, is

of a perfectly unique, self-contained character. Its postu-

lates are few and simple, but the working out of anything

beyond their immediate consequences is a task to tax to

the utmost the powers of the greatest mathematicians for

generations to come. A vortex filament, in a perfect

fluid, is a true " atom
;

" but it is not hard like those of

Lucretius
;

it cannot be cut, but that is because it

necessarily wriggles away from the knife.

The idea that motion is, in some sort, the basis of

what we call matter is an old one
;
but no distinct con-

i W. Thomson, Proc. B.S.E., 1862.



22 PROrERTIES OF MATTER.

ceptions on the subject were possible until v. Helmholtz,

in 1858, made a grand contribution to hydrokinetics in

the shape of his theory of vortex motion.^ He proved,

among other entirely novel propositions, that the rotating

portions of a continuous incompressible fluid, in -which

there is neither viscosity nor finite slipping, maintain

their identity :
—

being thus for ever definitely difi'erenti-

ated from the non-rotating parts. He also shoAved that

these rotating portions are necessarily arranged in con-

tinuous, endless filaments :
—

forming closed curves, which

may be knotted or linked in any way :
—unless they

extend to the bounding surface of the fluid, in which

alone they can have ends. Thus, to give ends to a

closed vortex filament
(i.e.

to cut it),
we must separate

the fluid mass itself, of which it is a portion :
—so that

on Thomson's theory we must (virtually) sever space

itself.

Such vortex filaments (though necessarily of an im-

perfect character) are produced when air is forced to

escape from a box, through a circular hole in one side,

by sharply pushing in the opposite side. If the air in

the box be filled with smoke, or Avith sal - ammoniac

crystals, the escaping vortex ring is visible to the eye ;

and the collisions of two vortex rings, which rebound

from one another, and vibrate in consequence of the

shock, as if they had been made of solid india-rubber,

are easily exhibited. Experimental results of this kind

led Sir W. Thomson - to propound the theory that matter,

such as we perceive it, is merely the rotating parts of a

fluid which fills all space. This fluid, whatever it be,

must have inertia :
— that is one of the indispensable

1
CreUe, 1858. Translated (by Tait) in Phil. Mag., 1867.

2 Proc. R.S.E., 1867.
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postulates of v. Helmholtz's investigation ;
and the great

primary objection to Thomson's theory is, that it explains

matter only by the help of something else which, though

it is not what we call matter, must possess what we

consider to he one of the most distinctive properties of

matter.

28. Eut this theory is still in its infancy, and we can-

not as yet tell whether it Avill pass M'ith credit the severe

ordeal which lies before it, when the properties of vortices

(which must be discovered by mathematical investigation)

shall be compared, one by one, with the experimentally

ascertained properties of matter. As we have already

said, this theory is self-contained
;
no new hypotheses

can be introduced into it
;

so that it possesses, as it were,

no adaptability, or capability of being modified, but must

fall before the very first demonstrated insufficiency, or

contradiction, if such should ever be discovered.

29. But the really extraordinary fact, already known in

this part of our subject, is the apparently pe?/ec^ similarity

and equality of any two particles of the same kind of gas,

probably of each individual species of matter when it is

reduced to the state of vapour. Of such parts, therefore,

whether they be further divisible or not, each species of

solid or liquid must be looked on as built up. This

similarity of parts, very small indeed but still of essenti-

ally finite magnitude, has been so well treated by Clerk-

Maxwell that, instead of insisting upon it here, we give a

considerable extract from one of his remarkable articles

in Appendix II. below.

30. The further treatment of the subject of structure,

involving the question of hoiv the component parts (be

they atoms or not) of bodies are put together, must be

deferred to the end of the work. "What has been said
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above must be looked on as a mere preliminary sketch,

not intended even to be fully understood until the

experimental data, on whicli all our reasoning must be

l)ased, are brought before the reader as completely as our

limits permit.



CHAPTEE III.

EXAMPLES OP TERMS IN COMMON USB AS APPLIED TO

MATTER.

31. Before we proceed to a more rigorous treatment of

our subject, it maybe well to consider what phj'sical truth

underlies each of some of the many adjectives in common
use as applied to portions of matter, such as Massive,

Heavy, Plastic, Ductile, Viscous, Elastic, Rigid, Oj)aque,

Blue, Coherent, etc.

This course secures a twofold gain, so far as the

beginner is concerned, for, first, he is introduced by it, in

a familiar way, to some of the more important terms

wliich are indispensable in scientific description ;
and

second, he obtains a glance here and there through the

whole subject of Natural Philosophy, because the pro-

gramme before us is so vague as to leave room for

innumerable digressions, each introducing some novel but

important fact or property. But we must endeavour to

be brief, for whole volumes would have to be written

before this subject could be nearly exhausted.

32. Every one who has used liis senses to any purpose

knows, before he comes to the study of our science, a

great many of its phenomena, among them some of the

yet unexplained. But he knows, as it were, each by
25
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itself, and only in its more prominent features
;

the

analysis of the appearances or impressions which he has

seen and experienced, and the explanation of the physi-

cal fact or process which underlies each of them, are

absolutely necessary before he can understand the mode

in which they must be grouped, and the reasons for such

grouping.

33. Thus he knows that the moon keeps company with

the earth, never receding nor approaching by more than a

small fraction of the average distance. He also knows

that the earth keeps, within narrow limits, at a definite

distance from the sun. He has a general notion, at least,

that the state of matters on the earth would become

serious, as regards both animal and vegetable life, if Ave

were to approach to even half our present distance from

the sun, or recede to double that distance. But he would

require to be a Newton if, without instruction, he could

divine that these residts are due to the very cause which

keeps the bob of a conical pendulum moving in a horizontal

circle.

He sees ripples running along on the surface of a pool,

but requires to be told that their motion depends upon
the cause which rounds the drops of water on a cabbage-

blade, or in a shower, and which renders it almost

impossible to keep a Avater-surface clean.

He sees what he calls a flash of lightning, but he

requires to be told that what he sees is mainly particles

of air heated so as to be self-luminous.

He looks at the stars and thinks he sees them as they

are, but he requires to be informed that he sees even the

nearest of them only as it was three years ago, and that it

may have changed entirely in the interval.

And he Avill certainly require to be informed, even
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with patient iteration, that air is made up of separate and

independent particles :
—the number of which in a single

cubic inch is expressed by twenty-one places of figures, a

multitude altogether beyond human conception :
—a busy

jostling crowd, each member of which darts about in all

directions, impinging on its neighbours some eight thou-

sand million times per second.

But when he has got so far, and has been told that

this astounding information is as nothing to what we
feel convinced that science can yet reveal, he cannot help

marvelling alike at the arcana of physics, and at the

patient efforts of genius which have already penetrated so

far into the darkness shrouding its mysteries.

34. Take the terms Massive and Heavy as applied to a

piece of matter, or the corresponding substantives, the

Mass and the TFeight of a body.
The terms are usually regarded as synonymous, but in

their origin they are completely distinct. The one is a

property of the body itself, and is retained by it without

increase or diminution wherever in the universe the body
may be situated. The other depends for its very exist-

ence on the presence of a second body, and diminishes

more rapidly than the distance between the two increases.

The destructive effects of a cannon-ball are due entirely
to its ma?s and to the relative speed with which it im-

pinges on the target, and Avould be exactly the same (for

the same relative speed) in regions so far from the earth,

or other attracting body, that the ball had practically no

iceigld at all.

When an engine starts a train on a level railway, or

Avhen a man projects a curling-stone along smooth ice,

the resistance which either prime mover has to overcome

is due to the mass of the body to be moved. Its weight,
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except indirectly through friction, has nothing to do with

it. So when we o^ien a large iron gate properly sup-

ported on hinges, it is the mass with which we have to

deal
;

if it were lying on the ground and we tried to lift

it, we should have to deal simultaneously with its weight
and with its mass.

The exact proportionality of the weights of bodies to

their masses, at any one place on the earth's surface, was

proved experimentally by Newton, and is thus no mere

truism, but an essential part of the great law of gravitation.

Thus a pound of matter is a definite amount, or mass,

of matter, unchangeable whithersoever that matter may be

carried. But the weight of a pound of matter, or a

"pound-weight," as it is commonly called, is a variable

quantity, depending upon the position of the body with

respect to the earth
;
and changes (to an easily measurable

amount) as we carry the body to different latitudes, even

Avithout leaving the earth's surface.

35. The common use of the balance as a means of

measuring out equal quantities of matter is justified by
Newton's result

;
but the process is essentially an indirect

one, for the balance tells only of equality of weight. If

the earth were hollow at the core, the balance would cease

to act in the cavity. Bodies would preserve their masses

there, but would be deprived of weight.

To sum up for the present, the mass of a body is

estimated by its inertia, and is taken as the measure of

the amount of matter in the body ;
while the weight is

an accidental property, connected with the presence of

another mass of matter. But it is a most remarkable

fact that under the same given external conditions the

weight depends upon the quantity only, and not on the

qiialii//, of the matter in a body.
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If a body, A, becomes heavy in consequence of the

presence of another bod}^, B, so in like wise does B become

heavy in consequence of A's presence. And the weights

of the two, each as produced by the attraction of the

other, are exactly equal. Hence, if they be free to

move, the quantities of motion
(i.e.

the momenta) pro-

duced in a given time are equal and opposite. [Newton's
Lex iii. § 128.] But as the momentum is the product of

the mass and the velocity, the parts of the velocities of

the two bodies, due to their mutual gravitation alone,

will be in amount inversely as their masses. Thus,

though the weight of the whole earth, produced by the

attraction of a stone, is exactly equal to that of the stone

produced by the attraction of the earth, the consequent

rate of fall of the earth towards the stone is less than

that of the stone towards the earth in the same ratio that

the mass of the stone is less than that of the earth, and

is therefore usually so small as to escape observation.

The moon, however, is a stone whose mass is not exces-

sively smaller than that of the earth, and the consequences

of the earth's fall towards the moon have to be taken

account of in astronomy.

36. To properties such as mass, which depends on the

size as well as on the material of a body, and weight

which, in addition, depends on a second body, there

correspond what are called specific properties, characteristic

of the substance and independent of the dimensions of the

particular specimen examined.

Thus the mass of a cubic foot of any kind of matter

may be called its specific mass. But this quantity, i.e.

the amount of matter in unit bulk, is usually expressed

by the term Density.

The weight of a cubic foot of each particular kind of
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matter in any locality may bo called the
sjiecifi.c iceighf.

But as this varies, though in the same proportion for all

bodies, from place to place, we use instead of it the ratio

of the weight of a cubic foot of tlie substance to that of

a cubic foot of some standard substance. This is called

the Specific Gravity. Pure water, at the temperature
called 4° C. (its maximum-density point), is usually taken
as the standard substance.

Xewton's experimental result shows that the density
and the specific gravity of any substance are proportional
to one another, so that if the density of water at 4° C.
be taken as unit-density, a table of specific gravities is

identical with a table of densities. Eut we nnist repeat,
the coincidence is an experimental fact, not as yet at

least in any sense a truism.

Specific gravity is, in general, much more easily
measured with accuracy than is density, so that it is

usually the property to be directly determined, the other

simply following from it in consequence of Newton's

discovery.

37, To vary the subject widely, let us now consider

the term Viscous as applied to fluids. The contrasted

adjective is usually taken as Mobile.

When a liquid partially fills a vessel, and has come to

rest, it assumes a horizontal upper surface. If the vessel

be tilted, and held for a time in its new position, the

liquid will again ultimately settle into a definite position,

with its surface again horizontal. Practically it occupies
the same hiilk in each of these positions. Hence the only

change it has sulfered is a change oi form.

But this change of form is much more rapidly attained

in some liquids than in others, even when they are of

nearly the same density. Some (such as sulphuric ether)
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attain tlieir equilibrium position so quickly tliat they
retain energy enough to oscillate about it for some time

before coming to rest
;
others (such as treacle) attain it

only after a long time and, unless in great masses and

when violently disturbed, do not oscillate but gradually

creep to their final shape. Hence we call treacle viscous.

To analyse this result, let us consider (in a very ele-

mentary case, for the general analysis of the process

requires higher mathematical methods than we can

employ in a work like this) what is involved in Shear :
—

i.e. change ofform of a body without change of hulk.

38. When water flows, without eddies, slowly in a

rectangular channel of uniform width and depth, we

know, by observation of jDarticles susjiended in it, that

the upper parts flow faster than the lower, and (practically)

in such a way that a column of the water, originally

straight and vertical, inclines, as a whole, forwards more

and more in the direction of its motion. Hence in a

vertical section, along the middle of the channel, the

particles originally forming the line ah in the figure will,

after the lapse of a certain time, be found approximately
in the line a'h'. Similarly those which were originally in

a c fr'
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figures ad, ad', are thus parallelograms on equal bases

and between the same parallels, and therefore equal in

area. This shows that the water enclosed between

vertical cross sections through ab and cd has the same

volume as that between inclined sections (perpendicular

to the sides) passing through a'b' and c'd'. There has

thus been change of form only in this mass of water, and

we see that it has been produced by the sliding of every

horizontal layer of the water over that immediately

beneath it. [The same result follows even if a'U be not

straight, for c'd' will necessarily be equal and similar to

it.]
A good illustration of the nature of this kind of

distortion will be seen in the leaves of an opened book,

especially a thick one, such as the London Directory. It

is often well exhibited by piles of copies of a pamphlet,

or of quires of note-paper curiously arranged in a sho})-

window. Xow when there is resistance to sliding of one

solid on another we call it Friction. Thus the viscosity

of a fluid is due to its internal friction, just as the slower

motion at the bottom than at the top of the channel is

to be ascribed to the friction of the liquid against the

solid.

39. AYc now see tchy it is that disturbances of liquids

gradually die away :
—why the waves on a lake, or even

on an ocean, last so short a time after the storm which

produced them has ceased. Also why winds (for there

is friction in gaseous fluids as well as in liquids, though

the mechanical explanation of its origin may not be quite

the same) gradually die out. In either case the energy

apparently lost is, as in the case of friction of solids,

merely transformed into heat. We also see why it is

that winds have the power of raising water-waves.

The stirring of water, or oil, and the measurement
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of the consequent rise of teniperatare when the whole

had come to rest, the work done in stirrino; beinsr also

determined, was one of the processes by which Joule

found, with great accuracy, the dynamical equivalent of

heat.

40. It is very instructive to watch the ascent of an

air-bubble in glycerine, and to compare it with that of

an equal bubble in water. The experiment is easily

tried Avith long cylindrical bottles, nearly full of different

liquids, but having a small quantity of air under the

stopper. "When the bottle is inverted the bubble has to

traverse the whole column.

The (apparent) suspension in water of mud, and ex-

ceedingly tine sand (to whose presence the exquisite

colours of the sea and of Alpine lakes are mainly due) is

merely another example of viscosity. So is the suspen-
sion of fine dust, and of cloud particles, in the air.

Stokes 1 calculates that a droplet of water, a thousandth

of an inch in diameter, cannot fall in still air at a much

greater rate than an inch and a half per second. If it be

of one-tenth of that size it will fall a hundred times

slower, i.e.. not more than one inch per minute ! This

result, viz. that the resistance in such cases varies as the

diameter, and not as the sectional area of the drop, is

very remarkable. (See § 316.)

41. Bodies are called Elastic or Non-elastic. Compare,
for instance, the properties of a wire of steel with those

of a lead wire
;
or of a piece of india-rubber and a piece

of clay or putty. Eut the popular use of these terms is

generally very inaccurate. The blame rests mainly with

the ordinary text-books of science, which are (as a rule)

^ On the Effect of the internal Friction of Fluids on the Motion

of Pendulums. Camb. Pliil. Trans, ix. (1851), eq°- (127).

C
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singularly at fault witli regard to the whole of this

special subject, including even its most elementary parts.

Elasticity, in the correct use of the term, implies that

property of a body in virtue of which it recovers, or tends

to recover, from a deformation.

The phrase "tends to recover" is scarcely scientific;

we should preferably say "requires the continued applica-
tion of deforming stress (§ 128) to prevent recovery,
entire or partial, from deformation."

Kinematics shows us that any deformation, however

complex, is made up of mere changes of hulk and oi form.
A distortion may therefore be wholly Compression, or

wholly Shear (§ 37), or made up of these in any way.
Hence there are two distinct kinds of Elasticity, viz.

Elasticity of Bulk and Elasticity of Form. The former

is possessed in perfection by all fluids, while the second

is wholly absent. In solids both are present, but neither

in perfection.

Thus we see that, as a necessary preliminary to in-

vestigations on elasticity of bodies, we must study their

capabilities of being distorted:—a whole series of pro-

perties, such as compressibility, extensibility, rigidity, etc.

This investigation is given in Chap. VIIL, and its

applications in Chaps. IX., X., XI. below.

42. In popular language, bodies are said to be White,

Black, Blue, Red, etc. The investigation of the under-

lying scientific facts, on which these depend, is partly

physical (and therefore within our scope), but also partly

physiological. The subject is thus a somewhat complex
one.

What do we mean by White Light ? This is a question
much more physiological than physical; dealing, as it

does, with phenomena which are subjective rather than
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objective. Probably the true answer to it depends upon
circumstances, or conditions, which may be varied in-

definitely, and with them Avill, of course, vary what is

described in terms of them.

Thus, in a room lit by gas, a piece of ordinary Avritin'-'--

paper, or of chalk, appears white :
—at least if we have

been in the room for some little time. Eut if, beside it,

there be another piece of the same paper or chalk on

which, through a chink, a ray of sunlight is allowed to

fall (weakened, if necessary, so as to make the two appear
of nearly the same hriglitness), we at once call the first

piece of paper or chalk yellow, allowing the second to Ije

icliite. Here Ave enter on a purely physiological question.

In fact, if we accustom ourselves, for a sufficiently long

time, to the observation of bodies in a room lit up only

by burning sodium (which gives almost homogeneous

orange light), we may ultimately come to regard bright

bodies such as chalk, etc., as being white :
—

others, of

course, being merely of different shades, or degrees of

blackness. This, therefore, is foreign to our present

subject. For all that, it furnishes us with the means of

answering an important question somewhat different from

that proposed above, but now a physical question :
—viz.

What do we mean by a icliite body ?

43. Suppose tjco sources to exist in the room, giving
diiferent kinds of homogeneous light ;

one being incan-

descent sodium as before, the other incandescent lithium,

which (at moderate temperatures) gives a homogeneous red

light. Chalk and ordinary writing-paper will still appear
as white bodies to an eye which has become accustomed

to the light in the room
;
other bodies appear darker, but

some are reddish, some of an orange tint.

And thus we obtain the idea that what we call a ichite
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hochj is one which sends to the eye, in nearly the same

proportion as it receives them, the various constituents

of the light Avhich falls upon it
;

while a black body
sends none

;
and coloured bodies send back light which,

while (in general) necessarily made up of the same con-

stituents as the incident light, contains them in different

proportions to those in which they fell upon it. [It

would only confuse the student were we here to refer to

Fluorescence^

44. Thus ivMte ligld would seem to be a mere relative

term. It is conceivable that the inhabitants of worlds

whose sun is a blue star, or a red star (and there are

many notable examples of such stars), may have their

peculiar ideas of white light, formed from their own
circumstances

;
as ours is formed from the light of our

own sun, which is what, in contrast with these, we must

call a yellow star.

However this may be, the discussion above has shown

what is meant by a white body. A blue body is, by
similar reasoning, one which returns blue rays in greater

proportion than it does those of other visible light. It

is therefore said to ahsorh the other rays in greater pro-

portion than it absorbs the blue rays.

ISTow we are in a position to understand why blue and

yellow pigments, mixed together, give green :
—while a

disc, painted with alternate sectors of the same blue and

yellow, appears of a purplish colour when made to rotate

rapidly. For the light given out by the rotating disc is

a mixture, in the proportion of the angles of the sectors, of

the kinds of light returned by the blue and yellow separ-

ately. But that which the mixed pigments send back

has in great part penetrated far enough into the mass to

run, as it were, the gaimtlet of absorption by each of the
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separate components in turn, and therefore is finally made

up of those rays alone which are not freely absorbed by
either.

To this discussion Ave need only add, in illustration of

the conservation of energy, that a body is always found

to be heated in proportion to the amount of light-energy

which it absorbs.

45. Shifting our ground again, we next take the words

Malleable, Ductile, Plastic, and Friable, as applied to

solid bodies.

All of these refer specially to the behaviour of solids

under the action of forces which tend to change their

form; for the change of volume of solids, even under

very great pressures, is usually very small. The first

three indicate that the body preserves its continuity while

yielding to such forces, the fourth that it breaks into

smaller parts rather than change its form. And, in

popular use at least, the terms imply in addition that

the body is not sensibly elastic.

46. The most perfect example of a malleable body is

metallic gold. The gold leaf employed for "gilding," as

it is called, is prepared by a somewhat tedious process,

which requires a high degree of skill in the workman.

The gold is first rolled into sheets thinner than the thin-

nest writing-paper (thus already showing a high amount of

plasticity) ;
next it is beaten out between leaves of vellum,

till its surface is increased, and therefore its thickness

diminished, some twenty-fold. A small jjortion of this

fine leaf is then placed, between two pieces of gold- /

beater's skin
;
and a more skilful workman, with a lighter

hammer, again extends its surface twenty-fold. This

operation can be repeated without tearing the thin film of

metal, so great is its tenacity.
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Here we have one dimension (thickness) diniinislieci

in a marked manner, but the product of tlie other two

dimensions (the surface of the leaf) is of course pro-

l^ortionally increased.

47. Tlie action of the hammer may he practically

viewed as equivalent to that of an intense pressure exerted

through a very small volume, thus at every stroke apply-

ing a finite amount of energy. One portion of this is

changed into heat in the hammer, the anvil, and the

gold leaf; the rest is employed in doing work against the

molecular forces of the gold, and thus altering its form.

To show that this is the true explanation of the

observed effect, Ave may vary the experiment by subject-

ing a leaden bullet to the action of a hydrostatic press.

A few strokes of the pump suffice to bruise the bullet

into a mere cake. The process is essentially the same as

that of gold-beating, but lead is by no means so malleable

as gold.

48. This leads lis, in our present discursive treatment

of parts of our subject, to inquire how it is, that by
means of such a machine as the Bramah press, a man
can apply pressure sufficient to mould a piece of lead,

whose shape he could scarcely alter to a perceptible

amount by the direct pressure of the hand.

Here we have a first inkling of the Fandion of a

Machine. A machine is merely a contrivance by which

Ave can apply Avork in the Avay most suitalile for the

purpose Ave have in hand. Work (as a form of energy)

is a real thing, Avhose amount is conserved. But Ave

have seen that it can be measured as the product of

two factors—the (so-called) force exerted, and the space

through Avhicli it is exerted. Hence, because even Avhen

a machine is perfect it can give out only the energy
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comniiinicated to it, if there be but one movable part

to wliich energy is supplied and another by which it is

given off, the sinuiltaneous linear motions of these two

parts must be in the inverse ratio of the forces applied to

them, or exerted by them, in the direction of these

motions respectively. Thus we are not concerned with

the interior structure, or mode of action, of a perfect

machine : all we need to know is the necessary relation

of the speeds of the two parts or places at which energy

is taken in and given out. This is a matter of kinematics,

and can be made the subject of direct measurement when

the machine is caused to move, whether it be transmitting

work or not.

The statement just made is embodied in the vernacular

phrase
—
What is gained in power is lost in sjjeed.

Objections may freely be taken to this form of words,

but it is meant to imply precisely wliat was said above

as to the action of a perfect machine.

If the machine be imperfect, as, for instance, if there

be frictional heating durino; its working, the heat so

produced represents some of the energy given to the

machine, and the remainder of it is alone efficient.

49. A substance is said to be ductile when it can be

drawn into very fine wires— i.e. when it admits of great

exaggeration of one of its three dimensions (length) at

the expense of the product of the other two (cross

section). Wire - drawing is, essentially, a very coarse

operation, for it has to be effected by fiu'ife stages, the

wire bein" drawn in succession through a number of

holes in a hard steel plate, in which each hole is a little

smaller in diameter than the preceding one. The more



40 PROPERTIES OF MATTER.

nearly continuous the operation is made, the more tedious

and therefore the more costly it becomes.

The associated tenacity and plasticity of silver render

it one of the most ductile of metals. And arx incjenious

idea of Wollaston's enables us, as it were, to impart to

other metals much of the ductility of silver. His idea

may be briefly explained by analogy as follows. Suppose
a glass rod, whose core is coloured, be drawn out while

softened by heating, the diameter of the core is found to

be reduced in the same proportion as is that of the rod.

Thus, to obtain platinum wires much finer than could be

procured by direct drawing, Wollaston suggested the

boring of a hole in the axis of a cylindrical rod of silver,

plugging the hole with a platinum wire which just fitted

it, and then drawing into fine wire the compound

cylinder. When this operation has been carried to its

limit, practically determined by the ductility of the

silver, the diameter of tlxe platinum has been reduced

nearly in the same proportion as that of the silver; and

the silver may be at once removed from the fine platini;m

core by plunging the Avhole in an acid which freely

attacks silver but has no effect on platinum.

50. Plasticity is shown, on the large scale, by many
substances which, in hand specimens, appear fragile in

the extreme. Glacier-ice is one of these, but its behaviour

is so closely connected with its thermal properties that

"we can only mention it here.

The whole earth, though its rock-structure appears so

rigid, has been found to be more plastic (under the tidal

attraction of the moon) than a globe of glass of the same

size would have been.

But it is specially under the action of small but

persistent forces that bodies, which are usually regarded
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as brittle or friable, show themselves to be really plastic.

A good example of this is given by an experiment clue

to Sir W. Thomson. Cobbler's wax is usually regarded
as a very brittle body ; yet if a thick cake of it be laid

upon a few corks, and have a few bullets placed on its

upper surface (the whole being kept in a great mass of

water to prevent any but small changes of temperature),
after a few months the corks will be found to have forced

their way upwards to the top of the cake, while the

bullets will have penetrated to the bottom.

51. For variety, let us next take the terms Trans-

parent, Translucent, and Opaque.
These refer, of course, to the behaviour of a substance

with regard to the passage of light through it. In

common speech, a pane of ordinary window -glass is

called transparent, while a piece of corrugated or of

ground glass is translucent :
—the latter transmits rays,

no doubt, but with their courses so altered that they are

no longer capable of producing distinct vision of the

source from which they come. Consistency would require

that the term translucent should also be applied to

irregularly-heated air, or to a mixture of water and strong
brine before diffusion has rendered it uniform throughout.

Translucent is hardly a scientific word, unless we
choose to limit its application to heterogeneous bodies.

In science we speak of the degree of transparency of a

homogeneous substance
; as, for instance, water more or

less coloured, and employed in greater or less thickness.

In such cases, besides the inevitable surface-reflection,

there is more or less absorption ;
and the percentage of

any definite kind of incident light which unit thickness

of the substance transmits is called its transparency for

that kind of light.
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Opacity may arise from either of the two causes just

mentioned. Light may eyiter a body, and he unable to

proceed farther, as is the case with lamp black. Or it

may fall on a highly polished surface, such as thinly

silvered glass, and be in great part reflected without

entering.

In the former case it is said to be absorbed
; and, when

this happens, the absorbing body is raised in temperature.
The incident energy is converted from the light form into

that of heat.

In the latter case part only can enter the body ; and, if

it meet in succession other reflecting surfaces in sufficient

number, practically the Avhole of it may be reflected.

This is the case with a heap of pounded glass, a cloud,

a mass of snow, or of froth or foam. All of these

materials are transparent, but they reflect some of the

incident light ; and, in consecjuence of the multiplicity

of surfaces which the light has to encounter, the greater

part of it is reflected before it has penetrated deeply into

the mass. Hence the whiteness and brightness of snow
and clouds in full sunshine.

52. We have here an excellent opportunity of calling

the student's attention to the distinction :
— a very pro-

found one :—between Heat and Temperature.
For we have seen that energy, in the form of light,

when absorbed, becomes heat in the absorbing body, and

thus raises its temperature. But if the same quantity of

heat had been given to a body, of the same nature but

of twice the mass, the rise of temperature would have

been only half as great. The very form of words here

used shows at once how diff'erent are the meanings of

the words temperature and heat. For the quantity of

heat (so much energy, a real thing) is perfectly definite,
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liut the effect it produces on the temperature (a mere

state) depends on the quantity and quality of the mass

to which it is communicated.

Heat is therefore a thing, something objective ;
tem-

perature is a mere condition of the body, with which

the heat is temporarily associated; a condition which

in certain cases determines the physical state of the body

itself, and in all cases determines its readiness to part

Avith heat to surrounding bodies or to receive it from

them.

Heat may, in this connection, but only for illustration,

be compared with the air compressed into the receiver of

an air-gun ; temperature would then be analogous to the

pressure of that air. Neither of two receivers would

(except by diffusion, Avith which we are not at present

concerned) give air to the other, when a pipe is opened

between them, if the pressure were the same in both
;

but air would certainly flow from the receiver in which

the pressure is greater to the other
;
and this, altogether

independently of the relative capacities of the two receivers,

or tlie consecpient amounts of their contents.

53. As another example, take the terms Cohesive, In-

coherent^ Repulsice.

A lump of sandstone has considerable tenacity, which,

of course, is to be ascribed to those molecular forces of

which we spoke in § 26. But when, in virtue of its

friability, it has been pounded down into sand, it becomes

an incoherent powder. And we know that it must at

some time previously have been in this form, for it often

contains fossil plants or fish, and it may even have pre-

served (perhaps for a million or more of years) records of

surface-disturbance in the form of dents made by rain or

hail, or by the feet of birds or reptiles.
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Tlie graphite, or plumbago, wliich forms the material

for the finest drawing-pencils, is a somewhat rare and

valuable mineral. In cutting it up into "leads," however

carefull}^, a considerable portion is reduced to powder—
i.e. sawdust. But if this powder be exposed, in mass, to

pressure sufficient to bring its particles once more within

the extremely short mutual distance at which the molecular

forces are sensible, these forces again come into play, and

the powder becomes a solid mass, which can in turn

be sawn into "leads" for a somewhat inferior class of

pencils.

The whole of this part of the subject, especially as

regards liquids, will be fully treated later, so that we need

not further consider it here.

54. But let us contrast, with the behaviour of the

particles of a solid or a liquid, that of the particles of a

gas or vapour. Such substances require to be subjected

to external pressure in order to prevent their particles

from being Avidely scattered. When a small quantity of

air is allowed to enter an exhausted receiver it dilates so

as to occupy with practical uniformity the Avhole interior

of the receiver, however large that may be.

This result was, naturally enough, at first ascribed to

a species of repulsion between the various particles ;
but

the notion was found to be an erroneous one. For the

effects of a true repulsion, capable of producing the

practically infinite dilatation already spoken of, could not

all be consistent with the corresponding observed results.

The mode of departure from them depends upon the law

according to which the repulsion may be supposed to vary

with the distance between two particles. Some assumed

laws would give as a consequence that the particles would

all be driven to the sides of the vessel, leaving the interior
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void. Others woxild require that the pressure should

change in value if Ave Avere to take half the gas and con-

fine it in a vessel of half the content. Others would

make it different at different parts of the surface unless

the vessel Avore truly spherical, etc. etc.

The true explanation of the ijhenomenon becomes

obvious to us Avhen Ave apply heat to the gas. For it

then appears that the pressure requisite to maintain the

Avhole at a constant volume increases as the temperature
is raised

;
and thus that heat is, in some Avay, the cause

of the pressure.

55. Hence Ave are led to Avhat is called the Kinetic

Tlieonj of gases, AA^hose fundamental assumption is that

the particles dart about in all directions (Avith an average

speed Avhich is greater the higher the temperature),

impinging on one another, and also upon the sides of the

containing vessel. This continued series of very small

but very numerous impacts (each, by itself, absolutely

escaping observation) is perceived by our senses as the

so-called "
pressure

"
exerted by the gas. Experiment

shoAvs that, Avhen a gas is confined in a A'essel of definite

size, the changes of its pressure are nearly proportioned
to the changes of temperature, as measured by a mercury

thermometer, Avhether these changes be in the direction

of a rise or a fall. If Ave assume, for a moment, that

this statement is true for all ranges of temperature, even

beyond those attainable in experiment, it leads us to the

very important question :
—At ichat temperature does the

pressure of a gas vanish ?

Calculations carried out in the above Av^ay shoAved that,

under the assumption just mentioned, all gases cease to

exert pressure at one comnon temperature (about -273°

C.) Thermodynamical theory comes to our assistance
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and shows that the above guess is not far from the truth :

—that a body, cooled to- 274° C, cannot be cooled any-

farther
;
that it then is, in fact, totally deprived of heat.

We might, therefore, fancy that a gas, if it could be

brought to this temperature, would l)e reduced to a mere

layer of incoherent dust or powder, deposited by gravity
on the lower surface of the containing vessel. But

experiment has shown that gaseous particles, even while

in motion, if only close enough together, exert mutual

molecular forces, so that the result (on the gas) of the

conditions above specified would probably be its assuming
a liquid or even a solid form.

56. We speak of bodies as Hard and Soft. These are

barely scientific terms
; because, unless they are strictly

defined, they may bear a great variety of meanings.

Thus, for instance, we have the mineralogist's Scale of

Hardiiess, which is often of great practical value in field-

work. For there are numerous instances in which two

quite different minerals (sometimes a very valuable and a

very common one) are almost undistinguishable from one

another so far as colour, density, and crystalline form are

concerned. Chemical tests (even the comparatively coarse

blowpipe tests), though they would settle a question of

this kind at once, are not readily applied in the field.

Hence the use of the scale of hardness, in which minerals

are so arranged that every one can scratch the surface of

any other which is lower in the scale. By carrying a set

of twelve small specimens only of selected minerals, the

finder of a doubtful crystal can readily determine its rank

among them as regards scratching ;
and can thus often

settle in a moment what would otherwise require some

time, even with the facilities of a laboratory.

In such a scale diamond, of course, stands at the top,
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\vliile native copper, one of tlie toughest of substances, is

far below it.

But if Ave were to test relative hardness by some other

method, say by blows of a hammer, we should be led to

arrange our specimens in a very different order. The

scale above spoken of is, therefore, by no means a

scientific one
; though, as we have seen, it may often

give easily some useful information.o



CHAPTER IV.

TIME AND SPACE.

57. We begin ^vith an extract from Kant, who, as matlie-

inatician and physicist, has a claim on the attention of

the physical student of a very different order from that

possessed by the mere metaphysicians.
" Time and space are two sources of knowledge, from

which various a iniori synthetical cognitions can be

derived. Of this pure mathematics give a splendid

example in the case of our cognitions of space and its

various relations. As they are both pure forms of

sensuous intuition, they render synthetical propositions h

priori possible. But these sources of knowledge a priori

(being conditions of our sensibility only) fix their own

limits, in that they can refer to objects only in so far as

they are considered as phenomena, but cannot represent

things as they are by themselves. This is the only field

in which they are valid; beyond it they admit of no

objective application. This peculiar reality of space and

time, however, leaves the truthfulness of our experience

quite untouched, because we are equally sure of it,

whether these forms are inherent in things by themselves,

or by necessity in our intuition of them only. Those,

on the contrary, who maintain the absolute reality of
A O
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space and time, whether as subsisting or only as inherent,

must come into conflict witli the principles of experience

itself. For if they admit space and time as subsisting

(which is generally the view of mathematical students of

nature), they have to admit two eternal infinite and self-

subsisting nonentities (space and time), which exist with-

out their being anything real only in order to comprehend
all that is real. If they take the second view (held by
some metaphysical students of nature), and look upon

space and time as relations of phenomena, simultaneous

or successive, abstracted from experience, though repre-

sented confusedly in their aljstracted form, they are

obliged to deny to mathematical propositions a priori

their validity with regard to real things (for instance in

space), or at all events their apodictic certainty, which

cannot take place a jjosteriori, while the a priori concep-

tions of space and time are, according to their opinions,

creatures of our imagination only."
^

On matters like these it is vain to attempt to dogma-
tise. Every reader must endeavour to use his reason, as

he best can, for the separation of the truth from the

metaphysics in the above characteristic passage.

58. AVe must now take
\\\),

as indicated in § 21, the

property Extension, which is one of those expressly in-

cluded in our provisional definition of matter.

It implies that all matter has volume, or bulk. The

thinnest gold leaf has finite thickness, the finest wire has

a finite cross section.

In popular language this is recognised by the use of

the associated terms length, breadth, and thickness.

In other words, the term extension recognises the

essentially Tridimensional character of space,
^

Critique of Pure Beason. Max Miiller's Translation.
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Why space should have three dimensions, and not

more nor less, is a question altogether beyond the range
of human reason. Only those who fancy that they know
what space is, would venture (at least after well con-

sidering the meaning of their words) to frame such a

question.

59. The proof that our space has essentially three

dimensions is given in its most conclusive form by the

statement, based entirely upon experience, that

To assign the relative jwsition of two points in

space, three nuvibers (of tchich one at least must he a

oiiultiple of the tinit of length) are necessary, and are

sufficient.

It is an easy matter for us, accustomed to tridimen-

sional space, to imagine one or more of its dimensions

to be suppressed. In fact so-called Plane Geometry is

the geometry of one particular kind of two-dimensional

space; Spherical Trigonometry that of another. We
cannot well speak of the geometry of space of one,
or of no dimensions; but the idea we should thus

attempt to express is a correct one, though the term is

inappropriate.

AVhen, however, we try to conceive space of four or

more dimensions, we are attempting to deal with some-

thing of which we have not had experience ; and thus,

though we may by analogy extend our analytical and
other processes to an imagined space, in Avhich the

relative position of two points depends on more than
three numerical data, we can form no precise idea of how
the additional dimensions would present themselves to

our senses or to our reason.

A few remarks on this subject will be made at the

end of the chapter.
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60. Space of no dimensions is a geometrical point, of

"wliicli nothing further can be said.

61. Space of one dimension :
—let lis call that dimen-

sion Length :
—is a mere geometrical line which may be

curved or straight. But to be sure of the existence of

this characteristic, and to understand its true nature, we

must have cognisance of space of two dimensions if it be

a plane curve, of three if it be tortuous. The study of

all tlie properties of space of one dimension, though an

excessively simple affair, is of very great intrinsic import-

ance, besides being a necessary step towards that of tlie

higher orders. We will, therefore, treat it so fully that a

far less amount of detail will be necessary when we come

to two and to three dimensions.

62. Every one, whether he be aware of the fact or not,

is acquainted by experience with at least the elements of

this subject. Suppose, for instance, we take as our one-

dimensioned space any one of the roads or railways lead-

ing from Edinburgh to London
;
which we will, for tlic

moment, suppose to be straight, and to run due soutli.

The mile-stones, set up at equal distances along the road,

mark the positions of various points in terms of the one

dimension, length, which is alone involved, or, rather, to

which for the present we restrict our consideration. And
a Gazetteer or a Baihvai/ Guide gives us the positions of

the toAvns or stations along the road or line : the position

of each being fully described by a single number, under-

stood as a multiplier of a mile or of some other specified

unit of length, and Avith a qualification which will

presently be introduced.

But these numbers refer to the distance from some

assumed starting-point, or Origiri as it is technically

called; say, in this case, London. Thus we find in an
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old Road Guide, for tlie particular one-dimensioned space

called the East Coast Route, a column of data from which

we extract the folloAving :
—

Miles.

London

York 196

Berwick . . . . . • • • . S3 /

Edmburgli .....••• 395

Fractions of miles are omitted, to avoid mere arithmetical

complication.

From this table, "by ordinary subtraction, we form a

list, as below, of the lengths of what we may call the

various stages of the route. Thus—
Miles.

London to York 196

York to Berwick 1-11

Berwick to Edinburgh 58

It will be seen that, in this list, the origin from which

each number is measured is the first named of the two

corresponding places, and the number itself is found by

subtracting, in the first list, the number corresponding

to the first of the two places from that corresponding to

the second.

63. ]S"ow let us at once take the only step which

presents any difficulty. Choose York as our origin, and

boldly apply the rule just given, no matter what the

consequences may be. The result is—
Miles.

London -196

York

Berwick HI

Edinburgh
199

Here there is no difficulty whatever in understanding the

numbers for Berwick and for Edinburgh. They are, as
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before, the numbers of miles by which. Berwick and

Edinburgh are separated from York. Also the number

for London, when York is the origin, differs from that

for York, when London is the origin, only hy change of

sign.

So that wc at once recognise the meaning of the

negative sign as applied to a length in our one-dimen-

sional space :
—it measures the length in the opposite

direction to that in which a positive length is

measured.

The necessity for this convention, and its extreme

usefulness, were early recognised in Cartesian geometry,

but they had long before been applied in common arith-

metic as well as in algebra.

Perhaps the simplest view we can take of the subject

is that afforded by a man's "balance" at the bank. So

long as this is on the right side {i.e. xoositive) he can draw

any less amount and still be on the credit side
; if he

overdraws {i.e. takes more out of the bank than his

balance), the difference is negative, and he is to that

amount indebted to the bank.

64. In the first of the three little tables above, all the

places involved lay to the north of the origin (London),
and were all therefore affected by the same sign (which
we happened to take as + ).

When York was taken as

origin, Berwick and Edinburgh were to the north, and

their numerical quantities were still 4-. But London,

being to the south, had a - number.

It would be easy to give multiplied examples of this,

but they are unnecessary. The only additional com-

ments which we need make are these :
—

(1.) When the northward direction along a line was
called +

,
the southward necessarily became -

. Simi-
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larly had we chosen southward as +, northward would

have become —
.

(2.) ~\Ve chose for our special example a northward-

i*unning line, but we might equally well have chosen an

eastward one, etc. Hence pairs such as N. and S., E.

and W., up aud down, etc., must be regarded as having
their members contrasted exactly as are the + and — of

Algebra or of Analytical Geometry.

And, just as a displacement in cither direction along a

line may be regarded as + ,
while a displacement in

the opposite direction must then be regarded as -
,
so it

is with rates of motion, i.e. Speeds, in space of one

dimension.

Thus the relative speed of two trains running north-

ward, A at GO miles an hour, B at 40, is 20 miles an

hour northward as regards A seen from B, and 20 south-

ward as regards B seen from A; so if A be moving

southward, at GO miles an hour, and B northward at

40, the speed of A with regard to B is 100 miles per

hour soutliAvard, and of B with regard to A 100 miles per

hour northward.

The idea of speed, as so many units of linear space

described per unit of time, is a complex one :
—

involving

both of the fundamental ideas. We express this by

saying that its Dimensions are

-L-

m-
This implies that, in whatever proportion we increase

our unit of length, the measure of a speed is diminished

in that proportion :
—while it is increased in the same

proportion as that in which the unit of time is

increased.

Thus a speed of 5280 feet per second is but 1 mile
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per second
;

"wliile a speed of 1 foot per second is 60

feet per minnte.

65. A precisely similar distinction (as to + and -
)

is

observed when our one-dimensional space is a curved

line
;

—take for example the orbit of a planet. To

describe fully the position of the planet, when the orbit

is given, one number alone (say the angle-vector, the

angle which the radius-vector, or line joining the centres

of planet and sun, makes with some fixed line in the

plane of the orbit) is required. This, however, must

again be qualified as + or —
. (In the case of angles, we

agree to call them + when they are measured in the

opposite direction to that of the motion of the hands of a

watch
;

that is, when they are described in the same

sense as that in which the northern regions of the earth

turn about the polar axis.) Angular velocitij in one plane

(i.e. rate at which the radius-vector turns) is similarly

characterised.

In all cases where motion is restricted to one line the

same thing holds. Thus the position of a pendulum is

at every instant completely assigned by the angle the

rod makes with the vertical, provided Ave are also told on

which side the displacement is.

The record kept by a self-acting tide-gauge gives at

any instant the elevation or depression (again -f- and —
)

of the water above or below the mean level. Similarly

with registering barometers, thermometers, etc. But,

for the full appreciation of the indications of these

records, they are usuall}^ made in two dimensions by the

use of an important principle which will presently be

explained. (§ 68.)

66. In what precedes we have been dealing with a

kind of space in which the only displacements are
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forward or backward
; notliing is possible (nor even con-

ceivable) sideways or iipwards.

This characteristic applies to Time, as well as to space
of one dimension, and therefore we should expect to

find, as we do find, that (with the necessary change of

a word or two) all that has just been said with reference

to relative position is true of events in time, as well as

of points in one-dimensional space. There is no such

thing as motion or displacement in time, so that this part
of the analogy is wanting. Every event has its definite

epoch, for ever unalterable. And of course there is no

going sideways or upwards, as it were, out of the one-

dimensional course of time.

Thus we find that to assign definitely the position of

an event in time, provided our origin is assigned, all

we need know is a single number (a multiplier of the

time-unit) with its sign, -f- or -
, signifying time after or

time before that origin.

Our usually adopted origin is the Christian era, and

we speak of 1890 a.d. as the present year, while the date

of the battle of Marathon is recorded as 490 B.C. The
difference between the characteristics a.d. and B.C. is

of precisely the same nature as that between north and

south, or -I- and —
.

Hence, if we wish to find the interval between the

present time and the battle of Marathon, we have to

subtract + 1890 (the position of the new origin) from
- 490. The result is - 2380, i.e. Marathon was fought
2380 years ago. Thus to change the origin, or epoch,
we must perform precisely the same operation as that

which gave us the table in § 63, from the first table in

§ G2. Similarly, to change our system of chronology to

the year of the world (designated by a.m.) or to the old
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Roman (marked a.u.c), all we need do is to subtract

from each date (a.d. or B.C., regarded as + and -
respect-

ively) the assumed date of the creation of the world

(4004 B.C.) or of the foundation of the city of Rome

(753 B.C.).

AVe need say no more on siicli a matter. Every intel-

ligent reader can make new and varied examples for

himself.

67. Passing next to space of two dimensions, whether

plane or spherical, wc see at once from a map, or a globe,

that the position of a place is given by two numbers, its

Latitude and Longitude. But each of these has to be

qualified for definiteness by the -f- or -
sign, or something

equivalent. Thus we have ^^. or S. latitude, and E. or

"\V. longitude.

But there are two methods, specially applicable to the

plane, which deserve closer attention in view not only
of their intrinsic usefulness, but also of their bearing
on the general question of tridimensional space. These

are known in geometry as Rectangular and Folar co-

ordinates.

68. In the first we assume two reference lines at right

angles to one another, both passing through the origin,

and assign the position of a point by giving its distances

from these two lines. These distances are looked on as

drawn ioicards the point from either line, and each there-

fore changes sign when the point is taken on the other'

side of the corresponding reference line. This is symbol-
ised in the cut. Ox, Og are the two reference lines, the

origin. The perpendiculars PM, PX, let fall from P on

these lines, completely, and without ambiguity, define its

position. For if we know Oj\[ or NP, the x of P, i.e. its

distance from Og, that condition alone limits our choice for
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P to points lying in PM, a line drawn parallel to 0// and

everjAvhere at the assigned distance, x, from it. Similarly,

y

N

O!

-y

Wi X

Fig. 2.

y being given as O'S or MP, the choice of points is limited

to those on the line NP, all of which have this property.

But two lines at right angles to each other must inter-

sect, and in one point only. Thus the point P is deter-

mined by the conditions without ambiguity.

If P lie to the left of 0/y, its x is negative ;
if below

Ox, its 1/
is negative. The lettering in the cut, at the ends

of the lines bounding the four quadrants, shows at a glance

the signs of x and
fj
when P is situated in any one of them.

In general, any given relation, between the x and y of

a point, limits its position to a definite Curve in the plane

of the reference lines. It is often very convenient to

represent such a relation by a curve
; and, in fact, most

self-registering instruments actually trace such a curve

for us. Thus, if intervals of time (as OM) measured

from a definite instant (represented by 0) be laid oS

along Ox, Avith the corresponding heights of the tliermo-

meter, barometer, tide, etc., erected, as perpendiculars
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(MP) at their extremities, yva have (as the Locus of P) a

curve showing the mode in which temperature, pressure

of the atmosphere, etc., change as time goes on. Eut

such curves can be traced by a pencil attached to the

instrument,' or by photographic processes, on a long band

of paper which is drawn horizontally past it, at a uniform

rate, by clockwork.

69. In the second method mentioned in § 67 the data

are the length of OP (the radius-vector), and the magni-
tude of < MOP (the angle-vector), § 65. These arc usually

denoted by r and ^, respectively. Here r is always
taken as a positive (or rather a signless) quantity, while 6

is positive if it be measured round from Ox counter-clochvise.

This is the method adoj^ted by a surveyor when, with

a chain and a theodolite, he measures a field. His

reference line. Ox, is usually given by a magnetic needle

attached to the theodolite. He measures the angle xOF
and the distance OP, P being a corner (let us say) of the

field. These two data, determined for each jDrominent

part of the boundary, enable him to plot the field
;
and

therefore contain all the necessary numerical data for

calculating its area, etc.

It is also the method usually employed in dealing with

orbital motion of any kind in one plane.

Comparing the two methods, we see that the directed

line OP may be resolved (as it is called) into OM and

MP, lines in directions perpendicular to one another.

Also that this resolution, in any direction, is effected by
means of the cosine of the angle involved.

<
For X = OM = OP cos a;OP = r cos ^,

<
y _ MP = OP cos 2/OP = ?• sin 6.
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It is clear that, though we have hitherto spoken of

and P as the simultaneous positions of two points, Ave

may look on them as successive positions of one (moving)

point. If we look on the displacement as having been

produced uniformly, and in one second, it represents in

magnitude and direction the Velocity of the moving

point ;
and 0^1, MP represent, on the same scale, its

resolved parts or components, parallel to Ox and Oij.

70. As examples, we give one or two results which

Avill he specially useful to us in later chapters.

If a point be moving, in any manner whatever, we may
consider its velocity alone, independent altogether of the

actual path pursued. Here \\q are introduced to a new

idea, that of Acceleration. For, as velocity is rate of

change of position, acceleration is rate of change of

velocity.

Take any iixed point, 0, and let OP represent, in

magnitude and direction, the velocity of the moving

point. After one unit of

time let the velocity be

represented by OP^ ;
after

two units, by OPg ;
and

so on. It is clear that all

the points P, P^^, Pg, etc.,

lie on some definite curve,
^"^- ^- which will be the more

accurately traced the greater the number of points we

obtain in any assigned portion of it
;

i.e. the smaller we

assume our unit of time. If the motion whose properties

are thus studied be that of a particle of matter, this

curve (which is called tlie Hodograph) is necessarily

continuous, for the velocity cannot alter by starts (§ 120)

eitlier in magnitude or in direction. And, as OP passes
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to a proximate position, OQ, by having a velocity PQ
compounded with it, the Acceleration of OP is the

velocity with Avhich P moves in its curve. If the path
be a plane curve, the hodograph is also plane.

This construction enables us at once to solve a number

of elementary problems in kinematics, which will be of

great use to us in the sequel.

In § 64 above, we showed that the dimensions of speed

(V) are

CVJ^y.
In precisely the same way we see that those of accelera-

tion (A) are

t.,=[i>[y.
Thus the numerical measure of acceleration is diminished

in proportion as the unit of linear space is increased :
—

but is increased in the duplicate ratio of that of the time

unit.

An acceleration of 1 foot per second, per second, is

obviously the same as 3600 feet per minute, per minute,

71. Suppose a point to move uniformly, with speed Y,
in a circle of radius R. OP in the hodograph (Fig. 3)

has constant length V, and its direction rotates uniformly.

Hence the hodograph is another circle, also uniformly
described in the same sense (i.e. clockwise or counter-

clockwise), and in the same period of time. Hence the

speed of P must be such that it describes a circle of

radius V, in the time that a point whose speed is Y takes

to go round a circle of radius R. It must, therefore, be

Y^/R. Also the direction of this speed is perpendicular

to OP, and therefore alojig the radius of the first circle.

And its direction is toicanls the centre of that circle,
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because both circles are described clockwise, or counter-

clockwise.

Let, now, tlie figure repre-

sent the circle of radius R,

and draw any diameter, ACA'.

Then JST moves round with

speed Y, and the acceleration of

its motion is V^/E, along NC.

Remembering that accelerations

and velocities are resolved like

F^°-^-
lines, we see that if NM be

drawn perpendicular to AA', the speed of the point M
along MC will be

V MN

and its acceleration along ]\IC, and towards C, will be

11 CM _ V^

R CN
~

R-

The motion of M, thus defined, is called Simple Har-

monic. It obviously consists in a vibration back and

forward along the line AA', the speed being greatest at

C, and vanishing at A and A'. The special characteristic

is that the acceleration is always directed towards C, and

is proportional to the displacement of M from that point.

72. If we use Newton's Fluxional Notation, in which

the rate at which a quantity increases per unit of time

is expressed by putting a dot over the symbol for that

quantity, a second dot placed over it will signify the rate

at which that rate increases, and so on.

Thus, if CM above be denoted by x, the speed of M is

X, and its acceleration is x. And we see at once from the

result of last section that

ya

K9 ^}
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the negative sign being prefixed because while x is

directed to the right in the figure, the acceleration is

directed to the left, and conversely. AYhenever, in

future chapters, Ave meet with a relation of this kind, we

will, therefore, interpret it as expressing simple harmonic

motion. The multiplier of the rightdiand side depends

only on the ratio of V to K :
—what is called (§ 65) the

angular velocity of the radius-vector CX. If we denote

this by oj, the equation may be written

X — ~ u-x ;

and this belongs to all simple harmonic motions, whatever

be their range of vibration, provided the angular velocity

in the corresponding uniform circular motion be oj, or the

peri(jd of a complete revolution Stt/oj. Any such motion

is fully described by
X = a COS. {ut -\- x),

where a and a are absolutely arbitrary.

73. The result above was obtained by projecting

uniform circular motion on a diameter of the circle, or,

what comes to the same thing, on a plane pGrpeiidicular

to the plane of the circle.

But an exceedingly interesting result is obtained by

projecting the circular motion on any other plane. In

orthogonal projection equal areas are projected into equal

areas, and a circle is projected into an ellipse whose centre

is the projection of the centre of the circle.

Hence the projection gives motion in an ellipse, the

radius-vector drawn from the centre of the ellipse tracing

out equal areas in equal times, and the acceleration being
still directed inwards along the radius-vector, and still

bearing the same proportion to it.

74. Another extremely useful result may be obtained

by supposing the uniform angular velocity in the circle
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to be maintained, but with a continual shrinld7ig of the

radius at a rate measured (per second) by k times its

length at each instant.

The velocity of the moving point is thus made up of

two components, one along the circle, the other along the

radius, each proportional to the radius. Hence the path
is a spiral which makes a constant angle with the radius,

Avhat is called the Equiangular, or Logarithmic, Spiral.

The radius-vector still revolves uniformly.^

Let PR be the spiral, SP any radius. Then, if PT be

Fig.

the velocity of P, and a the (constant) angle between its

direction and that of PS, we see at once that

PT sm « = wSP, PT cos « = ;cSP,

whence x = w cot u.

If SQ be equal and parallel to PT, Q is a point in the

hodograph. But as PT, and therefore SQ, is proportional

to SP, and the angle QSP is the supplement of a, the

hodograph is the same spiral rotated through a given

angle, and altered in its linear dimensions by the factor

\~^ ).
Thus the hodograph of the hodograph is another

similar spiral, again turned through the same angle, and

with its radii altered in the ratio (^^). If PXJ be
\sm u,/

1 Proc. R.8.E., December 19, 1867.
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drawn, making an angle a with TP produced backwards,

and meeting QS in U, it will therefore be the direction of

acceleration at P.

But PU may be resolved into PS, SU, the first of

which is along the radius-vector, the second parallel to

the tangent at P. The parts of the acceleration in these

directions are, respectively,

f-^ VpS, and 2('^^ysr cos «.

The latter of these, by the first equation above, may be

written as

2(^^y PT
^'" " '"' ^

=.2. cot . TT= 2.PT.
Vsin a.' ci

Hence the motion of P is due to an acceleration along,

and proportional to the length of, PS, and another along,

and proportional to the length of, TP.

And of course the resolved part of the motion along

any line in the plane possesses the same characteristics.

If X represent the distance between the projections of S

and of P, on such a line, we see at once that we have

o
/.I-

X = - 2a cot a . x
siii'-«

'

or, introducing the value of k above,

i*= — 2kx — {or -\- x,'')x.

This differs from the equation for simple harmonic

motion (§ 72) by the term involving rr. But the preceding

investigation shows us that an equation of this form

represents the resolved part (in some definite direction)

of uniform circular motion with angular velocity w, the

radius of the circle shrinking in each second by the

fraction k of its amount. (This is the same thing as

saying that its logarithm diminishes by k in unit of
tjj^e.)
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Or we may call it simple harmonic motion whose scale is

constantly diminishing at a definite rate.

This special case of motion is fully described by the

equation

X — aB~''^ cos{at -\- a).

•1

Compare the result of §

75. The step to three-dimensional space is now easy.

We will take it from a somewhat altered point of view.

Our reference system is now three planes at right angles

to one another; say the floor, the north wall, and the

west wall of a room, the corner in which these three meet

being for the time our origin.

And the position of a point is determined without

ambiguity if we know its distances from these planes,

with the proper sign of each.

For, knowing only its distance from the floor, we limit

it to the horizontal plane which is everywhere at that

distance from the floor. Similarly the second condition

limits it to a definite plane parallel to the north wall.

These two conditions together limit it to a certain hori-

zontal line lying east and Avest. The third condition

limits it to a certain plane parallel to the west wall
;
and

this is intersected in one point, and one only, by the east

and west line just mentioned. That one is the sole point

which satisfies all three conditions.

Thus, let represent the origin, ^jOz the north wall,

zOx the west wall, and xOy the floor. The figure is

drawn as seen by an eye equidistant from these three

planes, and in the room, i.e. on the positive side of each

of them. And it will be noticed that the lettering, x, y,

z of the ends of the edges, which meet in 0, is so applied

that rotation from Ox to Oy, from Oy to 0.^, and from
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O2 to Ox again, will all alike appear to be counterclock-

icise

The position of any point, P, is then found thus :
—

Draw PN perpendicular to the floor, meeting it in N
;

thence NM perpendicular to Ox. Then OM = a; is the

distance of P from the north wall
;
MN = y is its distance

from the west wall
;
and NP = 2 is its distance from the

floor.

If P assume a new position which requires it to pass

through any one of these planes, the corresponding co-

ordinate changes sign ;
if it pass through an edge {i.e.

the intersection of two of these planes) two co-ordinates

change sign ;
and if it pass through (where the three

planes meet) all three co-ordinates become negative.

This is illustrated by the negative lettering at the (dotted)

prolongation of each edge through 0.
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76. But, in analogy Avitli tlic second method of § G9,

we see that the position of P will be fully specified if

we know the vertical plane through in which it lies

{i.e.
the plane zOX), the angle NOP in that plane, and

the length of OP. The first is determined if we know

the angle icON. Hence we determine P by its distance

from 0, and two angles Avhich (together) enable us to

assign the direction of OP. The angle xON is called the

Jzimiiih of the plane zON ;
let us denote it by 6. The

angle NOP is called the Altitude of P, as seen from ;

let ns denote it by <^.
Also let the length of OP be, as

before, called r.

Comparing, as before, the results of the two methods,

Ave see that ON = r cos
<f>,

and therefore

a;= OM =ON cos &=r cos
(p

cos 6,

2/=:MN=0N sin 6=r cos
(p
sin &,

2 = NP =?• sin
(p.

The elements of spherical trigonometry show that the

multipliers of r, in the values of x, y, z respectively, are

the cosines of the angles between the line OP and the

lines Ox, Oy, Oz. Hence the more symmetrical method,

in which these cosines are represented by I, m, n respect-

ively, gives

vc—rl, y
—
rm, z=rn,

with the condition

?- + TO- + «•-= !.

It is easy to see that the remark in § 69, as to resolu-

tion of a velocity in two dimensions, holds with respect

to three.

Then Newton's Second Law of Motion (Chap. VI.) at

once extends these conclusions to Forces.

77. A remark of great importance mnst be made here.
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We saw in § 68 that a point was determined, in x, y co-

ordinates
[i.e. plane space of two dimensions), as the

intersection of two straight lines, to one of which it was

confined by its x being given in value, to the other by
the value of its y. But any two independent conditions

connecting x and y Avill, also, determine their values. A
single condition connecting x and y is known as the

Equation of a Curve, and, when given, limits the position

of P to that curve. Two such conditions, therefore, give
P by the intersection of two curves, on each of which it

must lie. Such a condition applied to a physical particle

is called a Degree of Constraint. In two-dimensional

space a free particle has but two Degrees of Freedom, one

of which is removed by each degree of constraint to

which it is subjected.

78. Similarly we saw that, in three dimensions, the

point given by x, y, z is determined as the intersection

of three planes, on each of Avliich it must lie. But any
one condition connecting the values of x, y, and z is the

Equation of a Surface, and, when it is given, a particle

at the point is subjected to one degree of constraint.

When free, it has but three degrees of freedom
;
and thus

three degrees of constraint, by completely determining
its x, y, and z, fix its position.

We should arrive at the same result by considering
relations among the r, 0, </> co-ordinates. But it suffices

to consider merely what species of constraint each of

these imposes when its value is given. All points for

which r has a given value lie on a sphm'e whose centre is

at 0. When d is given, the point must lie somewhere
in the vertical plane zO^. When ^ is given, it must lie

somewhere on a right co7ie of which is the vertex and
Oz the axis.
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[The two latter statements are easily illustrated by
means of a telescope, mounted (in the common way) on

a stand which allows it to rotate either about a horizontal,

or about a vertical, axis. Place it in any azimuth, and

vary its altitude, it turns in a vertical plane about the

horizontal axis. Place it at any altitude, and vary its

azimuth, it rotates conically about the vertical axis.

Hence, by means of these co-ordinates, or conditions,

each definite point in its axis is constrained to lie on a

sphere, a plane, and a cone, simultaneously.]

79. Two devices are in common nse for enabling us

to represent, on a plane (or other space of two dimen-

sions) the third dimension.

Thus, in an Admiralty chart, we find the sea-area

marked over with figures denoting Soundings:
—i.e. the

average depth of the water at certain places is written

in in fathoms. These soundings are of course more

nvmierous in regions where there are shoals or intricate

channels. But it is obvious that, if they Avere numerous

enough, they would enable us to construct a model of

the sea-bottom. The soundings, therefore, supply, as it

Avere, the necessary third dimension. But this process,

though usually sufficient for purposes of navigation, is at

best a rude and incomplete one.

The other method, however, rises to a very high order

of scientific importance, not merely from the point of

view for which it was originally devised, but on account

of the extent to which its essential principles are now

applied throughout the whole range of physics. We
therefore devote some space to its full explanation.

80. This is called the method of Contour Lines, and is

employed with great effect in the best maps, such as those

of the Ordnance Survey.
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A contour line passes through all places which are at the

same height ahove the sea-level.

Thus the sea-margin is itself the contour line of no

elevation. Suppose the water to rise one foot (vertically).

There would be a new sea-margin, in general encroaching

more on the land than the former
; encroaching most at

places where the beach has the gentlest slope, not

encroaching at all on a perpendicular cliff, and thrust

out (seawards) from an overhanging cliff. This is the

contour line of one foot elevation. It is clear that by

supposing a gradual rise of the sea, or subsidence of the

land, foot by foot, we could obtain a series of curves

(each in its turn a sea-margin) gradually circumscribing

the uncovered portion of the land, and finally closing in

over its highest peak. We require no such natural

convidsion as that just imagined. Cloud strata, or fog-

banks, with definite horizontal surfaces, constantly show

us these appearances in hilly countries. But it is a

simple matter of Levelling to trace out contour lines, and

to draw them on a map of the district. For practical

purposes it is usually sufficient to draw them for every

50 or 100 feet of additional elevation above the seadevel.

The celebrated Parallel Roads of Glen Roy are merely
contour lines, etched on the sides of the valley by long-

continued but slight agitation of the margin of the water

which filled the glen to various depths in succession, as

the barriers which dammed it up were, at intervals,

broken down.

Referring to § 78, we see that a surface can be fully

described in terms of one relation between
a*, y, and z.

Let the plane of Oz, 0//, be that of the seadevel, and let

the relation expressing the surface of the land be

f{x, y, 2)=o.
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Then tlie contour lines, as traced on the (two-dimension)

map are the curves

fix, y, 100)= 0,

/(a-, y, 200)= 0, etc.

81. To familiarise the student with the general appear-

ance of contour lines, and their relation to the form of the

Fio,

corresponding surface, we give those of a right cone whose

axis is vertical, of a hemisphere, and of a fusiform or

spindle-shaped body.

The fusiform body, whoso contour lines are drawn, is

formed Ly the rotation of a quadrant about a vertical
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tangent, the point of contact being the apex. And the

contour lines are drawn, in each case, at successive heights

increasing by one-fifth of the Avhole height of the figure.

Tlius the distances between successive contours, in the

two last figures, form the same series of values, but in

opposite order.

The equality of distance betAveen the successive contour

lines of the cone indicates uniform steepness throughout.

In the hemisphere the lines are closer together near the

boundary of the figure, in the spindle they close in on one

another towards the centre
;
the hemisphere being steepest

at its edges, and the spindle surface steeper towards the

point.

82. In fact, the Gradient of a surface in any direction

{i.e.
the amount of rise per horizontal foot) is obviously,

at any point, inversely as the distance in that direction

between successive contour lines, for they are traced at

successive equal differences of level
;
and thus the dis-

tance between them, along any line drawn on the map,

is the space by which we must advance horizontally

along that line while ascending or descending vertically

through 100 feet.

83. The line of steepest slope at any point of a surface

is, of course, perpendicular to each contour line Avhere it

meets it. For the contour line is horizontal, i.e. has no

slope. And in the projection on a horizontal plane this

perpendicularity remains. Thus the line of greatest slope

at any point is represented on the map by the shortest

line which can be drawn from that point to the nearest

contour line. It is the path along which a drop of Avater

would trickle down. It is therefore called a Stream-line.

84. If the surface be like that of a saddle (concave up-

wards along the horse's back, convex upw^ards across it),
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we have at the middle of the saddle wliat is called, in

geography, a Cul or mountain-pass :
—the lowest point

of the ridge between two neighbouring summits. The

characteristic of the col is that, at such a point, a contour

line intersects itself. The following sketch shows the

general form of the contours near such a point.

Fic. 8.

In the shaded regions depicted to the right and left of

the col the ground rises, in the unshaded regions depicted

above and below it falls. [The figures on the contour

lines show their order of altitude above the sea-level.]

Other very special peculiarities might be mentioned,

but they are not necessary for the beginner ;
and the

more mathematical reader can easily work them out for

himself.^

85. If we draw, by the help of the contour lines, the

stream-lines (which, § 83, cut them at right angles), we

find that they have the following property. In regions

1
SeeCayley, Phil. Mag., XVIII. 264 (1859); Clerk-Maxwell,

Ibid., December 1870.
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above the level of a col, they fall away on both sides from

that particular one of their number which passes from a

mountain Summit down to the col, and thence up to the

neighbouring summit. This particular line, then, is the

Watershed, separating two valleys or drainage areas. If

we follow the course of the stream-lines into regions heloio

the col, we find that they usually approach to the special

stream-lines drawn downwards from the col on opposite

sides. These will therefore be fed by all the little rills

in succession, and thus they become the Watercourses.

A watercourse is thus the stream-line drawn from a col so

as to pass through an Im'it, or lowest point of the surface.

If we were to take a cast from a model of a surface

(with its contour lines) and treat it as a model of another

surface, contour lines would remain contour lines, and

stream-lines stream-lines
;
but summits would become

imits, and imits summits, while watercourses would

become watersheds, and conversely.

86. So far, we have been dealing with contour lines in

the ordinary sense of the word. But essentially the same

sort of thing is presented by the meteorological curves

called Isobars, and by Isothermals, Lines ofEqual Magnetic

Variation, of Equal DijJ, etc. etc. In each case the lines

are drawn, on a two-dimension map, so as to pass through
all places where the barometer, or the thermometer, stands

at a given reading or level, where the compass deviates a

given amount from true north, etc. etc. Thus they have

a characteristic similar to that of contour lines, viz. that

all points on any one line possess some definite property

to exactly the same amount. These applications of the

principle are of great importance, but they do not belong
so immediately to our subject as do others, of which we
will now give an example or two.
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87. Just as water trickles from places at higher, to

others at lower, level, and as heat flows, in a conducting

body, from places of higher, to others of lower, tempera-

ture, so electricity is said to flow from places of higher, to

places of lower, potential. Hence, to study the flow of

electricity in a sheet of metal, we require to know the

lines of equal potential.

The first investigation of this subject, by Kirchhoff",^

supplies an exceedingly simple and beautiful example.

Putting the wires attached to the ends of a galvanic

battery into contact with a very large sheet of uniform

tinfoil, at points A and B, (Fig. 9) we establish and main-

tain a definite diff'erence of potential between those points

of the sheet. Hence there is a steady flow of electricity

from the one to the other; and it must take place, at

every point, in a direction perpendicular to the cqui-

potential line passing through that point. Thus, to find

the lines of floAV of electricity, we must have a means of,

as it were, contouring the plate electrically, and finding

its lines of equal potential. This is furnished by a

"alvanometer, for that instrument indicates at once anv

current passing through its coil of wire. But, if the

ends of its coil be kept at equal potentials, no current

will pass. Hence, if we put one end of the galvanometer

coil in contact with the tinfoil at any point, P, and move

the. other end about on the foil until no current passes,

the point, Q, with Avliich it is then in contact, is at the

same potential as P. By fishing about, therefore, we

can, point by point, trace out the equipotential line PQ

passing through P. And the same may be done for

other points, till we have covered the tinfoil with as many
lines of this kind as we desire.

1
Poijg. Ann., 1845, Ixiv.



Pig. 9.
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In the special case which we have taken, it was found

that when the phite of tinfoil is very large in comparison

with the length AB, these lines are circles, whose centres

lie in the line AB, and in each of which the ratio

BQ/AQ is the same throughout (see § 141); though of

course its values are different for different circles of the

series. A few of these circles are given (in full lines)

in the figure. [To ensure proper contact with the battery,

little circular discs of copper (indicated in white) are

attached to the tinfoil at A and B. The edges of these

(on account of the superior conductivity of the copper)

are equipotential lines. The points A and B are not

exactly at the centres of these discs.]

Xow geometry tells us that the lines, Avhich cut at

right angles all circles drawn according to the above

law, belong to another series of circles :
—viz. those

which are determined by the condition that each passes

through the two points A and B. These circles (some

of which are represented by the dotted lines in the

figure) are therefore the current lines along which the

electricity passes in the tinfoil.

The full circles are drawn for successive equal changes

of potential ;
and the dotted circles which are drawn

are so selected that the amount of electricity which

flows in a given time through the space bounded by

portions of each contiguous pair is the same. If the

full lines be regarded as contour lines of a surface, and if

A be connected with the positive pole of the battery, the

left hand side of the figure represents a hill, and the right

hand an exactly equal and similar hollow
;
so that the

halves, as separated by the single straight contour line, would

exsLctly Jit i7ito one another if the whole could be folded

along that line. [This illustrates the last paragraph of § 85.]
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If both A and B be connected with the positive pole

of the battery, and its negative pole be connected M-ith

a massive ring of copper, or other good conductor, which

borders the sheet of tinfoil all round at a very great dis-

tance from A and B, the equipotential lines are what

mathematicians call Casshii's Ovals. One of them is the

Lemniscate of Bernoulli, and its double point corresponds

to a col. The figure resembles in general form that of

§ 84, and the current lines are a series of rectangular

hyperbolas.

88. As a final example, somewhat more pertinent to

our present work, take the relation between the pressure,

volume, and absolute temperature, of a given mass of air.

Experiment has proved that when any two of these

three quantities are given, the third is determined.

Calling them p, v, and t respectively, the relation between

them is (nearly enough for our present purpose) found

to be represented by the expression

pv=.Rf (1)

where R is a known constant quantity. [In a later

chapter we will study the precise relation. AVhat we seek

at present is an illustration of metliod, not a specially

exact representation oi fact.'\

Xow we may treat p, v, and t just as we treated x, y, z

in § 80 above. In this statement lies the essence of the

value of the contourdine idea as applied to questions of

general physics.

Thus the experimental relation among ^), v, t, (1) above,

may be looked on as the equation of a surface. Let us

draw its contour lines on the plane in which }) and v are

measured.

Equation (1) shows that these lines (three of wliich are
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marked in the figure with their temperatures t^, t^, t^,)
are

all rectangular hyperbolas, of which the asymptotes are

the axes of volume and pressure, Ov and Op. Any line

of equal pressure Av^v.^v^ is divided by them so that

Fig. 10.

Av-^, Av^, Av^, etc., are proportional to the absolute

temperatures. So with a line of equal volume '^PiJ^^Vi-

And one special advantage of this mode of representation

is, that the work required to compress the gas at any con-

stant temperature, as
f^,

from volume OB' to volume OB,
is given by the area B'^\j)^B, which is contained betAveen

the curve
t-^,

the axis of volume, and the lines of equal

volume ^'p\, ^Pi- This follows at once from the fact

that the work done during an elementary change of

volume dv, under pressure p, is represented by pdv ; a
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little element of area bounded by the curve, the axis of

V, and two contiguous ordinates.

Draw a tangent PT to one of these curves at a point

P, and draw PQ parallel to Ov. The compressihility of

a gas, at constant temperature, is the fractional change

of volume per unit increase of pressure. It is therefore

represented by

QP J_ 1

QT* OM'^"" QT'

or (by a property of the hyperbola) p„,

i.e. it is inversely as the pressure.

The expansibilitu, at constant pressure, is found simi-

larly by producing QP to cut the proximate curve
t.^

in

R
;
for it is expressed by the fractional change of volume

per unit rise of temperature, that is

PR 1
^^.

(^,-^)0M 1 _1
OM <o - 1^ t^ OM

'

t^-fx ti'

This is a mere portion of what is called, in Thermo-

dynamics, Watt's Diagram of Energy, the whole of which

is an application of the contour idea.

89. We must noAv, as promised in § 59, say a few

words as to a (possible 1)
fourth dimension of space.

Let us treat this from the point of view of what we

may imagine would be the experience of beings, endowed

Avith something corresponding to human reason and

human senses, but inhabiting space of one or of two

dimensions.

In one-dimensional space the inhabitants can have

length only, and have absolutely no hint from experience

of what another dimension could be. Yet we might

imagine them, if they were not mere points, to experi-
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ence some perfectly novel, and to tliem unaccountable,

sensation in passing from part to part of their S2:)ace

if its curvature icere not everijuhei'e the same. Suppose,

for instance, their space to be a line with knots on it.

Similarly, an inhabitant of two-dimensional space (a

bookivoi'm, as Sylvester once called him) might, even if

liis dimensions vrere both finite, pass from place to place

in a plane or a spherical space without feeling any new

sensation. But, if a part of his space were creased or

folded, he might be imagined to feel some strange sensa-

tion while he passed through such a part. This is a

question of surface-curcatu re, which would be totally

unintelligible to a being whose experience (limited to

two dimensions) had not prepared him for it.

So, if there should be a fourth dimension, our three-

dimensioned space may appear to a four -dimensional

observer to have something analogous to curvature or

creasing ;
and if, in the cour.sc of our solar system's rapid

progress through space, we should come to a region of

that kind, we may fancy that some absolutel}^ novel form

of experience would be the result.

90. Speculations of this nature, however, though based

to a certain extent on scientific facts, necessarily involve

the question of sensation or perception ; and, in so far as

they do so, they pass from the domain of physical science

into the realms of Physiology.



CHAPTER V.

IMPE.VETRABILITY, POROSITY, DIVISIBILITY.

91. Our Avorking definition of matter (§ 21) involves

another property besides those discussed in last chapter—
viz. Impenetrahiliti/. The sense in which we are to

understand this term depends upon the use of the word

occupy as applied to space.

On the theory of ultimate atoms, whether the old

hard atom (§ 23) or the vortex atom (§ 27), the occupa-
tion of space is complete so far as each atom is concerned.

Where one atom is, it fills space to the absolute exclusion

of every other. But space is not continuously filled by
the atoms of any portion of tangible matter (§ 24) ;

hence

there may be mixtures of atoms of different kinds, which

will be the more perfect and intimate the smaller we

suppose the individual atoms to be. But there is no use

in discussing questions of this kind, at least until we

prove the existence of atoms. Thus the strictly scientific

use of the term impenetrability need not occupy us.

92. There is, however, a semi-scientific use of the

word which is of some importance. For, whether matter

be impenetrable in the strict sense or not, we may use-

fully discuss the consequences of its not being penetrated.

Thus the hollow of a mould, and 07ily the hollow, is
83
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accessible to the liquid, metal poured into it. Otherwise
"
casting

" would be impossible.

One of the most important of these consequences Avas

long ago given by Archimedes,—viz. a mode of easily

comparing the volumes of bodies of shapes so irregular or

complex as to defy the powers of calculators working
from mere linear measurements. All that is required is

to immerse them successively in a vessel parti}' filled with

water, and to note the amount by which the level of the

water is disturbed, i.e. (in the usual phrase) the amount

of M'ater displaced. Bodies which, when thus tried,

displace equal amounts of water have equal volumes,

however different may be their figures.

93. Hence, to measure the volume of an irregularly-

shaped, body :
—a lump of stone or coal, for instance :

—
grease it or varnish it all over, to prevent water from

entermg its j^ores, i.e. to secure non-penetration ;
and

immerse it completely in a vessel partly filled with Avater.

Mark the height to Avhich the water-level rises. With-

draw the stone, and pour in mercury until the same

disturbance of water-level is again produced. The volume

of the mercury is the same as that of the stone. The

mercury has the advantage of taking at once the form of

any vessel in which it may be placed, so that its volume

may be promptly determined by pouring it into a properly

graduated beaker.

This simple consideration forms one of the bases of

the common method of measuring specific gravity (§ 36)

by weighing a body, first in air, and. then when it is

suspended in water.

94. But it is not solids (such as the stone above) or

other liquids (such as mercury) alone Avhich can thus

displace their own bulk of water. Air Avill do equally
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well. Thus a diving bell is merely an open-mouthed

vessel, inverted ami let doAvn into water. The air it

contains is not penetrated by the water, and thus dis-

places (just as a solid or a liquid would have done) its

own volume of water. Its volume, no doubt, becomes

less as the bell descends under the water, but this is

due to the increase of hydrostatic pressure to Avhich it

is subjected. Still, however it be compressed, as it is

not penetrated it displaces at every instant its bulk of

water.

95. "When one liquid mixes with, or when it combines

Avith another, it does not usually displace its own bulk

of the other. In such cases there is interpenetration.

Thus, when twenty-seven parts (by weight) of water

are mixed with twenty-three of alcohol, the volume of

the mixture is less by 3-6 per cent than the sum of the

volumes of the constituents.

When an alloy of tin and copper, such as used to be

employed for the specula of large reflecting telescopes,

is formed, the joint bulk may be as much as 7 or 8 per

cent less than the sum of the bulks of the constituents.

And Faraday showed that, when potassium is oxidised,

the resulting potash has a less volume than either of the

constituents.

96. But, as a rule, in these cases of contraction, other

physical phenomena present themselves. Thus the

mixture of alcohol and water above described becomes

more than 8° C. warmer than the components, if both

were taken at the same ordinary temperature. A rod

of tin dipped into melted copper (at a very dull red heat)

produces vivid incandescence as it melts and is alloyed.

And the combination of oxygen and potassium develops

kinetic energy at an almost explosive rate.
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There are other cases, which we need not treat of here

(especially as they belong properly to Heat and to

Chemistry), in which the volume of a mixture is greater

than the sum of the volumes of its constituents.

97. These examples show that Archimedes' notable

process might altogether have failed in its application.

For he is said to have been asked to find whether the

votive crown made for Hiero of Syracuse really consisted

of the amount of gold furnished for its manufacture, or

whether a part of the gold had been abstracted, and its

place supplied by an equal weight of silver.

He procured lumps of silver and of gold, each equal in

weight to the crown. These he immersed successively in

a vessel filled to the brim with water, measuring in each

case the amount of overflow, which he found to be greater
for silver than for gold. The vessel being once more filled,

the croAvn itself was immersed, and was found to displace

more water than did the gold. Hence, by calculation,

Archimedes found how much silver had been substituted

for an equal weight of gold.^ This calculation, of course,

must have proceeded on the supposition that the bulk of

the alloy was equal to the sum of the bulks of the com-

ponent metals.

But interpenetration, of which he had no knowledge,

might have completely baffled the great mathematician.

If a similar question were raised note, it would of

course be decided at once by the processes of the chemist,

not by those of the physicist.

98. "We have seen (§ 24) that, on the hypothesis of

hard atoms, there must necessarily be interstices between

them, else bodies could not be compressible.

But it is an experimental fact, independent of all

' The original jmssage is given as AipemUx III.
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hypotheses, that bodies in general are Porous. By the

term pores we do not refer to visible channels, such as

those which run in all directions through a piece of

sponge, but to microscopic channels, which pervade even

the most seemingh' homogeneous and. continuous sub-

stances, such as solid lead, silver, gold, etc.

The proof tliat such channels exist was given experi-

mentally by Bacon, who tried to compress water by

squeezing or hammering a leaden shell filled with water

and closed. The water exuded like perspiration through
the pores of the lead. The Florentine Academicians tried

the same experiment with a silver shell, but obtained the

same result. They then tried to prevent the escape of

the water by thickly gilding the shell, but again in vain.

99. "When a corner of a piece of blotting-paper, or of

a lump of loaf-sugar, is dipped in water, we see (especially

if the water be coloured) the rapid entrance it effects

into the pores. ^V^ly it enters, under these conditions, is

another question.

The porosity of wood, necessary for the circulation of

the sap, is beautifully shown by the fact that, from

microscopic examination of a thin slice of a fossil tree, a

botanist can tell at once the species to which it belonged.

The greater part of the material of the wood has dis-

appeared for it may be millions of years, but its micro-

scopic structure has been preserved by the infiltration of

silicious or calcareous materials which, hardening in the

pores, have thus preserved a perfect copy of the original.

The rapid passage of gases through unglazed pottery,

iron and (hot) steel, etc., shows the porosity of these

bodies in a very remarkable manner. So does the strange

absorption of hydrogen by a mass of palladium. (See

Chapter XIII.)

^
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Another beautiful instance is afforded by the silicious

concretion, Tahaslieer, found in the joints of sugar-canes.

It is opaque when dry, but when immersed in water for

a short time becomes transparent. Certain agates, called

Hydroplianes, exhibit the same property.

100. No decisive proof of the porosity of vitreous

bodies, such as glass, seems yet to have been obtained.

That they form almost a solitary class of exceptions to an

otherwise general rule seems highly improbable. And

instances, such as those given below, seem to indicate that

these vitreous bodies have not yet been proved to be

porous solely because we have not discovered the proper

niode of testing them.

When polished marble is wetted with water, very little

enters the pores ; while oil, on the contrary, is rapidly

absorbed,

A bag of cambric or gauze, the holes in which are

visible to the eye, holds mercury securely, until sufficient

pressure is applied to force out the liquid. (§ 288.)

Glazed pottery-ware, which is practically impervious to

hydrogen and to pure water, is rapidly penetrated by a

strong aqueous solution of bichromate of potash. Tliis

solution, crystallising in the pores, disintegrates the

whole, just as water, freezing in tlae pores of a rock,

gradually breaks its surface-layers into small fragments,

to be afterwards washed down to the plain as alluvial

soil.

The question of the porosity of colloidal bodies, sucli as

gelatine, albumen, and, from some points of view, india-

rubber, is somewhat puzzling. "VVe will refer to it in

Chapter XIII.

101. The DivisihilHij of matter, in the strict scientific

sense, at once raises the question of the existence of finite
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atoms. For, if there be such atoms, division has them

for its limit, whatever processes may be employed.^ We
are not prepared to face this aspect of the question, and

must, therefore, confine ourselves to examples of extremely
minute Division.

An "
impalpable

"
powder is one Avhich gives no gritty

sensation when we rub it between the thumb and fingers.

The process of Levigation, depending on fluid friction

(§ 38), is employed for the assortment of solid particles into

packets of diff"erent degrees of fineness. Thus, if ground

emery be thrown into a tall vessel full of water, we may
remove from the bottom of the vessel successive crops, as

it were, of gradually increasing fineness. Yet even the

finest of these powders can be used for grinding metallic

or glass surfaces, showing that its particles still possess

the same properties as do those of the coarser.

Silica may be thrown down, by chemical processes,

in such an extreme state of division that when it is dried

and poured into a trough it behaves almost like a liquid.

Especially wlien it is heated, we observe that, like a liquid,

it is capable of propagating gravitation-waves. Calcined

magnesia and other very fine powders show similar

properties.

102. Even the rough process of scratching the

polished surface of glass with a diamond point can be

carried out by machinery to such an extent of delicacy

that groups of equidistant parallel lines may be traced,

some of which can only be " resolved
"

into their com-

ponents by the very best microscopes ; others, which we

have every reason to believe capable of resolution, have

not yet been resolved. Tliese pieces of ruled glass are

known to microscopists as Noherfs Test.

^ See again Aftptvdtx II.
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Ordinary gold-leaf, though prepared by a very rough

process, has a thickness of about 1 /300,000th of an inch

only. But, as Faraday showed, it can be rendered very

much thinner by immersion in a solvent such as cyanide

of potassium. And, by a species of inversion of Wolla-

ston's process (§ 49), i.e. drawing into very fine wire a

silver rod thickly gilt, we obtain a continuous film of gold,

whose thickness is estimated at less than l/4,000,000th

of an inch.

103. The average size of the particles of water in a

light cloud is easily estimated from the diameter of the

coloured rings, or Covojkv, which it produces when it

covers the sun or moon.^ If the radius of the innermost

ring be 15°, the diameter of the particles must be about

1/1 3,000th of an inch. Such must have been the average

size of the dust particles from the recent Krakatao erup-

tion which produced the remarkable sunsets, as well as

the corona seen about the sun when no cloud was visible.

The length of time these particles remained in suspension

is accounted for in § 40 above.

104. Leslie, in his Natural Philosophi/ (1823), says:
" A single grain of musk has been known to perfume a

large room for the space of twenty years. Consider how

often, during that time, the air of the apartment must

have been renewed and have become charged with fresh

odour ! At the lowest computation the musk had been

subdivided into 320 quadrillions of particles, each of

them capable of affecting the olfactory organs." Leslie

does not tell us how the computation was made, nor even

what we are to understand by quadrillions.

[The usual British reckoning gives a quadrillion as a

billion billions, each billion being a million millions,

1 Tait's Li(jht, 2nd ed., §§ 180, 246.
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while tlie French reckoning makes it only a thousanil

million millions. This confusion- is entirely removed

by the modern mode of writing large numbers, which

we know only in rough approximation. We write the

first two or three significant figures, and indicate the

number of the remaining ones by the corresponding

power of 10.]

Thus Leslie may have meant either 320x10-"', or

320 X 10'^. If, as is most probable, he meant the former

of these numbers, the result of his computation has been

singularly verified by recent discoveries, some of them

apparently altogether unconnected with the question

before us.

105. One of the most striking instances of division is

that furnished by holding, in an otherAvise slightly

luminous flame, a particle of common salt or of some

other metallic chloride. Fox Talbot, in 1826, wrote :

" A particle of muriate of lime on the Avick of a spirit-

lamji will produce a quantity of red and green rays for a

whole evening Avithout being itself sensibly diminished."

Swan traced the source of the pecxdiar orange ray Avhich

appears in the light of almost every flame to the Avide

diffusion of exceedingly small quantities of common salt.

These phenomena are nowadays knoAvn to all in connec-

tion Avith Sjyectrum Analysis. The quantity of common
salt Avhich, for a considerable time, Avill continue to give

the orange tinge to the flame of a large Bunsen lamp is

minute in the extreme. The effect is noAV proved to be

due to vapour of sodium.

106. A conviction of the practically infinite divisi-

bility of matter must be held by all Avho believe in the
" dilutions

"
Avhich are at least popularly supposed to bo

one of the main characteristics of homccopathic medicines.
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When a single grain of atropine is dissolved in a gallon

of water, and one drop of this is added to another gallon

of water, we have what is called the first dilution. Add
a drojD of this to a third gallon of water, and we have the

second dilution. And so on. Tenth dilutions are said

to be sometimes administered. If we take the diameter

of a drop as about l/8th of an inch, we find, by an easy

calculation, that (as there are 277 cubic inches in a

gallon) the tenth dilution should contain about 2/10^*^ of

a grain of atropine per drop ! If that drop were magnified

to the size of the whole earth, the atropine in it (magni-

fied, of course, in proportion,) would correspond to a

particle of somewhere about one three-billionth of an

inch in diameter ! !

107. The kinetic theory of gases informs us that, in

a cubic inch of any gas at atmospheric pressure, and at

ordinary temperatures, there are somewhere about 3 x 10-*'

detached particles absolutely similar and equal to one

another. These cannot be Lucretian atoms, for they

have each many different modes of vibration, even when

they belong to a simple and not to a compound gas.

Here we reach the limit of our present knowledge as to

division of matter. What is the structure of these

gaseous particles on which their vibrations depend (§ 29),

and how far further divisible each particle must be

supposed in consequence, are matters beyond our know-

ledge. [These results of the kinetic gas theory are con-

firmed by altogether independent lines of physical

reasoning with which we are not concerned here.]

We may take, as a rough approximation, that the

grained structure (§ 26) of the most nearly homogeneous
solid or liquid bodies is of the order of 5 x 10^ to the

inch linear. To give a notion of the amount of division
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which this indicates, suppose we magnify a cubic inch of

such a substance to a cube whose side is the diameter of

the earth. The earth's diameter is 5x10^ inches, very

approximately. Thus, in the enormously magnified cube,

there is one particle in every cubic inch or so. We say

nothing, it is to be noticed, as to the size of the particle

or granulation itself. [The estimates hitherto made of

this quantity can hardly be called even rough approxi-

mations. But probably the particle does not occupy so

much as 5 per cent of its share of the whole content.]

All that can be said of the estimates above is that

they are, at least nearly, of the proper order of magni-

tude. And it is curious to find that the result of Leslie's

old "computation" (§ 104) agrees fairly enough with

our present knowledge.



CHAPTER VI.

INERTIA, MOBILITY, CENTRIFUGAL FORCE.

108. We commence with !N"ewton's

First Law of Motion.

Every hodij j^erseveres in its state, of rest or of uniform

motion in a straight line, except i7i so far as it is compelled

hy forces to change that state.

The property, thus enunciated as belonging to all

bodies, is usually called Inertia. And it is clear from the

statement above that it may be described as passivity, or

dogged perseverance, but in no sense whatever as

revolutionary activity. This consideration will be found

presently to be of great importance.

Matter is, in Newton's system, regarded as the J)la3'-

thing of force
; submitting to any change of state that

may be imposed on it, but rigorously persevering in the

state in which it is left, until force again acts upon it.

109. The state referred to is one of rest, or of uniform

motion in a straight line {pi which rest is a mere particular

case). Here we meet with a serious difficulty.

Ail translatory motion (including rest, or null motion)

is, from the very nature of space, essentially relative.

y4
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Relatively to what, then, are ^ye to say that a body not

acted on by force moves uniformly in a straight line 1

The answer, so far as we can give it, is—
Relaiivdy to any set of lines drawn in a rigid hody, of

finite dimensio7is ; which is not acted on by force, and ivhich

has no rotation.

As will be seen later, (§ 131) N'ewton has pointed out a

physical test, by which it can be ascertained whether a

body has rotation or not.

But questions of this kind can only be alluded to,

certainly not fully discussed, in an elementary work.

110. The grand proof of the truth of the first as well as

of the other Laws of Motion is furnished by the celestial

motions. So irregular is the motion of the moon, when
considered carefully, found to be, that no amount of the

most exact observation alone
{i.e. unaided by physical

investigations) could enable us to predict its place, even

twenty-four hours beforehand, with anything like the

accuracy with Avhich it is predicted four years before-

hand in the Nautical Almanac. So convinced have

astronomers become of the truth of the laws of motion,
which are necessarily involved in all their lunar and

planetary calculations, that when a discrepancy between

prediction and observation is found to occur no one now

questions the bases of the calculation. The discrepancy
is used to correct our previous estimates of the elements

of the lunar or planetary orbit; or, as in the notable

case of Uranus, it is employed as an indication of where

to seek for some undiscovered body whose influence has

not been taken into account.

111. Familiar instances of Inertia present themselves

in all directions. When a railway carriage is runnino-

uniformly on a straight piece of road, we become uncon-
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scious of the motion unless we look out at external

bodies
;

but we detect at once any sudden change of

speed. If the motion of the train be checked by a sudden

application of the brake, their inertia (Avhich really

maintains their motion) appears to urge the passengers

foTicards. A sudden starting of the train produces the

opposite effect. While the steady motion continues a

conjuror can keep a number of balls in the air just as

easily as if the carriage were at rest. But those things

need not surprise us. Our rooms are always like perfect

railway carriages in respect of their absolutely smooth,

but very rapid, motion round the earth's axis. The

Avhole earth itself is flying in its orbit at the rate of a

million and a half of miles per day ; yet we should have

known nothing of this motion had our globe been per-

petually clouded over like that of Jupiter. The whole

solar system is travelling with great speed among the

fixed stars, but we know of the fact only from the

minutely accurate observations of astronomers, aided by all

the resources of the Theory of Probabilities.

112. When a bullet is dropped from a definite point in

a uniformly running carriage, it strikes the same point of

the floor whatever be the speed of the motion
; for, by its

inertia, it preserves while falling the forward motion of

the carriage Avhich it obviously had while it was held in

the hand. But, if the bullet be dropped from the yard

of a vessel to the deck, it will not fall always on the

same spot, however uniform be the ship's progress, if

there be any pitching. For, when the vessel pitches, the

yard moves forward alternately faster and slower than

does the deck.

JS'ow the top of a tower (unless it be at one of the

poles) is farther from the earth's axis than is the foot, or
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the ground on wliich the tower is iDiiilt
; and, therefore,

as both complete their revohition in twenty-four hours,

the top of the toAver moves permanently faster than does

the base. Hence even a truly spherical bullet, dropped
from the top, does not fall vertically. It deviates to the

east of the vertical, because it preserves while falling its

superior eastward speed. In this way we obtain one

physical proof of the earth's rotation.

113. The upsetting of buildings by an earthquake
furnishes a striking instance of inertia. So does the

almost perfect immimity wc experience from the millions

of meteoric stones which are constantly encountering the

earth with planetary velocities. This is due to the

inertia of the air, which, in its turn, is one indispensable

cause of the destructive action of a tornado
; just as, on

a smaller scale, a cannon-ball would be harmless Avithout

inertia, while an earthwork, without inertia, would afford

no defence. But we need give no more instances—the

reader will easily supply others from his own experience.

114. So far, we have been speaking of inertia as mani-

fested by the tendency of a body to persevere in its

motion with unaltered speed. But we must carefully note

that this is only one part of Newton's Law. The state

in which he tells us that bodies persevere by inertia is

not one of uniform motion merely, but of motion in a

straight line. The preservation of the rectilinear path is

quite as essential a part of the functions of inertia as is

the preservation of the uniform speed. Hence, just as we

attribute any change in the speed of a body to the action

of force, so, if its line of motion be not straight, {whether

the speed be unaltered or no) its curvature also must be

due to the action of force,

115. How the force must be applied which causes a

G
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body, in spite of its inertia, to move in a curve is easily

understood from some common instances, though it is

pretty obvious that it must be in a direction perpendiadar

to that of the motion ; and, of course, in the phane in

which the curvature takes place. For any force iii the

direction of motion must tend only to increase or to

diminish the speed.

It is found that, at a curve on a railway line, it is the

outer of the two rails which is most worn
{i.e.

that one

which forms the convex side of the track). And, when

a sharp curve has to be taken rapidly, the outer rail has

generally to l)e laid a little higher than the other. But

(except when the bralce is on) the pressure is mainly

perpendicular to the rails. Hence the force which causes

the carriages to move in a curved path must be directed

inicards to the centre of curvature.

When we whirl a sling M'ith a stone in it, we feel the

tension of the cord (which is constantly ^w/Zm^ the stone

from its natural straight path in towards the hand)

increased as we cause the sling to rotate faster.

A bullet, suspended by a string, forms what we call

a simple pendulum. It can, by proper initial projection,

be made to revolve uniformly in a liorizontal circle. Here

the tension of the string may be resolved into two parts ;

one vertical, which supports the weight of the bullet, the

other horizontal, which continually deflects the bullet

from its natural rectilinear path. If the string could be

made long enough, the time of revolution might be made

twenty-four hours
;
and if the pendulum were then set up

at the north pole, and made to describe its circle in the

positive direction (§ 65), it would appear to remain sus-

pended at rest in the air, the supporting string not being

vertical ! If it Avere made to revolve in the negative
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direction, it would appear to complete a revolution in

twelve hours.

The moon is caused to move in an (approximatel}-)

circular path about the earth by the same attraction

which causes stones to fall vertically downwards.

116. One of Newton's remarks on the First Law of

Motion runs thus :
—

" A hoop, Avhose parts by their cohesion perpetually

draw one another aside from rectilinear motions, docs

not cease to rotate, except in so far as it is retarded by
the air."

Thus the uniformity of the earth's rotation about its

axis, which is the basis of our measurement of time, is

merely an example of the First Law of Motion.

But when a fly-wheel, or a grindstone, is made to

rotate so fast that the cohesion of its parts is no longer

capable of supplying the forces requisite to keep them

moving in their circular paths, it hursts (this is the tech-

nical word), and the fragments fly off in paths which are

tangential and rectilinear, except in so far as gravity
modifies them.

If the rotating body be plastic, as must have been

the case long ago with the earth as a Avhole, its form

will be modified by the tendency of every particle to

preserve its rectilinear path. Thus it swells out in all

directions perpendicular to the axis of rotation. Jupiter
and Saturn, being much larger than the earth, and also

rotating more rapidly, show this eftect in a much greater

degree.

A beautiful example is furnished by suspending an

endless chain by a cord, and (by very rapidly twisting
the cord by means of multiplying gear) throwing it into

rotation. When the rotation of the whole is sufficiently
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rapid it assumes almost exactly the form of a horizontal

circle, all its links being equidistant from the (vertical)

axis of rotation.

117. The old notion, probably suggested by such

instances as the pull which the stone in a sling seems to

exert on the hand, was that bodies have a tendency to

fj/ outwards from the centre about which they are revolv-

ing. Hence they were said to exert Centrifugal Force,

and a Centripetal Force was of course required to balance

this. The term Centrifugal Force has become rooted

in our scientific language. It is a convenient enough

expression, provided we do not split it up, thus taking

it to imply force, and flying from a centre
;
but interpret

it merely as indicating that, to keep a body moving in

a curve instead of in its natural straight line, a force

directed towards the centre of curvature is always

required. But, as the third law of motion (§ 128) tells

us, a force is only one-half of a stress, so that when force

is exerted to pull the body inwards from the tangent, an

equal force must be exerted at the centre tending outwards

from it.

We might quite as justly speak of the Oymard Force

of a cannon-ball, which requires a resistance to check it
;

as of the centrifugal force (understood not as a single

term but as two words, each with its ordinary meaning)

which must exist because it requires centripetal force

to balance it.

118. Calculating (as in § 71) from the earth's mean

equatorial radius, 3962 miles, and the number of seconds

in a sidereal day, 86164, we find that the acceleration of

a point on the equator is about 0"1116 feet per second,

per second. Thus about -g^l^th of its weight is required

merely to keep a body on the earth's surface at the
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equator. By this amount its Aveiglit (as indicated by a

Sjjriiig-halance, § 165) would be diminished.

If the earth had been revolving seventeen times faster

than it does, this apparent diminution of weight would

have been 17- (or 289) times greater than it is, i.e. bodies

at the equator would have shown no apparent weight,

provided they moved along with the same velocity as

the ground below them.

119. As is pointed out in the preceding extract from

Kewton (§ 116), a wheel or other body, rotating about

an axis and not acted on by forces, perseveres by inertia

in its uniform rate of rotation. But it does more
;

it

preserves (even when acted on by small forces) the

direction of its axis of rotation, provided at least that it

be rotating about its axis of greatest or of least moment
of inertia (§ 132). It is for this reason that rifling of

the bore of a gun has been introduced
;
and also that a

skilled player, when throwing a quoit, gives it rotation

in its own plane.

The rotation of the earth about its axis is a more

complex phenomenon, because it takes place under the

action of considerable forces which tend to make the earth

revolve about axes lying in the plane of its equator. Yet,

because the moments of inertia (§ 132) about all such

axes are approximately equal, the period of the daily

rotation is not altered, though the direction (in space) of

the polar axis is affected by Precession and by K^utation.

We cannot, however, do more than allude to matters of

this order of difficulty. They are all beautifully illus-

trated by means of Gyroscopes, Gyrostats, etc., but the

full study of the phenomena requires higher mathematics

than we can introduce here. These are properly questions

of Abstract Dynamics.
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120. Newton's Second Law of Motion is as follows :
—

Change of momentum is proportional to force, and takes

jylace in the direction in which the force acts.

Thus, according to Xewton, a force alicays produces

change of momentum. Hence there is no balancing of

forces, though there may be balancing of the effects of

forces.

Every force (hoAvever small) produces its proper change
of momentum. This used to be stated, under the name

of Mohiliti/, as a characteristic property of matter.

This change is always gradual, never abrupt. An
infinite force would be required to produce a finite change
of momentum abruptly.

As change of momentum alone is mentioned, it is clear

that Newton means that the effect of a force is independent
of the state of motion of the body to which it is applied.

Hence if a force be uniform, as for instance is practically

the case with the action of gravity upon a falling body,

the additional momentum produced hj it in each and

every second Avill measure its amount. But if it be

variable, we must measure it by the rate at Avhich

momentum is produced by it instead of the momentum

produced by it in one second. Thus the true measure of

a force is the rate of change of momentum
; or, to nse the

kinematical term, the product of the mass of a body into

the acceleration of its velocity.

121. Tavo special cases, of great importance, must now

be treated :
—uniform acceleration in the direction of

motion, and uniform circular motion.

It is found that, in vacuo, all bodies acquire, per

second, an additional vertical velocity of about 32 '2 feet

per second. This quantity (AA'hich varies Avith the latitude

height above sea-level, etc. § 165) is usually denoted by
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the letter g. Hence, if ]\[ be the mass of a boily, its

weight {i.e. the force which accelerates its fall) is measured

by the product M^.
Kinematics (as we saw in § 71) shows us that when a

point moves uniformly iu a circle, the acceleration is

directed inwards to the centre, and its magnitude is the

square of the speed multiplied into the curvature of the

path. Hence to keep a body, of mass M, moving Avitli

uniform speed V in a circle of radius R, a force whose

magnitude is MV-/R, directed towards the centre of the

circle, must constantly act upon it. As M^ is the weight

("\V) of the body, we may express this force as

If CO be the Angular Veloc'dg in the circular path, i.e.

the angle described in unit of time by the radius drawn

to the moving body, we have obviously

V = R<a,

and the expression for the requisite force takes the form

MR^^ or ^W.
3

122. N^ewton shows that, as an immediate consequence
of the Second Law, Ave have the Law of Composition of

Forces acting at one point ;
the so-called Parallelogram,

or Triangle, of Forces. This follows from the facts that

(«) the changes of velocity produced in the same time, by
different forces acting on the same body, are proportional

to and in the directions of the several forces, and that {h)

the effect of each force is independent of the simultaneous

action of the others. Thus the problem is reduced to the

obvious kinematical composition of velocities (§ 69).
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123. We are now prepared to measure botli Masses and

Forces. But, for this purpose, it is necessary to have units

in terms of which to measure.

The British unit of mass is the Standard Pound, whose

amount was probably adopted in old times for reasons of

convenience, but is now fixed by law.

The French, or Metrical, unit of mass is the Kilo-

gramme, originally intended to be the mass of a cubic

decimetre, or litre, of water at its maximum density

point ; but, practically, defined by a platinum standard.

The Kilogramme is about 2-20462 Pounds.

124. The British Unit of Force is such that, when it

acts for one second on a mass of one pound, it produces

in it a speed of one foot per second.

The C. G. S. Unit of Force (or Dyne), which is coming
into use for scientific measurements, is such that, when it

acts for one second on a mass of one gramme, it produces

in it a speed of one centimetre per second.

The British Unit of Force is about 13,825' Dynes.
Since the speed acquired by a body falling for one second

{in vacuo) is (§ 120) about 32 '2 feet per second, the

Weight of a Pound is about 44.5,165 Dynes.
125. Generally, if a definite force act upon any mass

for one second, it will generate in it a speed whose

magnitude is inversely as the mass.

Thus the comjDarison of masses, i.e. their measurement

in terms of some standard unit, becomes a perfectly definite

scientific process.

It may not be easy to carry out, and in fact it is not
;

at least by any very direct application of the principles

just explained. That, however, is another matter. K"o

one in his senses would question the perfectness of Euclid's

process for dividing a straight line into a given number of
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equal parts, on the ground that it is practically inapplic-

able when we try to carry it out.

What we have sought is an accurate, and an easily

intelligible, method of comparing masses. If it be not

easily workable in practice, we must find something more

workable :
—

just as we now use a screw dividing-engine

instead of Euclid's unrealisable straight lines, and still

more unrealisable parallel straight lines.

126. A\^ien we have measured the mass of a body, and

also its volume (§ 92), its average, or mean, density ioWows

at once. If the body be homogeneous, this is its actual

density throughout :
—and whether it be homogeneous or

not, its mean density is simply the average amount of mass

per unit of volume.

On account, chiefly, of the remarkable result of I^ew-

ton's (§ 34), we postpone all considerations regarding the

densities of various kinds of matter until we are dealing

with their specific gravities also.

127. The process of weighing is, as iNTewton showed

(§ 34), essentially a comparison of masses. So that our

measurement of mass is practically carried on by means

of the Balance, which is one of the most delicate and

accurate instruments of precision yet invented.

The processes for measuring force are not yet nearly

so accurate. J^umerous instruments have been devised

for the measurement of special classes of forces, the great

majority depending upon elasticity of matter. Some of

the more important of these will be mentioned when we

require them
;
but the reader must be reminded that on

Newton's system the true measure of a force is the

momentum it produces in one second,

128. The first two laws of motion (applied with suf-

ficient mathematical resources) enable us to solve any
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problem whatever regarding tlie motion of a body, treated

as a mere particle, nnder tlie action of any given forces.

Conversely, they enable us, from the given motion of a

particle, to find the forces under which the motion has

taken place. But they do not suffice for the calculation

of the motion of two or more particles which mutually
influence one another, whether by gravitation, or cohesion,

or by any physical mode of attachment. Hence the

necessity for the

Third Law of Motion.

To every action there is always an equal and contrary

reaction; or, the mutual actions of any two bodies are

always equcd and oppositely directed.

In modern speech Newton's first explanation of the

sense in which this statement is to be understood may
be simply expressed thus :

—
Every action between two bodies is a Stress.

In this sense it is very closely connected with the

first law. For a system of two bodies, considered as one,

cannot set itself in motion. Even when the masses are

not connected in any way, the equality of action and

reaction involves transference of momentum between

them which leaves the motion of their Centre of Inertia

unaffected. It was by floating on water a magnet and a

piece of iron, both attached to the same light board, that

Newton proved the equality of action and reaction for

magnetic force. He also proved it by showing that, if

the gravitation action of one part of the earth on the rest

were not exactly reciprocated, the earth (as a whole)
would alter its existing state of motion.

129. The term centre of inertia, employed above, re-
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quires a few words of explanation. We assume tlie

following proposition, Avhicli can be established by very

elementary mathematics.

In every group of massive particles there is one

definite point, such that, whatever plane be drawn in

space, the distance of the point from th;;t plane, multi-

plied by the sum of the masses, is equal to the sum of

the separate products formed by multiplying each mass

into its distance from the plane. It can, therefore, be

foimd by executing the requisite calculations for any
three planes whatever, provided no two of them are

parallel. This is the centre of inertia of the particles.

When the particles are severally acted on by forces,

it follows from XcAvton's Third Law that the centre of

inertia of the group moves as if the whole mass were

there concentrated, and acted on by all the forces simul-

taneously. Tliis consideration greatly simplifies kinetical

problems connected with a rigid system or a group of

particles ;
for it enables us to commence by determining

the motion of the centre of inertia as if it were a mere

particle, and afterwards to study the motion relativeh/ to

that centre.

130. But Newton proceeds to point out that there is a

second sense in which the terms action and reaction in the

Third Law may be interpreted, the law itself still remain-

ing true. In modern phrase it may be expressed as

The activity of an agent [or the rate at which it does

Work), is equal to the counttr- activity of the resistance.

Newton's statement of this second mode of interpret-

ing the Third Law has been shown to require compara-

tively little addition to make it a complete enunciation

of the Conservation of Energy (§ 7).

131. If two masses be connected by a spiral spring,
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but be otherwise free, and if the spring remains stretched

to a constant amount, this can only be because the bodies

are revolving about one another. For, otherwise, the

stress in the spring would have caused them to approach

one another. This is Newton's test of the existence of

Absolute Rotation, § 109. For, by the first law, the stress

wliich certainly acts on the masses must interfere with

tlieir states, and by the third law it must do so in opposite

directions. Each, therefore, must be describing a curved

path relatively to the other, and this must of course be

circular.

Nothing is known, nor is anything conceivable even by
the most transcendental of metaphysicians, which could

give us an indication of Absolute Translation.

132. "VVe conclude the chapter with a few additional

illustrations and explanations connected with inertia.

In § 119 above we introduced, without explanation,

the important term Moment of Inertia. This quantity is

defined, for any body, with reference to any assigned

axis. It is the sum of the products obtained by multi-

plying the mass of each small portion of the body into

the square of its distance from the axis.

Its use is twofold. If w be the angular velocity of a

rigid body about an axis, r the distance of the particle

whose mass is m from that axis, the speed of m is rw,

and the kinetic energy of rotation (half the product of

each part of the mass into the square of its speed) is

i2(mr2). ^2 = ^1^2,

half the product of the moment of inertia into the square

of the angular velocity.

Again, the Moment of the momentum of a particle about

an axis is defined as the product of its momentum by the
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shortest distance between the axis and the line of motion

of the particle. Hence the moment of momentum of m
about the axis is mroi.r, and the whole moment of

momentum of the body is

2()«r-). u = lo,

the product of the moment of inertia into the angular

velocity.

133. It is shown in treatises on Dynamics that the

effect of a pair of equal and opposite forces, whose lines

of action are different (called by Poinsot a Couple) is to

produce moment of momentum in proportion to the time

it acts and to the moment of the couple. Hence, if Q
be the (constant) moment of the couple, w the angular

velocity it produces in time f, when its plane is perpen-

dicular to the axis above spoken of,

lo) = '2,{mr-)oi
= Qt,

whence

where a is the angle through which the body has turned.

For w grows imiformly, and therefore its average value

during the time t was a)/2, so that the whole angle

described is a)//2.

But if a (constant) force P act on a particle, of mass M,
and produce in time t a speed v, we have

Mv = Tt.

The speed increases uniformly, so that its average value

is v/'2, and therefore the space described is s = vt/2.

Hence, by multiplying both sides by v/2, we get

It is obvious that in the former pair of equations the
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quantities I and Q, w and a, play exactly tlic same parts

as do M and P, v and s, respectively, in the latter

pair.

This analogy shows, at least in part, the great con-

venience of the idea of the moment of inertia.

For special purposes we often write I in the form M/i;^

k being then the common distance from the axis at wdiich

every one of the particles must be placed, so that the

whole may have the same moment of inertia as before.

It is called the Radius of Gyration.

134. As an illustration of the application of the two

interpretations of the third law, suppose a fly-wheel to be

carefully mounted on friction rollers, and set in rotation

by the descent of a weight attached to a string wound

round its axle.

Let w be the angular velocity produced in the fly-

wheel when a length x of the cord has been unwound, a

the radius of the axle, M the mass of the appended

Aveight, I the moment of inertia of the wheel, and T the

stress in the cord.

Then the rate of increase of momentum of the mass

M is Mi- (with Newton's notation, § 72). This must be

the measure of the force producing it, so that

Mf = Mi/-T .... (1.)

The rate of increase of moment of momentum of the

fly-wheel is Iw, which must measure the couple produc-

ing it. Hence*o

I^ = Ta (2.)

But aw is the amount of cord unwound per second,

i.e. the rate of descent of the weight. Thus

au — X (3.)
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(1) and (2) are dynamical equations, (3) is kinematical.

X, 0), and T are to be found from the three. They give

If the wheel had no moment of inertia this would

become
5 =

9,

the ordinary equation of acceleration of a free falling body.

Hence, the only effect of the fly-wheel is to climinit>h

the eflect of gravity on the weight in the proportion

rt^ : (a^ + k-). The measure of the stress on the cord is

and it therefore remains the same throughout the motion.

It increases with increase of the radius of gyration of the

wheel, but not indefinitely. Its utmost value, as was to

be expected, is (M^) the Aveight of the appended mass.

135. Eut the solution of the same problem, by the

help of Xewton's second interpretation of the third law,

is far more simple.

The rate at which the agent (the weight of the falling

body) is doing work is, at any instant,

The rate at which energy is being gained by the falling

body is Miu'. The rate at which energy is gained by the

fly-wheel is lojoi.

Hence
ilgx = Mxx -\- luu,

cr by (3), our kinematical condition,

Mga? = Ma^x-\-lx, . . . . (i.)

wdiich is the same equation as before.
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136. But, instead of reckoning rates of transference of

energy, we may still more simply proceed by expressing

the conservation of the whole amount of energy in the

system (§ 7).

The falling body has lost 'Mgx, and has gained |Mi'-^.

The fly-wheel has gamed ^Iw^. Hence

or by (3)

which is the fluent, or integral, of (4) when multiplied

by a;.

137. If we consider these three solutions of the same

problem, we see that, while the stress between the

members of the system plays a prominent part in the

first, it is altogether unnoticed in the two latter.

This might, at first sight, tend to induce us to ignore

stress altogether ; and, undoubtedly, we can do so in all

cases, except when we study the condition of the intervening

medium, ivhile energy is stored in any part of it ; or ivhile

energy is being transferred through it from one part of the

system to another. The consideration of this view of the

subject is deferred to our chapters on Elasticity. See,

especially, § 169.



CHAPTEE VII.

GRAVITATION.

138. "Without preface we simply give a statement,

compounded from various parts of the Principia (espe-

cially the Third Boole), which comprehends all the essen-

tials of Newton's great generalisation.

Every 2^CL'>'ticJG of matter in the universe attracts every

other particle tcith a force whose direction is that of the

line joining the two, and whose magnitude is directly as the

product of their inasses, and inversely as the square of

their distance from each other.

This statement is made in terms of attraction :
—i.e.

force. Such a form is convenient for our present pur-

pose. But it will be shown later (§ 159) that all we

know on the subject can be expressed (and still more

simply) in a form which ignores even the very name of

force.

It divides itself, for proof, into a number of separate

heads
;
as follows :

—
(a) The Universality of Gravitation.

(h) The direction of the force between two particles.

(c) The proportionality of the force to the product of

the masses.

(d) The law of the inverse square of the distance.

H
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Besides these more immediate assertions the statement

also raises the questions
—

(e) What do we mean by
" attraction"?

(/) What is the cause of gravitation 1

And other matters of great importance naturally

present themselves, such as,
" What is the mass of the

Earth," etc. ?

These questions must be kept before us, so that -we

may give to each of them (so far as our knowledge yet

extends, and so far as is consistent with the scope of this

work) a sufficient answer. (/) is still an open question,

for the attempts at answering it have not yet been very

successful, (a) of course can only be answered either in

an ajjj^roximate or in an indirect manner, because we cannot

(by our most delicate instruments) even prove the exist-

ence of gravitation-attraction between two
2^'^'>'i^'^^^^ c*f

matter. Here, however, we tread (as will be seen) on

comparatively safe ground.

And the same may be said for (h), (c), and (d), because

the reasoning and experiment which sufficiently answer

(a) will be found here even more complete, (e) will be

discussed along with
(/).

139, (a) One strong argument for the universality of

gravitation is that the iveight of a body is the sum of the

iceights of its parts. This is, of course, a matter which

can be tested to a very great degree of accuracy by means

of the balance. Thus each particle of the body con-

tributes its share to the Aveight of the whole.

And the weight of a given quantity of matter does not

depend upon its form. A mass of gold retains exactly

the same weight when it is beaten out into the finest leaf,

or dissolved in any quantity, however great, of an acid.

Thus terrestrial gravity acts as freely upon the particles
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•when they are surrounded on all sides by the solid mass, as

when they are directly exposed by the beating, or solution.

In fact, it is quite easy to see that, were this not the

case, were it, in fact, possible to find a screen through

which gravity could not act, i.e. were it possible to inter-

fere with the universality of gravitation, we should also

be able to produce The Perpetual Motion :
—an inexhaust-

ible source of new energy. This we know (§7) cannot be.

To show, ho'A^ever, that the above hypothesis would

lead to this result, we have only to think of a fly-wheel,

one part of which shall be screened from the earth's

attraction, the rest unscreened. Every part loses weight
as soon as it enters the shadow, as it were, of the screen,

and gains it again when it emerges. Thus the wheel,

being constantly heavy on one side and weightless on the

other, constantly gains energy from nothing.

The wheel would in fact become a tread-mill :
—work-

ing of itself, instead of by the hard labour of a gang of

convicts climbing, without mounting, up one side.

140. (a) continued. Newton attacked the question by

assuming the law of gravitation for the separate particles

of a body, and thence finding what should be the law of

attraction towards the body as a whole. He thus arrived

at two exceedingly beautiful theorems. The first is as

follows :
—

A spherical shell of uniform gravitating matter exerts no

attraction on a particle icithin it.

[For the proof of this, and of the succeeding proposi-

tion, we assume the following results of pure mathe-

matics :
—

The area of a transverse section of a cone of small

angle is proportional to the square of its distance from

the vertex.
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The measure of the spherical opening of such a cone is

the area it cuts off from the unit sphere Avhose centre is

its vertex
;
which is tlie same as the area of the transverse

section at unit distance from the vertex.

An oblique section has greater area than the transverse

section, at the same distance from the vertex, in propor-

tion to the secant of their inclination to one another.]

Take any pomt B, Avithin the spherical shell, and let it

be the vertex of a double cone of exceedingly small angle.

This cuts out two minute areas on the spherical surface,

obviously at eq\ial inclinations to the axis of the cone.

Hence their areas, and therefore their masses, are as the

squares of BP, BQ. But their attractions on B arc

inversely as the squares of BP, BQ. Thus these attrac-

tions balance one another. And
the whole shell may thus be divided

into pairs of parts, whose attrac-

tions exactly balance one another

on B. Hence the proposition,

Avhich is obviously true of any
uniform shell, however thick, if

only bounded by concentric sjihcres.

And it is true, if the shell be made

up of concentric layers of difl'erent

densities, provided the density of each layer be uniform.

No other law than that of gravitation is capable of

giving this result.

141. The second of ISTewton's theorems is:—-

A spherical shell of uniform gravitating matter attracts

an external loarticle as if its ichole mass were condensed at

its centre.

Let A be the external particle, C the centre of the

shelL Cut off CB, a third proportional to CA, CD ;
and
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divide tlic vslicll by small douLle cones whose vertices

are at B. Let PBQ be such a cone. Then if to be its

spherical opening, the areas of the sections at P and Q arc

BF'OJ sec CPB, BQ^^ sec CPB,

and their attractions are

BPl<y sec CPB , BQl^ sec CPB
; 0, and —^

: n.
AP- ''

AQ-
^'

where p is the surface-density, i.e. the mass per unit area.

Fig. 12.

But the geometry of the figure shows us at once that

< CPB = < PAD "= < QAD, and BP : AP : : CP : AC : :

BQ : AQ. Hence the elements at P and Q attract A
equally, and the resultant of their attractions is therefore

along AC. Its value is

2CV\ up

in which the multiplier of w is constant
;

i.e. each portion

of the shell produces a share, of the whole attraction

along AC, proportional to the angular opening it subtends

atB.

The sum of all possible values of w is the area of the
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surface of the unit hemisphere, i.e. Itt. Hence the whole

attraction is

47rCP^o

Now 47rCP2 is the surface-area of the shell, so that the

above expression is merely-

Mass of shell

Square of distance from centre
'

and the proposition is proved.

It can at once be extended, as the former was, to a mass

made up of concentric shells of different densities, pro-

vided each have the same density throughout.

No other law of force, except the law of the direct

distance, gives this result.

142. Hence a uniform spherical shell, or a mass made

up of uniform concentric shells, has a true Centre of

Gravity, so far as bodies external to it are concerned ;
for

it attracts, and therefore is attracted by, all external

bodies, as if it were condensed in its centre.

It is only a limited class of bodies which have a true

centre of gravity in the sense just explained. When such

a point exists, it always coincides with the centre of

inertia, as Ave see at once by supposing the attracting

body to be so distant that its action on different parts of

the attracted body is in parallel lines, and proportional

simply to the relative masses :
—

and, for many purposes,

it is sufficiently accurate to assume that the centre of

inertia of a body may be treated as a centre of gravity.

But we must beware of making too free a use of this

hypothesis. If, for instance, the earth had a true centre

of gravity, and were rotating about its axis of greatest

moment of inertia (through that point), there could be

neither Precession nor Nutation.
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143. (a) continued. Armed with these results, Xewton

was justified in dealing with masses approximately

spherical, such as those of the sun and planets, as if each

had been a mere particle, condensed at its centre. And
here he had the benefit of the altogether extraordinary

labours of Kepler ; who, by sheer guessing, often of the

wildest kind but followed up by persevering calculation,

had reduced to a few simple statements the chief Icine-

matical results deducible from the observations of Tycho
Brahe. These were given in Kepler's work, De Motihus

Stellce Martis, Prague, 1609, and are now universally

designated'O^

KejAefs Laws.

I. Each planet describes an Ellipse (with comets this

may be any Conic Section) of which the Sun occupies one

focus.

II. The radius-vector of each j^lanet describes equal

areas in equal times.

III. The square of the periodic time (in an elliptic

orbit) is proportional to the cube of the major axis.

144. (b) Newton showed that, as an immediate conse-

quence of Kepler's LaAV II. above, the direction of the

attraction of the sun for a planet must be that of the line

joining their centres.

In fact, double the area described by the radius-vector

of a planet in one second is the moment of its velocity

about the sun's centre. But the moment of the resultant

of two velocities is the sum of their separate moments.

Hence, as the moment of the planet's velocity remains the

same, the moment of each successive increment which it

receives must be nil, i.e. these increments (i.e. the accelera-

tions) must be directed towards the sun's centre.
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We may prove this part also of the law of gravitation

by showing that, were it not true, The Perpetual Motion

would be attainable. But the reader may easily make out

this proof for himself.

145. (c) That the attraction varies directly as the

product of the masses will be proved at once if it be

shown to be proportional to one of the masses Avhile the

other remains constant. For it must be remembered

that, by the third law of motion (see § 128), gravitation-

attraction is mutual; each of the two attracting bodies has

as much of a share in producing it as has the other. It is

clear, then, that the proof of this part of the law Avill be

obtained at once if we can show that the iceigMs of bodies

are, in any and every one locality, proportional to their

masses (§ 34).

"We have seen that the measure of a force is the

momentum it produces in one second. Submit a number

of bodies to the action of their own weights alone, each

will acquire in one second a momentum proportional to

its Aveight. But if the weight be proportional to the

mass, the momentum must also be proportional to the

mass, and thus the speed acquired must be the same for

all. That is, if they be under the action, each of its own

weight alone, they will fall side by side through any space

whatever, Now this is known to bo very nearly the case

when we let stones or bullets, or even lumps of wood,

fall
;

Avhile it is obviously not so with feathers, paper, or

gold leaf. But these exceptions show at once why the

trial is not a fair one. The falling bodies are all resisted

by the air, some only slightly, others with forces not much

less than their whole weights. Hence, to make the

experiment as nearly as possible free from such interfer-

ing causes, Newton made the fall extremely slow, but in
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such a -way that it could be repeated over and OA'cr again

under precisely similar circumstances, and therefore its

period could be measured very exactly. He used, as the

bob of a simple pendulum, a light hollow shell which

could be filled successively with difi'erent kinds of matter.

In Book II. sec. vi. prop. xxiv. of the Prhicipia, he

proves that the mass of the bob of a simple pendulum of

given length is directly as its weight and as the square of

its time of oscillation in vacuo. And, in the 7th Corollary

to this proposition, we read :
—

" Hence appears a method both of comparing bodies one

among another, as to the quantity of matter in each, and

of comparing the weights of the same body in different

places, to know the variation of its gravity. And, by

experiments made with the greatest accuracy, I have

always found the quantity of matter in bodies to be

proportional to their weight."

Thus gravity depends on the quantity, but in no way
on the quality, of the matter in a body ;

and it is in all

cases attractive. In these respects it stands in marked

contrast to magnetic forces.

146. {d) An immediate deduction, from the first two

of Kepler's Laws, is that the Hodograph (§ 70) of a

planet's orbit is a circle. For (see Fig. 13) the moment

of the velocity, Y, of P, about the sun, S, is constant

(§ 144). And, by Kepler's Law I, the orbit AEA' is an

ellipse of which S is one focus. Let fall the perpendicular

SQ on the tangent at P, then Q lies on the circle whose

diameter is the major axis AA' of the orbit. Thus Y.SQ
is constant. Bat if QS cut the circle again in R, SR.SQ
is constant. Thus SR is proportional to V. Hence SR
is drawn from a fixed point S, in a direction perpendicular

to that of the motion of P, and its length is proportional
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to the speed of P. The locus of E, the auxiliary circle,

is therefore a curve similar to the hodograph, but turned

through a right angle.

The tangent at E, which is the direction of the accelera-

tion of the velocity SE, is therefore perpendicular to SP.

[In fact CE is parallel to SP, by a property of the ellipse.]

The magnitude of the acceleration of P is proportional to

the speed of E, i.e. proportional to the angular velocity of

CE ;
i.e. to the angular velocity of SP. But the moment

of P's velocity, about S, "which is constant, can also bo

expressed as the product of SP^ into the angular velocity

of SP. Hence the angular velocity of SP, and therefore

also the acceleration of P, must be inversely proportional

to SP^. Thus we have the law of change of attraction

with distance,

147. The detailed investigation is easily given: thus,
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if SP =
r, < A'SP =

0, and if h be twice the area de-

scribed by SP in unit of time,

r-d = h.

But SQ.V = h,

Avhile SQ.SR = AS.SA' = BC",

where EC is the semi-axis minor of the ellipse.

Thus SR = ^.Y.h

But, on the same scale, the acceleration of P is measured

by the velocity of E, which is CK.^', or CA.^.

Hence the actual acceleration of P is

A PA /j-i*'"-2Ai 1
BC^ BC^.CA='r2'

!N'ow twice the area of the ellipse is 27rBC.CA; and,

if T be the periodic time, it must also be h. T. Hence

Acceleration of P = —ttt-, r,
•

i- 1"

Kepler's Third Law tells us that CA^/T"^ is the same

for all the planets. Hence we conclude that it is the

same gravitation, diminishing as the square of the distance

increases, Avhich acts on each one of the planets.

148, The result of § 146 might at once have been

obtained from Kepler's third law. For if we suppose the

orbits of the planets to be circles (which they are approxi-

mately), that law gives
T2 -yz R3,

where T is the periodic time, E the radius of the circle.

But, if V be the planet's speed in its circular orbit, we

have the Jmiematical result

y2X2 oc R2.
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From the two we obtain

i.e. (see § 121) tlie accelerations are inversely as the

squares of the distances.

But it is better to derive, as Xewton did, the law of

inverse square from the two first of Kepler's laws
;
and

then the third gives us the further information that every

planet behaves exactly as any other would do if substituted

for it, i.e. that the sun's gravity pays no attention to the

quality of matter.

149. Having found that, in these general matters at

least, the assumed law of gravitation is in agreement with

the planetary motions, Xewton turned to particulars, and

the special one which he took as a test was the moon's

revolution about the earth. He says :
—

" That the circumterrestrial force likewise decreases in

the duplicate proportion of the distances, I infer thus.

"Let us then assume the mean distance of the moon

60 semi-diameters of the earth, and its periodic time in

resj^ect of the fixed stars 27*^ 7^ 43™ as astronomers have

determined it. And a body revolved in our air, near the

surface of the earth supposed at rest, by means of a

centripetal force which shoidd be to the same force at the

distance of the moon in the reciprocal duplicate propor-

tion of the distances from the centre of the earth, that is,

.as 3600 : 1, would (secluding the resistance of the air)

complete a revolution in l'^ 24™ 27^
"
Suppose the circumference of the earth to be

123,249,600 Paris feet, as has been determined by the

late mensuration of the French, then the same body,

deprived of its circular motion, and falling freely by
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the impulse of the same centripetal force as before,

would, in one second of time, describe 15— P<^^i^

feet,

" This agrees with what we observe in all bodies about

the earth. For by the experiments of pendulums, and a

computation raised thereon, Mr. Haycjens has demonstrated

that bodies falling by all that centripetal force with which

(of whatever nature it is) they are impelled near the

surface of the earth, do, in one second of time, describe

15_i_ Pans feet."

The comparatively accurate measurement, of the length

of a degree of latitude on the earth, by Picard was un-

doubtedly the cause which ultimately led to the publica-

tion of the Principia, of which the fundamental proposi-

tions had been obtained nearly twenty years before.

For Newton, using the rough estimate of GO miles to

a degree, had found that the moon's deflection by gravity,

in one second, from a rectilinear path, was not 3/00^^ ^^

the space through which a stone falls in one second at

the surface of the earth, and had in consequence put his

investigations aside, until he was led to resume them by

hearing the result of Picard's measures.

150. Having thus established the law of gravitation by
calculations founded mainly on Kepler's laws, Newton

proceeded to show that these laws could not themselves

be accurate. For a single spherical planet, revolving

about a spherical sun, the first two laws would still be

true, but a second planet would at once interfere with

this state of matters :
—the orbits would no longer be

ellipses, and equal areas would no longer be described

in equal times. Again, the third law could never be

exactly true, even if the planets did not attract one

another, unless they contained each the same fraction of
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the sun's mass. But tlie consideration of questions like

these belongs to Physical Astronomy, with which we have

nothing to do here. Suffice it to say that Newton's own

magnificently-extended deductions, supplemented as they
have been by those of successive generations of illustrious

mathematicians, have verified already to a very high

degree of nicety the competence of the law of gravitation

to account for the excessively complex motions and

perturbations observed in the solar system.

151. We have already (§ 118) adverted to the apparent

loss of weight by bodies at the equator. This loss, due

to the so-called Centrifugal Force, is, of course, directly

proportional to the mass of each body. But experiment
with the most delicate balances has shown that bodies

of any kind which equilibrate in one latitude equilibrate

in all. Hence their weights remain equal when, from

that of each, is subtracted an amount proportional to

the mass. This can only be if the weights are them-

selves proportional to the masses. Thus we have an

independent experimental proof of the truth of clause (f)

of Newton's statement.

152. We can scarcely yet be said to have proof that

gravitation exists, as we know it, in stellar systems. For

the data, from which to calculate orbits of double stars,

have to be obtained under circumstances which do not

admit of more than rude attempts at approximation. We
know that there are hundreds of systems in which two or

more stars revolve about one another in a way which

leaves no doubt that they are j^hysicaUy connected. But

the observations which have as yet been made have been

applied, not to prove that the relative orbits are consistent

with Kepler's laws but, to find the approximate dimen-

sions of the orbits, and thence the amounts of matter in
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the mutually influencing bodies, on tlie supposition tliat

Kepler's laws hold even in these remote systems.
Thus Ave cannot, at least for the present, look for proof

of the universality of gravitation in this direction. But
we have ample direct proofs that parts of the earth, and
not merely the earth as a whole, exert gravitating force.

Some of these will be considered in the immediately

succeeding sections.

153. The most direct of these (though not the earliest)

is what (though devised by Michell) goes by the name of

Tlie Cavendish Experiment.

In this, by means of the elasticity of a wire or fibre, the

attraction between two spheres of manageable size is not

only demonstrated, but measured. The following sketch

shows a horizontal section through the main parts of the

arrangement.

Two small balls, A and B, an inch or two in diameter,
are connected by a stiff, but very light, horizontal girder
or tube, which is suspended at its middle point (E) by a

long fine wire. The Avhole of this part of the apparatus
is enclosed in a case, carefully coated with tinfoil or gold-

leaf, to prevent (as far as possible) irregular heating and

consequent currents of air
; perhaps, also, slight electrifi-

cation. To the girder is attached a small mirror, whose

plane is vertical. A little glazed Avindow in the case

allows any motion of the mirror to be measured by the

consequent deviations of a ray of light reflected by it.

Outside the case are placed two equal, but much more

massive, spheres, usually balls of lead a foot or more in

diameter, so mounted that they can be made to move

(without jerk of any kind) from the positions C^, D^ to
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the positions C^, Do and C3, Dg, or back again, at will.

[In Cornu's recently-constructed apparatus there are four

spherical iron vessels, of equal size, placed once for all at

D,

Fio 14.

C;^, C3, D^, Dg, and so connected, two and two, that C^

or D3, and simultaneously D^ or C3, may be filled with

mercury, the other of each pair being left empty. All

four can be left empty when required.]
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Cavendisli, and all who have since made the experi-

ment, found that the apparatus was never at rest. In

order to determine the equilibrium position it was

necessary, therefore, in all cases to measure the limits of

successive oscillations, and to compare the mean of two

successive deflections to one side, Avith the intervening

deflection to the other side. The time of each oscillation

was also carefully measured.

"When the large masses were placed at C^, Do, in a line

perpendicular to the girder {i.e. each half-way between

its extreme positions), the oscillations were due practically

to torsion alone, and the couple required to twist the

suspending filament through a given angle could be

determined from the period of free oscillation, taken

along with the length of the girder and the masses of

the two small baUs.

When the masses were placed at C^, D^ within a

couple of inches of the small balls, the range of the

oscillation Avas completely altered. From the observa-

tions (made as before) the new position of equilibrium

could be calculated. A fresh set of observations was

then made with the balls at Co, D2, find then they w^ere

shifted to Co, D3. Thus is determined the defiedion

which would have been produced if the sensitive part of

the apparatus could have been reduced to rest.

But from this deflection, and the ascertained coefficient

of torsion of the wire, the force acting on each of the

small balls can be calculated. This is to be compared

with the weight of one of the small balls, and then the

question is,
" What must be the mass of the earth when

it attracts a mass at its surface (i.e. 4000 miles from its

centre) with a force greater in a known ratio than that

with which the same mass is attracted by a given
I
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spherical mass of lead, whose centre is placed at a given

distance 1
" The law of gravitation at once enables us to

write the requisite condition. The mass of the earth,

thus found, has only to be divided by its volume (§ 126)

to give the mean density.

The quantities compared in such a case, i.e. the attrac-

tions, may be taken as approximately in proportion to

the radius and the mean density of the earth, and of tlie

leaden s^ihere, respectively. They are, therefore (as the

density of lead is double that of the earth), in the ratio

4000 X 5280 : 2
;
or 10" : 1 roughly. Hence, to estimate

correctly, to two significant figures only, the earth's

mean density, we require to measure a force of the order

of the hundred-millionth part of the weight of the small

ball. This rough calculation gives some idea of tlie

delicacy of the experiment.

154. The details of the necessary precautions, as Avell

as of the results of various repetitions of this experiment,

do not suit a work like this, and must be sought in the

original descriptions.^

Cavendish's result for the mean density of the earth

was 5*48 (the density of water being taken as unit) ;

Reich obtained 5"49; Baily 5'67, since reduced (by the

recalculations of Cornu) to 5'55. Cornu's own result

is 5-50.

It is very remarkable that Newton, in Book III. of

the Prijicipia, prop, x., made the following guess :
—

" Since the common matter of our earth, on the surface

thereof, is about twice as heavy as water, and a little

lower, in mines, is found about three, four, or even five

1
Cavendisli, Phil. Trans., 1798. 'Raxly, Mem. Ast. Soc, 1843.

Reich, Abhand. d. K. Siichs. Ges., 1852. Conui, Comptes Bendus,

1870-78.
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times more heavy, it i.s probable that the tjuaiitity of the

whole matter of the earth may be five or six times greater

than if it consisted all of water."

Every one of the experimental results, above given,

lies almost exactly half-way between the limits thus

assigned, and published, more than a century before even

the earliest attempt at direct determination was made.

155, Good results have been obtained by a modifica-

tion of this experiment, which enables the experimenter

to employ an ordinary balance
;
an attracting sphere of

considerable mass being applied beneath a sphere attached

to one arm of the balance, and already counterpoised

(at a different level) by weights in a scale-pan. Thus the

uncertainties of torsion arc avoided. (If late, however,

fibres of cj[uartz have been clraAvn, which seem to be

singularly certain in their working, so that the form uf

the Cavendish apparatus may perhaps be retained, and

its scale very considerably reduced.^

156. Other methods, which have been employed for

the determination of the mean density of the earth,

depend upon the comparison of the attraction exercised

by a mountain, or by some other part of the earth, M'ith

that of the whole earth, when these act simultaneously,

but in different directions, on the same body. The first

recorded trial of this method was made by De la Conda-

niine and others, among the Andes. It was first carefully

worked out by Maskelyne on a prominent Perthshire

mountain, and has consequently been called

Tlte Schehallien Experiment.

By geodetic measures, altogether uninfluenced by

gravitation, the actual distance between two stations,

1

Boys, Nature, xxxix., 65, 1889.
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one north the other south of the mouutain, can be found,

and from it can be calculated the ditference of their

(geographical) latitudes. But the true latitude of each

station separately can be determined ]iy the usual astro-

nomical methods, depending on the observed meridian

altitude of a star. The difference between the geographi-

cal and the true latitude of each station depends upon
the attraction of the mountain for the plumb-line, or

the trough of mercury, which is used to determine the

vertical. The station south of the mountain (in the

northern hemisphere) has its latitude made less than

the geographical, that to the north made greater by this

action. Hence, if everything were symmetrical on the

two sides of the mountain, the difference of the astro-

nomically determined true latitudes at the two stations

would be greater than that of their geographical latitudes

by double the deviation produced in the plumb-line by
the mountain.

The mountain must now be contoured
;
then studied

by a geologist, so as to enable him to decide on the most

probable distribution of matter in it
;
then the specific

gravities of samples of these kinds of matter mi;st be

determined. Next a laborious calculation, of the species

called Quadrature, nnist be gone through to find its action

on the plummet, taking account of the form and density

of the mass. Finally, the deflection of the plumb-line is

calculated from this result, in terms of the (unknown)
mean density of the earth, and compared with the

measured deflection.

Maskelyne's
^

observations, developed successively by

Hutton - and by Playfair,^ gave as result for the earth's

mean density 4-48 and 4'86. The great objection to this

' Phil. Tram., 1775.
'
Ihkl, 1778. '

Ihkl, 1811.
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method is the uncertainty under which we must remain

as to the internal structure, not only of the mountain

itself but of the whole crust of the earth in its neighbour-

hood. This cannot be got over completely, so that the

result is liable to considerable error.

157. Tlie Harton Experiment was made by Airy in the

Harton pits. It consists in comparing the intensity of

gravity at the earth's surface with that at the bottom of

a mine :
—the same pendulum being used successively at

the two stations
; or, still better, two pendulums being

made to vibrate simultaneously, one at each station, but

now and again interchanged. This method, with the

help of modern electrical processes for comparing the

behaviour of the pendulums, is probably (so far as exact-

ness of measurement is concerned) a really good one.

The intensity of gravity at the bottom of the mine differs

from that at the surface on two accounts. Suppose a

surface drawn inside the earth, but everywhere at a depth

equal to that of the mine
;
so as to divide the earth into a

core, enclosed in a uniformly thick skin, as it were.

Gravity at the top of the pit depends on the combined

attractions of these parts. At the bottom of the pit the

skin ceases to attract (by Newton's proposition, § 140).

but we have come nearer to the core. Hence the observa-

tions enable us to compare the attraction of the core with

that of the skin. Now we know the volume of the skin,

but it has to be assumed (and this is the fatal defect of

the method) that the skin is everywhere of the mean

density determined from examination of the various strata

passed through in sinking the pit.

It is not, therefore, surprising that the result of this

experiment,^ viz. G"56, should differ very materially from

1 Phil. Trans., 1856.
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the consistent results oLtained hy tlie various workers at

the Cavendish experiment.

158. It was suggested by Robison ^ that tlie alternate

filling and emptying of an estuary or bay, at diflerent

states of the tide, might supply an excellent mode of

measuring the earth's mean density by means of observa-

tions of the consequent twelve-hourly periodic changes of

latitude. The contouring required Avould be very easy ;

the density of sea-water is practically uniform, and there

are places where the whole rise of the tide sometimes

amounts to 120 feet or so. But this promising method

seems not to have got beyond the stage of suggestion.

Yet it is the only one, besides the Cavendish method and

its mere modifications, which has not some inherent and

fatal weakness.

159, (e) and (/) of § 138 above. That two pieces of

matter behave as if they attracted one another according

to I^"ewton's law, is certain, I>ut it by no means follows

that they do so attract. All that we are entitled to say,

from the facts given above, is as follows :
—

The part of the enerr/i/ of a system of two particles of

matter, of masses m ami m', tvJiich depends tipon tlieir

distance, r,from one another, is measured hy

mm'
r

and this is not altered hy the presence of other particles.

This, taken along with the conservation of energy,

enables us fully to investigate the motions of any system
of gravitating masses. It represents, in fact, our whole

knowledge on the subject. And it is important to

observe that the statement is altogether free from even

^Elements of Mechanical Philo.^ophy, 1804. p. 339. See also

Forbes, Proc. IIS.E., II. p. 244.
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the mention of the word uttradion or furre. [See, again,

§§ 1<^ 137.]

IGO. We may, however, briefly notice some hypotheses

which have been framed as to the mechanism on which

gravitation depends. For ISTewton, in his celebrated

Letters to Bentley, expressly says :
—

"Yon sometimes speak of gravity as essential and

inherent to matter. Pray do not ascribe that notion to

me
;
for the cause of gravity is what I do not pretend to

know, and therefore would take more time to consider of

it."

"
It is inconceivable that inanimate brute matter should,

without the mediation of something else which is not

material, operate on and affect other matter without

mutual contact, as it must do if gravitation in the sense

of Epicurus be essential and inherent in it. . . . That

gravity should be innate, inherent, and essential to matter,

so that one body may act upon another at a distance

through a vaaiuri}, without the mediation of anything

else, by and through which their action and force may be

conveyed from one to another, is to me so great an

absurdity, that I believe no man who has in philosophical

matters a competent faculty of thinking, can ever fall into

it. Gravity must be caused by an agent acting constantly

according to certain laws
;
but whether this agent be

material or immaterial, I have left to the consideration of

my readers."

161. When we come to deal with molecular forces we

shall find that small bodies, such as sticks, straws, air-

bubbles, etc., floating on water, are made to aggregate

themselves into groups by molecular tension in the water-

surface (§ 288). Hence the idea that stress, in a medium

filling all space, might account for the apparent mutual
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attraction between bodies entirely surrounded by this

medium.

Newton, in the Queries at the end of his Optics, speaks

of a possible explanation to be obtained by assuming that

dense bodies rarefy the ether surrounding them, to an

amount which is less as the distance is greater.

Clerk-Maxwell says on this point :
— ^

" To account for such a force by means of stress in an

intervening medium, on the plan adopted for electric and

magnetic forces, ... we must suppose that there is a

pressure in the direction of the lines of force, combined

with a tension in all directions at right angles to the lines

of force. Such a stress would, no doubt, account for the

observed effects of gravitation. We have not, however,

been able hitherto to imagine any physical cause for such

a state of stress. It is easy to calculate the amount of

this stress which would be required to account for the

actual effects of gravity at the surface of the earth. It

would require a pressure of 37,000 tons' weight on the

square inch in a vertical direction, combined with a

tension of the same numerical value in all horizontal

directions. The state of stress, therefore, which we must

suppose to exist in the invisible medium is 3000 times

greater than that which the strongest steel could support."

162. Other attempts have been made, with the view

of showing that waves, or pulsating motion, in a medium,
would have the effect of drawing immersed bodies

together. Again, Sir \Y. Thomson has shown that if

space be filled with an incompressible fluid, Avhicli comes

into existence in fresh quantities at the surface of every

particle of mattei-, at a rate proportional to its mass,

and is swallowed up at an infinite distance, or, if each

'

Ency. Brit., ninth ed., Art. "Attraction."
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l)article of matter constantly swallows up an ainoiuit

proportional to its mass, a constant supply being kept

up from an infinite distance,
—in either case gravitation

would be accounted for. This is, however, virtually

a suggestion of a dynamical mode of producing the

diminution of pressure required in Newton's attempt at

explanation.

163. An attempt at explanation, from a totally different

point of view, was made by Le Sage in 1818. The

following account of it is taken from Clerk-Maxwell's

article,
"
Atom," already referred to :

—
"The theory of Le Sage is that the gravitation of

bodies towards each other is caused by the impact of

streams of atoms flying in all directions through space.

These atoms he calls ultramundane corpuscules, because

he conceives them to come in all directions from regions

far beyond that part of the system of the world which

is in any way known to us. He supposes each of them

to be so small that a collision with another ultramundane

corpuscule is an event of very rare occurrence. It is b}'

striking against the molecules of gross matter that they

discharge their function of drawing bodies towards each

other. A body placed by itself in free space and exposed
to the impacts of these corpuscules would be bandied

about by them in all directions, but because, on the

whole, it receives as many blows on one side as on

another, it cannot thereby acquire any sensible velocity.

But if there are two bodies in space, each of them will

screen the other from a certain proportion of the corpus-
cular bombardment, so that a smaller number of corpus-
cules will strike either body on that side which is next

the other body, while the number of corpuscules which

strike it in other directions remains the same.
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"Each body will therefore be urged towards tlie other

by the effect of the excess of the impacts it receives on

the side farthest from the other. If we take account of

the impacts of those corpuscules only which come directly

from infinite space, and leave out of consideration those

which have already struck mundane bodies, it is easy to

calculate the result on the two bodies, supposing their

dimensions small compared with the distance between

them.
" The force of attraction Avould vary directly as the

product of the areas of the sections of tlie bodies taken

normal to the distance and inversely as the square of tlie

distance between them.
"
Now, the attraction of gravitation varies as the pro-

duct of the viasse.-i of the bodies between which it acts,

and inversely as the square of the distance between them.

If, then, we can imagine a constitution of bodies such

that the effective areas of the bodies are proportional to

their masses, we shall make the two laws coincide. Here,

then, seems to be a path leading towards an explanation

of the law of gravitation, which, if it can be shown to be

in other respects consistent with facts, may turn out to be

a royal road into the very arcana of science.

"Le Sage himself shows that, in order to make the

effective area of a body, in virtue of which it acts as a

screen to the streams of ultramundane corpuscules, pro-

portional to the mass of the body, whether the body be

large or small, we must admit that the size of the solid

atoms of the body is exceedingly small compared with

the distances between them, so that a very small propor-

tion of the corpuscules are stopped even by the densest

and largest bodies. We may picture to ourselves the

streams of corpuscules coming in every direction, like
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light from a iiniforml}' illuminated sky. We may

imagine a material body to consist of a congeries of

atoms at considerable distances from each other, and ^vo

may represent this by a swarm of insects flying in the

air. To an observer at a distance this swarm will l)e

visible as a slight darkening of the sky in a certain

quarter. This darkening will represent the action of the

material body in stopping the flight of the corpuscules.

Now, if the proportion of light stopped by the swarm is

very small, two such swarms will stop nearly the same

amount of light, whether they are in a line with the eye

or not, but if one of them stops an appreciable proportion

of light, there will not be so much left to be stopped

by the other, and the effect of two swarms in a line

with the eye will be less than the sum of the two effects

separately.

"Now, we know that the effect of the attraction of

the sun and earth on the moon is not appreciably

diff"erent when the moon is eclipsed than on other

occasions when full moon occurs without an eclipse.

This shows that the number of the corpuscules which

are stopped by bodies of the size and mass of the earth,

and even the sun, is very small compared with the number

which pass straight through the earth or the sun without

striking a single molecule. To the streams of corpuscules

the earth and the sun are mere systems of atoms scattered

in space, which present far more openings than obstacles

to their rectilinear flight.

"Such is the ingenious doctrine of Le Sage, by whicli

he endeavours to explain universal gravitation. Let us

try to form some estimate of this continual bombardment

of ultramundane corpuscules which is being kept up on

all sides of us.
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'• We have seen that the sun stops but a very small

fraction of the corpuscules which enter it. The earth,

being a smaller body, stops a still smaller proportion of

them. The proportion of those which are stopped by a

small body, say a 1 lb. shot, must be smaller still in an

enormous degree, because its thickness is exceedingly

small compared Avith that of the earth.

"
Xow, the Aveight of the ball, or its tendency toAvards

the earth, is produced, according to this theory, by the

excess of the impacts of the corpuscules Avhich come

from aboA'e over the impacts of those Avhich come from

l)eloAv, and have passed through the earth. Either of

these quantities is an exceedingly small fraction of the

momentum of the Avhole number of corpuscules Avhich

jiass through the ball in a second, and their difference

is a small fraction of either, and yet it is equivalent to

the Aveight of a pound. The velocity of the corpuscules

must be enormously greater than that of any of the

heavenly bodies, otherwise, as may easily be shoAvn, they

Avould act as a resisting medium opposing the motion of

the planets. Now, the energy of a moving system is

half the product of its momentum into its velocity.

Hence the energy of the corpuscules, which by their

impacts on the ball during one second urge it toAvards

the earth, must be a number of foot-pounds equal to the

number of feet over Avhich a corpuscule travels in a

second, that is to say, not less than thousands of millions.

But this is only a small fraction of the energy of all the

impacts Avhich the atoms of the ball receive from the

innumerable streams of corpuscules Avhich fall upon it in

all directions.

" Hence the rate at Avhich the energy of the corpus-

cules is spent in order to maintain the gravitating pro-
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perty of a single pound, is at least millions of millions of

foot-pounds per second."

164. One common defect of these attempts is, as Clerk-

Maxwell points out, that they all demand some prime-

mover, working beyond the limits of the visible universe

or inside each atom : creating or annihilating matter,

giving additional speed to spent corpuscles, or in some

other way supplying the exhaustion suffered in the pro-

duction of gravitation. Another defect is that they all

make gravitation a mere difference-effect as it were;

thereby implying the presence of stores of energy abso-

lutely gigantic in comparison with anything hitherto

observed or even suspected to exist, in the universe
;

and therefore demanding the most delicate adjustments,

not merely to maintain the conservation of energy which

Ave observe, but to prevent the whole solar and stellar

systems from being instantaneously scattered in frag-

ments through space.

In fact, the cause of gravitation remains undiscovered.

165. The ordinary balance, as we have already seen,

merely tests equality of masses. To find the iceiyht of a

body we must measure directly the earth's attraction for

it. This can be done, perfectly in principle but only

with a rude approximation to accuracy in practice, by

means of a Spring-Balance, or by some other contrivance

which depends on the elastic resilience of a special kind

of matter.

By far the most accurate instrument for measuring the

intensity of gravity, from which, of course, the weight of

any body (whose mass is known) may be immediately

calculated, is the pendulum.

A simple pendulum (§ 115) exists, of course, only

in theory ;
but by means of a theorem of abstract
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dynamics we can calculate the lengtli of the simple

pendulum which will vibrate in the same period as does

n mass, of any form and dimensions, freely supported in

any assigned way on a horizontal axis. This the reader

must take for granted.^ Hence we can reduce observations

made with any pendulum to those with the corresponding

simple pendulum.
The following expression, whose form is suggested by

the theory of the Figure of the Earth, and whose constants

have been determined and verified by pendulum observa-

tions made all over the world, gives approximately the

value of g (§ 120) at sea-level in any latitude X,

32-088 (1-f 0-00513 shijx).

166. We conclude the chapter with a small table of

(approximate) Sjjecific Gravities, or what is the same tlung

(§ 36), Densities, and a few remarks suggested by it.

Xone of the numbers for solids can be given with any

great accuracy, (except perhaps those for natural crystals) :

for, even if the substance be pure, its density may be

altered to a considerable amount by the processes through

which it has passed in assuming the state in which it is

tested. Such a table as the present must be looked on as

affording materials for rough calculations only. When
better results are required, special determinations must be

made for each substance dealt with.

Hydrogen 0-000089

Steam 0-0006

Nitrogen . . . . . 0-00125

Air 0-00129

Oxygen 0-00143

(The above are at 1 atmosphere ; steam (of course) at 100° C,
the others at 0°C.)

^ Thomson and Tail's Elements of Naf. Phil., Appendix, % (j.
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Cork ....
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as given in the table, is about 250,000 : 1. I5ut, by means

of a Sprengel pump, the density of the hydrogen might

easily be reduced to a four-thousandth of its former value.

Thus Ave can place beside one another specimens of

matter, one of which has one thousand million-fold the

density of the other. Such a comparison may help us to

understand the possibility of the existence of the lumini-

ferous medium
;

which is certainly matter, yet of a

density perhaps smaller in comparison with that of

attenuated hydrogen, than is the latter in comparison
Avitli the density of iridium. In the present work the

ether does not come in for treatment. We know it only

in so far as it is the vehicle of radiation and electrical

energy :
—so that it is to works on Light and Electricity

the student must be referred.

167. By considering the earth, for a moment, as a

li(juid mass, it is easy (on hydrostatical principles) to

calculate the whole pressure across any plane section of

it.^ This is, of course, the resultant gravitation attraction

between the parts separated by the plane of section.

Assuming the result of § 154 for the mean density, Ave

lind that the average attraction, per square foot, across a

diametral plane is about 18 x lO'^ lbs. Aveight. The

tenacity of sandstone is about 72 x 10^ lbs. Aveight per

square foot. Thus gravitation is 25,000 times as effectual

in keeping the earth together, as would be its cohesion

if it Avere solid sandstone. Even if the earth Avere as

tenacious as steel, its cohesion across a diametral plane

Avould be only about 1 per cent of the attraction across it.

Since the cohesion betAveen tAvo halves of a globe is,

ceteris paribus, as the area of a diametral plane, i.e. as the

square of the radius, Avhilc the gravitation attraction is

1

Tait, Proc. R.S.E., 1875.
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as the sixth power of the radius directly, and as the

square of the radius inversely, a sphere of the earth's

mean density and of the tenacity of sandstone would

require to be of about 25 miles radius only, in order that

cohesion may be as effective as gravity in keeping two

hemispheres together. If the tenacity were that of steel,

the radius would be about 400 miles.

Hence the earth's strength depends almost wholly on

gravitation, while that of a stone, less than a mile or so

in diameter, depends almost wholly on cohesion, and the

more completely the smaller it is.



CHAPTEK VIII.

PRELIMINARY TO DEFORMABILITY AND ELASTICITY.

168. A SUBSTANCE is said to be elastic when, on being

left free, it recovers wholly or partially from a deforma-

tion (§ 41).

This definition is sometimes given in another form :
—

a substance is said to be elastic when it requires the

continued ajiplication of stress to keep it deformed. But

this is by no means an equivalent of the former state-

ment
; and, besides, it usually introduces complications ;

for in many substances the force requisite to maintain a

distortion becomes less and less with the lapse of time
;

and the continued application of a given distorting force

often produces a constantly increasing distortion. To

this, and to another curious property called the Fatigue

of Elasticity, we will recur, but we will for the present

adhere to the first definition given above.

Hence, as an introduction to this part of the subject,

we must inquire into the nature and mechanism of the

simpler kinds of deformation.

169. The term usually employed for deformation of

any kind is Strain. The treatment of strains is an

entirely geometrical, or (more properly) kinematical,

question. But when we inquire hoAV a strain is produced
14(3
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ill a given piece of matter, the question becomes a

dynamical one, and Ave are led to the notion of a system

of equilibrating forces, called a Stress. (See, again,

§ 137.) And we figure to ourselves that every stress

produces a corresponding strain, which will be of greater

or less amount as the specimen of matter operated on is

of more or less yielding quality.

It is sometimes convenient to speak of the property of

yielding to a particular stress, as when we speak of the

Compressibility of a substance
;
sometimes it is more con-

venient to speak of the property of resistance to a stress,

as when we speak of a body's RigvUttj. But the resist-

ance to a stress is measured by the reciprocal of the

amount of yielding (just as the electric resistance of a

wire is the reciprocal of its conducting power), so that

either of these numerical quantities is immediately
deducible from the other.

It will be seen shortly that if P be the measure of

any one kind of stress, and p that of the corresponding-

strain (supposed small), experiment points to a general

relation of the form

P = Cp,

where C is a constant depending on the special substance,

and the special form of stress. C is obviously greater,

the smaller is the strain for a given stress
;
and it there-

fore measures the resistance of the substance to the

particular kind of stress denoted by P.

As stress is force per unit of surface, while strain has

no dimensions, the dimensions of C in the above expres-

sion are

m
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Hence the numerical value of C changes, in passing

from one system of units to another, directly as the unit

of length and the square of the unit of time are increased,

and inversely as the unit of mass is increased.

170. ^Vo shall not require for our elementary treat-

ment of the question more than the simplest portions of

the suhject of strains, and shall therefore be concerned

with Homogeneous Strain only.

By this term it is implied that all originally similar,

equal, and similarly situated portions of a substance

remain after the strain similar, equal, and similarly

situated, however their forms and dimensions may be

changed. Hence points originally in a straight line, or

in a plane, remain in a straight line, or in a plane. Also

equal parallel lines remain equal parallel lines. There-

fore a parallelogram remains a parallelogram, an ellipse

remains an ellipse, a parallelepiped remains a parallel-

epiped, and an ellipsoid remains an ellipsoid.

171. Now supjiosc small, equal, and similarly situated

cubes to be traced in the unstrained body. This will be

effected by three imagined series of equidistant parallel

planes, those of each series being perpendicular to those

of the other two. After the strain the cubes become

equal, similar, and similarly situated parallelepipeds.

And it is clear that if one of the cubes, and the corre-

sponding parallelepiped, be given, everything else can be

determined.

But there is one .^j^ecial set, of three series of rect-

angular planes, with which it is best to commence. For

it is clear from what precedes that all originally spherical

portions of the body will become similar and similarly

situated ellipsoids. Also, if tangent planes be drawn to

a sphere, at the extremities of three diameters at right
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angles to one anotlier, i.e. so that any one of the tangent

planes is parallel to the plane containing the other two

diameters, this jj'^irallelism will be maintained after

deformation. Thus, every set of three mutually perpen-
dicular diameters of the sphere becomes a set of conjugate

diameters of the ellipsoid, and conversely. Hence the

principal axes of the ellipsoitl, which are conjugate
diameters perpendicular to one another, were also origin-

ally perpendicular to one another. This elementary
consideration produces a ]uarvellous simplification of our

investigation.

172. For we now see that every homogeneous strain

may be looked on as having been produced by uniform

extensions, or compressions, parallel to three mutually

perpendicular lines (the amounts parallel to these being

generally different), and a subsequent rotation of the

Avhole as if it were rigid. We shall not require to

consider the rotation, f(ir we are concerned only with the

deformation which each small part suffers.

Thus, taking account of these permissible simplifica-

tions, we need only in(|uire into the circumstances under

Avhich an originally cubical portion of the substance

becomes in general brick-shaped, \vithout change of the

directions of its edges. The investigation presents no

grave difficulties when the strains are of finite magnitude,
but we will, for simplicity as well as convenience

{§§ 174, 177), consider them as small.

173. There is one elementary form of strain which we
must specially consider, viz. that of the brick shape,

formed from a cube by lengthening in a given ratio one

set of parallel edges, shortening a second set in the same

ratio, and leaving the third set unaltered. Here it is

obvious that the volume also remains unaltered. Let
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the ratio of extension be 1 +/ : 1, that of contraction Avill

be 1 -/ : 1, on account of the smallness of the fraction I

Fiu. 15.

in all the cases Avhich we have to consider. Let the

figure represent one of those faces of the cube, of •which

all the edges have been altered. The square inscribed

in that side is obviously distorted into a rhombus, of

which two of the angles are greater, and two less, than

right angles, by the same amount, 6 suppose.

Then
6

so that, as 6 is very small,

6 = 21.

174. Every equilibrating system oi forces [i.r. every

stress) can be reduced to simple stresses, each consisting

of equal and opposite forces in the same line, that is,

thnids, or tmsiom. Thus we have now to inquire what

thrusts or tensions Avill convert a cube of deformable

matter into an assigned brick shape. These must

evidently be spread uniformhj over each of its surfaces,

for every one of any number of smaller equal cubes, into

which it may be supposed to be divided, suffers precisely

the same proportionate deformation.
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And as (§ 172) we confine ourselves to very small

deformations, any number of tliem may be superposed,
without interfering with one another—i.e. they may be

successively inflicted in any order, with the same final

result. It is mainly for this reason that we restrict

ourselves to small strains.

175. The problem is too difficult for an elementary

work, unless the portion of matter dealt with be isotropic^

i.e. unless it possess exactly the same properties in all

directions, so that the efi'ect of a given stress on a cube

of it is exactly the same however the cube be cut out of

the original material.

Hence we see that, for cuhes which hecome hricJc-shaped,

tcithoict change of direction of the edges, the thrusts or

tensions must each he perpendicular to the face on ichich

it acts. And (§ 169) we measure each by its amount per
unit area.

[It is most particularly to be remarked that, in all that

follows on this subject, it is understood that the body

operated on is kej)t at a definite temjjerature, alike through-
out its substance and throughout the whole period of the

operation.

The study of the heat developed by sudden applica-

tions of stress belongs entirely to Thermodynamics, upon
which Ave do not enter in this work. In fact, we here

confine ourselves to Isothermals, and have nothing to do

with Adiahatics.'\

176, The simplest case of all, and that which alone

we require when we deal with fluids, is when the pressure

or tension is the same on each face of the cube. Here

the cube obviously remains a cube, but its edges are

diminished or increased in length. Let unit of edge
become 1 — / (where / is very small) under pressure P
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per square unit of each face
;
what is called hydrostatic

pressure, pressure the same iu all directions, and always

normal to the surface. Then the volume of unit cube

becomes 1 - 3/.

The compressibility of an isotropic hotly is measured by

the ratio of the compression per unit volume to the hydro-

static pressure applied.

Hence the compressibility is 3//P, and the Eesistance

to compression (§ 169), usually called
A',

is P/3/, so that

/ =
P/3A-.

177. When we deal with solids, in which the stress is

not necessarily of the nature of hydrostatic pressure, some

further considerations must be attended to.

We now assume, consistently with experiment (as will

afterwards be shown), that, if the strain produced by any
stress be small, the reversed stress will produce exactly

the reversed strain. This is another reason (§ 172) for

confining our work to small strains.

Suppose the pairs of opposite faces of a cube be called A,

B, and C ;
the edges joining the corners of each pair a, l>,

c, respectively. Then a tension P, per unit of area, on the

A faces will increase a in some definite ratio 1 +}) : 1, and

diminish b and c in some common ratio 1 -g : 1. K'ow

superpose a pressure P, per unit area, on the B faces.

This will compress b in the ratio 1 —p : 1, and extend a

and c in the ratio \ +q: I . Hence the result of tension

P on the A faces and pressure P on the B faces is that a

is extended in the ratio \+p + q:\, his, compressed in

the ratio 1 -p -q:\, while the length of c is unaltered.

The effect is, therefore, (as in § 173) to change the

form of each section of the cube parallel to the C faces,

but to leave the area of that section and the volume of

the cube unaltered. This strain is called a Simple
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Shear, and the corresponding stress is called Sheariiuj

Stress.

178. It is usual, in defining Eigidity, to consider the

deformation produced in the unit cube Ijy equal tangential

forces, applied to two pairs of its sides, in directions

parallel to the third pair of sides, as indicated in the

diagram below. These forces, as shown in the figure,

obviously constitute a balanciiig system, or Stress, But

it may be analysed into a much simpler one. For, if we

draw either diagonal in the figure, the resultant of the

forces applied to either pair of faces on one side of it is

easily seen to be P ^2, in a direction perpendicular to

the diagonal. But the length of the diagonal is ^2.
Hence the stress perpendicular to either diagonal plane is

P per square unit. And it is clearly a pressure perpen-

dicular to one diagonal plane, and a

tension perpendicular to the other.

It is therefore the system already

studied in § 177, and the effect on

the cube above is that studied in §

173.

"We now define as follows :
—

The rigiditij of an isotrojnc solid,

{i.e. the resistance to change of form

under a stress such as that in the

above figure) is directly proportional to the tangential

force per unit area, and inversely as the change of one of
the angles of the figure.

Hence, using the common designation, n, we have

P

Fio. 10,

Rigidity = n = Vjd,

^^\ ijy §§ l^'S, 177,
L>-\-'l

- (1.)

2n
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179. But, by § 177, the effect of pressure P, applied

simultaneously to all the sides of the cube, would be to

reduce the lengths of the edges in the common ratio

or (approximately)
1:1+;;- 2q.

Hence (§ 176), p

180. From (1) and (2) wo have at once

V (1- - IV

These represent respectively the extension of one set of

edges of the unit cube, and the common contraction of the
other two, when it is subjected to tension P parallel to

the former set.

[These results might have been obtained, perhaps even
more simply, l)y assuming the existence of compressibility
Avith absolute rigidity, then assuming pliability with
absolute incompressibility, and superposing the effects.

But the logic of this process is more likely to puzzle the

beginner.]

181. Hence the extension, per unit of length, of a rod

or bar, under tension P per square inch of its cross-

section, is

Qkn

The corresponding diminution, per unit area, of cross-

section is

p 3X- - 2n

dkn
'

And thus the increase per unit volume is P/37,', a result
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which we might have ohtained directly in many other

Avays.

Thus, in pulling out an india-rubber band with a given

tension, we increase its volume by one-third of the amount

by which it would be diminished by hydrostatic pressure

of the same value.

Also by pulling out a truly cylindrical and uniform

tube, filled to a definite mark Avith a liquid, we may
measure directly the value of li for the matter of the

tube.

182. From the foregoing formulae the result of the

application of any stress to an isotropic body can be

calculated.

As an example, suppose we desire to find what stress

will produce extension of an isotropic bar or cylinder

vmaccompanied by lateral change of any kind.

If we have tensions, P along, and P' in all directions

perpendicular to, the axis of the bar, we have for the

longitudinal extensions (§ 177)

p- p?;

and for the extension in any radial direction

V'p P-fF
P P

^'

The latter must vanish, by our assumed condition, so that

~
p- q~ 3^•-^-4;l'

which gives the required relation between P' and P ;
and

thus the extension is

T. 3

3^• -|- 4«

183. In the chapters which immediately fullow, it
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will be seen that to determine the compressibility of a

fluid we require (at least in all the ordinary modes of

experimenting) to know the distortion produced in the

vessel which contains it.

AVlien the same hydrostatic pressure is applied simul-

taneously to the outside of the vessel and to its contents,

the correction for diminution of the interior volume is of

course, §§ 176, 212, PV//.- :—where P is the pressure per
nnit surface, V the interior volume, and k the reciprocal

of the compressibility of the material of the vessel. This

is to be added to the apparent compressibility of the

fluid.

IJut when the pressure on the vessel is mainly internal

(as in Andrews' experiments on carbonic acid, § 205),
or wholly external (as in glass manometers, § 233), the

correction is not so simple. It can, in every case, be

determined by means of the equations of § 180
;
but the

investigation even of symmetrical cases is beyond the

limits here imposed on us. We therefore merely state

the results for the forms of vessel most commonly used,

viz. tubes and bulbs. For simplicity we assume the

tubes to be cylindrical, and the bulbs to be spherical,

each being of uniform material and of uniform thickness

throughout. The internal and external radii are, in

both cases, denoted by a^^
and a^ respectively ;

and the

cylinders are supposed free to alter in length as Avell as

in cross-section.

Then the diminution per unit of content, by external

hydrostatic pressure P, is—

lucylmders V -^<—(\ J^l),

111 spheres P ~^'—^ ( ]+— V
af -

ttu"' \k
' in/
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Tlic increase per unit of content, by internal hydro-

static pressure P', is—
111 cylinder,s F _i!p' Jlt'lll),

In spheres F -^^l^, (Ia_^' 1 \

When there are simnltaneons hydrostatic pressures out-

side and inside, the corresponding results, calculated

from these expressions, are to he simply superposed

(§ 1'4).

Thus, if P and P' be simultaneous and equal, we have,

alike in cylinders and spheres, for the diminution of

unit internal content, P/Zr as above.

When an exceedingly thick vessel is exposed to

internal pressure only, the effect on unit of its content

practically depends on its rigidity only, and is P'/w for

a cylinder, and 3P74?j for a sphere. This is a very

striking result.

'NMien such a vessel is exposed to external pressure

the result is—
For cylinders V

( / + ^
)'

For spheres P^-_^_J.

This shows the fallacy of the too common notion that,

by making the bulb of a thermometer thick enough, we

enable it to '^

defy xyressure"; as, for instance, when it is

to be employed to measure temperatures in a sounding

of 3000 or 4000 fathoms.

184. It is very interesting to study the cases of

heterogeneous strain presented by the walls of cylinders

and bulbs when the internal and external hydrostatic

pressures are different. The following data will show
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tlie student the form and volume of tlie strain-ellipsoid,

i.e. the ellipsoid into which a very small part of the wall,

originally spherical, is distorted. We give the formulae

for a cylinder under external pressure. Let the original

position of the centre of the little sjihere be at a distance,

r (intermediate, of coirrse, between a^ and a^), from the

axis. Then it is deformed into an ellipsoid, whose axes

are—(1) radial, (2) parallel to the axis of the cylinder,

(3) at right angles to these two. If we denote by 1 the

original radius of the little sphere, the semi-axes of the

ellipsoid are—

(2) 1 -r S J\+H-\

(3) ^-^afi^^h

These are, in order of increasing magnitude, (2), (3), (1).

The axes (2) and (3) are always reduced in length, but

the radial axis (1) will be increased in length by the

strain provided r- < ^<i»-

In ordinary flint glass this condition becomes, approxi-

mately
—

o ^ 81 „

So that the interior layers of a glass tube, exposed to

external pressure only, are always extended in the radial

direction. This extension is greatest at the interior

surface, and vanishes in the layer whose radius is about

l*6aQ. If the external radius be greater than this, the

outer layers are radially compressed, and the more the

farther they lie beyond the limit of no extension.
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185. The theory of the propagation of Waves, whether

of compression or of distortion, in an elastic body, is

beyond our limits
;
but we may make the statement

that, if we could set aside the effects of sudden stress

in producing changes of temperature, and thus altering

the coefficients of compressibility and rigidity (for this

question belongs properly to Thermodynamics), the rates

of propagation of waves of different kinds depend only

upon one or both of these coefficients (k and n), and

upon the density of the body. "When the coefficients

are measured in terms of the weight of unit bulk of

the body, they are called AloduJi. Hitherto M^e have

measured them in terms of pressure or tension, i.e. force

per unit area. But, if we measure the force by the

length of the column of the substance, of unit section,

whose Aveight it can just sup]iort, Ave obviously take

account of the Aveight of unit bulk. Noav the theoretical

result (under the conditions above specified) is that the

speed of a Avave is that Avhich Avould be acquired by
a free body falling, under uniform graA'ity, through a

height equal to half the length of the modulus corre-

sponding to the particular kind of distortion Avhich is

propagated. Thus the speed of sound in air or Avater

depends upon the value of Ic alone ;
that of a shearing

Avave, such as light and some forms of earthquake, on n

alone. When a Avave of extension is sent along a wire,

as (for instance) to set a distant railway signal. Young's
modulus (§ 224) comes in

; and, when Ave deal Avith

plane sound-Avaves in a solid, Ave must take the corre-

sponding modulus as given in § 182.



CHAPTER IX.

COMPRESSIBILITY OF GASES AND VAPOURS.

186. A VERY general proof of compressibility and of

elasticity of bulk is afforded at once by the fact that the

great majority of bodies are capable of transmitting

sound-waves. For the propagation of sound consists

essentially in the handinr/ cm by resilience, from layer to

layer of the medium, of a state of compression or dilata-

tion
;

the (small) disturbance of each particle taking

place to and fro in the direction in which the sound is

travelling. All ordinary sounds are propagated in air.

But the rate of passage of sound has been measured in

the water of the Lake of Geneva and elsewhere; and

miners are in the habit of signalling to one another by

the sounds (of taps with a pick) conveyed through solid

rock.

187. Compressibility, elasticity, and inertia of air

are all demonstrated by the action of an air-gun. Its

reservoir is charged, by means of a pump, with some

forty or sixty times the quantity of air which it would

contain at the normal pressure and temperature ;
the

moment the valve is thrust down, by the fall of the

hammer, a portion of the air is forced out by its elas-

ticity ;
and this rapid stream, by its inertia, communi-

160
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cates motion to the bullet. The same thing is shown,

in a very beautiful form, by allowing the compressed air

to escape in a fine jet ;
for a ball of cork can be sus-

pended in the jet, as a metal shell is suspended in a

fountain-jet of water, but in this case without any visible

support.

188. In 1G62 Eobert Boyle published his Defence of

the Doctrine touching the Spring and Weight of the Air.

The following extract, especially, is still of great interest.

It occurs in Part II. chap. v.

" We took then a long Glass - Tube, which by a

dexterous hand and the help of Lamp was in such a

manner crooked at the bottom, that the part turned up
was almost parallel to the rest of the Tube, and the

Orifice of this shorter leg of the Siphon (if I may so call

the whole Instrument) being Hermetically seal'd, the

length of it was divided into Inches (each of which was

subdivided into eight parts) by a straight list of paper,

which containing those Divisions was carefully pasted all

along it : then putting in as much Quicksilver as served

to fill the Arch or bended part of the Siphon, that the

Mercury standing in a level might reach in the one leg

to the bottom of the divided paper, and just to the same

height or Horizontal line in the other
;
we took care, by

frequently inclining the Tube, so that the Air might

freely pass from one leg into the other by the sides of

the Mercury, (we took (I say) care) that the Air at last

included in the shorter Cylinder should be of the same

laxity Avith the rest of the Air about it. This done, we

began to pour Quicksilver into the longer leg of the

Siphon, which by its weight pressing up that in the

shorter leg, did by degrees streighten the included Air :

and continuing this pouring in of Quicksilver till the Air
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in the shorter leg was by condensation reduced to take

up but half the space it possess'd (I say, possess'd not

JiU'd) before
;
we cast our eyes upon the longer leg of the

Glass, on which Avas likewise pasted a list of Paper care-

fully divided into Inches and parts, and we observed, not

without delight and satisfaction, that the Quicksilver in

that longer part of the Tube was 29. Inches higher than

the other. Now that this Observation does both very

well agree with and confirm our HyjMtliesis, will be easily

discerned by him that takes notice that we teach, and

Monsieur Paschall and our English friends Experiments

prove, that the greater the weight is that leans upon the

Air, the more forcible is its endeavour of Dilatation, and

consequently its power of resistance, (as other Springs

are stronger when bent by greater weights.) For this

being considered it wil appear to agree rarely-well with

the Htjpoihesis, that as according to it the Air in that

degree of density and correspondent measure of resistance

to which the weight of the incumbent Atmosphere had

brought it, was able to counterbalance and resist the

pressure of a Mercurial Cylinder of about 29. Inches, as

we are taught by the Torricellian Experiment; so here

the same Air being brought to a degree of density about

twice as great as that it had before, obtains a Spring

twice as strong as formerly. As may appear by its being

able to sustain or resist a Cylinder of 29. Inches in the

longer Tube, together with the weight of the Atmo-

spherical Cylinder, that lean'd upon those 29. Inches of

Mercury ; and, as we just now inferr'd from the Torri-

cellian Experiment, was equivalent to them.
" We were hindered from prosecuting the tryal at that

time by the casual breaking of the Tube. But because

an accurate Experiment of this nature would be of great
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imi^ortance to the Doctrine of the Spring of the Air,

and has not yet been made (that I know) by

any man
;
and because also it is more uneasie

to be made then one would think, in regard

of the difficulty as well of procuring crooked

Tubes fit for the purpose, as of making a just

estimate of the true place of the Protuberant

Mercury^s surface
;
I suppose it will not be un-

welcome to the Reader, to be informed that

after some other tryals, one of which we made

in a Tube whose longer leg was perpendicular,

and the other, that contained the Air, parallel

to the Horizon, we at last procured a Tube of

the Figure exprest in the Scheme
;

which

Tube, though of a pretty bigness, was so long,

that the Cylinder whereof the shorter leg of

it consisted admitted a list of Paper, which

had before been divided into 12. Inches and

their quarters, and the longer leg admitted

another list of Paper of divers foot in length,

and divided after the same manner : then

Quicksilver being poured in to fill up the

bended part of the Glass, that the surface of

it in either leg might rest in the same Hori- B||

zontal line, as we lately taught, there was

more and more Quicksilver poured into the

longer Tube
;

and notice being watchfully
taken how far the Mercury was risen in Fio. it.

that longer Tube, when it appeared to have ascended

to any of the divisions in the shorter Tube, the

several Observations that were thus successively made,
and as they were made set down, afforded us the

ensuing Table.



164 PROPERTIES OF MATTER.

"A Table of the Condensation of the Air.

A.
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stated below, the truth of which we are here content to

assume. 1

In a mat>i< offluid, at rest, the pressure {per square inch)

is the same at all points in any horizontal plane.

TJte change of pressure from one horizoiital plane to

another is equal to the iceir/ht of a column of the fluid, one

square inch in section, extending verticallij between these

planes.

From these it follows that the pressure of the gas

operated on, i.e. the pressure on the mercury surface at

A (Fig. 17) is the same as that at the same level, B, in

the other branch of the tube :
—and this, again, exceeds

the pressure at C (the atmospheric pressure), by the

weight of a column of mercury of square inch section and

of height BC.

190. In his comments on this experiment Boyle

says :
—

" For the better understanding of this Experiment it

may not be amiss to take notice of the following particu-

lars :
—

"3. That we were two to make the observation to-

gether, the one to take notice at the bottom how the

Quicksilver rose in the shorter Cylinder, and the other

to pour it in at the top of the longer, it being very hard

and troublesome for one man alone to do both accurately.

• • • •

*'
6. That when the Air was so compress'd, as to be

crouded into less than a quarter of the space it possess'd

before, we tryed whether the cold of a Linen Cloth dipp'd

in water would then condense it. And it sometimes

^
See, for instance, Thomson and Tait, Elemtnts of Natural

Philosophy, §§ 692, 694.
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seemed a little to shrink, but not so manifestly as that

we dare build anything upon it. We then tryed likewise

whether heat would notwithstanding so forcible a coni-

pressure dilate it, and approaching the flame of a Candle

to that part Avhere the Air was pent up, the heat had a

more sensible operation than the cold had before
;

so

that we scarce doubted but that the expansion of the Air

Avould notwithstanding the weight that opprest it have

been made conspicuous, if the fear of unseasonably

breaking the Glass had not kept us from increasing the

heat.

• • • • •

" And there is no cause to doubt, that if we had been

here furnished with a greater quantity of Quicksilver and

a very strong Tube, we might by a further compression of

the included Air have made it counterbalance the pres-

sure of a far taller and heavier Cylinder of Mercury.

Tor no man perhaps yet knows how near to an infinite

compression the Air may be capable of, if the compress-

ing force be competently increast.

" And to let you see that we did not (a little above)

inconsiderately mention the weight of the incumbent

Atmospherical Cylinder as a part of the weight resisted

by the imprisoned Air, we Avill here annex, that we took

care, when the Mercurial Cylinder in the longer leg of

the Pipe was about an hundred Inches high, to cause

one to suck at the open Orifice
; whereupon (as we ex-

pected) the Merairy in the Tube did notably ascend. . . .

And therefore we shall render this reason of it. That

the pressure of the incumbent Air being in part taken

off by its expanding it self into the Sucker's dilated chest ;

the imprison'd Air was thereby enabled to dilate it self
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manifestly, and repel the Mercury that comprest it, till

there was an equality of force betwixt the strong Spring

of that comprest Air on the one part, and the tall ^ler-

curial Cylinder, together with the contiguous dilated Air,

on the other part."

It is scarcely necessary to call attention to the truly

scientific caution with Avhich Boyle thus gives his con-

clusions from this notable experiment.

191. Boyle's Law (as it is called in Britain) is now

stated in the extended form :
—

The volume of a given mass of gas, lieiot
at a given

temperature, is inversely as the pressure.^

In symbols this is merely

pv=0 (1.)

where C is a quantity depending upon the mass of gas,

and on its temperature. [This law is only approximately

true. In §§ 196-207 below the relation between pressure

and volume will be more exactly stated.]

From the definition of density as the quantity of

matter per unit of volume, we see at once that Boyle's

Law may be stated in the form—
The density of a gas, at coiistaiit temperature, is propor-

tional to the pressure.

192. The compressibility follows at once. For a

small increase, tt, in the pressure, corresponds to a small

diminution, w, in the volume, such that Ave still have

{p-\--7t)[v- u)=^Q=pv.

Neglecting the product of the two small quantities we

have
•7tV—ptd=^Q.

1 This Law usually goes by the name of Mariotte in foreign

books. See Appendix 1 V.



168 PROPERTIES OF MATTER.

Here the change, per unit of volume, is w/«, so that

the compressibility (§ 176) is

1 w_l

The resistance to compression is therefore proportional to

the pressure. This result was obtained by a graphic

process in § 176 above.

193. So closely does air follow Boyle's Law through

all ordinary ranges of pressure, that it is constantly used

in Maiiometers for the direct measurement of pressure.

The manometer is, in its elements, merely a carefully

calibrated tube containing dry air, from whose volume

(when it is kept at constant temperature) the pressure is

at once calculated.

The chief defect of such manometers is that successive

equal increments of pressure produce gradually diminish-

ing effects on the volume of the gas ;
and thus the

inevitable errors of observation become more serious, in

proportion to the quantity to be measured, as higlier

pressures are attained. Various ingenious devices, such

as tubes of tapering bore, have been devised to remedy
this defect. In all such modifications most careful

calibration is essential.

194. All gases, at temperatures considerably above

what is called their critical pohit (§ 206), follow Boyle's

Law fairly through a somewhat extensive range of pres-

sures. But a gas, at a temperature under its critical

point, is really a vapour, and can be reduced (without

change of temperature) to the liquid state by the appli-

cation of sufficient pressure, at least if nuclei be present.

The compression of vapours will be treated farther on.

195. So far, we have been dealing with the effects of

increased pressure. But Boyle carried his inquiry into
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the eflFects of diminution of pressure also. His apparatus
was of a very simple kind, though still useful, at least

for class illustration. The following extract, while highly

interesting, sufficiently describes his results and method :
—

A Table of the Earefactiox of the Air.

A. The number of equal spaces
at the top of the Tulie, that

contained the same parcel of

Air.

B. The height of the Mercurial

Cylinder, that together with
the spring of the included

Air, counter] lalanced the

pressure of the Atmosphere.

C. The pressure of the Atmo-

sphere.

D. The Complement of B to C,

exhibiting the pressure sus-

tained by the included Air.

E. What that pressure should
be according to the Hypo-
the^iis.

" To make the Experiment of the dehilitated force of

expanded Air the plainer, 'twill not be amiss to note some

particulars, especially touching the manner of making the

Tryal ;
which (for the reasons lately mention'd) we made

on a lightsome pair of stairs, and with a Box also lin'd

with Paper to receive the Mercury that might be spilt.

And in regard it would require a vast and in few places

procurable quantity of Quicksilver, to employ Vessels of

such kind as are ordinary in the Torricellian Experiment,

Ave made use of a Glass-Tube of about six foot long, for

A.
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that being Hermetically seal'd at one end, serv'd our

turn as well as if we could have made the Experiment in

a Tub or Pond of seventy Inches deep.
^^

Secondly, We also provided a slender Glass-Pipe of

about the bigness of a Swan's Quill, and open at both

ends
;

all along which was pasted a narrow list of Paper
divided into Inches and half quarters.

• • • . .

''

Foiirihhj^ There being, as near as we could guess,
little more than an Inch of the slender Pipe left above

the surface of the restagnant Mercury, and consequently
unfill'd thercAvith, the prominent orifice was carefully

clos'd Avith sealing Wax melted
;

after which the Pipe
was let alone for a while, that the Air dilated a little by
the heat of the Wax, might upon refrigeration be reduc'd

to its wonted density. . . .

• • . .

"
Sixthly, The Observations being ended, we presently

made the Torricellkm Experiment with the above mention'd

great Tube of six foot long, that we might knoAv the

height of the Mercurial Cylinder, for that particular day
and hour

;
which height we found to be 29| Inches.

^'Seventldy, Our Observations made after this manner
furnish'd us with the preceding Table, in which there

would not probably have been found the difi"erence here
set down betwixt the force of the Air when expanded to

double its former dimensions, and what that force should
have been precisely according to the Theory, but that the
included Inch of Air receiv'd some little accession during
the Tryal ;

which this newly-mention'd difference making
us suspect, we found by replunging the Pipe into the

Quicksilver, that the included Air had gain'd about half
an eighth, which we guest to have come from some little
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aerial bubbles in the Quicksilver, contained in the Pipe

(so easie is it in such nice Experiments to miss of

exactness)."

196. We must now state how far these results of

Boyle have been verified by modern experimenters, and in

what direction they are found to deviate from the truth.

But before we do so we must introduce a definition.

The unit usually adopted for the measurement of

pressure is called an Atmosphere, roughly 14 "7 lbs, weight

per square inch.

Its definition is, in this country, the weight of a column

of mercury at 0° C, of a square inch in section, and

29*905 inches high; the weighing to be reduced to the

value of gravity at the sea-level in the latitude of London.

(See § 165).

The value of an atmosphere, in C.G.S. units, is about

1,014,000 dynes per square centimetre.

197. It is to Kegnault that we owe the first really

adequate treatment of the subject, but the range of

pressures he employed was not very extensive.

Kegnault showed that air and nitrogen are, for at least

the first twenty atmospheres, more compressed than if

Boyle's Law were true, but that hydrogen is less

compressed.

Then batterer made an extensive but rough series of

experiments at very high pressures (sometimes nearly

3000 atmospheres), whose result showed that air and

nitrogen, as well as hydrogen, are less compressible than

Boyle's Law requires, and deviate the more from it the

higher the pressure.

198. Andrews,! in his classical researches which

established the existence of the critical point, first gave
1 Phil. Trans., 1869.
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the means of explaining this very singular fact. "We

will recur to it when we are dealing with vapours, but

we give a few of Andrews' data here. The way in

which the compressibility varies with pressure is obvious

from the curves in the diagram (§ 205), when interpreted

as in § 176. But from Andrews' tables of corresponding

volumes of air at 13°'l, and carbonic acid at 35°'5,

subjected simultaneously to each of a series of increasing

pressures, we extract the numbers in the two first

columns :
—

Carbonic Acid (Gas) at 35° '5 C.

pv for Carb. Acid.

356
246
239
239
242
250

Andrews points out that the deviation of air from

Boyle's Law is, even at the highest of these pressures,

inconsiderable. Taking the reciprocals of the volumes

of air, therefore, as measuring pressures with sufficient

accuracy, Ave form the third column of the table. This

shows that in carbonic acid, a few degrees above its

critical point, the deviation fronr Boyle's LaAV is like

that in air and nitrogen for the first 90 atmospheres,

and, after that, resembles that in hydrogen. Unfor-

tunately the bursting of tlie tubes prevented Andrews

from carrying the pressure beyond 108 atmospheres.

199. The remarkable researches of Amagat already
alluded to {§ 189) were carried out in a gallery of a deep

coal-pit, where the temperature remained steady for long

lecip. of Vol.
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periods. The shorter branch of his apparatus, that which

contained the gas whose compression was to be measured,

terminated in a very strong glass tube of small bore, care-

fully calibrated. The longer branch was made of steel,

and extended to a height of 330 metres (about 1000 feet)

up the shaft of the pit. A small but powerful pump was

employed to force mercury into the lower part of the

apparatus until it began to run out at one of a set of stop-

cocks which were inserted at measured intervals along the

tall tube. Then a measurement of the volume of the

compressed gas was made, the stopcock closed, and that

next al)ove it opened in turn for a measurement at a

higher pressure.

200. The following short table gives an idea of

Amagat's results ^ for air at ordinary temperature :
—

Pressure in Atmospheres.
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means of finding the unit for pressure gauges. Hence it

may be well to note that, at ordinary temperatures, for a

pressure of 152-3 atmospheres, or one ton-weight per

square inch, dry air almost exactly follows Boyle's Law,
i.e. it is reduced to 1/152-3 of its volume at one atmosphere.

Hence, practically, Avhen dry air is compressed to anything
from 1/140 to 1/160 of its bulk under one atmosphere,

Boyle's Law may be used to calculate the pressure.]
It is very difficult to assign with exactness the position

of the minimum value of pv, as inevitable errors of

observation rise to considerable importance when a

quantity varies very slowly ;
but it may be put down as

corresponding to about 78 atmospheres.
201. Amagat's direct measures with the mercury

column were made on the volume of nitrogen. But
when these had been carefully made, once for all, the

nitrogen manometer was used in connection with a similar

instrument filled with some other gas. Thus the relation

of pv to }) was determined with accuracy for hydrogen,

oxygen, air (as above), carbonic oxide, carbonic acid,

ethylene, etc. In a later paper
^

Amagat has extended
these results through a considerable range of temperatures.
For the numerical data we must refer to the paper itself

;

but Ave reproduce three of the most important of his

graphic representations of the results.

The diagram opposite consists of two parts. The upper
part shows the relation of x>^ to p, through a range of

about 80° C, for nitrogen, whose behaviour is typical of

that of a large number of gases. The minimum value of

pv is distinctly shown at every temperature. The lower

diagram exhibits the exceptional case of hydrogen, where
all the curves are, practically, straight lines. The

• Aimaks de Chimk, xxii. 1881.
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pressure unit is a metre of mercury, i.e. 100/76 atmo-

spheres.

The diagram on the next page shows the corresponding

relations for carbonic acid, at temperatures above its

critical point ;
as well as for liquid carbonic acid at 18°'2

C. In this last case the curve is given only for pressures

from 80 to 260 metres of mercury. This diagram gives

very valuable information. Especially it shows the

marked influence of change of temperature on the pressure

corresponding to the minimum value of po. Ethylene

gives a diagram somewhat resembling this, but the changes

in the value of pv are so disproportionately greater that

its behaviour could not be satisfactorily exhibited on a

scale so restricted as a page of this book.

The reader should be reminded that, had the law of

Boyle been accurate, all of these curves would have been

simply Jwrizontal straight lines.

Still more recent researches of Amagat
^ have extended

this enquiry to the results of very much higher pressures,

such as 3000 atmospheres, under which the density of

gaseous oxygen becomes greater than that of water. The

exact measurement of these great pressures was effected

by means of an exceedingly ingenious instrument, the

Manohietre a pistons litres, which Amagat constructed

for the purpose. In this instrument there are two

pistons, of very different sectional area, subjected to the

same total thrust. Thus the pressure (per square inch)

on each is inversely as its section. The pressure on the

smaller piston is that of the substance compressed, that

on the larger is measured directly by means of a column

of mercury. The unit for graduation (which of course

depends on the ratio of the effective sections of the

1
Comj^tes Bendns, Sept. 1888.
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pistons) was determined, once for all, by comparison with

the nitrogen gauge. The special feature of this instru-

ment, on which its precision depends, is that the pistons

fit all hut tirihthj in their cylinders ;
a very thin layer of

viscous fluid passing with extreme slowness between each

piston and its cylinder. Exact adjustment is secured by

giving slight rotation to each piston in its bearings. For

the larger i)iston castor-oil is used, for the smaller treacle.

But each piston, before being inserted, is most carefully

lubricated with neats-foot oil. AVe have been thus

particular in describing the main characteristic of this

instrument, l>ecause it meets efliciently what has long
been felt as an extremely serious want in the physical

laboratory.

The pressure which reduced the gas to a given volume

was determined by an electrical method Avhich will

presently be described (§211). In the table below, the

volume of each gas at one atmosphere is taken as imit
;

and the temperature throughout was maintained at 15° C.

Apparent Volumes of various Gases at 15° C. under

very great pressures
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must be multiplied by (1-0-0023, = ) 0-9977 to reduce

them to true volumes. Thus, at 3000 atmospheres,

oxygen is reduced to about 0-001226 of its volume at

one atmosphere. Its density is therefore increased 815

fold and (the temperature being 15° C) is thus about Tl.

(See § 166.)

202. There is, unfortunately, a considerable variety of

statement as to the relation between pressure and volume

in air and other gases, when they are considerably rarefied.

This is not to be wondered at, for the experimental

difficulties are extremely great.

The experiments of Mendeleeff gave a gradual descent

of value of pv, in air, from

1-0000 at 0-85 atm.

to

0-9655 at 0-019 atm.

These would tend to show that, at pressures lower than an

atmosphere, air behaves as hydrogen does for pressures

above an atmosphere.

The experiments of Amagat do not show this result.

They rather seem to indicate that pv remains practically

constant for air, from one atmosphere down to at least

gi^th of an atmosphere.

203. But the real difficulty in all such experiments

arises from the shortness of the column of mercury by
which the pressure must be measured. It is not easy

to see how this difficulty can be obviated without intro-

ducing a chance of graver errors of another kind, due

for instance to vapour-pressure or to capillary forces.

We shall find, later, that a fair presumption from

Andrews' investigations would be that, in air and the

majority of gases, pv should increase (of course very
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slightly) with diminution of pressure from one atmo-

sphere downwards
; while (possibly) hydrogen may give

values of 2JV diminishing to a minimum, and then in-

creasing as the pressure is still farther reduced.

204. Passing next to the compressibility of vapours,
it would appear natural that we should specially consider

aqueous vapour, which is constantly present in the

atmosphere as superheated, sometimes even as sahcrated,
steam. And we have for it the splendid collection of

experimental results obtained by Eegnault. But the

critical point of water vapour is considerably higher than

the range of temperature in Regnault's work
; so that

we Avill deal chiefly with carbonic acid, for which we
have Andrews' data both above and below its critical

point, and which may be taken as affording a fair

example of the chief features of the subject.

205. Without further preface we give Andrews' dia-

gram, which will be easily intelligible after what has

been said in § 88. It shows, in fact, how the figure in

that section, which is drawn from Boyle's Law, is

modified in the case of a true gas, and of a true vapour,
each within a few degrees of the critical temperature.

[To save space, a portion of the lower part of the

diagram (containing the axis of volumes) is cut away,
so that pressures, as shown, begin from about 47 atmo-

spheres. The dotted air-curves are rectangular hyper-
bolas, as in § 88, but the (unexhibited) axis of volumes
is their horizontal asymptote.]
The critical temperature of carbonic acid is about

30°-9 C, so that the isothermals indicated by full lines

in the figure, and marked 13°-1 and 21° -5 respectively,

belong to vapour, or liquid, or vapour in presence of

liquid, the others to gas.



Fig. 20.
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Let us study, with Andrews' data, the values of the

productj)?;for the isothermal of 13°- 1 C. The following

table is formed precisely on the same principle as that of

§ 198 for the isothermal of 35° -5 C.

Carbonic Acid (Vapour and Liquid) at 13°-1 C.

pv. for Carb. Acid.Recip. of Vol.
of Air.

47-5

48-76

48-89

49-0

49-08

50-15

50-38

54-56

75-61

90-43

Recip. of Vol. of

Carbonic Acid.

76-16

80-43

80-90

105-9

142-0

462-9

471-5

480-4

500-7

510-7

623

606

600

462

345

108

106

113

151

196

206. Near to 49 atmospheres liquefaction commences,

the vapour being condensed to gxst of its volume at one

atmosphere, and we see that an exceedingly small increase

of pressure produces a marked change of volume. Had

it been possible to free the carbonic acid perfectly from

air, no additional pressure would have been required till

the whole was liquid, at about ^^-^d of its original volume.

The numbers i^y diminish, as in the case of air (but much

more rapidly), till the liquefaction begins: then they

ought to diminish exactly as the volume diminishes (the

pressure bemg constant) till complete liquefaction : after

which, of course, they begin to rise rapidly, as it is now

a liquid which is being compressed.

We need not give the experimental numbers for the

isothermal of 21° '5 C. ;
but the cut shows that the stages
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of the operation Avere much the same, only that tlie pres-

sure had to be raised over 60 atmospheres before liquefac-

tion began, and liquefaction was complete hefvre the

volume had been reduced so far as at the lower temper-

ature. Thus the range of volume in which the tube

was visibly occupied partly "hy liquid, partly by saturated

vapour, and therefore (but for the trace of air) necessarily

at constant pressure, Avas shortened at each end. The

dotted line in the lower part of the figure, introduced by

Clerk-Maxwell, bounds the region in which we can have

the liquid in equilibrium with its vapour. This region

terminates at the critical isothermal, for above that

there can be neither vapour nor liquid.

But the properties of the gas, above the critical point,

maintain a certain analogy to those of the vapour and

liquid below it. For moderate pressures the gas has

properties analogous to the superheated vapour, i.e. pv
diminishes Avith increase of pressure. For higher pres-

sures its properties are analogous rather to those of the

liquid, and j>y increases with increase of pressure. Thus

there is in each isothermal of the gas a particular pres-

sure, for which jjv is a mininnim. This feature of the

isothermal becomes less marked as the temperature is

raised. [This, however, has been already exhibited

more fully on Amagat's diagram, p. 177.] AVe might

introduce a continuation, beyond the critical point, of

the left-hand portion of the dotted curve, which should

pass through the points on each isothermal at which pv
is a minimum. This line would divide the wholly gaseous

region into two parts ;
that to its right, in which the

gas has properties somewhat resembling those of super-

heated vapour; to the left, that in which its properties

resemble rather those of a li(|uid.
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An ingenious suggestion of J. Thomson substitutes

for the horizontal part (liquid in presence of vapour) of

Andrews' curves (p. 181) tlie continuous curve shown (by

dashes) on the isothermal of 2r-5 C. The middle portion
of this curve (where pressure and volume increase together)
is physically unstable, but the other parts can be, to

some extent, realized. The subject properly belongs to

Heat. It is known that liquids may, in certain cases,
be raised considerably above their boiling points without

boiling ;
and Aitken has proved that a nucleus of some

kind is necessary for the condensation even of super-
saturated vapour. The first of these phenomena may
account for a portion of the new part of the curve

near the liquid region, the second for that near the

vapour region. The rest, belonging to an essentially
unstable condition, cannot be realized experimentally.
The apparently anomalous behaviour of hydrogen is

now to be explained by the fact that, at ordinary tem-

peratures and pressures, it is in that region of its gaseous
state which has more analogy with the liquid than with
the vaporous state. Thus it is probable that if hydrogen
be examined at sufficiently low pressure, and temperature
not far above its critical point, it also will show a mini-

mum value of pv.

207. The reduction of various gaseous bodies to the

liquid form was one of the earliest jneces of original
work done by Faraday. Some of them he liquefied by
cooling alone, many others by pressure alone; and he

pointed out that, in all probability, every gas could be

liquefied by the combined influences of cooling and pres-

sure, provided these could be carried far enough.
Thilorier prepared large quantities of liquid carbonic

acid, and took advantage of the cooling produced by its
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rapid evaporation, at ordinary pressures, to reduce it to

the solid state.

Cagniard de la Tour succeeded in completely evaporat-

ing various liquids (including ether, and even water) in

closed tubes, which they half-filled while in the liquid

state.

It was Andrews' work, however, which first cleared up
the subject, and, as an early consequence of it, several of

those gases which had resisted all attempts to liquefy

them were, at the end of 1877, liciuefied :
—

hydrogen, it

is stated, was solidified. These important results were

obtained by Pictet
;
and some of them, simultaneously

and independently, by Cailletet and v. "VVroblewski.

Van der Waals, Clausius, and others, working from

various assumptions, have given formulae which accord

somewhat closely with the observed phenomena, and with

J. Thomson's suggested modification of the diagram.

One of the simplest expressions of the kind (which
takes the place of (1) of § 191) is of the form

__C A
^ v-x {v-p,)"'

Here C is as before, and A, a, p are parameters depending
on the properties of the substance as well as on its

temperature. The "
critical point

"
is determined by the

condition that the three values of v, given by this

equation, shall be equal.

But the full treatment of such matters belongs to

Thermodynamics, and is not for a work like this. Nor
have we anything here to do with the employment of

these liquefied gases for the production of exceedingly
low temperatures ; though, from the experimental point

of view, this application promises to be (for the present

at least) their most valuable property.



CHAPTER X.

COMPRESSION OF LIQUIDS.

208. A GLIMPSE at the negative results of the early

attempts to compress water was given in § 98. The

problem is a difficult one, because (at least in the best

methods hitherto employed) the quantity really measured

is the difference of compressibility of the liquid and the

containing vessel. Hence it involves the compressibility
of solids also :

—and this, as we shall find (§ 231) is a very
difficult problem indeed. The first to succeed in proving
the compressibility of water Avas Canton,^ the value of

whose work seems not to have been fully appreciated.
His second paper, in fact, has dropped entirely out of

notice.

looting the height at Avhicli mercury stood in the

narrow tube of an apjmratus like a large thermometer,
immersed in water at 50° F., the end of the tube beiiiLr

drawn out to a fine point and open, he heated the bulb

till the mercury filled the whole, and then hermetically
sealed the tip of the tube. When the mercury was
cooled down to 50° F. it was found to have risen in the

capillary tube. This was due partly to expansion of

mercury, released from the pressure of the atmosphere,
1 Phil. Trans., 1762.

ISO
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partly to the compression of the bulb, due to one atmo-

sphere of external pressure. Then he filled the same

apparatus Avith Avater, performed exactly the same opera-

tions, and obtained a notably larger result. This, of

course, proves that water (if not also mercury) expands

when the pressure of the atmosphere is removed from it.

To get rid of the effect of unbalanced external pressure,

and thus (as he thought) to measure i\\Q full amount of

expansion, he placed his apparatus (with its end open) in

the receiver of an air-pump. He could also place it in a

glass vessel, in which the air was compressed to two

atmospheres. He observed that, on the relief of pressure,

the water rose in the stem, while on increase of pressure

it fell. He gives the fractional change of volume per

atmosphere, at 50° F. (10° C), as 1/21740 or 0-00004G.

He applied no correction for the compressibility of glass,

giving the completely fallacious reason that he had

obtained exactly the same results from a thick bulb and

from a thin one. [This, however, proves the accuracy of

his experiments.] His result, considering its date, is

wonderfully near the truth.

209. In a second paper,
^
published a couple of years

later, Canton made some specially notable additions to

our knowledge. For he says, referring to his first paper :

"
By similar experiments made since, it appears that

water has the remarkable property of being more com-

pressible in winter than in summer, which is contrary to

what I have observed both in spirits of wine and in oil of

olives
;
these fluids are (as one would expect water to be)

more compressible when expanded by heat, and less so

when contracted by cold."

By repeated observations, at
"
opposite

"
seasons of the

1 Phil. Trans., 176i, vol. liv. 261.
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year, he found that the effect of the " mean weight of the

atmosphere
"
was, in niillionths of the whole vokime—

At 34° F. At 64° F.

Water . . . 49 44

Spirit of Whie . . 60 71

He also gives a table of compressibilities in millionths

of the volume, per atmosphere of 29*5 inches, and of

specific gravities ;
for different liquids, at 50° F.

;
as

follows :
—

Compressibility. Spec. Gravity.

Spirit of Wine... 66 846

Oil of Olives

Rain Water

Sea Water

Mercury

48 918

46 1000

40 1028

3 13595

and he observes that the compressions are not "in the

inverse ratio of the densities, as might be supposed."

He calculates from the result for sea water that two

miles of such water are reduced in depth by 69 feet 2

inches; the actual compression at that depth being 13 in

1000. This, of course, assumes that the compressibility

is the same at all pressures, which, as we shall see

immediately, is by no means the case.

210. Perkins, in 1820, made a set of experiments on

the apparent compressibiHty of Avater in glass, of a some-

what rude kind; but in 18261 i^e gave some valuable

determinations, unfortunately defective because of the

inadequate measure of the pressure unit. Thus he did

not give accurate values of the compression, but he intro-

duced us to a higher problem :—how the compressibility

depends upon the amount of pressure. Perkins' results

1 " On tlie Progressive Compression of Water by liigli Degrees of

Force."—jPAi^. Trans.
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are all for 50° F. (10° C), and are given in figures, as

well as in a carefully-executed diagram plotted by the

graphic method. His measurement of pressures depended

upon an accurate knowledge of the section of a plunger :

—an exceedingly precarious method :
—and he estimated,

an atmosphere at 14 lbs. weight only per square inch. It

is not easy to make out his real unit, especially as we

know nothing about the glass he used, but it seems to

have been about 1"5 times too great; i.e. when he speaks

of the effect of 1000 atmospheres he was probably apply-

ing somewhere about 1500. Hence it is not easy to

deduce from his data anything of value as to the amo7int

of compression. But the novel point, which he made out

clearly, is that (at 10° C.) the compressibility of water

decreases, quickly at first, afterwards more slowly, as the

pressure is raised. We obtain from Perkins' diagram the

following roughly approximate results, in which we have

made no attempt to rectify his pressure unit :
—

Pressure Compression of "Water Average Com- True Com-
in in Millionths of pressibility per pressibility per

Atmospheres.
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process, in such a way that the effects of pressures up to

40 or 50 atmospheres can be read off at every stage of the

pressure.

The liquid operated on fills the bulb and the greater

part of the stem of the apparatus (called a Piezometer), and

is separated b}'' mercury contained in a U tube from the

water - contents of a strong glass

cylinder, in which the pressure is

produced by forcibly screwing

in a piston or plug. As in

Canton's apparatus, the stem of the

piezometer is carefully calibrated and

divided into parts corresponding to

equal volumes, and the cubic content

of the bulb is determined. Hence

the ratio of the content of one

division of the tube to the whole

content of bulb and stem is found.

AVlien pressure is applied, the

mercury is seen to ascend in the

stem to an amount nearly in pro-

portion to the pressure. The press-

ure is roughly calculated (by Boyle's

law) from the observed change of

volume of air contained in a very

uniform tube, closed at the top, and

immersed along with the piezometer,

in the water of the compression vessel.

The only serious defect of this apparatus, besides the

inadequate measurement of pressure, is the limitation of

the pressure to what the exterior vessel can resist, some

50 or 60 atmospheres only. When higher pressures are

to be applied, iron or steel must be used for the compres-

Fio. 21.
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sion vessel
;
and then the piezometer must l)e made, in

some way, to record the change of vohime of its contents.

Tlie most common device is to have (as in a maximum

thermometer) a Httle index resting on the mercury and

prevented, by attached hairs, from moving too freely. It

contains a small ])iece of iron, so that it may be adjusted

from without by a magnet. Cailletet gilt the inside of

tlie stem, and the eating away of the film of gold shoAved

the height to which the mercury had risen. An exceed-

ingly thin tihn of silver, deposited by sugar of milk, has

also been employed. But all such devices are very trouble-

some, for the compression vessel has to be opened after

every experiment. Hence Tait ^
suggested the sealing of

a number of fine platinum wires into the stem of the

piezometer, and by an obvious electrical method detecting

the instant at which the mercury reached one of them.

Thus, instead of measuring the compression produced by
a given pressure, we measure the pressure necessary to

produce an assigned compression. This method was

employed by Amagat in his later experiments (§§ 201,

217), and he says of it eUe ne laisse rMlement 2yresque rien

a dSdrer.

212. Orsted verified Canton's result that the compress-

ibility of water diminishes with rise of temperature, and

suspected that the rate of diminution becomes less as the

temperature is raised
;
but he did not obtain Perkins'

result. In fact he states that at any one temperature the

compression is the same, per atmosphere, up to 70

atmospheres.

Orsted, and too many who have followed him, held the

opinion that, if the walls of the piezometer were very

thin, its internal volume would suffer no perceptible
1 Proc. B.S.E., 1884.



192 PROPERTIES OF MATTER.

change under equal interior and exterior pressures.

That this (like the somewhat similar notion of Canton)
is a fallacy, we see at once from the consideration of the

effect of hydrostatic pressure on a solid (§ 176). If we

suppose the solid to be divided into an infinite number

of equal cubes, these would be changed into equal but

smaller cubes, in consequence of compression. The

strained and the unstrained vessel may therefore be com-

pared to two vaults of brickwork, similar in every respect

as to number and position of bricks, but such that the

bricks in the one are all less in the same ratio than those

in the other. From this point of view it is clear that the

interior content of the bulb is diminished just as if it

had, itself, been a solid sphere of glass.

Thus the numbers obtained from the piezometer must

all be corrected by adding the compression of glass under

the same pressure.

Another fallacy much akin to this, and which is still

to be found in many books, is the notion that by filling

the bulb of the piezometer partly with glass, partly Avith

water, and making a second set of experiments, we shall

be able to obtain a second relation between the compress-

ibilities of glass and of water; and that, therefore, we

shall be able to calculate the value of each by piezometer

experiments alone. What we have said above shows

that this process comes merely to using a piezometer with

a smaller internal capacity ;
and therefore gives no new

information.

If we had a substance which we knew to be incoru'press-

ihJe, and were partly to fill the cavity of the piezometer

with this, we should be able to get the second relation

above spoken of.

In fact the piezometer gives differences of compress-
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ibility only ;
so that, for aLsolute determinations -with

it, we must liave one substance whose compressibility is

known by some other method.

When very great pressures are applied, the correction

of the apparent compressibility is not quite so simple,
If e be the true compressibility of the liquid, e that of

the piezometer, the ordinary formula is

e = s-\- mjp

where vi is the fractional diminution of volume. It is

easy to see, however, that the exact relation is

e = s (1
— m) -\-ml2^-

213. Rognault's^ apparatus, though managed by a

master-hand, Avas by no means faultless in principle.
For pressure was applied alternately to the outside and
to the inside of his piezometer, and then simultaneously
to both. There arc great objections to the employment
of external or internal pressure alone, at least in such

delicate inquiries as these. For, unless a number of

almost unrealisable conditions are satisfied by the appa-

ratus, the theoretical methods (which must be employed
in deducing the results) are not strictly applicable. They
are all necessarily founded on some such suppositions as

that the bulbs are perfectly cylindrical, or spherical, and
that the thickness of the walls and the elastic coefficients

of the material are exactly the same throughout. These

requirements can, at best, be only approximately fidfillcd
;

and their non-fulfilment may (in consequence of the

largeness of the efi"ects on the apparatus, compared with

that on its contents) entail errors of the same order as

the whole compression to be measured. Jamin has tried

to avoid this difficulty by measuring directly the increase

^ Mem. de VAcad. des Sciences, 1847.

N
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of (external) volume, when a bulb is subjected to internal

pressure ; but, even with this addition to the apparatus,

Ave have still to trust too much to the accuracy of the

assumptions on which the theoretical calculations arc

based.

Finding that he could not obtain good results with

glass vessels, Regnault used spherical bulbs of brass and

of copper. With these he obtained, for the compress-

ibility of Avater, the value

'000048, per atinospliere

for pressures from one to ten atmospheres. The temper-

ature is, unfortunately, not s])ecially stated.

214. Grassi,^ working with Regnault's apparatus, made

a number of determinations of compressibility of different

liquids, all for small ranges of pressure.

He verified Canton's specially interesting result, viz.

that water, instead of being (like the other substances,

ether, alcohol, chloroform, etc., on which he experimented)
more compressible at higher temperatures, becomes less

compressible. Here are a few of his nundxn's.

Temperature C. Compressibility
'

V)er Atmosi^here.

0°-0 0-0000503

l°"-5 515

4"-0 499

IC-S 48U

lS°-0 462

25°-0 455

34'-5 453

:3"-0 441

These numbers, when exhibited graphically, show

irregularities too great to be represented by any simple
formula.

^ Ann. dt Chimie, xxxi., 1851.
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Grassi assigns, for sea-water at 17°"5 C., 0'94 of the

compressibility of pure water, and gives •00000295 per

atmosphere as the compressibility of mercur}^ But he

asserts that alcohol, chloroform, and ether have their

average compressibility, from one to eight or nine atmo-

spheres, at ordinary temperatures, considerably greater

than the compressibility for one atmosphere. As this

result was shown by Amagat to be erroneous, little

confidence can be placed in any of Grassi's determinations.

Amagat
1

gfive, among others, the following numbers

for ether :
—

TemDeriture C I'lessure in Average Compression
' '

Atmospheres. per Atmosphere.

13°-7 11 0-000168

13°-7 33 0-0001 52

lOO"" 11 0-000560

100= 33 0-000474

Thus the diminution of compressibility with increase of

pressure is always considerable, and it is more marked

the higher the temperature.

215. A very complete series of determinations of the

compressibility of water (for a few atmospheres of

pressure only), through the Avhole range of temperature

from 0^ C. to 100° C., has recently been made by Pag-

liani and Yincentini.'- Unfortunately, in their experi-

ments pressure was applied to the inside only of the

l)iezometer, so that their indicated results have to be

diminished by from 40 to 50 per cent. The effects of

heat on the elasticity of glass are, however, carefully

determined, a matter of absolute necessity when so large

a range of temperature is involved. But in these

experiments one datum (the compressibility of water

' Ann. de Chimie, 1877.

^ Sulla Compressibilita clei Liquidi, Torino, 1884.
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at 0° C.) lias been assuBied from Grassi. Tlie results

show that the maximum of compressibility, indicated by
Grassi as lying between 0° C. and 4° C., does not exist.

The following arc a few of the numbers, which show a tem-

perature effect much larger than that obtained by Grassi :
—

m X ri Compressibility
Temperature C.

of water.

0°-0 0-0000503

2°-4 496

15°-9 450

49°'3 403

61°-0 389

66°-2 389

77°-4 398

99°-2 409

Thus, about 63° C. water ajipears to have its miiiiinuui

compressibility. The existence of a minimum does seem

to be proved, but the remarks above show that its position

on the temperature scale is somewhat iincertain,

216. Tait^ has given the following determinations of

the average compressibility of cistern water, for pressures

up to 450 atmospheres, and tem2)erature from 0° to 15° C.

The compressibility of the glass of the piezometer was

found by direct experiment (§ 232) to be 0-0000026. The

hair-index (§ 211) was employed in the piezometer, so

that the results arc proljably soniewliat too small.

CoMrKKS«lBlLlTY OF Ci«TEUN "W'aTEK.

Pressure in . r* -L-i-i.

Atmospheres.
^^^""'^"^ Compressibility.

1 to 2 lo''' (520
- 3-55/. -1-0-03/!"-)

1 to 153 504 3-60 0-04

1 to 306 490 3-65 0-05

1 to 458 478 3-70 0-06

where t is temperature Centigrade.
1

Phys. Chem. Chall. Exp., vol. ii. part iv.
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The experiments were confined to the three last ranges,

so that the data in tlic lir.st line wm-e "obtained by extra-

polation. They agree, however, fairly well with two

isolated results given by Buchanan,^ viz. :
—

0-0000516 at 2°-5, and 0-0000483 at 12°-5 C,

and they would have agreed almost precisely with the

results of Pagliaui and Yincentini (§ 215) had these

experimenters taken, as their sole datum from Grassi,

the compressibility at 1°"5 instead of that at 0° C.

The temperature of minimum compressibility fur 1

atmosphere appears to be about 60" C, and is lowered by
increase of pressure.

All the numbers in the above table are fairly

represented by the approximate formula

0-00186 /, Zt
,

t- \1^/
se+ i-" V 400 '

10,000/

Here the unit for P is 152-3 atmospheres, or one ton-

weight per square inch.

The corresponding formula for sea-water is

0-00179/ _ t (- \

38-|-P\ 150 "^10, 000 A

The results have been put in the above form for the

sake of comparison with the following expression for

the compressibility, at 0" C, of solutions of common

salt, viz. :
—

0-00186

36+s+P"

In this formula s represents the weight of salt dissolved

in 100 of water.

Tait gives the average compressibility of mercury for

1 Trans. E.S.E., 1880.
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pressures up to 450 atmospheres as about -0000030.

This is probably a little too small, as Amagat
^ makes it

0-0000039 for the lirst 50 atmospheres.

217. Very few of the results of Amagat's recent

extensive researches on the com})ressibility of liquids at

enormous pressures have, as yet, been published. But the

extremely interesting figure ojjposite gives some idea of their

nature and importance. It rispresents the isothermals of

water and of sulphuric ether, up to pressures of 3000

atmospheres, and for temperatures from 0° to 50° C.

From a figure on so small a scale general notions only

can be derived. But we see clearly through how small

a range of pressures and temperatures the peculiarities

connected with the maximum density point of water

remain sensible. The cpiasi
-
hyperbolic form nf tlic

isothermals enables us to make approximate estimates of

the irtmost compression which these two liquids would

siiffer under unlimited pressure. ]\Iore precise informa-

tion is contained in the following numerical data.

Volumes of Water and of Sulphuric Ether under

Great Pressures.
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the average compressibility of water at 0°C., from 1 to p
atmospheres :

—
0-3042

6000+ p

Fig. 22.

This woukl indicate that water at 0° C. cannot be

reduced to less than about 0*7 of its original volume by

any pressure, however great.
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The apparatus whicli gave these magnificent results

was, of course, specially adapted to the effects of extreme

pressures, and was therefore not qualified to give precise

values for moderate pressures.

218. From the results of Andrews already given

(§ 205) we find the following roughly approximate

values of the

Compressibility of Liquid C-AnHONic Acid at llV-l C.

Pressm-e in True Compressibility
Atmospheres. per Atmosphere.

50 o-oor.9

60 0-00174

70 00096

80 00066

90 0-00044

showing very great, hut very rapidly decreasing, com-

pressibility. As already explained, Andrews has pointed

out that part of this, especially for the lower pressures

in the table, is due to the trace of air Avhich, in spite

of every precaution, was associated with the carbonic

acid.

219. It has long been known that, when the Torricellian

experiment is performed, the mercury will sometimes not

descend until the tube is sharply tap^^ed. In such a

case the portion of the column which stands above the

barometric height must bo in a state of hydrostatic teimon.

And, as in the case of solids, (§ 177) we conclude that its

volume is increased to the same extent as it would have

been diminished by an equal hydrostatic pressure.

A very interesting experiment on this subject was made

by Berthelot.-^ A strong glass tube, sealed at one end

and drawn out very fine at the other, was filled to a

1 Ann. de Chimie, xxx. 232; ]S')0.
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definite mark with water. Ey immersing the \\']ki1o in

warm water the contents were made to expand nearly tn

the jioint, which was then hermetically sealed. A very

slight additional heating, slowly and cautiously applied,

caused the water in time to dissolve the small remainincc

bubble of air, so that the tube was absolutely full of

liquid. When slowly cooled to its original temperature
it remained full of water. Ey the help of the mark

(checked if necessary b}--
calculation from the teniperatTU'c

of the warm water) the increase of volume could 1h>

estimated, and thence the tension to Avhich the water

was exposed. In this way pure water was found capable

of bearing some fifty atmospheres of tension, while ean

sucr^e bore nearly one hundred. It is clear that the

adhesion of the water to the glass is an indispensable

circumstance in this experiment. And as the equilibrium

is essentially unstable, throughout the whole contents, it

is remarkable that so large an effect can be obtained :
—

though, of course, it is far below ^\•hat might (theoretically

at least) be supposed 2">ossible,



CHAPTER XI.

COMPRESSIBILITY AND RIGIDITY OF SOLIDS.

220. In the two preceding chapters we had to deal with

bodies practically homogeneous (except in the special case

of vapour in presence of liquid) and perfectl}- isotropic ;

Ijodies, moreover, which are devoid of elasticity of form,

while possessing perfect elasticity of volume. Hence the

determination of (apparent) compressibility for any definite

substance of these kinds depended for its accuracy solely

on the care and skill of the experimenter, and on the

adequacy of the process and the apparatus employed.

When we deal with solids the circumstances are very

different. It is rarely the case that we meet with a solid

which is more than approximate! >/ homogeneous. Some

natural crystals, such as fluor spar, Iceland spar, etc., are

probably very nearly homogeneous ;
so are metals such as

gold, silver, lead, etc., when melted and allowed to cool very

slowly. To produce homogeneous glass (especially in large

discs, for the object-glasses of achromatic telescopes) is one of

the most difficult of practical problems. On the other hand,

crystalline bodies are essentially non -isotropic ;
so is every

substance, crystalline or not, which shoAvs "cleavage."

And further, very small traces of admixture or impurity

often produce large effects on the elastic, as well as on

the thermal and electric, qualities of a solid body. Think,

for instance, of the differences between various kinds of

•2(1-2
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iron and steel, or of the puqxisebj added impurities in the

gold and silver nsed for coinage. Very slight changes, in

the manipulation by which wires or rods are drawn from

the same material, may make large differences in their

final state :
—differences by no means entirely to be got

rid of by heating and annealing, etc. The whole cj[uestion

of "
temper

"
is still in a purely empirical state. Besides,

we must remember that every solid has its limits of

elasticity, to which attention must be carefully paid.

Thus we can give only general or average statements as

to tlie amount of compressibility or rigidity of any solid,

in spite of the labour Avhich AYertheim and many others

have bestowed on the subject.

221. In an elementary work we cannot deal, even

partially, with the properties of non-isotropic bodies. The

necessarv mathematical basis of the investigation, thoui^li

it has been marvellously simplified, is quite bej^ond any
but advanced students. And the experimental study of

the problem has been carried out for isolated cases only.

Hence we limit ourselves, except in a few special instances,

to the consideration of homogeneous, isotropic, solids.

On the other hand, the compression or distortion

produced in a solid by any ordinary stress is usually very
small. This consideration tends to simplify our work; for,

as a rule, small distortions may be regarded as strictly super-

posable. Thus we may calculate, independently, the effects

of each of the simple stresses to Avhich a solid is subjected.

Our warrant for this must of course be obtained experi-

mentally. It was first given by Hooke.

In 1676^ he published the following as one of "a
decimate of the centesme of the Inventions, etc."—

^ A Description of Helioscoppji, d:c.. made by Robert Ilool-e,

Postscript, p. 31.
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"
3. Tlie true Tliporij of Elasticity or Springiness, and a

pai-tiralar E.rpJiration ihcrenf in several Subjecfs in irli/ch

it is to he found : And the Kan of eomputing '^'^ veloeitij of

Bodie.-< moved Jnj f/wm. ceiiinosssttuu."

The key to this anagram was given hy llnoke himself

in 1678,1 in the words :
—

"About two years since I printed this Theory in an

Anagram at the end of my Book of the descriptions of

Helioscopes, viz. eeiiinnssstttm, id est, Ut ii'n.'<i<> sle vis ;

That is, The Power of any Spring is in the same proi)or-

tion with the tension thereof : That is, if one power stretch

or bend it one space, two will bend it two, and three will

bend it three, and so forward. Xow as the Theory is

very short, so the way of trying it is very easie."

He then shows how to prove the law in various ways :

—with a spiral spring drawn out
;
a watch spring made

to coil or uncoil
;

a long wire suspended vertically and

stretched; and a wooden beam fixed (at one end) in a

horizontal position, and loaded.

The above extracts sufficiently show in what sense

Hooke intended the words Tensio and TV.s to be

understood :
—and his law is now usually stated in th(>

(somewhat amplified) form,

Distortion is j^ropoiiional to the distorting Force,

or, still more definitely,

Strain is proj)ortional fa Stress.

In the latter ionn we have made anticipatory use of it

in Chap. YIII. and elsewhere.

1 Lectures de Potentla Restitutiva, or of ^prlmi, p. [1]. This is

a very curions pamphlet, containing some remarkably close antici-

pations of modern theories, esiiecially Si/nchronism and its results,

and tlic Kinetic Theory of Gases. The first is foreign to nnr present

subject, the second will be considered later (§ 322).
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222. A very general })roof of the accuracy of tlii.s laAV

is easily to be obtained in the case of bodies which can

be made to produce a musical sound :
—a tuning-fork, for

instance. For, if the pitch of the note (i.e.
the number

of viln-ations per second) do not alter as the sound grows

fainter, the vibrations must be isochronous, and the

elastic resilience therefore proportional to the distortion.

(Sec § 72.)

223. The ordinary experimental illustrations of

Hooke's Law arc given, very much as he originally

gave them, by :
—

1. A rod or wire, fixed vertically and atretchcd by

appended weights; or a rod or column compressed by

weights laid on its upper end.

2. A wire stretched horizontally and extended by

weights suspended at its middle point.

3. A bar or plank fixed horizontally at one end and

loaded with weights at the other.

i. A plank with its ends resting on trestles and loaded

at the middle.

5. A spiral spring, forming a helix of njiiall step,

compressed or extended l)y \\'eights.

6. A Avire or rod, lixed at one end and tAvisted at the

other.

The mere mention of these methods is sufficient, -with-

out further illustration, to suggest the means by Avhich

the requisite measurements can be carried out. They
Avill be considered in detail, but not in the above order.

In all these cases experiment shows that (within

certain limits, which will be afterwards discussed) the

distortion is proportional to the distorting force.

1 and 2 are mere varieties of one experiment. The

same may be said of 3 and 4, which are examples of a
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somewhat more complex form. And 5 and G, tlioiigli

at first sight very unlike, are practically one problem.

Besides, they are of a simpler character than either of

the other pairs, for they involve the coefficient of rigidity

alone
;
the others involve both coefficients. But 1 and 2,

on the other hand, are simpler than the rest, on a different

account, viz. that they involve homotjeneous strain.

224. Yuumfs Modulus, as it is called, is determined

from the stretching of a rod or wire by appended weights.

As defined by Young, its measure is the ratio, of the

simple stress required to produce a small shortening or

elongation of a rod of unit section, to the fractional

change of length produced. Its value is expressed, as

we see by § 181, in terms of the rigidity and the resist-

ance to compression, by the formula

For bodies like india-rubber, in which /• is large in

comparison with u, its value is nearly 3;^. Hence the

pulling out of an india-rubber band is almost entirely

due to change of form, and therefore the area of a cross

section is diminished in nearly the same proportion as

that in which the band is lengthened.

A piece of good cork suggests, though it does not

realise, the conception of a solid in which 7i shall be very

large in comparison with k ; and for such a body Young's
modulus would be nearly 9/r. Traction or pressure, in

any direction, would expand or contract a body of this

kind nearly equally in all directions. In cork the effect

is confined mainly to the dimension operated on.

From such considerations we see that Young's modulus,

though comparatively easy of measurement, is not the

simple quantity which it at first ajipears to be ;
and that,
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in fact, it may have the same numerical vahie in each of

two bodies which differ widely from one another, alike

in rigidity and in compressibility.

225. The following table gives approximate values

(§ 166) of Young's modulus for some common materials;

the unit being 10^ grammes' weight per sc^uare centi-

metre :
—

Young's iiioduUis, -— Teuacih'.
'3k -\- n

Gold
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The uncertainty of the amount of this quantity, even in

different specimens taken from the same piece of matter,

leads to our giving it usually to one significant figure only.

227. Young's treatment of the subject of elasticity is

one of the few really imperfect portions of his great

work.i He gives the values of his modulus for water,

mercury, air, etc. ! It is not easy to understand what

he really meant l)y speaking of "//;e" modulus of

elasticity : unless, as Lord Rayleigh suggests, he meant

that which (whatever be, in each case, its real nature)

is involved in ordinary sound waves, whether in air or

along wires. Young's modulus is, no doubt, a quantity

of great value in practical engineering :
—in many cases

the only elastic datum required. Yet he speaks of

rigidity, etc., in a way which is scarcely compatible with

the idea of one modulus only. But the subject was in a

state of great confusion till long after his time, mainly

in consequence of an unwarranted conclusion (deduced

by jSTavier and Poisson from a species of molecular

theory) that there is a necessary numerical ratio between

rigidity and resistance to compression. In fact, what

was called Poisson's ratio, that of the lateral shrinking,

to the longitudinal extension, of a bar or rod under

tension, was supposed to be necessarily c(|ual to 1/4.

This gives (§ 180) p =
4r/, or 3A- = 5w.

The erroneousnoss of this conclusion was tirst pointed

out by Stokes,- and his paper has put the whole subject

in a new and clear light. "VYe have already given, in

§ 224 above, some of his illustrations, which show

that there is no necessary ratio, or even relation, between

n and A-.

^ Lectures oh Natural Pldlosophy, 1807.

Camh. Phil. Trans., 1845.
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De 8t. Venant^ has given complete solutions of a

number of interesting cases, such as the torsion of prisms

of different forms of cross-section, many of which are

very valuable in practical applications. Sir "\V. Thomson,
^

besides giving the theory with extreme generality, has

also specially developed the application of Tlienao-

(b/ncumcs^ to the subject.

In spite of Stokes' exposure of the inaccuracy of the

so-called Uni-constant Theory, it has still determined

partizans. They may profitably consult the following

data, given by Amagat ;

*

though we quote these for their

intrinsic value, not for the purpose of further "
slaj'ing

the slain."

Elastic Constants (iSlEAN Values) at 12° C.
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external pressure alone (§ 183). Along with each of

these data the value of Young's modulus, as given in the

last column, was employed.

228. AVe will now consider the pure Torsion of a

cylindrical rod or wire, as employed, for instance, in the

Cavendish experiment (§ 153).

This is a very simple problem if the cylinder l)e truly

circular, and of perfectly homogeneous isotropic material.

For it is clear from what follows that equal and opposite

twisting couples, applied at its ends, will simply make

successive transverse slices, of equal thickness, rotate

about the axis each by the same amount less than the

one before it.

The length of the cylinder cannot increase under

torsion, for a reversal of the couples (which is practically

the same arrangement) would shorten it (§ 177), and

vice vei'sd. Neither can its radius change, for exactly

the same reason. Nor can a transverse section become

curved at any part. Thus the volume remains unchanged,

and therefore the coefficient of rigidity alone is involved.

Consider a thin annular portion of the solid bounded

by transverse sections at a very small distance, t,
from

one another, and by concentric cylinders of radii r, and

r + t. AVe may subdivide this into cubes, of side t, by

planes through the axis, making angles ^/Vwith one another.

Let ^ be the twist per unit length of the cylinder, i(p

is the angle by which one of our

parallel sections has rotated rela-

tively to the other, and r.t(p/f, or

r(p, is the change of angle in each

of the little cubes. Hence, if P
be the tangential force per unit of

P = nr(p.
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Tlie moment, about the axif;, of the tangential force on

the cube is therefore

[Note here, for an ulterior purpose (§ 235), that r~fi is

the moment of inertia (§ 132) of the area of the face of

the cube about the axis.]

But the number of cubes is 27rr//, so that the whole

moment is 2irnr^t(p.

This is the couple required to twist a circular cylinder

of radius r, and very small thickness /, throuo'h the anele

(p per unit of length.

To find the result for a solid cylinder of radius R, we
must put dr for t, and integrate. The result is

Hence the twist produced, per unit of length in a

cylinder, is directly as the twisting couple ; inversely as

the rigidity and as the fourth power of the radius.

229. This suggests an obvious and direct experimental

process for determining the rigidity of homogeneous

isotropic substances. There are two difficulties, of a

formidable character, in the way of its application : first,

the obtaining a homogeneous isotropic material, and

secondly, the making it into a circular cylinder. It is

clear that very small irregularities of form, or errors in

the estimate of the radius, may give rise to large errors

in the calculation of the rigidity, since the fourth power
of the radius is directly involved in the calculations.

And it is probable that the mode of manufacture of the

cylinder (especially if it be drawn) may render its other-

wise isotropic material markedly non-isotropic. Hence

the following numbers arc given as mere approximations.
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The unit is, again, 10^ grammes' weight per square

centimetre (§ 225).

Approximate Rigidity (i/).
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then, on pulling out the first, we find tico complete turns

of twist, but on pulling out the second there is no twist,

one of the kinks giving a right-handed, the other a left-

handed, complete turn of twist.^

\\"hen the spring is very flat, i.e. has a very small

ste[), the principal effect of a moderate extension is mere

torsion
; and the investigation is of a character precisely

the same as that in tlie preceding section. The some-

what more complex combination, of torsion and flexure

simultaneously, will be adverted to later.
(|^ 237).

2.31. Theoretically speaking, we can of course deduce

the resistance to compression from tlie (known) values of

the rigidity and of Young's modulus
;
and it is in this way

that most data on the subject have been obtained. But

especially in cases where Young's modulus is not very far

from threefold the rigidity (as, for instance, in india-rubber),

the inevitable errors in the determination of these might lead

to enormously greater errors in the calculated value of Ic.

The method which was incidentally employed by

Kfgnault, in his measurements of the compressibility

of lirpiids, consisted in applying pressure externally,

internally, and externally and internally, to a species

of piezometer containing water. The results of § 183

show that (sujiposing it cylindrical, and unit pressure

applied) its internal volume must have been altered, in

these three cases respectively, by the following fractions

of its whole amount :
—

a^'
—

ttQ- \ / II /

1 Kuuts. Tmn^. K.S.E., 1877.
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The algebraic sum of tlie two tirst is of course equal

to the third. But the quantities measured in the two

latter cases were both less than those stated above by the

fractional change of volume of the Avater. The relation,

therefore, still holds, and furnishes a test of the accuarcy of

the experiments. But it reduces the number of independent

equations to two, from which there are three coefficients

of elasticity to be determined. Hence Regnault also had

to fall back on the employment of Young's modulus.

An interesting illustration of the above statements is

furnished by an experiment of Forbes. He replaced, by
an india-rubber bottle, the bulb of a piezometer. In such

an instrument the apparent compressibility of Avater was

found to be barely sensible.

232. Probably the best, certainly the most direct,

method is that adopted by Buchanan,^ in which the

length of a rod is very carefully measured while it is

under hydrostatic pressure, and also while free. The

linear contraction so determined is numerically (if the

material be homogeneous and isotropic) one -third of the

compression (i^ 176). Unfortunately Buchanan's i)ub-

lished measures are confined to one j)articular kind of

glass. The special merit of his method is that, provided

the rod be of isotropic material, the regularity of its cross

section is of no consequence.

Thus we can give for this property also only a few

roughly approximate numbers. They are given in the

same units as the preceding.

Approximate Resistance to Compression (/).

Glass 20 to 40

Copper ...... 160

lion (wrought) .... 150

Steel 185 to 200

1 'iTrans. R.S.E., 1880.
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It is greatly to be desired that more, and more accurate,

data should be obtained in this matter :
—

though, as is

evident from § 219, the problem is one of very great

uncertainty as well as difficulty. Difficulty incites

rather than repels a true experimenter, but uncertainty

is paralysing.

233. Though, as we have seen, we can give only

general and somewhat vague numerical data, there is

practical unanimity on the part of experimenters that,

within the limits of elasticity, Hooke's law is very closely

followed. Hence, although it is necessary to measure

the elastic coefficients for each specimen of each sub-

stance we employ, once that measurement is effected

\ve can trust to it as giving the special qualities of the

material through a range of stress which, in glass, steel,

etc., is often fairly wide. One excellent example is to

be found in the substitution of glass or steel for air or

nitrogen in the construction of instruments for measuring

hydrostatic pressure.

The first to introduce this principle seems to have been

Parrot,! whose Elatiromhtre was merely an ordinary

thermometer, with a bulb thick enough to stand great

pressure. Keeping it immersed in water at a constant

temperature, and applying great pressures, he found that

the diminution of capacity of the bulb was almost exactly

proportional to the pressure.

Instruments working on the same general principle

have since been introduced, in ignorance of Parrot's

worlx, by many investigators. Bourdon gauges, aneroid

barometers, etc., are merely special though rather com-

plex instances.

1

"Experiences de forte Compression sur Divers Corps," Mim.

ih I'Acadt'mit luipcrkdc des Sciences de St. Pettrshuur(j, 1833.
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Sudden application of pressure produces temperature-

clianges which affect especially the volume of the liquid

contents by means of which the distortion is usually

measured. But these instruments (in Parrot's form at

least) may be made practically insensible to such changes

by the simple expedient of nearly filling the bulb (which,
for this purpose, should be cylindrical) with a piece of

glass tube closed at each cnd.^ The mercury in the bulb

is thus greatly reduced in quantity, and therefore the tem-

perature effects in the stem are very small, while the instru-

ment is still as ready as ever to indicate changes of volume.

The dimensions and thickness of such an instrument,

for any special purpose, can be easily calculated from the

formnlcB of § 183
;
and the unit of pressure can be deter-

mined for it, by a single comparative experiment, with

the aid of Amagat's table of compression of air (§ 200).
There is great advantage in using simultaneously two

instruments of this kind, in one of which the thickness is

considerably greater (in comparison with the diameter)
than in the other. For, so long as their indications agree,

both maybe trusted as following Hooke's law very accurately.
234. The limit of pressure measurable by means of

these instruments depends upon the resistance of a glass

or steel tube to crushing by external pressure. From a

series of experiments, made for the purpose,- Tait has

calculated that ordinary lead glass (in the form of a tube

closed at each end) gives way when the distortion of

the interior layer amounts to a shear of about 1 + tt^^tt,

coupled with a compression of about y^y. Hence even

a very thick tube of such glass cannot resist more than

^
Tait, Beport on the Presmre Errors of the Challenrjer Ther-

mometers, 1881,
- Proc. R.S.E., April 18, 1881,
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about 14 tons' Aveiglit per square inch (2130 atmospheres)
of external pressure. No corresponding experiments seem

yet to have been made for steel.

235. "We now come to the case of bendincr of a rod or

bar. Here we have no such simple probk^m as in the

case of the torsion of a cylinder, and must consequently
assume the solution as given by mathematical investiga-

tion
; based, of course, on the principles already ex-

plained. This shows us that, so long as the radius of

curvature is large in comparison with the thickness of

the bar in the plane of bending, the line passing through
the centre of inertia of each transverse section, the elastic

central line as it is called, is bent merely, and not ex-

tended nor shortened.

The fiexural rigidity of the bar, in any plane through
the central line, is directly as the couple, in that plane,

which is required to produce a given amount of curvature

in the central line. Its amount may easily be calculated

by means of the following considerations. Let the

figure represent a transverse

section of the cylinder, C its

centre of inertia, CD a line in

it perpendicular to the plane
of bending, and let the centre

of curvature of the bending
lie towards E. Then obvi-

ously all lines parallel to the

axis of the bar on the E-ward

side of CD are compressed,
all towards the other side extended

;
each in proportion

to its distance from CD and to the curvature. If we

contemplate a transverse slice, of small thickness /,

we see that its thickness remains uuchanned iduw'

Fio. 20.
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CD, is diminislied on the E-wtird side of that line,

and increased on the other. The thickness at the small

area A becomes t y'^ ^}, where /• is the radius of

AB
bending. This requires a tension A — m, where m is

Young's modulus. The moment of this about CD is—
'^O

A.AB^"^.

Hence the sum of all such, i.e. the moment of the

till • •

bending couple, is
—

multiplied by the moment of inertia

of the area of the section about CD. Now through C

in the plane of the section, there are two principal axes

of inertia, in directions at right angles to one another.

Hence, except in the cases of
" Kinetic Symmetry

"
of

the section (as when it is circular, square, equilateral-

triangular, etc.), there are two principal flexural rigidities,

a maximum and a minimum, in planes (through the

axis) perpendicular to one another. If the rigidities in

these planes be called E^ and Ro, the flexural rigidity in

a plane (through the central line) inclined at an angle

to that of Ej is—
Ri cos-. ^+ R. sill-. ^.

[Compare § 228, in which the corresponding case of

torsion-rigidity was shown to depend upon the moment of

inertia of the area of the section about the elastic central

line. This is the tliird principal axis of the transverse

sectional area at its centre of inertia.]

236. It appears from last section that flexure (within

moderate limits) is, practically, as regards any very small

portion of the substance, the same thing as longitudinal

extension or compression, and thus cannot give us any

simple information as to the elastic coefficients of the
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substance. But it has very important practical appli-

cations, and therefore we devote some sections to the

more common cases.

The principal moments of inertia of the area of a

rectangle, sides la and 2h, about axes through its centre

and in its plane, are 4«^?>/3 and iaW'i?). ^Multiplied by

in, they represent the flexural rigidities of a plank in

planes parallel to its broader, and to its narrower faces

respectively. These rigidities, multiplied by the bending

curvature, give the couple required to produce and to

maintain the flexure.

237. The Elastic Curve of James Bernoulli, celebrated

in the early days of the differential calculus, is a particular

case of the bending of a wire or plank, in which the

flexural rigidity in the plane of bending is the same

throughout, and a simple stress (§ 128) alone is applied.

The obvious condition is that the curvature at each

point is directly proportional to the distance from the

line in wliich the stress acts. For the investigation of

Fio. 27.

the equation of the curve from this condition, and for

drawings of its various forms, the reader must be referred

to works on Abstract Dynamics ;
' but wc figure here the

1
See, loi- instance, Thomson and Tait's Nat. Phil., vol. i.

pvii't ii. p. llt>.
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special case wliicli corresponds to a stretched uniform

wire, of infinite length, with a single kink upon it. This

will be referred to in § 289 below.

The investigation of the bending of planks, variously

supported, and under various loads, is a somewhat

generalized form of the question of the elastic curve.

Tlie principles involved in its solution are simple, and

almost obvious
;
but the mathematical treatment of it

would lead us too much out of our course. So would

tiiat of the problem of the effect of a couple applied

anyhow to one end of a cylindrical or prismatic wire,

of any form of section, the other end being fixed. Tlie

wire, in such a case, takes generally the form of a circular

helix. The extreme particular cases are— (1) when the

wire is in the plane of the couple, and there is bending

only ; (2) when the wire is perpendicular to the plane

of the couple, and there is twist only.

238. The results hitherto given are all approximate

only, and depend upon the radius of bending being large

compared with the thickness of the Avire or bar in the

plane of flexure. Those given in § 228, for torsion, may
ho applied, under a similar restriction, to cases in which

the section of the wire or bar is not circular. The mathe-

matical treatment of the exact solution of such problems

is of too high an order of difficulty for the present work
;

but some of its results, alike interesting and important,

may be easily understood. A few of them will now be

oiven, but the reader must be refcried to the works

already cited (§ 227) for a more complete account.

239. Thus, in the flexure of a uniform bar into a

circular arc, we saw (§ 235) that each fibre is extended

or compressed to an amount depending on its distance

from the plane passing through tlie centres of inertia of
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its transverse sections (while it is straight), and per-

pendicular to the plane of bending. But this involves

(§ 177) compression or extension of the transverse section

of the fibre, uniform in all directions, and to an amount

proportional to the extension or shortening of its length.

Hence, if the section of the unbent bar be divided into

equal indefinitely small squares, each of these will remain

a square after bending. From this we can obtain an

approximate idea of the change of shape of the trans-

verse section.

Consider the annexed figure, which represents parts of

a series of concentric circles, whose

radii increase in a slow geomeirkal

ratio, intersected by radii making
with one another equal angles such

that the arcs into which any one

circle is divided are equal to the

diff"erence between its radius and

that of the succeeding circle. When
the circles and radii are infinitely

numerous, all the little intercepted

areas are squares. The sides of

the squares along CD are obviously

greater than those of the squares

along AV> l^y quantities proportional

to AC. Those of the squares along

EF are less than those of the squares

along AB by quantities proportional

to AE. The figure CDFE must therefore represent the

distorted form of the cross section of a beam, originally

rectangular, and bent in a plane through OG (and perpen-
dicular to the plane of the figure). The side of the beam

which is concave in the plane of fiexure is convex in a
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direction perpendicular to the plane of flexnre
;
that whidi

is convex in the former plane is concave in the latter. The

cause if!, of course, the transverse swelling of the hhres

on the side towards Ct, the centre of bending, and the

diminution of section of those on the other side of the

bar. It is sufficiently accurate to assume that AB, which

is unchanged in length, was originally midway between

the faces of the bar.

If OG be the radius of flexure, the ratio of the

extension of one of the fibres which pass through a point

of EF to its original length is AE/OG. Its lateral con-

traction in all directions must therefore be (§ 180)

But it is obviously AE/OH. Hence

2(3Z-+ w)OG = {U-
- 2»)0H.

Thus the point H is determined, and the approximate

solution is complete. A square bar of vulcanised india-

rubber shows these results very clearly.

240. In the case of torsion of a cylinder whose section

is not circular, plane transverse sections do not remain

plane. The following figure gives de St. Tenant's resvdt

^^
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to tln3 axis. They are equilateral hj'perbolas (as in § 88),

the common assymptotes being the axes of the section.

The torsion is applied in the iiositive direction to the

end of the cylinder above the paper ;
and the full

lines represent distortion upwards ;
the dotted, down-

wards.

241. Coulomb, wdio first attacked the torsion problem,

was led (by an indirect and unsatisfactory process) to the

result above (§ 228), viz. that the torsional rigidity is pro-

portional to the moment of inertia of the area of the

transverse section about the elastic central line. This is

true only in circular cylinders or wires. It gives too

large a value for all other forms of section. From de

St. Venant's paper we extract the following data. The

first numbers express the ratio of the tnie torsional

rigidity to the estimate by Coulomb's rule. The second

numbers show the ratio of the torsional rigidity to that

of a cylinder, of the same sectional area, but circular.

Equilateral Triangle.
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Another of de St. Venanfs important results is that

the places of greatest distortion in twisted prisms are the

parts of the boundary nearest to the axis.

jS"ear a re-entrant angle in the boundary of the section

there are usually infinite stress and infinite strain, -whether

the stress be such as to produce torsion or bending.
Hence the reason for the practical rule of always rounding
off such angles, when they cannot be entirely dispensed
with,

243. Still keeping to statical experiments, we have to

consider briefly the limits of elasticity.

When a solid is strained beyond a certain amount,
which depends not merely on its material but upon its

state and the mode of its preparation, one of two things

occurs. Either it breaks, and is said to be brittle, or it

becomes permanently distorted, and is said to be plastic.

Different kinds of steel, or the same steel differently

tempered, give excellent instances. Some have qualities

superior to those of the best iron, others are more brittle

than glass.

244. When a body has been permanently distorted,

as, for instance, a copper wire which has received a few

hundred twists per foot, it has new limits of elasticity

(within which Hooke's law again holds, though with

altered coefficients) ;
but the elasticity, at all events for

distortions of the same kind, is usually of a very curious

character, inasmuch as the strain produced by a stress

will, in genera], no longer be exactly reversed l)y reversal

of the stress. In fact the body has been rendered non-

isotropic ; and, so far as this problem has yet been treated

(though that does not amount to much), it is of the

order of questions which we cannot enter on in this

volume.



COMPRESSIBILITY AND RIGIDITY OF SOLIDS. 225

The limits of elasticity vary so much, even in different

specimens of the same material, that no numbers need

here be given. Every one who has occasion to take

account of these limits must determine them for himself

on the materials he is about to employ.
245. A curious fact, showing that elasticity may remain

dormant, as it were, is exhibited by sheet india-rubber.

When it has been wound in strips, under great tension,

on a stout copper wire, and has been left in that condi-

tion for years, it appears to harden in its state of strain,

and can be peeled off like a piece of unstretched gutta-

percha. But, if it be placed in hot Avater, it almost

instantly springs back to its original dimensions. The

experiment may be made, but with less perfect results,

in a few minutes, by merely putting the strained india-

rubber into a mixture of snow and salt.

246. Excellent instances, illustrative of the possibility

Fio. 30.

Pig. 31

of arrangements giving peculiar kinds of non-isotropy,

are furnished by many manufactured articles, such as

woollen or linen cloth, wire-gauze, etc., in which Young's
p
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modulus is large for strips cut parallel to the warp or

woof, but small for strips cut diagonally. Still more

curious is a special kind of wire-gauze in which the

meshes are rhombic. Another suggestive instance is a

strip formed of wire knotted as in Fig. 30, in which the

flexure and torsion rigidities for any bending or twist,

and its reverse, are in general markedly different.

Similarly a coat-of-mail made of rings, each three joined

as in the first figure (31 above), is perfectly flexible; as

in the second figure, nearly rigid.
^

247. Kinetic processes for determining coefficients of

elasticity are often based upon the pitch of the note

given out by a vibrating body. We do not give any of

these, as they belong properly to the subject of Sound.

All require an exact determination of pitch, and (except

in the very simplest case, that of stretched wires, as those

of a piano) require, for their comparison with the other

experimental data, higher mathematics than we can

introduce here.

248. There is, however, one kinetic process of a very

simple character (we have already adverted to it while

describing the Cavendish experiment, § 153) Ity which

the rigidity of a substance is determined from torsional

vibrations.

The wire to be experimented on is firmly fixed at its

upper end, and supports a mass whose weight is suffi-

cient to render it straight, but not so great as to produce

any sensible effect on its rigidity. The moment of

inertia of this mass may be caused to have any desired

value by making the whole into a transverse slice of a

hollow circular cylinder of sufficient radius, which can

be very accurately turned and centred on a lathe. The
1 On Knots. Trans. R.S.E., 1877.
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wire must be attached to a light cross bar, so as to he

in the axis of this cyhndrical vibrator.

If N represent the torsional rigidity of the wire, I its

length, and (p the angle through which the vibrator has

been turned, the elastic couple is

l'

The rate at which work is done against the elastic

forces is

But this must be equal to the rate at which the appended
mass loses energy of rotation, i.e. (§ 135)

-I(P (p

if I be its moment of inertia. Hence

*+f=0.

This shows (§ 72) that the oscillations are of the

simple harmonic character, and that the period is

-V^'
or, if the wire be of circular section (§ 228),

V «R*"

In this expression all the factors are known, with the

exception of n, which can therefore be determined.

The chief difficulties in the application of this process

are the finding exactly the radius of the wire, and the

ensuring that its substance is really isotrojDic.

249. The solution just given is accurate 07ihj if all the

circumstances have been taken into account. But a very
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few trials, with wires of different metals, show that the

range of vibration diminishes at every oscillation, and

with some metals much more rapidly than with others.

This cannot, therefore, be wholly due to the resistance

of the air. Part of it, at least, is undoubtedly due to

the dissipation of energy, by thermal effects of change
of form, which occur even when the elasticity is perfect.

This, however, is beyond our province, as defined in

§ 175. But a large part, with metals like zinc much

tlie greater part, is due to internal viscosity,

250. So long as we deal with steel, iron, silver, etc.,

and keep to torsions well within the limits of elasticity,

the arc of oscillation is found to diminish in simple

geometrical progression. This points to a resistance to

the motion, partly due to air acting on the suspended

mass, partly to thermal effects and to viscosity in the

wire itself, but, on the whole, proportional to the rate of

motion, i.e. the rate of distortion.

Thus the equation of § 248 takes the form

The solution of the problem in this case is, therefore,

of the nature of that given in § 74 above
;
and we see

that, if the diminution of the arc of oscillation (per

vibration) is large, the periodic time will be perceptibly

ncreased. Thus the direct determination of n, by the

mode of calculation given in § 248, would necessarily

lead to underestimation of its value.

The logarithmic decrement of the arc of vibration gives

us K, the time of vibration gives us w, and then we have

whence N, and therefrom ??, can be found.
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251. All this part of our subject is still very imperfectly

worked out. We have already seen (§ 50) that even

brittle bodies may be completely changed in form by
small but ^e?-sw^ew^ forces. And there is no doubt that

all elastic recovery in solids is gradual, so that, for

instance, in the torsion vibrations which we have just

considered, even when there is no sensible viscous

resistance, the middle point of the range does not coin-

cide with the original untwisted position of the wire.

It is always shifted towards the side to which torsion

Avas first directed, and to a greater extent the longer the

wire has been kept twisted before being allowed to

vibrate. With every vibration, however, the middle

point of the range creeps slowly back towards the original

undisturbed position, but the oscillation usually ceases

before this is reached. Still, even after the oscillation

has ceased, the Avire continues to untwist, more and

more slowly, sometimes not even approximately reaching

its undisturbed position till hours or even days have

passed.

"\Mien viscous resistance is considerable these results

are usually still more marked
;
and Sir W. Thomson ^

has discovered the very curious additional fact that this

molecular friction becomes greatly increased by keeping

the Avire oscillating for days together. He has pushed
this process so far with one of two similar wires that,

Avhereas, in that which had been made to vibrate only a

few times, the arc of oscillation became reduced to half

in 100 vibrations, the (equal) arc of that whose elasticity

had been "fatigued" fell to half after 44 or 45 vibrations

only.

252. Some of these phenomena are seen in a still more
1 Proc. R.S., 1865.
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striking form -wlien we dispense with oscillation. Thus,

for example, suppose the wire to be kept twisted through

90° to the right for six hours, then for half an hour

90° to the left, and be then so gradually released that

there is no oscillation. When it is left to itself it turns

slowly towards the right, gradually undoing part of the

effect of the more recent twist, then stops, and twists

still more slowly to the left, thus undoing part of the

quasi-permanent effect of the earlier twist. Thus the

behaviour of such a wire, strictly speaking, is an exces-

sively complex one, depending, as it Avere, upon its

whole jirevious history ; though, of course, the trace left

by each stage of its treatment is less marked as the date

of that stage is more remote. This subject has of late

attracted great attention in Germany, and, under the

name Elastische NacliioMamg, has been the object of

numerous researches by Wiedemann, Ivohlrausch, Boltz-

mann, etc.

253. Clerk-Maxwell ^ has given a sketch of a theory

of this peculiar action, from which Ave quote the

following :
—

"We know that the molecules of all bodies are in

motion. In gases and liquids the motion is such that

there is nothing to prevent any molecule from passing

from any part of the mass to any other part ;
but in

solids Ave must suppose that some, at least, of the mole-

cules merely oscillate about a certain mean position, so

that, if Ave consider a certain group of molecules, its

configuration is never very different from a certain stable

configuration, about Avliich it oscillates.

" This Avill be the case even Avhen the solid is in a

state of strain, provided the amplitude of the oscillations

^ "Constitution of Bodies," Ency. Brit., uiutli edition.
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docs not exceed a certain limit, but if it exceeds this

limit the group does not tend to return to its former

configuration, but begins to oscillate about a neAV con-

figuration of stability, the strain in which is either zero,

or at least less than in the original configuration.

"The condition of this breaking up of a configuration

must depend partly on the amplitude of the oscillations,

and partly on the amount of strain in the original

configuration ;
and Ave may suppose that different groups

of molecules, even in a homogeneous solid, are not in

similar circumstances in this respect.

"Thus we may suppose that in a certain number of

groups the ordinary agitation of the molecules is liable

to accumulate so much that every now and then the

configuration of one of the groups breaks up, and this

whether it is in a state of strain or not. We may in

this case assume that in every second a certain proportion

of these groups break up, and assume configurations

corresponding to a strain uniform in all directions.

"If all the groups were of this kind, the medium

would be a viscous fluid.

"But we may suppose that there are other grou^^s,

the configuration of which is so stable that they will not

break up under the ordinary agitation of the molecules

unless the average strain exceeds a certain limit, and this

limit may be different for different systems of these groups.
" Now if such groups of greater stability are dis-

seminated through the substance in such abundance as

to build up a solid framework, the substance will be a

solid, which will not be permanently deformed except

by a stress greater than a certain given stress.

"But if the solid also contains groups of smaller

stability and also groups of the first kind which break
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up of themselves, then when a strain is applied the

resistance to it will gradually diminish as the groups

of the first kind break up, and this will go on till the

stress is reduced to that due to the more permanent

groups. If the body is now left to itself, it will not at

once return to its original form, but Avill only do so

when the groups of the first kind have broken up so

often as to get back to their original state of strain.

" This view of the constitution of a solid, as consisting

of grouj)s of molecules some of which are in different

circumstances from others, also helps to explain the state

of the solid after a permanent deformation has been

given to it. In this case some of the less stable groups
have broken up and assumed new configurations, but it

is quite possible that others, more stable, may still

retain their original configurations, so that the form of

the body is determined by the equilibrium between

these two sets of groups ;
but if, on account of rise of

temperature, increase of moisture, violent vibration, or

any other cause, the breaking up of the less stable

groups is facilitated, the more stable groups may again

assert their sway, and tend to restore tlie body to the

shape it had before its deformation."

254. There remains one specially complex kinctical

case of elastic reaction, i.e. the efiects of Collidon.

According to Newton, the "rules of the congress and

reflection of hard bodies
" were discovered about the

same time by Wren, Wallis, and Huygens. Wallis had

the priority, then followed Wren. But Wren " confirmed

the truth of the thing
"
by a pendulum experiment (see

Appendix IV.). By "hard bodies" are meant such as

rebound from one another with the same relative velocity

as they had before collision. Newton goes on to describe his
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own mode of experimenting on the subject, how he allowed

for the resistance of the air, etc., and proceeds as follows :
—

"By the theory of Wren and Huygens, bodies

absolutely hard return one from another with the same

velocity with which they meet. But this may be

affirmed wath more certainty of bodies perfectly elastic.

In bodies imperfectly elastic the velocity of the return

is to be diminished together with the elastic force
;

because that force (except when the parts of bodies arov

bruised by their congress, or suffer some such extension

as happens under the strokes of a hammer) is (as far as

I can perceive) certain and determined, and makes the

bodies to return one from the other Avith a relative

velocity, which is in a given ratio to that relative

velocity with which they met. This I tried in balls of

Avool, made up tightly and strongly compressed . . . the

balls always receding one from the other with a relative

velocity, which was to the relative velocity with which

they met as about 5 to 9. Balls of steel returned witli

almost the same velocity: those of cork with a velocity

something less
;
but in balls of glass the proportion was

about 15 to 16."

Of course results of this kind are confined to moderate

relative speeds. The question becomes a very different

and vastly more difficult one wdien very high relative

speeds are contemplated. When the relative speed is

such as to lead to the breaking of one of the two bodies,

we have a problem of at least as high an order of diffi-

culty as that presented by Tenacity. (§ 226.)

255. So far as spherical bodies of small size, and im-

pinging on one another with a moderate relative speed,

are concerned, there is yet but little to add to Newton's

results, for the problem of the deformation and clastic
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rebound of two impinging si^heres has not yet been worked
out. These results, however, were fully confirmed by the

careful and instructive experiments of Hodgkinson,i
But recent inquiries have shown that JN'eAvton's use of

the term "
perfectly elastic

"
is not correct, for two bodies

may be perfectly elastic, and yet not rebound from one
another with the relative velocity of their approach. This

happens, in an easily intelligible manner, when a bell or

other body capable of vibrations is struck by a hammer.
And it is clear that the problem of impact of large masses,
where the propagation of distorting stress in each has to

be taken account of, will prove a very difficult one.

In modern phraseology the ratio of the relative velocity
of recoil to that of collision is called the Coefficient of
MestiMion. It is not directly a coefficient of elasticity,

for it depends to some extent upon the sizes and shapes
of the impinging bodies, as well as upon the materials

of Avhich they consist.

256. It is clear that, so far as direct impact of spheres
is concerned (where the Avhole motion of each of the

masses is in one common line), the third law of motion,

along with the value of the coefficient of restitution,
suffices for the calculation of the entire circumstances
of the motion after impact.

For if M, M', be the masses of the spheres, v, v and

^^p v\ their respective speeds before and after impact,
and e the coefficient of restitution, the third law gives

11(^1 + M'r/ = My + M'y',

while the elastic property gives

so that i\ and v{ are fully determined.

^ Brit. Aiis. Report, 1834.



COMPRESSIBILITY AND RIGIDITY OF SOLIDS. 235

This part of the subject will be found fully discussed in

most treatises on Dynamics. For illustrations of cases in

which, even with perfect elasticity, the coefficient of resti-

tution is necessarily less than unity, the reader may con-

sult Thomson and Tait's N'ahiral PhiJosoplvj, § 304.

257. In the case of violent impact between bodies of

small dimensions, as in golf or cricket, the mutual action

(in the first sense of Newton's Third Law, § 128) usually

increases faster than in direct proportion to the deforma-

tion, measured by the approach, along the normal, after

contact. This will be the case even while Hooke's Law

holds, because the greater the deformation the more

extensive usually are the parts deformed. Thus (^71)
the duration of impact is less the greater is the relative

speed ;
so long at least as no permanent distortion is pro-

duced.

The duration of compression is obviously greater than

the time in Avhich a point, moving with the initial

relative speed, would pass over a space equal to the

deformation (measured as above). But it is less than

twice as much. For, since the mutual action increases

faster than does the deformation, and is such as to retard

the relative speed, its time-average value during the

compression must be greater than its space
-
average.

That is

MV-^MV;
T 2D

deformation. This gives

where T is the time of compression, and D the normal

2D
T'

which is the statement above. The period of recovery

1 Z. y ,
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is longer than that of compression in the ratio 1 : e, ap-

proximately.

Some notion of the duration of impact may be obtained

from the following experimental results.^ A block of

hard Avood, weighing 5| lbs., fell from a height of 4 feet

on a cylinder 1^ in. in diameter and 1| in. long, the

lower half of which was imbedded in a larue mass of lead

resting on the ground.



CHAPTER XII.

COHESION AND CAPILLARITY.

258. A SOMEWHAT pedantic nomenclature has introduced

the terms Cohesion and Adhesio7i in senses distinct from

one another. Thus contiguous parts of a piece of glass,

or of a drop of water hanging from it, are said to cohere,

while the water is said to adhere to the glass. Such

pedantry usually tends to produce confusion, as will be

seen at once if we try to state in its language how the

parts of a lump of granite, or of a drop of mixed alcohol

and water, are kept together. ^Ye will therefore use,

indiscriminately, whichever of the words happens to

present itself when we require one of them.

"We have already referred to the molecular forces which

are practically alone efficient in keeping together the

particles of a solid of moderate dimensions (§ 167), and

to the resolidification (by pressure) of powdered graphite

(§ 53). We have studied the elasticity of fluids and of

solids, and have also made some remarks on the tenacity

of solids (§ 226). A few other instances of cohesion

between the particles of solids may now be noticed, liut

the subject is one on which no exact information can be

expected in the present state of science. The one

characteristic of these forces, and that which specially
237
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contrasts them with gravitation, is that they are insensible

at sensihle distarices.

259. Two masses of marble, on each of which a true

plane surface has been worked, will, when these surfaces

are brought firmly together, even in vacuo, adhere so as to

overcome the weight of either (unless it be great in com-

parison with the area of contact), so that one remains

suspended from the other. Barton, early in the century,
made a set of cubes of copper Avhose sides were so very
true that when a dozen of them were piled on one

another the whole series adhered together when the

upper one was lifted. If a small plane surface be scraped

bright on each of two pieces of lead, and these be pressed

together (with a slight screwing motion) they adhere

almost as if they formed one mass. The processes of

gilding, silvering, nickelising, etc., and their results, are

known to all. So are the properties of lime, glue, and
other cements, all depending on the molecular forces in

and between solids.

260. iS"or are Ave in a better position when we seek,

by what used to be considered a direct mode of measure-

ment, the force of adhesion between a solid and a liquid.

In the great majority of cases, the liquid wets the solid :

so that when we suspend a plate of the solid horizontally
from one scale-pan of a balance, and try what amount of

weights we must put into the opposite pan so as just to

detach the plate from a liquid surface, the liquid itself

is usually divided, not directly separated from the solid.

Such experiments besides being very tedious and difficult,

lead to no results of the kind sought (see § 287). We
have seen (§ 219) that the adhesion of water to glass is,

at least, 800 lbs. weight per square inch. But a force of

about 60 grains' weight only is required to draw a square
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inch of glass (wetted) from the surface of water
; while,

if the plate be carefully cleaned and dried, only about

three times as great a force is required to separate it from

clean mercury. Wlien a square inch of amalgamated zinc

is used it requires more than 500 grains' weight to remove

it from mercury. Here, however, as in the case of glass

and water, it is the liquid which is divided.

261. AVe now come to phenomena in Avhich accurate

measurements are in general possible. These are the

phenomena due to the Surface-Tension of liquids. "We

owe the idea to Segner (1751), but its develojDment and

application are due mainly to Young. The more recent

theoretical advances in the subject were made chiefly by

Laplace and Gauss. [For a sketch of the history of this

subject the reader is referred to Clerk-Maxwell's article,

"Capillary Action," in the ninth edition of the Ency. Brit?^

262. As soon as we recognise, as a fact, the extremely
short distance at which these powerful molecular forces

are sensible, we see that there must be an essential

difference in state between parts of a liquid close to the

.surface and others in the interior of the mass. For if

we describe, round any particle of the liquid as centre, a

sphere whose radius is the utmost range at which the

molecular forces are sensible, the only parts of the liquid

which act directly on that particle are those contained

within the sphere. So long as the sphere lies wholly
within the liquid the forces on the particle must obviously
balance one another. [At least it must be approximately

so, unless the distance from particle to particle is com-

parable with the radius of the sphere. We know of no

liquid for which this is the case.] But when part of the

sphere lies outside the liquid surface, i.e. when the

distance of the particle from the surface is less tlian the
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range of the molecular forces, Ave can no longer make

this assertion.

Hence we should expect to find peculiarities in the

surface-film whose thickness is approximately equal to

this molecular range. [If liquids were not, happily, but

slightly compressible, the reasoning above would lead to

the result that the "peculiarities" should extend to a

distance from the surface somewhat greater than the

radius of the sphere of action of the molecular forces.]

We must appeal to experiment or observation to find

their nature in each particular case. And here, as we

shall soon see, a multitude of well-known facts comes at

once to our assistance. But we must first examine, after

Gauss, the theoretical conditions a little more closely.

263. An important theorem of Dynamics is that, for

stable equilibrium of a system, the potential energy of

the whole must be a minimum. It is easy to see from

the considerations given in last section that, so long as

we consider molecular forces alone, the amount of energy

of the liquid mass can vary only with the extent of the

surface, but we may formally prove it as below.

Let the energy be
e^^ per unit mass of the interior

liciuid, and e per unit mass for a layer of the skin, of

surface 8, thickness t,
and density p. Then, if ]M be the

whole mass of the liquid, and E its whole potential

energy, we have, by summing the energy of the interior

mass and of the successive layers of skin (which may be

treated as having all practically the same superficies so

long as their curvature is finite, in consequence of the

shortness of range of the molecular forces)—

E = (M - S. ^tp)e^ + S. 2«p5

--=Meo + S. l.tp{e-e,).

Thus, in consequence of this property of the skin, the
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whole energy is increased or diminished by a quantity
which is directly proportional to S. The multiplier of

S depends upon the nature and the temperature of the

liquid, and on the nature of the substance which is in

contact Avitli its free surface, only.

Hence, when e is greater than
e^ everywhere through-

out the skin, as we find happens when a water surface

is exposed to air, S tends to the smallest value compatible
with the conditions. But when e is less than

e^,
as when

water is in contact with glass, S tends to take as large a

value as possible. If part be exposed to air, and part be

in contact with glass or other substance, the final result

is more complex, but involves the same principles.

It is obvious that precisely similar reasoning may be

applied to the case of two liquids in contact, even after

difiusion has gone on for a little, so long in fact as there

remains a sensible difference between the energy per
unit mass in the common skin and in either of the

liquids. (See §§ 292, 300.) In such a case, however, the

resulting changes of form must necessarily take place more

slowly than when a single liquid is exposed to air, as the

inertia of the whole system has to be overcome.

264. Still keeping to the theoretical view of the

subject, let us consider what is implied in the tendency
of the liquid surface to become as small as possible. It

must behave, only in an incomparably more perfect

manner, like an elastic membrane (such as a sheet of

india-rubber), which has been stretched by equal tensions

in all directions. But, while the tension of such a mem-
brane becomes less as it is permitted to shrink more and

more, the liquid film has still as great a tendency to

shrink, however small its surface may have become.

Thus it must be under a definite Surface-Tension.
Q
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If T be this tension across a line of unit-length on

such a li(|uid surface it is easy to see that the work

reciuired to stretch a rectangle, whose sides are a and h,

into another whose sides are a and h + 1,
is

Ta.l = T.al

i.e. T multiplied by the increase of area. This quantity T
must, therefore, be the multiplier of S in the expression

(of last section) for the whole energy of a mass of liquid.

265. When the liquid is drawn out into a film, as in

blowing a soap-bubble, the tension of this film is practi-

cally 2T
',

so long, at least, as the whole thickness of the

film is greater than twice the molecular range. For it

may be regarded as consisting of a layer of interior water,

with two surface-skins.

266. We now come to the observed facts which are to

be compared with these indications of theory. But, first,

we assume the mathematical theorem that the sphere is,

of all surfaces, that which, Avith a given content, has the

smallest superficies.

AVhenever a drop of liquid is left free from all but

its own molecular forces, we find it assumes a perfectly

spherical form. By far the most rigorous proof of this

is afforded by the rainbow. Exceedingly slight deviations

from perfect sphericity of the falling drops would sufiice

entirely to alter tlie character of this phenomenon. Greater

deviations would altogether prevent its occurrence.

The manufacture of small-shot, in Avhich it is im-

portant that each particle should be truly spherical, is

another good example. A shot-tower, as it is called, is

merely a gigantic shower-bath, where the liquid employed
is melted lead, which is slightly alloyed, mainly for the

purpose of making it less viscous while liquid. The

majority of the falling drops solidify in forms very nearly
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spherical before they reach the water - Lath which is

employed to break their fall.

The rounding off of the sharp edges of a broken piece

of sealing wax, as soon as it melts in a flame, is another

example ;
and it was in consequence of the almost perfect

sphericity of the little bead, formed on the end of a glass

hbre which is held in a flame for a short time, that such

beads were used by the early microscopists as single

magnifiers. By the use of these, Leuwenhoeck and others

anticipated many of the results which are now shown by
means of the splendid achromatic object-glasses of modern

compound microscopes.

267. An ingenious method of guarding a liquid from

the action of any but molecular forces was devised by
Plateau. He simply placed a mass of oil in a mixture

of alcohol and water of the same density as the oil.

Here the mass assumes a perfectly spherical form.

AVlien this arrangement is altered by evaporation, the

mixture becomes denser from the top downwards. The

globe of oil becomes flattened, because its lower parts tend

to rise and its upper portions to sink, being immersed re-

spectively in parts of the liquid denser and less dense than

the oil. This mass of oil can be made to fulfil definite

boundary conditions, l)y bringing into contact with it

various frames of wire, etc., all thoroughly oiled beforehand.

268. If a large drop of water be laid on a clean glass

plate, it spreads itself over a consideraljle surface.

[Theoretically, it should wet the whole surface.] Now
let ether vapour, which is heavier than air, be poured

upon the middle of the water surface
;

or let it be

touched there by a glass rod moistened with alcohol ;
or

even hold the point of a red-hot poker close to it. In all

these cases the effect is to reduce, locally, the surface-
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tension, so that, as it were, a weak })art uf tlie surfaee-

filin is produced, and this is pulled out over the surface

by the greater contractile tension of the unaffected parts

of the skin. The water, in fact, often retreats on all

sides from the affected part, leaving the central portion

of the glass uncovered. The effect is precisely similar

to that which is produced in a stretched sheet of india-

rubber where one part is either thinner than the rest,

or has been slightly heated by a flame.

The surface-tension of a drop of mercury is greatly

altered Avlien it is (electrically)
"
polarised." Remark-

able phenomena of this kind were described b}^ Strethill

Wright in 1860.^ Lippmann has employed this surface

effect in the construction of a very sensitive electrometei'.

2G9. The phenomenon called the " tears of strong

Avine," first explained by J. Thomson, is another example.
When the sides of a drinking glass have been moistened

with strong Avine, we observe that the liquid film soon

becomes corrugated. The ridges are formed of the

portions from which the greatest amount of alcohol has

evaporated, and which, therefore, have the greatest

surface-tension. As these slide, by gravity, down the

sides, we see them nOAV and then stop, and even retract,

when they come to a part where there is more alcohol,

and therefore less surface-tension.

By far the best example, however, is furnished liy

some of the less viscid oils. A few drops, let fall on the

surface of a quiet pool, seem almost to flash out over the

surface, showing in the most brilliant manner the inter-

ference colours of thin plates.

Another striking instance of the effects of surface-

tension is furnished by a piece of camphor when placed

i Phil. Mwj., xix.
ji. 1-29.
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on water. It usually dissolves more rapidly at some one

place than at others, thus relatively -weakening the surface-

tension of the water in that place, and is consequently

dragged about with considerable rapidity, and apparently

in the most capricious manner. Similar results, but of

a more complex and often much more violent nature,

are obtained with a pellet of potassium or of sodium.

270. It is tlie same when we deal with a double skin,

as in a soap bubble. When a soap-film is lifted by the

mouth of a glass funnel previously wetted throughout

its interior with the solution, it rapidly runs up the cone,

and fixes itself finally at the place where the area of the

cross section is least.

Van der Mensbrugghe has devised a very beautiful

and instructive experiment of this kind, which it is easy

to repeat. He lays on a soap-film, lifted by a large wire

ring, a short endless silk thread, thoroughly wetted with

the soap solution. As soon as the film is broken inside the

coil of the thread, the thread is stretched out into an exact

circle which bounds the hole in the film. [The circle is the

figure which, with a given perimeter, has the greatest area.]

When a soap-bubble is blown at the mouth of a

funnel, and the neck is left open, we see it shrink faster

and faster, expelling the contained air, which is thus proved

to be at greater than atmospheric pressure. Faraday suc-

ceeded in blowing out a candle by the air thus expelled.

The soap glycerine solution invented by Plateau, by

rendering soap-films permanent for hours together, en-

ables us to study the phenomena of surface-tension even

more simply and accurately than can be done by the

help of his earlier method (§ 267). His great work ^ on

1

Staliqiie experimentale et theorique des Liqtddes soumis anx

Senlcs Forces MoUculaires. Paris, 1873.
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these subjects forms a storehouse of interesting and

important experiments, all the more remarkable that

they were devised by one who had the misfortune of

being permanently disabled from seeing them. The

reader must be referred to these volumes for other

examples than the few for \vhieh we can find room.

271. It is very instructive to observe the mode in

which many 2:)roblems, some of extreme mathematical

difficulty, are at once solved practically by experiments

with these soap-films.

The whole physical part of the phenomena depends

upon the fact that the film takes the form of ^mailed

superficies consistent icith the conditions.

When the film is exposed to equal pressures on its sides,

i.e. when no air is anywhere enclosed by it, it may be made

up of portions which are individually plane ;
in which case

the problem, though possibly complex, is comparatively

easy. Eut this is an exceptional case
; for, even with

equal pressures, the film is usually curved, and it mustalways
be curved when the pressures on its sides are difi"erent.

272. Here it becomes neces-

sary to consider the curvature of

the film, and the way in which

it depends upon the pressures

to which the sides are exposed.

A very simple investigation gives

us all we require in this matter.

Suppose a tape or band, of unit

breadth, while under tension T,

be wrapped transversely round

a cylinder of radius K, and

let p be the pressure Avhich

it produces on unit surface of the cylinder. Consider a
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very small portion of its length, AB, subtending an

angle 6 at the centre, 0, of the cylinder. This portion

of the band is kept in equilibrium by the tension, T, at

its ends, and the reaction, p . AB, of the cylindrical

surface. Eesolving these forces in the direction OC,

bisecting the angle AOB, we have

which, when is very small, becomes

T=pJ{,orp= ^.

Thus the band requires, for its support in the cylindrical

form, an excess of pressure on the concave, over that on

T
the convex side, amounting to

-^ per unit of surface.

"273. In the case of a soap-film, or of the surface-film of

a liquid generally, there may be simultaneous curvatures in

two planes at right angles to one another and to the tangent

plane. The effects of these are to be simply superposed, as

they are independent. Let R^ be the radius of the second

curvature, then, as the film exerts equal tension in all

directions, the difference of pressures on its sides is, per

square unit,

Tit.
U^Ri/

This expression must be doubled in the case of a soap-

bubble, for (§ 265) it has tico sm-face-films.

This expression may easily be obtained in another way,

viz., by expressing the work done during an infinitesimal

normal displacement of each point of the film :
—

Jiy'st, as



248 PROPEETIES OF MATTER.

the product of the difference of external and internal

pressure into the increase of contained volume, and second

as the product of the surface-tension into the increase

of the film. This, however, we leave to the reader. He
will easily find that if t be the normal displacement of the

element, c?S, of surface, and j) the difi'erence of pressures,

we have

y,.s(p-T(^+i-))
= o,

whatever be the value of
t, the integral being extended

over the whole surface.

By a well-known geometrical theorem, duo to Euler,

the quantity multiplied by T, i.e. the sum of the curvatures

in two planes at right angles to each other, and both

passing through the normal to a surface at a particular

point, is independent of the aspects of these planes.

Hence it is convenient to choose R and Rj^ as the principal

radii of curvature of the film.

"When, as a purely mathematical problem, we seek the

characteristic of the surfaces of least area which satisfy

given boundary conditions, we are led to the condition

that the sum of the curvatures at any poiyit is constant.

This agrees with the physical result.

274. Thus, when a soap-film is exposed to equal

pressures on its two sides, it must satisfy the given

boundary conditions, and possess the further property

that, at every jDoint of its surface,

R Rj

i.e. whatever be its curvature in any normal section, it
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must have an equal and opposite curvature in the normal

section perpendicular to the first.

Such must, therefore, if wc neglect the (very slight)

disturbing eflfects of gravity, be the form of a soap-filiu

exposed on both sides to the air. Thus if we lift such a

film on a flat loop of wire it assumes a plane surface
; but,

by bendmg the boundary, we can make it assume forms

of marked curvature. In all its forms, however, the sum

of the curvatures at each point is nil. And the same is

the case, liowever ramified, linked, or knotted the wire

frame may be, provided only that there is no air imimsoned
at any place.

275. If we imprison a quantity of air by the film, as,

for instance, by forming it between the rims of two equal

funnels, and closing the neck of each with a finger, we

have in general different pressures outside and inside
;

and then we have (§ 265)

2T~R~'"Ri

where p is the constant difference of pressures. By
altering the relative position of the funnels, as by shift-

ing one sidewise out of the line of symmetry, or by

making it rotate (otherwise than

about its axis of symmetry), we

can throw the film into extra-

ordinary shapes ; all of them, how-

ever, possessing the fundamental

property of constant sum of the
"^' '

curvatures at each point. But we content ourselves with

a brief notice of the results of gradually withdraAving the

funnels from one another, while keeping their axes of

sj'mmetry in one line.
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Thus Ave may Itegin with the film as a quasi-spherical,

or even spherical surface, having both its curvatures

KEZb--

Fic. 34.

moderate (Fig. 1). As we withdraw the funnels from

one another the longitudinal curvature diminishes, and

the transverse increases to the same amoiuit, till at last

the longitudinal curvature vanishes altogether, and the

film becomes cylindrical (Fig. 2). Still further separat-

ing them, the film takes an hour-glass form as in Fig. 3,

where the increasing curvature of the transverse section

is now balanced by a gradually increasing negative curv-

ature in the longitudinal section. At a certain limit

this state of the film becomes unstable, and the positive

and negative curvatures near the middle both rapidly

increase, till the walls at that part collapse into a mere

neck of water, which is ruptured, and leaves a pro-

tuberant film on each of the funnels. By a little

dexterous manipulation these may easily be made to

reunite into the original form.

27G. The facts we have just described .show us the

nature of the process by Avhich a complete soap-bubble

is detached from a funnel, alwaj's leaving a film on the

funnel ready to produce a second bubble. This process
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can easily be studied l)y completimj the blowing of the

bubble with coal-gas, after it has been commenced with

air, and watching it detach itself in virtue of the light-

ness of its contents.

Even so dense a liquid as mercury can be formed into

a bubble. We have merely to shake a glass bottle filled

with water and clear mercury. The bubbles which form

on the mercury (often detached) are full of water. Some-

times we see others coming up from the interior of the

mercur3^ These are water-skins full of mercury.

277. When two complete soap-bubbles are made to

unite, the tendency of the liquid film is to contract, that

of the (compressed) air inside is to expand. It becomes

a curious question to find which of these actually occurs.

Let their radii, when separate, be E and K^ and let

them form, when united, a bubble of radius r. Then, if

n be the atmospheric pressure, the original pressures in

the bubbles were

4T 4T

n+j, and 11+
j^;

while that in the joint bubble is

4T
n-i- — .

r

By Boyle's Law the densities are as the pressures.

Hence, expressing that no air is lost, we have

H<n+f)+,v(n+f)^...(n+^I),
or n(R"+ R/- r^) -f 4T(R^+ Rj^

-
t-)= 0.

If V be the dimmution of the whole volume occupied by
the air, S that of the whole surface of the liquid film,

this condition gives at once

3nv-f 4TS = 0.
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As n and T are both essentially jiositive, this condi-

tion shows that V and S must have o2:)posife signs.

Hence both tendencies are gratified, tlie surface, as a

whole, shrinks, and the contained air, as a whole, increases

in A'olume, simultaneously. But the work done hy the

expanding gas is only about two-thirds of that done by
the contracting film.

It is worthy of notice that, as is easily proved, the air

in a soap-bubble of any finite radius would, at atmo-

spheric pressure, fill a sphere of radius greater than

before by the constant (Quantity 4T/3n.
278. As a practical illustration of the use of these

formulae, let us apply them to a stationary steam-boiler

of the usual cylindrical form, with the ends portions of

spheres. If E be the radius of the cylinder, R^ that

of each end, and P the excess of internal over external

pressure, the tension is

Across a generating line, RP,

_T>2p
Parallel to a generating line, —_ =iRP

29rR
Across any line on the end, iR^P.

Thus, if the boiler-plate be equally tenacious in all

directions, there is no danger of the ends being blown

ofi", for the boiler will rather tear along a generating line.

And, to make the ends as strong as the sides, they

require only half the curvature.

Thus, also, we see why stout glass tubes, if of small

enough bore, are capable of resisting very great internal pres-

sure, Avhen, as in Andrews' experiments (§ 198) on carbonic

acid, they are exposed only to atmospheric pressure outside.

In what precedes we have neglected the Aveight of the

soap-film, and have consequently taken its tension as

being constant throughout. But a moment's considera-
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tion of the equilibrium of a plauc vertical film shows

that the tension must increase from below upwards.
Tliis gives an immediate explanation of the difficulty

presented by the fact that bubbles cannot l)e blown with

pure Avater, though its surface-tension is much greater

than that of a soap-solution. The soap-solution is, as

Marangoni has pointed out, an excessively heterogeneous

liquid, and (within limits) can and does adjust its surface-

tension to the value required at each point. The slowness

with which the film becomes gradually thinner, so as to

display in succession the various interference colours of

thin plates, is to be ascribed to the viscosity of the liquid.^

279. We are now prepared to consider the phenomena

properly called GcqnUary, as having been detected in

tubes of very fine bore.

"When a number of clean glass tubes, each open at

both ends, are partially immersed in a large dish of

Ky

^

^

Fig. 35.

water, we observe that (in apparent deviation from the

hydrostatic laws, § 189) the water rises in each to a

higher level than that at which it stands outside. Also

we notice that this rise is greater the finer the bore of

the tube. The cut shows the phenomenon in section.

1 Lord Rayleigli "On the Superficial A'iscosity of Water," Proc,

U.S., 1890.
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Perform the same experiments with mercury instead

of water, and we find that the liquid stands at lower

levels inside than outside each tube, and that this

depression is greater tlie finer the bore of the tube.

Turn the above cut upside down, and it will correspond

to this effect.

280. But a closer inspection at once shows the

iiitmediate cause of the phenomena. The water surface

inside each tube is always concave outwards, that of the

mercury convex
;
and the curvature of either is greater

the finer is the liore of the tube.

Remember the surface-tension of the liquid, and the

consequent excess of pressure on the concave side, over

that on the convex side, which is necessary (§ 272) for its

equilibrium, and we see at once that the Avater innuedi-

ately under the surface-film must have a less pressure

than that of the atmosphere to which its concave side is

exposed. Thus, hydrostatically (§ 189), it belongs to a

higher level than the undisturbed water, whose surface

is plane, and the pressure in which (immediately uudei'

the surface) is equal to the atmospheric pressure.^

As the surface curvature is greater in the finer tubes,

so the higher rise of water in these is a direct hydrostatic

consequence of the greater relief of pressure.

The convexity of the mercury surface, on the other

^ In some theories of capillary action, especially those of Laplace

and Poisson, it is supposed that the interior of a mass of liquid,

even wlien it is free from atmospheric pressure or gravitation

action, is necessarily at a very high pressure in consequence of

molecular action. This supposition appears to be based on a

fallacy ;
a confusion of two senses in which the word pressure may

be used. But even were it correct, it would not alter the conclusion

above, as this part of the pressure does not depend on the form of

the liquid surface.
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A

D

B

D

B

Fig. 00.

lumJ, requires imiuediatel}' under the film a pressure

exceeding tliat of the atmosphere by an amount propor-

tional to the sum of its curvatures. Thus we see why the

mercury stands at a lower level in the tube than outside it.

281. It only remains that we should account for the

concavity of the water surface, and the convexity of that

of the mercury.

In the annexed sections of a concave and of a convex

surface, in which a tangent, I^A,

is clraAvn to the liquid film, where

it meets the side of the tube at B,

the angle ABC of the Avedge of

liquid is obviously less than a right

angle for the concave surface, and

greater than a right angle for the

convex. Hence the problem is

reduced to the determination of this angle, called the

Angle of Contact.

That this angle must have a definite value for each

lii^uid, in contact with each particular solid, appears at

once from the consideration that, in the immediate neigh-

bourhood of B, the gravitational or other external forces,

acting on a very small portion of the liquid, are incom-

parably less intense than the molecular tensions. Hence

the equilibrium of that portion (tangentially to the solid)

will depend upon the surface-tensions along BA, BC, BD
alone. The directions of two of these, and the magnitudes
of all three, are determinate, whatever two fluids (even
when one is gaseous) are in contact with each other and

with the solid (§ 263). BA, therefore, will ultimately

assume such a direction that the surface-tension along it

will, when resolved in CD, just balance the difference

between the tensions in BD and BC. Hence, if that
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in BD is the greater, the angle of contingonce will be

acute
;

if that in EC be the greater, it will be obtuse.

282. In the case of mercury and clean glass, exposed
to air, the angle of contact is

140° (Young), 135° (Gay-Lussac), 128° 52' (Quincke), 132° 2'

(Bashforth).

"With water and clean glass in air the angle vanishes

entirely, in fact of the three tensions that in BD exceeds

the sum of the other two
;

but when the glass is not

clean it may reach (and even surpass) 90°. AVhen it is

exactly 90° there is no curvature of the Avater surface

inside the capillary tube, and it therefore stands at the

level of the undisturbed water outside.^

283. "We may now complete the explanation of the

behaviour of a liquid in a cajiillary tube as follows :
—

When the rise (or depression) exceeds several diameters

of the tube, the curvature is practically the same over

the whole free surface, which is therefore approximately

spherical. In mercury, because of the finite angle of

contact, it forms a segment less than a hemisphere ;
in

water it is a complete hemisphere.

In the former case the radius is directly jjroportional

to that of the tube, in the latter it is equal to it. In

both cases, therefore, the relief or the increase of pressure,

and consequently the rise or depression of the liquid,

is inversely as the radius of the tube. This agrees with

the (long-known) results of experiment.

' One of Gay-Lussac's ingenious methods for determining the

angle of contact when it h finite must be at least indicated here.

If the lir|uid lie introduced gradually into a small glass sphere

(from below) there will be one position in which its surface is

throughout plane. By measuring this position the angle can be

at once calculated.
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284. We may make, in a very simple manner, due to

Dr. Jurin, a calculation of the capillary elevation, which

is applicable to wider tubes than those spoken of in last

section. Suppose the radius of the tube to be r, p the

density of the liquid, a its angle of contact, T the tension

of the surface-film, and h the mean height to Avhich it is

elevated. [This mean height is taken such that the

volume of the liquid actually raised would, if the surface

were not curved, fill the length h of the tube.] Then

the vertical component of the whole tension round the

edge of the film is obviously

27r-/-T co.s u.

y>\\i this supports the weight

'^r-hpr/

of litjuid, (virtually) filling a length h of the tulie.

Equating tliese quantities we obtain, after reduction,

2T cos X
h — .

rgp

"When a>
2)

^' is negative, and the liquid is depressed.

All the quantities here are easy to measure except T
and a. Hence, if a can be found

I)}-
a separate process,

T is at once determined. In the case of water in clean

glass we have cos a =
1, so that the above relation gives

T directly.

285. The following values of T are given by Quincke.

Each datum in the table belongs to the film at the

common surface of the substances whose names are in

the same line and column with it.

Water. Mercury.—
. 418
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The unit here is one dyne per (linear) centimetre. To
reduce to grains' weight j^er inch divide by 25. Thus we

may easily calculate, from the formula of last section,

that water rises a little more than half an inch in a glass
tube whose bore is y^^th inch in diameter.

286. In the Atmometer, which is merely a ball of un-

glazed clay luted to a glass stem, the Avhole filled with

water and inverted in a vessel of mercury, not only is

the reduction of pressure by the fine concave surfaces of

water in the pores sufficient to keep a column of 3 or 4

feet of water supported, but, as evaporation proceeds,

mercury rises to take the place of the water, sometimes

to 23 inches or more. The process has not, so far as we

know, been pushed to its limit. Thus these pores can

sustain (virtually) a column of some 26 feet of water.

It is easy to put the Atmometer directly into this con-

dition, and the consequent great concavity of the surface

of the water in each pore renders it eminently fit (§ 291)
as a nucleus for the deposition of vapour.^

287. The data of § 285 enable us easily to calculate the

force with which a boy's
" sucker

"
is pressed against a

stone. Suppose we have two plates of glass, 6 inches

square, with a film of water between them whose thick-

ness is o^oth of an inch. The force required to pull one

perpendicularly from the other, in which case the free

water surface round the edges will take a (cylindrical)
curvature of radius -^Ij^fh of an inch, would be the

weight of a six-inch square prism of water about 5

inches high, i.e. between 6 and 7 pounds' weight. If

the film were of half that thickness (at the edges) the

force required would be double. Thus, as J. Thomson
has pointed out, two flat slabs of ice, hanging side by

' Proc. E.S.E., February 16, 1885.
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side on a horizontal wire, with a film of Avater between

them, are pressed together with a force which may much

exceed the weight of either : and may therefore freeze

together even in a warm room. When a mere drop of

water is placed between two very true glass planes

the relief of pressure produced enables the atmospheric

pressure to force
'

them closer together, and this effect

increases, not only by the enlargement of the wetted

surfaces, but by the increase of curvature round the

edges. The pressure producible in this way is very

great, and may crack large glass plates (if they be not

very true) where they are laid on one another with a

drop of water between them. On the other hand, a

few small drops of mercury, interposed here and there

between the plates, form an exceedingly perfect elastic

cushion.

288. There are many common phenomena whose

explanation is easily traced to the action of capillary

forces. Thus air-bubbles, sticks, and straws floating on

still water, appear to attract one another
;
and gather

into groups, or run to the edge of the containing vessel.

This is always the case with any two bodies, each of

which is wetted by the water, and it is also true when

neither is wetted. But when one of the bodies is wetted,

and the other is not, they behave as if they repelled one

another. The explanation is easily given :
—either from

the point of view of the various forces called into play

by the displacement of the water, or (more simply) by
the consideration of the whole energy of the liquid as

depending on the relative position of the floating bodies

(§ 263) and the consequent displacement of the surface.

A needle, or even a (very small) pellet of mercur}'-,

may easily be made to float on water. The hydrostatic
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condition requires merely a depression of tlie surface,

so that the water displaced may be equal in weight to

the floating body ; but, that this displacement may take

place, the angle of contact must be made greater than

90°, Avhich is at once ensured if the needle be very

slightljf greased. Thus we explain how water-flies run

on the surface of a pool.

In the same way we can explain why a piece of wood

is not wetted when it is dipped into water whose surface

is covered with lycopodium seed
;
and why mercury can

be poured in considerable quantity into a bag of gauze or

cambric without escaping through the meshes. (§ 100.)

An air bubble in water assumes a spherical form, even

when it is in contact with the side of a glass vessel, and

a very small globule of mercury laid on glass becomes

almost spherical. But an air-bubble on the side of a

glass vessel containing mercury is flattened oiit, while a

drop of water on clean glass spreads itself out indefinitely.

In all these cases the angle of contact at once explains

the result.

The difticulty of obtaining a dean surface of water or

mercury depends upon the great surface-tension of these

liquids relatively to that of the majority of other sub-

stances. From the reasoning of § 281, and the data

of § 285, we see that water ought to spread indefinitely

over a clean surface of mercury.

289. The form of section of a (cylindrical) liquid

surface, in contact with a plane solid surface, is easily

deduced from the hydrostatic principle that the elevation

(or depression) at any point is proportional to the relief

(or increase) of pressure, i.e. to the one curvature. Hence

it must be the curve of flexure (§ 237) of a very long

uniform elastic wire, with a kink in it, under the action
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of tensions at its ends
;
for at every point of that curve

the curvature is proportional to the distance from the

line in which the stress acts. Hence we can at once

find the form in which the liquid surface meets a plane
solid face, whether it be vertical or not, by drawing
the corresponding elastic curve and taking account of the

inclination of the plate and of the angle of contact.

When the liquid surface is between two glass plates,

inclined at any angles to the vertical, but having their

line of intersection horizontal, the form of the cylindrical

surface is given by one of the more complex forms of

the elastic curve.

290. The surface-tension of liquids diminishes with

rise of temperature. And Andrews showed that, as

liquid carbonic acid is gradually raised to its critical

temperature, the curvature of its surface in a capillary

tube gradually diminishes.

291. ^y. Thomson 1 showed that there is a definite

vapour-pressure, for each amount of curvature of a liquid

surface, necessary to equilibrium. It is less as the sur-

face is more concave, greater as it is less concave or more

convex. Hence precipitation of water-vapour will, ceteri.^

parihiis, take place more rai)idly the more concave (or

the less convex) is the surface of that already deposited.

Thus, as Clerk-Maxwell pointed out, the larger drops
in a cloud must grow at the expense of the smaller ones.

The explanation of these curious facts is given by the

kinetic theory much in the same way as is that of the

effect of the curvature of the discs of a Radiometer.

So great a pressure of vapour would be necessary for

the existence of very small globules of water (in the

nascent state of cloud, as it were), that, as Aitken has

1 Proc. h'.S.E., 1870.
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shown, condensation cannot commence in free air without

the presence of dust-nuclei. The more numerous these

are, the smaller is the share of each, and thus we have

various kinds of fog, mist, and cloud.

292. Many extremely curious phenomena, duo in great

part to surface-tension, have been investigated by various

experimenters, especially Tomlinson. Thus different

kinds of oils can be distinguished from one another,

or the purity of a specimen of a particular oil may
be ascertained, by the form which a drop takes when
let fall on a large, clean water surface. In some cases

a drop of oil does not spread entirely over a liquid

surface, but forms a sort of lens. The angles at which
its faces meet one another, and the surface of the liquid,

are then to be determined from the respective surface-

tensions by the triangle of forces, as in § 281,

Again, when a drop of an aqueous solution of a salt,

say permanganate of potash or some other highly
-

coloured substance, is allowed slowly to descend in

water, it at first takes the form of a vortex-ring, bounded,
of course, by a film of definite surface-tension. But, as

diffusion proceeds, it would appear that this film becomes

weaker at certain places (just as in the case of wine,

§ 269), and consequently unstable. Be this as it may, the

ring breaks into segments, each of which is (as it were)
a new drop, which beliaves as the original drop did,

though soinewhat less vigorously. Thus v/e have a very
curious appearance, almost resembling the development
of a polyp; the number of distinct individuals being

markedly greater in each successive generation. With
a drop of ink these developments take place so fast that

the eye can scarcely follow them.

The phenomena of surface-tension were found by
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Bosscha to be exhibited, in some forms, by smoke. And

Van der "Waals showed that smoke stands lower in the

moistened branch of a U-tube than in the dry one, ex-

hibiting a convex surface Hke that of mercury,

293. We may now say a word or two as to the ex-

treme limits at which the molecular forces are sensible.

It is not at all remarkable that the various estimates

differ Avidely from one another, for they are all obtained

by processes more or less indirect. They all agree, how-

ever, in giving small values. Experiments of Plateau

on soap-films, and of Quincke on the behaviour of water

and thinly-silvered glass, give only about 1/500,000 of

an inch. It is probable that the limits vary somewhat

Avith the nature of the substance experimented on
;
and

the question is certainly connected, in no remote manner,

with the differences in the critical temperatures (§ 194)

of various substances.

294. The separation into drops, of a liquid column

slowly escaping into air from a small hole in the bottom

of a vessel, can be studied by examining it by the light

of electric sparks rapidly succeeding one another. It is

a phenomenon similar to that which we have described

in § 275, when a cylindrical film is drawn out between

two funnels. When the liquid is a very viscous one, as

treacle or Canada balsam, especially if its surface-tension

be small, the viscosity greatly retards the development of

this effect of instability ;
and such liquids can, like melted

glass, be drawn into fine continuous threads. This pro-

perty sometimes gets the special name of Viscidity.

295. The propagation of ripples, as Sir W. Thomson

showed,^ is also due mainly to surface-tension. The ex-

perimental proof is given by the fact that the shorter

1 Phil. Marj., 1871, ii. p. 375.
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are the ripples the faster they run, while ordinary

oscillatory waves in deep water, propagated by gravita-

tion, run faster the longer they are.

[This affords a good example of the application of what

is called the principle of Di/namical Similarifi/ ; i.e. the

effect of scale upon physical phenomena. It is, of course,

merely a question of Dimensions as in § 64. Various

instances of the application of this principle have already

been given, e.g. §§ 40, 167, 228, 284, etc.]

In two similar ripples, of different wave-lengths, the

forces are independent of the lengths, the ranges are

directly as the lengths, and the masses of water are as the

squares of the lengths, of the ripples. Hence the rates

of propagation are inversely as the square roots of the

lengths. In similar oscillatory gravitation waves, on the

contrary, the forces are as the squares of the lengths, the

ranges as the lengths, and the masses as the squares of

the lengths, and the rate is directly proportional to the

square root of the wave-length.

Thus very short ripples run almost entirely by surface-

tension, while long ripples and short waves run partly

by gravity partly by surface-tension. Thomson has

shown that the limit between waves and ripples in water,

which is the slowest-moving surface disturbance, has

about 2/3 inch as its wave-length, and runs at a speed

of 9 inches per second. Every shorter disturbance runs

mainly by surface-tension, and may be called a ripple ;

every longer one runs mainly by gravitation, and may be

called a wave. Fairly accurate determinations of surface-

tension have been obtained by measurement of the

lengths of ripples produced when a vibrating tuning-fork

(of known pitch) rests against a trough containing a liquid.^

1 C. M. Smith, Proc. R.S.E., 1890.
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296. AVlicn a solid is exijosed to a gas or vapour, a

film is deposited on its surface which, in many cases,

introduces confusion in weighings, etc. Thus, if a dry

platinum capsule be carefully weighed, then heated to

redness and weighed again immediately after it has

cooled, it is found to be lighter. If left exposed to the

air it gradually recovers its former weight. In so far as

this effect is a purely surface one, it is increased in pro-

portion as the surface of a given mass of the solid is

increased. Thus "
spongy

"
platinum, as it is called—i.e.

platinum in a state of very minute division (obtained by

reducing it by heat from some of its salts)
—exhibits the

phenomenon to a notable extent. Dobereiner showed

that a jet of hydrogen can be set on fire, by the heat

developed when it is blown against spongy platinum

which has been exposed to the air. The platinum is

heated to redness by the combination of the oxygen film,

already condensed on its surface, with the hydrogen
which suffers condensation in its turn.

Another remarkable form of experiment, analogous to

this, consists in heating a helix of platinum wire to

incandescence in the flame of a Bunsen lamp, turning off

and then immediately turning on again the supply of

gas ;
for the wire remains permanently red-hot in the

explosive mixture of air and coal-gas ; without, how-

ever, reaching a high enough temperature to inflami? it

again.

The amount of surface really exposed by finely porous

bodies, especially (as Hunter^ showed) cocoa-nut charcoal,

is enormous in comparison with their apparent surface
;

and in consequence they are able to absorb (as it is called)

quantities of gas altogether disproijortionatc to their

^ Chtm. Sot: Journal., 1865-72.
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volume. Even ordinary charcoal, when heated red-hot

(to drive out the gases already condensed in its pores)

and allowed to cool in an atmosphere of carbonic acid

gas, absorbs from sixty to eighty times its volume of the

gas. If it be then introdu.ced into a tube full of mercury
it can be made, by heating, to disgorge this gas, Avhich

it reabsorbs as it cools. This property has been utilized

for the production of very high vacua
;

as much as

possible of the gas being removed by an air-j)ump Avliile

the charcoal is hot, and the greater part of the remainder

being absorbed when it cools. ^

The student may easily understand the immense addi-

tion to the surface of a body, which is caused either by

pores or by fine division, if he reflect that a cube, when

sliced once parallel to each of its pairs of faces, obviously

has its whole surface doubled.

297. There is another form of action, analogous to this,

produced by certain substances, such as peroxide of

manganese, Avhen in a state of fine division. When a

stream of oxygen, containing ozone, is passed through the

powder it emerges as oxygen alone. The ozone has been

reduced to the form of oxygen by what is called Catalysis ;

the oxide of manganese is practically unaltered.

298. What is called the solution of a gas in a liquid is,

in many respects, analogous to the condensation on the

surface (or in the pores) of a solid.

The empirical laws of this suliject, originally given by

Henry and by Dalton, have been verified for moderate

ranges of pressure by Bunsen.

According to Henry, when a solution of a gas is in

equilibrium with the gas itself, the amount dissolved in

unit volume of the liquid is proportional to the pressure

1 Dewar and Tait, Proc. E.S.E., 1874.
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of the gas. The coefficient of proportionality diminishes

rapidly with rise of temperatiire.

To this Dalton added that each constituent of a "ascous

mixture is dissolved exactly as it Avould have been had
the others not been present.

It appears that the heat disengaged in solution is

always greater than that due to the mere liquefaction of

the gas. Hence the phenomenon is, to a considerable

extent, of a chemical character
;
and thus we are prepared

to find great differences in the absorption of the same gas

by different li(|uids. Thus carbonic acid is 2-5 times

more soluble in alcohol than in water
;
while it is 1 -8

times more soluble in water at 0° C. than in water at

15^ C.



CHAPTER XIII.

DIFFUSION, OSMOSE, TRANSPIRATION, VISCOSITY, ETC.

299. Though wo cannot mark a special gronp of the

particles of any one liquid or gas, so as to enable ns to

see how they gradually mix themselves with the others,

we have almost perfect assurance that they do so. This

assurance is based partly upon the relative behaviour of

two misciblc li([uids, or t^'o gases, put in contact with

one another
; partly upon the results of the kinetic

theory, which have been found fully to explain at least

the greater number of the phenomena ordinarily exhibited

by gases. Thus, altogether independent of the convec-

tion currents due to differences of temperature, there

goes on, in every homogeneous liquid or gas, a constant

transferene(.^ of each individual particle from place to

place throughout the mass. In homogeneous solids, at

least, it seems probable that there is no such transference,

but that each particle has a mean, or average, position

relatively to its immediate neighbours, from which it

suffers only exceedingly small displacements.

300. True diffusion, which is much more rajjid in

gases than in liquids, is essentially a very slow process

compared with those convection processes which arc

mainly instrumental in securing the thorough inter-

mixture of the various constituents of the air or ui
•JOS
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dissolved salts with the ocean water. For its careful

study, therefore, great precautions are required, with a

view to the preservation of uniformity of temperature, as

the only mode of preventing convection currents. "We

will suppose that these precautions have been taken.

If, by means of a tube (fitted with a stop-cock) which

is adjusted at the bottom of a tall glass cylinder nearly

full of water, we cautiously introduce by gravity a strong-

solution of some highly-coloured salt (such as bichromate

of potash), the solution, being denser than the water,

forms a layer at the bottom of the vessel. If Ave watch

it from day to day we find that, in spite of gravity,

the salt gradually rises into the water column, Avhich

now shows an apparently perfectly continuous gradation

of tint from the still undiluted part of the solution up
to the as yet uncontaminated water above. The result

irresistibly suggests an analogy with the state of

temperature of a bar of metal which is exposed to a

source of heat at one end. The analogy would be almost

complete if we could prevent loss of heat by the sides

of the bar; for experiment has shown that, just as the

flux of heat is from warmer to colder parts, and {ceteris

paribus) proportional to the gradient of temperature,

so the diffusion of the salt takes place from more to less

concentrated solution, and at a rate at least approximatel}'

proportional to the gradient of concentration. This is,

possibl}', not quite the case at first, Avhen there are

exceedingly steep gradients of concentration, for then

(see § 292) there is probably something akin to a surface-

film which for a time behaves somewhat like that between

two li(|uids which do not mix. This is forcibly suggested

by the result of rough stirring of the contents of a vessel

with parallel glass sides, in which there is a layer of strong
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brine with clear water above it
; especially if a horizontal

beam of sunlight, from a distant aperture in the shutter

of a dark room, be made to pass through the vessel,

and be received on a sheet of paper placed a few inches

behind. However rough the stirring, if it be not too

long continued, the mixture is soon seen to settle into

layers of different densities
;
and time is re([uired before

diffusion does away with the steep gradients of concen-

tration which have been produced between the layers.

These effects can be produced again and again in the

same mixture, and show how very much more rapid is

the mixing when aided by rough mechanical processes

than when left entirely to the slow but sure effects of

diffusion. The effect of the stirring is to produce im-

mensely extended surfaces of steep gradient of concen-

tration all through the mixture, and thus greatly to

accelerate the natural action of diffusion, to which the

final result of uniform concentration is really due.

301. The first accurate experiments on this subject

are due to Graham,^ who employed various very simple

but effective processes. He showed that while the rate

of diffusion varied considerably with the substances

employed, these could be ranged in two great classes,

Colloids and Crystalloids, the members of the first class

having very small diffusivity compared with those of the

second. Thus he found that the times employed for equal

amounts of diffusion in water were relatively as follows :
—

Hydrochloric Acid

Common Salt .

Sugar
Albumen
Caramel .

1

2-33

I

49

98

CliPmical and Physical Researches, collected and reprinted, 1876.
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He also verified that the rate of diffusion of any one sub-

stance is proportional to the gradient of concentration,

and added the important fact that rise of temperature
has a marked effect in accelerating the process.

302. The subject has since been elaborately investi-

gated by various experimenters, and absolute values of

diffusivity have been calculated from their experiments
as well as from those of Graham.

Following the analogy with heat-conduction, we may
define, after Fourier's method, as follows :

—
The diffusivity of one substance in another is the

number of units of the substance whicli pass in unit of

time through unit of surface, when the gradient of con-

centration perpendicular to the surface is unit of substance

per nnit of volume per unit of length.

If we use the C. G. S. system, in which nnit of length

is a centimetre, nnit of mass a gramme, and luiit of time

a second, the numbers obtained would be exceedingly

small, so that the C. G. S. system is departed from in

practice to the extent of making a day the nnit of time.

With this we have, according to Stefan's calculations

from Graham's results :
—

Hj'drochloric Aei>l

Common Salt .

Si;gar

Albumen

(.'araniel

The meaning of this is that, for instance at 10° C, in

water which so holds common salt in solution that there

is one gramme per cubic centimetre more in each hori-

zontal stratum, than in the stratum one centimetre above

Temi^erature C.
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it, the upward progress of the salt is at the rate of 0"91

gramme through each square centimetre per day. [Soki-

tions of common salt differing by whole grammes of salt

per cuhic centimetre are, of course, only a pleasant fiction

of the C. G. S. system.]

303. Fick, Voigt, Hoppe-Seyler, H. Weber, and many
others, have greatly extended Graham's work

; some

using his process (Avith slight variations), others employ-

ing processes depending upon special physical results

(such as rotatory polarisation or electromotive force) due

to the salt which is diflfusing. It is probable that very

good measures may be obtained, though the method

would be laborious, by using a narrow tank with parallel

glass sides (as in § 300), and observing, from time to

time, the greatest refraction suffered by any part of a

horizontal beam of sunlight transmitted through the

heterogeneous liquid, the tank having been originally

half filled (as in § 300) with a strong solution of a salt,

under pure water.^ Sir W. Thomson introduced a

rough - and -
ready method by letting down into the

diffusion column a number of glass beads, containing

more or less of air, and therefore having, each as a whole,

different mean densities, and observing from day to day
the position of the stratum in Avhich each floated in

equilibrium. This method would probably be the best

of all, could we only make the beads small enough, so

as not to trench upon too many strata at once, and could

we also make certain that neither air-bubbles nor crystals

should develop upon them. The latter condition, how-

ever, is practically unattainable.

304. It seems that the idea of comparing diffusion

with heat-conduction was originally propounded by

iTait, "On Mirage," Trans. B.S.E., 1881.
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Berthollet before Fourier published his great investiga-

tions on the latter subject; but Tick was the first to

revive and develop it in more recent times.

The physical explanation of the cause of diffusion of

liquids in one another, or of solids in a liquid, is vastly

more complex and difficult than that of the diffusion of

gases, though, in some of their coarser features, the

first two of these are closely analogous to the last. In

the words of Clerk-Maxwell :

" It is easy to see that if

there is any irregular displacement among the molecules

of a mixed liquid, it must, on the whole, tend to cause

each component to pass from places where it forms a

large proportion of the mixture to places where it is

less abundant. It is also manifest that any relative

motion of two constituents of the mixture will be

opposed by a resistance arising from the' encounters

between the molecules of these components. The value

of this resistance, however, depends, in liquids, on more

complicated conditions than in gases, and for the present

we must regard it as a function of all the properties of

the mixture at the given place
—that is to say, its tem-

perature and pressure, and the proportions of the

different components of the mixture."

305. The interdiffusion of gases is thu.s, theoretically,

a simpler question than that of liquids; and has been

developed, from the basis of the kinetic theory of gases,

into an almost complete explanation of the observed

phenomena. We cannot here introduce the mathematical

part of the investigation, as it involves analysis of a kind

foreign to the range of an elementary book
;

but wc

simply state that the equations ultimately arrived at are,

in their simplest form, closely analogous to those obtained

by Fourier for heat-conduction in a homogeneous isotropic
s
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solid. Tliis part of the theory we owe mainly to Clerk-

Maxwell. The experimental part has been well supplied

by Loschmidt.i The following numbers give an idea of

his values of interdiffusivity of pairs of gases, in a

mixture at a pressure of one atmosphere. We have

preserved only two significant figures, though the

measures (which are in C. G. S. units) were given to

four.

Carbonic Acid and Air .
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liquids pass at different rates tlirougli a porous membrane.

Thus Nollet immersed in Avater a vessel full of alcohol,

tightly closed by a piece of bladder, and was surprised to

find that the contents soon increased to such an extent

as almost to burst the bladder. He then filled the

vessel with water, tied on the bladder, and immersed the

whole in alcohol, when the reverse effect was obtained
;

the contents of the vessel diminished and the bladder

Avas forced inwards. Strange to say, after so good a

commencement, lie contented himself with recording the

two observations.

307. The phenomenon is so obviously connected with

many processes which" go on in living bodies, whether

vegetable or animal, that it has attracted the attention

of physiologists as well as of physicists, and an immense

mass of observations on various forms of it has already

been accumulated.

Its theoretical explanation is nnicli more complex than

that of ordinary liquid diffusion, because it is found that

the material of the septum plays an important, often a

paramount, part in determining the rate, and sometimes

even the direction, of the osmose in a trial with two given

liquids.

Osmose is undoubtedly a case of ordinary diffusion,

complicated by the molecular actions between the material

of the septum and the various liquids employed. Thus

there need be no more reason for surprise that a liquid,

such as the sap in plants, should be osmotically raised

to great heights against gravity, than that water should

rise in a capillary tube, or that bichromate of potash

should (§ 300) diffuse upwards in a column of water.

308. Something very similar to osmose can be obtained

by ordinary diffusion, when horizontal strata of two
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liquids are separated by a stratum of a third liquid of

intermediate density. Sometimes one or other of the

extremes alone passes through the intermediate layer,

sometimes both diffuse into it. A beautiful method of

graduall}^ developing chemical actions which, on the

large scale, would produce dangerous explosions, is thus

suggested. AVhen nitric acid, water, and alcohol are

the three liquids, the chemical action takes place slowly

where the two extreme liquids meet, as they diffuse

toAvards one another through the water-septum.

309. Though the theory is but imperfectly understood,

the practical applications of osmose have been developed

to an important extent. Of these we need here mention

only the process of Dialysis, due to Graham. The dis-

tinction between Colloids and Crystalloids, in their

behaviour as regards a porous septum, is even more

marked than in direct liquid diffusion. Hence, Avhen a

mixture of colloids and crystalloids, in solution, is placed

on one side of a bladder or a piece of parchment paper,

and pure water on the other side, it is practically the

crystalloids alone which pass through the septum into

the water. If the colloids Ije originally in enormous

excess, one repetition of the process on the mixture

which has passed through the septum is sufficient to

separate the crystalloids almost entirely from the colloids.

This process is of very great importance as an auxiliary

to chemical analysis in medico-legal questions :—for the

more common of the violent poisons are with few excep-

tions crystalloids, and can be easily and almost com-

pletely separated, bj'^ dialysis, from the large admix-

ture of colloids in which they are usually found in the

viscera.

310. Graham, in his extensive series of experiments
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on the passage of gases tlirougli various solids with holes

or pores, recognised several quite distinct processes, each

Avith its own laws.

^AHien a gas is maintained at constant pressure on one

side of a very thin non-porous plate, which has a small

hole in it, there being vacuum at the other side, the

process of passage is called Effusion. This may be

looked on as at least roughly analogous to the passage of

a liquid through the orifice. The closer consideration of

it belongs to Thermodynamics. The Avork done on unit

volume as it passes out is directly as the pressure, the

kinetic energy acquired is measured by the density and

the square of the speed of effusion conjointly. Hence,

under the same pressure, the speed of effusion is inversely

as the square root of the density. This result was very

nearly realised in Graham's experiments ;
witness the

following :
—
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From these experiments Graham conchided that the

law of this process is analogous to that of diffusion with-

out a septum. Bunsen has applied the result to the

construction of a very excellent instrument for measuring
the density of a gas.

311. Transpiration is the name given by Graham to

the passage of a gas under pressure through a capillary
tube. The results obtained were of a much more complex
character than in the case of effusion; and the law of

the process, so far as it could be ascertained by experi-
ment alone, was of a different form. Capillary tubes,

varying in length from 20 feet down to a few inches,
were employed. It was found that the material of the

tube had no influence
;
hence it has been suggested that

the tube becomes lined with a film of the gas, and that

the key to the difficulties of the problem is to be sought

mainly in connection with viscosity. The rate of trans-

piration of hydrogen is only double of that of nitrogen,
while that of carbonic acid is much greater than that of

oxygen :—
Limiting Transpiration Times

in very fine Capillaries.

Oxygen 1 -000

Air . . . . .

Nitrogen and Carbonic Oxide

Hydrogen . . . ,

Carbonic Acid

0-901

0-875

0-437

0-727

on of the explana-
The two last results show the foundati

tory remark towards the end of last section.

The following are some of Graham's comments on

this very curious subject :
—

"The times of oxygen, nitrogen, carbonic oxide, and

air, are directly as their densities, or equal v-eiglits of

these gases pass in equal times. Hydrogen passes in
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half the time of nitrogen, or twice as rapidly for equal
volumes. The result for carbonic acid appears at first

anomalous. It is that the transpiration time of this gas
is inversely proportional to its density, when compared
with oxygen. It is to be remembered, however, that

carbonic acid is a compound gas, containing an equal
volume of oxygen. The second constituent carbon

which increases the weight of the gas, appears to give

additional velocity to the oxygen in the same manner

and to the same extent as increased density from pressure,

or from cold (as I believe I shall be able to show), in-

creases the transpiration velocity of pure oxygen itself.

A result of this kind shows at once the important bear-

ing of gaseous transpirability, and that it emulates a

place in science with the doctrines of gaseous densities

and combining volumes.

"The circumstance that the transpiration time of

hydrogen is one-half of that of nitrogen, indicates that the

relations of transpirability are even more simple in their

expression than the relations of density among gases.

In support of the same assertion may be adduced the

additional fact; that binoxide of nitrogen, although

diftering in density, appears to have the same transpira-

tion time as nitrogen. Protoxide of nitrogen and

carbonic acid have one transpiration time, so have

nitrogen and carbonic oxide, as each pair has a common

density."

312. When one gas is separated from another, or from

a vacuum, by a septum of compressed graphite (§ 53), the

law, and even the rate, of passage come to be very nearly
the same as those of ordinary gaseous diffusion. Thus

gases pass through such a septum at rates inversely as

tlie square roots of their densities, as in effusion. If the
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septum is made of plaster of Paris, the results become

partially complicated by transpiration. This source of

confusion is practically non-existent when the septum is

made of "
biscuit-ware," as it is technically called

;
and

the same may be said of all the finer kinds of unglazed
earthenware. Here the pores are so fine that, as Graham

says, the action ceases to be molar and becomes molecular.

Each particle acts, as it were, on its own account. Hence,
Avhen a mixture of two gases of different densities is

placed on one side of such a septum, the less dense gas

passes in greater percentage than the denser, and we

have Atmolysis : — a mode of separating different gases

somewhat akin to dialysis (§ 309). There are few physical

experiments more striking and suggestive than the simple

one of surrounding, Avith an atmosphere of coal gas, the

liulb (made of unglazed clay) of an arrangement like a

large ordinary air-thermometer. The rapidity with which

the gases pass through the bulb is extraordinary.

313. But when the septum is made of caoutchouc tlie

process of penetration is quite different. The sejDtum

now acts as a colloidal body, not as a porous one
;
and

the gas combines in an imperfect chemical manner with

the matter of the septum, in which it diffuses (in the

ordinary sense of the term), until it reaches the other

side and is set free. Thus the small toy-balloons of thin

india-rubber, when originally filled with hydrogen, soon

collapse. On the other hand, when they are blown Avith

air and then immersed in an atmosphere of hydrogen,

they rapidly swell and burst.

The same phenomenon is beautifully shown by blow-

ing a soap-bubble with carbonic acid gas. For the gas

dissolves in the liquid film, diffuses through it, and

escapes into the air, so that the bubble soon collajises.
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Similarly, an ordinary soap -bubble made to float on

carbonic acid gas expands, gradually sinks, and finally

bursts.

A good instance of gaseous diff"usion is afforded by

evaporation of water, or other liquid, at temperatures

below the boiling point, when air is present. For the

process goes on until the vapour iri contact with the

liquid has a pressure determined solely by the tempera-

ture, and by the curvature of the liquid surface. When
a layer of vapour of the proper pressure has once formed

at the surface, the resistance to its diffusion is so con-

siderable that, unless there be wind or convection-currents,

the rate of evaporation is reduced to that of diffusion
;

and vapour is formed (at the liquid surface) only as fast

as that Avhich is already formed is able to get away. By

weighing, from time to time, a test-tube of known length,

which has a layer of liquid at the bottom and is open at

the top, fair measures of the rate of diffusion in air, of

vapours heavier than air, can be obtained.

314. Very curious results have been obtained by
Deville and Troost with reference to the rapid passage

of various gases through heated cast-iron. Carbonic

oxide is one of these, and as this is a highly poisonous

gas, the matter is one of great importance in relation to

the heating of rooms by stoves. They also showed that

highly heated platinum is freely pervious to hydrogen.

Graham's researches on the behaviour of palladium with

respect to hydrogen have afforded the means of obtaining

similar effects even at temperatures far below red-heat
;

and, quite recently, v. Helmholtz and Eoot have proved

that platinum is pervious to hydrogen even at ordinary

temperatures. Thus the question is one of importance,

not alone from the sanitary point of view, nor from the
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point of view of its purely scientific explanation, but

also from the very important point of view of the con-

struction of gas-thermometers for the measurement of

high temperatures, in Avhich the recipient must necessarily

be made of some practically infusible metal. The whole

of this part of the subject, however, has a specially

chemical interest, so that we are not called on to discuss

it further.

315, We have already employed the word Viscosity in

two somewhat different applications. In our general

discussion of common terms (§ 37) we spoke of it as

applied to liquids, and also, by parity of results, to gases.

But in § 249 we used it as denoting a property possessed

even by the most elastic of solids.

We must now consider, more carefidly, its application

to fluid motion.

And, first, as regards liquids. Questions such as were

briefly touched upon in § 37 belong, in their full develop-

ment, Avhere eddies present almost insuperable difficulties,

to HydroMnetics, and are therefore not to be treated

farther in this work. But the passage of a liquid, under

pressure, through a capillary tube, is (so far as it is

amenable to elementary mathematical treatment) part of

our subject. So is the torsional vibration of a disc, in

its own plane, when it is suspended by a wire and im-

mersed in a fluid, especially when, as in Clerk-Maxwell's

experiments on gases, other two discs are fixed near and

parallel to it, on opposite sides. So far as liquids are

concerned, these forms of experiment were carefully

worked out by Poiseuille and by Coulomb respectively,

and have since been extended, with various modifications,

by V. Helmholtz, 0. I'l ^Meyer, etc. Later, Graham (as

we have just seen), Clerk-^faxwell, and many others,
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have applied one or other of these forms of experiment,

more or less modified, to the determination of the

viscosity of gaseous bodies.

316. Before going farther, we must define precisely

what we mean by viscosity ;
and the definition will, of

course, show how it is to be measured.

Suppose a layer of fluid, of unit thickness, to fill the

interval between two plane surfaces of indefinite extent to

whicli. the fluid adheres. When one of these surfaces is

made to move in a given direction parallel to the other,

with unit speed, the tangential force on either per unit of

surface is the measure of the viscosity.

Hence, if, in Fig. 1, § 38, z? be the speed at depth y,

the tangential stress per unit surface of the layer at that

depth is—
dv

dy

where k is the viscosity. The dimensions of Viscosity,

therefore, differ from those of Eigidity (§ 178) simply by
the time unit

;
i.e. as the dimensions of velocity differ

from those of acceleration. This may be seen at a glance

from the equation of § 250.

The establishment of a simple working definition, such

as that above, leads at once to the formation of the proper

equations of motion in all problems of this kind. The

process is precisely the same as that adopted by Fourier in

his definition of Heat Conductivity ;
and it is curious to

see how all who have, in modern times, treated viscosity

without using Fourier's method, have fallen into the vague

and misleading methods of Fourier's predecessors.

317. n, with this definition, we investigate the motion

of a liquid in a capillary tube, when it has become steadj',

we are led to the result (fully borne out by the expcri-
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nients of Poiseuille ^) that, ceteris jm?7Z^??s, the discharge

in a given time is proportional to the fourth power of the

radius of the bore. {Compare § 228.)

For the sokition of the problem Ave assume that the

motion is everywhere parallel to the axis of the tube, and

with speed dependent only on the distance from it. Let

K be the viscosity, and consider the tangential stress (per

unit length of the tube) on the surface of a cylindrical

layer of liquid of radius r, concentric with the tube. If v

be the speed of that layer, the amount of the stress is

(by the definition above)

o ^'^
I'jrrx.-r-.

ar

Hence the difference of the tangential forces on the surfaces

of a cylinder of liquid of thickness h' is

9 "^

k>-
But, as the motion is not accelerated, this must be equal

and opposite to the difference of the pressures on the ends

of the cylinder, which is (per unit length)

dx

where x is measured parallel to the axis. This must

obviously be independent of .r, and, as the motion is

always very slow under the conditions, jj is approximately

independent of r. Hence

dp _
dx

a constant, whose obvious value is tlie difference of

pressures at the ends, divided by the length, of the tube.

^ Mlm. des Savans Etrangers, IX., 1S46.
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Thus -we have the very simple equation

d/ dv\- «»' =
"drVdrJ

•

This gives
dv a. o

r— := — — r
dr '2k

the integration constant being zero, because otherwise we

should have finite tangential stress on an infinitely small

filament along the axis.

Thus, if rg be the radius of the bore of the tube, and if

we assume that v is nil when r =
r^^, {i.e.

that there is no

finite slipping of the liquid along the walls of the tube)

The whole volume of liquid which passes in unit of

time through each cross section is

J 2k Jo
r-)rar =—r

. 4

8x.
0-

318. This expression enables us at once to calculate the

values of k from experiments such as those of Poiseuille.

Their agreement Avith the formula above is very close

throughout, the bores, lengths, and pressures being varied

within wide limits. The most remarkable additional

feature which Poiseuille recognised is the rapid diminution

of viscosity of water with rise of temperature. In C. G. S.

units his experiments give, approximately.

Temperature C. CoefEt. of Viscosity.

0^ 0-018

10° 0-013

20° 0-010

This means that there is a tangential stress of 0-018

dynes per square centimetre on each of two parallel planes,

one centimetre apart, when one is moving relatively to
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the other at tlie rate of one centimetre per second, and.

when the interspace is filled with water at 0° C.

It is well to note that from 0° to 10° C. the viscosity

of water falls off at the rate of 2 '8 per cent per degree.

Compare this with the corresponding increase of the rate

of diffusion of common salt in water (§ 302), which, by-

Graham's results, is about 4 per cent per degree of

temperature.

319. The oscillation method of Coulomb is trouble-

some in the complex mathematical details to which it

leads, and even more so in the experimental precautions

which it requires. It has been carefully worked out, from

both points of view, by many different physicists, including

especially 0. E. INIeyer. Modifications of it have been

employed by v. Helmholtz and others. The theoretical

part of the investigation, which is very complex, was first

developed by Stokes, who applied it to the reduction of

pendulum experiments.

The results of Meyer arc about a sixth greater than

those of Poiseuille. Those of v. Helmholtz and v.

Pictrowski,^ in which liquids Averc contained in an

oscillating sjjhere, were complicated by finite slipping,

which led to a new problem. Their result for water is

about one-fourth greater than that of Poiseuille.

According to Schottner,^ the coefiicient of viscosity of

glycerine (in C. G. S. units) sinks, from about 42 at 3° C,
to little more than 8 at 20° C.

320. The Viscosity of a gas can be calculated, at least

approximately, from the Kinetic theory, for it is easy to see

that it must depend upon the transference of momentum

by the interchange of particles between two contiguous

layers of the gas which have relative velocity.
1
Sitzungsber. der K. Ac. in Wien, 1860. ^

Jhid,^ 1878, p. 686.



DIFFUSION, OSMOSE, TRANSPIRATION, ETC. 287

Clerk-Maxwell, who first gave the theory of this subject,

found that the viscosity is independent of the density in

each particular gas, and increases with rise of temperature,

being directly proportional to the square root of the

absolute tempera,ture.

But his experiments on air, made (§ 315) by the oscil-

lation method, gave (in C. G. 8. units) the formula

0-000,000,685(274+
where t is the temperature centigrade. Here a different

temperature-law api^ears.
^

Maxwell also showed that in oxygen the viscosity is

greater than in air, and in carbonic acid less. Li hydrogen

it is about half as great as in air. Theoretically it is as

the density of the gas, and the mean free path of a

particle, conjointly. The mean free path depends upon

the size of the particles, being (ceteris imrihus) inversely

as the squares of their diameters. [Compare with Graham's

results above, §§ 310, 311.] This subject has since been

elaborately investigated by Meyer, Kundt and Warburg,

and many others, but the exact law of the temperature-

variation is still uncertain.

1 Stokes {Phil. Tram., 1886) attributes this diserepaucy to non-

parallelism of the fixed and oscillating j)lates.



CHAPTER XIV.

AGGREGATION OF PARTICLES.

321. This chapter must be a very short one, because,

though experimental facts are to be had in profusion, the

subject, as a Avhole, has not yet been raised to the higher
level of Science from that of the mere preliminary

"
beetle-

hunting or crab-catching stage." Parts of it are already

much further advanced. The geometry of crystalline

forms has been very fully developed and systematised.

The physical properties of the aggregate have been

scientifically developed, as we have seen, mainly from

the basis of Hooke's Law for solids and liquids, and of

Boyle's Law for gases ;
and the formulation of these laws

has enabled us to discuss, with something like a secure

foothold, the deviations from them.

But the mode of formation of the aggregate of particles,

at all events in solids and liquids, is a question of much

greater difficulty. We still require, in fact, a Kepler to

co-ordinate the facts, before there can be a chance for a

I^ewton to group them under some simple but all-embracing

statement.

All that our plan permits us to do is to point out

briefly how far the Ptolemy and the Copernicus, as well

as the Tycho Brahe, of this subject have marshalled the
288
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materials for the coming Kepler. The ISTewton will be

later in appearing.

322. In the case of gases a real step to explanation

has been taken, but a great part of the very elements of

the Kinetic Thconj {%% 33, 107) is still obscure and

difficult. The earliest suggestion of it is commonly
attributed to D. Bernoulli (1738), but the following

passage from Hooke's Pamphlet De Potentia Eestitutiva,^

shows that essentially the same ideas had been published

long before.

" In the next place for fluid bodies, amongst which the

greatest instance we have is air, though the same be in

some proportion in all other fluid bodies,

" The air then is a body consisting of particles so small

as to be almost equal to the particles of the Hetero-

geneous fluid medium incompassing the earth. It is

bounded but on one side, namely, towards the earth, and

is indefinitely extended upward being only hindered from

flying away that way by its own gravity (the cause of

which I shall some other time explain.) It consists of

the same particles single and separated, of Avhich water

and other fluids do, conjoyned and compounded, and

being made of particles exceeding small, its motion (to

make its ballance with the rest of the earthy bodies) is

exceeding swift, and its Vibrative Spaces exceeding large,

comparative to the Vibrative Spaces of other terrestrial

bodies. I suppose that of the Air next the Earth in its

natural state may be 8000 times greater than that of

Steel, and above a thousand times greater than that of

common water, and proportionably I suppose that its

motion must be eight thousand times swifter than the

former, and above a thousand times swifter than the

1 Suu footnote to § 221.

T
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latter. If therefore a quantity of this body be inclosed

by a solid body, and that bo so contrived as to compress

it into less room, the motion thereof (supposing the heat

the same) will continue the same, and consequently the

Vibrations and Occursions will be increased in reciprocal

proportion, that is, if it be Condensed into half the space

the Vibrations and Occursions Avill be double in number :

If into a quarter the Vibrations and Occursions will be

quadruple, etc.

"
Again, if the conteining Vessel be so contrived as

to leave it more space, the length of the Vibrations will

be prof)ortionably inlarged, and the number of Vibrations

and Occursions will be reciprocally diminished, that is, if

it be suffered to extend to twice its former dimensions,

its Vibrations will be twice as long, and the number of

its Vibrations and Occursions will be fewer by half, aud

consequently its endeavours outward will be also weaker

by half.

" These Explanations will serve mutatis mutandis for

explaining the Spring of any other Body whatsoever."

The modern revival of the theory is due to Herapath ;

and, a little later, to Joule, Avho was the first to make

definite calculations as to the speed of the j^articles of a

gas necessary for the production of the observed pressure

at different temperatures. Krcinig is constantly cited,

especially in German works, as having advanced the

theory ;
but the only novelty which his paper

^ seems to

contain is the somewhat startling, and certainly as yet

unverified, result that the ireigld of a gas when in motion

is only half what it is when the gas is at rest. [He for-

gets to take account of the additional impulse due to

restitution, § 255.]
^
Poijij. Ann., 1856, xcix.

\).
319.
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The first approach to a thorough treatment of the

theory was made by Clausius, who took account of tlie

mutual impacts of the particles, Avitli the consequent con-

ception of the mean free ixdh ; and who introduced the

statistical method of treatment. He was followed by

Clerk-Maxwell, and by Boltzmann, and among the three

the theory was rapidly developed.

It is already competent, as is shown in works on Heat

(to which the theory now properly belongs) to explain

fully many of the properties of gases ;
but it still labours

under an unsurmounted difficulty, viz. the explanation

of the diversity of values of the ratio of the two specific

heats (at constant pressure and at constant volume) in

various groups of gases. The difficulty is probably due

to our ignorance of the interior mechanism of the

particles of gases ;
and it has been greatly enhanced by

an apparently unwarranted application of the Theory of

Prohabilities, on which the statistical method is based.

But the examination of such questions is foreign to our

work.

323. The key to the cx})lanation of the liquid state is

undoubtedly to be sought in connection with Andrews'

grand discovery of the Critical Temperature (§ 194).

Whether something akin to this does, or does not, hold

with reference to the relation between the solid and

liquid states, is a problem which does not appear to have

been attacked. It presents, undoubtedly, most formid-

able difficulties, experimental as well as theoretical,

Avhich are heightened by the well-known fact that there

are solids whose melting point is lowered by pressure.

But here, again, we trench on the domain of Heat.

324. The essential difference between the solid and

the liijuid states of any kind of matter lies in the fact
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that any distorting stress, however small, if only persist-

ently applied, produces finite change of arrangement

among the particles of a liquid, whereas it can in general

hut infinitesimally alter the relative position of cont'ujaous

particles of a solid (unless, of course, it he sufficient to

produce rupture of the mass). It is barely conceivable

that there can be in any case an abrupt transition from

one of these states to the other ; and, in fact, in the

great majority of cases at least, there is known to be a

gradual transition from the solid to the liquid states, as

the temperature is raised in the vicinity of the melting-

point, so that there is continuous passage from the state

of very plastic solid to that of very viscous liquid. The

same thing is observed in various colloidal bodies such as

isinglass and other jellies, when made up with different

amounts of water. In this connection the student

should again read the remarkable statement of Clerk-

Maxwell in § 253 above.

Especially on the subject of crystallisation do we

appear to get some light from such a view of inter-

molecular action. For it would seem that an essential

requisite to the formation of a homogeneous crystal must

be the comparative freedom of each particle from the in-

fluence, direct or not, of all besides those in its immediate

vicinity. That there is, even in the most homogeneous

crystals, still at least a trace of what jNIaxwell calls the

more stable groups, is probably indicated by the exist-

ence of Cleavage Planes, which are not in general parallel

to the more prominent faces of the crystal. In fact, as

Sorby has shown, cleavage planes analogous to those of

slate-rocks can be developed in the majority of plastic

solids by the application of pressure-stress in a direction

perpendicular to them. It is thus that slates themselves
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are formed from a deposit of mud. The proof is obvious

from the fact that the planes of cleavage are often in-

clined at large angles to those of stratification. But we

offer these remarks merely as a suggestion, which our

limits prevent us from developing.

In this connection it may be well to mention an acute

remark of Le Eoux ^ to the effect that annealing appears

to preserve the state of isotropy characteristic of fusion.

He was led to this by remarking that a glass of borate

of magnesia, which was ordinarily transparent, became

like porcelain or, rather, like white marble when very

quickly cooled.

.325. Whether all solids tend to acquire ultimately a

crystalline structure or not, we can at least seek to find

the forms which they are likely to assume in cases (such

as that of slow deposition from a state of solution) where

each particle is free to choose its position of least poten-

tial energy relative to those already deposited. This

Avas long ago very well worked out by Haiij', though (of

course) without any reference to potential energy. And
the agreement, of the results of such hypothetical calcul-

ations, with the observed forms of natural and artificial

crystals, shows that we have really made a step in the

right direction (though a very short one) to the explana-

tion of these singular and beautiful results of the action

of molecular forces.

.326. The simplest case is that in which the separate

particles behave as if they were spherical, i.e. as if they

exerted equal resultants of molecular and of thermal

action (at the same distance) in all directions. Here we

can call to our assistance the analogy of well-known

results as to the piling of shot, etc.

'

Compfes Bendus, 1867, p. 12C.
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There arc two ways in which we may suppose the

first plane layer to be laid down
;

i.e. in square order,

or in equilateral triangular order. i\gain there are two

Avays in which the next layer may be (symmetrically)

deposited, i.e. particle above particle, or particle above

the middle point of each square, or of each ctpiilateral

triangle. The two latter cases, however, are really tlie

same arrangement, so far as the relative positions of

contiguous particles are concerned
;
as we see at once by

looking at one of the faces of a four-sided pyramid
built up on a square base. For in the face the order is

triangular. Or, if we remove one edge from the three-

sided pyramid built on an equilateral triangular base,

we find the particles in the plane of replacement to be

in square order.

AVe find these two forms, apparently so different, in

many species both of natural and of artificial crystals.

Thus the regular oktahedron, Avhich is merely two four-

sided pyramids Imilt on opposite sides of the same square

base, and its liemihedraJ form, the regidar tetrahedron,

which is the three-sided pyramid built on an equilateral

triangular base, are both met with in various substances

belonging to the Cubic Sydem. The measured angles

l)etween the several pairs of faces are found to agree

exactly with those of the geometrical solids.

327. An imperfectly developed oktahedron, when the

imperfection is symmetrical, may assume various forms,

all of which are met with in actual crystals. Thus,

suppose we remove layer after layer, symmetrically,

from the summits of the oktahedron. The new faces thus

})roduced form parts of the faces of a cube
;
and we may

obtain the cube complete by continuing the jjrocess till

the last trace of the oktahedral faces has been removed.
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Replace, symmetrically, the edges either of the oktahe-

dron or of the cube, and we produce a set of parts of the

faces of what is called a Ehombic Dodekahedron (Fig. 41).

Many natural crystals assume symmetrical forms con-

taining faces belonging respectively to the oktahedron,

the cube truncating its summits, and the rhombic dode-

kahedron replacing its edges.

Instead of replacing each edge by a single plane

equally inclined to the faces which meet in that edge,

suppose we level it symmetrically by two planes. We
shall now no longer have a form with fixed angles {i.e.

invariable shape) as in the cases previously mentioned,

but one which (though its general character is determined)
will have its form dependent on the inclination of the

bevelling planes to the faces which meet in the edge

bevelled. Here, again, the geometrical results are found

to fit the forms actually presented in nature.

It is an interesting and instructive work for the

student to verify these statements by operating on a

lump of soft chalk, or (still better) stiff putty or

modeller's clay, by means of a broad, but thin, bladed

knife.

328. This is not the place to enter into crystallo-

graphic details, but we may introduce the following

statement, which includes all the above results, and

which is found, at all events, to accord fully with the

general appearance of any of the very numerous crystals

belonging to what is called the cubic system.

Any three axes which meet, but which do not lie in

one plane, being chosen, the equation of any plane

whatever, which does not pass through the origin, can

be written in the form



296 PROPERTIES OF MATTER.

Here h, k, and J are finite quantities, the reciprocals of

the distances from the origin at which the plane meets

the axes respectively.

To obtain all the plane faces of any one simple form

of crystal, all we have to do is to give to h, /r, I in the

above expression all admissible values in succession.

329. AVhen we take the cubic system, of which alone

we have yet spoken, symmetry shows that if the three

axes be taken as the lines joining pairs of opposite

summits of the oktahedron, obtained as in § 32G aliove,

these will possess properties absolutely alike. Thus

symmetry further shows that the numbers Ji, I; I maij lie

awanged in any order, for what is true of any one of the

axes is true of each of the others. Similar considerations

show that each of li, 7r, /, independent of the others, may
he either positive or negative. These quantities are

alwaj's found, in actual crystals, to have their ratios

rigorously expressible in small Whole Numbers. [This,

of itself, is a very strong argument in favour of the

notion that the crystal is built up of little parts, all equal

to one another.]

The numbers /;, Z-,
I can l)e arranged in six different

orders
; and, as any one of these orders has eight possible

arrangements of signs, there are forty-eight symmetrically

arranged plane triangular faces on the most general simple

form of this system. This form is found in many natural

crystals, and is called a hexakis-oktahedron (Fig. 37).

When two of It, h, I are equal, it is usual to divide the

forms into two groups according as the third is less or

greater than the others. Both classes have twenty-four

faces only, but in the first group they are triangular, in

the second (juadrilateral. These are, respectively, the

triakis-oktahedron (Fig. 38) and the eikositetrahedron
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(Fig. 39) Avhicli are derived respectively from the

oktaliedron and the cube by symmetrical bevelling of

their edges.

Intermediate to these there is the case Avhen all three

of h, li,
I are equal, and we have the oktaliedron itself.

There is also a limiting case when the third vanishes.

This is the rhombic dodekahedron (Fig. 41) discussed in

§ 327
;
and of course it also forms the limiting case of

the series when one of
li, I; 1 vanishes and the others are

(generally) une(|ual, called the tetrakis-hexahodrnn (Fig.

40).

"When two vanish we have the cube.

The following figure shows the Hexakis-Oktahedron,

an octant (lying among the positive axes of x, ij, z), being

specially lettered for reference, and we can easily see how

it decjrades into the other forms.

Fia. Fin. 38.

Thus if xC//, and therefore //A,: and cB./-, become

straight lines (i.e. if the planes marked a and h, c and d,

e and /, coincide in pairs), the figure becomes the triakis-

oktahedron (Fig. 38). This degrades into the oktahedron

if D be in the plane ocy: {i.e. if a, h, c, d, e, f, are all one

plane) : and into the rhombic dodekahedron if DC be

perpendicular to the plane of xi/ (i.e.
if a, h, a', V ,

are all

parts of one plane).
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Again, if tlic planes /and a, h and c, d and c, coincide

in pairs, we have the eikositetrahedron (Fig. 39).

If ADB be parallel to the plane of xij, etc.
,
the angle

ADB is a right angle, the planes / and /, a and a', h and

V, etc., coincide in pairs, and the figure is the tetrakis-

hexahedron (Fig. 40), which becomes the cube when /', /',

Fio. 39.

Fio. 40. Fin. 41.

a, a', etc., are all in one plane ;
and the rhombic dodeka-

hedron when a, a', h and V are all in one plane.

330. Six faces of the rhombic dodekahedron are

parallel to the line joining D with the origin, and are

situated symmetrically round it. If, then, these faces

be extended in their own planes without any alteration

of the two groups of three forming the other faces, the

whole will become a regular hexagonal prism with ends

consisting each of three equal rhombic faces with their

greater angles in contact at the summit. This is found.
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by measurement, to bo tbe form of a bee's cell. And a

series of tliese dodekahedra (all equally and similarly

distorted from equal rliombic dodekahedra) can (like

them) be so packed together as to fill space without

leaving interstices, as in a honeycomb.
331. If, instead of building up a mass of equal spheres,

VTQ use similar, equal, and similarly situated ellipsoids of

revolution, we must make corresponding alterations in

our rules for h, l; I above. If the chief axes of the ellip-

soids be perpendicular to the layers of particles, the

X, ?/, z axes are still a rectangular system, but /;. (say) is

no longer interchangeable with k or with /. For h is

now a small integral multiple of a parameter which

depends on the chief axis of the ellipsoid, while A- and I

are similar multiples of the (equal) parameters of the

other two axes. This greatly reduces the number of

possible faces in the simple forms.

If the particles are similar, equal, and similarly situated

ellipsoids, touching one another in a layer by the ends of

two of their axes, the x, y, z system is still rectangular,

but no two of A, l\ I are interchangeable.

In any other arrangement, which is capable of giving

a homogeneous whole, the simplest x, y, z system is no

longer rectangular ;
and the ellipsoids, though still

similar, equal, and similarly situated, may come in

contact (in threes) in an infinity of different ways.

There is no known form of crystallised matter whose

separate faces cannot be exactly accounted for by results

based on these premises, though tliere are many cases of

hemihedry, etc., in which the faces geometrically deter-

mined for a simple form present themselves only in

selected groups.

332. In what we have said above, the only assumptions
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made (for the purpose of explaining homogeneity) were

that the particles grouped were themselves equal, similar,

and similarly situated
;
and that the arrangement of its

neighbours round it was exactly the same for each

particle.

But it is easy to conceive that very diflferent results

may be obtained, even with identical materials, according
to circumstances. Every one who has seen water which

is prevented only by currents from becoming solid ice,

and which is full of excessively small ice crystals, may
easily imagine a state of things in which the particles

(which, otherwise, would have been deposited one by
one to form a crystal) may arrange themselves in ver}'

small, but similar and equal, groups before they are

deposited. Tims the aggregates, above contemplated,

may be built up, not directly of individual particles,

but of other less complex though (among themselves)
similar and equal sets of aggregated particles. Here

again we come back to the same idea as that in the

quotation from Clerk-^Iaxwell (§ 253), and may employ
it for the purpose of explaining tlie existence of cleavage

planes, etc.

333. The aggregations we have considered have been

such as take place freely ;
but if we coi^sider what is

likely to happen under circumstances of temporary or

permanent stress, as, for instance, in a Rupert's drop,

or any other melted mass of which a portion is cooled

and solidified more suddenly than the rest, we see that

Ave cannot expect a result in which tlie potential energy
of the whole shall be as small as possible ;

and are?

therefore, prepared to find that such bodies, unless care-

fully annealed, are essentially in unstable equilibrium.



APPENDIX I. (§ 18).

HYrOTIlESES AS TO THE CONSTITUTION OF ^NIaTTEH.

By rrofessor Flint, D.D.

1. All material substances are infinitely divisible into

parts of the same nature as themselves and as complex,
even qualitatively, as themselves.

2. All material substances are divisible into ultimate

indivisible homogeneous parts as complex as the Avholes.

One or other of these two hypotheses (it is, perhaps,

impossible to determine which) is attributed by Lucretius

to Anaxagoras, whose real opinion, however, was probably
the one wliich follows.

3. All material substances are formed from a primitive

matter,
" in Avhich all things were together, infinitely

numerous, infinitely little," and of which each infinitely

little part was infinitely complex.

4. All material substances result from the combination

of a few kinds of material elements, each of which is

composed of particles like to itself, e.ij., earth of earthy

particles, water of aqueous particles, air of aerial particles.—This Avas the hypothesis of the Hindu Kanada, the

Greek Empedocles, and a host of medieval physicists.

5. All material substances arc states or stages of one
301
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primitive matter or clement, e.g. of water or air.—The

hypothesis of Thales, Anaximenes, etc.

6. All material substances are divisible into ultimate

indivisible parts,
"
strong in solid singleness," which have

no qualitative but only quantitative differences, and

which variously aggregate through motion in a void.

This is the atomic hypothesis as taught by Democritus,

Epicurus', etc.

7. All material substances are divisible into elementary
substances which are subdivisible into molecules, and,

ultimately, into atoms possessed of distinctive qualita-

tive as well as quantitative differences.— Eecently, and

probably still, the ordinary chemical hypothesis.

8. All material substances are divisible into so-called

elementary substances composed of molecular particles

of the same nature as themselves, but these molecular

particles are complicated structures consisting of congre-

gations of truly elementary atoms, identical in nature

and difiering only in position, arrangement, motion, etc.,

and the molecules or chemical atoms are produced from

the true or physical atoms by processes of evolution

under conditions which Chemistry has not yet been able

to reproduce.
—

Hypothesis of H. Spencer, etc.

9. All material substances are composed of atoms, not

hard and solid and on that account indivisible, but the

rotatory rings or infinitesimal whirls of an incompressible

frictionless fluid, supposed to be homogeneous and perfect,

but the nature of which is not otherwise described
;
and

all the differences of material substances are due to the

characters and behaviour of their component rings or

whirls.—The hypothesis of Sir William Thomson.

10. The matter which is the object of the senses is

the product of a Avorld-building power moulding in accord-
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iiiice "vvitli eternal ideas an uncreated substratum, the

"receptacle" and "nurse" of "forms," but itself devoid

of form and definite attributes.—Plato's hypothesis.

11. The matter which is an object of sense is a

synthesis oiform with a prbnanj matter which is merely

capacity and passivity
—a synthesis produced by a for-

mative cause, Avhich must be both an efficient and final

cause.—Aristotle's hypothesis.

12. Impenetrability is the essence of matter.— Hypo-
thesis of various physicists.

13. Extension, not impenetrability, is the essence of

matter. " Give me extension and motion and I will

construct the world."—Descartes.

14. Material things are "modes" of extension, which

is one of the only two discoverable "attributes" of the

one " Substance."—Spinoza.

15. Matter in its ultimate constitution consists of

mdaphysical points which give rise to sensible matter l)y

states of effort {cunahi^) transitional from rest to motion.

—The hypothesis of Vico. See my
"
A'ico."

16. The ultimate elements of matter are indivisible

points without extension, but suiTounded by spheres of

attractive and repulsive force which alternate according

to the distance of these points up to a certain degree of

remoteness.—Hypothesis of Boscovich.

17. The physical universe is constituted by the un-

conscious perceptions of a vast collection of unextended

spiritual forces or monads, endowed with a power of

spontaneous development and with something of the

nature of desire and sentiment : and the properties which

physical science ascribes to the ultimate elements of

matter are the modes under which the reciprocal actions of

the monads appear to sense.—The hypothesis of Leibnitz.
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18. Matter is a mental picture in wliicli "niind-stuflf
"

is the thing represented, and mind-stufi' is constituted by

feelings Avhich can exist by themselves, without forming

parts of a consciousness, but which are also woven into

the complex form of human minds.—The hypothesis of

Clifford.

19. Matter apart from perception has no existence;

physical phenomena are essentially sensations or ideas;
" bodies

"
are groups or clusters of actual or expected

sensations arranged according to so-called laws of nature

in which is manifest the Avorking of the divine mind.—
Berkeley's hypothesis.

29. Matter is simply an ap^iearance to sense, without

anything real in it.—The Hindu hypothesis of ]Maya, the

Eleatic hypothesis of non-being, etc.

21. Matter is "the permanent possibility of sensa-

tions."—J. S. Mill.

22. "Die Materie ist Dasjenige, wodurch der AVille,

der das innere Wesen der Dinge ausmacht, in die AVahr-

nehmbarkeit tritt, anschaulich, Sichtbar wird. In dicsem

Sinne ist also die Materie die blosse Sichtbarkeit des

Willens, oder das Band der "Welt als Wille rait der Welt

als Vorstellung. Die Materie ist durch und durch

Causalitat."—Schopenhauer,

23. jNIatter is constituted by forces which arc out-

•roino's or manifestations of the Divine Will.

24. Matter is not objectified Will but objectified

thought.

25. Matter is Nature's self-externality in its most

universal form with a tendency to self-internality or

individuation shown in the nisus of gravitation, and

nature is the Idea in the form of otherness, or self-

alienation.—Hegel.
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APPENDIX II. (§§ 29, 101).

From the article "Atom," by Clerk-Maxwell,

Ency. Brit., 9tli cd.

Atom (u.toixo';) is a body which cannot be cut in two.

The atomic theory is a theory of the constitution of

l)odies, which asserts that they are made up of atoms.

Tlie opposite theory is that of the homogeneity and

continuity of bodies, and asserts, at least in the case

of bodies having no apparent organisation, such, for

instance, as water, that as we can divide a drop of water

into two parts which are each of them drops of water,

so Ave have reason to believe that these smaller drops

can be divided again, and the theory goes on to assert

that there is nothing in the nature of things to hinder

this process of division from being repeated over and

over again, times without end. This is the doctrine of

the infinite divisibility of bodies, and it is in direct con-

tradiction with the theory of atoms.

The atomists assert that after a certain number of such

divisions the parts would be no longer divisible, because

each of them would be an atom. The advocates of the

continuity of matter assert that the smallest conceivable

body has parts, and that Avhatever has parts may be

divided.

• • • • a •

There are thus two modes of thinking about the con-

stitution of bodies, which have had their adherents both

in ancient and in modern times. They correspond to

the two methods of regarding quantity
—the arithmetical

and the geometrical. To the atomist the true method

of estimating the quantity of matter in a body is to count
u
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the atoms in it. The void spaces between the atoms

count for nothing. To those who identify matter with

extension, the voh;me of space occupied by a body is the

only measure of the quantity of matter in it.

Of the different forms of the atomic theory, that of

Boscovich may be taken as an example of the purest

monadism. According to Boscovich matter is made up
of atoms. Each atom is an indivisible point, having

position in space, capable of motion in a continuous path,

and possessing a certain mass, whereby a certain amount

of force is required to produce a given change of motion.

Besides this the atom is endowed with potential force,

that is to say, that any two atoms attract or repel each

other with a force depending on their distance apart.

The law of this force, for all distances greater than say

the thousandth of an inch, is an attraction varying as the

inverse square of the distance. For smaller distances

the force is an attraction for one distance and a repulsion

for another, according to some law not yet discovered.

Boscovich himself, in order to obviate the possibility of

two atoms ever being in the same place, asserts that the

ultimate force is a repulsion Avhich increases without

limit as the distance diminishes without limit, so that

two atoms can never coincide. But this seems an

iinwarrantable concession to the vulgar opinion that

two bodies cannot co-exist in the same place. This

opinion is deduced from our experience of the behaviour

of bodies of sensible size, but we have no experimental

evidence that two atoms may not sometimes coincide.

For instance, if oxygen and hydrogen combine to form

water, we have no experimental evidence that the mole-

cule of oxygen is not in the very same place with the

two molecules of hydrogen. Many persons cannot get
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rid of the opinion tliat all matter is extended in length,

breadth, and depth. This is a prejudice of the same kind

with the last, arising from our experience of bodies con-

sisting of immense multitudes of atoms. The system of

atoms, according to Boscovich, occupies a certain region

of space in virtue of the forces acting between the com-

ponent atoms of the system and any other atoms when

brought near them. Xo other system of atoms can

occupy the same region of space at the same time,

because, before it could do so, the mutual action of the

atoms would have caused a repulsion between the two

systems insuperable by any force Avhich we can command.

Thus, a number of soldiers with firearms may occupy an

extensive region to the exclusion of the enemy's armies,

thougli the space filled by their bodies is but small.

In this way Boscovich explained the apparent extension

of bodies consisting of atoms, each of which is devoid

of extension. According to Boscovich's theory, all action

between bodies is action at a distance. There is no such

thing in nature as actual contact between two bodies.

"When two bodies are said in ordinary language to be in

contact, all that is meant is that they are so near together

that the repulsion between the nearest pairs of atoms

belonging to the two bodies is very great.

Thus, in Boscovich's theory, the atom has continuity

of existence in time and space. At any instant of time

it is at some point of space, and it is never in more than

one place at a time. It passes from one place to another

along a continuous path. It has a definite mass which

cannot be increased or diminished. Atoms are endowed

with the power of acting on one another by attraction

or repulsion, the amount of the force depending on the

distance between them. On the other hand, the atom
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itself has no parts or dimensions. In its geometrical

aspect it is a mere geometrical point. It has no exten-

sion in space. It has not the so-called property of

Impenetrability, for two atoms may exist in the same

place. This Ave may regard as one extreme of the

various opinions about the constitution of bodies.

The opposite extreme, that of Anaxagoras
—the theory

that bodies apparently homogeneous and continuous are

so in reality
—

is, in its extreme form, a theory incapable

of development. To explain the properties of any sub-

stance by this theory is impossible. We can only

admit the observed properties of such substance as

ultimate facts. There is a certain stage, however, of

scientific progress in wliich a method corresponding to

this theory is of service. In hydrostatics, for instance,

we define a fluid by means of one of its known pro-

perties, and from this definition we make the system of

deductions which constitutes the science of hydrostatics.

In this way the science of hydrostatics may be built

upon an experimental basis, without any consideration

of the constitution of a fluid as to whether it is mole-

cular or continuous. In like manner, after the French

mathematicians had attempted, with more or less in-

genuity, to construct a theory of elastic solids from the

hypothesis that they consist of atoms in equilibrium

under the action of their mutual forces, Stokes and

others showed that all the results of this hypothesis, so

far at least as they agreed with facts, might be deduced

from the postulate that elastic bodies exist, and from the

hypothesis that the smallest portions into which we can

divide them are sensibly homogeneous. In this Avay the

principle of continuity, which is the basis of the method

of Fluxions and the whole of modern mathematics, may
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be uj)|ilied to tlic analysis of problems connected with

material bodies by assuming them, for the purpose of

this analysis, to be homogeneous. All that is required
to make the results applicable to the real case is that the

smallest portions of the substance of which we take any
notice shall be sensibly of the same kind. Thus, if a

railway contractor has to make a tunnel through a hill

of gravel, and if one cubic yard of the gravel is so like

another cubic yard that for the purposes of the contract

they may be taken as equivalent, then, in estimating the

work required to remove the gravel from the tunnel, he

may, without fear of error, make his calculations as if the

gravel were a continuous substance. But if a worm has

to make his way through the gravel, it makes the greatest

possible difference to him whether he tries to push right

against a piece of gravel, or directs his course through
one of the intervals between the pieces ;

to him, therefore,

the gravel is by no means a homogeneous and continuous

substance.

In the same way, a theory that some particular

substance, say water, is homogeneous and continuous

may be a good working theory up to a certain point,

but may fail when we come to deal with quantities so

minute or so attenuated that their heterogeneity of

structure comes into prominence. Whether this hetero-

geneity of structure is or is not consistent with homo-

geneity and continuity of substance is another question.

The extreme form of the doctrine of continuity is

that stated by Descartes, who maintains that the whole

universe is equally full of matter, and tliat this matter

is all of one kind, having no essential property besides

that of extension. All the properties which we perceive

in matter he reduces to its parts being movable among
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one another, and so capable of all tlic varieties wliicli we
can perceive to follow from the motion of its parts

(Principia, ii. 23). Descartes' own attempts to deduce

the dififerent qualities and actions of bodies in this

way are not of much value. More than a century was

required to invent methods of investigating the con-

ditions of the motion of systems of bodies such as

Descartes imagined.

A cube, whose side is the 4000th of a millimetre,

may be taken as the ininimam vwihile for observers of

the present day. Such a cube would contain from 60

to 100 million molecules of oxygen or of nitrogen ;
but

since the molecules of organised substances contain on an

average about 50 of the more elementary atoms, we may
assume that the smallest organised particle visible under

the microscope contains about two million molecides of

organic matter. At least half of every living organism

consists of water, so that the smallest living being visible

under the microscope does not contain more than about

a million organic molecules. Some exceedingly simple

organism may be supposed built up of not more than

a million similar molecules. It is impossible, however,

to conceive so small a number sufficient to form a being
furnished with a whole system of specialised organs.

Thus molecular science sets us face to face with

physiological theories. It forbids the physiologist from

imagining that structural details of infinitely small

dimensions can furnish an explanation of the infinite

variety which exists in the properties and functions of

the most minute organisms.

A microscopic germ is, we know, capable of develop-

ment into a highly organised animal. Another germ,
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equally microscopic, becomes, when developed, an animal

of a totally different kind. Do all the differences, infinite

in number, which distinguish the one animal from the

other, arise each from some difference in the structure of

the respective germs 1 Even if we admit this as possible,

we shall be called upon by the advocates of Pangenesis

to admit still greater marvels. For the microscopic

germ, according to this theory, is no mere individual,

but a representative body, containing members collected

from every rank of the long-drawn ramification of the

ancestral tree, the number of these members being amply
sufficient not only to furnish the hereditary characteristics

of every organ of the body and every habit of the animal

from birth to death, but also to afford a stock of latent

gemmules to be passed on in an inactive state from germ
to germ, till at last the ancestral peculiarity which it

represents is revived in some remote descendant.

Some of the exponents of this theory of heredity have

attempted to elude the difficulty of placing a whole

world of wonders within a body so small and so devoid

of visible structure as a germ, by using the phrase

structureless germs.
^ Now, one material system can

differ from another only in the configuration and motion

which it has at a given instant. To explain differences

of function and development of a germ without assuming

differences of structure is, therefore, to admit that the

properties of a germ are not those of a purely material

system.

Coincidences observed, in the case of several terrestrial

substances, with several systems of lines in the spectra of

^See F. Galtoii,
'' On Blood Piektionship," Proc. Roy. Soc, June

13, 1872.
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the heavenly bodies, tend to increase the evidence for

the doctrine that terrestrial substances exist in the

heavenly bodies, while the discovery of particular lines

in a celestial spectrum which do not coincide Avith any
line in a terrestrial spectrum does not much weaken the

general argument, but rather indicates either that a sub-

stance exists in the heavenly body not yet detected by
chemists on earth, or that the temperature of the heavenly

body is such that some substance, undecomposable by
our methods, is there split up into components unknown
to us in their separate state.

AVe are thus led to believe that in widely-separated

parts of the visiljle universe molecules exist of various

kinds, the molecules of each kind having their various

periods of vibration either identical, or so nearly identical

that our spectroscopes cannot distinguish them. "\Vc

might argue from this that these molecules are alike in

all other respects, as, for instance, in mass. But it is

sufficient for our present purpose to observe that the

same kind of molecule, say that of hydrogen, has the

same set of periods of vibration, whether we procure the

hydrogen from water, from coal, or from meteoric iron,

and that light, having the same set of periods of vibra-

tion, comes to us from the sun, from Sirius, and from

Arcturus.

The same kind of reasoning which led us to believe

that hydrogen exists in the sun and stars, also leads us

to believe that the molecules of hydrogen iu all these

bodies had a common origin. For a material system

capable of vibration may have for its periods of vibration

any set of values whatever. The probability, therefore,

that two material systems, quite indep)endent of each

other, shall have, to the degree of accuracy of modern
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spectroscopic measurements, the same set of periods of

vibration, is so very small that we arc forced to believe

that the two systems are not independent of each other.

When, instead of two such systems, we have innumer-

able multitudes all having the same set of periods, the

argument is immensely strengthened.

Admitting, then, that there is a real relation between

any two molecules of hydrogen, let us consider what this

relation may be.

"We may conceive of a mutual action betAveen one

body and another tending to assimilate them. Two

clocks, for instance, will keep time with each other if

connected by a wooden rod, though they have different

rates if they Avere disconnected. But even if the pro-

perties of a molecule were as capable of modification as

those of a clock, there is no physical connection of a

sufficient kind between Sirius and Arcturus.

There are also methods by which a large number of

bodies differing from each other may be sorted into sets,

so that those in each set more or less resemble each

other. In the manufacture of small shot this is done

by making the shot roll down an inclined plane. The

largest specimens acquire the greatest velocities, and are

projected farther than the smaller ones. In this way the

various pellets, which differ both in size and in round-

ness, are sorted into different kinds, those belonging to

each kind being nearly of tlie same size, and those which

are not tolerably spherical being rejected altogether.

If the molecules wore originally as various as these

leaden pellets, and were afterwards sorted into kinds,

we should have to account for the disappearance of all

the molecules which did not fall under one of the very
limited number of kinds known to us

;
and to get rid of
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a number of indestructible bodies, exceeding by far the

number of the molecules of all the recognised kinds,

would be one of the severest labours ever proposed to a

cosmogonist.

It is well known that living beings may be grouped
into a certain number of species, defined with more or

less precision, and that it is difficult or impossible to find

a series of individuals forming the links of a continuous

chain between one species and another. In the case of

living beings, however, the generation of individuals is

always going on, each individual differing more or less

from its parents. Each individual during its whole life

is undergoing modification, and it either survives and

propagates its species, or dies early, accordingly as it is

more or less adapted to the circumstances of its environ-

ment. Hence, it has been found possible to frame a

theory of the distribution of organisms into species by
means of generation, variation, and discriminative destruc-

tion. But a theory of evolution of this kind cannot be

applied to the case of molecules, for the individual mole-

cules neither are born nor die, they have neither parents

nor offspring, and so far from being modified by their

environment, we find that two molecules of the same

kind, say of hydrogen, have the same properties, though

one has been compounded Avith carbon and buried in the

eartli as coal for luitold ages, while the other has been
" occluded "

in the iron of a meteorite, and after unknown

wanderings in the heavens has at last fallen into the

1 lands of some terrestrial chemist.

The process by which the molecules become distributed

into distinct species is not one of which we know any

instances going on at present, or of which we have as

yet been able to form any mental representation. If
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we suppose that the molecules known to us are built up
each of some moderate number of atoms, these atoms

being all of them exactly alike, then we may attribute

the limited number of molecular species to the limited

number of Avays in which the primitive atoms may be

combined so as to form a permanent system.

]5ut though this hypothesis gets rid of the difficulty

of accounting for the independent origin of different

species of molecules, it merely transfers the difficulty

from the known molecules to the primitive atoms. How
did the atoms come to be all alike in those properties

which are in themselves capable of assuming any value 1

If we adopt the theory of Boscovich, and assert that

the i)rimitive atom is a mere centre of force, having a

certain definite mass, we may get over the difficulty al)0ut

the equality of the mass of all atoms by laying it down

as a doctrine which cannot be disproved by experiment,

that mass is not a quantity capable of continuous increase

or diminution, but that it is in its own nature discon-

tinuous, like number, the atom being the unit, and all

masses being multiples of that unit. We have no evidence

that it is possible for the ratio of two masses to be

an incommensurable quantity, for the incommensurable

quantities in geometry are supposed to be traced out in a

continuous medium. If matter is atomic, and therefore

discontinues, it is unfitted for the construction of perfect

geometrical models, but in other respects it may fulfil its

functions.

But even if we adopt a theory which makes the

equality of the mass of diflTerent atoms a result depending
on the nature of mass rather than on any quantitative

adjustment, the correspondence of the periods of vibra-

tion of actual molecules is a fact of a different order.



316 PROPERTIES OF .MATTER.

We know that radiations exist having periods of vibra-

tion of every value between those corresponding to the

limits of the visible spectrum, and probably far beyond
these limits on both sides. The most powerful spectro-

scope can detect no gap or discontinuity in the spectrum
of the light emitted by incandescent lime.

The period of vibration of a luminous particle is there-

fore a quantity which in itself is capable of assuming any
one of a series of values, which, if not mathematically

continuous, is such that consecutive observed values differ

from each other by less than the ten-thousandth part of

either. There is, therefore, nothing in the nature of time

itself to prevent the period of vibration of a molecule

from assuming any one of many thousand different

observable values. That which determines the period of

any particular kind of vibration is the relation which sub-

sists between the corresponding type of displacement and

the force of restitution thereby called into play, a relation

involving constants of space and time as well as of mass.

It is the equality of these space and time-constants

for all molecules of the same kind which wo have next

to consider. We have seen that the very different cir-

cumstances in which different molecules of the same

kind have been placed have not, even in the course of

many ages, produced any a])preciable difference in the

values of these constants. If, then, the various processes

of nature to which tliese molecules have been sulyected
since the world began have not l3een able in all that

time to produce any appreciable difference between the

constants of one molecule and those of another, we are

forced to conclude that it is not to the operation of any
of these processes that the uniformity of the constants

is due.
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The formation of the molecule is therefore an event

not belonging to that order of nature under which wo

live. It is an operation of a kind which is not, so far

as we are aware, going on on earth or in the sun or the

stars, either now or since these bodies began to be formed.

It must be referred to the epoch, not of the formation of

the earth or of the solar system, but of the establishment

of the existing order of nature, and till not only these

worlds and systems, but the very order of nature itself is

dissolved, we have no reason to exj)ect the occurrence of

any operation of a similar kind.

In the present state of science, therefore, we have

strong reasons for believing that in a molecule, or if not

in a molecule, in one of its component atoms, we have

something which has existed either from eternity or at

least from times anterior to the existing order of nature.

Eut besides this atom, there are immense numbers of

other atoms of the same kind, and the constants of each

of these atoms are incapable of adjustment by any process

now in action. Each is physically independent of all the

others.

Whether or not the conception of a multitude of

beings existing from all eternity is in itself self-contra-

dictory, the conception becomes palpably absurd when

we attribute a relation of c|uantitative equality to all

these beings. "We are then forced to look beyond them

to some common cause or common origin to explain why
this singular relation of equality exists, rather than any one

of the infinite number of possible relations of inequality.

Science is incompetent to reason upon the creation of

matter itself out of nothing. We have reached the

iitmost limit of our thinking faculties when we have

admitted that, because matter cannot be eternal and
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self-existent, it nuist have been created. It is only when

we contemplate not matter in itself, but the form in

which it actually exists, that our mind finds something
on which it can lay hold.

That matter, as such, should have certain fundamental

properties, that it should have a continuous existence in

space and time, that all action should be between two

portions of matter, and so on, are truths which may, for

aught we know, be of tlie kind which metaphysicians

call necessary. We maj^ use our knowledge of such

truths for purposes of deduction, but we have no data

for speculating on their origin.

But the ecpaality of the constants of the molecules is

a fact of a very different order. It arises from a

particular distribution of matter, a collocation, to use

the expression of Dr. Chalmers, of things which we

have no difficulty in imagining to have been arranged

otherwise. But many of the ordinary instances of

collocation are adjustments of constants, which are not

only arbitrary in their own nature, but in Avhich varia-

tions actually occur
;
and when it is pointed out that

these adjustments are beneficial to living beings, and

are therefore instances of benevolent design, it is replied

that those variations Avhich are not conducive to the

growth and multiplication of living beings tend to their

destruction, and to the removal thereby of the evidence

of any adjustment not beneficial.

The constitution of an atom, however, is such as to

render it, so far as we can judge, independent of all the

dangers arising from the struggle for existence. Plausible

reasons may, no doubt, be assigned for believing that if

the constants had varied from atom to atom through any
sensible range, the bodies formed by aggregates of such
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atoms would not have been so -well fitted for the con-

struction of the world as the bodies which actually exist.

But as we have no experience of bodies formed of such

variable atoms this must remain a bare conjecture.

Atoms have been compared by Sir J. Herschel to

manufactured articles, on account of their uniformity.

The uniformity of manufactured articles may be traced

to very different motives on the part of the manufacturer.

In certain cases it is found to be less expensive as regards

trouble, as well as cost, to make a great many objects

exactly alike than to adapt each to its special require-

ments. Thus, shoes for soldiers are made in large

numbers without any designed adaptation to the feet of

particular men. In another class of cases the uniformity

is intentional, and is designed to make the manufactured

article more valuable. Thus, Whitworth's bolts are made

in a certain number of sizes, so that if one bolt is

lost, another may be got at once, and accurately fitted

to its place. The identity of the arrangement of the

words in the different copies of a document or book is a

matter of great practical importance, and it is more

perfectly secured by the process of printing than by that

of manuscript copying.

In a third class not a part only but the whole of the

value of the object arises from its exact conformity to a

o-iven standard. Weights and measures belong to this

class, and the existence of many well-adjusted material

standards of weight and measure in any country furnishes

evidence of the existence of a system of law regulating

the transactions of the inhabitants, and enjoining in all

professed measures a conformity to the national standard.

There are thus three kinds of usefulness in manufac-

tured articles—cheapness, serviceableness, and quantita-
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tive accuracy. Which of these was present to the mind
of Sir J. Herschel we cannot now positively affirm, but

it was at least as likely to have been the last as the first,

though it seems more probable that he meant to assert

that a number of exactly similar things cannot be each

of them eternal and self-existent, and must therefore

have been made, and that he used the phrase "manu-
factured article

"
to suggest the idea of their being made

in great numbers.O'^

APPENDIX III. (§ 97).

TuAi vero ex eo inventionis ingressu duas dicitur

fecisse massas pequo pondere, quo etiam fuerat corona,
unam ex auro alteram ex argento. Cum ita fecisset, vas

amplum ad summa laljra implevit aqua ;
in quo demisit

argenteam massam : cuius quanta magnitudo in vase

depressa est, tantum aqua? effluxit. Ita exempta massa,

quanto minus factum fuerat, refudit sextario mensus, ut

eodem modo, quo prius fuerat, ad labra a?quaretur. Ita ex

eo invenit, quantum [ad certum] pondus argenti ad certam

aquiB mensuram responderet. Cum id expertus esset,

tum auream massam similiter pleno vase demisit, et ea

exempta, eadem ratione mensura addita invenit ex aqua
non tantum defluxisse sed [fantum] minus, quanto minus

magno corpore eodem pondere auri massa esset quam
argenti. Postea vero repleto vase in eadem aqua ipsa
corona demissa, invenit plus aquae defluxisse in coronam,

quam in auream eodem pondere massam : et ita ex eo,

quod plus defluxerat aquae in corona quam in massa,
ratiocinatus deprehendit argenti in auro mixtionem et

manifestum furtum rcdemptoris.
—

Vitruvius, De ArcJii-

tecturd, Lib. IX., Prsefatlo.
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APPENDIX IV. (§191).

XoTE ON A Singular Passage in the "Principia."

By Professor Tait.i

In the remarkable Scholium, appended to his chapter

on the Laws of Motion, where Newton is showing what

Wren, Wallis, and Huygens had done in connection with

the impact of bodies, he uses the following very peculiar

language :
—

" Sed et Veritas coniprobata est a D. Wrenno coram

Regia Societate per experimentum Pendulorujn, quod etiam

Clarissimus Marloftus Libro integro exponere mox dig-

natus est."

The last clause of this sentence, which I had occasion

to consult a few days ago, appeared to me to be so

sarcastic, and so unlike in tone to all the context, that

I was anxious to discover its full intention.

Not one of the Commentators, to whose works I had

access, makes any remark on the passage. The Trans-

lators differ widelv.

Thus Motte softens the clause down into the trivial

remark " which Mr. IMariotte soon after thought fit to

explain in a treatise entirely on that subject."

The Marquise du Chastellet (1756) renders it thus :
—

". . . . mais ce fut Wremi qui les confirma par des

Experiences faites avec des Pendules devant la Soci^t^

Royale : lesquelles le celebre Mariotte a rapport^es depuis

dans un Trait6 qu'il a compose expr^s sur cette matiere."

Thorp's translation (1777) runs :
—

" which the very eminent Mr. Mariotte soon after thought

fit to explain in a treatise entirely upon that subject."

1 Proc. B.S.E., January 19, 1885.

X
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Einally, Wolfers (1872) renders it thus :
—

" der zweite zeigto der Societat die Kichtigkeit seiner

Erfindung an einem Pendelversuclie, den der beriilimte

Mariotte in seinem eigenen "NVerke aus einander zu setzen,

fiir -wiirdig eraclitete."

Xot one of these seems to have remarked anything

.singular in the language employed. But when we con-

sult the
"
entire book "

in which Mariotte is said by

Xewton to have "
expounded

"
the result of Wren, and

which is entitled TraiU de la Percussion ou Choc des

Corps, we find that the name of AVren is not once

mentioned in its pages ! From the beginning to the end

there is nothing calculated even to hint to the reader

that the treatise is not wholly original.

This gives a clue to the reason for Newton's sarcastic

language ;
whose intensity is heightened by the contrast

between the Glanssimus which is carefully prefixed to the

name of Mariotte, and the simple D. prefixed, not only

to the names of Englishmen like "VVren and Wallis, but

even to that of a specially distinguished foreigner like

Huygens.
Newton must, of course, like all the scientific men of

the time (Mariotte included), have been fully cognisant

of Boyle's celebrated controversy Avith Linus, which led

to the publication, in 1662, of the Defence of the Doctrine

touching the Spring and Weight of the Air. In that tract.

Part 11. Chap, v., the result called in Britain Bofjle's Law
is established (by a very remarkable series of experi-

ments) for pressures less than, as well as for pressures

greater than, an atmosphere ;
and it is established by

means of the very form of apparatus still employed for

the purpose in lecture demonstrations. Boyle, at least,

claimed originality, for he says in connection with the



APPENDIX. 323

difficulties met with iu tlie breaking of his glass tube,
—

". . . . an accurate Experiment of this nature would

be of great importance to the Doctrine of the Spring of

the Air, and has not been made (that I know) by any
man. ..."

In Mariotte's Discours de la Nature de VAir, published

FOURTEEN years later than this work of Boyle, we find

no mention whatever of Boyle, though the identical form

of apparatus used by Boyle is described. The whole

w^ork j^roceeds, as does that on Percussion, with a calm

ignoration of the labours of tlie majority of contemi^orary

philosophers.

This also must, of course, have been perfectly Avell

known to ISTewton :
—and we can now see full reason for

the markedly peculiar language which he permits himself

to employ with reference to Mariotte.

What was thought of this matter by a very distin-

guished foreign contemporary, appears from the treatise

of James Bernoulli, De Gravitate ^theris, Amsterdam,

1683, p. 92.

' Veritas utriusque hujus regulee manifesta fit duobus

curiosis cxperimentis, ab Illustr. Dn Boylio banc in rem

factis, qute videsis in Tradatu ejus contra Lirmm, Cap. V.,

cui duas Auctor subjunxit Tabulas pro diversis Conden-

sationis et Rarefactionis gradibus."

In order to satisfy myself that iffewton's language,

taken in its obvious meaning, really has the intention

which I could not avoid attaching to it, I requested my
colleague Professor Butcher to state the impression which

it produced on him. I copied for him the passage above

quoted, putting A. for the word Wrenno, and B. for

Mariottus ; and I expressly avoided stating who was the

writer. Here is his reply :
—
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" I imagine the point of the passage to Le something of

this kind (speaking Avithout farther context or acquaint-

ance with the Latinity of the learned antlior) :
—

" A established the truth by means of a (simple) ex-

periment, before the Royal Society ; later, B thought it

worth his while to write a whole book to prove the same

point.
"
I should take the tone to be highly sarcastic at B's

expense. It seems to suggest that B was not only clumsy
but dishonest. The latter inference is not certain, liut

at any rate we have a hint that B took no notice of A's

discovery, and spent a deal of useless labour."

This conclusion, it Avill be seen, agrees exactly with the

complete ignoration of AVren by Mariotte.

"When I afterwards referred Professor Butcher to the

whole context, in my copy of the first edition of the

Princiina, and asked him whether the use of Glarissimiis

Avas sarcastic or not, he wrote—
" I certainly think so. Indeed, even apart from the

context, I thought the Clarismmis Avas ironical, but there

can be no doubt of it when it corresponds to D. Wren."

In explanation of this I must mention that, Avhen I

first sent the passage to Professor Butcher, I had copied it

from Horsley's sumptuous edition
;
in Avhich the Z>s are

omitted, while the CJarissimus is retained.

Alike in France and in Germany, to this day, the Law
in question goes by the name of Mariotte. The following

extracts, from two of the most recent high-class text-

books, have now a peculiar interest. I have put a Avord

or tAvo of each in italics. These should be compared Avith

the dates given.
" Diese Prage ist schon friihzeitig untersucht und

zAvar fast gleichzeUig von dem franzosischen Physiker
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Mariotte (1679) mid dem englisclien Physiker Boyle

(1662)." Wiillner, Lehrbuch der Experimentalphysik

1882, § 98.

"La loi qui regit la compressibility des gaz a tem-

perature constante a 6t6 trouv6e presque simultaniment par

Boyle (1662) en Angieterre et par Mariotte (1676) en

France
; toutefois, si Boyle a public le premier ses ex-

periences, il ne sut pas en tirer I'^uonc^ clair que donna

le physicien fran^ais. C'est done avec quelque raison

que le nom de loi de Mariotte a passe dans I'usage."

Violle, Coitrs de Physique, 1884, § 283.1

On this I need make no remark further than quoting

one sentence from Boyle, where he compares the actual

pressure, employed in producing a certain compression

in air, Avith "what the pressure should be according to

the Hypothesis, that supposes the pressures and expansions

to be in reciprocal proportion." M. Violle has probably

been misled by the archaic use of "
expansion" for volume.

It must be said, in justice to Mariotte, that he does

not appear to have claimed the discovery of any new

facts in connection either Avith collision or with the

effect of pressure on air. He rather appears to write

with the conscious infallibility of a man for whom nature

lias no secrets. And he transcribes, or adapts, into his

writings (without any attempt at acknowledgment) what-

ever suits him in those of other people. He seems to

have been a splendidly successful and very early example

of the highest class of what we now call the Paper-

Scientists. Witness the following extracts from Boyle,

1 Even ill the latest edition of Janiin's Cotirs de Phtjsique we

find the statement :—" Les experiences de Boyle se rapportent

seulement aux pressions superieures a k pression atmospherique."

Coiupaie this with Boyle's own words, in § 195 above.
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with a parallel citation from Mariotte of fourteen years

later date at least. The comparison of the sponges had

struck me so much, in Mariotte's work, that I "was

induced to search for it in Boyle, Avhere I felt convinced

that I should find it.

" This Xotion may perhaps be somewhat further ex-

plain'd, by conceiveing the Air near the Earth to be such

a heap of little Bodies, lying one upon another, as may
be resembled to a Fleece of Wooll. For this (to omit

other likenesses betwixt them) consists of many slender

and flexible Hairs ; each of which, may indeed, like a

little Spring, be easily bent or rouled up ;
but will also,

like a Spring, be still endeavouring to stretch itself out

again. For though both these Haires, and the ^Eieal

Corpuscles to which we liken them, do easily yield to

externall pressures ; yet each of them (by virtue of its

structure) is endow'd with a Power or Principle of Selfe-

Dilatation
; \>y virtue whereof, though the hairs may by

a Mans hand be bent and crouded closer together, and

into a narroAver room then suits best with the Nature of

the Body, yet, whils't the compression lasts, there is

in the fleece they composeth an endeavour outwards,

whereby it continually thrusts against the hand that

opposeth its Expansion. And upon the removall of the

externall pressure, by opening the hand more or less, the

compressed AVooll doth, as it were, spontaneously expand
or display- it self towards the recovery of its former more

loose and free condition till the Fleece hath either regain'd

its former Dimensions, or at least, approached them as

neare as the compressing hand, (perchance not quite

oi^en'd) will permit. The power of Selfe-Dilatation is

somewhat more conspicuous in a dry Spunge compress'd,

then in a Fleece of "Wooll. But yet we rather chose to
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employ the latter, on this occasion, because it is not like

a Spunge, an intire Body ;
but a number of slender and

flexible Bodies, loosely complicated, as the Air itself

seems to be."

And, a few pages later, he adds :
—

". . . .a Column of Air, of many miles in height,

leaning upon some springy Corpuscles of Air here below,

may have weight enough to bend their little springs, and

keep them bent : As, (to resume our former comparison,)

if there were fleeces of Wooll pil'd i;p to a mountainous

height, upon one another, the hairs that compose the

lowermost Locks which support the rest, would, by the

weight of all the Wool above them, be as well strongly

compress'd as if a Man should squeeze them together in

his hands, or employ any such other moderate force to

compress them. So that Ave need not wonder, that upon
the taking of the incumbent Air from any parcel of the

Atmosphere here below, the Corpuscles, whereof that

undermost Air consists, should display themselves, and

take up more room than before."

Mariotte (p. 151). "On pent comprendre a pen pres

cette difi't^.rence de condensation de I'Air, par I'exemple

de plusieurs eponges qu'on auroit entass6es les unes sur

les autres. Car il est Evident, cj^ue celles c[ui seroient

tout au haut, auroient leur etenduii naturelle : que
celles qui seroient immediatement au dessous, seroient

un pen moins dilatees
;

et que celles qui seroient au

dessous de toutes les autres, seroient tr6s-seri6es et con-

densees. II est encore manifeste, que si on otoit toutes

celles du dessus, celles du dessous reprendroient leur

6tendue naturelle par la vertu de ressort qu'elles ont, et

que si on en otoit seulemcnt une partie, elles ne repren-

droient qu'une partie de leur dilatation."
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Those curious in such antiquarian details will probably

find a rich reward by making a careful comparison of

these two works
;
and in tracing the connection between

the Liher integer, and its fons et origo, the paper of Sir

Christopher Wren.

Condorcet, in his Eloge de Marivtfe, says :
—" Les lois

du choc des corps avaient (^t6 trouvees par une m6ta-

physique et par unc application d'analyse, nouvelles

I'une et I'autre, et si subtiles, que les demonstrations de

ces lois ne pouvaient satisfaire que les grands math6-

maticiens. Mariotte chercha k les rendre, pour ainsi

dire, populaires, en les appuyant sur des experiences, etc."

i.e. predsehj what Wren had thoroughly done before him.
" Le discours de Mariotte sur la nature de Fair ren-

ferme encore une suite d'experiences int^ressantes, et qui

6taient absolument neuves." This, as we have seen, is

entirely incorrect.

But Condorcet shows an easy way out of all questions

of this kind, however delicate, in the words :
— " On ne

doit aux morts que ce qui pent etre utile aux vivants, la

verite et la justice. Cependant, lorsqu'il reste encore

des amis et des enfants que la v(^rite pent affliger, les

^gards deviennent un devoir
;
mais au bout d'un siecle,

la vanity pent seule etre blessee de la justice rendue aux

morts."

Thus it is seen that even the turn of one of Newton's

phrases serves, when rightly viewed, to dissipate a wide-

spread delusion :
—and that while Boyle, though perhaps

he can scarcely be said to have been "born great," cer-

tainly
" achieved greatness

"
;
the assumed parent of La

loi de Mariotte (otherwise Mariottesches Gesetz) has as

certainly had "
greatness thrust upon

" him.
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Acceleration, 70, 120.

Adiabaties, 175.

Altitude, 76.

Angle of Contact, 281.

Angular Velocity, 65, 72.

Annealing, 220, 324, 33-3.

Atmolysis, 312.

Atmoraeter, 286.

Atmosphere, 196.

Atom, 23
;
also Appendix II.

vortex, 18, 27.

Axioms, 1.

Azimuth, 76.

Balance, 35, 127.

spring, 118, 165.

Billion, 104.

Boiler, strength of, 278.

Bookworm, 89.

Capillarity, 279-295.

Casting, 92.

Catalysis, 297.

Cavendish experiment, 153-155.

Centre of inertia, 129.

of gravity, 142.

Centrifugal Force, 117, 151.

Cleavage, 220, 324, 332.

Clouds, suspension of, 40.

Cohesion, 53, 258-297.

Col, 84.

Collision, 254-256.

Colloids, 100, 301, 324.
329

Colour, 42.

Compressibility, 88, 169.

measure of, 176.

of gases and vapours, 186,
207.

of liquids, 208-218.
of solids, 220, etc.

Condensation, surface, 296.

Conservation of matter, 5.

of energy, 7.

Constraint, 77.

Contact, angle of, 281.

Contour lines, 80-88.

Corona;, 103.

Corpuscules, ultra - mundane,
163.

Couple, 133.

Critical temperature, 194, 198,

206, 323.

Crystallisation, 324.

Crystalloids, 301.

Crystals of cubic system, 326.

Curvature, 89.

Curve, 68.

equation of, 77.

elastic, 237.

Density, 36.

mean, 126.

mean, of earth, 153-158.

surface, 141.

Diagram of Energy, 88.

Dialysis, 309.
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Ditfusiou, 299-309, 313.

Dilution, 106.

Dimensions, 64.

Distance-Action, 10.

Divine-Bell, 94.

Divisibility, 101-107.

Ductility, 8&. -^ -

Dynamical similarity, 295.

Dyne, 124.

Eakth, rotation of, 112.

mean density, 153-158.

figure of, 165.

how kept together, 167.

Effusion, 310,

Elastic curve, 237.

recover}^ 252-253.

Elasticity, 41, 168, 221.

dormant, 245.

fatigue of, 168, 251.

,
limits of, 219, 233, 243.

Elat^rometre, 233.

Energy, 4, 6.

conservation of, 7, 130.

diagram of, 88.

kinetic, 14, 132.

potential, 13, 14, 263.

transformation of, 9.

Equation of a curve, or surface,

77, 78.

Equilibrium, stable, 263.

Equipotential, 87.

Expansibility, 88.

Extension, 21, 58.

Fatigue of Elasticity, 158, 251.

Fluxions, 72.

Force, 11.

centrifugal, 117.

parallelogram of, 122.

measurement of, 123.

unit of, 124.

activity of, 130.

molecular, 26, 258.

resolution of, 76.

Freedom, 77.

Friction, 38.

Oases, compressibility of, 186.

Gases, liquefirction of, 207.

kinetic theory of, 55, 207,
322.

Glen Roy, Parallel Roads of,

80.

Gold-beating, 47.

-leaf, thickness of, 102.

Gradient, 82.

Grained structure, 26, 107.

Gravitation, 138-164.

universality of, 139 - 143,
152.

energy of two masses, 159.

cause of, 160-164.

Gravity, 138.

centre of, 142.

measure of, in different lati-

tudes, 165.

specific, 36, 166.

Hardness, Scale of, 56.

Harmonic Motion, 71.

Harton experiment, 157.

Head, 6, 14.

Heat, 52.

Hemihedry, 326, 331.

Hodograpli, 70.

of planet's orbit, 146,

Homogeneous, 219.

Hydrophane, 99.

Hydrostatic Laws, 189.

pressure, 176.

Imit, 85.

Impact, 254-6.

time of, 257.

Imjienetrability, 21, 91-97.

Impurities, purposely added,
219.

Inertia, 9, 108.

moment of, 119, 132.

centre of, 128, 129.

Isobars, 86.

Isothermals, 86, 175.

Isotropic, 175, 219.

Kink, 230, 237.

Kinetic theory, 33, 55, 107, 322.
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Latitude, 67, 156.

Law, Boyle's, 191.

Hooke's, 221.

Laws, Kepler's, 144.

Newton's, 108, 120, 128.

Lenmiscate, 87.

Levelling, SO.

Levigation, 101.

Lightning, 33.

Limits of elasticity, 233, 243.

Liquefaction of gases, 207.

Liquids, compressibility of, 208-

218.

Locus, 68.

Longitude, 67.

Machine, 48.

^lalleability, 45.

Manometer, 193, 201, 233.

Mass, 34.

Mass, measurement of, 123.

unit of, 123.

Matter, 2, 4.

conservation of, 5.

definitions of, 18. Also

Appendix L
Million, 104.

Mobility, 120.

Modulus, 185.

Young's, 224.

Molecular forces, 26, 258.

limit of, 293.

Moment of Inertia, 119, 132.

of momentum, 132.

of couple, 133.

Moon, 33, 35, 110, 149.

Motion, First Law of, 108-119.
Second Law of, 120-127.
Third Law of, 128-137.

proof of Laws of, 110,

the Perpetual, 139.

Musk, 104.

NON- ISOTROPIC, 220.

Nutation, 119, 142.

Objectivity, 2, 5, 6, 7, 15.

Opacity, 51.

Origin, 62.

Osmose, 306-308.

Particle, of matter, 29.

Pendulum, 115.

of gas, 33, 55, 107.

Perpetual Motion, the, 139.

Piezometer, 211.

Plasticity. 35, 50.

Porosity, 98-100.

Potential. 87.

Pound, 123.

Precession, 119, 142.

Pressure, 55, 88, 189, 280 (foot-

note).

Properties, specific, 36.

Quadrillion, 104.

Radius-Vector, 65, 69.

Radius of gyration, 133.

Registering instruments, 68.

Restitution, coefficient of, 255.

Rigidit}^ 169, 178, 229.

flexural, 235.

Ripple, 33, 295.

Rotation, 116, 119.

absolute, 131.

ScHEHALLiEN experiment, 156.

Senses, 1.

muscular, 12.

Shear, 37.

Shell, attraction of spherical,
140-141.

Similarity, dynamical, 295.

Slope, 83.

Soap-bubble, 270-277.
Sodium vapour, 105.

Solution of gas, 298.

Sound, 186.

Soundings, 79.

Space, 57.

tridimensional character of,
58.

of no dimensions, 60.

of one dimension, 61-65.
of two dimensions, 67-74.
of three dimensions, 75-88.
of four dimensions, 89.

Specific Properties, 36.

Speed, 64.
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Spiral, logarithmic, 73.

Stars, 33.

Strain, 169.

homogeneous, 170-175.

of spheres and cylinders by-

pressure, 183-184.

Stream-line, 83.

Stress, 128, 137, 169, 177.

Structure, grained, 26, 107.

Sucker, 287.

Summit, 85.

Surface, equation of, 78.

-condensation, 296.

-density, 141.

-tension, 261-278, 290.

Tabasheer, 99.

Tears of strong wine, 269.

Temper, 220.

Temperature, 52.

absolute, 55.

critical, 194, 198, 206,

323.

Tenacity of liquids, 219.

of solids, 226.

Tension, surface-, 261-278.

Time, 57, 66.

Torsion, 228, 240.

Transformation of energy, 9.

Translation, absolute, 131.

Translucency, 51.

Transparency, 51.

Transpiration, 311, 314.

Tridimensional character of

space, 58.

Vapouk-Peessuke on curved

surface, 291.

Vector, Radius, 65, 69.

Angle, 65, 69.

Velocity, 69.

angular, 65, 72.

components of, 69, 76.

Viscidity, 294.

Viscosity of liquids, 37, 315.

of solids, 249.

of gases, 320.

Volume, 58.

measure of, 93.

Vortex atom, 18, 27.

Watehcourse, 85.

Watershed, 85.

Waves, 185, 295.

AVeight, 14, 34.

Wire-drawing, 49.

Work, 13, 88.

rate of doing, 130.

THE END.

MORRISON AND GIBB, PRINTKRS. EDINBURGH.
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